
Reactive Processing for Synchronous Languages

and its Worst Case Reaction Time Analysis

Dissertation

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

(Dr. rer. nat.)

der Technischen Fakultät

der Christian-Albrechts-Universität zu Kiel

Claus Traulsen

Kiel
2010

1. Gutachter Reinhard von Hanxleden

2. Gutachter Michael Mendler

3. Gutachter Partha Roop

Datum der mündlichen Prüfung 26. Februar 2010

Abstract

Many embedded systems belong to the class of reactive systems. These are systems
that have to react continuously to the environment at a rate that is determined by
the environment. Reactive systems have two specific characteristics: their control flow
requires concurrency and preemption, and, since the reactive systems are often safety-
critical, we must be able to prove the correctness of the behavior and of the timing. To
implement reactive systems, the synchronous languages were developed, which have a
clear mathematical semantics and allow the expression of concurrency and preemption
in a deterministic way. Programs in a synchronous language can be either compiled
to software and run on a common processor, they can be synthesized to a hardware
description, or a software/hardware co-design approach can be taken. However, the
compilation of synchronous hardware into efficient code is not trivial.

To improve the efficiency of the execution and at the same time simplify the compi-
lation, reactive processors were introduced, which have an instruction set architecture
that is inspired by synchronous languages. In particular, reactive processors have direct
support for preemption and concurrency. Furthermore, these processors optimize the
worst case reaction time, in contrast to common processors which optimize the average
case reaction time. This simplifies the timing analysis, which is necessary to prove that
a system meets its timing requirements.

This thesis presents three contributions to reactive systems:

• A formal semantics is given to the Kiel Esterel Processor (KEP), a reactive pro-
cessor to execute the synchronous language Esterel. Also a compilation scheme
from SyncCharts to the KEP assembler is presented, in addition to the existing
compilation from Esterel into KEP assembler.

• The Kiel Lustre Processor is introduced, a reactive processor for the synchronous
dataflow language Lustre, which allows true parallel execution with multiple pro-
cessing units.

• Different approaches for the worst case reaction time analysis of KEP programs are
presented: a search for the longest execution path in the KEP assembler, a formal
modeling of the execution times based on interface algebras. Also an approach to
use model checking to analyze the reaction time is applied to the KEP.

3

Contents

1. Introduction 11
1.1. Reactive Processing . 11

1.2. Contributions . 14

1.3. Related Publications . 15

1.4. Outline . 16

2. Related Work 17
2.1. Processor Design . 17

2.2. Execution of Synchronous Programs . 19

2.2.1. Compiling Esterel . 19

2.2.2. Compiling SyncCharts . 20

2.2.3. Compiling Lustre/Scade . 21

2.2.4. Distributed Executions . 22

2.3. Worst Case Execution/Reaction Time Analysis 22

2.3.1. Interface Algebra . 24

2.3.2. Model Checking . 25

3. Synchronous Languages 27
3.1. Lustre . 28

3.1.1. Clock operators . 30

3.1.2. Gate Example . 31

3.1.3. Compilation . 31

3.2. Scade . 32

3.3. Esterel . 34

3.3.1. Esterel v7 . 36

3.4. SyncCharts . 37

4. The Kiel Esterel Processor (KEP) 39
4.1. Instruction Set Architecture . 41

4.1.1. Execution cycle . 41

4.1.2. Instructions . 42

4.2. KEP-e . 44

4.2.1. Validation . 45

4.2.2. Connection to the “real world” . 45

4.3. Semantics . 45

4.3.1. Microstep . 55

5

Contents

4.3.2. Macro-Steps . 56
4.3.3. Example Execution . 57
4.3.4. Limitations . 57

4.4. Compiling Esterel . 57
4.4.1. Implementing Strong Abort . 61
4.4.2. Combine . 62

4.5. Compiling SyncCharts . 62
4.5.1. Compiliation Steps . 65
4.5.2. Thread embedding . 66
4.5.3. PRIO instructions . 67
4.5.4. Weak abortion . 67
4.5.5. Experimental Results . 68

5. The Kiel Lustre Processor (KLP) 71
5.1. Architecture . 73

5.1.1. Building blocks . 74
5.1.2. Instruction Set . 76

5.2. Compilation . 77
5.2.1. Clocked Equations . 77
5.2.2. Compiling Lustre . 80
5.2.3. Compiling Scade . 82

5.3. Experimental Results . 85
5.3.1. Evaluation . 85
5.3.2. Resource Usage . 85
5.3.3. Execution Times . 87

5.4. Hardware Description with Esterel v7 . 88
5.5. Comparison of KEP and KLP . 90
5.6. Further Optimizations and Open Problems 90

5.6.1. Static Scheduling . 90
5.6.2. Clock registers . 91
5.6.3. Memory Access . 91

6. Worst Case-Reaction-Time Analysis 93
6.1. The Graph Based Approach . 94

6.1.1. The Concurrent KEP Assembler Graph 94
6.1.2. Sequential WCRT Algorithm . 98
6.1.3. Instantaneous Statement Reachability 100
6.1.4. General WCRT Algorithm . 102
6.1.5. Unreachable Paths . 104
6.1.6. Experimental Results . 104

6.2. Interface Algebra . 108
6.2.1. The WCRT Algebra . 109
6.2.2. An Example . 109
6.2.3. Classification of Interfaces . 110

6

Contents

6.2.4. Implementation . 112
6.3. Using Model-Checking . 113
6.4. Comparison . 119

7. Evaluation with KIELER 121
7.1. Execution Modes . 123
7.2. Communication . 124

8. Conclusion and Outlook 127
8.1. Conclusion . 127
8.2. Outlook . 128

A. Benchmarks 131
A.1. ABRO . 131
A.2. Counter . 131
A.3. Elevator Lustre . 132
A.4. Elevator Scade . 132
A.5. Watch . 133
A.6. Parallel . 134

7

List of Figures

3.1. Gate example . 28

3.2. A simple Lustre program and an execution trace 29

3.3. Invalid Lustre program with inconsistent clocks and its execution trace . . 30

3.4. Clock equivalence in Lustre programs . 30

3.5. A simple Lustre program and an execution trace 31

3.6. Lustre implementation of the gate example 32

3.7. Implementation of the gate with a graphical Lustre variant. 33

3.8. Scade implementation of the gate example 34

3.9. Esterel implementation of the gate example 36

3.10. Implementation of the gate as SyncChart 37

4.1. Execution model of the KEP. 40

4.2. Illustration of the tick manager . 41

4.3. Overview of the KEP instructions . 43

4.4. Non constructive KEP assembler programs. 46

4.5. Simplified kernel instructions of the KEP 48

4.6. ABRO example in Kiel Esterel Processor (KEP) assembler 48

4.7. Example execution of ABRO in the formal semantics: First Tick 58

4.8. Example execution of ABRO in the formal semantics: Second Tick 59

4.9. Example execution of ABRO in the formal semantics: Second Tick 60

4.10. Translating strong abort into KEP assembler 61

4.11. Implementation of combine . 62

4.12. Vending—an example of tightly interconnected SyncChart 63

4.13. Code generation for the Vending via Esterel 64

4.14. Handling of prionext by strl2kasm and smakc! 66

4.15. Implementing weak abortion . 68

4.16. Compilation paths and validation of the compiler 69

4.17. Comparison between smakc! and strl2kasm. 70

5.1. Overview of the KLP . 73

5.2. Structure of a KLP instruction . 76

5.3. Overview of Kiel Lustre Processor (KLP) instructions 78

5.4. Compilation paths to the KLP assembler 79

5.5. Access to previous value with and without current. 79

5.6. Dependency graph for the check node. 81

5.7. Translating a clocked equation into KLP assembler 82

9

List of Figures

5.8. KLP assembler for the check node . 83
5.9. A simple Scade automaton . 84
5.10. KLP assembler for the automaton from Figure 5.9 84
5.11. KLP Resource Usage . 86
5.12. KLP Benchmarks . 88
5.13. Early performance estimation of the KLP 89
5.14. KLP resource usage compared to the KEP 91

6.1. Nodes and edges of a Concurrent KEP Assembler Graph. 95
6.2. A sequential Esterel example. 97
6.3. A concurrent example program. 98
6.4. WCRT algorithm, restricted to sequential programs. 99
6.5. General WCRT algorithm. 103
6.6. Unreachable Path Examples. 105
6.7. Estimated and measured Worst and Average Case Reaction Times. 106
6.8. Estimated and measured WCRT . 107
6.9. Example program G . 108
6.10. Different types of thread paths . 111
6.11. Comparison of graph based approach and the interface algebra 112
6.12. Motivating example WCRT analysis based on model checking 113
6.13. A producer consumer example in Esterel. 114
6.14. KEP assembler for the producer consumer example 116
6.15. Timed Finite State Machines (TFSMs) . 117
6.16. Timed Automata for the producer consumer example 118
6.17. Comparison of the different aprroaches for WCRT analysis 120

7.1. Communication between the Evalbench and the KEP/KLP 121
7.2. Execution of Esterel on the KEP within KIELER. 122
7.3. Automatic execution of a benchmark suite. 123
7.4. Communication protocol of the KLP . 124

8.1. Estimated reaction time for the KLP . 129

10

1. Introduction

Reactive systems are control systems that have to react continuously to inputs at a rate
which is determined by their physical environment. The control-flow of such systems
differs from that of standard computer systems: the systems are inherently concurrent,
since they have to deal with a physical environment that itself is concurrent. The
control can often switch between different modes, hence parts of the systems have to be
suspended or aborted. Since these systems are often highly safety-critical, the behavior
of the controller should always be deterministic. This is not only true for the functional
behavior, but for the timing as well. Hence, for reactive systems we identify the following
key issues:

• concurrency,

• preemption,

• determinism, and

• timing predictability.

In order to match these needs, synchronous languages, such as Esterel [Potop-Butucaru
et al., 2007], Lustre [Halbwachs et al., 1991a], and Signal [Guernic et al., 1991] were
introduced. The execution of these languages is divided into discrete ticks or instants.
Parallelism is supported by logical concurrency, which is usually sequentialized for the
execution. While Esterel is an imperative, control-oriented language, Lustre and Signal
are dataflow languages. Since the design of reactive systems is often done by engineers
who have a background in control theory, rather than in computer-science, a dataflow for-
malism is a good means to describe these systems. Traditionally, synchronous languages
are either synthesized to hardware, or compiled into C code and executed on standard
processors. However, this compilation is not trivial, because common processors do not
support the reactive control flow, in particular concurrency and preemption.

1.1. Reactive Processing

Reactive processing supports the key issues of reactive systems, in particular concurrency
and preemption, directly in hardware, while still allowing the flexible compilation from
synchronous languages for this hardware. The timing predictability is achieved, by
having a processor design that simplifies the timing analysis. Reactive processors can
either be new processor designs from scratch, or a patch to existing processors. The
KEP [Li, 2007], the EMPEROR [Yoong et al., 2006] and the STARPro [Yuan et al.,

11

1. Introduction

2008] are reactive processors that can directly execute Esterel programs. The KLP,
presented in this thesis, is a reactive processor developed to execute Lustre programs.
While the restriction to an input language limits the class of executable programs, it
greatly simplifies both processor design and timing analysis. Reactive processors can be
seen as an Application Specific Instruction-set Processor (ASIP), or, since they are not
designed for a specific application but for the whole application area, namely reactive
systems, as an Application Area Specific Instruction-set Processor (AASIP).

Beside the reactive processors, there are also other recent approaches to build a pro-
cessor which allows a tight timing analysis, such as the PReT [Lickly et al., 2008] or the
Predator project1. The goal of these approaches is to design a general purpose processor
with timing analysis in mind, while still allowing the execution of arbitrary C code. For
reactive systems, we do not focus on the Worst Case Execution Time (WCET) of a
program, i. e., the maximal execution time for a given piece of code, but on the Worst
Case Reaction Time (WCRT), i. e., the maximal time that outputs are generated after
new inputs are read. One can express the WCRT as the WCET of the function that
computes one reaction. However, the WCRT usually depends on the internal state of the
program, hence the WCRT analysis should consider the different modes of the system.

From the reactive processing approach, we expect multiple benefits: deterministic
behavior and timing, better resource usage including program size, and dependability.
Reactive Processors are also interesting from a theoretical point of view: they give an
operational semantics to programs that are not valid in the traditional semantics of their
input language. We will now take a closer look at these issues:

Precise Timing

One of the main problems when designing reactive systems is to determine the exact exe-
cution time. To determine a tight WCET for the execution on modern systems is a hard
problem, since they are optimized for the average case execution time. Synchronous lan-
guages, in contrast, optimize for the worst-case. For synchronous languages this problem
can be reduced to finding the maximal number of instructions that are executed within
one instant, the so called WCRT [Boldt et al., 2008]. The WCRT analysis is simpler,
because the design of reactive processors is simpler than that of standard processors. On
the other hand, they directly support high level constructs, like preemption, in which
execution time can be easily analyzed. To analyze the execution time of the software
implementation of the same preemption is much harder.

Dependability

Developing robust and correct software for reactive systems is not trivial. While formal
verification (e. g. model checking) can prove that the model is correct with respect to its
specification, the correctness of the actual system also depends on the (possibly implicit)
assumptions that were made on the environment and on the correctness of the target

1www.predator-project.eu

12

www.predator-project.eu

1.1. Reactive Processing

platform and the compiler. While there exist certified compilers for Esterel and Scade,
this only assures that the compilers were developed with a specified, robust methodology,
but it does not assure that they are actually correct, i. e., always produce code that
behaves the same way as the model. In particular, when the models are translated into
a subset of C, as it is done for Esterel and Scade, it is hard to assure the correctness of
the compilation.

Here reactive processors can help by giving a simple instruction set architecture which
is specially designed to support the modeling language. This makes the compilation
process easier and should allow for a provably correct compiler. Of course this also
implies that the processor itself must be proven to be correct, but this is a simpler task
than proving the correctness of software for general-purpose processors.

Another benefit is the increased traceability. The compilation of synchronous pro-
grams to traditional instruction sets makes it very hard to determine which statement
in the source program led to which assembler instruction. In contrast, the instruction
set of a reactive processor allows for a direct mapping between the assembler and the
source model. Hence low-level debugging can be performed on the high-level model.

Deterministic behavior

One of the advantages of synchronous programs is their deterministic behavior, which is
independent from the scheduling. This is also true in complex situations, e. g., multiple
interrupts, without relying on the precise timing as common processors do. Reactive
processors enforce determinism in two ways. First, like synchronous languages, they
sample their inputs so that all input values are unique in one tick. Second, events occur
either simultaneously, or they are separated by at least one tick. Reactive processors
avoid race conditions, either by mapping concurrent threads to hardware threads with
clearly defined switch points, or by implementing concurrency directly, but enforcing
the uniqueness of all values within a tick. To achieve this, either the compiler or the
processor itself has to assure that all writes to a specific signal are performed before the
signal is read.

Resource Usage

An important issue for embedded controllers is the resource usage. While the power
consumption for PCs can often be neglected, this is not true for embedded devices that
are sometimes supposed to run for years on a simple battery. Reactive processors might
be less efficient than common processors in performing simple tasks, such as multiplying
two numbers. They are, however, more efficient in performing high level tasks that are
typical for reactive control flow.

Embedded devices have usually a small amount of RAM and ROM. A more direct
instruction set leads to a more compact representation of the code size. For Esterel a
virtual machine was developed [Plummer et al., 2006], just to achieve smaller object
codes. Reducing the code size is already a benefit for itself, but it has even further
advantages. E. g., when the program completely fits in the instruction cache, this not

13

1. Introduction

only increases the execution speed, but also simplifies the analysis of the worst case
reaction time.

Class of valid programs

In order to allow a static scheduling, synchronous languages impose constraints on the
class of accepted programs. While Lustre only allows acyclic programs, without any
static cycles, Esterel allows all programs without dynamic cycles, so called construc-
tive program [Berry, 1999]. While cyclic, constructive programs can be transformed
into equivalent constructive programs [Lukoschus and von Hanxleden, 2007], detecting
whether a cyclic program is constructive is co-NP-complete [Malik, 1994], therefore re-
cent Esterel compilers [Potop-Butucaru et al., 2007] only allow acyclic programs.

However, reactive processors simply execute any program they get. So what shall we
consider as a valid program for a reactive processor? Both for the KEP and the processor
presented here, the compiler assumes so far acyclic programs. But this is just a matter of
implementation, since both use existing front-ends, the cec and the lus2ec, respectively,
and has no theoretical reason. Since Lustre does not give a reference semantic for cyclic
programs, we can simply assume that any cyclic program for which the processor will
not deadlock is a valid program.

1.2. Contributions

This works build on existing work on reactive processors, in particular on the KEP. I
contribute three different aspects:

1. I extend the KEP by a formal semantics and by an additional compilation path.

2. I show how reactive processing can be applied to synchronous dataflow, in partic-
ular to Lustre, and how real parallel execution can be used, instead of the pure
logical concurrency, which is still sequentialized for at run-time, which is used for
the KEP. I also show how the approach can be used for Scade models, a commercial
variant of Lustre, which combines data-flow with automata.

3. I apply different approaches to WCRT analysis for reactive processing on the KEP.

I also connected the KEP and the KLP with a common interface to the Kiel Integrated
Environment for Layout for the Eclipse Rich Client Platform2 (KIELER) tool, to allow
the compilation and the execution of programs on a reactive processor within on tool.
While the KEP and the KLP are distinct processors, they have some common supporting
tools like the Kiel Reactive Processor (KReP) evaluation bench. So the KReP is the
combination of all reactive processors from Kiel, not one processor.

2www.informatik.uni-kiel.de/rtsys/kieler/

14

www.informatik.uni-kiel.de/rtsys/kieler/

1.3. Related Publications

1.3. Related Publications

Parts of this thesis were already published in research papers:

• Falk Starke, Claus Traulsen, and Reinhard von Hanxleden. Executing Safe State
Machines on a reactive processor. Technical Report 0907, Christian-Albrechts-
Universität Kiel, Department of Computer Science, Kiel, Germany, March 2009

This technical report describes the code generation from SyncCharts to KEP as-
sembler, which is explained in Section 4.5.

• Claus Traulsen and Reinhard von Hanxleden. Reactive parallel processing for
synchronous dataflow. In Proceedings of the 25th Symposium On Applied Com-
puting (SAC’10), Special Track Embedded Systems: Applications, Solutions, and
Techniques, Sierre, Switzerland, March 2010

The explanation of the KLP in Chapter 5 is an extended version of this paper.

• Marian Boldt, Claus Traulsen, and Reinhard von Hanxleden. Worst case reac-
tion time analysis of concurrent reactive programs. Electronic Notes in Theo-
retical Computer Science, 203(4):65–79, June 2008. Proceedings of the Interna-
tional Workshop on Model-Driven High-Level Programming of Embedded Systems
(SLA++P’07), March 2007, Braga, Portugal

The explanation of the WCRT analysis of the KEP by finding the longest path
in the Concurrent KEP Assembler Graph (CKAG) in Section 6.1 is taken directly
from this paper.

• Michael Mendler, Reinhard von Hanxleden, and Claus Traulsen. WCRT Algebra
and Interfaces for Esterel-Style Synchronous Processing. In Proceedings of the
Design, Automation and Test in Europe (DATE’09), Nice, France, April 2009

This paper details the usage of an interface algebra for the WCRT analysis. Some
parts of the paper are used for the introduction in Section 6.2. The author was
responsible for the implementation of the approach.

• Partha S. Roop, Sidharta Andalam, Reinhard von Hanxleden, Simon Yuan, and
Claus Traulsen. Tight WCRT analysis for synchronous C programs. Technical Re-
port 0912, Christian-Albrechts-Universität Kiel, Department of Computer Science,
Kiel, Germany, May 2009a

This paper presents the model-checking approach to determine the WCRT of
PRET-C programs, parts of the papers are used in Section 6.3. In this thesis
the approach is for the first time applied to KEP assembler.

Also the corresponding parts of the related work in Section 2 are based on the related
work sections in these papers.

The work presented in this thesis builds on the following diploma theses, which were
supervised by the author:

15

1. Introduction

• Marian Boldt. Worst-case reaction time analysis for the KEP3. Study thesis,
Christian-Albrechts-Universität zu Kiel, Department of Computer Science, May
2007a. http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/

mabo-st.pdf

The topic of this thesis was the implementation of a WCRT analysis directly in
the strl2kasm compiler.

• Marian Boldt. A compiler for the Kiel Esterel Processor. Diploma thesis, Christian-
Albrechts-Universität zu Kiel, Department of Computer Science, December 2007b.
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mabo-dt.

pdf

This thesis contains the implementation of a compiler from Esterel to KEP assem-
bler (strl2kasm).

• Malte Tiedje. Beschreibung des Kiel Esterel Prozessors in Esterel. Diploma the-
sis, Christian-Albrechts-Universität zu Kiel, Department of Computer Science,
January 2008. http://rtsys.informatik.uni-kiel.de/~biblio/downloads/

theses/mti-dt.pdf

In this thesis, the KEP was reimplemented using Esterel as a hardware description
language.

• Falk Starke. Executing Safe State Machines with the Kiel Esterel Processor.
Diploma thesis, Christian-Albrechts-Universität zu Kiel, January 2009. http:

//rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/fast-dt.pdf

This thesis explains the direct generation of KEP assembler from SyncCharts.

The processor description of the KEP and the KLP in Esterel, and the related com-
pilers are published open source on: www.informatik.uni-kiel.de/rtsys/krep.

1.4. Outline

In the next chapter, we will consider related work and give an overview over synchronous
languages in Chapter 3. In Chapter 4 we introduce a formal semantics for the KEP
assembler and in detail the compilation into KEP assembler. In Chapter 5 we introduce
the Kiel Lustre Processor (KLP) and the compilation from Lustre and Scade. Chapter 6
gives different approaches for WCRT analysis, and Chapter 7 presents the evaluation of
the processors using KIELER.

16

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mabo-st.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mabo-st.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mabo-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mabo-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mti-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mti-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/fast-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/fast-dt.pdf
www.informatik.uni-kiel.de/rtsys/krep

2. Related Work

Contents

2.1. Processor Design . 17

2.2. Execution of Synchronous Programs 19

2.2.1. Compiling Esterel . 19

2.2.2. Compiling SyncCharts . 20

2.2.3. Compiling Lustre/Scade . 21

2.2.4. Distributed Executions . 22

2.3. Worst Case Execution/Reaction Time Analysis 22

2.3.1. Interface Algebra . 24

2.3.2. Model Checking . 25

There are three different research areas related to the work presented in this thesis:

1. Reactive processors, i. e., processors specially designed to execute synchronous lan-
guages for reactive systems. In a broader sense, this includes processors that are
specially designed for the execution of embedded real-time systems.

2. Since we are executing Esterel and Lustre, there are strong relationships to other
means of the execution of these languages, in particular on the compilation into
software, but also to the distribution of synchronous programs.

3. Worst Case Execution Time (WCET) analysis: The current research on WCET
analysis focus on the detailed but efficient modeling of modern general purpose
processors, while we are interested in the WCRT analysis on reactive processors,
which have a simpler timing behavior.

2.1. Processor Design

This work is based on the KEP by Li [2007], a reactive processor with an Instruction
Set Architecture (ISA) closely related to Esterel. It supports concurrency by hard-
ware threads with a priority based scheduling. Preemption is implemented by hardware
watchers, which will sense the code ranges and suspend or abort the execution when
their trigger signal is present. We will give more details on the KEP in Section 4.

Other reactive processors for Esterel are the StarPro by Yuan et al. [2008], which
also supports concurrency by hardware threads. But in contrast to the KEP, abortion
is handled by explicit software checks, which allows a simpler hardware design. The

17

2. Related Work

Emperor [Yoong et al., 2006] is a reactive processor that supports concurrency by mul-
tiple cores. However, the synchronous semantics of Esterel makes it hard to really use
this parallelism at runtime, because concurrent threads in realistic Esterel programs
usually have strong data-dependencies and they can exchange signals back and forth
instantaneously within one tick.

The PReT [Lickly et al., 2008] approach targets the development of a general purpose
processor, which can execute arbitrary C code, while still allowing exact timing analysis.
To achieve this, processor parts that might have unpredictable timings are replaced
by better analyzable parts, e. g., caches by scratch-pad memories and memory access
by a memory wheel. However, to fully utilize its features, the programmer needs to
use low-level deadline instructions. The KEP and the KLP support a domain specific
input language. This simplifies the processor, and allows to program in a high level
programming language. A similar approach, to build a general purpose processor from
scratch, with special emphasis on the timing predictability, is taken by the Predator
project1.

The key idea of reactive processing is to take a language to describe reactive systems
which is already established, such as Esterel, and design a special purpose processor to
execute these language. A similar approach is taken by the Java Optimized Processor
(JOP) [Schoeberl, 2008], a processor that is designed for time-predictable execution
of Java byte-code, in particular for Real-Time Java. It implements a simple pipeline
mechanism and cache system that do not introduce timing uncertainties. Since the JOP
uses java-Byte code as an input language, hence they have no particular support for
reactive control flow, in particular for deterministic concurrency and abortion.

The KLP is also related to general dataflow processors, like the Manchester Ma-
chine [Gurd et al., 1985], which allow the parallel execution of programs on multiple
function units. Here, available data will trigger the execution of instructions that de-
pend on it. This aims for simple parallel execution to reduce the average execution time.
Compared to this, the parallelism on the KLP is more coarse grained, since only data
that have reached their final value for the current instant can trigger further executions.

The current trend in the area of reactive processing seems to be more light-weight
software solutions. PRET-C [Andalam et al., 2009] is a small extension of Esterel to
allow the expression of reactive control-flow, similar to Reactive-C [Frederic Boussinot,
1991]. It was directly inspired by the instruction set of reactive processors, and designed
to allow easy timing predictability. To achieve timing predictability, the processor only
needs to be extended by a small scheduler.

A similar approach is taken by SyncCharts in C [von Hanxleden, 2009], which is an
instruction set that allows to express SyncCharts directly in C. Here, no additional hard-
ware is needed, the complete instruction set can be efficiently implemented as C macros.
While this approach does not give timing predictability, it is a convenient way to express
the constructs of SyncCharts, in particular the deterministic concurrency, directly in C.
Similar to PRET-C, the instruction set could be implemented by a processor extension
in hardware, in order to allow predictable timings like in PRET-C.

1www.predator-project.eu

18

www.predator-project.eu

2.2. Execution of Synchronous Programs

2.2. Execution of Synchronous Programs

2.2.1. Compiling Esterel

In the past, various techniques have been developed to synthesize Esterel into software;
see Potop-Butucaru et al. [2007] for an overview. There are three main compilation ap-
proaches for Esterel: compilation into automata, compilation into synchronous circuits,
which are simulated at run-time, and simulation-based approaches, which try to emulate
the control logic of the original Esterel program directly, and generally achieve compact
and yet fairly efficient code. These approaches first translate an Esterel program into
some specific graph formalism that represents computations and dependencies, and then
generate code that schedules computations accordingly. The EC/Synopsys compiler first
constructs a concurrent control flow graph (CCFG), which it then sequentializes [Ed-
wards, 2002]. Threads are statically interleaved according to signal dependencies, with
the potential drawback of superfluous context switches; furthermore, code sections may
be duplicated if they are reachable from different control points. The SAXO-RT com-
piler [Closse et al., 2002] divides the Esterel program into basic blocks, which schedule
each other within the current and subsequent logical tick. An advantage relative to the
Synopsis compiler is that the SAXO-RT compiler does not perform unnecessary context
switches and largely avoids code duplications; however, the scheduler it employs has
an overhead proportional to the total number of basic blocks present in the program.
The grc2c compiler [Potop-Butucaru and de Simone, 2004] is based on the graph code
(GRC) format, which preserves the state-structure of the given program and uses static
analysis techniques to determine redundancies in the activation patterns. A variant of
the GRC has also been used in the Columbia Esterel Compiler (CEC) [Edwards and
Zeng, 2007], which again follows SAXO-RT’s approach of dividing the Esterel program
into atomically executed basic blocks. However, their scheduler does not traverse a score
board that keeps track of all basic blocks, but instead uses a compact encoding based on
linked lists, which has an overhead proportional to just the number of blocks actually
executed.

In summary, there is currently not a single Esterel compiler that produces the best
code on all benchmarks, and there is certainly still room for improvements. For exam-
ple, the simulation-based approaches presented so far restrict themselves to interleaved
single-pass thread execution, which in the case of repeated computations (“schizophre-
nia” [Berry, 1999]) requires code replications. We differ from these approaches in that
we do not want to compile Esterel to C, but instead want to map it to a concurrent
reactive processing ISA.

The multi-processing approach is represented by the EMPEROR [Yoong et al., 2006],
which uses a cyclic executive to implement concurrency, and allows the arbitrary map-
ping of threads onto processing nodes. This approach has the potential for execution
speed-ups relative to single-processor implementations. However, their execution model
potentially requires to replicate parts of the control logic at each processor. The EM-
PEROR Esterel Compiler 2 (EEC2) [Yoong et al., 2006] is based on a variant of the GRC,
and appears to be competitive even for sequential executions on a traditional processor.

19

2. Related Work

However, their synchronization mechanism, which is based on a three-valued signal logic,
does not seem able to take compile-time scheduling knowledge into account, and instead
repeatedly cycles through all threads until all signal values have been determined.

The multi-threading approach has been introduced by the Kiel Esterel Processor fam-
ily and has subsequently been adapted by the STARPro architecture [Yuan et al., 2008], a
successor of the EMPEROR. In some sense, compilation onto KEP assembler is relatively
simple, due to the similarities between the Esterel and the KEP Assembler. However,
we do have to compute priorities for the scheduling mechanism of the KEP, and cannot
hard-code the scheduling-mechanism into the generated code directly. Incidentally, it
is this dynamic, hardware-supported scheduling that contributes to the efficiency of the
reactive processing approach.

It has also been proposed to run Esterel programs on a virtual machine (BAL [Plum-
mer et al., 2006]), which allows a very compact byte code representation. In a way,
this execution platform can be considered as an intermediate form between traditional
software synthesis and reactive processing; it is software running on traditional proces-
sors, but uses a more abstract instruction set. The proposal by Plummer et al. [2006]
also uses a multi-threaded concurrency model, as in the KEP platform considered here.
However, they do not assume the existence of a run-time scheduler, but instead hand
control explicitly over between threads. Thus their scheduling problem is related to the
scheduling on the KEP, but does not involve the need to compute priorities as we have
to do here. Instead they have to insert explicit points for context switches. The main
difference in both approaches is that the KEP only switches to active threads, while
the BAL switches to statically defined control points. One could, however, envision a
virtual machine that has an ISA that adopts the multi-threading model of the KEP,
and for which the approach presented here could be applied. A straightforward, albeit
inefficient VM is the KEP simulator.

The compact representation of a synchronous language was also a motivation for
SyncCharts in C [von Hanxleden, 2009], and via an translation from Esterel to Sync-
Charts [Prochnow et al., 2006], this approach could also be used to generate C code from
Esterel. Since the operators defined in SyncCharts in C are similar to the instructions
of the KEP, the strl2kasm compiler could also be used to generate code for SyncCharts
in C. In particular, the model of concurrent threads with a priority based scheduler is
the same. However, since it has no equivalent to the watchers of the KEP, abortions
need to be implemented by explicit checks.

2.2.2. Compiling SyncCharts

While Statecharts are an appealing language to describe reactive behaviors, the gener-
ation of efficient code is not trivial. Three different methods of compiling Statecharts
can be distinguished: compilation into an object oriented language using the state pat-
tern [Ali and Tanaka, 2000], dynamic simulation [Wasowski, 2003], and flattening into
finite state machines. Since flattening can suffer from state explosion, often a combina-
tion of flattening and dynamic simulation is used. As Statecharts exist in various different
flavors, the optimal code generation scheme depends on the considered Statechart vari-

20

2.2. Execution of Synchronous Programs

ant and its semantics. We focus on SyncCharts, a synchronous Statechart variant with a
formal semantics, and on the compilation for the KEP. Since the KEP directly supports
concurrency and hierarchy (by means of preemption) the compilation from SyncCharts
to KEP assembler differs from standard Statechart compilation. However, it can be
seen as a simulation based approach as used for general purpose processors, were the
simulator is implemented in hardware.

A translation from SyncCharts to Esterel was proposed by André [2003] together
with the initial definition of SyncCharts and their semantics. This transformation, with
additional unpublished optimizations, is implemented in Esterel Studio2. Another com-
pilation from SyncCharts to Esterel was developed byYoong et al. [2009] in the context
of function blocks, however the considered SyncCharts are flat.

The translation from SyncCharts to KEP assembler is most closely related to the
extension of Esterel with GOTO by Tardieu and Edwards [2007]. Since they extend the
language, they have to consider all possible usages of GOTO, e. g., jumping from one
thread into another. The translation from SyncCharts could be directly used to generate
efficient extended Esterel (including GOTO), since the structure of the SyncChart will
always generate valid GOTOs. The Esterel with GOTO could then be translated into
KEP-assembler. Instead, the translation generates KEP assembler, which already has a
GOTO statement, directly from SyncCharts, without generating Esterel. One practical
reason is that there is no publicly available compiler for Esterel with GOTO; another is
that the KEP assembler is close enough to Esterel that this intermediate step would not
make much difference in code generation.

The issue of extracting complex signal expressions into simple condition triggers is
related to extracting such expressions into external hardware in hardware/software co-
design by Gädtke et al. [2007]. In co-design, the motivation is to accelerate computation,
and the challenge is to cleanly extract such expressions into the hw/sw interface. For
the translation from SyncCharts to KEP assembler, the motivation is to provide triggers
for the abortion watchers, and the challenge is to ensure that the trigger signals are
computed for as long as necessary without blocking progress.

2.2.3. Compiling Lustre/Scade

Compared to the compilation of Esterel, the compilation of Lustre is trivial, in part
due to the restriction to acyclic programs. Therefore, there has not been as much
scientific work as for the compilation of Esterel. Lustre code can be compiled into
automata [Bouajjani et al., 1992], this is primarily done for verification. More efficient
is the generation of so called single-loop programs [Halbwachs, 2005]. Here the compiler
orders the equation statically by their dependencies and simply calls them in this order.
The main difficulty here is to extract common sub-expressions, to generate efficient
code. The approach handles Lustre clocks, which define when an expression is evaluated,
just like conditionals. Recently, [Biernacki et al., 2008] introduced a more efficient way
to compile Lustre, which uses the clocks to generate minimal models. Since we are

2www.esterel-technologies.com

21

www.esterel-technologies.com

2. Related Work

compiling for specific hardware, we map Lustre clocks directly to the clocks on the
KLP.

2.2.4. Distributed Executions

Synchronous languages rely on a global clock, therefore a distributed execution of syn-
chronous programs is not trivial. Girault [2005] gives an overview of different approaches.
In the proposed ocrep and screp tools [Caspi et al., 1999], the generated code is repli-
cated to all distributed components, and code parts that are not needed on a specific
component are removed afterwards. While this approach is feasible, it is not efficient
for longer communication latencies. A more efficient solution is the creation of globally
asynchronous, locally synchronous systems (GALS) [Balarin et al., 1999]. The theoret-
ical difficulty is the reaction to absent signals. To support this, the notion of endo-and
isochrony was introduced by Benveniste et al. [1997].

Esterel was augmented to allow multiple clocks by Berry and Sentovich [2001]. How-
ever, these rely still on a common global clock, derived clocks can be used to down-sample
modules. This is not used for the generation of distributed software, but for clock-gating
in hardware.

2.3. Worst Case Execution/Reaction Time Analysis

Regarding timing analysis, there exist numerous approaches to classical WCET analy-
sis. For surveys see, e. g., Puschner and Burns [2000] or Wilhelm et al. [2008]. These
approaches usually consider (subsets) of general purpose languages, such as C, and take
information on the processor designs and caches into account. It has long been estab-
lished that to perform an exact WCET analysis with traditional programming languages
on traditional processors is difficult, and in general not even possible for Turing-complete
languages. Therefore WCET analysis typically impose fairly strong restrictions on the
analyzed code, such as a-priori known upper bounds on loop iteration counts, and even
then control flow analysis is often overly conservative [Malik et al., 1997, Burns and
Edgar, 2000]. Furthermore, even for a linear sequence of instructions, typical modern
architectures make it difficult to predict how much time exactly the execution of these
instructions consumes, due to pipelining, out-of-order execution, argument-dependent
execution times (e. g., particularly fast multiply-by-zero), and caching of instructions
and/or data [Berg et al., 2004]. Finally, if external interrupts are possible or if an oper-
ating system is used, it becomes even more difficult to predict how long it really takes
for an embedded system to react to its environment. Despite the advances already made
in the field of WCET analysis, it appears that most practitioners today still resort to
extensive testing plus adding a safety margin to validate timing characteristics. To sum-
marize, performing conservative yet tight WCET analysis appears by no means trivial
and is still an active research area.

The WCRT of a synchronous program is the maximal time between sampling the
inputs and producing the outputs. Whether WCRT can be formulated as a classical

22

2.3. Worst Case Execution/Reaction Time Analysis

WCET problem or not depends on the implementation approach. If the implementation
is based on sequentialization such that there exist two dedicated points of control at
the beginning and the end of each reaction, respectively, then WCRT can be formulated
as WCET problem; this is the case, for example, if one “step function” without an
internal state is synthesized, which is called during each reaction. If, however, the
implementation builds on a concurrent model of execution, where each thread maintains
its own state of control across reactions, then WCRT requires not only determining the
maximal length of pre-defined instruction sequences, as in WCET, but one also has to
analyze the possible control point pairs that delimit these sequences. Thus, WCRT is
more elementary than WCET in the sense that it considers single reactions, instead of
whole programs, and at the same time WCRT is more general than WCET in that it is
not limited to pre-defined control boundaries.

