
steffen prochnow

E F F I C I E N T D E V E L O P M E N T
O F C O M P L E X S TAT E C H A RT S

E F F I C I E N T D E V E L O P M E N T
O F C O M P L E X S TAT E C H A RT S

steffen prochnow

Dissertation

Zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

(Dr. rer. nat.)

der Technischen Fakultät
der Christian-Albrechts-Universität zu Kiel

Kiel, Mai 2008

gutachter:

1. Reinhard von Hanxleden (e-mail: rvh@informatik.uni-kiel.de)

2. Susanne Graf (e-mail: susanne.graf@imag.fr)

datum der mündlichen prüfung:

3. Juli 2008

ort:

Kiel

mailto:rvh@informatik.uni-kiel.de
mailto:susanne.graf@imag.fr

The point is that analytical designs are not to be decided
on their convenience to the user or necessarily their readability

or what psychologists or decorators think about them;
rather, design architectures should be decided

on how the architecture assists analytical thinking about evidence.

— Edward Tufte

A B S T R A C T

Modeling systems based on semi-formal graphical formalisms, such as
Statecharts, has become standard practice in the design of reactive em-
bedded devices. Using paradigms established so far often results in com-
plex models that are difficult to comprehend and maintain. Moreover,
potential errors can be very subtle and hard to locate in complex sys-
tems for the human beholder. This severely compromises the practical
use of the Statechart formalism.

To overcome this, we present a methodology to support the easy de-
velopment and understanding of complex Statecharts. Central to our ap-
proach is the definition of a Statechart Normal Form (SNF), which makes
systematic use of secondary notations to aid readability. The approach
employs an efficient automated layout mechanism that transforms any
given Statechart to this SNF. For the understanding of complex State-
charts during simulation we provide a dynamic variant of the SNF which
provides a dynamic focus-and-context view based on the semantics of
Statecharts. This technique reduces the displayed Statechart complex-
ity using context abstraction of the locus of control. As an alterna-
tive to the standard WYSIWYG editing paradigm, which has some weak-
nesses for complex Statecharts, we present a graphical approach that
is rather oriented towards the underlying structure of the System Under
Development (SUD), and another approach based on a textual, dialect-
independent Statechart description language. We also present an approach
to transform textual Esterel programs into equivalent graphical Safe State
Machines—a synchronous Statechart variant. These proposals permit a
design flow, where the designer efficiently develops the structure of a sys-
tem, but uses a graphical browser and simulator to inspect and validate
the SUD. Furthermore, we focus on an approach analyzing Statecharts
that limits or even prevents the use of error-prone expressions.

The Kiel Integrated Environment for Layout (KIEL) is a prototypical
modeling tool to explore our editing, browsing and simulation para-
digms in the design of complex reactive systems. An empirical study
on the usability and practicability of our Statechart editing techniques,
including a Statechart layout comparison, indicates significant perfor-
mance improvements in terms of editing speed and model comprehen-
sion compared to traditional modeling approaches. Experimental mea-
surements on KIEL indicate the practicality and effectiveness of our meth-
odologies.

vii

P U B L I C AT I O N S

Some of the concepts and figures presented in this thesis have
appeared previously in the following publications. For a current
on-line bibliography on the Kiel Integrated Environment for Layout
(KIEL) project, visit the KIEL homepage: http://www.informatik.uni-
kiel.de/rtsys/kiel.

[1] Steffen Prochnow and Reinhard von Hanxleden. Statechart De-
velopment Beyond WYSIWYG. In Proceedings of the ACM/IEEE
10th International Conference on Model Driven Engineering Lan-
guages and Systems (MoDELS’07), Nashville, TN, USA, October
2007.

[2] Steffen Prochnow and Reinhard von Hanxleden. The Use of
Complex Stateflow-Charts with KIEL—An Automotive Case
Study. In Proceedings of 5th GI-Workshop Automotive Software
Engineering (ASE’07), Bremen, Germany, September 2007.

[3] Steffen Prochnow and Reinhard von Hanxleden. Enhance-
ments of Statechart-Modeling—The KIEL Environment. In
Proceedings of the ARTIST 2007 International Workshop on Tool
Platforms for Modeling, Analysis and Validation of Embedded Sys-
tems, held in conjunction with the 19th International Conference on
Computer Aided Verification (CAV 2007), Berlin, Germany, July
2007.

[4] Steffen Prochnow and Reinhard von Hanxleden. Enhance-
ments of Statechart-Modeling—The KIEL Environment. In
Proceedings of the Design, Automation and Test in Europe Univer-
sity Booth (DATE’07), Nice, France, April 2007.

[5] Steffen Prochnow, Gunnar Schaefer, Ken Bell, and Reinhard
von Hanxleden. Analyzing Robustness of UML State Machines.
In Proceedings of the Workshop on Modeling and Analysis of Real-
Time and Embedded Systems (MARTES’06), held in conjunction
with the 9th International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS/UML 2006), Genua, Italy,
October 2006.

ix

http://www.informatik.uni-kiel.de/rtsys/kiel
http://www.informatik.uni-kiel.de/rtsys/kiel

[6] Stephan Höhrmann, Hauke Fuhrmann, Steffen Prochnow, and
Reinhard von Hanxleden. A Versatile Demonstrator for Dis-
tributed Real-Time Systems: Using a Model-Railway in Educa-
tion. In Amund Skavhaug and Erwin Schoitsch, editors, Pro-
ceedings of the Second ERCIM/DECOS Workshop on Dependable
Embedded Systems: Dependability Issues of Networked Embedded
Systems: Research, Industrial Experience and Education, Cavtat,
Croatia, August 2006.

[7] Steffen Prochnow, Claus Traulsen, and Reinhard von Hanxle-
den. Synthesizing Safe State Machines from Esterel. In Pro-
ceedings of ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES’06), Ottawa,
Canada, June 2006.

[8] Steffen Prochnow and Reinhard von Hanxleden. Comfort-
able Modeling of Complex Reactive Systems. In Proceedings
of Design, Automation and Test in Europe (DATE’06), Munich,
Germany, March 2006.

[9] Steffen Prochnow and Claus Traulsen. KIEL—Textual and
Graphical Representations of Statecharts (Presentation). In
12th Synchronous Workshop (SYNCHRON’05), Malta, Novem-
ber 2005. URL: http://www.cs.um.edu.mt/~synchrone05/

Presentations/15-SteffenProchnow.pdf.

[10] Steffen Prochnow and Reinhard von Hanxleden. Visual-
isierung komplexer reaktiver Systeme – Annotierte Bibliogra-
phie. Technical Report 0406, Christian-Albrechts-Universität
Kiel, Department of Computer Science, Kiel, Germany, June
2004. URL: http://www.informatik.uni-kiel.de/uploads/
tx_publication/2004_tr06.pdf.

x

http://www.cs.um.edu.mt/~synchrone05/Presentations/15-SteffenProchnow.pdf
http://www.cs.um.edu.mt/~synchrone05/Presentations/15-SteffenProchnow.pdf
http://www.informatik.uni-kiel.de/uploads/tx_publication/2004_tr06.pdf
http://www.informatik.uni-kiel.de/uploads/tx_publication/2004_tr06.pdf

A C K N O W L E D G M E N T S

First of all, I owe my sincere gratitude to my supervisor Reinhard
von Hanxleden, who inspired my interest enhancing the usability of
visual languages and their modeling process. Thank you very much
for all the interesting discussions, the large freedom you allowed
me for my research, and for a personal and friendly collaboration.
I would like to thank Susanne Graf (VERIMAG, Grenoble) for her
willingness becoming my second assessor.

I owe many thanks to the members of the development team
with whom I collaborated as part of my dissertation project: Ken
Bell, Karsten Heymann, Tobias Kloss, Lars Kühl, Florian Lüpke,
André Ohlhoff, Adrian Posor, Gunnar Schaefer, Jan Täubrich, Jonas
Völcker, and Mirko Wischer.

I would like to thank all Real-Time and Embedded Systems
Group members for creating a great atmosphere for doing research,
for many fruitful discussions, and for all the enjoyable lunches.
In particular, I would like to thank not only Claus Traulsen and
Jan Lukoschus for interesting discussions on Esterel problems, and
Hauke Fuhrmann for valuable hints on the KIEL modeling tool. I
thank Tim Grebien who was always willing to help in technical
problems, and Gesa Walsdorf and Maren Lutz for their anticipatory
assistance and their cordiality.

Jürgen Golz (Department of Psychology, University of Kiel) and
Christiane Gross (Department of Sociology, University of Kiel) have
been an invaluable help in the design and analysis of the valida-
tion experiment. I also thank the students who participated in the
experimental study for their support and interest. I would also like
to thank Matthias Grochtmann and Heiko Dörr (DaimlerChrysler
AG) for providing us an interesting Stateflow application. Charles
André (Université Nice Sophia Antipolis) has suggested improve-
ments for the SSM synthesis from Esterel. Special thanks go to Ken
Bell, Christiane Gross, and all the anonymous reviewers for their
helpful comments.

This work would not have been possible without my parents and
my sister. Thank you for your support and for being always there,
when I need you.

xi

C O N T E N T S

1 Introduction and Motivation 1

1.1 Purpose and Contribution 4

1.2 Chapter Overview 5

2 Background and Related Work 9

2.1 An Introduction to Statecharts 9

2.2 Modeling Environments for Statecharts 12

2.3 Visualization of Complex State-Based Systems 17

2.4 Statechart Synthesis 24

2.5 Preventing Statechart Modeling Errors 26

2.6 The KIEL Environment 28

3 Editing Graphical Models 29

3.1 The WYSIWYG Statechart Editing Process 29

3.1.1 Editing Schemata 30

3.1.2 Action Sequences 32

3.2 Layout of Graphical Models 34

3.3 Macro-Based Editing 39

3.4 Text-Based Editing 41

3.4.1 Comparing Textual and Graphical Editing 41

3.4.2 A Statechart Desciption Language 45

3.5 Synthesizing Graphical Models 50

3.5.1 From Esterel to SSMs 52

3.5.2 The Optimization 61

3.5.3 Correctness of the Transformation 65

3.5.4 Correctness of Optimizations 70

3.5.5 Experimental Validation 70

4 Simulating Graphical Models 73

4.1 The Dynamic Statechart Normal Form 75

4.2 Simulating Complex Statecharts with DSNF 76

5 Preventing Errors in Graphical Models 81

5.1 Statechart Modeling Errors 82

5.2 Error Prevention in Modeling Statecharts 83

5.3 Style Guides for Error Prevention 85

5.3.1 Taxonomy for Style Checking in Statecharts 87

5.3.2 Existing Style Guides and Applications 88

5.4 A Style Guide for Modeling Statecharts 90

5.5 Assessment 97

xiii

xiv contents

6 The KIEL Modeling Tool 99

6.1 The KIEL Architecture 99

6.2 Automated Layout in KIEL 101

6.3 Simulating Statecharts in KIEL 102

6.4 KIEL and Stateflow 103

6.5 Developing Models in KIEL—The Editor 105

6.6 Synthesizing Statecharts from Esterel 109

6.7 Style Checking in KIEL 109

7 Usability Analysis of KIEL 115

7.1 An Empirical Study on Statechart Techniques 115

7.1.1 Experimental Design 116

7.1.2 Hypotheses 119

7.1.3 Quality of Experimental Data 120

7.1.4 Results 120

7.2 Performance Analysis of KIEL 124

7.2.1 KIEL’s Simulation and Visualization Perfor-
mance 125

7.2.2 Analysis of SSM synthesis 130

7.2.3 Analysis of the Checking Plug-in 133

8 Conclusion and Outlook 137

a Layout Examples from KIEL 143

b Statechart Layouts from Empirical Study 157

c Working Documents from Empirical Study 161

c.1 The Data Document 161

c.2 The Answer Template Document 176

c.3 The Tool Reference Cards 183

c.3.1 Esterel Studio Reference Card 183

c.3.2 KIEL Macro Editor Reference Card 184

c.3.3 KIT Editor Reference Card 185

bibliography 186

L I S T O F F I G U R E S

Figure 1 Examples of different Statechart dialects 11

Figure 2 Application of ArgoUML’s broom alignment
tool 14

Figure 3 Screen shot of a Statechart modeling tool gen-
erated using DiaGen 15

Figure 4 Statechart laid out using Vista 18

Figure 5 Statechart example in Rational Rose 19

Figure 6 A complex graph drawn by the dot tool 20

Figure 7 Different graph representations of major cities
of the United States 21

Figure 8 3d tree visualization of a large state space
system 23

Figure 9 Generic editing schemata derived from a typi-
cal editing process using WYSIWYG editors 31

Figure 10 A traffic light example, illustrating the SNF 37

Figure 11 Different ways of Statechart creation 38

Figure 12 Statechart navigation with key strokes 40

Figure 13 An editing action using the macro-based mod-
eling approach 40

Figure 14 Extending ABRO to ABCRO 43

Figure 15 Differences between ABRO and ABCRO 44

Figure 16 Different textual Statechart notations 47

Figure 17 Textual and graphical representations of ABRO 49

Figure 18 Comparing characteristics of textual State-
chart description languages 51

Figure 19 Stepwise transformation of the Esterel pro-
gram ABRO 55

Figure 20 Handling of potentially instantaneous loops 59

Figure 21 Example for removal of macro states 62

Figure 22 SSM for ABRO after unoptimized transforma-
tion 63

Figure 23 Transformation of the reincarnation example 65

Figure 24 Example for removing transient states 66

Figure 25 Transformation example of nested traps into
an SSM 68

xv

xvi List of Figures

Figure 26 From Esterel Studio SSMs to Esterel to KIEL
SSMs 70

Figure 27 Changing of hierarchy level using Stateflow 74

Figure 28 Simulating the traffic light Statechart in DSNF 77

Figure 29 Layout of the whole window wiper Statechart
according to the SNF 78

Figure 30 Simulating the window wiper Statechart in
DSNF 79

Figure 31 Software error prevention and its taxonomy 84

Figure 32 The role of style guides in making an SUD
style conform 86

Figure 33 Taxonomy for style checking in Statecharts 88

Figure 34 Classification of checking tools for textual pro-
gramming languages 89

Figure 35 Classification of Statechart checking tools 90

Figure 36 Violation of well-formedness rules 92

Figure 37 Violation of syntactical robustness rules 95

Figure 38 Application examples of the semantic robust-
ness rules 96

Figure 39 Module view on the KIEL tool 100

Figure 40 Simplified Class Diagram of the KIEL data
structure 101

Figure 41 The view concept in KIEL 103

Figure 42 A screen shot of KIEL as it simulates a State-
chart example 104

Figure 43 The information flow between Stateflow and
the KIEL simulator 106

Figure 44 Screen shot of KIEL simulating the window
wiper 106

Figure 45 Screen shot of KIEL displaying the Statechart
tree structure, the graphical model, and the
KIT editor 107

Figure 46 Integration of the KIT editor and the KIEL
macro editor into KIEL 108

Figure 47 Tool chain transforming Esterel 109

Figure 48 Screen shot of KIEL checking robustness 111

Figure 49 Processing KOCL with KIEL 112

Figure 50 The rule CompositeState-1 113

Figure 51 Interfacing of KIEL and the CVC Lite 114

List of Figures xvii

Figure 52 Different Statechart layouts for experimental
comparison 117

Figure 53 Distribution of times for modeling Statecharts 121

Figure 54 Distribution of Statechart layout assessments 123

Figure 55 Comprehension errors during Statechart read-
ing 124

Figure 56 Comparison of static view and dynamic view
areas 127

Figure 57 Maximal computation times in KIEL to present
a new view during simulation 128

Figure 58 Average computation times in KIEL to present
a new view 129

Figure 59 Load times of Statechart models in KIEL 130

Figure 60 Relation of lines of Esterel code and number
of generated graphical elements 132

Figure 61 Model size before and after optimization 133

Figure 62 The component mode selection of the wrist-
watch example 134

Figure 63 Dot layout with different reading directions 144

Figure 64 Linear layer layout with different reading di-
rections 147

Figure 65 Layouts of the generic Statechart model bin-
tree 148

Figure 66 Layouts of the generic Statechart model quadtree 152

Figure 67 Layouts of Statecharts of different complexi-
ties 158

L I S T O F TA B L E S

Table 1 Simulation and visualization performance of
KIEL 126

Table 2 Experimental results of SSM synthesis 131

Table 3 Experimental results of checking the wrist-
watch example 135

xviii

A C R O N Y M S

ABS Anti-Lock Braking System

ADBL Alternating Dot Backwards Layout

ADL Alternating Dot Layout

AL Arbitrary Layout

ALL Alternating Linear Layout

API Application Programming Interface

AST Abstract Syntax Tree

ASCII American Standard Code for Information Interchange

AToM3 A Tool for Multi-Formalism, Meta-Modelling

ATP Automated Theorem Proving

CASE Computer-Aided Software Engineering

CEC Columbia Esterel Compiler

CLOVER Cluster-Oriented Visualization Environment

CVC Lite Cooperating Validity Checker Lite

DiaGen Generator for Diagram Editors

DSNF Dynamic Statechart Normal Form

EMF Eclipse Modeling Framework

ESC Electronic Stability Control

FSM Finite State Machine

GEF Graphical Editor Framework

GenGEd Generator of Visual Language Editors

GraphViz Graph Visualization Software

xix

xx List of Tables

HTML HyperText Markup Language

HUTN Human-Usable Textual Notation

JNI Java Native Interface

KIEL Kiel Integrated Environment for Layout

KIELER KIEL for Eclipse Rich Client Plattform

KIT KIEL Statechart Extension of Dot

KOCL KIEL wrapped OCL

LabVIEW Laboratory Virtual Instrumentation Engineering
Workbench

LLL Linear Layer Layout

MAAB MathWorks Automotive Advisory Board

MISRA Motor Industry Software Reliability Association

MVC Model View Controler

NASA National Aeronautics and Space Administration

OCL Object Constraint Language

OMG Object Management Group

PCB Printed Circuit Board

PGML Precision Graphics Markup Language

RSML Requirements State Machine Language

SCR Software Cost Reduction

SCXML Statechart XML

SMT Satisfiability Modulo Theories

SNF Statechart Normal Form

SSM Safe State Machine

SUD System Under Development

List of Tables xxi

SVG Scalable Vector Graphics

SVM Statechart Virtual Machine

SWIG Simplified Wrapper and Interface Generator

UMC UML on the fly Model Checker

UML Unified Modeling Language

VLSI Very-Large-Scale Integration

WYSIWYG What You See Is What You Get

XMI XML Metadata Interchange

XML Extensible Markup Language

1
I N T R O D U C T I O N A N D M O T I VAT I O N

The current change in developing control systems, especially in the
automotive industry, is the replacement of electrical, mechanical,
and hydraulic solutions by software-based electronic controllers,
i. e., embedded systems. These systems are designed to perform The change in developing

control systemshighly specific tasks and are completely encapsulated by the de-
vices they control. Due to economical modification, extension, and
duplication the software-based design of such controllers is much
more flexible. Typical application areas of embedded systems are
consumer electronics (e. g., mobile phones), home automation (e. g.,
climate control units), and safety-critical environments (e. g., Anti-
Lock Braking System (ABS)). The extremely growing demands
for functions of embedded systems call for even more efficient
development solutions.

Reactive systems are systems that have permanent interaction
with their environment, as is typical for embedded systems. The
execution of these systems is determined by their internal state
and external stimuli. As a reaction, new stimuli and/or a new
internal state are generated. To describe the behavior of reactive
systems, the family of synchronous languages has been developed,
including Esterel [20], Lustre [68] and Signal [66]. These languages Specification languages of

reactive systems behavioroffer numerous control flow primitives (such as concurrency and
preemption) which are pertinent to reactive systems; the synchrony
hypothesis [20] gives a sound semantical basis to these languages.

As an alternative to the aforementioned textual languages, one
may also develop reactive systems using graphical notations, such
as Statecharts [71]. Statecharts extend the classical formalism of Statecharts as specification

language of reactive systems
behavior

the Finite State Machine (FSM) and the state transition diagram by
incorporating the notions of hierarchy, orthogonality, compound
events, and a broadcast mechanism for communication between
concurrent components. Statecharts provide an effective graphi-
cal notation, not only for the specification and design of reactive
systems, but also for the simulation of the modeled system behav-
ior. Moreover, it is possible to automatically generate optimized
program code that implements a Statechart [21, 22].

1

2 introduction and motivation

Since the original Statecharts proposal by Harel, numerous di-
alects of Statecharts have been developed and Statecharts have also
been incorporated into the Unified Modeling Language (UML) [114].
Today, Statecharts are supported by several commercial tools,
e. g., Matlab Simulink/Stateflow [154], Statemate [73], or Ratio-
nal Rose [134]. In this thesis, the main work deals with the Safe
State Machines (SSMs) [3] dialect of Statecharts, which is a graphical
variant of Esterel.

A commonly touted advantage of graphical formalisms, such as
Statecharts, is their intuitive usage and the good level of overview
they provide—according to the phrase “one picture is worth ten
thousand words.” Especially for visualizing complex structures,Statecharts make systems

comprehensible and provide
a good system overview.

Statecharts have advantages compared to textual programming
languages. Here, the one-dimensional flow of text provides poor
overview over the whole system, while Statecharts provide clus-
tering elements, such as states, hierarchy and orthogonality to
structure Statechart components.

However, the graphical modeling of realistic applications often
results in very large and unmanageable graphics, severely compro-
mising their readability and practical use. The problem becomesAn advantage of Statecharts

is their intuitiveness, but
complex Statecharts get
unmanageable.

even more dramatic when starting to simulate the system, as modu-
lar designs typically instantiate Statecharts several times, and each
instance may have its own simulation status. In one Statechart
example provided to us, describing an airbag system, this multiple
instantiation resulted in a total of 288 Statecharts. The classical
paradigm to animate a simulated Statechart is to highlight active
states, e. g., by marking them in a particular color; however, this is
only of use if the active states are visible to the user in the first place.
When the total number of Statecharts of a system goes significantly
beyond what can be visible on the screen simultaneously, as was
the case in the airbag example, keeping track of the active states of
a system quickly becomes a rather frustrating exercise.

Summarizing, complexity in Statecharts can originate from dif-
ferent problems of the development process:

large systems: The increasing functionality of developed sys-
tems results in a high number of components. This leads to
intricate interactions and inter-dependencies between speci-
fied system components. As a result the modeler of realistic
systems can easily lose track of the entire System Under
Development (SUD) and the model intention.

3

dynamic behavior: During the simulation phase of realistic
Statecharts one is not only confronted with the complexity of
the system itself but also with the complexity of its dynamic
behavior. For example, simulations steps may result in several
states. Consequently, many windows are necessary in order
to focus their occasionally distributed locations in a static
view simulation. But beyond a certain number of windows it
is not possible to observe all of them simultaneously.

2d editing: Entering textual programming code to specify a sys-
tem is very efficient. Due to the linear text flow, the insertion
and deletion of symbols and words is very simple. Regard-
ing graphical models, the two-dimensional nature brings
some editing complications. Before inserting elements, the
modeler must often “make room” first. The deletion of el-
ements is also tedious, because it often leaves distracting
“holes.” To handle this and to produce nice and readable
graphics, adjacent elements have to be moved, while respect-
ing the relationships of interacting elements (e. g., transitions,
state hierarchy, concurrency).

A problem is that existing modeling tools do not offer good
mechanisms for abstracting or condensing Statechart representa-
tions; each Statechart appears the way a designer has modeled it
using some graphical editor. In our experience, even a large screen Existing modeling tools

limit the efficiency of the
Statechart development
process.

rarely permits to view more than four or five Statecharts at once.
Since the introduction of Statecharts some twenty years ago, sig-

nificant progress has been made concerning their semantics, formal
analysis and efficient implementation. Concerning the practical
handling of Statecharts, however, it appears that comparatively lit-
tle progress has been made since the very first Statechart modeling
toolset [73]. Specifically, the construction, modification, and revision
management of Statecharts tend to become increasingly burdensome
for larger models, and we feel that, in this respect, Statecharts are
still at a disadvantage relative to other development activities, such
as classical textual programming. This observation, corroborated
by numerous discussions with practitioners and modeling experi-
ences ranging from small, academic models to industrial projects,
has motivated the work presented in this thesis.

We view visual formalisms such as Statecharts as a very powerful
concept for the development of reactive systems because graphical

4 introduction and motivation

models may be convenient to browse. However, compared to tex-
tual entry, they are rather cumbersome to construct and maintain,
as designers spend a significant fraction of their time with tedious
drawing and layout chores.

We also feel that today’s paradigms for editing, visualizing and
simulating Statecharts have not progressed significantly since the
first perception of Statecharts, and that they do not scale well to
develop complex systems. We are convinced that the usefulness ofThe intention of this work is

to improve the efficiency of
the Statechart development
process.

Statecharts depends to a large extent on their readability, that is
the capability of the drawing to convey its meaning quickly and
clearly. Thus motivated, we have developed a methodology that
seeks to support a system developer in modeling, simulating and
comprehending complex Statecharts.

1.1 purpose and contribution

This thesis summarizes the results of our research regarding the
efficiency of the Statechart editing process, the readability of re-
sulting Statecharts, the improvements during Statechart simulation,
and the maintainability of Statechart models.

editing: Statecharts are commonly created using some What You
See Is What You Get (WYSIWYG) editor, where the modeler is
responsible for the graphical layout, and subsequently a State-
chart appears the way a designer has modeled it. We believe
that the WYSIWYG construction paradigm, which leaves the
task of graphical layout to the human designer, has been
a limiting factor in the practical usability of Statecharts, or
graphical modeling in general so far.

The premise of this thesis is that this paradigm may have
been justified at some point, but current advances in layout
algorithms and processing power make it feasible to free the
designer from this burden. Based on this premise, this thesis
presents two alternative Statechart construction paradigms—a
text-based and a macro-based technique—that let the mod-
eler focus on the modification of the Statechart structure, i. e.,
the Statechart element topology. These techniques apply an
automatic layout mechanism that frees the modeler from the
burden of manually rearranging Statechart elements. The
layout method transforms any given Statechart to a standard-

1.2 chapter overview 5

ized layout Statechart Normal Form (SNF) that is compact and
makes systematic use of secondary notations in order to aid
readability.

The automatic layout method also allows our approach to
synthesize SSMs from (textual) Esterel programs. This permits
a design flow where the designer develops a system at the
Esterel level, but uses a graphical browser and simulator to
inspect and validate the system under development.

simulation: A common problem when simulating complex sys-
tems with many concurrent activities is that designers easily
loose track of the current overall system state. This thesis
addresses this by a “dynamic semantic focus-and-context rep-
resentation,” which provides different views of the system
depending on the system state.

error prevention: In this thesis an automated checking frame-
work is described, which checks compliance with robustness
rules. The framework provides a wide range of predefined
dialect-dependent rules, and also allows to express new de-
sign rules in the Object Constraint Language (OCL) or in Java.
The latter is also used to incorporate a theorem prover for
more advanced checks, such as determinism.

1.2 chapter overview

This section gives an outline of the chapters in this thesis.

Chapter 2: An overview of existing approaches that address the
described problems in editing and reading Statecharts is pre-
sented on in this chapter. The chapter points out how they
relate to our work as well as their advantages and disadvan-
tages.

Chapter 3: This chapter presents the analysis of WYSIWYG editing
patterns and the identification of generic Statechart editing
patterns. An SNF is presented that gives a clear, compact,
consistent view of a Statechart solely based on its topology.
Furthermore, the macro-based and text-based Statechart con-
struction approaches and the KIEL Statechart Extension of
Dot (KIT) language are discussed. A further contribution of

6 introduction and motivation

this chapter is a synthesis mechanism that derives a graphical
Statechart model, specifically the SSM dialect, from a textual
imperative programming language, Esterel. Therefore, a set
of optimization rules is given that transform a Statechart (SSM)
into an equivalent, but more compact Statechart—these rules
can also be useful when handling Statecharts developed in the
traditional WYSIWYG way. Afterwards, a discussion follows
of how to assert the correctness of such a transformation and
optimization.

Chapter 4: For simulations, we extend the concept of SNF to Dy-
namic Statecharts, which continuously adapt their appearance
to the current system configuration, providing a focus-and-
context representation based on the active regions of each
Statechart.

Chapter 5: This chapter introduces a fundamental inspection
and classification of error prevention in software in general
and focuses on style checking in Statecharts. We perform a
comparison of existing style guides and application for textual
programming languages and Statecharts. Furthermore, a set
of robustness rules for less error-prone Statecharts following
the advice of Buck and Rau [24] is provided.

Chapter 6: The Kiel Integrated Environment for Layout (KIEL)
tool is a prototypical modeling framework that has been
developed for the exploration of complex reactive system
designs. A central capability of KIEL is the automatic layout
of graphical models. This not only reduces the designer’s
drawing effort significantly, but also permits novel construc-
tion and simulation paradigms and design flows. KIEL also
incorporates a checking framework, which automatically
proves predefined OCL-based rules.

Chapter 7: KIEL serves as an evaluation platform for our pro-
posals. In this chapter we show the usability of the KIEL
framework. Therefore, we characterize the runtime perfor-
mance of KIEL and present the results of an empirical study on
the usability and practicability of our Statechart editing tech-
niques, including a Statechart layout comparison. This study
indicates significant performance improvements in terms of

1.2 chapter overview 7

editing speed and model comprehension compared to tradi-
tional modeling approaches.

Chapter 8: In this chapter conclusions are drawn, reflections on
our work including discussing the limitations of our work
are made, and an outlook to opportunities for future work is
given.

2
B A C K G R O U N D A N D R E L AT E D W O R K

The field of enhancing readability and comprehension of complex
reactive systems appears to have been rather neglected in the past.
The work presented in this thesis cuts across several related areas
that have been studied. In the following section we give a short
introduction into Statecharts and describe characteristics of SSMs.
Approaches, techniques and experiences on Statechart modeling
tools, which had an influence on KIEL, are introduced in Section 2.2.
KIEL was developed to support a system developer in modeling,
simulating and comprehending complex Statecharts. Therefore,
Section 2.3 gives an overview of available layout methods, focus-
and-context methods, and methods to keep track of dynamically
changing models. Section 2.4 collects works, which influenced
the synthesis of graphical Statecharts from textual Esterel and the
development of the Statechart description language KIT. An inspec-
tion of existing robustness checking techniques and frameworks
in software engineering, that influenced the development of the
style guide and the automated checking framework described in
this thesis, is provided in Section 2.5. Finally, Section 2.6 shortly
describes the works that contributed to the KIEL project.

2.1 an introduction to Statecharts

The graphical language Statecharts is one of the most popular ap-
proaches for the development of real-time and reactive systems.
The Statechart formalism was introduced by Harel [71] and consti-
tutes an extension of the classical formalism of the state transition
table and the FSM [133] by incorporating the notions of hierarchy,
orthogonality, compound events, and a broadcast mechanism for
communication between concurrent components. Statecharts pro- Statecharts constitute an

extension of Finite State
Machines.

vide an effective graphical notation, not only for the specification
and design of reactive systems, but also for the simulation of the
modeled system behavior.

Since the original Statecharts proposal by Harel, numerous di-
alects of Statecharts have been developed—each with different

9

10 background and related work

syntax and semantics. Beeck [14] compares 21 of these Statechart
dialects. As an informal and implementation-independent def-
inition, the Object Management Group (OMG) has incorporated
Statecharts into the UML specification [114]. KIEL can display the
Statechart variants of SyncCharts [2, 5] (which is the predecessor
of SSM), Stateflow Statecharts [101], and UML Statecharts as im-
plemented in ArgoUML [6]. KIEL can also simulate Statecharts
according to the behavior specification of André [2] and uses the
Stateflow Application Programming Interface (API) [154] to sim-
ulate Stateflow charts. Furthermore, KIEL synthesizes SSMs from
textual Esterel specifications. Figure 1a shows an example of the
Statechart dialect SSM, as it is implemented in Esterel Studio [39]
and Figure 1b shows an example of a Stateflow Statechart. The
graphical objects of the Statechart representations have been labeled
for a short survey.

Characteristics of Safe State Machines

SSMs are a Statechart dialect with synchronous semantics that
strictly conform to the Esterel semantics. A procedural definition
of SSMs is given by André [3].

A macro-state consists of one or more state-transition graphs.
Additionally, SSMs can contain textual macro states, which consist of
plain Esterel code. States can also have internal actions: on entry, onStates in SSMs
exit and during.

SSMs inherit the concept of signals and valued signals from Este-
rel. Hence, a transition trigger can consist of an event, which testsSignals in SSMs
for presence and absence of values, and a conditional, which may
compare numerical values.

Characteristics of SSMs are the different forms of preemption,
expressed by different state transition types. Weak and strongPreemption in SSMs
abortion transitions, as well as suspension, can be applied to macro
states. A macro state can either be left by an abortion, which has
an explicit trigger, or by a normal termination, which is taken if the
macro state enters a terminal state.

Analogously to Esterel, all transitions can either be immediate or
delayed, where a delayed transition is only taken if the source state
was already active at the start of an instant. In contrast, immedi-Characteristics of

transitions in SSMs ate transitions may be taken as soon as the state becomes active;
this makes it possible that one state is activated and deactivated
multiple times within one instant. Delayed transitions can also be

2.1 an introduction to Statecharts 11

(a) Example of an SSM (source [38])

Transition label

Default transition
Transition

Exclusive (OR) state
History

Parallel (AND) state

junction
(decision point)

Condition Transition
action

Condition
action

Connective junction

(b) Example of a Stateflow Statechart (source [101])

Figure 1: Examples of different Statechart dialects

12 background and related work

count delayed, i. e., the trigger must have been evaluated to true for
a specific number of times, before the transitions is enabled. When
a state has more than one outgoing transition, a unique priority is
assigned to each of them, where lower numbers have higher prior-
ity. Weak abortions must have lower priority than strong abortions,
and if a normal termination exists, it always has the lowest priority.

2.2 modeling environments for Statecharts

There are a large number of modeling tools which provide a mod-
eling environment for Statecharts. They generally include tools
for creation and simulation. These modeling tools are often used
for the modeling of complex software or hardware systems and
provide in general a specific semantic for the simulation behavior
of the modeled system. Modern also tools support code synthesis,Existing Statechart

modeling tools provide basic
techniques to develop
Statechart models and to
synthesize running code.

reverse engineering, and version control features. These features
automatize burdensome modeling tasks, e. g., synthesizing source
code from a graphical model. However, as discussed in Chap-
ter 1, today’s modeling tools do not offer editing techniques for an
efficient modeling process. Also Robbins and Redmiles state:

“[. . .] current CASE tools fail to address the essential cog-
nitive challenges facing software designers.” [138]

An exemplary UML Modeling Tool

An outstanding example of a modeling tool which focuses cogni-
tive support of the modeling process for graphical languages is
ArgoUML [6]. It provides design tool features intended to sup-ArgoUML was developed

with consideration of
cognitive aspects in
developing software models.

port design tasks. Each of these features are motivated by the
developers’ experience in designing software systems. Robbins and
Redmiles [138] describe the following features which focus the user
oriented support of model development and which were inspired
by theories of cognition in design:

critics and criticism control mechanisms: Design crit-
ics are agents that check the design for potential problems.
In ArgoUML, the modeler is continuously be informed about
potential design problems. The modeler does need not need
to request for critique; it is automatically generated. In Argo-
UML, over sixty design critics have been implemented.

2.2 modeling environments for Statecharts 13

“to-do” list : A “to-do” list in ArgoUML is a text list of critique
messages automatically generated by the system; it can also
be supplemented by the modeler. It acts as a track list for
design problems which are still unresolved.

non-modal wizards: ArgoUML provides a mechanism with
non-modal wizards in order to propose designer solutions
for a design problem. The sequential resolving of multiple
design problems frees the modeled systems from defects.
Trivial problems can be solved automatically.

checklists: In ArgoUML, there is a distinction between checklists
and critics. Critics mainly serve to remind designers of com-
mon design problems. In contrast, ArgoUML checklist items
are more concrete, as e. g., “Could gradePointAvrg be moved
from Undergraduate to Student?” The ideas of ArgoUML’s
critics and checklists are realized in KIEL as the style checker (cf.
Section 6.1).

opportunistic table views: Table views can be requested by
the modeler; they represent information pertaining to design
elements (e. g., states with outgoing respectively incoming
transitions) in a dense tabular format.

navigational perspectives: As an enhancement of the clas-
sical “static” tree structure view on a hierarchical system,
ArgoUML provides a selection of different tree structures.
E. g., class structures can be listed combined with their con-
tained states and transitions; states can be listed with their
successor states, etc.

broom alignment tool: Robbins and Redmiles [138] point
out that “alignment is one important form of secondary
notation.” ArgoUML provides the broom alignment tool for
the alignment of graphical elements. The application of
ArgoUML’s broom tool is depicted in Figure 2 . The broom
tool pushes objects that come in contact with it. Thus, graphi-
cal objects are aligned along the broom’s face. An experimen-
tal study performed by Robbins et al. [139] showed that the
usage of the alignment tool significantly reduces the number
of mouse actions during the modeling process.

14 background and related work

(a) (b)
Figure 2: Vertical and horizontal application of ArgoUML’s broom align-

ment tool (source: Robbins and Redmiles [138])

However, ArgoUML does not support the developer in simula-
tion of a developed Statechart model. Furthermore, it does not
provide a layout method for arranging graphical elements automat-
ically.

Other Modeling Tool Approaches

Besides existing graphical WYSIWYG editors for modeling State-
charts, a lot of frameworks for the generation of domain specific
graphical editors exist. Approaches for generating graphical editorsGenerator frameworks for

domain specific languages
can simplify the
development effort of
graphical editors.

rely on meta-modeling concepts, grammars, or some kind of logic.
A very flexible approach of a graph grammar driven framework
for the synthesis of graphical editors is the Generator for Diagram
Editors (DiaGen). With DiaGen, an editor for a certain kind of dia-
gram can be generated from an Extensible Markup Language (XML)
specification. It includes a hypergraph grammar, which describes
the structure of diagrams to edit. In DiaGen layout is realized using
certain graphical constraints that influence the position between
graphical objects. In contrast to this method, KIEL provides a layout
for Statecharts from scratch. Section 6.2 describes the functionality
of the layout method implemented in KIEL.

DiaGen editors generally support two main properties of powerful
graphical editors:

2.2 modeling environments for Statecharts 15

Figure 3: Screen shot of a Statechart modeling tool generated using Dia-
Gen (source: Minas [104])

syntax-directed editing: Using this technique “[. . .] the user
is [. . .] restricted to a collection of predefined editing opera-
tions” [105].

free-hand editing : The user of a graphical editor “[. . .] is not
restricted at all, but misses the convenience of [. . .] complex
editing operations” [105].

