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Flavin-containing monooxygenases (FMOs) are a family of NADPH dependent enzymes 

mainly catalyzing the oxygenation of heteroatom-containing nucleophilic xenobiotics. It 

consists of five isoforms with FMO3 and 5 having highest mRNA levels in adult human liver. 

Thus particular interest was paid to these two isoforms and their structural and functional 

properties were characterized.  

Several mutations of FMO3 have been reported to be associated with the disorder 

trimethylaminuria (TMAu). In phenotyping and genotyping studies of self-reporting TMAu 

patients at the Human BioMolecular Research Institute, a novel FMO3 variant (V187A) was 

discovered that occurred in combination with E158K, E308G, and E305X. FMO3 V187A as 

well as V187A/E158K were recombinantly expressed as maltose-binding fusion proteins 

(MBP-FMO3) and characterized. In combination with the common mutations E158K and 

E308G the novel variant impairs FMO3 oxygenation activity and leads to TMAu. 

In order to investigate structure and function of human FMO5 (hFMO5) sufficient quantities of 

highly purified, well characterized enzyme was needed. Thus, hFMO5 was successfully 

expressed as MBP-fusion protein (MBP-hFMO5), purified and characterized in terms of 

activity, purity, comparability to commercially available FMO5, stability at 4 °C, and 

monodispersity. These studies showed that MBP-hFMO5 was suitable for further studies 

including crystallization attempts. During these, MBP-hFMO5 proved to be stable without 

detergent although detergent was inevitable for extraction from E. coli suggesting that FMO5 

is not an integral membrane protein but rather only associated with the membrane. Further, 

MBP-hFMO5 was crystallized. However, no satisfactory diffraction pattern could be obtained. 

Crystallization of FMO5 seperated from the MBP-tag might improve crystals.  

Also, species-dependent pKa differences of the FMO5 enzyme were investigated. pH 

dependence studies of human and mouse MBP-FMO5 (MBP-mFMO5) were performed 

showing that residues at positions 227 and 228 of MBP-hFMO5 were responsible for the 

higher N-oxygenation activity of the human enzyme at low pH (i.e. pH 6).  

Finally, in order to identify new substrates to further the knowledge of FMO5 active site 

structure and to identify a possible physiological function of FMO5, a high-throughput 

compatible enzyme activity assay was developed and several compounds were screened. Of 

all compounds tested, one (i.e., 4’-(4-bromophenyl)-ω-dimethylaminobutyrophenone 

HCl) was found to be N-oxygenated by MBP-hFMO5. This compound fits into the proposed 

selectivity range of FMO5, having a tertiary amine group on a long carbon side-chain. 

Overall, further compound screens will be needed to identify additional FMO5 substrates and 

gain more knowledge of substrate specificity and of its structure-function relationship. 



                                                                                          Zusammenfassung        
    

  
 

Flavin-haltige Monooxygenasen (FMOs) gehören zu einer Familie von NADPH-abhängigen 

Enzymen, die die Oxygenierung von hauptsächlich Heteroatom-haltigen nucleophilen Xenobiotika 

katalysieren. Die Enzymfamilie besteht aus fünf Isoenzymen, von denen die mRNA Level von 

FMO3 und 5 in der Leber von Erwachsenen am höchsten sind. Daher bestand ein besonderes 

Interesse an diesen zwei Isoformen und an der Charakterisierung ihrer strukturellen und 

funktionellen Eigenschaften. 

Viele in der Literatur beschriebene Mutationen der humanen FMO3 werden mit der 

Stoffwechselerkrankung Trimethylaminurie (TMAu) in Zusammenhang gebracht. In Phäno- und 

Genotypisierungsstudien von TMAu-Patienten, durchgeführt am Human BioMolecular Research 

Institute in San Diego, wurde eine neue FMO3 Variante (V187A) entdeckt, die in Kombination mit 

E158K, E308G und E305X auftrat. Sowohl FMO3 V187A als auch V187A/E158K wurden 

rekombinant als Maltose-bindende Fusionsproteine hergestellt (MBP-FMO3), gereinigt und näher 

charakterisiert. Die durchgeführten Studien zeigten, dass diese neu entdeckte FMO3 Variante in 

Kombination mit den häufig vorkommenden Mutationen E158K und E308G die 

Oxygenierungsaktivität der FMO3 beeinträchtigt und so zu TMAu führt. 

Um Struktur- und Funktionsstudien der humanen FMO5 (hFMO5) durchzuführen, wurden 

ausreichende Mengen an hochgereinigtem, gut charakterisierten Enzym benötigt. Dazu wurde 

hFMO5 als MBP-Fusionsprotein exprimiert, gereinigt und hinsichtlich Reinheit, Ausbeute, 

Aktivität, Vergleichbarkeit mit kommerziell-erhältlicher FMO5, Stabilität und Monodispersität 

charakterisiert. Diese Studien zeigten, dass MBP-hFMO5 für weitere Studien (u.a. 

Kristallisationsstudien) geeignet ist. In diesen stellte sich heraus, dass MBP-hFMO5 auch in 

Abwesenheit von Detergens stabil und aktiv ist, obwohl zu ihrer Extraktion aus E. coli Detergens 

benötigt wird. Daher liegt die Vermutung nahe, dass FMO5 kein integrales Membranprotein ist 

sondern vielmehr nur mit der Membran assoziiert ist. Weiterhin konnte MBP-hFMO5 kristallisiert 

werden. Allerdings wurde kein angemessenes Diffraktionsmuster erhalten. Kristallisation mit dem 

vom MBP-Tag getrennten FMO5 Protein könnte hierbei die Qualität der Kristalle verbessern.  

In einer weiteren Studie wurden Spezies-abhängige pKa-Unterschiede der FMO5 untersucht, 

indem pH-Abhängigkeitsstudien von humaner und muriner MBP-FMO5 (MBP-mFMO5) 

durchgeführt wurden. Diese zeigten, dass die Aminosäuren an Position 227 und 228 der hFMO5 

für die erhöhte N-Oxygenierungsaktivität bei niedrigem pH (d.h. bei pH 6) verantwortlich sind.  

Zuletzt wurde zur Identifizierung von neuen Substraten ein ‘high-throughput’-fähiger 

Enzymaktivitätstest entwickelt, mit dem zahlreiche Verbindungen getestet wurden. Ein neues 

Substrat der FMO5 (4’-(4-Bromphenyl)-ω-dimethylaminobutyrophenon HCl) konnte auf diese 

Weise identifiziert werden, welches gut in das bisher bekannte Selektivitätsmuster des Enzyms 

paßt. Um weitere Erkenntnisse über die Struktur des aktiven Zentrums der FMO5 zu erhalten, 

sind allerdings weitere Untersuchungen nötig. 
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1 Introduction 

1.1 Introduction to Flavin-containing Monooxygenase s 

The flavin-containing monooxygenases (FMOs) (EC 1.14.13.8) are a family of 

microsomal, NADPH dependent enzymes that catalyze the oxygenation of 

nucleophilic nitrogen-, sulfur-, phosphorus-, and other heteroatom-containing 

chemicals, drugs, and endogenous substrates [Cashman et al., 2006; Ziegler, 1980]. 

They belong to the group of oxygenases. Oxygenases incorporate oxygen into their 

substrate and thus catalyze the most important oxidation reaction in the metabolism 

of xenobiotics. They are subdivided in monooxygenases and dioxygenases, 

depending whether one or two atoms of molecular oxygen are transferred into the 

substrate, respectively [Testa, 1995]. The most prominent of monooxygenases in 

regards of xenobiotic metabolism are the heme-coupled cytochrome P450 

monooxygenases (P450s). In the early 1960s, it was believed that most, if not all 

NADPH dependent, heteroatom-containing compound oxidations were catalyzed by 

P450s. After the isolation, characterization, and purification of pig liver FMO by 

Ziegler and colleagues [Ziegler, 1980], it was clear that FMO could oxygenate many 

compounds previously thought to be exclusively oxidized by P450. It has been shown 

that the family of enzymes that collectively constitute mammalian FMOs contribute 

significanty to the oxygenation of nucleophilic xenobiotics, generally converting 

lipophilic heteroatom-containing compounds to polar, readily excreted, oxygenated 

metabolites [Cashman, 1995]. Of course, it should be recognized that FMO-mediated 

oxygenation is only one part of the myriad of biotransformation steps that can befall a 

xenobiotic, and the final disposition of a chemical will depend upon further metabolic 

processes, both oxidative and reductive.  

Various names have been given to FMOs over the years. Initially the FMO enzyme 

was known as “Ziegler’s enzyme”, “dimethylaniline monooxygenase”, and “amine 

oxidase”. These terms were soon recognized to be a too restrictive description 

because at least some forms of the enzyme accept substrates as diverse as 

hydrazines, phosphines, boron-containing compounds, sulfides, selenides, iodide, in 

addition to primary, secondary, and tertiary amines. Later, the enzyme was more 

generally appreciated as a multi-substrate FMO [Ziegler, 1993].  
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In 1984 a new FMO was isolated from rabbit lung. This form possessed many 

properties that the well-studied pig liver FMO did not possess and it became 

apparent that FMO enzymes comprised a small family of enzymes [Tynes et al., 

1985; Williams et al., 1984]. In the early 1990s three further FMO enzymes were 

described [Lawton et al., 1993b] and today there is evidence for the existence of five 

forms of mammalian FMO enzymes with conserved amino acid sequences ranging 

between 50 % and 58 %. In addition, 6 FMO pseudogenes, i.e., genes that lost their 

ability to code for a functional protein [Vanin, 1985], have been described [Hernandez 

et al., 2004; Hines et al., 2002].  

1.2 Nomenclature of FMO Enzymes 

In 1994 a nomenclature was developed to provide a systematic guideline for the 

FMOs following the lead for the P450 enzymes [Lawton et al., 1994]. The 

nomenclature is based on amino acid sequence comparison. To be considered a 

member of the mammalian FMO family, a sequence identity of 40 % or higher is 

required. Since other nonmamalian flavoenzymes have a lower sequence identity 

(e.g., the cyclohexane monooxygenase shares only 25 % amino acid sequence 

identity with other mammalian FMOs), they do not belong to this family. Within a 

subfamily, amino acid sequence identity of ≥ 80 % is required. Thus, the five human 

forms of  FMO have 82 – 87 % sequence identity with their known orthologues in 

other mammals but only 50 – 58 % similarity to each other [Cashman, 2005; Phillips 

et al., 1995]. The flavin-containing monooxygenase gene family is designated as 

“FMO”. Individual genes are distinguished by Arabic numbers (i.e., FMO1 through 

FMO5). Genes and cDNA designations are italicized while mRNA and protein 

designations are non-italicized [Lawton et al., 1994]. Because all literature published 

before 1994 used several different methods naming FMO enzymes, Table 1.1 may 

serve as a guide to the nomenclature.  
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Table 1.1 Summary of mammalian flavin-containing monooxygenases.  

Designation Old name Species Accession number 

FMO1 1A1 Rabbit M32030 

FMO1 Ziegler’s enzyme Pig M32031 

FMO1 FMO-1 Human M64082 

FMO2 1B1 Rabbit M32029 

FMO2 Lung enzyme Rabbit  

FMO3 1D1 Rabbit L10037 

FMO3 HLFMO II Human M83772 

FMO4 1E1 Rabbit L10392 

FMO4 FMO2 Human Z11737 

FMO5 1C1 Rabbit L08449 

Adapted from Hines et al. [Hines et al., 1994] and Cashman et al. [Cashman et al., 

manuscript in preparation]. 

1.3 FMO Gene Organization  

It is thought that gene duplication of a common ancestral gene that took place long 

before the divergence of mammals led to all members of the FMO gene family 

[Phillips et al., 1995]. Therefore, in all mammalian species, orthologues of each of the 

FMO forms should be found. Thus, the individual genes have remained on the same 

chromosomal arm, (i.e., the long arm of human chromosome 1) [Phillips et al., 1995]. 

All FMOs share a similar pattern of intron/exon organization. FMO2, 3, and 5 contain 

eight coding exons (2 through 9), and the size and boundaries of these are highly 

conserved. They also contain at least one non-coding exon (numbered 1). In 

contrast, human FMO1 and 4 contain an additional non-coding exon (numbered 0) 

[Dolphin et al., 1997b; Ziegler, 1991].  

In addition, six human FMO pseudogenes have been described (FMOs 6P, 7P, 8P, 

9P, 10P and 11P) [Hernandez et al., 2004; Hines et al., 2002]. FMOs 1, 2, 3, 4, and 6 

are located on the long arm of human chromosome 1, in a 220 kb cluster of region 

1q23 – 25 [Hernandez et al., 2004]. FMO5 is located outside this cluster in region 
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1q21.1 [Gelb et al., 1997; Hernandez et al., 2004]. Approximately 4 Mb centromeric 

of the original FMO gene cluster is another cluster with five of the FMO pseudogenes 

[Hernandez et al., 2004]. The pseudogene cluster presumably arose through a series 

of independent gene duplication events and not through complete duplication of the 

gene cluster because the nucleotide sequences of members of the human 

pseudogene cluster (FMOs 7P, 8P, 9P, 10P and 11P) are more similar to each other 

than to members of the known gene cluster (FMOs 1, 2, 3, 4 and 6) [Hernandez et 

al., 2004]. 

1.4 Regulation 

1.4.1 Regulation of FMO Gene Expression 

FMO enzymes can be regulated by a number of different factors such as enzyme 

expression and physiological and dietary influences. FMO expression is dependent 

on the tissue, species, and developmental stage [Hines et al., 1994; Ziegler, 1993]. 

These factors have been characterized in a number of animal species, such as 

humans [Cashman et al., 2006; Zhang et al., 2006], mice [Janmohamed et al., 2004], 

rats [Lattard et al., 2001; Lattard et al., 2002a; Lattard et al., 2003a; Lattard et al., 

2002b], pigs [Gasser et al., 1990], and rabbits [Lawton et al., 1990]. Results show 

that FMO expression profiles are quite distinct among different species. Therefore, 

studies concerning FMO in animal models (e.g., toxicology and metabolism studies 

on drugs) are not always easily translatable to humans. Thus, knowledge of FMO 

expression profiles and their regulation in small animals is essential to interpret data 

useful for establishing animal models correctly as well as predicting the data for use 

in studies of drug metabolism in humans. 

1.4.2 Species-, Tissue-, Age-, and Gender-Dependenc e of FMO 

Expression 

FMO1 

In humans, all FMOs, with the exception of FMO1, are expressed at greater levels in 

adult liver and adult brain compared to fetal liver and fetal brain [Cashman et al., 

2006; Zhang et al., 2006]. Human FMO1 is 83 % sequence identical with mouse 

FMO1 [Cherrington et al., 1998] and 82 % sequence identical with rat FMO1. It 

shares the highest primary structure identity with rabbit (86 %) and pig FMO1 (88 %) 
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[Lawton et al., 1994]. In humans, FMO1 is the most prevalent FMO in adult kidney. 

FMO1 expression in fetal liver, small intestine, and lung is only 10.4, 6.9, and 2.8 % 

of that in adult kidney, respectively [Cashman et al., 2006; Zhang et al., 2006]. While 

in adult liver FMO1 is almost non-existent (i.e., less than 1 % of that in adult kidney), 

other mammals, such as pigs, rabbits, rats, and mice, express FMO1 in a significant 

amount not only in kidney, but also in adult liver. Further, FMO1 was found in the 

lung of guinea pigs, hamsters, mice, and rats [Atta-Asafo-Adjei et al., 1993] as well 

as in mouse brain [Janmohamed et al., 2004]. 

FMO2 

FMO2 is the dominant FMO form in adult human lung as well as in human heart 

[Nishimura et al., 2006]. Also, it is the prominent FMO form expressed at high levels 

in lung of nonhuman primates and other mammals. However, due to a C�T 

transition in codon 472, it is not expressed as a full-length active enzyme in most 

humans [Dolphin et al., 1998; Whetstine et al., 2000; Yueh et al., 1997]. Only a small 

portion of the population, mainly from African descent, has one normal allele and 

therefore expresses an active form of this enzyme [Krueger et al., 2004]. FMO2 

expression in kidney, small intestine, and adult liver is only 13.9, 2.3, and 1.8 % of 

that in lung, respectively [Cashman et al., 2006; Zhang et al., 2006]. FMO2 is found 

in the lung of rabbits, guinea pigs, and hamsters and in small amounts in the lung of 

mice [Atta-Asafo-Adjei et al., 1993]. In contrast to other mammals, certain rat species 

only encode a non-functional protein as described for humans [Lattard et al., 2002b]. 

FMO3 

FMO3 is the major drug-metabolizing FMO form in adult human liver. It is expressed 

at a similar magnitude as P450 2C9 that represents around 20 % of total liver P450 

[Klick et al., 2007; Shimada et al., 1994]. In lung, kidney, and fetal liver FMO3 is 

present at 4.5 %, 3.7 %, and 2.1 %, respectively, of the amount in adult liver. Small 

intestine and brain FMO3 constitute less than 1 % of adult liver FMO3 [Cashman et 

al., 2006; Zhang et al., 2006]. FMO3 expression is very low in fetal liver. Birth seems 

necessary, but not sufficient for the onset of FMO3 expression [Klick et al., 2007]. 

During childhood, FMO3 expression increases to approximately 30 % of adult values. 

In contrast to mice, FMO3 expression increases further, in a gender-independent 

mechanism, approaching adult levels by 18 years of age. In some animals (e.g., 
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mice, rats, and dogs), FMO3 expression is gender-dependent and with the exception 

of few species, all other mammals analyzed to date, including other primates, do not 

express FMO3 as the dominant adult hepatic form [Cashman, 1995; Janmohamed et 

al., 2004]. Therefore most small animals represent poor models for human FMO3-

mediated metabolism. Although there is no gender-difference in FMO3 levels in 

rabbits, rabbit liver contains slightly more FMO3 than human liver. Thus, rabbits do 

not represent good models because FMO3-contribution to human liver metabolism 

might be over-predicted [Cashman, 2000; Ripp et al., 1999b]. One of the most 

common animals used in pharmacological and toxicological models to predict 

metabolism, toxicity, and effects in humans are rats that are about two months old 

and in a period of acquisition of sexual maturity. Rats only display gender 

dependence at a young age, but a significant gender difference is not observed in 

FMO3 expression in adult rats [Lattard et al., 2002a] although it was reported that 

adult male rat liver contains slightly more FMO3 than adult female rat liver [Dannan et 

al., 1986; Ripp et al., 1999b]. Nevertheless, in rats, FMO3 levels are significantly 

lower than those in humans and thus metabolism in rats might under-predict the 

human situation. The liver of female mice and female dogs has much higher FMO3 

activity than that of their male counterparts and relative FMO3 levels are comparable 

to those in human liver. Thus, these animals could serve as suitable models for 

human FMO3 activity. Nevertheless, it is important to keep in mind that both species, 

unlike humans, display gender specific FMO3 expression. Also, mice continue to 

express FMO1 in adult liver whereas the FMO1-content of adult human liver is almost 

non-existent [Janmohamed et al., 2004]. 

FMO4 

Compared to other FMO isoforms, FMO4 is detected in low amounts in several 

human tissues. It is most prevalent in adult liver and kidney, whereas fetal liver, small 

intestine, and lung contain about 10.9, 10.8, and 7 %, respectively, compared to 

FMO4 of adult liver [Cashman et al., 2006; Zhang et al., 2006]. In mice, FMO4 mRNA 

is also expressed in liver and kidney while very low amounts of FMO4 mRNA can be 

detected in lung and brain [Janmohamed et al., 2004]. In rats, FMO4 was detected in 

kidney and brain [Lattard et al., 2003a]. 
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FMO5 

In human as well as mouse liver, FMO5 mRNA is the most abundantly expressed 

FMO mRNA [Cashman et al., 2006; Janmohamed et al., 2004]. This is in contrast to 

the long held assumption that FMO3 is the major form in adult human liver. A 

considerable amount of FMO5 is also found in human fetal liver, small intestine, 

kidney, and lung (18.1 %, 12.8 %, 9.8 %, and 4 %, respectively, of the amount 

present in adult human liver) [Cashman et al., 2006; Zhang et al., 2006]. Human 

FMO5 is 84 % sequence identical with mouse FMO5 [Cherrington et al., 1998]. In 

mice, FMO5 mRNA levels are also relatively prominent in male kidney (and to a 

lesser extent in female mouse kidney), lung, and brain [Janmohamed et al., 2004]. 

FMO5 is also found in the liver and kidney of rabbits, rats, guinea pigs, and hamsters 

[Atta-Asafo-Adjei et al., 1993]. Although FMO5 represents ≥ 50 % of the total FMO 

transcripts in adult human liver, the contribution of FMO5 enzyme functional activity 

has not been clearly established primarily due to a paucity of selective substrates. 

1.4.3 Hormonal Regulation 

The mechanisms controlling the expression of FMO have not been fully elucidated. 

However, the effects of hormones on FMO activity have been described in various 

animal models (e.g., rats [Coecke et al., 1998; Dannan et al., 1986; Lemoine et al., 

1991] and mice [Falls et al., 1995; Falls et al., 1997]). Female mice have a greater 

FMO activity than male mice. Testosterone decreasees FMO1 activity and abolishes 

FMO3 activity in female mice and castrated male mice [Coecke et al., 1998; Falls et 

al., 1995]. Progesterone and estradiol do not seem to have an effect on FMO activity 

in mice [Coecke et al., 1998; Falls et al., 1995; Falls et al., 1997]. 

In rats, hepatic FMO is apparently positively regulated by testosterone [Dannan et al., 

1986; Lemoine et al., 1991] and repressed by 17β-estradiol [Coecke et al., 1998; 

Dannan et al., 1986]. Another study [Coecke et al., 1998] suggested no involvement 

of testosterone in rat FMO, contradicting earlier reports. However, age-dependence 

was observed that supported the involvement of testosterone and 17β-estradiol 

regulation of FMO in rats [Lattard et al., 2002a]. In male rat liver, FMO3 levels and 

functional activity increases significantly during puberty whereas FMO1 remaines 

unchanged. However, the FMO3 levels in the liver of female rats stay stable while 

FMO1 undergoes an 85 % decrease as a function of age. The decrease in FMO1 
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might be due to an increase of 17β-estradiol during puberty [Coecke et al., 1998; 

Dannan et al., 1986; Lattard et al., 2002a]. Overall, the age-dependent change 

results in almost no gender difference in rat hepatic FMO3 expression although a 

slightly higher FMO3 level in male rats than in female rats has been reported 

[Dannan et al., 1986; Ripp et al., 1999b]. 

Compared to liver, rat kidney displays a very different FMO expression pattern. In 

female and male rat kidney, FMO1 does not change with age. Levels of FMO3 

mRNA increase significantly in female rat kidney. In male rat kidney FMO3 mRNA 

increases during puberty but decreases to the level of young rats thereafter [Lattard 

et al., 2002a]. 

Other native and synthetic hormones that appear to influence FMO activity include 

cortisol, progesterone, and dexamethasone. Through its diurnal secretion, cortisol 

appears to control hepatic FMO activity in female mice [Dixit et al., 1984]. 

Progesterone and the glucocorticoid dexamethasone increase FMO2 protein levels in 

rabbit lung [Lee et al., 1995]. In the lung of pregnant rabbits FMO2 mRNA and 

protein expression correlate with the plasma peak of progesterone during mid- and 

late-gestation [Hines et al., 1994; Lee et al., 1995]. In rabbit kidney, only 

dexamethasone induces FMO2 protein levels and activity [Lee et al., 1993; Lee et al., 

1995]. Rabbit liver FMO1 may also be regulated during gestation by progesterone or 

glucocorticoids because administration of these steroids resulted in a 4-fold 

enhancement of FMO1 mRNA levels [Lee et al., 1995]. Up to a 20-fold variation of 

FMO activity has been observed in the corpora lutea of the pig during estrous 

[Heinze et al., 1970]. 

Diet may also have an influence on FMO activity. In rats receiving total parenteral 

nutrition (TPN) with addition of choline, FMO activity was increased after 5 days 

[Cashman et al., 2004]. The amount of FMO4 increased 1.6-fold when animals were 

given TPN and choline compared to rats receiving TPN alone [Cashman et al., 2004].  

In fish, osmoregulation was reported to play a role in FMO expression. In trout, FMO 

expression and activity in osmoregulatory organs like gills, kidney, and gut increase 

in a salinity-dependent manner [Larsen et al., 2001]. When euryhaline fish were 

exposed to hypersaline environments, FMO was induced by trimethylamine N-oxide 
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(TMA N-oxide) and urea that acts as an organic osmolyte to counterbalance 

increases of osmotic pressure. Overall, much more work is needed to clarify the role 

of different hormones in the expression of FMO enzymes. 

1.4.4 Transcriptional Regulation  

Several transcriptional factors have been described that might influence FMO 

expression. In view of the developmental regulation of FMO3 and FMO1 in mice and 

humans, this is of importance. For example, nuclear transcription factor Y (NFY), 

upstream transcription factor 1 (USF1), an unidentified GC box binding element, and 

yin yang 1 (YY1) were found to be important for regulating FMO3 transcription, but 

do not appear to have an impact on temporal or tissue-specific regulation of FMO3 

[Klick et al., 2007]. A possible transcription factor that may participate in FMO3 

developmental- and tissue-specific regulation is pre-B-cell leukemia factor 2 (Pbx2), a 

heterodimer with an not yet identified homeodomain protein (Hox) isoform. Pbx2 

appears to be widely expressed in many tissues during and after embryonic 

development [Selleri et al., 2004]. However, Pbx2 DNA specificity and activity is 

dependent upon dimerization with one of the 39 human Hox isoforms that can be 

expressed at different times during development, in different tissues, and act as 

either an activator or repressor. Human FMO3 hepatic expression is restricted to 

postnatal tissue [Koukouritaki et al., 2002] and because it was shown that only eight 

of the 39 Hox isoforms, (i.e., A2, A4, A5, and B2 – B6), are expressed in human adult 

liver [Takahashi et al., 2004], the Pbx2 partner involved in binding the FMO3 

promoter is possibly one or more of these eight Hox isoforms [Klick et al., 2007]. 

Rabbit FMO1 is apparently regulated by the homeodomain-containing hepatic 

nuclear factor HNF1α and the orphan nuclear receptor HNF4α [Luo et al., 2001]. 

HNF1α and HNF4α might be responsible for the FMO1 tissue-selective expression 

pattern because there is a good correlation between the tissue-selective expression 

patterns of HNF1α, HNF4α (i.e., expressed in liver, kidney, intestine, and stomach) 

[Kuo et al., 1990; Sladek et al., 1990] and FMO1 (expressed in fetal liver, adult 

intestine, and kidney) [Luo et al., 2001]. Also, it was suggested that HNF1α and 

HNF4α are likewise important in regulating human FMO1 expression, because the 

regulatory elements identified for rabbit FMO1 share high identity with human FMO1 

and, with the exception of one of the two HNF4α sites, are also able to compete with 
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the rabbit sequences for specific nuclear protein binding [Klick et al., 2007; Luo et al., 

2001]. It was reported that rabbit FMO1 promoter activity might be negatively 

regulated by the YY1 transcription factor [Luo et al., 2001]. However, a later study 

identified an upstream single-nucleotide polymorphism (SNP) (a C�A transversion) 

for human FMO1 that lies within the conserved core binding sequence for the YY1 

transcription factor. This SNP was shown to account for significant loss of FMO1 

promoter activity through elimination of YY1 binding. Genotype analysis showed 

individuals of Caucasian, African, and Hispanic descent possessed 11 %, 13 %, and 

30 % frequency, respectively, leading to the proposal that this variant may account 

for the observed interindividual variation of FMO1 expression. The study also 

showed, as has been described earlier [Thomas et al., 1999], that YY1 may act as a 

negative as well as positive regulator for rabbit and human FMO1, respectively 

[Hines et al., 2003].  

1.4.5 Posttranscriptional Regulation 

Posttranscriptional regulation of FMO enzymes requires additional studies. It is not 

known which factors affect FMO mRNA stability or transcript translation. FMO1 was 

shown to be N-glycosylated at amino acid Asn 120 [Korsmeyer et al., 1998]. This 

residue is well conserved suggesting that it may be important for enzyme structure 

and function. However, FMO expression in bacterial cultures showed that 

N-glycosylation is not required for functional enzyme activity. Expression of FMO 

enzymes as N-terminal maltose-binding fusion proteins in E. coli resulted in a more 

stable, active enzyme isolable in high purity [Brunelle et al., 1997]. Coupling poly-His 

to the C-terminus of the protein also resulted in a very stable, readily purified enzyme 

[Lattard et al., 2003b].  

Nitric oxide (NO) appears to modify FMO posttranslationally. It was shown that NO 

suppresses FMO1 activity directly and in a cGMP-independent matter by decreasing 

the half-life of FMO1 mRNA rather than by decreasing its transcription. Under 

treatment with lipopolysaccharides and cytokines that result in conditions of NO-

overproduction, mRNA levels of FMO1 in cultured rat hepatocytes were decreased. 

Treatment with an NO-donor, spermine NONOate, also resulted in decreased FMO 

protein levels and functional activity [Ryu et al., 2004].  
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1.5 Prominent FMO Polymorphisms 

Although FMO1 is the major FMO form in the liver of most adult mammals, in adult 

humans it is more prominent in extra-hepatic drug metabolism. Some allelic variants 

(e.g., R502X, I303T) have been described, but most of them are rare [Furnes et al., 

2003; Hines et al., 2003]. A relatively common variant is FMO1*6, a -9,536C�A 

transversion that lies within the binding sequence for the YY1 transcription factor and 

eliminates binding of YY1 resulting in a significant loss of FMO1 promoter activity 

[Hines et al., 2003]. 

The most common FMO2 mutation is a 1414C�T mutation that leads to a premature 

stop codon (Q472X). The expressed protein, designated hFMO2*2A, is truncated 

and non-functional. All Caucasians and Asians genotyped to date express this 

inactive protein. Only 26 % of individuals from African descent [Dolphin et al., 1998; 

Whetstine et al., 2000] and 5 % from Hispanic descent [Krueger et al., 2004] possess 

at least 1 allele coding for the catalytically active full length FMO2 protein designated 

hFMO2*1. For the individuals carrying the hFMO2*1 allele this may have an impact 

on drug-metabolism and toxicity, because FMO2 is known to metabolize and 

preferentially bioactivate certain sulfur-containing chemicals such as substituted  

thioureas to reactive metabolites [Krueger et al., 2002]. 

FMO3 represents the major drug-metabolizing FMO form in adult human liver and is 

responsible for the conversion of the strong neuro-olfactant TMA derived from certain 

foods, to its non-odorous N-oxide (TMA N-oxide). SNPs may lead to an FMO3 

enzyme that is less active or inactive and therefore not capable of N-oxygenating 

TMA. The metabolic disorder in which the odorous unmetabolized TMA is excreted in 

body fluids is called trimethylaminuria (TMAu) and is likely the reason why FMO3 is 

the best-studied FMO isoform in regards to SNPs. Over 300 SNPs have been 

reported and deposited in the SNP database 

(http://www.ncbi.nlm.nih.gov/projects/SNP/). Many mutations have been found to 

decrease or even abolish FMO3 catalytic activity and lead to TMAu (e.g., E32K, 

A52T, N61S, N61K, M66I, P153L, I199T, R238Q, E305X, E314X, R387L, G475D, 

R500X, M82T, R223Q, and R492W). Most of these variants are rare and were found 

only in certain ethnic groups. The more common genetic variants (i.e., E158K, 

V257M, and E308G) are often linked to each other and can lead to decreased 
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catalytic activity and mild symptoms of TMAu. The polymorphic variant L360P, to 

date found only in individuals of African descent, is worth noting because it was 

found to increase FMO catalytic activity [Borbas et al., 2006b]. Polymorphic variants 

that alter FMO3 activity may also effect an individual’s drug metabolism as was 

shown for a number of drugs in several studies including benzydamine [Mayatepek et 

al., 2004], ranitidine [Kang et al., 2000], cimetidine [Cashman et al., 1993a], 

tamoxifen [Krueger et al., 2006; Shibutani et al., 2003], and sulindac [Hisamuddin et 

al., 2004; Hisamuddin et al., 2005]. 

1.6 FMO Catalytic Mechanism 

The catalytic steps of pig FMO1 are known in some detail and have been reported by 

the laboratories of Ballou [Beaty et al., 1981a; Beaty et al., 1981b; Jones et al., 1986] 

and Ziegler [Poulsen et al., 1979; Ziegler, 1988]. Presumably, the other FMO forms 

also follow a similar mechanism. The major steps in the FMO1 catalytic cycle are 

shown in Figure 1.1.  

 

Figure 1.1  Schematic representation of the catalytic steps of pig FMO1. 

S and S-O are the substrate and oxygenated substrate, respectively. Adapted from 

Cashman [Cashman, 1995].  

In the first step of the enzyme reaction (step A), the fully oxidized flavoprotein (i.e., 

FMO-Flox) reacts with NADPH in a fast step to give the enzyme in the reduced form 

 + H+ 
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(i.e., FMO-FlH2). The NADP+ produced remains at the active site of the enzyme. The 

reaction of the reduced enzyme with molecular oxygen (step B) is also rapid as 

shown in model studies, and generates the oxidant used in the enzyme reaction (i.e., 

the C4a-hydroperoxyflavin of FAD, FMO-FlOOH). The FMO structure stabilizes this 

hydroperoxyflavin intermediate and considerable spectral evidence is available that 

supports this stability, especially at low temperature [Beaty et al., 1981a]. Its 

formation is remarkable because it is unusually resistant to decomposition, and it is 

remarkably long lived. These observations suggest that non-nucleophilic FMO active 

site amino acids are present to provide an appropriate lipophilic environment to 

preserve this highly reactive species. Unlike P450 that only forms oxidizing agents 

after substrate binding, the preloaded FMO active site oxidant, the 

C4a-hydroperoxyflavin, waits in a ready position to oxygenate substrate (S). The 

prediction is that FMO will oxygenate any nucleophilic heteroatom-containing 

substrate that can be readily oxidized by hydrogen peroxide or peracids. The 

exception are highly sterically hindered substrates that cannot reach the active site. 

Oxygenation of substrate again proceeds rapidly (step C) with attack on the terminal 

flavin peroxide oxygen to produce the oxygenated product (i.e., S-O) and the 

C4a-hydroxyflavin form of FAD (i.e., FMO-FlHOH). The next step is supposed to be 

rate-limiting and must involve either dehydration of the FMO-FlHOH or release of 

NADP+ (step D). Because NADP+ is a competitive inhibitor of the pig FMO1 cofactor 

NADPH, kinetic studies suggest that NADP+ leaves the flavoprotein last. Kinetic 

analysis of a good substrate such as dimethylaniline showed that the slow step in the 

overall catalytic cycle is not the release of oxygenated product which has important 

consequences for the kinetics of good substrates, because the rate-determining step 

occurs after product release. The mechanism of Figure 1.1 predicts that all good 

substrates possess similar and large Vmax values. Solvent deuterium isotope effects 

on the kinetics of dimethylaniline N-oxygenation with pig FMO1 suggest participation 

of general acid catalysis [Fujimori et al., 1986] that would tend to support dehydration 

as the rate-limiting step in the overall reaction. However, this point is controversial. 

NADP+ appears to play a "gate-keeper" role in that the FMO-FlH2 that reacts with 

molecular oxygen in the absence of NADP+ produces significant amounts of H2O2 

that is otherwise not normally formed [Beaty et al., 1981a; Beaty et al., 1981b]. FMO 

is generally tightly coupled and only minute amounts of H2O2 "leak" away from the 

monooxygenase under normal conditions. If this were not the case, FMO would 
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serve as an NADPH oxidase that would produce copious amounts of H2O2 in the 

absence of substrate, and expose the cell to the untoward effects of oxidative stress. 

The kinetics and proposed mechanism of FMO action is in accord with this 

suggestion, and such a paradigm does not violate principles of enzyme saturation 

(i.e., Michaelis-Menten) kinetics. However, a number of studies have shown that not 

all substrates precisely obey the above model. This is especially true when 

considering the stereoselectivity of FMO, where it appears that the nature of the 

substrate in some cases can have a significant effect on the velocity of the reaction. 

1.7 Differences between P450 and FMO Enzymes 

When discussing enzymes involved in xenobiotic metabolism and especially when 

discussing the group of monooxygenase enzymes, P450 enzymes come to mind 

immediately, being the most prominent enzyme family in this field. P450s represent 

typical characteristics of xenobiotic-metabolizing enzymes such as a mostly low 

substrate and product specificity and a susceptibility to being induced or inhibited by 

many xenobiotics, particularly by some of their own substrates. In general, this 

behavior is useful when it comes to the elimination of physiologically useless 

compounds, however it also leads to several problems including drug-drug 

interactions. Although both FMOs and P450s are able to catalyze similar and in some 

cases even the same biotransformation reactions, there are quite a few differences 

between the two monooxygenase families. 

For example, the first step of the catalytic mechanism of P450 is substrate binding 

and only thereafter is P450 able to form oxidizing agents. In contrast, FMO pre-forms 

an oxygenating agent and is generally then ready to accept a substrate. The 4a-

hydroperoxyflavin formed after addition of NADPH and molecular oxygen is very 

stable and only insignificant amounts of H2O2 are formed. P450 however, forms an 

unstable ferrous-O2 complex that can decompose and lead to the generation of O2
- or 

H2O2. Another significant difference in the catalytic cycle is the apparent one- vs. two-

electron nature of P450 and FMO, respectively, and a number of examples exists 

that show that FMO metabolites in many cases do not inactivate FMO but can leave 

the active site and migrate to other proteins nearby, and inhibit or covalently modify 

those proteins. This observation points out that the active site of FMO that generated 
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the highly reactive material is relatively immune to the electrophilic nature of the 

metabolite.  

In contrast to the P450 catalyzed biotransformation reactions, FMO mediated 

metabolism may be utilized to the possibility of making future drugs safer through 

fewer adverse drug-drug interactions by utilization of alternative drug metabolism 

routes, i.e., FMO catalyzed drug metabolism. 

Usually, the structure of the metabolite can be predicted with a great deal of certainty 

based on the products from treating a substrate of FMO with peracids or hydrogen 

peroxide. Although exceptions to this rule are known (i.e., N-oxide or S-oxide 

metabolites may undergo rearrangements or elimination reactions to give products 

that are not readily identifiable with FMO products), in general this chemical model 

provides an important way to predict ahead of time whether a reaction is catalyzed by 

FMO. Another advantage of FMO compared to P450 is that FMO enzymes are not 

readily inhibited or induced. Only few inhibitors of FMO enzymes (e.g., aminostilbene 

carboxylates) have been reported in the literature [Clement et al., 1996]. Variation is 

mainly due to genetic differences and FMO inhibition is usually due to alternate 

substrate competitive inhibition. In contrast CYP is induced or inhibited by a wider 

variety of xenobiotics which in many cases leads to adverse drug-drug interactions. 