One step to make the timing analysis of reactive applications more feasible is to choose
a programming language that provides direct, predictable support for reactive control
flow patterns. We argue that synchronous languages, such as Esterel, are generally very
suitable candidates for this, even though there has been little systematic treatment of this
aspect of synchronous languages so far. One argument is that synchronous languages
naturally provide a timing granularity at the application level, the logical ticks that
correspond to system reactions, and impose clear restriction onto what programs may do
within these ticks. For example, Esterel has the rule that there cannot be instantaneous
loops: within a loop body, each statically feasible path must contain at least one tick-
delimiting instruction, and the compiler must be able to verify this. Another argument is
that synchronous languages directly express reactive control flow, including concurrency,
thus lowering the need for an operating system with unpredictable timing.

Ringler [2000] considers the WCET analysis of C code generated from Esterel. This
approach considers the generation of circuit code [Berry, 1999], which generates a syn-
chronous circuit from Esterel, which is than simulated in C.

An approach to arrive at more accurate values is recently proposed by Ju et al. [2008].
Here, Esterel programs are first mapped to C using the CEC compiler and then an
integer linear program formulation is developed to eliminate redundant paths in the
code, thus yielding more accurate results. However, the objective of this work was not
to obtain the most tight value possible.

Li et al. [2005] compute a WCRT of sequential Esterel programs directly on the source
code for the KEP. However, they did not address concurrency, and their source-level
approach could not consider compiler optimizations. We perform the analysis on an
intermediate level after the compilation, as a last step before the generation of assembler
code. This also allows a finer analysis and decreases the time needed for the analysis.

One important problem that must be solved when performing WCRT analysis for
Esterel is to determine whether a code segment is reachable instantaneously, or delayed,
or both. This is related to the well-studied property of surface and depth of an Esterel
program, i. e., to determine whether a statement is instantaneously reachable or not,
which is also important for schizophrenic Esterel programs [Berry, 1999]. This was
addressed in detail by Tardieu and de Simone [2003]. They also point out that an exact

23

2. Related Work

analysis of instantaneous reachability has NP complexity.

2.3.1. Interface Algebra

Interface algebras are an accepted method of modularizing embedded systems program-
ming and specifically synchronous programming. Most interface models in synchronous
programming are restricted to causality issues, i. e., dependency analysis without quanti-
tative time. The modules of André et al. [1997] do not permit instantaneous interaction.
Such a model is not suitable for WCRT. Hainque et al. [1999] use a topological abstrac-
tion of the underlying circuit graphs (or syntactic structure of Boolean equations) to
derive a fairly rigid component dependency model with the effect that multi-threaded
execution cannot be modeled compositionally. The interface model also does not cover
data dependencies and thus cannot deal with dynamic schedules and does not support
WCRT, either.

The causality interfaces of Lee et al. [2005] are more flexible. These are functions
associating with every pair of input and output ports an element of a dependency domain,
which expresses if and how an output depends on some input. Causality analysis is then
performed by multiplication on the global system matrix. Using an appropriate dioid
structure D, one can perform the analyzes of Hainque et al. [1999] as well as restricted
forms of WCRT. However, Lee’s interfaces cannot express the difference between an
output depending on the joint presence of several values as opposed to depending on each
input individually. Thus they do not support full AND- and OR-type synchronization
dependencies and hence cannot represent neither multi-threading nor multi-processing.

Similar restrictions apply to recent work [Wandeler and Thiele, 2005, Henzinger and
Matic, 2006] combining network calculus [Baccelli et al., 1992, Boudec and Thiran, 2001]
with real-time interfaces. These works are concerned with the compositional modeling of
regular execution patterns rather than stabilization processes inside each execution cycle
of a synchronous program. Existing interface theories [Lee et al., 2005, Wandeler and
Thiele, 2005, Henzinger and Matic, 2006], which aim at the verification of resource con-
straints for real-time scheduling, handle timing properties such as task execution latency,
arrival rates, resource utilization, throughput, accumulated cost of context switches, and
so on. However, the dependency on data and control flow is largely abstracted. For in-
stance, since the task sequences of Henzinger and Matic [2006] are independent of each
other, their interfaces do not model concurrent forking and joining of threads. The
causality expressible there is even more restricted than that by Lee et al. [2005] in that
it permits only one-to-one associations of inputs with outputs. The interfaces of Wan-
deler and Thiele [2005] for modular performance analysis in real-time calculus are like
those of Henzinger and Matic [2006] but without sequential composition of tasks and
thus do not model control flow as we do here.

In so far as WCRT analysis aims to obtain exact bounds on the duration of stabiliza-
tion processes with synchronous feedback, it is related to the timing analysis of combi-
national circuits (see, e.g., [Benkoski and Strojwas, 1989, Devadas et al., 1991, Silva and
Sakallah, 1993, Lam and Brayton, 1994]) which is known to be NP-complete. Although
WCRT analysis for single or multi-threaded synchronous processing can mostly be per-

24

2.3. Worst Case Execution/Reaction Time Analysis

formed in max-plus as opposed to min-max-plus algebra, the inherent data dependency
still makes it computationally intractable without sophisticated heuristics. The work
presented here fits into a general and expressive interface theory [Mendler, 2000] for sta-
bilization processes which has been developed to provide a semantic foundation for such
heuristics. It supports modularization and hierarchical abstraction and systematizes
earlier work on combinational timing analysis.

2.3.2. Model Checking

The use of model checking for the analysis of real-time systems is not new. Metzner [2004]
illustrates the effectiveness of using model checking for WCET analysis using the notion
of a basis block automaton to represent a program. Similarly, in [Gu, 2005] an approach
for computing the best and worst case response time of tasks is presented using model
checking. Logothetis and Schneider [2003], Logothetis et al. [2003] have employed model
checking to perform a precise WCET analysis for the synchronous language Quartz,
which is closely related to Esterel. However, their problem formulation was different
from the WCRT analysis problem we are addressing. They were interested in computing
the number of ticks required to perform a certain computation, such as a primality test,
which we would actually consider to be a transformational system rather than a reactive
system [Harel and Pnueli, 1985]. We here instead are interested in how long it may take
to compute a single tick, which can be considered an orthogonal issue.

25

3. Synchronous Languages

Contents

3.1. Lustre . 28

3.1.1. Clock operators . 30

3.1.2. Gate Example . 31

3.1.3. Compilation . 31

3.2. Scade . 32

3.3. Esterel . 34

3.3.1. Esterel v7 . 36

3.4. SyncCharts . 37

Synchronous languages [Benveniste et al., 2003, Halbwachs, 1998] are a family of lan-
guages to describe the behavior of reactive systems. These languages come in different
flavors: textual or graphical, imperative or declarative. They all share the common
synchrony hypothesis, which states that outputs occur simultaneously with their inputs,
hence the computation itself does not take time. While this view greatly simplifies the
semantics of these languages, it seems to be unrealistic for a real implementation. How-
ever, from a implementation point of view, the synchronous hypothesis can be read as:
“new events from the environment will not occur before the computation of the current
events has finished.” From a developers point of view, the logical and the temporal
behavior are separated. These languages also separate the description of the behavior
and the description of data-handling. Most of the languages do not support complex
data computations, but allow to call external functions in a host language to perform
computations or access complex data-types.

The key issues of synchronous languages are the specialties of control flow in reactive
systems: concurrency and preemption. Both are deterministic, in contrast to other,
asynchronous forms of parallelism. The behavior is divided into discrete ticks, also called
instants. Inside each tick no time elapses, hence all concurrent threads see coherent data.

Synchronous languages are high-level modelling languages. From the models, both
hardware and software can be synthesized. Synchronous languages have a rigid formal
semantics, this allows the formal verification of models.

In the following we will take a closer look at some synchronous languages: the declara-
tive language Lustre and the imperative Esterel, as well as their graphical counterparts,
Scade and SyncCharts. To explain the different languages, we will use the simple gate
controller that is shown in Figure 3.1 as a running example. The gate shall have the
following behavior: per default, the gate is closed, until the user enters a valid ID. Then

27

3. Synchronous Languages

Inputs

• id

• open

• closed

• sec

Outputs:

• move

• lamp

Figure 3.1.: A simple gate, which is used to demonstrate different synchronous languages.

it stays open for 5 seconds. The gate should open whenever an valid ID is entered, even
if it is currently closing. As a rough abstraction for the validation of the ID, we consider
an id valid if it is a multiple of five. A lamp shall flash with one second frequency when-
ever the gate is moving. So the inputs are the ID, signals whether the gate is completely
opened or closed, and a time signal which is set to true once every second. The outputs
are a move signal to actually move the gate and a lamp.

The system consists of three components, 1) check whether the entered ID is valid 2)
determine whether we shall open or close the gate and 3) give actual move instructions
to the environment, which shall prevent the gate from rapid movements. The first and
the third step are data-flow dominated, the second step is pure control flow.

3.1. Lustre

Lustre [Halbwachs and Raymond, 2001] is a synchronous dataflow language. Syn-
chronous dataflow [Lee and Messerschmitt, 1987] is a restriction of the general Kahn
dataflow model [Kahn, 1974]. In a Kahn process network, each process communicates
with other processes via unbounded buffers. It can produce and consume any amount
of data, the only restriction is that reads on an empty buffer are always blocking and
a process has no possibility to check whether input is available. While this is a very
general model for asynchronous concurrency, these few limitations lead to deterministic
behavior, which is independent from the scheduling of the different processes. How-
ever, it is hard to determine an upper bound for the buffer-size that is needed for a
given scheduling. It is even NP complete to check whether the buffer size is bounded at
all [Park et al., 1998]. Consequently, it is hard to come up with a scheduling that has
minimal resource usage.

To overcome these issues, synchronous dataflow was introduced. Here, each process
will produce and consume a fixed number of data whenever it is executed, independent
from the program state or read inputs. This makes the computation of an optimal

28

3.1. Lustre

1 node COUNT(C: bool) returns (X: int);
2 var
3 clock : bool;
4 let
5 clock= true → EDGE(C);

6 X = current((0→ (pre X) + 1) when clock);

7 tel
8

9 node EDGE(I: bool) returns (O: bool);
10 let
11 O = I → I and not pre(I);
12 tel

Tick 0 1 2 3 . . .

C 0 0 1 1 . . .

clock 1 0 1 0 . . .

pre X ⊥ 0 0 1 . . .
0→(pre X) +1 0 1 1 2 . . .

0 →(pre X)+1)
when clock

0 1 . . .

X 0 0 1 1 . . .

Figure 3.2.: A simple Lustre program and an execution trace

scheduling easy, where the scheduling can either minimize the used buffer space or the
program size. While synchronous dataflow is a general concept without a concrete
syntax, Lustre is a actual modelling language. It can be seen as a Kahn process network,
where each buffer has a size of one.

The basic blocks from which Lustre programs are constructed are called nodes. A
node consists of a set of inputs and outputs and a set of concurrent equations, which
are executed synchronously.

Lustre programs operate on infinite streams of data. Clocks are used to define when
a value is computed. In the notion of Lustre, a clock is simply a boolean stream. Beside
usual arithmetics, Lustre defines the following clock operators:

pre e This accesses the previous defined value of the expression e. This value is undefined
(nil) in the first instant the pre is executed. In a correct Lustre program, this value
is never accessed. Therefore, pre should only appear on the right hand side of an
initialization (see below.).

e1 when e2 Down-sample an expression: the expression e1 is only computed when the
boolean expression e2 evaluates to true. In this case, the whole expression evaluates
to e1, otherwise it is undefined.

current e Up-sample an expression: the value is the last defined value e.

e1 →e2 Initialize: The result is the value of e1 in the first instant, and the value of e2
in all following instants.

The example in Figure 3.2 shows the behavior of the different clock operators. The node
COUNT counts the rising edges of the input signal C. Setting the initial value of clock
to true assures that X is correctly initialized as well.

For a valid Lustre program, only expressions that run on the same clock may be com-
bined, since otherwise, it would not be possible to bound the memory usage. Consider
the program in Figure 3.3. The program will produce the following values, where Xi is
the i-th value of X.

29

3. Synchronous Languages

1 I = 1 → pre(I) +1;

2 C = true → not (pre C);

3 X = (I when C) + I

Tick 0 1 2 3 4
I 1 2 3 4 5
C T F T F T

I when C 1 3 5
X I0 + I0 = 2 I1 + I2 = 5 I2 + I4 = 8 I3 + I6 = 11 I4 + I8 = 14

Figure 3.3.: Invalid Lustre program with inconsistent clocks and its execution trace

To compute the i-th value of X, we need the i-th and the 2i-th value of I. Since we
have to store all inputs that we will use later somewhere, i values must be stored for
the i-th tick, hence the memory consumption of this program cannot be bounded. To
solve this problem Lustre only allows the combination of values that have the same clock.
Unfortunately, it is in general not decidable whether two clocks are dynamically the same.
Therefore, Lustre only allows clock combinations that are syntactically equivalent, e. g.,
only renamings are considered, but no boolean operations, which are undecidable to be
equivalent in general. Figure 3.4 shows an example for syntactical and semantical clock
consistency. Here, the fact that C1 and C1 and C1 are equivalent are not realized by the
compiler.

1 node valid(X: int ; C1:bool;) returns (O:int);
2 var C2: bool;
3 let
4 C2=C1;

5 O = current ((X when C1) + (1 when C2));

6 tel

(a) C1 and C2 are syntactically equivalent. This
program is accepted by the Lustre compiler.

1 node invalid (X: int ; C1:bool;) returns (O:int);
2 var C2: bool;
3 let
4 C2=C1 and C1;

5 O = current ((X when C1) + (1 when C2));

6 tel

(b) C1 and C2 are semantically equivalent, but
not syntactically. This program is rejected
by the Lustre compiler.

Figure 3.4.: Clock equivalence in Lustre programs

The definition of Lustre was clearly influenced by control engineering. Thus one may
see Lustre as extending circuits with wires, which can hold not only boolean values but
numbers. Since the design of reactive systems is often done by engineers who have a
background in control theory, rather than in computer-science, such a dataflow formalism
is a good means to describe these systems.

3.1.1. Clock operators

Lustre is a simple language, nevertheless the behavior can be quite tricky. In particular,
the handling of clocks can be confusing. Consider the example in Figure 3.5, where we
extend the COUNT example by an additional signal X2. On a first glance, X and X2
should behave the same, we only moved the constant initialization outside of the clock
operator. But, as the trace shows, this does not properly initialize the expression. So
the first time that the when is executed, its body is not defined, due to the access of an
undefined pre. In the following instant, the current propagates this undefined value. In

30

3.1. Lustre

contrast, the definition of X correctly initializes the first execution of the when.

1 node COUNT(C:bool) returns (X:int; X2:int);
2 var
3 clock : bool;
4 let
5 clock= true → EDGE(C);

6 X = current((0 → (pre X) + 1) when clock);

7 X2 = 0→current(((pre X2) + 1) when clock);

8 tel
9

10 node EDGE(I:bool) returns (O:bool);
11 let
12 O = I → I and not pre(I);
13 tel

C 0 0 1 1 . . .

clock 1 0 1 0 . . .
X 0 0 1 1 . . .

X2 0 ⊥ ⊥ . . .

0→(pre(X)+1) when clock 0 1 . . .
(pre(X2)+1) when clock ⊥ ⊥ . . .

Figure 3.5.: A simple Lustre program and an execution trace

3.1.2. Gate Example

Figure 3.6 shows the implementation of the gate example in Lustre. It consists of three
nodes: check to compute whether a valid request is coming in, ctrl to implement the
control logic that determines whether the gate shall be moved up or down, and smooth
to prevent the gate from rapid accelerations. These nodes are connected in the main
node gate. In the check node we first compute whether a new id is entered. Only if this
is the case, the validation of the id is triggered, i. e., ok is computed. A valid request is
entered, if a new id is entered and the validation sets ok to true.

The dataflow equations of Lustre can be naturally represented by dataflow-diagrams.
Figure 3.7 shows the same implementation of the gate in a graphical notation, imple-
mented in the KIELER.

3.1.3. Compilation

The first approaches to compile Lustre generated automata code [Halbwachs et al.,
1991b]. While this is a very fast implementation and it can be shown that the generated
automaton is minimal, this approach turned out to be unfeasible for realistic examples,
due to the possible exponential growth of the code size.

Current Lustre compilers implement the program by sequentializing the equations
according to the data-dependencies. The when operator is implemented by a conditional,
and in each tick, it needs to be checked whether the equation is initialized or not.
An important part of the compiler optimization is to extract common subexpressions
from different equations and to reduce the amount of memory that is used, e. g., often
reordering the equations makes it unnecessary to store the previous value of an equation.

One of the open questions in compiling synchronous languages is modular code gen-
eration. Compiling all modules independently is not possible in general, because of
instantaneous feed-back loops. The standard Lustre compiler inlines all nodes, and then

31

3. Synchronous Languages

1 // main node
2 node gate(id : int ;
3 open, closed , sec : bool)
4 returns (lamp: bool; move:int);
5 var
6 request , up, down: bool;
7 let
8 request = check(id);

9 (up, down) = ctrl(open, closed , sec , request);

10 (move, lamp) = smooth(up, down, sec);

11

12 tel
13

14 // compute if gate should be opened or closed

15 node ctrl (open, closed , sec , request : bool)
16 returns (up, down: bool);
17 var
18 count : int ;
19 let
20 count = 0→ if open and not pre(open)
21 then 5

22 else if pre(count)=0

23 then 0

24 else if sec

25 then pre(count) – 1
26 else pre(count);
27 up = false

28 → request or (not open and pre(up));
29 down = false → not closed and count=0;

30 tel

31

32 // check wheteher a new, valid id was entered

33 node check(id: int) returns(request : bool);
34 var ok, new id: bool;
35 let
36 request = new id and ok;

37 new id = true → id <> pre(id);
38 ok = current ((5 ∗ (id/5) = id) when new id);

39 tel
40

41 // compute actual actuator output

42 // from logical movements

43 node smooth(up, down, sec: bool)
44 returns (move: int ; lamp: bool);
45 var
46 d: int ;
47 let
48 d = pre(move)/4;

49 move = 0→ if up

50 then min(max(pre(move)+d+1,

51 pre(move)–2∗d+1),

52 100)

53 else if down

54 then max(pre(move)+d–1,

55 – 100)

56 else 0;

57 lamp = if move=0

58 then false

59 else current(not pre(lamp) when sec);

60 tel

Figure 3.6.: Lustre implementation of the gate example

compiles this monolithic program. Other compilers, such as the reluc compiler, compile
all nodes individually, but reject programs which directly use the output of nodes as
inputs without any pre operator in between.

3.2. Scade

A commercial variant of Lustre is Scade, which is implemented in the SCADE (Safety-
Critical Application Development Environment) tool by Esterel Technologies1. A Scade
version of the gate example is shown in Figure 3.8.

Beside giving a graphical notation, Scade extends Lustre by some additional features,
such as convenient conversion between datatypes, and additional in-build functions. It
also extends Lustre by SyncCharts, a synchronous StateChart variant [Colaço et al.,
2005]. Data equations and automata can be mixed freely, i. e., states may contain equa-
tions and the expression that computes an equation might itself contain an automaton.

1www.esterel-technologies.com

32

www.esterel-technologies.com

3.2. Scade

Figure 3.7.: Implementation of the gate with a graphical Lustre variant.

Scade supports three different kinds of transitions:

Weak-delayed abortions allow the execution of the source state in the instant the tran-
sition is triggered and activate the target state in the next instant.

Strong abortions immediately abort the execution of the source state when they are
triggered and transfer control to the target state.

Synchronized transitions are triggered when the source state itself reaches a state that
is flagged as final. The transition triggers can be arbitrary data-expressions or
signals, i. e., boolean variables.

Since the arbitrary mixing of clocks can lead to very complex code that is hard to
understand, the usage of clocks in Scade is per default restricted. Clocks are replaced
by activation conditions, which execute a given node only when a boolean value is true,
as the CheckID and Toggle nodes in Figure 3.8. Whenever the boolean condition is not
true, the output will always be defined, as in Lustre, but the last defined value will be
replicated. The activation condition also requires an initial value, hence its output is

33

3. Synchronous Languages

ID
true

2

CheckID

false

PRE

Valid

CLOSED

down
true

DOWN

OPEN

up
true

UP

<SM2>

Control

<Control>

SEC

sec

OPEN

CLOSED

opened

closed

1

 'Valid

1
 'opened

1 5 times 'sec

1
 'closed

up

down

LAMP
false

1

Toggle

PRE

0

1
MIN

100

1
MAX

1

1

PRE

4

2

2

0

2
MAX

-100
1 MOVE

0

Figure 3.8.: Scade implementation of the gate example

always defined. The usage of the plain current and when is still possible in Scade, but
deprecated. Also the Lustre init operator is usually replaced by the fby (followed by)
operator, where a fby b is equivalent to a → pre(b).

While Lustre supports boolean clocks, which are either present or absent, clocks in
Scade can be arbitrary enumeration, and the when operator is extended to e when (C=V):
the flow e is evaluated when the clock C has value V. Enumerated clocks can be directly
used to implement SyncCharts, where the active state is implemented as a clock, hence
the flow inside a state is only evaluated when the state is active. Another difference
between Lustre and Scade is the handling of arrays. In Lustre arrays can be accessed by
static indices and slices, while in Scade more flexible map and fold operators are defined.

Parts of the Scade language are no also implement in the new Lustre v6 implementa-
tion, in particular enumerated clocks and the handling of arrays by map and fold.

3.3. Esterel

Esterel [Berry and Cosserat, 1984, Potop-Butucaru et al., 2007] is an imperative syn-
chronous language. Esterel programs communicate with the environment and internally
via signals, which are either present or absent during one instant. Signals are set present

34

3.3. Esterel

by the emit statement and tested with the present test. Local signals can be declared
using the signal statement. Signals are absent per default: a signal is only present in a
tick if it is emitted in this tick. Esterel statements can be either combined in sequence (;)
or in parallel (‖). The loop statement simply restarts its body when it terminates. All
Esterel statements are considered instantaneous, except for the pause statement, which
pauses for one instant. The suspend statement suspends its body when a trigger signal
is present. Exception handling is done via named exceptions, called traps. The trap
statement declares the scope of an exception. When the exception is raised with an exit
statement, the control is transferred to the end of this trap scope. If multiple, different
exceptions are raised in the same tick, the trap with the outermost scope is taken.

From this small set of kernel statements derived statements are declared. This includes
simple statements like halt=loop pause, which stops forever, but also the abort and weak
abort statements, which terminate their bodies when the trigger signal is present. Weak
abortion permits the execution of its body in the instant the trigger signal becomes
active, strong abortion does not. Both kinds of abortions can be either immediate or
delayed. The immediate version already senses for the trigger signal in the instant its
body is entered, while the delayed version ignores it during the first instant in which the
abort body is started.

Beside the pure status, a signal can also contain an additional value. This value is
persistent over ticks, if the signal is not emitted. If a valued signal is emitted multiple
times within a tick, a commutative and associative function must be given to combine
the signals. This ensures that the signal value is unique within a tick. Esterel also has a
notion for variables, which can have different values within a tick. However, they cannot
be read and written in parallel, hence all race conditions are syntactically excluded.

Figure 3.9 shows the implementation of the gate example in Esterel. The control
logic can be expressed very naturally (Lines 14–22). However, the validation of the
id (Lines 10–12) and in particular the smoothing the output (Lines 24–41) are purely
sequential and do not use any special features of Esterel. In particular complex compu-
tations can often be better done in the host language, i. e., C.

Esterel program can be compiled into the C code. The main difficulty is to sequential-
ize the concurrent parts of the Esterel program. This can either be the explicit concur-
rency expressed by ‖, or the concurrency that evolves from the preemption, where both
the execution of the preemption body statement and the checking of the trigger signal
are semantically concurrent. One compilation approach is to generate automata, but
this can lead to exponential growth of the code size, compared to the input program.
Therefore, a more compact representation was developed, by generating a net-list from
an Esterel program [Berry, 1992]. The generated C code simulates this net-list. While
this has the advantage that the code size grows linear with the size of the input program,
the execution time is rather slow. During the simulation, many irrelevant computations
might be performed, which result will be ignored later. Current Esterel compiler like the
Columbia Esterel Compiler (CEC) from Stephen Edwards [Edwards and Zeng, 2007] or
the grc from Dumitru Potop-Butucaru [Potop-Butucaru et al., 2007] analyze the control
flow graph to generate a fine grained static schedule for the sequentilization. However,

35

3. Synchronous Languages

1 module GATE:

2 input OPEN, CLOSED;

3 input SEC;

4 input ID: integer ;
5

6 output LAMP;

7 output MOVE: integer;
8

9 signal valid , up, down in
10 every ID do
11 if 5∗(?ID/5)=?ID then
12 emit valid

13 end if
14 end every
15 ||
16 every valid do
17 abort
18 sustain up

19 when OPEN;

20 await 5 SEC;

21 abort
22 sustain down

23 when CLOSED

24 end every
25 ||
26 loop
27 pause;
28 present up then
29 if pre(?MOVE)=100 then
30 emit MOVE(100);

31 else
32 emit MOVE(pre(?MOVE) + 1);

33 end if
34 else present down then
35 if pre(?MOVE)=100 then
36 emit MOVE(100);

37 else
38 emit MOVE(pre(?MOVE) 1);

39 end if
40 else emit MOVE(0);

41 end present
42 end present
43 end loop
44 end signal
45

46 end module

Figure 3.9.: Esterel implementation of the gate example

this requires that the program does not contain syntactical static cycles, while the com-
pilation to net-list allows to compile all constructive programs, i. e., programs where
not cyclic dependencies occur at runtime. With the compilation into netlists, it is also
possible to synthesize hardware from an Esterel program Berry [1991].

3.3.1. Esterel v7

Originally, Esterel was designed to program reactive systems in software, therefore the
Esterel program is compiled into C code. In the last Esterel version, Esterel v7, the
focus is put more into the design of hardware [Arditi et al., 2005]. For example, Support
for data handling, in particular arrays and bit-vectors was added. To reduce the number
of synthesized hardware registers, signals can be declared as valued and/or temp. A
valued signal has no status, and the value of a temp signal is not preserved over ticks.
Both the Kiel Esterel Processor and the Kiel Lustre Processor were implemented using
Esterel v7.

Also, Lustre flows are incorporated into the language: an emit statement cannot only
emit a signal, but evaluate a Lustre expression. To iterate over arrays, inside an emit
statement it is possible to execute a for loop, which iterates over all signals in parallel
or sequentially.

Esterel v7 also introduces multiple clocks [Berry and Sentovich, 2001]. This allows to
suspend parts of the hardware, e. g., to save energy. This feature is semantically based
on weak suspension, first introduced in the synchronous language Quartz [Schneider,

36

3.4. SyncCharts

2009], which evaluates all data computations inside its body, but preserves the active
pause statements. To make reusing of existing components easier, it is now possible to
inherit complete interfaces from other modules, and to combine input and/or output
signals into ports.

For verification purpose, input and output assertions can be added to a module, similar
to standard pre- and post-conditions. Furthermore, all interface signals can be inherited
as outputs, in order to implement observers. Oracles can be used to get non-deterministic
inputs for testing.

3.4. SyncCharts

SyncCharts (also called Safe State Machines) are a Statechart dialect with a synchronous
semantics that strictly conforms to the Esterel semantics. An implementation of the gate
example in SyncCharts (using KIELER) can be seen in Figure 3.10. As for the Esterel
example, the actual gate controller on the bottom can be implemented very naturally,
while the more dataflow oriented checking for the correct id (left) and the smoothening
of the output (right) are rather cumbersome to express.

Figure 3.10.: Implementation of the gate as SyncChart

A procedural definition of the semantics of SyncCharts is given by André [2003].
The basic object in SyncCharts is a reactive cell, which is a state with its outgoing
transitions. Reactive cells are combined to state-transition graphs, called state regions in
other Statechart dialects. These are flat automata with exactly one initial state, which

37

3. Synchronous Languages

is indicated by a bold border. A macro-state, like the control state on the example,
consists of one or more state-transition graphs. Additionally, SyncCharts can contain
textual macrostates, which consist of plain Esterel code. States can also have internal
actions: on entry, on exit and on inside. An on exit action is executed whenever the state
is left, whether this is done via an outgoing transitions or a parent state of this state
is left itself. SyncCharts inherit the concept of signals and valued signals from Esterel.
Hence a transition trigger can consist of an event, which tests for presence and absence
of values, and a conditional, which may compare numerical values. Characteristic for
SyncCharts are the different forms of preemption, expressed by different state transition
types. Weak and strong abortion transitions as well as suspension can be applied to
macrostates. Strong abortions are indicated by a red dot on the arrow tail, like the
transitions that restart the controller for each valid input in the example. Weak abortions
are drawn as plain arrows. A variant of weak abortions are weak-delayed abortions,
which only activate the target state in the next instant. They make sure that states
are not transient, what can both simplify the compilation and the understanding of a
SyncChart. A macrostate can either be left by an abortion, which has an explicit trigger,
or by a normal termination, which is taken if the macrostate enters a terminal state.
Normal terminations are indicated by a green triangle at the arrow tail. Analogously to
Esterel, all transitions can either be immediate or delayed, where a delayed transition is
only taken if the source state was already active at the start of an instant. In contrast,
immediate transitions may be taken as soon as the state becomes active; this enables
the activation and deactivation of a state multiple times within one instant. Delayed
transitions can also be count delayed, i. e., the trigger must have been evaluated to true
for a specific number of times, before the transition is enabled. When a state has more
than one outgoing transition, a unique priority is assigned to each of them, where lower
numbers have higher priority. Weak abortions must have lower priority than strong
abortions, and if a normal termination exists, it always has the lowest priority.

38

4. The Kiel Esterel Processor (KEP)

Contents

4.1. Instruction Set Architecture . 41

4.1.1. Execution cycle . 41

4.1.2. Instructions . 42

4.2. KEP-e . 44

4.2.1. Validation . 45

4.2.2. Connection to the “real world” 45

4.3. Semantics . 45

4.3.1. Microstep . 55

4.3.2. Macro-Steps . 56

4.3.3. Example Execution . 57

4.3.4. Limitations . 57

4.4. Compiling Esterel . 57

4.4.1. Implementing Strong Abort . 61

4.4.2. Combine . 62

4.5. Compiling SyncCharts . 62

4.5.1. Compiliation Steps . 65

4.5.2. Thread embedding . 66

4.5.3. PRIO instructions . 67

4.5.4. Weak abortion . 67

4.5.5. Experimental Results . 68

The KEP is a reactive processor, based on the synchronous language Esterel. It has
three main features: the implementation of Esterel’s preemption by watchers, priority
based threads to implement synchronous concurrency, and a tick manager to enforce
constant reaction times. The KEP was originally designed by Xin Li in VHDL [Li,
2007, Li and von Hanxleden, 2010]. It was later reimplemented by Malte Tiedje in
Esterel [Tiedje, 2008], called KEP in Esterel (KEP-e).

Watchers sense the program counter and a trigger signal to determine whether a
preemption takes place. The [w]abort S, A0 statement initializes a watcher with the
code range from the current instruction to the label A0 and the trigger signal S. At each
clock cycle, the watcher checks whether the current program counter is in the given range
and whether S is present. If this is the case, the watcher signals that it is triggered. A
watcher-handler determines whether the abortion shall be executed now and, if multiple

39

4. The Kiel Esterel Processor (KEP)

(a) Status of the whole program

(b) Execution status of a single thread

Figure 4.1.: Execution model of the KEP.

watchers are triggered, which one is taken. A weak abortion, for example, can only
be taken if a tick-delimiting instruction is reached. If multiple watchers are active, the
watcher with the lowest ID wins.

To implement concurrency, the KEP offers hardware threads and a priority-based
scheduler. Each thread has an ID, a program counter, and a priority. Additionally,
for each thread it is stored whether it is currently active and whether its execution is
finished for the current tick. At each instruction cycle, the scheduler determines the
thread with the highest priority, and the instruction to which its program counter points
gets executed. If two threads have the same priority, the ID is used to determine the
unique thread with the highest ID, which will then be executed. The different status
of a thread at runtime and the status of the whole program within one tick is shown in
Figure 4.1.

The tick manager starts the execution of a new tick and signals to the environment,
when the execution for the current thread has finished. It supports two different modes:
either the KEP runs as fast as possible or with a constant reaction time. If the special
register TICKLENGTH holds a value greater than 0, the tick manager will wait at least
this number of instruction cycles before declaring the tick as finished. If the execution
takes more clock cycles than the value in TICKLENGTH, the output TICKWARN is
set to true, to indicate a timing violation. The behavior of the tick manager for a
small Esterel program with a timing violation is shown in Figure 4.2. Combined with a
WCRT analysis of the executed program, the tick manager allows a constant reaction

40

4.1. Instruction Set Architecture

1 INPUT D

2 OUTPUT A,B,C

3

4 EMIT TICKLEN, #3

5 EMIT A

6 EMIT B

7 PAUSE
8 EMIT A

9 EMIT B

10 EMIT C

11 AWAIT D

(a) KEP assembler (b) Timing diagram of the KEP

Figure 4.2.: Illustration of the tick manager (taken from [Li et al., 2005]). A timing vio-
lation occurs in the second tick, the tick takes 5 clock cycles, but TICKLEN
has the value 3. The TickWarn output is set three clock cycles after the sec-
ond tick is started. The execution times for all but the second tick are equal
(3 clock cycles), even though in the last ticks only one await is executed.

time without any jitter. If the TICKLENGTH register holds the value 0, the tick manager
sends the information that the tick has finished as soon as all threads have reached a
tick-delimiting instruction, i. e., the KEP runs as fast as possible.

In the next section, a short overview of the instruction set of the KEP is given,
including an informal semantics. In Section 4.2 the differences between the KEP and
the KEP-e are described, before giving a formal semantics to a subset of the KEP
instruction set in Section 4.3. In Section 4.4 and Section 4.5, we take a closer look at
the compilation from Esterel and SyncCharts to the instruction set of the KEP.

4.1. Instruction Set Architecture

4.1.1. Execution cycle

Standard processors execute in the von Neumann cycle: fetch an instruction from the
ROM, decode the instruction, and execute it. The KEP differs in two aspect from this
behavior: 1) Before each fetch, there is a scheduling step to resolve the current program
counter of the thread with the highest priority. 2) All other steps in the cycle can be
aborted by the watcher, which will jump directly to the scheduling step. While the
watcher acts in parallel in the hardware implementation of the processors, the execution
cycle can be semantically sequentialized into the following steps:

1. Schedule: The scheduler determines the thread with the highest priority

41

4. The Kiel Esterel Processor (KEP)

2. Strong abort: The watchers for strong abortions and suspension are triggered and
indicate whether they are active.

3. Fetch, Decode, Execute: The next instruction for the scheduled thread is read
from the instruction ROM and executed.

4. Weak abortion: The watchers for weak abortions are triggered and indicate whether
they are active.

The watchers are the main difference to other approaches for direct execution of Es-
terel programs. Semantically, it is sufficient to trigger the watchers only when a time
delimiting instruction, like a PAUSE is executed: check for strong abortion and suspen-
sion when control is resumed at the PAUSE, and check for weak abortion when control
reaches a PAUSE. This is done by other approaches to execute Esterel programs, like the
EMPEROR [Yoong et al., 2006], the StarPRO [Yuan et al., 2008] or SC [von Hanxle-
den, 2009], where explicit instructions to check abortions are added before and after
each PAUSE instruction. Which approach should be preferred depends on the Esterel
program. Checking all preemptions in parallel gives a benefit for deep nestings, both in
program size and execution time. However, if only few preemptions need to be checked,
the more complex hardware and the resulting slower clock cycle do not pay off.

4.1.2. Instructions

The KEP has instructions for all Esterel kernel statements, and some additional in-
structions for commonly used derived statements, like AWAIT. The instructions can be
distinguished in the following classes: time delimiting instructions, preemption instruc-
tion, thread instructions, control flow instructions and data-handling instructions. The
latter two classes are similar to instructions in general purpose processors. Here we
consider a restricted version of the KEP by ignoring all data handling except for signal
status, similar to restricting full Esterel to pure Esterel. Figure 4.3 gives a short overview
of the instructions of the KEP.

Time Delimiting

The AWAIT S and AWAITI S instruction wait for the presence of a trigger signal S. If the
trigger signal is absent, they terminate the execution of the current thread. Otherwise,
they pass the control to the following instruction. The AWAIT declares the thread
finished for the current tick when activated, regardless of the signal status. In contrast,
the AWAITI checks the signal status immediately. The KEP has no PAUSE instruction,
but the special signal TICK, which is present in each tick can be used instead: AWAIT
TICK waits for exactly one instant.

To implement Esterel’s count delays, the LOAD COUNT instruction can be used to
set the COUNT register. This register is read by the AWAIT instruction: it will not wait
for the first occurrence of the trigger signal, but it will wait as many occurrences as the
COUNT register specifies.

