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Abstract

This thesis focusses on econometric applications requiring multi-

variate numerical integration. Models that attempt to capture real-

world complexities are typically nonlinear and display many unobserv-

able factors. These characteristics imply that the likelihood function

of these models contain high-dimensional integrals that often cannot

be solved analytically, and thus have to be approximated numerically.

Importance Sampling is a Monte Carlo simulation method often used

to solve high-dimensional integration. In the present work, the Effi-

cient Importance Sampling method developed by Richard and Zhang

(2007) was used to overcome the problem of finding good multivariate

importance samplers for the integrand of likelihood functions from dif-

ferent models. It was shown how importance sampling can be used to

efficiently solve high dimensional integration problems in econometric

problems involving panel data, and time series.
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Chapter 1

Introduction

Economic and econometric models that attempt to better capture the complexi-

ties inherent to real-world economic behavior often cannot be solved analytically

using algebra and calculus.

Models that lack closed-form solution are not unique to economics, and since

the introduction of digital computers, scientists from different fields have been

taking advantage of numerical methods to approximate solutions to their ana-

lytically intractable models. The progress in computing capabilities has been

generating, and will continue to generate, tremendous new opportunities to both

economics and econometrics.

In the case of economics, the power of modern computing makes it possible to

analyze and solve an increasingly large collection of far more complex and realistic

models. Model economies enriched with uncertainty and dynamics typically give

rise to functional equations in which the unknowns are not anymore a set of points

in the Euclidean space, but rather a function defined on a continuum of points.

This is the case in Dynamic Stochastic General Equilibrium (DSGE) models,

where the Bellman and Euler equations characterizing the optimal path of the

economy are functional equations, as well as the conditions describing rational

expectation and arbitrage pricing market equilibria. Only in very limited special

cases, these functional equations allow a closed-form solution, implying that most

models have to be solved numerically. Blanchard and Kahn (1980) developed an

algorithm that allows the solution of linear approximations to DSGE models.

Nevertheless, many economic models are not suitable to linear approximations,

demanding significant computational work. Given the recent advances, it is now
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1. INTRODUCTION

possible to solve DSGE models using nonlinear methods based on sophisticated

extensions of interpolation procedures (see Aruoba et al., 2006, or the Appendix

to Chapter 4).

Standard DSGE models are based on strong assumptions about the agents’

ability to analyze, collect, and process information in order to make forecasts

about economic variables. The development of the digital computer allowed

the use Monte Carlo (hereafter also referred to as MC) simulation methods to

approximate the solution of intractable models. These methods have been used

in economics to analyze complex economies populated by heterogeneous agents

with different beliefs, and consequently different behaviors (see Axtell, 2000).

In econometrics, massive improvements in data storage capacity and access

to technology have opened up new classes of data sets that could be analyzed

(see Hamilton, 2006). These includes high-frequency data, from both tick-by-tick

transactions in financial markets as well as from from retail scanners that keep

track of all retail purchases, and large panel data containing many parallel time

series as the one used in Chapter 3.

The availability of powerful and cheap computers generated not only improve-

ments in storage capacity, but also allowed researchers to move from estimation

methods that could be evaluated analytically, to methods that could be numer-

ically computed, and finally to estimation methods based on approximations

computed via Monte Carlo simulations.

More specifically, Gourieroux and Monfort (2002) distinguish three stages in

the evolution of econometrics. The first one was dominated by linear models and

the least squares approach, which lead to estimators with analytical form.

The second period started with the introduction of numerical optimization

algorithms in the 1970s, which allowed to obtain estimates and their estimated

precision without knowing the analytical expression of the estimators. This is

the period of the Maximum Likelihood (ML) approach, and of the Generalized

Method of Moments (GMM), which are methods based on the optimization of a

nonquadratic criterion function that has closed-form expression.

Nowadays, econometricians are able to deal with problems where the crite-

rion function to be optimized does not have a tractable expression, and must be

approximated. Typically the criterion functions have no closed-form solution be-

cause they contain high dimensional integrals that cannot be solved analytically.
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A common example of this kind of problem is the estimation of dynamic latent

variable (DLV) models, which uses variables that are not directly observable to

model complex phenomena in a flexible way. Latent variables are recognized to

be major components of the behavior of economic agents (McFadden, 1989), and

are inherently dynamic for models including intertemporal optimization, rational

expectations, error correction mechanisms, and state dependence. Some examples

within this class are state-space models, unobserved components models, models

with varying coefficients, limited dependent variables and truncated regression

models, and switching regime models.

Inference in DLV models may be difficult because of multidimensional in-

tegrals over latent factors appearing in the probability density function of the

observable variables. Without the density of the observables, analytic moments

cannot be computed, complicating maximum likelihood, and moment-based esti-

mation methods (Creel, 2008). In some particular cases such as linear state-space

and Markov-switching models, these integrals can be solved analytically (see, e.g.

Kalman, 1960 and Hamilton, 1989). In other cases, numerical methods can be

used to evaluate the criterion function (see Kitagawa, 1987), or the objective

function can be computed from approximated models as in Harvey et al. (1994).

However, in cases such as discrete choice models (see Liesenfeld and Richard,

2008b), some stochastic volatility models (see Liesenfeld and Richard, 2003), non-

Markovian switching regime models (see Billio and Monfort, 1998), or nonlinear

DSGE models (see Fernandez-Villaverde and Rubio-Ramirez, 2005), multidimen-

sional integrals in the density of the observable cannot be computed analytically.

Digital computers allow the estimation of these otherwise intractable models via

the approximation of large dimensional integrals using MC simulations.

Metropolis and Ulam (1949) define the Monte Carlo method as a technique

to approximate the solution to an analytical intractable problem by replacing it

with a probabilistic one with the same solution, and solving the later problem

using statistical sampling. According to Stern (1997), the generic MC integration

problem is

I =

∫
Rn
g(x) · f(x) dx, (1.1)

where x is a vector of random variable of dimension n with probability density

function f(x), and g(x) is a general function. Note that equation (1.1) can be

15



1. INTRODUCTION

interpreted as the following expectation

I = Ef [g(x)], (1.2)

where Ef denotes expectation with respect to the density function f(x). If it is

possible to draw random variables {xi}Ni=1 from f(x), the probabilistic problem

in (1.2) can be approximated by statistical sampling (1.2) as an average

I ≈ 1

N

N∑
i=1

g(xi), (1.3)

which, under certain conditions (see Geweke, 1989a), will converge to the true

value of the integral in (1.1) with rapidity N−
1
2 .

The possibility to approximate high dimensional integrals as in (1.1) is what

gave rise to the “simulation revolution in Bayesian econometric inference” de-

scribed by van Dijk (1999). The engineering breakthroughs in computer tech-

nology allowed the developments of algorithms that made possible to simulate

draws from a posterior density without knowing its integrating constant, and let

Bayesian statistics and econometrics flourish.

Simulation-based estimation allowed the statistical analysis of a much broader

class of problems, and various simulation-based inference methods were developed

and applied to DLV models. The simulated EM method was used e.g., by Shep-

hard (1993) to estimate stochastic volatility models, simulated pseudo-maximum

likelihood methods have been applied to disequilibrium models by Laroque and

Salanie (1993), Albert and Chib (1993) developed Bayesian methods based on

data augmentation principles to estimate DLV models. The indirect inference

method proposed by Gourieroux et al. (1993), and the method of simulated mo-

ments (see Duffie and Singleton, 1993) have also been used to estimate DLV

models.

Billio and Monfort (1998) used simulated likelihood techniques based on Im-

portance Sampling methods to estimate non-Markovian switching regimes mod-

els. Liesenfeld and Richard (2008b) and Liesenfeld and Richard (2003) used Effi-

cient Importance Sampling to estimate nonlinear panel data models with latent

factors, and stochastic volatility models.

Since Hammersley and Handscomb (1964), and Kloek and van Dijk (1978),

Importance Sampling (IS) has become an important simulation tool. IS provides
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a very elegant solution when it is hard to draw random variables from the density

f(x) in (1.1). The main idea is instead to draw samples from an auxiliary density

m(x), often called importance sampler, and to weight them to account for the

differences between m(x) and f(x):

I =

∫
Rn
g(x) · f(x)

m(x)
·m(x) dx,

I ≈ 1

N

N∑
i=1

g(xi) · w(xi), (1.4)

where

w(xi) =
f(x)

m(x)
,

are the importance weights, and {xi}Ni=1 are now drawn from the importance

sampler m(x).

Besides providing a way to use MC simulation to solve problems where it

is hard to sample from f(x), IS can also be used to achieve variance reduction

(Robert and Casella, 2005). Note that the MC method used in (1.1) samples

from f(x) and completely disregard its interaction with g(x). This can be highly

inefficient when large values of g are concentrated in a relative small part of the

domain of f . However, the importance sampler m(x) can be tailored in such a

way that it concentrates the distribution of the sample points {xi}Ni=1 in parts of

the region of integration where the integrand g(x) · f(x) in (1.1) has large values,

instead of sampling xi from f irrespectively of g. Sampling more often from the

important parts of the target integrand can drastically reduce the MC sampling

variance of the approximations.

van Dijk (1999) argues that because of the difficulty in finding mechanical

multivariate importance samplers, importance sampling did not experience the

same success of Markov Chain Monte Carlo (MCMC) methods. MCMC methods

are algorithms for sampling from probability distributions based on a Markov

chain that has the desired distribution as its stationary probability distribution,

and most of these algorithms rely upon Gibbs Sampling and Metropolis-Hastings

(MH) to construct the desired chain (see Chib, 2001). Gibbs procedures are based

on the fact that conditional on some parameters one is often able to determine the

functional form of the posterior in such a way that it is possible to draw from the
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1. INTRODUCTION

conditional posterior distribution. The Metropolis-Hastings algorithm rests on

the idea that although it is not possible to draw from the posterior, there is usually

a dominating function of it from which it is easy to generate random drawings,

and thus MH has some similarities with IS (see Liesenfeld and Richard, 2008a).

However, van Dijk (1999) warns that naive use of MCMC methods often leads to

misleading results. More specifically, mechanical construction of Markov chains

using Gibbs and/or MH algorithms is possible even without knowing anything

about the shape of the posterior distribution. Nevertheless, van Dijk (1999)

shows that without a careful study of the shape of the posterior surface one

cannot assure that the convergence conditions stated, e.g. in Geweke (1999), are

satisfied.

Efficient Importance Sampling (EIS) is a method developed by Richard and

Zhang (2007) to overcome the problem of finding mechanical multivariate impor-

tance samplers, and can be used to efficiently solve high dimensional integration

problems appearing in the estimation of different dynamic latent variable models.

The EIS method is a generic algorithm to construct efficient importance samplers

searching within a class of parametric densities for the importance sampler deliv-

ering the best approximation to the target integrand g(x) · f(x). The procedure

is based on a recursive sequence of auxiliary least squares regressions, which are

designed to estimate the parameters of the importance sampling density inside

the chosen parametric class that better approximate the integrand, minimizing

the Monte Carlo variance of the integral approximation. As the EIS regressions

cover the full support of the integrand, EIS samplers can be seen as global ap-

proximations to the target integrand, providing huge efficiency gains in terms of

variance reduction.

Additionally, when the chosen class of parametric densities belong to the

exponential family, the EIS regressions can be set in such a way that they are

linear in the parameters of interest. Therefore, a sequence of standard Ordinary

Least Squares (OLS) regressions can be used in the search for the parametrization

of the importance sampler that better approximates the target integrand. This

simplifies considerably the whole procedure, speeding up computations.

Liesenfeld and Richard (2008a) note that the sampling properties of both

importance sampling and MCMC methods depend upon the adequacy of an

auxiliary sampler as an approximation to a density kernel which needs to be
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1.1 Outline

numerically integrated. Particularly, they argue that the problem of infinite vari-

ance often raised in importance sampling applications also applies to Metropolis-

Hastings procedures. Given the similarities between the two approaches, Liesen-

feld and Richard (2008a) show that EIS is able to facilitate the design, as well as

to improve the sampling properties of proposal densities used in MCMC methods.

This work uses EIS to efficiently solve high dimensional integration prob-

lems appearing in the estimation of different dynamic latent variable models.

Chapter 2 presents deterministic and Monte Carlo integration methods that are

used throughout the thesis to approximate the solution of integrals like the one

in (1.1). In Chapter 3, efficient high-dimensional integration problems arising

in the likelihood evaluation of nonlinear panel data models with different kinds

of unobserved components are solved in order to analyze the determinants and

dynamics of current account reversals. Chapter 4 develops the EIS filter, a se-

quential Monte Carlo filter for applications involving nonlinear and non-Gaussian

state space models. The filter is used to perform likelihood evaluation in nonlin-

ear DSGE models. The Appendix to Chapter 4 presents comparisons of different

nonlinear solution methods to DSGE models.

1.1 Outline

Deterministic methods of numerical integration use ideas from interpolation the-

ory to approximate the target integrand using polynomials, and integrate them

analytically. The exact solution to the polynomial integration is then used to

approximate the unknown integral (see Davis and Rabinowitz, 1984).

Interpolation of univariate functions is usually easy and very accurate, and

deterministic methods of integration inherit this characteristic. However, the

extension to multivariate functions is problematic given the complexity of mul-

tidimensional spaces, implying that the number of nodes required to interpolate

the integrand increases very fast with the dimensionality of the problem (see

Stroud, 1971). This characterizes the curse of dimensionality, and is one of the

main drawbacks of deterministic integration methods.

Monte Carlo integration methods have convergence rate of N−
1
2 , which is not

very fast when compared to deterministic univariate integration methods that can

have rate of convergence of e−cN , where c is a constant and N is the number of
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1. INTRODUCTION

interpolation nodes. However, different from deterministic quadrature methods,

the speed of convergence of MC methods does not depend on dimensionality of

the integration problem at hand (Fishman, 1996). This is one of the main reasons

why MC methods are so popular in solving multidimensional integrals.

In the present work, univariate integration problems will be typically approx-

imated via deterministic quadrature rules, while multivariate problems will be

approximated using Monte Carlo integration methods.

In Chapter 3, which was co-authored with Roman Liesenfeld and Jean-François

Richard, the determinants and dynamics of current account reversals for a panel

of developing and emerging countries will be analyzed controlling for alternative

sources of persistence.

Likelihood evaluation of nonlinear panel data models with unobserved het-

erogeneity and dynamic error components is complicated by the fact that the

computation of the event probabilities requires high-dimensional interdependent

integration over these latent variables. The dimension of such integrals is typ-

ically given by the number of time periods (T ), or if one allows for interaction

between individual and time specific random effects by T + N , where N is the

number of units in the panel. Thus likelihood estimation of such models typically

relies upon Monte Carlo integration techniques.

Heckman (1981) argues that there are two distinct possible sources of serial

dependence which ought to be taken into account when analyzing discrete variable

panel data model: state dependence and unobserved heterogeneity across units.

In the context of current account reversals, state dependence would reflect the

possibility that past reversals could affect the probability of another reversal,

and unobserved heterogeneity would reflect differences in institutional, political

or relevant economic factors across countries which cannot be controlled for.

Therefore, the starting point is a panel probit model with state dependence and

random heterogeneity that requires only univariate integration, and the approach

of Butler and Moffitt (1982) is used to estimate the model using deterministic

integration methods.

However, as argued, e.g., by Hyslop (1999), serial dependence could also be

transitory resulting from autocorrelated country specific errors reflecting the ef-

fects of omitted serially correlated macroeconomic factors or serially correlated
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1.1 Outline

country-specific shocks like regional conflicts, uncertainty about government tran-

sition, and political changes. To analyze the robustness of the initial panel probit

model with state dependence and random heterogeneity, a model allowing for

correlated idiosyncratic error components is estimated.

Likelihood evaluation of panel probit models with unobserved heterogeneity

and autocorrelated error components requires approximating integrals with di-

mension given by the number of time periods (T ). As quadrature methods may

become infeasible for realistic values of T , various MC procedures have been pro-

posed for the evaluation of such high-dimensional integrals. The most popular

among those is the importance sampling procedure known as GHK (see, eg.,

Geweke and Keane, 2001) which has been applied to the estimation of dynamic

panel probit models, e.g., by Falcetti and Tudela (2006). In Chapter 3, EIS is

going to be used to improve upon the GHK importance sampler with remarkable

success in reducing numerical errors associated with likelihood approximations.

Serially correlated time random effects is an interesting extension in trying to

account for possible dynamic spillover effects of current account crises, or global

shocks such as oil or commodity price shocks. In particular, following the finan-

cial turbulences of the 1990s, which rapidly spread across emerging countries, it

is recognized that spillover effects are important. A crisis in one economy can

also affect the fundamentals of other countries through trade links and currency

devaluations. Trading partners of a country in which a financial crisis has induced

a sharp currency depreciation could experience a deterioration of their trade bal-

ance and current account resulting from a decline in exports and an increase

in imports. In the words of the former Managing Director of the IMF: “from

the viewpoint of the international system, the devaluations in Asia will lead to

large current account surpluses in those countries, damaging the competitive po-

sition of other countries and requiring them to run current account deficit”Fisher

(1998). When country specific and time random effects are allowed to interact,

the likelihood function requires the approximation of T + N dimensional inte-

grals. EIS is used to efficiently solve these high-dimensional integrals taking into

account the a posteriori dependence between the two random effects.

Chapter 4, which was co-authored with David DeJong, Dharmarajan Hariha-

ran, Roman Liesenfeld, and Jean-François Richard, is concerned with likelihood

evaluation and filtering in nonlinear state-space models. Filtering is important
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1. INTRODUCTION

in the time series analysis of state-space models not only as a means to infer the

state of the system, but also as a means to compute the likelihood function and

to estimate the parameters of these models. Likelihood evaluation and filtering

in applications involving state-space models require the calculation of integrals

over unobservable state variables in order to compute unknown densities in the

filtering process (see Kitagawa, 1987). When models are linear and stochastic

processes are Gaussian, required integrals can be calculated analytically via the

Kalman filter, and all unknown densities have close-form expression. Departures

entail integrals that must be approximated numerically, either via deterministic

quadrature methods or via MC integration. Since deterministic methods become

unfeasible when the number of states is large, sequential Monte Carlo methods

like the standard particle filter have become the standard tool in nonlinear filter-

ing (see Doucet et al., 2001).

Sargent (1989) demonstrated the mapping of DSGE models into a state-space

representations, and showed how to perform likelihood-based analysis using a

linear approximation to the original model using the Kalman filter. Likelihood-

based inference in nonlinear DSGE models has been implemented in the literature

using the particle filter, eg., by Fernandez-Villaverde and Rubio-Ramirez (2005,

2007), An and Schorfheide (2007), and Amisano and Tristani (2007). Although

conceptually simple, the particle filter uses discrete approximation to unknown

densities in the filtering process, which translates into spurious likelihood dis-

continuities. Moreover, the support upon which particle filter’s density approx-

imations are based is not adapted, generating sample impoverishment when the

observable variables at t are very informative with respect to the states.

In order to overcome the problems of the particle filter, an efficient filtering

procedure for nonlinear state space models based on continuous and fully adapted

importance samplers constructed via EIS is presented in Chapter 4. The EIS filter

is able to precisely determine the importance region of the target densities, im-

plying huge time and efficiency gains, and allowing reliable likelihood evaluation

of nonlinear state space models.

The shortcomings of the particle filter and their effects on the numerical accu-

racy of likelihood evaluations, as well as the ability of the EIS filter to overcome

them are illustrated in Chapter 4 with Monte Carlo experiments based on a two-

state Real Business Cycle (RBC) model, and on a six-state Small Open Economy
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1.1 Outline

(SOE) model. Two data sets for each models are analyzed: an artificial data set

generated from a known model parameterization; and a corresponding real data

set.

The RBC model used is the one constructed and estimated using the particle

filter by Fernandez-Villaverde and Rubio-Ramirez (2005). Both data sets used

were the same as in Fernandez-Villaverde and Rubio-Ramirez (2005), and each

of them poses a distinct challenge to efficient filtering. In the artificial data set,

the standard deviations of the measurement errors are small relative to shocks

to the unobserved states, which can lead to problems associated with sample

impoverishment. In the real data set, the investment series contains two outliers.

Outliers can induce bias in likelihood estimates associated with the particle filter.

The small-open-economy (SOE) model was patterned after those considered,

e.g., by Mendoza (1991) and Schmitt-Grohe and Uribe (2003), but extended to

include six state variables to show that the EIS filter does not suffer badly from

the curse of dimensionality. In this application neither data set contains an out-

lier observation, nor standard deviations of measurement errors are small. As

opposed to the applications involving the RBC model, variances of measurement

errors are closely comparable across data sets. Instead, differences stem primarily

from differences in the volatility and persistence of the model’s structural shocks.

In particular, with the model parameterization associated with the artificial data

set calibrated to annual data, structural shocks are far less persistent, and gener-

ally more volatile than in the parameterization associated with the real data set

estimated using quarterly observations. The upshot is that in working with the

actual data, the state variables are relatively easy to track, and in general the

construction of likelihood approximations is less problematic.

Before one turns to the likelihood evaluation of nonlinear DSGE models, it

is necessary to decide upon a solution method that will be used to obtain the

nonlinear approximations to the policy functions used in the computation of the

likelihood. Aruoba et al. (2006) provide some guidance on this choice in the

context of an RBC model, but because relative performance of different solution

methods are model dependent, the Appendix to Chapter 4 compares different

nonlinear solution methods using the stochastic growth model from Taylor and

Uhlig (1990).
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1. INTRODUCTION

If the solution method chosen is based on local approximations around the

non-stochastic steady state, the computation of agent’s expectations about the

future values of the model variables is avoided. However, expectations must be

computed numerically if the interest is on global approximations to the policy

functions. Furthermore, some nonlinear methods construct approximations to

the policy functions requiring that the approximation error is zero on a weighted

integral sense, requiring again numerical solution of integrals. Since these inte-

grals are of low dimensions in the case of the stochastic growth model, different

deterministic quadrature rules are used to approximate them.
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Chapter 2

Numerical Integration

In economic and econometric applications, one is often interested in the solution

to an integral of a real-valued function g with respect to a positive weight function

f over D ⊆ Rn

I =

∫
D

g(x) · f(x) dx, (2.1)

where
∫
D
f(x) dx = 1. In some cases, the weight function f is the identity f(x) ≡

1, ∀ x ∈ D, in which case the integral in (2.1) would represents the area under the

function g. When f(x) is the probability density function (pdf) of a continuous

random variable x with support D, (2.1) represents the expectation of g(x).

Numerical integration methods may be used to approximate the solution to

(2.1), because either the antiderivative of g(x) might not possess an analytical

solution, or because g(x) is only known at certain points, or even because it may

be easier to approximate (2.1) numerically than to solve it analytically. Integrals

like the one in (2.1) are often approximated as a weighted sum of function values:∫
D

g(x) · f(x) dx ≈
n∑
i=0

wi · g(xi), (2.2)

where wi are the weights, and xi are the abscissa points.

This chapter presents deterministic and Monte Carlo (stochastic) methods to

approximate integrals as in (2.2). The main goals are to review some concepts

and methods, define the notation and the terminology that will be used in the

coming chapters, and to describe the advantages and disadvantages of the differ-

ent approaches. Deterministic methods of integration yield precise results with
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2. NUMERICAL INTEGRATION

relative few integrand evaluations in one dimension, but their computational bur-

den grow exponentially with the dimension of integration, what is often referred

to as the curse of dimensionality after Bellman (1961). Monte Carlo methods on

the other hand have slower convergence rates in one dimension, but these rates

are independent of the dimension of the problem at hand, which make them more

suitable for multidimensional integration.

A more complete discussion of deterministic methods of integration can be

found in Davis and Rabinowitz (1984), whereas Stroud and Secrest (1966) focus

on Gaussian quadrature methods, and Stroud (1971) on deterministic methods

for the approximate calculation of multiple integrals. A classical presentation of

Monte Carlo methods is Hammersley and Handscomb (1964), while an up to date

throughout presentation can be found on Fishman (1996). Robert and Casella

(2005) present many Monte Carlo based statistical methods that are important

in statistics and econometrics.

2.1 Deterministic Methods of Integration

The study of deterministic methods of numerical integration dates from antiquity,

when Archimedes used regular polygons to find an upper and a lower bound for

π, and continued to be an active area of research over the centuries, with names

like Kepler, Newton, Euler, Gauss and other contributing to the field (see Davis

and Rabinowitz, 1984).

Deterministic quadrature methods use ideas from mathematical interpolation

theory to evaluate the integrand at a finite number of points, use this informa-

tion to construct a polynomial approximation to it, integrate this approximation

exactly, and uses it to approximate (2.1). Therefore, it may be interesting to

review some concepts of polynomial interpolation theory that are important to

understand these methods.

Davis (1963) regards polynomial interpolation as a variation on two theorems:

the interpolation theorem, and Weierstrass’ approximation theorem. Let Pn be

the class of polynomials of degree ≤ n, C l[a, b] be the class of all functions

with continuous lth derivative on [a, b], and C∞[a, b] the class of all continuous

functions on [a, b],
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2.1 Deterministic Methods of Integration

Theorem 2.1.1 Given n + 1 distinct points x0, x1, . . . , xn and n + 1 values

g0, g1, . . . , gn. There exists a unique polynomial Pn(x) ∈Pn for which

Pn(xi) = gi, i = 0, 1, . . . , n. (2.3)

and

Pn(x) = g0 · Ln,0(x) + g1 · Ln,1(x) + . . .+ gn · Ln,n(x) (2.4)

where

Ln,k(x) =
n∏

i = 0

i 6= k

(x− xi)
(xk − xi)

. (2.5)

Pn is called the nth Lagrange interpolating polynomial.

The Lagrange interpolating polynomial is not the only representation possible

of a nth polynomial, but as there exists only a unique polynomial satisfying (2.3),

all other representations of Pn can always be written in the form of (2.5) 1.

Theorem 2.1.1 states that it is possible to fit a n degree polynomial to n+ 1

points, which means that a straight line is determined by two points, a parabola

by three, a cubic by four, and so on. Although simple, much of numerical analysis

rests upon this theorem. It suggests that polynomials might be a good choice

to approximate unknown functions, whose values at some arbitrary points are

known. The other important theorem of mathematical interpolation theory shows

that this conjecture is right at least for continuous functions.

Theorem 2.1.2 (Weierstrass) Let g(x) ∈ C∞[a, b]. Given an ε > 0 it is possible

to find a polynomial Pn(x) of sufficiently high degree for which

‖g − Pn‖∞ ≡ sup
x∈[a,b]

|g(x)− Pn(x)| ≤ ε, a ≤ x ≤ b. (2.6)

Weierstrass’ theorem asserts the possibility of approximating any continuous

real-valued function g defined on a bounded interval of the real line to any degree

of accuracy using a polynomial, which provides a strong motivation for using

1According to Acton (1997) “Lagrange polynomials are praised for its analytic utility and
beauty, but deplored for its numerical properties”.
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2. NUMERICAL INTEGRATION

polynomials to approximate this kind of functions, but does not say anything

about how to construct a good polynomial approximant 2.

Different polynomial approximant is exactly what differentiates the many de-

terministic quadrature rules, and determines their degree of precision. It is usu-

ally said that a formula has degree m if it is exact whenever g(x) is a polynomial

of degree ≤ m, and is not exact for at least one polynomial of degree > m.

It is important to note that deterministic quadrature methods approximate

integrands using polynomials, which are intimately related to continuous func-

tions through theorem 2.1.2. Therefore, the quality of the integral approximation

resulting from these methods depends on the degree of smoothness of the tar-

get integrand, where smoothness is related to continuity, number of continuous

derivatives and their magnitude, so that a function belonging to C l[a, b] is said

to have lth order smoothness.

The smoother the function, the closer the approximation, and the faster the

convergence of a sequence of approximations. More specifically, a sequence of

deterministic quadrature rules of degree m will converge to the true value of the

integrand with rapidity at least N−k, where k = min(l,m + 1), and N is the

number of function evaluations, which implies that specifying m ≥ l − 1 allows

the error to go to zero about as fast as N−l.

2.1.1 Univariate Quadrature Methods

This subsection presents univariate deterministic methods of integration. The

theory of numerical integration for functions of one variable is much better

developed than the one for multivariate functions, the reason being that one-

dimensional spaces are much simpler geometrically. Furthermore, multivariate

rules are often based on tensor product extensions of univariate rules, so it might

be interesting to focus on univariate rules. In section 2.1.2 generalizations to

multivariate case will be discussed.

2See Davis (1963) for proofs of theorems 2.1.1, and 2.1.2.
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2.1 Deterministic Methods of Integration

Using theorems 2.1.1 and 2.1.2 we can rewrite (2.2) for the univariate case as∫ b

a

g(x)f(x) dx ≈
∫ b

a

Pn(x)f(x) dx,

≈
∫ b

a

n∑
i=0

g(xi)f(x)Ln,i(x) dx,

≈
n∑
i=0

[∫ b

a

Ln,i(x)f(x) dx

]
g(xi),

≈
n∑
i=0

wig(xi), (2.7)

where

wi =

∫ b

a

Ln,i(x)f(x) dx, (2.8)

which shows how the quadrature weights are computed, and how they depend on

the weight function f(x).

2.1.1.1 Newton-Cotes quadratures

The classical and still useful Newton-Cotes method of numerical integration was

developed in the beginning of the eighteenth century independently by Isaac

Newton and Roger Cotes (see Chabert, 1999). They are designed based on

piecewise-polynomial approximations to the integrand of (2.1), and the weight

used is f(x) ≡ 1. Examples of Newton-Cotes quadratures are the midpoint rule,

trapezoid rule, Simpson’s rule, and Bode’s rule. Here only Simpson’s rule will be

presented because of its wide spread use in obtaining approximate integrals. For

other types of Newton-Cotes rules see Press et al. (2007). Simpson’s rule uses a

piecewise-quadratic approximation to g(x) with three abscissa points given by:

x0 = a, x1 = 1
2
(a+ b), and x2 = b. Therefore, its weights are:

w0 =

∫ b

a

L2,0(x) dx =

∫ x2

x0

(x− x1) · (x− x2)

(x0 − x1) · (x0 − x2)
dx =

1

6
(b− a),

w1 =

∫ b

a

L2,1(x) dx =

∫ x2

x0

(x− x0) · (x− x2)

(x1 − x0) · (x1 − x2)
dx =

2

3
(b− a),

w2 =

∫ b

a

L2,2(x) dx =

∫ x2

x0

(x− x0) · (x− x1)

(x2 − x0) · (x2 − x1)
dx =

1

6
(b− a),
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2. NUMERICAL INTEGRATION

and the approximate integral is

Simpson’s Rule∫ b

a

g(x) dx =
b− a

6
[g(x0) + 4g (x1) + g(x2)]− (b− a)5

2880
g(4)(ξ), (2.9)

where g(4)(ξ) denotes the fourth derivative of g evaluated at ξ, and ξ ∈ [a, b].

From theorem 2.1.1 one would expect that Simpson’s rule would be exact for

polynomials of degree 2 or less as it uses 3 abscissas, but because of a cancelation

of coefficients due to the left-right symmetry of the grid points, this three-point

formula is of degree 3.

Simpson’s rule is most frequently applied as a sequence. This is the compound,

or composite form, in which the interval [a, b] is divided into equal subintervals,

and Simpson’s rule is applied to each one of them. Let a = x0 < x1 < . . . <

x2n−1 < x2n = b be a sequence of equally spaced points in [a, b], and h = xi+1−xi
for i = 0, . . . , 2n− 1. Then the compound Simpson’s rule is:∫ b

a

g(x) dx =
h

3
{g(x0) + 4 [g(x1) + g(x3) + . . .+ g(x2n−1)]

+2 [g(x2) + g(x4) + . . .+ g(x2n−2)] + g(x2n)}+ En, (2.10)

where En = −nh5

90
g(4)(ξ), and ξ ∈ [a, b]. The compound Simpson’s rule can be

rewritten as in (2.2), where w1 = w2n = h
3
, and wi = 4h

3
if i is even or wi = 2h

3
if

i is odd. For functions that have four continuous derivatives, this rule converges

to the true value of the integral with a rate at worst equal to N−4, where N = 2n

is the number of subdivisions of [a, b]. This implies that ten subintervals should

be enough to secure four decimals of precision.

2.1.1.2 Gaussian quadratures

Theorem 2.1.1 asserts that it is possible to fit a n degree polynomial to n + 1

points, but because of the position of the abscissa points, Simpson’s rule was able

to do better than that, and to use 3 points to perfectly fit a polynomial of degree

3. Gaussian quadrature methods look for the highest degree formula that can

be obtained with n points. They use (2.2) to approximate integrals, but unlike

Newton-Cotes rules, not only the weights wi are carefully chosen, but also the

abscissa points xi, which provides twice the number of degrees of freedom. It
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2.1 Deterministic Methods of Integration

turns out that it is possible to construct Gaussian quadrature formulas whose

order is twice that of Newton-Cotes rules with the same number of function

evaluations. All Gaussian quadratures are based on the following theorem

Theorem 2.1.3 Let Pn(x) be an orthogonal polynomial of degree n, such that:∫ b

a

Pn(x) · f(x) · xk dx = 0, (2.11)

where k is an integer on [0, n− 1], and f(x) is a weight function. Let {xi}ni=1 be

the n roots of Pn(x), then it is possible to find {wi}ni=1 such that∫ b

a

g(x) · f(x) dx ≈
n∑
i=1

wi · g(xi), (2.12)

and (2.12) holds with equality if g(x) ∈P2n−1.

The basic interpolation theorem 2.1.1 says that it is always possible to fit a

n degree polynomial to a set of n + 1 points, but theorem 2.1.3 treats {xi}ni=1

and {wi}ni=1 as 2n unknowns, and craftily chooses them so that it is possible to

use a n-degree polynomial to perfectly fit polynomials of the class P2n−1. This

result is intimately related to the orthogonal polynomials generated by the weight

function f(x), and Gaussian rules will differ from one another in the way f(x)

and the applicable orthogonal polynomial are defined3.

The weights of Gaussian quadratures are chosen so as to satisfy the following

2n moment-matching conditions:∫ b

a

xk · f(x) dx =
n∑
i=1

wi · xki , k = 0, . . . , 2n− 1. (2.13)

Gaussian formulas are very accurate in practice if the integrand is analytic

in the interval of integration, and the error can be shown to go to zero with

rapidity e−cn for some constant c (see Haber, 1970). Here only two elements of

the class of Gaussian quadratures that are going to be used in later chapters

will be presented, for a more complete discussion of different Gaussian rules see

Stroud and Secrest (1966), Davis and Rabinowitz (1984), and Press et al. (2007).

Gauss-Legendre quadrature is a special case of Gaussian quadratures where

the weight function is the identity f(x) ≡ 1, and thus it is suitable for computing

the area under a curve.
3See Stroud and Secrest (1966) for a proof of Theorem 2.1.3
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Gauss-Legendre Quadrature∫ 1

−1

g(x) dx =
n∑
i=1

wi · g(xi) +
22n+1(n!)4

(2n+ 1)!(2n)!
· f

(2n)(ξ)

(2n)!
, (2.14)

where −1 ≤ ξ ≤ 1, the abscissas {xi}ni=1 are the zeros of the nth order Legendre

polynomial, and the weights are given by

wi =

∫ 1

−1

n∏
i = 0

i 6= j

(x− xi)
(xj − xi)

. (2.15)

Equation (2.14) is defined over the interval [−1, 1], but a simple linear change of

variables enable its use for general integrals∫ b

a

g(x) dx ≈ b− a
2

n∑
i=1

wi · g
(

(b− a)zi + b+ a

2

)
. (2.16)

Press et al. (2007) and Mirana and Fackler (2002) provide routines to com-

pute the weights and abscissas for Gauss-Legendre quadrature, while Stroud and

Secrest (1966) and Judd (1998) present tables with weights and abscissas for

different values of n.