Therefore it is advantageous to develop drugs that are metabolized by FMO.  

In summary FMO mediated metabolism is advantageous compared to P450 

mediated reactions because firstly, FMO enzymes are not readily induced or inhibited 

and therefore metabolism of the compound is predictable. Secondly, the likelihood of 

adverse drug-drug interactions is decreased because CYP is less dominant and most 

drugs are metabolized by CYP and not FMO. Thus, even in combination with other 

drugs, medication will not lead to drug-drug interactions [Cashman, 2005]. 

1.8 Toxicity  

In general, oxygenation of lipophilic xenobiotics by FMO enzymes leads to more 

polar, less toxic, and readily excreted metabolites. N-Oxygenation of tertiary amines, 

for example, leads to pharmacological inactivation. N-Oxygenation of (S)-nicotine to 

its trans N’-oxide by liver FMO3 constitutes a detoxication route in animals and 
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humans, shunting alkaloid substrate from the metabolic pathway mediated by P450 

that generate the electrophilic (S)-nicotine ∆1’,5’-iminium ion [Cashman et al., 1992b; 

Damani et al., 1988; Park et al., 1993]. The neurotoxicant MPTP 

(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is a good substrate for FMO1 

[Cashman, 1988; Cashman et al., 1986] and tertiary amine N-oxygenation of MPTP 

affords a polar metabolite that represents a major route for detoxication [Chiba et al., 

1990; Chiba et al., 1988]. In mice, MPTP N-oxide is the major metabolite observed in 

the urine of animals treated with MPTP. Presumably, monoamine oxidase-catalyzed 

oxidation of MPTP to the Parkinson-inducing neurotoxins MPDP+ (1-methyl-4-phenyl-

2,3-dihydropyridinium cation) and MPP+ (1-methyl-4-phenylpyridinium cation) 

represent minor metabolic pathways. A study comparing metabolism of MPTP in rat 

brain with that in the brain of Suncus murinus (S. murinus) showed significant 

differences in MPTP metabolism. In contrast to rat brain, FMO activity was extremely 

low in S. murinus brain and therefore MPTP was able to penetrate into the brain to a 

higher extent. Presumably this leads to an accumulation of neurotoxic MPP+ in the 

brain of S. murinus  [Mushiroda et al., 2001]. Thus, MPTP metabolism is species 

dependent and the relative contribution of oxidative and reductive pathways may help 

determine the relative neurotoxicity of the compound [Chiba et al., 1990; Chiba et al., 

1988; Di Monte et al., 1991]. Other examples of metabolic detoxication mediated by 

an FMO enzyme include N-oxygenation of 1,1-dialkylhydrazines (some of the most 

toxic synthetic chemicals known to humans) or S-oxygenation of thiones [Prough et 

al., 1981]. 

 FMO enzymes also catalyze the N-oxygenation of a wide array of secondary and to 

some extent primary amines. In some cases, this leads to bioactivation of these 

compounds to more reactive metabolites [Cashman, 1989; Cashman et al., 1992a; 

Cashman et al., 1988; Cashman et al., 1990b; Mani et al., 1991; Vyas et al., 1990]. 

For example, amphetamine and methamphetamine are oxidized by FMO3 to their 

N-hydroxylamines, but are not very efficiently N-oxygenated further to their oxime or 

nitrone, respectively. Because these hydroxylamines are more cytotoxic than the 

parent compounds this metabolic route is considered a metabolic activation event 

[Cashman et al., 1999b]. The N-desacetyl metabolite of the anti-fungal drug 

ketoconazole, a secondary amine, has been described to be a more potent 

cytotoxicant than the parent compound and is metabolized further by FMO to three 
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metabolites. Two of them were identified to be a secondary N-hydroxylamine and a 

nitrone and may be capable of reacting with proteins or glutathione (GSH) [Rodriguez 

et al., 1997a; Rodriguez et al., 1997b; Rodriguez et al., 2003; Rodriguez et al., 2000; 

Rodriguez et al., 1999]. Also, N-arylamines can be N-oxygenated by FMO to 

N-hydroxyarylamines and subsequent metabolic activation of these metabolites to 

reactive esters are implicated in the carcinogenic properties of arylamines in animals 

[Ziegler et al., 1988]. An example for the bioactivation of arylamines is the 

N-oxygenation of dapsone and sulfamethoxazole by FMO3 to their 

arylhydroxylamines in human epidermal keratinocytes. These metabolites are further 

metabolized to the corresponding arylnitroso metabolites that can bind to cellular 

proteins [Vyas et al., 2006].  

The sulfur atom of sulfur-containing xenobiotics and drugs is the preferred site for 

FMO oxygenation, presumably because of the enhanced nucleophilicity of the 

heteroatom [Ziegler, 1980; Ziegler, 1988; Ziegler, 1990; Ziegler, 1993]. Thus, this 

class of compounds provides more examples of reactive metabolites produced by 

FMO. For example, thiols, thioamides, 2-mercaptoimidazoles, thiocarbamates, and 

thiocarbamides can be efficiently S-oxygenated by FMO to electrophilic reactive 

intermediates. These reactive metabolites do not inactivate FMO, but may covalently 

bind to other proteins. Thioamides are among the best substrates for FMO and 

sequentially form mono- and di-S-oxides [Hanzlik et al., 1983]. Remarkably, even 

thiobenzamide S,S-dioxides do not inactivate FMO, but efficiently covalently modify 

other microsomal proteins, [Hanzlik, 1986] presumably by acylation of the amide 

carbon atom [Cashman et al., 1983; Dyroff et al., 1981; Hanzlik et al., 1983]. 

Thioacetamide [Lee et al., 2003], and thiobenzamide [Hanzlik et al., 1983] are 

S-oxygenated to their hepatotoxic sulfines and sulfenes. The structurally related 

ethionamide, an agent used to treat tuberculosis, is a prodrug that is bioactivated by 

S-oxygenation in Mycobacterium tuberculosis [Vannelli et al., 2002]. Thus, in this 

case the cytotoxicity is utilized to destroy the bacterium.  

2-Mercaptoimidazoles are efficiently S-oxygenated to sulfenic acids by FMO as well 

as chemical oxidants that are subsequently S-oxygenated again to sulfinic acids 

[Decker et al., 1992b; Miller et al., 1988; Ziegler, 1980]. The intermediate sulfenic 

acid readily forms thiol adducts resulting in disulfides that serve as subsequent sites 

for disulfide exchange and net thiol oxidation and substrate regeneration [Krieter et 
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al., 1984]. Ziegler has shown that thiols that establish such a futile cycle catalyzing 

the oxidation of cellular thiols (i.e., GSH) and NADPH may render the cell susceptible 

to the toxic properties of other chemicals [Ziegler, 1993]. Thioureas are another class 

of nucleophilic compounds that are extremely efficiently S-oxygenated by FMO 

[Decker et al., 1992b; Guo et al., 1991; Kedderis et al., 1985; Krieter et al., 1984; 

Miller et al., 1988]. Depending on the substituents on the nitrogen atom or whether 

the thiourea moiety is part of an aromatic ring system, sequential S-oxygenation by 

FMO may result in electrophilic sulfine metabolites. Sulfines are either rapidly 

hydrolyzed (and detoxicated) or sufficiently stable to react with biological 

macromolecules, and thus toxic [Decker et al., 1992a; Hines et al., 1994; Hui et al., 

1988]. In summary, the relative rate of sulfenic acid oxidation (i.e., to reactive 

electrophilic sulfines) compared with the propensity for attack by a thiol (or hydrolysis 

of the corresponding sulfines) probably determines the toxic potential of thioureido-

containing chemicals and drugs. FMO2 is mainly responsible for the S-oxygenation 

of thioureas. Therefore, individuals carrying the catalytically active full length FMO2*1 

enzyme are possibly at enhanced risk for toxicity stemming from thiourea-containing 

compounds [Henderson et al., 2004b]. The thiourea-containing antitubercular 

prodrug thiacetazone acts in the same manner as the thioamide ethionamide, 

utilizing its toxicity against the bacterium. It was shown that human FMO1 and 3 

catalyze the reaction to the reactive sulfenic acid species and subsequently to its 

sulfinic acid and carbodiimide that may lead to the reported hepatotoxicity [Qian et 

al., 2006]. Nevertheless, there are also many examples of detoxication by FMO 

enzymes (e.g., the thioether-containing organophosphonate insecticides disulfoton 

and phorate) through S-oxygenation by the full-length FMO2. Again, the full length 

FMO2 enzyme is only expressed in certain mammals and a small portion of the 

human population and therefore only certain individuals may be at reduced risk of 

toxicity when exposed to these compounds [Henderson et al., 2004a].  

There are a few examples where FMO may promote the formation of electrophilic 

metabolites due to nonenzymatic rearrangement of enzymatically-generated tertiary 

amine N-oxides [Cashman et al., 1988; Mani et al., 1991]. For example, verapamil N-

oxide is efficiently formed by FMO from the tertiary amine verapamil but the N-oxide 

is not indefinitely stable and undergoes decomposition to a hydroxylamine and 

3,4-dimethoxystyrene [Cashman, 1989]. It is possible that formation of these 
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unanticipated metabolites of verapamil may contribute to the cardiotoxicity observed 

with the parent drug.  

1.9 Clinical Significance  

In adult humans, FMO serves a role in the metabolism of many tertiary amine-

containing xenobiotics (e.g., trimethylamine [Ayesh et al., 1993], (S)-nicotine [Park et 

al., 1993], tamoxifen [Krueger et al., 2006], ranitidine [Chung et al., 2000], 

benzydamine [Mayatepek et al., 2004], itopride [Mushiroda et al., 2000], and 

olopatadine [Kajita et al., 2002]) to polar, readily excreted tertiary amine N-oxides. 

Tamoxifen, a breast cancer therapeutic, is hydroxylated by P450 3A4 and 

subsequently sulfated producing a metabolite capable of binding to DNA whereas the 

N-oxygenation by FMO1 and to a lesser extend FMO3 represents a detoxification 

pathway [Krueger et al., 2006; Mani et al., 1991].  

Heterocyclic amines metabolized by FMO enzymes include clozapine [Tugnait et al., 

1997], olanzapine [Ring et al., 1996], and xanomeline [Ring et al., 1999]. 

Xanomeline, a tetrahydropyridine and selective M1-muscarinic agonist, is 

metabolized to xanomeline N-oxide in kidney and liver by FMO1 and 3 although 

FMO3 has a much higher Km than FMO1. The antipsychotic drug clozapine is 

N-oxygenated by FMO3 but also metabolized by P450 enzymes including P450 1A2 

and 3A4 [Tugnait et al., 1997]. In the brain of rats administered clozapine, clozapine 

N-oxide was found to be the major metabolite [Fang, 2000]. The structurally related 

antipsychotic olanzapine is metabolized by FMO to its N-oxide, but also by P450 

enzymes 2D6 and 1A2 to its 2-hydroxymethyl and 4’-N-desmethyl metabolite, 

respectively [Ring et al., 1996].  

Sulphur-containing drugs metabolized by FMO enzymes include sulfides or 

thioethers that are S-oxygenated to their corresponding sulfoxides (e.g., albendazole 

[Molina et al., 2007], cimetidine [Cashman et al., 1993a], methionine [Duescher et al., 

1994; Ripp et al., 1999a], sulindac sulfide [Hamman et al., 2000; Hisamuddin et al., 

2004; Hisamuddin et al., 2005], and tazarotenic acid [Attar et al., 2003]), sulfoxides 

that are oxygenated to sulfones (e.g., ethionamide [Krueger et al., 2005], flosequinan 

[Kashiyama et al., 1994], S-methyl esonarimod [Ohmi et al., 2003; Zhang et al., 

2007a], and other S-containing drugs such as methimazole and 
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S-methyl N,N-diethyldithiocarbamate [Pike et al., 2001]. S-Methyl esonarimod, an 

active metabolite of the antirheumatic drug esonarimod, is mainly deactivated 

through FMO catalyzed S-oxygenation and P450 2C9-catalyzed 4-hydroxylation and 

excreted as sulfoxide and 4-hydroxy sulfoxide, respectively [Ohmi et al., 2003]. 

FMO1 and FMO5 seem to be the major FMO forms involved in this oxygenation 

reaction. Studies with recombinant mouse FMO1, 3 and 5 showed that mFMO1 and 

mFMO5, but not mFMO3 catalyze S-oxygenation with a similar Km value for both 

FMO1 and 5, but with a 3-fold higher Vmax value for mFMO1 [Zhang et al., 2007a]. 

Because recombinant FMO5 and human liver microsomes have the same Km value 

and because FMO5 is the major FMO isoform in human liver, FMO5 is believed to be 

the major enzyme catalyzing this reaction in human liver [Ohmi et al., 2003]. S-Methyl 

N,N-diethyldithiocarbamate (MeDDC), a metabolite of the alcohol deterrent 

disulfiram, is S-oxygenated in human kidney by FMO1 to MeDDC sulfine, a proposed 

necessary intermediate metabolite for the in vivo inhibition of aldehyde 

dehydrogenase by disulfiram, whereas in liver P450 is the major catalyst. Although 

the contribution of human kidney microsomal FMO1-mediated S-oxygenation of the 

S-methyl metabolite is 2- to 3-fold greater than P450, the clinical significance is not 

clear because the human kidney has at least 14-fold less metabolic capacity than the 

human liver [Pike et al., 2001].  

Many of these FMO substrates are stereoselectively metabolized and the 

stereoselectivity of the S-oxygenation by FMO is often distinct from that of P450 

enzymes [Cashman et al., 1993a; Cashman et al., 1990a]. Also, for some substrates, 

a particular FMO could be highly stereoselective, and for other FMO orthologues the 

same substrate could be oxygenated with only modest stereoselectivity. Sulindac 

sulfide, the active metabolite of sulindac, is stereoselectively oxygenated by FMO1, 

2, and 3 mainly to R-sulindac sulfoxide. This is consistent with the finding, that this 

enantiomer is enriched in human serum and urine [Hamman et al., 2000]. (S)-

Nicotine and cimetidine are probably the best studied in vivo stereoselective probes 

of FMO function. In the presence of (S)-nicotine, FMO2 and FMO3 exclusively form 

trans-(S)-nicotine N-1'-oxide [Cashman et al., 1992b; Park et al., 1993], whereas 

FMO1 as well as P450 enzymes form a mixture of cis- and trans-(S)-nicotine 

N-1′-oxide [Damani et al., 1988; Park et al., 1993]. Constraints on the binding 

channels of especially FMO2 and 3 as well as additional interactions could be at 
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work to produce the stereoselectivity observed. In vitro studies with adult human liver 

microsomes showed that N-oxygenation was solely dependent on FMO3 [Cashman 

et al., 1992b] and exclusively resulted in trans-(S)-nicotine N-1'-oxide formation  

[Cashman et al., 1992b; Cashman et al., 1993b]. Thus, in adult male humans, 

(S)-nicotine is N-1'-oxygenated with absolute stereoselectivity to produce only 

trans-(S)-nicotine N-1'-oxide and formation of this metabolite is a selective functional 

marker of adult human liver FMO3. The fact that no cis-(S)-nicotine N-1'-oxide was 

observed suggests that neither extra-hepatic (i.e., kidney, intestine, or elsewhere) 

(S)-nicotine N-1'-oxygenation metabolism in humans (e.g., catalyzed by FMO1) nor 

autooxidation is occurring [Park et al., 1993]. Cimetidine S-oxygenation represents 

another example in which FMO enzyme structural differences are manifested in 

functional differences in enzyme stereoselectivity [Cashman et al., 1993a; Stevens et 

al., 1993]. In vitro studies with adult human liver microsomes showed a clear 

stereopreference of FMO3 toward (-)-cimetidine S-oxide (i.e., (-):(+) 84:16) formation 

[Cashman et al., 1995; Cashman et al., 1993a] whereas FMO1 S-oxygenation 

resulted in almost equal amounts of (+)- and (-)-cimetidine S-oxide (i.e., (+):(-) 57:43) 

[Cashman et al., 1993a]. In human urine samples cimetidine S-oxygenation 

stereopreference was (+):(-), 75:25. This is in relatively good agreement with the 

enantiomeric composition of cimetidine S-oxide found with human liver microsomes. 

The general conclusion is that stereoselective formation of cimetidine S-oxide (or 

formation of trans-(S)-nicotine N-1'-oxide) may be a useful bioindicator of the 

functional contribution of FMO3 in the human, or FMO1 and FMO3 in a particular 

species. In summary, knowledge of the stereoselective oxygenation of cimetidine 

and/or (S)-nicotine has been used as a diagnostic indicator of functional FMO activity 

in humans and animals.  

1.10   Aim  

The overall aim of this study was the characterization of structural and functional 

relations of FMO 3 and 5. The family of FMO enzymes consists of five isoforms 

(FMO1 – FMO5); the best studied of these are FMO1 and 3. In case of FMO1, the 

most prevalent FMO enzyme in adult kidney, this is due to its early purification from 

pig liver [Cashman et al., 2006; Zhang et al., 2006; Ziegler, 1980]. FMO3 is also well 

studied because of its association with the disorder TMAu and because of its high 
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expression in adult human liver. Nevertheless, there are still large gaps of knowledge 

in certain areas concerning FMO3. Although this isozyme has been studied to some 

extend and although TMAu is a disorder with a long history, many aspects need 

further investigation.  

Self-reporting TMAu patients need to be examined because new polymorphic 

variants of the FMO3 gene with unknown effect on metabolism may be found in 

these cases that need further investigation. Findings from these studies may provide 

important new information to our understanding of factors contributing to TMAu. In 

addition, it may help identify functionally important residues of human FMO3, and 

thus further our knowledge of the relationship between FMO enzyme structure and its 

function. Herein, a novel mutation observed from phenotyping and genotyping 

studies of self-reporting TMAu patients should be characterized. 

For a long time FMO3 had been considered the major form in adult human liver. 

However, it has now been verified by more recent studies that FMO5 mRNA is the 

most abundantly expressed FMO mRNA in adult human liver [Cashman et al., 2006; 

Janmohamed et al., 2004]. Thus, besides FMO3, the largely understudied FMO5 is 

of special interest and investigations concerning its structure and function should be 

done within this thesis. Three main areas were of special interest: The first goal was 

to get an insight of the structure of FMO5. Since the underlying principle of function is 

structure, this will advance the knowledge of FMO5s catalytic mechanism as well as 

its substrate specificity and its general function. Solving the three-dimensional 

structure of FMO5 will in addition help advance our knowledge of FMO enzymes in 

general. Secondly, species differences of FMO5 and associated differences in pKa 

values were of interest. This is also an important part when investigating the 

connection between structure and function of FMO enzymes. Although mouse and 

human FMO5 share a sequence identity of 84 % [Cherrington et al., 1998], there are 

distinct differences in their pH dependent activity profile which should be compared in 

this study in order to identify and analyze the amino acids responsible for the 

difference. The third main area of interest was the development of a rapid and easy 

method to screen for possible FMO5 substrates. Although FMO5 is highly expressed, 

to date only very few substrates have been identified. Thus, the identification of new 

substrates will help further the knowledge of FMO5 and possibly help determine a 

physiological function of FMO5. In order to facilitate these studies, it was crucial to 
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have sufficient quantities of purified and well characterized enzyme. Thus, 

recombinant maltose-binding protein (MBP)-tagged FMO5 should be produced by 

expression in bacteria and subsequent purification and characterization.  

The work will advance the knowledge of how SNPs and resulting amino acid 

changes may alter catalytic enzyme activity. It will provide additional knowledge 

regarding function of FMO enzymes through structure analysis and aid defining the 

substrate structure activity relationship for FMO enzymes further. Also, it will provide 

an understanding as to how the human family of FMOs work together to detoxicate 

drugs and chemicals. 
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2 Novel Variant of the Human FMO3 Gene Associated w ith 

Trimethylaminuria 

2.1 Introduction 

2.1.1 FMO3 Polymorphisms  

More than 300 SNPs of FMO3 are deposited in the SNP database and/or reported 

elsewhere spanning the 26.92 kb human FMO3 gene region. Only a small portion of 

those SNPs have been reported to be associated with interindividual differences in 

the expression and/or function of FMO enzymes that potentially contribute to an 

individual’s susceptibility to toxicants and drug response. Further, in vivo studies of 

drugs like benzydamine [Mayatepek et al., 2004], ranitidine [Kang et al., 2000], 

cimetidine [Cashman et al., 1993a], tamoxifen [Krueger et al., 2006], and sulindac 

[Krueger et al., 2005] showed a close connection between certain common FMO3 

polymorphic variants and drug metabolism. The most prominent example of a direct 

causative relationship between mutations of the FMO3 gene and disease is the 

disorder TMAu, which will be discussed in more detail below.  

Some FMO gene variants appear to be restricted to certain ethnic populations. In 

most cases this is due to founder effects, meaning that a small number of individuals 

carrying only a fraction of the originals population’s genetic variation establishes a 

new population, with only a few exceptions where ethnic specific association has 

been demonstrated [Cashman et al., 2003]. Overall, these interethnic differences 

contribute to the variability of FMO enzyme activity. Thus FMO-mediated drug 

metabolism and possible differences among ethnic groups are probably due to more 

common FMO3 genetic variants such as E158K, V257M, E308G and not rare 

polymorphic variants. 

2.1.2 Diseases and Disorders Associated with FMOs 

TMAu is the metabolic disorder most studied that has been associated with FMO 

enzymes. TMAu patients suffer from a strong body odor that is due to a decreased 

ability of the FMO3 enzyme to metabolize the odorous TMA to its non-odorous TMA 
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N-oxide. TMA is subsequently excreted in body fluids. The disorder will be discussed 

in more detail in section 2.1.3.  

Changes in FMO functional activity have been associated with type I and II diabetes. 

Streptozotocin-induced diabetic (i.e., insulin deficient) rats and mice and congenital 

insulin resistant Ob/Ob mice were shown to express FMO with increased specific 

activity [Krueger et al., 2005; Rouer et al., 1988]. FMO3 mRNA increased 

dramatically in genetically modified male Db/Db mice with Type II diabetes compared 

with normal (Db/+) male mice, whereas female Db/Db mice showed lower 

mRNA-levels for FMO1, 3, 4, and 5 compared to female Db/+ mice. Thus, FMO3 is 

likely to be responsible for the previously reported increase in FMO activity. In 

diabetic rats, hepatic FMO1 activity increased and was restored after insulin-

treatment [Borbas et al., 2006a]. Also, hepatic FMO1 activity correlated with average 

blood glucose concentration. Thus, insulin appears to be involved in hepatic FMO1 

regulation and blood glucose may serve as a good marker for FMO induction. In rats, 

FMO1 appears to be responsible for the observed increase in FMO activity. 

Other diseases associated with FMOs include primary and secondary 

hemochromatosis [Barber et al., 2000; Muckenthaler et al., 2003] and hypertension 

[Cashman et al., 2003; Cashman et al., 2002; Dolan et al., 2005; Larsen et al., 2001], 

but much more work is needed in these fields. 

2.1.3 Trimethylaminuria 

TMAu is a metabolic disorder characterized by the inability of the affected individual 

to metabolize the odorous TMA to its non-odorous N-oxide (TMA N-oxide). Often 

individuals with TMAu have a fish-like body odor, therefore the disorder is also known 

as ‘fish odor syndrome’. 

2.1.3.1 History 

Although there is no clinical report of TMAu until the 20th century, it is a disorder that 

can be found in numerous ancient anecdotal descriptions. The first time TMAu is 

mentioned was in 1000 BC in an epic of the Bharata Dynasty from India. In this story, 

a young woman named Satyavata is cast away from society to live a solitary life as a 

ferry woman because she stank like ‘rotting fish’. The next entry of TMAu is from 
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around 1500 AD. Thai folklore of this time says that the fish odor syndrome was the 

major cause of suicide among concubines in the Sukhothai period. In William 

Shakespeare’s ‘The Tempest’ from the 16th century the jester Trinculo speaks of the 

slave Caliban smelling strongly of old fish [Mitchell et al., 2001]. In the early 17th 

century, the physician John Arbuthnot described in his ‘Nature of Aliments’ that 

certain individuals smelled rancid when their diet was mostly fish. Together with two 

other early papers published in the Lancet this was the first scientific description of 

the disorder [Cashman et al., 2003]. In addition, several reports by physicians and 

chemists have also described patients with strong fish-like body odor, that could not 

be avoided just by paying more attention to cleanliness but instead seemed to 

decrease when omitting certain foods like fish [Mitchell et al., 2001]. The first clinical 

report of TMAu was by Humbert and colleagues in 1970 who reported a case of a girl 

that had a fish-like odor. Biochemical studies showed that after a TMA challenge, the 

excretion of TMA increased and a subsequent biopsy of a liver sample revealed that 

the TMA N-oxidizing system was defective. Later reports showed that the disorder 

could affect children as well as adults and was associated with the excretion of an 

increased amount of TMA relative to TMA N-oxide [Mitchell et al., 2001]. 

2.1.3.2 Cause and Severity 

TMAu is due to excretion of TMA in body fluids such as sweat and urine. TMA is a 

strong neuro-olfactant that can be detected by the human nose in concentrations as 

low as 1 ppm. It is formed endogenously from the breakdown of precursors such as 

choline and carnitine or by reduction of TMA N-oxide through gut bacteria. Normally, 

over 95 % of TMA is metabolized in the liver by FMO3 to its non-odorous N-oxide. 

However, a number of genetic variants of the FMO3 gene leads to enzymes not 

capable of oxygenating the odorous TMA. At least 40 genetic polymorphisms have 

been reported to cause TMAu, many of them associated with the incidence and 

severity of the disorder [Shimizu et al., 2007a]. Some gene mutations lead to FMO 

enzymes that are still partly capable of oxygenating TMA. In these cases the 

individual has a mild form of TMAu and the disease is often only discovered by a 

choline challenge. Other genetic variants produce a totally inactive FMO3 leading to 

a severe form of TMAu where no or almost no TMA is N-oxidized. In general, an 

individual is recognized as not affected when more than 90 % of TMA is metabolized. 

When 10 – 39 % of the TMA remains unmetabolized, the disease is considered to be 
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mild. Individuals having over 40 % unmetabolized TMA or more than 10 mg/ml TMA 

in their urine are considered to be severely affected [Cashman et al., 2003].  

2.1.3.3 Incidence 

The National Institute of Health (NIH) classifies this disease as rare, but the actual 

incidence is probably underreported because it is often mistaken for poor hygiene 

[Krueger et al., 2005]. The incidence seems to be higher in females [Lambert et al., 

2001] and symptoms worsen for some but not all women during menstruation. 

Apparently, owing to a founder effect, the incidence is higher in areas that have 

populations derived from British, Scottish, and Irish descent like certain regions in the 

United States and Australia [Akerman et al., 1999; Mitchell et al., 2001]. Also, it has 

been stated that there is an elevated incidence of TMAu in tropical regions that 

possibly arises from the advantage of TMA as an anti-insect secretion [Mitchell et al., 

1997]. 

2.1.3.4 Clinical Manifestation 

Clinically, TMAu is closely associated with several social and psychological problems 

no matter if adults or children are affected [Mitchell et al., 2001]. Thus, it cannot 

simply be considered a ‘social’ or benign condition. The strong offensive body odor 

can be highly disruptive for an individual’s personal life and work. Ayesh et al. [Ayesh 

et al., 1993] described various psychological reactions noticed in a group of TMAu 

patients including shame, embarrassment, low self-esteem, and frustration. 

Associated social exclusion and isolation may further cause anxiety, paranoia, and 

depression. Also, suicidal personalities were described and it was noticed that many 

individuals had problems with addiction to cigarettes, alcohol, and drugs. Whether 

the depression that is seen in some cases is due to the social isolation or due to a 

dysfunctional metabolism of other endogenous substrates is not quite clear yet. 

Besides the body odor it was reported that some male patients showed adverse 

reactions to choline loading, with fever and vomiting and that these symptoms were 

also observed on a number of occasions during periods of excessive malodor 

[Chalmers et al., 2006]. McConnell et al. presented a boy with diagnosed TMAu 

whose TMA levels were associated to the seizures and behavioral disturbances he 

suffered from. This case suggests that not all of the psychiatric disturbances seen in 
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this disorder are necessarily related to a psychosocial reaction to the odor itself 

[McConnell et al., 1997]. Another observation of this and other reports is that some 

individuals with TMAu are aware of their strong body odor while others remain 

unaware of the smell [Ayesh et al., 1993]. 

2.1.3.5 Diagnosis 

Accurate diagnosis is essential for appropriate genetic counseling and long-term 

management so that the affected individual can be treated as soon as possible 

[Chalmers et al., 2006]. For diagnosis, the urinary ratios of TMA N-oxide to TMA 

should be measured. In healthy individuals the TMA N-oxide:TMA+TMA N-oxide ratio 

in the urine should be ≥95 %. It is not always entirely satisfactory to test for TMAu if 

the person is on normal diet because the intake of TMA precursors may not be 

known. Therefore it was suggested that the urine should be investigated after a 

challenge dose of the TMA precursor choline [Murphy et al., 2000]. In addition, 

genotyping the individuals and studying mutations in the FMO3 gene that cause 

TMAu is also important. 

2.1.3.6 Classification of TMAu 

TMAu is generally divided into primary and secondary forms. The primary form is due 

to a dysfunction of the FMO3 enzyme that may be either a result of a mutation of the 

FMO3 gene or due to hormonal or inhibitory chemical influences. The secondary 

form is the result of an overload of TMA precursor or TMA itself while the individual 

has normal or only slightly decreased FMO3 enzyme activity. Secondary TMAu may 

be observed in patients with chronic liver disease or in those individuals with bacterial 

overgrowth that results in an increased production of TMA from its dietary precursors 

[Cashman et al., 2003; Fraser-Andrews et al., 2003]. 

The primary form that accounts for the majority of TMAu reported cases is the 

genetic form. It is due to an autosomal recessively inherited gene defect that leads to 

FMO3 enzyme deficiency [Ayesh et al., 1993; Mitchell, 1999]. Some of the 

polymorphic variants of FMO3 lead to enzymes that have abolished (severe TMAu) 

or decreased catalytic activity (mild TMAu). Combinations of common genetic 

polymorphisms may also lead to a mild form of TMAu [Akerman et al., 1999; 

Cashman et al., 2003; Zschocke et al., 1999]. In case the disorder is present from 
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birth it becomes apparent as foods containing high amounts of choline or TMA 

N-oxide are introduced into the diet [Chalmers et al., 2006; Mitchell et al., 2001]. 

TMAu is further divided into various sub-forms, some of which are discussed below. 

The acquired form may emerge in adulthood without any genetic familial background 

[Cashman et al., 2003; Mitchell, 1999; Mitchell et al., 2001]. In several cases an 

incidence of hepatitis in adult life was reported that might have been responsible for 

the manifestation of the disorder. Possibly, viral DNA has been inserted into the 

genome affecting normal FMO expression [Cashman et al., 2003; Mitchell et al., 

2001]. 

The transient childhood form may appear in early childhood when the child is fed a 

choline-containing diet. This form of TMAu is only temporary though. FMO3 is 

induced after birth (0 – 8 month), but is absent in fetal liver. The FMO3 expression 

levels increase afterwards, reaching significantly high levels at age 1 – 2 years and 

mature levels at age 11 – 18 years. TMAu disappears when FMO3 is fully expressed 

[Cashman et al., 2003; Cashman et al., 2002].   

Another transient form of TMAu is associated with menstruation [Shimizu et al., 

2007a; Yamazaki et al., 2004; Zhang et al., 1996]. Further, it was proposed that even 

in otherwise healthy women, a mild form of TMAu may occur around time of 

menstruation that is due to a change in metabolic capacity. In those suffering from 

TMAu, the symptoms seem to intensify during menstruation. First observations for 

the decreased TMA metabolism were from self-reporting TMAu suffering patients. 

These were supported in studies on same individuals [Shimizu et al., 2007a; 

Yamazaki et al., 2004; Zhang et al., 1996]. 

Another cause of TMAu may be an overload of precursors such as TMA N-oxide, 

choline, or carnitine [Zhang et al., 1996]. The disorder may become apparent 

especially in individuals with certain FMO3 variants [Mitchell et al., 2001]. Enzymatic 

oxidation capacity is usually not exceeded when on a normal diet [Zhang et al., 

1996], but it was reported that patients suffering from Huntington’s disease who were 

treated with a daily oral dose of 8 – 20 g choline complained of a fishy odor in their 

urine, sweat, and breath [Growdon et al., 1979]. Further, patients that suffer from 

impaired hepatocellular function have problems with the clearance of TMA as well as 
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those with bacterial overgrowth in the small intestine due to an increased TMA 

liberation from its precursors [Cashman et al., 2003; Mitchell, 1999]. 

Indole-containing materials that may be formed in the gastrointestinal system after 

consuming Brussels sprouts are potent inhibitors of human FMO3. They decrease 

FMO3 activity [Cashman et al., 1999a; Mitchell, 1999] and may exacerbate the TMAu 

condition. 

The fact that TMA metabolism decreases in some but not all women at the onset of 

menstruation and the observation that the fishy odor is aggravated around puberty, 

after taking oral contraceptives, and around menopause [Zhou et al., 2006] support 

the hypothesis that FMO activity may be modulated by hormones [Mitchell, 1996; 

Mitchell et al., 2001; Shimizu et al., 2007a] (see also chapter 1.4.3). 

2.1.3.7 Treatment 

Currently, there are only few ways to treat TMAu. On the one hand restriction of 

foods with a high content of TMA and its precursors such as TMA N-oxide (i.e., 

saltwater fish [Zhang et al., 1999], cephalopods and crustaceans) and choline (eggs, 

liver, kidney, peas, beans, peanuts, soy products, and other legumes) is an option 

[Chalmers et al., 2006; Mitchell, 1996]. It was reported though that dietary restriction 

primarily helped individuals that suffered from the mild form of TMAu. It was reported 

that breastfeeding infants after consumption of TMA precursors also had an effect on 

the baby [Mitchell, 1996]. Nevertheless, it is important not to over-restrict choline 

intake in young children and pregnant or nursing women because choline is crucial 

for the fetus’ and young infant’s nerve and brain development. For some individuals 

suffering from severe TMAu, adverse tyramine reactions have been described in the 

literature [Treacy et al., 1998]. Therefore, individuals with a severe form of TMAu 

should also be careful with tyramine-containing foods such as aged cheese, red 

wine, meats, and yeast products [Cashman, 2002].  

Also, temporary treatment with antibiotics like neomycin, metronidazole, or amoxicillin 

to inhibit the enterobacterial reduction of the TMA N-oxide in the intestine may help 

some patients. Antibiotics are able to decrease the production of TMA from choline to 

a limited extent and also slow the rate of TMA production, but antibiotics do not 

completely prevent formation of TMA from choline. Antibiotics should only be used in 



2  Novel Variant of the Human FMO3 Gene Associated with Trimethylaminuria 

   

31 
 

exceptional cases and with caution. They should only be applied temporarily and as 

an adjunct to dietary treatment due to the risk of developing multi-antibiotic drug 

resistances. Temporary antibiotic treatment may be helpful if TMAu symptoms are 

exacerbated when the patient undergoes periods of great stress, emotional upset, 

exercise, or infection, or in women at the onset of menstruation, or whenever dietary 

restriction cannot be realized. To avoid resistance to antibiotics it is imperative to 

alternate the therapy of different antibiotics [Chalmers et al., 2006; Mitchell et al., 

2001].  

Treatment with charcoal or copper chlorophyllin may be effective to decrease free 

urinary TMA levels and increase TMA N-oxide levels to normal values. The effects of 

copper chlorophyllin appear to last longer [Yamazaki et al., 2004]. Supplementation 

with folate is necessary because dietary choline restriction increases 

folate-requirements. To enhance residual hepatic FMO3 activity, addition of riboflavin 

(that might help stabilize FMO3 and increase its half-life) may be supplemented 

[Cashman et al., 2003]. The use of soap with a pH value of 5.5 – 6.5 can remove 

traces of free TMA from the skin. At this pH odorous TMA (pKa 9.8) is protonated and 

will be retained in a less volatile salt form and the salt can be washed off with water 

[Chalmers et al., 2006; Mitchell, 1996]. 

2.1.4 Aim of the Study  

TMAu often manifests itself in a body odor for individuals affected which is due to 

decreased metabolism of dietary-derived TMA. Several SNPs of the FMO3 gene 

have been described and result in an enzyme with decreased or abolished functional 

activity for TMA N-oxygenation thus leading to TMAu. Herein, a novel mutation 

associated with TMAu that was observed from phenotyping and genotyping 

self-reporting individuals will be reported and characterized. 

In a 33 year old woman, in addition to the common polymorphisms E158K and 

E308G, a SNP at position 187 (i.e., V187A) that had not been described to date and 

a truncation mutation E305X reported previously were observed. Examination of both 

biological parents showed that the biological mother carried the 

E158K/V187A/E308G allele, and the biological father carried the E305X allele. While 

it is known that E305X will abolish FMO3 function, the V187A mutation has not been 
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reported nor previously characterized. Aim of this study was to characterize this new 

and unusual variant. Thus, the V187A and the V187A/E158K variants of FMO3 

should be cloned, expressed, and purified as maltose-binding fusion proteins. The 

triple mutant E158K/V187A/E308G reflecting the genotype of one allele of the 

affected individual examined was not studied because of difficulties in expression 

and characterization of the enzyme. The variants will be tested in vitro for the 

oxygenation of selective functional substrates for the FMO3 enzyme 

(i.e., 10-(N,N-dimethylamino pentyl)-2-trifluoromethyl)phenothiazine (5-DPT), 

10-(N,N-dimethylamino octyl)-2-trifluoromethyl)phenothiazine (8-DPT), 

mercaptoimidazole (MMI), TMA, and sulindac sulfide). The thermal stability of the 

variant FMO3s will also be examined and compared to wild-type enzyme. 

