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Abstract

This dissertation thesis is concerned with two topics of combinatorial optimization:

scheduling and geometrical packing problems.

Scheduling deals with the assignment of jobs to machines in a ‘good’ way, for

suitable notions of good. Two particular problems are studied in depth: on the one

hand, we consider the impact of machine failure on online scheduling, i.e. what

are the consequences of the fact that in real life, machines do not work flawlessly

around the clock, but need maintenance intervals or can break down? How do we

need to adapt our algorithms to still obtain good overall schedules, and in what

settings do we even have a chance to succeed?

Our second problem is of a more static nature: in some settings, not every job is

permitted on all the machines. A classical example would be that of workers which

needs special qualification to execute some jobs, or a certain minimum requirement

of memory size of computers, etc. The problem in general is notoriously hard to

tackle; we present improved approximation ratios for several special cases. In

particular, we derive a polynomial-time approximation scheme for nested interval

restrictions, which occur naturally in many practical applications.

Our final topic is two-dimensional geometric bin packing, the problem of packing

rectangular objects into the minimum number of containers of identical size.

(Figuratively speaking, we are arranging advertisements of fixed dimensions onto

the minimum number of print pages.) It is known that no approximation ratio

better than 2 is possible for this problem, unless P= NP; we present an algorithm

that guarantees this ratio.
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Zusammenfassung

Diese Promotionsschrift behandelt zwei Arten kombinatorischer Optimierungspro-

bleme: Ablaufplanungsprobleme und geometrische Packungsprobleme.

Ablaufplanungsprobleme handeln davon, eine Menge von Aufgaben, die Jobs,

auf eine Menge von ausführenden Maschinen oder Arbeitern zu verteilen, so dass

der entstehende Ablaufplan in geeignetem Sinne „gut“ ist. Wir betrachten hier ins-

besondere folgende zwei Probleme der Ablaufplanung: einerseits untersuchen wir

den Einfluß von Maschinenausfällen auf die Online-Ablaufplanung: im wirklichen

Leben sind Maschinen nicht fehler- und unterbrechungslos verfügbar. Wir geben

eine teilweise Antwort auf die Frage, mit welchen Änderungen Algorithmen trotz

unerwartet auftretender Maschinenausfälle gute Pläne erstellen können, und in

welchen Fällen es prinzipiell nicht möglich ist, gute Ablaufpläne zu erstellen.

Unser zweites Ablaufplanungsproblem ist von statischerer Natur: in der prak-

tischen Anwendung ist es häufig der Fall, dass nicht jede Maschine jeden Job

ausführen kann. Ein einfaches Beispiel sind menschliche Arbeiter, die gewisse

formale Qualifikationen für gewisse Jobs haben müssen. Diese Problem erweist

sich als in voller Allgemeinheit bekannt hartnäckig; wir stellen hier Algorithmen

für einige Spezialfälle vor. Insbesondere präsentieren wir ein polynomielles Appro-

ximationsschema für den wichtigen Fall verschachtelter Restriktionen, der in der

Mitarbeiterplanung auf natürliche Weise auftritt.

Schlussendlich untersuchen wir das zweidimensionale geometrische bin packing-

Problem. Fragestellung dieses Problem ist es, rechteckige Objekte in die minimale

Anzahl von Containern gleicher Größe zu packen. Salopp gesprochen versuchen

wir, eine vorgegebene Menge von Anzeigen mit vorgegebenen Abmessungen auf

eine möglichst kleine Zahl von Druckseiten gleicher Größe zu platzieren. Es ist

bekannt, dass dieses Problem keine Algorithmus mit Approximationsgüte besser

als 2 erlaubt, es sei denn, P= NP; wir stellen einen Algorithmus mit Güte 2 vor.
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1 Introduction

The present work contains some results of my research at the University of Kiel

from 2006 to 2010. It can be divided into three major parts, which share a common

theme of packing. The first two parts deal with on- and offline scheduling, the

packing of jobs onto machines to obtain a ‘good’ (e.g., fast) execution. The third

part deals with a two-dimensional rectangle packing problem. Before we go into

the details, we recollect elementary facts about algorithms and approximability

that we will use frequently throughout.

1.1 Computability, complexity and approximation algorithms

In this section, we will briefly recall the motivation and definitions needed to

understand the analysis of algorithms in terms of complexity and approximation

properties. Of course, this is not exhaustive by far; more detailed expositions

can be found in the standard literature on algorithm design [AHU74, CLRS90],

complexity theory [GJ79] and approximation theory [Vaz01, JM08].

1.1.1 Complexity

To formalize the notion of efficient algorithms that approximately solve problems,

we need to define the constituent concepts. One basic distinction is that of decision

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Design and Analysis of Computer Algorithms.

Addison-Wesley, 1974.

[CLRS90] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.

MIT Press, 1990.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman and Company, New York, 1979.

[Vaz01] V. V. Vazirani. Approximation algorithms. Springer-Verlag New York, Inc., 2001.

[JM08] K. Jansen and M. Margraf. Approximative Algorithmen und Nichtapproximierbarkeit. de

Gruyter, 2008.
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1 Introduction

problems and optimization problems: in both cases, a problem is a collection of

instances, and each instance has a set of solutions. The decision problem is to find

out (algorithmically) for an input instance I if its set of solutions SOL(I) is empty.

For a minimization problem, we are additionally given a valuation function VAL

that measures the cost of a solution, and the objective is to find a solution s that

minimizes VAL(s). (A maximization problem considers VAL a profit and wants to

maximize VAL(s).) In practice, our optimization problems will be such that SOL(I)

is never empty here and VAL(s) ∈ ]0,∞[ for all s ∈ SOL(I).

We denote with OPT(I), or OPT if I is clear from context, one fixed solution

that attains the minimum for instance I; where no confusion can occur, we also

call its value OPT(I). In the problems we study, it will be the case that OPT(I) is

pseudopolynomially bounded in I .

An algorithm is a formalized procedure to derive an output result from some

input. Classically, this is formalized in terms of an abstract machine model, such

as the MMIX assembly language [Knu05] or Turing machines [Tur37]. We very

briefly recall the definition of the latter, since Turing machines are essential to the

definition of the complexity classes P and NP.

Definition 1.1.1. A nondeterministic Turing machine (NTM) consists of a finite

control which can read and write to an infinite tape. Formally, it is defined by a

tuple

T := (Q, q0,∆,Σ,Γ, F)(1.1)

consisting of the finite set of states Q, among which are the initial state q0 and the

set of accepting states F ⊆Q, along with a finite input alphabet Σ, which we take

to be {0,1} without loss of generality, a finite tape alphabet Γ ) Σ including the

blank symbol [̄ 6∈ Σ, and a transition relation

∆⊆ (Q×Γ)× (Γ× {−1,0,+1} ×Q) ,(1.2)

[Knu05] D. E. Knuth. MMIX - A RISC Computer for the New Millennium, volume 1 of The Art Of

Computer Programming. Addison-Wesley Longman, 2005.

[Tur37] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem.

Proceedings of the London Mathematical Society, 1937.
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1.1 Computability, complexity and approximation algorithms

where an element (q, a, a′, m, q′) denotes that upon being in state q and reading a

on the tape, T will replace a with a′ in the current cell, move the tape head to the

left, right or not at all for m =−1,+1, 0, respectively, and will then go into state q′.

If ∆ is a function δ : (Q× Γ)→ (Γ× {−1,0,+1} ×Q), we call T deterministic

(DTM).

We say that T accepts a word w ∈ Σ∗ in time f for some function f : N→ N if

there is a sequence of at most f (|w|) transitions starting from q0 with only w on

the tape to an accepting state. We denote with L f (T), the accepted language of T,

the set of words that are accepted in time f .

Finally, we define

P := {L ⊆ Σ∗ : ∃p ∈ poly(n),DTM T : L = Lp(T)}

NP := {L ⊆ Σ∗ : ∃p ∈ poly(n),NTM T : L = Lp(T)}

It is easy to see by definition that P ⊆ NP. The converse, NP ⊆ P, is unknown,

but generally assumed to be untrue. Proving or disproving it is beyond the scope of

this work.

Given two languages L1, L2 ⊆ Σ∗, L1 is polynomial-time transformable to L2 if

there is a homomorphism f : Σ∗ → Σ∗, i.e. f (w) ∈ L2 ⇐⇒ w ∈ L1, that can be

computed deterministically in polynomial time. Intuitively, this means that L1 is

at most as difficult to decide as L2, since it can be seen as a special case, up to a

polynomial-time re-writing step given by f .

There are problems in NP that are NP-complete, i.e. maximally hard in terms of

this polynomial-time reducibility: a polynomial-time DTM for such a problem can

be used to derive polynomial-time DTMs for all problems in NP. Most naturally

occuring combinatorial problems appear to be either in P or NP-complete, the latter

ones being more interesting with regard to efficiently finding sub-optimal solutions.

Among the literally hundreds of problems known to be NP-complete, we define

some which are of particular importance for the present work:

Definition 1.1.2 (Partition; SP12 in [GJ79]). Given a multiset {a1, . . . , an} ∈ Nn,

is there a subset S ⊆ {1, . . . , n} such that
∑

{ai : i ∈ S} =
∑

{ai : i ∈ {1, . . . , n} \ S}?

Definition 1.1.3 (3-Partition; SP15 in [GJ79]). Given a container size B ∈ N and

13



1 Introduction

a multiset {a1, . . . , a3n} ∈ N3n such that ai ∈ ]B/4, B/2[ and
∑3n

i=1 ai = nB, is there

a partition of {1, . . . , 3n} into sets S1, . . . , Sn such that |S1| = · · · = |Sn| = 3 and
∑

{ai : i ∈ S1}= · · ·=
∑

{ai : i ∈ Sn}= B?

Definition 1.1.4 (Relaxed 3-Partition). Given a container size B ∈ N and a multiset

{a1, . . . , a3n} ∈ N3n such that
∑3n

i=1 ai = nB, is there a partition of {1, . . . , 3n} into

sets S1, . . . , Sn such that |S1|= · · ·= |Sn|= 3 and
∑

{ai : i ∈ S1}= · · ·=
∑

{ai : i ∈
Sn}= B?

Theorem 1.1.5. Partition is NP-complete; 3-Partition and Relaxed 3-Partition are

NP-complete in the strong sense, i.e. even if the numbers are encoded in the unary

alphabet Σ = {1}.

1.1.2 Approximation algorithms

At first sight, decision problems seem to bear little relation to optimization problems.

However, minimization problems give us associated decision problems in a natural

way if we ask ‘Is there a solution of value at most k?’ (And similarly, we may ask

for a solution of value at least k for maximization problems.) Clearly, if we can

find optimal solutions, we can solve all associated decision problems by comparing

the target value with the optimal value. (Recall that we generally assume the

encoding length |OPT(I)| ∈ poly(|I |), so this comparison can be done in polynomial

time.) Unfortunately, the associated decision problems for the settings we study

will mostly turn out to be NP-complete, which means that unless P = NP, we cannot

find optimal solutions deterministically in polynomial time.

In light of the disappointing absence of fast exact algorithms, we consider

polynomial-time algorithms which are not exact. Given a minimization problem

and a polynomial-time algorithm ALG for it, we call ALG a γ-approximation if

max
I

ALG(I)
OPT(I)

≤ γ ,(1.3)

where ALG(I) denotes the value given by the algorithm and OPT(I) the optimal

14



1.1 Computability, complexity and approximation algorithms

value of instance I . Somewhat weaker, ALG is an asymptotic γ-approximation if

lim sup
OPT(I)→∞

ALG(I)
OPT(I)

≤ γ . (1.4)

A polynomial-time approximation scheme, PTAS for short, is a family of algorithms

{ALGε : ε > 0} such that ALGε is a polynmomial-time (1+ ε)-approximation. Note

particularly that ε is not part of the input of the algorithm, so the running time may

depend superpolynomially on ε. Considerably better is an efficient PTAS (EPTAS),

where ALGε has a running time bounded by f (1/ε) · poly(n) for some arbitrary

function f . If f is also polynomial, the scheme is called a fully-polynomial time

approximation scheme (FPTAS).

One trick we will commonly use to design approximation algorithms is to turn

the relation of optimization problem and associated decision problem around:

Definition 1.1.6. Given a minimization problem, a γ-relaxed algorithm for the

associated decision problem is an algorithm that for a pair (I , v) of instance I and

guessed value v either correctly determines that no solution of value at most v

exists or returns a solution of value at most γ · v.

Using such a relaxed algorithm, we can often create a γ-approximation algorithm

for the optimization problem:

Theorem 1.1.7. If OPT(I) ∈ N for all instances I, and OPT(I) ≤ p(I) for some

pseudopolynomial function p, and there is a polynomial-time γ-relaxed algorithm for

the associated decision problem, then there is a polynomial-time γ-approximation for

the optimization problem.

Proof. Let Dγ the relaxed algorithm. Then, we can obtain the wanted approxim-

ation algorithm as shown in Algorithm 1.1. As to the correctness, the algorithm

maintains that a solution of γ · u exists and is known, while a solution of ` does

not exist. In each iteration, the length of the interval, u− `, halves, so that after

dlog(p(I))e iterations, we know that no solution of value ` exists, so OPT> `, but

we have a solution of value γu= γ(`+ 1)≤ γOPT.

If the objective value is not known to be integral, we can still achieve the

following result:

15



1 Introduction

Algorithm 1.1: Approximation by relaxed decision
Input: polynomial-time algorithm Dγ, bounding polynom p, instance I
` := 0;
u := 2dlog p(I)e ; /* upper bound, rounded up to next power of 2 */
s := Dγ(u) ; /* trial solution */
while u− ` > 1 do

m := (`+ u)/2;
if Dγ(m) successful then

u := m;
s := Dγ(m);

else
` := m;

return s;

Corollary 1.1.8. If there is a pseudopolynomial function p such that 1≤ OPT(I)≤
p(I) for all instances I , and there is a polynomial-time γ-relaxed algorithm for the

associated decision problem, then there is a polynomial-time (1+ε)γ-approximation

for the optimization problem for every constant ε > 0.

Proof. We proceed as in Algorithm 1.1, however, we continue for additional

dlogε−1e iterations. Then, it holds that u− ` ≤ 2−dlogε−1e ≤ ε ≤ εOPT. As be-

fore, we know there is no solution of value `, and we have a solution of value

γ · u≤ γ(`+ ε)≤ γ(OPT+ εOPT).

1.1.3 Online algorithms

In Chapter 2, we will be studying online algorithms, i.e. algorithms that are not

given the entire input at the beginning. Since we are mostly interested in online

algorithms for scheduling problems, this manifests itself in two ways: jobs may

arrive and machines may join and leave/fail while the algorithm is working and

has already irrevocably assigned some jobs – entirely or partially – to machines.

The usual way to think of this setting is to consider the online aspect to be dictated

by an adversarial player that tries to sabotage the algorithm as much as possible.

The quality of algorithms in this setting is commonly measured by their competit-
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1.2 Outline of this thesis

ive ratio, which compares the result given by the online algorithm with the best

possible offline result, i.e. one that could be achieved in retrospect, now knowing

the decisions the adversary has made.

The flexible nature of the setting makes the algorithms slightly more difficult

to formalize. For convenience, we write them in an event-oriented fashion, i.e.

the algorithm is called whenever the outside situation changes. In addition, we

allow the algorithm to generate a polynomial number of events itself, which will

streamline the description. As to the running time, we will not give explicit numbers

but mostly study the running time per event, and for setup calculations – after all,

we must allow the algorithms at least constant time per event, and the number of

events such as machine failures is outside our control.

1.2 Outline of this thesis

The remainder of this thesis is structured as follows: in Chapter 2, we consider

scheduling problems in settings with online and semi-online machine failures.

Some of the results of this chapter have been previously published in [DS07]

and [Sch08].

In Chapter 3, scheduling on unrelated machines is studied. Particularly, we give

improved approximation algorithms for three special cases of Scheduling with

Interval Assignment Restrictions. One of the results given there was previously

published in [MSW10].

In Chapter 4, we present a 2-approximation for the two-dimensional geomet-

ric bin packing problem. This result was previously published in shorter form

in [JPS09].

[DS07] F. Diedrich and U. M. Schwarz. A framework for scheduling with online availability. In

Proc. Euro-Par, 2007.

[Sch08] U. M. Schwarz. Online scheduling on semi-related machines. Information Processing

Letters, September 2008.

[MSW10] G. Muratore, U. M. Schwarz, and G. J. Woeginger. Parallel machine scheduling with

nested job assignment restrictions. Operations Research Letters, 2010.

[JPS09] K. Jansen, L. Prädel, and U. M. Schwarz. Two for one: Tight approximation of 2d bin

packing. In Proc. WADS, 2009.
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1 Introduction

Finally, we conclude with open questions and future research directions.
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2 Online Scheduling with Machine Unavailability

2.1 Introduction

In this chapter, we present scheduling algorithms for settings in which machine

availability is not guaranteed. That this setting has become much more important

in recent years reflects a change in the way large distributed computation is

performed: initially, large-scale computing jobs would be executed on specialized

parallel ‘supercomputers’ which operate in batch mode. It is a reasonably realistic

assumption that such a computer always runs at its full power or is totally off-

line, so that the amount of processing power available is constant. (Maintenance

times would be inserted between the batch jobs; and a catastrophic failure during

execution of a job is not catered for.)

The availability of reasonably fast global networks and fast cheap computers

has changed the picture: it is now feasible to spread tasks among more than one

site, and in particular, an organization that has to manage large-scale computation

may want to invite private people to let their computers work on part of the

problem. Well-known examples of this are the SETI@home project, which analyses

extra-terrestrial radio signals, GIMPS, a project looking for large Mersenne prime

numbers, and various projects such as the World Community Grid that perform

simulations of chemical reactions for medical purposes. Such a structure requires

new scheduling algorithms: computing power is no longer a commodity that is

bought with, say, 99.999% availability, but donated because of the nature of the

project. In such a setting, it has to be accepted that donations can be withdrawn

with little or no advance warning, for example because the donating user needs

the machine’s processing power for their own local purposes. In particular, these

changes are not under the scheduler’s control.

19



2 Online Scheduling with Machine Unavailability

2.1.1 Historical overview

In classical scheduling, dynamic machine unavailability has at best played a

minor role; however, unreliable machines have been considered as far back as

1975 [Ull75] in the offline setting for the makespan objective. It is known from

Eyraud-Duboid et al. [EDMT07] that without any further restriction and without

preemptions, no constant approximation ratio is possible for the makespan object-

ive on identical machines; we show a similar construction for the online setting

with preemptions on related machines as Lemma 2.3.5 on p. 41. Similar construc-

tions have been done by Fu et al. [FHZ09] for the weighted sum of completion

times. Hence, it is common to assume that at least one machine is always available,

and the offline results listed subsequently are all in this setting. The best results are

given by Diedrich et al. [DJPT07] who give a PTAS if the number of machines m is

considered constant; in [DJ09], Diedrich and Jansen give a 3/2-approximation if

the number of machines is not constant. Both results are tight: for m constant, the

problem is strongly NP-hard by reduction of 3-Partition; for m part of the input, no

algorithm with approximation ratio 3/2− ε exists unless P= NP [DJ09].

Semi-online adversarial variants of the makespan problem were studied by

Sanlaville [San95] as well as Albers and Schmidt [AS01]. In the semi-online

setting, the next point in time when machine availability may change is known.

The discrete time step setting also considered in the following is a special case (i.e.

[Ull75] J. D. Ullman. NP-complete scheduling problems. Journal of Computer and System

Sciences, 1975.

[EDMT07] L. Eyraud-Dubois, G. Mounie, and D. Trystram. Analysis of scheduling algorithms with

reservations. In Proc. IPDPS, 2007.

[FHZ09] B. Fu, Y. Huo, and H. Zhao. Exponential inapproximability and FPTAS for scheduling

with availability constraints. Theoretical Computer Science, 2009.

[DJPT07] F. Diedrich, K. Jansen, F. Pascual, and D. Trystram. Approximation algorithms for

scheduling with reservations. In Proc. HiPC, 2007.

[DJ09] F. Diedrich and K. Jansen. Improved approximation algorithms for scheduling with

fixed jobs. In Proc. SODA, 2009.

[San95] E. Sanlaville. Nearly on line scheduling of preemptive independent tasks. Discrete

Applied Mathematics, 1995.

[AS01] S. Albers and G. Schmidt. Scheduling with unexpected machine breakdowns. Discrete

Applied Mathematics, 2001.
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2.1 Introduction

we assume that at time t + 1, availability changes) that is closely linked to the unit

execution time model. Sanlaville and Liu [LS95] have shown that longest remaining

processing time (LRPT) is an optimal strategy for minimizing the makespan even if

there are certain forms of precedence constraints on the jobs.

Albers and Schmidt [AS01] also give results on the true online setting which are

obtained by imposing a “guessed” discretization of time.

The general notion of solving an online problem by re-using offline solutions,

which is central to the algorithms we propose, was used by Hall et al. [HSW96]

and earlier by Shmoys et al. [SWW95], where
∑

w jC j and makespan objectives,

respectively, with online job arrivals were approximated using corresponding or

related offline algorithms.

2.1.2 New results

In this chapter, we consider three settings that give different abilities to the ad-

versary. We start by a very simple setting where preemptions and machine failures

can only happen in discrete timesteps. We consider both makespan and average

completion time objectives: for the average completion time objective, we give

general inapproximability results and identify special cases in which the SRPT

heuristic continues to be optimal. We then present a meta-heuristic MIMIC which

can be used to transfer approximation results from offline settings to the online

setting with failure. In particular, this heuristic can handle release times of jobs and

any completion-time based objective, as long as an offline approximation algorithm

is known. Under a probabilistic model of machine failure, we can then bound

the quality of MIMIC in terms of machine reliability and quality of the underlying

algorithm.

In the second setting, we strengthen the algorithm by allowing look-ahead, i.e.

the algorithm is aware of the next change in machine availability, and arbitrary

[LS95] Z. Liu and E. Sanlaville. Preemptive scheduling with variable profile, precedence

constraints and due dates. Discrete Applied Mathematics, 1995.

[HSW96] L. A. Hall, D. B. Shmoys, and J. Wein. Scheduling to minimize average completion time:

Off-line and on-line algorithms. In Proc. SODA, 1996.

[SWW95] D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines on-line.

SIAM Journal on Computing, 1995.
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2 Online Scheduling with Machine Unavailability

preemptions. We show that in this adapted setting, MIMIC can also handle pre-

cendence constraints without further degradation of approximation. However,

these results – and the general approach taken by MIMIC – cannot be translated to

related machines in a meaningful way. Nevertheless, we give an algorithm LAFM

that is optimal for the problem of minimizing the makespan on related machines

with failures, even when jobs have non-zero release times.

Our third setting features a stronger adversary than the second: we now do

away with the possibility of look-ahead. We show that our algorithm LAFM can be

modified to SALAFM which yields a solution of value OPT+ ε for arbitrary ε > 0,

as long as some machine is always available.

