Aus der Klinik für Anästhesiologie und Operative Intensivmedizin (Direktor: Professor Dr. med. J. Scholz) im Universitätsklinikum Schleswig-Holstein, Campus Kiel an der Christian-Albrechts-Universität zu Kiel

INTERAKTION DES AMYLOID PRECURSOR PROTEINS MIT ALPHA₂-ADRENOZEPTOREN

Inauguraldissertation

zur

Erlangung der Doktorwürde der Christian-Albrechts-Universität zu Kiel - Aus der Medizinischen Fakultät -

vorgelegt von

ANNE RIEHEMANN

aus Georgsmarienhütte

Kiel 2009

- 1. Berichterstatter: PD Dr. med. Berthold Bein, DEAA
- 2. Berichterstatter: Prof. Dr. Herdegen

Tag der mündlichen Prüfung: 03.05.2010

Zum Druck genehmigt: Kiel, den 03.05.2010

Inhaltsverzeichnis

Abkürzungsverzeichnis

1	EIN	LEITU	UNG	1
	1.1	Der a	llpha ₂ -Adrenozeptor	1
		1.1.1	Allgemeines zum alpha ₂ -Adrenozeptor: Unterteilung und Vorkommen	1
		1.1.2	Subklassifikation von alpha ₂ -Adrenozeptoren	2
		1.1.3	Struktur und Funktion von alpha2-AR	3
		1.1.4	Signaltransduktion: G-Protein gekoppelter Rezeptor und dessen Effektorsysteme	4
		1.1.5	Mitogen aktivierte Protein-Kinase	6
		1.1.6	Regulation der Rezeptordichte	7
	1.2	Intera	aktion des alpha ₂ -AR mit anderen Proteinen	9
	1.3	Die F	Familie der Amyloid Precursor Proteine	11
	1.4	Ziels	etzung der Dissertation	13
2	MA	TERIA	ALIEN UND METHODEN	14
	2.1	Mate	rialien	14
		2.1.1	Zelllinien	14
		2.1.2	Zellequipment	14
		2.1.3	Plasmide, Antikörper und Molekulargewichtmarker	14
		2.1.4	Verwendete Lösungen	15
		2.1.5	Chemikalien	18
		2.1.6	Geräte und Software	18
	2.2	Meth	oden: MAP-Kinase Versuch	19
		2.2.1	DNA Plasmide	19
		2.2.2	Zelltransfektion (Kalzium–Phosphat Präzipitation)	20
		2.2.3	Nährmediumwechsel	21
		2.2.4	Alpha _{2a} -AR-Agonistenstimulation	21
		2.2.5	Natriumlaurylsulfat-Polyacrylamid-Gelelektrophorese	22
		2.2.6	Wet Blot-Technik	22
		2.2.7	Fotoentwicklung	23
		2.2.8	Auswertung	24
	2.3	Meth	oden: Internalisierungsversuch	25
		2.3.1	Zelltransfektion (Kalzium–Phosphat Präzipitation)	25
		2.3.2	Umsetzen der Zellen in 12-Well Platten	25

		2.3.3 Internalisierung	25
	2.4	Statistische Auswertung	26
3	ERO	GEBNISSE	27
	3.1	Optimierung des MAP-Kinase Assays	27
	3.2	MAP-Kinase Assay und Cotransfektion von alpha2a-AR und APP	28
	3.3	Optimierung des Internalisierungsversuches	32
	3.4	Internalisierung und Cotransfektion von alpha2a/b-AR und APP	34
4	DIS	KUSSION	36
	4.1	Zusammenfassung der Ergebnisse	36
	4.2	MAP-Kinase Versuch	37
	4.3	Internalisierungsversuch	42
5	ZUS	SAMMENFASSUNG	45
6	LIT	ERATURVERZEICHNIS	47
7	DAN	NKSAGUNGEN	57

Abkürzungsverzeichnis

alpha ₂ -AR	alpha ₂ -Adrenozeptor
APLP1 und 2	"amyloid precursor like protein 1 and 2"
APP	Amyloid Precursor Proteine
ATP	Adenosintriphosphat
BES	N,N-bis(2-Hydroxyethyl)-2-Aminoethansulfonsäure
BSA	bovines Serum Albumin
cAMP	zyklisches Adenosinmonophosphat
DAG	Diazylglyzerin
DMEM	"Dulbeccos minimum essential medium"
DNA	"desoxyribonucleic acid", Desoxyribonukleinsäure
DTT	Dithiothreitol
EDTA	Ethylendiamintetraessigsäure
EGF	"epidermal growth factor" (epidermale Wachstumsfaktoren)
EGFP	"enhanced green fluorescent protein"
EIF2B	eukaryotischer Initiationsfaktor 2B
ERK	extrazellulär regulierte Kinase
FBS	foetales bovines Serum
GDP, GTP	Guanidindiphosphat, Guanidintriphosphat
G-Proteine	Guaninnukleotid-bindende Proteine
Grb2	"growth factor receptor binding protein 2"
HEK- Zellen	"human embryonal kidney cells"
HRP	"horse radish peroxidase"
IP ₃	Inositol-1,4,5-triphosphat
kDA	kilo Dalton Molekulargewicht
MAP-Kinase	mitogen aktivierte Protein-Kinase
МЕК	MAP-Kinase-Kinase
mRNA	"messenger" Ribonukleotidsäure
NLS-PA-Gelelektrophorese	Natriumlaurylsulfat-Polyacrylamid-Gelelektrophorese
PBS	"phosphate buffer saline"
Pen/Strep	Penizillin/Strepotmyzin
PIP ₂	Phosphatidyl-Inositol-4,5-bisphosphat

rpm	Rotationen pro Minute
SOS	"son of sevenless"
TBST	"TRIS-buffered saline Tween 20"

1 Einleitung

Der alpha₂-Adrenozeptor (alpha₂-AR) vermittelt unter anderem sedativ-hypnotische und analgetische Effekte; dabei weist er eine hohe Spezifität gegenüber seinen Agonisten auf. Der alpha₂-AR kann daher als Modell dienen, um Mechanismen der Anästhesie besser zu verstehen.

1.1 Der alpha₂-Adrenozeptor

1.1.1 Allgemeines zum alpha₂-Adrenozeptor: Unterteilung und Vorkommen

Adrenozeptoren wurden von Ahlquist 1948 zunächst in alpha- und in beta- Adrenozeptoren (AR) eingeteilt [4]. Anfang der siebziger Jahre wurde die Unterteilung anhand der Lage der Adrenozeptoren an der Synapse festgelegt. Man unterschied damals zwischen postsynaptischen alpha₁- und beta_{1/2}-AR, welche das Signal an das Effektororgan vermittelten, und präsynaptischen alpha₂-AR, welche durch einen negativen Feedbackmechanismus die Ausschüttung der Neurotransmitter während der Nervenstimulation limitierten [31]. Spätere Studien ergaben, dass alpha₂-AR sowohl prä- als auch postsynaptisch lokalisiert sind, sodass man eine neue Möglichkeit zur Einteilung der AR suchte [63]. Die aktuelle Klassifizierung der alpha-AR basiert auf der Wirkung der jeweiligen Agonisten und Antagonisten. Als alpha₁-AR werden diejenigen Rezeptoren bezeichnet, welche durch Phenylephrin aktiviert und durch Prazosin gehemmt werden. Rezeptoren, die durch Clonidin stimuliert und durch Yohimibin blockiert werden, gehören zu den alpha₂-AR [32].

Alpha₂-AR kommen im gesamten Körper vor. Haupteffekte der alpha₂-AR sind die zentrale Blutdruckregulierung, die Thermoregulation, die Schmerzverarbeitung und die Kontrolle von Aufmerksamkeit und Wachheit. Der Angriffspunkt von alpha₂-AR Agonisten im zentralen Nervensystem, über den die hypnotischen Effekte vermittelt werden, wurde identifiziert im Locus coeruleus [40]. Der Locus coeruleus ist ein noradrenerges Kerngebiet im lateralen Anteil der Formatio reticularis in der Rautengrube im Hirnstamm, auf den im Rahmen der Hypnose alpha₂-AR Agonisten inhibierend einwirken wie in Versuchen mit Ratten festgestellt werden konnte [35]. Andere Funktionen der noradrenergen Neurone des Locus coeruleus sind beispielsweise die Regulation der Wachheit mit Hilfe indirekter Projektionen aus dem Nucleus suprachiasmaticus [22] und die Verbesserung der Merkfähigkeit durch Stimulation des Nervus vagus über Aktivierung der Amygdala und des Hippokampus [21]. Die molekularen Mechanismen der Wirkungsweise von alpha₂-AR Agonisten sind noch nicht eindeutig geklärt. Weitere Funktionen von alpha₂-AR sind die Förderung der Thrombozytenaggregation [1], die Hemmung der Insulinfreisetzung im Pankreas und die Hemmung der Lipolyse im Fettgewebe [33]. Im Magen-Darm-Trakt vermitteln alpha₂-AR die Verdauungsfunktionen, wie z.B. Schleimhautsekretion und Darmtätigkeit [5].

Aufgrund der oben skizzierten Wirkungen werden alpha₂-AR-Agonisten unter anderem in der Inneren Medizin (z.B. als Antihypertensivum) und in der Anästhesie (z.B. als Adjuvans bei der Narkose) eingesetzt.

1.1.2 Subklassifikation von alpha₂-Adrenozeptoren

Beim Menschen werden drei Subtypen von alpha₂-AR unterschieden: alpha_{2a}-AR, alpha_{2b}-AR und alpha_{2c}-AR. Alle alpha₂-AR sind beteiligt an der Generierung von kontraktilen Prozessen zusammen mit anderen Rezeptoren wie z.B. den alpha₁-AR. Arterielle Vasokonstriktion wird durch alpha_{2a}- und alpha_{2b}-AR vermittelt, Kontraktion der venösen Gefäße durch alpha_{2c}-AR [8]. Die Verteilung der alpha₂-AR Subtypen bei Säugetieren wurde an Nagetieren untersucht und es wurde festgestellt, dass alle drei Subtypen von alpha₂-AR sowohl im zentralen als auch im peripheren Nervensystem vorkommen und es für jeden Subtypen eine Lokalisation mit verstärktem Auftreten gibt. So ist der alpha_{2a}-AR im zentralen Nervensystem im Locus coeruleus stark ausgeprägt, aber auch in peripheren Organen (Darm, Herz) ist er weit verbreitet [54], [55]. Als präsynaptischer Rezeptor wird ihm eine wichtige Rolle bei der Kontrolle der Transmitterfreisetzung zugesprochen [47]. Der alpha_{2b}-AR ist im zentralen Nervensystem in geringerem Maße vertreten als die beiden Subtypen A und C, bevorzugt jedoch im Thalamus, sowie in peripheren Geweben, wie z.B. der Niere und in glatten Muskelzellen [54], [55]. Der alpha_{2c}-AR ist vor allen Dingen im zentralen Nervensystem zu finden, hier insbesondere im Bereich des Locus coeruleus, der Raphe Kerne und der Substantia nigra [52].

Wie auch der alpha_{2a}-AR wirkt der alpha_{2c}-AR bei der präsynaptischen, hemmenden Rückkopplung als Autorezeptor [47].

Die Subklassifikation der alpha₂-AR basiert auf unterschiedlichen Bindungsaffinitäten der verschiedenen Liganden. Die Tabelle 1.1.2 soll einen Überblick über die bevorzugten Bindungspartner der einzelnen alpha₂-AR Subtypen geben.

Tabelle 1.1.2: Subklassifikation des alpha2-ARbasierend auf unterschiedlichen Affinitäten zuRezeptorliganden: + schwache Affinität; ++ mittlere Affinität; +++ starke Affinität [modifiziert nach 56]

	Alpha _{2a} -AR	Alpha _{2b} -AR	Alpha _{2c} -AR
Oxymetazolin	+++	+	++
Guanfacin	+++	++	+
Yohimbin	+	++	+++
Prazosin	+	++	+++
Chlorpromazin	+	+++	++
ARC-239	+	+++	++

1.1.3 Struktur und Funktion von alpha₂-AR

Alpha₂-Adrenozeptoren gehören der Gruppe der G-Protein gekoppelten Rezeptoren an. In seiner dreidimensionalen Struktur durchspannt der Rezeptor die Zellmembran siebenmal in Form von alpha-Helices, sodass sich extra- wie intrazellulär jeweils drei Taschen/Schleifen bilden. Dabei kommen die hydrophoben Anteile des Rezeptors zwischen der Lipidbilayer-schicht der Zellmembran zu liegen, während die hydrophilen Enden aus der Zellmembran herausragen. Das Amino-Ende des Rezeptors befindet sich extrazellulär und ist beim alpha_{2a}-AR und alpha_{2c}-AR glykolysiert [56]. Die Glykolysierung nimmt auf die Funktion des Rezeptors keinen Einfluss, aber sie spielt eine Rolle bei der Verteilung des Rezeptors innerhalb der Membran und beim Expressions- und Internalisierungsprozess des Rezeptors [56]. Das Karboxy-Ende des Rezeptors ist intrazellulär lokalisiert. Eine Stimulation des Rezeptors erfolgt durch extrazelluläre Bindung von Agonisten oder Antagonisten an eine Tasche des Rezeptors, welche durch Anteile der sieben transmembranären alpha-Helices gebildet wird [56].

Während die transmembranären Regionen der Rezeptorsubtypen A, B und C des alpha₂-AR zu ca. 75% dieselbe Aminosäurensequenz haben [56], unterscheiden sich die extra- und intrazellulären Anteile der Rezeptoren voneinander. Insbesondere die dritte, intrazelluläre Schleife des alpha₂-AR stellt dabei eine interessante Region dar. So wurde z.B. beobachtet, dass die Interaktion von Spinophilin, einem zellstabilisierendem Protein des Zytoskeletts, mit der dritten, intrazellulären Schleife von alpha₂-AR zur Stabilisierung der alpha₂-AR auf der Zelloberfläche beiträgt [6]. Außerdem wurde im Falle des alpha₂-AR gezeigt, dass die dritte, intrazelluläre Schleife in den Prozess der Informationsweiterleitung in der Zelle eingebunden ist durch Interaktion mit G-Proteinen [15].

Abbildung 1.1.3: Darstellung des humanen alpha_{2b}-AR in Einzelbuchstabenkodierung. Der Karboxy-Terminus liegt intrazellulär, der Amino-Terminus befindet sich extrazellulär. Die Disulfidbrücke zwischen zwei extrazellulären Zystein-Aminosäuren ist hier der Übersichtlichkeit halber nur schematisch dargestellt [modifiziert nach 56].

1.1.4 Signaltransduktion: G-Protein gekoppelter Rezeptor und dessen Effektorsysteme

Alpha₂-AR sind Membranrezeptoren, die selbst kein Enzym darstellen, aber in der Lage sind, Enzyme indirekt zu aktivieren über sogenannte G-Proteine (Guaninnukleotid-bindende Proteine). Die G-Proteine befinden sich intrazellulär an der Zellmembran und werden von extrazellulär über den alpha₂-AR-Liganden stimuliert. Dies erfolgt durch eine Konformationsänderung der sieben Transmembranhelices des Rezeptors, welche sich auf die an den Rezeptor gekoppelten G-Proteine auswirkt. Die von den G-Proteinen aktivierten Enzyme produzieren nun Botenstoffe, die den Effekt des Rezeptorliganden bewirken. Es gibt unterschiedliche G-Proteine: stimulierende G-Proteine (G_s-Proteine) und inhibierende G-Proteine (G_i-Proteine). Im Falle des alpha₂-AR binden hauptsächlich G_i-Proteine. G-Proteine sind heterotrimere Moleküle bestehend aus einer alpha-, einer beta- und einer gamma-Untereinheit. Im inaktiven Zustand hält die alpha-Untereinheit ein Guanidindiphosphat (GDP) gebunden, im aktiven Zustand ein Guanidintriphosphat (GTP).

Bei Stimulation des alpha₂-AR erfolgt die Konformationsänderung der sieben Transmembranhelices, sodass das GDP an der alpha-Untereinheit des G_i-Proteins durch GTP ersetzt wird. Damit ist das G_i-Protein aktiviert, löst sich vom Rezeptor und zerfällt in zwei Teile: das beta/gamma-Dimer, das sich vom Rezeptor wegbewegt, und die alpha-Untereinheit mit dem gebundenen GTP, welche die Aktivierung der intrazellulären Enzyme übernimmt. Diese aktivierbaren Enzyme produzieren sekundäre Botenstoffe ("second messenger"), die den Zellstoffwechsel beeinflussen und daher als Effektorsysteme bezeichnet werden.

Abbildung 1.1.4: Schematische Darstellung eines G-Protein gekoppelten Rezeptors mit sieben hydrophoben, transmembranären Bereichen; die hydrophilen Proteinabschnitte reichen in extra- und intrazelluläres Milieu. Alpha-, beta- und gamma-Untereinheiten des G-Proteins des Rezeptors befinden sich intrazellulär: die Bindungsstelle für Rezeptorliganden ist hier durch einen Stern markiert [modifiziert nach 56].