42

4.1. Instruction Set Architecture

Mnemonic, Operands Esterel Syntax Cycles Notes

PAR prio1, startAddr1, id1
. . .
PAR prion, startAddrn, idn
PARE endAddr, prio
startAddr1:
. . .
startAddr2:

. . .
startAddrn:
. . .
endAddr :
JOIN [prio]

[
p1

||
...
||

pn

]

n + 1

1

For each thread, one PAR is
needed to define the start ad-
dress, thread id and initial pri-
ority. The end of a thread is de-
fined by the start address of the
next thread, except for the last
thread, whose end is defined via
PARE.
The cycle count of a fork
node depends on the count of
threads.

PRIO prio 1 Set current thread prior-
ity to prio.

[W]ABORT[I, n] S, endAddr
. . .
endAddr :

[weak] abort
. . .

when [immediate, n] S

1

SUSPEND[I,n] S, endAddr
. . .
endAddr :

suspend
. . .

when [immediate, n] S

1

startAddr :
. . .
EXIT exitAddr startAddr
. . .
exitAddr:

trap T in
. . .
exit T
. . .

end trap

1

Exit from a trap, star-
tAddr/exitAddr specifies
trap scope. Unlike GOTO,
check for concurrent EXITs and
terminate enclosing ||.

PAUSE pause 1 Wait for a signal. AWAIT
TICK is equivalent to PAUSE.AWAIT [I, n] S await [immediate, n] S 1

SIGNAL S signal S in . . . end 1 Initialize a local signal S.

EMIT S [, {#data|reg}] emit S [(val)] 1 Emit (valued) signal S.

SUSTAIN S [, {#data|reg}] sustain S [(val)] 1 Sustain (valued) signal S.

PRESENT S, elseAddr present S then . . . end 1 Jump to elseAddr if S is absent.

NOTHING nothing 1 Do nothing.
HALT halt 1 Halt the program.

addr : . . .GOTO addr loop . . . end loop 1 Jump to addr.

Figure 4.3.: Overview of the KEP instruction set architecture, and their relation to Es-
terel and the number of processor cycles for the execution of each instruction.

The HALT instruction marks the execution of the current thread as finished for this
tick, without changing the program counter. Hence the HALT instruction is executed in
each instant. This is necessary, because the HALT can be aborted by a watcher, and the
watcher needs the execution of at least one instruction in its range to be triggered.

Preemption

The ABORT S, endAddr, ID, WABORT S, endAddr, ID, and SUSPEND S, endAddr, ID
instructions initialize a watcher with the given ID and trigger signal S and transfer the
control to the following instruction. The preemption itself is then performed by the

43

4. The Kiel Esterel Processor (KEP)

watchers. The range of the watcher starts at the current address and ends at the given
end address. Each of these instructions also has an immediate version, which already
activate the watcher in the current tick. The IABORT does not initialize a watcher if
the trigger signal is active when it is activated, but instead directly jumps to the end
address. There are two way to deactivate a watcher again: control can simply jump
out of the range of the watcher, or the watcher can be reinitialized with new values. A
watcher can be explicitly deactivated by giving an empty range, i. e., setting an end-
address before the start-address. As the AWAIT instruction, the preemption instruction
use the COUNT register to achieve counted abortion, i. e., the abortion does not take
place at the first occurrence of the trigger signal, but waits for as many occurrences as
specified in the COUNT register.

Threads

The PAR Prio, StartAddr, ThreadID instruction initializes a thread, with the given priority
and thread id. It also sets the end-address of the last initialized thread, if this was not
already set by a preceding PARE instruction. The PARE instruction sets the end-address
of the last initialized thread and sets the priority of the parent thread.

The JOIN prio instruction checks whether any child thread of the current thread is
still active. If this is the case it terminates the current thread, otherwise it transfers the
control to the following instructions. It also sets the priority of the current thread.

The PRIO prio instruction sets the priority of the current thread to prio. When the
PRIO instruction is executed, the thread already has the highest priority of all active
threads. Therefore raising the priority will not alter the scheduling in the current tick,
the raising only has an impact on the next tick.

Control Flow and Data Handling

The EMIT S instruction emits S and transfers control to the following instruction, while
the SUSTAIN S instruction emits S and stops the execution of the current thread for this
tick. The SIGNAL S instruction is dual to the EMIT S, it sets the status of a signal S to
absent. It is used to implement local signals in Esterel, which are declared via Esterel’s
signal keyword.

The PRESENT instruction implements a conditional jump, based on the status of a
signal. Note that the jump is performed when the signal is absent; if it is present, control
is transferred to the following instruction.

The NOTHING instruction transfers control directly to the following instruction, and
the GOTO instruction transfers control to a given address.

4.2. KEP-e

The KEP-e [Tiedje, 2008] is a reimplementation of the KEP, which uses Esterel as a
hardware description language to describe the processor itself. There were two main
motivations for the reimplementation: to improve the maintainability of the KEP and

44

4.3. Semantics

to test Esterel as a hardware description language on a project of reasonable size. Even
though Esterel is intended to describe control dominated hardware controllers and not
complex hardware systems like a processor, this turned out reasonably well [Tiedje and
Traulsen, 2008]. However, it also became clear that the original Esterel v5 is not a good
choice to describe hardware, but the more expressive Esterel v7 should be used. That
version extends Esterel, e. g., by arrays and bit-vectors, which can be easily mapped
to hardware. It also extends Esterel by dataflow-like signal emissions, which can be
mapped easier to efficient hardware than the usual, imperative style of emission in Es-
terel. We will come back to the topic of using Esterel for the description of a processor
in Section 5.4.

There are two important parts of the KEP missing for the KEP-e: it lacks an ALU,
hence it can only handle pure Esterel, and the KEP-e does not support Esterel traps.
Since every Esterel program can be translated into an equivalent Esterel program without
any traps by replacing a trap by a weak abortion [Schneider, 2009], this deficit can be
compensated by the compiler. While replacing traps by weak abortion is difficult for
some corner cases, it can be replaced directly by a weak abortion and a local signal in
nearly all real programs.

4.2.1. Validation

The implementation of the KEP-e also allows formal verifications of (parts of) the KEP.
This was for example used to show the correctness of the scheduler. A simple, but ineffi-
cient specification of the scheduler was written in Esterel. The behavioral equivalence to
the actual implementation, which is both more involved and more efficient, was formally
shown using the sequential equivalence check of Esterel Studio.

4.2.2. Connection to the “real world”

The KEP-e, running on an FPGA board, was successfully connected to external hard-
ware and used to control simple Lego robots. To achieve this, the test-driver of the
KEP-e was extended to read external inputs as well as inputs coming from the KReP
Evalbench and the capability to run in a free mode, starting a new tick as soon as the last
one has finished, instead of waiting for the KReP Evalbench to start a new tick. While
the controlled systems were simple, this proved that the KEP can be easily connected
to “the real world.”

4.3. Semantics

The semantics of the KEP is given in Xin Li’s thesis [Li, 2007], however, the behavior is
only informally described. In particular, there are some cases where the behavior of the
KEP and the KEP-e differ. The reference semantics for the KEP is the formal semantics
of Esterel, but this only states that the strl2kasm compiler transform an Esterel program
in such a way that its execution on the KEP has the same IO-behavior as the original
Esterel program. This makes it unnecessarily hard to compile from other languages

45

4. The Kiel Esterel Processor (KEP)

than Esterel to the KEP Assembler (KASM), because the compiler has to mimic the
strl2kasm compiler to ensure that the correct behavior is achieved.

1 ABORTI S, A0
2 EMIT S

3 EMIT O

4 A0: HALT

1 ABORT S, A0

2 PAUSE
3 EMIT S

4 EMIT O

5 A0: HALT

Figure 4.4.: Non constructive KEP assembler programs.

Consider for example the programs in Figure 4.4. In the program on the left side,
the immediate strong abortion (ABORTI) will first check whether the trigger signal is
present, and thereafter it will ignore it for the current tick: it is handled like a present
not S then abort. . . when S. Hence, the code on the left will emit both signal S and O, in
contrast to the behavior one expects from an immediate strong abort. In the code on
the right, the watcher will trigger the abortion directly after the S is emitted and before
the EMIT O is executed. While the Esterel program that corresponds to this example
is non-constructive, and cannot be compiled for the KEP, such KEP assembler is also
generated by the compiler for constructive and even acyclic programs, as we will see in
Section 4.4.

While the behavior of most KEP assembler programs can be understood intuitively,
at least if one knows Esterel, there are some weird corner-cases:

• When is the join executed? The KEP-e assumes that priority of the parent thread
is lower than that of all child threads, therefore it is sufficient to execute the join
only once after the execution of the child threads. The original KEP will execute
the join whenever a child thread terminates. While the implementation in the
original KEP needs less hardware resources, the implementation in the KEP-e
gives a simpler behavior.

• What happens when the range of a thread is left by a jump or a conditional? The
behavior is only defined when a thread is left by normal control flow. But leaving
it by a present test would give an efficient implementation for transitions to final
states in the translation from SyncCharts to KEP assembler.

• What happens when the range of an active watcher is left by a goto? The KEP
computes the active watchers at each clock cycle based on the current signal values
without storing the information that a watcher was active. Hence, leaving the range
of a watcher simply deactivates it. On the other hand, what happens if we jump
inside a watched range with a goto? This will reactivate the watcher, but not
reinitialize it. Hence, it will not reset the flag that indicates whether the watcher
is already active: the watcher is immediate.

• Which instructions trigger the watcher? In particular, what happens when the
signal of a strong abort is emitted inside its body? In fact, the watchers are checked

46

4.3. Semantics

in each instruction-cycle, hence any instruction can trigger an abort. From a
theoretical point of view, it would be sufficient for constructive programs to trigger
the watcher only when control ends or starts at a tick-delimiting instruction. In
this case, the emit inside of an abort is temporarily ignored.

While the strl2kasm compiler assumes acyclic Esterel programs, which are hence
constructive, it itself generates non-constructive programs in intermediate steps
(see Section 4.4).

These examples should motivate that the behavior of the KEP is not always trivial and
intuitive, so a formal semantics might be useful. However, we should ask ourselves, for
what purpose do we need a formal semantics? The purpose for which we want to use
the semantics defines how we want to define it. Basically, with the formal semantics we
want to tackle three different problems:

1. Intuitive but precise definition of the behavior. While the informal explanation
gives an introduction to the behavior of the KEP, a formal semantics can give a
much better understanding. There is no need to follow the intuition of the author
of the informal description, but one can check ones own intuition against a precise
reference. Here, the main benefit of the formal semantics is that for each possible
corner-case one gets a precise behavior, while in the informal semantics these cases
could be silently ignored. However, the semantics need not to be complete, as
long as it is precisely stated for which inputs the behavior is not defined. As a
very rough abstraction of the KEP semantics the semantics of Esterel itself can be
considered.

2. Reference for the compiler and WCRT analysis. While we still might abstract
details of the KEP, the behavior must be captured in more detail, compared to a
formal semantics that purpose is to help humans understand the behavior.

3. Verification of the KEP. If we want to prove the correctness of (parts of) the KEP,
we need a very precise semantics of the behavior. In this sense, the description of
the KEP in Esterel gives a formal semantics to the KEP, since Esterel is formally
defined itself.

Similar to the restrictions of Esterel to kernel statements in order to define the se-
mantics, we reduce the considered instruction sets to support only the features that are
interesting for the semantics, i. e., watchers and threads. All instructions that deal with
data as well as traps are omitted. Preemptions have an explicit identifier to indicate
the watcher, and we omit counted delays for preemptions: all preemptions react on the
first occurrence of their trigger signal. We combine the PAR and PARE instruction into
a combined instruction that initializes an arbitrary number of threads. Hence, we only
give a semantics to programs where a PAR is directly followed by another PAR or PARE
instruction, and all thread identifiers in such a block are distinct. We also require that
thread that forks the threads continues its execution at the PARE without changing its
priority. Figure 4.5 shows the simplified instruction set. Figure 4.6 shows the assembler

47

4. The Kiel Esterel Processor (KEP)

Identical
• JOIN Prio

• PRIO Prio ,ThreadID

• GOTO addr

• SIGNAL S

• PRESENT S,elseAddr

• HALT

• NOTHING

Removed

• EXIT exitAddr startAddr

• PAUSE

Simplified
KEP Assembler Simplified

EMIT S [, {#data|reg}] EMIT S
SUSTAIN S [, {#data|reg}] SUSTAIN S

PAR prio1, startAddr1, id1
. . .
PAR prion, startAddrn, idn
PARE endAddr, prio

PAR [T1, . . . ,Tn], endAddr
with Ti=(prioi, startAddri, idi)

AWAIT [I, n] S AWAIT[I] S
[W]ABORT[I, n] S, endAddr [W]ABORT[I] S, endAddr ,watcherID
SUSPEND[I,n] S, endAddr SUSPEND[I] S, endAddr ,watcherID

Figure 4.5.: Simplified kernel instructions of the KEP: all data handling and traps are
removed. Preemptions and await always react to the first occurrence of the
trigger signal, and related PAR instructions are combined to one. PAUSE is
equivalent to AWAIT TICK.

for the Esterel ABRO example as generated by the strl2kasm compiler and in the simpli-
fied instruction set. Beside the combination of PAR and PARE into one statement, the
labels are replaced by the actual line number.

1 loop
2 abort
3 [

4 await A

5 ||
6 await B

7];

8 emit O

9 when R

10 end loop

(a) Esterel pro-
gram

1 A0: ABORT R, A1

2 PAR 1, A2, 1

3 PAR 1, A3, 2

4 PARE A4, 1

5 A2: AWAIT A

6 A3: AWAIT B

7 A4: JOIN 0

8 EMIT O

9 HALT
10 A1: GOTO A0

(b) Generated KEP
assembler

0 A0: ABORT R, 7

1 PAR [(1, 2, 1), (1, 3, 2)], 4)

2 A2: AWAIT A

3 A3: AWAIT B

4 A4: JOIN 0

5 EMIT O

6 HALT
7 A1: GOTO A0

(c) Simplified version of the assem-
bler

Figure 4.6.: ABRO example in KEP assembler

Gérard Berry states about the semantics of Esterel [Berry, 2000]:

“To deal with reactive or interactive systems, our first task is to look for an
adequate concurrency model. Here, we mean a naive model that one can
explain to non-computer scientists, not a 26-tuple of sets and relations.”

The reader will notice that the semantics for the KEP assembler does not have this
benefit.

48

4.3. Semantics

Configuration A configuration of the KEP consists of the following parts:

• Since we only consider pure programs, without any data, we only need to know
the set of present signals. We do not distinguish between input, output, and local
signals.

signals : S ⊆ S

• To initialize a watcher, we need the id, its type and the trigger signal S. The
range is given by the start and end address. The start address is included in the
range, the end address is excluded. The active flag is used to distinguish between
immediate and delayed preemption. The thread id is needed when the preemption
takes place: the program counter of this thread is resumed. One might expect that
we do not need the thread id, because we can simply use the current thread when
an abortion takes place. However, if there are multiple threads in the range of the
watcher, which thread is used to execute the thread handler could depend on the
dynamic behavior of the program or even on the input signals. Since the thread
id is used for the scheduling, not all threads are equal.

watcher : (id, type, sig, start, end, active, thread)

∈ N× {SA, WA, SUSP} × S× N× N× B× N

• The status of thread contains, beside its id, the current program counter pc and
the priority prio. Furthermore, we need to indicate whether the execution of the
thread has finished for the current tick, this is done by the done flag. In the
actual implementation, we need an additional flag, which indicates that a thread
is active, i. e., its done flag shall be reset at the next tick. In the semantics, we
simply remove inactive threads from the list of threads. All threads, except for the
main thread, contain a link to their parent thread. As long as no active threads
are reinitialized by a PAR statement, the parent relation forms a tree of all active
threads with the main thread as its root. For the normal termination of threads,
each thread needs to know its end address. The main thread has the end address
∞; it never terminates. To implement the AWAIT statement, a thread also needs
an optional await signal.

thread : (id, pc, prio, done, parent, end, await) ∈ N× N× N× B× Nbot × N× S⊥

• The instruction ROM rom : pc ∈ N → instr ∈ Instruction. The ROM is not
altered by any instruction.

To denote the replacement of a single entry e to a value v in a thread t or a watcher
w, we write t[e← v] or w[e← v], respectively. We also extend this notation to sets: we
denote the setting of a single entry e to value v in one element t of a set T by T [t.e← v].
For a set S of watchers and thread we denote with Sid = S \ {s ∈ S | s.id 6= id} the set
excluding the given id, and we also extend this notation to sets of ids.

49

4. The Kiel Esterel Processor (KEP)

Execution

We now give the semantics for the normal execution of each instruction. After each
normal execution, we need to deactivate all normally terminated threads, i. e., threads
whose program counter is behind their end address. This is done by the normalTerm
function which only returns threads that are not normally terminated:

normalTerm(T) = {t ∈ T | t.pc < t.end}

Note that the watchers are not deactivated. This allows to jump directly into a the
range of a watcher, without reinitializing it.

One execution step has the form:

(S,W, T) −−−−−→
at:instr

(S′,W ′, T ′).

We take a configuration with a set of set of signals S, a set of watchers W and a set of
threads T , and transform it, for a given active thread at and a given instruction instr
into a new configuration.

Control Flow and Data Handling

• The EMIT sets the status of the signal to true:

(S,W, T) −−−−−−−→
at:EMIT A

(S ∪ {A},W, T [at.pc← at.pc+ 1])

• The SUSTAIN sets the signal to true and deactivates the thread:

(S,W, T) −−−−−−−−−→
at:SUSTAIN A

(S ∪ {A},W, T [at.done← true])

• NOTHING only increases the current program counter:

(S,W, T) −−−−−−−−→
at:NOTHING

(S,W, T [at.pc← at.pc+ 1])

• The SIGNAL instruction declares a new signal, which is initially absent. Hence, if
the signal is present in the current configuration, it is removed.

(S,W, T) −−−−−−−−→
at:SIGNAL A

(S \ {A},W, T [at.pc← at.pc+ 1])

• GOTO jumps to its address:

(S,W, T) −−−−−−−−−→
at:GOTO addr

(S,W, T [at.pc← addr])

• The PRESENT jumps to its continuation, if the signal A is not present:

A /∈ S
(S,W, T) −−−−−−−−−−−−−→

at:PRESENT A, else
(S,W, T [at.pc← else])

Otherwise it activates the next instruction:

A ∈ S
(S,W, T) −−−−−−−−−−−−−→

at:PRESENT A, else
(S,W, T [at.pc← at.pc+ 1])

50

4.3. Semantics

Time Delimiting

• The HALT deactivates the thread:

(S,W, T) −−−−−→
at:HALT

(S,W, T [at.done← true])

• For the AWAIT, we have to distinguish three cases. In the initial phase, we set the
await flag of the thread and deactivate the thread. We determine that we are in
the initial phase by checking whether the await flag is already set.

at.await = ⊥
(S,W, T) −−−−−−−→

at:AWAIT A
(S,W, T [at.done← true, at.await = A])

In every later step, the behavior depends on the status of the trigger signal A:

at.await = A A /∈ S
(S,W, T) −−−−−−−→

at:AWAIT A
(S,W, T [at.done← true])

at.await = A A ∈ S
(S,W, T) −−−−−−−→

at:AWAIT A
(S,W, T [at.pc← at.pc+ 1, at.await← ⊥])

• If the signal A is not present, the AWAITI behaves like a HALT:

A /∈ S
(S,W, T) −−−−−−−−→

at:AWAITI A
(S,W, T [at.done← true])

Otherwise is goes to the next instruction:

A ∈ S
(S,W, T) −−−−−−−−→

at:AWAITI A
(S,W, T [at.pc← at.pc+ 1])

Preemption

• The ABORT, WABORT, and SUSPEND initialize the watcher accordingly. The
watchers are not activated.

(S,W, T) −−−−−−−−−−−−−−→
at:ABORT A, end, ID

(S,WID ∪ {(ID, SA, A, at.pc+ 1, end, false, at)}, T [at.pc← at.pc+ 1])

(S,W, T) −−−−−−−−−−−−−−−→
at:WABORT A, end, ID

(S,WID ∪ {(ID, WA, A, at.pc+ 1, end, false, at)}, T [at.pc← at.pc+ 1])

(S,W, T) −−−−−−−−−−−−−−−→
at:SUSPEND A, end, ID

(S,WID ∪ {(ID, SUSP, A, at.pc+ 1, end, false, at)}, T [at.pc← at.pc+ 1])

51

4. The Kiel Esterel Processor (KEP)

• The ABORTI checks the current status of the trigger signal A. If it is present, the
watcher is not initialized at all.

A ∈ S
(S,W, T) −−−−−−−−−−−−−−→

at:ABORTI A, end, ID
(S,W, T [at.pc← end])

If the trigger signal is absent, the ABORTI behaves like the delayed abortion. Note
that the watcher is not activated.

A /∈ S
(S,W, T) −−−−−−−−−−−−−−→

at:ABORTI A, end, ID

(S,WID ∪ {(ID, SA, A, at.pc+ 1, end, false)}, T [at.pc← at.pc+ 1])

• The WABORTI behaves like the delayed versions, except that the watcher is acti-
vated immediately:

(S,W, T) −−−−−−−−−−−−−−−→
at:WABORTI A, end, ID

(S,WID ∪ {(ID, WA, A, at.pc+ 1, end, true)}, T [at.pc← at.pc+ 1])

• The SUSPENDI marks the current thread as done, if the trigger signal A is present.
Note that the program counter is not altered, because we want to achieve the same
behavior in the next tick, if the trigger signal is still present. The watcher is not
initialized until the trigger signal is absent.

A ∈ S
(S,W, T) −−−−−−−−−−−−−−−−→

at:SUSPENDI A, end, ID
(S,W, T [at.done← true])

If the trigger signal A is absent, the SUSPENDI initializes the watcher and incre-
ments the program counter. In contrast to the delayed suspend, the watcher is
immediately active.

A /∈ S
(S,W, T) −−−−−−−−−−−−−−−→

at:SUSPEND A, end, ID

(S,W ∪ {(ID, SUSP, A, at.pc+ 1, end, true)}, T [at.pc← at.pc+ 1])

Threads

• The PAR initializes the new threads:

(S,W, T) −−−−−−−−−−−−−−−→
at:PAR [T0,. . . , Tn], end

(S,W,Tids[at.pc← end]∪

{(T0.id, T0.pc, T0.prio, false, at.id, T1.pc,⊥),

. . . , (Tn.id, Tn.pc, Tn.prio, false, at.id, end,⊥)})

with Ti = (Ti.prio, Ti.pc, Ti.id) and ids = {T0.id, . . . , Tn.id}

52

4.3. Semantics

• The JOIN checks whether all its child threads have terminated. If this is the case,
it increases the program counter.

∀t ∈ T : t.parent 6= at

(S,W, T) −−−−−−−−→
at:JOIN prio

(S,W, T [at.pc← at.pc+ 1, at.prio← prio])

Otherwise, it marks the current thread as done and updates its priority.

∃t ∈ T : t.parent = at

(S,W, T) −−−−−−−−→
at:JOIN prio

(S,W, T [at.done← true, at.prio← prio])

Termination

As a last step, we have to check whether the execution has finished for the current tick.
Since we directly remove all inactive threads, this simply means that we have to check
that the done flag for all threads is set:

done(T) =
∧
t∈T

t.done

Strong Preemptions

The function sabort computes whether a strong preemption, i. e., a strong abort or a
suspend, takes place. It returns either ⊥, if no preemption is triggered, or a set of new
watchers and threads. The inputs of the function are the active thread at, and the
current signals S, watchers W and threads T :

sabort(at, S,W, T)→ (W ′, T ′)

First we need to determine the set of active watchers, these are the watchers for which
the currently executed program counter is in the given range and the trigger signal is
present.

activeSWatchers = {w ∈W | w.start ≤ at.pc < w.end ∧ w.sig ∈ S
∧ w.Type ∈ {SA, SUSP} ∧ w.active}

If this set is empty, sabort returns ⊥. The active watcher (aW) is the one from this set
with the maximal id.

aW = max{w.id | w ∈ activeSWatchers}

Based on the type of the active Watcher, we need to determine the new active threads
and watchers. For the strong abortion, we terminate all threads that are currently inside
the range. Another possibility would be to terminate the active thread and recursively
all children threads. For proper nesting of threads and watchers, as it is produced by the
strl2kasm compiler, both versions are equivalent. The suspend only stops the execution

53

4. The Kiel Esterel Processor (KEP)

of the current thread by marking it as terminated, hence one step in the semantics is
needed for each thread inside a triggered suspend.

T ′ =

{t ∈ T | t.pc < aW.start ∨ t.pc > aW.end}
∪ {t[pc = aW.end] | t ∈ T ∧ t.id = aW.thread} if aW.type = SA

T [at.done = true] if aW.type = SUSP

We terminate all watchers that are completely inside the active Watcher. This differs
from the behavior of the actual implementation of the KEP, which uses the parent
relation, however, both behaviors are equivalent if watchers are properly nested, i. e.,
either a watcher is completely nested into another one, or their ranges are disjoint.

W ′ =

{
{w ∈W | w.start < aW.start ∨ w.end > aW.end} if aW.type = SA

W if aW.type = SUSP

Weak Abortions

The wabort function checks for active weak abortions in a configuration. It returns
either new sets of watchers and threads, or ⊥ if no weak abortion is triggered. First, we
have to know all active watchers of the type weak abortion. In contrast to the strong
abortion, we have to check that all threads inside the watcher are marked as terminated,
because a weak abortion permits the execution of all code inside its range.

activeWWatchers = {w ∈W | w.sig ∈ S ∧ w.Type = WA ∧ w.active∧
∀t∈T (w.start ≤ t.pc ∧ w.end > t.pc) =⇒ t.done}

If this set is empty, wabort returns ⊥. In contrast to the strong abort, where the active
watcher is the one with the highest id, we want to execute all active weak abortions and
therefore execute the watcher with the lowest id. Other active watchers with a higher
id are executed when the handler of the current watcher terminates.

aW = min{w.id | w ∈ activeWWatchers}

For the new configuration, we remove all threads whose program counter is in the
range of the watcher from the set of threads, and we resume the thread that is given by
the watcher at the end address of the watcher range.

T ′ = {t ∈ T | t.pc < aW.start ∨ t.pc > aW.end}
∪{t[pc = aW.end] | t ∈ T ∧ t.id = aW.thread}

We remove the active Watcher from the watcher set. A weak abortion does not deactivate
any other watcher, since a weak abort allows the execution of all statements inside its
body.

W ′ = W \ aW

54

4.3. Semantics

Scheduler

The schedule function determines the active thread with the lowest priority. If more
than one thread has the minimal priority, the one with the highest thread ID is chosen.
The rationale behind this is that usually parent threads have a lower thread ID than
their child threads, hence if all threads have the same priority, child threads are always
executed first.

First we determine the set of active threads of a set of threads T . For each configura-
tion that has not terminated (see below), this set is not empty. The selected thread is
the one with the smallest priority:

schedule(T) = min≺ {t ∈ T | ¬t.done}

where

i ≺ j ⇔ i.prio < j.prio ∨ (i.prio = j.prio ∧ i.id > j.id)

4.3.1. Microstep

A micro-step corresponds to one instruction cycle of the program. It consists of the
following sub-steps:

1. Schedule: determine the currently executed thread.

2. Strong abortion: determine whether any strong abort or suspension prevents the
active thread from executing.

3. Execution: actually execute one instruction.

4. Weak abortion: check whether any weak abortion takes place.

5. Update threads: update thread status for all threads, in particular, remove threads
whose program counter has left the range of the thread, running the normalTerm
function.

A micro-step transforms a configuration, with present signals S, watchers W , and
threads T , into a new one, according to a given instruction ROM:

(S,W, T)
done−−−→
ROM

(S′,W ′, T ′)

The done indicates whether the execution has finished for this tick. A micro-step can
have one of the following three forms:

• A normal execution takes place if neither a weak nor a strong preemption is trig-
gered. In this case, the resulting configuration is determined by the execution of

55

4. The Kiel Esterel Processor (KEP)

the current instruction ROM[at.pc] of the active thread aT , i. e., the thread that is
currently scheduled.

schedule(T) = at sabort(at, S,W, T) = ⊥
(S,W, T) −−−−−−−−→

at:ROM[at.pc]
(S′,W ′, T ′) wabort(S′,W ′, T ′) = ⊥

(S,W, T)
done(T ′)−−−−−→

ROM
(S′,W ′, normalTerm(T ′))

• A strong abortion takes place if at least one watcher is triggered when executing
the scheduled instruction. The threads and watchers are updated according to the
triggered watcher, because other watchers or threads could be deactivated. The
active instruction is not executed and weak abortions are not checked.

schedule(T) = at sabort(at, S,W, T) = (W ′, T ′)

(S,W, T)
done(T ′)−−−−−→

ROM
(S,W ′, T ′)

• A weak abortion abortion takes place, if a weak abortion watcher is triggered
after the execution of the active instruction, but no strong abortion was triggered
before. The resulting configuration after the execution is then altered according
to the triggered weak abortion.

schedule(T) = at sabort(at, S,W, T) = ⊥
(S,W, T) −−−−−−−−−→

at:ROM[at.pc]
(S′,W ′, T ′) wabort(S′,W ′, T ′) = (W ′′, T ′′)

(S,W, T)
done(T ′′)−−−−−−→

ROM
(S′,W ′′, T ′′)

4.3.2. Macro-Steps

A macro-step executes the program for a whole step. It consists of a chain of micro-
steps, which are executed until the execution of all threads is done, i. e., the done function
returns true. Furthermore, the configuration needs to be initialized in each tick. This
will remove all terminated threads and watchers, set all other watchers active and reset
the termination flag of all other threads.

A macro-step has the form

(W,T)
I−→
O

(W ′, T ′)⇔ init(I,W, T)
false−−−→ C0

false−−−→ · · ·Cn
true−−→ (O,W ′, T ′)

where the init function is defined as:

init(S,W, T) = (I, {w ∈W | w.thread ∈ T ′}, T ′ = {t ∈ T | t.pc < t.end})

56

4.4. Compiling Esterel

4.3.3. Example Execution

We illustrate the semantics by giving the formal execution for the simplified version of
the Esterel ABRO program from Figure 4.6.

Figure 4.7 shows the behavior in the first tick. To simplify reading, we abbreviate both
watcher and threads inside each step if they are not used, e. g., T j

i denotes the thread
with id i after the j-th microstep. Changed and additional values are marked bold in the
final configuration of each microstep. We precede the value of each program counter with
L for code-line, to help distinguishing program counters and identifier. Since no weak
abortion occurs in this example, we omit this check. Figure 4.8 and Figure 4.9 show the
behavior in the second tick, when the signals A and B, or R are present, respectively.

4.3.4. Limitations

Our semantics does still not capture the complete behavior of the KEP, in particular, the
interaction between different PAR instructions is not matched. Furthermore, the timing
behavior of the KEP is not matched. The KEP, for example, executes each PAUSE
instruction twice. One time to terminate the thread, and again in the next instance to
check for abortions.

This semantics should be seen as first step towards a formal semantics for the KEP.
It still remains to compare the semantics carefully to the actual behavior of the KEP.
Once it has been shown that the actual behavior of the KEP matches this semantics, it
can be used to validate the compilers from Esterel and SyncCharts into KEP assembler.

4.4. Compiling Esterel

Since the instruction set of the KEP is closely related to Esterel, the compilation of many
Esterel programs is straight-forward. For the compiler, there remain two important
things to do:

1. Dismantling : Rewrite complex Esterel statements that cannot be directly mapped
to KEP instructions. This also includes complex signal expressions.

2. Scheduling : Detect signal dependencies and order the threads accordingly. Assign
thread ids corresponding to this order, and add priority statements if necessary.

The first step is a source to source transformation, while the second step is applied to
an intermediate format, the CKAG.

A complete description of the strl2kasm compiler can be found in Marian Boldt’s
diploma thesis [Boldt, 2007a]. Here, we will only show how the capability of the KEP
to execute non-constructive programs can be used in the code generation.