A prototypical Statechart editor was realized for demonstration
using the DiaGen framework [104]. It does not only support State-
chart editing, but also animation of the Statechart behavior. Figure 3

shows the Statechart editor, which was developed with the DiaGen.
Besides the Statechart editor, a graphical editor for class diagrams
was also devised by Köth and Minas [88]. This editor supports the
focus-and-context technique for “structure-based” abstraction. It
supports in detail (quoting Köth and Minas):

• “the abstraction of classes by ‘hiding’ their attributes and
operations [. . .], and

• the abstraction of packages by ‘hiding’ all contained ele-
ments.” [88]

As the DiaGen diagram editor for class diagrams, KIEL also uses the
hierarchy abstraction paradigm during Statechart simulation.

16 background and related work

Besides the DiaGen the Generator of Visual Language Editors
(GenGEd) [8, 59] and A Tool for Multi-Formalism, Meta-Modelling
(AToM3) [29] also employ graph grammars to generate graphical ed-
itors for visual languages. The manipulation of the visual language
using such a generated editor is restricted due to the underlying
graph grammar. GenGEd uses graph grammars to modify visual lan-
guages using graph productions. The visual language is produced
by a priori specified production sequences. KIEL’s macro-based
editing approach instead proposes interactive manipulations of the
model.

The graph grammar based tools use graphical constraints for
placing graphical elements. Graphical constraints only influence
the placement of graphical objects relative to another. Especially for
complex systems this technique results in unreadable graphics. A
layout from scratch rearranges all graphical objects independently
from another. Hence it can find optimal positions for all graphical
objects. Using KIEL we perform an automatic layout from scratch.

A tool which provides different views on the same SUD is, e. g.,
Ptolemy II [36]. Brooks et al. [23] describe the combination of syn-
chronous/reactive models as AND states and finite state machines
as OR states in Ptolemy II.

Experimental Studies on Statechart Modeling

Several experimental studies address the comprehensibility of tex-
tual and visual programs. E. g., Green and Petre [64] performed
an experimental study to evaluate the usability of textual and
graphical notations using the Laboratory Virtual Instrumentation
Engineering Workbench (LabVIEW) [112]. They determined thatResults of empirical studies

can improve the future
software modeling process.

visual programs can be harder to read than textual ones. Purchase
et al. [130] have evaluated the aesthetics and comprehension of
UML class diagrams. We are not aware of any experimental studies
on the effectiveness of editing visual languages. In this thesis an
empirical study on the effectiveness and practicability of different
Statechart editing techniques is presented. The experiments also
compare the aesthetics and the comprehensibility of manually and
automatically created Statechart layouts.

2.3 visualization of complex state-based systems 17

2.3 visualization of complex state-based systems

From Graph Layout to Statechart Layout

Generally, graph drawing algorithms can be applied to the drawing
of Statecharts. This is practicable because of the similar basic node- Graph drawing algorithms
transition principle. As one of the bases in graph drawing, Di
Battista et al. [30] published a recapitulatory work concerning all
topics of graph drawing. Programming frameworks that implement
some of the numerated algorithms are collected in Jünger and
Mutzel [81]. A typical problem in drawing graphs is the placement
of nodes in conjunction with well-tuned placement of edges. Here,
Batini et al. [11] introduce algorithms using an orthogonal approach,
a tree structured layout is provided by Reingold and Tilford [135],
a force-directed approach by Eades [33], Kamada and Kawai [83],
and a milestone in graph drawing—the layer-based algorithm—is
realized by Sugiyama et al. [150]. The exigence of automatic layout,
especially of generated graphs, is pointed out in Fleischer and
Hirsch [43].

As a degree of observer-friendly layout of placed objects, Tamas-
sia et al. [152] spot and define aesthetic criteria concerning graph
drawing. Further works extend the aesthetic criteria to the draw- Aesthetic criteria in

drawing graphsing of Statecharts [28, 72]. Such aesthetic criteria are affected by
the perception of the observer of graphs, respectively, Statecharts.
Other publications, such as [64, 130, 138, 141], focus on cognitive
perception analysis of graphical notations especially for software
specification.

Several works deal with specific aspects of Statechart representa-
tions. Harel and Yashchin [72] developed techniques for the layout Specific aspects in drawing

Statechartsof blobs, which are edge-less hierarchical structures that correspond
to Statecharts without transitions. Castelló et al. [27] extend the
label placement problem for Statecharts by an approach to handle
flexible geometries. Both works also consider aesthetic criteria. To
make Statechart simulations more understandable, Efroni et al. [35]
introduce an approach to animate the simulation using meaningful
pictures.

Castelló et al. [27] have developed the framework Vista for the
automatic generation of Statechart layouts. Their work treats hier- Tools for laying out

Statechartsarchical drawing, labeling and floor planning for Statecharts. Their
focus is the preservation of the mental map while editing. Thus,

18 background and related work

Figure 4: Statechart laid out using Vista (source: Castelló et al. [27])

the resulting Statecharts also indicate the editing history, which
may be desirable in certain cases, but conflicts with the concept
of an SNF. Furthermore, they do not seem to address backward
transitions, and the resulting drawings are not very readable due
to long and intersected transitions (cf. Figure 4).

As one of the few modeling tools based on Statecharts, Rational
Rose [134] supports the modeler by automatically rearranging the
manually constructed Statechart. The underlying layout algorithm
uses horizontal layers to place states of upper hierarchy level (inner
states will not be touched) and performs a middle affine place-
ment of polygon or spline curve transition. However, the resulting
layouts very satisfying, as the state placement still seems unsystem-
atic, and transitions may cut into states. We even experienced that
transitions are superimposed, making it impossible to discern their
labels. Figure 5 shows an automatically laid out Statechart using
Rational Rose. KIEL offers several layout mechanisms, some employ
the Graph Visualization Software (GraphViz) [57] layout framework
and others were developed from scratch. GraphViz [56, 63] is a
collection of tools implementing several graph layout algorithms.
It uses heuristics for the computation of graph layouts and finds
very fast optimal coordinates for nodes, also for huge graphs. The
dot tool from the GraphViz framework draws graphs according to
the style of Sugiyama et al. [150]. Figure 6 shows a graph drawn
using the dot tool. The computation time of the shown compiler
dependency graph was 0,98 sec [55].

2.3 visualization of complex state-based systems 19

Figure 5: Statechart Example in Rational Rose after automatic layout
(source: Castelló et al. [27])

20 background and related work

ContMap

FreeMap

Expand

CPSprint

Coder

BaseCoder

ErrorMsg

SparcInstr

GlobalFix

CPS

Hoist

SortedList Intset

CPSopt

Contract

Eta

Closure

Profile

List2

SparcAsCode SparcMCEmit

IEEEReal

SparcCM

CG

SparcMCode

ClosureCallee

Sort

SparcAsEmit

Spill

PrintUtil

CPSsize

Prim

SparcMC

CPScomp

Access

RealConst

SparcAC

Convert

CoreInfo Lambda

CPSgen

Strs

Signs

AbstractFct

ApplyFunctor

Overload

PrintType

Unify

Typecheck

PrintAbsyn

Stream

MLLexFun

Vector

Ascii

LrParserJoinWithArg

Join

MLLrValsFun

CoreLang

NewParse

Index

Misc

TyvarSet

Absyn

Types

Normalize

Modules

ConRep

Instantiate

LrTable Backpatch

PrimTypes PolyCont

Initial

Assembly Math Unsafe

Loader

CInterface CleanUp

CoreFunc

InLine

Fastlib

CoreDummy

Overloads MakeMos

Stamps

IntmapPersStamps

Pathnames

Symbol

Bigint

Dynamic

IntStrMap

ArrayExt

UnionfindSiblings

StrgHash

Env

BasicTypes

Tuples

ModuleUtil

EqTypes

Fixity

TypesUtil

Equal

Variables

BareAbsyn PrintBasics

PrintVal

PrintDec

SigMatch

IntSparcD

IntShare BatchRealDebug BogusDebug

UnixPaths Interact ModuleComp

Importer

IntSparcIntNullD

Linkage

Prof

IntNull

Interp

ProcessFile

FreeLvar LambdaOpt

Translate

OptReorder

CompSparc

MCopt

MCprint

Nonrec MC

InlineOps

Unboxed

Figure 6: A complex graph drawn by the dot tool (source: Gansner
et al. [55])

Focus-and-Context Methods

One of the important challenges in visualization systems is how to
present as much important information as possible given a finite
display area. Focus-and-context (or also fisheye) methods have been
developed to address this problem by attempting to smoothly inte-
grate detail views with as much surrounding context as possible, so
that users can see all relevant information in a single view. MuchFocus-and-context methods

allow to inspect detail of
large systems while its
context is always present.

work has been done on focus-and-context approaches to graph rep-
resentations. Research works in the fields of information visualiza-
tion, graph drawing, software analysis, etc. have contributed to this
topic. Observations and solutions concerning zoomable user inter-
faces are introduced by Pook et al. [124]. Leung and Apperley [94]
provide an overview of focus-and-context techniques. Furnas [51]
gives a description of the original focus-and-context view. Sarkar
and Brown [142] developed a variant of focus-and-context views
for graphs. Figure 7 illustrates the graphical focus-and-context

2.3 visualization of complex state-based systems 21

(a) Original graph representation

 !"
#$%
"

#$&
"

#
"

(b) Fisheye view of the graph in Figure 7a

Figure 7: Different graph representations of major cities of the United
States (source: Sarkar and Brown [142])

22 background and related work

method depicting the major cities in the United States as a graph.
In Bederson and Hollan [13] an interactive graphical user interface
was developed which uses suppression of detailed information and
displays a system in a simplified form.

Berner et al. [16] modify this approach with the concept of graph-
ical abstraction of hierarchical structures. Köth and Minas [88]Focus-and-context methods

for hierarchical systems have applied semantic focus-and-context representations to visual-
ize complex UML class diagrams with the DiaGen. Minas [104] has
also presented a Statechart editor based on DiaGen that supports
syntax-directed editing, offers a layout method that enforces cor-
rectness constraints, and a simple simulator. However, there are no
dynamically changing views. KIEL’s approach of Dynamic State-
charts is an extension of this concept, which provides dynamically
changing views on a SUD, according to the simulation state.

3d Methods

For large state-transition systems, Groote and van Ham [65] visual-
ize state spaces in 3d. This technique uses a clustering method to3d methods are efficient for

the visualization of complex
systems, but they make high
demands on computer
hardware and cognitive
abilities.

obtain a simplified representation in form of a tree. Their method
allows to obtain information about complexity estimation of state
systems and effectiveness of different testing approaches [65]. Fig-
ure 8 visualizes the state space of a communication protocol. Shee-
lagh et al. [147] extend the focus-and-context method from 2d to 3d.
Further 3d methods for visualizing large graphs are the cone trees
of Robertson et al. [140] and the fractal approach for visualizing
huge hierarchies of Koike and Yoshihara [86]. Gil and Kent [60]
describe an approach of 3d software modeling.

Maintenance of the Mental Map

While a human modeler interacts with a Statechart, he or she will
gather and maintain an image of the Statechart structure. ThisThe mental map in

perception of graphical
models

concerns the general location and relations between states and
pseudo states of a Statechart. This phenomenon—the mental map—
was observed for graphs by Misue et al. [106]. When the Statechart
is modified (e. g., by applying an automated layout method or by
supplementing an existing Statechart with new state elements) or
when a focus-and-context method changes the viewpoint heavily,
special care must be taken to prevent breaking the modelers current

2.3 visualization of complex state-based systems 23

Figure 8: 3d tree visualization of a large state space system (source:
Groote and van Ham [65])

mental map. For maintaining the mental map, Misue et al. [106]
describe three models based on the position of the nodes in the
diagram:

1. the orthogonal ordering model, which attempts to capture rela-
tive directions between nodes in a diagram,

2. the proximity relations model, which attempts to capture the
notion due to node distances, and

3. the topology model, which attempts to capture the notion using
regional node relations.

They also introduce layout adjustment methods for the preserva-
tion of the mental map. Freire and Rodríguez [48] identified the
following general factors that contribute to mental map preserva-
tion:

predictability: A user of a visual system must be aware of the
importance of what changes are to be expected. This can be
achieved by (1) visual feedback of actions, (2) educating user

24 background and related work

about methods of operation, and (3) keeping actions simple
to understand them.

degree of change: If, e. g., a new layout is applied to a graph,
then the graph should be laid out according to a similar
paradigm.

traceability: For changes that are applied to a graph, it should
be possible to track and integrate them into the user’s mental
map. This can be achieved by using animation of a newly
placed element.

Freire and Rodríguez [48] also provide the Cluster-Oriented Visual-
ization Environment (CLOVER) [47], which demonstrates algorithms
for preventing the mental map. It uses hierarchical clustering and
incremental layout methods for focus-and-context representations.

For the animation Diehl et al. [31] provide an approach, which is
based on sequences of evolving graphs. Their approach to preserve
the mental map uses a foresight layout algorithm for dynamically
drawing animated graphs.

2.4 Statechart synthesis

In general, there is only very limited work on synthesizing State-
charts from textual descriptions, and the approaches that we are
aware of already assume that the textual input directly expresses
the Statechart topology as an AND-OR tree (e. g., [27, 79]). This
already achieves the advantages of textual entry, but does not offer
the rich, concise control flow constructs available in synchronous
programming languages, such as e. g., Esterel.

Statechart Synthesis from Esterel

SyncCharts [2, 5], the predecessor of SSMs, have been defined
via a translation to Esterel [4], and the commercial tool Esterel
Studio generates Esterel programs from SSMs as part of its code
generation process. A non-trivial problem arising from this is the
“linearization” of arbitrary state transitions (which are comparable
to a goto) into an imperative control flow. To our knowledge, there
also have been no attempts yet to explore the other direction, as we
do here.

2.4 Statechart synthesis 25

As discussed in Section 3.5, one complication arising in the
presented transformation is to express Esterel’s trap mechanism in
SSMs. This situation also arises in the Esterel derivate Quartz [146], The problem of Esterel’s trap

mechanismwhich does not support traps directly (see also Section 3.5.3). Not-
withstanding, Quartz allows to test the current configuration of
a system. As we do not have this option in SSMs, we present an
alternative mechanism based on explicit trap signals in Section 3.5.

Regarding Statechart optimizations, there have been already
proposals for design rules that define “good” Statecharts. How-
ever, they typically focus on checking consistency [44] or graphical
appearance, and do not attempt to systematically reduce the com-
plexity of a Statechart, as we do here.

Textual Statechart Notations

There exist several Statechart description languages, with different
objectives. E. g., the Statechart XML (SCXML) [171], a variant of XML,
has a comprehensible structure; but the required tags and their
hierarchical dependencies call for specific XML editors. Alterna-
tive Statechart descriptions, such as Statechart Virtual Machine
(SVM) [42] and the UML on the fly Model Checker (UMC) [102] use
explicit declarations of Statechart objects; such expressions reduce
the readability, especially, for large Statecharts. The technique of ex- Explicit object declarations
plicit declarations provides the advantages of textual entry, but does
not offer the Statechart dialect-independent, concise constructs, as
available in KIT described in Section 3.4.2. The KIT language struc-
ture was developed with respect to the Human-Usable Textual
Notation (HUTN) [116, 157], where HUTN languages are required
purely for the display of information. In contrast, McIver and Con-
way [103] and Richard and Ledgard [136] suggest several design
principles of human usable programming languages. Having these
in mind, several design ideas for KIT were borrowed from similar
description languages: from the dot notation [57] the implicit node
declaration, from Argos [98, 99] the hierarchy construction, and
from the Esterel language the parallel construction.

These Statechart description languages generally serve as an
intermediate format synthesized from manually edited Statecharts.
To our knowledge, none of these languages has been used so far
for Statechart synthesis, as we propose to do here. An exception is
the Requirements State Machine Language (RSML) approach [75],

26 background and related work

which synthesizes a graphical view of the topology using a very
simple, but surprisingly effective layout scheme, which inspired
KIEL’s alternating linear layout. However, RSML still keeps much
information that is normally part of the graphical model in textual
AND-OR tables.

2.5 preventing Statechart modeling errors

To lower the defect rate in developing software, a number of tools
and style guides for classical textual programming languages have
been developed, dealing not only with code layout but also with
robustness aspects. E. g., C language style is addressed by theStyle guides for textual

programming languages Motor Industry Software Reliability Association (MISRA) [107] and
Java style is addressed by Sun [151] and National Aeronautics
and Space Administration (NASA) [32]. Style guides have been
published also for the Statechart’s modeling paradigm as well, e. g.,
by the MathWorks Automotive Advisory Board (MAAB) [100] and
by the Ford Motor Company [45], both exclusively for Stateflow.Style guides for Statecharts
Scaife et al. [143] propose the development of a safe subset of the
Stateflow language, which is considered to be less error-prone.
Huuck [78] points out several error-prone Stateflow concepts, such
as condition actions and the order of execution. He proposes
the development of an appropriate set of automated sanity checks
leading to a safer subset of Stateflow. However, neither the rules
nor the automated checks are specified in detail. Furthermore,
Kreppold [89] has presented a style guide for the modeling tool
Statemate.

When it comes to UML State Machines, the well-formedness rules
defined within the UML specification (cf. OMG [113, 115]) clarify
the semantics of Statechart elements. Besides the well-formedness
rules, other rules for UML State Machines have been formulated in
the literature, e. g., by Mutz [109]. Some of his advised rules can
also be applied to other Statechart dialects.

Automatically checking robustness (or soundness) of UML State
Machines is an active field of research. First of all, applicableAutomated robustness

checking of UML Statecharts techniques had to be clarified, as done by Pap et al. [119]. They
presented different techniques, which (1) are utilizing checks based
on the OCL, (2) are applying graph transformation, (3) special
programs, and (4) finally reachability analysis driven tests. Imple-
mentations have been conducted in several areas. Richters [137]

2.5 preventing Statechart modeling errors 27

has investigated different frameworks that can be used when it
comes to working with OCL. Approaches to checking based on
graph transformation on UML State Machines are presented by, e. g.,
Gogolla and Parisi-Presicce [62] and Varró et al. [161].

Furthermore, Mutz and Huhn [110] have developed a customized
tool (the Rule Checker) for the automated analysis of user-defined
design rules for UML State Machines (see also [109]). They pursue
an interpreter-based analysis; they use the OCL to formulate rules
and to analyze the underlying data structure with help of some of
the specified rules. Moreover, checking is also performed by a Java
program. In contrast, our checking framework transforms OCL to
Java, because a transformative approach is faster and more flexible.

Another approach in order to check the style guide confor-
mance of Statecharts is the tool Mint [156] which is focused on the
MathWorks Automotive Advisory Board (MAAB) style guide. The Automated robustness

checking of Stateflow
Statecharts

checker primarily aims at achieving a consistent look-and-feel, en-
hancing readability, and avoiding common modeling errors. The
Guideline-Checker [108], a no-cost/academic alternative to Mint, is
based on the MAAB rules and coded in Matlab. The range of the
Guideline-Checker is currently constricted to the most trivial checks,
e. g., “A [state] name does not include a blank,” or “A [state] name
consists of [at least] 3 characters” [108, page 26]. As mentioned,
both tools focus solely on the MAAB rules. Therefore, they are
limited to Stateflow and are not applicable to other dialects, e. g.,
UML State Machines.

Moreover, special programs for the validation of crucial prob-
lems have been developed. Here, the State Analyzer, provided by Automated robustness

checking of Statemate
Statecharts

DaimlerChrysler R&D, is a prototypical software tool to check the
“determinism” of Statemate Statecharts [145]. Performing an auto-
mated robustness analysis of requirements specifications, the tool
verifies for every state that the predicates (trigger and condition) of
multiple outgoing transitions are pairwise disjoint. The approach
for detecting non-determinism employs automated theorem prov-
ing (cf. Section 6.7), i. e., proving the satisfiability of a formula
consisting of the conjunction of each pair of transition predicates.
Approaches analyzing requirements specifications are introduced
by, e. g., Heitmeyer et al. [76]; their approach is based on Software
Cost Reduction (SCR). Heimdahl and Leveson [75] therefore utilize
the RSML.

28 background and related work

2.6 the KIEL environment

Even though a wide range of methods and applications for graph
and Statechart visualization already exist, none fulfills all of our
needs. They are either highly specialized, or are not extendable,
or they focus different purposes. Hence, we decided to develop
the KIEL tool, which embraces different mentioned methods and
applications. E. g., KIEL employs the GraphViz [57] layout framework
for the layout of Statecharts, it borrows the concept of the semantic
focus-and-context method as realized in DiaGen editors, and it uses
OCL for checking rule specification.

Numerous people have contributed to the KIEL environment.
The central module of KIEL—the layout mechanism—was devel-Contributions to the KIEL

project oped by Kloss [84, 85]. The KIEL macro editor and the KIT edi-
tor were developed by Wischer [169]; he also developed the KIEL
Statechart browser [168] and an Esterel Studio file import mod-
ule [167]. A prototype of a KIEL WYSIWYG editor was contributed
by Lüpke [97]. Ohlhoff [118] implemented KIEL’s SSM Statechart
simulator, which follows the semantics described in André [3];
Posor [125] implemented a Statechart simulator using the Matlab
Simulink/Stateflow API. The synthesis of SSM from Esterel was de-
veloped by Kühl [90]. Heymann [77] contributed a LATEX frontend,
which makes use of KIEL’s command line tool. Schaefer [144] im-
plemented KIEL’s semantic robustness analysis using Java code and
Bell [15] implemented KIEL’s syntactic robustness analysis using
OCL. Völcker [162] investigated the causes of Statechart modeler
preferences for certain Statechart layouts and editing methods. For
an on-line listing of these works see http://www.informatik.uni-
kiel.de/rtsys/theses/completed.

http://www.informatik.uni-kiel.de/rtsys/theses/completed
http://www.informatik.uni-kiel.de/rtsys/theses/completed

3
E D I T I N G G R A P H I C A L M O D E L S

Statecharts are commonly created using some What You See Is
What You Get (WYSIWYG) editor. Even for novices WYSIWYG editors
are very easy to use due to their intuitiveness. Section 3.1 charac-
terizes conventional Statechart modeling techniques. Therefore, we
analyze the common modeling process using WYSIWYG Statechart
editors.

However, WYSIWYG editors can also be a limiting factor in the
practical usability as stated for WYSIWYG word processors, e. g., by
Tsai [160] and also by Taylor [153]. Quoting Tsai:

“Since a WYSIWYG interface has to provide commands for
formatting and layout in its menus and toolbars, there is no
way it can be as optimized for text processing as a text editor
is. This is unfortunate, since probably only 10% of the time it
takes to compose a document is spent on formatting—maybe
less.” [160]

This problem becomes even harder when moving from WYSIWYG
word processing to graphical WYSIWYG Statechart editing. Espe-
cially the editing of complex Statecharts raises further problems.
Here, one is quickly confronted with large and unmanageable
graphics originating from a high number of components or from
intricate interactions and inter-dependencies. Due to this, we pres-
ent—as an alternative to the WYSIWYG approach—our ideas of fast
and effective modeling of graphical models in Section 3.2 to Sec-
tion 3.5. Especially the editing of complex graphical systems can
benefit from this techniques.

3.1 the WYSIWYG statechart editing process

The available Statechart modeling tools such as Esterel Studio, State-
flow or Rational Rose provide highly specialized Statechart editors The WYSIWYG paradigm is

very popular and allows fast
graphical development from
scratch.

that follow the WYSIWYG paradigm. A WYSIWYG Statechart editor
allows to view graphical objects of the modeled Statechart very
similar to the end result and implies the ability to change the layout

29

30 editing graphical models

during the modeling process. One of the advantages of WYSIWYG
editors is their intuitive handling; due to the widespread use of
the WYSIWYG paradigm, also novices can operate using Statechart
editors (cf. Section 7.1).

In general, Statechart modelers using WYSIWYG editors typically
value the ability of fast “painting” and the full flexibility of arrang-
ing Statechart elements. WYSIWYG Statechart editors limit free-form
editing to develop proper Statechart elements. This simplifies edit-
ing Statecharts by enabling the modeler to quickly enter a complete
System Under Development (SUD). Nevertheless, the composition
of Statechart elements using WYSIWYG Statechart editors is not in-
nately syntactically correct. E. g., when connecting transitions are
deleted, unassociated state objects can remain. This necessitatesGraphical models are nice to

browse, but hard to write. checking the syntax and correcting the resulting Statechart manu-
ally. Therefore, the editing process of especially complex Statecharts
gets time consuming, due to often occurring inter-dependencies of
modified Statechart elements.

To analyze and educe improvements in developing Statecharts,
we inspected the common WYSIWYG editing process. We identified
six main editing schemata, which can be grouped into three cate-
gories: Statechart creation, modification of Statechart elements, and
deletion of elements. These are presented in the following section
with the illustration in Figure 9.

3.1.1 Editing Schemata

1. Statechart creation: For a new Statechart, the modeler has to
create at least three Statechart elements: (1) one state which
can be entered, (2) one initial connector for identification of
the first entered state, and (3) a connecting transition.

2. Add Statechart elements: A frequently used Statechart modifi-
cation is adding states and pseudo states. Typically, states
and pseudo states (e. g., initial connector) are not single ele-
ments, but connected with other states. Hence, the modeler
additionally has to insert a new transition connecting a new
Statechart object (see Figure 9a).

3. Add hierarchical states and parallel regions: A further, often ob-
servable operation is supplementing a Statechart with new
hierarchical (OR-) states and existing (AND-) states with a

3.1 the WYSIWYG statechart editing process 31

⇒
(a) Insertion of a simple successor state.

⇒
(b) Modification of transition direction.

⇒
(c) Deletion of a Statechart element.

⇒

(d) Insertion of hierarchical successor state.

⇒

(e) Insertion of a parallel region.

Figure 9: Generic editing schemata derived from a typical editing pro-
cess using WYSIWYG editors

new parallel region. For adding a new OR-state, in the sim-
plest case the modeler adds (1) the new hierarchical state,
(2) the inner initial connector, (3) the initially indicated state,
and (4) a connecting transition (see Figure 9d). Similar edit-
ing actions are necessary if a new parallel region should be
entered (see Figure 9e).

4. Change complexity of states: When entering a new level of
abstraction, it is necessary to upgrade states to hierarchical
OR- respectively AND-states. In doing so, the modeled state
attributes (e. g., state name, activities, incoming/outgoing
transitions) should be preserved (see Figure 9e). Some State-
chart modeling tools (e. g., Esterel Studio) provide such a

32 editing graphical models

mechanism, but in most of the tools, the modeler often has
to delete the existing state and re-create another state object
with all its attributes.

5. Switch transition source and target: The inversion of a transition
direction is one of the most annoying exercises modifying
Statecharts in conventional Statechart editors; the modeler
has to delete and re-create the transition with all its attributes
(see Figure 9b).

6. Delete Statechart elements: Almost all Statechart elements are
connected by transitions or they are related to hierarchical
associations. If any Statechart element is deleted, miscella-
neous elements of the deleted element’s context have to be
deleted to achieve a syntactically correct Statechart. E. g., after
deletion of a state connected to other elements, the remaining
transition cannot be left without any source respectively tar-
get (see Figure 9c); hence, the modeler has to delete it. This
also applies to the deletion of inner states of a hierarchic state
(or parallel region), etc.

Using a WYSIWYG editor each of these editing schemata involves
a number of steps. For example, to apply the schema “add hierar-
chical successor state” (Figure 9d), the modeler has to perform the
following steps:

1. select the state to supplement,

2. add a new hierarchical state,

3. insert an inner initial connector,

4. insert an inner state, and

5. insert connecting transitions.

3.1.2 Action Sequences

When using conventional Statechart editors, none of the editingEach WYSIWYG editing
schema requires the modeler
to perform a sequence of
low-level editing steps.

schemata can be realized as a single action. Generally, each edit-
ing schema using WYSIWYG editors passes the following action
sequence:

3.1 the WYSIWYG statechart editing process 33

1. If needed, create free space (e. g., expand hierarchical states
for new sub-elements, move existing elements for placing
new elements).

2. Focus on a Statechart element for modification respectively
supplementation. Initially the location of a Statechart ele-
ment, which should be modified or where elements should
be added, has to be determined. Within WYSIWYG editors,
this is done with pointing by mouse.

3. Apply an editing schema (cf. Section 3.1.1).

4. If needed, rearrange the modified chart to improve readability.

It is a common experience that the modeler spends much time
with the layout-related activities of steps 1 and 4. For Statecharts
developed from scratch, this effort may be small. In contrast, if
an existing chart has to be modified, the work for arranging the
elements increases roughly with the number of Statechart elements
and Statechart complexity. Quoting a practitioner:

“I quite often spend an hour or two just moving boxes and
wires around, with no change in functionality, to make it that
much more comprehensible when I come back to it.” [122]

Furthermore, there is a very direct impact on productivity as mod-
elers spend less time with manual layout. Each editing schema
requires multiple mouse clicks selecting Statechart elements, and
after that, appropriate editing actions either by mouse or by key-
board are necessary. Thereby, it is often difficult to point the mouse
to an intended object; often closely placed elements avoid an exact
element selection.

The analysis of the Statechart editing process using WYSIWYG
editors indicates possible areas of improvement. In particular,
the modification and augmentation of existing complex charts is
laborious and time-consuming. Due to this, we address more
practical and efficient modeling techniques in the next sections.

The basic idea of our approach is to automate the editing process
as far as possible. Specifically, we propose to reduce the effort of Graphical elements should

be automatically rearranged
by the computer.

rearranging Statechart elements by applying automatic Statechart
layout mechanisms. This produces Statecharts laid out according to
a Statechart Normal Form (SNF), which is compact and makes sys-
tematic use of secondary notations to aid readability. Our approach

34 editing graphical models

of automatic layout and the notion of the SNF are introduced in the
next section.

3.2 layout of graphical models

When coding in textual programming languages, it is common
practice to structure the text according to some formatting conven-
tions, for example regarding indentation [26, 151]). These conven-
tions—referred to as secondary notation [121]—are irrelevant for the
meaning of the program but aid the understanding of the human
programmer. The same is true for graphical programming—or
rather, it should be true. Quoting Gurr:

“Pragmatics [. . .] helps to bridge the gap between truth con-
ditions and ‘real’ meaning—that is, between what is said and
what is meant. [. . .] the correct use of pragmatic features,
such as layout in node and link based notations, is a signifi-
cant contributory factor in the comprehensibility, and hence
usability, of these representations.” [67]

However, as already observed for example by Petre [122], the use
of secondary notations in graphical modeling is still underdevel-
oped. This not only slows down the development process, but may
also lead to overlooking design faults. As Petre notes:

“It is time to recognize the impact of ‘bad graphics’—of hap-
hazard use of perceptual cues and secondary notations—mis-
cueing, misleading, misreading, and misunderstanding.”

Furthermore, making good use of secondary notations does not
appear trivial for graphical programming. Quoting Petre again:

“It appears that graphical notations can have a greater ca-
pacity to ‘go wrong’ than textual notations.”

Based on aesthetic criteria [27, 72] and on the meaning behind the
graphical Statechart elements, we have devised rules for the layout
of these elements, thus enforcing a standardized use of secondary
notations. These rules effectively define an SNF, which, for a givenAesthetic criteria for

drawing Statecharts Statechart, defines how the elements of that Statechart should be
placed. The rules we advocate include the following:

3.2 layout of graphical models 35

1. Initial states are placed at the left or top area, final states are placed
at the bottom/right. If the developer of a Statechart is familiar
with a drawing, he or she will rapidly notice that a common
order of elements increases readability. Hence, this allows to
quickly locate where behaviors start and where they finish,
analogous to the sequencing in textual programs. According
to the reading order, the initial state should be placed in front
and the final state (see next point) is placed in rear. Placed in
this way, they follow the set up of texts in most scripts.

2. Final states are placed at the opposite of initials. As the final com-
ponent is the object the user looks at following the Statechart
semantics, it is placed on the right or bottom respectively.

3. Successive states are placed adjacently, the number of back transi-
tions is minimal. This further simplifies the tracking of the
sequence of states in order to comprehend the modeled con-
trol flow.

4. The number of transition bends are minimal. This simplifies
tracking a transition from source to sink, and is achieved
by state placement and the use of splines.

5. The number of transition crossings are minimal. If two transi-
tions intersect, it cannot be constituted which direction the
transition takes. Especially in case of small angle crossings
and in collaboration with polygonal transitions it, is barely
feasible to follow a transition.

6. Transitions are oriented consistently. For example, in Kiel Inte-
grated Environment for Layout (KIEL), transitions are oriented
clockwise for horizontal layouts and also for vertical layouts.
This allows to infer the orientation of a transition just from
its location, obviating the need to locate the tip (arrow head)
of a transition. This is particularly useful for dense represen-
tations.

7. Labels have a consistent placement, e. g., this simplifies the map-
ping between labels and transitions, in particular, in case of
adjacent transitions.

8. The level-wise placement direction alternates. The direction of
state sequences, which are laid out in a linear or treelike

36 editing graphical models

fashion, alternates at different hierarchy levels between left-
to-right and top-down. This causes a good aspect ratio and
minimizes the placement area.

As an example, consider the Statechart for a simple traffic light
controller presented in Figure 10. There are macro states for normal
and error operation modes, each of which concurrently controls a
light for pedestrians (e. g., “Pred” means red light for pedestrians)
and cars. The figure compares the Statechart as drawn by a modeler,
using Esterel Studio with the same chart brought into SNF (using
KIEL, see Chapter 6). In the original layout, states are placed
irregularly, shapes of transitions vary, and space is wasted; the
SNF variant is more compact and lets the viewer focus on the
functionality of the Statechart.

Note that what constitutes a “good” or “bad” use of secondary
notation is often a matter of opinion, just as experienced program-
mers may have—sometimes strong—opinions on what constitutes
a good formatting style (cf. Section 7.1). Certainly, there are other
alternatives to the SNF presented here. Nevertheless we do not
deem it critical which SNF is used—as long as some SNF is used,
which all members of a development team should agree upon. The
price to pay for this is that modelers may not be able to draw a
Statechart the exact way they would prefer. However, one obtains
a uniform appearance to Statecharts, with the corresponding gain
in portability and maintainability.

Due to the application of an automatic layout mechanism, the
editing action sequence of Section 3.1.2 can be reduced to:Automatic layout reduces

the necessary editing
actions. 1. Focusing on a Statechart element for modification respectively

supplementation;

2. Applying an editing schema.

Both editing actions remain under control of the modeler and
will be treated by the following editing proposals for Statechart
editing—the macro-based, the textual, and the transformational
Statechart creation approaches. All three paradigms focus on the
development of the Statechart structure. Quoting Laurel:

“Focus on designing the action. The design of objects, en-
vironments, and characters is all subsidiary to this central
goal.” [92, p. 134]

3.2 layout of graphical models 37

(a) Original, manually laid out Statechart.

(b) Another manually laid out representation of the Statechart shown in Fig-
ure 10a.

(c) Layout conforming to the SNF

Figure 10: A traffic light example, illustrating the SNF

38 editing graphical models

Statechart editing approaches

Statechart

macro
editing

Statechart
layout

generator

Statechart
structure

textual
editing

Statechart
synthesis

WYSIWYG
editing

Statechart
layout

Figure 11: Different ways of Statechart creation. All mentioned editing
approaches provide the Statechart structure developed by the
modeler. Using the WYSIWYG paradigm the Statechart mod-
eler additionally must take care of the Statechart layout.

And also Tidwell states:

“Sometimes it is easier to let the tool do certain mechanical
jobs, such as precise layout, repetitive tasks, complex geomet-
ric shapes, image or sound processing, etc. Don’t make the
user do these by hand unless they choose to; provide easy-
to-use automation instead, in a way which is smoothly in-
tegrated into the WYSIWYG Editor itself, and which doesn’t
require a jarring context shift in the user’s mind.” [158]

We consider the graphical layouting of Statechart a repetitive task,
which can be done automatically by the computer. Figure 11 char-
acterizes the development process of WYSIWYG editing and our edit-
ing proposals. In this sense, our Statechart development proposals

3.3 macro-based editing 39

follow the paradigm of markup languages, such as LATEX [91, 129],
HyperText Markup Language (HTML) [164], Extensible Markup
Language (XML) [172], Scalable Vector Graphics (SVG) [165], and
Precision Graphics Markup Language (PGML) [111]. This paradigm
frees the modeler from time-consuming rearrangement of graphical
elements and they have also proven their power when maintaining
complex document layouts. Beyond this, a certain consistent style
of layout which contributes to the readability of Statecharts follows.

3.3 macro-based editing

Using WYSIWYG editors, a simple editing action (e. g., placement
of a state) scarcely needs time; but applying a complete editing
schema (cf. Section 3.1.1) requires multiple mouse and keyboard
actions. Our proposal to optimize this is to directly manipulate the
Statechart structure, uncoupled from its graphical representation.

The schemata described in Section 3.1.1 can be interpreted as
Statechart productions. Before applying a production (a schema), Interactive application of

Statechart production rulesthe modeler selects the location for the modification (the focus),
which corresponds to the left-hand side of the production. If the
production pattern matches, the application of the schema replaces
the focus with the right-hand side of the production. Hence, as a
result of applying the production, Statecharts are produced which
conform to the syntax of the visual language. The set of produc-
tions constitutes a Statechart grammar, which has the characteristic
that every application of a production results in a syntactically cor-
rect Statechart. Hence, a design does not go through meaningless
intermediate editing stages, which (ideally) frees the modeler from
time-consuming syntax-checking. An exception to this are pro-
ductions that delete model elements, which may result in isolated
states. However, KIEL provides syntax checks that detect these (see
Section 6.7).

Concerning editing step 1 of the reduced action sequence (the
setting of the focus, see page 36), we propose not only to provide
the traditional mouse-oriented mechanism, but also to allow a
structure-oriented navigation similar to text editors. E. g., in the
KIEL macro editor (see Section 6.5),

1. the right/left key navigates through state sequences,

40 editing graphical models

→
→

→
Page ↑

Page ↓Page ↓

↓

↓

Figure 12: Navigation with key strokes using the macro-based modeling
approach

Ctrl + I
=========⇒

Figure 13: An editing action using the macro-based modeling approach

2. the up/down key navigates among sibling elements (e. g.,
multiple outgoing transitions from a state object), and

3. the page up/down keys navigate up respectively down in
state hierarchies.

Figure 12 illustrates some navigation examples.
Concerning editing step 2, the selection of an editing schema,

the designer may select a schema from a pull-down menu or by
pressing a keyboard shortcut. E. g., in KIEL Ctrl+I generates a new
successor state with a connecting transition and adjusts, if nec-
essary, the priorities associated with other transitions originating
from the selected state. Figure 13 shows an example of applying
the “insert simple successor state” schema. Before applying the
schema, state S2 is selected afterwards the inserted state S4 remains
selected for further editing operations. After the application of the
editing schema, a rearrangement of the Statechart elements will be
performed automatically, in accordance with the SNF.