2.2 Scheduling in discrete time steps

We will consider the problem of scheduling n jobs 1, . . . , n, where a job i has

processing time pi which is known a priori. We denote the completion time of job

i in schedule σ with Ci(σ) and drop the schedule where it is clear from context.

Since we are allowed to move jobs between machines anyway, it is sufficient to

consider the number of machines present at any time, not the identity of the

machines. We denote this number of machines available for a given time t as m(t)

and the total number of machines m=maxt∈Nm(t). The SRPT algorithm simply

schedules the jobs of shortest remaining processing time in every step, preempting

running jobs if necessary.

2.2.1 Lower bounds

Theorem 2.2.1. There is no online algorithm for P, fail | p j ∈ {1,2} |
∑

j C j with

competitive ratio 2− ε for any ε > 0.

We consider instances of the following structure: for m even, there are k = m/2

jobs of length 1 and k jobs of length 2. During the first time step, m/2 machines are

available. The adversary will then choose from two different machine availability

patterns A, B, depending on the number j of short jobs executed during the first

step.
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2.2 Scheduling in discrete time steps

(a) Pattern A (b) Pattern B
Figure 2.1: The two patterns of the adversary

Let us first describe these patterns, which are also sketched in Figure 2.1. In

pattern A, all m machines are available during the second time step, and only one

machine is available from the third step on. In pattern B, only one machine is

available from the second step onwards. The intuition is as follows: if j is large,

i.e. the algorithm executes many small jobs in the first step, the adversary chooses

pattern A. In this case, there will be j idle machines during the second step. The

optimal solution would delay all short jobs to time 2 for a loss of j, however, all

jobs complete by time 2. If j is small, there are many jobs left and we try to delay

as many of them as possible.

Let us first show some auxiliary results that help bound the quality of any

algorithm:

Remark 2.2.2. For one machine, the optimal sum of completion times is given by

scheduling the jobs in order of non-descending length.

In particular, for a jobs of length 1 and b jobs of length 2, a sum of completion

times of
∑

C j = a(a+ 1)/2+ ab+ b(b+ 1) (2.1)

is achieved.

Proof. The general result is folklore by now and can for example be seen as a

special case of McNaughton’s result [McN59] that SRPT is optimal even on m

machines.

[McN59] R. McNaughton. Scheduling with deadlines and loss functions. Management Science,

1959.
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2 Online Scheduling with Machine Unavailability

As to the second claim, it remains to observe that we have jobs terminating at

times 1,2, . . . , a, a+ 2, a+ 4, . . . , a+ 2b, so the total sum is

∑

C j =
a
∑

i=1

i+
b
∑

i=1

(a+ 2i) =
a(a+ 1)

2
+ ab+ 2

b(b+ 1)
2

,(2.2)

as claimed.

Lemma 2.2.3. If the adversary chooses pattern A, and j short jobs have been com-

pleted by the algorithm ALG in the first step, we have

ALG ≥ Ak( j) := 4k+
( j− 1) j

2
.(2.3)

Proof. By setting, j short jobs terminate at time 1, so at most k− j long jobs were

started at time 1, and all available jobs can run at time 2. Of these jobs, k− j are

short. Hence, at the end of time 2, at best all short jobs and k− j long jobs have

terminated, leaving at least j long jobs with 1 unit of remaining processing time

each, which are executed at time 3,4, . . . , 2+ j. In total, the sum of completion

times is at least

j · 1+ (k− j) · 2+ (k− j) · 2+
j
∑

i=1

(2+ i) =− j+ 4k+
j
∑

i=1

i

as claimed. Note in particular that Ak( j) is increasing in j, hence its minimum is

Ak(0) = 4k.

Corollary 2.2.4. If the adversary chooses A, it holds that OPT= 4k.

Proof. We know that OPT ≤ 4k = Ak(0), because Ak(0) is achieved by executing

only large jobs in the first step. Assume that OPT < 4k holds. Since we have 2k

jobs, this means there is some number j of (short by neccessity) jobs that terminate

at time 1. As reasoned above, this means that there are at least j jobs that have

not terminated by the end of step 2. Hence, for each job that terminates at time 1,

there is a job that terminates at time 3 or later, which contradicts the assumption

that the average completion time is strictly less than 2.
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2.2 Scheduling in discrete time steps

Lemma 2.2.5. If the adversary chooses B, and j short jobs have been completed by

ALG in the first step, we have

ALG ≥ Bk( j) := 2k2+ 3k− 2k j+ j2 , (2.4)

which is decreasing in j.

Proof. In this case, j jobs terminate at time 1. At this time, of the 2k− j remaining

jobs, at least j jobs are still long and at most 2(k − j) are short. By applying

Remark 2.2.2 with an offset of +1 for all 2k− j remaining jobs, we get a total sum

of

∑

C j ≤ j+(2k− j)+(k− j)(2k−2 j+1)+2(k− j) j+ j( j+1) = 2k2+3k−2k j+ j2 . (2.5)

As to the monotonicity, we note that for j < k, we have

Bk( j+ 1)− Bk( j) =−2k( j+ 1) + ( j+ 1)2+ 2k j− j2 =−2k+ 2 j+ 1≤−1 , (2.6)

as required.

Corollary 2.2.6. If the adversary chooses B, it holds that OPT≤ k2+ 3k.

From this, we can immediately conclude:

Corollary 2.2.7. If the algorithm executes j short jobs during the first step, the

adversary can force a competitive ratio of at least

max{Ak( j)/Ak(0), Bk( j)/Bk(k)} . (2.7)

Considering all values of j and k, this implies:

Corollary 2.2.8. The competitive ratio of any online algorithm is bounded from

below by

sup
k>0

min
1≤ j≤k

max{Ak( j)/Ak(0), Bk( j)/Bk(k)} (2.8)

Note that for any k, Ak( j)/Ak(0) becomes 1 for j = 0 and is increasing in

j; similarly, Bk( j)/Bk(k) equals 1 for j = k and is decreasing in j. This means

that to find the minimal maximum it is sufficient to solve the quadratic equation
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2 Online Scheduling with Machine Unavailability

Ak( j)/Ak(0) = Bk( j)/Bk(k) for j, and a solution must exist. Using

Ak( j)Bk(k) = (k
2+3k)( j2/2− j/2+4k) = (k/2)·((k+3) j2−(k+3) j+8k2+24k)(2.9)

and

Bk( j)Ak(0) = ( j
2− 2k j+ 3k+ 2k2)(4k) = (k/2) · (8 j2− 16k j+ 16k2+ 24k)(2.10)

and simplifying, we need to solve

(k+ 3) j2− (k+ 3) j+ 8k2 = 8 j2− 16k j+ 16k2 ,

i.e.

(k− 5) j2+ (15k− 3) j− 8k2 = 0 .

For k ≤ 5, the values are shown in Table 2.1; for k ≥ 6 we can exploit that a

quadratic equation ax2+ bx + c is solved by

x1,2 =
n

−
1

2a
�

−b±
p

b2− 4c2�
o

to obtain the solution

j1,2 =
n3− 15k±

p

32k3+ 65k2− 90k+ 9

2k− 10

o

.(2.11)

Abbreviating the radicand ∆ :=∆(k) = 32k3+ 65k2− 90k+ 9, we note that for

k ≥ 6, we have

∆(k) = 32k3+ 65k2− 90k+ 9

≥ (32 · 6)k2+ 50k2+ (15 · 6)k− 90k+ 9> 242k2 ≥ (15k)2 > 0 ,
(2.12)

so both solutions are real-valued and the numerator in (2.11) is positive for the

‘plus’ branch and negative for the ‘minus’ branch. The denominator 2k − 10 is

positive for all k > 5, so the ‘minus’ branch of (2.11) is negative for k > 5, while

the ‘plus’ branch is positive. Setting j∗ := 3−15k+
p
∆

2k−10
∈Θ(

p
k) and substituting this
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2.2 Scheduling in discrete time steps

(a) Values of Ak( j)/Ak(0)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5
k = 2 1 1 9/8
k = 3 1 1 13/12 15/12
k = 4 1 1 17/16 19/16 22/16
k = 5 1 1 21/20 23/20 26/20 30/20

(b) Values of Bk( j)/Bk(k)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5
k = 2 14/10 11/10 1
k = 3 27/18 22/18 19/18 1
k = 4 44/28 37/28 32/28 29/28 1
k = 5 65/40 56/40 49/40 44/40 41/40 1

Table 2.1: Ak( j)/Ak(0) and Bk( j)/Bk(k) for
k ≤ 5; lower bound shown bold

choice into Ak( j)/Ak(0), we obtain a lower bound of

Ak( j
∗)/Ak(0) =

4k+ j∗( j∗− 1)/2
4k

= 1+
( j∗)2− j∗

8k

= 1+
�(3− 15k)2+ (6− 30k)

p
∆+∆

32k3+Θ(k2)

−
3− 15k+

p

32k3+ 65k2− 90k+ 9

16k2−Θ(k)

�

= 1+
32k3+O(k2.5)
32k3+Θ(k2)

− o(1)

→ 2 .

(2.13)

This proves Theorem 2.2.1; Figure 2.2 shows the values of the lower bound for

some small values of k.

As mentioned above, a classical result by McNaughton [McN59] is that SRPT is

optimal even on multiple machines as long as the completion times are unweighted.

This is of course not possible in our setting by Theorem 2.2.1; but as the following

example demonstrates, SRPT does not even have constant competitive ratio.

Theorem 2.2.9. For Pm, fail | pmtn |
∑

j C j , the competitive ratio of SRPT is Ω(n).

Proof. For m ∈ N, m even, consider m machines and m small jobs with p1 = · · ·=
pm = 1 and m/2 large jobs with pm+1 = · · ·= pm+m/2 = 2. Clearly, n=Θ(m). We
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2 Online Scheduling with Machine Unavailability

Figure 2.2: Lower bounds on competitive ratio for
small k 0 2000 4000 6000 8000 104
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Figure 2.3: Optimal and SRPT schedule for m =
6 machines.

7

8

9

1

2

3

4

5

6

(a) Optimal schedule

1

2

3

4

5

6

7

8

8

9

9

(b) SRPT schedule
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2.2 Scheduling in discrete time steps

set m(1) = m(2) = m and m(t) = 1 for every t > 2.

As shown in Figure 2.3, SRPT generates a schedule σ2 by starting the m small

jobs at time 1 resulting in C j(σ2) = 1 for each j ∈ {1, . . . , m}. At time 2 all of

the m/2 large jobs are started; however, they cannot be finished at time 2 but

as time proceeds, each of them gets executed in a successive time step. This

means that Cm+ j(σ2) = 2+ j holds for each j ∈ {1, . . . , m/2}. In total, we obtain
∑

C j = m+
∑m/2

j=1 (2+ j) = Ω(m2).

A better schedule will start all long jobs at time 1 and finishes all jobs by time 2,

for
∑

C j ≤ 3m.

2.2.2 SRPT for special availability patterns

Throughout this section, we assume the following availability pattern which has

been previously studied for min-max objectives [SS98]:

Definition 2.2.10. Let m : N→ N the machine availability function; m forms an

increasing zig-zag pattern iff the following condition holds:

∀t ∈ N : m(t)≥max
t ′≤t

m(t ′)− 1 .

Intuitively, we may imagine that machines may join at any time and that only one

of the machines is unreliable. An example is shown in Figure 2.4.

Lemma 2.2.11. For every schedule σ, we can find a schedule σ′ such that pi < p j

implies Ci(σ′)≤ C j(σ′) for each i, j ∈ {1, . . . , n} and
∑n

j=1 C j(σ′)≤
∑n

j=1 C j(σ).

Proof. Fix a schedule σ. Let i, j ∈ {1, . . . , n} with pi < p j but Ci > C j, as sketched

in Figure 2.5.

Let Ii , I j be the sets of times in which i, j are executed in σ, respectively. We have

0 < |Ii \ I j| < |I j \ Ii| since pi < p j, Ci > C j. Let g : Ii \ I j → I j \ Ii be an injective

mapping; construct a schedule σ′ from σ in the following way: for all t ∈ Ii \ I j

exchange the execution of job i at time t with the execution of job j at time g(t).

[SS98] E. Sanlaville and G. Schmidt. Machine scheduling with availability constraints. Acta

Informatica, 1998.
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2 Online Scheduling with Machine Unavailability

Figure 2.4: Increasing zig-zag availability pattern

Figure 2.5: Reordering jobs in Lemma 2.2.11

j j j j

i i i

(a) before reordering

j j i j

i i j

(b) after reordering
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2.2 Scheduling in discrete time steps

Then we have Ck(σ) = Ck(σ′) for every k 6= i, j, furthermore Ci(σ) = C j(σ′) and

C j(σ)≥ Ci(σ′). Iterating the construction yields the claim.

Theorem 2.2.12. SRPT is an optimal algorithm if machine availabilities form an

increasing zig-zag pattern.

Proof. Assume a counterexample I with jobs 1, . . . , n and m such that
∑n

j=1 p j is

minimal. Fix an optimal schedule σOPT and an SRPT schedule σALG such that the

set D of jobs that run at time 1 in only one of σOPT,σALG is of minimal size.

If |D| = 0, then σOPT and σALG coincide at time 1 up to permutation of machines.

In this case, denote with C the set of jobs running at time 1. (This set is the same

for σOPT and σALG.) By definition of SRPT, C 6= ;. We define a new instance I ′ by

setting

∀ j = 1, . . . , n : p′j :=







p j − 1, j ∈ C ,

p j , j 6∈ C

∀t ∈ N : m′(t) := m(t + 1) .

Every solution to I ′ of value s induces a solution to I that has value s + n by

running the jobs of C in step 1; on the other hand, every solution to I of value s

that runs C in the first step induces a solution of value s− n to I ′. In particular,

OPT(I) = OPT(I ′) + n and it is easy to see that SRPT(I) = SRPT(I ′) + n. (In this

case, C is a selection of the shortest jobs in I , and after decreasing them, they will

still be the shortest jobs in I ′.) Since
∑n

j=1 p′i <
∑n

j=1 pi , we conclude that I ′ is not

a counterexample, so OPT(I) = OPT(I ′) + n= SRPT(I ′) + n= SRPT(I), so I is not

a counterexample, either, which contradicts our assumption.

Hence, D 6= ;.
We will now argue that there must be some job run by σOPT that is not run by

σALG at time 1 and vice versa and then show that we can exchange these jobs in

σOPT without increasing the objective function value, leading to a counterexample

of smaller |D|.
Assume that all jobs run by σOPT also run in σALG. Since |D|> 0, there is some

job in σALG that is not in σOPT, hence σOPT contains an idle machine. Hence, all n
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2 Online Scheduling with Machine Unavailability

Figure 2.6: Case 1 in Theorem 2.2.12
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available jobs must run in σOPT at time 1 by optimality, a contradiction to |D|> 0.

Thus there is a job j run by σOPT which is not run by σALG. Since not all n jobs

can run in σALG at time 1 and SRPT is greedy, there must be a different job i which

is run in σALG, but not in σOPT. By definition of SRPT, we may assume pi < p j,

and Ci(σOPT)≤ C j(σOPT) by Lemma 2.2.11.

We will now show that it is always possible to modify σOPT to execute job i at

time 1 instead of job j. Preferring job i will decrease its completion time by at least

1, so it is sufficient to show that the total sum of completion times of the other jobs

is increased by at most 1. This would then yield a counterexample of smaller |D|,
and iteratively, we arrive at D = ;.

Case 1: if job j does not run at time Ci in σOPT, we have C j > Ci and we can

execute job i at time 1 and job j at time Ci, cf. Figure 2.6. This does not increase

the completion time C j , and any other job’s completion time remains unchanged.

Case 2: The following construction is sketched in Figure 2.7. In this case, job j

does run at time Ci. We will execute job i at time 1 and job j at time C j + 1 for

a total change of
∑

C j of at most 0. This can trivially be done if there is an idle

machine in σOPT at time C j + 1. Otherwise, there are m(C j + 1) jobs running at

that time. We still have an idle machine at time Ci , freed up by moving Ji to time

1, and want to displace one of the m(C j + 1) jobs into this space. We note that

we may not choose jobs that are already running at time Ci. There are at most

m(Ci)− 2 such jobs, since we know jobs i and j are running at that time. By the

32
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j
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(b) after swapping
Figure 2.7: Case 2 in Theorem 2.2.12

increasing zig-zag condition and Ci ≤ C j < C j + 1, we know that

m(C j + 1)≥ m(Ci)− 1> m(Ci)− 2 ,

so at least one job, say job k, is not excluded. Since no part of k is delayed, Ck does

not increase.

By letting the length of the individual timestep go to 0, we obtain

Corollary 2.2.13. SRPT is optimal for increasing zig-zag pattern even for non-

integral failure times without lookahead.

It would be interesting to extend this result to the setting with release times. It

is possible to generalize Lemma 2.2.11 to this setting: if we denote with pi@t the

remaining processing time of i at time t (under some schedule σ which is clear

from context) with the understanding that pi@t is undefined for t < ri , i.e. before

the job is released, we can show by the same proof as for Lemma 2.2.11:

Lemma 2.2.14. For every schedule σ, there is a schedule σ′ that is at least as good

as σ (in terms of
∑

j C j) and satisfies

pi@t < p j@t =⇒ Ci ≤ C j (2.14)

for all i, j, t where defined.

However, SRPT is in fact not optimal in the presence of release times, as the fol-

lowing example shows, the key problem being that the application of Lemma 2.2.11
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2 Online Scheduling with Machine Unavailability

Figure 2.8: An example that SRPT is suboptimal in the presence
of release times.
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(b) Optimal schedule
of value 10

increases the makespan of the schedule:

Example 2.2.15. Consider four jobs with p1 = 2, p2 = p3 = p4 = 1, r1 = r2 = 0,

r2 = r3 = 2. For the machines, set m(1) = 1 and m(t) = 2 for t > 1. As shown in

Figure 2.8, the SRPT schedule has total value 1+ 3+ 3+ 4 = 11, while an optimal

schedule has value 2+ 2+ 3+ 3= 10.

2.2.3 Algorithm MIMIC

The basic idea of algorithm MIMIC is to use an offline approximation for reliable

machines and re-use this given schedule as far as possible. More precisely, let us

assume that we already have an α-approximate schedule σ for the offline case

for an objective in {
∑

w jC j ,
∑

C j , Cmax}. We will first convert the schedule into a

queue Q in the following way; we note that this is for expository reasons and not

needed in the implementation.

For any time t and any machine i ∈ {1, . . . , m}, the job running at time

t on machine i in schedule σ is at position (t − 1)m+ i in the queue.
(2.15)

Note that this means “idle” positions may occur in the queue; this is not exploited.

We can now use the queue in our online scheduling algorithm in Algorithm 2.1.

Remark 2.2.16. In the generated schedule, no job runs in parallel to itself.

Proof. We assume without loss of generality that there are no redundant preemp-

tions in the offline schedule σ, i.e. if a job j runs at time t as well as at time t + 1,

it remains on the same machine. Note that this is trivial if the offline schedule is

non-preemptive; if it is preemptive, we can simply reorder the jobs accordingly.

Hence, two entries in the queue corresponding to the same job must be at least m
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2.2 Scheduling in discrete time steps

Algorithm 2.1: Algorithm MIMIC for independent jobs

Setup Calculate the schedule queue Q ;
Upon time t do

Let m(t) the number of available machines for the next step;
Preempt all currently running jobs;
Remove the first max{m(t), |Q|} jobs from Q and schedule them;
Wait until time t + 1;

1

2 3

4

(a) Offline Schedule

1

2

34

4

1

3

4

(b) Online Schedule

1 2 4 1 3 4 3 4

(c) The queue Q

Figure 2.9: Example of algorithm
MIMIC’s behaviour

positions apart. Since at no time in the online schedule, more than m machines are

available, no two entries of the same job can be eligible simultaneously.

Example 2.2.17. Figure 2.9 shows an offline schedule without machine failure, the

corresponding queue Q, and an online schedule generated by MIMIC in case of

machine failure.

To bound the loss we incur, we now take a different view upon machine failure:

instead of imagining failed machines, we consider that “failure blocks” are inserted

into the queue. Since there is a one-to-one correspondence of machine/time

positions and queue positions given by (2.15), this is equivalent to machine failures.

We recall an elementary probabilistic fact:

Remark 2.2.18 (Expected run length). If in every timestep, every machine fails in-

dependently with probability f , the expected number of failure blocks immediately

in front of each non-failure block is f /(1− f ).

We can now bound how long the expected completion of a single job is delayed

in the online schedule σ′:

Lemma 2.2.19. For any job j, we have E[C j(σ′)]≤
1

1− f
C j(σ) + 1.
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2 Online Scheduling with Machine Unavailability

Table 2.2: Selection of known
offline results that can be used
by MIMIC.

Setting Source ax. ratio

P | pmtn |
∑

j C j McNaughton [McN59] 1
P ||
∑

j w jC j Kawaguchi and Kyan [KK86] (1+
p

2)/2

P | r j , pmtn |
∑

j w jC j Afrati et al. [ABC+99] PTAS
P | r j , prec, pmtn |

∑

j w jC j Hall et al. [HSW96] 3

Proof. We note that since there are always m machines in the offline setting,

there cannot be any blocks corresponding to j in the queue after position mC j(σ)

before failure blocks are inserted. This means that after random insertion of

the failure blocks, the expected position of the last block of job j is at most
�

1+ f /(1− f )
�

mC j(σ). In light of (2.15), this yields

E[C j(σ
′)] = d

1

m
(mC j(σ)

1

1− f
)e ≤

1

1− f
C j(σ) + 1 ,

which proves the claim.

Theorem 2.2.20. MIMIC has asymptotic approximation ratio 1/(1 − f ) for un-

weighted sum of completion times and (1+ε)/(1− f ) for sum of weighted completion

times with release dates.

This is achieved by exploiting known offline results for different settings (cf.

Table 2.2). We should note in particular that since machine failure at most delays

a job, our model is applicable to settings with non-zero release dates. We list

the result of Kawaguchi & Kyan [KK86] mainly because it is obtained by a very

simple largest ratio first heuristic, as opposed to the more sophisticated methods of

Afrati et al. [ABC+99], which gives it a very low computational complexity.

We note that our results stated so far cannot be simply used if there are general

precedence constraints, as the following example shows:

[KK86] T. Kawaguchi and S. Kyan. Worst case bound of an LRF schedule for the mean weighted

flow-time problem. SIAM Journal on Computing, 1986.

[ABC+99] F. N. Afrati, E. Bampis, C. Chekuri, D. R. Karger, C. Kenyon, S. Khanna, I. Milis,

M. Queyranne, M. Skutella, C. Stein, and M. Sviridenko. Approximation schemes for

minimizing average weighted completion time with release dates. In Proc. FOCS, 1999.
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Figure 2.10: MIMIC fails for general precedence constraints

Example 2.2.21. Consider four jobs 1, . . . , 4 of unit execution time such that {1, 2} ≺
{3,4}. The queue 1234 corresponds to an optimal offline schedule. If a failure

occurs during the first time step, we have C2 = 2 and MIMIC schedules one of jobs

3 and 4 in parallel to job 2, as shown in Figure 2.10.