Since the KEP simply executes its code, it gives a semantics to non-constructive Es-
terel programs. However, this semantics also depends on the translation from Esterel
to KEP assembler. For concurrency, the priority assignment of the compiler is crucial
for the behavior, and also the exact dismantling of complex statements is part of the

57

1
.
A
B
O
R
T

R
,
L
7
,
0

sch
ed

u
le({

T
00 }

)
=

0
sa

bo
r
t(0

,{}
,{}

,{
T

00 }
)
=
⊥

({}
,{}

,{
(0
,L

0
,0

,F
,⊥

,∞
,⊥

)}
)
−−−−−−−−−→
0
:
A
B
O
R
T

R
,
7
,
0

({}
,{

(0
,
S
A
,R

,L
1
,L

7
,F

,0
)}
,{

(0
,L

1
,0

,F
,⊥

,∞
,⊥

)}
)

({}
,{}

,{
(0
,L

0
,0

,F
,⊥

,∞
,⊥

)
︸

︷︷
︸

T
00

}
)

fa
lse
−−−→

({}
,{

(0
,
S
A
,R

,L
1
,L

7
,F

,0
)

︸
︷︷

︸
W

10

}
,{

(0
,L

1
,0

,F
,⊥

,∞
,⊥

)
︸

︷︷
︸

T
10

}
)

2
.
P
A
R

[(1
,
2
,
1
),

(1
,
3
,
2
)],

4

sch
ed

u
le({

T
10 }

)
=

0
sa

bo
r
t(0

,{}
,{

W
10 }

,{
T

10 }
)
=
⊥

({}
,{

W
10 }

,{
(0
,L

1
,0

,F
,⊥

,∞
,⊥

)}
)
−−−−−−−−−−−−−−−→
P
A
R

[
(
1
,
2
,
1
)
,
(
1
,
3
,
2
)
]
,
4

({}
,{

W
10 }

,{
(0
,L

4
,1

,F
,⊥

,∞
,⊥

)
,(1

,L
2
,1

,F
,0

,L
3
,⊥

)
,(2

,L
3
,1

,F
,0

,L
4
,⊥

)}
)

({}
,{

(0
,
S
A
,R

,L
1
,L

7
,F

,0
)

︸
︷︷

︸
W

10

}
,{

(0
,L

1
,0

,F
,⊥

,∞
,⊥

)
︸

︷︷
︸

T
10

}
)

fa
lse
−−−→

({}
,{

(0
,
S
A
,R

,L
1
,L

7
,F

,0
)

︸
︷︷

︸
W

20

}
,{

(0
,L

4
,1

,F
,⊥

,∞
,⊥

)
︸

︷︷
︸

T
20

,(1
,L

2
,1

,F
,0

,L
3
,⊥

)
︸

︷︷
︸

T
21

,(2
,L

3
,1

,F
,0

,L
4
,⊥

)
︸

︷︷
︸

T
22

}
)

3
.
A
W
A
IT

B

sch
ed

u
le({

T
20
,T

21
,T

22 }
)
=

2
sa

bo
r
t(2

,{}
,{

W
20 }

,{
T

20
,T

21
,T

22 }
)
=
⊥

T
22
.a
w
a
it

=
⊥

({}
,{

W
20 }

,{
T

20
,T

21
,(2

,L
3
,1

,F
,0

,L
4
,⊥

)}
)
−−−−−→
A
W
A
I
T

B
({}

,{
W

20 }
,{

T
20
,T

21
,(2

,L
3
,1

,T
,0

,L
4
,B

)}
)

({}
,{

(0
,
S
A
,R

,L
1
,L

7
,F

,0
)

︸
︷︷

︸
W

20

}
,{

(0
,L

4
,1

,F
,⊥

,∞
,⊥

)
︸

︷︷
︸

T
20

,(1
,L

2
,1

,F
,0

,L
3
,⊥

)
︸

︷︷
︸

T
21

,(2
,L

3
,1

,F
,0

,L
4
,⊥

)
︸

︷︷
︸

T
22

}
)

fa
lse
−−−→

({}
,{

(0
,
S
A
,R

,L
1
,L

7
,F

,0
)

︸
︷︷

︸
W

30

}
,{

(0
,L

4
,1

,F
,⊥

,∞
,⊥

)
︸

︷︷
︸

T
30

,(1
,L

2
,1

,F
,0

,L
3
,⊥

)
︸

︷︷
︸

T
31

,(2
,L

3
,1

,T
,0

,L
4
,B

)
︸

︷︷
︸

T
32

}
)

4
.
A
W
A
IT

A

sch
ed

u
le({

T
30
,T

31
,T

32 }
)
=

1
sa

bo
r
t(1

,{}
,{

W
30 }

,{
T

30
,T

31
,T

32 }
)
=
⊥

T
31
.a
w
a
it

=
⊥

({}
,{

W
30 }

,{
T

30
,(1

,L
2
,1

,F
,0

,L
3
,⊥

)
,T

32 }
)
−−−−−→
A
W
A
I
T

A
({}

,{
W

30 }
,{

T
30
,(1

,L
2
,1

,T
,0

,L
3
,A

)
,T

32 }
)

({}
,{

(0
,
S
A
,R

,L
1
,L

7
,F

,0
)

︸
︷︷

︸
W

30

}
,{

(0
,L

4
,1

,F
,⊥

,∞
,⊥

)
︸

︷︷
︸

T
30

,(1
,L

2
,1

,F
,0

,L
3
,⊥

)
︸

︷︷
︸

T
31

,(2
,L

3
,1

,T
,0

,L
4
,B

)
︸

︷︷
︸

T
32

}
)

fa
lse
−−−→

({}
,{

(0
,
S
A
,R

,L
1
,L

7
,F

,0
)

︸
︷︷

︸
W

40

}
,{

(0
,L

4
,1

,F
,⊥

,∞
,⊥

)
︸

︷︷
︸

T
40

,(1
,L

2
,1

,T
,0

,L
3
,A

)
︸

︷︷
︸

T
41

,(2
,L

3
,1

,T
,0

,L
4
,B

)
︸

︷︷
︸

T
42

}
)

5
.
JO

IN
1

sch
ed

u
le({

T
40
,T

41
,T

42 }
)
=

0
sa

bo
r
t(0

,{}
,{

W
40 }

,{
T

40
,T

41
,T

42 }
)
=
⊥

T
41
.p
a
r
en

t
=

0
T

42
.p
a
r
en

t
=

0

({}
,{

W
40 }

,{
(0
,L

4
,1

,F
,⊥

,∞
,⊥

)
,T

41
,T

42 }
)
−−−−→
J
O
I
N

1
({}

,{
W

40 }
,{

(0
,L

4
,1

,T
,⊥

,∞
,⊥

)
,T

41
,T

42 }
)

({}
,{

(0
,
S
A
,R

,L
1
,L

7
,F

,0
)

︸
︷︷

︸
W

40

}
,{

(0
,L

4
,1

,F
,⊥

,∞
,⊥

)
︸

︷︷
︸

T
40

,(1
,L

2
,1

,T
,0

,L
3
,A

)
︸

︷︷
︸

T
41

,(2
,L

3
,1

,T
,0

,L
4
,B

)
︸

︷︷
︸

T
42

}
)

tr
u
e

−−−→
({}

,{
(0
,
S
A
,R

,L
1
,L

7
,F

,0
)

︸
︷︷

︸
W

50

}
,{

(0
,L

4
,1

,T
,⊥

,∞
,⊥

)
︸

︷︷
︸

T
50

,(1
,L

2
,1

,T
,0

,L
3
,A

)
︸

︷︷
︸

T
51

,(2
,L

3
,1

,T
,0

,L
4
,B

)
︸

︷︷
︸

T
52

}
)

F
ig

u
re

4.7.:
E

x
a
m

p
le

ex
ecu

tion
of

A
B

R
O

in
th

e
form

al
sem

an
tics:

F
irst

T
ick

1
.
A
W
A
IT

B
,
th

re
a
d
2
is

re
m
o
v
ed

b
y
n
o
r
m
a
le
T
er

m

sc
h
ed

u
le
({
T

0 0
,T

0 1
,T

0 2
})

=
2

sa
bo
r
t(
2
,{

A
,B
},

W
0 0
,{

T
0 1
,T

0 1
,T

0 2
})

=
⊥

B
∈
{A

,B
}

T
0 2
.a
w
a
it

=
B

({
A
,B
},
{W

0 0
},
{T

0 0
,T

0 1
,(
2
,L

2
,1

,T
,0

,L
4
,B

)}
)
−−
−−
−−
−→

2
:

A
W
A
I
T

B
({
A
,B
},
{W

0 0
},
{T

0 0
,T

0 1
,(
2
,L

3
,1

,T
,0

,L
4
,⊥

)}
)

({
A
,B
},
{(
0
,S
A
,R

,L
1
,L

7
,T

,0
)

︸
︷︷

︸
W

0 0

},
{(
0
,L

4
,1

,F
,⊥

,∞
,⊥

)
︸

︷︷
︸

T
0 0

,(
1
,L

2
,1

,F
,0

,L
3
,A

)
︸

︷︷
︸

T
0 1

,(
2
,L

3
,1

,F
,0

,L
4
,B

)
︸

︷︷
︸

T
0 2

})
fa
ls
e

−−
−→

({
A
,B
},
{(
0
,S
A
,R

,L
1
,L

7
,T

,0
)

︸
︷︷

︸
W

1 0

},
{(
0
,L

4
,1

,F
,⊥

,∞
,⊥

)
︸

︷︷
︸

T
1 0

,(
1
,L

2
,1

,T
,L

0
,3

,A
)

︸
︷︷

︸
T

1 1

})

2
.
A
W
A
IT

A
,
th

re
a
d
1
is

re
m
o
v
ed

b
y
n
o
r
m
a
le
T
er

m

sc
h
ed

u
le
({
T

1 0
,T

1 1
})

=
1

sa
bo
r
t(
1
,{

A
,B
},

W
1 0
,{

T
1 1
,T

1 1
})

=
⊥

A
∈
{A

,B
}

T
1 1
.a
w
a
it

=
A

({
A
,B
},
{W

1 0
},
{T

1 0
,(
1
,L

2
,1

,T
,0

,L
3
,A

)}
)
−−
−−
−−
−→

2
:

A
W
A
I
T

A
({
A
,B
},
{W

1 0
},
{T

1 0
,(
1
,L

3
,1

,T
,0

,L
3
,⊥

)}
)

({
A
,B
},
{(
0
,S
A
,R

,L
1
,L

7
,T

,0
)

︸
︷︷

︸
W

1 0

},
{(
0
,L

4
,1

,F
,⊥

,∞
,⊥

)
︸

︷︷
︸

T
1 0

,(
1
,L

2
,1

,T
,0

,L
3
,A

)
︸

︷︷
︸

T
1 1

})
fa
ls
e

−−
−→

({
A
,B
},
{(
0
,S
A
,R

,L
1
,L

7
,T

,0
)

︸
︷︷

︸
W

2 0

},
{(
0
,L

4
,1

,F
,⊥

,∞
,⊥

)
︸

︷︷
︸

T
2 0

})

3
.
JO

IN sc
h
ed

u
le
({
T

1 0
})

=
0

sa
bo
r
t(
0
,{

A
,B
}W

1 0
,{

T
1 1
})

=
⊥

T
2 0
.p
a
r
en

t
6=

0

({
A
,B
},
{W

2 0
},
{(
0
,L

4
,1

,F
,⊥

,∞
,⊥

)}
)
−−
−−
→

0
:
J
O
I
N

({
A
,B
},
{W

3 0
},
{(
0
,L

5
,1

,F
,⊥

,∞
,⊥

)}
)

({
A
,B
},
{(
0
,S
A
,R

,L
1
,L

7
,T

,0
)

︸
︷︷

︸
W

2 0

},
{(
0
,L

4
,1

,F
,⊥

,∞
,⊥

)
︸

︷︷
︸

T
2 0

})
fa
ls
e

−−
−→

({
A
,B
},
{(
0
,S
A
,R

,L
1
,L

7
,T

,0
)

︸
︷︷

︸
W

3 0

},
{(
0
,L

5
,1

,F
,⊥

,∞
,⊥

)
︸

︷︷
︸

T
3 0

})

4
.
E
M
IT

sc
h
ed

u
le
({
T

1 0
})

=
0

sa
bo
r
t(
0
,{

A
,B
}W

1 0
,{

T
1 1
})

=
⊥

({
A
,B
},
{W

3 0
},
{(
0
,L

5
,1

,F
,⊥

,∞
,⊥

)}
)
−−
−−
−−
−→

0
:

E
M
I
T

O
({
A
,B

,O
},
{W

3 0
},
{(
0
,L

6
,1

,F
,⊥

,∞
,⊥

)}
)

({
A
,B
},
{(
0
,S
A
,R

,L
1
,L

7
,T

,0
)

︸
︷︷

︸
W

3 0

},
{(
0
,L

5
,1

,F
,⊥

,∞
,⊥

)
︸

︷︷
︸

T
3 0

})
fa
ls
e

−−
−→

({
A
,B

,O
},
{(
0
,S
A
,R

,L
1
,L

7
,T

,0
)

︸
︷︷

︸
W

4 0

},
{(
0
,L

6
,1

,F
,⊥

,∞
,⊥

)
︸

︷︷
︸

T
4 0

})

5
.
H
A
LT

sc
h
ed

u
le
({
T

4 0
})

=
0

sa
bo
r
t(
0
,{
},
{W

4 0
},
{T

4 1
})

=
⊥

({
A
,B

,O
},
{W

4 0
},
{(
0
,L

6
,1

,F
,⊥

,∞
,⊥

)}
)
−−
−→

H
A
L
T

({
A
,B

,O
},
{W

4 0
},
{(
0
,L

6
,1

,T
,⊥

,∞
,⊥

)}
)

({
A
,B

,O
},
{(
0
,S
A
,R

,L
1
,L

7
,T

,0
)

︸
︷︷

︸
W

4 0

},
{(
0
,L

6
,1

,F
,⊥

,∞
,⊥

)
︸

︷︷
︸

T
4 0

})
tr

u
e

−−
−→

({
A
,B

,O
},
{(
0
,S
A
,R

,L
1
,L

7
,T

,0
)

︸
︷︷

︸
W

5 0

},
{(
0
,L

6
,1

,T
,⊥

,∞
,⊥

)
︸

︷︷
︸

T
5 0

})

F
ig

u
re

4
.8

.:
E

x
a
m

p
le

ex
ec

u
ti

on
of

A
B

R
O

in
th

e
fo

rm
al

se
m

an
ti

cs
:

S
ec

on
d

T
ic

k
,
A

an
d
B

p
re

se
n
t

4. The Kiel Esterel Processor (KEP)

1
.

S
tro

n
g

a
b

o
rt

sch
ed

u
le(T

00
,T

01
,T

02
)

=
2

sa
bort(2

,{
R
}
,{

(0
,S
A
,R

,L
1
,L

7
,T

,0
)}
,{

(0
,L

4
,1
,F

,⊥
,∞

,⊥
)
,(1

,L
2
,1
,F

,0
,L

3
,A

)
,(2

,L
3
,1
,F

,0
,L

4
,B

)}
)

=
({}

,{
(0
,L

7
,1
,F

,⊥
,∞

,⊥
)}

)

({
R
}
,{

(0
,S
A
,R

,L
1
,L

7
,T

,0
)

︸
︷︷

︸
W

00

}
,{

(0
,L

4
,1
,F

,⊥
,∞

,⊥
)

︸
︷︷

︸
T

00

,(1
,L

2
,1
,F

,0
,L

3
,A

)
︸

︷︷
︸

T
01

,(2
,L

3
,1
,F

,0
,L

4
,B

)
︸

︷︷
︸

T
02

}
)

fa
lse
−−−→

({
R
}
,{}

,{
(0
,7
,1
,F

,⊥
,⊥

)
︸

︷︷
︸

T
10

}
)

2
.

G
O

T
O

sch
ed

u
le(T

10
)

=
0

sa
bort(2

,{
R
}{}

,{
T

10 }
)

=
⊥

({
R
}
,{}

,{
(0
,7
,1
,F

,⊥
,⊥

)}
)
−−−−−−→
2
:

G
O
T
O

0
({
R
}
,{}

,{
(0
,L

0
,1
,F

,⊥
,∞

,⊥
)}

)

({
R
}
,{}

,{
(0
,7
,1
,F

,⊥
,⊥

)
︸

︷︷
︸

T
10

}
)

fa
lse
−−−→

({
R
}
,{}

,{
(0
,L

0
,1
,F

,⊥
,∞

,⊥
))

︸
︷︷

︸
T

20

}
)

3
.

F
ro

m
h
ere

o
n
,

th
e

b
eh

av
io

r
is

eq
u
iva

len
t

to
th

e
fi
rst

tick

F
igu

re
4
.9

.:
E

x
a
m

p
le

ex
ecu

tion
of

A
B

R
O

in
th

e
form

al
sem

an
tics:

S
econ

d
T

ick
,
R

p
resen

t

60

4.4. Compiling Esterel

1 abort
2 p

3 when n SigExpr

(a) Original
Esterel
program

1 signal SIG ABORT in
2 weak abort
3 loop
4 present SigExpr then
5 emit SIG ABORT

6 end present;
7 pause
8 end loop
9 ||

10 suspend
11 p

12 when n SIG ABORT

13 when n SIG ABORT

14 end signal

(b) Traditional, con-
structive program
dismantling

1 signal SIG ABORT in
2 abort
3 loop
4 present SigExpr then
5 emit SIG ABORT

6 end present;
7 pause
8 end loop
9 ||

10 p

11 when n SIG ABORT

12 end signal

(c) Rewritten, non-
constructive Esterel
program

1 SIGNAL SIG ABORT

2 LOAD COUNT,#3

3 ABORT SIG ABORT,A0

4 PAR 1,A1,2

5 PAR 1,A2,1

6 PARE A3,1

7 A1: PRESENT SigExpr, A5

8 A6: EMIT SIG ABORT

9 A5: PAUSE
10 GOTO A1

11 A2: p

12 A3: JOIN 0

13 A0:

(d) KEP assembler imple-
mentation

Figure 4.10.: Translating strong abort into KEP assembler

semantics for full Esterel. For simple programs without concurrency and complex state-
ments, there is a one to one mapping into KEP assembler. For example, the well known,
non-constructive Esterel program abort emit A when immediate A will be translated into
the KEP assembler:

1 IABORT A, A0

2 EMIT A

3 A0:

This program has the unique reaction that emits A. Traditional semantics for syn-
chronous programs consider the least fixed-point of the signal status to be the unique
reaction. However, for the operational semantics given by the KEP, the signal status
of the reaction is not a fixed-point. In this sense, the KEP assembler itself is not a
synchronous language. For the KEP all program are deterministic and reactive, the
processor will simply execute the program, and produce some output. In the notation
of Huizing and Gerth [1992], KEP assembler is causal and responsive, but not modular.

4.4.1. Implementing Strong Abort

The general form for a strong abort in full Esterel is abort p when n Sig, where n is
an integer and Sig a signal expression. While the KEP supports counted delays, the
abort trigger needs to be a signal, not a signal expression. To implement this on the
KEP, we have to evaluate the expression and map the result to a new signal, as shown in
Figure 4.10. We could do this globally. This also allows to use extra hardware to evaluate
complex signal expression [Gädtke et al., 2007]. However, to do this locally reduces the
number of signals needed at runtime, but this requires to put the signal evaluation
inside of the abort block. The rewritten Esterel (as well as the KEP assembler) is not
constructive, because the signal SIG ABORT is emitted inside the strong abort block

61

4. The Kiel Esterel Processor (KEP)

1 signal
2 S : integer combine by +

3 in
4 present I then
5 emit S(3)

6 end if ;
7 emit S(2)

8 end signal

(a) Original Esterel program

1 signal S : integer in
2 present I then
3 present S then
4 emit S(?S+3)

5 else
6 emit S(3)

7 end if
8 end if ;
9 present S then

10 emit S(?S+2)

11 else
12 emit S(2)

13 end if
14 end signal

(b) Rewritten Esterel

1 SIGNAL S

2 PRESENT I, A2

3 PRESENT S, A1

4 ADD TMP ?S, 3

5 EMITV S, TMP

6 GOTO A2

7 A1: EMIT S 3

8 A2: PRESENT S, A3

9 ADD TMP ?S, 2

10 EMITV S, TMP

11 GOTO A4

12 A3: EMIT S 2

13 A4:

(c) KASM implemen-
tation

Figure 4.11.: Implementation of combine

and in Esterel this is only valid for weak abortions. The traditional dismantling of the
strong abort replaces the whole abort by a trap, and add a suspend to p to prevent the
execution of p when the abort is triggered. Hence, we need to execute an explicit EXIT
instruction to detect the abortion, while the abort watcher trigger the abortion without
additional overhead. Another possibility is to implement the strong abort with a weak
abortion and a suspend, which requires two watchers.

Note that the translation in Figure 4.10a is only correct when p cannot terminate.
Otherwise we need an additional signal that is triggered when p terminates and aborts
the checking of the signal expression.

4.4.2. Combine

The combination of multiple emissions of a signal within one tick by a combine function is
one of the Esterel features that are so far not implemented by the KEP or the strl2kasm.
However, the implementation is quite simple, by preceding each emission S(X) with a
test for the presence of S, as shown in Figure 4.11.

Note that the rewritten Esterel program is not constructive. However, the KEP will
simply execute the corresponding code, resulting in the correct behavior. The read write
dependencies are handled by the compiler as for all other signals.

4.5. Compiling SyncCharts

The KEP was originally designed to execute Esterel programs. However, it can also be
used to execute programs written in other synchronous languages. A natural candidate
for compilation are SyncCharts, a statechart dialect with a synchronous semantics, which
is very similar to Esterel. The usual design flow for SyncCharts is to compile them into
Esterel code, which is then compiled further into the target language.

62

4.5. Compiling SyncCharts

(a) SyncChart

1 % state Zero

2 Zero: WABORT N, Zero2Five

3 WABORT D, Zero2Ten

4 HALT
5 Zero2Ten: GOTO Ten

6 Zero2Five: GOTO Five

7 % state Five

8 Five : WABORT D, Five2Zero

9 WABORT N, Five2Ten

10 HALT
11 Five2Ten: GOTO Ten

12 Five2Zero: EMIT GUM

13 GOTO Zero

14 % state Ten

15 Ten: WABORT N, Ten2Zero

16 WABORT D, Ten2Five

17 HALT
18 Ten2Five: EMIT GUM

19 GOTO Five

20 Ten2Zero: EMIT GUM

21 GOTO Zero

22 HALT

(b) KEP assembler produced directly from the
SyncChart by smakc!

Figure 4.12.: Vending—an example of tightly interconnected SyncChart

Consider the SyncChart in Figure 4.12a. It takes two inputs N (nickel) and D (dime).
The state encodes how many cents have been entered: 0 for state Zero, 5 for state Five
and 10 for state Ten. A GUM is emitted whenever 15 cents have been entered. We assume
that the inputs N and D never occur simultaneously. While such a complete graph is
an example for highly non-linear control-flow, it illustrates the problems that can occur
when such SyncCharts are transformed into Esterel. Naturally, these difficulties get
more pronounced as the number of states and transitions increases. Figure 4.13a shows
the Esterel code that was synthesized by E-Studio1. Two auxiliary signals, go2Five and
go2Ten, are introduced, to indicate that not the initial state Zero, but either state Five
or state Ten should be activated.

The problem illustrated here is that a Statechart transition allows arbitrary control
changes, akin to a GOTO, and Esterel only allows structured control. More fundamen-
tally, Statecharts are a means to describe reactive behavior [Harel et al., 1990], where it
may be perfectly natural to transfer from one system state to an arbitrary other system
state. The situation is somewhat different in “classical” computer programs, where a
structured control flow is desirable [Dijkstra, 1968]. Actually, it is a common misconcep-
tion among Statechart novices to treat Statecharts as control flow diagrams, where states

1To improve readability of the automatically generated code samples—the Esterel produced by E-Studio
as well as the KEP assembler code samples—, comments are added, some labels are changed, and
the formatting is polished.

63

4. The Kiel Esterel Processor (KEP)

1 signal go2Five in
2 loop
3 signal go2Ten in
4 present [go2Five] then
5 % state Five

6 await
7 case [N] do
8 emit go2Ten

9 case [D] do
10 emit GUM

11 end await
12 else
13 % state Zero

14 await
15 case [N] do
16 emit go2Five

17 case [D] do
18 emit go2Ten

19 end await
20 end present;
21 present [go2Ten] then
22 % state Ten

23 await
24 case [N] do
25 emit GUM

26 case [D] do
27 emit GUM;

28 emit go2Five

29 end await
30 end present
31 end signal
32 end loop
33 end signal

(a) Esterel code synthesized
from the SyncChart by
E-Studio

1 A0: SIGNAL go2Ten

2 PRESENT go2Five, A1

3 % state Five

4 A3: PAUSE
5 PRESENT N, A7

6 EXIT AC, A3

7 A7: PRESENT D, A8

8 EXIT AC 0, A3

9 A8: GOTO A3

10 AC 0: EMIT GUM

11 EXIT AWAIT CASE, A3

12 AC: EMIT go2Ten

13 EXIT AWAIT CASE, A3

14 AWAIT CASE: GOTO AWAIT CASE 0

15 % state Zero

16 A1: PAUSE
17 PRESENT N, A13

18 EXIT AC 1, A1

19 A13: PRESENT D, A14

20 EXIT AC 2, A1

21 A14: GOTO A1

22 AC 2: EMIT go2Ten

23 EXIT AWAIT CASE 0, A1

24 AC 1: EMIT go2Five

25 EXIT AWAIT CASE 0, A1

26 AWAIT CASE 0: PRESENT go2Ten, A15

27 % state Ten

28 A16: PAUSE
29 PRESENT N, A20

30 EXIT AC 3, A16

31 A20: PRESENT D, A21

32 EXIT AC 4, A16

33 A21: GOTO A16

34 AC 4: EMIT GUM

35 EMIT go2Five

36 EXIT A15, A16

37 AC 3: EMIT GUM

38 EXIT A15, A16

39 A15: GOTO A0

(b) KEP assembler derived via Esterel

Figure 4.13.: Code generation for the Vending via Esterel

may merely encode the state of the program counter. This “state” is rather short-lived
and relates to the computation of a behavior, but not the behavior itself. This difference
manifests itself also in the synchronous model, where computations are considered to
not take any time at all. In contrast, a state of a reactive system should in general be
something that the system can reside in for some duration of physical time. Note that
one may require a certain structure in Statechart transitions as well. For example, SSMs
disallow inter-level transitions, which may simplify compilation and (formal) analysis.

64

4.5. Compiling SyncCharts

However, within one hierarchy level, transitions are generally unrestricted.

We here consider an alternative path to synthesize code for reactive processors from
SyncCharts, which avoids the detour via Esterel, and performs a direct translation in-
stead. This path was investigated for the KEP execution platform and a state machine
to KEP compiler (called smakc!!) was developed, which produces KEP assembler di-
rectly from SyncCharts. For the Vending example, the code produced by smakc! is
shown in Figure 4.12b. As can be seen, this code does not need any additional signals
and directly reflects the original structure. Each state is encoded as a HALT, which is
enclosed by (weak or strong) ABORTs that trigger outgoing transitions. For example,
state Zero corresponds to the HALT in line 4. The transition from Zero to Five, which de-
pends on signal N, is triggered by the WABORT that is initialized in Line 2; if triggered,
this transfers control to the label Zero2Five, where a GOTO Five is performed. Note
that the nesting order of the ABORTs reflects the transition priorities in the SyncChart.
Hence, the generation of KEP assembler directly from the SyncChart gives a very sim-
ple one-to-one mapping where each assembler instruction can be directly mapped to a
state action or a transition. This not only results in compact and efficient code, but also
greatly improves code traceability. This supports testing and verification, and in case of
safety-critical systems may also aid in certification.

4.5.1. Compiliation Steps

In order to compile a SyncChart into KEP assembler, several transformations are ap-
plied to the SyncChart, which might alter its structure, or enrich it with additional
information. In a last step, the generated SyncChart can be directly written into KEP
assembler. The compilation is carried out by the following steps:

1. Complex conditionals extraction: this transforms complex signal expressions to
simple signal tests. This transformation results in an SyncChart with the same
behavior, which does not contain conditional expressions.

2. Dependency analysis: this detects data and control flow dependencies and adds
them to the SyncChart as special transition type.

3. Cycle detection: to ensure schedulability, the dependency graph is inspected for
cycles.

4. Scheduling: the states are scheduled according to the encountered dependencies,
the schedule is implemented by assigning appropriate thread priorities.

5. Code generation: this generates the target platform’s code.

A complete description of the compiler can be found in Falk Starke’s diploma the-
sis [Starke, 2009]. Here we only consider some non-trivial parts of the transformation
and compare them to the strl2kasm compiler.

65

4. The Kiel Esterel Processor (KEP)

4.5.2. Thread embedding

For the compilation from Esterel to KEP assembler, we have to distinguish between prio
and prionext: the current priority might be lower than the priority with which we want
to restart in the next tick.

1 module PrioNext:

2

3 input I ;

4 output O;

5

6 signal A, R in
7 weak abort
8 sustain R

9 when immediate A;

10 emit O

11 ||
12 await R;

13 present I then
14 emit A

15 end present
16 end signal
17

18 end module

(a) Esterel Source

(b) SyncChart

1 PAR 2,A0,1

2 PAR 1,A1,2

3 PARE A2,1

4 A0: WABORTI A,A3
5 A4: EMIT R

6 PRIO 1

7 PRIO 2

8 PAUSE
9 GOTO A4

10 A3: EMIT O

11 A1: AWAIT R

12 PRESENT I,A7

13 EMIT A

14 A7: NOTHING
15 A2: JOIN 0

16 HALT

(c) KEP assembler gener-
ated from Esterel

1 PAR 2, A1, 1

2 PAR 3, A2, 2

3 PARE A6, 0

4 A1: WABORTI A, A5
5 PAR 4, A3, 3

6 PARE A4, 0

7 A3: SUSTAIN R % S1

8 A4: JOIN 2

9 HALT
10 A5: EMIT O

11 A2: AWAIT R % S3

12 PRESENT I, A7

13 EMIT A

14 A7: NOTHING
15 A6: JOIN 4

16 HALT

(d) KEP assembler generated
by smakc!

Figure 4.14.: Handling of prionext by strl2kasm and smakc!

See for example the small Esterel program in Figure 4.14. The logical control flow is
that we first have to emit R in the first thread. We check for R in the second thread
and emit A when I is present. Now we have to execute the first thread again to check
for the abortion. In the KEP assembler code generated by strl2kasm, this is realized by

66

4.5. Compiling SyncCharts

executing the EMIT R with priority two. The PAUSE that is generated from the sustain
is executed with the lower priority one. In between, the second thread is executed.
The code generation from SyncChart takes a different approach: the thread inside the
SUSTAIN state is itself embedded in an extra thread. The abortion is now triggered
by the execution of the JOIN statement in line 8. While this requires the usage of one
extra thread and more instructions for the setup, the number of instructions that are
executed within one tick is reduced. In particular, we can use the KEP instruction
SUSTAIN, because there is no need to change the priority within the sustain. For the
KEP assembler generated from Esterel, the following 11 instructions are executed in the
second tick, if I is absent: L8, L9, L5, L6, L11, L12, L14, L7, L8, L15, L16. For the code
generated by smakc!, only the following 9 instructions are executed: L7, L12, L13, L15,
L8, L10, L11, L16, L17. Unfortunately, the compiler does not yet produce this optimal
code for the example, therefore it was adjusted by hand, i. e., to detect the SUSTAIN or
to remove some unnecessary jumps. This can also be implemented in the compiler.

4.5.3. PRIO instructions

The insertion of PRIO instructions differs from the strl2kasm approach. There a priority
for each instruction is computed, for SyncCharts, we can compute one priority for each
state, simplifying the compilation. The parent state has higher priority than its child
states: outgoing strong abortions are triggered by the execution of the JOIN of the parent
state, while outgoing weak abortions are triggered by the execution of time delimiting
instructions in the child states. Note that this is not possible for other reactive processors,
like the StarPro or for SyncCharts in C, because there explicit checks for abortions must
inserted, while on the KEP the watchers are checked in parallel, and only need the
execution of an arbitrary instructions inside the watched range to trigger the watcher.
But having one priority per state leads to the question, where to put the priorities.
They can either be put in the start-up code, or they have to be added to each incoming
transition from coming from a state with a (potentially) different priority. The former
will lead to fewer instructions, but might lead to longer executions, since the PRIO
instruction is also executed when we enter the state from another state with the same
priority.

4.5.4. Weak abortion

Consider a state with two outgoing weak transitions. A naive way to implement this
in KEP assembler is shown in Figure 4.15. The semantics of weak abortion assures
that the inner part may be executed until a pause is reached, hence for the compilation
from Esterel, the weak abortion with the highest priority is mapped to the watcher
with the highest priority. However, in contrast to an abortion in Esterel, a transition
in a SyncChart can jump outside of the scope of an outer transition. Hence in the
implementation on the KEP, the order of the watchers for weak abortions needs to
be inverted: the transition with the highest priority is mapped to the watcher with
the lowest priority, which is executed first. For this to work, it is important that the

67

4. The Kiel Esterel Processor (KEP)

(a) A simple SyncCharts

1 WABORT I1, A1

2 WABORT I2, A2

3 HALT
4 A2: EMIT O2

5 GOTO S2

6 A1: EMIT O1

7 GOTO S1

(b) Naive, wrong imple-
mentation

1 WABORT I2, A2

2 WABORT I1, A1

3 HALT
4 A2: EMIT O2

5 GOTO S2

6 A1: EMIT O1

7 GOTO S1

(c) Correct implementa-
tion

Figure 4.15.: Implementing weak abortion

KEP recomputes the fact that an abortion is triggered in each instruction cycle. For the
execution of KEP assembler derived from Esterel, this does not matter, since the nesting
of abortions assures that control will always reach the handler of the outer watcher, either
by abortion or by normal control flow.

Another possibility is to explicitly check for active transitions with higher priority,
what is possible, when executing on a virtual machine. This approach must also be
used if a normal termination and a weak abortion can happen simultaneously. However,
in this case we only have to insert explicit code to check for outer transitions for one
normal termination. This is also done for the compilation from SyncCharts to Esterel
with Esterel Studio.

4.5.5. Experimental Results

The KReP Evalbench (see Chapter 7) to verify the KEP assembler produced by smakc!
and to measure its reaction times. Experiments were carried out on several SyncChart
examples. The SyncCharts were created in E-Studio, which was also used to compile
them into Esterel code and to generate traces (E-traces) that covered all SyncChart
transitions. The SyncChart and the generated Esterel program were compiled into KEP
assembler. The two KEP programs could then be directly compared to each other in
terms of size and reaction times, see Figure 4.16b.

For the comparison, the programs were executed on the KEP with the E-traces as
inputs, generating output traces (K-Traces). The KReP Evalbench compared the gen-
erated outputs to the outputs in the E-traces, thereby confirming the correctness of the
compilation. It also recorded the minimum, maximum and average reaction times of
the generated code, which were compared to the reaction times for the compilation via
Esterel. Hence, Esterel Studio was used as a reference point both for validation (correct-
ness of smakc!) and for benchmarking (competitiveness of smakc! with code synthesized
via Esterel Studio and strl2kasm).

The object code size, measured in 40-bit instruction words, for compilation by the two

68

4.5. Compiling SyncCharts

SSM

Esterel

KASM

E-Studio

smakc!

strl2kasm

(a) Different compilation schemes
from SSMs to KEP assembler
(KASM). The classical synthesis
path involves Esterel as interme-
diate step

SSM Esterel

KASM1 KASM2

K-Trace1 K-Trace2

E-Trace

KIEL

E-Studio

smakc! strl2kasm

KEP KEP

E-Studio

compare

(b) Each model is compiled either directly or via
Esterel. To validate the compilation, the ex-
ecutions on the KEP are compared to refer-
ence traces generated by E-Studio. The re-
action times of both executions are compared
to each other.

Figure 4.16.: Compilation paths and validation of the compiler

compilers is listed in Figure 4.17a. The smakc! compiler generates slightly smaller pro-
grams than strl2kasm. Still the code could be further optimized by removing superfluous
thread embeddings and GOTOs, this requires a slightly more sophisticated dependency
and control flow analysis. The smakc! compiler is particular at an advantage when the
levels of nested hierarchy and transition count per state grow. A possible explanation
is that the transformation to Esterel described by André and implemented in E-Studio
has difficulties to efficiently encode exactly these two cases.

Average and maximum reaction times of the code are shown in Figure 4.17b. Again,
the results are nearly identical, but usually slightly better for the direct compilation,
in particular in the automata-like examples. A difficult encoding using a lot of Esterel
instructions also accounts for more KEP assembler instructions, increasing the reaction
times of the resulting code. The reactions of the code generated by smakc! can sometimes
be slower, in particular due to the thread embedding, where additional JOIN statements
are executed in each tick.

The strl2kasm compiler uses a more involved dependency analysis than smakc!. In-
corporating this into the smakc! should help to avoid many unnecessary embeddings of
threads in macrostates, and hence improve both code size and reaction times.

69

4. The Kiel Esterel Processor (KEP)

ABRO Displays ParHier TrafficLight Vending2 Vending
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

smakc!
strl2kasm

O
pc

od
e

w
or

ds

(a) Comparison of code size.

ABRO Displays ParHier TrafficLight Vending2 Vending
0

5

10

15

20

25

30

35

40

45

50 smakc! - avg
smakc! - max
strl2kasm –
avg
strl2kasm –
max

In
st

ru
ct

io
n

cy
cl

es

(b) Comparison of reaction times, per logical
tick.

Figure 4.17.: Comparison between smakc! and strl2kasm.

70

5. The Kiel Lustre Processor (KLP)

Contents

5.1. Architecture . 73

5.1.1. Building blocks . 74

5.1.2. Instruction Set . 76

5.2. Compilation . 77

5.2.1. Clocked Equations . 77

5.2.2. Compiling Lustre . 80

5.2.3. Compiling Scade . 82

5.3. Experimental Results . 85

5.3.1. Evaluation . 85

5.3.2. Resource Usage . 85

5.3.3. Execution Times . 87

5.4. Hardware Description with Esterel v7 88

5.5. Comparison of KEP and KLP 90

5.6. Further Optimizations and Open Problems 90

5.6.1. Static Scheduling . 90

5.6.2. Clock registers . 91

5.6.3. Memory Access . 91

The KLP is a reactive processor based on the synchronous language Lustre. Since the
control structures of Lustre are much simpler than the one of Esterel, also the genera-
tion of good code, which is both compact and fast, is much simpler. Hence Lustre code
can be efficiently executed on standard processors. Therefore the need for a reactive
processor for Lustre is not as obvious as for Esterel. However, the implementation of
Lustre clocks by conditionals seems to be unsatisfactory, and recent approaches on the
compilation [Biernacki et al., 2008] show that there is still room for improvements. Fur-
thermore the augmentation of the language by automata adds to additional complexity
of efficient code generation. The main aim of the KLP is to examine whether a special
hardware for executing Lustre and Scade leads to significant performance improvements
over the execution on a standard processor.

The main idea of the KLP is to have a direct representation of the Lustre equations
in hardware. This leads to four differences to common processor design:

1. Direct support for clocks: The Lustre clocks are used directly to determine whether
a flow should be computed or not. No further computational overhead is needed.

71

5. The Kiel Lustre Processor (KLP)

2. Multiple PCs: Since each register has one PC, we always have multiple program
counters available, which leads to a very fine grained thread model.

3. Easy access to previous values: In Lustre programs, one often references to the
previous value of a variable. Therefore, it is directly stored in hardware. Another
possibility would be to compute the value only for that flows, whose previous value
is actually used.

4. Parallel execution: The inherent parallelism of Lustre is explored by the dynamic
decision which registers shall be executed. This allows to execute instructions that
do not depend on each other in parallel.

Due to the parallel execution, there are some similarities to the distributed execution
of Lustre. There are basically three different reasons why one might want to execute a
Lustre program in a distributed fashion.

1. Redundancy : The platform on which we want to execute the Lustre program
might be distributed due to safety reasons. This can mean that the same program
is executed on multiple processors. But we can also assume that each hardware
unit executes its own program, while we want to be sure that at most one program
crashes due to a single hardware failure.

2. Distributed IO: If we have a platform with multiple IOs, connected to different
controllers, it is useful to run the part of the system that directly uses the IO on
the controller that is connected to it.

3. Performance: Another reason is pure performance to execute complex control
system on slow hardware. Since Lustre programs often consist of multiple, only
loosely coupled parts, it might be better, both in terms of costs and resource
usage, to execute the programs on multiple, slow processors, than to use one fast
processor.

One might wonder, why we do not specify multiple Lustre programs in the first place.
The reason is simple: maintainability and flexibility. A monolithic Lustre program frees
the designer from thinking about low level details of the distribution and it allows the
execution on multiple, different platforms.

Girault [2005] gives an overview of different methods in distributing synchronous
dataflow programs. Here, the main method is to duplicate the code for each hard-
ware component, and thereafter to remove on each component the parts that are not
necessary for this particular component. Of course, the benefit of the distribution is lim-
ited by the message passing time. Since the KLP is still a single processor, the benefit of
the parallel execution is purely performance. Still, the performance should be achieved
in a way that does not sacrifice predictability.

A first approach of the KLP [Traulsen, 2007] was to execute Lustre in a pipelined
fashion. To achieve this, each Lustre program was split into multiple nodes, with minimal
data-dependencies; each node is executed on its own core. Since data computed on a

72

5.1. Architecture

different core will be visible with one tick delay, we need to store inputs locally to ensure
that all inputs are valid in the same tick. One advantage of this approach is that it
can run on any multi-core architecture with sufficiently fast communication, we do not
need a special reactive processor. However, this compilation makes no use of the special
features of Lustre, such as clocks.

The current version of the KLP directly reflects the dataflow nature of Lustre pro-
grams. Each register of the KLP corresponds to one flow in Lustre; it contains all values
that are necessary to define one flow: a current and a previous value, its clock and a
program counter. The KLP executes independent equations in parallel and uses the
clocks in Lustre, to detect which parts of a program need to be executed in one tick.

In the next section we take a closer look on the architecture of the KLP, before we
consider the compilation from Lustre and Scade in Section 5.2. In Section 5.3 we show
experimental results for the resource usage and the execution times. In Section 5.4 the
experiences with the hardware design of the KLP using Esterel v7 is evaluated, before
comparing the KEP and the KLP in Section 5.5

5.1. Architecture

KLP

Regs

...

Sched Proc

...

ROM

Reset

Tick

I

O

Exec

Done

Prio

Select

reg access

PC

Instruction

Figure 5.1.: Overview of the KLP

The architecture consists of three main blocks (see Figure 5.1): the register file (Regs)
stores the relevant information for each equation. The processing unit(Proc) executes
arithmetical and logical operations, and the scheduler(Sched) decides which equations
are to be executed next.