2.2 Materials and Methods 

2.2.1 Reagents  

Chemicals and reagents used in this study were purchased from Sigma-Aldrich 

Chemical Co. (St Louis, MO, USA) in appropriate purity. Buffers and other reagents 

were purchased from VWR Scientific, Inc. (San Diego, CA, USA). The synthesis of 

the phenothiazines 5-DPT and 8-DPT has been previously described [Lomri et al., 

1993b; Nagata et al., 1990; Zhang et al., 2007a] and was done by Dr. Karl 

Okolotowicz (HBRI, San Diego, USA). 

2.2.2 Genomic DNA Preparation and PCR Amplification  

Genomic DNA preparation and polymerase chain reaction (PCR) amplification had 

been done previously at the HBRI (San Diego, CA, USA) as described before [Zhang 

et al., 2003]. Briefly, blood samples from individuals with self-reported TMAu 

symptoms were collected by their primary care physicians and sent to the HBRI 

laboratory for genotype analysis. All human samples were approved by the 

Independent Review Consultant Inc. (San Anselmo, CA, USA) institutional review 

board. The ethnicity of the individuals was defined by a self-report questionnaire that 

indicated the race of both biological parents. The individuals tested in this study were 

U.S. citizens from Northern European descent. Genomic DNA was prepared from 

whole blood using the Qiagen QIAmp Blood Kit (Valencia, CA, USA) following the 

manufacturer’s protocol. Eight coding exons of FMO3 and neighboring flanking 
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intronic regions were amplified from genomic DNA and sequenced using the primers 

listed in Table 2.1 and PCR conditions reported previously [Zhang et al., 2003]. DNA 

sequences were analyzed with Sequencher Software (Gene Code Corporation, Ann 

Arbor, MI, USA) by procedures that could resolve heterozygotes under reliable 

quality-control conditions. Genebank sequence NT_004487 was used as the wild-

type FMO3 reference sequence.  

Table 2.1 Polymerase chain reaction and sequencing primers for coding exons of 

FMO3. 

Exon Length Primer Sequence (5’-3’) 

2 498 bp forward  TCAAACTCCTGGGCTCAAGT 

  reverse  TTTCCAACCTGCTCTTGACA 

3 581 bp forward  CAGATTCAACCCACCATTGA 

  reverse  TTCTTCAGCATTATGACAAGAGC 

4/5 651 bp forward  ATCTGCCAAAACCATTTGCT 

  reverse  ACGAGAGTCACCCGAGTACC 

6 408 bp forward  GGGGTGCTCACCAGAATATC 

  reverse  AAAAGCCAGCAGGCATATCA 

7 429 bp forward  TCCAATAATTGTCTCTGTTTTCCA 

  reverse  TTCATCTTCGCAATCCATGA 

8 473 bp forward  GGAAAATTACAGGCTGGTCCT 

  reverse  CATTCCAATGATGTCATTCAGG 

9 475 bp forward  GCGAGCCATTTTCTCTGTTC 

  reverse  CCCCTGTCTGGGTATTGTCA 

 

2.2.3 FMO3 Phenotyping by Urinary TMA and TMA- N-Oxide Analysis  

FMO3 phenotyping by urinary TMA and TMA-N-oxide analysis had been done 

previously at the HBRI (San Diego, CA, USA). A selective functional method was 

used to characterize the FMO3 phenotype in humans by determining the amount of 
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TMA and TMA N-oxide from urine. After collection of first void morning urine sample 

the TMA and TMA N-oxide concentrations following a normal diet were determined. 

The urine was cooled to 4 °C with ice and acidified  to pH 1 with 6 N HCl and 

immediately stored at -80 °C until thawing for assa y. TMA and TMA N-oxide 

concentration was determined by electrospray ionization mass spectrometry with a 

deuterated TMA internal standard as previously described [Cashman et al., 2001]. 

2.2.4 Cloning and cDNA Expression 

The expression vector for FMO V187A and E158K/V187A constructs were cloned 

into pMAL-2c (New England BioLabs, Ipswich, MA, USA) by site directed 

mutagenesis methods as described previously [Brunelle et al., 1997; Zhang et al., 

2003]. Cloning was done by Kiersten Riedler (HBRI, San Diego, CA, USA). Briefly, 

wild-type FMO3, FMO3 V187A, and FMO3 V187A/E158K were expressed as 

N-terminal maltose-binding fusion proteins (i.e., MBP-FMO3, MBP-FMO3 V187A, 

and MBP-FMO3 V187A/E158K). After transformation of E. coli DH1α cells with 

pMAL-MBP-FMO3 plasmid, cells were grown at 37 °C in SOC medium to  an 

absorbance of 0.4 - 0.5 at 600 nm and then 0.2 mM IPTG, 0.05 mM riboflavin, and 

100 µg/ml ampicillin were added and the cells were further shaken at room 

temperature overnight and harvested by centrifugation for 10 minutes at 6,000 g. 

2.2.5 Purification of MBP-FMO3 Fusion Proteins 

All of the following procedures including the purification process were carried out at 

4 °C. The cell pellet was resuspended in lysis buff er as described previously [Lattard 

et al., 2003b]. After stirring the cell suspension on ice for 30 minutes, the cells were 

disrupted by sonication (i.e., five 8-seconds bursts separated by periods of cooling) 

on a Sonics Vibracell ultrasonic processor (Sonics and Materials Inc., Newtown, CT, 

USA). The solution was centrifuged and the resulting supernatant was loaded onto 

an amylose column (New England BioLabs, Ipswich, MA). In order to obtain a higher 

yield of protein, the pellets were extracted a second time as described above and the 

resulting supernatant of the second extraction was also loaded onto the amylose 

column. Protein purification was carried out on a low pressure chromatography 

system, Biologic LP (Bio-Rad, Hercules, CA, USA). After loading the supernatants at 

0.75 ml/min onto an amylose column that was equilibrated with 10 column volumes 
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of buffer A (i.e., 50 mM Na2HPO4 pH 8.4 and 0.5 % Triton® X-100 containing 

15 µg/ml FAD) the column was washed with at least 10 column volumes of buffer A. 

Bound MBP-FMO3 protein was then eluted with a linear maltose gradient: 0 - 100 % 

10 mM maltose in buffer A. Eluted fractions (5 ml each) were analyzed and the 

fractions with the highest enzyme activity were pooled and concentrated with a 

Centriprep centrifugal filter unit with Ultracel-30 membrane (Millipore, Billerica, MA, 

USA).  

2.2.6 Determination of MBP-FMO3 Concentration 

MBP-FMO3 and variants were quantified by SDS-PAGE and Coomassie Blue 

staining and compared with a bovine serum albumin (BSA) standard. Briefly, 

MBP-FMO3 proteins and different quantities of standard BSA (2, 1.5, 1.0, 0.5, and 

0.1 µg per lane) were fractionated by electrophoresis on a 10 % polyacrylamide gel 

under denaturing conditions and stained with Coomassie Blue. After destaining, 

MBP-FMO quantification was done by densitometry analysis employing Kodak 

molecular imaging software (Eastman Kodak Company, Rochester, NY, USA). 

2.2.7 Enzyme Assays 

Oxygenation of mercaptoimidazole (MMI) was determined spectrophotometrically by 

measuring the rate of MMI S-oxygenation via the reaction of the oxidized product 

with nitro-5-thiobenzoate (TNB) to generate 5,5’-dithiobis(2-nitrobenzoate) (DTNB). 

The reaction is shown in Figure 2.1. The assay contained 50 mM sodium phosphate 

buffer, pH 8.5, 0.5 mM NADP+, 0.5 mM glucose-6-phosphate, 1.5 IU/ml glucose-6-

phosphate dehydrogenase, 0.06 mM DTNB, 0.04 mM dithiothreitol (DTT), and 

depending on the variant 45 - 360 µg/ml MBP-FMO3. Reactions were initiated by the 

addition of 2 mM final concentration of substrate and the disappearance of the yellow 

color was followed spectrophotometrically at 412 nm. Kinetic parameters (i.e., Vmax 

and Km) for MBP-FMO3-mediated MMI S-oxygenation were determined by initiating 

the enzyme reaction with different amounts of substrate. The final substrate 

concentrations were 800, 400, 200, 100, 40, 10, and 1 µM for wild-type MBP-FMO3, 

800, 200, 100, 40, 20, 10, 5, and 1 µM for the MBP-FMO3 V187A variant, and 200, 

100, 40, 10, and 5 µM for the MBP-FMO3 V187A/E158K variant.  
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Figure 2.1  S-Oxygenation of MMI by FMO and reaction of the oxidized product with 

TNB to DTNB.  

MMI, mercaptoimidazole; TNB, nitro-5-thiobenzoate; DTNB, 5,5’-dithiobis(2-

nitrobenzoate). Adapted from Dixit et al. [Dixit et al., 1984]. 

Kinetic parameters (i.e., Vmax and Km) for MBP-FMO3-mediated TMA N-oxygenation 

were determined by spectrophotometrically monitoring the oxidation of NADPH 

associated with TMA N-oxygenation. The assay medium contained 50 mM sodium 

phosphate buffer, pH 8.5, 0.5 mM diethylenetriaminepentaacetic acid (DETAPAC), 

0.2 mM NADPH, and 160 - 640 µg/ml MBP-FMO3. Incubations were initiated by the 

addition of different amounts of substrate and monitored at 340 nm for NADPH 

depletion. The final substrate concentration was 100, 40, 20, 10, and 5 µM for wild-

type MBP-FMO3 and the MBP-FMO3 V187A variant and 800, 400, 200, 100, and 

40 µM for MBP-FMO3 V187A/E158K. 

N-Oxygenation of 5- and 8-DPT was determined by HPLC analysis as previously 

described [Lattard et al., 2003b]. The reaction is shown in Figure 2.2. Both 

compounds are mainly N-oxygenated by FMO enzymes, but not S-oxygenated as 

described previously for phenothiazine drugs [Clement et al., 1993] because of the 

electron withdrawing effect of the trifluoromethyl group inseted at the 2 position of the 
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phenothiazine ring system. Briefly, a standard incubation mixture of 250 µl final 

volume contained 50 mM potassium phosphate buffer, pH 8.4, 0.4 mM NADP+, 

0.4 mM glucose-6-phosphate, 4 U glucose-6-phosphate dehydrogenase, 0.25 mM 

DETAPAC, and 40 µg/ml wild-type MBP-FMO3 or its variant at 4 °C. Inc ubations 

were initiated by the addition of substrate to a final concentration of 200 µM at 37 °C. 

After incubation for 20 minutes shaking under aerobic conditions, enzyme reactions 

were stopped by the addition of 4 volumes of cold dichloromethane. About 20 mg of 

Na2CO3 was added and the incubations were mixed and centrifuged to partition 

metabolites and remaining substrate into the organic fraction. The organic phase was 

collected and evaporated under a stream of argon. Metabolites and remaining 

substrate were dissolved in methanol, mixed thoroughly, centrifuged and analyzed 

with a Hitachi HPLC system (Hitachi L-7200 autosampler and L-7100 pump 

interfaced to a Hitachi L-7400 UV detector). Chromatographic separation of analytes 

was done on an Axxi-Chrom normal phase analytical column (250 x 4.6 mm 5 µm, 

silica) with a mobile phase of 80 % MeOH/20 % isopropanol/0.025 % HClO4 (v/v/v). 

The flow rate was 1.6 ml/min and the total run time was 10 minutes for 5-DPT and 

8.5 minutes for 8-DPT. The wavelength for UV detection was set to 243 nm. The 

retention times for 5-DPT and 5-DPT N-oxide, and 8-DPT and 8-DPT N-oxide were 

6.4, 4.6, 5.8, and 4.1 minutes, respectively. 
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Figure 2.2  N-Oxygenation of 5- or 8-DPT by FMO. 

n equals 5 or 8 for 5- and 8-DPT, respectively. 

The S-oxygenation of sulindac sulfide was determined by HPLC analysis as 

previously described with slight modifications [Hamman et al., 2000; Shimizu et al., 

2007b]. The reaction is shown in Figure 2.3. A standard incubation mixture of 250 µl 

final volume contained 50 mM potassium phosphate buffer, pH 8.4, 0.4 mM NADP+, 

0.4 mM glucose-6-phosphate, 4 U glucose-6-phosphate dehydrogenase, 0.25 mM 

n n 
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DETAPAC, and 40 µg/ml wild-type MBP-FMO3 or MBP-FMO3 variant. Incubations 

were initiated by the addition of sulindac sulfide to a final concentration of 200 µM. 

After incubation for 20 minutes with continuous shaking under aerobic conditions at 

37 °C, the incubation was stopped by addition of 20  µl cold 25 % phosphoric acid and 

4 volumes of ethyl acetate. The incubations were mixed and centrifuged to partition 

metabolites and remaining substrate into the organic fraction. The organic fraction 

was collected and evaporated under a stream of argon. Metabolites and remaining 

substrate were dissolved in methanol, mixed thoroughly, centrifuged, and analyzed 

with a Hitachi HPLC system (Hitachi L-7200 autosampler and L-7100 pump 

interfaced to a Hitachi L-7400 UV detector). Chromatographic separation of analytes 

was performed on an Axxi-Chrom reverse phase analytical column (250 x 4.6 mm 5 

µm, Supelco) with a mobile phase consisting of 70 % acetonitrile and 30 % 

phosphate buffer, pH 3. The flow rate was 1.0 ml/min and the total run time was 12 

minutes. The wavelength for UV detection was set to 360 nm. The retention times for 

sulindac sulfide and sulindac S-oxide were 9.6 and 5.0 minutes, respectively. 
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Figure 2.3  S-Oxygenation of sulindac sulfide by FMO.  

To determine the thermal stability of wild-type MBP-FMO3, MBP-FMO3 V187A, and 

MBP-FMO3 V187A/E158K, all three FMO enzymes were incubated at 40 °C for 0, 1, 

and 5 minutes in the presence or absence of an NADPH-regenerating system prior to 

the addition of the completed reaction mixture. N-Oxygenation of 8-DPT was 

determined using the HPLC method described above. Mean velocity calculated for 

0 minutes incubation at 40 °C was designated as 100  % for each recombinant 

enzyme, and the velocities for heat-treated enzymes were normalized accordingly. 
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2.2.8 Data Analysis 

The kinetic parameters for TMA and MMI were determined by examining the data 

from incubation of at least five different substrate concentrations with MBP-FMO3 

variants. Incubations were done in triplicate and for data analysis a nonlinear 

regression curve fit tool using a Michaelis-Menten model (Y= (Vmax · X)/(Km + X) with 

Vmax = Ymax and Km = Xmid) in Graphpad software (Graphpad Prism, Version 3.00, 

San Diego, CA, USA) was utilized. Data obtained was presented as the best fit value 

± standard error. Statistical analysis was also done using Graphpad Prism software 

and statistical significance was judged at P<0.05. 

2.3 Results  

2.3.1 Phenotyping and Genotyping Results   

Diagnosis of TMAu included measurement of the urinary ratios of TMA N-oxide to 

TMA and genotyping of the affected individuals. A urine and blood sample from a 

young woman of Northern European descent with a history of unpleasant body odor 

was examined and the phenotype as well as genotype was determined. When 

determining TMA and TMA N-oxide levels in the urine of this sample, TMA could be 

detected whereas no TMA N-oxide was detectable indicating severely abnormal TMA 

metabolism.  

Genotyping of the 33 year old female showed several mutations at a number of 

different loci. One heterozygous missense mutation identified was Val (GTT) to Ala 

(GCT) at position 187 in exon 4 of the FMO3 gene. This is the first time this mutation 

was detected after genotyping over 100 individuals with self-reported body odor at 

HBRI. The V187A mutation has not been reported in the literature by any other group 

genotyping and phenotyping individuals for FMO3. The individual was also identified 

as heterozygous for E305X, a known mutation leading to TMAu due to abolished 

FMO3 function. In addition, two common polymorphisms (i.e., E158K and E308G) 

were also identified and these SNPs have been shown to generally decrease FMO3 

activity when observed together [Cashman et al., 2003; Dolan et al., 2005; Zschocke 

et al., 1999]. Sometimes, TMAu observed from individuals harboring the 158/308 

mutations was modest and only observable under challenge situations such as 
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conditions of large dietary intake of TMA or TMA precursors. Other mutations were 

observed in the intronic regions with unknown biological significance and are not 

described here. Both biological parents of the young woman were also genotyped. 

The father was found to be heterozygous for E305X whereas the mother was 

heterozygous at three positions E158K/V187A/E308G. Thus, it was clear that 

E158K/V187A/E308G is on the same chromosome and inherited from the mother, 

and E305X is on the other chromosome inherited from the father. Unfortunately, the 

urine samples from the parents were not available for analysis. 

2.3.2 Cloning, Expression and Purification of Wild- type MBP-FMO3 and 

MBP-FMO3 Variants 

To study the effect of the novel V187A mutation on FMO3 enzyme function, and its 

effect on FMO3 enzyme activity in combination with the common E158K 

polymorphism, wild-type, V187A mutant, and V187A/E158K double-mutant FMO3s 

were expressed in E. coli as MBP-fusion proteins and assayed for their ability to 

catalyze the N- and S-oxygenation of various typical FMO substrates. When 

expressing the protein, we observed that the expression of both mutants (i.e., MBP-

FMO3 V187A and MBP-FMO3 V187A/E158K) was less efficient than that of wild-type 

MBP-FMO3, yielding only about 20 % of the wild-type protein expressed. Due to the 

significant decrease in expression and enzyme activity for both, V187A/E158K and 

E158K/E308G, the triple mutant E158K/V187A/E308G reflecting the genotype of one 

allele of the affected individual examined was not studied because of the difficulty in 

expression and characterization of the enzyme. 

2.3.3 Comparison of N- and S-Oxygenation Functional Activity of Wild-

type MBP-FMO3 with MBP-FMO3 Variants 

To compare the N- and S-oxygenation of wild-type MBP-FMO3 with MBP-FMO3 

V187A and MBP-FMO3 V187A/E158K, selective functional substrates (i.e., 5- and 

8-DPT) were used to examine N-oxygenation and sulindac sulfide was used as 

substrate to investigate differences in S-oxygenation. The results (Figure 2.1) 

showed that wild-type MBP-FMO3 had the highest N-oxygenation activity followed by 

MBP-FMO3 V187A with a specific activity of 69 % of wild-type N-oxygenation activity 

for 5- and 8-DPT. MBP-FMO3 V187A/E158K had the lowest specific activity with only 
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15 and 17 % of wild-type activity for 5- and 8-DPT, respectively. MBP-FMO3 V187A 

had an S-oxygenation activity of 102 % for sulindac sulfide compared to wild-type 

MBP-FMO3. For MBP-FMO3 V187A/E158K the S-oxygenation was decreased to 

only 31 % of wild-type values for sulindac sulfide S-oxygenation. 
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Figure 2.1  Specific activity for N-oxygenation of 5-DPT and 8-DPT and 

S-oxygenation of sulindac sulfide by wild-type MBP-FMO3 (white bars), MBP-FMO3 

V187A (grey bars), and MBP-FMO3 V187A/E158K (black bars) in nmol/min/mg of 

FMO3 enzyme.  

Statistically significant differences between wild-type MBP-FMO3 and MBP-FMO3 

V187A or wild-type MBP-FMO3 and MBP-FMO3 V187A/E158K are identified with 

*  for P<0.05, ** for P<0.01, and *** for P<0.001. 

2.3.4 Kinetic Parameters for TMA N-Oxygenation by MBP-FMO3 and 

MBP-FMO3 Variants 

To determine the kinetic parameters for TMA N-oxygenation by MBP-FMO3 V187A 

and MBP-FMO3 V187A/E158K, the enzymes were incubated with different 

concentrations of TMA. The single mutant V187A had a similar Vmax and Km value as 

the wild-type enzyme. However, the double mutant MBP-FMO3 V187A/E158K had a 

much lower Vmax value and a Km that was 25-fold greater than that of MBP-FMO3 

  ** 

**   *** 
  *** 
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V187A or wild-type MBP-FMO3, causing a 65-fold decrease in catalytic efficiency for 

TMA (Table 2.2).  

Table 2.2 N-Oxygenation of trimethylamine (TMA) by wild-type MBP-FMO3, 

MBP-FMO3 V187A, and MBP-FMO3 V187A/E158K. 

 WT FMO3 FMO3 V187A FMO3 V187A/E158K  

Km (µM) 15.3 ± 5.1 17.5 ± 5.3 430 ± 150 

Vmax (nmol min -1 mg -1) 11.9 ± 1.3 19.3 ± 2.0 6.3 ± 1.1 

Vmax/Km (10-3
 min -1 mg -1) 0.8 ± 0.2 1.1 ± 0.2 0.02 ± 0.01 

Data are best fit values ± standard error. WT MBP-FMO3 data was calculated from 

one or two assays from two separate enzyme preparations. Data of MBP-FMO3 

V187A was calculated from four assays from pooled enzyme of three enzyme 

preparations. MBP-FMO3 V187A/E158K data was calculated from two assays from 

pooled enzyme of four enzyme preparations. 

 

2.3.5 Kinetic Parameters for MMI S-Oxygenation by MBP-FMO3 and 

MBP-FMO3 Variants 

To determine the kinetic parameters for MMI S-oxygenation by MBP-FMO3 V187A 

and MBP-FMO3 V187A/E158K, the enzyme was incubated with different 

concentrations of MMI. All three enzymes had similar Km values. The single mutant 

V187A also had a similar Vmax value as the wild-type enzyme, but the Vmax value of 

the double mutant MBP-FMO3 V187A/E158K was only 24 % of that of the wild-type 

enzyme (Table 2.3). 
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Table 2.3 S-Oxygenation of mercaptoimidazole (MMI) by wild-type MBP-FMO3, 

MBP-FMO3 V187A, and FMO3 V187A/E158K. 

 WT FMO3 FMO3 V187A FMO3 V187A/E158K  

Km (µM) 12.7 ± 2.0 9.7 ± 1.9 11.7 ± 1.7 

Vmax (nmol min -1 mg -1) 27.8 ± 0.9 30.3 ± 1.4 6.8 ± 0.2 

Vmax/Km  (10-3
 min -1 mg -1) 2.2 ± 0.3 3.1 ± 0.5 0.6 ± 0.1 

Data are best fit values ± standard error. WT MBP-FMO3 data was calculated from 

two enzyme preparations. Data of MBP-FMO3 V187A was calculated from two 

assays from pooled enzyme of three enzyme preparations. MBP-FMO3 

V187A/E158K data was calculated from pooled enzyme of four enzyme preparations. 

2.3.6 Stability of MBP-FMO3 and MBP-FMO3 Variants 

The N-oxygenation of 5-DPT was determined by HPLC analysis as described under 

enzyme assays after incubation of the three FMO enzymes at 40 °C for 0, 1, 2, and 5 

minutes in the presence or absence of an NADPH-regenerating system. In Figure 2.2 

only wild-type MBP-FMO3 and MBP-FMO3 V187A are shown, because the 

functional activity of MBP-FMO3 V187A/E158K was non-detectable after incubation 

at 40 °C regardless of the presence or absence of a n NADPH regeneration system. 
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Figure 2.2 N-Oxygenation of 5-DPT by wild-type MBP-FMO3 (white bars) and 

MBP-FMO3 V187A (hatched bars) after incubation at 40 °C for 1 and 5 minutes with 

or without cofactor added expressed as % remaining activity.  

The 0 minutes time point is set 100 % and equals 72 and 19 nmol/min/mg of FMO3 

for wild-type MBP-FMO3 and MBP-FMO3 V187A, respectively. Statistically 

significant differences between wild-type MBP-FMO3 and MBP-FMO3 V187A are 

identified with * for P<0.05, ** for P<0.01, and *** for P<0.001.   

While no significant difference between the relative loss of activity for the wild-type 

enzyme compared to MBP-FMO3 V187A was observed after pre-incubation at 40 °C, 

a distinct difference was notable when both enzymes were pre-incubated at elevated 

temperature in the presence of NADPH for 1 and 5 minutes (Figure 2.2, P<0.001). 

About 70 % of the wild-type MBP-FMO3 activity was retained whereas the enzyme 

activity of MBP-FMO3 V187A increased to 140 and 170 % of its original activity after 

1 and 5 minutes preincubation with NADPH, respectively. 

  *** 

  *** 
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2.4 Discussion 

Comprehensive biochemical characterization of recombinant variant FMO3 enzymes 

based on data from genotype and phenotype analysis of individuals with 

self-reported symptoms of TMAu can potentially reveal important new information 

about structure and function of human FMO3 [Akerman et al., 1999; Cashman, 2002; 

Cashman et al., 2002; Dolphin et al., 1997a; Shimizu et al., 2007b; Treacy et al., 

1998; Yeung et al., 2007]. Findings from the studies herein provide important new 

information to our understanding of factors contributing to the primary genetic form of 

TMAu, and identify a functionally important residue of human FMO3. For the samples 

examined from the 33 year old woman, the novel mutation V187A in combination 

with the two common polymorphisms, E158K and E308G, were causative for 

decreased TMA metabolism and the resultant severe TMAu was confirmed by 

phenotyping studies. 

Despite the subtlety of the V187A mutation, in combination with the E158K and 

E308G polymorphisms, a major impact on FMO3 enzyme functional activity could be 

observed that led to an enzyme with significantly decreased activity. To confirm this, 

not only the FMO3 V187A mutant enzyme, but also the double mutant, FMO3 

V187A/E158K were expressed and purified and the enzyme function of both 

enzymes was characterized and compared with wild-type FMO3 using selective 

functional substrates. As shown in Figure 2.1, FMO3 enzyme activity observed from 

wild-type MBP-FMO3 confirmed that all substrates examined were efficiently 

oxygenated by human FMO3. The V187A mutation decreased the catalytic efficiency 

of the enzyme for 5-DPT and 8-DPT, and the double mutant V187A/E158K further 

decreased enzyme activity significantly for all substrates tested. Kinetic parameters 

for TMA N-oxygenation by MBP-FMO3 V187A and MBP-FMO3 V187A/E158K (Table 

2.2) showed that although Vmax/Km for MBP-FMO3 V187A did not differ from wild-type 

MBP-FMO3, the Vmax/Km for MBP-FMO3 V187A/E158K was significantly decreased 

(65-fold). The kinetic parameters of MMI S-oxygenation by FMO3 (Table 2.3) showed 

similar Vmax/Km values for wild-type MBP-FMO3 and MBP-FMO3 V187A whereas the 

Vmax/Km for V187A/E158K for MMI S-oxygenation was about 4-fold lower than that of 

wild-type MBP-FMO3.  
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It has been reported previously that mutations that did not have a significant impact 

on specific activity of FMO3 by themselves decrease its oxygenation activity 

significantly in combination with other SNPs [Akerman et al., 1999; Cashman et al., 

2003; Zschocke et al., 1999]. Similarly, the effect of the V187A mutation on FMO3 

functional activity is not very distinct, but in combination with the common mutation 

E158K the enzymes oxygenation activity is drastically decreased for all substrates 

tested. 

As shown in 2.3 A, position V187 is a highly conserved residue within the FMO gene 

family (i.e., FMO1 to 5) and across species (i.e., chimpanzee, rhesus monkey, dog, 

cattle, rabbit, chicken, rat, and mouse). From the primary sequence, the mutation is 

immediately upstream of the essential FMO3 NADPH binding domain (GXGXXG) 

(Figure 2.3). According to the human FMO3 homology structure model we developed 

based on four related proteins [Borbas et al., 2006b], the residue V187 resides at the 

beginning part of a β-sheet leading to the NADPH binding domain. The residue is 

also conserved in FMO from Schizosaccharomyces pombe and Methylophaga sp. 

strain SK1, two FMO related enzymes with crystal structures recently solved [Alfieri 

et al., 2008; Eswaramoorthy et al., 2006], and phenylacetone monooxygenase from 

Thermobifida fusca, the first Baeyer-Villiger monooxygenase crystallized [Malito et 

al., 2004] (Figure 2.3 B). Based on the crystal structure of these related enzymes, the 

hypothesis is that the Val resides in the second Rossmann fold involved in 

NADP+/NADPH binding. From the structure of Methylophaga FMO with NADP+, the 

Val side chain does not directly interact with NADP+. We hypothesize that the mutant 

amino acid of FMO3 V187A interferes with NADPH and NADP+ binding indirectly 

through affecting the Rossmann fold conformation. Alternatively, it is possible that the 

enzyme adopts large conformational changes during catalytic processes to 

accommodate substrate binding and hydroperoxyflavin formation [Alfieri et al., 2008]. 

However, no crystal structure is available yet to illustrate those conformations. During 

such putative conformational changes, the Val could directly interact with NADPH 

and/or NADP+ binding, and therefore the V187A can possibly have direct interference 

with NADPH and/or NADP+ binding as well. As expected, the data from heat 

treatment (Figure 2.2) showed that wild-type MBP-FMO3 is not stable under elevated 

temperature when incubated in the absence of NADPH. Interestingly, a significantly 

higher activity was observed after pre-incubation of the V187A mutant 
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Figure 2.3 A Alignment of amino acids 179 to 200 for various FMOs.  

V187 is highly conserved in FMO family members (FMO1, 3, 4, and 5) and across species 

lines. Amino acids adjacent to V187 including the nearby NADPH-binding domain (GxGxxG). 

Human FMO family members (FMO1 – 5) and FMO3 from different species including 

chimpanzee, rhesus monkey, dog, cattle, rabbit, chicken, rat, and mouse, are aligned based 

on homology. The GenBank accession number for each gene is indicated. The NADPH 

binding domain (GxGxxG) located downstream of V187 is marked. The V187 residue is 

conserved in all FMO genes listed except for human FMO2. 

B Alignment of FMO3 amino acids 179 to 200 with the bacterial FMO from Methylophaga 

sp., a yeast FMO from Schizosaccharomyces pombe as well as a Baeyer-Villiger 

monooxygenase, PAMO (Phenylacetone monooxygenase).  

V187 is highly conserved in all aligned flavoprotein monooxygenases. The GenBank 

accession number for each gene is indicated. The NADPH binding domain (GxGxxG) located 

downstream of V187 is marked. 
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enzyme with NADPH at 40 °C. This also points to a d ecreased or slower interaction 

with the enzyme’s cofactor. Based on the literature, the departure of NADP+ is 

proposed to be the rate-limiting step in the catalytic cycle of FMO enzymes [Beaty et 

al., 1981a; Beaty et al., 1981b; Jones et al., 1986; Poulsen et al., 1979; Ziegler, 

1988]. It is possible that the V187A mutation interferes with NADPH binding and the 

enzyme binds the NADPH less efficiently. To verify the possibility that wild-type 

FMO3 and FMO3 V187A kinetics differ from each other the effect of NADP+ on the 

selective functional activity of both enzymes was examined. NADP+ has been 

reported in the literature to be a non-competitive inhibitor of FMO1 against the 

xenobiotic substrate and a competitive inhibitor of NADPH binding to FMO1 [Beaty et 

al., 1981b; Poulsen et al., 1979]. The effect of NADP+ on the selective functional 

activity of wild-type MBP-FMO3 and MBP-FMO3 V187A was examined. For MBP-

FMO3 V187A, increasing concentrations of NADP+ not only led to a decrease in Vmax, 

but also resulted in a significant decrease in Km (data not shown), suggesting that this 

variant follows an un-competitive model rather than a non-competitive model as 

proposed for pig-liver FMO1. Unfortunately, the photometric assay readouts in the 

presence of NADP+ reduced the range of assay detection limit and a conclusion of 

whether the inhibition mechanism is significantly different for the V187A variant 

compared to wild-type FMO3 cannot be reliably made. Alternative stopped-flow 

kinetic analysis will be necessary to clarify this issue. Thus, NADP+ could not be 

confirmed as a non-competitive inhibitor of MMI S-oxygenation in the presence of 

wild-type FMO3. Characterization of the V187A mutant in this report may prompt 

additional studies to test the hypothesis of cofactor interaction once additional FMO3 

structural information becomes available and stopped-flow kinetic studies are 

performed.   

It is also notable that enzyme expression for the recombinant protein is significantly 

lower for the V187A containing variants, suggesting that protein folding may not be 

as efficient as the wild-type enzyme. Whether this is occurring in the in vivo situation 

and results in lower overall FMO3 protein concentration in the adult human liver of 

affected individuals remains to be determined. 

It has been reported previously that patients carrying heterozygotic FMO3 mutations 

show the TMAu phenotype, [Fujieda et al., 2003; Zhang et al., 2003; Zschocke et al., 

1999]. The possibility that other mutations in intronic regions of the allele that encode 
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for the functional enzyme can affect the enzyme expression level cannot be 

excluded. However, in the presence of different detergents formation of stable and 

catalytically active oligomeric forms of purified recombinant human FMO3 was 

observed (chapter 3) and similar observations were reported earlier [Ziegler et al., 

1972]. Whether FMO3 mutants can interfere with self oligomer-formation and/or 

hetero oligomer formation with wild-type enzymes and hence lead to lower overall 

enzyme activity is not known. The characterization of these effects in the in vivo 

setting that may affect oligomerization of FMO3 expressed from different alleles 

remains to be investigated.    

In summary, a novel FMO3 gene mutation associated with TMAu was recombinantly 

expressed and proved to influence substrate oxygenation characteristics. This novel 

mutation of human FMO3, V187A, in combination with the common polymorphism 

E158K leads to an enzyme that has less than 3 % TMA N-oxygenating activity 

compared with wild-type FMO3. Generally, the common polymorphisms E158K and 

E308G alter FMO3 enzyme activity only slightly [Cashman et al., 2000], but often, if 

the two polymorphisms occur together, they can lead to an FMO3 enzyme with 

decreased activity [Cashman et al., 2000; Cashman et al., 2003; Dolan et al., 2005; 

Zschocke et al., 1999] and this has been reflected in in vivo functional activity leading 

to elevated unmetabolized TMA [Lambert et al., 2001; Zschocke et al., 1999]. 

Similarly, the novel V187A mutation in conjunction with the common polymorphisms 

E158K and E308G significantly impairs FMO3 resulting in an enzyme with drastically 

decreased function that manifests itself in severe TMAu. 
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3 Expression, Purification, and Characterization of  Human 

FMO5 

3.1 Introduction and Aim of the Study 

FMOs are, after cytochromes P450, the most important monooxygenase system in 

humans and are involved in metabolism of many xenobiotics. Nevertheless, there is 

still a need to further the knowledge of this enzyme family, especially of to date 

neglected but possibly important isoforms such as FMO5. 

In order to study structure and function of FMO5, the protein needs to be expressed 

and purified successfully. It is further important to characterize the purified FMO5. 

Detailed characterization becomes indispensable when attempting crystallography 

studies (chapter 4). The protein has to fulfill several requirements including sufficient 

purity and monodispersity. Also, it has to be functionally active and stable over a 

reasonable time period. 

For future characterization studies of FMO5 the enzyme should be expressed as 

N-terminal maltose-binding fusion protein in E. coli (i.e., MBP-FMO5), solubilized 

from the bacterial membrane, and purified. The MBP-fusion construct has proven to 

be successful in expression of FMO enzymes yielding stable and highly active 

enzyme at greater purity than was readily possible before [Brunelle et al., 1997]. 

Solubilization studies should be done to determine a suitable detergent for extraction 

of FMO5 from cells and subsequent purification utilizing different methods (i.e., 

affinity chromatography, ion exchange chromatography) to obtain highly pure FMO5. 

Further, the purified enzyme should be analyzed in various ways. Firstly, the 

expressed and purified recombinant produced MBP-tagged hFMO5 should be 

compared to commercially available hFMO5 (BD Gentest Supersomes, BD 

Biosciences, San Jose, CA, USA) in order to show that MBP-FMO5 may be used 

instead of commercially available FMO5 for kinetic and structural studies. Secondly, 

stability, oligomerization state as well as monodispersity of the purified FMO5 should 

be examined. 



3  Expression, Purification, and Characterization of MBP-hFMO5 

   

51 
 

3.2 Materials and Methods 

3.2.1 Reagents 

Chemicals and reagents used in this study were purchased from Sigma-Aldrich 

Chemical Co. (St Louis, MO, USA) in appropriate purity. Buffers and other reagents 

were purchased from VWR Scientific, Inc. (San Diego, CA, USA). The synthesis of 

the phenothiazine 8-DPT has been previously described [Lomri et al., 1993b; Nagata 

et al., 1990; Zhang et al., 2007a] and was done by Dr. Karl Okolotowicz (HBRI, San 

Diego, USA). Detergents were purchased from Anatrace (Maumee, OH, USA). MBP 

column material was purchased from New England BioLabs (Ipswich, MA, USA). 

Fast performance liquid chromatography (FPLC) columns were purchased from GE 

Healthcare (Uppsala, Sweden). Baculovirus-insect cell expressed FMO5 was 

purchased from BD Biosciences (BD Gentest Supersomes, BD Biosciences, San 

Jose, CA, USA). 

3.2.2 Expression of MBP-hFMO5 and Optimization of t he Affinity 

Chromatography Purification Method  

3.2.2.1 Cloning and Expression 

Human FMO5 was expressed as N-terminal maltose-binding fusion protein (MBP-

FMO5).  As described previously for mouse FMOs [Zhang et al., 2007a], the hFMO5 

gene was amplified at HBRI (San Diego, CA, USA) via reverse transcription (RT-) 

PCR from RNA using the following primers: 5’-hFMO5 

GATCTCTAGAATGACTAAGAAAAGAATTGCTGTGA (XbaI site underlined) and 

3’-FMO5 GATCCTGCAGCCAATGAAAAACAGGGCAGT (PstI site underlined). The 

hFMO5 gene was then subcloned into the expression vector pMAL-c2 (New England 

BioLabs, Ipswich, MA, USA) through the corresponding cloning sites XbaI and PstI. 

The construct is shown in Figure 3.1.  



3  Expression, Purification, and Characterization of MBP-hFMO5 

   

52 
 

 

Figure 3.1 pMAL Vector with human FMO5.  

The ampicillin-resistant site not shown in the Figure. 

E. coli DH1α cells transfected with pMAL-MBP-FMO5 plasmid were grown at 37 °C 

and 300 rpm in SOC medium containing 100 µg/ml ampicillin to an absorbance of 

0.4 – 0.5 at 600 nm. Induction solution (containing 0.2 mM isopropyl 

β-thiogalactopyranoside and 0.05 mM riboflavin) was added, flasks were covered 

with aluminum foil to keep riboflavin from light induced degradation, and the cells 

were further incubated shaking for 20 hours at room temperature. Cells were 

harvested by centrifugation at 6,000 g for 10 minutes.  All of the following procedures 

were carried out at 4 °C. The cell pellet was resus pended in lysis buffer (consisting of 

50 mM Na2HPO4, pH 8.4, containing 0.5 % Triton® X-100, 0.2 % 
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L-α-phosphatidylcholine, 0.5 mM phenylmethylsulfonylfluoride, and 100 mM FAD) as 

described previously [Lattard et al., 2003b]. The resuspended cells were disrupted by 

sonication (i.e., five 8-seconds bursts separated by periods of cooling on a Sonics 

vibracell ultrasonic processor (Sonics and Materials Inc., Newtown, CT, USA)). The 

solution was centrifuged for 25 minutes at 18,000 g and 4 °C. 

