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Abstract

The recently witnessed financial turmoil and the current international

stability context have demonstrated the need for a deeper understand-

ing about ex-ante international asset price fluctuations. Moreover, it

is now more evident that very little is known about real estate securi-

ties and their long-run and short-run empirical determinants. There

is also a lack of knowledge about the impact of US (or other foreign)

shocks on international asset markets. Last but not least, there is a

need for devising better models to forecast volatility and to manage

risk in asset markets. The present thesis is a collection of essays that

contribute to the latter issues. To preview some of the main results

of the thesis with policy implications, we find that: (i) asset pricing

models relevant for developed and emerging markets as well as differ-

ent asset classes should be evaluated out-of-sample to avoid spurious

results that may arise when performing the analysis exclusively in-

sample, (ii) equilibrium adjustment, time-varying risk premia, asset

return dynamics and contemporaneous equity returns play an impor-

tant role in describing fluctuations of international real estate security

prices, (iii) the aggregate impact (in absolute terms) and the ‘good-

ness of fit’ of US monetary policy on international equity and real

estate prices is increasing over time, hinting at time-varying world

market integration and (iv) analysts would get most efficient approx-

imations of future asset returns and asset volatility when subjecting

a broad set of alternative predictors to forecast combinations.



Contents

Preface 1

Introduction 2

1 In-Sample and Out-of-Sample Properties of International Stock

Return Dynamics Conditional on Equilibrium Pricing Factors 9

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Theoretical framework . . . . . . . . . . . . . . . . . . . . 13

1.2.2 Empirical specification . . . . . . . . . . . . . . . . . . . . 15

1.3 Econometric methodology . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 The data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 A model of international stock returns for short and long

horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 In-sample analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Stationarity analysis . . . . . . . . . . . . . . . . . . . . . 20

1.4.2 Predictability analysis . . . . . . . . . . . . . . . . . . . . 20

1.4.3 In-sample results . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.3.1 Stationarity tests . . . . . . . . . . . . . . . . . . 24

1.4.3.2 Predictability tests . . . . . . . . . . . . . . . . . 24

1.5 Out-of-sample analysis . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5.1 The forecasting design . . . . . . . . . . . . . . . . . . . . 27

1.5.1.1 Forecasting schemes . . . . . . . . . . . . . . . . 27

1.5.1.2 Control strategies . . . . . . . . . . . . . . . . . . 27

1.5.1.3 Combining forecasts . . . . . . . . . . . . . . . . 28

vi



CONTENTS

1.5.2 Forecast evaluation . . . . . . . . . . . . . . . . . . . . . . 28

1.5.3 Out-of-sample results . . . . . . . . . . . . . . . . . . . . . 37

1.5.3.1 Rolling windows vs. recursive forecasting . . . . . 37

1.5.3.2 Modifying the (vector) autoregressive order . . . 38

1.5.3.3 Single factor forecasting . . . . . . . . . . . . . . 39

1.5.3.4 Joint factor forecasting . . . . . . . . . . . . . . . 40

1.5.3.5 Combined forecasts I . . . . . . . . . . . . . . . . 40

1.5.3.6 Combined forecasts II . . . . . . . . . . . . . . . 41

1.5.3.7 In-sample fitting vs. out-of-sample forecasting . . 42

1.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2 An Empirical Analysis of International Real Estate Securities:

Long-run Equilibrium, Short-run Dynamics and Contemporane-

ous Dependence 46

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Econometric methodology . . . . . . . . . . . . . . . . . . . . . . 54

2.3.1 The data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.2 Stationarity and cointegration analysis . . . . . . . . . . . 55

2.3.3 Common factor, time-varying second order moments and

equilbrium error . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3.3.1 The common factor . . . . . . . . . . . . . . . . . 58

2.3.3.2 Time-varying second order moments . . . . . . . 59

2.3.3.3 Equilibrium error . . . . . . . . . . . . . . . . . . 60

2.3.4 International real estate returns . . . . . . . . . . . . . . . 61

2.3.4.1 Dynamic analysis . . . . . . . . . . . . . . . . . . 62

2.3.4.2 Contemporaneous analysis . . . . . . . . . . . . . 64

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.4.1 Cointegration and long-run estimation results . . . . . . . 68

2.4.2 Common factor and volatility results . . . . . . . . . . . . 75

2.4.3 Real estate returns . . . . . . . . . . . . . . . . . . . . . . 79

2.4.3.1 Single market results . . . . . . . . . . . . . . . . 79

2.4.3.2 Aggregate results . . . . . . . . . . . . . . . . . . 85

vii



CONTENTS

2.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3 International Transmission of Shocks: US Monetary Policy and

International Asset Prices 89

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3 Econometric methodology . . . . . . . . . . . . . . . . . . . . . . 96

3.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.3.2 Estimation methodology . . . . . . . . . . . . . . . . . . . 97

3.3.3 Selection of non-policy dates and comparison of estimated

impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.3.4 Bootstrap inference, parameter stability and recursive esti-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.4.1 Single market results . . . . . . . . . . . . . . . . . . . . . 108

3.4.2 Aggregate results . . . . . . . . . . . . . . . . . . . . . . . 118

3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4 Forecasting Volatility in International Asset Markets: Fractality,

Regime-Switching, Long Memory and Student-t Innovations 127

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.2 Theoretical framework of volatility . . . . . . . . . . . . . . . . . 131

4.3 Markov-Switching Multifractal models . . . . . . . . . . . . . . . 132

4.3.1 Volatility specifications . . . . . . . . . . . . . . . . . . . . 132

4.3.2 Estimation and forecasting . . . . . . . . . . . . . . . . . . 137

4.4 Generalized Autoregressive Conditional Heteroskedasticity models 140

4.4.1 Volatility specifications . . . . . . . . . . . . . . . . . . . . 140

4.4.2 Estimation and forecasting . . . . . . . . . . . . . . . . . . 141

4.5 Monte Carlo analysis . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.5.1 In-sample analysis . . . . . . . . . . . . . . . . . . . . . . 145

4.5.2 Out-of-sample analysis . . . . . . . . . . . . . . . . . . . . 149

4.6 Empirical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.6.1 In-sample analysis . . . . . . . . . . . . . . . . . . . . . . 154

4.6.2 Out-of-sample analysis . . . . . . . . . . . . . . . . . . . . 155

viii



CONTENTS

4.6.2.1 Single models . . . . . . . . . . . . . . . . . . . . 159

4.6.2.2 Combined forecasts . . . . . . . . . . . . . . . . . 163

4.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Conclusions 167

A Appendix to Chapter 1 171

A.1 Representative investor problem . . . . . . . . . . . . . . . . . . . 171

A.2 A VECM representation of the model . . . . . . . . . . . . . . . . 174

A.3 Descriptions of in-sample and out-of-sample tests . . . . . . . . . 175

A.3.1 In-sample tests . . . . . . . . . . . . . . . . . . . . . . . . 175

A.3.2 Out-of-sample tests . . . . . . . . . . . . . . . . . . . . . . 176

A.4 Forecast combinations . . . . . . . . . . . . . . . . . . . . . . . . 178

B Appendix to Chapter 2 180

B.1 Construction of the common factor . . . . . . . . . . . . . . . . . 180

B.2 Mean group and panel DOLS . . . . . . . . . . . . . . . . . . . . 182

B.3 Descriptions of in-sample and out-of-sample tests . . . . . . . . . 182

B.3.1 In-sample tests . . . . . . . . . . . . . . . . . . . . . . . . 183

B.3.2 Out-of-sample tests . . . . . . . . . . . . . . . . . . . . . . 185

B.4 Bootstrap impulse responses . . . . . . . . . . . . . . . . . . . . . 186

C Appendix to Chapter 3 187

C.1 Identification through heteroskedasticity . . . . . . . . . . . . . . 187

D Appendix to Chapter 4 189

D.1 Generalized Method of Moments estimation of MSM models . . . 189

D.1.1 Moments of the Binomial model . . . . . . . . . . . . . . . 190

D.1.2 Moments of the Lognormal model . . . . . . . . . . . . . . 191

D.1.3 Moments of the compound process . . . . . . . . . . . . . 191

D.1.4 Log moments of the Normal distribution . . . . . . . . . . 192

D.1.5 Log moments of the Student-t distribution . . . . . . . . . 193

D.2 Maximum Likelihood estimation of MSM models . . . . . . . . . 196

D.3 Forecast evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 197

D.3.1 Forecast combinations . . . . . . . . . . . . . . . . . . . . 197

ix



CONTENTS

D.3.2 Relative MSE and MAE . . . . . . . . . . . . . . . . . . . 197

D.3.3 Average forecasting accuracy . . . . . . . . . . . . . . . . . 198

References 217

x



List of Figures

2.1 Factor returns and factor volatility . . . . . . . . . . . . . . . . . 70

2.2 Autocorrelation functions of realized volatilities for United States

and United Kingdom . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.3 Autocorrelation functions of realized volatilities for Germany and

Japan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.4 Autocorrelation functions of realized covariances with the factor

for United States and United Kingdom . . . . . . . . . . . . . . . 73

2.5 Autocorrelation functions of realized covariances with the factor

for Germany and Japan . . . . . . . . . . . . . . . . . . . . . . . 74

2.6 Response of real estate returns to a shock in equity returns . . . . 83

2.7 Response of equity returns to a shock in real estate returns . . . . 84

3.1 Densities of the impact of US monetary policy on international

asset prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.2 Rolling window Mean Group impact of US monetary policy on

international asset prices . . . . . . . . . . . . . . . . . . . . . . . 122

3.3 Rolling window Mean Group R2 of the impact of US monetary

policy on international asset prices . . . . . . . . . . . . . . . . . 123

4.1 Simulation of a Binomial Markov-Switching Multifractal Model

with Normal innovations . . . . . . . . . . . . . . . . . . . . . . . 134

4.2 Simulation of a Binomial Markov-Switching Multifractal Model

with Student-t innovations . . . . . . . . . . . . . . . . . . . . . . 135

xi



List of Tables

1.1 Number of available observations for developed and emerging mar-

kets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Unit root test results by equilibrium relation . . . . . . . . . . . . 22

1.3 In-sample analysis results for developed and emerging markets . . 23

1.4 Control models and combined forecasting models . . . . . . . . . 26

1.5 Diagnostic statistic for return forecasts . . . . . . . . . . . . . . . 30

1.6 Performance statistics for alternative forecasting models for devel-

oped market returns . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.7 Selected performance measures for forecasting developed markets’

returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.8 Performance statistics for alternative forecasting models for emerg-

ing market returns . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.9 Selected performance measures for forecasting emerging markets’

returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1 International equity, bond and real estate markets for factor con-

struction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2 Unit root and long run estimation results per country . . . . . . . 67

2.3 Cointegration and long-run estimation results at the aggregate level 68

2.4 Single market results - Part I . . . . . . . . . . . . . . . . . . . . 76

2.5 Single market results - Part II . . . . . . . . . . . . . . . . . . . . 77

2.6 Aggregate results . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.1 Country estimates for equity markets . . . . . . . . . . . . . . . . 106

3.2 Selected statistics for equity markets . . . . . . . . . . . . . . . . 107

xii



LIST OF TABLES

3.3 Country estimates for bond markets . . . . . . . . . . . . . . . . . 111

3.4 Selected statistics for bond markets . . . . . . . . . . . . . . . . . 112

3.5 Country estimates for real estate markets . . . . . . . . . . . . . . 114

3.6 Selected statistics for real estate markets . . . . . . . . . . . . . . 115

3.7 Mean group estimates per asset market . . . . . . . . . . . . . . . 119

4.1 Monte Carlo ML and GMM estimation of the Binomial MSM-t

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.2 Monte Carlo GMM estimation of the Binomial and Lognormal

MSM-t models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.3 Monte Carlo Assessment of Bayesian vs. Best Linear Forecasts . . 148

4.4 International equity, bond and real estate markets for the empirical

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.5 GARCH and FIGARCH in-sample estimates . . . . . . . . . . . . 152

4.6 Binomial and Lognormal MSM in-sample estimates . . . . . . . . 153

4.7 Forecasting results of MSM and (FI)GARCH models . . . . . . . 157

4.8 Average forecasting accuracy of alternative volatility models . . . 158

4.9 Results of forecast combinations from MSM and (FI)GARCH models161

4.10 Average forecasting accuracy of combination models . . . . . . . . 162

xiii



Preface

The present thesis is a collection of essays written at the University of Kiel during

my period as a doctoral candidate in the program ‘Quantitative Economics’. The

essays have been organized in book format and interconnected in order to make

the thesis more readable. As in the case of Chapter 1 which has been already

accepted for publication, all other Chapters were written with the end goal to

be published in refereed journals. The theme of the dissertation is ‘International

Asset Prices: Empirical Evidence’. The articles in this thesis are:

1. Chapter 1: Herwartz Helmut and Morales-Arias Leonardo (2009). In-

sample and out-of-sample properties of international stock return dynamics

conditional on equilibrium pricing factors. European Journal of Finance,

15, 1-29.

2. Chapter 2: Morales-Arias Leonardo (2009). An empirical analysis of inter-

national real estate securities: Long-run equilibrium, short-run dynamics

and contemporaneous dependence. Working Paper, University of Kiel, 1-

40.

3. Chapter 3: Herwartz Helmut and Morales-Arias Leonardo (2009). On US

monetary policy and international asset prices. Working Paper, Kiel Insti-

tute for the World Economy, 1-38.

4. Chapter 4: Lux Thomas and Morales-Arias Leonardo (2009). Forecasting

volatility under fractality, regime-switching, long memory and Student-t

innovations. Working Paper, Kiel Institute for the World Economy, 1-35.

Citations from the co-authored work in this thesis found in Chapters 1, 3 and 4

should be done from the above articles.
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Introduction

The recently witnessed financial turmoil has uncovered the need for a deeper un-

derstanding of international asset price fluctuations. In particular, it is now more

evident that the accelerated globalization process has made developed financial

markets more fragile to potential crises (most notably) in the United States. How-

ever, we have also witnessed that emerging markets remained quite resilient to

the global financial turmoil at first but that they came under increasing pressure

due to the unavailability of financing from abroad, capital outflows and in some

cases tighter domestic liquidity conditions (IMF (2008)). The latter outcomes

raise some questions about the differences and similarities of asset prices in de-

veloped and emerging markets and the need of analyzing and understanding them

better. Moreover, it seems also relevant to study international asset price fluctu-

ations from an ex-ante rather than an ex-post perspective in order to shed light

on possible empirical models that may be useful for forward-looking as opposed

to retrospective policies.

In the first Chapter of the present thesis we contribute to the latter issues,

by conducting a comprehensive analysis of the in-sample and out-of-sample prop-

erties of stock return dynamics in 14 developed and 12 emerging markets. We

start by formulating an international asset pricing model that decomposes log

stock returns into equilibrium pricing factors (accounting and discount factors)

and short-run (vector) autoregressive dynamics. Based on this model, we design

both in-sample and out-of-sample panel modeling techniques to investigate inter-

national stock market returns at short and long horizons. To preview some of

the results in this Chapter with policy implications we find that: (i) asset pricing

models relevant for developed and emerging markets should be evaluated out-

of-sample to avoid spurious results that may arise when performing the analysis

2



Introduction

exclusively in-sample and (ii) analysts would get most efficient approximations of

future asset returns when subjecting a broad set of alternative predictors (pricing

factor models, the random walk and vector autoregressions) to forecast combina-

tions in both developed and emerging markets.

The current crisis has also shown that very little is known about real estate

assets, an asset class that accounts for almost 50% of households’ asset portfolio.

Most of the empirical finance studies available in the literature have focused on

equity and bond markets and very little attention has been given to understanding

the characteristics of real estate securities and their interrelationship with other

asset classes. Uncovering some of the empirical determinants of international real

estate securities can be useful for preventing or managing future crises in these

markets.

In the second Chapter of the present thesis we examine a real estate pricing

model for a cross-section of international financial markets. We model real estate

security returns conditional on the long-run equilibrium error between (log) real

estate security prices, equity prices and bond prices as well as conditional on

the returns and the time-varying volatility of the latter three asset types. The

model also incorporates the time-varying volatility of a constructed ‘world’ as-

set factor that mimics changes of regimes in international asset markets and the

time-varying covariances of this factor with real estate, equity and bond returns.

In addition, we also study the contemporaneous dependence of international real

estate security returns to international equity returns. We estimate the model

using monthly data for the sample period 01/1996-12/2006 and we design a bat-

tery of in-sample and out-of-sample techniques to analyze it. To preview some

of the results in this Chapter with policy implications we find that: (i) interna-

tional real estate, equity and bond markets are financially integrated both within

and across countries and (ii) time-varying risk premia, asset return dynamics and

contemporaneous equity returns play an important role in describing fluctuations

of international real estate security prices.

Another gap in the empirical finance literature relevant to the current inter-

national stability context is the lack of understanding about the impact of US

monetary policy (or other foreign shocks) on international asset markets. The

3



Introduction

latter relationship is very important. Domestic monetary authorities could pre-

sumably take better decisions in light of a potential international financial crisis

if they have a more accurate understanding of the effects of US monetary policy

on their asset markets. For instance, coordinated and coherent policy actions

across countries could more rapidly and effectively stabilize the global financial

system in times of crises (IMF (2008)).

In the third Chapter of the present thesis, we contribute to the understanding

of the empirical relationship between US monetary policy and international eq-

uity, bond and real estate markets for the sample period 01/1994 to 12/2007. Our

empirical approach is based on the recent methodology of Identification through

Heteroskedasticity (IH) proposed by Rigobon & Sack (2004). We employ the IH

approach and extend it to the international context by means of a heterogeneous

panel framework. We consider issues such as controlling for dynamic components

in the conditional mean of international asset returns, selection of non-policy

dates in the international context, recursive estimation and bootstrap inference.

To preview some of the results with policy implications in this Chapter we find

that: (i) the impact of US monetary shocks on international equity and bond

prices is statistically significant on bordering countries and countries with infla-

tion targeting as well as at the aggregate level and (ii) the aggregate impact (in

absolute terms) and the ‘goodness of fit’ of US monetary policy on international

equity and real estate prices is increasing over time.

Last but not least, the present financial crisis has taught practitioners, aca-

demics and policy makers that there is a need for devising models, polices and

institutions whose purpose is of managing risk as well as surveilling asset markets.

For instance, regulators use Value-at-Risk (VaR) calculations to work out how

much capital financial institutions need to put aside for troubled times. However,

according to The Economist (2009), VaR calculations have been flawed because

risk managers have turned a blind eye to ‘tail risk’, i.e. they have ignored ex-

treme events or the ‘fat tails’ of the empirical distributions of asset returns as

proposed by Mandelbrot (1999). The latter issues could be addressed better with

forward-looking volatility models that can predict extreme events more accurately

but also take account of other stylized facts of asset returns such as long-range

dependence and multifractality.

4



Introduction

To this end, in the fourth and last Chapter of this thesis we turn to volatility

forecasting in international asset markets. We study the performance of volatility

models that incorporate features such as long (short) memory, regime-switching

and multifractality along with two competing distributional assumptions of the

error component, i.e. Normal vs Student-t. Our precise contribution is twofold.

First, we introduce a new model to the family of Markov-Switching Multifrac-

tal models of asset returns (MSM), namely, the Markov-Switching Multifractal

model of asset returns with Student-t innovations (MSM-t). Second, we perform

a comprehensive forecasting analysis of the MSM models as well as other com-

peting volatility models of the GARCH legacy (GARCH, GARCH-t, FIGARCH

and FIGARCH-t) in international asset markets. Our cross-sections consist of

all-share equity portfolios, bond indices and portfolios of real estate securities at

the country level. Furthermore, we investigate whether there is an improvement

upon forecasts from single models when optimally combining forecasts obtained

from the different models at hand. To preview some of the results with policy im-

plications we find that: (i) empirical forecasts of volatility models with Student-t

innovations, multifractal components and long memory are adequate for volatility

forecasting in international asset markets and (ii) forecast combinations obtained

from the different volatility models considered in this Chapter provide a clear im-

provement upon forecasts from single models for forecasting international asset

market volatility.

There is one major point of intersection that we have found in the aforemen-

tioned analyses and that prevails amongst the different streams of the modern

empirical finance literature: asset price behavior is difficult to fully understand.

The finance community has, nevertheless, arrived to a consensus about the styl-

ized facts of asset prices. Some of the stylized facts applicable in the context

of this thesis can be summarized as follows: (i) asset prices are non-stationary,

(ii) asset returns are leptokurtic and (iii) asset returns exhibit heteroskedasticity

and volatility clustering. However, asset price data at different frequencies may

exhibit diverse ‘degrees’ of items (i), (ii) and (iii). For instance, asset prices at the

monthly frequency have mostly been found to be integrated of order one while

asset prices at the daily frequency have been found to be fractionally integrated

(cf. Baillie & Bollerslev (1994), Gil-Alana (2006)).
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Thus, asset prices at the monthly (or lower) frequency may be relevant for

establishing a relationship with macroeconomic variables since the latter indica-

tors are usually also found to be integrated of order one. On the other hand,

while asset returns at low and high frequencies exhibit items (ii) and (iii), asset

returns at higher frequencies such as daily or tic-by-tic may posses more com-

plex characteristics such as long memory and multifractality. Thus, asset prices

at high frequencies may be more relevant to the analysis of volatility measure-

ment/forecasting, risk management models or market micro-structure models.

The two sets of characteristics from asset price data at low and high fre-

quency also give rise to two streams in the empirical finance literature. One

stream focuses on understanding the relationship between asset prices and the

macroeconomy while the other stream focuses on understanding the ‘behavioral’

or ‘phenomenological’ aspect of asset prices which may translate at the aggregate

level. Following Cochrane (1996, 2006), a major proponent of the macro-finance

stream, the macroeconomic risk that drives asset prices and expected returns is

a key question of finance. The link between macroeconomic variables and asset

returns can be induced from the empirical evidence that many of the variables

that have predictive power for asset returns can also predict variables that de-

scribe economic activity over the business cycle. Following Lux (2007), a major

proponent of the behavioral finance stream, asset prices at high frequencies (e.g.

daily or tic-by-tic) are characterized by a set of statistical properties that prevail

with surprising uniformity. The design of models that can describe the stylized

facts of asset prices at higher frequency draw their inspiration from models in the

behavioral finance literature and is closer to models of multi-particle interaction

in physics. The basic idea is that the regularities observed in asset prices at high

frequencies (e.g. volatility clustering, fat tails, scaling behavior, long memory,

etc) can be explained via the microscopic interactions of the constituent parts of

a complex system.

In this thesis we obtain results that intersect between the two streams, and

which may be employed in tandem to have a better understanding of the behavior

of asset prices in general. For instance, subjecting forecasts of either ‘theoreti-

cal’ (equilibrium pricing models) and ‘atheoretical’ (random walk model, autore-

gressive models) models to forecast combinations can improve upon their single
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forecasts. The latter result is in line with the behavioral finance literature which

suggests that ex-ante asset returns could be better approximated by combining

forecasts of ‘fundamentalists’ who subject asset return forecasts to fundamental

factors (e.g. dividend yields, interest rate variables) and ‘chartists’ who subject

their forecast to atheoretical factors (e.g. autoregressive models). Similar results

also apply to volatility modeling: combining forecasts of ‘traditional’ volatility

models (e.g. (FI)GARCH) and the new ‘behavioral’ volatility models (e.g. MSM)

can also improve upon their single forecasts.

Throughout our studies we diagnose a significant degree of heterogeneity in in-

ternational asset price fluctuations which suggests that it is difficult to determine

the ‘right’ global model. While certain components of international asset prices

may be deemed homogeneous (and modeled as such) we also find that they can

be composed of various heterogeneous components in the short run which may

be determined, e.g. by the asset class and/or the particular cross-section un-

der inspection. For example, we obtain that ex-ante returns of developed stock

markets can be explained from theoretical variables while the opposite is true

for emerging markets. Additionaly, we find that the risk-return relationship in

international real estate securities is country specific, while we diagnose a ho-

mogeneous long-run equilibrium relationship across countries for the latter asset

class. Similarly, we obtain that the impact of US monetary shocks on interna-

tional equity markets depends on the asset class considered and on how close is

the country to the US or whether it has similar monetary policy frameworks (e.g.

inflation targeting). Lastly, our results indicate that the applicability of various

volatility models depends on the asset class considered (i.e. equity, bonds or real

estate).

We find that a good way to analyze asset pricing models (either ‘traditional’

or ‘behavioral’) is by using panel data. The latter is promising in two main direc-

tions. From an economic perspective, using panel data allows analysts to avoid

spurious conclusions that may arise from using a model that is only informational

to a particular country or sector. From an econometric perspective, panel data

methods come along with an augmentation of sample information and thus are

likely to improve the power of statistical tests.
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Another important result that arises from the present thesis is the importance

of studying asset pricing models via recursive methods and out-of-sample diag-

nostics. Most asset pricing studies provide results which are many times sample

dependent and that focus exclusively on the in-sample evidence of predictability.

While those models are still important to provide a general idea of which factors

may contribute to explain asset price fluctuations, from a practical perspective

they may lead analysts to reach false conclusions on the applicability of the model

to (say) risk management strategies.

In general, the empirical results of this thesis suggest that international asset

pricing models should be adaptive and more data-driven. Moreover, they should

be analyzed with various data analytical tools and specification tests in order to

uncover frictions inherent in asset markets. The latter recommendation is in line

with the recent critique to contemporaneous economics by Colander et al. (2009)

who argue that data-driven models have a better chance of nesting a multivariate,

path-dependent data-generating process and relevant macroeconomic theories.

Each Chapter of the present thesis has a corresponding Appendix with a

more detailed description of the econometric methods used that are not provided

in the main text. Moreover, for Chapter 1 we also provide a simple theoretical

model that motivates the (baseline) empirical specifications studied. Given the

essay nature of this thesis, there is no dependence in notation throughout the

Chapters.
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Chapter 1

In-Sample and Out-of-Sample

Properties of International Stock

Return Dynamics Conditional on

Equilibrium Pricing Factors

1.1 Introduction

In the earlier literature on stock return predictability the random walk model

was generally used to provide an approximation of log price behavior and to offer

a base of support for the Efficient Market Hypothesis (EMH) in its weak form

(Alexander (1961), Fama (1965), Godfrey et al. (1963)). However, during the

1970’s several studies motivated that static models fail to capture time-varying

conditional features of stock returns (Fama (1970)). In the 1980’s several contri-

butions to the return predictability literature underscore that the random walk

poorly describes stock price behavior (Shiller (1981), LeRoy & Porter (1981),

Fama & French (1988a), Lo & McKinlay (1988), Poterba & Summers (1988)).

Since the 1990’s, the general consensus is that asset pricing models which incor-

porate time-varying factors can explain return dynamics more accurately (Fama

(1991), Campbell (2000)). Macroeconomic aggregates, equilibrium relationships

and time-varying betas have become, since then, popular candidates employed in

return predictability studies to describe expected returns.
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Most asset pricing studies that successfully explain expected returns have fo-

cused on the in-sample evidence of predictability. Variables such as dividend

yields, earning yields, and earnings to dividend ratios have shown to have ex-

planatory power for returns especially at longer horizons (Keim & Stambaugh

(1986), Campbell & Shiller (1987, 1988), Fama & French (1988a, 1989), Hodrick

(1992), Lee (1998)). Other macro variables employed in these type of studies

include the term spread, the default spread, expected inflation, consumption

to wealth ratios, the log stock price-market index ratio and aggregate output

amongst others (Chen et al. (1986), Campbell & Mankiw (1989), Marathe &

Shawky (1994), Mills (1996)). The selection of the latter variables for models of

aggregate stock returns is usually based on the hypothesis that they may affect

the two major components of asset prices, i.e. the cash flow component and/or

the discount rate component. Recent studies have provided evidence from an

intertemporal Capital Asset Pricing Model (ICAPM) that accounting measures

have a stonger effect on value stocks while discount rates have a pronounced effect

on growth stocks (Campbell & Vuolteenaho (2004), Campbell et al. (2005)). In

an international context, accounting components such as book-to-market ratios,

cash flow-to-price ratios and GDP, coupled with discount factor components such

as exchange rates, money supply and interest rates can explain international asset

returns (Wongbangpo & Sharma (2002), Hou et al. (2006)).

Only a few recent empirical contributions have scrutinized the out-of-sample

performance of dynamic return models that use some of the latter variables as

conditioning factors. In particular, accounting variables such as the log dividend-

earnings ratio and book-to-market ratios as well as discount factor variables such

as detrended consumption-wealth ratios and term spreads have shown to forecast

excess returns in the US (Lamont (1998), Lettau & Ludvigson (2001a), Campbell

& Thompson (2007)). In the international market arena, various types of interest

rate variables have also provided evidence of out-of-sample forecasting power

(Harrasty & Roulet (2000), Rapach et al. (2005)).

In this Chapter we conduct a comprehensive analysis of the in-sample and

out-of-sample properties of stock return dynamics in 14 developed and 12 emerg-

ing markets. We start by formulating an asset pricing model that decomposes

log stock returns into equilibrium pricing factors (both accounting and discount
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factors) and short-run (vector) autoregressive dynamics. Based on this model, we

design in-sample and out-of-sample panel modeling techniques to investigate in-

ternational stock market returns conditional on equilibrium relationships at short

and long horizons.

We argue that in-sample return predictability does not necessarily imply

out-of-sample return forecastability. When modeling longitudinal processes, the

econometrician runs the risk to falsely apply structurally invariant models to

data that undergo some shift of the underlying dynamic structure. In such sce-

narios diagnosed parameter significance might be more a statistical artifact rather

than an empirical underpin of the postulated asset pricing model (Neely & Weller

(2000), Andrew & Bekaert (2001), Hjalmarsson (2006), Rapach & Wohar (2006)).

Moreover, numerous outstanding factors such as lag order selection, the dimen-

sionality of the parameter space, integration and cointegration features influence

the performance of predictive regression models in a way that might be hard to

control (Lewellen (2004), Campbell & Yogo (2006)). For the latter reason one

may alternatively or at least complementary evaluate the ability of postulated

models to provide accurate ex-ante forecasts.

Ex-ante forecasting studies of this kind have mainly focused on individual

markets without addressing the aggregation issue from a cross sectional perspec-

tive. As introduced previously, exploiting the panel dimension is promising in

two directions. First, it may uncover if predictive or forecasting content is market

specific and thereby guards against potentially spurious conclusions from single

market analyses. Second, panel data analysis goes along with an augmentation of

sample information and, thus, is likely to improve the power of statistical tests.

The latter merit is particularly relevant in our context since financial data ex-

hibit first order dynamics which are typically hidden by relatively large noise

components.

The Chapter further addresses the lack of attention that has been given to

modeling stock return dynamics in emerging markets. Some main characteristics

of emerging markets can be found in Bekaert & Harvey (2003) (with further

references) and may be summarized as follows: (i) average returns and dividend

yields usually decline after liberalization, (ii) stock markets may become more

volatile due to faster price adjustment in reaction to relevant information, (iii)
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correlations with the world market increase with more financial integration. These

results imply in our context that data for emerging markets may suffer from sharp

fluctuations and structural breaks. Consequently, it should be more difficult to

find a transparent relationship between equity returns and long-run variables.

To preview the results, we find that (i) there is evidence of in-sample signaling

from the equilibrium relations but this feature does not appear to translate into

out-of-sample forecasting, (ii) rolling window forecasting can better approximate

the distributional features of returns in comparison with a recursive scheme, (iii)

forecasting with single lagged equilibrium relationships does not play a uniformly

significant role in forecasting stock returns, (iv) forecasting with a full model con-

taining all lagged equilibrium relations can outperform a random walk model and

a VAR(1) model in developed markets, and (v) linear combinations of forecasts

of alternative models reduce forecast uncertainty and improve other performance

measures of singular models.

The remainder of the Chapter is organized as follows. The subsequent section

presents the theoretical and empirical specification of our model of log returns.

Section 1.3 addresses estimation issues. Section 1.4 provides the in-sample di-

agnostics and the evidence on return predictability. Section 1.5 presents the

out-of-sample analyses. Section 1.6 concludes. The formal derivation of the asset

pricing model and a more detailed representation of the econometric toolkit are

given in Appendix A.

1.2 The model

This section presents a present value model that describes stock price movements

from expectations of discounted log earnings-dividend ratio, earnings growth and

the log stochastic discount factor. Furthermore, we present an empirical model

which is derived from some assumptions on the stochastic behavior of the latter

variables.
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1.2.1 Theoretical framework

Modern research on asset pricing has been based on the theoretical finding that in

the presence of complete markets, there exists a unique stochastic discount factor

(SDF) that establishes the relationship between the payoff from assets and the

price for all assets in the economy. The major advantage of the SDF framework

is its universality. The SDF model is general enough to derive traditional models

(CAPM, APT, etc.) as special cases. The SDF framework basically summarizes

the idea that rational investors must value uncertain future (state contingent)

payoffs to determine the price they are currently willing to pay for a share of

stock. The higher the rate at which investors discount future payoffs the lower

the price they should pay for a share of stock today. The latter considerations can

be formalized in more detail following our variations of the models in Campbell

& Shiller (1988) and Cochrane (2001).1 From the first order conditions of a

representative agent who maximizes expected discounted utility of consumption

one obtains the present value relation,

Pt = Et [Mt+1Xt+1] , (1.1)

where Pt is the ex-dividend price of the stock at period t, Et is the expectations

operator conditioning on information at period t andXt = Pt+Dt is the payoff the

investor receives at period t where Dt denotes the dividend payed during period

t. In addition, Mt+1 = δ(U ′(Ct+1)/U
′(Ct)) is the stochastic discount factor (SDF

henceforth) which generalizes standard discount factor ideas where U ′(Ct) is the

marginal utility of consumption at period t and δ is a constant discount factor.2

Following Campbell (2000) equation (1.1) states that asset prices can be writ-

ten as a state-price-weighted average of the payoffs in each state of nature. In the

absence of arbitrage opportunities, a set of positive state prices and a positive

SDF exist. Thus, if markets are complete then state prices and the SDF are

unique. Log-linearizing the above expression yields,

pt = Et [µt+1 +mt+1 + xt+1] , (1.2)

1Specific details on the derivations are provided in Appendix A.
2see Cochrane (2001) or Campbell et al. (1997) for further details.
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where pt = lnPt, mt+1 = lnMt+1 and xt+1 = ln(Pt+1 +Dt+1) denote the log

stock price, the log SDF and the log payoff, respectively, and µt+1 = (1/2)σ2
µ,t+1

is a variable depending on (conditional) second order moments of mt and x̃t =

lnXtP
−1
t−1. Following Campbell & Shiller (1988) it is possible to show that xt+1 =

ln(Pt+1 +Dt+1) ≈ c+θpt+1+(1−θ)dt+1, where c = − ln(θ)−(1−θ) ln(1/θ−1) is a

linearization constant, dt = lnDt and θ = 1/(1+D/P ) is the average price/payoff

ratio. Now define at = lnAt where At is used to denote earnings per share at

period t. Using the latter approximation for xt in (1.2), adding (1−θ)∆at+1 from

both sides of (1.2), solving forward for (pt − at) and imposing the (no bubble)

transversality condition limj→∞ θjEt(pt+j − at+j) = 0 yields,

pt − at =
c

1− θ
+ Et

∞∑
j=1

θj−1 [µt+j + (θ − 1)(at+j − dt+j) + ∆at+j +mt+j] . (1.3)

Equation (1.3) states that the log price-earnings ratio at period t is a linear

function of risk-premia µt, the log earnings-dividend ratio (at − dt), earnings

growth ∆at and the log SDF mt. More precisely, (1.3) expresses that if the

log price-earnings ratio is high today, investors expect some combination of high

risk, low future log earnings-dividend ratio, high earnings growth and high future

stochastic discounting.

Note the similarity of this equation with the seminal log-linear present value

model in Campbell & Shiller (1988). In this case we have accounted for three

new issues. First, we specify an equation where both the deviations between

prices and earnings and earnings and dividends are taken into account. Accord-

ing to Campbell (2000) there is an increasing interest in using earnings rather

than dividends as driving variables in present value models of stock prices since

dividends are more difficult to observe. Lee (1998) and Lamont (1998) show

the importance of including the relationship between earnings and dividends in

present value models. Secondly, we formalize a relation between stock prices and

a log SDF rather than between stock prices and log returns. The former is more

general since the log SDF can be specified depending on the interest at hand

(i.e. consumption or a factor model). Finally, the model comprises a variable µt

that depends on second order moments and could be modeled to account for risk

premia.

14



1.2 The model

1.2.2 Empirical specification

The model in (1.3) implies that if pt, at and dt are integrated of order one, I(1),

i.e. stationary after taking first differences, then the linear combinations pt − at

and at− dt must be I(0), for the right and left hand side of (1.3) to be balanced.

