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Kurzzusammenfassung

Die molekulare Bindung verschiedener chemischer Substanzen an Kohlenhydrat-Mo-

leküle bildet die Grundlage für den Austausch von Informationen zwischen Zellen

und ist an der Kontrolle einer Vielzahl von biologischen Prozessen, wie beispielsweise

der Immunabwehr, der Befruchtung oder der Abwehr von Krebszellen beteiligt. Das

genaue Verständnis und die Möglichkeiten zur Beeinflussung dieser Reaktionen sind

von großem Interesse für die Entwicklung zukünftiger pharmazeutischer und medi-

zinischer Anwendungen. Mittels klassischer Moleküldynamik und unter Verwendung

speziell implementierter Analyse-Methoden wurden verschiedene auf eukaryotischen

Zelloberflächen vorkommende Saccharid-Systeme in unterschiedlichen Lösungsmittel-

Umgebungen simuliert. Hierbei wurden deren Reaktionen in einer wässrigen, in einer

hoch-ionischen und in einer kohlenhydrat-reichen Umgebung bezüglich einiger ungek-

lärten Fragestellungen untersucht. Es konnte gezeigt werden, dass für Wassermoleküle

eine Position in der Nähe zu Kohlenhydrat-Molekülen im Vergleich zu einer rein wäss-

rigen Umgebung thermodynamisch ungünstig ist, und dass deren Freisetzung eine

Triebkraft zur Ausbildung von Kohlenhydrat-Kohlenhydrat und Kohlenhydrat-Protein

Wechselwirkungen ist. Des Weiteren wurden die spezifischen Wechselwirkungen zwis-

chen Kohlenhydrat-Molekülen und einer Reihe von biologisch relevanten Kationen de-

tailliert untersucht, wodurch eine starke Korrelation zwischen den Solvatationseigen-

schaften der Kationen und ihren Bindungseigenschaften zu Sacchariden gezeigt wer-

den konnte. Die erhaltenen Ergebnisse haben eine Bedeutung für das allgemeine

Verständnis ionenspezifischer Phänomene in einer Vielzahl von biologischen Syste-

men. Im letzten Kapitel der Arbeit werden die strukturellen Zusammenhänge für

die mannosespezifische Bindung des Lektins FimH analysiert. Hierbei wurden die

für die Erkennung mannose-haltiger Saccharide wichtigen Aminosäuren in FimH iden-

tifiziert, und die Anwendungen dieser Entdeckungen für die Entwicklung von Anti-

Adhäsionsmedikamenten gegen von E. coli Typ-1-Fimbrien-vermitteltete Infektionen

des Harn-Traktes diskutiert.





Abstract

Molecular binding events involving carbohydrates are responsible for information ex-

change between cells and control numerous biological functions, including immune re-

sponses, fertilization and defense against cancer. Understanding and controlling these

binding events is of great interest for the development of future pharmaceutical and

medical applications. Using classical molecular dynamics simulations of different sac-

charide systems in different media, together with a series of specially implemented anal-

ysis tools, we address several open questions about the chemistry behind molecular in-

teractions taking place in the aqueous, highly ionic and carbohydrate-rich environment

of eukaryotic cell surfaces. It is shown that water in the vicinity of carbohydrates is

thermodynamically unfavorable compared to bulk water, and that the release of carbo-

hydrate hydration water can provide a driving force to carbohydrate-carbohydrate and

carbohydrate-protein molecular association processes. The occurrence of ion-specific

interactions between saccharides and a series of biologically relevant cations is further

investigated. A clear correlation between hydration properties of the cations and their

respective binding affinity to saccharides can be seen. These results have implications

for understanding general ion-specific phenomena taking place in all biological systems.

The structural basis of mannose-specific binding of the lectin FimH is elucidated in the

last section of this thesis. Key residues in FimH, responsible for the recognition of

mannose-containing saccharides, are identified, and the application of these findings

to the design of anti-adhesion drugs against type 1 fimbriated E. coli uropathogenic

infection is discussed.
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1 Introduction

During the last decades carbohydrates have been recognized to play an important role

in cell interaction, giving rise to the field of glycobiology, i.e. the study of the role

of carbohydrates in biological events. Carbohydrates are by now, in addition to the

three major classes of biological macromolecules, proteins, nucleic acids and lipids,

recognized as a fourth group of macromolecules controlling the chemistry of life. The

surface of all eukaryotic cells is covered by a layer of complex carbohydrates called the

glycocalyx. This macromolecular system is structurally very complex and its detailed

structure differs with the type of the organism, the cell type and even changes during

the life cycle of the cell [1]. Within this structural diversity, there are, however, char-

acteristic glycosylation patterns common to all eucaryotic cells. In the direct vicinity

of the cell surface exists a layer of saccharides covalently bonded, either directly to the

membrane lipids (glycolipids) or to membrane proteins (glycoproteins). The membrane

bound oligosaccharide moieties are typically short and highly branched oligosaccharides

of high structural diversity. Additional glycoconjugates, such as proteoglycans, are at-

tached to this initial layer of saccharides, giving rise to a thick carbohydrate coating

covering the cell surface. It is by now known that this nano-dimensioned layer of glyco-

conjugates is involved in a myriad of important functions for the cell that extend beyond

serving as a simple buffering layer, protecting the cell membrane against mechanical

and chemical stress. An important function of cell surface carbohydrates is to store

and mediate information exchange between different cells. Variations in the structure

of the glycocalyx in different cells are used by the immune system to recognize and de-

stroy invading organisms [2]. Changes in the structure of cell surface carbohydrates of

cancerous cells can, in a similar manner, trigger the appropriate immune response. In

these processes, carbohydrate-recognizing proteins (lectins) or glycoproteins (selectins)

are responsible for the recognition and binding of specific saccharide units, or arrays

of saccharides in the glycocalyx. Using the same mechanism, bacteria utilize extra-
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1.Introduction

cellular lectins to recognize and bind specific saccharides on the host cell surface, in

the first stage of the colonization process [3]. Also pure carbohydrate-carbohydrate

interactions have been found to play an important role in some cell adhesion processes

[4]. There is an obvious pharmaceutical interest to understand the mechanisms behind

these processes. Carbohydrate-based drugs can be designed to effectively block the car-

bohydrate recognition domains of lectins, thereby blocking the ability of the bacterium

to colonize the host cell. Such drugs may be an alternative to traditional antibiotic

treatments, with the attractive feature that any mutations causing a loss of the affin-

ity for the drug also should result in loss of binding affinity to the natural receptor

[5]. Drugs mimicking the carbohydrate recognition of lectins can further be used as

drug-carriers to direct an therapeutic agent to its desired target [6]. However, to this

date, the biochemistry and biophysics of cell surface saccharide recognition and binding

is not completely understood [1]. Compared to protein-protein recognition processes,

protein-carbohydrate and carbohydrate-carbohydrate mediated adhesion processes are

much more complex, since these typically involve not a single binding domain, but

rather interactions with an extended part of the cell surface saccharides. In this man-

ner, a high binding affinity can be achieved although individual carbohydrate-protein

and carbohydrate-carbohydrate interactions are reactively weak [7, 8]. Thus, under-

standing of molecular association processes taking place with the saccharides of the

glycocalyx necessitates understanding of single saccharide interactions, as well as, the

cooperative effect of the the saccharide array that covers the cell surface.

Although glycobiology is a relatively young discipline, both structure and function of

the glycocalyx, and that of its oligo- and polysaccharide building blocks, have started to

be unraveled through a combination of experimental studies and computer simulations

in the last decades. The structural basis of lectin-carbohydrate recognition has been

elucidated through X-ray and NMR spectroscopy experiments, determining both the

structure of different lectins and that of lectins in complex with their saccharide ligands

[9–12]. Microcalorimetry and surface plasmon resonance measurements have revealed

binding affinities and thermodynamics of lectin-carbohydrate interactions [13, 14]. The

role of multivalency in ligand-carbohydrate recognition has further been investigated

through development of synthetic polyvalent ligands mimicking glycocalyx-like surfaces

[15–17] and self-assembled monolayers representing full two-dimensional saccharide sur-

faces [18], as well as their binding affinities to lectins [19].

Since the late 1970s, computer studies have been used to investigate structure and

dynamics of carbohydrates. Ab initio and semiempirical methods have been used to

2



study internal conformational behavior of monosaccharides, such as preferred ring and

anomeric conformers [20, 21]. Early molecular mechanics studies focused on confor-

mational behavior of disaccharides using Ramachandran plots of the dihedral angles

of the glycosidic linkage [22]. These studies were performed on mono- or disaccha-

rides in the gas phase, without accounting for the natural aqueous environment of

these molecules. With increasing computational resources, explicit solvent molecules

could be included in the simulations. In 1990 Edge et al. [23] performed a 0.5 ns long

molecular dynamics study of a disaccharide with explicit water. From this study it

was shown that molecular fluctuations were dampened significantly compared to gas

phase simulations and that accounting for carbohydrate-water interaction is important

for modeling saccharide dynamics. Since then, several important contributions have

been made to the field of computer simulations of carbohydrates. In 1995 Woods et al.

[24] presented the GLYCAM93 force field, allowing for simulations of larger oligosac-

charides and glycoproteins. The constant increase in computational power has opened

a whole new field for computational studies of carbohydrate systems, such as hydra-

tion studies of carbohydrates [25–27], conformational dynamics of larger saccharides

[28, 29] and lectin-carbohydrate interactions [30–32]. Still, modeling of saccharides

is a challenging task for computer scientists. Compared to protein and DNA, larger

saccharides are very flexible and do typically not have a fixed three-dimensional struc-

ture. From a modeling point of view, this translates to a need of very long simulation

times to model conformational behavior of saccharides [33]. The structural diversity

of larger saccharides, i.e. the large number of building blocks and possible linkages

between them, poses a challenge for both force field developers and scientist trying to

understand the structure and function of the glycocalyx. Nevertheless, computational

studies of macromolecular biological systems hold great potential as a valuable tool for

understanding physical properties of biomolecules and their interactions in vivo. With

the development of both interaction potentials with increasing accuracy and efficient

simulation techniques, computer simulations provide an excellent complement to tradi-

tional experimental studies. In many cases, computational studies can provide detailed

information on an atomic scale about molecular interactions, not accessible from ex-

periment. In this manner, computer simulations can be used to explain, predict and

even provoke new experimental studies.

Following this idea, the work in this thesis aims at describing molecular interactions,

involving carbohydrates that, in many cases, cannot be measured by experiment. Us-

ing molecular dynamics simulations, together with force fields developed specially for
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1.Introduction

modeling conformational behavior of saccharides in the condensed phase, several differ-

ent types of molecular interactions are investigated, with the overall goal of providing

a greater understanding of specific interactions occurring with the saccharides of the

glycocalyx. In Chapter 3, a comprehensive study of the interaction of water with dif-

ferent carbohydrate systems, ranging from monosaccharides to glycocalyx models, is

presented. This study is of general interest for all molecular association processes taking

place in the aqueous environment of extracellular carbohydrates. Ion-specific effects,

taking place with carbohydrates in an ionic aqueous environment, are investigated in

Chapter 4. Here, interactions between a selected set of biologically relevant cations and

saccharides found in the glycocalyx are studied in detail. Finally, in Chapter 5, the

structure/thermodynamic relationship between a series of carbohydrate ligands and the

lectin FimH is studied. The theory behind the molecular dynamics method and that

of other computational tools used in this work is presented in the following chapter.

4



2 Techniques and Methods

2.1 The Molecular dynamics method

Simulations of biomolecules, or biomolecular systems, typically require modeling of

large-scale systems. The number of atoms of a biomolecule alone, such as a protein or

a biological membrane, is typically in the order of thousands or tens of thousands of

atoms. When including explicit water in the simulation, the size of the system increases

drastically. Modeling of such large systems requires a computationally feasible method

that still is able to capture the physics of interactions between atoms in the system.

Classical molecular dynamics (MD) simulations have become an important technique

in computational chemistry for modeling large systems, which, due to size restrictions,

cannot be treated at higher levels of theory. The constant increase in computer power

together with the development of well parallelized molecular dynamics programs, such

as AMBER [34], Gromacs [35], NAMD [36] and CHARMM [37], has lead to a great

increase in both system sizes and simulation times available for computational studies.

The first MD simulation, done over 30 years ago, was made on a system of 500 atoms for

a time interval of 9.2 picoseconds [38]. Today systems sizes as large as one million atoms

can be simulated for several nanoseconds [39]. This has opened the field for studying

biological processes on relevant time-scales and made MD simulations an excellent

complement to experimental studies. By following the time evolution of a molecular

system over time, time-dependent processes can directly be followed in the simulation.

Furthermore, MD-simulations can be used as a tool to sample the phase space of the

system and provide means to understand and predict macroscopic phenomena. The

basic theory of molecular dynamics simulations is presented in the following subsections

of this chapter. The theory behind a series of post-processing tools used to analyze the

simulation results is presented in Section 2.2.
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2.Techniques and Methods

2.1.1 Molecular mechanics and force fields

The foundation of classical molecular dynamics simulations is the representation of

the potential energy hypersurface in a functional form of the nuclear coordinates of

all atoms in the system. Using the Born-Oppenheimer approximation, motions of the

electrons and the nuclei can be treated separately. In force field methods, electrons are

treated implicitly by a single (usually ground state) potential energy surface, on which

the nuclei move around as classical particles obeying Newton’s equations of motion.

In order to allow modeling of large systems, the potential energy surface is calculated

from a simple parametric function of the nuclear coordinates, with fitted empirical

parameters depending on the atom type and its surroundings. This potential energy

function, i.e. the parametric function and the fitted parameters, is called the force field.

The form of the parametric function is arbitrary and can differ in different force fields.

The total potential, in the force fields used in this work, is calculated as a sum over

potential terms of bonded and non-bonded interactions,

Utotal = Ubond + Uangle + Utorsion + UvdW + UCoulomb. (2.1)

The first three terms are potential functions for bond distances, bond angles and tor-

sional angles of covalently bonded atoms in a molecule,

Ubond =
∑

bonds,i

kbond
i (ri − r0,i)

2, (2.2)

Uangle =
∑

angles,i

kangle
i (θi − θ0,i)

2, (2.3)

Utorsion =
1

2

∑

dihedrals,i

kdihedral
i (1 + cos(niφi − γi)) (2.4)

The bond stretching and bond angle bending motions are modeled as simple harmonic

oscillators around some equilibrium bond length r0,i or bond angle θ0,i. The harmonic

approximation is sufficient for modeling conformational behavior at ambient tempera-
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2.1 The Molecular dynamics method

tures [40], but can clearly not be used to model bond breaking processes. Thus, atom

connectivities are typically only determined once and remain constant for the duration

of the simulation. The torsional potential needs to account for the fact that the energy

profile of rotations around a torsional angle may have several minima, separated by

barriers of different heights. Utilizing the fact that the potential for rotations around a

torsional angle needs to be periodic, i.e. Utorsion(ψ=0◦)=Utorsion(ψ=360◦), the potential

function of the torsion angle ψ is expanded in a Fourier series. Each bonded series of

four atoms have at least one set of torsional parameters, and more complex potentials

can be deconvoluted into several Fourier series terms.

Interactions between atoms separated be more than three atoms in a molecule, or

interactions between different molecules, are treated by the non-bonded interaction

potentials UvdW and UCoulomb in Eq. 2.1:

UvdW =
∑

i

∑

j>i

4ǫij

[

(

σij

rij

)12

−
(

σij

rij

)6
]

(2.5)

UCoulomb =
∑

i

∑

j>i

qiqj
4πε0rij

(2.6)

UvdW is the van der Waals energy. This potential describes attractive interactions

between non-bonded atoms due to correlations of instantaneous fluctuations in the

electron density of neighboring atoms, as well as the repulsive forces acting on atoms

close enough for electron densities to overlap. The van der Waals interaction between

two non-bonded atoms i and j at distance rij is commonly modeled by the pairwise

Lennard-Jones potential in Eq. 2.5, where ǫij and σij are parameters determining the

minimum energy distance and depth of the minimum respectively, calculated from pro-

gram specific combination rules using ǫ and σ parameters optimized for each atom type.

The last force field term, UCoulomb, models inter- or intramolecular interactions between

permanent molecular dipoles. A common approximation in molecular mechanics force

fields is to neglect polarization and treat charge distributions as fixed point charges cen-

tered on the nuclei of the atoms. The interaction energy between charged non-bonded

atoms can then be calculated by the effective pairwise Coulomb potential in Eq. 2.6.

The biomolecular force fields used in this work are all, so called, second generation

force fields, that model atomic interactions by an effective two-body additive potential

7



2.Techniques and Methods

with atomic point charges determined by quantum mechanical calculations. The main

limitation of these force fields is the neglect of multipole moments, fluctuating charges

and polarization in the point charge approximation [40]. Long-ranged Coulomb inter-

actions dominates the overall energy in polar systems, and therefore require accurate

treatment. Although next generation force fields, including more realistic descriptions

of electron density, are under development, the potential function given by Eq. 2.2-2.6

is still mainly used in common biomolecular molecular dynamics programs.

Within the limits enforced by the form of the potential function, the accuracy of the

force field is fully controlled by the undetermined parameters in Equations 2.2-2.6.

Parameterization of the force field is typically done differently for the bonded and

non-bonded potential functions and involves optimization with respect to both exper-

iment and quantum mechanical calculations. Modeling biomolecules in the condensed

phase requires correct description of, not only solute-solute interactions, but also solute-

solvent interactions. The biomolecular force fields used in this study are based on the

Cornell et al. force field [41] parameterized especially for the condensed phase. Second

generation biomolecular force fields of this type can reproduce experimental free ener-

gies of solvation with deviations around 1 kcal/mol, which is within the accuracy of the

experimental measurements [42]. The methods used to parameterize the force fields

used in this study typically differ for each force field and are not discussed further here.

For more information, the reader is referred to the original papers of the respective

force field [24, 43–45].

2.1.2 Equations of motion

Given the force field potential energy function, the coordinates and velocities of a

system of N classical particles at a given time can be obtained by solving Newton’s

equations of motion,

mir̈i =
∂

∂ri

U(r1, r2, ..., rN), i = 1, 2, ..., N, (2.7)

where mi is the mass of atom i, ri its position and U is the potential energy that

depends on all N atoms in the system. Since no analytical solution exists for the coupled

differential equations in Eq. 2.7 for system containing more than two atoms, numerical

8



2.1 The Molecular dynamics method

algorithms are needed to model systems of realistic sizes. The Verlet algorithm is one,

out of many methods, for integrating the equations of motions in Eq. 2.7 to obtain the

path followed by each atom in the system through space. Using the Taylor expansion

of the coordinate of an atom, around the time t,

r (t+ ∆t) = r(t) + v(t)∆t+
f(t)

2m
∆t2 +

∆t3

3!

...
r +O∆t4, (2.8)

and similarly,

r (t− ∆t) = r(t) − v(t)∆t+
f(t)

2m
∆t2 − ∆t3

3!

...
r +O∆t4. (2.9)

Combining the two equations above gives the formula for calculating the position of

the atom at a later time step ∆t with an error in the order of ∆t4:

r (t+ ∆t) = 2r(t) − r (t− ∆t) +
f(t)

m
∆t2 (2.10)

In the first time step, the r(t− ∆t) term is not known and an alternative formula has

to be used:

r(∆t) ≈ r(0) + v(0) +
f(0)

2m
(2.11)

The velocities are not explicitly needed for calculating the new positions, but are often

needed in simulations to calculate physical properties of the system, such as kinetic

energy and temperature. By subtracting Eq. 2.8 and 2.9 the velocity of the atom can

be calculated as:

v(t) =
r (t+ ∆t) − r (t− ∆t)

2∆t
, (2.12)

Thus, given initial coordinates and velocities, the time evolution of the system can

directly be calculated using the above formulas. Due to its simplicity, speed and good

energy conservation properties, the Verlet algorithm, or the related velocity-Verlet

algorithm, is used as standard propagator in molecular dynamics programs, such as

AMBER and NAMD.

9



2.Techniques and Methods

2.1.3 Simulation methods

Treatment of non-bonded interactions

The computationally most expensive term is the force field equation is the calculation

of non-bonded interactions. In principle, non-bonded interactions need to be calculated

between a given atom and all other atoms in the simulation box. The computational

cost of such a calculation has order of N2 time complexity, where N is the number of

atoms in the simulation box. A full evaluation of non-bonded interactions of all atoms in

the system would put strong limitations on system sizes available for molecular dynam-

ics studies. One way to circumvent this problem is to introduce cutoffs for non-bonded

interactions. Figure 2.1 shows an example simulation box in two dimension with a

few of its periodic images. Using cutoffs, Coulomb and van der Waals interactions are

only calculated for neighboring atoms within the circle in Figure 2.1, with a radius

determined by the cutoff distance. For van der Waals interactions, which decay rapidly

with distance, this is a reasonable approximation, however for long ranged Coulomb

interactions, truncation can can result in poor modeling of charged and polar systems

[46, 47]. A typical problem with simulations using cutoffs for Coulomb interactions

is poor energy conservation, due to the neglect of long range forces in the system. In

fact, for typical system sizes used in molecular simulations, Coulomb forces from atoms

beyond the borders of the simulation box can be important to ensure good energy con-

servation and natural trajectories. Ewald summation [48] can be applied to computer

simulations, providing a efficient method for calculating long range contributions to

the potential energy of a periodic system. The periodic representation in Figure 2.1

is, for a real three dimensional system reproduced, infinitely in each dimension. For

such a system, the Coulomb contribution to the potential energy from interaction with

atom i, with with all atoms in the original simulation box and all periodic copies can

be written as:

UCoulomb =
1

2

∑

n

′

(

N
∑

i=1

N
∑

j=1

qiqj
4πε0

|rij + n|−1

)

, (2.13)

where n = (nxLx,nyLy,nzLz). Here (nx,ny,nz) is a set of integers and (Lx,Ly,Lz) are the

dimensions of the simulation box.
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2.1 The Molecular dynamics method

Figure 2.1: Periodic boundary conditions in two dimensions of a an example pure water
system.

The prime of the first summation indicates that when n = 0, then i=j is omitted

in the summation over the atom indices. It can be shown that Eq. 2.13 is, due to

the long range of Coulomb interactions, a poorly converging sum and therefore not

suitable for direct use in a molecular dynamics program. In the Ewald method, the

summation is split up into a short range and a long range part. The short range part,

accounting for interactions with atoms within a given cutoff distance, is calculated

in real space, whereas the long range part is summed in the Fourier space, where

the sum is converging rapidly. With modern grid based methods, such as PME [49]

utilizing the Fast Fourier Transform algorithm, the computer time scales as O(NlogN)

with respect to the number charges in the system. Since Ewald summation introduces

correlation between an atom and its periodic images, it is necessary to have a large

enough simulation box, especially for charged systems. The cutoff used to separate the

real space and Fourier space parts can not be larger than half the length of the smallest

box dimension since a given atom will interact with itself when n = 0 (see Figure 2.1).

The accuracy of the PME calculation can be controlled by setting the spacing of the

grid, onto which the atomic partial charges are mapped in the simulation box. In these

simulations, grid spacings of approximately 1 Å in each dimension have been used.

This is a reasonable trade-off between computational cost and accuracy [50].
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Thermostats and barostats

The use of methods like PME has increased the energy conservation of molecular sim-

ulations, but still small drifts in energy can occur due to numerical inaccuracies, for

instance, in the integration algorithm. When attempting long simulations it is there-

fore necessary to do simulations with a thermostat that ensures that the total energy is

conserved in the calculated trajectories. Furthermore, certain studies may require that

the simulations are performed in a given ensemble, for which both thermostats and

barostats are needed. Here follows a brief description of the methods for temperature

and pressure control used in the simulations in this work as implemented in the NAMD

molecular dynamics package.

The Berendsen thermostat [51] is a velocity rescaling approach in which atomic veloc-

ities, vi, are rescaled each time as λvi, where

λ = 1 +
∆t

2τB

(

T0

T
− 1

)

, (2.14)

with the instantaneous temperature, T, given by [52]:

T (t) =
N
∑

i=1

miv
2
i (t)

kBNf

. (2.15)

Here, Nf is the number of degrees of freedom of the system. The instantaneous temper-

ature T is connected to a heat bath with a fixed reference temperature T0, so that the

rate of change of the temperature is proportional to the difference in temperature of

the heat bath and the system. The Berendsen thermostat does not force a system to a

given temperature, instead it pushes the temperature towards the desired temperature,

still allowing temperature fluctuations characteristic for the canonical ensemble. The

coupling to the heat bath can be controlled by the time constant τB. Typical values

of τB are in the range of 0.1-5 ps, where smaller τB values gives a tighter coupling

to the heat bath and as τB approaches infinity, the scaling factor λ is unity and the

thermostat has no effect on the system. Thus, temperature fluctuations can effectively

be controlled by the value of τB. The Berendsen thermostat can easily be included

in a given propagation algorithm and can be used together with holonomic restrains
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2.1 The Molecular dynamics method

(see below). The main advantage of the Berendsen thermostat is that it does not

affect the short time dynamics of the system, and therefore gives trajectories with min-

imal deviations from NVE trajectories [53]. This becomes important when calculating

time-dependent properties such as spectral densities and self-diffusion coefficients. The

drawback of the Berendsen thermostat is that it does not generate correct temperature

fluctuations for the canonical ensemble [54]. Since the Berendsen thermostat does not

ensure that the temperature is evenly distributed in the system, but relies in atomic

collisions to remain an evenly distributed temperature in the system, it is often desir-

able to use another thermostat in the equilibrium phase of a simulation (see Section

2.1.5).

NPT simulations were, in this work, performed using a combination of the Berendsen

thermostat and Berendsen pressure bath coupling algorithms. The pressure bath cou-

pling is based on the same principles as the coupling/scaling principle of the Berendsen

thermostat. Instead of velocities, dimensions of the simulation box are scaled to push

the instantaneous pressure towards the given reference value.

Constrained dynamics and Multiple Time Step methods

The choice of the time step, ∆t in Eq. 2.10, is made as a tradeoff between accuracy of

the calculated trajectory and the computational cost of the simulation. As a general

rule, the time step should not be larger that the fastest motion in the system. For

molecular systems, the fastest motions are hydrogen-heavy atom vibrations, putting

an upper limit of 1 fs (1x10−15 s) for the integration time step. These vibrations are so

high in frequency that they are not well treated by classical mechanics. To increase the

stability of the simulation and allow for larger integration time steps, it is desirable to

remove these degrees of freedom by constraining covalent bonds involving a hydrogen

atom. In practice this can be done by applying a set of, so called, holonomic constraints

to Newton’s second rule in Eq. 2.7. Using the Lagrangian formalism Eq. 2.7 can be

written as

mir̈i =
∂

∂ri

U(r1, r2, ..., rN) + Gi, i = 1, 2, ..., N, (2.16)

where Gi is the force constraint given by a set of Lagrangian multipliers involving atom
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i. This is the approach used by the SHAKE algorithm [55], used in all simulations in this

work. Atomic velocities are in a first step calculated under unconstrained conditions.

In a second step, velocities are readjusted in a manner that the applied constraints are

fulfilled. This can be done by iteratively solving a linear system of equations [56], or by

improved methods [57], which can be incorporated into the Verlet integration scheme

with much lower computational cost and without sacrificing accuracy of the method.

Simulations where stretching motions of heavy atom-hydrogen are frozen allow the use

of a time step as large as 2 fs.

Integration efficiency can further be improved using so called Multiple Time Step ap-

proaches [58], in which the force evaluations are done on different time intervals de-

pending on the distance separating two atoms. These algorithms are based on the

observation that the change of pair interactions with time, generally is smaller as the

distance between two atoms increases. In the NAMD molecular dynamics program,

force evaluation is done using three different time steps, depending on the distance

separating two atoms in the periodic system. The surrounding of a given atom is di-

vided into three regions. In the first region are atoms directly bonded to the central

atom. The second region is atoms within the cutoff distance for van der Waals and

real space Coulomb interactions. Long range electrostatic interactions from molecules

beyond the cutoff distance are considered in the third region. Using this approach,

time steps as large as 4 fs can be used for pairwise interactions with atoms in the third

region, still maintaining a good energy conservation in the simulation [36].

2.1.4 Measurement of macroscopical system properties

The result of a molecular dynamics simulation is a collection of velocities and positions

of all atoms of the modeled system. This microscopical information can be used directly

to calculate time-dependent properties of the system, but can further be extended to

calculate macroscopical properties using theory from statistical thermodynamics. This

is important for connecting theory with experiment, especially for studying liquids,

where microscopic properties are difficult to measure from experiment. Given a force

field parameterized to reproduce macroscopic properties, computer simulations can aid

the understanding of a given macroscopic phenomena by providing full detail of the

system at an atomic scale.

In statistical thermodynamics, the ensemble average of a given observable, A(rN ,pN),
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as a function of all possible the positions and momenta of all atoms in the system is

given by,

〈A〉E =

∫ ∫

dpNdrNA(rN ,pN)P (rN ,pN ), (2.17)

where P(rN ,pN ) is the probability distribution:

P
(

rN ,pN
)

=
exp

(

−H(rN ,pN )/kBT
)

∫ ∫

dpNdrNexp (−H(rN ,pN)/kBT )
(2.18)

Here, H is the Hamiltonian of the system. The ensemble probability distribution is

calculated from a large number of replicas of the system under the same macroscopical

state (here, the same number of atoms, temperature and volume). In fact the number

of replicas are so large that the every microscopical state corresponding to the macro-

scopical state is represented in the ensemble. One of the fundamental postulates of

statistical thermodynamics is the ergodic hypothesis, stating that the ensemble aver-

age in Eq. 2.17 equals the time average, 〈A〉T , of the same phase-space property, given

that the sampling period is long enough:

〈A〉E = 〈A〉T = lim
τ→∞

1

τ

∫ τ

τ=0

A(rN ,pN)dt (2.19)

This theorem connects ensemble-based statistical thermodynamic theory to experiment

and simulations, where sampling of a given property typically is done by successive

measurements over a period of time. Given that a simulation is long enough that the

system will pass through the relevant parts of the phase space, averages calculated from

the simulation are equal to ensemble averages which, in turn, are directly comparable

to experimental averages. Thus, simulation time is of uttermost importance when per-

forming molecular dynamics simulations. Problematic, from a modeling point of view,

are simulations of systems with a potential energy landscape composed of several lo-

cal minima, separated by large energy barriers. Averages calculated for such systems

may be poor estimations of the true averages, since the system may be trapped in a

small subset of local minima for the duration of the simulation. Sampling problems

of this kind can be difficult to detect, since calculated averages may still be constant
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with increased sampling times and are best treated by special simulation techniques

[59, 60]. Insufficient sampling of the phase space can, on top of the already mentioned

force field approximations, be another source of error in standard MD-simulations.

Given the partition function (the integral over the whole phase space in Eq. 2.18), equi-

librium thermodynamic properties of the system, such as free energies, heat capacities

and entropies, can be calculated using standard statistical thermodynamics formulas.

A direct evaluation of the partition function of a given ensemble from a simulation

is, however, not possible due to the dimensionality of the problem for typical system

sizes. In Sections 2.2.6-2.2.8, a series of methods for calculating thermodynamic system

properties directly from molecular dynamics simulations are discussed further.

2.1.5 Basic equilibration and simulation protocol

MD-simulations of several different systems are presented in the work. Although the

systems change, the same equilibration/simulation protocol is always used. Before

production runs are performed, the initial system must be brought into equilibrium.

The equilibration protocol used here can be summarized by the following steps:

1. Minimization with restraints on the solute molecules

2. Minimization of the whole system

3. Heating of the system in the NVT ensemble with restrains on the solute molecules

4. Equilibration of the density in the NPT ensemble

5. Production run

Before any dynamics of the system is performed, the systems is minimized in two steps.

The first minimization aims at just removing bad solute-water or water-water contacts

from the initial setup, and is done with weak restraints on the solute. The second

minimization allows for relaxation of the initial solute structure as well. The first

equilibrium step is a heating stage, where the temperature of the system is brought

to the desired value. This is achieved by a short MD-run in the NVT-ensemble, using

positional restraints on the solute to avoid any large conformational changes at this

stage. The second equilibration run is a fully unrestrained MD-run the NPT-ensemble,

where the density of the system is equilibrated. The simulation time for the last step
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is 200 ps in these simulations, which is long enough to have stable fluctuations of

the macroscopic variables around their equilibrium values. In the whole equilibration

phase, the Langevin thermostat [61] is used to ensure that the temperature is evenly

distributed throughout the system. The production run variables vary somewhat from

simulation to simulation and are presented in the text of respective chapter.
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2.2 Analysis methods

Post-processing of the calculated molecular dynamics trajectories is done in this work

using series of analysis tools implemented as extensions of the PTRAJ analysis tool

of the AMBER molecular dynamics package. The following chapter describes the

underlying theory of the most important analysis methods used in later chapters.

2.2.1 Distribution functions

The distribution function describes fluctuations in density around a particle and pro-

vides structural information of a system. Distribution functions can be determined

both from computer simulations and from neutron scattering or X-ray scattering exper-

iments and therefore serve as an important bridge between simulation and experiment

for fluids. The distribution function is defined as the probability of finding a pair of

molecules at a given distance r, relative to the probability expected for a completely

random distribution at the same density. If the available volume around an atom

i, at any distance r, is spherical and isotropic, the distribution is fully described by

the so-called radial distribution function g(r), which can be calculated from computer

simulations as:

g(r) =
1

nrand

1

Nfr

Nfr
∑

n=1

Nat
∑

j=1

f(ri, rj) (2.20)

f(ri, rj) =

{

1 if r < |ri − rj| ≤ r + δr

0 otherwise
(2.21)

nrand =
4πρ

3
((r + δr)3 − r3) ≈ 4πρr2δr (2.22)

Here Nfr is the number of frames of the trajectory over which the distribution function

is calculated and averaged over. ri is the position vector of atom i and the second sum

runs over all other atoms in the system (with position vectors rj). The binary function

f(ri, rj) is unity only when another atom is present in the spherical shell around atom
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i, at distance r, with thickness δr. The normalization factor nrand (Eq. 2.22) gives the

number of atoms in the same volume at density ρ at a random distribution of all other

atoms and ensures that g(r) is unity for a completely random distribution. The radial

distribution function can further be used to investigate the local structure around a

given atom. The position of the first peak gives the average distance to the nearest

neighbors of the central atom. The height of the first peak is related to the average

number of nearest neighbors. The coordination number can be obtained by integrating

the radial distribution function from zero to the distance of its first minimum, Rmin:

ncoord = ρ

∫ Rmin

0

4πr2g(r)dr (2.23)

Radial distribution functions are not suitable for investigating structural trends around

larger non-spherical molecules. The available volume at a distance r, from a given atom

in a large molecule, is not well approximated by a spherical shell of volume 4πr2δr since

parts of this volume will be occupied by other atoms in the molecule. An alternative

is to use the proximal distribution function proposed by by Ashbaugh et. al. [62]. The

proximal distribution function gprox(r) is calculated as:

gprox(r) =
〈ni(r, δr)〉
ρ 〈Vs(r, δr)〉

(2.24)

Here 〈ni(r, δr)〉 is the average number of atoms within a shell of thickness δr at distance

r from the closest atom in the central molecule. ρi is the bulk density of the molecule

or atom for which the distribution function is calculated and 〈Vs(r,∆r)〉 is the average

volume of the shell. The volume of a given shell around the central molecule will

change as it undergoes conformational changes and is therefore averaged over the whole

trajectory. The instantaneous volume of the shell around the molecule, at distance r

and thickness δr, is calculated from the surface area of the union of spheres with radii

r, centered on each atom j:

Vs(r, δr) =
∑

j

Ωj(r) r
2δr, (2.25)

where Ωj(r) r
2, with 0 ≤ Ωj(r) ≤ 4π, is the accessible surface area of the sphere of

radius r centered at atom j, determined by a Monte Carlo sampling.
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2.2.2 Hydrogen bond analysis

Hydrogen bonds, i.e. electrostatic interaction between a hydrogen atom covalently

bonded to an electronegative atom (the donor) and another non-bonded electroneg-

ative atom (the acceptor), are ubiquitous in biological systems and play an important

role in biochemical processes. Hydrogen bonding properties can be investigated in full

detail using computer simulations. Simulations have shown that hydrogen bond in-

teraction energies strongly depend on the geometry of the involved atoms and a wide

distribution of interaction energies can be seen for a typical polar system [63].

