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Abstract

This thesis deals with the explicit solution of optimal stopping problems with infinite
time horizon.

To solve Markovian problems in continuous time we introduce an approach that gives
rise to explicit results in various situations. The main idea is to characterize the optimal
stopping set as the union of the maximum points of explicitly given functions involving
the harmonic functions for the underlying stochastic process. This provides elementary
solutions for a variety of optimal stopping problems and answers questions concerning
the geometric shape of the optimal stopping set. The approach is shown to work well
for one- and multidimensional diffusion processes, spectrally negative Lévy processes and
problems containing the running maxima process.
Furthermore we introduce a new class of problems, which we call problems with
guarantee. For continuous one-dimensional driving processes and certain Lévy processes
we prove that the optimal strategies are of two-sided type and establish first-order ODEs
that characterize the solution.

In the second part we consider optimal stopping problems for autoregressive processes in
discrete time. This class of processes is intensively studied in statistics and other fields
of applied probability. We establish elementary conditions to ensure that the optimal
stopping time is of threshold type and find the joint distribution of the threshold-time
and the overshoot for a wide class of innovations. Using the principle of continuous fit
this leads to explicit solutions.



Zusammenfassung

Gegenstand dieser Arbeit ist die explizite Lösung von Problemen des optimalen Stoppens
mit unendlichem Zeithorizont.

Im ersten Teil führen wir zur Lösung Markovscher Probleme in stetiger Zeit einen Ansatz
ein, der in einer Vielzahl von Situationen zu expliziten Ergebnissen führt. Unter Be-
nutzung der harmonischen Funktionen des zugrunde liegenden Prozesses charakterisieren
wir dazu zunächst das Stoppgebiet als Menge von Maximalstellen konkret gegebener
Funktionen. Dies führt in vielen Fällen zu elementaren Lösungen und ermöglicht
Aussagen zur geometrischen Form des Stoppgebiets. Der Ansatz ist anwendbar auf ein-
und mehrdimensionale Diffusionen, spektral-negative Lévyprozesse und Probleme, die
den Supremumsprozess enthalten.
Des Weiteren führen wir eine neue Klasse von Problemen ein, die wir Stoppprobleme
mit Garantien nennen. Für stetige eindimensionale Prozesse zeigen wir mithilfe des
obigen Ansatzes, dass die optimalen Strategien zweiseitig sind und charakterisieren die
optimalen Grenzen mittels gewöhnlicher Differentialgleichungen erster Ordnung. Diese
Ergebnisse übertragen wir anschließend auf Lévyprozesse.

Im zweiten Teil beschäftigen wir uns mit Problemen des optimalen Stoppens autoregres-
siver Folgen, welche zur Beantwortung von Fragen in der Statistik und in anderen Feldern
der angewandten Mathematik untersucht werden. Wir geben elementare Bedingungen an,
die sicherstellen, dass die optimalen Stoppzeiten Erstübertrittszeiten sind und bestimmen
die gemeinsame Verteilung von Erstübertrittszeit und Overshoot für eine große Klasse
von Innovationen. Mithilfe des Prinzips des stetigen Übergangs erhält man explizite Lö-
sungen.
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Chapter 1

Introduction

In this thesis we focus on the solution of optimal stopping problems. As a motivation of
these we consider the following four examples:

1. We drive a car along a street with parking spaces on the way to our destination.
What is the best time to take a free parking space if we want to minimize the
walking distance without turning around?

2. We sequentially observe a random process that depends on an unknown parameter
and want to test a hypothesis about this parameter. What is the best time to decide
as soon and as accurate as possible whether the hypothesis is true or not?

3. We observe the data of a certain early warning system. What is the “right” time to
send out an alarm?

4. We own an American option at a financial market, i.e. we have the opportunity to
exercise an option at any time up to a maturity. What exercise time should we use
to maximize our expected payoff?

Abstracting from these examples our problem can be formulated as follows:

What time should we choose for a particular action to maximize the expected payoff (resp.
minimize the expected costs)?

As a restriction for a solution we assume that we are no clairvoyants, i.e. we can only
use stopping strategies that are based on information available so far. Furthermore we
assume the observed process to have a random structure. Such kind of problems are called
optimal stopping problems.
They appear, for example, in mathematical statistics, derivative pricing and portfolio
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optimization, stochastic control theory and in the general theory of probability and its
connection to problems in analysis. Hence solutions to these problems are important both
for theory and applications. Early textbook treatments are [CRS71] for the discrete case
and [Shi78] for Markovian problems; a recent monograph is [PS06].

In the following section we give a formal definition of the problem and a short overview
on the development of the theory including some basic facts. In Section 1.2 we describe
the outline of this thesis and point out the main contributions.

1.1 A brief overview of optimal stopping theory

Optimal stopping problems can be seen in the light of classical calculus of variations:
Following this line, problems of optimal control in stochastics were investigated in the
1940s and 50s by Bellman’s work in dynamic programming (see [Bel57]).
Problem 2 above can be seen as another early motivation for studying problems of optimal
stopping: Wald and Wolfowitz transformed the problem of finding Bayesian procedures
about the distribution of an observed sequence of i.i.d. random variables to an optimal
stopping problem and described solutions for these problems ([WW48], [WW50]). This
work was extended in many directions and the research is still going on. We refer to
[Lai01] for a detailed overview. Motivated by this development Snell formulated the
general problem in [Sne51]. We state it as follows:

Given a time parameter set T ⊆ [0,∞), and an (Ft)t∈T-adapted process (Yt)t∈T (the payoff
process) find an (Ft)t∈T-stopping time τ ∗ such that

E(Yτ∗) = sup
τ
E(Yτ )

and give an explicit expression for the optimal expected payoff. Here the supremum is
taken over all (Ft)t∈T-stopping times τ (the admissible strategies) such that the expecta-
tion exists.

Snell proved that in discrete time – i.e. T = N0 – under natural conditions the stopping
time

τ ∗ = inf{n ∈ N0 : Yn = Zn}

is optimal, where (Zn)n∈N0 is the minimal regular supermartingale dominating (Yn)n∈N0 .
Furthermore this “Snell envelope” (Zn)n∈N0 is given by

Zn = ess sup
τ≥n

E(Yτ |Fn).
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The same results hold for continuous time parameter sets under minimal conditions. For
more details including proofs we refer to [PS06, Chapter I].

For a general process (Yt)t∈T the explicit determination of optimal stopping times via the
Snell envelope is successful only for few examples. For a finite time parameter set T one
can use the method of backward induction as described in [CRS71, Chapter 3 and 4] but
in this thesis we concentrate on infinite – and especially on unbounded – time parameter
sets.
In this case a Markovian structure simplifies the problem. Dynkin initialized this devel-
opment in [Dyn63]. The payoff process is assumed to have the form Yt = g(Xt), where
(Xt)t∈T is a Markov process with state space E and g : E → R is a measurable function.
The solution to the optimal stopping problem depends on the starting point of the Markov
process and we consider the value function v defined by

v(x) = sup
τ
Ex(g(Xτ )), x ∈ E.

This function v can be characterized via superharmonic functions: Under minimal condi-
tions v is the smallest superharmonic function dominating g. Furthermore the stopping
time

τ ∗ = inf{t ∈ T : Xt ∈ S}

is optimal for all starting points whenever an optimal stopping time exists; here

S = {x ∈ E : g(x) = v(x)}.

Therefore the set S is called the optimal stopping set. Hence if the smallest super-
harmonic majorant of g is known the problem is completely solved. But the concrete
determination is not an easy task in general. As before we refer to [PS06, Chapter I].