The external interface consists of the following inputs: a Tick signal which triggers
the execution of a global tick, a set of integer input signals I and instructions coming
from the instruction ROM. The outputs are the Done signal, to indicate that a tick has
finished, a set of integer output signals O, and program counter values PC to request
instructions from the ROM. The Exec output indicates which instructions were executed
in the current tick.

The KLP has two different options for the scheduling: it is either performed dynami-
cally, or via statically introduced priorities. Depending on this option, the register block,

73

5. The Kiel Lustre Processor (KLP)

the scheduler, and the interface between them slightly differs. Also the direct support
for clocks can be deactivated. The KLP is further scalable by setting the number of
registers (NREG), the number of IO ports (NIO), and the number of processing units
(NALU).

5.1.1. Building blocks

Register Files

The register file stores all runtime information. For each equation this is:

• the current value,

• the previous value,

• the address of the next instructions which is needed to compute this register,

• a register id of another register, which holds the clock of the expression, and

• a done flag to indicate whether the execution has terminated for the current tick.

For the priority based scheduling, each register also holds a priority. Each register that
is not done for the current tick sends its priority to the scheduler. Additionally, each
register has some basic control logic to detect whether it is done, because the register
that holds its clock is done and its value is zero.

The register file also contains some control logic: whenever the input Tick is set to
true, it reads all inputs, overwrites the previous value with the current value for all
registers, and resets the done-flags of all active registers, i. e., registers with a program
counter different to zero. Additional Tick inputs to trigger new computations are ignored
until the computation of the current tick is finished.

Whenever there is a register whose done-flag is false, this information is send to the
scheduler. From the scheduler it receives the information which register shall be exe-
cuted. Now it reads the instruction for this register from the instruction ROM and sends
the instruction to the processing unit and waits for the results. When all registers are
done, the register file signals this to the environment via the Done output and writes the
output values.

For the boot process, register 0 is set to ready. This triggers the execution of instruc-
tion 0, where the boot code to initialize the other registers is expected. At the end of the
initialization, the program counter of register 0 is reset to 0, it will not be executed from
that on. Hence register 0 can not be used as a normal register, but it can be connected
to some input.

The register file communicates with the environment, e. g., by reading the inputs or
instructions and by writing outputs and program counters to the ROM. It sends the
active registers to the scheduler and gets for each processing unit the mapped register.
The communication with the processing units is more complex: The processing unit
sends an identifier to the register file, which sends back the corresponding value. The

74

5.1. Architecture

processing units can also write register values, where the behavior is undefined if multiple
processing units write to the same register. The processing units can also write all other
register values, like the clock, the program counter or the done flag.

Dynamic Scheduling For the dynamic scheduling, each register detects itself whether
it is ready to execute. This is based on the next instruction and the done flag of all other
registers. It is similar to traditional out-of-order execution, but due to the fixed steps in
Lustre, solving data dependencies is much simpler. For each register we know precisely
whether the computation of its value has finished for the current tick. On the other
hand, this will always check all registers, as for a Lustre program there is no order of
instructions; therefore it will utilize the maximal degree of parallelism in each instruction
cycle. This might still not be the maximal possible parallelism for the whole tick. If the
program contains a chain of dependent register and some independent ones, we should
avoid to first execute the independent one, before starting to execute the sequence.

To detect on which other register a register depends, all registers need to prefetch their
next instruction. Note that each register only needs to know the done flag of the other
registers. Due to the regular instruction set of the KLP, it is very simple to extract the
dependencies from an instruction.

Each ready register sets a ready flag that it sends to the scheduler. Since we require
the dependency graph to be acyclic, there is at least one register ready whenever there
is a register that is not done. This is even true for all constructive Lustre programs,
e. g., all programs without cyclic data dependencies at runtime, like the following one:

X = if I then Y else 0;

Y = if I then 1 else X;

The cyclic dependency will always be resolved at runtime by the input I, hence the
execution on the KLP will never deadlock. Traditional Lustre compilers reject programs
that have static cyclic data dependencies, even if the cycle is always resolved at runtime.

Priority Based Scheduling For the priority based scheduling, the priority for each
register is stored. The priorities are set by the PRIO instruction. Two registers may be
executed in parallel when they have the same priority. The priorities are computed by the
compiler, based on the syntactic dependencies. While this approach may miss potential
parallel execution, it needs less control-hardware. Another benefit is that it allows non-
local dependencies, i. e., dependencies that are not completely determined by the next
instruction. Such dependencies are introduced by Scade automata (see Section 5.2.3),
where each outgoing transition adds a dependency to each computation inside a state.
Each register, which is not done, sends its current priority to the scheduler.

Processing Units

The processing unit is responsible for the execution of one instruction. For the KLP
instruction set, this normally means to decode the current instruction into opcode and

75

5. The Kiel Lustre Processor (KLP)

Opcode
Arg0 Arg1 Arg2Deps Fct

0 X I/T I I
1 X T V V
2 X I/T V I
3 X T C C
4 X I/T C I
5 X T V I

0 3 4 7 8 15 16 23 24 31

Figure 5.2.: Structure of an 32 Bit KLP instruction. I is an immediate value and T a
target register. V and C the ids of read valued and clock registers, on which
the computation depends: the dependecy is encoded by the first 4 bits.

arguments and send the read values to the contained ALU. The execution of all in-
structions takes one clock cycle. The arithmetic operations are synthesized from Esterel
except for division, for which no automatic synthesis is allowed, therefore a simple im-
plementation of hardware integer division was implemented manually in Esterel.

Scheduler

At run-time, the scheduler maps ready registers at each tick to free processing units.
For the dynamic scheduling, the scheduler will simply take the first available registers.
Therefore, the actual scheduling and also the utilization are affected by the ordering of
the equations. So the compiler should order the equations by the number of equations
that depend on them.

For the priority based scheduling, the scheduler first computes the maximal priority of
the currently active registers and only maps registers with this priority to the processing
units.

5.1.2. Instruction Set

Beside the usual arithmetical and logical instructions, the KLP contains a SETCLK and
SETPC instruction to initialize a register by setting the clock and the initial program
counter. The INPUT and OUTPUT instructions map the register to inputs and outputs.
At the start of a tick, the inputs are copied to input registers and at the end of the
tick, the values of the output registers are copied to the output. For each reference to
a register, the first bit indicates whether the current or the previous value is used. The
DONE instruction marks the current register as finished for the current tick. It has the
program counter from which the register shall start in the next tick as an argument.
This argument can be omitted in the assembler, the control is transfered to the next
instruction in this case. The DONE instruction is similar to the PAUSE instruction in
SyncCharts in C [von Hanxleden, 2009] or the gotopause in Esterel + goto [Tardieu and
Edwards, 2007].

76

5.2. Compilation

The KLP has a regular instruction set: each instruction has 32 bits, where the first
byte contains the opcode, as shown in Figure 5.1.2. The first 4 bits of the opcode encode
the data-dependencies of the instructions, this is used for the automatic scheduling.
The second 4 bits encode the ALU-function, in case the instruction uses the ALU. An
overview of the instructions is shown in Figure 5.3. The instruction set distinguishes
between clock and value registers, where clock registers only contain a boolean value,
while value register contain an 32 bit integer. Therefore there exist 4 instructions for
register to register movements. The current implementation of the KLP only contains
valued registers and maps clock registers to valued ones.

5.2. Compilation

The compilation from Lustre into KLP assembler consists of three steps (see Figure 5.4).
First, the lus2ec tool from the Verimag Lustre compiler1 is used to generate expanded
code (ec), i. e., all nodes and tuples are expanded and pre operators are propagated to
variables. This also checks that the programs are well-formed, i. e., every variable is
defined exactly once, there are no cycles in the dependency graph, and only variables
that run on the same clock are combined.

In the second step, the Lustre program is further simplified by restricting the use of
clock operators. This results in Clocked Equations (CEQ), which are mapped to the
KLP instruction set (Klp asm) in the third step. The first two steps are source to source
transformations that still yield valid Lustre code. This allows easy validation of the
correctness by using existing Lustre tools to compare the Lustre source file with the
generated code. For the straight-forward compilation, one register is needed for each
clocked equation. However, by introducing static schedules the number of registers can
be reduced, similar to the standard compilation of Lustre.

Scade models can be directly translated into clocked equations with automata. In
Scade, the usual way to use clocks is via activation conditions, which are simpler to
handle than the arbitrary combination of when and current in Lustre. And in Scade
each operator defines a new flow, hence the compiler must combine flows to reduce the
number of used registers, instead of splitting complex flows, as it needs to be done for
Lustre. Consequently compiling the dataflow-part of Scade is simpler than compiling
Lustre.

5.2.1. Clocked Equations

Clocked equations are Lustre programs where clock operators may only occur at some
special positions.

All equations have the form: x=current((i → e) when C), where i and e are arbitrary
expressions that do not contain any clock operators except for pre. The C is either the
name of a boolean variable, or true, e. g., the expression is running on the base clock.
e and i may not contain nested pre operators, therefore we might have to introduce

1http://www-verimag.imag.fr/SYNCHRONE/

77

http://www-verimag.imag.fr/SYNCHRONE/

5. The Kiel Lustre Processor (KLP)

Instruction Opcode Meaning
SETCLK reg, clock 0x01 initialize clock register
SETPC reg, pc 0x02 initialize valued register
DONE [PC] 0x03 set done flag and pc for next tick
INPUT id, reg 0x04 map register to input id
OUTPUT id, reg 0x07 map register to output id
LOCAL id, reg declare local register, only used by the assembler
PRIO reg, p 0x09 set priority for register reg to p
ADD regR, reg1, reg2 0x10 regR← Reg1 + reg2
SUB regR, reg1, reg2 0x11 regR← Reg1− reg2
MUL regR, reg1, reg2 0x12 regR← Reg1 ∗ reg2
DIV regR, reg1, reg2 0x13 regR← Reg1/reg2
IADD regR, reg, val 0x20 regR← reg + val
ISUB regR, reg, val 0x21 regR← reg − val
IMUL regR, reg, val 0x22 regR← reg ∗ val
IDIV regR, reg, val 0x23 regR← reg/val
AND regR, reg1, reg 0x3A logical and
OR regR, reg1, reg 0x3A logical or
XOR regR, reg1, reg 0x3A logical exclusive or
IAND regR, reg, val 0x3A logical imediate and
IOR regR, reg, val 0x3A logical immediate or
IXOR regR, reg, val 0x3A logical immediate exclusive or
LT regR, reg1, reg2 0x14 regR← Reg1 < reg2
LE regR, reg1, reg2 0x15 regR← Reg1 ≤ reg2
EQ regR, reg1, reg2 0x16 regR← Reg1 = reg2
GE regR, reg1, reg2 0x17 regR← Reg1 ≥ reg2
GT regR, reg1, reg2 0x18 regR← Reg1 > reg2
NEQ regR, reg1, reg2 0x19 regR← Reg1 <> reg2
ILT regR, reg, val 0x24 regR← reg1 < val
ILE regR, reg, val 0x25 regR← reg1 ≤ val
IEQ regR, reg, val 0x26 regR← reg1 = val
IGE regR, reg, val 0x27 regR← reg1 ≥ val
IGT regR, reg, val 0x28 regR← reg1 > val
INEQ regR, reg, val 0x29 regR← reg <> val
JMP pc 0x0A unconditional jump
JT reg, pc 0x44 jump when true
JF reg, pc 0x45 jump when false
JZ reg, pc 0x2A jump when zero
JNZ reg, pc 0x2B jump when not zero
INT regT , regS 0x50 regT ← regS
BOOL regT , regS 0x2C regT ← regS
VVMOV regT , regS 0x2D regT ← regS
IVMOV regT , val 0x0B regT ← val
CCMOV regT , regS 0x41 regT ← regS
ICMOV regT , val 0x0C regT ← val

Figure 5.3.: Overview of KLP instructions. All arguments like registers (reg), immediate
values (val), clocks (clock), io identifieres (id), prioritites are 1 Byte long,
only program counters (pc) are 2 Byte long.

78

5.2. Compilation

Lustre program Scade model

Extended code (ec)

Clocked Equations (CEQ)

KLP assembler

Figure 5.4.: Compilation paths to the KLP assembler

1 X = I when C;

2 A = current (X→ (pre(X) + X));

3 B = I→ (pre(current(X)) + I);

(a) Combinations of pre and cur-
rent

1 X = current((I) when C);

2 A = current((X→(pre(X) + X)) when C);

3 B = I→(pre(pre 1) + I);

4 pre 1 = current((X) when C);

(b) Translation into clocked equations

I 0 1 2 3 4 5 6 7
C 1 1 0 1 0 1 0 1
X 0 1 3 5 7

current(X) 0 1 1 3 3 5 5 7
pre(X) ⊥ 0 1 3 5

current(pre(X)) ⊥ 0 0 1 1 3 3 5
pre(current(x)) ⊥ 0 1 1 3 3 5 5

A 0 1 1 4 4 8 8 12
B 0 1 2 4 7 8 11 12

(c) Execution trace

Figure 5.5.: Access to previous value with and without current.

additional variables. The initialization is optional, if it is missing, the evaluation of e
starts in the first tick. Also the clock is optional, it can be omitted if the equation runs
on the base clock.

Note that the equation is initialized when the clock is true for the first time. This
is different to x=i → current e when C, where the stream is always defined in the first
instance, but is then undefined until the clock is true for the first time.

Figure 5.5 shows an example for the correspondence between Lustre and clocked equa-
tions. The main differences are the introduction of one additional register for the previous
value and that all variables are running on the base clock. Another option would haven
been to take x=((i → e) when C) as the base form for an equation, and use current as an
operator inside e. For the access of an actual value, this does not make any change, since
the current operator will not affect it. Only the access of previous values is changed (see
Figure 5.5c); we need an extra register to store the value of pre(X). If we choose current
as a regular operator, we need an extra register to store pre(current(X)). As Figure 5.5,
shows, pre(current(X)) and current(pre(X)) are not equivalent. The current(pre(X)) was

79

5. The Kiel Lustre Processor (KLP)

chosen as the default, because this seems to be more common in Lustre programs. In
particular, this restriction of clocked equations is similar to the activation condition in
Scade, except that the activation condition takes an additional default value when the
clock is absent. For clocked equation this default value is fixed to the previous value of
the output.

The behavior of a clocked equation directly corresponds to the execution of the KLP:
in each tick, all previous values are overwritten. This corresponds to the fact that the
current operator was chosen as a basic instruction in clocked equations, requiring all
variables to run on the base clock. If we would only overwrite the previous value of
registers that were active in the last tick, this would correspond to handling current as
a normal operator.

Automata

For the compiler from Scade to KLP-assembler, we extended the clocked equations by
automata. The main program contains both equations and states, where each state may
contain further equations and states. Hence the nesting is restricted with respect to
Scade, where state can also be contained in equations. The compiler only distinguishes
weak and strong abortions, normal terminations are not taken into account. Currently
the compiler does not support the arbitrary nesting of automata and dataflow that is
allowed in Scade. Automata may contain other automata and equations, but equations
may not contain automata. This could be done by a preprocessing step, where the
automata are extracted from the equations and executed in parallel.

5.2.2. Compiling Lustre

Compiling Lustre into Clocked Equations

We assume that all tuples and nodes are expanded and propagate all pre operators, so
that they directly access variables, and not arbitrary expressions. The extended code
generated by the lus2ec tool fulfills these requirements. The compilation consists of the
following steps:

1. Infer clocks: assign to each sub-expression the clock on which it is executed. This
also checks whether only valid clock operations are performed, e. g., only variables
that run on the same clock are combined, and there is no current operation on a
variable that already runs on the base-clock.

2. Lift clocks: In order to reduce the number of clock-occurrences, clocks are lifted
to the top if possible, e. g., a when C op b when C is combined to (a op b) when C.

3. Declock: introduce auxiliary variables for nested clock operations.

4. Propagate constants: in Lustre, even constants run on a clock. Therefore, the
declock operation might introduce some auxiliary equations, which simply compute
the value of constant on a given clock. These are removed again in this step.

80

5.2. Compilation

id (0)

new id (1)

ok (2)

request (3)

Figure 5.6.: Dependency graph for the check node. The nodes are annotated with the
assigned priorities.

5. Priority assignment: set the priorities depending on the data dependencies. This
is done by performing a topological sort on the dependency graph.

Priorities The priorities are simply computed due to the data-dependencies per equa-
tion, this is done by a simple traversal of the dependency graph, Figure 5.6 shows the
dependency graph with the assigned priorities for the check node in the gate example
from Figure 3.6 on Page 32, as generated by the compiler. Here the compiler assigns the
highest priority to the equations that compute new id, the next priority are assigned to
ok, because it has new id as its clock. The lowest priority is assigned to request, because
it depends on both other equations. This is reflected in the generated KLP assembler
in Figure 5.8 by setting priorities 1, 2, and 3, respectively. Note that the lowest number
indicates the highest priority; hence priority 0 is always the maximal priority.

Compiling Clocked Equations into KLP assembler

Each KLP program starts with a setup code, which initializes the registers, by setting
clocks and program counters. This code starts at address 0 and is executed when the
KLP is powered on. In the setup phase, only register 0 is active. The real code is
not executed before the next tick, when the initial values are written according to the
initializations in the Lustre program.

Translating clocked equations to KLP assembler is straight-forward. The compiler
can generate code that uses the direct support for clocks in the KLP, or the clocks can
be checked explicitly in the code. The implementation for an equation x=current((i →e
when C)) is shown in Figure 5.7.

In the setup phase (Lines 1+2), the program counter is set to the code that executes i
and the clock is set to the register for C. For the priority based scheduling, also the
priority of the register is set (Line 3). After execution the code for i (Line 6), control
jumps to the code for e for the next tick (Line 7). After the execution of e (Line 9), it
is restarted in the next tick (Line 10).

Figure 5.8 shows the KLP assembler for the check node. The registers are initialized
in Line 1 to Line 16. In Line 9 the clock for ok is set to new id. This is the only clock
that is set, because all other flows in the Lustre program run on the base clock. The
code for the new id flow is in Line 20–25. Line 21 performs the initialization of the flow
in the first tick, for the next tick, the control is set to Line 24 by the DONE statement in
Line 21. From that on, the new id is computed in Line 24, where the DONE in Line 25

81

5. The Kiel Lustre Processor (KLP)

1 SETPC reg X L x init

2 SETCLK reg X reg C

3 PRIO reg X p

4 ...

5 L X init :

6 ... // Code for i

7 DONE L X run

8 L X run:

9 ... // Code for e

10 DONE L X run

(a) Using HW support for clocks

1 SETPC reg X L X

2 PRIO reg X p

3 ...

4 L X:

5 JT C L X init

6 DONE L X

7 L X init :

8 ... // Code for i

9 DONE L X run

10 L X run:

11 JF C L X done

12 ... // Code for e

13 L X done:

14 DONE L X run

(b) Check clocks in SW

Figure 5.7.: Translating a clocked equation x=current((i →e when C)) into KLP
assembler

executes this Line in each tick.

5.2.3. Compiling Scade

Automata are an important feature of the Scade language. Having good support for au-
tomata should give a significant improvement of the performance, even though automata
can always be compiled to standard dataflow. Instead of transversing all outgoing tran-
sitions within a tick, they are declared at initialization time, all checked in parallel when
the state is active. In contrast to the handling of SyncCharts on the KEP, it is not
easy to extend the KLP by watchers to implement the preemption, because watchers,
which watch a specific code range and can abort multiple threads, are hard to combine
with the multiple processing units of the KLP. As mentioned before, Scade can be com-
piled into dataflow equations similar to Lustre, which then can be mapped to clocked
equations, but a a direct compilation, should result in more compact code. One problem
with the execution of Scade programs on the KLP are non-local dependencies, which are
introduced by automata. Before executing the current flow, we have to check all strong
abortions that might kill it. After the execution took place, all weak abortions must
be executed. Three different approaches exist for the parallel execution of hierarchical
automata:

1. The necessary control can be replicated as it is done by the distributed execution
of Lustre programs [Girault and Nicollin, 2003]. Of course, this implies that the
same code is executed multiple times.

2. Another possibility is to insert instructions into each parallel branch that explicitly
request information of the global state from some master branch, which is for
example done by the Emperor [Yoong et al., 2006].

82

5.2. Compilation

1 INPUT id

2

3 LOCAL new id

4 SETPC new id L new id

5 PRIO new id 1

6

7 LOCAL ok

8 SETPC ok L ok

9 SETCLK ok new id

10 PRIO ok 2

11

12 OUTPUT request

13 SETPC request L request

14 PRIO request 3

15

16 DONE
17

18

19

20 L new id:

21 ICMOV new id 1

22 DONE L new id run

23 L new id run:

24 NEQ new id id pre(id)

25 DONE L new id run

26

27 L ok:

28 L ok run:

29 IVMOV ok 0 5

30 IDIV ok 1 id 5

31 MUL ok ok 0 ok 1

32 EQ ok ok id

33 DONE L ok run

34

35 L request :

36 L request run :

37 AND request new id ok

38 DONE L request run

Figure 5.8.: KLP assembler for the check node

3. The third possibility is to let the master branch execute the control parts, and only
distribute the data-parts that can be easily parallelized. This is the approach we
consider here. For each automaton or macrostate one control thread is generated.
Per default it runs with higher priority than the substates. At each tick it first
checks for strong abortions, then lowers its own priority to let the inner equations
execute. Thereafter, it raises its priority again to assure that strong abortions are
checked with high priority in the next thread, and checks for weak abortions. If a
transition is triggered, it executes code to reconfigure all equations that are defined
in the source and target state. Due to the semantics of SyncCharts in Scade, each
state is executed at most once in each tick, and the only case when a state is
entered and left in the same tick is if it is activated by a strong abortion and left
by a weak abortion. If a weak abortion is taken, a DONE statement is executed to
stop the controller after the abortion. For the strong abortion, the weak abortions
of the target state are still to be checked.

Figure 5.9 shows a simple automaton in Scade. It takes two inputs: an integer I and
a boolean X. Its only output is the integer O. The local integer variable c is initialized
to 0. On the left side, X is converted into a signal. The variable c is incremented each
tick in the initial state A and decremented in state B. Control is transferred from A to
B when c equals 10, and from B to A when c is less or equal to 0. These transitions
are weak-delayed, indicated by the dot at the arrowhead. Therefore, the equation inside
the state is executed one last time in the tick where the transition is triggered, and the
execution of the target state starts in the next tick. Control can also be transfered from
A to B by the input X. This triggers a strong abortion (dot at the arrow-tail), which will
immediately transfer control to state B without executing state A first.

83

5. The Kiel Lustre Processor (KLP)

O

1
c

 last 'c

5

I

B

O

1
c

 last 'c

2

I

A

<SafeStateMachine>

2

c = 10

1
 'X

1

c <= 0

Figure 5.9.: A simple Scade automaton

1 INPUT I

2 INPUT X

3 LOCAL CTRL

4 SETPC CTRL L CTRL A

5 PRIO CTRL 1

6 OUTPUT C

7 SETPC C L C A

8 PRIO C 2

9 OUTPUT O

10 SETPC O L O A

11 PRIO O 2

12

13 // Controller for state A

14 L CTRL A:

15 JT X A 2 B S // Check strong abort

16 L CTRL AW:

17 PRIO CTRL 3 // Execute state

18 PRIO CTRL 1

19 IEQ T C 10 // Check weak abort

20 JT T A 2 B W

21 DONE L CTRL A // Resume in next tick

22 // strong abort from A to B

23 A 2 B S:

24 SETPC C L C B

25 SETPC O L O B

26 GOTO L CTRL B // Check weak

27 //abortion in B

28 // weak abort from A to B

29 A 2 B W:

30 SETPC C L C B

31 SETPC O L O B

32 DONE L CTRL B // Resume in B

33 // in the next tick

34 // Controller for state B

35 L CTRL B:

36 PRIO CTRL 3

37 PRIO CTRL 1

38 JLE T C 0

39 JT T B 2 A

40 DONE L CTRL B

41 // weak abort from B to A

42 B 2 A:

43 SETPC C L C A

44 SETPC O L O A

45 DONE L CTRL A // Resume in A

46 //in the next tick

47

48 // Equations inside A

49 L C A:

50 IADD C pre(C) 1

51 DONE L C A

52 L O A:

53 IMUL O I 2

54 DONE L O A

55

56 // Equations inside B

57 L C B:

58 ISUB C pre(C) 1

59 DONE L C B

60 L O B:

61 ISUB O I 5

62 DONE L O B

Figure 5.10.: KLP assembler for the automaton from Figure 5.9

The KLP-assembler for this program (Figure 5.10) consists of the following parts.
We assign one register to the control of the complete automaton. (For more complex

84

5.3. Experimental Results

programs, we need one automaton per hierarchy.) This control part runs with higher
priority than the contained equations. In Line 14 the code to check for the execution
of state A starts. First, we check whether the trigger X of the strong abortion is true,
in this case, we jump directly to A 2 B S, which sets the program counter of C and O
according to state B and also checks for weak abortions. Otherwise, we set the priority
to 3, which indicates lower priority than the equations for C and O, which are now
executed. Then we raise the priority of the controller back to 1. Thereafter, we check
for the weak abortions by comparing C to 0.

In this example, we do not have to alter the priorities of C and O, because they do not
have any data dependencies: otherwise, this would have been part of the transition code.
We also do not use the value of the register that is assigned to the controller. However,
it could be used to store information on the current state, in order to implement the
history operator, which restarts an automaton in the last active state, and not in its
initial one.

The translation from Scade automata to KLP assembler is similar to the translation
of SyncCharts to KEP assembler as described in Section 4.5. The main difference is
that the KEP has a single point of control. Therefore, a solution with watchers which
monitor the unique program counter and reset it when a transition occurs, is feasible. In
that aproach a state is implicitly declared active, when the program-counter is currently
inside the scope of the state, while for approach on the KLP a state is active when the
program counter of the controller is in the corresponding handler.

5.3. Experimental Results

5.3.1. Evaluation

The KLP is developed in Esterel v7 with Esterel-Studio, from which either a software
emulation in C or an hardware description in VHDL is generated. For evaluation pur-
poses, we extend it by a test-driver that can communicate via a simple protocol to set
inputs, read outputs, load programs, and get information on the current execution, such
as the execution trace, or the reaction time, as detailed in Chapter 7.

For the validation of the KLP, we use the tool lurette Jahier et al. [2006] to generate
random traces for the benchmarks and then compile the benchmarks with the Lustre v4
compiler to get the correct output for the test traces. These outputs are compared auto-
matically by the KReP Evalbench to the output of the KLP, when the same benchmarks
are executed, to validate the correctness of the compiler and the processor. At the same
time, the reaction times are measured.

5.3.2. Resource Usage

We compare the resource usage of four difference variants of the KLP. The dynamic
and priority based scheduling (dynamic, prio) can be combined with direct support for
hardware clocks (+, -). For the measurement, the KLP was synthesized for a Virtex 4
FPGA with Xilinx ISE 11, using the standard settings for different numbers of registers

85

5. The Kiel Lustre Processor (KLP)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

5

10

15

20

25

30

35

40

45

dynamic+
prio+
dynamic-
prio-

Regs

1
0

0
0

 S
lic

e
s

(a) Hardware usage of the KLP per register for one ALU

1 2 3 4 5 6 7 8

0

5

10

15

20

25

30

35

dynamic+
prio+
dynamic-
prio-

Alus

1
0

0
0

 S
lic

e
s

(b) Hardware usage of the KLP per pro-
cessing unit for 8 registers

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32

0

5

10

15

20

25

30

35

40

45

50

dynamic+
prio+
dynamic-
prio-

Regs

n
s

(c) Minimal delay for the KLP per register
for one ALU

1 2 3 4 5 6 7 8

0

5

10

15

20

25

30

35

40

dynamic+
prio+
dynamic-
prio-

Alus

n
s

(d) Minimal delay of the KLP per process-
ing unit for 8 registers

Figure 5.11.: KLP Resource Usage

and processing units. Figure 5.11a shows the number of slices, depending on the number
of registers. As one can see, the dynamic scheduling needs more area than the priority
based scheduling, but in particular for the dynamic scheduling, the direct support for
clocks is very cheap.

Figure 5.11b shows the hardware usage depending on the number of processing units
for 8 registers. Here, the differences between the configurations of the KLP are even
smaller. As one would expect, adding additional processing units is more costly than
adding registers.

The difference is much bigger for the minimal clock cycle, shown in Figure 5.11c for
different numbers of registers. For the priority based scheduling, the minimal clock cycle
is almost constant, while for the dynamic scheduling, where each register can depend on
each other, it increases linearly. There is an anomaly with the delay, the execution for
20 registers takes longer than for 22, 24, 26, or 28 registers. This seems to come from

86

5.3. Experimental Results

optimizations in the VHDL code, since the delay computed by the early performance
estimation does not show this anomaly.

Figure5.11d shows the minimal delay depending on the number of processing units,
for 8 registers. Here, the different configurations perform about the same. In fact, the
scheduling is more involved with priorities, because first the maximal priority needs
to be determined, and all active processes with this priority are scheduled. This is in
particular the reason for the steep increase from 1 to 2 processing units. For the dynamic
scheduling, we can simply schedule all active processes.

5.3.3. Execution Times

We compare the KLP to the execution of Lustre programs on a Microblaze processor,
running on the same FPGA. We focus on the pure execution times and ignore all delay
coming from IO handling like memory access.

For the evaluation, the following benchmarks are used, which can be found in the
Appendix A:

abro a Lustre version of the well-known Esterel example.

counter a counter in Lustre, just one flow without clocks.

elevator lus a elevator controller, written in Lustre

elevator scade a controller for the same elevator, written in Scade. This model contains
no clocks.

watch a simple watch.

parallel an example for parallel computations without data dependencies.

The reaction times for a set of benchmarks when running on a Microblaze core with
100 MHz are compared to the runtime on the KLP, with 1 or 4 processing units. We
synthesized the KLP to get the maximal possible frequency and used the software em-
ulation to measure the number of instruction cycles that are needed to compute one
reaction. Figure 5.12a shows the measured worst case reaction times. For the KLP
with one ALU, for most examples, the execution takes longer than the execution on a
Microblaze, independent of the used compiler. However, the KLP with 4 ALUexecutes
the programs faster than the Microblaze. Note that the actual benefit depends on the
program, because the parallel execution can not always be used.

Figure 5.12b compares the generated code size for the KLP with code generated
by different Lustre compilers: the Lustre v4 compiler from VERIMAG and the reluc
compiler from SCADE. For the KLP-compiler the code size of the KLP-assembler was
measured. For the other compilers, C code was generated and compiled into object code
for a standard processor, using the gcc. The code of the KLP is relatively large. There
are two reasons for this:

87

5. The Kiel Lustre Processor (KLP)

abro

counter

elevator_lus

elevator_scade

watch

parallel

0 0,5 1 1,5 2 2,5 3 3,5

KLP 1
KLP 4
v4
reluc

us
(a) Reaction times for the KLP with one and four

processing units, compared to running SW im-
plementations on a microblaze processor

abro

counter

elevator_lus

elevator_scade

watch

parallel

0 1 2 3 4 5 6

KLP
v4
reluc

KBytes

(b) Code size compiled for the KLP or for standard
hardware using different Lustre compilers

Figure 5.12.: KLP Benchmarks

1. Additional code is needed for the parallel execution: for each register a DONE
instruction is needed both for the runtime code and the initialization plus the
setup code. To reduce this overhead, the compiler could analyze dependencies and
combine registers that cannot be executed in parallel.

2. The compiler only performs limited optimizations, in particular compared to the
reluc compiler. Note that for the simple counter example, which has few possibil-
ities for optimization, the code for KLP is smaller than for the other compilers.

5.4. Hardware Description with Esterel v7

Beside the SyncCharts, Esterel Studio offers another graphical description for mod-
els: architecture diagrams. These are classical hardware block diagrams. Compared to
SyncCharts, both the semantics and the translation to Esterel is much simpler for ar-
chitectural diagrams: all modules run in parallel, and the links denote signal renamings.
However, for the high-level view of the architecture, they are much more convenient than
textual Esterel.

Esterel Studio allows an early performance estimation of the required hardware re-
sources. The net-list code is generated and estimations for the occupied area, the num-
ber of hardware registers and the minimal delay are obtained by abstract interpretation.
While these numbers are not accurate and do not consider optimizations that are per-
formed by the synthesis tools on the data-path, the estimation helps to get an overview
of the needed resources and to find the modules that consume most resources. On the
other hand, the early performance estimation is much faster than a complete synthesis
of the design. Figure 5.13 shows the resource usage that is reported by the early per-

88

5.4. Hardware Description with Esterel v7

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

10

20

30

40

50

60

70

80

90

dynamic+
dynamic-
prio+
prio-

Regs

A
re

a
 U

n
its

(a) Area usage

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

500

1000

1500

2000

2500

3000

3500

4000

4500

dynamic+
dynamic-
prio+
prio-

Regs

 H
W

 R
e

g
s

(b) Register usage

Figure 5.13.: Early performance estimation of the KLP resource usage per register for
one processing unit.

formance estimation. While the overall trend is the same as for the actual hardware
synthesis in Figure 5.11, the difference between the dynamic scheduling and the priority
based scheduling is much bigger in the early performance estimation than in the actual
synthesis.

One of the great benefits of Esterel is the possibility for formal verification. The
model checking of Esterel modules, which is implemented in Esterel Studio, was not used
frequently for this processor design, because the specification of the allowed behavior of
the environment was too complex. For example, we would have to specify what are
valid KLP programs, because for invalid programs the behavior of the KLP is not
specified. But Esterel Studio also offers the sequential equivalence check, to prove that
two modules have the same behavior. This was frequently used to show that implemented
optimizations do not change the behavior of the processor.

The biggest obstacle when designing hardware with Esterel are the causality cycles.
The compiler will reject all cyclic programs, but in complex programs it is often hard
to understand why the compiler shows a cycle, in particular when the cycle spawns over
nearly all signals of the programs, which are then all highlighted in the tool. The user
can then do little more than a trial and error approach to remove the cycle, e. g., by
adding pre modifiers to all signals which he suspects to cause the cycle. Of course, the
user should try not to alter the behavior of the program at the same time. So allowing
all constructive programs, and not just acyclic ones would already reduce the number
of reported cycles by the compiler. Or the presentation of cycles in the tool should
be improved, by giving the possibility to follow the dependencies in the cycle stepwise,
together with an explanation for each dependency.

While Esterel is a convenient language to design hardware from behavior description,
the programmer must be aware of the compilation steps that are taken from Esterel
to the hardware description language and further into hardware, in order to implement
efficient hardware.

89

5. The Kiel Lustre Processor (KLP)

5.5. Comparison of KEP and KLP

Since Lustre has less control constructs than Esterel, the instruction set of the KLP is
much simpler than the one of the KEP. Another difference is the degree of concurrency:
Esterel has a point of control, or in case of concurrency multiple points of control. In a
Lustre program all equations run in parallel. The only order imposed on the execution
comes from the data-dependencies. The main differences between the KEP and the KLP
is that the KLP allows the parallel execution of instructions.

As mentioned before, the main features of the KLP are:

1. Direct support for clocks,

2. Multiple program counters,

3. Easy access to previous values, and

4. Parallel execution.

Taking a closer look at these, we make the observation that all this was already imple-
mented in the KEP, except for the parallel execution. The clocks can be implemented by
a suspend, the previous value at least of signals can be accessed, and the KEP supports
a priority based scheduling. Therefore, we can also use the KEP to efficiently execute
Lustre programs. The dataflow-part is computed into usual dataflow execution, as it is
done when compiling Lustre to C. The control part, as the clocks, is expressed by the
SUSPEND instruction.

Another possibility to execute mixed control and dataflow diagrams would be to run
the KEP and KLP in a tandem mode [Malik et al., 2009], executing the dataflow part
on the KLP and the automata on the KEP. However, this would add communication
overhead, since both processors must be able to exchange data back and forth within a
tick. Furthermore, the KEP need to be able to reconfigure the KLP within a tick.

Figure 5.14 compares the resource uses of the KEP and the KLP, when both are
synthesized from Esterel. Since the KEP-e does not contain data, the word size for the
KLP was shrunk to two Bit. And since both preemption and concurrency are tightly
coupled to the number of registers, two versions were measured for the KEP: one where
the number of threads grows with the number of signals, but the number of watchers
is fixed to four (kep). For kep+watcher, the number of watchers grows as well. This
version scales clearly worse than the KLP. The number of registers of the KLP compares
to the number of registers and threads of the KEP with a fixed number of watchers.

5.6. Further Optimizations and Open Problems

5.6.1. Static Scheduling

Since Lustre programs are required to be acyclic, there is always a static computable
evaluation order of the equations, so that the computation of an equation only uses
values that were already computed. So far, the compiler uses one register of the KLP

90

5.6. Further Optimizations and Open Problems

2
4

6
8

10
12

14
16

18
20

22
24

26
28

30
32

0

2

4

6

8

10

12

kep
pklp1
Kep +
watcher

Regs

1
0

0
0

 S
lic

e
s

(a) Hardware usage of the KLP compared
to the KEP

1 2 3 4 5 6 7 8

0

5

10

15

20

25

30

35

40

dynamic+
prio+
dynamic-
prio-

Alus

n
s

2
4

6
8

10
12

14
16

18
20

22
24

26
28

30
32

0

10

20

30

40

50

60

kep
pklp1
Kep +
watcher

Regs

n
s

(b) Minimal delay for the KLP compared
to the KEP

Figure 5.14.: KLP resource usage compared to the KEP

for each Lustre equation. However, the compiler could use the static scheduling to
combine different equations, to reduce the number of necessary registers. Of course,
care has to be taken that still all values that are used by other registers are available.

