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Abstract

Large-scale software systems need to be accurately planned and designed. This includes the
determination of requirements, the definition of specifications, and the development of models
conforming to specifications. These models are expressed in modeling languages like process
algebras, the Unified Modeling Language (UML) [Obj07], or variants of state diagrams (e.g.
UML state machines [Obj07] or Harel’s statecharts [Har87]). Such modeling languages are
usually underspecified, since they only express certain aspects of the system to be designed,
leaving out implementation details. The process of refining such abstract descriptions in a
stepwise fashion, until finally the concrete, executable implementation is reached, is called
(model-driven) top-down development. Finding bugs as early as possible in this process often
saves considerable development costs.

This thesis considers methods for proven-to-be-correct top-down development, with specifi-
cation conformance being guaranteed at all levels of abstraction, either by applying model
checking [CGP01] techniques or by employing pre-defined refinement patterns that are already
proven to be sound. In order to apply formal proof methods, models on all levels of abstrac-
tion, e.g. presented as process algebra [BPS01] terms or state diagrams, need to be given a
precise semantics in some semantic domain, usually based on (extensions of) labeled transition
systems. We call semantic domains that support underspecification refinement settings. One
of the contributions of this thesis is a new kind of comparison of a dozen such settings proposed
in the literature with respect to their expressible sets of implementations. This comparison is
done by providing transformations that not only establish the implementation-based expres-
siveness hierarchy of the most commonly used refinement settings, but can also be employed
to convert models between the settings, thus enabling tool reuse.

Some kinds of abstract models require a setting as semantic domain that not only features
resolvable nondetermism expressing underspecification, but also persistent nondeterminism
that is not to be resolved in refinements, as characterized by bisimulation equivalence [Par81]
on labeled transition systems. We show that such a setting is needed for process algebras if they
specify concurrent systems, because concurrency may introduce resolvable nondeterminism
which is resolved by the scheduler of the operating system, and the choice operator, which is
common to process algebras, may correspond to persistent nondeterminism. This is the first
work in the literature making this observation. A simple process algebra of this kind is given
an operational semantics, using the refinement setting of µ-automata, as well as a sound and
complete axiomatic semantics.

Sometimes state diagrams, such as UML state machines [Obj07] or Harel’s statecharts [Har87],
also require a refinement setting with both kinds of nondeterminism, because (i) they are un-
derspecified and (ii) the underlying action language may contain operators exhibiting persistent
nondeterministic behavior. This thesis is the first publication presenting a state diagram se-
mantics with both kinds of nondeterminism. In this context, existing refinement settings like
µ-automata [JW95] lead to unnecessarily complex semantic models. Therefore, we develop
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Abstract

a new and in this context more succinct refinement setting, called ν-automata, and give a
semantic mapping for a simple state diagram variant, as well as a general transformation that
can be applied when extending existing semantics by persistent nondeterminism. Thus, we
make state diagrams accessible to persistent nondeterminism.

Support for both kinds of nondeterminism, however, does not necessarily imply the practical
feasibility of top-down development in state diagrams. In existing state diagram variants,
expressing resolvable nondeterminism is only possible to a certain degree, because the notations
for underspecification (i) often have no precise semantics, and (ii) are not expressive enough to
reflect the requirements of the top-down development process, such as starting with interface
definitions and subsequent parallel development of mostly independent modules. Therefore,
we develop a new variant of state diagrams that allows more explicit and more expressive
modeling of underspecification than existing variants. This variant is given a semantics in a
newly developed semantic setting that distinguishes between input and output events. A set
of refinement patterns is then provided that enables proven-to-be-correct stepwise refinement
without the need to re-check correctness after each refinement step. Consequently, we deliver
the formal foundations for the development of a state-diagram-based design tool that ensures
correctness at all stages of the development process.
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Zusammenfassung

Große Softwaresysteme bedürfen sorgfältiger Planung und Entwicklung, einschließlich einer
Anforderungsanalyse, dem Aufstellen von Spezifikationen und der Entwicklung von Modellen,
die die Spezifikation einhalten. Solche Modelle werden in Modellierungssprachen wie Prozessal-
gebren, der Unified Modeling Language (UML) [Obj07] oder Varianten von Zustandsdiagram-
men (z.B. UML state machines [Obj07] oder Harel’s statecharts [Har87]) ausgedrückt. Diese
Modellierungssprachen sind üblicherweise unterspezifiziert, d.h. sie beschreiben nur bestimmte
Aspekte des zu entwickelten Systems und lassen Implementationsdetails weg. Der Prozess,
solche abstrakten Beschreibungen schrittweise zu verfeinern, bis schließlich die konkrete, aus-
führbare Implementation erreicht ist, wird (modellgetriebene) Top-Down-Entwicklung genannt.
Es spart oft beachtliche Entwicklungskosten, wenn Programmierfehler so früh wie möglich in
diesem Prozess gefunden werden.

Die vorliegende Arbeit betrachtet Methoden für per-Konstruktion-korrekte Top-Down-Ent-
wicklung, für die Spezifikationstreue auf allen Abstraktionsstufen gewährleistet ist, entweder
durch die Anwendung von Modelchecking-Techniken [CGP01] oder durch die Verwendung
von vordefinierten Verfeinerungsmustern, deren Korrektheit bereits bewiesen ist. Um formale
Methoden anwenden zu können, muss den Modellen auf allen Abstraktionsstufen, ausgedrückt
etwa in Prozessalgebren [BPS01] oder Zustandsdiagrammen, eine präzise Semantik gegeben
werden. Solche Semantiken werden üblicherweise mittels (Erweiterungen von) Transitions-
systemen ausgedrückt. Wir nennen solche semantischen Formalismen, die Unterspezifikation
unterstützen, Verfeinerungsformalismen. Einer der Beiträge dieser Arbeit ist eine neue Art
von Vergleich von einem Dutzend solcher Formalismen, in Hinblick auf ihre ausdrückbaren
Mengen von Implementationen. Dieser Vergleich erfolgt durch die Angabe von Transformatio-
nen, die nicht nur die implementationsbasierte Ausdrucksstärkenhierarchie der meistbenutzten
Verfeinerungsformalismen begründen, sondern auch dafür verwendet werden können, Modelle
zwischen Formalismen zu konvertieren und damit die Wiederverwendung von Werkzeugen zu
ermöglichen.

Einige abstrakte Modelle benötigen einen semantischen Formalismus, der nicht nur auflösbaren
Nichtdeterminismus für das Ausdrücken von Unterspezifikation, sondern auch persistenten
Nichtdeterminismus enthält. Letzterer soll nicht in Verfeinerungen aufgelöst werden, wie
es durch Bisimulationsäquivalenz [Par81] auf Transitionssystemen charakterisiert wird. Wir
zeigen, dass ein solches Modell für Prozessalgebren im Kontext nebenläufiger Systeme benötigt
wird, weil Nebenläufigkeit auflösbaren Nichtdeterminismus einführen kann, der vom Scheduler
des Betriebssystems aufgelöst wird, und der Choice-Operator, welcher in Prozessalgebren
üblich ist, persistentem Nichtdeterminismus entsprechen kann. Dieses ist die erste publizierte
Arbeit, die diese Beobachtung macht. Wir geben für eine einfache Prozessalgebra eine opera-
tionelle Semantik mittels µ-Automaten [JW95], sowie eine korrekte und vollständige axioma-
tische Semantik an.
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Zusammenfassung

Auch Zustandsdiagramme wie UML state machines [Obj07] oder Harel’s statecharts [Har87]
benötigen manchmal semantische Formalismen mit beiden Arten von Nichtdeterminismus, weil
Zustandsdiagramme (i) unterspezifiziert sind und (ii) die zugrundeliegende Aktionssprache
Operatoren enthalten kann, die persistent-nichtdeterministisches Verhalten zeigen. Die vor-
liegende Arbeit ist die erste, die eine Zustandsdiagramm-Semantik mit beiden Arten von
Nichtdeterminismus vorstellt. In diesem Kontext würden existierende semantische Modelle
wie µ-Automaten zu unnötig komplexen semantischen Modellen führen. Daher entwickeln wir
einen neuen, in diesem Kontext bündigeren Verfeinerungsformalismus, nämlich ν-Automaten,
und geben eine semantische Abbildung für eine einfache Zustandsdiagrammvariante, sowie eine
allgemeine Transformation an, die auf existierende Semantiken, die um persistenten Nichtde-
terminismus erweitert werden sollen, angewendet werden kann. Wir machen also Zustandsdi-
agramme im Allgemeinen für persistenten Nichtdeterminismus zugänglich.

Die Unterstützung von beiden Arten von Nichtdeterminismus impliziert jedoch nicht notwendi-
gerweise die praktische Umsetzbarkeit von Top-Down-Entwicklung in Zustandsdiagrammen.
In existierenden Zustandsdiagrammvarianten ist das Ausdrücken von auflösbarem Nichtdeter-
minismus nur zu einem gewissen Grade möglich, weil die Notationen für Unterspezifikation
(i) oft keine präzise Semantik haben, und (ii) nicht ausdrucksstark genug sind, um die An-
forderungen des Top-down-Entwicklungsprozesses widerzuspiegeln, wie das Starten mit der
Definition von Schnittstellen und nachfolgende parallele Entwicklung größtenteils unabhängiger
Module. Daher entwickeln wir eine neue Zustandsdiagrammvariante, die expliziteres und aus-
drucksstärkeres Modellieren von Unterspezifikation als existente Varianten unterstützt. Ihre
Semantik wird in einem neu entwickelten semantischen Formalismus gegeben, der zwischen
Eingabe- und Ausgabeereignissen unterscheidet. Eine Kollektion von gegebenen Verfeinerungs-
mustern erlaubt korrekt-bewiesene schrittweise Verfeinerung, ohne dass die Korrektheit nach
jedem Verfeinerungsschritt erneut bewiesen werden muss. Wir liefern also die formale Basis
für die Entwicklung eines zustandsdiagrammbasierten Entwicklungswerkzeugs, welches Kor-
rektheit in allen Stadien des Entwicklungsprozesses sicherstellt.
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Chapter 1

Introduction

This chapter provides a general introduction into the research field of this thesis, i.e. the use of
refinement and abstraction in system design, and the role of nondeterminism in this context.
We name the publications that form the basis of this thesis and give an outline of the thesis’
content.

1.1 Refinement and abstraction in software systems

Today’s technological world is increasingly made up of complex software systems, embedded in
every-day electronic devices like cell phones, mobile computers, or entertainment electronics, in
means of transportation like cars, trains, or planes, and much more. Control software assures
that cars do not slide in emergency situations, trains do not collide, and planes do not crash. All
these systems have to interact with other systems, e.g. cell phones interact with mobile radio
facilities, trains interact with traffic control units, etc. Not only do software systems become
more and more ubiquitous, also their degree of interconnectedness increases. Many of these
systems are required to function properly, i.e. according to a given correctness specification,
because failure could result in loss of large amounts of money, or even loss of life, e.g. if the
systems are safety-critical parts of cars, trains or planes.

Due to these trends, the need to design proven-to-be-correct software grows steadily. Software
systems must be given a formal semantics so that correctness properties can be checked. Since
hardly any current software system is completely self-contained, the semantics needs to be
open, i.e. the behavior of a system depends on the system’s environment. This thesis considers
different languages and techniques for open semantics of systems, focusing on refinement and
abstraction.

Refinement in top-down development

Large-scale software systems need to be accurately planned and designed. This includes the
determination of requirements, the definition of specifications, and the development of models
conforming to these specifications, expressed in modeling languages. Such modeling languages
are usually underspecified: they only consider certain aspects of the system to be designed,
leaving out implementation details. In the model-driven design approach, these models are
taken as a basis for further development, which is usually performed by different teams of
developers working on different modules of the system, refining them, until finally executable
code is produced.

1



Chapter 1 Introduction

This process is called top-down development because the development process starts at an
abstract top level and then continues more and more down to the details of the implementation
[Wir71]. There are many tools, techniques and languages that support developers with this
process. The Unified Modeling Language (UML) [Obj07] offers a variety of visual languages
for describing requirements, static class layouts, dynamic behavior, and much more. Many
tools make use of these languages and simplify the development process. Models designed
using these tools abstract from implementation detail, thus specifying some constraints on the
software, but leaving other design choices undecided. This is what we call an abstract model.
Every abstract model has a set of valid concrete implementations, i.e. executable programs,
namely all those programs that conform to it.

Although this is not current practice yet, the process of refinement should ideally correspond
to a series of models, where each narrows the set of possible implementations from the previous
one, finally reaching a single concrete implementation that is consistent with all models. Each
refinement step could be selected from a set of proven-to-be-correct patterns that guarantee
conformance with the previous model.

However, such a framework requires well-defined semantics on all levels of refinement, e.g. for
different types of UML models and for executable program code, and this has so far not been
achieved in the literature. In particular, the chosen semantic domain must be able to handle
refinement, i.e. it must be possible to express that certain decisions have not yet been made,
and there must be a formal definition of a refinement preorder on the semantic domain. One of
the contributions of this thesis is a new kind of comparison of a dozen such refinement settings
with respect to their expressiveness. Another contribution is the illustration of their use in the
context of top-down development.

A refinement-sensitive semantics of this kind has the further advantage that properties of
models can be checked at all levels of refinement. Thus, property checks can accompany the
top-down development process, and violations can be detected as soon as possible and when
they are still cheap to eliminate. In traditional approaches where verification or testing can
only be applied at implementation level, violations may instead lead to large portions of the
system having to be redesigned, possibly at huge expense.

Unfortunately, this ideal of top-down development by stepwise refinement is not yet common
practice. One of the reasons relates to missing or ambiguous semantics. Even for concrete
programming languages, their semantics is not always clear, and for abstract models, e.g.
expressed in the UML, the situation is even worse. Efforts are taken, e.g. in the UML 2
semantics project [UML], but a uniform semantic model from requirements to implementation
has not yet become widely accepted.

Abstraction in verification

In the previous section, we have described the process of refinement, working from an abstract
model towards a concrete implementation. This section presents applications where it is useful
to take the other direction, i.e. starting with a concrete program and making it more abstract.

For this, consider a given concrete program which is to be proven correct. The program is
written in a language with a formal semantics, so theoretically we have all means needed to
prove properties, e.g. via the technique of model checking [CGP01]. This technique works
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1.2 Process semantics

for sequential (closed) programs if they are not too large, but today’s systems are not isolated
closed units. Instead they may contain several threads of control, e.g. they may run on different
processor cores or on different computers in a cluster, and they interact with and get influenced
by their environment, e.g. by other systems or human users. Today’s applications are open
and concurrent, they run in parallel, and influence each other. This has a large impact on the
number of reachable states of a program. This phenomenon is usually referred to as the state
explosion problem [Val98]. For instance, a parallel program consisting of two sequential toy
programs of five states each, can have up to 52 = 25 states; five programs of this kind can
already have 55 = 3.125 states! And of course, a program of five states can hardly be anything
more than a toy example; the resulting state spaces of real programs can be much larger, or
even infinite.

The state explosion problem is typically solved using abstraction. The concrete program is
abstracted (i.e. made more abstract), e.g. using the technique of predicate abstraction [GS97].
Here, all states satisfying a given predicate are united to form an abstract new state. This
decreases the amount of states and can make large systems amenable to model checking. In
particular, infinite state systems can sometimes be abstracted such that the state space of the
abstraction is finite.

Of course, some details are lost when abstracting a system. It is possible that an abstract
system satisfies neither a property nor its negation. Three-valued logics are commonly used
to describe this case by a third truth value besides true and false, called unknown. In case a
property is unknown with respect to a given abstract system, the system is too abstract to
decide the validity of the property and should be refined, e.g. on the basis of a counter-example.
This technique is called counter-example guided abstraction-refinement (CEGAR) [CGJ+03].

1.2 Process semantics

This section describes the formalism in which we specify (either concrete or abstract) systems
or, to be more precise, the observable behavior of those systems, called processes. We consider
systems that perform actions, i.e., steps of observable behavior. These actions are used for
the interaction with the system’s environment which may consist of other systems or human
interactors. Practically, an action can correspond to a control light being turned on or off, to
a button being pressed, to a (remote) method being invoked in this or another system, or to a
message being sent to the considered system or issued there. Uniform process semantics does
not distinguish between input actions (e.g. button pressed, method invoked in this system,
message received) and output actions (e.g. light turned on, method invoked in another system,
message sent), which allows for a very general view. However, in Chapter 6, which presents a
practical application, we will differentiate between input and output actions.

Commonly, processes are described using so called labeled transition systems. We will simply
refer to them as transition systems. A transition system is a directed graph having a set of
designated initial nodes and labeled edges. The nodes are identified with the states of the
described process. We typically use variables s, t, u, . . . for states. Edges are labeled by a, b,
c, . . . and stand for transitions of the system: an edge from state s to state s′ having label a,
written s

a
−→ s′ for short, means that if a process is in state s and action a occurs, the process

will evolve to state s′. Nondeterminism is allowed, i.e., there may be states s, s′1, s′2 and a
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Figure 1.1: A transition system.

label a such that s
a

−→ s′1 and s
a

−→ s′2. In this case, action a can lead to state s′1 or s′2. The
next section will discuss nondeterminism in transition systems in more detail.

Figure 1.1 shows a simple example of a transition system. The initial state s (in this case the
only initial state) of the transition system is marked by a small arrow pointing to it. From the
initial state, three outgoing transitions are possible; action a leads to state t, action b leads to
state u, and action c leads to state v. We call t, u, v successor states of u. To denote successor
states, we often use primed variables, i.e., u′, v′, w′, . . . . In illustrations, we will sometimes
omit state names, because such names have no effect on the observable behavior of a transition
system.

Usually, there exist many transition systems that describe the same process. Thus, in order
to specify processes using transition systems, there is a need for an equivalence relation that
defines which transition systems are to be identified. Then, processes can be seen as equivalence
classes of transition systems with regard to some chosen equivalence relation. Several commonly
employed equivalence relations are defined in Section 2.2. See [vG01] for a complete survey.
All equivalence definitions have a similar structure: two systems are defined to be equivalent
iff, roughly speaking, any behavior observable in the first system can also be observed in the
second system, and any behavior observable in the second system can also be observed in the
first system. The different equivalence definitions vary in the notion of observability.

Omitting one of the directions of such equivalence definitions yields a preorder. Such preorders
are often considered as refinement relations, usually in the sense that transition system M1

refines transition system M2 iff all observable behavior of M1 can also be observed in M2.
However, as we will see, not all these preorders are suitable refinement notions, because some-
times every model could be refined to the “empty” one showing no observable behavior at
all, which is certainly undesired, e.g. in the software development process: an empty program
should usually not be a valid development result. However, some preorders have additional
constraints that solve this problem. Then, refinement corresponds, roughly speaking, to the
reduction of nondeterminism.

1.3 Nondeterminism

A transition system is deterministic iff, for every label a, every state has only a single successor
state reachable via a transition labeled a. The behavior of deterministic transition systems can
be completely controlled by the environment. This needs not be the case for nondeterministic
transition systems. Suppose, for a state s and a label a, there are several a-successors of
s. Then, the behavior following an occurrence of a appears to be nondeterministic to the
environment, since it is not under the control of the environment.
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1.3 Nondeterminism

Resolvable and persistent nondeterminism

Roughly speaking, preorders that represent reduction of nondeterminism allow for the removal
of a-labeled transitions originating from a common state s, as long as one a-labeled transition
originating from s remains. If the preorder is considered as refinement notion, this means that
reducing nondeterminism is a refinement or, in other words, nondeterminism is used for the
expression of abstraction. Designing a system having a state s with several a-successors means
explicitly allowing different behaviors following a. It is then a refinement to decide for one
of these behaviors (by removing all but one a-branch). As soon as every nondeterminism in
every state has been resolved in this fashion, an executable concrete system, in other words
an implementation, has been reached. This reflects the usual approach to develop complex
systems, starting with an abstract model, which is then successively refined [Wir71]. We call
this kind of nondeterminism resolvable, because it is designed to be resolved, usually by a
system designer.1 The resolution of this nondeterminism is thus not under the control of the
environment, but it is under the control of the system designer.

However, nondeterminism in system models should not always be resolvable. For example,
think of a model that repeatedly makes a random decision, by assigning a random value between
1 and 6 to a variable dice. Such a model should be considered an executable implementation,
although it still contains a kind of nondeterminism, and in fact, it would be undesirable if
a modeler would refine the model to always assign value 1 to dice. Consequently, we have
a different kind of nondeterminism which must not be resolved by a designer and which also
exists in implementations; we call it persistent nondeterminism. Here, it is not only beyond the
control of the environment how nondeterminism is resolved, but it is also beyond the control
of the concrete system itself.

For random decisions, as described above, one will usually want to specify a probability distri-
bution, e.g. that every value between 1 and 6 is assigned a probability of 1

6 . However, for many
applications, the distribution is unknown or not of importance. For example, persistent non-
determinism can be used to model failures, e.g. in a communication channel. Failure-tolerant
algorithms are required to function in a proper predefined manner also in a worst case scenario
(so the property to be proved is of the form “for all resolutions of persistent nondeterminism,
it holds that . . . ”). For this, a precise distribution, stating which faults occur with which
probability, is (a) not of importance and (b) probably unknown.

A further application of persistent nondeterminism concerns abstract actions [Tho87]. The
abstraction we have considered so far is state-based: several more concrete states can be
united to form a common, more abstract state, as is done in predicate abstraction. Actions,
however, have been taken to be concrete, although it often makes sense to perform abstraction
also with respect to actions. Then, actions with a similar meaning can be united and given a
common, abstract name. Consider a state in which two outgoing transitions are labeled with
actions send 0 and send 1, respectively. If we unite these two actions into an abstract action
send, this leads to nondeterminism because then we have two outgoing transitions labeled with
the common action send. This nondeterminism must not be resolved in refinements because it

1In Chapter 4 we will take the view that the decision for a scheduler in a concurrent setting also constitutes
a resolution of resolvable nondeterminism. Although one usually would not regard the scheduler as part of a
concurrent program, the scheduler needs to be specified in order to fully describe the actual behavior of the
program. This is usually done by the operating system designer rather than the designer of the program, but
does not contradict the view that some designer performs this resolution of nondeterminism.
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Chapter 1 Introduction

just resulted from action renaming; the concrete system has to remain enabled for both send 0
and send 1. Thus, persistent nondeterminism can be introduced by abstract actions.

Nondeterminism in input/output systems

Remember that the term nondeterminism refers to the environment’s view of the modeled
system. If the environment can completely control the behavior of the system, we say that the
system is deterministic. We generalize this concept to a more sophisticated semantic model
where input or output actions are distinguished. This model will be used in Chapter 6 as
semantic domain for a statecharts [Har87] variant. Here, we require states to be of one of two
kinds: input-enabled states have to react to all possible input events (this input-enabledness
is common to statechart variants) and locally controlled states have to generate a subset of
output events.

For input-enabled states, nondeterminism occurs in the familiar fashion: if an input-enabled
state has a single a-successor for every input action a, the environment has complete control
over the transition to be taken from this state. Nondeterminism is introduced if there is an
input action a such that there are several a-successors; now the environment can no longer
control which transition is taken.

For locally controlled states, as already implied by the term “locally controlled”, the environ-
ment has no control over the next step if there is more than one successor. Instead, it is under
the system’s control which output action to generate. Thus, nondeterminism already exists if
there are several successors, regardless of their labeled output actions, i.e. regardless whether
these are equal or not. A resolution of nondeterminism can remove not only branches with
duplicate labels, but it can remove all branches as long as one remains.

Thus a deterministic input/output system has for every input action a in an input-enabled
state at most one a-successor (by the input-enabledness condition exactly one), and in every
locally controlled state at most one successor (by the deadlock-freedom condition, which we
will later impose, exactly one). The details, together with the actual refinement notion, are
presented in Section 2.3.3.

1.4 Refinement settings

We have seen that nondeterminism can be used to describe systems abstractly, or in other
words, to underspecify systems. Thus, underspecification is a special kind of specification which
leaves certain parts of the modeled system open. If some of the open choices of a specification
are decided, we say that the specification is refined, or that it gets more concrete. If all open
choices are decided, an implementation is reached which cannot be refined further and can
be considered as “executable” on a computer. This thesis considers over a dozen different
formalizations of this concept, called refinement settings. All these consist, roughly speaking,
of a set of semantic models which are (extensions of) transition systems, an embedding of
implementations into the semantic models, and a refinement preorder.

The refinement settings considered here can be classified (a) by their choice of what an imple-
mentation is (arbitrary or only deterministic transition systems), and (b) by their interpretation
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of actions (uniform or distinguishing input and output actions). This theoretically yields the
following four classes of refinement settings:

• Refinement settings over deterministic transition systems, with uniform action interpre-
tation. In these settings, deterministic transition systems are considered to be the imple-
mentations, and nondeterminism is considered resolvable. These settings cannot express
persistent nondeterminism. Prominent examples are transition systems equipped with
the simulation [Par81] or ready simulation [BIM95] preorder.

• Refinement settings over transition systems, with uniform action interpretation. Here,
(possibly nondeterministic) transition systems are considered to be the implementations.
Their possible nondeterminism is seen as persistent. For additionally expressing resolv-
able nondeterminism, it is required to extend the syntax of transition systems, e.g. by
adding a new kind of transition. Prominent examples are modal transition systems [LT88]
and µ-automata [JW95]. This thesis introduces a further setting called ν-automata which
is a variant of µ-automata.

• Refinement settings over deterministic transition systems, distinguishing input and out-
put actions. We introduce one setting of this kind, called I/O-transition systems. It
corresponds to the notion of nondeterminism in input/output systems rather than to
the classical nondeterminism of uniform process semantics which does not distinguish
between input and output actions. This setting can only express resolvable nondeter-
minism.

• Refinement settings over transition systems, distinguishing input and output actions.
Such a setting is suitable, if both resolvable and persistent nondeterminism shall be
expressed in an input/output system. It could easily be defined, e.g. by combining the
concepts of µ-automata and I/O-transition systems. However, there is no application for
this kind of setting in the scope of this thesis and consequently we do not give a formal
definition of such a refinement setting.

All refinement settings considered in this thesis are defined in Section 2.3.

1.5 Outline and publication history

Chapter 2 establishes the necessary preliminaries. First, basic notations are declared. Then,
we introduce the formal notations of process semantics, starting with (deterministic) transi-
tion systems and several preorders as well as bisimulation equivalence [Mil80, Par81]. The
notions of implementation and refinement settings are formally defined, followed by all imple-
mentation and refinement settings relevant to this thesis. This includes refinement settings
over deterministic transition systems, namely transition systems with the ready pair [OH86],
ready trace [BBK87], failure pair [BHR84], failure trace [Phi87], ready simulation [BIM95]
and possible worlds [VDN98] preorders, and synchronously-communicating transition systems
[FG07]. We continue with settings designed for use over (possibly nondeterministic) transition
systems, namely (disjunctive) mixed/modal transition systems [DGG97, LT88, LX90] as well
as µ-automata [JW95] and ν-automata, where the latter is a setting newly developed in this
thesis which serves as the semantic domain in Chapter 5. Finally, we present another new
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setting that distinguishes between input and output actions. This will be used as semantic
model for state diagrams in Chapter 6.

Chapters 3 to 6 present the main results of this thesis: Chapter 3 introduces a new theoretical
approach to compare refinement settings with respect to their expressiveness, based on their
sets of expressible implementations. This comparison is performed for a dozen refinement set-
tings over deterministic transition systems by providing transformations between the settings,
which not only establish an expressiveness hierarchy but can also be used to convert between
the settings, thus enabling tool reuse.

Chapter 4 is the first work to argue that a combination of resolvable and persistent non-
determinism occurs in process algebra when interpreted in a concurrent setting, and gives
a semantics in terms of a refinement setting over (possibly nondeterministic) transition sys-
tems.

The two kinds of nondeterminism in the context of state diagram semantics are considered in
Chapter 5. In particular, this is the first work giving a state diagram semantics with both kinds
of nondeterminism. Since existing refinement settings would lead to unnecessarily complex
semantic models, we develop a new and in this context more succinct refinement setting, called
ν-automata. We also give a semantic mapping for a simple state diagram variant, as well as
a general transformation that can be applied to existing semantics if extended by persistent
nondeterminism.

Chapter 6 deals with the integration of underspecification techniques into the model-based
design approach, in particular into state diagrams. To achieve this, we develop a novel variant
of state diagrams that allows more explicit and more expressive modeling of underspecification
than existing variants. It is given a semantics in a newly developed semantic setting, which
distinguishes between input and output actions. A set of given refinement patterns enables
proven-to-be-correct stepwise refinement without the need to re-check correctness after each
refinement step. Consequently we deliver the formal foundations for the development of a state-
diagram-based design tool that ensures correctness at all stages of the development process.

Finally, Chapter 7 concludes and points out directions for future work. Abstracts for each of
the main chapters follow, together with bibliographic information on the publication of the
results.

Chapter 3: Expressiveness of refinement settings

Based on [FdFELS09]: Harald Fecher, David de Frutos-Escrig, Gerald Lüttgen, and Heiko
Schmidt. On the expressiveness of refinement settings. In Proceedings of the 3rd International
Conference on Fundamentals of Software Engineering (FSEN 2009). To appear in Lecture
Notes in Computer Science (LNCS). Springer-Verlag.

An extended version of this paper has been submitted to Elsevier’s Science of Computer
Programming (SCP) journal.

This chapter compares popular refinement settings over deterministic transition systems re-
garding the sets of implementations they are able to express. The main result is an expres-
siveness hierarchy as well as language-preserving transformations between various settings. In
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addition to system designers, the main beneficiaries of the work presented here are tool builders
who wish to reuse refinement checkers or model checkers across different settings.

Chapter 4: Nondeterminism in process algebra

Based on [FS07b]: Harald Fecher and Heiko Schmidt. Process algebra having inherent choice:
Revised semantics for concurrent systems. In Proceedings of the 4th Workshop on Structural
Operational Semantics (SOS 2007), volume 192, issue 1 of Electronic Notes in Theoretical
Computer Science (ENTCS), pages 45–60. Elsevier, 2007.

This chapter gives both an operational and an axiomatic semantics to a process algebra with
(i) a parallel operator interpreted in a concurrent setting, implying resolvable nondeterminism,
and (ii) a persistent choice operator, which expresses persistent nondeterminism if applied to
equal actions. To handle the different kinds of nondeterminism, the operational semantics
uses µ-automata [JW95] as underlying semantic model. Soundness and completeness of our
axiomatic semantics with respect to the operational semantics are proved.

Chapter 5: Nondeterminism in state diagrams

Based on [FHSS09]: Harald Fecher, Michael Huth, Heiko Schmidt, and Jens Schönborn. Re-
finement sensitive formal semantics of state machines with persistent choice. In Proceedings
of the Seventh International Workshop on Automated Verification of Critical Systems (AVoCS
2007), volume 250, issue 1 of Electronic Notes in Theoretical Computer Science (ENTCS),
pages 71–86. Elsevier, 2009.

The semantics of state diagrams contains resolvable nondeterminism, because models are usu-
ally underspecified. In this chapter, we give a formal operational semantics to state diagrams
enriched with an operator expressing persistent nondeterminism, thus requiring a semantic
domain supporting both resolvable and persistent nondeterminism. A new such refinement
setting is introduced – a variant of µ-automata with a novel refinement relation –, and a sound
three-valued satisfaction relation for properties expressed in the µ-calculus is given. We also
show how existing state machine semantics can be adapted to support persistent nondetermin-
ism.

Chapter 6: Top-down development of state diagrams

This chapter contains the youngest results. They have been submitted to Fundamental Ap-
proaches to Software Engineering (FASE 2010), a member conference of the European Joint
Conferences on Theory and Practice of Software (ETAPS 2010).

This chapter defines a variant of state diagrams which has (i) a restricted set of features in
order to avoid semantic ambiguities and (ii) an extended syntax in order to support top-down
development. This variant is given a precise operational semantics using a refinement setting
with input and output actions. A set of refinement patterns is established which can be used to
perform correct-by-construction refinement steps along the development process. The chapter’s
results pave the way for the development and implementation of a tool supporting refinement
in state diagrams.
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Chapter 2

Preliminaries and Refinement Settings

This chapter first defines necessary notations used throughout the thesis. It formalizes pro-
cesses in terms of transition systems and introduces preorders and equivalences relevant to this
thesis. It also defines a precise notion of refinement setting, which to our knowledge has not
been formulated in this fashion before. Finally, all refinement settings used in this thesis are
introduced. Note that it is not necessary to work through all definitions in Subsections 2.3.1,
2.3.2, and 2.3.3 at this point; they can also be read “on demand” at the time of their use in
the following chapters.

2.1 Basic notations

For a set M , let |M | denote the cardinality of M and P(M) its power set. Special sets used in

this thesis are N
def
= {0, 1, 2, 3, ...} and L, which is a fixed finite set of action labels. In Chapter

6, we refine the notion of labels by distinguishing between input and output actions, which
in this context are called events and denoted by Ev and Ev, respectively. Both Ev and Ev are
fixed globally and required to be finite.

M∗ denotes the set of finite sequences over M . We notate sequences by 〈. . .〉; thus, 〈〉 is
the empty sequence, and 〈abc〉 is the sequence of a, b, and c (in this order). Sequences are
concatenated using operator ·, e.g. 〈abc〉 · 〈def〉 yields 〈abcdef〉.