Two different approaches for identifying hydrogen bonds can be found in the litera-

ture. A hydrogen bond is formed between a hydrogen bond donor and a hydrogen

bond acceptor when the interaction energy between the two atoms is above some given

threshold [64] or based on some geometric criteria of the donor, the donor hydrogen

and the acceptor atoms. In this work, the latter approach is used. A hydrogen bond

between a donor and an acceptor atom, at a given time step of the trajectory, is present

when (see Figure 2.2):

1. The distance r is smaller than a cutoff distance rcut.

2. The angle θ is smaller than θcut.

The constants rcut and θcut are somewhat arbitrary and depend on the type of hydrogen

bonds investigated. For water-water hydrogen bonds rcut is typically set to be the first

minimum of the water oxygen-oxygen radial distribution function. rcut is set to be 3.6

Å and a value of 30◦ is used for θcut. Mart́ı et al. [65] showed from simulations, using

the SPC water model, that hydrogen bonds fulfilling the distance criteria (1), have only

small probability to have hydrogen bond angles greater than 30◦ at a range of different

temperatures.

2.2.3 Time correlation functions

A series of different time correlation functions are used in this work for investigating

time-dependent equilibrium system properties. Although details of how these corre-

lation functions are calculated differ, the basic approach is the same. A general time
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Figure 2.2: Geometric criteria used to identify hydrogen bonds

autocorrelation function, C(t) of a given quantity A(rN ,pN ) as a function of the whole

phase-space, is given by

C(t) = 〈A(t)A(τ + t)〉 (2.26)

where the brackets denote an ensemble average and τ is a given time origin of the

trajectory. By dividing C(t) with 〈A(0)A(0)〉 the correlation function is normalized

to take values between -1 and 1. A value of C(t) close to unity indicates a high

degree of correlation with time, whereas zero indicates that the measured property

is fully uncorrelated at time τ+t. Negative values of the correlation function show

that the measured property is anti-correlated at a given time. A general trend of the

autocorrelations functions in the liquid phase is that they take values close to unity

at short times and decay asymptotically to zero at long time intervals, as averages are

evened out by random thermal motions.

In order to increase the sampling of a given time dependent process, measurements are

in many of the following autocorrelation functions, calculated using the overlapped data

collection approach [66]. Since C(t) do not depend on the time origin, τ , the correlation

function can be calculated using several overlapping measurements (see Figure 2.3).

Ideally, the overlap should be done over time intervals where the correlation between
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Figure 2.3: Pictorial description of the overlapped data method for calculating time
correlation functions.

the measurements has converged to a small value.

Normalized autocorrelation functions can be fitted to a given analytical expression

to determine characteristic decay times. Furthermore, average times of a given time-

dependent process can be calculated by integrating the autocorrelation function or the

fitted function from zero to infinity:

τ =

∫

∞

0

C(t)dt. (2.27)

Rotational autocorrelation function

Molecular rotational dynamics can be investigated using the second-order rotational

autocorrelation function [67],

C2
µ(t) = 〈P2[µ(t)µ(0)]〉 , (2.28)

where P2 is the second order Legendre polynomial and µ is a unit vector fixed in the

molecule. For water molecules µ is chosen as the dipole vector, i.e. the vector bisecting

the H-O-H angle. The second-order orientational relaxation time, τ2, can be calculated

from C2
µ(t) using Eq. 2.27. In the case of water, it describes the average time needed
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for the dipole vector to become uncorrelated to it initial direction, and can be used to

quantify the rotational freedom of water molecules.

Velocity autocorrelation function

The velocity autocorrelation function and its frequency spectrum can be used to probe

translational dynamics of liquids. For a molecular liquid the unnormalized center of

mass velocity autocorrelation function is given by [68]:

Ccm
V (t) = m < vcm

i (t)vcm
i (0) >, (2.29)

where vcm
i is the center of mass velocity of molecule i and m is the mass of the molecular

species under investigation. Further discussions about the velocity autocorrelation

function and its frequency spectrum can be found in Section 2.2.8.

Hydrogen bond lifetime autocorrelation function

Dynamics of the water hydrogen bond network can be measured by the hydrogen bond

lifetime, or survival probability, autocorrelation function CHB(t) [69, 70]:

CHB(t) =
〈ηij(t)ηij(0)〉
〈ηij(0)2〉 , (2.30)

where ηij(t) is a binary function defined as:

ηij(t) =















1 if molecules i,j are hydrogen bonded at both time t and 0,

without being broken for a period longer than τ ∗

0 otherwise

(2.31)

Hydrogen bonds are, as described in Section 2.2.2, defined using geometric criteria
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imposed on the involved atoms. When τ ∗ 6= 0, the intermittent hydrogen bond lifetime

is measured, allowing hydrogen bonds to break and reform during a time interval

controlled by τ ∗. Setting τ ∗ to zero, continuous hydrogen bond lifetimes are measured.

Survival time autocorrelation function

The survival time autocorrelation function is calculated in a similar manner as the

hydrogen bond lifetime autocorrelation function and can be used to measure residence

times of a molecule in a given volume of the simulation box. Here, pR,j(t) is a binary

function associated with each atom or molecule j under investigation. pR,j(t) is unity

whenever the atom or molecule under consideration was in the layer R at a given time

origin and remains in the layer for the time period t, without leaving the layer at any

intermediate time step, and zero otherwise. Average residence times can be calculated

directly from CR(t) (see Eq. 2.27), which gives the probability that, for instance, a

water molecule remains in a given volume around an ion for a time period t.

CR(t) =
1

NJ

NJ
∑

j=1

〈pR,j(0) pR,j(t)〉
〈pR,j(0)〉2

(2.32)

The survival time autocorrelation function and corresponding average survival times

(see Eq. 2.27) can be used to probe the dynamics of non-hydrogen bonded molecular

interactions, e.g. dynamics of the hydration shell of a hydrated ion.

2.2.4 Voronoi tessellation

Voronoi tessellation is the decomposition of space, here the simulation box, into polyhe-

dra centered around atoms, in such a way that each polyhedron contains only a single

atom and that any point in the polyhedron is closer to this atom than to any other

atom in the simulation box. Voronoi polyhedra are equivalent to the Wigner-Seitz cells

of crystal solids and are therefore suitable for characterization of coordination geome-

tries and local structure of fluids. By definition, Voronoi polyhedra are also suitable

for investigating packing and density fluctuations in molecular systems. The algorithm

used to decompose the simulation box in to Voronoi polyhedra is from Rapaport [66].
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In summary, this algorithm works by assigning a large tetrahedron around a given

atom spanning the whole simulation box. The shape of the Voronoi polyhedron is

then successively pruned by removing parts of the initial polyhedron, cut by bisecting

planes between the central atom and its closest neighbors. An example of a Voronoi

polyhedron constructed around a sodium ion can be seen in Figure 2.4.

Figure 2.4: Example Voronoi polyhedron of a solvated sodium ion

The asphericity parameter of Ruocco et al. [71] characterizes the shape of the Voronoi

polyhedron using the volume and the surface area of the polyhedron. The area of face

k, of a polyhedron, is calculated as the sum over areas of all triangles into which it can

be decomposed:

Ak =
1

2

n
(k)
v −1
∑

i=2

|(r(k)
i+1 − r

(k)
1 ) × (r

(k)
i − r

(k)
1 )|, (2.33)

where r
(k)
j is the coordinate vector of vertex j in face k. The total area is then simply

the sum over all faces:
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S =

Nf
∑

k=1

Ak (2.34)

The polyhedron volume can be calculated using the areas of all faces and their respec-

tive distance df to the polyhedron center:

V =
1

3

Nf
∑

k=1

df ·Af . (2.35)

Given the volume and surface area, the dimensionless asphericity parameter is defined

as:

η =
S3

36πV 2
. (2.36)

Using reference values for standard regular polyhedra; 1, 1.21, 1.32, 1.65, 1.91 and 3.31

for a sphere, an icosahedron, a dodecahedron, an octahedron, a cube and a tetrahe-

dron respectively, coordination geometries can be determined of a given atom in the

simulation box.

In this work Voronoi tessellation is used to calculate local density fluctuations and to

investigate the local structure around a given molecule. In many cases it is of interest

to investigate properties of the subset of molecules that are in in direct contact with

a given central molecule. Voronoi tessellation can be used for this purpose to identify

direct neighbors as the subset of molecules sharing a polyhedron face with the Voronoi

polyhedron of the central molecule.

2.2.5 Water order parameter

The structural order of water can be determined by the tetrahedrality of the water

hydrogen network. Each water molecule can form four hydrogen bonds, two donor

bonds involving the two hydrogen atoms and two acceptor bonds though interaction

with hydrogen atoms of neighboring water molecules. The optimal arrangement of a

water molecule i and its four closest neighbors takes the form of a tetrahedron, with
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water molecule i in the center and the four neighbors located at the vertices of the

tetrahedron. This arrangement corresponds to that found in hexagonal ice. In the

liquid phase however, the hydrogen bond network is constantly rearranging and the

local structure of water can take many forms.

Chau and Hardwick [72] defined the tetrahedral order parameter for a water molecule

i as:

qi = 1 − 3

8

∑

j>k

(

cosψijk +
1

3

)2

, (2.37)

where ψijk is the angle of the oxygen atom of the central water molecule i, and neighbor-

ing water oxygens j and k. The summation runs over all six possible angles spanned by

central water oxygen i and neighboring water oxygens j and k. In a perfect tetrahedron

ψ takes a values of 109.47◦ and cos(ψ) equals -1
3
. Here, the normalization of Errington

and Debenedetti [73] is used. In a perfect tetrahedron, the second term vanishes and q

is unity. For a completely random distribution of the neighboring water molecules the

average value of q is 0.

2.2.6 MM-PB(GB)SA

Free energy analysis using the MM-PB(GB)SA software, implemented in the AMBER

molecular dynamics package, is used to analyze the free energy change associated with

complex formation of a ligand and a receptor. In this section, the underlying theory of

the methods used within the MM-PB(GB)SA approach is discussed.

For a given receptor A and ligand B, the association process to form complex AB can

be written as the two state process:

A+B ⇔ AB. (2.38)

The standard free energy change, ∆G0, associated with this process can either be

calculated using the equilibrium dissociation constant Kd or directly from changes in

entropy and enthalpy of the system in the complex state relative to the free ligand and

receptor:
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∆G0 = −kbT lnKd = ∆H − T∆S0, (2.39)

where the dissociation constant Kd is measured as [A]eq[B]eq/[AB]eq. Changes in en-

tropy and enthalpy of the system can be calculated from computer simulations, either

using potential of mean force approaches [74, 75], or so-called endpoint approaches,

where ∆G0 is calculated from absolute enthalpies and entropies of the two states:

∆G0 = Hcomplex − (Hreceptor +Hligand) − T (S0
complex − (S0

receptor + S0
ligand)) (2.40)

In order to predict affinities of biological molecular association processes, changes in

enthalpy and entropy of both solute molecules and the surrounding solvent need to be

included. A common approximation is to neglect the P∆V term in ∆H and simply use

the change in potential energy ∆U in the free energy calculation. Using a pairwise po-

tential, the potential energy of a solvated biomolecular system can be decomposed into

pairwise contributions from solute-solute, solvent-solvent and solute-solvent interaction

energies:

U(ru, rv) = U(ru) + U(rv) + U(ru; rv) (2.41)

Here ru and rv denote solute and solvent degrees of freedom respectively. Although

the total potential energy of the system, in principle, could be calculated directly

from a MD simulation, fluctuations of the total potential energy of a large biomolec-

ular system would be too large to converge into reliable averages in the simulation

times available for such systems [76]. The simulation box of a typical explicit water

biomolecular system consists mainly of water molecules and the major contribution

to the total potential energy comes from water-water interactions, U(rv). For compu-

tational reasons, it is therefore attractive to treat the free energy contribution from

solute-solvent and solvent-solvent interactions implicitly and only calculate free energy

contributions from solute-solute interactions explicitly. The MM-PB(GB)SA approach

uses a continuum solvation model for calculating binding free energies in solution. Us-
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ing the thermodynamic cycle illustrated in Figure 2.5, the energy change on binding in

solution, ∆Gbind,solv, can be calculated using the following path:

∆G0
bind,solv = ∆G0

bind,vac + ∆Gsolv,complex − (∆Gsolv,receptor + ∆Gsolv,ligand), (2.42)

where ∆Gbind,vac refers to the change in free energy associated with the complex forma-

tion in vacuum, i.e. without taking any effects of changes in water-water or water-solute

interactions into account:

∆G0
bind,vac ≈ ∆Ubind,vac − T∆S0

bind,vac. (2.43)

Figure 2.5: The thermodynamic cycle used to calculate ∆G0
bind,solv in the MM-PB(GB)SA

approach

The potential energy in vacuum can be calculated from the bonded and non-bonded

terms from the solute force field and ∆Ubind,vac is simply the difference in solute poten-

tial energies for the complex and the free receptor and ligand molecules. Methods for

estimating changes in solute entropies, T∆Sbind,vac, are discussed in Section 2.2.7.

The ∆Gsolv term is the free energy change for the process of transferring a given solute
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molecule from vacuum to an aqueous environment. In the MM-PB(GB)SA method,

this free energy change is calculated using an implicit solvation model. In order to

understand the connection between implicit solvation methods and the free energy of

solvation, it is necessary to discuss some basic statistical thermodynamics theory of a

solute in solution. Comprehensive reviews on implicit solvent theory can be found in

the papers of Roux et al. [77] and Wang et al. [78].

The goal of implicit solvation methods is to be able to model conformational behavior

of a solute molecule in solvation without having to include explicit water molecules

in the simulation. For a general system of a solute molecule immersed in water with

the total potential energy function, U(ru,rv) in Eq. 2.41, the canonical configurational

partition function is given by:

Z(N, V, T ) =

∫

drudrve
−βU(ru,rv), (2.44)

where β = 1
kbT

. The ensemble average of any property as a function of the solute

conformation can be calculated (see Equations 2.17 and 2.18) by integrating over the

whole (solvent and solute) configurational space. The key to implicit solvation is the

potential of mean force, W(ru) of a given solute conformation ru. This potential of

mean force captures, in an average way, the effect of the solvent and can be calculated

from Eq. 2.44 by integrating over all possible configurations of the solvent:

Z(N, V, T ) =

∫

drue
−βW (ru), (2.45)

where,

W (ru) = −kbT ln

∫

drve
−βU(ru,rv) = U(ru) − kbT

∫

drve
−β(U(rv)+U(ru:rv)). (2.46)

Using Eq. 2.45 and 2.46, a reduced probability function only depending on solute

coordinates is obtained. In the last equality in Eq. 2.46, the pure solute potential

has been moved out of the integral since it is not a function of rv and the potential

of mean force is calculated only over the solvent potential and the coupled solute-
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solvent potentials. The total interaction potential can be written as a sum of the solute

potential plus the potential of mean force term; U(ru) + W(ru). Direct evaluation

of the integral in Eq. 2.46 is not suitable from a computer simulation due to the

vast conformational space of solvent molecules. W(ru) can, however, be calculated

approximately, using the properties of the potential of mean force function. It can

be shown that the gradient of W(ru) with respect to a given solute atomic Cartesian

coordinate equals the average force exerted on the atom, averaged over all coordinates

of the solvent [77]. It can further be shown that the absolute value of W(ru) is not

important and therefore can be calculated with respect to a reference state, where

solute-solvent interactions are absent. Thus, ∆W(ru) can be calculated as the reversible

work, or free energy change, associated with the process of transferring the solute, in a

given configuration ru, from vacuum to solution, which is equivalent to ∆Gsolv in the

thermodynamic cycle in Figure 2.5. This process can be done using a thermodynamic

integration approach, in which solute-solvent interactions are gradually turned on in

a step-wise manner. This approach would not be computationally feasible for large

biomolecules. Instead an end-point approach is used, where only the two end states

are considered in the free energy calculation.

The solvation free energy is, in practice, calculated using another thermodynamic cycle.

In a first step the molecule is stripped of charges in vacuum. The non-polar molecule

is then transfered from vacuum to the aqueous phase and in a third step the non-polar

solute is recharged in the solvent. The sum of free energy changes in these three steps

will give the total solvation free energy change [79]:

∆Gsol = ∆Gele,vac + ∆Gnp + ∆Gele,solv. (2.47)

∆Gnp refers to the free energy contribution from the process of transferring the un-

charged solute molecule into water. This free energy term captures the energetics of

creating a cavity in the hydrogen bond network of water, large enough to accommo-

date the solute. This is in total an unfavorable contribution to solvation free energy

due to the energetic cost of disrupting water-water hydrogens bonds, outweighing the

small favorable energetic contribution from solute-solvent van der Waals interactions.

In the MM-PB(GB)SA approach, ∆Gnp is estimated using a surface area (SA) model

where non-polar free energy contribution is assumed to be proportional to the number

of water molecules in the hydration shell of the solute, and hence, also to the solute
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surface area. A linear relationship between the solvent accessible surface area and the

solvation free energy has been verified for a series of linear alkenes of different sizes

[79, 80]. The nonpolar vacuum to water transfer free energy is approximated by,

∆Gnp(ru) = γSASA(ru) + b, (2.48)

where γ and b are fitted parameters of the slope and the intercept of surface area versus

experimental solvation free energies plots.

The ∆Gele term is the electrostatic contribution which describes the work needed to

gradually assign charges to the atoms in water. This term captures contributions from

electrostatic interactions between water and the solute and also the work needed to

generate the solvent reaction field induced by the solute charge distribution. The work

of charging the solute can be calculated by solving the Poisson equation:

▽·ǫ(r)▽φ(r) = −ρ(r) (2.49)

Solving the differential equation in 2.49, using the charge density ρ and the dielectric

constant ǫ, gives the electrostatic potential φ at a given point in the simulation box.

The charge density at a position, r, in the simulation box is given by the atomic

point charges in the force field. The position-dependent dielectric constant, ǫ(r), is

set to the room temperature value of water (ǫ=80) outside the solute and to a value,

typically between 1-4, inside the solute. The boundary of the solute-solvent interface

is determined by the contact area of the van der Waals surface of the molecule with a

spherical probe the size of approximately a water molecule rolled over the whole solute

[81]. In practice, the differential equation in Eq. 2.49 is solved numerically by mapping

charges and dielectric constants to grid points separated by a given spacing throughout

the simulation box. Using a finite difference approach, the Poisson equation is solved

numerically, to give the electrostatic potential at any given position in the simulation

box. The work needed to put the solute molecule in conformation ru in the solvent

reaction field, can be calculated as [77, 79],

∆Gele =
1

2

∑

i

qi
(

φǫ=80
i − φǫ=1

i

)

, (2.50)
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where the summation index i runs over all atoms in the solute. ∆Gele includes the free

energy contributions from the first and third step in the above-mentioned thermody-

namic cycle. Thus, ∆Gele and ∆Gnp together gives the solvation free energy ∆Gsol in

Eq. 2.47.

An alternative, less computationally expensive, method for estimating the electrostatic

free energy contribution is the generalized Born approach [82]. In this model, ∆Gele is

given by an analytical pairwise formula that is designed to reproduce electrostatic free

energies calculated with the Poisson equation:

∆Gele = −1

2

(

1

ǫs
− 1

ǫw

)

∑

i,j

qiqj

f gb
ij (rij)

, (2.51)

qi and qj are here the solute atomic charges and ǫs and ǫw are the dielectric constants

of the solute and the solvent respectively. fgb
ij is a function of the effective atomic radii,

Ri and Rj, and the interatomic distance, rij . The generalized Born approach is, as

suggested by the name, a generalization of the Born formula for calculating solvation

free energies of ions, to systems of many atoms in any given configuration. A direct

application of the Born formula to molecules is not suitable, since many atoms in the

molecule are not completely surrounded by high dielectric water, but rather in contact

with other atoms in the molecule. The key idea in Generalized Born approaches is to

calculate effective atomic radii, describing to which degree a given atom is buried in the

low dielectric medium of the solute, in a manner that the Born formula can be applied

to each atom individually. There are several different General Born models available,

mainly differing in the way the atomic radii are assigned. With proper assignments of

effective atomic radii, the Generalized Born model can be used to calculate solvation

free energies that are in good agreement with results from the Poisson approach, at a

fraction of the computational cost [83].

2.2.7 Methods for calculating biomolecular entropies

The free energy analysis using the MM-PB(GB)SA approach is missing one impor-

tant contribution to the free energy change, namely the entropy change of the solute

molecules in the complex. Typical ∆G0
bind values of complex formation fall in the

range of 5-12 kcal/mol. The free energy change is, however, due to enthalpy-entropy
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compensation effects, much smaller than the changes in entropy and enthalpy alone.

Non-covalent binding of a ligand to a receptor result in a limitation of the free space

available to the involved solute molecules, which can result in relatively large and un-

favorable entropy penalties.

Assuming thermodynamic additivity, the total entropy change of a solute species can

be expressed as a sum of translational, rotational, vibrational and conformational en-

tropies, which can be calculated separately:

∆Ssolute = ∆Srotations + ∆Stranslations + ∆Svibrations + ∆Sconformations (2.52)

∆Srotations and ∆Stranslations reflect the loss in rigid body rotational and translational

motions of the ligand in the bound state compared to the free state. These two terms

will always be negative and give a positive contribution to the overall free energy change.

∆Svibrations and ∆Sconformations reflect changes in internal motions of both receptor

and ligand in the complex relative to the free states. These two terms are typically

also negative due to reduction of the configurational space available in the complex.

Calculations of entropy changes associated with molecular association processes from

molecular dynamics simulations are, however, not a trivial task. The entropy is, by

definition, a quantity measuring the accessibility of the phase space of a collection of

atoms. When calculating entropy changes, absolute entropies of the solute in the two

states are needed and hence, the whole configurational space accessible to the molecule

in both states need to be sampled during the simulation. Development of methods for

estimating biomolecular entropies from computer simulations is still an active field of

research and a vast variety of methods can be found in the literature. The following

subsections describe the theory behind a series of methods for estimating biomolecular

entropies used in this work.

34



2.2 Analysis methods

Entropy of rigid body motions

The standard method for calculating absolute rotational and translational entropies

is to use the analytical, one molecule, translational and rotational ideal gas partition

functions. Under the assumption that a solute molecule do not interact with the solvent

or any other molecules in the system, the one molecule translational partition function

is given by [84]:

qtrans(V, T ) =
V

∧3
, (2.53)

where ∧=(h2/2πMkbT)1/2. h is here Planck’s constant and M, V and T is the total

mass of the solute, the volume available for the solute and the temperature of the

system. Using the standard formula for calculating the entropy from the canonical

partition function, the entropy of a molecule in the gas-phase can be written as,

Strans = kbln

[

(

2πMkbT

h2

)3/2
V e5/2

N

]

, (2.54)

where e is Euler’s number and N is the number of ideal gas particles. Eq. 2.54 is

also known as the Sackur-Tetrode equation. The translational entropy depend on the

concentration of the molecule and is typically calculated for a standard state of solute

concentration of 1 M (= 1 molecule/1660Å3).

The rigid body rotational entropy can be calculated is a similar manner, using the one

molecule ideal gas rotational partition function [84]:

Srot = kbln

[√
π

σ

(

8π2IAkbTe

h2

)(

8π2IBkbTe

h2

)(

8π2ICkbTe

h2

)]

, (2.55)

where IA,IB and IC are the three molecular principal moments of inertia, and σ is a

symmetry number, which typically is unity for large asymmetric biomolecules.

Although ideal gas rotational entropies can be a good approximation for molecules

in solution, the ideal gas treatment fails to predict translational entropies even for

monoatomic species in solution [85]. Ideal gas rigid body entropies are clearly a rather
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rough estimation for large biomolecules in solution.

An alternative method to calculate the rigid body entropy loss of a ligand in a complex,

relative to the unbound state, is provided by Swanson et al. [86]. This method is based

on statistical thermodynamics of non-covalent binding of molecules in solution. The

basic theory of this method is described in the following. For full derivation of the

method, the reader is referred to the original paper. The standard free energy change

for molecular association of molecules A and B to form complex AB can be calculated

from the ratio of configurational integrals, ZN,AB, ZN,A, ZN,B and ZN,O of the complex,

receptor, ligand and solvent alone [87]:

∆G0
bind,AB = −RTln

(

C0

8π2

)(

ZN,ABZN,O

ZN,AZN,B

)

+ P 0 〈∆VAB〉 (2.56)

Here, ZN,A denotes the configurational integral in internal coordinates of molecule A

plus the external coordinates of N solvent molecules. C0 is the concentration of the

solute molecule, which typically is set to 1 M (= 1 molecule/1660 Å3). Swanson et al.

introduced a series of approximations for evaluating Eq. 2.56 directly from computer

simulations. The first approximation is to treat solvent degrees of freedom implicitly

by a potential of mean force method, as described in Section 2.2.6. Using an an implicit

solvation model, the configurational integrals in Eq. 2.56 can be solved only with respect

to the internal degrees of freedom of the solute molecule:

Z =

∫

e−βU(ru)+W (ru)dru, (2.57)

where U(ru) is the potential energy of the solute and W(ru) is the potential of mean

force of a given solute conformation ru. Using the reduced configurational integrals,

the standard free energy of binding can be written as:

∆G0
bind,AB = −RTln

(

C0ZAB

8π2ZAZB

)

. (2.58)

Here the pressure-volume work in Eq. 2.56 is neglected and the configurational integrals

are only evaluated over the internal degrees of freedom of the solute molecules.

Swanson et al. introduced a new set of coordinates, δn = (x1,x2,x3,ξ1,ξ2,ξ3), for the six
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additional degrees of freedom of the the complex. These degrees of freedom represent

the six translational and rotational degrees of freedom of the ligand transformed into

internal degrees of freedom in the complex. These six degrees of freedom can be

separated out from the configurational integrals to give,

∆G0
bind,AB = −RTln

(

C0ztrans
B zrot

B ZAB′

8π2ZAZB

)

, (2.59)

where AB’ denotes the remaining degrees of freedom of the complex. The configu-

rational integrals of the rigid bonds motions of the ligand, in the complex are given

by,

ztrans
B =

∫

eU(x1,x2,x3)+W (x1,x2,x3)dx1dx2dx3 (2.60)

and

zrot
B =

∫

eU(ξ1,ξ2,ξ3)+W (ξ1,ξ2,ξ3)dξ1dξ2dξ3 (2.61)

Eq. 2.59 is based on the approximation that ligand rigid body rotations and translations

in the complex are fully decoupled. Further assuming that the configurational space

of the ligand and receptor is the same in the free and bound states, Swanson et al.

simplified Eq. 2.59 further to:

∆Gbind = −RTln
(

C0ztrans
B zrot

B

8π2

)

+ (〈EAB〉 − 〈EA〉 − 〈EB〉), (2.62)

where (〈EAB〉, 〈EA〉 and 〈EB〉 are the potential energies plus the solvation free energy

of the complex, ligand and receptor respectively, which can be calculated from molec-

ular dynamics simulations together with implicit solvation methods (i.e. the PBSA or

GBSA methods described in Section 2.2.6). Thus, the free energy contribution from

loss of translational and rotational degrees of freedom in the complex, with respect

to the free standard state, is given by the first term in Eq. 2.62. The main difficulty

of this approach is to evaluate the configurational integrals in Eq. 2.60 and 2.61. In-

stead of attempting to evaluate the integrals numerically, Swanson et al. suggested to

approximate the configurational integrals by a quasi-harmonic approach. The average
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potential energy of an one-dimensional classical harmonic oscillator is related to the

variance of the oscillator coordinate, 〈∆x2〉 by,

〈U(ru) +W (ru)〉 =
1

2
k
〈

∆x2
〉

, (2.63)

where the variances of the a given oscillator coordinate can be measured from an explicit

water MD simulation. In order to treat oscillations of the three translational degrees of

freedom as independent harmonic oscillators, variances are determined as eigenvalues of

the covariance matrix of ligand center of mass movements in the complex, after overall

translational and rotational movements of the complex are removed by superposing the

coordinates of the receptor molecule onto a set reference coordinates. With the quasi-

harmonic approximation the translational configurational integral in Eq. 2.60 can then

be calculated as:

ztrans
B =

∫

e(−k1∆x2
1/2kBT)dx1

∫

e(−k2∆x2
2/2kBT)dx2

∫

e(−k3∆x2
3/2kBT)dx3, (2.64)

where ∆x1, ∆x2 and ∆x3 are the eigenvalues of the ligand center of mass covariance

matrix. Solving the integral in Eq. 2.64 and using the equipartition theorem to connect

the force constants of the harmonic oscillators to the variances (ki
∼= kBT/∆x2

i ), the

final formula to estimate the configurational integral of ligand center of mass movement

in the complex is given by:

ztrans
B = (2π)3/2 (〈∆x2

1

〉 〈

∆x2
2

〉 〈

∆x2
3

〉)1/2
(2.65)

Rotational configurational integrals of the ligand in the complex are calculated from

Eq. 2.63-2.65, replacing ∆x2 with ∆ξ2. Here the covariance matrix is calculated from

displacements of the ligand Euler angles in the reference frame of the receptor in the

complex. Once the eigenvalues of the translational and rotational covariance matri-

ces are determined, the integrals in Eq. 2.60 and 2.61 can be calculated under the

quasi-harmonic approximation and finally inserted into Eq. 2.62, to give the binding

free energy change ∆G0
bind (neglecting changes in internal degrees of freedom of both

receptor and ligand in the complex).
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Entropy of internal motions

In this section, methods for estimating ∆Svibrations and ∆Sconformations are discussed.

For a general large non-linear biomolecule, this is the change in entropy due to restric-

tions of the 3N-6 internal degrees of freedom of the molecule in the complex relative

to the free state. The internal dynamics of large biomolecules, such as proteins, can

be described by motions with a wide frequency range, ranging from low frequency

delocalized vibrational modes, where a large number of atoms are involved in collec-

tive motions [88], to high frequency motions, typically involving a smaller subset of

atoms. Angle bending and bond stretching motions are examples of the latter cate-

gory. Although there is evidence that the low frequency vibrational modes of proteins,

responsible for the major part of the internal atomic displacements, are anharmonic in

nature at physiological temperatures [89], a common approximation in computational

chemistry is to consider all vibrational modes as simple harmonic oscillations around

a local energy minimum.

Absolute vibrational entropies can be estimated using normal mode analysis, based on

the harmonic approximation. Harmonic normal modes of vibration, of a given local

minimum solute conformation, can be calculated from the Hessian matrix,

Hij =
∂2V

∂qi∂qj
, (2.66)

where qi are the mass-weighted Cartesian coordinates of the solute. The Hessian can

be evaluated directly from analytical derivatives of the force field potential energy

function. The normal modes of vibrations and corresponding vibrational frequencies

can be calculated from the eigenvectors and eigenvalues from an orthogonal transform

of the Hessian matrix. The absolute vibrational entropy of the molecule can then be

calculated, by summing over all 3N-6 vibrational modes, using the analytical formula

of the entropy of a quantum harmonic oscillator,

Sho =
kBα

eα − 1
− ln

(

1 − e−α
)

, (2.67)

with α = ~ω/kBT, where ω is the frequency of the oscillator and ~=h/2π. Normal

mode analysis can be used to calculate vibrational entropy changes in molecular associ-
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ation processes by evaluating the difference in absolute entropies between the complex

and the free ligand and receptor.

Schlitter [90] derived an elegant method for calculating configurational entropies, i. e.

both vibrational and conformational entropies, of biomolecules from molecular dynam-

ics trajectories. Schlitter showed that the probability distribution that maximizes the

entropy of a given variance is the Gaussian distribution. Connecting the variance of

fluctuations along a given degree of freedom of a molecule to the entropy of a harmonic

oscillator, therefore gives an upper limit of the real configurational entropy. Using the

analytical expression for the entropy of an one-dimensional quantum harmonic oscilla-

tor in Eq. 2.67, Schlitter introduced the approximation,

S ′ =
kB

2
ln

(

1 +
e2

α2

)

(2.68)

and showed that S’ > Sho. Thus, S’ > Sho ≥ S, where S denotes the true entropy of

the system. The frequency of a quantum harmonic oscillator can be connected to the

classical variance, which can be measured from MD simulations using the equipartition

theorem,

mω2
〈

x2
〉 ∼= kbT, (2.69)

where 〈x2〉 is the classical variance of the harmonic mode. The equality in Eq. 2.69

is valid for low frequency modes where ~ω≪kbT. For very high frequency vibrational

modes is Eq. 2.69 not valid, but since these high frequency vibrations only make small

contributions to the total configurational entropy, this is not a serious approximation

in this method. Combining Eq. 2.68 and 2.69, the upper limit of the absolute entropy

of an one-dimensional harmonic oscillator can be written as:

S
′

=
k

2
ln

(

kTe2

~
m
〈

∆x2
〉

+ 1

)

, (2.70)

Eq. 2.70 can easily be extended to many degrees of freedom. In order to account for

correlated atomic motions in a molecule, the covariance matrix of atomic coordinate

fluctuations,
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σij = 〈(xi − 〈xi〉)((xj − 〈xj〉)〉 , (2.71)

can be diagonalized, yielding a new set of 3N-6 uncorrelated internal modes. The brack-

ets in Eq. 2.71 denote the average Cartesian position of a given atom. The eigenvalues

of the covariance matrix give variances along each mode and the entropy estimate for

the one-dimensional case can be applied separately to each uncorrelated mode. The

total absolute entropy can be obtained by summing over entropy contributions from

each mode, or in an alterative form,

S
′

=
k

2
ln det

(

kTe2

~
Mσ + 1

)

, (2.72)

where M is a matrix holding the atomic masses in the diagonal and 1 is the unity

matrix. The determinant in Eq. 2.72 can be solved numerically using a matrix de-

composition algorithm, such as LU decomposition. Eq. 2.70 show that by using the

approximative form, S’, instead of the analytical formula of the quantum harmonic os-

cillator, there is no need to calculate the covariance matrix in internal coordinates when

calculating the entropy of internal degrees of freedom. Using the full 3Nx3N covariance

matrix in Cartesian coordinates, the six rotational and translational degrees of freedom

can be ’frozen out’, for instance by superposing the coordinates to a reference frame.

By diagonalizing the covariance matrix, the variance of these six modes will be zero,

or very close to zero, and will not make any significant contribution to the calculated

overall absolute entropy.

In this work, we restrict the use of Schlitter entropy calculations to the internal degrees

of freedom, but also rotational and translational molecular degrees of freedom can be

included in the covariance matrix in Eq. 2.71. The calculations of Schäfer et al. [91],

using Schlitter’s method on different systems, showed that the method performs well

for systems where the harmonic approximation is valid. The largest errors were in this

study found for an ideal gas, where calculated (translational) entropies differed 17%

compared to the exact analytical value.