The main problem is that jobs 2 and 3 have a distance of 1< m = 2 in the queue,

so they may be scheduled for the same time step online even though there is a

precedence constraint on them. Conversely, if the distance is at least m, they are

never scheduled for the same time step.

Since our setting allows free migration of a job from one machine to another, we

can sometimes avoid this situation: if the precedence constraints form an in-forest,

i.e. every job has at most one direct successor, we can rearrange the jobs in the

following way: if, in the offline schedule, a job j is first started at some time t,

and 1, . . . , k, k ≥ 1 are those of job j’s direct predecessors that run at time t − 1,

w.l.o.g. on machines 1, . . . , k, we assign job j to machine k. This ensures that the

distance in the queue from job j to job k and hence also to job 1, . . . , k− 1 is at

least m. This construction is always possible, because j will be the only job to

depend immediately on job k.

If we have general precedence constraints, we cannot guarantee that all jobs are

sufficiently segregated from their predecessors, as seen above. As we will study in

the next section, this can be remedied if we allow preemptions at arbitrary points.

2.3 Scheduling with limited lookahead

In this section, we will adapt the idea of algorithm MIMIC—reusing an offline

approximation—to the more general semi-online setting by methods similar to
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2 Online Scheduling with Machine Unavailability

Prasanna & Musicus’ continuous analysis [PM96]. In the semi-online setting,

changes of machine availability and preemptions may occur at any time whatsoever,

however, we know in advance the next point in time when a change of machine

availability will take place. We can use this knowledge to better convert an

offline schedule into an online schedule, using the algorithm MIMIC′ given as

Algorithm 2.2: during each interval of constant machine availability, we calculate

the area m(t)δ we can schedule. This area will be used up in time m(t)δ/m in the

offline schedule. We take the job fractions as executed in the offline schedule and

schedule them online with McNaughton’s wrap-around rule [McN59]. Precedence

constraints can be handled by suitable insertion of artificial interruptions. An

example of this correspondence is shown in Figure 2.11.

Algorithm 2.2: Algorithm MIMIC′

Setup Calculate offline schedule σoffline;
Set toffline := 0 ;
Upon time t do

Let δ such that the next event is at time t +δ;
Let m(t) the number of machines available in the interval [t, t +δ[;
Set δoffline =min{m(t)δ/m, min{C j(σoffline)− toffline|toffline ≤ C j(σoffline)}};
Set δonline = mδoffline/m(t);
Schedule all job fractions that run in the interval [toffline, toffline+δoffline[ in
σoffline in the online interval [t, t +δonline[ using McNaughton’s rule;
Set toffline := toffline+δoffline;
Wait until time t +δonline;

Since at time C j(σoffline), a total area of mC j(σoffline) is completed, we have the

following bound on the online completion times C j(σonline):

∫ C j(σonline)

0

m(t)d t ≤ mC j(σoffline) .(2.16)

If we set ∀t : E[m(t)] = (1− f )m to approximate our independent failure setting

above, equation (2.16) simplifies to C j(σ)(1− f )m ≤ mC j(σoffline), which again

[PM96] G. N. S. Prasanna and B. R. Musicus. The optimal control approach to generalized

multiprocesor scheduling. Algorithmica, 1996.
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Figure 2.11: Example of MIMIC′ behaviour. Top: offline pre-
generated schedule, bottom: online schedule generated

yields a 1/(1− f )-approximation as in Lemma 2.2.19, thus we obtain the following

result.

Theorem 2.3.1. Algorithm MIMIC’ non-asymptotically matches the approximation

rates of MIMIC for the continuous semi-online model.

Note that the key property of algorithm MIMIC is the following: for every online

point in time t, there is an offline time t ′ such that MIMIC has executed in [0, t]

exactly those job fractions that are executed in [0, t ′] in the offline schedule.

Observing that an important piece of this result is the possibility to generate a

new fractional schedule optimally, it seems natural to study a generalization to

related machines. This is motivated by the following result:

Theorem 2.3.2 (Liu and Yang [LY74]). The heuristic LRPTFM (Longest Processing

Time on the Fastest Machine) minimizes the makespan (in the absence of machine

failures), and the optimal makespan is

max
�

∑n
j=1 p j

∑m
i=1 si

,

∑k
j=1 p j

∑k
i=1 si

: k = 1, . . . , m
�

, (2.17)

where we suppose p1 ≥ p2 ≥ . . . pn and s1 ≥ s2 ≥ . . . sm.

[LY74] J. W. S. Liu and A.-T. Yang. Optimal scheduling of independent tasks on heterogeneous

computing systems. In ACM 74: Proceedings of the 1974 annual conference, 1974.
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Figure 2.12: MIMIC on related machines will leave
machines idle
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This is not sufficient, however: the newly-generated schedule should also use all

machines. This is not the case, as the following example shows:

Example 2.3.3. Consider three jobs of lengths 6,2,2, respectively, and three ma-

chines of speeds 3, 1, 1. There is an obvious schedule of makespan 2. Consider now

a failure of the fast machine in the interval [0,1]. Since the remaining machines

have speed 1 only, MIMIC can at most schedule the offline interval [0,1/3] as

shown in Figure 2.12 and will consequently leave one of the remaining machines

idle even though no machine is idle in the original schedule.

We remark that by Theorem 2.3.2, we can bound the error in concrete cases

and make a a posteriori evaluation of the schedule, but since the results depend on

the combination of machine speeds and job lengths, a concise closed expression

like Theorem 2.2.20 or (2.16) giving the expected loss in approximation quality is

unlikely to exist.

However, we can still show results for the makespan objective, which we will

devote the rest of the section to.

Albers and Schmidt already proved that without preemptions, the problem with

online failures is essentially untreatable [AS01]:

Lemma 2.3.4. P, fail | pmtn | Cmax with online failure does not admit algorithms

with constant competitive ratio.

To circumvent this problem, they propose to force that at least one machine

should be available at any given point in time. (Given that we are allowed pre-

emption and migration without penalty, without loss of generality this is always

the same machine.) Unfortunately, this additional restriction is not strong enough

for the case of related machines, even when we always have at least a constant

amount of processing power available:
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Figure 2.13: Inapproximability without lookahead

Lemma 2.3.5. For any constant S > 0, the problem Q, fail | pmtn | Cmax with online

failure does not admit algorithms with constant competitive ratio, even when at any

point in time, the total speed of available machines is at least S.

Proof. Fix any S > 0 and assume for sake of contradiction that there is an algorithm

A that has competitive ratio c ≥ 1. Consider the following instance adapted

from [AS01]: initially, there are two jobs 1 and 2, both of length S, and one

machine M1 of speed S. Denote with t0 the time at which algorithm A first

preempts or terminates a job. By symmetry, we suppose without loss of generality

that this is job 1 and note that by definition, only job 1 runs during the interval

[0, t0[.

If t0 > 2c ≥ 2, then A is not c-competitive because the overall makespan will be

at least t0 + 1≥ 2c + 1, whereas an optimal schedule will start job 1 at time 0 and

job 2 at time 1 for a makespan of 2.

In the interval [t0, 2[, which might be empty, machine M1 becomes unavailable

and is replaced by two machines M2, M3 of speeds s2 = s3 = S/2, which are

available until time 2. This is sufficient for an optimal schedule, which will

schedule job 1 on M1 in the interval [0, t0/2), job 2 on M1 in the interval [t0/2, t0)

and both jobs in the interval [t0, 2), cf. Figure 2.13. At time 2, either job will have

remaining time q1 = q2 = S − (t0/2) · S − (2− t0) · S/2= 0. However, under the

schedule generated by A, job 2 has remaining time at least

S− (2− t0) · S/2= S · t0/2> 0 , (2.18)

because by definition, it runs only in the interval [t0, 2) and on at most one of the

two machines at any time.

At time 2, machines M2 and M3 become unavailable and are replaced by k :=

2d2c/t0e+1 machines of speed S/k. Clearly, A can only use one of these machines,
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2 Online Scheduling with Machine Unavailability

and needs it for at least

S · t0/2

S/k
= k · t0/2= (2d2c/t0e+ 1) · t0/2≥ 2c+ t0/2> 2c(2.19)

units of time, which means its total makespan is at least 2c + 2, which means that

A is at best c+ 1-competitive.

The crucial point here is that in the related-machine case, a machine that is

present might still be so slow as to be nearly useless. Hence, we have to make

the somewhat stronger assumption that the machines are not arbitrarily slow, i.e.

by rescaling, we assume that si ≥ 1 for all machines i with si > 0. For notational

simplicity, we will also assume that the number of machines is always at least the

number of jobs, with extra machines having speed 0, and that there is always a job

of length 0.

2.3.1 The LRPTFM heuristic

One important subroutine of our algorithms is a modification of the Longest Remain-

ing Processing Time on the Fastest Machine (LRPTFM) heuristic. As the name sug-

gests, this algorithm maintains at every point in time that for every k ∈ {1, . . . , n},
the k jobs with the longest remaining processing times are currently executed on

the k fastest machines. We note that as stated, this is not an algorithm in the

strictest sense of the word, since it usually does not terminate: it generates an

infinite number of preemptions without advancing the schedule, as the following

example shows:

Example 2.3.6. Consider two jobs of the same length p1 = p2, and one available

machine. Without loss of generality, LRPTFM breaks the tie in favour of job 1

and starts executing it. After an infinitesimal amount of time ι, job 1’s remaining

processing time becomes smaller than that of job 2, so it is preempted in favour of

job 2. After 2ι, job 2 will again become shorter than job 1 and so on.

We can only interpret this schedule as a relaxation in the sense that a machine

is allowed to execute multiple jobs concurrently, dividing its speed between them

arbitrarily, and a job is allowed to be executed fractionally on multiple machines
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2.3 Scheduling with limited lookahead

at the same time, as long as the fractions add up to 1 over all machines. The

importance of the heuristic lies in the following classical result:

Theorem 2.3.7 (Liu and Yang [LY74]). LRPTFM minimizes the makespan (in the

absence of machine failures), and the optimal makespan is

max
�

∑n
j=1 p j

∑m
i=1 si

,

∑k
j=1 p j

∑k
i=1 si

: k = 1, . . . , m
�

, (2.20)

where we suppose p1 ≥ p2 ≥ . . . pn and s1 ≥ s2 ≥ . . . sm.

Such a schedule is obviously not reasonably displayed as the usual Gantt chart,

we will therefore use a different graphical display in the following: namely, we

plot, for every job, its remaining processing time vs. time, which we will call a RPT

diagram. The slope of the line then indicates the speed of the machine a job is

running on, and LRPTFM’s infinite number of preemptions corresponds to a slope

which is not naturally occuring among the machines’ speeds.

Example 2.3.8. Consider the instance shown in Figure 2.14: two machines are

available, one of speed s1 = 2 and one of speed s2 = 1. The initial processing times

are 5, 4, 1.5 and 1, respectively. At first, the faster machine is assigned to the

longest job and the slower to the job of length 4. At time 1, both these jobs have

remaining length 3 and start sharing both machines, resulting in an effective speed

of 1.5 per machine. At time 2, the longest three jobs now all have length 1.5. At

this point, all four jobs share the machines evenly until they all finish at the same

time.

With this in mind, we can extend a partial schedule in the way given as Al-

gorithm 2.3. The clusters defined there are sets of jobs that have the same remain-

ing processing time, i.e. they share a line in LRPTFM’s RPT diagram. The schedule

is continued until ‘two lines meet’. Note that at this point, we do not yet consider

machine failures, this will be done by suitable choice of the parameter vmax.

Example 2.3.9. Continuing Example 2.3.8, Figure 2.15 shows the schedule gener-

ated by Algorithm 2.3 for the same instance. The dashed lines show the fractional

schedule; note that the solid lines, corresponding to the proper schedule, intersect

in all places where the slope of the dashed lines change.
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2 Online Scheduling with Machine Unavailability

Figure 2.14: Plotting remaining processing time vs. time
for LRPT.
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Figure 2.15: Schedule generated by Algorithm 2.3
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2.3 Scheduling with limited lookahead

Algorithm 2.3: Discrete Longest Remaining Processing Time on the Fastest
Machine
Input: Jobs with remaining processing times q1 ≥ · · · ≥ qn = 0,
machines with speeds s1 ≥ . . . sm ≥ 1, sm+1 = · · ·= sn = 0
maximal schedule span vmax
Output: v > 0 and a schedule spanning the next v units of time
// Define the clusters and their length
C0 := ;, ρ0 :=∞, k := 0;
for i := 1, . . . , n do

if qi = ρk then
// Continue the current cluster
Ck := Ck ∪ {i};

else
// Start a new cluster
σk := i− 1;
k := k+ 1;
Ck := {i}, ρk := qi;

// Find average speed per job in cluster
for i := 1, . . . , k− 1 do

s̄i :=
σi
∑

j=σi−1+1

s j/|Ci|;

// Special case: last cluster has ρk = 0, finished already
s̄k := 0;
// Find the maximal schedule span length

v :=min
�

vmax,
ρi−1−ρi

s̄i−1− s̄i
: i = 2, . . . , k

�

;

// Assign the jobs; cluster k is finished already
for i := 1, . . . , k− 1 do

for j := 1, . . . , |Ci| do
for ` := 1, . . . , |Ci| do

assign job σi + j to machine σi + 1+ (( j+ `− 1)mod |Ci|) in
interval [(`− 1) · v/|Ci|,` · v/|Ci|[;
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2 Online Scheduling with Machine Unavailability

Correctness and usefulness of this procedure is given by the following auxiliary

results:

Lemma 2.3.10. The value v returned by Algorithm 2.3 is positive and finite as long

as q1 > 0, s1 > 0 and vmax > 0.

Proof. Note that all values ρi −ρi−1 are strictly positive by definition, and since

s̄i =
� σi

∑

j=σi−1+1

s j

�

/|Ci| ≥ sσi
≥ sσi+1 ≥

� σi+1
∑

j=σi+1

s j

�

/|Ci+1| ,(2.21)

all values s̄i − s̄i−1 are non-negative.

Lemma 2.3.11. Let q1 ≥ . . .≥ qn ≥ 0 the remaining processing times Algorithm 2.3

is called with at some time t, v > 0 the span it returns, and C1, . . . , Ck the non-empty

clusters it generates with corresponding lengths ρ1 > · · ·> ρk = 0.

Then, the following statements hold:

1. At time t + v, all jobs in cluster Ci have the same remaining processing time for

all i ∈ {1, . . . , k}, which we denote ρ′i .

2. Executing LRPTFM would also result in having all jobs from Ci remaining

processing time ρ′i at time t + v, for all i ∈ {1, . . . , k}.

3. At time t + v, ρ′1 ≥ . . .≥ ρ′k.

Proof. Fix some cluster i ∈ {1, . . . , k}. The assignment step in Algorithm 2.3 divides

the interval [t, t + v[ into |Ci| subintervals of equal length, and every job j of Ci

is assigned one subinterval on every machine, so clearly its remaining processing

time at the end is

q′j = q j −
|Ci |
∑

`=1

v

|Ci|
sσi−1+` = ρi − vs̄i(2.22)

and this is independent of the choice of j since all jobs in Ci have the same value

q j = ρi . This proves the first claim.

As to the second claim, note that LRPTFM will by design assign (machines of

total fractional) speed s̄i to every job in cluster Ci, for all i, until some clusters
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2.3 Scheduling with limited lookahead

merge, i.e. their lines in the RPT diagram meet. Consider two clusters i, i′ such

that i < i′. The corresponding lines in the diagram are given by

yi(t + v′) = ρi − v′ · s̄i

yi′(t + v′) = ρi′ − v′ · s̄i′ .
(2.23)

Note that by design, s̄i ≥ s̄i′ . Solving (2.23) for equality, we obtain an intersection

point at

v′ = (ρi −ρi′)/(s̄i − s̄i′) . (2.24)

Since ρi > ρi′ and s̄i ≥ s̄i′ , this value is positive, but possibly infinite.

We claim that v′ ≥ v, the value returned by Algorithm 2.3, for all choices of i, i′.

From this, the second and third claim of the theorem will follow, since in the overall

interval [t, t + v[, both algorithms assign s̄i to every job in cluster Ci and LRPTFM

will maintain the order of the clusters. Assume for sake of contradiction v′ < v

for some choice of i, i′ such that i < i′ and i′ − i is minimal. By definition of v

and (2.24), we know i′ 6= i+1. At time t, we know ρi > ρi+1 > ρi′ by precondition.

By choice of v′, at time t+ v′, we have ρi− v′s̄i = ρi′ − v′s̄i′ . By definition of v and

v′ < v, we still have ρi − v′s̄i > ρi+1 − v′s̄i+1, so ρi′ − v′s̄i′ > ρi+1 − v′s̄i+1. But

this means that the pair i + 1, i′ is also an intersecting pair, and i′− (i + 1)< i′− i,

a contradiction.

The cornerstone to optimality is captured in the next lemma, which compares

execution of Algorithm 2.3, or, equivalently by the previous discussion, LRPTFM, at

some time t with any other schedule, in particular an optimal one. Let us first fix

notation: we will denote with q1 ≥ . . . ≥ qn ≥ 0 the remaining processing times

that Algorithm 2.3 starts out with, σ1 ≤ . . . ≤ σk the values it fixes, v the length

it returns and q′1 ≥ . . . ≥ q′n ≥ 0 the remaining processing times at time t + v. By

the third part of Lemma 2.3.11, we can see this does not involve re-indexing of the

jobs.

The other algorithm starts off at time t with possibly different remaining pro-

cessing times q∗1 ≥ . . .≥ q∗n ≥ 0, since it may have made different choices earlier on.

It will also possibly have different remaining processing times q∗1
′ ≥ . . .≥ q∗n

′ ≥ 0

at time t + v. Note that here, the permutation of the jobs that sorts them is
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possibly different at beginning and end and also different from the one used for

Algorithm 2.3. With this terminology, we claim:

Lemma 2.3.12. Suppose that

σi
∑

j=1

q j ≤
σi
∑

j=1

q∗j(2.25)

for all i ∈ {1, . . . , k} with qσi
> 0 and let s1 ≥ . . . sn the machine speeds, adding

dummy machines of speed 0 if needed. Then at time t + v, it holds that

σi
∑

j=1

q′j ≤
σi
∑

j=1

q∗j
′ .(2.26)

Proof. Let i ∈ {1, . . . , k}. By Lemma 2.3.11 and design of v, we may study the

behaviour of LRPTFM instead of that of Algorithm 2.3. By design, we know that

σi
∑

j=1

q′j =
σi
∑

j=1

q j − v
σi
∑

j=1

s j .(2.27)

For this, it is crucial to note that q′σi
> 0 at the beginning of the interval, so all jobs

benefit from their machines. On the other hand, we know that

σi
∑

j=1

q∗j
′ ≥

σi
∑

j=1

q∗j − v
σi
∑

j=1

s j ,(2.28)

since at any point in time, no algorithm can allocate more than
∑σi

j=1 s j processing

power to σi machines. Plugging this into the precondition yields

σi
∑

j=1

q′j =
σi
∑

j=1

q j − v
σi
∑

j=1

s j ≤
σi
∑

j=1

q∗j − v
σi
∑

j=1

s j ≤
σi
∑

j=1

q∗j
′ ,(2.29)

as claimed.

The same invariant is maintained by release of new jobs:
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Lemma 2.3.13. Let p ≥ 0, and q, q∗ as defined above. Define

q′i =











qi if qi > p

p if qi−1 > p ≥ qi

qi−1 if qi−1 ≤ p

q∗i
′ =











q∗ i if q∗i > p

p if q∗i−1 > p ≥ q∗i

q∗ i−1 if q∗i−1 ≤ p ,

i.e. the new value p is inserted into the lists in the proper position. Let k ∈ {1, . . . , n}
such that

∑k
i=1 qi ≤

∑k
i=1 q∗i . Then,







∑k
i=1 q′i ≤

∑k
i=1 q∗i

′ if p < qk
∑k+1

i=1 q′i ≤
∑k+1

i=1 q∗i
′ if p ≥ qk .

(2.30)

Proof. First observe that q′i ≥ qi and q∗i
′ ≥ q∗i for all i ∈ {1, . . . , n}. Consider the

case p < qk. Then, we immediately obtain

k
∑

i=1

q′i =
k
∑

i=1

qi ≤
k
∑

i=1

q∗i ≤
k
∑

i=1

q∗i
′ . (2.31)

If p ≥ qk, then we obtain

k+1
∑

i=1

q′i =
k
∑

i=1

qi + p ≤
k
∑

i=1

q∗i + p . (2.32)

If p < q∗k+1, then by definition
∑k+1

i=1 q∗i
′ =
∑k+1

i=1 q∗i and hence

k
∑

i=1

q∗i + p <
k+1
∑

i=1

q∗i =
k+1
∑

i=1

q∗i . (2.33)

Otherwise, p ≥ q∗k+1, and then,
∑k+1

i=1 q∗i
′ =
∑k

i=1 q∗i + p. In either case, the claim

follows.

From the previous discussion, we conclude

Theorem 2.3.14. Algorithm 2.4 is optimal for Q, fail | r j | Cmax with lookahead.
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Algorithm 2.4: Look-Ahead LAFM

while unfinished jobs exist do
Query for the time g until the next machine change or job release;
Call Algorithm 2.3 with the currently available jobs and machines and
vmax = g;
Execute the schedule returned;

Proof. We iteratively apply Lemma 2.3.12: the precondition (2.25) is true initially,

and it is left invariant by Lemma 2.3.12. It also remains true if machines join or

fail, because the invariant does not involve the machines at all. By Lemma 2.3.13,

it remains true under insertion of jobs.

Finally, we show that the overall makespan of Algorithm 2.4 is optimal. Let t a

time the algorithm is called, such that t < OPT≤ t + v, with v again given by the

algorithm, and let C1, . . . , Ci the clusters with non-zero remaining processing time

at time t. LAFM will not complete any jobs in the interval (because then its cluster

would merge with the cluster that has remaining processing time 0 from the start),

so all remaining jobs are completed by LAFM exactly at time t + v. On the other

hand, this means that all |C1|+ · · ·+ |Ci| machines used by LAFM are busy until

time t + v. But this means that the sum of remaining processing times

|C1|+···+|Ci |
∑

j=1

qi = v
|C1|+···+|Ci |
∑

j=1

si(2.34)

and we conclude by Lemma 2.3.12

|C1|+···+|Ci |
∑

j=1

q∗i ≥ v
|C1|+···+|Ci |
∑

j=1

si(2.35)

so no schedule is able to complete all these jobs in strictly less than v time, and in

particularly, they are not able to have a smaller makespan than Algorithm 2.4.
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2.4 Scheduling without lookahead

2.4 Scheduling without lookahead

We have seen in the previous discussion that we can obtain optimality if the

adversary is not unlimited in its power to spring surprises on us. The crucial point

is that we can arrange machines to be shared perfectly between jobs at certain

well-known times with a finite number of preemptions. As shown in the example of

Lemma 2.3.5, we will not be able to exactly share machines exactly if these times

are not known. In particular, all three parts of Lemma 2.3.11 are no longer true if

we cannot guarantee that our schedule runs unmodified and uninterrupted in the

time interval [t, t + v[.