Gaussian quadratures are normally of rapid convergence, and the Gauss-

Legendre rule inherits this property with the error being bounded above by

π4−nM , where

M = sup
m

[
max
−1≤x≤1

g(m)(x)

m!

]
,

which means that when M is finite, as for analytic functions, Gauss-Legendre

quadrature converges exponentially as n increases (see Judd, 1998). This implies

that Gauss-Legendre quadrature converges much faster, and thus are much better

than Newton-Cotes formulas when g ∈ C∞.

Another very important quadrature rule of the Gauss-type is the Gauss-

Hermite quadrature. It is based on a weight function given by e−x
2
, and is a

natural choice to be used in connection with normal random variables.

Gauss-Hermite Quadrature∫
R
g(x) · e−x2

dx =
n∑
i=1

wi · g(xi) +
n!
√
π

2n
· f

(2n)(ξ)

(2n)!
, (2.17)
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2.1 Deterministic Methods of Integration

where ξ ∈ R.

The following identity is useful in applying the Gauss-Hermite formula to

compute e.g., expectations of functions of a normal random variable x ∼ N(µ, σ2)∫
R
g(x)e−

(x−µ)2

2σ2 dx =

∫
R
g(
√

2σx+ µ)e−x
2√

2σ dx. (2.18)

Using (2.18) and a linear change of variables z = (x−µ)√
2σ

, yields

E[g(x)] =
1√
2πσ

∫
R
g(x)e−

(x−µ)2

2σ2 dx

≈ 1√
π

n∑
i=1

wig(
√

2σzi + µ), (2.19)

where the Gauss-Hermite weights {wi}ni=1 are obtained from (2.13), and the ab-

scissas {zi}ni=1 are the roots of the nth order Hermite orthogonal polynomial. Press

et al. (2007) and Mirana and Fackler (2002) also provide routines to compute the

weights and abscissas of Gauss-Hermite quadrature, while Stroud and Secrest

(1966) and Judd (1998) present tables with weights and abscissas for different

values of n.

The question of wether to use a Newton-Cotes type rule or a Gaussian rule

depends very much on the integrand being evaluated. If the integrand is not

very smooth, belonging to C l but not to C l+1, for a fairly low value of l, the use

of a composite Newton-Cotes formula of degree l will take advantage of all the

smoothness the integrand has to offer. But if the integrand is analytic or belongs

to C k, for a very high value of k, the quadrature rule should make use of all this

smoothness, and then the Gaussian formulas often give the best results.

2.1.2 Multivariate Quadrature Methods

Univariate quadrature methods are well established in the literature, but their

extension to multivariate cases are not straight forward due largely to the greater

complexity of multidimensional spaces. All finite line segments in the one-

dimensional Euclidean space E1 are equivalent under an affine transformation,

implying that formulas for a given univariate interval can be applied to any other

interval in E1. For multidimensional spaces on the other hand, there are infinitely
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2. NUMERICAL INTEGRATION

many distinct regions in En which are not equivalent under affine transforma-

tions. This means that integration rules for squares, circles, and triangles are all

different from one another.

Multivariate integrals can sometimes be written as univariate integrals when

some dimensions have analytical solutions, or after a suitable change of variables,

but that is normally not the case in economics or econometrics (see Geweke,

1996).

A common approach to extend univariate rules to the multivariate case is to

use the tensor product using the method of separation of variables. Consider the

integral ∫
· · ·
∫

Rn

w(x1, . . . , xn) · xα1
1 · xα2

2 · . . . · xαnn dx1 . . . dxn. (2.20)

If it is possible to find a possibly nonlinear transformation

x1 = x1(z1, . . . , zn)
...

xn = xn(z1, . . . , zn)

which transforms (2.20) into a product of n univariate integrals, and if suitable

formulas to approximate those single integrals are known, then these formulas can

be combined to give a formula for Rn. For n-cubes, n-spheres, and n-simplexes it

is possible to construct multivariate formulas based on the product of n univariate

integration rules (see Stroud, 1971). If the one-dimension formulas have n abscissa

and degree of precision m, the resulting product rule will usually contain nm

points and degree of precision m.4

The fact that the number of points increase very rapidly as the dimensionality

of the problem increases is maybe the most undesired property of deterministic

multidimensional integration methods. While in one dimension the error is of the

order N−l, in s dimensions this error is only of the order N−
l
s , where again N de-

notes the total number of function evaluations, and l the degree of smoothness of

the integrand. Although this gives only an upper bound on the error, Bahvalov’s

theorem states that there will be always a function g of degree of smoothness l for

which any N-point deterministic formula will have error greater than K(l)N−
l
s

4Bungartz and Dirnstorfer (2003) use sparse grids to alleviate the curse of dimensionality
in multivariate integration problems, generating multidimensional formulas with less points.
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2.2 Monte Carlo Integration

(see Haber, 1970). Which shows that deterministic numerical integration of func-

tions of several variables requires a greater calculation effort than is required for

univariate functions.

In Chapter 3, one-dimensional integrals will be approximated using determin-

istic quadratures with 20 abscissas, and similar multidimensional integrals in 72

variables using Monte Carlo methods. To integrate this kind of high-dimensional

integrals using quadrature methods based on the product rule, one would need

to evaluate the target integrand at 2072 ≈ 4.7e+93 abscissa points, making them

unfeasible for this kind of problems.

2.2 Monte Carlo Integration

The earliest use of statistical sampling to approximate integrals is believed to be

that of Comte de Buffon. In 1777 he performed an experiment in which a needle

was dropped many times onto a ruled board with equidistant parallel lines, and

showed that the probability of the needle intersecting one of the lines is 2L
πd

, where

L is the length of the needle and d > L is the distance between the two lines.

Later on, Laplace argued that this method could be used as a means of estimating

π (see Katos and Whitlock, 2008). The main drawback of the method of Comte

de Buffon is that it is rather slow, and it was not before the advent of electronic

computers that its use became widespread.

During the 1940s, Stanislaw Ulam, at that time a scientist at Los Alamos

laboratories, thought about an experiment similar to the one from Comte de

Buffon. His question was about the chances that a Canfield solitaire card game

laid out with 52 cards would come out successfully. He spent a lot of time trying

to solve this problem using combinatorial calculus, just to realize that a more

practical method would be to lay out the cards hundred times and observe the

number of successful plays. At that time, the first electronic computer - the

ENIAC - was being constructed at the University of Pennsylvania, and such an

experiment was already possible to envisage (see Eckhardt, 1987; Metropolis,

1987).

Ulam realized that this methodology could also be used to solve many prob-

lems of mathematical physics that the scientists at Los Alamos were trying to

solve. In 1946 he described these ideas to John von Neumann, and they began to
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plan calculations to solve problems of neutron diffusion using this method. The

term Monte Carlo methods is often used to describe this rebirth of statistical sam-

pling after the development of electronic computers 5. The term first appeared

in Metropolis and Ulam (1949), who described it as a method to approximate

solution of analytical intractable problems by replacing the original problem by a

probabilistic one with the same solution, and then investigating the latter using

statistical experiments 6.

When the dimensionality of the problem at hand is high, deterministic inte-

gration methods based on tensor product rules are likely to become impractical.

Monte Carlo methods on the other hand, can be used for computing integrals

accurately using a moderate number of abscissas. These methods are motivated

by the law of large numbers, and by the central limit theorem. Let {xi}Ni=1 be an

independent and identically distributed (i.i.d.) sample from a population, and

let

xN = 1
N

∑N
i=1 xi and s2

N = 1
N−1

∑N
i=1(xi − xN)2.

Given that the population has finite first moment, then E[xN ] = E[x], the strong

law of large numbers states that

xN
a.s.−−→ E[x]. (2.21)

If the population also has finite variance σ2, then the central limit theorem es-

tablishes that

√
N (xN − E[x])

d−→ N(0, σ2), (2.22)

and from the strong law of large numbers

s2
N

a.s.−−→ σ2. (2.23)

5Nicholas Metropolis suggested this name in reference to an uncle of Ulam, that would
borrow money from his relatives to go to Monte Carlo (see Metropolis, 1987)

6An interesting reference on the origins of Monte Carlo methods is the special issue of Los
Alamos Science published in memory of Stanislaw Ulam.
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2.2.1 Classical Monte Carlo Integration

The idea of Monte Carlo integration is to evaluate the integral

I = Ef [g(x)] =

∫
Rn
g(x) · f(x) dx, (2.24)

using a random sample (x1, . . . , xN) generated from the density function f to

approximate (2.24) by empirical average

IN =
N∑
i=1

g(xi), (2.25)

where, differently from the earlier methods, the approximation IN itself is a

random variable, and its primary source of error is not anymore due to numerical

round-off, but due to the fact that only a finite sample can be taken. Thus the

only assertion that can be made with certainty is that IN will lie somewhere

between the maximum and the minimum value of g, as nothing prevents all xi

to fall into a particular small subregion of Rn in a single sampling. However,

because IN is a random variable, there is the possibility to make probabilistic

statements about the accuracy of the Monte Carlo approximation IN . In fact, if∫
Rng

2(x)f(x) dx is absolutely convergent, the variance of IN is given by

var
[
IN
]

=
1

N
σ2, (2.26)

where

σ2 = var[g(x)] =

∫
Rn

[g(x)− I]2 · f(x) dx, (2.27)

and (2.26) can be estimated from the random sample (x1, . . . , xN) through

s2
N =

1

N(N − 1)

N∑
i=1

[
g(xi)− IN

]2
. (2.28)

From (2.21) it is clear that the Monte Carlo estimate in (2.25) converges almost

surely to Ef [g(x)]. Furthermore, from (2.22)

√
N(IN − I)

d−→ N(0, σ2), (2.29)
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which shows that IN − I is approximately normally distributed when N is large.

Thus the probability that |IN − I| > ε, where ε is any fixed number, can be

assessed in terms of the ratio of ε to σ, for example

Prob
(
|IN − I| > 2σN−

1
2

)
= 0.0455. (2.30)

Note from (2.29) that approximations based on Monte Carlo integration con-

verge to the true value of the integral with rapidity N−
1
2 . In comparison with

the convergence rates of univariate Gaussian quadratures this is not very rapid,

but differently from the convergence of deterministic integration methods, the

convergence of Monte Carlo methods does not depend neither on the dimen-

sionality of the problem, nor on the degree of smoothness of the integrand.

Moreover, the Monte Carlo method apply more broadly to bounded and un-

bounded functions, continuous and discontinuous functions, requiring only that∫
Rng

2(x)f(x) dx <∞.

As noted in Section 2.1.2, the existence of infinitely affine inequivalent regions

in all spaces with dimension greater than one implies the need of a different

multivariate deterministic integration formula for each of those regions, while the

formula in (2.25) may be used for any integration region with known volume.

Equation 2.28 shows another advantage of the Monte Carlo method, namely

that it is possible to estimate the error of an integral approximation via the

construction of confidence intervals around the approximation using generated

data, whereas to determine the error from deterministic methods of integration

is considerably more involved, and one has to know properties of the integrand

such as its norm, or the norm of its derivatives.

The implementation of Monte Carlo methods depends on the possibility to

generate sequences of random variables. In practice, a deterministic sequence

of pseudorandom numbers is used in place of the random one, because meth-

ods to generate random numbers from physical processes are either to slow, or

inconvenient.

Since pseudorandom numbers are generated by deterministic formulas, there

are some philosophical objections to the use of the theorems of probability theory

to these sequences of numbers, no matter how random they may seem to be (see

Judd, 1998, chap. 8). When dealing with Monte Carlo approximations obtained

using pseudorandom numbers, it is clearly not valid to use error estimates and
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confidence intervals based on the probability that a given sequence (x1, . . . , xN)

lies in a certain set. This notion is based on the assumption that the sequence

was randomly sampled from a probability space, but in the case of pseudoran-

dom numbers it is known that the sequence is often taken from a single point

of the sample space, which determines the seed of the deterministic generator.

Nevertheless, this is what is customarily done and with remarkable success.

However, it should be realized that it is meaningless to ask whether a sequence

of numbers is “truly random”, since it is impossible to prove if any particular pro-

cess or device is random, or if it just seems random in light of the investigator’s

ignorance. Furthermore, Whittle (1983) argues that probabilistic effects enter

an econometric model typically to represent a host of minor deterministic effects

which cannot be treated. Geweke (1996) makes a statement in favor of pseu-

dorandom numbers using a similar idea. He argues that the assumption about

the possibility to generate random numbers constitutes a model or idealization of

what actually occurs, and compares this with the role played by the assumption

of randomness in economic theory, or in the development of methods of statistical

inference in econometrics. Pseudorandom number generators produce sequences

of numbers that are in fact deterministic, but for which the assumption of i.i.d. is

a model. The fact that the algorithm that produce a given observed sequence of

pseudorandom numbers is known, implies that the data generating process is also

known, which allows the analytical study of the properties of that sequence. On

the other hand, real world events corresponding to the assumption of randomness

in economic models have unknown data generating processes (that might be de-

terministic), precluding such a study of their analytical properties. In this sense,

Geweke (1996) understands that the adequacy or inadequacy of the stochastic

independence as a model for the pseudorandom number sequences is at least in

a surer footing than is this assumption as a model in economic or econometric

theory.

Algorithms to generate uniform pseudorandom numbers can be found in Fish-

man (1996), Press et al. (2007), or Geweke (1989a). Most other generating meth-

ods produce samples drawn from specific distributions by transforming a sequence

of independent uniform deviates. An important reference on non-uniform ran-

dom variate generation is Devroye (1986), many algorithms can also be found in

Press et al. (2007).
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Before moving forward, it is interesting to mention the usefulness of estimating

I based on sequences of Common Random Numbers (CRN), as in many appli-

cation I depends on parameters, say θ, that have to be estimated (see Hendry,

1984). The use of different set of random numbers for the evaluation of IN(θ) at

various values of θ introduces an extra sort of variation in IN(θ) coming from the

different random variates. This extra variation would imply excessive wiggling of

IN(θ), rendering as problematic the application of numerical optimization algo-

rithms. The use of CRN makes IN(θ) a smoother function of the parameters θ,

facilitating the use of optimization procedures.

More specifically, the random numbers {xi}Ni=1 used in the evaluation of IN(θ)

for all values of θ should be obtained as a non-stochastic transformation of a

single set {ui}Ni=1 of canonical random draws, meaning that they are drawn from

a distribution which is independent of any parameter of interest, like a uniform

distribution on (0, 1), or the standard normal distribution. The application of

CRNs generates positive correlations between estimates of IN(θ) in neighboring

values of θ, which is often enough to ensure sufficient smoothness for numerical

optimization algorithms to succeed.

2.2.2 Importance Sampling

Although unbiased and straightforward, classical Monte Carlo described in the

previous subsection is not the most used MC method as its variance can be too

large. There are a variety of other more efficient techniques that are still unbi-

ased, but can achieve variance reduction. Importance Sampling is a type of Monte

Carlo method that tries to obtain variance reduction sampling {xi}Ni=1 not from

the original density f(x), but from a more suitable one. Note that the classical

MC method estimates the integral (2.24) sampling from f in a manner completely

unrelated to g, which is highly inefficient when larger values of g are concentrated

in a relative small part of the domain of integration. The objective of importance

sampling is to concentrate the distribution of the sample points in parts of the

region of integration that are more important, instead of spreading them out ir-

respectively of g. To achieve this goal, importance sampling procedures modify

the representation of the integral changing the probability measure from which

sequences are generated. Hammersley and Handscomb (1964) popularized this
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method in their influential monograph. It was brought to the attention of econo-

metricians by Kloek and van Dijk (1978) as a means to computing moments of

posterior densities, and the conditions under which importance sampling approx-

imations converge as well as the conditions under which numerical accuracy may

be assessed reliably were set forth by Geweke (1989a).

Let m(x) denote an auxiliary density function whose support contains that

of f , and for which a pseudorandom number generator is available. Another

representation of (2.24) is given by

I = Em

[
g(x) · f(x)

m(x)

]
=

∫
Rn
g(x) · f(x)

m(x)
·m(x) dx, (2.31)

where m(x) is called the importance sampling density, or importance sampler,

and f(x) may be called the natural sampler. An importance sampling estimate

of (2.31) is obtained as

I
IS

N =
1

N

N∑
i=1

w(xi) · g(xi), (2.32)

where

w(xi) =
f(xi)

m(xi)
, (2.33)

are the importance sampling weights, and xi are drawn from the auxiliary density

m(x). In contrast to an approximation based on simple average as in the classical

MC approach, importance sampling uses weighted average in its approximations,

where the weights are given by (2.33). These weights correct for differences

between the natural sampler f , and the importance sampler m; for example, if

m(x) has larger variance than f(x), there will be too many xi out in the tails of f ,

and too few around its mean, which would bias the result. Importance sampling

corrects for this fact giving less weight to oversampled regions, and more weight

to undersampled regions.

By the strong law of large numbers I
IS

N converges almost surely to the true

value of the integral in (2.31) for any choice of m whose support is a superset of

the support of f , and Em

[
I
IS

N

]
= I ∀N (see Robert and Casella, 2005).

In order to use the central limit theorem to asses the accuracy of importance

sampling approximation and to guarantee that the rate of convergence to I is
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N−
1
2 , the additional requirement that

∫
g2 f2

m
dx is absolutely convergent is neces-

sary to ensure that the variance of the importance sampling estimate is finite:

σ2
IS =

∫
g2(x) · w2(x) ·m(x) dx−

(∫
g(x) · w(x) ·m(x) dx

)2

=

∫
g2(x) · f

2(x)

m(x)
dx−

(∫
g(x) · f(x) dx

)2

=

∫
g2(x) · f

2(x)

m(x)
dx− I2, (2.34)

and hence ∫
g2(x) · f

2(x)

m(x)
dx <∞, (2.35)

is needed for the variance to be well defined. This requirement is clearly not met

when the selected importance sampler m has lighter tails than f , in which case

the importance sampling weights are going to be unbounded. Richard and Zhang

(2007) offer a diagnostic measure that is adept at detecting this problem. The

measure compares the MC sampling variances of the product w(x)g(x) under

draws from two alternative parameterizations of the importance sampler: the

selected one, and another one that inflates the variance of the chosen sampler

by a factor of 3 to 5. The idea behind this measure is to produce outliers far in

the tails of the importance sampler, exactly where the importance weights are

expected to explode, and to check their impact on the variance of the estimate.

Koopman et al. (2009) provide another test for the validity of this hypothesis

based on extreme value theory.

Equation (2.31) shows that an integral is not intrinsically associated with

a given distribution function. Judd (1998) stresses this point by showing that

importance sampling can be seen as an application of the change of variables

rule. To see this connection, let x(u) : [0, 1] → R be a monotone increasing

function, and let u(x) be its inverse, which implies that u = u (x(u)), and by the

chain rule 1 = u′ (x(u))x′(u). The change of variables rule allows the following

transformations of the integral being evaluated:∫
R
g(x) · f(x) dx =

∫ 1

0

x′(u) · g (x(u)) · f (x(u)) du =

∫ 1

0

g (x(u)) · f (x(u))

u′ (x(u))
du

= EU

[
g (x(u)) · f (x(u))

u′ (x(u))

]
, (2.36)
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where u ∼ U [0, 1], and the identity x′ (u(x)) = 1/u′(x) was used. Note that this

means that the probability density function of x = x(u) is given by m(x) = u′(x),

and that any monotonic function x(u) : [0, 1] → R can be used to transform∫
Rg(x)f(x) dx into an integral over [0, 1], which has the interpretation of an ex-

pectation with respect to the density of u.

Exactly as with change of variables, importance sampling is most useful when

the selection of the map x(u) : [0, 1] → R or, alternatively, the selection of

m(x) = u′(x), is done in a clever way. As the goal of importance sampling is to use

Monte Carlo integration to evaluate the alternative expectation representation in

(2.36), a suitable map m(x) might be one that minimizes the sampling variance

given in (2.34). The following first order condition can be used to find the optimal

importance sampler m∗ that minimizes the MC variance

0 =
δ

δm(x)

[∫
g(x)2 · f(x)2

m(x)
dx− I2 + λ ·

∫
m(x) dx

]
, (2.37)

where λ is a Langrange multiplier on the constraint that m(x) must integrate

to 1, and δ denotes the functional derivative. This first order condition gives

0 = −g2f 2/m2 + λ, implying

m∗(x) =
|g(x) · f(x)|√

λ
=

|g(x) · f(x)|∫
|g(x) · f(x)| dx

, (2.38)

where λ was selected so that m∗ integrates to one. Using m∗ in (2.38), the

importance sampling variance becomes

σ2
IS = σ2∗

IS =

(∫
|g(x) · f(x)| dx

)2

−
(∫

g(x) · f(x) dx

)2

, (2.39)

which is equal to zero7. Unfortunately, knowledge of
∫
|g · f | dx is needed to be

able to sample from m∗, but if
∫
|g · f | dx is known, than numerical integration is

not needed.

Although the result in (2.38) is not very useful in practice, it is still important

to have in mind the idea of searching for an importance sampler that makes the

MC variance as small as possible. Note that (2.34) will have a small sampling

variance if g(x)w(x) is as “constant” as possible. As stated above, it cannot be

7Note that if g · f has more than one sign in the region of integration (2.39) is not zero, but
it is always possible to change the integrand by a known constant to make it all of one sign,
since this changes the integral only by a known constant.
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made wholly constant, but (2.34) shows that m(x) should try to mimic g(x)f(x),

so that the product g(x)w(x) will not vary much.

The selection of the importance sampler m(x) is the biggest challenge of

importance sampling as m should closely mimic the integrand g(x)f(x), whereas

g(x)f(x) is so complicated that it requires Monte Carlo integration. Later on

Efficient Importance Sampling (EIS) (see Richard and Zhang, 2007), a procedure

whose objective is to select a near optimal importance sampler m(x) that mimics

the integrand g(x)f(x), will be presented.

In Bayesian estimation problems as well as in the update stage of nonlinear

filtering, the density f(x) is known only up to an integrating constant χ. Let

f ∗(x) denote the known kernel of the density f(x), such that χ =
∫
f ∗(x) dx.

Importance sampling can still be applied using the fact that

1
N

∑N
i=1

g(xi)·f∗(xi)
m(xi)

a.s.−−→ χ · I , 1
N

∑N
i=1

f∗(xi)
m(xi)

a.s.−−→ χ,

which implies that an estimate of I can be computed as

I
IS∗
N =

∑N
i=1 g(xi) · f

∗(xi)
m(xi)∑N

i=1
f∗(xi)
m(xi)

(2.40)

=
N∑
i=1

W (xi) · g(xi), (2.41)

where

W (xi) =

f∗(xi)
m(xi)∑N
i=1

f∗(xi)
m(xi)

, (2.42)

are the normalized importance weights. This estimator also converges to I, but

unlike (2.32), (2.41) is biased for finite N. Doucet and Johansen (2009) give the

asymptotic bias of I
IS∗
N :

lim
N→∞

N
(
I
IS∗
N − I

)
= −

∫
f 2(x)

m(x)
· (g(x)− I) dx. (2.43)

The task of assessing the accuracy of I
IS∗
N as an approximation of I is compli-

cated by the ratio of terms in (2.40) (see Geweke, 1989a). Now both Ef [f/w] =∫
Rnf

2/mdx, and
∫
g2wf dx are required to be absolutely convergent, which suffice
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to show that

I
IS∗
N

a.s.−−→ I,
√
N
(
I
IS∗
N − I

)
d−→ N(0, σ2),

σ2 = Ef

{
[g(x)− I]2 · f

∗(x)

m(x)

}
= χ−1

∫
Rn

{
[g(x)− I]2 · f

∗(x)

m(x)
· f(x)

}
dx

s∗
2

=
N
∑N

i=1[g(xi)− I]2 · f
∗(xi)
m(xi)[∑N

i=1
f∗(xi)
m(xi)

]2

a.s.−−→ σ2. (2.44)

Although biased, I
IS∗
N might perform better than (2.32) in squared error loss

terms. To see this, note that the bias and the variance of (2.41) are O(1/N),

which means that the mean-squared error is asymptotically dominated by the

variance term (see Doucet and Johansen, 2009).

In what follows the GHK simulator is introduce, which is an importance

sampler design to overcome problems faced by the frequency simulator, a classical

Monte Carlo sampler for estimating normal probabilities of rectangular domains

that can be used to estimate probit-type models (see Gourieroux and Monfort,

2002). Although the GHK does produce some variance reduction with respect

to the frequency simulator, it is not aimed at achieving optimality in variance

terms.

2.2.2.1 GHK importance sampler

An ubiquitous problem in probabilistic analysis and statistics is the calculation

of event probabilities generated by random processes. Consider a n-dimensional

vector of correlated normally distributed random variables: x ∼ N (µ,Σ). Then,

the probability that the event A = {(x1, x2, . . . , xn) : ai < xi < bi} occurs is,

I ≡ Prob(A;µ,Σ) =

∫
Rn

1I(x ∈ D) · f(x) dx, (2.45)

where 1I(·) is the indicator function, D is the rectangle defined by the limits ai

and bi, and f(x) is the probability density function of x.

If n is small, Gauss-Hermite quadrature could be used to compute (2.45),

but it is often the case that n is large, and one has to rely on Monte Carlo

estimates of this probability. Lerman and Manski (1981) present a simple Monte

Carlo approximation to this integral obtained by drawing realizations of x from

f , observing if a given draw lies within D, and using the frequency of such

45



2. NUMERICAL INTEGRATION

occurrences over the set of all draws as an estimate of the event probability I.

This approach is known as the frequency simulator, and it has several drawbacks.

First, it is not very efficient for approximating small probabilities, requiring a

rather large number of draws, and even when the number of draws are moderately

large, the approximation to I can be zero, which is problematic if one wants to

compute the logarithm of this quantity. Second, the indicator function in (2.45)

gives either weight equal to one or equal to zero to each draw from f , which means

that the frequency simulator is a step function in the parameters θ = (µ,Σ). For

most values of θ, a small parameter change will change none of the weights given

to the realizations of x, implying that the derivative of the frequency simulator

in this direction will be zero. For the remaining values of θ, small changes in it

will change many of the weights, and the simulator will increase (decrease) by a

discrete amount as the weights changed from 0 to 1 (1 to 0). The derivative of

the frequency simulator in this new direction will be undefined. As θ is usually

estimated optimizing a criterion function based on (2.45), this lack of smoothness

introduces numerical difficulties.

A very popular importance sampler that solves the aforementioned problems

of the frequency simulator is the GHK (Geweke-Hajivassiliou-Keane) simulator

introduced by Geweke (1989b), modified by Hajivassiliou et al. (1996), and in-

dependently proposed by Keane (1994) (see Train, 2003). The GHK is based

on the fact that normal random variables conditional on other normal random

variables are still normal, it exploits the following recursive structure imposed by

a Cholesky decomposition
x1

x2

...

xn

 =


µ1

µ2

...

µn

+


S1,1 0 · · · 0

S2,1 S2,2 · · · 0
...

...
. . .

...

Sn,1 Sn,2 · · · Sn,n

 ·

ε1

ε2
...

εn

 , (2.46)

where the matrix S with elements Si,j is the Cholesky decomposition of Σ.

Equation (2.2.2.1) implies that

I = Prob(A;µ,Σ) =

∫
Rn

1I(x(ε) ∈ D) · f(ε)dε, (2.47)

where ε ∼ N(0, In), and In is a (n × n) identity matrix. Suppose that D is the
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negative orthant of Rn, then

x1 < 0 → ε1 < − µ1

S1,1

x2 < 0 → ε2 < − (S2,1ε1+µ2)

S2,2

...
...

xn < 0 → εn < − (Sn,1ε1+Sn,2ε2+···+Sn,n−1εn−1+µn)

Sn,n
,

(2.48)

The expressions in (2.48) can be written more compactly as

x1 < 0 → ε1 < α1

x2 < 0 → ε2 < α2(ε1)
...

...

xn < 0 → εn < αn(ε1, . . . , εn−1),

(2.49)

where

αn =

 −
(∑n−1

i=1
Sn,i
Sn,n

εi + µn
Sn,n

)
, n > 1

− µn
Sn,n

, n = 1.
(2.50)

Therefore, the event probability can be rewritten as

I = Prob (ε1 < α1, ε2 < α2(ε1), . . . , εn < αn(ε1, . . . , εn−1)) (2.51)

and the GHK simulator decomposes this joint probability of the sequence of

events into a product of conditional event probabilities

I = Prob (ε1 < α1) · Prob (ε2 < α2(ε1)|ε1) · . . . · Prob (εn < αn(ε1, . . . , εn−1)|ε1, . . . , εn−1) .

Because of the normality assumption on the errors {εi}ni=1

Ĩ(ε) = Φ(α1) · Φ(α2(ε1)) · Φ(α3(ε2)) · . . . · Φ(αn(ε1, . . . , εn−1), (2.52)

where Φ denotes the standard normal cumulative distribution function (cdf).

This decomposition of the event probability motivates the use of a sequential

importance sampler that draws εi from a truncated univariate normal distribution

conditional on the last draw εi−1. A draw εs1 from the first element of the vector of

errors is obtained from the univariate truncated normal pdf φ(ε1)/Φ(α1), which

is used to obtain a draw εs2 from φ(ε2)/Φ(α2(εs1)), which in turn is used to draw

εs3, and so on. The GHK importance sampler is therefore

m(ε) =

{
φ(ε1)
Φ(α1)

· φ(ε2)
Φ(α2(ε1))

· . . . · φ(εn)
Φ(αn(ε1,...,εn−1))

for ε ∈ D,

0 for ε /∈ D.
(2.53)
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Note the fact that f(ε) in (2.47) is the numerator of m(x) when ε ∈ D, while Ĩ(ε)

is the denominator, can be used to rewrite (2.53) as

m(ε) =

{
f(ε)

Ĩ(ε)
for ε ∈ D,

0 for ε /∈ D.
(2.54)

The GHK importance sampling representation of (2.45) is then given by

I =

∫
Rn

1I(x ∈ D) · f(x) dx

=

∫
Rn

1I(x(ε) ∈ D) · f(ε)dε

=

∫
Rn

1I(x(ε) ∈ D) · f(ε)

m(ε)
·m(ε)dε

=

∫
Rn

1I(x(ε) ∈ D) · f(ε)
f(ε)

Ĩ(ε)

·m(ε)dε

=

∫
Rn

1I(x(ε) ∈ D) · Ĩ(ε) ·m(ε)dε

=

∫
Rn
Ĩ(ε) ·m(ε)dε, (2.55)

where the last equality follows from the fact that m(ε) > 0 only when ε ∈ D. An

estimate of (2.55) can be obtained as

IN =
1

N

N∑
s=1

Φ(α1) · Φ(α2(εs1)) · Φ(α3(εs2)) · . . . · Φ(αn(εs1, . . . , ε
s
n−1), (2.56)

where the εsi are drawn from the truncated normal densities in (2.53) using

Φ−1 (u · Φ(αn(·))), with u being a random number taken from U(0,1).

The GHK simulator replaces the discrete weighting scheme of the frequency

simulator for a continuous one via a clever choice of importance sampler. The

estimate (2.56) is strictly bounded between (0, 1), continuous, and differentiable

with respect to µ and Σ, because Ĩ(ε) is also strictly bounded between (0, 1), con-

tinuous, and differentiable. Although the GHK simulator does not seek directly

variance reduction, its variance is smaller than the variance of the frequency

simulator, because each draw from m(ε) receives weight between (0, 1), while

draws from the frequency simulator receive either weight equal to 1 or 0. How-

ever, it is interesting to note that the GHK importance sampler is not a good

48



2.2 Monte Carlo Integration

simulator of draws from the joint density of x. The GHK samples xi and incorpo-

rates the constraints that (x1, . . . , xi) < 0, but ignores the correlated information

(xi+1, . . . , xn) < 0, neglecting potentially significant information that would al-

low to better adjust the region of importance for xi. Based on this, Liesenfeld

and Richard (2007) argue that the GHK importance sampler can be interpreted

as a filtering density, incorporating the constraints on x just up to the element

i, and efficiency gains could be sought by including the additional information

contained in the other constraints.

2.2.3 Efficient Importance Sampling

The main drawbacks of IS are the difficulties in finding a good importance sampler

(van Dijk, 1999). As explained above, a proper metric to define “good” in the

context of Monte Carlo methods is variance reduction. Therefore, the choice of

a good importance sampler could be divided into two steps: the selection of a

parametric class of samplers; and the selection of the parameters of the chosen

class that delivers an importance sampler that makes the sampling variance as

small as possible.

The choice of a parametric class of samplers is problem specific and will vary

from application to application, but the chosen class would normally include

a parametric extensions of the natural sampler f(x). In this subsection, the

Efficient Importance Sampling (EIS) technique to find a near optimal sampler

within a given parametric class is going to be presented. EIS was developed

by Richard and Zhang (2007), and is an automated procedure for construct-

ing importance samplers that are global approximations to the target integrand

g(x)f(x) in (2.31), in contrast to local approximations based on Taylor series

expansions used in the literature (see, eg., Shephard and Pitt, 1997).

EIS is a generic auxiliary algorithm that searches in the admissible parameter

space A of a given class M : {m(x; a); a ∈ A} of parametric samplers for the

optimal parameters a∗ that determines the most efficient sampler within this

class. The objective of EIS is the selection of an optimal parameter value a that

minimizes the MC sampling variance of the integral (2.31). The MC sampling

variance of a given importance sampler in (2.34) can be rewritten as function of
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the parameter a as:

σ2
IS =

∫ [
g(x) · f(x)

m(x; a)
− I
]2

·m(x; a) dx

=

∫
[ω(x; a)− I]2 ·m(x; a) dx, (2.57)

where ω(x; a) = g(x)f(x)
m(x;a)

. Rearranging to isolate the terms depending on a yields

σ2
IS = I ·

∫ [
ω(x; a)

I
− 1

]2

· I

ω(x; a)
· g(x) · f(x) dx

= I ·
∫ [

ω(x; a)2

I2
− 2

ω(x; a)

I
+ 1

]
· I

ω(x; a)
· g(x) · f(x) dx

= I ·
∫ [

ω(x; a)

I
+

I

ω(x; a)
− 2

]
· g(x) · f(x) dx

= I · V (x; a), (2.58)

where

V (x; a) =

∫ [
ω(x; a)

I
+

I

ω(x; a)
− 2

]
· g(x) · f(x) dx,

is the part of σ2
IS depending on a. Let

d(x; a, c) = ln

(
ω(x; a)

I

)
= ln (g(x) · f(x))− c− ln k(x; a), (2.59)

where the the importance sampler m(x; a) was decomposed into a density kernel

k(x; a) and its integrating constant χ(a) =
∫
k(x; a) dx such that

m(x; a) =
k(x; a)∫
k(x; a) dx

, (2.60)

and thus

c = ln I − lnχ(a),

is a constant meant to calibrate the ratio g(x)f(x)/k(x; a) which does not depend

on x but on the unknown quantity I, and thus will be treated as an unknown

intercept in the optimization problem to be introduced. Now it is possible to

write V (x; a) as

V (x; a) =

∫
h
(
d2(x; a, c)

)
· g(x) · f(x) dx, (2.61)

50



2.2 Monte Carlo Integration

with h given by

h(r) = e
√
r + e−

√
r − 2 = 2

∞∑
i=1

ri

(2i)!
.