Depending on the context, a function f : M1 → M2 is also interpreted as a higher order
function from P(M1) to P(M2) with f(X1) = {f(m1) | m1 ∈ X1}. For a function f : A → B,
let f(A) =

⋃
a∈A f(a) and let f [a 7→ b] denote function f except that a is mapped to b, i.e.

(f \ {(a, f(a))}) ∪ {(a, b)} if a ∈ A, and f ∪ {(a, b)} otherwise.

For a binary relation R ⊆ M1 × M2, we write x1Rx2 if (x1, x2) ∈ R and let R−1 = {(x2, x1) |
(x1, x2) ∈ R}. If X1 ⊆ M1, X2 ⊆ M2, we let X1.R = {x2 ∈ M2 | ∃x1 ∈ X1 : (x1, x2) ∈ R}
and R.X2 = {x1 ∈ M1 | ∃x2 ∈ X2 : (x1, x2) ∈ R}. Instead of {x}.R and R.{x}, we shortly
write x.R and R.x, respectively. These notations are also employed for ternary relations
R ⊆ M1 × M2 × M3 that are then understood as binary relations R ⊆ (M1 × M2) × M3 or
R ⊆ M1 × (M2 × M3), depending on the context.

The above notations will be used extensively for transition relations, e.g. −→⊆ S×L×S. Here,
we write s

a
−→ s′ instead of (s, a, s′) ∈−→, which yields notations s.

a
−→ for the a-successors

of s, and
a

−→ .s′ for the a-predecessors of s′. We write s 6
a

−→ iff {s}.
a

−→= ∅ and we define the
set of outgoing labels O−→(s) of s ∈ S by {a ∈ L | ∃s′ ∈ S : s

a
−→ s′}. The outgoing labels of

a state are sometimes also called the enabled labels of s.
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2.2 Process semantics

In this thesis, proofs are written in a special proof environment introduced by “Proof.” and
ended by symbol 2. In case the proof contains a subproof, the end of the subproof is denoted
by symbol 3.

2.2 Process semantics

We describe processes in terms of transition systems which are essentially directed graphs
with a set of designated initial nodes and labeled edges. The nodes stand for states of the
process, and the edges denote state transitions that can be performed in case the action that
corresponds to the label of the transition occurs.

Definition 2.1 (Transition system). A transition system (TS) with respect to label set L is a
tuple (S, Si,−→), where S is a set of states, ∅ 6= Si ⊆ S is a non-empty subset of initial states,
and −→⊆ S × L × S is a transition relation. A transition system is called finite iff its set of
states is finite. The set of transition systems is denoted by TS.

A transition system is deterministic iff its initial state set is a singleton set and, for every state
s and every label a, there is only a single successor from s via a.

Definition 2.2 (Deterministic TS). A transition system (S, Si,−→) is deterministic iff |Si| = 1
and ∀s ∈ S, a ∈ L : |s.

a
−→ | ≤ 1. The set of deterministic transition systems is denoted by

TSdet.

Consequently, nondeterminism can occur in two ways: either through several initial states
(then it is uncontrollable which initial state is actually chosen for an execution), or through
several transition from one state with equal labels (then it is uncontrollable which transition
is actually taken in case the action corresponding to the common label occurs).

Trace-based semantics

Usually there exist many transition systems that describe the same process. Thus in order
to specify processes using transition systems, there is a need for an equivalence relation that
defines which transition systems are to be identified. Then, processes can be seen as equivalence
classes of transition systems with regard to the chosen equivalence relation.

For closed systems, this equivalence relation is usually based on the possible traces that can
occur if the transition system is executed. Here, a trace is defined to be the sequence of labels
attached to transitions taken. The corresponding execution must start in an initial state and
then may move along transitions, stopping at an arbitrary moment or continuing until there
is no further outgoing transition. Note, however, that we do not consider infinite traces. Two
transition systems are considered equivalent iff they have the same sets of possible traces.

Definition 2.3 (Trace). Let M be a TS. Define ΘM
T ⊆ S × L∗ to be the smallest set satisfying

(i) ∀s ∈ S : (s, 〈〉) ∈ ΘM
T

(ii) (s′, ϑ) ∈ ΘM
T ∧ s

a
−→ s′ ⇒ (s, 〈a〉 · ϑ) ∈ ΘM

T
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Figure 2.1: Illustration of the refinement preorders on transition systems. These examples are
derived from Counterexamples 5, 6, and 8 of [vG01].

Then, ϑ ∈ L∗ is a trace of M iff there is some s ∈ Si such that (s, ϑ) ∈ ΘM
T .

M1 and M2 are trace-equivalent iff the set of traces of M1 equals the set of traces of M2.

The so-called completed traces are those traces that correspond to an execution “of maximal
length”, i.e., for the execution’s last state, say s, it holds that O−→(s) = ∅.

Definition 2.4 (Completed trace). Let M be a TS. Define ΘM
CT ⊆ S ×L∗ to be the smallest set

satisfying

(i) ∀s ∈ S : O−→(s) = ∅ ⇒ (s, 〈〉) ∈ ΘM
CT

(ii) (s′, ϑ) ∈ ΘM
CT ∧ s

a
−→ s′ ⇒ (s, 〈a〉 · ϑ) ∈ ΘM

CT

Then, ϑ ∈ L∗ is a completed trace of M iff there is s ∈ Si such that (s, ϑ) ∈ ΘM
CT.

M1 and M2 are completed trace-equivalent iff the set of completed traces of M1 equals the set
of completed traces of M2.

Semantics based on (completed) traces are also called linear-time semantics because they do
not at all consider the branching structure of a transition system. These semantics are suitable
for closed systems where traces are the implementations. Abstract models in this context are
Kripke structures [CGP01] or automata describing a set of traces, known as the abstract
model’s language. However, we are focusing on open systems here, and therefore we need to
consider branching behavior which linear-time semantics based on traces cannot do. Consider,
e.g., transition systems (b) and (c) in Figure 2.1. These systems are trace-equivalent although
in system (b) the environment can control (by providing b or c after action a) whether d is
executable afterwards or not, whereas for system (c), the environment has no means of such
control (this system is nondeterministic). Therefore, linear-time semantics is not suitable for
open systems in our context of refinement.

Consequently, the corresponding preorder, which relates two models iff the first has a set of
traces that is a subset of the set of traces of the second, cannot be a suitable refinement notion.
First, as seen in the abovementioned example, even equivalent systems can have different
characteristics concerning controllability by the environment. Second, deterministic transition
systems could be refined further because arbitrary transitions can be omitted, which can only
restrict the set of possible traces. However, deterministic transition systems are considered
implementations and as such are not refineable. Thus, suitable refinement notions may only
remove transitions as long as another transition from the same state remains with the same
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2.2 Process semantics

label, which corresponds to reducing nondeterminism. In the following, several preorders are
presented which are suitable as refinement notion because they only reduce nondeterminism.

The first four preorders are again based on traces, but they also take into account the sets of
enabled labels (i.e. the sets of labels attached to all possible next transition steps). We start
with the preorder based on readiness semantics [OH86], which we call ready pair refinement.
A ready pair is a pair of a trace and the set of enabled labels in the trace’s last state, and those
are compared with respect to inclusion. If one now removes a (reachable) transition without
another transition existing with the same label, one would get a new ready pair which has one
label less in its set of enabled actions and, thus, this is no refinement, as desired. Instead, one
may only remove transitions as long as this does not change the sets of enabled labels.

Definition 2.5 (Ready pair). Let M be a TS. Define ΘM
RP ⊆ S × (L∗ · P(L)) to be the smallest

set satisfying

(i) ∀s ∈ S : (s, 〈O−→(s)〉) ∈ ΘM
RP

(ii) (s′, ϑ) ∈ ΘM
RP ∧ s

a
−→ s′ ⇒ (s, 〈a〉 · ϑ) ∈ ΘM

RP

Then, ϑ ∈ L∗ · P(L) is a ready pair of M iff there is s ∈ Si such that (s, ϑ) ∈ ΘM
RP.

M1 ready pair-refines M2, written M1 6RP M2, iff every ready pair of M1 is a ready pair of
M2.

Ready trace semantics [BBK87] not only considers the set of enabled labels in the last state
of an execution but also in every intermediate state. The corresponding preorder is presented
in the following. A difference between ready pair refinement and ready trace refinement is
illustrated by the systems shown in Figures 2.1(a) and (b).

Definition 2.6 (Ready trace). Let M be a TS. Define ΘM
RT ⊆ S × ((P(L) · L)∗ · P(L)) to be the

smallest set satisfying

(i) ∀s ∈ S : (s, 〈O−→(s)〉) ∈ ΘM
RT

(ii) (s′, ϑ) ∈ ΘM
RT ∧ s

a
−→ s′ ⇒ (s, 〈(O−→(s)〉 · 〈a〉 · ϑ) ∈ ΘM

RT

Then, ϑ ∈ (P(L)·L)∗ ·P(L) is a ready trace of M iff there is some s ∈ Si such that (s, ϑ) ∈ ΘM
RT.

M1 ready trace-refines M2, written M1 6RT M2, iff every ready trace of M1 is a ready trace of
M2.

Failures semantics [BHR84] considers pairs of traces and label sets that correspond to the
trace’s last states, as for readiness semantics. However, the label sets do not contain all
enabled labels in the trace’s last state, but rather consist of labels which are not enabled (e.g.,
if the language of labels is {a, b, c} and a transition system M has a ready pair (〈a〉{a}), then
(〈a〉∅), (〈a〉{b}), (〈a〉{c}), and (〈a〉{b, c}) are failure pairs of M . The corresponding preorder,
which we call failure pair refinement, is presented in the following. A difference between ready
pair refinement and failure pair refinement is illustrated by the systems shown in Figures 2.1(b)
and (c).

Definition 2.7 (Failure pair). Let M be a TS. Define ΘM
FP ⊆ S × (L∗ · P(L)) to be the smallest

set satisfying
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Chapter 2 Preliminaries and Refinement Settings

(i) ∀s ∈ S,F ⊆ L \ O−→(s) : (s, 〈F 〉) ∈ ΘM
FP

(ii) (s′, ϑ) ∈ ΘM
FP ∧ s

a
−→ s′ ⇒ (s, 〈a〉 · ϑ) ∈ ΘM

FP

Then, ϑ ∈ L∗ · P(L) is a failure pair of M iff there is some s ∈ Si such that (s, ϑ) ∈ ΘM
FP.

M1 failure pair-refines M2, written M1 6FP M2, iff every failure pair of M1 is a failure pair of
M2.

Refusal, or failure trace semantics [Phi87] extends failures semantics in an analogous fashion
like ready trace semantics extends readiness semantics. Again, not only are the failure sets
(i.e. sets of not enabled labels) of the last state of an execution considered, but also the failure
sets of all intermediate states. The corresponding preorder is presented in the following.

Definition 2.8 (Failure trace). Let M be a TS. Define ΘM
FT ⊆ S × ((P(L) · L)∗ · P(L)) to be the

smallest set satisfying

(i) ∀s ∈ S,F ⊆ L \ O−→(s) : (s, 〈F 〉) ∈ ΘM
FT

(ii) (s′, ϑ) ∈ ΘM
FT ∧ s

a
−→ s′ ∧ F ⊆ L \ O−→(s′) ⇒ (s, 〈F 〉 · 〈a〉 · ϑ) ∈ ΘM

FT

Then, ϑ ∈ (P(L) · L)∗ · P(L) is a failure trace of M iff there is some s ∈ Si such that
(s, ϑ) ∈ ΘM

FT.

M1 failure trace-refines M2, written M1 6FT M2, iff every failure trace of M1 is a failure trace
of M2.

Simulation-based semantics

Semantics based on simulations lead to finer equivalences, when compared to the semantics
presented so far. A simulation is a relation between the state sets of two transition systems
M1 and M2. A pair (s1, s2) in the relation expresses that s2 simulates s1, i.e. all transitions
that can be taken in s1 can also be taken in s2, and this should also hold after this transition
step, so the “matching” successor states of s1 and s2 should again be related. Furthermore,
every initial state of M1 is required to be simulated by an initial state of M2. Formally:

Definition 2.9 (Simulation). Let M1, M2 be TSs. A simulation between M1 and M2 is a relation
R ⊆ S1 × S2 such that the following properties hold:

(i) ∀s1 ∈ Si
1 : ∃s2 ∈ Si

2 : (s1, s2) ∈ R

(ii) For all (s1, s2) ∈ R and a ∈ L we have

∀s′1 ∈ (s1.
a

−→1) : ∃s′2 ∈ (s2.
a

−→2) : (s′1, s
′
2) ∈ R

M1 is simulated by M2, written M1 6S M2, iff there is a simulation between M1 and M2.

Relation 6S (“being simulated”) is no suitable refinement notion, because, as for trace inclusion,
the enabledness of actions is not preserved in refinement steps; in fact, the empty system with
no transitions whatsoever is trivially simulated by any transition system. However, one can
simply add the requirement that related states must have equal sets of enabled actions, which
yields the refinement notion known as ready simulation [BIM95].
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2.3 Implementation and refinement settings

Definition 2.10 (Ready simulation). Let M1, M2 be TSs. A ready simulation between M1 and
M2 is a simulation between M1 and M2 satisfying ∀(s1, s2) ∈ R : O−→(s1) = O−→(s2).

M1 is ready-simulated by (or ready simulation-refines) M2, written M1 6RS M2, iff there is a
ready simulation between M1 and M2.

We close this section with the definition of yet another refinement preorder called possible
worlds-refinement [VDN98], which assigns to every nondeterministic transition system their
sets of deterministic ready-simulation refinements (i.e. implementations) and compares those
with respect to inclusion.

Definition 2.11 (Possible worlds). Let M be a TS. N ∈ TSdet is a possible world of M iff
N 6RS M .

M1 possible worlds-refines M2, written M1 6PW M2, iff every possible world of M1 is a possible
world of M2.

We have presented several preorders based on simulation but so far had no word about equiv-
alences yet. We only present bisimulation equivalence [Par81] here, which not only requires
simulations in both directions but also requires the same relation to be simulations in both
directions.

Definition 2.12 (Bisimulation). Let M1, M2 be TSs. A bisimulation between M1 and M2 is a
simulation R ⊆ S1 × S2 such that R−1 is a simulation between M2 and M1.

M1 and M2 are bisimilar, written M1 ≈ M2, iff there is a bisimulation between M1 and M2.

When arguing about deterministic transition systems only (e.g. when those are considered
implementations and we only need a notion of equivalence on those), it makes no difference
whether bisimulation equivalence or one of the other commonly used equivalences [vG01] is
taken, because it has been shown by Park [Par81], and further examined by Engelfriet [Eng85],
that all preorders collapse on deterministic transition systems.

2.3 Implementation and refinement settings

In the previous section, we formally presented several preorders on transition systems and one
equivalence, called bisimulation equivalence. This makes it possible to consider deterministic
transition systems, equipped with bisimulation equivalence, as implementations and using
a preorder, e.g. ready simulation, as refinement preorder on all (i.e. nondeterministic and
deterministic) transition systems.

Now we generally define the notions of implementation setting and refinement setting and what
those have to satisfy. First, an implementation setting is a pair of (concrete) models and an
equivalence relation on those models.

Definition 2.13 (Implementation setting). An implementation setting is a tuple (X,∼), where
X is a set of models and ∼ is an equivalence relation on X.
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The approach discussed so far uses deterministic transition systems, together with bisimulation
equivalence, as implementation setting. Note again that bisimulation equivalence could also be
replaced by any other commonly used equivalence [vG01], because it has been shown by Park
[Par81], and further examined by Engelfriet [Eng85], that all preorders collapse on deterministic
transition systems.

Definition 2.14. The implementation setting of deterministic transition systems is defined as
(TSdet,≈).

Different from the approach discussed so far, it is also possible to consider the set of all transi-
tion systems as implementations (i.e. not only the deterministic ones), together with an equiv-
alence, e.g. bisimulation equivalence. Then, any occurring nondeterminism in implementations
is interpreted as persistent.

Definition 2.15. The implementation setting of transition systems is defined as (TS,≈).

Refinement settings are defined over a given implementation setting. Refinement settings over
(TSdet,≈) can express resolvable nondeterminism only (e.g. the refinement setting based on
ready simulation), whereas refinement settings over (TS,≈) can describe both persistent and
resolvable nondeterminism (e.g. µ-automata, to be introduced later).

Formally, a refinement setting over a given implementation setting consists of (i) a set of mod-
els, (ii) a distinguished subset of finite models, which for all refinement settings in this thesis
will be defined to be those models with a finite state set, (iii) a preorder on the models and
(iv) an embedding of the implementations into the models such that equivalence on implemen-
tations coincides with the refinement preorder on the refinement setting’s models. Often, this
embedding is the identity function, e.g. if the implementations are deterministic transition sys-
tems and the models are (general) transition systems. Non-trivial but usually straightforward
embeddings are employed if the models are not transition systems but some kind of extension
of transition systems. Such kinds of extensions are introduced in Sections 2.3.1 and 2.3.2.

Definition 2.16 (Refinement setting). A refinement setting over the implementation setting
(X,∼) is a tuple X = (Y,Yf ,6, h), where Y is a set of models, Yf is a distinguished subset
of so-called finite models1, 6 is a preorder on Y, called refinement, and h : X → Y is an
embedding, i.e. ∀M1,M2 ∈ X : M1 ∼ M2 ⇔ h(M1) 6 h(M2).

Though this is not required by the definition, first think of h(X) as the bottom elements
of the refinement preorder 6. They correspond to the implementations. Then, equivalence
on deterministic transition systems (M1 ∼ M2) must imply “refinement equivalence”, i.e.
h(M1) 6 h(M2) and, directly implied by equivalence of ∼, h(M2) 6 h(M1) on these bottom
elements. For the other direction, refinement between models on the implementation level
must be enough to establish equivalence on deterministic transition systems, which makes sure
that every implementation can be specified by itself, without any other, non-equivalent refining
implementations.

1For all refinement settings considered in this thesis, Y
f is the subset of Y with finite state set. In general,

other definitions may be reasonable, too, e.g. finite branching properties. Furthermore, the definitions so far
allow arbitrary mathematical objects to be “models”; thus, a definition of a subset of finite models cannot be
directly derived. These are the reasons why we have to include component Y

f in the definition of a refinement
setting, although this may not seem elegant.
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In fact, the definition also allows non-implementations below implementation level, i.e. below
elements from h(X). These do not appear in the refinement settings corresponding to the
preorders presented so far, but they exist in other settings presented later (e.g. mixed transition
systems) and allow for the description of an empty set of implementations; in other words, they
allow for unsatisfiable descriptions.

In the following, we present all implementation and refinement settings occurring in this thesis.
It is easily checked that all presented refinement settings are indeed refinement settings.

2.3.1 Refinement settings over deterministic transition systems

We start with the presentation of refinement settings over deterministic transition systems.
First, we give the formal definition of the settings based on those already presented preorders
that are suitable as refinement notion.

Definition 2.17. The refinement settings over (TSdet,≈) of ready pair inclusion TSRP, ready
trace inclusion TSRT, failure pair inclusion TSFP, failure trace inclusion TSFT, ready simu-
lation TSRS, and possible worlds inclusion TSPW are defined as (TS,TSf ,6, h), where TSf is
the set of TSs with a finite state set, h is the identity embedding of TSdet into TS, and 6 is
defined as 6RP, 6RT, 6FP, 6FT, 6RS, and 6PW, respectively.

As already discussed, trace inclusion and simulation do not yield proper refinement settings over
deterministic transition systems. This is because the requirement h(M1) 6 h(M2) ⇒ M1 ∼ M2

of a refinement setting is not always satisfied, e.g., if M1 is the empty system without transitions
and M2 has (reachable) transitions.

Synchronously-communicating transition systems

A commonly used refinement setting over deterministic transition systems is ready simulation
(TSRS), as introduced in Definition 2.17. Here, every enabled action needs to remain enabled
in every refinement. However, sometimes one may want to express that in certain states it may
also be allowed to remove the enabledness with respect to certain actions. We now introduce
a refinement setting which has the full expressiveness of ready simulation, but also allows to
remove the enabledness of certain actions in certain states. In particular, this enables the mod-
eler to define an abstract state that allows any subsequent behaviour, including “deadlock”,
which is not possible in TSRS.

This is the first time that we present a more sophisticated refinement setting where the imple-
mentations are still deterministic transition systems, but for the abstract models, an extension
of transition systems is used, namely synchronously-communicating transition systems [FG07].
In fact, these are not more or less “synchronous” than ordinary transition systems, but since
they have been introduced under that name, we will stick to it and prefer the abbreviation
STS. Also, compared to [FG07], we consider a simplified variant of STSs without fairness. Our
variant of STSs extends ordinary transition systems by so-called existence predicates on states,
i.e. every state is assigned a set of labels. The intuition is that if a label is in the existence
predicate of a state, then the enabledness of this label needs to be preserved in refinements,
as in ready simulation. Accordingly, if a label is not in the existence predicate of a state, then
the enabledness of this label may be removed in refinements, as in simulation.
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Figure 2.2: STS examples. Here, L = {a, b}.

Following this intuition, one expects that a state may not have non-enabled labels in its
existence predicate. Such systems are introduced as must-saturated STSs, and denoted by
STS+. However, for general STSs we do not make this restriction which introduces unsatisfiable
models, i.e., models with an empty set of refining implementations (or shortly, with an empty
language).

Definition 2.18 (Synchronously-communicating transition system [FG07]). A synchronously-com-
municating transition system (STS) with respect to label set L is a tuple (S, Si,−→, e), where
S is a set of states, ∅ 6= Si ⊆ S is a non-empty subset of initial states, −→⊆ S × L × S is
a transition relation, and e : S → P(L) is an existence predicate. An STS is called must-
saturated iff ∀s ∈ S : e(s) ⊆ O−→(s).

The set of STSs is denoted by STS, and the set of must-saturated STSs is denoted by STS+.

The definition of STS-refinement extends simulation by the requirement that a more abstract
state, compared to a more concrete state, must have a subset (or an equal set) of existence
predicate labels. This allows one to express that, on an abstract level, the enabledness with
respect to certain labels can be optional, whereas in more concrete systems, those decisions
only get less (or equally) optional, with no such options remaining in implementations.

Definition 2.19 (STS-refinement [FG07]). Let M1, M2 be STSs. An STS-refinement between
M1 and M2 is a relation R ⊆ S1 × S2 such that the following properties hold:

(i) ∀s1 ∈ Si
1 : ∃s2 ∈ Si

2 : (s1, s2) ∈ R

(ii) For all (s1, s2) ∈ R and a ∈ L we have
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a) ∀s′1 ∈ (s1.
a

−→1) : ∃s′2 ∈ (s2.
a

−→2) : (s′1, s
′
2) ∈ R

b) e2(s2) ⊆ e1(s1)

M1 STS-refines M2, written M1 6STS M2, iff there is an STS-refinement between M1 and M2.

Although STSs allow for a simulation-like refinement, and simulation is no proper refinement
setting, STS can be used in a proper refinement setting. This is achieved by mapping the
implementations, i.e. deterministic transition systems, to those STSs where in every state the
existence predicate corresponds exactly to the enabled labels in this state. Consequently,
models from h(TSdet) cannot be refined further to non-equivalent models.

Definition 2.20 (STS-settings). Let h : TSdet → STS such that h(S, Si,−→) = (S, Si,−→,
O−→).

(i) The refinement setting STS over (TSdet,≈) is defined as (STS,STSf ,6STS, h), where STSf

is the set of STSs having a finite state set.

(ii) The refinement setting STS+ over (TSdet,≈) is defined as (STS+,STSf
+,6STS, h), where

STSf
+ is the set of STS+s having a finite state set.

Example 2.21. Figure 2.2 illustrates the embedding of two deterministic transition systems
into STSs in the lower two rows, resulting in the concrete STSs M6 and M66, and presents
in the uppermost row an abstract STS M , which is refined by model M6, but is not refined
by model M66. In the graphical representation, existence predicates are drawn close to their
corresponding states.

Roughly spoken, M describes those implementations with completed traces 〈ab〉, 〈abb〉, 〈abbb〉,
. . . . Deterministic transition system M66, which has only the completed trace 〈a〉, is no refine-
ment of M , as argued in the following. Suppose that in the definition of STS-refinement, we
relate s2 with u2. Then we violate the required preservedness of existence predicates, because
{b} 6⊆ ∅. Consequently we need to relate s2 with u4, but this is not possible either, because
{a} 6⊆ ∅, contradiction. In fact, state u4 is unsatisfiable (and M not must-saturated) because
it requires by its existence predicate a following a-step, although no transition from u4 permits
it.

2.3.2 Refinement settings over transition systems

Now we present refinement settings which were originally designed for use with (general) tran-
sition systems as implementations. Nevertheless, for some of them we also define variants over
deterministic transition systems, which leads to new, more succinct modeling possibilities.

All settings over (general) transition systems have in common that they express both per-
sistent nondeterminism and resolvable nondeterminism. Persistent nondeterminism exists in
implementations because those are not required to be deterministic (and for all settings in-
troduced here, persistent nondeterminism may also exist in non-implementations). Resolvable
nondeterminism is characterized by the refinement preorder, i.e. relation 6.
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Mixed/modal transition systems

Mixed [DGG97] and modal [LT88] transition systems extend ordinary transition systems by
an additional transition relation, enabling the expression of so-called must transitions and may
transitions. Must transitions describe behavior that must be present in an implementation,
wheras may transitions describe behavior that is allowed to be present in an implementation;
in other words, behavior not described by may transitions is forbidden.

Thus, persistent nondeterminism is expressed by several outgoing must transitions with the
same label. All these outgoing transitions have to exist in any implementation. Resolvable
nondeterminism is expressed by may transitions that are not must transitions: It is resolvable
nondeterminism whether such may transitions do or do not occur in an implementation.

In contrast to mixed transition systems, modal transition systems have the additional require-
ment that every must-transition must also occur as may-transition, which excludes, similar to
must-saturated STSs, unsatisfiable models.

Definition 2.22 (Mixed/modal transition system [DGG97, LT88]). A mixed transition system
(MTS) with respect to label set L is a tuple (S, Si, 99K,−→), where S is a set of states, ∅ 6=
Si ⊆ S is a non-empty subset of initial states, 99K⊆ S × L × S is a may transition relation,
and −→⊆ S ×L× S is a must transition relation. An MTS is called modal transition system
iff −→⊆99K.

The set of mixed transition systems is denoted by MTS, and the set of modal transition systems
is denoted by MTS+.

The definition of refinement for MTSs and MTS+s combine a simulation-like approach for
the may transition relation with a “reverse” simulation-like approach for the must transition
relation, thus allowing refinements with less allowed and more required behavior.

Definition 2.23 (MTS-refinement [DGG97, LT88]). Let M1, M2 be MTSs. An MTS-refinement
between M1 and M2 is a relation R ⊆ S1 × S2 such that the following properties hold:

(i) ∀s1 ∈ Si
1 : ∃s2 ∈ Si

2 : (s1, s2) ∈ R

(ii) For all (s1, s2) ∈ R and a ∈ L we have

a) ∀s′1 ∈ (s1.
a

99K1) : ∃s′2 ∈ (s2.
a

99K2) : (s′1, s
′
2) ∈ R

b) ∀s′2 ∈ (s2.
a

−→2) : ∃s′1 ∈ (s1.
a

−→1) : (s′1, s
′
2) ∈ R

M1 MTS-refines M2, written M1 6MTS M2, iff there is an MTS-refinement between M1 and
M2.

For implementations, allowed and required behavior coincides. Consequently, transition sys-
tems are embedded by defining both the may and must transition relation to be exactly the
transition relation of the transition system.

Definition 2.24 (MTS-settings). Let h : TS → MTS such that h(S, Si,−→) = (S, Si,−→,−→),
and hdet its restriction to TSdet. Then the refinement settings MTSgen, MTSgen

+ over (TS,≈),

and MTSdet, MTSdet
+ over (TSdet,≈) are defined as (MTS,MTSf ,6MTS, h), (MTS+,MTSf

+,
6MTS, h), (MTS,MTSf ,6MTS, h

det), and (MTS+,MTSf
+,6MTS, h

det), respectively, where Xf de-
notes the subset of models of X having a finite state set.

20



2.3 Implementation and refinement settings

TS MTS

M

u1 u2 u3

u4

u5

a

a

b

b

b

t1 t2 t3

t4

a

a

b

b

M6

t1 t2 t3

t4

a

a

b

b

s1 s2
a

M66

s1 s2
a

Figure 2.3: MTS examples. Here, L = {a, b}.

Example 2.25. Figure 2.3 illustrates the embedding of two transition systems into MTSs in the
lower two rows, resulting in the concrete MTSs M6 and M66, and presents in the uppermost
row an abstract MTS M , which is refined by model M6 but is not refined by model M66. In the
graphical representation, may transitions are drawn as dashed arrows, whereas must transitions
are drawn as solid arrows.

M is a mixed, but not a modal transition system, because must transition u1
a

−→ u2 has no
corresponding may transition. Nevertheless, model M6 is a refinement of M , because may

transition t1
a

99K t2 can be matched by u1
a

99K u4 if we include pairs (t2, u4) and (t3, u4) in

the refinement relation. Model M66 is no refinement of M , because must transition u2
b

−→ u3

cannot be matched in M66.

Disjunctive mixed/modal transition systems

Disjunctive modal (and mixed) transition systems, introduced in [LX90] using a notation that
slightly differs from ours, generalize modal (mixed) transition systems by modifying the must
transition relation in that must transitions not only have a single target states, but multiple
target states. These special kinds of transition are called hypertransitions. The intuition is
that must hypertransitions correspond to a disjunctive choice, i.e. an implementation has to
implement the behavior corresponding to (at least) one of its targets. Note that this intuition
cannot directly be expressed in mixed/modal transition systems.
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Figure 2.4: DMTS examples. Here, L = {a, b}.

Again, the modal variant ensures that every model is satisfiable by requiring that every target
set of a must hypertransition, say labeled by a, is non-empty and contains only targets reachable
via a-labeled may transitions. The mixed variant does not make this restriction.

Definition 2.26 (Disjunctive mixed/modal transition system [LX90]). A disjunctive mixed tran-
sition system (DMTS) with respect to label set L is a tuple (S, Si, 99K,−→), where S is a set
of states, ∅ 6= Si ⊆ S is a non-empty subset of initial states, 99K⊆ S × L × S is a may tran-
sition relation, and −→⊆ S × L× P(S) is a must hypertransition relation. A DMTS is called
disjunctive modal transition system iff all must hypertransition target sets are non-empty and
only have elements that are also targets of may-transitions, i.e.

∀s ∈ S, a ∈ L, S̈ ∈ (s.
a

−→) : ∅ 6= S̈ ⊆ (s.
a

99K)

The set of disjunctive mixed transition systems is denoted by DMTS, and the set of disjunctive
modal transition systems is denoted by DMTS+.

For may transitions, the refinement definition is as for modal/mixed transition systems. For
must hypertransitions, we require for every target set in the more abstract system a target set
in the more concrete system such that for all targets in the more concrete target set, we find
a corresponding target in the more abstract target set.

Definition 2.27 (DMTS-refinement [LX90]). Let M1, M2 be DMTSs. A DMTS-refinement
between M1 and M2 is a relation R ⊆ S1 × S2 such that the following properties hold:

(i) ∀s1 ∈ Si
1 : ∃s2 ∈ Si

2 : (s1, s2) ∈ R
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(ii) For all (s1, s2) ∈ R and a ∈ L we have

a) ∀s′1 ∈ (s1.
a

99K1) : ∃s′2 ∈ (s2.
a

99K2) : (s′1, s
′
2) ∈ R

b) ∀S̈2 ∈ (s2.
a

−→2) : ∃S̈1 ∈ (s1.
a

−→1) : ∀s′1 ∈ S̈1 : ∃s′2 ∈ S̈2 : (s′1, s
′
2) ∈ R

M1 DMTS-refines M2, written M1 6DMTS M2, iff there is a DMTS-refinement between M1 and
M2.

Transition systems are embedded by defining the may transition to be exactly the transition
system relation, as for modal/mixed transition systems, and by giving every must hypertran-
sition exactly one target, which then corresponds exactly to a transition in the transition
system.

Definition 2.28 (DMTS-settings). Let h : TS → DMTS such that h(S, Si,−→) = (S, Si,−→,
{(s, a, {s′}) | s

a
−→ s′}), and hdet its restriction to TSdet. Then, the refinement settingsDMTSgen, DMTSgen

+ over (TS,≈), and DMTSdet, DMTSdet
+ over (TSdet,≈) are defined

as (DMTS,DMTSf ,6DMTS, h), (DMTS+,DMTSf
+,6DMTS, h), (DMTS,DMTSf ,6DMTS, h

det), and
(DMTS+,DMTSf

+,6DMTS, h
det), respectively, where Xf denotes the subset of models of X having

a finite state set.

Example 2.29. Figure 2.4 illustrates the embedding of two transition systems into DMTSs
in the lower two rows, resulting in the concrete DMTSs M6 and M66, and presents in the
uppermost row an abstract STS M , which is refined by model M6 but is not refined by model
M66. May transitions are drawn as dashed arrows, whereas must hypertransitions are drawn as
solid arrows which may have several targets.