Der alpha₂-AR beeinflusst in seiner aktivierten Form verschiedene Enzyme und Kanäle. So hemmt er die membranständige Adenylatzyklase, sodass weniger zyklisches Adenosinmonophosphat (cAMP) aus Adenosintriphosphat (ATP) entsteht. Spannungsabhängige Kalziumkanäle werden inhibiert, sodass eine Depolarisation an der präsynaptischen Membran verhindert und die Katecholaminausschüttung in den synaptischen Spalt vermindert wird. Hieraus resultiert eine verminderte Sympathikusaktivität. Ligandengesteuerte Kaliumkanäle dagegen werden durch alpha₂-AR Stimulation aktiviert, genauso die Enzyme Phospholipase D, C und A₂. Phospholipasen sind Esterasen, welche Glyzerophospholipide hydrolytisch spalten. Die Phospholipase C beispielsweise spaltet spezifisch das Phosphatidyl-Inositol-4,5bisphosphat (PIP₂) aus der Innenseite der Zellmembran, wobei das membrangebundene Diazylglyzerin (DAG) und das frei bewegliche Inositol-1,4,5-triphosphat (IP₃) als sekundäre Botenstoffe entstehen. Das DAG aktiviert die Proteinkinase C, welche durch Phosphorylierung Proteine (de-)aktiviert. Das IP₃ führt zu einer Freisetzung von Kalzium aus dem Endoplasmatischen Retikulum der Zelle, welches als dritter Botenstoff zusammen mit dem DAG die Proteinkinase C aktiviert. Neben der Aktivierung der Phospholipase C führt die alpha₂-AR Stimulierung auch zur erhöhten Aktivität der mitogen aktivierten Protein Kinase (MAP-Kinase), was Gegenstand dieser Arbeit sein soll.

1.1.5 Mitogen aktivierte Protein-Kinase

In der vorliegenden Arbeit wurde die mitogen aktivierte Protein-Kinase untersucht, um den Einfluss von Protein-Protein-Wechselwirkungen auf die physiologischen Funktionen des alpha₂-AR zu bestimmen. Dabei wurde die MAP-Kinase-Aktivierung zum Vergleich in zwei Zelllinien gemessen, wovon eine Zelllinie nur über alpha₂-AR verfügte und die andere Zelllinie sowohl alpha₂-AR als auch Amyloid Precursor Proteine (APP) exprimierte. Es war die Wechselwirkung zwischen dem apha₂-AR und dem APP von Interesse, weil bereits für ein anderes Protein aus der Genfamilie der Amyloid Precursor Proteine, das "amyloid precursor like protein1" (APLP1), eine Interaktion mit dem alpha₂-AR gezeigt werden konnte.

Mitogen aktivierte Protein-Kinasen (MAP-Kinasen) steuern den Zellzyklus über die Aktivierung von Wachstumsfaktoren. Hierbei stellen sie einen Schlüsselmechanismus dar, extrazelluläre Signale nach intrazellulär fortzuleiten. MAP-Kinasen werden durch mitogene Substanzen aktiviert. Das sind exogene Stoffe, welche die Zellteilung induzieren, z.B. epidermale Wachstumsfaktoren (EGF) und Somatomedine.

Im Falle von alpha₂-AR aktiviert die MAP-Kinase ebenfalls die Effektorsysteme des Rezeptors innerhalb der Zelle. Dazu sind Rezeptortyrosinkinasen über Adapterproteine ("growth factor receptor binding protein 2", Grb2, und "son of sevenless", SOS) mit dem RAS-Protein verbunden (siehe Abbildung 1.1.5) [57]. Bei Ligandenbindung am alpha₂-AR wird das RAS-Protein über die Adapterproteine (Grb2 und SOS) aktiviert und setzt die ProteinkinaseKaskade in Gang. Das RAS-Protein interagiert mit der Proteinkinase Raf-Kinase und phosphoryliert diese. Die auf diese Weise aktivierte Raf-Kinase stimuliert die MAP-Kinase-Kinase (MEK), welche nun die MAP-Kinase selbst phosphoryliert. Die Substrate der aktivierten MAP-Kinase sind Transkriptionsfaktoren und andere Effektorsysteme.

Abbildung 1.1.5: Schematische Darstellung der MAP-Kinase Signaltransduktionskaskade (Rezeptortyrosinkinasen \rightarrow Grb2 \rightarrow SOS \rightarrow Ras-Protein \rightarrow Raf-Kinase \rightarrow MAP-Kinase-Kinase (MEK) \rightarrow MAP-Kinase) [modifiziert nach 57]

1.1.6 Regulation der Rezeptordichte

Die physiologische Rezeptordichte und die damit verbundene Effektgröße von Liganden auf ein Gewebe werden von verschiedenen Parametern beeinflusst. Neben der Synthese von Rezeptoren im Endoplasmatischen Retikulum spielen verschiedene Mechanismen an der Zellmembran eine Rolle bei der Regulation der Rezeptordichte. Drei Mechanismen wurden hierbei genauer untersucht: die Desensitisierung, die Endozytose und die Herunterregulierung ("down-regulation") von Rezeptoren [14]. Unter Desensitisierung versteht man den Sachverhalt, dass ein Rezeptor trotz adäquater Stimulation eine geringere Ansprechempfindlichkeit aufweist. Man bezeichnet den Rezeptor in diesem Zustand als refraktär, das bedeutet, er ist nicht empfänglich für Stimulation. Die Refraktärphase wird durch zwei Proteinfamilien aufrecht erhalten: durch G-Protein gekoppelte Rezeptor-Kinasen und durch Arrestine. G-Protein gekoppelte Rezeptor-Kinasen binden an aktivierte Rezeptoren und phosphorylieren diese. An phosphorylierte Rezeptoren binden vermehrt Arrestine, welche die Signaltransduktion terminieren [14]. Durch Bindung von Arrestinen an aktivierte G-Protein gekoppelte Rezeptoren wird eine Trennung von Rezeptor und G-Protein herbeigeführt, sodass Agonisten-vermittelte Signale nicht mehr in die Zelle fortgeleitet werden. Außerdem vermitteln Arrestine die Agonisten-induzierte Internalisierung des alpha₂-AR (siehe unter 1.2). Desensitisierung geht mit einer temporär verminderten Dichte an Rezeptoren auf der Zelloberfläche einher, wobei die internalisierten Rezeptoren wieder an die Zelloberfläche zurücktransportiert werden können.

Die Endozytose ist ein weiterer Vorgang zur Regulation der Rezeptordichte. Hierbei werden G-Protein gekoppelte Rezeptoren binnen Minuten nach Agonist-induzierter Aktivierung unter Mitwirkung von Arrestinen in "Clathrin-coated pits" endozytiert [69], [17], wobei die Internalisierung des alpha_{2a}-AR Subtyps arrestinunabhängig zu geschehen scheint [14]. Nach erfolgter Endozytose können die Rezeptoren entweder wiederverwertet und an die Plasmamembran zurücktransportiert oder aber abgebaut werden. Dies geschieht durch Fusion der endozytotischen Vesikel mit Lysosomen.

Der Prozess der Herunterregulierung ("down-regulation") von G-Protein gekoppelten Rezeptoren resultiert in einer verringerten Gesamtmenge der zellulären Rezeptoren. Dies ist das Ergebnis gesteigerter lysosomaler Degradierung und verminderter messenger Ribonukleotidsäure (mRNA) der G-Protein gekoppelten Rezeptoren, sodass es zu einer verminderten Expression von alpha₂-AR kommt [16].

1.2 Interaktion des alpha₂-AR mit anderen Proteinen

Wie oben beschrieben, vermitteln alpha₂-AR ihre Effekte über Interaktionen mit G-Proteinen. Neben diesen G-Proteinen wurden in den letzten Jahren eine Reihe weiterer Proteine identifiziert, die unabhängig von den G-Proteinen ebenfalls an den alpha₂-AR binden und die Funktion des Rezeptors beeinflussen können.

Spinophilin ist eines der Proteine, das an den alpha₂-AR bindet und auf diese Weise mit allen drei Rezeptorsubtypen A, B und C des alpha₂-AR interagiert [6]. Es hat verschiedene Domänen, die unterschiedliche Bindungen und Interaktionen katalysieren, beispielsweise besitzt Spinophilin eine N-terminale, Aktin bindende Domäne, eine Phosphatase 1 bindende Domäne und eine Domäne zur Rezeptorinteraktion. Mit letzterer Domäne erfolgt die Bindung an die dritte, intrazelluläre Schleife des alpha₂-AR [49]. Hierbei kommt es zu Wechselwirkungen zwischen Spinophilin und vermutlich sowohl dem N-terminalen Bereich als auch dem C-terminalen Bereich der dritten, intrazellulären Schleife des alpha₂-AR [71]. Die Interaktion des alpha₂-AR mit Spinophilin wird durch Stimulation des alpha₂-AR durch Agonisten verstärkt. Dies ist durch die Agonisten-bedingte Konformationsänderung des alpha₂-AR zu erklären, welche die Wechselwirkungen zwischen Spinophilin und dem alpha₂-AR auf der Zelloberfläche. Außerdem fungiert Spinophilin als Bindeglied zwischen dem Rezeptor und anderen Proteinen, indem es mit einer Domäne an den alpha₂-AR bindet und mit einer anderen Domäne an ein anderes Protein [6].

Arrestine (Arrestin-2 und -3) stellen Proteine dar, die ebenfalls an alle Rezeptorsubtypen A, B und C der alpha₂-AR binden, wobei sie beim alpha_{2a}-AR keinen Effekt erzeugen [14]. Beim alpha_{2b}-AR und beim alpha_{2c}-AR vermitteln Arrestine die Agonisten-induzierte Internalisierung des alpha₂-AR. Untersuchungen dazu zeigten eine Spezifität der Proteinsubtypen von Arrestin für die jeweiligen alpha₂-AR Subtypen [13]. Arrestin-3 bindet an den alpha_{2b}- und den alpha_{2c}-AR und bewirkt eine Verlagerung des aktivierten Adrenozeptors nach intrazellulär, während Arrestin-2 diesen Effekt lediglich beim alpha_{2b}-AR hervorruft. Der Wirkmechanismus von Arrestinen wurde eingehend untersucht und es konnte gezeigt werden, dass die Bindung von Arrestinen an aktivierte alpha₂-AR eine Trennung des alpha₂-AR beendet [14]. Neben der Bindung von Arrestinen an alpha₂-AR bestehen auch direkte Interaktionen von Arrestinen mit anderen Proteinen wie z.B. Klathrin und Phosphoinositid, welche bei der Verlagerung der alpha₂-AR in die Zelle als "coated pits" (unter 1.1.6 beschrieben) mitwirken [19]. Alle diese Wechselwirkungen sind Bestandteil des Verlagerungsprozesses des alpha₂-AR in die Zelle. Es sind unterschiedliche Wege des Arrestins nach Bindung an Zellrezeptoren beschrieben. Entweder dissoziert Arrestin vom Zellrezeptor bevor dieser internalisiert wird (Klasse-A-Rezeptoren), wie beispielsweise im Fall von beta₂-AR, oder aber Arrestin wird mit dem Zellrezeptor nach intrazellulär verlagert (Klasse-B-Rezeptoren) [72], [42].

Ein weiteres Protein, welches in die Regulation des alpha_{2a}-AR eingreift, ist das 14-3-3 ζ Protein. In humanen Zellen sind sieben Isoformen von 14-3-3 Proteinen bekannt, die sich durch das Vorliegen in Form von Dimeren auszeichnen [68]. Die 14-3-3 Proteine haben verschiedene Funktionen im Bereich des Zellzyklus und zytoskeletalen Abläufen [20]. So sind beispielsweise 14-3-3 σ Proteine tumorsuppressiv [68] und 14-3-3 τ Proteinen werden antiapoptotische Effekte zugesprochen, was sich im Rahmen von Infarktgeschehen als therapeutischer Angriffspunkt herausstellen könnte [34]. Für das 14-3-3 ζ Protein wurde gezeigt, dass es wie Arrestin-3 an den C-terminalen Bereich der dritten, intrazellulären Schleife des alpha_{2a}-AR bindet [71]. Seine Affinität dem alpha_{2a}-AR gegenüber ist geringer als die Affinität von Spinophilin und Arrestin, aber dennoch könnte die Konkurrenz dieser Proteine in Bezug auf die Bindung an den alpha_{2a}-AR eine Auswirkung auf die Funktion des alpha_{2a}-AR haben [71].

Alle diese Proteine binden an die große, dritte, intrazelluläre Schleife der alpha₂-AR. Es wurden auch Proteininteraktionen am zytoplasmatischen Karboxyl-Terminus des alpha₂-AR im Bereich der vierten, intrazellulären Schleife des alpha₂-AR beschrieben, z.B. mit dem eukaryotischen Initiationsfaktor 2B (EIF2B) [29]. Der EIF-2B ist ein "Guaninnukleotid-Austausch-Protein", welches regulativ in Translationsprozesse der Zelle eingreift. Es wird vermehrt exprimiert auf der Zelloberfläche, welche mit extrazellulärem Medium in Kontakt steht. Mit seiner alpha Untereinheit bindet der EIF-2B an den C-Terminus der zytoplasmatischen Domäne von alpha_{2a,b,c}-AR und beta₂-AR, weshalb die Vermutung nahe liegt, dass EIF-2B -wie die oben erwähnten Proteine- ebenfalls fähig ist, die Adrenozeptoren zu beeinflussen. Es wird spekuliert, dass EIF-2B im Gegensatz zu den Arrestinen (funktionelle Desensibilisierung) eher verstärkend auf die Adrenozeptoren wirkt [29].

Es konnten also direkte Wechselwirkungen des alpha₂-AR mit Proteinen identifiziert werden, die einen Beitrag leisten zur Regulation der Rezeptorfunktion des alpha₂-AR. Der alpha₂-AR weist mehrere Bindungsstellen für diese Proteine auf, so binden z.B. Liganden wie Spinophilin [49], Arrestin [30] und das 14-3-3ζ Protein an die dritte, intrazelluläre Schleife des alpha₂-AR. EIF-2B und -wie erst kürzlich gezeigt werden konnte- auch das "amyloid precursor like protein 1" (APLP1) aus der Genfamilie der Amyloid Precursor Proteine binden dagegen an die vierte, intrazelluläre Domäne des alpha₂-AR [74].

1.3 Die Familie der Amyloid Precursor Proteine

An den alpha₂-AR binden Proteine aus der Familie der Amyloid Proteine (wie oben beschrieben z.B. das APLP1). Amyloid Proteine stellen eine heterogene Gruppe ubiquitär auftretender Polypeptide dar. Zu ihr wird das "beta-amyloid precursor protein" (APP) gezählt, genauso wie das "amyloid precursor like protein1" (APLP1) und das "amyloid precursor like protein 2" (APLP2). Alle drei Proteine sind Typ-I Transmembranproteine mit einer einzelnen, hydrophoben, transmembranen Region, einem großen, extrazellulären Amino-Terminus sowie einem kleine Karboxy-Terminus an der zytoplasmatischen Seite [10]. Das APP ist hauptsächlich an Synapsen lokalisiert, aber seine physiologische Funktion in den Neuronen ist noch nicht eindeutig geklärt [48]. Es wird vermutet, dass sie in die Prozesse der Synaptogenese und der synaptischen Funktion involviert sind [62], [28].

Im Zusammenhang mit der Pathogenese der Alzheimer Erkrankung spielt die Anhäufung von beta-Amyloiden eine zentrale Rolle. Der APP-Metabolismus ist bei der Alzheimer Erkrankung verändert: APP werden von Proteasen (beta- und gamma-Sekretasen) gespalten und es kommt zu einer pathologischen Akkumulation von beta-Amyloid Peptiden in sogenannten senilen Plaques. Diese senilen Plaques weisen eine Neurotoxizität auf, die sich im Untergang bestimmter neuronaler Populationen in an Alzheimer erkrankten Gehirnen manifestiert [38]. Diese Erkenntnis wird durch die Entdeckung gestützt, dass in Neuronen des Hippokampus das Vorherrschen einer geringen Menge an APP mit einer erhöhten Anzahl funktioneller Synapsen einhergeht [48]. Es liegt nahe, dass das Spaltprodukt des APP, das beta-Amyloid Protein, neurotoxisch wirkt, während das Vorliegen geringer Mengen von APP vorteilhaft für die Funktionalität von Neuronen ist. In der Behandlung der Alzheimer Erkrankung stellen die Enzyme, welche die APP-Prozessierung zu beta-Amyloid Proteinen katalysieren, einen therapeutischen Angriffspunkt dar [65]. Man vermutet, dass die Generierung von beta-Amyloiden innerhalb intrazellulärer, membrangebundener endosomaler Vesikel geschieht, was eine eingehendere Erforschung endosomaler Vorgänge erforderlich macht zur Entwicklung neuer Alzheimer Medikamente [65].