An optimal choice of (a, c) can be found through the solution of the following

nonlinear minimization problem

(a∗, c∗) = arg min
a∈A, c∈R

V (x; a). (2.62)

Note that h(r) is a monotone and convex function on R+, and an efficient sampler

will be one such that m(x; a) closely mimics the integrand g(x)f(x), implying

that d(x; a) is expected to be close to zero. Therefore, an useful simplification is

attained by replacing h(r) by its leading term r, which means solving the simpler

problem

(â, ĉ) = arg min
a∈A, c∈R

Q(x; a), (2.63)

where

Q(x; a) =

∫
d2(x; a) · g(x) · f(x) dx. (2.64)

Equation (2.63) can be seen as a functional Generalized Least Squares (GLS)

problem, where x is distributed according to the natural sampler f(x) and weight

g(x). However, MC approximations of Q based on draws sampled from f would

be generally inaccurate due to high MC sampling variance of g, and that is

actually the reason why importance sampling is being used in the first place.

Approximations of Q based on an efficient sampler m(x; a) would be preferred,

thus Q can be rewritten as

Q(x; a) =

∫
d2(x; a) · ω(x; a) ·m(x; a) dx. (2.65)

The EIS approach is to replace Q(x; a) with a Monte Carlo approximation

thereof, but the fact that the importance sampler itself depends on a implies

that finding a direct solution to the minimization problem in (2.63) is not feasible.

Instead, Richard and Zhang (2007) adopt an iterative procedure to search for a

fixed point, whereby a sequence of samplers {m(x; âk)}∗k=0 is constructed that

converges towards m(x; â∗). Specifically, the baseline EIS algorithm consists of
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computing a converging sequence of GLS estimates of {âk}∗k=0, which are used

to construct global approximations to the target integrand, as they are based on

GLS estimates on the full support of g(x)f(x). The algorithm is based upon the

following recursion: (
âk+1, ĉk+1

)
= arg min

a∈A, c∈R
Q(x; a|âk), (2.66)

where

Q(x; a|âk) =
1

N

N∑
i=1

d2(xki , a, c|âk, ĉk) · ω(xki ; â
k), (2.67)

and {xki }Ni=1 are i.i.d. draws from m(x; âk). An initial sampler m(x; â0) can be

found in a variety of ways, as it will be shown in subsequent chapters, but a

convenient choice for an initial sampler (although not the most efficient) is to

take the natural sampler f(x) as m(x; â0). In this case, Richard and Zhang

(2007) advise to set the weights ω to ones during the initial iteration(s) to avoid

numerical instabilities due to the large variance of ω under an inefficient sampler

like f(x), and state that for most problems the Ordinary Least Squares (OLS)

problem, where all the weights are set to one, is essentially as efficient as its GLS

counterpart. A maximum relative change in a of order 10−3 to 10−5 is normally

used as a convergence criterion, and a critical point to convergence is the use

CRNs in the EIS auxiliary regressions in (2.66). Once convergence is achieved,

the EIS estimate of (2.31) is given by

IN =
1

N

N∑
i=1

ω(x∗i ; â
∗). (2.68)

2.2.3.1 EIS for the exponential family of distributions

The exponential family of distribution has densities of the form

m(x; a) = χ(a) · b(x) · exp {a′ · t(x)} , (2.69)

where the set A ⊃ a is called the natural parameter space of the family, a is a

vector of natural parameters, and t(x) is a sufficient statistic of fixed dimension

for all sample sizes (see Lehmann and Romano, 2005; Lehmann and Casella,
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1998). A prominent member of the exponential family is the normal distribution

function, and if X ∼ N(µ, σ2), then

m(x; a) =
1√
π
−a2

· exp

[
a1x+ a2x

2 − a2
1

4a2

]
,

is a two-parameter exponential family member with natural parameters (a1, a2) =

( µ
σ2 ,− 1

2σ2 ), and natural parameter space A = R× (−∞, 0).

The logkernels of this family of distribution can be written as

ln k(x; a) = ln b(x) + a′ · t(x), (2.70)

and direct substitution in the expression of d(x; a, c) defined in (2.59) shows that

the EIS auxiliary regressions are now linear in a. Assuming that the GLS weights

ω(x; a) are nearly constant, it is possible to substitute the GLS regressions for

standard OLS regressions, simplifying even more the EIS minimization problem.

The natural parameter space A typically imposes inequality constraints for

the integrability of k; for example, in the univariate normal distribution case,

a2 ∈ (−∞, 0). Although this constraints are normally not binding, in which case

OLS or GLS formulae provide analytical solution to the minimization problem in

(2.63), problems might occur when the initial sampler m(x; a0) concentrate draws

in regions where g(x)f(x) is locally convex, like the tail area or the area between

two local peaks. Inflating the variance of the initial sampler and/or setting the

corresponding coefficient ai to some arbitrary value close to the boundary of the

natural parameter space is a numerical way to solve such occasional pathologies.

Another important property of the exponential family is the convexity of the

natural parameter space A, meaning that if a0 ∈ A and a1 ∈ A then a2 = a0 + a1

also belongs to A. This implies that K = {k(x; a); a ∈ A} is closed under

multiplication (Lehmann and Casella, 1998), resulting in possible additional sim-

plifications of the EIS auxiliary regression when there exists a0 ∈ A such that

g(x)f(x) ∝ g0(x) · k(x; a0), (2.71)

where k(x; a0) could denote f(x) itself when f ∈ M , but could also include

additional factors from g, improving the fit of m(x; a) to g(x)f(x), and g0(x) =

g(x) in the case that k(x; a0) = f(x), or it contains the remaining terms of g(x)
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that could not be included in k(x; a0) 8. In this case it is possible to exploit the

closure of K by redefining k(x; a) as

k(x; a2) = k(x; a1) · k(x; a0),

where a2 = a1 + a0 and following (2.59) k(x; a0) cancels out in the EIS Least

Squares (LS) regression. The auxiliary regression then becomes a LS regression

of ln g0 on k(x; a1).

To better understand the implementation of the EIS procedure for Gaussian

importance samplers, note that the idea in (2.59) is to approximate g(x)f(x) by

a Gaussian kernel

ln[g(x)f(x)] ≈ −1

2
(x− µ)′H(x− µ)

≈ −1

2
(x′Hx− 2x′Hµ) ,

where µ is the mean vector andH the precision matrix associated with the natural

parameter a. The term x′Hx can be written as

(
x1 x2 . . . xn

)


h1,1 h1,2 . . . h1,n

h2,1 h2,2 . . . h2,n

...
...

. . .
...

hn,1 hn,2 . . . hn,n




x1

x2

...

xn

 .

= h1,1x
2
1 + h2,2x

2
2 + . . .+ hn,nx

2
n

+2h1,2(x1x2) + 2h1,3(x1x3) + . . .+ 2h1,n(x1xn)

+2h2,3(x2x3) + 2h2,4(x2x4) + . . .+ 2h2,n(x1xn)
...

+2hn−1,n(xn−1xn).

The relationship between the coefficient of the squared and pairwise product

of the elements of x, and the components of the precision matrix H, as well as the

relationship between the individual components of x and the vector of means µ are

evident from the above expressions. These coefficients are the natural parameters

8Note that g(x)f(x) ∝ k(x; a0) implies a perfect fit, meaning that k(x; a0) include all factors
of g depending on x.
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of the normal distribution, and EIS tries to estimate the natural parametrization

that makes the importance sampler as close to the target integrand as possible.

As a concrete example of an univariate auxiliary EIS regressions for the Gaus-

sian class of densities, consider the linear regression in the kth iteration of the

EIS fixed point search (2.66) for a Gaussian univariate sampler

ln[g(xi) · f(xi)] = c+ ak1xi + ak2x
2
i + ui, (2.72)

where x = {xi}Ni=1 were drawn from the sampler m(x; âk−1) of the last EIS itera-

tion, and ui is the error term. The new LS estimates of a are used to construct

the updated sampler m(x; âk) as

m(x; âk) =
1√
π
−âk2

· exp

[
âk1x+ âk2x

2 − (âk1)2

4âk2

]
,

with mean and variance given by

σ2(âk) = − 1

2âk2
, µ(âk) = − âk1

2âk2
. (2.73)

When the dimensionality of a is large with respect to the MC sample {xi}Ni
used in the auxiliary regression (2.72), problems of multicollinearity can occur.

In such cases, introduction of a small amount of shrinkage in the auxiliary EIS

regressions is able to eliminated the problem, and is numerically more reliable

than increasing N (see Richard and Zhang, 2007).

2.2.3.2 Sequential EIS

Although shrinkage EIS regressions can alleviate multicollinearity problems aris-

ing when the dimensionality of the objective integral (and thus that of a) is large,

in high-dimensional settings the problem (2.63) needs to be replaced by a sequence

of lower dimensional optimization problems. This factorization is possible when

the problem at hand can be written not only as a single joint distribution, but

also as a sequence of conditional distribution. This is often the case in the time

series dimension, where the latent and observable variables are typically gener-

ated sequentially in time, but can also happen in the cross-sectional dimension

when correlation across units exists9.

9The GHK importance sampler presented in section 2.2.2.1 exploited such a decomposition
to construct a sequential importance sampler
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Assume that a partition x = (x1, x2, . . . , xL) of x in lower dimension compo-

nents exists, allowing to decompose g and f in (2.31) as

g(x) =
L∏
l=1

gl(Xl)

f(x) =
L∏
l=1

fl(xl|Xl−1)

I =

∫
g(x) · f(x) dx =

∫ L∏
l=1

gl(Xl) · fl(xl|Xl−1) dx, (2.74)

where Xl = (x1, . . . , xl). In such cases, the EIS sampler m(x; a) is subject to the

following sequential structure

m(x; a) =
L∏
l=1

ml(xl|Xl−1; al), (2.75)

where a = (a1, . . . , aL) ∈ A =
∏L

l=1Al, as well as its kernel kl and integrating

constant χl

ml(xl|Xl−1; al) =
kl(Xl; al)

χl(Xl−1; al)
, χl(Xl−1; al) =

∫
kl(Xl; al) dxl.

However, the integral of gl(Xl)f(xl|Xl−1) with respect to xl is an unknown

function of Xl−1 and cannot be well approximated by ml(xl|Xl−1; a), whose in-

tegral with respect to xl is by definition equal to one. Instead, the lth integrand

gl(Xl)f(xl|Xl−1) is approximated by a density kernel kl(Xl; al) with known func-

tional integral χl(Xl−1; al) in xl, so that once âl is selected, an analytical expres-

sion for χl is available. This would leave the integrating constant χl(Xl−1; al)

unaccounted for in the EIS optimization procedure, disregarding possibly im-

portant information about Xl−1 contained in χl(Xl−1; al)
10. Since χl(Xl−1; al)

does not depend on Xl, but only on Xl−1 it could be transferred back to the

LS optimization on al−1, so that the efficient importance sampler ml(xl|Xl−1; âl)

will contain all the sample information about the importance region of xl. The

integral (2.74) is then rewritten as

I = χ1(a1)

∫ L∏
l=1

gl(Xl)fl(xl|Xl−1)χl+1(Xl; al+1)

kl(xl; al)
·
L∏
l=1

ml(xl|Xl−1; al) dx, (2.76)

10Note that this is exactly the information disregarded by the GHK importance sampler.
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with χL+1 ≡ 1. In order to allow the back transfer of all relevant integrating con-

stants to the LS optimization of al, a backward recursive sequence of individual

EIS minimizations starting from l = L and going until l = 1 is implemented as

follows (
âk+1
l , ĉk+1

l

)
= arg min

al∈Al, cl∈R
Q(Xl; al, âl+1), (2.77)

where

Q(Xl; al, âl+1) =
1

N

N∑
i=1

d2
l (Xi,l; al, âl+1cl) · ωl(Xi,l|Xi,l−1; al),

and

dl(Xi,l; al, âl+1, cl) = {ln [gl(Xi,l)fl(xi,l|Xi,l−1)χl+1(Xi,l; âl+1)]− c− ln kl(xi,l; al)}

now takes into account the integrating constant χl+1(Xi,l; âl+1) of the previous

period, which contains possibly important information with respect to the im-

portance region of xl.

Once the backward sequence of EIS regressions has converged to a fixed point

â∗, a MC estimate of (2.31) is obtained as

IN =
1

N

N∑
i=1

[
L∏
l=1

gl(Xi,l)fl(xi,l|Xi,l−1)

ml(xi,l|Xi,l−1; âl)

]
, (2.78)

where the sequences {Xi,l}Ni=1 are drawn from the efficient importance sampler

m(x; â∗).

The decomposition in (2.76) and the backward algorithm in (2.77) show that

the EIS sampler ml(xl|Xl−1; al) contains all sample information about the impor-

tance region of xl, in sharp contrast to the GHK importance sampler presented

in section 2.2.2.1. In this sense, the EIS sampler could be regarded as smoothed

densities, while the GHK densities are filtered densities as they consider only

information up to the observation l.
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Chapter 3

Estimation of Dynamic Panel

Probit Models

Estimation of panel probit applications incorporating unobserved factors requires

solving integrals over latent variables whose solution are not analytically avail-

able, implying that numerical integration methods have to be used. Typically

these integrals are multidimensional restricting the use of deterministic quadra-

ture methods to the simplest and less interesting models. In this chapter different

panel probit models accounting for unobserved heterogeneity and serially corre-

lated errors are estimated and used to analyze the determinants and the dynamics

of current-account reversals for a panel of developing and emerging countries.

Likelihood evaluation of panel probit models with unobserved heterogeneity

and dynamic error components is complicated by the fact that the computation

of the choice probabilities requires high-dimensional interdependent integrations.

The dimension of such integrals is typically given by the number of time periods

(T), or if one allows for interaction between individual specific and time random

effects by T+N, where N is the number of cross-sectional units. Thus likelihood

estimation of such models generally relies upon Monte Carlo integration tech-

niques (see Geweke and Keane, 2001, and the references therein). Various MC

procedures have been proposed for the evaluation of such event probabilities (see

Stern, 1997, for a survey). The most popular among those is the GHK proce-

dure presented in Section 2.2.2.1, which has been applied to the estimation of

dynamic panel probit models, e.g., by Hyslop (1999), Greene (2004), and Fal-

cetti and Tudela (2006). While conceptually simple and easy to program, the
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GHK procedure relies upon importance sampling densities which ignore critical

information relative to the underlying dynamic structure of the model. This can

lead to significant deterioration of numerical accuracy as the dimensionality of

integration increases. In particular, Lee (1997) conducts a MC study of ML esti-

mation under GHK likelihood evaluation for panel models with serially correlated

errors, and finds significant biases for longer panels. The Efficient Importance

Sampling (EIS) methodology developed by Richard and Zhang (2007) presented

in Section 2.2.3 is used here to evaluate the event probabilities, and is shown to

be well suited to handle unobserved heterogeneity and serially correlated errors

in panel probit models. In particular, combining EIS with GHK substantially

improves the numerical efficiency of the standard GHK allowing for reliable max-

imum likelihood estimation of dynamic panel probit models even in applications

with a large time dimension.

3.1 Introduction

The determinants of current account reversals and their consequences for coun-

tries’ economic performance have received a lot of attention since the currency

crises of the 1990s, and have found renewed interest because of the huge current

account deficit of the US in recent years. The importance of the current account

comes from its interpretation as a restriction on countries’ expenditure abilities.

Expenditure restrictions, generated by sudden stops and/or currency crises, can

generate current account reversals, worsen an economic crises or even trigger

one (see Milesi-Ferretti and Razin, 1997, 1998, 2000; Obstfeld and Rogoff, 2007).

Typical issues addressed in the recent literature are: the extent to which current

account reversals affect economic growth (Edwards, 2004a,b; Milesi-Ferretti and

Razin, 2000); the sustainability of large current account deficits for significant

periods of time (Milesi-Ferretti and Razin, 2000); and possible causes for cur-

rent account reversals (Edwards, 2004a,b; Milesi-Ferretti and Razin, 1998). This

chapter proposes to analyze the latter issue in the context of dynamic panel pro-

bit models, paying special attention to the serial dependence inherent to current

account reversals.

Milesi-Ferretti and Razin (1998) and Edwards (2004b) use panel probit mod-

els in order to investigate the determinants of current account reversals. While
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Milesi-Ferretti and Razin analyze a panel of low- and middle-income countries,

Edwards also includes industrialized countries. They use time and country spe-

cific dummies in order to account for heterogeneity. In addition to the fact that

it requires estimation of a large number of parameters, a fixed effect approach

raises two key issues of identification in the context of the data set analyzed here.

First, it precludes the use of potentially important explanatory variables which

are constant across countries or over time. Also, current account crises are typi-

cally rare events and have not been experienced by some of the countries included

in our data set.

Those studies paid less attention to the potential intertemporal linkages among

current account reversals, focussing on tests of theoretical predictions about their

causes, which are mainly motivated by the need to ensure that a country remains

solvent. However, there are several reasons to expect serial persistence in cur-

rent account reversals. For example, a full current account adjustment from a

non-sustainable towards a sustainable level might take several periods since re-

sponses of international trade flows are characterized by a fairly high degree of

inertia (see Junz and Rhomberg, 1973). Furthermore, past current account re-

versals might change the constraints and conditions relevant to the occurrence

of another reversal in the future, as argued by Falcetti and Tudela (2006) within

the context of a panel analysis of currency crisis. Both scenarios would lead to

state dependence (lagged dependent variable), whereby a country’s propensity

to experience a reversal depends on wether or not it experienced a reversal in

the past (see Heckman, 1981). Following Falcetti and Tudela (2006), further po-

tential sources of serial dependence are unobserved time-invariant heterogeneity

(random country specific effect) reflecting differences in institutional, political

or relevant economic factors across countries, as well as unobserved transitory

differences (country specific serially correlated error term) which might be the

result of omitted serially correlated macroeconomic factors or serially correlated

country-specific shocks.

However, unobserved and serially correlated transitory effects might be also

common to all countries (common dynamic time random effect). As such they

might reflect global shocks like oil and other commodity price shocks affecting the

reversal probability of all countries, or might be the result of contagion effects.

In particular, following the financial turbulence of the 1990s, it is recognized
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that spillover effects are important, especially for emerging economies. Common

causes of contagion include transmission of local shocks, such as currency crises,

through trade links, competitive devaluations, and financial links (see Dornbusch

et al., 2000).

3.2 Determinants and Dynamics of Current Ac-

count Reversals

3.2.1 Determinants

Milesi-Ferretti and Razin (1996) argue that the most obvious reason for a country

to experience a current account reversal is the need to ensure solvency, which they

relate to the stabilization of the ratio of external liabilities to GDP. Let tb be the

trade balance before the reversal and tb∗ the trade balance needed to stabilize

the ratio of external liabilities to GDP. Then abstracting from equity and foreign

direct investment flows and stocks, the reversal needed to ensure solvency can be

written as:

REV = tb∗ − tb = (r∗ − ε∗ − γ∗)d− tb

[(r∗ − r)− ε∗ − γ∗]d− (s− i), (3.1)

where r is the real interest rate on external debt, γ is the growth rate of the

economy, ε is the rate of real appreciation, d is the ratio of external debt to

GDP, s is the share of domestic savings to GDP, and i is the share of domestic

investment to GDP. Variables indexed by a star denotes the level of variable x

needed to stabilize the external debt to GDP ratio.

This simple framework points to several determinants for the occurrence of

large reductions in the current-account imbalance. The size of the reversal needed

to ensure solvency grows with the initial trade imbalance. Given the initial trade

imbalance, the size of the required reversal is increasing in the level of external

liabilities as well as in the rate of interest on external debt, while it is decreasing

in the growth rate. Note also that an increase in the world interest rate lowers

the interest rate differential, increasing the required reversal size. In fact, any

change in r∗ and γ∗ will affect a country’s intertemporal budget constraint, and

thus its current account imbalance.
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Further potential determinants for current account reversals are obtained from

models developed to analyze the ability of a country to sustain a large current

account deficit for significant periods of time (see Milesi-Ferretti and Razin, 1998).

They indicate that the sustainability of an external imbalance and, therefore,

the probability of its reduction depend on factors such as a country’s degree of

openness, its international reserves, its terms of trade and its fiscal environment.

While the solvency condition (3.1) helps identifying potential causes for the

occurrence of current account reversals, it is static and, therefore, not helpful to

discuss the dynamics of reversals. However, as discussed further below, there are

several reasons to expect serial dependence in the occurrence of large reductions

of current account deficits. Within a panel probit model for the analysis of the

determinants of reversals they imply state dependence and/or serially correlated

error terms.

3.2.1.1 State dependence

Assuming that the domestic economy for a deficit country (d > 0) grows at a

rate below the real interest rate (adjusted by the rate of real appreciation), the

solvency condition (3.1) requires a trade surplus stabilizing the debt to GDP ratio.

This surplus is often obtained by currency devaluations. However, while changes

in exchange rate can be abrupt, subsequent changes in trade can be much slower.

Junz and Rhomberg (1973) analyze the response of international trade flows to

changes in the exchange rate, and conclude that the effects of price changes on

trade flows usually stretch out over more than three years. In particular, they

argue that agents react with lags and identify the following sources for delayed

responses: a recognition lag, which is the time it takes for economic agents to

become aware of changes in the competitive environment; a decision lag, which

lasts from the moment in which the new situation has been recognized to the one

in which an action is undertaken (producers need to be convinced that the new

opportunities are long lasting and profitable enough to compensate for adjustment

costs); and finally, mostly technical lags in production, delivery and substitution

of materials and equipments in response to relative price changes.

In line with these arguments, Himarios (1989) finds that nominal devaluations

result in significant real devaluations that last for at least three years, and that

real devaluations induce significant trade flows that are distributed over a two- to
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three-year period. Therefore, the full current account adjustment implied by (3.1)

might take longer than one year, leading to a state dependence for yearly data

such as those used below. In order to account for the possibility that a reversal

process stretches over more than a year after it is triggered, the lagged dependent

variable is included among the regressors of our panel probit specifications.

3.2.1.2 Serially correlated error terms

Further potential sources of serial dependence in the occurrence of large reduc-

tions in the current account imbalance are differences in the propensity to ex-

perience large reductions across countries. Such heterogeneity might be due to

time-invariant differences in institutional, political or economic factors which can

not be controlled for. In order to take these differences into account, a random

effect approach with a country-specific time-invariant error component is used,

which induces a cross-period correlation of the overall error terms. Unobserved

differences in the propensity to experience large reductions in the current account

deficit could also be serially correlated, rather than time-invariant. As such they

might reflect serially correlated shocks associated with regional conflicts, uncer-

tainty about government transition and political changes, as well as regional

commodity price shocks affecting the probability of experiencing current account

reversals. In order to take those effects into account, an AR(1) specification for

the country specific transitory error component is assumed.

Finally, unobserved and serially correlated transitory effects might also be

common to all countries reflecting either contagion effects or global shocks such

as oil or commodity price shocks. The former have received a lot of attention

following the currency crises of the 1990s which rapidly spread across emerging

countries (see Edwards and Rigobon, 2002). A crisis in one country may affect

other countries as investors withdraw their investments from other markets with-

out taking into account differences in economic fundamentals. Contagion can also

happen through trade links and currency devaluations, as devaluations foment

output growth and employment domestically at the expense of output growth,

employment and current account deficit abroad, which could even incite a process

of competitive devaluations (Corsetti et al., 1999).

If data are collected at short enough time intervals (monthly or quarterly

observations), such spill-over effects would become manifest in the dependence
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of a country’s propensity to experience a reversal from lagged reversals by other

countries. However, with yearly data the time intervals are presumably not fine

enough to observe such short-run spill-over effects of one country on another and

contagion would more likely translate into a common time effect. Hence, an

AR(1) time-random effect which is common to all countries is used in order to

account for contagion effects together with global shocks.

3.2.2 Data

The data set consists of an unbalanced panel for 60 low and middle income

countries from Africa, Asia, and Latin America and the Caribbean. The complete

list of countries is given on Table 3.7. The time span of the data set ranges from

1975 to 2004, although the unavailability of some explanatory variables often

restrict the analysis to shorter time intervals. The minimum number of periods

for a country is 9, the maximum is 18 and the average is 16.5 for a total of 963

yearly observations. The initial values of the binary dependent variable indicating

the occurrence of a current account crisis are known for the initial time period

t = 0 for all countries. The sources of the data are the World Bank’s World

Development Indicators (2005) and the Global Development Finance (2004).

Current account reversals are defined as in Milesi-Ferretti and Razin (1998).

According to this definition a current account reversal in year t has to meet

three requirements. The first is an average reduction of the current account deficit

of at least 3 percentage points of GDP over a period of 3 years (from t to t+ 2)

relative to the 3-year average before the event (from t− 3 to t− 1). The second

requirement is that the maximum deficit in the 3-year period starting with the

reversal must be no larger than the minimum deficit in the 3 years preceding the

reversal. The last requirement is that the average current account deficit over the

3-year period starting with the event must be less than 10% of GDP. According

to this definition, 100 current account reversals are found in 44 countries (10%

of the total number of observations).

As discussed above, the selection of the explanatory variables follows mainly

the study of Milesi-Ferretti and Razin (1998). Lagged macroeconomic, exter-

nal, debt and foreign variables are included. The macroeconomic variables are

the annual growth rate of GDP (AVGGROW), the share of investment to GDP

proxied by the ratio of gross capital formation to GDP (AVGINV), government
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expenditure (GOV) and interest payments relative to GDP (INTPAY). The ex-

ternal variables are the current account balance as a fraction of GDP (AVGCA),

a terms of trade index set equal to 100 for the year 2000 (AVGTT), the share of

exports and imports of goods and services to GDP as a measure of trade open-

ness (OPEN), the rate of official transfers to GDP (OT) and the share of foreign

exchange reserves to imports (RES). The debt variable included is the share of

consessional debt to total debt (CONCDEB). Concessional debt is defined as

lending extended by the IMF, Worldbank or other development banks at terms

below the market terms (IMF, 2003). The concessionality is achieved, e.g., by in-

terest rates below those available on the market and/or by grace periods. Foreign

variables such as the US real interest rate (USINT) and the real growth rates of

the OECD countries (GROWOECD) are also included to reflect the influence of

the world economy. As in Milesi-Ferretti and Razin (1998), the current account,

growth, investment and terms of trade variables are 3-years averages, in order to

ensure consistency with the way reversals are measured.

3.3 Empirical Specifications

The baseline specification used for the analysis of current account reversals is a

dynamic panel probit model of the form

y∗it = x′itπ + κyit−1 + eit, yit = 1I(y∗it > 0), i = 1, ..., N, t = 1, ..., T, (3.2)

where 1I(y∗it > 0) is an indicator function that transforms the latent continuous

variable y∗it for country i in year t into the binary variable yit, indicating the oc-

currence of a current account reversal (yit = 1), and xit denotes the explanatory

variables1. The error term eit is assumed to be normally distributed with zero

mean and a fixed variance. Since equation (3.2) is only identified up to a posi-

tive multiplicative constant, a normalization condition will be required for each

model variant. The vector xit contains the observed macroeconomic, external,

debt and foreign variables which might affect the incidence of a reversal. The

lagged dependent variable on the right hand side is included to capture possible

state dependence. It reflects the possibility that past current account crises could

1Note that, different from the previous Chapter, xi are not used to describe the nodes of
an integral approximation.
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lead to changes in institutional, political or economic factors affecting the prob-

ability of another reversal, and implies that the covariates in xit have not only a

contemporaneous but also a persistent effect on the probability of a reversal.

The most restrictive version of the panel probit assumes that the error eit

is independent across time and countries and imposes the restriction κ = 0.

This produces the standard pooled probit estimator which ignores possible se-

rial dependence and unobserved heterogeneity which cannot be attributed to the

variables in xit, but can be easily estimated and does not require numerical inte-

gration.

3.3.1 Random country-specific effects

Although easy to estimate, the pooled probit model does not account for country-

specific differences such as property rights, tax systems, and other institutional

factors which are difficult to control for, but affect a country’s propensity to

experience a current account reversal. In order to take these differences into

account, fixed or random effect panel models could be used, but a fixed effect

model based on country-specific dummy variables, such as the one used in the

studies of Milesi-Ferretti and Razin (1998) and Edwards (2004a,b), requires the

estimation of a large number of parameters, leading to a significant loss of degrees

freedom. Furthermore, since the data set analyzed here includes countries that

never experienced a reversal, for which the dependent variable does not vary, the

ML-estimator does not exist (as shown in Table 3.7, the data set used includes

countries that never experienced a reversal). This identification problem restricts

the analysis to a random effect approach.

A prominent random effect model is that proposed by Butler and Moffitt

(1982). It assumes the following specification for the error term in (3.2)

eit = τi + εit, εit ∼ i.i.d.N(0, 1), τi ∼ i.i.d.N(0, σ2
τ ). (3.3)

The country-specific term τi captures possible permanent latent differences in the

propensity to experience a reversal. Furthermore, it is assumed that τi and εit

are independent from the variables included in xit. If, however, xit did contain

variables reflecting countries’ general susceptibility to current account crises, then

τi would be correlated with xit. Ignoring such correlation leads to inconsistent

parameter estimates. Whence, the orthogonality condition between the random
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effect and the included regressors should be tested. An independence test is

discussed further below.

Notice that the time-invariant heterogeneity component τi implies a cross-

period correlation of the error term eit which is constant for all pairs of periods,

and is given by corr(eit, eis) = σ2
τ/(σ

2
τ + 1) for t 6= s (Greene, 2007). Additional

potential sources of serial dependence are transitory country-specific differences

in the propensity to experience a reversal leading to serial correlation in the error

component εit of Equation (3.3). Furthermore, the intertemporal characteristics

of the current account itself (Obstfeld and Rogoff, 1996), and the evidence of

sluggish behavior of the trade balance (Baldwin and Krugman, 1989) and of

foreign direct investments (Dixit, 1992) might introduce further serial dependence

in εit. Whence, in addition to the Butler-Moffitt specification (3.2) and (3.3), it is

assumed here that eit includes a serially correlated idiosyncratic error component

according to

eit = τi + εit, εit = ρεit−1 + ηit, ηit ∼ i.i.d.N(0, 1), (3.4)

where τi and ηit are independent among each other and also from the variables

included in xit. In order to ensure stationarity |ρ| < 1 is assumed.

3.3.2 Random country- and time-specific effects

International capital markets, particularly those in emerging economies, appear

volatile and subject to spillover effects. The currency crises of the 1990s and the

way in which they rapidly spread across emerging markets including those rated as

healthy economies by analysts and multilateral institutions, have brought interest

in contagion effects (Edwards and Rigobon, 2002). A crisis in one country may

lead investors to withdraw their investments from other markets without taking

into account differences in economic fundamentals. In addition, a crisis in one

economy can also affect the fundamentals of other countries through trade links

and currency devaluations. Trading partners of a country in which a financial

crisis has induced a sharp currency depreciation could experience a deterioration

of the trade balance resulting from a decline in exports and an increase in imports

(Corsetti et al., 1999). In the words of the former Managing Director of the

IMF: “from the viewpoint of the international system, the devaluations in Asia

will lead to large current account surpluses in those countries, damaging the
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competitive position of other countries and requiring them to run current account

deficit”Fisher (1998).

Currency devaluations of countries that experience a crisis can often be seen

as a beggar-thy-neighbor policy in the sense that they incite output growth and

employment domestically at the expense of output growth, employment and cur-

rent account deficit abroad (Corsetti et al., 1999). Competitive devaluations also

happen in response to this process, as other economies may in turn try to avoid

competitiveness loss through devaluations of their own currency. This appears

to have happened during the East Asian crises in 1997 (Dornbusch et al., 2000).

The panel probit models introduced above do not account for such spillover

effects since they ignore correlation across countries. In order to address this issue

the following factor specification for the error eit is also consider in the probit

regression (3.2):

eit = τi + ξt + εit, εit ∼ i.i.d.N(0, 1), (3.5)

with

ξt = δξt−1 + νt, νt ∼ i.i.d.N(0, σ2
ξ ), (3.6)

where τi, εit and νt are mutually independent and independent from xit. Fur-

thermore, it is assumed that |δ| < 1. The common dynamic factor ξt represents

unobserved time-specific effects which induce correlation across countries, reflect-

ing possible spillover effects. Note that this factor specification, which was also

used in Liesenfeld and Richard (2008b) for a microeconometric application, re-

sembles the linear panel models with a factor structure as discussed, e.g., in

Baltagi (2005) and primarily used for the analysis of macroeconomic data.

3.4 Maximum-Likelihood Estimation

ML estimation of the simple pooled panel probit model is essentially the same

as for a single equation probit model. The standard pooled probit does not

take into account countries- or time-specific differences, which means it assumes

assumes that the ei,ts in equation (3.2) are independent across time and units

and normally distributed with mean zero. The likelihood function of this model

does not require integration with respect to any unobserved component, rendering
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ML estimation of such models as straightforward. The loglikelihood of the pooled

probit is given by:

logL(θ; y, x) =
NT∑
i=1

{yi log [Φ(x′iβ)] + (1− yi) log [1− Φ(x′iβ)]} (3.7)

where Φ(.) is the standard normal cumulative distribution function (cdf) and NT

is the total number of observations.

3.4.1 Random country-specific effects

Efficient parameter estimates can also be easily obtained for the probit model

allowing for random country-specific effects given by (3.2) and (3.3). In par-

ticular, the event probabilities are represented by one dimensional integrals,

which can be evaluated conveniently by means of a quadrature procedure. Let

y = {{yit}Tt=1}Ni=1 and x = {{xit}Tt=1}Ni=1. Let θ denote the parameter vector to be

estimated. The likelihood function for the Butler-Moffitt random effect model is

then given by

L(θ; y, x) =
N∏
i=1

{∫
R1

T∏
t=1

[
Φyit
it (1− Φit)

(1−yit)
] 1√

2πσ2
τ

exp

{
−τ 2

i

2σ2
τ

}
dτi

}
, (3.8)

where Φit = Φ(x′itπ+κyit−1+τi), and again Φ(·) represents the cdf of the standard-

ized normal distribution. In the application below, the one dimensional integrals

in τi are evaluated using the Gauss-Hermite quadrature rule (see Section 2.1.1.2).

Once the parameters have been estimated, the Gauss-Hermite procedure can

also be used to obtain estimates of the random country-specific effects τi. Those

estimates can serve as the basis for validating the imposed orthogonality condi-

tions between the τi’s and the included regressors. In particular, the conditional

expectation of τi given the sample information (y, x) is obtained as

τ̂i = E(τi|y, x; θ) =

∫
Rτihi(yi, τi|xi; θ) dτi∫
Rhi(yi, τi|xi; θ) dτi

, (3.9)

where hi denotes the joint conditional pdf of y
i

= {yit}Tt=1 and τi given xi =

{xit}Tt=1, as defined by the integrand of the likelihood (3.8). For the evaluation

of the numerator and denominator by Gauss-Hermite, the parameters θ are set

to their ML-estimates. An auxiliary regression of the estimated random effects
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τ̂i against the time average of the explanatory variables provides a direct test of

the validity of the orthogonality condition between τi and xi.