M is a disjunctive mixed transition system, but not a disjunctive modal transition system,
because must hypertransition u1

a
−→ {u2, u5} is lacking corresponding may transitions. The

same is true for u5
a

−→ {u6}. Nevertheless, model M6 is a refinement of M , because the may

transition t1
a

99K t2 can be matched by u1
a

99K u4, if we include pairs (t2, u4) and (t3, u4) in the
refinement relation. Furthermore, we do not relate unsatisfiable state u5 to any state in M6.

Model M66 is no refinement of M , because due to u1
a

−→ {u2, u5}, we need to relate either u2

or u5 with s2, but u2 requires a following b, u5 requires a following a, and s2 cannot provide
either of those.

The original definition of disjunctive modal transition systems [LX90] allows hypertransitions
with different action labels for each target, i.e. the must hypertransition relation contains
elements from S × P(L × S) instead of S × L × P(S). However, disjunctive modal transition
systems in the notation of [LX90] can easily be transformed into our notation by using state
copies, each employing such transitions with a common label.

At this point we illustrate why refinement settings originally designed for use over (general)
transition systems, like DMTSgen, can lead to new, more succinct modeling techniques when
considering deterministic transition systems as implementations, like DMTSdet.

Example 2.30. Consider the disjunctive mixed transition system of Figure 2.5(a), which de-
scribes a part of an abstract model of a tea and coffee vending machine. If regarded as an
abstract model in DMTSdet, it expresses all implementations that offer, after an initial init
action, a combination of tea and coffee variants, however, requiring that at least one kind of
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Figure 2.5: Illustration of new, succinct modeling possibilities with DMTSdet (compared toDMTSgen). Systems (b) and (c) are refinements of (a), but the nondeterministic
implementation (c) is undesired.

coffee (cappuccino, espresso, or blackcoffee) and one kind of tea (blacktea or greentea) is
offered. For instance, system (b) is a valid implementation. If regarded as an abstract model
in DMTSgen, though, there are undesired further implementations, e.g. system (c), where it is
(persistently) nondeterministic, whether espresso or greentea is offered (this persistent non-
determinism is, of course, ruled out if we define implementations to be deterministic). Elimi-
nating these undesired implementations in DMTSgencannot be done as succinctly as (a) does
with respect to DMTSdet; every combination of coffee and tea would have to be made explicit.

µ-automata

µ-automata do not take the approach of may and must transitions, as modal transition systems
and their variants do. However, they can express resolvably nondeterministic choices, similar
to the hypertransitions in disjunctive mixed/modal transition systems. This is made explicit
by employing two different kinds of transitions, one for resolvable nondeterminism (called
or-transitions) and one for execution steps (called branch-transitions, which also express
persistent nondeterminism).

More precisely, a µ-automaton [JW95], written here in the notation of [DN05] (but omitting
fairness and propositions), has two kinds of state, called or-states and branch-states, and two
kinds of transition, namely unlabeled or-transitions from or- to branch-states and labeled
branch-transitions from branch- to or-states. An equivalent notation would be to consider
every branch-transition together with the following or-transitions as a single hypertransition,
where its label is defined by the label of the branch-transition and its targets are defined by
all succeeding or-transitions.

Definition 2.31 (µ-automaton [JW95, DN05]). A µ-automaton MUA with respect to label set
L is a tuple (S, S̃, Si,⇒,−→), where S is a set of so-called or-states, S̃ is a set of so-called
branch-states (disjoint from S), ∅ 6= Si ⊆ S is a non-empty subset of initial or-states, ⇒ ⊆
S× S̃ is a so-called or-transition relation, and −→⊆ S̃×L×S is a so-called branch-transition
relation.
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Figure 2.6: µ-automaton examples. Here, L = {a, b}.

The set of µ-automata is denoted by MUA.

In µ-automata, persistent nondeterminism exists only in branch-states and is expressed by sev-
eral outgoing branch-transitions with the same label. Resolvable nondeterminism exists only
in or-states, because or-transitions can be removed in refinements, while branch-transitions
cannot. Deciding for one or-transition resolves the nondeterminism and leads execution back to
a concrete branch-state. For this reason, the or-transition relation is also called concretization
relation. This is made precise by the standard refinement notion of µ-automata:

Definition 2.32 (µ-refinement [JW95, DN05]). Let M1, M2 be MUAs. A µ-refinement between
M1 and M2 is a relation R ⊆ (S1 × S2) ∪ (S̃1 × S̃2) such that the following properties hold:

(i) ∀s1 ∈ Si
1 : ∃s2 ∈ Si

2 : (s1, s2) ∈ R

(ii) ∀(s1, s2) ∈ R, s̃1 ∈ (s1. ⇒) : ∃s̃2 ∈ (s2. ⇒) : (s̃1, s̃2) ∈ R

(iii) ∀(s̃1, s̃2) ∈ R, a ∈ L, s1 ∈ (s̃1.
a

−→) : ∃s2 ∈ (s̃2.
a

−→) : (s1, s2) ∈ R

(iv) ∀(s̃1, s̃2) ∈ R, a ∈ L, s2 ∈ (s̃2.
a

−→) : ∃s1 ∈ (s̃1.
a

−→) : (s1, s2) ∈ R

M1 µ-refines M2, written M1 6µ M2, iff there is a MUA-refinement between M1 and M2.

Transition systems are embedded into µ-automata by using or-states having exactly one out-
going or-transition.
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Chapter 2 Preliminaries and Refinement Settings

Definition 2.33 (MUA-setting). Let h : TS → MUA such that h(S, Si,−→) = (S, S̃, Si, {(s,
ι(s)) | s ∈ S}, {(ι(s), a, s′) | (s, a, s′) ∈−→}), where S̃ ∩ S = ∅ and ι : S → S̃ is bijective. The
refinement setting MUA is defined as (MUA,MUAf ,6µ, h), where MUAf is the set of MUAs
having a finite state set.

Example 2.34. Figure 2.6 illustrates the embedding of two transition systems into µ-automata
in the lower two rows, resulting in the concrete MUAs M6 and M66, and presents in the
uppermost row an abstract MUA M , which is refined by model M6 but is not refined by model
M66. In the graphical representation, the or-transitions are drawn as double-lined arrows,
whereas the branch-transitions are drawn as single-lined arrows.

µ-automaton M describes, roughly spoken, a persistent choice between either the completed
trace 〈ab〉 or an initial a-step, followed by the unresolved choice to either take no further
actions or to take a b-step, in which case we again have an unresolved choice to take no further
actions, or to take a b-step again, in which case we again have the same unresolved choice,
etc. M6 is a refinement of M , which always resolves the resolvable nondeterminism to take a
further b-step. Furthermore, it also provides completed trace 〈ab〉, which is required, because
the nondeterminism in ũ1 is persistent. Since M66 does not provide 〈ab〉, it is no refinement
of M .

ν-automata

ν-automata are newly introduced in [FHSS09], on which Chapter 5 of this thesis is based. The
motivation is that ν-automata, like µ-automata, fully support the combination of persistent
and resolvable nondeterminism, but allow for a more succinct representation, especially in the
context of state diagram semantics. The improved succinctness is discussed and illustrated by
an example in Section 5.3.2.

Definition 2.35 (ν-automaton). A ν-automaton NUA with respect to label set L is a tuple
(S, Si,−→), where S is a set of states, ∅ 6= Si ⊆ S is a non-empty subset of initial states, and
−→⊆ S × L× P(S) is a hypertransition relation.

The set of ν-automata is denoted by NUA.

The syntax of ν-automata is very close to that of µ-automata, although it does not use two
transition relations but one hypertransition relation. However, if the junction points of hyper-
transitions are regarded as a special kind of state, we get an analogous syntax by identifying the
branch-states of µ-automata with the ν-automaton states (both provide the menu of enabled
actions at this point), and identifying the or-states of µ-automata with the junction points in
ν-automata.

The significant difference between µ- and ν-automata shows when comparing the refinement
notions and the embeddings of transition systems. ν-refinement allows for the removal of
hypertransitions, but compares hypertransition targets with respect to bisimulation. Thus,
resolvable nondeterminism is expressed by multiple hypertransitions from the same state with
the same label, whereas multiple hypertransition targets express persistent nondeterminism.
This is dual to the interpretation of µ-automata, since here multiple branch-transitions (cor-
responding to multiple hypertransitions in ν-automata) express persistent nondeterminism
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Figure 2.7: ν-automaton examples. Here, L = {a, b}. Transitions labeled by several actions are
a short notation for several transitions, with one of the annotated actions each.

and multiple or-transitions (corresponding to multiple hypertransition targets in ν-automata)
express resolvable nondeterminism.

Thus, ν-automata provide (per label) a resolvable choice of several persistent choices, whereas
µ-automata provide (per label) a persistent choice of several resolvable choices. This makes
ν-automata more succinct, e.g., in the context of state diagram semantics, as discussed in
Section 5.3.2.

The definition of ν-refinement reflects the exchanged order of resolvable and persistent nonde-
terminism. For every more concrete hypertransition, we need to find a more abstract hyper-
transition such that their targets correspond in both directions.

Definition 2.36 (ν-refinement). Let M1, M2 be NUAs. A ν-refinement between M1 and M2 is
a relation R ⊆ S1 × S2 such that the following properties hold:

(i) ∀s1 ∈ Si
1 : ∃s2 ∈ Si

2 : (s1, s2) ∈ R

(ii) For all (s1, s2) ∈ R, a ∈ L, and S̈1 ∈ (s1.
a

−→1) there is S̈2 ∈ (s2.
a

−→2) such that

a) ∀s′1 ∈ S̈1 : ∃s′2 ∈ S̈2 : (s′1, s
′
2) ∈ R

b) ∀s′2 ∈ S̈2 : ∃s′1 ∈ S̈1 : (s′1, s
′
2) ∈ R

M1 ν-refines M2, written M1 6ν M2, iff there is a NUA-refinement between M1 and M2.

27



Chapter 2 Preliminaries and Refinement Settings

Note that the definition of ν-refinement does not explicitly require that enabled actions are pre-
served, although it has been discussed that this is compulsory for a suitable refinement setting.
We do not need an explicit formulation of this requirement here, because we embed transition
systems in a way that defines concrete ν-automata to be enabled with respect to each action
in each state. Thus, if one refines in such a way that a state is no longer enabled with respect
to each action, this state becomes unsatisfiable, i.e., it has no refining implementations.

Transition systems are embedded into ν-automata by defining for each state s and each label
a exactly one hypertransition, with the targets being defined by all a-successors of s in the
transition system. This way, the branching structure of the transition system is moved into the
hypertransition targets of a single hypertransition. Note that this can also lead to an empty
target set. After this transformation, further hypertransitions with the same label can be used
to express resolvable nondeterminism.

Definition 2.37 (NUA-setting). Let h : TS → MUA such that h(S, Si,−→) = (S, Si, {(s, a,
(s.

a
−→) | s ∈ S ∧ a ∈ L}). The refinement setting NUA is defined as (NUA,NUAf ,6ν , h),

where NUAf is the set of NUAs having a finite state set.

Example 2.38. Figure 2.7 illustrates the embedding of two transition systems into ν-automata
in the lower two rows, resulting in the concrete NUAs M6 and M66, and presents in the up-
permost row an abstract NUA M , which is refined by model M6 but is not refined by model
M66. Hypertransitions with an empty target set are drawn as lines connected to symbol ∅. If
hypertransitions are labeled with several, comma-seperated labels, this is a notation for several
transitions with the same source and the same targets, each labeled with one of the labels.

ν-automaton M describes the same behavior as µ-automaton M from Figure 2.6 (Example
2.34). Analogous arguments as to why M6 is a refinement of M , but M66 is not, can be applied
here.

2.3.3 A refinement setting with input and output actions

In Chapters 5 and 6 we will give a semantics to statecharts variants. In this context, actions
(i.e., observable steps of behavior) are usually called events. In contrast to actions which are
interpreted purely uniformly, we distinguish two kinds of events: input and output events,
where input events (from a set Ev) are controlled by the environment and the modeled system
only reacts on it, and output events (from a set Ev) are controlled by the modeled system.

As has already been discussed in Section 1.3, this differentiation leads to a different notion
of nondeterminism. Several outgoing transitions with different input events are considered
deterministic, because the environment can control which transition is taken, by selecting the
corresponding event. Several outgoing transitions with different output events, however, are
considered nondeterministic, because the environment cannot control which transition is taken;
this is completely under the modeled system’s control.

The interpretation of nondeterminism for a state which has both outgoing transitions with
input and output events is unclear. One possible solution would be to give priority to either
input or output events, but then the transitions with less priority could be left out anyway.

We avoid these problems by requiring every state to either only generate output events (these
state are called locally controlled states) or only react to input events (these state are called
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input-enabled states). Furthermore, we demand that every input-enabled state is enabled with
respect to each input label, i.e., the set of enabled events in input-enabled states must be
Ev. We will see that these restrictions fit state diagrams, while at the same time keeping the
semantic model as simple as possible.

Now, we formally define the implementation and refinement setting of so-called I/O-transition
systems.

Definition 2.39 (I/O-transition system). An I/O-transition system (IOTS) with respect to input
event set Ev and output event set Ev is a tuple (S, Si,−→), where S is a set of states, ∅ 6= Si ⊆ S
is a subset of initial states, and −→⊆ S× (Ev∪Ev)×S is a transition relation, such that every
configuration either handles all input events (and no output events), or at least one output

event (and no input events), i.e. ∀s ∈ S : (∀e ∈ Ev : (s.
e

−→) 6= ∅ ∧ ∀e ∈ Ev : (s.
e

−→) =

∅) ∨ (∃e ∈ Ev : (s.
e

−→) 6= ∅ ∧ ∀e ∈ Ev : (s.
e

−→) = ∅).

Thus I/O-transition systems are simply a subset of transition systems. However, we equip
them with a different notion of determinism.

Definition 2.40 (Deterministic IOTS). An I/O-transition system (S, Si,−→) is deterministic
iff every input-enabled configuration has only a single successor per label and every locally
controlled configuration has only a single successor via a single output event, i.e. ∀s ∈ S :

(∀e ∈ Ev : |s.
e

7−→ | = 1) ∨ (
∑

e∈Ev |s.
e

7−→ | = 1). The set of deterministic I/O-transition

systems is denoted by IOTSdet.

We consider the implementation setting of I/O-transition systems together with bisimulation
equivalence.

Definition 2.41. The implementation setting of deterministic I/O-transition systems is defined
as (IOTSdet,≈).

The refinement setting of I/O-transition systems over (IOTSdet,≈) uses the preorder of simu-
lation and the identity embedding.

Definition 2.42 (IOTS-setting). The refinement setting of IOTS over (IOTS,≈) is defined as
(IOTS, IOTSf ,6S, h), where h is the identity embedding of IOTSdet into IOTS, and IOTSf is the
set of IOTSs with a finite state set.

It may seem surprising that simulation is used here as refinement notion, since after Defini-
tion 2.9, where simulation is defined, we have argued that simulation does not yield a suitable
refinement notion because it does not preserve the enabledness of actions. However, this prob-
lem does not arise in the context of IOTSs: Input events remain enabled, since we require any
input-enabled state to be enabled with respect to each event, so the set of enabled events is
always Ev and can never be changed in a refinement. Concerning output events, we have to
be aware of the different notion of determinism for I/O-transition systems. Downsizing the
set of enabled output events, as long as one output event is left, now corresponds to reducing
nondeterminism; the restrictions of IOTSs make sure that there is at least one enabled output
event in any locally controlled state. Consequently, when applied to IOTSs, simulation does
yield a suitable refinement notion.
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Figure 2.8: I/O-transition systems illustrating refinement. Here, Ev = {e1, e2} and Ev =
{e1, e2, e2}.

Example 2.43. Figure 2.8 illustrates the refinement setting IOTS. M1 has nondeterminism
in its input-enabled initial state: it is a refinement to remove one of the branches reacting on
e1, which may yield, e.g., M2. This makes sense, because it is not under the environment’s
control which of the branches labeled e1 is taken, provided e1 occurs. M2 is deterministic, i.e.
no further branch can be removed, because every refinement needs to remain enabled for each
input event. In this situation, the environment can decide which transition to take by sending
the corresponding event. Thus, M3 is no refinement of M2.

For locally controlled states, there is a different interpretation: M4 is nondeterministic, and
M5 is an refinement of it, because it is enough to generate only one event in the refinement.
Therefore, the other branch can be removed. This makes sense, because here it is not under
the environment’s control which transition is taken.
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Chapter 3

Expressiveness of Refinement Settings

This chapter compares popular refinement settings over deterministic transition systems with
respect to the sets of implementations that they are able to express. As the main result, we
establish and prove an expressiveness hierarchy, as well as language-preserving transformations
between the various settings. In addition to system designers, the main beneficiaries of the
work presented here are tool builders who wish to reuse refinement checkers or model checkers
across different settings.

3.1 Introduction

Many of today’s embedded systems employ control software that runs on specialized com-
puter chips, performing dedicated tasks often without the need of an operating system. Sys-
tem designers typically specify such software using notations based on labeled transition sys-
tems: a possibly nondeterministic specification allows for a set of deterministic implementa-
tions, amenable to quality checks via testing or model checking. Verifiers benefit from the
reduced state space in possibly nondeterministic abstractions from deterministic implemen-
tations. Choosing a suitable refinement setting for a given application depends on various
aspects, e.g., expressiveness, conciseness and verification support.

In the concurrency-theory literature many refinement settings have been studied, with a focus
on compositionality and full abstraction of, and logical characterizations and decision proce-
dures for, the underlying refinement preorders. Less attention has been paid to questions of
expressiveness. In the context of top-down development, where sets of allowed implementations
are specified at different design levels, it is of special interest to characterize the expressible
sets of implementations. In general, the more implementation sets a formalism can describe,
the more expressive it is and the more flexibility a system designer has.

We perform the expressiveness comparison using language-preserving transformations, where
the language of a refinement setting is its expressible set of deterministic implementations.
This is analogous to trace-based languages, where language-preserving transformations have
been developed between automata that differ in their notions of fairness (Büchi, Muller, Rabin,
Streett, parity automata).

Language-preserving transformations are also valuable in the context of model checking, where
abstract models reduce the size of the state space, while at the same time staying amenable
to quality checks: if a property is model checked for an abstract model, then it is guaranteed
to hold for each of its implementations. Therefore, a model checking tool over a refinement
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Figure 3.1: Vending machine example.

setting (X1,X
f
1,61, h1) can be reused for another setting (X2,X

f
2,62, h2) if every model in X2

can be converted into an equivalent model in X1 that defines the same language.

This chapter studies and compares the expressiveness of a dozen refinement settings designed
for deterministic transition systems, namely TSRP, TSFP, TSRT, TSFT, TSRS, TSPW, STS,STS+, MTSdet, MTSdet

+ , DMTSdet, and DMTSdet
+ . To do so, several intricate language-

preserving transformations are developed and proven correct. We also show how algorithms
for checking a specification’s consistency, i.e. for checking non-emptyness of its language, and
for checking refinement can be derived from our transformations. While the expressiveness
hierarchy is valuable for informing system designers on their choice of refinement setting,
our transformations allow tool builders to reuse their refinement checkers or model checking
algorithms across different settings.

Outline. Section 3.2 defines the notion of a language-preserving transformation, on which our
comparison is based. The comparison is then performed in Section 3.3. Section 3.4 presents
some interesting related results. Finally, we discuss related work in Section 3.5 and conclude
in Section 3.6.

3.2 Language-based expressiveness

This chapter focuses on refinement settings over deterministic transition systems. An informal
discussion on why deterministic transition systems are the natural model for implementations
in the context of open systems, has already been given in Section 2.2. We call the set of refining
deterministic transition systems (i.e., implementations) of a model its language. We compare
refinement settings with respect to their expressible languages. An example of a situation
where only one of two settings is expressive enough for a given application in being able to
describe a desired language, follows:

Example 3.1. Consider a part of a vending machine specification, as shown in Figure 3.1(a).
The transition system is nondeterministic since following a req action it can either ask for
$1 or for $2. This nondeterminism is desired because the specification should be refinable to
either a “cheap” machine (requesting $1, shown in Figure 3.1(b)) or an “expensive” machine
(requesting $2, shown in Figure 3.1(c)). However, it depends on the used refinement setting,
whether these two implementations can be modeled without also modeling the undesired imple-
mentation shown in Figure 3.1(d), which gives the user the choice whether to pay $1 or $2.
For instance, with respect to failure pair inclusion, model (a) has the undesired implementation
(d), whereas with respect to ready pair inclusion, it has not.
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3.3 Comparison

We formalize our notion of expressiveness. One setting X1 should be considered at least as
expressive as another setting X2 iff, for every language described by a model in X2, we find a
model in X1 with the same language. Such a mapping from the models in X2 to the models in
X1 is called language-preserving transformation. The following definition makes our notion of
expressiveness more precise:

Definition 3.2 (Language-preserving transformation). Let X = (X,Xf ,6, h) be a refinement
setting. The language X (M) of M ∈ X (also called “possible worlds”) is {N ∈ TSdet | h(N) 6

M}. A language-preserving transformation from X1 = (X1,X
f
1,61, h1) to X2 = (X2,X

f
2,62, h2)

is a total function f : Xf
1 → Xf

2 such that X1(M) = X2(f(M)) for all M ∈ Xf
1. We say that X1

is at least as expressive as X2 if there is a language-preserving transformation from X2 to X1.

By the definition, language-preserving transformations are mapping finite models to finite
models1 (though implementations may be infinite). We are especially interested in such map-
pings because they preserve the (direct) amenability to applications of tools such as model
checking. Furthermore, language-based expressiveness results in our sense are trivial for infi-
nite models, because infinite initial state sets can be used to describe any desired language (by
introducing one initial state for each desired implementation).

Example 3.3. Reconsider Example 3.1 where we claimed that model (a) expresses, with respect
to ready pair inclusion, implementations (b) and (c), whereas it also has the further implemen-
tation (d) with respect to failure pair semantics. We can use this as a starting point to prove
that ready pair inclusion (TSRP) is more expressive than failure pair inclusion (TSFP). Two
properties need to be shown:

(i) There is a language-preserving transformation from TSFP to TSRP, i.e., every language
expressible in TSFP can also be expressed in TSRP.

(ii) There is no language-preserving transformation from TSRP to TSFP, i.e., there is an
expressible set of implementations with respect to TSRP, which cannot be expressed inTSFP.

For proving the first property, a language-preserving transformation should be given. This is
done in Transformation 3.6. For the second property, it would be sufficient to prove that all
specifications that express (b) and (c) in TSFP also express (d), since TSRP can express (b)
and (c) without (d). This kind of argumentation is adopted in the proof of Lemma 3.7.

3.3 Comparison

This section establishes the expressiveness hierarchy presented in Figure 3.2. This is done con-
structively by developing language-preserving transformations or showing their non-existence
by counter-example. In particular, we have paid attention to simple transformations and small-
sized transformed models. All transformations also work for infinite-state systems; however, it
is only for finite models that their transformed models are guaranteed to be finite.

1This makes language-preserving transformations trivial for refinement settings with an empty set of finite
models. We will only consider the refinement settings introduced in Chapter 2, all of which have a non-empty
set of finite models.
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Figure 3.2: Expressiveness hierarchy of refinement settings over deterministic transition sys-
tems.
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Figure 3.3: Transition system Mrs,rt.

To begin with, the identity function is obviously a transformation from STS+ to STS; fromMTSdet
+ to MTSdet; and from DMTSdet

+ to DMTSdet. It follows directly from the definitions
of the settings that the identy function is also a transformation from TSPW to TSRS and vice
versa.

3.3.1 Trace inclusions

Due to the inductive definition of simulation, checking refinement in simulation-based settings

only depends on what remains to be considered in the future, e.g. M
def
=

��������
����������������// a 22ddd

b
,,ZZZ is no

implementation of Mrs,rt of Figure 3.3 in simulation-like approaches, because the refinement
relation has to decide which one of the two initial states of Mrs,rt should be mapped to the
initial state of M , and this will require in the implementation a succeeding b step, either after
the initial a step or the initial b step. This is different in trace-based approaches, where at any
time it is possible to go back in a trace and resolve nondeterminism differently, as long as the
traces still coincide. Consequently, M is a refinement of Mrs,rt in trace-like settings.

The transformations from trace approaches thus have in common that they use power set states
to collect all possible states reachable via common traces (i.e., ready traces, failure traces, ready
pairs, failure pairs). We call these power set states merged states and its elements elementary
states.

For ready traces, all states with the same sets of enabled labels are collected in a merged state.
Given a collection of states Ŝ, Ψt

=(Ŝ), as defined formally in Transformation 3.4, describes the
set of these merged states, only considering states from Ŝ and excluding the empty set.

The corresponding notion of merged states for failure traces is Ψt
⊆(Ŝ) which, given Ŝ, describes

the set of those merged states, for which there is a label set that is a super-set of all enabled
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Figure 3.4: Examples of the transformations from TSRT and TSFT. The first of these trans-
forms the system in the middle (M) to the system on the left (M t

=), the second one
transforms the system in the middle (M) to the system on the right (M t

⊆). Tran-
sitions having a set as label (denoted here shortly by a sequence of labels) indicate
a set of transitions, one for each label. The numbers of merged state names in the
transformed systems (M t

= and M t
⊆) correspond to their elementary states.

labels in the elementary states. This corresponds to the coarser notion of observability in
failure trace semantics.

Then, the transition relation is defined on these merged states in a straightforward fashion, for
every step, say via a, taking into account all a-transitions of all elementary states. Figure 3.4
gives examples for both transformations. In fact, these are not only transformations to ready
simulation, but also to further settings, including themselves.

Transformation 3.4. For any transition system M = (S, Si,−→), we have

(i) TSRT(M) = TSRS(M
t
=) = TSRT(M t

=), and

(ii) TSFT(M) = TSRS(M
t
⊆) = TSRT(M t

⊆) = TSFT(M t
⊆),

with M t
C = (P(S),Ψt

C(Si), {(S̈, a, S̈′) | S̈′ ∈ Ψt
C(S̈.

a
−→)}), where C ∈ {=,⊆} and Ψt

C(Ŝ) =

{{s ∈ Ŝ | O−→(s) C L} | L ⊆ L} \ {∅}.

Proof of Transformation 3.3. First we recall the following statement, taken from [vG01], which
compares the refinement preorders on transition systems with respect to their coarseness (i.e.,
inclusion of sets of pairs in the relation).

Lemma 3.5 ([vG01]). The coarseness hierarchy of the preorders of ready simulation, ready trace
inclusion, failure trace inclusion, ready pair inclusion and failure pair inclusion is as illustrated
in Figure 3.5.

Now we prove the soundness of Transformation 3.4. It is easily seen that M t
= and M t

⊆ are
transition systems. From Lemma 3.5 we obtain TSRS(M

t
=) ⊆ TSRT(M t

=) and TSRS(M
t
⊆) ⊆TSRT(M t

⊆) ⊆ TSFT(M t
⊆). Therefore, in order to complete a circle of inclusions, the following

four cases remain to be shown:TSRT(M) ⊆ TSRS(M
t
=): Let Md be a deterministic transition system that is a ready trace

implementation of M . Then {(sd, S̈) | (sd.ΘMd

RT ) ⊆ (S̈.ΘM
RT)∧∀s ∈ S̈ : O−→(s) = O−→d(sd)},

with ΘM
RT defined as in Definition 2.6, yields a ready simulation that witnesses that Md is

a refinement of M t
=. This is seen as follows:
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Figure 3.5: Coarseness hierarchy of preorders on transition systems, taken from [vG01].

Suppose sd
1 and S̈1 are related. Then, it follows that OM t

=
(S̈1) = O−→d(sd

1). Now suppose

sd
2 ∈ (sd

1.
a

−→
d
). Let S̈2 = {s2 ∈ (S̈1.

a
−→) | O−→(s2) = O−→d(sd

2)}. From (sd
1.Θ

Md

RT ) ⊆

(S̈1.Θ
M
RT) we get (i) S̈2 6= ∅, which implies S̈1

a
−→

t

= S̈2, and (ii) (sd
2.Θ

Md

RT ) ⊆ (S̈2.Θ
M
RT), which

implies that sd
2 and S̈2 are related, as required. It is easily seen that the unique initial

element of Md and {s2 ∈ Si | O−→(s2) = O−→d(sd
2)} are related.TSRT(M t

=) ⊆ TSRT(M): Let Md be a deterministic transition system that is a ready trace
implementation of M t

=. Let 〈R0a0R1a1 . . . an−1Rn〉 be a ready trace of Md. Then this ready
trace also exists in M t

=, with (S̈i)i≤n being a witness trace. We can now obtain, by backward
construction (starting in S̈n, going towards S̈0), a trace in M that has 〈R0a0R1a1 . . . an−1Rn〉
as ready trace, as required.TSFT(M) ⊆ TSRS(M

t
⊆): Let Md be a deterministic transition system that is a failure trace im-

plementation of M . Then, {(sd, S̈) | (sd.ΘMd

FT ) ⊆ (S̈.ΘM
FT) ∧ ∀s ∈ S̈ : O−→(s) ⊆ O−→d(sd)},

with ΘM
FT defined as in Definition 2.8, yields a ready simulation that is a witness that Md

is a refinement of M t
⊆. This is seen as follows:

Suppose sd
1 and S̈1 are related. Then, it follows that OM t

⊆
(S̈1) = O−→d(sd

1). Now suppose

sd
2 ∈ (sd

1.
a

−→
d
). Let S̈2 = {s2 ∈ (S̈1.

a
−→) | O−→(s2) ⊆ O−→d(sd

2)}. From (sd
1.Θ

Md

FT ) ⊆

(S̈1.Θ
M
FT) we get (i) S̈2 6= ∅, which implies S̈1

a
−→

t

⊆ S̈2 and (ii) (sd
2.Θ

Md

FT ) ⊆ (S̈2.Θ
M
FT), which

implies that sd
2 and S̈2 are related, as required. It is easily seen that the unique initial

element of Md and {s2 ∈ Si | O−→(s2) ⊆ O−→d(sd
2)} are related.TSFT(M t

⊆) ⊆ TSFT(M): Let Md be a deterministic transition system that is a failure trace im-

plementation of M t
⊆. Let 〈F0a0F1a1 . . . an−1Fn〉 be a failure trace of Md. Then, this failure

trace also exists in M t
⊆, with (S̈i)i≤n being a witness trace. We can now obtain, by backward

construction (starting in S̈n, going towards S̈0), a trace in M that has 〈F0a0F1a1 . . . an−1Fn〉
as failure trace, as required.

Ready and failure pair semantics make coarser observations than their trace variants, because
there is no intermediate ready or failure set information which is only provided for the last
state. Thus, states are merged if they are reachable via an arbitrary common label sequence
(regardless of intermediate ready or failure sets). However, we have to distinguish different
ready or failure pairs in the encoding of merged states, and therefore these are now pairs of
state sets and label sets.
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Figure 3.6: Examples of the transformations from TSRP and TSFP. The first of these trans-
forms the system in the middle (M) to the system on the left (Mp

=), the second one
transforms the system in the middle (M) to the system on the right (Mp

⊆). The
numbers and labels of the merged states in the transformed systems (Mp

= and Mp
⊆)

correspond to their pair of elementary states and label set. For the illustration of
Mp

⊆, states that have the same targets are identified. A transition pointing to an

oval indicates a set of transitions pointing to each element inside the oval.

Ψp
=(Ŝ), for ready pair inclusion, describes the merged states that are pairs (Ŝ, L̂) such that there

is an elementary state in Ŝ that corresponds to ready set L̂. Ψp
⊆(Ŝ) describes the corresponding

merged states for failure pair inclusion; here, the enabled labels need to be a subset of L̂.

Figure 3.6 gives examples of both transformations.

Transformation 3.6. For any transition system M = (S, Si,−→), we have

(i) TSRP(M) = TSRS(M
p
=) = TSRT(Mp

=) = TSRP(Mp
=), and

(ii) TSFP(M) = TSRS(M
p
⊆) = TSRT(Mp

⊆) = TSFT(Mp
⊆) = TSRP(Mp

⊆) = TSFP(Mp
⊆),

with Mp
C = (P(S)×P(L),Ψp

C(Si), {((S̈, L), a, Z ′) | a ∈ L∧Z ′ ∈ Ψp
C(S̈.

a
−→)}), where C ∈ {=,

⊆} and Ψp
C(Ŝ) = {(Ŝ, L̂) | ∃s ∈ Ŝ : O−→(s) C L̂}.

Proof. It is easy to see that Mp
= and Mp

⊆ are transition systems. From Lemma 3.5 we getTSRS(M
p
=) ⊆ TSRT(Mp

=) ⊆ TSRP(Mp
=) and TSRS(M

p
⊆) ⊆ TSRT(Mp

⊆) ⊆ TSFT(Mp
⊆) ⊆TSFP(Mp

⊆) and TSRT(Mp
⊆) ⊆ TSRP(Mp

⊆) ⊆ TSFP(Mp
⊆). Therefore, in order to complete

a circle of inclusions, the following four cases remain to be shown:TSRP(M) ⊆ TSRS(M
p
=): Let Md be a deterministic transition system that is a ready pair im-

plementation of M . Then, {(sd, (S̈,O−→d(sd))) | (sd.ΘMd

RP ) ⊆ (S̈.ΘM
RP) ∧ ∃s ∈ S̈ : O−→(s) =

O−→d(sd)}, with ΘM
RP defined as in Definition 2.5, yields a ready simulation that witnesses

that Md is a refinement of Mp
=. This is seen as follows:

Suppose sd
1 and (S̈1, L1) are related. Then, it follows that OMp

=
(S̈1, L1) = O−→d(sd

1).

