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Abstract

This thesis describes the design, implementation and use of a run-time debugging tool for

understanding the lazy semantics and locating failures in the functional logic language

Curry. We provide a means for programmers to step in the evaluation order of program

expressions at a source code level. Every expression evaluated is detected by a program

coverage in a layout of the source code. Its run-time value can be represented to the user.

The user can stop the execution of a program whenever he or she chooses to do so. A

means to backward stepping is also provided. For large programs, we record only partial

computations that are generated by evaluating selected expressions from the user.

To achieve these means, we suggest and use some annotations in programs. Repre-

sentation of intermediate steps of evaluations in a single-step mode is also provided by a

distributed programming technique. Stepping in the real order of lazy evaluations could

be helpful in searching for failures in simple programs and to beginners in understanding

the behavior of functions in functional logic languages.
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Chapter 1
Introduction

“The reality of the other person lies not

in what he reveals to you, but in what he

cannot reveal to you. Therefore, if you

would understand him, listen not to what he

says but rather to what he does not say.”

G. Khalil Gibran

Whenever we conclude a study on the subject of software engineering, the recom-

mendations are abstracted in words as the best software quality in practice [37, 58]. To

develop software, programmers should test programs to assure the accuracy of code. It

may not always be possible to identify a program failure by only looking at the source

code. Because most software is complex, it may be necessary to observe execution steps

of a program to see what is happening at run time. Stepping into the code helps the

programmer to understand a relationship between expressions and can lead her/him to

locate the position of failures - called bugs - that should be removed from programs.

It takes programmers too much time to find, locate and remove program failures. Tools

are needed that support the efforts of programmers to test, trace and debug code [45, 56].

Software testing involves assessing the reliability of software, as opposed to debugging

systems. Testing the quality of software not only reveals how usable the software product

is, but also provides a review of software programming methods to improve the solutions

that are written by the programmers.

Tracers/debuggers are useful tools for illuminating the dynamic nature of programs.

They are magnifying glasses that help a programmer to understand a program, as well as

to find, isolate and remove program failures. The tools that are implemented as debuggers
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usually do not remove the bugs, although they are often called debuggers.

There are several formal approaches to the testing and debugging of programs that

are written imperatively or declaratively. The aim of this thesis is to implement a tester

and a tracer for programs written in Curry [25], a declarative multi-paradigm language.

One of the advantages of declarative languages like Curry is that programs may be

written without specifying the evaluation order of expressions. However, because of the

difficult-to-predict evaluation order, this advantage makes it difficult to locate an unex-

pected failure in a program. It is desirable to have tools that support programmers to

show executed parts of programs and also follow the evaluation order of expressions. This

thesis offers ideas for the testing and tracing of functional logic programs. The ideas

suggested are realized in the implemented tool iCODE (Interactive Curry Observation

DEbugger). iCODE supports programmers with three useful sub-tools:

• COOiSY (Curry Object Observation Interactive SYstem)

• CUTTER (CUrry TesTER)

• C-Ace (Curry trACEr)

COOiSY is an improvement version of COOSy [10] to observe the values of functions and

data structures during an execution. CUTTER is a tool to observe the executed parts of

programs for different test cases generated by programmers. C-Ace is a tracer developed

to follow the evaluation order of program expressions. iCODE is written in Curry using

meta-programming, socket-programming and GUI-programming libraries [24].

1.1 Contributions of the Thesis

This thesis makes the following contributions:

• There are a variety of methods available for testing functional or functional logic

programs [15, 39, 31, 19]. Most of them [15, 19] generate different test cases auto-

matically. Unfortunately, the automatically generated test cases sometimes do not

execute parts of programs that may contain bugs. It is important to know which

parts of a program have not been executed. They may then be tested by other test

cases.

Representation of executed parts of programs based on the desired expressions is one

of the approaches of program slicing [72] (Section 3.5.2). With respect to program

slicing, we suggest a program testing method for different test cases generated by the
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programmer. This method is implemented by the tool CUTTER. By manipulating a

program, we can highlight executed parts of this code in a tree representation of the

program or in the original source code. Showing highlighted executed expressions

helps the programmer to generate other test cases for running non-executed parts

of a program that have not yet been highlighted and which may be executable. We

also represent the number of function calls that help the programmer to focus on

the quantity of function definitions and also to locate non-terminating computations

that may exist in a program.

• The task for most implemented tracers for non-strict languages is first to record

internal details of a computation and then to review this information in order to

locate failures. It is clear that, for a large computation, intermediate information

contains a great number of details. Users need too much time to review these details.

With some tools [5], it is possible to put check-points in programs. With the use

of check-points, the tool represents the internal details of computations only for

interval between the check-points. Some other tools [20, 10] allow the programmer

to annotate desired expressions from a program. For these tools, the information

recorded is related only to annotated expressions and not to the whole program.

Representation of information to the user can be similar to a textual visualization

[20, 10], graphical visualization [53], computation tree [5], evaluation dependency

tree [47, 71] or other different representation.

This thesis offers a new idea for reviewing the internal details of a computation. To

avoid storing large computations in a file, we use a distributed programming tech-

nique [23]. That means, we represent the information of computations during (not

after) an execution. The different modules of our project are clients and servers,

which communicate with each other by sending the internal details of computations

as messages. The messages provide the information about expressions evaluated.

They are represented to the user as textual visualization during execution. Repre-

senting values as a textual visualization in iCODE is an extension of Gill’s idea [20]

that is also implemented in COOSy [10].

• In COOSy, the evaluation of functions or data structures can be observed by anno-

tating program expressions. It is performed manually by the user. Unfortunately,

manipulating programs requires the kind of effort that discourages the users from

using this kind of tool. On the base of Gill’s idea [20], each annotation in Haskell

[35, 33] has a type class restriction on the expression being observed. There are

also instances for all the Haskell base types, such as Int, Bool, etc. In contrast
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to Haskell, Curry does not provide type classes. Therefore, for every observed ex-

pression a special observer should be added to programs that are related to the

type of values observed. This could be another problem for programmers, espe-

cially beginners. Our solution for these problems is to generate all of these details

automatically. The user should be required to only select the expressions desired

for observation. Before executing a program, all source code modifications are per-

formed automatically following selection of expressions by the user.

• Sometimes users would like to be able to move forwards and backwards to explore

the internal details of evaluations in a single-step mode. By navigating evaluated

expressions like [71] manually, the tool may lose orientation. However, the tool can

follow an evaluation when the user answers a sequence of questions. If the question

is not answered truthfully, the tool provides inaccurate information (Section 3.5.1).

The idea of this thesis is to represent the internal details of evaluations in an auto-

matic method of navigation. The user also will have the ability to stop the execution

of a program at any desired point.

The step-by-step provision of representations in iCODE is an interesting approach

that helps beginners to understand the lazy execution semantics of Curry. It can

also be helpful in locating bugs in simple programs.

1.2 Structure of the Thesis

Chapter 2: The work reported in this thesis concerns an approach to testing and tracing

the execution of programs written in the functional logic language Curry. This chapter

provides an overview of this language.

Chapter 3: In this chapter, we review some testing, tracing and debugging methods.

Chapter 4: One of the research contributions of the thesis is related to the observation

system COOSy. Applications of COOSy are offered in this chapter. In the observation

system, run-time values of evaluated expressions can be represented by inserting appro-

priate observers in programs. We also discuss in this chapter how programs should be

manipulated for this purpose.

Chapter 5: The algorithms of COOSy and iCODE are discussed in this chapter.

Chapter 6: The operational semantics of the observe applications is discussed in this

chapter.

Chapter 7: One of the ideas in our work is representing highlighted dynamic slices in

a tree representation of programs or in the original source code. This method is discussed
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in this chapter.

Chapter 8: The most important thing that a well-implemented tool can do to help

programmers track down problems is to provide easy-to-understand information. Pro-

grammers think in expressions of their source code. She/He has a detailed map of the

program in her/his mind. Displaying information about the executions in a lay-out of

source-lines can be an interesting representation. It is an idea proposed in this thesis.

We have realized our idea in the implemented tool iCODE. The architecture of iCODE is

described in this chapter. It concentrates on two different architectures. One is provided

for representation of information from evaluations in a single-step mode. The other is

provided for display of the most recent information from executions without representing

the internal details.

Chapter 9: In this chapter we briefly compare other existing debuggers to iCODE.
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Chapter 2
Functional Logic Languages

“Remember the flight, the bird is mortal.”

Forough Farrokhzad

In this chapter, we first compare the concept of imperative and functional program-

ming languages. Then, we introduce the main features of functional languages, like

Haskell. Finally, we discuss Curry and the features that Curry added to Haskell to

develop a functional logic language.

2.1 Imperative in contrast to Functional Programming

The style of pure functional programming is based on the method in which all computa-

tions are defined as applications of functions to arguments. Unlike imperative languages,

there are no side effects when expressions are evaluated.

To illustrate this difference, we consider an example. In this example, we compute the

sum of three numbers. In most imperative languages, such as C [63, 52], this example can

be implemented by using three variables: a counter to count up to 3, an array in which

to store the three numbers and an accumulator to accumulate the intermediate results of

computations. We write this example in C:

int main() {

int a[3] = {11,21,37};

int sum = 0;

int counter = 0;
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while (counter < 3) {

sum = sum + a[counter];

counter = counter + 1;

}

return (sum);

}

In this program, the expression a[counter] is defined as an array with counter ele-

ments. The expression while (<condition>) {<expressions>} repeatedly computes

the expressions until the condition is no longer true. sum is an accumulator to store

intermediate computations and counter to count the number of computations. All vari-

ables that are used in the program need to be instantiated dependent on the type of these

variables. In our example, we instantiate the array a[3] with three elements {11,21,37}

and sum and counter with zero.

The while-expression repeatedly adds an element of the array to the accumulator

and triggers the counter until the three elements are added and the counter reaches 3.

By representing the intermediate results in the following table, the computation should

become clear.

sum counter

0 0

0+11 = 11 0+1 = 1

11+21 = 32 1+1 = 2

32+37 = 69 2+1 = 3

As we see, the values are stored and change during program execution. The program con-

tains a sequence of assignments. It is constructed with imperative instructions that specify

how the computation proceeds. Computer languages that use this kind of programming

method are called imperative languages.

To compare the C program above with a functional programming method, let us

rewrite the program in Haskell language [35, 33]. To produce lists in Haskell programs,

brackets are used: [] as an empty list and [a,b,c] as a list with three elements - a, b

and c. The symbol “:” is also used to produce a list. The list (x:xs) indicates that the

first element of this list is named x and that the list of all remaining elements is named

as xs. xs can be an empty or non-empty list. Consider the following Haskell program:

main = sum [11,21,37]

sum [] = 0

sum (x:xs) = x + sum xs
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The symbol “=” is used for function definitions. The left-hand side of the symbol “=”

represents the name of a function and the arguments to which this function applies. The

right-hand side of the symbol “=” is an expression that causes a program to compute the

result of the function. In our example, the left-hand side of the function sum shows that

this function can be applied to two different lists. In the first equation, it can be applied

to an empty list. In the second equation, it can be applied to a non-empty list. The

right-hand side of the first equation shows that an application of sum to an empty list

offers zero as a result. The second application has another definition. An application of

sum to a non-empty list offers an addition between the first element of the list and the

result of an application of sum to the remaining list elements.

Note that the program is implemented by applying functions to arguments. This is

the basic method of computations in functional languages. In other words, in contrast to

imperative programs that are a sequence of assignments, functional programs are sets of

function definitions that are built on function applications. Let us review the intermediate

applications of our functional program in the following table.

apply result

main sum [11,21,37]

sum 11 + sum [21,37]

sum 11+(21+sum [37])

sum 11+(21+(37+sum []))

sum 11+(21+(37+0))

+ 11+(21+37)

+ 11+58

+ 69

Compare the two tables. In imperative programs, we must store values. The stored values

change during the execution of assignments. In functional programs, values are passed

only as arguments from one function to the other.

A nice feature of Haskell as a functional language is that every function has a type that

specifies the nature of its arguments and results. The type of functions is inferred from

function definitions during the compilation of a program. It detects many type errors

before executing a program. Type errors are one of the problems inherent in languages

that check the type of variables during the execution of a program and not during compile

time. For example, if a type error is contained in a branch-statement, it is possible that

it will not be detected. Another example is type conversion.

Let us consider the following program that has been written in C:
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int main (int x) {

char y;

y = x;

y = y+1;

return y;

}

In the above example, integer x is assigned to character y (y=x). If a value of x is large

during execution, it is possible that this value will be lost.

Now consider the following program, which uses an unset variable:

int main (int x) {

int y;

if (x) {

y = x;

}

return (y);

}

Note that the variable y receives a value of x within the if-expression. In the case of

false, y is returned with an unknown value. However, in the case of true, the value of x is

assigned to y. That means that the error will not be detected in the case true.

2.2 Functional Core

Functional programming languages have several nice features [32]. The structure of this

kind of program is like the methods that we use in mathematics. The semantics of

these languages is defined in terms of its foundation in lambda calculus [54, 40]. Further,

functional languages offer an interesting polymorphic type system, higher-order functions,

I/O monads and a pattern matching method for equational definitions of functions. Lazy

semantics add another nice property to functional programs: function parameters are

evaluated only on need.

In this section we briefly discuss the features of functional languages like Haskell

[35, 33].

2.2.1 Mathematics Style

In mathematics, every function application is defined by the name of the function and its

arguments, which are enclosed in parentheses. For example, the expression 2x+f(x,y)
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means that we have a multiplication of 2 and x. The result of the multiplication must be

added to the result of the application between the function f and its arguments x and y.

Functional programs use this style to define function applications in programs. In Haskell

or Curry, the application above can be easily defined by using spaces between arguments

and * to denote multiplications:

2*x+f x y

Now it is easy to define a function definition like g(x,y)=2x+f(x,y) as an equation in a

functional program. We must only separate the arguments with spaces:

g x y=2*x+f x y

Furthermore, in functional programs like Haskell, a function application has a higher

priority than other operations. For example, the expression f x y+x means (f x y)+x.

Note that each variable in the left-hand side of an equation occurs only once (left-

linear). For example, the equation of f x x=2*x is unacceptable, since the variable x

appears twice in the left-hand side of the equation.

2.2.2 Pattern Matching

The left-hand side of function definitions can contain patterns. They are arguments related

to the function definition. For example, in the following function definition, 0 and 1 are

patterns:

f 0 = 10

f 1 = 20

Note that the definition of the function f is represented in two equations. Having dif-

ferent rules (equations) for a function requires a strategy to compare function patterns

with actual parameters. Comparing patterns and parameters is called pattern matching.

Pattern matching is applied to patterns in the order in which they are defined in function

equations. In our example, 0, and then 1, is matched. The sequence of this matching

should become clear when we represent all functions by case expressions:

f x = case x of

0 -> 10

1 -> 20

The case mechanism of Haskell allows pattern matching to be used in the right-hand side

of a function definition, in our example by matching x against 0 and 1 to choose between



Functional Logic Languages 12

two possible results. In the example above, a function application of f to an argument

(x) chooses the first result 10, if the given argument is 0. If the second pattern (1) is

matched, the second result (20) is chosen.

2.2.3 Lambda Expressions

Functions can be constructed using lambda expressions. Every lambda expression needs

patterns to define arguments and a body that defines how the function works:

\pattern -> body

Unlike mathematics, which needs a function name for every function definition, functions

have no names in lambda expressions. Lambda expressions are defined with the symbol

“\” in Curry. The entire structure of lambda expressions can be used like function names

in function applications. For example, the lambda expression \x -> x+1 can be defined

as an increment function. Applying this function to an argument (y) is represented as:

(\x -> x+1) y

2.2.4 Function Types

All expressions have types, specially functions. A function is a mapping from arguments

to results. Arguments and results have also types. If the type of arguments is TypeArgs

and the type of results is TypeRes, the mapping is represented by TypeArgs -> TypeRes.

Imagine that this type is specified for a function (e.g., fun). Now the function fun has a

type that is defined as follows:

fun :: TypeArgs -> TypeRes

A type can be related to a collection of values. For example, if the function fun takes

no arguments but returns an integer as a result, the type of this function can be:

fun :: Int

As another example, imagine that the function fun takes an integer as an argument

and returns Boolean values as the result. For this definition, we need a map between the

type of arguments and results:

fun :: Int -> Bool

Haskell and Curry are strongly typed. That means that every value has a type that

can be inferred from programs at time of compilation. Inferring types is done by a process
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called type inference. For example, if the application fun expr exists in a program so that

fun is a function of type T1 -> T2 and expr is an expression of type T1, the application

fun expr is of type T2.

2.2.5 Curried Function Definitions

Functions that take their arguments one at a time are called curried. For example, the

function add that is defined as add x y = x+y can be translated to:

add = \x -> (\y -> x+y)

Note that the function add takes an argument and returns a function. This function

takes the second argument and returns the result x+y. In other words, the function add

is applied to its two arguments (e.g., of type Int) as follows:

add :: Int -> (Int -> Int)

The above definition is also used for functions with more than two arguments. For

instance, if we define the function add3 with three arguments:

add3 x y z = x + y + z,

the type is:

add3 :: Int -> (Int -> (Int -> Int)).

To avoid using parenthesis in programs written in Haskell or Curry, the type con-

structor (->) is defined as right-associative, meaning that the type of add3 can be written

without parenthesis as follows:

add3 :: Int -> Int -> Int -> Int

Note that function applications are left associative. For example, an application of

add3 to three arguments like (add3 1 2 3) means:

(((add3 1) 2) 3)

This definition brings up another feature of functional languages called partial appli-

cation. It means that a curried function can be applied to arguments while the number

of arguments is less than that defined in the function type. Let us consider the increment

function as a simple example:

increment :: Int -> Int

increment x = x + 1
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The function increment needs one argument and the operator + needs two arguments.

By means of partial applications, we can define increment as follows:

increment = (+) 1

As we see, there are no arguments for the function increment and the operator (+) has

only one argument (1). Note that the type of increment is un-changed:

increment :: Int -> Int

It means that every function call of increment needs one argument.

2.2.6 Data Types

As we have discussed, Haskell and Curry are strongly typed. A completely new type can

also be defined using the data construct in these languages. For example, we can specify

that the type Color has different values like Blue, Red, and Green:

data Color = Blue

| Red

| Green

The symbol | means “or” and Blue, Red and Green, values of the type Color are called

constructors. The name of each constructor begins with an upper-case letter. Note that

we are not allowed to use the same constructor name for different data types.

Constructors can also have arguments. As an example, let us define a data type for

binary trees. Every tree can have leaves and nodes. Nodes construct other sub-trees that

have the type of the tree’s root-node:

data Tree = Leaf Int

| Node Tree Int Tree

The data type is named Tree. It has two constructors - Leaf and Node. The constructor

Leaf has one argument of type Int. The constructor Node is defined by three arguments

that construct two sub-trees of the node and a value of type Int. The type of sub-trees

is equal to the type of the parent node (Tree).

User-defined data types can be passed as arguments to functions. To illustrate this

possibility, we define a function to compute the depth of a binary tree:

depth :: Tree -> Int

depth (Leaf x) = 1



Functional Logic Languages 15

depth (Node leftSubTree x rightSubTree) = 1 + max (depth leftSubTree)

(depth rightSubTree)

max :: Int -> Int -> Int

max x y = if x>y then x else y

Suppose that we wish to apply the function depth to a binary tree with the following

values:

4

/ \

2 6

/ \ / \

1 3 5 7

This tree can be represented by the data type Tree:

binaryTree :: Tree

binaryTree = Node (Node (Leaf 1) 2 (Leaf 3))

4

(Node (Leaf 5) 6 (Leaf 7))

Now we should only write an application: depth binaryTree. The result is 3.

2.2.7 Parametric Polymorphism

In functional languages there are several predefined types like Int, Char, Bool and etc.

These languages also feature polymorphic types which can be used for different types of

an argument. One example is the identity function id:

id :: a -> a

id x = x

The type a shows that the function id can take every type. Polymorphic types are

represented by type variables. A type variable must begin with a lower-case letter.

A list is one of the important data structures that has polymorphically typed elements.

A list is a set of elements of the same type. If the elements of a list are of type T, the

type of the list is represented as [T]. Lists can be empty ([]) or have elements that are

separated by commas (e.g., [1,2,3]). A list can also be represented by the constructor

(:). This constructor needs the first element of the list and the remainder list. For

example, the list [1,2,3] can also be represented as: (:) 1 [2,3].

We use this definition to define a data type for lists that have polymorphic type

elements:
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data [a] = [] | (:) a [a]

Let us write a function to apply to this defined data type. For example, we will define

the function length:

length :: [a] -> Int

length [] = 0

length (a:aList) = 1 + length aList

This function computes the length of a given list that contains elements of any type. For

example, it can compute the length of a list with integers as elements, such as length

[1,2,3,4]. This application offers 4 as the result. The function length can also be

applied to a list of strings, like length ["Hello","World","!"] that returns 3 as the

result and so on. It means that the function returns an integer independently of the type

of its list arguments.

2.2.8 Higher-Order Functions

Functions can be passed as parameters to other functions or returned as results of function

applications. The best example is the function composition. Using lambda expressions,

we can define the meaning of the function composition as follows:

f . g = \x -> f (g x)

With the help of mathematics style of functional programs, we can define a function

composition by the infix operator “.”. The lambda calculus shows that the infix operator

“.” takes the argument x and the two functions f and g and returns a composition between

the result of the two functions on the argument x.

For another example, look at the following program:

main xs = map increment xs

By means of higher-order functions, we have used the function increment as an argument

for the function map. The type of map is defined as follows:

map :: (a->b) -> [a] -> [b]

map takes a function (e.g., f) of type a -> b and a list (e.g., l) of type [a] as arguments

and returns a list (e.g., l’) of type [b] where the function f is applied to every element

of the list l to generate the elements of l’. This function in our example applies the

function increment to every element of the list xs. For example, the application main

[1,2,3] offers [2,3,4] as the result.
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2.2.9 Lazy Semantics

Lazy semantics in functional languages provides two features:

• Non-Strictness

• Sharing reductions

Non-Strictness: Most programming languages are strict. This means that, in a

function call, all arguments of the function are evaluated before the function itself is

called. In the strict semantics, if an evaluation of an argument fails, the function call

also fails and we have a run-time failure. In the non-strict semantics, only arguments are

evaluated that are needed to compute the right-hand side of a function definition (lazy

strategy). For example, in the function definition (f x = 1), no argument given as x will

ever be evaluated, because it is not needed to compute the right-hand side of this function.

As an example, consider the following recursive function definition:

nonTermFun :: Int

nonTermFun = 1 + nonTermFun

Evaluating nonTermFun produces larger and larger expressions and does not terminate:

nonTermFun {applying nonTermFun}

= 1 + nonTermFun {applying nonTermFun}

= 1 + (1 + nonTermFun) {applying nonTermFun}

= 1 + (1 + (1 + nonTermFun)) {applying nonTermFun}

= ...

Now consider the expression fst(0,nonTermFun) where fst selects the first component

of a pair:

fst(x,y) = x

There are different evaluation strategies to compute an expression. One common

strategy is called innermost evaluation. In this strategy, all arguments of a function are

always fully evaluated before the function itself is applied. In other words, arguments

are passed by values (call-by-value evaluation). If we use this strategy to compute the

expression fst(0,nonTermFun), it results in non-termination:

fst(0,nonTermFun) {applying nonTermFun}

= fst(0,1 + nonTermFun) {applying nonTermFun}

= fst(0,1 + (1 + nonTermFun)) {applying nonTermFun}

= ...
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Figure 2.1: Sharing the reductions

Another common evaluation strategy is called outermost evaluation. In this strategy,

functions are to be applied before their arguments are evaluated. Consequently, we say

that arguments are passed by names (call-by-name evaluation). In contrast to innermost

evaluation, the computation of the above example in an outermost manner results in

termination in only one step:

fst(0,nonTermFun) {applying fst}

= 0

Note that in the above evaluation strategy, only the argument is evaluated that is needed

to compute an application of the function.

Sharing reductions: Program expressions can be computed more than once in the

right-hand sides of function equations. The lazy semantics provides a means to share the

results of evaluations. This means that (1) each expression is evaluated at most once, (2)

a copy of the result is kept and (3) other equal expressions have indicators that point to

it.

Consider the following simple function:

f = let x = 1+2+3 in x+x

In this definition, the expression x=1+2+3 is evaluated once when computation of the x on

the left in the expression x+x begins. In other words, when the computation of the next x

is started, the evaluation of x=1+2+3 is not needed, because it has already been evaluated

and the result can be shared by pointers to the result. The sequence of evaluations is

presented in Figure 2.1. In the first step of this figure, the operator + applies. In this

step, we keep a single copy of the argument x and create two pointers to it. In the second

step, the evaluation of 1+2 is completed and both pointers share the result. At the end,

the value of both x is 6.

The use of non-strictness in conjunction with sharing is called lazy evaluation. Lan-

guages that use this strategy are called lazy programming languages.
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2.2.10 Input/Output Monads

Many programs require functions that can behave interactively during program execu-

tion, such as functions that read input from the keyboard or write output to the screen.

The functional language Haskell provides such an ability without compromising the ba-

sic semantics of pure functional languages. Generating interactive functions in Haskell

is based on a style of programming named imperative functional programming [34, 41].

Imperative functional programming has its theoretical concepts in the monadic style of

representing side effects. Monads [70] are bridges between practical programming and

functional specification methods.

Interactive functions in Haskell that support the monadic style take the state of the

world as an argument and return a world as a result. The type of interactive functions

could be defined by IO (short for input/output):

type IO = World -> World

where World denotes the type of all states of the outside world.

Every computation of type IO a results in side effects behind what it represents. The

visible effect is accessed by returning a value of the type a, if no failure occurs. For

example, a function can read a character from the keyboard. Results of such functions

are of type IO Char. In general, the type IO a can be considered as:

type IO a = World -> (a,World)

Note that, if an interactive function generates no result, its type is represented by IO ().

To return a result to the world, the following function can be used:

return :: a -> IO a

return x = \world -> (x,world)

The function return only returns values of x without performing any modification on the

world. Interactive functions that perform different applications without modifying the

world can be defined as a sequence of applications. This sequence is represented by the

operator >>:

(>>) :: IO a -> IO b -> IO b

Function applications that are defined as modifying the world are also performed in a

sequence. In other words, the modified world from the first application is returned to the

second as the current state of the world for the second application. This sequence applies

to all applications in interactive functions. Such a sequence is conceptually defined by the

operator (>>=):
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(>>=) :: IO a -> (a -> IO b) -> IO b

f >>= g = \ world -> case (f world) of

(x,modified_world) -> g x modified_world

In this definition, the function f is first applied to the current state of the world and returns

the modified world that is the argument given for the second function g. This sequence

is an application area for monads and is a concept of sequential languages (imperative

languages).

Interactive functions can also be constructed by the do notation. For example, the

following program takes a string from the world and returns the length of the string:

computeLength :: IO Int

computeLength = do str <- getLine

return (length str)

The type of this function is defined as IO Int, because the function returns an integer as

the result (the length of the string).

2.3 Functional Logic Programming and Curry

Functional logic languages (also named declarative languages) bridge functional (Sec-

tion 2.2) and logic languages [67] to provide a combination of the advantages of these

two languages. Some important functional logic languages are Curry [25], Oz [68], Toy

[13] and Mercury [64]. The implementations described in this work is based on Curry.

The design of the multi-paradigm language [26] Curry was started in 1997 [27] in order

to introduce two features [11, 6] of logic languages to Haskell:

• Non-deterministic computations

• logical variables

2.3.1 Non-Determinism

In functional logic languages, functions can behave non-deterministically [11, 6]. That

means that a function can offer different values for a given set of arguments. Functions

that behave non-deterministically have overlapping [4] in their equations or contain logical

variables in their definitions.

As an example, we can consider different teachers in a school. Some teachers teach

only one subject and others teach more than one. In most programming languages, we
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need a data structure in which to store the information related to teachers. However, with

the help of the non-deterministic semantics of Curry, we can write the following equations

for the function teach:

teach :: Name -> Subject

teach Pitt = Mathematics

teach Pitt = ComputerScience

teach Potter = Physics

teach Potter = Mathematics

teach Kidman = Sport

data Name = Pitt | Potter | Kidman

data Subject = Mathematics | Physics | ComputerScience | Sport

Every function application of teach Pitt offers two results - Mathematics and Comput-

erScience.

2.3.2 Logical Variables

In functional programs, variables that are used in the right-hand side of an equation

constitute the parameters that belong to the left-hand side of this equation. For example,

the following equation is acceptable (the operator == returns true when the right and left

expressions of the operator are equal):

f x xs = (x:xs) == [1,2,3]

but the following equation:

f x xs = (x:ys) == [1,2,3]

is wrong, because the variable ys does not appear in the left-hand side of the equation and

will not bind to a value during program execution. The functional logic language Curry

provides the means to use such variables. These kinds of variables are named logical

variables. Since values of logical variables are unknown, these kinds of variables are also

named uninstantiated variables.

Logical variables must be declared free in local definitions of programs and can only

occur in the right-hand side of equations. Note that Curry is strongly typed. It means

that a variable occurs in an expression represents all possible values with respect to the

type of this expression.

As an example, consider the following simple program. In this example, the variable

ys is defined logically:
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f x xs = (x:ys) =:= [1,2,3]

where ys free

The operator“=:=” is called constrained equality. There are two differences between the

constrained equality “=:=” and the Boolean equality “==”. The operator “==” returns

true if both left and right expressions of the operator have equal values. Otherwise, it

returns false as a result. It means that the result of such an equality is of the Boolean

type. The operator “=:=” has another type - Success. Look at the constrained equality

in our example. If there is a list (ys) that can be appended to a value of x and generate

the list [1,2,3], the operation of “=:=” terminates successfully. Otherwise, the equation

fails. For example, a function call like f 1 [4] in our example represents success as the

result, but the function call f 2 [4] fails.

Another difference between the operator “==” and “=:=” is that the operator “=:=”

narrows (flexible operator), whereas the operator ”==” residuates (rigid operator):

• Narrowing: Narrowing [8] is an evaluation strategy to instantiate logical variables.

If one expression expr contains the uninstantiated variable x, narrowing with a non-

deterministic manner instantiates x so that the evaluation of expr may continue.

Instantiating a variable means replacing the value that is guessed by narrowing. For

example, we consider the following program:

add 0 x = x

add 1 x = 1+x

The expression let var free in add var 1 =:= 1 can be narrowed by instanti-

ating var to 0 and rewriting add 0 1 to 1 (by term rewriting [38]). Note that any

other digit is not an acceptable guess, because only the first defined rule in program

returns 1 when the second argument is 1. In other words, the addition of no other

digit with 1 yields 1 as a result. The evaluation of the expression let var free in

add var 1 =:= 1 terminates successfully where var is bound to 0.

• Residuation: If the expression expr contains the variable x, residuation will suspend

the evaluation of expr and transfer control to other parts of the program until x is

instantiated to evaluate expr. Now consider the add function definition. This time,

we evaluate the expression let var free in (add var 1 =:= 1 & var=:=3-3).

This expression is evaluated by residuation where the instantiation of the variable

var needs an evaluation of 3-3. In other words, an instantiation of var is possible

by evaluating other parts of the program related to this variable. After instantiating
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this variable, the expression add 0 1 is matched with the first rule defined in the

program and is reduced to the right-hand side of this rule. Now the program returns

success as a result.

To illustrate how narrowing binds a logical variable by the run-time searching method

[29], consider again the add example. The function add takes 0 or 1 as the first argument.

The second argument is arbitrary. To understand the semantics of logical variables, we

apply the function add to a logical variable var and an argument 3:

let var free in add var 3

The evaluation of this application is successful when the logical variable var is bound to

1 or 0. At first, we consider the binding of 1:

add var 3 ;{var/1} (1+3) ; 4

The first binding that is represented as {var/1} was successful. It caused an evaluation

of the second equation of add. Now the search is continued until all possible bindings are

successful. The second value that var can bind to is 0. It causes an evaluation of the first

equation of add:

add var 3 ;{var/0} 3

There are no more values that can bind to var. Note that there are two different results

for one function application.

There are different narrowing strategies to improve the method of guessing logical

variables. One of them is called needed narrowing [3]. It corresponds to the lazy evaluation

in Haskell, with differences. One difference is that unification [55] is used instead of pattern

matching for parameter passing. This means that, if an argument of a function contains

a logical variable, it is bound to some terms as tightly as possible.

As an example, we consider the following program containing a declaration of natural

numbers using the data type Nat and two function definitions. The first function add is

defined for addition between natural numbers and the second one leq is considered to be

a ”less than or equal” function (the underscore indicates an unnamed variable):

data Nat = O

| S Nat

add O y = y

add (S x) y = S (add x y)

leq O = True
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add O x2 = x2 add (S x) x2 = S (add x x2)

add  x1  x2

leq O x2 = True

leq  x1  x2

leq (S x)  x2

leq (S x) (S y) = leq x yleq (S x) O = False

Figure 2.2: Definitional trees of add and leq

leq (S ) O = False

leq (S x) (S y) = leq x y

Now we evaluate the expression let var1,var2 free in leq var1 (add var2 O). Look

at the program. The first argument of leq in all its rules is a constructor-rooted term.

By an application of leq var1 (add var2 O), needed narrowing instantiates var1 to O

or S z where z is a fresh variable. If var1 is bound to O, only the first rule of leq is used

but in another case, the second or third rule of leq is applicable. A selection between

these two rules is possible when the second argument of leq is instantiated, because this

argument is a constructor-rooted term in the second and third rules of leq. To evaluate

the second argument add var2 O, var2 should be instantiated to O or S w where w is a

fresh variable. As we see, the patterns defined in the left-hand sides are important for

applications of needed narrowing. The order of variable bindings can be represented as a

tree named definitional tree [28]. The definitional trees of our example for the functions

add and leq are presented in Figure 2.2.

2.4 Meta-Programming

Meta-programs or code-generating programs are written to generate programs or program

parts. Meta-programming is used in different ways in different languages. Compiler tools

that generate programs as outputs are examples of meta-programming.

Curry supports the meta-programming technique to transform Curry programs in

another structure. There are two methods for this transformation that are implemented in

FlatCurry and AbstractCurry libraries [17]. Each defines data types for transformations.