Zusammenhänge und Wechselwirkungen zwischen dem alpha₂-AR und dem vorwiegend im Gehirn auftretenden APLP1 wurden ebenfalls festgestellt. APLP1 interagiert mit allen drei humanen alpha₂-AR Subtypen in der Form, dass nach Gabe von alpha₂-AR Agonisten APLP1 verstärkt an den Rezeptor bindet [74]. Diese Assoziation verursacht eine Verlagerung des Rezeptors von der Zellmembran in intrazelluläre Abschnitte und verstärkt außerdem die Hemmung der Adenylatzyklase durch die alpha₂-AR Aktivierung [74]. Es wird diskutiert, ob die neuroprotektiven Effekte des alpha₂-AR über die verminderte Produktion des sekundären Botenstoffes cAMP vermittelt werden. Durch den niedrigeren cAMP-Spiegel in der Zelle werden Proteinkinasen seltener phosphoryliert und damit seltener aktiviert, was zu einer reduzierten Erregbarkeit der Zelle führt [74].

Um die Bedeutung der Wechselwirkungen zwischen alpha₂-AR und APP einordnen zu können, ist die Verteilung der Proteine und insbesondere die Koexistenz der Proteine *in vivo* von Interesse. Alpha₂-AR sind sowohl im zentralen als auch im peripheren Nervensystem als auch in übrigen Organen und Geweben weit verbreitet. Das APP ist ein ubiquitär vor-kommendes Polypeptid, sodass die Möglichkeit einer Interaktion zwischen alpha₂-AR und APP im gesamten Körper gegeben ist. Dies unterstreicht die Relevanz und Notwendigkeit, die genaueren Mechanismen der potentiellen Wechselwirkungen zwischen alpha₂-AR und Amylpoid Precursor Proteinen genauer zu beleuchten.

1.4 Zielsetzung der Dissertation

Der therapeutische Wert von alpha₂-AR Agonisten ist in der Anästhesiologie anerkannt. Die dämpfende Wirkung auf das sympathische Nervensystem, die analgetischen und hypnotischanxiolytischen Effekte der alpha₂-AR Agonisten sind hier wichtige Vorzüge.

Ziel der Arbeit ist die Untersuchung der Wechselwirkungen zwischen dem alpha₂-AR und dem "Amyloid Precursor Protein", welches im Rahmen der Alzheimer Erkrankung pathologische Bedeutung erlangt. Zum Einen wurde der Frage nachgegangen, inwiefern das Amyloid Precursor Protein durch Bindung an den alpha₂-AR dessen Aktivierung beeinträchtigt. Zum Anderen wurde untersucht, welchen Einfluß das Amyloid Precursor Protein in der Zelle auf den Internalisierungsvorgang des alpha₂-AR hat nach dessen Aktivierung.

Es soll untersucht werden, wie der alpha₂-AR durch das Amyloid Precursor Protein in seiner Funktion reguliert oder beeinflusst wird. Ziel ist es, die Wirkungsweise der Signaltransduktion besser zu verstehen, um eventuelle Ansätze für Pharmaka zu entdecken, welche am alpha₂-AR ansetzen, z.B. im Bereich der Neuroprotektion.

2.1 Materialien

2.1.1 Zelllinien

Für die Transfektion wurden HEK-293 Zellen ("human embryonal kidney cells") von der Deutschen Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) in Heidelberg, Deutschland, benutzt. HEK-293 Zellen wurden in DMEM ("Dulbeccos minimum essential medium") mit 10% FBS (fötales bovines Serum) und 2% Penizillin/Streptomyzin im Brutschrank bei 37°C und einer Luftzusammensetzung von 95% Raumluft und 5% CO₂ kultiviert.

Zellkulturnährmedium			
DMEM ("Dulbeccos minimum essential medium")	PAA Laboratories GmbH		
mit High Glucose (4,5 g/l)	Pasching, Österreich		
mit L-Glutamin			
mit Natriumpyruvat			
FBS (foetales bovines serum)	Invitrogen, Karlsruhe, Deutschland		
Penizillin (10 000 U/ml)	Biochrom AG, Berlin, Deutschland		
Streptomyzin (10 mg/ml)			

2.1.2 Zellequipment

Petrischalen	Cellstar	greiner	bio-one,	Frickenhausen,
94/16 mm	Deutschla	nd		
Gewebekulturflaschen, nicht-pyrogen	Cellstar	greiner	bio-one,	Frickenhausen,
250 ml, 75 cm ² , steril, DNAse und RNAse frei	Deutschla	nd		
12-Well Platte, steril	Nunclon™	Surface, F	Roskilde, Dä	nemark

2.1.3 Plasmide, Antikörper und Molekulargewichtmarker

Plasmide

pCMV Tag 4A: Stratagene, Cedar Creek, Texas, USA

EGFP: Clontech, Mountain View, CA, USA

MAP-Kinase Versuch

Antikörperkit: Cell Signaling Technologies, Beverly, Massachusetts, USA

A1: Antikörper: Phospho-MAP-Kinase-Antikörper

B1: Antikörper: Anti-Rabbit-Antikörper mit Horse Radish Peroxidase (HRP)

A2: Antikörper: Total-MAP-Kinase-Antikörper

B2: Antikörper: Anti-Rabbit-Antikörper mit Horse Radish Peroxidase (HRP)

Molekulargewichtsmarker: Page Ruler Prestained Protein Ladder, Fermentas GmbH, St. Leon-Rot, Deutschland

Internalisierungsversuch Anti-HA 12CA5 Anti-Mouse-Antikörper mit HRP

2.1.4 Verwendete Lösungen

<u>PBS (1,0 l)</u>

PBS = ,,phosphate buffer saline" 8,0 g NaCl 0,2 g KCl $1,78 g Na_2HPO_4 x 2 H_2O$ $0,24 g KH_2PO_4$ in 800 ml aqua dest. lösen titrieren auf einen pH-Wert von 7,4 ad aqua dest. auf 1,0 l autoklavieren

2x BES

(BES = N,N-bis(2-Hydroxyethyl)-2-Aminoethansulfonsäure)50 mM BES200 mM NaCl₂1,5 mM Na₂HPO₄80 ml H₂Otitrieren auf einen pH-Wert von 6,95steril filtrieren

Hungermedium 0,5% FBS, 2% Pen/Strep (für 50 ml)

DMEM ("Dulbeccos minimum essential medium")	48,75 ml
FBS (foetales bovines Serum)	0,25 ml
Pen/Strep (Penizillin, Streptomyzin)	1,00 ml

1xMAP-NLS-Ladepuffer

62,5 mM	Tris-HCl $(pH = 6,8)$
2% w/v	NLS (Natriumlaurylsulfat)
10%	Glycerol
50 mM	DTT (Dithiothreitol)
0,01% w/v	Bromophenol blau

Gele für Natriumlaurylsulfat-Polyacrylamid-Gelelektrophorese

	Trenngel 10%	Sammelgel 4,5%
Gelpuffer 1 (s.u.)	2,6 ml	
Gelpuffer 2 (s.u.)		2,6 ml
Acrylamid	2,5 ml	1,13 ml
H ₂ O	4,81 ml	6,19 ml
Temed = N,N,N',N' -	30 µl	30 µl
Tetramethylendiamin		
APS = Ammonium	60 µl	60 µl
peroxidsulfat (20%)		

Gelpuffer 1 (für 250 ml)

45,42 g TRIS (Tris(hydroxymethyl)-aminomethan) 1,00 g NLS (Natriumlaurylsulfat) titrieren auf einen pH-Wert von 8,8

Gelpuffer 2 (für 250 ml)

15,14 g TRIS 1,00 g NLS titrieren auf einen pH-Wert von 6,8

Laufpuffer (für 4,01) für NLS-PA-Gelelektrophorese

12,20 g TRIS 57,60 g Glycin 4,00 g NLS pH nicht einstellen, wenn pH nicht ungefähr 8,3 → dann verwerfen

Transferpuffer (für 1,01)

3,03 g von 25 mM TRIS 14,4 g von 192 mM Glycin pH nicht einstellen, wenn pH nicht ungefähr 8,3 → dann verwerfen

<u>TBST (für 2,5 1)</u>

TBST=,,TRIS-buffered saline Tween 20"

- 6,057 g TRIS (Tris(hydroxymethyl)-aminomethan)
 - 5 ml 0,5 mM EDTA (Ethylendiamintetraessigsäure)
- 20,25 g NaCl
- 2,5 ml Tween 20 (Polyoxyethylen(20)-sorbitan-monolaurat)

titrieren auf einen pH-Wert von 7,5

ad aqua dest. auf 2,51

Blocking Lösung (100 ml)

100 ml	TBST ("TRIS-buffered saline Tween 20")
0,3%	BSA = Bovines Serum Albumin (Albumin Fraktion 5 Protease frei)
2,0%	Milchpulver

Trispuffer (1,01)

0,1 M TRIS pH = 7,5

Glycinpuffer (1,01)

0,1 M Glycin pH = 2,5

Stocklösung (1 mg/ml, unsteril)

25 mg Poly-L-Lysin in 25 ml H₂O bidest lösen bei 4°C lagern

Arbeitslösung

1 ml Stocklösung 9 ml PBS ("phosphate buffer saline") steril filtrieren

DMEM-Ascorbat

0,3 mM Ascorbat in DMEM ("Dulbeccos minimum essential medium")

PBS Ca²⁺/Mg²⁺

0,5 mM CaCl₂ 1 mM MgCl₂ in PBS

2.1.5 Chemikalien

Natriumchlorid	Carl Roth GmbH, Karlsruhe, Deutschland		
Glyzin	Carl Roth GmbH, Karlsruhe, Deutschland		
TRIS (Tris-(hydroxymethyl)-aminomethane)	Carl Roth GmbH, Karlsruhe, Deutschland		
Tween 20	Carl Roth GmbH, Karlsruhe, Deutschland		
Triton X 100	Carl Roth GmbH, Karlsruhe, Deutschland		
Kalziumchlorid (CaCl ₂)	Carl Roth GmbH, Karlsruhe, Deutschland		
0,5 M EDTA (=Dinatriumsalz Dihydrat	Carl Roth GmbH, Karlsruhe, Deutschland		
Litrierkomplex 3)			
APS = Ammoniumperoxidsultat	Merck, KGaA, Darmstadt, Deutschland		
I emed = N,N,N',N'- I etramethylendiamin	Carl Roth GmbH, Karlsruhe, Deutschland		
Acrylamid	Carl Roth GmbH, Karlsruhe, Deutschland		
Isopropanol	Merck, KGaA, Darmstadt, Deutschland		
Reagent 1 und 2 Roti-Quant universal (Proteinkonz.)	Carl Roth GmbH, Karlsruhe, Deutschland		
BSA = Bovines Serum Albumin (Fraktion 5	Carl Roth GmbH, Karlsruhe, Deutschland		
Protease frei)			
ECL Kit	Amersham Biosciences UK Limited		
Solution A und B (Fotoentwicklung)	Little Chalfont Buckinghamshire		
	England		
Kaliumchlorid (KCI)	Carl Roth GmbH, Karlsruhe, Deutschland		
$Na_2HPO_4 \times 2H_2O$	Carl Roth GmbH, Karlsruhe, Deutschland		
= di – Natriumhydrogenphosphat Dihydrat			
KH_2PO_4	Carl Roth GmbH, Karlsruhe, Deutschland		
= Kaliumdihydrogenphosphat			
Frema Reform Instant - Magermilchpulver	DE – VAU – GE Gesundkostwerk GmbH,		
	Luneburg, Deutschland		
NLS = Natriumlauryisulfat	Carl Roth GmbH, Karlsruhe, Deutschland		
Poly-L-Lysin	Carl Roth GmbH, Karlsruhe, Deutschland		
Ascorbinsaure	Carl Roth GmbH, Karlsruhe, Deutschland		
Norepinephrin	Sanofi-Aventis GmbH, Berlin, Deutschland		
Magnesiumchlorid (MgCl ₂)	Carl Roth GmbH, Karlsruhe, Deutschland		
4% Paraformaldehyd	Sigma-Aldrich, Seelze, Deutschland		
Saccharose	Carl Roth GmbH, Karlsruhe, Deutschland		
Bromophenol blau	Sigma-Aldrich, Seelze, Deutschland		
DTT (=Dithiothreitol)	Sigma-Aldrich, Seelze, Deutschland		
Glycerol	Carl Roth GmbH, Karlsruhe, Deutschland		
1% BSA	Carl Roth GmbH, Karlsruhe, Deutschland		
O-Phenylendiamin Tabletten	Sigma-Aldrich, Seelze, Deutschland		
Schwefelsäure	Carl Roth GmbH, Karlsruhe, Deutschland		
UK14304	Carl Roth GmbH, Karlsruhe, Deutschland		

2.1.6 Geräte und Software

Brutschrank für Gewebskulturen Hera Cell	Kendro, Hanau, Deutschland					
Wasserbad	P–D Industriegesellschaft mbH					
	Prüfgerätwerk Dresden, Deutschland					
MS 1 Minishaker (für Transfektion)	IKA Works, Inc., Wilmington, NY, USA					
Mikroskop im Zelllabor	Leica DMIL Microsystems, Wetzlar GmbH,					

	-				
	Deutschland				
Bench Hera Safe	Kendro, Hanau, Deutschland				
Zählkammer: Neubauerkammer improved	Neubauer, Marienfeld, Deutschland				
Inkubator Heraeus	Kendro, Hanau, Deutschland				
Zentrifuge Sorvall Super T21	Kendro, Hanau, Deutschland				
Zentrifuge Biofuge fresco Heraeus	Kendro, Hanau, Deutschland				
Pufferkammer für Gelelektrophorese und Wet	BIO – RAD, München				
Blot					
Stuart Orbital Incubator S150	Bibby Sterilin, Staffordshire, United Kingdom				
Hyperfilm [™] ECL	Amersham Biosciences UK Limited				
	Little Chalfont Buckinghamshire				
	England				
ThermaStat plus	Eppendorf, Hamburg, Deutschland				
Pipetten	Eppendorf, Hamburg, Deutschland				
Scanner PowerLook 3	Umax Systems GmbH, Willich, Deutschland				
Kamera für Auswertung: ray test	Isotopenmessgerät GmbH, Straubenhardt,				
	Deutschland				
Genesys 10 UV	Thermospectronic, Rochester, New York, USA				
Aida Software zur Auswertung	Raytest, Straubenhardt, Deutschland				
AGFA CP1000 zur Fotoentwicklung	Mortsel, Belgium				
Tecan Sunrise (Photometer)	Tecan, Crailsheim, Deutschland				
GraphPad Prism 4.0	GraphPad Software Inc., San Diego, Kalifornien,				
	USA				

2.2 Methoden: MAP-Kinase Versuch

Die MAP-Kinase ist als Effektorsystem des alpha₂-AR identifiziert. Mit Hilfe biochemischer Methoden (Zelltransfektion) wurde der alpha₂-AR transient in HEK-293 Zellen exprimiert. Die Aktivierung des Effektorsystems erfolgte mit dem spezifischen alpha₂-AR Agonisten UK14304. Die Rezeptoraktivierung wurde anhand der MAP-Kinase-Aktivierung mittels Natriumlaurylsulfat-Polyacrylamid-Gelelektrophorese und Wet Blot Technik gemessen und durch Immunoprezipitation (Markierung mittels Antikörper) sichtbar gemacht.

2.2.1 DNA Plasmide

Plasmide sind extrachromosomale DNA- oder RNA- Moleküle, die in das Genom von Zellen integriert werden können. Die DNA-Plasmide wurden vom Leiter des Forschungslabors der Klinik für Anästhesiologie und Operative Intensivmedizin, Dr. Bernd Weber, zur Verfügung gestellt. Im Einzelnen wurden verwendet: **pCMV Tag 4A** (Stratagene, Cedar Creek, Texas, USA): Dieser eukaryontische Expressionsvektor wurde für die Klonierungen des alpha_{2a}-Adrenozeptors und von APP benutzt. Für die MAP-Kinase-Aktivierung und Internalisierungsversuche wurde dieser Vektor daher als Negativkontrolle transfiziert.

CMV-Alpha2A: Dieses Plasmid enthält die gesamte kodierende Sequenz des humanen alpha_{2a}-Adrenozeptor-Gens einschließlich einer 5`,,Kozak consensus Sequenz" im Vektor pCMVTag4A.

CMV-APP: Dieses Plasmid enthält die gesamte kodierende Sequenz des humanen APP695-Gens einschließlich einer 5`,,Kozak consensus Sequenz" im Vektor pCMVTag4A.

EGFP (Clontech, Mountain View, CA, USA): Ein Expressionsplasmid, welches das "Enhanced green fluorescent protein" kodiert, wurde als Transfektionskontrolle verwendet.