41



2.Techniques and Methods

2.2.8 Two-phase model entropy calculations

The harmonic approximation used in many of the previously discussed methods for

estimating entropies is not suitable for liquids. In the aforementioned study of Schäfer

et al., the largest errors using Schlitter’s method were found for the entropy an ideal

gas, where a large part of the atomic motions can be described by low frequency dif-

fusional motions. These motions are anharmonic in nature and not well described by

the motions of a harmonic oscillator. Lin et al. [68] proposed the so called 2PT (two-

phase-thermodynamic) method for calculating thermodynamic properties of systems

in all phases. This method is based on the observation that the density of states (DoS)

function of an atomic liquid typically is a superposition of the solid and gas phase

DoS functions of the same system. Figure 2.6 shows vibrational DoS functions for an

Figure 2.6: Figure from original 2PT paper [68]. Typical vibrational density of states
distributions of a) a solid b) a gas and c) a liquid. Figure d) shows that the density of
states function of a liquid can be described by a superposition of solid-like and gas-like
density of states functions.

example system in the solid, liquid and gas phase. The 2PT-method is based on a

decomposition of the DoS function of a liquid into contributions from solid-like vibra-
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tional motions and diffusional gas-like motions. The solid-like part of the DoS function

contain high frequency motions that can the be modeled as independent harmonic

oscillators, as previously discussed, whereas motions in the gas-like part are modeled

by a hard sphere fluid. Using the decomposed DoS function the total entropy of the

liquid can be calculated using the analytical formulas for the entropy of a harmonic

oscillator and a hard sphere fluid respectively, weighted by the vibrational intensity at

a given frequency. Although the method originally was developed for atomic fluids,

it can easily be extended to water molecules [92, 93], thereby providing a method for

calculating the absolute translational entropy of a set of water molecules.

The vibrational density of states of water motions, D(ν), can be calculated from the

Fourier transform using the the molecular center of mass velocity autocorrelation func-

tion Ccm
v (t) (see Eq. 2.29):

D(ν) =
2

kT
lim
τ→∞

∫ τ

−τ

C(t)e−i2πνtdt, (2.73)

Lin et al. showed that integrating the DoS function over all frequencies gives the number

of degrees of freedom of the system, which when calculating the center of mass velocity

autocorrelation function for N water molecules, adds up to a total of 3N translational

degrees of freedom. Within the 2PT method, the DoS function is decomposed into

contributions from solid like vibrational modes Ds(ν) and and low frequency gas-like

diffusive modes Dg(ν):

D(ν) = Dg(ν) +Ds(ν) (2.74)

Here, Dg(ν) corresponds to 3Nf degrees of freedom and Ds(ν) to the remaining 3N(1-

f) degrees of freedom. The factor f is called the fluicidity factor and determines the

partition of the translational DoS function into solid and gas components. In the 2PT

method, the fluicidity factor is calculated as a function of temperature, density, mass

and diffusivity of the system. For a system at low temperature and high density, the

fluicidity factor will approach zero as the diffusion coefficient approaches zero and the

system is represented by the solid state. In the other limit, at high temperature and

low density, the fluicidity factor approaches unity and the system will be represented

as a dilute gas. Lin et al. defined the fluicidity factor as the ratio of the self-diffusivity
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of the system with respect to the hard-sphere diffusivity in the zero pressure limit. The

full derivation of the formula to calculate the fluicidity factor is lengthy and therefore

not repeated here. The final equation of the fluicidity factor is given by:

2∆−
9
2f

15
2 − 6∆−3f 5 − ∆−

3
2 f

7
2 + 6∆−

3
2 f

5
2 + 2f − 2 = 0, (2.75)

where the function ∆ is proportional to the diffusivity of the system and takes the

form:

∆(T, ρ,m,D(0)) =
2D(0)

9N

(

πkT

m

)
1
2

ρ
1
3

(

6

π

)
2
3

, (2.76)

where ρ is the density of the system and m is the mass of the particles. D(0) is the

density of vibrational states at ν=0 and is related to the self-diffusion coefficient Ds

by:

D(0) =
12mNDs

kBT
. (2.77)

Using Equations 2.75 and 2.76, the fluicidity factor f is determined by system specific

parameters that can be calculated directly from the simulation.

Once the fluicidity factor is known, the density of states function for the gas component

can be calculated from the velocity autocorrelation function of a hard sphere fluid using

Eq. 2.73. The resulting hard sphere density of states function is given by:

Dg(ν) =
D(0)

1 +
[

πD(0)ν
6fN

]2 , (2.78)

Here, N is again the total number of water molecules (for which the autocorrelation

function C(t) was calculated for). Ds(ν) can now be calculated by simply subtracting

Dg(ν) from the total DoS function D(ν). Using the partitioned DoS functions, the

entropy of the 3N translational degrees of freedom can be calculated by integrating

over the whole frequency range, using the analytical formulas for the entropy at a
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given frequency of a quantum harmonic oscillator and a hard sphere diffusive fluid

respectively,

S2PT =

∫

∞

0

dνDs(ν)W s
ho(ν) +

∫

∞

0

dνDg(ν)W g
hs(ν), (2.79)

where Who is given by Eq. 2.67 and Whs is:

W g
hs(ν) =

1

3

Shs

k
, (2.80)

where Shs is the excess entropy of a hard sphere fluid, calculated from the Carnahan-

Sterling equation of state of hard spheres [94].

As previously mentioned, the 2PT-method can only be used to calculate the entropy

associated with the 3N translational degrees of freedom of water molecules. To calculate

total absolute entropies, rotational entropies, as well as bond vibration entropies need

to be accounted for. Since the water force fields used in this study are rigid water

models, the latter contribution is neglected. The ideal gas approximation (see above)

is in this study used to estimate rotational entropies as suggested by Jana et al. [92].
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3.1 Introduction

An important goal of drug design is to understand and control cellular functions, such

as regulation, signal transduction and intermolecular transport processes. These pro-

cesses are controlled, within the machinery of the cell, by specific reversible binding of

ligands to biomolecular receptors. The specificity and affinity of these molecular associ-

ation processes can, to some extent, be explained by pure receptor-ligand interactions,

e.g. complementary geometries of ligand and receptor molecular surfaces at the binding

interface and local interactions between the receptor and the ligand in the complexed

state. Cellular receptor-ligand interactions take place in an aqueous ionic environment

and it is by now recognized that both water molecules and ions can play an important

role in these processes. Water molecules can act as extentions of the molecular struc-

tures and thereby further enhance the specificity and affinity of the association process

[95–98]. This is evidenced by the presence of water molecules at the binding interface of

many crystal structures of biomolecular complexes. Furthermore, the binding process

is accompanied by partial desolvation of both receptor and ligand molecular surfaces,

where water molecules are transfered from the vicinity of the solutes to bulk water en-

vironment. Microscopic energetic changes, when solute-water interactions are replaced

by water-water interactions, are reflected in macroscopic thermodynamics and kinetics

of the binding process. The contribution from the desolvation free energy change to

the overall binding affinity strongly depends on the chemical nature of the solute and

is difficult to predict without detailed information of microscopic solute-water interac-

tions.
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Previous studies of hydration of various mono- and disaccharides have shown that

both structure [25, 27, 99–101] and dynamics [26, 102] of carbohydrate hydration wa-

ter is perturbed compared to bulk water. It is not clear, however, how changes in water

properties affect binding affinities of carbohydrate-lectin or carbohydrate-carbohydrate

complexes. This is particularly interesting since relatively low affinity characterize both

binding of lectins to carbohydrates, or carbohydrates to other carbohydrates [4, 103].

The presence of hydrophobic patches on the molecular surfaces of many biologically

important carbohydrates, and stacking of carbohydrates on aromatic side-chains in

saccharide-lectin complexes, has lead to speculations about the role of hydrophobic

hydration and solvent reorganizing effects in molecular association processes involving

saccharides [25, 104, 105]. Desolvation of water around hydrophobic patches of the

saccharide would, according to the hypothesis of Frank and Evans [106], give a free

energy change contributing favorably to complexation. Polar and charged solutes are

readily soluble in water due to Coulomb solute-water interactions, which compensate

the enthalpy loss at the molecular surface due to disruption of the water-water hy-

drogen bond network. Non-polar and non-charged solutes, on the other hand, only

interact with water weakly through favorable solute-water van der Waals interactions

[107], which only partly compensates the disruption of the water-water hydrogen bond

network. Further energetic compensation comes from structural ordering of the hydro-

gen bond network in the vicinity of hydrophobic surfaces, where water-water hydrogen

bonds on average are more linear, i.e. more energetically favorable compared to bulk

water hydrogen bonds [108]. In order to compensate for the lack of solute hydrogen

bond donors and acceptors, hydration water forms hydrogen bonded cages around the

hydrophobic solute. Clathrate-like arrangements of the water hydrogen bond network

have been found around hydrophobic patches on protein [109, 110] and DNA [111]

molecular surfaces. The ordering of water structure and the accompanying entropy

loss is, according to Frank and Evans, the reason for the low solubility and sponta-

neous aggregation of hydrophobic solutes in aqueous environment. Similar arguments

have been used to explain driving forces in protein folding and the stability of tertiary

protein structure [112–114].

In this study we have moved beyond simple mono- and disaccharides and investigate

hydration properties of larger oligosaccharide systems, modeling the cell surface glyco-

calyx. We investigate structural, dynamic and thermodynamic properties of hydration

water to answer the question of how solvent reorganization effects influence binding

affinities of molecular association processes involving carbohydrates.
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3.2 Water models

Two different water force fields have been used to model water in this study. The

TIP3P [44] and SPC/E [45] water models are both, so called, minimalistic transferable

interaction potentials, with only three interaction centers located on the nuclei. Partial

charges are assigned to each nucleus and an additional Lennard-Jones potential, located

at water oxygen atoms, accounts for intermolecular van der Waals forces (see Figure

3.1 and Table 3.1). Both models are parameterized as rigid body models, i.e. with

a fixed geometry where H-O-H angle bending motions and O-H stretching motions

are neglected. In the parameterization process, partial charges and Lennard-Jones

coefficients are optimized to reproduce important properties of liquid water, such as,

density, radial distribution functions and heats of vaporization. It should be noted

that although these models are based on strict pairwise interactions between water

molecules, they are effective pair-wise interaction potentials, that is, many-body effects

are incorporated in an average way in the parameterization process. The cooperative

strengthening of the hydrogen bond network due to polarization effects is important for

describing liquid water properties [115] and average induced dipole moments of water

molecules are incorporated in these models by introducing larger permanent dipole

moments than the experimentally observed ones for isolated water molecules [45].

Table 3.1: Water force field parameters

σ(Å) a ǫ (kJ mol−1) a q1 (e)b q2 (e)c l (Å) d θ◦ e

TIP3P [44] 3.15061 0.6364 +0.4170 -0.8340 0.9572 104.52
SPC/E [45] 3.166 0.650 +0.4238 -0.8476 1.0000 109.47
a van der Waals parameters for water oxygen.
b Partial charge for water oxygen.
c Partial charges for water hydrogens.
d O-H bond length.
e H-O-H bond angle.

The success of these water models in modeling condensed phase water has been re-

viewed in several previous papers [116–118]. These comparisons show that each model

has its strengths and weaknesses when it comes to modeling energetics, structural and

dynamic properties of water. Since calculated properties depend on the simulation

protocol, e.g. cutoffs, treatment of long range electrostatic interactions, thermostats
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Figure 3.1: Force field parameters for the three-point potentials TIP3P and SPC/E

and barostats, both water models have been tested for pure water systems with the

same simulation parameters used for simulations of saccharide systems presented in

later chapters. This serves as a force fields validation and further provides a pure bulk

water reference of various water properties as modeled by the two force fields. Pure

water systems consisting of 8004 TIP3P or SPC/E water molecules are here modeled

in a simulation box of initial dimensions of 63.54 x 63.31 x 63.40 Å. The simulations

were performed in the NPT-ensemble at 300 K and a pressure of 1 atm. Further details

about the simulation protocol can be found in Chapter 3.3. Force field parameters for

the two water models are presented in Table 3.1.

Various water properties calculated from these simulations, together with correspond-

ing experimental values, are presented in Table 3.2. The most notable difference be-

tween the two force fields is the high diffusivity of TIP3P water. This artefact has been

noticed before and is believed to be related to accounting for long-range electrostatic

interaction in the periodic system, as opposed to a 9 Å cutoff of both van der Waals

and electrostatic interactions used in the derivation of this force field [122]. Although

the potential energy per TIP3P water molecule is in fairly good agreement with exper-

iment, the density of water at a pressure of 1 atm is too low. The SPC/E force field, on

the other hand, models density and diffusivity in better agreement with experiment,

but overestimates the average interaction energy per water molecule.

The oxygen-oxygen radial distribution functions in Figure 3.3a show structural dif-

ferences in the modeled water hydrogen bond network of the two force fields. SPC/E

water is in fairly good agreement with radial distribution functions extracted from neu-
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Table 3.2: Properties of the TIP3P and SPC/E water models from pure water NPT-
simulations at 300 K and 1 atm.

Ep (kJ mol−1) a ρ (g cm−1) b V (Å3) c D (*10−9m2s−1) d q e whb (ps) f

TIP3P -39.8 (0.04) 0.977 30.6 6.1 0.56 1.06
SPC/E -46.5 (0.01) 0.992 30.2 2.5 0.63 2.14
Exp g -41.5 0.997 29.9 2.3 - ∼ 1.0
a Average potential energy per water molecule. Standard deviation in parenthesis. Experi-

mental value from [45].
b Average water density. Experimental value from [119]
c Average volume per water molecule in the simulation box.
d Average self-diffusion coefficient calculated for the mean squared displacements in figure

3.2 using the Einstein relation [56] limt→∞ < |r(t′ + t) − r(t′)|2 >= 6Dt. Experimental
value from [120].

e Average structural order parameter q (see Fig. 3.3).
f Average hydrogen bond life-time. Experimental value from [121].
g Experimental values at 25◦ and 1 atm.

tron scattering experiments [123], whereas the TIP3P force field fails to model structure

beyond the first peak. The non-existent second and third peaks of the TIP3P radial dis-

tribution function, which correspond to second and third neighbors in the tetrahedral

hydrogen bond network, show that TIP3P models the structure of water too weakly.

The local order of the hydrogen bond network around any given water molecule is fur-

ther investigated with the tetrahedral order parameter, q, of Chau and Harddwik [72]

(see Chapter 2.2) for the two water models in Figure 3.3b. A clear shift towards lower

q-values can be seen for TIP3P water. This means that the hydrogen bond network

modeled by the TIP3P force field is, on average, less tetrahedral, or more destructured,

compared to SPC/E water. Although there is no equivalent experimental measurement

of the local order of water, it is interesting to note that the difference in local structure

of the two water models is larger than that of SPC/E water at 0◦C and 30◦C [26].

The first peak of the radial distribution function gives information about the strength

and average length of water-water hydrogen bonds. The height of the first peak of the

water oxygen-oxygen radial distribution function is from X-ray and neutron scattering

experiments determined to be in the range of 2.2-2.5 [124]. Here, TIP3P water is in

better agreement with experiment. The structural differences of the two water models

are also reflected in the hydrogen bond lifetimes (whb in Table 3.2). The average hydro-

gen bond life times are calculated from hydrogen bond autocorrelation functions (see

Eq. 2.30) fitted to Kohlrausch-Williams-Watts functions, which are then integrated
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Figure 3.2: Average mean square displacements of water for 10 separate 400 ps blocks
of the trajectory for the TIP3P and SPC/E water models.

from zero to infinity. The calculated average hydrogen bond life times depend on the

criteria used to define a hydrogen bond, but the relative difference between the two

water force fields show that the SPC/E force field models a more stable hydrogen bond

network, with on average two times longer lived hydrogen bonds compared to TIP3P

water. Using the hydrogen bond criteria defined in Chapter 2.2.2, calculated TIP3P

hydrogen bond life times are closer to the experimental value of approximately 1 ps.

These results show the difficulty of modeling both structural and dynamic properties of

bulk water with simple three-point-potentials. More elaborate water models have been

developed in the TIP4P [125] and TIP5P [126] water force fields and modifications

thereof [127, 128]. These force fields utilize more interactions centers and model many

liquid water properties in better agreement with experimental data. The effective po-

larization in all pair-wise potentials is a potential problem when modeling solute-water

interactions. Dipole moments of hydration water of a given solute strongly depend on

the nature of the solute and are likely to differ from bulk water dipole moments. Only

polarizable water models can capture these effects. Although several polarizable water

models are available, commonly used biomolecular force fields are developed together

with the simpler three-point potentials. To be strict, these water models should be

used together with the biomolecular force fields to have a consistent set of parame-

ters for the system. Furthermore, several molecular dynamics programs only support

the three-point potential water models. There are, however, several studies showing

that the simple water models, together with the common biomolecular force fields, can
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model hydration water properties in good agreement with experiment. Merzel and

Smith [129] showed that distribution functions of TIP3P water around lysosome, mod-

eled by CHARMM force fields, compare well with the scattering profile measured by

Burling et al. [130]. Another comparison between molecular dynamics simulations and

scattering experiments can be found in the study of Mason et al. [131]. This study con-

cluded that the TIP3P force field models hydration water properties well enough to be

used for predicting structural properties of water that cannot by probed experimentally.
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Figure 3.3: a) Oxygen-oxygen radial distribution functions for TIP3P (full line) and SPC/E
(dashed line) water. b) Probability distributions of the tetrahedral order parameter q, for
TIP3P (full line) and SPC/E (dashed line) water.

The GLYCAM force field, used to model carbohydrates in our simulations, is parame-

terized together with the TIP3P water model. Therefore, TIP3P is used as our primary

water model in the next chapters. In order to test the influence of the water model

on our results, reference simulations using the SPC/E water model are presented in

Chapter 3.6.

3.3 Systems and simulation protocols

The results presented in the next section are calculated from classical-mechanical molec-

ular dynamics simulations of the high-mannose type oligosaccharide, presented in Fig-

ure 3.5, with explicit water modeled by the GLYCAM04 and TIP3P force fields respec-

tively. The simulation box, shown in Figure 3.4, consists of the oligosaccharide together
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with a water box of initial dimensions 53.76 x 64.74 x 56.41 Å containing 5011 water

molecules. The oligosaccharide is restrained to the x-y plane by means of positional

restraints on the main-chain asparagine atoms in the N -link, thus allowing for no diffu-

sional motion of the saccharide. With its periodic images, this system can be seen as a

sparse saccharide array along the x-y plane with a distance of approximately 50 Å be-

tween a saccharide and its closest neighbor in the periodic system. The z-dimension of

the box is extended another 10 Å to model bulk properties above and below the sugar

array. Standard molecular dynamics simulations were performed using the NAMD 2.6

molecular dynamics program [36] in the NPT-ensemble. A constant temperature of

300 K was applied using a Berendsen thermostat [51] with a weak coupling coefficient

of 5 ps. A constant pressure of 1.01325 bar was applied using a Berendsen pressure

bath coupling with a rescaling frequency of 8 fs, a barostat relaxation time of 100 fs

and a compressibility of 4.57×10−5 bar−1. A cutoff of 12 Å is used for van der Waals

interactions, without using any switching functions. The simulation was performed

using the PME method [132], with a grid spacing of approximately 1 Å in each dimen-

sion of the simulation box. 1–4 bonded electrostatic and vdW scaling was set to unity

in accordance with the GLYCAM04 force field [133]. The SHAKE algorithm [55] was

used to constrain heavy-atom hydrogen bonds, allowing for an integration time-step of

2 fs. A time-step of 4fs was used for long range electrostatic interactions. The results

presented in the next section are calculated from a 8.8 ns trajectory. Snapshots of the

trajectory were stored every 0.4 ps, giving a total of approximately 22000 snapshots

over which the presented results are averaged.

3.4 Hydration of the N-linked high mannose-type

oligosaccharide

3.4.1 Structural properties of saccharide hydration water

In this section, we investigate structural perturbations of the water hydrogen bond net-

work due to the presence of the saccharide. Figure 3.6a shows the proximal distribution

function of water oxygen atoms around the saccharide. The distribution function is

normalized to bulk water density, using the method described in Chapter 2.2.1 to calcu-

54



3.4 Hydration of the N-linked high mannose-type oligosaccharide

Figure 3.4: Simulation box of high mannose-type oligosaccharide-water system. Water
density is reduced in the figure for a clearer representation

late the available volume around the saccharide at a given distance. Here, the distance

refers to the distance between the water oxygen atom and the closest non-hydrogen

saccharide atom. The first peak of the proximal distribution function in Figure 3.6a

corresponds to the first peak of the water oxygen-oxygen radial distribution function

in Figure 3.3a, and represents water molecules hydrogen bonded to the saccharide. A

second smaller and wider peak can also be seen, followed by small oscillations in density

up to a distance of approximately 7.5 Å, where no further perturbations of the water

structure can be seen. The origin of the second peak may not be clear at first glance,

but a decomposition of the distribution function with respect to the atom type of the

closest saccharide atom clarifies the picture. The distribution functions in 3.6b show the

normalized distributions of water molecules around polar (oxygen and nitrogen atoms)

or non-polar (carbon atoms), just taking the volume available for water molecules at a

given distance to the two saccharide atom types into account. From Figure 3.6b it is

clear that the second peak in the full proximal distribution function can be attributed

to water molecules around apolar parts of the saccharide. Comparing with the pure

water oxygen-oxygen radial distribution function in Figure 3.3a, structural perturba-

tions beyond the first peak also stem from water around hydrophobic parts of the

saccharide. The distribution function of water around the saccharide carbons shows a
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Figure 3.5: Pictorial description of the N-linked high mannose-type oligosaccharide used
in the simulations.

hydrophobic hydration pattern, very similar to that of water around n-C18 alkyl chains

[62] and water on a graphite surface [134]. Thus, these distribution functions reveal

a clear amphiphilic character of the saccharide. The majority of water molecules in

the vicinity of the saccharide surface will experience the polar character of the oxygen

and nitrogen atoms. A smaller subset of hydration water molecules will be around

non-polar patches of the saccharide, giving rise to local pure hydrophobic hydration

patterns. Using a Voronoi decomposition (see Section 2.2.4) of the simulation box, first

hydration shell water molecules can be defined as water molecules sharing a common

face of their Voronoi polyhedra with any polyhedron assigned to a saccharide atom. An

average over a 4 ns time period of the trajectory gives 229 first hydration shell water

molecules. Out of these are 184 water molecules nearest neighbors with polar atoms

of the saccharide and 45 nearest neighbors with carbon atoms. Thus, approximately

20% of first hydration shell water experience a more or less hydrophobic environment.

Many biologically important monosaccharides such as glucose, mannose and galactose

have distinct top/down electrostatic character of the molecular surface of the sugar

ring. The top side has a multipolar character whereas the bottom side of the ring is

purely hydrophobic [99]. As mentioned in the introduction, unfavorable hydration of

the hydrophobic parts of the saccharide has previously been hypothesized to make an
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important contribution to lectin-carbohydrate recognition [99, 135].

The decomposition of the water oxygen distribution function in Figure 3.6b also reveals

favorable hydrogen bonding of water to the saccharide. In comparison with the wa-

ter oxygen-oxygen radial distribution function in Figure 3.3a, the saccharide hydroxyl

oxygen-water oxygen distribution function shows a much higher first peak. This means

that there is a higher probability of finding a water molecule in a given volume element

around saccharide hydroxyl oxygens compared to the same volume around a given wa-

ter molecule in bulk water. This is an indication of strengthening of water-saccharide

hydrogen bonds. This subject will be discussed further later in Chapter 3.4.2.
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Figure 3.6: Proximal distribution functions of water oxygen atoms around the high
mannose-type oligosaccharide. In Figure (a) the distribution of water oxygen atoms is
calculated with respect to the closest non-hydrogen atom in the saccharide. Figure b)
shows the distribution function decomposed with respect to the closest atom type. The
full line is the distribution around polar (O and N) saccharide atoms and dashed lines the
distribution around apolar (C) saccharide atoms. The number of water oxygen atoms is
collected in 0.1 Å bins and the average volume of each 0.1 Å shell around the saccharide is
calculated as described in Section 2.2.1.

The effect of the saccharide on the geometrical arrangement of the hydrogen bond net-

work of hydration water is measured by the tetrahedral order parameter, q, in Figure

3.7. For a perfect tetrahedral arrangement of a given water molecule and its four clos-

est hydrogen bond donors/acceptors, which can be both water and saccharide atoms,

q is unity. For a random arrangement of the five atoms, q takes a value of zero. For

further details about the calculation of the order parameter see Section 2.2.5. Distri-

butions of q-values for water molecules with an oxygen atom within a distance of 4
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Figure 3.7: Distributions of the tetrahedral order parameter q of water molecules in
different shells around the saccharide.

Å, approximately accounting for water molecules in the first hydration shell, and for

water located at a distance between 4 and 6 Å are shown. The distribution of the

order parameter for water molecules beyond a distance of 4 Å is the same as for bulk

water (see Figure 3.3b). The presence of the saccharide causes a slight perturbation of

the geometrical arrangement of hydration water in direct contact with the saccharide,

as seen in a slight shift towards lower q-values in Figure 3.7. Beyond the first hydra-

tion shell, the hydrogen bond network has geometrical properties the same as in bulk.

Thus, the saccharide seems to have very modest effects on structural properties of the

surrounding water. A shift towards lower q-values for water in direct contact with the

saccharide is expected since, as previously shown, a substantial part of hydration water

will be nearest neighbors to non-polar parts of the saccharide, which naturally will have

lower q-values due to the lack of hydrogen bonding partners in the saccharide.

Further investigations of structural perturbations of hydration water were performed

by directly analyzing hydrogen bond properties of hydration water. Hydrogen bonds

can be calculated from computer simulations using the geometric criteria discussed in

Section 2.2.2. The structure of the hydrogen bond network is measured here by the

ratio of the number of hydrogen bonds formed by each water molecule, nhb, and the

coordination number, nc, of the same water molecule calculated with a cutoff distance

corresponding to that used in the hydrogen bond definition. A higher value compared

to that of bulk water indicates a structuring of the water hydrogen bond network, such

as induced by a temperature decrease, whereas a lower value shows a destructured
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hydrogen bond network, which may result from either a reduced number of hydrogen

bonds or an increased coordination number [136]. Figure 3.8a shows the average nhb/nc

ratio, calculated for both water-water and water-saccharide hydrogen bonds, for water

molecules at a given distance to the closest non-hydrogen saccharide atom. The most
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Figure 3.8: Structural properties of hydrogen bonds formed by water molecules, at a
given distance r, to the closest non-hydrogen atom in the saccharide. Both water-water
and water-saccharide hydrogen bonds are considered. Figures a)-c) show the average ratio
of the number of hydrogen bonds formed by a water molecule to the coordination number
of this water molecule. Figures d)-e) show the average hydrogen bond angle θ (see Figure
2.2) at distance r. In Figures a) and c), all non-hydrogen atoms in the saccharide are
considered in the the distance calculation. In Figures b) and e) and c) and f) properties
of water hydrogen bonds are calculated for subsets of water molecules at distance r, being
closest to saccharide hydroxyl oxygens and saccharide carbons respectively.

likely position of a water molecule, hydrogen bonded to the saccharide is, as seen in

Figure 3.6, at a distance of approximately 2.9 Å to the closest non-hydrogen saccharide

atom. Figure 3.8a shows that these water molecules form a relatively structured hydro-

gen bond network with hydrogen bonding partners in both the saccharide and other

water molecules. A second peak of higher structure of the hydrogen bond network
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can also be seen at a distance corresponding to the second peak in the experimen-

tal water-water oxygen radial distribution function. Hence, both first hydration and

second hydration shell water molecules show an enhanced hydrogen bond structure.

Water moving between the two first hydration shells, or from and to the second hydra-

tion shell, are less structured than bulk water. A detailed analysis (not shown here)

showed that these water molecules, in between the hydration shells, on average both

have higher coordination numbers and a lower number of hydrogen bonds. Figures

3.8b and 3.8c show the same hydrogen bond to coordination number ratio as in Figure

3.8a, but here partitioned based on the type of the closest saccharide atom (hydroxyl

oxygens in Fig. 3.8c and carbons in Fig. 3.8b). Again, it is clear that the overall struc-

ture of hydration water is dominated by water around saccharide oxygens. However,

hydration water molecules around apolar parts of the saccharide display the largest

structural enhancements of the hydrogen bond network in terms of increased hydrogen

bonding. A similar increase in the number of hydrogen bonds per water molecule has

previously been observed for a water droplet on graphite [134].

Average water hydrogen bond angles, as a function of the distance to closest non-

hydrogen saccharide atom, are shown in Figures 3.8d-f. Average hydrogen bond angles,

at a given distance around the whole saccharide, are shown in Figure 3.8d. Figures 3.8e

and 3.8f show average hydrogen bond angles decomposed into the closest saccharide

atom type. The peaks in Figures 3.8a-c can be seen to correspond to minima in Figures

3.8d-f. These figures further highlight the increased structure of the hydrogen bond

network, seen as increased linearity of hydrogen bond angles of water molecules in the

first and second hydration shells. First and second hydration shell water molecules

do also, on average, have shorter hydrogen bond lengths compared to bulk water (not

shown here). This results in smaller volumes per water molecule and higher densities

of both first and second hydration shell water (see Table 3.4.3). A similar increase in

water density of hydration water around the protein lysozyme [129].

The average interaction energy per water molecule, as a function of the distance to

closest non-hydrogen saccharide atom, is shown in Figure 3.9. Here the interaction

energy is calculated from all atoms within a sphere with a radius of 12 Å. Electro-

static interactions beyond this cutoff radius are accounted for using a reaction field

correction [137]. The structuring/destructuring hydration patterns shown in the pre-

vious two figures are clearly reflected in the potential energy profile of water around

the saccharide. Water molecules hydrogen bonded to the saccharide, second hydration

shell water molecules and water around the apolar parts of the saccharide all display
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more favorable interaction energies compared to bulk water. Energetic perturbations

of hydration water due to the presence of the saccharide can be seen up to a distance

of approximately 8 Å.
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Figure 3.9: Figure a) shows the average interaction energy per water molecule at distance
r to the closest non-hydrogen atom in the saccharide. In figures b) and c), the average
interaction energy per water molecule is calculated for subsets of water molecules at distance
r, being closest to saccharide hydroxyl oxygens and saccharide carbons respectively.

3.4.2 Dynamic properties of saccharide hydration water

The investigations in the previous section have shown that the majority of the first

hydration shell water molecules are in contact with polar moieties of the saccharide, re-

placing water-water hydrogen bonds with saccharide-water hydrogen bonds. It was also

shown that these water molecules are energetically more favorable compared to bulk

water molecules. This is also reflected in the hydrogen bond lifetime autocorrelation
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functions in Figure 3.10. Here, autocorrelation functions are shown for saccharide-water

donor, saccharide-water acceptor and water-water bulk hydrogen bonds, calculated as

described in Section 2.2.3. Figure 3.10a shows that lifetimes of saccharide-water hy-

drogen bonds, on average, are longer than corresponding bulk water-water hydrogen

bonds. Figure 3.10b reveals a difference between the two different kinds of hydrogen

bonds a water molecule can form with polar saccharide atoms. On average, saccha-

ride donor hydrogen bonds are longer lived compared to saccharide acceptor hydrogen

bonds. Integration of the hydrogen bond autocorrelation functions in Figure 3.10 gives

mean continuous hydrogen bond lifetimes of 2.25 and 1.41 ps for saccharide donor-

water and saccharide acceptor-water hydrogen bonds respectively. Calculated average

bulk hydrogen bond lifetime of the TIP3P water model is, for comparison, 1.06 ps (see

Table 3.2). The difference in strength between donor and acceptor hydrogen bonds is

a consequence of the higher dipole moment of water compared to saccharide oxygens,

reflected in the force fields as more negative charges of water oxygens compared to

saccharide hydroxyl oxygens.

In order to investigate the dynamics of the complete first hydration shell, including

hydration water around non-polar parts of the saccharide, we have calculated residence

times of all water molecules within a distance of 3.6 Å of the saccharide. The ARC/TAP

approach of Henchmann and McCammon [138], originally developed to identify hydra-

tion sites in proteins, is here extended to carbohydrates. This method addresses the

problem of calculating absolute positions of water relative to a flexible macromolecule,

which is especially relevant for saccharides. The position of a water molecule in the

vicinity of the saccharide is calculated in local coordinate systems assigned to each

monosaccharide ring of the saccharide. Enumerating the saccharide ring carbon atoms,

using index 1 for the anomeric carbon, the xy-plane of the local coordinate system

is spanned by carbon atoms 1,2,4 and 5 in each saccharide ring, and the z axis is

perpendicular to this plane using the right hand rule. An analysis of sugar ring confor-

mations using the puckering parameter of Cremer and Pople [139] showed that the rings

are stable and only showing small oscillations around a 4C1 chair conformation over

time. A local coordinate system, based on the sugar ring structure, should therefore

provide sufficient accuracy for our purposes. The residence time of a water molecule

is calculated as the time it stays within a distance of 2.8 Å from its initial position.

This distance approximately corresponds to the diameter of a water molecule. When

a water molecule has moved beyond this distance, it is considered to have left a given

hydration site and the residence time is binned. The position of a given water molecule
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is averaged over positions in the local coordinate systems of saccharide rings with any

atom within a distance of 3.6 Å, weighted by the number of times the water is within

this distance to a given residue from the time origin. In this manner, water in between

saccharide residues are also accounted for. Figure 3.11 shows the distribution of resi-

dence times for water within 3.6 Å from closest non-hydrogen saccharide atom, as well

as the distribution of residence times for bulk water calculated in the global coordinate

system using the same distance criterion. The dynamics of water in the proximity of
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Figure 3.10: a) Continuous hydrogen bond correlation functions for water-saccharide
(W-S) hydrogen bonds and for bulk water-water (W-W) hydrogen bonds. b) Continuous
hydrogen bond correlation functions for water-saccharide donor hydrogen bonds (W-SD)
and water saccharide acceptor (W-SA) hydrogen bonds.

the saccharide is similar to what has previously been found for both protein and DNA

hydration water [140–142]. These studies showed that hydration water can be divided

into two categories; water molecules tightly bound to the biomolecule, with greatly re-

duced rotational and translational dynamics, and the majority of hydration water with

rotational and translational diffusion rates similar to bulk water. Figure 3.11 reveals

a similar tendency of hydration water around the saccharide. The peak of bulk and

hydration water residence times coincide, showing that the majority of first shell hy-

dration water have bulk-like translational dynamics. There is however, a shift towards

longer residence times for first hydration shell water. Several cases of residence times

over 100 ps can be seen in this simulation, and the longest observed residence time of a

water molecule in the hydration shell of the saccharide is 241 ps. A detailed analysis of

the hydration shell showed that these long lived water molecules reside in the cavities

of the molecular surface of the saccharide, being hydrogen bonded to the saccharide

63



3.Hydration studies of carbohydrates

and, at the same time, experiencing translational restraints from neighboring residues.