In that case, log price-earnings and log earnings-dividend ratios are cointegrated

with a unit cointegrating parameter, briefly denoted CI(1,−1). In addition, the

model describes log price-earnings movements from expectations of the variables

in the right hand side of (1.3). As shown in Appendix A, it is possible to derive

from (1.3) a linear model of the form,

∆pt = υt + ut, (1.4)

where ∆pt = lnPt − lnPt−1 is the (log) asset return, vt is the time-varying mean

and ut is a zero-mean disturbance term (or ‘shock’) which could be modelled

depending on the interest at hand. In the present Chapter, the time-varying

mean is specified as,

υt = µ+ α1qt−1 + α2gt−1 + α3ht−1 + α4yt−1 + α5st−1, (1.5)

where qt = (pt − at), gt = (at − dt) and ht, yt and st are three observable I(0)

equilibrium relationships that proxy the evolution of mt (the log SDF). For the

definitions of the discount factors ht, yt and st we employ three popular equilib-

rium relations used in the literature although the specification for the log SDF

can be augmented to account for more equilibrium pricing factors. The first fac-

tor we consider is the difference of the log stock price and the log market portfolio

index, that is we let ht = pt − pmt , pmt = lnPm
t . If expected stock returns and

expected market portfolio returns are I(0) and both pt and pmt are I(1) then

their linear combination should be I(0), or in other words the log stock price

and the log market index are CI(1,−1).3 As a second factor we regard the term

spread, yt = (rlt − rst ), the difference from a l-period (rlt) and a s-period rate of

interest (rst ), l > s. According to the expectations hypothesis, yt should equal a

weighted average of future expected changes in the s-period interest rate. If these

3See Mills (1999), chapter 7 for further details.
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changes are I(0) and rlt and rst are I(1) then the latter are CI(1,−1).4 Lastly, we

consider an interest differential from the l-period domestic (rlt) and foreign (rfnt )

rate, st = (rlt − rfnt ). According to the uncovered interest rate parity st should

equal expectations of future changes in the spot exchange rate.5 If changes in

the spot exchange rate are I(0) and rlt and rfnt are I(1) then the domestic and

foreign long term interest rate are CI(1,−1). Using the definitions for ht, yt and

st in (1.5) we get the empirical model,

∆pt = µ+ α′ft−1 + ut, (1.6)

where ft = (pt − at, at − dt, pt − pmt , r
l
t − rst , r

l
t − rfnt )′ and α = (α1, . . . , α5)

′ is the

vector of parameters attached to the equilibrium pricing factors. According to

(1.6), returns are explained by the lagged log price-earnings ratio (PE), the log

earnings-dividend ratio (ED), the log stock price-market index ratio (PPM), the

term spread (TES) and the interest differential (IND). Moreover, we note that

this empirical model for log price changes can be subdivided into two main groups

of equilibrium pricing factors, namely, an ‘accounting’ component (i.e. financial

indicators) qt = (pt − at) and gt = (at − dt), and a discount factor component,

ht = (pt − pmt ), yt = (rlt − rst ) and st = (rlt − rfnt ).

1.3 Econometric methodology

In this section we provide a brief description of the data employed in our study.

We also present the econometric implementation of the empirical model in (1.6)

for short to long horizon returns.

4see Campbell et al. (1997), chapter 10 and 11 for further details.
5see Daniels & VanHoose (1999) chapter 7 for further details.
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Developed markets Ti Emerging markets Ti

Australia 269 Argentina 138

Austria 228 Chile 133

Belgium 301 Colombia 143

Canada 301 Czech Republic 132

France 298 Mexico 175

Germany 301 Pakistan 150

Ireland 228 Poland 131

Italy 228 Philippines 193

Japan 290 South Africa 288

Netherlands 228 Sri Lanka 192

Norway 276 Thailand 216

Spain 215 Turkey 178

Switzerland 301

United Kingdom 300

Total 3764 2069

Table 1.1: Number of available observations for developed and emerging markets.

At the aggregate level 3022 and 1433 (h = 1), 2994 and 1409 (h = 3), 2952 and

1373 (h = 6) ex-ante forecast errors are available for developed and emerging

markets, respectively.
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1.3.1 The data

We analyze time series data for N = 14 developed markets and N = 12 emerging

markets. Let i = 1, ..., N indicate the cross sectional entities. In principle, we at-

tempt to collect data at the monthly frequency over the sample period 01/01/1980

to 10/01/2005. Particularly in the case of emerging markets, however, the num-

ber of observations differs across economies. Thus, we analyze unbalanced panels

and let Ti denote the number of observations available for each cross sectional

entity. The specific markets and available observations are listed in Table 1.1.

Datastream calculated total market stock price indices and price/earnings and

dividend yields accruing to these indices for each individual country were col-

lected. We use the Datastream world stock price index as a proxy for the market

portfolio. In the case of the interest variables we gather three month treasury

yields for the short-term and ten year government bond yields for the long-term

interest rates from the IMF International Statistics and Datastream. Due to un-

availability of this type of data for some particular emerging markets we gather

certificates of deposits or money market rates for the short term interest rates

and fixed term rates for long-term interest rates. We employ the US government

10-year bond yield as a proxy for the long-term foreign interest rate. We do not

include the US in the analysis for three reasons: First, including the US would

obtain an extremely ‘unbalanced’ panel in terms of market capitalization. Sec-

ondly, as a pricing factor our international interest differential does not apply for

the US. Finally we recall that most available studies of this type concentrate on

the US. All (log) stock price indices, dividends, earnings and interest rates are

treated a priori as I(1).

1.3.2 A model of international stock returns for short and

long horizons

As shown in Appendix A, assuming that pit, ait and dit and the interest rates

in (1.6) are I(1), their joint dynamics can be given in form of a vector error

correction model of order p − 1, VECM(p − 1), for the (K = 7)-dimensional

vector zit = (pit, ait, dit, p
m
t , r

s
it, r

l
it, r

fn
t )′. According to (1.6), we can formalize

five (r = 1, ..., 5) cointegrating relationships in the matrix of over-identifying
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restrictions of the VECM(p− 1) system, namely, the stationarity of the log PE,

ED and PPM ratio, the term spread and the interest rate differential. Since our

interest is in the analysis of conditional returns we pick out the first equation of

the VECM, i.e.

∆pit = µ1,i + α′1,ifit−1 +

p−1∑
j=1

b′1j,i∆zit−j + u1,it, (1.7)

where α1,i = (α11,i, . . . , α15,i)
′ is a vector of Error Correction (EC) coefficients of

cointegrating relations attached to fit = (pit−ait, ait−dit, pit−pmt , rlit−rsit, rlit−r
fn
t )′

and b1j,i are K × 1 vectors of autoregressive parameters attached to ∆zit−j, j =

1, . . . , p−1. Note that (1.6) is obtained as a special case of (1.7) if the VAR order

is one (i.e. p = 1).

Many studies confirm that some of the equilibrium relations in (1.7) have

stronger signaling strength for log returns at longer horizons (Fama & French

(1988b, 1989), Hodrick (1992), Lettau & Ludvigson (2001b)). Adopting a similar

approach to the long horizon framework of the finance literature we reparameter-

ize (1.7) by replacing on the left hand side one period returns by higher horizon

counterparts, i.e.

∆p
(h)
it = µ1,i + α′1,ifit−1 +

p−1∑
j=1

b′1j,i∆zit−j + u
(h)
1,it, (1.8)

where ∆p
(h)
it =

∑h
l=1 ∆pit+l−1, and, by construction ∆p

(1)
it = ∆pit. Note that the

explanatory variables in (1.8) are exactly the same as in (1.7). With regard to

the model parameters in (1.8) we note that they differ from the corresponding

quantities in (1.7) but do not indicate model dependence in our notation. Several

approaches have been proposed in the literature to deal with long-horizon regres-

sions and models of overlapping data (Hansen & Hodrick (1980), Newey & West

(1987), Hodrick (1992), Goetzmann & Jorion (1993), Nelson & Kim (1993)). In

this study we design different in-sample and out-of-sample panel techniques to

analyze such types of (conditional) short and long horizon regression models.
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1.4 In-sample analysis

Apart from providing some empirical time series features, in-sample analyses aim

to figure out if particular pricing factors explain stock returns significantly and

uniformly over the considered cross sections. To address the latter issue we employ

Error Correction Models (ECMs) as given in (1.8) for h = 1, 3, 6. The p = 2 order

is chosen to account for possible serial error correlation when h = 1. The following

paragraphs briefly mention the applied econometric techniques and then deliver

the corresponding empirical results. Technical details about the performed tests

are found in Appendix A.

1.4.1 Stationarity analysis

Model (1.7) requires that the imposed cointegrating relations deliver stationary

residual series. Thus, we first consider if the actual PE, ED, and PPM ratios,

TES, and IND are in fact stationary. We test for the prevalence of stochastic

trends governing the latter variables both at the individual and the aggregate

levels of developed or emerging markets. At the individual level we test by means

of augmented Dickey Fuller (ADF) statistics (Dickey & Fuller (1979)). The test

regressions are specified throughout with a constant and one lag of the dependent

variable. At the aggregate level we employ the Levin et al. (2002) (LLC) and the

Im et al. (2003) (IPS) panel unit root tests.

1.4.2 Predictability analysis

In addition to stationarity of the cointegrating vectors, stability of the model in

(1.7), requires that the error correction parameter α11,i corresponding to the PE

ratio is less than zero. In other words, log stock price changes must decrease

(increase) in time t to correct positive (negative) PE ratios (or ‘valuation gaps’)

in t − 1. Note that for the remaining equilibrium relations (the ED ratio, the

PPM ratio, TES and IND) their specific signs are not a-priori restricted by the

presumption of model stability. To study the predictive strength of the equilib-

rium relationships at short and longer horizons we consider different statistics for
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1.4 In-sample analysis

the model in (1.7) at the single market and aggregate levels. In-sample analyses

comprise:

1. Single equation models : At the single market level we infer if single coef-

ficient estimates α̂1r,i, i = 1, . . . , N, r = 1, . . . , 5, differ significantly from

zero.

2. Cross sectional Wald test : At the aggregate level, we test the null hypothesis

that EC parameters governing the impact of particular pricing factors (α1r,i)

are jointly zero over the cross section dimension, i.e. H0,r : α1r,i = 0, i =

1, ..., N . The Wald statistic is denoted λc.

3. Mean group inference: To further study the overall signaling strength of EC

terms we perform mean group (MG) estimation (Pesaran & Smith (1995)).

The MG estimator is denoted α̂MG.
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1.4 In-sample analysis

ADF IPS LLC

< c0.05 < c0.10 Stat p-value Stat p-value

Developed markets

PE 3 4 -3.571 0.000 -2.314 0.010

ED 3 3 -3.870 0.000 -0.474 0.317

TES 8 9 -6.653 0.000 -3.195 0.000

IND 4 7 -3.839 0.000 -1.142 0.126

PPM 2 3 -2.440 0.007 0.003 0.501

Emerging markets

PE 4 6 -5.176 0.000 -2.753 0.003

ED 2 4 -3.843 0.000 -1.967 0.024

TES 11 11 -8.570 0.000 -8.159 0.000

IND 4 5 -3.228 0.000 0.282 0.611

PPM 2 3 -4.064 0.000 -5.160 0.000

Table 1.2: Unit root test results by equilibrium relation. ADF critical values

c0.05, c0.10 are -2.86, -2.57, respectively. As stated PE is the log price-earnings

ratio (pit− ait), ED is the log earnings-dividend ratio (ait− dit), TES is the term

spread (rlit − rsit), IND is the interest differential (rlit − rfnt ) and PPM is the log

stock price-market index ratio (pit − pmt ).

22
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1.4 In-sample analysis

1.4.3 In-sample results

Table 1.2 presents the results on the stationarity features of the equilibrium rela-

tions in (1.7). We refrain from reporting detailed ADF statistics over all markets

but just show the number of test statistics per EC relation that are smaller than

the 5% and 10% critical value, respectively. Moreover, we document the IPS

and LLC panel unit root test statistics. Selected results for estimated ECMs are

given in Table 1.3. We provide the number of t−ratios of the EC coefficients

exceeding 1.96 and 1.64 in absolute value, respectively, and the number of nega-

tive coefficient estimates. The results for the cross-sectional Wald test and MG

inference are also reported. The following discussion throughout refers to the 5%

significance level.

1.4.3.1 Stationarity tests

For 2 out of 14 developed markets the null hypothesis of a nonstationary PPM

ratio can be rejected whereas evidence in favor of nonstationary terms spreads

is much weaker. For the latter variable the null hypothesis of a stochastic trend

is rejected e.g. for 8 developed markets. With respect to emerging markets and

depending on the considered cointegrating relation the number of significant test

statistics varies between 2 (ED, PPM) and 11 (TES). Testing against a hetero-

geneous alternative, the IPS test obtains that a panel unit root is rejected in

both cross sections for each cointegrating relation. The homogeneous LLC test,

however, yields evidence of nonstationarity for ED, PPM and IND in developed

markets and IND in emerging markets.

1.4.3.2 Predictability tests

From the results for in-sample fitting (Table 1.3) it is seen that most estimated

EC coefficients in the case of developed markets show a negative sign over all

postulated cointegrating relationships. With respect to short horizon returns

(h = 1) we find that between 9 (PE) or 13 (PPM) developed markets show

parameter estimates which are less than zero. With regard to single market

results we obtain that at short horizons, between 1 (PE) and 6 (PPM) developed

markets yield an error correction coefficient which is significant according to the
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1.4 In-sample analysis

respective heteroskedasticity consistent t-ratios. When modeling stock returns at

higher horizons, the number of significant coefficients is between 2 (PE) and 9

(PPM) for h = 3 and 4 (PE) and 9 (PPM) for h = 6 according to autocorrelation

and heteroskedasticity consistent t-ratios. In emerging markets 4 to 8 (out of

12) single markets show negative EC coefficients for h = 1. Thus, significance of

error correction dynamics at short and medium horizons is less often diagnosed

in emerging markets in comparison with developed markets.

At the aggregate level MG (α̂MG) inference reveals that the PE, PPM and IND

variables have a significantly negative effect on log returns at short horizons in

developed markets. At longer horizons also the ED ratio exerts a significantly neg-

ative impact. The signaling strength of the above mentioned equilibrium relation-

ships confirms previous studies by Mills (1996), Lee (1998), Lamont (1998) and

Lettau & Ludvigson (2001b) amongst others. With respect to emerging markets,

no lagged equilibrium relationship has a significant effect on market returns nei-

ther at short nor at longer horizons. The insignificance of the MG estimator hints

at marked heterogeneity characterizing the cross section of emerging markets. For

developed markets the joint null hypothesis H0,r : α1r,i = 0, i = 1, . . . , N , is re-

jected with the Wald test λc for discount factors PPM, TES, and IND at horizons

h = 1, 3, 6. As for emerging markets H0,r : α1r,i = 0, can be rejected for all the

cointegrating relations when modeling short horizon returns (h = 1).

Summarizing in-sample estimation results we find heterogeneity with respect

to return predictability from particular equilibrium pricing factors amongst de-

veloped and emerging equity markets. Accounting factors (PE and ED ratios)

appear to have more indicative power in emerging than in developed markets

while discount factors appear to signal stock returns in both cross sections. It is

worthwhile mentioning that all in-sample results are obtained presuming struc-

tural model invariance. Significance of EC coefficients might be spurious owing to

neglected model instability. Given the former results on the LLC test one should

a-priori be careful in interpreting in-sample inference. From this perspective it

appears preferable to conduct ex-ante forecasting to assess the potential of pricing

factors for modeling stock returns.
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1.5 Out-of-sample analysis

1.5 Out-of-sample analysis

Model assessment based on the forecasting performance may be preferred over

in-sample fitting since issues such as the number of model parameters, integration

and cointegration features, regime switching and lag selection affect the estima-

tion of predictive regression models non trivially (Lewellen (2004), Campbell &

Yogo (2006)). This section describes the ex-ante forecasting design and evalua-

tion methods. Forecasting results are then discussed in Section 1.5.3. Technical

details on forecast diagnosis and combination are provided in Appendix A.

Model ∆p
(h)
it = µ1,i + α′1,ifit−1 +

∑p−1
j=1 b

′
1j,i∆zit−j + u

(h)
1,it

RW α′1,i = 0, p = 1

VA1 α′1,i = 0, p = 2

VA2 α′1,i = 0, p = 3

EC1 fit = (pit − ait) (PE), p = 2

EC2 fit = (ait − dit) (DE), p = 2

EC3 fit = (rlit − rsit) (TES), p = 2

EC4 fit = (rlit − rfnt ) (IND), p = 2

EC5 fit = (pit − pmt ) (PPM), p = 2

EC6 fit = (pit − ait, ait − dit)
′ (accounting factors), p = 2

EC7 fit = (pit − pmt , r
l
it − rsit, r

l
it − rfnt )′ (discount factors), p = 2

EC8 fit = (pit − ait, ait − dit, pit − pmt , r
l
it − rsit, r

l
it − rfnt )′, p = 2

Singular forecasts entering the combination

CO1 EC1 to EC5 (single factors)

CO2 EC6, EC7 (joint factors)

CO3 EC1, EC2 (accounting factors)

CO4 EC3, EC4, EC5 (discount factors)

CO5 RW, VA1, VA2, EC1 to EC5

CO6 RW, VA1, VA2, EC6 to EC8

Table 1.4: Control models (upper panel) and combined forecasting models (lower

panel)

26



1.5 Out-of-sample analysis

1.5.1 The forecasting design

1.5.1.1 Forecasting schemes

We apply a recursive and a rolling windows forecasting procedure. Let τ − 1

denote the last time instance available to implement a single forecast iteration.

The first forecasting scheme is applied recursively by increasing the in-sample

period from τ − 1 = Tmin = 48 to τ − 1 = Ti − h (see Table 1 for Ti). In the

second scheme of rolling window forecasting we fix a window of size Tmin = 48

which is moved over the subsample τ − 1 = Tmin, . . . , τ − 1 = Ti − h. Let ∆p̂
(h)
i,τ

denote an ex-ante forecast for ∆p
(h)
i,τ . Forecast errors are denoted

û
(h)
i,τ = ∆p

(h)
i,τ −∆p̂

(h)
i,τ , τ = 49, . . . , Ti − h+ 1. (1.9)

A priori, rolling forecasting schemes are likely better immunized against the ad-

verse effects of falsely imposing structural invariance as they build upon param-

eter homogeneity within a ‘small’ time window of observations. As a conse-

quence, the former results on unit root testing might not be representative for

each subsample used below for forecasting exercises. Note that after iteration

Ti = Ti − h− 47 forecast errors enter the cross model comparisons.

1.5.1.2 Control strategies

In order to study which particular (set of) cointegrating relation(s) contributes

best to forecasting stock returns we follow two strategies. We formalize a bench-

mark model where only a constant and first order autoregressive variables con-

tained in ∆zit−1 are used for stock return forecasting. Since such a model spec-

ification leaves the EC framework, we refer to it as VAR(1) in first differences

(VA1). The latter model is suitable as a benchmark specification since augment-

ing it sequentially with EC terms might signal cointegration and indicate the

most relevant equilibrium relationships entering price formation.

Firstly, we augment VA1 with each cointegrating relation separately and ob-

tain 5 forecasting models, denoted EC1 to EC5. Secondly VA1 is augmented with

the accounting factors (i.e., PE, ED), the discount factors (i.e., PPM, TES, IND)

and both factor sets jointly. Joint factor strategies are denoted EC6, EC7 and

EC8, respectively. The particular advantage of controlling for EC terms in this
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1.5 Out-of-sample analysis

way is that we can investigate which component of returns (single, accounting,

discount or joint components) is the strongest contributor to forecasting accuracy.

The upper panel of Table 1.4 summarizes the control models.

1.5.1.3 Combining forecasts

A particular insight from the methodological literature on forecasting is that

it is often preferable to combine alternative forecasts in a linear fashion and

thereby obtain a new predictor (Granger (1989), Aiolfi & Timmermann (2006)).

A detailed (cross sectional) encompassing analysis is beyond the scope of this

Chapter. Instead of formally testing forecast complementarity we directly address

the performance of combined forecasts. We consider six sets of forecasting models

to enter forecast combinations. The lower panel of Table 1.4 provides the model

references for combined forecasts and the underlying singular forecasts.

Singular forecasts entering CO1 to CO4 focus on the forecasting strength of

equilibrium pricing factors. The last two combination schemes (CO5 and CO6)

might be more interesting for practical purposes of return forecasting since they

also exploit the informational content of atheoretical model formalizations.

1.5.2 Forecast evaluation

A central purpose of this study is to examine conditional return models out-of-

sample from a cross sectional perspective. Diagnosing return forecasts is compli-

cated owing to forecast error heteroskedasticity. At horizons h = 3, 6, forecast

errors are also subjected to serial correlation. For the latter reasons we also con-

sider nonparametric inferential tools. The out-of-sample evaluation techniques

comprise:

1. Serial correlation: We consider a serial correlation statistic robust under

heteroskedasticity denoted ωi,l for lag l. The overall hypothesis of no serial

correlation (h = 1) is tested by aggregating log p-values via a Fisher (1932)

test denoted Ωl.

2. Distributional features : We investigate if forecasts ∆p̂iτ match key proper-

ties of the distribution of realized returns ∆piτ by means of a variant of the
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1.5 Out-of-sample analysis

Henrikkson–Merton statistic denoted hmi (Henriksson & Merton (1981),

Cumby & Modest (1987)). Sensible forecasting models should deliver hmi

statistics in excess of unity. An aggregated Henrikkson Merton statistic

(HM) is computed from return forecasts over both data dimensions.

3. Absolute and relative accuracy : We rank competing models according to

the mean absolute forecast error (MAFE) relative to the benchmark spec-

ification. A relative MAFE dri(•) < 1 hints at an inferior forecasting per-

formance of the benchmark. At the aggregate level we determine overall

MAFEs over both data dimensions, denoted d̄(0) and DR.

4. Outperformance of the benchmark model : To contrast the benchmark against

a particular model we consider the frequency of obtaining a smaller abso-

lute forecast error from the former which is denoted P. Over the panel

dimension, N market specific relative MAFEs are obtained. From these,

we count the relative MAFEs dri(•) less than unity denoted S.

5. Testing for a unit ratio: Borrowing from the derivation of the IPS test (Im

et al. (2003)) a panel statistic to test H0 : dr = 1 against H1 : dr < 1 is

performed. The test statistic is denoted TR and is approximately Gaussian

under H0.
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1.5 Out-of-sample analysis

Model hmi ωi,1 Ω1 Ω1,p hmi hmi hmi ωi,1 Ω1 Ω1,p hmi hmi

h 1 3 6 1 3 6

Developed markets Emerging markets

Recursive forecasting

RW 0 2 47.98 .011 0 0 0 0 25.28 .390 1 1
VA1 4 0 17.28 .943 1 1 1 1 27.05 .302 2 1
VA2 5 1 23.66 .699 0 3 2 1 30.65 .164 0 2
EC1 6 1 18.53 .912 4 8 5 1 26.72 .318 3 4
EC2 7 0 16.58 .956 1 2 2 1 24.52 .432 3 0
EC3 4 0 17.42 .940 2 3 2 0 25.37 .386 1 3
EC4 4 0 17.02 .948 1 3 2 1 27.14 .298 1 1
EC5 7 0 16.11 .964 6 6 0 1 25.97 .355 2 1
EC6 4 1 17.94 .928 5 8 1 0 22.71 .537 4 4
EC7 6 1 20.45 .848 5 8 1 0 18.42 .782 4 2
EC8 5 0 18.91 .901 7 10 3 0 17.39 .831 4 7

Rolling windows

RW 0 2 48.69 .009 1 2 1 0 24.55 .431 4 5
VA1 11 0 21.41 .808 3 8 7 0 14.29 .940 4 4
VA2 7 0 20.65 .840 1 6 4 0 16.52 .869 4 4
EC1 8 1 34.05 .199 8 11 4 0 21.27 .623 5 6
EC2 10 0 24.03 .680 6 11 4 0 16.01 .888 4 2
EC3 7 0 26.26 .559 4 10 5 0 14.11 .944 4 9
EC4 9 0 26.26 .559 4 11 3 0 14.11 .944 4 6
EC5 11 1 22.90 .738 11 14 2 0 21.13 .631 3 4
EC6 6 1 41.12 .052 8 12 3 2 33.33 .261 5 8
EC7 9 2 42.79 .037 11 13 2 1 27.06 .302 3 9
EC8 7 5 73.88 .003 14 14 4 2 47.40 .003 6 11

Table 1.5: Diagnostic statistic for return forecasts. Ω1,p lists p-values for Ω1. The

entries below hmi and ωi,1 report the number of markets where the null hypothesis

is rejected at the 5% significance level.
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1.5 Out-of-sample analysis
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1.5.3 Out-of-sample results

Apart from uncovering the predictive content of pricing factors the forecasting

exercises allow numerous directions to compare model accuracy. Conditioning on

the benchmark VA1 we first contrast rolling window and recursive forecasting. In

the second place we compare VA1 against specifications having an extended (VA2)

or reduced (RW) autoregressive order. Then, we address the forecasting content

of models including single pricing factors (EC1 to EC5). Forecasting accuracy

achieved when augmenting the benchmark jointly with accounting or discount

factors or both is also discussed. Finally, we turn to combined forecasts. At a

disaggregated level we only provide selective results on forecast error correlation

and distributional properties. Detailed results are provided at the aggregate level

of developed and emerging markets, respectively. The following discussions refer

to the 5% significance level.

1.5.3.1 Rolling windows vs. recursive forecasting

Considering VA1 employed for recursive and rolling window forecasting at devel-

oped markets it turns out that for all h = 1, 3, 6, HM statistics (Table 1.6) are in

favor of the rolling window approach while recursive forecasting obtains slightly

smaller MAFEs. The hypothesis of no serial correlation of h = 1 forecast errors

cannot be rejected for developed markets. From the aggregate HM statistics it

is evident that the VA1 benchmark is suitable to approximate distributional fea-

tures of stock returns. The only insignificant HM statistics of the VA1 (1.05,

1.02) are reported for recursive forecasting of emerging market returns at higher

horizons (h = 3, 6).

Contrasting some of the statistics for developed and emerging markets in Ta-

bles 1.6 and 1.8, it turns out that the relative merits of the rolling window scheme

are more apparent for emerging markets. For instance, with regard to benchmark

forecasting at the high horizon (h = 6) HM statistics are in favor of rolling win-

dow forecasting (1.119 against 1.015) while at the same time MAFEs reported

for recursive modeling are only slightly below the rolling window measure (0.1891

vs. 0.1894). The latter results hint at a higher likelihood of structural instabili-

ties of emerging markets ’ return dynamics in comparison with developed markets.
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1.5 Out-of-sample analysis

Overall, we find that rolling windows forecasting is slightly superior to recursive

prediction. Therefore, the following discussions mainly refer to former scheme.

1.5.3.2 Modifying the (vector) autoregressive order

Contrasting the VA1 against VA2 it turns out that higher order dynamics do not

improve forecasting accuracy. We obtain a few slightly improved HM statistics

but notice some cases where VA2 performs worse in comparison with VA1. For

instance, forecasting developed markets ’ returns (h = 1, 3) obtains HM statistics

for the VA2 which are about 0.02 less than the corresponding measures of the

VA1. The inferior performance of VA2 is also visible from relative MAFEs that

exceed unity significantly.

While the forecasting performance of the benchmark model is superior to

the VA2 it is of immediate interest if a reduction of the autoregressive order im-

proves forecasting accuracy. The RW model formalizes conditional returns merely

in terms of a constant implying a drift term to govern the (log) price process.

Coupled with rolling windows, RW might be seen as a local drift specification.

Conditional on the set of rolling window forecasts, a reduction of the autoregres-

sive order obtains smaller HM statistics over all forecast horizons in the case of

developed markets (Table 1.6). Moreover, at the cross sectional level we diagnose

serial correlation of rolling RW based forecasts (h = 1) in the case of developed

markets (Table 1.5).

With regard to emerging markets, the local drift model yields higher HM

statistics as VA1 for h = 1, 3, 6, and serial correlation (h = 1) cannot be diagnosed

at the aggregate or single market levels (Table 1.5). Relative MAFEs signal that

the local drift model outperforms VA1 significantly at all horizons, h = 1, 3, 6,

and for both cross sections (Tables 1.6, 1.8). The strength of the rolling RW

can also be diagnosed when counting the cross section members having a relative

MAFE (dri) below unity. Forecasting medium to high range returns yields S = 13

(h = 6) or S = 14 (h = 3) for developed markets. With respect to emerging

markets S attains its maximum of S = N = 12. The latter counts are throughout

significant against the VA1. Assessing the overall performance of RW and VA2

relative to VA1 by means of the panel statistic TR, it is confirmed that VA2
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performs significantly worse in comparison to VA1 and local drift based forecasts

outperform the benchmark at all horizons and for both cross sections.

1.5.3.3 Single factor forecasting

Augmenting VA1 with single pricing factors mostly improves HM statistics doc-

umented for return forecasts of developed markets. Conditional on h = 6, PE and

PPM ratios improve the distributional features of ex-ante forecasts since the HM

statistics increase in comparison with VA1. Two further statistics hint at poten-

tial forecasting strength of the PPM ratio. The relative MAFE estimate from

this particular single factor model is significantly below unity (0.965). More-

over, according to TR = −4.474 a unit MAFE ratio is rejected with conventional

significance.

For rolling window forecasting in emerging markets the general impression is

similar. In forecasting higher order returns (h = 6) EC1 (PE) and EC3 (TES)

outperform VA1. Including the latter factor raises the HM statistic from 1.11

to 1.21. Finally, owing to TR = −4.463 the null hypothesis of a unit MAFE

ratio computed against VA1 is rejected. The PE ratio obtains a similar TR-

statistic (−4.406) which also hints at forecasting strength of this factor for the

cross section of emerging markets. Both augmentations of VA1 do not achieve

the average forecasting performance of RW. MAFE ratios computed against VA1

are .919, .969 and .998 for RW, EC1 and EC3, respectively.

The latter comparisons of single factor models against VA1 deserve a word of

caution. It turns out that TR-statistics become throughout insignificant when the

rolling RW is the benchmark in emerging markets (Table 1.9). It is noteworthy

that the local trend model is not atheoretical as it is likely to exploit time-varying

risk premia. From the literature on conditionally heteroskedastic processes origi-

nating with Engle (1982), periods of lower and higher stock market volatility are

known to alternate. In turn, volatility clustering implies time varying risk premia

which, in our setting, might be captured by local drifts.
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1.5.3.4 Joint factor forecasting

Rolling window forecasting for developed markets by means of model specifications

comprising accounting (EC6) and discount factors (EC7) and both (EC8) jointly,

yields some improved HM measures. For instance, in case of h = 6 conditioning

on all pricing factors (EC8) attains an HM statistic of almost 1.33 which clearly

exceeds the benchmark 1.136 (VA1). Interestingly, it appears as if it were more

the discount factors that carry forecasting power in developed markets. Concen-

trating merely on accounting factors (EC6) the HM statistic drops back to 1.22

while modeling with joint discount factors (EC7) obtains 1.25. Similarly, aug-

menting VA1 with the discount (accounting) factors jointly we obtain P = 0.525

(P = 0.502) of all h = 3 predictions drawn from model EC7 (EC6). The model

including all lagged equilibrium relationships (EC8) attains the smallest MAFE

in case h = 6 over all competing specifications discussed so far. Measured against

VA1 the DR-ratio for EC8 is 0.872 indicating forecasting power of pricing factor

models at the cross sectional level. Moreover, we find that the full factor model

not only outperforms the VA1 but also the RW benchmark (Tables 1.6 and 1.7).

Contrasting model EC8 against the RW yields significant performance statistics,

TR = −5.435, P = 0.543 and DR = 0.911 (h = 6).

The latter results have to be mitigated with respect to emerging markets ’

returns. It still holds that the rolling EC8 outperforms VA1 in case h = 6.

Contrasting EC8 against RW, however, the latter specification remains superior.

This result hints at the difficulty to extract forecasting information from long run

variables in these markets.

1.5.3.5 Combined forecasts I

Forecast combinations are performed with weights conditional on the entire se-

quence of forecast errors available in the forecast origin (CO•) or conditional on

the 20 most recent realized errors (C̃O•). Since both weighting schemes turn

out to perform similar our discussion focuses on CO•. For details about forecast

combinations we refer to Table 1.4.

Combined forecasts show higher frequencies P as documented for singular

model forecasts (Tables 1.6, 1.8). The latter estimates vary between 55.0% and
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57.9% for developed and 53.0% and 59.7% for emerging markets. Similar fre-

quencies are obtained for developed markets when contrasting combined and RW

based rolling forecasts. With regard to emerging markets, forecast combination

fails to outperform RW (Table 1.9), thus, in what follows we focus on developed

markets.

Overall, combined forecasts deliver TR-statistics that are significant when con-

structed against the VA1 (varying between -8.836 and -18.36). Measured against

RW, TR varies between -0.172 and -5.257. Surprisingly, however, the relative

MAFEs do not attain the performance measures of EC8 being DR =.872 (.911)

when computed against the VA1 (RW) model. At the first sight the latter results

appear conflicting. The standard errors reported for the DR-statistics reveal that

combined forecasts show less forecast uncertainty as EC8. The latter models’ DR

measure of 0.87, for instance, shows a standard error of 1.412 implying an under-

lying variance which is about twice the variance of the DR statistic reported for

CO2 combining EC6 (joint accounting factors) and EC7 (joint discount factors).

Forecast combinations generated from singular forecasts EC1 to EC5 reduce fore-

cast uncertainty even further (CO1).

Comparing forecast combinations of EC1 and EC2 (CO3) and of EC3 to EC5

(CO4), underpins that discount factors carry more information than accounting

variables. Measured against RW, CO4 yields a DR-statistic of 0.975 which is

significantly less than unity. In comparison, the corresponding statistic for CO3

is only slightly smaller than unity (0.997).

The results on the performance of combined forecasts are encouraging in the

sense that linear combinations of alternative predictors appear to reduce fore-

cast uncertainty and might also improve other performance measures attached

to the combined singular ingredients. From these exercises we find strong and

outperforming competitors of RW in case of developed markets but not for the

cross-section of emerging markets.

1.5.3.6 Combined forecasts II

As a final approach we consider forecast combinations obtained from a set of

singular forecasts building upon both, ECMs and ‘atheoretical’ models such as
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RW, VA1 and VA2. The first set of forecasts entering the combination strategy

(CO5) consists of RW, VA1, VA2 and single factor models EC1 to EC5. The

second combination strategy (CO6) comprises RW, VA1, VA2 and joint factor

models EC6 to EC8.

Combined forecasts obtained along the latter lines yield the best forecasting

accuracy over all competitors considered so far in the case of developed markets.

The rolling CO6 strategy obtains in case h = 6 a MAFE ratio of DR =.869

which is below the measure provided for EC8 (0.872). In addition, the standard

errors are almost twice as large for the singular forecast (EC8) as for the com-

bined forecasts. As a consequence, CO6 is more efficient since it reduces both

the MAFE and forecast uncertainty. The empirical probabilities of obtaining a

smaller absolute forecast error from combined forecasts in comparison with VA1

are significant throughout (P = 0.61 (h = 6), P = 0.56 (h = 3), P = 0.525

(h = 1), Table 1.6). Based upon the TR-statistic, the combined forecast outper-

forms VA1 significantly at all horizons with the ‘least significant’ statistic being

TR = −4.488. Testing against the RW benchmark (Table 1.7) also hints at a

markedly better performance of combined forecasts in case h = 6 and, to some

lesser extent also at the medium horizon (h = 3, TR = −1.710). Taking com-

bined forecasts (CO5) from the set comprising RW, VA1, VA2 and EC1 to EC5

obtains slightly inferior ex-ante measures than CO6.

With respect to emerging markets, combined forecasts uniformly outperform

the VA1 benchmark (Table 1.8). Contrasting combined forecasts against the RW

benchmark is still supportive for the latter modeling venue (Table 1.9). A few

statistics hint at (insignificantly) superior forecasting performance of combined

rolling forecasts compared with the RW. Focusing on high horizon returns (h = 6)

the relative MAFE (DR) is below unity, TR = −1.176 and P = 0.522.

1.5.3.7 In-sample fitting vs. out-of-sample forecasting

The discussion of empirical results has been addressing both in-sample fitting

and out-of-sample forecasting. It is of immediate interest to uncover if in-sample

results provide some guidance on the forecasting strength of pricing factors. Ad-

dressing the latter issue is complicated since estimation results are obtained for
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the entire sample while forecast performance measures reflect a sequence of em-

pirical models each conditioning on smaller information sets.

In-sample estimates could offer misleading advice for forecasting since some

pricing factors show significant EC coefficient estimates but single pricing factors

rarely improve VA1 forecasts at the aggregate level. To give a further indication

of the latter issue we refer to Table 1.3, which displays the number of cross

section members with EC coefficients that have absolute t−ratios in excess of

1.64. Taking the latter as an indication of forecastability one would expect that

for particular cross section members those pricing factors help to improve the

forecasting accuracy of VA1. To measure the impact of a particular pricing factor

on forecastability at a single market level we check if the model and country

specific MAFE ratio, dri, is ‘significantly’ below unity. Along the latter lines we

count how often a single factor forecasting model (EC1 to EC5) delivers MAFE

ratios that fulfill the one sided criterion dri + 1.64

√
V̂ar[dri] < 1. Ideally, one

should observe a high overlap of cross sections where a particular pricing factor

yields significant coefficient estimates in-sample and forecasting power according

to a ‘small’ dri measure.

Table 1.3 provides counts of cross sections where in-sample and out-of sample

results point into the same direction. After determining ‘significant’ t−ratios we

count for which cross section members, forecasting schemes obtain ‘significantly’

small MAFE ratios. It turns out that not merely for h = 1 or h = 3 the latter

overlap is small but also for the case h = 6 where numerous pricing factors are

found to improve the VA1 forecasts conditional on single markets. For instance,

with respect to the PPM ratio 9 (out of 14) developed markets show a t−ratio

in excess of 1.64 but for only 5 (rolling windows) of these 9 markets the MAFE

ratio is ‘significantly’ below unity as well. Similar failures of in-sample modeling

to signal forecastability are reported for other pricing factors or for the cross

section of emerging markets.