2.2.2 Zelltransfektion (Kalzium–Phosphat Präzipitation)

Als Zelltransfektion bezeichnet man das Einbringen von DNA in eukaryontische Zellen. Dafür wurden die HEK-293 Zellen einen Tag vor der Transfektion auf einer 12-Well Platte mit 120.000 Zellen pro Well ausgesät und über Nacht im Brutschrank bei 37°C inkubiert. Nach ca. 24 Stunden wurde die Transfektion nach der Kalzium-Phosphat Methode mit einer DNA-Menge von 1 µg durchgeführt. Dazu wurde 100 µl BES in fünf Eppendorfgefäße vorgelegt. In fünf weitere Eppendorfgefäße wurde jeweils 10 µl CaCl₂ mit zuvor berechneter Menge an sterilem H₂O gegeben, sodass CaCl₂, H₂O und DNA insgesamt 100 µl ergaben. Die zu transfizierende DNA wurde in die zweite Serie von Eppendorfgefäßen zu dem CaCl₂ und dem H₂O beigegeben. Der Inhalt dieser Eppendorfgefäße wurde auf dem Minishaker Vortex langsam, Tropfen für Tropfen, in das erste Eppendorfgefäß zu dem BES pipettiert. BES, CaCl₂, H₂O und DNA inkubierten bei Raumtemperatur für 10 Minuten. Nun wurde der Inhalt des Eppendorfgefäßes unter Schwenken in die Wells einer 12-Well Platte mit HEK-293 Zellen pipettiert und im Brutschrank bei 37°C für ca. 30 Stunden inkubiert.

2.2.3 Nährmediumwechsel

Der Nährmediumwechsel wurde vorgenommen, um jegliche zusätzliche Aktivierung der MAP-Kinase durch Wachstumsfaktoren im Nährmedium zu verhindern. Durch die gleichzeitige Synchronisierung der Zellzyklen wurde eine zusätzliche Verstärkung der Effekte erreicht.

Ca. 30 Stunden nach der Transfektion wurde das Nährmedium in den Wells durch ein Nährmedium mit reduziertem FBS-Gehalt (0,5% FBS) ersetzt. Bei der Transfektionskontrolle wurde lediglich ein Nährmediumwechsel mit demselben 10% igem FBS vorgenommen.

2.2.4 Alpha_{2a}-AR-Agonistenstimulation

Zunächst wurde der Erfolg der Transfektion anhand der Transfektionsrate der Transfektionskontrolle unter dem Fluoreszenzmikroskop überprüft. Dazu wurden unter mikroskopischer Sicht die Anzahl der sich im Blickfeld befindlichen HEK-293 Zellen ausgezählt. Nach Einschalten des Fluoreszenzlichtes leuchteten diejenigen HEK-293 Zellen grünlich auf, welche das EGFP ("enhanced green fluorescent protein") exprimierten. Diese fluoreszierenden Zellen wurden ebenfalls ausgezählt und so der Anteil der transfizierten Zellen ermittelt. Erfolgreiche Transfektionen zeigten eine Transfektionsrate von >70%. In diesem Fall wurde mit dem Experiment fortgefahren, andernfalls wurde die Transfektion wiederholt. Vor der Natriumlaurylsulfat-Polyacrylamid-Gelelektrophorese erfolgte die Aktivierung der transfizierten HEK-293 Zellen mittels des alpha₂-Agonisten UK14304.

Zur Aktivierung wurde eine Lösung aus 20 µl 10mM UK14304 und 180 µl PBS hergestellt. Als Einwirkzeiten wurden null Minuten, drei Minuten und dreißig Minuten gewählt und die Zellen danach in Eppendorfgefäße geerntet und auf Eis gestellt. Nach Zentrifugation bei vier Grad Celsius und 2000 Rotationen pro Minute (rpm) für fünf Minuten, erhielt man ein Pellet mit Überstand in jedem Eppendorfgefäß. Die Überstände wurden verworfen und die Pellets auf Eis gelagert. In jedes Eppendorfgefäß wurde 60 µl MAP-NLS-Ladepuffer zum Pellet gegeben und sorgfältig resuspendiert. Nun wurden die Eppendorfgefäße für fünf Minuten ins Ultraschallbad gegeben und danach für fünf Minuten bei 95°C inkubiert. Durch die Hitze wurden die Zellen zerstört, sodass die einzelnen Proteine dann später nach ihrem Molekulargewicht in der Natriumlaurylsulfat-Polyacrylamid-Gelelektrophorese aufgetrennt werden konnten. Zuletzt erfolgte eine Zentrifugation über zehn Minuten bei vier Grad Celsius und 13.000 rpm. Die Proben wurden entweder direkt auf die Natriumlaurylsulfat-Polyacrylamid-Gelelektrophorese geladen oder bei -20°C eingefroren.

2.2.5 *Natriumlaurylsulfat-Polyacrylamid-Gelelektrophorese*

Zunächst wurden unter dem Abzug die Gele für die Natriumlaurylsulfat-Polyacrylamid-Gelelektrophorese (NLS-PA-Gelelektrophorese) gegossen. Hierbei war darauf zu achten, dass das 10% ige Trenngel bis etwa 2/3 der Glasplattenhöhe aufgefüllt wurde. Um möglicher Bläschenbildung zwischen den Gelen vorzubeugen und eine glatte Trenngeloberkante zu erzielen, wurde Isopropanol auf das Trenngel aufgetragen. Nach zehnminütiger Pause, in der das Gel sich verfestigte, wurde das Isopropanol abgetupft und das 4,5% ige Sammelgel auf die Schicht des Trenngels aufgegossen. Während des Gießen des Gels wurden die Proben aus dem Gefrierschrank genommen und im Thermostart Plus Eppendorf für zehn Minuten bei 70°C aufgetaut. Die Proben und der Marker "Fermentas Page Ruler" wurden nach dem Auftauen auf Eis gestellt und die NLS-PA-Gelelektrophorese vorbereitet. Hierzu wurden die Pufferkammern mit NLS-Laufpuffer aufgefüllt und die Probenfächer im Gel gegeben und bei einer konstanten Spannung von 120 Volt wurde die NLS-PA-Gelelektrophorese für ca. 1½ Stunden eingeschaltet. Nun befanden sich die Proteine der alpha₂-AR aktivierten HEK-293 Zellen gemäß ihrem Molekulargewicht aufgetrennt in dem Trenngel.

2.2.6 Wet Blot-Technik

Mit Hilfe der Wet Blot Technik werden die im Gel enthaltenen Proteine auf eine Membran transferiert. Der Zusammenbau des Wet Blots geschah in mit Transferpuffer gefüllten Schalen, sodass sämtliche Materialien ständig mit Transferpuffer feucht gehalten wurden. Nach folgendem Schema wurde die Wet Blot Kammer zusammengebaut: auf die schwarze Seite des Netzes schichtete man ein Faserplättchen, ein Filterpapier, das Gel, eine Membran, erneut ein Filterpapier und ein Faserplättchen. Vorsichtig wurden die Netze nun aufeinander geklappt, möglichst ohne Luftblasen zwischen Gel und Membran zu erzeugen. Die Netze wurden nun in die Haltekassetten gesteckt und gemeinsam mit einer Schale mit Eis zur Kühlung in den mit Transferpuffer gefüllten Lösungstank gestellt. Nun wurde der Wet Blot über Nacht bei konstanter Spannung von 25 Volt in einem Kühlschrank auf einem Magnetrührer platziert.

Abb. Nr. 2.2.6: Aufbau des Wet-Blot

2.2.7 Fotoentwicklung

Am nächsten Tag wurde die Membran aus dem Wet Blot genommen und über Nacht in eine Blocking Lösung gegeben. Diese bewirkte die Blockierung unspezifischer Bindungsstellen.

Am darauf folgenden Tag wurde der A1 Phospho-MAP-Kinase-Antikörper auf die Membran aufgebracht. Dies geschah mittels Einschweißen der Membran in Plastikfolie und Hinzugabe des Antikörpers in einer 1:1000 Verdünnung mit Blocking Lösung. Die auf diese Weise eingeschweißte Membran wurde erneut über Nacht im Kühlschrank gelagert.

Am nächsten Tag wurde die Membran mit TBST Puffer gewaschen. Dies geschah dreimal für jeweils fünf Minuten im Stuart Orbital Incubator S150. Nun wurde die Membran erneut in Blocking Lösung gelegt und eine Stunde bei Raumtemperatur geblockt. Danach wurde die Membran in 1:1000 Verdünnung mit der Blocking Lösung mit dem B1 Anti-Rabbit-Antikörper mit Horse Radish Peroxidase (HRP) für eine Stunde inkubiert. Nach weiteren drei Waschvorgängen der Membran für jeweils fünf Minuten in TBST Puffer wurde die Lichtreaktion mit Hilfe des ECL Kits durchgeführt.

Zur Entwicklung wurde der HyperfilmTM ECL und als Entwicklungslösung die Lösung A (1000 µl) und die Lösung B (25 µl) von Amersham Biosciences UK verwandt. Nach Mischen der Lösungen wurden 500 µl des Gemisches auf Frischhaltefolie gegeben und die Membran mit der Proteinseite dort heraufgelegt. Nach fünf Minuten Wartezeit wurde ein Hyperfilm ECL auf die Membran gelegt und der Film nach ca. zwei Minuten Exposition in der AGFA CP1000 entwickelt. Damit wurde die Phospho-MAP-Kinase-Aktivierung festgehalten.

Um die Total-MAP-Kinase-Aktivierung zu messen, wurde die Membran zunächst dreimal für fünf Minuten mit Glyzinpuffer, anschließend dreimal für fünfzehn Minuten mit Trispuffer gewaschen und über Nacht im Kühlschrank in Blocking Lösung geblockt. Es wurde auf gleiche Weise verfahren wie mit dem Phospho-MAP-Kinase-Antikörper: die Membran wurde mit dem Total-MAP-Kinase-Antikörper in 1:1000 Verdünnung mit Blocking Lösung in Plastikfolie eingeschweißt und über Nacht im Kühlschrank gelagert. Am darauffolgenden Tag wurde mit TBST Puffer dreimal für jeweils fünf Minuten im Stuart Orbital Incubator S150 gewaschen und dann eine Stunde bei Raumtemperatur mit Blocking Lösung geblockt. Danach wurde die Membran in 1:1000 Verdünnung mit der Blocking Lösung und dem B2 Anti-Rabbit-Antikörper mit Horse Radish Peroxidase (HRP) für eine Stunde inkubiert. Nach weiteren drei Waschvorgängen der Membran für jeweils fünf Minuten in TBST Puffer wurde die Lichtreaktion der Membran mittels Belichtung eines Hyperfilms festgehalten, der nach ca. fünf Minuten Exposition entwickelt wurde.

2.2.8 Auswertung

Scanner PowerLook 3	Umax Systems GmbH, Willich, Deutschland					
Kamera für Auswertung: ray test	Isotopenmessgerät ray test GmbH, Straubenhardt, Deutschland					
Aida Software für Auswertung	ray test, Straubenhardt, Deutschland					

2.3 Methoden: Internalisierungsversuch

Für alpha₂-AR wurde beschrieben, dass sie nach Agonist-induzierter Stimulation internalisieren, d.h. die Rezeptoren verlagern sich von der Zelloberfläche in intrazelluläre Kompartimente [13].

2.3.1 Zelltransfektion (Kalzium–Phosphat Präzipitation)

Die Zelltransfektion wurde wie unter 2.2.2 durchgeführt.

2.3.2 Umsetzen der Zellen in 12-Well Platten

Vor dem Aussäen der transfizierten HEK-293 Zellen auf die 12-Well Platten wurden diese mit Poly-L-Lysin beschichtet. Dazu wurde eine Stocklösung 1 mg/ml hergestellt und mit ihrer Hilfe eine Arbeitslösung (0,1 mg/ml). Die 12-Well Platten wurden für dreißig Minuten mit der Arbeitslösung inkubiert und dann vorsichtig mit 2xPBS (jeweils 500 µl) gewaschen. Nun wurde die Anzahl der Zellen mit Hilfe einer Neubauerzählkammer bestimmt, sodass je 200000 transfizierte Zellen pro Well auf die 12-Well Platten ausgesät wurden.

2.3.3 Internalisierung

Ca. 12 Stunden vor dem Internalisierungsversuch wurde den Zellen das Serum entzogen und stattdessen Hungermedium zugefügt. Der Internalisierungsversuch wurde am nächsten Vormittag durchgeführt. Zunächst wurden die Zellen mit 100 μ M Epinephrin in DMEM mit Zusatz von 0,3 mM Ascorbat für 30 Minuten stimuliert [13]. Der Agonist wurde mit eiskaltem PBS Ca²⁺/Mg²⁺ zweimal ausgewaschen. Zur Fixation der Zellen wurden sie für 20 Minuten mit einer Lösung aus 4% Paraformaldehyd und 0,12 M Saccharose behandelt. Nach dreimaligem Waschen mit eiskaltem PBS Ca²⁺/Mg²⁺ wurden die Zellen mit 1% BSA (in PBS) Blocking Medium für 30 Minuten inkubiert, um unspezifische Bindungen zu blockieren. Dem

Blocking Medium wurde nun der Antikörper Anti-HA 12CA5 in 1:100 Verdünnung zugefügt, welcher die nicht internalisierten alpha₂-AR auf der Zellmembran markieren sollte. Nach einstündiger Inkubation des Antikörpers bei 37°C wurde selbiger durch dreimaliges Waschen für jeweils fünf Minuten mit dem PBS Ca²⁺/Mg²⁺ bei Raumtemperatur von den Zellen entfernt. Nun wurden die Zellen mit dem Anti-Mouse-Antikörper mit HRP (Horse Radish Peroxidase) in 1:1000 Verdünnung für eine Stunde inkubiert und mit PBS Ca²⁺/Mg²⁺ erneut dreimal gewaschen. Die O-Phenylendiamin Tabletten (Farbsubstrat) wurden für ca. 20 Minuten bis eine Stunde bei 15°C den Zellen zugegeben und die Farbentwicklung wurde durch 1 M Schwefelsäure angehalten. Die Messung der Farbentwicklung erfolgte im Photometer bei 490 nm.

2.4 Statistische Auswertung

Zur statistischen Auswertung wurde das Programm "GraphPad Prism 4.0" (GraphPad Software, San Diego, Kalifornien, USA) herangezogen. Aufgrund der Annahme einer nonparametranen Verteilung erfolgte die Prüfung auf signifikante Unterschiede von Werten der MAP-Kinase-Aktivität bzw. Internalisierung mittels des Mann-Whitney Tests. Diejenigen p-Werte, die kleiner als 0,05 waren, wurden als signifikant gewertet.

3 Ergebnisse

3.1 Optimierung des MAP-Kinase Assays

Da der MAP-Kinase Assay im Labor nicht etabliert war, stand am Anfang der Versuchsreihe eine Phase der Optimierung der Reaktionsbedingungen. Zunächst wurde nur der alpha_{2a}-AR (CMV-Alpha2A) in die HEK-293 Zellen transfiziert, wobei die verwendeten Konzentrationen (1µg DNA/120.000 HEK-293 Zellen) nach vorherigen Veröffentlichungen gewählt wurden [14]. Es sollte untersucht werden, welchen Einfluss die Einwirkzeit von alpha_{2a}-AR Agonisten auf die alpha_{2a}-AR Aktivierung hat, d.h. nach welcher Stimulationszeit die Aktivierung des alpha_{2a}-AR gemessen an der MAP-Kinase-Aktivität am größten ist. Die folgende Tabelle zeigt den zeitlichen Verlauf der MAP-Kinase-Aktivität.

Zeit (min)	n ₁	n ₂	n ₃	n ₄	Mittelwert	Standard- abweichung
0	0 %	0 %	0 %	0 %	0 %	
0,5	261 %	189 %	194 %	153 %	199 %	45 %
1	240 %	269 %	312 %	235 %	264 %	35 %
2	311 %	262 %	326 %	197 %	274 %	58 %
3	371 %	414 %	319 %	290 %	348 %	55 %
4	235 %	210 %	239 %	147 %	208 %	43 %
5	194 %	196 %	278 %	182 %	213 %	44 %
10	11 %	8 %	20 %	65 %	26 %	26 %
15	31 %	-9 %	20 %	0 %	10 %	18 %
30	53 %	-17 %	64 %	25 %	31 %	36 %
60	-7 %	-22 %	22 %	39 %	8 %	28 %

Tabelle 3.1: Zeitlicher Verlauf der MAP-Kinase-Aktivität an alpha_{2a}-AR

Zum Vergleich der einzelnen Werte wurde diejenige Probe, welche keiner alpha_{2a}-AR Agonisteneinwirkung (0 Minuten Einwirkzeit) ausgesetzt wurde, als Ausgangswert (0%) gesetzt. Alle Werte der viermalig durchgeführten Experimente (n=4) sind relativ und stehen in Bezug zu diesem Ausgangswert. Einer MAP-Kinase-Aktivierung entspricht also ein Wert >0%. Nach Stimulation der alpha_{2a}-AR ist ein schneller Anstieg der alpha_{2a}-AR-Aktivität zu verzeichnen, die durchschnittliche MAP-Kinase-Aktivität beträgt nach 30 Sekunden 199% ±45%. Das Maximum der alpha_{2a}-AR Aktiviät mit einer MAP-Kinase-Aktivität von 348% ±55% ist erreicht nach einer alpha_{2a}-AR Agonisteneinwirkzeit von 3 Minuten. Bis zu einer alpha_{2a}-AR Agonisteneinwirkzeit von 5 Minuten bleibt die MAP-Kinase-Aktivität relativ hoch bei ca. 210% ±44%, um dann stark abzufallen. Nach 10 Minuten alpha_{2a}-AR Agonisteneinwirkzeit erreicht die MAP-Kinase-Aktivität 26% \pm 26% und nach 60 Minuten ist die MAP-Kinase-Aktivität wieder auf den Ausgangswert abgesunken. Die statistische Analyse mit dem Mann-Whitney Test ergab signifikante Unterschiede in der MAP-Kinase-Aktivierung im Bereich von 30 Sekunden bis fünf Minuten. Der p-Wert gegen den Ausgangswert Null beträgt hier jeweils p<0,0286.