In contrast to the Butler-Moffitt model, the computation of the likelihood for

the model (3.2) and (3.4) with country-specific effects and a serially correlated

idiosyncratic error component requires the evaluation of (T+1)-dimensional inter-

dependent integrals, and that of the model (3.2), (3.5), and (3.6) with country-

specific and time effects the evaluation of (T + N)-dimensional integrals. As

seen in Chapter 2, deterministic numerical integration procedures are not able to

evaluate such high-dimensional integrals, and thus the estimation of these models

have to rely on Monte Carlo approximations to the likelihood function.

3.4.2 AR(1) country-specific errors

The likelihood function of the panel probit model defined by equations (3.2)

and (3.4) has the form L(θ; y, x) =
∏N

i=1 Ii(θ), where Ii represents the likelihood

contribution of country i. In the following, the likelihood function for a single

country is derived, deleting the subscript i for the ease of notation. Let λ′t =

(εt, εt−1, τ), λ′0 = (τ0), λ′1 = (ε1, τi), and λ′ = (τi, ε1, ..., εT ). Under the assumption

that ε0 = 0, the likelihood contribution of a country is given by

I(θ) =

∫
RT+1

[
T∏
t=1

ϕt(λt)

]
fτ (τ)dλ, (3.10)

with

ϕt(λt) =

{
1I(εt ∈ Dt)φ(εt − ρεt−1), if t > 1

1I(ε1 ∈ D1)φ(ε1), if t = 1,
(3.11)

Dt =

{
[−(µt + τ) , ∞), if yt = 1

(−∞ , −(µt + τ)], if yt = 0,
(3.12)

where µt = x′tπ + κyt−1, 1I is the indicator function, and φ(·) denotes the stan-

dardized Normal density. I(θ) will be evaluated by Importance Sampling under

trajectories {λ̃(j)}Sj=1 drawn from an importance sampler m(λ|·). In order to sim-

plify the sequential application of importance sampling, it proves convenient to

rewrite (3.10) as

I(θ) =

∫
RT+1

T∏
t=0

ϕt(λt) dλ, (3.13)
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where ϕ0(λ0) = fτ (τ). Also λ′t is partitioned into (εt, η
′
t−1

) with η′
t−1

= (εt−1, τ0)

for t > 1, η0 = λ0 and η−1 = ∅.

3.4.2.1 Estimation via the GHK algorithm

The GHK simulator presented in Section 2.2.2.1 is an importance sampler de-

veloped to simulate multivariate normal rectangle probabilities (see Hajivassiliou

et al., 1996), and as such it is well suited to simulate (3.13). It exploits the prop-

erty of multivariate normal distribution that the conditional distribution of one

element of ε given a subvector of ε is also normally distributed.

Note that in (3.11) the random vector ε was already transformed to get a

random vector with standard normal distribution using (3.4), and that the event

probability can be rewritten as

I(θ) = Prob(ε1 < γ1 + δ1λ0, ε2 < γ2 + δ2λ0 + δ2ρε1, . . . , εT < γT + δTλ0 + δTρεT−1),

which can be decomposed into a product of conditional event probabilities

I(θ) =
T∏
t=1

Φ(γt + δtλ0 + δtρεt−1|ηt−1
). (3.14)

The GHK importance sampler is therefore

m(ε) =
T∏
t=0

ϕt(λt)

Φ(γt + δtλ0 + δtρεt−1|ηt−1
)

=
T∏
t=0

mt(εt|ηt−1
), (3.15)

where Φ(γ0 + δ0λ0 + δ0ρε−1|η−1
) ≡ 1, and m0(λ0) = fτ (τ) for period t = 0. The

GHK importance sampling representation of (3.13) is given by

I(θ) =

∫
RT+1

T∏
t=0

ϕt(λt) dλ

=

∫
RT+1

T∏
t=0

ϕt(λt)

mt(ε|ηt−1
)
·mt(ε|ηt−1

) dλ

=

∫
RT+1

T∏
t=1

Φ(γt + δtλ0 + δtρεt−1|ηt−1
) ·mt(ε|ηt−1

) dλ, (3.16)
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where m0(λ0) and ϕ0(λ0) canceled out in the last equality. The GHK-MC esti-

mate of I(θ) is obtained as

ĪS(θ) =
1

S

S∑
j=1

[
T∏
t=1

Φ(γt + δtλ̃
(j)
0 + δtρε̃

(j)
t−1)

]
, (3.17)

where {λ̃(j)}Sj=1 denotes i.i.d. trajectories drawn from the sequential samplers

(m0(λ0), {mt(εt|ηt−1
)}Tt=1).

The GHK procedure can also be used to obtain a MC estimate of the con-

ditional expectation of τ |y, x according to (3.9). Under the panel probit model

(3.2) and (3.4), the joint conditional pdf of y and τ given x takes the form

h(y, τ |x; θ) =

[∫
RT

T∏
t=1

ϕt(λt) dε1 · · · dεT

]
fτ (τ), (3.18)

which is used in Equation (3.9) in order to produce MC-GHK estimates of the

conditional expectation of τ .

3.4.2.2 Efficient Estimation via the EIS algorithm

EIS aims at constructing a sequence of auxiliary importance samplers to (3.13)

of the form

mt(εt|ηt−1
; at) =

kt(λt; at)

χt(ηt−1
; at)

, t = 0, ...., T, (3.19)

with

χt(ηt−1
; at) =

∫
R
kt(λt; at) dεt, (3.20)

where {kt(λt; at); at ∈ At} denote a (pre-selected) class of auxiliary paramet-

ric density kernels with χt(ηt−1
; at) as analytical integrating factor in εt given

(η
t−1
, at). The integral in (3.13) is rewritten as

I(θ) = χ0(a0)

∫
RT+1

T∏
t=0

[
ϕt(λt)χt+1(η

t
; at+1)

kt(λt; at)

]
mt(εt|ηt−1

; at) dλ (3.21)

with χT+1(·) ≡ 1. The backward transfer of the integrating factors χt+1(·) con-

stitutes the cornerstone of sequential EIS and is meant to capture as closely as

possible the dynamics of the underlying process. As it was pointed out in Section

2.2.2.1, it is precisely the lack of such transfers which explains the inefficiency
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of the GHK procedure in (large dimensional) interdependent truncated integrals.

Under (3.21), an EIS-MC estimate of I(θ) is given by

ĪS(θ) = χ0(a0)
1

S

S∑
j=1

 T∏
t=0

ϕt(λ̃
(j)

t )χt+1(η̃(j)

t
; at+1)

kt(λ̃
(j)

t ; at)

 , (3.22)

where {λ̃(j)
= {λ̃(j)

t }Tt=0}Sj=1 denote S i.i.d. trajectories drawn from the auxiliary

sampler

m(λ|a) =
T∏
t=0

mt(εt|ηt−1
; at), a = (a0, ..., aT ) ∈ A = ×Tt=0At. (3.23)

That is to say, ε̃
(j)
t is drawn from mt(εt|η̃(j)

t−1
; at) for t = 1, ..., T , and λ̃j0 is drawn

from m0(λ0, a0). An efficient importance sampler is one which minimizes the

MC sampling variances of the ratios ϕtχt+1/kt under such draws. Since mt(·; at)
depends itself upon at, efficient at values are obtained as solutions of the following

fixed point sequences of back-recursive auxiliary least squares (LS) problems:

(ĉ
(k+1)
t , â

(k+1)
t ) = arg min

ct,at

S∑
j=1

{
ln
[
ϕt
(
λ̃

(k,j)

t

)
· χt+1

(
η̃(k,j)

t
; â

(k)
t+1

)]
(3.24)

−ct − ln kt
(
λ̃

(k,j)

t ; at
)}2

,

for t = T, T − 1, ..., 0, where {λ̃(k,j)
= {λ̃(k,j)

t }Tt=0}Sj=1 denote trajectories drawn

from m(λ|â(k)). Convergence to a fixed point solution typically requires 3 to

5 iterations for reasonably well-behaved applications. See Richard and Zhang

(2007) or Section 2.2.3 for details. To initialize the search for ât, the starting

values a0 implied by the GHK importance sampler given in (3.15) are used.

Two additional key components of this EIS algorithm are as follows: (i) The

kernel kt(λt; at) has to approximate the ratio ϕt(λt) · χt+1(η
t
; at+1) with respect

to λt, not just εt in order to capture the interdependence across the εt’s. (There

is no revisiting of period t once ât has been found); (ii) All trajectories {λ̃(k,j)}Sj=1

have to be obtained by transformation of a single set of Common Random Num-

bers (CRNs) {ũ(j)}Sj=1 pre-drawn from a canonical distribution, i.e. one which

does not depend on a. In the present case the CRNs consist of draws from a

uniform distribution to be transformed into (truncated) Gaussian draws from

mt(εt|η̃t−1
; ât) (see Appendix 1 of this Chapter).
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3.4 Maximum-Likelihood Estimation

Next, the specific application of EIS to the likelihood integral defined by

Equation (3.10) is discussed. In the present section, only the heuristic of such

implementation is presented. Full details are given in Appendix 1, where it is

shown that the EIS problem in (3.24) actually reduces to a univariate EIS (instead

of a trivariate one in λt) by taking full advantage of the particular structure of

χt+1(·).
Note first that the period-t integrand in Equation (3.10) includes a (truncated)

Gaussian kernel. Therefore, it appears appropriate to select a Gaussian kernel

for kt(λt; at), a choice further supported by the fact that it will be demonstrated

that χt(ηt; at) then takes the form of a Gaussian kernel times a probability. More-

over, the selection of a Gaussian kernel enables the use of the fact that the class

of Gaussian kernels in λt is closed under multiplication (see DeGroot, 2004, or

Section 2.2.3.1). Therefore, kt is specified as the following product

kt(λt; at) = ϕt(λt) · k0,t(λt; at), (3.25)

where k0,t is itself a Gaussian kernel in λt. It immediately follows that ϕt ·
χt+1/kt ≡ χt+1/k0,t so that ϕt cancels out in the auxiliary EIS-LS optimization

problem as defined in Equation (3.24). Under specification (3.25), the standard

EIS implementation follows, noting that λ0 = τ is present in all T + 1 factors of

the integrand. Whence, one should proceed as follows:

(i) Regroup all terms in kt which only depend on λ0. Let the corresponding

factorization be denoted as

kt(λt; at) = k1,t(λt; at) · k3,t(λ0; at); (3.26)

(ii) Let χ1,t denote the integral of k1,t w.r.t. εt such that

χ1,t(ηt−1
; at) =

∫
R
k1,t(λt; at) dεt. (3.27)

Note that this integral is truncated to D∗t due to the indicator function 1I(ε ∈ D)

which is included in ϕ and, therefore, in k1,t. It follows that χ1,t takes the form of

a Gaussian kernel in η
t−1

times the probability that εt ∈ D∗t conditional on η
t−1

,

say

χ1,t(ηt−1
; at) = Φ(αt + β′tηt−1

) · k2,t(ηt−1
; at), (3.28)

where (αt, β
′
t) are appropriate functions of at and the data.

75
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It follows from Equations (3.26) to (3.28) that the integral of kt w.r.t. εt is of

the form

χt(ηt−1
; at) = k3,t(λ0; at)[Φ(αt + β′tηt−1

) · k2,t(ηt−1
; at)]. (3.29)

In direct application of the backward transfer of integrating factors associated

with sequential EIS, the factor k3,t is transferred back directly into the period

t = 0 integral while the two factors between brackets are transferred back into

the period t−1 integral. Full details are provided in Appendix 1 of this Chapter.

The EIS procedure can also be used to obtain an accurate MC-estimate of the

conditional expectation of τ |y, x according to Equation (3.9). Under the panel

probit model (3.2) and (3.4), the joint conditional pdf of y and τ given x takes

the form

h(y, τ |x; θ) =

[∫
RT

T∏
t=1

ϕt(λt) dε1 · · · dεT

]
fτ (τ), (3.30)

which is used in Equation (3.9) in order to produce MC-EIS estimates of the

conditional expectation of τ .

This heuristic presentation of the EIS application to the panel probit model

defined by Equations (3.2) and (3.4) is concluded with two important comments.

Firstly, as mentioned above, the MC procedure most frequently used to compute

choice probabilities is the GHK technique already introduced above. It is also an

importance sampling procedure but it selects ϕt itself as the auxiliary period-t

kernel.

Note that the GHK importance sampler actually belongs to the class of aux-

iliary EIS samplers introduced in Equation (3.25) since it amounts to selecting

a diffuse k0,t ∝ 1. Therefore, it is inefficient within this class. Results of a

MC experiment provided in Appendix 2 highlight the inefficiency of GHK in the

context of the particular model analyzed here. A broader MC investigation of

the relative inefficiency of GHK relative to EIS can be found in Liesenfeld and

Richard (2007).

Secondly, Zhang and Lee (2004) offer a MC comparison between GHK and AIS

(Accelerated Importance Sampling), where AIS denotes an earlier version of EIS,

in the context of the same model as that defined in Equations (3.2) and (3.4). In

apparent contrast with the results presented below, they find that GHK performs

essentially as well as AIS, except for longer panels. However, their AIS algorithm

76
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differs from the EIS implementation presented above in several critical aspects.

Most importantly, it ignores the factorization (3.26) and has no direct transfer

of integrating factors depending solely on λ0 = τ . This turns out to be a major

source of inefficiency since critical information relative to τ is then filtered through

the full sequence of AIS approximations instead of being transferred directly back

into the t = 0 integral. Moreover, it would appear that AIS optimizations are not

iterated toward fixed point solutions as in Equation (3.24), nor does AIS relies

upon CRNs. Last but not least, the simulation results in Zhang and Lee are

based upon i.i.d. replications of the actual sampling process (with no indications

as to how the auxiliary AIS draws are produced across replications). Whence,

the standard deviations and/or mean squared errors they report are measures

of conventional statistical dispersions with no indications of numerical accuracy.

In contrast, the results reported below are based upon i.i.d. replications of the

CRNs for a given sample and are, therefore, meant to measure only numerical

accuracy. See Richard and Zhang (2007) for a discussion of the importance of

these additional EIS refinements.

3.4.3 AR(1) time-specific effects

The likelihood function for the random effect panel model consisting of Equations

(3.2), (3.5), and (3.6) is given by

L(θ; y, x) =

∫
RT+N

N∏
i=1

T∏
t=1

[Φ(zit)]
yit [1− Φ(zit)]

(1−yit)p(τ , ξ) dτ , dξ, (3.31)

where ξ = {ξt}Tt=1, τ = {τi}Ni=1, zit = x′itπ+κyit−1 +τi+ξt, and p(τ , ξ) denotes the

joint density of the unobserved effects. The presence of a time effect ξt common

to all countries prevents the factorization of the likelihood function into a product

of integrals for each individual country. The joint density of (τ , ξ) is assumed to

be proportional to

p(τ , ξ) ∝ σ−Nτ exp

{
− 1

2σ2
τ

τ 2
i

}
|Hξ|

1
2 exp

{
−1

2
ξ′Hξξ

}
, (3.32)

where Hξ denotes the precision matrix of ξ. See Richard (1977) for analyti-

cal expressions of Hξ under alternative initial conditions, including stationarity.

Conditionally on ξ, one could apply GHK to each country individually, though
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Gauss-Hermite would likely be more efficient for these univariate integrals in

τi. One would then be left with a complicated T -dimensional integral in ξ. In

contrast, EIS can be applied to the likelihood function (3.31) in a way which

effectively captures the complex a posteriori interdependence between τ and ξ.

The integrand in Equation (3.31) is first factorized as follows

L(θ; y, x) =

∫
RT+N

φ0(ξ)
N∏
i=1

φi(τi, ξ) dτ dξ, (3.33)

where

φ0(ξ) ∝ |Hξ|
1
2 exp

[
−1

2
ξ′Hξξ

]
(3.34)

φi(τi, ξ) ∝ σ−1
τ exp

[
− 1

2σ2
τ

τ 2
i

] T∏
t=1

[Φ(zit)]
yit [1− Φ(zit)]

(1−yit). (3.35)

It is critical that the EIS sampler m(τ , ξ; a) fully reflects the interdependence

structure of the posterior density of (τ , ξ) which is proportional to the integrand

in Equation (3.33). Specifically, the τi’s are independent from one another con-

ditionally on ξ but are individually linked to the full ξ-vector. Accordingly, the

auxiliary sampler is factorized as

m(τ , ξ; a) = m0(ξ; a0)
N∏
i=1

mi(τi|ξ; ai). (3.36)

The corresponding kernels {ki(τi, ξ; ai)}Ni=1 and k0(ξ; a0) are specified as joint

Gaussian kernels in (τi, ξ) and ξ, respectively. Significant simplifications follow

from the particular form of the integrand in Equation (3.33). First, note that

lnφi is given by

lnφi(τi, ξ) ∝ −
1

2

τ 2
i

σ2
τ

+
T∑
t=1

ln
{

[Φ(zit)]
yit [1− Φ(zit)]

(1−yit)
}
. (3.37)

Each factor in the sum depends only on a single zit. Therefore, ln ki is specified

as follows

ln ki(τi, ξ; ai) = −1

2

[
τ 2
i

σ2
τ

+
T∑
t=1

(αi,tz
2
i,t + 2βi,tzi,t)

]
(3.38)

for a total of 2 · T auxiliary parameters plus the intercept. It follows that, at the

cost of standard algebraic operations χi(ξ; ai) (i.e. the integrating constant for
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ki) is itself a Gaussian kernel in ξ. Whence, the product φ0(ξ) ·
∏N

i=1 χi(ξ; ai) is

a Gaussian kernel and requires no further adjustment (an interesting example of

perfect fit in an EIS auxiliary regression).

Estimates for the unobserved random effects are obtained, in the same way

as under the panel model without time effects, as by-products of the EIS compu-

tation of the likelihood. In particular, the conditional expectation of the vector

of random effects υ = (τ , ξ) given the sample information has the form

υ̂ = E(υ|y, x; θ) =

∫
RN+T υ h(y, υ|x; θ) dυ∫

RN+Th(y, υ|x; θ) dυ
, (3.39)

where h denotes the joint conditional pdf of y and υ given x which is given by

the integrand of the likelihood function (3.31).

3.5 Empirical Results

3.5.1 A note on normalization

In Equations (3.3) to (3.6), the standard practice of normalizing the probit equa-

tion (3.2) by setting the variance of the residual innovations equal to 1 is followed.

Therefore the variances of the composite error term eit differ across models, im-

plying corresponding differences in the implicit normalization rule. The variances

of eit under the different specifications are given by

Equation (3.3) : σ2
e = 1 + σ2

τ

Equation (3.4) : σ2
e =

1

1− ρ2
+ σ2

τ

Equations (3.5)+(3.6) : σ2
e = 1 + σ2

τ +
σ2
ξ

1− δ2
.

These differences affect comparisons between estimated coefficients across models

(but not between estimated probabilities). The implied correction factors do

not exceed 11% for the results reported below. For the ease of comparison the

estimated standard deviation σe of eit for each model will be reported.

3.5.2 Model 1: Pooled Probit

The ML estimate of the pooled probit model (3.2) under the assumption that the

errors are independent across time and countries together with the corresponding
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3. ESTIMATION OF DYNAMIC PANEL PROBIT MODELS

estimated partial effects of the explanatory variables on the probability of a cur-

rent account reversal are presented in Table 3.1. The results for the static model

(κ = 0) are reported in the left columns and those of the dynamic specification

including the lagged dependent in the right columns.

The parameter estimates of the covariates xit are all in line with the results in

the empirical literature on current account crises (see Edwards, 2004a,b; Milesi-

Ferretti and Razin, 1998). Sharp reductions of the current-account deficit are

more likely in countries with a high current account deficits (AVGCA) and with

higher government expenditures (GOV). The significant effect of the current ac-

count deficit level is consistent with a need for sharp corrections in the trade

balance to ensure that the country remains solvent. Interpreting current account

as a constraint on expenditures, the positive impact of government expenditure

on the reversal probability can be attributed to fact that an increase of gov-

ernment expenditures leads to a deterioration of the current account. However,

the inclusion of the lagged dependent variable reduces this effect and makes it

non significant. This suggests that government expenditures might capture some

omitted serial dependence under the static specification. The marginal effect of

foreign reserve (RES) is negative and significant which suggests that low levels

of reserves make it more difficult to sustain a large trade imbalance and may also

reduce foreign investors’ willingness to lend (Milesi-Ferretti and Razin, 1998).

Also, reversals seem to be less common in countries with a high share of con-

cessional debt (CONCDEB). A possible explanation for this is that concessional

debt flows are typically less volatile and less likely to be sharply reversed than

flows of other debt and equity instruments used to finance current account deficits

like foreign portfolio investments (Milesi-Ferretti and Razin, 1998). Furthermore,

concessional debt flows are typically higher in poor countries that have difficul-

ties reducing external imbalances and serving external obligations leading to a

lower probability of observing a reversal for those countries. In fact, low-income

countries tend to run large current account deficits financed by official grants

and loans. Finally, countries with a lower degree of openness (OPEN), weaker

terms of trade (AVGTT) and higher GDP growth (AVGGROW) seem to face

higher probabilities of reversals, especially when growth rate in OECD countries

(GROWOECD) and/or US interest rate (USINT) are higher - though none of

these these coefficients are statistically significant.
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Note that the size of the estimated marginal effects for the significant eco-

nomic covariates on the probability of reversals are typically fairly small, ranging

from 0.004 to 0.026. Nevertheless, they are far from being negligible when ap-

plied to the low unconditional probability of experiencing a reversal which is

approximately 0.1.

The inclusion of the lagged current account reversal variable substantially

improves the fit of the model as indicated by the significant increase of the max-

imized log-likelihood value. The estimated coefficient κ measuring the impact of

the lagged dependent state variable is positive and significant at the 1% signif-

icance level with a large estimated partial effect of 0.21. This suggests that a

current account reversal significantly increases the probability of a further rever-

sal the following year. This would be consistent with the hypothesis that reversal

processes stretch over more than a year due to slow adjustments in international

trade flows (see Himarios, 1989; Junz and Rhomberg, 1973).

In order to analyze the dynamic effects of a covariate xitk implied by the

model with lagged dependent variable we use the sample average of the l-step

ahead marginal effect, i.e.,

1

N(T − l)

T∑
i=1

T−l∑
t=1

∂xitkp(yit+l = 1|xit+l, . . . , yit−1), l = 1, 2, . . . (3.40)

The probability p(yit+l = 1|xit+l, . . . , yit−1) is obtained by considering the

event tree associated with all possible yit-trajectories starting in period t and

ending in period t+ l with yit+l = 1. Analogously, the dynamic effect of the state

variable is measured by

1

N(T − l)

T∑
i=1

T−l∑
t=1

[p(yit+l = 1|xit+l, . . . , yit−1 = 1)

−p(yit+l = 1|xit+l, . . . , yit−1 = 0)] , l = 1, 2, . . . (3.41)

The upper left panel of Figure 3.1 plots the dynamic marginal effects for the

significant covariates (AVGCA, RES, CONCDEB) and the lagged state variable

for l = 1, . . . , 4, respectively. It reveals substantial long-run effects of the state

variable, whereby the occurrence of a current account reversal increases a coun-

try’s propensity to experience further large reductions in the current account in

subsequent years. This effect appears to stretch over a two-to-three-year period.
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Table 3.1: ML estimates of Model 1: Pooled probit

Static Model Dynamic Model

Variable Estimate Marg. Eff. Estimate Marg. Eff.
Constant −1.993∗∗∗ −1.955∗∗∗

(0.474) (0.481)
AVGCA −0.060∗∗∗ −0.009 −0.060∗∗∗ −0.009

(0.012) (0.012)
AVGGROW 0.008 0.001 0.010 0.001

(0.021) (0.021)
AVGINV −0.002 −0.0003 0.00002 0.000003

(0.010) (0.011)
AVGTT −0.108 −0.017 −0.103 −0.015

(0.066) (0.064)
GOV 0.026∗∗ 0.004 0.019 0.003

(0.012) (0.011)
OT −0.011 −0.002 −0.011 −0.002

(0.010) (0.010)
OPEN −0.058 −0.009 −0.064 −0.009

(0.087) (0.086)
USINT 0.108 0.017 0.081 0.012

(0.073) (0.073)
GROWOECD 0.084 0.013 0.075 0.011

(0.086) (0.084)
INTPAY 0.024 0.004 0.013 0.002

(0.029) (0.030)
RES −0.074∗∗ −0.011 −0.067∗∗ −0.010

(0.030) (0.029)
CONCDEB −0.165∗∗ −0.026 −0.149∗∗ −0.021

(0.068) (0.067)
κ 0.998∗∗∗ 0.213

(0.147)

Log-likelihood −276.13 −254.57

Note: The estimated model is given by Equation (3.2) assuming that the errors
are independent across countries and time. The asymptotic standard errors are
given in parentheses and obtained from the inverse Hessian. ∗,∗∗, and ∗∗∗ indicates
statistical significance at the 10%, 5% and 1% significance level.
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This would be in line with the result of Himarios (1989) showing that changes

in trade flows triggered by currency devaluations often used to correct the trade

balance are distributed over a time span of a about two or three years. However,

note that this long-run state dependence does not translate into significant long-

run effects of the covariates AVGCA, RES, and CONCDEB which is consistent

with the fact that their contemporaneous effects reported in Table 3.1 are already

fairly small.

3.5.3 Model 2: Random country-specific effects

Table 3.2 reports the estimates of the Butler-Moffitt model (3.2) and (3.3), which

includes random country specific effects, leading to equicorrelated errors across

time periods. The ML-estimates are obtained using a 20-points Gauss Hermite

quadrature. The estimate of the coefficient στ indicates that only 3% of the total

variation in the latent error is due to unobserved country-specific heterogene-

ity and this effect is not statistically significant. Furthermore, the maximized

log-likelihood of the random effect model is only marginally larger than that of

the dynamic pooled probit model with a likelihood-ratio (LR) test statistic of

0.2. Hence, there is no evidence in favor of the random effect specification for

time-invariant differences of institutional, political, and economic factors across

countries. Actually, the marginal effects as well as the predicted dynamic effects

(see, upper right panel of Figure 3.1) obtained under the random country-specific

effect model are very similar to those for the dynamic pooled model.

The estimated probit model with random effects assumes that τi is indepen-

dent of xit. If this were not correct, the parameter estimates would be incon-

sistent. In order to check this assumption the following auxiliary regression was

used:

τ̂i = ψ0 + x̄′i·ψ1 + ζi, i = 1, ..., n, (3.42)

where the vector x̄i· contains the mean values of the xit-variables (except for the

US interest rate and the OECD growth rate) over time. The value of the F -

statistic for the null ψ1 = 0 is 1.85 with critical values of 2.03 and 1.73 for the 5%

and 10% significance levels. Whence, evidence that τi might be correlated with

x̄i· is inconclusive.
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Table 3.2: ML estimates of Model 2: Random country-specific effects

Variable Estimate Marg. Eff.
Constant −1.880∗∗∗

(0.534)
AVGCA −0.064∗∗∗ −0.009

(0.015)
AVGGROW 0.010 0.001

(0.021)
AVGINV −0.0001 −0.00001

(0.011)
AVGTT −0.122 −0.017

(0.084)
GOV 0.018 0.003

(0.012)
OT −0.011 −0.002

(0.011)
OPEN −0.069 −0.010

(0.093)
USINT 0.083 0.012

(0.075)
GROWOECD 0.073 0.010

(0.090)
INTPAY 0.014 0.002

(0.031)
RES −0.073∗∗ −0.010

(0.035)
CONCDEB −0.159∗∗ −0.023

(0.078)
κ 0.982∗∗∗ 0.206

(0.154)
στ 0.162

(0.210)
σe 1.013
Log-likelihood −254.47
LR-statistic for H0 : στ = 0 0.20
F -statistic for exogeneity 1.85

Note: The estimated model is given by (3.2) and (3.3). The asymptotic standard
errors are in parentheses. ∗,∗∗, and ∗∗∗ indicates statistical significance at the
10%, 5% and 1% significance level. The 1% and 5% percent critical values of the
LR-statistic for H0 : στ = 0 are 5.41 and 2.71. The 1% and 5% percent critical
values of the F -statistic (t-statistic) are 2.71 and 2.03 (2.68 and 2.01).
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3.5.4 Model 3: AR(1) country-specific errors

The dynamic random effect model with serially correlated idiosyncratic errors

as specified by Equations (3.2) and (3.4) allows for a third source of serial de-

pendence in addition to state dependence and time-invariant unobserved hetero-

geneity. It ought to capture possible serially correlated shocks associated with

regional political changes or conflicts and persistent local macroeconomic events

like commodity price shocks. The ML-EIS estimation results based on S = 100

EIS draws are given in the left columns of Table 3.3. The MC (numerical) stan-

dard deviations are computed from 20 ML-EIS estimations each of them based

on a different i.i.d. set of CRNs. They are much smaller than the corresponding

asymptotic (statistical) standard deviations indicating that the ML-EIS results

are numerically very accurate.

The estimation results indicate that the inclusion of a transitory idiosyncratic

error component has significant effects on the dynamic structure of the model but

only a slight impact on the marginal effects of the xit-variables, which remain

typically very close to those of the pure random country-specific effect model

in Table 3.2. An exception is the effect of the terms of trade (AVGTT) which

becomes significant at the 10% level. Also, while the parameter στ governing

the time-invariant heterogeneity remains statistically insignificant, the estimated

coefficient κ associated with the lagged dependent variable and its partial effect

are now much smaller. This leads to a substantial attenuation of the long-run

effect of the lagged state variable (see lower left panel of Figure 3.1). The estimate

of the persistence parameter of the AR(1) error component ρ equals 0.35 and is

statistically significant at the 10% level. However, the corresponding LR-statistic

equals 2.40 and is not significant. Hence, despite its impact on the dynamic

structure of the model, the inclusion of an AR(1) error component does not

significantly improve the overall fit.

Since a lagged dependent variable and a country-specific AR(1) error com-

ponent can generate similar looking patterns of persistence in the dependent

variable, these results suggest that the AR(1) error captures some of the serial

dependence which is captured by the lagged dependent variable under the pooled

probit and the pure random country-specific effect model. However, the small

likelihood improvement obtained by the inclusion of an AR(1) error together

with the fairly large standard errors of the estimates for κ and ρ suggest that
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Table 3.3: ML-EIS estimates of Model 3: AR(1) country-specific errors.

Dynamic Static

Variable Estimate Marg. Eff. Estimate Marg. Eff.

Constant −1.795∗∗∗ −1.512∗∗

(0.567) (0.677)

AVGCA −0.072∗∗∗ −0.010 −0.087∗∗∗ −0.012

(0.018) (0.021)

AVGGROW 0.007 0.001 0.0001 0.00001

(0.024) (0.027)

AVGINV 0.004 0.001 0.010 0.001

(0.013) (0.017)

AVGTT −0.161∗ −0.022 −0.251∗∗ −0.034

(0.093) (0.116)

GOV 0.018 0.002 0.016 0.002

(0.014) (0.018)

OT −0.010 −0.001 −0.009 −0.001

(0.012) (0.014)

OPEN −0.108 −0.015 −0.175 −0.023

(0.109) (0.136)

USINT 0.097 0.013 0.119 0.016

(0.075) (0.082)

GROWOECD 0.057 0.008 0.038 0.005

(0.087) (0.095)

INTPAY 0.029 0.004 0.045 0.006

(0.035) (0.037)

RES −0.097∗∗ −0.013 −0.143∗∗∗ −0.019

(0.046) (0.054)

CONCDEB −0.190∗∗ −0.026 −0.261∗∗∗ −0.035

(0.088) (0.099)

κ 0.520∗ 0.088

(0.297)

στ 0.142 0.194

(0.322) (0.403)

ρ 0.349∗ 0.590∗∗∗

(0.198) (0.090)

σe 1.077 1.254

Log-likelihood −253.27 −255.17

LR-statistic for H0 : ρ = 0 2.40 36.65

F -statistic for exogeneity of xit 2.16 2.54

t-statistic for exogeneity of yi0 −1.84

Note: The estimated model is given by Equations (3.2) and (3.4). The ML-EIS estimation are

based on a MC sample size of S = 100. The asymptotic standard errors are given in parentheses

and obtained from the inverse Hessian. ∗,∗∗, and ∗∗∗ indicates statistical significance at the

10%, 5% and 1% significance level. The 1%, 5%, and 10% percent critical values of the LR-

statistic for H0 : ρ = 0 are 6.63, 3.84, and 2.71. The 1% and 5% critical values of the F -statistic

(t-statistic) are 2.71 and 2.03 (2.68 and 2.01).
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3.5 Empirical Results

Figure 3.1: Average `-Step Ahead Marginal Effects

Average `-step ahead marginal effects of the covariates AVGCA, RES,

CONCDEB and the lagged binary state variable computed according to

Equations (3.40) and (3.41).

the model has difficulties separating these two sources of serial dependence. In

order to verify this conjecture, the model with the AR(1) country-specific error

component without state-dependence was estimated. The ML-EIS results are

provided in the right columns of Table 4 and confirm our conjecture. In fact,

the estimated AR coefficient ρ increases to 0.59 and is now highly significant

according to both the t- and LR-test statistics, while the maximized likelihood

value are not significantly different from those obtained for the models including

either state-dependence only (Table 3.2) or both state-dependence and an AR

error component (left columns of Table 3.3).

All in all, our results indicate that the data are ambiguous on the question

of whether the observed persistence in current account reversals is due to state
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dependence associated with the hypothesis of slow adjustments in international

trade flows or due to serially correlated country-specific shocks related to local

political or macroeconomic events.

For the purpose of comparison, the random effect model with serially corre-

lated errors is re-estimated using the standard GHK simulator based on the same

simulation sample size as used for EIS (S = 100). The results, which are sum-

marized in the right columns of Table 3.4, reveal that the parameter estimates

obtained using GHK exhibit significantly larger MC standard errors than those

obtained under EIS. Moreover, while the parameter estimates for the explanatory

variables are generally similar for both procedures, the estimates of the parame-

ters governing the dynamics of current account reversals (κ, στ , ρ) are noticeably

different. In particular, the ML-GHK estimates of στ and ρ are smaller than their

ML-EIS counterparts. This is fully in line with the results of the MC study of

Lee (1997) indicating that the ML-GHK estimator exhibits a downward bias for

the persistence parameter of the idiosyncratic error as well as for the variation

parameter of the unobserved heterogeneity.

3.5.5 Model 4: AR(1) time-specific effects

Table 3.5 presents the ML estimation results of the panel model (3.2), (3.5),

and (3.6), allowing for unobserved random effects in both dimensions designed

to capture spill-over effects and/or global shocks common to all countries. The

ML-EIS estimation was performed with a simulation sample size of S = 100.

The MC standard errors reported illustrate how efficiently EIS approximates the

T +N integral in Equation (3.31).