3.4 text-based editing 41

3.4 text-based editing

As an alternative to the graphical modeling, one can also develop
reactive systems using textual notations. As described in Section 2.4
a couple of languages exist that either describe Statecharts directly
(e. g., SCXML) or indirectly (e. g., Esterel). Consequently the devel-
oper of reactive systems may choose between the textual and the
graphical approach to specify systems. They offer the same ex-
pressiveness and the same level of abstraction. However, there are
notable differences in terms of practical use, and both approaches
have their benefits.

3.4.1 Comparing Textual and Graphical Editing

Graphical models are typically created with WYSIWYG editors.
They benefit from intuitiveness and are good for higher level
context. Statechart modelers often emphasize the usefulness of
a deeper insight into a Statechart model. Quoting a practitioner:

“[. . .] tool developers should improve the integration of vi-
sual and textual languages. Reviewing the behavior of a de-
tailed Statechart requires the reader to understand not only
the visual representation, but also the action code in transi-
tions, choice points, operations, states and classes. The reader
should be able to easily browse this code to avoid missing or
misunderstanding it.” Heidenberg et al. [74]

Textual languages can represent precise details very well; further-
more, they permit powerful macro capabilities, e. g., using generic
scripting or preprocessing languages such as Perl [155] or M4 [128]
and allow a detailed revision management.

Editing Effort

Entering textual programming code to specify a system is very
efficient. Due to the linear text flow, the insertion and deletion of
symbols and words is very simple. Regarding graphical models,
the two-dimensional nature brings some editing complications.
Before inserting elements, the modeler must often “make room”
first. The deletion of elements is also tedious, because it often
leaves distracting “holes.” To handle this, and to produce good Graphical modeling tools do

not provide sufficient
support for rearranging
graphical objects.

42 editing graphical models

and readable graphics, adjacent elements have to be moved, while
respecting the relationships of interacting elements (e. g., transitions,
state hierarchy, concurrency).

To illustrate this point, consider the canonical example
ABRO [18], which is specified as follows: The system concur-
rently waits for two input signals, A and B. When both signals
have occurred, the output O is emitted. This behavior is reset by
the input signal R. An Esterel program expressing this behavior is
shown in Figure 14a, and an equivalent Safe State Machine (SSM)
representation is shown in Figure 14c. Now, suppose we want to
extend this example with a further accepting signal C parallel to
the signals A and B. To extend the Esterel version accordingly into
the program shown in Figure 14b, we just use our favorite text edi-
tor, move the cursor to the “]”, and type “|| await C.” Performing
the same operation on the corresponding SSM, to obtain the SSM
seen in Figure 14d, is rather more involved: we have to enlarge
the top-level state and the states ABO and AB, we have to move
the state Program_Terminated, we have to draw a new horizontal
line, we have to draw the new state C and its predecessor and
successor, we must draw two new transitions and label them—an
operation likely to take an order of magnitude longer than the
corresponding textual edit. Furthermore, the result is unlikely to
be as precisely laid out as the one shown here, unless one applies
further alignment operations—provided that such alignment tools
exist in the modeling tool in the first place.

Revision Management

When large repositories of textual code are developed, evolution is
well traceable. At each milestone of a project, one can obtain reveal-
ing information about the increments of the programming work
(e. g., applying the Unix diff utility to compare different versions).
Only few modeling tools (e. g., the SCADE Suite [40]) provide theGraphical modeling tools do

not support graphical
version management.

feature to compare different model versions. If a modeling tool
provides such a revision management, then only the model struc-
ture is compared but not the accompanying changes of graphical
information.

The modeling tools store graphical models as ASCII. These repre-
sentations do not only include the relevant structural information
that is of interest to us, but also information pertaining to time of
creation, positions of elements, a multiplicity of used fonts and

3.4 text-based editing 43

module ABRO:

input A, B, R;

output O;

loop

[

await A

||

await B

]

emit O;

each R

end module �
(a) Original Esterel fragment

module ABRO:

input A, B, R;

output O;

loop

[

await A

||

await B

||

await C

]

emit O;

each R

end module �
(b) Extended Esterel program

(c) Original SSM

(d) Extended SSM

Figure 14: Extending ABRO to ABCRO, Esterel and SSM versions

44 editing graphical models

9,10d8

< ||

< await C �
(a) diff applied to Esterel files

1c1

< # Model of type

Document saved by /

home/esterel/

EsterelStudio

-5.2/bin/estudio.exe

[11/18/2005

10:39:01]

> # Model of type

Document saved by /

home/esterel/

EsterelStudio

-5.2/bin/estudio.exe

[11/18/2005

10:40:03]

161c161

< {115

> {295

227c227

< AT 107 145

> AT 197 145

243c243

< [E]

> [V105 E E]

344a345,519

> NODE init.2 init

> ATTRIB

> {[]

> ""

>

> {0

> 0

> }

> {

> {"helvetica"

> 12

> 1

> "Blue"

> }

> {"helvetica"

> 12

> 1

> "Blue"

> }}<false>

> }

> AT 170 35

> END # of init.2

>

> NODE state.4 state

> ATTRIB

> {""

> <halt>

> <no>

> ""

>

> {30

> 30

> 0

> 0

> 1

> "1 0 0 1 0 0"

> 0

> 0

> 0

> 0

> 0 �
(b) diff applied to the editing results of SSM files (scg format, as used by Esterel

Studio)—only first 60 of 289 lines shown

Figure 15: Results of applying diff to compare ABRO with ABCRO, al-
ternatively using the Esterel representation and the SSM repre-
sentation

color specifications. This extra information is apparently neces-
sary to represent a SSM, but is not intended to be read by humans.
As a result, the revision management for graphical models is not
very practicable. To illustrate this, Figure 15 shows the differences
(produced by diff) between ABRO and ABCRO. For the Esterel
representations, the difference file is three lines long, and we can
immediately deduce how the programs differ. For the SSMs, the
difference file is orders of magnitude larger and so cluttered that it
is practically worthless to the human examiner.

3.4 text-based editing 45

Meta-Modeling

One would often like to express models in a generic fashion at an
abstraction level that is higher than what is directly supported in
the (textual or graphical) modeling language. A trivial example Graphical modeling tools to

not support “scripting”.is to extend ABRO from two to n signals that are awaited. For
another example, one might want to model a distributed system
communicating via some protocol with n stations. An example is
the Token Ring Arbiter used in the benchmarks in Lukoschus [95],
with up to 1000 stations. It is generally rather easy to achieve this
with textual languages that have standard macro capabilities, using
generic scripting or preprocessing languages such as Perl or M4,
or just a powerful text editor. Graphical languages may also have
macro capabilities, but creating a top-level system with n stations
still requires manual work for each instance.

To summarize, both textual and graphical languages have their
specific domains and advantages. The traditional model-based The combination of

both—the textual and the
graphical language—would
benefit the Statechart
modeling process.

design flow starts with the graphical entry of a system model from
which textual programs are synthesized; however, as we argue here,
it would actually be advantageous to allow the designer to work in
the opposite direction as well. The following section describes our
idea of a Statechart description language.

3.4.2 A Statechart Desciption Language

The macro-based Statechart editing (cf. Section 3.3) works directly
on the Statechart topology, combining several simple editing ac-
tions. Another alternative structure-based Statechart editing tech-
nique that we propose is the textual Statechart structure description.
The modeler describes only the Statechart structure using a textual
Statechart description. We show in Chapter 7 that this modeling
approach can produce graphical Statecharts applying our layout
method proposal (see Section 3.2) very efficiently.

Several works in the area of programming languages deal with
principles of readability and maintainability of programming lan-
guages in general (see e. g., Richard and Ledgard [136] and McIver
and Conway [103]). Furthermore, the Object Management Group Criteria for an human

readable and editable
Statechart description
language

(OMG) points out that Human-Usable Textual Notation (HUTN) un-
derlies certain usability, syntax and aesthetic criteria and makes
use of symbols and punctuation, reserved words, and user ex-

46 editing graphical models

pectations [116]. Having this in mind, in our opinion, a human
readable and editable Statechart description language should meet
the following demands:

identifiable Statechart structures: In the initial phase of a
Statechart modeling process, the modeler often takes resort
to paper and pencil. One can observe that the typical State-
chart structure (i. e., states and connecting transitions, state
hierarchy, etc.), is initially developed in the mind. It should
be the intention of a Statechart description language to aid
the modeler expressing Statechart structures (e. g., by making
use of secondary notation, such as indentation.)

conciseness: An easy-to-use Statechart description language
should prevent the modeler from using many keyboard in-
puts; it should describe Statechart elements with short and
expressive phrases.

comprehensibility: A Statechart description language should
permit a modeler to describe the Statechart topology in an
intuitive way. The consultation of a language manual should
be avoided as far as possible. This can be achieved by a
plausible language structure.

cross references: Central elements of Statecharts are states
and transitions. Some Statechart description languages sub-
sume states as also transitions in separate sections (cf. Fig-
ure 16c). However, implicit declarations—as e. g., realized
by Argos (cf. Figure 16e)—should be used for an efficient
modeling process.

In general, much work is done on textual Statechart languages
which are easy to understand by computers, but only limited work
has been carried out on describing Statecharts in a human compre-
hensible manner. One important example of a structured Statechart
notation is the Statechart XML (SCXML) [171]. This notation wasCharacteristics of XML

notations developed based on the XML. The XML’s regular structure allows
the automatic validation as to whether an XML document conforms
to constraints expressed by a definable schema or not. Central to
XML notations is the content structuring using tags and hierarchical
dependencies (cf. Figure 16b). The SCXML is a typical example of a
good readable, but laborious to write notation especially when the

3.4 text-based editing 47

(a) A simple graphical Statechart example of a light switch. The system waits
for the signal switch to enter the state light_on or light_off.

1 <?xml version="1.0" encoding="us-ascii

"?>

2 <scxml version="1.0" xmlns="http://www

.w3.org/2005/07/scxml">

3 <initial>

4 <tronsition>

5 <target next="light_off"/>

6 </tronsition>

7 </initial>

8

9 <state id="light_off">

10 <tronsition event="switch">

11 <target next="light_on"/>

12 </tronsition>

13 </state>

14

15 <state id="light_on">

16 <tronsition event="switch">

17 <target next="light_off"/>

18 </tronsition>

19 </state>

20 </scxml> �
(b) SCXML notation of the Statechart

in Figure 16a

1 STATECHART:

2 I [DS]

3 light_on

4 light_off

5

6 TRANSITION:

7 S: I

8 N: light_off

9

10 TRANSITION:

11 S: light_off

12 N: light_on

13 E: switch

14

15 TRANSITION:

16 S: light_on

17 N: light_off

18 E: switch �
(c) SVM notation of the Statechart in

Figure 16a

Figure 16: Different notations of a simple light switch Statechart

Statechart becomes complex. Instead of manually writing XML like
notations, specific XML editors are used. These support the editing
process using XML schemata.

The Statechart Virtual Machine (SVM) notation [42] was devel-
oped as a notation for a Statechart simulator. The “transition centric” Characteristics of the SVM

notationview (cf. Figure 16c) of the Statechart structure makes it easy to
specify an execution model. But we see the transition-centric view
as a difficulty to understand a state-based system. Like the SVM
the UML on the fly Model Checker (UMC) notation [61] primarily
describes state transitions The UMC notation provides definition sec- Characteristics of the UMC

notationtions for states, signals, and transitions (cf. Figure 16d). In contrast
to the SVM notation, e. g., transitions are subsumed in one transition
section. Transitions are expressed by an arrow (->), which connects
state expressions. However, the distribution of the specified State-

48 editing graphical models

1 Class light is

2 Signals: switch

3 State top = I, light_on, light_off

4 Tronsitions:

5 I -> light_on

6 light_on -(switch)-> light_off

7 light_off -(switch)-> light_on

8 end

9 Object my_light : light �
(d) UMC notation of the Statechart in

Figure 16a

1 targos

2 main light (switch) ()

3

4 process light (iswitch) () {

5 controller{

6 init i

7

8 light_on {}

9 -> light_off with iswitch;

10

11 light_off {}

12 -> light_on with iswitch;

13 }

14 }

15 endtargos �
(e) Textual Argos notation of

the Statechart in Figure 16a

1 statechart light[model="Esterel Studio";version="5.0";]{

2 input switch;

3 {

4 ->light_off;

5 light_off->light_on[label="switch"];

6 light_on->light_off[label="switch"];

7 }

8 } �
(f) KIT notation of the Statechart in Figure 16a

Figure 16: Different notations of a simple light switch Statechart

chart elements in dividing sections limits the comprehensibility of
the notation.

The Argos notation developed by Maraninchi and Rémond [98]
constitutes the most efficient notation of the above introduced
approaches. It omits the usage of dividing sections and provides aCharacteristics of the Argos

notation “state centric” structure (cf. Figure 16e). Curly braces identify state
hierarchy and outgoing transitions are dedicated to their source
state. These language characteristics make the described Statechart
intuitively comprehensible. Despite this, unnecessary keywords
like e. g., targos, process and controller, and the construction of the
initial state, slightly increase the effort of writing a Statechart
description.

A very simple but efficient language for specifying simple di-
rected graphs is the dot language [55]. However, the hierarchy

3.4 text-based editing 49

1 statechart abro[model="Esterel Studio

";version="5.0"]{

2 input A;

3 input B;

4 input R;

5 output O;

6 {

7 ->ABO;

8 ABO{

9 AB{

10 ->A;

11 A->AF[type=sa;label="A"];

12 AF[type=final];

13 ||

14 ->B;

15 B->BF[type=sa;label="B"];

16 BF[type=final];

17 };

18 ->AB;

19 AB->Program_Terminated[type=nt;

label="/ O"];

20 Program_Terminated[type=final];

21 };

22 ABO->ABO[type=sa;label="R"];

23 };

24 }; �
(a) KIT description representation. (b) SSM representation.

Figure 17: Textual and graphical representations of the ABRO exam-
ple [17].

mechanism of dot is not applicable to the requirements of State-
charts.

We devised the simple and efficient Statechart description lan-
guage KIEL Statechart Extension of Dot (KIT) (see Figure 16f for
a simple example). It combines implicit declarations as used in The KIT language is a very

efficient notation for the
specification of Statechart
structures.

dot, the hierarchy construction as used in textual Argos, and the
orthogonal construction as used in Esterel [20] with the ability to
describe different dialects of Statecharts. Wischer [169] provides
further details on the KIT language.

Figure 17 presents a KIT example with the equivalent graphical
model of an SSM, the Statechart-dialect implemented in Esterel
Studio. Figure 17a lists the KIT code, which is shortly described in
the following. The Statechart preamble is listed in Line 1, contain-
ing the Statechart name and the model type and version, which
determine the Statechart dialect and the accompanying graphical
Statechart representation of the targeted modeling tool. Lines 2–5

declare the signal events. Ensuing, Lines 7–22 declare Statechart

50 editing graphical models

elements and their relations. State objects are implicitly identified
by their state names (cf. Line 8), curly braces define the scope of
hierarchical relations (e. g., state AB, cf. Line 9–17), transitions are
written as “->” (cf. Line 11), and the || operator denotes parallel
regions (cf. Line 13). KIT includes a couple of shorthand notations;
e. g., a transition without a source node determines an initial con-
nector (cf. Line 7), a transition of type sa abbreviates the SSM’s
strong abortion (cf. Line 11).

Figure 18 compares the characteristics of the KIT language and
the above mentioned languages according to the demands on State-
chart description languages. The textual notations in Figure 16b to
Figure 16d demonstrate different usability properties depending
on the notations application area. As one can observe, the KITComparison of different

Statechart description
languages

language fulfills our demands based on the need of a Statechart
description language to the greatest possible extent. We have
already mentioned the problem of concise language structures in
KIT. Therefore, we provide short versions of declarations consisting
of only two characters, e. g., “sa” instead of “strong abortion” (see
above). However, some structures—e. g., the property names—
could be expressed in shorter manner (e. g., “t” instead of “type”
and “l” instead of “label”). However, these constructions are at the
expense of KIT’s intuitiveness.

3.5 synthesizing graphical models

As mentioned in Chapter 1, for the development of reactive systems,
one can choose from a number of visual and textual languages. Es-
terel is a language for the specification of reactive systems behavior,
which is—in contrast to the above mentioned textual languages—
not state based. In this section we present an approach to transform
Esterel v5 programs into equivalent SSMs. This permits a design
flow where the designer develops a system at the Esterel level, but
uses a graphical browser and simulator to inspect and validate the
system under development. We synthesize SSMs in two phases. The
first phase transforms an Esterel program into an equivalent SSM,
using a structural translation that results in correct, but typically
not very compact SSMs. The second phase iteratively applies opti-
mization rules that aim to reduce the number of states, transitions
and hierarchy levels to enhance readability of the SSM. As it turned
out, this optimization is also useful for the traditional, manual

3.5 synthesizing graphical models 51

conciseness

identifiable structures

comprehensibility

few cross references

KIT

Argos

UMC

SCXML

SVM

Figure 18: Comparing characteristics of textual Statechart description
languages. A larger surface area denotes better conformance
to the principles of language ergonomics.

design of SSMs. The whole set of transformation and optimization
rules is described by Kühl [90].

Overview of Esterel

Esterel is an imperative synchronous language and consists of a set
of kernel statements from which other statements are derived [19].
In contrast to other transformations and analyzes on Esterel, we
should not confine ourselves to these kernel statements, because the
derived statements give us useful information about the structure
of the program.

For a better understanding of the transformation, let us briefly
review some Esterel basics; for a more detailed reference, see
Berry [18]. Different parts of an Esterel program communicate A short introduction into

Esterelvia signals, which have a boolean status. Valued signals can also
carry an additional value, like an integer or real number, or a value
of user-defined type. The execution of Esterel programs is based
on instants, and the execution of all statements is considered to
take zero time and to take place within an instant, except for the
pause statement, which explicitly waits for the next instant. As a
consequence, no signal can change its status during one instant.
This is even true in the case of valued signals; multiple emissions of

52 editing graphical models

one valued signal in an instant can be combined by an associative
and commutative function. The set of active input and output
signals in one instant is called event. Important features of Es-
terel are the direct support of concurrency and multiple forms
of preemption. Statements can either be strongly aborted, weakly
aborted, i. e., they are still executed during the abortion instant,
or suspended, i. e., they are frozen in this instant, but may resume
later on. The preemption can either be immediate or delayed. In
the immediate version, a statement can be preempted in the same
instant it becomes active, while in the delayed version, it must be
active for at least one instant before it can be preempted. Another
important feature is the possibility to explicitly wait until a signal
becomes present (or absent); this can also be either immediate or
delayed. In addition to weak and strong abortion, Esterel provides
traps as an exception mechanism. Traps are declared by the trap
statement, which can optionally be augmented with one or more
exception handlers. Traps are raised by the exit statement. We will
discuss the behavior of traps in more detail in Section 3.5.3.

3.5.1 From Esterel to SSMs

Our transformation from Esterel to SSMs is defined with a graph
grammar, where non-terminal symbols are textual macro states.
These are transformed into graphical macro states, which them-The transformation starts

with a textual macro state. selves may contain further textual macro states. For each Esterel
statement, one rule exists to transform it into one macro state,
where each sub-statement becomes a substate; thus the hierarchy
of the SSM corresponds exactly with the nesting of statements in
the Esterel program. A graphical macro state enters a terminal
state if and only if the corresponding Esterel statement terminates.
Since Esterel and SSMs are closely related, the transformation of
most language constructs is fairly straightforward. Care has to be
taken to preserve the semantics of traps, which do not have a direct
counterpart in SSMs.

We now illustrate the transformation scheme by first presenting
the transformation rules that are needed for the ABRO example
and then applying theses rules to the Esterel version of ABRO. In
the following, p and q stand for arbitrary Esterel statements; de
is an arbitrary delay expression, i. e., an expression over signals
plus the additional information whether this expression shall be

3.5 synthesizing graphical models 53

evaluated immediately or in the next instant; s and t are arbitrary
signal and trap names, respectively; exp is a signal value expression;
ehe is an exception handler expression, i. e., a boolean expression
over trap signals. For details on the grammar of Esterel, see the
Esterel manual [18].

Transformation Rule 1 (module)

module mod_name:

input I1,...,In;

output O1,...,Om;

p

end module

Z=⇒

module

I

p

An Esterel program (a “module”) starts with an interface declara-
tion. Thus, the first step of the transformation is to generate an SSM
with the same name and interface, which simply enters a textual
macro state that contains the program body p.

Transformation Rule 2 (emit)

emit s(exp)
Z=⇒

emit

I
/s(exp)

The emit statement broadcasts a signal s, with an optional value
exp, and terminates instantaneously.

Transformation Rule 3 (loop each)

loop
 p
each de Z=⇒

loopeach

I

de/p

The loop p each de statement executes its body p and restarts it
whenever the delay expression de is true.

54 editing graphical models

Transformation Rule 4 (simple await)

await de

Z=⇒
simple_await

I
de/

In its simple form, await de waits until the expression de evaluates
to true and then terminates. The general case (see Kühl [90]) allows
to wait for different events and executes a specific code depending
on which event occurred first.

Transformation Rule 5 (parallel)

p1 ||...|| pn

Z=⇒

parallel

I
I

...
pnp1

The parallel operators in Esterel and in SSMs work exactly in the
same manner. The parallel branches are executed synchronously.
Note that the parallel terminates if all its sub-statements terminate;
therefore, all contained macro states are final.

Transformation Rule 6 (sequence)

p1; ... ;pn
Z=⇒

sequence

I ... pnp1

The sequence waits for termination of one statement before it starts
executing the next statement. Note that a sequence terminates
when its last sub-statement terminates.

Transforming ABRO

The rules introduced so far suffice to generate an SSM for ABRO.
The first step is to apply the (module) rule to the Esterel programA demonstration example
that is to be transformed (Figure 14a, page 43), which results in
an SSM with the same interface declaration as the Esterel program

3.5 synthesizing graphical models 55

A
B

R
O

I

lo
op

 [

aw
ai

t A

||

aw

ai
t B

]
; e

m
it

O
ea

ch
 R

Z=⇒
(lo

op
ea

ch
)

A
B

R
O

I

lo
op

ea
ch

I R
/

[a
w

ai
t A

|| a
w

ai
t B

];e
m

it
O

Z=⇒
(s

eq
ue

nc
e)

A
B

R
O

I

lo
op

ea
ch

se
qu

en
ce

I

R
/

I
em

it
O

aw
ai

t A
|| aw

ai
t B

Z=⇒
(p

ar
al

le
l,

em
it)

A
B

R
O

I

lo
op

ea
ch

se
qu

en
ce

I R
/

em
it

pa
ra

lle
l

I

I

/O

I
I

aw
ai

t B
aw

ai
t A

Z=⇒
si

m
pl

e
aw

ai
t

A
B

R
O

I

lo
op

ea
ch

se
qu

en
ce

I R
/

em
it

pa
ra

lle
l

I

I

/O

aw
ai

t
aw

ai
t

I
I

I

B
/

I

A
/

Fi
gu

re
1
9
:S

te
pw

is
e

tr
an

sf
or

m
at

io
n

of
th

e
Es

te
re

lp
ro

gr
am

A
BR

O
(F

ig
ur

e
1
4
a)

in
to

an
eq

ui
va

le
nt

SS
M

56 editing graphical models

and a textual macro state that contains the body of the given pro-
gram. Figure 19 shows this SSM and the subsequent stepwise
transformation into an SSM that contains no textual macro states
anymore, hence no more transformation rules are applicable. The
behavior of the original Esterel program is completely preserved
in the resulting SSM; but we also see that the generated SSM con-
tains unnecessary hierarchy nestings and is relatively hard to read.
However, before considering optimizations in Section 3.5.2, we
first consider some of the remaining transformation rules. For a
complete list see the diploma theses of Kühl [90].

Handling Traps

Traps are a part of Esterel and their translation to SSMs is not
straightforward. Their behavior must be simulated using localHandling of Esterel

specialties signals and weak abortions. For each trap statement we introduce
local signals for all declared exceptions, plus one new local signal
traphalt. This signal is emitted, if another trap with higher priority
is activated from inside the trap scope. This is needed to assure
that no exception handler is executed when an exception with
higher priority is active at the same time; our translation handles
the arbitrary nesting of traps. Whenever an exception is raised, all
other exceptions with its scope that are not running parallel to the
statement that raised the exception are deactivated. We will discuss
this in detail in Section 3.5.3.

Transformation Rule 7 (exit)

exit t(exp)

Z=⇒

exit

I

/t(exp), traphalt_1,...,traphalt_n

The exit statement raises an exception, optionally annotated with
the value of an expression, which can be used in an exception
handler. The SSM also includes signals to prevent the execution of
exception handlers with lower priority (see also Section 3.5.3). Note
that the exit state does not terminate normally, hence the simple
state that is entered is not marked as final state. The body of a trap
statement is weakly aborted when one of its exceptions is raised.
When no other exception with higher priority is active, its active

3.5 synthesizing graphical models 57

handlers are executed in parallel. When a trap with higher priority
is active at the same time, no handler is executed. A trap terminates
when its body terminates.

Transformation Rule 8 (trap)

trap t1,...,tm in
 p
handle ehe_1 do p1
...
handle ehe_n do pn
end trap

Z=⇒

trap

I

<3>

<2>
#t_1 or ... or t_n/

<1>

#traphalt/

traphalt, t_1, ..., t_n

CICI
<2>

<1>
ehe_m/

<1> ehe_1/

<2>

... pm
p1

p

The trap catches exceptions which are raised inside its body. De-
pending on which exception was raised, different handlers are
executed—possibly in parallel, when multiple exceptions were
raised.

A requirement placed on Esterel programs is that they must not
contain instantaneous loops; i. e., the body of a loop is not allowed to
terminate instantaneously. This requirement also transfers to SSMs;
they must not contain instantaneous cycles. This causes a compli-
cation in our transformation of traps, since replacing traps by weak
abortions can compromise the ability of a compiler (or simulator)
to establish that there are no instantaneous loops in a given model.
A weak immediate abortion is always assumed to be potentially
instantaneous, whereas for a trap the Esterel compiler analyzes
whether it may be raised immediately or not. A justification for
this is that the scope of trap signals (exceptions) is confined to just
the trap, whereas weak aborts may be triggered by signals with
arbitrary scope. Consider the example shown in Figure 20a; here,
the Esterel compiler determines correctly that within the loop, a
pause statement must be executed before the exception T is raised,
and therefore, the loop is not instantaneous. However, the trap

58 editing graphical models

with a weak abort construction would be replaced by an immediate
trigger, the compiler would claim that the loop is potentially in-
stantaneous. Hereupon it would reject the program—even though
the program would be behaviorally equivalent.

There are several possibilities to resolve this dilemma. One ap-
proach would be to apply an analysis to weak abort blocks with
immediate triggers to determine whether the trigger signals can
possibly be emitted in the instant when the abort block is entered;
if not, we can safely replace the immediate trigger with a delayed
trigger, which would solve the problem. This, however, would
make the handling of the trap_halt signals and of traps with multi-
ple handlers significantly more complicated. Another approach is
based on the observation that for loops that are not instantaneous,
we can safely add a parallel thread to each loop body that pauses
for one instant (and does nothing else). This is illustrated in the
Esterel module shown in Figure 20b, which is equivalent to the
example in Figure 20a. The second thread within the loop, which
just pauses for one instant and then terminates, does not change the
behavior of the program, but allows the compiler to establish that
the loop is not instantaneous, since parallel statements terminate
only (normally) if all concurrent threads have terminated.

The first of these approaches has the advantage that it does not
enlarge the program; however, we opted for the second approach,
as it is conceptually simpler. Figure 20c shows the SSM synthesized
from the Esterel example in Figure 20a, and we can see that the
macro state corresponding to the loop contains an extra thread that
just pauses for one instant. However, to avoid excessive additions
of such parallel threads, we limit this to loop bodies. Hereupon it
depends on an enclosed trap whether the loop is instantaneous or
not, as is the case in this example. These cases seem to be rare in
practice, in our benchmarks only ABCD [37] contained such loops.

Handling Abortions

Abortions are closely related to traps, but since they can be directly
expressed in SSMs, their transformation is much simpler. Both weak
and strong abortions stop to execute their bodies when an abortion
trigger is active. Depending on which trigger is active, different
code parts can be executed.

3.5 synthesizing graphical models 59

module LOOP_WITH_TRAP:

loop

trap T in

pause;

exit T

end trap

end loop

end module �
(a) Esterel program with

trap

module LOOP_WEAK_ABORT:

loop

signal T in

weak abort

pause;

emit T

when immediate T

end signal

||

pause

end loop

end module �
(b) Equivalent Esterel pro-

gram with weak abort

(c) SSM synthesized for LOOP_WITH_TRAP

Figure 20: Handling of potentially instantaneous loops, introduced by
the transformation from traps to weak abortions: the loop in
the Esterel examples (Figure 20a and Figure 20b) is not instan-
taneous, which in the synthesized SSM (Figure 20c) is made
explicit with an extra parallel thread that is not instantaneous

60 editing graphical models

Transformation Rule 9 (weak abort)

weak abort
 p
when
 case de_1 do q1
 ..
 case de_n do qn
end abort

Z=⇒

weakabort

I
<4> <3>

<2>

de_1/

<1>

#haltabort/

de_n/

<n+2>

<n+1>

...

... qnq1

p

For weak abort, the body is still executed in the instant it is aborted.
This makes it possible to raise an outer trap, which has priority over
the abortion; the code that follows the weak abort is not executed.
This is assured by the haltabort signal, which is raised by the exit
statement similar to the traphalt signals.

Transformation Rule 10 (abort)

abort
 p
when
 case de_1 do q1
 ..
 case de_n do qn
end abort

Z=⇒

abort

I

<2><1>

de_1/

<3>

<n>

<n+1>

de_n /...

... qnq1

p

In contrast, for strong abortion, no exception can be raised inside
if the abortion condition is true, since the abortion body is not
executed in this case. The same holds for other statements which
are derived from strong abortion, such as loop each and every.

3.5 synthesizing graphical models 61

3.5.2 The Optimization

As we have seen, the transformation produces verbose SSMs, but
they have a very regular structure. This makes it possible to obtain
a readable chart by applying some simple optimization rules. The The optimization rules

reduce the number of
graphical elements after the
transformation.

rules are completely syntactical and make no assumptions on the
actual execution of the SSMs, e. g., whether transitions can actually
be taken. Each rule takes one macro state and transforms it. Neither
information about a possible surrounding macro state nor about
any substates is necessary. This is justified by the fact that we can
replace any macro state by another one with the same observable
behavior.

In the following, we assume that only states which can actually
terminate, i. e., have at least one terminal state, have a normal
termination transition originating from it. Similarly, a final state
inside a macro state without a normal termination is changed
to a normal state. This constraint, imposed by Esterel Studio,
assures that final states and normal terminations always match,
which makes the chart easier to read. We also assume that states
without an incoming transition, which therefore are unreachable,
are removed. These conditions can easily be checked.

Flattening Hierarchy

Since the state hierarchy is increased for every nesting of Esterel
statements, the generated SSM contains usually many more hierar-
chy levels than necessary. In fact, one could also apply traditional
Statechart flattening to remove all hierarchy levels; however, this
can result in exponential state explosion. What we want to do is
to remove hierarchy levels (macro states) if this actually reduces
the overall number of states and transitions. There are two cases
where we may remove macro states.

The first case is that a macro state cannot be preempted, does
not declare any local signals, variables, or history, and is not a
parallel state. This may for example be generated for sequences
(Transformation 6). Such a state can be removed and replaced by
its internal state transition graph. The initial state is replaced by a
conditional pseudo-state, which connects all incoming transitions.

If no normal termination exists, we have to assure that the ter-
mination conditions do not change. This is done by changing the

62 editing graphical models

(a) A Statechart with a superfluous macro state

(b) The same Statechart, after flattening

Figure 21: Example for removal of macro states

terminal attribute of inner states, depending on whether the macro
state we intend to remove is itself a terminal state.

If a normal termination exists, every contained final simple state
gets an abortion which leads to the target of this normal termina-
tion, with the trigger immediate tick, where tick is a signal which is
present in each instant. Thus these transitions are always enabled.
These states, as the conditional pseudo-states that replace the initial
state, might be removed by further optimization steps. Removing
these states immediately would require further information about
the surrounding state, leading to more complex rules. For each
final macro state, a normal termination is added, which leads to
the same state and has the same effect as the normal termination
of the surrounding state.

An example for the application of this rule can be seen in Fig-
ure 21. The state Superfluous is removed, and its initial state is
replaced by a conditional node to which the transition from state
S1 leads now. The self loop is replaced by a strong abortion from

3.5 synthesizing graphical models 63

ABRO

C

 sequence

I

R/

C

parallel

I
/O

C

I

C

I

B/A/

Figure 22: SSM for ABRO after unoptimized transformation (Figure 19)
and subsequent flattening the loopeach, await, and emit states

state S4 and a normal termination from the macro state do some-
thing to the same conditional. Neither S4 nor the do something state
are final anymore.

The second case is that a macro state contains only the initial
state and one further state without any transitions except the initial
one, as for example generated for emit statements (Transformation
rule 2). Such a state can simply be removed. Again, the initial
state is replaced by a conditional state. Local declarations of sig-
nals and variables are assigned to the surrounding state. Normal
terminations are handled as in the first case, while other outgoing
transitions are simply redirected and get the contained state as new
source.

Applying these rules on the loopeach, await and emit states of the
SSM for ABRO from Figure 19 yields the SSM in Figure 22, which
already has a readable form, but is not optimal yet.

Removing Simple States

When removing macro states, no simple states are eliminated. The
initial state is transformed into a conditional state, and simple
final states, which are only needed to indicate termination, are

64 editing graphical models

changed to transient, normal states. Both kind of states might be
superfluous. We consider the following cases:

• If a conditional pseudo-state has just one outgoing transition,
it can simply be removed. Such states are inserted into the
chart when macro states that only have one initial transition
are removed. We can use this rule to remove the conditional
states from the ABRO SSM in Figure 22, which in this example
suffices to produce an optimal chart.

• We can also remove simple states that have no internal ac-
tions and only one outgoing transition with trigger immediate
tick and no condition. The incoming transitions are then
redirected to the target of the unique outgoing transition.

• If a simple state has only one incoming and one outgoing
transition that both have the same trigger and condition,
it can be removed and the transitions be combined to one.
This rule can only be applied if both transitions are delayed.
Hence the incoming transition may not originate at an ini-
tial or conditional pseudo-state, since such transitions are
always immediate. Furthermore, the state where the tran-
sition originates from must be a simple state without any
internal actions.

• In SSMs, simple final states may neither have outgoing tran-
sitions, nor any internal actions. Thus, they only indicate
the termination of the state and do not specify any further
behavior. Therefore, all simple final states of a macro state
are interchangeable and can be replaced by one.

The iterative application of these simple rules on the generated
charts produces in most cases well readable, relatively small charts.
For the ABRO example from Figure 14a, the automatically syn-
thesized SSM is, after optimization, identical to the SSM shown in
Figure 17b, except for the naming of states. As another example,
consider Figure 23, where the Esterel code generated for the reincar-
nation example from André [3] is transformed back to its original,
terse SSM.

Note that even though these rules are motivated by the transfor-
mation from Esterel, they can be useful for SSMs in general. Unnec-
essary hierarchy and superfluous simple states can also be found in

3.5 synthesizing graphical models 65

module reincarnation:

input a, b, c, d;

output v := 1 : combine

integer with *;

loop

weak abort

emit v(2);

loop

await

case a do

emit v(3)

case immediate b do

emit v(5);

halt

end await

end loop

when

case c do

emit v(7)

case immediate d do

emit v(11);

halt

end weak abort

end loop

end module �
(a) Esterel source

(b) Synthesized SSM

Figure 23: Transformation of the reincarnation example [3]

manually created charts. Especially novices tend to produce unnec-
essary large models with needless states, for example by splitting
trigger and effect into separate transitions. An application of an
optimization rule to a “real” SSM, which was not generated from
Esterel but modeled by hand, can be seen in Figure 24. The State-
chart which was developed as part of an automated subway control
system [131]. In fact, in the original model (see Figure 24a), the
modeler did not introduce an explicit immediate tick, even though
he intended the states to be transient.

3.5.3 Correctness of the Transformation

Both the transformation and the optimization were tested with
various Esterel programs. While this gave good confidence in the
transformation process, it does not prove the correctness in general
due to the possible complex interaction between the sub-statements
of an Esterel statement. It has to be shown that the behavior of the
generated SSM is equivalent to the behavior of the original Esterel

66 editing graphical models

(a) A Statechart with unnecessary, transient states

(b) Statechart after removing the transient states b, d, and f

Figure 24: Example for removing transient states

program. It follows a sketch of an informal correctness proof. First,
let us exclude traps from our considerations.

Esterel without Traps

For the Esterel kernel language, the control flow can only rest
at explicit pause statements. Hence, a configuration of an Esterel
program is a set of currently active pause statements, called registers
in this context. For the Esterel kernel language without traps, the
behavioral equivalence can be proven by structural induction over
all Esterel programs, giving a bi-simulation between the active
registers of the Esterel program and the active states of a stable
configuration of the constructed macro state, i. e., a configuration
which can occur at the end of an instant.

Since both Esterel programs and SSMs are fully deterministic,
both can be executed in lock-step. For each register of the Esterel
program, exactly one non-final simple state is generated. Whenever
this state is active, the corresponding register of the Esterel program
is also active. When a simple final state is active, the Esterel
statement that corresponds to the macro state has terminated, hence
no register in it is active anymore. Most non-kernel statements
preserve this correspondence. The expansion of halt, sustain, and
await contain pauses. Accordingly, their transformation into SSMs
produces exactly one non-terminal state.

3.5 synthesizing graphical models 67

The loop each and every statements contain registers which are
not directly expressed in the SSM. Instead of waiting in an explicit
simple state, the termination of the included macro state is not
caught by a normal termination. For assessing correctness, both
can be expressed by equivalent SSMs, which contain explicit states
that are entered after the termination of the substate. These states
correspond exactly to the registers of the Esterel program.

A little more involved is the behavior of suspend. The usual
kernel statement suspend p when S executes p in the first instant
regardless of the status of S. Therefore, a register inside the suspend
statement is active whenever the suspend statement itself is active.
This does not affect the bi-simulation. The statement

suspend p when immediate S

corresponds to

await immediate not S; suspend p when S.