In this section, we show that we can still bound the loss in accuracy when we

do not have this advance knowledge. Algorithm 2.5 below is almost identical to

Algorithm 2.4, however the proof of correctness is more involved.

Algorithm 2.5: Speed-adaptive LAFM (SALAFM)
Input: Accuracy parameter δ
Upon job release or machine failure/join do

Preempt all jobs currently running;
Let g the next time a job is released;
Call Algorithm 2.3 with the currently available jobs and machines and
vmax =min{δ/s1, g};

The result we achieve is the following:

Theorem 2.4.1. The makespan CSALAFM returned by Algorithm 2.5 is bounded by

COPT+n(n+3)δ/2, where n is the number of jobs scheduled and δ > 0 is an arbitrary

constant.

Corollary 2.4.2. If the number of jobs n is known in advance, the additive error

can be made arbitrarily small by setting δ := 2ε/(n2+ 3n).

To prove Theorem 2.4.1, we have to take into account that when the schedule is

interrupted, the machines were not shared exactly as needed. We can, however,

still show the following somewhat weaker result:

Lemma 2.4.3. Let qi , q j the remaining processing times of two jobs at the time the

schedule was last extended, v the length returned by Algorithm 2.3, and q′i , q′j the
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processing times at the point the schedule was interrupted. Then,

|q′i − q′j| ≤max{δ, |qi − q j|} ,(2.36)

and also

qi − q′i ≤ δ .(2.37)

Proof. Let us assume without loss of generality that qi ≥ q j, and if qi = q j, that

q′i ≥ q′j . The claim (2.37) is true by definition of vmax, since q′i ≥ qi−vmaxs1 ≥ qi−δ.

As to (2.36), the claim is immediately true if qi = q j since q′i ≤ qi, so q′i − q′j ≤
qi − q′j ≤ qi − q j +δ = δ.

If qi > q j , then the jobs belong to different clusters, and by (2.21), at any point

in time, the machine that executes job i is at least as fast as the one executing job j,

so q′i − q′j ≤ qi − q j . It remains to show that q′i − q′j ≥−δ, but this is obvious since

q′i − q′j ≥ (qi −δ)− q j = (qi − q j)−δ and qi ≥ q j .

Based on this lemma, it will prove helpful to relax our notion of clusters in the

following way:

Definition 2.4.4. Let q1 ≥ · · · ≥ qn ≥ 0. For δ ≥ 0, the partition into δ-relaxed

clusters C1, . . . , Ck is defined by

C1 = {q1, . . . , qσ1
}, C2 = {qσ1+1, . . . , qσ2

}, . . .

such that |qi+1− qi|> δ if and only if i ∈ {σ1,σ2, . . . }.
Equivalently, we can define that two values qi and qi+1 are closely adjacent if

qi+1 − qi ≤ δ. The classes of the transitive reflexive symmetric closure of this

relation are then exactly the δ-relaxed clusters.

The following properties will help bound the error the algorithm accumulates by

only tracking δ-relaxed clusters.

Lemma 2.4.5. If C is a δ-relaxed cluster, then

max C −min C ≤ (|C | − 1)δ(2.38)
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and
∑

C ≤ |C |min C +
(|C | − 1)|C |

2
δ . (2.39)

Proof. Let σ = |C | and q1 ≥ . . . ≥ qσ the elements of C . In particular, max C =

q1 and min C = qσ. We observe that by definition, qσ−i ≤ min C + iδ for i ∈
{0, . . . , |C | − 1}, i.e. qσ ≤ min C , qσ−1 ≤ min C + δ and so on. In particular, we

obtain

max C − min C = q1 − min C ≤ min C + (σ − 1)δ − min C = (|C | − 1)δ ,

which proves (2.38), and

∑

C =
σ−1
∑

i=0

qσ−i ≤
σ−1
∑

i=0

(min C + iδ)

= σmin C +δ
σ−1
∑

i=0

i = |C |min C +δ
|C |(|C | − 1)

2
,

which shows (2.39).

Recall that we introduced a dummy job in our algorithm that already starts

off with remaining processing time 0. This job now becomes crucial, because its

existence implies

min C > 0 =⇒ min C > δ (2.40)

for all δ-relaxed clusters C .

By Lemma 2.4.3, it is easy to see that over the course of time, Algorithm 2.5

will merge, but never split δ-relaxed clusters. Using the same notation as for

Lemma 2.3.12, but denoting with σ1, . . . the boundaries of δ-relaxed clusters

instead of clusters, we can show:

Lemma 2.4.6. Suppose that
σi
∑

j=1

q j ≤
σi
∑

j=1

q∗j (2.41)

for all i ∈ {1, . . . , k} such that min Ci > 0 and let s1 ≥ . . . ≥ sn the machine speeds,

adding dummy machines of speed 0 if needed. Then at any time τ ∈ [t, t + v], it
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holds that
σi
∑

j=1

q′j ≤
σi
∑

j=1

q∗j
′ .(2.42)

Proof. The proof is identical to that of Lemma 2.3.12, the essence being again

that the longest σi jobs will get exclusive use of the fastest σi machines, and no

algorithm can put more processing power into them.

To prove Theorem 2.4.1, we again proceed inductively. By Lemma 2.4.6 and

Lemma 2.3.13, the invariant (2.41) is maintained at all points when Algorithm 2.3

is called as long as min Ci > 0. It remains to consider the final stages of the

algorithm’s execution. Let t the last time that subroutine Algorithm 2.3 was called

such that min C1 > 0. (Recall that C1 is the δ-relaxed cluster with the longest jobs.)

By Lemma 2.4.6, t ≤ OPT, because every algorithm must have at least min C1 > 0

in total remaining processing time. As observed above, we then have min C1 > δ.

By Lemma 2.4.3 and maximality of t, min C1 ≤ 2δ. In particular, all qi that are not

in C1 are bounded from above by min C1−δ ≤ δ. We can now bound the sum of

remaining processing times as

n
∑

j=1

q j =
σ1
∑

j=1

q j +
n
∑

j=σ1+1

q j

≤ σ1(2δ) +
σ1(σ1− 1)

2
δ+ (n−σ1)δ

= (σ1+ n+
σ1(σ1− 1)

2
)δ

≤
n(n+ 3)

2
δ

(2.43)

by using (2.39) and σ1 ≤ n, which proves Theorem 2.4.1 since we are guaranteed

a machine of speed 1 at all times.
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3.1 Introduction and historical remarks

In this chapter, we study scheduling problems on unrelated machines. In this setting,

the execution time of every job may vary arbitrarily from machine to machine, i.e.

the instance is given by an arbitrary function

p : {1, . . . , m} × {1, . . . , n} → N, (i, j) 7→ pi j . (3.1)

This lack of structure makes the problem notoriously difficult to handle: every job

can draw from the set of machines a subset which it likes or dislikes. Since the

number of such subsets is exponential in the number of machines, it is difficult to

group different jobs together to reduce the state space if there is no constant bound

on the number of machines. (Conversely, if the number of machines is assumed

constant, such approaches work very well, as noted below.) In fact, unterstanding

general makespan minization on unrelated machines is generally considered one

of the open puzzles [Woe02, Open problem 4] in scheduling theory.

From the results that are known so far, it appears that this set structure is the

main difficulty posed by this problem: the strongest inapproximability result, the

nonexistance of a 3/2− ε approximation for any ε > 0 unless P= NP, can already

be achieved if all job lengths are drawn from the set {1,2} as shown by Lenstra,

Shmoys and Tardos [LST90]. In the same paper, they present an approximation

algorithm for R || Cmax with additive error maxi, j pi j, in particular, this can easily

be turned into a 2-approximation. This is still asymptotically the best bound known

today. The only improvement in the general case was given by Shchepin and

[Woe02] G. J. Woeginger. Open problems in the theory of scheduling. Bulletin of the EATCS,

2002.

[LST90] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for scheduling

unrelated parallel machines. Mathematical Programming, 1990.
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Vakhania [SV05], who reduce the additive error to m−1
m
·maxi, j pi j and hence the

multiplicative error to 2− 1/m.

One important setting that is considered to gain more insight into approximability

of the set structure is that of assignment restrictions: it is often the case that the

time a job takes to perform does not so much depend on some aptitude of the

worker who performs it, as in the general unrelated scheduling problem, but on

a binary criterion: a worker is qualified to do a certain job (for example, he has

received the appropriate training), or he isn’t, but the job will take any qualified

worker the same amount of time. Hence, we can define

pi j =







p j if machine i is capable of performing job j,

∞ otherwise.
(3.2)

where p j is the length of the job j.

We denote with M | j the set {i : i ∈ {1, . . . , m}, pi j <∞} of machines on which

job j is admissible; correspondingly, we refer to this problem as P | M j | Cmax in

three-field notation.

Despite removing almost all complexity due to job lengths, this problem is still

hard: as Ebenlendr et al. [EKS08] have shown, there is no 3/2− ε-approximation

for Scheduling with Assignment Restrictions unless P= NP, even when for every

job j, |M | j| ≤ 2 and all p j are drawn from {1, 2}.
On the positive side, Ebenlendr et al. give a 7/4-approximation for this case.

If the assignment graph additionally is a tree, Lee et al. [LLP09] give a fully

polynomial approximation scheme.

Also, results exist on other additional constraints on the structure of the sets

M j: Ou et al. [OLL08] have given a PTAS for the case that the machine sets are

[SV05] E. V. Shchepin and N. Vakhania. An optimal rounding gives a better approximation for

scheduling unrelated machines. Operations Research Letters, 2005.

[EKS08] T. Ebenlendr, M. Krcal, and J. Sgall. Graph balancing: a special case of scheduling

unrelated parallel machines. In Proc. SODA, 2008.

[LLP09] K. Lee, J. Y.-T. Leung, and M. Pinedo. A note on graph balancing problems with

restrictions. Information Processing Letters, 2009.

[OLL08] J. Ou, J. Y.-T. Leung, and C.-L. Li. Scheduling parallel machines with inclusive processing
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totally ordered by ⊆ improving over a previous 3/2-approximation by Glass and

Kellerer [GK07]; this PTAS was improved to include non-zero release times of the

jobs by Li and Wang [LW10]. For the strictly more general case of nested sets, i.e.

M j ∩M j′ ∈ {M j , M j′ ,;}, Huo and Leung [HL10] give a 7/4-approximation.

In contrast, if all jobs have the same length, the problem can be solved exactly in

polynomial time, even for arbitrary M j. One such algorithm based on matching

techniques is given by Lin and Li [LL04], but the result as such can already be

concluded from the result by Shchepin and Vakhania, or in fact, as we show in

Theorem 3.2.6 below, from the result by Lenstra, Shmoys and Tardos and Plotkin,

Shmoys and Tardos [PST95].

The situation is much easier if the number of machines m is assumed constant:

here, classical scaling and dynamic programming approaches yield fully-polynomial

time approximation schemes; the currently fastest result for Rm || Cmax being an

FPTAS with running time O (n) + 2O (m log(m/ε)) by Jansen and Mastrolilli [JM09].

3.2 Scheduling with Assignment Restrictions

In the following, we will concentrate on a special structure of the machines, namely

that of interval assignment restrictions.

In the setting with interval assignment restrictions, there exists a permutation

π of the machines such that for every job j, there are values α j and ω j such that

set restrictions. Naval Research Logistics, 2008.

[GK07] C. A. Glass and H. Kellerer. Parallel machine scheduling with job assignment restrictions.

Naval Research Logistics, 2007.

[LW10] C.-L. Li and X. Wang. Scheduling parallel machines with inclusive processing set

restrictions and job release times. European Journal of Operational Research, 2010.

[HL10] Y. Huo and J. Y.-T. Leung. Parallel machine scheduling with nested processing set

restrictions. European Journal of Operational Research, 2010.

[LL04] Y. Lin and W. Li. Parallel machine scheduling of machine-dependent jobs with

unit-length. European Journal of Operational Research, 2004.

[PST95] S. A. Plotkin, D. B. Shmoys, and E. Tardos. Fast approximation algorithms for fractional

packing and covering problems. Mathematics of Operations Research, 1995.

[JM09] K. Jansen and M. Mastrolilli. Scheduling unrelated parallel machines: linear

programming strikes back. Submitted, 2009.
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M | j = {α j , . . . ,ω j − 1}.
First of all, we mention for completeness the following result which is implicit in

a result first proven by Booth and Lueker [BL76]:

Lemma 3.2.1. Given the family of sets {M | j : j ∈ {1, . . . , n}}, we can find in linear

time a matching permutation π and the values α j ,ω j .

Hence, we will in the following always assume that the machines are already

re-ordered such that π is the identity permutation, and that the intervals are given

by their endpoints, i.e. consider an instance I of the Scheduling with Interval

Assignment Restrictions problem given as a list of n tuples

(p j ,α j ,ω j) ∈ N× {1, . . . , m} × {2, . . . , m+ 1}; j = 1, . . . , n

signifying that the jth job has length p j and is admissible on machines [α j ,ω j) =

{α j ,α j + 1, . . . ,ω j − 1}. Clearly, we may assume without loss of generality that

every machine is useful in the sense that at least one job is admissible on it; in

particular, we have m=max{ω j : j = 1, . . . , n} − 1 and 1=min{ω j : j = 1, . . . , n}.
We will often need a relaxation of the intervals given by the instance: we

call a subset [k, l) = {k, k + 1, . . . , l − 1} of the machines a pseudo-interval if

{k, l} ⊆ {α j ,ω j : j = 1, . . . , n}. Note that for notational simplicity we do not

require k to be an α value or l an ω value, and that the number of pseudo-intervals

in the instance is bounded by (2n)2 ∈ O (n2). Given some subset X of the jobs, we

can define for every subset M ′ of the machines the set

X |M ′ := { j ∈ X : M | j ⊆ M ′} ,(3.3)

the set of jobs in X that is not admissible anywhere outside M ′. For intervals, we

will write

X |[k,l) := { j ∈ X : k ≤ α j ∧ω j ≤ l} .(3.4)

As a simple but important insight, we note

[BL76] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs,

and graph planarity using pq-tree algorithms. Journal of Computer and System Sciences,

1976.
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3.2 Scheduling with Assignment Restrictions

Remark 3.2.2. For any non-negative function v : J → R, the aggregated function

f : 2M → N : M ′ 7→
∑

M | j⊆M ′
v( j) (3.5)

is supermodular, i.e. for two sets A, B ⊆ M , we have

f (A∪ B)≥ f (A) + f (B)− f (A∩ B) . (3.6)

In the same way as Scheduling with Assignment Restrictions, Scheduling with

Interval Assignment Restrictions is strongly NP-hard as a generalization of schedul-

ing on identical machines P || Cmax, thus it does not allow an FPTAS. Horowitz and

Sahni [HS76] have shown that there exists a PTAS for P || Cmax. In Subsection 3.2.2,

we will show that a PTAS is still possible for some special cases; however, proving

or disproving the existence of a PTAS for Scheduling with Interval Assignment

Restrictions is beyond the scope of this work.

In the encoding scheme given above, the instance size is not polynomial in the

number of machines. Hence, we first show that the number of machines is, without

loss of generality, polynomially bounded:

Lemma 3.2.3. Given an instance I, we can find in time polynomial in n at most n

disjoint subintervals of {1, . . . , m} such that each subinterval has length polynomial

in n and it is neccessary and sufficient to solve the subinstances induced by the

subintervals.

Proof. Consider the list of endpoints of intervals given by the jobs in I sorted

in ascending order 1 = a1 ≤ . . . ≤ a2n = m + 1, and the at most 2n + 1 non-

empty minimal pseudo-intervals [ak, ak+1) induced by them. We can find in time

polynomial in n the number of jobs nk ≤ n that are feasible in the interval [ak, ak+1).

For every k such that the length of the interval ak+1− ak ≥ nk, we can match the

machines to the jobs in an arbitrary way. Since every machine gets only one job,

the load of these machines is always bounded by OPT, and the rest of the instance

splits in a natural way into two indepedendent subinstances on the machines

[HS76] E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling nonidentical

processors. Journal of the ACM, 1976.
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{1, . . . , ak − 1} and {ak+1, . . . , m}. After iterating this O (n) times, all remaining

pseudo-intervals have 0 ≤ ak+1 − ak < nk ≤ n, which means the total number of

machines in all of them is at most O (n2).

As a further general result that will prove useful for all algorithms presented

here, we show that the crucial aspect of the problem is the assignment of job sizes

to machines, and the jobs themselves are then easily scheduled by the algorithm

‘Least Flexible First’ given as Algorithm 3.1. The following two lemmas are a

generalization of a technical result given by Lin and Li [LL04].

Lemma 3.2.4. Let X be a set of jobs of the same size, and a : {1, . . . , m} → N a

function. The following statements are equivalent:

1. The Least Flexible First heuristic generates a feasible schedule that assigns at

most a(i) jobs to machine i, for i ∈ {1, . . . , m}.

2. There is a feasible schedule that assigns at most a(i) jobs to machine i, for

i ∈ {1, . . . , m}.

3. For all pseudo-intervals [k, l), it holds that

∑

i∈[k,l)

a(i)≥
�

�X |[k,l)

�

� .(3.7)

Algorithm 3.1: Algorithm ‘Least Flexible First’
Input: Function a, set X of jobs
Output: A schedule of X
for i = 1, . . . , m do

Let A := { j : α j ≥ i,ω j < i, j unscheduled} be the set of available jobs;
if |A| ≤ a(i) then

Schedule all jobs in A on machine i;
else

Sort A by non-decreasing ω j values;
Schedule the first a(i) jobs from the sorted list on machine i;
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Proof. The implication ‘1 =⇒ 2’ is trivially true. If 2 holds, certainly all jobs of

X |[k,l) are scheduled within [k, l) for all pseudo-intervals [k, l), so 3 holds and

‘2 =⇒ 3’ is true.

Assume now for sake of contradiction that 3 holds for some X and a, but 1 fails.

This means that there is some machine l such that machines {1, . . . , l − 1} have

been feasibly assigned to, but there remains some job j with ω j = l that is not yet

scheduled. We will iteratively prove the existance of a machine k ≤ α j such that all

jobs scheduled on [k, l) belong to X |[k,l) and all machines i ∈ [k, l) have a(i) jobs,

i.e. they are full, which contradicts 3 since j also belongs to X |[k,l).

In our first iteration, let us start with k = α j . By design of the algorithm, all jobs

j′ scheduled in [k, l) have ω j′ ≤ l, because otherwise j would have been scheduled

in their place. Consider now the value k′ = min{α j′ : j′ scheduled in [k, l)}.
Two cases can occur: if k′ ≥ k, all jobs in [k, l) belong to X |[k,l) and we are done.

Otherwise, we have k′ < k. Then, all machines in [k′, k) are full, because otherwise,

some job j′ with α j′ = k′ would not have been put into the interval [k, l). For all

jobs j′′ in [k′, k), we also know by design of the algorithm that ω j′′ ≤ ω j′ ≤ ω j.

We now set k := k′ and iterate. After at most m iterations, the process terminates

with no job in the interval [k, l) being admissible outside [k, l).

In other words, Lemma 3.2.4 states that in the case of intervals, the neccessary

and sufficient condition of Hall’s Marriage Theorem can be checked in polynomial

time since all constraints not corresponding to intervals are redundant, and also that

a matching of the jobs to the spaces on the machines can easily be found. Clearly,

we can generate a feasible schedule for an entire instance by using Lemma 3.2.4

for all sizes simultaneously.

If we allow fractional schedules, where a job might be partially executed on more

than one machine, we can essentially replace the distinct jobs by their total area

and consider the limit as the allowed size of the fragments approaches 0. Then, we

obtain:

Corollary 3.2.5. Let X be a subset of jobs and a : {1, . . . , m} → R a function. The

following are equivalent:

1. The fractional Least Flexible First heuristic generates a feasible fractional

schedule that assigns at most load a(i) to machine i for all i ∈ {1, . . . , m}.
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2. There is a feasible fractional schedule that assigns at most load a(i) to

machine i for all i ∈ {1, . . . , m}.

3. For all pseudo-intervals [k, l), it holds that

∑

i∈[k,l)

a(i)≥
∑

j∈X |[k,l)

p j .(3.8)

Finally, before we turn to the details of the algorithms for the specific cases, we

note that in all cases the optimal makespan is bounded from above by n ·max{p j :

j ∈ {1, . . . , n}}, i.e. it is pseudopolynomial in the input size, and since the p j are

integral, so is the optimal makespan, so it is sufficient to give relaxed decision

algorithms to obtain approximation algorithms by Theorem 1.1.7.

3.2.1 A (2− 2/pmax)-approximation for assignment on intervals

In the following, we will give intermediate results that serve to highlight the

techniques used to obtain our overall results. To start off, we show

Theorem 3.2.6. There is a (2− 1/pmax)-approximation for Scheduling on Unrelated

Machines.

We should point out that the approximation ratio for general unrelated machine

scheduling in Theorem 3.2.6 was previously obtained by Gairing et al. [GLMM04];

however, their proof does not rely on a linear programming formulation. The result

itself, albeit being a simple extension of the classical approach, appears not to be

widely known, for example, it is mentioned as an open question in [BM10].

Proof. Denote with pi j ∈ {1, . . . , pmax} the processing time of job j on machine i.

By Theorem 1.1.7, we may assume that we there exists a schedule of length C . In

[GLMM04] M. Gairing, T. Lücking, M. Mavronicolas, and B. Monien. Computing nash equilibria for

scheduling on restricted parallel links. In Proc. STOC, 2004.

[BM10] P. Biró and E. McDermid. Matching with sizes (or scheduling with processing set

restrictions). Technical Report TR-2010-307, University of Glasgow, 2010.
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particular, this means that the LP relaxation of Lenstra, Shmoys and Tardos [LST90]

∑

j:pi j≤C

yi j pi j ≤ C ∀i ∈ {1, . . . , m}

∑

i:pi j≤C

yi j ≥ 1 ∀ j ∈ {1, . . . , n}

yi j ≥ 0 ∀i ∈ {1, . . . , m}, j ∈ {1, . . . , n}

(3.9)

has a solution. Since this formulation only involves variables with pi j ≤ C , we

may assume pmax ≤ C . Any such solution y∗ induces a residual bipartite fractional

assignment graph as follows: the vertex set consists of the disjoint union of jobs

and machines, and there is an edge of weight y∗i j from job j to machine i iff

y∗i j ∈ ]0,1[. Note that we can discard from this graph all jobs that are already

integrally assigned. Then, the total weight of all edges incident to a job equals 1.