Now suppose sd
2 ∈ (sd

2.
a

−→
d
). From (sd

1.Θ
Md

RP ) ⊆ (S̈1.Θ
M
RP) we get (i) ∃s2 ∈ (S̈1.

a
−→

) : O−→(s2) = O−→d(sd
2), which implies (S̈1, L1)

a
−→

p

= ((S̈1.
a

−→),O−→d(sd
2)) and (ii)

(sd
2.Θ

Md

RP ) ⊆ ((S̈1.
a

−→).ΘM
RP), which implies that sd

2 and (S̈2,O−→d(sd
2)) are related, as

required. By similar arguments we obtain that for the unique initial element sd
i of Md we

have that (Si,O−→d(sd
i )) is an initial element of Mp

=, which is related to sd
i .

37



Chapter 3 Expressiveness of Refinement SettingsTSRP(Mp
=) ⊆ TSRP(M): Let Md be a deterministic transition system that is a ready pair

implementation of Mp
=. Let 〈a0a1 . . . an−1Rn〉 be a ready pair of Md. Then, this ready pair

also exists in Mp
=, with (S̈i, Li)i≤n being a witness trace. We can now obtain, by backward

construction (starting in S̈n, going towards S̈0), a trace in M that has 〈a0a1 . . . an−1Rn〉 as
ready pair, as required.TSFP(M) ⊆ TSRS(M

p
⊆): Let Md be a deterministic transition system that is a failure pair

implementation of M . Then, {(sd, (S̈,O−→d(sd))) | (sd.ΘMd

FP ) ⊆ (S̈.ΘM
FP)}, with ΘM

FP defined
as in Definition 2.7, yields a ready simulation that witnesses that Md is a refinement of Mp

⊆.
This is seen as follows:

Suppose sd
1 and (S̈1, L1) are related. Then, from (sd

1.Θ
Md

FP ) ⊆ (S̈1.Θ
M
FP) we get OMp

⊆
(S̈1, L1) =

O−→d(sd
1). Now suppose sd

2 ∈ (sd
2.

a
−→

d
). From (sd

1.Θ
Md

RP ) ⊆ (S̈1.Θ
M
RP) we get (i) ∃s2 ∈

(S̈1.
a

−→) : O−→(s2) ⊆ O−→d(sd
2), which implies (S̈1, L1)

a
−→

p

⊆ ((S̈1.
a

−→),O−→d(sd
2)) and

(ii) (sd
2.Θ

Md

FP ) ⊆ ((S̈1.
a

−→).ΘM
FP), which implies that sd

2 and (S̈2,O−→d(sd
2)) are related, as

required. By similar arguments we obtain that for the unique initial element sd
i of Md we

have that (Si,O−→d(sd
i )) is an initial element of Mp

⊆, which is related to sd
i .TSRP(Mp

⊆) ⊆ TSRP(M): Let Md be a deterministic transition system that is a ready pair

implementation of Mp
⊆. Let 〈a0a1 . . . an−1Fn〉 be a failure pair of Md. Then, this failure pair

also exists in Mp
⊆, with (S̈i, Li)i≤n being a witness trace. We can now obtain, by backward

construction (starting in S̈n, going towards S̈0), a trace in M that has 〈a0a1 . . . an−1Fn〉 as
ready pair, as required.

The increase of expressiveness of these settings is illustrated in Figure 3.2 and argued as follows.
The failure approach cannot express an exclusive alternative between two labels. For example,
no transition system with respect to failure pair inclusion or failure trace inclusion can have

����������������// a // and ����������������// b // as implementations, without also having
��������
����������������// a 22ddd

b
,,ZZZ as implementation.

However, the ready approach can express such an exclusive alternative, as shown by Mr,ft in
Figure 3.7.

In pair approaches, behavior can only be described up to alternatives having the same label
path histories, whereas a trace approach can also distinguish alternatives that have the same
label path history but different next-step possibilities (up to failure or ready interpretation).
For example, no transition system with respect to failure pair inclusion or ready pair inclusion

can have
��������

������������������������// a 22ddd
b
,,ZZZ b // and ����������������// b // as implementations, without also having �������� ����������������// b // b // as

implementation. However, Mft,r of Figure 3.7 defines such a language via failure trace inclusion
and ready trace inclusion.

Ready simulation increases the expressiveness even more by distinguishing also alternatives
with the same label path history and next-step possibilities, but different future behaviors
in the past. For example, no transition system with respect to a trace approach can have

�������� ��������
����������������// a 22ddd

b
,,ZZZ

b //
and

��������
������������������������// a 22ddd

b
,,ZZZ b // as implementations, without also having

��������
����������������// a 22ddd

b
,,ZZZ . However,

Mrs,rt of Figure 3.7 defines such a language via ready simulation. The following lemma summa-
rizes the above results, from which the ‘strictly more’ expressiveness results for the transition
system-based settings are derived via transitivity arguments.
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Figure 3.7: Transition systems illustrating increases of expressiveness.

Lemma 3.7. For Mr,ft, Mft,r, Mrs,rt in Figure 3.7 and arbitrary M , we have:TSRP(Mr,ft) 6= TSFT(M), TSFT(Mft,r) 6= TSRP(M) and TSRS(Mrs,rt) 6= TSRT(M).

Proof. The proofs for all these results have already been sketched before the Lemma. Here,
we work out the details for the first case, TSRP(Mr,ft) 6= TSFT(M), for arbitrary M . Assume
there is some M with TSRP(Mr,ft) = TSFT(M). Then, M has failure trace implementations

����������������// a // and ����������������// b // , because Mr,ft has these ready pair implementations. Thus, M has (at
least) the following failure traces:

{〈∅〉, 〈{a}〉, 〈{b}〉, 〈∅aX〉, 〈∅bX〉, 〈{a}bX〉, 〈{b}aX〉 | X ⊆ {a, b}}.

The set of failure traces of M ′ def
=

��������
����������������// a 22ddd

b
,,ZZZ is a subset of this, namely

{〈∅〉, 〈∅aX〉, 〈∅bX〉 | X ⊆ {a, b}},

and, consequently, M ′ is a failure trace implementation of M , too. This, however, is a contra-
diction because TSRP(Mr,ft) = TSFT(M) and M ′ is not a ready pair implementation of Mr,ft,
since M ′ has ready pair 〈{a, b}〉 which Mr,ft has not.

3.3.2 Ready simulation and STS+TSRS is transformed to STS+ by setting the existence predicate to the set of labels for which
an outgoing transition exists.

Transformation 3.8. For any transition system M = (S, Si,−→),TSRS(M) = STS+((S, Si,−→,O−→)).

Proof. Is straightforwardly checked.

For transforming STS+ to TSRS, every state s is combined with a ready set L ⊆ L, indicating
that exactly these labels may not be removed in refinements. The incoming transitions are
determined by the incoming ones of s. Figure 3.8 presents a simple example.

Transformation 3.9. For any STS+ M = (S, S,−→, e), we haveSTS+(M) = TSRS((S
′, S′ ∩ (Si × P(L)),−→′))

with S′ = {(s, L) | e(s) ⊆ L ⊆ O−→(s)}, −→′= {((s, L), a, (s′, L′)) | s
a

−→ s′ ∧ a ∈ L}.

39



Chapter 3 Expressiveness of Refinement Settings

��������1 ��������2//

ab

�� ab //
{a} ∅

=⇒
1a 1ab

2∅

))SS uukk

a

ZZ
a --

a
QQ

((QQ

ab

ZZab
mm

ab
mm

vvmm

Figure 3.8: Example of the transformation from STS+ to TSRS. The numbers (resp. labels)
of the state names in the right picture correspond to the state (resp. label) subset
encoding of the transformation.

Proof. It can immediately be seen that (S′, S′ ∩ (Si × P(L)),−→′) is a transition system.

Let Md be a deterministic transition system that STS-refines M , with R being a suitable STS-
refinement relation. Then, it can be checked that {(sd, (s,O−→d(sd))) | (sd, s) ∈ R} witnesses
that Md ready simulation-refines (S′, S′ ∩ (Si × P(L)),−→′).

For the other direction, let Md be a deterministic transition system that ready simulation-
refines (S′, S′ ∩ (Si × P(L)),−→′), with R′ being a suitable ready simulation relation. Then,
it can be checked that {(sd, s) | ∃L : (sd, (s, L)) ∈ R′} witnesses that Md STS-refines M .STS is indeed strictly more expressive than TSRS, because the latter does not allow for the
specification of the empty language.

Lemma 3.10. For the STS ��������//
{a} and an arbitrary transition system M , we haveSTS( ��������//

{a}) 6= TSRS(M).

Proof. It is easily checked that every transition system has an implementation with respect
to ready simulation: take the same underlying state space and remove, as long as possible,
transitions for which another transition having the same source and label remain existent.

If we were to allow the initial set of a transition system to be empty and, therefore, not to
have any deterministic transition system as refinement, we obtain, by the following algorithm,
that STS and STS+ are equally expressive. Hence, the empty set is the only language that
increases the expressive power of STS and any other equally expressive refinement setting.

Proposition 3.11. An STS can be linearly transformed into an equivalent must-saturated STS+

–adapted such that an empty state set is allowed – by successively removing those states s and
their in- and outgoing transitions, for which e(s) 6⊆ O−→(s).

Proof. The language remains unaffected by such a transformation since the removed states
can never be related to a state of an implementation. A linear algorithm works as follows:
for every state and label, a count variable is used to store the number of outgoing transitions
having this label. These variables are initialized with −1 indicating that the state has not been
examined yet. Then, traverse the state space. Determine the corresponding count variables
for those labels that have to be present (otherwise, the value remains unmodified). If one of
the count variables becomes 0, remove this state and its incoming transitions. When removing
transitions, decrement the counters of their sources by 1. If this leads to a counter value of 0,
also schedule this state to be removed. Obviously, this algorithm is sound and linear.
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3.3.3 Remaining settingsSTS is easily transformed toMTSdet: For every state, model its associated existence predicate
e by introducing must transitions, labeled by elements from e and leading to a special state
sall that is refined by each implementation state.

Transformation 3.12. For any STS M = (S, Si,−→, e) and fresh sall /∈ S, we haveSTS(M) = MTSdet((S ∪ {sall}, S
i,−→∪ ({sall} × L × {sall}),

⋃

s∈S

{s} × e(s) × {sall})).

Proof. It can immediately be seen that M ′ def
= (S∪{sall}, S

i,−→∪ ({sall}×L×{sall}),
⋃

s∈S{s}×
e(s) × {sall}) is an MTS.

Let Md be a deterministic transition system that STS-refines M , with R being a suitable
STS-refinement relation. Then, it is easily checked that R ∪ {(s, sall) | s ∈ S} witnesses that
Md MTS-refines M ′.

For the other direction, let Md be a deterministic transition system that MTS-refines M ′, with
R′ being a suitable MTS-refinement relation. Then, it is easily checked that R′ \ {(s, sall) | s ∈
S} witnesses that Md STS-refines M .MTSdet and MTSdet

+ are transformed to DMTSdet and DMTSdet
+ , respectively, by turning

every must transition pointing to a state s into a must hypertransition pointing to the singleton
set {s}.

Transformation 3.13. (i) For any MTS M = (S, Si, 99K,−→), we haveMTSdet(M) = DMTSdet((S, Si, 99K, {(s, a, {s′}) | s
a

−→ s′})).

(ii) For any MTS+ M = (S, Si, 99K,−→), we haveMTSdet
+ (M) = DMTSdet

+ ((S, Si, 99K, {(s, a, {s′}) | s
a

−→ s′})).

Proof. For the proof of statement (i), it can immediately be seen that M ′ def
= (S, Si, 99K

, {(s, a, {s′}) | s
a

−→ s′}) is an MTS.

Let Md be a deterministic transition system that MTS-refines M , with R being a suitable
MTS-refinement relation. Then, it is easily checked that the same relation R witnesses that
Md DMTS-refines M ′.

For the other direction, let Md be a deterministic transition system that DMTS-refines M ′,
with R′ being a suitable DMTS-refinement relation. Then, it is easily checked that the same
relation R′ witnesses that Md MTS-refines M .

Statement (ii) is proven analogously.
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Figure 3.9: Example of the transformation from DMTSdet to STS. Numbers in merged states
in the right system correspond to their elementary states; e.g., the self loop of state
{2, 3} is obtained by choosing g and h such that g(2) = 3, g(3) = 2, h({2}) = 2,
and h({2, 3}) = 2.

We proceed with the transformation from DMTSdet to STS. The states in the transformed
system are power set states, with the intuition that a related implementation state has to be
related to all elementary states of a merged state. Transitions from a merged state lead to
those merged states that consist of a combination of targets of hypertransitions from contained
elementary states, together with one may-target for each elementary state. In the definition of
these successor sets Ca

S̈
, we use choice functions h : P(S) → S for the selection of an element

from a must hypertransition target, and g : S → S for the selection of a may transition target.
The existence predicate holds for a at a merged state iff there is a must hypertransition with
label a and leaving an elementary state of the merged state. Figure 3.9 shows an example of
this transformation.

Transformation 3.14. For any DMTS M = (S, Si, 99K,−→),DMTSdet(M) = STS((P(S), {{s0} | s0 ∈ Si},
⋃

S̈⊆S,a∈L

{S̈} × {a} × Ca
S̈
,O−→))

with Ca
S̈

= {g(S̈) ∪ h(S̈.
a

−→) | ∀s ∈ S̈ : s
a

99K g(s) ∧ ∀S̈′ ∈ (S̈.
a

−→) : h(S̈′) ∈ S̈′}.

Proof. It can immediately be seen that (P(S), {{s0} | s0 ∈ Si},
⋃

S̈,a{S̈} × {a} × Ca
S̈
,O−→) is

an STS.

Let Md be a deterministic transition system that DMTS-refines M , with R being a suitable
DMTS-refinement relation. Then, it can be checked that {(sd, S̈) ∈ Sd × P(S) | ∀s ∈ S̈ :
(sd, s) ∈ R} witnesses that Md STS-refines (P(S), {{s0} | s0 ∈ Si},

⋃
S̈,a{S̈}×{a}×Ca

S̈
,O−→).

For the other direction, let Md be a deterministic transition system that STS-refines (P(S),
{{s0} | s0 ∈ Si},

⋃
S̈,a{S̈}×{a}×Ca

S̈
,O−→), with R′ being a suitable STS-refinement relation.

Then, it can be checked that {(sd, s) | ∃S̈ ∈ (sd.R′) : s ∈ S̈} witnesses that Md DMTS-refines
M .

Finally, we present the transformation from DMTSdet to MTSdet
+ with complexity O((2|S|)|L|)

and, by restriction to MTSdet, obtain a transformation from MTSdet into MTSdet
+ with com-

plexity O(|S||L|).

A first observation is that MTSdet
+ can represent conjunctive behavior, i.e. it is possible to

require the conjunction of several follow-up behaviors. This can be modeled by several must
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transitions, that all have to be implemented by a deterministic transition system. However,
a state in MTSdet

+ cannot enforce the existence of a label a and, at the same time, model
disjunctive behavior after the execution of a (via nondeterminism) since, as soon as an outgoing
must transition (with implicit may transition) exists, all further outgoing may transitions
with the same label are redundant: in deterministic refinements, the unique transition of
the implementation already has to match with the may transition corresponding to the must
transition. The solution is to distribute the needed requirements to multiple states, where one
state (s,−) enforces action existence, and several further states (s, S̈), with S̈ ⊆ S, encode the
nondeterministic behavior. Must transitions to all these states make sure that each of them is
related to a single implementation state, which therefore has to meet all of the requirements.
These must transitions originate from another kind of state (s, f) ∈ S × Fs, which encodes
a complete resolution of the next-step nondeterminism in the DMTSdet-system. Here, Fs

is a set of functions that collect, per label a, a set from Ca
{s}, i.e. an element from every

must hypertransition target together with one may transition target. The resulting collection
contains those DMTSdet-states to which the successor of a related implementation state must
be related. To be precise, also no element can be collected if no must transition is present (a /∈
O−→(s)∧ f(a) = ∅). For contradictory states, Fs is empty. A state (s, f) points, via a-labeled
must transitions, to every element of f(a) × ({−} ∪ P(S)). A state (s,−) encodes the labels
necessary in s via must transitions to state sall, which is refined by any implementation state.
A state (s, S̈) is used to model the nondeterministic behavior of (i) the must hypertransition
target S̈, or (ii) the may transitions if S̈ = ({s}.

a
−→). This is achieved by outgoing may

transitions to every element s′ of S̈, combined with any value of Fs′ . For technical reasons,
(s, S̈) points to sall if S̈ does not correspond to a must hypertransition target or to the may
transition targets.

Figure 3.10 shows an example of this transformation.

Transformation 3.15. For any DMTS M = (S, Si, 99K,−→), we haveDMTSdet(M) = MTSdet
+ ((S′, Si′, 99K′,−→′))

with Ca
{s} defined as in Transformation 3.14 and

Fs = {f : L → P(S) | ∀a ∈ L : f(a) ∈ Ca
{s} ∨ (a /∈ O−→(s) ∧ f(a) = ∅)}

S′ = {sall} ∪ {(s, x) | s ∈ S ∧ x ∈ Fs ∪ {−} ∪ P(S)}

Si′ = {(s, x) | s ∈ Si ∧ x ∈ Fs} W a
s = (s.

a
−→) ∪ {(s.

a
99K)}

99K
′ = −→′ ∪ ({sall} × L × {sall}) ∪ {((s, x), a, sall) | x ∈ {−} ∪ P(S) \ W a

s } ∪

{((s, S̈), a, (s′, f ′)) | s′ ∈ S̈ ∧ S̈ ∈ W a
s ∧ f ′ ∈ Fs′}

−→′ = {((s, f), a, (s′, x′)) | f ∈ Fs ∧ s′ ∈ f(a) ∧ x′ ∈ {−} ∪ P(S)} ∪

{((s,−), a, sall) | a ∈ O−→(s)}

In the transformation, we allow the initial state set to be empty. This, however, does not affect

expressiveness, since, e.g., the modal transition system �������� ��������
��������

��������//
a 11ddd
a
,,XXX

a //
also describes the empty

language.

Proof of Transformation 3.15. It can immediately be seen that (S′, Si′, 99K′,−→′) is a modal
transition system.
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Figure 3.10: Example of the transformation from DMTSdet to MTSdet
+ . On the right, the may

transitions that are implied by must transitions are omitted, and the symbols
of the state names correspond to the encoding of the transformation: (i) pairs
with second element “−” correspond to the states that encode the existent labels;
(ii) the remaining pairs, which have a subset as second element, encode the may
transition targets and the must hypertransitions (states (s, S̈) are omitted if S̈ /∈
W a

s ∪ W b
s , since they do not influence refinement); (iii) a triple corresponds to

states that have a complete resolution, where the second (resp., third) component
encodes the image of a (resp., b). To improve readability, several copies of state
sall are used.

Let Md be a deterministic transition system that DMTS-refines M , with R being a suitable
DMTS-refinement relation. Then, it can be checked that {(sd, (s, x)) ∈ Sd × S′ | (sd, s) ∈

R∧ (x ∈ Fs ⇒ ∀a : ((sd.
a

99K
d
).R) ⊇ x(a)∧ (a ∈ O

99K
d(sd) ⇒ f(a) 6= ∅))}∪{(sd, sall) | sd ∈ Sd}

witnesses that Md MTS-refines (S′, Si′, 99K′,−→′).

For the other direction, let Md be a deterministic transition system that MTS-refines (S′, Si′,
99K

′,−→′), with R′ being the maximal MTS-refinement relation that witnesses this refinement.
The maximal MTS-refinement is obtained by making the union of all refinement relations that
are a witness. Then, it can be checked that {(sd, s) | (∃f ∈ Fs : (sd, (s, f)) ∈ R′) ∨ (∀x ∈
{−} ∪ P(S) : (sd, (s, x)) ∈ R′)} witnesses that Md DMTS-refines M .

This concludes our presentation of transformations, since all the remaining transformations
can be obtained by composition, resulting in all of the cases in quite competitive (efficient)
equivalent models.

Theorem 3.16. Our transformations yield the expressiveness hierarchy of refinement settings
that is depicted in Figure 3.2.

Proof. This is an immediate consequence of (i) the fact that the identity function yields trans-
formations from STS+ to STS; from MTSdet

+ to MTSdet; from DMTSdet
+ to DMTSdet; fromTSPW to TSRS; and from TSRS to TSPW, (ii) the soundness of all presented transformations

and (iii) Lemmas 3.7 and 3.10.
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3.4 Related results

3.4 Related results

3.4.1 Deciding trace inclusions

The following proposition shows how our transformations and the efficient decision procedures
for simulation-like preorders [CS01] can be used to decide the various inclusion problems. How-
ever, in general such derived algorithms would have limited practical relevance since deciding
trace-like preorders is known to be PSPACE-complete [SHRS96], but in some practical cases
the complexity of the decision procedure is certainly much lower.

Proposition 3.17. M ready trace-refines (failure trace-, ready pair-, failure pair-refines) M̃ iff

M t
= (M t

⊆, Mp
=, Mp

⊆) ready simulation-refines M̃ t
= (M̃ t

⊆, M̃p
=, M̃p

⊆, respectively).

Proof. The statement can be obtained as a consequence of the two following lemmas. The first
lemma states that the four trace inclusion notions coincide with the corresponding “thorough
refinement” notions, where thorough refinement is defined by set inclusion of implementation
sets. This property does not hold in general for ready simulation, but it holds for the images
of our transformations. Therefore our Transformations 3.4 and 3.6 not only preserve the sets
of implementations, but also the sets of all nondeterministic refinements.

Lemma 3.18. Let x ∈ {RT,FT,RP,FP}. Then, we have that x-inclusion between transition
systems coincides with “thorough refinement with respect to x-inclusion”, i.e. for any two tran-
sition systems M1,M2 we have (Si

1.Θ
M1
x ) ⊆ (Si

2.Θ
M2
x ) iff TSx(M1) ⊆ TSx(M2), where ΘM

x is
defined as in the definition of the refinement setting TSx.

Proof. ⇒: Let Md ∈ TSx(M1). Then, (Si
d.Θ

Md
x ) ⊆ (Si

1.Θ
M1
x ). From this fact, taking into

account that (Si
1.Θ

M1
x ) ⊆ (Si

2.Θ
M2
x ), we get (Si

d.Θ
Md
x ) ⊆ (Si

1.Θ
M1
x ) ⊆ (Si

2.Θ
M2
x ). Hence,

Md ∈ TSx(M2), as required.

⇐: Let ϑ ∈ (Si
1.Θ

M1
x ) and 〈s0s1s2 . . .〉 be a sequence of states witnessing ϑ. Then, we apply

the following construction: take any deterministic transition system M ′
d obtained from M1

by removing a collection of transitions until M ′
d becomes deterministic, but no outgoing

label from any state is lost. This deterministic transition system is extended by the fresh
states N. Then, the unique initial state is set to 0 and state i points via the ith label of
ϑ to i + 1, and by any label a different from the ith label of ϑ to some a-target of si (if
one exists; otherwise, no target is determined). It is easily checked that the so obtained
transition system, Md, is deterministic, Md ∈ TSx(M1), and ϑ ∈ (Si

d.Θ
Md
x ). Therefore, we

get Md ∈ TSx(M2), which is equivalent to (Si
d.Θ

Md
x ) ⊆ (Si

2.Θ
M2
x ). Thus, ϑ ∈ (Si

2.Θ
M2
x ), as

required. 3

Lemma 3.19. After applying any of the transformations presented in Transformations 3.4
or 3.6, ready simulation coincides with possible worlds-refinement2, i.e. M1

x
C 6RS M2

x
C iff

M1
x
C 6PW M2

x
C, where x ∈ {t, p} and C ∈ {=,⊆}.

Proof. It follows directly from the transitivity of ready-simulation refinement that M1 6RS M2

implies TSRS(M1) ⊆ TSRS(M2), i.e. M1 6PW M2. The opposite implication for the four
transformations is shown in the following case analysis, where C ∈ {=,⊆}. Here we take as

2Possible worlds-refinement corresponds to “thorough refinement with respect to ready simulation” in the
terminology of Lemma 3.18.
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M♦S̈ the transition system equal to M , except that the set of initial states is replaced by
S̈.
M t

C: It can be checked that {(S̈1, S̈2) | S̈1 6= ∅ ∧ S̈2 6= ∅ ∧TSRS(M1
t
C♦S̈1) ⊆ TSRS(M2

t
C♦S̈2)}

is a refinement relation witnessing M1
t
C 6RS M2

t
C.

Mp
C: It can be checked that {((S̈1, L1), (S̈2, L2)) | TSRS(M1

p
C♦(S̈1, L1)) ⊆ TSRS(M2

p
C♦(S̈2,

L2))} is a refinement relation witnessing M1
p
C 6RS M2

p
C. 3

This concludes the proof of Proposition 3.17.

3.4.2 Consistency checking

As a corollary, our transformations also yield a technique for checking consistency, i.e. for
checking whether the language of a model is non-empty. This is trivial for trace-like settings,
ready-simulation settings and must-saturated STSs, because these settings cannot describe the
empty language.

Corollary 3.20. For a DMTS, DMTS+, MTS, MTS+, or STS, consistency can be checked by
transforming it via our transformations into an STS, applying the algorithm given in Proposi-
tion 3.11, and finally checking if the initial state set is non-empty.

Proof. This is an immediate consequence of (i) Proposition 3.11, (ii) the fact that our transfor-
mations preserve the languages and (iii) the fact that all STS+s have a deterministic transition
system as implementation (provided the initial state set is non-empty).

3.5 Related work

For trace and tree languages, many transformations have been developed between automata
having different fairness constraints (Büchi, Muller, Rabin, Streett, parity), see e.g. [GTW02]
and the references therein. Transformations between non-automata settings are given in [CH93]
and [LS91], where the must-testing and ready simulation (2

3 -bisimulation) preorders, respec-
tively, are transformed to prebisimulation. In [FS05], forward/backward simulation and trace
inclusion are transformed to disjunctive modal transition systems (underspecified transition
systems). These transformations implicitly demonstrate that the transformed settings are
less or equally expressive with respect to the describable sets of (not necessarily determin-
istic) transition systems. Transformations preserving the complete preorder (and not only
the languages) are given in [FS07a] and [GJ03], where [FS07a] proves that disjunctive modal
transition systems can be transformed into 1-selecting modal transition systems but not vice
versa, whereas [GJ03] presents transformations between modal transition system variants with
transition labels and predicates on states.

An alternative approach to the examination of expressiveness is taken, e.g., in [EF02, vG01],
where preorders are compared regarding their coarseness. The obtained hierarchy – known
as the linear-time branching-time spectrum – coincides with ours for many transition system-
based settings, but not in general, as illustrated by possible worlds and ready simulation seman-
tics: by definition of possible-worlds semantics, they trivially have the same implementation-set
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expressiveness, although the possible worlds preorder is finer than the ready simulation pre-
order. For the coinciding settings, our results cannot be immediately derived from the corre-
sponding results in [vG01]. Consider, e.g., the increase of expressiveness between ready-trace
inclusion and ready simulation. This cannot be derived from Counterexample 8 of [vG01],
which is illustrated here in Figures 2.1(d) and (e), since both systems have exactly the same
sets of implementations, both with respect to ready-trace inclusion and ready simulation.

Yet another approach to studying the expressiveness of refinement settings is via modal logics
in the style of Hennessy and Milner [HM85]. While much work focuses on characterizing
preorders on general transition systems, [BL92] shows a correspondence between the preorder
underlying modal transition systems and the prime and consistent formulas of Hennessy-Milner
logic.

The problem of consistency checking is considered e.g. in [HH06]. The authors present an algo-
rithm, along with a complexity study, for checking the consistency of sets of modal transition
systems, i.e. for checking non-emptiness of the intersection of the modal transition systems’
implementation sets in terms of general transition systems. [LNW07] gives algorithms and
complexity results of consistency checks for several refinement notions.

Further refinement settings have been proposed in the literature, albeit for general transition
systems rather than deterministic transition systems, e.g. in [JW95, DN04, DN05, SG06, FH06,
FHSS09]. It is future work to check whether all of them (when ignoring their possible fairness
constraints) can be transformed to disjunctive mixed/modal transition systems and vice versa
while preserving their languages in terms of general transition systems.

3.6 Conclusions

This chapter studied the expressiveness of popular transition-system-based specification for-
malisms with respect to their describable languages in terms of deterministic transition systems.
Our results are summarized in the expressiveness hierarchy depicted in Figure 3.2. Our work
is of importance for system designers and verification-tool builders alike. The established ex-
pressiveness hierarchy aids system designers in selecting the right specification formalism for
a problem in hand, while our transformations allow tool builders to reuse refinement checking
algorithms across different formalisms.

Regarding future work, we wish to examine the succinctness of our refinement settings, show
that our transformations lie in optimal complexity classes, and compare refinement settings
based on preorders that abstract from internal computation.
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Chapter 4

Nondeterminism in Process Algebra

This chapter gives operational and axiomatic semantics to a process algebra having (i) a par-
allel operator interpreted in a concurrent (rather than distributed) setting, implying resolvable
nondeterminism, and (ii) a persistent choice operator, interpreted as persistent nondetermin-
ism. In order to handle the different kinds of nondeterminism, the operational semantics uses
µ-automata as underlying semantic model. Soundness and completeness of our axiom system
with respect to the operational semantics is shown.

4.1 Introduction

Process algebras, see [Bae05] for an overview, are standard formalisms for compositionally de-
scribing systems based e.g. on synchronous communication on an abstract level by the depen-
dencies of their observable communication. They serve as a domain for semantic foundations
of programming or modeling languages and are also used as modeling languages [BB87].

Example 4.1. Suppose there are two processes running concurrently on a single processor com-
puter which both have the possibility to send print jobs to a printer. Prior to sending the data
to the printer, any process must gain exclusive access to the printer by synchronizing on an
action request. After that, the print job can be sent. In our example, the first process sends
a photo (sendPhoto), whereas the second sends a document (sendDoc). Furthermore, the first
process can be disrupted by a user via action cancel. This simplified concurrent system (in a
parallel environment) can be modeled in process algebra based on synchronous communication
by

(request.sendPhoto + cancel)‖(request.sendDoc) (4.1)

where the printer and the user belong to the environment. Here, operator ‖ denotes parallel
composition, a.B denotes action prefix, and + denotes the choice operator. The semantics of
process algebra term (4.1) in terms of transition system is given by M , illustrated in Figure
4.1.

In the transition system of the above example two kinds of choice can be distinguished: (i)
External choice represented by outgoing edges with different labels. This choice occurs in
implementations and remains undecided until in an execution the environment decides which
of the possible actions is performed. (ii) Internal (nondeterministic) choice represented by
outgoing edges with the same labels. In this example, this nondeterminism is resolved by the
scheduler of the operating system since the two processes run on a single processor computer:
the scheduler will decide which process may perform its request action, i.e. synchronize to get
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Figure 4.1: Transition system M giving the semantics of process algebra term (4.1).
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Figure 4.2: Transition system Mref which ready simulation-refines M from Figure 4.1.

exclusive access to the printer. This refinement, performed by adding the scheduler, is formally
made precise by ready simulation.

Since this kind of nondeterminism is resolved by the refinement of adding a scheduler, it is
resolvable nondeterminism. Note, however, that in standard semantics based on bisimulation,
the abstraction from schedulers is usually regarded as persistent (since transition systems with
bisimulation cannot express resolvable nondeterminism). We consider this to be counterin-
tuitive in most cases because schedulers usually do not show “randomized” behavior that is
determined independently for each execution.

Branching time logics, like the modal µ-calculus [Koz83], are often used for describing prop-
erties of process algebras. Unfortunately, they are not preserved under refinement based on
ready simulation. Consider, e.g., the statement that there is an immediate request action en-
abled such that afterwards no document can be sent to the printer. This property is described
by the µ-calculus formula1

〈request〉 ([sendDoc] ff). (4.2)

Property (4.2) holds in M of Figure 4.1, but not in its refinement Mref of Figure 4.2. This
illustrates that branching time properties applied to a concurrent setting need to be interpreted
with respect to sets of schedulers: 〈a〉φ requires the existence of a scheduler such that φ holds
after the execution of a, and [a] φ states that, independent of which scheduler is chosen, φ will
hold after the execution of a. Consequently, property (4.2) has to be understood as follows:
there is a scheduler for the next step such that request is enabled and its execution (which
is deterministic if the scheduler is given) leads to a state where sendDoc is disabled for any

1See Appendix A for the definition of the µ-calculus syntax and semantics.
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Chapter 4 Nondeterminism in Process Algebra

scheduler. Since the refinement in Figure 4.2 specializes schedulers, µ-calculus formula (4.2) is
not preserved.