For the solution of optimal stopping problems in the Markovian setting and continuous
time the connection to free boundary problems was discovered by different authors in the
1950s and 1960s, see [PS06, Chapter IV]. We also refer to Subsection 2.4.1. If a solution to
the associated free boundary problem is found, verification theorems are used to guarantee
that this candidate is indeed a solution to the optimal stopping problem. This approach
can be applied to a wide variety of problems. Explicit solutions can be expected for one-
dimensional diffusion processes as well as for some jump processes, maximum processes
and multidimensional diffusion processes.
Another more direct approach introduced by Beibel and Lerche gives rise to explicit
solutions in various situations, which we will discuss in Section 2.4.
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1.2 Thesis outline

The contribution of this thesis to the theory of optimal stopping can be described as
follows:
We consider Markovian problems with unbounded time parameter sets T = [0,∞), resp.
T = N0. For the continuous case T = [0,∞) we introduce an approach that gives rise
to explicit solutions in different situations. The main idea is to characterize the optimal
stopping set as a union of the maximum points of explicitly given functions. This leads to
elementary solutions of optimal stopping problems in different situations and provides a
simple way to answer conjectures on the optimal stopping set. Furthermore we introduce
a new class of problems, called problems with guarantee, and solve them for different
types of underlying processes.
Furthermore in the case T = N0 we develop a method for the solution of optimal stopping
problems driven by autoregressive processes.

The detailed structure of the thesis is as follows:
Chapter 2 provides some – mostly well-known – results that will be used in the following.
First we introduce two classes of Markov processes for the purposes of this thesis:
One-dimensional diffusion processes and Lévy processes. In Subsection 2.3 we shortly
describe the idea of the Choquet representation as a tool for the following chapters. We
end the chapter with an overview on martingale techniques for optimal stopping that
were introduced by Beibel and Lerche ([BL97]) and modified by Irle and Paulsen ([IP04]),
and we describe the connection to the free boundary approach illustrated by an example.

In Chapter 3 – 5 we study Markovian problems in continuous time, i.e. T = [0,∞).
In Section 3.1 we motivate the further development. In the remainder of Chapter 3 we
apply this idea to optimal stopping problems driven by a one-dimensional Markov process.
First we study optimal stopping problems for diffusion processes with discounting and
show that our idea works well under minimal conditions. We illustrate its applicability
by different examples and obtain useful corollaries.
Afterwards we study problems with linear cost structure instead of discounting and prove
that our approach works well in this situation too. As a generalization of the previous
results we give some remarks concerning a random cost structure.
To end this chapter we turn our attention to jump processes. We consider spectrally
negative Lévy processes and describe situations where threshold-times are optimal and
show how the optimal threshold can be determined.

In Chapter 4 we introduce a new class of optimal stopping problems in which the gain
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explicitly depends on the starting point. From a financial point of view this structure can
be seen as a guarantee for the holder of an option. It turns out that the optimal strategies
are of two-sided type.
If the driving process is a diffusion we will use the theory developed in the Chapter 3 to
obtain general results. For an explicit solution we derive two differential equations that
characterize the optimal strategies. Furthermore we study this type of stopping problems
for Lévy processes. An explicit solution is obtained for spectrally negative processes.

Chapter 5 deals with optimal stopping problems where the driving process is multidimen-
sional. We again use our approach to obtain explicit solutions. After some remarks on
Martin boundary theory for this setting we consider optimal stopping problems when the
driving process is a two-dimensional geometric Brownian motion and the gain function
is homogeneous.
Then we turn our attention to the problem of optimal investment that was studied from
different points of view. We disprove a conjecture of Hu and Øksensdal ([HØ98]) on the
form of the optimal stopping set using our method.
In the last section we illustrate that our approach works for optimal stopping problems
driven by running maxima processes as well.

In the final Chapter 6 we change our focus and consider problems in discrete time, i.e.
T = N0. In this case overshoot plays a fundamental role. We assume the driving process
to be of autoregressive type. This class of processes is intensively studied in statistics and
other fields of applied stochastics, but only few results are known for optimal stopping
problems.
We determine the overshoot and threshold-time distribution when the upward innovations
are in the class of phasetype distributions which provides a dense class widely used in
queueing theory. This result is valuable on its own. Using elementary arguments and the
principle of continuous fit it leads to explicit solutions.



Chapter 2

Preliminaries

2.1 One-dimensional diffusions

One-dimensional diffusions form a class of stochastic processes that is known to be suffi-
ciently wide both for theory and applications. These processes are closely connected to
stochastic differential equations and this point of view gives rise to a heuristic interpre-
tation that is often used for modeling problems in a wide range of applications such as
mathematical finance, mathematical biology, stochastic control and economics.
There are various approaches in literature to the definition of a diffusion process. We
follow the approach given in [RY99, Chapter VII, §3] that is based on the work of Feller
and Itô and McKean (cf. [IM74]):

Definition 2.1. Let I ⊆ R be an interval. A (time-homogeneous) strong Markov process
(Xt)t≥0 with state space I is called a one-dimensional diffusion process on I, if (Xt)t≥0

has continuous sample path and can be killed only at the boundary points of I that do not
belong to I.

To prevent that the interval I can be decomposed into disjoint subintervals from which
(Xt)t≥0 cannot exit, we always assume that all diffusions are regular, that is

Px(Xt = y for some t ≥ 0) > 0 for all x ∈ int(I), y ∈ I.

Here and in the following we do not mention the underlying filtered probability space
(Ω,A, (Ft)t≥0, P ) and the ingredients for a Markov process – i.e. the shift operator θ and
the transition function – explicitly.
Now we state some well-known results that will be frequently used in this thesis, especially
in Chapter 3. All proofs can be found in [RY99, Chapter VII, §3].
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Proposition 2.1. Let J ⊆ int(I) be a compact subinterval and τ ≤ inf{t ≥ 0 : Xt 6∈ J}
be a stopping time. Then

Ex(τ) <∞ for all x ∈ I.

Remark 2.2. Stopping times τ as described in the proposition play an important role in
Section 3.5 and are called regular .

Here and in the following we often write τx = inf{t ≥ 0 : Xt = x} for a fixed x ∈ I.

Proposition and Definition 2.3. (Scale function)

(i) There exists a continuous, strictly increasing function s : I → R such that

Px(τb < τa) = s(x)− s(a)
s(b)− s(a) for all a, b, x ∈ I with a < x < b.

(ii) s is unique in the sense that if s̃ is another function with the same properties, then
there exist α > 0, β ∈ R such that s̃ = αs+ β.
s is called the scale function of (Xt)t≥0.

(iii) A locally bounded, strictly increasing Borel function f is a scale function if and only
if (f(Xt∧τbl∧τbr∧ζ))t≥0 is a local martingale, where bl, br are the boundary points of I
and ζ is the life time.

Remark 2.4. Statement (iii) is a corrected version of Proposition (3.5) in [RY99, Chap-
ter VII]. The proof given there is correct.

A diffusion is characterized by the scale function and a Radon-measure on int(I), the
so-called speed measure: See [RY99, p. 304].

In other references, diffusion processes are characterized via the form of their generator:
It is assumed the the generator is an elliptic second-order differential operator of the form

A = 1
2σ

2(x) d
2

dx2 + µ(x) d
dx

for some continuous functions σ > 0, µ. This representation can be used for a heuristic
interpretation. Surprisingly a remarkable theorem going back to Dynkin states that this
assumption on the form of the generator is not very restrictive, see [BS02, II.9]: If the scale
function is continuously differentiable and the speed measure is absolutely continuous with
respect to the Lebesgue measure, then the generator is an elliptic second-order differential
operator as above. In this case the scale function is given by

s(x) = c
∫ x

a
exp

(
−
∫ z

a

2µ(y)
σ2(y)dy

)
dz for some a ∈ int(I), c > 0
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and is the (up to affine transformation) unique solution to the differential equation

Af = 0.