3.2.2.2 Extraction and Solubilization Studies 

Effect of Different Detergents on N-Oxygenation Activity of MBP-hFMO5  

The effects of a variety of detergents on N-oxygenation activity of FMO5 protein were 

tested by measuring enzyme activity of FMO5 after precipitation and re-solubilization 

with 8-DPT as substrate. 

For precipitation polyethylene glycol (PEG) was used as previously described [Lomri 

et al., 1993a]. An equal amount of 40 % PEG 8000 was added to the enzyme 

solution, mixed thoroughly, and centrifuged at 15,000 g in a bench top centrifuge for 

20 minutes at 4 °C. Supernatant was discarded and t he remaining pellet was 

resuspended in 50 mM potassium phosphate buffer, pH 8.4, containing 1 or 2 x 

critical micelle concentration (CMC) of one of the following detergents: the zwitter-

ionic detergents CHAPS (3-[(3-Cholamidopropyl)dimethylammonio]-1-

propanesulfonate) or FOS-CHOLINE®-12 (n-Dodecylphosphocholine, FC12), or the 

non-ionic detergents, n-decyl-β-D-maltoside (DM), n-dodecyl-β-D-maltoside (DDM), 

n-Octyl-β-D-glucoside (ODG), Cymal®-5, 6, and 7 (5-Cyclohexyl-1-pentyl-β-D-

maltoside, C5), and Triton® X-100 (α-[4-(1,1,3,3-Tetramethylbutyl)phenyl]-hydroxy-

poly(oxy-1,2-ethanediyl, TX100) (Table 3.1). The different batches were analyzed 

afterwards for 8-DPT N-oxygenation activity. 
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Table 3.1  Detergents tested in solubilization studies. 

Detergent  CMC (H2O)1 Structure 

CHAPS 

8 mM  

(0.49 %) 

 

 

 

 

 

 
 

FC12 
1.5 mM 

(0.047 %) 

 

 

 

DM 
1.8 mM 

(0.087 %) 

 

 

 
 

DDM 
0.17 mM 

(0.0087 %) 

 

 

 

ODG 
18-20 mM 

(0.53 %) 

 

 

 

C5-7 

C5 = 2.4-5 mM 

(0.12 %) 

C6 = 0.56 mM 

(0.028 %) 

C7 = 0.19 mM 

(0.0099 %) 

 

TX 100 
0.23 mM 

0.010 - 0.016 %  

 

 

 

 
1CMC values taken from supplier (Anatrace, Maumee, OH, USA); % given as (w/v). 

FOS-CHOLINE®-12, FC12; n-decyl-β-D-maltoside, DM; n-dodecyl-β-D-maltoside, 

DDM; n-Octyl-β-D-glucoside, ODG; Cymal®-5, 6 and 7, C5-7, and Triton® X-100, 

TX100. 
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Comparison of Extraction Efficiency of DDM and DM 

E. coli with human pMAL-MBP-FMO5 was grown, induced, and pelleted. The pellets 

were than resuspended in lysis buffer containing either 0.1 – 0.2 % DM or 0.01 –  

0.02 % DDM and disrupted by sonication. After addition of NADPH-regenerating 

system (see chapter 3.2.4.2) the solution was mixed thoroughly and centrifuged. To 

determine extraction efficiency, the supernatant was afterwards incubated with 

8-DPT for 20 minutes for determination of enzyme activity (see chapter 3.2.4.2). 

Extraction Efficiency of Triton ® X-100 vs. DDM 

E. coli with human pMAL MBP-FMO5 was grown, induced, and pelleted. The pellets 

were than resuspended in lysis buffer containing either 0.01 % DDM or 0.5 % 

Triton® X-100 and disrupted by sonication. As control, the pellet resulting from lysis 

with DDM was extracted a second time after centrifugation, this time with 

Triton® X-100. For batch-wise purification, 300 µl amylose column material 

equilibrated with 50 mM sodium phosphate buffer, pH 8.5, was added to all three 

supernatants (each 5 ml). After 3 hours incubation at 4 °C, the column material was 

washed with equilibration buffer and finally MBP-hFMO5 was eluted with 50 mM 

sodium phosphate buffer, pH 8.5, containing 10 mM maltose by incubation at 4 °C for 

20 minutes and subsequent centrifugation. Afterwards, the supernatant was analyzed 

for enzyme activity as described in chapter 3.2.4.2. 

3.2.2.3 Affinity Chromatography  

The first purification step after cell lysis exploited the MBP-affinity tag connected to 

the FMO5 enzyme. Thus, after centrifugation of the lyzed cells, the supernatant was 

loaded onto an amylose column (New England BioLabs, Ipswich, MA, USA). In order 

to improve the yield of protein, the pellets were extracted one more time as described 

above (chapter 3.2.2.1) and the resulting supernatant was also loaded onto the same 

amylose column. Protein purification was carried out on a low pressure 

chromatography system, Biologic LP (Bio-Rad, Hercules, CA, USA). For a 6 l 

bacterial culture, a 10 ml amylose column was used. After loading the supernatants 

at 1 ml/min onto a column equilibrated with ten column volumes of buffer A (i.e., 

50 mM Na2HPO4, pH 8.4, and 0.5 % Triton® X-100 containing 15 µg/ml FAD) the 

column was washed with at least ten column volumes of buffer A. Bound 

MBP-hFMO5 protein was then eluted with 3 mM maltose in buffer A at 1 ml/min. 
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Eluted fractions were analyzed via absorption at 280 nm (Figure 3.5), SDS-PAGE 

(chapter 3.2.4.1), or HPLC-based enzyme activity assay (chapter 3.2.4.2). Fractions 

containing the fusion protein were concentrated with an Amicon Ultra-15 centrifugal 

filter unit with an Ultracel-50 filter (Millipore, Billerica, MA, USA). 

3.2.3 Development of an Ion Exchange Chromatography  Method  

3.2.3.1 Buffer and Column Selection 

A protocol for further protein purification utilizing ion exchange chromatography was 

developed. 700 mg of MBP-hFMO5 from 4 separate 6 l bacterial cultures was pooled 

after affinity chromatography and used to develop such a protocol. 2.5 mg of this 

protein was loaded at 1 ml/min onto a 1 ml DEAE, Q, or ANX column (HiTrap FF 

columns, GE Healthcare, Uppsala, Sweden) at four different pHs (i.e., pH 6, 7, 8, and 

9). Elution profiles showing absorption at 280 nm and SDS gels of eluted fractions 

were evaluated regarding capture of MBP-hFMO5 protein. 

3.2.3.2  Determination of a Salt Gradient 

After choosing a column, an adequate salt gradient was determined. Affinity column 

purified MBP-hFMO5 was loaded onto a 1 ml HiTrap Q FF column at 1 ml/min and 

washed with 50 mM Bis-Tris , pH 6 (buffer B) containing 0.01 % DDM. A linear salt 

gradient of first 0 – 50 % and later 1 – 30 % 1 M NaCl in buffer B containing 0.01 % 

DDM was applied over 20 column volumes. Salt concentrations for a suitable step 

gradient for separation of contaminating protein and MBP-hFMO5 was roughly 

estimated from the first two linear gradients. The approximated step gradient was 

refined by repetitive ion exchange purification and SDS gel analysis of resulting 

fractions varying only the salt concentration of the different steps in the gradient. 

3.2.3.3 Scale-Up Experiments 

For larger amounts of purified protein the ion exchange chromatography method 

developed was transfered to a 5 ml Q HP column (GE Healthcare, Uppsala, 

Sweden). 30 mg of affinity purified MBP-hFMO5 was loaded onto a 5 ml Q HP 

column at 5 ml/min and eluted with a step gradient of 6.5 % and 25 % 1 M NaCl. 

Likewise, ion exchange purification could be adapted to 1 ml HiTrap Q HP columns 
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(GE Healthcare, Uppsala, Sweden) using a flow rate of 1 ml/min and a step gradient 

of 65 mM and 250 mM NaCl. 

An overview of the purification process including columns, buffers, and flow rates is 

given in Table 3.2. 

Table 3.2  Overview over the parameters in the purification process. 

 Chromatography method 

 Affinity Anion exchange Size exclusion 

Column 10 ml amylose 

column 

1 ml HiTrap Q 

FF or HP 

5 ml HiTrap Q 

HP  

Superose 6 

10/300 GL 

Equilibration 

buffer 

50 mM Na2HPO4 

pH 8.4, 15 µg/ml 

FAD, ± 0.5 % 

Triton® X-100 

50 mM Bis-Tris 

pH 6 ± 0.01 % 

DDM 

50 mM Bis-Tris 

pH 6 ± 0.01 % 

DDM 

50 mM Bis-Tris 

pH 6, 0.01 % 

DDM 

Elution buffer 50 mM Na2HPO4 

pH 8.4, 15 µg/ml 

FAD, 3 mM 

maltose, ± 0.5 % 

Triton® X-100 

50 mM Bis-Tris 

pH 6 ± 0.01 % 

DDM, 

stepgradient: 

0, 65, 250 and 

1000 mM NaCl 

50 mM Bis-Tris 

pH 6 ± 0.01 % 

DDM, 

stepgradient: 

0, 65, 250 and 

1000 mM NaCl 

 

Flow rate 1 ml/min 1 ml/min 5 ml/min 0.5 ml/min 

Fraction size 5 ml 1 ml 5 ml 1 ml 

Detection  

wavelength 

280 nm 280 and 

450 nm 

280 and 

450 nm 

280 and    

450 nm 
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3.2.4 Characterization of Purified MBP-hFMO5 

3.2.4.1 Determination of MBP-hFMO5 Concentration 

Concentration of purified MBP-hFMO5 was determined by SDS-PAGE and 

Coomassie Blue staining and compared with bovine serum albumin (BSA) standard. 

MBP-hFMO5 proteins and different quantities of standard BSA (i.e., 2, 1.5, 1.0, 0.5, 

and 0.1 µg per lane) were fractionated by electrophoresis on a 10 % polyacrylamide 

gel under denaturing conditions and stained with Coomassie Blue. After destaining, 

FMO5 quantification was done by densitometry analysis employing Kodak molecular 

imaging software (Eastman Kodak Company, Rochester, NY, USA) or Adobe 

Photoshop Elements (Version 7). 

For protein concentration measurements of Q column purified fractions containing 

DDM instead of Triton® X-100 or no detergent at all, the absorbance at 280 nm was 

measured on a NanoDropTM ND-1000 UV/VIS Spectrophotometer (Thermo Fisher 

Scientific, Wilmington, DE, USA) using a calculated extinction coefficient of 

121 M-1cm-1 estimated after the method of Gill and von Hippel [Gill et al., 1989] using 

the online Protein Calculator v3.3. 

3.2.4.2 8-DPT N-Oxygenation Activity and Stability of MBP-hFMO5 

N-Oxygenation of 8-DPT HCl was determined by HPLC analysis as previously 

described [Lattard et al., 2003b]. A standard incubation mixture of 250 µl final volume 

contained 50 mM potassium phosphate buffer at pH 8.5, 0.4 mM NADP+, 0.4 mM 

glucose-6-phosphate, 4 U glucose-6-phosphate dehydrogenase, 0.25 mM 

DETAPAC, and 40 µg MBP-hFMO5. Reactions were initiated by addition of substrate 

to a final concentration of 400 µM. After incubation for 20 minutes shaking under 

aerobic conditions at 37 °C, enzyme reactions were stopped by addition of 4 volumes 

of cold dichloromethane. About 20 mg of sodium carbonate was added to incubations 

and they were mixed and centrifuged in order to partition metabolites and remaining 

substrate into the organic fraction. The organic phase was collected and evaporated 

under a stream of argon. Metabolites and remaining substrate were dissolved in 

methanol, mixed thoroughly, centrifuged, and analyzed with a Hitachi HPLC system 

(Hitachi L-7200 autosampler and L-7100 pump interfaced to a Hitachi L-7400 UV 

detector). Chromatographic separation of analytes was done on an Axxi-Chrom’s 
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normal phase analytical column (250 x 4.6 mm 5 µm, silica) with a mobile phase of  

80 % methanol/ 20 % isopropanol/ 0.025 % perchloric acid (v/v/v). The flow rate was 

1.6 ml/min and the total run time was 11 minutes. The wavelength for UV detection 

was set to 243 nm. Retention times for 8-DPT and 8-DPT N-oxide were 5.8, and 

4.3 minutes, respectively, and the enzyme activity was determined by calculation of 

the ratio of 8-DPT to 8-DPT N-oxide peak. 

Comparison of recombinant expressed MBP-hFMO5 and commercially available 

FMO5 (BD Gentest) was done by evaluating kinetic parameters and enzyme stability 

over 30 minutes at 37 °C for both enzymes. The kine tic parameters (i.e., Vmax and 

Km) for N-oxygenation of 8-DPT HCl by FMO5 was determined by HPLC analysis as 

described above. Incubations were initiated by the addition of different amounts of 

substrate. The final substrate concentrations were in the range of 10 µM – 2 mM. 

Stability was determined by incubating the enzyme in presence of cofactor and 

400 µM 8-DPT HCl for 5, 10, 20, and 30 minutes. 8-DPT HCl and its N-oxide were 

then analyzed on a HPLC system as described above. 

Stability of MBP-hFMO5 was determined by incubating 5 ml HP Q column-purified 

MBP-hFMO5 at 4 °C for 5 days. The 8-DPT N-oxygenation activity of MBP-hFMO5 

was determined for three time-points (i.e., day 0, day 3, and day 5). 500 mM NADP+ 

and/or 20 % glycerol was added to determine whether these supplements improve 

the enzyme’s stability. 

3.2.4.3 Native Gel Electrophoreses 

MBP-hFMO5 and five standard proteins (i.e., thyroglobulin (669 kDa), ferritin 

(440 kDa), aldolase (158 kDa), conalbumin (75 kDa), and ovalbumin (43 kDa)) were 

fractionated by electrophoresis on a NativePAGE Novex 3 – 12 % Bis-Tris Gel with 

Native-PAGE Running Buffer Kit (Invitrogen Corporation, Carlsbad, CA, USA) 

following the vendors instructions. After destaining, molecular weight determination of 

sample protein was done by comparison of MBP-hFMO5 bands with standard protein 

bands employing Kodak molecular imaging software (Eastman Kodak Company, 

Rochester, NY, USA).  
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3.2.4.4 Size Exclusion Chromatography 

MBP-hFMO5 purified via affinity chromatography or ion exchange chromatography 

following affinity chromatography was also analyzed utilizing size exclusion 

chromatography.  Peak fractions of the protein from either column were concentrated 

and loaded onto a Superose 6 10/300 GL size exclusion column equilibrated with 

50 mM Bis-Tris, pH 6, containing 0.01 % DDM. 

3.2.4.5 Dynamic Light Scattering 

Protein was analyzed via dynamic light scattering (DLS) in order to determine the 

size distribution profile of the protein sample and ensure monodispersity before 

setting up crystallography experiments (chapter 4). For this purpose, 60 µl protein 

solutions in different concentrations and with various additives were analyzed with a 

Zetasizer Nano-S (Malvern Instruments Ltd, Malvern, United Kingdom). DLS 

measurements were done at the Zentrum für Biochemie und Molekularbiologie 

(ZBM), University of Kiel. FMO5 fractions analyzed included affinity column purified 

MBP-hFMO5, Q-purified MBP-hFMO5 with and without 20 % glycerol. Some 

MBP-hFMO5 fractions were treated with Calbiosorb Adsorbent beads (Merck, 

Darmstadt, Germany) in order to evaluate the effect of removal of excess detergent 

on monodispersity. Also, Calbiosorb Adsorbent beads treated Q-purified FMO5 was 

examined in different concentrations (i.e., 25, 10, 5, 2.5, and 0.25 mg/ml). 

3.2.5 Data Analysis 

Kinetic parameters for 8-DPT N-oxygenation activity were determined by examining 

the data from incubations of seven different substrate concentrations with 

MBP-hFMO5 (i.e., 0, 10, 40, 100, 200, 400, 800 µM, and 2 mM). Incubations were 

done in duplicates and for data analysis a nonlinear regression curve fit tool using a 

Michaelis-Menten model (Y= (Vmax · X)/(Km + X) with Vmax = Ymax and Km = Xmid) in 

Graphpad software (Graphpad Prism, Version 3.00, San Diego, CA, USA) was 

utilized. Time dependence of MBP-hFMO5 was also done in duplicates and data was 

analyzed with linear regression using Graphpad software. Data obtained was 

presented as the best fit value ± standard error. Statistical analysis was also done 

using Graphpad Prism software.  
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3.3 Results 

3.3.1 Expression and Purification of MBP-hFMO5 via Affinity 

Chromatography 

3.3.1.1 Extraction and Solubilization  

Effect of Different Detergents on N-Oxygenation Activity of MBP-hFMO5 

In order to determine a suitable detergent for MBP-hFMO5 solubilization and 

purification, the effect of nine different detergents (i.e., Triton® X-100, CHAPS, DM, 

DDM, ODG, FC12, and Cymal®-5, 6 and 7) on N-oxygenation activity of MBP-hFMO5 

were tested.  

In control experiments with MBP-hFMO5 solubilized in Triton® X-100 and 

MBP-hFMO5 after PEG precipitation and re-solubilization in Triton® X-100 no 

significant difference in enzyme activity between the two was observed (Figure 3.2). 

Overall, results showed that DM and DDM performed best even in concentrations of 

2 x CMC. Thus, these detergents were chosen for further analyzation. 
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Figure 3.2 Effect of a variety of detergents on MBP-hFMO5 activity.  

Amylose column purified MBP-hFMO5 was precipitated with 40 % PEG and 

resuspended in 50 mM phosphate buffer (pH 8.4) containing a variety of different 

detergents in two different concentrations: 1 x (grey bars) and 2 x CMC (black bars). 

8-DPT N-oxygenation activity of the enzyme was determined. For comparison, 

regular amylose column-purified MBP-hFMO5 in buffer containing 0.5 % 

Triton® X-100 that was not precipitated with 40 % PEG is shown as a white bar. 

Triton® X-100, TX100; n-decyl-β-D-maltoside, DM; n-dodecyl-β-D-maltoside, DDM; 

n-Octyl-β-D-glucoside, ODG; FOS-CHOLINE®-12, FC12; Cymal®-5, 6 and 7, C5-7.  

Extraction Efficiency of DDM and DM in Comparison 

Comparison between DM and DDM showed a very slight advantage of DDM over DM 

(data not shown). Thus, extraction efficiency of DDM was afterwards compared to 

that of Triton® X-100 anticipating replacement of the latter. 

Extraction Efficiency of Triton ® X-100 and DDM 

Comparison of MBP-hFMO5 extraction efficiencies from bacterial cell pellets with 

Triton® X-100 and DDM showed that although DDM seemed to have no negative 

influence on enzyme activity, it was not suitable for extraction (Figure 3.3). When 
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extracting the bacterial cells with lysis buffer containing Triton® X-100 a larger 

amount of MBP-hFMO5 was obtained after purification with amylose resin in 

comparison to bacterial cells extracted with lysis buffer containing DDM. 

Only after the second extraction (i.e., with Triton® X-100 instead of DDM) of the 

bacterial pellet already extracted with DDM, an appropriate MBP-hFMO5 band could 

be observed on the SDS gel. Thus, Triton® X-100 was chosen for extraction of 

MBP-hFMO5 from bacterial cells and was used in the first purification step.  

Triton® X-100 is rather heterogeneous and thus not suitable for crystallography 

studies. In order to remove it, a buffer exchange was done on the ion exchange 

column switching to DDM as detergent (see also Figure 3.15) because although 

DDM did not extract the protein very efficiently, it was superior with regards to 

enzyme activity (Figures 3.2 and 3.3). 

 

MW (kDa) 
250 
148 
 
 

98 
 
64 
 
50 
 
 
 

36 

    1 2 3 marker 

Figure 3.3  Extraction efficiency of Triton® X-100 and DDM. 

Coomassie stained SDS gel of: 1, pellet extracted with Triton® X-100; 2, pellet 

extracted with DDM; 3, second extraction of already with DDM extracted pellet with 

Triton® X-100; molecular weight (MW) marker, SeeBlue® Plus2 (Invitrogen 

Corporation, Carlsbad, CA, USA). The arrow points to the MBP-hFMO5 band. 

Later, after ensuring that no interference of DDM with the amylose column would 

occur, Triton® X-100 was replaced with DDM in the chromatography buffer in this first 

purification step (Figure 3.15). Subsequent studies showed that treatment of MBP-

hFMO5 with an excess amount of polystyrene beads to remove residual detergents 
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from the protein sample did not result in precipitation of MBP-hFMO5 (chapters 

4.2.4.3 and 4.3.1.3). Additional experiments also showed that MBP-hFMO5 could be 

purified in the absence of detergent. Thus, in the final purification protocol, 

Triton® X-100 was used to extract MBP-hFMO5 from E. coli cells, but all purification 

steps were done in the absence of detergent. An overview of the development and 

design of purification process including usage of detergents is given in Figure 3.15 at 

the end of this chapter. 

3.3.1.2 Affinity Chromatography  

In the first purification step utilizing an amylose column, a total of about 700 mg 

MBP-hFMO5 was obtained from four separate 6 l bacterial cultures (Figure 3.4). A 

representative elution chromatogram from this affinity purification step is shown in 

Figure 3.5. Protein concentration and the 8-DPT N-oxygenation activity were 

determined by HPLC analysis (Table 3.3). The obtained protein preparations were 

pooled and stored at -80 °C until used for ion exch ange chromatography method 

development and initial crystallography screens.  

MW (kDa)   
250 
148 

 
 

98 
 

64 

 
50 

 
 

36 

 

 
                        marker  2µg  0.8 µg   

Figure 3.4  Representative Coomassie stained SDS gel with 2 and 0.8 µg of affinity 

chromatography purified MBP-hFMO5 protein.  

SeeBlue® Plus2 (Invitrogen Corporation, Carlsbad, CA, USA) was used as MW 

protein marker. The arrow points to the MBP-hFMO5 band. 
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Figure 3.5  Representative elution profile of affinity chromatography of MBP-hFMO5.  

0 – 93 minutes, loading of protein; 93 – 188 minutes, wash step; 188 – 236 minutes, 

elution step with 3 mM maltose. 

 

Table 3.3   MBP-hFMO5 protein preparations of four separate 6 l bacterial cultures 

after affinity purification. 

Batch 8-DPT assay  Yield  

 

Specific activity  

(nmol/(min·mg)) 

Protein 

(mg/ml) 

Total volume of 

fraction (ml) 

Total amount of 

protein (mg) 

1 12.5 54 2.7 146 

2 5.0 39 3.2 126 

3 7.2 69 3.6 249 

4 7.1 57 3.5 199 
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3.3.2 Purification of MBP-hFMO5 via Ion Exchange Ch romatography 

3.3.2.1 Columns, Buffers, and pH 

After affinity chromatography, a protocol for further protein purification utilizing ion 

exchange chromatography was developed using affinity column purified 

MBP-hFMO5 (section 3.2.2.3). The most promising conditions for further purification 

with an FPLC-system (Äkta-Purifier, GE Healthcare, Uppsala, Sweden) were 

determined by testing three different columns (i.e., DEAE, Q, and ANX) at different 

pHs (6 – 9). Most protein was captured at pH 6 on the ANX column followed by the Q 

column (Figure 3.6). For further purification, 1 ml or 5 ml HiTrap Q HP columns (GE 

Healthcare, Uppsala, Sweden) with Bis-Tris buffer at pH 6 were chosen because 

high performance columns are available for the Q column. Also, choosing a strong 

ion exchanger such as Q over a weak one (i.e., DEAE or ANX) is advantageous 

because it does not show variation in ion exchange capacity with change of pH.  
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Figure 3.6  Determination of a suitable anion exchange column and pH.  

% Area under the curve (AUC) of MBP-hFMO5 peaks in relation to AUC of all peaks 

eluted from the column (= 100 %) observed is shown for Q (black bars), ANX (grey 

bars), and DEAE (white bars) columns at pH 6, 7, 8, and 9.  
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3.3.2.2 Salt Gradient 

To separate protein impurities from MBP-hFMO5, a step gradient was determined on 

1 ml HiTrap Q FF column with affinity chromatography purified protein. Most 

impurities were eluted with 65 mM NaCl in buffer B. MBP-hFMO5 was then eluted 

with 250 mM NaCl in buffer B (Figure 3.7). 

3.3.2.3 Scale-Up Experiments 

For purification of larger amounts of MBP-hFMO5, a 5 ml HiTrap Q HP column was 

utilized. This column had been successfully used with 30 mg of affinity column 

purified MBP-hFMO5 and the previously determined step-gradient (elution of most 

impurities with 65 mM NaCl in buffer B followed by elution of MBP-hFMO5 with 250 

mM NaCl in buffer B). The elution profile as well as the SDS gel of the fractions 

obtained (Figure 3.8) look similar to those obtained with the 1 ml HiTrap Q FF 

column. 
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Figure 3.7  A Elution profile of MBP-hFMO5 purified on a 1 ml HiTrap Q FF column. 

Absorbance at 280 nm is shown as solid line, absorbance at 450 nm as dashed line.  

B Coomassie stained SDS gel of fractions from 1 ml HiTrap Q FF column eluted with 

a NaCl step-gradient as shown in A.  

The column was loaded with 7 mg concentrated amylose column-purified 

MBP-hFMO5. The washing buffer consisted of 50 mM Bis-Tris buffer, pH 6, 

containing 0.01 % DDM. SeeBlue® Plus2 (Invitrogen Corporation, Carlsbad, CA) was 

used as MW protein marker. The arrow points to the MBP-hFMO5 band.  
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Figure 3.8  A Elution profile of MBP-hFMO5 purified on a 5 ml HiTrap Q HP column. 

Absorbance at 280 nm is shown as solid line, absorbance at 450 nm as dashed line.  

B Coomassie stained SDS gel of fractions from 5 ml HiTrap Q HP column eluted with 

a NaCl step-gradient as shown in A.  

The column was loaded with 30 mg concentrated amylose column-purified 

MBP-hFMO5. The washing buffer consisted of 50 mM Bis-Tris buffer, pH 6, 

containing 0.01 % DDM.  SeeBlue® Plus2 (Invitrogen Corporation, Carlsbad, CA) was 

used as MW protein marker. The arrow points to the MBP-hFMO5 band.  

     1       2                                3                               4 



3  Expression, Purification, and Characterization of MBP-hFMO5 

   

70 
 

3.3.3 Characterization of Purified MBP-hFMO5 

3.3.3.1 Comparison between Recombinant Expressed MB P-hFMO5 and 

Commercially Available FMO5 

8-DPT HCl Substrate Dependence 

Kinetic parameters (i.e., Vmax and Km) for N-oxygenation of 8-DPT HCl by FMO5 were 

determined by HPLC analysis and the results are shown in Figure 3.9 and Table 3.4.  

Both enzymes had very similar Km values (i.e., 120 ± 21 µM for Gentest FMO5 and 

117 ± 21 µM for MBP-hFMO5). The Vmax values were also similar, with a slightly 

higher value for MBP-hFMO5.  
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Figure 3.9  Determination of kinetic parameters for 8-DPT HCl N-oxygenation with 

MBP-hFMO5 and commercially available FMO5.  

MBP-hFMO5 is shown as solid line (■), commercially available FMO5 as dashed line 

(▲). r2 Values are 0.96 and 0.97 for MBP-hFMO5 and commercially available FMO5, 

respectively. 
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Table 3.4  Kinetic parameters for N-oxygenation of 8-DPT HCl with FMO5. 

 Vmax 

(nmol/min/mg FMO5) 

Km 

(µM) 

Km / Vmax 

(min -1 mg -1) 

Commercially 
available FMO5 

2.1 ± 0.1 120 ± 21 17.5 ± 3.2 

MBP-hFMO5 3.2 ± 0.2 117 ± 21 27.3 ± 5.2 

Data are presented as best fit values ± standard error. 

 

Time Dependence 

FMO5 time dependence was determined by incubating the enzyme in presence of 

cofactor and 400 µM 8-DPT HCl over 30 minutes. Time points were taken at 5, 10, 

20, and 30 minutes. Results show linear increase of product formation over time for 

both enzymes. r2 Values for linear regression with interception point set 0 were 0.97 

and 0.99 for MBP-hFMO5 and FMO5 purchased from BD Gentest, respectively. 
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Figure 3.10  FMO5 time dependence was determined by measuring 8-DPT HCl 

N-oxygenation activity over 30 minutes.  

MBP-hFMO5 is shown as solid line (■), commercially available FMO5 as dashed line 

(▲). 
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3.3.3.2 Stability of MBP-hFMO5 at 4 °C  

The stability of MBP-hFMO5 at 4 °C was checked over  5 days and NADP+ and/or 

20 % glycerol was added to determine whether these supplements improve the 

enzyme’s stability. The addition of NADP+ and/or glycerol decreased loss of enzyme 

activity at 4 °C over 5 days. The specific activity  of MBP-hFMO5 was still at 65 %, 

73 %, and 80 % of that at day zero after addition of NADP+, glycerol, or both, 

respectively, whereas a 50 % loss in enzyme specific activity was observed when 

neither substance was added. Results are shown in Figure 3.11 and Table 3.5. 

Therefore, the NADP+ as well as 20 % glycerol was added to the enzyme to improve 

its stability in future crystallization studies (chapter 4). The observed increase of 

enzyme activity upon addition of glycerol at day 0 is probably due to the 

cryoprotective properties of glycerol.  

0

2

4

6

8

10

12

14

16

18

Ø  + NADP  + Glycerol  + NADP 
+ Glycerol

8-
D

P
T

 N
-o

xy
ge

na
tio

n 
(n

m
ol

/m
in

/m
g 

F
M

O
5)

 

Figure 3.11  Stability of MBP-hFMO5 at 4 °C.  

8-DPT N-oxygenation of MBP-hFMO5 at day 0 (black bars) and after incubation at 

4 °C for 3 (grey bars) and 5 days (white bars) with  and without addition of 500 mM 

NADP+ and/or 20 % glycerol.  

 

+ + 
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Table 3.5  Stability of MBP-hFMO5 at 4 °C.  

 Ø + NADP+ + Glycerol + NADP+ 

+ Glycerol 

Day 0 100.0 ± 7.7 100.0 ± 12.0 100.0 ± 0.4 100.0 ± 4.5 

Day 3 79.6 ± 16.0 82.1 ± 5.5 75.1 ± 3.1 91.4 ± 11.2 

Day 5 47.4 ± 2.8 65.3 ± 2.6 73.3 ± 2.8 79.2 ± 3.4 

8-DPT N-oxygenation of hFMO5 at day 0 and after incubation at 4 °C for 3 and 

5 days with and without addition of 500 mM NADP+ and/or 20 % glycerol are given in 

% with day 0 set 100 %.  

3.3.3.3 Oligomerization State of MBP-hFMO5 

The oligomerization state of MBP-hFMO5 was determined by native gel 

electrophoreses and gel filtration. After amylose column-purification, the enzyme 

existed mainly as mono-, tri-, and hexamer (Figure 3.12, lane 1) whereas it was 

primary found to be in a hexameric state after Q and SEC purification (Figure 3.12, 

lanes 2 and 3). After addition of 0.5 % Triton® X-100 (~30 x CMC) or 10 x CMC of 

DDM (0.1 %) to the Q and SEC-purified protein, the multimerization state changed 

towards coexistence of mono-, tri-, and hexamers (Figure 3.12, lanes 4-7). 
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lane              1         2         3        4         5   6         7       8 

Sample:               A       Q     SEC       Q     SEC                                     Q      SEC      STD 

Addition to sample:  0.5 % TX 0.1 % DDM  

Figure 3.12  Native gel of MBP-hFMO5 in different purity. 

Amylose-column purified MBP-hFMO5 (A, lane 1), HP Q column-purified MBP-

hFMO5 (Q, lanes 2, 4, and 6), and MBP-hFMO5 purified on Superose 6 column after 

Q-purification (SEC, lanes 3, 5, and 7) with addition of 0.5 % Triton® X-100 (TX, lanes 

4 and 5) or DDM (lanes 6 and 7). Standards (STD, i.e., thyroglobulin (669 kDa), 

ferritin (440 kDa), aldolase (158 kDa), conalbumin (75 kDa), and ovalbumin (43 kDa)) 

are loaded in lane 8. Molecular weight was determined employing Kodak molecular 

imaging software (Eastman Kodak Company, Rochester, NY, USA).  

Also, size exclusion chromatography supports this assumption. The short retention 

time (Figure 3.13) suggests high aggregation state and after calculating the size 

utilizing various standard proteins (i.e., ovalbumin, conalbumin, aldolase, ferritin, and 

thyroglobulin) hexameric state of the protein seemed most likely. 

Both MBP-hFMO5 from 1 ml HiTrap FF Q column or from amylase column were 

loaded onto a Sepharose 6 gel filtration column (Figure 3.13 A and B, respectively). 

In comparison to MBP-hFMO5 only purified via affinity chromatography where 

multiple protein species are still present, only one major peak could be observed 

after ion exchange purification.  
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Figure 3.13 Elution profile of fractions from SEC column (Sepharose 6) loaded with 

MBP-hFMO5. 

Absorption at 280 nm is shown as solid line, absorption at 450 nm as dashed line. 

A SEC elution profile of MBP-hFMO5 previously purified on an amylose column. 

B SEC elution profile of MBP-hFMO5 previously purified on Q column.  

3.3.3.4 Monodispersity of MBP-hFMO5 

DLS analysis data of affinity purified MBP-hFMO5 is shown and either size (Figure 

3.14 A) or volume (Figure 3.14 B) is plotted against intensity. When size is plotted 

against intensity two large peaks are observed, showing contamination or at least 

two species of proteins. However, when size is plotted against volume, it becomes 

apparent that the contamination is not as dominant as it seemed in Figure 3.14 A. 
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The polydispersity index (PdI) values for amylose pure MBP-hFMO5 were 

0.394 ± 0.006. 

A B 

 

 

C D  

  

Figure 3.14  Dynamic light scattering of affinity (A, B) and ion exchange (C, D) 

purified MBP-hFMO5. 

Dynamic light scattering of affinity purified and Q purified MBP-hFMO5 showed an 

increased monodispersity of the protein with only one peak visible in both graphs 

(Figure 3.14 C and D) and improved PdI values of 0.134 ± 0.002. 



3  Expression, Purification, and Characterization of MBP-hFMO5 

   

77 
 

DLS analysis done with Q-purified MBP-hFMO5 where glycerol was added and 

Q-purified MBP-hFMO5 that was treated with Calbiosorb Adsorbent beads (Merck, 

Darmstadt, Germany) did not show significant differences. Further, Calbiosorb 

Adsorbent treated Q-purified MBP-hFMO5 was examined in various concentrations 

(i.e., 25, 10, 5, 2.5, and 0.25 mg/ml), but again no significant differences between the 

different concentrations could be observed (data not shown). For all Q-purified MBP-

hFMO5 samples measured average PdI values were 0.141 ± 0.037. 

3.4 Discussion 

For structural and functional characterization of MBP-hFMO5, highly-purified and well 

characterized protein was needed. Especially crystallography experiments (chapter 

4) require not only pure, but also monodispers and stable protein. Herein, a two-step 

purification method was developed and obtained protein was thoroughly 

characterized (Figure 3.15). 

 

Figure 3.15  Overview of MBP-hFMO5 purification protocol development.  

Dashed lines and white boxes stand for earlier steps in purification protocol 

development, solid lines and grey boxes represent final purification protocol as used 

for crystallography studies in chapter 4. 

Human FMO5 was successfully expressed as N-terminal MBP-fusion protein 

(MBP-hFMO5) in E. coli DH1α cells. After expression, a number of different 

detergents was tested for extraction of MBP-hFMO5, but only Triton® X-100 

solubilized FMO5 sufficiently. The degree in which detergents are able to cross 

Expression in E. coli 

Solubilization with Triton X-100 

Amylose column (buffer 
containing Triton X-100) 

Amylose column (buffer 
without detergent) 

Amylose column (buffer 
containing DDM) 

Q column (buffer without 
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Q column (buffer without 
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Q column (buffer 
containing DDM) 
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membranes is said to be affecting the extend to which efficient solubilization occurs 

[le Maire et al., 2000]. Triton® X-100 showed best solubilization ability. This might be 

due to the hydrophobic-hydrophilic properties of its polyethylene chains [Israelachvili, 

1997] allowing Triton® X-100 to ‘flip-flop’ rapidly across membranes. In contrast, DDM 

has a strong hydrophilic head averting fast ‘flip flop’ across the membrane [Kragh-

Hansen et al., 1998; le Maire et al., 2000] and thus proved unsuitable for extraction of 

MBP-hFMO5 as seen in this study. For subsequent studies, Triton® X-100 was 

chosen for extraction of MBP-hFMO5 from E. coli. 

Affinity chromatography was used to purify the supernatant after cell lysis. This was 

done on an amylose column that binds to the MBP tagged to FMO5. Impurities could 

thus be eluted from the column during an extended washing step. Afterwards, the 

MBP and therefore the protein of interest was eluted with 3 mM maltose. 

After this first purification step, a second step was added. MBP-hFMO5 was further 

purified on an ion exchange column. At pH 6, MBP-hFMO5 was bound to the resin of 

a 1 ml HiTrap Q column. Following a washing step with 65 mM NaCl in which 

impurities were removed, the protein of interest was eluted at a concentration of 

250 mM NaCl. 

Purified MBP-hFMO5 was characterized in order to confirm its suitability for kinetic 

and crystallization studies. Firstly, MBP-hFMO5 was supposed to be compared to 

commercially available hFMO5 (BD Gentest) in order to show that MBP-hFMO5 may 

be used for kinetic and structural studies instead of expensive purchasable FMO5. 

The kinetic parameters of recombinant expressed MBP-hFMO5 and commercially 

available FMO5 were determined and time dependence studies were carried out. 