5.6.2. Clock registers

The KLP used 32 Bit both for integer and boolean registers. Having special clock
registers, which only have only one value bit, would reduce the resource usage. While
this is already supported by the instruction set, this would also make the KLP less
flexible.

5.6.3. Memory Access

One of the problems in modern processor design is the memory gap: the delay to load new
instructions is the bottle-neck for the whole execution. We do not address this problem
here, in fact, the KLP even worsens the situation: it does not need one but multiple
instructions in each clock cycle. Common solution to this problem are instruction caches
or Very Long Instruction Word (VLIW) architectures, where multiple instructions are
loaded simultaneously. However, this requires a static order of all instructions that can
be executed simultaneously. We extended the KLP by a simple instruction cache that
fetches the next instruction for each register. Furthermore, since the KLP is run on an
evaluation FPGA board, it could use multiple instruction ROMs.

91

6. Worst Case-Reaction-Time Analysis

Contents

6.1. The Graph Based Approach . 94

6.1.1. The Concurrent KEP Assembler Graph 94

6.1.2. Sequential WCRT Algorithm 98

6.1.3. Instantaneous Statement Reachability 100

6.1.4. General WCRT Algorithm . 102

6.1.5. Unreachable Paths . 104

6.1.6. Experimental Results . 104

6.2. Interface Algebra . 108

6.2.1. The WCRT Algebra . 109

6.2.2. An Example . 109

6.2.3. Classification of Interfaces . 110

6.2.4. Implementation . 112

6.3. Using Model-Checking . 113

6.4. Comparison . 119

Apart from efficiency concerns, which may initially have been the primary driver
towards reactive processing architectures, one of their advantages is their timing pre-
dictability. To leverage this, the strl2kasm compiler contains a timing analysis capability.
As we here are investigating the timing behavior for reactive systems, we are specifically
concerned with computing the maximal time it takes to compute a single reaction. We
refer to this time, which is the time from given input events to generated output events,
as Worst Case Reaction Time (WCRT). The WCRT determines the maximal rate for
the interaction with the environment.

There are two main factors that facilitate the WCRT analysis in the reactive processing
context. These are on the one hand the synchronous execution model of Esterel, and on
the other hand the direct implementation of this execution model on a reactive processor.
Furthermore, these processors are not designed to optimize (average) performance for
general purpose computations, and hence do not have a hierarchy of caches, pipelines,
branch predictors, etc. This leads to a simpler design and execution behavior and further
facilitates WCRT analysis. Furthermore, there are reactive processors, such as the KEP,
which allow to fix the reaction lengths to a previously determined number of clock cycles,
irrespective of the number of instructions required to compute a specific reaction, in order
to minimize the jitter.

93

6. Worst Case-Reaction-Time Analysis

WCRT differs from WCET fundamentally in that it deals with the timing of stabiliza-
tion rather than iteration processes. As a consequence WCRT does not need to analyze
the termination of computational loops, a potentially undecidable problem. WCRT as-
sumes that all dependencies in the control flow are acyclic and the propagation of control
is a monotonic process in which each atomic control point is only ever executed at most
once, or a finite number of times for schizophrenic programs. On the other hand, WCRT
for synchronous processing must handle non-atomic control flow including features such
as hierarchical and concurrent threads, priorities and preemption.

We will consider three different approaches for the WCRT analysis on the KEP:

1. A graph based approach on the CKAG, an intermediate representation of the
strl2kasm compiler [Boldt et al., 2008].

2. An interface algebra based on (max,+)-algebra [Mendler et al., 2009], and

3. a model checking approach [Roop et al., 2009b] to determine the WCRT.

6.1. The Graph Based Approach

One possibility to determine an estimation for the WCRT on the KEP is a search
for the longest path, performed on the Concurrent KEP Assembler Graph (CKAG). It
computes for each statement how many instruction will be needed until a time delimiting
instruction is reached. The analysis computes the WCRT in terms of KEP instruction
cycles, which roughly match the number of executed Esterel statements. As part of
the WCRT analysis, we also present an approach to calculate potential instantaneous
paths, which may be used in compiler analysis and optimizations that go beyond WCRT
analysis. This approach is implemented in the strl2kasm compiler.

6.1.1. The Concurrent KEP Assembler Graph

The CKAG is a directed graph composed of various types of nodes and edges to match
KEP program behavior. It is used during compilation from Esterel to KEP assembler,
for, e. g., priority assigning, dead code elimination, further optimizations and the WCRT
analysis. The CKAG is generated from the Esterel program via a simple structural
translation. The only non-trivial aspect is the determination of non-instantaneous paths,
which is needed for certain edge types. For convenience, we label nodes with KEP
instructions; however, we could alternatively have used Esterel instructions as well.

The CKAG distinguishes the following sets of nodes, see also Figure 6.1:

L: label nodes (ellipses);

T : transient nodes (rectangles), which includes EMIT, PRESENT, etc.;

D: delay nodes (octagons), which correspond to delayed KEP instructions (PAUSE,
AWAIT, HALT, SUSTAIN);

94

6.1. The Graph Based Approach

EMIT S

suc_c

(a) transient

A0

suc_c

(b) label

PAUSE

suc_c suc_s

s

suc_w

w

suc_e

e

(c) delay

PAR*

suc_c

(d) fork

JOIN

suc_c suc_e

(e) join

Figure 6.1.: Nodes and edges of a Concurrent KEP Assembler Graph.

F : fork nodes (triangles), corresponding to PAR/PARE;

J : join nodes (inverted triangles), corresponding to JOIN;

N : set of all nodes, with N = T ∪ L ∪D ∪ F ∪ J .

We also define

A: the abort nodes, which denote abortion scopes and correspond to [W]ABORT and
SUSPEND; note that A ⊆ T .

For each fork node n (n ∈ F) we define

n.join: the JOIN statement corresponding to n (n.join ∈ J), and

n.sub: the transitive closure of nodes in threads spawned by n.

For abort nodes n (n ∈ A) we define

n.end: the end of the abort scope opened by n, and

n.scope: the nodes within n’s abort scope.

A non-trivial task when defining the CKAG structure is to properly distinguish the
different types of possible control flow, in particular with respect to their timing prop-
erties (instantaneous or delayed). We define the following types of successors for each
n:

n.succ: the control successors. These are the nodes that follow sequentially after n,
considering normal control flow without any abortions. For n ∈ F , n.succ includes
the nodes corresponding to the beginnings of the forked threads.

The successors are statically inserted, based on the syntax of the Esterel program.
Depending on the actual behavior, some of these can be removed. If n is the
last node of a concurrent thread, n.succ includes the node for the corresponding
JOIN—unless n’s thread is instantaneous and has a (provably) non-instantaneous
sibling thread. Furthermore, the control successors exclude those reached via a
preemption (n.sucw, n.sucs)—unless n is an immediate strong abortion node, in
which case n.end ∈ n.succ.

95

6. Worst Case-Reaction-Time Analysis

n.sucw: the weak abort successors. If n ∈ D, this is the set of nodes to which control
can be transferred immediately, i. e., when entering n at the end of a tick, via
a weak abort; if n exits a trap, then n.sucw contains the end of the trap scope;
otherwise it is ∅.
If n ∈ D and n ∈ m.scope for some abort node m, it is m.end ∈ n.sucw in case
of a weak immediate abort, or in case of a weak abort if there can (possibly) be a
delay between m and n.

n.sucs: the strong abort successors. If n ∈ D, these are the nodes to which control can
be transferred after a delay, i. e., when restarting n at the beginning of a tick, via
a strong abort; otherwise it is ∅.
If n ∈ D and n ∈ m.scope for some strong abort node m, it is m.end ∈ n.sucs.
Note that this is not a delayed abort in the sense that an abort signal in one tick
triggers the preemption in the next tick. Instead, this means that first a delay has
to elapse, and the abort signal must be present at the next tick (relative to the
tick when n is entered) for the preemption to take place.

n.suce: the exit successors. These are the nodes that can be reached by raising an
exception.

n.sucf : the flow successors. This is the set n.succ ∪ n.sucw ∪ n.sucs.

For n ∈ F we also define two kinds of fork abort successors. These serve to ensure a
correct priority assignment to parent threads in case there is an abort out of a concurrent
statement.

n.sucwf : the weak fork abort successors. This is the union of m.sucw \ n.sub for all
m ∈ n.sub where there exists an instantaneous path from n to m.

n.sucsf : the strong fork abort successors. This is the set ∪{(m.sucw ∪m.sucs) \n.sub |
m ∈ n.sub} \ n.sucwf .

In the graphical representation, control successors are shown by solid lines, all other
successors by dashed lines, annotated with the kind of successor.

The CKAG is built from Esterel source by traversing recursively over its Abstract
Syntax Tree (AST) generated by the CEC [Edwards, 2006]. Visiting an Esterel state-
ment results in creating the according CKAG node. A node typically contains exactly
one statement, except label nodes containing just address labels and fork nodes con-
taining one PAR statement for each child thread initialization and a PARE statement.
When a delay node is created, additional preemption edges are added according to the
abortion/exception context.

Note that some of the successor sets defined above cannot be determined precisely
by the compiler, but have to be (conservatively) approximated instead. This applies
in particular to those successor types that depend on the existence of an instantaneous
path. Here it may be the case that for some pair of nodes there does not exist such an

96

6.1. The Graph Based Approach

instantaneous path, but that the compiler is not able to determine that. In such cases,
the compiler conservatively assumes that there may be such an instantaneous path.

module ExSeq:

input I ;

output R,S;

weak abort
loop

pause;
emit R

end loop
when I;

emit S

end module

tick

In:

Out:

-
R R

I

R
S

(a) Esterel code
and sample
trace

(b) CKAG

% module: ExSeq

INPUT I

OUTPUT R,S

EMIT TICKLEN,#6

[L1,W5] WABORT I,A0

[L2,W3/6] A1: PAUSE
[L3,W5] EMIT R

[L4,W4] GOTO A1

[L5,W2] A0: EMIT S

[L6,W1/1] HALT

(c) KEP assembler

Tick 1

! reset ;

% In:

% Out: R

% RT = 3

WABORTL1

PAUSEL2

Tick 2

% In:

% Out: R

% RT = 4

PAUSEL2 EMITL3

GOTOL4 PAUSEL2

Tick 3

% In: I

% Out: R S

% RT = 6

PAUSEL2 EMITL3

GOTOL4 PAUSEL2

EMITL5 HALTL6

Tick 4

% In:

% Out:

% RT = 1

HALTL6

(d) Execution trace

Figure 6.2.: A sequential Esterel example. The body of the KEP assembler program
(without interface declaration and initialization of the TickManager) is an-
notated with line numbers L1–L6, which are also used in the CKAG and in
the trace to identify instructions. For each instruction WCRT is given, for
non-instantaneous statements also the WCRT when the execution starts at
this instruction. The trace shows for each tick the input and output signals
that are present and the reaction time (RT), in instruction cycles.

Examples As an example of a simple, non-concurrent program consider the module
ExSeq shown in Figure 6.2a. As the sample execution trace illustrates, the module emits
signal R in every instant, until it is aborted by the presence of the input signal I. As this
is a weak abortion, the abortion body gets to execute (emit R) one last time when it is
aborted, followed by an emission of S.

The program ExPar shown in Figure 6.3a introduces concurrency: a thread that emits
R and then terminates, and a concurrent thread that emits S, pauses for an instant, emits
T, and then terminates are executed in an infinite loop. During each loop iteration, the

97

6. Worst Case-Reaction-Time Analysis

module ExPar:

output R,S,T;

loop
[

emit R;

||
emit S;

pause;
emit T;

]

end loop

end module

tick

In:

Out:

-
R
S

R
S
T

R
S
T

(a) Esterel code
and sample
trace

module: ExPar
EMIT _TICKLEN,#11

[L1,W7] A0

[L3,W7] PAR*

[L4,W1] A1

 1

[L5,W2] A2

 1

[L4,W1] EMIT R

[L8,W9/11] JOIN 0

[L5,W2] EMIT S

[L6,W1/2] PAUSE

[L7,W1] EMIT T

[L9,W8] GOTO A0

(b) CKAG

% module: ExPar

OUTPUT R,S,T

EMIT TICKLEN,#11

[L1,W7] A0: PAR 1,A1,1

[L2] PAR 1,A2,2

[L3,W7] PARE A3,1

[L4,W1] A1: EMIT R

[L5,W2] A2: EMIT S

[L6,W1/2] PAUSE
[L7,W1] EMIT T

[L8,W9/11] A3: JOIN 0

[L9,W8] GOTO A0

(c) KEP assembler

Tick 1

! reset ;

% In:

% Out: R S

% RT = 7

PARL1 PARL2

PAREL3 EMITL4

EMITL5 PAUSEL6

JOINL8

Tick 2

% In:

% Out: R S T

PAUSEL6 EMITL7

JOINL8 GOTOL9

PARL1 PARL2

PAREL3 EMITL4

EMITL5 PAUSEL6

JOINL8

Tick 3

% In:

% Out: R S T

PAUSEL6 EMITL7

JOINL8 GOTOL9

PARL1 PARL2

PAREL3 EMITL4

EMITL5 PAUSEL6

JOINL8

(d) Execution trace

Figure 6.3.: A concurrent example program.

parallel terminates when both threads have terminated, after which the subsequent loop
iteration is started instantaneously, that is, within the same tick.

6.1.2. Sequential WCRT Algorithm

First we present a WCRT analysis of sequential CKAGs (no fork and join nodes). Con-
sider again the ExSeq example in Figure 6.2a.

The longest possible execution occurs when the signal I becomes present, as is the case
in Tick 3 of the example trace shown in Figure 6.2d. Since the abortion triggered by I
is weak, the abort body is still executed in this instant, which takes four instructions:
PAUSEL2, EMITL3, the GOTOL4, and PAUSEL2 again. Then it is detected that the body
has finished its execution for this instant, the abortion takes place, and EMITL5 and
HALTL6 are executed. Hence the longest possible path takes six instruction cycles.

The sequential WCRT is computed via a Depth First Search (DFS) traversal of the
CKAG, see the algorithm in Figure 6.4. For each node n a value n.inst is computed,

98

6.1. The Graph Based Approach

1 int getWcrtSeq(g) // Compute WCRT for sequential CKAG g

2 forall n ∈ N do n.inst := n.next := ⊥ end
3 getInstSeq(g.root)

4 forall d ∈ D do getNextSeq(d) end
5 return max ({g.root.inst}

⋃
{d.next : d ∈ D})

6 end

1 int getInstSeq(n) // Compute statements instantaneously reachable from node n

2 if n.inst = ⊥ then
3 if n ∈ T ∪ L then
4 n.inst := max {getInstSeq(c) : c ∈ n.suc c} + cycles(n.stmt)

5 elif n ∈ D then
6 n.inst := max {getInstSeq(c) : c ∈ n.suc w ∪ n.suc e} + cycles(n.stmt)

7 fi
8 fi
9 return n.inst

10 end

1 int getNextSeq(d) // Compute statements instantaneously reachable

2 if d.next = ⊥ then // from delay node d at tick start

3 d.next := max {getInstSeq(c) : c ∈ d.suc c ∪ d.suc s} + cycles(d.stmt)

4 fi
5 return d.next

6 end

Figure 6.4.: WCRT algorithm, restricted to sequential programs. The nodes of a CKAG
g are given by N = T ∪ L ∪ D ∪ F ∪ J (see Section 6.1.1), g.root indicates
the first KEP statement; cycles(stmt) returns the number of instruction
cycles to execute stmt, see third column in Figure 5.3.

which gives the WCRT from this node on in the same instant when execution reaches
the node. For a transient node, the WCRT is simply the maximum over all children plus
its own execution time.

For non-instantaneous delay nodes we distinguish two cases within a tick: control can
reach a delay node d, meaning that the thread executing d has already executed some
other instructions in that tick, or control can start in d, meaning that d must have been
reached in some preceding tick. In the first case, the WCRT from d on within an instant
is expressed by the d.inst variable already introduced. For the second case, an additional
value d.next stores the WCRT from d on within an instant; “next” here expresses that
in the CKAG traversal done to analyze the overall WCRT, the d.next value should not
be included in the current tick, but in a next tick. Having these two values ensures that
the algorithm terminates in the case of non-instantaneous loops: to compute d.next we
might need the value d.inst.

99

6. Worst Case-Reaction-Time Analysis

For a delay node, we also have to take abortions into account. The handlers (i. e., their
continuations—typically the end of an associated abort/trap scope) of weak abortions
and exceptions are instantaneously reachable, so their WCRTs are added to the d.inst
value. In contrast, the handlers of strong abortions cannot be executed in the same
instant the delay node is reached, because according to the Esterel semantics an abortion
body is not executed at all when the abortion takes place. On the KEP, when a strong
abort takes place, the delay nodes where the control of the (still active) threads in the
abortion body resides are executed once, and then control moves to the abortion handler.
In other words, control cannot move from a delay node d to a (strong) abortion handler
when control reaches d, but only when it starts in d. Therefore, the WCRT of the
handler of a strong abortion is added to d.next, and not to d.inst.

Weak abortions are not taken into account for d.next, because it cannot contribute
to a longest path. An abortion in an instant when a delay node is reached will always
lead to a higher WCRT than an execution in a subsequent instant where a thread starts
executing in the delay node.

The resulting WCRT for the whole program is computed as the maximum over all
WCRTs of nodes where the execution may start. These are the start node and all
delay nodes. To take into account that execution might start simultaneously in different
concurrent threads, we also have to consider the next value of join nodes.

Consider again the example ExSeq in Figure 6.2. Each node n in the CKAG g is
annotated with a label “W〈n.inst〉” or, for a delay node, a label “W〈n.inst〉/〈n.next〉.”
In the following, we will refer to specific CKAG nodes with their corresponding KEP
assembler line numbers L〈n〉. It is g.root = L1. The sequential WCRT computation
starts initializing the inst and next values of all nodes to ⊥ (line 2 in getWcrtSeq, Fig-
ure 6.4). Then getInstSeq(L1) is called, which computes L1.inst := max { getInstSeq(L2)
} + cycles(WABORTL1). The call to getInstSeq(L2) computes and returns L2.inst :=
cycles(PAUSEL2) + cycles(EMITL5) + cycles(HALTL6) = 3, hence L1.inst := 3 + 2 = 5.
Next, in line 4 of getWcrtSeq, we call getNextSeq(L2), which computes L2.next := getInst-
Seq(L3) + cycles(PAUSEL2). The call to getInstSeq(L3) computes and returns L3.inst :=
cycles(EMITL3) + cycles(GOTOL4) + L2.inst = 1 + 1 + 3 = 5. Hence L2.next := 5 +
1 = 6, which corresponds to the longest path triggered by the presence of signal I, as
we have seen earlier. The WCRT analysis therefore inserts an “EMIT TICKLEN, #6”
instruction before the body of the KEP assembler program to initialize the TickManager
(see Chapter 4) accordingly, as can be seen in Figure 6.2c.

6.1.3. Instantaneous Statement Reachability for Concurrent Esterel
Programs

It is important for the WCRT analysis whether all threads between join and its corre-
sponding fork can terminate immediately. If this is the case, we have to sum up the
instantaneous execution time before the fork, after the join, and for the threads itself.
Otherwise, we know that the code before the fork and after the join are never executed
within the same instant. The algorithm for instantaneous statement reachability com-
putes for a source and a target node whether the target is reachable instantaneously from

100

6.1. The Graph Based Approach

the source. Source and target have to be in sequence to each other, i. e., not concurrent,
to get correct results.

In simple cases like EMIT or PAUSE the sequential control flow successor is executed
in the same instant respectively next instant, but in general the behavior is more com-
plicated. The parallel, for example, will terminate instantaneously if all sub-threads are
instantaneous or an EXIT will be reached instantaneously; it is non-instantaneous if at
least one sub-thread is not instantaneous.

The complete algorithm is presented in detail elsewhere [Boldt, 2007a]. The basic idea
is to compute for each node three potential reachability properties: instantaneous, non-
instantaneous, and exit-instantaneous. Note that a node might be as well (potentially)
instantaneous as (potentially) non-instantaneous, depending on the signal context. Com-
putation begins by setting the instantaneous predicate of the source node to true and
the properties of all other nodes to false. When any property is changed, the new value is
propagated to its successors. If we have set one of the properties to true, we will not set
it to false again. Hence the algorithm is monotonic and will terminate. Its complexity is
determined by the amount of property changes which are bounded to three for all nodes,
so the complexity is O(3 ∗ |N |) = O(|N |).

The most complicated computation is the property instantaneous of a join node,
because several attributes have to be fulfilled for it to be instantaneous:

• For each thread, there has to be a (potentially) instantaneous path to the join
node.

• The predecessor of the join node must not be an EXIT, because EXIT nodes are
no real control flow predecessors. At the Esterel level, an exception (exit) causes
control to jump directly to the corresponding exception handler (at the end of the
corresponding trap scope); this jump may also cross thread boundaries, in which
case the threads that are jumped out of and their sibling threads terminate.

To reflect this at the KEP level, an EXIT instruction does not jump directly to
the exception handler, but first executes the JOIN instructions on the way, to give
them the opportunity to terminate threads correctly. If a JOIN is executed this
way, the statements that are instantaneously reachable from it are not executed,
but control instead moves on to the exception handler, or to another intermediate
JOIN. To express this, we use the third property besides instantaneous and non-
instantaneous: exit-instantaneous.

Roughly speaking the instantaneous property is propagated via for-all quantifier, non-
instantaneous and exit-instantaneous via existence-quantifier.

Most other nodes simply propagate their own properties to their successors. The delay
node propagates in addition its non-instantaneous predicate to its delayed successors and
exit nodes propagate exit-instantaneous reachability, when they themselves are reachable
instantaneously.

101

6. Worst Case-Reaction-Time Analysis

6.1.4. General WCRT Algorithm

The general algorithm, which can also handle concurrency, is shown in Figure 6.5. It
emerges from the sequential algorithm that has been described in Section 6.1.2 by en-
hancing it with the ability to compute the WCRT of fork and join nodes. Note that the
instantaneous WCRT of a join node is needed only by a fork node, all other transient
nodes and delay nodes do not use this value for their WCRT. The WCRT of the join
node has to be accounted for just once in the instantaneous WCRT of its corresponding
fork node, which allows the use of a DFS-like algorithm.

The instantaneous WCRT of a fork node is simply the sum of the instantaneously
reachable statements of its sub-threads, plus the PAR statement for each sub-thread and
the additional PARE statement.

The join nodes, like delay nodes, also have a next value. When a fork-join pair (f, j)
could be non-instantaneous, we have to compute a WCRT j.next for the next instants
analogously to the delay nodes. Its computation requires first the computation of all
sub-thread next WCRTs. Note that in case of nested concurrency these next values can
again result from a join node. But at the innermost level of concurrency the next WCRT
values all stem from delay nodes, which will be computed before the join next values.
The delay next WCRT values are computed the same way as in the sequential case except
that only successors within of the same thread are considered. Successors of a different
thread are called inter-thread-successors and their WCRT values are handled by the
according join node. The join next value is the maximum of all inter-thread-successor
WCRT values and the sum of the maximum next value for every thread.

If the parallel does not terminate instantaneously, all directly reachable states are
reachable in the next instant. Therefore we have to add the execution time for all
statements that are instantaneously reachable from the join node.

The whole algorithm computes first the next WCRT for all delay and join nodes; it
computes recursively all needed inst values. Thereafter the instantaneous WCRT for
all remaining nodes is computed. The result is simply the maximum over all computed
values.

Consider the example in Figure 6.3a. First we note that the fork/join pair is always
non-instantaneous, due to the PAUSEL6 statement. We compute L6.next= cycles(PAUSEL6)
+ cycles(EMITL7) = 2. From the fork nodeL3, the PAR and PARE statements, the in-
stantaneous parts of both threads and the JOIN are executed, hence L3.inst = 2 ×
cycles(PAR) + cycles(PARE) + cycles(JOIN) + L4.inst+ L5.inst = 2 + 1 + 1 + 1 + 2 = 7. It
turns out that the WCRT of the program is L8.next = L6.next+ L8.inst = 2 + 9 = 11.
Note that the JOIN statement is executed twice.

A known difficulty when compiling Esterel programs is that due to the nesting of
exceptions and concurrency, statements might be executed multiple times in one instant.
This problem, also known as reincarnation, is handled correctly by the algorithm. Since
we compute nested joins from inside to outside, the same statement may effect both
the instantaneous and non-instantaneous WCRT, which are added up in the next join.
This exactly matches the possible control-flow in case of reincarnation. Even when a
statement is executed multiple times in an instant, we compute a correct upper bound

102

6.1. The Graph Based Approach

1 int getWcrt(g) // Compute WCRT for a CKAG g

2 forall n ∈ N do n.inst := n.next := ⊥ end
3 forall d ∈ D do getNext(d) end
4 forall j ∈ J do getNext(j) end // Visit according to hierarchy (inside out)

5 return max ({getInst(g.root)}
⋃
{n.next : n ∈ D ∪ J})

6 end

1 int getInst (n) // Compute statements instantaneously reachable from node n

2 if n.inst = ⊥ then
3 if n ∈ T ∪ L then
4 t.inst := max {getInst(c) : c ∈ suc c \ J} + cycles(n.stmt)

5 elif n ∈ D then
6 n.inst := max {getInst(c) : c ∈ suc w ∪ suc e \ J} + cycles(n.stmt)

7 elif n ∈ F then
8 n.inst :=

∑
t∈n.suc c t.inst + cycles(n.par stmts) + cycles(PARE)

9 prop := reachability(n, n.join) // Compute instantaneous reachability of join from fork

10 if prop.instantaneous or prop.exit instantaneous then
11 n.inst += getInst(n.join)

12 elif prop.non instantaneous then
13 n.inst += cycles(JOIN) // JOIN is always executed

14 fi
15 elif n ∈ J then
16 n.inst := max{getInst(c) : c ∈ suc c ∪ suc e} + cycles(n.stmt);

17 fi
18 fi
19 return n.inst

20 end

1 int getNext(n) // Compute statements instantaneously reachable

2 if n.next = ⊥ then // from delay node d at tick start

3 if n ∈ D then
4 n.next := max {getInst(c) : c ∈ suc c ∪ suc s \ J ∧ c.id = n.id} + cycles(n.stmt)

5 // handle inter thread successors by their according join nodes:

6 for m ∈ {c ∈ suc c ∪ suc s \ J : c.id 6= n.id} do
7 j := according join node with j.id = m.id

8 j.next = max (j.next , getInst(m)+cycles(m.stmt)+cycles(j.stmt))

9 end
10 elif n ∈ J then
11 prop := reachability(n.fork, n) // Compute reachability predicates

12 if prop.non instantaneous then
13 n.next := max ((

∑
t∈n.fork.suc cmax{m.next : t.id = m.id}) + n.inst , n.next)

14 fi
15 fi
16 fi
17 return n.next

18 end

Figure 6.5.: General WCRT algorithm.
103

6. Worst Case-Reaction-Time Analysis

for the WCRT.

Regarding the complexity of the algorithm, we observe that for each node its WCRT’s
inst and next are computed at most once, and for all fork nodes a fork-join reachability
analysis is additionally made, which has itself O(|N |). So we get altogether a complexity
of O(|N |+ |D|+ |J |) +O(|F | ∗ |N |) = O(2 ∗ |N |) +O(|N |2) = O(|N |2).

6.1.5. Unreachable Paths

Signal informations are not taken into account in the algorithms described above. This
can lead to a conservative (too high) WCRT, because the analysis may consider un-
reachable paths that can never be executed. In Figure 6.6a we see an unreachable path
increasing unnecessarily the WCRT because of demanding signal I present and absent
instantaneously, which is inconsistent. Nevertheless there is no dead code in the graph,
but only two possible paths regarding to path signal predicates.

Figure 6.6b shows an unreachable parallel path that leads to a too high WCRT of the
fork node, because the sub-paths cannot be executed at the same time. Furthermore,
the parallel is declared as possibly instantaneous, even though it is not. Therefore, all
statements which are instantaneously reachable from the join node are also added.

Another unreachable parallel path is shown in Figure 6.6c. This path is unreachable
not because of signal informations but because of instantaneous behavior: the maximal
paths of the two threads are never executed in the same instant. In other words, the
system is never in a configuration (collection of states) such that both code segments
become activated together. Instead of taking for each thread the maximum next WCRT
and summing up it would be more exact to sum up over all threads next WCRT’s
executable instantaneously and then taking the maximum of these sums. Therefore we
would have to enhance the reachability algorithm of the ability to determine how many
ticks later a statement could be executed behind another. However, in this case the
possible tick counts can become arbitrarily high for each node, so we would get a higher
complexity and a termination problem. The analysis is conservative in simply assuming
that all concurrent paths may occur in the same instant, and that all can be executed
in the same instant as the join. While these special cases could be implemented in the
analysis, it would increase the complexity of the algorithm. We will see in next section
how such cases can be handled using an interface algebra.

6.1.6. Experimental Results

To evaluate the WCRT analysis approach presented here, it was implemented in the
strl2kasm compiler.

Validation

To validate the correctness of the compilation scheme, as well as of the KEP itself, we
have collected a fairly substantial validation suite, currently containing some 500 Esterel

104

6.1. The Graph Based Approach

module: inconsistant_path01
EMIT _TICKLEN,#6

[W6] PRESENT I,A0

[W5] EMIT R

t

[W4] A0

f

[W4] PRESENT I,A1

[W2] GOTO A2

t

[W3] A1

f

[W1] A2

[W3] EMIT S

[W2] EMIT T

[W1/1] HALT

(a) Inconsistent sequen-
tial path

module: inconsistant_path11
EMIT _TICKLEN,#11

[W11] PAR*

[W2] A0

 1

[W3] A1

 1

[W2] PRESENT I,A3

[W1/2] PAUSE

t

[W1] A3

f

[W1] NOTHING

[W2/6] JOIN 0

[W3] PRESENT I,A4

[W2] GOTO A5

t

[W1] A4

f

[W1] A5

[W1/2] PAUSE

[W1] NOTHING

[W1/1] HALT

(b) Inconsistent parallel path

module: par_unreachable_path
EMIT _TICKLEN,#9

[W6] PAR*

[W1] A0

 1

[W1] A1

 1

[W1/4] PAUSE

[W3] EMIT S

[W2] EMIT T

[W1/2] PAUSE

[W1] NOTHING

[W2/9] JOIN 0

[W1/2] PAUSE

[W1/3] PAUSE

[W2] EMIT U

[W1] EMIT V

[W1/1] HALT

(c) Unreachable
configuration

Figure 6.6.: Unreachable Path Examples.

programs. These include all benchmarks made available to us, such as the Estbench1,
and other programs written to test specific situations and corner cases. An automated
regression procedure compiles each program into KEP assembler, downloads it into the
KEP, provides an input trace for the program, and records the output at each step.

For each program, the Average Case Reaction Time (ACRT) and WCRT for each
program are measured. For these measurements, the KEP is operating in “freely run-
ning” mode, i. e., TICKLEN is left unspecified; the default would be to set TICKLEN
according to the (conservatively) estimated WCRT, in which case the measured ACRT
and WCRT values would be equal to the estimated WCRT. The full benchmark suite
runs through without any differences in output, and the analyzed WCRT is always safe;
i. e., not lower than the measured WCRT.

Esterel Studio is used to generate the input trace, using the “Full Transition Coverage”
mode. Note that the traces obtained this way still did not cover all possible paths.
However, at this point we consider it very probable that a compilation approach that
handles all transition coverage traces correctly would also handle the remaining paths.

105

6. Worst Case-Reaction-Time Analysis

0

20

40

60

80

100

120

140

160

180

200

ab
cd

ab
cd

ef

eig
ht

 b
ut

to
ns

ch
an

ne
l p

ro
to

co
l

re
ac

to
r c

on
tro

l

ru
nn

er

ww b
ut

to
n

tci
nt

In
st

ru
ct

io
n

s

computed WCRT
measured WCRT
measured ACRT

Figure 6.7.: Estimated and measured Worst and Average Case Reaction Times.

Accuracy of WCRT Analysis

As mentioned before, the WCRT analysis is implemented in the KEP compiler, and is
used to automatically insert a correct EMIT TICKLEN instruction at the beginning of
the program, such that the reaction time is constant and as short as possible, without
ever raising a timing violation by the TickManager. As discussed in Section 6.1.6, we
measured the maximal reaction times and compared it to the computed value. Figure 6.7
provides a qualitative comparison of estimated and measured WCRT and measured
ACRT, more details are given in Figure 6.8. The WCRT is never underestimated and
the results are on average 22% too high. For each program, the lines of code, the
computed WCRT and the measured WCRT with the resulting difference is given. The
the average WCRT analysis time was measured on a standard PC (AMD Athlon XP,
2.2GHz, 512 KB Cache, 1GB Main Memory); as the table indicates, the analysis takes
only a couple of milliseconds.

The table also compares the ACRT with the WCRT. The ACRT is on average about
two thirds of the WCRT, which is relatively high compared to traditional architectures.
In other words, the worst case on the KEP is not much worse than the average case,
and padding the tick length according to the WCRT does not waste too much resources.
On the same token, designing for worst-case performance, as typically must be done
for hard real-time systems, does not cause too much overhead compared to the typical
average-case performance design. Finally, the table also lists the number of scenarios
generated by Esterel-Studio and accumulated logical tick count for the test traces.

There is still significant room for improvement. Signal status are not taken into
account, therefore the analysis includes some unreachable paths. Considering all signals
would lead to an exponential growth of the complexity, but some local knowledge should

1www1.cs.columbia.edu/~sedwards/software.html

106

www1.cs.columbia.edu/~sedwards/software.html

6.1. The Graph Based Approach

Esterel WCRT tan ACRT Test Ticks
Module name LoC WCe WCm ∆e/m [ms] ACm ACm/WCm cases
abcd 152 47 44 7% 1.0 27 61% 161 673
abcdef 232 71 68 4% 1.5 41 60% 1457 50938
eight buttons 332 96 92 4% 2.0 57 62% 13121 45876
channel protocol 57 41 38 8% 0.4 18 47% 114 556
reactor control 24 17 14 21% 0.2 10 71% 6 20
runner 26 12 10 20% 0.3 2 20% 131 2548
ww button 94 31 18 72% 1.0 12 67% 8 37
tcint 410 192 138 39% 2.8 86 62% 148 1325

Figure 6.8.: Detailed comparison of WCRT/ACRT times. The WCe and WCm data
denote the estimated and measured WCRT, respectively, measured in in-
struction cycles. The ratio ∆e/m := WCe/WCm− 1 indicates by how much
the analysis overestimates the WCRT. ACm is the measured Average Case
Reaction Time (ACRT), ACm/WCm gives the ratio to the measured WCRT.
Test cases and Ticks are the number of different scenarios and logical ticks
that were executed, respectively.

be enough to rule out most unreachable paths of this kind. Also a finer grained analysis
of which parts of parallel threads can be executed in the same instant could lead to
better results. However, it is hard to do this analysis on the CKAG, instead we will use
an interface algebra, presented in the next section, to put the analysis on a theoretical
sound foundation.

107

6. Worst Case-Reaction-Time Analysis

1 present I then
2 emit R

3 end present;
4 present I else
5 emit S;

6 emit T

7 end present;
8 emit U;

(a) Esterel Pro-
gram G

1 G0: PRESENT I,G1

2 EMIT R

3 G1: PRESENT I,G3

4 GOTO G2

5 G3: EMIT S

6 EMIT T

7 G2: EMIT U

(b) Assembler
Fragment G

v1 present I

v2 emit R

v3 present I

v4 goto

v5 emit S

v6 emit T

v7 emit U

G0

G1

G2

G3

I

L11

(c) Control flow graph

(6) : G0 ⊃ ◦L11

(6, 4, 3, 1) : (G0∨G1∨G3∨G2) ⊃
◦L11

(5, 5, 3, 4, 3, 1) : ((G0∧I)∨(G0∧
¬I)∨ (G1∧ I)∨ (G1∧¬I)∨
G3 ∨G2) ⊃ ◦L11

(5, 3, 4, 3, 1) : (G0 ∨ (G1 ∧ I) ∨
(G1∧¬I)∨G3∨G2) ⊃ ◦L11

(5, 3, 4, 1) : (G0∨((G1∧I)⊕G3)∨
(G1 ∧ ¬I) ∨G2) ⊃ ◦L11

(5) : G0 ⊃ ◦L11

(d) Some Interface Types

Figure 6.9.: Example program G

6.2. Interface Algebra

The WCRT analysis technique presented in the last section already provides fairly
promising results. However, as noted in the previous section, this heuristics still makes
conservative and simplifying assumptions and is not grounded in a formal timing model.
To illustrate this, consider the small program G in Figure 6.9(a) and the corresponding
assembler (b). The longest-path heuristic implemented in the strl2kasm compiler will
compute a WCRT of 6. This, however, is overly conservative, as the longest path makes
contradictory assumptions (signal I present and absent at the same time), similar to the
example in Figure 6.6a. Furthermore, the WCRT algorithm is neither compositional
nor scalable in terms of precision. They are global analysis on the complete and fully-
expanded control-flow graph of a monolithic program and run at the ground level of
atomic program statements rather than hierarchical sub-systems.