The await contains an extra register which might be active even
if p is not active. In the SSM, both behaviors can be modeled
by a suspend transition of the macro state. If this transition is
tagged immediate, this might lead to a macro state which is active,
even though no substate in it is active. There is no simple state
that corresponds to the new pause register. For the correctness
proof, we would generate different SSMs for immediate and delayed
suspension, where the immediate suspension contains an extra
simple state, which waits for the absence of the trigger signal,
before it starts the substate. The behavior of this macro state is
equivalent to the one we actually generate in the transformation.

Traps

Raising an exception stops the execution of the control-flow of
the current thread; however, all concurrent threads finish their
execution for the current instant. This makes it possible that multi-
ple, different traps are raised in the same instant. When multiple
traps are raised inside a trap scope, only the handler of outermost
trap is executed. If, however, a trap is raised in parallel to an-
other trap-declaration, both handlers may be executed in the same
instant.

Expressing traps in SSMs is similar to expressing traps by local
signals and weak abort in the Esterel program, which is not trivial

68 editing graphical models

module Parallel_Traps:

input I;

output O;

trap T1 in

exit T1

||

trap T2 in

exit T2 || present I then exit T1 end

end trap;

emit O

end trap

end module �
(a) Esterel version

(b) SSM version

Figure 25: Transformation example of nested traps into an SSM, illustrat-
ing the problems of replacing traps by signals

for the general case. This situation also arises, for example, in the
Esterel derivate Quartz [146], which does not support traps directly,
but weak and strong abortion. In contrast to signals, for exceptions
it is important where they are raised, see also Figure 25a. Even
though in this example the exception T1 is active in any case, the
second exit T1, which is guarded by I, determines the output of
signal O. Therefore, it is in general not possible to replace each trap
by only one local signal.

First, let us consider how this problem is handled in the context of
Quartz. Since it is possible in Quartz to test which pause statements
are active, preconditions on each raising of a trap can be computed.
These preconditions can be used in an abort statement that replaces
the trap, to test whether traps with higher priority were raised

3.5 synthesizing graphical models 69

inside. Thus, the trap determines which exits are relevant for it.
We use a different approach, which assigns extra signals to trap
that indicate that their handler may not be executed, because a
trap with higher priority was raised inside. The information for
which traps the halt signal must be emitted is assigned to each exit
statement.

We also have to show that the combination of macro states de-
rived from trap and exit statements behave correctly. First, we
notice that the macro state derived from exit does not terminate.
This assures that no statements in a sequence are executed later,
while statements in parallel branches are executed normally. In
the Esterel semantics, the raising of exceptions is usually encoded
by their depth, i. e., the number of trap declarations between the
point where an exception is raised, and its declaration. When an
exception is raised, this depth (+2, since 0 and 1 are used to encode
normal termination and pause) is returned as completion code. This
code is passed to the surrounding statements until it reaches a trap.
Here the completion code is examined. If it is greater than 2, which
indicates that it is not the corresponding trap, it is decreased. If it
has reached the corresponding trap, this value has reached 2; the
handler of this trap is executed. This scheme is exactly preserved by
our transformation, which sends a halt signal for all traps between
the exit statement and the corresponding trap statement. In the SSM
example shown in Figure 25b, the traphalt41_ signal determines
whether the macro state for the inner trap terminates and the O is
emitted.

This transformation at the Esterel level can be easily extended
to compound statements. Therefore, also for weak abortion a halt
signal is needed. This halt signal is only emitted from within an
abortion. Observe that the exit that is used to implement the trap
has always depth 2, i. e., no traphalt signal needs to be emitted by a
weak abortion.

Since a strong abortion suppresses the execution of its sub-state-
ments in an instant where the abortion trigger is active, it can
neither emit a halt signal, nor terminate in such an instant. There-
fore, no halt signal is needed for strong abortion or statements like
every and loop each, which are based on it.

70 editing graphical models

SSM EsterelEsterel Studio SSM’KIEL optimized
SSM’

KIEL

Figure 26: End-to-end validation of the transformation: From Esterel Stu-
dio SSMs to Esterel to KIEL SSMs

3.5.4 Correctness of Optimizations

It remains to be shown that the behavior of the SSM is not changed
by the optimizations. Since the optimizations consist of iteratively
applied single rules, it suffices to argue that applying one rule does
not change the behavior of a chart.

Obviously, the removal of superfluous normal terminations, un-
reachable states, and the conversion of final states into normal
states when no corresponding normal termination exists, does not
change the behavior. The only crucial part in omitting hierarchy is
that no signal declaration may be moved outside a self-loop. This is
due to so called schizophrenia [19]; each activation of a macro state
in one instant creates new local signals. Since we explicitly prohibit
the removal of macro states that contain outgoing transitions and
local signals, the behavior of schizophrenic signals is preserved.

The merging of final simple states is justified by restricting SSMs
that a final state may neither have any on exit or during action
nor outgoing transitions. Therefore, different final simple states
are indistinguishable. Similarly, two simple states with the same
outgoing transitions are merged only when the two states are
indistinguishable. Then the correctness follows directly from the
semantics of count-delayed transitions. The correctness of the
removal of pseudo-states and simple states with trigger immediate
tick and without a condition is straightforward.

3.5.5 Experimental Validation

In addition to the theoretical considerations above, we have val-
idated the transformation and optimization process and its im-
plementation by experimentally applying a round-trip tool chain
that employs Esterel Studio’s Esterel synthesis capabilities (see Fig-
ure 26). Starting with SSMs developed with Esterel Studio, one can
employ Esterel Studio’s Esterel code generator. From the resulting
Esterel code, our transformation generates an equivalent SSM. After

3.5 synthesizing graphical models 71

optimization, the round-trip produces SSMs corresponding to those
starting the round-trip. When starting from well-written SSMs, they
tend to be identical.

Similarly, one may perform a round-trip synthesis at the Este-
rel level, synthesizing a given Esterel program into an SSM with
KIEL, and then synthesizing the same SSM into Esterel using Esterel
Studio. We did this for all of the transformation rules individu-
ally, using dummy expressions for sub-statements. Due to Esterel
Studio’s rather elaborate Esterel synthesis, the resulting Esterel
programs were not identical to the original programs (e. g., they
contained a lot of spurious nothing statements), but they could
relatively easily be proven to be equivalent [90] using the Structural
Operations Semantics rules of Esterel’s constructive behavioral
semantics [19].

The complete transformation has been implemented in the KIEL
modeling tool, which allows to demonstrate the practicality of this
approach and the compactness of the generated SSMs. The KIEL
modeling tool will be described in Chapter 6.

In Section 7.1 we present the results of an empirical study on the
usability and practicability of the macro-based Statechart editing
(see Section 3.3) and the text-based Statechart editing (see Sec-
tion 3.4). The study also includes a Statechart layout comparison.
The run-time analysis of our layout method using KIEL is presented
in Section 7.2.1; KIEL’s run-time for the SSM synthesis is presented
in Section 7.2.2.

4
S I M U L AT I N G G R A P H I C A L M O D E L S

In the previous chapter we described different methods to create
and modify Statecharts which enable an efficient editing process
of graphical models. Especially for complex SUDs these techniques
can improve the developing speed. Once a system has been created,
it usually needs to be simulated. In this chapter, we address the
question of how to perform such simulations for complex State-
charts. Specifically, we present the concept of Dynamic Statecharts,
which are a novel paradigm for visualizing a Statechart model
under simulation.

Statecharts are supported by several commercial tools; once a
Statechart is drawn, it can be inspected by developers, and one
can typically synthesize code from it. Furthermore, Statechart Statechart simulation

facilitates the development
of a reactive system.

modeling tools generally support Statechart simulation, where the
SUD is subjected to some input stimuli, and the Statechart model is
animated according to the current configuration of the SUD.

However, as mentioned in the introduction, these animation
capabilities are so far rather limited; Statechart modeling tools
often provide very restricted facilities to explore the structure and
the behavior of complex Statecharts. The paradigm generally of-
fered is that the Statechart is shown as drawn by the user, and
active states and transitions are marked in a specific color. This
is fine if the model is small enough to be entirely visible on the
screen; it becomes problematic for realistic, larger models. Such Graphical languages are

good for understanding
structures, but limited for
analyzing dynamics.

Statecharts consist of a large number of states, transitions and
inter-dependencies. There is no mechanism to automatically bring
“active” parts of the model to the foreground, which gets further
complicated by concurrency in the system.

This problem becomes even more serious, if a simulation steps
through hierarchy levels. E. g., a common method to display hier-
archical states is to provide separate views for each hierarchy level.
To inspect e. g., a deeper hierarchy level, the modeler has to open
the associated view e. g., by clicking in the parent state. Thereupon,
the parent view is replaced with the next deeper hierarchy level.
Figure 27 demonstrates this state browsing behavior in modeling

73

74 simulating graphical models

Fi
gu

re
2
7
:C

ha
ng

in
g

of
hi

er
ar

ch
y

le
ve

lu
si

ng
St

at
efl

ow

4.1 the Dynamic Statechart Normal Form 75

tools (The figure depicts a window wiper system using Matlab
Simulink/Stateflow; in Section 4.2 it is explained in detail.) In this
case, it is very hard to follow the state transitions manually. For
comparison, consider the world of debugging textual programs:
when stepping through a program, it is a standard capability to
automatically display the currently executed source code region.
The source code may be spread through numerous files, but the
debugger makes this transparent; it is not left to the user to open
up the appropriate file to see how the program executes.

Heidenberg et al. [74] also observed this behavior of Statechart
modeling tools and they state:

“Although it is possible to open different design windows
showing different levels of a statechart, readability still suf-
fers as a lot of screen space is wasted by displaying the dif-
ferent hierarchy levels as tiled or overlapped windows.”

And furthermore, for a better usability of Statechart modeling tools
they recommend:

“New visual languages and development tools can simplify
this task significantly by making sure that the developer can
easily browse and navigate through all the information re-
quired to understand a subsystem.”

In the next section we propose a simulation technique, which
enhances the Statechart simulation using “structure-based” abstrac-
tion.

4.1 the Dynamic Statechart Normal Form

This section deals with an alternative paradigm for visualizing
Statecharts during simulation. The basic idea is to dynamically
construct a view of the system model that includes all active states
(the focus) and their parent states (the context); all other states are
hidden. This constitutes a dynamic variant of the semantic focus-
and-context representation [88]. Compared to the SNF introduced Semantic focus-and-context

simulation for Statechartsin Section 3.2, this is a normal form that not only considers the
static structure of a Statechart, but also a specific configuration that
the system is in. We call this a Dynamic Statechart Normal Form
(DSNF), which leads to Dynamic Statecharts. This technique keeps

76 simulating graphical models

the displayed number of states small, but prevents the modeler
from a comprehensive understanding of the whole SUD.

An example sequence of Dynamic Statecharts is shown in Fig-
ure 28. In the initial state, shown in Figure 28b, the system enters
the configuration consisting of the active simple states Pred and
Cred within the state normal. The active simple states, their siblings,
and their parents (with their siblings) are visible; the remaining,
inactive states, in this case, the sub-states of error, are hidden (“col-
lapsed”). Compared to the full layout shown in Figure 28a, the
presentation is more compact and focuses attention on the active
states—yet the full context needed to orient the viewer is still
present. Figure 28c shows the simulation after 30 simulated sec-
onds. The component controlling the car light has progressed from
state Cred to Credyel, hence the markings of states have changed;
but one sees the same set of states as in the initial step. We say
that the configuration has changed, but the view remained the same.
Figure 28d shows the simulation after the signal error has occurred.
Now the view has changed; the state normal has collapsed, and the
sub-states of error have become visible.

4.2 simulating complex Statecharts with DSNF

The application that served as our case study is a window wiper
controller (see Figure 29). It was provided with courtesy of Daim-
lerChrysler AG, Research REI/SM, and is an example without any
reference to a production design. The model describes a complete
wiping system and allows (rain and velocity) sensor-triggered wip-
ing, interval wiping, wiping interruption due to engine starter
activity, etc. It consists of 36 states and pseudo states (nine of
them are hierarchical OR states, and one is an AND state) and
82 transitions. The chart is distributed to eleven sub-charts. The
left-hand side provides the top level view of a Statechart. It shows
two simple states, and the hierarchical state Wischer_betriebsbereit
(“wiper operational”). To show its inner states, the modeler has to
double-click with the mouse on the state’s border, and the view on
the inner states (right-hand side) replaces the top-level view.

An example sequence of Dynamic Statecharts is shown in Fig-
ure 30. Here, we take the aforementioned example from Daim-
lerChrysler, omitting transition labels. In Figure 29, the whole
wiper system conforming to the SNF is depicted. One can see all

4.2 simulating complex Statecharts with DSNF 77

(a) Statechart laid out conforming to the SNF

(b) Entering the initial state—all lights red

(c) Cars get a red/yellow light

(d) Entering the error state

Figure 28: Simulating the traffic light Statechart in DSNF

78 simulating graphical models

Figure 29: Layout of the whole window wiper Statechart according to
the SNF

4.2 simulating complex Statecharts with DSNF 79

(a) Simulating of the window window: entering the wiper activation
mode

(b) Simulating of the window window: interrupting the
wiper mode by starting the motor

Figure 30: Simulating the window wiper Statechart in DSNF

80 simulating graphical models

states with their properties. In the first activated state, shown in
Figure 30a (“reset wiper”), the system enters the configuration con-
sisting of the active simple state Wischer_ruecksetzen (“reset wiper”)
within the state Wischer_betriebsbereit (“wiper operational”). The
active simple states, their siblings, and their parents (with their
respective siblings) are visible; the remaining, inactive states, in this
case the sub-states of Wischer_aktiv (“wiper active”), are hidden
(“collapsed”). Compared to the full layout shown in Figure 29,
the presentation is more compact and focuses attention on the
active states—yet the full context for orientation is still present.
Figure 30b shows the simulation entering the state Anlasserunter-
brechung (“stater interruption”); here the wiper activity is inter-
rupted engaging the motor starter. Now the view has changed; the
state Wischer_betriebsbereit (“wiper operational”) has collapsed.

The example simulation heavily changes view point, size, posi-
tion and formation of Statechart objects. This may pose cognitiveThe maintenance of the

modeler’s mental map difficulties to the user. Hence, during a simulation using Dynamic
Statecharts, it is essential to maintain the mental map that the
user builds up for a Statechart. This can be done, for example,
by animating one view into the next view, instead of abrupt view
changes—thus providing visual clues to the user about how the
view is changing during a simulation step as described by Diehl
et al. [31].

The experimental results in Section 7.2.1 show, that the concept
of Dynamic Statecharts significantly reduces the size of a displayed
Statechart during simulation. We also show, that KIEL is very fast,
if it uses Dynamic Statecharts to display simulation results.

5
P R E V E N T I N G E R R O R S I N G R A P H I C A L M O D E L S

The assurance of quality is one of the most essential aspects in
the development of reactive systems. System quality thus be-
comes an important part of the certification process required for
embedded safety-critical systems, since the failure of such systems—
attributable to programming flaws—can often cause loss of prop-
erty or even human life. Parnas [120] stated that human code
reviews are time-consuming and highly undependable in revealing
errors. Taking part of the burden off the reviewers, as well as off Graphical languages are

easy to model syntactically
correct, but bad for avoiding
modeling errors.

the designers, and letting a computer perform preliminary checks,
is the rationale for automated error prevention.

This chapter addresses how to ensure certain aspects of safety
in developing Statecharts. We achieve this by applying methods of
automated error-source detection. Therefore, we propose a set of
rules that forms a fundamental Statechart style guide. Based on the
well-structured set of robustness rules, both syntactic and semantic,
an automated checking framework has been implemented as a
plug-in for the KIEL Statechart modeling tool.

Great care was taken in devising the set of rules and in design-
ing the checking framework implemented in KIEL (see Section 6.7)
as not to constrict the modelers’ creativity, but to cater for more Requirements for robustness

rulesexplicit, easy to comprehend, and less error-prone models. Our
approach therefore was developed adhering to the following re-
quirements:

modularity and configurability: Inspired by the notion
of flexibility and adaptability [24], all robustness checks are in-
dependently implemented, individually selectable, and para-
metrizable via preference management.

extendability of the rule set: The set of checks is easily
extendable by either adding an appropriate Object Constraint
Language (OCL) [166] constraint or, if required, by implement-
ing a new Java class.

automatic conformance checking: The compliance with
the robustness rules can be checked very rapidly—a key qual-

81

82 preventing errors in graphical models

ity, imperative for end-user acceptance. Due to the uncou-
pling of the checking process from the modeling process, the
checks may be applied at all stages of system development,
even to partial system models.

Even though a wide range of applications for Statechart verifi-
cation already exist, none fulfills all of our needs. They are either
highly specialized and therefore not extendable or they are extend-
able but do not provide the possibility to check complex problems.
These problems were taken into consideration for our approach we
present here.

5.1 Statechart modeling errors

To support the early detection and elimination of modeling errors, a
design methodology must provide effective communication among
the various design stages of the product. This section gives an
overview of common error sources in developing Statecharts; the
next section describes how these may be avoided. Especially when
dealing with complex charts the automated error avoidance is of
great importance

Errors in development of graphical models like Statecharts have
a large diversity of types and reasons. Errors in developing State-Categories of errors in

modeling Statecharts charts can basically be distinguished by two categories:

1. Errors arising from the modeling tool environment: A paramount
reason for producing erroneous Statecharts is apparently the
misunderstanding of utilized modeling tools and their simu-
lation behavior. This may be caused by counterintuitive speci-
fication of the model semantics (e. g., unbound behavior) and
missing comprehension of the modeler. Scaife et al. [143] and
Shi et al. [148] address this problem by developing a safe sub-
set of Statecharts. The intention is to confirm the applicability
of Statecharts in the development of safety-critical systems.
Other errors in models originate from discrepancies in sys-
tem requirements, such as designer oversight or specification
ambiguity. Besides, design intents can be misinterpreted.

2. Errors arising from the developed model: Errors also originate
e. g., from the often sheer size of graphical models: Because of
the extensive requirements in software design technology,

5.2 error prevention in modeling Statecharts 83

the dimension of graphical model increases significantly. If
a Statechart model increases, this also emerges a large com-
plexity: Because of the discrete nature of Statecharts, small
changes do not always have small effects. In some cases, it
is impossible for human modelers to trace such effects. The
results are errors resulting in wrong functionality of specified
behavior. Furthermore, some problems can be inherently
undecidable or computationally intractable, requiring a pos-
sible exponential blow-up in running time or memory. In
some cases, no amount of testing could prove that a system
is correct.

Moreover, Statecharts are interactive and distributed systems:
Large collections of interconnected components usually in-
volve interactive and concurrent processes. Therefore, the
potential errors can be very subtle and hard to locate for
human modelers.

Errors of the first category can often be eliminated by synchroniz-
ing the requirements and the SUD. These problems can generally
only be solved by human reviewers. This process is often tedious How to solve detected

problemsand cannot detect all appearing errors exhaustively. The second
category addresses problems which concern implicitly appearing
errors. The modeling of realistic applications results often in large
and unmanageable graphics. Therefore e. g., we provide a method
for easy development and understanding of complex Statecharts
(see Chapter 4). Besides, errors resulting from complexity are pre-
destined to be revealed by automated detection due to inconsisten-
cies between specified modelers intent and the resulting simulation
behavior.

5.2 error prevention in modeling Statecharts

The approach to error prevention in textual and visual languages
faces essentially the same problems. Due to this, we propose a
common error prevention nomenclature and at first consider textual
programming languages.

Software error prevention in general encompasses a number
of different techniques designed to identify programming flaws.
As outlined in Figure 31, we can basically distinguish between Kinds of error prevention
automated error prevention and human code review. As already

84 preventing errors in graphical models

Software Error Prevention

Automated
Error Prevention

Human
Code Review

Dynamic
Testing

Static
Code Analysis

Style Checking Model Checking

Layout
Style

Robustness
Analysis

Syntactic
Robustness

Semantic
Robustness

Figure 31: Software error prevention and its taxonomy (source: Schae-
fer [144])

pointed out, human code reviews are exceedingly time-consuming
and often undependable in revealing errors. However, they may
sometimes find conceptual problems which cannot be detected
automatically.

Automated error prevention is commonly separated into dy-
namic and static methods. Dynamic testing performs code evalua-
tion while executing the program and attempts to detect deviations
from expected behavior. Static code analysis, on the other hand, per-
forms an analysis of computer software without actual execution of
programs, but by assessing source or binary files to identify poten-
tial defects. Moreover, while dynamic testing requires executable
code, static methods can be applied much earlier in the develop-
ment process. Static code analysis covers examinations ranging
from the behavior of individual statements and declarations to
the complete source code of a program. Use of the information
obtained from the analysis varies from highlighting possible cod-
ing errors to formal methods that mathematically prove properties

5.3 style guides for error prevention 85

about a given program, e. g., that its behavior matches that of its
specification, commonly known as model checking.

Style checking, another aspect of static code analysis, is concerned
with layout style, i. e., common appearance, as well as syntactic and
semantic style. The latter two are often collectively referred to as
robustness analysis (see below). Style checking always requires
the syntactic and semantic correctness of the code. If there are less
sources for errors, there should be less errors. Roughly 80% of the
lifetime cost of a piece of software goes to maintenance [151], and
hardly any software is maintained for its whole life by the original
author. Therefore, style checking is especially important in large
software projects. Robustness analysis, as an important field of style
checking, refers to “the objective of eliminating certain types of
errors and enforcing sound engineering practices” [69, page 17].
The use of the word robustness must be clearly distinguished from
other connotations, e. g., robust control or robust design.

Robustness rules limit the general range of a given modeling re-
spectively programming language, as they are entirely independent
of what is being designed. Robustness may either describe robust
data structures or robustness checks of implementations, with the
aim of retaining the proper functioning of programs in the presence
of hardware malfunctions and failures. By these means, a subset of Robustness rules define a

safe subset of a language.the programming language is specified which—though less com-
prehensive and flexible—is considered to be also less error-prone
by MISRA [107] and by Hanxleden et al. [70]. Hence, robustness
analysis is a preventive instrument and substantially draws from
the knowledge and understanding of software implementation
flaws [41].

Style checking as well as human reviews, are based on style
guides. Here, style guides constitute a set of design rules, con-
cerning the textual programming, respectively the modeling of
Statecharts. Layout style and robustness analysis are clearly distin-
guished within the realm of this work, as will be pointed out in the
sections that follow.

5.3 style guides for error prevention

Style guides provide general instructions on how to use languages.
They are commonly provided as (in-)formal specifications, contain-
ing lists of rules. Style guides concern

86 preventing errors in graphical models

SUD

human
modeler

style
guide

(a) Process of human
reviewing an SUD

SUD

style
checker

style
guide

human
modeler

(b) Process of auto-
mated style checking
an SUD

SUD

style
checker

style
guide

pretty
printer

(c) Process of automated
styling an SUD

Figure 32: The role of style guides in making an SUD style conform

1. human languages (e. g., the The Chicago Manual of Style [117]),

2. textual programming languages (e. g., the MISRA guide [107]),
as well as

3. visual programming languages, such as Statecharts (e. g., The
Elements of UML 2.0 Style [1]).

They define a subset of usable elements for (visual) languages.
Regarding textual and visual programming languages, style guides
consider associations, aggregations, and compositions of elements.

The informal as well as the formal specifications are primarily
These affect the programmed or modeled result. Figure 32a depictsApplication areas of style

guides a process where the human modeler develops an SUD taking the
style guide into account.

Formal style guides act as the configuration for automated style
checking, i. e., style checkers. Such tools are commonly employed as
the number of rules in a style guide is usually too large for human
developers to remember. Moreover, some context-sensitive rules
demand inspection of several files at once and are thus very hard
to check for humans. The support of a style checker is depicted
in Figure 32b. Although style checkers can reduce formal code
review time considerably, it certainly does not mean that human
code reviews are obsolete.

5.3 style guides for error prevention 87

Apart from operational instructions for humans and automated
style checking, rules of style guides can be applied automatically to
an SUD. Such tools are known as pretty printer for programming
languages. In this sense, an automatic layouter for graphical di-
agrams can be seen as a pretty printer. Figure 32c depicts the
process of pretty printing of an SUD according to the rules of a
style guide. This technique can relieve the modeler from labori-
ous work of making the SUD style guide conform. We propose
such an approach e. g., for the automated layout of a Statechart (cf.
Section 3.2). However, automatic styling is exclusively applicable
to the Secondary Notation (the style) of an SUD. An automated
semantic styling seems to be impossible; therefore, the SUD’s inten-
tion must be known. Here, automated style checking would be the
best choice.

5.3.1 Taxonomy for Style Checking in Statecharts

In the general context of static code analysis, one must separate syn-
tactic and semantic correctness on the one hand and style checking
on the other hand. As a first step towards systematically devising
an extensive style guide for Statecharts, the following taxonomy,
also depicted in Figure 33, was laid down based on this:

syntactic analysis: In general, the enforcement of syntax-re-
lated rules does not necessitate knowledge of model seman-
tics.

Readability (or layout style) aims at a graphical normal form,
e. g., transitions connect states in a clockwise direction,
charts contain a limited number of states, etc.

Efficiency (or compactness, simplicity) eliminates superfluous
and redundant elements from the Statechart model.

Syntactic Robustness aims at reducing errors due to inadver-
tence and enhancing maintainability.

semantic robustness: Deriving and enforcing semantic
robustness rules requires knowledge of specific aspects of
the model semantics. Exact analysis typically requires the use
of verification tools, e. g., reachability, disjunction of transition
predicates, shadowing of (less-prioritized) transitions.

88 preventing errors in graphical models

Static Analysis of Statecharts

Correctness Style Checking
in Statecharts

Syntactic
Analysis

Semantic
Robustness

Readability Efficiency Syntactic
Robustness

Figure 33: Taxonomy for style checking in Statecharts (source: Schae-
fer [144])

As a whole, this taxonomy is suggested as a productive ground-
work for systematically devising an extensive style guide for State-
charts. In the following, the discussion focuses mainly on Statechart
robustness analysis, syntactic as well as semantic.

5.3.2 Existing Style Guides and Applications

Since programming style often depends on the programming lan-
guage, different coding standards and related code checking tools
exist for different programming languages [32, 107, 149, 151]. Akin
to coding standards, most code checking tools are programming-
language specific. Available code checkers for C are Lint [80],Style guides and

applications for textual
programming languages

LCLint (aka. Splint) [41], and QA Motor Industry Software Reliability
Association (MISRA) [127]; code checkers for Java are Jlint [7] and
Checkstyle [25]. Figure 34 roughly classifies these code checkers
according to their emphasis on layout style vs. robustness—a major
distinction within style checking (see Section 5.2).

Statechart style checking is much less developed and less so-
phisticated as compared to style checking in textual computer
programming. Nevertheless, when analyzing the dynamics of
(safety-critical) reactive systems, it is all the more important that
models are designed according to approved rules. Furthermore,

5.3 style guides for error prevention 89

Checkstyle

Lint/Splint

QA MISRA

Jlint

Layout Style

Robustness

//

OO

Figure 34: Classification of checking tools for textual programming lan-
guages to their emphasis of layout style vs. robustness (source:
Schaefer [144])

homogeneous modeling and layout of Statecharts within projects,
checking rules of a style guide ensure that best practices, tool spe-
cific optimizations, and domain or company specific conventions
are observed. Checking these rules automatically, the developer
can be released from identifying oversights and simple syntactic
or semantic errors and, additionally, the model transfer between
various Computer-Aided Software Engineering (CASE) tools can be
simplified.

Although the commercial Statechart modeling tools Esterel Stu-
dio, Stateflow, and Statemate have been supplemented with a
number of consistency checks, e. g., Mutz and Huhn [110], and Kos-
sowan [87] expose the following main deficiencies in style checking Deficiencies in style

checkingcapabilities of Statechart modeling tools:

1. Analyses are tool-specific.

2. Analyses are inalterable, i. e., checks are neither extendable,
individually selectable, nor capable of parametrization. Thus,
the user has to adhere to the set of checks provided by in the
tool.

3. The scope of the rules checked by tools varies from rudimen-
tary analysis to advanced model checking.

4. In Esterel Studio, e. g., checking cannot be invoked explicitly,
but is part of the simulation or code generation. Moreover, cer-
tain checks cover merely those parts of the Statechart that are

90 preventing errors in graphical models

KIEL Checking

Guideline-Checker

Mint

State Analyzer

Rule Checker

Layout Style

Robustness

//

OO

Figure 35: Classification of Statechart checking tools to their emphasis of
layout style vs. robustness (source: Schaefer [144])

actually reached by the control flow of the current simulation
(non-static analysis).

Four representative checking tools—the Mint and the Guideline-
Checker related to Stateflow, the State Analyser related to State-Checking applications for

Statecharts mate [145], and the Rule Checker [110]—as well as our style checker
(see Section 6.7), are roughly classified according to their emphasis
on layout style vs. robustness in Figure 35.

The two tools developed at DaimlerChrysler as well as Ricardo’s
Mint all address only a single Statechart dialect. Mint, the Guideline-
Checker, and the Rule Checker merely perform graphical and—partly
trivial—syntactic checks. The do not profound semantic checks,
which require automated theorem proving as realized in the State
Analyzer. However, semantic checks are particularly important
since they eliminate possible non-trivial sources of error, which
are very hard to discern for humans. Thus, the checks, presented
in the next section, aspire to fill the gap. The positioning of the
KIEL Checking plug-in within Figure 35 further emphasizes this
intention.

5.4 a style guide for modeling Statecharts

Based on the aforementioned foundation, practical experience, and
available prototypes, this work sets out to define a comprehensive
Statechart style guide, striving for general applicability to Statechart
dialects within the limits of the Unified Modeling Language (UML)

5.4 a style guide for modeling Statecharts 91

State Machines specification. The rules presented below were
formulated following the advice of Buck and Rau [24].

As mentioned above (cf. Section 5.3.1), style guides for State-
charts can roughly be divided into two parts, namely syntactical
analysis on the one hand and semantical analysis on the other
hand. Syntactical analysis addresses the syntactical structure of Syntactical and semantical

robustness rulesStatecharts, such as layout, possible optimizations, and robustness
problems. Therefore, when it comes to formulating syntactical
rules, one basically has to focus on problems that deal with the rela-
tions of individual Statechart elements to each other. Furthermore,
syntactical analysis opens up two fields of possible applications.
One field analyzes whether the syntactical relation of the elements
used corresponds to the rules specified by a certain dialect (i. e.,
syntactical correctness). Within the UML these kinds of rules are
called well-formedness rules. The well-formedness rules “[. . .]
specify constraints over attributes and associations defined within
the Statechart meta model” [113, Section 2.3.2.2]. The other field of
possible applications is formulating rules dealing with the syntacti-
cal robustness of Statecharts. Taking into account that robustness
rules principally deal with more sophisticated problems one can
say that syntactical correctness is essential for being robust.

Concerning the location of a problem, the set of rules can be
divided into

1. rules locating problems based on transitions and their labels.

2. rules dealing with problems based on states.

Locating problems resulting from the part of both—syntactical
correctness and syntactical robustness (see Figure 33)—works the
same way. Since Statecharts are directed graphs, one can use The location of problems

uses pattern matching.pattern matching here. If used for locating problems, one would
create a pattern which targets the problem.

Following the taxonomy (see Figure 33) for style checking in
Statecharts, the rules are grouped in different sections. In the
following, we present the rules incorporated into our Statechart
style guide. First of all, the rules dealing with the syntactical
correctness—the well-formedness rules—are presented. On this basis
we extend the style guide by presenting the rules for syntactical
robustness afterwards. Finally, the rules for semantical robust-
ness are presented. Bell [15] describes the syntactical rules and
Schaefer [144] describes semantic rules in full detail.

92 preventing errors in graphical models

(a) Violation of rule CompositeState-1
(b) Complicated violation of rule

CompositeState-1

(c) Violation of rule Transition-5

Figure 36: Violation of well-formedness rules (source: Bell [15])

UML Well-Formedness Rules

As mentioned above, syntactical correctness is mandatory for ro-
bustness. Therefore, it is necessary to check whether a Statechart
is syntactically correct or not. For most Statechart dialects, this is
done within a dialect-dependent modeling tool. But when dealing
with UML State Machines one has to make sure manually that the
above mentioned well-formedness rules are preserved as some
UML tools do not check those rules. Within the UML, the well-The realization of

well-formedness rules formedness rules themselves are described using OCL. Given a
context of application and the constraint itself, problems are de-
tected fairly easily. In the following, we present some examples for
violations of the well-formedness rules. Section 6.7 elaborates on
the OCL implementation of the elaborated examples.

The rule CompositeState-1 denotes that “a composite can have at
most one initial vertex” [113, Section 2.12.3.1]. Detecting violations
of this rule as presented in Figure 36a is done by a two-part pattern.
One part contains a composite state with no initial vertex and
the other part contains a composite state with one initial vertex.
Violations of this rule are present in a Statechart, if both parts
do not match at the same time. Fixing this rule has to be done
with great care because the intended behavior has to be carefully
remodeled, as modeled Statecharts can include parts in which it is
not clear what should be done as depicted in Figure 36b.

The rule Transition-5 denotes that "transitions outgoing pseu-
dostates may not have a trigger" [113, Section 2.12.3.8]. Violations
of this rule are detected by a simple pattern. The pattern may just

5.4 a style guide for modeling Statecharts 93

contain a Transition with the type of the source set to PseudoState
and no trigger specified. The pattern will match for each violation
present.

Syntactical Robustness Rules

Besides the well-formedness rules, we collected rules from different
sources and from our own experience in Statechart modeling to
extend the proposed style guide. This extension was done to make
the style guide feasible for daily work. As mentioned in Chapter 2

style guides already exist for different Statechart dialects, especially
for Matlab Simulink/Stateflow. The style guide for Statecharts
proposed in our work, in contrast, aims at covering a wide range
of dialects. Therefore, we extracted rules from various other style
guides that are applicable to different dialects. This goal is not
achievable for all rules, as some dialects differ in their syntax.

The rules portrayed below were first presented by Mutz [109].
All of them apply to the area of syntactical robustness rules and
are collected within the set of dialect-independent rules.

miraclestates: All states except the root state and the initial
states must have at least one incoming transition.

isolatedstates: An even stronger version of MiracleStates is the
check for isolated states. A state is isolated, when it has
neither incoming nor outgoing transitions.

equalnames: Ensuring that all states are named differently sim-
plifies the maintenance of a Statechart.

initialstate: Demanding that all regions respectively non-con-
current composite states contain one initial state greatly sim-
plifies the understanding of the model: This rule should also
be checked on dialects in which a region or non-concurrent
composite state can be entered by an interlevel transition.

orstatecount: Checking if all non-concurrent composite states
contain more than one state, delivers valuable hints for pos-
sible optimizations. Composite states that contain only one
state, can be subject to dialect independent optimizations and
should be avoided from the beginning.

94 preventing errors in graphical models

regionstatecount: Closely related to OrStateCount, this rule
checks the number of states within a region of a concurrent
composite state. Such regions can also be optimized and
should be avoided for simplicity.

From the Ford style guide [45], the following rule was extracted as
it is also applicable to dialects other than Stateflow.

defaultfromjunction: When using connective junctions to
model decisions within a Statechart, one should always add
an outgoing transition with no label. The unlabeled transition
is then the default transition. The default transition is pro-
vided so that the control flow does not stop when the other
conditions do not hold.

From our own experience in modeling with Statecharts the follow-
ing rules were formulated.

transitionlabels: Ensuring that all transitions are specified
with a label makes the understanding of the model easier.
When all transitions are labeled appropriately, the intended
meaning gets clear for readers. This is especially important
for dialects in which a default signal exists as it would be
assigned invisibly to an unlabeled transition.

interleveltransitions: Ensuring that a Statechart does not
contain interlevel transitions i. e., transitions bypassing level
borders, has two benefits. The first benefit is that understand-
ing a Statechart without interlevel transitions is easier as the
execution semantics is not always clearly defined. The second
benefit is that a model gets portable between various tools.
Even porting from tools supporting interlevel transitions to
tools not supporting interlevel-transition gets possible.

connectivity: Other aspects closely related to MiracleStates are
states not connected to any initial state. This is checked with
the test for connectivity. States being not connected to any
initial state are superfluous, as the intended behavior will
never be executed. See Figure 37b, where the states C1 and
C2 are not connected to the initial state. This rule extends
the already mentioned MiracleStates, as it also detects states
that have incoming transitions and are still never entered as
depicted in Figure 37b.

5.4 a style guide for modeling Statecharts 95

(a) Violation of the rule MiracleStates (b) Violation of the rule Connectivity

Figure 37: Violation of syntactical robustness rules (source: Bell [15])

As mentioned above, locating a problem is fairly easy. In contrast,
resolving a syntactic problem can be more difficult. Depending on The resolution of detected

syntactic problemsthe context in which the problem is found and the problem itself,
a different approach has to be used for each problem. Basically,
one can say that there is no pattern that works for all problems.
Resolving found problems has two benefits. One benefit is that the
syntactical correctness of a Statechart will be achieved. This applies
especially to the well-formedness rules of the UML. The other
important benefit is that the maintainability and the readability
will increase enormously.

Semantic Robustness Rules

In line with the taxonomy presented in Figure 33, we now turn to
semantic robustness rules, addressing the model’s behavior. As op-
posed to model checking, however, semantic robustness analysis is
concerned with the behavior of individual statements and their in-
teraction at a local level, e. g., determinism and race-conditions. The
three rules presented below are all Statechart dialect-independent.
As transitions are considered pairwise, let trans1 and trans2 be the
two transitions to be investigated. The label of transi is li, which
consists of the predicates ei (event expression) and ci (condition
expressions) as well as an action expression ai, where i ∈ {1, 2}.

transition overlap All transitions (directly or indirectly) out-
going from a state should have disjoint predicates [87]. En-
suring this, warrants that at most one transition is enabled at
any time. I. e., no transition shadowing can occur, leading to
guaranteed deterministic behavior independent of potential
transition priorities. Figure 38a depicts a basic case of two
departing transitions from a simple state. A Transition Overlap

96 preventing errors in graphical models

(a) State with overlapping transitions

(b) “Indirectly” overlapping transi-
tions

(c) Dwelling violation

(d) Write/write race condi-
tion

Figure 38: Application examples of the semantic robustness rules
(source: Schaefer [144])

violation exists if e1 and c1 are not disjoint from e2 and c2. A
Transition Overlap violation may be eliminated by, e. g., adding
¬e2 and ¬c2 to the predicates of trans1, yielding (e1 ∧ ¬e2)

for the event expression and (c1 ∧ ¬c2) for the condition ex-
pression. For Statechart dialects with prioritized transitions,
the enforcement of this rule proves the modelers intend. In
contrast to Statechart which do not provide transition pri-
orities, this rule can find general non-determinist execution
problems. In addition to transitions departing directly from a
state, transitions departing from an enclosing state may also
be enabled (see Figure 38b).

dwelling The predicates of all incoming and outgoing transi-
tions of a state should be pairwise disjoint, or at least not
completely overlapping [87]. This rule ensures that the system
pauses at every state it reaches. A state in which the system
cannot pause is not in accordance with the concept of a system
state. Careless use of Esterel Studio’s immediate flag, denoted
by #, may lead to a Dwelling violation (see Figure 38c for an
example). An immediate transition is evaluated in the same

5.5 assessment 97

instant, in which its source state is reached; a non-immediate
transition is not evaluated until the following instant.

race conditions Concurrent writing or concurrent reading and
writing of a variable should not exist in parallel states (cf. Fig-
ure 38d). Since race conditions are generally not detectable,
we have chosen a conservative approximation. We detect a
race condition in concurrent threads, if a variable is written
in one thread and read in another.