1.6 Concluding remarks

In this Chapter we examined the in-sample and out-of-sample dynamic features of

stock market returns conditional on equilibrium pricing factors for developed and
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emerging markets. We put forward an asset pricing model that decomposes log

stock returns into accounting and discount equilibrium pricing factors and short

run (vector) autoregressive dynamics. Based on this model, we study if different

equilibrium relationships can (i) signal (or predict) stock return behavior within

sample and whether they can (ii) significantly improve (either jointly, individually

or via combination) out-of-sample return forecasts.

Overall, we find that forecasting with single lagged equilibrium relationships

does not play a uniformly significant role in explaining future stock return be-

havior but that forecasting with a full model containing all lagged equilibrium

relations can outperform both a random walk model with local drift and pure

VARs. The forecast content of (joint) pricing factors is more obvious for de-

veloped in comparison to emerging markets. Regarding the former, we find that

accounting variables such as price to earnings and earnings to dividend ratios con-

tribute less to ex-ante return models than discount factors such as term spreads,

international interest or stock index differentials. Concerning emerging markets,

a random walk model with local drift appears to describe best ex-ante returns.

This result hints at two main possibilities: First, time varying risk premia might

be a crucial factor in forecasting return behavior in emerging markets. Second,

sharp structural variations prevent asset return models that account for long

run variables to forecast emerging markets’ returns. Moreover, we find that lin-

ear combination of forecasts of alternative models reduces forecast uncertainty

and improves average forecasting precision. In particular, we find that an ana-

lyst would get most efficient approximations of future returns when subjecting a

broad set of alternative predictors (including pricing factor models, the random

walk and vector autoregressions) to forecast combinations.

Our approach to modeling stock returns conditional on equilibrium relation-

ships has various policy dimensions. First, we contribute to the rising debate

if predictive regression models can in fact be useful to describe expected asset

returns. Our results put forward that analysts should treat these type of models

with caution. That is, the postulated relationships should be analyzed out-of-

sample to avoid spurious results that may arise when performing the analysis

exclusively in-sample. Second, we exploit the augmentation of information that

comes along with panel data and design modeling methods to examine conditional
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returns. Lastly, we believe that further research should be done for emerging fi-

nancial markets. Our findings show that financial data of emerging markets may

incorporate large noisy components and possibly regime-switching coupled with

time-varying risk premia. An interesting extension to this study would be the

analysis of time-varying risk premia in asset returns at a cross-country level with

particular attention to other type of assets (fixed income, real estate, etc.) and

cross-sections (developed vs. emerging markets).
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Chapter 2

An Empirical Analysis of

International Real Estate

Securities: Long-run Equilibrium,

Short-run Dynamics and

Contemporaneous Dependence

2.1 Introduction

As introduced in the previous Chapter, financial economists have long been in-

terested in analyzing asset price behavior based on different equilibrium asset

pricing models. The Sharpe (1964) and Lintner (1965)’s Capital Asset Pricing

Model (CAPM), the Arbitrage Pricing Theory (APT) of Ross (1976), the present

value models of Campbell & Shiller (1987, 1988) and the stochastic discount fac-

tor model of Hansen & Singleton (1982) have been some of the most predominant

models in the asset pricing literature since the late 1960’s. However, asset pricing

studies have been mostly applied to equity and bond markets while leaving aside

real estate security markets. The importance of understanding the behavior of

real estate assets can be induced from the fact that total real estate accounts

for about half of the world’s wealth (Corgel et al. (2000)). Moreover, from the

perspective of a long term investor, real estate assets could be a more prudent
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investment vehicle since they may better balance risk/reward and market vari-

ability (cf. Viceira & Campbell (2002)). Thus, not studying real estate price

behavior means neglecting the understanding of a very important asset class and

a major source of wealth. Nevertheless, very little is known about the factors that

may explain real estate security prices in equilibrium and their short-run run de-

viations from equilibrium (e.g. time-varying risk-premia, asset return dynamics

and contemporaneous dependence).

The latter gap is tackled in the present Chapter where a real estate pric-

ing model is examined for a cross-section of international financial markets. We

model real estate security returns conditional on the long-run equilibrium error

between (log) real estate security prices, equity prices and bond prices as well

as conditional on the returns and the time-varying volatility of the latter three

asset types. The model also incorporates the time-varying volatility of a con-

structed ‘world’ asset factor and the time-varying covariances of this factor with

real estate, equity and bond returns. In addition, we also consider whether con-

temporaneous equity returns can explain international real estate returns. The

model is estimated using monthly data for the sample period 01/1996-12/2006

and a battery of in-sample and out-of-sample techniques are used to analyze it.

We hypothesize and examine an empirical equilibrium relationship between

real estate security prices, equity prices and bond prices for the following reasons.

First, real estate securities are shares of listed real estate firms whose major

bulk of business is in the operations of commercial and residential real estate.

Since real estate securities are traded in the stock market, they should have an

empirical relationship with the domestic all-share equity index (or another proxy

for the domestic asset market portfolio) under capital asset pricing considerations.

Second, the activities of listed real estate firms usually includes leasing, real estate

development and tenant services. Since the main activities of listed real estate

firms will be strongly related to interest rates, real estate securities should also

have a strong empirical relationship with the bond market, and thus, a bond price

index.

The empirical equilibrium relationship between real estate security prices,

equity prices and bond prices viewed from an international panel cointegration

perspective allows us to uncover the degree of financial integration between these
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three asset markets within and across international markets. Financial markets

are integrated when assets have the same theoretical price (after adjusting for risk)

irrespective of the market, otherwise, markets are said to be segmented (Bekaert

& Harvey (1995)). The CAPM or the APT have been the most popular models

used in the finance literature to test whether asset markets are integrated. A

modern way to analyze the degree of financial integration between asset markets

is by studying whether asset prices are cointegrated, i.e. by studying whether

they follow a long-run equilibrium relationship. The intuition is that if asset

markets are integrated then asset prices should, up to a scalar, be driven by a

common stochastic trend (cf. Mills (1996), Alexander (1999)).

There are a few available studies that analyze the long-run relationship be-

tween equity prices and variables such as dividends, earnings, industrial produc-

tion, interest rates and foreign stock prices from a panel cointegration perspective

(Nasseh & Strauss (2000, 2004), Bohl & Siklos (2004), Pan (2007)). There are

also some available studies that analyze whether there is a long run relationship

between real estate prices or bond prices and some of the aforementioned as well

as other economic indicators (Wilson et al. (1996), Chaudry et al. (1999), Gallin

(2006), Taipalus (2006), Ciner (2007)). However, there is, in general, a lack of

studies that model the long run relationship of real estate security prices, equity

prices and bond prices from an international panel cointegration perspective.

If real estate prices cointegrate with equity and bond prices and correctly ad-

just to short-run deviations from this equilibrium, what other factors can predict

these short-run deviations? We hypothesize that time-varying second order mo-

ments of asset returns such as volatility and covariances with a common factor

can predict real estate returns (i.e. log real estate price changes). There are

both empirical and theoretical arguments that can be put forward to support the

latter hypothesis. A well known empirical argument is the consensus amongst

the finance community that asset returns are conditionally heteroskedastic which

implies time variability in their second order moments. Thus, if second order

moments are time-varying it is intuitively plausible that they may affect the con-

ditional mean of asset returns. One theoretical argument is that time-varying

second order moments in-mean result from the time-varying risk premia required

by risk-averse agents. Investors form expectations of future return behavior based
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on the ‘riskiness’ of the asset in question, since they must be compensated for

the additional risk they undertake. The latter argument gives rise to the usual

risk-return relationship which has recently recaptured momentum in empirical

asset pricing studies of equity markets (cf. Ludvigson & Ng (2007), Bollerslev

et al. (2008)). Moreover, if asset markets are financially integrated, then one

should expect an inter-relationship as well as an intra-relationship between as-

set prices, returns and second order moments. Thus, time-varying second order

moments have both strong theoretical and empirical arguments why they should

be employed when studying short-run fluctuations of real estate security prices.

Nevertheless, there seems to be a lack of attention to examining the tradeoff

between asset risk and real estate returns especially at the cross-country level.

A prominent candidate model that could be used to analyze the explana-

tory power of time-varying second order moments in-mean of real estate returns

amongst a cross-section of countries is the intertemporal CAPM (ICAPM). The

latter model has already been tested in the world context and it has been found

that a significant (conditional) variation in covariance risk exists between country

stock returns and a world stock return (Harvey (1991)). Other studies have em-

ployed the ICAPM framework with other data sets or econometric methodologies

and have found evidence of the significant effect of time-varying second order

moments on the time-varying mean of asset returns in single markets (Attanasio

(1991), Turtle et al. (1994), Hafner & Herwartz (1998)).

However, we see two main problems with the ICAPM and related models

which we tackle in this Chapter. First, there are several empirical anomalies

of the CAPM which suggest that also the ICAPM might not be a particularly

accurate model to explain a cross-section of international real estate returns.

Several factors such as market value, payout ratios, earnings or dividend yields

have been found to explain various cross-sections of asset returns (Sattman (1980),

Banz (1981), Rosenberg et al. (1985), Bandhari (1988), Fama & French (1992)).

Return differentials of portfolios constructed to mimic factors related to size,

book-to-market measures and term structure components (a term premium and

a default premium) can capture strong common variation in returns in equity and

bond markets (Fama & French (1993, 1995)). These results have been recently

tested within conditional asset pricing frameworks and it has been found that
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the conditional moments of some of the latter variables can explain the cross

section of equity, bond and real estate returns in the US (Dunne (1999), Downs

(2000), Lettau & Ludvigson (2001b), Campbell & Vuolteenaho (2004), Downs &

Patterson (2005)). The latter findings are still an open question for the cross-

section of real estate returns at the country level. In this study we contribute

to this open question by constructing a ‘world’ asset factor that accounts for

return differentials in portfolios that mimic switches in fundamentals inherent in

international asset prices (high versus low price/dividend ratios for real estate

security prices, high versus low price/earnings ratios for equity prices and high

versus low term spreads for bond prices). Furthermore, we test whether its second

order moments (its time-varying variance and its time-varying covariance with

the cross-section of international equity, bond and real estate market returns)

can explain the cross section of international real estate returns.

Second, as criticized in the recent empirical finance literature, asset pricing

models such as the ICAPM or related multivariate volatility-in-mean models can

many times impose restrictive parametric assumptions and they often suffer from

a curse of dimensionality problem. To circumvent the latter constraints, empirical

finance models of conditional (multivariate) volatility or models containing time-

varying second order moments in-mean have recently been addressed via realized

volatility (RV) methods (cf. Andersen et al. (2003), Ludvigson & Ng (2007),

Bollerslev et al. (2008)). The RV approach allows conditional asset pricing models

to be tested flexibly with, say, panel data or recursive methods. In this study we

employ the RV approach to analyze the risk-return relationship in international

real estate securities.

Apart from uncovering the conditional explanatory power of particular vari-

ables for international real estate returns, we also contribute to the understanding

of the contemporaneous interactions between international real estate security re-

turns and international equity returns. The latter relationship is important from

an economic perspective since various studies have shown that there is a causal

relationship between investor sentiment and all-share equity returns hinting that

the latter may be used as a natural proxy for the former (cf. Neal & Wheatley

(1998), Lee et al. (2002), Brown & Cliff (2004), Lux (2008b)). The intuition

is that people take rising asset prices as a sign of confidence and a reason to
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invest in (say) mutual funds, retirement accounts or simply to take new bets.

From a behavioral finance perspective, proxies for investor sentiment can account

for ‘noise trader risk’, ‘animal spirits’ and ‘fads and fashions’ which are impor-

tant components needed to characterize asset return variation (cf. DeLong et al.

(1990)).

To preview the results, we find for the panel of countries considered that: (i)

real estate, equity and bond prices are cointegrated, (ii) a homogeneous long-run

equilibrium relationship between real estate, equity and bond prices exists and

real estate prices adjust (on average) to deviations from this equilibrium, (iii)

time-varying second order moments of real estate, equity, bond returns and the

constructed world factor can explain real estate returns, (iv) there is a dynamic

relationship between real estate and bond returns, and that (v) there are con-

temporaneous interactions between real estate returns and equity returns. These

results put forward that there is evidence of financial integration both within

and across the international asset markets considered and that risk pricing vari-

ables play an important role in describing short-run real estate price fluctuations.

In general, our findings suggest that a way to understand international real es-

tate securities is by analyzing their interactions with equity markets and bond

markets.

This Chapter is organized as follows. The next section introduces the empiri-

cal model analyzed. Section 2.3 addresses the econometric methodology employed

and designed for the empirical analyses. Section 2.4 reports the results and the

last section concludes. Details on issues not addressed in the main text can be

found in Appendix B.

2.2 The model

In this section we present a baseline empirical specification to study international

real estate securities. In what follows, real estate price Ph,t is defined as the price

of a portfolio of real estate securities. Equity price Ps,t is defined as the price of

a share of an all-share equity portfolio. Bond price Pb,t is defined as the price

of a long-term government (n-period) bond. In what follows let p•,t = lnP•,t be
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the log price of asset • = h, s, b. Moreover, log returns are defined as ∆p•,t =

lnP•,t − lnP•,t−1 and the general model of real estate returns as:

∆ph,t = υt + uh,t, (2.1)

where υt is a time-varying mean and uh,t is a zero-mean disturbance term (or

‘shock’). As shown in the previous Chapter, it is possible to derive the time-

varying mean υt from an equilibrium asset pricing framework. Our main interest

here is not to present a new theory but rather to perform the empirical analysis

of the following specification of the time-varying mean of real estate returns:

υt = α+ φht−1 + π′λt−1 + νt. (2.2)

In this model α is a constant, φ is the coefficient of equilibrium adjustment which

should satisfy φ < 0 and the variable ht = ph,t − β1ps,t − β2pb,t defines the ‘equi-

librium’ error between (log) real estate prices (ph,t), equity prices (ps,t) and bond

prices (pb,t). In that case, we say that the log real estate price, the log equity

price and the log bond price are cointegrated with long-run parameters β1 and

β2, briefly denoted CI(1,−β1,−β2). Intuitively, from an asset pricing perspec-

tive, the linear combination ht should capture (up to a constant) expectations

between differentials in risk premia and payoffs from each asset • = h, s, b as well

as stochastic discounting (cf. Campbell & Shiller (1988), Lettau & Ludvigson

(2001a), Cochrane (2001)).

The vector λt = (σ2
h,t, σ

2
s,t, σ

2
b,t, σ

2
f,t, σhf,t, σsf,t, σbf,t)

′ collects time-varying sec-

ond order moments where σ2
•,t denotes the time-varying volatility of the returns

of asset • = h, s, b and σ2
f,t is the time-varying volatility of a (common) asset

return factor ft. Moreover, the variables σ•f,t are the time-varying covariances

of the factor ft with the returns of asset • = h, s, b. In this context, the param-

eter vector π attached to λt is the price of variance and covariance risk to real

estate returns. As introduced in Chapter 1, the inclusion of the common factor

ft can be motivated by modern asset pricing theory: under complete markets

there exists a (common) discount factor that is a linear combination of the return

of different asset types and whose conditional moments price time series as well

as cross-sectional variation of all assets (cf. Cochrane (2001), Campbell et al.

(1997)). Note also that many theoretical models of the finance literature predict
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a positive risk-return tradeoff. Although some empirical evidence supports the

latter relationship, several studies have found a strong negative relationship (cf.

Black (1976), Campbell & Hentschel (1992)).1 In our context, this implies that

it is difficult to have a-priori knowledge of the exact signs of the parameters in

the vector π.

Furthermore, we analyze two different specifications for νt. The first one

assumes that νt can be explained only by dynamics of asset returns • = h, s, b,

i.e.

νt =

p∑
j=1

ς ′j∆zt−j, (2.3)

where ∆zt = (∆ph,t,∆ps,t,∆pb,t)
′ and ςj is a k × 1 vector of parameters for

each lag j. Model (2.1) coupled with (2.2) and (2.3) allows to analyze whether

short-run (log) real estate price changes (i.e. log real estate returns) can be

conditioned upon the equilibrium error of real estate prices ht, the second order

moments in λt and lags of asset returns contained in ∆zt. In this scenario we deal

with a predictive model since the evolution of real estate returns at t is strictly

conditional on information available at period t− 1, ..., t− p. The model can be

seen as a single equation error correction model ‘augmented’ by an additional

vector of explanatory variables λt. The model is also interesting in the sense that

it conditions real estate security returns upon different ‘layers’ of asset prices,

namely, log asset prices (ht), returns (∆zt) and volatility (λt).

The second model for νt augments the specification in (2.3) with contempo-

raneous equity returns, i.e.2

νt = η∆ps,t +

p∑
j=1

ς ′j∆zt−j. (2.4)

Model (2.1) coupled with (2.2) and (2.4) introduces a possible simultaneity is-

sue in the contemporaneous relationship between equity returns (∆ps,t) and real

1see Campbell et al. (1997) Chap. 12 for a comprehensive discussion on this issue. This has
lead to propositions such as the leverage hypothesis or the volatility feed-back hypothesis due to
Black (1976) and Campbell & Hentschel (1992) respectively.

2A previous version of this Chapter included contemporaneous and dynamic interactions of
real estate returns (∆ph,t) with changes in a sentiment index. However, the results turned out
insignificant so we report only model (2.4).
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estate returns (∆ph,t) which would complicate the identification of η. Thus, a

careful identification strategy should be employed. The empirical model can also

be written as,

∆ph,t = α+ φht−1 + π′λt−1 + νt + uh,t, (2.5)

coupled with either (2.3) or (2.4). Thus, we propose the analysis of log real estate

returns at period t via three major components: (i) a ‘theoretical’ component

made up of the lagged equilibrium error (ht−1) as well as lagged time-varying risk

pricing variables (λt−1), (ii) an ‘atheoretical’ component made up of dynamics of

asset returns (∆zt−1, ...,∆zt−p) and (iii) contemporaneous equity returns (∆ps,t).

2.3 Econometric methodology

2.3.1 The data

The empirical specifications for log real estate returns introduced in the previous

section are examined from an international panel perspective for the following

reasons. First, as introduced previously, studies of real estate security prices have

been mostly applied to individual markets, particularly the US. Second, a useful

and interesting asset pricing model should hold for single markets as well as for a

cross-section of markets, otherwise one may fall in the trap of generalizing a model

that might be only informational to a particular market. Third, the main interest

here is in uncovering the long-run, dynamic and contemporaneous components

that can explain the cross-section of international real estate securities. Let i =

1, ..., N indicate the respective cross sectional entities (countries) and t = 1, ..., T

the monthly time periods. The sample covered for the analysis runs from 01/1996

to 12/2006 which is interesting as we evaluate the model before the September

2008 financial crisis. For instance, if the coefficient of equilibrium adjustment φi

is positive, then there is an ‘explosive’ behavior of real estate securities in relation

to equity and bond prices in country i.

We have two main datasets. The first dataset is a panel of N = 14 devel-

oped countries and is used to evaluate the real estate pricing model proposed in
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(2.5). The countries are: Australia, Belgium, Canada, Denmark, France, Ger-

many, Italy, Japan, Netherlands, Norway, Spain, Sweden, United Kingdom and

United States. Countries were chosen upon data availability for the sample pe-

riod covered. The data is used to compute the returns ∆ph,it and the equilibrium

error hit and consists of Datastream calculated indices of real estate securities,

all-share equity (total market) and 10-year (benchmark) government bonds at

the monthly frequency.

The second dataset consists of financial data (price indices, price-earnings

ratios and dividend yields) for real estate, equity and bond markets at both the

daily and yearly frequency which is also collected from Datastream. It also consists

of yearly data on GDP as well as yearly long-term and short-term government

bond yields collected from Datastream or the IMF international statistics. The

daily data is employed to compute realized volatilities of asset returns σ̂2
•,it for

• = h, s, b. The daily data is also used to compute a common ‘world’ asset

factor f̂dt where d denotes a daily observation in a particular month t. The daily

frequency of the factor allows us to compute its realized volatility σ̂2
f,t and the

realized covariances of the factor with asset returns σ̂•f,it for • = h, s, b. The

yearly data is also used in the computation of the common factor as explained in

Appendix B.

2.3.2 Stationarity and cointegration analysis

The real estate pricing model in (2.5) presumes that the composite equilibrium

error hit = ph,it − β′ixit with xit = (ps,it, pb,it)
′ is I(0). As a first step, we should

analyze whether the variables ph,it, ps,it and pb,it are integrated of order one, i.e.

I(1). However, in the present Chapter, the order of integration of the latter vari-

ables is not explicitly tested since it is quite well known in the finance literature

that asset prices at the monthly frequency are mostly I(1).

If ph,it, ps,it and pb,it are in fact I(1) then, under the null of no cointegration,

the residual hit will also be I(1). To test the latter null hypothesis, we employ

the panel cointegration procedure proposed by Pedroni (2004) who recently de-

veloped a residual-based panel cointegration test for models with more than one

55



2.3 Econometric methodology

independent variable. Both the Phillips-Peron (PP) and the Augmented Dickey-

Fuller (ADF) versions of the Group and Panel t-statistics of Pedroni’s test are

employed. The null hypothesis of no cointegration is the same for both group

and panel statistics but the alternative hypothesis differs. The group statistic

assumes a heterogeneous alternative while the panel statistic assumes a homo-

geneous alternative. As a means of comparison we also employ the Levin et al.

(2002) (LLC) panel unit root test to test the null hypothesis of unit root.

2.3.3 Common factor, time-varying second order moments

and equilbrium error

The strategy for estimation consists of: (i) estimating a common ‘world’ asset

factor f̂dt from international daily asset returns, (ii) estimating the vector of

second order moments λ̂it by means of realized volatility methods, (iii) estimating

the error correction term ĥit. The flow chart of the strategy for estimation and

testing can be represented as follows,

Common factor (f̂dt) → Realized volatility (λ̂it) →

Long-run coefficients (βi)=
{

Pooled (β̂)

Mean group (β̄)

}
→ Hausmman test (H0 : βi = β)

→ Equilibrium error (ĥit)=
{
ph,it−β̂1ps,it−β̂2pb,it vs.
ph,it−β̂1,ips,it−β̂2,ipb,it.

}
In what follows we describe each step in greater detail although the explanation

is kept condensed to save on space. A more precise treatment of the methods

employed can be looked up in the references herein.
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Equity Markets Bond Markets Real Estate Markets
Australia Argentina Australia Austria
Austria Brasil Belgium Belgium
Belgium Chile Canada Canada
Canada China Denmark Denmark
Denmark Colombia France France
Finland Cyprus Germany Germany
France Czech Republic Italy Italy
Germany Greece Japan Japan
Hong Kong Hungary Netherlands Netherlands
Ireland India Norway Norway
Italy Mexico Spain Spain
Japan Pakistan Sweden Sweden
Luxemburg Peru United Kingdom United Kingdom
New Zealand Poland United States United States
Norway Russia
Spain South Africa
Sweden
Switzerland
United Kingdom
United States

Table 2.1: International equity, bond and real estate markets for factor construc-

tion
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2.3.3.1 The common factor

We construct a factor that mimics changes in regimes in international real estate,

equity and bond price fundamentals. The factor is common to all markets (i.e.

countries) and is of the form,

f̂dt = f̂h,dt + f̂s,dt + f̂b,dt, (2.6)

where d is a daily observation in month t. Each factor f̂•,dt for asset • = h, s, b

represents (log) return differentials between country portfolios constructed based

on certain criteria. We select criteria that aim to proxy the ‘fair’ price of inter-

national assets, namely, price-dividend ratios (PD) for real estate, price-earnings

ratios (PE) for equity and term spreads (TS) for bond markets. The latter ap-

proach is in line with previous findings that returns of portfolios constructed

based on fundamental measures can significantly explain variation of expected

returns (cf. Fama & French (1993, 1995)).3 Moreover, we also employ GDP (in

Dollar terms) to control for the ‘value’ of the countries included in the portfo-

lios. This is in line with recent findings that also value measures can significantly

explain time variation of expected returns (cf. Campbell & Vuolteenaho (2004),

Campbell et al. (2005)).

The constructed ‘world’ asset factor f̂dt accounts for total asset return differen-

tials of portfolios composed of countries which have high versus low fundamentals

(PD/PE/TS) corresponding to the three • = h, s, b markets after controlling for

the ‘value’ of their economies (GDP). Moreover, the factor should account dy-

namically for the changes in (yearly) fundamentals in international asset markets

since it is computed by rebalancing every year the groups of countries in the

portfolios used to calculate the return differentials. To save on space, technical

details on the construction of the factor f̂dt are provided in Appendix B.

3We employ PD ratios for real estate markets as opposed to PE ratios for two main reasons.
First we have a lack of observations of PE ratios for some of the markets considered. Second,
and most importantly, real estate securities should have a strong dividend-ratio component if
the portfolios are mostly composed of Real Estate Investment Trusts (REITs). To qualify as
REITs a real estate company must agree to pay out in dividends at least 90% of its taxable
profit. With REIT status, a company can avoid paying corporate income tax. See www.reit.com
for more detailed information.
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It is noteworthy that, due to data availability, we include as many countries

as possible for equity markets in the construction of the common factor to have

a better representation of international asset markets. For instance, an ‘unbal-

anced’ panel in the case of equity markets allows us to include emerging equity

markets which may account for large fluctuations in world asset markets (cf.

Bekaert & Harvey (2003)). The countries considered for the factor construction

are presented in Table 2.1.

2.3.3.2 Time-varying second order moments

The panel version of the model of real estate returns as specified in (2.5) ac-

counts for time-varying second order moments contained in the vector λit for

each i. Note that a possible estimation approach for the specification in (2.1)

would be a 4-dimensional volatility-in-mean model. However, as mentioned pre-

viously, such models would be difficult to implement with panel data or recursive

estimation. For instance, with the BEKK(1,1,1) representation of Engle & Kro-

ner (1995) for the time-varying variance this would imply the estimation of at

least 50 parameters for each i. The estimation would even be more cumbersome,

for instance, in the case of a multivariate stochastic volatility-in-mean model with

panel data.4 Thus, for the purpose of this study, we follow the non-parametric

realized volatility (RV) approach proposed by Andersen et al. (2003) who provide

a general framework for the measurement and modeling of volatility and covari-

ance distributions. Realized volatility estimates allows one to use traditional time

series methods for analysing empirical finance models.

In our context, the realized variance-covariance matrix for each i = 1, ..., N

and t = 1, 2, ..., T time periods is given by:

Σ̂it =
D∑
d=1

vi,dtv
′
i,dt, (2.7)

where vi,dt = (∆ph,idt,∆ps,idt,∆pb,idt, f̂dt)
′ and d is a daily observation in a particu-

lar month t. Given the estimates for each month t we obtain λ̂it = (σ̂11,it, σ̂22,it, σ̂33,it

4As a preliminary analysis we estimated 2-dimensional and 3-dimensional volatility-in-mean
models for a panel of international asset markets. However, we ran into problems of non-
convergence for many countries and the results were mostly insignificant.
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, σ̂44,t, σ̂41,it, σ̂42,it, σ̂43,it)
′ = (σ̂2

h,it, σ̂
2
s,it, σ̂

2
b,it, σ̂

2
f,t, σ̂hf,it, σ̂sf,it, σ̂bf,it)

′. Thus, the pro-

cedure boils down to simply computing volatility and covariance estimates at

month t from a higher frequency of the data, in this case daily data. It is note-

worthy, however, that the RV approach assumes that the variables in vi,dt follow

(semi)-martingale processes for the second moment estimates to be consistent.

This requirement applies to our context empirically since it is well known in the

finance literature that daily asset returns follow approximately martingales (cf.

Ding et al. (1993), Bollerslev & Mikkelsen (1996), Baillie (1996)). It also applies

for f̂dt since it is constructed from linear combinations of portfolios’ asset returns.

2.3.3.3 Equilibrium error

In order to estimate the long-run coefficients in the error term hit with panel

data, one may consider a variety of recently available methodologies such as the

panel Autoregressive Distributed Lag (ADL) model proposed in Pesaran et al.

(1999) and Pesaran & Smith (1995), the Fully Modified OLS (FMOLS) estima-

tors proposed by Pedroni (2001, 2004) and the dynamic OLS (DOLS) estimators

proposed by Kao & Chiang (2000) and Mark & Sul (2003). In general, Monte

Carlo studies have shown that the DOLS model produces less volatile estimates

with a relatively smaller sample bias and should be preferred in single equation

models (cf. Maddala & Kim (1998), Kao & Chiang (2000)).5 Thus, for the pur-

pose of this study we consider a DOLS(a) model for i = 1, 2, ..., N groups and

t = 1, 2, ..., T monthly time periods which takes the form:

ph,it = β0,i + β′ixit + δ′i∆yit + εit. (2.8)

In our case βi is a k×1 vector of long-run coefficients attached to xit = (ps,it, pb,it)
′,

δi = (δ′i,−ai
, ..., δ′i,0, ..., δ

′
i,+ai

)′ is a (2ai + 1)k-dimensional vector of projection pa-

rameters attached to ∆yit = (∆x′it−ai
, ...,∆x′it, ...,∆x′it+ai

)′ which is a (2ai + 1) k-

dimensional vector of leads and lags of the first differences of the variables in xit.

The leads and lags are included to control for the endogenous feedback effects of

the regressors. The Mean Group and Panel DOLS approaches are employed for

5We performed a Hausmann test to discriminate between the ADL, FMOLS and DOLS
estimators and the result favors the DOLS estimator.
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the estimation of the long-run coefficients with panel data (cf. Kao & Chiang

(2000), Pedroni (2001), Mark & Sul (2003)). While the Mean Group DOLS ap-

proach assumes a heterogeneous vector of long-run coefficients for each member i

of the cross-section, the Panel DOLS approach assumes a homogeneous vector of

long-run coefficients. The Mean Group and Panel DOLS estimators are denoted

β̄ and β̂, respectively. More details on the estimators are found in Appendix B.

We discriminate between the Mean Group and the Panel DOLS estimators

by testing the null hypothesis of long-run parameter homogeneity H0 : βi = β

via a Hausmann test denoted H. The equilibrium error is then computed as

ĥit = ph,it − β̂1ps,it − β̂2pb,it if H0 holds and ĥit = ph,it − β̂1,ips,it − β̂2,ipb,it if H0

is rejected. Note also that if H0 holds, then the equilibrium relationship between

(log) real estate, equity and bond prices holds homogeneously across the panel of

countries considered.

2.3.4 International real estate returns

In this section we present the estimation and testing strategy of the panel version

of model (2.5) given the estimated variables λ̂it and ĥit. The model analyzed for

i = 1, ..., N and t = 1, ..., T is given by6

∆ph,it = αi + φiĥit−1 + π′iλ̂it−1 + νit + uh,it, (2.9)

where αi represents the fixed effects, φi is the error correction coefficient mea-

suring the speed of adjustment toward the long-run equilibrium, πi is the vector

attached to the volatility components capturing the ‘price of risk’. In what fol-

lows, we consider in more detail the estimation and testing techniques for the two

models describing νit.

6We also experimented with the threshold error correction proposed in Enders & Siklos
(2001). However, we found no evidence in favor of threshold error correction.
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2.3.4.1 Dynamic analysis

In this section we consider the first model of νit for i = 1, ..., N and t = 1, ..., T

which is given by:

νit =

p∑
j=1

ς ′j,i∆zit−j, (2.10)

where ςj,i is a 3 × 1 parameter vector attached to ∆zit = (∆ph,it,∆ps,it,∆pb,it)
′

for each lag j. Model (2.9) coupled with (2.10) can be estimated via OLS. In

what follows, let ψ̂m,i = (α̂i, φ̂i(β̂), π̂′i, ς̂
′
1i, ..., ς̂

′
pi)

′ be the vector of OLS estimates

obtained from (2.9) if H0 : βi = β holds and let ψ̂n,i = (α̂i, φ̂i(β̂i), π̂
′
i, ς̂

′
1i, ..., ς̂

′
pi)

′

be the vector of OLS estimates if H0 : βi = β is rejected. For simplicity let

ψ̂r,li for r = m,n denote a particular coefficient l contained in the latter vectors.

Standard errors of the estimates ψ̂r,li are computed with White (1980)’s het-

eroskedasticity robust covariance estimator to account for the heteroskedasticity

in the innovations uh,it found empirically in most models of asset returns.

At the panel dimension, we perform Mean Group inference with respect to the

above model along the lines of Pesaran et al. (1999) and Pesaran & Smith (1995).

The Pooled Mean Group (PMG) estimator is given by ψ̄PMG = (ᾱ, φ̄(β̂), π̄′, ς̄ ′1, ...,

ς̄ ′p)
′ and is computed from ψ̂m,i while the Mean Group (MG) estimator is given

by ψ̄MG = (ᾱ, φ̄(β̂i), π̄
′, ς̄ ′1, ..., ς̄

′
p)
′ and is computed from ψ̂n,i. Both estimators can

be obtained by averaging the individual market estimates ψ̂r,i for r = m,n and

they are computed from our estimation strategy depending on the result of the

Hausmann test (ψ̄PMG if H0 : βi = β holds otherwise ψ̄MG).7

In order to evaluate the robustness of the estimates and some of the statis-

tics used to evaluate the model we perform bootstrap inference. The bootstrap

distribution is obtained under the null hypothesis H0 : αi = φi = π′i = ς ′j,i = 0 in

(2.9) and (2.10) so that ∆ph,it = uh,it. The procedure consists of:

1. Generating bootstrap returns ∆pbh,it by randomly drawing with replacement

from the set of returns {∆ph,i1, ...,∆ph,iT} for each i = 1, ..., N .

7Additionally, we employed efficient GMM to estimate a pooled version of (2.9) across
the panel to obtain a homogeneous set of parameters and we employed a Hausmann test to
discriminate between the homogeneous and heterogeneous estimators. The test favors the
heterogeneous panel estimators.
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2. Re-estimating the parameters ψ̂br,i, ψ̄
b
• as well as the (adjusted) degree of

explanation (R2
i ) of the regression denoted R2

ib.

3. Steps 1 and 2 are repeated, say 500 times, and confidence intervals are

obtained by using γ/2 and (1−γ/2) quantiles of the bootstrap distribution.

Note that since the bootstrap distribution is obtained under the null H0 : αi =

φi = π′i = ς ′j,i = 0, the estimates ψ̂r,i, ψ̄• and R2
i that lie outside the bootstrap

confidence bands can be seen as statistically significant.

Most empirical studies of asset return predictability focus on the in-sample

performance of asset pricing models. As mentioned in the previous Chapter

and rectified in our findings in the international market context, recent studies

have found that in-sample predictability does not necessarily imply out-of-sample

forecastability (cf. Andrew & Bekaert (2001), Hjalmarsson (2006), Campbell &

Thompson (2007)). Treating asset pricing models only in-sample may lead to

spurious conclusions about the empirical underpinning of the asset pricing model

at hand. Although the main interest in this Chapter is not out-of-sample forecast-

ing but rather to uncover some of the long-run, dynamic and contemporaneous

determinants of international real estate returns, the diagnostic approach treats

selected out-of-sample tests at the individual market level and at the aggregate

level.

For the out-of-sample analysis we employ rolling window forecasting. A

window of size Tmin = 48 is fixed and moved over the subsample τ − 1 =

Tmin, . . . , τ − 1 = T − 1.8 Similar to Lettau & Ludvigson (2001a), the long-

run parameter vector β̂i is estimated via DOLS(2) at each window.9 Let ∆p̂h,iτ

denote an ex-ante forecast for ∆ph,iτ conditional on information available in τ−1.

Forecast errors are computed as,

ûh,iτ = ∆ph,iτ −∆p̂h,iτ , τ = 49, . . . , T. (2.11)

8We experimented with other window sizes but the results remain qualitatively the same.
9The results do not change qualitatively when using the one-step ADL estimator proposed

in Pesaran et al. (1999) and Pesaran & Smith (1995) or the FMOLS estimator proposed by
Pedroni (2004).
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The out-of-sample analysis consists on testing the behavior of the above forecast

errors or of the single forecasts ∆p̂h,iτ . Technical details of the in-sample and

out-of-sample tests employed are found in Appendix B.