To transform programs into AbstractCurry, the following function is defined:

readCurry :: ModuleName -> IO CurryProg

type ModuleName = String
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readCurry takes the name of a Curry program and returns a program that is constructed

in the data type CurryProg. All detail of a Curry program are represented in CurryProg

by different data type constructions [17]:

CurryProg :: ModuleName -> [ImportedModule] -> [TypeDeclaration]

-> [FunctionDeclaration] -> [OperatorDeclaration]

-> CurryProg

As an example, suppose that we have written the following simple increment function

in the file example.curry:

increment :: Int -> Int

increment x = x + 1

An application of readCurry to the file example returns the following data term:

CurryProg "example"

["Prelude"]

[]

[CFunc ("example","increment") 1 Public

(CFuncType (CTCons ("Prelude","Int") [])

(CTCons ("Prelude","Int") []))

(CRules CFlex

[CRule [CPVar (0,"x")]

[(CSymbol ("Prelude","success"),

CApply

(CApply (CSymbol ("Prelude","+"))

(CVar (0,"x")))

(CLit (CIntc 1)))]

[]])]

[]

It shows that the name of the program is example, the only imported module to this

program is Prelude and there is no type declaration in the program:

CurryProg "example" ["Prelude"] [] ...

The program has only one function definition named as increment of type Int -> Int:

CFunc ("example","increment") 1 Public

(CFuncType (CTCons ("Prelude","Int") [])

(CTCons ("Prelude","Int") [])) ...
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The rule defined of this function has one variable in its left-hand side:

CRules CFlex [CRule [CPVar (0,"x")] ...

The right-hand side of this rule is an application of x+1:

CApply (CApply (CSymbol ("Prelude","+")) (CVar (0,"x")))

(CLit (CIntc 1))

The generated data term is useful for manipulating Curry programs. We have used

the AbstractCurry in our implemented tool iCODE.

To transform programs into FlatCurry, the following function is defined:

readFlatCurry :: ModuleName -> IO FlatProg

In comparison to CurryProg, the data type FlatProg contains less information about the

left-hand and right-hand sides of function definitions:

FlatProg :: ModuleName -> [ImportedModules] -> [TypeDeclaration]

-> [FuncionDeclaration] -> [OperatorDeclaration] -> FlatProg

Let us compare the output of readFlatCurry to the previously generated data term by

readCurry. Applying readFlatCurry to the file example generates the following data

term for increment:

FlatProg "example"

["Prelude"]

[]

[Func ("example","increment") 1 Public

(FuncType (TCons ("Prelude","Int") [])

(TCons ("Prelude","Int") []))

(Rule [1]

(Comb FuncCall ("Prelude","+")

[Var 1,Lit (Intc 1)]))] []

The information generated can be used to derive a flat representation [28] of a Curry

program. In such a representation, patterns are translated to case expressions. This

means that functions are defined by a single rule (the syntax of flat programs is discussed

further in Chapter 6). Note that all predefined operators are also transformed to function

applications. For instance, the operator + in the above flat form is transformed to a

function call:



Functional Logic Languages 27

Comb FuncCall ("Prelude","+") [Var 1,Lit (Intc 1)]

In the AbstractCurry representation of our example, it is represented as a Curry applica-

tion:

CApply (CApply (CSymbol ("Prelude","+")) (CVar (0,"x")))

(CLit (CIntc 1))

FlatCurry can be useful for more back-end oriented program manipulation.

2.5 Socket Connections

Aspects of computer architecture, such as networking and distribution [69], are reflected

in the architecture of stored data in computer systems [60]:

• Centralized Systems: All components of a personal computer (PC) are only acces-

sible by one user at time. These computers are called centralized systems. Data

that is located in a centralized system can be run on a single computer system.

The other computer systems have no access to this data. The relationship between

different components of a personal computer as a centralized system is presented in

Figure 2.3.

• Networking: This architecture allows some tasks to be executed on a server system

and some tasks on client systems (see Figure 2.4).

• Distribution: Data can be distributed across parts or sites in an organization. This

architecture allows distributed data to be located where they are generated or most

needed, but accessible from other parts or sites. Keeping multiple copies of data in

different sites allows large organizations to have access to data even if one site is

defected.

Since personal computers and networks have become faster and cheaper, using distri-

bution and client/server systems have become common. A system that is considered to

be a server should satisfy requests generated by client systems. The requests could be to

create, update or read data. A general structure of a client/server system is presented in

Figure 2.4.

Connection between a server and clients can be established by sockets. A socket

generates a two-way communication link between two programs running on the network.

Every socket generated by a server is bound to a specific port number that is a shared

resource. To make a connection, a server listens to its sockets. Clients know the name
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Figure 2.3: A centralized computer system
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Figure 2.4: The relationship between a server and clients

of the machine or computer on which the server is running and the port number on

which the server is listening. Each client needs to introduce itself to the server. For

this purpose, clients use local ports (see Figure 2.5). Port numbers uniquely identify

clients and servers and enable connections only between components that share these

port numbers. Connections requested by clients can be accepted by servers. After an

acceptance, the server knows the local port of the client. Listening to the next requests

or messages from the same client can be done easily by the generated client-socket (see

Figure 2.6).

Modules of a project written in Curry can be visualized as clients and servers that

communicate with each other by socket connections. Listening to requests in Curry is

easily defined by the following definition:

listenOnFresh :: IO (PortNumber,Socket)

type PortNumber = Int

By this function, a server creates a socket that is bound to a free port number. Returning

this port number to a client allows the client to send a message by a connection to the

generated socket:

connectToSocket :: String -> Int -> IO Handle

The first argument is the name of a machine or computer that is used for the server

and the second argument is a port number. The abstract data type Handle is used like
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Figure 2.5: The requests for a connection from the clients
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Figure 2.6: Communication through the generated sockets

memory for transporting requests and answers during communication.

To generate two-way communication, each request from a client should be accepted

by a server:

socketAccept :: Socket -> IO (String,Handle)

Every acceptance from a server is returned as a string to identify a client and a handle

to transport messages. The communication is continued by applying the two functions,

connectToSocket and socketAccept.

We have used this technique to implement a run-time tracer for Curry. Clients and

servers are different modules that communicate with each other by sending messages. The

messages are information about evaluated expressions. Because sending a message can

be delayed by suspending a socket-accept from a server, we have provided a single step

representation for the user.
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2.6 Graphical User Interfaces and Tcl/Tk

Tcl (Tool Command Language) is a string-based command language for controlling and

extending applications. Tk (Tool Kit), a set of windowing commands, is one of the

useful extensions to Tcl. Tk extends the main facilities of Tcl for building graphical user

interfaces. Tcl and Tk together [51, 36] provide a programming system for developing

and using Graphical User Interface (GUI) applications.

Every programming language should support programmers in the implementation of

GUIs. The functional logic language Curry provides an easy interface implementation

method by the programming system Tcl/Tk [24]. Many interesting GUI applications

can be written using the functional semantics of Curry. The string based commands are

hidden from the user and can be run by function definitions from the user.

An application generated by GUI library [24] has a wish (windowing shell). A wish is

an empty window on a monitor and can read commands from standard input. Every wish

can contain widgets. Widgets are parts of a wish with special appearances and behaviors.

A wish can also be supposed as the main widget of an application.

Executing a widget is easy with the following function definition in the GUI library of

Curry:

runGUI :: String -> Widget -> IO ()

The first argument of this function defines a title of the main window. The second

argument is a set of widgets of type Widget. By importing the GUI library to a Curry

program and calling runGUI, we can generate a GUI. As an example, we consider two

widgets Label and Button:

Label :: [ConfItem] -> Widget

Button :: (GUIPort -> IO()) -> [ConfItem] -> Widget

Widgets in Curry can be implemented with different configuration items (e.g., Back-

ground, Height, Width, Text) of type ConfItem:

data ConfItem = Background String

| Height Int

| Width Int

| Text String

| ...

The first argument of Button is a function that takes a command to change the state of

widgets. For instance, we can use the two widgets Label and Button to generate a simple

GUI (see Figure 2.7):
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Figure 2.7: A simple GUI in Curry

main = runGUI "Hello World!"

(Col[] [Label [Text "press the button"],

Button exitGUI [Text "Hello!"]])

Whenever the button is pressed, the command related to exitGUI is activated and the

wish will disappear. Each wish also needs a geometry manager to manage the position of

widgets. A vertical layout of widgets is defined by Col and a horizontal layout by Row.

We have used the GUI library of Curry in order to have different representation meth-

ods of observations in the implemented tool iCODE.
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Chapter 3
Assuring Correctness of Programs

“What does a fish know about the

water in which it swims all its life?”

Albert Einstein

In this chapter, we review the meaning of the useful testers, tracers and debuggers.

They are provided for the purpose of developing software. Every part of a large project

can be written by a member of a team. Understanding the code that is written by other

team members and also assuring code accuracy are the aim of the tools mentioned.

3.1 Bugs

Programs are written to generate expected results. However, programs sometimes offer

no results or unexpected results. This indicates that the code has defects. In other words,

code contains bugs.

Defects are parts of code that have been written by programmers. Most parts of code

are so related to each other that an execution of one part is reflected in other parts. A

defect in one part causes related parts to behave incorrectly, although they contain no

defects. We can say that there is a bug in this state of execution.

The wrong behavior of a buggy state causes a failure, which is an observable error in

a program. It indicates that there is a bug in the behavior of a program.

Testers specify whether the behavior of programs is correct or incorrect. However,

testers do not locate the true position of defects. In order to detect defects in code and

fix them, we need debuggers. Stepping in evaluated parts of programs in a forward or
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backward manner is a task for tracers.

3.2 Testing

When programming begins, the complexity of code is zero. As programming progresses,

the complexity of various modules rises. Programmers must be sure that all parts of a

code work properly. A programmer compiles programs after each manipulation of source

code. The compilation permits the programmer to do more than get executable programs.

Programmers test the compilability of code to find, for example, syntax errors or typing

mistakes. Unfortunately, some errors are not detected by compilers. Programmers need

other tools to assure the correctness of programs.

Before searching for failures, programmers should test programs to determine whether

or not programs have failures. Most failures are usually found by testing programs. Test-

ing is a process of executing programs with the intention of producing failures. However,

we need a tester, because:

• we should control whether the results generated by a program are the same as the

expected results.

• we should know whether a program generates a failure.

• we should verify whether fixing a failure (e.g., by a debugger) has been successful.

A program can be tested while it is (or is not) running by two methods. They are

called:

• Dynamic testing: In this model, the tester requires units under test to be executed.

Dynamic testers can be defined in two groups, white box and black box [44].

• Static testing: In this model [18, 9], the tester analyzes the software without running

it. During a static analysis, the code is examined and information is accumulated.

Such tools can determine the actual nesting of branch statements, the size of subpro-

grams or functions, the unused code or variables and other interesting information

for programmers.

Static tester tools can be more useful for languages that have a type checking pos-

sibility at run time, particularly when type failures have occurred in the code (Sec-

tion 2.1). This kind of failure in languages that controls types of expressions in the

compile time can be found by compilers.
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Figure 3.1: Black Box Testing

Let us consider the following simple program written in Curry. The program inserts

an element into a sorted given list:

insert :: Int -> [Int] -> [Int]

insert x [] = [x]

insert x (y:ys)

| x>=y = y:insert x ys

| otherwise = x:ys

It is assumed that the second rule of insert has a defect. It causes a wrong answer when

the inserted element is smaller than the first element of the given list.

To assure the accuracy of this program, we should test it. For this purpose, we run the

program and test it by a testing tool that acts dynamically on the program. Running the

program needs test cases. In black box testing, we can compare generated and expected

results of given test cases. For example, generating the two test cases insert 8 [] and

insert 8 [4,6] offers [8] and [4,6,8] as the results (see Figure 3.1). What we had

expected and the results are the same. It seems that there is no defect in the program.

Let us test the program by using a white box tool and compare the behavior of these two

testing tools. With a white box tester, we have access to the code under test. Figure 3.2

represents a white box tester for our two generated test cases.

The results of both test cases are what we had expected. However, the white box gives

more information about executed parts of the program (the executed parts are highlighted

in green). Note in both test cases that the last line of the program is not highlighted. In

other words, it has not been executed. To assure the correctness of this part, we generate

another test case: insert 1 [4,6]. The result of the running system is not correct while

the last line is highlighted (see Figure 3.3). This means that all parts of the program are

executable, but there is a bug in the program that causes the incorrect result. To locate

this bug, we need a tracer/debugger. We will discuss these tools in the next section.
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Figure 3.2: A white box testing of two generated test cases: insert 8 [], insert 8 [4,6]

Figure 3.3: A white box testing of the test case: insert 1 [4,6]

Every implemented tester needs a test manager. With a test manager it becomes

possible to define test cases and group them into test suites that can be run with one

single user interaction. When a program execution has been completed, the execution

results need to be checked for accuracy. This can be done manually or automatically:

• Manual checks: With this model, a programmer can compare the results of programs

to her/his expectations. It is also possible for the tester to check the results of

executions with the programmer’s expected results. With this kind of testing tool

[31], a programmer stores her/his expected outputs, together with test cases, and

lets the tester check the equality.

• Automatic checks: With this model, the tool generates different test cases automat-

ically [15, 39, 19] and compares the results of executions to predicates, which are

the expected properties written by programmers.

One advantage of automatic testing is a reduction in the time necessary, which is a dis-

advantage of manual checking. Unfortunately, a programmer has no control on tests with

an automatic generation of test cases in black-box testing tools. It can happen that some
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parts of code are not executed. These parts could contain defects that are not detected by

a black-box testing tool. For example, imagine that, for the last insertion sort program,

the two test cases (insert 8 [] and insert 8 [4,6]) are generated automatically and

in a black-box representation. By controlling only the result of the program execution, we

will have no idea that our program has a bug, because we had no control of the generated

test cases and no access to the units under test.

Let us discuss this problem by an example. The following simple program generates

a non-terminating computation when one of the given list elements is not greater than

zero:

inc :: Int -> Int

inc x = if x>0 then x+1 else inc x

main :: [Int] -> [Int]

main l = map inc l

The program is written to increment all elements of a given list that are positive. We

would like to test the program by a black-box automatic testing tool. Now assume that

the tool automatically generates 100 different lists and applies the function main to all

of these lists. In other words, 100 tests are generated automatically. The tool also offers

correct results for all of the 100 test cases, because there is no element smaller than zero

in the generated lists. Should we trust such tools? Now assume that we test the program

by a white-box manually testing tool. After writing a test case, the tool represents the

executed parts of the program. It makes sense that new test cases should be written to

test non-executed parts of the program.

Another problem that could arise in an automatic testing tool is that the use of

expected properties may be incomplete and contain errors. As a simple example, we test

the following function, which reverses a given list:

reverse :: [a] -> [a]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

This function can satisfy the following properties:

reverse [x] = [x]

reverse (xs++ys) = reverse ys ++ reverse xs

reverse (reverse xs) = xs



Assuring Correctness of Programs 38

To test the program by a tester that generates test cases automatically (e.g., QuickCheck

[15]), we need to add some of these properties to the program. For example, we write the

second property into the program (the name of a property function begins with prop_):

prop_RevApp xs ys = reverse (xs++ys) == reverse ys ++ reverse xs

To test this property, the tool needs to know the type of the arguments. Thus, we must

specify a type for arguments on which the property is tested. For example, we test the

property for a list of integers:

prop_RevApp :: [Int] -> [Int] -> Bool

Now the program with the inserted property can be reloaded and tested. The tool takes

the property and applies it to a number of automatically generated arguments. If results

for generated test cases are correct, the tool reports that the tests were successful.

Properties are parts of code that are written by programmers. Every code implemented

by programmers can contain defects. For example, if we define a wrong property like the

following:

prop_RevApp xs ys = reverse (xs++ys) == reverse xs ++ reverse xs

the tool will report that the property was not successful for some test cases. Now the

question involves the location of the defect. Is it in the original code or in the defined

property?

In this thesis, we represent the tester CUTTER. It is a white-box tester and uses the

program slicing method (Section 3.5.2) to highlight executed parts of programs. Test cases

generated by programmers can be grouped and stored for rerunning the tester (e.g., after

manipulating source code). All other manipulations needed are performed automatically

by the tool.

3.3 Debugging

Programmers need debuggers [73] to frequently test each program state to locate defects.

Values of evaluated expressions in each state must be represented by an understandable

method. If debuggers do not report understandable information, programmers are misled

and may spend hours in tracking down the wrong bug.

Briefly, we can say that debuggers should support programmers by the following fa-

cilities:

• The act of debugging programs must not change the behavior of programs.
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Figure 3.4: The relationship between functions

• Debuggers must not mislead programmers. In other words, programmers should

always be able to trust debuggers.

• Intermediate information from evaluations should be represented so that the trail

of evaluations is recognized and the user will know which expression was evaluated

and when.

• The best representation might be a display of the information in a layout of source

code.

Every programmer makes mistakes. Writing programs may be easier than finding

mistakes in code. Programmers spend too much time in writing complex programs, but

would like to have a tool to use to find the reason for failures.

In functional programs, there are a variety of functions that are related to each other

by the exchange of values or variables. A programmer is stated in the outer layer of a

program execution (see Figure 3.4). Every buggy result from a function sends out the

rest of the program execution in the direction of the wrong generation. It may happen

that only one function in a large project is defined incorrectly. The result of this function

causes related functions to generate the faulty results.

Debuggers should help users to follow related functions. They should also represent

the activity of each executed function definition to the user. Representing this information

can be provided during or after a program execution. Conventional debuggers provide

this information after a program execution. Debuggers that represent this information

during a program execution are called run-time debuggers (see Figure 3.5). This kind of

debugger needs a controller for source-lines executions. For this reason, most run-time

debuggers modify code so that every state of code can be checked at run time. They keeps

track of program’s expressions and immediately complain if the programmer misuse an

expression. Run-time debuggers can provide useful information about:
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Figure 3.5: Run-time Debugger

Figure 3.6: Debugger

• non-terminating computations

• run-time failures

• points of interactions between a program execution and standard output

Many debuggers represent intermediate information of computations after terminating

the program execution. During execution, intermediate information is recorded as a

relationship between function computations (Figure 3.6). It is clear that it is expensive

to record all computation steps of a large program:

• a program execution will slow-down

• it causes a shortage of memory

To avoid the problems mentioned above, different methods are suggested. Some of these

methods are:

• recording special states of executions (e.g., the state of some desired expressions or

only branches).

• recording information of specific parts of programs (e.g., by check-points).

In this thesis, in order to avoid the problems mentioned above, we suggest a distributed

programming method. In this method, the information of executions is not recorded in a

file. Instead, it is sent as messages from different modules in a run-time debugging system.
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Further, the first solution above is also used in our implemented tool. The information of

computations does not belong to all program expressions. It is information about special

states of executions that are affected by executing selected user expressions.

The goal in using a debugger is to detect all failures in programs. But how do we

know, how much of our code has been controlled? Some debuggers support a program-

coverage tool which is used to analyze the amount of the source code that has actually

been checked. We have also provided this ability in our implemented debugging system.

3.4 Tracing

Programs are expressions that are written one after another by a programmer. Particu-

larly, declarative programs are expressions that are written without consideration to the

order in which they will be executed. Failures arising during program execution forces

programmers to think about the order of evaluations. Having tools that support program-

mers following the evaluation order of expressions is desirable. Sometimes, there is also a

need to review represented information to understand the relationship between program

expressions. Tracers are provided for this purpose. A tracer acts like a cassette recorder

(see Figure 3.7):

• Play: runs a program and represents side effects and intermediate results of evalu-

ated expressions.

• Pause: stops a program execution whenever desired and lets it resume running when

needed.

• Stop: ends a program execution.

• Reward: tracks back on executed parts from a point at which the program execution

was stopped.

• Forward: follows a program execution from a point at which a reward stepping was

stopped.

The only difference between real cassette recorders and tracers is the act of the reward

button. Execution systems and tracers are two separate tools. Tracers cannot reward a

real execution process. For this purpose, tracers store information about execution paths

and provide users with the means to backtrack on this recorded information. We have

also provided such a means in every viewing tool of our implemented observation system.
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Figure 3.7: Tracer

3.5 Some Debugging/Tracing Methods

A user has successful use of a debugger/tracer if she/he at least knows that a bug exists

and has an idea where it may be contained (e.g., by a white-box tester). However,

representing all information of computations to the user requires a great deal of time.

Therefore, it might be useful if the user had an ability to select parts of programs or

computations to test or trace. There are a variety of methods to record a dependency of

intermediate information of computations from parts or whole of programs and to step

in this information. An overview of some existing debugging/tracing methods could be

helpful to determine their advantages or disadvantages.

3.5.1 Declarative/Algorithmic Debugging

Algorithmic debuggers work by means of the declarative semantics of programs. These

debuggers generate information of computations as a computation tree [59]. Nodes in

computation trees are defined by equations representing function applications. Children of

nodes are applications that are generated from the related function definition. Algorithmic

debugging can produce a sequence of questions to navigate in computation trees. Each

question asks the user whether an equation is correct or not. A bug could be located

in a function definition of a node when all children of an incorrect equation are correct.

Unfortunately, such navigations that are directed manually and by answers from the

user are not trustworthy, because, if the user answers incorrectly, the navigation could

be sent in a wrong direction. On the other hand, a part of the program would not be

examined, although it contains a defect. Further, answering a long series of questions

during debugging a large program could be boring for programmers.

Some methods are suggested [50, 61, 48] to reduce the number of questions from the

user. In [61], the algorithmic debugging is combined with the program slicing method

[72, 49, 62]. In [48] another idea is presented. The idea is to generate an evaluation

dependency tree during a program execution and browsing of this tree by the user. The

user can begin debugging from a node of interest.
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There is also another technique for optimization of declarative debuggers [46, 47]: It

does not require all parts of a program to be traced. For large computations, we can trace

only a part of a program by demand.

Let us illustrate the process of algorithmic debugging by the following simple example:

insert :: Int -> [Int] -> [Int]

insert x [] = [x]

insert x (y:ys)

| x<=y = x:ys

| otherwise = y:insert x ys

sort :: [Int] -> [Int]

sort [] = []

sort (x:xs) = insert x (sort xs)

main :: [Int]

main = sort [2,1,3]

The program is written to sort a list of integers in based on insertion sort. We assume

that the function insert has a defect. When the element inserted in the list is smaller

than the head of the list, the function offers x:ys instead of x:y:ys. The program does

not work properly. Calling the function main returns [1,2], instead of [1,2,3]. We

would like to locate the position of the bug by an algorithmic debugger.

The algorithmic debugger generates a computation tree while executing the program.

The computation tree in Figure 3.8 represents the relationship between function applica-

tions when the function main is called.

Generating the computation tree is based on the derivation system of the program

rules. This derivation in our example is represented as follows:

main => sort [2,1,3]

=> insert 2 (sort [1,3])

=> insert 2 (insert 1 (sort [3]))

=> insert 2 (insert 1 (insert 3 (sort [])))

=> insert 2 (insert 1 (insert 3 []))

=> insert 2 (insert 1 [3])

=> insert 2 [1]

=> [1,2]
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sort [3] = [3] insert 1 [3] = [1]

sort [1,3] = [1] insert 2 [1] = [1,2]

sort [2,1,3] = [1,2]

sort [] = [] insert 3 [] = []

main = [1,2]

Figure 3.8: Computation Tree

After recording intermediate information as a computation tree, the navigation can be

started at the root of this tree. A debugging tool that is implemented by the algorithmic

debugging method first asks us whether the final result from the execution process is

correct. We answer negatively:

main = [1,2]? no

Now, the children of this node must be examined:

sort [2,1,3] = [1,2]? no

The bug should be located either in the left sub-tree of this node or in the right sub-tree.

The debugger asks the next question and we answer it:

sort [1,3] = [1]? no

The navigation is continued:

sort [3] = [3]? yes

The equation is correct. At this moment, a navigation of the sub-trees of this node is

not required. The tool should know whether the right sub-tree of the last faulty node is

correct. It is not:

insert 1 [3] = [1]? no

This node has no children. The bug is isolated in the highlighted node of the tree (see

Figure 3.8).
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3.5.2 Program Slicing

Program slicing [72, 49, 62] is another method to record a dependency between compu-

tations. It is a technique for simplifying programs by focusing on some selected aspects

of semantics. The process of slicing deletes parts of a program that have no effect on the

desired parts that were selected by the programmer. Deleting these parts and representing

a small part of a program helps the user to focus on a small environment to better locate

bugs. Represented parts of a source code is named as a static slice. Note that executing

a program by giving special values can represent another slice to the programmer. Such

a slice is called a dynamic slice. Static slices are usually larger, but sufficient for every

possible execution of the program. Dynamic slices are smaller, but suffice for a single

input or value.

By the use of debugging tools that are implemented with the program slicing method,

the user can identify an arbitrary expression at some points of a program to define a

slicing criterion. This is a subset of the program being debugged. After determining this

subset, the tool extracts a fragment of this program that contains values related to the

expression at that points. The extracted fragment is the program slice mentioned above.

Each program slice is either a backward slice or a forward slice. A backward slice

contains parts of a program that can have effects on the slicing criterion, whereas a

forward slice contains parts that are affected by the slicing criterion.

For example, if we select the expression main from the last insertion sort example, the

program slice that is executable will belong to the last line of the program (main = sort

[2,1,3]), because the expression main is appeared in the right-hand side of no rules. In

other words, executing main affects other parts of the program, but executing another

function (e.g., sort) has no effect on main.

Let us discuss the program slicing further by means of an example. In the following

program, we have defined three simple functions written in Curry:

f :: [Int] -> [Int] -> ([Int],[Int])

f xs ys = let ls = restOfList xs

ls’ = headOfList ys in

(ls,ls’)

restOfList :: [Int] -> [Int]

restOfList [] = []

restOfList (x:xs) = xs

headOfList :: [Int] -> [Int]

headOfList [] = []

headOfList (x:xs) = [x]
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The function f takes two lists and offers a pair of lists. The functions restOfList and

headOfList are applied to two given lists to generate pairs. The components of the pairs

are the rest and first elements of the given lists.

To extract a slice, we select the variable xs in the function f. The program slice

related to this criterion should be represented and other parts should be deleted. For this

purpose, we represent the program slice darker than the deleted parts as follows:

f :: [Int] -> [Int] -> ([Int],[Int])

f xs ys = let ls = restOfList xs

ls’ = headOfList ys in

(ls,ls’)

restOfList :: [Int] -> [Int]

restOfList [] = []

restOfList (x:xs) = xs

headOfList :: [Int] -> [Int]

headOfList [] = []

headOfList (x:xs) = [x]

The variable xs is an argument of restOfList that generates ls as a result. This means

that the program slice can be represented without the unused parts of the program. The

static slice for the selected criterion is represented as follows:

f :: [Int] -> [Int]

f xs = let ls = restOfList xs in

ls

restOfList :: [Int] -> [Int]

restOfList [] = []

restOfList (x:xs) = xs

To represent a dynamic slice, we need a value for execution of the program. Assume

that the variable xs in the function f is bound to an empty list (xs=[]). Now the slice

related to the criterion is not the same as the last static slice, because the second rule of

the function restOfList has not been executed:

f :: [Int] -> [Int] -> ([Int],[Int])

f xs ys = let ls = restOfList xs
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ls’ = headOfList ys in

(ls,ls’)

restOfList :: [Int] -> [Int]

restOfList [] = []

restOfList (x:xs) = xs

headOfList :: [Int] -> [Int]

headOfList [] = []

headOfList (x:xs) = [x]

and the simplified program in the dynamic slice is smaller:

f :: [Int] -> [Int]

f xs = let ls = restOfList xs in ls

restOfList :: [Int] -> [Int]

restOfList [] = []

In this thesis we use the dynamic slicing method to represent executed parts of pro-

grams by highlighting executed expressions for each criterion selected by the user.

3.5.3 Redex Trail

Redex trail [65] is a tracing method that provides an ability for backward step on the

recorded information of computations. A backward stepping results from a failure of

an initial expression that locates a bug. The redex trail system generates a graph of

computations. Nodes of this graph are related to values or function applications. Each

node has a link that is directed to its parent. Parents are also function applications.

Because sub-expressions of a function application could be used by other nodes, the

graph’s function applications may have links to shared sub-expressions.

Let us consider a simple example to see how a redex trail is generated. To keep the

result small, we select the following program that returns the sum of all elements of a

given list:

sum :: [Int] -> Int

sum [] = 0

sum (x:xs) = x + sum xs
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3

Figure 3.9: The first generated node of redex trail

1 + 

3

Figure 3.10: The first and second generated nodes of redex trail

The application of sum to the list [1,2] returns 3 as the result. The redex trail system

starts with the result and generates a graph. The first step of this generation is presented

in Figure 3.9. The result is generated from x+sum xs that requires a recursive call to sum

(see Figure 3.10). The result of the recursive call is obtained in the empty box when the

graph reaches the right-hand side of the first rule. Figure 3.11 represents the complete

graph generated for our example.

Debugging a large program causes a large redex trail to be generated. Showing all

details of computations is not always necessary. Further, it is also possible to select some

parts of interest to examine [66].

Of course, the user is not expected to see and understand a complete graph. Imple-

mented tools [71] that use redex trail need viewers to represent such information in an

understandable manner to the user. For example, the trail of the last example by calling

main is represented in Figure 3.12. The redex-trail system shows the program output (or

a possibly error message) and enables exploring the program computation backwards. In

our example, the result of sum [1,2] is 3. The parent of this result is 1+2. The sub-

expression 2 in this redex is constructed by computing 2+0 where 0 is a result of sum[].

Meaning that in the backward presentation of computations, the first generated trail is

sum []. The parent of this expression is sum [2] and so on (see Figure 3.12).

3.5.4 Observing Intermediate Data Structures

Sometimes, programmers would like to inspect the results of special data structures or

function calls in the right-hand sides of function rules. To find out what is actually
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1 + 

3

2

sum [1,2] sum []sum [2]

2 + 0

Figure 3.11: The generated redex trail

3
1+2

2+0

sum []

sum (2:[])

sum (1:2:[])

main

Figure 3.12: The trail of sum [1,2]

happening in a concrete failing run, we should observe what is going on and judge whether

the values generated are faulty or not. For this purpose, we should consider different

principles as follows:

• whatever we observe should be an effect of the original run and program results.

Otherwise, it would be difficult to find out a reason for the program failure.

• a program execution is a large sequence of huge program states. An observation is

effective if we know which parts of a program state should be observed.

• a program expression might have different values at different moments of program

execution. To have an efficient observation, we should know at which moments of

execution the expression should be observed.

One of the simplest way to observe results of program expressions is using print/trace

statements. Unfortunately, inserting only a print/trace statement into a program is not

sufficient. Failures may be located in an execution path of a program expression. It is

necessary to insert another print statement and re-execute the program. If the program-

mer is an expert and has experience, it might be easier to find positions where print
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statements should be inserted. The programmer can point her/his finger to an expression

and indicate that this expression should be examined. However, if the programmer has

never experienced this kind of failure, she/he has also no experience in isolating a failure.

It is clear that finding an area that contains a failure would be difficult. Furthermore:

• print/trace statements do not help us in understanding the code.

• we can not observe the behavior of function calls in programs using print/trace

statements. It is only possible to observe the results generated of functions.

• inserting even more than one print statement into the program does not help us to

observe the relationship between executed expressions or function arguments.

The above features are provided in observation debugging systems [20, 10, 57].

The observation system [20] defines an identity function (observe) that could be in-

serted in each program expression. Results of this identity function show how an expres-

sion is evaluated. In comparison to the print statement that writes generated information

to the standard output, observe records information of computations in a file. Recorded

information belongs to expressions annotated by observer functions and not to the whole

program expressions. In other words, if a partial application of an expression is annotated,

only the partial evaluation is recorded in the file.

For example, we assume that the function head is applied to the list [1,2,3] in a

program:

main = head [1,2,3]

Writing a print statement in the program only offers the result of head. However, we

would like to know how head is applied to the list and how it is computed. Annotating

head by an observe function returns the following information:

\(1:_) -> 1

This shows how the function head returns the first element of the given list without

executing the remaining elements of the list that are represented by an underscore.

Before representing this information, it is necessary to follow the steps of derivation

and record the information in a file. The derivation is started by executing the function

head:

<start>

The function head has a left-hand side and a right-hand side that should be executed:
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\<LHS> -> <RHS>

Executing the left-hand side of the function results in a list:

\(<headOfList>:<tailOfList>) -> <RHS>

In the next step of the derivation, <headOfList> is executed and evaluated to 1:

\(1:<tailOfList>) -> <RHS>

Now the result is obtained and represented as the right-hand side:

\(1:<tailOfList>) -> 1

Note that <tailOfList> is not executed, because of the lazy semantics of functional

languages.

The observation method represented in [20] is also extended in [53] and [10] for func-

tional logic languages. In this thesis, we use the observation method for improving COOSy

[10] to acquire an interactive observation tool called COOiSY [57]. The technique above,

in combination with the program slicing (Section 3.5.2), helped us to implement the run-

time tracer C-Ace for Curry programs. Each step of the evaluations can be represented

to the user in a single step mode (Section 8.1.2). The single step representation, besides

highlighting (Section 7.2) dynamic slices (Section 3.5.2), is useful to understanding of the

lazy semantics of the functional logic language Curry.

3.6 Existing Debuggers/Tracers for Curry

The multi-paradigm language Curry combines all aspects of functional languages with

logical languages. A debugger/tracer for this language should support both deterministic

and non-deterministic features of programs. Different debuggers/tracers are implemented

for this language. We briefly describe them:

• CIDER: This tracer [30] is a graphical environment with a visualization of the ex-

pression evaluation tracing method. It is implemented by using meta-programming

and GUI programming libraries of Curry. CIDER contains a program editor, tools

to analyze function definitions in programs, a tool to draw dependency graphs and

a graphical debugger. CIDER shows information of the computations for every

selected function from the user. The information is represented after analyzing se-

lected functions as a textual result or as a graph dependency. The tool displays

a trace of computations as a sequence of narrowing steps. Unfortunately, such a
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sequence makes it difficult for the user to trace non-deterministic computations.

CIDER shows non-deterministic steps as a backtracking on represented steps. This

means that, if one sequence gives no solutions, another sequence or path should be

backtracked. An evaluation fails when no path leads to a result. Following steps

in a large computation could be lead to the loss of orientations. This is another

problem that encountered in using this tool.