5.5 assessment

In complex systems it can be very difficult for the modeler to keep
all interdependent Statechart elements in mind. As a consequence
the modeler tends to make errors. To avoid this, we have outlined
an approach to make model driven system development with
complex Statecharts less error prone.

However, The well-formedness rules do not necessarily improve
the quality of Statecharts in the sense of robustness. These rules Assessment of

well-formedness rulesapply to the field of syntactical correctness and therefore they
do not point out any sophisticated problems. But nevertheless,
these rules are needed before any further checking can be applied
to a Statechart because the robustness checks rely on the correct
syntax. Conforming to the well-formedness rules has to be checked
explicitly due to the fact that not all tools prevent the user from
misplacing objects in State Machines, especially when it comes to
UML State Machines.

Syntactical robustness rules focus on intricate problems, but are
not as sophisticated as the rules dealing with the semantical robust-
ness. Nevertheless, the information gained by applying the checks Assessment of syntactical

robustness rulescan be valuable. The information delivers sources for possible
optimizations that lead to a better understanding of the checked
Statechart. E. g., the readability of charts gets significantly improved
if all states are labeled with different names. Furthermore, the tests
for Connectivity and for MiracleStates may detect design flaws that
may lead to misbehavior of the modeled system. Therefore, these
problems should always be corrected to fix the model and also to
increase the maintainability.

As an example, we use a Statechart which was developed as a
part of an automated subway control system [131]. The application

98 preventing errors in graphical models

of our rules on the Statechart presented in Figure 24a (page 66)
delivered the hint that violations of the rule Dwelling are present.
Figure 24a shows a possible way how the violation can be fixed.
Our Statechart optimization method in Section 3.5.2 can automati-
cally solve especially this problem for SSMs.

The Transition Overlap and Dwelling rules certainly improve the
structural clarity of Statecharts, as all behavior is diagrammed ex-
plicitly. Especially in a non-deterministic dialect such as Statemate,Assessment of semantical

rules the introduction of determinism greatly eases model comprehen-
sion. The Race Conditions rule on the other hand, might be too
restrictive in real life. If applied, though, it leads to immense struc-
tural improvements as potential race conditions in far apart regions
of a Statechart are eliminated a priori.

Finally, a duality between semantic robustness and minimality
of Statecharts is evident. E. g., eliminating a Transition Overlap or
Dwelling violation by adding the negation of the predicates of one
transition to the predicates of the other transition, as suggested
above, constitutes an infringement of the write things once principle
of modeling. Thus, fully explicit behavior specification postulated
by robustness rules, may stand in contrast to the clever exploitation
of implicity.

A further comment has to made here: One has to take into
account that the hints returned by our checking framework do not
point out any errors. Merely, the hints shall serve as an advice to
locations where a problem might occur and where a modeler can
improve the readability and maintainability of a system. Therefore,
it obliges the modeler to take the time to fix the remarked problems.

Both syntactic and semantic rules have been implemented as
a plug-in for automated checking in the prototypical modeling
framework KIEL. Thereby, the high level of possible customization
is achieved by employing an OCL framework. The possibility to
check complex features is given by utilizing a theorem prover.
The following chapter describes KIEL and its functionality. An
experimental evaluation, based on the aforementioned checking
rules shows the time efficiency of our rule set.

6
T H E K I E L M O D E L I N G T O O L

In Section 2.2 we have initially discussed the realization of several
prominent examples of Statechart modeling frameworks. In this
chapter, a description of the prototypical KIEL will be given. Be-
side knowledge about our layout method, details on the concrete
implementation are given to maintain, modify, and extend the
framework. First, we will introduce the basic architecture of the
framework. A general core library realizes reusable parts of the
layout method; it is described in Section 6.2. Section 6.3 explains
the realization of the Dynamic Statechart Normal Form (DSNF)
described in Section 4.1. In KIEL we implemented two ideas of
structural Statechart editing—the KIEL macro editor and the KIT
editor; they are explained in Section 6.5. The technique of synthe-
sizing Statecharts from Esterel is discussed in Section 6.6. Finally,
issues on automated rule-checking extensions to the KIEL frame-
work will be described in Section 6.7.

6.1 the KIEL architecture

The KIEL tool is a prototypical modeling environment that has
been developed to explore novel editing, browsing and simulation
paradigms in the design of complex reactive systems. This section
gives a description of the architecture of the KIEL modeling tool;
an overview of the implemented KIEL modules is presented in
Figure 39. A central enabling capability of KIEL is the automatic
layout of Statecharts, which computes bottom-up layouts at each
hierarchy level using Graph Visualization Software (GraphViz) [57].

KIEL can import Statecharts that were created using other mod-
eling tools. The currently supported dialects are those of Esterel
Studio, Stateflow, and the UML via the XML Metadata Interchange
(XMI) format, as, e. g., generated by ArgoUML. KIEL also provides KIEL’s central software

modulesan editor to create Statecharts from scratch or to modify imported
Statecharts. With KIEL, it is possible to use a structure-based ed-
itor (based on the proposed editing process in Section 3.3), and
one can also synthesize graphical models from textual descrip-

99

100 the kiel modeling tool

ArgoUml

Matlab

Simulink/Stateflow

KIT

XML

Esterel

Esterel Studio

Layout Parameters

Simulation Parameters

Checking Parameters

Simulation Log

Session Log

Statechart Simulator

Static Layout

Dynamic Layout

Statechart Browser

Statechart Editor

Statechart Checker

A
n

n
o

ta
te

d
 S

ta
te

ch
ar

t
D

at
a

S
tr

u
k

tu
r

Visualization Tool

Figure 39: Module view on the KIEL tool

tions (based on the proposals in Section 3.4 and Section 3.5). KIEL
provides a simulator; it simulates the behavior of imported State-
charts according to the semantics of their original modeling tool.
The automatic layout is also used to present different Statechart
views for each Statechart configuration. Based on these views, KIEL
animates the simulation with a dynamic focus-and-context repre-
sentation. In order to apply the checks presented in Section 5.4 to
modeled Statecharts, a robustness checker has been integrated into
KIEL. A customizable checking framework, based on OCL and, for
more powerful checks, the Cooperating Validity Checker Lite (CVC
Lite) [10] theorem prover, checks for compliance with the robustness
rules proposed in Section 5.4.

KIEL is implemented in Java and is based on the Model View
Controler (MVC) concept. It employs a generic concept of State-
charts, which can be adapted to specific notations and semantics.
The central module of the KIEL tool is the Statecharts data struc-
ture. All modules implemented in KIEL interact with the KIEL data
structure. It contains the pure component view of a Statechart and
is based on the class structure of UML State Machines [113] (see
Figure 40). The class Node is the superclass of the KIEL’s state objects
and the class edge is the superclass of Transition objects; the Delim-

6.2 automated layout in KIEL 101

graphicalObject

Node Edge

-source

-target

-outGoingTransitions[]

-incomingTransitions[]

DelimiterLine

File: /home/spr/workspace/kiel/kiel/dataStructure/model/dataStructure.mdl Mon Jul 12 14:07:53 2004 Class Diagram: dataStructure /
GraphicalObject Page 1

Figure 40: Simplified Class Diagram of the KIEL data structure

iterLine denotes a separation of orthogonal states into concurrent
regions.

As the name suggests, KIEL’s central capability is to automatically
layout Statecharts. This is needed for both, formatting Statecharts
according to an SNF (see Section 3.2) and also for Dynamic State-
charts (see Section 4.1). The realization of our layout method with
KIEL is described in the following section.

6.2 automated layout in KIEL

A design goal for KIEL was to provide an efficient automatic layout
of Statecharts, as this is not only needed for formatting Statecharts
according to an SNF, but also for Dynamic Statecharts. As discussed
further in Chapter 2, numerous tools and packages for automated
graph layout, and even approaches specific for the layout of State-
charts exist. However, after a survey of these we concluded that
none of them were really sufficient for our purposes. We finally KIEL uses the program dot

for Statechart layout.chose to adopt the layout framework GraphViz [57] which is a col-
lection of tools implementing several graph layout algorithms, e. g.,
dot (for directed graphs) and neato (for undirected graphs). The
limitation of GraphViz is that it does not solve the problem of hier-
archical layout (their cluster mechanism does not suffice for laying
out hierarchical states of Statecharts). However, it provides decent
results for flat charts that closely match the SNF we defined, and
it is extremely efficient. Efficiency was a high priority, as even for
large models, the on-the-fly layout of Dynamic Statecharts should
not noticeably slow down simulations. GraphViz provides highly ef-
fective and thereby appealing results of graph layout computation.

102 the kiel modeling tool

Particularly, the dot layout generates an excellent result, adopting
the idea of an SNF. The realization rests upon numerous aesthetic
criteria [30] and relies on heuristics [58].

To layout nested states, we have developed a hierarchical layout
engine that computes Statechart layouts bottom-up in the state hier-
archy. After computing the layout of one layer, the resulting graphHandling of state hierarchy
is used to compute the size of the enclosing superstate. Further-
more, the layout direction alternates between layers to minimize
overall space requirements. The hierarchical layout engine can
employ any layout mechanism that can layout flat graphs, such as
in our case GraphViz.

Using the KIEL tool, the user can choose between several layout
features. Here all layout algorithms offered by GraphViz and an ownAnother Statechart layout

algorithm Statechart layout algorithm (a simple horizontal-vertical placement
approach) can be enabled. The user is free to switch back to the
original layout assigned by the originating modeling tool. The
layout results of some the diagrams automatically drawn by KIEL
are presented in Appendix A.

One can use KIEL simply to perform a layout of a given Statechart;
however, the functionality of KIEL goes significantly beyond that.
The tool’s main goal is to enhance the intuitive comprehension of
the behavior of the SUD. While most available Statechart develop-
ment tools merely offer a static view of the SUD during simulation,
KIEL provides a dynamic visualization (cf. Section 4.1).

6.3 simulating Statecharts in KIEL

In addition to the usual animation of static model views, with
highlighting active states and transitions, KIEL also provides the
Dynamic Statechart mechanism outlined in Chapter 4. For each
configuration, a corresponding view is computed that conforms to
the SNF, using the automated layout mechanism also employed
for static views. If a configuration is entered for which the corre-Computation of Statechart

views sponding view has already been computed, a cached view is used
instead. Following view changes are facilitated by morphing, with
adjustable speed.

The structure of KIEL’s view concept is depicted in Figure 41. In
KIEL, a view contains the graphical information of all Statechart
objects. As every view corresponds to the corresponding Statechart
configuration, all possible configurations represent the view set of

6.4 KIEL and Stateflow 103

Layouter1 Layouter2 Layoutern

...

View sets

Views Views Views

Figure 41: The view concept in KIEL

one layouter (as e. g., the dot layout module); all view sets represent
all graphical Statechart information. This very flexible approach
allows us to manage and access a special view easily and quickly.
Thus, the view computation in KIEL can be done
a priori: i. e., the views are computed at the start of KIEL (as a

result, KIEL performs well during simulation) or
on demand: i. e., the views are computed if a view change is

triggered or on user request (as a result, KIEL performs well
at startup).

For simulating SSMs, KIEL not only provides the macro step
computation as offered by Esterel Studio, but it also allows to
compute and visualize micro steps. Such micro steps are e. g., Representation of a

simulation steptesting a transition condition, executing a transition action, etc. The
user can decide to simulate the Statechart using micro steps or
macro steps. In both cases micro steps are graphically and textually
visualized. This facilitates the understanding of intricate charts as
the example shown in Figure 42. Furthermore, macro steps can
be executed forwards and backwards. In the backward simulation,
the last simulation state is assigned and a new signal injection is
expected.

KIEL can simulate Statecharts, according to the semantics of
SSMs used in Esterel Studio (using a KIEL-internal simulator) or
alternatively, according to the semantics of Stateflow, using the
Stateflow Application Programming Interface (API).

6.4 KIEL and Stateflow

Matlab Simulink/Stateflow is a commercial modeling tool that
is routinely used by control engineers to design and simulate
discrete controllers. Simulink provides the ability to model hybrid
systems (mixed continuous and discrete dynamics) in a block-

104 the kiel modeling tool

Figure 42: A screen shot of KIEL as it simulates a Statechart example sug-
gested by André [3]

diagrammatic notation. Stateflow provides the ability to model
hierarchical parallel Statecharts. A Stateflow model can be inserted
in a Simulink model as a block and the Simulink blocks can provide
input stimuli and receive outputs from the Stateflow block. The
Stateflow model can be simulated within the Matlab framework
for a desired time period, which in effect steps through the State
Machine for the given input excitation. The responses from the
State Machine can be plotted graphically and the trajectory of
the State Machine can be observed visually, as well as recorded
for post analysis. Additional analyses are possible in terms of
the time spent in different states, the latency from the time of
a change in excitation, to the time of change in outputs in the
State Machine, stability of the system, etc. Thus, the Matlab Si-
mulink/Stateflow tool suite provides a convenient and intuitive
framework for observing and verifying the behavior of the system.

We have implemented an engine, using KIEL, that

1. translates the KIEL representation of Statecharts into a Simu-
link/Stateflow model,

6.5 developing models in KIEL—the editor 105

2. translates the Stateflow model into KIEL representation of
Statecharts, and

3. controls the non-interactive simulation of Simulink/Stateflow
models using KIEL.

Matlab provides an API that is available in the Matlab scripting
language (m-file), for procedurally creating and manipulating Simu-
link/Stateflow models. The simulation engine produces an m-file
that uses the API to create and simulate Simulink/Stateflow models.

To apply our methods of SNF and DSNF to charts modeled with
Stateflow, our prototype needs access to its model data. Basically,
the API offers users a way to load, save and simulate models non-
interactively. However, the API can be used to get information of
the chart object by object. We use this information to create an
equivalent chart in our prototype. The exchange process is initiated
by KIEL. After retrieving the model data, the Statechart data will
be adapted and depicted within KIEL.

The simulation of Stateflow Charts in KIEL is also performed by
the API. Before a simulation step can be performed by KIEL, we
have to ensure that Stateflow can access the chart to be simulated.
When a step in KIEL is triggered, the tool collects all information
that is necessary to proceed a step in Stateflow. Then KIEL sends
the collected components and the simulation command to Matlab.
Last, KIEL collects the simulation results and displays them. In
doing so, KIEL works as a wrapper for the simulation with State-
flow (see Figure 43). Thus, using the KIEL tool to load, save and
simulate Stateflow Charts, KIEL communicates to Matlab Simu-
link/Stateflow, which works in the background. Figure 44 presents
a screen shot of KIEL as it simulates an SUD developed using Matlab
Simulink/Stateflow.

In addition to the model import capabilities, as the Stateflow
import mechanism used in our case study, KIEL provides a built-in,
structure-based editor, and can also synthesize graphical models
from textual descriptions (see Section 3.4 and Section 3.5).

6.5 developing models in KIEL—the editor

We have implemented the above proposed Statechart editing tech-
niques described in Section 3.3 and Section 3.4 in KIEL, which
resulted in the KIEL macro editor and the KIT editor. Both editors are

106 the kiel modeling tool

Inputs Outputs

KIEL
Simulator

Stateflow
Simulator

Active State(s)’

Signals’

Variables’

Active State(s)

Signals

Variables

Figure 43: The information flow between Stateflow and the KIEL simula-
tor

Figure 44: Screen shot of KIEL simulating the window wiper introduced
in Section 4.2

6.5 developing models in KIEL—the editor 107

Figure 45: Screen shot of KIEL displaying the Statechart tree structure, the
graphical model, and the KIT editor

accessible simultaneously and are arranged side by side so that
they allow alternative views on the same SUD, as can be seen in Fig-
ure 45. The user may thus choose to manipulate either the textual
or the graphical view, and the tool keeps both views automatically
and continuously consistent.

The KIEL macro editor is implemented as an extension of the
graphic displaying window; there, the modeler marks and modifies
graphical elements directly. The KIT code is kept in sync with Interaction of the KIEL

macro editor and the KIT

editor
the graphical model. In the opposite direction, if the modeler is
using the KIT editor, the graphical model is synthesized from KIT
code. This combines the advantages of both techniques to allow
the designer to work with textual and graphical representations of
the SUD simultaneously.

This bidirectional process employs a parser/synthesizer gen-
erated by SableCC [52, 53]. A tool which is similarly generated
performs the application of the production rules using the KIEL
macro editor. The productions are specified using an underlying
grammar; the set of productions can be easily extended with fur-
ther production rules. Figure 46 depicts the tool chain of the KIT
editor and the KIEL macro editor and their integration within KIEL.
The solid lines characterize the information flow during runtime,
and the dashed lines represent dependencies during compile time
of KIEL.

108 the kiel modeling tool

K
IE

L
 K

IT
 E

di
to

r

K
IE

L
 M

ac
ro

 E
di

to
r

K
IT

K
IT

 P
ar

se
r

K
IE

L
Te

xt
ua

l K
IT

 E
di

to
r

K
IE

L
St

at
ec

ha
rt

 D
at

a
St

ru
ct

ur
e

K
IE

L
G

ra
ph

ic
al

 S
ta

te
ch

ar
t B

ro
w

se
r

Ja
va

To
ke

n
Tr

ee
Ja

va
Tr

an
sf

or
m

at
io

n

K
IT

 S
yn

th
es

iz
er

Sa
bl

eC
C

Pa
rs

er
 G

en
er

at
or

K
IE

L
St

at
ec

ha
rt

 A
ut

o-
L

ay
ou

te
r

K
IT

 G
ra

m
m

ar

K
IE

L
St

at
ec

ha
rt

 M
ac

ro
 M

an
ip

ul
at

or
St

at
ec

ha
rt

 G
ra

m
m

ar
Sa

bl
eC

C
Pa

rs
er

 G
en

er
at

or

K
IE

L
 K

IT
 E

di
to

r

K
IE

L
 M

ac
ro

 E
di

to
r

K
IT

K
IT

 P
ar

se
r

K
IE

L
Te

xt
ua

l K
IT

 E
di

to
r

K
IE

L
St

at
ec

ha
rt

 D
at

a
St

ru
ct

ur
e

K
IE

L
G

ra
ph

ic
al

 S
ta

te
ch

ar
t B

ro
w

se
r

Ja
va

To
ke

n
Tr

ee
Ja

va
Tr

an
sf

or
m

at
io

n

K
IT

 S
yn

th
es

iz
er

Sa
bl

eC
C

Pa
rs

er
 G

en
er

at
or

K
IE

L
St

at
ec

ha
rt

 A
ut

o-
L

ay
ou

te
r

K
IT

 G
ra

m
m

ar

K
IE

L
St

at
ec

ha
rt

 M
ac

ro
 M

an
ip

ul
at

or
St

at
ec

ha
rt

 G
ra

m
m

ar
Sa

bl
eC

C
Pa

rs
er

 G
en

er
at

or

Fi
gu

re
4
6
:I

nt
eg

ra
ti

on
of

th
e

K
IT

ed
it

or
an

d
th

e
K

IE
L

m
ac

ro
ed

it
or

in
to

K
IE

L

6.6 synthesizing Statecharts from Esterel 109

Auto
Layout

SSM

optimized
SSMKIEL

Esterel expanded
Esterel

CEC Esterel
AST

CEC KIEL

Figure 47: Tool chain transforming Esterel

6.6 synthesizing Statecharts from Esterel

In KIEL, we also implemented the SSM synthesis and optimization
described in Section 3.5 and Section 3.5.2. As an alternative to
import a Statechart from another tool or to editing a Statechart
using the built-in graphical editor, the modeler may simply import
an Esterel v5 program, which is transformed on the fly into an
SSM and can then also be saved as SSM. Figure 47 shows the tool
chain used in KIEL. When importing an Esterel program, KIEL first
employs the Columbia Esterel Compiler (CEC) [34] to perform the
expansion of all sub-modules which potentially exist in an Esterel
program. Then the CEC is used again to transform the code into Usage of the CEC

an XML formatted Abstract Syntax Tree (AST) representation. We
process this using Java XML extensions and apply the transforma-
tion rules of Section 3.5 to produce the topology of the synthesized
SSM. The KIEL auto-layouter augments this topology with graphi-
cal layout information; with numerous configuration options the
appearance of the synthesized SSM can be adapted. In general, the
whole process is not noticeably slower than importing an already
existing Statechart from another tool. As a final step, we may apply
the optimization rules specified in Section 3.5.2. This is typically
done all at once, but if the user wishes to trace the effect of indi-
vidual optimization rules, one may also perform the optimizations
step-by-step. After each step, a new SSM layout is computed.

6.7 style checking in KIEL

The checking plug-in of KIEL was designed to be very flexible in
usage. All checks have been implemented independently. It is
easily possible to manually select which checks to apply via the
user interface of KIEL. Furthermore, it is possible to define profiles
containing different sets of rules in accordance with different State-

110 the kiel modeling tool

chart dialects. Dependent on the Statechart dialect of a model
loaded into KIEL, the plug-in decides automatically which profile
can applied. Figure 48 shows a screen shot of KIEL as it checks the
UML realization of Harel’s wristwatch example [71] with respect to
robustness rules.

Great care was taken to develop the plug-in to be easily extend-
able with new checks. Therefore, the user can extend the rule set byRealization of the syntactic

robustness checker either adding an appropriate OCL constraint for a syntactical check
or by adding a new Java class for semantical checks. Depending
on the seriousness of a detected problem, the robustness checker
delivers two kinds of messages.

errors in modeling are violations of rules that have to be ad-
dressed because further work such as simulating the model
is impossible.

warnings indicate that a problem was found, which does not
need to be fixed immediately for simulation, i. e., possible
sources of errors or ambiguous constructs. In the following,
an overview of the implementation of the aforementioned
rules is presented.

Our intention to use OCL was based on the benefits stated by
Mutz, e. g., checks can be formulated on a higher level of abstraction,
and neither knowledge of a programming language nor of the
underlying data structure is needed [109]. The evaluation of OCL
constraints based on a transformative approach is preferable to an
interpretative approach. The transformative approach proved to beThe Transformation of OCL

to Java code makes the style
checking very efficient.

more flexible and faster in execution time. Therefore, we chose to
use the Dresden OCL Toolkit v. 1.3 [159] discussed by Richters [137]
to transform OCL constraints to Java.

Our approach for the checking framework contains the possibil-
ity of returning customized messages when a violation is found.
Therefore, the OCL constraint is encompassed by additional infor-
mation as Java code snippets. The union of OCL and Java code
snippets were named KIEL wrapped OCL (KOCL). The developedKOCL allows to return

customized messages. KOCL to Java translator utilizes the Dresden OCL Toolkit which
is supplied in accordance with the meta model of the KIEL data
structure. Figure 49 basically shows how the different parts of the
KOCL files are processed. The workflow and the specified rules
were described in detail by Bell [15].

6.7 style checking in KIEL 111

Fi
gu

re
4
8
:S

cr
ee

n
sh

ot
of

K
IE

L
ch

ec
ki

ng
ro

bu
st

ne
ss

of
th

e
U

M
L

re
al

iz
at

io
n

of
H

ar
el

’s
w

ri
st

w
at

ch
ex

am
pl

e
[7

1
]

112 the kiel modeling tool

Java Code Snippet

Java Code
for Checking

OCL Constraint

Dresden
OCL-Toolkit

KIEL Datastructure
Meta-model

Figure 49: Processing KOCL with KIEL

As the framework is designed to handle rules formulated as OCL
constraints, we have implemented the rules elaborated above (cf.
Section 5.4). Most of the well-formedness rules were specified in
KOCL. The rules not specified in KOCL deal partly with features of
UML diagrams. As the KIEL project is focused only on simulating
and modifying Statecharts so far, the representations of classes
and packages were left out for the sake of simplicity. Hence, e. g.,
rule State Machine number 1 which states that “a State Machine is
aggregated within either a classifier or a behavioral feature” from
the UML specification was left out.

We will not present all of the transfered rules in detail. The ex-
ample presented in the following gives an overview about how the
additional information is capsuled within KOCL files. An example
which is easy to understand is Rule CompositeState-1 (cf. Section 5.4,
Figure 36b) as specified in Figure 50a. The OCL constraint states
that the set subvertex of a composite state (here: self) can contain at
most one Pseudotate of kind initial. The Dot notation is used to ac-
cess members of a class. An arrow (->) is used to access properties
or functions on sets.

The rule specified in KOCL is presented in Figure 50b. The
separation of the message declaration, the constraint definition and
the specification of the returning message is clearly seen in this
example. The declarations part is designed to hold more than one
message. The fails part specifies which message to return to, if a
violation of the constraint is found. It is even possible to return
different messages (if defined) depending on the context in the

6.7 style checking in KIEL 113

self.subvertex->select(

v| v.oclIsKindOf(Pseudostate))->

select(

p:Pseudostate| p.kind = #initial

)->

size <= 1 �
(a) The UML Representation

rule UML13CompositeStateRule1 {

declarations {

message "A composite state can

have

at most one initial vertex

.";}

constraint {

context ORState or Region;

"self.subnodes->select(

v| v.oclIsTypeOf(InitialState))

->

size <= 1";}

fails {message;}

} �
(b) The KOCL Representation

Figure 50: The rule CompositeState-1

fails part by simply using a common if-then-else-statement. The
constraint itself is even shorter than specified in the UML due to the
meta model.

The Transition Overlap rule, the Dwelling rule, and the Race Condi-
tions rule (see Section 5.4) cannot be specified using OCL constraints.
Java code is needed for formulating theorem-proving queries and
sending them to an outside tool for analysis.

To perform the semantic robustness checks, a Satisfiability Mod-
ulo Theories (SMT) solver [9] is needed. SMT problems are a vari- Realization of the semantic

robustness checkeration of Automated Theorem Proving (ATP) [54], which in turn,
is part of automated reasoning. After a thorough evaluation of
available SMT solvers, CVC Lite [10] was chosen. Here, in order
to determine whether, e. g., two transitions trans1 and trans2 (cf.
Section 5.4) have overlapping labels, satisfiability of the formula(

(e1 ∧ c1) ∧ (e2 ∧ c2)
)

must be decided. Unsatisfiability implies that the predicates of
trans1 and trans2 are disjoint.

Furthermore, the Simplified Wrapper and Interface Generator
(SWIG) [12] was employed to generate wrappers and interface files
for CVC Lite, enabling its immediate use from within Java. Here, the
Java and C++ Java Native Interface (JNI) wrappers are produced
from CVC Lite’s annotated C++ header files, as shown in Figure 51.

114 the kiel modeling tool

wrapped CVCL
library, JNI enabled

CVCL header files

SWIG interface
definition file

 manual
 annotation

Java wrapper classes
for CVCL

communication
through JNI

SWIG
C++ wapper for
CVCL library

 SWIG

 gcc

CVCL
C++ library

KIEL Checking
Plug-In

 uses

(a) Outline of the SWIG workflow, including the link-up of the CVC Lite library to the KIEL

Checking plug-in

Java Wrapper Classes

Java Native Interface (JNI)

C++ Wrapper Classes

CVCL C++ library

(b) Conceptual diagram of the hierarchical compo-
sition of wrapper layers around the CVC Lite li-
brary

Figure 51: Interfacing of KIEL and the CVC Lite library via JNI and SWIG
(source Schaefer [144])

7
U S A B I L I T Y A N A LY S I S O F K I E L

We have used successive generations of KIEL in the classroom since
2005, including the macro-based and text-based editors presented
here. The feedback on these editing approaches has been gener-
ally quite positive, also in comparison with the classical editing
paradigms employed by the other commercial modeling tools, also
used in classes. However, to gain a better, objective insight into the
effectiveness of our modeling approaches, we have performed an
experimental study in order to investigate the differences in editing
performance between the conventional WYSIWYG approach, the KIT
editor, and the KIEL macro editor, in combination with our idea of
an SNF, described in Section 3.2. The design and the statistical anal-
ysis of this experimental study was supported by Prof. Dr. Jürgen
Golz (Department of Psychology, CAU Kiel) and Christiane Gross
(Department of Sociology, CAU Kiel). In this chapter, experimental
results using KIEL are presented and discussed in two parts: (1) Sec-
tion 7.1 presents the results of a controlled experiment using KIEL.
(2) Section 7.2 presents a performance analysis, which provides
measurements of the capability of techniques introduced in Chap-
ter 3 to Chapter 5 and presents response times of the modeling
environment KIEL.

7.1 an empirical study on Statechart techniques

In the field of computer science, knowledge obtainment results
usually from mathematical analysis of a referred software process
or method. Due to the complexity of such methods or raising
of psychological questions of software tools or methods, empiri-
cal methods are often used in practice. Empirical studies affirm
research results and bring new insights. Quoting Freimut et al.:

“Empirical studies, such as case studies, experiments or sur-
veys investigate the strengths and weaknesses of existing
software engineering methods, techniques and tools. Em-
pirical studies result in empirical knowledge or proven con-
cepts.” [46]

115

116 usability analysis of kiel

However, empirical studies in computer science are highly un-
derestimated and they are often omitted. E. g., Lukowicz et al.
determine that

“[. . .] over 40 % of articles about new designs and models
completely lack such experimentation. For samples related to
software engineering, this factor is higher; it is over 50 % for
IEEE Transactions of Software Engineering.” [96]

The reason for the lack of experimental studies can be ignorance
or fear of experiment results. Wohlin et al. [170] give a well-
structured and easy-to-understand introduction to experimentation
for software engineers for controlled experiments, and Juristo and
Moreno [82] describe in-depth methods for advanced experiment
designs and data analysis with examples from software engineering.
Prechelt [126] includes many practical hints for design, execution
and analysis of controlled experiments; the proposals of Prechelt
have been the basis of the experimental design described in this
section.

As mentioned in Section 6.2, KIEL provides a mechanism that
automatically produces our preferred Statecharts arrangements;
in the following, we call this the Alternating Dot Layout (ADL)
(see Figure 52a). Hence, a further goal of the experiment was to
compare the readability of the ADL with other layout strategies.

7.1.1 Experimental Design

The participants in the experiment (the subjects) were graduate-
level students attending the lecture “Model-Based Design and Dis-
tributed Real-Time Systems” in the Winter Semester 2006/07 [163].
Most of them were not familiar with the Statechart formalism in
advance. The experiment consisted of two parts. The first partThe experiment was

conducted twice: for
beginners and for advanced
modelers.

took place early in the semester, after two lecture units introducing
the Statechart formalism. The subjects had by then also worked
on a first assignment on understanding Statechart semantics. The
second part proceeded after the final lecture unit at the end of the
semester. In the meantime, the subjects had gained practical experi-
ence in modeling Statecharts. Furthermore, they had learned about
the importance of modeling paradigms, such as maintainability
and secondary notation of Statecharts. 24 students participated
in the first experiment, 19 of them took the second one. In the

7.1 an empirical study on Statechart techniques 117

(a) Alternating Dot Layout (ADL) (b) Alternating Dot Backwards
Layout (ADBL)

(c) Alternating Linear Layout (ALL)

(d) Arbitrary Layout (AL) (e) Linear Layer
Layout (LLL)

Figure 52: Different Statechart layouts for experimental comparison

following, we refer to the participants of the first experiment as
novices and to the participants of the second experiment as advanced.
Furthermore, we define as experts the modelers that have significant
practical experience beyond course work. Both experiments have
similar design and consisted of three parts:

1. Modeling Technique Evaluation: The subjects had to create State-
charts of complexity using different Statechart modeling tech-

118 usability analysis of kiel

niques: a graphical WYSIWYG Statechart editor (we decided to
employ Esterel Studio), the KIEL macro editor, and the KIT ed-
itor. Every subject developed the same Statechart model with
each referred editor, following a semi-formal Statechart de-
scription (see Section C.1) which was borrowed from the State-
chart formalization of Pnueli and Shalev [123]. Afterwards,
the created Statechart had to be extended and modified. The
subjects received instructions on a one-page reference card
per modeling tool (cf. Section C.3.1, Section C.3.2, and Sec-
tion C.3.3). As editing performance metric the elapsed time
was measured.

2. Subjective Layout Evaluation: The subjects were asked to score
readability and comprehensibility of five different Statechart
layouts (cf. Figure 52). The idea of this experiment was to
vote for a presumed readable and understandable Statechart
layout. Therefore, pairs of two Statecharts had to be compared.
After a 10-second decision finding, the subject had to decide
his preference—left-hand-side or right-hand-side.

The experiment covered five different Statechart layouts (cf.
Figure 52); every layout was paired with each other. Pairs
were presented for Statecharts with simple states, hierarchical,
and parallel states. Appendix B shows 15 examples of differ-
ent laid out Statecharts and different Statechart complexity.
A total of 75 Statechart layouts were presented to the subjects.
The layouts in Figure 52a, Figure 52b, and Figure 52c were
automatically generated from the KIEL layout mechanism; the
Statechart models in Figure 52e and Figure 52d were drawn
manually.

3. Objective Layout Evaluation: In this experiment, the subjects
had to analyze different Statechart models and they had to
construct a sequence of active states and upcoming signal
events according to the semantics of SSMs. For this experi-
ment, the set of Statechart layouts was similar to the previous
experiment. Unlike the Statechart pairing of the previous
part, each Statechart had to be understood according to the
semantics of SSMs. Therefore, active states and upcoming
signal events had to be entered into a prepared time scale.
The elapsed time and the number of each Statechart reading
was measured for performance evaluation.

7.1 an empirical study on Statechart techniques 119

Each subject had to process a personal experiment assignment
(see Section 7.1.3) with randomly varied conditions. The assign-
ments contained the tasks described above. The study was realized
as a controlled experiment, i. e., the experiment leader checked
and rejected the solutions of Part 1 and Part 3 in case of incorrect-
ness. In Section C.1, a complete example of a working document is
presented, as handed out to the subjects. The answers had to be en-
tered into the answer template document; an example is presented
in Section C.2. Each of the subject’s experiments was performed in
a single session of one to two hours. The sessions were videotaped,
with the subjects written consent, in order to allow later off-line
analysis .

7.1.2 Hypotheses

The main questions asked in this experiment are the following:

1. Do the macro-based and text-based editing techniques make
the Statechart construction process easier and faster than the
conventional WYSIWYG method?

2. Are the resulting Statecharts more readable and comprehen-
sible?

To guide the analysis of the results, it is useful to formulate some
explicit expectations in the form of hypotheses about the differences
that might occur. Hence, the experiment should investigate the
hypotheses as follows:

1. Statechart Creation: We expect that novices will need less time
to create a Statechart using the WYSIWYG editor compared to
the usage of the KIEL macro editor or the KIT editor. However,
the Statechart creation times of advanced modelers using
the KIT editor should be less than when using the WYSIWYG
editor.

2. Statechart Modification: We expect that the modification of an
existing Statechart using the KIT editor or the KIEL macro
editor is faster than using the WYSIWYG editor.

3. Aesthetics: Statecharts are sensed as aesthetic, if their ele-
ments are arranged conforming to a certain layout style guide.

120 usability analysis of kiel

We expect the best aesthetic scores for Statecharts laid out
according to the ADL (see Figure 52a).

4. Comprehension: We suppose that well-arranged Statecharts
influence the readability. Hence, we expect a faster compre-
hension of the ADL compared to other Statechart layouts.

7.1.3 Quality of Experimental Data

Concerning the internal validity, all relevant external variables (sub-
jects’ Statechart modeling experience, maturation, aptitude, mo-
tivation, environmental condition, etc.) were equalized between
appropriate groups by randomized group assignment. Regarding
the external validity, there are several sources of differences between
the experimental and real Statechart modeling situations that limit
the generalization of the experiments: In real situations, there are
modelers with more experience, often working in teams, and there
are Statechart models of different size or structure. However, weApplicability of

experimental results to real
world situations

do not consider this to invalidate the basic findings of the experi-
ment. In addition, we suppose that the differences between novices
and advanced modelers become even larger when we move from
simple Statechart examples as used in our experiment to complex
Statecharts as in practice.

7.1.4 Results

This section presents and interprets the results of the experiments.
The analysis is organized according to the hypotheses listed in
Section 7.1.2. Box plots present the obtained statistical data. The
box plots denote quartiles, small circles indicate outliers. The
comparison of means will be assisted by the two sample t-test
with equal variances. The test compares the difference of sample
means from two data series with the hypothesized difference of the
series means. It computes the p-value, which indicates a statistical
significance. We will call a difference significant, if p < 0.05. The
analysis and plots were performed with R v. 2.4.0 [132].

Evaluation of Modeling Techniques

The plots in Figure 53a and the statistical tests corroborate our
Hypothesis 1 for novices. We found out that Statechart creation

7.1 an empirical study on Statechart techniques 121

●

●●

●

KIEL−KIT

KIEL−macros

WYSIWYG editor

KIEL−KIT

KIEL−macros

WYSIWYG editor

0 200 400 600 800

Times [sec]

Novices
Advanced

(a) Distribution of times for creating a new Statechart

●

●

●KIEL−KIT

KIEL−macros

WYSIWYG editor

KIEL−KIT

KIEL−macros

WYSIWYG editor

0 50 100 150 200 250 300

Times [sec]

Novices
Advanced

(b) Distribution of times for modifying an existing Statechart

Figure 53: Distribution of times for modeling Statecharts. The box plots
denote quartiles, small circles indicate outliers.

times of novices using a WYSIWYG editor are smaller than using the Times for Statechart
creationKIEL macro editor (t-test p = 0.04) and they tend to be smaller using

the KIT editor (t-test p = 0.25). For advanced, the Statechart creation
times using a WYSIWYG editor tend to be smaller than using the KIEL
macro editor (t-test p = 0.12); time differences between WYSIWYG
editor and KIT editor are not significant (t-test p = 0.46). Due to the
novelty of the KIEL macro editor and KIT editor, the novices sought
advice in the reference cards (cf. Section C.3.2 and Section C.3.3). In
contrast, the WYSIWYG editor could be used intuitively and without
any reference card. Hence, on average the novices needed less time
for creating Statecharts using the WYSIWYG editor than using the
KIT editor or the KIEL macro editor. For advanced learners, however,
the mean time is slightly less using the KIT editor. We suppose that

122 usability analysis of kiel

for experts in Statechart creation, this difference would increase
further.