2.3.4.2 Contemporaneous analysis

In this section we consider the alternative model of νit for i = 1, ..., N and t =

1, ..., T which is given by:

νit = η∆ps,it +

p∑
j=1

ς ′j,i∆zit−j. (2.12)

Model (2.12) introduces a contemporaneous feature which complicates the analy-

sis of model (2.9). First, we assume a homogeneous contemporaneous parameter η

attached to ∆ps,it. Second, the relationship between contemporaneous real estate

returns ∆ph,it and equity returns ∆ps,it can be characterized by a simultaneity

problem since we do not know the exact direction of the causality between the two

variables. Consequently, OLS estimation of η in model (2.9) would yield biased

estimates. The problem is approached via ‘Identification through Heteroskedas-

ticity’ (IH) developed by Rigobon (2003). We start by considering the following

reduced form model,

yit = Γixit + eit, (2.13)

where yit = (∆ph,it,∆ps,it)
′, Γi is a 2× k matrix of reduced form parameters at-

tached to xit = (1, ĥit−1, λ̂
′
it−1,∆z

′
it−1, ...,∆z

′
it−p)

′ and eit = A−1uit are the reduced

form residuals where,

A =

[
1 −η

−ρ 1

]
, (2.14)

and uit = (uh,it, us,it)
′ are the structural shocks which are assumed heteroskedastic

but uncorrelated. Thus, in this set up, the reduced form residuals eit contain the

contemporaneous parameters of interest. Defining Ωi = E[[eh,it es,it]
′ · [eh,it es,it]],

it can be shown that the later unconditional variance-covariance matrix contains
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the contemporaneous parameters η and ρ as well as the structural variances of

uh,it and us,it:

Ωi = ζ

[
σ2
h,i + η2σ2

s,i ρσ2
h,i + ησ2

s,i

ρ2σ2
h,i + σ2

s,i

]
, (2.15)

where ζ = (1−ηρ)−2. It is worth noting that the covariance matrix Ωi can also be

assumed to be time-varying (Rigobon (2003)). The above analytical expression

for the variance-covariance matrix of the reduced form residuals eh,it and es,it

exemplifies the identification problem of introducing the contemporaneous effects

of equity returns on real estate returns in model (2.9) since we end up with four

unknowns (the contemporaneous parameters and the two variances) but only

three equations.

Following Rigobon (2003), assume that the data can be split into two (or more)

distinct sets assuming that there are two regimes in the variances of the structural

shocks, i.e. high and low volatility (heteroskedasticity). In addition, it is assumed

that the structural parameters are stable across regimes. These assumptions im-

ply that one may estimate Ω̂i,R for at least R = 1, 2 where σ2
h,i1/σ

2
s,i1 6= σ2

h,i2/σ
2
s,i2

and obtain 6 moments from the data (2 variances and 1 covariance from Ω̂i,1 and

2 variances and 1 covariance from Ω̂i,2) which should be explained by 6 param-

eters of interest (the 2 contemporaneous parameters η or ρ and the 4 structural

moments). We end up with 6 equations and 6 unknowns that enable us to iden-

tify η and ρ. To exploit regime changes in the panel, the ‘algorithm’ to estimate

A is along the lines of Lee et al. (2004) and consists of:

1. Estimating (2.13) for each unit i separately and recovering the reduced form

residuals êit for each i. Estimating the unconditional covariance matrix Ω̂i

of the reduced form residuals and splitting the units i = 1, ..., N into four

groups g = 1, ..., 4: high/low variance of ‘conditionally centered’ real estate

returns êh,it and high/low variance of ‘conditionally centered’ equity returns

ês,it. High variance is defined as values above the median while low variance

are values below the median.

2. For each of the four groups g = 1, ..., 4 we estimate ‘Mean Group’ covariance

matrices, denoted Ω̂g. This procedure would provide 12 sample moments
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(4 covariances and 8 variances from Ω̂g, g = 1, .., 4) which need to be ex-

plained by 10 parameters (8 structural moments and the 2 contemporaneous

coefficients η and ρ).

3. One can employ GMM or non-linear least squares to estimate the 10 param-

eters of interest by minimizing the distance of the sample moments from

their theoretical counterparts.

Model (2.13) allows to perform impulse response analysis to study the con-

temporaneous effect of a shock to the structural innovations on the variables in

yit. One may estimate the structural impulse responses for each of units i, for the

sub-samples g = 1, .., 4 or for the entire sample since the matrix of coefficients

Â is assumed to be invariant to the different regimes. The estimated structural

impulse responses for all i = 1, ..., N and t = 1, ..., T would be nonlinear functions

of the estimate Â (the matrix of structural parameters) and B̂ji (the submatrix

of coefficients attached to lags j of ∆ph,it and ∆ps,it):

ϑ̂lm,i(h) = f(Â, B̂i1, ..., B̂ip), (2.16)

where ϑ̂lm,i(h) represents the response of variable l to an impulse on innovation

m, h periods ago in country i. ‘Mean group’ impulse responses are estimated as

ϑ̄lm(h) = N−1
g

∑
i ϑ̂lm,i(h) for each of the groups g = 1, ..., 4. Bootstrap confidence

bands for the impulse responses are computed along the lines of Benkwitz et al.

(2001). The latter procedured is described in Appendix B.

2.4 Results

This section discusses the results of the real estate pricing model discussed in

the previous section. The next two subsections discuss the cointegration and

long-run estimation results as well as a summary of the realized volatility and

common factor results. The last two subsections address the individual results

and the aggregate results of the international real estate return model, respec-

tively. The following discussion refers to the 5% level of statistical significance

unless otherwise stated.
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Country LAG NWB ADFi PPi β̂1i β̂2i

AUL 0 0 -4.410 -4.390 0.806 1.295
[0.000] [0.000] (4.968) (21.56)

BEL 0 5 -3.376 -3.486 0.209 1.353
[0.009] [0.006] (8.745) (21.02)

CAN 3 4 -2.262 -2.899 0.387 3.554
[0.009] [0.014] (3.856) (12.66)

DEN 0 2 -2.009 -2.020 0.847 4.014
[0.043] [0.042] (3.526) (6.330)

FRA 7 2 -1.716 -1.578 0.319 3.553
[0.082] [0.108] (3.839) (19.21)

GER 2 3 -2.027 -2.047 1.906 2.477
[0.041] [0.039] (7.380) (4.378)

ITA 0 6 -1.972 -1.870 0.612 2.081
[0.047] [0.006] (5.337) (9.906)

JAP 2 4 -0.799 -0.732 0.888 -0.100
[0.367] [0.397] (3.943) (−0.224)

NET 1 3 -1.744 -1.604 0.166 1.662
[0.077] [0.102] (3.090) (11.72)

NOR 0 0 -2.709 -2.709 0.644 3.518
[0.008] [0.007] (7.106) (16.02)

SPA 1 4 -0.619 -0.507 0.508 2.743
[0.447] [0.495] (2.516) (11.06)

SWE 0 2 -1.315 -1.439 0.209 3.549
[0.174] [0.139] (1.528) (9.047)

GRB 3 5 -0.641 -0.243 0.438 1.596
[0.438] [0.597] (2.619) (4.235)

USA 3 6 -0.795 -1.130 0.360 2.338
[0.371] [0.234] (3.000) (5.988)

Table 2.2: Unit root and long run estimation results per country (t-ratios in

parentheses, p-values in brackets). Note: ADFi is the Augmented Dickey-Fuller

unit root test statistic with Aikaike Information Criteria (AIC) selected lag of

the dependent variable given by LAG. PPi is the Philipps-Peron unit root test

with Newey-West Barlett kernel with the bandwidth given by NWB. The ADFi

and PPi unit root tests are for the estimated error ĥit = ph,it− β̂′ixit. Estimation

of the long-run parameters β̂1i and β̂2i is done via a fixed effect DOLS(2) model

for each i.
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Statistic P-ADF P-PP G-ADF G-PP LLC
7.323 3.393 9.852 4.367 -4.448
[0.000] [0.001] [0.000] [0.000] [0.000]

LR est./Hauss. β̄1 β̄2 β̂1 β̂2 H

0.593 2.402 0.696 2.253 0.137
(4.954) (7.678) [0.000] [0.015] [0.711]

Table 2.3: Cointegration and long-run estimation results at the aggregate level

(t-ratios in parentheses, p-values in brackets). Note: P-ADF (P-PP) is the Aug-

mented Dickey-Fuller (Phillips Perron) version of Pedroni’s panel cointegration

statistic, G-ADF (G-PP) is the Augmented Dickey-Fuller (Phillips Perron) ver-

sion of Pedroni’s group cointegration statistic. LLC is the Levin et al. (2002) panel

unit root test. β̄ is the vector of long-run coefficients computed via (fixed effects)

Mean Group Panel DOLS(2), β̂ is the vector of long-run coefficients computed

via (fixed effects) Pooled DOLS(2) and H is the Hausmann statistic.

2.4.1 Cointegration and long-run estimation results

As stated previously, we hypothesized a priory that (log) real estate (ph,it), eq-

uity (ps,it) and bond (pb,it) indices are all I(1). Thus, finding a stationary linear

combination of these variables would indicate that a long run equilibrium error

exists between the latter asset prices. As a preliminary stationarity analysis,

Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root tests were

performed for the equilibrium error ĥit at the single market level (Table 2.2). The

results of the ADF and PP unit root tests suggest that the latter equilibrium er-

ror is stationary for particular markets thus hinting at a stationary relationship

between the three asset types considered. More precisely, the null of unit root

can be rejected at a 5% level of significance in 7 (6) out of the 14 markets under

inspection with the ADF (PP) test, namely, Australia, Belgium, Canada, Den-

mark, Germany, Italy and Norway. However, since ĥit is estimated, the ADF and

PP tests can only give a hint about the stationarity of the latter equilibrium error

since critical values of the tests might change.

Thus, at the aggregate level, it is preferable to test the null of no cointegration

between (log) real estate (ph,it), equity (ps,it) and bond (pb,it) indices via the panel
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cointegration tests proposed by Pedroni (2004) which take account of appropriate

asymptotic and finite sample properties. The null of no cointegration can be

rejected at the 5% significance level with the Panel and the Group statistics

for both ADF and PP versions of Pedroni’s test (Table 2.3: P-ADF=7.323, P-

PP=3.393, G-ADF=9.852, G-PP=4.367). Moreover, the null hypothesis of non-

stationarity for the equilibrium error can also be rejected with the LLC panel

unit root test at a 5% level of significance (Table 2.3: LLC=-4.448). Thus, we

find strong evidence of a long-run relationship between (log) real estate security

prices, equity prices and bond prices for the cross-section of international asset

markets. This finding hints at the possibility that the latter three asset markets

are financially integrated (at least on average) within the countries at hand.

With respect to the estimation of long run-parameters, we fit a DOLS(2)

model based on the result of the Akaike Information Criterion (AIC). We ob-

tain a positive and statistically significant relationship at the 5% level between

log real estate security prices and log equity prices (log bond prices) in 13 (13)

out of the 14 international asset markets (Table 2.2). The positive and statisti-

cally significant relationship between the three assets at the single market level

is confirmed at the aggregate level via the Mean Group and panel DOLS esti-

mators (Table 2.3). The result on the Hausmann test H = 0.14 is in favor of

the pooled DOLS estimator of long-run coefficients which hints at homogeneity

in the postulated equilibrium relationship for real estate security prices amongst

international markets. This finding also favors the argument that real estate,

equity and bond markets are financially integrated across the countries under in-

spection. Moreover, the homogeneity in the long-run relationship between (log)

real estate, equity and bond prices across countries also suggests that increases in

(log) equity or bond prices have a positive and homogeneous marginal effect on

international real estate prices. The elasticity of real estate prices with respect

to equity prices is estimated to be β̂1 = 0.7 (p-value=0.000) while the elasticity

with respect to bond prices is estimated to be β̂2 = 2.25 (p-value=0.015).
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2.4 Results

2.4.2 Common factor and volatility results

Figure 2.1 shows the returns and volatility of the computed world asset factor

as well as the respective autocorrelation functions. The figures show that the

factor follows a martingale-type process: it cannot be predicted from its own

past although its volatility appears to be highly predictable down to 16 lags, i.e.

f̂t ∼ (0, σ2
f,t). The factor also captures the increase in volatility in international

financial markets during the financial turmoil of the Nasdaq crash and of the

period on or after September 11, 2001. Figures 2.2 to 2.5 show the corresponding

autocorrelation functions of the realized volatility (σ̂2
•,it) and covariance estimates

(σ̂•f,it) for some of the main players of world financial markets, namely, the US,

UK, Japan and Germany although the same type of figures result for all other

markets inspected. The figures show that volatility estimates of real estate, equity

and bond returns are predictable for the most part. The autocorrelation lags of

the latter volatility estimates that are statistically significant at the 5% level

range between 1 to 20 depending on the market and the asset type considered.

With respect to the covariance estimates, the predictability finding is less obvious

although there is still evidence of autocorrelation a the 5% significance level for

1 to 5 lags for most country estimates.

75



2.4 Results
C

ou
nt

ry
φ̂

i
φ̂

b i
π̂

n
o

i
ς̂n

o
i

ar
ch

i
JB

i
τ I

N
,1

i
τ I

N
,4

i
$

i
R

2 i
τ

b
e

O
S

,i
τ O

S
,i

fe
i

hm
i

A
U

L
-0

.0
25

-0
.0

68
2,

2
0,

3
26

.9
2

0.
77

2
0.

52
4

2.
51

2
36

.7
4

0.
07

8
1.

87
4

0.
45

5
1.

26
6

1.
05

2
(−

0
.4

7
2
)

[0
.0

0
0
]

[0
.6

8
0
]

[0
.4

6
9
]

[0
.6

4
3
]

[0
.0

0
0
]

0
.0

7
0

[0
.1

7
1
]

[0
.5

0
0
]

[0
.1

0
3
]

B
E

L
-0

.0
04

-0
.0

18
1,

1
1,

3
12

.2
2

0.
53

9
0.

09
6

1.
16

5
36

.3
6

0.
10

1
0.

97
8

5.
24

9
0.

42
7

1.
01

0
(−

0
.3

2
8
)

[0
.0

3
2
]

[0
.7

6
4
]

[0
.7

5
6
]

[0
.8

8
4
]

[0
.0

0
0
]

0
.0

7
4

[0
.3

2
2
]

[0
.0

2
2
]

[0
.3

3
5
]

C
A

N
-0

.0
78

-0
.0

49
1,

3
1,

3
11

.4
8

0.
84

0
0.

61
4

1.
95

8
38

.9
4

0.
19

8
0.

04
2

1.
29

7
-0

.1
63

1.
11

0
(−

2
.1

8
3
)

[0
.0

4
2
]

[0
.6

5
7
]

[0
.4

3
3
]

[0
.7

4
3
]

[0
.0

0
0
]

0
.0

8
3

[0
.8

3
8
]

[0
.2

5
5
]

[0
.5

6
5
]

D
E

N
-0

.0
21

-0
.0

22
1,

3
0,

3
12

.2
7

4.
90

1
0.

00
5

7.
32

4
70

.9
5

0.
11

7
0.

63
7

0.
15

0
4.

67
4

0.
92

8
(−

1
.3

2
9
)

[0
.0

3
1
]

[0
.0

8
6
]

[0
.9

4
6
]

[0
.1

2
0
]

[0
.0

0
0
]

0
.0

8
5

[0
.4

2
4
]

[0
.6

9
9
]

[0
.0

0
0
]

F
R

A
-0

.0
10

-0
.0

25
3,

3
1,

3
6.

67
4

0.
61

1
0.

81
7

8.
07

4
46

.8
7

0.
10

5
0.

03
5

0.
55

8
1.

73
0

1.
32

8
(−

0
.5

4
3
)

[0
.2

4
6
]

[0
.7

3
6
]

[0
.3

6
6
]

[0
.0

8
9
]

[0
.0

0
0
]

0
.0

7
0

[0
.8

5
1
]

[0
.4

5
5
]

[0
.0

4
2
]

G
E

R
-0

.0
40

-0
.0

26
1,

4
1,

2
12

.7
7

0.
39

8
0.

66
9

2.
02

0
42

.9
7

0.
18

7
0.

00
4

4.
07

0
0.

74
7

0.
99

5
(−

1
.7

6
5
)

[0
.0

2
6
]

[0
.8

1
9
]

[0
.4

1
3
]

[0
.7

3
2
]

[0
.0

0
0
]

0
.0

7
6

[0
.9

5
2
]

[0
.0

4
4
]

[0
.2

2
8
]

IT
A

-0
.0

96
-0

.0
52

0,
4

0,
1

16
.0

9
4.

91
1

0.
27

1
9.

63
7

26
.1

3
0.

13
8

0.
07

7
12

.2
9

0.
53

9
1.

05
2

(−
2
.5

5
9
)

[0
.0

0
7
]

[0
.0

8
6
]

[0
.6

0
3
]

[0
.0

4
7
]

[0
.0

1
0
]

0
.0

9
1

[0
.7

8
2
]

[0
.0

0
0
]

[0
.2

9
5
]

T
ab

le
2.

4:
S
in

gl
e

m
ar

ke
t

re
su

lt
s

-
P
ar

t
I

(t
-r

at
io

s
in

p
ar

en
th

es
es

,
p-

va
lu

es
in

b
ra

ck
et

s)
.

N
ot

e:
th

e
re

al
es

ta
te

re
tu

rn

m
o
d
el

fo
r

ea
ch

i
is

∆
p h
,i
t

=
α
i
+
φ
iĥ
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ĥ
it

=
p h
,i
t
−
β̂
′ x
it
.
φ̂
i
is

th
e

es
ti
m

at
e

of
th

e
co

effi
ci

en
t

of
eq

u
il
ib

ri
u
m

ad
ju

st
m

en
t

an
d
φ̂
b i

it
s

90
%

q
u
an

ti
le

of
th

e
b
o
ot

st
ra

p
d
is

tr
ib

u
ti

on
.
π
n
o

i
(ς
n
o

i
)

d
en

ot
es

th
e

n
u
m

b
er

of

ri
sk

(d
y
n
am

ic
)

p
ri

ci
n
g

co
effi

ci
en

ts
at

ta
ch

ed
to
λ
it

(∆
z i
t)

th
at

h
av

e
ro

b
u
st
t-

ra
ti

os
gr

ea
te

r
th

an
1.

64
in

ab
so

lu
te

va
lu

e

fo
ll
ow

ed
b
y

th
e

n
u
m

b
er

of
ri

sk
(d

y
n
am

ic
)

p
ri
ci

n
g

co
effi

ci
en

ts
th

at
li
e

ou
ts

id
e

th
e

90
%

co
n
fi
d
en

ce
in

te
rv

al
of

th
e

b
o
ot

st
ra

p
d
is

tr
ib

u
ti

on
.

In
-s

am
p
le

st
at

is
ti
cs

:
ar

ch
i
is

th
e

A
R

C
H

-L
M

co
n
d
it

io
n
al

h
et

er
os

ke
d
as

ti
ci

ty
st

at
is

ti
c

w
it

h
fi
ve

la
gs

,
J
B
i
is

th
e

J
ar

q
u
e-

B
er

a
n
or

m
al

it
y

te
st

fo
r

th
e

st
an

d
ar

d
iz

ed
re

si
d
u
al

s
û
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2.4 Results

2.4.3 Real estate returns

2.4.3.1 Single market results

The individual market analysis for real estate returns consists of estimating the

model in (2.9) for each i and performing different in-sample and out-of-sample

tests as well as residual diagnostics. The model is implemented with p = 1 based

on the AIC. The vector of parameters is given by the vector containing the pooled

long-run estimates ψ̂m,i = (α̂i, φ̂i(β̂), π̂′i, ς̂
′
1i)

′ given the result on the Hausmann

statistic H outlined in the previous section that the null of long-run parameter

homogeneity cannot be rejected.

In the first instance we test the null hypothesis that a particular coefficient

estimate ψ̂m,li attached to the set of explanatory variables in (2.9) and (2.10) is

equal to zero. Note that model (2.9) is stable as long as the coefficient φi is less

than zero. Tables 2.4 and 2.5 show that 13 out of the 14 countries under inspection

show a negative error correction coefficient estimate. According to robust t-ratios,

4 out of the 13 negative coefficients are statistically significant at the 5% level if

a one-sided test is performed. More precisely, the equilibrium error ĥit can signal

real estate returns in Canada, Germany, Italy and Sweden. According to the

bootstrap distribution under the null hypothesis of no error correction, we obtain

that the error correction coefficient in Norway is also statistically significant.

Interestingly, the coefficient of equilibrium adjustment φ̂i for the United States is

positive which points out to the overvaluation of real estate markets in comparison

to equity and bond markets in the latter country for the sample period covered.

As previously mentioned, the sign of the coefficients in the vectors πi and ςj,i

are not a-priori restricted by the presumption of model stability or unambigu-

ous economic arguments. In these lines, we diagnose at the 5% significance level

that the number of statistically significant coefficients in πi attached to the vec-

tor of risk-premia λit is largest when conditioning real estate returns upon the

volatility of equity returns (6) and lowest when conditioning real estate returns

on the volatility of bond returns (0) according to the robust t-ratios (Table 2.6).

Interestingly, lagged volatility of equity returns has a negative effect on real es-

tate returns in 14 out of the 14 countries under inspection. Moreover, 9 of the

14 countries show that lagged equity volatility has a significantly negative effect
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on real estate returns at conventional significance levels. This puts forward that

lagged equity volatility seems to play a very important role in pricing risk of

international real estate securities. Indeed, the effect of equity volatility is more

frequent statistically significant across countries than the effect of real estate

volatility (Table 2.6). Overall, lagged time-varying risk-premia have explanatory

power for real estate returns at the 10% level in all international markets con-

sidered according to the t-ratios and bootstrap confidence bands (πnoi , Tables 2.4

and 2.5).

In the case of asset return dynamics included in the vector ∆zit, we obtain

that lagged bond returns seem to best explain real estate return variation out

of the three asset return variables considered. In particular, according to robust

t-ratios, past bond returns show explanatory power for real estate returns at the

5% level in 3 out of the 14 countries considered while lagged equity and real

estate returns show explanatory power in 1 out of the 14 countries (Table 2.6).

Overall, past returns of real estate, equity and bond markets can explain real

estate return variation at the 10% level in most countries except for Japan ac-

cording to the t-ratios and bootstrap confidence bands (ςnoi , Tables 2.4 and 2.5).

The results on the explanatory power of the independent variables considered

to characterize the dynamics of international real estate returns is qualitatively

the same (or better) when considering the number of coefficients that lie outside

the bootstrap confidence intervals or the Q-statistic found in Campbell & Yogo

(2006) (Table 2.6).

In addition to significant tests on single coefficients, we also test the null hy-

pothesis that the coefficients of the model are jointly equal to zero. The typical

F -test would not be appropriate in this case since we are dealing with an asset

return model with conditionally heteroskedastic residuals. Instead, the null hy-

pothesis ψ̂m,1i = ψ̂m,2i = ... = 0 is tested via a Wald test with White (1980)’s

heteroskedasticity robust covariance estimator denoted $i. The results on this

test show that the null hypothesis of the coefficients being jointly equal to zero

can be rejected at the 5% level in all the 14 countries at hand (Tables 2.4 and

2.5). Thus, we find that the equilibrium error (hit), the time-varying second order

moments (λit) and the (vector) autoregressive dynamics (∆zit) can jointly explain

one-period ahead real estate returns.
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A study by Foster et al. (1997) proposes to assess the goodness of fit of an as-

set pricing model by determining the maximal adjusted-R2 of a predictive return

regression. The maximal R2 in our context, is the 95% cutoff value of the degree

of explanation from the predictive regression under the null hypothesis that all

the coefficients are equal to zero. As a final in-sample predictability test at the

single market level we compute the in-sample adjusted-R2
i of the model in each

country and compute bootstrap critical values for the latter statistic under the

null hypothesis ψ̂m,1i = ψ̂m,2i = ... = 0. The results of this exercise show that

the R2
i statistic is significantly larger than the bootstrap critical values in most

countries except for Norway. This result is in line with the previous result of

the Wald test (Tables 2.4 and 2.5). Thus, there is strong evidence of real estate

return predictability from the regressors considered and thus evidence against the

Efficient Market Hypothesis (EMH) in international real estate markets. Inter-

estingly, there is no evidence of first order serial correlation (τIN,1i) for any of the

markets but there is some evidence of 4th order serial correlation (τIN,4i) at the

10% level in countries like France, Italy, Netherlands and Norway.

The out-of-sample analysis consists of three main tests, namely, (i) a test

on the distributional features of the real estate return forecasts, (ii) a test on

serial correlation of forecast errors and (iii) a forecast encompassing test of fore-

cast errors. The test on distributional features denoted hmi is the variant of the

Henrikkson–Merton statistic (Henriksson & Merton (1981), Cumby & Modest

(1987)) introduced in the previous Chapter. The results of the test on distribu-

tional features are presented in Tables 2.4 and 2.5 and show that the proposed

model is convenient to approximate distributional features of ex-ante real estate

returns in countries like France, Japan, Spain, Sweden, the UK and the USA

where the hmi is greater than the 5% critical value 1.15.

The test of forecast encompassing denoted fei is taken from Harvey et al.

(1998). Forecasts ∆p̂h,iτ (M1) obtained from a particular benchmark scheme, are

said to encompass forecasts ∆p̂h,iτ (M0) corresponding to our model if the latter

contains no useful information improving the ex-ante approximation of ∆ph,iτ .

Not useful in this context means that a linear combination between the forecasts

∆p̂h,iτ (M1) and ∆p̂h,iτ (M0) has a mean squared error (MSE) not significantly

smaller than that of ∆p̂h,iτ (M1) alone. The benchmark specification is the model
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in (2.9) with φi = 0 and θ′i = 0. The vector ∆zit is included in order to (i) account

for possible serial correlation that would result from a simple drift model and (ii)

to study the marginal forecasting contribution of the equilibrium error (ĥit) and

the risk-pricing variables (λ̂it) (i.e. the ‘theoretical’ pricing variables).

It is important to note that forecasting models should deliver serially uncorre-

lated sequences of forecasting errors. Thus, we also perform a (heteroskedaticity

robust) Wald test for the forecasting errors ûh,iτ (M0) and ûh,iτ (M1). The out-

of-sample serial correlation statistic of the model (benchmmark) is given by τOS,i

(τ beOS,i) in Tables 2.4 and 2.5. The results on the forecast encompassing exer-

cise show that the benchmark specification does not forecast encompass the full

model in Denmark, France, Japan, Spain and the UK where the null hypothesis

of forecast encompassing is rejected at the 5% level of significance (Tables 2.4

and 2.5). Moreover, there is no evidence of first order serial correlation in the

forcasting errors of the latter countries. This result suggests that forecast combi-

nations obtained from real estate returns conditioned upon an equilibrium error

and time-varying risk and those obtained from atheoretical dynamics could im-

prove ex-ante forecasts in some countries.

The results at the single market level indicate that there is a high degree

of heterogeneity amongst international markets with respect to the explanatory

power of the different independent variables considered in the model of real estate

returns. However, the results uncover that real estate markets are inefficient for

the sample period analyzed since we diagnose both in-sample and out-of-sample

evidence of predictability (from the equilibrium error (ĥit), risk-premia (λ̂it) and

asset return dynamics (∆zit)) within the cross-section of countries considered.
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2.4.3.2 Aggregate results

The aggregate market analysis consists, as a first instance, in estimating model

(2.9) via mean group inference. As mentioned earlier the result of the Hausmann

test (H) leads to the acceptance of the null hypothesis H0 : βi = β. There-

fore, the mean group inference is done from the vector of estimated coefficients

ψ̂m,i = (α̂i, φ̂i(β̂), π̂′i, ς̂
′
1i)

′ and the panel estimator is given by the Pooled Mean

Group estimator ψ̄PMG = (ᾱ, φ̄(β̂), π̄′, ς̄ ′1)
′. The results are displayed in Table 2.6.

The magnitude of the PMG error correction coefficient φ̄ = 2.8 is statistically

significant at the 5% level and shows that a one percent increase in the ĥit ratio

today would lead on average to a decrease of 2.8 basis points in (log) real estate

prices tomorrow. Thus, according to the model, real estate prices had a relatively

slow adjustment to deviations from equity and bond prices in the sample period

analyzed.

The aggregate effect of the risk pricing variables on real estate returns diag-

nosed by the PMG estimator differs. Lagged equity volatility and lagged world

factor volatility have on average a statistically significant negative effect on real

estate returns at the 5% level. However, lagged time-varying volatilities of real

estate and bond returns have on average no statistically significant effect on real

estate returns. With respect to lagged time-varying covariances of equity returns

and bond returns (real estate returns) with the ‘world’ asset factor, we obtain

that they have on average a statistically significant positive (negative) effect on

international real estate returns at the 5% level. In the case of asset return

dynamics we find that at the aggregate level, only lagged bond returns can sig-

nificantly explain real estate returns on average at the 5% level. Thus, it appears

as if (lagged) time-varying volatility of bond returns does not explain future real

estate returns on average while their first order dynamics do. The latter result

also suggests that monetary policy may significantly affect (one-period ahead)

real estate returns. Moreover, we obtain that the statistically significant PMG

coefficients according to t-ratios, also lie outside the bootstrap confidence bands

(CI1, CI2) which supports the PMG inference.

We also perform the usual cross-sectional regression approach in the finance

literature to check the robustness of the aggregate measures. The latter strategy

85



2.4 Results

is used to study whether the ψ̂m,li’s estimates attached to a particular pricing

variable l for each unit i can explain average real estate returns. An asset pricing

model should explain not only time series variation of expected returns but also

the cross-section of average returns. The estimated cross-section coefficient is de-

noted κ̂ and the results are presented in Table 2.6. The cross-sectional regression

estimates are mostly in agreement with the PMG inference with respect to the

aggregate effect of the regressors on the cross-section of real estate returns (both

in terms of signs and statistical significance at the 5% level). That is, we find that

the coefficients ψ̂m,li attached to the (lagged) equilibrium error, equity volatility,

factor volatility, covariances with the factor and bond returns can significantly

explain the cross-section of average real estate returns.

As a final in-sample test at the aggregate level, we test the null hypothesis

that short-run parameters governing the impact of a particular pricing variable

l in ψ̂m,li are jointly zero over the cross section dimension (i.e. H0 : ψm,li = 0

for i = 1, ..., N) via a robust cross-sectional Wald test introduced in the previous

Chapter. The test statistic is given by ω and the results are also presented

in Table 2.6. As in the case of the cross-sectional regressions, the results on

the cross-sectional Wald test also confirm the statistically significant results of

the PMG estimation. That is, lagged values of the equilibrium error, equity

volatility, factor volatility, covariances with the factor and bond returns have a

statistically significant effect on the cross-section of real estate returns at the 5%

level. Moreover, the latter test also shows that the coefficient attached to lagged

volatility of real estate returns is different from zero over the cross-section at the

5% level providing evidence that past real estate volatility can explain real estate

returns at the aggregate level.

The out-of-sample analysis shows that the model approximates distributional

features of real estate returns at the aggregate level since the statistic HM = 1.127

is above its 5% critical value 1.05. As for the forecast encompassing test, the

Fisher (1932) test F-fe = 101.9 (p-value=0.000) indicates that the ex-ante ap-

proximation of ∆ph,it may be improved at the aggregate level by combining fore-

casts of a ‘theoretical’ specification (containing ĥit and λ̂it) and an ‘atheoretical’

one (containing only ∆zit).

86



2.5 Concluding remarks

Lastly, we consider the results of the contemporaneous analysis which are pre-

sented in Table 2.6. The findings indicate that there is a positive and statistically

significant dual contemporaneous relationship at the 5% level between equity re-

turns and real estate returns in the international markets considered (Table 2.6:

η=0.329 (2.272), ρ=0.347 (2.468)). The latter finding can be interpreted as ev-

idence of contagion effects from shocks of equity markets to real estate markets

and vice-versa. Figures 2.6 and 2.7 show the impulse responses. Note that the

contemporaneous response (the y-axis value when the horizon is zero) is homo-

geneous for the regime groups g = 1, 2, 3, 4. Overall, the dynamic effect of real

estate returns from the shock on equity returns dissipates rapidly after about 2

to 3 months.

The in-sample and out-of-sample aggregate results of the formulated real es-

tate pricing model point out to the same direction as the individual market results.

That is, (log) real estate price changes can be conditionally explained by the equi-

librium error ĥit, (selected) time-varying second order moments in λ̂it and bond

return dynamics in ∆zit. Interestingly, we find that there is a strong statistically

significant relationship between equity markets and real estate security markets in

the international context via volatility, log prices and contemporaneous returns.

The empirical relationship of real estate securities with bond markets appears to

be via bond prices or bond return dynamics rather than via bond volatility.

2.5 Concluding remarks

This Chapter analyzed empirically a real estate pricing model for a cross-section

of international asset markets. The main findings can be summarized as follows.

First, real estate security prices, equity prices and bond prices are cointegrated

in the panel of countries according to the results of different panel cointegration

tests as well as panel unit root tests.

Second, a homogeneous long-run equilibrium relationship between interna-

tional real estate, equity and bond prices exists and real estate prices adjust (on

average) significantly to deviations from this equilibrium. Both the cointegration

test results and the significant long-run homogeneous relationship between the

three assets under inspection suggest financial integration amongst these asset
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markets both within particular countries and across the panel. These results also

suggest that increases in equity or bond prices have a positive and homogeneous

marginal effect on international real estate security prices. The elasticities of real

estate security prices with respect to stock (bond) prices are estimated to be less

(greater) than one.

Third, we find strong evidence that second order moments of real estate,

equity, bonds and a constructed world factor are time-varying and that they

can predict real estate security returns. The latter results imply that (i) risk

pricing variables play an important role when formulating models for real estate

securities and that (ii) analysts may exploit the relatively simple approach of

realized volatility methods to build appropriate models for international asset

pricing and risk management.

Fourth, additional asset return dynamics such as past bond returns can sig-

nificantly signal real estate returns which suggests that monetary policy may

influence real estate security prices. Lastly, there is evidence of a (dual) con-

temporaneous relationship between international equity returns and real estate

returns but the impact of shocks dissipates quickly. Overall, our findings suggest

that a way to understand international real estate securities is by analyzing their

comovements with equity markets and bond markets.
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Chapter 3

International Transmission of

Shocks: US Monetary Policy and

International Asset Prices

3.1 Introduction

In this Chapter we turn to the analysis of the relationship between monetary

policy in the United States (US) and asset prices which has recently attracted

the attention of economists. The relationship has already captured momentum at

a national level since understanding the responsiveness of US asset prices to US

monetary policy allows policymakers and market participants to build appropriate

models for the distribution of risk bearing. In a world of financially interconnected

markets, a relationship between US monetary policy and international asset prices

may also exist. In this context, international asset prices may presumably respond

not only to their domestic monetary policy shocks but also to US monetary policy

shocks. This suggests that monetary policy authorities around the world would

be able to take better decisions if they have an accurate understanding of the

response of their asset markets to a monetary shock in the US. For instance, it

would allow policy makers to devise coherent and coordinated strategies in light

of adverse contagion effects that may arise from international financial crises.

In this Chapter we contribute to the understanding of the empirical relation-

ship between US monetary policy and international equity, bond and real estate
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markets for the sample period 01/1994 to 12/2007. Our empirical approach is

based on the recent methodology of Identification through Heteroskedasticity (IH)

proposed by Rigobon & Sack (2004). We employ the IH approach and extend it to

the international context by means of a heterogeneous panel framework. We con-

sider issues such as controlling for dynamic components in the conditional mean

of international asset returns, selection of non-policy dates in the international

context, recursive estimation and bootstrap inference.

The empirical nature of our approach originates from the absence of a broad

consensus on the stylized facts of the relationship between asset prices and mone-

tary policy. The difficulty in arriving to such a consensus stems from the fact that,

already at national level, the relationship may well depend on the specification of

the model used, and in some cases, it is not transparent whether targeting asset

prices may have desirable effects (cf. Bernanke & Woodford (1997), Bullard &

Schaling (2002), Geromichalos et al. (2007)). Moreover, if the central bank’s goal

is price stability, and this is interpreted as stability of the price of current con-

sumption, as opposed to stability of the price of current vs. future consumption,

there might be no reason for a central bank to influence asset prices. Focusing

on asset prices when setting monetary policy might be only relevant to the ex-

tent that they may signal inflationary or deflationary pressures (cf. Bernanke &

Gertler (2000, 2004)). On the other hand, an active reaction of the monetary

authority to asset price developments may help prevent bubbles and could even

be welfare improving (cf. Cecchetti et al. (2000), Carlstrom & Fuerst (2007)).

Asset prices should theoretically play, nevertheless, a major role as providers

of valuable information on expectations about future discount factors, which sug-

gests that they may have an empirical relationship with the monetary policy rate

(cf. Campbell & Shiller (1987, 1988), Vickers (1999)). Indeed, recent studies

have identified a significant response of US asset markets to US monetary policy

shocks (Cochrane & Piazessi (2002), Rigobon & Sack (2004)). The significant

impact of monetary policy on equity prices could be explained by the effect of

revisions on forecasted equity risk premia (cf. Bernanke & Kuttner (2005)). It

can also be argued that changes in asset prices and changes in the short-term in-

terest rate can affect each other contemporaneously via channels such as through
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expectations of the future output path and inflation (Rigobon & Sack (2002),

Chadha et al. (2004)).

The empirical evidence of a (contemporaneous) relationship between asset

prices and monetary policy found for the US suggests that in a world of highly in-

terconnected financial markets, monetary shocks that affect US asset prices could

also affect international asset prices. For instance, foreign investors who hold US

assets will be affected by US monetary policy shocks which could in turn affect

their investment decisions with respect to foreign and domestic assets. However,

while central banks still hold control over inflation, long term bond prices and

equity prices are determined by global supply and demand forces (Rogoff (2006),

Bernanke (2007)). Thus, it is not obvious whether (growing) financial integra-

tion can strengthen or weaken the effects of monetary policy on asset prices at

home or abroad. This issue is of particular importance since capital market rates

are one of the most important channels through which monetary policy makers

may influence the real economy and inflationary pressures. Therefore, a clearer

understanding of the effect of US monetary policy on international asset prices

can improve the view on how monetary authorities worldwide could coordinate

actions to influence asset markets when necessary.

The relationship between US or domestic monetary policy and international

asset prices has already been analyzed but following different empirical approaches.