For the remainder of this section we fix r > 0 and define the “minimal r-harmonic func-
tions” ψ+ and ψ− by

ψ+(x) =

Ex(e
−rτa1{τa<∞}), x ≤ a

[Ea(e−rτx1{τx<∞})]−1, x > a

and

ψ−(x) =

[Ea(e−rτx1{τx<∞})]−1, x ≤ a

Ex(e−rτa1{τa<∞}), x > a

for a fixed point a ∈ int(I). Obviously ψ+ is increasing and ψ− is decreasing. Furthermore
they are positive, continuous and can be used to characterize the boundary behavior of
(Xt)t≥0. For results in this direction we refer to [IM74, Section 4.6]. The functions are
especially important for us, because they are r-harmonic, i.e. for all a < b ∈ int(I), x ∈ I
and τ = inf{t ≥ 0 : Xt 6∈ (a, b)} it holds that

ψ+(x) = Ex(e−rτψ+(Xτ )) and ψ−(x) = Ex(e−rτψ−(Xτ ))

and all other positive r-harmonic functions are linear combinations of ψ+ and ψ−. For
the moment write

ha(x) = ψ+(x)ψ−(b)− ψ+(b)ψ−(x)
ψ+(a)ψ−(b)− ψ+(b)ψ−(a) , hb(x) = ψ+(a)ψ−(x)− ψ+(x)ψ−(a)

ψ+(a)ψ−(b)− ψ+(b)ψ−(a) .

It holds that ha(a) = hb(b) = 1 and ha(b) = hb(a) = 0. Since Xτ ∈ {a, b} under Px for
x ∈ [a, b] we obtain

Proposition 2.5. For all a ≤ x ≤ b with a, b ∈ int(I) it holds that

Ex(e−rτa1{τa<τb}) = Ex(e−rτha(Xτ )) = ha(x)

and
Ex(e−rτb1{τb<τa}) = Ex(e−rτhb(Xτ )) = hb(x).

Furthermore
Ex(e−rτbψ+(Xτb)1{τb<∞}) = ψ+(x)

and
Ex(e−rτaψ−(Xτa)1{τa<∞}) = ψ−(x)

If A denotes the generator as above, ψ+ resp. ψ− are the (up to a constant factor) unique
increasing resp. decreasing solutions of

Af − rf = 0.
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2.2 Lévy processes

Lévy processes may be seen as a stochastic analogon to linear functions in the deterministic
world:
Linear functions X : R≥0 → R can be characterized by the conditions X0 = 0 and X

growths steadily, i.e.
Xt −Xs depends only on t− s.

The stochastic translation of this condition to a stochastic process (Xt)t≥0 is that the
distribution of Xt−Xs only depends on t− s, and – to avoid feedback between successive
parts – one assumes the increments to be independent:

Definition 2.2. (Lévy process)
An (Ft)t≥0-adapted real-valued process (Xt)t≥0 is called Lévy process if

(i) X0 = 0 P-a.s.

(ii) (Xt)t≥0 has independent increments, i.e. Xt − Xs is independent of Fs for all
0 ≤ s ≤ t.

(iii) (Xt)t≥0 has stationary increments, i.e. PXt−Xs = PXt−s for all 0 ≤ s ≤ t.

(iv) (Xt)t≥0 has cádlág sample paths.

One immediately sees that Lévy processes are the continuous time analogon to random
walks in discrete time. A Lévy process is both a semimartingale and a Markov process
and can be seen as a standard example for both this classes in continuous time. The class
of Lévy processes contains compound Poisson processes and the Brownian motion, but
the class is much richer and very flexible for modeling. More details and the following
standard facts can be found in the monographs [Ber96], [Kyp06], [Sat99] and [App04].
For a Lévy process (Xt)t≥0 the function

ΨX : R→ C, u 7→ − logE(eiuX1)

is called the characteristic exponent of (Xt)t≥0 and this function characterizes its distri-
bution by the Lévy-Kintchin formula (see [Sat99, Chapter 1, Theorem 8.1]):

Proposition 2.6. (i) If (Xt)t≥0 is a Lévy process, then there exist unique a ∈ R, σ ≥ 0
and a Lévy measure π such that

ΨX(u) = iau+ σ2

2 u
2 +

∫
(1− eiux + iux1{|x|<1})π(dx) for all u ∈ R.
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(ii) On the other hand if a ∈ R, σ ≥ 0 and π is a Lévy measure, then there exists a Lévy
process (Xt)t≥0 with characteristic exponent as given above.

Recall that a Lévy measure π is a measure on R concentrated on R \ {0} such that∫
(1 ∧ x2)π(dx) <∞. The triple (a, σ, π) is called the characteristic triple of (Xt)t≥0.

In many situations further assumptions on the jump structure of a Lévy process offer a
significant advantage. Here it is often convenient to assume that the process has only
one-sided jumps:
If π(0,∞) = 0 and (Xt)t≥0 has non-monotone paths, then (Xt)t≥0 is called spectrally
negative. Areas of application for this processes range from the theory of dams, insurance
risk and branching processes to finance. All the following results can be found in [Kyp06,
Chapter 8] and the references therein.
If (Xt)t≥0 is spectrally negative then the Laplace exponent

ψ : [0,∞)→ R, λ 7→ logE(eλX1)

is well-defined and is often used instead of the characteristic exponent. ψ is infinitely
differentiable on (0,∞), is strictly convex and

ψ(0) = 0, lim
x→∞

ψ(x) =∞, ψ′(0) ∈ [−∞,∞),

A great advantage for spectrally negative Lévy processes is that there exists a function
that can be seen as an analogon to the scale function for diffusion processes defined in
the previous section:
For fixed r ≥ 0 we define the scale function W = W (r) : R → [0,∞) by W (x) = 0
for x < 0 and W |[0,∞) to be the unique continuous increasing function on [0,∞) whose
Laplace transform satisfies∫ ∞

0
e−λtW (x)dx = 1

ψ(λ)− r for all λ > Φ(r),

where Φ denotes the right inverse of ψ. Furthermore we define the function
Z = Z(r) : R→ R by

Z(x) = 1 + r
∫ x

0
W (y)dy.

A great advantage in the use of spectrally negative Lévy processes is that semi-explicit
fluctuation identities containing the functionW and Z can be proved (see [AKP04, Propo-
sition 1]):

Proposition 2.7. Let (Xt)t≥0 be a spectrally negative Lévy processes, r ≥ 0, a, b ∈ R and
x ∈ (a, b). Write

τ−a = inf{t > 0 : Xt ≤ a} and τ+
b = inf{t > 0 : Xt ≥ b}.
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Then

Ex(e−rτ
−
a 1{τ−a <∞}) = Z(x− a)− r

Φ(r)W (x− a),

Ex(e−rτ
+
b 1{τ+

b
<τ−a }) = W (x− a)

W (b− a)

and
Ex(e−rτ

−
a 1{τ−a <τ+

b
}) = Z(x− a)−W (x− a) Z(b− a)

W (b− a) .

Note that the second equation for r = 0 may be seen as an analogon to the result for
diffusions in Proposition 2.3, (i). This justifies the name scale function for W .

In Section 4.4.2 it will be helpful to know under what kind of conditions W and Z are
C2-functions on (0,∞). This problem was studied quite recently in [CKS10]. We just
want to mention that this is the case whenever (Xt)t≥0 has a Gaussian part, i.e. σ 6= 0 in
the Lévy triple.

2.3 Results of Choquet-type and minimal functions

As a motivation for the next results recall the classical theorem, that goes back to Hermann
Minkowski:

If K is a compact convex subset of a finite-dimensional vector space then each x ∈ K can
be represented as a convex combination of extreme points of K.

Gustave Choquet generalized this result from a functional analytic point of view in the
following way:

Theorem 2.8. (Choquet)
Let K be a metrizable compact convex subset of a locally convex space. Then for each
x ∈ K there exists a probability measure µ on K that is supported by the extreme points
of K such that

x =
∫
K
yµ(dy).

This result can be generalized in many directions. A good overview is given in the mono-
graph [Phe01]. We apply the idea given in the Choquet theorem in different situations
throughout this thesis. To demonstrate it with a well-known example we restate the rep-
resentation theorem for r-superharmonic functions given in [Sal85]:
Here K denotes the set of all positive r-superharmonic functions w.r.t. a one-dimensional
regular diffusion process (Xt)t≥0 on an interval I with boundary points bl and br. I.e. K
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consists of all lower semicontinuous functions f : R→ [0,∞) such that

Ex(e−rτf(Xτ )1{τ<∞}) ≤ f(x) for all x ∈ I and stopping times τ.