Using the standard cyclic shifting argument of Plotkin, Shmoys and Tardos [PST95],

we can modify the solution y∗ so that this assignment graph is a forest without

violating feasibility.

It is easy to see that in the resulting forest, all leaves are machines: since the

total weight of incident edges is still 1 for every job, it is either integrally matched

to a machine or non-integrally matched to at least two machines.

The rounding can then be done by iteratively assigning to every leaf machine the

one job it is connected to and then removing both machine and job. The resulting

ratio then follows from the following claim:

∑

j:y∗i j=1

pi j ≤ C − 1 (3.10)

for all leaf machines i. Assume this were not the case, i.e. there is some leaf

machine i with
∑

j:y∗i j=1 pi j > C − 1. Since the pi j are integral, this means the sum

is at least C − 1+ 1= C . However, there is also one j′ with 1> y∗i j′ > 0 since i is

a leaf machine. Since all processing times are positive, this means the total load

of machine i is then
∑

j:y∗i j=1 pi j + y∗i j′pi j′ > C , in contradiction to the fact that y∗

solves the LP (3.9). With this bound, we obtain that after rounding, the load of

every machine is bounded by C − 1+ pmax. Since pmax ≤ C , the approximation
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ratio of the algorithm is then at worst

C − 1+ pmax

C
=

C + pmax(1− 1/pmax)
C

≤
C + C(1− 1/pmax)

C
= 2− 1/pmax ,(3.11)

as claimed.

As we can observe, the critical point to obtain better approximation bounds is to

find an assignment of jobs which have size close to pmax. As a first step, we show

that this is possible if such large jobs have a special structure:

Theorem 3.2.7. There is a 2− 2/pmax-approximation for Scheduling with Interval

Assignment Restrictions.

We devote the rest of the subsection to the proof of Theorem 3.2.7, combining

the rounding technique of Theorem 3.2.6 with a two-step approximation. Again,

assume we are given C such that a schedule of length C exists. Note that in the

assignment case, we can immediately assume C ≥ pmax =max j=1,...,n p j since the

length of a job is fixed across its feasible machines. Denote with Jl the set of ‘large’

jobs of length pmax and with Js the set of all other, ‘small’, jobs. By Lemma 3.2.4,

we have for each pseudo-interval [k,`) a lower bound on the number of jobs of Jl

that are assigned within this interval. On the other hand, we know that at most

bC/pmaxc of these jobs can be on a single machine. Finally, there is also an upper

bound given by all the jobs in Js by Corollary 3.2.5. In total, we can give the

following IP formulation, where x i counts the number of jobs of size pmax assigned

to machine i:

`−1
∑

i=k

x i ≥
�

�Jl |[k,l)

�

� ∀k,` ∈ {1, . . . , m+ 1}

`−1
∑

i=k

x i ≤
l − k−

∑

j∈Js|[k,l)
p j

pmax
∀k,` ∈ {1, . . . , m+ 1}

x i ≤ bC/pmaxc ∀i ∈ {1, . . . , m}

x i ∈ N ∀i ∈ {1, . . . , m}

(3.12)

Clearly, solutions exist because one integral solution is induced by the unknown

schedule of length C . We can find some feasible fractional solution, which will
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yield an integral assignment of large jobs:

Lemma 3.2.8. All basic solutions of the LP relaxation of (3.12) are integral.

To show this, we recall a classical result about totally unimodular matrices:

Theorem 3.2.9 (Ghouila-Houri [GH62]). A matrix A∈ {−1, 0, 1}n×m with column

vectors A(1), . . . , A(m) is totally unimodular if and only if every subset S ⊆ {1, . . . , m}
can be partitioned into S+ and S− such that

∑

i∈S+
A(i)−

∑

i∈S−
A(i) ∈ {−1,0, 1}n . (3.13)

Proof of Lemma 3.2.8. Let S a subset of the columns of (3.12). Note that by design

of the LP, S then corresponds to a subset of machines, which we also denote with S.

Denote the elements of S = {a1, . . . , a|S|} with a1 < a2 < · · ·< a|S|.

We set S+ := {ai : i ∈ {1, . . . , |S|}, i odd} and S− := {ai : i ∈ {1, . . . , |S|}, i even}
and claim that this partition satisfies the condition of Theorem 3.2.9. To see this,

consider an arbitrary pseudo-interval [k, l) and the two corresponding constraints in

(3.12). If |S∩[k, l)| is even, then by design of S+ and S−, |S+∩[k, l)| = |S−∩[k, l)|.
If |S ∩ [k, l)| is odd, then either min(S ∩ [k, l)) is odd and |S+ ∩ [k, l)| = |S− ∩
[k, l)|+ 1, or it is even and |S+ ∩ [k, l)| = |S− ∩ [k, l)| − 1. In either case, since the

coefficients in the constraints are all 1 or all −1, we obtain that

n
∑

i∈S+∩[k,l)

1−
∑

i∈S+∩[k,l)

1,
∑

i∈S+∩[k,l)

(−1)−
∑

i∈S+∩[k,l)

(−1)
o

⊂ {−1,0, 1} . (3.14)

Finally note that for the constraints x i ≤ dC/pmaxe, the sum will trivially be 0, 1

or −1 for i 6∈ S, i ∈ S+, and i ∈ S−, respectively. The claim now follows from

Theorem 3.2.9.

Hence, we can obtain in polynomial time an integral solution x∗ to (3.12). Based

on this assignment of large jobs, we can now formulate a Lenstra/Shmoys/Tardos-

[GH62] A. Ghouila-Houri. Characterisation des matrices totalement unimodulaires. Comptes

Rendus de l’Académie des sciences, 1962.
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style LP for the remaining jobs:

∑

j∈Js

yi j p j ≤ C − x∗i pmax ∀i ∈ {1, . . . , m}

ω j−1
∑

i=α j

yi j ≥ 1 ∀ j ∈ Js

yi j ≥ 0 ∀i ∈ {1, . . . , m}, j ∈ Js

(3.15)

It is not obvious that this formulation has any connection to the original problem,

since we might not have the ‘right’ assignment of the jobs in Jl . The following

claim shows that any assignment is ‘good enough’.

Lemma 3.2.10. If x∗ is a feasible solution to (3.12), then there is a feasible solution

y∗ to (3.15), and x∗, y∗ induce a fractional schedule of length at most C.

Proof. Assume that there is no feasible solution to (3.15). We now consider the

following relaxation of the LP:

∑

j∈Js

yi j p j ≤ C − x∗i pmax+λ ∀i ∈ {1, . . . , m}

ω j−1
∑

i=α j

yi j ≥ 1 ∀ j ∈ Js

yi j ≥ 0 ∀i ∈ {1, . . . , m}, j ∈ Js

(3.16)

which allows us to exceed the load bound on all machines by λ. Clearly, for

sufficiently large λ, e.g. λ = C , (3.16) will have feasible solutions. In the following,

let λ > 0 minimal such that feasible solutions exist, and fix a feasible solution that

minimizes the number of machines for which the load constraint becomes tight.

Let i a machine with tight load constraint, and set L = {i}. We will iteratively

grow L, but maintain the following properties:

1. L is an interval.

2. All machines in L have a tight load constraint.

Clearly, both properties hold for L = {i}. Suppose now that there is a job j such

that
∑

{x i j : i ∈ L} > 0 and ; 6= L ∩ [α j ,ω j) 6= [α j ,ω j). Then, we will set
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L′ := L ∪ [α j ,ω j). Since the union of two non-disjoint intervals is again a single

interval, the new set L′ still maintains property 1.

Assume that one of the newly-added machines i′ does not have a tight load

constraint, and let i′′ ∈ L with x i′′ j > 0. By induction, i′′ has a tight load constraint.

By increasing x i′ j and decreasing x i′′ j by a sufficiently small amount, both i′ and i′′

will get an untight load constraint, which violates the assumption that we already

chose a solution with a minimal number of tight constraints. Hence, all machines

in L′ will have a tight load constraint, so L′ still has property 2. In total, we can set

L := L′ and iterate.

After at most |Js| ≤ n iterations, this process terminates, and all jobs in Js that

are at least partially assigned inside L are assigned totally inside L. In particular,

this means that

∑

j∈Js:[α j ,ω j)⊆L

p j +
∑

i∈L

x∗i pmax = |L| · (C +λ)> |L| · C , (3.17)

which means that the interval L violated its upper bound in (3.12), which is a

contradiction.

We can now prove Theorem 3.2.7 by proceeding in the same way as in the proof

of Theorem 3.2.6: we turn the fractional assignment y∗ into a forest and assign

jobs to leaf machines. Note, however, that the maximum size of a fractional job is

at most pmax− 1, since larger jobs are already assigned integrally. This means the

total length of the resulting schedule is at most C + pmax− 2, and we then obtain a

ratio of
C + pmax− 2

C
=

C + pmax(1− 2/pmax)
C

≤ 2− 2/pmax , (3.18)

as claimed.

Noting that we only use the bound

p2max :=max{p j : j ∈ {1, . . . , n}, p j 6= pmax} ≤ pmax− 1 , (3.19)

we even obtain the following result which is stronger in special cases:

Corollary 3.2.11. There is an algorithm for Restricted Assignment on Intervals with

additive error at most p2max− 1.
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Figure 3.1: An instance
with integrality gap 3/2.
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(b) A fractional schedule of length 2

Corollary 3.2.12. There is a polynomial-time exact algorithm for Restricted Assign-

ment on Intervals if all p j ∈ {p, 1} for some p ∈ N.

The next logical step towards better approximation results would be to consider a

stronger LP formulation. However, the canonical choice, a configuration LP, already

introduces a large gap in very limited circumstances:

Example 3.2.13. Consider an instance consisting of eight jobs, all of which draw

their lengths from {1,2}, as shown in Figure 3.1. Note that by Corollary 3.2.12,

such instances can be solved exactly in polynomial time. It is easily verified that

there is no feasible schedule of length 2 since either the set of jobs {1,2,3,4} of

total length 5 must be assigned entirely to machines 1 and 2 or else the set of jobs

{5,6, 7,8} must be assigned entirely to machines 4 and 5.

However, in the configuration ILP for makespan 2, there are only two config-

urations: one large job, or two small jobs. An LP relaxation may mix both on a

single machine and will arrive at a feasible fractional assignment of jobs as shown

in Figure 3.1.

Hence, we will in the following concentrate on cases in which dynamic program-

ming approaches can be successfully used to obtain approximation ratios better

than 3/2.

3.2.2 Approximation schemes for special interval structures

In this section, we will show that two more restricted settings admit a polynomial-

time approximation scheme. More precisely, we show:

Theorem 3.2.14. There is a PTAS for Scheduling with Interval Assignment Restric-
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tions if for any two jobs j, j′, we have

α j < α j′ =⇒ (ω j ≥ω j′ ∨ω j ≤ α j′). (3.20)

(We call such an instance nested.)

Theorem 3.2.15. There is a PTAS for Scheduling with Interval Assignment Restric-

tions if for any two jobs j, j′, we have

α j < α j′ =⇒ ω j ≥ω j′ . (3.21)

(We call such an instance compatible.)

Especially the former setting occurs very naturally in practical applications, if we

consider a system of “specialisations”: over time, a (human) worker will acquire

deeper skills in the field he works in, and will tend to specialise on a certain

sub-field. This does not mean, of course, that he suddenly forgets everything he

has previously learned, but he will probably not become more proficient outside

his most specialized field. Assuming that there will usually be several fields that

one can focus on, there is a natural branching process, where nodes of the tree

represent skills, and the path from the root to a node represents the education

needed to obtain this skill. Fixing an arbitrary order of the children of each node,

it is easy to see that the workers can be arranged in a way that they have nested

interval assignment restrictions.

In building up to Theorem 3.2.14 and Theorem 3.2.15, we will first present a

dynamic programming formulation for the problem P || Cmax. This formulation is

slightly weaker than the one presented by Hochbaum and Shmoys for identical

machines [HS87] in terms of the running time that can be achieved, but as we

demonstrate, it can be extended to some kinds of interval assignment restrictions.

In the following, we consider a fixed, but arbitrary accuracy ε; our algorithms

will generate a schedule of length at most (1+ 4ε)OPT. Similar to above, we can

perform binary search over the interval [0, n max j p j], so it is sufficient to find a

[HS87] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling

problems: theoretical and practical results. Journal of the ACM, 1987.
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schedule of length (1+ 4ε)C provided that a schedule of length C exists, where C

is the guessed makespan.

Recall that we denote with p j the length of job j. Our dynamic program will

work on an instance I ′ with rounded job lengths p′j that are defined as follows:

p′j :=







ε(1+ ε)dlog1+ε(ε
−1·p j/C)eC p j > εC

p j p j ≤ εC ,
(3.22)

i.e. jobs whose sizes are larger than εC are rounded up to the next value of the

form ε(1+ ε)kC for integral k, while smaller jobs are unchanged. We call the

corresponding sets of jobs Jε, J1, . . .. The error introduced by this rounding is not

too large:

Lemma 3.2.16. If there is a schedule of length C of the original instance, there is a

schedule of length at most (1+ ε)C of the rounded instance.

Proof. Consider any machine of a schedule of length C , and let J denote the jobs

on it. Hence, it holds that
∑

j∈J

p j ≤ C ,(3.23)

so after rounding, we have

∑

j∈J

p′j ≤
∑

j∈J

ε(1+ ε)dlog1+ε(ε
−1·p j/C)eC ≤

∑

j∈J

(1+ ε)p j ≤ (1+ ε)C ,(3.24)

as desired.

Since the lengths of jobs are at most increased and the intervals remain un-

changed, we obtain by replacing rounded jobs with their original counterparts:

Remark 3.2.17. If there is a schedule of length (1+ 4ε)C in the rounded instance,

there is a schedule of length at most (1+ 4ε)C in the original instance.

The crucial effect of this rounding is that the number of exponents k that can

occur is bounded: the largest exponent is q := dlog1+ε ε
−1e, which is constant with

regards to n, and the smallest exponent is 1.
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The situation for small jobs is not as easy: to solve the problem by dynamic

programming, we can assign space for small jobs to machines only in integral

multiples of some value, which we set to be εC . We will in the folllowing call

such a space of εC a slot for convenience and note that a small job may be

split over up to two slots. This discreteness has consequences in terms of the

neccessary and sufficient condition of Corollary 3.2.5: for every interval [k, l), we

can without loss of generality round up the number of slots needed to the next

integral value. However, this may be misleading, since the resulting constraints

are not supermodular anymore, i.e. they need not satisfy Remark 3.2.2, as the

following example shows:

Example 3.2.18. Consider two machines, each of which has εC/2 in small jobs. By

rounding the constraints over the intervals, we can conclude that we must have

one slot on the first machine, one on the second, and one in total.

Note however that we round up at most εC per machine, so we can move from

the rounded instance I ′ to an instance I ′′ by replacing Jε with slot-sized jobs of

size εC such that for every interval [k, l), the number of these jobs required is

b(
∑

j∈Jε|[k,l)

p j)/(εC)c+ (l − k). (3.25)

Note in particular that the new constraints force every machine to have at least one

slot for small jobs.

The deviation made by this change is captured in the following statements:

Lemma 3.2.19. If I ′ has a solution of at most length (1+ε)C, then I ′′ has a solution

of length at most (1+ 3ε)C.

If I ′′ has a solution of length at most (1+ 3ε)C, then I ′ has a solution of length at

most (1+ 3ε)C which is fractional with regards to the small jobs.

Proof. Consider a solution to I ′ of length at most (1+ε)C . We add, unconditionally,

to every machine one slot. This increases the makespan by εC , and satisfies all

constraints (3.25) by area, but the total size of small jobs on a machine is not yet

an integral multiple of εC . Rounding it up increases the length of the schedule

again by at most εC , for a total length of (1+ 3ε)C .
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As to the second part, it is sufficient to note that the solution to I ′′ will satisfy

the area constraints of Corollary 3.2.5 for every interval [k, l), since the area it

allocates is at least
�

�

∑

j∈Jε|[k,l)

p j/(εC)
�

+ (l − k)
�

(εC)≥
�

�

∑

j∈Jε|[k,l)

p j/(εC)
�

+ 1
�

(εC)≥
∑

j∈Jε|[k,l)

p j ,

as required.

The final step is then to convert the fractional solution back to an integral

solution, again only making a small error in the process. Formally:

Lemma 3.2.20. Given a feasible solution of length at most (1 + 3ε)C which is

fractional in the small jobs, we can construct a feasible (and entirely integral) solution

of length at most (1+ 4ε)C.

Proof. By Corollary 3.2.5, we can use the Least Flexible First heuristic Algorithm 3.1

to generate the fractional assignment. Note that on every machine, there are then

at most two jobs that are added fractionally: the first and the last small job added

by the algorithm. We now assign the ‘last’ job entirely, which increases the load by

at most ε and results in a totally integral solution.

We call a (q+ 1)-tuple ~c = (nε, n1, . . . , nq) ∈ ({0, . . . , n})q+1 =:C a configuration

and think of a configuration as assigning nε · εC slots for small jobs, n1 spaces for

jobs of rounded size ε(1+ ε)1C , and so on. The size of the configuration is defined

as

size(~c) := nεεC +
q
∑

k=1

nkε(1+ ε)
kC(3.26)

and denotes the load a machine would have if it is assigned jobs according to the

configuration c.

The previous discussion shows that the main problem in devising a PTAS is

to find a feasible assignment of configurations to machines. Since the number

of configurations is bounded by |C | ≤ (n+ 1)q+1, i.e. polynomial in n, such an

assignment can be found by dynamic programming, but we must be careful to obey

the assignment restrictions.
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n1

nε

n1

nε

n1

nε

n1

nε

Figure 3.2: The state
space digraph

In its most general form, we can think of the dynamic program as finding a path

through a suitable state space. Formally, our state space is given by the vertex set

V := {1, . . . , m+ 1} × ({0, . . . , n})q+1. The first component identifies a prefix of the

machines in the interval order, while the second corresponds to a subset of the jobs

of the rounded instance. Our intent is that there should be a directed path from

(i,~c) to (i′,~c′) if and only if we can schedule a subset of jobs as indicated by ~c′−~c
on the machines {i, . . . , i′−1}. To solve the overall problem, we must then check if

there exists a path from (1,~0) to (m+ 1, ~J), where ~J corresponds to the full set of

jobs. Formally, we define

V := {1, . . . , m+ 1} ×C ,

E := {
�

(i,~c), (i+ 1,~c′)
�

: i ∈ {1, . . . , m},~c,~c′ ∈ C , size(~c′−~c)≤ (1+ 3ε)C}
(3.27)

Example 3.2.21. Focussing on the dynamic programming, we consider an instance

with 5 jobs and 3 machines and a guessed makespan of 4. There are n1 = 2 jobs

of size 3 and nε = 3 jobs of size 1. Possible configurations are then: no jobs at all,

one large job, one large and one small job, or one, two or three small jobs. Note

that these simple sizes are chosen for expository reasons and do not correspond to

a rounded instance. Note also that this instance could be solved to optimality by

Corollary 3.2.11.

A graphical example of the resulting digraph is given in Figure 3.2, where we

already restrict ourselves to arcs that can be reached from the start vertex (1,~0).

Note that the construction of (3.27) is more general than the one by Hochbaum

and Shmoys which can just count how often each configuration occurs, but cannot

take the assignment restrictions into account. We propose two methods to reflect

the restrictions in the dynamic program: one is by a pruning step of the state
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digraph structure, leading to Theorem 3.2.15, the other is by a iterative compression

routine and will lead to Theorem 3.2.14.

Pruning the state space

Observe the state space in the formulation (3.27) is a worst-case estimate and

many of the nodes cannot occur on a path. In particular, we know that some jobs

must occur on certain machines, while some jobs cannot. To reflect this, we define

the lower and upper envelope of the state space by

`(i) := J |[1,i−1)(3.28)

u(i) := (J \ J |[i,m+1))(3.29)

for all i ∈ {0, . . . , m}; by a slight abuse of notation, we also call the corresponding

configurations `(i) and u(i), and remark:

Lemma 3.2.22. No node (i,~c) with ~c < `(i) occurs on a feasible (1,~0)-(m+ 1, ~J)-

path; and if feasible (1,~0)-(m+ 1, ~J)-paths exist, there exists such a path that does

not include any node (i,~c) such that ~c > u(i).

Proof. The claim follows directly from Lemma 3.2.4 if we fix one endpoint of the

pseudo-interval to be either k = 1 or l = m+ 1: all jobs in `(i) must already be

scheduled on machines 1 . . . , i − 1, and all jobs not in u(i) can only be scheduled

on machines i, . . . , m, so they cannot be feasibly scheduled on machines 1 . . . , i − 1

ever.

Hence, we can remove all such nodes and all incident arcs from the state space

in (3.27).

Example 3.2.23. Continuing with the instance of Example 3.2.21 on p. 73, we now

assume the following interval values, which are also shown in Figure 3.4.

j 1 2 3 4 5

p j 3 3 1 1 1

α j 1 2 1 2 3

ω j 3 4 3 3 4
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Figure 3.3: A compat-
ible state digraph with
useless nodes pruned

1 2 3

p1 = 3
p2 = 3

p3 = 1
p4 = 1

p5 = 1

(a) Compatible intervals

1 2 3

p1 = 3
p2 = 3
p3 = 1
p4 = 1
p5 = 1

(b) Incompatible intervals

Figure 3.4: Intervals corresponding to the instances of
Example 3.2.23

Note that these are compatible in the sense previously defined. Then, Figure 3.3

shows the corresponding pruned state space, where unneeded nodes are shaded.

Note that if we had the following interval values instead:

j 1 2 3 4 5

p j 3 3 1 1 1

α j 2 1 1 1 1

ω j 3 4 4 4 4

the resulting state space is as shown in Figure 3.5, and there is a feasible path given

by the configurations (0, 1), (3, 0), (0, 1); however, this path does not correspond to

n1

nε

n1

nε

n1

nε

n1

nε

Figure 3.5: An
incompatible state
digraph with useless
nodes pruned
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a feasible solution of the problem since it assigns the large jobs to the first and last

machine.

Somewhat surprisingly, this weaker condition of having a path in the pruned

state digraph is still already sufficient for compatible intervals:

Lemma 3.2.24. If α j < α j′ implies ω j ≤ω j′ , then every path

(1,~0) = (1, c1), . . . , (m+ 1, cm+1) = (m+ 1, ~J)(3.30)

in the pruned state space digraph induces a feasible assignment of configurations.

Proof. We only need to show that the condition of Lemma 3.2.4 on p. 60 is satisfied.

To this end, we fix an arbitrary pseudo-interval [k, l) and one of the size classes and

claim that the sum of relevant configurations, ~cl −~ck, allocates enough spaces for

the rounded jobs in J ′′|[k,l). If J ′′|[k,l) is empty, the claim is trivially true. Otherwise,

there is some job j with k ≤ α j <ω j ≤ l. In this case, all jobs j′ with α j′ < k have

ω j′ ≤ω j ≤ l by compatibility. In particular, we have `(l)≥ u(k) + J |[k,l). We also

know by pruning that ~cl ≥ `(l) and ~ck ≤ u(k), so in total, we can conclude

~cl −~ck ≥ `(l)− u(k)≥ u(k) + J |[k,l)− u(k) = J |[k,l),(3.31)

as desired.