It has been found that international equity prices react negatively in response to

interest rate surprises by the US monetary authority, and that the response’s vari-

ation is mainly related to financial integration with the US (Wongswan (2005)).

Moreover, it seems that asset prices react strongest to domestic monetary policy

shocks but that there are also substantial international spillovers between money,

bond, equity markets and exchange rates within and between the US and the

Euro area (Ehrmann et al. (2005)). The evidence on the relationship between

monetary policy and asset prices in countries like the United Kingdom (UK),

Japan and the European Union (EU) is tenuous particularly in periods after the

1990s (Furlanetto (2008)). Nevertheless, there is recent evidence that certain

equity markets in the EU react significantly to monetary surprises of the Euro-

pean Central Bank (ECB) (Bohl et al. (2008)). The latter findings suggest that
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the impact of US (domestic) monetary shocks across (within) border might be

country dependent as well as time dependent.

So far, little attention has been given to studying the effect of US monetary

shocks on international asset prices from a parsimonious model that allows the

analyst to estimate the impact for single markets as well as at the aggregate

level. We argue that a US monetary policy shock might have different influences

on international asset markets (e.g. due to financial integration, distance, distinct

monetary policy frameworks, prudential rules, etc), thus, it is preferable to assume

heterogeneity in the relationship and estimate the aggregate impact accordingly.

Previous studies have not focused on analyzing the impact of US monetary policy

on international asset prices using recursive estimation at the panel dimension.

In this study we propose recursive analysis to understand whether the aggregate

impact of US monetary policy is time-varying across international asset markets.

The latter approach is in line with recent empirical and theoretical evidence that

international market integration may be time-varying (cf. Bekaert & Harvey

(1995), DeRoon & DeJong (2005), Pavlova & Rigobon (2009), Pachenko & Wu

(2009)). From an econometric perspective, recursive analysis via heterogeneous

panels may also safeguard the analyst against structural changes present in the

data and, thus, prevent her from arriving at spurious conclusions that may arise

from single markets or fixed time periods. As in the previous Chapter, we partially

try to overcome the general lack of attention to real estate markets by accounting

for indices of real estate securities at the country level.

To preview some of our main results we find that: (i) the IH approach is in

general more appropriate than the popular event study approach for identifica-

tion of the impact of US monetary policy on international asset prices, (ii) the

equity markets of Mexico and Canada have a statistically significant response

to US monetary shocks hinting at a proximity effect, (iii) the estimated impact

of US monetary policy is heterogeneous across countries but statistically signif-

icant at the aggregate level in equity and bond markets and (iv) the aggregate

impact (in absolute terms) and the ‘goodness of fit’ of US monetary policy on

international equity and real estate markets seems to be increasing over time.

Our results suggest that the empirical relationship between US monetary policy

and international asset prices is sample and country specific and that a way to
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safeguard the analysis against spurious conclusions is to aggregate the impact

recursively.

The Chapter is organized as follows. The next section presents the empiri-

cal specification studied. Section 3.3 describes the dataset and the econometric

methodology used. Section 3.4 presents and analyzes the results of the study.

The last section concludes.

3.2 The model

This section presents a baseline model to analyze the impact of US monetary

policy on international asset prices. US monetary policy is taken as the US

Federal Reserve’s decisions to change the US short term interest rate (US STIR

henceforth). In what follows let equity price Ps,t be the price of a domestic

all-share equity portfolio at time t. Bond price Pb,t is defined as the price of a

domestic long-term government bond. Real estate price Ph,t is defined as the

price of a domestic portfolio of real estate securities. Moreover, let r∗t denote the

US STIR. To save on notation, we employ Pt = P•,t henceforth to refer to asset

• = s, h, b and P ∗
t = P ∗

•,t to refer to the US counterpart of asset • = s, h, b. The

empirical relationship between US monetary policy and international asset prices

is expressed as,

∆pt = α∆r∗t + φ′xt + zt + ηt, (3.1)

where ∆pt = lnPt − lnPt−1 is the (log) return of the domestic asset, ∆r∗t =

r∗t − r∗t−1 is the change in the US STIR, xt is a k × 1 vector of predetermined

variables, zt is an exogenous shock and ηt is the shock to the asset price. The

vector xt could contain, for instance, dynamics of ∆pt and ∆r∗t , equilibrium

relationships, exchange return dynamics, inflation dynamics, etc. The variable zt

could capture conditions such as changes in risk preferences, changes in sentiment,

liquidity shocks and macroeconomic shocks not captured by xt (cf. Rigobon &

Sack (2002)). In addition, we could expect a-priori a negative value for α since

asset prices should have a negative relationship with discount rates (cf. Campbell

& Shiller (1987, 1988)).
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The estimation of (3.1) faces two major challenges. On the one hand, the

variables ∆pt and ∆r∗t could be characterized as endogenous in this set up since

(log) international asset price changes may be affected by changes in the US

STIR and vice-versa. The intuition from the causality ∆pt → ∆r∗t might not

be clear at first. However, in a world of integrated financial markets, we could

expect, for instance, the causality ∆pt → ∆p∗t (cf. Ehrmann et al. (2005)) and

thus ∆p∗t → ∆r∗t (cf. Rigobon & Sack (2002, 2004), Chadha et al. (2004)) where

∆p∗t = lnP ∗
t − lnP ∗

t−1. In this set up, if ∆r∗t is endogenous then the OLS estimate

of α will be biased. On the other hand, the omission of the variables in xt or

zt constitutes a severe problem, given that these variables also carry important

information to characterize the relationship between international asset prices

and US monetary policy. Therefore, a careful identification strategy has to be

employed.

Borrowing from Rigobon & Sack (2002, 2004), the following bivariate system

of equations is considered to characterize the endogenous relationship between

∆pt and ∆r∗t as well as the macroeconomic variable(s) in xt:

∆r∗t = β∆pt + φ′1xt + ϕzt + εt, (3.2)

∆pt = α∆r∗t + φ′2xt + zt + ηt, (3.3)

where εt is the monetary policy shock, and zt is supposed as a common shock. The

shocks εt and ηt are assumed to have no serial correlation and to be independent

with each other and with the common shock zt (Rigobon & Sack (2002, 2004)).

Equations (3.2) and (3.3) cannot be estimated consistently using OLS due to

the presence of simultaneous equations and omitted variables. For instance, in a

simpler scenario of φ1 = φ2 = 0, if OLS is used to estimate (3.3), then it can be

shown that one would obtain simultaneity bias if β 6= 0 and σ2
η > 0 and omitted

variables bias if ϕ 6= 0 and σ2
z > 0 where σ2

• is used to denote the variance of

• = η, z. The system of equations in (3.2) and (3.3) can also be expressed in

reduced form,

yt = υt + ut, (3.4)

where yt = (∆r∗t ,∆pt)
′, ut = (u1t, u2t)

′ and υt = Γxt defines the time-varying

mean where Γ is a 2× k matrix of reduced form parameters attached to xt. The
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reduced form residuals in ut contain the contemporaneous parameters of interest,

i.e. u1t = (1−αβ)−1[(β+ϕ)zt+βηt+εt] and u2t = (1−αβ)−1[(1+αϕ)zt+ηt+αεt].

The main parameter under inspection is α which can be estimated consistently

by the IH approach introduced in Rigobon (2003) and extended in other empirical

studies of monetary policy (cf. Normandin & Phaneuf (2004), Lane & Lutkepohl

(2009)). In our context, IH consists in looking at changes in the co-movements

of the US STIR and international asset prices when the variance of one of the

shocks in the system is known to shift while the parameters of equations (3.2)

and (3.3) are assumed to remain stable. Following Rigobon & Sack (2004), we

use two sub-samples, F (‘policy dates’) and F̃ (‘non-policy dates’). It can be

shown that the assumptions,

σ2
ε,F > σ2

ε,F̃
, σ2

η,F = σ2
η,F̃
, σ2

z,F = σ2
z,F̃
, (3.5)

on the variances of the shocks must hold for the IH estimator to be consistent.

These conditions imply that the importance of policy shocks is larger in the sub-

sample F . An important point is that the variance of the policy shock must

not become infinitely large, but only increase relative to the variances of other

periods preceding or following the shock. One may use, for instance, days of the

US Federal Open Market Committee (FOMC) meeting and of the Chairman’s

semi-annual monetary policy testimony to the US Congress (so-called Humphrey

Hawkins Report) to identify circumstances in which the conditions (3.5) are plau-

sible (cf. Rigobon & Sack (2004)).

Let ΩF = E[[u1t u2t]
′ · [u1t u2t]|t ∈ F ] and ΩF̃ = E[[u1t u2t]

′ · [u1t u2t]|t ∈ F̃ ].

The analytical expression for the difference in the latter covariance matrices under

the assumptions in (3.5) can be shown to satisfy,

ΩD = ΩF − ΩF̃ = λ

[
1 α
α α2

]
, (3.6)

with λ = (σ2
ε,F−σ2

ε,F̃
)(1−αβ)−2. Thus, α can be identified from the change in the

covariance matrix since α = ΩD,12Ω
−1
D,11, α = ΩD,22Ω

−1
D,12 or α = (ΩD,22Ω

−1
D,11)

−1/2.

Within the above framework of heteroskedasticity, endogeneity and omitted vari-

ables it is possible to devise a simple parameter stability test. More precisely,

we can check whether the parameter α is stable within the sample of policy and
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non-policy dates by testing whether the determinant of the difference in condi-

tional covariance of the two subsamples F and F̃ is zero (DCC test) or simply

by comparing the two estimates α̂ = Ω̂D,12Ω̂
−1
D,11 and α̂ = Ω̂D,22Ω̂

−1
D,12 (Rigobon

(2000)).

3.3 Econometric methodology

This section consists of four subsections. In the first subsection the dataset used

to carry out the analysis is described. In the second subsection the estimation

strategy is discussed. The third and fourth subsections are devoted, respectively,

to issues such as the selection of non-policy dates, comparison of estimated im-

pacts, bootstrap inference and the recursive analysis.

3.3.1 Data

The empirical specification introduced in the previous section to study the re-

sponse of international asset prices to US monetary policy (US Federal Reserve’s

decisions to change the US STIR) is examined from a panel perspective. Let

i = 1, ..., N indicate in the following the respective cross sectional entities (coun-

tries). The sample covered for our analysis runs from 01/1994 to 12/2007 at the

daily frequency. The asset price data consists of daily Datastream calculated all-

share (total market) equity indices (N = 29), 10-year (benchmark) government

bond indices (N = 19), real estate security indices (N = 14) and exchange rate

data (currency in country i/US dollar) for all the different economies considered.

Countries were selected upon data availability for the sample period covered.

Previous studies that analyze the relationship between US monetary and asset

prices have used monetary policy rate measures such as the Federal Funds Futures

rate (cf. Rigobon & Sack (2004)), the Federal Funds rate (cf. Bernanke & Kuttner

(2005), Cochrane & Piazessi (2002)) and the 3-month Treasury rate (cf. Rigobon

& Sack (2002)). Similar to the Federal Funds Futures rate, the 3-month Treasury

rate adjusts daily to capture changes in market expectations about monetary

policy over the near term (Rigobon & Sack (2002)). In this study, the 3-month

Treasury rate allows to capture changes in market expectations over the short
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term when inferring the response of international asset prices to changes in the

US STIR. Moreover, as an interesting by-product, the interaction of international

asset prices and the US Treasury rate allows to analyze empirically the ‘flight

to quality’ effect, i.e. the switch between risky (e.g. international equity) and

riskless (e.g. US STIR) assets, which has recently attracted the attention of

economists (cf. Pachenko & Wu (2009), Pavlova & Rigobon (2009)). Therefore,

for the purpose of this study, we employ the US 3-month Treasury rate at the

daily frequency which is also collected from Datastream.

The policy dates are taken from the Federal Reserve’s web-site, where the

meeting calendar, minutes and statements of the Federal Open Market Commit-

tee are published (http://www.federalreserve.gov/monetarypolicy/fomc.htm). In

order to reduce the adverse effects of ‘outliers’ we concentrate on scheduled policy

dates. Overall, a total number of 116 policy dates are employed.

3.3.2 Estimation methodology

As previously introduced, the impact of US monetary policy on international

asset prices is studied via a heterogeneous panel framework. The panel version

of the model presented in (3.4) is given by,

yit = υit + uit, (3.7)

where yit = (∆r∗t ,∆pit)
′, contains the change in the US STIR ∆r∗t and the return

∆pit = lnP•,it − lnP•,it−1 of asset • = s, h, b for i = 1, ..., N countries and t =

1, ..., T daily time periods. The vector uit = (u1t, u2it)
′ contains the reduced

form residuals, more precisely, u1t = (1 − αiβi)
−1[(βi + ϕ)zt + βiηit + εt], u2it =

(1 − αiβi)
−1[(1 + αiϕ)zt + ηit + αiεt] and αi is the parameter of interest. The

model for the time-varying mean υit = Γixit is specified as,

υit = υi + Ai,1yit−1 + ...+ Ai,pyit−p +Bi,1fit−1 + ...+Bi,pfit−p, (3.8)

where fit = (∆sit,∆p
∗
t )
′ is a vector of exogenous components containing the

country i/US dollar exchange rate return ∆sit = lnSit−lnSit−1 and the return on

the US equity/bond/real estate index, i.e. ∆p∗t = lnP ∗
•,t− lnP ∗

•,t−1 for • = s, b, h.

Therefore, the lagged variables in yit and fit allow to control for ‘conditional
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dependencies’ of international asset markets to (i) the country i equity/bond/real

estate return, (ii) the change in the US STIR, (iii) the country i/US exchange

rate return and (iv) the US equity/bond/real estate return. Model (3.7) coupled

with (3.8) reduces to a vector autoregression with exogenous components of order

p for each cross-section member (henceforth VARX(p)). It is noteworthy that

the conditional mean υit accounts for expectations (conditional on information

available in time t− 1, ..., t− p) of the variables contained in yit and fit.

The number of lags in (3.8) may be chosen as usual from a sequential test

of the null H0 : pmax vs. H1 : pmax − 1 or via Aikaike and Schwarz information

criteria. Given the optimal lag p̂, model (3.7) is estimated and the reduced form

residuals denoted ûit are obtained. The response of the ‘conditionally centered’

(log) returns (û2it) of international equity, bond and real estate assets to US

STIR changes (û1t) is estimated by employing the Instrumental Variable (IV)

and Generalized Method of Moments (GMM) estimators proposed in Rigobon &

Sack (2004) as well as the popular Event Study (ES) estimator. Specific issues

not detailed here may be looked up in the article by Rigobon & Sack (2004).

Our approach extends the latter estimation strategy to analyze the empirical

relationship between US monetary policy and international asset prices within a

heterogeneous panel framework.

In what follows let ∆r∗ = [û′1F û′
1F̃i

]′ and ∆pi = [û′2iF û′
2iF̃i

]′ be (TF+TF̃i
)×1 =

Ti × 1 partitioned vectors containing (conditionally centered) US STIR changes

and (log) asset price changes for country i, respectively, for the sample of pol-

icy dates t ∈ F and the sample of non-policy dates t ∈ F̃i. The latter F̃i ={
t1̃, t2̃, ..., tF̃i

}
may consist of the days preceding, following or surrounding those

included in the former F = {t1, t2, ..., tF}. Once the sample of non-policy dates

F̃i is chosen, the coefficient αi for i = 1, ..., N can be estimated via three-stage

least squares (3SLS),

α̂IV,ij = (∆r∗
′
qj∆r

∗)−1∆r∗
′
qj∆pi, (3.9)

where qj = wj(w
′
jΣ̂iwj)

−1w′j for j = 1, 2 with w1 = [û′1F − û′
1F̃i

]′ or w2 = [û′2iF −
û′

2iF̃i
]′ the two possible vectors of instruments and Σ̂i = diag [ε̂2

i ] with ε̂i the

98



3.3 Econometric methodology

residuals of the two-stage least squares regression (2SLS).1 It is noteworthy that

in the case that the number of observations in the sets F and F̃i differ, each

subsample in ∆r∗, ∆pi and wj has to be divided by the square root of the total

number of dates in each particular set. The degree of explanation R2
IV,i of the IV

regression is obtained as proposed in Pesaran & Smith (1994). The R2
IV,i provides

a measure for the ‘goodness of fit’ in the response of international asset prices to

US monetary policy.

In addition to IV estimation outlined above, GMM estimation may also be

naturally employed given the analytical expression for the moment conditions in

(3.6). The two parameters to be estimated via the GMM approach are αi, which

is the main parameter of interest, and λi ≡ (σ2
ε,F − σ2

ε,F̃i
)(1−αiβi)−2, which gives

a measure of the heteroskedasticity in the data. Thus, in GMM estimation the

parameter vector ζi = (αGMM,i, λi)
′ may be obtained. In our context, the GMM

estimator for i = 1, ..., N is given by,

ζ̂Ti
= arg min

ζi∈Φ
bTi

(ζi)
′ATi

bTi
(ζi), (3.10)

with Φ the parameter space, bTi
(ζi) the vector of differences between sample

moments and analytical moments and ATi
a positive definite and possibly random

weighting matrix. Moreover, ζ̂Ti
is consistent and asymptotically Normal under

suitable ‘regularity conditions’ (cf. Harris & Matyas (1999)). The Ji-statistic is

available in GMM estimation as a measure of the goodness of fit of the model.

In contrast to the IV and GMM estimators, the popular ES estimator ad-

dresses the identification problem by focusing on periods immediately surround-

ing changes in the US STIR. In our context, the ES approach obtains the following

estimator for i = 1, ..., N :

α̂ES,i = (û′1F û1F )−1û′1F û2iF . (3.11)

The degree of explanation of the ES regression denoted R2
ES,i may also be com-

puted in the usual way from the OLS residuals of regression (3.11). A Hausmann

1Note that the two stage least squares estimator (2SLS) estimator is numerically identical
to α̂IV,ij = (w′

j∆r∗)−1w′
j∆pi which is the estimator provided in Rigobon & Sack (2004) since

there is one independent variable and one instrument.
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3.3 Econometric methodology

test denoted Hi can be used in order to test the null hypothesis H0 : αIV,i = αES,i.

Under the null hypothesis Hi is F1,Ti−1-distributed. Rejection of H0 would in-

dicate that the ES estimator is biased. Alternatively, it could indicate that the

variance of the policy shock in the sample of policy dates F is not sufficiently

large for near identification to hold (Rigobon & Sack (2004)).

In our panel approach we may regard heterogeneity in the estimators since we

could expect different reactions to US monetary policy amongst the countries at

hand and the distinct asset classes, i.e. we may assume that α•,i = α• + τ•,i for

• = IV,ES,GMM where τ•,i is a cross-sectionally iid disturbance. Therefore, it

is suitable under the latter assumption to aggregate the impact of US monetary

policy via the Mean Group (MG) estimator proposed by Pesaran & Smith (1995).

In order to account for heteroskedasticity across country estimates we perform a

standardized MG estimation, i.e.

ᾱ• = N−1

N∑
i=1

α̂•,iσ̂
−1
•,i , (3.12)

for • = IV,ES,GMM where the standard errors σ̂•,i = V̂ar[α̂•,i]
1/2 are robust

under heteroskedasticity. It is worthwhile noting that the above estimators rely

on consistency of single market estimates and provide a guidance on the ‘average

impact’ of US monetary policy on international asset prices under parameter

heterogeneity. In addition, we estimate a ‘Mean Group Difference’ (MGD),

ᾱMGD = N−1

N∑
i=1

(α̂IV,iσ̂
−1
IV,i − α̂ES,iσ̂

−1
ES,i), (3.13)

in order to compare the heteroskedasticity based estimator and the ES estimator.

3.3.3 Selection of non-policy dates and comparison of es-

timated impacts

In the international context the selection of the non-policy dates F̃i is complicated

in the sense that for certain countries (particularly those of other continents than

America) it is difficult to know which set F̃i leads to the most informative change

in covariance ΩD,i for IV and GMM estimation. Our practical solution for this
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problem is to ‘search’ for the best window of non-policy dates F̃i for each i around

the policy dates F . To motivate the selection of non-policy dates, note that the

regression model in (3.1) could be transformed and estimated by OLS once an

analyst has access to the true impact parameter α. This transformed regression

is supposed to offer, conditional on xt and zt the highest accuracy in whitening

the data. Transforming the regression model (3.1) with inefficient or even biased

estimates of α is expected to worsen the model’s fitting accuracy. Therefore,

competing estimates of α extracted from alternative sets of non-policy dates may

be ranked according to an R2 criterion derived from a transformed model rep-

resentation. More precisely, the ‘algorithm’ to select the most appropriate set

of instruments for each of the countries in the panel and for each of the asset

markets consists of:

1. Obtaining a vector of non-policy dates F̃i = (F − 1, F − 2, ..., F − h•,i)
′ for

• = IV,GMM constructed by stacking different sets of non-policy dates

for a maximum of h•,i days preceding the policy dates. At each horizon h•,i

the estimates α̂h•,i for • = IV,GMM are obtained and the model,

µit = φ′ixit + γit+ ηit, (3.14)

is estimated for i = 1, ..., N and t = 1, ..., T daily time periods via OLS

where µit = ∆pit − α̂h•,i∆r
∗
t , xit = (y′it−1, ..., y

′
it−p, f

′
it−1, ..., f

′
it−p)

′ and t is a

time trend which ‘proxies’ the common shock.2

2. Computing the R2 of regression (3.14) and choosing the ĥ•,i that corre-

sponds to the maximum quantity from the set
{
R2
•,i1, ..., R

2
•,ih
}

to obtain

an optimal set of non-policy dates F̃ ∗
i = (F − 1, F − 2, ..., F − ĥ•,i)

′.3

The above procedure is intuitive as a set of non-policy dates is chosen which,

conditional on the candidate parameter α̂h•,i, the vector xit and the time trend t,

minimizes the distance between the international (log) asset price change (∆pit)

2We also constructed a common factor from international asset return data by means of
Principal Component Analysis and used it to proxy the common shock. However, experimenta-
tions along these lines resulted in qualitatively similar results to the simple model with a time
trend.

3Note that the set of non-policy dates F̃ ∗
i does not intersect with the set of policy dates F .
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and the change in the US STIR (∆r∗t ). We also experimented with alternative

maximum values for h•,i but found that h•,i > 3 produces results that are much

more heterogeneous and volatile than h•,i = 3. Therefore, h•,i = 3 was chosen.

In order to test whether the set of selected non-policy dates F̃ ∗
i satisfies the

heteroskedasticity requirement (3.6), the null hypothesis H0 : ΩD,i = 0 versus the

alternative hypothesis H1 : ΩD,i 6= 0 is tested by means of the likelihood ratio

statistic:

Gi = Ti ln
|Ω̂iTi

|
|Ω̂iF |g|Ω̂iF̃ ∗

i
|1−g

, (3.15)

where Ω̂iTi
is the estimated covariance matrix for the sample containing both the

policy dates t ∈ F and the sample of non-policy dates t ∈ F̃ ∗
i and g = TF/Ti. The

statistic (3.15) has an asymptotic χ2 distribution with 2−1m(m + 1) degrees of

freedom where m×m is the dimension of the covariance matrix (Galeano & Pena

(2007)). Rejection of the null hypothesis H0 : ΩD,i = 0 would provide evidence of

heteroskedasticity in the subsamples F and F̃ ∗
i and, thus, supports the applied

identification scheme.

The ‘auxiliary regression’ in (3.14) may also be applied with the ES estima-

tor α̂ES,i to obtain a goodness of fit measure denoted R2
ES,ih for consistency of

notation. In this way one may discriminate between estimators across the panel

by comparing the quantities R2
IV,ih, R

2
GMM,ih (which correspond to the estimated

impacts α̂•,i and horizons ĥ•,i for • = IV,GMM) and R2
ES,ih.

4 It is also important

to note that many exchange markets were closed in countries that are not in the

American continent at the time of the monetary policy announcements (around

14:00 US Eastern Time). For this reason, one could argue that the (condition-

ally) centered returns û2iF and û2iF̃i
of country i which is not in the American

continent, should be modified to û2iF+1 (IV, GMM, ES) and û2iF̃i+1 (IV, GMM),

respectively, in order to account for the timing effect of the shock. To control

for the timing issue in non-American asset markets, we also used the ‘auxiliary

regression’ in (3.14) above with the estimates α̂s•,i for • = IV,ES,GMM , which

4Note that the quantities R2
•,ih for • = IV,GMM, ES obtained from (3.14) are different

from the quantities R2
•,i for • = IV,ES which are obtained from the regressions in (3.9) and

(3.11), respectively.
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were obtained by employing û2iF+s (IV, GMM, ES) and û2iF̃ ∗
i +s (IV, GMM) for

s = 0, 1. However, only in very few cases (5 out of all countries and all asset

markets) we found that s = 1, and in those cases, parameter estimates were more

volatile. Moreover, it is also plausible that the impact of FOMC announcements

on asset markets occurred during overnight trading (cf. Wongswan (2005)). Thus

we decided to keep s = 0 uniformly.

3.3.4 Bootstrap inference, parameter stability and recur-

sive estimation

Studying the impact of US monetary policy shocks on international asset prices

is complicated due to the large amount of factors that may affect the relation-

ship. Nevertheless, in our set up, we control for (i) conditional effects of different

explanatory variables in the time-varying mean υit, (ii) a common shock zt, (iii)

regime changes and heteroskedasticity (ΩD,i) and (iv) selection of non-policy dates

(F̃i). Generally, our analysis is conditional on the set of policy dates and economic

states and dynamics surrounding these time points governing the stochastic prop-

erties of model estimates and diagnostics. To disentangle random and structural

features of the statistical outcomes we adopt resampling techniques to generate

pseudo samples of policy dates. With them at hand, we build empirical dis-

tributions of the statistical tools employed. The resampling algorithm consists

of:

1. Drawing with replacement from the set of policy dates F = {t1, t2, ..., tF}
to obtain a new set of bootstrap policy dates Fb = {t1b, t2b, ..., tFb}.

2. Obtaining the ‘optimal’ set of non-policy dates F̃ ∗
ib for IV and GMM esti-

mation and using F̃ ∗
ib and Fb to compute bootstrap quantities α̂•,ib, ᾱ•,b for

• = IV,ES,GMM,MGD and R2
•,ib for • = IV,ES.

3. Repeating steps 1 to 2 for 500 times and obtaining bootstrap confidence

intervals from the γ/2 and (1− γ/2) quantile of the bootstrap distribution.

The upper quantiles of R2
ib corresponding to the regressions (3.9) and (3.11), also

referred to as R2
i upper bound, are usually proposed in the literature to evaluate

the adequacy of asset pricing relationships (cf. Foster et al. (1997)).
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As introduced previously, it is possible within the IH framework to inspect

whether the impact of US monetary policy on international asset prices is stable

over the sample period analyzed. One simply has to compare the α̂IV,ij estimators

obtained with the two set of instruments w1 = [û′1F − û′
1F̃i

]′ or w2 = [û′2iF −
û′

2iF̃i
]′. A significant difference between these estimates would hint at parameter

instability. To study this issue in more detail across the panel, a ‘mean group

difference’ in analogy to (3.13) is computed with the two different estimates α̂IV,ij

obtained with the instruments w1 or w2.

In order to safeguard the overall analysis from possible parameter instability,

the impact of US monetary policy on international asset prices is also studied via

a recursive standardized MG estimation procedure. The latter procedure consists

on fixing a window of size TF,min = 72 of policy dates which is moved over the

subsample τ = TF,min, . . . , τ = TF . At each window, the parameter α̂•,i for each i,

and subsequently, the MG estimate ᾱ• are computed for • = IV,ES,GMM . The

optimal set of non-policy dates F̃ ∗
i is also computed at each window as explained

in the previous section to obtain the estimates α̂•,i for • = IV,GMM . Thus, a

vector of MG impacts ᾱ•,rw = (ᾱ•,1, ..., ᾱ•,RW )′ is obtained which can be analyzed

to understand the magnitude of the impact over different sub-samples. Since

the new MG estimate at each window is based on past and new shocks, it also

allows us to study the response of international asset markets to US monetary

policy over time. Notably, the rolling window approach is consistent with the IH

approach under the null hypothesis of a stable impact αi in every sub-sample.

A rolling window ‘Mean Group R2’ is also computed from R2
•,i for • = IV,ES

obtained from the regressions (3.9) and (3.11) along the latter lines i.e, R̄2
•,rw =

(R̄2
•,1, ..., R̄

2
•,RW )′. Both rolling window estimates ᾱ•,rw and R̄2

•,rw allow to uncover

whether the actual degree of market integration is time-varying as suggested in

recent studies (cf. DeRoon & DeJong (2005), Pachenko & Wu (2009)).

3.4 Results

This section discusses the results of the impact of US monetary policy on inter-

national asset prices. Empirical results are reported in Tables 3.1 to 3.7. Fig-

ures 3.1, 3.2 and 3.3 display graphically the empirical densities of the estimates
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α̂•,iσ̂
−1
•,i for • = IV,ES,GMM along with the recursive results. In what follows,

we mostly refer to statistical significance at the 10% level.
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3.4 Results

3.4.1 Single market results

Point estimates of equity markets for the sample of policy and non-policy dates

between 01/1994 and 12/2007 are displayed in Table 3.1. The distinct lag selec-

tion tests performed (sequential likelihood ratio, AIC and SIC) for the VARX(p)

pointed to three lags in most of the countries and the three asset markets so we

have set p = 3 throughout. The VARX(3) estimation shows that the number of

coefficients in the time-varying mean υit that are significantly different from zero

at a 10% level ranges from 3 to 10. The latter result puts forward that there

are some significant conditional effects from the dynamic variables considered in

the time-varying mean υit and thus evidence of significant expectation effects for

which one needs to control. Moreover, no serial correlation was diagnosed at the

5% level of significance in the residuals of the VARX(3) in any of the countries

according to the Portmanteau statistic Pi which supports the use of the estimated

reduced form residuals. As expected, the GMM and IV approaches usually pro-

duce similar point estimates. In contrast, the ES approach yields estimates that

are many times different from the heteroskedasticity based estimates in terms of

magnitude and precision. Thus, in what follows, comparisons between estimators

are mostly done between IV and ES.

The sample of international equity markets consists of 29 units. Amongst the

29 equity markets, 24 (5) show a negative (positive) impact from US monetary

policy shocks with IV estimation. The number of positive point estimates in-

creases to 10 when considering ES estimation. A very apparent feature of the

results is the heterogeneity in the value of the estimates. Amongst the coun-

tries with a positive coefficient, the response to monetary policy estimated via

IV (ES) ranges from 0.17 in Norway to 9.78 in Venezuela (0.01 in Switzerland

to 3.57 in Venezuela). Amongst those countries with a negative coefficient ob-

tained via IV (ES), the heterogeneity ranges from -0.08 in Germany to -6.65 in

Finland (-0.1 in Japan to -2.88 in Mexico). Overall, we find that 13 (2) countries

show a statistically significant negative impact at the 10% level according to the

bootstrap confidence bands and/or robust standard errors in IV and GMM (ES)

estimation, namely: Australia, Canada, Denmark, Finland, Greece, Ireland, Italy,

108



3.4 Results

Japan, Mexico, New Zealand, Spain, Sweden and the United Kingdom (Canada

and Mexico).

Interestingly, US monetary policy has a statistically significant negative effect

on the equity market of Mexico and Canada according to the bootstrap confi-

dence bands of the heteroskedasticity and event study estimators. In fact, Mexico

and Canada are the countries with the largest negative response to the Federal

Reserve’s policy announcements in the American continent. This result speaks

in favor of a proximity effect in the impact of US monetary policy on equity

markets across border. The equity markets in Australia, Japan and the United

Kingdom also show a significant response to US monetary policy shocks hinting

at a size (market capitalization) effect. Another interesting finding is the signif-

icant response to US monetary policy in Scandinavian equity markets which is

evident in both IV and GMM estimation. The only Scandinavian country with

an insignificant impact to US monetary policy estimated via IV or GMM is that

of Norway. However, the impact of the Norwegian equity market to US monetary

policy is significantly positive at the 10% level with the ES estimator according

to the bootstrap confidence bands. Another interesting case is the statistically

significant response of the New Zealand equity market to US monetary policy

since the latter was the first country in the world to introduce inflation target-

ing. In fact, most of the equity markets with a statistically significant response

to US monetary policy follow inflation targeting. The latter findings show that

the response of international equity markets to US monetary policy may be re-

lated to distance, financial integration and similar monetary policy frameworks

as suggested by previous studies (cf. Wongswan (2005), Ehrmann et al. (2005)).

Selected diagnostic statistics for equity markets are shown in Table 3.2. The

null hypothesis ΩD,i = 0 is rejected at the 5% level in all markets which sug-

gests heteroskedasticity between the sample of policy and non-policy dates and

thus supports the IH scheme. The result on the Hausmann test Hi, shows that

we are able to formally reject the hypothesis αIV,i = αES,i at the 10% level in

Denmark, Finland, Ireland, Japan, New Zealand and Sweden. The estimated

horizon ĥIV,i (ĥGMM,i) in equity markets is usually equal to 1 (3) in countries

inside the American continent and equal to 2 (2) in countries located outside the

American continent. Interestingly, the R2
ih of the ‘auxiliary regression’ in (3.14) is
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generally higher for IV and GMM estimates in comparison with ES estimates in

countries of the American continent while the opposite is true when considering

non-American countries. The bootstrap upper 10% quantiles R2
ib corresponding

to the R2
i measures obtained from the IV and ES regressions in (3.9) and (3.11),

respectively, show a higher accuracy of fit for the countries with a statistically sig-

nificant impact to US monetary policy. Moreover, the Ji-statistic is statistically

insignificant at the 5% level in 20 out of 29 international equity markets.
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ĥ

i
R

2 ih
J

i-
st

at
p
-v

al
A

us
tr

al
ia

48
.3

31
0.

23
7

0.
62

7
3

0.
38

7
0.

01
4

0.
38

7
0.

02
4

3
0.

38
7

0.
24

9
0.

61
7

A
us

tr
ia

62
.7

32
7.

47
3

0.
00

7
3

0.
15

0
0.

04
5

0.
14

9
0.

03
0

3
0.

15
0

2.
31

1
0.

12
8

B
el

gi
um

53
.8

20
4.

52
8

0.
03

4
3

0.
10

3
0.

02
3

0.
10

2
0.

01
8

3
0.

10
3

0.
03

7
0.

84
8

C
an

ad
a

66
.6

06
0.

31
6

0.
57

5
3

0.
00

3
0.

05
3

0.
00

3
0.

22
0

3
0.

00
3

12
.0

12
0.

00
1

D
en

m
ar

k
69

.2
46

3.
41

3
0.

06
6

3
0.

24
4

0.
03

9
0.

24
3

0.
02

3
3

0.
24

4
4.

19
7

0.
04

1
F
in

la
nd

54
.7

71
3.

06
8

0.
08

1
3

0.
07

7
0.

02
7

0.
07

7
0.

03
4

3
0.

07
7

0.
68

2
0.

40
9

Fr
an

ce
53

.6
55

2.
84

8
0.

09
3

3
0.

06
8

0.
02

9
0.

06
8

0.
03

0
3

0.
06

8
0.

15
5

0.
69

4
G

er
m

an
y

65
.8

49
7.

98
4

0.
00

5
3

0.
16

4
0.

03
7

0.
16

3
0.

02
1

3
0.

16
4

6.
76

7
0.

00
9

Ir
el

an
d

53
.9

06
1.

93
5

0.
16

6
3

0.
05

5
0.

02
5

0.
05

4
0.

03
0

3
0.

05
5

1.
97

0
0.

16
0

It
al

y
73

.7
10

2.
94

6
0.

08
7

3
0.

10
1

0.
03

1
0.

10
0

0.
02

6
3

0.
10

1
5.

62
5

0.
01

8
Ja

pa
n

84
.4

03
1.

46
0

0.
22

8
2

0.
03

2
0.

05
0

0.
03

2
0.

06
7

2
0.

03
2

4.
18

8
0.

04
1

N
et

he
rl

an
ds

51
.5

41
0.

81
6

0.
36

7
3

0.
06

5
0.

01
8

0.
06

4
0.

03
5

3
0.

06
5

1.
57

9
0.

20
9

N
.
Z
ea

la
nd

53
.5

33
1.

17
1

0.
28

0
3

0.
33

7
0.

06
8

0.
33

7
0.

10
4

3
0.

33
7

0.
15

3
0.

69
6

N
or

w
ay

53
.3

24
0.

92
9

0.
33

6
3

0.
12

1
0.

03
3

0.
12

0
0.

03
5

3
0.

12
1

0.
10

5
0.

74
6

P
or

tu
ga

l
53

.1
22

2.
59

1
0.

10
9

3
0.

05
2

0.
02

7
0.

05
2

0.
03

0
3

0.
05

2
0.

01
3

0.
91

1
Sp

ai
n

53
.0

86
3.

77
2

0.
05

3
3

0.
11

0
0.

02
1

0.
11

0
0.

02
3

3
0.

11
0

0.
00

2
0.

96
5

Sw
ed

en
71

.5
76

2.
06

9
0.

15
2

3
0.

06
6

0.
02

7
0.

06
6

0.
04

0
3

0.
06

6
5.

51
0

0.
01

9
Sw

it
ze

rl
an

d
60

.3
58

2.
78

4
0.

09
7

3
0.

07
7

0.
02

8
0.

00
3

0.
01

7
3

0.
07

7
1.