K is obviously a convex cone. Theorem 2.7 in [Sal85] states that all extreme points are
given by the functions

kz(·) = min
{
ψ+(·)
ψ+(z) ,

ψ−(·)
ψ−(z)

}
for all z ∈ (bl, br)

and kbr = ψ+, kbl = ψ−. Variants of the Choquet theorem for this situation yield that all
r-superharmonic functions can be written in the form∫

[bl,br]
ka(·)ν(da)

for an appropriate measure ν (cf. [Sal85, (3.1)]). This can be used to obtain struc-
tural results about all r-superharmonic functions. In this context the extreme points are
called “minimal functions” and the analogous results are referred to as “Martin-boundary
theory” (see [Pin95, Chapter 7] for an introduction).

Another example for the Choquet situation was given in Section 2.1. Recall that ψ+ and
ψ− are the “minimal” r-harmonic functions. This can be justified from the point of view
of Choquet’s theorem:
Consider the set K of all positive r-harmonic functions. K is obviously convex. The result
for r-superharmonic functions given above imply that ψ+ and ψ− are extremal points of
K; now it is not surprising that all other r-harmonic functions are linear combinations of
ψ+ and ψ−.

2.4 Martingale techniques for optimal stopping

In this section we present two related approaches to the solution of optimal stopping
problems. Both are based on martingale techniques; the first one was initially used in
the article [Ler86] concerning the repeated significance test and was applied to other
problems in sequential statistics. Later the approach was extended to other classes of
problems related to mathematical finance by Beibel and Lerche in [BL97] and [BL00]; see
[LU07] for an overview, further examples and references. In the following this idea will
be referred to as the Beibel-Lerche approach (BL approach). The second approach can
be found in [IP04] and transfers the idea of the BL approach to an additive setting. We
call this idea the Beibel-Lerche-Irle-Paulsen approach (BLIP approach). Now we give the
basic ideas in a general setting:
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Let (Zt)t≥0 be a stochastic process. The aim is to find a stopping time τ ∗ such that

E(Zτ∗) = sup
τ∈TE

E(Zτ ),

where TE denotes the set of all stopping time such that the expectation exists.

1. The BL approach:
Find a positive local martingale (Mt)t≥0 such that there exists B ∈ [0,∞) with

• B ≥ supt≥0
Zt
Mt

a.s. and

• the stopping time τ ∗ := inf{t ≥ 0 : Zt
Mt

= B} fulfills

E(Mτ∗1{τ∗<∞}) = E(M0).

Then for all τ ∈ TE we obtain

E(Zτ1{τ<∞}) = E
(
Zτ
Mτ

Mτ1{τ<∞}

)
≤ BE(Mτ1{τ<∞})

≤ BE(M0),

where we used the optional sampling theorem for positive supermartingales in the
last step (cf. [KS91, Theorem 3.22]). Furthermore we have equality for τ = τ ∗, i.e.
τ ∗ is optimal and

E(Zτ∗1{τ<∞}) = BE(M0).

Since there is a one-to-one correspondence between positive martingales (with
M0 = 1) and changes of measure the approach can be seen as a change-of-measure-
technique (see [LU07]).

2. The BLIP approach:
Find a local martingale (Mt)t≥0 such that there exists B ∈ R with

• B = supt≥0(Zt −Mt) a.s. and

• the stopping time τ ∗ := inf{t ≥ 0 : Zt −Mt = B} fulfills

E(Mτ∗) = E(M0).

Then for all finite stopping times τ ∈ TE with E(Mτ ) ≤ E(M0) it holds that

E(Zτ ) = E(Zτ −Mτ ) + E(Mτ ) ≤ B + E(Mτ )

≤ B + E(M0)

with equality for τ ∗. If {τ ∈ TE : E(Mτ ) ≤ E(M0)} is rich enough (in an appropriate
sense), then τ ∗ is optimal. Moreover

sup
τ∈TE

E(Zτ ) = B + E(M0).
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We would like to emphasize that both approaches do not use a Markovian structure of
the process.

2.4.1 Connection to the free-boundary approach

As described in the introduction most solvable optimal stopping problems in continuous
time are Markovian problems with one-dimensional regular diffusions as driving processes.
Here the BL approach works fine for problems with discounting, i.e. stopping problems
of the form

v(x) = sup
τ∈T

Ex(e−rτg(Xτ )1{τ<∞}),

see [BL00]. In [IP04] problems with constant costs of observation were considered via the
BLIP approach, i.e. problems of the form

v(x) = sup
τ∈T

Ex(g(Xτ )− cτ), c > 0.

Another common method for solving such problems explicitly is the free-boundary ap-
proach, see the discussion in [PS06, VI.8]. The connection between free-boundary prob-
lems and the BL approach is discussed in the forthcoming article [GL09]. In the following
we give a short discussion for the case of constant costs of observation, i.e. we consider
the situation that X is a regular diffusion process on an open interval I with generator

A = 1
2σ

2(x) d
2

dx2 + µ(x) d
dx
.

Furthermore we assume g : I → R to be continuously differentiable, c > 0, x ∈ I and we
would like to find an optimal stopping time τ ∗ for

v(x) = sup
τ∈T

Ex(g(Xτ )− cτ).

Because of the cost-structure the optimal stopping time is expected to be of two-sided
type, i.e. of the form

τ ∗ = inf{t ≥ 0 : Xt ∈ {a, b}} for some a, b ∈ I, a < x < b.

The free-boundary approach suggests to find the optimal thresholds a and b together with
the value function v as a solution to the following free-boundary problem:

Av(y) = c for all y ∈ (a, b) (2.1)

v(y) > g(y) for all y ∈ (a, b) (2.2)

v(a+) = g(a) and v(b−) = g(b). (2.3)
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To guarantee uniqueness of the solution further conditions are needed. To this end it is
often appropriate to use the smooth fit condition, i.e.

v′(a+) = g′(a) and v′(b−) = g′(b), (2.4)

see [PS06, p. 149 ff.] for a discussion of the condition. The smooth fit condition does not
seem to be very natural at the first view. Kolmogorov’s argument for it to hold was that
“diffusions do not like angels”.

To solve (2.1)-(2.4) using the general theory of second order linear ODEs, it is natural to
fix an arbitrary solution u to Au = c and make the ansatz

v(x) = u(x) + γs(x) + d for some γ, d ∈ R,

where s denotes the scale function. This reduces the free-boundary problem to the fol-
lowing:
Find constants γ, d and a < x < b such that

(u+ γs+ d)(a) = g(a) and (u+ γs+ d)(b) = g(b)

(u+ γs+ d)′(a) = g′(a) and (u+ γs+ d)′(b) = g′(b)

(u+ γs+ d)(y) > g(y) for all y ∈ (a, b)

i.e.