Abbildung 3.1: Graphische Darstellung der durchschnittlichen MAP-Kinase-Aktivierung am alpha2a-AR in relativen Zahlen über den Zeitraum von einer Stunde. Die Daten sind Mittelwerte aus 4 unabhängigen Experimenten (n1-n4). Die statistische Analyse wurde mittels des Mann-Whitney Tests durchgeführt. (*p<0,0286 gegen den Ausgangswert Null)

3.2 MAP-Kinase Assay und Cotransfektion von alpha_{2a}-AR und APP

Nach Ermittlung der idealen Bedingungen wurden Cotransfektionen der Plasmide vom alpha_{2a}-AR (CMV-Alpha2A) und vom APP (CMV-APP) durchgeführt. 48 Stunden nach der Transfektion wurden die cotransfizierten HEK-293 Zellen mit 10 μ M UK14304 für 3 Minuten inkubiert. Die Werte der MAP-Kinase-Aktivierung wurden nach NLS-PA-Gelelektrophorese und Wet Blot Technik densitometrisch ausgewertet. Um auch hier den zeitlichen Verlauf der MAP-Kinase-Aktivierung zu untersuchen, wurden die Werte für 10 μ M UK14304 auch nach 30 Minuten Einwirkzeit gemessen. Abbildung 3.2 zeigt exemplarisch die Wetblots nach MAP-Kinase-Aktivierung (Versuch n₂).

Wetblot Phospho-MAP-Kinase-Antikörper

Bande	1	2	3	4	5	6	7	8	9
Phospho-	APP transfizierte Zellen			alpha ₂ -AR transfizierte			alpha ₂ -AR + APP		
MAP-Kinase			Zellen		trans	fizierte Z	ellen		
Zeit (min)	30	3	0	30	3	0	30	3	0

Wetblot Total-MAP-Kinase-Antikörper

Bande	10	11	12	13	14	15	16	17	18
Total-MAP-	APP transfizierte Zellen			alpha ₂ -AR transfizierte			$alpha_2$ -AR + APP		
Kinase					Zellen		trans	fizierte Z	ellen
Zeit (min)	30	3	0	30	3	0	30	3	0

Abbildung 3.2:

Beispielhafte Abbildung der Wetblots nach MAP-Kinase-Aktivierung (Versuches n2).

Der obere Wetblot mit den Banden 1 bis 9 wurde mit dem Phospho-MAP-Kinase-Antikörper behandelt. Der untere Wetblot mit den Banden 10 bis 18 wurde mit dem Total-MAP-Kinase-Antikörper behandelt. Die Verteilung der Proben zeigen die darunterliegenden Tabellen. Nach Ermitteln der optischen Dichtewerte der MAP-Kinase Banden (siehe Markierung) erfolgte die Berechnung des aktivierten Anteils der MAP-Kinase (mittels Phospho-MAP-Kinase-Antikörper dargestellt) an der Gesamtmenge der MAP-Kinase (mittels Total-MAP-Kinase-Antikörper dargestellt) zu verschiedenen Zeitpunkten (30, 3, 0 Minuten).

Die folgenden Tabellen zeigen den zeitlichen Verlauf der MAP-Kinase-Aktivität bei Transfektion der unterschiedlichen Plasmide.

Zeit (min)	n ₁	n ₂	n ₃	n ₄	Mittelwert	Standard- abweichung
0	0 %	0 %	0 %	0 %	0 %	
3	-12 %	-29 %	-19 %	5 %	-14 %	15 %
30	-30 %	-48 %	-25 %	22 %	-20 %	30 %

Tabelle 3.2a: Zeitlicher Verlauf der MAP-Kinase-Aktivität bei Transfektion von APP

Tabelle 3.2b: Zeitlicher Verlauf der MAP-Kinase-Aktivität bei Transfektion von alpha2a-AR

Zeit (min)	n ₁	n ₂	n ₃	n ₄	Mittelwert	Standard- abweichung
0	0 %	0 %	0 %	0 %	0 %	
3	70 %	66 %	255 %	313 %	176 %	127 %
30	68 %	125 %	44 %	89 %	81 %	34 %

Tabelle 3.2c: Zeitlicher Verlauf der MAP-Kinase-Aktivität bei Transfektion der Negativkontrolle

Zeit (min)	n ₁	n ₂	n ₃	n ₄	Mittelwert	Standard- abweichung
0	0 %	0 %	0 %	0 %	0 %	
3	-15 %	-12 %	4 %	-8 %	-8 %	8 %
30	11 %	-17 %	-3 %	7 %	-1 %	12 %

Tabelle 3.2d: Zeitlicher Verlauf der MAP-Kinase-Aktivität bei Cotransfektion des alpha2a-AR und APP

Zeit (min)	n ₁	n ₂	n ₃	n₄	Mittelwert	Standard- abweichung
0	0 %	0 %	0 %	0 %	0 %	
3	57 %	58 %	90 %	172 %	94 %	54 %
30	88 %	13 %	48 %	29 %	45 %	32 %

Auch hier stellen die Proben, die keine alpha_{2a}-AR Agonisteneinwirkung (0 Minuten Einwirkzeit) erfahren haben, die Bezugswerte für die folgenden 4 Versuchsreihen dar. Es stellte sich heraus, dass keine MAP-Kinase-Aktivierung gemessen werden konnte in Zellen, die nur das APP (CMV-APP) transfiziert hatten (siehe Tab. 3.2a). Ebenso verhielten sich die Messergebnisse bei der Negativkontrolle (pCMV Tag 4A), bei der ein leerer Vektor transfiziert worden war (siehe Tab.3.2c).

Dagegen ist stets eine MAP-Kinase-Aktivierung zu verzeichnen, wenn der alpha_{2a}-AR (CMV-Alpha2A) transfiziert wurde. Allerdings ist eine stärkere MAP-Kinase-Aktivierung erkennbar in der Messreihe, bei welcher nur der alpha_{2a}-AR allein transfiziert wurde (siehe

Tab.3.2b). Hier liegen die MAP-Kinase-Aktivierungswerte nach 3 Minuten alpha_{2a}-AR Agonisteneinwirkzeit bei 176% ±127%, um dann nach 30 Minuten alpha_{2a}-AR Agonisteneinwirkzeit auf 81% ±34% abzufallen. Die statistische Analyse mit dem Mann-Whitney Test ergab signifikante Unterschiede in der MAP-Kinase-Aktivierung des alpha_{2a}-AR. Die p-Werte nach 3 Minuten und nach 30 Minuten Agonisteneinwirkzeit betragen jeweils p<0,0286 gegen die Kontrolle. In der Messreihe der Cotransfektion vom alpha2a-AR und APP (CMV-Alpha2A + pCMV Tag 4A) zeigte sich ebenfalls eine MAP-Kinase-Aktivierung (siehe Tab.3.2d), jedoch fiel diese niedriger aus als bei der Messreihe mit alleiniger Transfektion des alpha_{2a}-AR. Bei der Cotransfektion (CMV-Alpha2A + pCMV Tag 4A) lag die MAP-Kinase-Aktivierung nach 3 Minuten alpha_{2a}-AR Agonisteneinwirkzeit bei 94% ±54%, und fiel dann nach 30 Minuten alpha_{2a}-AR Agonisteneinwirkzeit auf 45% ±32% ab. Auch hier ergab die Analyse mit dem Mann-Whitney Test statistisch signifikante Unterschiede in der MAP-Kinase-Aktivierung des alpha_{2a}-AR. Die p-Werte betragen nach 3minütiger bzw. 30minütiger Agonisteneinwirkzeit jeweils p<0,0286 gegen die Kontrolle. Im Vergleich von alpha_{2a}-AR transfizierten Zellen gegen Zellen mit Expression von alpha2a-AR und APP ergab die stastistische Auswertung weder nach 3 Minuten noch nach 30 Minuten Agonistenstimulation signifikante Unterschiede in der MAP-Kinase-Aktivierung.

Abbildung 3.3 a: Graphische Darstellung der durchschnittlichen MAP-Kinase-Aktivierung nach 3minütiger alpha2a-AR Agonisteneinwirkzeit bei alleiniger Transfekion von APP und alpha_{2a}-AR sowie bei Cotransfektion von alpha_{2a}-AR und APP. Die Daten sind Mittelwerte aus 4 unabhängigen Experimenten (n1-n4). Die statistische Analyse wurde mittels des Mann-Whitney Tests durchgeführt. (* und ** sind p<0,0286 gegen die Negativkontrolle)

Abbildung 3.3 b: Graphische Darstellung der durchschnittlichen MAP-Kinase-Aktivierung nach 30minütiger alpha2a-AR Agonisteneinwirkzeit bei alleiniger Transfektion von APP und alpha_{2a}-AR und bei Cotransfektion von alpha_{2a}-AR und APP. Die Daten sind Mittelwerte aus 4 unabhängigen Experimenten (n1-n4). Die statistische Analyse wurde mittels des Mann-Whitney Test durchgeführt. (* und ** sind p<0,0286 gegen die Negativkontrolle)

3.3 Optimierung des Internalisierungsversuches

Zunächst mussten die idealen Bedingungen der Internalisierungsversuche ermittelt werden. In dieser Messreihe wurden jeweils der alpha_{2a}-AR und der alpha_{2b}-AR allein in HEK-293 Zellen transfiziert. Die folgenden Tabellen zeigen den zeitlichen Verlauf der Internalisierung.

Zeit (min.)	n ₁	n ₂	n ₃	n ₄	Mittelwert	Standard- abweichung
0	100 %	100 %	100 %	100 %	100 %	
1	83 %	70 %	113 %	92 %	89 %	18 %
2	84 %	74 %	129 %	93 %	95 %	24 %
5	86 %	136 %	71 %	102 %	99 %	28 %
10	99 %	81 %	89 %	115 %	96 %	15 %
30	90 %	64 %	126 %	129 %	102 %	31 %
60	130 %	114 %	91 %	121 %	114 %	17 %

Tabelle 3.3a: Zeitlicher Verlauf der Internalisierung bei Transfektion von alpha2a-AR

Zeit (min.)	n ₁	n ₂	n ₃	n ₄	Mittelwert	Standard- abweichung
0	100 %	100 %	100 %	100 %	100 %	
1	81 %	92 %	108 %	92 %	93 %	11 %
2	71 %	103 %	97 %	86 %	89 %	14 %
5	63 %	91 %	77 %	40 %	68 %	22 %
10	86 %	94 %	61 %	51 %	73 %	20 %
30	53 %	48 %	85 %	68 %	64 %	17 %
60	49 %	84 %	103 %	88 %	81 %	23 %

Tabelle 3.3b: Zeitlicher Verlauf der Internalisierung bei Transfektion von alpha_{2b}-AR

Als Bezugspunkt (100%)galt derjenige Wert, welcher ohne Agonistenstimulation gemessen wurde. Dieser Wert spiegelte die Menge an alpha₂-AR wieder, welche sich vor der Anregung der alpha₂-AR durch Adrenozeptoragonisten auf der Membran befand. In dem Fall, dass der alpha₂-AR aktiviert wurde und nicht internalisierte, also auf der Zelloberfläche verblieb, hat der Antikörper Anti-HA 12CA5 an eine spezifische Sequenz (HA-Tag) auf der Außenseite des alpha₂-AR gebunden. An den Antikörper Anti-HA 12CA5 lagerte sich nun der zugegebene sekundäre Antikörper Anti-Mouse-Antikörper mit HRP (Horse Radish Peroxidase) an. Die O-Phenylendiamin Tabletten (Farbsubstrat) wurden zugefügt und durch die HRP umgesetzt, was sich in einer Gelbfärbung niederschlug. Folglich bedeutete eine intensive Gelbfärbung, dass ein Großteil der Antikörper Anti-HA 12CA5 und damit auch das Gros der sekundären Anti-Mouse-Antikörper mit HRP an die alpha₂-AR an der Zellmembranaußenfläche hatte binden können. Im Gegenschluss ging eine geringfügige Gelbfärbung mit einer hohen Internalisierungsrate einher.

Aus Tabelle 3.3a ist ersichtlich, dass die Signalleuchtstärke der alpha_{2a}-AR zunächst abnahm, d.h. die Werte waren <100%. Im ersten, zweiten und vierten Versuch der alpha_{2a}-AR Testreihe sanken die Messwerte in der ersten und in der zweiten Minute nach der Rezeptoraktivierung, um dann wieder anzusteigen und nach einer Stunde Werte von >100% zu zeigen. Der alpha_{2a}-AR hatte demnach wenig Internalisierung erfahren.

Die Messwerte des alpha_{2b}-AR (siehe Tab.3.3b) hingegen sanken nach Agonistenstimulation stetig ab (mit Ausnahme der dritten Versuchsreihe). Im Durchschnitt waren nur 81% \pm 23% der ursprünglichen 100% der alpha_{2b}-AR auf der Zellmembran zu detektieren eine Stunde nach alpha_{2b}-AR Stimulation. Im Gegensatz zum alpha_{2a}-AR internalisierte der alpha_{2b}-AR also in stärkerem Maße.

3.4 Internalisierung und Cotransfektion von alpha_{2a/b}-AR und APP

Es wurden sowohl der alpha_{2a}-AR mit dem APP als auch der alpha_{2b}-AR mit dem APP cotransfiziert, um einen möglichen Einfluss des APP auf den Internalisierungsprozess der alpha_{2a/b}-AR zu untersuchen. Die folgenden Tabellen zeigen den zeitlichen Verlauf der Internalisierung.

Zeit (min.)	n ₁	n ₂	n ₃	n ₄	Mittelwert	Standard- abweichung
0	100 %	100 %	100 %	100 %	100 %	
5	93 %	89 %	99 %	90 %	93 %	5 %
10	91 %	111 %	81 %	95 %	94 %	13 %
30	110 %	101 %	95 %	112%	104 %	8 %

Tabelle 3.4a: Zeitlicher Verlauf der Internalisierung bei Cotransfektion von alpha_{2a}-AR und APP

Tabelle 3.4b: Zeitlicher	Verlauf der	Internalisierung bei	Cotransfektion	von alpha _{2b} -AR und APP

Zeit (min.)	n ₁	n ₂	n ₃	n₄	Mittelwert	Standard- abweichung
0	100 %	100 %	100 %	100 %	100 %	
5	82 %	92 %	50 %	65 %	73 %	19 %
10	79 %	84 %	60 %	48 %	68 %	16 %
30	77 %	56 %	45 %	83 %	65 %	18 %

Bei Cotransfektion von alpha_{2a}-AR und APP wurde 5, 10 und 30 Minuten nach Adrenozeptorstimulation durch Agonisten die Intensität der Gelbfärbung bestimmt (siehe Tab. 3.4a). Hierbei kam es zunächst zu einem Abfall der Werte nach fünf Minuten Agonistenstimulation, aber schon nach 10 Minuten stiegen die Messwerte wieder und hatten in der Regel nach 30 Minuten den Ausgangswert von 100% erreicht.

Bei Cotransfektion von alpha_{2b}-AR und APP (siehe Tab. 3.4b) wurde 5, 10 und 30 Minuten nach Adrenozeptorstimulation durch Agonisten die Intensität des Leuchtsignals gemessen. Es wurde ein kontinuierliches Absinken des Signals beobachtet vom Ausgangswert 100% auf im Durchschnitt 65% \pm 18% im Zeitraum bis 30 Minuten nach Agonistenstimulation.

Die statistische Analyse mit dem Mann-Whitney Test ergab weder für den alpha_{2a}-AR noch für den alpha_{2b}-AR signifikante Unterschiede im Internalisierungsverhalten bei Anwesenheit von APP.

Abbildung 3.4: Internalisierungsverhalten von alpha_{2b/a}-**AR** bei Transfektion von alpha_{2b}-AR allein und bei Cotransfektion von alpha_{2b}-AR mit APP nach 5 Minuten; und Internalisierungsverhalten bei Transfektion von alpha2a-AR allein und bei Cotransfektion von alpha2a-AR mit APP nach 5 Minuten. Es bestehen keine statistisch signifikanten Unterschiede zwischen der alleinigen Transfektion von alpha_{2b/2a}-AR und der Cotransfektion von alpha_{2b/2a}-AR mit APP.