69
6

0.
19

3
U

.
K

in
gd

om
58

.7
81

1.
91

8
0.

16
7

3
0.

03
3

0.
02

1
0.

03
3

0.
04

3
3

0.
03

3
9.

95
8

0.
00

2

T
ab

le
3.

4:
S
el

ec
te

d
st

at
is

ti
cs

fo
r

b
on

d
m

ar
ke

ts
.

G
i

ar
e

th
e

st
at

is
ti

cs
fr

om
th

e
li
ke

li
h
o
o
d

ra
ti

o
te

st
of

th
e

n
u
ll

H
0

:
Ω
D
,i

=
0

w
h
ic

h
is
χ

2
(3

)
d
is

tr
ib

u
te

d
,
H
i
is

th
e

H
au

sm
an

n
te

st
of

th
e

n
u
ll
H

0
:
α
I
V
,i

=
α
E
S
,i

an
d

co
rr

es
p
on

d
in

g

p-
va

lu
e,
ĥ
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3.4 Results

As for equity markets, the results for the set of 19 international bond markets

show that there are also conditional effects from the dynamic variables included in

the time-varying mean υit as shown by the number of coefficients significant at the

10% level (Table 3.3). Furthermore, there is no evidence of serial correlation in

the residuals of the VARX(3). The IV and GMM estimates show that most bond

markets, except for Canada and Autralia, have a positive impact to US monetary

policy. The ES estimator also obtains mostly positive impacts except for a few

more negative cases than in IV or GMM. Out of the 17 countries with a positive

coefficient 11 (9) show a statistically significant positive impact at the 10% level

according to the bootstrap confidence bands and/or robust standard errors in IV

(GMM) estimation. The only statistically significant positive coefficient at the

10% level in the case of ES estimation is that of Japan. However, both IV and

ES estimators produce similar point estimates for Canada which are found to be

negative and statistically significant at the 10% level according to the bootstrap

confidence bands. Note that, while Rigobon & Sack (2004) use bond yields and

changes in Eurodollar futures as opposed to bond returns, they find a positive

response of US bond markets to US monetary policy shocks. Nevertheless, the

direction of the relationship between bond returns and interest rates may vary

because revisions in expected risk-adjusted bond returns and expected inflation

may have offseting effects (cf. Campbell & Ammer (1993)).

Similar to equity markets, the null ΩD,i = 0 is rejected in all countries for bond

markets at the 5% significance level (Table 3.4). The null hypothesis αIV,i = αES,i

is rejected at the 10% level according to the Hausmann statistic Hi in 9 out of

the 19 bond markets. The estimated horizons ĥIV,i and ĥGMM,i are equal to 3

days prior to the shock in all countries except for Japan. The R2
•,ih measures for

• = IV,GMM from the ‘auxiliary regression’ are either greater than or equal

to R2
ES,ih obtained from ES estimates. Moreover, the Ji-statistic is statistically

insignificant at the 5% level in 12 bond markets.
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3.4 Results

As for equity and bond markets, the panel of 14 international real estate

markets shows significant conditional effects in the time-varying mean υit and no

evidence of serial correlation (Table 3.5). Out of the 14 international real estate

markets considered, we obtain that 10 (11) of them show a negative effect to

US monetary policy shocks via IV (GMM). The latter count is somewhat lower

in ES estimation where we find 8 negative coefficients. There is a statistically

significant negative impact in Australia, Denmark and Germany and a statisti-

cally significant positive impact in Belgium at the 10% level when considering the

bootstrap confidence bands for the estimates obtained from the heteroskedastic-

ity based estimators (IV and GMM). ES estimates are insignificant throughout.

The insignificant response of real estate markets to monetary policy found here

confirms findings of previous studies (cf. Furlanetto (2008)). Results on selected

diagnostics for real estate markets are qualitatively similar to those of equity and

bond markets (Table 3.6).
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3.4 Results

3.4.2 Aggregate results

As can be noted from the preceding discussion, point estimates are generally sim-

ilar between IV and GMM methods but in many instances dissimilar to those

obtained from the ES method. This may be observed in the estimated densities

of the standardized estimates α̂•,iσ̂
−1
•,i for each of the international asset markets

considered under the three different methodologies used (Figure 3.1). In general,

the heteroskedasticity based estimators (IV and GMM) work ‘best’ in relation

to the ES estimator in bond markets and similar in equity and real estate mar-

kets according to the R2
ih measures and the Hausmann statistics Hi. Overall,

IV and GMM estimation produce estimates that are more frequently found sta-

tistically significant than ES estimation according to the bootstrap distribution

and/or asymptotic (robust) standard errors. Nevertheless, there is one particu-

larly interesting result for heteroskedasticity or event study estimators: Mexico

and Canada have a statistically significant negative response to US monetary

policy.
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3.4 Results

Another clear feature of the preceding findings is that the sensitiveness of

the response of asset prices to US monetary policy is country specific in terms

of magnitude and precision. The estimates for each country also vary with the

considered asset. This confirms our a priori hypothesis of heterogeneity in the

postulated panel relationship. The results of the standardized MG estimates in

Table 3.7 put forward a negative average impact in equity markets, a positive

average impact in bond markets and a negative average impact in real estate

markets with all three estimators considered. The average (standardized) im-

pact is statistically significant at the 10% level in equity and bond markets with

the IV and GMM estimators according to the bootstrap confidence bands and

asymptotic standard errors. In the case of the ES estimator, the average impact

is statistically significant at the 10% level in equity markets according to the

asymptotic standard error. The negative and statistically significant response of

international equity markets to changes in the US STIR provides evidence of the

‘flight to quality’ effect as proposed in recent theoretical and empirical models of

the international propagation of shocks (cf. Pavlova & Rigobon (2009), Pachenko

& Wu (2009)).

Interestingly, there is evidence of a statistically significant mean group dif-

ference at the 10% level between IV and ES estimates in all three asset markets

considered (MGD1). Moreover, we diagnose a statistically significant mean group

difference at the 10% level between the IV estimates α̂IV,ij obtained from the two

different sets of instruments w1 and w2 in equity and bond markets (MGD2) ac-

cording to the bootstrap confidence bands and asymptotic standard errors. The

latter result hints at instability in the empirical relationship between US mone-

tary policy and international equity and bond prices for the sample 01/1994 to

12/2007.

Thus, it seems preferable from the latter findings (high heterogeneity and

possible parameter instability) to study the response of international asset prices

to US monetary policy by taking different and smaller windows of policy dates

to estimate the impact. In order to minimize parameter instability, one could

in principle analyze different sub-samples based on information about events in

the economies that might have caused structural breaks. However, this would

be cumbersome to implement (and possibly misleading) given the high degree
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3.4 Results

of heterogeneity found amongst cross-sectional members and across asset types.

Alternatively, as previously described, we aggregated the impact with a standard-

ized rolling window MG procedure which allows us to have an aggregate view of

the unstable vs. stable periods and the overall direction of the impact over time.
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3.5 Concluding remarks

Figure 3.2 shows graphically the results of the rolling window MG impact of

US monetary policy on international asset prices. We present only the plots of

the IV and ES estimators for space considerations, although similar pictures to

those of IV can be obtained when employing the GMM estimator. Interestingly,

the response of international asset prices to US monetary policy is significantly

time-varying at the 10% level for most of the windows in IV estimation in the

three asset markets. Morever, we find that the impact of US monetary policy

on international equity and real estate markets is negative for most of the time

windows and it shows a downward trend in IV and ES estimation. With respect

to bond markets the relationship is positive for all time windows in IV estimation

and shows a positive trend. For ES estimation there is also a positive relationship

with bond markets for most time windows but the trend is slightly negative.

The result on the stability test MGD2 and the time variability of the (stan-

dardized) MG impact suggests that the relationship between US monetary policy

and international asset prices is sample specific. Thus, not considering recursive

estimation will be misleading in the sense that one would not obtain a ‘true’

distribution of US monetary policy impacts in international asset markets when

focusing only on particular samples. In addition, Figure 3.3 also shows the rolling

window R2s computed from the R2
•,i measures for • = IV,ES. The picture clearly

shows that the ‘goodness of fit’ in the response of international equity and real es-

tate markets to US monetary policy has been increasing over time while it shows

no clear trend for bond markets. From an econometric perspective, our findings

on the time variability of the aggregate impacts and goodness of fit suggest that

one should treat distributions over the entire sample as in Figure 3.1 with caution,

as they might change over time. From an economic perspective, our results also

confirm recent theoretical propositions and empirical findings of the time-varying

dependencies of asset markets (cf. DeRoon & DeJong (2005), Pavlova & Rigobon

(2009), Pachenko & Wu (2009)).

3.5 Concluding remarks

In this Chapter we estimated the response of international asset prices to US mon-

etary policy. The problems of endogeneity and omitted variables were addressed
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3.5 Concluding remarks

by using a careful identification strategy proposed by Rigobon & Sack (2004). We

extend the latter study to investigate the empirical relationship between US mon-

etary policy and international asset prices via a heterogeneous panel approach.

We consider new issues such as controlling for conditional dynamic effects in the

postulated relationship, instrument selection in the heterogeneous panel context,

recursive estimation and bootstrap inference.

In general, IV and GMM estimation are more appropriate for identification

of the impact of US monetary policy on international asset prices than the pop-

ular ES estimator at the aggregate level. The results also indicate that, for the

entire sample period covered (01/1994 to 12/2007), the Federal Reserve’s policy

announcements had heterogeneous impacts in international equity, bond and real

estate markets. In international equity markets there is mostly a negative re-

sponse to US monetary policy. The largest negative and statistically significant

coefficients in the American continent are those of Mexico and Canada which sug-

gests a proximity effect to shocks from the US. At the aggregate level, the MG

impact of equity markets is negative and statistically significant. In the case of

bond markets the relationship appears to be positive and statistically significant

at the aggregate level and for most country estimates. Real estate markets obtain

at the aggregate level a negative impact to US monetary policy shocks although

not statistically significant.

We diagnose evidence of instability in the postulated empirical relationship

between US monetary policy and international asset prices. A careful inspection

of the MG estimates over time by means of a rolling window procedure shows that

the (average) impact is negative for equity and real estate markets and positive

for bond markets. While the time-varying MG impact appears to be increasing

in absolute value over time for the latter two markets, it shows no clear trend

for the former. Interestingly, we find that the ‘goodness of fit’ in the response

of international equity and real estate prices to US monetary policy seems to be

increasing over time. These results also confirm recent findings of time-varying

dependencies in international asset markets.

The results of this study are important because they present a general pattern

for the response of international asset prices to US monetary policy. The empirical

approach allows to quantify and thus compare the effects across countries, asset
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3.5 Concluding remarks

markets, estimators and sample periods. In this sense, this Chapter contributes

to the understanding of the empirical relationship between US monetary policy

and international asset prices. Several opportunities are also raised for further

research. For instance, a similar exercise could be done to study the response of

international asset prices to ECB policy shocks and comparing the impact with

that of the US Federal Reserve. Moreover, one could also analyze the impact of US

monetary policy on exchange rates. We leave these issues for future exploration.
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Chapter 4

Forecasting Volatility in

International Asset Markets:

Fractality, Regime-Switching,

Long Memory and Student-t

Innovations

4.1 Introduction

In the last three Chapters we have analyzed various issues with respect to in-

ternational asset returns. In this Chapter we turn to the analysis of volatility

in international equity, bond and real estate markets. Volatility forecasting is of

crucial importance for financial practitioners and academics. Accurate forecasts

of volatility allow analysts to build appropriate models for risk management such

as portfolio allocation, Value-at-Risk, option and futures pricing, etc. For these

reasons, scholars have devoted a great deal of attention to developing parametric

as well as non-parametric models to forecast future volatility (cf. Andersen et al.

(2005a) for a recent review on volatility modeling and Poon & Granger (2003)

for a review on volatility forecasting).

In this Chapter, we are interested in the performance of a new type of volatil-

ity model, the so-called Markov-Switching Multifractal Model (MSM) vis-à-vis
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4.1 Introduction

its more time honored competitors from the (Generalized) Autoregressive Condi-

tional Heteroskedasticity (GARCH) family. The former model is a causal analog

of the earlier non-causal Multifractal Model of Asset Returns (MMAR) due orig-

inally to Calvet et al. (1997).

In contrast to mainstream volatility models, the MSM model can accommo-

date, by its very construction, the feature of multifractality via its hierarchical,

multiplicative structure with heterogeneous components. Multifractality refers

to the variations in the scaling behavior of various moments or to different de-

grees of long-term dependence of various moments. Long-term dependence in

various moments of (mainly financial) data have been reported in several studies

by economists and physicists so that this feature now counts as a well estab-

lished stylized fact (cf. Ding et al. (1993), Lux (1996), Mills (1997), Lobato &

Savin (1998), Schmitt et al. (1999), Vassilicos et al. (2004)). Empirical research

in finance also provides us with more direct evidence in favor of the hierarchical

structure of multifractal cascade models (cf. Muller (1997)).

It seems plausible that the higher degree of flexibility of MSM models in cap-

turing different degrees of temporal dependence of various moments could also

facilitate volatility forecasting. Indeed, recent studies have shown that the MSM

models can forecast future volatility more accurately than traditional long mem-

ory and regime-switching models of the (G)ARCH family such as Fractionally

Integrated GARCH (FIGARCH) and Markov-Switching GARCH (MSGARCH)

(cf. Calvet & Fisher (2004), Lux & Kaizoji (2007), Lux (2008a)).

It is also worthwhile to emphasize the intermediate nature of MSM models

between ‘true’ long-memory and regime-switching. It has been pointed out that

it is hard to distinguish empirically between both types of structures and that

even single regime-switching models could easily give rise to apparent long mem-

ory (cf. Granger & Terasvirta (1999)). MSM models generate what has been

called ‘long-memory over a finite interval’ and in certain limits converges to a

process with ‘true’ long-term dependence.1 The MSM model combines features

1In contrast to the combinatorial MMAR of Calvet et al. (1997), the MSM model has no
asymptotic power-law behavior of its autocorrelation function. However, depending on the
number of volatility components, a pre-asymptotic hyperbolic decay of the autocorrelation
might be so pronounced as to be practically indistinguishable from ‘true’ long memory (cf. Liu
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4.1 Introduction

of both types of generating mechanisms in a very parsimonious way. The flexible

regime-switching nature of the MSM model might also allow to integrate seem-

ingly unusual time periods such as the Japanese bubble of the 1980s in a very

convenient manner without resorting to dummies or specifically designed regimes

(cf. Lux & Kaizoji (2007)). Nevertheless, the finance literature has only scarcely

exploited MSM models so far. Most efforts with respect to volatility model-

ing have been directed towards refinements of GARCH-type models, stochastic

volatility models and more recently realized volatility models (cf. Andersen &

Bollerslev (1998), Andersen et al. (2003), Andersen et al. (2005b), Abraham et al.

(2007)).

Up until now, the scarce literature on MSM models of volatility has only

considered the Gaussian distribution for return innovations. However, recent

studies have shown that out-of-sample forecasts of volatility models with Student-

t innovations might improve upon those resulting from volatility models with

Gaussian innovations (cf. Rossi & Gallo (2006), Chuang et al. (2007), Wu & Shieh

(2007)). In addition, there could also be an interaction between the modeling of

fat tails and dependency in volatility: if more extreme realisations are covered

by a fat-tailed distribution, the estimates of the parameters measuring serial

dependence of higher moments might change which also alters the forecasting

capabilities of an estimated model.

In this Chapter we examine the performance of various volatility models from

the MSM and GARCH families along with two competing distributional assump-

tions of the error component, i.e. Normal vs Student-t. Our precise contribution

is twofold. First, we introduce a new model to the family of MSM models, the

Markov-Switching Multifractal model of asset returns with Student-t innovations

(MSM-t). This model is an extension of the MSM model with Normal innovations

which can be estimated via Maximum Likelihood (ML) or Generalized Method

of Moments (GMM) (cf. Calvet & Fisher (2004), Lux (2008a)). Forecasting can

be performed via Bayesian updating (ML) or best linear forecasts together with

the generalized Levinson-Durbin algorithm (GMM). We investigate the in-sample

and out-of-sample performance of the MSM-t model via Monte Carlo simulations.

et al. (2007)).
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Second, we perform a forecasting analysis of MSM vs (FI)GARCH models with

Normal and Student-t innovations. By contrasting both sets of models we are able

to empirically evaluate the performance of models which incorporate different

characterizations of the latent volatility process: the MSM models which take

account of multifractality, Markov-switching and (apparent) long memory against

more traditional models of the GARCH legacy (GARCH, GARCH-t, FIGARCH

and FIGARCH-t) which take account of short/long memory and autoregressive

components. Furthermore, the wide variety of models considered here provides an

interesting platform to study empirical out-of-sample complementarities between

models via forecast combinations.

The cross-sections chosen for our empirical analysis consist of all-share equity

indices, bond indices and real estate security indices at the country level. Similar

to previous Chapters, we believe that the use of panel data is promising in two

main aspects when evaluating volatility models. First, in order not to generalize

its usefulness, an interesting volatility model should perform adequately for a

cross-section of markets and different asset classes. Second, testing volatility

models for a cross-section of markets comes along with an augmentation of sample

information and thus provides more power to statistical tests.

To preview some of our results, we confirm that ML and GMM estimation

are both suitable for MSM-t models. We also find that using GMM plus linear

forecasts leads to minor losses in efficiency compared to optimal Bayesian forecasts

based on ML estimates. This justifies using the former approach in our empirical

exercise which reduces computational costs significantly. Moreover, empirical

panel forecasts of MSM-t models show an improvement over the alternative MSM

models with Normal innovations in terms of mean absolute forecast errors while

they seem to deteriorate for (FI)GARCH models with Student-t innovations in

relation to their Gaussian counterparts. In terms of mean absolute errors, the

MSM-t dominates all other models at long forecasting horizons for all asset classes.

Lastly, forecast combinations obtained from the different MSM and (FI)GARCH

models considered provide a clear improvement upon forecasts from single models.

The Chapter is organized as follows. The next section introduces the general

framework of volatility modeling. Section three and four provide a short review

of the MSM and (FI)GARCH volatility models. Section five presents the Monte
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4.2 Theoretical framework of volatility

Carlo experiments performed with respect to the MSM-t models. Section six

addresses the results of our comprehensive panel empirical analysis of the different

volatility models under inspection. The last section concludes with some final

remarks.

4.2 Theoretical framework of volatility

In a seminal study of conditional heteroskedasticity in economic variables, En-

gle (1982) introduced the autoregressive conditional heteroskedasticity (ARCH)

model. Since then, a wide range of volatility models have been proposed to fore-

cast future volatility. The following specification of financial returns is usually

considered in asset pricing models of volatility,

∆pt = υt + ut, (4.1)

where ∆pt = lnPt − lnPt−1, lnPt is the log asset price and υt = Et−1∆pt is the

conditional mean of the return series and ut is a disturbance term. In this Chapter

we consider a simple first order autoregressive model to describe the conditional

mean, i.e.

υt = µ+ ρ∆pt−1, (4.2)

and the disturbance term is modelled as,

ut = σtεt. (4.3)

Different assumptions can be used for the distribution of εt. For example, we

may assume a Normal distribution, Student-t distribution, Logistic distribution,

mixed diffusion, etc (cf. Chuang et al. (2007)). For the purpose of this Chapter

we consider two competing types of distributions for the innovations εt, namely,

a Normal distribution and a Student-t distribution. Defining xt = ∆pt − υt, the

‘centered’ returns are modelled as,

xt = σtεt. (4.4)

From the above general framework of volatility different parametric and non-

parametric representations can be assumed for the latent volatility process σt.
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4.3 Markov-Switching Multifractal models

In what follows, we describe the new family of MSM volatility models as well as

the more time-honored GARCH-type volatility models for the characterization of

σt. Since the former models are a very recent addition to the family of volatility

models, we devote most of the next sections to describing them and keep the

explanation on the alternative volatility models short to save on space.

4.3 Markov-Switching Multifractal models

4.3.1 Volatility specifications

The basic principle for construction of multifractal models in statistical physics is

a cascading process of iterative splitting of initially uniform probability mass into

more and more heterogeneous subsets. Starting with a uniform distribution over a

certain interval, one splits this interval into two subintervals that receive fractions,

say π1 and 1 − π1, of the overall mass. In the next step, the same procedure is

repeated for the newly created subsets so that one ends up with four intervals

with probability mass π2
1, π1(1−π1) and (1−π1)

2, respectively.2 In principle, this

process can be repeated at infinitum. One thus obtains a hierarchical structure

of components, where smaller ones (smaller whirls emanating from larger ones

in its application to turbulent flows in physics) emanate from the higher levels

of the hierarchy via this probabilistic split of energy. By its very construction,

a combinatorial multifractal along the above lines exhibits different degrees of

scaling or long-term dependence for different powers of the resulting measure.

Calvet et al. (1997) proceded one step further by proposing the MMAR: a

compound stochastic process as a data generating mechanism for financial prices

in which a multifractal cascade plays the role of a time transformation or time-

varying scale function of the variance of the incremental process.3 In their model,

an incremental Brownian motion is subordinate to the cumulative distribution

function of a multifractal measure. However, this multifractal component is of

2The two intervals in the center both have measure π1(1− π1)
3Cf. also Mandelbrot (1999) and Mandelbrot & Hudson (2004) for a non-technical intro-

duction to the subject and the relationship between the MMAR and multifractal models in
turbulence.
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4.3 Markov-Switching Multifractal models

combinatorial rather than causal nature (it is actually identical to the model

proposed for turbulent flows by Mandelbrot (1974)). Unfortunately, the MMAR

suffers from non-stationarity since the combinatorial construction of the multi-

fractal measure is restricted to a (predefined) bounded interval (in space or time).

This severe limitation has been overcome by the development of the MSM model.
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4.3 Markov-Switching Multifractal models

Instantaneous volatility σt in the MSM framework is determined by the prod-

uct of k volatility components or multipliers M
(1)
t ,M

(2)
t , . . . ,M

(k)
t and a scale

factor σ:

σ2
t = σ2

k∏
i=1

M
(i)
t . (4.5)

Following the basic hierarchical principle of the multifractal approach, each volatil-

ity component will be renewed at time t with a probability γi depending on its

rank within the hierarchy of multipliers and remains unchanged with probabil-

ity 1 − γi. Calvet & Fisher (2001) propose to formalize transition probabilities

according to:

γi = 1− (1− γk)
(bi−k), (4.6)

which guarantees convergence of the discrete-time version of the MSM to a Poisso-

nian continuous-time limit. In principle, γk and b are parameters to be estimated.

Note that (4.6) or its restricted versions imply that different multipliers M
(i)
t of

the product (4.5) have different mean life times. However, previous applications

have often used pre-specified parameters γk and b in equation (4.6) in order to

restrict the number of parameters (cf. Lux (2008a)). The MSM model is fully

specified once we have determined the number k of volatility components and

their distribution.

In the small body of available literature, the multipliers M
(i)
t have been as-

sumed to follow either a Binomial or a Lognormal distribution. Since one could

normalize the distribution so that E[M
(i)
t ] = 1, only one parameter has to be es-

timated for the distribution of volatility components. In this Chapter we explore

the Binomial and Lognormal specifications for the distribution of multipliers. Fol-

lowing Calvet & Fisher (2004), the Binomial MSM (BMSM) is characterized by

Binomial random draws taking the values m0 and 2−m0 (1 ≤ m0 < 2) with equal

probability (thus, guaranteeing an expectation of unity for all M
(i)
t ). The model,

then, is a Markov switching process with 2k states. In the Lognormal MSM

(LMSM) model, multipliers are determined by random draws from a Lognormal

distribution with parameters λ and s, i.e.

M
(i)
t ∼ LN(−λ, s2). (4.7)
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Normalisation via E[M
(i)
t ] = 1 leads to

exp(−λ+ 0.5s2) = 1, (4.8)

from which a restriction on the shape parameter can be inferred: s =
√

2λ. Hence,

the distribution of volatility components is parameterized by a one-parameter

family of Lognormals with the normalization restricting the choice of the shape

parameter. It is noteworthy that the dynamic structure imposed by (4.5) and

(4.6) provides for a rich set of different regimes with an extremely parsimonious

parameterization. For increasing k there is, indeed, no limit to the number of

regimes considered without any increase in the number of parameters to be esti-

mated. Figures 4.1 and 4.2 show simulated xt series with the BMSM as underlying

volatility model with Normal and Student-t innovations, respectively.

4.3.2 Estimation and forecasting

The pioneering approach for the estimation of the early combinatorial MMAR

was the ‘scaling’ estimator adopted from statistical physics (Calvet et al. (1997)).

While Calvet & Fisher (2002) develop refined estimators and diagnostic tests for

the earlier MMAR, its non-causal nature makes it intrinsically difficult to apply to

financial data. As a consequence, although the potential of this new approach for

generating multi-scaling in returns is not shared by traditional models in finance,

rigorous comparison of its performance to, for example, GARCH processes as a

candidate alternative, is hampered by the lack of statistical theory for the param-

eter estimates and statistical tools for comparison of alternative models. A study

by Lux (2004) demonstrates the unreliability of the so-called ‘scaling’ estimator

adopted from the physics literature. At least for the subordinate multifractal pro-

cesses of Calvet et al. (1997) and Calvet & Fisher (2002), this popular estimator

is shown to give extremely volatile parameter estimates and tests based on this

estimator are frequently found unable to reject the null hypothesis of multifractal

behavior for unifractal processes.

In a seminal study by Calvet & Fisher (2004), an ML estimation approach

was proposed for the BMSM model which overcomes the problems of the ‘scaling’
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4.3 Markov-Switching Multifractal models

estimator of the MMAR. The log likelihood function in its most general form may

be expressed as,

L(x1, ..., xT ;ϕ) =
T∑
t=1

ln g(xt|x1, ..., xt−1), (4.9)

where g(xt|x1, ..., xt−1) is the likelihood function of the MSM model with various

distributional assumptions. The parameter vector of the BMSM with Gaussian

innovations is given by ϕ = (m0, σ)′. On the other hand, the parameter vector

of the BMSM with Student-t innovations is given by ϕ = (m0, σ, ν)
′ where ν

(2 < ν <∞) is the distributional parameter accounting for the degrees of freedom

in the density function of the Student-t distribution. When ν approaches infinity,

we obtain a Normal distribution. Thus, the lower ν, the ‘fatter’ the tail.

The greatest advantage of the ML procedure is that, as a by-product, it al-

lows one to obtain optimal forecasts via Bayesian updating of the conditional

probabilities Ωt = P(Mt = mi|x1, ..., xt) for the unobserved volatility states

mi, i = 1, ..., 2k. Although the ML algorithm was a huge step forward for the

analysis of MSM models, it is restrictive in the sense that it works only for dis-

crete distributions of the multipliers and is not applicable for, e.g. the alternative

proposal of a Lognormal distribution. Due to the potentially large state space (we

have to take into account transitions between 2k distinct states), ML estimation

also encounters bounds of computational feasibility for specifications with more

than about k = 10 volatility components in the Binomial case.

To overcome the lack of practicability of ML estimation, Lux (2008a) intro-

duced a GMM estimator that is universally applicable to all possible specifications

of MSM processes. In particular, it can be used in all those cases where ML is

not applicable or computationally unfeasible. In the GMM framework for MSM

models, the vector of BMSM parameters ϕ is obtained by minimizing the distance

of empirical moments from their theoretical counterparts, i.e.

ϕ̂T = arg min
ϕ∈Φ

fT (ϕ)′ATfT (ϕ), (4.10)

with Φ the parameter space, fT (ϕ) the vector of differences between sample mo-

ments and analytical moments, and AT a positive definite and possibly random
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4.3 Markov-Switching Multifractal models

weighting matrix. Moreover, ϕ̂T is consistent and asymptotically Normal if suit-

able ‘regularity conditions’ are fulfilled (cf. Harris & Matyas (1999)). Within

this GMM framework it becomes also possible to estimate the LMSM model. In

the case of the LMSM model, the parameter vector ϑ = (λ, σ)′ (ϑ = (λ, σ, ν)′)

replaces ϕ in (4.10) when Normal (Student-t) innovations are assumed.

In order to account for the proximity to long memory characterizing MSM

models, Lux (2008a) proposed to use log differences of absolute returns together

with the pertinent analytical moment conditions, i.e.

ξt,T = ln |xt| − ln |xt−T |. (4.11)

The above variable only has nonzero autocovariances over a limited number of

lags. To exploit the temporal scaling properties of the MSM model, covariances

of various moments over different time horizons are chosen as moment conditions,

i.e.

Mom (T, q) = E
[
ξqt+T,T · ξ

q
t,T

]
, (4.12)

for q = 1, 2 and T = 1, 5, 10, 20 together with E [x2
t ] = σ2 for identification of σ

in the MSM model with Normal innovations. In the case of the MSM-t model,

two sets of moment conditions are utilized in addition to (4.12), namely, one that

considers E [|xt|] (GMM1) and the other one that considers E [|xt|], E [x2
t ] and

E [|x3
t |] (GMM2). Details on moment conditions are provided in Appendix D.

We follow most of the literature by using the inverse of the Newey-West es-

timator of the variance-covariance matrix as the weighting matrix for GMM1.

We also adopt an iterative GMM scheme updating the weighting matrix until

convergence of both the parameter estimates and the variance-covariance matrix

of moment conditions is obtained. However, we note that including the third

moment (E [|x3
t |]) for data generated from a Student-t distribution would not

guarantee convergence of the sequence of weighting matrices under our choice of

the inverse of the Newey-West (or any other) estimate of the variance-covariance

matrix. Therefore, estimates based on the usual choice of the weighting matrix

would not be consistent. Thus we simply resort to using the identity matrix for

GMM2 which guarantees consistency as all the regularity conditions required for

GMM are met.
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Since GMM does not provide us with information on conditional state prob-

abilities, we cannot use Bayesian updating and have to supplement it with a

different forecasting algorithm. To this end, we use best linear forecasts (cf.

Brockwell & Davis (1991), c.5) together with the generalized Levinson-Durbin

algorithm developed by Brockwell & Dahlhaus (2004). We first have to consider

the zero-mean time series,

Xt = x2
t − E[x2

t ] = x2
t − σ̂2, (4.13)

where σ̂ is the estimate of the scale factor σ. Assuming that the data of interest

follow a stationary process {Xt} with mean zero, the best linear h-step forecasts

are obtained as

X̂n+h =
n∑
i=1

φ
(h)
ni Xn+1−i = φ(h)

n Xn, (4.14)

where the vectors of weights φ(h)
n = (φ

(h)
n1 , φ

(h)
n2 , ..., φ

(h)
nn )′ can be obtained from

the analytical auto-covariances of Xt at lags h and beyond. More precisely, φ(h)
n

are any solution of Ψnφ
(h)
n = κ

(h)
n where κ

(h)
n = (κ

(h)
n1 , κ

(h)
n2 , ..., κ

(h)
nn )′ denote the

autocovariance ofXt and Ψn = [κ(i−j)]i,j=1,...,n is the variance-covariance matrix.

4.4 Generalized Autoregressive Conditional Het-

eroskedasticity models

4.4.1 Volatility specifications

We shortly turn to the ‘competing’ GARCH type volatility models to describe

σt. The most common GARCH(1,1) model assumes that the volatility dynamics

is governed by,

σ2
t = ω + αx2

t−1 + βσ2
t−1, (4.15)

where the unconditional variance is given by σ2 = ω(1−α−β)−1 and the restric-

tions on the parameters are ω > 0, α, β ≥ 0 and α+β < 1. Various extensions to

(4.15) have been considered in the financial econometrics literature. One of the

major additions to the GARCH family are models that allow for long-memory
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4.4 Generalized Autoregressive Conditional Heteroskedasticity models

in the specification of volatility dynamics. The FIGARCH model introduced by

Baillie et al. (1996) expands the variance equation of the GARCH model by con-

sidering fractional differences. As in the case of (4.15) we restrict our attention

to one lag in both the autoregressive term and in the moving average term. The

FIGARCH(1,d,1) is given by,

σ2
t = ω +

[
1− βL− (1− δL)(1− L)d

]
x2
t + βσ2

t−1, (4.16)

where L is a lag operator, d is the parameter of fractional differentiation and the

restrictions on the parameters are β − d ≤ δ ≤ (2 − d)3−1 and d(δ − 2−1(1 −
d)) ≤ β(d − β + δ). The major advantage of model (4.16) is that the Binomial

expansion of the fractional difference operator introduces an infinite number of

past lags with hyperbolically decaying coefficients for 0 < d < 1. For d = 0, the

FIGARCH model reduces to the standard GARCH(1,1) model while for d = 1

the model reduces to an IGARCH(1,1) model. Note that in contrast to the MSM

model, both GARCH and FIGARCH are unifractal models. While GARCH

exhibits only short-term dependence (i.e. exponential decay of autocorrelations

of moments) FIGARCH has homogeneous hyperbolic decay of the autocorrelation

of its moments characterized uniquely by the parameter d.

4.4.2 Estimation and forecasting

The GARCH and FIGARCH models can be estimated via standard (Quasi) ML

procedures as in (4.9). In the case of the GARCH(1,1) the parameter vector,

say θ, replaces ϕ in (4.9), where θ = (ω, α, β)′ (θ = (ω, α, β, ν)′) is the vector

of parameters if Normal (Student-t) innovations are assumed. The h-step ahead

forecast representation of the GARCH(1,1) is given by,

σ̂2
t+h = σ̂2 + (α̂+ β̂)h−1

[
σ̂2
t+1 − σ̂2

]
, (4.17)

where σ̂2 = ω̂(1 − α̂ − β̂)−1. In the case of the FIGARCH(1,d,1) the parameter

vector, say ψ, replaces ϕ (4.9), where ψ = (ω, α, δ, d)′ (ψ = (ω, α, δ, d, ν)′) is the

vector of parameters if Normal (Student-t) innovations are assumed. Note that

in practice, the infinite number of lags with hyperbolically decaying coefficients

introduced by the Binomial expansion of the fractional difference operator (1−L)d
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4.5 Monte Carlo analysis

must be truncated. We employ a lag truncation at 1000 steps as in Lux &

Kaizoji (2007). The h-period ahead forecasts of the FIGARCH(1,d,1) model can

be obtained most easily by recursive substitution, i.e.

σ̂2
t+h = ω̂(1− β̂)−1 + η(L)σ̂2

t+h−1, (4.18)

where η(L) = 1−(1−β̂L)−1(1− δ̂L)(1−L)d̂ can be calculated from the recursions

η1 = δ̂− β̂+ d̂, ηj = β̂ηj+[(j−1− d̂)j−1− δ̂]πj−1 where πj ≡ πj−1(j−1− d̂)j−1 are

the coefficients in the MacLaurin series expansion of the fractional differencing

operator (1− L)d.

4.5 Monte Carlo analysis

Monte Carlo studies with the MSM-t were performed along the lines of Calvet &

Fisher (2004) and Lux (2008a) in order to shed light on parameter estimation and

out-of-sample forecasting via the MSM-t vis-à-vis the MSM model with Normal

innovations. Monte Carlo experiments are reported in Tables 4.1 through 4.3.
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4.5 Monte Carlo analysis

4.5.1 In-sample analysis

Table 4.1 shows the result of the Monte Carlo simulations of the BMSM-t via ML

estimation and the two sets of moment conditions for GMM estimation (GMM1,

GMM2) with a relatively small number of multipliers k = 8 for which ML is still

feasible. The Binomial parameters are set to m0 = 1.3, 1.4, 1.5 and the sample

sizes are given by T1 = 2, 500, T2 = 5, 000 and T3 = 10, 000. As mentioned

previously the admissible parameter range for m0 is m0 ∈ [1, 2] and the volatility

process collapses to a constant if the latter parameter hits its lower boundary 1.

The parameter corresponding to the Student-t distribution is set to ν = 5 and

ν = 6. As in the case of Lux (2008a), the main difference in our simulation set

up to the one proposed in Calvet & Fisher (2004) is that we fix the parameters

of the transition probabilities in (4.6) to b = 2 and γk = 0.5 which reduces the

number of parameters for estimation to only three.

The simulation results show (as expected) that GMM estimates of m0 are in

general less efficient in comparison to ML estimates. The finite sample standard

error (FSSE) and root mean squared error (RMSE) of the GMM estimates with

ν = 5 show that the estimated parameters for m0 are more variable with lower T

and smaller ‘true’ values of m0. As in the case of the MSM model with Normal

innovations, biases and MSEs of the ML estimates for m0 are found to be essen-

tially independent of the true parameter values m0 = 1.3, 1.4, 1.5. With respect

to GMM estimates with the two different sets of moment conditions (GMM1,

GMM2), both the bias and the MSEs decrease as we increase m0 from 1.3 to 1.5.

Interestingly, when the degrees of freedom are increased from ν = 5 to ν = 6 we

find an overall increase in the bias and MSEs of m0 via GMM1 while the bias

and MSEs of m0 via GMM2 decrease.

ML estimates of the distributional parameter ν show a relatively small bias

although it seems to slightly increase for larger m0 at T = 2, 500. The variability

of ν via ML is also found to be more pronounced than the variability of the

Binomial parameter m0. GMM estimates of ν have a larger bias and MSEs in

comparison to ML estimates. As we move from ν = 5 to ν = 6, we find that

the bias and MSEs of the parameter ν estimated via GMM1 and GMM2 become

larger.
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4.5 Monte Carlo analysis

The quality of the estimates of the scale parameter σ at ν = 5 is very similar

under ML and GMM1 particularly when the sample size is increased. With

respect to estimates of σ via GMM2, we find that the bias is somewhat larger in

comparison to ML and GMM1. As in the case of the MSM model with Normal

innovations, we find that the MSEs of σ increase for higher m0 while they are

more or less unchanged as we move from ν = 5 to ν = 6.