The dynamics of water beyond the first hydration shell is further analyzed in Figure

3.12b, where local self-diffusion coefficients are plotted with respect to the distance to

the closest non-hydrogen saccharide atom. The local diffusion coefficients are calculated

from the slope of the mean square displacement of a water molecules with positions r at

time t0, using two later time steps t1 and t2, with fixed values of 1.2 and 2.4 ps respec-

tively. Assuming that the diffusional regime has been reached after 1.2 ps, the diffusion

coefficient can be calculated from the slope of the mean square displacement between

times t1 and t2 [56, 143]. The distance in Figure 3.12b is that of time t0, which means

that water molecules will have traversed some distance during the time the diffusion

coefficient is measured. Thus, the local diffusion coefficients will be averaged over dif-

ferent parts of the hydration structure around the saccharide, and detailed information

of water mobility at a given distance will be lost. The diffusivity of water molecules

in the first hydration shell is greatly reduced compared to bulk water. Reduced trans-

lational mobility of water in second, third and even fourth hydration shells can also

be seen in Figure 3.12b. Molecular dynamics studies have shown similar long range

reduction of water diffusivity around DNA and various proteins [143]. The rotational
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Figure 3.11: Probability distributions of residence times of water molecules calculated for
hydration water in a local saccharide based coordinate system (a) and for bulk water in the
global coordinate system (b).

dynamics of water around the saccharide is investigated by the orientational correlation

function given by Equation 2.28. Figure 3.12a shows local second-order orientational

relaxation times for water molecules in 1 Å thick shells around the saccharide. Only

water molecules, continously present in a given shell for 4 ps, are used in the calcula-
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tion of the orientational correlation function. These correlation functions were fitted

to stretched Kohlrausch-Williams-Watts exponentials [144, 145], and rotational relax-

ation times τR were obtained by numerically integrating the fitted functions from zero

to infinity. It should be noted that the calculated orientational relaxation times of hy-

dration water strongly depend on the time used to calculate the correlation function.

Similar to the wide range range of translational diffusion rates, shown in Figure 3.11,

the rotational dynamics of hydration water molecules occurs on many different time

scales. Longer sampling periods will increase the representation of saccharide bound

water molecules and will therefore give longer rotational relaxation times. Using a

short sampling period of 4 ps, contributions from water molecules with a wide range of

different rotational rates are included in the calculated orientational relaxation times.

Retardation of hydration water rotational dynamics is, as expected, most severe for
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Figure 3.12: a) Second-order orientational relaxation times of water molecules as a
function of the distance of the closest non-hydrogen saccharide atom. b) Local self-diffusion
coefficients of water molecules in the saccharide hydration shell, plotted with respect to the
distance to the closest non-hydrogen saccharide atom.

first hydration shell water, but is also observed in successive hydration shells. Compar-

ing the structural modifications of the hydrogen bond network around the saccharide,

in Figures 3.8-3.9, to Figures 3.12a and 3.12b, no clear correlation between structural

and dynamic perturbations of hydration water can be seen. The immobilized saccha-

ride acts as a molecular wall, reducing the dynamics of water, beyond distances where

structural modifications of the water hydrogen bond network can be observed. This

phenomenon can also be seen in the water-water hydrogen bond time correlation func-

tions in Figure 3.13. These curves show the probability that a hydrogen bond, present
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between two water molecules at a given time t0, has not been broken and is still intact

at a later time t. An overall reduction in hydrogen bond dynamics can be seen up to a

distance of 12 Å from the closest non-hydrogen saccharide atom. This distance extends

far beyond the first and second hydration shells, where the structure and energetics of

water differ from bulk water.
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Figure 3.13: Continuous hydrogen bond lifetime autocorrelation functions for water in
different regions around the N-linked high mannose-type oligosaccharide. Time correlation
functions of water within 0-4 (squares), 4-6 (diamonds), 6-8 (up triangles), 8-10 (down
triangles), 10-12 (right triangles) and 12-14 (circles) Å are shown. The correlation function
for water in the 12-14 region is the same as for bulk water.

3.4.3 Thermodynamics of saccharide hydration water

In this section, we investigate how the previously discussed microscopical perturba-

tions of the hydrogen bond network are reflected in thermodynamic properties of hy-

dration water. This is interesting for understanding the driving forces behind lectin-

carbohydrate or carbohydrate-carbohydrate association processes. Every non-covalent

molecular association process, occurring in an aqueous environment, is accompanied

by a reorganization of solvent molecules, where water molecules are transferred from

the solute molecular surfaces to a bulk water environment. A pictorial description of

this desolvation process is shown in Figure 3.14.
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Figure 3.14: Pictorial description of a molecular association process, forming complex C
from receptor R and ligand L. Solvent reorganization associated with the process involves
a partial desolvation where water molecules (small sound circles) are transferred from the
receptor and ligand molecular surfaces to bulk water.

It should be noted that this desolvation process, and the accompanying free energy

change, is not the same as measurable solvation free energies, which refer to the free

energy change for the process of transferring a solute from gas phase to to water.

The results presented in the previous section showed that saccharide hydration water

is both structurally and dynamically perturbed compared to bulk water. Structuring

of the water hydrogen bond network could be seen for first and second hydration shells

around the polar atoms of the saccharide, as well as, for water in the vicinity of apolar

parts of the saccharide. These structural modifications of the hydrogen bond network

result in, on average, more favorable interaction energies of hydration water molecules

around the saccharide. Rotational and translational diffusion rates of hydration water

were also shown to be much slower compared to bulk water. All together, these re-

sults indicate that removing hydration water from the high-mannose oligosaccharide is

accompanied by a simultaneous increase in entropy and decrease in enthalpy of the sys-

tem. This phenomenon is known as entropy-enthalpy compensation and is a common

feature in many chemical reactions and processes in biological systems. It has been

suggested that entropy-enthalpy compensation is a general feature of weak molecular

associations [146] and would also apply to structural and dynamic differences between

hydration water and bulk water. If the removal of hydration water results in a enthalpy

loss that is fully compensated by a entropy gain, hydration water will be in thermody-

namic equilibrium with bulk water and not contribute to the total free energy change.

If either term is dominating, on the other hand, desolvation of the saccharide will either

make a favorable or unfavorable free energy contribution to the binding process.

The 2PT method of Lin et al. [68] is used to calculate absolute entropies of water
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Figure 3.15: Normalized center of mass velocity autocorrelation functions for water
molecules in three different domains around the N-linked high mannose-type oligosaccha-
ride. Dotted, dashed and full lines show velocity autocorrelation functions averaged over
water molecules within 3.6 Å, within 6 Å and beyond 10 Å from the closest non-hydrogen
saccharide atom.

in different regions around the saccharide. The theory of this method is described in

Section 2.2.8. In summary, the frequency distribution of translational motions of water

molecules (density of states (DoS) function) is calculated from a Fourier transform of

the water center of mass velocity autocorrelation function. These motions correspond

to both high frequency vibrations of water in the hydrogen bond network as well as low

frequency modes corresponding to slow diffusional motions of water molecules. Uti-

lizing the fact that the DoS-function of a typical liquid takes the form of superposed

solid-like and gas-like power spectra (see Figure 2.6), the intensity at a given frequency

is decomposed into configurational (gas-like) and vibrational (solid-like) contributions.

The contribution to the total translational entropy from vibrations within the hydrogen

bond network is calculated using the analytical formula of the entropy of a quantum

harmonic oscillator at a given frequency, weighted by the intensity of the decomposed

solid-like density of states function. The configurational (gas-like) contribution is calcu-

lated in a similar way, using the analytical formula of the entropy of a hard-sphere fluid.

The results presented here are calculated from a 300 ps trajectory in the NVT-ensemble

(same simulation protocol as used before but without any pressure regulation). Veloc-

ity autocorrelation functions are calculated for a time period of approximately 8 ps,

storing velocities every 8 fs, giving a resolution of the DoS-function of approximately

4 cm−1. The results in the previous chapter showed that the properties of hydration
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water around the saccharide is not uniform. The amphiphilic character of the saccha-

ride results in different structural properties of hydration water in different parts of

the saccharide surface. The dynamics of hydration water can also take many different

forms, ranging from water with bulk diffusional rates to water molecules bound to the

saccharide for hundreds of picoseconds. In these calculations, the velocity autocorre-

lation function of hydration water is averaged over water molecules in three different

domains. Water within a distance of 3.6 Å, water within 6 Å and water within a dis-

tance 10 to 15 Å from the closest saccharide atom. The first domain corresponds to

water molecules hydrogen bonded to the saccharide. The second domain accounts for

the full first and second hydration shells, where the main structural and energetic per-

turbations of the hydrogen bond network can be seen (see Figure 3.8). Water beyond

10 Å is used to describe bulk water properties. The comparison of water properties in

the two first domains can tell us how the non-polar parts of the saccharide influence

the thermodynamic properties of hydration water. Figure 3.15 shows the calculated

center of mass velocity autocorrelation functions for both hydration and bulk water,

averaged over water molecules present in the three domains during the approximately

8 ps time interval for which the correlation function is calculated. The correspond-

ing Fourier transforms of the center of mass velocity autocorrelations, i.e. density of

states (DoS) functions, are shown in Figure 3.16. The area under each curve is here

normalized to 3, giving the average frequency distribution from the three translational

degrees of freedom per water molecule in each region. Properties of the bulk water

DoS function has been characterized in previous studies [124, 147]. The intensity at

ν=0 is directly related to the self-diffusion coefficient of water molecules (see Eq. 2.77).

The peak around 60 cm−1 has been attributed to the O-O-O bending mode between

hydrogen bonded water molecules. Guilliot et al. [124] showed that this peak is not

specific to water and cannot be attributed to hydrogen bonded liquids. Rather, these

low frequency modes are caused by rattling motions, due to caging effects present in

all liquids. The shoulder around 200 cm−1 is generally accepted to correspond to the

intermolecular O· · ·H-O stretching motions.

The spectral densities of hydration water reveal a reduced intensity of low frequency

modes, which, as previously discussed, can be attributed to diffusional motions in a

liquid. An increase in intensity of modes above 100 cm−1 can also be seen. This shows

that some of the loss of hydration water translational diffusivity is transfered into

higher frequency vibrations due to interactions with the saccharide. The results of the

two-phase decomposition of the DoS functions are presented in Table 3.3. The results
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Figure 3.16: Translational density of states functions of TIP3P water in three different
regions around the N-linked high-mannose oligosaccharide. a) within a distance of 3.6 Å, b)
within a distance of 6 Å and c) between 10-15 Å from the closest non-hydrogen saccharide
atom.

presented here are averaged over seven separate 40 ps segments of the NVT-trajectory.

The perturbations in structure and dynamics of hydration water are reflected in the

data from the 2PT-analysis. Diffusion coefficients, calculated from intensities of the

DoS functions at ν=0, are slightly lower for hydration water compared to the ones

calculated from the average mean square displacements in Figure 3.12a. This can be

explained by the fact that self-diffusion coefficients calculated from the velocity au-

tocorrelation functions are averaged over water molecules constantly present in the

domains over the sampling interval. The diffusion coefficients in Figure 3.12b also in-

clude dynamics of water molecules moving in and out of a given region. The fluicidity

factor determines the partition of the DoS function into solid-like and diffusive gas-like

contributions. The fluidity factor depends on the diffusivity, temperature and density

of the system and would take a value of zero for ice (low temperature, high density

and low diffusivity) and approach unity for aqueous vapor (high temperature, low den-
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Table 3.3: Calculated dynamic and thermodynamic data per TIP3P water
molecule in different regions around the N-linked high mannose-type oligosac-
charide.

2PT data 0-3.6 Å 0-6 Å 10-15 Å

ρ (g/cm3) a 1.008 0.987 0.979
S(0) (10−2cm) b 0.300±0.02 0.642±0.02 1.541±0.05
D (10−9m2/s) c 1.16±0.1 2.47±0.1 5.93±0.2
Fluicidity factor (f) 0.1576±0.007 0.2331±0.005 0.3550±0.015
TSvib (kcal/mol) d 1.97±0.03 1.75±0.02 1.48±0.02
TSconf (kcal/mol) e 0.93±0.04 1.39±0.03 2.14±0.03
TSrot,ig (kcal/mol) f 3.2 3.2 3.2
TS (kcal/mol) g 6.10 ±0.02 6.34±0.01 6.82±0.02
E (kcal/mol) h -9.612±0.01 -9.543±0.005 -9.420±0.002
A (kcal/mol) i -15.71±0.02 -15.88±0.01 -16.24±0.01
∆A (kcal/mol) j 0.53±0.02 0.36±0.01
a Average water density calculated as the average number of water molecules

in each domain divided by their average volume, determined by a Voronoi
decomposition of the simulation box.

b Intensity of the translational DoS-function at zero frequency.
c Self-diffusion coefficient calculated from S(0).
d Vibrational (solid-like) entropy contribution.
e Configurational (gas-like) entropy contribution.
f Entropy contribution from the three rotational degrees of freedom. Here

approximated by the water ideal gas value.
g Total absolute entropy per water molecule. TS = TSvib + TSconf + TSrot,ig.
h Average interaction energy per water molecule.
i Absolute Helmholtz free energy per water molecule, A = E - TS
j ∆A = AR - Abulk

sity and high diffusivity). The reduced fluicidity agrees with the increased ”ice-like”

character of hydration water. The reduced translational mobility of hydration water is

reflected in calculated absolute entropies for water in three regions. The average loss

in entropy of a water molecule is, in these calculations, approximately 0.8 kcal/mol

for water molecules hydrogen bonded to the saccharide and 0.5 kcal/mol per water

molecule for the complete first and second hydration shells. These values are within

range of the previously estimated entropy cost of 0-2.1 kcal/mol at 300 K for transfer-

ring a water molecule from bulk water to the hydration shell of a biomolecule [148],

where the upper limit of the entropy cost in this estimation apply to tightly bound

water molecules bound to polar or ionic moieties. Lu and Wong calculated absolute

entropies of hydration water molecules around protein kinase A (PKA) to be in the
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range of 1.2-4.8 kcal/mol, with a bulk water value of 4.95 kcal/mol at 300 K [149]. A

similar loss of entropy of hydration water have been shown for hydration water around

DNA [92] and polyamidoamine denrimers [93]. The loss of translational entropy is

directly correlated to the low self-diffusion of hydration water, which is, as previously

mentioned, observed around many macromolecules.

Average interaction energies per water in the three domains are calculated, as described

before, with a cutoff of both electrostatic and van der Waals interactions at a distance

of 12 Å. A reaction field correction is used beyond this distance to account for electro-

static interactions beyond the cutoff. The average energies presented in Table 3.3 are

calculated for the exact same subset of water molecules used to calculate the center of

mass autocorrelation functions. Using the interaction energy E and the total estimated

entropy, the absolute Helmholtz free energy per water molecule can be calculated, as

well as, free energy differences between water in the different regions around the sac-

charide. The desolvation free energy change, ∆A = Abulk - Ahydr, calculated from

these simulations, is -0.36 kcal/mol per water molecule averaged over water molecules

in the first and second hydration shells and -0.53 kcal/mol per water molecule for just

water molecules hydrogen bonded to the saccharide. These results indicate that the

main contribution for the unfavorable free energy of saccharide hydration water comes

from water molecules hydrogen bonded to the saccharide and not from water around

hydrophobic parts of the saccharide. The calculated entropies and free energies are

averaged over water molecules with a wide range of different structural and dynamical

properties. Removing a water molecule from the vicinity of the saccharide will however,

on average, give a negative free energy change, which would give a favorable contri-

bution to saccharide-saccharide or lectin-saccharide complexation. The cause of the

unfavorable free energy of hydration water is from these calculations a result of greater

entropy loss than the energetic gain due to favorable interactions with the saccharide.

Although 2PT-entropies are calculated using a number of approximations, previous

studies have shown that the method provides reliable entropies and free energies for

Lennard-Jones systems [68] and liquid water at ambient conditions [93]. As seen in

Table 3.3, the main reason for the entropy loss of hydration water can, according to

the 2PT-analysis, be attributed to loss in configurational entropy. To check the im-

plementation of the 2PT method and the consistency of the hard-sphere treatment of

configurational degrees of freedom within this method, the logarithm of the transla-

tional diffusivity is plotted against the inverse TSconf for the three domains in Figure

3.17. The Adam-Gibbs equation shows an exponential relationship between the self-
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3.4 Hydration of the N-linked high mannose-type oligosaccharide

diffusional coefficient and configurational entropy of a given system of the form DT ∝
exp[-B(ρ)/TSconf ]. This relationship connects the purely dynamic quantity DT to the

thermodynamic configurational entropy. Although we only have a small number of

points, a clear linear relationship can be seen between calculated configurational hard-

sphere entropies and the self-diffusion coefficients calculated from the DoS-functions.

This shows that relative changes in translational diffusion rates, which we can calculate

with good accuracy form velocity autocorrelation functions or mean square displace-

ments, are well reflected in the calculated configurational entropies.
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Figure 3.17: ln(DT ) plotted against 1/TSconf for water in the the three different regions
around the N-linked high mannose-type oligosaccharide. The three points can be fitted to
a straight line with a correlation coefficient of 0.998. Error bars are within the size of the
data points.

The calculated absolute entropy of bulk water is larger than the standard entropy of 5.0

kcal/mol at 298 K [150]. One reason for the higher calculated entropy is likely to be the

high diffusivity of the TIP3P water model (see Figure 3.2 and Table 3.2). Furthermore,

the rotational entropy of water is, in these calculations, approximated by the ideal gas

value of 3.2 kcal/mol. This is likely to be an overestimation of the rotational entropy

of water in the condensed phase, due to the higher restriction of rotational motions

in the hydrogen bond network of liquid water. Amzel [151] estimated the rotational

entropy of liquid water at 298 K to be approximately 1.21 kcal/mol, less than half the

ideal gas value. The use of this value gives an absolute entropy per bulk water molecule

closer to the standard entropy, but does not change the conclusions drawn here since

the same value is used for all three domains. Figure 3.12 shows that also the rotational

dynamics of water is retarded in the vicinity of the saccharide, which would further

increase the difference in entropy between hydration and bulk water.
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3.Hydration studies of carbohydrates

3.5 Dependence of hydration properties on

carbohydrate density

In this section, we investigate the effect of increased carbohydrate density on hydra-

tion water properties. This is interesting for understanding the role of water in cellular

recognition processes involving extended parts of the saccharide units in the cell surface

glycocalyx. It is reasonable to assume that hydration properties of monosaccharides,

commonly used in studies of lectin-saccharide binding, are different to those of the

high density saccharide forest of the glycocalyx. If that is the case, such differences

should also be projected onto binding affinities of, for instance, lectins to respective

carbohydrate system. Two further systems, presented in Figure 3.18, are modeled in

Figure 3.18: Simulation boxes of the O-methylated mannoside and the high mannose-type
oligosaccharide array. The water density is reduced in both figures for a clearer representa-
tion.

this section. The first system consists of a single O-methylated mannoside in a large

water box of initial dimensions 58.74 x 57.74 x 57.87 Å. The second system models

a very high density array of N-linked high mannose-type oligosaccharides. Here the

simulation box consists of 12 high mannose-type oligosaccharide units separated by

a distance of approximately 12 Å in each dimension in a water box with 6293 water

molecules giving a simulation box of dimensions 54.82 x 71.20 x 81.80. Without specu-

lating about how well this saccharide array reflects the actual density and arrangements

of saccharides in the glycocalyx, this system is used to model the opposite extreme of
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3.5 Dependence of hydration properties on carbohydrate density

the ”isolated” N-linked high mannose-type oligosaccharide discussed in the previous

sections of this chapter. The same simulation parameters are used for all three systems

(see Section 3.3), using GLYCAM04 and TIP3P force fields to model carbohydrates

and water respectively. The analyses performed in the previous sections are repeated

here for the two new systems. Comparing the three systems will show the coopera-

tive effect of carbohydrates on hydration water properties. In order to compare the

results to those in the previous chapter, all twelve high-mannose oligosaccharide units

are in these calculations considered as a single large solute molecule. Water proper-

ties are, as before, calculated with respect to the distance to the closest non-hydrogen

carbohydrate atom. In the following plots, Man denotes the O-methylated mannoside,

S the N-linked high mannose-type oligosaccharide and SA the array of N-linked high

mannose-type oligosaccharides.
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Figure 3.19: Average interaction energy per water molecule as a function of the distance
to the closest non-hydrogen atom in the O-methylated mannoside (dashed lines), the high
mannose-type oligosaccharide (full lines) and the array of high mannose-type oligosaccha-
rides (dotted lines).

Structural modifications of the hydrogen bond network, as reflected in the average

interaction energy per water molecule in Figure 3.19, are very similar for the three sys-

tems. A slight shift towards more negative interaction energies can be seen for water

in the first and second hydration shells as the carbohydrate density increases. Beyond

the second hydration shell, structural perturbations of the hydrogen bond network is

basically the same for all three systems. The small effect off the increased saccharide

density on structural properties of water is further evidenced by comparing the struc-

tural order parameter q of water within a distance of 4 Å (Figure 3.20a) and in the
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3.Hydration studies of carbohydrates

interval 4 Å to 6 Å (Figure 3.20b) from the closest non-hydrogen carbohydrate atom

in the three systems. A very slight increased destructuring effect can be seen for first

hydration shell water as carbohydrate density increases. The tetrahedral order of water

beyond 4 Å is identical to bulk water for all three systems (see Figure 3.3b). These
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Figure 3.20: Probability distributions of the tetrahedral order parameter, q, of water
molecules within a distance of 4 Å a) and in the region of 4-6 Å to the closest non-hydrogen
atom in the three carbohydrate systems.

results are somewhat surprising given that a large amount of hydration water will be

in between individual saccharide units in the saccharide array, experiencing a highly

non-bulk environment. This phenomenon can be explained by a combination of a high

flexibility of the water hydrogen bond network to accommodate to new surroundings

and the ability of carbohydrates to blend in well with the water hydrogen bond network

through interactions with their many hydrogen bond donors and acceptors.

Larger differences can be seen for the dynamics of hydration water. Diffusion coeffi-

cients and rotational second-order relaxation time, as functions of the distance of the

closest non-hydrogen carbohydrate atom, are shown in Figures 3.21a and 3.21b. A

clear correlation between carbohydrate density and dynamics of water can be seen.

As the carbohydrate density increases, are both translational and rotational diffusion

rates of hydration water decreased. Figures 3.21a and 3.21b show that the increase in

saccharide density has a greater impact on the rotational dynamics of water than the

diffusivity. A similar decoupling of water translational and rotational dynamics was

observed around various mono- and disaccharides in the studies of Lee et al. [26]. In

this study, it was shown that the rotational velocity of water decays faster than the

self-diffusion, as water molecules enter the hydration shell of the saccharides. In these

simulations, the decoupling is further increased with increasing saccharide density.
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Figure 3.21: a) Local self-diffusion coefficients and b) local rotational correlation times
of water molecules as a function of distance to the closest non-hydrogen atom in the
O-methylated mannoside (Man), N-linked high mannose-type oligosaccharide (S) and the
saccharide array (SA).

The retardation of water dynamics can be explained with a increased likelihood of

a water molecule being trapped in the carbohydrate hydration shell with increasing

carbohydrate density. Figure 3.22a shows the probability distribution of residence times

of water in the first hydration shell around the saccharide array system. In agreement

with the results for the N-linked high mannose-type oligosaccharide, presented in the

previous sections, there is a wide spread in the distribution of residence times. A

majority of first hydration shell water have residence times close to mean bulk values

in Figure 3.22b. There is however a shift towards longer residence times of water

around the saccharide array. This shift increases with the saccharide density. For

water in the first hydration shell around the mannoside, is the longest residence time

observed 28 ps. For the saccharide array system, several occurrences of residence times

for hundreds of picoseconds are observed, and single occurrences of residence times on

the nanosecond time scale. As seen in Figure 3.19, such changes in residence time are

unlikely to be a result of the slight shift towards more favorable carbohydrate-water

interactions. Rather, these simulations show that these long lived hydration shell water

molecules are trapped in the saccharide array, due to steric hindrance, as a result of

overlapping hydration shells of individual saccharide units. Comparing the maximum

residence time of water molecules in the first hydration shell of the mannoside and the

isolated saccharide of 28 ps and 241 ps respectively it is clear that such effects are also

present in larger oligosaccharides.
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Figure 3.22: a) Probability distribution of water residence times in the first hydration
shell around the saccharide calculated in local saccharide residual coordinate systems as
described in Section 3.4.2. b) Probability distribution of water residence times in bulk
water calculated in the global coordinate system.

The investigation of thermodynamic properties of hydration water is here repeated for

the two new systems. Water is, as before, examined in three different regions around

the saccharide. Water within 3.6 Å, water within 6 Å and water beyond a distance

of 10 Å to the closest non-hydrogen carbohydrate atom. Although these volumes are

different for the three systems, using the same subset of water molecules in both energy

and entropy calculations, a direct comparison of thermodynamic properties of hydra-

tion water can be made for the three systems. Due to the smaller number of water

molecules in the regions around the mannoside, the center of mass velocity autocor-

relation functions and corresponding DoS functions are calculated and averaged over

four 160 ps trajectories. For the saccharide array, seven trajectories of 40 ps length

were used. These trajectories were calculated, for both systems, in the NVT-ensemble

at 300 K.

The results in Tables 3.3–3.5 show that thermodynamic properties of hydration wa-

ter differ for the three systems. The relationship between rotational and translational

dynamics of hydration water and carbohydrate density is reflected in the calculated

entropies. The increased ”ice-like” character of the dynamics of hydration water, dis-

cussed in the previous section, is here found to be further increased with increasing

saccharide density. This can be seen as a constant decrease in intensity of the DoS

functions at zero frequency (S(0)), as well as, the fluicidity factor (f) of hydration shell

water molecules, relative to the bulk water counterparts in each simulation. The flui-

cidity factor of water molecules within a distance of 0-6 Å takes values of 0.31, 0.23
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3.5 Dependence of hydration properties on carbohydrate density

Table 3.4: Dynamic and thermodynamic data per TIP3P water molecule
at 300 K in different regions around the O-methylated mannoside. See
Table 3.3 for table captions.

2PT data 0-3.6 Å 0-6 Å 10-15 Å

ρ (g/cm3) 0.991 0.983 0.976
S(0) (10−2cm) 0.553±0.1 1.150±0.07 1.447±0.04
D (10−9m2/s) 2.13±0.4 4.43±0.3 5.57±0.2
Fluicidity factor (f) 0.212±0.02 0.310±0.01 0.345±0.005
TSvib (kcal/mol) 1.88±0.01 1.51±0.02 1.51±0.02
TSconf (kcal/mol) 1.26±0.1 1.86±0.05 2.07±0.03
TSrot,ig (kcal/mol) 3.2 3.2 3.2
TS (kcal/mol) 6.34±0.04 6.57±0.03 6.79±0.01
E (kcal/mol) -9.50±0.02 -9.48±0.01 -9.42±0.002
A (kcal/mol) -15.84±0.03 -16.05±0.02 -16.21±0.06
∆A (kcal/mol) 0.37±0.03 0.16±0.03

and 0.18 for the mannoside, the N-linked high mannose-type oligosaccharide and the

saccharide array respectively. The calculated average entropy loss per water molecule

in the same region is 0.22 kcal/mol for the mannoside, compared to 0.48 kcal/mol

and 0.69 kcal/mol for the oligosaccharide and the saccharide array. As seen in Figure

3.19, an increase in carbohydrate density induces a shift towards more negative inter-

action energies. The relative loss in entropy is, however, larger than the energetic gain,

resulting in increasing unfavorable absolute free energies of hydration water as carbo-

hydrate density increases. This means that there is, on average, a higher desolvation

free energy gain as the carbohydrate system gets larger. The calculated desolvation

free energy change, per water molecule, is -0.16, -0.36 and -0.53 kcal/mol for water

molecules within 0-6 Å of the mannoside, the oligosaccharide and the oligosaccharide

array. This is a direct consequence of the increased retardation of water translational

dynamics. Taking changes in rotational velocities into account would, as seen in Figure

3.21, most likely further increase the desolvation free energy differences between the

systems.

Compensatory changes in enthalpy and entropy is often observed in microcalorimetric

measurements of lectins binding with various mono- and oligosaccharides. A linear

relationship between measured ∆H and T∆S values can be seen for different saccha-

ride ligands binding to the lectins, with a slope close to unity [152]. This shows that,

although relatively large differences can be seen in the enthalpy and entropy terms,
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3.Hydration studies of carbohydrates

Table 3.5: Dynamic and thermodynamic data per TIP3P water molecule
at 300 K in different regions around the array of N-linked high mannose-type
oligosaccharides. See Table 3.3 for table captions.

2PT data 0-3.6 Å 0-6 Å 10-15 Å

ρ (g/cm3) 1.01 0.991 0.983
S(0) (10−2cm) 0.149±0.02 0.388±0.008 1.596±0.06
DT (10−9m2/s) 0.58±0.02 1.49±0.03 6.14±0.2
Fluicidity factor (f) 0.1096±0.002 0.1808±0.002 0.3609±0.006
TSvib (kcal/mol) 2.04±0.01 1.87±0.01 1.45±0.02
TSconf (kcal/mol) 0.63±0.01 1.07±0.01 2.17±0.03
TSrot,ig (kcal/mol) 3.2 3.2 3.2
TS (kcal/mol) 5.87±0.01 6.14±0.01 6.83±0.02
E (kcal/mol) -9.659±0.01 -9.577±0.01 -9.415±0.005
A (kcal/mol) -15.53±0.01 -15.71±0.01 -16.24±0.02
∆A (kcal/mol) 0.71±0.02 0.53±0.02

the total free energy change is typically small. From these simulations, we can directly

investigate the contribution from solvent reorganization effects to this enthalpy-entropy

compensation phenomenon. Figure 3.23 shows that changes in interaction energy and

entropy of carbohydrate hydration water also display a linear relationship. Due to the

relative larger change in entropy, the slope is approximately 4 from these calculations.

To compare to experimental measurements, enthalpy and entropy changes of both re-

ceptor and ligand, as well as hydration water of the receptor, have to be taken into con-

sideration. It is interesting that enthalpy-entropy changes associated with desolvation

of the saccharide are opposite to those experienced by the solute molecules. Computer

simulations have shown that the lectin-carbohydrate complexation is associated with

an enthalpy gain from favorable receptor-ligand interactions and entropic loss, which

is mainly due to restriction of translational and rotational degrees of freedom of the

ligand, [31]. Just the loss in translational and rotational entropy has been estimated to

be in the range of 12-15 kcal/mol for mono- and disaccharides [153]. The entropy gain

from released carbohydrate hydration water could explain why only small changes in

entropy are observed in experimental lectin-carbohydrate affinity measurements [152],

even though saccharides are highly flexible molecules.
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Figure 3.23: a) Calculated absolute entropies plotted with respect to calculated average
interaction energies per water molecule in the three different domains for all three systems.
The points can be fitted with correlation coefficient of 0.986 to a straight line with a slope
of 3.88. b) Average desolvation entropy changes plotted with respect to the corresponding
average desolvation interaction energy changes for hydration water in first and second
hydration shells for the three different systems. The three points can be fitted with a
correlation coefficient of 0.999 to a straight line with a slope of 4.01.

3.6 Saccharide hydration with SPC/E water

The force field comparison in Section 3.2 showed that the TIP3P force field mod-

els translational diffusional rates of water poorly. The diffusion coefficient of TIP3P

water, calculated from the average mean square displacement from a pure water sys-

tem, is 6.1×10−9m2/s, which is over two times as large as the experimental values of

2.3×10−9m2/s. Here the question arises if the relatively large entropy loss of hydration

water, presented in the previous sections, is just a result of this inherent error of the

TIP3P force field. The SPC/E model has previously been show to reproduce experi-

mental entropies of water at ambient conditions [154] and should therefore provide a

good reference. Reference simulations of both the isolated high mannose-type oligosac-

charide and the dense array of high-mannose oligosaccharides were performed, using

the same simulation parameters described in Section 3.3, together with the SPC/E and

GLYCAM04 force fields to model water and carbohydrates respectively. System sizes

and systems setups are identical to the TIP3P simulations. Structure, dynamics and

thermodynamic properties of hydration water, as modeled by the SPC/E force field,

are compared to the previously presented results calculated with the TIP3P force field.
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Figure 3.24: a) Proximal distribution functions of water calculated with respect to closest
non-hydrogen atom in the N-linked high-mannose oligosaccharide for TIP3P (full line) and
SPC/E (dashed line). b) Decomposed proximal distribution functions with respect to polar
and non-polar atoms in the saccharide.

Although the SPC/E and TIP3P force fields model remarkably different structures of

the water hydrogen bond network, the difference in structural properties of hydration

water is, as seen in Figure 3.24, fairly similar. SPC/E water shows slightly larger first

and second peaks in the proximal distribution function, corresponding to water around

both polar and apolar saccharide atoms. The contribution of the non-polar hydration

pattern can also be seen to be larger for SPC/E water, giving an increased structur-

ing beyond first hydration shell water. The structuring/destructuring pattern of the

TIP3P hydrogen bond network is very similar for the SPC/E force field. The inter-

action energy per water molecule, plotted as a function of the distance to the closest

non-hydrogen atom in the saccharide for both force fields in Figure 3.25a, summarizes

the perturbation of the hydrogen bond network of SPC/E water around the saccha-

ride. Since the two water models have different average bulk interaction energies, bulk

interaction energies are subtracted from each curve for a direct comparison.

SPC/E water molecules, hydrogen bonded to the saccharide, are slightly higher in en-

ergy compared to TIP3P water, relative to the average bulk water interaction energy

of respective force field. The opposite trend can be seen for second hydration shell

water. Figure 3.25b shows average interaction energies of SPC/E water from the single

oligosaccharide (S) and for the saccharide array systems (SA). In agreement with the

TIP3P force field, only minor structural differences can be seen for the two systems.

The structural order of hydration water, calculated using the previously discussed tetra-
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Figure 3.25: Average interaction energy per water molecule with respect to the distance
to closest non-hydrogen atom in the saccharide for TIP3P (full line) and SPC/E (dashed
line). The interaction energies are subtracted with the bulk values for each water model for
a direct comparison.

hedral order parameter, is also in agreement with the TIP3P force field. Only a very

small increase in structural perturbations of hydration water can be seen in the saccha-

ride array simulation. The structure of the water hydrogen bond network is the same

as bulk water beyond 6 Å for both force fields. These results show that the modest

effect on water structure induced by the saccharide can not be attributed to the too

weakly modeled hydrogen bond network of the TIP3P water force field. Figure 3.26

shows local self-diffusion coefficients and second-order orientational relaxation times

for SPC/E water as functions of distance to the closest non-hydrogen saccharide atom

in both the single saccharide and the saccharide array. The local diffusion coefficients

and rotational correlation times are calculated as described in Section 3.4.2. The same

trend, observed in the TIP3P simulations, can be seen here. Both translational and

rotational diffusion rates are severely reduced in the vicinity of the saccharide sys-

tems. The relative difference in self-diffusion coefficients of first hydration shell and

bulk water is approximately the same for the two water models. Calculated second-

order rotational relaxation times are 19 ps and 5.4 ps for water molecules in direct

contact with the N-linked high mannose-type oligosaccharide, compared to bulk val-

ues of 2 ps and 0.81 ps for SPC/E and TIP3P water respectively. Thus, the relative

decrease in rotational velocity of hydration water is slightly larger for SPC/E water.