As a corollary, we obtain Theorem 3.2.15, which is summed up in Algorithm 3.2.

Compressing the state space

Another observation can be made regarding the routine that will be used to find

a path in the state space. Usual approaches would traverse the state space from

one end to the other, which has the advantage that the entire graph need not be

kept in memory at the same time, but only two successive layers. However, such

algorithms have difficulties satisfying the necessary and sufficient conditions of

Lemma 3.2.4 and Corollary 3.2.5. Instead, we can proceed bottom-up, first starting

to solve the ‘smallest’ sub-instances and replacing parts of the state space with
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Algorithm 3.2: PTAS for compatible intervals

Round jobs with p j > εC to one of q large sizes;
Replace small jobs by their slot requirements;
for i = 1, . . . , m+ 1 do

Calculate the values `(i), u(i);
Create all configuration nodes (i,~c) with `(i)≤ c ≤ u(i);
if i>1 then

Create all arcs from (i−1,~c) to (i, ~c′) such that size(~c′−~c)≤ (1+3ε)C;

Find a path from (1,~0) to (m+ 1, ~J);
Return the configurations given by the edges of this path;

a representative selection of solutions to the sub-instance. In the following, we

formalize this notion:

Lemma 3.2.25. In a nested instance, for all jobs j, j′, we have

M | j ∩M | j′ ∈ {;, M | j , M | j′} . (3.32)

Proof. Recall that by definition, α j < α j′ =⇒ (ω j ≥ω j′ ∨ω j ≤ α j′). This means

the claim is trivially true if α j ≥ α j′ .

Otherwise, by nestedness, either ω j ≥ω j′ , so M | j ⊃ M | j′ , or ω j ≤ α j′ , in which

case M | j and M | j′ are disjoint.

Corollary 3.2.26. There exist minimal jobs, i.e. j0 ∈ J such that M | j0 ∩ M | j ∈
{;, M | j0} for all j′ ∈ J .

If j0 is such a minimal job, we can define a shorter state graph by defining a new

edgeset

E′ := {((α j0 ,~c), (ω j0 , ~c′)) : ~c′−~c ≥ J |[α j0 ,ω j0 )

and there is a path from (α j0 ,~c) to (ω j0),
~c′)}

(3.33)

along with one path per edge with that property. E′ then replaces all vertices in

layers α j0 + 1, . . . ,ω j0 − 1 along with all incident edges. Clearly, this can be done

in polynomial time since the number of configurations is polynomially bounded
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3 Offline Scheduling on Unrelated Machines

Figure 3.6: An instance with nested interval structure

1 2 3

p1 = 3
p2 = 3

p3 = 1
p4 = 1

p5 = 1

in n, and it does not change the set of states in layer m that can be reached. By

iterating this process, we can encode the restrictions of all jobs into the edges, until

we arrive at a state graph that does not have additional assignment restrictions.

We find a path in this graph in the conventional way and obtain a solution for

the original instance by replacing edges with the witnessing paths we stored on

creation.

This proves Theorem 3.2.14.

Example 3.2.27. Continuing with the instance of Example 3.2.21 on p. 73, we now

assume the following interval values also depicted in Figure 3.6:

j 1 2 3 4 5

p j 3 3 1 1 1

α j 2 2 1 2 1

ω j 3 4 2 4 4

Observe that these are intervals are nested. In Figure 3.7, we see the successive

compression steps taken. In the first step, we note that only the configurations

(1,1) and (0,1) are feasible on machine 2 due to job 1. In the second step, we

compress the interval [2,4), then the interval [1,2). Since there is an arc from

(1, (0, 0)) to (4, (3, 2)) in the final graph, feasible solutions exist. By backtracking,

we can find that one assigns the large jobs to machines 2 and 3 and one small job

to each machine.
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3.2 Scheduling with Assignment Restrictions

n1

nε

n1

nε

n1

nε

n1

nε

(a) Initial digraph

n1

nε

n1

nε

n1

nε

n1

nε

(b) After collapsing [2,3)

n1

nε

n1

nε

n1

nε

(c) After collapsing [2, 4)

n1

nε

n1

nε

(d) After collapsing [1, 4)

Figure 3.7: Compression steps in
Example 3.2.27
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4 A 2-approximation for 2D Bin Packing

4.1 Introduction

Two-dimensional geometric bin packing, both with and without rotations, is one of

the very classical problems in combinatorial optimization and its study has begun

several decades ago. This is not only due to its theoretical appeal, but also to a

large number of applications, ranging from print and web layout [FN04] (putting

all ads and articles onto the minimum number of pages) to office planning (putting

a fixed number of office cubicles into a small number of floors), to transportation

problems (packing goods into the minimum number of standard-sized containers)

and VLSI design [HM84].

It is easy to see that two-dimensional bin packing without rotation (2DBP) is

strongly NP-hard as a generalization of its one-dimensional counterpart, hence the

main focus is on algorithms with provable approximation quality. In fact, even the

following stronger statement is well-known to hold:

Lemma 4.1.1. 2DBP is (2− ε)-inapproximable for all ε > 0, unless P= NP.

Proof. Assume we are given a polynomial-time algorithm A with ratio < 2. In

particular, A will yield a packing into strictly less than two bins if a packing into

one bin exists. Since the number of bins is discrete, it solves all these instances

optimally. We now reduce 3-Partition to 2DBP in the following way: given the list of

numbers a1, . . . , a3n and target sum B =
∑3n

i=1 ai/n, we create 3n items ri of width

wi = ai/B and height hi = 1/n and consider the number of bins A packs them in.

Clearly, three items ri , r j , rk fit next to each other if and only if ai + a j + ak ≤ B,

[FN04] A. Freund and J. Naor. Approximating the advertisement placement problem. Journal

of Scheduling, 2004.

[HM84] D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing

problems in robotics and VLSI. In Proc. STACS, 1984.
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4 A 2-approximation for 2D Bin Packing

and n such layers can be packed in every bin, so if the 3-Partition instance has a

solution, the 2DBP instance will have a packing into one bin.

On the other hand, if A finds a packing into one bin, this bin is filled completely

since the total area of items is

3n
∑

i=1

ai/B · 1/n=
1

Bn

3n
∑

i=1

ai = 1 .(4.1)

In particular, the packing consists of n layers of items, and each layer is filled

completely. Since we have ai/(4B) < wi < ai/(2B) for all i, a layer can only be

filled completely by exactly three items. Hence, the partition of the items into

layers induces a 3-partition of a1, . . . , a3n.

The best previous result for the non-rotational case was a 3-approximation

by Zhang [Zha05]; very recently, Harren and van Stee have given another 3-

approximation with an improved running time of O(n log n) [HvS10]. Independ-

ently from the present work, they also found a 2-approximation [HvS09].

For the case that rotation by 90° is allowed, Harren and van Stee have recently

given a 2-approximation in [HvS08]. Since it is also NP-complete to decide whether

a set of squares fits into a single bin [LTW+90], this is best possible unless P= NP.

As to asymptotical approximation ratio, Bansal and Sviridenko showed in [BS04]

that 2DBP does not admit an asymptotical PTAS. Caprara gave an algorithm with

[Zha05] G. Zhang. A 3-approximation algorithm for two-dimensional bin packing. Operations

Research Letters, 2005.

[HvS10] R. Harren and R. van Stee. Absolute approximation ratios for packing rectangles into

bins. Journal of Scheduling, 2010. To appear.

[HvS09] R. Harren and R. van Stee. Improved absolute approximation ratios for two-dimensional

packing problems. In Proc. APPROX-RANDOM, 2009.

[HvS08] R. Harren and R. van Stee. Packing rectangles into 2OPT bins using rotations. In Proc.

SWAT, 2008.

[LTW+90] J. Y.-T. Leung, T. W. Tam, C. S. Wong, G. H. Young, and F. Y. L. Chin. Packing squares

into a square. Journal of Parallel and Distributed Computing, 1990.

[BS04] N. Bansal and M. Sviridenko. New approximability and inapproximability results for

2-dimensional bin packing. In Proc. SODA, 2004.
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4.1 Introduction

asymptotical ratio of 1.69 . . . in [Cap02], breaking the important barrier of 2. More

recently, Bansal, Caprara and Sviridenko improved the rate to 1.52 . . . in [BCS06]

for both the rotational and non-rotational case.

A closely related problem is two-dimensional knapsack: here, every rectangle

also has a profit and the objective is to pack a subset of high profit into a constant

number (usually one) of target bins. The best currently known results here are

a (2+ ε)-approximation by Jansen and Zhang [JZ07] for the general case, and a

PTAS by Jansen and Solis-Oba [JSO08] if all items are squares. For our purposes,

the special case that the profit equals the item’s area is important. Bansal et al.

have recently shown in [JP09, BCJ+09] that this problem admits a PTAS, and this

algorithm will be an important building block of the algorithm presented here.

New result We study the non-rotational geometric two-dimensional bin packing

problem, i.e. we are given a list of rectangles (items) r1 = (w1, h1), . . . , rn = (wn, hn)

with all wi , hi taken from the interval ]0,1], and the objective is to find a non-

overlapping packing of all items into the minimum number of containers (bins)

of size 1× 1 without rotating the items. The main result of this chapter is the

following theorem:

Theorem 4.1.2. There is a polynomial-time 2-approximation for two-dimensional

geometric bin packing.

This result is achieved using an asymptotic approximation algorithm such

as [Cap02] or [BCS06] for large optimal values; smaller (i.e. constant) values

[Cap02] A. Caprara. Packing 2-dimensional bins in harmony. In Proc. FOCS, 2002.

[BCS06] N. Bansal, A. Caprara, and M. Sviridenko. Improved approximation algorithms for

multidimensional bin packing problems. In Proc. FOCS, 2006.

[JZ07] K. Jansen and G. Zhang. Maximizing the total profit of rectangles packed into a

rectangle. Algorithmica, 2007.

[JSO08] K. Jansen and R. Solis-Oba. A polynomial time approximation scheme for the square

packing problem. In Proc. IPCO, 2008.

[JP09] K. Jansen and L. Prädel. How to maximize the total area of rectangles packed into a

rectangle? Technical Report 0908, Christian-Albrechts-Universität zu Kiel, 2009.

[BCJ+09] N. Bansal, A. Caprara, K. Jansen, L. Prädel, and M. Sviridenko. A structural lemma in

2-dimensional packing, and its implications on approximability. In Proc. ISAAC, 2009.
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are solved by a recent breakthrough in the approximability of two-dimensional

knapsack problems in [JP09, BCJ+09]: there, it is proven that there exists a PTAS

for maximizing the area covered by rectangles within a 1× 1 bin. This can be

combined with other packing algorithms if the optimum is constant and at least 2

to generate a packing into OPT+ 2 bins. If the optimal packing uses only one bin,

we conduct a case study, again starting from a packing that covers (1− ε) of the

bin and generate a packing into OPT+ 1= 2 bins.

As it turns out, this last case is the most involved one; the following crucial

theorem is proven in Section 4.5:

Theorem 4.1.3. There is a polynomial-time algorithm that finds a packing into two

bins, provided that a packing into one bin exists.

4.2 Definitions

In the following, we consider a bin packing instance specified as a list of n items

r1, . . . , rn, where each ri = (wi , hi) has height hi and width wi taken from the

interval ]0,1]. A packing into a number k of bins is a mapping

p : {r1, . . . , rn} → {1, . . . , k} × [0, 1[× [0,1[

that assigns each item’s lower left corner a position in one of the bins such that

no two items overlap or protude beyond their bin, without rotating the items. For

these purposes, we consider an item ri = (wi , hi) at position (x i , yi) to be the

cartesian product of open-ended intervals ]x i , x i +wi[× ]yi , yi + hi[.

In many cases, we pack parts of the instance using the classic 2-approximation

for strip packing by Steinberg, which we quote without proof:

Theorem 4.2.1 (Steinberg [Ste97]). We can pack a set of items {ri = (wi , hi), i =

1, . . . , n} into a target area of size u× v if the following conditions hold:

1. max{wi : i = 1, . . . , n} ≤ u,

[Ste97] A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM

Journal on Computing, 1997.
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4.3 Solving for large optimal values

2. max{hi : i = 1, . . . , n} ≤ v,

3. 2
∑n

i=1 wihi ≤ uv− (2 max{wi : 1≤ i ≤ n}−u)+(2 max{hi : 1≤ i ≤ n}− v)+,

where (·)+ denotes max{·, 0}.

Corollary 4.2.2. We can pack a set of items {ri = (wi , hi), i = 1, . . . , n} into a target

area of size u× v if the following conditions hold:

1. max{wi : i = 1, . . . , n} ≤ u,

2. max{hi : i = 1, . . . , n} ≤ v/2,

3. 2
∑n

i=1 wihi ≤ uv.

(As usual, this also holds in the symmetrical case of width and height inter-

changed.)

4.3 Solving for large optimal values

As mentioned above, Bansal, Caprara and Sviridenko [BCS06] and before that,

Caprara [Cap02] have given algorithms (randomized and deterministic, respect-

ively, even though Bansal et al. suggest their algorithm can be derandomized) that

have asymptotical approximation ratio strictly smaller than 2. Such algorithms

can be used to solve our problem if the optimum is large enough, as the following

simple lemma shows:

Lemma 4.3.1. Given an approximation algorithm A that in polynomial time always

generates solutions A(I) for instances I that satisfy

A(I)≤ ρA ·OPT(I) + cA (4.2)

for ρA < 2, we can solve 2DBP with absolute ratio 2 for instances I with

OPT(I)≥
cA

2−ρA
=: K . (4.3)
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4 A 2-approximation for 2D Bin Packing

Proof. Let I an instance with optimal value at least cA/(2− ρA). Then, we have

cA ≤ (2−ρA)OPT(I) and the algorithm generates a packing into at most

A(I)≤ ρA ·OPT(I) + cA ≤ ρA ·OPT(I) + (2−ρA)OPT(I) = 2OPT(I)(4.4)

bins.

We will dedicate the rest of the section to find a good estimate of K, and then

return to the core argumentation in Section 4.4.

Considering the large enumeration steps that will be involved in solving the

instance for values of OPT(I) that are smaller than the threshold value K, it is

important to find approximately the size of K . To this end, we observe that both the

results given by Caprara and the better randomized result by Bansal et al. are, in

spite of the way they are often cited, PTAS-style algorithms, i.e. for arbitrary ε > 0,

they give algorithms that use (T∞+ε)OPT(I)+c(ε) and (1+ln T∞+ε)OPT(I)+c(ε)

bins, respectively, where smaller values of ε not only lead to higher running times,

but also to larger additive terms. (Here, T∞ ≈ 1.69103, the exact definition is

given below.)

We will in the following briefly review Capraras deterministic algorithm and the

tradeoff between the constants to find a small threshold value K . We do not repeat

the proofs, the reader is referred to the original work [Cap02] for more details.

In broad strokes, the algorithm of Caprara works as shown in Algorithm 4.1.

Note that two-dimensional bin packing is reduced to one-dimensional bin packing

of the shelves. A very central point for the analysis of Caprara’s algorithm is the

‘configuration ILP’ formulation of the problem that is originally due to Gilmore and

Gomory [GG61] and its LP relaxation:

Definition 4.3.2. Let (s1 : n1, . . . , sm : nm) an instance of one-dimensional bin

packing, meaning that there are ni items of size si , and n =
∑m

i=1 ni . A configuration

is a vector c = (c1, . . . , cm) ∈ {0, . . . , n}m such that c · s =
∑m

i=1 cisi ≤ 1.

[GG61] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock

problem. Operations Research, 1961.
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4.3 Solving for large optimal values

The Gilmore-Gomory-ILP is then given as

min
∑

c configuration

yc

∑

c configuration

ci yc ≥ ni ∀i ∈ {1, . . . , m}

yc ∈ N∪ {0} ∀configurations c

(4.5)

It is easily seen that feasible solutions to (4.5) correspond exactly to feasible

packings of the instance.

Algorithm 4.1: Caprara’s 2D bin packing algorithm
Input: Set of items I = {r1, . . . , rn}, accuracy ε
Output: A 2D packing
Calculate k := k(ε) = (1+ ε−1);
// Partition the items by their width
Wq := {r j : 1/(q+ 1)< w j ≤ 1/q} for q ∈ {1, . . . , k− 1};
Wk := {r j : w j ≤ 1/k};
// Pack the shelves
for q = 1, . . . , k do

Apply NFDH to Wq, obtaining a set of shelves Sq.

// Generate final packing
Use the APTAS of Fernandez de la Vega and Lueker [FL81] for one-dimensional
bin packing to pack all the shelves

⋃k
q=1 Sq into (1+ ε)OPT+δ(ε) bins;

The crucial result of Caprara is the following:

Lemma 4.3.3 (Cf. Lemma 8 in [Cap02]). For an instance I of 2DBP and a given

k, denote with OPTS the number of bins needed by an optimal packing of the shelves

generated in Algorithm 4.1, with OPT the optimal number of bins needed to directly

pack the items in bins, and with OPT∗S the value of the LP relaxation of (4.5).

Then, we have

OPT∗S ≤ TkOPT+ k (4.6)

and the algorithm of Fernandez de la Vega and Lueker yields a packing into at most

(1+ ε)OPT∗S +δ(ε) (4.7)
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Table 4.1: Tk for k ≤ 6.

k 2 3 4 5 6
Tk

12
7

143
84

107
63

95
56

15271
9030

Tk ≈ 1.714 1.702 1.698 1.696 1.691

bins, where δ(ε) = 3(1+ ε)2/ε2+ 1, for a total value of

(1+ ε)(TkOPT+ k) +δ(ε) .(4.8)

Here, the sequence T2, . . . is defined by the following construction:

tq =







1 q = 1

tq−1(tq−1+ 1) q > 1

Tk =
m(k)
∑

q=1

t−1
q +

k

k− 1
t−1
m(k)+1

T∞ = lim
k→∞

Tk ≈ 1.69103

where m(k) = max{q ∈ N : tq < k}. The values of Tk for 2 ≤ k ≤ 6 are shown in

Table 4.1. We obtain as corollary:

Corollary 4.3.4. Algorithm 4.1 generates a packing into at most

(1+ ε)
�

(T∞+ ε)OPT+ (1+ ε−1)
�

+δ(ε)(4.9)

bins.

Proof. It is sufficient to note that all values tq are positive by definition, hence it

holds that

Tk =
m(k)
∑

q=1

t−1
q +

k

k− 1
t−1
m(k)+1 =

m(k)+1
∑

q=1

t−1
q +

1

(k− 1)
t−1
m(k)+1 ≤ T∞+ ε · t−1

m(k)+1 ,

which yields the claim since tm(k)+1 ≥ 1.
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In the following, we will restrict ourselves to choices of ε that satisfy

ε <−
T∞+ 1

2
+

r

(T∞+ 1)2

4
+ 2− T∞ ≈ 0.1103 , (4.10)

because otherwise, the asymptotic approximation rate of the algorithm is at least 2.

In light of (4.3), a small value of K is then given by the following claim:

Lemma 4.3.5. The function

K(ε) :=
(3+ ε)(1+ ε)2+ ε2

ε2(2− (ε2+ (1+ T∞)ε+ T∞))
(4.11)

attains a value of K(ε0) ≤ 6257 for ε0 := 0.0715; for no ε in the range given

by (4.10), K(ε)< 6150.

Proof. For ε0 = 0.0715, we get, since T∞ < 1.692,

K(ε0) =
690.7993596

1.92338775− 1.0715T∞
≤

690.7993596

1.92338775− 1.0715 · 1.692
< 6256.69 . (4.12)

As to the lower bound, we are interested in the values of ε for which the inequality

6150≤ K(ε) (4.13)

holds, in particular that all interesting values of ε satisfy this. Observe that the

denominator of (4.11) will be positive, since ρA < 2, so by rearranging (4.11), we

have to show that

6150ε2(2− (ε2+ (1+ T∞)ε+ T∞))≤ (3+ ε)(1+ ε)2+ ε2 , (4.14)

which by further simplification is equivalent to

− 6150ε4− (6151+ 6150T∞)ε
3+ (12294− 6150T∞)ε

2− 7ε− 3≤ 0 . (4.15)

Since the left-hand side is decreasing in T∞, it is sufficient to replace T∞ by the
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lower bound 1.691, thus obtaining the condition

− 6150ε4− 16550.65ε3+ 1894.35ε2− 7ε− 3≤ 0 ,(4.16)

or equivalently

ε4+
1655065

615000
ε3−

189435

615000
ε2+

700

615000
ε+

300

615000
≥ 0.(4.17)

We can use Ferrari’s formula for quartic functions to solve this for equality. The

desired outcome will be that no positive real solution in the interesting range for ε

exists. Denoting the coefficient of εi by ai for the moment, we proceed by standard

technique and define

α :=−3a2
3/8+ a2 =−

97142670169

40344000000
≈−2.408

β := a3
3/8− a3a2/2+ a1 =

30115692477567197

14886936000000000
≈ 2.023

γ :=−3a4
3/256+ a2a2

3/16− a3a1/4+ a0 =
−9287698905263666488561

19531660032000000000000
.

Since β 6= 0, we set

P =−α/12− γ=−
461653103

60516000000

Q =−α3/108+αγ/3− β2/8=−
4637080016869

7443468000000000

R= −Q/2+
p

Q2/4+ P3/27

=
4637080016869

14886936000000000
+

p
361633975305428114513311215

66991212000000000

U = 3pR

y =−
5

6
α+ U −

P

3U
≈ 2.121

W =
p

α+ 2y ≈ 1.354
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to finally obtain the four, possibly complex, solutions

x =−a3/4+
s ·W + s′ ·

p

−3α− 2y − s · 2β/W
2

(4.18)

for s, s′ ∈ {−1,+1}. Using the approximate values for α and y , combined with the

fact that β and W are positive, we see that the solution will be real for s =−1, and

the approximate solution is then

−
1655065

2460000
−

1.354

2
±

1

2

p

−3α− 2y + ·2β/W (4.19)

which even in the larger case of s′ =+1 is only (approximately) −0.673− 0.677+

1.222=−0.128< 0, so both solutions are negative.

For s = +1, we obtain that the radicand is approximately −0.006, i.e. in that

case, the solution will be a non-real complex number.

Since none of the roots are positive reals, either all or no values of ε satisfy (4.16).

However, it is easily seen that for ε = 1/30, we obtain 1894.35ε2 = 1894.35/900<

3, so substituting into (4.16) yields

−6150ε4−16550.65ε3+1894.35ε2−7ε−3<−6150ε4−16550.65ε3−7ε≤ 0 . (4.20)

Hence, all interesting values of ε satisfy (4.16), so K(ε)≥ 6150, as desired.