Figure 53b illustrates the efficiency using the KIT editor and the
KIEL macro editor in Statechart modification; it emphasizes our testsTimes for Statechart

modification which corroborate Hypothesis 2. The t-test resulted for novices and
advanced, that the needed times for Statechart modification using
the KIEL macro editor or using the KIT editor are smaller than the
times using the WYSIWYG editor (both: t-test p = 0.00).

With the KIT editor and the KIEL macro editor the modeler only
works on the Statechart structure, while KIEL’s Statechart auto-
layouter arranges the graphical model. In contrast, the subjects
spent most of the time with making room for new Statechart ele-
ments and rearranging the existing ones to make the developed
chart readable using the WYSIWYG editor. Despite the fewer opera-
tions needed using the KIEL macro editor, the subjects needed more
time to modify a Statechart. The time was large due to frequent
consultations of the reference cards. Hence, we suppose that for
experts the KIEL macro editor will provide the fastest modeling
method.

Evaluation of Statechart Layouts

The scores of subjective Statechart layout assessment (cf. Figure 54a)
clearly show the subjects’ preference for Statecharts laid out accord-
ing to the ADL. In the figure there means a score of −1.0 a strongResults from Statechart

layout comparison rejection and a score of 1.0 means a strong preference for a certain
Statechart layout. Also the t-test denotes, that hypothesis 3 can be
retained. For novices and advanced are the ADL scores better than
all other Statechart layouts (all layouts: t-test p = 0.00). Apparently,
it is not sufficient that layouts underlie an automatic layout; in fact,
Statechart layouts have to satisfy certain aesthetics to be assessed as
good layouts. Accordingly, subjects stated that “transitions must be
short and traceable” and “the element structure has to follow the
Statechart meaning”. E. g., due to unnecessarily long transitions,
the ALL scores are lower than the LLL.

Figure 54b demonstrates that a proper layout enhances the read-
ability of Statecharts. This also shows that novices needed lessResults from Statechart

comprehension time for comprehending Statecharts according to ADL (ADBL: t-test
p = 0.02, others: t-test p = 0.00). The times of advanced for read-
ing ADL layouts tend to be smaller than times of the ADBL (t-test
p = 0.1). Less time is needed for other layouts (ALL: t-test p = 0.04,

7.1 an empirical study on Statechart techniques 123

●

●

AL

LLL

ALL

ADBL

ADL

AL

LLL

ALL

ADBL

ADL

−1.0 −0.5 0.0 0.5 1.0

Scores

Novices
Advanced

(a) Distribution of subjective Statechart layout scores

●

●

●●

AL

LLL

ALL

ADBL

ADL

AL

LLL

ALL

ADBL

ADL

200 400 600 800 1000

Times [sec]

Novices
Advanced

(b) Distribution of Statechart comprehension times

Figure 54: Distribution of Statechart layout assessments

124 usability analysis of kiel

●●

●

●

●

●AL

LLL

ALL

ADBL

ADL

AL

LLL

ALL

ADBL

ADL

0 1 2 3 4 5

number of errors

Novices
Advanced

Figure 55: Comprehension errors during Statechart reading

LLL: t-test p = 0.03, AL: t-test p = 0.03). Statecharts laid out ac-
cording to the ADL are comprehensible faster than other Statechart
layouts, that corroborates hypothesis 4. The subjects—novices and
advanced—also made fewer errors while reading Statecharts laid
out according to the ADL.

The box plots in Figure 55 support the statement of Figure 54b
and emphasize the quality of our referred Statechart layout. The
better readability and less error-prone reading of the ADL State-
chart result from the accompanying proper micro layout (e. g., label
placement), as well as proper macro layout; e. g., compact and
white-space avoiding element arrangement.

7.2 performance analysis of KIEL

In the previous section we have shown an experimental study
which demonstrates the efficiency of our editing proposals intro-
duced in Section 3.2 to Section 3.4. In addition to a satisfying
functioning of a modeling, short answer times on function requests
are substantial for an adequate interaction with a Statechart model-
ing tool. Especially, if one manipulates large-scale Statecharts, the
number of graphical objects drawn by the visualization component

7.2 performance analysis of KIEL 125

can be enormously high. This can bring the user interface to its
limits. Hence, when modeling complex Statecharts, it is indispens-
able for the usability of a modeling tool, that its response times do
not increase indefinitely.

This section presents response times of the modeling environ-
ment KIEL which were measured for the main components of KIEL
processing different sizes of Statechart models. The times were
measured on a PC with Linux OS, a 2.6 GHz AMD Athlon 64

processor and 2 GB of RAM.

7.2.1 KIEL’s Simulation and Visualization Performance

To assess the efficacy and efficiency of KIEL’s simulation and visu-
alization performance, Table 1 presents experimental results for
simulating the traffic light example, the window wiper example,
and two types of generic scalable models. The bintree〈n〉 models are
those whose state trees consist of binary OR trees (which are strictly
sequential) of height n (see Figure 65 on page 148 f). Furthermore,
the quadtree〈n〉 models have alternating AND/OR trees (which in-
clude concurrency) of height 2n (see Figure 66 on page 152 f). The
graphical elements category characterizes the graphical complexity
of the models. The state space category compares the number of
reachable configurations with the number of possible views. As
the degree of concurrency increases, the ratio between the numbers
increases as well, which is desirable to minimize view changes
and—if layout information is cached once it is computed, as in
our case—to keep memory requirements small. The occupied area
compares the size of a computed static view of the whole system
with a dynamic view. We choose to depict the minimal size of all
occurring views for the size of DSNF.

As to be expected, the bigger the system, the smaller becomes the
DSNF relative to the static SNF. The two lines in Figure 56 compare Assessment of simulation

using Dynamic Statechartsthe size of occupied areas of the static and the dynamic view of
Statecharts different sizes. The figure also emphasizes that, for
complex Statecharts with more than thousand graphical elements,
the occupied area of the static views increases significantly. In
contrast, the areas of the dynamic views remain almost constant for
complex systems. This strongly emphasizes the intention of the
DSNF: Our method reduces the number of visualized graphical

126 usability analysis of kiel

Ta
bl

e
1
:S

im
ul

at
io

n
an

d
vi

su
al

iz
at

io
n

pe
rf

or
m

an
ce

of
K

IE
L

m
o

d
e

l
g

r
a

p
h

i
c

a
l

e
l

e
m

e
n

t
s

s
t

a
t

e
s

p
a

c
e

o
c

c
u

p
i
e

d
a

r
e

a
c

o
m

p
u

t
a

t
i
o

n
t

i
m

e
s

States

Transitions

Total

Configurations

Views

Staticview
(pixel×pixel)

Dynamicview
(pixel×pixel)

Reductionfactor

Load(ms)

Nextconfiguration
(ms)

Layout(ms)

Displaynextview
(ms)

m
in

m
ax

m
in

m
ax

m
in

m
ax

tr
af

fic
-l

ig
ht

1
5

2
5

4
0

1
0

2
6

5
2

4
6

0
3

9
8

2
6

8
0
.3

6
8

2
8

3
1

6
7

1
2

4
2

1
3

3
5

6

w
in

do
w

-w
ip

er
3

6
8

2
1

1
8

8
0

1
2

4
2

0
0

2
8

9
5

8
7

0
3

1
1

0
.0

2
1

1
2

0
5

3
5

1
4

9
7

1
5

0
4

9
7

1
7

5
9

bi
nt

re
e-

1
3

5
8

2
1

2
4

8
1

0
3

2
4

8
1

0
3

1
2

2
6

5
2

6
1

5
1

4
7

2
7

3

bi
nt

re
e-

2
9

1
5

2
4

4
2

2
8

8
2

6
8

2
6

8
2

6
8

0
.9

3
3

4
6

3
4

6
1

1
8

1
7

2
2

7
4

bi
nt

re
e-

3
2

1
3

5
5

6
8

4
6

3
6

3
8

4
4

4
2

3
4

2
0
.6

2
8

3
4

3
1

1
5

3
2

4
4

1
8

1
2

6
0

bi
nt

re
e-

4
4

5
7

5
1

2
0

1
6

8
7

1
6

7
1

2
4

6
2

5
0

6
0
.4

6
1

4
4

6
3

6
1

8
8

1
2

8
2

6
4

4
3

6

bi
nt

re
e-

5
9

3
1

5
5

2
4

8
3

2
1

6
1

4
1

2
9

4
4

6
3

6
5

8
0

0
.2

8
1

7
7

2
4

1
2

5
0

1
3

2
2

7
2

5
3

2

bi
nt

re
e-

6
1

8
9

3
1

5
5

0
4

6
4

3
2

1
5

7
2

1
6

0
0

6
5

6
7

4
4

0
.1

9
2

3
9

2
4

5
3

7
4

1
3

8
3

9
0

6
4

7

bi
nt

re
e-

7
3

8
1

6
3

5
1

0
1

6
1

2
8

6
4

2
9

6
4

2
0

6
4

8
3

0
8

1
8

0
.1

1
2

9
3

7
2

1
4

7
0

9
1

3
9

4
5

6
8

3
7

bi
nt

re
e-

8
7

6
5

1
2

7
5

2
0

4
0

2
5

6
1

2
8

3
2

8
4

3
3

7
6

8
5

0
9

8
2

0
.0

8
8

6
3

6
5

5
5

1
3

8
9

2
4

1
9

5
4

1
8

0
2

bi
nt

re
e-

9
1

5
3

3
2

5
5

5
4

0
8

8
5

1
2

2
5

6
6

0
6

8
4

3
0

4
1

0
2

4
1

0
5

6
0
.0

4
2

0
6

9
5

1
4

2
9

2
6

4
0

2
4

8
1

9
1

1
3

5
0

4

qu
ad

tr
ee

-1
1

0
1

1
2

1
4

1
3

0
0

2
6

8
3

0
0

2
6

8
1

6
6

8
2

0
5

4
2

4
2

1
4

2
6

4

qu
ad

tr
ee

-2
5

0
5

5
1

0
5

6
4

4
6

9
6

7
1

2
6

9
6

5
0

6
0
.7

1
1

4
1

3
2

7
7

3
7

4
1

2
7

2
8

7
4

5
3

qu
ad

tr
ee

-3
2

1
0

2
3

1
4

4
1

1
6

3
8

4
6

4
1

4
8

8
1

6
0

0
1

4
8

8
7

4
4

0
.4

7
1

9
8

5
5

4
5

9
6

9
2

7
7

5
9

4
1

8
3

4

qu
ad

tr
ee

-4
8

5
0

9
3

5
1

7
8

5
1

0
7

3
7

4
1

8
2

4
1

6
3

8
4

3
0

7
2

3
3

7
6

3
0

7
2

9
8

2
0
.2

9
1

0
1

8
6

2
2

2
0

2
8

5
2

3
1

2
7

3
1

5
1

3
6

3
3

7.2 performance analysis of KIEL 127

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2.5e+07
area of Statechart static view
area of Statechart dynamic view
1024x768 pixel

bi
nt

re
e−

1

bi
nt

re
e−

2

qu
ad

tr
ee

−
1

bi
nt

re
e−

3

tr
af

fic
−

lig
ht

qu
ad

tr
ee

−
2

bi
nt

re
e−

4

bi
nt

re
e−

5

qu
ad

tr
ee

−
3

bi
nt

re
e−

6

bi
nt

re
e−

7

qu
ad

tr
ee

−
4

bi
nt

re
e−

8

w
in

do
w

−
w

ip
er

bi
nt

re
e−

9

Statechart model

oc
cu

pi
ed

 v
ie

w
 a

re
a

(p
ix

el
)

Figure 56: Comparison of static view and dynamic view areas

elements on a screen and this reduces the effort to keep the whole
system under simulation in mind.

Note that the static SNF already reduces the size compared to
a manual layout. The DSNF allows the full view of comparatively
large models without losing details, but of course, there still comes
a point when details become unreadable. However, in our ex-
perience, even for very large models, the full-model DSNF view
provides a very valuable overview of where the “hot spots” of a
model are during simulation, which is the difficult part with the
traditional Statechart animation part. Once these areas of interest
are detected, it is easy to use normal zooming and panning to get
more detailed information, such as state names or transition labels.

Similarly, the time to compute the next configuration during a
simulation is typically less than two seconds, despite our rather
inefficient, interpretative simulation approach. Figure 57 compares Assessment of computation

times for next simulation
views

the total of the time for the computation of a new configuration, the
computation times of a layout, and the times for display of a new
view of different Statecharts. What we consider most remarkable,
however, is the efficiency of the layout computation. This was

128 usability analysis of kiel

tr
af

fic
−

lig
ht

w
in

do
w

−
w

ip
er

bi
nt

re
e−

1

bi
nt

re
e−

2

bi
nt

re
e−

3

bi
nt

re
e−

4

bi
nt

re
e−

5

bi
nt

re
e−

6

bi
nt

re
e−

7

bi
nt

re
e−

8

bi
nt

re
e−

9

qu
ad

tr
ee

−
1

qu
ad

tr
ee

−
2

qu
ad

tr
ee

−
3

qu
ad

tr
ee

−
4

0

1000

2000

3000

4000

5000

6000

Statechart model

m
ax

im
al

 c
om

pu
ta

tio
n

an
d

vi
su

al
iz

at
io

n
tim

es
 (

m
s)

display next view
compute layout
compute next configuration

Figure 57: Maximal computation times in KIEL to present a new view
during simulation

always in the sub-second range, even for the largest models we
simulated, which underlines the efficiency of the GraphViz layout
system and our hierarchical layout scheme. The times to display
the next view are hence not dominated by the layout, as we had
originally expected, but by the simulation itself and the rendering
mechanism, both of them still leave room for optimizations, that
we have not applied yet.

Furthermore, Figure 58 illustrates that we can assume a linear
increase of view computation times in progress of the number of
graphical elements. In the figure there are two linear functions
depicted. They represent convergence functions of the computation
times for our both generic tree Statechart example series. To the
linear scaling view computation times always a fix amount of time
has to be added. This causes from the times for rendering and
simulation as mentioned above. The stronger increase of view

7.2 performance analysis of KIEL 129

5 10 50 10
0

50
0

10
00

50
00

10
00

0

200

500

1000

2000

5000

10000

20000

window−wiper

bintree−1
bintree−2

bintree−3

bintree−4
bintree−5

bintree−6

bintree−7

bintree−8

bintree−9

quadtree−1

quadtree−2

quadtree−3

quadtree−4

traffic−light

n ++ 250

4n ++ 200

number of graphical elements (n)

av
er

ag
e

co
m

pu
ta

tio
n

tim
e

of
 v

ie
w

s
(m

s)

Figure 58: Average computation times in KIEL to present a new view

computation times for the quadtree examples have their cause in
the occurring parallelism. Overall, the collected view computation
times suggest the complexity class O(n), where n is the number of
graphical elements, as an upper bound to the view computation
times.

To quantify efficiency, the load time indicates how long it takes to
load and visualize a static system view. For very large models, this Assessment of model load

timestime becomes noticeable, but typically it takes less than five seconds
(cf. also Figure 59). The Statechart load times increase relatively to
the model size. However, they do not increase indefinitely: the time
tends to converge towards the square root function of the number
of graphical elements in a chart. Obviously, the framework needs
a fix period of computation time, which is independent from the
model size. Variable computation times dependent on the model
size have to be added to the fix period. However, we expect linear
increase of the load times for more complex Statecharts.

130 usability analysis of kiel

5 10 50 10
0

50
0

10
00

50
00

10
00

0

200

500

1000

2000

5000

10000

20000

window−wiper

bintree−1

bintree−2

bintree−3

bintree−4

bintree−5

bintree−6

bintree−7

bintree−8

bintree−9

quadtree−1

quadtree−3

quadtree−4

traffic−light

quadtree−2

100 n

number of graphical elements (n)

S
ta

te
ch

ar
t l

oa
d

tim
e

(m
s)

Figure 59: Load times of Statechart models in KIEL

7.2.2 Analysis of SSM synthesis

To assess the efficacy and efficiency of SSM synthesis from Esterel
with KIEL, Table 2 presents experimental results for transforming
various Esterel benchmarks, most of them are taken from the Est-
bench Esterel benchmark suite [37] and the CEC distribution [34].
The table compares the size of Esterel code with the complexity of
the corresponding synthesized SSMs. Lines of code denote the overall
size of the (module expanded) Esterel code. The graphical elements
category characterizes the graphical complexity of the resulting
SSM models before and after applying the optimization. We observe
that, as the degree of complexity of the resulting chart increases,
the ratio between them increases as well, which is desirable to mini-
mize the number of graphical elements. The element-wise reduced
Statechart is more compact and has less overhead and redundancy;
the optimization often reduces the Statechart by a factor of three or
more. Hence, in our experience a synthesized, optimized Statechart
is generally very readable and comprehensible.

Figure 60 illustrates the linear increase of generated graphical
Statechart elements. The size of circles indicates the intensity of the

7.2 performance analysis of KIEL 131

Ta
bl

e
2
:E

xp
er

im
en

ta
lr

es
ul

ts
of

SS
M

sy
nt

he
si

s

m
o

d
e

l
Es

t
e

r
e

l
Sa

f
e

St
a

t
e

M
a

c
h

i
n

e
s

t
i
m

e

Be
fo

re
op

ti
m

iz
at

io
n

A
ft

er
op

ti
m

iz
at

io
n

Linesofcode
(loc)

States

Pseudo-states

Transitions

Totalgraphical
elements(ges)

ges/loc

States

Pseudo-states

Transitions

Totalgraphical
elements(ges)

ges/loc

SSMreduction
factor

Transformation
(ms)

Optimization
(ms)

A
BR

O
7

1
2

8
1

2
3

2
4
.5

7
8

4
8

2
0

2
.8

6
0

.6
3

8
6

1
5

6

sc
hi

zo
ph

re
ni

a
1

0
1

3
9

1
4

3
6

3
.6

0
4

3
6

1
3

1
.3

0
0

.3
6

8
3

8
8

1

re
in

ca
rn

at
io

n
2

5
2

7
1

7
2

8
7

2
2
.8

8
5

2
6

1
3

0
.5

2
0

.1
8

6
4

2
8

3

ja
ck

y1
2

7
3

1
1

9
3

3
8

3
3
.0

7
1

1
5

1
2

2
8

1
.0

4
0

.3
4

9
1

3
9

3

ru
nn

er
5

5
3

9
2

4
4

2
1

0
5

1
.9

1
2

1
1

1
2

5
5

7
1

.0
4

0
.5

4
7

2
5

1
6

0

to
ke

nr
in

g3
7

9
7

7
6

1
9

1
2

2
9

2
.9

0
1

5
2

0
3

8
7

3
0

.9
2

0
.3

2
7

3
3

2
7

8

gr
ey

co
un

te
r

8
2

2
1

1
1

4
8

2
5

4
6

1
3

7
.4

8
4

2
5

0
1

0
6

1
9

8
2

.4
1

0
.3

2
7

8
9

5
9

3

ab
cd

1
0

1
2

3
1

1
3

0
2

5
0

6
1

1
6
.0

5
7

8
4

1
9

7
2

1
6

2
.1

4
0

.3
5

9
4

3
7

3
1

to
ke

nr
in

g1
0

2
4

7
2

4
5

1
9

4
2

9
4

7
3

3
2
.9

7
4

3
6

2
1

2
2

2
2

7
0

.9
2

0
.3

1
1

2
6

7
7

3
6

m
ej

ia
5

5
5

3
7

4
2

4
6

4
1

4
1

0
3

4
1
.8

6
1

2
7

7
6

1
8

1
3

8
4

0
.6

9
0

.3
7

3
0

8
5

1
2

6
6

tc
in

t
6

8
7

4
7

5
2

8
5

5
4

3
1

3
0

3
1
.9

0
1

6
3

8
1

2
2

1
4

6
5

0
.6

8
0

.3
6

3
3

8
2

1
3

1
0

at
ds

-1
0

0
9

4
8

9
6

1
5

5
8

1
0

9
2

2
6

1
1

2
.7

5
3

5
2

1
8

4
5

0
4

1
0

4
0

1
.1

0
0

.4
0

7
0

4
6

2
7

6
0

w
w

1
0

8
8

3
4

2
2

2
8

3
8

6
9

6
5

0
.8

9
1

0
2

8
5

1
7

7
3

6
4

0
.3

3
0

.3
8

4
4

7
0

1
0

5
3

to
ke

nr
in

g5
0

1
2

0
7

1
2

0
5

9
5

4
1

4
5

4
3

6
1

3
2
.9

9
2

0
3

3
0

2
6

0
2

1
1

0
7

0
.9

2
0
.3

1
6

6
0

8
8

1
4

8

to
ke

nr
in

g1
0

0
2

4
0

7
2

4
0

5
1

9
0

4
2

9
0

4
7

2
1

3
3
.0

0
4

0
3

6
0

2
1

2
0

2
2

2
0

7
0

.9
2

0
.3

1
2

0
9

1
0

2
5

5
2

8

m
ca

2
0

0
7

2
6

9
5

1
5

9
3

9
3

1
5

9
4

7
1

5
0

3
7

2
.0

7
1

7
9

9
2

5
1

7
9

4
2

8
9

8
0

.4
0

0
.1

9
6

1
5

1
0

1
0

0
5

9
4

132 usability analysis of kiel

5 10 50 10
0

50
0

10
00

50
00

10
00

0

50

100

200

500

1000

2000

5000

10000

20000

ABRO

greycounter

mejia

schizophrenia

reincarnation
jacky1

runner

tokenring3

abcd
tokenring10

tcint

atds−100

ww

tokenring50

tokenring100

mca200

lines of Esterel code (n)

to
ta

l n
um

be
r

of
 g

ra
ph

ic
al

 e
le

m
en

ts
 a

fte
r

tr
an

sf
or

m
at

io
n 2.5n ++ 15

Figure 60: Relation of lines of Esterel code and number of generated
graphical elements. The size of circles denotes the the opti-
mization intensity.

optimization. We can observe, that this intensity is not dependent
from the model complexity. The reduction capability of our State-
chart optimization method is illustrated in Figure 61. Even huge
Statechart models can be reduced to relatively small, thus, readable
models.

As an example of intermediate size, Figure 62 shows the compo-
nent “mode selection” of the canonical wristwatch example [37, 73]
which is denoted as ww in Table 2. This component contains 38

states, 29 pseudo-states and 62 transitions, hence, a total of 129

graphical elements.
To quantify efficiency, the transformation time indicates how longTimes for Esterel

transformations it takes to load, expand, parse and transform an Esterel program.
For large models, this time becomes noticeable, but it typically
takes at most a couple of seconds. Similarly, the time to compute
the optimized SSM version is less than three seconds for most of
the benchmarks considered here. Only the optimization of the
industrially sized example mca200 takes about 100 seconds.

7.2 performance analysis of KIEL 133

A
B

R
O

sc
hi

zo
ph

re
ni

a

re
in

ca
rn

at
io

n

ja
ck

y1

ru
nn

er

to
ke

nr
in

g3

ab
cd

gr
ey

co
un

te
r

to
ke

nr
in

g1
0

w
w

m
ej

ia

tc
in

t

at
ds

−
10

0

to
ke

nr
in

g5
0

to
ke

nr
in

g1
00

m
ca

20
0

0

2000

4000

6000

8000

10000

12000

14000 after transformation
after optimization

Esterel model

to
ta

l n
um

be
r

of
 g

ra
ph

ic
al

 e
le

m
en

ts

Figure 61: Model size before and after optimization

7.2.3 Analysis of the Checking Plug-in

Finally, we show the application of the checking framework on a
well-known example, the Citizien Quartz III wristwatch Statechart,
as introduced by Harel [71]. We remodeled the wristwatch with
ArgoUML and the checking was done automatically using the KIEL
modeling environment (see Chapter 6). Basically, we adopted the
model with the same simplifications made by Harel. Using the
UML imposed some restrictions. However, the final model remains
the originally modeled behavior. E. g., in the original model some
transitions iterate over multiple states which were replaced by
conditional constructs accordingly. Furthermore, time events are
not envisioned and that is the reason why we had to replace them
with simple signal events. Some triggers perform indexing over
multiple states which were replaced by constructs using a choice
accordingly. Finally, the present interlevel transitions do not possess
any further functionality within the model. We avoided to use them
from the beginning. The final model contains 120 transitions and

134 usability analysis of kiel

Figure 62: The component mode selection of the wristwatch example

108 states. Figure 48 on page 111 presents a screen shot of KIEL as
it checks the wristwatch example.

The results from benchmarking are presented in Table 3, where
the number of returned hints, the time needed and the numberTimes for checking

robustness of objects that should be reviewed are presented. The application
of the well-formedness rules consumed the least amount of time.
Roughly 20 milli-seconds were needed to check those rules on the
chart. Except for the check EqualNames, the syntactical robustness
checks roughly take twice as much time as the well-formedness
rules. The check EqualNames has a quadratic complexity in the
number of states. This is caused by limitations of the OCL. All
states have to be compared with the currently handled state. In com-
parison to the checks dealing with syntactical robustness, except for
EqualNames, the checks for semantical robustness take about 400

milli-seconds. Here, the check TransitionOverlap returns an enor-
mous number of hints compared to the total number of transitions.

7.2 performance analysis of KIEL 135

Table 3: Experimental results of checking the wristwatch example

checks hints time [ms]

well-formedness checks (total) 0 20

InterlevelTransition 17 14

Connectivity 7 2

EqualNames 33 587

InitialStateCount 7 1

TransitionLabels 6 9

IsolatedStates 1 4

syntactical checks (total) 71 617

Transition Overlap 598 352

Dwelling 0 2

Race Conditions 0 1

semantical checks (total) 598 355

total 669 992

This is due to the fact that almost no transition was designed with
an opposing predicate of another outgoing transition.

The application of the framework on the Statechart presented
in Figure 24 on page 66 delivered the hint that violations of the
rule Dwelling are present. Especially novices tend to produce
unnecessary large models with needless states, e. g., by splitting
trigger and effect into separate transitions. Figure 24 indicates a
possible way to curb violation. Since the Statechart is rather small
the sets of checks were applied in about 3 milli-seconds.

8
C O N C L U S I O N A N D O U T L O O K

Embedded devices are proliferating, and their complexity is ever
increasing. Statecharts are a well-established formalism for the
description of the reactive behavior of such devices. However, there
is evidence that the current use of this formalism is reaching its
limits for development of complex systems. The more complex a
Statechart model description becomes, the less traceable and man-
ageable it gets. To overcome this, we have presented a methodology
to support the easy development and understanding of complex
Statecharts. We have implemented these concepts in KIEL, and our
experiences with this tool indicate the practicality of this approach.

the use of secondary notation

We are proposing the conscious use of Secondary Notations to
improve the readability of complex Statecharts, to make designers
more productive and to lower the risk of faults. We have developed
specific formatting rules for Statecharts, thus defining a Statechart
Normal Form. Furthermore, we have extended this concept into
Dynamic Statecharts, which not only takes Statechart topology into
account, but also a specific configuration reached in a simulation.

In general, the automatic Statechart layout and the dynamic simu-
lation produced satisfying results. Dynamic Statecharts reduce the
size compared to a manual layout. The Dynamic Statecharts allow
to view large Statecharts in full without losing the detail. Of course,
there comes a point when details become unreadable, and the used
examples are complex enough to contain such configurations as
well. However, the full-model Dynamic Statechart view provided a
very valuable overview of where the “hot spots” of a model were
during simulation, which is difficult with the traditional Statechart
animation approach.

To assess the efficiency of KIEL’s automated layout mechanisms,
we have instrumented it to measure computation times. The size
especially of large models did not pose any difficulties, the layout
computation was always well in the sub-second range. However, in

137

138 conclusion and outlook

contrast to academic examples, some complex examples exposed
some weakness of the resulting layouts, in particular when long
labels were present. Due to transition labels that consist of more
than 20 characters and often embrace more than three lines, the
element placement was often unsatisfying and the resulting chart
was difficult to read. We therefore consider to make the visibility
of labels optional. We also observed that especially states that
are arranged around a central Statechart element produce long
transitions. We suppose that another layout method, e. g., a force
directed layout [49], would reduce transition lengths.

textual editing

A well-established alternative for specifying reactive systems is the
textual approach. To benefit from the general ease of handling
textual programs (e. g., scripting, preprocessing, and textual revi-
sion management), as well as from the intuitiveness of graphical
languages, it can be useful to transform one to another. Another
motivation for doing so could be the desire to separate structure
and layout—akin to, for example, the use of a document processing
system (such as LATEX) that produces a nicely typeset document
that adheres to certain formatting guidelines from an ASCII source.
Such a system lets the author focus on the contents of the docu-
ment without worrying about the layout. This benefits especially
the development of complex Statecharts with a huge amount of
interdependent graphical objects. The developer using a graphical
editor has to laboriously and manually manipulate the Statechart,
e. g., making room for supplementation of a successor state. In
contrast, using a textual language for Statechart specification, the
modeler needs only to “write” the new object.

We have presented a description language called KIT that was de-
veloped with the intention to describe topological Statechart struc-
tures. The KIEL tool combines the ability of easy textual editing and
simultaneous viewing of the resulting graphical Statechart model.
As another alternative to the classic, low-level WYSIWYG graphi-
cal editing paradigm, the graphical model can be modified using
high-level editing schemata. This technique employs Statechart
production rules that ensure the syntax-consistency throughout the
whole editing process. The user feedback on this has been generally
very positive, and this has been supported by experimental data.

139

the Statechart synthesis

We have presented the synthesis of the SSM dialect of Statecharts,
using Esterel as input language. The transformation consists of
derivation rules, whose application to Esterel statements performs
the successive synthesis of SSMs.

We have experimentally validated the transformation and op-
timizations and have argued their correctness here. We have im-
plemented the transformation in KIEL, and preliminary experience
with this tool indicates the practicality of the approach even for
large specified systems. A central enabling capability is the au-
tomated layout of Statecharts to position the synthesized objects.
Experimental results are very promising with regard to the trans-
formation efficiency. Especially, the automatic layout of Statecharts
is a promising basis for similar work synthesizing and displaying
Statecharts.

The transformation is accompanied by optimizations, which are
applicable after the initial transformation, to reduce the complexity
of SSMs. The optimization method can be applied not only to
synthesized Statecharts; it can also be used for the reduction of
manually created models. The optimization method can reduce the
number of graphical elements significantly. Hence, it is a valuable
contribution to the readability and maintainability of large State-
charts

error prevention

In complex systems it can be very difficult for the modeler to keep
all inter-dependent Statechart elements in mind. As a consequence
the modeler tends to make errors. To avoid this, we have outlined
an approach to make model driven system development with
complex Statecharts less error prone. For this intention we have
introduced a fundamental Statechart style guide at first. The main
goal of the style guide is to incorporate rules that apply to State-
charts in general, i. e., not specific to a single dialect. It is similar
to other code checking tools where it still obliges to the developer
whether he or she takes care of the delivered hints or not as they do
not point at errors. We implemented a flexible checking framework
for the general Statechart modeling tool KIEL. We utilize OCL
constraints to specify most of the checks as done by other tools.

140 conclusion and outlook

However, we focused on short response times of the rule checking
framework. Hence, compared to Mutz and Huhn’s interpretative
checking approach [110], we have implemented a transformative
approach for the evaluation of OCL statements resulting in a good
performance. Furthermore, we implemented some checks in Java
directly, because the evaluation of SMT is far beyond the scope of the
OCL. As our experimental results show, our checking framework
performs the checking of the OCL rules as well as the Java coded
rules with acceptable response times. This becomes very important
if the style checking is applied to on large systems.

summary

We have implemented the above mentioned concepts in KIEL, and
our experiences with this tool indicate the practicality of this ap-
proach for complex Statecharts. A central enabling component is
the automated layout of Statecharts, for which we have developed
a hierarchical layout engine that uses GraphViz to layout individual
charts. Experimental results show that KIEL performs even for
complex Statechart models with acceptable response times.

KIEL has also been tested in the classroom, and the feedback
regarding the concept of SNF and Dynamic Statecharts has been
quite positive. However, we performed more systematic studies
on this, also employing expertise from cognitive psychology. The
results of the empirical study strongly emphasize the necessity
of Secondary Notation for the comprehension of Statecharts. The
experiment shows, that Statecharts laid out according to our pre-
ferred layout (using GraphViz) scores best in the comprehension part
as well in the subjective assessment. The experiment also shows,
that developers who use the KIEL macro editor or the KIT editor are
faster in modeling Statecharts than those which used a graphical
WYSIWYG editor. However, from the tendency of required modeling
times using the KIT editor (they get smaller the more experienced
a modeler becomes), we consider the KIT editor as most efficient
modeling technique for complex Statecharts.

What we see as most promising at this point is to use KIEL’s
layout capability to construct SNF-compliant Statecharts not from
Statecharts already created by a human modeler, but instead to
construct these from textual representations. Both, the efficient
performing of the KIT editor and the fast generation of an appeal-

141

ing Statechart layout using GraphViz, can improve the Statechart
development process significantly. It appears valuable to provide
the modeler with the possibility to choose to manipulate either the
textual or the graphical view in KIEL, where the tool keeps both
views automatically and continuously in sync. This results in the
best of the textual and the graphical worlds—the efficiency and
maintainability of textual entry and the clarity and beauty of visual
display.

Regarding ongoing and future work, there are numerous ways in
which to extend the layouting, editing, simulation, and customiza-
tion capabilities of KIEL and the techniques we are exploring. In
the future, we intend to experiment further with the simultaneous
display of textual and graphical representation of the SUD. E. g., for
a better traceability, an indexing mechanism between elements of
the textual and the graphical models could be useful. Based on
the data of the experimental study mentioned in Section 7.1, we
currently investigate the preferences of Statechart developers for
certain aesthetic criteria in Statechart layouts and their preference
for modeling methods introduced above. We use metrics to de-
termine the aesthetic quality of Statechart layouts and the editing
quality of Statechart modeling techniques. Furthermore, we intend
to apply the graphical model synthesis from a textual description,
in combination with layout and simultaneous display, to data-flow
languages such as SCADE/LUSTRE [40, 68] in KIEL’s follow-up
project—the KIEL for Eclipse Rich Client Plattform (KIELER) [50].

A
L AY O U T E X A M P L E S F R O M K I E L

In this chapter, some Statecharts drawn by KIEL layouter will be
presented. The figures demonstrate, how the KIEL layouter can be
adjusted. As an example model we use the traffic light controller
introduced in Section 4.1 on page 75, the bintree, and the quadtree
introduced in Section 7.2.1 on page 125.

143

144 layout examples from kiel

(a) Alternating reading directions

(b) Reversed reading direction

Figure 63: Dot layout with different reading directions

145

(c) Reading direction from bottom to top

(d) Alternating reading directions and reading begins on top

Figure 63: Dot layout with different reading directions

146 layout examples from kiel

(e
)

R
ea

di
ng

di
re

ct
io

n
fr

om
le

ft
to

ri
gh

t

(f
)

R
ea

di
ng

di
re

ct
io

n
fr

om
to

p
to

bo
tt

om

Fi
gu

re
6
3

:D
ot

la
yo

ut
w

it
h

di
ff

er
en

t
re

ad
in

g
di

re
ct

io
ns

147

(a) Alternating reading directions

(b) Alternating reading directions and reading begins on
top

Figure 64: Linear layer layout with different reading directions

148 layout examples from kiel

(a) bintree-1 (b) bintree-2

(c) bintree-3

(d) bintree-4

Figure 65: The generic Statechart model bintree laid out according to the
Alternating Dot Layout (ADL)

149

(e
)

bi
nt

re
e-

9

Fi
gu

re
6
5
:T

he
ge

ne
ri

c
St

at
ec

ha
rt

m
od

el
bi

nt
re

e
la

id
ou

t
ac

co
rd

in
g

to
th

e
A

lt
er

na
ti

ng
D

ot
La

yo
ut

(A
D

L)
(c

on
ti

nu
ed

)

150 layout examples from kiel

(f) bintree-1 (g) bintree-2

(h) bintree-3

(i) bintree-4

Figure 65: The generic Statechart model bintree laid out according to the
Linear Layer Layout (LLL)

151

(j)
bi

nt
re

e-
9

Fi
gu

re
6
5

:T
he

ge
ne

ri
c

St
at

ec
ha

rt
m

od
el

bi
nt

re
e

la
id

ou
t

ac
co

rd
in

g
to

th
e

Li
ne

ar
La

ye
r

La
yo

ut
(L

LL
)

(c
on

ti
nu

ed
)

152 layout examples from kiel

(a) quadtree-1 (b) quadtree-2

(c) quadtree-3

Figure 66: The generic Statechart model quadtree laid out according to the
Alternating Dot Layout (ADL)

153

(d) quadtree-4

Figure 66: The generic Statechart model quadtree laid out according to the
Alternating Dot Layout (ADL) (continued)

154 layout examples from kiel

(e) quadtree-1 (f) quadtree-2

(g) quadtree-3

Figure 66: The generic Statechart model quadtree laid out according to the
Linear Layer Layout (LLL)

155

(h
)

qu
ad

tr
ee

-4

Fi
gu

re
6
6
:T

he
ge

ne
ri

c
St

at
ec

ha
rt

m
od

el
qu

ad
tr

ee
la

id
ou

t
ac

co
rd

in
g

to
th

e
Li

ne
ar

La
ye

r
La

yo
ut

(L
LL

)
(c

on
ti

nu
ed

)

B
S TAT E C H A RT L AY O U T S F R O M E M P I R I C A L
S T U D Y

In this chapter we depict the Statechart layouts which have been
presented to the subjects of the empirical study (see Section 7.1 on
page 115). We here depict only 15 of 75 Statecharts of different
complexity.