(g − u− γs)(a) = d and (g − u− γs)(b) = d (2.5)

(g − u− γs)′(a) = 0 and (g − u− γs)′(b) = 0 (2.6)

(g − u− γs)(y) < d for all y ∈ (a, b) (2.7)

In [IP04] the BLIP approach was used with the local martingale

Mλ
t = u(Xt) + λs(Xt)− ct, t ≥ 0

for some λ ∈ R to be determined. The BLIP approach suggests to find λ ∈ R and
a < x < b such that

a, b ∈ arg max(g − u− λs). (2.8)

a and b does not have to be unique. We choose a, b with minimal distance to x. Then a
necessary condition for (2.8) to hold is that

(g − u− λs)(a) = (g − u− λs)(b) (2.9)

(g − u− λs)′(a) = 0 and (g − u− λs)′(b) = 0 (2.10)

(g − u− λs)(y) < (g − u− λs)(a) for all y ∈ (a, b) (2.11)
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Now note that (2.5)-(2.7) and (2.9)-(2.11) are equivalent.
Furthermore the smooth-fit condition (2.6) turns out to be a natural necessary condition
for a maximum point in (2.10). But note that this is no sufficient condition. This gives
rise to examples where a solution for the free-boundary problem is no solution of the
optimal stopping problem:

2.4.2 Example

To see an explicit example let X be a standard Brownian motion starting in 0 and c = 1.
The scale function of X is given by s(x) = x and u given by u(x) = x2 is a solution to
Au = 1. Let p : R → R be any C2-function with p(x) = p(−x) for all x ∈ R such that
p|[0,1] is strictly increasing from 0 to 1, p|[1,2] is decreasing, p|[2,3] increasing to 2 and p|[3,∞)

decreases with limx→∞
p(x)
x2 = −1. Furthermore write g(x) = p(x) + x2 for all x ∈ R and

consider the optimal stopping problem

v(x) = sup
τ∈TE

Ex(g(Xτ )− τ) for x = 0.

Figure 2.1: Graph of the function p Figure 2.2: The gain function g, the value
function v and the candidate w

Note that
g − u− 0 · s = p

has maximum points −3 and 3 and the BLIP approach suggests to consider the stopping
time

τ ∗ = inf{t ≥ 0 : |Xt| = 3}

that gives the expected reward

E(g(Xτ∗)− τ ∗) = E(p(Xτ∗)) + E(X2
τ∗ − τ ∗) = E(p(Xτ∗)) = p(3) = 2.
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Let us mention that all conditions of [IP04, Theorem 3.4] are fulfilled and this stopping
time is indeed optimal, i.e. v(0) = 2.

On the other hand write

−ã := b̃ := 1 and w : (−1, 1)→ R, x 7→ x2 + 1.

Then one immediately checks that (ã, b̃, w) solves the free-boundary problem (2.1) – (2.4),
but

E(g(Xτ̃ )− τ̃) = w(0) = 1 < 2 = v(0),

where τ̃ = inf{t ≥ 0 : |Xt| = 1}, so that it is no solution to the optimal stopping problem.



Chapter 3

An approach for optimal stopping of
one-dimensional Markov processes

3.1 Motivation

We consider the problem of finding a stopping time τ ∗ that maximizes

v(x) = sup
τ∈T

Ex(e−rτg(Xτ )1{τ<∞}), x ∈ E

where X is a strong Markov process in continuous time with state-space E. Furthermore
let T denote the set of all stopping times, g : E → R is measurable and r ≥ 0 a constant.
If g ≤ 0, then τ ≡ ∞ is optimal and the solution is trivial. Hence we assume that
sup(g) > 0 and that the probability of reaching a point y with g(y) > 0 is positive for
each starting point. Then v is strictly positive.

As a motivation for our approach we summarize the BL approach – as described Section
2.4 – for this Markovian setting with discounting. Fix x ∈ E. The technique is based
on finding a positive function h such that M = (e−rth(Xt))t≥0 is a martingale and the
function g

h
attains its maximum. After normalizing if necessary, M defines a change of

measure via Mt = dQx|Ft
dPx|Ft

. For each stopping time τ it holds that

Ex(e−rτg(Xτ )1{τ<∞}) = EQx(
g

h
(Xτ )1{τ<∞})

≤ max
y∈E

g

h
(y).

The BL approach works fine if τ ∗ = inf{t ≥ 0 : Xt ∈ arg max( g
h
)} is a.s finite under

Qx, since then we have equality and τ ∗ is optimal. But for many functions h one cannot
expect this property to hold. Nonetheless the Beibel-Lerche approach immediately shows



CHAPTER 3. OPTIMAL STOPPING OF ONE-DIM. MARKOV PROCESSES 19

that, if the starting point x is a maximum point of g
h
, then it is in the optimal stopping

set, even if M is a supermartingale:

Lemma 3.1. Let x ∈ E and h a positive function such that M = (e−rth(Xt))t≥0 is a
supermartingale under Px. Assume that x is a maximum point of g

h
.

Then x is in the optimal stopping set, i.e. g(x) = v(x).

Proof. For all stopping times τ using the optional sampling theorem for positive super-
martingales we obtain

Ex(e−rτg(Xτ )1{τ<∞}) = Ex(Mτ
g

h
(Xτ )1{τ<∞})

≤ max
y∈E

g

h
(y)Ex(Mτ1{τ<∞}) ≤

g

h
(x)h(x) = g(x).

The question arises whether each point in the optimal stopping set is a maximum point
of g

h
for an appropriate function h ∈ H in an easy to handle class H of r-superharmonic

functions.
We will show that a positive answer to this question provides a very efficient way of
finding optimal stopping times. In this case, the problem in fact reduces to finding
maximum points of explicitly given functions. A benefit compared to the general
approach of characterizing the optimal stopping set via the smallest r-superharmonic
majorant is that the functions in H often have an explicit expression (e.g. a Martin
boundary representation) as we will see later. Furthermore one does not have to guess
the structure of the stopping set as needed for the applicability of the free-boundary
approach. Compared to the martingale technique described above, a benefit is that the
characterization of the optimal stopping set is global in nature and one does not have
to treat each starting point x separately. Furthermore our approach makes use of the
Markovian structure of the problem. All these properties will be illustrated by examples.

In this chapter we concentrate on the case that (Xt)t≥0 is a one-dimensional Markov pro-
cess. The structure is as follows:
In Section 3.2 we show that in the case of one-dimensional diffusion processes with dis-
counting the idea described above is applicable. This yields an easy way to solve problems
of optimal stopping explicitly under weak assumptions on the process and the gain func-
tion. This result is illustrated by some examples in Section 3.3. These first sections are
extended versions of the results in [CI10].
In Section 3.4 we discuss some implications of our point of view, e.g. we give easy to
handle conditions that ensure the optimal stopping set to be an interval.
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Section 3.5 deals with the problem of optimal stopping with constant costs. The idea
described above also works in this situation and leads to generalizations of the results
in [IP04]. Examples are given in Section 3.6. We conclude the discussion of diffusion
processes in Section 3.7 by describing generalizations of the previous results to random
cost structures.
In the last section we illustrate that our approach works well for jump processes too. To
be more precise we consider spectrally negative Lévy processes and describe situations
where threshold-times are optimal and characterize the optimal threshold.

3.2 Optimal stopping with discounting

The problem of optimal stopping for one-dimensional diffusion processes with discounting
was considered from different points of view in a variety of articles. Let us just mention
[Muc79], [Sal85], [BL00] and [DK03]. In the recent paper [HS10] the authors solved the
problem by embedding it into a linear programming problem over a space of measures.
To make things work without technical difficulties we assume g to be lower semi-continuous
and r > 0. Let X be a regular one-dimensional diffusion process on an interval I as state
space with boundary points −∞ ≤ bl < br ≤ ∞ that is not killed in the interior as
described in Section 2.1.
Most of the references mentioned above make use of the two minimal r-harmonic functions
ψ+ and ψ− introduced in Section 2.1. It seems natural to apply our idea to the set H of
all positive r-harmonic function, i.e. to the positive linear combinations of ψ+ and ψ−.
This set has a simple structure, but is rich enough to characterize the optimal stopping
set in the following sense:

Theorem 3.2. A point x ∈ I is in the optimal stopping set if and only if there exists a
positive r-harmonic function h such that x ∈ arg max g

h
.