• Münster: This debugger [43] is implemented with the declarative debugging method

(Section 3.5.1). While executing a program, the tool records information about

computations in an execution tree. After navigating the tree, one answers a series

of questions. Münster asks the user about the correctness of computations. The

user should answer yes or no. Answering these questions orients the navigation on

the tree until the failure is found. Unfortunately, if the user answers incorrectly, the

tool will lose orientation and represent incorrect information about the failure.

• COOSy: This debugger [10] is an extension of [20] with supporting features of func-

tional logic languages that are non-deterministic computations and logical variables.

It is implemented by the observation debugging method. The tool shows the results

of every data structure or function annotated by the user. COOSy does not rep-

resent the order of evaluations and cannot support the ability to backtrack on the

evaluations.

Because one of the research contributions of this thesis is related to the observation

system in COOSy, we discuss it further in Chapter 4.

• TeaBag: Like CIDER, this debugger [5] uses the expression evaluation tracing

method. TeaBag represents computation information in two parts. One part is

a tree structure of computations. Another part is a linear sequence of steps for one

path through a tree structure. Each path from a parent to a child shows a sequence

of deterministic steps. TeaBag lets the user set breakpoints on functions. This

feature is useful for large computations. By setting breakpoints, only the steps of

executed expressions between breakpoints will be represented to the user.



Chapter 4
The Observation System

“The secrets eternal neither you know nor I,

And answers to the riddle neither you know nor I,

Behind the veil there is much talk about us,

When the veil falls, neither you remain nor I.”

Omar Khayyam

Curry is a declarative language that computes program expressions by the lazy eval-

uation method. In this method, the order of evaluations is not the same as with the

order of program expressions. However, programmers do not think about the evaluation

of every program expression during run time. They write programs for the expected out-

puts. For example, consider the following program. The function main is a combination

of functions: reverse, map, increment and filter.

increment :: Int -> Int

increment x = x + 1

reverse :: [Int] -> [Int]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

main :: [Int] -> [Int]

main xs = let ys = filter (<5) xs

zs = map increment ys in

reverse zs

After applying the function main to the list [1,8,3] in our example, the first expression
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that would be computed is reverse zs. To compute this expression, Curry needs the

value of zs and to evaluate zs the expression map increment ys must be executed. The

result of this expression is found when the value of filter is offered as ys. In other

words, the evaluation is started with the expression reverse zs but the first computed

expression is filter (<5) xs:

main [1,8,3]

=> reverse zs

=> reverse (map increment ys)

=> reverse (map increment (filter (<5) [1,8,3]))

=> reverse (map increment [1,3])

=> reverse [2,4]

=> [4,2]

During the writing of the program, we do not consider the evaluation order of expres-

sions. This means that, if the program offers an unexpected output, which function or

expression has not been defined correctly will not be evident: filter, map, increment,

reverse or a (sub-)expression.

The reason for observation systems like [20, 10, 57] is to represent values of functions

and data structures with respect to lazy evaluation. Values are represented to the user

by manipulating programs before executing code.

4.1 Applications

By using the observation system COOSy [10] in different examples in this section, we

discuss how the behavior of program expressions can be inspected.

Values of program expressions can be observed by adding the function observe to

the corresponding program expression, while the module Observe is imported into the

program:

observe :: Observer a -> String -> a -> a

The observe function does not change the natural behavior of programs. It is an identity

function on the third argument. The second argument of the function observe is a label

to distinguish different observations. It is printed only as a side effect. The function

observe in [20] needs a type class restriction on the expression being observed. Every

type class defines a constructor that can be applied to a type variable. The type class can

also contain a function that can be applied to all instances of the class that are defined
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by the programmer. Curry, in contrast to Haskell [35, 33], does not provide type classes

[22, 16]. Therefore, to use the function observe in Curry programs, we need to add

special observers as the first argument. Observers are related to the type of the observed

values. For each predefined base type τ (e.g., Int, Float, Char), the observer is defined

as oτ . For example for an expression of type Int the observer oInt should be used and

for [Int] the observer oList oInt. Let us discuss the behavior of observers in different

examples.

Example 1 (Expressions): Consider the last program discussed. At first, we observe

the value of map increment ys in the right-hand side of the function main. The type of

this expression is [Int] and the related observer for this type is oList oInt:

main xs = let ys = filter (<5) xs

zs = observe (oList oInt)

"result"

(map increment ys) in

reverse zs

The manipulated program should be loaded and executed. We apply the function main

to the list [1,8,3]. The result of the observation system for the label result is as follows:

result

------

[2,4]

Example 2 (Function Applications): It is also interesting to observe the behavior of

defined functions of a program. Observers for functions can be constructed by means of

the right associative operator:

(~>) :: Observer a -> Observer b -> Observer (a -> b)

In the example above, we can also use a functional observer for the function map. The

function map is a predefined function in the Curry libraries with the following type defi-

nition:

map :: (a -> b) -> [a] -> [b]

It applies a function of type a -> b to all elements of a list of type [a]. To observe map,

we need an observer for this type of function. Since the program is defined as applying

to integers, the type of the function map could be specialized to:
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map :: (Int -> Int) -> [Int] -> [Int]

Now, we can define an observer and add the function observe to the program:

main xs =

let ys = filter (<5) xs

zs = observe ((oInt ~> oInt) ~> oList oInt ~> oList oInt)

"map-result" map increment ys in

reverse zs

This time, calling the application main [1,8,3] represents the result of map as following:

map-result

----------

{\{\3 -> 4

,\1 -> 2

} [1,3] -> [2,4]}

Function definitions are represented as {\arguments ->result}. The information repre-

sented for the label map-result indicates that the function map offers [2,4] as the result

and has two arguments: {\3 -> 4 , \1 -> 2} and [1,3]. The first argument is the

result of the function increment that is called twice for two different list elements 1 and

3. The second argument [1,3] is the result of the function filter. The elements of this

list show that the integer 8 has been filtered from the input list.

Example 3 (Polymorphism): The functions map and filter are two predefined func-

tions in Curry. They have polymorphic types so that these functions can be applied to

different lists with different type definitions.

Annotating expressions by observers has a benefit. It is possible to use different

observers for the same type. This allows selective masking of substructures in large

observed data structures (e.g., by the predefined observer oOpaque that represents every

data structure by the symbol #). To show this opportunity in our example, we change

the observer of map to a polymorphic type:

main xs =

let ys = filter (<5) xs

zs = observe ((oOpaque ~> oOpaque) ~> oList oOpaque

~> oList oOpaque)

"map-result" map increment ys in

reverse zs
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After re-executing the annotated program, the result of the function observe from the

new manipulated program without considering the type of the list elements is:

map-result

----------

{\{\# -> #

,\# -> #

} [#,#] -> [#,#]}

Example 4 (Lazy Behavior): We can also annotate expressions to understand the

lazy behavior of a program. For this purpose, we apply the function head to the result of

the above example:

firstElem :: [Int] -> Int

firstElem xs = head (main xs)

In applying the function firstElem to a given list (e.g., [1,8,3]), only the first element

of the list is computed and the values of the remaining list elements are not evaluated

because of the lazy evaluation strategy (Section 2.2.9). To see this behavior of the function

head, we add an observer to this function:

firstElem xs = observe (oList oInt ~> oInt)

"head-result"

head (main xs)

The observation system represents:

head-result

-----------

{\(4:_) -> 4}

Note that the first element of the list is evaluated to a value and the remaining elements

of the list are not computed. The un-evaluated expression is represented by an underscore

sign.

Example 5 (Non-Determinism): Curry is a functional logic language. In Curry

programs, functions can be defined non-deterministically [6]. This means that functions

can return different results for given sets of arguments. In other words, a function can

be defined with different rules so that rules with different right-hand sides have equal

left-hand sides (Section 2.3.1).
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As an example, let us consider the following program that performs a non-deterministic

computation:

add :: Int -> Int -> Int

add x y = x + y

main :: Int

main = add (0?1) 1

The expression (0?1) yields 0 or 1. This means that we could also define the function

main by two different rules:

main = add 0 1

main = add 1 1

To understand the behavior of non-deterministic computations, we apply an observer to

the function add in the right-hand side of main:

main = observe (oInt ~> oInt ~> oInt) "add-result" add (0?1) 1

Calling the function main, we obtain:

add-result

----------

{\0 1 -> 1}

{\1 1 -> 2}

The function is called twice and offers two results, 1 and 2. Because of the non-deterministic

behavior of the program, some parts of the first computation are shared by the second

one. These parts are highlighted by a lighter color that helps to understand the non-

deterministic computations. Note that if we change the order of arguments for the func-

tion add as follows:

main = add 1 (0?1)

we obtain:

add-result

----------

{\1 0 -> 1}

{\1 1 -> 2}
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The first argument is shared for the second computation of add.

Example 6 (Logical Variables): Curry also supports uninstantiated variables in pro-

grams. These variables or logical variables can also be observed. To see this, consider the

following program:

add :: Int -> Int -> Int

add 0 1 = 1

add 1 1 = 2

main :: Int

main = add x 1

where x free

In this example, the variable x is defined logically (Section 2.3.2). We would like to

observe the behavior of x when the function main is called:

main :: Int

main = add (observe oInt "x-result" x) 1

where x free

By executing the annotated program we obtain:

x-result

--------

(?/0)

(?/1)

After computing all possible solutions, Curry binds the free variable x to the two values,

0 and 1. The logical variable is represented by a question mark and the values that the

variable is bound to. The highlighted question mark shows that the free variable x is

bound non-deterministically.

Example 7 (Faulty Program): Observing functions and expressions helps program-

mers not only to understand the behavior of programs, but also to locate bugs in programs.

Let us consider a faulty program to find the position of the failure. The following program

computes the largest element of a given list:

applyMax :: [Int] -> Int

applyMax xs = foldl max 0 xs

max :: Int -> Int -> Int
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max x y

| x > y = x

| x < y = y

After applying the function applyMax to the list [2,3,1,3], we expect to have 3 as the

largest element. Instead, the program gives “No more solutions”. There is a bug in the

program. In order to locate this bug and show the behavior of the function max, we add

an observer in the right-hand side of applyMax:

applyMax xs = foldl (observe (oInt ~> oInt ~> oInt)

"max-result"

max) 0 xs

The manipulated program should be loaded and executed. Applying the function applyMax

to the list [2,3,1,3] activates the observer. The observation system represents the following

information:

max-result

----------

{\3 3 -> !

,\3 1 -> 3

,\2 3 -> 3

,\0 2 -> 2

}

The function max is called 4 times. The result of this function in the fourth call is rep-

resented by the exclamation mark. It indicates that the evaluation has started, but that

the computation has not been completed. This happens when the two arguments of max

are equal {\3 3 -> !}. We examine the program again. There is no rule definition for

equal values. The bug is located.

In all of these examples, we have seen how, by adding observe functions to program

expressions, the observation system represents the behavior of expressions to the user.

Unfortunately, adding or removing observer functions to or from programs, and also

defining appropriate observers, are efforts that discourage programmers from using ob-

servation debuggers. We need a tool to generate all observers automatically and add

annotations automatically to program expressions. This ability is provided in the imple-

mented tool iCODE. The user should only select arbitrary expressions that are represented

in the tool’s browser.
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4.2 Generating Observers

The purpose of debuggers is to locate bugs in programs. Bugs can be generated because

of wrongly defined functions or buggy expressions in programs. We would like to inspect

the behavior of functions and data structures with respect to the observation systems. As

we have described in the last section, for every observed expression in Curry programs,

we need an observer that is related to the type of expression. This means that, for an

automatic generation of observers, we should infer the type of expressions from a program

and also generate special observers for observed expressions.

In this section, we show how we can generate observers for different kinds of program

expressions.

4.2.1 Observing Functions

The most important feature of a convenient observation tool is the observation of top-level

functions. In Curry, these functions can be defined by one or more rules and may behave

non-deterministically. The reason to observe such a function should be that every call to

this function is observed. The easiest way to realize this behavior is to add a wrapper

function that adds the observation to the original function.

By the help of the meta-programming library (see Section 2.4), we infer the type of

functions. This requires only a converter to convert each base type τ to the observer oτ .

Consider the following simple program that computes the reverse of a given list:

reverse :: [Int] -> [Int]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

In this example, an observation of all calls to reverse can be obtained as follows:

reverse = observe (oList oInt ~> oList oInt)

"reverse"

wrapReverse

where

wrapReverse [] = []

wrapReverse (x:xs) = reverse xs ++ [x]

Note that we reuse the original function name for the wrapper function. By leaving

the recursive calls in the right-hand side of the original function definition unchanged, we

guarantee that the programmer observes each application of reverse. The only problem
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might be shadowing between the name of the wrapper function and other local functions

that could exist on the right-hand side. In order to avoid this conflict, we define the

wrapper function by a let expression:

reverse = observe (oList oInt ~> oList oInt)

"reverse"

(let wrapReverse [] = []

wrapReverse (x:xs) = reverse xs ++ [x] in

wrapReverse)

To observe the behavior of the annotated function (reverse), let us apply this function

to the given list [1,2,3]. After executing the program, the result of the function observe

is represented as follows:

reverse

-------

{\[1,2,3] -> [3,2,1]}

{\[2,3] -> [3,2]}

{\[3] -> [3]}

{\[] -> []}

reverse is called four times recursively. The wrapper function gives us the possibility of

showing all function calls on the given list. This technique can also be applied to selected

local functions to be observed.

The wrapper function is generated automatically by iCODE. The tool also automati-

cally generates labels to observer functions that help the programmer to later identify the

observations. Top-level functions are simply labeled with their names. Local functions

are labeled with a dot-separated list of function names leading to a description of their

observed functions.

4.2.2 Observing Data Types

Observers are generated by types of expressions or functions. In Curry programs, data

types (Section 2.2.6) are defined by the user and functions can be applied to expressions of

these types. Further, observers are needed to observe values of the related expression type.

COOSy [10] provides useful abstractions for this task and iCODE provides an automatic

derivation of these observers. This derivation cannot only be used for defined data types

in the program, but also for data types that are imported from other modules. We outline

the idea by an example. Consider the following data type for natural numbers:
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data Nat = O | S Nat

It defines two constructors:

O :: Nat

S :: Nat -> Nat

For the data type Nat we need the observer oNat (we discuss the implementation of

observers further in Chapter 5). COOSy provides generic observers o0,o1,o2,... for con-

structors of arity 0,1,2,... by which the observer oNat can be defined as follows:

oNat :: Observer Nat

oNat O = o0 "O" O

oNat (S x) = o1 oNat "S" S x

Now let us consider a program that has expressions of type Nat:

coin :: Nat

coin = O

coin = S O

plus :: Nat -> Nat -> Nat

plus O x = x

plus (S x) y = S (plus x y)

main = plus coin O

coin is defined non-deterministically and has two values, zero and one. plus takes two

arguments of type Nat and perform an addition of these two arguments.

To observe the function plus, we need the observer oNat that is generated automati-

cally by iCODE. As we have discussed in Section 4.2.1, to observe the top-level function

plus we should generate a wrapper function. The observer of the function plus is defined

as follows:

plus = observe (oNat ~> oNat ~> oNat)

"plus"

(let wrapPlus O x = x

wrapPlus (S x) y = S (plus x y) in

wrapPlus)

Calling the function main activates the observation system to represent the behavior of

plus as a textual visualization:
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plus

----

{\ O O -> O}

{\ (S O) O -> S O}

{\ O O -> O}

The function coin has two different values. The first value is matched to the pattern in

the first rule of plus. It causes the first function call of plus. Note that when the value

of coin is (S O), the second rule of plus is executed. In the right-hand side of this rule,

plus is called recursively. This causes the third call of plus.

For type constructors, an observer needs observers for the arguments as well, like

oList. The construction should be evident in the following example:

data Tree a b = Branch a b [Tree a b] [Tree a b]

oTree :: Observer x1 -> Observer x2 -> Observer (Tree x1 x2)

oTree oa ob (Branch x1 x2 x3 x4) =

o4 oa ob (oList (oTree oa ob)) (oList (oTree oa ob)) "Branch"

Branch x1 x2 x3 x4

In this way, generic observers for all data structures defined in the program are generated

and added automatically to the program. These observers are used for observations of

functions and expressions of values of this type. This method is applied to the imported

data types. Thus, for all imported modules, the data type observers can be generated

and automatically imported to the program by the tool.

However, polymorphism brings up a problem. How can polymorphic functions be ob-

served? The function can be used in different type instantiations. Hence, the only observer

we can assign to its polymorphic arguments is oOpaque (see Example 3 of Section 4.1).

4.2.3 Observing Expressions

Sometimes it is not sufficient to observe functions defined in a program. Observations

of sub-expressions in the right-hand sides of rules may become necessary to find a bug.

For this purpose, we provide a tree representation (Section 7.1) of the whole program,

in which the user can select arbitrary (sub-)expressions of the program to be observed.

Corresponding calls of observe are automatically added to expressions, while the type of

each selected expression is inferred and a corresponding observer is generated.

For this purpose, we use the meta-programming features of Curry (Section 2.4). In the

abstracted tree of a Curry program, which is generated by the meta-programming library,
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the type of function definitions are provided at time of compilation and by the process of

type inference (see Section 2.2.4). If we convert each selected expression to a function, the

type of this expression can become accessible. For this purpose, we substitute auxiliary

functions for selected expressions. These functions are defined locally and contain the

whole selected expressions in the right-hand sides.

To understand this idea let us consider the function reverse:

reverse :: [Int] -> [Int]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

To sketch the type of the expression xs in the right-hand side of the second rule, we insert

the auxiliary function auxExp for the selected expression into the program:

reverse (x:xs) = reverse (let auxExp () = xs in xs) ++ [x]

In Curry programs all locally defined functions must have at least one argument (in

another case they are considered to be local patterns). For this purpose, we have written

an empty tuple as an argument for the auxiliary function auxExp. Now, by using the

meta-programming library, we infer the type of the auxiliary function:

auxExp :: () -> [Int]

The result of the auxiliary function is the selected expression of type [Int]. After recog-

nizing the type of the expression by the above technique, we can generate the appropriate

observer as oList oInt. Now, the function observe is added to the program. iCODE

generates all of this information automatically. It also generates the related label with the

corresponding function name that the expression belongs to and a string-representation

of the selected expression, where they are separated by a dot:

reverse (x:xs) = reverse (observe (oList oInt) "reverse.xs" xs) ++ [x]

This technique is also used for function calls in the right-hand side of rules. As another

example, we sketch the type of reverse that is applied to xs in the right-hand side of

the second rule. At first we need to substitute an auxiliary function for the selected

expression:

reverse (x:xs) = (let auxExp () = reverse in reverse) xs ++ [x]

and infer the type of auxExp:

auxExp :: () -> ([Int] -> [Int])

Now the observer of the selected expression can be defined easily:

oList oInt ~> oList oInt
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4.2.4 Observing Imported Modules

iCODE supports the addition of observations to different modules of a project. When

the user selects functions or expressions of a module to be observed, a new module is

generated that contains the observer calls. We do not manipulate the original modules

but use a new module for observations, because the observation session may be necessary

again, when we try to debug the same project.

For example, assume that we have already generated an observer for the function

reverse from module1. The annotated program is recorded in the new module module1

observe. Now, in a large project we need to import the function reverse to another

module called module2. To observe the behavior of functions that apply reverse in their

right-hand sides, we should import the observer of reverse from module1 observe. This

control is done automatically by the tool. In other words, since observer calls in (even

indirectly) imported modules must also be executed, the tool can check for each imported

module whether or not an observer version is available and uses this for execution.



Chapter 5
Implementing Debuggers by Observations

“I have learned that everyone

wants to live at the top of the

mountain, without knowing that

real happiness is in how it is scaled.”

G. Garcia Marquez

A part of the work in this thesis has been extracted from the observation method

in COOSy [10]. Constructing representations of observations in COOSy is defined in

a bottom-up manner that is of no use for a single-step mode representation. For this

purpose, we construct information of evaluations in a tree structure. To extract this in-

formation and represent it to the user, we use a top-down algorithm. Using this algorithm

the constructed tree is translated to a textual format and represented in a single-step mode

to the user.

In this chapter, we first explain the expected events that are generated by observer

functions in COOSy. Then, we discuss how we change COOSy’s algorithm in order to

represent a trace of computations in a single-step mode.

5.1 Algorithm of COOSy

To observe values of evaluated expressions, we add annotations to programs. In this ap-

proach, each annotation is implemented as the identity function observe (Chapter 4).

Whenever an annotated expression is executed, its related observer function is also exe-

cuted. The functional logic language Curry evaluates program expressions by lazy eval-
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uation. This means that an annotated expression will be evaluated only if its value is

needed for computations. During a program execution, an observer function generates

information about an executed annotated expression. COOSy records this information

in a trace file. These details are different events, each of which shows either that the

computation has started or has been completed. In other words, there are two kinds of

events to distinguish evaluated expressions from failed or non-terminated computations:

• Demand event shows that a value is needed for a computation.

• Value event shows that the computation of a value (to head normal form) has

succeeded.

The events in COOSy are defined in a data type as follows:

data Event = Value Arity String Index ParentID

| Demand ArgNr Index ParentID

type Arity = Int

type ArgNr = Int

type Index = Int

type ParentID = Int

The indices are defined to distinguish the relationship between events. Every event needs

an index representing its own identifier (Index) and another index representing its parent

(ParentID). For instance, a demand event that requests a value event is defined as the

parent of the related value. Arity shows the number of arguments that are related to a

value. With respect to the lazy evaluation strategy, a demand event is required for every

evaluated argument. ArgNr of demand events shows this dependency. Every value event

contains a string that shows what should be printed out to the user.

Let us briefly discuss the algorithm of COOSy with respect to the events defined above:

1. Whenever a value of an annotated expression is needed, a computation of this

expression makes progress. Beginning this computation generates a demand event.

For this demand, ArgNr and ParentID are initialized by zero and (-1). These

numbers show that the demand generated belongs to no value arguments and is

only the start of an evaluation. However, calling the function observe activates the

observing function observer. Both functions are independent of the observed type

(note that for every type Type, an observer is defined as oType (Chapter 4)):

observe oType label exp = observer oType label exp 0 (-1)
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2. By calling recordEvent, the function observer requests an index from a global

state (to have distinct indices for different events, the indices are taken from a

global state) and writes a demand event to the trace file:

observer oType label exp argNr parentID = unsafePerformIO $

do eventID <- recordEvent label (Demand argNr) parentID

return (oType exp label eventID)

recordEvent label event parentID =

do eventID <- getNewID

writeToTraceFile label (event eventID parentID)

return eventID

The generation of indices is easily performed by the function getNewID:

getNewID = do

maybeStr <- getAssoc stateName

maybe (setAssoc stateName "1" >>

return 0)

(\ str -> let Just (n,"") = readInt str in

setAssoc stateName (show (n+1)) >>

return n)

maybeStr

where stateName = "coosyState"

The function setAssoc defines a global association between two strings. This global

state can be defined only if both arguments of the function setAssoc can be eval-

uated to ground terms. Therefore, by using the function getAssoc, we obtain the

value associated to a string that is defined as the constant coosyState.

3. The function oType related to the annotated expression is executed. This function

in the code above is responsible for recording a value in the trace file.

As an example of a function oType, let us implement observing the type [t]. It is

supposed that every list element has the type t. To observe every element of a list,

we define the observer ot in our example. A data type for lists can be represented

as follows:

data List t = []

| (:) t (List t)
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List has two constructors, [] and (:), with arities 0 and 2. To implement oList,

we begin with the first constructor:

oList ot [] label parentID =

unsafePerformIO $

do recordEvent label (Value 0 "[]") parentID

return []

The next constructor "(:)" takes two arguments. The first argument has the type

t and the second argument is a list of type [t]. For both arguments, we need to

call the function observer again:

oList ot (x:xs) label parentID =

unsafePerformIO $

do eventID <- recordEvent label (Value 2 "(:)") parentID

return ((:) (observer ot label x 1 eventID)

(observer (oList ot) label xs 2 eventID))

Depending on the arity of constructors, COOSy provides different oTypes for the

predefined types in Curry libraries. This technique can also be used to define oTypes

for user-defined data types.

To see generated events, let us consider the following simple program:

main = head [1,2,3]

We would like to observe the list [1,2,3]. For this purpose, this list must be annotated

by the function observe:

main = head (observe (oList oInt) "result" [1,2,3])

Assume that the first index requested from the global state is zero. Now, the first recorded

event that shows the beginning of the computation is: Demand 0 0 (-1). The evaluation

begins and the evaluated value is a list constructor (:) with arity 2. For the evaluated

list, a value event is generated: Value 2 "(:)" 1 0. Note that the demand event with

index 0 is defined as the parent of this value. Because of the lazy evaluation strategy,

only the first element of the list is computed for the function definition of head. This

means that the next generated event is a demand that is related to the first argument of

the value event: Demand 1 2 1. The computation of the first list element causes a value

event (Value 0 "1" 3 2) to be recorded in the trace file. No other values are needed to

execute the program. The computation is terminated. In this step, all recorded events

are:
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1

inx=3
Value

inx=2

:
inx:1

Demand

Demand
inx=0

Value

Figure 5.1: The relationship between events by observing [1,2,3]

[(Demand 0 0 (-1)),

(Value 2 "(:)" 1 0),

(Demand 1 2 1),

(Value 0 "1" 3 2)]

For a better understanding of the relationship between recorded events, we display a tree

representation of the events in Figure 5.1. Note that the second argument of the value

event (index 1) is not evaluated. An unevaluated argument in COOSy is represented by

an underscore. This trace is represented to the user as: (1:_)

In the observation system, the user cannot only observe data structures, but also

functions. For this purpose, the data type Event is extended:

data Event = Value ...

| Demand ...

| Fun Index ParentID

Index is an identifier for the function event and ParentID points to the parent of this

function.

For an example, we annotate the function head in our previously discussed example:

main = (observe (oFun (oList oInt) oInt) "head" head) [1,2,3]

Now, in the third step of COOSy’s algorithm, the observer oFun generates a function

event, instead of a value event:

oFun (oList oInt) oInt head "head" 0 [1,2,3] =

(unsafePerformIO $
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Fun
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inx=4

Demand

ValueValue
inx=7

inx=5

Value
inx=6

:

1

1

Demand
inx=2

inx=0
Demand

Figure 5.2: The relationship between events by observing head

do eventID <- recordEvent "head" Fun 0

return (\ x -> (observer oInt

"head"

(head (observer (oList oInt)

"head"

x

1 eventID))

2

eventID))) [1,2,3]

This means that, after executing the program and recording the first event (Demand 0 0

-1) in the trace file, a function event (Fun) that has index 1, as a child of the first event

is needed: Fun 1 0

Function applications are defined by two parameters representing an argument and the

result of the corresponding function. In COOSy, functions are represented in curried form

(see Section 2.2.5). That is, the result of a function with arity two is again a function.

Furthermore, we need two event applications for the two parameters of our example:

Demand 2 2 1

Demand 1 3 1

To understand the relationship between events of the trace file, we represent the entire

trace as a tree (see Figure 5.2). From this tree, a string is constructed that is represented

to the user as: {\(1:_) -> 1}.
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Curry also supports non-deterministic computations. Hence, a single demand event

can correspond to more than one value event. To determine which value belongs to which

branch of the computation, the data type Event is extended with the new argument

LogPar [10]:

data Event = Value Arity String Index ParentID LogPar

| Demand ArgNr Index ParentID LogPar

| Fun Index ParentID LogPar

type LogPar = Int

A logical parent (LogPar) is an index for an event that just occurred in the same branch

of the computation. For instance, look at Figure 5.2. After recording the value event

with index 6, the event with index 7 is recorded. This means that the event with index 6

is the logical parent of the event with index 7.

Let us discuss the logical parents further by means of the following example:

add :: Int -> Int -> Int

add x y = x + y

num :: Int

num = 0

num = 1

main :: Int

main = add 1 num

In this program, the function num is defined non-deterministically. Calling main returns

two results, 1 and 2. We would like to observe the function add in the right-hand side of

main:

main = observe (oFun oInt (oFun oInt oInt)) "add" add 1 num

Executing this annotated program records corresponding events in a trace file. These

events are represented as a tree in Figure 5.3. Consider this figure. The first argument of

add is simply evaluated to 1 (in the value event with index 6). The right sub-tree of add

is a function (index 3) again. This function takes the second argument of add and returns

the result. Because of the non-deterministic behavior of num, we have two different values

for this argument (indices 8 and 10). The results are also represented in two different
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Figure 5.3: The trace of a non-deterministic computation

nodes of the tree (indices 9 and 11). To recognize which argument belongs to which re-

sult, we need to know the order of the events generation in the branches. This is provided

by the logical parents (dotted arrows in Figure 5.3). If we separate the two generated

traces, parts of the tree that correspond to a generated result appear (see Figure 5.4).

This is easily done by following the logical parents.

Computing with logical variables is another aspect of Curry that should be observed in

the observation system. When a value is observed, it should be controlled, whether or not

it is a logical variable. This means that the observer must test an annotated expression

before proceeding. To distinguish this kind of variables, the data type Event is extended:

data Event = Value ...

| Demand ...

| Fun ...

| LogVar Index ParentID LogPar

For every recorded logical variable, the index of the related event, the index of the parent

and also a logical parent are recorded in the trace file. What a logical variable can bind

to, is either guessed by the search strategy or computed directly by code. To test whether

a logical variable is already bound, the function isVar [17] is used:

isVar :: a -> Bool
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Figure 5.4: Separating the trace of evaluations

After testing the variable by isVar, the function ensureNotFree is used:

ensureNotFree :: a -> a

This function evaluates an argument to head-normal form and returns a result to continue

the computations. If the result of this function is an unbound variable, the computation

is suspended until the variable is bound.

Inserting logical parents to events and extending the data type Event for logical vari-

ables needs an update for the first and second steps of COOSy’s algorithm. In the first

step, the function observer needs a new argument (logParents) to provide information

about logical parents:

observe oType label exp = observer oType label exp 0 (-1) logParents

where logParents free

In the second step, calling recordEvent not only requests a new index for the actual

event, but also a logical parent for this event:

recordEvent label event parentID logPars = do

eventID <- getNewID

let (logPar,logVar) = getLogPar parentID logPars

...

writeToTraceFile label (event eventID parentID logPar)

return (eventID,newLogVar)
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Figure 5.5: The process of the events transformation in COOSy

where newLogVar free

getLogPar parentID logPars

| isVar logPars = (parentID,logPars)

| otherwise = getLogPar (head logPars) (tail logPars)

Note that, whenever a new event is written into the trace file, a list (logPars) of indices

(eventIDs) terminated by a logical variable is bound to the corresponding eventID. The

list is used because the order of evaluation is unknown. Before writing an event to the

trace file, the logical variable of the list logPars is found and bound to the new eventID

followed by a new logical variable [10].

5.2 Expected Events in iCODE

In COOSy, information about observed values is recorded as a list of events in a trace file.

To present the list of recorded events to the user, this list is constructed as a tree of events

(see Section 5.1) in a bottom-up manner (see Figure 5.5). For example, to represent the

recorded events in Figure 5.1, COOSy’s algorithm starts with the index 3 (value event)

and follows the parents related, first index 2 then 1 and 0.

This algorithm is of no use for a continuous update of observed data terms, since the

whole observed data structure must be re-constructed at each step. As a solution, we

record the information about observed values in a tree structure and use a top-down algo-

rithm that allows extensions in all possible leaf positions of the presented data structure

(see Figure 5.6). For instance, during the computation, non-evaluated arguments (rep-

resented by underscores) may flip into values, but values within a data structure will no

longer change. However, we must consider the non-determinism within Curry by which

values may later be related to different non-deterministic computations.

To avoid storing huge amounts of events in a trace file, we define a global state to

record events. The Global library [17] of PAKCS helps for this purpose. In this library,

an entity g with an initial value v of type t and a storage mechanism s is described by:
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Figure 5.6: The process of the events transformation in iCODE

g :: Global t

g = global v s

Using this library we implement a top-down algorithm. For this purpose, we store the

events in the following data structure:

TreesTable :: Global [([Index],EvalTree)]

TreesTable = global [] Temporary

data EvalTree = Open SubTreeNr

| Value Arity String Index [EvalTree]

| Demand ArgNr Index [EvalTree]

| Fun Index [EvalTree]

| LogVar Index [EvalTree]

type Index = Int

type ArgNr = Int

type Arity = Int

type SubTreeNr = Int

TreesTable is a kind of global state that is accessible and modifiable within the whole

program. The list of indices [Index] in this data structure represent all nodes occurring

in the corresponding evaluation tree (EvalTree) in the order in which they were added.

This is necessary since the evaluation order is not statically fixed. However, the index

list is extended in its head position whenever the evaluation tree is extended (in an Open

leaf). The Open node is used when the evaluation of an argument is not started. Every

constructed EvalTree is represented to the user by a pretty printing method and using a

top-down algorithm (see Figure 5.6) , so that an open node is represented by an underscore

( ), a demand by an exclamation mark (!), a function by a mapping from arguments to

results (\args ->results) and a logical variable by a question mark (?/v). Values are

represented by strings that are their related constructors.
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Let us consider the following program while the list [1,2,3] is annotated to be ob-

served:

main = head (observe (oList oInt) "result" [1,2,3])

When executing the program, the first generated event is a demand event (Demand 0 0

(-1) (-1)) that is defined as the root of the tree and has one open sub-tree. The index

of the event is also recorded in the head position of the index list:

[([0] ,

Demand 0 0 [(Open 1)])]

The generated evaluation tree is translated to a string and represented to the user as !.

The exclamation mark shows that an evaluation has begun, but that the computation

has not been completed.

The second generated event is a value (Value 2 "(:)" 1 0 0). Because the parent

of this event has the index 0, the evaluation tree can be extended in its open sub-tree and

the index of the value event is recorded in the index list:

[([1,0] ,

Demand 0 0 [(Value 2 "(:)" 1 [Open 1 , Open 2])])]

The arity of the recently generated event is 2. This means that two open sub-trees are

needed for this event. The open sub-trees represent unevaluated parts of the observed

value and are displayed to the user by underscores: (_:_). The first open sub-tree (Open

1) is considered to be the head of the list and the second one (Open 2) to be the rest list.

The third generated event is a demand event (Demand 1 2 1 1). The argument

number of this event (1) shows that it belongs to the first open sub-tree of its parent:

[([2,1,0] ,

Demand 0 0 [(Value 2 "(:)" 1 [Demand 1 2 [(Open 1)],

Open 2])])]

The tree in this step indicates that the evaluation of the first list element has begun -

(!:_).