The estimated marginal effects for all explanatory xit-variables and the esti-

mated variance parameter στ of the time-invariant heterogeneity are very similar

to those obtained under the models discussed above. Here again, there is no

conclusive evidence for correlation between τi and (xi., yi0). The results show a

large and highly significant state-dependence effect similar to that found under

the pure random country-specific effect model in Table 3.2. The variance pa-

rameter of the time factor σξ and its autoregressive parameter δ are both highly

significant, indicating that there are significant common dynamic time-specific

effects in addition to state dependence. Hence, in contrast to the specification

with state dependence and an AR country-specific error component, the model
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Table 3.4: Model 3: Comparison between GHK and EIS ML estimation

ML-EIS ML-GHK

Asy. MC Asy. MC
Variable Est. s.e. s.e. Est. s.e. s.e.
Constant −1.795∗∗∗ 0.567 0.0075 −1.752∗∗∗ 0.526 0.1015
AVGCA −0.072∗∗∗ 0.018 0.0006 −0.074∗∗∗ 0.017 0.0028
AVGGROW 0.007 0.024 0.0002 0.007 0.026 0.0009
AVGINV 0.004 0.013 0.0002 0.004 0.015 0.0012
AVGTT −0.161∗ 0.093 0.0027 −0.171∗ 0.094 0.0170
GOV 0.018 0.014 0.0001 0.018 0.015 0.0006
OT −0.010 0.012 > 0.0001 −0.010 0.013 0.0007
OPEN −0.108 0.109 0.0025 −0.116 0.118 0.0164
USINT 0.097 0.075 0.0007 0.098 0.082 0.0074
GROWOECD 0.057 0.087 0.0009 0.054 0.093 0.0070
INTPAY 0.029 0.035 0.0007 0.030 0.038 0.0037
RES −0.097∗∗ 0.046 0.0016 −0.103∗∗ 0.047 0.0100
CONCDEB −0.190∗∗ 0.088 0.0022 −0.199∗∗ 0.093 0.0152
κ 0.520 0.297 0.0172 0.486∗ 0.259 0.0764
στ 0.142 0.322 0.0049 0.078∗ 0.051 1.9035
ρ 0.349∗ 0.198 0.0363 0.376∗∗ 0.175 0.0615

σe 1.077 1.082

Log-
likelihood -253.27 0.0363 -253.20 0.3356

Note: The estimated model is given by Equation (3.2) and (3.4). The ML-EIS and ML-GHK

estimation are based on a MC sample size of S = 100. The EIS simulator is based on three

EIS iterations. The asymptotic standard errors are calculated as the square root of the

diagonal elements of the inverse Hessian and the MC standard errors from 30 replications of

the ML-EIS and ML-GHK estimation. ∗,∗∗, and ∗∗∗ indicates statistical significance at the

10%, 5% and 1% significance level.
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Table 3.5: ML-EIS estimates of Model 4: AR(1) time-specific effects

Variable Estimate Marg. Eff.
Constant −1.967∗∗∗

(0.677)
AVGCA −0.064∗∗∗ −0.009

(0.014)
AVGGROW 0.013 0.002

(0.022)
AVGINV −0.001 −0.0001

(0.011)
AVGTT −0.122 −0.017

(0.075)
GOV 0.018 0.003

(0.012)
OT −0.010 −0.001

(0.011)
OPEN −0.065 −0.009

(0.095)
USINT 0.070 0.010

(0.071)
GROWOECD 0.113 0.016

(0.097)
INTPAY 0.011 0.002

(0.032)
RES −0.073∗∗ −0.010

(0.035)
CONCDEB −0.163∗∗ −0.023

(0.074)
κ 1.013∗∗∗ 0.210

(0.139)
στ 0.154

(0.201)
δ −0.888∗∗∗

(0.041)
σξ 0.089∗∗

(0.048)
σe 1.030

Log-likelihood −253.13

F -statistic for exogeneity of xit 2.09
t-statistic for exogeneity of yi0 −1.98

Note: The estimated model is given by Equations (3.2), (3.5), and (3.6). The
ML-EIS estimation are based on a MC sample size of S = 100. The asymptotic
standard errors are given in parentheses and obtained from the inverse Hessian.
∗,∗∗, and ∗∗∗ indicates statistical significance at the 10%, 5% and 1% significance
level. The 1% and 5% critical values of the F -statistic (t-statistic) are 2.71 and
2.03 (2.68 and 2.01).
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seems to be able to separate the two sources of persistence. Also, the estimated

autocorrelation parameter of -0.89 implies a strong mean reversion in the com-

mon time-specific factor. This mean-reverting tendency in the common factor

affects the common probability of experiencing a current account reversal across

all countries and is, therefore, fully consistent with a global accounting restriction

requiring that deficits and surpluses across all national current accounts need to

be balanced. In particular, one would expect that a temporary simultaneous

increase in the propensities to experience a large reduction in current account

deficits is immediately reverted in order to guarantee a global balance in deficits

and surpluses, rather than a persistent and long-lasting increase in individual

propensities. Although the time-specific factor capturing global shocks and/or

contagion effects is significant, it appears to be quantitatively fairly small. In

fact, the fraction of error variance due to the time-specific effect in only 3.5%.

Therefore, it is not surprising that the overall fit of the model and its predicted

dynamic effects (see, the lower right panel of Figure 3.1) do not change signif-

icantly relative to the pure random country-specific effect model in Table 3.2

which leaves out the time-specific effect.

Finally, we note that the quantitatively low impact of the common time-

specific factor might be due to the implicit restriction that the loading w.r.t. that

factor is the same across all countries. Hence, a natural extension of the model

would be to allow for factor loadings, which differ across countries (whether

randomly or deterministically). However, due to a substantial increase in the

number of parameters or the dimension of the integration problem associated

with the likelihood evaluation the statistical inference of such an extension is

non-trivial without further restrictions and is left to future research.

3.5.6 Predictive Performance

Models 2 to 4 are essentially observationally equivalent with log-likelihood values

ranging from -253.1 to -255.2. However, log-likelihood comparisons provide an

incomplete picture of the overall quality of a binary model. Hence, next models 2

to 4 are compared on two predictive benchmarks: the proportion of correctly pre-

dicted binary outcomes and predicted duration distribution of reversal episodes.

Assessing the predictive performance of an estimated binary model requires

selecting a threshold c whereby success (current account reversal) is predicted
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Figure 3.2: ROC Curve

Figure 2: Receiver Operating Characteristic curves for models 2 to 4.

39

Receiver Operating Characteristic for Models 2 and 4.
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iff the predicted probability is larger than c, i.e., rit = p̂(yit|xit, yit−1) > c. The

corresponding classification error probabilities are given by

α(c) = 1− p(rit > c|yit = 1) and β(c) = p(rit > c|yit = 0), (3.43)

which can be approximated by the corresponding relative frequencies of misclas-

sification. Since the sample portion Π of success is only of the order of 0.1, it does

not make sense to select a threshold c which minimizes the unconditional prob-

ability of misclassification p(c) = Πα(c) + (1 − Π)β(c). Following Winkelmann

and Boes (2006), the threshold c∗ which minimizes the sum of classification error

probabilities α(c)+β(c) was computed for each model. Their Receiver Operating

Characteristic (ROC) curves were also computed, which are defined as the curves

plotting 1−α(c) against β(c), as well as the areas under these ROC curves. These

areas have a minimum of 0.5 (complete randomness) and a maximum of 1 (error-

less classification). The ROC curves are displayed in Figure 3.2 and associated

results for the optimal threshold c∗, classification error probabilities for c∗ and

ROC areas are reported in Table 6.

Note that c∗ ranges from 0.08 to 0.11, which are close to the sample proportion

Π of 0.10. Model 3 with AR(1) country-specific errors without state-dependence

has the best predictive performance with α(c∗) + β(c∗) = 0.27 and a ROC area

of 0.91 (the corresponding figures for the other models range from 0.36 to 0.43

and 0.85 to 0.88, respectively). Also its ROC curve dominates those of the other

models. Based on the optimal threshold it correctly predicts 91% of the observed

reversals and 82% of the non-reversals.

Each estimated model was also used to simulate 20,000 fictitious panel data

sets of the binary outcome conditional on the observed xit variables in order to

obtain accurate MC approximations of the predictive distributions of the duration

of reversal episodes to be compared with the frequency distribution observed

for the data (see Figure 3.3, and Table 3.6 for predicted average durations). It

appears that models 2 and 4 have a better performance than model 3 with a better

fit to the empirical distribution and predicted average durations closer to the

observed average of 1.52. However, the differences across the models seem to be

not large enough to overturn the ROC ranking. Thus, if the likelihood criterion,

which by itself is fairly uninformative about the source of serial dependence,

is supplemented by measures of predictive performance, the model with AR(1)

93



3. ESTIMATION OF DYNAMIC PANEL PROBIT MODELS

country-specific shocks and without state-dependence appears to be the preferred

specification.

Figure 3.3: Duration of Reversal Episodes

Figure 3: Observed and predicted relative frequencies for the duration of reversal
episodes for models 2 to 4. The observed average duration is 1.52 years.

40

Observed and predictive relative frequencies for the duration of reversal

episodes for Models 2 to 4. The observed duration is 1.52 years.

3.6 Conclusion

This chapter uses different non-linear panel data specifications in order to inves-

tigate the causes and dynamics of current account reversals in low- and middle-

income countries. In particular, four sources of serial persistence were analyzed:

(i) a country-specific random effect reflecting time-invariant differences in in-

stitutional, political or economic factors; (ii) serially correlated transitory error
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Table 3.6: Classification errors and predicted average duration in years

ROC average
c∗ α(c∗) β(c∗) area duration

Model 2: Random country-specific 0.11 0.25 0.18 0.85 1.68
effects (0.12)

Model 3: AR(1) country-specific 0.12 0.09 0.18 0.91 1.77
errors (static) (0.14)

Model 3: AR(1) country-specific 0.09 0.11 0.25 0.88 1.80
errors (dynamic) (0.14)

Model 4: AR(1) time-specific 0.08 0.13 0.28 0.86 1.66
effects (0.12)

Note: Estimated standard deviation of the predicted average duration are given in

parentheses. The observed average duration is 1.52 years.

component capturing persistent country-specific shocks; (iii) dynamic common

time-specific factor effects, designed to account for potential spill-over effects and

global shocks to all countries; and (iv) a state dependence component to control

for the effect of previous events of current account reversal and to capture slow

adjustments in international trade flows.

The likelihood evaluation of panel models with country-specific random het-

erogeneity require univariate integrals that were efficiently solved using Gauss-

Hermite quadrature. For likelihood-based estimation of panel models with country-

specific random heterogeneity and serially correlated error components, the MC

integration technique of Efficient Importance Sampling (EIS) was used. The ap-

plication of EIS allows for numerically very accurate and reliable ML estimation

of those models. In particular, it improves significantly the numerical efficiency

of GHK, which is the most frequently used MC procedure to estimate non-linear

panel models with serially correlated errors.

The empirical results indicate that the static pooled probit model is strongly

dominated by the alternative models with serial dependence. However, state-

dependence and transitory country-specific errors are essentially observationally

equivalent, although the ROC curve gives more support to the model with transi-
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tory country-specific errors and with no state-dependence. Autocorrelated errors

and state-dependence are both significant only with the inclusion of random time-

specific effects into the model together with state-dependence, even though the

time-specific effect is small with limited effect on the overall fit of the model.

Also, conclusive evidence for the existence of random country-specific effects was

not found.

Overall, the results relative to the determinants of current account reversals

are in line with the those in the empirical literature on current account crises

and confirm the empirical relevance of theoretical solvency and sustainability

considerations w.r.t. a country’s trade balance. In particular, countries with high

current account imbalances, low foreign reserves, a small fraction of concessional

debt, and unfavorable terms of trades are more likely to experience a current

account reversal. These results are fairly robust against the dynamic specification

of the model.
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3.A1 Appendix 1: EIS-implementation

This appendix details the implementation of the EIS procedure for the panel pro-

bit model (3.2) and (3.4) to obtain MC estimates for the likelihood contribution

I(θ) given by equation (3.10). In order to take full advantage of the properties

of Gaussian kernels, we adopt the following conventions:

(i) Gaussian kernels are represented under their natural parametrization – see

Lehmann (1986, Section 2.7). Whence, kt(λt; at) in Equation (3.26) is parame-

terized as

kt(λt; at) =
1I(εt ∈ D∗t )√

2π
exp

{
−1

2
(λ′tPtλt + 2λ′tqt)

}
, (3.A1-1)

with D∗t = (−∞ , γt + δtλ0]. The EIS parameter at consists of the six lower

diagonal elements of Pt and the three elements in qt (the positivity constraint on

Pt never binds in our application).

(ii) All factorizations of kt are based upon the Cholesky decomposition of Pt

into

Pt = Lt∆tL
′
t, (3.A1-2)

where Lt = {lij,t} is a lower triangular matrix with ones on the diagonal and ∆t

is diagonal matrix with diagonal elements di,t ≥ 0. Let

l1,t = (l21,t, l31,t)
′, l2,t = (1, l32,t)

′. (3.A1-3)

The key steps in our EIS implementation consists of finding the analytical ex-

pression of χt(ηt−1
; at). It is the object of the following lemma.

Lemma 1. The integral of kt(λt; at), as defined in (3.A1-1), w.r.t. εt is of

the form given by Equation (3.29) together with

k2,t(ηt−1
; ·) = exp

{
−1

2
(d2,tη

′
t−1
l2,tl

′
2,tηt−1

+ 2η′
t−1
l2,tm2,t)

}
(3.A1-4)

k3,t(λ0; ·) = exp

{
−1

2
(d3,tλ

2
0 + 2m3,tλ0)

}
· rt (3.A1-5)

αt =
√
d1,t

(
γt +

m1,t

d1,t

)
, βt =

√
d1,t(l1,t + δtι) (3.A1-6)

97



3. ESTIMATION OF DYNAMIC PANEL PROBIT MODELS

rt =
1√
d1,t

exp

{
1

2

m2
1,t

d1,t

}
, (3.A1-7)

with

mt = {mi,t} = L−1
t qt, ι′ = (0, 1). (3.A1-8)

Proof. The proof is straightforward under the Cholesky factorization introduced

in (3.A1-2), deleting the index t for the ease of notation. First the transformation

z = L′λ is introduced, whereby

z1 = ε+ l′1η−1
, z2 = l′2η−1

, z3 = λ0.

Whence,

χ(η−1
; ·) = exp

{
−1

2

[
3∑
i=2

(diz
2
i + 2mizi)

]}

× 1√
2π

∫
D∗∗t

exp

{
−1

2
(d1z

2
1 + 2m1z1)

}
dz1,

where D∗∗t = (−∞ , γt + (l1,t + δtι)
′η−1

]. Next, the quadratic form in z1 is

completed under the integral sign and following transformation is introduced

v =
√
d1

(
z1 +

m1

d1

)
.

The result immediately follows.2

Next, full details of the recursive EIS implementation in Equations (3.19) to

(3.24) are provided.

· Period t = T : With χT+1 ≡ 1, the only component of kT is ϕT itself.

Whence,

PT = eρe
′
ρ and qT = 0, (3.A1-9)

with

e′ρ = (1,−ρ, 0).

· Period t (T > t > 1): Given Equation (3.29) together with lemma 1, the

product ϕt ·χt+1 comprises the following factors: ϕt as defined in Equation (3.11),

k2,t+1 as given by Equation (3.A1-4) and Φ(αt+1 + β′t+1ηt), where (αt+1, βt+1) are

defined in Equation (3.A1-6). The first two factors are already Gaussian kernels.
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Furthermore, the term Φ(·) depends on λt only through the linear combination

β′t+1ηt. Whence, k0,t in Equation (3.25) is defined as

k0,t(λt; at) = k2,t+1(η
t
, ·) exp

{
−1

2

[
a1,t(β

′
t+1ηt)

2 + 2a2,t(β
′
t+1ηt)

]}
, (3.A1-10)

with at = (a1,t, a2,t). It follows that k2,t+1 also cancels out in the auxiliary EIS

regressions which simplifies into OLS of ln Φ(αt+1+β′t+1ηt) on β′t+1ηt and (β′t+1ηt)
2

together with a constant. From this EIS regressions one obtains estimated values

for (a1,t, a2,t). Note that η
t

can be written as

η
t

= Aλt, with A =

(
1 0 0

0 0 1

)
. (3.A1-11)

It follows that the parameters of the EIS kernel kt in Equation (3.A1-1) are given

by

Pt = eρe
′
ρ + d2,t+1A

′l2,t+1l
′
2,t+1A+ a1,tA

′βt+1β
′
t+1A (3.A1-12)

qt = A′l2,t+1m2,t+1 + a2,tA
′βt+1. (3.A1-13)

Its integrating factor χt(ηt; at) follows by application of lemma 1.

· Period t = 1: The same principle as above applies to period 1, but requires

adjustments in order to account for the initial condition. Specifically, we have

λ1 = η
1

= (ε1, λ0)′, λ0 = η0 (= τ). (3.A1-14)

This amounts to replacing A by I2 in Equations (3.A1-11) to (3.A1-13). Whence,

the kernel k1(λ1, a1) needs only be bivariate with

P1 = e1e
′
1 + d2,2l2,2l

′
2,2 + â1,1β2β

′
2 (3.A1-15)

q1 = l2,2m2,2 + â2,1β2, (3.A1-16)

with e′1 = (1, 0). Essentially, P1 and q1 have lost their middle row and/or column.

To avoid changing notation in lemma 1, the Cholesky decomposition of P1 is

parameterized as

L1 =

(
1 0

l31,1 1

)
, D1 =

(
d1,1 0

0 d3,1

)
, l1,1 = l31,1, (3.A1-17)
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while d2,2 and l2,2 are now zero. Under these adjustments in notation, lemma 1

still applies with k2(η0; ·) ≡ 1 and β1 reduced to the scalar

β1 =
√
d1,1(l1,1 + δ1). (3.A1-18)

· Period t = 0 (untruncated integral w.r.t. λ0 ≡ τ): Accounting for the back

transfer of {k3,t(λ0; ·)}Tt=1, all of which are Gaussian kernels, the λ0-kernel is given

by

k0(λ0; ·) = fτ (λ0) ·
T∏
t=1

k3,t(λ0; ·) · exp

{
−1

2

(
â1,0λ

2
0 + 2â2,0λ0

)}
, (3.A1-19)

where (â1,0, â2,0) are the (fixed point) coefficients of the EIS approximation of

ln Φ(α1 + β1λ0). Note that k0 is the product of T + 2 Gaussian kernels in λ0 and

is, therefore, itself a Gaussian kernel, whose mean m0 and variance v2
0 trivially

obtain by addition from Equation (3.A1-19).

As mentioned above, fixed point convergence of the EIS auxiliary regressions

(3.24) as well as continuity of corresponding likelihood estimates require the use

of CRNs. In order to draw the εt’s from their (truncated) Gaussian samplers

mt(εt|η̃t−1
; ât) based on CRNs one can use the following result: If ε follows a

truncated N(µ, σ2) distribution with bl < ε < bu, then a ε-draw is obtained as

(see, e.g., Train, 2003)

ε̃ = µ+ σΦ−1

[
Φ

(
bl − µ
σ

)
+ ũ ·

{
Φ

(
bu − µ
σ

)
− Φ

(
bl − µ
σ

)}]
, (3.A1-20)

where ũ is a canonical draw from the U(0, 1) distribution which is independent

from the parameters indexing the distribution of ε.

3.A2 Appendix 2: MC experiments on the nu-

merical efficiency of EIS

In order to compare the numerical accuracy of EIS relative to GHK, the integral

in Equation (3.10) is evaluated under 18 artificial data sets considering three

different values of ρ (0.2, 0.5, 0.9), two different values of στ (0.1, 0.5) and three

different sample sizes (T=10, 20, 50). All other coefficients are set equal to zero.

For each of these eighteen data sets, 200 i.i.d MC estimates of Ii based upon

different sets of CRNs are produced. Both GHK and EIS individual estimates are
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based upon S = 200 auxiliary draws and the number of EIS iterations is fixed at

three. In Table A1 we report the means, MC standard deviations and coefficients

of variation of the 200 replications under both methods for the eighteen scenarios.

As discussed in Richard and Zhang (2007), these standard deviations provide

direct measures of numerical accuracy. Note immediately that the MC standard

deviation under EIS are systematically lower than those under GHK, by factors

ranging from 7 to 315.

As expected numerical accuracy is a decreasing function of ρ, στ and T . This

is especially the case for GHK with coefficient of variations above 1 for T = 50

and ρ = 0.9. In sharp contrast, the worse case scenario for EIS (T = 50, ρ = 0.9,

στ = 0.5) has a coefficient of variation of 0.017. A more extensive and detailed

comparison of GHK and EIS can be found in Liesenfeld and Richard (2007).
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Table 3.7: List of countries

Country Initial Obs. Final Obs. Reversals

Argentina 1988 2001 2

Bangladesh 1984 2000 0

Benin 1984 1999 2

Bolivia 1984 2001 3

Botswana 1984 2000 2

Brazil 1984 2001 1

Burkina Faso 1984 1992 0

Burundi 1989 2001 0

Cameroon 1984 1993 0

Central African Republic 1984 1992 0

Chile 1984 2001 3

China 1986 2001 1

Colombia 1984 2001 4

Congo Rep. 1984 2001 2

Costa Rica 1984 2001 1

Cote d’Ivoire 1984 2001 5

Dominican Republic 1984 2001 2

Ecuador 1984 2001 1

Egypt 1984 2001 3

El Salvador 1984 2001 2

Gabon 1984 1997 3

Gambia 1984 1995 1

Ghana 1984 2001 1

Guatemala 1984 2001 0

Guinea-Bissau 1987 1995 0

Haiti 1984 1998 3

Honduras 1984 2001 2

Hungary 1986 2001 1

India 1984 2001 0

Indonesia 1985 2001 1
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Table 3.8: List of countries

Country Initial Obs. Final Obs. Reversals

Jordan 1984 2001 4

Kenya 1984 2001 2

Lesotho 1984 2000 0

Madagascar 1984 2001 0

Malawi 1984 2001 0

Malaysia 1984 2001 5

Mali 1991 2000 0

Mauritania 1984 1996 4

Mexico 1984 2001 1

Morocco 1984 2001 2

Niger 1984 1993 1

Nigeria 1984 1997 2

Pakistan 1984 2001 3

Panama 1984 2001 2

Paraguay 1984 2001 2

Peru 1984 2001 2

Philippines 1984 2001 3

Rwanda 1984 2001 1

Senegal 1984 2001 3

Seychelles 1989 2001 4

Sierra Leone 1984 1995 0

Sri Lanka 1984 1997 2

Swaziland 1984 2001 3

Thailand 1984 2001 3

Togo 1984 2000 0

Tunisia 1984 2001 2

Turkey 1984 2001 0

Uruguay 1984 2001 0

Venezuela 1984 2001 1

Zimbabwe 1984 1992 2
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3. ESTIMATION OF DYNAMIC PANEL PROBIT MODELS

Table A1. Monte Carlo simulation results of GHK and EIS

ρ = 0.2 ρ = 0.5 ρ = 0.9

EIS GHK EIS GHK EIS GHK

T = 10

στ = 0.1 mean 9.8e-04 9.8e-04 1.9e-03 1.9e-03 4.7e-03 4.7e-03
std. dev. 1.7e-07 1.9e-05 4.5e-06 1.0e-04 1.9e-05 5.3e-04
coeff. var. 1.7e-04 2.0e-02 2.4e-03 5.5e-02 4.2e-03 1.1e-01

στ = 0.5 mean 7.9e-04 7.9e-04 5.5e-03 5.4e-03 1.4e-01 1.4e-01
std. dev. 5.4e-07 3.6e-05 2.4e-05 3.4e-04 1.5e-03 9.8e-03
coeff. var. 6.9e-04 4.5e-02 4.3e-03 6.3e-02 1.1e-02 7.0e-02

T = 20

στ = 0.1 mean 6.9e-07 6.9e-07 1.0e-06 9.7e-07 6.7e-06 5.9e-06
std. dev. 1.4e-10 2.2e-08 3.1e-09 8.8e-08 7.7e-08 1.5e-06
coeff. var. 2.0e-04 3.1e-02 3.0e-03 9.0e-02 1.2e-02 2.6e-01

στ = 0.5 mean 7.8e-07 7.7e-07 2.6e-06 2.5e-06 8.3e-06 6.6e-06
std. dev. 6.5e-10 4.6e-08 1.5e-08 2.7e-07 1.1e-07 1.6e-06
coeff. var. 8.3e-04 6.0e-02 6.0e-03 1.0e-01 1.4e-02 2.4e-01

T = 50

στ = 0.1 mean 1.4e-15 1.4e-15 1.1e-14 1.0e-14 7.6e-10 8.3e-10
std. dev. 2.9e-19 9.2e-17 3.9e-17 2.3e-15 1.1e-11 9.7e-10
coeff. var. 2.0e-04 6.4e-02 3.5e-03 2.2e-01 1.5e-02 1.2e+00

στ = 0.5 mean 3.5e-15 3.5e-15 4.8e-15 4.8e-15 1.1e-09 1.3e-09
std. dev. 2.3e-18 4.0e-16 1.8e-17 1.6e-15 1.8e-11 1.8e-09
coeff. var. 6.6e-04 1.1e-01 3.7e-03 3.4e-01 1.7e-02 1.4e+00

Note: MC-estimation of the likelihood contribution Ii under the panel model (3.2)
and (3.4) for a simulated fictitious sample {yit}Tt=1 (see Equation 3.10). The mean, the
standard deviation and the coefficient of variation are obtained from 200 independent
replications of the MC estimation of Ii. The EIS and GHK MC-estimates are based
upon a simulation sample size S = 200.
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Chapter 4

Nonlinear State-Space Models

Filtering is the problem of estimating the state of a stochastic dynamic sys-

tem from noisy measurement observations (Jazwinski, 1970). It dates back to

more than two centuries, when Gauss was interested in determining the orbital

elements of a celestial body based on many measurements over time, and devel-

oped the least squares technique. Filtering is important in the time series analysis

of state-space models not only as a means to infer the state of the system, but also

as a means to compute the likelihood function and to estimate the parameters of

such models (see Durbin and Koopman, 2001; Harvey, 1990).

Likelihood evaluation and filtering in applications involving state-space mod-

els require the calculation of integrals over unobservable state variables. When

models are linear and stochastic processes are Gaussian, required integrals can

be calculated analytically via the Kalman filter. Departures entail integrals that

must be approximated numerically, either via deterministic quadrature methods

or via MC integration. Since deterministic methods become unfeasible when

the number of states is large, sequential Monte Carlo methods have become the

standard tool in nonlinear filtering (see Doucet et al., 2001).

The most widely used sequential MC filter is the particle filter developed by

Gordon et al. (1993) and Kitagawa (1996). Their approach employs discrete

fixed-support approximations to unknown densities that appear in the predictive

and updating stages of the filtering process. The discrete points that collec-

tively provide density approximations are known as particles, and examples of

its use are becoming widespread; in economics, e.g., see Kim et al. (1998) for

an application involving stochastic volatility models; and Fernandez-Villaverde
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4. NONLINEAR STATE-SPACE MODELS

and Rubio-Ramirez (2005, 2007) for applications involving dynamic stochastic

general equilibrium (DSGE) models.

While conceptually simple and easy to program, the particle filter suffers two

shortcomings. First, because the density approximations it provides are discrete,

associated likelihood approximations can feature spurious discontinuities, ren-

dering as problematic the application of likelihood maximization procedures (see

Pitt, 2002). Second, the supports upon which approximations are based are not

adapted: the support of period-t importance sampler used to approximate the

integrals in the filtering process only incorporate information conveyed by values

of the observable variables available in period t − 1, but not period t (see Pitt

and Shephard, 1999). This gives rise to numerical inefficiencies that can be acute

when observable variables are highly informative with regard to state variables,

particularly given the presence of outliers.

Numerous extensions of the particle filter have been proposed in attempts to

address these problems. For examples, see Pitt and Shephard (1999); the collec-

tion of papers in Doucet et al. (2001); Pitt (2002); Ristic et al. (2004), and the

collection housed at http://www-sigproc.eng.cam.ac.uk/smc/papers.html. Typ-

ically, efficiency gains are sought through attempts at adapting period-t impor-

tance samplers via the use of information available through period t. However,

with the exception of the extension proposed by Pitt (2002), who employs a

bootstrap-smoothing approximation designed to address this problem for the

specialized case in which the state space is unidimensional, once period-t sup-

ports are established they remain fixed over a discrete collection of points as the

filter advances forward through the sample, thus failing to address the problem

of spurious likelihood discontinuity.

This chapter, which was co-authored with David DeJong, Dharmarajan Har-

iharan, Roman Liesenfeld, and Jean-François Richard, presents the EIS filter,

a sequential Monte Carlo filter based on adapted period-t importance samplers,

but that features a unique combination of two characteristics. The approxima-

tions are continuous; and period-t supports are adjusted using a method designed

to produce approximations that achieve near-optimal efficiency at the adaption

stage. The approximations are constructed using the efficient importance sam-

pling (EIS) methodology developed by Richard and Zhang (2007) (see section

2.2.3). Construction is facilitated using an optimization procedure designed to
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minimize numerical standard errors associated with the approximated integral.

Example applications involve the analysis of DSGE models, and are used to il-

lustrate the relative performance of the particle and EIS filters.

A brief literature review is helpful to motivate the focus on the analysis of

DSGE models. The pioneering work of Sargent (1989) demonstrated the mapping

of DSGE models into linear/Gaussian state-space representations amenable to

likelihood-based analysis achievable via the Kalman filter. DeJong et al. (2000)

developed a Bayesian approach to analyzing these models. Subsequent work has

involved the implementation of DSGE models towards a broad range of empirical

objectives, including forecasting and guidance of the conduct of aggregate fiscal

and monetary policy (see Smets and Wouters, 2003).

Prior to the work of Fernandez-Villaverde and Rubio-Ramirez (2005, 2007),

likelihood-based implementation of DSGE models was conducted using linear and

Gaussian representations. But their findings revealed an important caveat: ap-

proximation errors associated with linear representations of DSGE models can

impart significant errors in corresponding likelihood representations. As a rem-

edy, they demonstrated use of the particle filter for achieving likelihood evaluation

for non-linear model representations. But as the examples in this chapter illus-

trate, the numerical inefficiencies noted above suffered by the particle filter can

be acute in applications involving DSGE models. By eliminating these inefficien-

cies, the EIS filter offers a significant advance in the empirical analysis of DSGE

models.

4.1 Likelihood Evaluation and Filtering in State-

Space Representations

Let yt be a n×1 vector of observable variables, and denote {yj}tj=1 as Yt. Likewise,

let st be a m×1 vector of unobserved (‘latent’) state variables, and denote {sj}tj=1

as St. State-space representations consist of a state-transition equation

st = γ(st−1, Yt−1, υt), (1)

where υt is a vector of innovations with respect to (st−1, Yt−1), and a measurement

(or observation) equation

yt = δ (st, Yt−1, ut) , (2)
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where ut is a vector of innovations with respect to (st, Yt−1). Hereafter, υt are

referred to as structural shocks, and ut as measurement errors.

Given a realization of the sequence of observations Yt, the state estimation

problem consists of computing an estimate of sk based on Yt. If k < t, this

problem is referred as smoothing, while if k = t the problem is called filtering,

and k > t defines the prediction problem. Filtering and prediction are usually

associated with real-time operations, in which estimates are required given the

observations available now. If inference on some past states of the system are

required, smoothing makes use of present information to improved the past states

estimates.

The likelihood function f(YT ) is obtained by interpreting (1) and (2) in terms

of the densities f(st|st−1, Yt−1) and f(yt|st, Yt−1), respectively. Since the repre-

sentation is recursive, f(YT ) factors sequentially as

f (YT ) =
T∏
t=1

f (yt|Yt−1) , (3)

where f (y1|Y0) ≡ f(y1). The time-t likelihood f (yt|Yt−1) is obtained by marginal-

izing over st :

f (yt|Yt−1) =

∫
f (yt|st, Yt−1) f (st|Yt−1) dst, (4)

where the predictive density f (st|Yt−1) is given by

f (st|Yt−1) =

∫
f (st|st−1, Yt−1) f (st−1|Yt−1) dst−1, (5)

and f (st−1|Yt−1) is the time-(t− 1) filtering density. Advancing the time sub-

script by one period, from Bayes’ theorem, f (st|Yt) is given by

f (st|Yt) =
f (yt, st|Yt−1)

f (yt|Yt−1)
=
f (yt|st, Yt−1) f (st|Yt−1)

f (yt|Yt−1)
. (6)

Likelihood construction is achieved by calculating (4) and (5) sequentially

from periods 1 to T , taking as an input in period t the filtering density con-

structed in period (t− 1). In period 1 the filtering density is the known marginal

density f(s0), which can be degenerate as a special case; i.e., f (s0|Y0) ≡ f(s0).

In turn, filtering entails the approximation of the conditional (upon Yt) ex-

pectation of some function h(st) (including st itself). In light of (6) and (4), this

can be written as

Et (h(st)|Yt) =

∫
h(st)f (yt|st, Yt−1) f (st|Yt−1) dst∫
f (yt|st, Yt−1) f (st|Yt−1) dst

. (7)
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4.2 The Particle Filter and Leading Extensions

Since the proposed procedure is an extension of the particle filter devel-

oped by Gordon et al. (1993) and Kitagawa (1996), this Section provides a brief

overview of it. The particle filter is an algorithm that recursively generates ran-

dom numbers approximately distributed as f (st|Yt). To characterize its imple-

mentation, let sr,it denote the ith draw of st obtained from the conditional density

f (st|Yt−r) for r = 0, 1. A single draw sr,it is a particle, and a set of draws {sr,it }Ni=1

is a swarm of particles. The object of filtration is that of transforming a swarm

{s0,i
t−1}Ni=1 to {s0,i

t }Ni=1. The filter is initialized by a swarm {s0,i
0 }Ni=1 drawn from

f(s0|Y0) ≡ f(s0).

Period-t filtration takes as input a swarm {s0,i
t−1}Ni=1. The predictive step

consists of transforming this swarm into a second swarm {s1,i
t }Ni=1 according to

(5). This is done by drawing s1,i
t from the conditional density f

(
st|s0,i

t−1, Yt−1

)
,

i = 1, ..., N . Note that {s1,i
t }Ni=1 can be used to produce an MC estimate of

f (yt|Yt−1), which according to (4) is given by

f̂N(yt|Yt−1) =
1

N

N∑
i=1

f(yt|s1,i
t , Yt−1). (8)

Next, f (st|Yt) is approximated by re-weighting {s1,i
t }Ni=1 in accordance with

(6) (the updating step): a particle s1,i
t with prior weight 1

N
is assigned the poste-

rior weight

w0,i
t =

f(yt|s1,i
t , Yt−1)

N∑
j=1

f(yt|s1,j
t , Yt−1)

. (9)

The filtered swarm {s0,i
t }Ni=1 is then obtained by drawing with replacement from

the swarm {s1,i
t }Ni=1 with probabilities {w0,i

t }Ni=1 (i.e., bootstrapping).

Having characterized the particle filter, its strengths and weaknesses, which

are well documented in previous studies, can be pinpointed. Its strength lies in

its simplicity: the algorithm described above is straightforward and universally

applicable.

Its weaknesses are twofold. First, it provides discrete approximations of

f(st|Yt−1) and f(st|Yt), which moreover are discontinuous functions of the model
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parameters. The associated likelihood approximation is therefore also discontin-

uous, rendering the application of maximization routines problematic, a point

raised previously, e.g., by Pitt (2002).