These studies showed very similar kinetic behavior for both enzymes, with a Km of 

roughly 120 µM for both enzymes and a Vmax of 2.1 and 3.2 for Gentest FMO5 and 

MBP-hFMO5, respectively. Time dependence studies also showed a linear behavior 

for both enzymes over 30 minutes validating the standard incubation time of 

20 minutes. Thus, MBP-hFMO5 is very similar to commercially available FMO5 and 

may be used to study kinetic as well as structural parameters. In addition to lower 

costs, MBP-hFMO5 has the advantage that it can be purified easily utilizing its MBP-

tag. Further, it can be produced in large quantities and higher purity may be achieved 

which is especially advantageous when attempting to crystallize the protein. 
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Enzyme stability was determined under various conditions at 4 °C. Results from this 

study showed that addition of glycerol and NADP+ to the sample improved 

MBP-hFMO5 stability 1.6-fold. Therefore, in subsequent crystallization studies these 

additives were added to the enzyme preparations. 

For characterization of the protein, native gel electrophoresis and size exclusion 

chromatography were used to determine the oligomerization state of MBP-hFMO5. 

Compared to affinity purified MBP-hFMO5, the monodispersity improved significantly 

upon further purification via ion exchange chromatography. As shown on native gels, 

high detergent content seemed to separate protein molecules and MBP-hFMO5 that 

was primary found to exist in a hexameric state after ion exchange chromatography 

and size exclusion chromatography changed its oligomerization state towards 

coexistence of mono-, tri-, and hexamers. Results from size exclusion 

chromatography of ion exchange purified MBP-hFMO5 also suggested hexameric 

state of the protein. The observation that FMO proteins possibly exist in higher 

ordered complexes has been made previously [Brunelle et al., 1997] and a 

hexameric state of a native FMO enzyme was first presumed in 1972 by Ziegler and 

Mitchell [Ziegler et al., 1972]. Although an MBP fusion could be affecting the 

oligomerization state of FMO, this was not the case for other MBP-tagged proteins 

like MBP-phenylalanin hydroxylase [Martinez et al., 1995]. This was an important 

observation because multimerization could have a significant effect on crystallization.  

Another important factor in crystallization studies is monodispersity of the protein. 

Thus, MBP-hFMO5 was characterized via DLS analysis. DLS is a method to 

determine particle size in solution and thus gives an estimate of the monodispersity 

of a given protein sample. It is a technique based on Brownian motion of particles. A 

laser beam is scattered by particles in solution and the time dependent change of the 

signal intensity compared to itself is used to determine the size of the particles. In 

case of small particles this change is fast whereas larger particles give ‘speckle 

patterns’ that fluctuate at a slower rate. Thus, the time gives an indication of the 

mean particle size. In addition, large particles will scatter more light than small ones 

and therefore, in case more than one peak is observed, the importance of the second 

peak will be represented more realistically if intensity is correlated to volume. This 

can also be observed with affinity column purified MBP-hFMO5 where two large 

peaks are visible when size is plotted against intensity whereas the second peak 
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(particles of larger size) decreases when size is plotted against volume. In 

comparison to only affinity-purified MBP-hFMO5 where impurities are obvious, DLS 

with Q-purified samples showed only a single peak. No significant difference could be 

observed between ion exchange purified MBP-hFMO5 and samples of the same 

purity that were treated with Calbiosorb Adsorbent beads added to remove residual 

detergent in the sample. Also, addition of 20 % glycerol and different concentrations 

of MBP-hFMO5 did not alter DLS results.  

Studies showed that E6 oncoprotein from human Papillomavirus strain 16 fused to 

MBP formed soluble high molecular weight aggregates [Zanier et al., 2007]. The size 

and amount of aggregated particles varied depending on expression conditions and 

E. coli strain, suggesting that aggregation took place in vivo. However, the 

aggregates were supposedly relatively monodispers and the E6 protein possessed a 

native-like fold. These features are advantageous in view of FMO5 crystallization 

attempts and seemed to be transferable to MBP-hFMO5. As shown for E6, 

MBP-hFMO5 seemed to be correctly folded, retaining its enzymatic activity. Also, 

DLS data suggested relatively monodispers protein, which is also in accordance with 

MBP-tagged E6 protein. 

Overall, a cost-efficient way to obtain large quantities of highly purified MBP-hFMO5 

for future structural and functional enzyme characterization studies was successfully 

developed and optimized. 
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4 Crystallography Studies of Human FMO5 

4.1 Introduction 

X-ray crystallography studies of proteins and enzymes are important tools to 

determine the 3D structure of a protein of interest. The three-dimensional structure is 

key to understanding the function of any protein. A crystal structure can give 

information about the location of the active site, substrate- and cofactor-binding 

domains, and about conformational changes a protein may undergo. This leads to a 

better understanding of the enzyme in respect of substrate binding, mechanism of 

action, as well as possible influence of different mutations. In case of FMO enzymes 

little is known about these properties because to date, the tertiary structure of the 

mammalian FMO enzymes is not known. Solving the three-dimensional structure of a 

mammalian FMO isozyme would help tremendously in the understanding of 

mammalian FMOs in general because they contain a large percentage of identical 

residues (50 – 58 % amino acid sequence identity in human FMO isozymes). 

Especially amino acids involved in FAD and NADPH binding are conserved 

throughout human FMOs and across species lines [Cashman, 1995]. 

4.1.1 FMO Model Structure 

Although the tertiary structure of mammalian FMO enzymes has not been solved to 

date, model predictions by Cashman [Cashman, 2002] as well as Ziegler and 

Poulsen [Ziegler et al., 1998] have been made for human FMO3. These were based 

on comparison with solved structures of other flavoproteins (Figure 4.1). 
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Figure 4.1  Proposed human FMO3 model. 

The model is based on homology modeling with the protein structures 1get (green), 

1vqw (yellow), 1w4x (red), and 1npx (blue). FAD (magenta) and NADPH are also 

shown. There are two domains in the structure, one being relevant for FAD, the other 

for NADPH binding. These two domains are relatively similar in all models whereas 

the rest of the structure is very divergent (cyan). Taken from [Cashman et al., 

manuscript in preparation]. 

In addition, the crystal structure of FMO from Schizosaccharomyces pombe 

(S. pombe) has been solved [Eswaramoorthy et al., 2006]. However, this information 

cannot be transferred to mammalian FMO enzymes without caution because 

S. pombe FMO consists of only 447 amino acids whereas human FMO1 – 5 are 532 

to 558 amino acids in length and it shares only 21 to 23 % sequence identity with 

human FMOs. 
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4.1.2 FMO Protein Structure, Binding Sites, and Int eraction with the 

Membrane 

An overview of the different well conserved motives and their postulated functions 

was given by Krueger and Williams [Krueger et al., 2005]. These functions were 

proposed based on the PRINTS database that catalogues protein fingerprints, 

conserved motives characterizing the protein family [Attwood et al., 2003], and rabbit 

FMO2 as reference sequence for fingerprint analysis [Lawton et al., 1990]. The main 

regions of interest for FMO3 are listed below and compared to the crystal structure of 

S. pombe. 

4.1.2.1 FAD Binding 

The FAD binding motif, GXGXXG, is supposed to be within the region of amino acids 

3 – 26 and amino acids 27 – 51 are supposed to stabilize FAD binding through a 

EXXXXXGG motif [Krueger et al., 2005]. Both regions seem essential and mutations 

in either one have been reported to result in loss of activity for FMO3 [Lawton et al., 

1993b]. Likewise, the nucleotide binding motif GXGXXG makes hydrogen-bonding 

contacts with the adenine nucleotide of FAD and the N3 of adenine binds to Arg 39 

that is part of the EXXXXXGG motif in S. pombe.  

4.1.2.2 NADPH Binding 

The NADPH binding site is located in the region of residues 186 and 213. This 

proposal also seems consistent with the S. pombe structure, where NADPH is bound 

to the second nucleotide binding motif (GXGXX(G/A)). Here the nicotinamide is 

stacked with the isoalloxazine ring of the FAD so interaction between the bases of 

nicotinamide and flavin is possible [Eswaramoorthy et al., 2006].  

4.1.2.3 Substrate Binding 

The substrate in the S. pombe structure (i.e., methimazole) is supposed to stack with 

the isoalloxazine ring of bound FAD and replace the NADPH in the structure. In case 

of mammalian FMO enzymes, this seems unlikely, because kinetic studies with 

FMO1 suggested that NADP+ does not leave the flavoprotein until after substrate 

oxygenation. Maybe a different binding mechanism applies here.  
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4.1.2.4 The FATGY-Motif and Membrane Interaction Si tes 

One other very prominent motif is the FATGY motif. It is a motif that is conserved in 

nearly all mammalian FMO enzymes and is located between amino acids 315 and 

342 which represent the linkage between NADPH and the active site. Only FMO4 

has a FTTGY and S. pombe FMO contains an YCTGY-motif. 

The sites of membrane interaction are still unknown although considerable 

information about protein structure is already available [Krueger et al., 2005; Lawton 

et al., 1993a]. Maybe a crystal structure of a mammalian FMO enzyme will explain 

where FMO is bound to membranes. 

4.1.3 Aim of the Study 

The objective was to purify FMO5 in order to crystallize it and finally obtain a 

three-dimensional structure of a mammalian FMO enzyme. This would give answers 

to the location of binding sites for FAD, NADPH, and substrate and would lead to a 

better understanding of the mechanistic pathway of FMO mediated metabolism.  

4.2 Materials and Methods 

4.2.1 Reagents 

Chemicals and reagents used in this study were purchased from Sigma-Aldrich 

Chemical Co. (St Louis, MO, USA) in appropriate purity. Buffers and other reagents 

were purchased from VWR Scientific, Inc. (San Diego, CA, USA). Polyethylene 

glycols (PEGs), crystallography screens, and crystallography plates (24 or 96 well 

sitting drop plates) were purchased from Hampton Research Corp. (Aliso Viejo, CA, 

USA). 

4.2.2 Cloning and Expression 

Human FMO5 was expressed as N-terminal maltose-binding fusion protein 

(MBP-hFMO5). Cloning and expression was done as described in section 3.2.2.1 

with few changes. MBP-hFMO5 was expressed in E. coli DH1α or E. coli BL21 cells. 

After induction, cells were incubated shaking either at room temperature for 20 hours 

or at 20 °C for 24 hours.   
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4.2.3 MBP-hFMO5 Purification  

The purification procedure has already been described in chapter 3, but was 

optimized for crystallization trials.  

After expression, E. coli cells were harvested by centrifugation at 6,000 g for 

10 minutes and the cell pellet was frozen in order to increase yield. After 

resuspending the cell pellet in lysis buffer as described in section 3.2.2.1, cells were 

either disrupted via sonication as described above or by passage through a French 

press (Thermo Electron Corp., Needham Heights, MA, USA) operating at 20,000 psi 

depending on what method was available. For crystallization studies the cell pellet 

was only extracted once and after centrifugation the supernatant was loaded at 

1 ml/min onto an amylose column (New England BioLabs, Ipswich, MA, USA) 

equilibrated with ten column volumes of buffer A’ (i.e., 50 mM Na2HPO4, pH 8.4, 

containing 15 µg/ml FAD). The column was washed with at least ten column volumes 

of buffer A’ and bound MBP-hFMO5 protein was eluted with 3 mM maltose in buffer 

A’ at 1 ml/min.  Eluted protein was concentrated with an Amicon Ultra-15 centrifugal 

filter unit with an Ultracel-50 filter (Millipore, Billerica, MA, USA). 

Further protein purification was carried out on an FPLC system (Äkta-Purifier, GE 

Healthcare, Uppsala, Sweden) using a 1 ml Q HP column (GE Healthcare, Uppsala, 

Sweden) with a flow rate of 1 ml/min and a step gradient of 65 mM and 250 mM NaCl 

as described in chapter 3.3.2. 

Refinement of the Lysis Protocol 

The lysis buffer was changed to 50 mM phosphate buffer, pH 8.4, containing 0.5 % 

Triton® X-100, 0.1 % L-α-phosphatidylcholine, 0.5 mM phenylmethylsulfonylfluoride, 

100 mM FAD, and 1 tablet /15 ml lysis buffer of Roche Mini Complete (EDTA-free) 

protease inhibitor mix (Roche, Indianapolis, IN, USA). This did not seem to improve 

crystallization and the original method was used for further MBP-hFMO5 purification. 

4.2.4 Crystallization of MBP-hFMO5 

4.2.4.1 Screening Kits 

For Crystallization trials, laboratory space and equipment was generously provided 

by Prof. Dr. C. D. Stout at the Scripps Research Institute, La Jolla, CA, USA and 
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Prof. Dr. A. Scheidig at the ZBM, University of Kiel. Initial crystallization conditions for 

MBP-hFMO5 were screened using different commercially available 96-well screening 

kits with conditions ranging from pH 4.6 – 8.5, various precipitants including PEGs 

ranging from 200 to 20,000, and a wide variety of salts. Four 96-well crystal 

screening kits were set up in sitting drops using the vapor diffusion method: EasyXtal 

PEGs Suite (Qiagen Inc., Valencia, CA, USA), Crystal Strategy Screen I and II, and 

PACT premier (Molecular Dimensions, Apopka, FL, USA). The protein used was 

Q-purified MBP-hFMO5, in a concentration of 15 mg/ml containing 200 µM NADP+ 

and 20 % glycerol. Protein solution was mixed with equal volumes of the reservoir 

solution.  

4.2.4.2 Refinement Screens  

The most promising results from initial 96-well screens were refined in terms of 

protein concentration as well as type and concentration of PEG and salt. 24-well 

plates were set up in sitting drops using the vapor diffusion technique.  

Protein 

In order to determine optimal protein concentration, plates were set up examining 

dependence of protein concentration vs. PEG concentration. Plates contained 0.3 M 

Na-acetate, 0.1 M Na-cacodylate, pH 6.5, PEG 2K monomethyl ether (PEG 2K 

MME). PEG concentrations screened were in the range of 20 – 30 %. Q-purified 

MBP-hFMO5 was mixed with an equal volume of reservoir solution in concentrations 

between 5 and 40 mg/ml.  

PEG 

Initial 96-well screens showed PEG to be the most successful precipitant. Thus, type 

and concentration was refined in further studies. Different concentrations of PEGs in 

the range of 400 – 20K were tested. Concentrations tested were 10 – 32 % for PEG 

2K MME, 2 – 28 % for PEG 6K and 10K, and 2 – 22 % for PEG 20K. The plates were 

set up with 0.1 or 0.2 M sodium acetate as salt and 0.1 M Bis-Tris propane at pH 6.5. 

Protein solution in concentrations of 20 – 25 mg/ml was mixed with equal volumes of 

reservoir solution. 
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Salts 

The best performing salts from the initial screens (i.e., Na-acetate, Na-formate, 

Na-tartrate, Na-phosphate, K-citrate, KSCN, MgCl2, NH4Cl, LiCl, and NaBr) were 

analyzed further. Conditions for salt screens were 0.1 M Na-cacodylate or 0.1 M 

Bis-Tris propane, pH 6.5, 22 – 26 % PEG 2K MME, and 0.1 or 0.2 M salt. Also, plates 

were set up containing 0.1 M Bis-Tris propane, pH 6.5, 24 – 28 % PEG 2K MME, and 

Na-acetate in the range of 0 - 1.5 M in order to determine the most advantageous 

salt concentration. Q-purified MBP-hFMO5 solution at 25 – 30 mg/ml was mixed with 

equal volumes of reservoir solution.  

4.2.4.3 Influence of Detergents 

Bio-Beads ®-Treatment 

In some cases, Q column-purified MBP-hFMO5 was treated with Bio-Beads® 

(Bio-Beads® SM Media, Bio-Rad, Hercules, CA, USA) in order to remove excess 

detergent (Triton® X-100 and/or DDM). Bio-Beads® were activated with methanol and 

washed thoroughly with 50 mM Bis-Tris buffer, pH 6.5. Afterwards, Bio-Beads® were 

slowly added to Q-purified protein. 

For comparison between Bio-Beads®-treated and untreated MBP-hFMO5, plates 

were set up with 22 – 26 % PEG 2 K MME, 0.1 M Na-cacodylate or 0.1 M Bis-Tris 

propane at pH 6.5, and Na-formate, Na-acetate, MgCl2, or NH4Cl. Protein solution at 

a concentration of 30 mg/ml was left untreated or was treated with activated Bio-

Beads® and crystallization drops were set up with either protein solution mixed with 

equal volumes of reservoir solution. 

Detergent Refinement in the Purification Protocol 

In order to remove Triton® X-100 quantitatively, the purification protocol was refined: 

The protein was still extracted in Triton® X-100, but after binding to amylose resin the 

protein was washed and further purified with buffer devoid of detergent.  

Influence of Detergents  

The influence of addition of a wide variety of detergents to crystallization drops was 

studied. Detergents tested are listed in Table 4.1. The reservoir solution consisted of 

26 % PEG 2K MME, 0.2 M Na-acetate, and 0.1 M Bis-Tris propane, pH 6.5.  

Crystallization drops consisted of equal volumes of reservoir solution and Bio-
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Table 4.1  Detergents used in crystal screens to determine influence of detergents on 

crystallization of MBP-hFMO5. 

Detergent Concentration Detergent Concentration 

217 FA 1 and 2 x CMC Cymal®-1 1 x CMC 

231 FA 1 and 2 x CMC Cymal®-2 1 x CMC 

234 FA 1 and 2 x CMC Cymal®-5 1 x CMC 

235 FA 1 and 2 x CMC Cymal®-6 1 x CMC 

238 FA 1 and 2 x CMC Cymal®-7 1 x CMC 

C-HEGA®-10 1 and 2 x CMC n-Nonyl-β-D-glucopyranoside 1 and 2 x CMC 

Sucrose-monolaurate 1 x CMC C8E4  1 x CMC 

CTAB 1 x CMC C12E8 1 x CMC 

DDAO 1 x CMC FOS-CHOLINE® -10 1 x CMC 

n-Octanyl-sucrose 1 x CMC FOS-CHOLINE® -12 2 x CMC 

HECAMEG 1 and 2 x CMC β-Octylglucoside 1 x CMC 

n-Decanoyl-sucrose 1 x CMC n-Octyl-β-D-glucopyranoside 1 and 2 x CMC 

MEGA-8 1 x CMC CHAPS 1 x CMC 

ZWITTERGENT® 3-10 1 x CMC n-Decyl-maltoside 1 x CMC 

1-s-Nonyl-β-D-thio-glucoside 1 x CMC n-Octyl-maltoside 1 x CMC 

n-Nonyl-β-D-thio-maltoside 1 x CMC   

FA, facial amphiphile; C-HEGA®-10, Cyclohexylbutanoyl-N-hydroxyethylglucamide; CTAB, 

Cetyltrimethylammoniumbromid; DDAO, N,N-Dimethyl-1-dodecanamine-N-oxide; 

HECAMEG, Methyl-6-O-(N-heptylcarbamoyl)-α-D-glucopyranoside; MEGA-8, Octanoyl-N-

methylglucamide; ZWITTERGENT® 3-10, n-Decyl-N,N-dimethyl-3-ammonio-1-

propanesulfonate; Cymal®-1-7, Cyclohexyl-alkyl-β-D-maltoside; C8E4, tetra(ethylene glycol) 

monooctylether; C12E8, octa(ethylene glycol) dodecyl monoether; FOS-CHOLINE®-10, n-

Decylphosphocholine; FOS-CHOLINE®-12, n-Dodecylphosphocholine; CHAPS, 3-[(3-

Cholamidopropyl)-dimethylammonio]-1-propane sulfonate 
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Beads®-treated Q-pure MBP-hFMO5 (30 mg/ml) spiked with detergent to yield a final 

concentration of 1 or 2 times their CMC. 

4.2.4.4 X-Ray Diffraction Measurement 

X-ray diffraction measurement was done by Dr. Andrew Annalora (Scripps Research 

Institute, La Jolla, CA, USA). Several crystals were screend at the Stanford 

Synchotron Radiation Laboratory (SSRL, Palo Alto, CA, USA) on Beamline 7-1 and 

11-1. Prior to flash freezing and storage, several preparation conditions were tested: 

A quick (10 – 30 seconds) or long (30 seconds – 2 minutes) soak of the crystals in 

buffer identical to the reservoir condition but with addition of 20 % glycerol, and/or 

17 % ethylene glycol was done for cryoprotection. Also, crystals were frozen directly 

from the drop with and without a quick soak in 100% parrafin oil. 

 

4.2.5 Crystallography Studies of hFMO5 without MBP- tag 

4.2.5.1 Cleavage of MBP-hFMO5 with Factor Xa 

250 µg MBP-hFMO5 were incubated in a total volume of 100 µl 100 mM phosphate 

buffer, pH 7.6, containing 0.2 mM NADPH and 5 µg factor Xa (New England BioLabs, 

Ipswich, MA, USA) for 1.5 or 3 hours at 37 °C. In o rder to prevent potential 

precipitation of cleaved FMO5, incubations were also done in the presence of 

detergent (i.e., CHAPS). To compare rate of degradation or loss of activity during the 

1.5 or 3 hour incubation period, 3-hour control incubations were done without factor 

Xa at 37 °C and at 4 °C. Again, control incubations  were also done in the presence of 

CHAPS. The incubation scheme is shown in Table 4.2. 
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Table 4.2  Incubation scheme of factor Xa cleavage reaction. 

Sample Incubation conditions  

A incubation for 1.5 hrs at 37 °C + factor Xa 

B incubation for 3 hrs at 37 °C + factor Xa 

C incubation for 1.5 hrs at 37 °C + factor Xa + CHA PS 

D incubation for 3 hrs at 37 °C + factor Xa + CHAPS  

E incubation for 3 hrs at 37 °C  

F incubation for 3 hrs at 4 °C  

G incubation for 3 hrs at 37 °C + CHAPS 

H incubation for 3 hrs at 4 °C + CHAPS 

After 1.5 or 3 hour incubation, samples were put on ice and immediately assayed for 

8-DPT N-oxygenation activity as described in section 3.2.4.2 with minor changes. 

Briefly, a standard incubation mixture contained 100 mM potassium phosphate 

buffer, pH 8.4, 0.2 mM NADPH, 0.25 mM DETAPAC, and 75 µg/ml MBP-hFMO5. 

After extraction of metabolites and remaining substrate in dichloromethane, HPLC 

analysis was done on a Waters HPLC system (Waters 600E controller and Waters 

Autosampler 700 Satellite WISP interfaced to a Waters 486 Absorbance Detector). 

Chromatographic separation of analytes was done on a LiChrospher-Si 60 (250 x 

4.6 mm, 5 µm; Merck, Darmstadt, Germany) with a mobile phase of 80 % 

methanol/20 % isopropanol/0.025 % HClO4 (v/v/v). The flow rate was 1.5 ml/min and 

the total run time was 15 minutes. The wavelength for UV detection was set to 

243 nm. The retention times for 8-DPT and 8-DPT N-oxide were 5.5 and 4.0 minutes, 

respectively. 

In addition, immediately after incubation with factor Xa, samples were analyzed by 

SDS-PAGE and Coomassie Blue staining. 2 µl of protein samples were fractionated 

by electrophoresis on a 10 % polyacrylamide gel under denaturing conditions and 

stained with Coomassie Blue. Protein bands were analyzed by densitometry using 

Adobe Photoshop Elements (Version 7). 
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4.2.5.2 Purification of hFMO5 from MBP 

After cleavage of MBP-hFMO5, hFMO5 had to be separated from remaining factor 

Xa, MBP-tag and non-cleaved MBP-hFMO5. This was attempted by various methods 

including ion exchange chromatography, affinity chromatography, and size exclusion 

chromatography. 

Affinity Chromatography 

MBP-hFMO5 was cleaved with factor Xa after affinity purification and subsequent ion 

exchange purification. The ion exchange purification step also served as buffer 

exchange to eliminate remaining maltose from the first affinity purification step. 

A second affinity chromatography step was performed after cleaving the protein. 

500 µl amylose resin (New England BioLabs, Ipswich, MA, USA) equilibrated with 

50 mM phosphate buffer, pH 8.5, was incubated with 5 mg cleaved MBP-hFMO5 

over night rotating at 4 °C. The next day, amylose resin was removed by filtration and 

bound protein was eluted with 3 mM maltose. Flow through (supposedly containing 

cleaved FMO5) and eluted protein (which should contain the MBP-tag) was then 

analyzed via SDS-PAGE and 8-DPT HCl N-oxygenation activity assay as described 

in section 3.2.4.2. 

Ion Exchange Chromatography 

Purification was carried out on an FPLC system (Äkta-Purifier, GE Healthcare, 

Uppsala, Sweden) at the ZBM, University of Kiel. Cleaved MBP-hFMO5 protein was 

loaded onto a HiTrap Q HP column equilibrated with 50 mM Bis-Tris buffer, pH 6, at 

0.5 ml/min. The column was washed with at least ten column volumes of equilibration 

buffer. A linear salt gradient of 0 – 65 % 50 mM Bis-Tris buffer, pH 6 containing 1 M 

NaCl was applied to elute bound protein.  

Size Exclusion Chromatography 

Another attempt to purify hFMO5 from uncleaved MBP-hFMO5, MBP, and factor Xa 

was purification via size exclusion chromatography. Purification was carried out on a 

FPLC system (Äkta-Purifier, GE Healthcare, Uppsala, Sweden) at the ZBM, 

University of Kiel, Germany. Cleaved protein was loaded at 0.5 ml/min onto a 

Superdex 200 10/300GL size exclusion column (GE Healthcare, Uppsala, Sweden) 
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equilibrated with 50 mM Bis-Tris buffer, pH 6. Eluted fractions were concentrated with 

Microcon centrifugal filter units (Ultracel YM-30, Millipore, Billerica, MA, USA) and 

analyzed via SDS-PAGE.  

4.3 Results  

4.3.1 Crystallization of MBP-hFMO5 

4.3.1.1 Screening Kits 

Crystallization involves phase transition where an initially solubilized protein comes 

out of solution to form crystals as solution is slowly brought to supersaturation. Once 

nuclei have formed, protein concentration in the solution drops and no new crystals 

will form whereas already existing crystals one may grow [Chayen, 1998]. Vapor 

diffusion is the most widely used technique and involves a drop composed of a 

mixture of protein samle and crystallization reagent. The concentration within the 

drop is usually lower than that needed for crystallization. The drop is equilibrated 

against a liquid reservoir with higher concentrations. To achive equilibrium, water 

vapor leaves the drop and the concentration within the drop will slowly increase 

[Chayen, 1998]. At best, crystals will form, but also amorphous precipitate or 

coadunate crystals may be observed. 

The two most common set-ups for crystallization studies are hanging and sitting drop 

techniques. In the hanging drop technique, the drop of protein and reagent hangs 

from a coverslip above the reservoir solution. In case of the sitting drop technique, 

the protein-reservoir drop sits on a surface closer to the reservoir [Chayen, 1998]. 

The results of all screens showed that overall a lower pH, i.e., 6 - 6.5, seemed 

favorable. Also, PEGs were the preferred precipitant. A variety of salts was tested 

and those that performed best were: Na-acetate, Na-formate, Na-tartrate, 

Na-phosphate, K-citrate, KSCN, MgCl2, NH4Cl, LiCl, and NaBr. Especially chloride- 

and acetate-salts gave promising results. 

4.3.1.2 Refinement Screens  

The crystallization conditions were refined starting with the most promising conditions 

found in the 96-well screens. Optimal protein concentration as well as PEG type and 

concentration were determined and influence of salt concentration was evaluated.  
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Protein 

Results from screens where protein concentration was screened against PEG 2K 

MME concentration showed that higher protein concentrations of 20 – 30 mg/ml gave 

better results than lower concentrations (Figure 4.2). 

 

Figure 4.2 Protein concentration vs. PEG 2K MME concentration. 

Crystallization conditions: 20 – 30 % PEG 2K MME, 0.3 M Na-acetate, and 0.1 M 

Na-cacodylate, pH 6.5. Drops consisted of equal volumes of reservoir solution and 

5 – 40 mg/ml MBP-hFMO5. 

 

PEG 

The best results when evaluating various PEGs at different concentrations were 

obtained with PEG 2K MME, PEG 6K and PEG 10K. Lower molecular weight-PEGs 

as well as PEG 20K mostly led to heavy precipitation or no precipitation at all. For 

PEG 2K MME the preferred concentration range was 24 – 28 %, for PEG 6K it was 

20 – 28 % and PEG 10K performed best at concentrations between 23 and 27 %. 

With these PEGs dense yellow oil-like phases as shown in Figure 4.3 were obtained. 
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Figure 4.3  Picture of the yellow oil-like phase.  

Crystallization condition: 0.1 M Bis-Tris propane, pH 6.5, 0.2 M Na-acetate, and 26 % 

PEG 2K MME. Drops consisted of equal volumes of reservoir solution and 30 mg/ml 

MBP-hFMO5. 

 

Salts 

The best performing salts from initial screens (Na-acetate, Na-formate, Na-tartrate, 

Na-phosphate, K-citrate, KSCN, MgCl2, NH4Cl, LiCl, and NaBr) were analyzed further 

and the most promising were Na-formate, MgCl2, NH4Cl, and Na-acetate. The latter 

was then used to set up further crystallography experiments. Evaluation of 

Na-acetate concentrations did not show an obvious trend of whether low or high salt 

concentrations are preferable.  

Maltose 

As previously reported, MBP may adopt distinct conformational states depending on 

presence or absence of maltose [Boos et al., 1998; Spurlino et al., 1991]. Thus, it is 

important to avoid partial occupancy of maltose that might result in mixed 

conformational states and interfere with crystallization by inhibiting formation of well-

ordered crystals [Smyth et al., 2003]. In general, addition of maltose to the protein 

solution gave more “dense yellow oil” (Figure 4.2). Thus, in addition to 200 µM 

NADP+ and 20 % glycerol, maltose was routinely added to protein preparations in a 

concentration of 100 µM.  

4.3.1.3 Influence of Detergents 

Bio-Beads ®-Treatment 

Crystallization trials showed that preparation of MBP-hFMO5 without detergent on 

Q column did not lead to crystals but rather resulted again in dense yellow oil phases 
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as shown in Figure 4.3. These were probably due to residual Triton® X-100 from the 

first purification step. Also, addition of different amounts (0.05 – 1 x CMC) of DDM to 

crystallization drops did not result in crystal growth.  

It was found that Triton® X-100 is strongly adsorbed onto Bio-Beads® SM-2, a neutral 

porous polystyrene-divinylbenzene adsorbent [Holloway, 1973]. Thus, in order to 

remove excess Triton® X-100 from the sample, Bio-Beads® were added. It is 

remarkable, that even after addition of excess amounts of Bio-Beads®, MBP-hFMO5 

stayed in solution. From this experiment and the solubilization study it can be 

concluded that detergent (i.e., Triton® X-100) is necessary for protein extraction from 

E. coli, but that for subsequent purification procedures, no further addition of 

detergent is required. 

A comparison was made between crystallization plates containing protein treated 

with Bio-Beads® and untreated protein. Overall, Bio-Beads®-treatment of MBP-

hFMO5 resulted in more dense yellow oil phases and brown spheres (Figure 4.4).  

 

Figure 4.4  Example of dense yellow oil and brown spheres as seen after Bio-

Beads®-treatment of purified MBP-hFMO5.  

Crystallization condition: 0.1 M Bis-Tris propane, pH 6.5, 0.1 M Na-acetate, and 30 % 

PEG 2K MME. Drops consisted of equal volumes of reservoir solution and 25 mg/ml 

MBP-hFMO5 treated with Bio-Beads®. 

The brown spheres seem to be a pre-stage of crystals because they cracked when 

shattered producing sharp edges (Figure 4.5). Thus, MBP-hFMO5 is not only stable 

without detergent, it also seems that detergent removal is important for crystal 

growth. 
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Figure 4.5  Picture showing a scattered sphere.  

Crystallization condition: 0.1 M Bis-Tris propane, pH 6.5, 0.1 M Na-acetate, and 20 % 

PEG 20K. Drops consisted of equal volumes of reservoir solution and 25 mg/ml 

MBP-hFMO5 treated with Bio-Beads®. 

 

Detergent Refinement in the Purification Protocol 

Earlier crystallization screens showed better results after addition of Bio-Beads® to 

MBP-hFMO5. Hence, it seems that complete removal of Triton® X-100 is necessary 

for crystal growth. In order to remove Triton® X-100 quantitatively, the purification 

protocol was refined.  

Although, crystallization plates did not yield crystals, this study verified the earlier 

assumption that MBP-hFMO5 does not need detergent after extraction from the cells. 

Most likely, MBP-hFMO5 is not membrane bound but rather only associated with the 

membrane. In subsequent purification procedures Triton® X-100 was used solely for 

extraction purposes, but no detergent was used on either of the columns. 

Influence of Detergents 

The influence of a great variety of detergents on crystallization of MBP-hFMO5 was 

examined. Almost all wells gave good results yielding in previously observed dense 

yellow oil phases, spheres, or crystals. The phase transition of yellow oil to brown 

spheres and yellow crystals is shown in Figure 4.6.  
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Figure 4.6  Picture showing the transition of yellow oil-like phase (in the center) to 

round spheres (on the left) and yellow crystals (on the right).  

Crystallization condition: 0.1 M Bis-Tris propane, pH 6.5, 0.2 M Na-acetate, and 26 % 

PEG 2K MME. Q-purified MBP-hFMO5 solution at 30 mg/ml was mixed with an equal 

volume of reservoir solution and the crystallization drop was spiked with 1 x CMC 

Cymal®-6. 

 

Addition of the following detergents led to best results: HECAMEG, Cymal®-5, and 

facial amphiphiles 217 and 231. Some examples are listed in Table 4.3. 
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Table 4.3  Examples of wells from screens with drops containing MBP-hFMO5 that 

were spiked with different detergents.  

Detergent added  Picture of well 

HECAMEG 

O N
H

O
OOH

OH
OH

OH

 

 

Cymal®-5 

O
O

OH

OH
OH

O

OOH
OH

OH

OH

 

 

217 FA 

 

231 FA  

 

 

 

 

 
 

Crystallization conditions were 26 % PEG 2K MME, 0.2 M Na-acetate, and 0.1 M Bis-

Tris propane buffer at pH 6.5. Drops consisted of equal volumes of reservoir solution 

and 30 mg/ml Bio-Beads®-treated Q-pure MBP-hFMO5 spiked with detergent at 1 x 

(Cymal®-5, 217 FA and 231 FA) or 2 x (HECAMEG) their CMC. 231 FA (facial 

amphiphile), 3α-hydroxy-7α,12α-bis[(β-D-maltopyranosyl)ethyloxy]cholane; 217 FA, 

7α,12α-bis[(β-D-maltopyranosyl)]cholane. 
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As shown in the SDS gel (Figure 4.7) the crystals proved to be MBP-tagged FMO5. 

Crystals dissolved in buffer were run on SDS gel and a band could be obsered 

around 100 kDa. These results show that MBP-tagged human FMO5 is crystallizable.  

 

MW (kDa) 
 

204 
 

123 
 
80 
 
48 

              MBP-hFMO5    marker 

Figure 4.7  SDS gel of redissolved MBP-FMO5 crystal.  

High Molecular Weight Prestained marker (Bio-Rad, Hercules, CA, USA) was used 

as MW protein marker. Arrow points to MBP-hFMO5. 

However, these coadunate crystals did not yield satisfactory diffraction patterns and 

none of the preparation conditions prior to flash-freezing that were tested improved 

diffraction. The crystals obtained lacked in optical clarity, smooth faces and had only 

few sharp edges. Also, arrays were probably not ordered well enough to obtain 

evaluable diffraction patterns. 

4.3.2 Crystallography Studies of hFMO5 without MBP- tag 

Crystallization studies with purified MBP-hFMO5 led to a number of crystals in 

various conditions. Unfortunately, no satisfactory diffraction pattern could be obtained 

from these crystals. Thus, crystallization or purification conditions needed to be 

altered in order to improve crystal growth. Further refinement of purification 

conditions such as including additional protease inhibitors (Roche Mini Complete 

(EDTA-free) protease inhibitor mix) in the lysis buffer, usage of an extended linear 

NaCl gradient in the ion exchange purification step, addition of NADP+ after 

purification but before concentrating the protein, or air-fuging the protein before 

crystallization plates are set up, were tested but did not lead to improved 

crystalization. 
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Although expression and purification as MBP-fusion protein has numerous 

advantages, for crystallography experiments an MBP-tag might be problematic. It has 

been suggested that MBP hinders crystal growth by introducing conformational 

heterogeneity [Smyth et al., 2003]. Since FMO5 had been cloned into a pMAL-c2 

vector that contains a protease sensitive site right after the MBP sequence (i.e., 

IEGR), the MBP-tag may be removed from FMO5 by proteolytic splicing of the fused 

protein from MBP with factor Xa. Consequently, FMO5 could be separated from its 

tag and crystallization studies with purified FMO5 could be attempted that might lead 

to good diffracting crystals. 

4.3.2.1 Cleavage of MBP-hFMO5 with Factor Xa 

After 1.5 or 3 hour incubation of MBP-hFMO5 with factor Xa, the samples were 

analyzed in regards to 8-DPT N-oxygenation activity and extent of cleavage. SDS-

PAGE showed 67 % cleavage after 1.5 and 73 % after 3 hours incubation (Figure 

4.8).  
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Figure 4.8  Coomassie stained SDS gel of fractions A-H (see also Table 4.2). 

peqGOLD Protein-Marker I (Peqlab, Erlangen, Germany) was used as MW protein 

marker. Arrows point to MBP-hFMO5 and the cleaved products, hFMO5 and MBP. 
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In the presence of NADPH, hFMO5 retains almost 100 % of its 8-DPT N-oxygenation 

activity after 1.5 or 3 hour incubation at 37 °C co mpared to enzyme stored at 4 °C 

(Figure 4.9). Also, cleavage did not precipitate or inactivate the enzyme. Thus, 

including CHAPS in the incubation mixture was not necessary. It even seems 

disadvantageous to add CHAPS because 8-DPT N-oxygenation activity decreased 

about 65 % compared to MBP-hFMO5 stored at 4 °C (Fi gure 4.9). 
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Figure 4.9  8-DPT N-oxygenation of fractions A – H (see also Table 4.2). 

 

4.3.2.2 Purification of hFMO5 from MBP 

Affinity Chromatography 

Separation of hFMO5 from MBP was attempted via affinity chromatography on 

amylose resin. SDS-PAGE as well as HPLC based enzyme activity analysis showed 

no separation of hFMO5 and MBP (Figure 4.10). HPLC analysis showed the main 

activity in the eluate rather than the flow through which is in agreement with the SDS 

gel. It is possible that cleaved hFMO5 stays somewhat associated with the cleaved 

MBP-tag. 
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Figure 4.10  Results of 8-DPT N-oxygenation activity assays and Coomassie stained 

SDS gel of amylose purified, cleaved MBP-hFMO5.  

peqGOLD Protein-Marker I (Peqlab, Erlangen, Germany) was used as MW protein 

marker. Arrows point to Q-pure MBP-hFMO5 and the cleaved products, hFMO5 and 

MBP. 