In this section a theory of WCRT interfaces for synchronous programming is proposed
which (1) give precise statements about exactness and coverage of timing values, sup-
porting a variety of timing abstractions, and (2) are dedicated to express the imperative
synchronous programming languages. The interface can be employed to obtain a type-
directed and modular WCRT analysis that is scalable across component hierarchies and
the software-hardware abstraction boundary. As an interface theory the WCRT algebra
operates on matrices of delay values characterizing whole sub-systems rather than indi-
vidual nodes like the graph-theoretic WCRT algorithm that was presented in the last

108

6.2. Interface Algebra

section does. Like the propositional stabilization theory presented in [Mendler, 2000] it
combines max-plus algebra (N,max,+, 0,−∞) [Baccelli et al., 1992] with an intuition-
istic refinement of Boolean logic to reason about implicit control-flow. For a complete
explanation of the interface algebra see von Hanxleden et al. [2008] and Mendler et al.
[2009].

6.2.1. The WCRT Algebra

The interface type of a program fragment is an implication φ ⊃ ψ between input controls
φ =

∨m
i=1 ζi and output controls ψ =

⊕n
j=1 ◦ξj . The input controls φ capture all the

possible ways in which the program fragment can be started within an instant. It can
contain both labels to code where the execution of the fragment starts and signal statuses
that come from the environment. The output controls sum up the ways in which the
fragment can be exited during the instant. The input controls are combined by

∨
,

because the environment of the fragment has to ensure that exactly one input control is
active. The output controls are combined by

⊕
, because they are resolved by the system,

i. e., the fragment must ensure that exactly one output control is active (see Mendler
et al. [2009] for details). Intuitively, φ ⊃ ψ says that whenever any executions enters the
program through one of the input controls ζi, then within some bounded number dij of
instruction cycles all these executions are guaranteed to exit through one of the output
controls ξj . The bounds dij may depend on the choice of input and output control, in
general. To capture the bounds, we associate with each interface type a delay matrix
of shape n × m. The type specifications then become logical expressions of the form
D : φ ⊃ ψ consisting of a timing matrix D together with an interface type φ ⊃ ψ. The
former describes the quantitative aspect of scheduling, the latter captures the qualitative
part of the interface.

6.2.2. An Example

To illustrate the use of WCRT types consider again the small program G in Figure 6.9.
Each node v1–v7 in the control-flow graph (c) of the associated Esterel program (a) is
compiled into an assembler instruction (b) which is entered either sequentially through
its instruction number L1–L7 or through an explicit jump to a control flow label such
as G0–G3. For instance, node v3 is accessed both through its linear instruction number
L6 as well as by jump to its label G1. In contrast, node v4 is only accessed through its
line number L7 while node v5 only by jumping to its label G3. The present nodes v1 and
v3 are tests which branch to their two successor instructions depending on the status of
signal I. If I is present then v1 moves to instruction v2 which immediately follows it,
and if I is absent then v1 passes control to instruction v3 by jumping to label G1.

An interface which only considers the input G0 and computes the longest path through
G is (6) : G0 ⊃ ◦L11. A full WCRT specification encapsulating program G as a
component would require mention of program labels G1, G3, G2 which are accessi-
ble from outside for jump statements. Therefore, the interface type of G would be
(6, 4, 3, 1) : (G0 ∨G1 ∨G3 ∨G2) ⊃ ◦L11. This is still not the most exact description of

109

6. Worst Case-Reaction-Time Analysis

G since it does not express the dependency of the WCRT on signal I. In particular, the
longest path of length 6 from G0 to L11 is not executable. To capture this we consider
signal I as just another control input and refine the WCRT scheduling type of G as
follows: (5, 5, 3, 4, 3, 1) : ((G0∧ I)∨ (G0∧¬I)∨ (G1∧ I)∨ (G1∧¬I)∨G3∨G2) ⊃ ◦L11.
The inclusion of signal I in the interface has now resulted in the distinction of two
different delays 3 and 4 for G1 ⊃ ◦L11 depending on whether I is present or absent
during the reaction. On the other hand, G0 split into controls G0 ∧ I and G0 ∧ ¬I
produces the same delay of 5 instruction cycles in both cases, which is a decrease of
WCRT compared to 6 from above. Assuming that input signal I is causally stable,
i. e., I ⊕ ¬I ∼= true, the two entries of value 5 can be merged into a single value as in
(5, 3, 4, 3, 1) : (G0∨ (G1∧ I)∨ (G1∧¬I)∨G3∨G2) ⊃ ◦L11. In the same vein, we could
further bundle G1∧I and G3 into a single input control (G1∧I)⊕G3 with delay 3. This
finally gives (5, 3, 4, 1) : (G0∨ ((G1∧ I)⊕G3)∨ (G1∧¬I)∨G2) ⊃ ◦L11. Still, if we only
ever intend to use G as a composite node from G0 to L11, the typing (5) : G0 ⊃ ◦L11,
which takes care of signal dependency on I, might be sufficient.

All operations on interfaces and WCRT analyses are supported by semantically sound
transformation rules in the WCRT type algebra. The logical manipulation of types often
can be done implicitly and hard-coded into the graph-theoretic search strategies that
make up the cleverness of a particular WCRT algorithm. Where interface types are
not used directly in the calculations they provide for a highly compositional fine-grain
analysis which allows us to validate WCRT algorithms in terms of precise statements
about correctness and exactness. Due to their logical-symbolic nature WCRT interfaces
can be applied in rather general situations which involve data and higher control-flow
constructs as used in synchronous programming.

6.2.3. Classification of Interfaces

Figure 6.10 depicts a program fragment T abstracted into a reactive box with input and
output controls. The paths inside T seen in Figure 6.10 illustrate the four ways in which
a reactive node T may participate in the execution of a logical tick: Threads may (a)
pass straight through the node entering at some input control ζ and exiting at output
control ξ; (b) enter through ζ but pausing inside, waiting there for the next instant;
(c) start the tick inside the node and eventually (instantaneously) leave through some
exit control ξ, or (d) start inside the node and never leave it during the current instant.
These paths or rather sections of a path are called through paths, sink paths, source
paths and internal paths, respectively.

The interface type for such a node T (considering only one input control ζ and one
output control ξ) separates these different paths and associated WCRT values:

T =

(
dthr dsrc
dsnk dint

)
: (ζ ∨ active) ⊃ (◦ξ ⊕ ◦wait)

If one of the paths does not exist its associated delay is set to −∞. A node T can be
classified according to the paths that are executable in it. We define the (not necessarily

110

6.2. Interface Algebra

active

wait

a
b

c

d

ζ

ξ

(a) The four types of thread paths: through path
(a), sink path (b), source path (c), internal path
(d).

(b) Annotated CKAG for ABRO generated by
the analysis. The through, source, sink and
internal WCRT is shown for each node. -1
denotes infeasible paths.

Figure 6.10.: Different types of thread paths

disjoint) sets of through nodes, Nthr = {T | dthr ≥ 0}, source nodes, Nsrc = {T | dsrc ≥
0}, sink nodes, Nsnk = {T | dsnk ≥ 0}, and internal nodes, Nint = {T | dint ≥ 0}. A delay
node is a node with at least one non-instantaneous path (Ndel = Nsrc ∪Nsnk ∪Nint). A
strong delay node is a delay node without any through path (Nsdel = Ndel \ Nthr). A
transient node is a through node that contains only through paths, i. e., dsrc = dsnk =
dint = −∞ (Ntrans = Nthr \ Ndel). Each cyclic dependency loop in the program must
be broken by at least one strong delay node, which corresponds to the rule mentioned
earlier that forbids instantaneous loops.

In general, the interface type of a program T will mention a number of controls
ζ1, ζ2, . . . ζm and ξ1, ξ2, . . . , ξn on the input and output side for which the type would be

T = D : (ζ1 ∨ ζ2 · · · ∨ ζm) ⊃ (◦ξ1 ⊕ ◦ξ2 ⊕ · · · ⊕ ◦ξn) (6.1)

with a WCRT matrix D of shape n × m. A composite program will be made up of
a number of program fragments Ti each with its interface Di : φi ⊃ ψi. The total
specification is the logical conjunction

∧
iDi : φi ⊃ ψi in WCRT type algebra. The basic

controls appearing in φi, ψi describe the causal dependencies between the nodes Ti. In

111

6. Worst Case-Reaction-Time Analysis

Esterel Measured Graph Interface
Module WCRTm WCRTg ∆g/m WCRTi ∆i/m

abro 11 11 0% 11 0%
channel protocol 22 41 86% 36 63%
runner 16 18 13% 16 0%
traffic light 13 15 15% 14 8%
schizo 10 11 10% 11 10%

Figure 6.11.: Comparison between the WCRT computed by graph based approach
(WCRTg) and using the interface algebra (WCRTi) on a selected set of
benchmarks. WCRTm is the measured Worst case reaction time. The ratio
∆e/m := WCRTe/WCRTm for e = g and e = m gives the overestimation

for both analysis.

its general form, WCRT analysis amounts to a transformation∧
i

Di : φi ⊃ ψi � D : φ ⊃ ψ (6.2)

in which the individual timing interfaces Di are combined into a total delay matrix D
for an external interface φ ⊃ ψ such that D is the smallest (component-wise) matrix of
values such that (6.2) holds. The external interface φ ⊃ ψ determines the functional
precision with which we are computing the WCRT of a composite system. For instance,
instead of an interface like (6.1), which distinguishes m input and n output controls, a
less discriminative type ζ ⊃ ◦ξ with ζ =df

∨
i∈I ζi and ξ =df ◦

⊕
j∈J ξj might consider

merely subsets I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} of inputs and outputs bundled into
a single control. Such an interface ζ ⊃ ◦ξ, which specifies only one delay value is more
abstract than (6.1). Of course, we do not expect to get an equivalence ∼= but only an
inclusion � in (6.2) if the calculation of D involves timing abstractions. We can trade off
precision and efficiency of the WCRT analysis within wide margins by choosing different
types φi ⊃ ψi for the components and φ ⊃ ψ for the composite program in (6.2). By
logical transformations of interfaces, various optimizations can be achieved including
such as those employed by classic combinational timing analysis [Mendler, 2000].

6.2.4. Implementation

To evaluate the approach, I prototypically implemented some of the key ideas. Blocks
are identified with threads and compute the through, source, sink and internal WCRT
for each thread independently. All outgoing transitions from a thread are abstracted
into one. Like the graph based approach, the analysis is implemented on top of the
CKAG. Figure 6.10b shows the CKAG for Abro annotated with through, source, sink
and internal WCRT values that is generated by the analysis. A −1 denotes infeasible
paths, e. g., for the main node neither a through nor an exit value can be specified. The

112

6.3. Using Model-Checking

1 % Thread 1

2 loop
3 pause;
4 pause;
5 emit S1;

6 emit S2;

7 emit S3;

8 pause;
9 emit S1;

10 end loop
11 ||

12 % Thread 2

13 loop
14 pause;
15 emit T0;

16 emit T1;

17 pause;
18 pause;
19 emit T0;

20 emit T1;

21 end loop

(a) Esterel Code

EOT0

EOT1

EOT2

2

5

4

EOT0

EOT1

EOT2

4

2

5

(b) Coressponding TFSM

Figure 6.12.: Motivating example WCRT analysis based on model checking

results for some test-cases can be found in Figure 6.11. Since the approach does not
consider traps yet, we had to replace traps by local signals and weak abortion. This is
trivial for these examples. In general, the transformation can be done analogously to
the hardware synthesis from Esterel [Potop-Butucaru et al., 2007]. The transformation
is also the reason why the computed WCRT differs from the results reported in the last
section.

This limited implementation already leads to improvements over the graph based
analysis presented in the last section in some of the tested example cases, shown in
Figure 6.11. Still, the analysis is not as exact as it could be.The interface approach so far
does not distinguish between immediate and delayed aborts. The implementation could
also be improved, e. g., by unbundling outgoing thread transitions and other heuristics.
The theory could be further strengthened, e. g., by directly integrating abortion in the
control flow graph.

6.3. Using Model-Checking

While the interface algebra presented in the last section gives good means to express
WCRT properties of synchronous programs, and also leads to an efficient algorithm,
there are still some drawbacks. In particular, the efficiency of the algorithm depends
on the used heuristics: when can we combine information? When should we abstract
data? In particular, when combining the WCRT of parallel threads, we take the sum of
the maximal WCRT properties to get the combined property. This is pessimistic, since
the maximum execution for the threads might not be reachable in the same instance, or
they could not be reachable with the same active signals. While both dependencies can
be expressed in the WCRT algebra, such a detailed analysis might not scale.

Consider the simple Esterel program in Figure 6.12a. Figure 6.12b shows the finite
state machines for both threads, where the computation needed for each tick between
time delimiting instructions (end of tick, EOT), is attached to the transitions. These
finite state machines are called Timed Finite State Machines (TFSMs). Note that the
loop is implemented by a goto whose execution takes an additional instruction cycle.

113

6. Worst Case-Reaction-Time Analysis

1 signal cnt:=0: integer ,
2 pre cnt : integer in
3 %pre

4 var v:= 0: integer in
5 loop
6 emit pre cnt (v);

7 v:= ?cnt;

8 pause;
9 end loop

10 end var
11 ||
12 % sampler

13 signal sample:=0:integer in
14 var i :=0:integer in
15 pause;
16 i := init (N);

17 loop
18 emit sample(?sens);

19 pause;
20 trap T in

21 loop
22 if ?cnt<N then
23 exit T

24 end if ;
25 pause
26 end loop
27 end trap;
28 emit WriteBuf(i);

29 emit WriteVal(?sample);

30 pause;
31 i := i+1;

32 if i=N then i:=0; end if
33 end loop
34 end var
35 end signal
36 ||
37 % display

38 signal out:=0:integer in
39 var i : integer in
40 pause;
41 loop

42 trap T in
43 loop
44 if ?cnt>0 then
45 exit T

46 end if ;
47 pause
48 end loop
49 end trap;
50 emit WriteVal(i);

51 emit out(?ReadVal);

52 pause;
53 i := i+1;

54 if i=N then i:=0; end if ;
55 emit cnt(?pre cnt+1);

56 pause;
57 emit WriteLcd(?out)

58 end loop
59 end var
60 end signal
61 end signal

Figure 6.13.: A producer consumer example in Esterel.

Both the implementation based on the longest path in the CKAG and on the interface
algebra compute a maximal tick length of 11, by adding the maximal reaction times of
the threads (5 + 5) and one additional instruction cycle to execute the join. However, in
this example it is obvious that the maximal tick length of both threads will never occur
in the same instant, hence the “correct” WCRT is 10 (4 + 5 + 1).

The WCRT analysis of a synchronous program is equivalent to the model checking
question to compute this greatest fixed point. In the context of reactive processing, model
checking was first used to determine the WCRT of PRET-C or Precision Timed C pro-
grams, a synchronous extension of the C language, by Roop et al. [2009a]. Here we show
that their approach can also be applied for computing the WCRT of a KEP assembler
program. The approach consists of three steps: First, the program (or the corresponding
CKAG) is transformed into a Timed Concurrent Control Flow Graph (TCCFG), which
is further transformed into flat TFSMs, from which timed automata as input to the
model checker UPPAAL2 are derived. A detailed introduction to PRET-C including its
semantics is given by Andalam et al. [2009].

We will use the producer consumer program in Figure 6.13 as a running example.
This example is similar to the one used by Roop et al. [2009a] zo demonstrate the
timing analysis of PRET-C. The program was slightly adjusted, because for the original
program, model checking gives no benefit over the analysis from Section 6.1: The longest
execution of the producer occurs in the first instant, while the longest execution of the
consumer occurs in a later tick. This special case is already handled by the WCRT
analysis implemented in the strl2kasm compiler and is also handled by the interface

2www.uppaal.org

114

www.uppaal.org

6.3. Using Model-Checking

algebra that distinguishes between sink and internal paths.
Since the method was designed for PRET-C, it does not directly support the var-

ious forms of preemption that are possible in KEP assembler. While these could be
integrated, another possibility is to combine this approach with the interface algebra:
model-checking is used to get a detailed analysis of parallel threads, which is then used
to get a timing interface for the complete block. Possible abortions can then be handled
by the interface algebra.

In the next section the intermediate TCCFG format is introduced, from which the
TFSMs and finally the timed automata are derived. On these the actual model checking
is performed.

Timed Concurrent Control Flow Graph

The TCCFG is a control flow graph similar in spirit to the CKAG or the CCFG of Ed-
wards and Zeng [2007]. Figure 6.14b shows the KEP assembler for the producer con-
sumer example together with the generated TCCFG. While this is an Esterel example,
it contains none of the problems stated above. The TCCFG was directly derived from
the CKAG generated by the strl2kasm compiler by removing label nodes and combining
nodes with a unique successor into one node.

A TCCFG has the following types of nodes:

• Start/end node: Every TCCFG has a unique start node where the control begins
and may have an end node, if the program can terminate. These nodes are drawn
as concentric circles.

• Fork/join nodes: These are needed to mark concurrent threads of control and
where these threads start and end. These are drawn as triangles. The thread
priority is annotated to the outgoing transition of the fork.

• Action nodes: These are used for any C function call or data computation. They
are denoted by rectangles.

• EOT nodes: These nodes indicate a local end of tick. We denote them, like the
pause nodes in the CKAG, as octagons.

• Control flow nodes: There are two types of control flow nodes: conditional nodes
to implement conditional branching (denoted by a rhombus) and jump nodes for
mapping unconditional branches (which are needed to emulate infinite loops).

• Node weights: Each node is annotated with the cost of the node. This value repre-
sents the exact number of clock cycles needed to execute the assembler instructions
for that node.

It is quite easy to spot that the TCCFG is a faithful model of the control flow of
the original source and is a one-to-one mapping of the source code into a graph code
format, each node in the TCCFG is annotated with the corresponding lines in the KEP
assembler.

115

6. Worst Case-Reaction-Time Analysis

1 SETV SENS,#0

2 SETV WRITEBUF,#0

3 SETV WRITEVAL,#0

4 SETV READBUF,#0

5 SETV READVAL,#0

6 SETV WRITELCD,#0

7 SIGNALV CNT

8 SETV CNT,#0

9 SIGNALV PRE CNT

10 SETV PRE CNT,#0

11 PAR 2,A0,2

12 PAR 1,A1,1

13 PAR 1,A2,3

14 PARE A3,1

15 A0: LOAD V,#0

16 A4: EMIT PRE CNT,V

17 PRIO 1

18 LOAD V,?CNT

19 PRIO 2

20 PAUSE
21 GOTO A4

22 A1: SIGNALV SAMPLE

23 SETV SAMPLE,#0

24 LOAD I,#0

25 PAUSE
26 LOAD TMP0,#10

27 CALL INIT

28 LOAD REG0, TMP0

29 LOAD I,REG0

30 A5: EMIT SAMPLE

31 LOAD REG0,?SENS

32 SETV SAMPLE,REG0

33 PAUSE
34 A7: LOAD REG0,?CNT

35 CMPS REG0,#10

36 JW L,A8

37 EXIT T,A7

38 A8: PAUSE
39 GOTO A7

40 T: EMIT WRITEBUF,I

41 EMIT WRITEVAL

42 LOAD REG0,?SAMPLE

43 SETV WRITEVAL,REG0

44 PAUSE
45 ADD I,#1

46 CMPS I,#10

47 JW EE,A9

(a) KEP assembler

48 LOAD I,#0

49 A9: GOTO A5

50 A2: SIGNALV OUT

51 SETV OUT,#0

52 PAUSE
53 A12: LOAD REG1,?CNT

54 CMPS REG1,#0

55 JW G,A13

56 EXIT T 0,A12

57 A13: PAUSE
58 GOTO A12

59 T 0: EMIT WRITEVAL,I 0

60 EMIT OUT

61 LOAD REG1,?READVAL

62 SETV OUT,REG1

63 PAUSE
64 ADD I 0,#1

65 CMPS I 0,#10

66 JW EE,A14

67 LOAD I 0,#0

68 A14: EMIT CNT

69 LOAD REG1,?PRE CNT

70 ADD REG1,#1

71 SETV CNT,REG1

72 PAUSE
73 EMIT WRITELCD

74 LOAD REG1,?OUT

75 SETV WRITELCD,REG1

76 GOTO A12

77 A3: JOIN 0

L1-10 (10)

 L11-14 (4)

L15 (1)

 2

L22-24 (3)

 1

L50-51 (2)

 1

L16-19 (4)

L20,77 (1)

L21 (2)

L25 (1)

L26-29 (15)

L30-32 (3)

L33 (1)

L34-36 (3)

L37,40-43 (5)

t

L38 (1)

f

L44 (1) L38-39 (2)

L45-47 (3)

L48 (1)

t

L49 (1)

f

L52 (1)

L53-55 (3)

L56,59-62 (5)

t

L63 (1)

f

L57 (1) L58 (2)

L64-66 (3)

L67 (1)

t

L68-71 (4)

f

L72 (1)

L73-76 (5)

(b) Timed Concurrent Control Flow Graph (TTCFG)

Figure 6.14.: KEP assembler for the producer consumer example and the corresponding
TTCFG. Each node is annotated with the corresponding assembler lines
and the number of instruction cycles that are needed to execute them

116

6.3. Using Model-Checking

Timed Finite State Machines

EOT0

EOT1 8

20

(a) Implementing
pre

EOT0

EOT1

EOT2

EOT3

EOT4

4

19

4

9 6

11

9

(b) Producer

EOT0

EOT1

EOT2 6

EOT3

EOT4

2

4

11

11

9

9

14

(c) Consumer

Figure 6.15.: Timed Finite State Machines (TFSMs) for the producer consumer example.
The maximal execution times that can occur within one tick are marked
bold.

The TCCFG can be transformed into a set of timed automatas. An upper and a lower
bound of the WCRT can be computed by adding the maximal and minimal reaction
times on parallel thread, similar as it is done in Section 6.1 and 6.2. On this range, a
binary search is performed to get the minimal x, for which the execution time at the
end of a tick is always smaller than x.

For illustration, we first map the TCCFG to an equivalent TFSM. The TFSM corre-
sponding to the two threads of the producer consumer TCCFG of Figure 6.14b is shown
in Figure 6.15. This mapping is done by a depth first search from every EOT node to
all EOT nodes that are reachable from this node. During the traversal, the cost of every
node is simply added to obtain the total cost between these two EOTs, where the cost
of the fork and join are added to the first spawned thread. For example, the cost of
the edge between EOT0 and EOT1 of the producer is 4 clock cycles, which is obtained
by adding the costs of all the nodes between these two ticks. The cost of an individual
node is obtained by combining the individual costs of the nodes in the CKAG. The
initialization costs are added to the first thread and the costs for the JOIN instruction
are added to the third thread. The next step is the mapping of the TFSM to a timed
automata.

Timed Automata

Timed automata, proposed by Alur and Dill [1994], extend finite state machines with
real-valued clocks such that transition guards can be based on these clocks. All clocks
progress synchronously. These clocks may be treated like other programming variables

117

6. Worst Case-Reaction-Time Analysis

wait
lt1 && lt2 && lt3

x=0,
lt1=false,
lt2=false,
lt3=false

(a) Barrier Synchronization

EOT1

EOT0

!lt1

lt1=true,
x=x+8

!lt1
lt1=true,
x=x+22

(b) Implementing pre

EOT4

EOT3

EOT2

EOT1

EOT0

!lt2

lt2=true,
x=x+9

!lt2
lt2=true,
x=x+6

!lt2
lt2=true,
x=x+9

!lt2
lt2=true, x=x+11

!lt2
lt2=true, x=x+4

!lt2
lt2=true, x=x+19

!lt2
lt2=true, x=x+4

(c) Producer

EOT1

EOT0

EOT4

EOT3

EOT2

!lt3
lt3=true,
x=x+9

!lt3
lt3=true,
x=x+14

!lt3
lt3=true,
x=x+9

!lt3

lt3=true,
x=x+11

!lt3

lt3=true,
x=x+6

!lt3
lt3=true, x=x+4

!lt3

lt3=true,
x=x+11

!lt3
lt3=true, x=x+2

(d) Consumer

Figure 6.16.: Timed Automata for the producer consumer example

in the sense that they can be read and written. In addition, they can be compared and
common arithmetic operators can be applied to them. Clock conditions can be used as
transition guards where the only logical operators that can be used are <, ≤, =, ≥, >.
A clock variable or the difference between two clock variables can be compared against a
natural number to form a given clock constraint. A global system then consists of a net-
work of timed automata such that these timed automata communicate asynchronously.
Communication between timed automata can be done using shared variables or using
channels (which are either point to point or broadcast). There are several differences
between timed automata and TFSMs and their compositions: 1) timed automata use
dense clocks while the transitions of TFSMs are guarded by integers representing the ex-
ecution cost. Hence, there is no need to use any clock variables in the timed automaton
model; a simple integer to capture the cost of a transition is sufficient. 2) The compo-
sition between TFSMs is strictly synchronous while timed automaton compositions are
asynchronous. An additional timed automaton, called a barrier, is added to realize the
synchronous semantics. Basically, the barrier node is a master node that starts a new
tick as soon as all threads have finished. The mapping is illustrated in Figure 6.16 using
the same producer consumer example as shown in Figure 6.15.

The overall mapping is achieved by mapping each TFSM to an equivalent timed au-

118

6.4. Comparison

tomaton. The global variable x captures the cost of a complete tick of the program. The
Boolean variables lt1, lt2, and lt3 capture if a given thread has completed its local tick.

The barrier (Figure 6.16a) has just one state. It waits until lt1, lt2, lt3 have been set
to true by the corresponding automata, i. e., a global tick is started since all threads
have finished their local ticks. In response to this, it starts a new tick by setting all local
tick variables to false again. It also initializes the costs of the current tick to 0.

Each timed automaton contains the same states and transitions as the corresponding

TFSM. For a transition [EOTi]
d−→ [EOTj], the corresponding transition in the timed

automaton has the label [EOTi]
¬lt

lt=true,x=x+d−−−−−−−−−→ [EOTj] The guard waits for the activation
of a new tick by the barrier, i. e., for its local tick variable to be false. In the transition
action, the local tick variable of the automaton is set to true, hence deactivating all other
transitions until the next step of the barrier takes place. Furthermore, the reaction time
that are associated with the transition are added to the global costs in x.

WCRT as a Model Checking Property

We can compute the WCRT of the program by model checking the property of the form
A�(

∧
i lti ⇒ x ≤ val), whenever the global tick happens, the combined execution times

for all threads are below a constant value val. The WCRTtight is the minimal value
for which this property holds. The tight WCRT value, WCRTtight lies between the
WCRTmin and WCRTmax values. Both WCRTmax and WCRTmin can be obtained by
summing up the maximal and minimal local tick values for each thread. For example, in
the producer consumer case, the WCRTmin = 8 + 6 + 2 and WCRTmax = 20 + 19 + 14.
Hence, WCRTtight has a value in the interval [16, 54]. Standard binary search can be
used to minimize the number of queries. For example, to obtain the tight value for
the producer consumer case, we have to write at most 6 queries (log2(54− 16)). In the
producer consumer case, the tight value obtained by the above analysis is 38 = 8+19+11,
compared to 41 with the graph based approach or the interface algebra, where the sum
of the maximum of all threads is computed.

The complexity of the proposed WCRT analysis is O((WCRTmax − WCRTmin) ×
|M | × |φ|) for checking a single query. In the worst case there are log2(WCRTmax −
WCRTmin) queries necessary for the binary search, hence the overall complexity is
O(log2(WCRTmax −WCRTmin)× (WCRTmax −WCRTmin)× |M | × |φ|).

6.4. Comparison

Now we have seen three different methods to determine the WCRT of a reactive program.
Table 6.17 gives a short overview of the differences of the approaches. While the graph
based approach is the fastest, it lacks support for data-handling and a more fine grained
analysis of thread interactions. Both the interface algebra and the model-checking allow
a tight analysis, but this is obviously not efficient for the interface algebra. Here, is
the possibility to apply different heuristics to trade performance vs. exactness of the
analysis.

119

6. Worst Case-Reaction-Time Analysis

Graph Algebra Model Checking

Complexity O(|N |2) Depends on heuristic
O(log2(WCRTrange) ×
WCRTrange × |M | × |φ|)

Concurency max max /precise precise
Consider Data No Yes Yes
Implementation complete (KEP) partly (KEP) complete (PRET-C)

Figure 6.17.: Comparison of the different aprroaches for WCRT analysis

While the search for the longest path is an approach that is closely coupled to the
KEP and its compiler, the model-checking approach and the interface algebra can be
easily combined. The model checking, which has a higher complexity, can be used to
get a tight WCRT of subsystems, the combination of these is then performed using the
interface algebra.

120

7. Evaluation with KIELER

To evaluate the reactive processors, we need to execute programs on them and must be
able to set inputs and read the generated outputs. We also need the information which
instructions were executed and how long the execution took. For this purpose, both
the KEP and the KLP were extended by a test-driver, which allows to load programs
to the internal ROM, to set signals and to start a tick. The test-driver can also send,
on request, the status and values of signals, the reaction time for the last tick, and the
execution trace. To do this the test drivers of the KEP and the KLP communicate with
an evaluation bench. Figure 7.1 shows the communication between the KReP Evalbench
and the KEP or the KLP.

EvalBench

T
es

td
ri

ve
r

ROM

KReP

Signals

(a) Extension with a test driver

KReP

FPGA

EvalBench

PC2

KReP

KReP

PC0

RS232
JNITCP/IP

(b) Communication Paths

Figure 7.1.: Communication between the Evalbench and the KEP/KLP

The original KEP EvalBench was designed by Xin Li for the KEP. It was a monolithic
visual basic program that communicated with the KEP over an RS232 connection. It
could either execute programs stepwise with manually set inputs and show the execution
trace by directly marking the KEP assembler. Or it could execute trace files in the eso
format of Esterel Studio and compare the generated output to the reference outputs in
the trace file. By running it in a batch mode, it was possible to automatically evaluate
a benchmark suite and to generate reports.

With the implementation of the KEP-e, there was the possibility for software simu-
lation of the KEP, hence the RS232 connection was not flexible enough. Another dis-
advantage of the original EvalBench was that it could only run on Windows platforms.
Therefore, the first evaluations of the KEP-e were performed by running a software sim-
ulation of the KEP-e on an computer with Linux, which was connected via RS232 to a
Windows PC running the EvalBench. To overcome these problems, the KReP Evalbench
was developed as an Eclipse rich client application1. It could directly communicate with
the software emulation, and it could automatically execute benchmark suites directly

1wiki.eclipse.org/index.php/Rich_Client_Platform

121

wiki.eclipse.org/index.php/Rich_Client_Platform

7. Evaluation with KIELER

Figure 7.2.: Execution of Esterel on the KEP within KIELER.

without a batch mode. Due to the modular design, it could be easily extended, e. g., by
the protocol for the KLP. It could read KEP or KLP assembler as an input, but also
SyncCharts which were then automatically compiled by smakc!.

Since the KReP Evalbench is an Eclipse application, it was naturally to merge it
with the Kiel Integrated Environment for Layout for the Eclipse Rich Client Plat-
form2 (KIELER) project. This project focuses on the modelling of complex systems,
e. g., by developing new means to build graphical models, and on the dynamic visual-
ization of the systems. The KReP Evalbench is now part of KIELER. Additionally,
the strl2kasm compiler was integrated into the tool, so that the user can write Esterel
programs and execute them on the KEP within one tool, a s shown in Figure 7.2. In
the middle of the tool the Esterel program ABRO is shown. The currently executed
assembler instructions are marked in the assembler view on the right. Input and output
signals, as well as the reaction time for the last tick are displayed in the data table on
the left. The execution is controlled by the execution manager below the data table.
Three components are used for the execution: the Synchronous Signal Resetter makes
sure that signals are absent per default, the Data Table is used to set inputs and to
display outputs, and the Krep component is responsible for the compilation and the
communication with the KLP and the KEP.

122

7.1. Execution Modes

Figure 7.3.: Automatic execution of a benchmark suite.

7.1. Execution Modes

The KReP Evalbench can be run in three different modes:

• In the normal mode, which is shown in Figure 7.2, the user can directly set inputs,
perform a step, and the outputs as well as the executed assembler lines of the
program are shown.

• In the trace mode, an input trace in either rif or eso format is run with the current
program. For each step, the generated output is compared to the reference output
and the inputs and outputs are shown to the user, as well as the information
whether the behaviors match.

• In the verify mode, all programs and traces in a given folder are executed, and an
overview is shown to the user, which programs were executed successfully with the
expected behavior and which failed and why. Also the best, average, and worst
case reaction times are measured for each example in the benchmark. This mode
is shown in Figure 7.3. Here, all executions succeeded, but for the cycle example,

2www.informatik.uni-kiel.de/rtsys/kieler/

123

www.informatik.uni-kiel.de/rtsys/kieler/

7. Evaluation with KIELER

Action KReP Evalbench → KLP KLP → KReP Evalbench

verify (V) 56 29 3A 39 38 37 36 35 34 33 32 31 30
info (I) 49 2 Version 1 #IO #REG #ROM #ALU
reset (R) 52

write (W) 57 PC I0 I1 I2 I3 FF
set value (S) 53 ID V0 V1 V2 V3 FF
get value (G) 47 ID V0 V1 V2 V3

tick (T) 54 tick length
trace (E) 45 trace

run (R) 43
halt (H) 48

Figure 7.4.: Communication protocol of the KLP. All values are hexadecimal

no KLP assembler was generated. Note that the status is only set to false if the
behavior differs. This is the original verify mode of the KReP Evalbench, which
is not connected to the specific KIELER features. In the future, KIELER will be
extended by a more generic extension for automatic testing, which will replace the
specific verify mode of the KReP Evalbench.

7.2. Communication

The KReP communicates with the KReP Evalbench via the RS232 when run on an
FPGA. The software emulation can either communicate via TCP/IP or it can directly
be embedded into the KReP Evalbench via the Java Native Interface (JNI). For the
communication via JNI, where the KReP Evalbench triggers each instruction cycle of
the KLP, also a trace of the communication is saved in the esi format. This can then
be used to simulate the behavior in Esterel Studio to see the detailed behavior of the
KLP. The possible communication paths between the KReP Evalbench and the KReP
are shown in Figure 7.1b.

KEP protocol The KLP and the KEP use different protocols for the communication.
The KEP protocol only sends ASCII characters, so to send the value 0x42, the two bytes
0x34 and 0x32 are transmitted to the KEP. This has the advantage that the protocol
can be directly written by the developer. And the protocol uses end markers, so to send
a program to the KEP, the ASCII encoding of the opcode is sent, followed by the ASCII
code of “X”. Unfortunately, the protocol does not implement acknowledgements for all
transactions. A full description of the protocol is given by Li [2007] and Tiedje [2008].

KLP protocol The protocol of the KLP is byte oriented. The first byte of each com-
mand indicates which action is performed and how many bytes are following. For every
transaction, there is an explicit acknowledgement, therefore no end marker is needed.

124

7.2. Communication

All communication is triggered by the KReP Evalbench. Figure 7.4 gives an overview
over the protocol. The actions are:

verify: verifies that the communication works by sending back a constant byte sequence.

info: read the information on the configuration of the KLP, such as the number of
IO connections, the number of registers, the size of the ROM and the number of
processing units.

reset: reset the KLP completely.

write: write one instruction of four bytes to the ROM.

set value: set the value of one register.

get value: read the value of one register.

tick: start a tick. The number of clock cycles that were needed for the execution is
returned.

trace: get the trace of the last tick. The size of the returned byte sequence depends on
the size of the ROM: for each address, it is marked whether this instruction was
executed. E. g. returning a 5 indicates that the first and the third instruction were
executed.

run: starts running the KLP in a free mode, i. e., ticks are not triggered by the KReP
Evalbench and only external inputs from the environment are read. In this mode,
the only actions that are accepted by the KLP are reset and halt.

halt: stop the KLP from running freely and return to the normal mode, where inputs
can be set by the KReP Evalbench and all communication actions are allowed.

125

8. Conclusion and Outlook

8.1. Conclusion

The execution on the KEP has many benefits compared to the compilation of Esterel into
software: smaller programs, ofter faster execution, in particular for complex nesting of
preemptions, and, combined with the WCRT analysis, a constant reaction time without
jitter. The translation from SyncCharts to KEP assembler shows that the KEP can
not only be used to execute Esterel code, but also other synchronous languages. The
direct translation showed to be more efficient than the exiting translation via Esterel,
in particular due to the direct support of GOTO, which is essential for the efficient
execution of SyncCharts. The formal semantics for the KEP is a first step into proving
the correctness of the compilation. Since the translation of Esterel into KEP assembler
is rather simple compared to the compilation of Esterel into efficient code for common
processors, showing the correctness of the compilation process should be much simpler as
well. But this needs a formal and accurate semantics for the KEP. While the semantics
given in this thesis defines the behavior of KEP assembler for a relevant subset of the
KEP instruction set, there are still some aspects missing. The semantics so far does not
handle the execution times of the KEP,which would be necessary to prove the correctness
of the WCRT analysis.

For the KLP, we can conclude that the approach is already promising, but both the
hardware description and the compiler should be further improved. But we also see that
a reactive benefit for a dataflow language like Lustre does not give the same benefit
as for Esterel, since the efficient execution of Lustre on a common processor is much
simpler than the of Esterel. The KLP introduces parallel execution into the domain of
reactive processors, which before either expressed concurrency by multi-threading, as for
the KEP or the StarPro, or uses parallel processors, as in the EMPEROR, which does
not support full Esterel. On the other hand, the parallel execution for Lustre is much
simpler than for Esterel, because the only form of preemption is suspension. For the
compilation from Scade, which supports abortion, the abortion is not run in parallel,
but checked at the start and at the end of parallel code blocks.