In Example 4.1, we illustrated that resolvable nondeterminism naturally arises through parallel
composition. In the following examples we argue that also persistent nondeterminism, i.e.
internal choice that remains in running implementations, occurs in applications:

Example 4.2. In the situation of Example 4.1, assume a faulty channel between the first process
and the printer. Then, it is possible that a signal request (e.g., encoded as 1) can be turned
into a signal cancel (e.g., encoded as 0). This is reflected by the process algebra term

(request.sendPhoto + request + cancel)‖(request.sendDoc) . (4.3)

We get persistent nondeterminism with respect to label request, because in case of a faulty
transmission it has to be handled as an action cancel. The nondeterminism is persistent because
refinement cannot decide on the existence of a fault, this is decided for every execution. In
other words, the existence of a fault is as uncontrollable as the result of throwing a dice.

Example 4.3. In the situation of Example 4.1, consider request to be an abstract action [Tho87]
for more refined labels like requestLowRes and requestHighRes, where the first establishes access
to the low resolution printing features of the printer, and the second gains access to the high
resolution features. Then, based on the printing capabilities offered by the printer, either a high
resolution photo (sendHighResPhoto) or a low resolution alternative (sendLowResPhoto) can be
sent. This is reflected by the following process algebra term having persistent nondeterminism
with respect to label request:

(request.sendHighResPhoto + request.sendLowResPhoto + cancel)‖(request.sendDoc) . (4.4)

Note that in these scenarios we have both persistent nondeterminism, introduced by the choice
operator of the first process, and resolvable nondeterminism, introduced by the unknown
scheduler of the parallel composition. In case there is no resolvable nondeterminism, i.e., if
we consider concrete systems with persistent nondeterminism only, transition systems together
with bisimulation as underlying equivalence notion is an appropriate semantic model. Then,
the µ-calculus is a suitable logic, since it characterizes transition systems up to bisimulation.
Nevertheless, transition systems are not an appropriate model whenever persistent and resolv-
able nondeterminism occur in a single setting, like in Examples 4.2 and 4.3. This is because a
choice for an underlying equivalence or preorder has to be made: bisimulation interprets nonde-
terminism as persistent (nondeterminism is preserved in both directions) and ready simulation
(or similar preorders) as resolvable (nondeterminism can be resolved, as seen in Figures 4.1 and
4.2). Furthermore, when using resolvable nondeterminism we expect a three-valued satisfac-
tion interpretation over the µ-calculus, with the possibility that a formula is neither satisfied
nor falsified. For example, we expect that 〈request〉 ((〈sendDoc〉 tt)∨ (〈sendLowResPhoto〉 tt))
holds in (4.4), since all its implementations do, but property (4.2) is “unknown” for (4.4) since
there are implementations that satisfy the property and there are implementations that do not
satisfy the property.

Contribution. In this chapter we give an operational and an axiomatic semantics to a process
algebra having a parallel operator interpreted in a concurrent setting and a choice operator
interpreted as persistent with respect to equal next-step actions. In particular, we adjust the
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semantics of [BB94] which has a persistent as well as a resolvable choice operator, to our in-
terpretation of parallel composition, since in their interpretation parallel composition yields
persistent nondeterminism. In order to handle the two kinds of nondeterminism adequately,
a semantic model with two kinds of transition relations, as in [BB94] and [HJ90], is used,
namely µ-automata [JW95] with their standard refinement notion and their three-valued sat-
isfaction relation over the µ-calculus. The two transition relations are defined using structural
operational semantics rules. One relation corresponds to the execution of actions, the other
corresponds to the removal of underspecification for the next action execution, which is called
concretization. In order to develop an axiomatic semantics, the process algebra is extended by
further operators, especially by a choice operator corresponding to resolvable nondeterminism.
From our axiom system, we derive an expansion theorem which expresses the parallel compo-
sition operator in terms of choice operators. Soundness and completeness of this axiom system
with respect to the operational semantics is shown.

Outline. Section 4.2 presents the syntax of the considered process algebra, and Section 4.3
gives its operational semantics in terms of µ-automata. Section 4.4 first extends the syntax
of the process algebra by further operators (Subsection 4.4.1), then uses the extended syntax
in the established (proven to be sound and complete) axiomatic semantics (Subsection 4.4.2),
and finally gives the modified expansion theorem in our context and proves its correctness
(Subsection 4.4.3). Section 4.5 discusses related work, and Section 4.6 concludes.

4.2 Syntax

In order not to distract from the technical problems and their solutions, we only present a simple
process algebra that does not have recursion, sequential composition, and parallel composition
with a synchronization mechanism. Instead, our process algebra consists of action prefix,
persistent nondeterminism, parallel composition, and action renaming. Note that a (CSP-
based) hiding operator is a special case of a renaming operator where the action is renamed
to the internal action. Here, we follow the philosophy that internal actions are observable. In
other words, we do not consider weak equivalence or weak refinement notions. Furthermore, we
assume that nondeterminism obtained via “mixed choices” is resolved inside the environment:
for example, if the system provides actions a and b and the environment their corresponding
counterparts, then the environment decides whether a or b is executed. The renaming/hiding
operator is also of special interest in our setting since it introduces nondeterminism, too. For
example, the process that provides action a leading to B1 and that provides action b leading
to B2 does not contain nondeterminism, but after hiding a and b, i.e., renaming a and b to
the internal action, nondeterminism occurs since now an internal step either leads to B1 or to
B2. Again, both interpretations of persistent or resolvable nondeterminism are possible for the
renaming operator. But in our setting nondeterminism obtained through hiding (and therefore
implicitly for renaming) must be interpreted as resolvable nondeterminism. This is argued as
follows: The system has a stimulus for any hidden action. These hidden actions can be
considered to originate from an additional component that continuously provides these hidden
actions. Then, the scheduler of the parallel composition decides which parallel component
executes next. Consequently, hiding (and therefore renaming) yields resolvable nondeterminism
with our interpretation of schedulers of parallel components, which assumes that schedulers
do not behave randomly.
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PA, the set of all basis process algebra terms, is generated by

B ::= 0 | a.B | B + B | B‖B | B〈a/b〉 ,

where a, b ∈ L. Process 0 describes a deadlocked process, i.e. no further actions can be
executed. We sometimes omit symbol 0 by writing a instead of a.0. Process a.B allows the
execution of action a resulting in process B. Persistent choice2 is described by B1 + B2,
and B1‖B2 describes parallel composition. The parallel composition has implicit resolvable
nondeterminism, introduced by abstraction from a scheduler favoring one of the two sides.
B〈a/b〉 describes the process where the execution of a in B becomes the execution of b. All
other action execution, including action b, remains unaffected. Note that this renaming process
also introduces resolvable nondeterminism as described at the beginning of this section.

4.3 Operational semantics

Our semantic model is µ-automata, as defined in Section 2.3.2. This model is equipped with
two transition relations where the branch-transition relation, leading from branch-states to
or-states and denoted by −→, is used for execution steps, with nondeterminism interpreted as
persistent. The or-transition relation, leading from or-states to branch-states and denoted
by ⇒, is used for the definition of resolvable nondeterminism. µ-automata come with a three-
valued satisfaction relation for the µ-calculus, which is preserved under refinement [DN05].

In order to define the operational semantics we use two different kinds of expressions: one
where underspecification for the next step is allowed (PA, corresponding to the or-states)
and one where it is not (PAcon, corresponding to the branch-states), i.e. where resolvable
nondeterminism for the next execution is resolved3. Then, additionally to the step transition
relation (−→, corresponding to branch-transition relation) from PAcon to PA, a concretization
relation (⇒, corresponding to the or-transition relation) from PA to PAcon, which resolves the
resolvable nondeterminism for the next execution, is used. Formally, PAcon denotes the set of
all process algebra terms generated by

P ::= [0] | [a.B̂] | P + P | P |〉
B̂,A,B̃

P | P 〈a/b, v〉 ,

where a, b ∈ L, A ⊆ L, B̂, B̃ ∈ PA, and v ∈ {d, s}. The intuition of the operators is similar
to the one of the operators given in Section 4.2, except that here the scheduler of the parallel
composition and of the renaming operator is determined for the next step. First, we explain
the intuition of parallel composition P1|〉B1,A,B2P2, at first neglecting B1 and B2, which will be
explained later, and using the notation P1|〉AP2 instead. Here, A specifies a scheduler, which
need not be explicitly specified in standard semantics based on ready simulation, since there
schedulers are adequately handled via ready simulation. However, the scheduler needs to be
modeled if both resolvable nondeterminism and persistent choice should appear in one setting.
The scheduler information is interpreted as follows: The right side is favored in P1|〉AP2 for
actions in A, whereas the left side is favored for actions in L \ A. This favoring concerns only
the next step, i.e., after the execution of an action, any scheduling is allowed again. This is
even the case if an action parallel to P1|〉AP2 is executed, e.g., if P3 executes action a leading to

2In Section 4.4.1 we will also introduce a resolvable choice operator ⊕.
3The superscript in PA

con is short for “concrete”.
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Table 4.1: Resolution of next-step-underspecification by relation ⇒ ⊆ PA × PAcon.

0 ⇒ [0] a.B ⇒ [a.B]
B1 ⇒ P1 B2 ⇒ P2
B1 + B2 ⇒ P1 + P2

B1 ⇒ P1 B2 ⇒ P2 A ⊆ L
B1‖B2 ⇒ P1|〉B1,A,B2P2

B ⇒ P v ∈ {d, s}
B〈a/b〉 ⇒ P 〈a/b, v〉

B3 in (P1|〉AP2)|〉AP3, the resulting process is, roughly speaking, (P1‖P2)‖B3, where all next
step scheduling is removed. Note that this approach is more appropriate than the approach in
which the partial scheduler is kept (in this case (P1|〉AP2)‖B3 would be the result), since the
scheduler is global and therefore can depend on any past execution.4 Furthermore, associativity
of ‖ would be lost in the alternative approach, which is illustrated later in Example 4.6. In
order to model the undoing of the scheduler information efficiently, the parallel composition
stores the original processes of its components (here B1 and B2) and replaces the non-executing
component by its stored original one where no scheduler information is present. This will be
clarified by the transition rules.

The scheduler information v of the next execution is added to the renaming operator: the
execution of the action corresponding to the source label a of the renaming, which becomes b,
is favored in B〈a/b, s〉, whereas the execution of the action corresponding to the destination
label b is favored in B〈a/b,d〉. Here, favoring means that for B〈a/b,d〉, process B may only
execute a (which will be renamed to b) if B cannot execute b, and analogously for B〈a/b, s〉
where a is favored. Again, this scheduling of the renaming operator only applies for the next
action execution, i.e. after the execution of any action, possibly different from b, the current
favoring is removed.

The concretization relation ⇒ is given in the upper section of Table 4.1, where the underspecifi-
cation of the next step is resolved, and the step transition relation −→ is presented in the lower
section of Table 4.2, where actions are executed resulting in processes with underspecification
kept for the next step executions.

We give some comments on ⇒. The resolution of next-step-underspecification has to take place
in every subpart that can potentially make the next execution, consequently resolution does not
take place for B in a.B. In the parallel composition, however, the next-step-underspecification
is resolved by choosing an arbitrary scheduler. The parallel composition operator stores the
original processes such that it can efficiently undo the concretization. In the renaming oper-
ator, the next-step-underspecification is resolved by either favoring the action corresponding
to the source label (s) or favoring the action corresponding to the destination label (d) of the
renaming.

We proceed with some comments on −→. The rules for [a.B] and P1 + P2 are standard. The
left side of the parallel composition P1|〉B3,A,B4P2 can execute a if (i) the left side is favored

for a by the scheduler (a /∈ A) or (ii) the right side does not provide a (P2 6
a

−→). Symmetric

4The approach where the partial scheduler is kept makes only sense if each parallel component has its own
scheduler and there is an additional global scheduler that decides which of the parallel components is favored.
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Table 4.2: Action execution by relation −→ ⊆ PAcon × L × PA. Here, ⇒ denotes logical
implication.

[a.B]
a

−→ B

i ∈ {1, 2} Pi
a

−→ B

P1 + P2
a

−→ B

P1
a

−→ B1 a ∈ A ⇒ P2 6
a

−→

P1|〉B3,A,B4P2
a

−→ B1‖B4

P2|〉B4,L\A,B3
P1

a
−→ B4‖B1

P
c

−→ B c /∈ {a, b}

P 〈a/b, v〉
c

−→ B〈a/b〉

P
b

−→ B v = s ⇒ P 6
a

−→

P 〈a/b, v〉
b

−→ B〈a/b〉

P
a

−→ B v = d ⇒ P 6
b

−→

P 〈a/b, v〉
b

−→ B〈a/b〉

constraints hold for the execution of a on the right side of P1|〉B3,A,B4P2. As already mentioned
before, the next-step-underspecification resolution has to be undone for the parallel component
that did not make the execution. Therefore, process B3 or B4 replaces the non-executed side.
In P 〈a/b, v〉 an action c different from a and b can be executed leading to B〈a/b〉, whenever P
can execute c leading to B. This is stated in the first rule. Furthermore, P 〈a/b, v〉 can execute
b, leading to a process B〈a/b〉, where B can be obtained after executing b in P , whenever
v favors the destination label (v = d) or no action a is provided by P . Similarly, P 〈a/b, v〉
can execute b, leading to a process B〈a/b〉, where B can be obtained after executing a in
P , whenever v favors the source label (v = s) or no action b is provided by P . In all these
three cases, the scheduler is removed after the execution. Note that by definition, the target
processes of −→ do not contain any scheduling information.

Definition 4.4 (Operational semantics). The operational semantics of a process algebra term
B ∈ PA is the µ-automaton (PA,PAcon, {B},⇒,−→), where ⇒ is given as in Table 4.1 and
−→ is given as in Table 4.2. We say that a process algebra term B from PA refines another
one B′, written B ≤ B′, if the operational semantics of B µ-refines the operational semantics
of B′. Furthermore, B is refinement equivalent to B′, written B ≡ B′, if B refines B′ and B′

refines B.

Example 4.5. The operational semantics for (a + a.b)‖a is illustrated in Figure 4.3.

Example 4.6. We illustrate that associativity of parallel composition does not hold, if the
resolution of underspecification in the parallel composition rule of Table 4.2 is not undone,
i.e., if the original process does not replace the current process in case of non-execution. Under
this assumption, B̃1 = a.b‖(a‖a.c) does not refine B̃2 = (a.b‖a)‖a.c, which is seen as follows.
By definition B̃1 ⇒ [a.b] |〉L([a] |〉L[a.c]). Since action c has to be possible afterwards, this
process can only be adequately matched by B̃2 via a process that is refinement equivalent to
([a.b] |〉{a}[a])|〉{a} [a.c] or to ([a.b] |〉∅[a])|〉{a} [a.c]. Thus after the execution of a we would need
that a.b‖(a‖c) refines ([a.b] |〉{a}[a])‖ [c] or refines ([a.b] |〉∅[a])‖ [c]. Furthermore, a.b‖(a‖c) can
be concretized such that either b is possible after the execution of a or no b is possible after the
execution of a. But only one of these concretizations is possible in ([a.b] |〉{a}[a])‖ [c] and in

([a.b] |〉∅[a])‖ [c]. Hence, B̃1 does not refine B̃2.
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Figure 4.3: The operational semantics of (a + a.b)‖a, where L = {a, b}. or-states of the
µ-automaton have double-lined frames, whereas branch-states have single-lined
frames. or-transitions are drawn as double-line arrows, whereas branch-transitions
are drawn as labeled single-line arrows. A state described by a set stands for a set
of states, described by the elements of the set and having the same incoming and
outgoing transitions as the state labeled with the set.

Example 4.7. Process a.(B1‖(a.B2)) refines (a.B1)‖(a.B2), but not vice versa. This illustrates
that refinement over PA is no equivalence relation.

Theorem 4.8. Refinement is preserved under all process algebra operators, i.e., if B1 ≤ B′
1 ∧

B2 ≤ B′
2 then

(i) a.B1 ≤ a.B′
1,

(ii) B1 + B2 ≤ B′
1 + B′

2,

(iii) B1‖B2 ≤ B′
1‖B

′
2, and

(iv) B1〈a/b〉 ≤ B′
1〈a/b〉.

Proof. We only show the preservedness of refinement under parallel composition, since the
other operators can be easier shown by using the same technique. Let R be a µ-refinement
relation containing (B1, B

′
1) and (B2, B

′
2). Define R′ = {(B3‖B4, B

′
3‖B

′
4) | (B3, B

′
3) ∈ R ∧

(B4, B
′
4) ∈ R} ∪ {(P1|〉B3,A,B4P2, P

′
1|〉B′

3,A,B′
4
P ′

2) | A ⊆ L ∧ (P1, P
′
1) ∈ R ∧ (P2, P

′
2) ∈ R ∧

(B3, B
′
3) ∈ R ∧ (B4, B

′
4) ∈ R}. Then it can be checked that R′ is a µ-refinement relation,

which establishes B1‖B2 ≤ B′
1‖B

′
2, as required.

Note that the straightforward extension of ≤ to PAcon is also preserved under all process algebra
operators for PAcon.

4.4 Axiomatic semantics

In this section we present a sound and complete axiom system for refinement over PA.

55



Chapter 4 Nondeterminism in Process Algebra

Table 4.3: Additional transition rules for the extended process algebra.

i ∈ {1, 2} Bi ⇒ P
B1 ⊕ B2 ⇒ P

B2 ⇒ P2
c.B1 >a B2 ⇒ c.B1 >a P2

B ⇒ P
B \ a ⇒ P \ a

B1 ⇒ P1 B2 ⇒ P2
B1|〉B3,A,B4B2 ⇒ P1|〉B3,A,B4P2

B ⇒ P
B〈a/b, v〉 ⇒ P 〈a/b, v〉

P2 6
a

−→

c.B1 >a P2
c

−→ B1

P
a

−→ B b 6= a

P \ b
a

−→ B

4.4.1 Syntax extension

In order to define the axioms, further terms are introduced: the most interesting one is the
resolvable nondeterminism operator ⊕, which is also of interest for modeling by itself. The
intuition of resolvable nondeterminism B1 ⊕ B2 is that either B1 or B2 is implemented, but
not both. Thus, B1 + B2 is in general not an allowed implementation.

Further added terms are: (i) A next step restriction process B \ a, where B may not execute
action a as its next step. Note that action a may be executed if an action different from a
is executed before. (ii) A conditional prefix term c.B1 >a B2, which is equivalent to c.B1

whenever B2 cannot execute action a in its next step, and it is equivalent to 0 if B2 can
execute action a in its next step. (iii) A parallel composition B1|〉B3,A,B4B2 where the scheduler
information for the next execution and the replacing processes for non-execution are already
given. (iv) A renaming operator B〈a/b, v〉, where the scheduler information for the next
execution is already present. Also some counterparts of these new expressions are added to the
process algebra terms where the next-step-underspecification is resolved. Formally, we define
P̃A to be the set of all process algebra terms generated by

B ::= 0 | a.B | B + B | B‖B | B〈a/b〉 | B ⊕ B | B \ a | c.B >a B | B|〉B,A,BB |

B〈a/b, v〉

and we define P̃A
con

to be the set of all process algebra terms generated by

P ::= [0] | [a.B̂] | P + P | P |〉B̂,A,B̃P | P 〈a/b, v〉 | P \ a | c.B̂ >a P

where a, b, c ∈ L, A ⊆ L, B̂, B̃ ∈ P̃A and v ∈ {d, s}. The previous transition rules (Table 4.1)
are extended by those in Table 4.3. Note that refinement is preserved also under the newly
introduced operators, as is easily checked.

We comment on ⇒. The resolvable nondeterminism ⊕ is resolved by choosing either the right
or the left side and resolving this term. In B1|〉B3,A,B4B2 only B1 and B2 have to be resolved,
since no next step analysis takes place in term B3 and B4. By the same argument, only B2

has to be resolved in c.B1 >a B2.
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Table 4.4: Definition of predicate nuf.

nuf(0) nuf(a.B1)
nuf(B1) nuf(B2)

nuf(B1 + B2)
nuf(B)

nuf(B \ a)

nuf(B2)
nuf(c.B1 >a B2)

nuf(B1) nuf(B2)
nuf(B1|〉B3,A,B4B2)

nuf(B)
nuf(B〈a/b, v〉)

Now some comments on −→. In c.B1 >a P2 a c-step to B1 is possible iff the right hand side
cannot execute a. In P \ b all executions of P that differ from b can take place as next step,
in which case \b is removed, since this restriction only holds for the next step execution.

Remark 4.9. For terms of PA, the same set of provided actions is obtained after every ⇒-step.
This does not hold for terms of P̃A, as, e.g., illustrated by a ⊕ 0.

The operational semantics of terms in P̃A and refinement (equivalence) over P̃A are defined
as in Definition 4.4 except that the extended concretization and step transition relations are
used.

4.4.2 Axioms

Before we present the axiom system, we discuss some of the (standard) axioms that do not
hold in general, i.e. where refinement equivalence cannot be guaranteed, which is denoted by
6':

First, B+B 6' B, since the left hand side allows more kinds of resolution of underspecification.
For example, (a ⊕ b) + (a ⊕ b) can be resolved to [a] + [b], which provides a as well as b. On
the other hand, a ⊕ b cannot be resolved such that both actions are provided. By similar
arguments,

(B1‖B2) + (B1‖B3) 6' B1‖(B2 + B3), (4.5)

since the underspecification in B1 can possibly be resolved in two different ways, such that it
cannot be matched by a single resolution of B1. More precisely, after ⇒ it is possible that
the left hand side of (4.5) can provide more actions than the right hand side. In case B1 is
next-step-underspecification-free, e.g. if B1 is of form

∑
i∈I ai.Bi for some I, ai, and Bi, we do

not have this problem. Predicate nuf on P̃A, which is formally defined in Table 4.4, collects
those next-step-underspecification-free processes. Resolution of next-step-underspecification
yields a unique term if nuf holds:

Lemma 4.10. Suppose B ∈ P̃A and L 6= ∅. If nuf(B), then B has a unique target with respect
to ⇒, i.e., nuf(B) ⇒ |{B}◦ ⇒ | = 1.

Proof. Can be straightforwardly shown by induction on the structure of B.
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Nevertheless, the processes of (4.5) are not equivalent even if nuf(B1) holds since the resolvable
nondeterminism of the parallel composition can be resolved in different ways. For example,
after applying ⇒ on (a.b)‖(a.c + 0), there is exactly one transition t labeled with a, and either
b or c is possible afterwards. On the other hand a ⇒ step from ((a.b)‖(a.c)) + ((a.b)‖0) exists
where two transitions t1, t2 labeled with a are enabled such that b is possible after t1 and c is
possible after t2. We remedy this problem by resolving the resolvable nondeterminism of the
parallel operator before parallel composition is expanded. This motivates why we introduced
the term B1|〉B3,A,B4B2 already in P̃A.

In Table 4.5, axioms for the refinement relation � over P̃A are presented, where we assume, as
usual, that L is finite. Furthermore, ' is defined to be � ∩ �,

⊕
i∈{j} Bi is defined to be Bj ,

and for finite I,
⊕

i∈I Bi is defined to be Bi′ ⊕ (
⊕

i∈I\{i′} Bi) where i′ ∈ I (by the associativity

and commutativity of ⊕ the definition is independent of the chosen i′).

Theorem 4.11. The axioms from Table 4.5 are sound and complete, i.e., ∀B1, B2 ∈ P̃A : B1 �
B2 ⇐⇒ B1 ≤ B2.

Proof. Soundness follows from the soundness of each axiom, which can be checked straightfor-
wardly. Completeness is shown as follows: by applying induction on an adequate well-founded
order on terms5 it can be checked that every term can be reduced to a form

n⊕

i=0

m(i)−1∑

j=0

ai,j .Bi,j,

where also Bi,j is of that form (note that we do not consider recursion).

By using Axioms A1 – A7 together with Axiom A32, two refining terms having the above form
can be transformed to each other, which is shown as follows:

Suppose B =
⊕n

i=0

∑m(i)−1

j=0 ai,j .Bi,j ≤
⊕n′

i′=0

∑m(i′)−1

j′=0 a′i′,j′.B
′
i′,j′ = B′, where Bi,j and B′

i′,j′

are also of that form. We show B � B′ by induction on the maximum action prefix depth of
B, which is always finite since there is no recursion. From B ≤ B′ we get, for all i ≤ n, that

there exists some i′i ≤ n′ such that
∑m(i)−1

j=0 ai,j.Bi,j ≤
∑m(i′

i
)−1

j′=0 a′i′i,j′
.B′

i′i,j
′. Then, by Axioms

A32 and A3, we obtain

n⊕

i=0

m(i′
i
)−1∑

j′=0

a′i′i,j′
.B′

i′i,j
′ �

n′⊕

i′=0

m(i′)−1∑

j′=0

a′i′,j′.B
′
i′,j′ = B′ .

From
∑m(i)−1

j=0 ai,j .Bi,j ≤
∑m(i′

i
)−1

j′=0 a′i′i,j′
.B′

i′i,j
′ we get (α) for every j < m(i) there is j′i,j < m(i′i)

such that ai,j = a′i′i,j′i,j
and Bi,j ≤ B′

i′i,j
′
i,j

and (β) for every j′ < m(i′i)
there is ji,j′ < m(i) such

that ai,ji,j′
= a′i′i,j′

and Bi,ji,j′
≤ B′

i′i,j
′ . Then, by Axioms A4 – A6, we obtain

n⊕

i=0




m(i′
i
)−1∑

j′=0

ai,ji,j′
.B′

i′i,j
′


 +




m(i)−1∑

j=0

a′i′i,j′i,j
.B′

i′i,j
′
i,j


 �

n⊕

i=0

m(i′
i
)−1∑

j′=0

a′i′i,j′
.B′

i′i,j
′ .

5Terms in the described normal form are assigned a value of 0. For other terms, determine their syntax tree
and multiply the values of substructures with a suitable constant, e.g. |2L| + 1. Then, add the weights of all
orthogonal branches.
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Table 4.5: Axiomatic semantics of the refinement relation � over P̃A.

(A1) B1 ⊕ B2 ' B2 ⊕ B1

(A2) B1 ⊕ (B2 ⊕ B3) ' (B1 ⊕ B2) ⊕ B3

(A3) B ⊕ B ' B
(A4) B1 + B2 ' B2 + B1

(A5) B1 + (B2 + B3) ' (B1 + B2) + B3

(A6) a.B + a.B ' a.B
(A7) B + 0 ' B
(A8) B1 + (B2 ⊕ B3) ' (B1 + B2) ⊕ (B1 + B3)
(A9) B1‖B2 '

⊕
A⊆L(B1|〉B1,A,B2B2)

(A10) B1|〉B4,A,B5B2 ' B2|〉B5,L\A,B4
B1

(A11) B1|〉B4,A,B5(B2 ⊕ B3) ' (B1|〉B4,A,B5B2) ⊕ (B1|〉B4,A,B5B3)
(A12) B1|〉B4,A,B5(B2 + a.B3) ' ((B1 \ a)|〉B4,A,B5B2) + a.(B4‖B3) if a ∈ A
(A13) B1|〉B4,A,B5(B2 + a.B3) ' (B1|〉B4,A,B5B2) + (a.(B4‖B3) >a B1)

if a /∈ A ∧ nuf(B1)
(A14) 0 |〉B4,A,B50 ' 0
(A15) B〈a/b〉 ' B〈a/b,d〉 ⊕ B〈a/b, s〉
(A16) (B1 ⊕ B2)〈a/b, v〉 ' B1〈a/b, v〉 ⊕ B2〈a/b, v〉
(A17) (B1 + c.B2)〈a/b, v〉 ' B1〈a/b, v〉 + c.(B2〈a/b〉) if c /∈ {a, b}
(A18) (B1 + a.B2)〈a/b,d〉 ' B1〈a/b,d〉 + (b.(B2〈a/b〉) >b B1) if nuf(B1)
(A19) (B1 + b.B2)〈a/b,d〉 ' (B1 \ a)〈a/b,d〉 + b.(B2〈a/b〉)
(A20) (B1 + a.B2)〈a/b, s〉 ' (B1 \ b)〈a/b, s〉 + b.(B2〈a/b〉)
(A21) (B1 + b.B2)〈a/b, s〉 ' B1〈a/b, s〉 + (b.(B2〈a/b〉) >a B1) if nuf(B1)
(A22) 0〈a/b, v〉 ' 0
(A23) (B1 ⊕ B2) \ a ' (B1 \ a) ⊕ (B2 \ a)
(A24) (B1 + B2) \ a ' (B1 \ a) + (B2 \ a)
(A25) 0 \ a ' 0
(A26) (a.B) \ a ' 0
(A27) (b.B) \ a ' b.B if b 6= a
(A28) c.B1 >a (B2 ⊕ B3) ' (c.B1 >a B2) ⊕ (c.B1 >a B3)
(A29) c.B1 >a (B2 + a.B3) ' 0
(A30) c.B1 >a (B2 + b.B3) ' c.B1 >a B2 if b 6= a
(A31) c.B >a 0 ' c.B
(A32) B1 � B1 ⊕ B2
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Induction yields Bi,j � B′
i′i,j

′
i,j

and Bi,ji,j′
� B′

i′i,j
′. Therefore, we obtain

n⊕

i=0




m(i′
i
)−1∑

j′=0

ai,ji,j′
.Bi,ji,j′


 +




m(i)−1∑

j=0

ai,j.Bi,j


 �

n⊕

i=0




m(i′
i
)−1∑

j′=0

ai,ji,j′
.B′

i′i,j
′


 +




m(i)−1∑

j=0

a′i′i,j′i,j
.B′

i′i,j
′
i,j


 .

By Axioms A4 – A6 we get

B =

n⊕

i=0

m(i)−1∑

j=0

ai,j.Bi,j �
n⊕

i=0




m(i′
i
)−1∑

j′=0

ai,ji,j′
.Bi,ji,j′


 +




m(i)−1∑

j=0

ai,j.Bi,j


 ,

as required.

Example 4.12. By using Axiom A32, we get

a.(b ⊕ c) � (a.(b ⊕ c)) ⊕ (a.b).

Furthermore, by using Axiom A32 and then Axiom A3, we obtain

(a.(b ⊕ c)) ⊕ (a.b) � (a.(b ⊕ c)) ⊕ (a.(b ⊕ c)) ' a.(b ⊕ c).

Thus, we have shown that

a.(b ⊕ c) ' (a.(b ⊕ c)) ⊕ (a.b).

Note that this cannot be shown by using only Axioms A1 – A31 since the necessary removal of
⊕ then becomes impossible. This illustrates that Axiom A32 is essential for the completeness
of our axiom system with respect to '.

4.4.3 Expansion theorem

How parallel composition can be expressed in terms of nondeterminism is known as the expan-
sion theorem [Mil80, BK85]. In our setting, the expansion theorem is more complicated than
usual since resolvable as well as persistent nondeterminism has to be handled. The theorem is
directly derived from our axiom system and illustrated in the following, where

∑−1
j=0 Bj yields

0:

Theorem 4.13 (Expansion theorem).

B‖B′ '
⊕

A⊆L

n⊕

i=0

n′⊕

i′=0

( ∑

j∈J(A,i,i′)

ai,j.(Bi,j‖B
′) +

∑

j′∈J ′
(A,i,i′)

a′i′,j′ .(B‖B′
i′,j′)

)
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where

B =

n⊕

i=0

m(i)−1∑

j=0

ai,j.Bi,j,

B′ =
n′⊕

i=0

m′
(i)

−1∑

j=0

a′i,j.B
′
i,j,

J(A,i,i′) = {j < m(i) | ai,j ∈ A ⇒ ∀j′ < m′
(i′) : ai,j 6= a′i′,j′}, and

J ′
(A,i,i′) = {j′ < m′

(i′) | a′i′,j′ /∈ A ⇒ ∀j < m(i) : ai,j 6= a′i′,j′}.

Proof. By Axioms A2 and A5, which express associativity with respect to ⊕ and +, respec-
tively, it is allowed to reorder terms. Such steps are not explicitly mentioned in the following
proof. We start by applying Axiom A9 to B‖B′ which yields

⊕

A⊆L

(
B|〉B,A,B′B′

)
.

Thereafter, by applying Axiom A10 we obtain
⊕

A⊆L

(
B′|〉B′,L\A,BB

)
.

Applying Axiom A11 repeatedly and using the definitions of B and B′ yields

⊕

A⊆L

n⊕

i=0


B′|〉B′,L\A,B




m(i)−1∑

j=0

ai,j.Bi,j





 .

By applying Axiom A10 and thereafter Axiom A11 we obtain

⊕

A⊆L

n⊕

i=0

n′⊕

i′=0







m(i)−1∑

j=0

ai,j.Bi,j


 |〉B,A,B′




m′
(i′)

−1∑

j′=0

a′i′,j′.B
′
i′,j′





 . (4.6)

By applying Axiom A13 (and by suitably reordering using Axiom A5) we get (where also
Axiom A7 is applied if necessary)

⊕

A⊆L

n⊕

i=0

n′⊕

i′=0







∑

j∈{0,..,m′
(i)

−1}:a′
i′,j′

/∈A


a′i′,j′ .

(
B‖B′

i′,j′
)

>a′
i′,j′

m(i)−1∑

j=0

ai,j.Bi,j





 +







m(i)−1∑

j=0

ai,j.Bi,j


 |〉B,A,B′




∑

j′∈{0,..,m′
(i′)

−1}:a′
i′,j′

∈A

a′i′,j′ .B
′
i′,j′








 .