Ion Exchange Chromatography 

Another attempt to separate hFMO5 from MBP, MBP-hFMO5, and factor Xa was 

purification on a HiTrap Q HP anion exchange column. The resulting chromatogram 

is shown in Figure 4.11. The fractions were analyzed with SDS-PAGE (Figure 4.12). 

Both, chromatogram and SDS gel show good separation of MBP (peak 1) and FMO5 

(peak 2), however, hFMO5 co-elutes with uncleaved MBP-hFMO5. 
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Figure 4.12  Coomassie stained SDS gel of fractions of Q column-purified cleaved 

MBP-hFMO5.  

peqGOLD Protein-Marker I (Peqlab, Erlangen, Germany) was used as MW protein 

marker. Arrows point to Q-pure MBP-hFMO5 and the cleaved products, hFMO5 and 

MBP. 

Figure 4.11  Chromatogram of Q-column purified cleaved MBP-hFMO5. 
 

Absorbance at 280 nm is shown as solid line, absorbance at 450 nm as dotted line, 

and conductivity is shown as dashed line. 
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Size Exclusion Chromatography 

As third method for FMO5 purification, size exclusion chromatography was tested. 

The chromatogram obtained from SEC is shown in Figure 4.13 and the SDS gel of 

the corresponding fractions is shown in Figure 4.14. In a first peak, hFMO5 elutes 

clearly visible with a band at ~ 60 kDa. In a second peak, MBP elutes giving a band 

at ~ 40 kDa in the SDS gel. However, as with anion exchange chromatography, 

hFMO5 co-elutes with MBP-hFMO5.  
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Figure 4.13 Elution profile of factor Xa cleaved MBP-hFMO5 on Sephadex 200 

10/300GL size exclusion column. 
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Figure 4.14  Coomassie stained SDS gel of fractions of cleaved MBP-hFMO5 purified 

on SEC column.  

SeeBlue® Plus2 (Invitrogen Corporation, Carlsbad, CA, USA) was used as MW 

protein marker. Arrows point to Q-pure MBP-hFMO5 and the cleaved products, 

hFMO5 and MBP. 

4.4 Discussion 

It had been reported that fusion of a protein of interest to a large soluble affinity-tag 

such as MBP may improve several features of the protein like solubility [Donnelly et 

al., 2006; Kapust et al., 1999], yield [Butt et al., 1989], and folding [Kapust et al., 

1999]. In addition, it could give protection from proteolysis and resulting fusion 

proteins may be easily purified via affinity chromatography [Smyth et al., 2003]. 

Although less efficiently, even without the context of a fusion protein, MBP has been 

shown to interact preferentially with unfolded proteins and to promote their folding in 

vitro [Richarme et al., 1997]. Further, it was proposed that MBP has chaperone-like 

qualities when fused to the N-terminus of a protein of interest assisting in correct 

protein folding and enhancing solubility [Kapust et al., 1999; Sachdev et al., 1998]. 

This might be partly due to its maltose binding site, a deep hydrophobic cleft that, 

MBP-hFMO5 
 
hFMO5 
 

MBP 
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together with other hydrophobic sites located on the surface of the protein, could 

serve as binding sites to incompletely folded protein [Kapust et al., 1999]. 

In accordance with these reported theories, a fusion of hFMO5 to MBP led to soluble, 

active, and stable protein as described in chapter 3. This protein was also obtained at 

a high yield and could easily be purified via affinity chromatography. Crystallization 

experiments were done screening various commercially available crystal screen kits 

for suitable crystallization conditions. These were refined further and the conditions 

that finally led to MBP-hFMO5 crystals were 26 % PEG 2K MME and 0.2 M sodium 

acetate in 0.1 M Bis-Tris propane buffer, pH 6.5. Interestingly, these crystallization 

conditions are analog to those reported for other MBP-tagged proteins that were 

successfully crystallized. Comparison of different crystals obtained as MBP-fusion 

proteins showed that, as for MBP-hFMO5, PEG and related molecules were most 

successful as precipitants and that the pH was generally low [Center et al., 1998; 

Kukimoto et al., 2000; Liu et al., 2001; Smyth et al., 2003].  

When working with membrane associated proteins such as FMO enzymes use of 

detergents is unavoidable. As expected, surfactants play a dominant role in 

purification and crystallization of FMO5. Detergents are indispensable for 

solubilization of MBP-hFMO5 from E. coli (see chapter 3). Also in crystallography 

screens, surfactants play a major role, but the use of detergents introduces many 

problems. Detergent micelles have rough heterogeneous surfaces, their hydrophobic 

tails have considerable contact with the surrounding solution [Bogusz et al., 2000], 

and they are fluid systems exchanging micellar components with the solvent 

[Garavito et al., 2001; Wennerstrom et al., 1979]. They have a major impact on 

protein crystallization, because detergent-detergent and detergent-protein 

interactions influence the behavior of membrane proteins. In addition, interactions 

with any remaining lipids have an effect on how a protein behaves [Garavito et al., 

2001]. In mixed systems (considering only detergents and lipids) phase behavior as 

well as changes in micelle shape, size, and CMC will be hard to predict because 

these systems never behave like solutions of the pure components [Wennerstrom et 

al., 1979]. The behavior will be altered again when effects of solvent components like 

salts, PEG, or pH are considered [Arnold et al., 2008; Garavito et al., 2001]. 
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Since usage of detergents introduces a completely new layer of unpredictability, a 

detergent used in crystallization studies preferably has a defined head group size 

and type. Especially mixtures like Triton® do not seem to work well [Arnold et al., 

2008]. In case of FMO5 where usage of Triton® X-100 was inevitable for extraction of 

the protein from E. coli (see chapter 3), complete removal of detergent and possibly 

substitution with other detergents before crystallization seemed necessary. Removal 

of detergent from protein samples previous to crystallography screens has been 

done by hydroxyl apatite column chromatography [Chen et al., 1999] or by 

precipitation [Askolin et al., 2004], dialysis, or dilution of the sample [Rigaud et al., 

1997]. Another method that proved to be successful in production of two-dimensional 

[Rigaud et al., 1997] or three-dimensional crystals [Bron et al., 1999] was surfactant 

removal utilizing Bio-Beads®. In 1973, Holloway et al. already described the 

successful removal of Triton® X-100 by adsorbance onto the polystyrene based 

Bio-Beads® [Holloway, 1973]. Interestingly, upon addition of excess amounts of 

Bio-Beads® to the protein solution, MBP-hFMO5 did not precipitate suggesting that 

FMO5 is not an integral membrane protein, but rather only associated with the 

membrane. As shown in the study, removal of Triton® X-100 with Bio-Beads® 

improved results from crystallization trials of MBP-hFMO5 leading to thick yellow oil 

phases and premature crystals with spherical shape (Figure 4.4).  

Experiments in which a variety of different detergents was added after removal of 

Triton® X-100 led to further improvement of this first pre-stage of crystals (Table 4.3). 

The transition of the routinely obtained thick yellow oil to spherical shapes obtained 

after Triton® X-100 removal and to yellow crystals is shown in Figure 4.6.  

In several wells that yielded crystals, detergents were added that belong to a new 

group of amphiphilic agents that is supposed to stabilize membrane proteins and 

lower the risk of denaturing or aggregation. The structure of these new types of 

amphiphilic molecules is based on cholic acid, but they exhibit facial amphiphilicity, 

meaning that their polar and nonpolar groups are located on opposite faces instead 

of at opposite ends as usual in other detergents [Zhang et al., 2007b; Zhong et al., 

2005]. The terminal carboxylate of cholate was removed and uncharged polar groups 

were introduced at the parallel hydroxyl groups in the center of the cholic acid 

skeleton [Zhang et al., 2007b]. The advantage of this structure is that these 

surfactants are supposed to self-assemble face-to-face. Thus the hydrophobic parts 
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of two molecules have similar dimensions as that of the lipid bilayer. In initial stability 

tests, the facial amphiphiles performed much better than previously used detergents, 

keeping the protein in solution and active for a longer time [Zhang et al., 2007b]. Also 

in case of MBP-hFMO5, these detergents seemed to improve crystallization although 

others like HECAMEG and Cymals® also yielded crystals. Latter detergents have 

previously aided in crystallization studies, e.g., in case of hydrophobin HFBI from 

Trichoderma reesei that yielded crystals in the presence of Cymal®-5 [Askolin et al., 

2004]. In general, controlled addition of detergent and thus employing the concept of 

mixed micelles seems beneficial for MBP-hFMO5 crystal growth. 

Unfortunately, no satisfactory diffraction pattern could be obtained from MBP-hFMO5 

crystals. Several features of the MBP-hFMO5 construct could be argued to have 

been a cause for the poor condition of the crystals obtained. The MBP affinity tag 

itself might be problematic in crystallization experiments. Although expression and 

purification as MBP-fusion protein has numerous advantages, it has been suggested 

to hinder crystal growth by conformational heterogeneity introduced by the fusion tag 

[Smyth et al., 2003]. Circumventing cleavage of MBP-hFMO5 and leaving the 

MBP-tag in place for crystallization studies has the advantage of avoiding potential 

problems often associated with proteolytic splicing including low yield, precipitation of 

target protein, cumbersome optimization of cleavage and subsequent purification 

conditions, high cost of proteases such as factor Xa, or potential loss of activity of the 

target protein during cleavage. However, leaving the tag attached to the protein of 

interest results in a multi-domain protein that might be less likely to form well-ordered, 

diffracting crystals, which is probably due to conformational heterogeneity allowed by 

the flexible linker region between MBP and the target protein [Smyth et al., 2003]. In 

fact, most crystal structures of MBP-tagged proteins previously reported contained a 

shorter, more rigid linker between the affinity tag and the target protein [Center et al., 

1998; Ke et al., 2003; Kukimoto et al., 2000; Liu et al., 2001]. These short, two to five 

amino acid long, mostly alanine containing linkers used instead of the typical longer 

linker in the MBP-hFMO5 fusion protein might be one reason for improved 

crystallization [Kapust et al., 1999; Smyth et al., 2003].  

Also, in contrast to hFMO5, most proteins that led to crystals upon fusion with MBP 

were small in comparison with the rather large MBP-tag they were fused to. This 

could also play a role in successful crystallization as the ratio of MBP/protein might 
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be significant. Smaller proteins could be able to allow the larger MBP-tag to direct the 

construction of a crystal lattice whereas larger ones might be less susceptible to let 

MBP conduct crystal formation [Smyth et al., 2003].  

These potential problems implicated by leaving the large affinity tag fused to hFMO5 

during crystallization trials have also been encountered in this study and although 

crystals could be grown from MBP-hFMO5, no satisfactory diffraction pattern could 

be obtained. Therefore, the next step was to cleave off the MBP-tag and perform 

crystallization experiments with only hFMO5. Successive experiments attempted 

proteolytic splicing of MBP from hFMO5 and subsequent purification of the latter. The 

separation of MBP and hFMO5 was done utilizing a previously inserted protease 

sensitive site right after the MBP sequence that may be cleaved by factor Xa. After 

incubation of three hours at 37 °C, cleavage was la rgely completed and addition of 

NADPH to the incubation mixture prevented the enzyme from being heat-inactivated. 

It is notable that similar experiments had been done with MBP-hFMO3 [Brunelle et 

al., 1997]. However, after cleaving MBP from hFMO3, the latter showed intractable 

solubility and enhanced instabilities [Brunelle et al., 1997] as previously described for 

a number of purified FMO enzymes [Cashman, 1995; Guan et al., 1991]. In contrast 

to expectations, after proteolytical separation from MBP, human FMO5 stays in 

solution and is active. 

After successful cleavage, the enzyme had to be separated from remaining factor Xa, 

MBP, and residual uncleaved MBP-hFMO5. A variety of methods to purify MBP from 

the target protein have been described including affinity purification [Riggs, 2000], ion 

exchange chromatography [de Pieri et al., 2004; Guan et al., 2002; Hao et al., 2007; 

Riggs, 2000; Yan et al., 2006], and size exclusion chromatography [Branco et al., 

2008]. Herein, these methods were carried out and evaluated.  

Firstly, purification via amylose resin was attempted. In general, a disadvantage of 

this procedure is that although MBP can be removed from the cleavage mixture, the 

protease and other contaminants cannot be removed. Nevertheless, it has been 

described to be effective for MBP removal [Riggs, 2000]. After an ion exchange 

chromatography step to remove residual maltose from the elution of the first affinity 

column, the fusion protein (i.e., MBP-hFMO5) was cleaved and applied to the 

amylose resin. The target protein should be located in the flow through fractions and 
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freed of MBP. In this study however, MBP could not be separated from hFMO5. Both 

proteins were found mainly in the eluate after washing with 3 mM maltose but the 

flow through also contained both proteins to some degree. Potential difficulties might 

have arisen if MBP was denatured or otherwise damaged in the purification process, 

because than it presumably looses its affinity to the amylose resin [Riggs, 2000]. 

Maltose might also be more difficult to separate from the MBP than expected 

because it is buried in a deep groove almost inaccessible to solvent. Also, extensive 

hydrogen-bonding and van-der-Waals interactions keep the maltose in place 

[Spurlino et al., 1991]. Thus, incomplete removal of maltose might have led to 

ineffective purification on amylose resin. 

Secondly, separation of hFMO5 and the affinity tag was attempted by size exclusion 

chromatography. Successful purification of target protein from MBP after proteolytic 

splicing has been described for recombinant Lassa virus (LASV) proteins via SEC 

[Branco et al., 2008]. hFMO5 could be successfully separated from MBP, however, it 

co-elutes with MBP-hFMO5.  

Therefore, a third purification method to separate hFMO5 and MBP has been 

attempted, i.e., ion exchange chromatography. Especially anion exchange 

chromatography utilizing DEAE chromatography [de Pieri et al., 2004; Guan et al., 

2002; Hao et al., 2007; Riggs, 2000; Yan et al., 2006] or Q columns [de Pieri et al., 

2004; Riggs, 2000] has been used several times. Purification of MBP from hFMO5 

was successful using a 1ml HiTrap Q  HP column, but as in case of SEC purification, 

hFMO5 co-eluted with uncleaved MBP-hFMO5.  

Further studies are needed to succeed in purification of hFMO5 and subsequent 

crystallization experiments. Potential methods include cation exchange 

chromatography or antibody affinity chromatography. Theoretical calculation of the 

isoelectric point (pI) of MBP-hFMO5, MBP, and hFMO5 suggested that cation 

exchange purification on a HiTrap SP column (GE Healthcare, Uppsala, Sweden) at 

pH 7 could be successful (pIMBP 5, pIFMO5 8, and pIMBP-FMO5 6). To verify these 

calculated pI values, isoelectric focusing (IEF) could be performed. Afterwards, cation 

exchange should be used to purify hFMO5. Another approach to separate the MBP-

tag from hFMO5 is the usage of MBP specific monoclonal antibodies that could be 

conjugated to Sepharose beads [Park et al., 1998]. Also, a poly His site could be 
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introduced into the protein vector and protein could be purified via Ni2+-column affinity 

chromatography after proteolytic splicing of MBP from the target protein. This has 

been described previously for several other proteins [Feher et al., 2004; 

Ramachandran et al., 2007]. Using antibodies as well as using an additional His-tag 

have the disadvantage that they only remove MBP, but not the protease and other 

remaining contaminants. However, usage of biotin-labeled factor Xa has been 

reported to be advantageous because the protease can be removed after cleavage 

from the separated proteins by binding to streptavidin gel [Salek-Ardakani et al., 

2002]. 

Another approach to remove MBP from hFMO5 could exploit in-situ proteolysis. This 

is usually done by incubating trace amounts of protease with the protein of interest in 

crystallization trials [Dong et al., 2007; Wernimont et al., 2009]. The method was 

suggested to improve crystallization conditions because stable domains crystallize 

more readily and result in better diffracting crystals [Wernimont et al., 2009] and 

might not be effective in case of MBP-hFMO5. However, for hFMO5, this in-situ 

proteolysis method might be applied to the cleavage of the large MBP-tag from 

hFMO5 to improve crystals by incubation with various amounts of factor Xa and 

screening at different conditions.  

There are several of other suggestions to improve crystallization of either proteins 

that fail to crystallize or in case poorly ordered crystals are obtained. These 

improvements mainly aim at lowering molecular flexibility that may arise from motion 

of large domains, surface loops, or chain termini. Mostly, in these cases redesign of 

the protein construct is required. For instance, removal of a disoriented terminal 

extension has been successful. In case of FMOs though this may lead to a loss of 

function as has been shown for hFMO3 where even a truncation of only 22 amino 

acids led to a significant decrease in functional enzyme activity and further truncation 

(65 amino acids or more) resulted in abolished activity [Yamazaki et al., 2007]. Thus, 

truncation of the hydrophobic C-terminus is not an option for crystallization studies of 

FMO enzymes.  

Another approach is changing the surface properties of a protein. For example, 

methylation of lysine or site-directed mutagenesis of large charged residues that lie 

on the surface of the protein to smaller hydrophobic residues may be useful because 
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even small motions of these flexible, solvent-exposed amino acid side chains can be 

disruptive to a well-ordered crystal lattice [Walter et al., 2006]. Controlled dehydration 

of poorly ordered crystals has been described to be successful [Heras et al., 2003]. 

This method might afford an opportunity to improve the poor quality crystals already 

obtained.  

In summary, this study showed that MBP-hFMO5 is crystallizable. However, further 

studies are needed to seperate hFMO5 from MBP after factor Xa cleavage in order to 

start crystallization experiments with the tag-free protein and obtain better diffracting 

crystals.
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5 pH Dependence of Human and Mouse FMO5 

5.1 Introduction  

5.1.1 pH Dependence of FMO Isoforms 

FMO5 shows several unique features compared to other FMO enzymes. When 

comparing the pH dependence of three functional mouse FMOs (i.e., mFMO1, 

mFMO3, and mFMO5) and human FMO5 (hFMO5), it was found that the pH profile 

of FMO5 differed significantly from that of all other FMO isoforms examined in the 

study [Zhang et al., 2007a] (Figure 5.1). The pH optima of FMO1 and 3 lie around 
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Figure 5.1  pH Dependence of mFMO1, mFMO3, mFMO5, and hFMO5. 

Plots of mouse FMOs are shown as white bars, human plots as dotted bars. n.d., not 

detectable. Bar-graphs adapted from Zhang et al. [Zhang et al., 2007a]. 
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pH 8 through 10, whereas for FMO5 8-DPT N-oxygenation activity continues to 

increase from pH 7 to pH 11. Further, comparison of pH profiles from human and 

mouse FMO5 show significant differences in the lower pH range (Figure 5.1). 

5.1.2 Aim of the Study 

A comparison of FMOs showed that the pH dependent activity profile of FMO5 

differed significantly from that of other FMO isoforms. The objective of this study was 

to examine the pH dependence of FMO5 to gain insight into the mechanism of action 

of FMO5 enzymes. Determination of pH dependent activity profiles and subsequent 

calculation of pKa values for certain ionizable groups within the enzyme have been 

performed previously in order to reveal the roles of these amino acid residues in 

substrate binding and catalysis [Adachi et al., 2010; Cook et al., 1981; Grimshaw et 

al., 1981; Viggiani et al., 2004]. For the catalytic mechanism of FMO enzymes the 

theory is that the dehydration of the C4a-hydroxyflavin or the release of NADP+, but 

not the release of oxygenated substrate represents the rate-limiting step (see also 

section 1.6). Thus, pKa values calculated from pH dependent enzyme activity profiles 

of FMOs would have to attributed to titrable groups on amino acid residues involved 

in the rate-limiting step (e.g., NADP+ release) or in conformational changes allowing 

NADP+ release. Therefore these residues could be identified via pH studies.  

Functional recombinant human and mouse FMO5 were expressed as maltose-

binding fusion proteins (i.e., MBP-hFMO5 and MBP-mFMO5) from E. coli, purified 

with affinity chromatography, and examined with 8-DPT as substrate for their N-

oxygenation functional activity at different pH values. Results showed differences in 

enzyme activity at low pH between the two enzymes. In subsequent studies 

chimeras, i.e., enzymes composed of one part human and one part mouse 

sequence, should be expressed as MBP-fusion proteins and purified. To identify the 

region in that amino acid residues involved in an altered pH profile of hFMO5 and 

mFMO5 functional enzyme activity lie, pH dependent activity studies should be 

performed with these human-mouse chimeras. Once a manageable region of interest 

is located, human and mouse sequences will be aligned to locate amino acid 

differences between the two species within this region of interest. Amino acid/s 

involved in the pH shift between human and mouse FMO5 should be identified by 

swapping these amino acids utilizing site-directed mutagenesis. First, the amino 

acids will only be mutated in human FMO5 to those found in the mouse enzyme. To 
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verify initial results from this study, amino acid positions that seem to impact the pH 

profile in human FMO5 will also be mutated in the mouse enzyme. The results of 

these studies may help explain the mechanism of FMO function. 

5.2 Materials and Methods 

5.2.1 Reagents 

All chemicals and reagents were purchased from Sigma-Aldrich Chemical Co. (St 

Louis, Missouri, USA) in appropriate purity. Buffers and other reagents were 

purchased from VWR Scientific, Inc. (San Diego, California, USA). The phenothiazine 

8-DPT was synthesized by Dr. Karl Okolotowicz (HBRI, San Diego, USA) as 

previously described [Lomri et al., 1993b; Nagata et al., 1990; Zhang et al., 2007a].  

Plasmids pMAL-hFMO5 and pMAL-mFMO5 [Zhang et al., 2007a] were prepared as 

previously described at HBRI. 

5.2.2 Chimera-Design of hm159, mh159, hm435, and mh 435  

Chimeric FMO5 hm159, mh159, hm435, and mh435 expression plasmids were 

created by swapping homologous restriction fragments of pMAL-hFMO5 and pMAL-

mFMO5 plasmid DNAs. This had been previously done by Kiersten Riedler (HBRI, 

San Diego, CA, USA). Restriction enzymes used to cut both hFMO5 and mFMO5, 

with the cut sites at the same positions within the hFMO5 and mFMO5 open reading 

frames, were HindIII and NcoI. HindIII cuts at position 3190 of both, the pMAL-

hFMO5 and pMAL-mFMO5 plasmids, between codon 159 and codon 160 of FMO5, 

as well as a cut site downstream from the FMO5 sequence. NcoI cuts at position 

4017 of both plasmids, between codons 435 and 436 of FMO5, and at position 2490, 

upstream from the FMO5 sequence (Figure 5.2). 
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Figure 5.2 Scheme of human and mouse FMO5 and the four human/mouse 

chimeras. 

The human part is shown as solid line; the mouse part is represented by a dashed 

line. Nomenclature of chimeras is due to the order of human and mouse sequence 

followed by the amino acid position where the switch was made. 

pMAL-hFMO5 and pMAL-mFMO5 plasmids were digested at 37 °C for two hours 

with HindIII and NcoI in four separate digestion reactions. Restriction digestion 

products were purified by agarose gel electrophoresis and extracted from gel using 

the QIAquick Gel Extraction Kit (Qiagen Inc., Valencia, CA, USA). All vectors (i.e., 

pMAL-hFMO5 HindIII, pMAL-mFMO5 HindIII, pMAL-hFMO5 NcoI, and pMAL-

mFMO5 NcoI) were then treated for one hour at 37 °C with  Calf Intestine 

Phosphatase (CIP) in order to minimize recircularization of the vector DNA. 

Afterwards, DNA was purified and concentrated by phenol:chloroform extraction to 

denature and remove protein followed by ethanol precipitation of the DNA. After 

redissolving DNA pellets in sterile water, pMAL-hFMO5 and pMAL-mFMO5 DNA 

inserts were ligated into either the HindIII or NcoI sites of the vectors, in order to 

produce plasmids containing chimeric FMO5 DNA. Finally, ligation products were 

transformed into MAX Efficiency® DH5α competent E. coli cells (Invitrogen 

Corporation, Carlsbad, CA, USA). In order to unambiguously identify the sequence of 

each DNA insert, plasmids purified from single colonies of each construct 

transformed into E. coli were sequenced by Eton Bioscience Inc. (San Diego, CA, 
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USA) and chromatograms obtained from each sequencing reaction were analyzed 

using Sequencher software (Gene Codes Corporation, Ann Arbor, MI, USA).  

5.2.3 Chimera-Design of hm229, mh229, hm370, and mh 370 

Due to the lack of convenient homologous restriction sites, the second set of 

chimeras was constructed by swapping homologous regions of pMAL-hFMO5 and 

pMAL-mFMO5 plasmid DNA through PCR amplification. The first swapping point was 

located at position 3399/3400 of the pMAL-hFMO5 and pMAL-mFMO5 plasmids, 

between codon 229 and codon 230 of FMO5. The other was located at position 

3822/3823 of both plasmids, between codons 370 and 371 of FMO5. Chimeras were 

constructed in two steps of PCR reactions utilizing the FastStart High Fidelity PCR 

System, dNTPack (Roche Diagnostics GmbH, Mannheim, Germany): In a first PCR 

step, four human and four mouse FMO5 parts were amplified separately, each with 

25 extended bases of human and mouse FMO, respectively, at one end (Figure 5.3, 

PCR reaction 1).  Primers used are listed in Table 5.1.  PCR reactions were run using 

a Gene Amp PCR 9700 system (Perkin Elmer, Waltham, MA, USA). Each PCR 

reaction was prepared in a volume of 50 µl and contained the following components:  

5 µl 10 x FastStart High Fidelity reaction buffer (Roche Diagnostics GmbH, 

Mannheim, Germany), 1 µl template DNA (i.e., mFMO5 or hFMO5), 2 µl gene 

specific primer pair, 1 µl dNTP mix (Roche Diagnostics GmbH, Mannheim, 

Germany), 0.5 µl FastStart High Fidelity enzyme mix (Roche Diagnostics GmbH, 

Mannheim, Germany), and sterile water. The PCR was run at 95 °C for 2 minutes 

followed by 30 cycles at 95 °C for 30 seconds, 55 ° C for 30 seconds, and 72 °C for 

2 minutes. Afterwards a 10 minute-cycle was added at 72 °C.  
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Figure 5.3  Scheme of PCR reactions for constructing human/mouse chimeras: 

hm229, mh229, hm370, and mh370.  

Human parts are shown as solid lines, mouse parts as dashed lines. DNA is 

represented as lines, primers as solid black and dashed arrows. 
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Table 5.1   Polymerase chain reaction primers for human/mouse FMO5 chimeras.  

FMO5 
chimera  

FMO5 
part 

Primer  

hm229  human, 
bp 1-687  

 

hF5fXbaI 
forward 

5'- GAT CTC TAG AAT GAC TAA GAA AAG AAT TGC TGT GA -3' 

 reverse 5'- AGA GAG TAG CAG GTC AAT AGG ATA TCC GTA GTC CCC 
TAC ACG ATT CAG -3' 

 mouse, 
bp 688-
1602 

forward 5'- CTG AAT CGT GTA GGG GAC TAC GGA TAT CCT ATT GAC 
CTG CTA CTC TCT -3' 

 mF5rPstIn 
reverse 

5'- GAT CCT GCA GCT AAA AAT AAG CCA GGA TGA CAG C -3' 

mh229 mouse, 
bp 1-687 

mF5fXbaIn 
forward 

5'- GAT CTC TAG AAT GGC CAA AAA AAG GAT TGC T -3' 

 reverse 5'- AGA GAA CAA CAC ATC AGC AGG ATA TCC ATG CTT GCC 
TAC ACG GTT CAA -3' 

 human, 
bp 688-
1602 

forward 5'- TTG AAC CGT GTA GGC AAG CAT GGA TAT CCT GCT GAT 
GTG TTG TTC TCT -3' 

 hF5rPstI 
reverse 

5'- GAT CCT GCA GCC AAT GAA AAA CAG GGC AGT -3' 

hm370  human, 
bp 1-
1110 

hF5fXbaI 
forward 

5'- GAT CTC TAG AAT GAC TAA GAA AAG AAT TGC TGT GA -3' 

 reverse 5'- AAT GGC TCC CAA GGG CTG AAT TAA GCC TAT GAT TGC 
AAG AGT TGG CCT -3' 

 mouse, 
bp 1111-
1602 

forward 5'- AGG CCA ACT CTT GCA ATC ATA GGC TTA ATT CAG CCC 
TTG GGA GCC ATT -3' 

 mF5rPstIn 
reverse 

5'- GAT CCT GCA GCT AAA AAT AAG CCA GGA TGA CAG C -3' 

mh370 mouse, 
bp 1-
1110 

mF5fXbaIn 
forward 

5'- GAT CTC TAG AAT GGC CAA AAA AAG GAT TGC T -3' 

 reverse 5'- AAT GGC TCC TAA GGG CTG AAT CAA GCC GAT GAT TGC 
AAG TGT TGG TTT -3' 

 human, 
bp 1111-
1602 

forward 5'- AAA CCA ACA CTT GCA ATC ATC GGC TTG ATT CAG CCC 
TTA GGA GCC ATT -3' 

 hF5rPstI 
reverse 

5'- GAT CCT GCA GCC AAT GAA AAA CAG GGC AGT -3' 

Mouse sequence parts are underlined.   
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After gel extraction and determination of DNA concentration of PCR products 

employing Kodak molecular imaging software (Eastman Kodak Company, Rochester, 

NY, USA), human and mouse parts were annealed with their counterparts and 

amplified in a second PCR reaction (Figure 5.3, PCR reaction 2). PCR reactions 

were run using a DNA Engine Peltier Thermal Cycler (Bio-Rad, Hercules, CA, USA) 

with FastStart High Fidelity PCR System, dNTPack (Roche Diagnostics GmbH, 

Mannheim, Germany). Each PCR reaction was prepared in a volume of 24 µl and 

contained the following components: 2.5 µl 10 x FastStart High Fidelity reaction 

buffer (Roche Diagnostics GmbH, Mannheim, Germany), 50 ng of each template 

DNA, 0.5 µl dNTP mix (Roche Diagnostics GmbH, Mannheim, Germany), 0.5 µl 

FastStart High Fidelity enzyme mix (Roche Diagnostics GmbH, Mannheim, 

Germany), and sterile water. The PCR was run at 95 °C for 2 minutes followed by 

8 cycles at 95 °C for 30 seconds, 55 °C for 30 seco nds, and 72 °C for 2 minutes to 

anneal human and mouse parts with their counterparts. Afterwards a 2 minute-cycle 

was inserted at 55 °C. During this cycle 1 µl of co rresponding end primers was added 

to each reaction (Table 5.2). The PCR was then run for an additional 30 cycles at 

95 °C for 30 seconds, 55 °C for 30 seconds, and 72 °C for 2 minutes followed by a 

7 minute-cycle at 72 °C to amplify chimera. 

Table 5.2  Setup of 2nd PCR reaction.  

FMO5 
chimera 

Template DNA from 1 st PCR reaction used in PCR 
reaction 

Primer used in 
PCR reaction 

hm229 human, bp 1-687  
 
mouse, bp 688-1602 

  
 
 
 

hF5 f XbaI 
mF5 r Pst In 

 mh229 mouse, bp 1-687 
 
 human, bp 688-1602 

 
 
 
 

mF5 f Xba In 
hF5 r Pst I 

hm370 human, bp 1-1110  
 
mouse, bp 1111-1602 

  
 
 
 

hF5 f Xba I 
mF5 r Pst In 

mh370 mouse, bp 1-1110 
 
human, bp 1111-1602 

 
 
 
 

mF5 f Xba In 
hF5 r Pst I 

Mouse parts are shown as dashed lines, human parts as solid lines. 
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The PCR products from this second PCR reaction were gel-purified and sequences 

of human-mouse chimera constructs were verified by sequencing analysis (Eton 

Bioscience Inc., San Diego, CA, USA). The chromatograms obtained from each 

sequencing reaction were analyzed with Sequencher software.   

In order to ligate the chimera constructs into the pMAL vector, the vector was purified 

from overnight culture utilizing a QIAfilter Plasmid Midi Kit (Qiagen Inc., Valencia, CA, 

USA). 43 µl Backbone vector or 40 µl of each insert were double digested over night 

at 37 °C with each 1 µl PstI and 1 µl XbaI enzymes,  and 5 µl 10 x buffer 3 (50 mM 

Tris-HCl pH 7.9, 100 mM NaCl, 10 mM MgCl2, 1 mM DTT). 1 µl CIP enzyme was 

added to the vector DNA and incubated at 37 °C for one hour to minimize 

recircularization. After double digestion of both constructs and pMAL-backbone, both, 

vector DNA and inserts, were run on a 1 % agarose gel and purified. Ligation of 

inserts into the backbone vector was done by incubation of 2 µl ligase buffer with 2 µl 

backbone, 3 µl insert (or water as control), 1 µl ligase T4, and 2 µl of sterile water at 

16 °C for 48 hours. Ligated DNA was than purified a nd concentrated by ethanol 

precipitation. To 10 µl ligation mix 25 µl ethanol was added. The mixture was 

vortexed and incubated at -80 °C for 4 hours follow ed by centrifugation and drying.  

Finally, ligation products were transformed into DH5α competent E. coli cells (easy 

shock 10B electro-competent cells, Bio-Rad, Hercules, CA, USA). These were 

cultured over night on ampicillin-resistant LB-agar plates. In order to unambiguously 

identify the sequence of each DNA insert, plasmids purified from single colonies of 

each construct transformed into E. coli were sequenced by Retrogen, Inc. (San 

Diego, CA, USA) and chromatograms obtained from each sequencing reaction were 

analyzed using the Sequencher program.  

5.2.4 Site-directed Mutagenesis of Human and Mouse FMO5 Variants 

Site-directed mutagenesis was done using the QuikChange Site-Directed 

Mutagenesis Kit (Stratagene, La Jolla, CA, USA) following the manufacturer’s 

instructions. Primer designed for site-directed mutagenesis in mFMO5 and hFMO5 

are listed in Table 5.3. Each PCR reaction was prepared in a volume of 50 µl and 

contained the following components:  5 µl 10 x reaction buffer for Pfu (Stratagene, La 

Jolla, CA, USA), 1 µl of each template DNA, 2 µl gene specific primer pair, 1 µl dNTP 

mix (Stratagene, La Jolla, CA, USA), 1 µl Pfu Turbo DNA polymerase (Stratagene, 
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La Jolla, CA, USA), and sterile water. The PCR was run at 95 °C for 30 seconds 

followed by 17 cycles at 95 °C for 30 seconds, 55 ° C for 1 minute, and 68 °C for 

9 minutes. Afterwards 2 µl DpnI was mixed into each reaction and incubated for at 

least 3 hours at 37 °C. PCR products were purified and concentrated by ethanol 

precipitation (in case of hFMO5 Q170K, E181V, G182V, D227K, and Y228R) or with 

QIAquick PCR Purification kit (Qiagen Inc., Valencia, CA, USA) following the 

manufacturers instructions (in case of mFMO5 K227D, H228Y and hFMO5 Y228F, 

Y228R, Y228K, and Y228A).  

DNA was transformed into electro-competent cells (easy shock 10B electro-

competent cells, Bio-Rad, Hercules, CA, USA, in case of mFMO5 H206Q and 

hFMO5 Q206H or DH5α electro-competent cells, New England BioLabs, Ipswich, 

MA, USA, in case of all other FMO5 variants), and cultured over night on ampicillin-

resistant LB-agar plates. DNA, purified from selected colonies, was sent for 

sequencing (Eton Bioscience Inc., San Diego, CA, USA). The chromatograms 

obtained from each sequencing reaction were analyzed using the Sequencher 

program in order to verify the sequence of each DNA insert. If the sequence was 

correct, plasmids were transformed into DH1α cells. Afterwards the protein was 

expressed and purified as described in section 5.2.5. 
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Table 5.3  Polymerase chain reaction primers for human and mouse FMO5 variants.  

FMO5 variant Primer  Sequence 

hFMO5 Q170K forward 5'- GAG AAG TTC AAA GGG AAG TAC TTC CAC AGT CGA G -3' 

 reverse 5'- CTC GAC TGT GGA AGT ACT TCC CTT TGA ACT TCT C -3' 

hFMO5 E181V forward 5'- GAC TAT AAG AAC CCA GTG GGA TTC ACT GGA AAG AG -3' 

 reverse 5'- CTC TTT CCA GTG AAT CCC ACT GGG TTC TTA TAG TC -3' 

hFMO5 G182E forward 5'- CTA TAA GAA CCC AGA GGA ATT CAC TGG AAA GAG AGT C -3' 

 reverse 5'- GAC TCT CTT TCC AGT GAA TTC CTC TGG GTT CTT ATA G -3' 

hFMO5 Q206H forward 5'- GGC TGT AGA GAT TAG CCA CAC AGC CAA GCA GGT TTT C -3' 

 reverse 5'- GAA AAC CTG CTT GGC TGT GTG GCT AAT CTC TAC AGC C -3' 

hFMO5 D227K forward 5'- CCT GAA TCG TGT AGG GAA GTA CGG ATA TCC TGC TG -3' 

 reverse 5'- CAG CAG GAT ATC CGT ACT TCC CTA CAC GAT TCA GG -3' 

hFMO5 Y228H forward 5'- GAA TCG TGT AGG GGA CCA TGG ATA TCC TGC TGA TGT G -3' 

 reverse 5'- CAC ATC AGC AGG ATA TCC ATG GTC CCC TAC ACG ATT C -3' 

hFMO5 Y228F forward 5’- CGT GTA GGG GAC TTC GGA TAT CCT GCT -3’ 

 reverse 5’- AGC AGG ATA TCC GAA GTC CCC TAC ACG -3’ 

hFMO5 Y228R forward 5’- CGT GTA GGG GAC CGC GGA TAT CCT GCT -3’ 

 reverse 5’- AGC AGG ATA TCC GCG GTC CCC TAC ACG -3’ 

hFMO5 Y228K forward 5’- CGT GTA GGG GAC AAG GGA TAT CCT GCT -3’ 

 reverse 5’- AGC AGG ATA TCC CTT GTC CCC TAC ACG -3’ 

hFMO5 Y228A forward 5’- CGT GTA GGG GAC GCC GGA TAT CCT GCT -3’ 

 reverse 5’- AGC AGG ATA TCC GGC GTC CCC TAC ACG -3’ 

mFMO5 K227D forward 5’- GAA CCG TGT AGG CGA CCA TGG ATA TCC T -3’ 

 reverse 5’- AGG ATA TCC ATG GTC GCC TAC ACG GTT C -3’ 

mFMO5 H228Y forward 5’- CCG TGT AGG CAA GTA CGG ATA TCC TAT TG -3’ 

 reverse 5’- CAA TAG GAT ATC CGT ACT TGC CTA CAC GG -3’ 

Mutant positions are underlined. 
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5.2.5 Expression and Purification of  Human - Mouse  FMO5 Chimera and 

Human or Mouse FMO5 and their Variants. 