The next generated event is a value event (Value 0 "1" 3 2 2). The parent of this

event has index 2. This means that the open sub-tree of the parent can be extended.

The index of the recently generated event is also inserted into the index list to record the

order of evaluations:
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[([3,2,1,0] ,

Demand 0 0 [(Value 2 "(:)" 1 [Demand 1 2 [(Value 0 "1" 3 [])],

Open 2])])]

The computation has been completed. Note that the second open sub-tree of the value

event with index 1 is not extended, because the execution of head needs only the value of

the first list element. The generated tree of this step is represented to the user as (1:_).

Evaluation trees are extended until an execution has been completed or failed. Note

that, within a non-deterministic computation, parts of a value are used in more than one

computation. In this case, a logical parent indicates which part of an evaluation tree is

shared within the other related non-deterministic computations. We only consider the

sub-tree consisting of nodes from the index list to the logical parent of the new event.

This sub-tree with the corresponding indices is copied as an additional evaluation tree to

the global TreesTable. To present shared parts of a computation to the user, we extend

the data type EvalTree as follows:

data EvalTree = Open ...

| Value ...

| Demand ...

| Fun ...

| LogVar ...

| Share EvalTree

The constructor Share has an argument. This argument is considered to be the new parts

of the evaluation tree in a non-deterministic computation.

For example, we again consider the following simple program from the last section

that performs a non-deterministic computation:

add :: Int -> Int -> Int

add x y = x + y

num :: Int

num = 0

num = 1

main :: Int

main = add 1 num

In Section 5.1 we have observed the function add in the right-hand side of main by COOSy.

Now we observe the same expression by iCODE.
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The function main offers two results: 1 and 2. For the first result after annotating the

function add to be observed, ten events are generated. The first event is a Demand that is

stored in EvalTree with index 0:

[([0],

Demand 0 0 [(Open 1)])]

The second generated event is a fun event with logical parent 0 that should be substituted

in the open sub-tree of its parent:

[([1,0],

Demand 0 0 [Fun 1 [(Open 1),

(Open 2)]])]

This fun event is stored as a node with two sub-trees presenting the argument and the

result of the corresponding function.

After adding the remaining eight events to the evaluation tree, we obtain

[([9,8,7,6,5,4,3,2,1,0] , Demand)]
inx=0

|
Fun
inx=1

/ \
Demand Demand
inx=5 inx=2

| |
Value Fun
inx=6 inx=3

"1" / \
Demand Demand
inx=7 inx=4

| |
Value Value
inx=8 inx=9

"0" "1"

which is presented to the user as {\1 0 -> 1}.

The next generated event is a value event with logical parent 7. This index does

not occur in the head position of the index list. Hence, we detect a non-deterministic

computation. The observed value of this computation shares the nodes with indices 0 to

7 with the first tree. Therefore, we copy this part where Share shows which parts of the

tree are shared. The copied parts are extended with the new event 10. This means that

the same function is called with another argument (1) in this non-deterministic branch.

After adding the last event we obtain
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([11,10,7,6,5,4,3,2,1,0] , Demand)
inx=0

|
Fun
inx=1

/ \
Demand Demand
inx=5 inx=2

| |
Value Fun
inx=6 inx=3

"1" / \
Demand Demand
inx=7 inx=4

| |
Share Share

| |
Value Value
inx=10 inx=11

"1" "2"

which is presented to the user as {\1 1 -> 2}. The highlighted parts show the shared

parts of the computation. This top-down construction method helps us to provide fast

pretty printing for each intermediate step of observations in the implemented tool iCODE.

Instead of recording events in a trace file, we need an algorithm in order to store the

events in an evaluation tree. For this purpose, we change the function recordEvent from

the second step of COOSy’s algorithm. This function is simply changed by replacing a

new function sendToShow instead of writeToTraceFile:

recordEvent label event parentID logPars = do

eventID <- getNewID

let (logPar,logVar) = getLogPar parentID logPars

...

sendToShow (EventMessage label (event eventID parentID logPars))

return (eventID,newLogVar)

where newLogVar free

iCODE is implemented by a distributed architecture that will be discussed in Chap-

ter 8. In this section we restrict our discussion to the global state of evaluation trees.

We discuss EventMessage in the related chapter. Hence, an execution of the function

sendToShow causes the generation of evaluation trees by the following steps:

1. Reading the initialized global state TreesTable.

2. Inserting the actual event into the related evaluation tree.
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3. Translating the updated tree (from step 2) to a string for representation to the user.

4. Replacing the new updated tree (from step 2), instead of the last existed tree in the

global state.

As long as a new event is generated, the above steps are repeated. If an execution of a

program is terminated or failed, this algorithm is stopped and the latest constructed tree

is represented to the user. These steps belong to the algorithm of the tree construction

presented in Figure 5.6 and performed by executing the following code:

...

tree <- readGlobal TreesTable

newTree <- insertToTree event tree

showEvent (translateToStr newTree) label

writeGlobal TreesTable newTree

...

The function showEvent presents the translated tree in an appropriate viewer that belongs

to the label of the annotated expression.

To insert a generated event to the related evaluation tree, we should look up the index

of this event in the indices lists of TreesTable. It brings up four situations:

1. If the logical parent of the newly generated event is (-1), the event is the root of a

new evaluation tree that is inserted into TreesTable.

2. If the logical parent of the event appears in the head position of an index list, then:

(a) the related evaluation tree is extended in an open leaf corresponding to the

parent of the event.

(b) the index list is extended in its head position by inserting the index of the

event.

3. If the logical parent is not equal to the first element of the index list, but exists in

the list, then:

(a) a copy of the index list is provided such that the indices from the head position

to the logical parent are removed.

(b) a copy of the related evaluation tree is provided such that all events for which

there is no index in the list (from step a) are removed from the tree.
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(c) the nodes of the tree (from step b) which belong to the shared parts are ex-

tended with the event Share.

(d) the index of the recently generated event is added to the head position of the

copied part (from step a) of the index list.

(e) the event is inserted into the copied part of the tree (from step c).

4. If the logical parent does not exist in an index list, then the algorithm is repeated

for the other trees existing in TreesTable.

These steps are performed whenever the function insertToTree is called:

insertToTree event t =

let logPar = takeLogicalParent event

eventID = takeEventID event in

case event of

COOSY.Demand argNr ownId _ _ ->

if logPar == -1

then ([eventID],ICODE.Demand argNr ownId [Open 1]):t

else insertNextEvent event t

_ -> insertNextEvent event t

insertNextEvent event (((p:ps),events):ts)

| logPar == p =

let newEvents=insertEvent event events in

(eventID:p:ps,newEvents):ts

| elem logPar ps =

let psCopy = dropWhile (logPar/=) ps

eventsCopy = filterEvents psCopy events

newEvents = insertEvent event eventsCopy in

(eventID:psCopy,newEvents): ((p:ps),events):ts

| otherwise = ((p:ps),events):insertNextEvent event ts

where logPar = takeLogicalParent event

eventID = takeEventID event

filterEvents [] tree = tree

filterEvents (n:nodes) tree = head (filterEvents’ (n:nodes) tree)

filterEvents’ _ (Open n) = [Share (Open n)]
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filterEvents’ nodes (ICODE.Value arity str ownId subTrees)

| elem ownId nodes = [ICODE.Value arity str ownId

(concatMap (filterEvents’ nodes)

subTrees)]

| otherwise = [Share (Open 1)]

filterEvents’ nodes (ICODE.Demand argNr ownId subtrees)

| elem ownId nodes = [ICODE.Demand argNr ownId

(concatMap (filterEvents’ nodes)

subtrees)]

| otherwise = [Share (Open argNr)]

filterEvents’ nodes (ICODE.Fun ownId subtrees)

| elem ownId nodes = [ICODE.Fun ownId

(concatMap (filterEvents’’ nodes)

subtrees)]

| otherwise = [Share (Open 1)]

filterEvents’ nodes (ICODE.LogVar ownId subtrees)

| elem ownId nodes = [ICODE.LogVar ownId

(concatMap (filterEvents’ nodes)

subtrees)]

| otherwise = [Share (Open 1)]

filterEvents’ nodes (Share tree) = [filterEvents nodes tree]

filterEvents’’ nodes (t,t’) =

[(head (filterEvents’ nodes t),head (filterEvents’ nodes t’))]

The function insertEvent finds the parent related to the event in the tree (eventsCopy)

and substitutes this event for the corresponding open sub-tree of the parent. After per-

forming each insertion, the newly constructed tree can be represented to the user.

By storing the indices of generated events in a list, we can also perform backward and

forward stepping through the observations represented to the user. This is performed by

filtering TreesTable with respect to a subset of considered indices.

To remove evaluation trees from TreesTable, we have defined a clear-button in each

trace window. Furthermore, when the observed program is restarted, TreesTable is

cleared automatically.



Chapter 6
Operational Semantics

“Be brave. Take risks.

Nothing can substitute experience.”

Paulo Coehlo

In this chapter, we prove that annotating program expressions by observer functions

does not change the behavior of programs. Furthermore, we formalize the annotations of

observations and events. For this purpose, we define an operational semantics that is an

extension of the semantics represented in [1, 2].

6.1 Functional Logic Languages

Launchbury [42] models an operational semantics that represents the semantics behind

sharing for the lazy evaluation strategy. The new features (non-determinism and logical

variables) of functional logic languages need an extension of the operational semantics

represented in [42]. This extension is defined in [1, 2, 12], so that, in order to provide

a simple operational description, programs are translated to a flat form [28]. The flat

representation of functional logic programs is useful to provide an explicit representation

of the pattern matching strategy using case expressions. The syntax of flat programs is

presented in Figure 6.1.

Every program P contains a sequence of function definitions D. The left-hand side of

a function definition contains different variable arguments xi, i ∈ {1, . . . , n} and the right-

hand side is an expression e. Expressions are composed by variables, data constructors,

function calls, case expressions, disjunctions and let bindings. We define the set of flat

programs as Prog and the set of expressions as Exp, meaning that P ∈ Prog and e ∈ Exp.
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P ::= D1 . . . Dm (program)
D ::= f(x1, . . . , xn) = e (function definition)
e ::= x (variable)

| C(e1, . . . , en) (constructor call)
| f(e1, . . . , en) (function call)
| case e of {p1 → e1; . . . ; pn → en} (rigid case)
| fcase e of {p1 → e1; . . . ; pn → en} (flexible case)
| e1 or e2 (disjunction)
| let x1 = e1, . . . , xn = en in e (let binding)
| prim g (e1, e2) (primitive functions)
| hnf(x1, x2) (head normal form evaluator)

p ::= C(x1, . . . , xn) (pattern)

Figure 6.1: Flat program

There are primitive functions that are applied to their arguments only if these argu-

ments are evaluated to constructor terms. For instance, a+ b can be reduced to a value if

the variables a and b are already evaluated to values. Note that the variables can also be

uninstantiated in a program. Since parameters of a function call are not evaluated in the

lazy evaluation strategy but transfered to the body of this function, primitive functions

in Curry are implemented as function definitions. In our semantics, primitive functions

named as g, which are applied to expressions e1 and e2, are represented by the prefix

“prim ”:

prim g(e1, e2)

However, variable arguments of calls to these primitive functions need to be instantiated

before applying functions to the variables. To evaluate arbitrary arguments to head

normal form, primitive functions are implemented using the function hnf . As in [2], we

consider hnf applications hnf(e1, e2) that first evaluate e1 to head normal form before

they return e2 as a result. For instance, the Curry expression a + b that is translated to

a call of a primitive function in flat programs is considered as:

a + b = hnf(a, hnf(b, prim + (a, b)))

Using hnf functions, the arguments a and b are evaluated to head normal forms before

the primitive function prim + is applied to the values of these arguments.

By means of non-deterministic computations in functional logic languages like Curry,

expressions can be evaluated to different results. To simplify such expressions, conjunc-

tions (or-expressions) are used. For instance, the function select non-deterministically
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returns one of its arguments:

select x y = x

select x y = y

With respect to the syntax of flat programs, function definitions must be represented as

f(x1, . . . , xn) = e. This means that, instead of a currified notation, a Curry application

like select e1 e2 is annotated with brackets in the flat program:

select(e1, e2)

This representation is restricted to first-order functions. The representation of higher-

order functions needs another transformation that is discussed in Section 6.2.3.

Since select acts non-deterministically on its arguments, the two rules of the function

select are combined by the operator or in only one rule:

select(x, y) = x or y

The syntax of the flat representation contains two different case expressions:

(f)case e of {p1 → e1; . . . ; pk → ek}

where e and ei are expressions, pi is a pattern and 1 ≤ i ≤ k.

The difference between case and fcase appears when the argument e evaluates (at run

time) to a logical variable. In this case, case suspends the evaluation of the variable but

fcase non-deterministically binds this variable to a pattern (pi) to continue the evaluation

(see Section 2.3).

As an example, let us consider the function and with the following definition in a

Curry program:

and False = False

and True x = x

Note that and returns False if the first argument is False independently of the second

argument. Only if the first argument is True, the result depends on the second argument.

We convert the above function definition into a flat form using case expressions:

and (x, y) = fcase x of

{False → False ;

True → y}

Another feature of functional logic languages beside non-determinism is the use of

logical variables. Logical variables are those variables in a rule that do not appear on the

left-hand side (see Section 2.3.2). Logical variables are declared to be free in local defini-

tions. For instance, if the variable x is a free variable in the Curry expression e, we can

write: let x free in e. [7] pointed out that the use of extra variables causes no problem if

they are renamed whenever a rule is applied. With respect to this definition, [2] suggests
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a circular binding definition for logical variables in flat programs (let x = x in e) to mean

that x is not instantiated.

In summary, we transform programs into a flat form such that:

• functions are represented by only one rule with an explicit representation of the

pattern matching by nested case expressions.

• non-deterministic definitions are represented by or-expressions.

• logical variables are introduced by circular let bindings on these variables [7].

The semantics represented in [2] describes the operational semantics of functional logic

languages in two stages:

• Natural semantics (big step) that defines the intended results by relating expressions

to values.

• Implementation-oriented semantics (small step) that reasons about operational as-

pects of programs.

To represent the operational semantics of our work, we use the big-step semantics that

is discussed in the next section.

6.1.1 Natural Semantics

As in [2], to represent a natural semantics (called big step), a normalization process similar

to [42] is first applied. In this process, all arguments of functions, constructors and case

patterns are transformed into variables. The transformation process of an expression e is

represented by e∗. It is introduced as follows, while ϕ denotes either a constructor or a

function symbol. A function symbol can also be a primitive or a hnf function. on denotes

a sequences of objects (o1, . . . , on):

x∗ = x

ϕ(xn)∗ = ϕ(xn)

ϕ(x1, . . . , xi−1, ei, ei+1, . . . , en)∗ = let xi = ei
∗ in

ϕ(x1, . . . , xi−1, xi, ei+1, . . . , en)∗

where ei is not a variable and xi is fresh

(let {xk = ek} in e)∗ = let {xk = e∗k} in e∗

(e1 or e2)
∗ = e∗1 or e∗2

((f)case e of {pk → ek})
∗ = (f)case e∗ of {pk → e∗k}
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In this process, variables do not need to be transformed, but expressions (e) have to be

normalized (e∗). The normalization process introduces a new let binding for each non-

variable argument. Note that this can be modified in order to generate one single let

expression with bindings for all non-variable arguments of a function or constructor call.

For example, a function application of f to the arguments 1 and 2 (i.e., f(1, 2)) in a

normalized flat program is represented as:

let x = 1,

y = 2 in

f(x, y)

where x and y are fresh variables.

By applying the normalization process, a program and all its expressions are trans-

formed and are ready to be interpreted by the natural semantics. The derivation rules

are represented in Table 6.1, where:

P ∈ Prog

Γ, ∆, Θ ∈ Heap = V ar 7→ Exp

x, y ∈ V ar

e ∈ Exp

v ∈ V alue ::= x | C(en)

A value in this definition is a constructor-rooted term (i.e., a term whose outermost

function symbol is a constructor symbol) or a logical variable. A heap is a mapping from

variables to expressions to model sharing. We use the following notations for heaps:

• [] denotes an empty heap.

• Γ[x] denotes the value associated to the variable x in the heap Γ.

• Γ[x 7→ e] denotes the heap Γ′ obtained by updating the heap Γ where x is bound to

e. Formally:

Γ′ [y] =

{

e if x = y

Γ [x] otherwise

• Γ [x] = x means that x is a logical variable.

• [x1 7→ e1, x2 7→ e2, ..., xn 7→ en] denotes a heap that maps variable xi to expression

ei where ∀i 6= j, xi 6= xj and i ∈ {1, ..., n}, j ∈ {1, ..., n} .

In the derivation rules represented in Table 6.1, the judgment (Γ : e ⇓ ∆ : v) is

interpreted such that the expression e in the context of the heap Γ evaluates to the value v
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together with the (possible modified) heap ∆. For instance, a proof of a judgment (called

derivation tree) in a rule such as follows:

Γ : a ⇓ ∆ : b ∆ : c ⇓ Θ : d

Γ : e ⇓ Θ : v

means that the expression e is evaluated to the value v, if a is evaluated to b (i.e.,

Γ : a ⇓ ∆ : b) and c is evaluated to d (i.e., ∆ : c ⇓ Θ : d), where a and c are

expressions and b and d are values. The derivation tree can also be represented as follows:

Γ : e








Γ : a
...

∆ : b















the first subproof









∆ : c
...

Θ : d















the second subproof

Θ : v

The proof attempt of a judgment may also fail. This occurs in two cases:

• Derivation is not terminated. This corresponds to an infinite loop (e.g., because of

an infinite recursive call to a function).

• There is no rule which can be applied for derivation of a subproof (e.g., because of

a pattern matching failure).

Let us briefly explain the derivation rules of Table 6.1:

V arCons: Evaluating a variable yields a constructor-rooted term, if there is a binding

from the variable to this term in the heap.

V arExp: This rule evaluates a variable (x) in the context of a heap (Γ) where the

heap contains a binding for the variable (x 7→ e). The derivation tree of this rule shows

that the variable x can be evaluated to the value v only if the expression e is evaluated to

this value. If expression e cannot be evaluated to a value, the derivation fails. Note that,

in contrast to [42], V arExp does not remove the binding of the variable from the heap,

because generating fresh variable names by let bindings will be easier.
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Table 6.1: Natural Semantics for Functional Logic Programs

V arCons Γ [x 7→ t] : x ⇓ Γ [x 7→ t] : t

V arExp
Γ [x 7→ e] : e ⇓ ∆ : v

Γ [x 7→ e] : x ⇓ ∆ [x 7→ v] : v

V al Γ : v ⇓ Γ : v

Fun
Γ : ρ(e) ⇓ ∆ : v

Γ : f(xn) ⇓ ∆ : v

Let
Γ

[

yk 7→ ρ(ek)
]

: ρ(e) ⇓ ∆ : v

Γ : let{xn = ek} in e ⇓ ∆ : v

Or
Γ : ei ⇓ ∆ : v

Γ : e1 or e2 ⇓ ∆ : v

Case
Γ : e ⇓ ∆ : C(yn) ∆ : ρ(ei) ⇓ Θ : v

Γ : (f)case e of {pk → ek} ⇓ Θ : v

FCase
Γ : e ⇓ ∆ : x ∆ [x 7→ ρ(pi), yn 7→ yn] : ρ(ei) ⇓ Θ : v

Γ : fcase e of{pk → ek} ⇓ Θ : v

PrimFun Γ : prim ⊕ (x1, x2) ⇓ Γ : Γ[x1] ⊕ Γ[x2]

HNF
Γ : x1 ⇓ ∆ : v1 ∆ : x2 ⇓ Θ : v2

Γ : hnf(x1, x2) ⇓ Θ : v2

where in V arCons: t is constructor-rooted

V arExp: e is not constructor-rooted and e 6= x

V al: v is constructor-rooted or a variable with Γ [v] = v

Fun: f(yn) = e ∈ P and ρ = {yn 7→ xn}

Let: ρ = {xn 7→ yn} and yn are fresh variables

Or: i ∈ {1, 2}

Case: pi = C(xn) and ρ = {xn 7→ yn}

FCase: pi = C(xn), ρ = {xn 7→ yn} and yn are fresh variables

PrimFun: ⊕ is a primitive function
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V al: If a value is evaluated, the value is returned and the heap is kept without any

modification.

Fun: By this rule, function calls are evaluated to values where parameters of corre-

sponding function rules are substituted. Note that the program P is considered to be a

global parameter of the calculus.

Let: All bindings of a let expression are added to the heap and proceed with the

evaluation of the main argument (e).

Or: The completely new rule that is added to Launchbury’s model [42] is the rule

that is related to non-deterministic computations. This rule shows that a derivation can

proceed by evaluating the expression e1 or by evaluating e2.

Case: The case rule is strict in its main expression (e). It only succeeds if the con-

structor returned by the evaluation of e occurs in the pattern list of the case expression. In

this case, all arguments of the constructor replaces the variables to continue the derivation

process.

FCase: If the main argument (e) of the case expression is evaluated to a logical

variable (x), this rule is used. FCase non-deterministically binds this variable to the

patterns (x 7→ ρ(pi)) and evaluates the corresponding branch. Pattern variables are also

renamed (xn 7→ yn). Finally, the heap is updated with the renamed logical variables of

patterns.

PrimFun: Primitive functions are applied to their arguments only if these arguments

are already evaluated and bound to values in the heap (Γ[x1] and Γ[x2]). It is supposed

that there are no variable chains in the heaps. Since logical variables are not always

instantiated to constructor-rooted terms but can also be bound to other logical variables,

chains of bindings might occur in heaps. In PrimFun, x1 and x2 are considered to be

bound to constructor-rooted terms.

HNF : This rule is used when a hnf function is being evaluated. The rule first evalu-

ates the argument x1 to head normal form (v1) before it returns v2 as a result. Note that

in this semantics, a logical variable is also a head normal form (V alue ::= x|C(en)).

Now, we will examine the derivation rules by means of a simple program written in

Curry:

f x = x

main = f 1

In order to represent the operational semantics of this program, we first transform it:

f(x) = x
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main = let y = 1 in f(y)

Now, we need an empty heap and an expression to evaluate:

[] : main

The expression main can be evaluated using V arExp:

[] : let y = 1 in f(y)

To evaluate the let expression, Let is needed:

[y 7→ 1] : f(y)

The derivation of the function application f(y) can be performed by Fun:

[y 7→ 1] : y

Now V arCons evaluates the variable y:

[y 7→ 1] : 1

In this step, the execution of f(y) is completed by evaluating to 1. Then, the derivation

trees of Let and V arExp are also completed. The following is how the derivation tree of

this program is represented:

































[] : main






















[] : let y = 1 in f(y)












[y 7→ 1] : f(y)
[

[y 7→ 1] : y

[y 7→ 1] : 1

[y 7→ 1] : 1

[y 7→ 1] : 1

[y 7→ 1] : 1

6.2 A Semantics for Observations

Our operational semantics, named observation semantics, is supposed to illustrate what

happens when an annotated expression in the debugging system is executed. As we have

discussed in Section 4.2, showing intermediate information of evaluations (run-time values)

is possible for annotated program expressions by observer functions. In this section, we

perform two steps to represent the observation semantics of a normalized program (see

Figure 6.2):

• Labeling normalized programs: This gives labels to arbitrary expressions and func-

tion definitions selected by the user.

• Extracting events: This generates a tree of events in a top-down manner.
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Figure 6.2: The process of observation semantics

6.2.1 Labeling Normalized Programs

Annotating expressions by observer functions must not change the behavior of programs.

This process involves three steps:

1. Programs are transformed into flat form [28] where all arguments of functions and

constructors are variables (the transformation process is discussed in Section 6.1.1).

2. As discussed in Chapter 4, arbitrary expressions or function definitions can be se-

lected for annotation by observer functions. Adding observer functions to programs

is performed automatically by the tool. In this stage of the labeling process, we

only give the label “O” to every expression eo that is selected by the user (O(eo)).

This means that, if values of the labeled expression are needed for a computation,

they will be observed. Function calls f(xn) can also be observed. In the observation

semantics, an observed function is defined as f o(xn). Note that, if a function is

selected to be observed, we replace f o(xn) instead of f(xn) in the program.

In this semantics, we define the set of labeled expressions as Expo, meaning that

O(eo), f o(xn) ∈ Expo (see Figure 6.3).

3. As discussed in Chapter 5, executing annotated expressions by observer functions

causes the generation of events and constructions of evaluation trees. In the de-

bugging system, we use indices to provide a relationship between events. In the

observation semantics, instead of using indices, we bind labeled expressions (O(eo))

to fresh variables (let y = O(eo) in y where y is fresh) and use these variables

to define a relationship between events. Note that, for selected function calls, the

name of functions are used.

The structure of labeled programs is presented in Figure 6.3. The syntax in this

figure indicates that a labeled program (P o) can contain labeled function definitions with
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labeled expressions (f o(xn) = O(eo)) as well as non-labeled ones (f o(xn) = eo). A labeled

program can also contain function definitions that are not selected in order to be observed

(f(xn) = eo). In this approach, labeled programs are defined in the set Progo, meaning

that P o ∈ Progo.

The structure of expressions (eo) shows that a programmer can observe the behavior

of a function on its arguments (f o(xn)) or the result of a function call that is a value

O(f(xn)).

Every sub-expression of or-, case-, fcase- and let expressions can also be observed by a

programmer. In other words, besides observing the whole expressions, programmers can

select sub-expressions for observation.

We have extended the syntax of expressions with observers. Whenever the computa-

tion of a labeled expression (O(eo)) or a labeled function (f o(xn)) is needed, the evaluation

is started and an observer is applied to the selected expression or function. An application

of an observer to an expression eo is represented as Obs(eo) and to a function f(xn) as

obs f(xn). Note that such a conversion is not performed in the observation system. It is

only used to formalize the derivation rules for the generation of events.

After the labeling process, the program is ready for execution in the observation system

to generate events. Before we discuss how events are extracted from a program, let us

look at some simple examples. Suppose that we would like to observe every application

of a function (f) with the following definition in a Curry program:

f x y = x + y

For this purpose, the related function definition must be selected to be observed. The

debugging system annotates this function definition by an observer function (see Sec-

tion 4.2) in the program. In the observation semantics, we only give the label “o” to the

name of the function definition. This means that the above program must be transformed

as follows:

f o(x, y) = +(x, y)

+(x, y) = let a = prim + (x, y), b = hnf(y, a) in hnf(x, b)

Note that the operator + is considered to be a predefined function using the hnf func-

tion (i.e., x + y = hnf(x, hnf(y, prim + (x, y)))) before the transformation process is

performed.

Now, assume that we would like to observe the arguments and result of only one

application of this function in a special part of a Curry program, such as:

main = f 1 2

For this purpose, we select the function call f . This selected function call is labeled and
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P o ::= Do
m (labeled program)

Do ::= f o(xn) = eo (labeled function definition)
| f(xn) = eo (function definition)

eo ::= O(eo) (labeled expression)
| x (variable)
| C(xn) (constructor call)
| f(xn) (function call)
| f o(xn) (labeled function call)
| case eo of {pn → eo

n} (rigid case)
| fcase eo of {pn → eo

n} (flexible case)
| eo

1 or eo
2 (disjunction)

| let xn = eo
n in eo (let binding)

| prim g(x1, x2) (primitive functions)
| hnf(x1, x2) (head normal form evaluator)
| Obs(eo) (expression observer)
| obs f(xn) (function observer)

p ::= C(xn)

P o ∈ Progo

eo, eo
i ∈ Expo

x, xi ∈ V ar where i ∈ {1, . . . , n}

Figure 6.3: Labeled flat program

the program is transformed as:

main = let a = 1, b = 2 in f o(a, b)

We can also observe only the result of the Curry application f 1 2 as a selected

expression:

main = let a = 1, b = 2, c = O(f(a, b)) in c

Note that, with respect to the third step of the labeling process, the selected expression

O(f(a, b)) is represented by a binding to the fresh variable c.

6.2.2 Extracting Events

We assume that a program has already been transformed and can be used for representing

the dynamic semantics of our work. Executing labeled expressions or functions causes

events to be generated (see Section 5.2). Events are pieces of information about evaluation
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steps of labeled expressions. In order to collect events, we use a list of tree structures

named evaluation trees:

T, T ′, T ′′ ∈ EvalTree∗

Evaluation trees are constructed by different events:

EvalTree ::= Demand(ref, [EvalTree])

| V alue(ref, String, [EvalTree])

| Fun(ref, [EvalTree])

| LogV ar(ref, [EvalTree])

| Open(ref)

The references (ref) are unique identifiers to distinguish the events (e.g., in the im-

plementation, we use integers as references and in our observation semantics, we use

variables). They help us to define a relationship between different nodes (events) of the

tree (as defined in the third step of the labeling process). The string in the value event

is the name of the constructor of a value that is represented to the user as a textual

visualization. The open node is always ready to receive a new event to extend the tree.

When an evaluation fails, the evaluation trees contain intermediate information about

evaluations until a failure appears.

Let us discuss the operational semantics of our work with respect to the defined events.

To represent the operational semantics of observations, we need four components:

• a labeled program P o (∈ Progo) that contains labeled functions and expressions.

• a list of evaluation trees (∈ EvalTree∗) to collect generated events.

• a heap (∈ Heap) to illustrate the lazy semantics and sharing that can also contain

bindings for labeled expressions.

• a labeled expression or a non-labeled one (∈ Expo) that is being evaluated.

A labeled program represented as P o is considered as a global parameter in our se-

mantics. A heap is a binding from variables to expressions. Expressions can be labeled

or unlabeled. A value in our semantics is a constructor-rooted or a logical variable:

P o ∈ Progo

Γ, ∆, Θ ∈ Heap = V ar 7→ Expo

eo ∈ Expo

x, y ∈ V ar

v ∈ V alue ::= x | C(xn)



Operational Semantics 98

In this semantics, an empty list of evaluation trees is represented by []. To insert an

event into the related evaluation tree, we need the reference of this event. A reference

shows to which open sub-tree a generated event belongs. A replacement of an open node

by an event (event) with the reference ref in the list of evaluation trees trees is repre-

sented by oreplevent(trees):

oreplevent([]) = []

oreplevent(Open(ref) : ts) =

if getRef(event) = ref then (event : ts) else (Open(ref) : oreplevent(ts))

oreplevent(Demand(ref, tn) : ts) = (Demand(ref, oreplevent(tn)) : oreplevent(ts))

oreplevent(V alue(ref, str, tn) : ts) = (V alue(ref, str, oreplevent(tn)) : oreplevent(ts))

oreplevent(Fun(ref, tn) : ts) = (Fun(ref, oreplevent(tn)) : oreplevent(ts))

oreplevent(LogV ar(ref, tn) : ts) = (LogV ar(ref, oreplevent(tn)) : oreplevent(ts))

getRef(Demand(ref, ts)) = ref

getRef(V alue(ref, str, ts)) = ref

getRef(Fun(ref, ts)) = ref

getRef(LogV ar(ref, ts)) = ref

getRef(Open(ref)) = ref

There are two different cases to insert a new generated event into the list of evaluation

trees. If there is no open sub-tree that is related to the reference of the generated event,

the latter is considered to be the root of a new evaluation tree. In this case, the new

tree must be added to the list of evaluation trees. However, if the evaluation shares parts

of other computations then, there is an event with an equal reference as the reference of

the event generated. In this case, the event generated replaces the sub-tree with equal

reference. This new generated tree is also inserted to the list of evaluation trees:

rreplevent([]) = []

rreplevent(Open(ref ′) : ts) =

if ref = ref ′ then (event : ts) else (Open(ref ′) : rreplevent(ts))

rreplevent(Demand(ref ′, tn) : ts) =

if ref = ref ′ then (event : ts)

else (Demand(ref ′, rreplevent(tn)) : rreplevent(ts))

rreplevent(V alue(ref ′, str, tn) : ts) =

if ref = ref ′ then (event : ts)

else (V alue(ref ′, str, rreplevent(tn)) : rreplevent(ts))
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rreplevent(Fun(ref ′, tn) : ts) =

if ref = ref ′ then (event : ts)

else (Fun(ref ′, rreplevent(tn)) : rreplevent(ts))

rreplevent(LogV ar(ref ′, tn) : ts) =

if ref = ref ′ then (event : ts)

else (LogV ar(ref ′, rreplevent(tn)) : rreplevent(ts))

where in all rules ref = getRef(event)

This transformation of trees is abstracted in our derivation rules, as follows:

substeventtrees = if oexistsref (trees)

then oreplevent(trees)

else if rexistsref (trees)

then (rreplevent(trees) : trees)

else (event : trees)

where ref = getRef(event)

rexistsref ([]) = False

rexistsref (Open(ref ′) : ts) =

if ref = ref ′ then True

else rexistsref (ts)

rexistsref (Demand(ref ′, tn) : ts) =

if ref = ref ′ then True

else or(rexistsref (tn), rexistsref (ts))

rexistsref (V alue(ref ′, str, tn) : ts) =

if ref = ref ′ then True

else or(rexistsref (tn), rexistsref (ts))

rexistsref (Fun(ref ′, tn) : ts) =

if ref = ref ′ then True

else or(rexistsref (tn), rexistsref (ts))

rexistsref (LogV ar(ref ′, tn) : ts) =

if ref = ref ′ then True

else or(rexistsref (tn), rexistsref (ts))
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oexistsref ([]) = False

oexistsref (Open(ref ′) : ts) =

if ref = ref ′ then True else False

oexistsref (Demand(ref ′, tn) : ts) =

or(oexistsref (tn), oexistsref (ts))

oexistsref (V alue(ref ′, str, tn) : ts) =

or(oexistsref (tn), oexistsref (ts))

oexistsref (Fun(ref ′, tn) : ts) =

or(oexistsref (tn), oexistsref (ts))

oexistsref (LogV ar(ref ′, tn) : ts) =

or(oexistsref (tn), oexistsref (ts))

Note that no application of oexists and rexists is used in the implemented debug-

ging system. To implement the debugger, we used indices instead of references. In our

implementation, the first generated event, by the application of an observer function, has

a special index (-1). This index shows that its related event must be the root of a new

evaluation tree (see Chapter 5). In the operational semantics, we use oexists and rexists

to control whether the generated event is the first generated event of an observer function

or has a parent.