By applying Axiom A29, A30 and A31 repeatedly (and also Axiom A7 if necessary) we obtain

⊕

A⊆L

n⊕

i=0

n′⊕

i′=0







∑

j∈J ′
(A,i,i′)

:a′
i′,j′

/∈A

a′i′,j′ .
(
B‖B′

i′,j′
)

 +







m(i)−1∑

j=0

ai,j.Bi,j


 |〉B,A,B′




∑

j′∈{0,..,m′
(i′)

−1}:a′
i′,j′

∈A

a′i′,j′.B
′
i′,j′








 .
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Applying Axiom A12 repeatedly yields (by using also Axiom A7)

⊕

A⊆L

n⊕

i=0

n′⊕

i′=0







∑

j′∈J ′
(A,i,i′)

:a′
i′,j′

/∈A

a′i′,j′ .
(
B‖B′

i′,j′
)

 +










m(i)−1∑

j=0

ai,j.Bi,j


 \ {a′i′,j′ | j′ ∈ {0, ..,m′

(i′) − 1} ∧ a′i′,j′ ∈ A}


 |〉B,A,B′0


 +




∑

j′∈J ′
(A,i,i′)

:a′
i′,j′

∈A

a′i′,j′ .B‖B′
i′,j′





 ,

where B̃\A′ denotes any linearization of A′ = {a1, ...an}, i.e., B̃\A′ ≡ (· · · ((B̃\a1)\a1) · · · an).
By reordering (Axioms A4 and A5) we obtain (also using Axiom A7, when necessary)

⊕

A⊆L

n⊕

i=0

n′⊕

i′=0







∑

j′∈J ′
(A,i,i′)

a′i′,j′.
(
B‖B′

i′,j′
)

+










m(i)−1∑

j=0

ai,j.Bi,j


 \ {a′i′,j′ | j′ ∈ {0, ..,m′

(i′) − 1} ∧ a′i′,j′ ∈ A}


 |〉B,A,B′0





 .

Applying Axioms A24 – A27 yields

⊕

A⊆L

n⊕

i=0

n′⊕

i′=0







∑

j′∈J ′
(A,i,i′)

a′i′,j′ .
(
B‖B′

i′,j′
)

 +





 ∑

j∈J(A,i,i′)

ai,j.Bi,j


 |〉B,A,B′0





 .

By using a derivation similar to the one starting at (4.6), we obtain

⊕

A⊆L

n⊕

i=0

n′⊕

i′=0







∑

j′∈J ′
(A,i,i′)

a′i′,j′.
(
B‖B′

i′,j′
)

 +


 ∑

j∈J(A,i,i′)

ai,j.
(
Bi,j‖B

′
)




 .

By reordering (Axioms A4 and A5), we get

⊕

A⊆L

n⊕

i=0

n′⊕

i′=0




∑

j∈J(A,i,i′)

ai,j.
(
Bi,j‖B

′
)

+
∑

j′∈J ′
(A,i,i′)

a′i′,j′.
(
B‖B′

i′,j′
)

 ,

as required.

In the expansion theorem, (i) the scheduler (A ⊆ L) is determined by a resolution of resolvable
nondeterminism; (ii) any combination of resolutions of both sides is considered; and (iii) the
complete persistent nondeterminism of a component for a is taken if this component is favored
by the scheduler or if the current resolution of the other component cannot provide a.
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4.5 Related work

An overview on algebraic approaches to nondeterminism is given in [WM97]. Nondeterminism
is often interpreted as angelic (chosen positively with respect to a desired property) or demonic
(chosen by an adversary). In [MCR04], both nondeterminism interpretations are modeled in a
single setting. The angelic/demonic view is orthogonal to our view, leading to the following four
interpretations: (i) The task of resolving resolvable, angelic nondeterminism is a satisfiability
check, i.e., an abstraction has an implementation satisfying the desired property if there is
an angelic resolution. (ii) The task of resolving resolvable, demonic nondeterminism is a
satisfaction check on the abstract level: the property holds if a demonic resolution satisfies it.
(iii) Persistent, angelic nondeterminism models the existence of a step such that the desired
property holds, whereas (iv) persistent, demonic nondeterminism ensures that all possible next
steps satisfy the property. In alternating-time temporal logic [AHK02], interpretations (iii) and
(iv) are generalized to multiple actors.

In [BB94], both our choice operators (persistent and resolvable) are used in a process algebra
and an operational semantics in terms of µ-automata as well as an axiomatic semantics is
given. The difference to our work consists in the semantics of the parallel operator, since
the semantics of the parallel operator in [BB94] is based on persistent instead of resolvable
scheduling choice, i.e., schedulers behave “randomly” also at the concrete level, which is in most
applications, such as schedulers in operating systems, not the case. If the scheduler can prefer
different parallel components per action, we cannot apply the usual approach to split parallel
composition by using the left merge operator, as is also made in [BB94]. Therefore, our axiom
system becomes more complicated by using additional operators and by using predicate nuf.
A further choice operator is presented in [BB94]. The interpretation of this choice operator,
which we donte here by ⊕′, is similar to our resolvable choice operator ⊕, except that resolution
can be moved outwards, e.g. a.(b ⊕′ c) is equivalent to a.b ⊕′ a.c, which is not the case for ⊕.
The choice operator ⊕′ has the same expressiveness as ⊕ with respect to the describable sets
of concrete systems, i.e. replacing ⊕′ by ⊕, or vice versa, does not change the set of concrete
systems that refine the corresponding expressions. A difference arises in the refinement relation
between different abstract levels, i.e., the refinement relation between non-concrete systems is
different.

In [VDN98], a process algebra having our resolvable choice operator together with a choice
operator that is only resolvable with respect to the same action, which harmonizes with ready
simulation, is presented. Thus, full persistent nondeterminism is not handled there. The
semantics is given as possible worlds, i.e. sets of concrete systems. No parallel operator is
considered. This process algebra is extended by recursion in [MC01], but still no parallel
composition is considered. Different kinds of choice operators have been introduced in hybrid
systems, see, e.g., [BS98], but those choice operators concentrate on underspecification (i.e.,
resolvable nondeterminism) resulting from time aspects.

In some settings, the scheduler can be restricted by further constraints, like priority or fairness
assumptions. They can be interpreted as a refinement of an abstract level where no constraint
on the scheduler is enforced. This allowance to describe a more detailed scheduler is orthogonal
to the problem of handling the interaction of persistent nondeterminism with the resolvable
nondeterminism of an underspecified scheduler.
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In probabilistic process algebras, see [LN04] for an overview, choice operators are extended
with a distribution determining the way the different operands are favored. Randomized
choice operators are special kinds of persistent nondeterminism. Nevertheless, it is important
to examine persistent choice operators, which do not contain a distribution, for their own, since
sometimes the distribution is not known and sometimes it does not exist at all (cf. Examples
4.2 and 4.3). Note that approaches trying to embed pure persistent nondeterminism into
probabilistic settings lead to unnecessarily complex models and, thus, unnecessarily increase
the cost of verification.

4.6 Conclusions

We presented the structural operational semantics of a process algebra that handles choice op-
erators corresponding to (i) persistent nondeterminism as well as (ii) resolvable nondeterminism
obtained by abstraction from the scheduling of the parallel composition or the renaming/hiding
operator. In particular, µ-automata, which have two kinds of transition relations (one for ac-
tion execution and one for resolution of resolvable nondeterminism), are used as underlying
model for the structural operational semantics. In order to avoid any restriction on schedulers,
the resolution of resolvable nondeterminism has to be made undone if it was not affected by the
previous execution step. A sound and complete axiom system was developed, where a choice
operator representing resolvable nondeterminism is used. Note that the increased complex-
ity of our semantics, when compared to the standard semantics, is unavoidable if µ-calculus
formulas should be preserved under refinement.

Our operational semantics can straightforwardly be adapted to process algebra employing
parallel composition with a CSP-based synchronization [Hoa80], sequential composition, or
recursion. The only problem arises for unguarded recursion, i.e. if there exists a variable that
is bound but not located behind an action prefix: there the definition of the concretization
relation ⇒ yields problems since infinite derivation trees may be generated. This is not very
critical because process algebras without unguarded recursion are sufficient for applications.
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Chapter 5

Nondeterminism in State Diagrams

The semantics of state diagrams contains resolvable nondeterminism because models are usu-
ally underspecified. In this chapter we give a formal operational semantics to state diagrams
enriched with an operator expressing persistent nondeterminism, thus requiring a semantic
domain supporting both resolvable and persistent nondeterminism. A new such refinement
setting is introduced – a variant of µ-automata with a novel refinement relation – and a sound
three-valued satisfaction relation for properties expressed in the µ-calculus is given. We also
show how existing state machine semantics can be adapted to support persistent nondetermin-
ism.

5.1 Introduction

The preceding chapter has addressed how the two kinds of nondeterminism, resolvable and
persistent nondeterminism, appear and should be handled in process algebra semantics. This
and the next chapter deal with the second large area of applications considered in this thesis,
namely state diagrams. The term state diagram shall stand for a variety of different visual
languages that have been defined, including “Harel statecharts” [Har87] and state machines as
defined in the UML [Obj07]. While this chapter focuses on the two kinds of nondeterminism
as they occur in state diagrams, especially UML state machines, the next one will go into more
technical detail and present refinement patterns for practical top-down development.

State diagrams serve as a modeling language to describe the behavior of a system in a succinct
way. The basic elements, common to all state diagram variants, are states, usually represented
by rectangles, which sometimes have rounded corners, and transitions between states. A label
on a transition can have (i) an event which has to be provided by the environment in order
for the transition to be fired, (ii) a guard which is a boolean expression required to evaluate
to true in order for the transition to be fired, and (iii) an action which is performed when the
transition fires. The action can usually modify a variable assignment, to which a guard can
refer. The common terminology in state diagrams introduces some name conflicts: actions in
the context of state diagrams are not to be mixed up with actions in the context of semantic
domains like labeled transition systems: actions in the context of semantic domains are called
events in the context of state diagrams. To avoid confusion, we use the term SD-action instead
of action in the context of state diagrams, and stick to the term event, although events in the
context of state diagrams are the same thing as actions in the context of semantic domains,
both simply denote the elements from our globally fixed set L.
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Figure 5.1: An example state diagram and its näıve semantics in terms of transition systems.
On the left, we have a state machine with initial value x = 0. Transitions are
labeled with triples of synchronization event, guard, and execution description;
e.g. on event inc variable x is incremented by 1 if x < 3, and an output event full
is sent if x = 3. On the right, the näıve semantics in terms of a transition system is
shown. The presence of PsCho makes this semantics incorrect for refinements based
on bisimulation or ready simulation: with respect to bisimulation, the resolvable
nondeterminism cannot be resolved, whereas with respect to ready simulation, the
persistent choice can be resolved to always choosing 0 or always choosing 1.

There are many further extensions in various state diagram dialects, e.g. state hierarchy, which
allows for state nesting, and orthogonality, which introduces a kind of concurrent behavior.

Underspecification, expressed by resolvable nondeterminism, is common to state diagram mod-
els, as e.g. elaborated in [Har87]. For example, underspecification might express that the im-
plementation of an audit logging facility is optional. This nondeterminism is resolvable, ideally
in a stepwise fashion, by a controlled choice of implementation alternatives, e.g. the decision
not to implement audit logs.

State diagrams should in many cases also be able to express persistent nondeterminism, which
can be used to model systems with randomized behavior without knowledge of any probability
distributions [RRS06], or fault-tolerant systems. For example, a method header may have an
input x of static type String, but a complex precondition may enforce semantic constraints
on legal inputs, e.g. “at most two coding errors occur in string x”. One then wants to reason
about the correctness of an implementation of that method for all inputs with at most two
coding errors. The implementor or verifier is not in control over the choice of input (zero, one
or two coding errors) meeting these constraints, and seeks assurance against all such choices.
In particular, this need to consider all scenarios persists even when the method body is fully
implemented – including its communication details with external services.

We present an example that exhibits both resolvable and persistent nondeterminism:

Example 5.1. The state diagram on the left in Figure 5.1 models part of a system that counts
the number of currently occupied sectors of memory, stored in variable x. Setting x to 0
models reformatting, i.e. all sectors are freed up again. This is the initial state, and up to three
sectors may be occupied. External nondeterminism is present, e.g., in the choice of events ref
(reformatting) and inc (increment sector count) when 0 < x ≤ 3. Persistent nondeterminism
is expressed with the “persistent choice” operator PsCho {0, 1, 2, 3}. On event ref and positive
value of x, that variable can be set to any value n between 0 and 3 where n is understood
to be the leftmost non-faulty sector. We cannot control the choice of that value since x :=
PsCho {0, 1, 2, 3} models all relevant fault scenarios. (However, to keep this running example
small, we will use only a persistent choice between no fault and a fault in the first sector,
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expressible as x := PsCho {0, 1}.) This state machine has resolvable nondeterminism between
this persistent choice and that of x := 0. The latter transition is risky as it ignores any fault
in any modeled sector of memory.

In the above example, program and faulty memory are combined into a single model. This is
advantageous in model checking, when the verification property would not have to specify any
fault scenarios, since property specifications become more transparent and reusable and one
can compensate for the increased complexity of the model through further model abstraction.

Persistent nondeterminism is not explicitly supported in UML state machines explicitly. But
even without such explicit support, it has an implicit presence as soon as the underlying
programming language has a “persistent choice” operator as seen in Example 5.1 – which could
also be implemented by a random choice. To the best of our knowledge, no formal semantics
of UML state machines in the extant literature can express such a construct adequately.

Contribution and outline. Our aim is to support verification on an abstract level for systems
that also have persistently nondeterministic behavior, where we mainly focus on state diagram
formalisms. Specifically, we use the newly developed refinement setting of ν-automata, which
has already been introduced in Section 2.3.2, as semantic domain, and equip ν-automata
in Section 5.2 with a 3-valued satisfaction relation between our models and the modal µ-
calculus [Koz83, Wil01]. We prove its soundness with respect to our refinement notion, i.e. that
satisfied properties are preserved under refinement. In Section 5.3 we discuss state diagram
semantics in terms of ν-automata, where Subsection 5.3.1 presents a formal semantics for
a simple state diagram variant with a persistent choice operator for arithmetic expressions,
and Subsection 5.3.3 discusses how existing formal semantics of more complex state diagram
variants can be accommodated to handle persistent choice operators adequately. Next, we
sketch in Section 5.4 how our technique can be generalized to state machine variants with,
possibly underspecified, randomized choice operators, i.e. operators equipped with probability
distributions. Section 5.5 discusses related work and Section 5.6 concludes.

5.2 Satisfaction for ν-automata

We use ν-automata, as introduced in Section 2.3.2, as semantic domain for state diagrams.
As discussed in Section 2.3.2, ν-automata are a modification of µ-automata that basically
exchanges the order of resolvable and persistent nondeterminism, as they occur in hypertran-
sitions. This has the advantage that, at each state of a ν-automaton, the modeler can decide
whether to express persistent or (non-exclusively) resolvable non-determinism, allowing for a
more succinct representation of state diagrams with persistent nondeterminism.

In this discussion we consider every label of a transition system to be an input event, i.e., to
denote an incoming communication. However, output events are needed if asynchronous output
communication of the system (e.g., label full in Figure 5.1) shall be modeled. If different output
events are used, the set of concrete systems of ν-automata has a different constraint for output
events: from any state, there may be at most one outgoing transition with an output event.
Our refinement notion then has to be amended such that transitions having output events can
be removed, as long as one remains present. For details, refer to Section 2.3.3 and Chapter 6.
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We give a 3-valued satisfaction relation between ν-automata and the µ-calculus [Koz83]. We
choose this logic since persistent choice leads us into the world of branching time, and the
µ-calculus is a canonical branching-time logic in which many popular branching-time logics,
such as CTL, can be translated. The set of all µ-calculus formulas F is generated by the
following BNF-grammar:

φ ::= tt | ff | Z | φ ∧ φ | φ ∨ φ | 〈e〉φ | [e]φ | µZ.φ | νZ.φ

where e ∈ L and Z is from a µ-calculus variable set Var. The dual formula dual(φ) of a
µ-calculus formula φ is obtained by replacing tt by ff, ∧ by ∨, 〈e〉 by [e] , µ by ν, and vice
versa.

Definition 5.2. Suppose M = (S, Si,−→) is a ν-automaton. Then, the semantic function
J K : F × (Var → P(S)) → P(S) with respect to A is:

JttKρ = S JffKρ = ∅ JZKρ = ρ(Z)

Jφ1 ∧ φ2Kρ = Jφ1Kρ ∩ Jφ2Kρ J〈e〉φKρ = {s ∈ S | ∀S̈ ∈ (s.
e

−→) : S̈ ∩ JφKρ 6= ∅}

Jφ1 ∨ φ2Kρ = Jφ1Kρ ∪ Jφ2Kρ J[e]φKρ = {s ∈ S | ∀S̈ ∈ (s.
e

−→) : S̈ ⊆ JφKρ}

JµZ.φKρ =
⋂
{S̈ | JφKρ[Z→S̈] ⊆ S̈} JνZ.φKρ =

⋃
{S̈ | S̈ ⊆ JφKρ[Z→S̈]}

Let φ be a closed formula, i.e. every variable Z only occurs in φ within the scope of µZ or νZ.
Then M satisfies φ, written M |= φ, if Si ⊆ JφKρ0 , where ρ0 maps every variable to the empty
set. Furthermore, M falsifies φ if M |= dual(φ).

The above satisfaction definition is standard (cf. Appendix A), except for the diamond and
box operators: to guarantee that satisfaction of J〈e〉φKρ under ρ is being preserved at every
refinement, all transitions labeled e in the ν-automaton (refinement can remove all but one)
must have a suitable candidate in its target set S̈, i.e., S̈ ∩ JφKρ 6= ∅ is required. To guarantee
that satisfaction of J[e]φKρ under ρ is being preserved at every refinement, all targets S̈ of any
transition labeled e in the ν-automata must be suitable candidates: S̈ ⊆ JφKρ.

An example illustrates that this satisfaction definition is indeed 3-valued: The ν-automaton

��������
∅��������//

e
++WWW

e gggg neither satisfies nor falsifies the formula 〈e〉 tt (and this is expected, because the

initial state of valid implementation ����������������// e // has a successor state via e, and the initial state

of the further valid implementation ∅��������// e
has not). However, for concrete ν-automata,

the satisfaction definition is 2-valued and corresponds (via embedding h, as defined in the
refinement setting of ν-automata) to the standard µ-calculus satisfaction for transition systems
(where the dual formula corresponds to negation). Note that M might not satisfy φ, although
all concrete refinements of M satisfy φ. This is, e.g., the case for the above ν-automaton and
the formula φ = 〈e〉 tt ∨ [e] ff. However, our satisfaction is sound, as stated by the following
theorem:

Theorem 5.3. Satisfaction is sound for refinement: if a ν-automaton M1 refines a ν-automaton
M2, then, for any closed formula φ ∈ F , we have M2 |= φ ⇒ M1 |= φ.
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5.2 Satisfaction for ν-automata

Proof. First, we reduce satisfaction to the equivalent definition based on parity games [Wil01].
Without loss of generality we assume that every variable is bound at most once in φ. Let
Var be the (finite) set of variables that occur in φ, let β be the function mapping elements
from Var to their corresponding body with respect to φ, where subformulas corresponding
to variable bindings are replaced by the corresponding variable, e.g., if φ = 〈e〉µY.(([e]Y ) ∧
(〈e〉µZ.Z)) then β(Y ) = ([e]Y ) ∧ (〈e〉Z). Furthermore, let γ be the function mapping ele-
ments from Var to their fixed point alternation depth with respect to φ. This is well defined
since variables are bound at most once in φ.

The configurations of the satisfaction game are pairs (s, φ′) of ν-automaton states and subfor-
mulas of φ. Subformulas corresponding to variable bindings are replaced by the corresponding
binding. The rules of the game are as follows:

• If φ′ = tt, then Player 1 wins.

• If φ′ = ff, then Player 2 wins.

• If φ′ = φ1 ∧ φ2, then Player 2 may choose φ′′ ∈ {φ1, φ2} and the next configuration is
(s, φ′′).

• If φ′ = φ1 ∨ φ2, then Player 1 may choose φ′′ ∈ {φ1, φ2} and the next configuration is
(s, φ′′).

• If φ′ = Z, then the next configuration is (s, β(Z)).

• If φ′ = 〈e〉φ′′, then Player 2 chooses Θ ∈ (s.
e

−→), Player 1 chooses s′ ∈ Θ. The next
configuration is (s′, φ′′).

• If φ′ = [e]φ′′, then Player 2 chooses Θ ∈ (s.
e

−→) and s′ ∈ Θ. The next configuration is
(s′, φ′′).

A finite play is winning for a player, if the other player has to choose, but cannot. An infinite
play η is a win for Player 1 if

max{γ(Z) | Z ∈ Var occurs infinitely often in η}

is even; otherwise, Player 2 wins. A formula is defined to be satisfied if Player 1 has a winning
strategy. Note that the corresponding game is a parity game and therefore (i) either Player
1 or Player 2 has a winning strategy and (ii) if there exists a winning strategy for Player 1
(respectively Player 2), then there exists also a history independent winning strategy for Player
1 (respectively Player 2).

It can be shown, analogously to [Wil01], that this game-based definition of satisfaction coincides
with the co-inductive one given in Definition 5.2.

Now this game-based definition of satisfaction is used in order to prove the theorem. Let θ be
a winning strategy for Player 1 with respect to the satisfaction game A2 |= φ, and let R be a
ν-refinement relation between A1 and A2. Let U be the set of configurations (s1, φ

′, s2) such
that θ is a winning strategy for (s2, φ

′) and (s1, s2) ∈ R. Here, the usual satisfaction configu-
rations (s1, φ

′) are already extended by a further component (s2) that encodes partial history
information. The strategies of Player 1 are defined depending on this further component, which
may be modified by Player 1 after any step (of Player 1 or Player 2).
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A winning strategy for Player 1 on any (s1, φ
′, s2) ∈ U is defined as follows: If φ′ = φ1 ∧ φ2

or if φ′ = 〈e〉φ′′, Player 1 plays according to θ at (s2, φ
′) and according to the ν-refinement

constraint of R, whereas the latter is also used in any other step.

It is easily checked that a play beginning in a configuration of U and played by Player 1
according to the memoryless strategy described above (and the corresponding adaption of s2)
stays within U and is won by Player 1.

5.3 State diagram semantics

5.3.1 Simple state diagram with a persistent choice operator

The basic modules of UML state machines1 are variables, states and annotated transitions
between them.

Example 5.4. The state diagram on the left hand side of Figure 5.1 has a single state and
four transitions (which are all selfloops in this case). The initial configuration is given by the
arrow without a source state, which points at the initial state and defines the initial variable
assignment, in which x is assigned value 0. Consider the uppermost selfloop in the figure: it is
labeled by a trigger (ref), a guard (x > 0), and an action (x := PsCho {0, 1}). This transition
is enabled, if the environment provides external trigger event ref and if the current variable
assignment satifies the guard x > 0. If the transition is taken, it executes its action, i.e. assigns
a new value to x, nondeterministically 0 or 1, and activates the target state of the transition,
which in this case is the same state again.

Our aim is to give a formal semantics to this visual language. For this reason we represent
any given state diagram variant by a mathematical object: a simple state diagram SD with
respect to input event set Ev and output event set Ev is a tuple (V, σi, S2, si

2, T ) comprising
of a set of integer-variables V , an initial variable assignment σi, a set of states S2, an initial
state si

2 ∈ S2, and a set of transitions T . A transition t consists of a source πsrc(t) ∈ S2, a
target πtgt(t) ∈ S2, an event πev(t) ∈ Ev denoting the external trigger, a guard πgd(t) denoting
a necessary condition for enabledness, and an SD-action πact(t), which has to be executed
when the transition is taken. For sake of simplicity we restrict the set of guards g ∈ G to
boolean expressions over V . An SD-action consists of a ‘do nothing’-action skip, the sending
of an event send(e), or a variable assignment v := exp – where exp may contain instances
of the persistent choice operator (PsCho) that models persistent nondeterminism for variable
assignments. Formally, an SD-action α is given by the following BNF-grammar:

α ::= skip | send(e) | v := exp exp ::= v | n | exp ⊗ exp | PsChoN

where v is a variable from V , n is an integer-constant, e is an element from the set of output
events Ev of the state machine, ⊗ is any standard binary operator on integers such as addition
or subtraction, and N is a (finite) set of integer-constants – the possible return values of the
persistent choice operator. The set of all SD-actions is denoted by Act.

1Note that it is possible to introduce persistent nondeterminism to “Harel statechart” semantics in a similar
way. But since the semantics of triggering events is different (sets of events in “Harel statecharts” in contrast
to single events in UML state machines), this simple but cumbersome adaptation is omitted.
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...
e[tt]x:=PsCho {0,...,n}

[x=0]

[x=n]

Figure 5.2: Persistent nondeterminism with respect to states using a choice pseudostate.

Remark 5.5. So far we only modeled persistent nondeterminism with respect to variable as-
signments. In order to model persistent nondeterminism with respect to state machine states,
one can use a choice pseudostate as it exists in UML state machines. It allows different tar-
get states, depending on the result of a previous action execution. Therefore, one can execute
x := PsCho {0, . . . , n} on a transition leading to a choice pseudostate and, originating from
the choice pseudostate, one can have several transitions to different states, each with a guard
depending on x. This is illustrated in Figure 5.2.

We first discuss the semantics of state diagrams informally. At each step, a single event e
is dispatched from the event pool, where the order of dispatching is left open in [Obj07].
This event enables a transition if (i) its source is currently active, (ii) e is its trigger, and
(iii) its guard evaluates to true with respect to the current variable assignment. Among all
enabled transitions, one is chosen, its corresponding SD-action is executed, and the active state
becomes its target instead of its source. If no transition is currently enabled for e, different
interpretations are possible:

U (‘no enabled transition’ corresponds to underspecification): Arbitrary behavior is possible
after consuming e. A transition in state machines can be added as long as its guard conjoined
with the guard of any other transition from the same source and with the same event is
unsatisfiable. This harmonizes with the refinement patterns of [Rum96].

D (‘no enabled transition’ corresponds to discarding): e is consumed without executing any
SD-action. This corresponds to the standard interpretation of UML state machines.2

We first provide a formal semantics to the U-approach. The formal semantics to the D-
approach is given in Example 5.6.

V denotes the set of all possible variable assignments of V . The guards are evaluated with
respect to a variable assignment in the usual way, by a function eval : G × V → {>,⊥} where
> corresponds to the boolean value true and ⊥ to false. Function calc : Act×V → P(V) yields
the set of updated variable assignments, which is in general a singleton set except in the case
of the usage of the persistent choice operator. Formally:

calc(α, σ) =

{
{σ[v 7→ n] | n ∈ c̃alc(exp, σ)} if α is v := exp
{σ} otherwise

2In UML state machines, an event can also be declared to be deferred at a state, in which case the triggering
or discarding of this event is moved to a subsequent state where it is no longer deferred and becomes active.
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Table 5.1: Transition derivation rules.

(a)
t ∈ T eval(πgd(t), σ) = > πact(t) = send(e)

(πsrc(t), σ)
πev(t)
−→ {(e, πtgt(t), σ)}

(b)
e ∈ Ev

(s2, σ)
e

−→ ∅
(c)

e ∈ Ev ∪ Ev

cr
e

−→ {cr}

cr
e

−→ ∅

(d)
t ∈ T eval(πgd(t), σ) = > ∀e ∈ Ev : πact(t) 6= send(e)

(πsrc(t), σ)
πev(t)
−→ {(πtgt(t), σ

′) | σ′ ∈ calc(πact(t), σ)}
(e)

(e, s2, σ)
e

−→ {(s2, σ)}

(f)
∀t ∈ T : (πsrc(t) = s2 ∧ πev(t) = e) ⇒ eval(πgd(t), σ) = ⊥

(s2, σ)
e

−→ {cr}
(g)

e ∈ Ev ∪ Ev \ {e}

(e, s2, σ)
e

−→ ∅

with

c̃alc(exp, σ) =





{σ(v)} if exp is v ∈ V
{n} if exp is constant n

{n1 ⊗ n2 | ∀j ∈ {1, 2} : nj ∈ c̃alc(expj, σ)} if exp is exp1 ⊗ exp2

N if exp is PsCho N

The formal semantics is given as a ν-automaton: its state space consists of (i) configurations –
SD-states combined with variable assignments –, (ii) intermediate states for modeling the
sending of output events, and (iii) an additional state cr, which corresponds to a ν-automaton
state abstracting anything. Formally, its state space is (S2 × V) ∪ (Ev × S2 × V) ∪ {cr}. Its
only initial state is the initial SD-state combined with the initial variable assignment (si

2, σi).
Its hypertransitions are given by the derivation rules in Table 5.1, where its underlying set of
labels is Ev∪Ev. Here, the firing of a transition that sends an output event leads (by adapting
the active SD-state) to an intermediate state (a), which only sends exactly the corresponding
output event (e) and nothing else (g). Output events can only be sent in such intermediate
states (b). If the SD-action is different from a send-action, a hypertransition subsuming all
the possible outcomes with respect to calc is derived (d). In case no transition is enabled
for an event (f), a transition to the state cr, which abstracts everything ensured by (c), is
derived. Note that (c) encodes two rules: one where cr

e
−→ {cr} is the conclusion, another

where cr
e

−→ ∅ is the conclusion – both having the same premise.

Example 5.6. Figures 5.3 and 5.4 illustrate the semantics of two state machines, where the
first is the same state machine as in Figure 5.1 and the second is a refinement of the first.
Here, the state machine constraint “all other events discarded” means that the D-approach is
taken, in which case rule (f) is replaced by

(f′)
∀t ∈ T : (πsrc(t) = s2 ∧ πev(t) = e) ⇒ eval(πgd(t), σ) = ⊥

(s2, σ)
e

−→ {(s2, σ)}

where self loops (corresponding to discarding) – rather than the reaching of the state that ab-
stracts everything – are introduced. Note that adding the constraint “all other events discarded”
is a refinement step, as well as the removal of transitions, as long as for every variable assign-
ment the set of enabled events remains the same.
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Figure 5.3: The state machine of Figure 5.1 and its semantics in terms of ν-automata. In
this semantics, a set of hypertransitions sharing the same targets and label are
combined using a small circle. Furthermore, all states that do not have a drawn
outgoing transition for some e ∈ L have an implicit transition with label e to ∅.
Here, the set of labels is L = {ref , inc, full}.
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Figure 5.4: A refinement of the state machine of Figure 5.3, where the transition on the left
has been removed and non-present events are interpreted as “discarded”, together
with its semantics in terms of ν-automata.

5.3.2 Succinctness of ν-automata

The order of persistent and resolvable nondeterminism defined in µ-automata, introduced in
Subsection 2.3.2, does not fit well the requirements for a semantics of state diagrams with
persistent choice operator: ν-automata with their ready simulation approach of refinement
allow direct use of variable assignments as ν-automaton states. This is possible, because
underspecification is modeled similarly in state diagrams and ν-automata: removing transitions
in the state diagram directly corresponds to removing transitions in the semantic model. This
correspondence does not exist between state diagrams and µ-automata. Consequently, it is
necessary to use more complex µ-automaton states: in addition to variable assignments, extra
information is needed for expressing every possible choice of taken transitions for each SD-
action. This exponentially blows up the state space:

Example 5.7. A state diagram and its semantics in terms of ν-automata are given in Fig-
ure 5.5. The semantics in terms of µ-automata is significantly more complex, and for this
reason not depicted. Its set of states is {0, 1} × P({1, . . . , n}), its set of initial states is
{0} × P({1, . . . , n}), and its transition relation is

⋃

j∈{1,2},C̈∈P({1,...,n})

({((j, C̈), {0} × P({1, . . . , n}))} ∪ {((j, C̈), {1} × P({1, . . . , n})) | j ∈ C̈}

In different settings, µ-automata may be more suitable than ν-automata, as is illustrated
e.g. by Chapter 4 of this thesis, which gives an operational semantics to a process algebra with
parallel composition and a persistent choice operator.
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Figure 5.5: Example of the succinctness of ν-automata. Depicted is a state machine together
with its semantics in terms of ν-automata. A semantics in terms of µ-automata
would be significantly more complex and is therefore not depicted.

5.3.3 Adaptation of existing semantics

We sketch how existing formal semantics of state diagrams can be adapted such that they
can handle also persistent choice operators. Since our extension of state diagrams with persis-
tent choice is orthogonal to their run-to-completion steps, concurrency, and hierarchies, those
notions are still adequately handled in the presence of persistent choice operators.

We assume that the formal semantics is given in terms of transition systems that are obtained
by derivation rules (small-step semantics), as e.g. in [FS07c, vdB02]. Also, we assume that
the derivation rules use an evaluation function calc for the SD-actions, i.e. calc maps an SD-
action together with a variable assignment to a variable assignment (and possibly additional
information). Such an evaluation function exists in [FS07c] under the name calc, in [vdB02] it
is not explicitly mentioned, because that paper abstracts from variables.

As the first transformation, function calc is adapted to SD-actions containing also persistent
choice operators. This is achieved by changing the range of calc to sets (rather than elements)
of variable assignments.