Proof. The first implication is immediate from Lemma 3.1 since (e−rth(Xt))t≥0 is a positive
local martingale and hence a supermartingale.
So let x be in the stopping set, i.e. g(x) = v(x). Under the stated conditions it is well-
known that v is an r-superharmonic function, see [Dyn63]. As discussed in Section 2.3
there exists a measure σv on [bl, br] such that

v(y) =
∫
kz(y)σv(dz) for all y ∈ I,

where
kz(·) = min

{
ψ+(·)
ψ+(z) ,

ψ−(·)
ψ−(z)

}
for all z ∈ (bl, br)
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and kbr = ψ+, kbl = ψ−.
Define

c = σv({br}) +
∫

(x,br)

1
ψ+(z)σ

v(dz),

d = σv({bl}) +
∫

(bl,x]

1
ψ−(z)σ

v(dz)

and h = cψ+ + dψ−. Then we have for all y ∈ I∫
(bl,br)

min
{
ψ+(y)
ψ+(z) ,

ψ−(y)
ψ−(z)

}
σv(dz) ≤

∫
(bl,x]

ψ−(y)
ψ−(z)σ

v(dz) +
∫

(x,br)

ψ+(y)
ψ+(z)σ

v(dz).

We obtain

v(y) = σv({br})ψ+(y) + σv({bl})ψ−(y) +
∫

(bl,br)
min

{
ψ+(y)
ψ+(z) ,

ψ−(y)
ψ−(z)

}
σv(dz)

≤ σv({br})ψ+(y) + σv({bl})ψ−(y) +
∫

(bl,x]

ψ−(y)
ψ−(z)σ

v(dz) +
∫

(x,br)

ψ+(y)
ψ+(z)σ

v(dz)

= cψ+(y) + dψ−(y) = h(y),

with equality for y = x. Summarizing we obtain g
h
(x) = v

h
(x) = 1 and g

h
(y) ≤ v

h
(y) ≤ 1

for all y ∈ I.

Remark 3.3. If g and ψ+, ψ− are continuously differentiable and x ∈ int(I) we can
determine the parameters c and d in the calculation explicitly. They are uniquely given
by g(x) = h(x) and g′(x) = h′(x), i.e.

c = −g(x)ψ′−(x) + g′(x)ψ−(x)
w(x) and d = g(x)ψ′+(x)− g′(x)ψ+(x)

w(x) ,

where w(x) = ψ′+(x)ψ−(x) − ψ+(x)ψ′−(x) ≥ 0 denotes the Wronskian. Let us emphasize
that we do not obtain these conditions using the smooth fit principle but simply as necessary
conditions for a maximum.

Remark 3.4. The case r = 0 can be treated in an analogous way with some restrictions
on the boundary behavior of X, cf. [Sal85, Theorem 2.10] for the tools to modify the proof.

Up to now we just characterized the optimal stopping set and have no explicit form of the
value function. But if we have the stopping set then one can obtain v as the solution to a
usual boundary problem where it is well-known how to find solutions. In many situations
it may be useful not to construct the value function and the stopping set simultaneously
but to treat the problems separately.
A useful tool for the explicit determination of v is the following

Corollary 3.5. The value function v is the (pointwise) infimum of all g-majorizing r-
harmonic functions and if v(x) <∞, then v(x) is attained.
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Proof. Since v is the smallest r-superharmonic majorant of g it holds that v ≤ h for each
r-harmonic h. On the other hand for each x ∈ I the proof of Theorem 3.2 provides an
r-harmonic function h ≥ v with h(x) = v(x).

3.3 Examples

3.3.1 One-sided boundaries – Taylor

To illustrate the applicability of the theorem we consider a classical example that goes
back to Taylor (cf. [Tay68]) for α = 1. Let (Xt)t≥0 be a Brownian motion with drift µ;
we treat the problem

sup
τ∈T

Ex(e−rτ ((Xτ )+)α1{τ<∞}) (α ≥ 1).

The minimal r-harmonic functions are given by ψ+(x) = eβ1x and ψ−(x) = eβ2x, where
β1 > 0 > β2 are the solutions to the quadratic equation 1

2β
2 +µβ− r = 0. Write x∗ = α

β1
,

then x∗ ∈ arg maxy∈R (y+)α
eβ1y . Hence x∗ is in the optimal stopping set.

Figure 3.1: Taylor-example: Some graphs of g
h
for different h

Let x < x∗. Assume that x is in the stopping set, hence x > 0. Then there would exist
c, d ≥ 0 such that for h = cψ+ + dψ− the function f given by f(y) = (y+)α

h(y) attains its
maximum in x. As ψ− is decreasing we necessarily have c > 0, and w.l.o.g. c = 1. Hence
we would have f ′(x) = 0, i.e. α(ψ+(x) + dψ−(x))− x(ψ′+(x) + dψ′−(x)) = 0. Therefore

αeβ1x − xβ1e
β1x = d(β2e

β2x − αeβ2x).
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Because x < x∗ the left hand side is positive, but the right hand side is ≤ 0; but this is a
a contradiction, i.e. x is in the continuation set.

For x > x∗ the formulas of Remark 3.3 provide parameters c, d > 0 for which the r-
harmonic function h := cψ+ + dψ− has a critical point in x. One immediately checks
that this is a maximum. Hence x is in the optimal stopping set which thus is the interval
[x∗,∞). Therefore we obtain v(x) = xα for x ≥ x∗. Write h∗(x) = qeβ1x, where q =

(
α
β1e

)α
so that we get h∗(x∗) = g(x∗). We claim that v = h∗ on (−∞, x∗). Therefore we have to
show that h∗ is the smallest r-harmonic majorant of g on this set.
So let h = cψ+ + dψ− be any other r-harmonic function that dominates g. Because h∗

also dominates g we can assume that c ≤ q because else we could scale h down and it still
dominates g. We know that h(x∗) ≥ h∗(x∗) and we have that h′−h∗′ = (c−q)ψ′++dψ′− ≤ 0.
We obtain h ≥ h∗ on (−∞, x∗).
Summarizing the results gives

v(x) =

x
α if x ≥ x∗ = α

β1

qeβ1x else .

Note that in this example the first entrance time into the stopping set τS is the optimal
stopping time although Px(τS <∞) < 1 for x < x∗ and µ < 0.

We would like to remark that in this example each function g
h
has at most one critical

point and this point is a maximum point. Furthermore the optimal stopping set is an
interval. This is a general phenomenon – see Proposition 3.7 in the next section.
Because the dependence on x is additive for Brownian motions the interval structure of
the optimal stopping set is furthermore implied by the elementary arguments in Section
6.2.1 for α ∈ N (cf. Remark 6.3).

3.3.2 Two-sided boundaries – Stock with guarantee 1

Let X be a geometric Brownian motion with drift µ and volatility σ, i.e. the dynamic of
X is given by

dXt = Xt(µdt+ σdWt), X0 = x > 0.

We consider the problem of optimal stopping of X when it is guaranteed to get at least
the initial value X0, i.e. the problem

sup
τ
Ex(e−rτ max{Xτ , X0}1{τ<∞}).

At first glance the problem does not fit into the context of this chapter because the gain
functions depends on x. But this problem can easily be transformed via

Ex(e−rτ max{Xτ , x}1{τ<∞}) = xEx

(
e−rτ max

{
Xτ

x
, 1
}
1{τ<∞}

)
.
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Hence it is enough to solve the problem supτ Ez(e−rτ max{Xτ , 1}1{τ<∞}); evaluation at
z = 1 yields the solution for the original problem.
We assume r > µ; the other parameters are treated in the following subsection. The
minimal r-harmonic functions are given by ψ+(z) = za and ψ−(z) = zb, where a > 1 >
0 > b are the solutions to

w2 +
(2µ
σ2 − 1

)
w − 2r

σ2 = 0.

By Theorem 3.2 the optimal stopping set is the set of maximum point of z 7→ max{z,1}
cza+dzb ,

c, d ≥ 0. Since multiplying by a constant does not change the maximum points it is
enough to consider the maximum points of the functions fλ defined via

fλ(z) = fλ,1(z) = 1
λza + (1− λ)zb for z ≤ 1,

fλ(z) = fλ,2(z) = z

λza + (1− λ)zb for z > 1

where 0 ≤ λ ≤ 1; to this end note that the enumerator max{z, 1} is = 1 if z ≤ 1 and = z

else. In the following we consider fλ,1 and fλ,2 as functions on (0,∞).
Direct computation immediately yields that the functions fλ,1 resp. fλ,2 have unique
maximum points given by

zλ,1 =
(
−b(1− λ)

aλ

)1/(a−b)

resp. zλ,2 =
(

(1− b)(1− λ)
(a− 1)λ

)1/(a−b)

.