Expression vector for the eight FMO5 chimeras and hFMO5 and mFMO5 variants 

were cloned into pMAL-2c (New England BioLabs, Ipswich, MA, USA) with site-

directed mutagenesis methods as described previously [Brunelle et al., 1997; Zhang 

et al., 2003]. Expression and purification was done as described in section 3.2.2 with 

minor changes. Briefly, the FMO5 enzymes were expressed as N-terminal maltose-

binding fusion proteins (i.e., MBP-FMO5). After transformation of E. coli DH1α cells 

with pMAL-MBP-FMO5 plasmid, cells were grown, induced and disrupted as 

described in section 3.2.2.1. The protein was then applied to a 10 – 15 ml amylose 

column at 0.75 ml/min or 1 ml/min.  Bound MBP-FMO5 protein was eluted with 3 mM 

maltose or a linear maltose gradient: 0 – 100 % 10 mM maltose in buffer A over 

100 minutes at 1 ml/min. Eluted fractions containing the fusion protein were pooled 

and concentrated with a Centriprep centrifugal filter unit with Ultracel-30 membrane 

or an Amicon Ultra-15 centrifugal filter unit with Ultracel-50 membrane (Millipore, 

Billerica, MA, USA). 

5.2.6 Determination of Protein Concentrations of FM O5 Chimera 

Concentration of purified MBP-FMO5 chimeras was determined by SDS-PAGE and 

Coomassie Blue staining and compared with BSA standard (see section 3.2.4.1). 

5.2.7 Enzyme Assays 

5.2.7.1 N-Oxygenation of 8-DPT by FMO5 

N-Oxygenation of 8-DPT was determined by HPLC analysis as described in section 

3.2.4.2 with incubation mixtures containing 100 mM potassium phosphate buffer at 

different pHs (i.e., pH 6.0, 6.3, 6.7, 7.0, 7.3, 7.7, and 8.0), 0.4 mM NADP+, 0.4 mM 

glucose-6-phosphate, 4 U glucose-6-phosphate dehydrogenase, 0.25 mM 

DETAPAC, and 80 µg MBP-FMO5. 

5.2.7.2 Optimization of Enzyme Assays 

Assay conditions for 8-DPT N-oxygenation activity by FMOs have previously been 

described and successfully used for various studies [Brunelle et al., 1997] and thus 
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were adapted with only minor changes for the pH study described herein. However, 

closer evaluation in terms of sensitivity to pH change and buffer strength showed that 

the previously used conditions can be optimized. Also, results from the determination 

of kinetic parameters (i.e., Vmax and Km) for FMO5-mediated 8-DPT HCl 

N-oxygenation suggested that a higher substrate concentration is favorable for 

routine analysis (Km = 117 µM and Vmax = 3.2 nmol/min/mg FMO5). However, 

although buffer strength and pH seem to play an important role, the Km was not 

expected to be increased at different pHs and thus, a substrate concentration of 

400 µM was considered saturation condition for all pHs examined. Therefore, for 

pH profile experiments of human and mouse FMO5 variants, a final 8-DPT HCl 

concentration of 400 µM was used. The revised assay protocol is stated hereafter.  

Nevertheless, pH profiles of human and mouse FMO5 were performed with both 

methods and comparison showed no significant changes. Thus, profiles generated 

with the original method were not repeated. 

5.2.7.3 Optimized 8-DPT Assay 

N-Oxygenation of 8-DPT was determined by HPLC analysis as described in section 

3.2.4.2 with incubation mixtures containing a buffer mix consisting of 0.1 M ACES, 

52 mM Tris, and 52 mM ethanolamine at different pHs (i.e., pH 6.0, 6.3, 6.7, 7.0, 7.3, 

7.7, 8.0, and 9.0), 0.4 mM NADP+, 0.4 mM glucose-6-phosphate, 4 U glucose-6-

phosphate dehydrogenase, 0.25 mM DETAPAC, and 40 µg MBP-FMO5. The 

advantage of this buffer system over phosphate buffer which was used earlier is that 

a) its ionic strength is virtually constant over a wide range of pHs and b) its buffer 

capacity is much better than that of phosphate buffer over the pH range tested [Ellis 

et al., 1982]. Reactions were initiated by addition of substrate to a final concentration 

of 400 µM. After 20-minute incubation the samples were processed and analyzed via 

HPLC as described in section 3.2.4.2. 

5.2.8  Data Analysis 

Results were analyzed with Graphpad software (Graphpad Prism, Version 2.00 or 

3.00, San Diego, CA, USA). For pKa determination, log-enzyme activities in 

nmol/min/mg FMO5 were plotted against pH and the following equasion was applied: 

Y=log(Vmax/(1+10pKa-X)) with Ka representing the dissociation constant of an ionizable 
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group on the enzyme [Cook et al., 1981]. Data obtained was presented as best fit 

value ± standard error. Statistical analysis was also done using Graphpad Prism 

software and statistical significance was judged at P<0.05. 

5.3 Results 

5.3.1 pH Dependence of Human and Mouse FMO5 

The pH dependence of human and mouse FMO5 was studied and pKa values were 

determined in the range of pH 6 – 8. As shown previously, the pKa determined from 

pH dependent enzyme activity profiles with mouse FMO5 was significantly higher 

than that determined with human FMO5 (6.6 ± 0.1 and 7.2 ± 0.1, respectively). 

5.3.2 pH Dependence of hm159, mh159, hm435, and mh4 35 

The pH dependent 8-DPT N-oxygenation activity of MBP-FMO5 chimeras hm159, 

mh159, hm435, and mh435 was analyzed and pH profiles were evaluated in regard 

to activity drop at low pH values. Comparing hm159 and mh159 FMO5, it can be 

concluded that the amino acid residues 1 – 159 of hFMO5 are not involved in the 

increased activity observed at lower pH for hFMO5 because the pH dependent 

activity profile of mh159 is close to that of human FMO5 whereas the pH drop of 

hm159 is steeper at low pH resembling the pH profile of mouse FMO5. Comparing 

the other two chimeras (i.e., hm435 and mh435), the difference in activity drop 

around pH 6 is not as pronounced. Nevertheless, the pH profile of hm435 seems 

closer to that of hm159 and thus to that of wild-type mouse FMO5, whereas the pH 

profile of mh435 seems to follow more the outline of mh159 (Figure 5.5). Therefore, 

the amino acid/s most likely to be responsible for the increased activity of hFMO5 at 

lower pH in comparison to mFMO5 lies between amino acid residues 160 and 434. 
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Figure 5.5  Human/mouse chimeras and their pH dependent activity profiles derived 

from 8-DPT N-oxygenation activity assays at pH 6 through 8.  

hm159, white bars; mh159, black bars; hm435, hatched bars; mh435, grey bars. 

 

5.3.3 pH Dependence of hm229, mh229, hm370, and mh3 70 

With data from the first set of chimeras, the region of interest where the amino acid 

residue/s involved in the observed higher activity of hFMO5 below pH 7 are located 

could be narrowed down (i.e., aa 160 – 434). A set of four new chimeric FMO5 

enzymes representing one part human FMO5 and one part mouse FMO5 were 

designed, expressed, and purified in order to determine their pH profiles and localize 

the amino acid/s of interest. The pH profile of hm229 FMO5 could not be determined 

due to very poor expression rates. The pH dependent FMO5 activity profiles for the 

other three chimeras analyzed do not differ significantly from each other and are 

shown in Figure 5.6.  
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Figure 5.6  Human/mouse chimeras and their pH dependent activity profiles derived 

from 8-DPT N-oxygenation activity assays at pH 6 through 8.  

mh229, white bars; hm370, black bars; mh370, hatched bars. 

 

5.3.4 Summary:  pH Dependence of Human and Mouse FM O5 Chimeras 

Chimeras of human and mouse FMO5 with swapping points at amino acids 229, 370, 

and 435 did not differ significantly in their pH dependent activity profiles (Figure 5.5 

and 5.6). Thus, amino acid residue/s involved in the observed higher activity of 

hFMO5 below pH 7 is/are most likely located between amino acids 160 and 229 

because only chimeras mh159 and hm159 showed significant differences from the 

wild-type enzymes whereas no significant differences could be observed with 

chimeras with cutting sites after codon 230. 

Sequence alignment of human and mouse FMO5 showed that within this specific 

region, six amino acids of human FMO5 differ from mouse FMO5. Utilizing site-

directed mutagenesis, these amino acids were changed in human FMO5 to the ones 

found in mouse FMO5, expressed, and purified. Their pH profile between pH 6 and 9 

was determined in 8-DPT HCl N-oxygenation activity assays. 
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5.3.5 pH Dependence of Human and Mouse FMO5 Variant s 

The pH profile of wild-type hFMO5 and wild-type mFMO5 as well as hFMO5 variants 

purified was determined after optimization of assay conditions (section 5.2.7.3). 

The results of wild-type human and mouse FMO5 are shown in Figure 5.7. The 

results are similar to those obtained with the original assay conditions with pKa values 

of 7.7 ± 0.1 and 6.9 ± 0.1 calculated from the pH dependent activity profiles of mouse 

and human FMO5, respectively. 
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Figure 5.7  pH Dependence of wild-type human and mouse FMO5.  

hFMO5 is shown as solid line (■), mFMO5 as dashed line (∆). 

 

Five hFMO5 variants were successfully expressed, purified, and analyzed. Results 

for these variant hFMO5s are shown in Figure 5.8. The pKa values determined with 

wild-type human and mouse FMO5 and variant hFMO5 are listed in Table 5.5. 
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Figure 5.8  pH Dependence of human FMO5 variants.  

■ hFMO5 Q170K; ▲ hFMO5 G182E; ▼ hFMO5 Q206H; ● hFMO5 D227K; ∆ hFMO5 

Y228H. hFMO5 Q170K, hFMO5 G182E, and hFMO5 D227K are shown as solid 

lines, hFMO5 Q206H and hFMO5 Y228H are shown as dashed lines. 

 

Table 5.5  pKa Values calculated from pH dependence profiles of human FMO5 

variants compared to those of wild-type human and mouse FMO5.  

Variant pKa 

wild-type hFMO5 6.9 ± 0.1  

wild-type mFMO5 7.7 ± 0.1 

hFMO5 Q170K 6.6 ± 0.1 

hFMO5 G182E 6.6 ± 0.1 

hFMO5 Q206H  6.5 ± 0.05 

hFMO5 D227K 7.3 ± 0.1 

hFMO5 Y228H 7.9 ± 0.2 

Data is presented as best fit value ± standard error. 

 

The data clearly show that replacement of the tyrosine at position 228 with histidine 

in hFMO5 increases the pKa and thus results in a pH profile similar to that observed 
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with the wild-type mouse enzyme, whereas hFMO5 Q170K, G182E, and Q206H 

mutations do not have a significant influence on pKa. D227K showed a slightly 

increased pKa in comparison to that calculated from pH dependence profiles of wild-

type hFMO5, even though this increase was lower than hFMO5 Y228H. To confirm 

this result, the mouse counterparts with the amino acid of the corresponding human 

enzyme were made (i.e., mFMO5 K227D and H228Y) and as suspected, pH 

dependence studies with mouse FMO5 K227D as well as mouse FMO5 H228Y led to 

decreased pKa values compared to that determined with wild-type mouse enzyme 

(Figure 5.9 and Table 5.6). Also, several variants of hFMO5 Y228 were made in 

order to evaluate the effect of different amino acids at position 228. The results are 

shown in Figure 5.10 and summarized in Table 5.6. 
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Figure 5.9 pH Dependence of human and mouse FMO5 variants.  

▼ hFMO5 D227K; ■ mFMO5 K227D; ● hFMO5 Y228H; ▲ mFMO5 H228Y. hFMO5 

D227K and mFMO5 K227D are shown as solid lines, hFMO5 Y228H and mFMO5 

H228Y are shown as dashed lines. 
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Figure 5.10  pH Dependence of human FMO5 Y228 variants.  

■ hFMO5 Y228H; ▲ hFMO5 Y228F; ▼ hFMO5 Y228R; ∆ hFMO5 Y228K; ● hFMO5 

Y228A. hFMO5 Y228F, hFMO5 Y228R, and hFMO5 Y228K are shown as solid lines, 

hFMO5 Y228H and hFMO5 Y228A are shown as dashed lines. 

 

Table 5.6   pKa Values calculated from pH dependence profiles of human and mouse 

FMO5 variants compared to those of the wild-type FMO5 enzymes.  

Variant pK a 

wild-type hFMO5 6.9 ± 0.1  

wild-type mFMO5 7.7 ± 0.1 

hFMO5 D227K 7.3 ± 0.1 

mFMO5 K227D 6.6 ± 0.05 

hFMO5 Y228H 7.9 ± 0.2 

mFMO5 H228Y 6.5 ± 0.05 

hFMO5 Y228K 8.0 ± 0.1 

hFMO5 Y228A 7.8 ± 0.1 

hFMO5 Y228F 6.7 ± 0.05 

hFMO5 Y228R 7.7 ± 0.1 
Data is presented as best fit value ± standard error. 
 

As expected, in mFMO5 replacement of a histidine at position 228 by tyrosine 

(mFMO5 H228Y) significantly decreased the calculated pKa value in comparison to 
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wild-type mFMO5. The same observation was made for the K227D variant of mouse 

FMO5.  

Changing the amino acid tyrosine in wild-type hFMO5 to three of the tested amino 

acids (i.e., lysine, alanine, or arginine) also increased the pKa significantly. However, 

changing tyrosine to phenylalanine did not make a significant difference in pKa value 

(pKa of 6.9 and 6.7 determined with wild-type hFMO5 and hFMO5 Y228F, 

respectively). Overall, the low pKa seemed to be due to the amino acids at position 

227 and 228 in the human enzyme and thus they are at least in part responsible for 

the increased enzyme activity at low pH. 

5.4 Discussion 

Within this study, the observed pH dependent activity change of human FMO5 was 

compared to mouse FMO5. Interestingly, with the human enzyme a significantly 

lower pKa was observed than with the mouse enzyme. Via chimera studies the region 

in which the amino acids that are responsible for this pKa shift lie was determined. 

Alignment of human and mouse FMO5 sequences showed that this region is only 

distinguished by six amino acids. In additional site-directed mutagenesis studies 

these amino acids were changed and the pH dependent activity profiles of the 

resulting variants were determined. Resulting data clearly showed that the residues 

in question lie at positions 227 and 228 of the enzyme. 

It has been reported previously that pH dependent activity of enzymes is set mainly 

by pKa values of one or a few key ionizable groups within the enzyme, primarily in the 

active-site cleft [Joshi et al., 2000]. According to the human FMO3 homology 

structure model developed based on four related proteins [Borbas et al., 2006b] (see 

also chapter 4), the amino acid that influences the pH profile (i.e., Y228) lies on the 

surface of the protein close to the entrance of the back passage connected to the 

space between the two domains where NADPH binds. Therefore, in case of FMO5, it 

is more likely that NADPH-binding or NADP+ release is altered rather than substrate 

binding. 

It might have been expected that an amino acid change of tyrosine to histidine, which 

has a lower pKa value on its own, would also lead to a decrease in the pKa value 

measured. However, this could not be observed in this study. Instead, it is possible 
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that in wild-type human FMO5 the tyrosine at position 228 can make hydrogen 

bonding with NADP+. If tyrosine is replaced by a histidine, this interaction may be 

interrupted due to protonation at lower pH. The unpolar amino acids phenylalanine 

and alanine might not be able to interact because of the missing polar hydroxylic 

group. Indeed, with hFMO5 Y228A a significantly increased pKa value was observed 

(7.8 ± 0.1). However, replacement of tyrosine by phenylalanine (hFMO5 Y228F) did 

not alter the pKa significantly from that observed with the wild-type enzyme (6.7 ± 

0.05). Also, a significantly increased pKa for pH profiles of both hFMO5 Y228R and 

hFMO5 Y228K (i.e., 7.7 ± 0.1 and 8.0 ± 0.1, respectively) in comparison to wild-type 

human FMO5 (6.9 ± 0.1) was observed showing that both lysine and arginine might 

affect NADP+ binding. 

Conformational changes may also have an influence on titration behavior. Thus, the 

similar pKa values observed for pH dependence profiles of hFMO5 Y228 and F228 

could be explained by sterical similarity between the two amino acid side chains. It is 

possible that a benzene ring is needed in this position and that changing this might 

have an effect on neighboring residues such as D227. As the tyrosine at position 

228, aspartic acid at position 227 could possibly form hydrogen bonds with NADP+ 

and changing Asp227 to lysine resulted in an increased pKa (i.e., 7.3 ± 0.1). Shifting 

this residue by changing the size of the amino acid at position 228 might also prevent 

this interaction and lead to an altered pKa.  

Amino acid residues may be sensitive to both electrostatic and structural changes of 

others that are located in immediate vicinity. Thus, an amino acid change could have 

an effect on pKa values of sterical neighboring residues as was described for the 

substitution of asparagine with aspartic acid at position 35 in Bacillus circulans 

xylanase [Joshi et al., 2000]. In this enzyme, substitution of the basically neutral 

amino acid Asn with the acidic Asp (pKa 3.7) also influenced the pKa values of Glu78 

and Glu172. Latter ones were elevated, probably due to charge repulsion. Overall, 

the pH optimum of the xylanase was shifted from 5.7 to 4.6 [Joshi et al., 2000]. In 

addition, protonation or deprotonation of amino acids may also help stabilize other 

structurally close residues and substitution might lead to destabilization and an 

altered pH. For example, for a polyketide synthase, stabilization and promotion of a 

thiolate anion at cysteine 164 by histidine 303, as an imidazolium cation, was 

reported. Thus, upon substitution of this His303, in addition to reactivity, the pKa 
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value of the Cys164 changed [Jez et al., 2000]. It is possible that amino acid changes 

in FMO5 at position 227 and 228 may also alter pKa values of surrounding residues 

or stabilize/destabilize these depending on the charge of the amino acid in these 

positions. Thus, although based on current three-dimensional models D227 and 

Y228 lie close to the surface of the protein, they could have an impact on amino 

acids that are closer to the substrate binding site or that influence NADPH binding or 

NADP+ release. A crystal structure of a mammalian FMO may give more detailed 

answers as to how these amino acids influence residues in or close to the active site. 

The pI of the enzyme could also affect its pH dependent activity profile. The 

theoretical pI of human and mouse MBP-FMO5 are 6.3 and 7.2, respectively 

(http://www.expasy.ch/cgi-bin/protparam). It is possible that the enzyme has to be 

negatively charged to function properly. Since human FMO5 has a lower pI than the 

mouse enzyme, it will keep its negative charge longer at lower pH. Thus, human 

FMO5 has a negative charge above pH 6 whereas mouse FMO5 is negatively 

charged above pH 7. Therefore, its activity decreases faster in comparison to human 

FMO5 below this pH as seen in the pH profiles in this study. Calculation of the 

variants’ pIs shows an increase for human FMO5 D227K to 6.5 and a decrease for 

mouse FMO5 K227D to 6.8 supporting this theory. FMO5 is negatively charged at its 

pH optimum. Assuming the enzyme functions best when it is negatively charged, a 

substitution of Asn with Asp and the resulting change of pI could lead to altered 

charge of the enzyme at low pH. Also, the pI could simply be a requirement for 

stability in the surrounding environment rather than affecting substrate binding or 

turnover by determining the charge of the enzyme [Joshi et al., 2000]. 

In conclusion, the pH dependent activity change of human and mouse FMO5 were 

compared and the amino acids responsible for an observed pKa shift between the 

two were identified. Changing aspartic acid at position 227 to lysine or tyrosine at 

position 228 to histidine of human FMO5 elevated the pKa observed in pH profiles 

from 6.9 to 7.3 and 7.9, respectively. Accordingly, an amino acid switch of Lys227 to 

Asp227 or His228 to Tyr228 in mouse FMO5 lowered the pKa from 7.7 to 6.6 and 6.5, 

respectively. In order to address the question of how exactly the pH dependent 

activity profile is changed by these amino acids and whether the residues at position 

227 and 228 interact with the cofactor directly or whether the affect neighboring 

residues will need further investigation. For example, crystallographic studies with 
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both wild-type and mutant enzymes at acidic pH value or determination of pKa values 

for specific residues via NMR may lead to more comprehensive explanations of the 

mechanism of FMO5 catalysis and the influence of amino acids on pH dependent 

enzyme activity. 
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6 Substrate Selectivity and Screens of Potential FM O5 
Substrates 

6.1 Introduction 

6.1.1 FMO Substrates 

Generally, any compound containing a soft nucleophile can be a substrate to FMOs if 

it is able to gain access to the 4a-hydroperoxyflavin and the catalytic site of the FMO 

enzyme [Cashman, 1995; Krueger et al., 2005]. This leads to differences in substrate 

specificity between the FMO isoforms because the substrate binding channel of 

different FMOs are clearly distinct [Lomri et al., 1993b; Lomri et al., 1993c; Nagata et 

al., 1990]. FMO1 possesses the broadest and shallowest substrate binding channel 

of all mammalian FMOs. In contrast, FMO2 and FMO3 preferably N-oxygenate long-

chain aliphatic amines (i.e., those possessing a nucleophilic tertiary amine at least six 

or seven carbon atoms away from a bulky moiety). The channel to the 

4a-hydroperoxyflavin in pig FMO1 is about 3 Å deep and 12 Å wide [Cashman, 1995; 

Nagata et al., 1990], but the binding site of human hepatic FMO1 is more restricted 

than that of animals and lies about 5 Å below the surface and is only 4.5 Å in 

diameter [Cashman et al., 2006; Kim et al., 2000; Krueger et al., 2005; Ziegler, 2002]. 

Human FMO1 is efficient in N-oxygenating tertiary amines such as chlorpromazine, 

imipramine, and 10-[(N,N-dimethylamino)alkyl] phenothiazine derivatives (DPT), but 

does not readily catalyze N-oxygenation of primary amines, although aliphatic 

primary amines can act as positive effectors [Cashman, 1995; Cashman, 2000; 

Krueger et al., 2005]. In contrast, the binding channel of rabbit and human FMO2 and 

human FMO3 rests at least 6 to 8 Å below the mouth of the substrate binding 

channel with a diameter of about 8 Å [Krueger et al., 2005; Lomri et al., 1993b; 

Nagata et al., 1990]. FMO2 is the most size-restricted FMO isoform whereas FMO3 

appears to be intermediate.  FMO2 as well as FMO3 and 5 also N-oxygenate primary 

amines such as n-octylamine and the Km decreases with an increasing length of the 

chain between C8 and C12. The resulting hydroxylamine is a better substrate for 

FMO2 and is usually N-oxygenated to the cis-isomer of the oxime [Poulsen et al., 

1986]. When examining rabbit, monkey, and human FMO2 for functional activity, it 

appears that generally sulfur-containing chemicals are better substrates for FMO2 

than nitrogen-containing substrates [Dolphin et al., 1998; Krueger et al., 2004; 
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Krueger et al., 2002; Whetstine et al., 2000]. FMO3 enzymes generally prefer 

substrates that are slightly smaller than those accepted by FMO1, but are also able 

to N-oxygenate primary, secondary, and tertiary amines. Nitrogen atoms on longer 

side chains are more efficiently oxygenated than those on shorter side chains, 

apparently because the substrate binding site is buried deep within the enzyme. 

Typical substrates for FMO3 include benzydamine, methimazole, trimethylamine, and 

the probe substrate 5-DPT [Cashman, 2000; Cashman et al., 2006].  

Although not clearly understood to date, FMO4 and 5 supposedly have very 

restricted substrate specificities. FMO4 is very unstable and its cDNA expression is 

problematic affording poorly active enzyme [Lattard et al., 2003a]. Thus, it has been 

difficult to establish extensive FMO4 substrate specificity relations [Cashman et al., 

2006]. FMO5 does not oxygenate the typical FMO substrates such as MMI and TMA 

[Overby et al., 1995; Zhang et al., 2007a]. In studies with a series of DPT-analogs an 

8-fold increase in specific activity of mouse FMO5 was observed between 5-DPT and 

8-DPT. Thus, it was suggested that the active site of mouse FMO5 lies about 6 Å 

below the surface [Zhang et al., 2007a]. Known substrates of FMO5 are short-chain 

aliphatic primary amines such as n-octylamine, thioethers with proximal carboxylic 

acids (i.e., S-methyl esonarimod), and 5- and 8-DPT [Cashman et al., 2006; Overby 

et al., 1995; Zhang et al., 2007a].  

Endogenous substrates of FMOs include biogenic amines (i.e., tyramine and 

phenethylamine) [Cashman, 2000]. Tyramine is N-oxygenated by FMO1 and 3 to its 

trans-oxime, and FMO3 is predicted to be predominantly responsible for trans-oxime 

formation. Phenethylamine is also metabolized by human hepatic FMO3 and to a 

lesser extent by porcine liver FMO1. It is N-oxygenated to the phenethyl 

hydroxylamine and subsequently to its trans-oxime and this terminates biological 

activity [Lin et al., 1997a; Lin et al., 1997b]. FMO apparently precludes biologically 

important nucleophiles including many endogenous thiols and other heteroatom-

containing compounds from the active site [Ziegler, 1990]. This is advantageous 

because if cellular nucleophiles were to be continuously oxidized, this would 

represent a tremendous drain on the ability of a cell to produce reducing equivalents 

(i.e., NADPH) for normal cell function. In addition, oxygenation of endogenous thiols 

by FMO would also produce a large amount of electrophilic metabolites that might 

overwhelm the cells ability to detoxicate them. FMO stabilizes the peroxyflavin and 
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does so with a molecular architecture that does not allow reactive metabolites 

generated to covalently modify the active site or substrate binding region. Thus, the 

substrate binding region is presumably composed of highly lipophilic and non-

nucleophilic amino acid residues. Overall, substrate specificities of FMO1 – 3 have 

been examined thoroughly in the past. However, for FMO4 and FMO5 enzymes 

there is still a large gap in knowledge of substrate specificity and the substrate 

binding site dimensions. 

6.1.2 Aim of the Study 

As stated in 6.1.1, substrate specificity of FMO isozymes is mainly due to size 

restriction of the substrate binding channel of the enzyme. A three-dimensional 

structure of the FMO enzymes, as attempted in chapter 4 would certainly be useful to 

define substrate specificity since computational modeling studies could be 

performed. However, much can be learned about the size of the catalytic site from 

comparison of accepted substrates, as was already done for FMO1 – 3. In case of 

FMO5, however, the paucity of substrates prevents this approach.  

A photometric HPLC based functional assay has been established for mouse and 

human FMO5 [Zhang et al., 2007a]. In this HPLC analysis assay that has been 

previously described [Lattard et al., 2003b] the ratio of a known FMO5 substrate 

(i.e., 8-DPT) to product (8-DPT N-oxide) after a 20 minute incubation period at 37 °C 

is determined. However, in order to screen and identify alternative substrates for 

FMO5, an easy and quick high-throughput (HT) capable kinetic activity assay should 

be developed to aid the search for new FMO5 substrates. This would help to gain a 

clearer understanding of the substrate specificity of human FMO5 and the structure 

and size of its catalytic site. Identification of structural groups oxygenated by FMO5 

could suggest likely physiological substrates and contribute an explanation of the 

physiological role of FMO5 in mammalian tissue.  
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6.2 Materials and Methods 

6.2.1 Reagents 

Buffer reagents and substrates tested were purchased from Sigma-Aldrich Chemical 

Co. (St Louis, MO, USA) in appropriate purity. 8-DPT HCl was synthesized by Dr. 

Karl Okolotowicz (HBRI, San Diego, USA). 4’-(4-bromphenyl)-ω-

dimethylaminobutyrophenon HCl (BDAB HCl) was originally developed in our 

research group as NO-inhibitor and was synthesized by Dr. Britta Gerig 

(Pharmaceutical Institute, CAU Kiel, Germany). 4’-(4”-bromophenyl)-ω-[4-

chlorophenyl)-4-hydroxypiperidinyl]-butyrophenone (BCHP) as well as 4’-(4”-

bromophenyl)-ω-(4-phenylpiperazinyl)butyrophenone (BPPB) were developed as 

antipsychotics and were synthesized by Nikola Klein (Pharmaceutical Institute, CAU 

Kiel, Germany). All compounds synthesized were of analytical grade and 

charaterized in the usual way. 

6.2.2 Cloning, Expression, and Purification of MBP- hFMO5  

Recombinant human FMO5 was expressed as an N-terminal maltose-binding fusion 

protein (MBP-hFMO5) [Lattard et al., 2003b] and purified as described in section 

3.2.2 with minor changes. MBP-FMO5 was expressed in E. coli BL21 cells. After 

induction, cells were incubated shaking at 20 °C fo r 24 hours. After expression, E. 

coli cells were harvested by centrifugation at 6,000 g for 10 minutes and the cell 

pellet was frozen in order to increase yield. After resuspending the cell pellet in lysis 

buffer as described in section 3.2.2.1, cells were disrupted by passage through a 

French press (Thermo Electron Corp., Needham Heights, MA, USA) operating at 

20,000 psi. The cell pellet was only extracted once and after centrifugation the 

supernatant was loaded at 1 ml/min onto an amylose column (New England BioLabs, 

Ipswich, MA, USA) equilibrated with ten column volumes of buffer A’ (i.e., 50 mM 

Na2HPO4, pH 8.4, containing 15 µg/ml FAD). The column was washed with at least 

ten column volumes of buffer A’ and bound MBP-hFMO5 protein was eluted with 

3 mM maltose in buffer A’ at 1 ml/min. Eluted protein was concentrated with an 

Amicon Ultra-15 centrifugal filter unit with an Ultracel-50 filter (Millipore, Billerica, MA, 

USA). 
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6.2.3 Determination of MBP-hFMO5 Concentration 

Concentration of purified MBP-hFMO5 was determined by measuring the 

absorbance at 280 nm with a NanoDropTM ND-1000 UV/VIS Spectrophotometer 

(Thermo Fisher Scientific, Wilmington, DE, USA) using a calculated extinction 

coefficient of 121 M-1cm-1 estimated after the method of Gill [Gill et al., 1989].  

6.2.4 Enzyme Assays 

N-oxygenation of 8-DPT HCl by MBP-hFMO5 was determined by HPLC analysis as 

previously described (section 3.2.4.2).  

As primary confirmatory assay for BDAB HCl as potential FMO5 substrate, 

N-oxygenation of 8-DPT HCl by MBP-hFMO5 was determined in the presence of 

BDAB HCl. A standard incubation mixture of 250 µl final volume contained 50 mM 

potassium phosphate buffer, pH 8.5, 0.2 mM NADPH, 0.25 mM DETAPAC, and 

60 µg MBP-hFMO5. Reactions were initiated by addition of 8-DPT HCl or a mixture 

of 8-DPT HCl and BDAB HCl. For 8-DPT HCl, a final concentration of 400 µM was 

chosen, BDAB was added to a final concentration of 200 µM. After incubation for 

20 minutes shaking under aerobic conditions at 37 °C, enzyme reactions were 

stopped and processed as described in section 3.2.4.2. HPLC analysis was done on 

a Waters AllianceTM HPLC-System (Waters e2695 XC Separations Modul, Waters 

2998 Photodiode Array Detector and EmpowerTM 2 Software). Chromatographic 

separation of analytes was done on a LiChrospher-Si 60 (250 x 4.6 mm, 5 µm; 

Merck, Darmstadt, Germany) with a mobile phase of 80 % methanol/20 % 

isopropanol/0.025 % HClO4 (v/v/v). The flow rate was 1.5 ml/min and the total run 

time was 18 minutes. The wavelength for UV detection was set to 243 nm. The 

retention times for 8-DPT and 8-DPT N-oxide were 4.9 and 3.7 minutes, respectively. 

Statistical analysis was also done using Graphpad Prism software and statistical 

significance was judged at P<0.05. 

As secondary confirmatory assay, N-oxygenation of BDAB HCl was determined by 

HPLC analysis. A standard incubation mixture of 250 µl final volume contained 

50 mM potassium phosphate buffer, pH 8.5, 0.2 mM NADPH, 0.25 mM DETAPAC, 

and 60 µg MBP-hFMO5. Reactions were initiated by addition of substrate to a final 

concentration of 200 µM. After incubation for 20 minutes shaking under aerobic 
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conditions at 37 °C, enzyme reactions were stopped by addition of 4 volumes of cold 

dichloromethane. About 20 mg of Na2CO3 was added and the incubations were 

mixed and centrifuged to partition metabolites and remaining substrate into the 

organic fraction. The organic phase was collected and evaporated. Metabolites and 

remaining substrate were dissolved in methanol, mixed thoroughly, centrifuged and 

analyzed with a Waters AllianceTM HPLC-System (Waters e2695 XC Separations 

Modul, Waters 2998 Photodiode Array Detector and EmpowerTM 2 Software). 

Chromatographic separation of analytes was done on a LiChrospher-Si 60 (250 x 

4.6 mm, 5 µm; Merck, Darmstadt, Germany) with a mobile phase of 80 % 

methanol/20 % isopropanol/0.025 % HClO4 (v/v/v). The flow rate was 1.5 ml/min and 

the total run time was 18 minutes. The wavelength for UV detection was set to 

293 nm. The retention times for BDAB and BDAB N-oxide were 10.7 and 

5.7 minutes, respectively. 

6.2.5 LC/MS Analysis 

In order to identify the metabolite produced by incubation of BDAB HCl with FMO5 in 

the presence of NADPH (section 6.2.4), an LC/MS-method was developed. After 

incubation, metabolites and remaining substrate were dissolved in methanol, mixed 

thoroughly, centrifuged and analyzed with an Esquire LC MS system (Bruker 

Daltonics, Bremen, Germany) after separation with an HP HPLC-System (HP Series 

1100 Binary Pump G1312A, HP 1100 VWD UV/VIS Detector and Agilent 

ChemStation HPLC Software (Version A.09.01), and Esquire Control (Version 6.14) 

and Data Analysis (Version 3.0) MS Software). Chromatographic separation of 

analytes was done on a Symmetry C18 (250 x 4.6 mm, 5 µm; Waters) with a Guard 

Pak C18 precolumn (3 x 4 mm; Waters) and a mobile phase of 70 % of 0.1 % formic 

acid in acetonitrile, 15 % of 0.1 % acetic acid, and 15 % methanol (v/v/v). The flow 

rate was 1.5 ml/min and the total run time was 12 minutes. The wavelength for UV 

detection was set to 293 nm. The retention times for BDAB and BDAB N-oxide were 

6.3 and 3.5 minutes, respectively. MS analysis was done using electrospray 

ionization (ESI) with a dry temperature of 340 °C, a dry gas flow rate of 7 l/min, and a 

spray pressure of 30 psi. The scan was done between 50 and 1000 m/z and peaks 

were detected at m/z 346 and 362 for BDAB and BDAB N-oxide, respectively. 
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6.2.6 Development of a Photometric Activity Assay M ethod 

6.2.6.1 Assay Protocol Outline 

The FMO5 activity assay was based on the photometric determination of NADPH 

consumption. During substrate oxygenation by FMO5, NADPH is oxidized to NADP+ 

and the disappearance of NADPH can be monitored photometrically over time at 

340 nm. A typical reaction mixture consisted of 50 mM phosphate buffer, pH 8.4, 

200 µM NADPH, 250 µM DETAPAC to inhibit autooxidation, and 200 µg/ml 

MBP-hFMO5 in a final volume of 100 µl. This mixture was prepared in advance and 

dispensed into 96-well flat-bottom UV-Star microplates (Greigner Bio-One, 

Frickenhausen, Germany). Afterwards, the reaction was initiated by addition of 

substrate. Kinetic decrease of NADPH was measured over 20 minutes and each well 

was read every 60 seconds using a Cary 50 Scan UV-Visible Spectrophotometer 

(Varian, Palo Alto, CA, USA). For initial assay optimization studies, the known 

substrate 8-DPT HCl was used to validate the high-throughput assay and the final 

8-DPT HCl concentration in these initial studies was 400 µM.  

6.2.6.2 Optimization of Assay Conditions 

Protein Concentration 

Purified MBP-hFMO5 was evaluated over a range of enzyme concentrations in 

reactions containing 8-DPT HCl. The reaction mixture consisted of MBP-hFMO5 and 

200 µM NADPH in 50 mM potassium phosphate buffer, pH 8.4, containing 0.25 mM 

DETAPAC. The reactions were initiated by addition of 8-DPT HCl to a final 

concentration of 400 µM. Slopes representing FMO activity generated by reactions 

containing 8-DPT HCl were normalized to slopes of control reactions without the 

substrate. Reactions were done in quadruplicates and enzyme was used in 

concentrations between 0.05 and 0.8 mg/ml. 

Substrate Dependence 

Kinetic parameters (Vmax, Km) of 8-DPT HCl were evaluated. The reaction mixture 

consisted of 200 µg/ml MBP-hFMO5 and 200 µM NADPH in 50 mM potassium 

phosphate buffer, pH 8.4, containing 0.25 mM DETAPAC. Reactions were initiated 

by addition of at least five varying concentrations of 8-DPT HCl between 5 and 

400 µM. Reactions were done in quadruplicates and slopes reflecting rates of 
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cofactor depletion were calculated by normalizing to slopes of reactions lacking 

protein.  

6.2.7 Development of a Fluorimetric Activity Assay Method 

6.2.7.1 Assay Protocol Outline 

The FMO5 activity assay was based on the fluorimetric determination of NADPH 

consumption and was adapted from Simeonov et al. [Simeonov et al., 2008] who 

established a fluorescence based NADPH depletion assay for inhibitor screening of 

the Schistosoma mansoni redox cascade. During substrate oxygenation by FMO5, 

NADPH is oxidized to NADP+ and the decrease of NADPH fluorescence can be 

monitored kinetically over 40 minutes, reading each well every 60 seconds at 

excitation/emission wavelengths of 365 nm/450 nm using a Perkin Elmer LS55 

Fluorescence Spectrophotometer (Perkin Elmer, Waltham, MA, USA). A typical 

reaction mixture consisted of 50 mM phosphate buffer, pH 8.4, 200 µM NADPH, 250 

µM DETAPAC, and 200 µg/ml MBP-hFMO5. This mixture was prepared in advance 

and dispensed into white 96-well flat-bottom microplates (OptiPlate-96, Perkin Elmer, 

Waltham, MA, USA). Afterwards, the reaction was initiated by addition of substrate. 