Remark 4.3.6. By closer numerical approximation of T∞, we can obtain K = 6199

for ε0 := 0.07178, but we omit the proof, which is only of numerical nature.

In fact, we can obtain a smaller value of K by modifying the algorithm of Caprara:

as mentioned there in passing, the final bin packing step in Algorithm 4.1 can

also be done with an algorithm due to Karmarkar and Karp [KK82] instead of the

algorithm by Fernandez de la Vega and Lueker. The ratio of the Karp/Karmarkar

algorithm is given by the following theorem:

Theorem 4.3.7 (Theorem 4 in [KK82]). There is a polynomial-time algorithm A for

[KK82] N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-

dimensional bin-packing problem. In Proc. FOCS, 1982.
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(one-dimensional) Bin Packing such that

A(I)≤max{(1+ 2/SIZE)OPT+ 1,

OPT∗+ (1+ log2 SIZE)(9+ 4 ln SIZE) + 2+
2

1− (lnSIZE)/2
}

(4.21)

where SIZE is the total area of items and OPT∗ is the optimal value of the bin packing

LP relaxation of (4.5).

By considering the algorithm NFDH, it is easy to see the very generous bound

of SIZE ≤ OPT ≤ 3SIZE so the first term is bounded by OPT+ 7, additionally, for

SIZE> e2, the fraction 2/(1− (lnSIZE)/2) becomes negative. Combining this, the

ratio of Karp and Karmarkar’s algorithm is bounded by OPT+ (1+ log2 OPT)(9+

4 lnOPT) + 2 for OPT> 3e2 ≈ 22.1.

Combining this with Lemma 4.3.3, we can replace (4.7) with (4.21) to obtain

that the modification of Algorithm 4.1 will find a solution that is bounded from

above by

(TkOPT+ k) + (1+ log2(TkOPT+ k))(9+ 4 ln(TkOPT+ k)) + 2

= TkOPT+ (k+ 11) + (4+
9

ln2
) ln(TkOPT+ k) +

4

ln 2
ln2(TkOPT+ k)(4.22)

where k = k(ε) is the number of width classes. Since this term contains the

variables both linearly and logarithmically, it is not easily solved; however we can

make the following observation about the asymptotic behaviour:

Lemma 4.3.8. For all a, b > 0, n ∈ N, the function x 7→ (ln(ax + b))n/x is

monotonically decreasing for x > (en− b)/a.

Proof. The derivative of x 7→ (ln(ax + b))n/x is

d

dx

(ln(ax + b))n

x
=

1

x2

�

n(ln(ax + b)n−1ax

ax + b
− (ln(ax + b))n

�

=
(ln(ax + b))n−1

x2

�

n
ax

ax + b
− ln(ax + b)

�

<
(ln(ax + b))n−1

x2 (n− ln(ax + b))
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which is negative for n< ln(ax + b). The claim follows.

As corollary, we obtain that for fixed k, the ratio of the modified Caprara al-

gorithm is decreasing monotonically for OPT> (e2− k)/Tk.

The exact tradeoff is more difficult to study here because of the presence of

both linear and logarithmic terms in k. However, numerical analysis of the values

suggests a setting of k = 6. If we define for clarity

L = ln(T6OPT+ 6) (4.23)

B(OPT) = T6OPT+ 17+ (4+
9

ln2
)L+

4

ln 2
L2 , (4.24)

we see that B(OPT)/OPT will be decreasing for OPT > 1 > (e2 − 6)/T6 since

by Lemma 4.3.8, all terms are then either constant or decreasing. Considering

the non-integral value OPT = (e8 − 6)/T6 ∈ ]1759,1760[, we obtain L = 8 by

definition, and hence for this choice

B(OPT) = T6OPT+ 49+
328

ln2

<
15271

9030
· 1760+ 49+

328

ln 2
< 3499< 2 · 1759< 2OPT ,

(4.25)

so for optimal values of 1760 or more, the algorithm has absolute ratio 2.

Again, the value was chosen to make L manageable; numerically, one can verify

that substituting the values OPT= 1446, k = 6 into (4.22), we get a result of

TkOPT+(k+11)+(4+
9

ln2
) ln(TkOPT+k)+

4

ln 2
ln2(TkOPT+k) = 1.9997OPT . (4.26)

In total, we obtain

Theorem 4.3.9. For OPT≥ 1446, the algorithm of Caprara yields a packing into at

most 2OPT bins.

4.4 Solving with OPT+ 2 bins for constant OPT

In this section, we will prove the following theorem:
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Theorem 4.4.1. For every constant k, there is a polynomial time bin packing al-

gorithm Bk which for every given instance either correctly decides that no packing into

k bins exists at all or returns a packing into k+ 2 bins.

The algorithm works in two steps: first, it tries to pack almost all items (up to

total unpacked area at most 1/2) into k bins. If this succeeds, the rest is packed

into the remaining two bins. Hence, Theorem 4.4.1 is a direct consequence of the

following two statements:

Theorem 4.4.2. For constant k, ε, there is a polynomial time knapsack algorithm

Kk,ε that for every given instance r1, . . . , rn either returns a packing of a subset

S ⊆ {r1, . . . , rn} of items such that the total area of unpacked items is at most ε and

every unpacked item is bounded in one direction by ε or correctly decides that no

packing into k bins exists.

Lemma 4.4.3. There is a polynomial time algorithm which packs items with total

area at most 1/2 into two bins.

Proof of Lemma 4.4.3. Assign all items of height at least 1/2 to the first bin and

note that the total width of these items is at most 1 since the total area is bounded

by 1/2, hence they can be packed trivially next to one another. All remaining items

have height less than 1/2 and a total area of at most 1/2, so they can be packed

into a 1× 1 bin by using Steinberg’s algorithm.

4.4.1 Proof of Theorem 4.4.2

To prove Theorem 4.4.2, we extend the 2D knapsack algorithm of Jansen and

Prädel [JP09] to a constant number of target areas. We do this by a suitable

embedding into the one-area case, which is captured in the following observations:

Remark 4.4.4. An instance I has a packing into k bins if and only if it has a packing

into the disjoint areas [2 j, 2 j+ 1)× [0, 1) for j ∈ {0, . . . , k− 1}.

We now add k− 1 items items rn+1, . . . , rn+k−1 that are all sized 1× 1, denoting

the resulting instance I ′. Again, the following is immediate:
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Remark 4.4.5. I has a packing into the disjoint areas [2 j, 2 j + 1) × [0,1) for

j ∈ {0, . . . , k− 1} if and only if I ′ has a packing that places item rn+ j ’s lower left

corner at position (2 j− 1,0), for j ∈ {1, . . . , k− 1}.

The total target area of I ′ is sized (2k−1)×1, clearly we can rescale all items and

the target area horizontally by a factor of 1/(2k− 1) without affecting feasibility.

We still call this instance I ′ and sum up the previous discussion in the following

lemma:

Lemma 4.4.6. I has a packing into k bins if and only if I ′ has a packing into one unit

bin such that the lower left corner of item rn+ j is at position ((2 j− 1)/(2k− 1), 0),

for j ∈ {1, . . . , k− 1}.

In remains to show that we can extend the algorithm of [JP09] to the case of a

constant number of ‘pinned’ items, which we do in the following.

Let ε≤ 1/2 the desired accuracy of the algorithm, i.e. the area we are allowed

to discard. To accomodate the horizontal scaling process, we re-set ε := ε/(2k−1),

since every item is (2k−1) times bigger in the unscaled instance than in the scaled

instance.

On a very high level, the algorithm, like many approximation algorithms, works

with a two-pronged approach: on the one hand, we manipulate an unknown

optimal solution into a canonical form which is almost as good. This is done in

such a way that the set of possible canonical forms is computationally tractable,

i.e. of polynomial size. On the algorithmic side, we can then try by brute force all

canonical forms and return the best result we can obtain, which must be at least

as good as the one for the near-optimal canonical form. In our case, the result we

obtain for any single canonical form will again only almost be as good as the best

possible result, but the total error still is bounded.

We first consider the manipulation of the optimal solution of I ′, and denote with

(x∗i , y∗i ) the position of the lower left corner of ri in this solution. In particular, we

know (x∗n+i , y∗n+i) = ((2 j − 1)/(2k− 1), 0) for j ∈ {1, . . . , k− 1} by our definition

of feasible packings.

As in [JP09], we define ε′ :=max{(2z)−1 : z ∈ N, (2z)−1 ≤ ε/4} and a series of
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Figure 4.1: Packing k bins by using k − 1
pinned items

Bin

1

Bin

1

Bin

1

2k− 1

‘pinned’ dummy item ‘pinned’ dummy item

threshold values by

σ1:=ε′ σ j+1 = σ
8+12/σ j

j ∀ j ∈ N .(4.27)

Then, there must be some 2≤ j ≤ 1+ 4/ε′ such that the area

∑

{wihi : (σ j+1 < wi ≤ σ j)∨ (σ j+1 < hi ≤ σ j)}

is bounded by ε′A′/2. Otherwise, we would have obtained a total area of strictly

more than (4/ε′)ε′A′/2 = 2A′, but every item is counted at most twice, once for its

width and once for its height. We set ` := σ j+1 and u := σ j and discard all items

with wi or hi in ]`, u]. We call all items with wi , hi > u big. Note that items rn+ j

for j ≥ 1 have hn+ j = 1 > ε ≥ ε′ and wn+ j = 1/(2k− 1) > ε ≥ ε′, so they are big

and hence are never discarded in this step.

Just as in [JP09, Sect. 3], the placement of the big items induces a set of gap

rectangles G, which have the following properties:

1. We can add the gap rectangles into the optimal packing if we remove all

non-big items from it and leave the big items in their positions.

2. The possible widths of gap rectangles are drawn from a set of polynomial

size.

3. The possible heights of gap rectangles are drawn from a set of polynomial

size.

4. The number of gap rectangles is bounded by a constant.

5. The total area of non-big items which would intersect the boundary of a gap

rectangle (if they had not been removed) is bounded by 3u≤ 3ε′.
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Here, polynomial and constant refer to dependency on n, the values are super-

polynomially in ε. The most notable property for our extension is the first: by

construction, the big rectangles in the optimal packing are not shifted when creating

gap rectangles. In particular, our filler items rn+i , i ∈ {1, . . . , k− 1} remain where

they are.

We can now turn to the algorithmic side: we consider all possible candidate

sets of gap rectangles, together with all big items of the instance. (We know by

assumption that a packing exists, so all big items can be packed.) In [JP09], a

packing, if one exists, is then found by enumeration of bottom-left (BL) packings.

Recall that a BL packing is obtained by shifting each item and rectangle down and

left as far as possible, i.e. until every item’s lower boundary touches the top of

another item or the bottom of a bin and the left boundary touches the right side

of another item or the left side of the bin. Hence, every BL packing of a set of

rectangles R can be given by a function

p : R→ (R∪̇{BIN})× (R∪̇{BIN}) (4.28)

that identifies these two touched items. The number of packings can then be

bounded by (|R| + 1)2|R| which is constant provided that |R| is constant. The

proper packing can be reconstructed from p in polynomial time as sketched as

Algorithm 4.2.

However, it is possible that no BL packing is feasible in the sense that it places

the items rn+i , i ∈ {1, . . . , k− 1} correctly. A solution of I ′ thus obtained would not

transform back to a packing into k unit bins of I . We extend the concept of BL

packings to accomodate fixed items in the straight-forward manner: if F is a set of

fixed rectangles and R a set of other rectangles, the main difference is that F does

not need to have two touching neighbors. A packing is then given by

p : R→ (R ∪̇ F ∪̇{BIN})× (R ∪̇ F ∪̇{BIN}) , (4.29)

so the number of packings is bounded by (|R|+ |F |+ 1)2|R| which again is constant

if both |F | and |R| are constant. A packing can be reconstructed from p by simply

initializing the coordinates of the rectangles in F and starting with D := F ∪̇{BIN}
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Algorithm 4.2: Create a BL packing
Input: function p : R→ (R ∪̇{BIN})× (R ∪̇{BIN})
Output: the corresponding packing of R
D := {BIN};
while R \ D 6= ; do

Find r ∈ R \ D with p(r) = (l, b) ∈ D× D;
if l = BIN then

xr := 0;
else

xr := x l +wl ;

if b = BIN then
yr := 0;

else
yr := yb + hb;

D := D ∪ {r};

in Algorithm 4.2. In total, we can still enumerate all feasible packings of the big

items and gap rectangles that have items rn+i , i ∈ {1, . . . , k − 1} in the desired

place.

Given the packing that corresponds to the optimal solution, we can proceed in

exactly the same way as in [JP09], so the following result holds:

Theorem 4.4.7 (Theorem 3 in [JP09]). The algorithm computes a solution with

area of at least (1− ε)OPT.

Since all big items are always selected for packing, and all non-big items are

bounded in one direction by u≤ ε, this proves Theorem 4.4.2.

4.5 Solving with 2 bins for OPT= 1

In this section, we consider the remaining case that there exists a packing of all

items into a single bin. We will start off by some general statements that can be

shown for packings into a single bin before showing that each instance falls into

one of four cases, each of which we consider separately. As a manner of speaking,

we define T := {ri : hi > 1/2} the set of tall items and W := {ri : wi > 1/2} the
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set of wide items. We extend the notion of width and height to sets S of items by

setting w(S) :=
∑

i∈S wi, the total width of S and h(S) :=
∑

i∈S hi, the total height

of S.

Let us first make easy observations about the presence of tall and wide items

in an instance that admits a packing into one bin. As everywhere in this chapter,

these results still hold for wide items instead of tall items by transposing width and

height.

Remark 4.5.1. We can always fit all tall items into a single bin by packing them

next to each other in non-increasing order of height, since no two of them fit on

top of each other in the optimum.

Remark 4.5.2. If we can pack a set of items which includes all tall items into one

bin such that the total area of the packed items is at least 1/2, we can pack the

remainder of the instance into the second bin using Steinberg’s algorithm.

Lemma 4.5.3. Consider some γ ∈ [0,1/2[ and let w the total width of all items of

height at least 1−γ. Then, the total height of items of width larger than max{1/2, 1−
w} and height less than 1− γ is at most 2γ.

Proof. Consider a horizontal line y = y0 in any feasible packing, for any y0 ∈
]γ, 1− γ[. Such a line clearly must intersect all items of height at least 1− γ, cf.

Figure 4.2, which take up total width w. In particular, it cannot intersect any other

item of width more than 1−w, so all these items must be located in the outermost

γ of the bin. Since the items are also wide, no two of them could be next to one

another, so the total height can be at most 2γ.

Two parameters will appear in the following analysis, a width limit for tall items

δ and the accuracy ε used for the knapsack PTAS. We set

δ := 1/12; ε :=min{δ/144, 1/308.4}= 1/1728 . (4.30)

4.5.1 Many tall or many wide items

In this section, we consider the case that the subset of tall items, i.e. those of height

more than 1/2, is comparatively large. (Symmetrically, this also solves the case
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Figure 4.2: Items of height ≥ 1− γ limit items of width > 1−w.

γ

γ

≤ 1−w

that many items are wide; again, we only consider tall items explicitly.) The result

we claim is the following:

Lemma 4.5.4. If the total width of tall items w(T ) is at least 1−δ, we can pack all

items into two bins.

We will show this in the following way: we first pack all tall items next to each

other by Remark 4.5.1, and then try to pack additional items so that the total area

covered is at least 1/2, at which point we can invoke Remark 4.5.2 to pack the

remainder in the other bin with Steinberg’s algorithm. Note that the tall items

alone already cover at least (1− δ)/2, so we need only δ/2 in extra items. We

will try this in five different ways corresponding to five classes of items, which

in total cover all non-tall items. If none of these five succeeds, we know that the

total area of items in each class is bounded by a small term in δ. In particular, the

total unpacked area will then be bounded by 1/2 so we can still use Steinberg’s

algorithm on the second bin and the unpacked items.

To see this, we first show some technical results:

Lemma 4.5.5. Each item ri satisfies at least one of the following conditions, which

are also sketched in Figure 4.3

1. hi > 1/3,

2. hi ·wi ≥ δ/2,

3. hi ≤ 2δ and wi ≤ 1/2,

100



4.5 Solving with 2 bins for OPT= 1

wi

hi

1/4

2δ

11/2

1/3

1/2

1

(1)

(3)

(4) (5)

(2)

Figure 4.3: The five cases of Lemma 4.5.5

4. 2δ < hi ≤ 1/3 and wi ≤ 1/4,

5. hi ≤ 1/2 and wi > 1/2.

Proof. Consider an item that does not satisfy Case 1. Either its height is larger than

2δ. Then either Case 2 holds or its width is at most 1/4, in which case, Case 4

holds. Otherwise, its height is at most 2δ. Then either its width is at most 1/2, so

that Case 3 holds, or it is larger than 1/2, then since 2δ ≤ 1/2, Case 5 holds.

Lemma 4.5.6. Given a list of rectangles q1 = (w1, h1) . . . , qm = (wm, hm) of total

width at most 1 and one extra rectangle q′ = (w′, h′) with h′ ≤ 1/2, we can either

pack these items into one bin or the set {q′} ∪ {qi : hi > 1− h′} cannot be packed into

a single bin at all.

Note in particular that we do not require the qi to be a subset of the input instance.

Proof. By reindexing, we may assume h1 ≥ h2 ≥ · · · ≥ hm. We pack the items at

the bottom of the bin in this order, cf. the hatched area in Figure 4.4. This is

feasible since their total width is at most 1. Assume that placing q′ in the top-

right corner creates an overlap with some certain qi. Since h′ < 1/2, we have

h1 ≥ · · · ≥ hi > 1−h′ ≥ 1/2≥ h′, so no two of these could be on top of one another

in any feasible packing. However, we have w1+ · · ·+wi > 1−w′, so a bin of width

1 does not admit a packing of all these items next to each other either.
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Figure 4.4: A tall item intersecting the extra item of Lemma 4.5.6

q1

qi

w1 + · · ·+wi

hi

q′

w′

h′

1/2

In particular, we can always place one item from the instance along with all tall

items, so from Remark 4.5.2, Remark 4.5.1 and Lemma 4.5.6, we obtain:

Corollary 4.5.7. If the total area of tall items is (at least) 1/2−δ/2, then all other

items have individual area at most δ/2, or else we can pack the instance into two

bins.

Note that for purposes of proving Lemma 4.5.4, this means that we can restrict

ourselves to the case that Case 2 of Lemma 4.5.5 does not hold true for any other

item, i.e. all other items have (individual) area of less than δ/2, and in particular

they are bounded in at least one direction by
p

δ/2.

Similar to Lemma 4.5.6, we can show:

Lemma 4.5.8. If the total width of tall items w(T ) is at least 1−δ, we can pack all

tall items and leave an empty area sized (1−δ/(1− 2h))× h in the top right corner

for any desired 0< h< 1/2, or we can directly pack the instance into two bins.

Proof. As before, we order the tall items by non-increasing height and pack them

from left to right. Note that there is a total area of at least (1− δ)/2 covered by

tall items below the line y = 1/2. If the area (1− δ/(1− 2h))× h intersects the

tall items, then in particular the point (δ/(1− 2h); 1− h) is within some tall item,

cf. Figure 4.5. This means that there is covered area above the line y = 1/2 of at

least δ/(1− 2h) · (1/2− h) = δ/2. Thus, the total area of tall items would be at

least 1/2, and we can pack the instance by Remark 4.5.2.
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δ

Area 1/2

δ/(1− 2h) 1−δ/(1− 2h)

h

1/2− h

Figure 4.5: Free space available in the top right corner.

We will now use this bound of the area for two classes of items, those that satisfy

either Case 3 or 4 in Lemma 4.5.5. Let us first consider Case 3, the set of items of

height at most 2δ and width at most 1/2. Assume that the total area of these items

is at least δ/2 and greedily select a subset S of total area in the interval [δ/2,δ[.

This is possible, since every individual item can be assumed to have area at most

δ/2 by Corollary 4.5.7.

We define a container of size 1/2×2/5. Note that its height is 2/5> 4/12 = 2·2δ,

so more than twice the height of every item, and its area is 1/5 ≥ 2δ, so more

than twice the total area of selected items S. In particular, we can pack S into

this container with Steinberg’s algorithm by Corollary 4.2.2. It remains to verify

that the container itself can be packed by Lemma 4.5.8, and indeed its height is

2/5< 1/2 and the allowed width of a container of this height would even be

1−
δ

1− 2 · 2/5
= 1− 5δ =

7

12
>

1

2
, (4.31)

so the container fits. This shows:

Lemma 4.5.9. If w(T )≥ 1−δ and the total area of items with hi ≤ 2δ and wi ≤ 1/2

is at least δ/2, we can pack all items into two bins.

We now turn to the items of Case 4, having height in the interval ]2δ, 1/3] and

width at most 1/4. Again, if these items have total area at least δ/2, we can select

a subset S with area in the interval [δ/2,δ[ and pack this subset into a container
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sized 1/2× 2/5: as just seen, this container’s area is large enough; obviously its

width is at least twice that of any item in S, and we have also already seen that

this container fits in the top right corner. This shows:

Lemma 4.5.10. If w(T )≥ 1−δ and the total area of items with 2δ < hi ≤ 1/3 and

wi ≤ 1/4 is at least δ/2, we can pack all items into two bins.

Next, we consider Case 5 of Lemma 4.5.5, the items of width more than 1/2

which are not already packed. (There could be one wide item that is also tall.)

Their individual height is automatically less than δ by Corollary 4.5.7. We can pack

a specific subset of these by using the following lemma:

Lemma 4.5.11. Let r1, . . . , rm be the items of W \ T, i.e. all wide items apart from

up to one item which is tall as well, ordered by non-decreasing width, and let k ≤ m

such that
∑k

i=1 hi ≤ h(W \ T)/2. We can then pack T and {r1, . . . , rk} into a single

bin.

Proof. Pack the tall items from left to right ordered by non-increasing height at the

bottom of the bin and stack the wide items from the top right corner downwards

ordered by non-increasing width as shown in Figure 4.6, and assume that there

is an overlap. Choose j ≤ k maximal such that r j intersects a tall item r`. Clearly,

the total width of items at least as tall as r` is larger than 1− w j, otherwise, the

overlap would not have occurred. By Lemma 4.5.3, setting γ= 1− h` < 1/2, the

total height of wide non-tall items of width at least w j is then at most 2(1− h`),

however, it is also at least

m
∑

i= j

hi =
k
∑

i= j

hi +
m
∑

i=k+1

hi ≥
k
∑

i= j

hi + h(W \ T )/2≥ 2
k
∑

i= j

hi > 2(1− h`) ,(4.32)

which contradicts the assumption of overlap.

If we assume that the total area of items in W \ T is at least 4δ, then their total

height is also at least 4δ. In particular, we can greedily select the narrowest wide

items of total height at least δ and at most 2δ. (Recall the individual height of

these items is at most δ.) Their total area will then be at least δ/2 and they must

be packable by the previous discussion. This shows:
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r`

r1

r j

≥ h(W )/2

≤ h(W )/2

> 1−w j Figure 4.6: Tall and wide items in a single bin.