It is obvious that fλ,1(zλ,1) ≥ fλ,2(zλ,2) implies zλ,1 ∈ (0, 1] and zλ,1 is a maximum point of
fλ. On the other hand fλ,1(zλ,1) ≤ fλ,2(zλ,2) implies zλ,2 ∈ [1,∞) and zλ,2 is a maximum
point of fλ. Note that

fλ,1(zλ,1) = λ−1
(

1− λ
λ

)−a/(a−b) 1
(− b

a
)a/(a−b) + (− b

a
)b/(a−b)

and

fλ,2(zλ,2) = λ−1
(

1− λ
λ

)−a/(a−b) ( 1−b
a−1

1−λ
λ

)1/(a−b)

( 1−b
a−1)a/(a−b) + ( 1−b

a−1)b/(a−b)
.

After some algebra we obtain

fλ,1(zλ,1) ≥ fλ,2(zλ,2) if and only if 1− λ
λ
≤ a

b

(
a− 1
a

)1−a ( b

b− 1

)1−b

=: 1− λ∗
λ∗

and

zλ∗,1 =
(
a− 1
a

) 1−a
a−b

(
b

b− 1

) 1−b
a−b

∈ (0, 1],

zλ∗,2 =
(
a− 1
a

)− a
a−b

(
b

b− 1

)− b
a−b

∈ [1,∞).
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Hence the optimal stopping set is

S = (0, zλ∗,1] ∪ [zλ∗,1,∞).

We obtain that for each x > 0 the optimal stopping time for the problem of stopping with
guarantee is given by

τx = inf{t ≥ 0 : Xt ≤ xz1 or Xt ≥ xz2}.

3.3.3 No optimal stopping time – Stock with guarantee 2

Even if optimal stopping times do not exist, Corollary 3.5 might lead to a simple solution
in this case as will be illustrated in this subsection.
Again we consider the problem described in the previous subsection that was reduced to
the problem

sup
τ
Ez(e−rτ max{Xτ , 1}1{τ<∞}).

Proposition 3.6 in the next section implies that v ≡ ∞ for r < µ and no optimal stopping
time exists; the case r > µ was solved in the previous subsection. Hence we assume r = µ,
i.e. ψ+(z) = z and ψ−(z) = zb, where b = − 2r

σ2 .
Collecting the maximum points of g

h
as in the previous subsection we find that the points

(0, z1] are the optimal stopping set, where z1 = b
b−1 ∈ (0, 1). Note that the optimal

stopping set is one-sided and the general theory does not guarantee the first hitting time
of the optimal stopping set to be an optimal stopping time. Indeed for all z > 1 it holds
that

Ez(e−rτz1g(Xτz1
)1{τz1<∞}) ≤ g(z1) = 1 < g(z)

where τz1 = inf{t ≥ 0 : Xt ∈ (0, z1]}, so the first hitting time of the optimal stopping set
is not optimal.
Corollary 3.5 states that v is the minimum taken over all positive r-harmonic func-
tions h(z) = cz + dzb majorizing g. Note that an r-harmonic function majorizes
g(z) = max{z, 1} in [1,∞) iff c ≥ 1, i.e. v is the minimum taken over all r-
harmonic functions h with c ≥ 1 majorizing z 7→ 1 in (0, 1]. The function h∗ given
by h∗(z) = z + b

1−b

(
b
b−1

)b
zb is the only r-harmonic function majorizing g, touching g

in z1 and is asymptotic to g for z → ∞. Now let h be any other r-harmonic function
majorizing g. Then there exists z2 > 1 such that h(z) ≥ h∗(z) for all z ≥ z2; furthermore
h(z1) ≥ g(z1) = h∗(z1). This implies

h(z) = h(z1)Pz(τz1 < τz2) + h(z2)Pz(τz2 < τz1)

≥ h∗(z1)Pz(τz1 < τz2) + h∗(z2)Pz(τz2 < τz1)

= h∗(z)
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for all z ∈ (z1, z2). Hence h∗ is the minimum taken over r-harmonic function majorizing
g on [z1,∞). Since 1 > z1 we obtain

v(x) = x sup
τ
E1(e−rτ max{Xτ , 1}1{τ<∞}) = h∗(1)x,

where h∗(1) = 1 + b
1−b

(
b
b−1

)b
.

General solutions for problems of optimal stopping with guarantee and their application
to finance are investigated in Chapter 4.

3.4 Consequences of the main theorem

In this section we prove structural results that are helpful for treating several problems.
Because this case is the most interesting and boundary problems are avoided we assume
that I = (bl, br) and that both boundary points are natural. In this case

lim
x→bl

ψ+(x) = lim
x→br

ψ−(x) = 0 and lim
x→br

ψ+(x) = lim
x→bl

ψ−(x) =∞,

cf. [BS02, p.19]. Nonetheless we would like to mention that different boundary behaviors
may be handled in a similar way.
First we clarify under what kind of conditions the value function is finite (cf. [BL00,
Section 3]). Corollary 3.5 provides a short proof.

Proposition 3.6. The following conditions are equivalent:

(i) v ≡ ∞.

(ii) There exists x ∈ I such that v(x) =∞.

(iii) lim sup
y→bl

g+(y)
ψ−(y) =∞ or lim sup

y→br

g+(y)
ψ+(y) =∞.

Proof. Obviously (i) implies (ii).
Now let x ∈ I such that v(x) =∞. Corollary 3.5 states that v is the infimum taken over
all positive r-harmonic functions h majorizing g, so that this set must be empty since
h(x) < ∞ for all h. This implies that sup g+

h
= ∞ where h = ψ+ + ψ−. Since g+

h
is

bounded on compact sets we obtain

lim sup
y→bl

g+

ψ+ + ψ−
(y) =∞ or lim sup

y→br

g+

ψ+ + ψ−
(y) =∞,

i.e. (with c
0 :=∞ for c > 0)

lim inf
y→bl

(
ψ+

g+ + ψ−
g+

)
(y) = 0 or lim inf

y→br

(
ψ+

g+ + ψ−
g+

)
(y) = 0,
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hence
lim inf
y→bl

ψ−
g+ (y) = 0 or lim inf

y→br

ψ+

g+ (y) = 0

and this implies (iii).
Now let (iii) hold. W.l.o.g we can assume lim supy→bl

g+(y)
ψ−(y) =∞. Let h = cψ+ + dψ− be

any positive r-harmonic function. Note that ψ+(y) ≤ ψ−(y) for y near bl. We obtain

lim sup
y→bl

g+

cψ+ + dψ−
(y) ≥ lim sup

y→bl

g+

(c+ d)ψ−
(y) =∞,

i.e. no positive r-harmonic function majorizes g and Corollary 3.5 implies (i).

In many applications it is helpful to have elementary conditions that guarantee an easy
geometric shape of the stopping set. For example it is good to have conditions at hand
to check that the optimal stopping set is an interval. This kind of conditions will be
discussed in Section 6.2 for autoregressive processes. The approach of this chapter gives
rise to results in this direction for diffusion processes.

Proposition 3.7. Let g, ψ+, ψ− be continuously differentiable such that for each λ ∈ (0, 1)
the function g

λψ++(1−λ)ψ− has a unique critical point xλ and this is a maximum point.
Then the optimal stopping S set is an interval.

Proof. Write fλ = g
λψ++(1−λ)ψ− for all λ ∈ [0, 1]. The implicit function theorem yields

that the function (0, 1)→ I, λ 7→ xλ is continuous, hence the set S̃ := {xλ : λ ∈ (0, 1)} is
connected, i.e. it is an interval. We have the pointwise convergence

fλ → f1 for λ→ 1 and fλ → f0 for λ→ 0.