157

158 statechart layouts from empirical study

(a) Alternating Dot Layout (ADL)

(b) Alternating Dot Backwards Layout (ADBL)

(c) Linear Layer Layout (LLL)

(d) Alternating Linear Layout (ALL) (e) Arbitrary Layout (AL)

Figure 67: Layouts of a Statechart model with simple states

159

(f) Alternating Dot Layout (ADL) (g) Alternating Dot Backwards
Layout (ADBL)

(h) Alternating Linear Layout (ALL)

(i) Linear Layer
Layout (LLL)

(j) Arbitrary Layout (AL)

Figure 67: Layouts of a Statechart model with hierarchical states

160 statechart layouts from empirical study

(k) Alternating Dot Layout (ADL) (l) Alternating Dot Backwards Layout (ADBL)

(m) Alternating Linear Layout (ALL)

(n) Linear Layer Layout (LLL)

(o) Arbitrary Layout (AL)

Figure 67: Layouts of a Statechart model with parallel states

C
W O R K I N G D O C U M E N T S F R O M E M P I R I C A L
S T U D Y

In the following we depict documents which have been presented
to subjects of the empirical study (see Section 7.1 on page 115).
Section C.1 depicts one of the randomized data documents. It
consists of thee parts: (1) In the first part, there are pairs of State-
chart layouts depicted which had to be compared, (2) the second
part contains Statecharts which had to be understood, and (3) the
third part contains instructions to create and modify a Statechart
using different modeling tools. In Section C.2 we present the
document which had to be completed by subjects and in Section C.3
we present reference cards of the used modeling tools.

c.1 the data document

161

Untersuchung des Layouts und der
Modellierung von Statecharts (II)

– Daten-Blattsammlung –

(Gruppe 1, Nummer 1)

1 Vergleichen verschiedener
Statechart-Layouts

1.1 Statecharts mit einfachen Zuständen

V
er

gl
ei

ch
en

1

V
er

gl
ei

ch
en

2

162 working documents from empirical study

V
er

gl
ei

ch
en

3

V
er

gl
ei

ch
en

4

V
er

gl
ei

ch
en

5

V
er

gl
ei

ch
en

6

C.1 the data document 163

V
er

gl
ei

ch
en

7

V
er

gl
ei

ch
en

8

V
er

gl
ei

ch
en

9

V
er

gl
ei

ch
en

10

164 working documents from empirical study

1.2 Statecharts mit hierarchischen Zuständen

13

V
er

gl
ei

ch
en

11

V
er

gl
ei

ch
en

12

V
er

gl
ei

ch
en

13

C.1 the data document 165

V
er

gl
ei

ch
en

14

V
er

gl
ei

ch
en

15

V
er

gl
ei

ch
en

16

V
er

gl
ei

ch
en

17

166 working documents from empirical study

V
er

gl
ei

ch
en

18

V
er

gl
ei

ch
en

19

V
er

gl
ei

ch
en

20

1.3 Statecharts mit parallelen Zuständen

24

C.1 the data document 167

V
er

gl
ei

ch
en

21

V
er

gl
ei

ch
en

22

V
er

gl
ei

ch
en

23

V
er

gl
ei

ch
en

24

168 working documents from empirical study

V
er

gl
ei

ch
en

25

V
er

gl
ei

ch
en

26

V
er

gl
ei

ch
en

27

V
er

gl
ei

ch
en

28

C.1 the data document 169

V
er

gl
ei

ch
en

29

V
er

gl
ei

ch
en

30

2 Verstehen von Statecharts

2.1 Statecharts mit einfachen Zuständen

Verstehen 1

0 1 2 3 4 5 6 7 8 9 10

t

170 working documents from empirical study

Verstehen 2

0 1 2 3 4 5 6 7 8 9 10

t

Verstehen 3

0 1 2 3 4 5 6 7 8 9 10

s

Verstehen 4

0 1 2 3 4 5 6 7 8 9 10

t

Verstehen 5

0 1 2 3 4 5 6 7 8 9 10

s

C.1 the data document 171

2.2 Statecharts mit hierarchischen Zuständen

41

Verstehen 6

0 1 2 3 4 5 6 7 8 9 10

s s v

Verstehen 7

0 1 2 3 4 5 6 7 8 9 10

t s t

Verstehen 8

0 1 2 3 4 5 6 7 8 9 10

u t s

172 working documents from empirical study

Verstehen 9

0 1 2 3 4 5 6 7 8 9 10

s v s

Verstehen 10

0 1 2 3 4 5 6 7 8 9 10

s v s

2.3 Statecharts mit parallelen Zuständen

47

Verstehen 11

0 1 2 3 4 5 6 7 8 9 10

s u

C.1 the data document 173

Verstehen 12

0 1 2 3 4 5 6 7 8 9 10

w t

Verstehen 13

0 1 2 3 4 5 6 7 8 9 10

t u

Verstehen 14

0 1 2 3 4 5 6 7 8 9 10

t u

Verstehen 15

0 1 2 3 4 5 6 7 8 9 10

s t

174 working documents from empirical study

3 Modellieren von Statecharts

Neuerstellen eines Statecharts

Zu modellierendes Statechart:

Anmerkung I: Bevor Sie sich mit der Umsetzung des beschriebenen Statecharts in einem
der drei Werkzeuge befassen, analysieren Sie die u. g. Beschreibung soweit, dass Sie
diese gut verstanden haben. Die Zeit für diese Analyse wird separat gemessen.

Anmerkung II: Für ein korrektes Modell müssen die Signale, die das Modell von außen
beeinflussen korrekt angelegt sein. Der Einfachheit halber verzichten wir bei diesem
Experiment darauf, das Signal-Interface zu deklarieren. Tragen Sie deshalb einfach
nur die Signale an den Transitionen ab.

S = {R0, R, S, X0, X, Y, Z}
Σ = {r, x, y, z}
Γ : {R0 −→ R, X0 −→ X, X •x−→ Z, Z •z−→ Y, Y •y−→ Z, Y •y−→ X, R •r−→ S, }
t : {R0 → initial, R → normal, S → normal, X0 → initial, X → normal,

Y → normal, Z → normal}
≤ : {X0 ≤ R, X ≤ R, Y ≤ R, Z ≤ R}

Werkzeug-Reihenfolge:

1. Graphischer Statechart-Editor

2. Strukturbasierter Statechart-Editor

3. Textueller Statechart-Editor

Verändern eines Statecharts

Ergänzendes Statechart:

Anmerkung I: Bevor Sie sich mit der Umsetzung des beschriebenen Statecharts in einem
der drei Werkzeuge befassen, analysieren Sie die u. g. Beschreibung soweit, dass Sie
diese gut verstanden haben. Die Zeit für diese Analyse wird separat gemessen.

Anmerkung II: Hier wird nur der Teil des Statechart der gerade vollzogenen Übung
dargestellt, der das von dort bekannte Modell verändert.

S ′ = S ∪ {T0, T, U}
Σ′ = Σ

Γ′ : (Γ− {Y •y−→ Z}) ∪ {Z •y−→ Y, T0 −→ T, T •−→ U}
t′ : t ∪ {T0 → initial, T → normal, U → normal}

≤ ′ : ≤ ∪ {T0 ≤ X, T ≤ X, U ≤ X}

Unveränderte Werkzeug-Reihenfolge:

1. Graphischer Statechart-Editor

2. Strukturbasierter Statechart-Editor

3. Textueller Statechart-Editor

54

C.1 the data document 175

176 working documents from empirical study

c.2 the answer template document

Untersuchung des Layouts und der
Modellierung von Statecharts (II)

– Testbogen –

Name:

E-Mail:

Ich erkläre mich damit einverstanden, dass zum Zwecke der nachträglichen Analyse
dieses Experimentes der Ablauf in Bild und Ton festgehalten wird.

Unterschrift:

Vorwort

Die folgenden Aufgaben wurden entsprechend dem zu erwartenden derzeitigen Kenntnis-
stand der Vorlesung „Modellbasierter Entwurf und Verteilte Echtzeitsysteme“ entworfen.
Lesen Sie sich vor Beginn der Experimente die Versuchsanordnung genau durch und fra-
gen Sie den Experimentleiter bei Unklarheiten möglichst noch vor dem Experiment.
Bearbeiten Sie dann die Aufgaben gewissenhaft und möglichst zügig. Zur Experimen-
tanalyse ist es wichtig, die Gedankengänge bei der Lösung der Aufgaben zu kennen.
Sprechen Sie deshalb Ihre Überlegungen laut aus.

Danke für Ihre Teilnahme am Experiment
und gutes Gelingen bei der Lösung der Aufgaben!

1 Vergleichen verschiedener
Statechart-Layouts

Im Folgenden werden Ihnen jeweils zwei Statecharts mit unterschiedlichem Aussehen
vorgelegt. Entscheiden Sie jeweils spontan (nicht länger als 10 Sekunden), bei welchem
sich der Statechart-Modellierer mehr Mühe gegeben hat, ein gut lesbares und verständ-
liches Statechart zu erstellen. Sagen Sie zu jedem Paar die Nummer mit an. Stellen
Sie jeweils mündlich die Unterschiede der Statecharts heraus und diskutieren Sie Vor-
und Nachteile der Layouts. Tragen Sie dann im entsprechenden Bewertungsschema das
Ergebnis Ihrer Einschätzung ein (bitte wenden).

1.1 Statecharts mit einfachen Zuständen

1. © © © © ©
Layout I gleich gut Layout II

2. © © © © ©
Layout I gleich gut Layout II

3. © © © © ©
Layout I gleich gut Layout II

4. © © © © ©
Layout I gleich gut Layout II

5. © © © © ©
Layout I gleich gut Layout II

6. © © © © ©
Layout I gleich gut Layout II

7. © © © © ©
Layout I gleich gut Layout II

8. © © © © ©
Layout I gleich gut Layout II

9. © © © © ©
Layout I gleich gut Layout II

10. © © © © ©
Layout I gleich gut Layout II

4

C.2 the answer template document 177

1.2 Statecharts mit hierarchischen Zuständen

11. © © © © ©
Layout I gleich gut Layout II

12. © © © © ©
Layout I gleich gut Layout II

13. © © © © ©
Layout I gleich gut Layout II

14. © © © © ©
Layout I gleich gut Layout II

15. © © © © ©
Layout I gleich gut Layout II

16. © © © © ©
Layout I gleich gut Layout II

17. © © © © ©
Layout I gleich gut Layout II

18. © © © © ©
Layout I gleich gut Layout II

19. © © © © ©
Layout I gleich gut Layout II

20. © © © © ©
Layout I gleich gut Layout II

5

1.3 Statecharts mit parallelen Zuständen

21. © © © © ©
Layout I gleich gut Layout II

22. © © © © ©
Layout I gleich gut Layout II

23. © © © © ©
Layout I gleich gut Layout II

24. © © © © ©
Layout I gleich gut Layout II

25. © © © © ©
Layout I gleich gut Layout II

26. © © © © ©
Layout I gleich gut Layout II

27. © © © © ©
Layout I gleich gut Layout II

28. © © © © ©
Layout I gleich gut Layout II

29. © © © © ©
Layout I gleich gut Layout II

30. © © © © ©
Layout I gleich gut Layout II

6

2 Verstehen von Statecharts

Aufgabe: Im Folgenden werden Ihnen Statecharts mit verschiedenem Aussehen vorge-
legt. Leiten Sie aus jedem vorgelegten Statechart, entsprechend der in der Vorlesung
vorgestellten Semantik für Safe State Machines, die Zustandsfolge und die Signalfolge
ab. Tragen Sie Ihre Ergebnisse auf dem entsprechenden Zeitstrahl ab. Sollten mehrere
Signale gleichzeitig present sein, tragen Sie diese übereinander auf dem Zeitstrahl ab.
Sollten mehrere Zustände während einer Zeit-Instanz aktiv sein (z. B. durch Parallelität
oder ein immediate-Signal), tragen Sie diese unterhalb des Zeitstrahls für diese Zeit-
einheit ab. Verwenden Sie bei hierarchischen Zuständen dabei immer nur die inneren
Zustände (Simple States). Knoten, die keine echten Zustände darstellen (z. B. Initial-,
Choice-, History-Connector) notieren Sie bitte nicht.

Beispiel:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Signale:

Zustände:

a a a
b

a a a
b
c

A A A B
C

A A B
C

Ihre Lösung wird jeweils vom Experimentleiter auf Richtigkeit geprüft. Sollte die Lö-
sung falsch sein, werden Sie gebeten, die Lösung zu überdenken und richtig zu lösen.
Dafür stehen Ihnen pro Teilaufgabe drei Zeitstrahle zur Verfügung. Sollten Sie nach dem
dritten Versuch keine richtige Lösung haben, gehen Sie zur nächsten Teilaufgabe über.
Versuchen Sie jedoch möglichst schon im ersten Versuch zum Erfolg zu kommen.

1.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

2.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

3.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

8

178 working documents from empirical study

4.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

5.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

6.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

9

7.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

8.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

9.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

10

10.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

11.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

12.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

11

13.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

14.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

15.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

12

C.2 the answer template document 179

3 Modellieren von Statecharts

Aufgabe:

Neuerstellen eines Statecharts

In dieser Aufgabe sollen Sie ein Ihnen vorgelegtes Statechart mit drei verschiedenen
Werkzeugen erstellen. Benutzen Sie dabei die im Daten-Dokument angegebenen Werk-
zeuge unbedingt in der dort angegeben Reihenfolge. Das Statechart liegt in der formalen
Notation vor, die Ihnen bereits aus der Übung zur Vorlesung „Modellbasierter Entwurf
und Verteilte Echtzeitsysteme“ bekannt ist. Das so entworfene Statechart sollte am En-
de de Übung leserlich sein, d. h. alle Elemente sollten klar erkennbar sein und eindeutig
zugeordnet werden können. Das Statechart muss dabei aber nicht „schön“ sein.

Aufgabe:

Verändern eines Statecharts

Ergänzen Sie nun in jedem Werkzeug entsprechend der angebeben Reihenfolge der Werk-
zeuge die gerade erstellten Statecharts entsprechend der ergänzenden formalen Beschrei-
bung. Das so entworfene Statechart sollte am Ende de Übung leserlich sein, d. h. al-
le Elemente sollten klar erkennbar sein und eindeutig zugeordnet werden können. Das
Statechart muss dabei aber nicht „schön“ sein.

14

4 Fragebogen

Aufgabe: Auf den folgenden Seiten finden Sie einen Fragebogen. Füllen Sie diesen bitte
aus!

1. Haben Sie sich nach dem ersten Experiment noch mit dem Verstehen von State-
charts beschäftigt?

© © © © ©
gar nicht sehr intensiv

2. Haben Sie nach dem ersten Experiment noch verschiedene Statechart-Modellie-
rungswerkzeuge benutzt?

© © © © ©
gar nicht sehr intensiv

3. In welchem Rahmen habe Sie sich mit diesen Modellierungswerkzeugen beschäf-
tigt?

© Vorlesung
© Übung
© Hausaufgabe
© private Zwecke

4. Mit welchen Werkzeugen haben Sie sich beschäftigt?

© graphisches Werkzeug
© Struktur-basiertes Werkzeug
© textuelles Werkzeug

5. Wie schätzen Sie nach den Experimenten die Aussagekraft von Statecharts bzgl.
der Spezifikation Eingebetteter Systeme ein?

© © © © ©
ohne Aussa-

gekraft
starke Aus-
sagekraft

6. Eingebettete Systeme können mit textuellen und visuelle Sprachen beschrieben
werden. Welche der beiden Ansätze bevorzugen Sie?

© © © © ©
textuelle
Sprachen

visuelle
Sprachen

16

180 working documents from empirical study

7. Wie wichtig ist Ihnen Sekundärnotation für textuelle Sprachen (d. h. z. B. Ein-
rückungen bei Methoden, Zeilenumbrüche, etc.)?

© © © © ©
unwichtig sehr wichtig

8. Wie wichtig ist Ihnen Sekundärnotation für visuelle Sprachen (d., h. Anordnung
der graphischen Elemente, Einhalten von Editier-Richtlinien, etc.)?

© © © © ©
unwichtig sehr wichtig

9. Sie haben in diesem Experiment drei verschiedene Werkzeuge benutzt. Welche Vor-
bzw. Nachteile sehen Sie bei der Benutzung des graphischen Werkzeuges?

10. Welche Vor- bzw. Nachteile sehen Sie bei der Benutzung des Struktur-basierten
Werkzeugs?

11. Welche Vor- bzw. Nachteile sehen Sie bei der Benutzung des textuellen Werkzeugs?

12. Was halten Sie von der Kombination des textuellen Werkzeugs mit der graphischen
Darstellung?

13. Welches Werkzeug bevorzugen Sie?

© graphisches Werkzeug
© Struktur-basiertes Werkzeug
© textuelles Werkzeug (ohne graphischer Anzeige)
© textuelles Werkzeug (mit graphischer Anzeige)

17

Fragen zum Experiment II

14. Was war besonders schwierig, einfach, lästig, angenehm (etc.)?

15. Wie schätzen Sie die Geschwindigkeit Ihrer Lösung ein?

© © © © ©
sehr

langsam
sehr schnell

16. Wie schätzen Sie die Qualität Ihrer Lösung ein?

© © © © ©
sehr schlecht sehr gut

17. Sind Sie mit Leistung und Geschwindigkeit zufrieden?

© © © © ©
überhaupt

nicht
zufrieden

sehr
zufrieden

18. Warum?

19. Was hätte zur Verbesserung Ihrer Leistung beigetragen?

20. Welche Kommentare möchten Sie sonst noch zum Experiment machen?

18

C.2 the answer template document 181

182 working documents from empirical study

C.3 the tool reference cards 183

c.3 the tool reference cards

c.3.1 Esterel Studio Reference Card
E
st

er
el

S
tu

d
io

R
ef

er
en

ce
C
ar

d
(E

xt
ra

ct
fr

om
E

st
er

el
St

ud
io

U
se

r
M

an
ua

l)

W
or

ks
pa

ce

S
af

e
S
ta

te
M

ac
hi

ne
E
le

m
en

ts

Es
te

re
l S

tu
di

o
U

se
r M

an
ua

l
4

- 1
15

D
es

ig
ni

ng
 M

od
el

s:
 4

B
ui

ld
in

g
A

ut
om

at
a

Y
ou

 c
an

 a
dd

 p
ar

al
le

lis
m

 to
 y

ou
r m

od
el

 b
y

ad
di

ng
 h

or
iz

on
ta

l o
r v

er
tic

al

se
pa

ra
to

rs
. S

ee
 “

A
dd

in
g

Pa
ra

lle
lis

m
 w

ith
 S

ep
ar

at
or

s”
 o

n
pa

ge
 9

2.

To
 le

ar
n

m
or

e
se

e:

•
“I

ns
er

tin
g,

 S
el

ec
tin

g,
 a

nd
 D

el
et

in
g

O
bj

ec
ts”

•
“M

ov
in

g
an

d
A

lig
ni

ng
 O

bj
ec

ts”
•

“C
ha

ng
in

g
O

bj
ec

t T
yp

es
”

•
“M

od
ify

in
g

Fo
nt

, L
in

e,
 o

r F
ill

 C
ol

or
”

•
“F

in
di

ng
 a

nd
 R

ep
la

ci
ng

”

In
se

rti
ng

, S
el

ec
tin

g,
 a

nd
 D

el
et

in
g

O
bj

ec
ts

Y
ou

 c
an

 in
se

rt
an

d
m

an
ip

ul
at

e
th

e
fo

llo
w

in
g

Sa
fe

 S
ta

te
 M

ac
hi

ne
 o

bj
ec

ts
:

N
ot

e

Se
pa

ra
tor

s d
o n

ot
ad

d s
em

an
tic

s.
Th

ey
 ar

e p
ur

ely
 vi

su
al

aid
s t

o s
ep

ar
ate

 au
tom

ata
.

Ta
bl

e
4.

3:
 L

is
t o

f S
af

e
St

at
e

M
ac

hi
ne

 d
es

ig
n

ob
je

ct
s

O
bj

ec
ts

In
se

rt
>

 ..
. m

en
u

Ic
on

S
im

pl
e

st
at

es
S

ta
te

Te
xt

 b
lo

ck
s

Te
xt

ua
l B

lo
ck

Tr
an

si
tio

ns
Li

nk

In
iti

al
 c

on
ne

ct
or

s
In

iti
al

 C
on

ne
ct

or

C
on

di
tio

na
l p

se
ud

o-
st

at
e

co
nn

ec
to

rs
C

on
di

tio
na

l P
se

ud
o-

st
at

e

S
us

pe
nd

 c
on

ne
ct

or
s

S
us

pe
nd

 C
on

ne
ct

or

H
is

to
ry

 c
on

ne
ct

or
s

H
is

to
ry

 C
on

ne
ct

or

R
un

 M
od

ul
es

R
un

 M
od

ul
e

Te
xt

ua
l m

ac
ro

st
at

es
Te

xt
ua

l M
ac

ro
st

at
e

G
ra

ph
ic

al
 m

ac
ro

st
at

es
G

ra
ph

ic
al

 M
ac

ro
st

at
e

H
or

iz
on

ta
l s

ep
ar

at
or

H
or

iz
on

ta
l S

ep
ar

at
or

V
er

tic
al

 s
ep

ar
at

or
V

er
tic

al
 S

ep
ar

at
or

T
oo

lb
ar

S
im

pl
e

S
af

e
S
ta

te
M

ac
hi

ne
w

it
h

tw
o

pa
ra

lle
l
au

to
m

at
a

184 working documents from empirical study

c.3.2 KIEL Macro Editor Reference Card
K

IE
L

R
ef

er
en

ce
C
ar

d
(S

tr
uc

tu
re

B
as

ed
E

di
to

r)

C
re

at
in

g
C

re
at

e
N

ew
St

at
ec

ha
rt

C
tr

l
+

C

R
em

ov
in

g
R

em
ov

e
T
ra

ns
it
io

n

C
tr

l
+

T

R
em

ov
e

St
at

e

C
tr

l
+

T

M
od

ify
in

g

U
pg

ra
de

Si
m

pl
e

St
at

e

C
tr

l
+

P

U
pg

ra
de

H
ie

ra
rc

hi
ca

l
St

at
e

C
tr

l
+

P

M
od

ify
T
ra

ns
it
io

n
D

ir
ec

ti
on

C
tr

l
+

S

In
se

rt
io

n
In

se
rt

Si
m

pl
e

St
at

e

C
tr

l
+

I

In
se

rt
H

ie
ra

rc
hi

ca
lS

ta
te

C
tr

l
+

J

In
se

rt
T
ra

ns
it
io

n

C
tr

l
+

R

In
se

rt
C
ho

ic
e

C
tr

l
+

K

In
se

rt
H

is
to

ry

C
tr

l
+

M

In
se

rt
Su

sp
en

d

C
tr

l
+

N

N
av

ig
at

io
n

W
al

k
T

hr
ou

gh
A

lte
rn

at
i-

ve
s

↑
,

↓

W
al

k
T

hr
ou

gh
Se

qu
en

ce
s

←
,

→

W
al

k
T

hr
ou

gh
H

ie
ra

rc
hy

P
ag

e
↑

,
P
ag

e
↓

C
ho

os
e

an
E

le
m

en
t

H
om

e
of

a
Se

qu
en

ce
H

om
e

Z
oo

m
in

g

R
es

et
Zo

om
to

10
0

%
C
tr

l
+

H

F
it

to
D

ra
w

in
g

A
re

a
C
tr

l
+

G

A
lw

ay
s

F
it

to
D

ra
w

in
g

A
re

a
C
tr

l
+

F

C.3 the tool reference cards 185

c.3.3 KIT Editor Reference Card
K

IT
R
ef

er
en

ce
C
ar

d
(T

ex
tu
al

St
at
ec
ha

rt
D
es
cr
ip
ti
on

L
an

gu
ag

e)

E
xa

m
pl

e
A

B
R
O

1
st

at
ec

ha
rt

AB
RO

[m
od

el
="

Es
te

re
l

St
ud

io
";

ve
rs

io
n=

"5
.0

"]
{

2
in

pu
t

a;
3

in
pu

t
b;

4
in

pu
t

r;
5

ou
tp

ut
o;

6
{

7
AB

O{
8

AB
{

9
->

A;
1
0

A-
>A

F[
ty

pe
=s

a;
la

be
l=

"a
"]

;
1
1

AF
[t

yp
e=

fi
na

l]
;

1
2

||
1
3

->
B;

1
4

B-
>B

F[
ty

pe
=s

a;
la

be
l=

"b
"]

;
1
5

BF
[t

yp
e=

fi
na

l]
;

1
6

};
1
7

->
AB

;
1
8

AB
->

AB
F[

ty
pe

=n
t;

la
be

l=
"/

o"
];

1
9

AB
F[

ty
pe

=f
in

al
];

2
0

};
2
1

->
AB

O;
2
2

AB
O-

>A
BO

[t
yp

e=
sa

;l
ab

el
="

r"
];

2
3

};
2
4

};

St
at

ec
ha

rt

C
re

at
e

a
ne

w
St

at
ec

ha
rt

C
tr

l
+

C

St
at

ec
ha

rt
H

ea
de

r
an

d
B

od
y

1
st

at
ec

ha
rt

AB
RO

[m
od

el
="

Es
te

re
l

St
ud

io
";

ve
rs

io
n=

"5
.0

"]
{

. . .
6

{ . . .
2
3

};
2
4

}; D
ec

la
ra

ti
on

s

Si
gn

al

T
yp

es
:

in
pu

t|
ou

tp
ut

2
in

pu
t

a;
3

in
pu

t
b;

4
in

pu
t

r;
5

ou
tp

ut
o;

St
at

es

Si
m

pl
e

St
at

e

9
->

A;

R
em

ar
k:

T
he

id
en
ti
fie

r
->

cr
ea
te
s

an
in
it
ia
l
st
at
e,

w
hi
ch

po
in
ts

to
st
at
e
A
(s
ee

Se
ct
io
n

St
at

e
T
yp

es
).

H
ie

ra
rc

hi
ca

l
St

at
e

7
AB

O{
. . .

1
6

};

P
ar

al
le

l
St

at
e

8
AB

{
. . .

1
2

||
. . .

1
6

};

St
at

e
La

be
l

St
at
e
la
be

ls
ar
e
us
ed

to
de

cl
ar
e
st
at
e
na

m
es
,w

hi
ch

di
f-

fe
r
fr
om

th
e
no

de
na

m
e.

E
xa

m
pl

e:
->

My
St

at
e;

My
St

at
e-

>n
od

e;
no

de
[l

ab
el

="
An

Ot
he

rS
ta

te
Na

me
"]

;

St
at

e
Ty

pe

1
1

AF
[t

yp
e=

fi
na

l]
;

T
yp

es
:

hi
st

or
y|

in
it

ia
l|

ch
oi

ce
|s

us
pe

nd
|f

in
al

A
bb

re
vi

at
io

n:
T
he

in
it
ia
l
do

es
n’
t
ne

ed
to

be
w
ri
tt
en

.
A
n
->

A
cr
ea
te
s
an

in
it
ia
ls
ta
te

w
it
h
tr
an

si
ti
on

to
st
at
e
A.

T
ra

ns
it
io

n

T
w
o
st
at
es

ar
e
co
nn

ec
te
d
by

a
tr
an

si
ti
on

de
no

te
d
by

th
e
sy
m
bo

l“
->
”.

E
xa

m
pl

es
:

A-
>B

,
A-

>A
(S

el
f-
L
oo

p)

1
0

A-
>A

F[
ty

pe
=s

a;
la

be
l=

"a
"]

;

Tr
an

si
ti
on

La
be

l

T
he

tr
an

si
ti
on

la
be

l
fo
llo

w
s
th
e
St
at
ec
ha

rt
tr
an

si
ti
on

no
ta
ti
on

:e
E
ve
nt
/S

ig
na

l,
[c

]
G
ua

rd
/C

on
di
ti
on

,/
a
A
c-

ti
on

E
xa

m
pl

e:
A-

>B
[l

ab
el

="
e[

c]
/a

"]
;

Tr
an

si
ti
on

P
rio

rit
y

T
he

pr
io
ri
ty

is
of

th
e
na

tu
ra
l
nu

m
be

rs
(N

).
A

tr
an

si
-

ti
on

la
be

le
d
w
it
h
nu

m
be

r
“1
”
is

of
th
e
hi
gh

es
t
pr
io
ri
ty

re
la
ti
ve
ly

to
ot
he

r
tr
an

si
ti
on

s
co
m
in
g
fr
om

th
e
sa
m
e

st
at
e.

A
si
ng

le
ou

tg
oi
ng

tr
an

si
ti
on

al
w
ay
s
ha

s
pr
io
ri
ty

“1
”
an

d
do

es
n’
t
ha

ve
to

be
w
ri
tt
en

.

E
xa

m
pl

e:
A-

>B
[p

ri
or

it
y=

"1
"]

;

Tr
an

si
ti
on

Ty
pe

T
yp

es
:

nt
|s

a|
wa

(n
or
m
al

te
rm

in
at
io
n,

st
ro
ng

ab
or
ti
on

,w
ea
k
ab

or
ti
on

)

E
xa

m
pl

e:
A-

>A
F[

ty
pe

=s
a]

;

B I B L I O G R A P H Y

[1] Scott W. Ambler. The Elements of UML 2.0 Style. Cambridge
University Press, New York, NY, USA, 2005. (Cited on
page 86.)

[2] Charles André. Computing SyncCharts reac-
tions. 88:3 – 19, 2004. ISSN 1571-0661. doi:
DOI:10.1016/j.entcs.2003.05.007. URL URL: http://www.

sciencedirect.com/science/article/B75H1-4DN4CWN-2/

2/796eaef2f3793bf8e3b89bfb5226aed0. SLAP 2003: Syn-
chronous Languages, Applications and Programming, A
Satellite Workshop of ECRST 2003. (Cited on pages 10

and 24.)

[3] Charles André. Semantics of S.S.M (Safe State Machine). Tech-
nical report, Esterel Technologies, Sophia-Antipolis, France,
April 2003. URL: http://www.esterel-technologies.com.
(Cited on pages 2, 10, 28, 64, 65, and 104.)

[4] Charles André. SyncCharts: A visual representation
of reactive behaviors. Technical Report RR 95–52, rev.
RR (96–56), I3S, Sophia-Antipolis, France, Rev. April
1996. URL: http://www.i3s.unice.fr/~andre/CAPublis/

SYNCCHARTS/SyncCharts.pdf. (Cited on page 24.)

[5] Charles André. Representation and analysis of reactive behav-
iors: A synchronous approach. In Computational Engineering
in Systems Applications (CESA), pages 19–29, Lille, France,
July 1996. IEEE-SMC. URL: http://www.i3s.unice.fr/

~andre/CAPublis/Cesa96/SyncCharts_Cesa96.pdf. (Cited
on pages 10 and 24.)

[6] ArgoUML. Tigris.org. Open source software engineering
tools, 2006. URL: http://argouml.tigris.org/. (Cited on
pages 10 and 12.)

[7] Cyrille Artho. Jlint – find bugs in Java programs, 2006. URL:
http://jlint.sourceforge.net/. (Cited on page 88.)

187

http://www.sciencedirect.com/science/article/B75H1-4DN4CWN-2/2/796eaef2f3793bf8e3b89bfb5226aed0
http://www.sciencedirect.com/science/article/B75H1-4DN4CWN-2/2/796eaef2f3793bf8e3b89bfb5226aed0
http://www.sciencedirect.com/science/article/B75H1-4DN4CWN-2/2/796eaef2f3793bf8e3b89bfb5226aed0
http://www.esterel-technologies.com
http://www.i3s.unice.fr/~andre/CA Publis/SYNCCHARTS/SyncCharts.pdf
http://www.i3s.unice.fr/~andre/CA Publis/SYNCCHARTS/SyncCharts.pdf
http://www.i3s.unice.fr/~andre/CA Publis/Cesa96/SyncCharts_Cesa96.pdf
http://www.i3s.unice.fr/~andre/CA Publis/Cesa96/SyncCharts_Cesa96.pdf
http://argouml.tigris.org/
http://jlint.sourceforge.net/

188 bibliography

[8] Roswitha Bardohl. GenGEd – a visual environment for visual
languages. Science of Computer Programming, Special Issue of
GraTra ’00, 2002. (Cited on page 16.)

[9] Clark Barrett, Silvio Ranise, Aaron Stump, and Cesare Tinelli.
The satisfiability modulo theories library (SMT-LIB), 2008.
URL: http://www.smt-lib.org/. (Cited on page 113.)

[10] Clark W. Barrett and Sergey Berezin. CVC Lite: A new im-
plementation of the Cooperating Validity Checker Category
B. In Rajeev Alur and Doron A. Peled, editors, Proceedings of
Computer Aided Verification: 16th International Conference, CAV
2004, Boston, volume 3114 of Lecture Notes in Computer Sci-
ence, pages 515–518. Springer, 2004. (Cited on pages 100

and 113.)

[11] Carlo Batini, Enrico Nardelli, and Roberto Tamassia. A layout
algorithm for data flow diagrams. IEEE Transactions on Soft-
ware Engineering, 12(4):538–546, 1986. ISSN 0098-5589. (Cited
on page 17.)

[12] David M. Beazley. SWIG: An easy to use tool for integrating
scripting languages with C and C++. In Proceedings of the
Fourth Annual USENIX Tcl/Tk Workshop, pages 129–139, 1996.
(Cited on page 113.)

[13] Benjamin B. Bederson and James D. Hollan. Pad++: A
zooming graphical interface for exploring alternate interface
physics. In UIST ’94: Proceedings of the 7th annual ACM sym-
posium on User interface software and technology, pages 17–26,
New York, NY, USA, 1994. ACM Press. (Cited on page 22.)

[14] Michael von der Beeck. A comparison of statecharts variants.
In H. Langmaack, W. P. de Roever, and J. Vytopil, editors,
Formal Techniques in Real-Time and Fault-Tolerant Systems, vol-
ume 863 of Lecture Notes in Computer Science, pages 128–148.
Springer-Verlag, 1994. (Cited on page 10.)

[15] Ken Bell. Überprüfung der Syntaktischen Robustheit von
Statecharts auf der Basis von OCL. Diploma thesis, Christian-
Albrechts-Universität zu Kiel, Department of Computer Sci-
ence, November 2006. (Cited on pages 28, 91, 92, 95, and 110.)

http://www.smt-lib.org/

bibliography 189

[16] Stefan Berner, Stefan Joos, Martin Glinz, and M. Arnold.
A visualization concept for hierarchical object models. In
Automated Software Engineering, pages 225–, 1998. (Cited on
page 22.)

[17] Gérard Berry. The foundations of Esterel. Proof, Language and
Interaction: Essays in Honour of Robin Milner, 2000. Editors: G.
Plotkin, C. Stirling and M. Tofte. (Cited on page 49.)

[18] Gérard Berry. The Esterel v5 Language Primer, Version v5_91.
Centre de Mathématiques Appliquées Ecole des Mines and
INRIA, 06565 Sophia-Antipolis, 2000. URL: ftp://ftp-sop.
inria.fr/esterel/pub/papers/primer.pdf. (Cited on
pages 42, 51, and 53.)

[19] Gérard Berry. The Constructive Semantics of Pure Esterel.
Draft Book, 1999. URL: ftp://ftp-sop.inria.fr/esterel/
pub/papers/constructiveness3.ps. (Cited on pages 51, 70,
and 71.)

[20] Gérard Berry and Georges Gonthier. The Esterel synchronous
programming language: Design, semantics, implementation.
Science of Computer Programming, 19(2):87–152, 1992. (Cited
on pages 1 and 49.)

[21] Dag Björklund, Johan Lilius, and Ivan Porres. Towards effi-
cient code synthesis from Statecharts. In A. Evans, R. France,
A. Moreira, and B. Rumpe, editors, Practical UML-Based Rig-
orous Development Methods - Countering or Integrating the eX-
tremists, volume P-7, Toronto, Canada, October 2001. Work-
shop of the pUML-Group held together with the UML 2001

Conference, Lecture Notes in Informatics (LNI). (Cited on
page 1.)

[22] Dag Björklund, Johan Lilius, and Ivan Porres. A unified
approach to code generation from behavioral diagrams.
In Languages for system specification: Selected contributions on
UML, systemC, system Verilog, mixed-signal systems, and prop-
erty specification from FDL ’03, pages 21–34, Norwell, MA,
USA, 2004. Kluwer Academic Publishers. (Cited on page 1.)

[23] Christopher Brooks, Chih-Hong Patrick Cheng,
Thomas Huining Feng, Edward A. Lee, and Reinhard

ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf
ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf
ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps
ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps

190 bibliography

von Hanxleden. Model engineering using multimodeling.
Technical Report UCB/EECS-2008-39, EECS Department,
University of California, Berkeley, April 2008. URL:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/

EECS-2008-39.html. (Cited on page 16.)

[24] Daniel Buck and Andreas Rau. On modelling guidelines:
Flowchart patterns for Stateflow. Softwaretechnik-Trends, 21

(2):7–12, August 2001. (Cited on pages 6, 81, and 91.)

[25] Oliver Burn. Checkstyle, 2005. URL: http://checkstyle.
sourceforge.net/. (Cited on page 88.)

[26] L. W. Cannon, R. A. Elliott, L. W. Kirchhoff, J. H. Miller, J. M.
Milner, R. W. Mitze, E. P. Schan, N. O. Whittington, Henry
Spencer, David Keppel, and Mark Brader. Recommended c
style and coding standards. URL: http://www.chris-lott.
org/resources/cstyle/indhill-cstyle.html. (Cited on
page 34.)

[27] Rodolfo Castelló, Rym Mili, and Ioannis G. Tollis. A frame-
work for the static and interactive visualization for state-
charts. Journal of Graph Algorithms and Applications, 6(3):313–
351, 2002. (Cited on pages 17, 18, 19, 24, and 34.)

[28] Rodolfo Castelló, Rym Mili, and Ioannis G. Tollis. ViSta. In
P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing
: 9th International Symposium, GD 2001, volume 2265 of Lec-
ture Notes in Computer Science, pages 481–482. Springer, 2002.
(Cited on page 17.)

[29] Juan de Lara, Hans Vangheluwe, and Manuel Alfonseca.
Meta-modelling and graph grammars for multi-paradigm
modelling in AToM3. Software and Systems Modeling (SoSyM),
3(3):194–209, August 2004. (Cited on page 16.)

[30] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and
Ioannis G. Tollis. Algorithms for drawing graphs: An anno-
tated bibliography. Computational Geometry: Theory and Ap-
plications, 4:235–282, June 1994. (Cited on pages 17 and 102.)

[31] Stephan Diehl, Carsten Görg, and Andreas Kerren. Preserv-
ing the mental map using foresighted layout. In Proceed-

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-39.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-39.html
http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
http://www.chris-lott.org/resources/cstyle/indhill-cstyle.html
http://www.chris-lott.org/resources/cstyle/indhill-cstyle.html

bibliography 191

ings of Joint Eurographics—IEEE TCVG Symposium on Visual-
ization, VisSym 2001, pages 175–184, Ascona, Switzerland,
2001. Springer Verlag, 2001. (Cited on pages 24 and 80.)

[32] Jerry Doland and Jon Valett. C style guide. Technical Report,
Software Engineering Laboratory Series SEL-94-003, National
Aeronautics and Space Administration (NASA), 1994. (Cited
on pages 26 and 88.)

[33] Peter Eades. A heuristic for graph drawing. Congressus
Numerantium, 42:149–160, 1984. ISSN 0384-9864. (Cited on
page 17.)

[34] Stephen A. Edwards. CEC: The Columbia Esterel Compiler,
2006. URL: http://www1.cs.columbia.edu/~sedwards/cec/.
(Cited on pages 109 and 130.)