Second, as the filter enters period t, the discrete approximation of f(st−1|Yt−1)

is set. Hence the swarm {s1,i
t }Ni=1 produced in the augmentation stage ignores in-

formation provided by yt, thus Pitt and Shephard (1999) refer to these augment-

ing draws as “blind”. It follows that if f (yt|st, Yt−1) - treated as a function of st

given Yt - is sharply peaked in the tails of f(st|Yt−1), {s1,i
t }Ni=1 will contain few

elements in the relevant range of f (yt|st, Yt−1). The lower panel of Figure 4.1)

represents f(st|Yt−1), the sampler used in the particle filter to solve the likelihood

integral (4), while the upper panel shows the measurement density f (yt|st, Yt−1)

as a function of st in a situation where it is peaked at the tails of f(st|Yt−1). Note

that most of the particles coming from this sampler will be placed far from the

importance region defined by the product f (yt|st, Yt−1)·f(st|Yt−1). Thus {s1,i
t }Ni=1

represents draws from an inefficient sampler: relatively few of its elements will be

assigned appreciable weight in the updating stage in the following period. This

is known as “sample impoverishment”: it entails a reduction in the effective size

of the particle swarm.

Extensions of the particle filter employ adaption techniques to generate gains

in efficiency. An extension proposed by Gordon et al. (1993) and Kitagawa (1996)

consists simply of making N ′ >> N blind proposals {s1,j
t }N

′
j=1 as with the parti-

cle filter, and then obtaining the swarm
{
s0,i
t

}N
i=1

by sampling with replacement,

using weights computed from the N ′ blind proposals. This is the sampling-

importance resampling filter; it seeks to overcome the problem of sample impov-

erishment by brute force, and can be computationally expensive.

Carpenter et al. (1999) sought to overcome sample impoverishment using a

stratified sampling approach to approximate the prediction density. This is ac-

complished by defining a partition consisting of K subintervals in the state space,

and constructing the prediction density approximation by sampling with replace-

ment Nk particles from among the particles in each subinterval. Here Nk is

proportional to a weight defined for the entire kth interval; also,
∑K

k=1 Nk = N .

This produces wider variation in re-sampled particles, but if the swarm of pro-

posals {s1,i
t }Ni=1 are tightly clustered in the tails of f(st|Yt−1), so too will be the

re-sampled particles.
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Figure 4.1: Sample Impoverishment

Pitt and Shephard (1999) developed an extension that is closely related to the

EIS Filter. They tackle adaption using an importance sampling (IS) procedure.

Consider as an example the marginalization step. Faced with the problem of

calculating f (yt|Yt−1) in (4), but with f (st|Yt−1) unknown, importance sampling

achieves approximation via the introduction into the integral of an importance

density g(st|Yt):

f (yt|Yt−1) =

∫
f (yt|st, Yt−1) f (st|Yt−1)

g(st|Yt)
g(st|Yt) dst. (10)

Obtaining drawings s0,i
t from g(st|Yt), this integral is approximated as

f̂ (yt|Yt−1) ≈ 1

N

N∑
i=1

f
(
yt|s0,i

t , Yt−1

)
f
(
s0,i
t |Yt−1

)
g(s0,i

t |Yt)
. (11)

Pitt and Shephard referred to the introduction of g(st|Yt) as adaption. Full

adaption is achieved when g(st|Yt) is constructed as being proportional to the
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product f (yt|st, Yt−1) f (st|Yt−1) , rendering the ratios in (11) as constants. Pitt

and Shephard viewed adaption as computationally infeasible, due to the require-

ment of computing f
(
s0,i
t |Yt−1

)
for every value of s0,i

t produced by the sampler.

Instead they developed samplers designed to yield partial adaption.

The samplers result from Taylor series approximations of f (yt|st, Yt−1) around

st = µkt = E
(
st|s0,k

t−1, Yt−1

)
. A zero-order expansion yields their auxiliary particle

filter; a first-order expansion yields their adapted particle filter, and Smith and

Santos (2006) study examples under which it is possible to construct samplers

using second-order expansions.

These samplers help alleviate blind sampling by reweighting
{
s0,i
t−1

}
to account

for information conveyed by yt. However, sample impoverishment can remain an

issue, since the algorithm does not allow adjustment of the support of
{
s0,i
t−1

}
.

Moreover, the samplers are suboptimal, since µkt is incapable of fully capturing

the characteristics of f (yt|st, Yt−1). Finally, these samplers remain prone to the

discontinuity problem.

Pitt (2002) addressed the discontinuity problem for the special case in which

the state space is unidimensional by replacing the weights in (9) associated with

the particle filter (or comparable weights associated with the auxiliary particle

filter) with smoothed versions constructed via a piecewise linear approximation

of the empirical c.d.f. associated with the swarm
{
s0,i
t

}N
i=1

. This enables the use

of common random numbers (CRNs) to produce likelihood estimates that are

continuous functions of model parameters (see Hendry, 1984, or Section 2.2.1).

4.3 Parametric EIS Filter

EIS is an automated procedure for constructing continuous importance sam-

plers fully adapted as global approximations to targeted integrands as detailed in

Section 2.2.3. In subsection 4.3.1 only the general principles behind EIS will be

outlined, in the context of evaluating (4). Subsection 4.3.2 discusses the compu-

tation of f(st|Yt−1) in (4) at auxiliary values of st generated under period-t EIS

optimization. Subsection 4.3.3 discusses a special case that often characterizes

state-space representations: degenerate transition densities.
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4.3.1 EIS integration

Let ϕt(st) = f(yt|st, Yt−1)f(st|Yt−1) in (4), where the subscript t in ϕt re-

places (yt, Yt−1). Implementation of EIS begins with the preselection of a para-

metric class K = {k(st; at); at ∈ A} of auxiliary density kernels. Corresponding

density functions m are

m(st; at) =
k(st; at)

χ(at)
, χ(at) =

∫
k(st; at) dst. (12)

The selection of K is problem-specific; here Gaussian specifications will be dis-

cussed; DeJong et al. (2008) discusses an extension to piecewise-continuous spec-

ifications. The objective of EIS is to select the parameter value ât ∈ A that

minimizes the variance of the ratio ϕt(st)
m(st|at) over the range of integration. Fol-

lowing Richard and Zhang (2007), a (near) optimal value ât is obtained as the

solution to

(ât, ĉt) = arg min
at,ct

∫
[lnϕt(st)− ct − ln k(st; at)]

2m(st; at) dst, (13)

where ct is an intercept meant to calibrate ln(ϕt/k). Equation (13) is a standard

least squares problem, except that the auxiliary sampling density itself depends

upon at. This is resolved by reinterpreting (13) as the search for a fixed-point

solution. An operational MC version implemented (typically) using R << N

draws, is as follows:

Step l + 1: Given âlt, draw intermediate values {sit,l}Ri=1 from the step-l EIS

sampler m(st; â
l
t), and solve

(âl+1
t , ĉl+1

t ) = arg min
at,ct

R∑
i=1

[
lnϕt(s

i
t,l)− ct − ln k(sit,l; at)

]2
. (14)

If K belongs to the exponential family of distributions, there exists a param-

eterization at such that the auxiliary problems in (14) are linear, as explained in

Section 2.2.3.1.

Three technical points bear mentioning here. First, the evaluation of ϕt(st)

entails the evaluation of f(st|Yt−1), which is unavailable analytically and must be

approximated; this is discussed below in Section 4.3.3. Second, the selection of the

initial value â1
t is important for achieving rapid convergence; Section 4.4 presents

an effective algorithm for specifying â1
t in applications involving DSGE models

113



4. NONLINEAR STATE-SPACE MODELS

(one step in each of the examples considered). Third, to achieve rapid conver-

gence, and to ensure continuity of corresponding likelihood estimates, {sit,j} must

be obtained by a transformation of a set of common random numbers (CRNs)

{uit} drawn from a canonical distribution (i.e., one that does not depend on at;

e.g., standardized Normal draws when m is Gaussian).

An additional substantive point also bears mentioning. At convergence to ât,

the EIS sampler m(st; ât) not only provides the optimal global approximation

to the targeted integrand ϕt(st) = f(yt|st, Yt−1) · f(st|Yt−1), but also serves as

the optimized approximation to the time-t filtering density f (st|Yt) . Thus as

with the particle filter, the EIS filter facilitates likelihood evaluation and filtering

simultaneously.

At convergence to ât, the EIS filter approximation of f(yt|Yt−1) in (4) is given

by

f̂N(yt|Yt−1) =
1

N

N∑
i=1

ω
(
sit; ât

)
, (15)

ω
(
sit; ât

)
=

f (yt|sit, Yt−1) f (sit|Yt−1)

m(sit; ât)
, (16)

where {sit}
N
i=1 are drawn from the (final) EIS sampler m(st; ât). This estimate

converges almost surely towards f(yt|Yt−1) under weak regularity conditions (see

Geweke, 1989a, or Section 2.2.2). Violations of these conditions typically result

from the use of samplers with thinner tails than those of ϕt. As mentioned in

Section 2.2.3, Richard and Zhang (2007) offer a diagnostic measure that is adept

at detecting this problem, since it compares the MC sampling variances of the

ratio ϕt
g

under two values of at: the optimal ât, and one that inflates the variance

of the st draws by a factor of 3 to 5, in order to generate draws in the tails of

m(st; ât) and to examine their effect on the variance of the ratio ϕt
m

.

Pseudo-code for implementing the EIS filter is as follows:

• At period t, the sampler m(st−1; ât−1), and corresponding draws and weights{
sit−1, ω

(
sit−1; ât−1

)}N
i=1

are inherited from period t − 1, where in period 0

m(s0; â0) ≡ f (s0) .

• Using an initial value â1
t , obtain R draws

{
si,lt

}R
i=1

from m(st; â
1
t ), and solve

(14) to obtain â2
t . Repeat until convergence, yielding ât.
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• Obtain N values {sit}
N
i=1 from the optimized sampling density m (st; ât) , and

calculate (15).

• Pass m (st; ât) and {sit, ω (sit; ât)}
N
i=1 to period t+ 1. Repeat until period T is

reached.

As it will be explained below, {sit, ω (sit; ât)}
N
i=1 are passed from period t to

t+ 1 to facilitate the approximation of the unknown f(st|Yt−1) appearing in (14)

and (16).

4.3.2 Continuous approximations of f(st|Yt−1)

As noted, the EIS filter requires the evaluation of f(st|Yt−1) at any value of

st needed for EIS iterations. Here three operational alternatives for overcoming

this hurdle will be discussed. Below, S denotes the number of points used for

each individual evaluation of f(st|Yt−1).

Weighted-sum approximations

Combining (5) and (6), it is possible to rewrite f(st|Yt−1) as a ratio of integrals:

f(st|Yt−1) =

∫
f(st|st−1, Yt−1)f(yt−1|st−1, Yt−2)f(st−1|Yt−2) dst−1∫

f(yt−1|st−1, Yt−2)f(st−1|Yt−2) dst−1

, (17)

where the denominator represents the likelihood integral for which an EIS sampler

has been constructed in period t− 1. A direct MC estimate of f(st|Yt−1) is given

by

f̂S(st|Yt−1) =

S∑
i=1

f(st|sit−1, Yt−1) · ω(sit−1; ât−1)

S∑
i=1

ω(sit−1; ât−1)

, (18)

where {sit−1}Si=1 denotes EIS draws from m(st−1|ât−1), and
{
ω(sit−1; ât−1)

}S
i=1

de-

notes associated weights (both of which are carried over from period-t− 1).

Obviously m(st−1|ât−1) is not an EIS sampler for the numerator in (17).

This can impart a potential loss of numerical accuracy if the MC variance of

f(st|st−1, Yt−1) is large over the support of m(st−1|ât−1). This would be the case

if the conditional variance of st|st−1, Yt−1 were significantly smaller than that of

st−1|Yt−1. But the fact that the same set of draws for the numerator and the de-

nominator are used typically creates positive correlation between their respective

MC estimators, thus reducing the variance of their ratio (see Geweke, 1989a).
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A constant weight approximation

When EIS delivers a close global approximation to f(st−1|Yt−1), the weights

ω(st−1; ât−1) will be near constants over the range of integration. Replacing

these weights by their arithmetic means ω (ât−1) in (17) and (18), the following

simplification is obtained:

f(st|Yt−1) '
∫
f(st|st−1, Yt−1) ·m(st−1; ât−1) dst−1. (19)

This substitution yields rapid implementation if additionally the integral in (19)

has an analytical solution. This will be the case if, e.g., f(st|st−1, Yt−1) is a

conditional normal density for st|st−1, and m is also normal. In cases for which

there is no analytical solution, a standard MC approximation can be used

f̂S(st|Yt−1) ' 1

S

S∑
i=1

f(st|sit−1, Yt−1). (20)

EIS evaluation

Evaluation of f(st|Yt−1) can sometimes be delicate, including situations prone

to sample impoverishment (such as when working with degenerate transitions,

discussed below). Under such circumstances, one might consider applying EIS

not only to the likelihood integral (“outer EIS”), but also to the evaluation of

f(st|Yt−1) itself (“inner EIS”).

While outer EIS is applied only once per period, inner EIS must be applied for

every value of st generated by the former. Also, application of EIS to (5) requires

the construction of a continuous approximation to f(st−1|Yt−1). Two obvious

candidates are as follows. The first is the period-(t− 1) EIS samplerm(st−1; ât−1),

under the implicit assumption that the corresponding weights ω(st−1; ât−1) are

near-constant, at least over the range of integration. The second is the use of a

more flexible sampler, such as a mixture of Gaussian densities.

4.3.3 Degenerate transitions

When state transition equations include identities, corresponding transition

densities are degenerate (or Dirac) in some of their components; this requires an

adjustment to EIS implementation. Let st partition into st = (pt, qt) , such that
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there is a proper transition density f (pt|st−1, Yt−1) for pt, and an identity for

qt|pt, st−1, which could also depend on Yt−1, omitted here for ease of notation:

qt ≡ φ (pt, pt−1, qt−1) = φ (pt, st−1) . (21)

The evaluation of f (st|Yt−1) in (5) now requires special attention, since its

evaluation at a given st (as selected by the EIS algorithm) requires integration

in the strict subspace associated with identity (21). Note in particular that the

presence of identities raises a conditioning issue known as the Borel-Kolmogorov

paradox (see DeGroot, 2004, Section 3.10). This issue is resolved here by rein-

terpreting (21) as the limit of a uniform density for qt|pt, st−1 on the interval

[φ (pt, st−1)− ε, φ (pt, st−1) + ε] .

Assuming that φ (pt, st−1) is differentiable and strictly monotone in qt−1, with

inverse

qt−1 = ψ (pt, qt, pt−1) = ψ (st, pt−1) (22)

taking the limit of the integral in (5) as ε tends to zero, produces

f (st|Yt−1) =

∫
J (st, pt−1) f (pt|st−1, Yt−1) f (pt−1, qt−1|Yt−1) |qt−1=ψ(st,pt−1) dpt−1,

(23)

where with ‖ · ‖ denoting the absolute value of a determinant,

J (st, pt−1) =

∥∥∥∥ ∂

∂q′t
ψ (st, pt−1)

∥∥∥∥ . (24)

Note that (23) requires that for any st, f (st−1|Yt−1) must be evaluated along the

zero-measure subspace qt−1 = ψ (st, pt−1). This rules out use of the weighted-sum

approximation introduced above, since the probability that any of the particles

s0,i
t−1 lies in that subspace is zero. Instead, (23) can be approximated by replacing

f (st−1|Yt−1) by ω (ât−1)m (st−1|ât−1):

f̂ (st|Yt−1) =

∫
J (st, pt−1) f (pt|qt−1, Yt−1)m (pt−1, qt−1|ât−1) |qt−1=ψ(st,pt−1) dpt−1.

(25)

In this case, since m (pt−1, ψ (st, pt−1) |ât−1) is not a sampler for pt−1|st, (25) must

be evaluated either by quadrature or its own EIS sampler.
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4.4 Application to DSGE Models

As noted, the work of Fernandez-Villaverde and Rubio-Ramirez (2005,

2007) revealed that approximation errors associated with linear representations

of DSGE models can impart significant errors in corresponding likelihood rep-

resentations. As a remedy, they demonstrated the use of the particle filter for

achieving likelihood evaluation for non-linear model representations. Here the

EIS filter implementation will be explained using two workhorse models. The

first is the standard two-state real business cycle (RBC) model; the second is

a small-open-economy (SOE) model patterned after those considered, e.g., by

Mendoza (1991) and Schmitt-Grohe and Uribe (2003), but extended to include

six state variables.

Two data sets for each models are analyzed: an artificial data set generated

from a known model parameterization; and a corresponding real data set. Thus in

total four applications are considered, each of which poses a significant challenge

to the successful implementation of a numerical filtering algorithm.

4.4.1 Example 1: Two-State RBC Model

The first application is to the simple DSGE model used by Fernandez-

Villaverde and Rubio-Ramirez (2005) to demonstrate implementation of the par-

ticle filter. The model consists of a representative household that seeks to maxi-

mize the expected discounted stream of utility derived from consumption c and

leisure l:

max
ct,lt

U = E0

∞∑
t=0

βt
(
cϕt l

1−ϕ
t

)
1− φ

1−φ

,

where (β, φ, ϕ) represent the household’s subjective discount factor, degree of

relative risk aversion, and the relative importance assigned to ct and lt in deter-

mining period-t utility.

The household divides its available time per period (normalized to unity)

between labor nt and leisure. Labor combines with physical capital kt and a

stochastic productivity term zt to produce a single good ζt, which may be con-

sumed or invested (ζ is used in place of the usual representation for output – y

– to avoid confusion with the use of y as representing the observable variables of
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a generic state-space model). Investment it combines with undepreciated capital

to yield kt+1, thus the opportunity cost of period-t consumption is period-(t+ 1)

capital. Collectively, the constraints faced by the household are given by

ζt = ztk
α
t n

1−α
t ,

1 = nt + lt,

ζt = ct + it,

kt+1 = it + (1− δ)kt,

zt = z0e
gteωt , ωt = ρωt−1 + εt,

where (α, δ, g, ρ) represent capital’s share of output, the depreciation rate of cap-

ital, the growth rate of total factor productivity (TFP), and the persistence of

innovations to TFP.

Optimal household behavior is represented as policy functions for (ζt, ct, nt, lt, it)

in terms of the state (kt, zt).Given the policy function i(kt, zt), the state-transitions

equations reduce to(
1 +

g

1− α

)
kt = i(kt−1, zt−1) + (1− δ)kt−1 (26)

ln zt = (1− ρ) ln(z0) + ρ ln zt−1 + εt, εt ∼ N(0, σ2
ε), (27)

and the observation equations are

xt = x(kt, zt) + ux,t, x = ζ, i, n, ux,t ∼ N(0, σ2
x). (28)

Policy functions are expressed as Chebyshev polynomials in the state variables

(kt, zt) , constructed using the projection method described in the Appendix to

this Chapter, and in DeJong and Dave (2007).

Given the form of (27), it will be useful to represent state variables as logged

deviations from steady state: st = [ln(kt/k
∗) ln(zt/z

∗)]′ . For ease of notation,

hereafter ln(kt/k
∗) will denote kt, and ln(zt/z

∗) will denote zt. In addition, given

the form of (28), yt is defined as yt = [ζt it nt]
′ . All subsequent formulas should

be read in accordance with these representations.

To obtain the predictive density associated with (26) and (27), note that since

(26) is an identity, the transition density of the system is degenerate in kt. Thus
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(26) is inverted yielding

kt−1 = ψ (kt, zt−1) , (29)

J (kt, zt−1) =

∥∥∥∥ ∂

∂kt
ψ (kt, zt−1)

∥∥∥∥ , (30)

and express the predictive density as

f (st|Yt−1) =

∫
J (kt, zt−1) f (zt|st−1) f (st−1|Yt−1) |kt−1=ψ(kt,zt−1) dzt−1. (31)

From (27), note that

f (zt|st−1) ∼ N1

([
0 ρ

]
st−1, σ2

ε

)
,

with Nr () denoting an r−dimensional normal distribution. Finally, as the inver-

sion of Chebyshev polynomials is awkward, (29) and (30) are approximated using

third-order polynomials in (kt, zt−1) .

With the predictive density established, the time-t likelihood is standard:

f (yt|Yt−1) =

∫
f (yt|st, Yt−1) f (st|Yt−1) dst, (32)

where from (28),

f (yt|st, Yt−1) ∼ N3 (µ(st), V ) , (33)

µ(st) =

 ζ(st)

i(st)

n(st)

 , V =

 σ2
y 0 0

0 σ2
i 0

0 0 σ2
n

 .
To achieve likelihood evaluation in period t, the approach is to construct

a normally distributed EIS sampler m (st; ât) for the integrand f (yt|st, Yt−1) ·
f (st|Yt−1) in (32). In so doing, f (st|Yt−1) is represented using the constant-

weight approach to approximation described above. That is, the time-(t− 1)

sampler m (st−1; ât−1) is used as a stand-in for f (st−1|Yt−1) , yielding

f (st|Yt−1) '
∫
J (kt, zt−1) f (zt|st−1)m (st−1; ât−1) |kt−1=ψ(kt,zt−1) dzt−1. (34)

The process is initialized by constructing f (s0) as the unconditional distribution

of the Kalman filter associated with a linear approximation of the model, which

is only used to construct the EIS sampler for the first time period m (s1; â1).
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It proceeds via forward recursion, taking m (st−1; ât−1) as an input, and passing

m (st; ât) to the subsequent period. Full details follow.

Consider first the evaluation of (34). Representing m (st; ât) as

m (st; ât) ∼ N2 (µ,Ω) ,

and with f (zt|st−1) distributed as

f (zt|st−1) ∼ N1

([
0 ρ

]
st−1, σ2

ε

)
,

f (zt|st−1)m (st−1; ât−1) combines to form the joint density

(
zt

st−1

)
∼ N3


 0 ρ

1 0

0 1

µ, V

 , (35)

V = σ2
ε

 1 0 0

0 0 0

0 0 0

+

 0 ρ

1 0

0 1

Ω

(
0 1 0

ρ 0 1

)
.

As (34) must be evaluated for each candidate st used to calculate (32), one must

transform (35) into a distribution over (st, zt−1)′ . Approximating (29) linearly as

kt−1 = akkt + bkzt−1, which implies(
st

zt−1

)
= A

(
zt

st−1

)
,

A =

 0 1/ak −bk/ak
1 0 0

0 0 1

 , |A| = 1/|ak|,

it is possible to express (zt st−1)′ as a function of (st zt−1)′. This expression,

coupled with (35), yields the joint density

f ∗ (st, zt−1) ∼ N3 (m,Σ) , Σ = AV A′, (36)

m = Bµ,

B = A

 0 ρ

1 0

0 1

 .
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Finally, partitioning (36) into a product of two densities, one for st and one for

zt−1|st :

f ∗1 (st) ∼ N2 (m1,Σ11) , f ∗2 (zt−1|st) ∼ N1 (m2.1 + ∆21st, σ22.1) ,

where

m =

(
m1

m2

)
, Σ =

(
Σ11 Σ12

Σ21 σ22

)
,

with Σ11 2× 2, Σ12 2× 1, Σ21 1× 2, and σ22 1× 1, and

∆21 = Σ21 (Σ11)−1 , m2.1 = m2 −∆21m1, σ22.1 = σ22 − Σ21 (Σ11)−1 Σ12.

Having accomplished these steps, (34) is approximately

f (st|Yt−1) ≈ f ∗1 (st)

∫
J (st, zt−1)

|ak|
f ∗2 (zt−1|st) dzt−1, (37)

where since

|Σ|−1/2 =
1

|ak|
|V |−1/2,

the term |ak| enters via the usual change-of-variables formula. For each candi-

date st that enters into the approximation of (32), f ∗2 (zt−1|st) is used as an EIS

sampler, and approximate (37) as

f (st|Yt−1) ≈
(
f ∗1 (st)

|ak|

)
1

S

S∑
i=1

J
(
st, z

i
t−1

)
, (38)

where
{
zit−1

}S
i=1

are simulated drawings from f ∗2 (zt−1|st) .
Turning to the approximation of (32), this is straightforward once a reliable

initial EIS sampler is constructed. Such an initial sampler should be constructed

as a close approximation of the integrand f (yt|st, Yt−1) · f (st|Yt−1) . Towards

this end, f ∗1 (st) is used in place of f (st|Yt−1) , to construct a linear Gaussian

approximation of f (yt|st, Yt−1) . Recall from (33) that f (yt|st, Yt−1) is already

Gaussian, but with a non-linear mean function, say µ (st) . Approximating this

function as µ (st) ≈ r + Pst, yields

f ∗ (yt|st, Yt−1) ∼ N3(r + Pst, V ).
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Combining these approximations, and letting Q = V −1, H = Σ−1
11 , yields the

initial sampler

m
(
st; a

0
t

)
= f ∗1 (st) f

∗ (yt|st, Yt−1) (39)

∼ N
(
µ0,Σ0

)
,

µ0 = (H + P ′QP )
−1

[Hm1 + P ′Q (yt − r)] ,

Σ0 = (H + P ′QP )
−1
.

To summarize, EIS implementation is achieved for the two-state RBC model

as follows.

Model Representation

• Policy functions x (kt, zt) , x = (ζ, c, i, n, l), expressed as Chebyshev polyno-

mials in st = [kt zt]
′, are constructed via the projection method.

• With the law of motion for capital given by kt = i(kt−1, zt−1) + (1 − δ)kt−1,

solve for kt−1 to obtain

kt−1 = ψ (kt, zt−1) , J (kt, zt−1) =
∂

∂kt
ψ (kt, zt−1) ,

represented as third-order polynomials in (kt, zt−1) . The linear approximation

kt−1 = akkt + bkzt−1 is also constructed.

Likelihood Evaluation

• The EIS sampler m (st−1; ât−1) serves as an input in the construction of the

period-t likelihood function. In period 1, m (s0; â0) ≡ f̂ (s0) is constructed as

the unconditional distribution of the Kalman filter associated with a linear

approximation of the model.

• To approximate the integrand f (yt|st, Yt−1) · f (st|Yt−1) in (32), an initial

sampler m (st; a
0
t ) is constructed as in (39):

m
(
st; a

0
t

)
= f ∗1 (st) f

∗ (yt|st, Yt−1)

• Using drawings
{
sit,0
}R
i=1

obtained from m (st; a
0
t ) , ât is obtained as the so-

lution to (14). This entails the computation of

ϕt(s
i
t,l) = f

(
yt|sit,l, Yt−1

)
f
(
sit,l|Yt−1

)
,

where f (yt|st, Yt−1) is given in (33), and f (st|Yt−1) is approximated as indi-

cated in (38).
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Table 4.1: Parameter Values, RBC Model

α β φ ϕ δ ρ σε σy σi σn

Artificial 0.4 0.99 2 0.357 0.02 0.95 0.007 1.58e−4 8.66e−4 0.0011
Actual 0.324 0.997 1.717 0.390 0.006 0.978 0.020 0.045 0.038 0.015

• Having constructed m (st; ât) , f̂ (yt|Yt−1) is approximated as indicated in

(15).

• The sampler m (st; ât) is passed to the period-(t+ 1) step of the algorithm.

The algorithm concludes with the completion of the period-T step.

To demonstrate the performance of the EIS filter in this setting, Monte Carlo

experiments using two data sets were conducted. The first is an artificial data set

consisting of 100 realizations of {ζt, it, nt} generated from the RBC model. This

was constructed by Fernandez-Villaverde and Rubio-Ramirez (2005) under the

model parameterization presented in the first row of Table 4.1. The second con-

sists of actual quarterly observations on {ζt, it, nt} used by Fernandez-Villaverde

and Rubio-Ramirez to estimate the RBC model using the particle filter. The

data are quarterly, span 1964:I-2003:II (158 observations), and were detrended

using the Hodrick-Prescott filter. Posterior means of the estimates they ob-

tained using this data set are presented in the second row of Table 4.1. Both

data sets are available for downloading at http://qed.econ.queensu.ca/jae/2005-

v20.7/fernandez-rubio/

Each data set poses a distinct challenge to efficient filtering. In the artificial

data set, note from Table 4.1 that the standard deviations of the measurement

errors (σy, σi, σn) are small relative to σε, which as noted above can lead to prob-

lems associated with sample impoverishment. In the real data set, the investment

series contains two outliers: the values at 1976:III and 1984:IV, which lie 7.7 and

4.7 standard deviations above the sample mean. Outliers can induce bias in like-

lihood estimates associated with the particle filter. Both of these challenges are

overcome via implementation of the EIS filter, as it will be now demonstrated.

Using both data sets, a Monte Carlo experiment was conducted under which

1,000 approximations of the likelihood function were produced (evaluated at Ta-

ble 4.1 parameter values) for both the particle and EIS filters using 1,000 dif-

ferent sets of random numbers. Differences in likelihood approximations across

sets of random numbers are due to numerical approximation errors. Following
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Fernandez-Villaverde and Rubio-Ramirez, the particle filter was implemented us-

ing N = 60, 000, requiring 40.6 seconds of CPU time per likelihood evaluation

on a 1.8 GHz desktop computer using GAUSS for the artificial data set, and 63

seconds for the real data set. The EIS filter was implemented using N = R = 20,

S = 10, with one iteration used to construct ât; this required 0.22 seconds per

likelihood evaluation for the artificial data set, and 0.328 seconds for the real data

set.

Considering first the artificial data set, the mean and standard deviation

of the 1,000 log-likelihood approximations obtained using the particle filter are

(1, 285.51; 33.48), and (1, 299.81; 0.00177) using the EIS filter (the likelihood value

obtained using the Kalman filter and the log-linear model is 1, 300.045). Thus,

compared to the particle filter, the EIS filter reduces numerical approximation

errors by four orders of magnitude in this application. Figure ?? plots the first

200 likelihood approximations obtained using both filters and a rescaled plot of

the EIS approximations in order to enhance visibility. Note that the particle-

filter approximations (Figure 4.3(a)) often fall far below the EIS sample mean of

1, 299.81 (by more than 50 on the log scale in twenty instances, and by more than

100 in eight instances); this largely accounts for the distinct difference in sample

means obtained across methods. But as the figure indicates, even abstracting

from the occasional large likelihood crashes suffered by the particle filter, the

EIS filter is extremely precise: the maximum difference in log-likelihood values it

generates is less than 0.012 (Figure 4.3(c)), while differences of 10 are routinely

observed for the particle filter.

Hereafter, the differences observed between sample means of log-likelihood

values obtained using the particle and EIS filters will be referred to as reflecting

bias associated with the particle filter. This presumes that the values associated

with the EIS filter closely represent “truth”. This presumption is justified in a

number of ways, in this experiment and each of those that follow. First, the

small numerical approximation errors associated with the EIS filter indicate vir-

tual replication across sets of random numbers. Second, as the values of (N,R)

used to implement the EIS filter are increased, resulting mean log-likelihood ap-

proximations remain virtually unchanged, while numerical errors are inversely

proportional to N−1/2, as expected. Finally, when the EIS filter is implemented

using linear model approximations, the log-likelihood values obtained match those
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Figure 4.2: Log-Likelihood Approximations
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(c) EIS Filter Rescaled
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produced by the Kalman filter almost exactly (virtually to the limits of numerical

precision).

Figure ?? provides an illustration and diagnosis of the problems faced by

the particle filter in this application. The focus here is on a representative Monte

Carlo replication generated as described above. Each one of the figures represents

a distinct scenario observed routinely across time periods within this replication.

Figure 4.4(a) corresponds with t = 53, and Figure 4.4(b) with t = 18.

Each Figure contains two graphs, both of which depict zt on the vertical axis

and kt on the horizontal axis. The measurement density f (yt|st, Yt−1) is the large

thin ellipse depicted in both graphs (differences in vertical scales across graphs

account for differences in its appearance). In the bottom graph, the swarm of

dots comprises the particle-filter representation of f (st|Yt−1) , and the wide ellipse

comprises the EIS representation of f (st|Yt−1) . In the upper graph, the swarm

of dots comprises the particle-filter representation of f (st|Yt) ; particles in the

upper swarm were obtained by sampling repeatedly from the bottom swarm,

with probabilities assigned by the measurement density. The upper graph also

depicts the EIS representation of f (st|Yt) (small ellipse).

Beginning with period 53, note that the vast majority of particles in the

bottom graph are assigned negligible weight by the measurement density, and

are thus discarded in the resampling step. Specifically, only 407 particles, or

0.68% of the total candidates, were re-sampled at least once in this instance. The

average (across time periods) number of re-sampled particles is 350, or 0.58% of

the total. This phenomenon reflects the sample impoverishment problem noted

above. It results from the ‘blindness’ of proposals generated under the particle

filter algorithm, and accounts for its numerical inaccuracy.

As noted, the small ellipse depicted in the upper graph is the EIS representa-

tion of f (st|Yt) . The difference between this and the corresponding particle-filter

representation reflects a second problem suffered by the particle filter in this ap-

plication: there is non-trivial bias in the filtered values of the state it produces.

This also reflects the ‘blindness’ problem, coupled with the fact that alternative

proposals for st cannot be re-generated in light of information embodied in yt.

(Note from the figure that this bias is not easily eliminated through an increase in

the number of particles included in the proposal swarm, since the probability that

the proposal density will generate particles centered on the EIS representation

127



4. NONLINEAR STATE-SPACE MODELS

Figure 4.3: Sample Impoverishment in Practice I

(a) Time Period 53

(b) Time Period 18
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of f(st|Yt) is clearly miniscule.) As described above, under suitable initialization

the EIS filter avoids these issues by generating proposals from an importance

density tailored as the optimal global approximation of the targeted integrand

f (yt|st, Yt−1) · f (st|Yt−1) .

Regarding period 18, note that the representations of both f (st|Yt−1) and

f (st|Yt) generated using the particle filter are discontinuous in kt, a spurious

phenomenon that occurs frequently through the sample. This exacerbates the

bias associated with filtered values of the state, and contributes to a final problem

associated with the particle filter illustrated in Figure 4.4.

Like its predecessor, Figure 4.4 was produced using a representative Monte

Carlo replication. It depicts an approximation of the log-likelihood surface over

a given parameter obtained by holding the remaining fixed at their true values,

and varying the chosen one above and below the true value. Two surfaces are

depicted in each graph: those associated with the particle, and EIS filters. The

particle and EIS surfaces were produced with common random numbers, so that

changes in parameters serve as the lone source of variation in log-likelihoods.

This means that the kinks and local maxima that can be observed in the particle

filter surfaces are spurious.

Note that for α while the surface associated with the EIS filter is continuous

and peak at the true value of 0.4, the surface associated with the particle filter

is discontinuous and has a slightly rightshifted peak. Thus in addition to being

numerically inefficient and producing biased filtered values of the state, the par-

ticle filter generates likelihood surfaces that are spuriously discontinuous in the

underlying parameters of the model, rendering as problematic the attainment of

likelihood-based model estimates.

To illustrate the difficulties created by the discontinuities in the likelihood

approximations of the particle filter and how the EIS filter is able to overcome

them, maximum likelihood estimation of the RBC model was performed using

both filters based on the derivative free Nelder-Meade Simplex algorithm (see

Lagarias et al., 1998). The estimates are reported in Table 4.2. The EIS Filter

estimates are based on N = R = 20 draws for the likelihood integral approxi-

mation given by (32), and S = 10 draws for the integral approximation to the

predictive density in (38). The estimates using the particle filter are based on a

swarm with 60, 000 particles. The asymptotic standard errors for the EIS filter
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Figure 4.4: Likelihood Cuts
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estimates were easily calculated using central differences. However, given the dis-

continuities of the particle filter’s likelihood approximation, it was not possible

to compute its Hessian matrix even when the size of the swarm was increased

to 200, 000 particles, making clear that the discontinuities are not easily resolved

via the increase of the MC sample size.

Table 4.2: Estimates of RBC Model using simulated data.