Labeled expressions are arbitrary expressions selected by the user. Thus, for every rule

defined in Table 6.1, we need two different rules that specify whether or not an expression

is selected. If an expression or a function is not selected to be observed (non-labeled

expressions or functions), the definition of the rule is like the rules of Table 6.1. In this

case, the evaluation trees are updated when a labeled sub-expression is evaluated. In the

observation semantics, a proof of a judgment in a rule such as T, Γ : eo ⇓o T ′, Ω : v means

that the expression eo is evaluated to the value v where the list of evaluation trees T is

updated to T ′. For instance, if only one sub-expression of a case expression is selected:

case O(eo) of {pk → eo
k}

then the rule Case from Table 6.1 is represented as:

T, Γ : O(eo) ⇓o T ′, ∆ : C(yn) T ′, ∆ : ρ(eo
i ) ⇓o T ′′, Θ : v

T, Γ : case O(eo) of {pk → eo
k} ⇓o T ′′, Θ : v

where pi = C(xn) and ρ = {xn 7→ yn}. The same definition holds for other possible

labeled sub-expressions of case, let and or expressions (see Table 6.2).

We also need extra rules to generate demand events. They are used when labeled

(sub-)expressions or functions are evaluated. As we have discussed in Chapter 5, begin-
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Table 6.2: Derivation Rules to Observe Sub-Expressions

OOr :
T, Γ : eo

i ⇓o T ′, ∆ : v

T, Γ : eo
1 or eo

2 ⇓o T ′, ∆ : v

where i ∈ {1, 2}

OLet :
T, Γ[yn 7→ ρ(eo

k)] : ρ(eo) ⇓o T ′, ∆ : v

T, Γ : let{xn = eo
k} in eo ⇓o T ′, ∆ : v

where ρ = {xn 7→ yn} and yn are fresh

OCase :
T, Γ : eo ⇓o T ′, ∆ : C(yn) T ′, ∆ : ρ(eo

i ) ⇓o T ′′, Θ : v

T, Γ : (f)case eo of {pk → eo
k} ⇓o T ′′, Θ : v

where pi = C(xn) and ρ = {xn 7→ yn}

ning observations first generates demand events and then activates observers to generate

events that are related to the type of annotated expressions. In the following, we first

discuss demand generators (Table 6.3) and then we briefly explain the derivation rules of

the observation semantics for expressions or functions that are selected for observation

(Table 6.4).

Look at Figure 6.3. The syntax of eo represents different observations: (1) Observation

of selected expressions (O(eo)), (2) Observation of selected function calls (f o(xn)) and (3)

Observation of selected function definitions (f o(xn) = eo). These three observations need

three different rules to generate demands (see Table 6.3):

OFunDem: This rule is used when a labeled function call is evaluated. In this case,

the rule generates a demand event that is inserted into the list of evaluation trees. The

demand event contains an open sub-tree that is extended by a possible continuation of

the evaluations. OFunDem also applies an observer to the function f by converting the

name of the function to obs f . This helps us to formalize the derivation rule of function

calls to observe evaluated arguments and results of the function.

ODefDem: This rule is used when a function call is evaluated and there is a labeled

function definition in the program. The rule generates a demand event and applies an

observer to the function. With this method, we guarantee that every application of this
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Table 6.3: Demand Generators

OFunDem :

substDemand(f,[Open(f)])T, Γ : obs f(xn) ⇓o T ′, ∆ : v

T, Γ : f o(xn) ⇓o T ′, ∆ : v

where f(yn) = eo ∈ P o

ODefDem :

substDemand(f,[Open(f)])T, Γ : obs f(xn) ⇓o T ′, ∆ : v

T, Γ : f(xn) ⇓o T ′, ∆ : v

where f o(yn) = eo ∈ P o

OV arDem :

substDemand(x,[Open(x)])T, Γ[x 7→ Obs(eo)] : x ⇓o T ′, ∆ : v

T, Γ[x 7→ O(eo)] : x ⇓o T ′, ∆ : v

function is observed although only the function definition is selected by the user.

Note that, if a function call and also its related function definition are selected in order

to be observed, the generation of events will be performed once and represented twice to

the user.

OV arDem: With respect to the third step of the labeling process (Section 6.2.1),

all labeled expressions represented as O(eo) are bound to fresh variables by let bindings.

OV arDem is used when such variables (x) are evaluated. The rule generates a demand

event and updates the heap by applying the related observer to the expression. In our

semantics, this application is defined by labeling expressions with Obs : Obs(eo). Using

expression observers, we formalize the derivation rules for the generation of events.

Now we assume that the execution of a labeled expression has begun and a demand

event has already been generated. In the following, we explain how the next events are

generated (see Table 6.4) during evaluating the expression:

OV arCons: This rule is used in order to evaluate a variable (x) that has already begun

to be observed and is bound to an observed constructor term (x 7→ Obs(C(xn))) in the

heap. The rule updates the heap by a new binding of the variable to the term (x 7→ C(xn))



Operational Semantics 103

Table 6.4: Derivation Rules for Observe Annotations

OV arCons :

T, Γ[yn 7→ eo
n, x 7→ Obs(C(yn))] : x ⇓o substeventT, Γ[yn 7→ O(eo

n), x 7→ C(yn)] : C(yn)

where event := V alue(x, ”C”, [Open(yn)])

OV arExp :

T, Γ[x 7→ eo] : eo ⇓o T ′, ∆[yn 7→ eo
n] : C(yn)

T, Γ[x 7→ Obs(eo)] : x ⇓o subst
V alue(x,”C”,[Open(yn)])

T ′, ∆[x 7→ C(yn), yn 7→ O(eo
n)] : C(yn)

T, Γ[x 7→ eo] : eo ⇓o T ′, ∆[y 7→ y] : y

T, Γ[x 7→ Obs(eo)] : x ⇓o substLogV ar(x,[Open(y)])T
′, ∆[x 7→ y, y 7→ O(y)] : y

OV al :
T, Γ[x 7→ Obs(x)] : x ⇓o substLogV ar(x,[Open(x)])T, Γ[x 7→ O(x)] : x

T, Γ : C(xn) ⇓o T, Γ : C(xn)

OFunCall :

subst
Fun(f,[Open(arg),Open(result)])

T, Γ : observeArgs ⇓o T ′, ∆ : v

T, Γ : obs f(xn) ⇓o T ′, ∆ : v

where argn and result are fresh variables

observeArgs = let argn = O(xn), result = O(ρ(eo)) in result

ρ = {yn 7→ argn}

f(yn) = eo ∈ P o

OFCase

T, Γ : eo ⇓o T ′, ∆[x 7→ O(x)] : x substeventT
′, ∆[x 7→ ρ(pi), yn 7→ yn] : ρ(eo

i ) ⇓o T ′′, Θ : v

T, Γ : fcase eo of{pk → eo
k} ⇓o T ′′, Θ : v

where pi = C(xn)

ρ = {xn 7→ yn}

event := (V alue(x, ”C”, [Open(yn)]))

yn are fresh
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and replaces the related open node of the evaluation tree by a value event. This value

event has a list of open sub-trees that belong to the constructor arguments. Constructor

arguments are labeled (yn 7→ O(eo
n)) and will be observed in a possible evaluation of them.

OV arExp: It is used to observe a variable (x) that has already begun to be observed

and is bound to an observed expression (x 7→ Obs(eo)) in the heap. The variable (x) is

evaluated to a value only if the expression eo is evaluated to this value. The returned

value by evaluating eo is a constructor-rooted term or a logical variable. As a result, there

are two different rules for observations:

• Constructor: If eo is evaluated to a constructor term C(yn), then the binding x 7→

C(yn) replaces the original binding in the heap. This replacement is made because

of the semantics of sharing. This means that another (possible) execution of x can

share the result recorded in the heap. In this step, the proof is completed and the

observed variable is evaluated to a constructor term that updates its evaluation tree

with a value event and a list of open sub-trees for constructor arguments. Note

that the variable arguments of the constructor are labeled (yn 7→ O(eo
n)). By this

method, we guarantee that evaluated variable arguments are observed.

• Logical variable: If the expression eo is evaluated to a logical variable (y), the evalu-

ation tree is updated by a LogV ar event with an open sub-tree. The open sub-tree

belongs to the logical variable by which a possible binding will be observed. This

means that the original binding of the logical variable (y 7→ y) is replaced by a

labeled logical variable (y 7→ O(y)).

OV al: This rule is used, if the observation of a logical variable (x) has already begun

and there is a binding for this variable in the heap. OV al simply replaces this logical

variable on itself and updates the tree by a LogVar event. The heap is also updated

by labeling the logical variable (x 7→ O(x)). By this method, we guarantee that every

binding of this variable is observed.

Note that constructor-rooted terms do not appear as a V ar in the heap (Heap =

V ar 7→ Expo). For a derivation of these terms, we use the related rule defined in Table 6.1.

The evaluation trees are only transfered from one step to another one.

OFunCall: Every time an observed function call (obs f(xn)) is evaluated, this rule is

used. The rule inserts a Fun event into the list of evaluation trees. The open sub-trees of

the Fun event belong to the arguments and the result of the related function. These sub-

trees can be extended whenever the arguments or results are evaluated. The evaluated

function is also reduced to a let expression. The let expression binds the fresh variables
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argn and result to the labeled arguments and result. By this method, we guarantee that

evaluated arguments are observed by the user.

OFCase: If the main argument (eo) of a case expression is evaluated to a labeled

logical variable, this rule is used. In comparison to FCase, we need a value event to

represent the related value (pi) of the observed logical variable to the user.

OOr, OLet and OCase: If or-, let- or case expressions are selected in order to be ob-

served, OV arExp is used. We can also select sub-expressions of such expressions in order

to be observed. In this case, events generated are depend on the labeled sub-expressions

(see Table 6.2).

The definitions and rules should become clear in the following simple program that is

written in Curry:

f x = x

main = f 1

In the Curry program above, we would like to observe the result of the application f 1 in

the right-hand side of main. For this purpose, (1) the program must be normalized, (2)

the selected expression must be labeled and (3) the labeled expression must be bound to

a fresh variable:

f(x) = x

main = let y = 1,

z = O(f(y)) in

z

To follow the evaluation order, we need an empty list to represent the evaluation trees,

an empty heap and an expression to execute:

[], [] : main

We briefly explain each step of the evaluation that is represented in Figure 6.41.

Execution of the expression main requires V arExp. This rule reduces main to its

right-hand side:

[], [] : let y = 1, z = O(f(y)) in z

Now a let expression is being evaluated. In this step, Let is used:

[], [y 7→ 1, z 7→ O(f(y))] : z

Note that the variable z is bound to a labeled expression (z 7→ O(f(y))) in the heap. In

this step, OV arDem generates a demand event. Because this demand event is the only

event generated, it is considered to be the root of an evaluation tree (substevent[] = [event]).

1For illustration purposes in all examples of this section, we represent a demand node by D, a value
by V , a function by F and an open node by P
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[], [] : let y = 1, z = O(f(y)) in z
























[], [y 7→ 1, z 7→ O(f(y))] : z
















[D(z, [P (z)])], [y 7→ 1, z 7→ Obs(f(y))] : z








[D(z, [P (z)])], [y 7→ 1, z 7→ f(y)] : f(y)
[

[D(z, [P (z)])], [y 7→ 1, z 7→ f(y)] : y
[D(z, [P (z)])], [y 7→ 1, z 7→ f(y)] : 1

[D(z, [P (z)])], [y 7→ 1, z 7→ f(y)] : 1
[D(z, [V (z, ”1”, [])])], [y 7→ 1, z 7→ 1] : 1

[D(z, [V (z, ”1”, [])])], [y 7→ 1, z 7→ 1] : 1
[D(z, [V (z, ”1”, [])])], [y 7→ 1, z 7→ 1] : 1

[D(z, [V (z, ”1”, [])])], [y 7→ 1, z 7→ 1] : 1

Figure 6.4: Derivation tree of the application f(1)

The generated demand has an open sub-tree with the reference z in which a possible

continuation of evaluations of z is substituted. The rule also applies an observer to the

expression and updates the heap:

[D(z, [P (z)])], [y 7→ 1, z 7→ Obs(f(y))] : z

Now OV arExp is used:

[D(z, [P (z)])], [y 7→ 1, z 7→ f(y)] : f(y)

The derivation by this rule can be completed when the expression f(y) is evaluated (using

Fun):

[D(z, [P (z)])], [y 7→ 1, z 7→ f(y)] : y

A variable is being evaluated. This variable is bound to a constructor-rooted term in the

heap (y 7→ 1). This requires a derivation by V arCons:

[D(z, [P (z)])], [y 7→ 1, z 7→ f(y)] : 1

In this step, V arCons is completed which causes Fun to be completed:

[D(z, [P (z)])], [y 7→ 1, z 7→ f(y)] : 1

and after that OV arExp:

[D(z, [V (z, ”1”, [])])], [y 7→ 1, z 7→ 1] : 1

Look at the evaluation tree. When the evaluation of z has been completed, the open

sub-tree of the related reference z is replaced by a value event. The generated value (1)

has no arguments (arity=0). Therefore, we have inserted an empty list as the sub-tree of

the generated event. The heap is also updated by binding z to 1.

Finally, Let, and after that V arExp, are completed, both by:

[D(z, [V (z, ”1”, [])])], [y 7→ 1, z 7→ 1] : 1
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The generated evaluation tree shows that only the result of the selected expression is

observed. Let us compare the derivation tree of the observation semantics to the natural

semantics of functional logic languages represented in Section 6.1.1. The difference ap-

pears when the evaluation of labeled expressions begins. The observation system requires

subproofs to generate events (by the rules OV arDem and OV arExp in the above exam-

ple), whereas the natural semantics does not. Furthermore, in the observation semantics,

a heap contains extra bindings for the results of labeled expressions (z 7→ 1 in the above

example).

Let us consider another simple program written in Curry:

f x = x

main = f 1 + f 2

In this example, the identity function f is applied twice in the expression (f 1+ f 2). We

would like to observe the function definition of f . As we have discussed in Section 4.2,

top-level function definitions can be annotated by observer functions, so that every ap-

plication of these functions is observed.

To represent the observation semantics, the program must be transformed and the

function definition must be labeled as follows:

f o(x) = x

main = let a = f(c),

b = f(d),

c = 1,

d = 2 in

+(a, b)

+(a, b) = let y = prim + (a, b),

x = hnf(b, y) in

hnf(a, x)

To start the evaluation, we need the observed program P o that contains the transformed

function definitions. We also need an empty list to represent evaluation trees, an empty

heap and an expression for being evaluated:

[], [] : main

In the next step, V arExp is used and main is evaluated to a let expression:

[], [] : let a = f(c), b = f(d), c = 1, d = 2 in + (a, b)



Operational Semantics 108

The evaluation is continued using the derivation rules:



















































[], [] : main −− using VarExp








































[], [] : let a = f(c), b = f(d), c = 1, d = 2 in + (a, b) −− using Let






























[], [M ] : +(a, b) −− using Fun




















[], [M ] : let y = prim + (a, b), x = hnf(b, y) in hnf(a, x) −− using Let










[], [M, y 7→ prim + (a, b), x 7→ hnf(b, y)] : hnf(a, x) −− using HNF

...

}

the derivation of “hnf(a, x)”

X

X

X

X

X

where M := a 7→ f(c), b 7→ f(d), c 7→ 1, d 7→ 2

The evaluation of main can be reduced to X, when the evaluation of hnf(a, x) yields

X. To evaluate the hnf function (by rule HNF ), a and x must first be evaluated. The

derivation of a is presented in Figure 6.5.

The variable x reduces to an hnf function (see Figure 6.6). The evaluation method of

the first argument (b) of this hnf is the same as the evaluation of a. The second argument

y needs a computation of the primitive function prim +.

After evaluating a and x, the application hnf(a, x) is evaluated to 3:







































[], [S] : hnf(a, x) −− using HNF










[], [S] : a
...

}

the derivation of “a”

[H], [N, arg 7→ 1, res 7→ 1] : 1










[H], [N, arg 7→ 1, res 7→ 1] : x
...

}

the derivation of “x”

[H,H ′], [K ′′, arg 7→ 1, res 7→ 1, arg2 7→ 2, res2 7→ 2] : 3

[H,H ′], [K ′′, arg 7→ 1, res 7→ 1, arg2 7→ 2, res2 7→ 2] : 3

Now the result of the entire evaluation can be obtained:
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[], [S] : a −− using VarExp




















































































































[], [S] : f(c) −− using ODefDem








































































































[D(f, [P (f)])], [S] : obs f(c) −− using OFunCall




























































































[D(f, [F (f, [P (arg), P (res)])])],
[S] : let arg = O(c), res = O(arg) in res











































































[D(f, [F (f, [P (arg), P (res)])])],
[S, arg 7→ O(c), res 7→ O(arg)] : res



























































[D(f, [F (f, [P (arg), D(res, [P (res)])])])],
[S, arg 7→ O(c), res 7→ Obs(arg)] : res











































[D(f, [F (f, [P (arg), D(res, [P (res)])])])],
[S, arg 7→ O(c), res 7→ arg] : arg

























[D(f, [F (f, [D(arg, [P (arg)]), D(res, [P (res)])])])],
[S, arg 7→ Obs(c), res 7→ arg] : arg









[D(f, [F (f, [D(arg, [P (arg)]), D(res, [P (res)])])])],
[S, arg 7→ c, res 7→ arg] : c

[D(f, [F (f, [D(arg, [P (arg)]), D(res, [P (res)])])])],
[S, arg 7→ c, res 7→ arg] : 1

[D(f, [F (f, [D(arg, [V (arg, ”1”, [])]), D(res, [P (res)])])])],
[S, arg 7→ 1, res 7→ arg] : 1

[D(f, [F (f, [D(arg, [V (arg, ”1”, [])]), D(res, [P (res)])])])],
[S, arg 7→ 1, res 7→ arg] : 1

[D(f, [F (f, [D(arg, [V (arg, ”1”, [])]), D(res, [V (res, ”1”, [])])])])],
[S, arg 7→ 1, res 7→ 1] : 1

[D(f, [F (f, [D(arg, [V (arg, ”1”, [])]), D(res, [V (res, ”1”, [])])])])],
[S, arg 7→ 1, res 7→ 1] : 1

[D(f, [F (f, [D(arg, [V (arg, ”1”, [])]), D(res, [V (res, ”1”, [])])])])],
[S, arg 7→ 1, res 7→ 1] : 1

[D(f, [F (f, [D(arg, [V (arg, ”1”, [])]), D(res, [V (res, ”1”, [])])])])],
[S, arg 7→ 1, res 7→ 1] : 1

[D(f, [F (f, [D(arg, [V (arg, ”1”, [])]), D(res, [V (res, ”1”, [])])])])],
[S, arg 7→ 1, res 7→ 1] : 1

[D(f, [F (f, [D(arg, [V (arg, ”1”, [])]), D(res, [V (res, ”1”, [])])])])],
[N, arg 7→ 1, res 7→ 1] : 1

where S := a 7→ f(c), b 7→ f(d), c 7→ 1, d 7→ 2, y 7→ prim + (a, b), x 7→ hnf(b, y)
N := a 7→ 1, b 7→ f(d), c 7→ 1, d 7→ 2, y 7→ prim + (a, b), x 7→ hnf(b, y)

Figure 6.5: The derivation tree of a
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[H], [N, arg 7→ 1, res 7→ 1] : x −− using VarExp
































[H], [N, arg 7→ 1, res 7→ 1] : hnf(b, y) −− using HNF








[H], [N, arg 7→ 1, res 7→ 1] : b −− using VarExp
...

}

the derivation of “b”

[H, H ′], [K, arg 7→ 1, res 7→ 1, arg2 7→ 2, res2 7→ 2] : 2








[H, H ′], [K, arg 7→ 1, res 7→ 1, arg2 7→ 2, res2 7→ 2] : y
[

[H, H ′], [K, arg 7→ 1, res 7→ 1, arg2 7→ 2, res2 7→ 2] : prim + (a, b)
[H, H ′], [K, arg 7→ 1, res 7→ 1, arg2 7→ 2, res2 7→ 2] : 3

[H, H ′], [K ′, arg 7→ 1, res 7→ 1, arg2 7→ 2, res2 7→ 2] : 3
[H, H ′], [K ′, arg 7→ 1, res 7→ 1, arg2 7→ 2, res2 7→ 2] : 3

[H, H ′], [K ′′, arg 7→ 1, res 7→ 1, arg2 7→ 2, res2 7→ 2] : 3

where
H := D(f, [F (f, [D(arg, [V (arg, ”1”, [])]), D(res, [V (res, ”1”, [])])])])

H ′ := D(f, [F (f, [D(arg2, [V (arg2, ”2”, [])]), D(res2, [V (res2, ”2”, [])])])])

K := a 7→ 1, b 7→ 2, c 7→ 1, d 7→ 2, y 7→ prim + (a, b), x 7→ hnf(b, y)

K ′ := a 7→ 1, b 7→ 2, c 7→ 1, d 7→ 2, y 7→ 3, x 7→ hnf(b, y)

K ′′ := a 7→ 1, b 7→ 2, c 7→ 1, d 7→ 2, y 7→ 3, x 7→ 3

Figure 6.6: The derivation tree of x



















































[], [] : main −− using VarExp








































[], [] : let a = f(c), b = f(d), c = 1, d = 2 in + (a, b) −− using Let






























[], [M ] : +(a, b) −− using Fun




















[], [M ] : let y = prim + (a, b), x = hnf(b, y) in hnf(a, x) −− using Let










[], [S] : hnf(a, x)
...

}

the derivation of “hnf(a, x)”

[H,H ′], [K ′′, arg 7→ 1, res 7→ 1, arg2 7→ 2, res2 7→ 2] : 3

[H,H ′], [K ′′, arg 7→ 1, res 7→ 1, arg2 7→ 2, res2 7→ 2] : 3

[H,H ′], [K ′′, arg 7→ 1, res 7→ 1, arg2 7→ 2, res2 7→ 2] : 3

[H,H ′], [K ′′, arg 7→ 1, res 7→ 1, arg2 7→ 2, res2 7→ 2] : 3

[H,H ′], [K ′′, arg 7→ 1, res 7→ 1, arg2 7→ 2, res2 7→ 2] : 3

The result is 3. The recorded evaluation trees show that the function f is applied twice

and with two different inputs and outputs (1,1) and (2,2):
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[ Demand , Demand ]

| |

Fun Fun

/ \ / \

Demand Demand Demand Demand

| | | |

Value Value Value Value

"1" "1" "2" "2"

We have given a label only to the function definition of f , but all applications of this

function are observed. The evaluation trees are represented to the user as: {\1 -> 1},

{\2 -> 2}.

Using higher-order functions in Curry, we can define a local pattern (g) that reduces

to the function f of the latest example:

f x = x

main = let g = f in g 1 + g 2

Note that, if we select the pattern g in order to be observed, both generated trees are

considered to be the sub-trees of the first generated demand event:

[ Demand ]

/ \

Fun Fun

/ \ / \

Demand Demand Demand Demand

| | | |

Value Value Value Value

"1" "1" "2" "2"

However, both applications of the function f are observed: {\1 -> 1; \2 -> 2}. We

discuss the observation of higher-order functions in Section 6.2.3.

Observe annotations do not change the behavior of the lazy semantics in programs.

To illustrate this claim, we consider another example by means of the sharing:

main = let x = 1 + 2 in x ∗ x

In this Curry program, we would like to observe the expression (1+2). We know that,

because of the sharing strategy, the expression 1+2 is evaluated only once, but shared by

both variables (x) in x ∗ x. We use the derivation rules and show this definition.
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The program must first be transformed and the expression x must be labeled:

main = let a = 1,

b = 2,

c = O(x),

x = +(a, b) in

∗(c, c)

+(a, b) = let w = prim + (a, b),

u = hnf(b, w) in hnf(a, u)

∗(a, b) = let z = prim ∗ (a, b),

y = hnf(b, z) in hnf(a, y)

All steps of the entire evaluation are presented in Figure 6.7. In the subproof1 of this

figure, execution of the variable c is started and is evaluated to 3 (c 7→ 3) at the end of

the subproof. In this step, the open sub-tree of the demand event of observed element c

is replaced by a value event.

In the subproof2, the second c of the expression (c ∗ c) is executed. However, because

the heap contains a binding for c, the value to which c is bound is only replaced. The

list of evaluation trees contains only one tree that belongs to the evaluation of the first

occurred c.

Curry supports logical variables. To observe such variables, we consider an example

written in Curry:

main = let x free in f x x

f True True = True

We would like to observe the logical variable x. To represent the observation semantics

of this program, we need to perform the labeling process:

main = let x = O(x) in f(x, x)

f(x, y) = fcase x of {True → fcase y of {True → True}}

Now, we execute the program by calling main:
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[], [] : main




































































































































































[], [] : let a = 1, b = 2, c = O(x), x = +(a, b) in ∗ (c, c)




























































































































































[], [a 7→ 1, b 7→ 2, x 7→ +(a, b), c 7→ O(x)] : ∗(c, c)




















































































































































[], [a 7→ 1, b 7→ 2, x 7→ +(a, b), c 7→ O(x)] : let z = prim ∗ (c, c), y = hnf(c, z) in hnf(c, y)












































































































































[], [B, c 7→ O(x)] : hnf(c, y)




























































































[], [B, c 7→ O(x)] : c




















































































[D(c, [P (c)])], [B, c 7→ Obs(x)] : c












































































[D(c, [P (c)])], [B, c 7→ x] : x




































































[D(c, [P (c)])], [B, c 7→ x] : +(a, b)




























































[D(c, [P (c)])], [B, c 7→ x] : let w = prim + (a, b),
u = hnf(b, w) in hnf(a, u)

















































[D(c, [P (c)])], [A, c 7→ x] : hnf(a, u)
[

[D(c, [P (c)])], [A, c 7→ x] : a

[D(c, [P (c)])], [A, c 7→ x] : 1
































[D(c, [P (c)])], [A, c 7→ x] : u
























[D(c, [P (c)])], [A, c 7→ x] : hnf(b, w)
[

[D(c, [P (c)])], [A, c 7→ x] : b

[D(c, [P (c)])], [A, c 7→ x] : 2








[D(c, [P (c)])], [A, c 7→ x] : w
[

[D(c, [P (c)])], [A, c 7→ x] : prim + (a, b)
[D(c, [P (c)])], [A, c 7→ x] : 3

[D(c, [P (c)])], [A1, c 7→ x] : 3
[D(c, [P (c)])], [A1, c 7→ x] : 3

[D(c, [P (c)])], [A2, c 7→ x] : 3
[D(c, [P (c)])], [A2, c 7→ x] : 3

[D(c, [P (c)])], [A2, c 7→ x] : 3
[D(c, [P (c)])], [A2, c 7→ x] : 3

[D(c, [P (c)])], [A3, c 7→ x] : 3
[D(c, [V (c, ”3”, [])])], [A3, c 7→ 3] : 3

[D(c, [V (c, ”3”, [])])], [A3, c 7→ 3] : 3























































































































































































subproof1

































[D(c, [V (c, ”3”, [])])], [A3, c 7→ 3] : y
























[D(c, [V (c, ”3”, [])])], [A3, c 7→ 3] : hnf(c, z)
[

[D(c, [V (c, ”3”, [])])], [A3, c 7→ 3] : c

[D(c, [V (c, ”3”, [])])], [A3, c 7→ 3] : 3

}

subproof2








[D(c, [V (c, 3”, [])])], [A3, c 7→ 3] : z
[

[D(c, [V (c, ”3”, [])])], [A3, c 7→ 3] : prim ∗ (c, c)
[D(c, [V (c, ”3”, [])])], [A3, c 7→ 3] : 9

[D(c, [V (c, ”3”, [])])], [A4, c 7→ 3] : 9
[D(c, [V (c, ”3”, [])])], [A4, c 7→ 3] : 9

[D(c, [V (c, ”3”, [])])], [a 7→ 1, b 7→ 2, x 7→ 3, z 7→ 9, y 7→ 9, u 7→ 3, w 7→ 3, c 7→ 3] : 9
[D(c, [V (c, ”3”, [])])], [a 7→ 1, b 7→ 2, x 7→ 3, z 7→ 9, y 7→ 9, u 7→ 3, w 7→ 3, c 7→ 3] : 9

[D(c, [V (c, ”3”, [])])], [a 7→ 1, b 7→ 2, x 7→ 3, z 7→ 9, y 7→ 9, u 7→ 3, w 7→ 3, c 7→ 3] : 9
[D(c, [V (c, ”3”, [])])], [a 7→ 1, b 7→ 2, x 7→ 3, z 7→ 9, y 7→ 9, u 7→ 3, w 7→ 3, c 7→ 3] : 9

[D(c, [V (c, ”3”, [])])], [a 7→ 1, b 7→ 2, x 7→ 3, z 7→ 9, y 7→ 9, u 7→ 3, w 7→ 3, c 7→ 3] : 9
[D(c, [V (c, ”3”, [])])], [a 7→ 1, b 7→ 2, x 7→ 3, z 7→ 9, y 7→ 9, u 7→ 3, w 7→ 3, c 7→ 3] : 9

where :
B := a 7→ 1, b 7→ 2, x 7→ +(a, b), z 7→ prim ∗ (c, c), y 7→ hnf(c, z)
A := B, u 7→ hnf(b, w), w 7→ prim + (a, b)

A1 := B, u 7→ hnf(b, w), w 7→ 3
A2 := B, u 7→ 3, w 7→ 3
A3 := a 7→ 1, b 7→ 2, x 7→ 3, z 7→ prim ∗ (c, c), y 7→ hnf(c, z), u 7→ 3, w 7→ 3
A4 := a 7→ 1, b 7→ 2, x 7→ 3, z 7→ 9, y 7→ hnf(c, z), u 7→ 3, w 7→ 3

Figure 6.7: Representing sharing by observations



Operational Semantics 114





















































































[], [] : main −− using VarExp










































































[], [] : let x = O(x) in f(x, x) −− using Let
































































[], [x 7→ O(x)] : f(x, x) −− using Fun






















































[], [x 7→ O(x)] : fcase x of{True → fcase x of{True → True}} − − using OFCase












[], [x 7→ O(x)] : x −− using OVarDem
[

[D(x, [P (x)])], [x 7→ Obs(x)] : x −− using OVal

[D(x, [LogV ar(x, [P (x)])])], [x 7→ O(x)] : x

[D(x, [LogV ar(x, [P (x)])])], [x 7→ O(x)] : x






















[D(x, [LogV ar(x, [V (x, ”True”, [])])])], [x 7→ True] : fcase x of {True → True}
[

[D(x, [LogV ar(x, [V (x, ”True”, [])])])], [x 7→ True] : x

[D(x, [LogV ar(x, [V (x, ”True”, [])])])], [x 7→ True] : True
[

[D(x, [LogV ar(x, [V (x, ”True”, [])])])], [x 7→ True] : True

[D(x, [LogV ar(x, [V (x, ”True”, [])])])], [x 7→ True] : True

[D(x, [LogV ar(x, [V (x, ”True”, [])])])], [x 7→ True] : True

[D(x, [LogV ar(x, [V (x, ”True”, [])])])], [x 7→ True] : True

[D(x, [LogV ar(x, [V (x, ”True”, [])])])], [x 7→ True] : True

[D(x, [LogV ar(x, [V (x, ”True”, [])])])], [x 7→ True] : True

[D(x, [LogV ar(x, [V (x, ”True”, [])])])], [x 7→ True] : True

The rule OV al updates the evaluation tree by a LogVar event. Using OFCase, the first

occurred x is bound to True and the open node of the LogVar event is replaced by a value

event. The value of the evaluated variable is represented to the user as (?/True). In this

step, the heap contains a new binding for x. The logical variable x is used twice in the

program. The second existed x of the program is also bound. However, because the heap

contains a binding (x 7→ True) for x, the value to which x is bound is only replaced.

In the examples discussed, we have seen that each evaluation step of observed expres-

sions is recorded in a list of trees. If a failure occurs during a program execution, recorded

information helps the programmer to recognize whether or not the failure is located in the

observed expression. Let us consider a faulty program that has been written in Curry:

f = h []

h (x : xs) = x

The function h in this program is considered to be similar to the function head in Curry.

The program has no results, if the function h is applied to an empty list. In other words,

calling the function f returns No more solutions in PAKCS [17]. We would like to select

the function definition of h and observe the behavior of each possible application of this
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function in the program. For this purpose, we need a labeled program in flat form:

f = let a = [] in h(a)

ho(xs) = case xs of {(y : ys) → y}

We start the evaluation, by executing f when P o contains the transformed function

definitions:

[], [] : f

The evaluation will be followed using derivation rules. The related derivation tree is

presented in Figure 6.8. Look at this derivation tree. The first subproof of the case rule is

terminated by binding the main argument (arg) of the case expression to an empty list.

In the second subproof, the empty list must be matched with the patterns in the case

expression. In our example, there is only one pattern in the case expression that is not

matched with the empty list.

There is a failure. The PAKCS system yields No more solutions and our observation

system represents the information recorded in the evaluation tree

Demand

|

Fun

/ \

Demand Demand

|

Value

"[]"

to the user in a textual form ({\[] -> !}). It shows that the observed function h takes

an empty list as input and begins to evaluate the right-hand side, but yields no result (!).

6.2.3 Observation in Curried Form

We have represented an observation semantics for our implemented observation system.

This semantics is an extension of [2]. In order to provide a simple operational description,

[2] assumes that programs are translated into a flat form.

In our observation system, a function is evaluated in curried form. This means that

the result of a function can be a function again. For example, a function application like

(f 1 2) for the function definition f x y = x + y is translated to ((f 1) 2). However, the

first-order definition of flat programs does not allow a representation of such a higher-

order functions. For higher-order functions, we need extra transformations in programs.