Table 4.2 displays the results of the Monte Carlo analysis of the MSM-t model

with a setting that makes ML estimation computationally infeasible, that is, the

BMSM-t and LMSM-t models with k = 10.4 As in the previous experiments,

the simulations are performed with m0 = 1.3, 1.4, 1.5, ν = 5, 6 and the same

logic is applied to the LMSM model for which the location parameter of the

continuous distribution is set to λ = 0.05, 0.1, 0.15. Note that the admissible

space for λ is λ ∈ [0,∞). As in the case of the Binomial parameter m0, when

the Lognormal parameter hits its lower boundary at 0, the volatility process

collapses to a constant. To save on space, the simulations are only presented

with T = 5, 000.

The results of the simulations indicate that the Binomial parameter m0 esti-

mated via GMM1 or GMM2 are practically invariant to higher number of compo-

nents k, both in terms of bias and MSEs for the parameter valuesm0 = 1.3, 1.4, 1.5

and ν = 5. The bias and MSEs of m0 usually increase in GMM1 as we increase

the degrees of freedom from ν = 5 to ν = 6. As in the BMSM model with Normal

innovations, the bias and the variability of σ increase with k as it becomes hard

to discriminate between very long-lived volatility components and the constant

scale factor (cf. Lux (2008a)). The distributional parameter ν is found to be

relatively invariant for GMM1 and GMM2 when k = 10 in relation to k = 8.

Bias and MSEs of the distributional parameter ν increase for GMM1 and GMM2

as we move from ν = 5 to ν = 6. In the LMSM-t model, we find that biases

and MSEs for λ at ν = 5 are somewhat larger for GMM1 than GMM2. As for

the BMSM-t, bias and MSEs of λ are relatively invariant for larger k buy they

usually increase as we move from ν = 5 to ν = 6.

Summing up, we find that the Monte Carlo simulations for the in-sample

performance of the Binomial and Lognormal MSM models with Student-t in-

4Simulation results for k = 15, 20 are qualitatively similar and can be provided upon request.
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4.5 Monte Carlo analysis

novations ‘point’ into the same direction as those of Lux (2008a) for the MSM

model with Gaussian innovations: while GMM is less efficient than ML, it comes

with moderate biases and moderate standard errors. The efficiency of both GMM

algorithms also appear quite insensitive with respect to the number of multipliers.
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4.5 Monte Carlo analysis

4.5.2 Out-of-sample analysis

Table 4.3 shows the forecasting results from optimal forecasts (ML) and best

linear forecasts (GMM) of the BMSM-t model. The out-of-sample MC analysis is

performed within the same framework as the in-sample analysis when comparing

ML and GMM procedures. That is, we set k = 8 and evaluate the forecasts for

the BMSM-t model with parameters m0 = 1.3, 1.4, 1.5, σ = 1 and ν = 5, 6. In

our Monte Carlo experiments, we also imposed a lower boundary ν = 4.05 as

a constraint in the GMM estimates as otherwise forecasting with the Levinson-

Durbin algorithm would have been impossible.

In the forecasting simulations we set T = 10, 000 and use T = 5, 000 for

in-sample estimation and T = 5, 000 for out-of-sample forecasting in order com-

pare them with the results of the Gaussian MSM models in Lux (2008a). The

forecasting performance of the models is evaluated with respect to their mean

squared errors (MSE) and mean absolute errors (MAE) standardized relative to

the in-sample variance which implies that values below 1 indicate improvement

against a constant volatility model. Relative MSE and MAE are averages over

400 simulation runs.

The results basically show that, similarly as for the Gaussian MSM models,

the loss in forecasting accuracy when employing GMM as opposed to ML is small

particularly when compared against GMM2. Thus, the lower efficiency of GMM

does not impede its forecasting capability in connection with the Levinson-Durbin

algorithm. Both MSE and MAE measures show improvement when the parameter

m0 increases from 1.3 to 1.5 while they seem to deteriorate for longer horizons

although only marginally. Interestingly, we find that GMM2 based forecasts even

improve in terms of MAEs relative to ML based forecasts for h ≥ 5 so that it

appears entirely justified to resort to the computationally parsimonious GMM2

estimation and linear forecasts in our subsequent empirical part.5

5Out-of-sample forecasts of the lognormal MSM-t models behave very similar, but they are
not displayed here because of the lack of a ML benchmark.
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4.5 Monte Carlo analysis

Equity Markets Bond Markets Real Estate Markets
Austria Italy Australia Austria
Argentina Norway Belgium Canada
Belgium Mexico Canada France
Canada New Zealand Denmark Germany
Chile Japan France Italy
Denmark South Africa Germany Japan
Finland Spain Ireland New Zealand
France Sweden Netherlands Spain
Germany Thailand Sweden Sweden
Greece Turkey United Kingdom United Kingdom
Hong Kong United Kingdom United States United States
India United States South Africa
Ireland

Table 4.4: Equity, Bond and Real Estate markets for the empirical analysis.

Countries were chosen upon data availability for the sample period 01/1990 to

01/2008. We employ Datastream calculated (total market) stock indices, 10-year

benchmark government bond indices and real estate security indices.
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4.6 Empirical analysis

4.6 Empirical analysis

In this section we turn to the results of our empirical application to compare

the in-sample and out-of-sample performance of the different volatility models

discussed previously. We follow a similar approach to the panel empirical analysis

of volatility forecasting performed for the Tokyo Stock Exchange in Lux & Kaizoji

(2007). However, here we concentrate on three new different cross-sections of

asset markets, namely, all-share stock indices (N = 25), 10-year government

bond market indices (N = 11), and real estate security indices (N = 12) at

the cross-country level. The sample runs from 01/1990 to 01/2008 at the daily

frequency which leads to 4697 observation from which 2,500 are used for in-

sample estimation and the remaining observations for out-of-sample forecasting.

The data is obtained from Datastream and the countries were chosen upon data

availability for the sample period covered. Specific countries for each of the three

asset markets are presented in Table 4.4. In the following discussions we refer to

statistical significance at the 5% level throughout.
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4.6 Empirical analysis

4.6.1 In-sample analysis

For our in-sample analysis we account for a constant and an AR(1) term in the

conditional mean of the return data as in (4.4). Results of the Mean Group (MG)

estimates of the parameters of the (FI)GARCH and MSM models explained in

previous sections are reported in Table 4.5 and Table 4.6, respectively. MG

estimates are obtained by averaging individual market estimates. We also report

minimum and maximum values of the estimates obtained to have an idea about

the distribution of the parameters across the countries under inspection.

We find in the case of the GARCH model that there is on average a statistically

significant effect of past volatility on current volatility (β̄) and of past squared

innovations on current volatility (ᾱ) in all three markets at the 5% significance

level (Table 4.5). The results are qualitatively the same with respect to the

estimates β̄ and ᾱ in the case of the GARCH-t. The distributional parameter (ν̄)

is on average greater than 4 in all three markets and statistically significant.

Taking into account long memory and Student-t innovations via the FIGARCH

specification we find that there is a statistically significant average effect of past

volatility (β̄) and past squared innovations (δ̄) on current volatility in all three

markets. FIGARCH also provides evidence for the presence of long memory as

given by the MG estimate of the differencing parameter d̄ in the three cross-

sections (Table 4.5). When we consider the FIGARCH-t we find the same qual-

itative results for the average impact of the parameters β̄, δ̄ and d̄ as in the

FIGARCH and the same qualitative results of the distributional parameter ν̄ as

with the GARCH-t model.

In-sample estimation of the BMSM and LMSM models with Normal and

Student-t innovations is restricted to GMM since ML estimation with panel data

requires a tremendous amount of time for k > 8. The estimation procedure

for the MSM models consists in estimating the models for each country in each

of the stock, bond and real estate markets for a cascade level of k = 10. The

choice of the number of cascade levels is motivated by previous findings of very

similar parameter estimates for all k above this benchmark (Liu et al. (2007),

Lux (2008a)). Note, however, that forecasting performance might nevertheless

improve for k > 10 and proximity to temporal scaling of empirical data might be
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4.6 Empirical analysis

closer. Our choice of the specification k = 10 is, therefore, a relatively conserva-

tive one.6

For space considerations we only present the results of the MSM-t models

estimated with the second set of moment conditions (GMM2) given that we

found that this set of moment conditions produced more accurate forecasts in

the Monte Carlo Simulations. We have also restricted the parameter ν by using

4.05 as a lower bound in order to employ best linear forecasts. Nevertheless, we

found very few cases where ν < 4 in both (FI)GARCH and MSM models.

With respect to the BMSM model, the mean Binomial parameter m̄0 is statis-

tically different from the benchmark case m̄0 = 1 in all three markets (Table 4.6).

In the LMSM model, we find that the mean Lognormal parameter λ̄ has a value

which is statistically different from zero in all three asset markets. In the case of

the BMSM-t, the mean distributional parameter ν̄ obtains a value that is statis-

tically significant in all the three markets. Considering the LMSM-t we obtain

similar qualitative results as for the BMSM-t in terms of the average parameters

σ̄ and ν̄.

Summarizing the in-sample results at the aggregate level, we find that there

is (on average) a statistically significant effect of past volatility and long-memory

on current volatility as well as evidence of multifractal volatility and fat tails in

return innovations. It is also noteworthy, that in many cases, the mean multifrac-

tal parameters m̄0 and λ̄ turn out to be different for the models with Student-t

innovations from those with Normal innovations. Since higher m0 and λ lead to

more heterogeneity and, therefore, more extreme observations, we see a trade-off

between parameters for the fat-tailed innovations and those governing temporal

dependence of volatility. What differences these variations in multifractal param-

eters make for forecasting, is investigated below.

4.6.2 Out-of-sample analysis

In this section we turn to the discussion of the out-of-sample results. Forecasting

horizons are set to 1, 5, 20, 50 and 100 days ahead. We have used only one set of

6In our case, results for k = 15 and k = 20 are practically the same as with k = 10. Details
are available upon request.
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4.6 Empirical analysis

in-sample parameter estimates and have not re-estimated the models via rolling

window schemes because of the computational burden that one encounters with

respect to ML estimation of the FIGARCH models. We have also experimented

with different subsamples but we have found no qualitative difference with respect

to the current in-sample and out-of-sample window split which is roughly about

half for in-sample estimation and half for out-of-sample forecasting.

In order to compare forecasts across models we use the principle of relative

MSE and MAE as previously mentioned. That is, the MSE and MAE corre-

sponding to a particular model are given in percentage of a naive predictor using

historical volatility (i.e. the sample mean of squared returns of the in-sample

period). We also report the number of statistically significant improvements of

a particular model against a benchmark specification via the Diebold & Mariano

(1995) test. The latter test allows to test the null hypothesis that two competing

models have statistically equal forecasting performance. Details about the com-

putation of MSEs and MAEs with panel data and corresponding standard errors

and the count test based on the Diebold & Mariano (1995) statistics are provided

in Appendix D.
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4.6 Empirical analysis

4.6.2.1 Single models

Results of the average relative MSE and MAE and corresponding standard errors

of the out-of-sample forecasts from the different models are reported in Table 4.7.

We find that at short horizons, h = 1, GARCH and FIGARCH models obtain

lower average MSE and MAE than the BMSM and LMSM models in all three

markets. However, the variability of the MSE and MAE in the MSM models are

in general lower than those of the (FI)GARCH models. At horizons over 20 days,

GARCH models (with Normal or Student-t innovations) show a deterioration in

MSE and MAE measures hinting at their inability to accurately forecast volatility

at higher horizons. In contrast, MSE and MAE resulting from the FIGARCH

models (with Normal or Student-t innovations) are in general lower and more

stable across horizons.

With respect to the MSM models (with Normal or Student-t innovations)

we find that they produce MSEs and MAEs which are lower than one in stock

and real estate markets. We also find that the forecasts from the MSM mod-

els are much more homogeneous and less variable across horizons than those of

the (FI)GARCH models whose forecasts usually deteriorate as the horizon is in-

creased beyond h = 20. Comparing forecasts of the BMSM versus LMSM we

find that the models produce qualitatively similar forecasts in terms of MSEs

and MAEs.

Diagnosing forecasts from the models with Normal vs. Student-t innova-

tions, we find that neither GARCH nor FIGARCH models produce lower MSEs

and MAEs on average over the three markets when Student-t innovations are

employed. Results are different in MSM models for which we find Student-t in-

novations to improve forecasting precision over all three markets in particular at

horizons h ≥ 20. In fact, Table 4.8 shows that, in terms of MAEs, there is a

larger number of statistically significant improvements against historical volatil-

ity with the BMSM-t and LMSM-t models in comparison to their Gaussian and

(FI)GARCH counterparts. Interestingly, the LMSM-t outperforms all other mod-

els in all markets in terms of MAEs when h ≥ 50 and seems to provide for a sizable

gain in forecasting accuracy at long horizons.
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4.6 Empirical analysis

Note that the MSM models also showed some sensitivity of parameter esti-

mates on the distributional assumptions (Normal vs. Student-t). As it seems, the

volatility models react quite differently to different distributions of innovations

εt: on the one hand, the transition to Student-t was not reflected in remarkable

changes of estimated parameters for (FI)GARCH models and their forecasting

performance, if anything, slightly deteriorates under fat-tailed innovations. On

the other hand, the effect of distributional assumptions on MSM parameters was

more pronounced and their forecasting performance appears to be superior under

Student-t innovations throughout our samples. Taken together, we see different

patterns of interaction of conditional and unconditional distributional properties.

This indicates that alternative models may capture different facets of the depen-

dency in second moments so that there would be a potential gain from combining

forecasts (a topic explored below).
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4.6.2.2 Combined forecasts

A particular insight from the methodological literature on forecasting is that it is

often preferable to combine alternative forecasts in a linear fashion and thereby

obtain a new predictor (cf. Granger (1989), Aiolfi & Timmermann (2006)). We

analyze forecast complementarities of (FI)GARCH and MSM models by address-

ing the performance of combined forecasts. The forecast combinations are com-

puted by assigning each single forecast a weight equal to a model’s empirical

frequency of minimizing the absolute or squared forecast error over realized past

forecasts. To take account of structural variation we update the weighting scheme

over the 20 most recent forecast errors so that despite linear combinations of

forecasts, the influence of various components is allowed to change over time via

flexible weights (for details see Appendix D).

Tables 4.9 and 4.10 report the results of the forecasting combination exercise.

Our forecast combination strategy consists in considering whether forecast com-

binations of (FI)GARCH models, MSM models or both families of models lead to

an improvement upon forecasts from single models. Our results put forward that

they generally do. This is in line with the empirical result of Lux & Kaizoji (2007)

that the rank correlations of forecasts obtained from certain volatility models are

quite low, hinting at room for improvement upon forecasts from single models

with forecast combinations.

We start by considering the results of the forecast combinations of (FI)GARCH

models (Tables 4.9 and 4.10). Three different combination strategies are pre-

sented denoted CO1, CO2 and CO3. The first combination strategy (CO1) is

given by the (weighted) linear combination between FIGARCH and FIGARCH-t

forecasts. The latter combination gives an idea how FIGARCH forecasts can

be complemented by considering a fat tailed distribution. We find an improve-

ment in terms of MSEs from CO1 over single forecasts of the FIGARCH and the

FIGARCH-t models at horizons h = 20, h = 50 and h = 100 in the different asset

markets under inspection. The same result applies when we consider the forecast

combinations GARCH+FIGARCH+FIGARCH-t (CO2) and GARCH+GARCH-

t+FIGARCH+FIGARCH-t (CO3) although only for stock and real estate mar-

kets at higher horizons. CO2 and CO3 hint at how forecast could be improved
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when considering short memory along with long memory and fat tails. In terms of

MAEs, CO1 can improve upon forecasts of the single (FI)GARCH specifications

at all horizons in all markets. The forecast combinations CO2 and CO3 can also

improve upon forecasts of the single (FI)GARCH models in terms of MAEs at

all horizons in stock markets and real estate markets.

The second set of forecasts combinations considered result from the MSM

models which are given by BMSM+LMSM-t (CO4), BMSM+BMSM-t+LMSM-t

(CO5) and BMSM+BMSM-t+LMSM+LMSM-t (CO6). The latter forecast com-

binations allow to analyze the complementarities that arise when one combines

models with different assumptions regarding the distribution of the multifractal

parameter as well as the tails of the innovations. The results indicate that there is

an improvement upon forecasts of single models in all three markets particularly

against those obtained from the MSM models with Normal innovations both in

terms of MSEs and MAEs. The improvement obtained from forecasts combina-

tions is immediately evident in the case of bond markets where the MSEs and

MAEs become less than one. We also find that the combination of forecasts in

the MSM models does not translate into more variable MSEs or MAEs, a feature

that speaks in favor of optimally combining single models’ ingredients.

The last set of forecasts combinations examined are those resulting from

MSM models and FIGARCH models. The combinatorial strategies are given

by FIGARCH+LMSM-t (CO7), BMSM-t+LMSM-t+FIGARCH (CO8), BMSM-

t+LMSM-t+FIGARCH+FIGARCH-t (CO9). The latter forecast combinations

allow to analyze the complementarities of two families of volatility models which

assume two distinct distributions of the innovations along with different char-

acteristics for the latent volatility process: (FI)GARCH models which account

for short/long memory and autoregressive components and MSM models which

account for multifractality, regime-switching and apparent long memory. Interest-

ingly, the improvement upon forecasts of single models from the MSM-FIGARCH

strategy is somewhat more evident than in the previous strategies. In terms of

MSEs, for instance, we generally find a statistically significant improvement over

historical volatility more frequently in stock, bond and real estate markets when

comparing CO7, CO8, CO9 against single models (Tables 4.8 and 4.10). We also
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find that the variability of the combinations of MSM and FIGARCH models does

not change too much with respect to single models.

Summing up, we find that the forecast combinations between FIGARCH,

MSM or both types of models lead to improvements in forecasting accuracy upon

forecasts of single models. In particular, we find that the forecasting strategy

FIGARCH-MSM seems to be the most successful one in relation to single models

or the other combination strategies - a feature that could be exploited in real time

for risk management strategies. The particular usefulness of this combination

strategy appears plausible given the flexibility of the MSM model in capturing

varying degrees of long-term dependence and the added flexibility of FIGARCH

for short horizon dependencies via its AR and MA parameters which are not

accounted for in MSM models.

4.7 Concluding remarks

In this Chapter we examined the in-sample and out-of-sample performance of

volatility models that incorporate different features characterizing the latent volatil-

ity process (long vs. short memory, regime-switching and multifractality) as well

as distributional regularities of returns (fat tails). More precisely, we consider two

major sets of ‘competitors’, namely, volatility specifications from the new MSM

models and the popular (FI)GARCH models along with Normal or Student-t

innovations. We introduce a new member to the family of MSM models that ac-

counts for Student-t innovations. This new model allows to study whether there

is an improvement in forecasting accuracy vis-à-vis the existing MSM model with

Normal innovations and the (FI)GARCH models with Normal or Student-t inno-

vations. The MSM-t model can be estimated either via ML or GMM. The suit-

ability of ML and GMM estimation for MSM models with Student-t innovations

is analyzed via Monte Carlo simulations. We conduct a comprehensive empirical

study using country data on all-share equity indices, 10-year government bond

indices and real estate security indices. In addition, we explore whether we may

improve forecasting accuracy by constructing forecast combinations of the various

models under inspection.
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In-sample Monte Carlo experiments of the MSM-t model behave similarly

like the MSM model with Normal innovations indicating that ML and GMM

estimation are both suitable for estimating the new Binomial (ML and GMM)

and Lognormal (GMM) MSM-t models. The out-of-sample Monte Carlo analysis

shows that best linear forecasts are qualitatively similar to optimal forecasts so

that the computationally advantageous strategy of GMM estimation of param-

eters plus linear forecasts can be adapted without much loss of efficiency. The

in-sample empirical analysis shows that there is strong evidence of long mem-

ory and multifractality in international equity markets, bond markets and real

estate markets as well as evidence of fat tails. The out-of-sample empirical anal-

ysis puts forward that GARCH models are less precise in accurately forecasting

volatility for horizons greater than 20 days. This problem is not encountered once

long-memory is incorporated via the FIGARCH model which produces MSEs and

MAEs that are generally less than one.

The recently introduced MSM models with Normal innovations produce fore-

casts that improve upon historical volatility, but are in some cases inferior to

FIGARCH with Normal innovations. However, two additional observations shed

more positive light on the capabilities of MSM models for forecasting volatility.

First, adding fat tails typically improves forecasts from MSM models while the

same change of specification has, if anything, a negative effect for the (FI)GARCH

models. While MSM-t is somewhat inferior to FIGARCH under the MSE crite-

rion, it is superior under the MAE criterion at long horizons across all markets.

Second, our forecasting combination exercise showed particularly sizable gains

from combining FIGARCH and MSM in various ways. Therefore, both models

appear to capture somewhat different facets of the latent volatility and can be

sensibly used in tandem to improve upon forecasts of single models.
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This thesis has analyzed different facets of international asset prices. Each Chap-

ter was devoted to studying specific issues not scrutinized in the finance literature

so far while providing useful results for the general understanding of international

asset price fluctuations. Our concluding remarks will focus on the main policy

implications that can be drawn out of our comprehensive empirical analysis of

international asset prices in light of the current world financial context. In addi-

tion, we will highlight some of the main results that fall in the intersection of the

‘mainstream’ asset pricing literature and the behavioral asset pricing literature

as well as topics that could be analyzed deeper in future research.

First, we find that there are clear differences between the in-sample and out-

of-sample properties of international stock market returns between developed and

emerging financial markets. While the former show a clearer relationship with

macroeconomic (equilibrium) relations, the latter suggest a strong relationship

with (time-varying) risk-premia. These results are intuitive as emerging mar-

kets have much more impediments to accurate price discovery (e.g. delays), less

transparent data construction, lack of prudential rules, political and exchange

rate instability, etc. which may affect the relationship with macroeconomic fac-

tors non-trivially. A common result with respect to both developed and emerging

stock market returns is that a strong evidence of predictability from particular

variables does not imply that the models will also perform well out-of-sample.

The sample of data in question might be characterized by too many underlying

factors such as regime changes, parameter uncertainty, model selection, hetero-

geneity, etc. Therefore, analysts should be careful in drawing conclusions about

the applicability of asset pricing models for forecasting given some ‘promising’

in-sample results. We argue that recursive estimation and forecast combinations
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of both ‘theoretical’ and ‘atheoretical’ models can lead to a clearer understand-

ing of international equity price fluctuations. In general, our results suggest that

forward looking and combinatorial rather than retrospective and single market

analyses should be put into practice more often to circumvent spurious conclu-

sions and to possibly prevent future financial crises.

Second, we find that real estate security prices have a strong empirical rela-

tionship with equity and bond prices in the long-run and that the relationship is

homogeneous amongst international markets. This finding hints at financial inte-

gration between these markets both within and across the inspected cross-section

members. Interestingly, equity volatility and bond returns have predictive power

for international real estate returns hinting again at the strong relationship with

equity and bond markets. World asset volatility and contemporaneous equity

returns also explain returns of real estate securities. These finding suggest that

analysts can better understand and predict real estate security price fluctuations

by studying their strong empirical relationship with equity and bond markets as

well as global risk variables. Given the general lack of attention that has been

given to (international) real estate security markets, our results highlight some

important empirical determinants that may help prevent future crises in these

markets.

Third, we find that monetary shocks in the US can be transmitted abroad.

In particular, we find that there is evidence of a statistically significant impact

of US monetary policy on the equity markets of Mexico and Canada hinting at a

spillover effect to nearby countries. The impact is also found to be statistically

significant in equity markets that are financially integrated to the US and coun-

tries with inflation targeting. Moreover, we find that US monetary policy shocks

can have a significant impact on world equity and bond markets on average. How-

ever, we find some evidence of instability in the empirical relationship between

US monetary policy and international asset prices. A closer look at the response

of international asset prices to US monetary policy reveals that the aggregate im-

pact is increasing on absolute terms over time. There is also evidence that there

is an upward trend in the ‘goodness’ of fit of the effect of US monetary policy

on international equity and real estate markets. The latter results speak in favor

of more coordinated actions of monetary authorities around the world (specially
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those with inflation targeting or close to the US) when conducting monetary pol-

icy. This would allow market participants and governments to deal better with

the negative effects of financial crises.

Fourth, we obtain that ‘behavioral’ volatility models that incorporate different

features characterizing the stylized facts of asset prices such as fractality, regime-

switching and fat tails combined with more ‘mainstream’ volatility models of the

GARCH legacy can lead to better volatility forecasts in international asset mar-

kets. The latter results are important to strengthen risk management systems of

international financial markets. For instance, analysts could use forecast combi-

nations of various volatility models to formulate better Value-at-Risk frameworks

and thus undertake investments that lead to more stable risk-adjusted returns.

This would potentially minimize the propensity to future crises.

The findings in this thesis also show some points of intersection between the

macro-finance and the behavioral finance stream. In particular, the findings of

regime changes in international asset markets, heterogeneity in short-run fluc-

tuations of international asset prices but homogeneous long-run relationships,

contagion effects (monetary policy shocks and shocks to equity markets), su-

perior forecasting performance of asset returns via combinations of ‘theoretical’

(equilibrium pricing) and ‘atheoretical’ (random walk, autoregressive) models,

superior forecasting performance of volatility via combinations of ‘mainstream’

(GARCH and FIGARCH) and ‘behavioral’ (MSM) models can be easily seen as

common ground in the two streams. We see the perspective of building a bridge

between the two streams by designing methods that could be useful to both lines

of thought such as the use of recursive estimation, aggregation under parame-

ter heterogeneity, analyzing contagion effects, combination strategies, modeling

multifractality and fat tails, increasing robustness via panel data, amongst others.

There are also some recommendations that can be drawn out of the empiri-

cal results of this work. More precisely we recommend: (i) forward looking and

aggregate rather than retrospective and single market analyses, (ii) a closer atten-

tion to real estate assets and their empirical determinants, (iii) more coordinated

actions of monetary authorities around the world when conducting policy, and

(iv) combinatorial strategies to formulate better Value-at-Risk frameworks and

thus undertake more stable and prudent investments.
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This thesis also raises some questions for future research. For instance, a

more detailed analysis with respect to the relationship between time-varying risk

premia and stock returns of emerging markets would uncover whether the risk-

return relationship is stronger than (say) the relationship with domestic and/or

global variables. Another interesting research question is whether profitable trad-

ing opportunities exist within the real estate security market given its relatively

recent existence and inefficiencies found at the international level. This could

be done via statistical arbitrage strategies. Given our results on the increasing

impact of US monetary policy shocks on international asset markets, it would

also be interesting to analyze whether there is an empirical relationship when

augmenting different countries’ Taylor rule with the US monetary policy rate.

Last but not least, it seems relevant in the current financial stability context to

analyze which volatility models lead to better risk management practices. For

instance, one could study the relative performance of different volatility models

for Value-at-Risk via Monte Carlo simulations and empirical applications.
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Appendix A

Appendix to Chapter 1

A.1 Representative investor problem

A representative investor faces the maximization problem,

Max; E0

[
∞∑
t=0

δtU(Ct)

]
,

subject to

Ct + νt+1Pt = Wt + νtXt,

where Ct and Wt are the agent’s consumption and wealth at period t, respectively,

Pt is the ex-dividend price of the stock at period t and Xt is the payoff the

investor receives at period t. Formally, let Xt = Pt + Dt, where Dt denotes the

dividend payed during period t. Lastly, νt denotes the number of shares held at

the beginning of period t. The Lagrangean is given by,

Lt = E0

∞∑
t=0

δt [U(Ct)− λt {Ct + νt+1Pt −Wt − νtXt}] ,

and the first order conditions,

δ−t
∂Lt
∂Ct

= U ′(C(t))− λt = 0, δ−t
∂Lt
∂νt+1

= −λtPt + δEtλt+1Xt+1 = 0. (A.1)
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Using (A.1) yields (1.1), where Mt+1 = δ(U ′(Ct+1)/U
′(Ct)). Assuming that Mt

and X̃t = P−1
t−1Xt are jointly log normal, log-linearizing (1.1) and rearranging

yields,

pt = Et [mt+1 + xt+1] + (1/2) Vart [mt+1 + x̃t+1] , (A.2)

where pt = lnPt, mt+1 = lnMt+1, xt+1 = ln (Pt+1 +Dt+1) and x̃t+1 = xt+1 − pt.

Defining µt+1 = (1/2) Vart [mt+1 + x̃t+1] = 1/2σ2
µ,t+1 we obtain (1.2). The term

xt+1 can also be written as xt+1 = ln
(
1 + ept+1−dt+1

)
+ dt+1 where dt = lnDt.

A Taylor Series expansion to the term ln
(
1 + ept+1−dt+1

)
around an equilibrium

point P/D = ep−d yields,

ln
(
1 + ept+1−dt+1

)
≈ ln

(
1 +

(
P

D

))
+

1

1 + P/D
· 1

D
· P · (pt+1 − p)

+
1

1 + P/D
· − P

D2
·D · (dt+1 − d)

= ln

(
1 +

(
P

D

))
−
(

P/D

1 + P/D

)
ln

(
P

D

)
+

(
P/D

1 + P/D

)
(pt+1 − dt+1) = c+ θ(pt+1 − dt+1), (A.3)

with c = − ln(θ) − (1 − θ) ln(1/θ − 1) and θ = 1/(1 + D/P ). Using the latter

approximation in xt+1 and rearranging yields xt+1 = c + θpt+1 + (1 − θ)dt+1.

Substituting in (1.2) yields,

pt = c+ Et [µt+1 + θpt+1 + (1− θ)dt+1 +mt+1] . (A.4)

Define at = lnAt where At is used to denote earnings per share at period t.

Adding (1− θ)(at+1 − at) from both sides of (A.4) and rearranging we obtain,

pt − at = c+ Et [µt+1 + (θ − 1)(at+1 − dt+1) + ∆at+1 + θ(pt+1 − at+1) +mt+1] .

Solving forward for pt − at and by the law of iterated expectations Et [Et+1 [Z]]

= Et [Z],

pt − at =
c

1− θ
+ Et

∞∑
j=1

θj−1 [µt+j + (θ − 1)(at+j − dt+j) + ∆at+j +mt+j] + bt.(A.5)
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Imposing the (no bubble) transversality condition bt = limj→∞ θjEt(pt+j−at+j) =

0 in (A.5) we obtain equation (1.3). We start by defining gt = at−dt and presume

that risk premia µt, earnings growth ∆at and gt behave according to the following

models:

µt+1 = µ̄, (A.6)

∆at+1 = εa,t+1, (A.7)

gt+1 = ηgt + εg,t+1, η < 1. (A.8)

Furthermore, we assume that the log SDF can be specified by,

−mt+1 = m̄+ ht + yt + st + vt + εm,t+1 (A.9)

ht+1 = φ1ht + εh,t+1, (A.10)

yt+1 = φ2yt + εy,t+1, (A.11)

st+1 = φ3st + εs,t+1, (A.12)

vt+1 = φ4vt + εv,t+1, (A.13)

εm,t+1 = ϕεv,t+1, φi < 1, i = 1, 2, 3, 4,

where we let ε•,t ∼ iid(0, σ2
•), • = a, g, h, g, s, v for simplicity. Moreover, ht, yt and

st are observable I(0) equilibrium pricing factors and vt is some ‘unobservable’

I(0) factor. We work with the negative of the log stochastic discount factor for

convenience given that the log SDF is the negative of the log return (see Campbell

et al. (1997)). A motivation for non-fundamental or non-observable component

of stock prices can be found in Lee (1998). Noting that for an AR(1) process,

zt+1 = φzt + εzt+1 we have that zt+i = φizt+
∑i

j=1 φ
i−jεzt+j replacing (A.6)-(A.13)

in (1.3) we obtain,

pt − at =
µ̂− m̄

1− θ
+
η(θ − 1)gt

1− ηθ
− ht

1− φ1θ
− yt

1− φ2θ
− st

1− φ3θ
− vt

1− φ4θ
,

where µ̂ = c + µ̄. Defining µ̇ = (µ̂ − m̄)/(1 − θ), π1 = η(θ − 1)/(1 − ηθ),

π2 = 1/(1 − φ1θ), π3 = 1/(1 − φ2θ), π4 = 1/(1 − φ3θ) and π5 = 1/(1 − φ4θ).

Solving for vt and plugging in (A.13) we obtain,

− (pt+1 − at+1) + µ̇+ π1gt+1 − π2ht+1 − π3yt+1 − π4st+1

= −φ4(pt − at) + φ4µ̇+ φ4π1gt − φ4π2ht − φ4π3yt − φ4π4st + π5εv,t+1.

173



A.2 A VECM representation of the model

Using (A.8) and (A.10)-(A.12) to replace for gt+1, ht+1, yt+1, st+1 and solving for

(pt+1 − at+1) above we obtain,

(pt+1 − at+1) = (1− φ4)µ̇+ φ4(pt − at) + (η − φ4)π1gt

+(φ4 − φ1)π2ht + (φ4 − φ2)π3yt + (φ4 − φ3)π4st

+ (π1εg,t+1 + π2εh,t+1 + π3εy,t+1 + π4εs,t+1 + π5εv,t+1)︸ ︷︷ ︸
εpa,t+1

. (A.14)

Now write stock prices changes as,

(pt+1 − pt) = (pt+1 − at+1)− (pt − at) + (at+1 − at) . (A.15)

Replacing (A.14) in (A.15) using ∆at+1 = εa,t+1 we obtain,

∆pt+1 = (1− φ4)µ̇+ (φ4 − 1)(pt − at) + (η − φ4)π1gt

+(φ4 − φ1)π2ht + (φ4 − φ2)π3yt + (φ4 − φ3)π4st + ut+1,

where ut+1 = εpa,t+1 + εa,t+1 and since all errors are iid by construction we let

ut ∼ iid(0, σ2
u). Similarly,

∆pt+1 = µ+ α1qt + α2gt + α3ht + α4yt + α5st + ut+1, (A.16)

where we define qt = (pt − at) and the parameters are given by µ = (1 − φ4)µ̇,

α1 = (φ4 − 1), α2 = (η − φ4)π1, α3 = (φ4 − φ1)π2, α4 = (φ4 − φ2)π3 and

α5 = (φ4 − φ3)π4.

A.2 A VECM representation of the model

Consider a VAR(p) representation for the (7×1) vector zit = (pit, ait, dit, p
m
t , r

s
it, r

l
it,

rfnt )′,

zit = δit + A1,izit−1 + A2,izit−2 + . . .+ Ap,izit−p + uit, (A.17)

with Aj,i, j = 1, . . . , p, denoting K × K matrices of coefficients, δit is a linear

trend term and uit is a K × 1 vector white noise process, uit ∼ (0,Ωi). The

corresponding VECM(p− 1) is

∆zit = µi + Πizit−1 + Γ1,i∆zit−1 + . . .+ Γp−1,i∆zit−p+1 + uit, (A.18)
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where µi = ∆δit, Πi = (A1,i + . . .+Ap,i− IK) = αiβ. The assumptions on poten-

tial equilibrium relationships linking the variables in zit lead to over-identifying

restrictions in the vector of error correction (EC) terms Πizit−1,

Πi = αi ·


1 −1 0 0 0 0 0
0 1 −1 0 0 0 0
1 0 0 −1 0 0 0
0 0 0 0 −1 1 0
0 0 0 0 0 1 −1

 . (A.19)

Hence, five cointegrating relationships (r = 1, ..., 5) are formalized in (A.19)

namely, the stationarity of the log PE, ED and PPM ratio, the term spread

and the interest rate differential. Picking out the first equation of the VECM

leads to (1.7).

A.3 Descriptions of in-sample and out-of-sample

tests

A.3.1 In-sample tests

1. Single equation models : At the single market level our analysis consists of

testing α̂1r,i = 0, i = 1, . . . , N, r = 1, . . . , 5, by means of robust covariance

estimators for h = 1 (White (1980)) and for h = 3, 6 (Newey & West

(1987)).

2. Cross sectional Wald test : To infer on joint significance of α̂1r,i = 0, i =

1, ..., N, we employ a stacked version of single market equations obtaining

a ‘block diagonal’ regression design and determine a Wald-statistic

λc = (Gα̂p)
′
[
GĈovc [α̂p]G

′
]−1

(Gα̂p) , c = 1, 2, (A.20)

whereG is a (N×N(K+R+1)) matrix formalizing the null hypothesisH0,r :

α̂1r,i = 0, i = 1, ..., N . Moreover, α̂p is a vector of dimension N(K + R +

1)×1, with K+R+1 = 13, collecting the parameters of the cross sectional
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model in stacked form. In (A.20), Ĉov1[α̂p] (Cov2[α̂p] = h · Cov1[α̂p])

denotes White (1980) (Newey & West (1987)) robust covariance estimator

for h = 1 (h = 3, 6). Critical values for the Wald statistic are taken from

the χ2(N) distribution.