4 Diskussion

4.1 Zusammenfassung der Ergebnisse

In dieser Arbeit wurde der alpha₂-AR anhand seines Signaltransduktionsweges (MAP-Kinase) untersucht. Es wurde zunächst nur der alpha_{2a}-AR in HEK-293 Zellen transfiziert, durch Agonisten stimuliert und das Maß und der zeitliche Verlauf an MAP-Kinase-Aktivierung ermittelt. Es stellte sich heraus, dass das Maximum an MAP-Kinase-Aktivität nach 3 Minuten alpha_{2a}-AR Agonistenstimulation zu verzeichnen war. Außerdem wurde eine Cotransfektion von alpha_{2a}-AR und dem Amyloid Precursor Protein (APP) durchgeführt, um einen eventuellen Einfluss dieses Proteins zu beobachten. Nach Agonistenstimulierung am alpha_{2a}-AR (siehe 3.1) wurde ein schneller Anstieg der MAP-Kinase-Aktivität beobachtet, welcher seinen Höhepunkt bei einer MAP-Kinase-Aktvität von 348% ±55% nach ca. 3 Minuten alpha_{2a}-AR Agonistenstimulation ereichte, um nach ca. 10 Minuten wieder abgefallen zu sein auf 26% ±26%. Bei der Cotransfektion von alpha_{2a}-AR und APP (siehe 3.2) wurde ebenfalls eine MAP-Kinase-Aktivierung verzeichnet, welche nach 3minütiger Stimulation 94% ±54% und nach 30minütiger Stimulation 45% ±32% betrug.

Neben dem Signaltransduktionsweg des alpha₂-AR wurde auch sein Internalisierungsverhalten untersucht. Wie beim MAP-Kinase Assay wurde eine alleinige Transfektion des alpha_{2a/b}-AR sowie eine Cotransfektion von alpha_{2a/b}-AR und APP vollzogen, um einen eventuellen Einfluss des APP zu detektieren. Die Internalisierungsversuche zeigten, dass der alpha_{2b}-AR nach Rezeptorstimulation stärker in intrazelluläre Kompartimente verlagert wurde als der alpha_{2a}-AR (siehe 3.3). Bei Cotransfektion von alpha_{2b} und APP internalisierte der alpha_{2b}-AR nicht stärker, als zuvor bei Abwesenheit von APP. Der alpha_{2a}-AR zeigte ebenfalls keine Änderung in seinem Internalisierungsverhalten bei Anwesenheit von APP (siehe 3.4).

4.2 MAP-Kinase Versuch

In diesen Experimenten wurde der alpha₂-AR in Bezug auf die Mechanismen intrazellulärer Informationsvermittlung via MAP-Kinase genauer betrachtet und untersucht, inwiefern diese beeinflussbar sind durch z.B. Interaktionen mit anderen Proteinen. Der Signalweg der alpha₂-AR Agonisten induzierten MAP-Kinase-Aktivierung ist abhängig vom Gi-Protein des Rezeptors, welches die Proteinkinasekaskade in Gang setzt: Raf-Kinase, MAP-Kinase-Kinase (MEK) und MAP-Kinase (=extrazellulär regulierte Kinase, ERK). Die MAP-Kinase am Ende der Signaltransduktionskaskade hat zwei Isoformen: ERK1 und ERK2. Die phosphorylierte Form von ERK1 weist im Immunoblot eine Bande bei 44 kDA (kilo Dalton, Molekulargewicht) auf, die ERK2 bei 42 kDA. Man spricht von der p44 Isoform von ERK1 und von der p42 Isoform von ERK2 [50]. Die MAP-Kinase wird durch die MAP-Kinase-Kinase (MEK) aktiviert, indem letztere die MAP-Kinase zweifach phosphoryliert: am Threoninrest und am Tyrosinrest von ERK1 bzw. ERK 2 [9], [59]. Diese doppelte Phosphorylierung ist notwendig zur Aktivierung der jeweiligen Isoform ERK1 bzw. ERK2. In diesem Versuch wurde die Aktivierung des alpha₂-AR anhand der MAP-Kinase gemessen, da die Mechanismen der Anästhesie und der Hypnose, die über den alpha₂-AR vermittelt werden, in ihren Einzelheiten nicht ausreichend geklärt sind. Aber nicht nur im Bereich der Anästhesie bzw. in Bezug auf den alpha₂-AR spielt die Form der Signaltransduktion mittels MAP-Kinase eine wichtige Rolle. Andere Rezeptoren bedienen sich desselben Mechanismus der Signaltransduktion über die MAP-Kinase, so z.B. auch der humane melanokortin Typ 4 (hMC4) Rezeptor [46], [11]. Der hMC4 Rezeptor ist im zentralen Nervensystem an der Regulierung der Energiehomöostase und der Nahrungsaufnahme beteiligt. Aufgrund dieser wichtigen Funktionen ist es erforderlich, die Signaltransduktion der MAP-Kinase besser zu verstehen.

In dieser Arbeit wurde beobachtet, dass die MAP-Kinase-Aktivität des alpha_{2a}-AR nach 30 Sekunden vom Ausgangswert 0% auf ca. 200% angestiegen war, um nach 3 Minuten ihr Maximum zu erreichen bei ca. 350%. Andere Forschungsgruppen beobachteten ähnliche Aktivierungsmuster. Bei einem Zelltyp von embryologischen Mäusefibroblasten (mouse embryonic fibroblasts, MEF) ohne Arrestinexpression, den Arr2,3^{-/-}Zellen, erreichte die alpha_{2a}-AR induzierte ERK Aktivierung ihren Gipfel nach ca. 5 Minuten, um dann wieder abzufallen [72]. Dies legt ebenfalls die Vermutung nahe, dass die alpha₂-AR vermittelte MAP-Kinase-Aktivierung nicht arrestinabhängig zu sein scheint [72], [73]. In einer anderen

Versuchsreihe wurde das Maximum der MAP-Kinase-Aktivierung bei alpha_{2a}-AR ebenfalls nach 5 Minuten angegeben [58]. Es wurden in verschiedenen Forschungsgruppen festgestellt, dass die MAP-Kinase-Aktivierung in ihrem zeitlichen Verlauf bereits nach wenigen Minuten der alpha_{2a}-AR Stimulation ihren Höhepunkt erreicht.

Ob die MAP-Kinase durch eine bestimmte Substanz aktiviert wird oder an einer Informationsübertragung beteiligt ist, kann durch Unterbrechen der Signaltransduktionskaskade bei MEK ermittelt werden. Als MEK-Inhibitoren stehen U0126 (1,4-diamino-2,3-dicyano-1,4bis-(2-aminophenylthio)butadiene) und PD98059 (2-amino-3-methoxyflavone) zur Verfügung [50]. U0126 hemmt beide Isoformen der MEK: sowohl die Isoform MEK1 als auch die Isoform MEK2; während PD98059 selektiv auf MEK1 wirkt. Unter Anwendung dieser Hemmstoffe müssen also diejenigen Reaktionen abnehmen, welche über die MAP-Kinase vermittelt werden. Es konnte gezeigt werden, dass nach Gabe von Hemmstoffen die durch den Agonisten UK14304 stimulierte alpha₂-AR vermittelte Vasokonstriktion in Schweinevenen um 70-80% geringer ausfiel [50]. Diese Ergebnisse legen nahe, dass die Signaltransduktion über die MAP-Kinase der Hauptübertragungsweg bei der alpha₂-AR vermittelten Vasokonstriktion ist.

Neben dem Anhalten des Signaltransduktionsweges durch MEK-Inhibitoren gibt es auch Substanzen, welche die MAP-Kinase-Aktivität unterstützen. In der glatten Muskulatur der Herzkranzgefäße von Rindern wurde ein Zusammenhang zwischen dem Thromboxan A₂-Rezeptor Agonisten U46619 ((15S)-hydroxy-11,9-(epoxymethano) prosta-5Z,13E-dienoische Säure) und dem MAP-Kinase Signaltransduktionsweg ermittelt, welcher möglicherweise die mitogenen Effekte bei Anwesenheit von Wachstumsfaktoren aus Thromobozyten fördert [23]. Die Informationsübermittlung via MAP-Kinase ist also nicht nur durch alpha₂-AR Agonisten beeinflussbar. Auch in der vaskulären glatten Muskulatur von Schweinearterien stimulierte der Thromboxan A₂-Rezeptor Agonist U46619 den MAP-Kinase Signaltransduktionsweg und verstärkte die alpha₂-AR vermittelte Vasokonstriktion [3]. Weiter wurde bei der Untersuchung der Wirkungsmechanismen der alpha₂-AR vermittelten Vasokonstriktion ein Zusammenhang zwischen der MAP-Kinase-Aktivierung und dem Einstrom von extrazellulärem Kalzium durch Kalzium Kanäle in die Zelle festgestellt [3], [51]. Hierbei scheint die MAP-Kinase ist abhängig

von der intrazellulären Konzentration an Kalzium. Es stellte sich heraus, dass im Beisein vom Kalziumantagonisten Nifedipin (Blockade spannungsabhängiger L-Typ Kalziumkanäle) und bei Nichtvorhandensein von extrazellulärem Kalzium keine Phosphorylierung von ERK stattfand [50], [39]. Folglich scheint das Funktionieren des MAP-Kinase Signaltransduktionsweges bei der alpha₂-AR vermittelten Vasokonstriktion abhängig zu sein vom Influx von extrazellulärem Kalzium in die Zelle.

Neben der Beeinflussung der MAP-Kinase-Aktivierung durch Agonisten anderer Rezeptoren ist die Interaktion des alpha2-AR mit anderen intrazellulären Proteinen von besonderem Interesse. Es wurden bereits Proteine identifiziert, welche mit den sympathischen Adrenozeptoren interagieren, so z.B. die Arrestine. Diese Proteinfamilie nimmt Einfluss auf z.B. beta₂-AR, indem sie synergistisch mit den beta-AR-Kinasen die Internalisierung der beta₂-AR reguliert [37]. In Bezug auf alpha₂-AR kommt es zu Interaktionen zwischen Arrestinen und den alpha_{2b,c}-AR, nicht jedoch zwischen Arrestinen und alpha_{2a}-AR [14]. Durch Bindung der Arrestine an die dritte, intrazelluläre Schleife der alpha_{2b,c}-AR kommt es zur Beendigung der Agonisten-vermittelten Rezeptorstimulation und zur Internalisierung der alpha_{2b/c}-AR [14]. Die Phosphorylierung und damit Aktivierung des G-Protein-gekoppelten Rezeptors, in diesem Falle des alpha₂-AR, ist also Voraussetzung für die Bindung der Arrestine an den alpha₂-AR [24]. Außerdem wurde entdeckt, dass beta-Arrestine nicht nur an alpha₂-AR, sondern auch direkt an die MAP-Kinase binden und auf diese Weise auf deren Aktivierung wirken [66], [61]. Bei erhöhtem Vorkommen von beta-Arrestinen in COS-7 Zellen kam es zum Einen zu einer verstärkten Phosphorylierung der ERKs und zum Anderen bildeten sich beta-Arrestin gebundene, phosphorylierte ERK-Komplexe im Zytoplasma [66]. Im Gegensatz dazu war der Anteil der phosphorylierten ERK1/2 im Nukleus nach Rezeptoraktivierung jedoch vermindert. Durch die Bindung der phosphorylierten ERK an beta-Arrestine im Zytoplasma ist eine Translokation dieser Komplexe in den Nukleus nicht möglich und die ERK-abhängige Transkription im Nukleus wird verhindert. Es bleibt zu erforschen, wie eine Lösung der beta-Arrestine von den phosphorylierten ERK erwirkt werden kann, sodass zwar die Vorteile von beta-Arrestinen -nämlich die Aktivierung der ERK- genutzt werden kann, ohne dass es nach der ERK-Aktivierung zu der Transkriptionshemmung durch eben diese beta-Arrestine kommt.

Abgesehen von den Arrestinen ist die Interaktion mit anderen intrazellulären Proteinen von besonderem Interesse, denn in Bezug auf z.B. seine neuroprotektiven Effekte werden Wechselwirkungen des alpha₂-AR mit anderen Proteinen diskutiert. Es wurde gezeigt, dass der alpha₂-AR mit dem Amyloid Precursor Like Protein 1 (APLP1) interagiert, was eine Inhibierung der Adenylatzyklase und eine verstärkte Internalisierung zur Folge hatte [74]. Aufgrund des gemeinsamen Ursprungs des APLP1 und des APP aus einer Proteinfamilie (Homologie) und der möglichen Rolle des APP in der Pathogenese der Alzheimer Erkrankung ist nun von Interesse, ob das APP ebenfalls die Signaltransduktion beeinflusst. In dieser Arbeit konnte bei alleiniger Transfektion von APP keine MAP-Kinase-Aktivität im zeitlichen Verlauf von 30 Minuten ermittelt werden (siehe Tab. 3.2a). Bei Transfektion des alpha_{2a}-AR hingegen ließ sich eine MAP-Kinase-Aktivität verzeichnen (siehe Tab. 3.2b), die nach 3 Minuten auf 176% ±127% gestiegen war. Daraus lässt sich schließen, dass die MAP-Kinase-Aktivität an den alpha_{2a}-AR gebunden ist. Bei Cotransfektion von alpha_{2a}-AR und APP wurde ebenfalls eine MAP-Kinase-Aktivierung beobachtet, welche allerdings geringer ausfiel als bei alleiniger Transfektion des alpha_{2a}-AR. Diese Ergebnisse legen nahe, dass das APP bei Agonistenstimulation des alpha_{2a}-AR einen negativen Effekt auf die Aktivität der MAP-Kinase hat und somit den MAP-Kinase Signaltransduktionsweg eher hemmt denn aktiviert. Die Rolle von APP in Zellsignalübermittlungsvorgängen steht auch im Mittelpunkt anderer Forschungsgruppen [53]. Die Ergebnisse bezüglich des Einflusses von APP auf die MAP-Kinase weichen jedoch voneinander ab. So wurde bei Überexpression von APP in h4 humanen Neurogliomzellen und in APP/APLP Null-Mäuse embryonaler Fibroblastenzellen (MEFs) ein höherer Grad an phosphorylierter ERK1 und 2 gemessen [67]. Diese Beobachtung wurde in Zusammenhang gesehen mit einer Interaktion zwischen APP und anderen intrazellulären Proteinen der Rezeptoreinheit wie z.B. dem Grb2, welches ein Adapterprotein zwischen dem G-Protein des Rezeptors und der intrazellulären Proteinkinasekaskade darstellt. Es wird ebenfalls diskutiert, ob umgekehrt der Level an APP und löslichem APP über den MAP-Kinase Signaltransduktionsweg moduliert wird [36], [7].

Im Rahmen der beta-Amyloid Hypothese zur Entstehung der Alzheimer Erkrankung interessieren die Wirkungen und Wechselwirkungen des APP, da das APP das Ursprungsmolekül in der beta-Amyloid Hypothese darstellt. Die Alzheimer Erkrankung ist durch einen fortschreitenden Verlust von Gedächtnis und Kognition gekennzeichnet. Die Proteine APP, APLP1 und APLP2 entstammen derselben Genfamilie, aber während APP und APLP2 ubiquitär auftreten, ist APLP1 überwiegend im postsynaptischen Bereich von neuronalem Gewebe lokalisiert [28]. Alle drei Proteine sind Typ-I Transmembranproteine mit einer einzelnen, hydrophoben, transmembranen Region, einem großen, extrazellulären Amino-Terminus sowie einem kleinen Karboxy-Terminus an der zytoplasmatischen Seite [10]. Die Proteolyse der Proteine findet an spezifischen Stellen am C-terminalen Ende statt [60]. Vom Ursprungsmolekül APP ausgehend gibt es zwei mögliche ,Verarbeitungspfade': zum Einen wird das APP im "amyloidgenic pathway" durch beta-Sekretasen zu löslichem APP (sAPPbeta) und einem weiteren Abbauprodukt, dem sogenannten C99 gespalten, welches durch gamma-Sekretasen im weiteren Verlauf zu beta-Amyloid prozessiert wird; zum Anderem steht der "nonamyloidgenic pathway" offen, in dem das APP durch alpha-Sekretasen zu löslichem APP (sAPPalpha) und C83 gespalten wird [76], [70]. Das sAPPalpha besitzt neuroprotektive Eigenschaften [18], [64], während das beta-Amyloid in Form extrazellulärer, neurotoxischer Ablagerungen (sogenannte senile Plaques) in der Alzheimer Pathogenese auftritt [2], [26]. In Gehirnen von Alzheimer Patienten wurde eine erhöhte MAP-Kinase-Aktivität festgestellt, welche möglicherweise den beta-Amyloid induzierten Zelltod verhindert und den "nonamyloidgenic pathway" durch Aktivierung der alpha-Sekretasen stimuliert [41], [27]. In diesem Rahmen werden die neuroprotektiven Mechanismen des alpha₂-AR zur Zeit weiter untersucht und es wird diskutiert, ob direkte Wechselwirkungen zwischen dem alpha₂-AR und APP möglicherweise einen Beitrag dazu leisten. Man könnte spekulieren, dass die Prozessierung von APP zu beta-Amyloid verhindert wird durch Bindung anderer Proteine, wie z.B. dem alpha2-AR oder der MAP-Kinase an die beta- und gamma-Sekretaseschnittstellen am APP. So wäre es denkbar, dass -wenn die Sekretasen nicht am APP wirken können- eine Spaltung verhindert wird und es möglich wäre, dass auf diese Weise kein neurotoxisches beta-Amyloid entstünde.