Operational Semantics 116

[], [] : f −− using VarExp

[], [] : let a = [] in h(a) −− using Let

[], [a 7→ []] : h(a) −− using ODefDem

[D(h, [P (h)])], [a 7→ []] : obs h(a) −− using OFunCall

[D(h, [F (h, [P (arg), P (res)])])],
[a 7→ []] : let arg = O(a), res = O(case arg of L) in res

[D(h, [F (h, [P (arg), P (res)])])],
[a 7→ [], arg 7→ O(a), res 7→ O(case arg of L)] : res

[D(h, [F (h, [P (arg), D(res, [P (res)])])])],
[a 7→ [], arg 7→ O(a), res 7→ Obs(case arg of L)] : res

[D(h, [F (h, [P (arg), D(res, [P (res)])])])],
[a 7→ [], arg 7→ O(a), res 7→ (case arg of L)] : case arg of L











































[D(h, [F (h, [P (arg), D(res, [P (res)])])])],
[a 7→ [], arg 7→ O(a), res 7→ (case arg of L)] : arg

























[D(h, [F (h, [D(arg, [P (arg)]), D(res, [P (res)])])])],
[a 7→ [], arg 7→ Obs(a), res 7→ (case arg of L)] : arg









[D(h, [F (h, [D(arg, [P (arg)]), D(res, [P (res)])])])],
[a 7→ [], arg 7→ a, res 7→ (case arg of L)] : a

[D(h, [F (h, [D(arg, [P (arg)]), D(res, [P (res)])])])],
[a 7→ [], arg 7→ a, res 7→ (case arg of L)] : []

[D(h, [F (h, [D(arg, [V (arg, ”[]”, [])]), D(res, [P (res)])])])],
[a 7→ [], arg 7→ [], res 7→ (case arg of L)] : []

[D(h, [F (h, [D(arg, [V (arg, ”[]”, [])]), D(res, [P (res)])])])],
[a 7→ [], arg 7→ [], res 7→ (case arg of L)] : []

the second subproof of caserule fails

where L := {(y : ys) → y}

Figure 6.8: Observation of a faulty program
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Table 6.5: Derivation Rules for Partial Applications

PrimApply :
Γ[z 7→ prim apply(x, y)] : x ⇓ ∆ : ϕ(xk)

Γ[z 7→ prim apply(x, y)] : z ⇓ ∆[z 7→ ϕ(xk, y)] : ϕ(xk, y)

where ϕ(yn) = e ∈ P with k < n − 1

Γ[z 7→ prim apply(x, y)] : x ⇓ ∆ : ϕ(xk) ∆[z 7→ ϕ(xk, y)] : z ⇓ Θ : v

Γ[z 7→ prim apply(x, y)] : z ⇓ Θ[z 7→ v] : v

where ϕ(yn) = e ∈ P with k = n − 1

Apply :
Γ : let a = prim apply(x, y) in hnf(x, a) ⇓ ∆ : v

Γ : apply(x, y) ⇓ ∆ : v

PartV al : Γ : ϕ(xk) ⇓ Γ : ϕ(xk)

where ϕ(yn) = e ∈ P with k < n

PartV arCons : Γ[x 7→ ϕ(xk)] : x ⇓ Γ[x 7→ ϕ(xk)] : ϕ(xk)

where ϕ(yn) = e ∈ P with k < n

To avoid these transformations, all function applications are represented by a first-order

semantics, as discussed in our observation semantics.

For representing higher-order functions, [2] suggests a translation of functions into

applications of a distinguished function apply. This function can be defined by a set of

first-order rules. For instance, the function application ((f 1) 2) can be translated to:

let x = 1, y = 2, u = f, z = apply(u, x) in apply(z, y)

The function apply is defined using the primitive function prim apply:

apply(x, y) = hnf(x, prim apply(x, y))

In contrast to the definition of primitive functions in the structure of the flat programs

(e.g., x+y = hnf(x, hnf(y, prim +(a, b)))), the second argument of apply does not need

to be evaluated to head normal form. However, it is assumed that the first argument is

in head normal form. Note that partial applications are considered to be a constructor-

rooted term. This means that functions with missing arguments (e.g., (f 1) in the example
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above) are considered as constructor-rooted terms. Using this definition, we extend the

set of values as follows:

v ∈ V alue ::= x | C(xm) | ϕ(xk)

where ϕ(yn) = e ∈ P and k < n

The derivation rules of the primitive function prim apply and the function apply are

presented in Table 6.5, where ϕ is a constructor symbol or a function (ϕ(yn) = e ∈ P ).

The condition k < n shows that the application ϕ(xk) can also be a partial application.

Note that the syntax of expressions in flat programs (see Figure 6.1) is also extended:

e ::= x

| . . .

| prim apply(e1, e2)

| apply(e1, e2)

We briefly explain the rules defined in Table 6.5:

PrimApply: If the variable evaluated (z) is bound to a prim apply function in the

heap and the first argument (x) of prim apply is evaluated to a partial application (ϕ(xk))

with k < n − 1, the first rule defined is used. This rule extends the partial application

by the second argument of prim apply as ϕ(xk, y) and returns it as a result. However,

if the first argument of prim apply is evaluated to a partial application (ϕ(xk)) with

k = n − 1 then the extension of the partial application generates a function call which

can be evaluated using V arExp as defined in Table 6.1. In this case, the second rule of

PrimApply is used.

Apply: If an apply function is being evaluated, first apply is reduced to its right-

hand side then the right-hand side is evaluated. The result of this evaluation (v) can

be a constructor-rooted term, a partial application (ϕ(xk)) which is considered to be a

constructor-rooted term, or a variable (v ∈ V alue).

PartV al: If a partial application is being evaluated, it is returned as a value.

PartV arCons: If a variable evaluated (x) is bound to a partial application in the

heap, this application is returned as a result.

To represent the observation semantics of a partial application, we extend the labeling

process, as discussed in Section 6.2.1:

1. The program is normalized.

2. Function applications are transformed to apply functions.
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3. Selected expressions (e) to be observed are labeled (O(e)).

4. The labeled expressions are bound to fresh variables (let x = O(e) in x).

For example, to observe an application of the function add to its first argument (add 1),

in the following Curry program:

add x y = x + y

main = let inc = add 1 in

(inc 1 + inc 2)

we transform the program as follows:

add(x, y) = +(x, y)

main = let x = 1,

y = 2,

z = add,

inc = O(apply(z, x)),

a = apply(inc, x),

b = apply(inc, y) in + (a, b)

+(x, y) = let a = prim + (x, y), b = hnf(y, a) in hnf(x, b)

apply(x, y) = let a = prim apply(x, y) in hnf(x, a)

Using this transformation, the derivation of the function application (add 1) can be

represented to the user.

Note that, whenever the evaluation of a labeled expression is started, an observer is

applied to it (see Section 6.2.1). Expression observers are represented by the label “Obs”.

In this section, labeled partial applications by observers are considered to be values:

v ∈ V alueo ::= x | C(xm) | ϕ(yk) | Obs(ϕ(yk))

where ϕ(zn) = eo ∈ P o and k < n

Let us briefly discuss the observation rules for partial applications that are presented

in Table 6.6 and 6.7 (for this purpose, we have also updated the function subst):

OApply: If the variable evaluated is bound to a labeled apply function, OApply is

used. This rule generates a demand event and reduces apply to its right-hand side where

prim apply is labeled by an expression observer (Obs(prim apply(x, y))). This transfor-

mation is useful to formalize the generation of events by the other derivation rules. The

result of evaluations can be an observed partial application (Obs(ϕ(xk)), a constructor-

rooted term or a variable (v ∈ V alueo).

OPrimApply: If the observation of an apply function has already begun, its related

prim apply is labeled by an expression observer; in this case, OPrimApply is used. There
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Table 6.6: Observation Rules for Partial Applications

OApply :

T1, Γ[z 7→ apply(x, y)] : let a = Obs(prim apply(x, y)) in hnf(x, a) ⇓o T ′, ∆ : v

T, Γ[z 7→ O(apply(x, y))] : z ⇓o T ′, ∆[z 7→ v] : v

where T1 := substDemand(a,[Open(a)])T

OPrimApply :
T, Γ[z 7→ prim apply(x, y)] : x ⇓o T ′, ∆ : ϕ(xk)

T, Γ[z 7→ Obs(prim apply(x, y))] : z ⇓o T ′, Θ[z 7→ Obs(ϕ(xk, y))] : Obs(ϕ(xk, y))

where ϕ(yn) = e ∈ P o and k < n − 1

T, Γ[z 7→ prim apply(x, y)] : x ⇓o T ′, ∆ : ϕ(xk) T ′, ∆[z 7→ Obs(ϕ(xk, y))] : z ⇓o T ′′, Θ : v

T, Γ[z 7→ Obs(prim apply(x, y))] : z ⇓o T ′′, Θ[z 7→ v] : v

where ϕ(yn) = e ∈ P o and k = n − 1

OApplyResult :

T, Γ[z 7→ apply(x, y)] : let a = prim apply(x, y) in hnf(x, a) ⇓o T ′, ∆ : v

T, Γ[z 7→ apply(x, y)] : z ⇓o T ′, ∆[z 7→ v] : v

OPrimApplyResult :

T, Γ[z 7→ prim apply(x, y)] : x ⇓o T ′, ∆ : Obs(ϕ(xk)) T1, ∆[z 7→ E] : L ⇓o T ′′, Θ : V

T, Γ[z 7→ prim apply(x, y)] : z ⇓o T ′′, Θ[z 7→ V ] : V

where ϕ(yn) = e ∈ P o and k < n − 1

L := let arg = O(y) in z

V := Obs(ϕ(xk, arg))
E := O(ϕ(xk, arg))
T1 := substFun(ϕ,[Open(arg),Open(z)])T

′

T, Γ[z 7→ prim apply(x, y)] : x ⇓o T ′, ∆ : Obs(ϕ(xk)) T1, ∆[z 7→ E] : L ⇓o T ′′, Θ : v

T, Γ[z 7→ prim apply(x, y)] : z ⇓o T ′′, Θ[z 7→ v] : v

where ϕ(yn) = e ∈ P o and k = n − 1

L := let arg = O(y) in z

E := O(ϕ(xk, arg))
T1 := substFun(ϕ,[Open(arg),Open(z)])T

′
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Table 6.7: The remainder Observation Rules for Partial Applications

OPartV arDem :

substDemand(x,[Open(ϕ)])T, Γ[x 7→ Obs(ϕ(xk))] : x ⇓o T ′, ∆ : Obs(ϕ(xk))

T, Γ[x 7→ O(ϕ(xk))] : x ⇓o T ′, ∆[x 7→ Obs(ϕ(xk))] : Obs(ϕ(xk))

where ϕ(yn) = e ∈ P o and k < n

(in the case of k = n, OV arDem is used)

OPartV arCons :

T, Γ[x 7→ Obs(ϕ(xk))] : x ⇓o T, Γ[x 7→ Obs(ϕ(xk))] : Obs(ϕ(xk))

where ϕ(yn) = e ∈ P o and k < n

(in the case of k = n, OV arExp is used)

OPartV al : T, Γ : Obs(ϕ(xk)) ⇓o T, Γ : Obs(ϕ(xk))

where ϕ(yn) = e ∈ P o and k < n

are two rules defined for OPrimApply. If the variable evaluated (z) is bound to an

observed prim apply in the heap and the first argument (x) of prim apply is evaluated

to a partial application (ϕ(xk)) with k < n − 1, the first defined rule is used. This rule

extends the partial application by the second argument of prim apply as Obs(ϕ(xk, y))

and returns it as a result. However, if the first argument of prim apply is evaluated to a

partial application (ϕ(xk)) with k = n − 1, then the extension of the partial application

generates a function call which can be evaluated to a value (using OV arExp as defined

in Table 6.4). In this case, the second rule of OPrimApply is used.

OApplyResult: If the variable evaluated (z) is bound to an apply function in the

heap, this rule is used. The evaluation of an apply function yields an observed partial

application, a constructor-rooted term or a variable (v ∈ V alueo).

OPrimApplyResult: It is used if the variable evaluated is bound to a prim apply

function. OPrimApplyResult first evaluates the first argument of prim apply to an

observed partial application (Obs(ϕ(xn))). Then, this partial application is extended

by the second argument of prim apply. Note that the second argument of prim apply

and also the extended partial application are labeled (O(ϕ(xk, arg))). By this method, we

observe the result of the function application which can be a function again. There are two

cases. If the evaluation of the first argument yields an application with missing arguments
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(k < n− 1), the first rule defined is used. This rule returns the observed extended partial

application as a result. In other case (k = n− 1), the second rule evaluates the extended

application to a value (using OV arDem as defined in Table 6.3). Both rules generate a

Fun event with two open sub-trees for the argument and result of the partial application.

OPartV arDem: If the variable evaluated (x) is bound to a labeled partial application

in the heap (x 7→ O(ϕ(xk))), this rule is used. The rule generates a demand event and

applies an observer to the application. This observed application (Obs(ϕ(xk))) is returned

as a result. If the labeled application (O(ϕ(xk))) in the heap is a function call with k = n

then, the rule OV arDem from Table 6.3 is used.

OPartV arCons: If the evaluation of a labeled partial application has already begun,

this rule is used. In this case, an expression observer is applied to the application in the

heap (x 7→ Obs(ϕ(xk))). OPartV arCons returns this observed application as a result

without any modification on the heap. Note that if the application ϕ(xk) is a function

call with k = n, then the rule OV arExp from Table 6.4 is used.

OPartV al: An observed partial application that is being evaluated, is returned un-

changed.

As an example, we observe the partial application add in the following Curry program:

add x y = x + y

main = let inc = add 1 in

(inc 1 + inc 2)

For this purpose, the program must first be transformed:

add(x, y) = +(x, y)

main = let x = 1,

y = 2,

z = O(add),

inc = apply(z, x),

a = apply(inc, x),

b = apply(inc, y) in + (a, b)

+(x, y) = let a = prim + (x, y), b = hnf(y, a) in hnf(x, b)

apply(x, y) = let a = prim apply(x, y) in hnf(x, a)

To present the operational semantics, we need two empty lists. The first list for the

evaluation trees and the second one for the heap. We need also an expression to execute:

[], [] : main

To evaluate this expression, V arExp as defined in Table 6.1 is used:
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[], [] : main −− using VarExp








































[], [] : let A in + (a, b) −− using Let






























[], [A1] : +(a, b) −− using Fun




















[], [A1] : let c = prim + (a, b), d = hnf(b, c) in hnf(a, d) −− using Let










[], [A2] : hnf(a, d) −− using HNF

...

}

the derivation of “hnf(a, d)”

X

X

X

X

X

where: A := x = 1, y = 2, z = O(add), inc = apply(z, x), a = apply(inc, x), b = apply(inc, y)

A1 := x 7→ 1, y 7→ 2, z 7→ O(add), inc 7→ apply(z, x), a 7→ apply(inc, x), b 7→ apply(inc, y)

A2 := A1, c 7→ prim + (a, b), d 7→ hnf(b, c)

main is evaluated to X if hnf(a, d) is evaluated to this result. The first argument of

hnf is bound to an apply function in the heap (a 7→ apply(inc, x)) which needs a deriva-

tion by OApplyResult. The derivation tree that is related to a is presented in Figure 6.9.

For illustration purposes, the heaps are abstracted as follows:

A3 := x 7→ 1, y 7→ 2, z 7→ Obs(add), inc 7→ apply(z, x), a 7→ apply(inc, x), b 7→ apply(inc, y),

c 7→ prim + (a, b), d 7→ hnf(b, c), k 7→ prim apply(inc, x), t 7→ prim apply(z, x)

A4 := x 7→ 1, y 7→ 2, z 7→ Obs(add), inc 7→ apply(z, x), a 7→ apply(inc, x), b 7→ apply(inc, y),

c 7→ prim + (a, b), d 7→ hnf(b, c), k 7→ prim apply(inc, x), t 7→ O(add(arg)),

A5 := x 7→ 1, y 7→ 2, z 7→ Obs(add), inc 7→ apply(z, x), a 7→ apply(inc, x), b 7→ apply(inc, y),

c 7→ prim + (a, b), d 7→ hnf(b, c), k 7→ prim apply(inc, x), t 7→ Obs(add(arg)), arg 7→ O(x)

A6 := x 7→ 1, y 7→ 2, z 7→ Obs(add), inc 7→ Obs(add(arg)), a 7→ apply(inc, x), b 7→ apply(inc, y),

c 7→ prim + (a, b), d 7→ hnf(b, c), k 7→ prim apply(inc, x), t 7→ Obs(add(arg)), arg 7→ O(x)

A7 := x 7→ 1, y 7→ 2, z 7→ Obs(add), inc 7→ Obs(add(arg)), a 7→ apply(inc, x), b 7→ apply(inc, y),

c 7→ prim + (a, b), d 7→ hnf(b, c), k 7→ O(add(arg, arg2), t 7→ Obs(add(arg)), arg 7→ O(x)

A8 := A7, arg2 7→ O(x)

A9 := x 7→ 1, y 7→ 2, z 7→ Obs(add), inc 7→ Obs(add(arg)), a 7→ apply(inc, x), b 7→ apply(inc, y),

c 7→ prim + (a, b), d 7→ hnf(b, c), k 7→ 2, t 7→ Obs(add(arg)), arg 7→ 1, arg2 7→ 1

A10 := x 7→ 1, y 7→ 2, z 7→ Obs(add), inc 7→ Obs(add(arg)), a 7→ 2, b 7→ apply(inc, y),

c 7→ prim + (a, b), d 7→ hnf(b, c), k 7→ 2, t 7→ Obs(add(arg)), arg 7→ 1, arg2 7→ 1

TREE := D(z, [F (add, [D(arg, [V (arg, ”1”, [])]),

D(t, [F (add, [V (arg2, ”1”, []),D(k, [V (k, ”2”, [])])])])])])

When the evaluation of a is complete, the second argument of hnf(a, d) is evaluated.

d is bound to a hnf function in the heap. The first argument of this function is b that
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[], [A2] : a −− using OApplyResult














































































































































[], [A2] : let k = prim apply(inc, x) in hnf(inc, k) −− using Let






































































































































[], [A2, k 7→ prim apply(inc, x)] : hnf(inc, k) −− using HNF
















































































[], [A2, k 7→ prim apply(inc, x)] : inc −− using OApplyResult






































































[], [A2, k 7→ prim apply(inc, x)] : let t = prim apply(z, x) in hnf(z, t)






























































[], [A2, k 7→ prim apply(inc, x), t 7→ prim apply(z, x)] : hnf(z, t)












[], [A2, k 7→ prim apply(inc, x), t 7→ prim apply(z, x)] : z

−− using OPartVarDem
[

[D(z, [P (add)], [A3] : z −− using OPartVarCons

[D(z, [P (add)], [A3] : Obs(add)
[D(z, [P (add)], [A3] : Obs(add)



































[D(z, [P (add)], [A3] : t −− using OPrimApplyResult
[

[D(z, [P (add)], [A3] : z −− using OPartVarCons

[D(z, [P (add)], [A3] : Obs(add)
















[D(z, [F (add, [P (arg), P (t)])])], [A4] : let arg = O(x) in t








[D(z, [F (add, [P (arg), P (t)])])], [A4, arg 7→ O(x)] : t
[

[D(z, [F (add, [P (arg), D(t, [P (add)])])])], [A5] : t

[D(z, [F (add, [P (arg), D(t, [P (add)])])])], [A5] : Obs(add(arg))
[D(z, [F (add, [P (arg), D(t, [P (add)])])])], [A5] : Obs(add(arg))

[D(z, [F (add, [P (arg), D(t, [P (add)])])])], [A5] : Obs(add(arg))
[D(z, [F (add, [P (arg), D(t, [P (add)])])])], [A5] : Obs(add(arg))

[D(z, [F (add, [P (arg), D(t, [P (add)])])])], [A5] : Obs(add(arg))
[D(z, [F (add, [P (arg), D(t, [P (add)])])])], [A5] : Obs(add(arg))

[D(z, [F (add, [P (arg), D(t, [P (add)])])])], [A6] : Obs(add(arg))




































[D(z, [F (add, [P (arg), D(t, [P (add)])])])], [A6] : k −− using OPrimApplyResult
[

[D(z, [F (add, [P (arg), D(t, [P (add)])])])], [A6] : inc

[D(z, [F (add, [P (arg), D(t, [P (add)])])])], [A6] : Obs(add(arg))




















[D(z, [F (add, [P (arg), D(t, [F (add, [P (arg2), P (k)])])])])], [A7]
: let arg2 = O(x) in k









[D(z, [F (add, [P (arg), D(t, [F (add, [P (arg2), P (k)])])])])], [A8] : k
...

}

the derivation of “k” (using Table 6.3 and 6.4)

[TREE], [A9] : 2
[TREE], [A9] : 2

[TREE], [A9] : 2
[TREE], [A9] : 2

[TREE], [A9] : 2
[TREE], [A10] : 2

Figure 6.9: The derivation tree of “a”
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must first be evaluated:





























































































[TREE], [A10] : b −− using OApplyResult


















































































[TREE], [A10] : let u = prim apply(inc, y) in hnf(inc, u) −− using Let








































































[TREE], [A10, u 7→ prim apply(inc, y)] : hnf(inc, u) −− using HNF
[

[TREE], [A10, u 7→ prim apply(inc, y)] : inc −− using OPartVarCons

[TREE], [A10, u 7→ prim apply(inc, y)] : Obs(add(arg))


















































[TREE], [A10, u 7→ prim apply(inc, y)] : u −− using OPrimApplyResult
[

[TREE], [A10, u 7→ prim apply(inc, y)] : inc −− using OPartVarCons

[TREE], [A10, u 7→ prim apply(inc, y)] : Obs(add(arg))






























[TREE2], [A10, u 7→ O(add(arg, arg3))] : let arg3 = O(y) in u




















[TREE3], [A10, u 7→ O(add(arg, arg3)), arg3 7→ O(y)] : u










[TREE3], [A10, u 7→ Obs(add(arg, arg3)), arg3 7→ O(y)] : u

...

}

the derivation of “u” using OV arExp

[TREE4], [A10, u 7→ 3, arg3 7→ 2] : 3

[TREE4], [A10, u 7→ 3, arg3 7→ 2] : 3

[TREE4], [A10, u 7→ 3, arg3 7→ 2] : 3

[TREE4], [A10, u 7→ 3, arg3 7→ 2] : 3

[TREE4], [A10, u 7→ 3, arg3 7→ 2] : 3

[TREE4], [A10, u 7→ 3, arg3 7→ 2] : 3

[TREE4], [A11] : 3

where:
A11 := x 7→ 1, y 7→ 2, z 7→ Obs(add), inc 7→ Obs(add(arg)), a 7→ 2, c 7→ prim + (a, b),

d 7→ hnf(b, c), arg3 7→ 2, k 7→ 2, t 7→ Obs(add(arg)), arg 7→ 1, arg2 7→ 1, b 7→ 3, u 7→ 3

TREE2 := D(z, [F (add, [D(arg, [V (arg, ”1”, [])]),

D(t, [F (add, [D(arg2, [V (arg2, ”1”, [])]),

D(k, [V (k, ”2”, [])])]),

F (add, [P (arg3), P (u)])])])])

TREE3 := D(z, [F (add, [D(arg, [V (arg, ”1”, [])]),

D(t, [F (add, [D(arg2, [V (arg2, ”1”, [])]),

D(k, [V (k, ”2”, [])])]),

F (add, [P (arg3),D(u, P (u))])])])

TREE4 := D(z, [F (add, [D(arg, [V (arg, ”1”, [])]),

D(t, [F (add, [D(arg2, [V (arg2, ”1”, [])]),

D(k, [V (k, ”2”, [])])]),

F (add, [D(arg3, [V (arg3, ”2”, [])]),

D(u, [V (u, ”3”, [])])])])])])

Look at the derivation tree. When OPrimApplyResult evaluates the variable u, the

first argument (inc) of its related prim apply function shares the result (Obs(add(arg)))
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and also the evaluation tree generated by this argument.

Now the second argument of hnf(b, c) must be evaluated. It is bound to a primitive

function (prim +) in the heap and needs a derivation by PrimFun:













[TREE4], [A11] : c
[

[TREE4], [A11] : prim + (a, b)

[TREE4], [A11] : 5

[TREE4], [..., c 7→ 5, ...] : 5

The derivation tree is complete (see Figure 6.10). The result of the evaluation of main

is 5. The entire evaluation tree that is recorded in the first list generated by the derivation

tree is represented to the user as a textual visualization:

{ \1 1 -> 2 ;

\1 2 -> 3 }

Existing only one bracket means that parts of the function application of add are shared.

The application (add 1) is shared for the both function calls ((add 1) 1) and ((add 1) 2).

6.2.4 Correctness

In this section, we prove the correctness of our observation semantics, where we denote:

T and T ′ are lists of evaluation trees (T, T ′ ∈ EvalTree∗) and

Ω, Γ, ∆ and Θ heaps (Ω, Γ, ∆, Θ ∈ Heap).

Definition 1:

To state the correctness theorem, we denote by ♮(Θ) a removal of all observation labels

from a heap Θ:

♮[x1 7→ e1, . . . , xn 7→ en] = [x1 7→ ∂(e1), . . . , xn 7→ ∂(en)]

In this definition, the function ∂ removes all observation labels from a program expression:
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[], [] : main −− using VarExp


























































































[], [] : let A in + (a, b) −− using Let


















































































[], [A1] : +(a, b) −− using Fun










































































[], [A1] : let c = prim + (a, b), d = hnf(b, c) in hnf(a, d) −− using Let


































































[], [A2] : hnf(a, d) −− using HNF








[], [A2] : a
...

}

the derivation of “a”

[TREE], [A10] : 2








































[TREE], [A10] : d
































[TREE], [A10] : hnf(b, c)








[TREE], [A10] : b
...

}

the derivation of “b”

[TREE4], [A11] : 3








[TREE4], [A11] : c
...

}

the derivation of “c”

[TREE4], [A12] : 5
[TREE4], [A12] : 5

[TREE4], [A13] : 5
[TREE4], [A13] : 5

[TREE4], [A13] : 5
[TREE4], [A13] : 5

[TREE4], [A13] : 5
[TREE4], [A13] : 5

where :

A12 := x 7→ 1, y 7→ 2, z 7→ Obs(add), inc 7→ Obs(add(arg)), a 7→ 2, c 7→ 5, d 7→ hnf(b, c),
arg3 7→ 2, k 7→ 2, t 7→ Obs(add(arg)), arg 7→ 1, arg2 7→ 1, b 7→ 3, u 7→ 3

A13 := x 7→ 1, y 7→ 2, z 7→ Obs(add), inc 7→ Obs(add(arg)), a 7→ 2, c 7→ 5,

d 7→ 5, arg3 7→ 2, k 7→ 2, t 7→ Obs(add(arg)), arg 7→ 1, arg2 7→ 1,

b 7→ 3, u 7→ 3

Figure 6.10: The derivation tree of “add”
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∂(f(xn) = e) = f(xn) = ∂(e)

∂(O(e)) = ∂(e)

∂(Obs(e)) = ∂(e)

∂(x) = x

∂(C(xn)) = C(xn)

∂(f(xn)) = f(xn)

∂(f o(xn)) = f(xn)

∂(obs f(xn)) = f(xn)

∂(case e of {pn → en}) = case ∂(e) of {pn → ∂(en)}

∂(fcase e of {pn → en}) = fcase ∂(e) of {pn → ∂(en)}

∂(e1 or e2) = ∂(e1) or ∂(e2)

∂(let xn = en in e) = let xn = ∂(en) in ∂(e)

∂(apply(x, y)) = apply(x, y)

We extend this definition also for a program (P ):

∂(P ) = ∂(Dn)

∂(Dn) = ∂(D1), ∂(D2), ..., ∂(Dn)

∂(D) = ∂(f(xn) = e)

Definition 2:

To prove the correctness of the rules defined for partial applications, we denote by ¬(v)

a removal of all labels from a value v:

¬(Obs(v)) = v

¬(x) = x

¬(C(xn)) = C(xn)

¬(ϕ(xk)) = ϕ(xk) where k < n and ϕ(yn) = e ∈ P o

Definition 3:

To prove the correctness, we denote by < a relation between two heaps (e.g., Γ < Ω).

[] < Ω (if Ω 6= [])

[x1 7→ e1, ..., xn 7→ en] = [y1 7→ e′1, ..., ym 7→ e′m] (if ∀i,∃j such that xi = yj and ei = e′j

and if ∀j, ∃i such that xi = yj and ei = e′j

where i ∈ {1..n}, j ∈ {1..m} and n = m)

[x1 7→ e1, ..., xn 7→ en] < [y1 7→ e′1, ..., ym 7→ e′m] (if ∀i,∃j such that xi = yj and ei = e′j

where i ∈ {1..n}, j ∈ {1..m} and n < m)

Γ ⊑ Ω (if Γ=Ω or Γ < Ω)
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Theorem:

Let P be a labeled program (P ∈ Progo),

∂(P ) a program with no labeled expressions (∂(P ) ∈ Prog),

e a labeled expression (e ∈ Expo),

∂(e) an expression with no observations (∂(e) ∈ Exp),

v a labeled value (v ∈ V alueo) and

¬(v) a value with no observations (¬(v) ∈ V alue).

∀Γ,∀Ω,∀∆,∀Θ with ♮(Γ) ⊑ ♮(Ω) holds

if ♮(Γ) : ∂(e) ⇓ ♮(∆) : ¬(v)

then T, Ω : e ⇓o T ′, Θ : v with ♮(∆) ⊑ ♮(Θ)

and if T, Ω : e ⇓o T ′, Θ : v

then ♮(Γ) : ∂(e) ⇓ ♮(∆) : ¬(v) with ♮(∆) ⊑ ♮(Θ)

Proof: The proof is by induction on the structure of derivation trees.

• Base Case: Derivation trees (with or without observations) have only one node.

• Inductive Steps: Derivation trees (with or without observations) have more than

one nodes.

Base Cases: We distinguish different base cases, depending on the form of the expression

evaluated where ∀Γ,∀Ω holds ♮(Γ) ⊑ ♮(Ω).

• (Constructor)

The rule V al yields:

♮(Γ)[xn 7→ ∂(en)] : C(xn) ⇓ ♮(Γ)[xn 7→ ∂(en)] : C(xn)

OV al is used in the observation semantics:

T, Ω[xn 7→ en] : C(xn) ⇓o T, Ω[xn 7→ en] : C(xn)

The result of evaluations in both rules are equal (C(xn)).

Removing labels from the heaps yields:

♮(Γ) ∪ [xn 7→ ∂(en)] ⊑ ♮(Ω) ∪ ♮[xn 7→ en]
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= ♮(Ω) ∪ [xn 7→ ∂(en)]

♮(Γ) ∪ [xn 7→ ∂(en)] < ♮(Ω) ∪ [xn 7→ ∂(en)] (if ♮(Γ) < ♮(Ω))

♮(Γ) ∪ [xn 7→ ∂(en)] = ♮(Ω) ∪ [xn 7→ ∂(en)] (if ♮(Γ) = ♮(Ω))

Therefore, OV al holds for constructors.

• (Variable bounded to constructor)

The rule V arCons represents the following derivation tree:

♮(Γ)[x 7→ C(yn), yn 7→ ∂(en)] : x ⇓ ♮(Γ)[x 7→ C(yn), yn 7→ ∂(en)] : C(yn)

OV arCons yields:

T, Ω[x 7→ Obs(C(yn)), yn 7→ en] : x ⇓o T ′, Ω[x 7→ C(yn), yn 7→ O(en)] : C(yn)

The result of evaluations in both rules are equal (C(yn)).

Removing labels from heaps yields:

♮(Γ) ∪ [x 7→ C(yn), yn 7→ ∂(en)] ⊑ ♮(Ω) ∪ ♮[x 7→ C(yn), yn 7→ O(en)]

= ♮(Ω) ∪ [x 7→ ∂(C(yn)), yn 7→ ∂(O(en))]

= ♮(Ω) ∪ [x 7→ C(yn), yn 7→ ∂(en)]

♮(Γ) ∪ [x 7→ C(yn), yn 7→ ∂(en)] < ♮(Ω) ∪ [x 7→ C(yn), yn 7→ ∂(en)] (if ♮(Γ) < ♮(Ω))

♮(Γ) ∪ [x 7→ C(yn), yn 7→ ∂(en)] = ♮(Ω) ∪ [x 7→ C(yn), yn 7→ ∂(en)] (if ♮(Γ) = ♮(Ω))

Therefore, OV arCons holds for constructors.

• (Variable bounded to itself)

The rule V al yields:

♮(Γ)[y 7→ y] : y ⇓ ♮(Γ)[y 7→ y] : y

OV al represents the following derivation tree:

T, Ω[y 7→ Obs(y)] : y ⇓o T ′, Ω[y 7→ O(y)] : y

Both rules return the variable y unchanged.

Removing labels from the heaps yields:

♮(Γ) ∪ [y 7→ y] ⊑ ♮(Ω) ∪ ♮[y 7→ O(y)]
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= ♮(Ω) ∪ [y 7→ ∂(O(y))]

= ♮(Ω) ∪ [y 7→ ∂(y)]

= ♮(Ω) ∪ [y 7→ y]

♮(Γ) ∪ [y 7→ y] < ♮(Ω) ∪ [y 7→ y] (if ♮(Γ) < ♮(Ω))

♮(Γ) ∪ [y 7→ y] = ♮(Ω) ∪ [y 7→ y] (if ♮(Γ) = ♮(Ω))

Therefore, OV al holds for logical variables.

• (Partial application)

The rule PartV al offers:

♮(Γ) : ϕ(xk) ⇓ ♮(Γ) : ϕ(xk) where ϕ(yn) = ∂(e) ∈ P and k < n

OPartV al is used in the observation semantics:

T, Ω : Obs(ϕ(xk)) ⇓o T, Ω : Obs(ϕ(xk)) where ϕ(yn) = e ∈ P o and k < n

The equality of results can be proved by removing labels:

ϕ(xk) = ¬(Obs(ϕ(xk)))

= ϕ(xk)

Therefore OPartV al holds for partial applications.

• (Variable bounded to partial application)

The rule PartV arCons yields:

♮(Γ)[x 7→ ϕ(xk)] : x ⇓ ♮(Γ)[x 7→ ϕ(xk)] : ϕ(xk)

where ϕ(yn) = ∂(e) ∈ P and k < n

OPartV arCons is used in the observation semantics:

T, Ω[x 7→ Obs(ϕ(xk))] : x ⇓ T, Ω[x 7→ Obs(ϕ(xk))] : Obs(ϕ(xk))

where ϕ(yn) = e ∈ P o and k < n

The equality of results can be proved by removing labels:

ϕ(xk) = ¬(Obs(ϕ(xk)))

= ϕ(xk)

Removing labels, from the heaps of the roots, yields:
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♮(Γ) ∪ [x 7→ ϕ(xk)] ⊑ ♮(Ω) ∪ ♮[x 7→ Obs(ϕ(xk))]

= ♮(Ω) ∪ [x 7→ ∂(Obs(ϕ(xk)))]

= ♮(Ω) ∪ [x 7→ ∂(ϕ(xk))]

= ♮(Ω) ∪ [x 7→ ϕ(xk)]

♮(Γ) ∪ [x 7→ ϕ(xk)] < ♮(Ω) ∪ [x 7→ ϕ(xk)] (if ♮(Γ) < ♮(Ω))

♮(Γ) ∪ [x 7→ ϕ(xk)] = ♮(Ω) ∪ [x 7→ ϕ(xk)] (if ♮(Γ) = ♮(Ω))

Therefore OPartV arCons holds.