3. Mean group inference: The mean group (MG) estimator proposed by Pe-

saran & Smith (1995) and corresponding t-statistics are,

ᾱr,MG =
1

N

N∑
i=1

α̂1r,i, tr,MG = ᾱr,MG/

√
V̂ar [ᾱr,MG],

V̂ar (ᾱr,MG) =
N∑
i=1

(α̂1r,i − ᾱr,MG)2 /(N(N − 1)), r = 1, ..., 5. (A.21)

A.3.2 Out-of-sample tests

To reduce complexity of notation we skip the horizon dimension (h) below when

referring to forecasts or forecast errors.

1. Serial correlation: The auxiliary regression of the sequences ûiτ for (h = 1)

is given by

ûiτ = c+ κ1ûiτ−1 + . . .+ κlûiτ−l + viτ , τ = Tmin + 1, . . . , Ti, (A.22)

We test the hypothesis H0 : κ1 = κ2 = . . . = κl = 0 by means of a Wald-test

ωi,l = κ̂′(Cov[κ̂])−1κ̂
d→ χ2(l), (A.23)

where κ̂ = (κ̂1, κ̂2, . . . , κ̂l)
′. Cov[κ̂] is consistent under heteroskedasticity

and lag orders l = 1, 4 are considered. The overall hypothesis of no serial

correlation at the aggregate level for (h = 1) is tested by aggregating log

p-values, i.e.

Ωl = 2
N∑
i=1

ln(ψ(ωi,l)) ∼ χ2(2N), (A.24)

where ψ(•) is the complement of the χ2(l) distribution function (Fisher

(1932)). Owing to contemporaneous correlation over stock markets the

χ2(2N) distribution in (A.24) might not hold. However, since all the models
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are applied to the same cross section the Fisher test is still useful for model

comparison.

2. Distributional features: The Henrikkson–Merton statistic is

hmi =

(∑
τ

I(∆piτ ≥ 0)

)−1∑
τ

I(∆p̂iτ ≥ 0 ∧∆piτ ≥ 0)

+

(∑
τ

I(∆piτ < 0)

)−1∑
τ

I(∆p̂iτ < 0 ∧∆piτ < 0). (A.25)

where I(•) is an indicator function. The hmi statistic is the sum of the

conditional probabilities of correctly forecasting a positive or negative price

change. We use critical values simulated from 10000 sequences of bivariate

Gaussian variables taking the number of available predictions per stock

market into account. An aggregated Henrikkson Merton statistic (HM) is

computed from return forecasts over both data dimensions.

3. Absolute and relative average accuracy: Let ‘0’ and ‘•’ indicate a bench-

mark and a particular competing model, respectively. The MAFE of the

benchmark is

d̄i(0) = Ti
−1
∑
τ

diτ (0), diτ (0) = |ûiτ (0)|. (A.26)

The relative MAFE is

dri(•) =
d̄i(•)
d̄i(0)

, d̄i(•) = Ti
−1
∑
τ

diτ (•). (A.27)

The variance of this ratio is

V̂ar[dri(•)] =
V̂ar[d̄i(•)]
d̄i(0)2

+ V̂ar[d̄i(0)]

(
d̄i(•)
d̄i(0)2

)2

−2Ĉov[d̄i(•), d̄i(0)]
d̄i(•)
d̄i(0)3

, (A.28)

where empirical (co)variances of d̄i(0) and d̄i(•), are determined in the usual

way. In addition to single market MAFEs, we determine overall MAFE

measures as in (A.26) and (A.27) over both data dimensions. The respective

statistics are denoted d̄(0) and DR.
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4. Outperformance of the benchmark model: To contrast a particular model

against a benchmark we consider the frequency

P = T−1
∑
i,τ

I(diτ (•) < diτ (0)), T =
∑
i

Ti. (A.29)

Under equal model accuracy P ∈ [0.5 ± 2
√

0.25/T] with 5% significance.

Moreover, we count the relative MAFEs less than unity, S =
∑

i I(dri < 1).

Under equal model performance S can be seen as the number of successes

over N draws from a binomial distribution with p = 0.5. Some selected

binomial success probabilities for N = 12 are: p(S ≥ 11) = 3.174E-03,

p(S ≥ 10) = 0.019, p(S ≥ 9) = 0.073 while for N = 14 are: p(S ≥ 12) =

6.47E-03, p(S ≥ 11) = 0.029, p(S ≥ 10) = 0.090.

5. Testing for a unit ratio: The panel statistic to test H0 : dr = 1 against

H1 : dr < 1 is

TR =
1√
N

N∑
i=1

(dri − 1)/

√
V̂ar[dri] ≈ N(0, 1). (A.30)

A.4 Forecast combinations

Let ∆p̂iτ (1),∆p̂iτ (2), . . . ,∆p̂iτ (M) denote a set of predictors for ∆piτ from model

m. We assign each single forecast a weight equal to a models’ empirical frequency

of minimizing the absolute forecast error over realized errors available in the

forecast origin τ − 1. Formally,

∆p̂iτ (CO•) =
M∑
m=1

giτ (m)∆p̂iτ (m), (A.31)

where

giτ (m) = (τ − Tmin − h− 1)−1

τ−1−h∑
υ=Tmin+1

I(diυ(m) = min
j
diυ(j), j = 1, . . . ,M),

(A.32)

178



A.4 Forecast combinations

with diτ = |ûiτ | and I(.) denoting an indicator function. To update the weight-

ing scheme according to more recent performance measures, we adopt a second

weighting with g̃i,τ (m) determined over the 20 most recent forecast errors, i.e.

∆p̂iτ (C̃O•) =
M∑
m=1

g̃iτ (m)∆p̂iτ (m), (A.33)

where

g̃i,τ (m) =

{
gi,τ (m) if τ − 1− h ≤ Tmin + 20

20−1
∑τ−1−h

υ=τ−20−h I(diυ(m) = minj diυ(j)) otherwise.
(A.34)
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Appendix to Chapter 2

B.1 Construction of the common factor

The construction of the common ‘world’ asset factor is as follows. We rank

14/36/14 countries for each year y from 1996 to 2006 according to their GDP

value (in US dollar terms) for the • = h, s, b markets. We then split the countries

into two groups, with the breakpoint being the yearly GDP median. For each

GDP group (big and small), we then rank the • = h, s, b markets by their annual

price-dividend (PD), price-earnings (PE) and term spreads (TS) of year y − 1.

The markets are again split, with the breakpoint being the yearly median of

PD/PE/TS in each GDP group. Four asset market groups are obtained: PO=

B/H, B/L, S/H and S/L, indicating big (B) or small (S) countries determined

by their GDP value with high (H) or low (L) fundamental ratios determined by

PD/PE/TS. Thus, the markets are split according to their PD/PE/TS, given

that they are in the group of big or small countries.

We compute daily returns for each of the • = h, s, b country indices in the

portfolios B/H, B/L, S/H and S/L that were constructed in each year y. In

what follows, let dy = 1, ..., DY denote a daily observation d within year y. Let

∆p•,dy(PO) = (∆p•,1dy, ...,∆p•,Ndy)
′ be the N -dimensional vector of daily log re-

turns for each of the portfolios PO =B/H, B/L, S/H and S/L constructed in year
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y for the • = s, h, b markets. We compute the unconditional covariance matrix of

∆p•,dy(PO) denoted Π̂ and we employ Factor Analysis (FA) in order to calculate

the weights attached to a particular market return contained in ∆p•,dy(PO) at

each year y. FA allows us to decompose the covariance matrix as Π = bb′ + Ψ

where b is a N × 1 vector of factor loadings and Ψ is a N × N diagonal matrix

containing specific variances. Given the estimated covariance matrix Π̂, Maxi-

mum Likelihood is used to estimate b and Ψ under the constraint b′Ψb = Θ where

Θ is a diagonal matrix. Using the Maximum Likelihood estimators b̂ and Ψ̂, we

compute the ‘optimal return’ of the portfolios PO =B/H, B/L, S/H and S/L at

each dy for each market • = h, s, b, i.e.

∆p̂•,dy(PO) = w̃′∆p•,dy(PO), w̃ = a−1ŵ, a = ι′ŵ, ŵ =
(
b̂′Ψ̂−1b̂

)−1

b̂′Ψ̂−1, (B.1)

where ι is a N × 1 vector of ones. This computation is repeated for each year

y and for each of the portfolios PO in the • = h, s, b markets. For each of the

markets we compute the simple average of the returns of the two portfolios B/H

and S/H at each day dy and subtract it to the simple average of the two returns

of the two portfolios S/L and B/L at each day dy,

f̂•,dy = (∆p̂•,dy(BH) + ∆p̂•,dy(SH))/2− (∆p̂•,dy(BL) + ∆p̂•,dy(SL))/2. (B.2)

The latter procedure gives a factor for each of the • = h, s, b markets respec-

tively, that accounts for return differentials of portfolios sorted by high and low

PD/PE/TS (after controlling for GDP) at each year y. The factor for all y in

each • = h, s, b market is computed by stacking all f̂•,dy for each year y to obtain

f̂•,d. Finally, the common factor for all three • = h, s, b markets is computed by

taking a sum of each of the individual factors, formally

f̂d = f̂h,d + f̂s,d + f̂b,d. (B.3)

Let f̂dt be the estimated factor for a daily observation d in month t. The factor

at month t can be computed as f̂t =
∑D

d=1 f̂dt.
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B.2 Mean group and panel DOLS

1. Mean Group DOLS estimation: The MG DOLS estimator β̄ is computed

by averaging the conventional DOLS estimates β̂i obtained for i = 1, ..., N ,

i.e.

β̄ =
1

N

N∑
i=1

β̂i, Ĉov
[
β̄
]

=
N∑
i=1

(β̂i − β̄)(β̂i − β̄)′/(N(N − 1)). (B.4)

Individual t-ratios for each i are computed with Newey & West (1987)’s het-

eroskedasticity and autocorrelation consistent covariance estimator (HAC).

2. Panel DOLS estimation: The panel estimator is obtained via two main

steps. First, the variables in (2.8) are centered. Let the centered variables

be given by p̃it, x̃it and ∆ỹit. Second, the following pooled regression is

performed,

ξ̂ =

(
N∑
i=1

T∑
t=1

q̃itq̃
′
it

)−1( N∑
i=1

T∑
t=1

q̃itp̃h,it

)
, (B.5)

where ξ̂ = (β̂′, δ̂′1, ..., δ̂
′
N)′ is the estimated vector of parameters, q̃it is a

2k(1 +
∑N

i=1 ai) dimensional vector whose first k elements are x̃it and the

elements k(1 +
∑i−1

j=1(2aj + 1)) + 1 to k(1 +
∑i

j=1(2aj + 1)) are ∆ỹit with

zeros elsewhere. The latter procedure allows to estimate a homogeneous

long run vector of coefficients while allowing for heterogeneous estimates

for the leads and lags. Mark & Sul (2003) propose a suitable Wald test

for testing the restriction Rβ = βre. Interested readers are referred to the

article by Mark & Sul (2003) for specifics about the Wald test.

B.3 Descriptions of in-sample and out-of-sample

tests

In this section we describe the in-sample and out-of-sample tests employed in

Chapter 2. To reduce the complexity of notation, in what follows we refrain from
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B.3 Descriptions of in-sample and out-of-sample tests

using r = m,n in ψr,i although every test described would be applied with either

the pooled DOLS (β̂) or single market DOLS (β̂i) long-run coefficient estimates

in the real estate equation (2.9) depending on the result of the Hausmann test H

of the null hypothesis H0 : β = βi.

B.3.1 In-sample tests

1. Q-test : Several studies have shown that the t-test is inappropriate when

the predictor variable is persistent and/or its innovations are highly corre-

lated with returns (Cavanagh et al. (1995), Stambaugh (1999) and Lewellen

(2004)). Campbell & Yogo (2006) recently propose a robust Q-test that cor-

rects for the latter issues. In our context, the Q-test for variable l = 1, ..., L

and cross-section i = 1, ..., N in its more general version considers the model,

∆ph,it = αi + ψlikit−1 + uit, (B.6)

kit = ρikit−1 + vit, (B.7)

b(L)vit = eit, (B.8)

where b(L) =
∑p−1

j=1 bjL
j with b0 = 1 and b(1) 6= 1 and the variable kit

is taken from the set of variables kit = (ĥit, σ̂
2
h,it, σ̂

2
s,it, σ̂

2
b,it, σ̂

2
f,it, σ̂hf,it, σ̂sf,it,

σ̂bf,it,∆ph,it,∆ps,it,∆pb,it). It is assumed that all the roots of b(L) are less

than one in absolute value and that ρi is less than but very close to one

(i.e. local-to-unity). The equations (B.7) and (B.8) together imply that

∆kit follows an ADF type of regression with autoregressive coefficients τi,j

for j = 1, ..., p− 1. The Q-statistic is then given by,

Q(ψi,0, ρi) =

∑T
t=1 k̃it−1[∆ph,it − ψ0,likit−1 − σiue

σieωi
vit] + Z

σiu(1− γ2
i )

1/2(
∑T

t=1 k̃
2
it−1)

1/2
, (B.9)

where Z = T
2
σiue

σieωi
(ω2

i − σ2
iv). The tilde is used to denote a centered process,

the moments σ2
iu, σ

2
ie, σ

2
iv, σi,ue correspond to variances and covariances of

uit, vit and eit and γi = σi,ue/(σiuσie) and ω2
i = σie/(1−

∑p−1
j=1 τi,j)

2. When

there are no short run dynamics in (B.8) (i.e. b(1) so that ω2
i = σ2

iv = σ2
ie)

the Q-statistic applies for the case where ρi is not close to unity. Under the
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B.3 Descriptions of in-sample and out-of-sample tests

null ψ0,li = 0 the above test is Gaussian. Although the Q-test is asymptot-

ically pivotal, the test is infeasible as it requires knowledge of ρi and of the

nuissance parameters ω2
i and σ2

iv to compute the test statistic. A feasible

version that replaces the latter parameters with consistent estimators can

be used and has the same asymptotic distribution. Details on the empiri-

cal implementation of the feasible Q-test can be looked up in the paper by

Campbell & Yogo (2006).

2. Wald-test : The Wald-test is used for the test of joint significance of the

parameters in model (2.9) and for the tests on serial correlation (in- and

out-of-sample). To test for serial correlation under heteroskedasticity we

employ the auxiliary regression in (A.22) with ûh,it or ûh,iτ replacing ûiτ

and we use the test in (A.23) which gives the statistic denoted τ•,li for

• = IN,OS (see Appendix A). In the case of the joint significance test, we

test the null ψ̂1i = ψ̂3i = ... = 0. The Wald test in (A.23) is employed with

ψ̂i replacing κ̂ which gives the statistic denoted $i.

3. Fisher test : The Fisher statistics F-• are computed via the Fisher test

presented in (A.24). In our context, the χ2(2N) distribution might not hold

due to contemporaneous correlation over real estate markets. However, this

test is useful to provide an aggregate measure of the individual statistics.

4. Cross-sectional Wald-test : To test the null hypothesis H0 : ψli = 0, i =

1, ..., N , we determine a Wald-statistic as in (A.20) with ψ̂ replacing α̂p.

Ĉov[ψ̂] is computed with White (1980)’s robust covariance estimator.

5. Cross-sectional regressions : The cross-sectional regression model for vari-

able l = 1, ..., L and cross-section i = 1, ..., N in our case is given by,

∆p̄h,i = κψ̂li + ui. (B.10)

This regression model is also known as a two-pass regression estimate since

one must first obtain the time series estimate ψ̂li and then perform the

cross-sectional regression. The usual approach to estimate κ is via OLS

or GLS. Following Cochrane (2001), OLS is sometimes much more robust

than GLS in these type of regression of asset returns but the GLS regression
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B.3 Descriptions of in-sample and out-of-sample tests

should improve efficiency. However, in order to estimate the model in (B.10)

via GLS one must estimate and invert the variance covariance matrix of ui

which is quite difficult in practice. Therefore, we employ OLS with White

(1980) robust covariance estimator.

B.3.2 Out-of-sample tests

1. Hendrickson-Merton statistic: The variant of the Henrikkson–Merton statis-

tic (Henriksson & Merton (1981), Cumby & Modest (1987)) presented in

(A.25) is employed with ∆ph,iτ replacing ∆piτ .

2. Forecast encompassing test : Testing the null hypothesis of forecast encom-

passing is addressed in Harvey et al. (1998). It can be shown that forecast

encompassing of model M1 by model M0 implies that in the regression,

ûh,iτ (M0) = χi(ûh,iτ (M0)− ûh,iτ (M1)) + vit, (B.11)

the parameter χi is equal to zero against the alternative that is greater than

zero. Accordingly, testing the null hypothesis that M0 forecast encompasses

M1 appears straightforward since (B.11) could be seen as a usual regression

model offering significance tests for the parameter χi. As argued by Harvey

et al. (1998), however, the practical implementation of such significance

tests will likely have to account for possible serial correlation (in case of

medium to long term forecasts) or heteroskedasticity. Robust standard

errors for OLS based estimates χ̂i are provided by Harvey et al. (1998). We

concentrate in this paper on heteroskedasticity consistent test statistics.

Harvey et al. (1998) derive the following test statistic:

fei =
√

Td̄i/q̂, q̂ = T−1
∑
τ

(ûh,iτ (M0)− ûh,iτ (M1))2v̂2
iτ . (B.12)

where d̄i = T−1
∑

τ (diτ (M0) − diτ (M1)) with dh,iτ (•) = ûiτ (•)2. Under

the null hypothesis of forecast encompassing fei is asymptotically Gaussian.

The aggregation is done via the Fisher test as in (A.24).
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B.4 Bootstrap impulse responses

The procedure for computing bootstrap impulse responses consists of:

(a) Estimating the model in (2.13) and obtaining the parameters in (2.15)

following steps 1 to 3 outlined in the estimation algorithm of section

2.3.4.2.

(b) Generating bootstrap residuals êbit by randomly drawing with replace-

ment from the set of residuals, {êi1, ..., êiT} where êit = yit − Γ̂ixit.

(c) Constructing bootstrap time series ybit recursively using the represen-

tation in (2.13) .

(d) Obtaining bootstrap parameters Âb, B̂b
ij from the generated data and

computing the bootstrap impulse responses ϑ̂blm,i(h) and ϑ̄blm(h).

(e) Steps 1 to 4 are repeated say 500 times, and the confidence intervals

are obtained by using γ/2 and (1 − γ/2) quantiles of the bootstrap

distribution.
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Appendix C

Appendix to Chapter 3

C.1 Identification through heteroskedastic-

ity

In this subsection we explain briefly the IH approach with unobservable

shocks introduced by Rigobon & Sack (2004). Performing an OLS regression

of equation (3.3) (assuming for simplicity φ1 = φ2 = 0) would yield the

mean parameter,

Eα̂ = α+ (1− αβ)
βσ2

η + (β + ϕ)σ2
z

σ2
ε + β2σ2

η + (β + ϕ)2σ2
z

. (C.1)

Thus, the estimate α̂ would be biased due to simultaneity bias if β 6= 0 and

σ2
η > 0 and omitted variable bias if ϕ 6= 0 and σ2

z > 0. We recall that the

reduced form residuals of the reduced form model in (3.4) are given by:

u1t = (1− αβ)−1[(β + ϕ)zt + βηt + εt], (C.2)

u2t = (1− αβ)−1[(1 + αϕ)zt + ηt + αεt]. (C.3)
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C.1 Identification through heteroskedasticity

The variance-covariance matrix of the above reduced form residuals is then

given by:

Ω̇ = λ̇

[
(β + ϕ)2σ2

z + β2σ2
η + σ2

ε ξ(β + ϕ)σ2
z + βσ2

η + ασ2
ε

ξ(β + ϕ)σ2
z + βσ2

η + ασ2
ε ξ2σ2

z + σ2
η + α2σ2

ε

]
, (C.4)

where λ̇ = (1−βα)−2 and ξ = (1+αϕ). Furthermore, assume that there is

heteroskedasticity in the data and that there are two regimes F and F̃ with

corresponding variances ΩF and ΩF̃ . It is also assumed that the parameters

β and α are stable across regimes and that the assumptions (3.5) on the

shocks hold. Then, the difference in covariances ΩD = ΩF −ΩF̃ gives (3.6).
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Appendix D

Appendix to Chapter 4

D.1 Generalized Method of Moments esti-

mation of MSM models

In this section we summarize the closed-form solutions of selected moments

for estimation of the Binomial and the Lognormal models via GMM which

are provided in Lux (2008a). Details about the derivation of the moment

conditions not shown here may be looked up in the latter article. In what

follows let:

µt =
k∏
i=1

M
(i)
t , (D.1)

and denote the multifractal volatility process and ηt,T its log increments:

ηt,T = ln(µt)− ln(µt−T ) =
k∑
i=1

ln(M
(i)
t )−

k∑
i=1

ln(M
(i)
t−T ). (D.2)

189



D.1 Generalized Method of Moments estimation of MSM models

D.1.1 Moments of the Binomial model

After some algebra it can be shown that:

E [ηt+T,Tηt,T ] = −(ln(m0)− ln(2−m0))
2 ·

k∑
i=1

1

4

(
1−

(
1− γi

)T)2

,(D.3)

E
[
η2
t+T,Tη

2
t,T

]
=

{
k∑
i=1

(
1

2

(
1− (1− γi)

T
) k∑
j=1

1

2

(
1− (1− γj)

T
))

+ 2
k∑
i=1

(
1

4

(
1− (1− γi)

T
)2

k∑
j=1,j 6=i

1

4

(
1− (1− γj)

T
)2
)}

χ, (D.4)

and

E
[
η2
t+T,T

]
=

k∑
i=1

1

2
(1− (1− γi)

T ) · (ln(m0)− ln(2−m0))
2, (D.5)

where χ = (ln(m0) − ln(2 − m0))
4. For the Binomial MSM with Normal

innovations we identify σ2 via E[x2
t ] = σ2. For the Binomial MSM with

Student-t innovations we have:

E [|xt|] =
σ · Ξ1 · ν1/2 · Γ(0.5(ν − 1))

π1/2 · Γ(0.5ν)
, (D.6)

E
[
x2
t

]
=

σ2 · ν
(ν − 2)

, (D.7)

E
[∣∣x3

t

∣∣] =
σ3 · Ξ2 · ν3/2 · Γ(2) · Γ(0.5(ν − 3))

Γ(0.5) · Γ(0.5ν)
, (D.8)

where Ξ1 =
(
0.5m

1/2
0 + 0.5(2−m0)

1/2
)k

, Ξ2 =
(
0.5m

3/2
0 + 0.5(2−m0)

3/2
)k

and Γ(•) is the Gamma function. In order to compute linear forecasts we

also need the second moment and the auto-covariances of the volatility

process:

E
[
µ2
t

]
=
(
0.5(m2

0 + (2−m0)
2)
)k
, (D.9)

and

E [µt+Tµt] =
k∏
i=1

{
0.5
(
1− (1− γi)

T
)
m0 (2−m0) (D.10)

+
(
(1− γi)

T + 0.5
(
1− (1− γi)

T
)) (

0.5m2
0 + 0.5 (2−m0)

2)} .
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D.1.2 Moments of the Lognormal model

Similar to the Binomial case, after some algebra we may arrive to:

E [ηt+T,Tηt,T ] = −
k∑
i=1

(
1− (1− γi)

T
)2

s2, (D.11)

E
[
η2
t+T,Tη

2
t,T

]
=

k∑
i=1

(
1− (1− γi)

T
)2

· 6s4

+

{
k∑
i=1

((
1− (1− γi)

T
) k∑
j=1,j 6=i

(
1− (1− γj)

T
))}

· 4s4

+

{
k∑
i=1

((
1− (1− γi)

T
)2

k∑
j=1,j 6=i

(
1− (1− γj)

T
)2
)}

2s4, (D.12)

and

E
[
η2
t+T,T

]
=

k∑
j=1

(
1− (1− γi)

T
)
· 2s2. (D.13)

For the Lognormal MSM with Normal innovations we identify σ2 viaE[x2
t ] =

σ2. For the Lognormal MSM with Student-t innovations we employ (D.6)-

(D.8) with Ξ1 = exp(−0.25 ·k ·λ) and Ξ2 = exp(0.75 ·k ·λ). Analogously to

the Binomial model, we need the second moment and the auto-covariances

of the volatility process for the linear forecasts:

E
[
µ2
t

]
= exp(2λ · k), (D.14)

and

E [µt+Tµt] =
k∏
i=1

{(
1− (1− γi)

T
)

+ (1− γi)
T exp (2 · λ)

}
. (D.15)

D.1.3 Moments of the compound process

Recalling the innovations of the compound process:

ξt,T = ln |xt| − ln |xt−T |.
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D.1 Generalized Method of Moments estimation of MSM models

We have:

E [ξt+T,T ξt,T ] = 0.25 · E [ηt+T,Tηt,T ] + (E [ln |εt|])2 − E
[
(ln |εt|)2] , (D.16)

and

E
[
ξ2
t+T,T ξ

2
t,T

]
= 0.252 · E

[
η2
t+T,Tη

2
t,T

]
−
{
E
[
η2
t,T

]
− E [ηt+T,Tηt,T ]

}
·
{
(E [ln |εt|])2 − E

[
(ln |εt|)2]}+ 3 · E

[
(ln |εt|)2]2

−4 · E [ln |εt|]E
[
(ln |εt|)3]+ E

[
(ln |εt|)4] . (D.17)

The log moments of the standard Normal (Student-t) variates εt can be com-

puted using the Gamma function and its derivatives (see below). Inserting

(D.3)-(D.5) for the Binomial model and (D.11)-(D.13) for the Lognormal

model in (D.16) and (D.17), we obtain the analytical expressions for the

moment conditions in (4.12).

D.1.4 Log moments of the Normal distribution

The first log moment E[ln |εt|] is given by:

E[ln |ε|] =

∫ ∞

−∞
ln |ε| 1√

2π
exp(

−ε2

2
)dε

=
1√
2π

{ 1√
2
Γ′(0.5)− 1√

2
ln(2)Γ(0.5)

}
, (D.18)

where Γ(•) is the Gamma function. The second log moment E[ln |εt|2] is

given by:

E[ln |ε|2] =

∫ ∞

−∞
(ln |ε|)2 1√

2π
exp(

−ε2

2
)dε

=
1

4
√
π

Γ′′(0.5)− 1

2
√
π

ln(2)Γ′(0.5) (D.19)

+
1

4
√
π

ln(2)2Γ(0.5), (D.20)
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where Γ′(•) denotes the first derivative of the Gamma function. The third

log moment E[(ln |εt|)3] is given by:

E[ln |ε|3] =

∫ ∞

−∞
(ln |ε|)3 1√

2π
exp(

−ε2

2
)dε

=
1

8
√
π

Γ′′′(0.5)− 3

8
√
π

ln(2)Γ′′(0.5) +
3

8
√
π

ln(2)2Γ′(0.5)

− 1

8
√
π

ln(2)3Γ(0.5), (D.21)

where Γ′′(•) and Γ′′′(•) denote the second and third derivative of the Gamma

function, respectively. The fourth log moment E[(ln |εt|)4] is given by:

E[ln |ε|4] =

∫ ∞

−∞
(ln |ε|)4 1√

2π
exp(

−ε2

2
)dε

=
1

16
√
π

Γ(4)(0.5)− 4

16
√
π

ln(2)Γ′′′(0.5) +
6

16
√
π

ln(2)2Γ′′(0.5)

− 4

16
√
π

ln(2)3Γ′(0.5) +
1

16
√
π

ln(2)4Γ(0.5). (D.22)

where Γ(4)(•) denotes the fourth derivative of the Gamma function.

D.1.5 Log moments of the Student-t distribution

This subsection draws on Lee (2007) who computed log moments of the

Student-t distribution with Mathematica 4.2. The first log moment E[ln |εt|]
is given by:

E[ln |ε|] =

∫ ∞

−∞
ln |ε|

Γ(1
2
(ν + 1))

√
νπΓ(1

2
ν)
(
1 + x2

ν

)(ν+1)/2
dε

= −
(
Γ[1 + ν

2
](−Γ′[1] + ln(4)− ln(ν) + ψ0(

ν
2
)
)
)

νΓ[ν
2
]

, (D.23)

where the Euler constant−Γ′(−1), has the numerical value 0.57721566490 · · ·
and ψn(x) = dn

dxn

Γ′(x)
Γ(x)

= dn

dxnψ0(x) is the polygamma function. The second
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log moment E[ln |εt|2] is given by:

E[ln |ε|2] =

∫ ∞

−∞
ln |ε|2

Γ(1
2
(ν + 1)

√
νπΓ(1

2
ν)
(
1 + x2

ν

)(ν+1)/2
dε

=
1

8νΓ(ν
2
)

(
− 8Γ(1 +

ν

2
)
(
(−Γ′(1) + ln(4)) ln(ν)

−(−Γ′(1) + ln(4)− ln(ν))ψ0(
ν

2
)
)

+ νΓ(
ν

2
)
(
2(−Γ′(1))2

+π2 + 4(−Γ′(1)) ln(4) + 2 ln(4)2 + 2 ln(ν)2 + 2ψ0(
ν

2
)2

+2ψ1(
ν

2
)
))
. (D.24)

The third log moment E[(ln |εt|)3] is given by:

E[ln |ε|3] =

∫ ∞

−∞
ln |ε|3

Γ(1
2
(ν + 1)

√
νπΓ(1

2
ν)
(
1 + x2

ν

)(ν+1)/2
dε

=
1

16

{
− (−Γ′(1) + ln(4)− ln(ν))

(
3π2 + 2(−Γ′(1) + ln(4))2

+2 ln(ν)
(
− 2(−Γ′(1) + ln(4)) + ln(ν))

)
+ψ0(

ν

2
)
(
− 3(π2 + 2(−Γ′(1) + ln(4))2) + 12(−Γ′(1) + ln(4)) ln(ν)

−6 ln(ν)2 − 2ψ0(
ν

2
)
(
3(−Γ′(1) + ln(4)

− ln(ν)) + ψ0(
ν

2
)
))
− 6
(
− Γ′(1) + ln(4)− ln(ν)

+ψ0(
ν

2
)
)
ψ1(

ν

2
)− 2ψ2(

ν

2
)− 28ζ(3)

}
, (D.25)
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where ζ(3) is the Riemann zeta function with a value of 1.2020569032. The

fourth log moment E[(ln |εt|)4] is given by:

E[ln |ε|4] =

∫ ∞

−∞
ln |ε|4

Γ(1
2
(ν + 1)

√
νπΓ(1

2
ν)
(
1 + x2

ν

)(ν+1)/2
dε

=
1

64

{
− (−4Γ′(1)4 + 12(−Γ′(1))2π2 + 7π4

+8(−Γ′(1))(2(−Γ′(1))2 + 3π2) ln(4)

+12(2(−Γ′(1))2 + π2) ln(4)2 + 16(−Γ′(1)) ln(4)3 + 4 ln(4)4

−4(2(−Γ′(1)) + ln(16)− ln(ν)) ln(ν)(3π2 + 2(−Γ′(1) + ln(4))2

−2(−Γ′(1) + ln(4)) ln(ν) + ln(ν)2) + 16(−Γ′(1) + ln(4)

− ln(ν))ψ0(
ν

2
)3 + 4ψ0(

ν

2
)4 + 12

(
π2 + 2(−Γ′(1) + ln(4)− ln(ν))2

+2 ln(ν)(−2(−Γ′(1) + ln(4)) + ln(ν))
)
ψ1(

ν

2
) + 12ψ1(

ν

2
)2

+12ψ0(
ν

2
)2
(
π2 + 2(−Γ′(1) + ln(4))2 + ln(ν)(−2(−Γ′(1) + ln(4))

+ ln(ν)) + 2ψ1(
ν

2
)
)

+ 4ψ3(
ν

2
) + 16(−Γ′(1) + ln(4)− ln(ν))(ψ2(

ν

2
)

+14ζ(3)) + 8ψ0(
ν

2
)
(
(−Γ′(1) + ln(4)− ln(ν))(3π2 + 2(−Γ′(1)

+ ln(4))2 + 2 ln(ν)(−2(−Γ′(1) + ln(4)) + ln(ν))) + 6(−Γ′(1)

+ ln(4)− ln(ν))ψ1(
ν

2
) + 2ψ2(

ν

2
) + 28ζ(3)

)}
. (D.26)
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D.2 Maximum Likelihood estimation of MSM

models

Let Mt = (M1t,M2t, ...,Mkt)
′ be a 1 × k vector with 2k different possible

values m1, ...,m2k
. The (log) Likelihood function is given by:

L(x1, ..., xT ;ϕ) =
T∑
t=1

ln g(xt|x1, ..., xt−1) (D.27)

=
T∑
t=1

ln

 2k∑
i=1

P(Mt = mi|x1, ..., xt−1) · g(xt|Mt = mi)


=

T∑
t=1

ln
[
(Ωt−1A) · g(xt|Mt = mi)

]
. (D.28)

The term Ωt = P(Mt = mi|x1, ..., xt) defines the conditional probabili-

ties over the unobserved states m1, ...,m2k
. The transition matrix A =

(ai,j)1≤i,j≤2k has components ai,j given by:

P(Mt+1 = mj|Mt = mi) = ΠK
k=1[(1− γk) · 1{mi

k=mj
k}

+ γk · P(M = mj
k)], (D.29)

where mi
k denotes the m-th component of vector mi and 1{mi

k=mj
k} is the

dummy variable equal to 1 if mi
k = mj

k and 0 otherwise. Let Fn[•] and

Fs[•] denote the densities of a standard Normal and Student-t, respec-

tively. Thus, we have that the density function of xt conditional on µt for

the Binomial MSM with Normal innovations is given by g(xt|Mt = mi) =

[σµt]
−1

Fn
[
xt [σµt]

−1] and that of the Binomial model with Student-t inno-

vations is given by g(xt|Mt = mi) = [σµt]
−1

Fs
[
xt [σµt]

−1]. Finally, Ωt may

be updated as

Ωt+1 =
g(xt|Mt = mi)� (Ωt ·A)

[g(xt|Mt = mi)� (Ωt ·A)] ι′
, (D.30)

where ι is a 1× 2k vector of ones and � is the Hadamard product.
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D.3 Forecast evaluation

D.3.1 Forecast combinations

Let σ̂2
iτ (1), σ̂2

iτ (2), . . . , σ̂2
iτ (M) denote a set of predictors for σ2

iτ from model

m and i = 1, ..., N . We assign each single forecast a weight equal to a

model’s empirical frequency of minimizing the absolute forecast error over

realized errors available in the forecast origin τ − 1. To take account of

structural variation the weights are determined over the 20 most recent

forecast errors. Formally, the combined forecast are computed as in (A.31)

and (A.33) in Appendix A with σ̂2
iτ replacing ∆p̂iτ .

D.3.2 Relative MSE and MAE

To define absolute and relative measures let ‘0’ and ‘•’ indicate a bench-

mark (historical volatility) and a particular competing model ((FI)GARCH,

MSM, CO1,...,CO9), respectively. Forecast errors are given by:

êiτ (0) = σ2
iτ − σ̂2

i , êiτ (•) = σ2
iτ − σ̂2

iτ , (D.31)

where σ2
iτ are the squared residuals obtained after linear filtering of re-

turns (using the in-sample means and first-order autocorrelations), σ̂2
i is

the historical volatility estimate (in-sample variance of filtered returns) and

σ̂2
iτ is the volatility forecast of the competing model ((FI)GARCH, MSM,

CO1,...,CO9). The MSE and MAE of the benchmark (historical volatility)

specification are:

d̄i(0) = T−1
∑
τ

diτ (0), diτ (0) = êiτ (0)
2 or diτ (0) = |êiτ (0)|. (D.32)

The average performance of a competing model specification could be given

in relation to d̄i(0), obtaining relative MSEs or MAEs as:

dri(•) =
d̄i(•)
d̄i(0)

, d̄i(•) = T−1
∑
τ

diτ (•). (D.33)
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We determine overall panel MSEs and MAEs measures as in (D.33) over

both data dimensions. The panel MSEs or MAEs are denoted DR. The

variance of (D.33) denoted Var[DR] is estimated as in (A.28) from the full

set of forecasting errors.

D.3.3 Average forecasting accuracy

To contrast the performance of a particular forecasting model ‘0’ and some

alternative specification, ‘•’, in terms of the achieved MSEs and MAEs we

employ the Diebold & Mariano (1995) statistic for i = 1, ..., N , i.e.

dmi = d̄i/

√
V̂ar[d̄i], d̄i = T−1

∑
τ

diτ , diτ = diτ (0)− diτ (•), (D.34)

where V̂ar[d̄i] is the Newey & West (1987)’s heteroskedasticity and autocor-

relation consistent variance estimator with Andrews (1991) procedure for

bandwidth selection. Under the null hypothesis of statistically equal fore-

casting performance of ‘0’ and ‘•’ the statistic dmi should have an asymp-

totic standard Normal distribution. Significantly negative test statistics

hint at a superior forecasting performance achieved by ‘0’. Note that over a

set of alternative forecasting schemes used as ‘•’ cross comparison of models

is implicitly obtained from contrasting several models against one specific

forecasting scheme ‘0’. At the panel dimension we count the number of

improvements of model ‘0’ against the benchmark ‘•’ at the 5% significance

level denoted S. Under equal forecasting performance, S can be seen as

the number of successes over N draws from a binomial distribution with

a 5% probability of success. Some selected binomial success probabilities

are: N = 25, p(S ≥ 3) = 0.0341; N = 11, p(S ≥ 3) = 0.0016; N = 12,

p(S ≥ 3) = 0.0022.
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