[35] Sol Efroni, David Harel, and Irun R. Cohen. Reactive an-
imation: Realistic modeling of complex dynamic systems.
Computer, 38(1):38–47, January 2005. (Cited on page 17.)

[36] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun
Liu, Jozsef Ludvig, Stephen Neuendorffer, Sonia Sachs, and
Yuhong Xiong. Taming heterogeneity - the ptolemy approach.
Proceedings of the IEEE, 91(1):127–144, Jan 2003. ISSN 0018-
9219. doi: 10.1109/JPROC.2002.805829. (Cited on page 16.)

[37] Estbench Esterel Benchmark Suite. Estbench Esterel
Benchmark Suite, 2007. URL: http://www1.cs.columbia.

edu/~sedwards/software/estbench-1.0.tar.gz. (Cited on
pages 58, 130, and 132.)

[38] Esterel Studio User Manual. Esterel Technologies, 5.2 edition,
July 2004. (Cited on page 11.)

[39] Esterel Technologies, Inc. Esterel Studio User Manual. Esterel
Technologies, Inc, 6.0 edition, December 2007. (Cited on
page 10.)

[40] Esterel Technologies, Inc. SCADE Suite, last visited
05/2008. URL: http://www.esterel-technologies.com/

products/scade-suite/. (Cited on pages 42 and 141.)

http://www1.cs.columbia.edu/~sedwards/cec/
http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://www.esterel-technologies.com/products/scade-suite/
http://www.esterel-technologies.com/products/scade-suite/

192 bibliography

[41] David Evans and David Larochelle. Improving security using
extensible lightweight static analysis. IEEE Software, 19(1):
42–51, 2002. (Cited on pages 85 and 88.)

[42] Thomas Huining Feng. An extended semantics for a State-
chart Virtual Machine. In A. Bruzzone and Mhamed Itmi,
editors, Summer Computer Simulation Conference (SCSC 2003),
Student Workshop, pages 147–166. The Society for Computer
Modelling and Simulation, July 2003. Montréal, Canada.
(Cited on pages 25 and 47.)

[43] Rudolf Fleischer and Colin Hirsch. Graph drawing and its
applications. In Michael Kaufmann and Dorothea Wagner,
editors, Drawing Graphs: Methods and Models, number 2025,
pages 1–22. Springer-Verlag, Berlin, Germany, 2001. (Cited
on page 17.)

[44] Bastian Florentz, Martin Mutz, and Michaela Huhn. Avoiding
unpredicted behaviour of large scale embedded systems by
design and application of modelling rules. In Proceedings
of the 2004 First International Workshop on Model, Design and
Validation, November 2004. (Cited on page 25.)

[45] Ford Motor Company. Structured Analysis Using Mat-
lab/Simulink/Stateflow Modeling Style Guidelines, 1999. URL:
http://vehicle.berkeley.edu/mobies/papers/stylev242.

pdf. (Cited on pages 26 and 94.)

[46] Bernd Freimut, Teade Punter, Stefan Biffl, and Marcus
Ciolkowski. State-of-the-art in empirical studies. Techni-
cal report, ViSEK Technical Report 007/E, 2002. (Cited on
page 115.)

[47] Manuel Freire and Pilar Rodríguez. A graph-based interface
to complex hypermedia structure visualization. In AVI ’04:
Proceedings of the working conference on Advanced visual inter-
faces, pages 163–166, New York, NY, USA, 2004. ACM. (Cited
on page 24.)

[48] Manuel Freire and Pilar Rodríguez. Preserving the mental
map in interactive graph interfaces. In AVI ’06: Proceedings of
the working conference on Advanced visual interfaces, pages 270–
273, New York, NY, USA, 2006. ACM. (Cited on pages 23

and 24.)

http://vehicle.berkeley.edu/mobies/papers/stylev242.pdf
http://vehicle.berkeley.edu/mobies/papers/stylev242.pdf

bibliography 193

[49] Thomas M. J. Fruchterman and Edward M. Reingold. Graph
drawing by force-directed placement. Software—Practice &
Experience, 21(11):1129–1164, 1991. ISSN 0038-0644. doi: http:
//dx.doi.org/10.1002/spe.4380211102. (Cited on page 138.)

[50] Hauke Fuhrmann and Reinhard von Hanxleden. The Kiel
Integrated Environment for Layout for the Eclipse Rich-
ClientPlatform (KIELER) Homepage, 2009. URL: http:

//www.informatik.uni-kiel.de/rtsys/kieler/. (Cited on
page 141.)

[51] Gerge W. Furnas. Generalized fisheye views. In Human
Factors in Computings Systems CHI ’86 Conference Proceedings,
pages 16–23, 1986. (Cited on page 20.)

[52] Etienne Gagnon. SableCC: Java parser generator. URL: http:
//sablecc.org/. (Cited on page 107.)

[53] Etienne M. Gagnon and Laurie J. Hendren. SableCC,
an object-oriented compiler framework. In TOOLS
(26), pages 140–154. IEEE Computer Society, 1998.
URL URL: http://doi.ieeecomputersociety.org/10.1109/
TOOLS.1998.711009. (Cited on page 107.)

[54] Jean H. Gallier. Logic for Computer Science: Foundations of
Automatic Theorem Proving. Revised On-Line Version (2003),
Philadelphia, PA, June 2003. URL: http://www.cis.upenn.
edu/~jean/gbooks/logic.html. (Cited on page 113.)

[55] Emden Gansner, Eleftherios Koutsofios, and Stephen North.
Drawing graphs with dot. Technical report, AT&T Bell Lab-
oratories, Murray Hill, NJ, USA, February 2002. (Cited on
pages 18, 20, and 48.)

[56] Emden R. Gansner. Drawing graphs with GraphViz. Tech-
nical report, AT&T Bell Laboratories, Murray Hill, NJ, USA,
November 2004. (Cited on page 18.)

[57] Emden R. Gansner and Stephen C. North. An open graph
visualization system and its applications to software engi-
neering. Software—Practice and Experience, 30(11):1203–1234,
2000. ISSN 00380644. (Cited on pages 18, 25, 28, 99, and 101.)

http://www.informatik.uni-kiel.de/rtsys/kieler/
http://www.informatik.uni-kiel.de/rtsys/kieler/
http://sablecc.org/
http://sablecc.org/
http://doi.ieeecomputersociety.org/10.1109/TOOLS.1998.711009
http://doi.ieeecomputersociety.org/10.1109/TOOLS.1998.711009
http://www.cis.upenn.edu/~jean/gbooks/logic.html
http://www.cis.upenn.edu/~jean/gbooks/logic.html

194 bibliography

[58] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North,
and Kiem-Phong Vo. A technique for drawing directed
graphs. Software Engineering, 19(3):214–230, 1993. (Cited
on page 102.)

[59] GenGED. Project homepage. URL: http://tfs.cs.

tu-berlin.de/~genged/. (Cited on page 16.)

[60] Joseph Gil and Stuart Kent. Three dimensional software
modelling. In Proceedings of the 20th international conference on
Software engineering, pages 105–114. IEEE Computer Society,
1998. (Cited on page 22.)

[61] Stefania Gnesi and Franco Mazzanti. On the fly model
checking of communicating UML State Machines. In Second
ACIS International Conference on Software Engineering Research
Management and Applications (SERA2004), 2004. (Cited on
page 47.)

[62] Martin Gogolla and Francesco Parisi-Presicce. State diagrams
in UML: A formal semantics using graph transformations.
In Manfred Broy, Derek Coleman, Tom S. E. Maibaum, and
Bernhard Rumpe, editors, Proceedings PSMT ’98 Workshop on
Precise Semantics for Modeling Techniques. Technische Univer-
sität München, TUM-I9803, 1998. (Cited on page 27.)

[63] GraphViz. Graphviz—graph drawing tools, 2007. URL: http:
//graphviz.org/. (Cited on page 18.)

[64] T. R. G. Green and M. Petre. When visual programs are
harder to read than textual programs. In Human-Computer
Interaction: Tasks and Organisation, Proceedings ECCE-6 (6th
European Conference Cognitive Ergonomics), 1992. (Cited on
pages 16 and 17.)

[65] Jan Friso Groote and Frank van Ham. Large state space visual-
ization. In Hubert Garavel and John Hatcliff, editors, Proceed-
ings of Tools and Algorithms for the Construction and Analysis
of Systems, 9th International Conference, TACAS 2003, Held as
Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, vol-
ume 2619 of Lecture Notes in Computer Science, pages 585–590.
Springer, 2003. (Cited on pages 22 and 23.)

http://tfs.cs.tu-berlin.de/~genged/
http://tfs.cs.tu-berlin.de/~genged/
http://graphviz.org/
http://graphviz.org/

bibliography 195

[66] Paul Le Guernic, Thierry Goutier, Michel Le Borgne, and
Claude Le Maire. Programming real time applications with
SIGNAL. Proceedings of the IEEE, 79(9), September 1991.
(Cited on page 1.)

[67] Corin Gurr. Aligning syntax and semantics in formalisations
of visual languages. In HCC ’01: Proceedings of the IEEE 2001
Symposia on Human Centric Computing Languages and Environ-
ments (HCC’01), page 60, Washington, DC, USA, 2001. IEEE
Computer Society. (Cited on page 34.)

[68] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel
Pilaud. The synchronous data-flow programming language
LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, September
1991. (Cited on pages 1 and 141.)

[69] Reinhard von Hanxleden. Stateflow and STATEMATE – a
comparison of statechart dialects. Project Report FT3/AS-
1999-003, DaimlerChrysler, August 1999. (Cited on page 85.)

[70] Reinhard von Hanxleden, Kay Kossowan, and Horst Burmeis-
ter. Robustness analysis for statecharts. Presentation,
2000. URL: http://www.vmars.tuwien.ac.at/projects/

setta/docs/Slides07_StateAnalyzerTalk.pdf. (Cited on
page 85.)

[71] David Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 8(3):231–274, June
1987. (Cited on pages 1, 2, 9, 110, 111, and 133.)

[72] David Harel and Gregory Yashchin. An algorithm for blob hi-
erarchy layout. The Visual Computer, 18:164–185, 2002. (Cited
on pages 17 and 34.)

[73] David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli,
Michal Politi, Rivi Sherman, Aharon Shtull-Trauring, and
Mark Trakhtenbrot. Statemate: A working environment for
the development of complex reactive systems. IEEE Transac-
tions on Software Engineering, 16(4):403–414, April 1990. (Cited
on pages 2, 3, and 132.)

[74] Jeanette Heidenberg, Andreas Nåls, and Ivan Porres. Stat-
echart features and pre-release defects in software main-
tenance. In 2007 IEEE Symposium on Visual Languages

http://www.vmars.tuwien.ac.at/projects/setta/docs/Slides07_StateAnalyzerTalk.pdf
http://www.vmars.tuwien.ac.at/projects/setta/docs/Slides07_StateAnalyzerTalk.pdf

196 bibliography

and Human-Centric Computing, Coeur d’Aléne, Idaho, USA,
September 2007. (Cited on pages 41 and 75.)

[75] Mats P. E. Heimdahl and Nancy G. Leveson. Complete-
ness and consistency in hierarchical state-based requirements.
Software Engineering, 22(6):363–377, 1996. (Cited on pages 25

and 27.)

[76] Constance Heitmeyer, Ralph Jeffords, and Bruce Labaw. Au-
tomated consistency checking of requirements specifications.
ACM Transactions on Software Engineering and Methodology.
(Cited on page 27.)

[77] Karsten Heymann. Ein LATEX-Style zur Benutzung von KIEL-
Statecharts. Bachelor project, Christian-Albrechts-Universität
zu Kiel, Department of Computer Science, 2006. (Cited on
page 28.)

[78] Ralf Huuck. Sanity checks for Stateflow diagrams.
In Stephen A. Edwards, Nicolas Halbwachs, Reinhard
v. Hanxleden, and Thomas Stauner, editors, Synchronous
Programming – SYNCHRON ’04, number 04491 in Dagstuhl
Seminar Proceedings, Dagstuhl, Germany, 2005. Interna-
tionales Begegnungs- und Forschungszentrum (IBFI), Schloss
Dagstuhl, Germany. (Cited on page 26.)

[79] Matthew S. Jaffe, Nancy G. Leveson, Mats P. E. Heimdahl,
and Bonnie E. Melhart. Software requirements analysis
for real-time process-control systems. IEEE Transactions on
Software Engineering, 17(3):241–258, March 1991. (Cited on
page 24.)

[80] Stephen C. Johnson. Lint, a C program checker. In Ken
Thompson and Dennis M. Ritchie, editors, UNIX Program-
mer’s Manual. Bell Laboratories, seventh edition, 1979. (Cited
on page 88.)

[81] Michael Jünger and Petra Mutzel. Graph Drawing Software.
Springer, October 2003. (Cited on page 17.)

[82] Natalia Juristo and Ana M. Moreno. Basics of Software Engi-
neering Experimentation. Springer, 2001. (Cited on page 116.)

bibliography 197

[83] Tomihisa Kamada and Satoru Kawai. An algorithm for
drawing general undirected graphs. Information Process-
ing Letters, 31(1):7–15, 1989. ISSN 0020-0190. URL: http:
//dx.doi.org/10.1016/0020-0190(89)90102-6. (Cited on
page 17.)

[84] Tobias Kloss. Flexibles und Automatisiertes Layout von
Statecharts. Student resarch project, Christian-Albrechts-
Universität zu Kiel, Department of Computer Science, July
2003. (Cited on page 28.)

[85] Tobias Kloss. Automatisches Layout von Statecharts unter
Verwendung von GraphViz. Diploma thesis, Christian-
Albrechts-Universität zu Kiel, Department of Computer Sci-
ence, May 2005. (Cited on page 28.)

[86] Hideki Koike and Hirotaka Yoshihara. Fractal approaches for
visualizing huge hierarchies. In Ephraim P. Glinert and Kai A.
Olsen, editors, Proc. IEEE Symp. Visual Languages, VL, pages
55–60. IEEE Computer Society, 1993. (Cited on page 22.)

[87] Kay Kossowan. Automatisierte Überprüfung semantischer
Modellierungsrichtlinien für Statecharts. Diplomarbeit, Tech-
nische Universität Berlin, 2000. (Cited on pages 89, 95,
and 96.)

[88] Oliver Köth and Mark Minas. Structure, Abstraction, and
Direct Manipulation in Diagram Editors. In DIAGRAMS
’02: Proceedings of the Second International Conference on Di-
agrammatic Representation and Inference, pages 290–304, Lon-
don, UK, 2002. Springer-Verlag. (Cited on pages 15, 22,
and 75.)

[89] Th. Kreppold. Modellierung mit Statemate MAGNUM und
Rhapsody in Micro C. Berner & Mattner Systemtechnik
GmbH, Otto-Hahn-Str. 34, 85521 Ottobrunn, Germany, Dok.-
Nr.: BMS/QM/RL/STM, Version 1.4, August 2001. (Cited
on page 26.)

[90] Lars Kühl. Transformation von Esterel nach Esterel Studio.
Diploma thesis, Christian-Albrechts-Universität zu Kiel, De-
partment of Computer Science, September 2005. (Cited on
pages 28, 51, 54, 56, and 71.)

http://dx.doi.org/10.1016/0020-0190(89)90102-6
http://dx.doi.org/10.1016/0020-0190(89)90102-6

198 bibliography

[91] Leslie Lamport. LATEX – A Document Preparation System.
Adddison-Wesley, 1994. (Cited on page 39.)

[92] Brenda Laurel. Design Principles for Human-Computer-Activity,
chapter 5. In Laurel [93], 1991. (Cited on page 36.)

[93] Brenda Laurel. Computers as Theatre. Addison-Wesley, 1991.
(Cited on page 198.)

[94] Ying K. Leung and Mark D. Apperley. A review and
taxonomy of distortion-oriented presentation techniques.
ACM Transactions on Computer-Human Interaction, 1(2):126–
160, June 1994. (Cited on page 20.)

[95] Jan Lukoschus. Removing Cycles in Esterel Programs. PhD
thesis, Christian-Albrechts-Universität zu Kiel, Faculty of
Engineering, July 2006. URL: http://eldiss.uni-kiel.

de/macau/receive/dissertation_diss_2015. (Cited on
page 45.)

[96] Paul Lukowicz, Ernst A. Heinz, Lutz Prechelt, and Walter F.
Tichy. Experimental evaluation in computer science: A quan-
titative study. Journal of Systems ans Software, 28(1):9–18, Jan-
uary 1995. Also as TR 17/94 (August 1994), Fakultät für
Informatik, Universtität Karlsruhe, Germany, ftp.ira.uka.de.
(Cited on page 116.)

[97] Florian Lüpke. Implementierung eines Statechart-Editors
mit layoutbasierten Bearbeitungshilfen. Diploma thesis,
Christian-Albrechts-Universität zu Kiel, Department of Com-
puter Science, June 2005. (Cited on page 28.)

[98] F. Maraninchi and Y. Rémond. Argos: An automaton-based
synchronous language. Computer Languages, 27(27):61–92,
2001. (Cited on pages 25 and 48.)

[99] Florence Maraninchi. The Argos language: Graphical repre-
sentation of automata and description of reactive systems. In
IEEE Workshop on Visual Languages, October 1991. (Cited on
page 25.)

[100] MathWorks Automotive Advisory Board (MAAB). Controller
Style Guidelines for Production Intent Using MATLAB, Simulink

http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_2015
http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_2015

bibliography 199

and Stateflow, April 2001. URL: http://www.mathworks.com/
industries/auto/maab.html. (Cited on page 26.)

[101] Mathworks Inc. Simulink – Simulation and Model-Based
Design. The Mathworks, Inc., Natick, MA, 2005.
URL: http://www.mathworks.com/access/helpdesk/help/

pdf_doc/simulink/sl_using.pdf. (Cited on pages 10

and 11.)

[102] Franco Mazzanti. UMC User Guide (Version 2.5). Istituto di
Scienza e Tecnologie dell’Informazione “Alessandro Faedo”
(ISTI), Pisa, Italy, 2003. (Cited on page 25.)

[103] Linda McIver and Damian Conway. Seven deadly sins
of introductory programming language design. Interna-
tional Conference on Software Engineering: Education and Prac-
tice (SE:EP’96), 00:309, 1996. (Cited on pages 25 and 45.)

[104] Mark Minas. Specifying Statecharts with DiaGen. HCC ’01

– 2001 IEEE Symposia on Human-Centric Computing Lan-
guages and Environments, Symposium on Visual Languages
and Formal Methods, Statechart Modeling Contest, Septem-
ber 2001. (Cited on pages 15 and 22.)

[105] Mark Minas. Concepts and realization of a diagram editor
generator based on hypergraph transformation. Science of
Computer Programming (SCP), 2001. (Cited on page 15.)

[106] Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama.
Layout adjustment and the mental map. Journal of Visual
Languages & Computing, 6(2):183–210, June 1995. (Cited on
pages 22 and 23.)

[107] Motor Industry Software Reliability Association (MISRA).
MISRA-C:2004. Guidelines for the Use of the C Language in Crit-
ical Systems. Motor Industry Research Association (MIRA),
Nuneaton CV10 0TU, UK, 2004. (Cited on pages 26, 85, 86,
and 88.)

[108] Miltiadis Moutos, Albrecht Korn, and Carsten Fisel.
Guideline-Checker. Studienarbeit, University of Applied
Sciences in Esslingen, June 2000. (Cited on page 27.)

http://www.mathworks.com/industries/auto/maab.html
http://www.mathworks.com/industries/auto/maab.html
http://www.mathworks.com/access/helpdesk/help/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/access/helpdesk/help/pdf_doc/simulink/sl_using.pdf

200 bibliography

[109] Martin Mutz. Eine durchgängige modellbasierte Entwurfs-
methodik für eingebettete Systeme im Automobilbereich. Disserta-
tion, Technische Universität Braunschweig, 2005. (Cited on
pages 26, 27, 93, and 110.)

[110] Martin Mutz and Michaela Huhn. Automated statechart
analysis for user-defined design rules. Technical report, Tech-
nische Universität Braunschweig, 2003. (Cited on pages 27,
89, 90, and 140.)

[111] Nabeel Al-Shamma and Robert Ayers and Richard Cohn
and Jon Ferraiolo and Martin Newell and Roger K. de Bry
and Kevin McCluskey and Jerry Evans. Precision graph-
ics markup language (PGML). World Wide Web Con-
sortium Note 10-April-1998. URL: http://www.w3.org/TR/
1998/NOTE-PGML. (Cited on page 39.)

[112] National Instruments. LabVIEW, visited 03/2008. URL:
http://www.ni.com/labview/. (Cited on page 16.)

[113] Object Management Group. Unified Modeling Language
(UML) 1.3 specification, February 2000. URL: http://www.
omg.org/cgi-bin/apps/doc?formal/00-03-01.pdf. (Cited
on pages 26, 91, 92, and 100.)

[114] Object Management Group. Unified Modeling Lanugage—
UML resource page, 2005. URL: http://www.uml.org. (Cited
on pages 2 and 10.)

[115] Object Management Group. Unified Modeling Language:
Superstructure, version 2.0, Aug 2005. URL: http://www.omg.
org/docs/formal/05-07-04.pdf. (Cited on page 26.)

[116] Object Management Group, Inc. Human-Usable Textual Nota-
tion (HUTN) Specification, August 2004. URL: http://www.
omg.org/technology/documents/formal/hutn.htm. (Cited
on pages 25 and 46.)

[117] University of Chicago Press, editor. The Chicago Manual of
Style. University of Chicago, 15th edition, 2003. (Cited on
page 86.)

[118] André Ohlhoff. Simulating the Behavior of SyncCharts. Stu-
dent research project, Christian-Albrechts-Universität zu Kiel,

http://www.w3.org/TR/1998/NOTE-PGML
http://www.w3.org/TR/1998/NOTE-PGML
http://www.ni.com/labview/
http://www.omg.org/cgi-bin/apps/doc?formal/00-03-01.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/00-03-01.pdf
http://www.uml.org
http://www.omg.org/docs/formal/05-07-04.pdf
http://www.omg.org/docs/formal/05-07-04.pdf
http://www.omg.org/technology/documents/formal/hutn.htm
http://www.omg.org/technology/documents/formal/hutn.htm

bibliography 201

Department of Computer Science, November 2004. (Cited on
page 28.)

[119] Zsigmond Pap, Istvan Majzik, and Andras Pataricza. Check-
ing general safety criteria on UML statecharts. Lecture Notes
in Computer Science, 2187, 2001. (Cited on page 26.)

[120] David L. Parnas. Some theorems we should prove. In HUG
’93: Proceedings of the 6th International Workshop on Higher Or-
der Logic Theorem Proving and its Applications, pages 155–162,
London, UK, 1994. Springer-Verlag. (Cited on page 81.)

[121] Nancy Pennington. Stimulus structures and mental repre-
sentations in expert comprehension of computer programs.
Cognitive Psychology, 19:295–341, 1987. (Cited on page 34.)

[122] Marian Petre. Why looking isn’t always seeing: Readership
skills and graphical programming. Communications of the
ACM, 38(6):33–44, June 1995. (Cited on pages 33 and 34.)

[123] Amir Pnueli and M. Shalev. What is in a step: On the
semantics of Statecharts. In TACS ’91: Proceedings of the Inter-
national Conference on Theoretical Aspects of Computer Software,
pages 244–264, London, UK, 1991. Springer-Verlag. (Cited on
page 118.)

[124] Stuart Pook, Eric Lecolinet, Guy Vayssaix, and Emmanuel
Barillot. Context and Interaction in Zoomable User Interfaces.
ACM Press, 2000. (Cited on page 20.)

[125] Adrian Posor. Extension of KIEL by Stateflow charts.
Diploma thesis, Christian-Albrechts-Universität zu Kiel, De-
partment of Computer Science, December 2005. (Cited on
page 28.)

[126] Lutz Prechelt. Kontrollierte Experimente in der Softwaretechnik:
Potenzial und Methodik. Springer, Berlin, 2001. (Cited on
page 116.)

[127] Programming Research Ltd., 2005. URL: http://www.

programmingresearch.com/. (Cited on page 88.)

[128] The GNU Project. GNU M4, last visited 04/2008. URL:
http://www.gnu.org/software/m4/. (Cited on page 41.)

http://www.programmingresearch.com/
http://www.programmingresearch.com/
http://www.gnu.org/software/m4/

202 bibliography

[129] The LATEX project team. LATEX – a document preparation
system, visited 04/2007. URL: http://www.latex-project.
org/. (Cited on page 39.)

[130] Helen C. Purchase, Matthew McGill, Linda Colpoys, and
David Carrington. Graph drawing aesthetics and the com-
prehension of UML class diagrams: An empirical study. In
ACM International Conference Proceeding Series archive, Aus-
tralian symposium on Information visualisation, pages 129–137,
2001. (Cited on pages 16 and 17.)

[131] Thomas Pyrlik. Entwurf und Realisation eines OPC-Clients
zur Steuerung redundanter PROFIBUS OPC-Server mit
Fehlerüberwachung der PROFIBUS Peripherie. Diploma
thesis, Christian-Albrechts-Universität zu Kiel, Department
of Computer Science, December 2004. (Cited on pages 65

and 97.)

[132] R Development Core Team. R: A Language and Environment
for Statistical Computing. R Foundation for Statistical Comput-
ing, Vienna, Austria, 2006. URL: http://www.R-project.org.
(Cited on page 120.)

[133] M. O. Rabin and D. Scott. Finite automata and their decision
problems. IBM Journal of Research and Development, 3:114–125,
1959. (Cited on page 9.)

[134] Rational Software. Rational Rose technical developer,
2006. URL: http://www-306.ibm.com/software/awdtools/
developer/technical/. (Cited on pages 2 and 18.)

[135] E. M. Reingold and J. S. Tilford. Tidier drawing of trees.
IEEE Transactions on Software Engineering, 7:223–228, mar
1981. (Cited on page 17.)

[136] Frederic Richard and Henry F. Ledgard. A reminder for
language designers. ACM SIGPLAN Notices, 12(12):73–82,
1977. (Cited on pages 25 and 45.)

[137] Mark Richters. A Precise Approach to Validating UML Models
and OCL Constraints. PhD thesis, University of Bremen, 2001.
(Cited on pages 26 and 110.)

http://www.latex-project.org/
http://www.latex-project.org/
http://www.R-project.org
http://www-306.ibm.com/software/awdtools/developer/technical/
http://www-306.ibm.com/software/awdtools/developer/technical/

bibliography 203

[138] Jason Robbins and David Redmiles. Cognitive support, UML
adherence, and XMI interchange in Argo/UML. Journal of
Information and Software Technology. Special issue: The Best of
COSET ’99, 42(2):79–89, 2000. (Cited on pages 12, 13, 14,
and 17.)

[139] Jason Robbins, Michael Kantor, and David Redmiles. Sweep-
ing away disorder with the broom alignment tool. In Proceed-
ings on Human Factors in Computing Systems (CHI ’99), May
1999. (Cited on page 13.)

[140] George G. Robertson, Jock D. Mackinlay, and Stuart K. Card.
Cone trees: Animated 3d visualizations of hierarchical in-
formation. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 189–194. ACM Press, 1991.
URL: http://doi.acm.org/10.1145/108844.108883. (Cited
on page 22.)

[141] Pierre N. Robillard, Patrick d’Astous, Francoise D’tienne, and
Willemien Visser. Measuring cognitive activities in software
engineering. In Proceedings of the 20th international conference
on Software engineering, pages 292–299. IEEE Computer Soci-
ety, 1998. (Cited on page 17.)

[142] Manojit Sarkar and Marc H. Brown. Graphical fisheye views
of graphs. In Proceedings of the ACM SIGCHI 1992 Conference
on Human Factors in Computing Systems, pages 83–91, 1992.
(Cited on pages 20 and 21.)

[143] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi.
Defining and translating a “safe” subset of Simulink/State-
flow into Lustre. Technical Report 2004-16, Verimag, Centre
Équation, 38610 Gières, July 2004. URL: http://www-verimag.
imag.fr/index.php?page=techrep-list. (Cited on pages 26

and 82.)

[144] Gunnar Schaefer. Statechart style checking – automated se-
mantic robustness analysis of Statecharts. Diploma thesis,
Christian-Albrechts-Universität zu Kiel, Department of Com-
puter Science, June 2006. (Cited on pages 28, 84, 88, 89, 90,
91, 96, and 114.)

http://doi.acm.org/10.1145/108844.108883
http://www-verimag.imag.fr/index.php?page=techrep-list
http://www-verimag.imag.fr/index.php?page=techrep-list

204 bibliography

[145] Christian Scheidler. Systems engineering for time triggered
architectures. SETTA Consortium, 2002. Deliverable D7.3 –
Final Document. (Cited on pages 27 and 90.)

[146] K. Schneider. Embedding imperative synchronous languages
in interactive theorem provers. In Conference on Application of
Concurrency to System Design (ACSD), pages 143–156, New-
castle upon Tyne, UK, June 2001. IEEE Computer Society.
(Cited on pages 25 and 68.)

[147] M. Sheelagh, T. Carpendale, David J. Cowperthwaite, and
F. David Fracchia. Extending distortion viewing from 2D
to 3D. IEEE Computer Graphics and Applications: Special Issue
on Information Visualization, 17(4):42–51, / 1997. (Cited on
page 22.)

[148] F. G. Shi, J. M. Armstrong, and J. A. McDermid. A safe subset
of Statecharts for safety-critical applications. Technical report,
Department of Computer Science, University of York, 1996.
(Cited on page 82.)

[149] Henry Spencer. The ten commandments for C pro-
grammers, 1992. URL: http://www.lysator.liu.se/c/

ten-commandments.html. (Cited on page 88.)

[150] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Meth-
ods for visual understanding of hierarchical system struc-
tures. IEEE Transactions on Systems, Man and Cybernetics, 11

(2):109–125, February 1981. (Cited on pages 17 and 18.)

[151] Sun Microsystems, Inc. Code conventions for the Java pro-
gramming language, 1997. URL: http://java.sun.com/

docs/codeconv/. (Cited on pages 26, 34, 85, and 88.)

[152] Roberto Tamassia, Giuseppe Di Battista, and Carlo Batini.
Automatic graph drawing and readability of diagrams. IEEE
Transactions on Systems, Man and Cybernetics, 18(1):61–79,
1988. ISSN 0018-9472. (Cited on page 17.)

[153] Conrad Taylor. What has WYSIWYG done to us? The Seybold
Report on Publishing Systems, 26(2), September 1996. (Cited
on page 29.)

http://www.lysator.liu.se/c/ten-commandments.html
http://www.lysator.liu.se/c/ten-commandments.html
http://java.sun.com/docs/codeconv/
http://java.sun.com/docs/codeconv/

bibliography 205

[154] The Mathworks. Stateflow—design and simulate state ma-
chines and control logic, 2008. URL: http://www.mathworks.
com/products/stateflow/. (Cited on pages 2 and 10.)

[155] The Perl Foundation. The Perl directory, last visited 04/2008.
URL: http://www.perl.org/. (Cited on page 41.)

[156] The Ricardo Company. Mint – a style checker for simulink
and stateflow, 2006. URL: http://www.ricardo.com/

engineeringservices/controlelectronics.aspx?page=

mint. (Cited on page 27.)

[157] The University of Queensland. DSTC Pegamento project, last
visited 03/2007. URL: http://www.dstc.edu.au/Research/
Projects/Pegamento/hutn/. (Cited on page 25.)

[158] Jenifer Tidwell. Common ground: A pattern language for
human-computer interface design, 1999. URL: http://www.
mit.edu/~jtidwell/interaction_patterns.html. (Cited on
page 38.)

[159] Dresden OCL Toolkit, 2006. URL: http://dresden-ocl.

sourceforge.net/. (Cited on page 110.)

[160] Michael Tsai. WYSIWYG: Is it what you want? About
This Particular Macintosh (ATPM), December 1998. (Cited
on page 29.)

[161] Dániel Varró, Gergely Varró, and András Pataricza. Visual
graph transformation in system verification. In Elena Gram-
atova, Hans Manhaeve, and Adam Pawlak, editors, Sympo-
sium on Design and Diagnostics of Electronic Systems (DDECS),
pages 137–141, Bratislava, Slovakia, April 5-7 2000. (Cited on
page 27.)

[162] Jonas Völcker. A quantitative analysis of Statechart aesthetics
and Statechart development methods. Diploma thesis,
Christian-Albrechts-Universität zu Kiel, Department of Com-
puter Science, May 2008. URL: http://rtsys.informatik.
uni-kiel.de/~biblio/downloads/theses/jovo-dt.pdf.
(Cited on page 28.)

[163] Reinhard von Hanxleden. Lectures: Model-based de-
sign and distributed real-time systems, 2007. URL:

http://www.mathworks.com/products/stateflow/
http://www.mathworks.com/products/stateflow/
http://www.perl.org/
http://www.ricardo.com/engineeringservices/controlelectronics.aspx?page=mint
http://www.ricardo.com/engineeringservices/controlelectronics.aspx?page=mint
http://www.ricardo.com/engineeringservices/controlelectronics.aspx?page=mint
http://www.dstc.edu.au/Research/Projects/Pegamento/hutn/
http://www.dstc.edu.au/Research/Projects/Pegamento/hutn/
http://www.mit.edu/~jtidwell/interaction_patterns.html
http://www.mit.edu/~jtidwell/interaction_patterns.html
http://dresden-ocl.sourceforge.net/
http://dresden-ocl.sourceforge.net/
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/jovo-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/jovo-dt.pdf

206 bibliography

http://www.informatik.uni-kiel.de/rtsys/teaching/

ws06-07/v-model/skript/. (Cited on page 116.)

[164] World Wide Web Consortium (W3C). URL: http://www.w3.
org/html/. (Cited on page 39.)

[165] World Wide Web Consortium (W3C). W3C SVG homepage,
2005. URL: http://www.w3.org/Graphics/SVG/. (Cited on
page 39.)

[166] Jos B. Warmer and Anneke G. Kleppe. The object constraint
language: Precise modeling with UML. Addison-Wesley, Read-
ing, Massachusetts, 1998. (Cited on page 81.)

[167] Mirko Wischer. Ein File-Interface für das KIEL Projekt – Im-
port von Esterel-Studio-Dateien. Internship report, Christian-
Albrechts-Universität zu Kiel, Department of Computer Sci-
ence, 2005. (Cited on page 28.)

[168] Mirko Wischer. Ein Browser für die Visualisierung dy-
namischer Sichten von Statecharts. Student research project,
Christian-Albrechts-Universität zu Kiel, Department of Com-
puter Science, August 2005. (Cited on page 28.)

[169] Mirko Wischer. Textuelle Darstellung und strukturbasiertes
Editieren von Statecharts. Diploma thesis, Christian-
Albrechts-Universität zu Kiel, Department of Computer Sci-
ence, February 2006. (Cited on pages 28 and 49.)

[170] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell,
and A. Wesslén. Experimentation in Software Engineering: An
Introduction. Springer, 2000. (Cited on page 116.)

[171] World Wide Web Consortium (W3C). State Chart XML
(SCXML): State Machine notation for control abstraction,
February 2007. URL: http://www.w3.org/TR/scxml/. (Cited
on pages 25 and 46.)

[172] World Wide Web Consortium (W3C). XML homepage. URL:
http://www.w3.org/XML/. (Cited on page 39.)

http://www.informatik.uni-kiel.de/rtsys/teaching/ws06-07/v-model/skript/
http://www.informatik.uni-kiel.de/rtsys/teaching/ws06-07/v-model/skript/
http://www.w3.org/html/
http://www.w3.org/html/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/TR/scxml/
http://www.w3.org/XML/

colophon

This thesis was typeset with LATEX 2ε using André Miede’s elegant
Classic Thesis style, to suit scientific publication standards. The doc-
ument text was typeset in Hermann Zapf’s Palatino and Euler type
faces. The listings are typeset in Bera Mono, originally developed
by Bitstream, Inc. as “Bitstream Vera”.

	Dedication
	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction and Motivation
	1.1 Purpose and Contribution
	1.2 Chapter Overview

	2 Background and Related Work
	2.1 An Introduction to Statecharts
	2.2 Modeling Environments for Statecharts
	2.3 Visualization of Complex State-Based Systems
	2.4 Statechart Synthesis
	2.5 Preventing Statechart Modeling Errors
	2.6 The KIEL Environment

	3 Editing Graphical Models
	3.1 The WYSIWYG Statechart Editing Process
	3.1.1 Editing Schemata
	3.1.2 Action Sequences

	3.2 Layout of Graphical Models
	3.3 Macro-Based Editing
	3.4 Text-Based Editing
	3.4.1 Comparing Textual and Graphical Editing
	3.4.2 A Statechart Desciption Language

	3.5 Synthesizing Graphical Models
	3.5.1 From Esterel to SSMs
	3.5.2 The Optimization
	3.5.3 Correctness of the Transformation
	3.5.4 Correctness of Optimizations
	3.5.5 Experimental Validation

	4 Simulating Graphical Models
	4.1 The Dynamic Statechart Normal Form
	4.2 Simulating Complex Statecharts with DSNF

	5 Preventing Errors in Graphical Models
	5.1 Statechart Modeling Errors
	5.2 Error Prevention in Modeling Statecharts
	5.3 Style Guides for Error Prevention
	5.3.1 Taxonomy for Style Checking in Statecharts
	5.3.2 Existing Style Guides and Applications

	5.4 A Style Guide for Modeling Statecharts
	5.5 Assessment

	6 The KIEL Modeling Tool
	6.1 The KIEL Architecture
	6.2 Automated Layout in KIEL
	6.3 Simulating Statecharts in KIEL
	6.4 KIEL and Stateflow
	6.5 Developing Models in KIEL---The Editor
	6.6 Synthesizing Statecharts from Esterel
	6.7 Style Checking in KIEL

	7 Usability Analysis of KIEL
	7.1 An Empirical Study on Statechart Techniques
	7.1.1 Experimental Design
	7.1.2 Hypotheses
	7.1.3 Quality of Experimental Data
	7.1.4 Results

	7.2 Performance Analysis of KIEL
	7.2.1 KIEL's Simulation and Visualization Performance
	7.2.2 Analysis of SSM synthesis
	7.2.3 Analysis of the Checking Plug-in

	8 Conclusion and Outlook
	A Layout Examples from KIEL
	B Statechart Layouts from Empirical Study
	C Working Documents from Empirical Study
	C.1 The Data Document
	C.2 The Answer Template Document
	C.3 The Tool Reference Cards
	C.3.1 Esterel Studio Reference Card
	C.3.2 KIEL Macro Editor Reference Card
	C.3.3 KIT Editor Reference Card

	Bibliography
	Colophon