Again, it is interesting to note that although the two water force fields model dynamic

properties of water very differently, relative differences in translational and rotational

83



3.Hydration studies of carbohydrates

2 4 6 8 10 12
Distance (Å)

0

1

2

3

4
D

 (
10

-9
 m

2 /s
) SPC/E (S)

SPC/E (SA)

2 4 6 8 10 12
Distance (Å)

0

20

40

60

80

t r (
ps

)

a) b)

Figure 3.26: a) Local self-diffusion coefficients for SPC/E water around the N-linked high
mannose-type oligosaccharide (full lines) and the oligosaccharide array (dashed lines) b)
Second-order orientational relaxation times for the two systems. Distances are calculated
with respect to the closest non-hydrogen saccharide atom.

diffusion rates of bulk and hydration water are in good agreement between the two

force fields. The 2PT entropy and free energy analysis of SPC/E water is presented in

Table 3.6 for hydration water around the N-linked high mannose-type oligosaccharide.

For completeness, calculated SPC/E center of mass velocity autocorrelation functions

and corresponding power spectra are shown in Figures 3.27 and 3.28.
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Figure 3.27: Center of mass water velocity autocorrelation functions for SPC/E water
within 3.6 Å (dotted line), within 6.0 Å (dashed line) and beyond 10 Å (full line) from the
closest non-hydrogen atom in the N-linked high mannose-type oligosaccharide.
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Figure 3.28: Translational density of states functions of SPC/E water in three different
regions around the N-linked high-mannose oligosaccharide. a) within a distance of 3.6 Å, b)
within a distance of 6 Å and c) between 10-15 Å from the closest non-hydrogen saccharide
atom.

The data in Table 3.6 shows that SPC/E hydration water, similarly to TIP3P water,

displays an increased ice-like character as seen in higher density, slower translational

diffusion rates and lower fluicidity factors. This results in an entropy loss of water in

the vicinity of the saccharide. The average entropy loss per SPC/E water molecule in

the first and second regions around the saccharide is 0.43 and 0.51 kcal/mol compared

to 0.48 and 0.72 kcal/mol for TIP3P water. Together with changes in the average

interaction energy per water molecule in each region, calculated desolvation free energy

changes are -0.33 and -0.43 kcal/mol for SPC/E water, compared to the corresponding

values of -0.36 and -0.53 kcal/mol for TIP3P water. Hence, both force fields agree

on the observation that desolvation of the saccharide will give a favorable free energy

contribution to the total free energy change of molecular association processes involving

saccharides.
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Table 3.6: Dynamic and thermodynamic data of SPC/E water at 300 K around
different regions around the N-linked high mannose-type oligosaccharide. See
Table 3.3 for table captions.

2PT data 0-3.6 Å 0-6 Å 10-15 Å

ρ (g/cm3) 1.026 1.011 0.996
S(0) (10−2cm) 0.149±0.01 0.222±0.01 0.57±0.01
D (10−9m2/s) 0.57±0.5 0.85±0.3 2.2±0.05
Fluicidity factor (f) 0.1089±0.005 0.1352±0.002 0.2211±0.002
TSvib (kcal/mol) 1.97±0.02 1.90±0.01 1.81±0.01
TSconf (kcal/mol) 0.63±0.03 0.79±0.02 1.32±0.02
TSrot,ig (kcal/mol) 3.2 3.2 3.2
TS (kcal/mol) 5.81±0.01 5.89±0.01 6.32±0.01
E (kcal/mol) -11.12±0.01 -11.14±0.01 -11.04±0.00
A (kcal/mol) -16.93±0.01 -17.03±0.01 -17.36±0.01
∆A (kcal/mol) 0.43±0.01 0.33±0.01

The 2PT analysis of water around the saccharide array is not presented here, but as

indicated by Figures 3.26 and 3.25, an increased entropy penalty is observed for the

saccharide array, which only partly is compensated by a small decrease in energy. This

results in increased unfavorable free energy of hydration water around the saccharide

array. All together, these results show that all calculations presented in the previous

sections can be qualitatively reproduced using SPC/E water. Relative differences be-

tween bulk and hydration are also in good quantitative agreement for the two force

fields. This provides some support of the accuracy of the results presented in the

previous sections and shows that TIP3P water provides sufficient accuracy to model

biomolecular solvation properties.
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3.7 Discussion

In this chapter, we have investigated structural, dynamic and thermodynamic proper-

ties of hydration water of systems with varying carbohydrate density. We have shown

that structural modifications of the hydrogen bond network of water are rather insen-

sitive to changes in carbohydrate density. Translational and rotational dynamics of

hydration water do, on the other hand, display a greater dependence on the carbo-

hydrate system. These studies show that carbohydrate hydration water molecules, on

average, pay an entropic penalty which is greater than the gain in potential energy.

These findings are in agreement with the hypothesis of Lemieux [104] stating that

”Water behaves as a catalyst in the sense that it forms activated complexes that are

necessary to the molecular association (of saccharide-lectin complexes)”. In contrast

to Lemieux’s hypothesis, our studies show that the catalytic role of water is not a

result of an enthalpy gain associated with the release of carbohydrate hydration water,

but rather due to the entropic gain of water molecules removed from the molecular

surface of the carbohydrate. The difference between the energy gain and the entropy

loss is increased with increasing carbohydrate density, showing that randomly remov-

ing a water molecule from the hydration shell of an oligosaccharide would give a larger

free energy gain than for a monosaccharide. For the dense saccharide array used to

model a possible arrangement of the glycocalyx, the free energy gain is even further

increased. All-in-all, these results show that favorable free energy changes due to sol-

vent reorganization effects are likely to be present in all lectin-carbohydrate binding

processes and that the free energy becomes more favorable with increasing size of the

carbohydrate system. To get the full picture of the role of hydration water on the ther-

modynamics of lectin-carbohydrate binding desolvation of the lectin binding pockets

needs to be taken into account. This adds more complexity since hydration proper-

ties of receptor binding pocket depend on local curvatures and structural properties of

the receptor [155, 156]. Also, eventual structural water molecules immobilized at the

binding interface and other solvation related effects, such as, pH, ionic strength and

the presence of metal ions need to be considered. There are however, several experi-

mental observations that can be explained from the results presented in this chapter.

The findings in this chapter show a hydration pattern around carbohydrates, similar

to the classical picture of hydrophobic hydration , i.e. increased structure and more

”ice-like” character of water surrounding the solute. Williams et al. [157] showed that

the thermodynamics of lectin-carbohydrate binding is similar to that of the binding of
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small hydrophobic molecules to specific receptors. Since water is the main thing these

systems have in common, it is reasonable to assume that thermodynamic changes due

to solvent reorganization make an important contribution to the overall thermody-

namic changes of the binding process. Experimentally measured free energy changes

show that lectin-carbohydrate binding is enthalpy-driven, with relatively large nega-

tive changes in enthalpy compensated by smaller negative or positive contributions of

the T∆S term [103, 152, 158]. A much higher entropy loss would be expected taking

changes losses in rotational, translational and configurational entropy contributions of

the solute molecules into account. The entropy gain from released hydration water

molecules from the carbohydrate molecular surface to bulk water environment could

explain the total small entropy change observed in lectin-carbohydrate complexation

processes. Another characteristics of lectin-saccharide complexation is a small negative

change in specific heat capacity of the system [103, 152], which has generally been

thought to reflect changes in the solvent structure. A general feature of hydrophobic

hydration is a decrease in entropy and and increase in heat capacity [159]. Removal

of the structured hydration water around the saccharide would, in agreement with

these results, contribute to a negative heat capacity change. Thus, many important

thermodynamic characteristics of lectin-carbohydrate interactions can be related to

carbohydrate water-interactions. The results presented in this chapter might add a

small piece to the puzzle of lectin-carbohydrate recognition and binding affinities.
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Water is not the same everywhere in its liquid bulk phase. When the neighborhood of a

water molecule changes from other water molecules to something else, one may expect

that the local water structure, and hence also the local solvation properties of water,

will change accordingly. This expectation has been confirmed in recent decades, by

experimental and theoretical studies of water structure and ion-solvation propensities

in various situations, including e.g. interfaces between the liquid water and air [160]

as well as in confined situations [161] and clusters [162, 163]. Differences in hydration

properties of ions are, in turn, projected onto interactions with other molecules, re-

sulting in ion-specific phenomena frequently observed in biological systems. In 1888

Hofmeister [164] observed that the solubility of proteins depend on the type of the

cations and anions in an ionic solution. This ion-specific phenomenon has been at-

tributed to relative differences in solvation properties of the ions. Recent studies have

shown that ion solvation properties alone cannot explain the phenomena observed by

Hofmeister [165]. The interaction between proteins and ions in solution is rather a

result of specific local interactions between ions and protein side chains, which in turn

depend on both local solvation properties of the protein and ion solvation properties. In

more recent studies, ion-specific phenomena have been observed for other biomolecules

in the cell. The monovalent cations, Na+ and K+, have received much interest in the

literature due to their abundance in biological systems and importance for cellular

functions. Studies of potassium channels have shown that the free energy barrier for

replacing K+-coordinated water molecules by the carbonyl oxygen atoms of proteins

in the interior of the channel is small compared to that of Na+ and allows for a quick

and selective transportation of K+ [166]. Carillo-Tripp et al. [167] showed that the

cost of constraining a hydrated potassium ion inside a narrow nanopore is lower than

that of constraining a sodium ion, and that this is a result of the higher geometrical

flexibility of potassium ions in their coordination with water. The simulation studies
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of Chen et al. [168] found a higher binding preference of Na+ to the phosphate groups

of DNA, and a higher density of K+ ions near the polar groups in the grooves of the

DNA. A recent investigation of Na+/K+ affinities to different proteins by Vrbka et al.

[169] observed a strong preference of Na+ over K+ close to the surface of different pro-

teins, where the ion selectivity stems from cation specific interactions with side-chain

carboxylate groups. A part of the clue for understanding these ion-specific effects lies

in understanding differences in solvation properties of the cations. Previous studies

have highlighted differences in how cations interact with solvation water. Using bulk

water-water interaction energies as a reference, small monovalent ions are strongly hy-

drated and are classified as kosmotropes, whereas larger monovalent ions bind water

weakly and are classified as chaotropes [170]. With this classification, Na+ is a weak

kosmotrope, or structure maker, in the sense that it has a relatively well defined and

stable first hydration shell. The weak chaotrope K+ is more flexible in its coordination

with water, and has a less stable and more dynamic first hydration shell as water-water

interaction dominates over ion-water interactions. These simple differences in the bal-

ance between the interactions water-water, Na+-water and K+-water have already been

used successfully for a simple but effective explanation of the strikingly different struc-

tural propensities in cation-water clusters of Na+ and K+ [171]. The divalent metal

cations are, in turn, stronger kosmotropes with increased strength and structure of

cation-water interactions.

The aforementioned studies show that ion affinities and ion-specific phenomena in bio-

logical systems are results of a delicate balance between solvation properties of the ions,

solvation properties of the macromolecule and direct macromolecule-ion interactions.

The knowledge about ion-interactions with carbohydrates of the cell is, to this date,

quite limited. Specific carbohydrate-ion interactions are of interest for understand-

ing mechanisms behind cation dependent processes in the cell, such as, carbohydrate-

carbohydrate interactions mediating cell adhesion processes and lectin-carbohydrate

recognition of C-type lectins [172]. Furthermore, since all participating molecules of

the glycocalyx environment of eukaryotic cell surfaces are water-exposed including the

carbohydrate-recognition domains of lectins, molecular interactions of carbohydrates

in aqueous, highly ionic systems should receive great attention in glycobiology. In this

study, we have investigated the static and dynamic behavior of biologically relevant

cations around the cell surface carbohydrates of the glycocalyx.
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4.1 System and simulation protocol

The basic oligosaccharide unit Man6GlcNAc2 used in all our calculations is shown in

Figure 4.1. Classical-mechanical molecular dynamics (MD) simulations were carried

out on systems consisting either of one isolated Man6GlcNAc2 unit or of an array of

nine of these units, in either 0.15 M NaCl or 0.15 M KCl aqueous solution. The single

oligosaccharide/ion systems were all set up the same way. The saccharide was solvated

in a large water box with unit cell dimensions of 51.88 Å x 72.31 Å x 48.93 Å. This

setup models an isolated saccharide, separated from its periodic images by approxi-

mately 50 Å, on an imaginary surface spanned by the xz-plane of the simulation box.

Na+, K+, and Cl− ions were randomly added to the box by and Cl− ions were randomly

added to the box by removing overlapping water molecules. The resulting NaCl and

KCl systems consisted of 6132 water molecules, 17 sodium or potassium ions and 17

chloride ions. Systems of higher carbohydrate density were set up in a similar way.

Nine N-linked Man6GlcNAc2 oligosaccharides were placed in a regular arrangement in

the simulation box, each saccharide separated by approximately 20 Å (see Figure 4.11).

This setup models a dense saccharide array located on the imaginary surface spanned

by the xz-plane of the simulation box. A large y-dimension of the box was chosen

to model a bulk water environment above the saccharide array, giving box dimensions

of 74 Å x 80 Å x 74 Å. For these systems, 34 sodium or potassium ions were added

together with 34 chloride ions, giving a final number of 12718 water molecules. The

divalent cation-carbohydrate systems were set up in the same manner, using either 15

Mg2+ or Ca2+ cations, together with 30 Cl− counterions and 5428 water molecules, for

the single oligosaccharide simulations. In the case of the saccharide array, 34 Mg2+ or

Ca2+ cations, 68 Cl− anions and 12684 water molecules were used. Starting conforma-

tions of the saccharides were taken from the SWEET database [173].

All ion force fields used in this study treat the ions as simple point-charged, non-

polarizable Lennard-Jones particles. Na+, K+ and Cl− force fields are from Beglov and

Roux [174]. Lennard-Jones parameters for Mg2+ and Ca2+ were calculated using the

Åqvist parameters [175] together with TIP3P water, giving (r,ǫ) values of (1.5734 Å,

0.87504 kcal/mol) and (2.6522 Å, 0.44966 kcal/mol) for Mg2+ and Ca2+ respectively.

Both the carbohydrate force field, GLYCAM04 [24], and ion parameters used in this

study, were developed together with the TIP3P water model [44], giving a consistent

set of parameters for the whole system.

All systems were simulated using NAMD version 2.6 [36], using the same simulation
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protocol/parameters. Minimization, heating to 300 K at constant volume, and equili-

bration at a constant pressure of 1 bar was followed by production runs in the NVT-

ensemble, using a 2 fs integration time step, for a total of 60 ns. A time step of 4fs

was used for long range electrostatic interactions. The temperature was controlled by

the Berendsen thermostat [51] with a time constant of 5 ps. Long range electrostatic

interactions were accounted for using the PME method [132]. Lennard-Jones inter-

action was cut off at a distance of 12 Å, without using switching functions. SHAKE

[55] was used to constrain all heavy-atom-hydrogen bonds. Positional restraints were

applied to the main-chain asparagine atoms in the N -link (Cα, N and C(O)), allowing

no diffusional motion of the saccharides and restraining each saccharide to the xy-plane

of the simulation box. 1–4 bonded electrostatic and vdW scaling was set to unity in

accordance with the GLYCAM04 force field [133]. Coordinates were saved every 0.4

ps of the trajectories, giving 150000 frames for data analysis.

Figure 4.1: Pictorial description of the Man6GlcNAc2-Asn oligosaccharide.
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4.2 Ion hydration

The importance of local cation-water interactions for describing ion solvation proper-

ties is evidenced by recent studies showing that, rather than causing any long ranged

perturbations of the hydrogen bond network of hydration water, structuring or destruc-

turing effects are limited to water molecules in the vicinity of the ion [176–178]. Hence,

we begin by presenting various structural and dynamic properties of the cation-first

hydration shell complex for the ions used in this study, Na+, K+, Mg2+ and Ca2+,

calculated from the carbohydrate/ion/water trajectories in volumes of the simulation

box where water has bulk properties. Given the obvious limitations of studying ion

hydration with standard force fields, it is interesting to see how these force fields model

ion solvation properties compared to experiment and to simulations at higher levels of

theory.
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Figure 4.2: Na+-, K+-, Mg2+- and Ca2+-water oxygen radial distribution functions

The structure of the first hydration shell around the cations is more or less flexible and

can take different conformations. In a first approximation, it can be quantified by the

coordination number, i.e. the average number of water molecules in direct contact with

the cations. The coordination numbers of the cations can be calculated by integrating

the cation-water oxygen radial distribution functions (RDFs) from zero up to the first

minimum, cf. Figure 4.2. Calculated coordination numbers of Na+, K+, Mg2+ and Ca2+

are here found to be 5.7, 6.7, 5.8 and 7.9. These coordination numbers are averages

over different possible water coordination geometries. A more detailed picture of the
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hydration structure around the cations is provided by the probability distributions of

the instantaneous coordination numbers, shown in Figure 4.3. Comparing the two

monovalent cations it is clear that the first hydration shell of K+ is much more flexible

than that of Na+, allowing for a wider range of possible conformations. Na+, on the

other hand, can be seen to be rather restrictive in its coordination with water, favoring

5- or 6-fold coordinations. These results are in agreement with the simulation studies

by Carillo-Tripp et al. [167] using polarizable potentials. The divalent cations show

even lower coordination flexibilities. Ca2+ strongly favor a 8-fold coordination, whereas

Mg2+ coordinate exclusively 5 or 6 water molecules.
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Figure 4.3: Probability distributions of Na+-, K+-, Mg2+- and Ca2+-water oxygen instan-
taneous coordination numbers.

The geometry of the cations and their coordinated water is investigated from proper-

ties of Voronoi polyhedra [66] constructed around the ions. The asphericity parameter

[71] describes the shape of the ion Voronoi polyhedra (see Chapter 2.2.4). It is unity

for a sphere and takes values of 1.21, 1.32, 1.65, 1.91 and 3.31 for an icosahedron, a

dodecahedron, an octahedron, a cube and a tetrahedron, respectively. The distribu-

tion plots of the asphericity parameters for Na+ and K+ in Figure 4.4 show a narrow

distribution around a close to cubic shape of the Na+ Voronoi polyhedra, thus indi-

cating an on average close-to-octahedral shape of Na+ together with the, on average,

close to six coordinated water molecules. Larger deviations can be seen for K+ from

any standard coordination polyhedron. The distributions of the asphericity parameter

of Voronoi polyhedra calculated around the divalent cations show two narrow peaks

around 1.92 and 1.62 for Mg2+ and Ca2+ respectively. These correspond to almost

perfect cubic and octahedral geometries of the ion Voronoi polyhedra. Thus, similar

coordination geometries for the monovalent cations and their divalent neighbors can
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be seen. Stronger cation-water interactions do, however, lead to more rigid hydration

structures of the divalent cations. It is interesting to note that the octahedral coor-

dination geometry found in these force field simulations is the same as that found in

DFT calculated gas-phase Mg2+-water clusters calculated by Lightstone et al. [179].
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Figure 4.4: Probability distributions of asphericity parameters for a) Na+, K+ and b)
Mg2+ and Ca2+

Coordination numbers provide an important link between experiment and simulations.

However, difficulties involved in extracting radial distribution functions and coordina-

tion numbers from scattering data have resulted in measured coordination numbers

in the range of 4–8 for both Na+ and K+ [180]. An alternative source for structural

ion hydration data for force field validation is simulations using ab initio approaches

[180–182]. Compared to the calculated coordination numbers from these studies, which

are in the range 4.3–5.2 for Na+ and 5.8–7.0 for K+, the force fields used in this study

tend to overestimate the coordination numbers. The calculated coordination number

of 5.8 for Mg2+ is in good agreement with the experimental value of 6.0 [183] which

have also been calculated from first principle MD simulations [179] and simulations

using polarizable force fields [184]. For Ca2+, experimental coordination numbers are

in the range of 6-10 [185], whereas recent computer simulations using ab-initio MD

and standard MD with polarizable force fields agree on a coordination number of ap-

proximately 7.3 [178, 184]. The calculated coordination number of 7.9 for Ca2+ is well

within the range of experimental data, but is overestimated according to the previously

mentioned computational studies. It should be noted that although the coordination

numbers of the divalent cations are in fairly good agreement with the simulations us-

ing higher levels of theory, larger differences can be seen in the cation-water radial

distribution functions. For the divalent cations, polarization of the surrounding water
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becomes more important and standard force fields tend to model a to structured first

hydration shell, as seen in higher and narrower first peaks in the radial distribution

functions, compared to simulations accounting for polarization of both the cations and

the surrounding water. Thus, the rigidity of the first hydration shells of the divalent

cations, as seen in Figure 4.4, may be overestimated by these force fields.
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Figure 4.5: Survival time autocorrelation functions for water molecules in the first hydra-
tion shell around Na+, K+ and Ca2+ cations.

Equally important for the study undertaken here is ion kinetics, in particular exchange

times for water in the hydration shells of the cations. Calculated survival time corre-

lation functions (see Chapter 2.2.3) for water in the first hydration shell of the cations

are shown in Figure 4.5. Water molecules are considered to be in the first hydration

shell of a given cation when the water oxygen atom is within a distance corresponding

to the first minima of the radial distribution functions in Figure 4.2. Average resi-

dence times are calculated by integrating the time correlation functions from zero to

infinity. Calculated first hydration shell water residence times and cation self-diffusion

coefficients are presented in Table 4.1. The dynamics of the cations and the hydration

water reflect the fundamental difference in hydration properties of Na+ and K+. The

chaotropic nature of K+ is reflected in shorter residence times of hydration water and

a higher overall mobility. The hydration shell of the weak kosmotrope Na+ is by com-

parison relatively rigid, and lowers the mobility of Na+. Compared to the experimental

self-diffusion coefficients at infinite dilution, 1.334 and 1.957x10−5cm2 s−1, for Na+ and

K+ respectively, [186], the mobilities of both cations are overestimated. However, this

is likely due to the overly diffusive TIP3P water model [187] rather than an indication

of problems with the ion force fields. The calculated residence times for first shell hy-
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dration water around both cations are overestimated compared to experimental values

[188], but are in reasonable agreement with other simulation studies using different

force fields [177, 189].

Residence times of water in the first hydration shell of the divalent ions are much longer.

The survival time-correlation function of hydration water of Mg2+ is not included in

Figure 4.5 since it is close to unity for the time period presented in the figure. These

simulations suggest average residence times of first hydration shell water of Mg2+ in

the order of nanoseconds, which is much larger than calculated residence times of hun-

dreds of picoseconds found for Mg2+ hydration water in the simulations of Jiao et al.

[184] using polarizable force fields. The average calculated residence time of hydration

water of Ca2+ is 84.6 ps from these simulations. Thus, a clear correlation between in-

creased water-cation interaction strengths and stability of the ion-first hydration shell

complex can be seen, in agreement with the increasing kosmotropic character in the

series K+, Na+, Ca2+ and Mg2+. Calculated self-diffusion coefficients from average

mean square displacements for the two divalent cations are presented in Table 4.1.

Here the largest deviations from experiment can be seen. Experimental values are 0.71

and 0.79×10−5 cm2 s−1 compared to calculated values of 1.96 and 2.15×10−5 cm2 s−1

for Mg2+ and Ca2+ respectively [190]. The cause of this discrepancy in not clear from

these simulations, but might again be related to the highly diffusive TIP3P water.

Table 4.1: Ion-water solvation data from our MD simulations.

r(Å) a ǫ (kcal/mol) a ncoord
b D (10−5 cm2 s−1) c τres (ps) d

Na+ 2.7275 0.0469 5.7 1.43 19.5
K+ 3.5375 0.0870 6.7 2.28 4.1
Mg2+ 1.5734 0.87504 5.8 1.96 -
Ca2+ 2.6522 0.44966 7.9 2.15 84.6
a Cation ionic van der Waals parameters.
b Average cation-water coordination numbers, calculated from the radial

distribution functions in Figure 4.2.
c Self-diffusion coefficients, calculated from the average mean square dis-

placement of respective cation.
d Average residence times for water molecules in the first hydration shell of

the cations, defined by a spherical volume with a radius corresponding to
the distance of the first minima of the cation-water RDFs in Figure 4.2.

These results show that, although using simple models, many important cation hydra-

tion properties can be reproduced with these force fields. The neglect of polarization
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effects seems to be a reasonable approximation for, at least, the alkali cations. For the

alkaline earth metals, the force fields tend to over-structure the cation-first hydration

shell complex.

When studying systems at higher ion concentrations, which is needed for example for

a statistical analysis of ion distributions around biomolecules, proper descriptions of

cation-anion interaction are of equal importance as ion-water interactions. Since ion

force fields are typically derived to reproduce hydration energetics of an ion-species at

infinite dilution, ion-ion interaction is modeled very differently in different force fields.

An example of this can be seen in Figure 4.6, which shows Na+- and K+-Cl− radial

distribution functions calculated with ion force fields of Beglov and Roux and from

reference simulations with the AMBER PARM99 force field [191]. There is a striking

difference in how these two force fields model cation-anion interactions. The AMBER

force fields show a much larger tendency to form cation-anion pairs, or even clusters,

in solution. Further, the AMBER force fields show a difference of almost one order of

magnitude in the height of the first peaks of the Na+- and K+-Cl radial distribution

functions in Figure 4.6. The Beglov and Roux force fields show first peak heights in

much better agreement with the first principle simulations of Cavallari et al. [182].

Large discrepancies in ion-ion interactions have previously been observed in the force

field comparison of Patra et al. [192] and for comparative analysis of ion affinities,

large differences in cation-anion pairing tendencies will be projected onto the results,

making many ion force fields unsuitable for the study undertaken here.
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Figure 4.6: a) Na+- and K+-Cl radial distribution functions calculated with Roux ion
force fields. b) with AMBER PARM99 force field
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4.3 Saccharide ion affinities

4.3.1 Man6GlcNAc2-Asn-cation interaction

Figure 4.7: Snapshot of the Man6GlcNAc2-Asn/water/NaCl simulation box. Water den-
sity is reduced for clarity. Sodium and Chloride ions are represented as red and green
spheres

In this section, we investigate affinities of Na+, K+, Mg2+ and Ca2+ cations to a sin-

gle Man6GlcNAc2-Asn oligosaccharide. A pictorial description of the simulation box is

shown in Figure 4.7. For all four systems an ion concentration of 0.15 M is used. Distri-

bution functions of Na+ and K+ around the oligosaccharide are shown in Fig. 4.8a. The

distribution functions are calculated with respect to the closest non-hydrogen atom of

the saccharide, and normalized with respect to the bulk density of the ions, as described

in Chapter 2.2.1. Both distribution functions show a distinct first peak located at a

distance equivalent to the first peak of the cation-water distributions (see Figure 4.2a).

Here, this peak represents the case where one or more ion-coordinated water molecules

have been replaced by contacts with the polar oxygens (or the 2-nitrogen atom of the

N -acetyl-D-glucosamine residues) of the saccharide. A second broader peak is also

visible for both cations which corresponds to water mediated saccharide interactions,

i.e. the cation and the saccharide are connected via a water molecule of the cation hy-

dration shell, which in turn is hydrogen bonded to the saccharide. The different radial

positions of these two peaks for Na+ and K+ simply reflect the different sizes of these
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ions. However, the differing relative heights of the first to the second peak indicate a

different behavior of Na+ and K+ as they approach the saccharide: Apparently, K+

has a greater probability of forming direct contacts with the saccharide, while Na+ has

a higher probability of forming water-separated saccharide contacts.
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Figure 4.8: (a) Normalized Man6GlcNAc2-cation proximal distribution functions, calcu-
lated with respect to the closest non-hydrogen atom in the saccharide. (b) The correspond-
ing cumulative sums (integrated distribution functions).

The result of this difference in the ion distributions can be further interpreted with the

cumulative sums of Figure 4.8b. The cumulative sums show the average numbers of

ions per frame, within a given distance of the saccharide. Again, the different radial

“onset” of the two curves merely reflects the different ion sizes. More interesting is

the difference in the height of the first step. Since the different volumes of the two

ions have been taken into account (see above), the data for the two ions are directly

comparable. Hence, it is clear that on average there are approximately twice as many

potassium ions in direct contact with the saccharide.

The differences observed here can partly be related to the differences in hydration prop-

erties of the cations shown in Section 4.2. There will obviously be a higher energetic

barrier in the case of Na+ to remove a coordinated water molecule and replace it with a

saccharide contact. The observed differences in saccharide-cation affinities do, however,

also depend on the energetic cost of removing hydration water around the saccharide,

as well as, on the energetics of direct saccharide-ion interactions. As mentioned in the

introduction, ion affinities vary between different bio-ligands (proteins, lipids, carbohy-

drates) and also vary with e.g. the electrostatic character of the ion binding sites and

their steric propensities. Collins [185] recently proposed the so called law of matching
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4.3 Saccharide ion affinities

water affinities, which states that the degree to which oppositely charged ions form

ion-pairs in solution is determined by the difference in hydration energies between the

cation and anion. Forming inner sphere contacts between two ions is only energetically

favorable when the cost of removing coordinated water molecules is compensated by

the newly formed cation-anion and water-water interactions. Within this theory, the

formation of kosmotrope cation and anion pairs is driven by the energetic gain from

cation-anion interactions, whereas chaotropic cation and anion pairing is driven by the

energetic gain from water-water interactions formed by released water molecules [170].

For the relatively strongly hydrated biologically common phosphate and carboxylate

anions, the law of matching water affinities predicts a greater affinity for Na+ over K+,

which is supported by the studies of Vrbka et al. [169] and Cheng et al. [168]. Similar

arguments can be applied to the polar oxygen and nitrogen atoms of uncharged carbo-

hydrate moieties, which can be considered to be weakly hydrated anions of low charge

density, and would have a greater tendency of pairing with K+. This trend can also

be seen in ion affinities to the two different types of oxygen atoms of the saccharide.

Figure 4.9 shows the proximal distributions and cumulative sums around the hydroxyl

oxygens and the glycosidic and endocyclic oxygens of the saccharide. The relative dif-

ference in ion affinities is indeed larger around the lower charge density glycosidic and

endocyclic oxygens.
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Figure 4.9: Proximal distribution functions (dashed lines) and cumulative sums (solid
lines) for Na+ (thick lines) and K+ around Man6GlcNAc2 hydroxyl oxygen atoms (a) and
endocyclic and glycosidic oxygen atoms (b). The distribution functions are multiped by a
constant factor for a clearer representation.

The corresponding normalized proximal distribution functions for the divalent cations

Ca2+ and Mg2+ are shown in Figure 4.10. The average cation-water oxygen distance is,
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4.Carbohydrate-ion interactions

as seen in Figure 4.2b, approximately 2 Å and 2.4 Å for Mg2+ and Ca2+ respectively. As

seen in Figure 4.10, not a single inner sphere contact between the saccharide and Mg2+

can be seen in the whole 60 ns simulation, and only a very small number of direct

saccharide-Ca2+ contacts. However, the distributions of both cations show distinct

peaks at distances corresponding to water separated contacts. This shows a a clear

correlation between the charge density and the behavior of the cations as they approach

the saccharide surface. The tendency of the cations to form direct, inner sphere contacts

with the saccharide decreases with increasing charge density and stronger hydration

in the series K+ > Na+ > Ca2+ > Mg2+. For the divalent cations, these results

indicate that interactions with polar non-charged saccharides almost exclusively takes

place through water-mediated contacts. Again, the observed ion affinities can be seen

to change with the electrostatic character of the interacting moieties. Ca2+ readily

binds to proteins, mainly through interaction with side-chains containing deprotonated

carboxyl groups, but also through carbonyl and hydroxyl groups with decreasing affinity

[193]. The strongly hydrated Mg2+ has been found to form a mixture of inner and

outer sphere contacts with both carboxylate and phosphate anions [193–195]. Thus, the

interaction of divalent cations with carbohydrates containing charged groups may differ

from what is seen here with neutral groups. Carbohydrate-carbohydrate interactions in

cellular adhesion processes are, for instance, believed to be stabilized by Ca2+ bridging

charged carbohydrate residues containing deprotonated carboxylate groups [196].
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Figure 4.10: Normalized proximal distribution functions for Mg2+ (solid line) and Ca2+

(dashed line), calculated with respect to the closest non-hydrogen atom in Man6GlcNAc2.
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4.3.2 Dependence of ion affinities on saccharide density

Figure 4.11: Initial configuration of the Man6GlcNAc2 oligosaccharide array in 0.15 M
KCl solution. Water density is reduced for a clearer representation. Potassium and Chloride
ions are shown as red and gree spheres.

We have investigated structural and dynamical details of alkali cation-saccharide inter-

actions, and also the effect of carbohydrate density on these properties. For this pur-

pose, additional simulations were performed on systems mimicking a dense saccharide

surface at the same ion concentrations (0.15 M NaCl or KCl). Nine Man6GlcNAc2-

Asn units were placed in a regular arrangement, each oligosaccharide equally spaced

at a distance of approximately 20 Å, with main-chain atoms of the asparagine residues

restrained to an imaginary surface, as depicted in Figure 4.11. At this distance, the sac-

charides are close enough to interact with one another, forming a dense carbohydrate

layer. This is meant as a zero-order cartoon of a possible situation in the glycocalyx,

acknowledging the facts that neither the detailed composition of the oligosaccharides

in the glycocalyx nor even their distances are known experimentally.

Distribution functions of the the alkali cations and the alkaline earth metal cations

around the saccharide array are shown in Figures 4.12 and 4.13 respectively. Com-

paring the cumulative sums of the Na+ and K+ distribution functions in Figure 4.12b

with those in Figure 4.8b, a smaller density difference between the cations can be seen
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Figure 4.12: a) Unnormalized proximal distribution functions for Na+ (full lines) and
K+ (dashed lines) calculated with respect to the closest non-hydrogen atom in the
Man6GlcNAc2 saccharide array. b) The corresponding cumulative sums.

around the saccharide array, compared to the single oligosaccharide. Although there

are on average more potassium ions in the vicinity of the saccharide surface, the relative

difference between Na+ and K+ is smaller in the saccharide array. The distribution

functions of the divalent cations are similar to those of the single saccharide simula-

tions. Also here, not a single Mg2+-saccharide contact can be seen for the whole 60

ns trajectory. Calcium cations show an slight increased tendency to pair with polar

saccharide atoms in the saccharide array.
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Figure 4.13: Unnormalized proximal distribution functions for Mg2+ (full lines) and
Ca2+ (dashed lines) calculated with respect to the closest non-hydrogen atom in the
Man6GlcNAc2 saccharide array.
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Thus, we observe, at least for the alkali cations, what seems to be a dependence on

carbohydrate density on ion affinities. To check that these results are not a conse-

quence of poor statistics, due to the smaller number of saccharide-cation contacts in

the single oligosaccharide simulations, these simulations were extended another 30 ns.

Since the results presented in the previous section did not change significantly, this is

likely to be a relevant observation. In an attempt to understand the chemistry be-

hind this phenomenon, we have taken a closer look at details about saccharide-cation

interactions for the two alkali cations. The probability distributions of ion-saccharide

coordination numbers for saccharide bound sodium and potassium ions, calculated for

the single Man6GlcNAc2 oligosaccharide (S) and the saccharide array (SA) are shown

in Figure 4.14. Ion-saccharide coordination numbers are calculated as the number of
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Figure 4.14: Probability distributions of cation-saccharide coordination numbers for Na+

(left) and K+ (right) bound to Man6GlcNAc2 (S) or to the array of Man6GlcNAc2 saccha-
rides (SA).

saccharide oxygens and nitrogen within a distance corresponding to the first minimum

of the cation-saccharide distribution functions (Figure 4.2a). The maximum numbers

of ion-saccharide contacts observed in these simulations are 4 and 7 for Na+ and K+,

respectively. Although the interaction mainly takes place through a few saccharide

contacts for both cations, the larger size and a weaker and more flexible hydration

shell of K+ also allows for higher saccharide coordination numbers, where K+ is almost

fully solvated by the saccharides. A snapshot of the trajectory showing a seven-fold

coordinated potassium ion, buried inside an oligosaccharide, can be seen in Fig. 4.15.