Inductive Steps: We distinguish different cases, depending on the form of the expres-

sion evaluated where ∀Γ,∀Ω holds ♮(Γ) ⊑ ♮(Ω).

• (Variable bounded to expression)

The evaluation of an expression can yield two different values:

– Constructor: The derivation tree of V arExp is represented as follows:

subproofs1

♮(Γ)[x 7→ ∂(e)] : ∂(e) ⇓ ♮(∆)[x 7→ ∂(e), yn 7→ ∂(en)] : C(yn)

♮(Γ)[x 7→ ∂(e)] : x ⇓ ♮(∆)[x 7→ C(yn), yn 7→ ∂(en)] : C(yn)

In observation semantics, the rule OV arExp is used:

subproofs2

T, Ω[x 7→ e] : e ⇓o T ′, Θ[x 7→ e, yn 7→ en] : C(yn)

T, Ω[x 7→ Obs(e)] : x ⇓o T ′′, Θ[x 7→ C(yn), yn 7→ O(en)] : C(yn)

We assume that our theorem holds for subproofs 1 and 2. Now by induction

over the structure of the derivation tree, we know that our theorem also holds

for the sub-trees

♮(Γ)[x 7→ ∂(e)] : ∂(e) ⇓ ♮(∆)[x 7→ ∂(e), yn 7→ ∂(en)] : C(yn)

and

T, Ω[x 7→ e] : e ⇓o T ′, Θ[x 7→ e, yn 7→ en] : C(yn).

Both rules return the constructor C(yn) as a result. Removing labels from the

heaps of the roots yields:

♮(∆) ∪ [x 7→ C(yn), yn 7→ ∂(en)] ⊑ ♮(Θ) ∪ ♮[x 7→ C(yn), yn 7→ O(en)]
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= ♮(Θ) ∪ [x 7→ ∂(C(yn)), yn 7→ ∂(O(en))]

= ♮(Θ) ∪ [x 7→ C(yn), yn 7→ ∂(en)]

♮(∆) ∪ [x 7→ C(yn), yn 7→ ∂(en)] < ♮(Θ) ∪ [x 7→ C(yn), yn 7→ ∂(en)]

(if ♮(Γ) < ♮(Ω))

♮(∆) ∪ [x 7→ C(yn), yn 7→ ∂(en)] = ♮(Θ) ∪ [x 7→ C(yn), yn 7→ ∂(en)]

(if ♮(Γ) = ♮(Ω))

Therefore, OV arExp holds for expressions.

– Logical variable: The rule V arExp offers:

subproofs1

♮(Γ)[x 7→ ∂(e)] : ∂(e) ⇓ ♮(∆)[x 7→ ∂(e), y 7→ y] : y

♮(Γ)[x 7→ ∂(e)] : x ⇓ ♮(∆)[x 7→ y, y 7→ y] : y

The rule OV arExp represents the following derivation tree:

subproofs2

T, Ω[x 7→ e] : e ⇓o T ′, Θ[x 7→ e, y 7→ y] : y

T, Ω[x 7→ Obs(e)] : x ⇓o T ′′, Θ[x 7→ y, y 7→ O(y)] : y

We assume that our theorem holds for subproofs 1 and 2. Now by induction

over the structure of the derivation tree, we know that our theorem also holds

for the sub-trees

♮(Γ)[x 7→ ∂(e)] : ∂(e) ⇓ ♮(∆)[x 7→ ∂(e), y 7→ y] : y

and

T, Ω[x 7→ e] : e ⇓o T ′, Θ[x 7→ e, y 7→ y] : y.

Both rules return the logical variable y as a result. Removing labels, from the

heaps of the roots, yields:

♮(∆) ∪ [x 7→ y, y 7→ y] ⊑ ♮(Θ) ∪ ♮[x 7→ y, y 7→ O(y)]

= ♮(Θ) ∪ [x 7→ ∂(y), y 7→ ∂(O(y))]

= ♮(Θ) ∪ [x 7→ y, y 7→ ∂(y)]

= ♮(Θ) ∪ [x 7→ y, y 7→ y]

♮(∆) ∪ [x 7→ y, y 7→ y] < ♮(Θ) ∪ [x 7→ y, y 7→ y] (if ♮(∆) < ♮(Θ))

♮(∆) ∪ [x 7→ y, y 7→ y] = ♮(Θ) ∪ [x 7→ y, y 7→ y] (if ♮(∆) = ♮(Θ))

Therefore, OV arExp holds for logical variables.
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• (Function call)

In the rule Fun, each application of a function is reduced to its right-hand side

where its arguments are substituted:

subproofs1

♮(Γ)[xn 7→ ∂(en)] : ρ(∂(e)) ⇓ ♮(∆)[xm 7→ ∂(vm)] : ¬(v)

♮(Γ)[xn 7→ ∂(en)] : f(xn) ⇓ ♮(∆)[xm 7→ ∂(vm)] : ¬(v)

where m ≤ n, ρ = {yn 7→ xn} and f(yn) = ∂(e) ∈ P

Evaluating observed functions by OFunCall offers:

subproofs2

T ′′, Ω[xn 7→ en, argn 7→ O(xn), res 7→ ρ′(e)] : ρ′(e) ⇓o T ′′′, Θ[V ] : v

T ′′, Ω[xn 7→ en, argn 7→ O(xn), res 7→ Obs(ρ′(e))] : res ⇓o T ′′′′, Θ[V ] : v

T ′, Ω[xn 7→ en, argn 7→ O(xn), res 7→ O(ρ′(e))] : res ⇓o T ′′′′, Θ[V ] : v

T ′, Ω[xn 7→ en] : let argn = O(xn), res = O(ρ′(e)) in res ⇓o T ′′′′, Θ[V ] : v

T, Ω[xn 7→ en] : obs f(xn) ⇓o T ′′′′, Θ[V ] : v

where argn and res are fresh,

f(yn) = e ∈ P o,

ρ′ = {yn 7→ argn},

V := (xm 7→ vm, argm 7→ vm, res 7→ v) and

m ≤ n.

The equality of results in sub-trees

♮(Γ)[xn 7→ ∂(en)] : ρ(∂(e)) ⇓ ♮(∆)[xm 7→ ∂(vm)] : ¬(v)

and

T ′′, Ω[xn 7→ en, argn 7→ O(xn), res 7→ ρ′(e)] : ρ′(e) ⇓o T ′′′, Θ[xm 7→ vm, argm 7→ vm,

res 7→ v] : v

can be proved as in correctness of OV arExp. Therefore, OFunCall holds for func-

tion calls.

The reason to label a function call is to observe evaluated arguments and the results

of this function. Observing arguments in the observation semantics is performed by

labeling arguments. This inserts extra bindings into the heap. Removing labels

from the heaps yields:

♮(∆) ∪ [xm 7→ ∂(vm)] ⊑ ♮(Θ) ∪ ♮[xm 7→ vm, argm 7→ vm, res 7→ v]
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= ♮(Θ) ∪ [xm 7→ ∂(vm), argm 7→ ∂(vm), res 7→ ∂(v)]

♮(∆) ∪ [xm 7→ ∂(vm)] < ♮(Θ) ∪ [xm 7→ ∂(vm), argm 7→ ∂(vm), res 7→ ∂(v)]

(if ♮(∆) ⊑ ♮(Θ))

• (let expression)

The rule Let offers the following derivation tree:

subproofs1

♮(Γ)[yk 7→ ρ(∂(ek))] : ρ(∂(e)) ⇓ ♮(∆) : ¬(v)

♮(Γ) : let {xn = ∂(ek)} in ∂(e) ⇓ ♮(∆) : ¬(v)

where ρ = {xn 7→ yn} and yn are fresh

The rule OLet is used in the observation semantics:

subproofs2

T, Ω[yk 7→ ρ(ek)] : ρ(e) ⇓o T ′, Θ : v

T, Ω : let {xn = ek} in e ⇓o T ′, Θ : v

The equality of results can be proved as in correctness of OV arExp.

• (or-expression)

The rule Or offers:
subproofs1

♮(Γ) : ∂(ei) ⇓ ♮(∆) : ¬(v)

♮(Γ) : ∂(e1) or ∂(e2) ⇓ ♮(∆) : ¬(v)

where i ∈ {1, 2}

The rule OOr is used in the observation semantics:

subproofs2

T, Ω : ei ⇓o T ′, Θ : v

T, Ω : e1 or e2 ⇓o T ′, Θ : v

The equality of results in the subproofs 1 and 2 can be proved as in correctness of

OV arExp.

• (fcase-expressions)

The rule FCase offers:

subproof1

♮(Γ) : ∂(e) ⇓ ♮(∆)[x 7→ x] : x

subproof2

♮(∆)[x 7→ ρ(pi), yn 7→ yn] : ρ(∂(ei)) ⇓ ♮(Θ) : ¬(v)

♮(Γ) : fcase ∂(e) of {pk 7→ ∂(ek)} ⇓ ♮(Θ) : ¬(v)
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where ρ = {xn 7→ yn} and pi = C(xn)

The rule OFCase offers:

subproof3

T, Ω : e ⇓o T ′, Ψ[x 7→ O(x)] : x

subproof4

T ′′, Ψ[x 7→ ρ(pi), yn 7→ yn] : ρ(ei) ⇓o T ′′′, Υ : v

T, Ω : fcase e of {pk 7→ ek} ⇓o T ′′′, Υ : v

The equality of results in the subproofs 1 and 3 and also in the subproofs 2 and 4

can be proved as in correctness of OV arExp, meaning that OFCase holds for fcase

expressions.

• (prim apply)

The first rule of PrimApply offers the following derivation tree:

subproofs1

♮(Γ)[z 7→ prim apply(x, y)] : x ⇓ ♮(∆) : ϕ(xk)

♮(Γ)[z 7→ prim apply(x, y)] : z ⇓ ♮(∆)[z 7→ ϕ(xk, y)] : ϕ(xk, y)

where ϕ(yn) = ∂(e) ∈ P with k < n − 1

The first rule of OPrimApply has the following derivation tree:

subproofs2

T, Ω[z 7→ prim apply(x, y)] : x ⇓o T ′, Θ : ϕ(xk)

T, Ω[z 7→ Obs(prim apply(x, y))] : z ⇓o T ′, Θ[z 7→ Obs(ϕ(xk, y))] : Obs(ϕ(xk, y))

where ϕ(yn) = e ∈ P o and k < n − 1

The results of the sub-trees

♮(Γ)[z 7→ prim apply(x, y)] : x ⇓ ♮(∆) : ϕ(xk)

and

T, Ω[z 7→ prim apply(x, y)] : x ⇓o T ′, Θ : ϕ(xk)

are equal (ϕ(xk)). The equality of the extended partial application, in the root of

the derivation trees, can be proved using Definition 2:

ϕ(xk, y) = ¬(Obs(ϕ(xk, y)))

ϕ(xk, y) = ϕ(xk, y)
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The second rule of PrimApply offers

subproof1

♮(Γ)[z 7→ M ] : x ⇓ ♮(∆) : ϕ(xk)

subproof2

♮(∆)[z 7→ ϕ(xk, y)] : z ⇓ ♮(Θ) : ¬(v)

♮(Γ)[z 7→ M ] : z ⇓ ♮(Θ)[z 7→ ¬(v)] : ¬(v)

where M := prim apply(x, y)

ϕ(yn) = ∂(e) ∈ P with k = n − 1

The second rule of OPrimApply has the following derivation tree:

subproof3

T, Ω[z 7→ M ] : x ⇓o T ′, Ψ : ϕ(xk)

subproof4

T ′, Ψ[z 7→ Obs(ϕ(xk, y))] : z ⇓o T ′′, Υ : v

T, Ω[z 7→ Obs(prim apply(x, y))] : z ⇓o T ′′, Υ[z 7→ v] : v

where M := prim apply(x, y)

ϕ(yn) = e ∈ P o and k = n − 1

The subproofs 1 and 3 have equal results. The equality of the results in the subproofs

2 and 4 can be proved as in correctness of OV arExp. As a result, OPrimApply

holds for partial applications.

• (apply)

The rule Apply offers the following derivation tree:

subproof1

♮(Γ) : let a = prim apply(x, y) in hnf(x, a) ⇓ ♮(∆) : ¬(v)

♮(Γ) : apply(x, y) ⇓ ♮(∆) : ¬(v)

OApply has the following derivation tree:

subproof2

T ′, Ω[z 7→ apply(x, y)] : let a = Obs(prim apply(x, y)) in hnf(x, a) ⇓o T ′′, Θ : v

T, Ω[z 7→ O(apply(x, y))] : z ⇓o T ′′, Θ[z 7→ v] : v

The equality of results in the sub-trees

♮(Γ) : let a = prim apply(x, y) in hnf(x, a) ⇓ ♮(∆) : ¬(v)

and

T ′, Ω[z 7→ apply(x, y)] : let a = Obs(prim apply(x, y)) in hnf(x, a) ⇓o T ′′, Θ : v

can be proved as in correctness of OLet, meaning that OApply holds for partial

applications.
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Chapter 7
Program Coverage

“Even after all this time,

The sun never says to the earth, ’You owe Me.’

Look, What happens With a love like that,

It lights the whole sky.”

Hafez

Testers specify whether the behavior of programs are acceptable. Tests can be per-

formed automatically or by programmers. In both cases, it is possible that given inputs

to programs will never generate unexpected outputs, although programs experience fail-

ures. Furthermore, programmers prefer to follow the order of a program execution in some

cases, instead of observing the functions to see the program behavior during an execution.

Knowing which parts of a program have been executed is useful for programmers, because

this restricts the possible locations of a bug to executed parts.

As discussed in Section 3.5.2, we can extract parts of a program that are affected by

executing a special expression using the program slicing (dynamic-forward slicing). We

use this definition and allow the programmer to select arbitrary expressions. During the

execution of a program, expressions are bound to values and reflect the execution of other

parts of the program. For example, calling the function reverse on an empty list causes

the execution of the first rule of this function. We would like to represent this information

as follows:

reverse [] = []

reverse (x:xs) = (x:xs)

However, applying reverse to a non-empty list executes both rules of the function

reverse. The idea is to highlight both rules that are executed:
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reverse [] = []

reverse (x:xs) = (x:xs)

We suggest highlighting executed expressions by two methods:

• Highlighting of function rules in source code.

• Highlighting of (sub-)expressions in a tree representation of programs.

7.1 Tree Representation of Programs

To analyze a program, so that a programmer has access to all expressions of this program,

we suggest a tree-representation method of the source code. For this purpose, we use the

meta-programming library of Curry and represent all defined functions and data structures

in a tree. By means of the Curry GUI library, we also provide convenient access to this

tree in the browser of the tool.

Programmers can define different functions and data types in programs. In this thesis,

we would like to represent a method to locate bugs in Curry programs. Because bugs can

exist in the right-hand side of functions, the user defined functions are represented in

the tree. This means that the first level of the tree belongs to global functions (in the

representation below, the sign ”+” means that the tree in this node is extendable and ”-”

means that the sub-tree for this node is already extended):

- CurryProgram

+ Function1

+ Function2

...

Function definitions have rules and right-hand sides of rules have expressions that should

be represented to the user.

- CurryProgram

- Function1

- Rule1

+ RightHandSide

+ Rule2

...

+ Function2

...
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To better understand this definition, let us consider the following simple program that

offers the reverse representation of a given list:

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

The function reverse is defined by two rules that are represented in the tree as reverse(1)

and reverse(2) to the user:

- CurryProgram

+ reverse(1)

+ reverse(2)

All expressions within each of these rules must be represented in the tree. The only

expression in the right-hand side of the first rule is the empty list. In other words, only

the expression [] is represented to the user:

- CurryProgram

- reverse(1)

- []

+ reverse(2)

The second rule with the right-hand side reverse xs ++ [x] contains three function

calls: (++), reverse and (:). The right-hand side of each function takes two expressions

as parameters. In addition, each function call and all partial applications are represented:

- CurryProgram

- reverse(1)

- []

- reverse(2)

- reverse xs ++ [x]

+ (++) (reverse xs)

+ [x]

The definition above is also used for all sub-expressions that extend the tree with more

sub-trees:

- CurryProgram

- reverse(1)

- []

- reverse(2)
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- reverse xs ++ [x]

- (++) (reverse xs)

(++)

- reverse xs

reverse

xs

- [x]

- (x:)

(:)

x

[]

7.2 Highlighting

To highlight program expressions, we annotate expressions with the identity function

markLine:

markLine :: ModuleName -> Position -> a -> a

type ModuleName = String

type Position = (RC,RC)

type RC = (Row,Col)

type Row = Int

type Col = Int

This function is applied to the position (second argument) of the actual expression (third

argument) in a source code or in a tree representation of the program. The first argu-

ment in this definition is the name of the module that is defined as the root of the tree.

Positions are recognized by the position of the first and last character of expressions

(in a source code or in a tree representation of the program). To find the position of

expressions we use the abstract syntax tree of programs that is generated by the Curry

meta-programming library. Expressions of every sub-tree are indexed from top to bottom

and in each tree level from left to right, while the representation of partial applications

are ignored (partial applications are represented only in the browser of the tool (see Sec-

tion 8.1.1)). As we have seen in the last section, each expression of the tree is represented

by separate lines. As a result, the column of positions in the tree is considered to be zero.
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Let us show positions of expressions in the tree representation of reverse without

considering partial applications. The right-hand side of rules and rule sub-expressions

have positions that should be recognized:

CurryProgram

|

reverse

p:((1,6),(1,12))

/ \

reverse(1) reverse(2)

p:((2,11),(2,20)) p:((4,11),(4,20))

| |

[ ] reverse xs ++ [x]

p:((3,15),(3,16)) p:((5,15),(5,31))

/ \

reverse xs [x]

p:((6,19),(6,28)) p:((8,19),(8,21))

| / \

xs x []

p:((7,22),(7,23)) p:((9,22),(9,22)) p:((10,22),(10,23))

Expressions can be annotated with the identity function markLine. Each call to

annotated expressions causes expressions to be marked by a Tcl/Tk command [51, 36]

that is implemented in the tool’s GUI library of Curry.

For example, if the expressions reverse xs and x from the second rule are selected

to be highlighted, marker functions are added to the program as follows:

reverse (x:xs) = markLine "CurryProg" ((6,19),(6,28)) (reverse xs) ++

[markLine "CurryProg" ((9,22),(9,22)) x]

After execution of the annotated program (i.g., by reverse [1,2]), the highlighted tree

is represented as follows:

- CurryProgram

- reverse

- reverse(1)

- []

- reverse(2)

- reverse xs ++ [x]

- reverse xs

- xs
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- [x]

- x

- []

It is also possible to see executed parts of a program in original source code. This

is useful when the programmer wishes only to know which function rules are executable.

Note that, in this case, positions of rules are dependent on the positions of first characters

of these rules in original source code. For example, the position of the first rule of the

reverse function in the following program is (2,9):

main = reverse [1..10]

where reverse [] = []

reverse (x:xs) = [x] ++ reverse xs

Highlighted expressions show which parts of programs are executed. Non-executed

parts of programs belong to dead-code that can be removed from source code, or are

executable and should be tested by other applications. It is also possible that, because

of the lazy behavior of programs, expressions are not executed. Our debugging system

provides such a feature that can be useful for testing small separate functions of a program.

It helps the programmer to concentrate on a small environment of the program to debug.

7.3 Highlighting Semantics

With respect to the accuracy of the observation semantics (Section 6.2), we extend it for

our implemented highlighter. For this purpose, we have two stages:

• Labeling normalized programs: This gives labels to arbitrary units selected by the

programmer (a unit is a function with all its right-hand side expressions).

• Collecting slices: This generates a tree of slices for recognition of executed expres-

sions of selected units.

7.3.1 Labeling Normalized Programs

Labeling programs require two steps:

1. Programs are transformed into flat form, whereas all arguments of functions and

constructors are variables (see Section 6.1.1).
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Pm ::= Dm
k (labeled program)

Dm ::= fm (xn) = em (labeled unit)
| f(xn) = e (function definition)

em ::= M(x) (labeled variable)
| M(C(xn)) (labeled constructor call)
| M(f(xn)) (labeled function call)
| M(case em of {pn → em

n }) (labeled rigid case)
| M(fcase em of {pn → em

n }) (labeled flexible case)
| M(em

1 or em
2 ) (labeled disjunction)

| M(let xn = em
n in em) (labeled let binding)

e ::= x (variable)
| C(xn) (constructor call)
| f(xn) (function call)
| case e of {pn → en} (rigid case)
| fcase e of {pn → en} (flexible case)
| e1 or e2 (disjunction)
| let xn = en in e (let binding)
| prim g (e1, . . . , en) (primitive functions)
| hnf(x1, x2) (head normal form evaluator)

p ::= C(xn)

Figure 7.1: Marked flat program

2. As discussed in Section 7.2, it is possible to highlight expressions by annotating ex-

pressions with marker functions. Adding marker functions to program expressions is

performed automatically by the debugging system. In the labeling process, we give

only the label ”M” to all expressions of units. These Units are selected functions

with all its right-hand side expressions. The units of un-selected functions are not

marked. Labeling expressions involves highlighting these expressions only if their

evaluations are needed. Every labeled function is also represented by fm(xn). Note

that the labeled function fm(xn) replaces the original one f(xn) in the program.

The syntax of labeled programs is presented in Figure 7.1. It indicates that a labeled

program (Pm) contains labeled and un-labeled function definitions. If a unit that is

related to a function definition is selected for highlighting, the function name and all of

its right-hand side expressions are labeled (fm(xn) = em). We define the set of labeled

programs as Progm and the set of expressions as Expm, meaning that Pm ∈ Progm and

e, em ∈ Expm.
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As an example, let us select the unit related to the function f in the following Curry

program:

f [] = []

f (x : xs) = xs

After transforming the program and labeling the unit (in a tree representation mode), we

obtain:

fm(xs) = M(case M(xs) of

{[] → M([]);

(y : ys) → M(ys)})

Note that, by activating the highlighter in original source code, the debugging system

adds only one marker function to the right-hand side of each function rule (em := M(e)).

In this case, only the outermost expressions are observed:

fm = M(case xs of

{[] → [];

(y : ys) → ys})

7.3.2 Collecting Slices

At this stage, it is assumed that a program has already been transformed and can be used

to represent the dynamic semantics of the highlighter. Whenever labeled expressions are

executed, their related slices are recorded in a tree structure (named slices tree):

S, S ′ ∈ SlicesTree

Information recorded in slices trees is extracted and represented to the user by highlighting

slices in a viewer. Slices in this semantics are represented as:

SlicesTree := Slice(position, counter, [SlicesTree])

| Empty
position is the position of a labeled executed expression. counter is a number that shows

how many times the related expression is executed.

Let us discuss the operational semantics of the highlighter with regard to the de-

fined slices trees. In order to represent the semantics of the highlighter, we need four

components:

• a labeled program Pm (∈ Progm) that contains labeled units.

• a slices tree (∈ SlicesTree) to collect generated slices.

• a heap (∈ Heap) to illustrate the lazy semantics and sharing, which can also contain

bindings for labeled expressions.



Program Coverage 147

• a marked or an unmarked expression (∈ Expm) that is being evaluated.

The derivation rules of the highlighting semantics are represented in Table 7.1. A heap

is a binding from variables to expressions. Expressions are labeled or unlabeled. A value

is a constructor-rooted term or a logical variable:

Pm ∈ Progm

Γ, ∆ ∈ Heap = V ar 7→ Expm

e, em ∈ Expm

v ∈ V alue ::= x | C(xn)

In the highlighting semantics, the position of an executed expression e is considered

to be ep. An empty tree is represented by {}. An updated or new inserted slice with the

position ep in the slices tree tree is represented as insep(tree). The function ins inserts a

new extracted slice into the slices tree while the order of positions is sorted:

insep ({}) = Slice(ep, 1, [Empty, Empty])

insep (Slice(ep
1,m, [t1, t2])) =

if ep < ep
1 then

if t2 = Empty and t1 = Slice(ep
2, k, ts)

then

Slice(ep
2, k, [Slice(ep, 1, [Empty, Empty]),

Slice(ep
1,m, [Empty, t2])])

else

Slice(ep
1, 1, [insep (t1), t2])

if ep > ep
1 then

if t1 = Empty and t2 = Slice(ep
2, k, ts)

then

Slice(ep
2, k, [Slice(ep

1,m, [t1, Empty]),

Slice(ep, 1, [Empty, Empty])])

else

Slice(ep
1, 1, [t1, insep(t2)])

if ep = ep
1 then

Slice(ep
1,m + 1, [t1, t2])

If an expression is executed for the first time, the counter is 1 and, if an expression is

already executed and has a slice in the tree, the counter of the existing slice is increased.

Let us briefly explain the derivation rules defined in Table 7.1 where:
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Table 7.1: Derivation Rules for Highlighter

MV arCons :

S, Γ[yn 7→ en, x 7→ M(C(yn))] : x ⇓ S1, Γ[yn 7→ mark(en), x 7→ C(yn)] : C(yn)

where S1 := ins(C(yn))pS

MV arExp :
insepS, Γ[x 7→ e] : e ⇓ S′, ∆ : v

S, Γ[x 7→ M(e)] : x ⇓ S′, ∆[x 7→ v] : v

MV al :
S, Γ[x 7→ M(x)] : x ⇓ insxpS, Γ[x 7→ x] : x

S, Γ : C(xn) ⇓ S, Γ : C(xn)

MFunCall :

ins(f(xn))pS, Γ[xn 7→ mark(en)] : ρ(e) ⇓ S′, ∆ : v

S, Γ[xn 7→ en] : M(f(xn)) ⇓ S′, ∆ : v

where f(yn) = e ∈ Pm and ρ = {yn 7→ xn}

ins(f(xn))pS, Γ[xn 7→ mark(en)] : ρ(em) ⇓ S′, ∆ : v

S, Γ[xn 7→ en] : M(f(xn)) ⇓ S′, ∆ : v

where fm(yn) = em ∈ Pm and ρ = {yn 7→ xn}

MFunDef :
insfpS, Γ[xn 7→ en] : ρ(em) ⇓ S′, ∆ : v

S, Γ[xn 7→ en] : f(xn) ⇓ S′, ∆ : v

where fm(yn) = em ∈ Pm and ρ = {yn 7→ xn}
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mark(x) = M(x)

mark(C(xn)) = M(C(xn))

mark(f(xn)) = M(f(xn))

mark(case e of {pn → en}) = M(case mark(e) of {pn → mark(en)})

mark(fcase e of {pn → en}) = M(fcase mark(e) of {pn → mark(en)})

mark(e1 or e2) = M(mark(e1) or mark(e2))

mark(let xn = en in e) = M(let xn = mark(en) in mark(e))

MV arCons: In order to evaluate a variable (x) that is bound to a labeled constructor-

rooted term (x 7→ M(C(yn))), we reduce the variable to this term and update the slices

tree S for the position of this constructor. Note that all variable arguments of the construc-

tor are labeled (yn 7→ mark(en)). These variables are highlighted for possible execution.

MV arExp: This rule is used to highlight a variable that is evaluated to a constructor-

rooted term or a logical variable. The variable x can be evaluated to a value (v) if there

is a binding for this variable to a labeled expression (x 7→ M(e)). The rule evaluates

this expression (e) to a value (v) and returns it as a result for x, while the slices tree is

updated.

MV al: This rule is used when a logical variable is labeled. The rule returns the

variable and updates the slices tree. Note that, if a constructor-rooted term is being

evaluated, the slices tree is returned without any modification.

MFunCall: This rule is used, if a labeled function application (M(f(xn))) is being

evaluated. MFunCall updates the slices tree and gives labels to all arguments of the

function (xn 7→ mark(en)). By this method, we guarantee that evaluated arguments are

highlighted.

MFunDef : If there is a labeled function definition (fm(yn) = em) in the program and

an application of this function is evaluated (f(xn)), this rule is used. The rule updates the

slices tree for the position of the function definition and evaluates the function application

to a value (by the rule Fun as defined in Table 6.1).

The definitions and Rules should become evident by the following example written in

Curry:

main = head [1, 2]

head (x : xs) = x
The function head in this definition returns the first element of a given list as the result.

Suppose that we select the unit that is related to the function main to see the executed

parts of this unit. To represent the highlighting semantics, we must transform the program

as follows:
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{}, [] : main −− using MFunDef
































































{Sl(mainp, 1, [])}, [] : let A in M(head(l)) −− using Let




















































{Sl(mainp, 1, [])}, [B] : M(head(l)) −− using MFunCall








































{Sl(mainp, 1, [Sl((head(l))p, 1, [])])},
[C] : case l of {(y : ys) → y} − − using Case









{Sl(mainp, 1, [Sl((head (l))p, 1, [])])},
[C] : l −− using MVarCons

{Sl((head (l))p, 1, [Sl(mainp, 1, []), Sl(((:)(x, r))p, 1, [])])},
[D] : (:)(x, r)









{Sl((head (l))p, 1, [Sl(mainp, 1, []), Sl(((:)(x, r))p, 1, [])])},
[D] : x −− using MVarCons

{Sl((head (l))p, 1, [Sl(mainp, 1, []),
Sl(((:)(x, r))p, 1, [Sl(1p, 1, [])])])}, [E] : 1

{Sl((head (l))p, 1, [Sl(mainp, 1, []),
Sl(((:)(x, r))p, 1, [Sl(1p, 1, [])])])}, [E] : 1

{Sl((head (l))p, 1, [Sl(mainp, 1, []),
Sl((:)(x, r))p, 1, [Sl(1p, 1, [])])])}, [E] : 1

{Sl((head(l))p, 1, [Sl(mainp, 1, []),
Sl(((:)(x, r))p, 1, [Sl(1p, 1, [])])])}, [E] : 1

{Sl((head(l))p, 1, [Sl(mainp, 1, []),
Sl(((:)(x, r))p, 1, [Sl(1p, 1, [])])])}, [E] : 1

where
A := x = 1, y = 2, z = 3, r = (:)(y, z), l = (:)(x, r)

B := x 7→ 1, y 7→ 2, z 7→ 3, r 7→ (:)(y, z), l 7→ (:)(x, r)

C := x 7→ 1, y 7→ 2, z 7→ 3, r 7→ (:)(y, z), l 7→ M((:)(x, r))

D := x 7→ M(1), y 7→ 2, z 7→ 3, r 7→ M((:)(y, z)), l 7→ (:)(x, r)

E := x 7→ 1, y 7→ 2, z 7→ 3, r 7→ M((:)(y, z)), l 7→ (:)(x, r)

Figure 7.2: Highlighting semantics of the function head
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mainm = let x = 1,

y = 2,

z = [],

r = (:)(y, z),

l = (:)(x, r) in

M(head(l))

head (xs) = case xs of { (y : ys) → y }

Note that the function name (main) and also the right-hand side of this function

(head(l)) are labeled. To start the evaluation, we need the labeled program Pm as a

global parameter, an empty slices tree ({}), an empty list for the heap and an expression

to evaluate:

{}, [] : main

Now we can follow the derivation by the defined rules of Table 7.1. For illustration pur-

poses, we represent every slice Slice as Sl. The derivation tree is presented in Figure 7.2.

Consider the slices tree in this figure. There are no slices for the remaining elements (r)

of the list [1, 2]. This means that only the first element of this list has been executed.

The debugging system represents this information by highlighting related positions in a

viewer:

- main

- head [1,2]

- [1,2]

1

- [2]

2

[]

The highlighting semantics indicates that the evaluation order of expressions is the

same with operational semantics of [2]. We only generate a slice by starting an evaluation

for each labeled expression.

7.4 Implementing Highlighters

In functional programs, functions can be executed recursively so that parts of a program

can be executed more than once. Knowing the number of function calls can be useful

in locating a position of non-terminating computations. In order to provide this infor-

mation, besides highlighting expressions, we record the position and counter of executed

expressions in a global state that we define as follows:
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SlicesTree :: Global [(ModuleName,ExecSlices)]

SlicesTree = global [] Temporary

data ExecSlices = Slice Position Counter [ExecSlices]

| Empty

type ModuleName = String

type Position = (RC,RC)

type RC = (Row,Col)

type Row = Int

type Col = Int

type Counter = Int

SlicesTree is a kind of global state for storage of information about executed expressions

(Slice). We record slices in a sorted tree (ExecSlices) by sorting positions. To represent

the number of function calls, we also record a counter for each position. Counters are

increased when the position of the next executed expression already exists in ExecSlices.

In other words, each position has no more than one Slice in ExecSlices.

Let us consider the reverse program as an example and apply the function reverse to

a list with 10 elements: reverse [1..10]. The first executed expression in the program

is the expression reverse. This expression has the position ((1,6),(1,12)) in the tree

representation. This means that the first slice is recorded as Slice ((1,6),(1,12)) 1.

The next three executed expressions are (reverse xs) ++ [x], reverse xs and xs that

are inserted as slices to the tree:

Slice ((5,15),(5,31)) 1

/ \

Slice ((1,6),(1,12)) 1 Slice ((6,19),(6,28)) 1

\

Slice ((7,22),(7,23)) 1

When the execution has been completed, counters of re-executed slices have been

increased and we obtain all recorded slices as follows:

Slice ((5,15),(5,31)) 10

/ \

Slice ((1,11),(1,17)) 11 Slice ((7,22),(7,23)) 10

\ / \

Slice ((3,15),(3,16)) 1 Slice ((6,19),(6,28)) 10 Slice ((9,22),(9,22)) 10

/ \

Slice ((8,19),(8,21)) 10 Slice ((10,22),(10,23)) 10
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The recorded slices represent the program executed expressions. They are represented

to the user by highlighting the related positions in a tree representation of the program.

The number of function calls is also represented to the user. In our example, the position

of the expression reverse is ((1,6),(1,12)) and is called 11 times during the execution

(Slice ((1,6),(1,12)) 11), ten times for the ten elements of the given list and once for the

empty list ((1:(2:(3...(10:[]))))).