Next, the derivation rules are adapted such that hypertransitions are obtained. This is done
by replacing the target of the derived transition by the set consisting of the original target
only. When calc is used for the derivation, the target set contains all possible variations with
respect to the result of calc. For example, rule

α 6= skip calc(α, σ) = (`, α′, σ′)

(σ,A, do,H, α, s̈2, β, T, T̈ )
`

−→ (σ′,A, do,H, α′, s̈2, β, T, T̈ )

taken from [FS07c] – describing the execution of an SD-action – is transformed into

α 6= skip

(σ,A, do,H, α, s̈2, β, T, T̈ )
`

−→ {(σ′,A, do,H, α′, s̈2, β, T, T̈ ) | (`, α′, σ′) ∈ calc(α, σ)}

Note that in the semantics of [FS07c] the evaluation function also yields (i) a label (e.g. the
sending of an output event) which will be the same for all elements of calc(α, σ), (ii) an SD-
action which remains to be executed, and (iii) a variable assignment.

Finally, absence of outgoing transitions for a given label is handled such that it harmonizes
with ν-refinement. If at a state there is no outgoing transition with an output event (see
Section 5.2), then a corresponding transition pointing to the empty set is added. The same is
done for events whenever no event can be accepted in the current state, e.g. if some computation
must be finished first. The absence of outgoing transitions – for an event e in a semantic state
s where events can be accepted – is handled by a case analysis on the different interpretations
introduced in Section 5.3.1:
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5.4 Random choice operators

U: Add a new state cr to the ν-automaton, and add the additional two derivation rules (c)
from Figure 5.1. Thus, cr represents a state that is refined by any ν-automaton state. A
transition labeled with e from s to {cr} is also added.3

D: A self-loop from s labeled with event e is added.

5.4 Random choice operators

A random choice operator can be used to express a probability distribution. Probability
distributions are a form of persistent choice. For example, the probabilistic choice of a successor
state of state s in a Markov chain expresses a nondeterministic choice that remains to be
nondeterministic each time state s is visited. Of course, this persistence is controllable to some
degree through the use of familiar tools for stochastic processes.

5.4.1 ν-automata and random choice

We sketch how ν-automata can be adapted to support random choice operators with an un-
derlying distribution: first, they are extended by moving from power sets to distributions as
transition targets, i.e., −→ ⊆ S × L × Dist(S) where Dist(S) denotes the possible discrete
distributions over the set S (total functions f from S to [0, 1] such that

∑
s∈S f(s) = 1). Fur-

thermore, the refinement notion is adapted to handle probabilities by lifting the refinement
relation to distributions, i.e. probabilistic automata with strong simulation [Seg06] as refine-
ment notion. Then calc has to be adapted such that distributions rather than sets of states are
obtained. The adaptation of the existing semantics is made similar to that in Section 5.3.3.
Note that in such a probabilistic setting, satisfaction is defined over probabilistic logics, like
PCTL [HJ94], rather than over the µ-calculus.

5.4.2 Underspecified random choice

This approach can also deal with randomized choice that is underspecified. Exact knowledge of
distributions is often not a realistic assumption and does not facilitate top-down-development,
because abstract systems already need to specify exact probabilities. Therefore, approaches
emerged [JL91] where only sets or intervals of allowed probabilities are given. We can accom-
modate this as follows:

Probabilistic automata (PA) are extended by moving from distributions to sets of possible
distributions as transition targets, i.e., −→ ⊆ S × L × P([0, 1])S , with P([0, 1])S denoting
the set of total functions from S to P([0, 1]), which yields a generalization of probabilistic
specification systems (PSS) [JL91], where the transition relation is a subset of S×P([0, 1])×S.
Furthermore the refinement notion has to be adequately adapted, similar to the treatment in
[JL91]. This new class of models, which we denote by PSSA, has more expressive power than
PSS in the sense that more sets of concrete refinements can be described via refinement. This is
informally argued in Figure 5.6. Note that PSSA has also more expressive power than PA, first
with respect to strong simulation – since probabilistic intervals cannot be finitely described

3An additional transition to the empty set is not needed here since input enabledness is usually guaranteed.
Otherwise, e.g. in the context of event deferral, such a transition has to be added.
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Figure 5.6: Examples of probabilistic models. In particular, (a) a ν-automaton extended with
sets of probabilities, (b) a probabilistic specification system, which has all concrete
refinements of (a) and is minimal with respect to refinement among those models
having all concrete refinements of (a); and (c) a deterministic probabilistic automa-
ton being a concrete refinement of (b) but not of (a). All three models have the
same single event-label, which is therefore omitted.

by nondeterminism – and, second with respect to strong probabilistic simulation [Seg06], since
this has already less expressive power than PSS.

In order to give the formal semantics, calc has to be adapted such that sets of distributions
rather than distributions are obtained. The adaption of the existing semantics is then made
similar to that in Section 5.3.3. The exact development of the theoretical foundation of this
class of models, including precise refinement and satisfaction definitions, is a topic for future
work.

5.5 Related work

In Section 5.3.2 we argued why µ-automata [JW95] are not suitable as semantic models for
state diagrams having a persistent choice operator. Further abstract models that can express
persistent as well as resolvable nondeterminism are, e.g., (disjunctive) modal transition systems
[LT88, LX90], mixed transition systems [DGG97], generalized Kripke modal transition systems
[SG04], hypermixed Kripke structures [FH06], and modal automata [DN05]. These models
have additional may-transitions meaning that refinements may have those transitions but not
necessarily so. Hyper Kripke modal transition systems [SG06] interpret must-hypertransitions
analogously to the µ-refinement approach, whereas may-hypertransitions are interpreted anal-
ogously to the ν-refinement approach. None of these models are suitable as semantic models
for state diagrams, by the same arguments as put forward for µ-automata. Note that the
additional may-transitions do not help one to define the semantics, since there is no concept
in state diagrams that supports such kind of modeling directly (in state diagram refinements,
one transition per label has to remain, i.e. not all transitions can be removed [Rum96]). A
comparison to probabilistic models is already made in Section 5.4. In [KNP06], the authors
use probabilistic games to differentiate between probabilistic (persistent) and resolvable non-
determinism. Their model is close to PSSA based on strong probabilistic simulation.

An overview of existing formal semantics of UML state machines is given in [CD05a], where
26 different approaches are compared – and none of them features persistent choice. [FS07c],
which due to later publication is not referenced in [CD05a], gives a complete formal semantics of
UML 2.0 state machines without persistent choice. As already mentioned, refinement patterns
of statecharts are presented in [Rum96], where the underlying formal semantics are streams
and therefore no persistent nondeterminism is handled. In [DC03] state machines are mapped
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Figure 5.7: Illustration of an unexpected refinement in the setting of [JHK02]. In particular,
(a) a state machine having probabilistic pseudo-states and (b) one of its possible
(unwanted) refinements with respect to the formal semantics of [JHK02], where
heads but no tails can occur.

to terms of CSP and so a stronger semantics is given by considering trace- and failure-based
refinement.

The work most closely related to ours is [JHK02] where a formal semantics in terms of prob-
abilistic automata based on strong simulation is given to state machines having an additional
randomized pseudo-state. Their semantic mapping corresponds more to a run-to-completion
step rather than to the firing of transitions. This leads to the problems that (i) their refinement
notion – implicitly given via probabilistic automata – is only sound but imprecise, i.e. there
are unexpected semantic refinements, illustrated in Figure 5.7, (ii) a well-formedness condi-
tion – that every variable may only be changed by one of the firing transitions – is needed, and
(iii) their state space is exponential in the number of enabled probabilistic transitions. None of
these problems occur in our definition of probabilistic pseudo-states via choice pseudo-states
(see the discussion in Remark 5.5).

5.6 Conclusions

This chapter presented state diagram semantics as an application domain for the refinement
setting of ν-automata, which has been newly introduced in Chapter 2. It employs hypertransi-
tions, its refinement notion generalizes ready simulation, and it is suitable as semantic domain
for systems that feature or benefit from persistent nondeterminism as well as resolvable non-
determinism. In particular, a formal semantics for a simple state machine language was given
in terms of ν-automata, and it was sketched how existing semantics of state machines can be
adapted if persistent choice operators are added to the underlying programming language. A
compositional 3-valued satisfaction definition over the µ-calculus was given for ν-automata and
proved to be sound for property verification.

It is future work to establish tool support based on the ν-automata semantics for satisfaction
and refinement. In particular, it should be examined how ν-automata can be used in the
context of abstraction in order to speed up verification.
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Chapter 6

Verifiable Top-Down Development of State
Diagrams

This chapter defines a variant of state diagrams which has (i) a restricted set of features to avoid
semantic ambiguities and (ii) an extended syntax in order to support top-down development.
It is given a precise operational semantics using a refinement setting with input and output
actions. A set of so-called refinement patterns is established which can be used to perform
refinement steps in the development process, where these steps are correct by construction
since the patterns are proved sound. The results pave the way for the development and
implementation of a CASE (computer-aided software engineering) tool supporting verified
refinement in state diagrams.

6.1 Introduction

State diagrams are a widely-used visual formalism for the description of complex reactive sys-
tems. They were originally developed by David Harel [Har87] and since then emerged in a
variety of different variants, including an own diagram type in the Unified Modeling Language
(UML) [Obj07], which made them even more attractive for industrial use. State diagrams
manage to compactly represent complex behavior, primarily thanks to the concepts of hier-
archy , nesting substates into other states, and orthogonality , representing parallel execution.
Already for the basic concept of hierarchy, different state diagram variants have different se-
mantic interpretations: whereas the original Harel statecharts give outer transitions priority
over inner transitions, the UML variant gives priority to deeper nested transitions. The dif-
ferent dialects are characterized by a diversity of further syntactic and semantic differences
[CD05b] and, even for any given variant like the UML one, the semantics is ambiguous and not
agreed upon [FSKdR05]. Safety-critical systems should therefore be modeled using a “safe”
subset of state diagrams, avoiding notations with an unclear semantics, as is proposed e.g. in
[HRW07] and [SAM96]. This subset should have a formal semantics such that properties of
the modeled system can be proved.

Even though the range of features may be restricted to a subset, real-world state diagrams can
get considerably large, with many orthogonal regions and deep state nesting. Consequently,
there is a need for a structured development approach following the top-down paradigm: first a
general layout of the model is designed and afterwards its different components are refined, as
independent from one another as possible. None of the current state diagram variants formally
supports such a kind of top-down development, giving a formal semantics to each stage of
the development process. In a tool, one may envisage that refinement steps are offered to
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the modeler from a menu of different model transformations that are correct by construction,
which we call refinement patterns. These transformations are always guaranteed to correspond
to a semantic refinement.

Contribution and outline. Section 6.2 defines a variant of state diagrams that is designed
for correct and verifiable top-down development. Section 6.3 then gives its formal, refinement-
sensitive semantics. Section 6.4 presents an expressive and proven-to-be-sound collection of
refinement patterns. Its use is illustrated by an example in Section 6.5 that shows how these
refinement patterns can be applied to design a non-trivial model of an elevator controller.
Possible extensions of our state diagram variant are discussed in Section 6.6, and Section 6.7
concludes.

6.2 Syntax

In contrast to some of the previous chapters, we employ a precise definition of a state diagram
here. A state diagram with respect to an input event set Ev and an output event set Ev consists
of states and transitions between them. Every transition is labeled with one input event, say
e ∈ Ev, and a set of output events, say E ⊆ Ev. The idea is that a transition fires, if e is
provided by the environment. Then, the events in E are sent to the environment and the
current state changes. In this respect, output events are locally controlled, i.e. the modeled
system has control over their occurrence, whereas input events happen from the outside and
the system only reacts on it. The state machine represented by a diagram is input-enabled
[Lyn96] in the sense that any possible input event is always handled, if necessary by implicit
discarding.

Important features of state diagrams are state hierarchy and orthogonality . This is realized in
our variant by requiring every state to have at least one subregion, which again may contain
states and transitions. If a state has several subregions, they are interpreted as orthogonal,
i.e. behavior in different subregions is executed in parallel. In our variant, a substate may only
be entered from the outside via an entry point , analogously it may only be left via an exit
point , which avoids semantically-hard-to-handle inter-level transitions. So-called links from
entry points and to exit points define which substates get active after an entry and need to be
active in order to enable the exit, respectively. This not only allows one to model the behavior
of inter-level transitions but also subsumes fork and join transitions.

Due to orthogonality, it is possible that an input event fires more than one transition. More
specifically, it fires a maximal non-conflicting and priority-respecting set of enabled transitions.
For instance, two enabled transitions in different regions of a common super-state will both
fire, but if two transitions originate from two states where one is nested in the other, only the
outer transition will fire. This kind of priority, following Harel statecharts rather then UML
state machines, is necessary for proper top-down development: transitions in subcomponents –
to be specified later in the development process – do not change the behavior of a more global
context. If there is no transition enabled for the provided event, it is discarded.

To keep our technical presentation as readable as possible, we will not consider variables or
transition guards. However, in Section 6.6 we will discuss how variables and further features
can be added and handled semantically.
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ε[Ev,Ev]s2
r1[{e1},Ev]

r2[Ev,{e1}]

s4

s6
?

s5

s7

s1 s3
e1/e1,• e2

e1/e2

Ev

Figure 6.1: Graphical notations. In this example, Ev = {e1, e2} and Ev = {e1, e2}. States are
represented by rounded rectangles with their names attached outside. Regions are
separated by dashed lines and region names are specified inside the region, together
with possible event constraints. Transitions are represented by solid arrows, labeled
with one input event and a set of output events. Entry and exit points are drawn as
# and ⊗, respectively. Both entry and exit links are represented by dotted arrows.
Initial state s1 is marked by a small arrow originating from a dot. Open events of
a state are specified as labels of an arrow leading to ?.

Since we aim at top-down development we extend the syntax by notations for underspecifica-
tion. A state can have open input events (specified in a component opn), which means that
transitions from this state with such events may still be added (and removed). An entry or
exit point is open with respect to a region r, if it has no entry links leading to region r, or exit
links originating from region r, respectively. In this case, the choice of entry or exit links, with
respect to this region, is left open.

Furthermore, a region can define input and output event constraints, specifying that this re-
gion can only have transitions labeled with the allowed input and output events (as given in
components con and con, see below). Finally, a special output event • in a transition label
allows one to add arbitrary output events to this transition.

Refer to Figure 6.1 for graphical notations for our variant of state diagrams. If a region’s event
constraint is omitted in a drawing, the event constraints of its parent region are assumed (in
case of the top-level region ε, Ev and Ev are assumed). Substates automatically inherit their
parent state’s open events; in the drawing, these may be omitted for the substate.

Formally, a state diagram with respect to an input event set Ev and an output event set Ev is
a tuple D = (S,S0,P#,P⊗,R, par,T ,L#,L⊗, con, con, opn), where S is a set of states, S0 ⊆ S
is a subset of initial states, P# is a set of entry points, P⊗ is a set of exit points, R is a set
of regions1 (with distinguished outermost region ε ∈ R), par : (V ∪ R \ {ε}) → (V ∪ R) (with

V
def
= S ∪P# ∪P⊗ being the so-called vertices) is the parent function defining the hierarchy of

vertices and regions, T ⊆ (S ∪ P⊗) × Ev × (P(Ev ∪ {•})) × (S ∪ P#) is the set of transitions,
L

# ⊆ P# × (S ∪ P#) defines the entry links, L
⊗ ⊆ (S ∪ P⊗) × P⊗ defines the exit links,

con : R → P(Ev) defines the input event constraint of a region, con : R → P(Ev) defines the
output event constraint of a region, and opn : S → P(Ev) defines the open events of a state. A
state diagram is required to satisfy the well-formedness conditions listed in Table 6.1, in which
state(v), for v ∈ V, denotes the state of v, i.e.

state(v)
def
=

{
par(v) if v ∈ P# ∪ P⊗

v if v ∈ S
,

1Sets S , P#, P⊗, and R are required to be pairwise disjoint.
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Table 6.1: Well-formedness conditions for a state diagram.

The parent of every state is a region: ∀s ∈ S : par(s) ∈ R
The parent of every point is a state: ∀p ∈ P# ∪ P⊗ : par(p) ∈ S

The parent of any non-top-level region is a state: ∀r ∈ R \ {ε} : par(r) ∈ S
Every state has (at least) one region: ∀s ∈ S : ∃r ∈ R : par(r) = s

The parent function defines a tree with
root ε and only branches of finite length: ∀x ∈ V ∪R : ∃n ∈ N : parn(x) = ε

The initial states are closed wrt. parent states: ∀s ∈ S0 : par(par(s)) ∈ S0

No two initial states are in conflict: ∀s1, s2 ∈ S0 : ¬conflict(s1, s2)
Event constraints are inherited by super-regions: ∀r ∈ R : con(r) ⊆ con(par(par(r)))∧

con(r) ⊆ con(par(par(r)))
Open transitions are inherited by substates: ∀s ∈ S : par(s) 6= ε ⇒

opn(s) ⊇ opn(par(par(s)))

Transitions stay within a region: ∀(v, e,E, v′) ∈ T : reg(v) = reg(v′)
Entry links enter a direct child-region: ∀(v, v′) ∈ L

# : state(v) = par(reg(v′))
Exit links originate from a direct child-region: ∀(v, v′) ∈ L⊗ : par(reg(v)) = state(v′)

Transitions conform to event constraints: ∀(v, e,E, v′) ∈ T : e ∈ con(reg(v))∧
E ⊆ con(reg(v)) ∪ {•}

Open transitions conform to event constraints: ∀s ∈ S : opn(s) ⊆ con(par(s))

and reg
def
= par◦ state is a short notation for the surrounding region of a state or point. Further-

more, for x ∈ V ∪R, let chdn(x) be the set of direct children of x, i.e. chdn(x)
def
= {y ∈ V ∪R |

par(y) = x}; let chdnR(x) be the set of direct child-regions of x, i.e. chdnR(x)
def
= chdn(x) ∩R;

and let sub(x) be the set of all sub-elements of x, i.e. sub(x)
def
= {y ∈ V ∪R | ∃n ∈ N : parn(y) =

x}. Finally, relation conflict defines whether two states s1 and s2 are in conflict , i.e. must not
be active at the same time. This is the case if both are contained in a common region but one
is not a substate of the other.

conflict(s1, s2)
def
⇔ (s1 ∈ sub(reg(s2)) ∧ s1 /∈ sub(s2)) ∨

(s2 ∈ sub(reg(s1)) ∧ s2 /∈ sub(s1)).

We use the convention that t stands for a transition (v, e,E, v′), i.e. it implicitly defines its
components v, e, E, and v′. Accordingly, t1 stands for (v1, e1, E1, v

′
1), etc. Analogously, l

stands for a link (v, v′), and l1 stands for (v1, v
′
1), etc.

Example 6.1. We illustrate the definitions with respect to the state diagram presented in Fig-
ure 6.1. Here, the state set S is {s1, . . . , s7}. The initial state set S0 is the singleton {s1}.
State s2 has one entry point on the left and one exit point on the right. From the entry point
we have entry links to s4, s5, and s6; exit links to the exit point originate from s5, s6, and
s7. State s2 has two orthogonal regions r1 and r2, whereas all other state just have a single
default region, whose name is not given in the drawing. Region r1 has input event constraint
{e1} and output event constraint Ev; region r2 has input event constraint Ev and output event
constraint {e1}. The only state that has open events is s6; it is open with respect to all input
events Ev. The parent function defines, e.g., the following parent relationships: state s6 has as
parent region r2 which in turn has as parent state s2 which in turn has as parent the outermost
region ε. The entry point and the exit point both have parent s2. The set of direct children of
state s2, chdn(s2), contains the entry point, the exit point, and the two regions r1, r2. The set
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Figure 6.2: Illustration of transformation reduce. Here, Ev = {e, f} and Ev = {e}. The left
state diagram is transformed to the right reduced state diagram. In the latter,
introduced helper components are shaded gray for easier readability. The helper
state of the outermost region ε, which is not reachable, and its outgoing transitions
are omitted in this drawing.

of all sub-elements, sub(s2), also contains the states {s4, . . . , s7} and their contained default
regions. Examples for conflicting state pairs are (s4, s5) and (s1, s5). State pairs (s2, s4)
and (s4, s6) are not in conflict, i.e. these are allowed to be active at the same time.

6.3 Semantics

We give the semantics of a given state diagram in two steps. First, we eliminate underspecifica-
tion notations (open input events, open output event sets, and event constraints) by expressing
them using standard notations like nondeterministic transitions. This yields a reduced state
diagram for which the semantics in terms of an I/O-transition system is easier to define, via
structural operational semantics (SOS) rules.

6.3.1 Transformation into a reduced state diagram

A state diagram is called reduced if its event constraints are as general as possible, i.e. ∀r ∈ R :
con(r) = Ev∧ con(r) = Ev, it does not have states that are open with respect to certain events,
i.e. ∀s ∈ S : opn(s) = ∅, and all output event sets are closed, i.e. ∀(v, e,E, v′) ∈ T : • /∈ E.
Usually, the three last components of a reduced state diagram are omitted.

A state diagram is transformed into a reduced state diagram using function reduce, explained
in the following. Open output event sets are eliminated by several transitions, one transition
for each output event set that is allowed by the notation and the given event constraint. Open
input events are eliminated using additional helper states in each region, �r, which offer all
transitions allowed by the given event constraints. The state (in region r) that has open input
events then is equipped with transitions to �r, labeled by these input events and any subset
of (by event constraint) permitted output events. Furthermore, it gets transitions to all other
states in its region, and it also has to descend into possible substates of these. For formalizing
this we need to introduce an additional open entry state #s for each state. Figure 6.2 shows
an example of transformation reduce. Note that the openness with respect to e in the example
still allows discarding of event e, simulated by a loop to an entry point of the same state, which
then, since it is open, allows re-entry into the current (sub-)configuration.
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Formally,

reduce : (S,S0,P#,P⊗,R, par,T ,L#,L⊗, con, con, opn) 7→ (Ŝ,S0, P̂#,P⊗, R̂, p̂ar, T̂ , L̂#,L⊗),

where

• Ŝ gets new helper states �r for each region:

Ŝ
def
= S

.
∪ {�r | r ∈ R},

• P̂# contains new default entry points #s for each state:

P̂# def
= P#

.
∪ {#s | s ∈ S},

• the helper states �r get default regions ρr:

R̂
def
= R

.
∪ {ρr | �r ∈ Ŝ},

• the parent function arranges the new helper components’ positions in the hierarchy tree:

p̂ar
def
= par ∪ {(�r, r) | r ∈ R} ∪ {(#s, s) | s ∈ S} ∪ {(ρr,�r) | r ∈ R},

• there are new transitions with all (by event constraint) permitted subsets of output events
and all targets inside the same region (i) from states with an open event, which then
defines the input event of the transition, and (ii) from helper states �r, in which case the
input event may be any event allowed by the event constraint of the surrounding region.
Furthermore, we replace open output event sets by all event sets allowed by the notation
and the given event constraint:

T̂
def
= T ∪ {(v, e,E, v′) | v ∈ Ŝ ∪ P̂# ∪ P⊗ ∧ v′ ∈ Ŝ ∪ P̂# ∧ reg(v′) = reg(v) ∧

E ⊆ con(reg(v)) ∧ (e ∈ opn(v) ∨ (e ∈ con(reg(v)) ∧ v = �par(v)))} ∪

{(v, e,E, v′) | ∃E
′
: (v, e,E

′
, v′) ∈ T ∧ • ∈ E

′
∧ E

′
\ {•} ⊆ E ⊆ con(reg(v))}.

Here, �r, ρr, and #s are fresh symbols. Note that several newly introduced transitions in the
transformation could have been left out in case they are “overridden” by another transition
leaving a less deeply nested state. This would lead to a smaller and semantically equivalent
reduced state diagram but complicates the definition of reduce.

6.3.2 Structural operational semantics

As semantic model we employ the refinement setting IOTS, as introduced in Section 2.3.3.
It fits the requirements in the context of state diagrams well, because (i) state diagrams
have input and output events and (ii) state diagrams are input-enabled (every event is either
processed or discarded, but never rejected). For better differentiation between state diagram
states and I/O-transition system states, we call I/O-transition system states configurations in
the following.
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s2
r1

r2

p1 p4

s5

s4

s7

s6

p2 p3
s8

s1 s3
e e

e

Figure 6.3: Example of a reduced state diagram.

We define the semantics of a reduced state diagram. Since the openness notations for open
events in states, event constraints and open output event sets have already been reduced, we
do not need to take care of these. However, entry and exit points can still be open, if there
are no links from/to one of their parent’s regions. Formally, predicates opn# and opn⊗ define,
for a point p and a region r of their parent, whether p is open with respect to r:

opn#(p, r)
def
= ∀v ∈ p.L# : reg(v) 6= r opn⊗(p, r)

def
= ∀v ∈ L

⊗.p : reg(v) 6= r

Example 6.2. In the state diagram of Figure 6.3, entry point p1 is open with respect to region
r1, but not open with respect to region r2. Exit point p3 is open with respect to the single
default region of state s6. Exit point p4 is not open, neither with respect to region r1 nor with
respect to region r2.

Predicate −→⊗⊆ P(S) × V defines whether v is a lead-out vertex of state set S (written
S −→⊗ v), i.e. whether S, as a set of currently active states, enables vertex v (typically an exit
point) for the firing of outgoing transitions. −→⊗ is defined via two SOS rules: the first states
that every s ∈ S is enabled in this sense, and the second states that an exit point is enabled
if every region has at least one enabled vertex linked to the exit point:

s ∈ S

S −→⊗ s

p ∈ P⊗ ∀r ∈ chdnR(state(p)) : ∃v ∈ (L⊗.p) ∩ (S. −→⊗) : reg(v) = r

S −→⊗ p

Example 6.3. In the state diagram of Figure 6.3, p4 is a lead-out vertex of {s2, s4, s7}. p4 is
not a lead-out vertex of {s2, s4, s6} or {s2, s4, s6, s8}.

If there are open exit points along which a vertex v could become a lead-out vertex of a state
set S, it is possible but not guaranteed that in an implementation v is a lead-out vertex of S.
This possibility is captured by predicate 99K⊗⊆ P(S) × V, in the definition of which it is also
allowed to leave states using open exit points:

s ∈ S

S 99K⊗ s

p ∈ P⊗ ∀r ∈ chdnR(state(p)) :
((∃v ∈ (L⊗.p) ∩ (S. 99K⊗) : reg(v) = r) ∨ opn⊗(p, r))

S 99K⊗ p

Note that −→⊗⊆99K⊗.
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Example 6.4. In the state diagram of Figure 6.3, we have {s2, s4, s6, s8} 99K⊗ p4.

Open entry points (with respect to region r) correspond to those linking to each possible target
in r. Multiple links into a region express nondeterminism which has to be resolved upon state
entry. This is formalized by resolutions that define, for each pair of entry point and region,
a vertex linked from this entry point and located in this region. Formally, a resolution is a
function % : {(p, r) | p ∈ P# ∧ r ∈ chdnR(state(p))} → V satisfying

∀p ∈ P#, r ∈ chdnR(state(p)) : ((p, %(p, r)) ∈ L
# ∨ opn#(p, r)) ∧ reg(%(p, r)) = r.

Example 6.5. A possible resolution, say %1, for the state diagram of Figure 6.3 maps (p1,r1)
to s4 and (p1,r2) to s5. Another possible resolution, say %2, maps (p1,r1) to s4 and (p1,r2)
to p2. Every resolution maps p2 together with the single default region of s6 to s8.

We define v
%

−→# v′ iff v′ is a successor state that gets active if a transition leading to v
fires, given resolution %. Relation −→# is defined by two SOS rules, where the first states
that v itself becomes active and the second descends into subregions according to the given
resolution:

v ∈ S ∪ P#

v
%

−→# v

v
%

−→# p r ∈ chdnR(state(p))

v
%

−→# %(p, r) v
%

−→# state(%(p, r))

Example 6.6. Considering the resolutions ρ1 and ρ2 of Example 6.5, we get p1
%1
−→# s4 and

p1
%1
−→# s5. We do not get p1

%1
−→# p2, but p1

%2
−→# p2.

A transition t = (v, e,E, v′) is must-enabled or may-enabled with respect to given current
active states S and a provided event e′, if the event matches the transition’s event and the
source of t is a guaranteed or possible lead-out vertex of S, respectively.

must-enabled(t, S, e′)
def
⇔ e = e′ ∧ S −→⊗ v

may-enabled(t, S, e′)
def
⇔ e = e′ ∧ S 99K⊗ v

Example 6.7. In the state diagram of Figure 6.3, we have must-enabled((p4, e, ∅, s3), {s2, s4,
s7}, e) and may-enabled((p4, e, ∅, s3), {s2, s4, s6, s8}, e).

One transition t1 = (v1, e1, E1, v
′
1) has priority over another transition t2 = (v2, e2, E2, v

′
2),

prio(t1, t2), if the state of v2 is a substate of the state of v1. Note that for technical reasons we
define prio(t1, t2) to also hold if v1 = v2 and even if t1 = t2.

prio(t1, t2)
def
⇔ state(v2) ∈ sub(state(v1))

Example 6.8. In the state diagram of Figure 6.3, (p4, e, ∅, s3) has priority over (s6, e, ∅, s6).

A set of transitions Γ is fireable with respect to given current active states S and a provided
event e if (i) all transitions t ∈ Γ are may-enabled, (ii) there is no must-enabled transition
with higher priority, and (iii) must-enabled transitions not in Γ are in priority conflict with a
transition in Γ.

fireable(Γ, S, e′)
def
⇔ ∀t ∈ Γ : (may-enabled(t, S, e′) ∧

(∀t1 ∈ T : v1 = v ∨ ¬must-enabled(t1, S, e′) ∨ ¬prio(t1, t))) ∧

(∀t2 ∈ T \ Γ : ¬must-enabled(t2, S, e′) ∨ ∃t3 ∈ Γ : prio(t2, t3))
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Example 6.9. In the state diagram of Figure 6.3, we have fireable({(p4, e, ∅, s3)}, {s2, s4, s7}, e)
and fireable({(p4, e, ∅, {s2, s4, s6, s8}}, e).

Now the semantics of a given reduced state diagram in terms of an I/O-transition system is
defined as follows. The configurations are pairs of current active states and those output events
that are still to be performed before the next state transition, i.e. C

def
= {(S,E) | S ⊆ S ∧ E ⊆

Ev}, and the initial configuration is defined to be c0 def
= (S0, ∅). The transition relation 7−→

is defined by the following SOS rules. Rule (fire) selects a fireable set of transitions and
consumes the corresponding input event. It leads over to the succeeding state configuration,
leaving all substates of states left by the transition and entering successor states, defined by
any given resolution resolving entry point nondeterminism. Furthermore, it collects all output
events to be generated. Rule (exec) makes sure these events are thereafter generated one
by one (in nondeterministic order). Finally, rule (discard) introduces self-loops, if an input
event cannot be taken, which corresponds to event discarding.

e ∈ Ev Γ ⊆ T fireable(Γ, S, e) f : Γ → P(V) ∀t ∈ Γ : ∃% : f(t) = (v′.
%

−→#)

(S, ∅)
e

7−→
((

S \
⋃

t∈Γ sub(state(v))
)
∪

(⋃
t∈Γ f(t)

)
,
⋃

t∈Γ E
) (fire)

e ∈ Ev ∀t ∈ T : ¬must-enabled(t, S, e)

(S, ∅)
e

7−→ (S, ∅)
(discard)

e ∈ E

(S,E)
e

7−→ (S,E \ {e})
(exec)

Proposition 6.10. In the semantics, all reachable configurations are conflict-free and closed
with respect to parent states.

Proof. Closedness with respect to parent states: By well-formedness, the initial configuration is
closed with respect to parent states. Given a configuration that is closed with respect to parent
states, the only rule to change the currently active states is rule (fire). Any firing transition
removes all children of the source state of the transition and adds a parent-closed set of states
inside the same region (this is because transitions are not allowed to change regions). Thus
closedness with respect to parent states is preserved.

Conflict-freedom: By well-formedness, the initial configuration is conflict-free. Given a conflict-
free configuration, assume that there are a successor configuration and active states s1, s2 with
conflict(s1, s2). Without loss of generality, let s1 ∈ sub(reg(s2))∧ s1 /∈ sub(s2). Since all parent
states of s1 are active as well (closedness with respect to parent states), there is an active state
s′1 such that reg(s′1) = reg(s2). s′1 or s2 must have (newly) become active in the last step,
otherwise the previous configuration would have had a conflict as well. Now, we distinguish
several cases and show that all of them lead to contradictions:

• Both s′1 and s2 got active by transitions, or one got active by a transition and the other
was active before: this is impossible since then the previous configuration would have
had a conflict as well, because transitions do not change regions.

• Both s′1 and s2 got active by an entry link: then, they must have become active via
a common entry point, because otherwise two transitions would have fired in a com-
mon region (predicate prio would have held). However, in the common entry point, the
resolution can only choose a single successor, so this is impossible.
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• One of the two states s′1 and s2 got active by an entry link and the other is unchanged or
got active by a transition: then, the previous configuration would have had a conflict.