EIS Filter Particle Filter

True Values ML Est STD ML Est STD

α 0.4000 0.4000 4.73e−05 0.3993 -

β 0.9896 0.9894 5.99e−05 0.9899 -

δ 0.0196 0.0197 1.47e−05 0.0193 -

ρ 0.9500 0.9551 8.90e−04 0.9460 -

σε 0.0070 0.0125 1.97e−04 0.0110 -

τ 2.0000 1.9898 2.91e−03 2.3029 -

θ 0.3570 0.3569 1.28e−05 0.3567 -

σy 1.58e−04 1.40e−04 7.65e−06 7.98e−05 -

σi 0.0011 0.001136 1.20e−05 0.001120 -

σl 8.66e−04 1.84e−04 6.49e−06 1.82e−04 -

log lik 1470.41230 1468.642181

Turning to the experiment conducted using the actual data set, note that

in this case there are non-trivial differences between the log-likelihood values

associated with the Kalman and EIS filters. The mean and standard devia-

tion of the 1,000 log-likelihood approximations obtained using the EIS filter are

(921.56, 0.056) , while the log-likelihood value associated with the Kalman filter

is 928.06. The explanation for this difference is as follows. Since there are no

outliers in the artificial data set, deviations from steady state are relatively small,

thus the linear model approximations employed in implementing the Kalman fil-

ter are relatively accurate. However, accuracy breaks down when deviations from

steady state are large (i.e., in the presence of outliers). Indeed, when the EIS

filter is implemented using linear model approximations, differences in likelihoods

produced by the EIS and Kalman filters virtually disappear (becoming at most

1.58e-9 in 1976:IV).
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Second, compared with the first example, differences between the particle and

EIS filters are relatively modest in this case. The mean and standard deviation

of the 1,000 log-likelihood approximations obtained using the particle filter are

(926.84, 0.1958) . Thus the difference in sample means is 51
4

in this case, compared

with more than 14 in the first example, while the difference in standard deviations

is by a factor of 3.5, as opposed to four orders of magnitude in the first example.

The explanation for this is that measurement densities are relatively diffuse in

this case, thus the sample impoverishment problem is less acute in general.

As the primary interest in this example is on the impact of outliers, Figures

4.6(a) and 4.6(b) illustrate the relative accuracy and precision of the Kalman,

particle and EIS filters on a date-by-date basis. Figure 4.6(a) illustrates aver-

age (across CRNs) deviations from pseudo-true values of log-likelihood values

associated with all three filters; Figure 4.6(b) illustrates MC standard deviations

(across CRNs) of log-likelihood approximations associated with the EIS and par-

ticle filters. Thus Figure 4.6(a) provides a characterization of bias, and Figure

4.6(b) numerical precision. To generate pseudo-true values, log-likelihood values

using the EIS filter implemented by setting (N,R) as (2000, 1000) are computed.

Absent the two outlier periods, the Kalman and particle filters exhibit non-

trivial but relatively moderate bias. The average and total (across dates) absolute

deviations from pseudo-true values of log-likelihoods obtained using the EIS fil-

ter are (0.002, 0.358) , compared with (0.057, 8.955) using the Kalman filter and

(0.043, 6.721) using the EIS filter. However, bias is distinctly more pronounced

in the presence of the outliers, particularly for that observed in 1976:III. In this

period absolute deviations in log-likelihoods are 0.041, 1.321 and 0.682 for the

EIS, Kalman, and particle filters.

The outliers also have a distinct impact on the numerical precision of the

particle filter, as the Figure 4.6(b) illustrates. In particular, while the average

(across dates) MC standard deviation calculated for the particle filter is 0.0077

absent the two outliers, the standard deviation jumps to 0.41 in 1976:III, and

0.04 in 1984:IV. Associated values for the EIS filter are 0.0041, 0.03, and 0.01.

An illustration of the source of these biases and numerical inaccuracies is

provided in Figures 4.6 and 4.7. The former focusses on the Kalman filter, the

latter on the EIS filter; both pertain to the period 1976:III, and were generated

using a single set of CRNs.
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Figure 4.5: Date-by-Date Filter Comparisons
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Date-by-Date Filter Comparisons, RBC Model, Actual Data
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4. NONLINEAR STATE-SPACE MODELS

Figure 4.6 illustrates the measurement density f(yt|st, Yt−1) and predictive

density f(st|Yt−1) associated with both the Kalman and EIS filters. Recall that

the integral of these densities over the sample space yields the likelihood function

f(yt|Yt−1). Note first that the predictive densities associated with the two filters

are virtually indiscernible, and lie near the steady state location of the diagram

(indicated by values of zero for both kt and zt). This reflects the fact that the

time−(t− 1) observations yt−1 lie relatively close to their steady state values. In

contrast, due to the realization of the time-t outlier, the measurement densities

lie far from steady state, which accounts for the distinct difference in their shapes

and locations: the quality of the linear model approximation associated with the

Kalman filter deteriorates as the state variables deviate further from their steady

state values, thus its characterization of f(yt|st, Yt−1) deviates from that of the

EIS filter. Since the Kalman-filter representation of f(yt|st, Yt−1) is relatively

tightly distributed, its height is much lower than that of the EIS filter at the

location of f(st|Yt−1), thus accounting for the negative bias associated with the

Kalman filter.

Turning to the particle filter, the construction of Figure 4.7 mirrors that of

Figures 4.4(a) and 4.4(b), with one small exception. In the top panel, the swarm

comprising the particle-filter representation of f (st|Yt) has individual elements

that vary by size in direct proportion to the number of times they were resampled

from the swarm f (st|Yt−1) in the bottom diagram. This is done to more clearly

illustrate how the particle filter yields a biased approximation of f (st|Yt) in this

case. The largest particle in the figure is more than 10,000 times larger than

the smallest, thus it has 10,000 times more weight in representing f (st|Yt) . The

uneven size of the particles in the swarm illustrates the sample impoverishment

that results from the outlier.

From the bottom panel of Figure 4.7, note that the particle-filter represen-

tation of f (st|Yt−1) is left-shifted relative to the EIS-filter representation. Since

the particle-filter representation has a discrete and fixed support, this left-shift

persists in the re-sampling step under which the filtering density f (st|Yt) is ob-

tained. The upshot is that the particle-filter representation of f (st|Yt) provides

insufficient (virtually non-existent) coverage of the north-east portion of the up-

per diagram: its representation of f (st|Yt) is biased.
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Figure 4.6: Linear vs. Nonlinear Measurement Densities

Kalman vs. EIS Filter, Actual Data, 1976:III
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The left-shift in f (st|Yt−1) also induces bias in the approximation of the like-

lihood function produced by the particle filter. To see why, recall that f (st|Yt−1)

serves as the importance-sampling distribution used by the particle filter: its ap-

proximation of the likelihood function f (yt|Yt−1) is given by the average value of

the measurement density f (yt|st, Yt−1) evaluated at each particle in the swarm

f (st|Yt−1) . Since the particle-filter representation of f (st|Yt−1) is left-shifted,

and lies spuriously close to f (yt|st, Yt−1) , the resulting likelihood approximation

it produces is biased upwards.

As a final note on Figure 4.7, the filtering density f (st|Yt) associated with the

particle filter depicted in the upper diagram helps illustrate sources of numeri-

cal imprecision that plague the particle filter given the realization of an outlier.

Only a handful of particles are assigned appreciable weight in this representation.

Moreover, the exact location of these particles owes much to random chance: al-

ternative sets of CRNs give rise to subtle locational shifts that are magnified due

to the imbalanced weight assigned to a select few particles. Thus the spikes in

numerical error associated with the outlier dates evident in Figures 4.6(a) and

4.6(b) are not surprising.

As emphasized by Richard and Zhang (2007), it is important to distinguish

between the numerical error associated with a given approximation technique

(quantified using the MC standard errors described above), and the sampling

error associated with the statistic being approximated (in this case, the log-

likelihood function). To characterize sampling error, two additional experiments

were conducted. In both, a data generation process (DGP) using a parameteri-

zation of the RBC model were constructed, and 100 artificial data sets consisting

of time-series observations of (ζ, i, n) of length T were generated. For each artifi-

cial data set, the EIS filter was implemented using (N,R) = (200, 100) to obtain

100 approximations of the log-likelihood function. The standard deviation of the

log-likelihoods calculated in this manner serves as an estimate of the statistical

sampling error associated with this summary statistic.

The DGPs employed in the two experiments were tailored to the empirical

applications described above. The first was constructed using the parameters

reported in the second row of Table 4.1, with T = 100; the second using the

parameters reported in the third row of Table 4.1, with T = 158. The first

yielded an estimated sampling error of 16.48; the second 17.99. For comparison,
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Figure 4.7: Sample Impoverishment in Practice II

Particle vs. EIS Filter, Actual Data, 1976:III
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recall that the corresponding MC standard errors associated with the particle

filter are 33.48 and 0.1958, while those associated with the EIS filter are 0.00177

and 0.0557. This comparison indicates that the particle filter is an unreliable tool

for assessing statistical uncertainty in the context of the first example, since its

associated numerical errors are first-order comparable to the associated statistical

errors targeted for approximation.

To conclude, tightly-distributed measurement distributions and sample out-

liers are troublesome sources of numerical error and bias that can plague appli-

cations of the particle filter, but that can be overcome via application of the EIS

filter. Now an application of the EIS filter in a second example model featuring

an expanded state space will be demonstrated.

4.4.2 Example 2: Six-State Small Open Economy Model

This application is to a small-open-economy (SOE) model patterned after

those considered, e.g., by Mendoza (1991) and Schmitt-Grohe and Uribe (2003).

The model consists of a representative household that seeks to maximize

U = E0

∞∑
t=0

θt
[ct − ϕtω−1nωt ]

1−γ − 1

1− γ
, ω > 0, γ > 0,

where ϕt is a preference shock that affects the disutility generated by labor effort,

introduced, e.g., following Smets and Wouters (2003). Following Uzawa (1968),

the discount factor θt is endogenous and obeys

θt+1 = β (c̃t, ñt) θt, θ0 = 1,

β (c̃t, ñt) =
[
1 + c̃t − ω−1ñt

ω
]−ψ

, ψ > 0,

where (c̃t, ñt) denote average per captia consumption and hours worked. The

household takes these as given; they equal (ct, nt) in equilibrium. The household’s
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constraints are collectively

dt+1 = (1 + rt) dt − ζt + ct + it +
φ

2
(kt+1 − kt)2

ζt = Atk
α
t n

1−α
t

kt+1 = ν−1
t it + (1− δ) kt

lnAt+1 = ρA lnAt + εAt+1

ln rt+1 = (1− ρr) ln r + ρr ln rt + εrt+1

ln νt+1 = ρv ln vt + εvt+1

lnϕt+1 = ρϕ lnϕt + εϕt+1,

where relative to the RBC model, the new variables are dt, the stock of foreign

debt, rt, the exogenous interest rate at which domestic residents can borrow

in international markets, νt, an investment-specific productivity shock, and the

preference shock ϕt.

The state variables of the model are (dt, kt, At, rt, νt, ϕt) ; the controls are

(ζt, ct,it, nt) . In this application the non-linear policy functions

xt = x (st) , xt = (ζt, ct,it, nt) , st = (dt, kt, At, rt, νt, ϕt)

were obtained using a second-order Taylor Series approximation of the system of

expectational difference equations associated with the model, following Schmitt-

Grohe and Uribe (2004). Given these policy functions, the state-transitions equa-

tions reduce to

dt+1 = (1 + rt) dt − ζ (st) + c (st) + i (st) +
φ

2
(kt+1 − kt)2 (40)

kt+1 = ν−1
t i (st) + (1− δ) kt (41)

lnAt+1 = ρA lnAt + εAt+1 (42)

ln rt+1 = (1− ρr) ln r + ρr ln rt + εrt+1 (43)

ln νt+1 = ρv ln vt + εvt+1 (44)

lnϕt+1 = ρϕ lnϕt + εϕt+1, (45)

and the observation equations are

ln (xt/x(st)) = ux,t, x = ζ, c, i, n, (46)

ux,t ∼ N(0, σ2
x). (47)
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As with the RBC model, hereafter state variables will be represented as logged

deviations from steady state. In addition, given the form of (46), yt is defined

as yt = [ln ζt ln ct ln it lnnt]
′ . All subsequent formulas should be read in

accordance with these representations.

Notice that (40) and (41) characterize a bivariate degenerate transition of the

form

qt = φ (pt−1, qt−1) , (48)

where following the notation of Section 4.3, pt = (At, rt, vt, ϕ), and qt = (dt, kt) .

Its inverse and corresponding linear approximation are denoted respectively as

qt−1 = ψ (qt, pt−1) , qt−1 = ψ̃ (qt, pt−1) .

The Jacobian associated with ψ is given by

J (qt, pt−1) =

∥∥∥∥ ∂

∂q′t
ψ (qt, pt−1)

∥∥∥∥ . (49)

The inversion of (40) and (41) is achieved as follows. It turns out that the

transition equation for kt is independent of dt, thus it is possible to exploit the

triangular structure of the system by first solving for kt−1, and then using this

result to find dt−1. Defining s1
t−1 = [kt−1, pt−1]′, the second-order approximation

to the law of motion of kt is given by

kt = Ck + Lks
1
t−1 +

1

2
s1′
t−1Qks

1
t−1, (50)

which is a quadratic equation in kt−1 with solutions

kt−1 =
−bk ±

√
b2
k − 4akck

2ak
, (51)

ak =
1

2
Q11
k , (52)

bk = L1
k +Q12

k pt−1, (53)

ck = Ck + L2
kpt−1 +

1

2
p′t−1Q

22
k pt−1 − kt, (54)

Qk =

[
Q11
k Q12

k

Q21
k Q22

k

]
, Lk =

[
L1
k

L2
k

]
.
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As the capital stock evolves slowly, the solution to (50) is chosen as

k∗t−1 = arg min
[∣∣(k1

t−1 − kt)
∣∣ , ∣∣(k2

t−1 − kt)
∣∣] , (55)

where k1
t−1 and k2

t−1 are the roots (51).

Having obtained k∗t−1, the solution of dt−1 proceeds as follows. Substituting

(41) for kt+1 in (40), the second-order approximation to the law of motion of dt

is given by:

dt = Cd + Ldst−1 +
1

2
st−1′Qdst−1,

which is a quadratic equation in dt−1 with solutions

dt−1 =
−bd ±

√
b2
d − 4adcd

2ad
,

ad =
1

2
Q11
d , (56)

bd = L2
d +Q12

d s
1
t−1, (57)

cd = Cd + L2
ds

1
t−1 +

1

2
s1′
t−1Q

22
k s

1
t−1 − dt, (58)

Qd =

[
Q11
d Q12

d

Q21
d Q22

d

]
, Ld =

[
L1
d

L2
d

]
.

Again the solution d∗t−1 is selected following (55).

The sequence of operations just described effectively transforms a triangu-

lar inverse transformation into a diagonal transformation. The corresponding

Jacobian is given by

J (qt, pt−1) =
(
b2
k + 4akck

)− 1
2 ·
(
b2
d + 4adcd

)− 1
2 .

Having achieved inversion, implementation of the EIS filter proceeds precisely

as with the RBC model, with the following straightforward modifications:

• J (kt, zt−1) in (30) is replaced by J (dt, kt, pt−1) in (49).

• The predictive density f (st|Yt−1) in (34) becomes

f (st|Yt−1) '
∫
J (qt, pt−1) f (pt|st−1)m (st−1; ât−1) |qt−1=ψ(qt,pt−1) dpt−1,

where

f (pt|st−1) = N4




0 0 ρA 0 0 0

0 0 0 ρr 0 0

0 0 0 0 ρv 0

0 0 0 0 0 ρϕ

 pt−1,


σ2
A 0 0 0

0 σ2
r 0 0

0 0 σ2
v 0

0 0 0 σ2
ϕ


 .
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• With yt now defined as yt = [ln ζt ln ct ln it lnnt]
′ , the measurement

density becomes

f (yt|st, Yt−1) ∼ N3 (µ(st), V ) ,

µ(st) =


ln ζ(st)

ln c(st)

ln i(st)

lnn(st)

 , V =


σ2
y 0 0 0

0 σ2
c 0 0

0 0 σ2
i 0

0 0 0 σ2
n

 .
The performance of the EIS filter will be demonstrated with two Monte Carlo

experiments patterned exactly after those used in working with the RBC model.

Again working with two data sets: an artificial data set consisting of 100 real-

izations of {ζt, ct, it, nt} generated using the parameterization of the model given

in Table 4.3; and a Canadian data set consisting of quarterly real per capita

observations on {ζt, ct, it, nt}, spanning 1976:I-2008:IV (132 observations), and

detrended using the Hodrick-Prescott filter. The latter was obtained from Statis-

tics Canada.

Aside from the parameters that characterize sources of stochastic uncertainty

in the model, the artificial data were generated using the parameter values cali-

brated by Schmitt-Grohe and Uribe (2003) to match the summary statistics on

Canadian data reported by Mendoza (1991): parameter values are listed in their

Table 1 (and in Table 4.3 here), and the summary statistics in their Table 3.

The parameters that characterize sources of stochastic uncertainty in the model

were chosen as those that minimized the sum of squared differences between Men-

doza’s summary statistics (excluding the trade balance) and the statistics implied

by the model; the statistics are standard deviations of {ζt, ct, it, nt} , first-order

serial correlations, and contemporaneous correlations with output. Finally, the

standard deviations of all measurement errors were set at 0.5%. The same param-

eters used to generate the data were also used to evaluate the likelihood function

in the MC experiment.

The parameters used to evaluate the likelihood function associated with the

actual data are posterior modes estimated using the prior specification indicated

in Table 4.3. The prior consists of independent normal distributions specified for

each parameter. Aside from parameters that characterize stochastic uncertainty,

prior means were set at the values specified by Schmitt-Grohe and Uribe, and

prior standard deviations were set to reflect non-trivial uncertainty over these
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Table 4.3: Parameter Values, SOE Model

γ ω ψ α φ r δ ρA σA

Art. Data 2 1.455 0.11135 0.32 0.028 0.04 0.1 0.53 0.0089
Prior Mean 2 1.455 0.11 0.32 0.028 0.007 0.025 0.8 0.005
Prior Std. Dev. 1 0.2 0.001 0.05 0.01 0.025 0.025 0.2 0.005
Post. Mode 2.49 1.33 0.11 0.23 0.039 0.02 0.02 0.82 0.0019

ρr σr ρv σv ρϕ σϕ σy σc σi σn

Art. Data 0.37 0.001 0.89 0.001 0.3 0.0152 0.005 0.005 0.005 0.005
Prior Mean 0.8 0.0022 0.8 0.005 0.8 0.005 0.005 0.005 0.005 0.005
Prior Std. Dev. 0.2 0.0005 0.2 0.005 0.2 0.005 0.005 0.005 0.0005 0.005
Post. Mode 0.79 0.0022 0.87 0.001 0.86 0.0031 0.0038 0.0065 0.0046 0.0058

specifications. (Note that the specifications of δ and r chosen by Schmitt-Grohe

and Uribe are appropriate for annual data, and thus were translated into prior

specifications appropriate for the quarterly observations employ here.) The priors

over AR parameters were centered at 0.8 (s.d. 0.2); and with two exceptions along

ill-behaved dimensions (σr and σi), the priors over σ′s were centered at 0.5% (s.d.

0.5%). The likelihood function implies strong negative correlation between σr

and ρr, thus σr was set so that the posterior mode of ρr lied near its prior mean.

Also, the posterior mode of σi was difficult to pin down, so its prior mean was

centered at 0.5% like its counterparts, while its standard deviation was set to pin

down the posterior mode at this value.

Results from the two MC experiments are presented in Table 4.4. Due to the

increased dimensionality of the state space, N was set to 150,000 in working with

the particle filter (requiring 128.59 and 169.66 seconds per function evaluation on

a 963 GHz desktop computer using MATLAB for the artificial and real data sets

respectively), and N = R = 50, S = 30 in working with the EIS filter (requiring

5.02 and 6.65 seconds per function evaluation).

To begin, it is interesting to stress that neither data set contains an outlier

observation: in both data sets and across all variables, the largest deviation ob-

served from sample means is 2.7 sample standard deviations. Despite this absence

of outliers, there are significant differences between the likelihood values produced

by the EIS and Kalman filters in both data sets. Relative to the RBC model, this

reflects the added sources of non-linearity featured in the SOE model: e.g., the

captial-adjustment cost term φ
2

(kt+1 − kt)2 in (40), and the endogenous discount

factor θt featured in the household’s objective function. Once again, when the
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Table 4.4: Monte Carlo Means and Standard Deviations, SOE Model

Particle Filter EIS Filter Kalman

Mean Std. Dev. Mean Std. Dev. Filter

Artificial Data 1292.8274 2.0391 1283.6767 0.0721 1271.9214

Actual Data 1718.1382 0.4884 1713.6243 0.04771 1719.4209

EIS filter is implemented using linear model approximations, differences in log-

likelihoods produced by the EIS and Kalman filters virtually disappear (becoming

at most 6.3e-11 across data sets and all time periods). Thus there is clearly a

significant payoff in the implementation of a non-linear model representation in

this application.

It is also interesting to note that in this application the artificial data set is

the more challenging of the two. This is evident along two dimensions. First,

MC standard deviations obtained using the artificial data set are relatively high

for both filters. Second, the bias suffered by the particle filter is more substantial

in the application involving the artificial data set. Specifically, the difference in

mean log-likelihood approximations generated by the particle and EIS filters is

more than 9 in working with the artificial data set, compared to less than 5 in

working with the actual data set.

As opposed to the applications involving the RBC model, the explanation for

these differences across data sets does not lie in the behavior of associated mea-

surement errors: variances of measurement errors are closely comparable across

data sets in this case. Instead, differences stem primarily from differences in the

volatility and persistence of the model’s structural shocks. In particular, with

the model parameterization associated with the artificial data set calibrated to

annual data, and the parameterization associated with the real data set estimated

using quarterly observations, structural shocks are far less persistent, and gen-

erally more volatile, in the former case. The upshot is that in working with the

actual data, the state variables are relatively easy to track, and in general the

construction of likelihood approximations is less problematic.

Comparing the EIS and particle filters, as noted, the particle filter once again

suffers non-trivial bias, on scales similar to those observed in working with the

RBC model. Regarding MC standard errors, these differ by two orders of mag-

nitude in the artificial data set, but by only one order of magnitude in the actual
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data set. These results indicate that increases in the dimensionality of the state

space do not necessarily amplify the numerical problems suffered by the particle

filter: outliers and narrow measurement densities are far more important sources

of difficulty.

To conclude the analysis of the SOE model, sampling errors associated with

the log-likelihood estimates are reported in Table 4.4. Following the procedure

described above in working with the RBC model, these errors are estimated to be

16.48 using the parameterization associated with the artificial data set, and 17.99

using the parameterization associated with the actual data set. Comparing these

estimates with the MC standard errors reported in Table 4.4, it is possible to see

that the particle filter serves as a better potential gauge of statistical uncertainty

than was the case in the applications involving the RBC model. In particular,

its MC standard errors are only 1/13th and 1/36th the size of their associated

sampling errors in this case, while recall that in working with the RBC model,

these ratios were roughly 2 and 1/92nd. The ratios associated with the EIS filter

are 1/354th and 1/323rd in this case, compared with roughly 1/10, 000 and 1/200

in working with the RBC model.

4.4.3 Repeated Samples

To this point the comparisons of the bias and numerical errors associated with

the EIS and particle filters have been based on four data sets. This raises the

question of whether the results reported are somehow sensitive to special features

of these data sets. Thus a large set of additional experiments designed to address

this issue were conducted.

Specifically, using each of the four models described above as data generating

processes (the two parameterizations of the RBC and SOE models reported in

Table 4.1 and 4.3), 100 artificial data sets of length T were generated (with T

specified to match the corresponding data set associated with the parameterized

model). For each realized data set, 100 sets of log-likelihood estimates using the

EIS filter were obtained on a date-by-date basis using 100 sets of CRNs. For each

data set, pseudo-true log-likelihood estimates using the EIS filter implemented

by setting (N,R) as (2000, 1000) were also obtained. Then the average (across

CRNs) of the deviations from pseudo-true values of log-likelihood approximations

145



4. NONLINEAR STATE-SPACE MODELS

Table 4.5: EIS Filter Repeated Samples

Bias Num. Acc.
DGP Orig. DS Exp. Avg. Exp. Stdv Orig. Smpl Exp. Avg. Exp. Stdv

RBC, Art. 0.1369 0.1364 0.0481 0.0015 0.0017 0.000589
RBC, Act. 0.8226 1.0619 0.0950 0.0044 0.0056 0.000383
SOE, Art. 0.5838 1.8279 1.3934 0.0053 0.0037 0.000786
SOE, Act. 0.8381 1.2202 0.1651 0.0026 0.0026 0.000173

Notes: Orig. DS denotes original data set; Exp. Avg. (Stdv) denotes average
(standard deviation) of indicated statistic obtained across experimental data
sets. RBC, Art. (Act.) denotes the parameterization of the RBC model
associated with the artificial (actual) data set; likewise for the SOE model.

associated with the EIS filter for each data set and each time period were cal-

culated. Standard deviation (over CRNs) of log-likelihood approximations were

also computed. The former provides a measure of bias; the latter a measure of

numerical accuracy.

Summing the bias measure over time periods, and averaging the numerical

accuracy measure over time periods, a single measure of bias and numerical ac-

curacy for each data set is obtained. Respectively, these measures are given by

T∑
t=1

1

M

M∑
m=1

(lt,m − l∗t ) ,
1

T

T∑
t=1

√√√√ 1

M

M∑
m=1

(
lt,m − l

M

t

)2

,

where lt,m denotes time-t log-likelihood calculated using the mth set of CRNs,

l∗t denotes its pseudo-true value, l
M

t denotes the sample average of lt,m obtained

across CRNs, and M denotes the total number of CRNs obtained in the exper-

iment. Assessing the mean and standard deviation of both measures calculated

over artificial data sets, and comparing these with corresponding measures ob-

tained using the four data sets analyzed above, we obtain context for interpreting

the specific results reported above for the four original data sets. Results are re-

ported in Table 4.5.

Note first that for the two cases in which the original data sets were generated

artificially, bias and summary statistics lie within two standard deviations of the

average values obtained in the repeated-sample experiments. This is as expected,

since in these cases all 101 data sets (the original and those generated in the

experiment) come from the same DGP.
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Table 4.6: Repeated VAR Samples

Bias Num. Acc.
DGP Orig. Smpl Exp. Avg. Exp. Stdv Orig. Smpl Exp. Avg. Exp. Stdv

RBC, Act. 0.8226 0.9105 0.0625 0.0044 0.0050 0.000350
SOE, Act. 0.8381 1.0341 0.1795 0.0026 0.0028 0.000158

Notes: Orig. Smpl denotes original sample; Exp. Avg. (Stdv) denotes average
(standard deviation) of indicated statistic obtained across experimental data
sets. RBC, Act. denotes a DGP based on an unrestricted vector autoregres-
sions estimated using the actual data; likewise for the SOE model.

For the actual data associated with the SOE model, the measure of numer-

ical accuracy exactly equals its corresponding experimental average, while the

measure of bias is only 69% of its corresponding experimental average and lies

0.06 below the ±2 standard deviation range around the average. For the actual

data set associated with the RBC model, the measures of bias and numerical

accuracy are only 77% and 79% of their corresponding experimental averages,

and lie 0.05 and 0.0004 below their ±2 standard deviation ranges. Given the two

large outliers present in the original RBC data set, it is perhaps surprising that

these measures are so close.

The differences noted for the actual data sets indicate that the theoretical

models used as DGPs in these experiments do not produce data sets that closely

mimic the actual series. To explore this possibility, the experiments was repeated

using as alternative DGPs unrestricted vector autoregressions estimated using

the original series. As reported in Table 4.6, in this case all summary statistics

lied well within their associated ±2 standard deviation ranges.

The bottom line that can be taken from these experiments is that the results

detailed above for the four original data sets are largely representative of those one

would expect to obtain in working with repeated samples from appropriate data

generating processes. Moreover, the algorithm presented for implementing the

EIS filter is remarkably reliable, having succeeded in quickly producing likelihood

estimates for each of the many hundreds of data sets it confronted.
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4.5 Conclusion

An efficient means of facilitating likelihood evaluation in applications involving

non-linear and/or non-Gaussian state space representations was proposed: the

EIS filter. The filter is adapted using an optimization procedure designed to

minimize numerical standard errors associated with targeted integrals. Resulting

likelihood approximations are continuous in underlying likelihood parameters,

greatly facilitating the implementation of ML estimation procedures. Implemen-

tation of the filter is straightforward, and the payoff of adoption can be substan-

tial.

4.A Appendix 1: Nonlinear Approximate Solu-

tion of DSGE Models

Full information methods based on likelihood analysis have been used to

estimate dynamic stochastic general equilibrium (DSGE) models since Sargent

(1989). Since most DSGE models do not have analytical solution, and thus their

likelihood function cannot be evaluated neither analytically nor numerically, most

part of the literature have focused on (log-)linear approximations to the original

models. This approach enables the use of Kalman filter to construct the likelihood

function, and to perform estimation.

However, Fernandez-Villaverde et al. (2006) have proved that second-order

approximation errors in the policy functions can have first order effects on the

likelihood function. Moreover, they demonstrate that errors in the approximated

likelihood accumulate as the sample size grows. As a result, likelihood approx-

imation based on the linearized model can diverges from the exact one. There-

fore, Fernandez-Villaverde and Rubio-Ramirez (2005, 2007), An and Schorfheide

(2007), Amisano and Tristani (2007), and others have estimated nonlinear ap-

proximations to DSGE models in order to avoid first order errors in the approxi-

mated likelihood function, and report that the nonlinear approximations to these

models deliver a better fit to the data. Since Kalman filter cannot be used to

construct the likelihood function implied by nonlinear and/or nonnormal mod-

els, the estimation of such models are normally based on Sequential Monte Carlo

algorithms.
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However, before one turns to the estimation of the model, it is necessary

to decide upon which nonlinear solution method to be used. The properties

of a given solution method are crucial to the estimation exercise, as the policy

functions it provides are going to be used to compute the likelihood of the model.

Furthermore, when estimating a DSGE model, it is interesting to have a solution

method that is not only precise but also fast, as the likelihood function will need

to be evaluated many times under different parameter values, implying that the

model will have to be solved many times. The purpose of this appendix is to

better understand the performance of different solution methods.

Aruoba et al. (2006) addressed this question in the context of an RBC model,

while the focus of this appendix will be on the stochastic growth model exactly

because the results for the RBC model are already known. Although the relative

performance of different solution methods are model dependent, the fact that the

results presented here are in line with those from Aruoba et al. (2006), signals

that they might be robust across models.

The model is solved using second-order perturbation method from Schmitt-

Grohe and Uribe (2004), which delivers local approximation to the policy func-

tions, and using projection methods, that compute global approximate solu-

tions. Two different projection methods are examined: the Chebyshev collocation

method, and the finite elements method. For comparison purposes, a log-linear

approximation is also computed and presented. Based on the policy function

obtained, data from the different model approximations are simulated and their

characteristics compared.

4.A-1 The Stochastic Growth Model

The model is of a representative household that seeks to maximize lifetime

utility:

max
ct

U = E0

∞∑
t=0

βt
(

ct
1− φ

)1−φ

,

where ct is time-t consumption, β is a time-discount factor, and 1/φ is the house-

hold’s intertemporal elasticity of substitution.
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The household’s constraints are given by

yt = ztk
α
t , (4.A-1)

yt = ct + it, (4.A-2)

kt+1 = it + (1− δ)kt, (4.A-3)

zt = eωt , ωt = ρωt−1 + εt, (4.A-4)

with (k0, z0) given. Here, y represents aggregate output, z total factor productiv-

ity (TFP), k the stock of physical captial, i investment, and ε an i.i.d. N ∼ (0, σ2)

productivity innovation. Regarding parameters, α is captial’s share of output, δ

is the capital depreciation rate, and ρ determines the persistence of TFP innova-

tions.

First-order conditions associated with the household’s problem are given by

c−φt = βEt

{
c−φt+1Rt+1

}
, (4.A-5)

where

Rt+1 = αzt+1k
α−1
t+1 + 1− δ.

Coupled with the household’s constraints, these conditions constitute the system

of nonlinear stochastic difference equations that comprise the model

c−φt − βEt
{
c−φt+1Rt+1

}
= 0 (4.A-6)

ztk
α
t − ct − it = 0 (4.A-7)

kt+1 − it − (1− δ)kt = 0 (4.A-8)

ωt − ρωt−1 − εt = 0. (4.A-9)

Steady state values x for x = {yt, ct, it, kt, zt} are derived by holding zt to its

steady state value z, which is set to 1, and satisfy ct = c ∀t. From (4.A-5),

1 = β
[
αk

α−1
+ 1− δ

]
;

solving for k :

(βζ)−1 =
[
αk

α−1
+ 1− δ

]
(4.A-10)

(βζ)−1 − 1 + δ

α
= k

−(1−α)
(4.A-11)

k =

(
α

(βζ)−1 − (1− δ)

) 1
1−α

. (4.A-12)
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Then

y = k
α
, (4.A-13)

i =

(
δ +

g

1− α

)
k (4.A-14)

c = y − i. (4.A-15)

4.A-2 Solution Methods

Solving for the equilibrium of the model presented above amounts to finding the

policy functions that deliver the optimal choice of consumption as a function of

contemporaneous technology shock and capital stock. As the system of equations

(4.A-5)-(4.A-9) does not have a closed form solution, numerical methods have to

be used to approximate the policy function characterizing its solution.

The most common method to solve dynamic equilibrium models is the pertur-

bation method, which is based on Taylor series expansions of the agents’ policy

functions around the steady state of the economy and a perturbation parameter.

When a first order Taylor series expansion is used, the model becomes linear in

the state variables, allowing, for example, the estimation of the structural param-

eters using the Kalman filter. This approach was popularized under the name

of (log-)linearization. Judd and Guu (1997) extended the method to compute

higher-order terms of the expansion, and Schmitt-Grohe and Uribe (2004) and

Kim et al. (2005) developed algorithms for the special case of second-order Taylor

series expansions. Since perturbation approximations are based on Taylor series

expansions, they are only valid locally, and provide poor approximations when

the economy is far from the expansion point. This might be a problem if one is

interested in analyzing economies subject to large shocks, as emerging markets,

or extreme events like the Great Depression or the present financial crisis.

Global approximation methods are more general, and valid on the whole sup-

port of the approximated function. One class of such global methods are the

projection methods (see DeJong and Dave, 2007; Judd, 1998; Mirana and Fack-

ler, 2002). These methods are also known as weighted residual methods, as they

take basis functions to build an approximated policy function that minimizes a

residual function. Here two methods of this class are going to be used, one in

which the basis functions are nonzero globally, the Chebyshev collocation method,

and the finite elements method, whose basis functions are nonzero only locally.
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Next the different solution methods are briefly presented, for a more through-

out exposition of such methods see Heer and Maussner (2005), Judd (1998), or

Mirana and Fackler (2002).

4.A-2.1 Perturbation

Perturbation methods take a problem that has a known solution for some pa-

rameter values and derive solutions for similar problems with nearby parameters.

This approach relies on Taylor series expansions, on implicit function theorems,

and on results from bifurcation theory. In applications involving DSGE models,

approximations of the policy function are often constructed around the steady

state and the perturbation parameter is usually chosen to be the standard devi-

ation of the technology shock σε.