For initial assay optimization studies, the known substrate 8-DPT HCl was used to 

validate the HT-assay and the final 8-DPT HCl concentration in these initial studies 

was 400 µM.  

6.2.7.2 Optimization of Assay Conditions 

Protein Concentration 

Purified MBP-hFMO5 was evaluated over a range of enzyme concentrations in 

reactions containing a final concentration of 400 µM 8-DPT HCl. This was done 

measuring the decrease of NADPH fluorescence kinetically at excitation/emission 

wavelengths of 365 nm/450 nm over 50 minutes. Each well was read every 

60 seconds. The reaction mixture consisted of MBP-hFMO5 in concentrations 

between 0.05 and 0.8 mg/ml and 200 µM NADPH in 50 mM potassium phosphate 

buffer, pH 8.4, containing 0.25 mM DETAPAC. The reactions were initiated by 

addition of 8-DPT HCl to a final concentration of 400 µM. Reactions were done in 

quadruplicates and slopes representing FMO5 activity generated by reactions 
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containing 8-DPT HCl were normalized to slopes of control reactions without 

substrate.  

Substrate Dependence 

Kinetic parameters (Vmax, Km) of 8-DPT HCl were evaluated. Again, the decrease of 

NADPH fluorescence was measured kinetically at excitation/emission wavelengths of 

365 nm/450 nm over 60 minutes and each well was read every 60 seconds. The 

reaction mixture consisted of 300 µg/ml MBP-hFMO5 and 200 µM of its cofactor 

NADPH in 50 mM potassium phosphate buffer, pH 8.4, containing 0.25 mM 

DETAPAC. Reactions were initiated by addition of at least five varying concentrations 

of 8-DPT HCl between 20 and 1600 µM. Reactions were done in quadruplicates and 

slopes reflecting rates of cofactor NADPH depletion were calculated by normalizing 

to slopes of reactions lacking protein.  

6.2.8 Substrate Screens 

80 Compounds were tested with the developed photometric assay method for 

MBP-hFMO5 catalyzed oxygenation. These are listed in Table 6.1. Compounds were 

either dissolved in methanol or water and reactions were started by addition of these 

to yield final concentrations of 400 µM. Methanol concentrations in final incubations 

did not exceed 1 %. At this concentration, no significant change in enzyme activity 

was observed. Reactions were done in at least duplicates and slopes reflecting rates 

of NADPH depletion were calculated by normalizing to slopes of reactions lacking 

enzyme. In all plates at least one well contained 8-DPT HCl as positive control. 
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Table 6.1  Compounds tested with the developed photometric assay method. 
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Codeine L-Cysteine 
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Ephedrine Glibenclamid 
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Lidocaine L-Lysine HCl 
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N,N-Dimethyloctylamine Nitrofurantoin 
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Ranitidine Saccharin 

O

N S N
H

N
H

O2N  

NH
S

O

OO

 

Spermidine Spermine 4·HCl 

NH2

N
H

NH2

 
 

NH2 N
H

N
H

NH2

 4 HCl 

Sulfaguanidine Sulfamethoxazol 

NH2 S

O

O

N

NH2

NH2  

NH2 S
O

O
N
H

N
O  

Sulfanilamide Sulfathiazole 

NH2 S NH2

O

O  

NH2 S N
H

O

O
N

S

 

Sulfisomidin Tetracain 

NH2 S N
H

O

O
N

N

 

NH

O

O

N

 

Thiamine cloride·HCl Thiopental 

N

N

NH2

N
+

S

OH

 HCl 

N
H

NH

O

O S
 

Cl- 



6  Substrate Selectivity and Screens of Potential FMO5 Substrates 

   

154 
 

Thioridazine Tolbutamide 
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6.3 Results 

6.3.1 Comparison of Photometric and Fluorescent Act ivity Assay 
Methods 

For the development of a suitable HT-adaptable FMO5 oxygenation activity assay, 

two approaches were carried out and evaluated. Both methods were based on 

NADPH consumption associated with FMO5 dependent oxygenation activity. 

However, one was a photometric approach whereas the other exploits the inherent 

fluorescence of NADPH.  

6.3.1.1 Photometric Activity Assay Method 

Time Dependence 

Protein dependence as well as substrate dependence was measured over 

20 minutes and graphs were plotted and evaluated in regards to signal stability over 

time. A stable slope for NADPH depletion at 340 nm could be observed for the whole 

time period measured.  
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Protein Concentration 

Results of protein dependence studies are shown in Figure 6.1. The protein 

concentration dependent increase of activity is clearly visible. It is necessary to use 

enough enzyme to consume sufficient amounts of NADPH to generate detectable 

and reproducible slopes. However, at a concentration of 0.8 mg/ml enzyme the 

activity decreases. This might be due to nonspecific binding of MBP-hFMO5 to the 

substrate, leading to a decrease in effective concentration. For further studies, MBP-

hFMO5 concentrations between 0.2 and 0.4 mg/ml were used. 
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Figure 6.1 MBP-hFMO5 concentration dependence of the photometric plate-reader 

based NADPH depletion assay with 8-DPT HCl as substrate. 

 

Substrate Dependence 

Data obtained from incubation of MBP-hFMO5 with varying amounts of 8-DPT HCl 

was plotted as 8-DPT concentration vs. enzyme activity in nmol/min/mg FMO5 and a 

nonlinear regression curve fit tool using a Michaelis-Menten model 

(Y= (Vmax · X)/(Km + X) with Vmax = Ymax and Km = Xmid) in Graphpad software 

(Graphpad Prism, Version 2.00, San Diego, CA, USA) was utilized to calculate the 

kinetic parameters. The obtained Km was 12.3 ± 1.0 µM and Vmax was 
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6.4 ± 0.1 nmol/min/mg FMO5 (Figure 6.2). As positive control in screening assays, a 

concentration of 200 µM 8-DPT HCl was selected. 
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Figure 6.2  8-DPT HCl concentration dependence for photometric plate-reader based 

NADPH depletion assay with MBP-hFMO5. 

 

6.3.1.2 Fluorimetric Activity Assay Method 

Time Dependence 

Protein dependence as well as substrate dependence was measured over 

60 minutes and graphs were plotted and evaluated in regards to signal stability over 

time. Signal stability was dependent on protein concentration. A clear decrease of 

NADPH fluorescence could only be observed for 10 minutes at a MBP-hFMO5 

concentration of 0.8 mg/ml. At 0.4 mg/ml, the signal was stable for 40 minutes and at 

protein concentrations below 0.4 mg/ml, the decrease was linear within the range 

tested (50 minutes) (data not shown). 

 

Protein Concentration 

Results of protein dependence studies are shown in Figure 6.3. The slopes were only 

evaluated in the range of 0 to 30 minutes because linearity was not given afterwards 

at higher enzyme concentrations (see also time dependence). The protein 

concentration dependent increase of activity is clearly visible. However, although it is 

necessary to use enough enzyme to consume sufficient amounts of NADPH to 
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generate detectable and reproducible slopes, large amounts of enzyme will consume 

substrate too quickly and the slope will decrease. Also, protein may nonspecifically 

bind to a substrate, leading to a decrease in effective concentration. The optimal 

concentration for further studies lies in the range of 0.2 and 0.4 mg/ml MBP-hFMO5.  
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Figure 6.3 MBP-hFMO5 concentration dependence of the fluorimetric plate-reader 

based NADPH depletion assay with 8-DPT HCl as substrate. 

  

Substrate Dependence 

Data from substrate dependence studies fit to Michaelis-Menten kinetic in the range 

of 20 – 400 µM. However, higher concentrations of substrate led to decreased netto 

fluorescence signal. This could be due to an inhibitory effect of substrate on the 

enzyme. Thus, data obtained from incubation of MBP-hFMO5 was plotted in the 

range of 20 - 400 µM as 8-DPT HCl concentration vs. netto decrease of NADPH 

fluorescent signal and a nonlinear regression curve fit tool using a Michaelis-Menten 

model (Y= (Vmax · X)/(Km + X) with Vmax = Ymax and Km = Xmid) in Graphpad software 

(Graphpad Prism, Version 2.00, San Diego, CA, USA) was utilized to calculate kinetic 

parameters. The obtained Km was 30.3 ± 4.5 µM and Vmax was 6.4 ± 0.2 nmol/min/mg 

(Figure 6.4). As positive control in subsequent assays, a concentration of 200 µM 

8-DPT HCl should be used. 
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Figure 6.4  8-DPT HCl concentration dependence of fluorescence plate-reader based 

NADPH depletion assay with MBP-hFMO5.  

 

6.3.2 Substrate Screens 

No significant differences in terms of protein and substrate concentration needed 

could be observed between photometric and fluorescence enzyme activity assay. For 

substrate screens, the photometric assay was chosen. Besides the positive control 

substrate 8-DPT HCl, only 4’-(4-bromophenyl)-ω-dimethylaminobutyrophenone HCl 

(BDAB HCl) showed considerable decrease in absorbance at 340 nm. For all other 

compounds tested, no decrease in absorbance could be observed at the substrate 

concentrations used in the assay. A few other substrates including chlorpromazine, 

chlorprothixene, drofenin HCl, promethazine HCl, thioridazine, and phenacetin 

appeared to be potential hits after the primary screen and were re-screened to 

eliminate false-positives. None of these compounds proved to be a substrate for 

FMO5 and thus only BDAB HCl was examined further. BDAB N-oxygenation activity 

of FMO5 was supposed to be confirmed with an independent assay. Within this 

assay, 8-DPT HCl was incubated with MBP-hFMO5 in the presence and absence of 

BDAB HCl. As shown in Figure 6.5, conversion of 8-DPT was significantly inhibited 

by addition of BDAB to the incubation mixture. This inhibition was possibly due to 

BDAB HCl being a competitive substrate for MBP-hFMO5. Thus, in a secondary 

confirmatory assay, an HPLC-based method was developed to separate BDAB HCl 

from its metabolite/s after incubation with FMO5.  
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Figure 6.5  8-DPT HCl N-oxygenation by MBP-hFMO5 with and without BDAB. 

Statistically significant differences between incubation with 8-DPT HCl and incubation 

with a combination of 8-DPT HCl and BDAB HCl are identified with *** for P<0.001. 

Only one additional peak was observed in HPLC analysis after incubation of BDAB 

with MBP-hFMO5. This peak was analyzed via LC-MS and proved to be BDAB 

N-oxide with m/z 362 (Figure 6.6). 

 

Figure 6.6  HPLC Chromatogram of BDAB HCl and BDAB N-oxide. 
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6.4 Discussion 

Two different HT-compatible screening methods that are based on NADPH 

consumption during enzyme catalysis have been developed and were compared. No 

significant difference in terms of necessary protein and substrate concentrations 

could be observed. The photometric assay was chosen to screen several potential 

FMO5 substrates.  Besides the control substrate 8-DPT HCl and BDAB HCl, none of 

the compounds tested showed considerable decrease in 340 nm absorbance. 

Further evaluation of BDAB HCl proved this compound to be a substrate for FMO5.  

Several substrates have already been tested for oxygenation activity catalyzed by 

FMO5 from various species (i.e., mouse, human, and rabbit FMO5) including 

methimazole [Atta-Asafo-Adjei et al., 1993; Overby et al., 1995; Zhang et al., 2007a], 

ranitidine and cimetidine [Overby et al., 1997], phorate [Cherrington et al., 1998], 

trimethylamine [Atta-Asafo-Adjei et al., 1993; Zhang et al., 2007a], chlorpromazine, 

perchlorperazine, imipramine, N,N-dimethylaniline, cysteamine, trimethylamine and 

n-decylamine [Atta-Asafo-Adjei et al., 1993], L-arginine and Nδ-Methyl-D,L-arginine 

[Kotthaus, 2008], n-octylamine [Atta-Asafo-Adjei et al., 1993; Cherrington et al., 

1998; Overby et al., 1995], n-nonylamine [Atta-Asafo-Adjei et al., 1993], 

S-methylesonarimod [Ohmi et al., 2003; Zhang et al., 2007a] and 8-DPT [Zhang et 

al., 2007a]. However, only the last four compounds were actually oxygenated by the 

enzyme. Of these four known FMO5 substrates, besides 8-DPT, n-octylamine was 

examind within this study. It is notable that upon incubation with n-octylamine no 

decrease of NADPH dependent absorption at 340 nm could be observed in the 

photometric assay although this compound had previously been reported by one 

group [Overby et al., 1995] to be a substrate for human FMO5. This could not be 

confirmed in this study. 

Overall, the assay methods developed may be used to screen for further potential 

substrates. Screening a library of several thousands of compounds in a HT-format 

may help find additional FMO5 substrates and may lead to identification of structural 

groups oxygenated by FMO5 that will suggest likely physiological substrates and 

contribute an explanation of the role of FMO5. 
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A potential problem of both screening methods is the requirement of high substrate 

concentrations that might make it difficult to find a suitable library. An alternative 

approach could be an inhibitor screen for competition against 8-DPT as FMO5 

substrate. Lower compound concentrations would be needed for this approach and 

the method may still identify groups capable of binding to the enzyme’s active site, 

providing an indirect perspective on true substrate structure features. In general, the 

assay protocol would be similar to that of the direct FMO5 substrate screen and the 

inhibitor approach could also be combined with HPLC analysis of 8-DPT 

N-oxygenation as a basis for secondary confirmatory assays. 

A completely different approach to test the significance of FMO5 would be the 

development of a knock-out or knock-in mouse model of FMO5 or the usage of short 

interfering RNA (si-RNA) in order to suppress FMO5 expression. Such studies could 

also give more information about the physiological role and importance of FMO5. 
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7 Summary  

In this work, the structural and functional relations of flavin-containing 

monooxygenases (FMOs) 3 and 5 were investigated. The family of FMO enzymes 

represents, after the cytochromes P450, the most important monooxygenases in 

humans. It consists of five isozymes (FMO1 – 5) which catalyze mainly the 

oxygenation of nucleophilic N- and S-containing xenobiotics [Cashman et al., 2006; 

Ziegler, 1980]. In the main drug-metabolizing organ, the adult human liver, FMO3 

and FMO5 mRNA are the most abundantly expressed FMO mRNAs [Cashman et al., 

2006; Janmohamed et al., 2004]. Thus special interest was paid to these two 

isoforms. 

In the past, FMO3 gained considerable importance because of its association with 

trimethylamineuria (TMAu). TMAu is a disorder that often manifests itself in a body 

odor for individuals affected. It is due to decreased metabolism of dietary-derived 

trimethylamine (TMA). In a healthy individual, 95 % or more of TMA is converted by 

the FMO3 to non-odorous TMA N-oxide. Several SNPs of the FMO3 gene have been 

described and result in an enzyme with decreased or abolished functional activity for 

TMA N-oxygenation thus leading to TMAu.  

The disorder may be diagnosed by genotyping or by measuring urinary ratios of TMA 

N-oxide to TMA. Accurate diagnosis is essential for the affected individuals so that 

they can be treated appropriately. Treatment comprises restriction of certain foods, 

supplementation of folate, riboflavin, and, in very severe cases administration of 

antibiotics to decrease TMA formation due to gut bacteria [Akerman et al., 1999; 

Ayesh et al., 1993; Cashman et al., 2002; Mitchell, 1996; Mitchell et al., 2001].   

Biochemical characterization of recombinant expressed variant FMO3 observed from 

genotyping and phenotyping aids to reveal important information about structure and 

function of human FMO3 [Akerman et al., 1999; Cashman, 2002; Cashman et al., 

2002; Dolphin et al., 1997b; Shimizu et al., 2007b; Treacy et al., 1998; Yeung et al., 

2007]. 

Herein, a novel mutation observed from phenotyping and genotyping of self-reporting 

individuals was examined. This novel mutation was heterozygous at position 187 



7  Summary 

   

163 
 

(V187A) and occurred in combination with mutations at position 158 (E158K), 308 

(E308G), and 305 (E305X). Familial genetic analysis showed that the 

E158K/V187A/E308G derived from the same allele from the mother, and the E305X 

was derived from the father. Wild-type human FMO3 and its variants V187A and 

V187A/E158K were expressed as maltose-binding fusion proteins (MBP-FMO3), 

purified, and characterized for oxygenation of several common FMO3 substrates (i.e., 

5- and 8-DPT, mercaptoimidazole (MMI), TMA, and sulindac sulfide) and for their 

thermal stability. The novel mutation in combination with the common polymorphism 

E158K led to severely decreased enzyme activity. Similarly, although by itself, the 

common polymorphisms E158K and E308G only slightly alter FMO3 activity, in 

combination they may lead to decreased activity [Cashman, 2000; Cashman et al., 

2003; Dolan et al., 2005; Zschocke et al., 1999]. This has also been reflected in vivo 

leading to TMAu [Lambert et al., 2001; Zschocke et al., 1999]. Likewise, the novel 

V187A mutation in conjunction with the common polymorphisms E158K and E308G 

significantly impairs FMO3 resulting in an enzyme with drastically decreased function 

that manifests itself in severe TMAu. 

Although FMO5 mRNA is most abundantly expressed in human adult liver, it is a 

largely understudied enzyme. Therefore, besides FMO3, FMO5 was of particular 

interest and was characterized structurally and functionally within this thesis. 

To facilitate these studies, highly-purified and well characterized FMO5 enzyme was 

produced. Human FMO5 was successfully expressed as maltose-binding fusion 

protein (MBP-hFMO5). Solubilization studies showed Triton® X-100 to be superior in 

extracting MBP-hFMO5 from E. coli. After cell lysis, protein was purified exploiting the 

MBP-tag for amylose-column chromatography. Further purification was done on an 

anion-exchange column and remaining impurities could be removed utilizing a NaCl 

salt gradient. Comparison to commercially available FMO5 showed no significant 

differences in kinetic behavior and since MBP-hFMO5 could be readily purified at low 

cost and in high quantities, it was chosen for further studies. Also MBP-hFMO5 could 

be obtained in high purity and was thus also suitable for crystallography studies. 

Further, MBP-hFMO5 was characterized in terms of enzyme activity and purity, 

stability at 4 °C, and oligomerization state and mo nodispersity. Especially for 

crystallography studies these characterization studies are substantial. They showed 

that addition of glycerol and NADP+ to the sample improved MBP-hFMO5 stability 
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1.6-fold and in subsequent crystallization studies these additives were added to 

enzyme preparations. Results from size exclusion chromatography of ion exchange 

purified MBP-hFMO5 suggested hexameric state for the protein which is in 

accordance with previous publications [Brunelle et al., 1997; Ziegler et al., 1972]. 

Dynamic light scattering (DLS) data of ion exchange purified FMO5 samples showed 

a single peak, suggesting pure, monodispers protein suitable for crystallography 

studies. 

When working with membrane associated proteins such as FMO enzymes use of 

detergents is unavoidable. As expected, surfactants play a dominant role in 

purification and crystallization of FMO5. Unfortunately, usage of detergents 

introduces a high level of unpredictability, especially if detergents are used that are 

heterogenic by themselves, such as Triton® X-100. However, the usage of this 

detergent was inevitable for the extraction of MBP-hFMO5 from E. coli and complete 

removal of Triton® X-100 and possibly substitution with other detergents seemed 

necessary prior to crystallization trials. Removal was done using polystyrene based 

beads (e.g., Bio-Beads®) and interestingly, upon addition of excess amounts of Bio-

Beads® to the protein solution, MBP-hFMO5 did not precipitate. This result suggests 

that FMO5 is not an integral membrane protein, but rather only associated with the 

membrane. Also, removal of Triton® X-100 with Bio-Beads® improved results from 

crystallization trials of MBP-hFMO5 leading to thick yellow oil phases and premature 

crystals with spherical shapes. 

Crystallography experiments were done by initially screening various commercially 

available 96-well plate crystal screen kits for suitable crystallization conditions. The 

most promising conditions were refined further in 24-well plates evaluating protein 

concentration, salts and buffers as well as precipitant type and concentration. 

Conditions that finally led to MBP-hFMO5 crystals were 26 % PEG 2K MME and 

0.2 M sodium acetate in 0.1 M Bis-Tris propane buffer, pH 6.5. 

Experiments in which a variety of different detergents was added after removal of 

Triton® X-100 led to further improvement of these first spherical shaped pre-stages of 

crystals. Detergents that yielded best results mainly belonged to a new group of 

amphiphilic agents that is supposed to stabilize membrane proteins and lower the 

risk of denaturing or aggregation. These surfactants are based on cholic acid and 
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exhibit facial amphiphilicity [Zhang et al., 2007b; Zhong et al., 2005]. In addition, 

detergents such as HECAMEG and the Cymal® series also yielded crystals. In 

general, employing the concept of mixed micelles by controlled addition of detergent 

seemed beneficial for FMO5 crystal growth. 

Unfortunately, no satisfactory diffraction pattern could be obtained from MBP-hFMO5 

crystals. This might be due to the flexible linker region between MBP-tag and FMO5 

that possibly introduces conformational heterogeneity [Smyth et al., 2003]. Therefore, 

MBP-hFMO5 was cleaved to perform crystallization experiments with only hFMO5. 

Splicing of MBP from hFMO5 was done utilizing a previously inserted protease 

sensitive site right after the MBP sequence that may be cleaved by factor Xa. After 

incubation for three hours at 37 °C, cleavage was l argely completed and addition of 

NADPH to the incubation mixture prevented the enzyme from being heat-inactivated. 

It is notable that similar experiments had been done with MBP-hFMO3 [Brunelle et 

al., 1997]. However, after cleaving MBP from hFMO3, the latter showed intractable 

solubility and enhanced instabilities [Brunelle et al., 1997] as previously described for 

a number of purified native FMO enzymes [Cashman, 1995; Guan et al., 1991]. In 

contrast to expectations, after proteolytical separation from MBP, human FMO5 

stayed in solution and retained the same level of enzyme activity as the tagged 

protein. However, subsequent purification of hFMO5 from remaining factor Xa, MBP, 

and residual uncleaved MBP-hFMO5 using a variety of previously described methods 

including affinity purification [Riggs, 2000], ion exchange chromatography [de Pieri et 

al., 2004; Guan et al., 2002; Hao et al., 2007; Riggs, 2000; Yan et al., 2006], and size 

exclusion chromatography [Branco et al., 2008] failed.  

In summary, this study showed that MBP-hFMO5 is crystallizable. However, further 

studies are needed to purify hFMO5 from MBP in order to start crystallization 

experiments with the tag-free protein and obtain well diffracting crystals. 

FMO5 displays a significantly different pH dependent activity profile than the other 

FMO isoforms [Zhang et al., 2007a]. While pH optima of mouse FMO1 and 3 

(mFMO1 and 3) display normal bell shape curves peaking around pH 8 to 10, with 

human FMO5 (hFMO5) and mFMO5, 8-DPT N-oxygenation activity continues to 

increase from pH 7 to pH 11 [Zhang et al., 2007a]. A possible reason for the different 

pH profile found in FMO5 could be a slower overall turnover rate indicating a possibly 
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different rate-limiting step in the catalytic cycle of FMO5. To date, the catalytic steps 

of pig FMO1 are known in some detail [Beaty et al., 1981a; Beaty et al., 1981b; 

Jones et al., 1986; Poulsen et al., 1979; Ziegler et al., 1988] and presumably, the 

other FMO isoforms follow a similar mechanism. However, this might not be the case 

for all FMO isoenzymes and the assumption is that FMO5 catalytical mechanism is 

distinct from that of other FMO enzymes.  

The objective of this study was to determine the pH dependence of FMO5 to gain an 

insight into the mechanism of action of FMO5 enzymes. Therefore, functional 

recombinant hFMO5 and mFMO5 were expressed as MBP-fusion proteins from 

E. coli, purified with affinity chromatography, and examined for their 8-DPT 

N-oxygenation activity at different pH values. MBP-hFMO5 showed a broader range 

and greater functional activity from pH 6 to 11 compared to mFMO5. mFMO5 lost 

nearly all functional activity at pH 6, while hFMO5 maintained almost normal enzyme 

activity.  In order to identify the amino acid residues involved in the effects of pH on 

hFMO5 and mFMO5 functional enzyme activity, pH-studies in the range of pH 6 

through 9 were done with MBP-tagged chimeras of recombinant human and mouse 

FMO5 and variants of both. Results of this study showed that the residues 

responsible for the pH profile distinction between MBP-hFMO5 and MBP-mFMO5 are 

located at positions 227 and 228 of the enzyme. Further mutants were made to 

investigate the role of these amino acids. Combined with additional structural, 

functional and kinetic information, this study may add to provide insight into the 

mechanism of FMO5 revealing important interactions between substrate or cofactors 

of FMO and specific amino acid residues of the enzyme. In addition, results may be 

relevant for other FMO enzymes as well if the catalytic mechanism of all FMOs 

proves to be identical. 

The last objective within this thesis was the development of a high-throughput (HT) 

compatible enzyme activity assay in order to screen for new FMO5 substrates. Two 

different HT-compatible screening methods that are based on a decrease of NADPH 

during enzyme catalysis have been developed and were compared. One was based 

on fluorescence whereas the other was a photometric assay. Since no significant 

difference in terms of protein and substrate concentrations needed or sensitivity 

could be observed, the photometric assay was chosen to screen 80 compounds as 

possible FMO5 substrates. Potential hits from this first screen were re-screened in 
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order to eliminate false-positives. Besides the control substrate 8-DPT HCl only 

4’-(4-bromophenyl)-ω-dimethylaminobutyrophenone (BDAB) HCl showed 

considerable decrease in 340 nm absorbance. Thus, only this compound was 

examined further. An HPLC method was developed to separate substrate from its 

metabolite/s after incubation with MBP-hFMO5. The resulting BDAB metabolite 

observed after incubation was analyzed via LC-MS and proved to be BDAB N-oxide. 

Thus, results from the primary photometric assay could be confirmed. This compound 

fits well into the proposed selectivity range of FMO5, having a tertiary amine group 

on a long carbon side-chain away from a bulky moiety. It is still surprising that 

compounds with very similar structures such as benzydamine or tetracaine did not 

prove to be substrates of FMO5. Overall, further compound screens will be needed to 

identify additional FMO5 substrates and gain more knowledge of substrate specificity 

and thus the relationship between structure and function. 
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9 Appendix 

9.1 Constructs 

Amino acid sequences of all wild-type constructs are listed below. All constructs were 

cloned into pMAL-vector. 

MBP-hFMO3 

MKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSG
LLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALDKELKAKGKSALMF
NLQEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAM
TINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPL
GAVALKSYEEELAKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDEALKDAQTNSSSNNNN
NNNNNNLGIEGRGKKVAIIGAGVSGLASIRSCLEEGLEPTCFEKSNDIGGLWKFSDHAEEGRASIYKSVFSNSSK
EMMCFPDFPFPDDFPNFMHNSKIQEYIIAFAKEKNLLKYIQFKTFVSSVNKHPDFATTGQWDVTTERDGKKESAV
FDAVMVCSGHHVYPNLPKESFPGLNHFKGKCFHSRDYKEPGVFNGKRVLVVGLGNSGCDIATELSRTAEQVMISS
RSGSWVMSRVWDNGYPWDMLLVTRFGTFLKNNLPTAISDWLYVKQMNARFKHENYGLMPLNGVLRKEPVFNDELP
ASILCGIVSVKPNVKEFTETSAIFEDGTIFEGIDCVIFATGYSFAYPFLDESIIKSRNNEIILFKGVFPPLLEKS
TIAVIGFVQSLGAAIPTVDLQSRWAAQVIKGTCTLPSMEDMMNDINEKMEKKRKWFGKSETIQTDYIVYMDELSS
FIGAKPNIPWLFLTDPKLAMEVYFGPCSPYQFRLVGPGQWPGARNAILTQWDRSLKPMQTRVVGRLQKPCFFFHW
LKLFAIPILLIAVFLVLT 

MBP-hFMO5 

MKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSG
LLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALDKELKAKGKSALMF
NLQEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAM
TINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPL
GAVALKSYEEELAKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDEALKDAQTNSSSNNNN
NNNNNNLGIEGRISEFGSSRMTKKRIAVIGGGVSGLSSIKCCVEEGLEPVCFERTDDIGGLWRFQENPEEGRASI
YKSVIINTSKEMMCFSDYPIPDHYPNFMHNAQVLEYFRMYAKEFDLLKYIRFKTTVCSVKKQPDFATSGQWEVVT
ESEGKKEMNVFDGVMVCTGHHTNAHLPLESFPGIEKFKGQYFHSRDYKNPEGFTGKRVIIIGIGNSGGDLAVEIS
QTAKQVFLSTRRGAWILNRVGDYGYPADVLFSSRLTHFIWKICGQSLANKYLEKKINQRFDHEMFGLKPKHRALS
QHPTLNDDLPNRIISGLVKVKGNVKEFTETAAIFEDGSREDDIDAVIFATGYSFDFPFLEDSVKVVKNKIPLYKK
VFPPNLERPTLAIIGLIQPLGAIMPISELQGRWATQVFKGLKTLPSQSEMMAEISKAQEEIDKRYVESQRHTIQG
DYIDTMEELADLVGVRPNLLSLAFTDPKLALHLLLGPCTPIHYRVQGPGKWDGARKAILTTDDRIRKPLMTRVVE
RSSSMTSTMTIGKFMLALAFFAIIIAYF 

MBP-mFMO5 

MKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSG
LLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALDKELKAKGKSALMF
NLQEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAM
TINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPL
GAVALKSYEEELAKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDEALKDAQTNSSSNNNN
NNNNNNLGIEGRISEFGSSRMTKKRIAVIGGGVSGLSSIKCCVEEGLEPVCFERTDDIGGLWRFQENPEEGRASI
YKSVIINTSKEMMCFSDYPIPDHYPNFMHNAQVLEYFRMYAKEFDLLKYIRFKTTVCSVKKQPDFATSGQWEVVT
ESEGKKEMNVFDGVMVCTGHHTNAHLPLESFPGIEKFKGQYFHSRDYKNPEGFTGKRVIIIGIGNSGGDLAVEIS
QTAKQVFLSTRRGAWILNRVGDYGYPADVLFSSRLTHFIWKICGQSLANKYLEKKINQRFDHEMFGLKPKHRALS
QHPTLNDDLPNRIISGLVKVKGNVKEFTETAAIFEDGSREDDIDAVIFATGYSFDFPFLEDSVKVVKNKIPLYKK
VFPPNLERPTLAIIGLIQPLGAIMPISELQGRWATQVFKGLKTLPSQSEMMAEISKAQEEIDKRYVESQRHTIQG
DYIDTMEELADLVGVRPNLLSLAFTDPKLALHLLLGPCTPIHYRVQGPGKWDGARKAILTTDDRIRKPLMTRVVE
RSSSMTSTMTIGKFMLALAFFAIIIAYF 
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9.2 Buffers and Reagents 

LB-Agar LB-medium (10 g tryptone, 5 g yeast, 5 g NaCl, H2O ad 
1 l) + 1.5 % (w/v) agar. Autoclave and add antibiotic after 
cooling to ~ 50 °C. 

SOC 20g peptone 
5 g yeast 
0.5 g NaCl 
2.5 ml 1 M KCl 
5 ml MgCl2 
20 ml 1 M glucose 
H2O ad 1 l  
Autoclave.  

Induction solution 0.048 g riboflavin 
1.2 ml 1 M IPTG 
sterile H2O ad 20 ml 

Lysis buffer 600 µl FAD (10 mg/ml) 
0.36 g L-α-phosphatidylcholine 
1 ml 0.1 M PMSF 
0.5 % Triton® X-100 
50 mM K2HPO4 buffer, pH 8.4,  ad 200 ml  

10 % SDS resolving gel 9.2 ml H2O 
8.3 ml 30 % acrylamide mix  
6.3 ml 1.5 M Tris pH 8.8 
250 µl 10 % (w/v) SDS 
250 µl 10 % (w/v) APS 
10 µl TEMED 

5 % SDS stacking gel 6.8 ml H2O 
1.7 ml 30 % acrylamide mix  
1.25 ml 1.0 M Tris pH 6.8 
100 µl 10 % (w/v) SDS 
100 µl 10 % (w/v) APS 
10 µl TEMED 

5 x Tris glycine 
electrophoresis buffer 

15.1 g Tris base 
94 g glycine 
50 ml 10 % (w/v) SDS 
H2O ad 1 l 

4 x SDS gel-loading 
buffer 

0.25 M Tris HCl pH 8.5 
8 % SDS 
1.6 mM EDTA 
0.04 % bromophenol blue 
40 % glycerol 
add 20 x reducing agent (2 M DTT) right before use. 

SDS gel destain 500 ml methanol 
400 ml H2O 
100 ml glacial acetic acid 
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Coomassie staining 
solution 

0.35 g Coomassie Brilliant Blue R250  
100 ml ‚SDS gel destain’ 

Amylsoe column wash 
buffer (buffer A) 

50 mM K2HPO4, pH 8.4  
0.5 % Triton® X-100  
15 µg/ml FAD 

Amylsoe column wash 
buffer (buffer A’) 

50 mM K2HPO4, pH 8.4  
15 µg/ml FAD 

Amylsoe column elution 
buffer 

50 mM K2HPO4, pH 8.4  
15 µg/ml FAD 
3 mM maltose 
in some cases 0.5 % Triton® X-100 was included 

Q column wash buffer 
(buffer B) 

50 mM Bis-Tris buffer, pH 6 
in some cases 0.01 % DDM was included 

Q column elution buffer 50 mM Bis-Tris buffer, pH 6 
1 M NaCl 
in some cases 0.01 % DDM was included 

 
 
 

9.3 Equipment List 

Instrument Manufacturer 

Minitron incubator shaker INFORS HT, Bottmingen, Switzerland 

Centrifuge J2-21M , Rotor JA-20 and JA-
10 Beckman Coulter, Inc., Brea, CA, USA 

Optima MAX-E Ultra Centrifuge MAX 
(100K) Beckman Coulter, Inc., Brea, CA, USA 

Biofuge pico  
Heraeus, Newport Pagnell, United 
Kingdom 

Eppendorf centrifuge 5415R Eppendorf AG, Hamburg, Germany 

Megafuge 1.0R 
Heraeus, Newport Pagnell, United 
Kingdom 

Sonicator Sonics Vibracell (VC130) 
Sonics and Materials Inc., Newtown, CT, 
USA 

French press 
Thermo Electron Corp., Needham 
Heights, MA, USA 

Bio-Rad Biologic LP System & Software Bio-Rad, Hercules, CA, USA 
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Econo-Column Chromatography 
Columns, 1.5 x 5 cm 

Bio-Rad, Hercules, CA, USA 

Fraction collector Redi frac Amersham Biosciences Europe GmbH, 
Freiburg, Germany 

ISMATEC tubing pump (MCP ISM 726) ISMATEC Labortechnik GmbH, 
Wertheim-Mondfeld, Germany 

UVS/Vis Spectrophotometer Cary 300 
Bio 

Varian Inc., Palo Alto, CA, USA 

UVS/Vis Spectrophotometer Cary 50 Bio Varian GmbH, Darmstadt, Germany 

Lambda 25 UV Vis Spectromer Perkin Elmer, Waltham, MA, USA 

Perkin Elmer LS55 fluorescence 
spectrophotometer 

Perkin Elmer, Waltham, MA, USA 

Zetasizer Nano-S  Malvern Instruments Ltd, Malvern, United 
Kingdom 

Mini-PROTEAN gel electrophoresis 
system 

Bio-Rad, Hercules, CA, USA 

PowerPac Basic power supply Bio-Rad, Hercules, CA, USA 

NanoDropTM ND-1000 UV/VIS 
Spectrophotometer 

Thermo Fisher Scientific, Wilmington, DE, 
USA 

Kodak Gel Logic 200 Imaging System Eastman Kodak Company, 
Rochester, NY , USA  

Hitachi HPLC system: Hitachi L-7200 
autosampler and L-7100 pump with a 
Hitachi L-7400 UV detector 

Hitachi, Peoria, IL, USA 

Waters HPLC system: Waters 600E 
controller and Waters Autosampler 700 
Satellite WISP with a Waters 486 
Absorbance Detector 

Waters, Eschborn, Germany 

Waters AllianceTM HPLC-System: Waters 
e2695 XC Separations Modul with a 
Waters 2998 Photodiode Array Detector 
and EmpowerTM 2 Software 

Waters, Eschborn, Germany 

Esquire LC with Atmospheric Pressure 
Chemical Ionisation Bruker Daltonics, Bremen, Germany 

HP Series 1100 Binary Pump G1312A 
with HP 1100 VWD UV/VIS Detektor  Hewlett Packard, Waldbronn, Germany 
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Water bath GFL 1087 Gesellschaft für Labortechnik, Burgwedel, 
Germany 

pH Meter inoLab pH level1 Wissenschaftlich-Technische Werkstätten 
GmbH, Wetheim, Germany 

Corning 440 pH Meter Corning, Electrochemistry Products, 
Woburn, MA, USA 

Ultrasonic bath, Sonorex, Super RK 
510H 

Bandelin, Berlin, Germany 

Vortex VF2 Janke & Kunkel GmbH &Co KG, Staufen, 
Germany 

Balance MC1, Laboratori LC 620S Satorius, Göttingen, Germany 

Balance MC1, Research RC 210P Satorius, Göttingen, Germany 

MicroPulser Elektroporator  Bio-Rad, Hercules, CA, USA 

Gene Amp PCR 9700 system  Perkin Elmer, Waltham, MA, USA 

DNA Engine Peltier Thermal Cycler  Bio-Rad, Hercules, CA, USA 

Pipettes Reference Eppendorf Eppendorf AG, Hamburg, Germany 

RAININ Classic Pipettes Rainin Instrument LLC, Oakland, CA, 
USA 

Polystyrene (PS) Cuvettes; 1.5–3.0; 
Semi-Micro 

VWR International, West Chester, PA, 
USA 

Cryschem Plate, HR3-160 Hampton Research Corp., Aliso Viejo, 
CA, USA 

96-well flat-bottom UV-Star microplates Greigner Bio-One, Frickenhausen, 
Germany 

OptiPlate-96 (white) 96-well flat-bottom 
microplates  

Perkin Elmer, Waltham, MA, USA 
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