The geometrical constraints imposed by Na+ on the coordinated atoms seem to be

hard to meet for the saccharides. Hence, regardless of the saccharide density, no more

than four-fold coordinated sodium ions are observed. For both cations there is a shift
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4.Carbohydrate-ion interactions

towards higher coordination numbers with increasing saccharide density, this shift is,

however, larger for potassium cations.

Figure 4.15: Snapshot from the trajectory showing a potassium ion, seven-fold coor-
dinated to the Man6GlcNAc2 saccharide. Two additional coordinations of the potassium
ion to water molecules are also shown. For clarity, the cation is drawn smaller than its
usual contact radius. Also, only part of the oligosaccharide is included in this graph, the
remainder is cut off. The figure was generated using PyMOL[197].

Figure 4.16 shows the ”layer survival-time-correlation functions” CR(t) (see Chapter

2.2.3). CR(t) gives the probability that an ion remains within a distance to the closest

non-hydrogen saccharide atom, corresponding to the distance of the first minima of the

proximal distribution functions in Figure 4.2a, i.e., ions bound to the saccharide, for

a time period t. The correlation function can be fitted to a double exponential of the

form

f(x) = A ∗ e(−x/τshort) +B ∗ e(−x/τlong) (4.1)

from which the average residence time can be calculated from the long and short decay

constants and the corresponding amplitudes. The decay constants and the calculated

average residence times of Na+ and K+ are shown in Table 4.2. The difference in

hydration strengths of the two cations is clearly projected onto their interaction with

the saccharide. On average, sodium ions can be seen to bind to the saccharide for longer

periods of time, in spite of an on average lower saccharide coordination number. The

steeper short time decay of the K+ survival-time-correlation plots in Figure 4.16 show

that K+-saccharide contacts are weaker and have a greater tendency to be broken at

shorter time scales, compared to their Na+ analogues. While the probability for higher
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4.3 Saccharide ion affinities

coordination numbers increases together with the carbohydrate density, the increase

in the residence times for sodium ions is larger. This is clearly the reason of the

smaller differences between the two cations seen in the distribution functions and the

cumulative sums around the saccharide array. Thus, ion affinities to carbohydrates are

therefore expected to depend on the size, shape, and composition of the carbohydrate

system, and the resulting coordination possibilities.
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Figure 4.16: a) Survival autocorrelation functions for Na+ (left) and K+ (right) coordi-
nated to one or more oxygen or nitrogen atoms of Man6GlcNAc2 (S) (solid lines), or the
array of Man6GlcNAc2 saccharides (SA) (dashed lines).

Table 4.2: Temporal characteristics of Na+ and K+ inter-
action with a single Man6GlcNAc2 saccharide (S), or with
an array of Man6GlcNAc2 saccharides (SA)

A a τshort
a B a τlong

a τavg
b nscoord

b

Na+ (S) 0.62 20.3 0.36 75.6 39.3 1.25
Na+ (SA) 0.55 26.2 0.42 119.3 64.4 1.46
K+ (S) 0.45 7.65 0.50 31.6 19.4 1.32
K+ (SA) 0.64 10.8 0.30 69.8 27.7 1.60

a Short and long decay constants τshort, τlong and the cor-
responding amplitudes A and B of a double exponential
(Eq. 4.1) fitted to the survival-time-correlation-functions
in Figure 4.16.

b τavg is the average residence time and nscoord is the aver-
age cation-saccharide coordination number for saccharide
bound ions.
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4.4 Ion specific effects on saccharide conformations

Many oligosaccharides display a high degree of conformational flexibility and may not

have a well-defined three-dimensional shape, but rather, exist as an ensemble of con-

formers in solution at room temperature [198]. The overall conformational flexibility is

determined by the flexibility of the individual glycosidic linkages, joining neighboring

sugar residues in the saccharide. The potential energy surface for rotations around

the glycosidic linkages can exhibit multiple minima, sometimes separated only by low

barriers [199], allowing for a high conformational flexibility of the whole saccharide on

longer time scales, but also conformational rigidity on shorter time scales [200]. In

vacuo, transitions between different local minima occur on a time scale of 10-100 ps

[201]. In water, transitions occur on much larger time scales, and long simulation times

are needed to fully sample the conformational space of an oligosaccharide [33].

To show the effects ions can impose on saccharide conformation and flexibility, we

have taken a closer look at the Man(α1-3)Man glycosidic linkage of the saccharide,

connecting residues six and seven in Figure 4.1. The average dihedral angles 〈φ〉 and

〈ψ〉 describing this linkage are -40◦ and -15◦ from NMR experiments [199], but com-

putational studies have shown a considerable flexibility of this linkage due to multiple

minima on the conformational energy map [199, 202]. Starting with SWEET-derived

dihedral angles of -48◦ and -7.5◦ for φ and ψ, the man(α1-3)Man the configurational

space sampled in our trajectories is restricted to the region around the three lowest,

closely located energy minima on the adiabatic Ramachandran energy maps of Naidoo

et al. [199]. Figure 4.17 shows different properties of the two dihedral angles, φ and

ψ, for a 95 ps time segment where a sodium ion, dually coordinated to oxygen O6 of

residue seven and oxygen O3 of residue six, was observed. As reference, average values

from the whole NaCl trajectory, and from a trajectory without any ions, are shown.

Figures 4.17c and 4.17d show the dihedral autocorrelation functions calculated as [203],

CA(t) = 〈cos(θ(τ) − θ(τ + t))〉 . (4.2)

Here, CA(t) shows to which degree the dihedral angle θ at time τ correlates with that

at the later time τ + t. From these figures, it can be seen that the sodium ion is able to

reduce the flexibility of this particular glycosidic linkage, and stabilize the saccharide

in an intermediate conformation for a short period of time. The dihedral distribution

plots in Figures 4.17a and 4.17b show that the presence of the cation may stabilize
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Figure 4.17: Properties of the two dihedral angles φ and ψ describing the Man(α1-3)Man
glycosidic linkage connecting residues six and seven of Man6GlcNAc2. Results from three
different trajectories are shown. A full (60 ns) trajectory in water (full lines), the full 0.15
M NaCl trajectory (dashed lines) and a 95 ps long segment of the NaCl trajectory (dotted
lines), where a sodium ion is dually bound to oxygens O3 and O6 of residues six and
seven. (a) and (b) show the dihedral angle distributions of φ and ψ respectively. For the
shorter time segment, the distributions of φ and ψ are shown as fitted Gaussian curves.
Autocorrelation functions of φ and ψ for the different trajectories are shown in (c) and (d).

the angles in conformations that have low probability to occur when compared to the

whole trajectory. For example, for this time segment, the ψ angle is shifted to an

average value of 62◦, compared to 2◦ for the whole trajectory. Figure 4.18 shows the

time evolution of the two dihedral angles before, during and after the interaction with

the ion. This figure shows that the conformation of the saccharide clearly is influenced

by the cation. During the time the ion is dually bound to the saccharide, in the time

interval between 41790 and 41885 ps, the ψ angle is shifted towards higher values,

allowing the ion to coordinate with oxygens of both carbohydrate residues, and relaxes

as the ion leaves. Similar to the φ and ψ distributions of the Man(α1-3)Man linkage, the

other dihedral angles, determining the total conformation of the saccharide, only show

minor differences in water and in the ionic solutions. The only exceptions to this trend

are the two 1−6 linkages, which can be seen to populate the three possible staggered
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Figure 4.18: Time histories of the dihedral angles φ (lower curve) and ψ (upper curve)
describing the Man(α1-3)Man glycosidic linkage connecting residues six and seven of
Man6GlcNAc2 in 0.15 NaCl solution. A time segment where a sodium ion is dually bound
to oxygen atoms of residues six and seven is marked with vertical lines.

conformers, gg, gt and tg [25], differently in each simulation. Using a starting structure

closest to the gt conformer, the relative populations of the different conformers, for the

Man(α1-6)Man glycosidic linkage between residues three and six in Figure 4.1, are

(100:0:0), (34:63:3) and (81:18:1) in the water, NaCl and KCl simulations, respectively.

These differences cannot be attributed to the presence of the ions, but rather show the

flexible nature of this particular glycosidic linkage and the long simulation times needed

to fully sample the relative populations of the conformers of oligosaccharides. The

dihedral angle correlation plots in Figures 4.17c and 4.17d show an on average higher

short-time correlation for the angles from the NaCl simulation than in pure water.

Similar trends can be seen for several of the other dihedral angles, with the general

trend that the correlation is higher for the ion-trajectories compared to the pure water

simulations Thus, the overall effect of the alkali cations on saccharide conformation is

small, but the presence of the ions can induce short time rigidity whenever multiple

saccharide coordination occurs.
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4.5 Discussion

We have studied solvation properties of simple cations of biological relevance (focusing

on Na+ and K+, with additional data on Mg2+ and Ca2+), comparing the situation close

to typical glycocalyx saccharides with that in the bulk, taking a N-linked Man6GlcNAc2

oligosaccharide as a representative glycocalyx unit. We have tested various force field

choices and settings, arriving at a combination that is internally consistent and also ap-

pears to yield validation results in acceptable agreement with previous theoretical work

and with experiment. Hence, we are confident that our results are at least qualitatively

correct, and possibly extendable to similar glycocalyx oligosaccharides. Our simulation

data for oligosaccharide-cation interactions reveal that K+ interacts with oligosaccha-

ride oxygen atoms preferentially directly, whereas Na+ shows an enhanced indirect

interaction via an intermediate water molecule (the latter mode is almost exclusively

preferred by Mg2+ and Ca2+). This agrees with the propensity of Na+ for holding on

more tightly to its first solvation shell water molecules. Accordingly, discounting the

indirect water-mediated contacts, there are about twice as many K+ cations in direct

contact with the oligosaccharide, compared to Na+. The higher flexibility of the first

solvation shell of K+ also allows for up to 7 direct cation-oligosaccharide contacts, while

Na+ can have at most 4, reflecting the restricted ability of the oligosaccharide to accom-

modate the more stringent steric preferences around Na+. Despite the above tendencies

favoring oligosaccharide-K+ contacts, the fewer contacts between the oligosaccharide

and Na+ are longer lived than their K+ counterparts. Again, this simply reflects the

stronger interaction between Na+ and its first solvation shell: It is harder to induce

ligand replacements there, but once it happens the changed situation is again more

stable. In our particular oligosaccharide array setup, these opposed tendencies lead to

a decreased difference between Na+ and K+ residence times close to the oligosaccha-

ride, when compared to the single oligosaccharide solvation situation. In general and

in detail, these differential solvation effects of saccharides on Na+ and K+ differ from

what has been found for other biomolecules (proteins, DNA) (with the reservation that

charged groups may change this finding). Clearly, this might be important for glyco-

calyx functions. Finally, the cations also influence the oligosaccharide conformations.

Angular correlations reveal a small but significant overall tendency of Na+ (and even

more so of K+) to hinder oligosaccharide flexibility. On close inspection of the MD

trajectories, the oligosaccharides execute strong but short-lived excursions away from

their pure-water preference conformations to temporarily participate in ion solvation.
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5.1 Introduction

Lectins are the class of proteins found in a wide range of organisms, ranging from viruses

to animals, with the common ability to recognize and bind carbohydrates with high

specificity. In this manner, lectins mediate cell-cell interactions by binding to receptors

in the cell surface glycocalyx and are involved in a myriad of biological processes [204].

It has been shown that microorganisms, such as bacteria and viruses, utilize lectin-cell

surface carbohydrate interactions to mediate adhesion, as a first step in host coloniza-

tion upon infection. An important discovery was made in 1979 by Aronson et al. [205],

showing that urinary tract infection by the bacterium E. coli in mice could be inhib-

ited by methyl α-D-mannoside, presumably by blocking the carbohydrate recognition

domain (CRD) in the bacterial surface structure and thereby inhibiting adherence to

the cell surface. Since then, a lot of research has been dedicated to understanding the

mechanisms behind adhesion of E. coli to host cell receptors. It is now known that

Bacterial adhesion is mediated by the hair-like filaments extracting from the bacterial

cell surface, called pili or fimbriae. The type 1 pili, found on the cell surface of E. coli, is

made up by protein subunits of mainly FimA type, with smaller contributions of FimF,

FimG and FimH protein subunits [206]. Abraham et al. [207] showed that the FimH

subunit, located at the tip of type 1 pili of E. coli, contains the carbohydrate recognition

domain (CRD), which is responsible for the adhesive function of the bacterium. The

structure of the FimH lectin was determined in 1999 by Choudhury et al. [9] from the

X-ray crystal structure of FimH-FimC complex. FimH is an all-beta protein consisting

of two domains connected by a short linker. The CRD is a deep pocket located in the

amino-terminal domain of FimH. The structural basis for FimH-mannose recognition

was further elucidated by the crystal structure of the FimH-FimC chaperone-adhesin

complex with a bound D-mannopyranoside in the CRD of FimH, determined by Hung
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et al. [208]. This study showed that the FimH binding pocket is perfectly designed

to accommodate and form tight interactions with D-mannose through extensive hy-

drogen bonding and additional hydrophobic interactions. Further X-ray experiments

and affinity measurements have revealed carbohydrate based ligands with increased

binding affinity over a single mannose monosaccharide [209, 210]. These studies have

increased the understanding of interactions between FimH and its natural cell surface

glycoprotein ligands and also provided information about preferred structures for po-

tential anti-adhesion drugs.

Computer simulations can provide additional information of FimH-carbohydrate inter-

actions over the static picture given by the X-ray structures from experiment. Struc-

tural and energetic details of the complex can be calculated from an ensemble of struc-

tures collected from, for instance, a MD-simulation. The statistical thermodynamics

framework can be used to connect molecular mechanics energetic changes, associated

with the binding process, to macroscopical free energy changes measured in experimen-

tal binding affinity measurements. Computer simulations can, in this manner, be used

to probe the structural basis of binding at a microscopical scale and, at the same time,

how changes in the structure of the ligand are reflected in macroscopical binding free

energy changes.

The following sections present results from a series of explicit water molecular dynamics

simulations of the lectin FimH and different of mannose-based ligands. The structure of

each complex is investigated in detail and connected to binding free energy changes of

respective ligand using the MM-PB(GB)SA methodology. These studies aim at giving

a deeper understanding of FimH-carbohydrate recognition and aid the design of new

carbohydrate-based anti-adhesion drugs, as well as, artificial carbohydrate receptors.

5.2 System and simulation protocol

The starting structure of FimH was taken from the FimH-FimC chaperone complex

with D-mannose from the Protein Data Bank (1KLF). FimH chain B together with

crystallographic water within 6.0 Å of the protein was used as the initial structure of

the protein. In order to maintain a reasonable system size and to lower the statistical

errors of the calculated results, only the amino-terminal FimH domain (residues 1-158)

were used to represent FimH in these simulations. Reference simulations with the full
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Figure 5.1: Pictorial description of the binding pocket of FimH. The structure is taken
from the FimH-FimC chaperone complex with D-mannose from the Protein Data Bank
(1KLF)

FimH protein were also performed to validate that this approximation did not induce

any structural alterations of the FimH binding pocket. Cysteine residues 3 and 44 were

assumed to be connected by a disulphide bond and the nitrogen of residue His45 was

assumed to have both nitrogen atoms protonated [211]. Carbohydrate ligands were

added to the FimH binding pocket by superposing terminal α-D-mannosyl residues

onto the mannose in the PDB-file 1KLF. Starting conformations of the ligands were

taken from the SWEET database [173]. To avoid steric clashes with FimH side chains,

slight alterations of glycosidic torsional angles were done whenever necessary. Standard

classical molecular dynamics simulations were performed for FimH, the ligands and the

FimH-ligand complex systems using the NAMD2.6 [36] molecular dynamics program.

Force field parameters for FimH were taken from the AMBER PARM99 force field

[43]. Carbohydrates were modeled by the GLYCAM04 force field [24] and water by

the TIP3P water model [44]. An inherent problem with this combination of force fields

is the different 1-4 non-bonded van der Waals and electrostatic scaling used in the

PARM99 and GLYCAM04 force fields. In order to correctly model the structure of

the FimH binding site, we used the PARM99 scaling factors for 1-4 non-bonded van

der Waals and electrostatic interaction for all simulations in this study. The PME [49]

method was used to account for long-ranged electrostatic interactions in the periodic
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5.FimH-carbohydrate interactions

system. A cutoff of 12 Å was used for van der Waals interactions, without using

any switching functions. All simulations were performed at a constant temperature

of 300 K, using a Berendsen thermostat [51] with a weak coupling coefficient of 5

ps. A constant pressure of 1.01325 bar was applied using a Berendsen pressure bath

coupling with a rescaling frequency of 8 fs, a barostat relaxation time of 100 fs and

a compressibility of 4.57×10−5 bar−1. All heavy atom-hydrogen bond lengths were

restrained by the SHAKE algorithm [55]. A multiple time step approach was used

in the time-propagation of the system. A time step of 2 fs was used for forces from

immediate and intermediate neighboring atoms. Long range forces were updated every

4 fs. Simulation lengths are in all cases in the range of 23-25 ns with snapshots stored

every 1 ps, giving 23000-25000 conformations over which the presented results are

averaged. In total, nine systems were simulated. Four of these systems are the four

ligands in Figure 5.2, each in an explicit water box. The size of the water boxes were

chosen so that the closest distance in each dimension to the closest periodic image is at

least 30 Å from the starting conformation. The number of atoms in these simulations

are in the range of 11-19000 atoms. Five additional systems, consisting of each ligand

in complex with FimH and FimH alone, were also simulated. In these cases, the water

box was chosen to be large enough for the solute to rotate freely in each dimension

without interacting with its periodic images. The number of atoms in these systems

are approximately 75000 atoms.

5.3 Binding free energy calculations

Calculating the free energy change of binding for a given complex is a non-trivial

task. The accuracy of the calculated results depend on both the molecular mechanics

potential energy function and the sampling of the phase space of the system. On a

microscopical scale, lectin-carbohydrate binding affinities are, to a great extent, deter-

mined by intermolecular non-covalent interactions between the two molecules in the

complex. Hydrogen bonding and van der Waals interactions are recognized as being

responsible for the main attractive forces in receptor-ligand interactions and need to be

modeled properly by the force fields. Furthermore, energetic changes in the surround-

ing water need to be considered when water molecules are transfered from the vicinity

of the solute binding interface to bulk water. Several different approaches have been
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Figure 5.2: Structures of the four ligands investigated in this study. I -
ManαMe. II - Manα-p-Nitrophenyl. III - Manα1,3Manβ1,4GlcNacβMe. IV -
Man(α1,6)[Man(α1,3)]Man(β1,4)GlcNAc(β1,4)GlcNAcβMe.

developed for calculating free energy changes of binding from the microscopic energetic

changes calculated from MD-simulations [6]. Free energy perturbation (or thermody-

namic integration) has successfully been applied to calculate ∆∆G0
bind for different, but

chemically similar, ligands. Given that simulation times are sufficient, this method can

reproduce free energy changes within experimental accuracy. For this study, we investi-

gate structurally very different ligands and the free energy perturbation approach would

require very long simulation times. Instead, standard MD-simulations are performed

on the complexes and FimH and the ligands in the free state, and the MM-PB(GB)SA

approach [212], as implemented in the AMBER molecular dynamics suite, was used to

post-process the calculated trajectories to estimate binding affinities of the complexes.

The theory behind the MM-GBSA method is described in Section 2.2.6. In practice,
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5.FimH-carbohydrate interactions

snapshots of the complex, the ligand and the receptor are collected from explicit water

simulations. The free energy change of binding is calculated, using a thermodynamic

cycle, as the sum of differences in solute molecular mechanics potential energies plus

solvation free energy contributions, averaged over all stored snapshots. The free energy

change related to solvent reorganization is treated, either by the Poisson-Boltzmann

(PB), or the Generalized Born (GB) implicit solvation model. The Generalized Born

model of Onufriev el al. [83] is used in this study, which has been designed to better de-

scribe interior regions of large macromolecules. The radius of hydrogen atoms bonded

to nitrogen atoms is, for these calculations, set to 1.3 Å as suggested by the AMBER8

manual. General Born solvation free energies are calculated using a dielectric constant

of unity for the interior of the solute molecules and a constant value of 80 in the exterior

regions. The boundary between the solute and the solvent was determined by a probe

with a radius of 1.4 Å. The non-polar contribution to the solvation free energy for each

solute species is calculated using parameters γ=0.005 kcal/mol and b=0.0 kcal/mol

[213]. The solvent accessible surface area is calculated using either the LCPO [214]

method or the ICOSA method. The latter method is only used for the free energy

decomposition calculations. Solvation free energies calculated with the PB method are

using the same dielectric constants, but different parameters for the non-polar solva-

tion free energy contribution. Here, the parameters γ=0.00542 kcal/mol and b=0.92

kcal/mol are used [213].

Two different approaches can be taken when performing the MM-PB(GB)SA free en-

ergy analysis. Either structures of the complex, receptor and ligand are taken from

three separate simulations, or the solute structures are extracted from the complex tra-

jectory. Using complex structures from a single trajectory has the advantage that sta-

tistical uncertainties, due to insufficient configurational sampling of the molecules, are

minimized. The drawback of this approach is that the calculated free energy change of

binding processes involving conformational changes in the receptor or ligand structures

can be overestimated, since internal energetic penalties are neglected. Both approaches

are used in this study and are discussed further in later sections of this chapter.

The MM-PB(GB)SA method gives the free energy change of binding, without taking

contributions from entropy changes in the receptor and ligand in to account. A num-

ber of different methods, discussed in Section 2.2.7, are used in the following sections

to estimate entropy changes of the complex relative to the free receptor and ligand.

Changes in translational and rotational solute entropies, estimated from the ideal gas

one-molecule partition functions, are denoted TStrans,ig and TSrot,ig respectively. The
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5.4 Structure of the FimH CRD

entropy contribution from rotational rigid body degrees of freedom depends on the

conformation of a given solute molecule and is averaged over the stored snapshots of

the trajectory. The translational rigid body entropy term only depends on the mass

of the molecule in the standard state and can be calculated from a single snapshot.

Absolute vibrational entropies, TSvib,nm, are calculated from normal mode analysis us-

ing the Nmode program of the AMBER8 suite. Starting coordinates for the normal

mode analysis are taken from a series of uncorrelated snapshots collected from the

trajectory. Prior to the calculation of the vibrational frequencies, each solute struc-

ture is minimized by a conjugate gradient method until the root-mean-square of the

Cartesian elements in the gradient is less than the default value of 1.0−4 kcal mol−1

Å−1. Vibrational normal mode frequencies were calculated at a temperature of 300K

using all atoms in the solute molecules in the normal mode analysis. The translational

contribution to the rigid body free energy term of Swanson et al. [86], ∆Grbt, was

calculated from ligand center of mass motions in the complex trajectory. The covari-

ance matrix of ligand center of mass motions was evaluated, after overall translational

and rotational motions of the complex were removed, by superposing FimH backbone

atoms onto a reference frame (typically the first frame of the production run). The co-

variance matrix of Euler angle fluctuations of the ligand in the complex was calculated

from the rotation matrix needed to superpose all, or a subset of ligand atoms, onto

a reference structure, after global rotational and translational motions of the complex

were removed. The covariance matrices were, in both cases, evaluated for all snap-

shots of the stored trajectory. The absolute configurational entropy of a given solute

molecule, using the method of Schlitter [90], TSconfig, was in all systems calculated

from all atom covariance matrices using all snapshots of the trajectory. Translational

and rotational motions of the solute molecules are also in these calculations removed

by superposing respective molecule onto a given reference frame. The entropy of all

the abovementioned methods was evaluated at the simulation temperature of 300 K.

5.4 Structure of the FimH CRD

The key for understanding the structural basis for lectin-carbohydrate recogniction and

corresponding binding affinities lies in the structure of the receptor binding pocket. In

the case of FimH, the binding pocket is perfectly designed to fit a D-mannose monosac-
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5.FimH-carbohydrate interactions

Figure 5.3: Surface representation of the FimH binding pocket with residues in the
extended binding region containing non-polar patches at the molecular surface highlighted
in red. FimH resides with side chains of predominately polar character are shown in blue.
The structure is taken from the FimH-FimC chaperone complex with D-mannose from the
from the Protein Data Bank (1KLF).

charide through extensive hydrogen bonding and non-polar interactions with a subset

of important residues in the binding pocket. Hung et al. [208] identified residues Phe1,

Asn46, Asp47, Asp54, Gln133, Asn135, Asp140 and Phe142, located in the amino-

terminal domain (residues 1-158) of FimH, as essential residues for binding mannose.

FimH residues Phe1, Asn46, Asp47, Asp54, Gln133, Asn135 and Asp140 form hy-

drogen bonds with the hydroxyl oxygens and the endocyclic oxygen of the mannose.

Phe142 further contributes to the binding affinity, stabilizing the complex with hy-

drogen bonds and non-polar interactions. This study showed that all of the residues

involved in D-mannose binding is an invariant feature in 200 FimH structures in E.

coli from different pathogens. Using site-directed mutagenesis, this study also showed

that mutations of several of these residues decrease, or completely abolish, D-mannose

binding affinities. This subset of FimH residues form a deep binding pocket in the

the FimH amino-terminal domain, which fully envelopes the mannose (see Figures 5.1

and 5.3), resulting in a relative high lectin-carbohydrate binding affinity. FimH binds

mannose in the micromolar range, compared the millimolar range often observed for

other lectin-monosaccharide complexes [209].

Binding affinities in the nanomolar range have been measured for larger oligosaccha-

rides. Sharon [215] showed that the trisaccharide Manα1-3Manβ1-4GlcNAc shows a 21
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5.5 FimH-ManαMe complex

fold higher inhibitory efficiency compared to ManαMe of agglutination of yeast and red

blood cells. Larger mannose-terminal saccharides, found in the cell surface glycocalyx,

were in this study found to have even larger inhibitory efficiency, indicating an extended

binding region beyond the binding pocket. The stronger interactions between FimH

and oligosaccharides have been attributed to stacking of non-polar surface patches of

carbohydrate rings outside the binding pocket, onto non-polar patches of FimH [208].

Increased affinity, resulting from hydrophobic interactions, has been verified in several

studies using synthetic mannosides with hydrophobic aglycons [209, 216, 217]. Figure

5.3 shows a surface representation of the FimH binding pocket. Hydrophobic residues

Ile13, Tyr48, Ile52 and Phe142, surrounding the FimH binding pocket, are highlighted

in the figure. These residues form a hydrophobic ridge around the binding pocket, al-

lowing for favorable interactions with hydrophobic patches of additional carbohydrate

residues or synthetical hydrophobic substituents.

5.5 FimH-ManαMe complex

ManαMe is the simplest carbohydrate ligand investigated in this study. From ex-

periment, this is also the weakest anti-adhesive ligand, with binding affinities in the

micromolar range (see above). Structural, dynamic and thermodynamic properties of

the the FimH-ManαMe complex are presented in this section, as a reference for the

larger ligands investigated in later sections of this chapter. The results presented in this

section are averaged over 25000 snapshots from a 25 ns molecular dynamics trajectory.

5.5.1 Hydrogen bond analysis

Intermolecular hydrogen bonds between lectins and carbohydrates in the CRD are im-

portant contributors to the binding affinity for lectin carbohydrate complexes. Just con-

sidering the enthalpy changes of the binding process, it is clear that lectin-carbohydrate

hydrogen bonding must compensate the energetic cost of removing water molecules

hydrogen bonded to, both the lectin and the carbohydrate, for the complex to be ther-

modynamically stable. In this section, we present results from hydrogen bond analysis

of the FimH-ManαMe complex. The geometric criteria used for identifying a hydrogen
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Figure 5.4: Important hydrogen bonds formed between ManαMe and FimH residues in
the CRD. Calculated hydrogen bond occupancies are given as percentages in the figure.

bond between a given hydrogen bond donor and acceptor are that the distance be-

tween the two atoms is ≤ 3.6 Å and that the hydrogen bond angle (see Section 2.2.2)

is ≤ 60◦. These simulations showed that the intermolecular hydrogen bond network of

the complex is not well described by a static picture. Reorientations of both hydroxyl

groups in the mannoside and side chains in the binding pocket result in many different

hydrogen bond topologies. All possible hydrogen bonds formed between the mannoside

and FimH are difficult to represent graphically. Therfore, only hydrogen bonds with

high probabilities to occur are shown in Figure 5.4. All oxygen atoms in the manno-

side, with the exception of oxygen O1, are engaged in hydrogen bonding with polar

atoms in side chains or the backbone of FimH. The N-terminal FimH residue Phe1

forms simultaneous hydrogen bonds with mannose oxygens O2, O5 and O6, which all

have occupancies of approximately 100% in the whole 25 ns trajectory. Other impor-

tant hydrogen partners in FimH are Asp47, Asp54, Gln133 and Asn135, which are all

present around 100% of the stored snapshots of the trajectory. Lower hydrogen bond

occupancies can be seen for interactions with residues Asp140 and Asn46. The hydro-

gen bond network shown in Figure 5.4 is in good agreement with those derived from

crystal structures [10, 208].

The strength of individual hydrogen bonds can further be analyzed by the geometric

arrangement of the donor and acceptor atoms. Average hydrogen bond lengths and
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5.5 FimH-ManαMe complex

hydrogen bond angles of a selected subset of Fimh-ManαMe intramolecular hydrogen

bonds are presented in Table 5.1. The interaction energy of a given hydrogen bond

becomes more negative with decreasing hydrogen bond lengths and angles. Average

hydrogen bond distances and angles of water-water hydrogen bonds, calculated with

the TIP3P water model, using the same hydrogen bond criteria, of 3.0 Å and 27.5◦ can

be used as a direct reference. Hydrogen bonds formed between Asp54 and hydroxyl

oxygens O6 and 04 of the mannoside stand out as strong hydrogen bonds with much

shorter hydrogen bond distances and more linear hydrogen bond angles compared to

water-water hydrogen bonds.

Table 5.1: Average geometries of selected hydrogen bonds formed
in the FimH-ManαMe complex.

Acceptor-DonorH,Donor a r (Å)b θ (degrees) c Occ. (%) d

Man02-Phe1:1H1,N 2.867 21.95 26

Man02-Phe1:1H2,N 2.856 21.12 44

Man02-Phe1:1H3,N 2.854 21.45 30

Man03-Gln133:HE21,NE2 3.044 13.12 96

Man04-Asn135:HD22,ND2 2.951 16.90 94

Man05-Phe1:H1,N 3.018 46.88 44

Man05-Phe1:H2,N 3.014 47.05 31

Man05-Phe1:H3,N 3.030 46.72 26

Man06-Asp47:H,N 3.024 12.48 100

Man06-Phe1:H1,N 2.860 15.99 44

Man06-Phe1:H2,N 2.865 16.26 29

Man06-Phe1:H3,N 2.866 16.32 25

Asp140OD1-Man:H30,03 2.713 12.21 25

Asp54OD1-Man:H40,O4 2.583 8.61 100

Asp54OD2-Man:H60,O6 2.596 8.12 98

Asp46OD1-Man:H60,O6 3.178 54.14 5

a Atom names from the GLYCAM04 and PARM99 force fields.
b Average hydrogen bond distance (see Chapter 2.2.2).
c Average hydrogen bond angle (see Chapter 2.2.2).
d Occurrence probability of the hydrogen bond.
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5.FimH-carbohydrate interactions

5.5.2 Binding free energy analysis

The binding free energy change associated with complex formation of FimH and ManαMe

is, in this section, estimated with the MM-PB(GB)SA approach. Free energy analysis

was performed using both a single and a three trajectory approach. Detailed analysis

showed that, even though the trajectories are much longer compared to previous sim-

ilar studies [31, 213], the 25 ns trajectory clearly is too short for completely sampling

the conformational space of FimH. Using a three-trajectory approach for calculating

free energies of binding resulted in large statistical uncertainties. Relatively large con-

tributions to the calculated free energy of binding could also be seen for residues far

away from the CRD, as a consequence of sampling different parts of the configurational

space of FimH in the complex and receptor simulations. The MM-PB(GB)SA results,

presented in this and the following sections, are therefore calculated using structures

of the ligand and receptor from the trajectory of the complex.
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Figure 5.5: Calculated instantaneous ∆Uvac+∆Gsolv values and the running average
thereof, for the MM-GBSA method (a) and the MM-PBSA method (b)

Both the Poisson-Boltzmann and Generalized Born methods are used to estimate sol-

vation free energies of the solute molecules. Figure 5.5 shows instantaneous values,

and the running average, of changes in vacuum binding potential energy plus the sol-

vation free energy change of the complex, relative to the free FimH and ManαMe

molecules, estimated with the GBSA and PBSA methods. Calculations of center of

mass positional fluctuations of the mannoside in the complex showed that only small

displacements from the initial crystallographic structure occur during the 25 ns tra-

jectory. The MM-PB(GB)SA results in Figure 5.5 show that small conformational
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5.5 FimH-ManαMe complex

changes of the complex can result in large fluctuations in the free energy estimates.

The running averages are, however, fairly stable and do not drift significantly with

time. A rather large difference can be seen between the two implicit solvation models.

Although the time-evolution of the binding free energy estimates are similar for the

two methods, a shift towards more negative ∆Uvac+∆Gsolv values can be seen for the

GBSA results. From these calculations it is difficult to determine which method gives

a better estimate of the solvation free energy of the solute molecules. Although the GB

method is an approximation of the numerical solution of the Poisson-Boltzmann equa-

tion, it has also been shown that PB-method needs reparameterized atomic radii and

charges to reproduce experimental solvation free energies of small organic molecules

[79].

The results from the MM-PB(GB)SA free energy analysis of the FimH-ManαMe com-

plex are shown in Table 5.2. These results are averaged over 1250 snapshots, separated

by 20 ps, from the complex trajectory. The free energy change, calculated as the sum of

changes in vacuum potential energy, plus the solvation free energy contributions, adds

up to −37.5±0.4 kcal/mol using the GBSA implicit solvation model. With the PBSA

method, the free energy change is much smaller and adds up to -24.8±0.3 kcal/mol.

Table 5.2 shows that the main contribution to the negative free energy change upon

complexation comes from favorable Coulomb interactions between FimH and the man-

noside. Favorable van der Waals interactions give a contribution of approximately -14

kcal/mol to the vacuum interaction energy. The total solvation free energy contri-

bution in the thermodynamic cycle (∆GPB/GB,solv), adds an unfavorable free energy

contribution to binding. The ∆Uvac contribution is, however, dominating, showing

that binding of ManαMe the FimH is enthalpy driven, mainly due to strong hydrogen

bonding between the two solutes in the bound state. The free energy change, given

by the MM-PB(GB)SA analysis, is not complete, since entropy changes of the solute

molecules are not taken into account. Limitations in the available space for rigid body

motions and internal motions of both the mannoside and FimH can add an additional

entropy penalty to the binding free energy change. Entropy changes are here calcu-

lated separately from contributions from translational, rotational and configurational

degrees of freedom, and finally added up to give the total entropy change from all

3N degrees of freedom of the solute molecules. The first contribution to the solute

entropy change investigated, is from the available rotational and translational degrees

of freedom of FimH and ManαMe in the complex, relative to the free state. The stan-

dard method for estimating rigid body entropy changes, within the MM-PB(GB)SA
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Table 5.2: MM-PB(GB)SA results from the FimH-ManαMe complex.