4.3 Internalisierungsversuch

Internalisierung bezeichnet die Verlagerung eines Rezeptors in das Zellinnere nach dessen Aktivierung. Sie spielt im Rahmen der Regulation der Rezeptordichte (siehe 1.1.6) und damit der Regulation der Rezeptorfunktion eine wichtige Rolle. So wird durch Internalisierung der G-Protein gekoppelten Rezeptoren die Beendigung der Signalaufnahme an der Zelloberfläche kontrolliert, aber es wurde auch von internalisierten Rezeptoren berichtet, welche von intrazellulären Kompartimenten aus weiterhin die Signaltransduktion anstoßen [75]. In dieser Arbeit wurde die Internalisierungsrate von alpha_{2a,b}-AR im zeitlichen Verlauf der Agonistenstimulation durch 100 µM Epinephrin in DMEM mit Zusatz von 0,3 mM Ascorbat [13] untersucht (siehe 2.3). Es stellte sich heraus, dass der alpha_{2a}-AR kaum internalisierte, während der alpha_{2b}-AR mit 36% ±17% nach 30minütiger Agonistenstimulation eine deutlich höhere Internalisierungsrate aufwies (siehe 3.3). Ähnliche Ergebnisse wurden auch in anderen Studien ermittelt, in welchen sich die Internalisierung des alpha₂-AR abhängig vom Subtyp unterschiedlich stark präsentierte [44]. Wie auch in dieser Arbeit internalisierte der alpha_{2a}-AR nicht, während der alpha_{2b}-AR eine Agonisten-induzierte Internalisierung zeigte [12]. In Anbetracht der Tatsache, dass die Subtypen des alpha₂-AR sich in hohem Maße bezüglich ihres Aufbaus ähneln (siehe 1.1.3), verwundert ihr unterschiedliches Internalisierungsverhalten. Aber bezüglich des Internalisierungsverhaltens von alpha2-AR wurden abweichende Ergebnisse ermittelt. Andere Forschungsgruppen legten Studien vor, in denen nach Agonistenstimulation sowohl der alpha_{2a}-AR als auch der alpha_{2b}-AR dosisabhängig in HEK-293 Zellen internalisierte [45]. Es wurde hierbei beobachtet, dass das Ausmaß der Internalisierung proportional zur Wirksamkeit der Agonisten war. Diese unterschiedlichen Ergebnisse könnten an der Wahl der Agonisten liegen. In jenen Versuchen wurden mit den Agonisten UK14304 und Dexmedetomidin (Dex) gearbeitet. UK14304 erwies sich subtyp-spezifisch am alpha_{2a}-AR als sehr effizient, wohingegen Dex einen höheren Wirkungsgrad am alpha_{2b}-AR zeigte. Im Hinblick auf die Vergleichbarkeit mit anderen Studien wurde in den Versuchen der vorliegenden Arbeit Epinephrin als Agonist gewählt, welches gleichermaßen auf den alpha_{2a}-AR als auch auf den alpha_{2b}-AR wirkt.

Außer der Agonisten-induzierten Internalisierung des alpha₂-AR interessierte in dieser Arbeit der Einfluss von APP auf die Internalisierung des alpha₂-AR. Bereits für das APLP1 wurde berichtet, dass es in der Lage ist, mit allen drei humanen Subtypen A, B und C des alpha₂-AR in Wechselwirkung zu treten und dass dies über Bindung an die vierte, intrazelluläre Schleife des alpha₂-AR geschieht [74]. Ob und wie das APP an den alpha₂-AR bindet, ist aktuell Gegenstand der Forschung. Bei Anwesenheit von APP zeigten sich im Internalisierungsverhalten des alpha_{2a}-AR als auch des alpha_{2b}-AR keine Veränderungen. Dennoch wäre es möglich, dass das Protein nicht in gleichem Maße auf die Subtypen A, B und C des alpha₂-AR wirkt, z.B. aufgrund einer unterschiedlichen Lokalisation der alpha₂-AR innerhalb der Zelle (siehe unten). Andere Forschungsgruppen untersuchten den Einfluss von Arrestinen auf Agonisten-induzierte Internalisierung von alpha₂-AR bei HEK-293 Zellen. Die Internalisierung des alpha_{2a}-AR wurde weder durch Arrestin-2 noch durch Arrestin-3 begünstigt, wohingegen die Internalisierung des alpha2b-AR durch Arrestin-2 und -3 und die Internalisierung des alpha_{2c}-AR durch Arrestin-3 gefördert wurde [14]. Es wurde eine Internalisierung von ca. 30% nach 30minütiger Agonistenstimulation am Wildtyp (die in der Natur am häufigsten auftretenden Phänotypen) des alpha2b-AR beobachtet, welches mit den Ergebnissen dieser Arbeit übereinstimmt: 36% ±17% Internalisierung nach 30minütiger Agonistenstimulation am alpha_{2b}-AR. In den Versuchen der vorliegenden Arbeit internalisierte der alpha_{2a}-AR sowohl bei alleiniger Transfektion als auch bei Cotransfektion mit APP kaum. In anderen Studien zeigte der alpha_{2a}-AR keine vermehrte Internalisierung bei Anwesenheit von Arrestin-2 und -3 [14]. Dies legt die Vermutung nahe, dass der alpha_{2a}-AR in seinem Internalisierungsverhalten nur gering beeinflussbar ist. Außerdem wurde beobachtet, dass eine Agonisten-induzierte Internalisierung des alpha_{2a}-AR nicht notwendig ist für die Stimulierung der MAP-Kinase [12], [58]. Unter dieser Annahme hat die Internalisierung keinen Effekt auf die Rezeptorfunktion. Im Zusammenhang mit der Internalisierungstendenz könnte auch die Lokalisation der alpha₂-AR Subtypen von Interesse sein. In Phäochromozytomzellen (PC12 Zellen), denen alle drei Subtypen A, B und C transfiziert wurden, zeigte sich folgende Verteilung: alpha_{2a}-AR waren hauptsächlich an den Spitzen der Neuriten lokalisiert, alpha_{2b}-AR waren über die Plasmamembran verteilt und alpha_{2c}-AR befanden sich in intrazellulären, perinukleären Kompartimenten [43]. Die vermehrt intrazellulär lokalisierten alpha_{2c}-AR [25], z.B. im endoplasmatischen Retikulum und im Golgi Apparat [12], sind für Substanzen möglicherweise nicht so leicht zugängig und es ist schwierig, ihre Internalisierung zu messen.

Alpha₂-AR sind in den Mittelpunkt der Aufmerksamkeit gerückt, da sich aufgrund ihrer neuroprotektiven Eigenschaften die Frage stellt, ob sie für die Therapie der Alzheimer Erkrankung in Betracht kommen. Um diese Frage zu klären, müssen die Mechanismen, welche die neuroprotektiven Wirkungen der alpha₂-AR vermitteln, ergründet werden. Dazu wurden die Wechselwirkungen zwischen alpha2-AR und APP noch näher untersucht. Es interessierte, ob der alpha₂-AR durch APP in seiner Funktion beeinträchtigt wird, z B. durch Internalisierung und damit einhergehend verminderte Aktivität. Da die neuroprotektiven Eigenschaften des alpha₂-AR nur zum Einsatz kommen, wenn der alpha₂-AR sich auf der Zelloberfläche befindet und stimuliert werden kann, wäre eine Internalisierung nicht wünschenswert. Wenn nun das APP die Internalisierung fördert, wäre zu überlegen, ob man dem alpha2-AR Agonisten eine Substanz beigibt, welche die Wirkung des APP auf den apha₂-AR aufhebt. Damit würde die neuroprotektive Wirkung durch die Stimulierung des alpha₂-AR Agonisten verbessert. Wenn das APP aber das Verbleiben des alpha2-AR auf der Zelloberfläche begünstigt, müsste man dem alpha₂-AR eine Substanz zufügen, welche das Bestehen des APP stabilisiert und einen möglichen Abbau des APP verhindert. Auf diese Weise wäre die positive Wechselwirkung zwischen dem apha2-AR und dem APP optimiert.

Um zu klären, ob alpha₂-AR letztendlich für die Behandlung der Alzheimer Erkrankung geeignet sind, sind weiterführende Studien erforderlich. Noch ist unklar, ob das APP die neuroprotektiven Eigenschaften der alpha₂-AR verstärkt und wie eine solche Interaktion abläuft.

5 Zusammenfassung

Der alpha₂-Adrenozeptor (alpha₂-AR) vermittelt sympathikusdämpfende, analgetische und hypnotisch-anxiolytische Effekte und ist daher in der Anästhesiologie von besonderer Bedeutung. Darüber hinaus wird ihm eine neuroprotektive Wirkung zugeschrieben. Bei der Alzheimer Erkrankung werden neuronale Schädigungen durch Abbauprodukte des Amyloid Precursor Proteins (APP) hervorgerufen. Bislang ist noch nicht vollständig untersucht, inwiefern die neuroprotektiven Eigenschaften des alpha₂-AR durch das APP beeinflusst werden und welche Rezeptorsubtypen (alpha_{2a}-, alpha_{2b}- und alpha_{2c}-AR) hierbei eine Rolle spielen.

Um die funktionelle Beeinflussung des alpha₂-AR bei Kotransfektion mit APP zu untersuchen, wurde als Indikator die Aktivierung der mitogen-aktivierten Proteinkinase (MAP-Kinase) gewählt, weil diese das Schlüsselenzym bei der Signaltransduktion des alpha₂-AR darstellt. In einer weiteren Versuchsreihe wurde das Internalisierungsverhalten des alpha₂-AR untersucht, da dieses die ligandengebundene Effektgröße des alpha₂-AR entscheidend beeinflusst.

Für die Versuche kamen HEK-293 Zellen ("human embryonal kidney cells") zum Einsatz, die nach Zelltransfektion alpha₂-AR bzw. APP exprimierten. Im Falle des MAP-Kinase Versuches wurden diese HEK-293 Zellen mit dem alpha₂-AR Agonisten UK14304 stimuliert. Mit Hilfe der Natriumlaurylsulfat-Polyacrylamid-Gelelektrophorese erfolgte die Auftrennung der einzelnen Proteine der alpha₂-AR aktivierten HEK-293 Zellen gemäß ihrem Molekular-gewicht. Mittels der Wet Blot Technik wurden die Proteine mit Antikörpern (u.a. Phospho-MAP-Kinase-Antikörpern) markiert. Mit dem Hyperfilm[™] ECL konnte die gemessene Lichtreaktion festgehalten und photographisch dokumentiert werden. In den Versuchen zum Internalisierungsverhalten von alpha₂-AR wurde die extrazelluläre Lokalisation der alpha₂-AR mittels des Anti-Mouse-Antikörper mit HRP (Horse Radish Peroxidase) und O-Phenyl-endiamin Tabletten (Farbsubstrat) photometrisch bestimmt.

Zunächst erfolgte die Messung des zeitlichen Verlaufes der MAP-Kinase-Aktivität, wobei sich nach 3minütiger Stimulation durch UK14304 eine maximale Aktivität von 348% ±55% gegenüber der Kontrolle feststellen ließ. Bei Transfektion von alpha_{2a}-AR zeigte sich nach 3 Minuten eine maximale MAP-Kinase Aktivität von 176% ±127% (p<0,0286) und bei Cotransfektion von alpha2a-AR und APP von 94% ±54% (p<0,0286) gegenüber der Kontrolle (0% Aktivität). Nach 30minütiger alpha2a-AR Agonistenstimulation war die MAP-Kinase-Aktivität auf 81% ±34% (p<0,0286) und bei Cotransfektion von alpha_{2a}-AR und APP auf 45% ±32% (p<0,0286) gegenüber der Kontrolle abgeklungen. Bei alleiniger Transfektion von APP konnte keine MAP-Kinase-Aktivität detektiert werden. In den Versuchen zum Internalisierungsverhalten von alpha2a-AR zeigte sich eine Minute nach Aktivierung ein maximaler Anstieg der Internalisierung auf 11% ±18% gegenüber der Kontrolle. Bei alpha_{2b}-AR wurde nach 30 Minuten ein Maximalwert von 36% ±17% festgestellt. Bei Cotransfektion von alpha_{2a/2b}-AR mit APP stieg bei alpha_{2a}-AR Agonistenstimulation die Internalisierung nach 5 Minuten auf 7% ±5%, während bei alpha_{2b}-AR mit APP nach 30 Minuten ein Maximalwert von 35% ±18% erreicht wurde. Signifikante Unterschiede waren bei der Rezeptorinternalisierung nicht festzustellen.

Die Ergebnisse dieser Arbeit zeigen, dass der alpha₂-AR durch das Amyloid Precursor Protein in seiner Funktion über eine Inhibition des Schlüsselenzyms der Signaltransduktion, der MAP-Kinase, beeinflußt wird. Das APP hatte keinen signifikanten Einfluss auf die Internalisierung des Rezeptors.

Weitere Untersuchungen müssen zeigen, z.B. wo genau das APP an den alpha₂-AR bindet: an die dritte, intrazelluläre Schleife wie Spinophilin und Arrestine oder an die vierte, intrazelluläre Schleife wie das APLP1. Die zentrale Rolle des APP in der Pathogenese der Alzheimer Erkrankung wirft die Frage auf, inwiefern der alpha₂-AR neuroprotektiv ist und auf welche Weise er diese neuroprotektiven Eigenschaften vermittelt.

- Andrews,NP, Goldstein,DS und Quyyumi,AA
 Effect of systemic alpha-2 adrenergic blockade on the morning increase in platelet aggregation in normal subjects
 Am. J. Cardiol. (1999) 84, S. 316 - 320
- Awasthi,A, Matsunaga,Y und Yamada,T
 Amyloid-beta causes apoptosis of neuronal cells via caspase cascade, which can be prevented by amyloid-beta-derived short peptides
 Exp. Neurol. (2005) 196, S. 282 - 289
- Bhattacharya, B und Roberts, RE
 Enhancement of alpha2-adrenoceptor-mediated vasoconstriction by the thromboxane-mimetic U46619 in the porcine isolated ear artery: role of the ERK-MAP kinase signal transduction cascade
 Br. J. Pharmacol. (2003) 139, S. 156 162
- 4. Black,JW Ahlquist and the development of beta-adrenoceptor antagonists Postgrad. Med. J. (1976) 52 Suppl 4, S. 11 - 13
- 5. Blandizzi,C
 Enteric alpha-2 adrenoceptors: pathophysiological implications in functional and inflammatory bowel disorders
 Neurochem. Int. (2007) 51, S. 282 288
- Brady,AE, Wang,Q, Colbran,RJ, Allen,PB, Greengard,P und Limbird,LE
 Spinophilin stabilizes cell surface expression of alpha 2B-adrenergic receptors
 J. Biol. Chem. (2003) 278, S. 32405 32412
- Canet-Aviles, RM, Anderton, M, Hooper, NM, Turner, AJ und Vaughan, PF
 Muscarine enhances soluble amyloid precursor protein secretion in
 human neuroblastoma SH-SY5Y by a pathway dependent on protein
 kinase C(alpha), src-tyrosine kinase and extracellular signal-regulated
 kinase but not phospholipase C
 Brain Res. Mol. Brain Res. (2002) 102, S. 62 72

- 8. Civantos Calzada B. und Aleixandre de Artinano A.
 Alpha-adrenoceptor subtypes Pharmacol. Res. (2001) 44, S. 195 - 208
- 9. Cobb,MH und Goldsmith,EJ How MAP kinases are regulated J. Biol. Chem. (1995) 270, S. 14843 - 14846
- 10. Collin,RW, van Strien,D, Leunissen,JA und Martens,GJ
 Identification and expression of the first nonmammalian amyloid-beta precursor-like protein APLP2 in the amphibian Xenopus laevis
 Eur. J. Biochem. (2004) 271, S. 1906 - 1912
- Daniels,D, Patten,CS, Roth,JD, Yee,DK und Fluharty,SJ
 Melanocortin receptor signaling through mitogen-activated protein kinase in vitro and in rat hypothalamus
 Brain Res. (2003) 986, S. 1 - 11
- Daunt,DA, Hurt,C, Hein,L, Kallio,J, Feng,F und Kobilka,BK
 Subtype-specific intracellular trafficking of alpha2-adrenergic receptors Mol. Pharmacol. (1997) 51, S. 711 - 720
- 13. DeGraff,JL, Gagnon,AW, Benovic,JL und Orsini,MJ
 Role of arrestins in endocytosis and signaling of alpha2-adrenergic receptor subtypes
 J. Biol. Chem. (1999) 274, S. 11253 11259
- 14. DeGraff,JL, Gurevich,VV und Benovic,JL
 The third intracellular loop of alpha 2-adrenergic receptors determines subtype specificity of arrestin interaction
 J. Biol. Chem. (2002) 277, S. 43247 - 43252