To highlight the slices collected, we use the following configuration item (see Sec-

tion 2.6) defined in the GUI library of our implemented debugger:

data ConfItem = ... | TextMark [Position] Color [Position] Color

type Position = (RC,RC)

type RC = (Row,Col)

type Row = Int

type Col = Int

type Color = String

For example, by converting the configuration of a viewer to

TextMark [((10,22),(10,23))] "Red"

[((1,6),(1,12))..((9,22),(9,22))] "Green"

we give a red color to the position of the currently executed expression and a green color

to the other executed expressions.

Note that representation of executed rules in the original source code is implemented

in the same manner.
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Chapter 8
A Tool for Observing Program Behavior

“An idea that is developed and put

into action is more important than

an idea that exists only as an idea.”

Buddha

Writing programs in lazy functional languages allows programmers to ignore thinking

about the order of evaluations. In other words, programmers need only to concentrate

on the logic of program’s structure and not on detailed concepts of the lazy evaluation

strategy. However, this advantage makes it difficult to locate bugs when programs yield

unexpected outputs. Catching unexpected outputs in programs is one of the most critical

requirements of a debugger.

Other bugs could be detected during run time, such as division by zero or non-

terminating computations because of recursive calls to functions. It could also happen

because of pattern-matching failures that interrupt the execution of programs and offers

"No more solutions" as a result.

Sometimes, after run-time failures occur, locating bugs may be too difficult. Having

a tester detect which parts of a program are executed and which expression is the last

executed expression could be helpful. By detecting executed parts, programmers have

a view of a surrounding area that might contain failures. In order to understand a

relationship between executed expressions, it is desirable to also have tracer support to

follow the evaluation order of expressions.

In this chapter, we discuss how the architecture of the tracer and tester in the imple-

mented tool iCODE is provided. iCODE is a small portable tool for Curry programs. All
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parts of the tool are written in Curry. In iCODE, the user has different views of her/his

program behavior. The tool not only shows the behavior of each program expression in

separate viewers, but also represents the evaluation order of right-hand side expressions in

the original source code or in a tree representation of programs. By representing executed

parts of source code and also the number of function calls, the tool is useful for finding a

surrounding area that may contain program failures.

8.1 Implementation and Design

In this section, we briefly discuss how different parts of iCODE are implemented and

designed.

8.1.1 Browser

We provide users with the means to select and also de-select arbitrary expressions from a

program in a browser (see Figure 8.1). Programs are analyzed and all of their expressions

are represented in the browser. The representation of expressions is considered in a tree

format (the tree representation of programs is discussed in Section 7.1).

In the tree representation, program expressions are considered nodes. Nodes in trees

have paths. Paths lead us to find positions of expressions in a program to which we can

add observer functions.

For instance, we consider the reverse example to find the path of the expression xs in

the right-hand side of the second rule:

reverse :: [Int] -> [Int]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

The function reverse has three functions in the right-hand side of its second rule: (++),

reverse and (:). The outermost function is (++). It takes two expressions (++) (reverse

xs) and [x] as parameters. In the tree representation discussed in Section 7.1, we have

seen that these parameters are represented as two sub-trees and that our selected expres-

sion is located in the left (first) sub-tree. Sub-trees are implemented as the data type

Node:

data Node a = GlobalFunction a

| Apply (a,Branch)

| Var (a,Branch)

type Branch = Int
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Figure 8.1: The browser

Branches in this data type are defined as indices for sub-trees which are labeled from

left to right for children at every tree level. Apply is defined as an application and

the constructor Var is considered for variables. Lists of nodes offer paths for program

expressions. The path of our selected expression xs is represented as follows:

[GlobalFunction "reverse(2)",

Apply ("reverse xs ++ [x]", 1),

Apply ("(++) (reverse xs)", 1),

Apply ("reverse xs", 2),

Var ("xs", 2)]

The list above shows that the selected expression belongs to the second rule of the function

reverse:

GlobalFunction "reverse(2)"

and to the first sub-tree of this function that is an application:

Apply ("reverse xs ++ [x]", 1).

The first sub-tree of this application is:
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Apply ("(++) (reverse xs)", 1)

and in its second sub-tree we have another application:

Apply ("reverse xs", 2).

The second sub-tree of this node contains a variable that is our selected expression:

Var ("xs", 2).

On the other hand, in the background of the tree represented to the user, we have a

list of program nodes previously mentioned:

- CurryProgram

- GlobalFunction "reverse(1)"

- Var ("[]",1)

- GlobalFunction "reverse(2)"

- Apply ("reverse xs ++ [x]", 1)

+ Apply ("(++) (reverse xs)", 1)

+ Apply ("[x]",2)

In the Curry meta-programming library (see Section 2.4), there is a possibility to

represent programs as abstract syntax trees with all function definitions and user-defined

data types. As we have already described, we first find a path for every selected expression.

Then, it is only necessary to search these paths within the abstracted tree of the program

to add observer functions. When selected expressions are found, observer functions are

added to the abstracted tree. This results in a manipulated source code. The manipulation

of programs is performed automatically by iCODE.

8.1.2 Single Stepping

As we have seen in Chapter 5, each time a computation of an annotated expression makes

progress in the observation system of COOSy, information about observed values are

recorded in a trace file. To avoid storing huge amounts of redundant data in trace files,

we use client/server architecture. Clients and servers are different modules that commu-

nicate with each other by using TCP communication. The aim of using the distributed

architecture is to represent intermediate steps of evaluations with the possibility of for-

ward and backward stepping. This architecture also provides another advantage. All

views are implemented by independent system processes that may even be distributed on

multiple computers to avoid a slow-down or shortage of memory of observed expressions.
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To generate the TCP connection between modules, we need Sockets (see Figure 8.2).

The defined events from Chapter 5 are messages that are sent through the sockets from

the observe applications to viewers. By sending the first event from the observation

application, communications are started. For this purpose, a Handle (see Section 2.5)

can be used. We implement a handle as a global state to transport requests and answers

during communications between clients and servers:

icodeHandle :: Global [Handle]

icodeHandle = global [] Temporary

sendToShow msg = do

h <- readGlobal icodeHandle

h’ <- sendMessage msg h

writeGlobal icodeHandle h’

To determine if a socket connection already exists, we only check to see if the Handle list

is empty or not:

sendMessage msg handleTable =

...

let strMsg = show msg

case handleTable of

[] -> do h <- connectToSocket "localhost" portNr

hPutStrLn h strMsg

...

hGetLine

return (h:handleTable)

_ -> do let h = head handleTable

hPutStrLn h strMsg

...

hGetLine

return (handleTable)

The function hPutStrLn puts a message (of type String) into the handle to be sent to a

viewer. Sending events can also be done in a single-step mode. In this mode the program-

mer can watch how the evaluation proceeds so that the representation of information in

viewers can be delayed until the user presses a forward button, which is provided in the

stepping window for this purpose.
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Figure 8.2: Socket connection

By pressing the forward button, an acknowledge message is sent from the stepping

window to the observe application (PAKCS system) to continue the computation. The

function hGetLine in the above code is responsible for this purpose. The next message

is sent only when hGetLine receives an acknowledge message from the stepping window.

The stepping window in this process is a server for the observe application. Communica-

tions between clients and servers can be continued only when the server accepts received

messages from clients (see Section 2.5).

Messages that are sent from observe applications are represented in appropriate viewers

as textual visualization. Each message contains an event and a label of the observation

it belongs to. The structure of messages is defined in the following data type:

data MSG = EventMessage Label ICODE.Event

type Label = String

After every acceptance from the server (stepping window), the message is sent to the

appropriate viewer that is recognized by its related label. In Chapter 4, we have seen

that, for each observed expression, a label is needed to match observed values with anno-

tated expressions. Viewers are distinguished by labels. The user may conveniently arrange

these viewers on the screen and even close observations which are not interesting any more.

The distributed architecture can also be used for program coverage, as described in

Chapter 7. For this purpose, we extend the defined data type MSG:

data MSG = EventMessage ...

| LineNrMessage Label Position

type Label = String

type Position = (Int,Int)
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LineNrMessage contains labels and positions of annotated expressions in programs. By

sending positions from observe applications, appropriate line numbers of viewers are high-

lighted.

The kind of representations in viewers is distinguished by the kind of messages. There-

fore, we need a message-handler in the stepping window:

msgHandler (EventMessage label event) handle =

...

sendToTraceViewer label event

...

hPutStrLn handle "send the next message"

msgHandler (LineNrMessage label position) handle =

...

sendToHighlightViewer label position

...

hPutStrLn handle "send the next message"

The function hPutStrLn is executed only when the representation of the next executed

expression is requested from a user. Note that communications between the stepping

window and viewers are also implemented by socket connections (see Figure 8.2).

The whole architecture above is activated by the user after selecting arbitrary ex-

pressions and pressing a submit button in the tool’s browser (Figure 8.3). Separating

Figure 8.3: A relationship between the browser and the debugging system

the browser from the client/server mechanism has a benefit: It avoids aborting the main

window when the user defined program has failures or non-terminating computations. In

other words, the main window is always ready to receive any request from the user.
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8.1.3 Controlling Executions

Locating the position of bugs in programs is a task of debuggers. Testers should specify

whether or not the behavior of programs is acceptable. Tests can be performed auto-

matically or by programmers. Sometimes, it is possible that given inputs to programs

will never generate unexpected outputs, although programs do have failures. In order to

detect executed and non-executed parts of programs, we use the highlighting technique

that is discussed in Chapter 7. This means that program expressions should be annotated

by marker functions. Every call to annotated expressions records the position of these

expressions in a tree structure (see Section 7.2). Highlighting related positions in a source

code is implemented with two different architectures in two different sub-tools of iCODE:

• Run-time slicer: When using this sub-tool, every call to annotated expressions acti-

vates the client/server architecture of the tool (Section 8.1.2) to send messages from

the marker application (PAKCS system) to appropriate viewers. Whenever a value

of an annotated expression is needed, the expression is executed and a message is

sent to the server (viewer). The viewer highlights the position of this expression in

a tree representation of the program or within the original source code using the

GUI library.

As we have discussed in Section 8.1.2, representing information in the distributed

architecture of our tool can be done in a single step mode. In this mode, the

programmer controls execution paths to see the behavior of programs.

• Slicer: In this sub-tool, we do not use the client/server architecture. It only records

positions of annotated executed expressions in an intermediate file. The tool high-

lights all recorded positions in a viewer by pressing a forward button from the user.

8.1.4 Arranging Test Cases

Having only true results from the run-time system does not mean that the program has

had no failure. The program should be tested by writing different test cases. Writing test

cases by programmers can be almost 30 percent of the testing task. There are different

implemented testers, which generate test cases automatically [15]. Unfortunately, they

sometimes produce too many test cases without detecting parts of programs that do not

work properly.

One of the ideas in this thesis is to represent parts of a program that are executable.

This representation, besides showing the result of the program execution, helps the pro-

grammer to decide what to generate as other test cases to test non-executed parts of the
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program. With our implemented tool, the programmer can also write more than one test

case and run all at the same time. For this purpose, we record every written test case in

the following data structure:

data TestCase a = Test String a

For each recorded test case, there is also a string which is printed as a side effect. It is only

a hit for the programmer knowing which test case is executed. To run a sequence of test

cases, we add a new function to the program. It generates all tests without recompiling

the program. For this purpose, we define the non-deterministic function applyTestCase,

which takes test cases as parameters:

applyTestCase :: TestCase a -> a

For example, if we would like to test the reverse program by two test cases reverse []

and reverse [1,2,3], we can add the function applyTestCase to the program using the

following definition:

applyTestCase (Test "TEST CASE: reverse []" (reverse [])) =

reverse []

applyTestCase (Test "TEST CASE: reverse [1,2,3]" (reverse [1,2,3])) =

reverse [1,2,3]

This function behaves as an identity function on each test case generated by the pro-

grammer. Note that non-deterministic functions offer different results. After executing a

non-deterministic function and receiving a result from the run-time system of Curry, the

programmer can press a button (e.g., ";") to demand the next possible result. With the

help of this method, the tool offers results of generated test cases before a run-time error

occurs.

8.1.5 Following Evaluations

As we have seen in Chapter 7, program coverage is a useful feature for testing separate

functions of programs. Another interesting feature of program coverage is evident when

run-time values of highlighted executed expressions are also represented to the user (es-

pecially in functional logic languages that compute expressions using lazy semantics). In

addition, following evaluations in source code is an interesting approach to find unexpected

program results.

For example, to see the behavior of the function reverse, we apply this function to

an empty list: reverse []. The result of the evaluation is an empty list, while only the



A Tool for Observing Program Behavior 164

first rule of reverse is executed. To display this behavior, we would like to highlight the

executed rule in the program and represent the result of the function reverse as follows:

reverse :: [Int] -> [Int]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

result

------

[]

For this purpose, we combine the two annotating methods (see highlighting in Sec-

tion 7.2 and observing values in Section 4.2) for the new function markAndObserve to

observe and mark expressions:

markAndObserve :: Observer a -> ModuleName -> Position -> a

-> a

This is an identity function on the fourth argument that is a program expression. The first

argument is an observer that defines the special observation behavior for the type of the

observed value. The second argument is a label to relate observations to corresponding

viewers. The third argument is the position of the annotated expression in the source

code or tree representation of the program.

The idea is to implement a run-time tracer that helps programmers to follow the

evaluation order of expressions. For this purpose, we use the distributed architecture

represented in Section 8.1.2.

By each call to the function markAndObserve in the distributed architecture, different

messages are sent from the observe applications (PAKCS system). Messages show which

expressions must be highlighted and what is the value of evaluated expressions.

With respect to the data type MSG discussed in Section 8.1.2, each message contains:

(1) a label to distinguish different viewers, (2) the position of the evaluated expression in

a tree representation of the program or within the original source code and (3) an event

representing the intermediate results of the evaluated expression.

8.2 Important Sub-Tools

With the help of the methods that are discussed in Section 8.1, we review our different

implemented sub-tools in iCODE.
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8.2.1 Curry Object Observation Interactive System - COOiSY

Sometimes programmers wish to inspect the result of special data structures or function

calls in the right-hand side of function rules. For this purpose, observers are provided.

To observe run-time values of program expressions, the desired expressions must be

selected in the browser of iCODE. COOiSY annotates the selected program expressions

automatically. The annotations do not change the natural behavior of programs. They

allow the user to observe how the evaluation proceeds.

The intermediate results are represented to the user by a textual visualization [10, 57]

which could be:

1. an underscore (_) for non-evaluated arguments

2. an exclamation mark (!) for evaluated arguments

3. a value that shows the argument is computed

4. a representation for functions by {\arguments ->result}

5. using a lighter color for representation of non-deterministic computations.

iCODE can also represent the intermediate results of program evaluations in a single-

step mode. In this mode, the programmer can show the real order of evaluations so that

the representation in a viewer can be delayed until the user presses the forward button in

the stepping window (see Figure 8.4). By pressing the forward button, an acknowledge

message is sent from the stepping window to the PAKCS system [17] to continue the

computation. The run-time values are represented in appropriate viewing tools.

In a large computation, some steps of evaluations may be of no interest for observation.

For this purpose, we provide a jumping possibility on the nth step (Figure 8.4). For

example, by selecting (+10), the user can jump ten steps and if it is needed, the stepping

method is changed again to the single-step mode by selecting (+1). De-selecting the check-

box causes only the end result of computations to be represented. In each intermediate

step, the user can review the last observed information using the backward and forward

buttons that are provided in viewing tools.

To review the textual representation of observations and show run-time values of an

expression, let us consider the function increment:

increment :: Int -> Int

increment x = x + 1
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Figure 8.4: The stepping window with different actions for the forward button ((+n): jumping
n steps)

We select the function increment to observe the behavior of this function during the

execution. The evaluation order of the function increment is represented as follows,

when it is applied to 2:

increment

---------

!

{ \ _ -> _ }

{ \ _ -> ! }

{ \ ! -> ! }

{ \ 2 -> ! }

{ \ 2 -> 3 }

By following the intermediate steps, we can observe the run-time values of the left- and

right-hand side expressions of increment. The last step represents the result of the

evaluation. The function increment takes 2 as an input and yields 3 as the result. The

step-by-step representation of information helps the programmer to find the reason for a

run-time error or an incorrect answer.

For another example, we consider the following program:

main = head [1,2,3]

Inserting only a print/trace statement into the function call head does not help us to

know how the function head behaves. We would like to know how the first element of

the list is computed. For this purpose, we select head and activate COOiSY. Figure 8.5

displays the result of head in a viewer of the tool. It shows that head returns the first
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Figure 8.5: Showing the result of head in the viewing tool of COOiSY

element of the given list without executing the remaining elements of the list that are

represented by an underscore.

By selecting more than one expression to observe, the tool opens separate viewers for

the selected expressions. Separating viewers helps the user to concentrate on the special

behavior of program expressions.

8.2.2 Curry Tester - CUTTER

One interesting feature of CUTTER represents executed parts of programs by marking

executed expressions by two methods: (1) Highlighting function rules in source code,

(2) Highlighting program expressions in a tree representation of the program. In both

methods, the last executed expression is highlighted in red color and other executed

expressions in green. Unmarked expressions belong to un-executed parts of the program.

Before activating the tester, a user can select a single unit, a number of integrated units

or an entire program for being tested. Units in functional programs are functions that

have all of their right-hand side expressions.

For example, we apply the function increment in the following program:

test :: Int

test = increment (head [1,2,3])

Calling the function test offers 2 as a result. The computation is lazy. This means that

the function head causes only the first element of the list to be executed. We would like

to see executed parts of the program in a tree representation. The highlighted executed

expressions are represented in Figure 8.6. The highlighted parts of the function test show

that only the first element of the list has been executed because the remainder of the list

is not marked. The viewer also shows that both functions are called once during the

execution. Representing the number of function calls is useful to locate non-terminating

computations in programs.
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Figure 8.6: The highlighted expressions in the viewing tool of CUTTER

Let us illustrate this ability of the tester by another example. The following program

computes the increment of all positive elements of a given list:

inc :: Int -> Int

inc x = if x>0 then x + 1 else inc x

test :: [Int] -> [Int]

test xs = map inc xs

The program is written with a recursive call to the function inc in the else-branch of

this function. Every call to inc, when its argument is no larger than zero, results in non-

terminating computations. We would like to test the program to locate the function that

is executed infinitely. As the first test case, we call the function test with an application

to the list [1..5] when the function inc is selected as a single unit to be tested (this

time in a tree representation of the selected unit).

By pressing the forward button in the viewing tool, the executed expressions are

highlighted and the number of function calls is displayed to the user (see Figure 8.7).

The marked slices show the executed parts of the program after calling five times the

function inc and the result [2,3,4,5,6] from the PAKCS system is acceptable. The

viewer shows that some parts of the program are not executed (unmarked expressions).

The non-executed parts belong to the else-branch of the example above. Because all

elements of the given list are larger than zero (x>0), the then-branch is executed by each

application of the function inc to the elements of the given list.
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Figure 8.7: Executed parts of the function inc by calling test [1..5]

In order to test the program, we must be sure that all of its parts work properly. For

this purpose, we use a test case for the non-executed parts by applying the function test

to another list: test [0..5]. The first element of the given list is zero. This means

that the else-branch should be executed. However, we have no result from the run-time

system, although the function calls for inc are increased repeatedly (242 in Figure 8.8).

The failure is located in the else-branch of the function inc. When the argument x is

no larger than zero, the function inc is applied repeatedly to x. It brings up a non-

terminating computation in the program. Figure 8.8 displays the new covered slices on

Figure 8.8: Executed parts of the function inc by calling test [0..5]

the selected function inc, whereas the last executed expression is highlighted in red and
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the other executed expressions are highlighted in green.

We can see that having only true results after a few tests does not mean that the

program has had no failure. Sometimes, a review of executed expressions helps us to

concentrate on the behavior of functions in programs. In this view, which is only a text

representation of programs, the user shows which expressions of the selected area are

executable. Separating the color of the last executed expression from others is also useful

in locating the position of a run-time error (e.g., when the PAKCS system offers only ”No

more solutions” as a result).

We can also write the two different test cases above at the same time and execute them

by the test manager of the tool. For this purpose, we should activate the test manager

from the browser (see Figure 8.9).

Figure 8.9: Test manager for arranging test cases

It is possible to write different test cases in the ”New Test” place and provide a number

to arrange the order of test cases. We can also delete or correct the inserted tests. Assume

that we would like to apply the two test cases test [1..5] and test [0..5] from the

last example in the order in which they are written. After writing the test cases, the tool

adds the non-deterministic function applyTestCase (see Section 8.1.4) to the program:

applyTestCase (Test "TEST CASE: test [1..5]"

(test [1..5])) = test [1..5]

applyTestCase (Test "TEST CASE: test [0..5]"

(test [0..5])) = test [0..5]

Whenever the tester is activated, the function applyTestCase is called automatically.

It generates the first test case that causes executed program expressions to be highlighted.
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Figure 8.10: The generation of the two test cases: test [1..5] and test [0..5]

The represented information in the viewer is the same as that shown in Figure 8.7 and

the PAKCS system yields [2,3,4,5,6] as the result:

> TEST CASE: test [1..5]

> [2,3,4,5,6]

By pressing a button (e.g., ";"), we request the next result from the non-deterministic

function applyTestCase. This time, the second test case is applied:

> TEST CASE: test [0..5]

>

The program is not terminated and the viewer shows that all program expressions

have been executed (see Figure 8.10). Covering all parts of the function inc means that

all function expressions are executable. However, the number of function calls (122 in

Figure 8.10) helps us to focus on the behavior of the function inc. It may be caused a

non-terminating computation.

8.2.3 Curry Tracer - C-Ace

Following evaluations within a source code is an interesting approach for finding unex-

pected outputs. The means to do so is provided in C-Ace.

We illustrate this ability by an example. To keep the result view small, let us take the

increment function: increment x = x+1. We would like to follow the evaluation order

of the function increment when it is selected as a single unit to be traced. To execute
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an application of this function to an integer, the right-hand side of the function must be

computed. This computation can be completed when the expression x is evaluated. This

means that three expressions are evaluated: increment, x+1 and x.

Figure 8.11 displays the last six steps of this evaluation when the program is executed

by the application increment 2 (for illustration purposes, the trace productions are rep-

resented in a sequence of viewers). The exclamation mark shows that the evaluation is

started, but the computation has not yet been completed and the function application

is displayed by {\arguments ->result}. This means that the textual visualization {\!

->!} in the first viewer shows that the evaluation of the left- and right-hand sides of the

function increment has started. Because, increment is being evaluated in this step, it is

highlighted in a darker color. In the next step, the value of increment is represented as

{\2 ->!} (see viewer 2).

Now, the computation of the expression x+1 can be continued (fifth viewer) when the

expression x is evaluated to 2 (third viewer) and the constant 1 is also recognized (fourth

viewer).

The last viewer represents the value of the function increment as {\2 ->3}. With this

step, the computation is completed.

The evaluation order of expressions can be represented not only in a tree representation

of the program but also in the original source code. It is assumed when the programmer

wishes to follow only the evaluation order of function rules and not all right-hand side

expressions. To illustrate this ability, let us consider another example:

reverse :: [Int] -> [Int]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

append :: [Int] -> [Int] -> [Int]

append xs ys = reverse ys ++ reverse ys

Suppose that we have written an incorrect variable in this program. The second call of

the function reverse in the right-hand side of append is applied to ys instead of xs.

Generating the test case append [1] [2] yields an unexpected result [2,2]. With the

help of the tracer, we wish to follow the executed functions to find the failure. Figure 8.12

displays an intermediate step of the evaluations. The figure shows that the function

append is highlighted in red color. This means that, in this step, append is being executed.

append yields a list of numbers as the result. The evaluation of this function in Figure 8.12

shows that the first element of the list is 2 and the evaluation of the second element is

started (2:!:_). The computation of the second list element needs a function call on
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Figure 8.11: Tracing the evaluation order of the function increment

reverse. Figure 8.13 represents two sequence steps of the evaluations when the function

reverse is being executed. The first application of this function in the program has

offered a list with one element: [2]. In the second call of this function, the evaluation of

the first list element is started (!:_) (see viewer 2). After completing the execution of

the first element, it is evaluated to 2 (see viewer 3). The bug is located. The second call

of the function reverse should be an application to the given list ([1]), but it is applied

to a list with 2 as an element (see Figure 8.13).

Following the evaluation order of program expressions is useful not only for locating

bugs in simple programs but also for understanding the semantics of functional logic

programs. To illustrate this ability, let us consider the following program by using the

data type Nat for natural numbers:
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Figure 8.12: One intermediate step of the evaluation when append is executed

data Nat = O | S Nat

coin :: Nat

coin = O

coin = S O

plus :: Nat -> Nat -> Nat

plus O x = x

plus (S x) y = S (plus x y)

main :: Nat

main = fst pair where pair :: (Nat,Nat)

pair = let c = S coin ? coin

p = plus O c in (c,p)

coin is defined non-deterministically and offers two results - zero and one. plus takes two

arguments of type Nat and yields an addition between these two arguments. We would like

to observe the lazy semantics and non-deterministic computations of the program. main

returns the first element of pair. The local pattern pair uses both defined functions coin

and plus in its right-hand side. By following the evaluation order of function definitions,

we can see that the second element of the pair will not be evaluated.

Let us begin executing the program by calling main. After 11 evaluation steps, the first
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Figure 8.13: Two intermediate steps of the evaluation when reverse is executed

result is represented in a PAKCS-Shell: S O. The first view of Figure 8.14 represents the

evaluated parts of the program (for deduction purposes the trace produces are represented

in a sequence of viewers). The red color shows the last evaluated function. Note that

both rules of plus, and also the second rule of coin, are not evaluated. We request the

next result by pressing a key (e.g., “;”). The result is returned in the PAKCS-Shell after

10 steps: S (S O). View 2 of Figure 8.14 displays a part of the second result in a lighter

color. This is because of the non-deterministic definition of coin. In this step, the second

rule of coin is evaluated and highlighted. The third result is represented after 4 evaluation

steps (see View 3 of Figure 8.14): O. The last result is returned after 10 evaluation steps

(see View 4 of Figure 8.14): S O. The last view shows that: (1) no rules of the function

plus are executed, (2) the second result of main is computed non-deterministically and

(3) main is called four times.
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Figure 8.14: Tracing the evaluation order of function rules

By pressing the backward button, we have access to the result of the last evaluated

expression pair (see Figure 8.15). Underlines appears in all four results of pair be-

cause, due to the lazy behavior of computations, the second elements of the pairs are not

evaluated.

8.3 Summary

We have developed a source-code-level observation tool to test and trace execution gen-

erations. Figure 8.16 shows a diagram of the various parts of the tool. The browser

and viewers are written in Curry using Tcl/Tk [36]. In other words, all of the code is

implemented in Curry.

We use the meta-programming library of Curry to translate an original source code
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Figure 8.15: The result of the local pattern pair

to an abstract syntax tree (AST) format. Arbitrarily selected expressions from the user

are annotated in AST. These annotations are added to AST with respect to the activated

sub-tool from the user. A sub-tool can be:

• Single expression observer

• Unit tester

• Unit tracer

Using the meta-programming library of Curry reduces the complexity of the transfor-

mations, and allows the sub-tools to share the same AST for an observation of an activated

program. The only difference is in arguments of annotations (identity functions). For the

observer, the value of the evaluated expression is required. For the tester, the position

of the executed expression in the program and the tracer needs both of the mentioned

arguments. Therefore, Figure 8.16 shows the structure of all three implemented sub-tools

in our observation system.

An annotated AST should be un-parsed to the original format of a Curry program.

After un-parsing, the program is run in the PAKCS system. Note the diagram shows two

different architecture designs:



A Tool for Observing Program Behavior 178

• Design-1: This is implemented in the distributed architecture, to implement a run-

time tester and tracer. In some cases, the user wants to see the last information

of computations, showing that the order of executions in a single-step mode is not

necessary. Using the tool in Design-2 is proposed in this case. It could be selected

by an option in the browser.

The execution of an annotated program in Design-1 establishes a socket connection

between different modules (windows) of the tool. These modules are related to:

– PAKCS system

– Stepping window

– Viewers

By executing expressions, information about evaluations is represented in viewing

tools.The representation in viewers is delayed until a message is returned to the

PAKCS system from the stepper. It allows the user to observe the execution in

single-step mode.

• Design-2: In this implementation we do not use the distributed architecture. In this

model, information about evaluated expressions is recorded in an intermediate file.

By pressing a forward button, it can be represented to the user in a viewing tool.

The viewers represent different information to the user:

• In the observer; viewers are provided for every single observed expression and display

values of evaluated expressions.

• In the tester; viewers are provided for different modules (i.e., a main module and

imported modules that have already been observed). They represent executed parts

of programs by highlighting expressions and also display the number of function

calls.

• In the tracer; like the tester, viewers are provided for different modules. Each viewer

not only highlights executed expressions, but also displays values of an executed

expression that is currently evaluated. We have also implemented a text handler

in each viewer so that a double-click on each highlighted expression that is not

currently evaluated shows values of this expression.
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Figure 8.16: A diagram of the tool process
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Chapter 9
Conclusion and Related Works

“There is nothing good or

bad, but thinking makes it so.”

William Shakespeare

Debuggers are magnifying glasses that a programmer can use to examine programs to

determine why a program does not behave correctly. A well implemented debugger allows

the programmer to follow the flow of the program evaluation and stop the execution at

any desired point to inspect generated values in order to discover a reason for a failure.

This thesis offers methods to test and trace programs written in functional logic lan-

guages like Curry. These methods are intended to:

• analyze programs that allows to:

– represent program expressions in tree structures

– enable the user to select and de-select arbitrary program expressions

• represent executed parts (slices) of a program by a program coverage that helps to:

– propose test cases for testing un-executed parts that have not been executed,

but may be executable

– recognize possibly dead code

– understand lazy behavior of programs

• use a distributed architecture that allows to:
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– avoid storage of excessive information in files

– avoid slow-down of program executions

– perform run-time slicing

– understand non-deterministic and lazy semantics of programs

• collect run-time values in a tree structure by a top-down constructing algorithm for

observation.

These ideas are implemented in the interactive tool iCODE with different sub-tools,

each of which supports an aspect of program behavior for locating bugs and understanding

programs.

All of the program expressions are represented to the user in a GUI as a browser.

The tool provides an ability to select one unit, a number of integrated units or an en-

tire program or even a sub-expression for observation during a program execution. The

programmer has different views of a program’s behavior:

• Observing the evaluation order of selected expressions in separated viewers.

• Testing selected units by showing marked and unmarked parts that represent exe-

cuted and un-executed expressions of the units.

• Tracing selected units by following the evaluation order of unit expressions in a tree

representation of units or in source code.

HOOD [20] is a system that had an important influence on the design of our debug-

ger iCODE. To use HOOD, programmers annotate expressions whose values they wish to

observe. These applicative annotations act as identities. If the evaluation of an anno-

tated expression is demanded by lazy evaluation, this expression reduces to a value and

this value is recorded into a file. The recording of values in the file can be played back

in a way that reveals the order in which their sub-expressions were demanded. HOOD is

implemented for Haskell programs. An extension of this system for non-deterministic com-

putations and logical variables is also provided in COOSy [10]. In contrast to HOOD and

COOSy that programmers annotate program expressions manually, our debugging system

does all required program manipulations automatically. Furthermore, we do not record

the information of evaluations in a file. In our design, this information are constructed in

a data term with a tree structure.

There are different tools available to locate failures in functional programs. Hat [71]

is one of them that is implemented as a debugger for Haskell programs and has different

components like Hat-Explore [14]. In contrast to Hat-Explore that highlights reductions
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or equations of computations after program execution, our tracer highlights program

expressions during an execution. In Hat-Explore, the programmer should navigate on an

Evaluation Dependency Tree [47] to find a failure, but sometimes can lose orientation.

Our implemented tracer automatically follows the evaluation order of related expressions

in a tree representation of programs or within source code. The automatic navigation

helps the programmer to find a run-time error or faulty output generated by a program.

Another difference between Hat and our implemented tracer is that Hat represents a

sequence of eager evaluations of the function calls, whereas our tracer shows the real lazy

evaluation steps. We believe that representing lazy evaluation steps not only can be useful

in locating bugs in simple programs, but also can be used to assist beginners and students

in learning the non-deterministic behavior of lazy functional logic programs.

Another important component of Hat is Hat-Observe [71]. This tool shows how top-

level functions are used. Meaning that, all arguments of function applications and also

their results are represented to the user as a list of equational observations. In contrast

to Hat-Observe that represents the equational observations after program execution,

our interactive observer COOiSY [57] represents this information during an execution.

This ability helps the user to follow the interesting aspects of program behaviour during a

pattern matching. Furthermore, our tool provides a mean to observe every sub-expression

of program as well as top-level functions.

As a debugger for Curry programs, TeaBag [5] displays information of evaluations to

the programmer by providing a view of a tree structure of a computation. It is shown

separately from the structure of a source program.

Following the evaluation of program expressions within lines of a source code can

provide a good view to programmers for finding bugs. This is implemented in the tracer

of iCODE (C-Ace). Values of expressions with a textual visualization form are represented

to the programmer, while evaluated expressions are highlighted within a source program.

Program slicing in [62, 49] by removing non-executed parts of programs minimizes code

to concentrate the programmer on small parts of source code in order to locate bugs. By

showing marked (executed) and unmarked (un-executed) expressions, the tester of iCODE

(CUTTER) [57] displays a surrounding area that might contain failures, either in executed

parts that are highlighted or in non-executed parts that are not marked and should be

tested by other test cases. A program coverage by highlighting program expressions is

also used in HPC [21] for Haskell programs. [19] uses program-coverage technique not for

highlighting expressions in an interactive manner but for an automatic generation of test

cases.

When using HUnit [31] as a tester for Haskell programs, the user can write different
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test expressions in programs. The tool checks whether expected results that are written

in test expressions are the same as generated results from programs. The tool does

not represent which expressions of programs are not executed. Because of the special

test cases, sometimes some parts of programs will not be executed, although they are

executable. Beside testing programs in CUTTER, highlighting expressions can be useful if

we compare our tool to HUnit. Additionally, CUTTER represents the number of function

calls not only for terminated computations, but also for non-terminated ones. In other

words, if one of the generated test cases produces a run-time error, the result of the last

executed expression is offered to the user.

Furthermore, iCODE is an easy-to-use tool with a source-code-level representation for

programmers.
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