6.4 Refinement patterns

A refinement pattern is a model transformation that is correct by construction, i.e. when
applying it to a model satisfying the pattern’s preconditions, the resulting model is in fact
a refinement of the original. Here, we present an expressive set of refinement patterns in a
very general notation, using structural operational semantics rules to define a pattern relation
;. In practice, one will want to use a user-friendly, higher-level transformation language,
e.g. (hierarchical) graph transformations [DHP02] or the Epsilon transformation language
[KPP08]. By using an SOS-like rule notation we chose a very general notation that can easily
be translated into any higher-level language of choice. The names of some of the rules are
underlined. These refinement patterns are actually equivalence patterns, i.e. they could be
inverted and would still yield a refinement pattern. Not all such inversions are given here
because we restrict ourselves to those patterns that are especially useful in the context of
top-down development. This collection of patterns is far from “complete”; instead we aim for
practical utility.

Set fresh(D), often used in preconditions of rules, denotes a set of fresh symbols, i.e. it satisfies
fresh(D) ∩ (V ∪ R) = ∅.

(as) Add state. This pattern adds a state s, together with a default contained region r, to
an existing surrounding region r.

s, r ∈ fresh(D) r ∈ R

D ; (S ∪ {s},S0, ...,R ∪ {r},
par[r 7→ s, s 7→ r], ..., con[r 7→ con(r)], con[r 7→ con(r)], opn[s 7→ con(r)])

Remember that f [a 7→ b] denotes function f except that a is mapped to b, i.e. (f \
{(a, f(a))}) ∪ {(a, b)} if a ∈ A, and f ∪ {(a, b)} otherwise.

(ar) Add region. This pattern adds an additional region r to a non-initial state s, which
only has entry points that are open with respect to each region. r inherits the event
constraints of an existing region r.

r ∈ fresh(D) s ∈ S \ S0 ∀p ∈ chdn(s) ∩ P# : p.L# = ∅ r ∈ chdn(s)

D ; (...,R ∪ {r}, par[r 7→ s], ..., con[r 7→ con(r)], con[r 7→ con(r)], ...)

Note that no actual behavior may be fixed for state s in which an additional region is to
be added, which is made sure by the required non-existence of specified (i.e., non-open)
entry points or initial states. This is natural in the top-down development process which
first fixes regions (together with their event constraints) and then continues to implement
the contents of the regions.

The restriction that initial states cannot be added regions can be compensated by a
simple, top-level initial state that then enters a more complex hierarchical configuration
in the first (possibly silent) step.
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(a#) Add open entry point. This pattern adds an entry point p to state s. It is open with
respect to all regions of s because it does not have any links to subvertices yet.

p ∈ fresh(D) s ∈ S

D ; (...,P# ∪ {p}, ..., par[p 7→ s], ...)

(a⊗) Add open exit point. This pattern adds an exit point p to state s. It is open with
respect to all regions of s because it does not have any links from subvertices yet.

p ∈ fresh(D) s ∈ S

D ; (...,P⊗ ∪ {p}, ..., par[p 7→ s], ...)

(s#) Specify entry links. This pattern closes an entry point p that is open with respect to
region r by defining the set of linked subvertices in r, namely V . Even though it is closed
in this sense, some nondeterminism still remains existent as long as |V | > 1.

p ∈ P# r ∈ R par(r) = state(p) opn#(p, r) V ⊆ {v ∈ S ∪ P# | reg(v) = r}

D ; (...,L# ∪ {(p, v) | v ∈ V }, ...)

(s⊗) Specify exit links. This pattern closes an exit point p that is open with respect to
region r by defining the set of linked subvertices in r, namely V .

p ∈ P⊗ r ∈ R par(r) = state(p) opn⊗(p, r) V ⊆ {v ∈ S ∪ P⊗ | reg(v) = r}

D ; (...,L⊗ ∪ {(v, p) | v ∈ V }, ...)

(r#) Remove open entry point. This pattern removes an entry point p that is open with
respect to all regions and connects transitions and links leading to p with the state of p.

p ∈ P# p.L# = ∅

D ; (...,P# \ {p}, ..., {t | (t ∈ T ∧ v′ 6= p) ∨ ((v, e,E, p) ∈ T ∧ v′ = state(p))},
{l | (l ∈ L

# ∧ v′ 6= p) ∨ ((v, p) ∈ L
# ∧ v′ = state(p))}, ...)

(r⊗) Remove open exit point. This pattern removes an exit point p that is open with
respect to all regions and connects transitions and links originating from p with the state
of p.

p ∈ P⊗
L
⊗.p = ∅

D ; (...,P⊗ \ {p}, ..., {t | (t ∈ T ∧ v 6= p) ∨ ((p, e,E, v′) ∈ T ∧ v = state(p))},
{l | (l ∈ L

⊗ ∧ v 6= p) ∨ ((p, v′) ∈ L
⊗ ∧ v = state(p))}, ...)

(rx) Remove open exiting transition. This pattern removes an exit point p that is open
with respect to at least one region, along with all transitions and links originating from
p.

p ∈ P⊗ ∃r ∈ chdnR(state(p)) : opn⊗(p, r)

D ; (...,P⊗ \ {p}, ..., {t ∈ T | v 6= p}, ..., {l ∈ L⊗ | v 6= p}, ...)

Note that the corresponding rule for open entering transitions, removing an entry point
together with transitions and links leading to the entry point, would be unsound in
general. This is because the incoming transition could be required by its source state.
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(n#) Reduce nondeterminism in entry links. This pattern removes a link originating
from an entry point p that has at least one further link to the same region.

(p, v1), (p, v2) ∈ L
# v1 6= v2 reg(v1) = reg(v2)

D ; (...,L# \ {(p, v1)}, ...)

(at) Add transition. This pattern adds a new transition (v, e,E, v′) originating from a ver-
tex v that is open with respect to e.

v ∈ S ∪ P⊗ v′ ∈ S ∪ P# reg(v) = reg(v′) e ∈ opn(state(v))

E ⊆ con(reg(v)) ∪ {•}

D ; (...,T ∪ {(v, e,E, v′)}, ...)

(rt) Remove transition. This patterns removes a transition (v, e,E, v′) originating from a
vertex v that is open with respect to e.

(v, e,E1, v
′) ∈ T e ∈ opn(state(v))

D ; (...,T \ {(v, e,E1, v′)}), ...

(nt) Reduce nondeterminism in transitions. This pattern removes a transition (v, e,E,
v′) if there is another transition with input event e originating from v.

(v, e,E1, v
′
1), (v, e,E2, v

′
2) ∈ T E1 6= E2 ∨ v′1 6= v′2

D ; (...,T \ {(v, e,E1, v
′
1)}), ...

(ct) Close for transitions. This pattern removes openness with respect to events from a
state s by restricting the set of open events to a subset E. If s is not a top-level state,
i.e. is not in region ε, E must remain a super-set of the surrounding state’s open events.

s ∈ S E ⊆ opn(s) par(s) 6= ε ⇒ E ⊇ opn(par(par(s)))

D ; (..., opn[s 7→ E])

(ao) Add output events. This pattern adds a set of output events E1 to a transition t

having an open output event set (• ∈ E).

t ∈ T • ∈ E E1 ⊆ con(reg(v))

D ; (..., (T \ {t}) ∪ {(v, e,E ∪ E1, v′)}, ...)

(co) Close for output events. This pattern closes a transition’s output event set.

t ∈ T • ∈ E

D ; (..., (T \ {t}) ∪ {(v, e,E \ {•}, v′)}, ...)

(sc) Strengthen event constraint. These two patterns strengthen the input or output
event constraint of a region r by restricting the event set to a subset E, which however
needs to remain a super-set of the constraints of all subregions. For output events, set

89



Chapter 6 Verifiable Top-Down Development of State Diagrams

E must not be stricter than existing transitions in r. For input events, set E also must
not be stricter than existing open events in substates of r.

r ∈ R E ⊆ con(r) ∀r ∈ R : par(par(r)) = r ⇒ E ⊇ con(r)
∀s ∈ chdn(r) : opn(s) ⊆ E ∧ ∀t ∈ T : v = s ⇒ e ∈ E

D ; (..., con[r 7→ E], ...)

r ∈ R E ⊆ con(r) ∀r ∈ R : par(par(r)) = r ⇒ E ⊇ con(r)

∀t ∈ T : v ∈ chdn(r) ⇒ E ⊆ E ∪ {•}

D ; (..., con[r 7→ E], ...)

(ds) Duplicate state. This pattern duplicates a state s by copying its complete substructure
X including entry and exit points of s, subregions and substates. Transitions, links,
event constraints and open events in the copied substructure are set as in the original,
with transitions and links entering and leaving X also entering and leaving its copy. In
addition, transitions between the copies are introduced if they are well-formed. If initial
states are copied, their copy is not an initial state, in order to avoid a conflicting start
configuration.

s ∈ S X = sub(s) ι maps x ∈ X to some fresh ι(x) and x /∈ X to x

D ; (S ∪ ι(X ∩ S),S0,P# ∪ ι(X ∩ P#),P⊗ ∪ ι(X ∩ P⊗),R ∪ ι(X ∩R),
par ∪ {(ι(s), par(s))} ∪ {(ι(x), ι(par(x))) | x ∈ X \ {s}},

{t | ∃t1 ∈ T : v ∈ {v1, ι(v1)} ∧ e = e1 ∧ E = E1 ∧ v′ ∈ {v′1, ι(v
′
1)} ∧ reg(v) = reg(v′)},

{l | ∃l1 ∈ L
# : v ∈ {v1, ι(v1)} ∧ v′ ∈ {v′1, ι(v

′
1)} ∧ state(v) = par(reg(v′))},

{l | ∃l1 ∈ L
⊗ : v ∈ {v1, ι(v1)} ∧ v′ ∈ {v′1, ι(v

′
1)} ∧ par(reg(v)) = state(v′)},

con ∪ {(ι(r), con(r)) | r ∈ X ∩R}, con ∪ {(ι(r), con(r)) | r ∈ X ∩R},
opn ∪ {(ι(v), opn(v)) | v ∈ X ∩ S})

(gs) Group states. This pattern groups a set of states S, all sharing the same surrounding
region r, in a new state s, which has new default region r. Transitions and links entering
and leaving S (collected in sets Γ#, Γ⊗, Λ#, Λ⊗) have to cross the new state’s border
via new entry and exit points, denoted by pt for crossing transitions and pl for crossing
links. If there is an initial state in S, the new state also becomes an initial state. Event
constraints for the new state’s region r are inherited by the surrounding region r, and
the new state is open with respect to the intersection of all open events of states in S.

r ∈ R S ⊆ chdn(r) S̃ =
⋃

s∈S sub(s) s, r ∈ fresh(D)

Γ# = {t ∈ T | v /∈ S̃ ∧ v′ ∈ S̃} Γ⊗ = {t ∈ T | v ∈ S̃ ∧ v′ /∈ S̃}

Λ# = {l ∈ L
# | v /∈ S̃ ∧ v′ ∈ S̃} Λ⊗ = {l ∈ L

⊗ | v ∈ S̃ ∧ v′ /∈ S̃}
∀x ∈ Γ# ∪ Γ⊗ ∪ Λ# ∪ Λ⊗ : px ∈ fresh(D)

D ; (S ∪ {s},S0 ∪ {s | s = s ∧ S0 ∩ S 6= ∅},P# ∪ {pt | t ∈ Γ#} ∪ {pl | l ∈ Λ#},
P⊗ ∪ {pt | t ∈ Γ⊗} ∪ {pl | l ∈ Λ⊗},R ∪ {r}, par[s 7→ r, r 7→ s] ∪ {(s, r) | s ∈ S},

{t | t ∈ T \ (Γ# ∪ Γ⊗) ∨ (∃t1 ∈ Γ# : t = (v1, e1, E1, pt1))∨
(∃t2 ∈ Γ⊗ : t = (pt2 , e2, E2, v

′
2))},

{l | l ∈ L
# \ Λ# ∨ (∃t1 ∈ Γ# : l = (pt1 , v

′
1)) ∨ (∃l1 ∈ Λ# : l = (v1, pl1) ∨ l = (pl1 , v

′
1))},

{l | l ∈ L
⊗ \ Λ⊗ ∨ (∃t1 ∈ Γ⊗ : l = (v1, pt1)) ∨ (∃l1 ∈ Λ⊗ : l = (v1, pl1) ∨ l = (pl1 , v

′
1))},

con[r 7→ con(r)], con[r 7→ con(r)], opn[s 7→
⋂

s∈S opn(s)])
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(u#) Unify entry points. If there are two entry points p1, p2 such that all transitions and
links leading to these points are “equal” up to p1 and p2, then this pattern removes p2

and adds entry links leaving p1 that originally left p2.

s ∈ S p1, p2 ∈ P# ∩ chdn(s) p1 6= p2 T .p1 = T .p2 L
#.p1 = L

#.p2

D ; (...,P# \ {p2}, ..., par \ {(p2, s)}, {t ∈ T | v′ 6= p2}, ...,
{l | (l ∈ L

# ∧ v 6= p2 6= v′) ∨ ((p2, v
′) ∈ L

# ∧ v = p1)}, ...)

(u⊗) Unify exit points. If there are two exit points p1, p2 such that all transitions and links
originating from these points are “equal” up to p1 and p2, then this pattern removes p2

and adds exits links leading to p1 that originally lead to p2.

s ∈ S p1, p2 ∈ P⊗ ∩ chdn(s) p1 6= p2 p1.T = p2.T p1.L
⊗ = p2.L

⊗

D ; (...,P⊗ \ {p2}, ..., par \ {(p2, s)}, {t ∈ T | v 6= p2}, ...,
{l | (l ∈ L

⊗ ∧ v 6= p2 6= v′) ∨ ((v, p2) ∈ L
⊗ ∧ v′ = p1)}, ...)

Theorem 6.11. The refinement patterns are sound, i.e. for every state diagram D1, and D2

with D1 ; D2, D2 is a state diagram and D2 ≤ D1.

Proof. It is easily checked that D2 is in fact a (well-formed) state diagram.

Patterns (at), (rt), (ao), (a#), (a⊗), (u#), and (u⊗) do not change the semantics at all,
as discussed in the following: The added transition in (at) would have been introduced by
transformation reduce anyway. The removed transition in (rt) will still be introduced by
transformation reduce. (ao) has no effect on the semantics, because • stays in the set of output
events of the transition. Pattern (a#) does not change the semantics, because the new entry
point has the same behavior as helper component #s, which is introduced by transformation
reduce. Applications of (u#) or (u⊗) also do not change the semantics, since for the definitions
of relations −→⊗ and −→#, only the reachable transitions are relevant, not the link paths, by
which they are reached.

The following patterns change the semantics but yield an equivalent semantic model: The
added state in pattern (as) is not reachable by transition or by explicit link, also it is not
linked to an exit point explicitly. It has the open events defined by the region’s event constraint.
Thus, it has the same behavior as the helper state �r that is introduced by transformation
reduce. The added region in pattern (ar) implies a new helper state, which however has only
a part of the behavior of the helper state of r. For pattern (a⊗), the new exit point has the
same implicit transitions as its parent. Whenever an implicit transition from the exit point
is enabled, the corresponding implicit transition of the parent is enabled, too. Thus, no new
behavior is added. Pattern (r#) leads to not entering state state(p). This behavior however
already was described before by transformation reduce via the helper states introduced for
each region. Refining those to only perform self-loops is equivalent to not entering the state.
Pattern (gs) introduces a new state s which, in case it has no open events, is active if and
only if one of the grouped states in S is active. If it has open events, these are defined by the
intersection of open events in S, and transformation reduce introduces corresponding additional
helper components with open behavior, which however do not introduce new open behavior
and only reflects behaviour that has already been exhibited by the substates.

The following patterns lead to a proper refinement, i.e. not to an equivalent model: For pattern
(s#), note that an entry point that is open with respect to region r is equivalent to one linking
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to all possible targets in r. Specifying a subset thus results in a subset of outgoing transitions in
the semantics. For pattern (s⊗), note that implicit exit links are dealt with like may transitions.
In the semantic translation they correspond to several branches with both the behavior that
would be implied by the exit link and the behavior that would be implied if the exit link would
not exist (this can be a self-loop or a lower-priorized transition enabled for the event). Both
explicitly selecting (v ∈ V ) and explicitly discarding (v /∈ V ) thus just corresponds to the
removal of semantic transition branches. Patterns (r⊗) and (rx) are special cases of (s⊗): (r⊗)
corresponds to the implementation of all implicit may exit links, with respect to all regions,
whereas (rx) corresponds to the removal of all implicit may exit links, with respect to all
regions. Patterns (n#) and (nt) semantically translate to removing a transition branch. Also
patterns (ct) and (co) only remove transition branches. This is also the case for pattern (sc),
although the transition branches removed there are implicit ones, introduced by transformation
reduce. Finally, refinement for pattern (ds) can be shown by defining the refinement relation
to relate configurations containing copied states with those of the corresponding originals.

6.5 Example: top-down development of an elevator control

We model the control unit of a simple elevator that only serves two floors. The input events
of the model are Ev = {on, off, go, stopped, opened, closed, canceled, call, alarm, pickup,
hangup}, and the output events are Ev = {up, down, stop, open, close, d0, d1, dup, ddown,
dalarm, dclear, ring, connect, disconnect}. Input events on and off can be issued by an
operator to turn the elevator on and off, respectively. Input event go is given by a user who
therewith requests the cabin to move to the other floor. The modeled system controls the
motor for vertical movement of the cabin using output events up, down and stop, respectively
requesting the cabin to move up, down or stop immediately. The motor unit responds with
an input event stopped as soon as it has come to a halt. The door mechanism is controlled
using output events open and close. The door mechanism responds with event opened or
closed, if opening or closing is complete, respectively. It sends event canceled if the closing
of the door could not be completed (e.g. if there is an obstacle in the door area). The
display is controlled using output events d0, d1, dup, ddown, dalarm, and dclear, resulting in
the display showing icons for “floor 0”, “floor 1”, “moving up”, “moving down”, “alarm”, or
clearing the display, respectively. An alarm button inside the cabin generates event alarm. It
shall perform an emergency stop: upon pressing the button, the cabin should halt immediately,
the doors should be opened, and no further mechanical actions should be performed. Finally,
there is a communication system: a button inside the cabin generates an input event call,
requesting a call to an operator. Output event ring is then issued to inform the operator of
a communication request. Event pickup occurs when the operator answers (then, connect is
issued, which establishes a connection), and event hangup occurs when the operator ends the
connection (then disconnect is issued which terminates the connection).

Figure 6.4 depicts the model of the elevator control, specified completely except for the han-
dling of event canceled in substate closing of the door region. The rest of this section
illustrates how this model can be developed top-down using the refinement patterns presented
in Section 6.4.

Top-down development. The left side of Figure 6.5 shows the most general model possible,
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mechanics[Ev\{call,pickup,hangup},{up,down,stop,open,close}]

display[Ev,{d0,d1,dup,ddown,dalarm,dclear}] communication[{call,pickup,hangup,

alarm},{ring,connect,

disconnect}]
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motor[Ev\{call,pickup,hangup},

{up,down,stop}]

door[Ev\{call,pickup,hangup},
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Figure 6.4: A model of an elevator control unit. Here, Ev = {on, off, go, stopped, opened,
closed, canceled, call, alarm, pickup, hangup}, and Ev = {up, down, stop, open,
close, d0, d1, dup, ddown, dalarm, dclear, ring, connect, disconnect}.

off

?
Ev

off

on

off/• on/•

Figure 6.5: The most general model on the left and a refinement of it on the right. The right
model evolves from the left one using patterns (as):on, (a#), (a⊗), 2×(at), (ct):on,
(ct):off.
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off

on
mechanics[Ev\{call,pickup,hangup},{up,down,stop,open,close}]

display[Ev,{d0,d1,dup,ddown,dalarm,dclear}] communication[{call,pickup,hangup,

alarm},{ring,connect,

disconnect}]

off/• on/•

normal op
motor[Ev\{call,pickup,hangup},

{up,down,stop}]

door[Ev\{call,pickup,hangup},

{open,close}]? alarm

Figure 6.6: A refinement of the previous model (Figure 6.5, right) which evolves using
patterns (ar):display, (ar):communication, 2×(sc):mechanics, (sc):display,
2×(sc):communication, [(as),(ct)]:normal op, (ar):door, (sc):motor, (sc):
door.

from which any model can be refined. As a first step, we refine it to the model shown on the
right of Figure 6.5. The basic idea is that the elevator control will have an off state which
is initial, and an on state which will be refined further. The off state will be left on input
event on, leading to a further-to-be-refined configuration in state on (expressed by an open
entry point), and the on state will be left on event off leading to state off, provided it is in a
further-to-be-refined configuration in state on (expressed by an open exit point). We do not
yet specify which output events should be generated when taking the transitions and therefore
use the open event set notation •.

The next refinement is shown in Figure 6.6, where we refine the on state. It will have three
regions, where mechanics will control the mechanical parts of the elevator, i.e. the motor
for cabin movements and the door mechanism. By event constraint, it may react on all input
events, except for events call, pickup, and hangup. It may generate only the output events
up, down, stop, open, and close. A further region is for the display inside the cabin which
may only control the display device and generate no further events. However, it may react to
any event since it may be reasonable to illustrate on the display any event that might happen.
The third region is for the communication system between the cabin and the operator. It
may only react on input events and generate output events related to communication.

In Figure 6.6, the mechanics state is refined further. It has a state for normal operation which
may be left in case of alarm. normal op has two regions where one of them, motor, controls
the vertical movement of the cabin by issuing events up, down, and stop. The other region,
door, controls the opening and closing of the door by issuing events open and close.

As next steps, the regions can be refined independently from one another. For example, the
communication system could be modeled, as shown in Figure 6.7.

Now, it is possible to check properties dealing only with the communication system. For
example, we know that after an initial on and as long as off does not occur, call and alarm
are the only events that lead to ring. This is because no other region in on may generate an
event ring due to the given event constraints.
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mechanics[Ev\{call,pickup,hangup},{up,down,stop,open,close}]
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Figure 6.7: A refinement of the previous model (Figure 6.6) which evolves using patterns
3×(as), (s#), 3×(at), 3×(ct).
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Figure 6.8: A refinement of the previous model (Figure 6.7), implementing initial behavior. It
evolves using patterns (ao), (a#), 7×(as), 3×(s#), 5×(at), 5×(ct).
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Next, let us refine the heart of the control unit, region mechanics. Initially, we do not know
the positions of the cabin and the door, so the first action after on will be to establish an
orderly state for both the cabin and the door mechanism by closing the door, moving the
cabin to the ground floor and opening the door there. The corresponding model is shown in
Figure 6.8.

The described initial procedure can now be proven to occur as expected. We know that only
alarm and off can interrupt the expected procedure (these transitions have priority over the
transitions inside normal op), although this is also not yet guaranteed.

Finally, we argue, exemplary for the motor region, that the current model can evolve to the
final model illustrated in Figure 6.4: first, we add states moving up and f1. Then, we add
transitions from f0 to moving up, from moving up to f1, and from f1 to moving down.
The new states are closed using pattern (ct). Now, we group states f0, f1, and unknown in a
new state standing using pattern (gs). Pattern (u⊗) allows us to save one exit point (f1 and
unknown are now left via a common exit point). An exit point for normal op is introduced
and, due to the new grouping state standing, it only needs one link for the motor region.

6.6 Possible extensions

Our modeling formalism features a subset of commonly available notations in several estab-
lished dialects of state diagrams. We decided for this restriction because (i) a safe subset of
semantically clear concepts should be preferred to a variety of different notations with different
(maybe even ambiguous) semantic meanings in different dialects; (ii) the presentation is kept
as simple as possible, not obscuring the general concepts of top-down development in state
diagrams; and (iii) our subset is meaningful for practical applications, as is demonstrated by
our example. Nevertheless, there may of course be practical applications that require features
not presented here. This section discusses such possible further extensions and shows how they
can equivalently be described in our formalism or, if they cannot, how the semantics would
have to be adapted in order to handle them.

Variables and guards. Our modeling formalism is lacking variable assignments and guards
depending on these variables. Harel statecharts also allow more sophisticated guards, e.g.
guard (in A) evaluating to true if state A is active, which however mostly can be reduced to
variables, e.g. by setting a flag variable when A is entered and removing it when it is left. In
order to make our model amenable to variables and guards, the configurations in the semantic
model would have to hold an additional component for a global variable assignment, i.e. a
function mapping variable symbols to their current values. Then, executing a transition may
include changes in the variable assignment and enabledness of transitions may also depend on
the evaluation of guards with respect to the current variable assignment.

Guards lead to slightly modified refinement patterns. For instance, it would be an additional
pattern to strengthen a guard of a transition as long as its source state is still open with respect
to the transition’s input event, or as long as there is a second transition from the same source,
with the same input event, and with an “overlapping” guard.

Global variables are difficult to handle in a refinement-sensitive setting. The problem is that
variables changed in one part of a system may affect guards in another part, which makes it
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hard to follow a compositional top-down design approach. One would need extra notations
that guarantee properties of variables, e.g. contracts that one part of the system fulfills and
the other part can rely on.

Various pseudostates. Our formalism does not have notations for default or history-based
state entry, or fork/join pseudostates. However, our formalism’s entry and exit points, together
with their attached links, can replace initial, fork, and join transitions. History pseudostates
cannot be expressed in our formalism because they would, similar to variables, need extra
information stored in semantic configurations, remembering substate configurations for later
re-entry. Further pseudostates existing in UML state machines are junction and choice. Transi-
tions composed using junction pseudostates can be expressed using several normal transitions.
Choice pseudostates are primarily characterized by their handling of actions and guards which
are not featured in our formalism, but they could be represented by several normal transitions
and intermediate states, if variables and guards would be supported.

Entry, exit, and do actions. Do activities, as in UML state machines, can be modeled in
our formalism using an orthogonal region performing the do actions. Entry and exit actions
would have to be made explicit in transitions leading to and originating from entry/exit points,
respectively.

Deferred events. In UML state machines, events can be deferred, i.e. in case they do not fire
any transition, they can be stored for future handling instead of being discarded. To support
deferred events, our semantic configurations would have to be extended by an additional com-
ponent holding the (multi-)set of currently deferred events, and there would be an alternative
version of SOS rule (discard) which also performs a self-loop but stores the action in the
component of deferred events. If there are deferred events, silent transitions (labeled, e.g., by
a special, unobservable action τ) can fire, consuming the event from the pool of deferred events
instead of requesting it from the environment.

Further extensions. There are further possible extensions that may be useful, especially in
the context of refinement in the top-down development process. For example, if conflicting
initial states were allowed, this would express initial nondeterminism (conflicts would have
to be resolved as a first step). This could be handled by an initial state set in the semantic
model, as is commonly done. Furthermore, one might want to specify open input events also
with respect to output events or target states, which would make it possible to express that a
transition with a specified input event may be added, but then only with (a subset or superset
of) a defined set of output events or only to (a subset or superset of) a defined set of allowed
target vertices. The concept of open entry and exit points could be refined by may-links, which
would allow certain links in an implementation and disallow others (open points always allow
all possible links with respect to a region). A further possible design choice would be to allow
introducing event constraints that prohibit events that already occur in the region. Then, an
event constraint would only restrict the possibility to add transitions in the future.
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6.7 Related work

There are numerous papers on the semantics of statecharts, in their more classical variant, e.g.
[HN96], and in their newer variant as defined in the UML, e.g. [HK04, FS07c]. An overview
is given in [CD05a]. Fewer papers, as listed in the following, can be found that deal with
refinement issues. The notions of refinement vary among these papers. [Sch98] and [LB98] use
a kind of trace inclusion, [Rum96, RK96] employs an inclusion of so-called stream processing
functions. [MNB04] is the only paper that takes a coalgebraic approach as we do, defining a
refinement notion based on simulation. All these papers give refinement patterns (also called
rules or transformations). However, none of them improves the syntax of statecharts to allow
for more flexible underspecification, together with the implied patterns, as we do. Furthermore,
many of them lack important rules given in this paper, e.g. the state duplication pattern is
missing in [Sch98, LB98, Rum96, RK96].

6.8 Conclusions

We defined a variant of statecharts that is especially designed for underspecification in a top-
down development process, maximizing compositionality and minimizing notational overhead.
We gave a formal semantics using the simulation-based refinement notion of IOTS, as defined
in Section 2.3.3. A set of basic refinement patterns was presented that allows for a structured
and stepwise top-down development, as illustrated by an example. Our results pave the way for
the implementation of a design tool for formally precise and correct-by-construction top-down
development of state diagrams.
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Chapter 7

Conclusions

This thesis established new results related to nondeterminism in semantic models. We formally
characterized the uniform notion of a refinement setting which, roughly speaking, consists of
a set of models, a refinement preorder and an embedding of implementations. We defined a
total of 19 different refinement settings, largely taken from the literature. 12 of these refine-
ment settings support only one kind of nondeterminism, namely resolvable nondeterminism,
which introduces underspecification and therefore is essential for the top-down development of
software systems. The proper semantic handling of this nondeterminism is required in order to
ensure the correctness of underspecified models and the soundness of refinement steps, using
formal methods.

Because of the large amount of available settings that support resolvable nondeterminism, it
is hard for a designer to decide which setting is most suitable for the given application at
hand. Our results presented in Chapter 3 support answering this question via expressiveness
comparisons between the most popular settings. Not only is the set of results new, but so
is the approach of comparison. Our approach does not compare the coarseness of refinement
preorders, as is usually done, e.g. in [vG01, EF02], but it compares the sets of expressible
sets of implementations. We established an expressiveness hierarchy using language-preserving
transformations. These transformations can also be used to convert between settings and to
reuse algorithms and tools across different settings.

Further, 6 of the 19 presented refinement settings support not only resolvable nondeterminism,
but also persistent nondeterminism which remains existent in implementations and can, e.g.,
be used to express faulty or random behavior. Consequently, the implementations in these
settings need not necessarily be deterministic. This thesis presented two practical application
fields for semantic models with both persistent and resolvable nondeterminism.

First, Chapter 4 showed that both kinds of nondeterminism must be handled when giving a
semantics to a process algebra for concurrent systems. This is because (i) the common in-
terpretation of the choice operator concerns persistent nondeterminism, and (ii) concurrent
execution may introduce resolvable nondeterminism, to be resolved by a scheduler of the op-
erating system. We gave a structural operational semantics in terms of µ-automata, and also
presented a sound and complete axiom system characterizing our refinement preorder.

The second application field for refinement settings supporting the two kinds of nondeter-
minism is state diagrams (i.e. statecharts [Har87], UML state machines [Obj07] and further
variants). In Chapter 5, we discussed that using persistent nondeterminism is a suitable ap-
proach to model failures or random decisions in state diagrams. Resolvable nondeterminism is
present by the underspecification inherent to state diagrams as abstract specifications. In order

99



7 Conclusion

to handle both kinds of nondeterminism, we developed the refinement setting of ν-automata,
which is dual to µ-automata [JW95] but allows for a more succinct description of state diagram
semantics. The new setting is equipped with a satisfaction relation over the µ-calculus [Koz83].
Then we used ν-automata to give a formal semantics to a simple state diagram variant, showed
how existing semantics can be adapted to also allow for persistent nondeterminism, and dis-
cussed how our approach can be extended with distributions for persistent nondeterminism,
interpreted as random choice.

Chapter 6 continued our consideration of state diagram semantics but focused on resolvable
nondeterminism and the refinement it expresses. A new state diagram variant was developed,
with a syntax supporting the requirements in the top-down development process. It was given
a formal semantics in a new refinement setting, introduced especially for this application.
The setting is based on ready simulation, but distinguishes between input and output events,
representing triggers and the sending of events, respectively. An expressive set of refinement
patterns was given that allows for a structured stepwise top-down development. The patterns’
use was illustrated by an example.

Future work. Possible future research with respect to the theoretical line of this thesis includes
performing the expressiveness comparison in the style of Chapter 3, but for the settings that
can express not only resolvable but also persistent nondeterminism. Also, settings that abstract
from internal computation remain to be compared.

Concerning the practical results on state diagrams, our state diagram variant should be ex-
tended by further features, as discussed in Section 6.6, thereby improving its flexibility in
the top-down development process. Especially the use of contracts, i.e. logical annotations ex-
pressing constraints for later refinement steps, appears promising. Finally, we leave it to future
work to provide an actual tool and integrate it into existing, or yet to be designed development
environments. This, however, is beyond the scope of this thesis.
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Appendix A

The modal µ-calculus

The modal µ-calculus [Koz83], as refered to in this thesis, is generated by the following BNF
grammar:

A ::= tt | ff | Z | A ∧ A | A ∨ A | 〈a〉A | [a]A | µZ.A | νZ.A

where a ∈ L and Z represents an element from a variable set Var. For a transition system
M = (S, Si,−→), the standard semantic function J K : F × (Var → P(S)) → P(S) with
respect to A is defined as:

JttKρ = S JffKρ = ∅ JZKρ = ρ(Z)

Jφ1 ∧ φ2Kρ = Jφ1Kρ ∩ Jφ2Kρ J〈a〉φKρ = {s ∈ S | ∃s′ ∈ (s.
a

−→) : s′ ∈ JφKρ}

Jφ1 ∨ φ2Kρ = Jφ1Kρ ∪ Jφ2Kρ J[a]φKρ = {s ∈ S | ∀s′ ∈ (s.
a

−→) : s′ ∈ JφKρ}

JµZ.φKρ =
⋂
{S̈ | JφKρ[Z→S̈] ⊆ S̈} JνZ.φKρ =

⋃
{S̈ | S̈ ⊆ JφKρ[Z→S̈]}
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