Complex σM Receptor σM Ligand σM Delta σM

Uele
a -4647.9 1.5 -4665.6 1.2 90.0 0.1 -72.2 0.7

Uvdw
b -598.1 0.5 -587.6 0.5 3.4 0.0 -13.9 0.2

Uint
c 3140.8 1.0 3117.2 1.0 23.6 0.1 0.0 0.0

Uvac
d -2105.2 1.6 -2136.0 1.0 116.9 0.6 -86.1 0.8

GGB,ele
e 1329.6 1.2 -1351.4 1.1 -28.7 0.0 50.5 0.5

GPB,ele
f -1275.2 1.6 -1297.2 1.1 -42.3 0.1 64.3 0.6

GGB,np
g 37.8 0.0 38.4 0.0 1.28 0.0 -2.0 0.0

GPB,np
h 43.8 0.0 44.0 0.0 3.0 0.0 -3.1 0.0

GGB,solv
i -1291.8 1.2 -1313.0 1.1 -27.4 0.0 48.5 0.5

GPB,solv
j -1231.3 1.3 -1253.2 1.1 -39.33 0.0 61.23 0.6

Uvac + GGB,sol
k -3397.0 1.0 -3449.0 0.9 89.5 0.1 -37.5 0.4

Uvac + GPB,sol
l -3336.5 1.1 -3389.2 1.0 77.6 0.1 -24.9 0.3

a Electrostatic molecular mechanics energy in vacuum.
b Van der Waals molecular mechanics energy in vacuum.
c Internal energy from bond, angle and torsional terms in the force field.
d Total vacuum potential energy (sum of electrostatic, Van der Waals and internal

energies).
e Electrostatic contribution to the solvation free energy from the Poisson-Boltzmann

approach.
f Electrostatic contribution to the solvation free energy from the Generalized Born

approach.
g Non-polar contribution to the solvation free energy calculated with the SA (GB)

approach.
h Non-polar contribution to the solvation free energy calculated with the SA (PB)

approach.
i Sum of non-polar and (GB) polar solvation free energies.
j Sum of non-polar and (PB) polar solvation free energies.
k Sum of gas phase energy and the solvation (GB) free energy contribution.
l Sum of gas phase energy and the solvation (PB) free energy contribution.

approach, is to use ideal gas one-molecule partition functions for translations and ro-

tations separately, and calculate absolute entropies from statistical thermodynamic

formulas (see Section 2.2.7). The calculated absolute ideal gas translational and rota-

tional entropies, TS0
trans,ig and TSrot,ig, are presented in Table 5.3. The translational

entropy depends on the concentration and is here calculated at a standard state of

1 M (1 solute molecule/1660 Å). The total rigid body entropy penalty for complex

formation of FimH and ManαMe is, using the ideal gas treatment, approximately 22

kcal/mol and indicates a large entropy barrier for complex formation. As seen in Ta-

ble 5.3, this entropy penalty corresponds to the total absolute rigid body entropy of
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Table 5.3: Calculated entropies of the FimH-ManαMe complex.

Complex Receptor Ligand Delta
TS◦

trans,ig
a 16.5±0.0 16.5±0.0 12.5±0.0 -12.5±0.0

TSrot,ig
b 16.8±0.0 16.7±0.0 9.40±0.0 -9.3±0.0

G◦

rbt
c 10.6

TSvib,nm
d 1689.4±0.7 1671.6±0.6 13.7±0.0 4.1±0.8

TSconfig
e 2670.0 2721.80 27.6 -79.4

TSconfig,rec
f 23.0 23.5 -0.5

TSconfig,lig
g 2645.1 2721.8 -76.7

a Standard translational entropy at 1 M calculated from ideal gas
one molecule partition functions.

b Translational entropy calculated from ideal gas one molecule par-
tition functions.

c Free energy contribution from the loss in rigid body degrees of
freedom of the ligand calculated with the method of Swanson et

al.
d Vibrational entropy calculated from Normal Mode Analysis.
e Configurational entropy calculated using Schlitter’s method.
f Configurational entropy of just the receptor atoms calculated us-

ing Schlitter’s method.
g Configurational entropy of just the ligand atoms calculated using

Schlitter’s method.

the mannoside in the free state. In reality, all rotational and translational degrees of

freedom of the ligand in the complex are not completely lost, but rather transformed

into internal motions of the complex.

The method of Swanson et al. (see Chapter 2.2.7) provides an alternative to the ideal

gas treatment for estimating the entropy loss of rigid body motions of the mannoside

in the complex. Within this method, entropy changes are calculated, taking transla-

tional and rotational degrees of freedom available to the mannoside in the complex into

account. The superposition of the FimH backbone atoms, to remove overall rotational

and translational motions of the complex, was done with root mean square deviations

within 1.5 Å with respect to the first snapshot of the trajectory. Fluctuations around

average distances and angles of the six translational and rotational modes of the man-

noside in the complex could be seen to take the form of Gaussian distributions around

a single minimum in all cases, showing that the quasi-harmonic treatment is a good ap-

proximation in this case. Maximum deviations from the average value are smaller than

1 Å and 10◦ for the positional and angular fluctuations respectively. The free energy

contribution from restrictions of ligand rigid body motions in the complex, estimated
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by the method of Swanson et al., ∆Grbt in Table 5.3, is 10.6 kcal/mol, less than half

the value of the corresponding entropy loss estimated with the ideal gas approach.

Complex formation may further introduce entropy penalties, due to restrictions of the

internal degrees of freedom of the receptor and the ligand in the complex. Within the

harmonic approximation, these internal motions are described by 3N-6 normal modes

of vibrations of each solute molecule. Normal mode analysis (NMA) of the complex,

and both FimH and the mannoside in the unbound state, was performed on a series of

snapshots from the FimH-ManαMe trajectory. Due to the computational cost of the

method, the normal mode analysis was limited to a total of 260 uncorrelated snapshots

of the trajectory. Using the analytical formula of a quantum harmonic oscillator, ab-

solute entropies of the complex, receptor and ligand were calculated by summing over

contributions from all vibrational modes and averaged over all 260 structures. The re-

sults, presented in Table 5.3, show that the vibrational entropy of the complex is larger

than that of the sum of vibrational entropies of the receptor and the ligand in the free

state, giving a positive entropy contribution for the complex. It is important to note

that this analysis includes the six additional internal degrees of freedom of the complex,

i.e. rigid body motions of the ligand transformed into internal degrees of freedom of

the complex. Thus, the vibrational entropy can be added directly to the ideal gas rigid

body entropy to give an estimate of the solute entropy change, but is not compatible

with the rigid body free energy contribution calculated with the method of Swanson et

al., since contributions from the six additional degrees of freedom of the complex would

be double counted. The entropy analysis indicates that only small changes in internal

degrees of freedom of FimH and the mannoside occur on complex formation. In the

NMA analysis, entropy penalties due to limitations in the number of conformational

isomers available for, for instance, protein side chains in the binding pocket are not

taken into account. For the FimH-ManαMe complex, where the mannoside is buried

in a deep binding pocket, further entropy penalties from limitations of both FimH side

chain and carbohydrate conformational isomers are expected.

The method of Schlitter provides an upper limit of the total configurational (vibra-

tional and conformational) entropy of a given macromolecule. This method requires

three separate trajectories of the complex, receptor and ligand. Calculated absolute

configurational entropies, TSconfig, of the the solute molecules in the three 25 ns tra-

jectories are also presented in Table 5.3. The calculated configurational entropy dif-

ference between the complex and the free receptor and ligand is with this method

approximately -79 kcal/mol. This is clearly is an overestimation. Combined with the
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Figure 5.6: a) Calculated TSconfig values of the ManαMe ligand as a function of the
simulation time. The absolute configurational entropy of the ligand calculated from the
complex trajectory is shown as dashed lines and the corresponding entropy of the ligand in
the free state is shown with solid lines. b) Time evolution of the calculated configurational
entropy change of ManαMe in the complex relative to the free state.

MM-PBSA or MM-GBSA results, this estimate of the entropy change gives a posi-

tive free energy change of binding. Although Schlitter’s method has successfully been

verified for small systems where the quasi-harmonic approximation is valid [91], its

application to biomolecules has not been so successful. There are several reasons why

Schlitter’s method overestimates the configurational entropy difference of larger molec-

ular complexes. The first issue is insufficient sampling of the configurational space,

due to too short simulation times. In the light of the observation that proteins display

conformational motions occurring on a time scale of a few milliseconds [218], the con-

figurational space of FimH is likely to be poorly sampled in these simulations. Another

potential problem can be related to anharmonicity of the correlated motions of the so-

lute molecules, which may overestimate the calculated absolute entropies and entropy

differences [219]. Additional problems have been related to spurious correlations in the

covariance matrix, as a result of calculating it from finite simulation data [220]. Table

5.3 also shows calculated configurational entropy changes of FimH and the mannoside

in the complex relative to the free state separately. For the case of the mannoside, the

six ring atoms of the initial structure were used as a reference for the superposition used

to remove rigid body motions. Figure 5.6a shows calculated absolute configurational

entropies of the mannoside, in the complex and in the free state, as a function of the

simulation time. Even after 25 ns, both curves are increasing as the mannoside explores

new parts of the configurational space. Figure 5.6b shows the difference between the
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calculated absolute configurational entropies in the bound and free states. The entropy

difference has not converged either, and shows fluctuations around 0.5 kcal/mol during

the last 5 ns of the trajectories. After 25 ns the configurational entropy loss of the

mannoside in the complex is -0.5 kcal/mol. Analysis of atomic fluctuations show that

this is mainly due to restrictions of the 6 arm of the mannose, but also of the hy-

droxyl hydrogens (H20,H3O and H4O in the GLYCAM04 force field) of the mannose

in the complex. From ∆TSconfig,rec in Table 5.3, it is clear that the major contribu-

tion to the calculated large configurational entropy difference comes from FimH atomic

fluctuations. Since the goal of this study is to compare ∆∆G0
bind values for different

ligands to a common receptor, one can make the approximation that absolute config-

urational entropies of FimH in the different complexes is the same, and just compare

differences in the configurational space of the ligand. Together with the rigid body free

energy term, ∆G0
rbt, the configurational entropy of the ligand can be used as an alterna-

tive to the ideal gas + vibrational entropy combination to investigate relative binding

affinities of the different ligands. The combination of ∆Uvac+∆GPB,solv-(T∆S0
trans,ig+

T∆Srot,ig+T∆Svib,nm) gives a ∆G0
bind value of -7.1±0.8 kcal/mol, which is very close

to the experimentally determined solution affinity of mannose for FimH with Kd = 2.3

µM (= -7.6 kcal/mol). The good agreement between the calculated and experimental

results is encouraging, but based on the approximations on which these calculations

are done this might just be a coincidence. Calculations of ∆G0
bind of the other inves-

tigated ligands and calculations of ∆∆G0
bind values of the different ligands will further

elucidate the accuracy and limitations of the methods. The MM-GBSA approach is

strongly overestimating the binding affinity with a ∆G0
bind of -19.8 kcal/mol. Similar

results were found in the study of study of Gohlke and Case [213] which indicate that

the Generalized Born approach underestimates the ∆Gsolv contribution to the free en-

ergy change. The combination of ∆Uvac+∆GPB,solv+∆G0
rbt-T∆Sconfig,lig contributions

gives a ∆G0
bind value of -13.8 kcal/mol, which overestimates the binding affinity, due to

neglect of changes in configurational entropy of FimH in the complex.

5.5.3 The role of structural water molecules

In order to predict receptor-ligand affinities it is necessary to, not only, consider free

energy contributions from desolvation of the solute molecular surfaces, but also the en-

ergetic contributions from structural water molecules at the binding interface. These
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5.5 FimH-ManαMe complex

water molecules are immobilized at the binding interface for long time intervals and

can be considered to be part of the complex by bridging polar receptor and ligand

atoms through hydrogen bonding. Due to the small size, water molecules can enter

cavities in the receptor-ligand binding interface and contribute favorably to binding

affinity by both forming additional hydrogen bonds, as well as, shielding unfavorable

receptor-ligand Coulomb interactions [221]. If the (favorable) enthalpy change of the

system, due to the presence of a structural water molecule, is larger than the corre-

sponding entropy loss, structural water molecules can make a significant contribution

on the overall binding affinity. Ladbury [222] estimated the upper limit of the free

energy contribution for interfacial water molecules to be -1.67 kcal/mol. Given that

experimental free energy changes measured for lectin-carbohydrate complex formation,

typically are in the range of 5-11 kcal/mol, it is clear that the presence of structural

water molecules at the binding interface have to be considered when trying to under-

stand lectin-carbohydrate binding affinities.

A detailed analysis of water-mediated hydrogen bonding between FimH and the man-

noside, revealed one, or occasionally two water molecules, present in the binding pocket.

A single water molecule can also be involved in cooperative hydrogen bonding between

different FimH residues and the mannoside, leading to many different bridging pos-

sibilities. The most frequently observed water mediated hydrogen bond is indicated

in Figure 5.4, bridging Gly14 and oxygen O3 in the mannoside. Several other indi-

rect FimH-ManαMe interactions are also observed. Time series of frequently occurring

water-mediated hydrogen bonds are shown in Figure 5.7. Although individual water

molecules can reside in the binding pocket for very long times, exchanges of bridging

water molecules are frequent. Taking only water molecules with residence times over

100 ps in the FimH binding pocket, 35 different water molecules are mediating inter-

actions between FimH and the mannose during the 24 ns trajectory.

The presence of structural water molecules should, in principle, be captured by the

implicit solvation treatment of solvation free energy changes since the structures are

taken from an explicit water simulation. As a test, we included the water molecule

bridging Man160-O3 and Gly14, present in the time interval of 15 to 20 ns of the com-

plex trajectory, in the MM-GBSA analysis. In these calculations, the water molecule

was considered a part of the ligand, both in bound and free states. Solvation effects

beyond this water molecule were treated by the GBSA methodology. The ∆∆Hgas +

∆∆Gsolv,GB value for the 5 ns block for the structures with and without the struc-

tural water molecule is -3.4 kcal/mol. Taking the value of 2.1 kcal/mol as the upper
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Figure 5.7: Time series of a selected number of water mediated FimH-ManαMe hydrogen
bond interactions. Atom and residue names are those of the PARM99/GLYCAM04 force
fields.

value for the entropy loss of structural water molecules from Dunitz [146], the free

energy difference is still lowered with 1.3 kcal/mol by including the structural water

molecule. A recent study of Yu et al. [223] showed that the inclusion of a structural wa-

ter molecule was needed to reproduce explicit water calculated solvation free energies for

the acetate-guanidinium ion pair, using both generalized Born and Poisson-Boltzmann

implicit solvation models. Thus, structural water molecules can make important con-

tributions to the binding affinity, which may not be well treated by implicit solvation

models.

5.5.4 Per-residue free energy decomposition

In this section, we investigate contributions of the MM-GBSA results on a residue basis.

Using the GB implicit solvation model, the calculated free energy change of binding

can be decomposed into contributions from a given subset of atoms. Figure 5.8 shows

contributions to the binding free energy change from FimH residues within a distance

of 6 Å from any atom in the mannoside in the initial crystal structure. The calculated

values are averaged over 1250 snapshots, separated by 20 ps, of the complex trajectory.

Standard errors of the mean are displayed as error bars in the figures.
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Figure 5.8: a) Decomposition of ∆Uvac values of the FimH-ManαMe complex on a FimH
residue basis. Van der Waals contribution to the potential energy is shown in a) as shaded
bars. b) Decomposed ∆Uvac+∆Gsolv values calculated with the MM-GBSA approach.

In Figure 5.8a, the difference in vacuum molecular mechanics energy for FimH residues

in the complex and in the free state is displayed. The total ∆U contribution from each

residue is shown, together with just the contribution from van der Waals interactions

(shaded bars). Large negative ∆Uele values can be seen for residues Phe1 and Asp54.

Smaller contributions can be seen from the other residues involved in hydrogen bonding

with the mannoside. Although the FimH residue Asp47 forms hydrogen bonds with

mannoside (see Figure 5.4), it still gives a positive ∆Uele contribution. This can be

caused by conformational changes of the binding pocket in the complex, affecting the

position the side chain of Asp47, and also possibly disrupting internal hydrogen bonds
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with other residues in FimH. A negative ∆Uele contribution also comes from His45,

although not directly involved in hydrogen bonding with the mannoside. FimH residues

Ile13, Tyr48, Ile52 and Phe142, containing non-polar and aromatic side chains, all

show additional favorable ∆UvdW contributions in the complex. Visual inspection of

the complex geometry showed that contributions from Tyr48 and Ile52 is mainly due

to interactions with the methyl group of the mannoside, whereas Tyr48 and Phe142

interact with non-polar patches of the mannose residue.

Figure 5.8b shows the free energy contribution to the FimH-ManαMe complex for

the corresponding FimH residues, implicitly taking solvent reorganization effects into

account using the GBSA method. The large negative vacuum ∆Uele values for Phe1

and Asp54 are compensated by the ∆GGB,solv contribution. Together with the solvation

free energy change of the complex, all terms in the thermodynamic cycle, with the

exception of solute entropy changes, are included. Enthalpy and entropy changes of

water of the binding process are implicitly taken into account in the ∆GGB,solv term.

Including solvent reorganization effects, FimH residues Phe1, Asp47, Asp54, Gln133,

and Asn135 stand out as important contributors to the overall binding affinity of the

mannose. Also Asp47 makes a favorable contribution to the binding free energy change

when including the ∆GGB,solv contribution. This observation can be explained by the

position of the residue in the binding pocket. The part of Asp47 that is in the binding

pocket of FimH is mainly non-polar in nature, with the charged side chain pointing out

towards the solvent. The site-directed mutagenesis study of Hung et al. [208] showed

that mutation of residues Asp54 resulted in a complete loss in binding affinity of D-

mannose. From these calculations, this is also the FimH residue making the largest

contribution to the binding affinity. This study shows that additional contributions to

the binding affinity of ManαMe to FimH come from residues Ile13, Asp47, Tyr48, Ile52

and Phe142. In order to obtain the total binding free energy contribution per residue,

also residual entropy changes need to be incorporated. Still, the results presented here

can be used as an indication of the residues in FimH responsible for recognition and

binding of the the ManαMe ligand.
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5.6 Fimh-ManαPNP complex

5.6 Fimh-ManαPNP complex

Synthetic mannosides with aliphatic or aromatic aglycons have been found to increase

the affinity of FimH binding, from dissociation constants in the micromolar range to

the nanomolar range [209, 216, 217]. The enhanced affinity for aliphatic and aromatic

mannosides has been attributed to interactions with the aromatic residues in the ty-

rosine gate of FimH (see Figure 5.3). In this section, we investigate the structural

basis and thermodynamics of FimH interactions with the ligand Manα-p-Nitrophenyl

(ligand II in Figure 5.2), which from hereon is abbreviated as ManαPNP.
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Figure 5.9: Force field parameters of the p-Nitrophenyl group. GAFF atom types, partial
charges and atoms names are shown in the figure.

5.6.1 Force field development

Force field parameters for the nitrophenyl group are missing in the AMBER and GLY-

CAM04 force fields, and are derived specially for this study. RESP charges for the

nitrophenyl group were calculated at the HF/6-31G* level of theory, in a similar way

used to calculate the charges in the GLYCAM04 force field. In the charge calculations,

the linking oxygen in Figure 5.9 was capped with a methyl group. In order to keep the

charges on the mannose, given by the GLYCAMO4 force field, RESP charges were de-

rived by applying intramolecular charge restraints using the R.E.D program of Pigache

et al. [224].
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Figure 5.10: Relaxed potential energy scans of the C1-O1-C7-C12 dihedral angle of
the ManαPNP ligand. The HF/6-31G* energy profile calculated is shown as full lines.
AMBER results using the derived force field parameters are shown as rectangular points.
The AMBER energy profile is shifted for a direct comparison.

A charge restraint of +0.1940 e was applied to the methyl group, which is equal to that

of α-D-mannose 0MA (mannose without the glycosidic oxygen) in the GLYCAM04

force field. In this manner, the total molecule is neutral and no reparameterization

of the mannose-part is necessary. Atomic partial charges of the nitrophenyl group is

presented in Figure 5.9. Remaining force field parameters were taken from the gen-

eral AMBER force field (GAFF) [225], as assigned by the utility program Antechamber

[226]. The GAFF force field is fully compatible with AMBER force fields and can there-

fore be used directly together with the GLYCAM04 force field. The GAFF generated

atom types are shown in Figure 5.9. The only modification of the GAFF parameters

is reparameterization of the two torsional angles determining the relative orientation

of the mannose and the p-nitrophenyl substituent. These two torsional angles, φ and

ψ, are here defined as O5-C1-O1-C7 and C1-O1-C7-C12 (atom names are given in Fig-

ure 5.9). Relaxed scans around these two dihedral angles were performed using the

Gaussian03 program at a HF/6-31G* level of theory, and compared to equivalent scans

performed with the AMBER molecular dynamics program with the GAFF parameters

and the derived partial atomic charges presented above. Rotation around the φ angle is

sterically hindered due to the atoms in the mannose and has a single minimum around

60◦. The parameters of this dihedral angle were adjusted to reproduce the position of

the minimum.
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Figure 5.11: Important intermolecular hydrogen bonds formed in the FimH-PNP complex.
Hydrogen bond occupancies calculated from the 25 ns trajectory of the complex are given
as percentages in the figure.

Parameters of the ψ dihedral angle also had to be adjusted to fit the ab-initio calcula-

tions. The results of the ab-initio calculated relaxed potential energy scan around the

ψ angle and the corresponding force field results, using the readjusted parameters, are

shown in Figure 5.10. Although the curves do not match perfectly, the important ener-

getic features of rotations around this dihedral angle, i. e. the positions of the minima

and the height of the barriers, are well reproduced with the force field parameters.

5.6.2 Hydrogen bond analysis

The topology of hydrogen bonds formed between ManαPNP and FimH in the complex,

shown in Figure 5.11, is basically the same as that of the FimH-ManαMe complex. The

p-nitrophenyl substituent only shows short lived (< 1% occupancies) hydrogen bonds

formed with residues Tyr48,Thr51 and Tyr137 in FimH. The structural water molecule

found in the FimH-ManαMe complex is also found here, but bridging Gly14 and the

O2 hydroxyl group instead of the O3 hydroxyl group for the majority of the stored
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snapshots of the trajectory. Again, several different water molecules can simultaneously

mediate hydrogen bonds between FimH and the ligand, and a given structural water

molecule can further move around inside the binding pocket, leading to a large number

of different water-mediated hydrogen bond combinations.

5.6.3 Binding free energy analysis

Figure 5.12 shows calculated instantaneous ∆Uvac + ∆Gsolv values and running aver-

ages thereof, calculated with both the MM-PBSA and MM-GBSA approaches. The

FimH-ManαPNP complex was stable throughout the simulation and no larger con-

formational changes was observed. The running average shows a slight drift in the

calculated ∆Uvac + ∆Gsolv values during the first half of the simulation, but is rela-

tively stable during the last half of the simulation. Again, the results calculated with

the two different implicit solvation models are similar, with a negative offset for the

the MM-GBSA calculated binding free energy change.
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Figure 5.12: Instantaneous ∆Uvac+∆Gsolv values as a function of time for the FimH-
ManαPNP ligand a) using the MM-GBSA approach and b) with MM-PBSA approach.
Running averages of the calculated ∆Uvac+∆Gsolv values are shown as full lines.

The results of the 1-trajectory MM-PB(GB)SA free energy analysis of the FimH-

ManαPNP complex are shown in Table 5.4. Both MM-PBSA and MM-GBSA calcu-

lated ∆Uvac+∆Gsolv values, averaged over snapshots separated by 20 ps of the whole 25

ns trajectory, show more favorable contributions to the binding free energy compared

to the respective results from the ManαMe complex.
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Table 5.4: MM-PB(GB)SA results from the FimH-ManαPNP complex. See Table
5.2 for table captions. All units are in kcal/mol.

Complex σ Receptor σ Ligand σ Delta σ
Uele

a -4667.3 1.2 -4687.3 1.2 100.7 0.1 -80.7 0.3

Uvdw
b -603.2 0.5 -589.3 0.5 7.3 0.0 -21.2 0.1

Uint
c 3158.6 0.9 3124.6 0.9 33.9 0.1 0.0 0.0

Uvac
d -2111.9 1.5 -2151.9 1.5 141.9 0.1 -101.9 0.2

GGB
e -1371.4 1.0 -1339.3 1.0 -37.6 0.0 59.6 0.2

GPB
f -1261.1 1.0 -1284.8 1.0 -50.0 0.1 73.7 0.2

GGB,np
g 37.9 0.0 38.6 0.0 2.1 0.0 -2.8 0.0

GPB,np
h 43.7 0.0 44.0 0.0 3.6 0.0 -3.8 0.0

GGB,solv
i -1279.4 1.0 -1300.7 1.0 -35.5 0.0 56.8 0.2

GPB,solv
j -1217.3 1.0 -1240.8 1.0 -46.4 0.1 69.9 0,2

Uvac + GGB,sol
k -3391.4 1.0 -3452.6 1.0 106.4 0.1 -45.1 0.1

Uvac + GPB,sol
l -3329.2 1.0 -3392.7 1.0 95.5 0.1 -32.0 0.1

Calculated average ∆∆Uvac+∆∆Gsolv values, relative to the FimH-ManαMe complex

are -7.2 and -7.6 kcal/mol, for the MM-GBSA and MM-PBSA methods respectively.

The more favorable vacuum interaction energy in the FimH-ManαPNP complex is, as

seen in Table 5.4, a result of both stronger Coulomb and van der Waals interactions.

The origin of this difference is further discussed in Section 5.6.4. The negative ∆∆Uvac

contribution for the FimH-ManαPNP complex is partly reduced by a positive ∆∆Gsolv

contribution. The negative ∆∆Uvac term is, however, larger than positive ∆∆Gsolv,

giving a total negative ∆∆G0
bind value for the FimH-ManαPNP complex over the FimH-

ManαMe complex.

Solute entropy changes need to be incorporated in order to validate the higher affin-

ity of the ManαPNP ligand seen in the MM-PB(GB)SA results. The solute entropy

analysis, using the methods discussed in the previous section, is here repeated for the

FimH-ManαPNP complex and presented in Table 5.5. Calculating T∆Svac of FimH-

ManαPNP complex using normal mode analysis together with ideal gas rigid body

contributions, the entropy loss of the complex adds up to 21.3 kcal/mol. Here the

normal analysis was performed on 264 different starting structures from the trajectory,

over which the calculated vibrational entropies were averaged over. This combination

of methods includes both the rigid body entropy loss of the ligand in the complex, as

well as, entropy penalties payed from restrictions in internal degrees of freedom of both

receptor and ligand in the complex.
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Table 5.5: Entropy analysis of the FimH-ManαPNP complex. See
Table 5.3 for table captions. All units are in kcal/mol.

Complex Receptor Ligand Delta
TStrans,ig

a 16.51±0.0 16.49±0.0 12.89±0.0 -12.87±0.0

TSrot,ig
b 16.74±0.0 16.71±0.0 10.4±0.0 -10.4±0.0

∆Grbt
c 10.2

TSvib,nm
d 1695.4±1.1 1669.4± 1.0 23.8±0.2 2.1±0.8

TSconf
e 2675.1 2721.80 44.5 -91.2

TSconf,lig
f 35.75 44.5 -8.75

TSconf,rec
g 2638.5 2721.80 -83.3

Comparing to the FimH-ManαMe complex, an additional entropy penalty of 3.6 kcal/mol

is payed for the FimH-ManαPNP complex. Together with the MM-PBSA contribu-

tion, a total ∆G0
bind of -10.7±0.8 kcal/mol is obtained. Again, the calculated free energy

change is in good agreement with the experimental Kd and calculated ∆G0
bind values of

44 nM and -10.0 kcal/mol from Bouckaert et al. [209]. Together with the MM-GBSA

calculated binding free energy contribution, a similar relative increase in binding affin-

ity can be seen, although the calculated ∆G0
bind value of respective complex is far off

compared to experiment.

Using the methods of Schlitter and Swanson et al., neglecting configurational entropy

changes of FimH, gives a entropy penalty of of 19 kcal/mol. Combined with the

MM-PBSA results, this gives a ∆∆G0
bind of only -0.65 kcal/mol relative to the FimH-

ManαMe complex. The configurational entropy change of the ManαPNP ligand is here

much larger compared to the ManαMe ligand and adds a positive contribution of ap-

proximately 8 kcal/mol for the binding free energy change of the FimH-ManαPNP com-

plex. The time evolution of calculated absolute configurational entropies of ManαPNP,

in the complex and in the free state, is shown in Figure 5.13. Both the rigid body term

and the configurational entropy are calculated, as previously described, using all atoms

in the ligand for superpositions to remove translational and rotational motions of the

ligand and to calculate rotational fluctuations of the ligand in the complex. Again,

the configurational entropy calculation has not converged in the 25 ns trajectory. The

calculated configurational entropy difference between the free and bound states is, how-

ever, relatively stable, but still shows fluctuations around 1 kcal/mol during the last 5

ns of the simulation.
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Figure 5.13: a) Calculated TSconfig values of the ManαPNP ligand as a function of the
simulation time. The absolute configurational entropy of the ligand calculated from the
complex trajectory is shown as dashed lines and the corresponding entropy of the ligand in
the free state is shown with solid lines. b) ∆TSconfig values calculated from the difference
in absolute configurational entropies in the complex relative to the free state.

The calculated T∆∆Sconfig of FimH in the FimH-ManαPNP complex, relative to the

FimH-ManαMe complex, is greater by approximately 7 kcal/mol, showing that internal

motions of FimH are restricted to a greater extent in the FimH-ManαPNP complex.

The calculated T∆Sconfig of FimH is again greatly overestimated and these results may

not be reliable.

5.6.4 Per-residue free energy decomposition

The per-residue decomposition of ∆Uvac + ∆Gsolv,GB is shown in Figure 5.14, for FimH

residues in the binding pocket with any atom within 6 Å of the ligand in the first

snapshot of the trajectory. These results were averaged over 1250 snapshots, separated

by 20 ps, from the complex trajectory. Standard errors of the calculated means are

shown as error bars in the figures.

Small shifts can be seen in ∆Uvac values for residues in the binding pocket for the two

complexes. The ManαPNP ligand interacts more strongly with Asp54 than ManαMe,

which in turn, shows more favorable Coulomb interaction with Phe1. Beyond the

binding pocket, additional favorable interactions with ManαPNP can be seen, not

present for the ManαMe ligand.

141



5.FimH-carbohydrate interactions

P
he

1
A

la
2

P
ro

12
Ile

13
G

ly
14

G
ly

15
H

is
45

A
sn

46
A

sp
47

T
yr

48
P

ro
49

Ile
52

T
hr

53
A

sp
54

T
yr

55
T

yr
95

G
ln

13
3

T
yr

13
4

A
sn

13
5

A
sn

13
6

T
yr

13
7

A
sn

13
8

A
sp

14
0

A
sp

14
1

P
he

14
2

P
he

14
4

-15

-10

-5

0

∆U
va

c(k
ca

l/m
ol

)

P
he

1
A

la
2

P
ro

12
Ile

13
G

ly
14

G
ly

15
H

is
45

A
sn

46
A

sp
47

T
yr

48
P

ro
49

Ile
52

T
hr

53
A

sp
54

T
yr

55
T

yr
95

G
ln

13
3

T
yr

13
4

A
sn

13
5

A
sn

13
6

T
yr

13
7

A
sn

13
8

A
sp

14
0

A
sp

14
1

P
he

14
2

P
he

14
4

-6

-5

-4

-3

-2

-1

0

1

∆U
va

c+
∆G

so
lv
(k

ca
l/m

ol
)

Figure 5.14: a) Decomposition of ∆Uvac values of the FimH-ManαPNP complex with
respect to contributions from FimH residues. The ∆UvdW contribution from each residue
is shown as shaded bars. b) Decomposition of ∆Uvac+∆Gsolv values calculated with the
MM-GBSA method.

The two tyrosine residues in the tyrosine gate, Tyr48 and Tyr137, both show more

favorable interaction energies, which is mainly a result of van der Waals interactions.

Investigations of the complex showed that the aromatic ring of Tyr48 is parallel-stacked

with the phenyl ring of the mannoside. An average distance between the ring center of

masses of 4.3 Å was calculated. The average distance is not far away form the energy

minimum of parallel-stacked benzene which has been calculated to be in the range of

3.5-4.2 Å, depending on the method used [227, 228]. The relative orientation of the

phenyl ring of Tyr137 and that of ManαPNP was more flexible in the simulation and

the relative orientation can be described by a range of structures ranging from mis-

aligned parallel stacking to T-shaped stacking of different degrees of perturbation. The
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5.6 Fimh-ManαPNP complex

ring-ring center of mass distance showed larger fluctuations, with an average distance

of 7.4 Å. These geometric differences are reflected in the calculated interaction energies

in Figure 5.14a, showing more favorable contributions to the interaction energy from

Tyr48. Here the question arises how well these interactions are modeled by the force

fields, not explicitly describing these electronic effects. A recent study of Paton et al.

[229] showed that the interaction energy of the parallel stacked benzene dimer, calcu-

lated with AMBER force fields, was overestimated by only 0.13 kcal/mol compared to

ab-initio calculations at the CCSD(T)/CBS level of theory. In this study, a mean error

of 1 kcal/mol for the AMBER force file was found for a group of complexes interacting

predominately with dispersion forces and π-π-stacking. These findings support the use

of force fields for studying these interactions which are important for the stability of

many lectin-carbohydrate complexes [230].

For comparison with the other complexes investigated in this study, the decomposition

of ∆Uvac and ∆Uvac+∆Gsolv into contributions of the ManαPNP residues is presented

in Figure 5.15. The aglycon makes an additional contribution of -3.9 kcal/mol to the

calculated ∆Uvac+∆Gsolv value.
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Figure 5.15: a) Decomposition of ∆Uvac values of the FimH-ManαPNP complex with
respect to contributions from ManαPNP residues. The ∆UvdW contribution from each
residue is shown as shaded bars. b) Decomposition of ∆Uvac+∆Gsolv values calculated
with the MM-GBSA method.
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5.7 FimH-Man2GlcNac complex

A general feature of mannose-specific bacteria is a preferred binding to short oligoman-

nose chains of N-linked glycoproteins over mannose monosaccharides. The trisaccha-

ride Manα1,3Manβ1,4GlcNac showed a 20-30 fold increased inhibitory ability for E.

coli type 1 fimbrial lectin over ManαMe in the studies of Sharon [215]. This trisaccha-

ride is of special interest since it is a common constituent of the N-linked glycoproteins

found in the cell surface glycocalyx of many eucaryotic cells. In this section, we inves-

tigate the structure and thermodynamics of the ligand Manα1,3Manβ1,4GlcNacβMe

in complex with FimH. This is ligand III in Figure 5.2, and is from hereon abbreviated

as Man2GlcNAc.
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Figure 5.16: Important intermolecular hydrogen bonds formed in the FimH-Man2GlcNAc
complex. Hydrogen bond occupancies calculated from the 25 ns complex of the trajectory
are shown as percentages in the figure.

5.7.1 Hydrogen bond analysis

Figure 5.16 shows the structure of the FimH-Man2GlcNAc complex and average hydro-

gen bond occupancies of intermolecular hydrogen bonds, formed in the binding pocket

of FimH.
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Figure 5.17: Time series of a selected number of water bridged hydrogen bonds formed
in the FimH-Man2GlcNAc complex. Atom names are taken from the PARM99/GLYCAM04
force fields.