Eason,MG und Liggett,SB
 Chimeric mutagenesis of putative G-protein coupling domains of the alpha2A-adrenergic receptor. Localization of two redundant and fully competent gi coupling domains
 J. Biol. Chem. (1996) 271, S. 12826 - 12832

16. Ferguson,SS Using green fluorescent protein to understand the mechanisms of Gprotein-coupled receptor regulation Braz. J. Med. Biol. Res. (1998) 31, S. 1471 - 1477

- Ferguson,SS
 Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling
 Pharmacol. Rev. (2001) 53, S. 1 24
- 18. Furukawa,K, Sopher,BL, Rydel,RE, Begley,JG, Pham,DG, Martin,GM, Fox,M und Mattson,MP
 Increased activity-regulating and neuroprotective efficacy of alpha-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain
 J. Neurochem. (1996) 67, S. 1882 1896
- 19. Gaidarov, I, Krupnick, JG, Falck, JR, Benovic, JL und Keen, JH
 Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding
 EMBO J. (1999) 18, S. 871 - 881
- 20. Gardino,AK, Smerdon,SJ und Yaffe,MB
 Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms
 Semin. Cancer Biol. (2006) 16, S. 173 182
- Ghacibeh,GA, Shenker,JI, Shenal,B, Uthman,BM und Heilman,KM
 The influence of vagus nerve stimulation on memory
 Cogn Behav. Neurol. (2006) 19, S. 119 122
- 22. Gonzalez,MM und Aston-Jones,G
 Circadian regulation of arousal: role of the noradrenergic locus coeruleus system and light exposure
 Sleep (2006) 29, S. 1327 1336
- Grosser, T, Zucker, TP, Weber, AA, Schulte, K, Sachinidis, A, Vetter, H und Schror, K
 Thromboxane A2 induces cell signaling but requires platelet-derived growth factor to act as a mitogen Eur. J. Pharmacol. (1997) 319, S. 327 - 332
- 24. Henley, JR, Krueger, EW, Oswald, BJ und McNiven, MA **Dynamin-mediated internalization of caveolae** J. Cell Biol. (1998) 141, S. 85 - 99

25.	Hurt,CM, Feng,FY und Kobilka,B Cell-type specific targeting of the alpha 2c-adrenoceptor. Evidence for the organization of receptor microdomains during neuronal differentiation of PC12 cells J. Biol. Chem. (2000) 275, S. 35424 - 35431
26.	Jang,JH und Surh,YJ Beta-amyloid-induced apoptosis is associated with cyclooxygenase-2 up- regulation via the mitogen-activated protein kinase-NF-kappaB signaling pathway Free Radic. Biol. Med. (2005) 38, S. 1604 - 1613
27.	Kim,SK, Park,HJ, Hong,HS, Baik,EJ, Jung,MW und Mook-Jung,I ERK1/2 is an endogenous negative regulator of the gamma-secretase activity FASEB J. (2006) 20, S. 157 - 159
28.	Kim,TW, Wu,K, Xu,JL, McAuliffe,G, Tanzi,RE, Wasco,W und Black,IB Selective localization of amyloid precursor-like protein 1 in the cerebral cortex postsynaptic density Brain Res. Mol. Brain Res. (1995) 32, S. 36 - 44
29.	Klein,U, Ramirez,MT, Kobilka,BK und von Zastrow,M A novel interaction between adrenergic receptors and the alpha-subunit of eukaryotic initiation factor 2B J. Biol. Chem. (1997) 272, S. 19099 - 19102
30.	Krupnick,JG und Benovic,JL The role of receptor kinases and arrestins in G protein-coupled receptor regulation Annu. Rev. Pharmacol. Toxicol. (1998) 38, S. 289 - 319
31.	Langer,SZ Presynaptic autoreceptors regulating transmitter release Neurochem. Int. (2008) 52, S. 26 - 30
32.	Langer,SZ Presynaptic regulation of the release of catecholamines Pharmacol. Rev. (1980) 32, S. 337 - 362
33.	Langin,D

Adipose tissue lipolysis as a metabolic pathway to define pharmacological

	strategies against obesity and the metabolic syndrome Pharmacol. Res. (2006) 53, S. 482 - 491
34.	Lau,JM, Jin,X, Ren,J, Avery,J, DeBosch,BJ, Treskov,I, Lupu,TS, Kovacs,A, Weinheimer,C und Muslin,AJ The 14-3-3tau phosphoserine-binding protein is required for cardiomyocyte survival Mol. Cell Biol. (2007) 27, S. 1455 - 1466
35.	Lee, A, Rosin, DL und Van Bockstaele, EJ alpha2A-adrenergic receptors in the rat nucleus locus coeruleus: subcellular localization in catecholaminergic dendrites, astrocytes, and presynaptic axon terminals Brain Res. (1998) 795, S. 157 - 169
36.	Liu,F, Su,Y, Li,B und Ni,B Regulation of amyloid precursor protein expression and secretion via activation of ERK1/2 by hepatocyte growth factor in HEK293 cells transfected with APP751 Exp. Cell Res. (2003) 287, S. 387 - 396
37.	Menard,L, Ferguson,SS, Zhang,J, Lin,FT, Lefkowitz,RJ, Caron,MG und Barak,LS Synergistic regulation of beta2-adrenergic receptor sequestration: intracellular complement of beta-adrenergic receptor kinase and beta- arrestin determine kinetics of internalization Mol. Pharmacol. (1997) 51, S. 800 - 808
38.	Monaco, S, Zanusso, G, Mazzucco, S und Rizzuto, N Cerebral amyloidoses: molecular pathways and therapeutic challenges Curr. Med. Chem. (2006) 13, S. 1903 - 1913
39.	Mukundan,H und Kanagy,NL Ca2+ influx mediates enhanced alpha2-adrenergic contraction in aortas from rats treated with NOS inhibitor Am. J. Physiol Heart Circ. Physiol (2001) 281, S. H2233 - H2240
40.	Nacif-Coelho,C, Correa-Sales,C, Chang,LL und Maze,M Perturbation of ion channel conductance alters the hypnotic response to the alpha 2-adrenergic agonist dexmedetomidine in the locus coeruleus of the rat Anesthesiology (1994) 81, S. 1527 - 1534

- 41. Neumann,S, Schobel,S, Jager,S, Trautwein,A, Haass,C, Pietrzik,CU und Lichtenthaler,SF
 Amyloid precursor-like protein 1 influences endocytosis and proteolytic processing of the amyloid precursor protein
 J. Biol. Chem. (2006) 281, S. 7583 7594
- 42. Oakley,RH, Laporte,SA, Holt,JA, Barak,LS und Caron,MG
 Molecular determinants underlying the formation of stable intracellular G
 protein-coupled receptor-beta-arrestin complexes after receptor
 endocytosis
 J. Biol. Chem. (2001) 276, S. 19452 19460
- 43. Olli-Lahdesmaki,T, Kallio,J und Scheinin,M
 Receptor subtype-induced targeting and subtype-specific internalization of human alpha(2)-adrenoceptors in PC12 cells
 J. Neurosci. (1999) 19, S. 9281 - 9288
- 44. Olli-Lahdesmaki,T, Scheinin,M, Pohjanoksa,K und Kallio,J
 Agonist-dependent trafficking of alpha2-adrenoceptor subtypes:
 dependence on receptor subtype and employed agonist
 Eur. J. Cell Biol. (2003) 82, S. 231 239
- 45. Olli-Lahdesmaki,T, Tiger,M, Vainio,M, Scheinin,M und Kallio,J
 Ligand-induced alpha2-adrenoceptor endocytosis: relationship to Gi
 protein activation
 Biochem. Biophys. Res. Commun. (2004) 321, S. 226 233
- Patten,CS, Daniels,D, Suzuki,A, Fluharty,SJ und Yee,DK
 Structural and signaling requirements of the human melanocortin 4
 receptor for MAP kinase activation
 Regul. Pept. (2007) 142, S. 111 122
- 47. Philipp,M, Brede,M und Hein,L
 Physiological significance of alpha(2)-adrenergic receptor subtype diversity: one receptor is not enough
 Am. J. Physiol Regul. Integr. Comp Physiol (2002) 283, S. R287 R295
- 48. Priller, C, Bauer, T, Mitteregger, G, Krebs, B, Kretzschmar, HA und Herms, J
 Synapse formation and function is modulated by the amyloid precursor protein
 J. Neurosci. (2006) 26, S. 7212 7221

50. Roberts.RE Role of the extracellular signal-regulated kinase (Erk) signal transduction cascade in alpha(2) adrenoceptor-mediated vasoconstriction in porcine palmar lateral vein Br. J. Pharmacol. (2001) 133, S. 859 - 866

- 51. Roberts,RE Alpha 2 adrenoceptor-mediated vasoconstriction in porcine palmar lateral vein: role of phosphatidylinositol 3-kinase and EGF receptor transactivation Br. J. Pharmacol. (2003) 138, S. 107 - 116
- 52. Rosin, DL, Talley, EM, Lee, A, Stornetta, RL, Gaylinn, BD, Guyenet, PG und Lynch,KR Distribution of alpha 2C-adrenergic receptor-like immunoreactivity in the rat central nervous system J. Comp Neurol. (1996) 372, S. 135 - 165
- 53. Russo, C, Venezia, V, Repetto, E, Nizzari, M, Violani, E, Carlo, P und Schettini, G The amyloid precursor protein and its network of interacting proteins: physiological and pathological implications Brain Res. Brain Res. Rev. (2005) 48, S. 257 - 264
- 54. Ruuskanen, JO, Peitsaro, N, Kaslin, JV, Panula, P und Scheinin, M Expression and function of alpha-adrenoceptors in zebrafish: drug effects, mRNA and receptor distributions J. Neurochem. (2005) 94, S. 1559 - 1569

55. Saunders, C und Limbird, LE Localization and trafficking of alpha2-adrenergic receptor subtypes in cells and tissues Pharmacol. Ther. (1999) 84, S. 193 - 205

56. Scheinin, M and Pihlavisto, M, (2000): *Molecular pharmacology of alpha*₂*-adrenoceptor agonists.* In: Scholz, J, Tonner, PH, and Van Aken, H Alpha₂-adrenoceptor Agonists in Anaesthesia and Intensive Care, London, United Kingdom

49.

spinophilin

57.	Schmittberger,T und Waldmann,H Organic Synthesis and Biological Signal Transduction Synlett (1998) 06, S. 574 - 584
58.	Schramm,NL und Limbird,LE Stimulation of mitogen-activated protein kinase by G protein-coupled alpha(2)-adrenergic receptors does not require agonist-elicited endocytosis J. Biol. Chem. (1999) 274, S. 24935 - 24940
59.	Seger,R, Ahn,NG, Boulton,TG, Yancopoulos,GD, Panayotatos,N, Radziejewska,E, Ericsson,L, Bratlien,RL, Cobb,MH und Krebs,EG Microtubule-associated protein 2 kinases, ERK1 and ERK2, undergo autophosphorylation on both tyrosine and threonine residues: implications for their mechanism of activation Proc. Natl. Acad. Sci. U. S. A (1991) 88, S. 6142 - 6146
60.	Selkoe,DJ Alzheimer's disease: genes, proteins, and therapy Physiol Rev. (2001) 81, S. 741 - 766
61.	Shenoy,SK, Drake,MT, Nelson,CD, Houtz,DA, Xiao,K, Madabushi,S, Reiter,E, Premont,RT, Lichtarge,O und Lefkowitz,RJ beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor J. Biol. Chem. (2006) 281, S. 1261 - 1273
62.	 Small,DH, Clarris,HL, Williamson,TG, Reed,G, Key,B, Mok,SS, Beyreuther,K, Masters,CL und Nurcombe,V Neurite-outgrowth regulating functions of the amyloid protein precursor of Alzheimer's disease J. Alzheimers. Dis. (1999) 1, S. 275 - 285
63.	Starke,K Presynaptic alpha-autoreceptors Rev. Physiol Biochem. Pharmacol. (1987) 107, S. 73 - 146
64.	Stein, TD, Anders, NJ, DeCarli, C, Chan, SL, Mattson, MP und Johnson, JA Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis J. Neurosci. (2004) 24, S. 7707 - 7717

65.	Tate,BA und Mathews,PM Targeting the role of the endosome in the pathophysiology of Alzheimer's disease: a strategy for treatment Sci. Aging Knowledge. Environ. (2006) 2006, S. re2
66.	Tohgo,A, Pierce,KL, Choy,EW, Lefkowitz,RJ und Luttrell,LM beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation J. Biol. Chem. (2002) 277, S. 9429 - 9436
67.	Venezia,V, Nizzari,M, Repetto,E, Violani,E, Corsaro,A, Thellung,S, Villa,V, Carlo,P, Schettini,G, Florio,T und Russo,C Amyloid precursor protein modulates ERK-1 and -2 signaling Ann. N. Y. Acad. Sci. (2006) 1090, S. 455 - 465
68.	Verdoodt,B, Benzinger,A, Popowicz,GM, Holak,TA und Hermeking,H Characterization of 14-3-3sigma dimerization determinants: requirement of homodimerization for inhibition of cell proliferation Cell Cycle (2006) 5, S. 2920 - 2926
69.	von Zastrow, M und Kobilka, BK Antagonist-dependent and -independent steps in the mechanism of adrenergic receptor internalization J. Biol. Chem. (1994) 269, S. 18448 - 18452
70.	Walsh,DM, Minogue,AM, Sala,FC, Fadeeva,JV, Wasco,W und Selkoe,DJ The APP family of proteins: similarities and differences Biochem. Soc. Trans. (2007) 35, S. 416 - 420
71.	Wang,Q und Limbird,LE Regulated interactions of the alpha 2A adrenergic receptor with spinophilin, 14-3-3zeta, and arrestin 3 J. Biol. Chem. (2002) 277, S. 50589 - 50596
72.	Wang,Q, Lu,R, Zhao,J und Limbird,LE Arrestin serves as a molecular switch, linking endogenous alpha2- adrenergic receptor to SRC-dependent, but not SRC-independent, ERK activation J. Biol. Chem. (2006) 281, S. 25948 - 25955

- Wang,Q, Zhao,J, Brady,AE, Feng,J, Allen,PB, Lefkowitz,RJ, Greengard,P und Limbird,LE
 Spinophilin blocks arrestin actions in vitro and in vivo at G protein-coupled receptors
 Science (2004) 304, S. 1940 1944
- 74. Weber, B, Schaper, C, Scholz, J, Bein, B, Rodde, C und Tonner, H
 Interaction of the amyloid precursor like protein 1 with the alpha2Aadrenergic receptor increases agonist-mediated inhibition of adenylate cyclase
 Cell Signal. (2006) 18, S. 1748 - 1757
- 75. Wolfe,BL und Trejo,J Clathrin-dependent mechanisms of G protein-coupled receptor endocytosis Traffic. (2007) 8, S. 462 - 470
- Yang,HQ, Ba,MW, Ren,RJ, Zhang,YH, Ma,JF, Pan,J, Lu,GQ und Chen,SD
 Mitogen activated protein kinase and protein kinase C activation mediate
 promotion of sAPPalpha secretion by deprenyl
 Neurochem. Int. (2007) 50, S. 74 82

7 Danksagungen

Bei Herrn Prof. Dr. med J. Scholz, Direktor der Klinik für Anästhesiologie und Operative Intensivmedizin am Universitätsklinikum Schleswig Holstein, Campus Kiel, möchte ich mich sehr herzlich für das interessante Thema dieser Dissertation und für die Möglichkeit, diese Arbeit in den Laboren der Klinik durchführen zu können, bedanken. Herrn Privatdozent Dr. med. B. Bein, DEAA, danke ich sehr für die Zeit und Mühe, die er mir bei der Korrektur dieser Arbeit schenkte. Ebenso gilt mein Dank Dr. rer. nat. B. Weber, der mir mit Rat und Tat zur Seite stand und mich unterstützte. Er brachte mir die Methoden der Forschung nahe und half mir, die Versuche praktisch umzusetzen. Frau Rodde danke ich für die Einführung in die Pflege der Zellkulturen und die tatkräftige Unterstützung bei der Durchführung meiner Experimente. Über die stets aufmunternden Worte von Frau Betz habe ich mich zu jeder Zeit sehr gefreut. Ebenso möchte ich mich bei Prof. Dr. Kabelitz, Direktor des Instituts für Immunologie, für die Mitbenutzung der technischen Geräte bedanken.