Corollary 4.5.12. If w(T) ≥ 1− δ and the total area of items with wi > 1/2 and

h1 ≤ 1/2 is at least 4δ, we can pack all items into two bins.

Finally, we consider Case 1, items of height larger than 1/3, but at most 1/2.

Each item’s width is then bounded by 3δ/2 by Corollary 4.5.7. We then succeed by

the following lemma:

Lemma 4.5.13. We can pack all but one items of height larger than 1/3 into one bin,

and the unpacked item has height at most 1/2.

Proof. The idea of this proof is a generalization of a result implicit in Graham’s proof

of the performance of the Longest Processing Time scheduling heuristic [Gra69],

i.e. that this heuristic is optimal as long as there are at most two jobs per machine.

We sort all items by non-increasing height (assume by reindexing h1 ≥ h2 . . .) and

start packing them at the bottom of the bin until the total width is at least 1. If the

width is strictly larger, the last item, rk, protrudes beyond the bin and we split it.

(This is the one item that we are allowed to not pack at the end.) By Remark 4.5.1,

the split item cannot have height larger than 1/2. The rest of the split item and

[Gra69] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied

Mathematics, 1969.
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Figure 4.7: Items of height larger than 1/3 in a single bin
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all further items are packed from right to left at the top of the bin into a ‘reverse

shelf’, cf. Figure 4.7.

Assume now that there is a collision of items, say ri at position (x i , 0) in the

lower shelf, collides with r j at (x j , 1− h j) in the upper shelf. Since all items in the

upper shelf have height at most 1/2, we obtain hi > 1/2. Also, we can conclude

that the total width of items of height at least h j, w1+ · · ·+w j, is at least 2− x j,

and the total width of items of height at least 1− h j is at least w1+ · · ·+wi > x j .

However, in any feasible packing of the items r1, . . . , r j, the items r1, . . . , ri of

total width w1+ · · ·+wi > x j cannot be above each other, because hi > 1/2, nor

can any of the items ri+1, . . . , r j be above or below one of them because already

hi + h j > 1. Since h j > 1/3, at most two items in ri+1, . . . , r j can be on top of one

another in any packing. Hence, the total width taken up by all these items in any

packing is at least

w1+ · · ·+wi +
wi+1+ · · ·+w j

2
=

1

2

j
∑

k=1

wk +
1

2

i
∑

k=1

wk >
1

2
(2− x j) +

1

2
x j = 1 ,(4.33)

which contradicts that there is a feasible packing into one bin.

Hence, no overlap can have occured, so our packing is feasible apart from the

fact that at most one item is split. We discard this item.

Assume the total area of items of height larger than 1/3 and at most 1/2 is

at least δ. The previous lemma then packs all but one item, but the area of the
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discarded item is at most δ/2 by Corollary 4.5.7, so we have still packed at least

δ/2 additional area.

Note that the precondition of all cases was that certain items have a certain

minimum total area, and all non-tall items are counted at least once by Lemma 4.5.5.

If none of these attempts solves the problem, we can hence bound the total area of

non-tall items as follows: δ by Case 1, 0 by Case 2, δ/2 for each of Case 3 and 4

and 4δ for Case 5, for a total of 6δ ≤ 1/2, so we can nonetheless pack all non-tall

items in the second bin using Steinberg’s algorithm.

This, all put together, shows Lemma 4.5.4. In the following, we therefore always

assume that w(T )≤ 1−δ and, by symmetry, h(W )≤ 1−δ.

In the remaining cases, we will always pursue the same angle of attack: starting

off with a packing of area (
∑n

i=1 wihi)−ε into one bin generated with the algorithm

in [JP09], we will identify a suitable strip of size 2ε and move all items that properly

intersect the strip into the second bin, cf. Figure 4.8a. For convenience, we always

consider horizontal strips, but all results still hold with ‘horizontal’ and ‘vertical’

interchanged.

All unpacked items that are bounded in height by ε can then be packed into

the empty strip sized 1× 2ε in the first bin using Steinberg’s algorithm by Corol-

lary 4.2.2.

We will then re-arrange the moved items in the second bin in such a way that the

second bin also accomodates the other unpacked items of area at most ε (each of

which is bounded in width by ε) in one of two ways: we either clear a full-height

area of size 2ε× 1, Figure 4.8b, into which they can be packed by Steinberg’s

algorithm again, or we will argue that in specific cases, a certain subset of tall

unpacked items can be packed ‘manually’ so that the rest can fit into a free area of

height less than 1 but width larger than 2ε as in Figure 4.8c.

The following lemma will prove useful for rearranging items of height at most

1/2:

Lemma 4.5.14. Given a set {a1 ≥ . . .≥ am} of numbers, a total width S ≥
∑m

i=1 ai

and a desired target value T such that S ≥ 2T + a1, we can find in linear time a

subset P ⊆ {1, . . . , m} such that
∑

i∈P ai ≤ S− T and
∑

i 6∈P ai ≤ S− T.
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4 A 2-approximation for 2D Bin Packing

Figure 4.8: General approach

2ε

(a) Clearing a horizontal strip in the first
bin

2ε

(b) Clearing a vertical strip in the
second bin

4ε

1/2

(c) Finding two areas in the second bin
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Proof. If
∑m

i=1 ai ≤ S − T , P := ; is a trivial solution. Otherwise, we find k < m

such that
∑k

i=1 ai ≤ S− T <
∑k+1

i=1 ai . Then, we also have

m
∑

i=k+1

ai ≤ S−
k+1
∑

i=1

ai + ak+1 < T + ak+1 ≤ T + a1 ≤ S− T , (4.34)

so P = {1, . . . , k} is the desired set.

4.5.2 One big item

In this section, we will consider the case that there exists one item in the packing,

say r1, such that w1, h1 > 1/2. By Lemma 4.5.4, we also may assume that w1, h1 ≤
1−δ. Let (x1, y1) the coordinates of r1’s lower left corner. Without loss of generality,

we assume the bottom edge of r1 is at least as close to the bottom of the bin as the

top edge to the top, i.e. y1 ≤ 1−h1− y1, which means y1 ≤ (1−h1)/2. (Otherwise,

we imagine the packing flipped upside down.) We consider the strip defined by

y ∈ ]y1, y1+2ε[ and denote with S the set of items that intersect the strip. We move

all items in S that intersect the line y = y1+2ε (in particular, r1) to the second bin.

Note that all items in S that do not intersect the line y = y1+2ε are already packed

in two areas sized x1× (y1+2ε) and (1−w1− x1)× (y1+2ε), because they were

either to the left or to the right of r1. Since x1+(1−w1− x1) = 1−w1 ≤ 1/2≤ w1

and y1+ 2ε≤ (1− h1)/2+ 2ε≤ 1/4+ 2ε≤ h1− 2ε, we can pack these areas into

the empty space freed by r1 without obstructing the horizontal strip at the bottom,

cf. Figure 4.9.

Let us now order the items in the second bin by non-increasing height, and note

in particular that by Lemma 4.5.4, we may assume that the total width of tall items,

wT := w(S ∩ T ), is at most 1−δ.

We consider two cases now: either there is a non-tall item, say r2, of width at

least 1−wT − 4ε or not. If there is no such item, we can apply Lemma 4.5.14 to

free a vertical strip of width at least 2ε as shown in Figure 4.10a: we set the target

width T := 2ε. The total width available S is at least 1−wT . The numbers are the

widths of the non-tall items, so the lemma yields a partition of the items into two

subsets, each of which has total width at most 1−wT − 2δ. Since all these items

are not tall, this yields a packing into two shelves atop one another.
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Figure 4.9: Re-packing items in the first bin if a big item exists

2ε

≤ h1 − 2ε

r1

≥ 1/2x1 1− x1 −w1

Figure 4.10: Re-packing if a big item r1
exists

r1

2ε

(a) Clearing a strip if many items
are narrow enough

r1

r2

4ε

1/2

(b) Clearing areas if a sufficiently wide
item exists
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If, however, such r2 exists, it has width at least 1− wT − 4ε ≥ δ− 4ε ≥ 6ε. In

particular, we can apply Lemma 4.5.6 on the following items: 1. S \ {r2}, 2. all

unpacked tall items (of total width at most 2ε) 3. a container sized 4ε × 1/2,

into which we can pack all remaining unpacked items by Steinberg’s algorithm,

and use r2 as the extra item to pack into the top-right corner, as depicted in

Figure 4.10b. Note that r2 and the container will not intersect since both their

heights are bounded by 1/2.

4.5.3 One medium item

In this section, we will consider the case that there exists some item in the packing,

say r1, such that w1, h1 ≥ 12ε, and this item’s lower left corner is at (x1, y1). In

light of the previous section, we can assume min{w1, h1} ≤ 1/2, say h1 ≤ 1/2. We

also assume again that “r1 is in the lower half of the bin”: y1 ≤ 1− y1 − h1, i.e.

y1 ≤ (1− h1)/2, otherwise we flip the packing upside-down.

We now set y0 :=max{2ε, y1} and consider three consecutive horizontal strips:

Strip I is defined by y ∈ ]y0, y0+2ε[, Strip II by y ∈ ]y0+2ε, y0+4ε[ and Strip III

by y ∈ ]y0+4ε, y0+6ε[, see Figure 4.12a. Since y0+6ε≤ y1+2ε+6ε < y1+h1,

all three strips are entirely bisected by r1.

We claim the following properties hold:

y0+ 6ε≤ 1/2 , (4.35)

y0+ 4ε≤ 1− h1 . (4.36)

Eq. (4.35) is trivial for y0 = 2ε since ε≤ 1/16, and for y0 = y1 we have y0+ 6ε≤
y1+ h1/2≤ (1− h1)/2+ h1/2 = 1/2. As to (4.36), it is now sufficient to note that

y0+ 4ε < y0+ 6ε≤ 1/2≤ 1− h1.

We are now interested in the sets of items that intersect the strips, which we will

denote by SI , SI I and SI I I , respectively.

Remark 4.5.15. If one of Strips I, II, III contains items other than r1 of height at

most 1− h1 and total width at least 2ε that totally bisect the strip, we can pack the

instance into two bins.

Proof. Move the strip in question and the corresponding items to the second bin,
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Figure 4.11:
Packing items
if enough items
exist in Re-
mark 4.5.15

r1

≥ 12ε

(a) Strip moved to the second bin

r1

(b) Reordering items

2ε

r1

(c) Shifting items

maintaining their packing, as shown in Figure 4.11a. We modify the packing as

follows: By reordering, we can assume that all bisecting items are adjacent to r1

and r1 is at the right side of the bin, as shown in Figure 4.11b. r1 is shifted up

to the top of the bin, all other items that bisect the strip are shifted down to the

bottom of the bin. It is then possible to shift r1 to the left by at least 2ε, which

frees a vertical strip of width 2ε, cf. Figure 4.11c.

If this does not apply, we will move SI I to the second bin and rearrange it to

accomodate the remaining items. In more detail, we create the following packing

(cf. Figure 4.12b): the item r1 is packed in the top right corner of the bin. Below it,

there are two containers, C1 sized 4ε× (1− h1) and C2 sized 6ε× (1− h1). The

first holds all unpacked items of height at most 1− h1, packed with Steinberg’s

algorithm. This is feasible by Corollary 4.2.2 since each unpacked item’s width is

bounded by ε≤ 4ε/2 and their total area is at most ε≤ (4ε)/4≤ (4ε) · (1− h1)/2.

The container C2 contains all items of SI I with height at most 1−h1 that bisected at

least one of Strip I, II or III entirely, which means they can be packed next to each

other since by Remark 4.5.15, their total width is at most 6ε. (These are marked in

a darker shade in both Figure 4.12a and Figure 4.12b.) Note in particular that all

items with height in the interval [4ε, 1− h1] end up in C2.

The remaining items in SI I \ SI I I , shaded darkest, can be shifted into a container

C3 sized (1− w′)× 4ε, where w′ is the total width of all items in SI I ∩ SI I I that
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Strip II

r1

(a) A suitable strip, before reordering

r1

4ε

C1C2

6ε

C3

1−w′

≥ 2ε

4ε

(b) after reordering

Figure 4.12: Re-
ordering items
that intersect
Strip II.

bisect Strip II. It is immediate that this width is sufficient, because all items in

SI I \ SI I I do not intersect Strip III and no item in SI I is below an item that bisects

Strip II. As to the height, note that all these items are bounded in height by 1− h1

by (4.36), and all those that bisected an entire strip were already removed to C2

above. This means that all remaining items in SI I \SI I I do not cross the line y = y0

nor y = y0+ 4ε. We position C3 at the bottom of the bin, next to C1 and C2, and

note that it is shifted at least 2ε under r1. Since its width is at most 1− w1, the

combined width of C1, C2, C3 is less than 1− 2ε.

Now, the following items are still remaining: unpacked items of height more

than 1−h1, and packed items of height either larger than 1−h1 or smaller than 4ε

from the set SI I ∩SI I I \{r1}, i.e. they all intersected the line y = y0+4ε. Note that

the total width of all these is at most ε/(1−h1)+(1−w1)≤ 2ε+1−w1 ≤ 1−10ε.

We sort these items by decreasing height and pack them left-to-right, starting

at position (0,0), and continuing on top of C3. The total width available is hence

1− 10ε, so the items will not intersect C2, but conceivably intersect r1 or extend

beyond the top of the bin.

Assume that some item ri collides with r1. This cannot be an item of height at
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most 4ε since yi + hi ≤ 4ε+ 4ε≤ 1/2≤ 1− h1, so its height must be larger than

1− h1. However, the collision would then contradict Lemma 4.5.6, since all such

items must have fit next to r1 in an optimal packing.

Finally consider that some item ri might protude beyond the top of the bin

(whether or not it collides with r1). Such an item must have hi > 1− 4ε and

be positioned atop C3. However, since 1/2 > y0 ≥ 2ε, this means that ri either

completely bisected both SI I and SI I I or was unpacked. The total width of such

items (other than r1) is at most (w′−w1) + ε/(1− 4ε)< w′−w1+ 2ε. The width

of the area next to C1, C2, C3 is 1− (1−w′)−10ε = w′−10ε≥ w′−w1+2ε since

w1 ≥ 12ε, so all items of height more than 1− 4ε were successfully packed there

by the algorithm.

4.5.4 All small and elongated items

In this section, we consider the remaining case that every packed item is bounded

in at least one direction by 12ε. Note that all unpacked items are even bounded by

ε in one direction. First of all, we want to show that the difficult subcase here is if

there are few items which have one ‘medium’ sidelength. (We show the claim for

items of medium height, but the same argument works for medium width.)

Lemma 4.5.16. If the total area of packed items of height at least 12ε and at most

1/2 and width at most 12ε (‘tallish items’) is at least 19.2ε, we can pack all items

into two bins.

Proof. Suppose for illustration that there is a strip y ∈ ]y0, y0+ 2ε[ that is entirely

bisected by some tallish items. If the total width of these items is at least 16ε, we

can move this strip to the second bin and apply Lemma 4.5.14 with T := 2ε to find

a partition of the tallish items into two shelves such that we clear a vertical strip of

width 2ε in the second bin.

To formalize this notion and show that such a strip must exist, we define for

every tallish item ri packed at location (x i , yi) the function

χi(y) :=







wi , y ∈ [yi , yi + hi − 2ε]

0, otherwise.
(4.37)
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Figure 4.13: Areas of tallish items that “do not count towards the 16ε”.

Note that ri will completely bisect the strip ]y, y + 2ε[ iff χi(y) = wi. (See also

Figure 4.13, where the missing 2ε are hatched.) We have that

∫ 1

0

χi(y)d y = wi · (hi − 2ε)≥ wi · hi · 10/12 , (4.38)

since hi ≥ 12ε. Summing over all tallish items, we obtain that

∫ 1

0

∑

ri tallish

χi(y)d y ≥
∑

ri tallish

10

12
wihi =

10

12
·
∑

ri tallish

wihi ≥
10

12
· 19.2ε= 16ε . (4.39)

In particular, there exists some y such that
∑

{χi(y) : ri tallish} ≥ 16ε, which

identifies a suitable strip for re-packing in the second bin.

We can also find such a strip in polynomial time. To do this, note that when

sweeping the horizontal line from the bottom of the bin upwards, the amount of

‘counting’ tallish items
∑

{χi(y) : ri tallish} only increases if y = yi for some tallish

item ri . In particular, the maximum value, which is at least 16ε, is attained in one

of the at most n elements of {yi : ri packed and tallish}.

If the previous lemma does not give us a solution, we know that most of the area

of the instance is in items that are either tall or wide or very small in both directions.

(We have 2 · 19.2ε in tallish and widish items and ε in unpacked items that we

have not reasoned about yet.) In this case, we will construct a packing from scratch

as shown in Figure 4.14. Beforehand, we would like to recall a classical lemma

concerning Next Fit Decreasing Height (NFDH) when applied to small items:
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Figure 4.14: Packing items if few tallish and widish items exist

≤ h(W )/2

b ≥ 1/2

w(T ) a ≥ δ

NFDH

Lemma 4.5.17. Given a set of items which are bounded in both width and height

by 12ε and a target area sized a× b (for a, b ≥ 12ε), NFDH packs all the items or

covers an area of at least (a− 12ε)(b− 24ε).

Proof. Consider the case that NFDH does not pack all the items, and denote with

Hi and Wi the height and used width of the ith shelf, for i = 1, . . . , k. Then,
∑k

i=1 Hi > b− 12ε, otherwise, another shelf could have been added. Also, all Wi

are at least a−12ε, because otherwise, a further item would have been added. The

total area covered by in the ith shelf is then at least (a− 12ε) ·Hi+1, so summing

over all shelves, we cover

(a− 12ε)
k−1
∑

i=1

Hi+1 = (a− 12ε)(
k
∑

i=1

Hi −H1)> (a− 12ε)(b− 12ε− 12ε) ,(4.40)

as desired.

In the following, we denote with Atal l the total area of all tall items, with Awide

the total area of wide items and with Asmall the total area of items which are

bounded by 12ε in both directions. Without loss of generality, we assume Atal l ≥
Awide. We have already shown in Lemma 4.5.11 that we can arrange all of the tall

items and approximately half (in terms of total height) of the wide items as shown

in Figure 4.14. The area covered by these items is at least Atal l + Awide/3− 12ε,

since all packed wide items might have width close to 1/2 while all unpacked wide

items might have width 1, and one item of individual area at most 12ε might be
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split. Denote with a and b the width and height of the area to be filled with NFDH.

Following Lemma 4.5.4, we may assume that a ≥ δ and b ≥ 1− (1−δ)/2> 1/2.

(Bear in mind we have not packed at least half of the stack of wide items in

Lemma 4.5.11.) In particular, by Lemma 4.5.17 we either pack all small items

there or cover an area of

(a− 12ε)(b− 24ε)> ab− 12ε(2a+ b)≥ ab− 36ε≥ ab−δ/4≥ ab/2 , (4.41)

where we use that ε≤ δ/144 and ab ≥ δ/2. In this case, we have filled the entire

bin at least halfway: the area sized (1− a)× 1 at the left side of the bin is covered

at least halfway by the tall items, the (not disjoint) area sized 1× (1− b) at the

top of the bin is covered at least halfway by wide items, and as we have just seen,

the NFDH region is also covered with at least ab/2.

Even if we run out of small items, the area remaining for the second bin is small:

it is bounded by (2Awide/3+ 12ε) + 2 · 19.2ε+ ε for wide, widish and tallish and

unpacked (non-tall non-wide) items, respectively. Since Awide ≤ Atal l , we have

Awide ≤ 1/2, so the above sum is bounded by 1/3+ 51.4ε, which is at most 1/2

since ε ≤ 1/308.4. Hence, in either case, the second bin can be packed using

Steinberg’s algorithm.

Summing up, the overall algorithm works as outlined in Algorithm 4.3.

4.6 Conclusion

We have presented an algorithm that generates 2-approximate solutions for two-

dimensional geometric bin packing, which matches the rate known for the ro-

tational problem. Since both the rotational and non-rotational problem are not

approximable to any 2− ε unless P = NP, this settles the question of absolute

approximability of these problems. For practical applications, it would be interest-

ing to find faster algorithms: our algorithm relies heavily on the knapsack PTAS

in [JP09, BCJ+09] and techniques in [JS07] with a doubly-exponential depend-

ency on ε, in particular when compared to the running time O(n log n) of Harren

[JS07] K. Jansen and R. Solis-Oba. New approximability results for 2-dimensional packing

problems. In Proc. MFCS, 2007.
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Algorithm 4.3: 2-approximation for 2D Bin Packing

Run the algorithm of Bansal et al. [BCS06];
for k = 2, . . . , K do

Run the algorithm of Section 4.4;

if the area of all items is at most 1 then
if Lemma 4.5.4 can be applied then

Apply Lemma 4.5.4;

else
Generate a packing of (1− ε) area in the first bin using [JP09];
if this packing contains a big item then

apply the algorithm in Subsection 4.5.2;

else if this packing contains an item of at least 12ε in both directions
then

apply the algorithm in Subsection 4.5.3;

else
apply the algorithm in Subsection 4.5.4;

Return the best solution found;
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and van Stee’s 3-approximation in [HvS10]. Still, our result is an important step in

the study of two-dimensional packing problems.

Another important open problem is the gap in asymptotic behaviour between the

non-existence of an APTAS and the best known algorithm with asymptotic quality

of 1.525.
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5 Concluding Remarks

In this thesis, we have presented results on three subjects in packing and scheduling

problems: online scheduling, with special focus on the impact of machine unavail-

ability; offline scheduling on unrelated machines; and two-dimensional geometric

bin packing.

Of course, not all questions concerning these problems have be answered here.

In particular, two important issues remain open for future research concerning bin

packing and restricted assignment:

We have shown in Chapter 4 that there exists a polynomial-time 2-approximation

for 2DBP, which matches the best lower bound possible unless P = NP. A crucial

subroutine for this was an algorithm with asymptotic ratio better than 2, and any

improvement there that yields smaller values of the threshold constant K would

yield better running times, in addition to being an interesting research subject in

its own right. Hence the following problem deserves future attention:

Open Question 1. What asymptotic ratios are possible for 2DBP in polynomial time?

In particular, does 2DBP admit an asymptotic 1.5-approximation?

Our second question concerns Scheduling with Assignment Restrictions: we have

shown in Subsection 3.2.1 that this problem seems to be easier on interval graphs.

Our advances are comparatively small, but it opens an important direction: to the

author’s best knowledge, no research has been previously done on the subject that

exploits special properties of the LP formulation such as total unimodularity or

total dual integrality. The full impact this will have is not quite clear, so we ask:

Open Question 2. Does Scheduling with Interval Assignment Restrictions admit

polynomial-time algorithms with approximation ratio 1+ ε for some ε < 1, possibly

even a PTAS?
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