Solving the stochastic growth model presented above reduces to solving

0 = Et [f(ct+1, ct, st+1, st, σε)] (4.A-16)

0 = Et

[
c−φt − βc

−φ
t+1

{
exp (ρωt + εt+1)(ztk

α
t − ct + (1− δ)kt)α−1 + (1− δ)

}]
,

for a policy function

ct = m(st, σε), (4.A-17)

where st = [kt, zt] denotes the vector of state variables. The state transition

equations can be written as

st+1 = h(st, σε) + ησεζ, (4.A-18)

where η is a vector with zero and ones defining the position of the state variable

that is affected by the exogenous shock ζ, which in the stochastic growth model

is normally distributed with mean zero and unit variance.

The perturbation method proceeds substituting the proposed solutions (4.A-

17) and (4.A-18) into (4.A-16), yielding

F (st, σε) = Et [f (g(h(st, σε) + ησεζ, σε),m(st, σε), h(st, σε) + ησεζ, st)]

= 0. (4.A-19)

In general it is not possible to solve (4.A-16) for all values of the perturbation

parameter σε, but the steady state values in (4.A-12)-(4.A-15), per definition,

solve the system for σε = 0, thus serving as a benchmark from which solutions to
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nearby parameter values will be derived. If the interest is on first-order approxi-

mations, then

m(st, σε) = g(s, 0) + gs(s, 0)(st − s) + gσε(x, 0)σε

h(st, σε) = h(s, 0) + hs(s, 0)(st − s) + hσε(x, 0)σε, (4.A-20)

where ms(s, 0) and hs(s, 0) are vectors containing the first derivatives with respect

to the states st, and are given by

gs(s, 0) =

[
∂gs(s,0)
∂kt

∂gs(s,0)
∂zt

]
, hs(s, 0) =

[
∂hs(s,0)
∂kt

∂hs(s,0)
∂zt

]
.

By the definition of the non-stochastic steady state, m(s, 0) = c, and h(s, 0) =

s. Furthermore, note that because F (s, 0) must be equal to zero, it must be the

case that all its derivatives are also equal to zero. Thus, a system of quadratic

equations on the unknown elements of gx and hx can be constructed by evaluating

the derivatives of F (st, σε) at the steady state and σε = 0. A number of authors

have developed algorithms to find solutions to this problem that are associated

with non-explosive paths for the states and controls (see Blanchard and Kahn,

1980; Klein, 2000; Sims, 2002). Similarly, using Fσε(s, 0) it can be shown that

gσε and hσε are equal to zero (see Schmitt-Grohe and Uribe, 2004).

A second-order approximation to (4.A-17) and (4.A-18) is obtained by adding

second order terms to the expansion in (4.A-20):

m(st, σε) = g(s, 0) + gs(s, 0)(st − s) +
1

2
(st − s)′gss(s, 0)(st − s) +

1

2
gσεσε(s, 0)σ2

ε

h(st, σε) = h(s, 0) + hs(s, 0)(st − s) +
1

2
(st − s)′hss(s, 0)(st − s) +

1

2
hσεσε(s, 0)σ2

ε ,

where

gss(s, 0) =

[
∂2gs(s,0)

∂k2
t

∂2gs(s,0)
∂zt∂kt

∂2gs(s,0)
∂kt∂zt

∂2gs(s,0)

∂z2t

]
, hss(s, 0) =

[
∂2hs(s,0)

∂k2
t

∂2hs(s,0)
∂zt∂kt

∂2hs(s,0)
∂kt∂zt

∂2hs(s,0)

∂z2t

]
.

Plugging in the coefficients found in the first-order approximation it is possible

to obtain a linear system in the second order terms of the policy function that is

easily solvable. Taking higher order derivatives and plugging in the results found

in the previous step, one is able to get higher order approximations.
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4.A-2.2 Projection Methods

In Projection methods, the policy functions corresponding to the solution of the

model are represented as a linear combination of known basis functions. The

Weierstrass theorem presented in Section 2.1 suggests that polynomials might

be a good choice for the elements of the basis for the function space of the

approximation. The coefficients on each basis functions are the objects to be

computed to obtain an approximate solution, and are found by setting a residual

equation to zero on average.

For the stochastic growth model in (4.A-1)-(4.A-4), the problem is to find

c(st) : R2 → R that satisfies the functional equation (4.A-6). The approximation

to the policy function will be of the form

ĉ(st, χ) =

nk∑
i=1

nz∑
j=1

χi,jPi,j(st), (4.A-21)

where χi,j are the unknown coefficients, nk and nz are the number of grid points

in each state dimension, and Pi,j(s) are the basis functions, which are often simple

functions, like polynomials or piecewise linear functions.

For the stochastic growth, the residual equation is defined based on (4.A-16)

as

Res(st;χ) = F (ĉ(st;χ)), (4.A-22)

where

F (ĉ(st;χ)) = Et
[
ĉ(st;χ)−φ − βĉ(st+1(st, εt+1);χ)−φR (st+1(st, εt+1))

]
(4.A-23)

and st+1(st, εt+1) represent the transition equation of the state variables (4.A-3)-

(4.A-4), and the expectation is with respect to εt+1.

The idea of Projection methods is to chose χi so that the residual equation

(4.A-22) can be close to zero in a weighted integral sense. That is, χi are chosen

so that ∫
wi(st)Res(st;χ) ds = 0, i = 1, . . . , n, (4.A-24)

where n = nk ·nz are the total number of unknown coefficients χ, and wi(st),∀i =

1, . . . , n are weight functions that can be different from Pi(st). Therefore, instead
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of setting Res(st;χ) to zero for all st, the method sets a weighted integral of Res(·)
to zero.

There are different ways to determine the coefficients χ1, . . . , χn depending on

the weight function used. The collocation method, which uses weights that are

zero almost everywhere given by wi(st) = δ(st−si) 1, is going to be used together

with spectral methods, where the basis functions Pi(st) are nonzero almost ev-

erywhere. The Galerkin method uses wi(st) = Pi(st), forcing the residual to be

orthogonal to each of the basis functions. This scheme is going to be used in the

finite elements method, whose basis functions Pi(st) are zero almost everywhere.

4.A-2.3 Finite Elements Method

The finite element method is an algorithm for solving functional equations widely

used in engineering applications (see, e.g. Ern and Guermond, 2004). It subdi-

vides the domain of the state space into nonintersecting subdomains (elements),

and fits low-order polynomials on them instead of fitting high-order polynomials

on the entire state space2. This allows extra flexibility, as finer subdivision of the

state space could be used in regions where nonlinearities occur, or higher order

polynomials could be used where needed.

The objective is to find the vector of coefficients χ, which are used to represent

the approximation to the consumption function ĉ(kt, θt, χ) =
∑n

i=0 χiPi(st), and

satisfy the residual function

Res(kt, θt;χ) =
β√
π

∫
ĉ(kt+1, θt+1;χ)−φ

ĉ(kt, θt;χ)−φ

(
αkα−1

t+1

√
1 + θt+1

1− θt+1

+ 1− δ

)
e−ν

2

dν − 1,

(4.A-25)

where

kt+1(st) = kαt

√
1 + θt
1− θt

+ (1− δ)kt − ĉ(st;χ),

θt+1 = tanh
(
ρ tanh−1(θt) +

√
2σεν

)
, (4.A-26)

and ν is normally distributed with mean 0 and variance 0.5. The upper bound

to the capital stock is set to k, thus the domain of the approximation ĉ(kt, θt, χ)

1δ(·) denotes the Dirac delta function
2Spectral methods presented in the next subsection will adopt the opposite strategy of

fitting high-order polynomials to the entire state space.
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is defined as Ω = [0, k] × [−1, 1]. The transformation in (4.A-26) allows the use

of a variable that has compact support, θ, in place of a variable that does not,

z. Furthermore, (4.A-26) uses the transformation introduced in equation 2.18 of

Section 2.1.1.2 to compute expectations of Gaussian variables using the Gauss-

Hermite formula. Since the integral in (4.A-25) is univariate and over a gaussian

variable ν, Gauss-Hermite quadrature is a natural choice to be used to efficiently

solve it. The application of the quadrature rule implies

R(kt, θt;χ) ' β√
π

n∑
i=1

ĉ(kt+1, θ
i
t+1;χ)−φ

ĉ(kt, θit;χ)−φ

(
αkα−1

t+1

√
1 + θit+1

1− θit+1

+ 1− δ

)
wi − 1,

where θit+1 = tanh
(
ρ tanh−1(θt) +

√
2σενi

)
, and νi and wi are the abscissas and

weights for a N -point Gauss-Hermite quadrature rule.

Once the domain Ω of the approximation ĉ(kt, θt, χ) is selected, one needs

to divide it into non-overlapping elements [ki, ki+1] × [θj, θj+1] such that Ω =⋃
i,j[ki, ki+1] × [θj, θj+1], where ki is the ith grid point for capital stock and θj

the jth grid point for the transformed TFP process 3. In this application, smaller

elements are placed where the policy function is steeper, and fewer larger elements

where it is flatter.

The next step is to decide upon the interpolation functions that are going to

be used to approximate the policy function in each element. Although quadratic,

cubic and other polynomials functions can be used, linear basis provide a good

approximation for this application. Set Pi,j(s) = Pi(k)Pj(θ), where

Pi(k) =


k−ki−1

ki−ki−1
if k ∈ [ki−1, ki],

ki+1−k
ki+1−ki if k ∈ [ki, ki+1],

0 elsewhere,

Pj(θ) =


θ−θj−1

θj−θj−1
if θ ∈ [θj−1, θj],

θj+1−θ
θj+1−θj if θ ∈ [θj, θj+1],

0 elsewhere,

are the interpolation functions. The function Pi,j(s) is 0 everywhere, except inside

four elements.

The unknown coefficients χi,j are found using the Galerkin method, which

implies that the weighting functions wi,j are chosen to be the basis functions

Pi,j(s). Using condition (4.A-24), χi,j is the solution to the following system of

3Rectangular elements are used here, but other polygons or polyedrons can be utilized (see
Ern and Guermond, 2004).
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equation∫
[ki−1,ki]×[θj−1,θj ]

⋃
[ki,ki+1]×[θj ,θj+1]

Pi,j(k, θ)Res(k, θ;χ) dk dθ = 0 ∀i, j.(4.A-27)

The integral in (4.A-27) can be evaluated using Gauss-Legendre quadrature

(see Section 2.1.1.2, or Press et al. (2007)). Using 93 unequal elements in the

capital stock dimension and 51 in the TFP dimension, 3 nodes for the Gauss-

Legendre integration, and 7 nodes for the Gauss-Hermite integration implies that

(4.A-27) is a system of 4743 nonlinear equations, which is solved efficiently using

a Newton algorithm and exploiting the sparsity of the system4.

4.A-2.4 Spectral Method

Spectral methods (see Judd, 1998) uses basis functions that are nonzero almost

everywhere. One example of such bases are orthogonal polynomials (see Theorem

2.1.3) such as Chebyshev polynomials. Chebyshev polynomial interpolants are

nearly optimal polynomial approximants, and the error associated with a n-degree

Chebyshev polynomial interpolant cannot be larger than 2π log(n) + 2 times the

lowest error attainable with any other polynomial approximant of the same order

(see Mirana and Fackler, 2002).

A nth order Chebyshev polynomial can be defined recursively as

T0(s) = 1, T1(s) = s̃, T2(s) = 2s̃T1(s)− T0(s), . . . , Tn(s) = 2s̃Tn−1(s)− Tn−2(s),

where s̃ ∈ [−1, 1], thus the following transformation is used to map a state

variable defined over a range [s, s] into [−1, 1]:

s̃ =
s− s∗

ϑ
, (4.A-28)

where s∗ are the steady state values of s, and ϑ = s− s∗ = s∗ − s. The approxi-

mation to the policy function is then given by

ĉ(s, χ) =

nk∑
i=1

nz∑
j=1

χi,jTi,j(s), (4.A-29)

4Analytical derivatives of the residual function with respect to χi,j are calculated to speed
up computations as in McGrattan (2006).
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Rewriting the residual equation (4.A-22) using the Chebyshev approximation

to the policy function yields

Res(st;χ) =
β√

2πσε

∫ [
ĉ(st;χ)−τ

ĉ(st+1;χ)−τ
R(st+1)

]
exp

(
ε2
t+1

2σ2
ε

)
dε, (4.A-30)

where st+1 are given by the law of motion of capital (4.A-3), and of TFP (4.A-

4). The approximation of the univariate integral in (4.A-30) is achieved via a

Gauss-Hermite quadrature approximation.

Instead of using the Galerkin method, where the weight functions are given

by the basis functions, a collocation weighting scheme is used. The collocation

nodes are the weighting function of the collocation method, and for the case of

Chebyshev polynomials basis functions the collocation nodes are often set to be

the zeros of the Chebyshev polynomial selected. This choice ensures that the

approximation error converges to zero as the degree of the polynomial (and thus

the number of nodes) increases (see Judd, 1998). Because the weighting function

is zero almost everywhere, the integral in (4.A-24) is avoided and χ is found by

solving the residual function (4.A-30) at the collocation nodes.

Using 18th order polynomial for both state variables, the problem becomes

one of solving the following system of 324 nonlinear equations

Res(ki, zj;χ) = 0 ∀i, j, (4.A-31)

which is solved using a quasi-Newton method. Starting values used to initiate

the algorithm are constructed using a linear approximation. Specifically, the

log-linearized consumption policy function has the following form

c̆t = Fc,kk̆t + Fc,z z̆t,

where Fc,s is the elasticity of ct with respect to the states, and x̆ denotes log

deviations from the steady-state of x. In terms of levels, an expanded Taylor

Series approximation is given by

ĉ ≈ c+
c

k
Fc,k(k − k) +

c

z
Fc,z(z − z)

+
1

2

(
c

k
Fc,k

)(
c

z
Fc,z

)
(k − k)(z − z).
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In turn, the approximation based on Chebyshev polynomials is of the form

ĉ ≈ χ11 + χ12

(
kt − k
ϑk

)
+ χ21

(
zt − z
ϑz

)
+χ22

(
kt − k
ϑk

)(
zt − z
ϑz

)
+ ....

Matching terms yields starting values

χ11 = c, χ12 = Fc,kϑk
c

k
, χ21 = Fc,zϑz

c

z
,

χ22 =
1

2

(
Fc,kϑk

c

k

)(
σϑz

c

z

)
.

4.A-3 Numerical Comparisons

Two sets of parameter values are used to compare the different solution

methods: a benchmark calibration, and an extreme calibration where shocks to

the TFP process are more than 10 time more volatile. The objective is to see

how the different solution methods behave as the shocks to the model economy

become larger, pushing it away from the steady-state. More specifically, it is

interesting to know how perturbation methods, which are based on local Taylor-

series approximation, behave as the model drifts away from the expansion point.

The two parameterizations used are given in Table 4.A-1.

As economists often use statistics from time series generated by the model

economy to draw their conclusions, simulations of 600 observations each are com-

puted for all solution methods using the same set of CRN to make them compa-

rable. Artificial time series for consumption and capital stock are generated and

the comparisons focus on their empirical moments, the empirical distribution,

and on the policy function generated by each method.

Table 4.A-2 present the empirical mean, standard deviation, and first-order

autocorrelation of the time series generated by the competing methods. All four

Table 4.A-1: Parameter Values, Stochastic Growth Model

α β φ δ ρ σε

Benchmark 0.33 0.9896 2 0.0196 0.95 0.007

Extreme 0.33 0.9896 2 0.0196 0.95 0.1
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Table 4.A-2: Empirical Moments, Benchmark Calibration

Consumption Capital Stock

µ σ ρ µ σ ρ

Chebyshev 2.5546 0.0547 0.9931 35.6925 1.3052 0.9986

Finite Elements 2.5546 0.0547 0.9930 35.6922 1.3048 0.9986

2ndOrder 2.5546 0.0547 0.9931 35.6926 1.3067 0.9986

Log-Linear 2.5539 0.0547 0.9931 35.6637 1.3056 0.9986

µ denotes the empirical mean, σ the empirical standard error, and ρ the

first-order autocorrelation.

solution methods deliver very similar results, as the model calibrated using the

benchmark parameters is almost linear. The two graphs on top of Figure 4.A-

1 present artificial time series for consumption and capital stock generated by

the different approximations, the pair of graphs in the middle are the empirical

distribution of these two variables, and the lower graphs display the different

approximations to the policy function. The different answers are almost indistin-

guishable, except for the log-linear policy rules for values of the state variables

away from their steady state. In the lower right panel of Figure 4.A-1 it is clear

how the log-linear approximation is pushed away from the others for low and high

values for the TFP and for the capital stock. Although the second order pertur-

bation method is only a local approximation, its policy functions are similar to

the global ones for a very large range of the state space.

Once the standard deviation of the shock is increased, larger differences appear

and the local methods deviate from the global ones. Table 4.A-3 contain the em-

pirical moments of the artificial time series generated by approximations based on

the extreme calibration. The global methods provide very similar results, which

are quite different from the ones given by the log-linear approximation. Although

the first-order autocorrelation for consumption and capital stock are very similar

across methods, the log-linear empirical means and standard deviations are much

lower. The second order perturbation method provide results that are closer to

the ones of the global methods, but smaller differences in the empirical mean,

and larger differences in the standard deviation of capital stock can be observed.

The time series plots in Figure 4.A-2 clearly show how the series based on
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Figure 4.A-1: Benchmark Calibration

the log-linear approximation are always below the other series, evidencing the

first order errors implied by the log-linear solution. Furthermore, as a result

of this downward bias, the empirical distribution of consumption and capital

for the extreme calibration is shifted to the left. The empirical distribution

based on the second order approximation is much closer to the ones of the global

methods, but it is possible to see how the right tails decay much slower than the

ones of the distributions impled by the Chebyshev and finite elements methods,

which is responsible for the larger standard deviations presented in Table 4.A-

3. The policy functions of the three nonlinear approximations are again almost

indistinguishable, but now the one based on the log-linear solution clearly deviate

from the others in almost all the support of the state space, and this deviation

becomes larger for low values of capital stock and TFP.

Table 4.A-4 present computing time for each of the methods analyzed. At least
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Figure 4.A-2: Extreme Calibration

for the two-states stochastic growth model used here, Chebyshev polynomials and

the collocation method seem to deliver a good balance between computing time

and accuracy, although this method is known to suffer badly from the curse of

dimensionality. The finite elements method approximations seem to be as good as

the ones based on Chebyshev polynomials, but its computing time is much higher.

The computing time of the finite elements could be improved via the development

of more efficient mesh, but this would imply a much higher implementation time.

The 2nd order perturbation method is the most straightforward nonlinear method

to implement, and is also the fastest, but its approximation error grows with the

nonlinearity of the model.

The numerical results for both calibrations of the stochastic growth model

show that log-linearization is a good approximation method only when the model

is relatively close to the steady-state. Second order approximations on the other
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Table 4.A-3: Empirical Moments, Extreme Calibration

Consumption Capital Stock

µ σ ρ µ σ ρ

Chebyshev 2.8048 0.8499 0.9929 46.5106 23.2938 0.9983

Finite Elements 2.8091 0.8499 0.9929 46.5149 23.2938 0.9983

2ndOrder 2.8220 0.8675 0.9930 48.2093 26.7497 0.9984

Log-Linear 2.6744 0.8366 0.9927 40.8231 22.9544 0.9985

µ denotes the empirical mean, σ the empirical standard error, and ρ the

first-order autocorrelation.

Table 4.A-4: Computational Time

Benchmark Extreme
Calibration Calibration

Chebyshev 0.4907 0.9585

FiniteElements 10.5921 10.7950

2ndOrder 0.3521 0.3521

Log − Linear 0.0081 0.0081

Time in seconds computed using MATLAB version 7.8 on a 1.7 GHz desktop

with 3.3GB of RAM memory.

163



4. NONLINEAR STATE-SPACE MODELS

hand, are able to approximate the solution to the stochastic growth model fairly

well even when the model is subject to larger shocks that drag the economy away

from its steady state. Although, this approach generates data that are more

volatile than the one generated by the global methods analyzed in the extreme

calibration case. Global methods appear to be the best approximation method,

but their implementation is much more complicated than that of perturbation

methods, and they are normally slower than the other competing methods. Per-

turbation methods seem to deliver a good trade-off between programming and

computational time, and approximation error.
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Chapter 5

Conclusions

This thesis has focused on econometric applications requiring multivariate nu-

merical integration. Models that attempt to capture real-world complexities are

typically nonlinear and display many unobservable factors. These characteris-

tics imply that the likelihood function of these models contain high-dimensional

integrals that cannot be solved analytically, and have to be approximated numer-

ically.

Importance Sampling is an important Monte Carlo simulation method of-

ten used to solve high-dimensional integrals, but given the difficulty in finding

mechanical multivariate importance samplers, this method have not experienced

the same success of other simulation approaches like MCMC methods (van Dijk,

1999). Here the Efficient Importance Sampling method developed by Richard and

Zhang (2007) was used to overcome the problem of finding multivariate impor-

tance samplers with remarkable success. It was shown how importance sampling

can be used to efficiently solve high dimensional integration problems in econo-

metric models using panel data, and time series.

In chapter 3, EIS was used to estimate different non-linear panel data spec-

ifications in order to investigate the causes and dynamics of current account

reversals in low- and middle-income countries. In particular, four sources of

serial persistence were analyzed: (i) a country-specific random effect reflecting

time-invariant differences in institutional, political or economic factors; (ii) seri-

ally correlated transitory error component capturing persistent country-specific

shocks; (iii) dynamic common time-specific factor, designed to account for poten-

tial spill-over effects and global shocks to all countries; and (iv) a state dependence
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component to control for the effect of previous events of current account reversal

and to capture slow adjustments in international trade flows.

The likelihood evaluation of panel models with country-specific random het-

erogeneity require univariate integrals that were efficiently solved using Gauss-

Hermite quadrature. For likelihood-based estimation of the panel model with

country-specific random heterogeneity and serially correlated error components,

the EIS was used to perform high-dimensional integration. The application of EIS

allows for numerically very accurate and reliable ML estimation of this model.

In particular, it improves significantly the numerical efficiency of GHK, which is

the most frequently used MC procedure to estimate non-linear panel models with

serially correlated errors.

The empirical results indicate that the static pooled probit model is strongly

dominated by the alternative models with serial dependence. However, state-

dependence and transitory country-specific errors are essentially observationally

equivalent. Both sources of serial dependence are jointly significant only with the

inclusion of random time-specific effects into the model with state-dependence,

even though the time-specific effect is small with limited effect on the overall fit of

the model. Also, conclusive evidence for the existence of random country-specific

effects was not found.

Overall, the results relative to the determinants of current account reversals

are in line with the those in the empirical literature on current account crises and

confirm the empirical relevance of theoretical solvency and sustainability consid-

erations with respect to a country’s trade balance. More specifically, countries

with high current account imbalances, low foreign reserves, a small fraction of

concessional debt, and unfavorable terms of trades are more likely to experience

a current account reversal. These results are fairly robust against the dynamic

specification of the model.

Chapter 4 focus on likelihood evaluation of nonlinear DSGE models. Recently,

a growing literature has estimated nonlinear DSGE model using the particle filter

(see Amisano and Tristani, 2007; An and Schorfheide, 2007; Fernandez-Villaverde

and Rubio-Ramirez, 2005, 2007), but little attention has been given to the extra

uncertainty introduced via the sequential Monte Carlo filter. The particle filter

is conceptually simple and easy to program, but it may suffer from severe sample
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impoverishment and likelihood discontinuities given its discrete and fixed-support

approximations to unknown densities in the filtering process.

An efficient means of facilitating likelihood evaluation in applications involv-

ing non-linear and/or non-Gaussian state space representations was presented:

the EIS filter. The filter is adapted using the EIS optimization procedure de-

signed to minimize numerical standard errors associated with targeted integrals.

Resulting likelihood approximations are continuous in underlying likelihood pa-

rameters, greatly facilitating the implementation of ML estimation procedures.

Implementation of the filter is straightforward, and the payoff of adoption was

shown to be substantial.

Two nonlinear DSGE models were used to illustrate the problems of likelihood

evaluation using the particle filter, to explain the implementation of the EIS filter,

and to show how it is able to overcome the problems. The first one is a standard

two-state real business cycle (RBC) model estimated using the particle filter

by Fernandez-Villaverde and Rubio-Ramirez (2005); the second is a small-open-

economy (SOE) model patterned after those considered, e.g., by Mendoza (1991)

and Schmitt-Grohe and Uribe (2003), but extended to include six state variables.

Both data sets used in the likelihood evaluation of the RBC model were used

by Fernandez-Villaverde and Rubio-Ramirez (2005), and each of them poses a

distinct challenge to efficient filtering. In the artificial data set, the standard de-

viations of the measurement errors are small relative to shocks to the unobserved

states, which led to problems associated with sample impoverishment. In the real

data set, the investment series contains two outliers, which induce non-trivial bias

in likelihood estimates associated with the particle filter. Both of these challenges

were overcome via implementation of the EIS filter.

The six-state variables small-open-economy model showed that the EIS fil-

ter extraordinary success in resolving the problems of the particle filter is not

restricted to small state space systems. In this application neither data set con-

tains an outlier observation nor standard deviations of measurement errors are

small. Differences stem primarily from differences in the volatility and persis-

tence of the model’s structural shocks. In particular, when structural shocks are

more persistent, and less volatile, the state variables are relatively easy to track,

and in general the construction of likelihood approximations is less problematic.

The particle filter once again suffers non-trivial bias on scales similar to those
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observed in working with the RBC model even in a less problematic setup. The

MC standard errors of the particle filter and EIS filter differ by two orders of

magnitude in the artificial data set, and by one order of magnitude in the actual

data set.

The Appendix to Chapter 4 presented a numerical comparison from differ-

ent methods used in the literature to solve nonlinear DSGE models. Numerical

results were based on two different calibrations of a stochastic growth model: a

benchmark one; and an extreme calibration where the standard deviation of the

shock to the total factor productivity is 10 times larger.

For both calibrations the log-linearization is a good approximation method

only when the model is relatively close to the steady-state. Second order approxi-

mations on the other hand, are able to approximate the solution to the stochastic

growth model fairly well even when the model is subject to larger shocks that

drag the economy away from its steady state. Although, this solution approach

generates data that are more volatile than the one generated by the global meth-

ods in the case of the extreme calibration. Global methods appear to be the best

approximation method, but their implementation is much more complicated than

that of perturbation methods, and they are normally slower than the compet-

ing methods. Therefore, perturbation methods seem to deliver a good trade-off

between programming and computational time, and approximation error.

168



References

Acton, F. S. (1997). Numerical Methods that Work. Cambridge University Press.

27

Albert, J. H. and Chib, S. (1993). Bayes inference via gibbs sampling of autore-

gressive time series subject to markov mean and variance shifts. Journal of

Business & Economic Statistics, 11(1):1–15. 16

Amisano, G. and Tristani, O. (2007). Euro area inflation persistence in an esti-

mated nonlinear dsge model. CEPR Discussion Papers 6373, C.E.P.R. Discus-

sion Papers. 22, 148, 166

An, S. and Schorfheide, F. (2007). Bayesian analysis of dsge models. Econometric

Reviews, 26:113–172. 22, 148, 166

Aruoba, S. B., Fernandez-Villaverde, J., and Rubio-Ramirez, J. (2006). Compar-

ing solution methods for dynamic equilibrium economies. Journal of Economic

Dynamics and Control, 30(12):2477–2508. 14, 23, 149

Axtell, R. L. (2000). Why agents? on the varied motivations for agent computing

in the social sciences. In Working Paper 17, Center on Social and Economic

Dynamics, Brookings Institution, volume 17. 14

Baldwin, R. and Krugman, P. (1989). Persistent trade effects of large exchange

rate shocks. The Quarterly Journal of Economics, 104(4):635–54. 68

Baltagi, B. H. (2005). Econometric Analysis of Panel Data. John Wiley & Sons.

69

Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. Princeton

University Press. 26

169



REFERENCES

Billio, M. and Monfort, A. (1998). Switching state-space models likelihood func-

tion, filtering and smoothing. Journal of Statistical Planning and Inference,

68(1):65–103. 15, 16

Blanchard, O. J. and Kahn, C. M. (1980). The solution of linear difference models

under rational expectations. Econometrica, 48(5):1305–11. 13, 153

Bungartz, H.-J. and Dirnstorfer, S. (2003). Multivariate quadrature on adaptive

sparse grids. Computing, 71. 34

Butler, J. S. and Moffitt, R. (1982). A computationally efficient quadrature proce-

dure for the one-factor multinomial probit model. Econometrica, 50(3):761–64.

20, 67

Carpenter, J., Cliffordy, P., and Fearnhead, P. (1999). An improved particle

filter for non-linear problems. IEE Proceedings-Radar, Sonar and Navigation,

146(1):2–7. 110

Chabert, J.-L. (1999). A History of Algorithms: From the Pebble to the Microchip.

Spreinger-Verlag. 29

Chib, S. (2001). Markov chain monte carlo methods: computation and inference.

In Heckman, J. and Leamer, E., editors, Handbook of Econometrics, volume 5

of Handbook of Econometrics, chapter 57, pages 3569–3649. Elsevier. 17

Corsetti, G., Pesenti, P., Roubini, N., and Tille, C. (1999). Competitive deval-

uations: A welfare-based approach. NBER Working Papers 6889, National

Bureau of Economic Research, Inc. 64, 68, 69

Creel, M. (2008). Estimation of dynamic latent variable models using simulated

nonparametric moments. UFAE and IAE Working Papers 725.08, Unitat de
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Mauŕıcio Nunes. Revista de Economia Aplicada, v. 11, p. 55-72, 2007.

· Travel Hysteresis in the US Current Account After the Mid-1980s, with Sergio
Da Silva and Roberto Meurer. Economics Bulletin v.14, n.2, p. 1-10, 2005.

· Travel Hysteresis in the Brazilian Current Account, with Sergio Da Silva and
Robeto Meurer. Economics Bulletin v.6, n.24, p. 1-17, 2005.

· Big Mac Parity, Income, and Trade, with Sergio Da Silva and Sidney Caetano.
Economics Bulletin, v.6, n. 11, p. 1-8, 2004.

· Is There a Brazilian J-Curve? With Sergio Da Silva. Economics Bulletin, v. 6,
n. 10, p. 11-17, 2005.

· Working Papers

· Efficient Likelihood Evaluation of State-Space Representations, with David
DeJong, Hariharan Dharmarajan, Roman Liesenfeld and Jean-François Richard.
(Revised and resubmitted to The Review of Economics Studies)
http://www.stat-econ.uni-kiel.de/team/EWP-2009-02.pdf

· Interests

· Simulation Based Inference

· Nonlinear State Space Models

· Nonlinear Panel Data Models

· Statistische Woche, Meeting of the German Statistical Society. Dynamic PanelConferences
Probit Models for Current account Reversals and their Efficient Estimation, 24-27
September 2007, Kiel, Gemany.

· CFE08, 2nd International Conference on Computational and Financial Economet-
rics. Dynamic Panel Probit Models for Current account Reversals and their Efficient
Estimation, June 2008, Neuchâtel, Switzerland.

· LAMES, Latin American Meeting of the Econometric Society. Efficient Likelihood
Evaluation of Nonlinear RBC Models, November 2008, Rio de Janeiro, Brazil.

· ESEM, European Meeting of the Econometric Society. Efficient Likelihood Evalua-
tion of State-Space Representations, August 2009, Barcelona, Spain.

· CFE09, 3nd International Conference on Computational and Financial Economet-
rics. Efficient Likelihood Evaluation of State-Space Representations, October 2009,
Limassol, Cyprus.

· Portuguese: Native speaker.Languages

· English: Fluent. Certificate in Advanced English from the University of Cambridge.

· German: Fluent. Basic, intermediate and advanced courses at the University of
Kiel.

· Spanish: Fair. Basic course.

· MATLAB, C/C++, Stata, Eviews, VBA, LATEX, Microsoft Office.Other skills



Guilherme Valle Moura

· Professor Roman Liesenfeld (Advisor)References
Institute for Statistics and Econometrics
University of Kiel
Olshausenstraße, 40-60
D-24118, Kiel - Germany
Phone:(+49) 431-880-2166
E-mail: liesenfeld@stat-econ.uni-kiel.de

· Professor Jean-François Richard
Department of Economics
University of Pittsburgh
4711 Wesley W. Posvar Hall
Pittsburgh, PA 15260 - USA
Phone:(+1) 412-648-1750
E-mail: fantin@pitt.edu

· Professor David N. DeJong
Department of Economics
University of Pittsburgh
4711 Wesley W. Posvar Hall
Pittsburgh, PA 15260 - USA
Phone:(+1) 412-648-2242
E-mail: dejong@pitt.edu


	thesis-1
	1 Introduction
	1.1 Outline

	2 Numerical Integration
	2.1 Deterministic Methods of Integration
	2.1.1 Univariate Quadrature Methods
	2.1.1.1 Newton-Cotes quadratures
	2.1.1.2 Gaussian quadratures

	2.1.2 Multivariate Quadrature Methods

	2.2 Monte Carlo Integration
	2.2.1 Classical Monte Carlo Integration
	2.2.2 Importance Sampling
	2.2.2.1 GHK importance sampler

	2.2.3 Efficient Importance Sampling
	2.2.3.1 EIS for the exponential family of distributions
	2.2.3.2 Sequential EIS



	3 Estimation of Dynamic Panel Probit Models
	3.1 Introduction
	3.2 Determinants and Dynamics of Current Account Reversals
	3.2.1 Determinants
	3.2.1.1 State dependence
	3.2.1.2 Serially correlated error terms

	3.2.2 Data

	3.3 Empirical Specifications
	3.3.1 Random country-specific effects
	3.3.2 Random country- and time-specific effects

	3.4 Maximum-Likelihood Estimation
	3.4.1 Random country-specific effects
	3.4.2 AR(1) country-specific errors
	3.4.2.1 Estimation via the GHK algorithm
	3.4.2.2 Efficient Estimation via the EIS algorithm

	3.4.3 AR(1) time-specific effects

	3.5 Empirical Results
	3.5.1 A note on normalization
	3.5.2 Model 1: Pooled Probit
	3.5.3 Model 2: Random country-specific effects
	3.5.4 Model 3: AR(1) country-specific errors
	3.5.5 Model 4: AR(1) time-specific effects
	3.5.6 Predictive Performance

	3.6 Conclusion
	3.A1 Appendix 1: EIS-implementation
	3.A2 Appendix 2: MC experiments on the numerical efficiency of EIS

	4 Nonlinear State-Space Models
	4.1 Likelihood Evaluation and Filtering in State-Space Representations
	4.2 The Particle Filter and Leading Extensions
	4.3 Parametric EIS Filter
	4.3.1 EIS integration
	4.3.2 Continuous approximations of f(st|Yt-1)
	4.3.3 Degenerate transitions

	4.4 Application to DSGE Models
	4.4.1 Example 1: Two-State RBC Model
	4.4.2 Example 2: Six-State Small Open Economy Model
	4.4.3 Repeated Samples


	4.5 Conclusion
	4.A Appendix 1: Nonlinear Approximate Solution of DSGE Models
	4.A-1 The Stochastic Growth Model
	4.A-2 Solution Methods
	4.A-2.1 Perturbation
	4.A-2.2 Projection Methods
	4.A-2.3 Finite Elements Method
	4.A-2.4 Spectral Method

	4.A-3 Numerical Comparisons

	5 Conclusions
	References


	cv-1