The hydrogen bond pattern of Man162 (see Figure 5.2 for residue numbering) is ba-

sically the same as that of ManαMe presented in Section 5.5. Additional hydrogen

bonds formed by Man161 and GlcNAc160 residues can also be seen. O2 of Man161

forms additional hydrogen bonds with the hydroxyl group of Tyr137 which in turn

forms hydrogen bonds with the NAc-arm of GlcNAc160. Oxygen O6 of GlcNAc160

forms additional hydrogen bonds with the hydroxyl group of Thr51. The structure of

the complex from these simulations, is very similar to that of the crystallographic struc-

ture of a pentasaccharide containing the Manα1,3Manβ1,4GlcNac segment in complex

with FimH determined by Wellens et al. [10]. Analysis of water mediated hydrogen

bonds show, at most, five different water molecules hydrogen bonded to FimH and

the saccharide at the same time, at a given snapshot of the trajectory. Again, a fre-

quent exchange between structural and bulk water can be seen. Two structural water

molecules with relatively high occupancy were observed in this simulation (also shown

in Figure 5.16). The first, bridged Gly14 and oxygen O3, and to a lower extent O2 of

Man162. The second water molecule bridged O2 of Man161 with the amino group of

the Ans135 side chain and was found in almost one out of every three snapshots of the

trajectory.
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Figure 5.18: Calculated instantaneous ∆Uvac+∆Gsolv values and the running average
thereof, for the Man2GlcNAc complex using the MM-GBSA method (a) and the MM-PBSA
method (b)

Time series of a selection of water mediated hydrogen bonds with occupancy numbers

above 5% are shown in Figure 5.17. The water molecule around GlcNAc160 in the

crystallographic structure of Wallens et al. was also found in these simulations, here

bridging GlcNAc160 and Glu50.

5.7.2 Binding free energy analysis

The FimH-Man2GlcNac complex is, similarly to the previously investigated complexes,

stable during the simulation. The terminal mannosyl unit (Man162) only shows small

positional fluctuations in the reference frame of the FimH binding pocket. Figure 5.18

shows instantaneous values and the running average of ∆U + ∆Gsolv calculated with

both GB and PB implicit solvation models. Running averages of both methods are

in good agreement, except for the shift towards more negative values of the GB im-

plicit solvation model also seen in the previously investigated complexes. Although

the fluctuations in instantaneous ∆U + ∆Gsolv values can be large, as a result of large

fluctuations in ∆Uele values accompanying relatively small conformational changes, the

running averages are relatively stable with time. During the last half of the simulation,

fluctuations in the running average of a few kcal/mol can still be seen.

Results from the MM-PB(GB)SA free energy analysis of the FimH-Man2GlcNAc com-

plex are summarized in Table 5.6. Compared to the FimH-ManαMe complex, the total
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5.7 FimH-Man2GlcNac complex

MM-GBSA calculated binding free energy (without including solute entropy changes) is

more favorable with both implicit solvation models. The relative free energy difference

in the calculated MM-PBSA and MM-GBSA results between the FimH-Man2GlcNAc

and FimH-ManαMe complexes, ∆∆Uvac+∆∆Gsolv, is -12 and -7 kcal/mol respectively.

Here the two implicit solvation methods differ and the PBSA method predicts a much

higher ∆∆Gsolv contribution to the binding free energy. Just comparing differences

in the ∆Uvac contribution, it is clear that both more favorable electrostatic and van

der Waals interactions are responsible for the more negative MM-PB(GB)SA binding

free energy change of the FimH-Man2GlcNAc complex. The calculated ∆∆Gsolv shows

a more unfavorable contribution to the binding free energy change in the case of the

larger ligand, but the negative ∆∆Uvac value outweighs the positive ∆∆Gsolv contribu-

tion, resulting in a more negative binding free energy change of the FimH-Man2GlcNAc

complex.

Table 5.6: MM-PB(GB)SA results from the FimH-Man2GlcNac complex. See Table
5.2 for table captions. All units are in kcal/mol.

Complex σM Receptor σM Ligand σM Delta σM

Uele
a -4592.8 1.3 -4692.2 1.2 190.2 0.1 -90.8 0.3

Uvdw
b -618.0 0.5 -593.7 0.5 5.2 0.1 -29.6 0.1

Uint
c 3179.1 1.0 3126.0 1.0 53.1 0.1 0.0 0.0

Uvac
d -2031.7 1.5 -2159.9 1.4 248.5 0.2 -120.3 0.2

GGB
f -1322.7 1.1 -1330.6 1.0 -66.2 0.1 74.1 0.2

GPB
g -1277.0 1.1 -1275.7 1.0 -94.5 0.1 93.3 0.2

GGB,np
h 37.9 0.0 38.4 0.0 2.9 0.0 -3.4 0.0

GPB,np
i 44.5 0.0 43.86 0.0 5.4 0.0 -4.8 0.0

GGB,solv
j -1284.8 1.0 -1292.2 1.0 -63.3 0.1 70.7 0.2

GPB,solv
k -1232.6 1.0 -1231.9 1.0 -89.2 0.1 88.5 0.2

Uvac + GGB,sol
l -3316.5 1.0 -3452.1 1.0 185.3 0.2 -49.6 0.2

Uvac + GPB,sol
m -3264.3 1.0 -3391.8 1.0 159.3 0.2 -31.8 0.2

The MM-PB(GB)SA free energy analysis is not complete without including the T∆S0
bind,vac

contribution. Although the MM-PB(GB)SA analysis gave a more negative free energy

change of binding the Man2GlcNAc ligand compared to ManαMe, a large part of this

free energy gain is likely to be compensated by a positive T∆∆S0
bind,vac contribution.

Absolute vibrational entropies of the solute molecules were calculated and averaged

over 253 solute conformations separated by approximately 100 ps from the trajectory

of the complex. Using the combination of the ideal gas translational and rotational en-
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5.FimH-carbohydrate interactions

tropies plus the normal mode calculated vibrational entropy (T∆S0
trans,ig+T∆Srot,ig+

T∆Svib,nm), the solute entropy penalty of the FimH-Man2GlcNAc adds up to 25.7±0.8

kcal/mol, which is 8 kcal/mol larger compared to the corresponding contribution from

the FimH-ManαMe complex. Adding this contribution to the MM-PBSA and MM-

GBSA calculated free energy changes, gives a total ∆G0
bind of approximately -6±0.8 and

-24±0.8 respectively for the two methods. The MM-PBSA calculated ∆G0
bind gives a

lower affinity of the FimH-Man2GlcNAc ligand, whereas the MM-GBSA method shows

the opposite. This is a direct result of the different ∆Gsolv contributions from the two

methods.

Table 5.7: Entropy analysis of the FimH-Man2GlcNAc complex. See
Table 5.3 for table captions. All units are in kcal/mol.

Complex Receptor Ligand Delta
TS0

trans,ig
a 16.52±0.0 16.49±0.0 13.45±0.0 -13.42±0.0

TSrot,ig
b 16.77±0.0 16.72±0.0 11.52±0.0 -11.5±0.0

G0
rbt

c 9.0

TSvib,nm
d 1724.8±0.7 1670.34± 0.3 55.3±0.1 -0.8±0.8

TSconfig
e 2708.0 2721.80 103.2 -116.8

TSconfig,lig
f 86.0 102.1 -16.2

TSconfig,rec
g 2623.3 2721.8 -98.5

Entropy changes of the solute molecules in the complex were further investigated us-

ing the alternative methods of Swanson et al. and Schlitter. In both methods, all

ring atoms in the saccharide were used in the superposition to remove overall trans-

lational and rotational motions of the ligand. Similar to the previously investigated

complexes, the calculated change in configurational entropy of the complex is highly

overestimated. Table 5.7 shows that the major contribution to the configurational en-

tropy change comes from FimH atomic displacements. Although the calculated loss

in configurational entropy of FimH in the complex relative to the free state is poorly

estimated by Schlitter’s method, the covariance analysis of FimH atomic fluctuations

shows that FimH in the FimH-Man2GlcNAc complex is more restricted compared to

the FimH-ManαMe complex. In order to compare the calculated configurational en-

tropy change to the other ligands, we neglect changes in the configurational entropy

of FimH and focus on configurational entropy changes of Man2GlcNAc. Figure 5.19a

shows the calculated configurational entropy of Man2GlcNAc as a function of the sim-

ulation time both in the bound and the free state. It is clear that the configurational
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5.7 FimH-Man2GlcNac complex

space of the trisaccharide was not fully sampled during the 25 ns trajectory. In Figure

5.19b, the difference in configurational entropy between the bound and the free states

is shown. It can here be seen that the calculated ∆Sconf has not converged and is still

decreasing after 25 ns. Taking the calculated configurational entropy difference after

25 ns, together the rigid body free energy term, ∆G0
rbt in Table 5.7 gives a entropy

loss of approximately 25 kcal/mol for the complex, which is approximately the same as

calculated with the NMA-ideal gas treatment. Comparing to the same methods for the

FimH-ManαMe complex, both MM-PBSA and MM-GBSA indicate a weaker binding

affinity of the Man2GlcNAc ligand compared to ManαMe.
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Figure 5.19: a) Calculated TSconfig values of the Man2GlcNAc ligand as a function of
the simulation time. The absolute configurational entropy of the ligand calculated from the
complex trajectory is shown as dashed lines and the corresponding entropy of the ligand in
the free state is shown with solid lines. b) Time evolution of the calculated configurational
entropy change of Man2GlcNAc in the complex relative to the free state.

5.7.3 Conformation of Man2GlcNAc in the complex

Additional energetic penalties that may decrease the binding affinity of Man2GlcNAc

can arise from conformational perturbation of the saccharide in the complex. Since

the MM-GBSA binding free energy analysis is performed on complex, receptor and

ligand structures taken from the complex trajectory, changes in internal energy on

binding will cancel and always add up to zero. In this section, the conformational

behavior of the saccharide in both the free and bound state is investigated in terms of

fluctuations around the four glycosidic torsional angles, determining the overall con-

formation of the saccharide. Figure 5.20 shows φ-ψ distribution plots calculated from
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Figure 5.20: φ-ψ distribution plots of the Man(β1,4)GlcNac glycosidic linkage calculated
for the Man2GlcNAc ligand a) in the free state and b) in the complex. Figures c) and d) show
the corresponding φ-ψ distribution plots for the Man(α1,3)Man glycosidic linkage. The di-
hedral angles φ and ψ are defined as Man161:H1-Man161:C1-GlcNAc160:O4-GlcNAc160:C4
and Man161:C1-GlcNAc160:O4-GlcNAc160:C4-GlcNAc160:H4 for the Man(β1,4)GlcNac
glycosidic linkage and Man162:H1-Man162:C1-Man161:O3-Man161:C3 and Man162:C1-
Man161:O3-Man161:C3-Man161:H3 for the Man(α1,3)Man glycosidic linkage. Atom
names are taken from the GLYCAM04 force field.

two separate explicit water simulations of the saccharide in the complex and in the

free state. Torsional angle distributions of φ and ψ (see the caption to Figure 5.29 for

angle definitions) for the Manβ1,4GlcNac glycosidic linkage are shown in Figures 5.29a

(free) and 5.29b (in complex), and similarly for the Manα1,3Man glycosidic linkage in

Figures 5.29c (free) and 5.29d (in complex). Although the saccharide still maintains a

lot of its conformational freedom in the complex, some reduction in the conformational

space can be seen, especially for the Manα1,3Man linkage. Figure 5.29 shows that

no major conformational changes of the saccharide take place in the binding process.

The φ and ψ values sampled in the complex, are well within the distributions observed

in the free state. The φ and ψ dihedral angles of the Manα1,3Man glycosidic link-

age are, in both cases, distributed around the values found in the crystal structure of
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Manα1,3Manβ1,4GlcNac (-58◦,-19◦) [231]. Calculated φ and ψ dihedral angles of the

Manβ1,4GlcNac glycosidic linkage are also in good agreement with those found in the

crystal structure of (40◦,-1◦) [231]. These results show that saccharides containing the

Manα1,3Manβ1,4GlcNac motif fit the binding pocket of FimH perfectly and that no

major energetic penalties are expected to arise from strain within the saccharide. This

is further validated by comparing the difference in internal force field energy (sum of

bond, angle and torsion angle terms in the GLYCAM04 force field) of the saccharide in

the complex and in the free state. From these simulations, ∆Uint is -0.1±0.12 kcal/mol.

5.7.4 Per-residue free energy decomposition

The decomposition of ∆Uvac with respect to FimH residues, in Figure 5.21a, shows

that the major contribution to the binding affinity comes from interactions of FimH

side chains with the mannose residue Man162 in Figure 5.2. Comparing with 5.8a, it

can be seen that the calculated ∆Uvac values are very similar for the residues in the

binding pocket, for the ManαMe and Man2GlcNAc ligands. Slight differences can be

seen, indicating minor conformational changes of the terminal mannosyl residue. Most

noticeable is the shift towards more negative ∆Uvac values for both Asp54 and Asp140.

The other differences in Figures 5.21 and 5.8 are due to FimH residues outside the

binding pocket. Structural analysis of the FimH-Man2GlcNAc complex revealed that

Man161 stacks its B-face onto the phenol ring of Tyr48. Similar stacking could be seen

between the B-face of GlcNAc160 and Tyr137 in the tyrosine gate. The nature of these

interactions have been attributed to CH/π, van der Waals or hydrophobic interactions

and are a common feature in Lectin-carbohydrate complexes. The study of Spiwok et

al. [230] calculated interactions energies in the range of -2.8 to -12.3 kcal/mol, for dif-

ferent carbohydrate-aromatic protein side chain interactions, at the MP2/6-311+G(d)

level, showing that interactions of this sort can make substantial contributions to the

stability of the complex. In this study, it was also shown that GLYCAM/AMBER

force field combination could reproduce ab-initio calculated interaction energies with

errors within 2 kcal/mol. The phenol ring of Tyr48 and Man161 stacks together in

a parallel fashion, with an calculated average center of mass ring distance of 4.5 Å.

The relative orientation of Tyr137 and GlcNAc160 is more flexible and can take con-

formations ranging from a misaligned parallel stacking to T-shaped orientations. The

average center of mass distance of the ring atoms in the two residues was 8.0 Å in these
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Figure 5.21: a) Per FimH residue decomposition of calculated ∆Uvac values of the FimH-
Man2GlcNAc complex. Van der Waals contribution to the interaction energy is shown as
shaded bars. b) Per FimH residue decomposition of calculated ∆Uvac+∆Gsolv values using
the Generalized Born implicit solvation methodology.

simulations. These differences are reflected in the ∆Uvac values in Figure 5.21a, where

the decomposed van der Waals interaction energy is more than twice as large for the

Tyr48 compared to Tyr137. Comparison with the decomposed MM-GBSA results for

the ManαPNP complex, shows a much larger contribution from Tyr48 and Tyr137 for

the FimH-Man2GlcNAc complex, although the π-π stacking, on average, is closer in the

ManαPNP complex. Further stabilization of the complex comes from the nonpolar side

chain of Ile52. Adding the ∆GGB,solv contribution to the binding free energy change,

it can be seen that interactions between the saccharide and the hydrophobic residues

Tyr48, Ile52 and Tyr137 are mainly responsible for the increased MM-GBSA calculated
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5.8 FimH-Man3GlcNAc2 complex

binding affinity. The large ∆Uele contribution from Asp140 is greatly reduced taking

solvation effects into account, showing that this residue is strongly solvated and does

not contribute significantly to the binding affinity of the Man2GlcNAc ligand.
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Figure 5.22: Per residue decomposition of calculated a) ∆Uvac and b) ∆Uvac+∆Gsolv

into contributions from Man2GlcNAc ligand in the FimH-Man2GlcNAc complex.

Decomposition of the calculated ∆Uvac, with respect to the residues of the saccharide,

is presented in Figure 5.22. The terminal Man162, buried in the FimH binding pocket,

clearly dominates the negative enthalpy change accompanying the binding process and

is very similar to the corresponding value for the FimH-ManαMe complex. Saccharide

residues Man161 and GlcNAc160 make smaller, but still favorable, contributions to the

overall binding affinity, mainly due to interactions with the hydrophobic residues in the

extended binding region. Including the ∆Gsolv contribution, Man161 and GlcNAc160

make additional contributions of -1.9 and -2.6 kcal/mol respectively to the free energy

change of binding.

5.8 FimH-Man3GlcNAc2 complex

The branched structure, Man(α1,6)[Man(α1,3)]Man(β1,4)GlcNAc(β1,4)GlcNAc, is the

“core region” of all N -glycoproteins with the terminal GlcNAc N -glycosidically linked

an asparagine residue of the peptide chain in β-mode. A manifold of different glyco-

protein structures can form from this uniform core by attachment of additional sac-
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5.FimH-carbohydrate interactions

charides. The glycoprotein uroplakin Ia has been identified as the urothelial receptor

of the FimH lectin [232]. This glycoprotein contains the core region with additional

α-mannosyl residues as (1,2)-, (1,3)-, and (1,6)-branches, each in turn terminated by

(1,2)-linked mannosyl residues. While the dissociation constant for FimH-uroplakin Ia

is approximately 100 nM [232], the affinity for just the core region of the glycoprotein

is around 20 nM [210], showing the potential of this pentasaccharide as an effective

FimH anti-adhesive. The structure of the ligand is shown in Figure 5.2 and is from

hereon abbreviated as Man3GlcNAc2.
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Figure 5.23: Important intermolecular hydrogen bonds formed in the FimH-Man3GlcNAc2

complex. Hydrogen bond occupancies in the 23 ns trajectory are shown as percentages in
the figure.

5.8.1 Hydrogen bond analysis

The hydrogen bond analysis of the FimH-Man3GlcNAc2 complex is summarized in

Figure 5.23. Hydrogen bond interactions between FimH and the saccharide are very

similar to that of the FimH-Man2GlcNAc complex. The hydrogen bonding pattern

within the binding pocket is almost the same as for the three previously investigated

complexes, and only minor differences can be seen beyond the binding pocket between

the FimH-Man3GlcNAc2 and FimH-Man2GlcNac complexes. Here, Tyr137 forms hy-

drogen bonds with both the NAc-arm of GlcNAc161 and the O6 hydroxyl group of
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Figure 5.24: Time series of a selected number of water mediated hydrogen bonds observed
in the FimH-Man3GlcNAc2 complex. Atom names are taken from the PARM99/GLYCAM04
force fields.

GlcNAc160. GlcNAc161, in turn, forms a relatively stable hydrogen bond with Thr51.

The α1,6 linked Man164 is not involved in hydrogen bonding to any greater extent.

Spurious and short-lived (with occupancies < 1%) hydrogen bonds were observed with

with FimH residues Ile13, Tyr137 and Asn138. A longer lived hydrogen bond could

be seen between the hydroxyl group of Tyr48 and the O6 hydroxyl group of Man164,

with an occupancy of approximately 5% of the trajectory. The two water molecules

found in the FimH-Man2GlcNAc complex were also present in this simulation, together

with one additional structural water molecule, bridging the O2 oxygen of Man162 and

Asn138. Time series of selected water mediated hydrogen bonds between FimH and

Man3GlcNAc2 are shown in Figure 5.24. Long residence times, over 10 ns, can be seen

for the three structural water molecules.

5.8.2 Binding free energy analysis

Instantaneous values of the calculated MM-PBSA and MM-GBSA results and the run-

ning average thereof are plotted in Figure 5.25. Also this complex is relatively stable

and does not show any major conformational changes during the simulation. The

MM-PBSA and MM-GBSA results are again similar, with a shift towards more nega-

tive values for the MM-GBSA results. During the first half of the simulation relatively
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5.FimH-carbohydrate interactions

large fluctuations in the running averages can be seen. In the last part of the trajectory

the running averages are, however, relatively stable. The MM-GBSA free energy anal-

ysis of the FimH-Man3GlcNAc2 complex is summarized in Table 5.8. The presented

results are averaged over 1124 snapshots separated by 20 ps of the 23 ns trajectory.

0 10000 20000
Time (ps)

-70

-60

-50

-40

-30

∆U
ga

s +
 ∆

G
so

lv
 (

kc
al

/m
ol

)

0 10000 20000
Time (ps)

-50

-40

-30

-20

-10
a) b)

Figure 5.25: Calculated instantaneous ∆Uvac+∆Gsolv values and the running average
thereof for the Man3GlcNAc2 complex, using the MM-GBSA method (a) and the MM-
PBSA method (b).

The similarity in FimH-ligand interactions between Man3GlcNAc2 and Man2GlcNAc,

shown in the structural analysis in the previous section, is reflected in the calculated

binding free energies. The two additional sugar residues do not make any major con-

tributions to the binding free energy. Calculated ∆Uvac + ∆Gsolv values add up to

-51.8±0.7 and -32.5±0.5 for the MM-GBSA and MM-PBSA methods respectively,

which is approximately 2 and 1 kcal/mol more negative compared to the same cal-

culations for the FimH-Man2GlcNAc complex. Looking at the contributions to the

calculated binding free energy change in Table 5.8, it can be seen that more favorable

Coulomb and van der Waals interactions between FimH and Man3GlcNAc2 are mainly

responsible for the shift towards a more negative free energy change of this complex.

The entropy analysis of the solute molecules is presented in Table 5.9. The loss in

rotational and translational entropy calculated from ideal gas partition functions, to-

gether with the change in vibrational entropy, calculated from a normal mode analysis

over 225 snapshot separated by 100 ps of the trajectory, give a entropy penalty of

approximately 32±0.9 kcal/mol for the FimH-Man3GlcNAc2 complex. Combining the

solute entropy change to the MM-PBSA and MM-GBSA results gives ∆G0
bind values

of -0.5±0.9 kcal/mol and -19.61±0.9 respectively, which both are far away from the
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5.8 FimH-Man3GlcNAc2 complex

expected binding free energy change of -10.6 kcal/mol (at 250C)[210]. Furthermore,

these results indicate a lower binding affinity of the Man3GlcNAc2 ligand, compared

to all previously investigated ligands. Here, the calculated binding affinity is in clear

disagreement with experiment, which as seen in Table 5.9, is a result of a much higher

entropy penalty for the larger ligand compared to the other ligands. Calculating solute

Table 5.8: MM-PB(GB)SA results from the FimH-Man3GlcNAc2 complex. See Table
5.2 for table captions. All units are in kcal/mol.

Complex σM Receptor σM Ligand σM Delta σM

Uele
a -4461.0 1.6 -4670.1 1.6 304.3 0.2 -95.2 0.3

Uvdw
b -617.3 0.6 -589.1 0.5 4.5 0.1 -32.8 0.1

Uint
c 3208.6 1.1 3121.7 1.0 86.9 0.2 0.0 0.0

Uvac
d -1869.7 1.9 -2137.5 1.8 395.8 0.3 -127.9 0.3

GGB
e 1371.1 1.4 -1352.9 1.4 -98.0 0.2 79.9 0.2

GPB
f 1337.5 1.4 -1297.0 1.4 -141.1 0.2 100.6 2.2

GGB,np
g 39.0 0.0 38.5 0.0 4.2 0.0 -3.7 0.0

GPB,np
h 46.2 0.0 44.0 0.0 7.4 0.0 -5.2 0.0

GGB,solv
i -1332.1 1.4 -1314.4 1.4 -93.8 0.1 76.2 0.2

GPB,solv
j -1291.3 1.3 -1253.0 1.3 -133.7 0.2 95.4 0.3

Uvac + GGB,sol
k -3201.7 1.1 -3451.9 1.0 302.0 0.2 -51.8 0.2

Uvac + GPB,sol
l -3161.0 1.1 -3390.5 1.1 262.1 0.2 -32.5 0.2

entropy changes, using the methods of Schlitter and Swanson et al. gives a different

result. Using the combination of T∆Sconf,lig + ∆Grbt gives an entropy penalty of 24.5

kcal/mol, which together with the MM-GBSA and MM-PBSA shows a stronger bind-

ing affinity of the Man3GlcNAc2 ligand compared to Man2GlcNAc. In the calculation

of these results, alignments of the saccharide to remove translational and rotational

motions were done by superposing the ring atoms (C1,C2,C3,C4,C5 and O5 in the

GLYCAMO4 force field) of all saccharide residues. Figure 5.26 shows that the calcu-

lated configurational entropy of the ligand has not converged. Fluctuations of several

kcal/mol of T∆Sconfig,lig can also be seen for the last 10 ns segment of the trajectory.

In this estimate of the entropy change, the entropy related to internal degrees of free-

dom of FimH is not included. Comparing the results in Table 5.9 with those in Table

5.7, a much large entropy penalty from the FimH internal motions in the case of the

FimH-Man3GlcNAc2 complex can be seen. Although the calculated T∆Sconf,rec value,

as previously discussed, most likely is largely overestimated, it shows that atomic fluc-

tuations are restricted to a greater degree in the FimH-Man3GlcNAc2 complex, which
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5.FimH-carbohydrate interactions

Table 5.9: Entropy analysis of the FimH-Man3GlcNAc2 complex.
See Table 5.3 for table captions. All units are in kcal/mol.

Complex Receptor Ligand Delta
TStrans,ig

a 16.54±0.0 16.49±0.0 13.90±0.0 -13.85±0.0

TSrot,ig
b 16.82±0.0 16.72±0.0 12.44±0.0 -12.34±0.0

G0
rbt

c 8.0

TSvib,nm
d 1761.4±1.4 1671.9± 1.1 95.5±0.4 -5.9±0.9

TSconfig
e 2748.2 2721.8 183.6 -157.2

TSconfig,lig
f 167.1 183.6 -16.5

TSconfig,rec
g 2592.3 2721.8 -129.5

would further add an entropy penalty to the binding free energy change. Thus, adding

the solute entropy contribution adds a large uncertainty to the calculated free energy

change and makes it difficult to estimate even relative binding affinities with these

methods. Comparing with the results of the previously studied complexes, in can be

seen that the agreement with experiment gets worse as the complex gets larger, which

seems to be a result of poor estimations of the solute entropy change for the larger

ligands.
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Figure 5.26: a) Calculated TSconfig values of the Man3GlcNAc2 ligand as a function of
the simulation time. The absolute configurational entropy of the ligand calculated from the
complex trajectory is shown as dashed lines and the corresponding entropy of the ligand in
the free state is shown with solid lines. b) Time evolution of the calculated configurational
entropy change of Man3GlcNAc2 in the complex relative to the free state.
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5.8.3 Per-residue free energy decomposition

The decomposition of the MM-GBSA free energy analysis, on to FimH residues with

any atom within 6.0 Å from the ligand in the first snapshot of the production run,

is shown in Figure 5.27. The structural similarities of the FimH-Man3GlcNAc2 and

FimH-Man2GlcNAc complexes are reflected in the MM-GBSA results. Figures 5.27a

and 5.21a are very similar for the two complexes. The ∆Uvac contribution from residues

inside the binding pocket is basically the same as for all the previously investigated

complexes. Here, the B-face of Man162 stacks in a parallel geometry against the
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Figure 5.27: Per FimH residue decomposition of calculated ∆Uvac values of the FimH-
Man3GlcNAc2 complex. Van der Waals contribution to the interaction energy is shown as
shaded bars. b) Per FimH residue decomposition of calculated ∆Uvac+∆Gsolv values using
the Generalized Born implicit solvation methodology.
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phenol ring of Tyr48. A slightly larger average center of mass distance of the ring

atoms of 4.9 Å is calculated for the FimH-Man3GlcNAc2 complex. The stacking of the

B-face of GlcNAc161 and Tyr137 is slightly misaligned and is also in this case much

more flexible and can take many different geometries. The energetic contributions from

these interactions are very similar for the FimH-Man3GlcNAc2 and FimH-Man2GlcNAc

complexes. Including the ∆GGB,solv term in Figure 5.27b, larger differences can be

seen between the two complexes. FimH residues Tyr48, Thr51 and Phe142 all make

larger and favorable contributions to the calculated binding free energy change. This a

result of a larger burial of non-polar surface areas of the non-polar side chains of these

residues. Again, although Asp140 is involved in favorable Coulomb interaction with the

saccharide, it makes only small contributions to the binding affinity when including the

∆Gsolv term. The per residue decomposition of interaction energies of Man3GlcNAc2,

in Figure 5.28, is very similar to that of the Man2GlcNAc. A slight increase in Coulomb

interaction can be seen for GlcNAc161 in Man3GlcNAc2 compared to GlcNAc160 in

Man2GlcNAc due to stronger hydrogen bonding for the pentasaccharide with FimH.

The two additional saccharide residues Man164 and GlcNAc160 make only relatively

small contributions to the overall binding free energy change. Both the α1,6 linked

mannose Man164 and GlcNAc160 point out towards the solvent and do not interact

with FimH to any greater extent. Extensions of the saccharide beyond the Man164

residue, commonly found in glycoproteins of the glycocalyx, are not likely to contribute

further to the binding affinity to FimH. These residues would be fully solvated and not

lower binding affinity due to steric crowding either. Comparing the Man3GlcNAc2

and Man2GlcNAc ligands, these calculations do not show any major enhancement of

the binding affinity of the larger ligand that can explain the higher binding affinity of

Man3GlcNAc2 observed in experiment.

5.8.4 Conformation of Man3GlcNAc2 in the complex

Finally, we investigate conformational changes of Man3GlcNAc2 in the complex. Figure

5.29 shows distribution plots of all nine glycosidic dihedral angles of the saccharide,

calculated from two separate 25 ns explicit water simulations, one in the complex

and one in the free state. The glycosidic dihedral angles φ and ψ are defined as H1-

C1-OX-CX and C1-OX-CX-HX for a (1→X) (X=2,3,4) linkage, analogous to the φh

and ψh definition in the IUPAC convention [202]. The additional 1→6 dihedral angle
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Figure 5.28: Per residue decomposition of calculated a) ∆Uvac and b) ∆Uvac+∆Gsolv into
contributions from Man3GlcNAc2 ligand in the FimH-Man3GlcNAc2 complex. The UvdW

contribution to the calculated vacuum interaction energies are shown as shaded bars in a).

found in the Man164αMan162 linkage, ω, is here defined as O6-C6-C5-H5, using atom

names from the GLYCAM04 force field. Figure 5.29 shows that the pentasaccharide

retains a lot of its dihedral flexibility in the complex. Conformational perturbations

can only be seen in two of the dihedral angles. The ψ-Man163(α1,3)Man162 angle is

shifted towards more negative angles, but is still within the boundaries of the range

of angle fluctuations observed in the free state. As discussed in Section 5.7.3, this

shift is not likely to introduce any larger energetic penalty. The second conformational

difference can be seen for the ω-Man164(α1,3)Man162 dihedral angle. This is a shift

into another of the possible staggered conformers of a glycosidic 1-6 linkage and should

also not introduce any larger energy penalty. The calculation of differences in molecular

mechanics energies from internal force field terms for the saccharide in the complex and

in the free state, using two separate trajectories, does, however, give an average internal

energy of the saccharide in the bound state of +3 kcal/mol relative to the free state.

Given that the conformational space of the saccharide is not fully sampled in both

simulations, the relative difference in internal energy might still change with time.
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Figure 5.29: Glycosidic dihedral angles of the Man3GlcNac2 ligand in the complex
(full lines) and in the free state (dashed lines) a) φ-GlcNAc161(β1,4)GlcNAc160
b) ψ-GlcNAc161(β1,4)GlcNAc160 c) φ-Man162(β1,4)GlcNAc161 d) ψ-
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φ-Man164(α1,6)Man162 h) ψ-Man164(α1,6)Man162 i) ω-Man164(α1,6)Man162
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5.9 Discussion

In this study, we have investigated the structural and thermodynamic basis of binding

of a series carbohydrate ligands to the lectin FimH. The structural investigations re-

vealed a structural similarity of the different complexes in the binding pocket of FimH.

The orientation of the terminal mannosyl-group was found to be very similar in all

complexes investigated. Due to strong hydrogen bond interactions, only small confor-

mational fluctuations was observed in the binding pocket, for all complexes, during the

23-25 ns long MD-trajectories. The MM-PB(GB)SA approach, together with a series

of methods for estimating solute entropy changes, were used to estimate binding free

energy changes associated with the complex formation process. Using the combination

of MM-PBSA results together with the T∆S0
bind contribution estimated by ideal gas

rotational and translational entropy calculations, plus changes in vibrational entropy

estimated by a normal mode analysis, gives results in good agreement with experi-

ment, at least for the smaller ligands. This combination of methods has in previously

studies been shown to outperform traditional docking studies in predicting relative

binding free energies of a series of complexes [233]. Calculated ∆G0
bind values for the

FimH-ManαMe and FimH-ManαPNP complexes are -7.1±0.8 and -10.6±0.8 kcal/mol

respectively, which compares well to the experimental free energy changes of -7.6 and

-10.0 kcal/mol. Using the same methods for the trisaccharide Man2GlcNAc and the

pentasaccharide Man3GlcNAc2, in complex with FimH, gives calculated ∆G0
bind values

of -6.0±0.8 and -0.5±0.9 kcal/mol respectively. These results are in disagreement with

experimental affinity measurements, showing a higher affinity of both Man2GlcNAc

and Man3GlcNAc2 ligands compared to ManαMe. Although the MM-PBSA and MM-

GBSA analysis indicated an increased binding affinity for these ligands, the inclusion

of the solute entropy change adds increasingly large entropic penalties for the larger

ligands. Several different methods available for calculating entropy changes from molec-

ular dynamics simulations have been tested in this study. Convergence problems and

inherent errors in the methods can lead to contradictory results when using different

methods to estimate solute entropy changes. Calculating entropies of biomolecules is,

still to this date, a problem for computational studies and puts a limitation of the pre-

dictive power of free energy changes calculated with end-point approaches. The main

appeal of the MM-PB(GB)SA approach is the ability to decompose the free energy

change into contributions on a residue basis. Contributions from residues in binding

pocket revealed ligand-specific interactions responsible for the binding affinity. From
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this study, it can be seen that the main stabilization of all investigated complexes

come from hydrogen bond interactions between the terminal a-D-mannosyl residue of

the ligands and FimH residues in the binding pocket of FimH. The calculated results in

this work identify FimH residues Phe1, Asp47, Asp54, Gln133 and Asn135 as the main

contributors to the specific binding and recognition of mannose-containing saccharides.

Beyond the binding pocket, hydrogen bonding does not make any major contribu-

tions to the stability of the complexes investigated. Instead, non-polar interactions

between, either non-polar patches of carbohydrate residues or the non-polar aglycons,

with non-polar residues in the extended binding site make important contributions to

the stability of the complexes. The results presented here show that stacking inter-

actions between carbohydrate residues and aromatic side chains can make substantial

contributions to the stability of the complex. The calculated results further indicate a

rather large contribution to the binding free energy from structural water molecules in

the binding interface of the complex. Structural analysis from explicit water simula-

tions revealed a number of water molecules involved in simultaneous hydrogen bonding

with the receptor and the ligand. Including one water molecule explicitly in the free

energy analysis, showed that water molecules at the binding interface can make impor-

tant contributions to the stability of the complex.

In summary, these calculations have revealed several interesting features of FimH-

carbohydrate interactions. FimH-mannose binding is enthalpy driven, mainly due to

strong hydrogen bonding interactions with a subset of FimH residues in the binding

pocket. Stabilizing effects of larger saccharides and mannosides are mainly due to van

der Waals interactions with non-polar FimH residues in the extended region of the

binding pocket. The free energy analysis presented in this study indicates that manno-

sides carrying aromatic or aliphatic aglycons, with limited internal degrees of freedom,

have great potential as future anti-adhesion drugs against type 1 fimbriated E. coli

uropathogenic infections.
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