We originally chose Esterel for the description of the KLP and the KEP-e for two
reasons: to improve the maintainability of the KEP and to evaluate Esterel capabili-
ties for hardware design, because we only used it for software synthesis before. While
the experiments show that even programmers without hardware knowledge can gen-
erate hardware of reasonable efficiency with Esterel, the design of optimal hardware
still requests both hardware knowledge and a detailed understanding of the hardware
generation from Esterel.

127

8. Conclusion and Outlook

One of the main benefits of reactive processors, in particular of the KEP, is that
they simplify the WCRT analysis compared to common processors. We presented three
different approaches for the WCRT analysis of the KEP:

1. a graph based approach that is directly implemented in the compiler. This ap-
proach determines the longest path on the intermediate format of the compiler. It
makes some overly conservative approximations regarding parallel execution and
data dependencies.

2. The interface algebra gives a flexible framework for WCRT analysis, depending
on the chosen heuristics, it can be used for a precise analysis or different levels of
approximation.

3. The model checking approach developed for PRET-C allows for a precise analysis,
but it does not integrate too well with the preemption mechanism of the KEP,
where any instruction can trigger a preemption.

8.2. Outlook

Reactive Processors The current development in the area of reactive processing is less
specific hardware, like in patched approach of the PRET-C or SyncCharts in C, which
is completely implemented in software. Similarly, it would be interesting to see how the
approach of the KLP can be applied to common hardware, like multi-processor machines
or also GPUs. The main difference here is that the KLP can execute a different instruc-
tion for each register, while common GPUs execute the same instruction on all cores.
Hence the KLP is a Multiple Instruction Multiple Data (MIMD) processor, while GPUs
are usually Single Instruction Multiple Data (SIMD) processors. In general, it would
be interesting to see how the ideas of reactive processing can be applied to standard
processor, as it is done by the SC, which implements the instruction set as C Macros,
or the PRET-C, which applies only small modifications to existing processors. Another
interesting question is whether existing reactive processors can be used for other lan-
guages than they were originally intended for, such as the execution of Scade models on
the KEP.

Timing Analysis While the timing analysis of the KEP already gives good results,
there are still some parts missing. The interface algebra needs to be extended to delayed
preemption, and it would be interesting to implement and compare different heuristics.
The model checking approach could also be implemented for the KEP and combined with
the interface algebra. The WCRT analysis for the KLP still needs to be implemented.

The WCRT for the KLP differs from the one for the KEP, in that the KLP has much
less control structures. Since the only form of preemption that is directly supported by
the KLP is suspension, we do not need to compute possible continuations. Hence, for a
KLP with one processing unit, a simple counting algorithm already gives good results,

128

8.2. Outlook

abro
counter

elevator 1
 elevator2

Watch

0

10

20

30

40

50

60

70

80

Estimated
WCRT
Worst Case RT
Average Case
RT
Best Case RT

#
In

st
ru

ct
io

n
s

Figure 8.1.: Estimated as well as minimal, average and maximal reaction times (rt) for
different numbers of Alus

even when taking the rough abstraction that the longest path for each equation is possible
simultaneously. Of course, this might not be the case due to data-dependencies.

Figure 8.1 shows the computed WCRT compared to the measured one. For each
example, five bars are shown: the dark bar on the left gives the estimated WCRT, the
other bars give the number of instructions that are actually executed at runtime. While
the estimated number of instructions is a good approximation of the execution on a KLP
with just one ALU, it naturally overestimates the execution time for multiple Arithmetic
Logical Units (ALUs).

A simple approach for the computation of the WCRT for a KLP with multiple ALUs
is the following: As long as the priorities are not changed during the execution, we
can compute the WCRT for each priority independently. To consider the worst possible
scheduling, we divide the priorities into N sets, when computing the WCRT for N ALUs.
An estimation for the complete WCRT is the sum of the WCRT for all priorities.

Consider we have a program with the following equations with priority 0:

1 A = I∗I ∗ 2∗I ; // WCRT=3

2 B = I+J/2; // WCRT=3

3 C = I ∗ J; // WCRT=2

And with priority 1 we have the equations:

1 O = max(B,C) // WCRT=4

2 P = B+C; // WCRT=2

The WCRT per equation takes also the DONE instruction into account. Hence we get
the following WCRT sets per priority: 0 : {3, 3, 2} and priority 1 : {4, 1}. If we compute
this on two ALUs we get the partition {3, 3} and {2} for priority 0; for priority 1 we get
the trivial partition {4} and {1}. The combined WCRT is 3 + 3 + 4 = 10.

The KLP already brings true parallel execution to reactive processing, but only with
a very close connection between the parallel execution units. It is still an open question,

129

8. Conclusion and Outlook

how to combine ideas from multi-core processors, with a rather loose coupling between
the different processing units, with the different forms of preemption that are supported
by reactive processing. In particular, the efficient execution of strong abortion com-
bined with immediate communication between concurrent threads within one tick, while
strictly adhering the synchronous semantics, is not trivial.

130

A. Benchmarks

A.1. ABRO

The ABRO mimics the behavior of the Esterel ABRO module by implementing the
automaton. Each state is implemented by an boolean variable, a state is true if it
was true in the previous tick and no outgoing transition is triggered, or if an incoming
transition is triggered.

1 node abro(a, b, r : bool) returns (o: bool);
2 var
3 s ab , – – wait for a and b

4 s a , – – wait for a

5 s b , – – wait for b

6 s 0 : bool; – – wait for r

7 let
8 s ab = true → r or (pre(s ab) and not (a or b));

9 s a = false → not r and ((pre(s a) and not a) or (pre(s ab) and b and not a));

10 s b = false → not r and ((pre(s b) and not b) or (pre(s ab) and not b and a));

11 s 0 = false → not r and (pre(s 0)

12 or (pre(s a) and a)

13 or (pre(s b) and b)

14 or (pre(s ab) and a and b));

15 o = false→not pre(s 0) and s 0;

16 tel .

A.2. Counter

A simple counter of rising edges, which can be reseted:

1 node counter (R, X: bool) returns (C: int);
2 let
3 C = 0 → if R then 0

4 else if X and not pre X

5 then pre(C)+1

6 else pre(C);
7 tel

131

A. Benchmarks

A.3. Elevator Lustre

The controller of a simple elevator:

1 node elevator lus (ButtonUp, ButtonDown, ButtonAlarm,

2 IsUp, IsDown, Second:bool)
3 returns (Move:int; AlarmLamp:bool)
4 var LampCount: int;
5 LastDirection : int ;
6 let
7 LastDirection = if ButtonAlarm then pre(Move)

8 else pre(LastDirection);

9 LampCount = –1 → if ButtonAlarm

10 then 5

11 else if pre(LampCount) < 0

12 then – 1

13 else if Second

14 then pre(LampCount) – 1

15 else pre(LampCount);

16 AlarmLamp = LampCount > 0;

17 Move = if LampCount = 0

18 then LastDirection

19 else if not ButtonAlarm

20 and ((ButtonUp and not IsUp) or (pre(Move)=1 and not IsUp))

21 then 1

22 else if not ButtonAlarm

23 and((ButtonDown and not IsDown)

24 or (pre(Move)=–1 and not IsDown))

25 then – 1

26 else 0;

27 tel

A.4. Elevator Scade

A controller for the same elevator, but generated from Scade:

1 node elevator chsch (

2 ButtonUp : bool;
3 ButtonDown : bool;
4 ButtonAlarm : bool;
5 IsUp : bool;
6 IsDown : bool;
7 Second : bool)
8 returns (Move : int ; AlarmLamp : bool);
9 var

10 down : bool;
11 secCounter : int ;
12 moveDir : int ;
13 L4 : int ;
14 L11 : bool;
15 L12 : bool;
16 L13 : bool;
17 L14 : bool;
18 L16 : bool;
19 L19 : int ;
20 L20 : int ;

132

A.5. Watch

21 L21 : int ;
22 L26 : int ;
23 L28 : bool;
24 L29 : bool;
25 L32 : int ;
26 L33 : bool;
27 L35 : int ;
28 L36 : int ;
29 L37 : int ;
30 L34 : int ;
31 L41 : int ;
32 L42 : bool;
33 L43 : int ;
34 L44 : bool;
35 L45 : bool;
36 L46 : bool;
37 let
38 down= true → pre(L13);

39 L4= 0;

40 L32= if L11 then L4 else L34;

41 L11= IsDown or IsUp;

42 L12= IsDown or IsUp;

43 L13= if L12 then L14 else down;

44 L14= IsDown;

45 L16= moveDir <> 0 and ButtonAlarm;

46 secCounter= 0 → pre(L26);

47 L26= if L16 then L19 else L20;

48 L19= 5;

49 L20= if L28 then L21 else secCounter;

50 L21= secCounter – 1;

51 L28= Second and secCounter <> 0;

52 L29= moveDir = 0 and (ButtonUp and down or ButtonDown and not down);

53 L33= ButtonUp and down;

54 L35= if L33 then L36 else L37;

55 L36= 1;

56 L37= –1;

57 L34= if L29 then L35 else moveDir;

58 moveDir= 0 → pre(L32);

59 L41, L44= if L42 then (L43, L45) else (moveDir, L46);

60 L42= secCounter <> 0;

61 L43= 0;

62 AlarmLamp= L44;

63 Move= L41;

64 L45= true;

65 L46= false ;

66 tel ;

A.5. Watch

The implementation of a simple watch, which counts seconds and minutes.

1 node watch(time unit: bool) returns (s ,m:bool; ds,dm: int);
2 let
3 (s ,ds) = COUNT(time unit, m, 10);

4 (m,dm) = COUNT(s,false,60);

133

A. Benchmarks

5 tel ;
6

7 node COUNT(trigger, reset: bool; g: int) returns (x: bool; d: int ;);

8 let
9 x = EDGE(current(DIVIDE(g when (true → trigger))));

10 d = current((0→ if reset then 0 else (pre(d) + 1)) when (x or reset));

11 tel
12

13 node EDGE(b: bool) returns (edge: bool);
14 let
15 edge = b→(b and not pre(b));
16 tel ;
17

18 node DIVIDE (scale: int) returns (quotient : bool);
19 var n: int ;
20 let
21 (n,quotient) = (0,true)→(if (pre(n) + 1) = scale

22 then (0, true)

23 else (pre(n) + 1, false));

24 tel ;

A.6. Parallel

Parallel computations without data dependencies.

1 node parallel (X,Y:int) returns (O1,O2,O3,O4:int);
2 let
3 O1=0;

4 O2=1;

5 O3=2;

6 O4=3;

7 tel

134

Bibliography

Jauhar Ali and Jiro Tanaka. Converting Statecharts into Java code. In Proceedings of the
Fourth World Conference on Integrated Design and Process Technology (IDPT ’99),
Dallas, Texas, June 2000. Society for Design and Process Science (SDPS).

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

Sidharta Andalam, Partha Roop, Alain Girault, and Claus Traulsen. PRET-C: A new
language for programming precision timed architectures. Technical Report 6922, IN-
RIA Grenoble Rhône-Alpes, 2009. http://hal.inria.fr/docs/00/39/16/21/PDF/

rr.pdf.

C. André, F. Boulanger, M.-A. Péraldi, J. P. Rigault, and G. Vidal-Naquet. Objects
and synchronous programming. Europ. J. on Automated Syst., 31(3):417–432, 1997.

Charles André. Semantics of S.S.M (Safe State Machine). Technical report, Esterel Tech-
nologies, Sophia-Antipolis, France, April 2003. http://www.esterel-technologies.
com.

L. Arditi, G. Berry, J. Dormoy, L. Blanc, S. Granier, and M. Perreaut. Generating
efficient hardware with Esterel v7 and Esterel Studio, April 2005.

F. L. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronisation and Linearity.
John Wiley & Sons, 1992.

Felice Balarin, Massimiliano Chiodo, Paolo Giusto, Harry Hsieh, Attila Jurecska, Lu-
ciano Lavagno, Alberto Sangiovanni-Vincentelli, Ellen M. Sentovich, and Kei Suzuki.
Sythesis of Software Programs for Embedded Control Applications. In IEEE Transac-
tions of Computer-Aided Design of Integrated Circuits and System, volume 18, pages
834–849, June 1999.

J. Benkoski and A. J. Strojwas. Timing verification by formal signal interaction modeling
in a multi-level timing simulator. In Design Automation Conference, pages 668–673,
1989.

Albert Benveniste, Paul Le Guernic, and Pascal Aubry. Compositionality in dataflow
synchronous languages: Specification and code generation. In Willem P. de Roever,
Hans Langmaack, and Amir Pnueli, editors, COMPOS, volume 1536 of Lecture Notes
in Computer Science, pages 61–80. Springer, 1997.

135

http://hal.inria.fr/docs/00/39/16/21/PDF/rr.pdf
http://hal.inria.fr/docs/00/39/16/21/PDF/rr.pdf
http://www.esterel-technologies.com
http://www.esterel-technologies.com

Bibliography

Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le Guer-
nic, and Robert de Simone. The Synchronous Languages Twelve Years Later. In
Proceedings of the IEEE, Special Issue on Embedded Systems, volume 91, pages 64–
83, January 2003.

Christoph Berg, Jakob Engblom, and Reinhard Wilhelm. Requirements for and de-
sign of a processor with predictable timing. In Lothar Thiele and Reinhard Wil-
helm, editors, Perspectives Workshop: Design of Systems with Predictable Be-
haviour, number 03471 in Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2004.
http://drops.dagstuhl.de/opus/volltexte/2004/5.

Gérard Berry. The foundations of Esterel. Proof, Language and Interaction: Essays in
Honour of Robin Milner, 2000. Editors: G. Plotkin, C. Stirling and M. Tofte.

Gérard Berry. A hardware implementation of pure ESTEREL. Technical Report de
recherche 1479, INRIA, 1991.

Gérard Berry. Esterel on Hardware. Philosophical Transactions of the Royal Society of
London, 339:87–104, 1992.

Gérard Berry. The Constructive Semantics of Pure Esterel. Draft Book, 1999. ftp:

//ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps.

Gérard Berry and Laurent Cosserat. The ESTEREL Synchronous Programming Lan-
guage and its Mathematical Semantics. In Seminar on Concurrency, Carnegie-Mellon
University, volume 197 of Lecture Notes in Computer Science (LNCS), pages 389–448.
Springer-Verlag, 1984. ISBN 3-540-15670-4.

Gérard Berry and Ellen Sentovich. Multiclock esterel. In CHARME ’01: Proceedings of
the 11th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware
Design and Verification Methods, pages 110–125, London, UK, 2001. Springer-Verlag.

Darek Biernacki, Jean-Louis Colaco, Grégoire Hamon, and Marc Pouzet. Clock-directed
Modular Code Generation of Synchronous Data-flow Languages. In ACM Inter-
national Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES), Tucson, AZ, USA, June 2008.

Marian Boldt. Worst-case reaction time analysis for the KEP3. Study thesis, Christian-
Albrechts-Universität zu Kiel, Department of Computer Science, May 2007a. http:

//rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mabo-st.pdf.

Marian Boldt. A compiler for the Kiel Esterel Processor. Diploma thesis,
Christian-Albrechts-Universität zu Kiel, Department of Computer Science, Decem-
ber 2007b. http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/

mabo-dt.pdf.

136

http://drops.dagstuhl.de/opus/volltexte/2004/5
ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps
ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mabo-st.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mabo-st.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mabo-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mabo-dt.pdf

Bibliography

Marian Boldt, Claus Traulsen, and Reinhard von Hanxleden. Worst case reaction time
analysis of concurrent reactive programs. Electronic Notes in Theoretical Computer
Science, 203(4):65–79, June 2008. Proceedings of the International Workshop on
Model-Driven High-Level Programming of Embedded Systems (SLA++P’07), March
2007, Braga, Portugal.

A. Bouajjani, J.-C. Fernandez, N. Halbwachs, P. Raymond, and C. Ratel. Minimal state
graph generation. Sci. Comput. Program., 18(3):247–269, 1992.

J. Le Boudec and P. Thiran. Network Calculus - A theory of deterministic queuing
systems for the internet, volume 2050 of Lecture Notes in Computer Science. Springer,
2001.

Alan Burns and Stewart Edgar. Predicting computation time for advanced processor
architectures. In Proceedings of the 12th Euromicro Conference on Real-Time Systems
(EUROMICRO-RTS 2000), page 89, 2000.

Paul Caspi, Alain Girault, and Daniel Pilaud. Automatic distribution of reactive systems
for asynchronous networks of processors. IEEE Transactions on Software Engineering,
25(3), 1999.

Etienne Closse, Michel Poize, Jacques Pulou, Patrick Venier, and Daniel Weil. SAXO-
RT: Interpreting Esterel semantic on a sequential execution structure. In Florence
Maraninchi, Alain Girault, and Eric Rutten, editors, Electronic Notes in Theoretical
Computer Science. Elsevier, July 2002. http://www.elsevier.com/gej-ng/31/29/

23/117/53/34/65.5.010.pdf.

Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. A conservative extension of syn-
chronous data-flow with State Machines. In ACM International Conference on Em-
bedded Software (EMSOFT’05), Jersey City, NJ, USA, September 2005.

S. Devadas, K. Keutzer, and S. Malik. Delay computation in combinational logic circuits:
Theory and algorithms. In International Conference on Computer-Aided Design, pages
176–179, 1991.

Edsger W. Dijkstra. GOTO considered harmful. Communications of the ACM, 11(3):
147–148, March 1968.

Stephen A. Edwards. An Esterel compiler for large control-dominated systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 21(2),
February 2002.

Stephen A. Edwards. CEC: The Columbia Esterel Compiler, 2006. http://www1.cs.

columbia.edu/~sedwards/cec/.

Stephen A. Edwards and Jia Zeng. Code generation in the Columbia Esterel Compiler.
EURASIP Journal on Embedded Systems, Article ID 52651, 31 pages, 2007.

137

http://www.elsevier.com/gej-ng/31/29/23/117/53/34/65.5.010.pdf
http://www.elsevier.com/gej-ng/31/29/23/117/53/34/65.5.010.pdf
http://www1.cs.columbia.edu/~sedwards/cec/
http://www1.cs.columbia.edu/~sedwards/cec/

Bibliography

Frederic Boussinot. Reactive C: An extension of C to program reactive systems. Software
Practice and Experience, 21(4):401–428, 1991.

Sascha Gädtke, Claus Traulsen, and Reinhard von Hanxleden. HW/SW Co-Design for
Esterel Processing. In Proceedings of the International Conference on Hardware-
Software Codesign and System Synthesis (CODES+ISSS’07), Salzburg, Austria,
September 2007.

Alain Girault. A survey of automatic distribution method for synchronous programs.
In F. Maraninchi, M. Pouzet, and V. Roy, editors, International Workshop on Syn-
chronous Languages, Applications and Programs (SLAP ’05), Electronic Notes in
Theoretical Computer Science, Edinburgh, UK, April 2005. Elsevier Science.

Alain Girault and Xavier Nicollin. Clock-driven automatic distribution of Lustre pro-
grams. In R. Alur and I. Lee, editors, 3rd International Conference on Embedded
Software, EMSOFT ’03, volume 2855 of Lecture Notes in Computer Science (LNCS),
pages 206–222, Philadelphia, PA, USA, October 2003. Springer-Verlag.

Zonghua Gu. Solving real time scheduling problems with model-checking. In Embedded
Software and Systems, volume 3820 of Lecture Notes in Computer Science, pages
186–197. Springer Berlin / Heidelberg, 2005.

Paul Le Guernic, Thierry Goutier, Michel Le Borgne, and Claude Le Maire. Program-
ming real time applications with SIGNAL. Proceedings of the IEEE, 79(9), September
1991.

J. R. Gurd, C. C. Kirkham, and I. Watson. The Manchester prototype dataflow com-
puter. Communications of the ACM, 1985.

Olivier Hainque, Laurent Pautet, Yann Le Biannic, and Eric Nassor. Cronos: A separate
compilation toolset for modular Esterel applications. In Jeannette M. Wing, Jim
Woodcock, and Jim Davies, editors, World Congress on Formal Methods, volume
1709 of Lecture Notes in Computer Science, pages 1836–1853. Springer, September
1999.

Nicolas Halbwachs. A synchronous language at work: the story of Lustre. In Third
ACM-IEEE International Conference on Formal Methods and Models for Codesign,
MEMOCODE’05, Verona, Italy, July 2005.

Nicolas Halbwachs. Synchronous programming of reactive systems, a tutorial and com-
mented bibliography. In Tenth International Conference on Computer-Aided Verifica-
tion, CAV ’98, Vancouver (B.C.), June 1998. LNCS 1427, Springer Verlag.

Nicolas Halbwachs and Pascal Raymond. A Tutorial of Lustre, 2001.

Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The synchronous
data-flow programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–
1320, September 1991a.

138

Bibliography

Nicolas Halbwachs, Pascal Raymond, and Christophe Ratel. Generating efficient code
from data-flow programs. In J. Maluszyński and M. Wirsing, editors, Proceedings of
the Third International Symposium on Programming Language Implementation and
Logic Programming, pages 1–13207–218. Springer Verlag, 1991b.

D. Harel and A. Pnueli. On the development of reactive systems. Logics and models of
concurrent systems, pages 477–498, 1985.

David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli, Michal Politi, Rivi Sherman,
Aharon Shtull-Trauring, and Mark Trakhtenbrot. Statemate: A working environment
for the development of complex reactive systems. IEEE Transactions on Software
Engineering, 16(4):403–414, April 1990.

Th. Henzinger and S. Matic. An interface algebra for real-time components. In
Proc. RTAS 2006, pages 253–266. IEEE Computer Society, 2006.

Cornelis Huizing and Rob Gerth. Semantics of reactive systems in abstract time. In
Proceedings of the Real-Time: Theory in Practice, REX Workshop, pages 291–314.
Springer-Verlag, 1992. ISBN 3-540-55564-1.

Erwan Jahier, Pascal Raymond, and Philippe Baufreton. Case studies with lurette v2.
International Journal on Software Tools for Technology Transfer, 8(6), November 2006.

Lei Ju, Bach Khoa Huynh, Abhik Roychoudhury, and Samarjit Chakraborty. Perfor-
mance debugging of Esterel specifications. In CODES+ISSS, pages 173–178, 2008.

Gilles Kahn. The semantics of a simple language for parallel programming. In Jack L.
Rosenfeld, editor, Information Processing 74: Proceedings of the IFIP Congress 74,
pages 471–475. IFIP, North-Holland Publishing Co., August 1974.

K. C. Lam and R. K. Brayton. Timed Boolean Functions. A Unified Formalism for
Exact Timing Analysis. Kluwer, 1994.

E. A. Lee, H. Zheng, and Y. Zhou. Causality interfaces and compositional causality
analysis. In Foundations of Interface Technologies (FIT’05), ENTCS. Elsevier, 2005.

Edward A. Lee and David G. Messerschmitt. Synchronous data flow. In Proceedings
of the IEEE, volume 75, pages 1235–1245. IEEE Computer Society Press, September
1987.

Xin Li. The Kiel Esterel Processor: A Multi-Threaded Reactive Processor. PhD thesis,
Christian-Albrechts-Universität zu Kiel, Faculty of Engineering, July 2007. http:

//eldiss.uni-kiel.de/macau/receive/dissertation_diss_00002198.

Xin Li and Reinhard von Hanxleden. Multi-threaded reactive programming—the Kiel
Esterel Processor. IEEE Transactions on Computers, accepted 2010.

139

http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_00002198
http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_00002198

Bibliography

Xin Li, Jan Lukoschus, Marian Boldt, Michael Harder, and Reinhard von Hanxleden. An
Esterel Processor with Full Preemption Support and its Worst Case Reaction Time
Analysis. In Proceedings of the International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES’05), pages 225–236, San Francisco, CA,
USA, September 2005. ACM Press. ISBN 1-59593-149-X. doi: http://doi.acm.org/
10.1145/1086297.1086327.

Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards, and Edward A.
Lee. Predictable programming on a precision timed architecture. In Proceedings of
Compilers, Architectures, and Synthesis of Embedded Systems (CASES’08), Atlanta,
USA, October 2008.

G. Logothetis and Klaus Schneider. Exact high level WCET analysis of synchronous
programs by symbolic state space exploration. In Design, Automation and Test in
Europe (DATE), pages 196–203, Munich, Germany, March 2003. IEEE Computer
Society.

G. Logothetis, K. Schneider, and C. Metzler. Exact low-level runtime analysis of syn-
chronous programs for formal verification of real-time systems. In Forum on Design
Languages (FDL), Frankfurt, Germany, 2003. Kluwer.

Jan Lukoschus and Reinhard von Hanxleden. Removing cycles in Esterel programs.
EURASIP Journal on Embedded Systems, Special Issue on Synchronous Paradigms
in Embedded Systems, 2007.

Avinash Malik, Zoran Salcic, and Partha S. Roop. Systemj compilation using the tandem
virtual machine approach. ACM Trans. Des. Autom. Electron. Syst., 14(3):1–37, 2009.
ISSN 1084-4309.

Sharad Malik. Analysis of cyclic combinational circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 13(7):950–956, July 1994.

Sharad Malik, Margaret Martonosi, and Yau-Tsun Steven Li. Static timing analysis
of embedded software. In DAC ’97: Proceedings of the 34th annual conference on
Design automation, pages 147–152. ACM Press, 1997. ISBN 0-89791-920-3. http:

//doi.acm.org/10.1145/266021.266052.

M. Mendler. Characterising combinational timing analyses in intuitionistic modal logic.
The Logic Journal of the IGPL, 8(6):821–853, 2000.

Michael Mendler, Reinhard von Hanxleden, and Claus Traulsen. WCRT Algebra and
Interfaces for Esterel-Style Synchronous Processing. In Proceedings of the Design,
Automation and Test in Europe (DATE’09), Nice, France, April 2009.

A. Metzner. Why model checking can improve WCET analysis. In Computer Aided Ver-
ification, volume 3114 of Lecture Notes in Computer Science, pages 334–347. Springer
Berlin / Heidelberg, 2004.

140

http://doi.acm.org/10.1145/266021.266052
http://doi.acm.org/10.1145/266021.266052

Bibliography

David Park, Jens U. Skakkebaek, Mats P.E. Heimdahl, Barbara J. Czerny, and David L.
Dill. Checking properties of safety critical specifications using efficient decision proce-
dures. In Proceedings of the Second ACM Workshop on Formal Methods in Software
Practice, Clearwater Beach, Florida, March 1998.

Becky Plummer, Mukul Khajanchi, and Stephen A. Edwards. An Esterel virtual ma-
chine for embedded systems. In International Workshop on Synchronous Languages,
Applications, and Programming (SLAP’06), Vienna, Austria, March 2006.

Dumitru Potop-Butucaru and Robert de Simone. Optimization for faster execution of
Esterel programs, pages 285–315. Kluwer Academic Publishers, Norwell, MA, USA,
2004. ISBN 1-4020-8051-4.

Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry. Compiling Esterel.
Springer, May 2007. ISBN 0387706267.

Steffen Prochnow, Claus Traulsen, and Reinhard von Hanxleden. Synthesizing Safe
State Machines from Esterel. In Proceedings of ACM SIGPLAN/SIGBED Conference
on Languages, Compilers, and Tools for Embedded Systems (LCTES’06), Ottawa,
Canada, June 2006.

P. Puschner and A. Burns. A review of worst-case execution-time analysis (editorial).
Real-Time Systems, 18(2/3):115–128, 2000.

Thomas Ringler. Static worst-case execution time analysis of synchronous programs. In
ADA-Europe- 5. International Conference on Reliable Software Technologies, 2000.

Partha S. Roop, Sidharta Andalam, Reinhard von Hanxleden, Simon Yuan, and Claus
Traulsen. Tight WCRT analysis for synchronous C programs. Technical Report 0912,
Christian-Albrechts-Universität Kiel, Department of Computer Science, Kiel, Ger-
many, May 2009a.

Partha S. Roop, Sidharta Andalam, Reinhard von Hanxleden, Simon Yuan, and Claus
Traulsen. Tight WCRT analysis for synchronous C programs. In Proceedings of the
International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES’09), Grenoble, France, October 2009b.

Klaus Schneider. The synchronous programming language Quartz. Internal Re-
port (to appear), Department of Computer Science, University of Kaiserslautern,
Kaiserslautern, Germany, 2009. http://es.cs.uni-kl.de/publications/datarsg/
Schn09.pdf.

Martin Schoeberl. A Java processor architecture for embedded real-time systems. Journal
of Systems Architecture, 54(1–2), 2008.

J. P. M. Marques Silva and K. A. Sakallah. An analysis of path sensitization criteria. In
Proc. ICCD, pages 68–72, 1993.

141

http://es.cs.uni-kl.de/publications/datarsg/Schn09.pdf
http://es.cs.uni-kl.de/publications/datarsg/Schn09.pdf

Bibliography

Falk Starke. Executing Safe State Machines with the Kiel Esterel Processor. Diploma
thesis, Christian-Albrechts-Universität zu Kiel, January 2009. http://rtsys.

informatik.uni-kiel.de/~biblio/downloads/theses/fast-dt.pdf.

Falk Starke, Claus Traulsen, and Reinhard von Hanxleden. Executing Safe State Ma-
chines on a reactive processor. Technical Report 0907, Christian-Albrechts-Universität
Kiel, Department of Computer Science, Kiel, Germany, March 2009.

Olivier Tardieu and Robert de Simone. Instantaneous termination in pure Esterel. In
Static Analysis Symposium, San Diego, California, June 2003.

Olivier Tardieu and Stephen A. Edwards. Instanteneous transitions in esterel.
In Proceedings of Model Driven High-Level Programming of Embedded Systems
(SLA++P’07), Braga, Portugal, March 2007.

Malte Tiedje. Beschreibung des Kiel Esterel Prozessors in Esterel. Diploma the-
sis, Christian-Albrechts-Universität zu Kiel, Department of Computer Science, Jan-
uary 2008. http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/

mti-dt.pdf.

Malte Tiedje and Claus Traulsen. Designing a reactive processor with Esterel v7. In
Proceedings of the Workshop on Model-Driven High-Level Programming of Embedded
Systems (SLA++P’08), Budapest, Hungary, April 2008.

Claus Traulsen. The Kiel Reactive Processor—reactive processing beyond the KEP.
Presentation at the 14th International Open Workshop on Synchronous Programming
(SYNCHRON’07), Bamberg, Germany, November 2007.

Claus Traulsen and Reinhard von Hanxleden. Reactive parallel processing for syn-
chronous dataflow. In Proceedings of the 25th Symposium On Applied Computing
(SAC’10), Special Track Embedded Systems: Applications, Solutions, and Techniques,
Sierre, Switzerland, March 2010.

Claus Traulsen, Jerome Cornet, Matthieu Moy, and Florence Maraninchi. A System-
C/TLM semantics in Promela and its possible applications. In Proceedings of the
14th Workshop on Model Checking Software (SPIN ’07), Berlin, Germany, July 2007.

Reinhard von Hanxleden. SyncCharts in C. Technical Report 0910, Christian-Albrechts-
Universität Kiel, Department of Computer Science, May 2009. http://rtsys.

informatik.uni-kiel.de/~biblio/downloads/papers/report-0910.pdf.

Reinhard von Hanxleden, Michael Mendler, and Claus Traulsen. WCRT algebra and
scheduling interfaces for Esterel-style synchronous multi-threading. Technical Report
0807, Christian-Albrechts-Universität Kiel, Department of Computer Science, June
2008.

E. Wandeler and L. Thiele. Real-time interfaces for interface-based design of real-time
systems with fixed priority scheduling. In Proc. EMSOFT’05, 2005.

142

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/fast-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/fast-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mti-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mti-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/report-0910.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/report-0910.pdf

Bibliography

Andrzej Wasowski. On efficient program synthesis from Statecharts. In Proceedings of
the 2003 ACM SIGPLAN Conference on Language, Compilers, and Tools for Embed-
ded Systems (LCTES’03), volume 38, issue 7, June 2003. ACM SIGPLAN Notices.

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Frank
Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The
worst-case execution-time problem—overview of methods and survey of tools. ACM
Transactions on Embedded Computing Systems (TECS), 7(3), 2008.

Li Hsien Yoong, Partha Roop, and Zoran Salcic. Compiling Esterel for distributed
execution. In Proceedings of Synchronous Languages, Applications, and Programming
(SLAP’06), Vienna, Austria, April 2006.

Li Hsien Yoong, Partha Roop, Valeriy Vyatkin, and Zoran Salcic. A synchronous ap-
proach for iec 61499 function block implementation. IEEE Trans. Comput., 58(12):
1599–1614, 2009. ISSN 0018-9340.

Simon Yuan, Sidharta Andalam, Li Hsien Yoong, Partha S. Roop, and Zoran Salcic.
STARPro—a new multithreaded direct execution platform for Esterel. In Proceed-
ings of Model Driven High-Level Programming of Embedded Systems (SLA++P’08),
Budapest, Hungary, April 2008.

143

Acknowledgments

This thesis would not have been possible without the help of many people. I thank
my “Doktorvater” Reinhard von Hanxleden for giving me the opportunity to graduate,
for his suggestions and advices, for giving me the freedom to choose and to change my
research topic and for encouraging me to keep my topic in the end. I especially thank
him for introducing me to the synchronous community and give me the possibility to
travel to the annual Synchron meetings and for a research visit at the Verimag lab.

I am very grateful to the students who contributed to the work on reactive processing,
these are Marian Boldt, Sascha Gädtke, Falk Starke and Malte Tiedje, it was a joy
working with you. This thesis would not exist without Xin Li’s previous work on the
Kiel Esterel Processor.

I would in particular like to thank my colleagues Hauke Fuhrmann and Hagen Pe-
ters for their technical, personal, and moral support both at work and beyond. Miro
Spönemann and Christian Motika helped me by removing much of the teaching and
administrative tasks in the final phase of my dissertation and by supporting me with to
connect of reactive processing with KIELER. I would also like to thank Tim Grebien for
technical and for not bothering me in the end of my writing phase (by the way, clean up
our room).

The contact to other colleagues in from the institute helped me to keep contact to the
research in other areas of computer science and to recognize common problems. There-
fore, I would like to thank the “Informatik Stammtisch”: Jan Christiansen, Sebastian
Fischer, Fabian Reck, and Björn Lüdemann, as well as, Jan Täubrich, Heiko Schmidt,
and Jens Schönborn. Various students from the KIELER team helped to connect reac-
tive processing to their tool, in particular I thank Christian Schneider for always fixing
the build after I broke it, as well as Torsten Amende and Achim Bleidiessel.

My work on reactive processing was nicely supported by the synchronous community.
Therfore I thank in particular Michael Mendler, Partha Roop, and Sidharta Andalam
for various fruitful discussions, as well as Alain Girault. I learned a lot on synchronous
languages and research during my visit at the Verimag laboratory. For the warm welcome
there and and the succesful collaboration I thank Jérôme Cornet, David Stauch, Florence
Maraninchi, Matthieu Moy and the other members of the synchronous team.

Last but not least I appreciate the help of my family to connect me to the world
outside academia. I thank in particular my wife Imke, for the constant support and for
helping me to actually finish this thesis.

145

	Introduction
	Reactive Processing
	Contributions
	Related Publications
	Outline

	Related Work
	Processor Design
	Execution of Synchronous Programs
	Compiling Esterel
	Compiling SyncCharts
	Compiling Lustre/Scade
	Distributed Executions

	Worst Case Execution/Reaction Time Analysis
	Interface Algebra
	Model Checking

	Synchronous Languages
	Lustre
	Clock operators
	Gate Example
	Compilation

	Scade
	Esterel
	Esterel v7

	SyncCharts

	The Kiel Esterel Processor (KEP)
	Instruction Set Architecture
	Execution cycle
	Instructions

	KEP-e
	Validation
	Connection to the ``real world''

	Semantics
	Microstep
	Macro-Steps
	Example Execution
	Limitations

	Compiling Esterel
	Implementing Strong Abort
	Combine

	Compiling SyncCharts
	Compiliation Steps
	Thread embedding
	PRIO instructions
	Weak abortion
	Experimental Results

	The Kiel Lustre Processor (KLP)
	Architecture
	Building blocks
	Instruction Set

	Compilation
	Clocked Equations
	Compiling Lustre
	Compiling Scade

	Experimental Results
	Evaluation
	Resource Usage
	Execution Times

	Hardware Description with Esterel v7
	Comparison of KEP and KLP
	Further Optimizations and Open Problems
	Static Scheduling
	Clock registers
	Memory Access

	Worst Case-Reaction-Time Analysis
	The Graph Based Approach
	The Concurrent KEP Assembler Graph
	Sequential WCRT Algorithm
	Instantaneous Statement Reachability
	General WCRT Algorithm
	Unreachable Paths
	Experimental Results

	Interface Algebra
	The WCRT Algebra
	An Example
	Classification of Interfaces
	Implementation

	Using Model-Checking
	Comparison

	Evaluation with KIELER
	Execution Modes
	Communication

	Conclusion and Outlook
	Conclusion
	Outlook

	Benchmarks
	ABRO
	Counter
	Elevator Lustre
	Elevator Scade
	Watch
	Parallel