First we note that the set of maximum points of g
ψ+

resp. g
ψ−

is connected:
Let x < z < y. Since for each λ ∈ (0, 1) fλ has a unique critical point xλ and this is a
maximum point it holds that fλ(z) ≥ fλ(x) ∧ fλ(y). If x < y are maximum points of g

ψ+
,

then we have f1(z) ≥ f1(x) ∧ f1(y) = max f1 and the same argument holds for f0.
Furthermore if the set arg max g

ψ+
resp. arg max g

ψ−
is not empty, then one boundary

point coincides with a boundary point of S̃: If x is a maximum points of g
ψ+

, x 6∈ S̃ and
z is on the connecting line of z and S̃ it holds that fλ(x) ≤ fλ(z) for all λ ∈ (0, 1) and
pointwise convergence yields f1(x) ≤ f1(z). The same argument holds for f0.
We can conclude that the set S̃ ∪arg max g

ψ+
∪arg max g

ψ−
is connected and this set is the

optimal stopping set by Theorem 3.2.

To end this section we give an easy condition for the optimality of possibly two-sided
stopping times. This condition will be needed in Chapter 4.



CHAPTER 3. OPTIMAL STOPPING OF ONE-DIM. MARKOV PROCESSES 28

Proposition 3.8. Let x ∈ I and assume there exist y1 ≤ x ≤ y2 and λ1, λ2 ∈ [0, 1] such
that

yi = arg max g

λiψ+ + (1− λi)ψ−
for i = 1, 2.

Then there exist x1 ≤ x ≤ x2 such that v(x) = Ex(e−rτg(Xτ )), where

τ = inf{t ≥ 0 : Xt ≤ x1 or Xt ≥ x2}.

Proof. By Theorem 3.2 y1 and y2 are in the stopping set S. Hence

x1 := sup{y ∈ S : y ≤ x} and x2 := inf{y ∈ S : y ≥ x}

are in S too, i.e. τS = τ under Px and since the interval [x1, x2] is compact the assertion
holds.

3.5 Optimal stopping with constant costs of observa-
tion

Problems of optimal stopping with discounting – as discussed in the previous sections –
often arise in finance. In sequential analysis another cost structure is natural, namely
linear costs of observation. I.e. problems of the form

v(x) = sup
τ∈TE

Ex(g(Xτ )− cτ)

are of interest, starting with the work of Wald and Wolfowitz [WW50]. Furthermore this
kind of problem arises in portfolio optimization, see [MP95].
Here g : I → R is continuous and bounded from below, c > 0 is constant, TE denotes the
set of all finite stopping times such that the expectation exists and (Xt)t≥0 is a regular
diffusion process on an open interval I with generator

A = 1
2σ

2(x) d
2

dx2 + µ(x) d
dx

for continuous σ > 0 and µ. We fix a point a ∈ I and take the scale function s with
normalization s(a) = 0, s′(a) = 1. Furthermore we write

u(x) = c
∫ x

a
s′(y)

∫ y

a

2
s′(z)σ2(z)dzdy for all x ∈ E,

so that u is the unique solution to

Af = c, f(a) = f ′(a) = 0.
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As described in Section 2.4 the BLIP approach suggests to fix a point x and find a function
h such that

Ex(h(Xτ )− cτ) = h(x) for a wide class of stopping times τ

and
g − h has two maximum points yl < x < yr.

On the other hand if x is a maximum point of g − h, then it holds that

Ex(g(Xτ )− cτ) = Ex(g(Xτ )− h(Xτ )) + Ex(h(Xτ )− cτ)

= Ex(g(Xτ )− h(Xτ )) + h(x)

≤ sup(g − h) + h(x)

= g(x)

and if the class of stopping times is rich enough, then x is in the optimal stopping set.
Following the analogous idea to that described in Section 3.1 we can hope that each point
in the optimal stopping set arises as a maximum point of g − h for some appropriate h.
This leads to an elegant solution under minimal assumptions:
As discussed in [IP04] the following assumption is natural to guarantee finiteness of the
solution:

For each x ∈ I there exists ε > 0 such that Ex(sup
t≥0

(g(Xt)− (c− ε)t)) <∞. (3.1)

The following Proposition is taken from [IP04] (cf. 2.1 there). In the following we call
a stopping time τ regular if there exists a compact interval J such that τ ≤ τJ , where
τJ = inf{t ≥ 0 : Xt 6∈ J}.

Proposition 3.9. Assume (3.1).
Then v(x) <∞ for all x ∈ I and can be obtained by maximizing over all regular stopping
times.
Furthermore the first entrance time τS into the optimal stopping set is optimal.

We need the following

Lemma 3.10. Assume (3.1).
Let c < x < d ∈ I and σ = inf{t ≥ 0 : Xt ∈ {c, d}}. Then

v(x) ≥ Ex(v(Xσ)− cσ).
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Proof. This is a standard fact for the value function from the general theory, but one
has to be a bit careful since the function k(x, t) = g(x) − ct is not bounded below. But
nonetheless using the strong Markov property we obtain

Ex(v(Xσ)− cσ) = Ex(EXσ(g(XτS)− cτS)− cσ) = Ex(Ex((g(XτS)− cτS) ◦ θσ|Fσ)− cσ)

= Ex(g(Xσ+τS◦θσ)− c(σ + τS ◦ θσ)) ≤ sup
τ∈TE

Ex(g(Xτ )− cτ)

= v(x),

where θ denotes the shift operator.

Proposition 3.9 shows that determining the optimal stopping set solves the problem. To
this end we define the analogon to r-harmonic functions in the situation of constant costs:

H := {hλ : λ ∈ R}, where hλ = u+ λs.

In this situation the idea of our approach also works:

Theorem 3.11. Assume (3.1).
A point x ∈ I is in the optimal stopping set if and only if there exists h ∈ H such that
x ∈ arg max(g − h).

Proof. First let x be a maximum point of g− h for some h ∈ H. For all regular stopping
times τ it holds that

Ex(g(Xτ )− cτ) = Ex(g(Xτ )− h(Xτ )) + Ex(h(Xτ )− cτ)

= Ex(g(Xτ )− h(Xτ )) + h(x) ≤ sup(g − h) + h(x) = g(x)

using Dynkin’s identity and optional sampling. Now Proposition 3.9 leads to v(x) ≤ g(x).
For the other implication let x ∈ S, i.e. g(x) = v(x). Write

σc,d = τc ∧ τd, where τc = inf{t ≥ 0 : Xt = c}, τd = inf{t ≥ 0 : Xt = d}.

Using Lemma 3.10 for all c < y < d ∈ I it holds that

v(y) ≥ Ey(v(Xσc,d)− cσc,d) = Ey(v(Xσc,d)− u(Xσc,d)) + Ey(u(Xσc,d)− cσc,d)

= (v(c)− u(c))Py(τc < τd) + (v(d)− u(d))Py(τd < τc) + u(y).

Using the definition of the scale function

v(y)− u(y) ≥ (v(c)− u(c))s(d)− s(y)
s(d)− s(c) + (v(d)− u(d))s(y)− s(c)

s(d)− s(c) ,
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i.e. – noting that s is strictly increasing – (v − u) ◦ s−1 is concave. Now take any affine
function y 7→ λy + d that is tangent to (v − u) ◦ s−1 in s(x). This implies

v − u ≤ λs+ b and (v − u)(x) = λs(x) + b.

Since g(x) = v(x) and g ≤ v this leads to

g − h ≤ b and (g − h)(x) = b,

where h := u+ λs, i.e. x is a maximum point of g − h.

In [IP04] assumptions on the boundary behavior of s(x)
u(x) and g(x)

u(x) were necessary. Fur-
thermore g was assumed to be twice continuously differentiable (except perhaps in one
special point). As seen above these assumptions can be relaxed naturally by considering
the problem from our point of view.
Furthermore we can again expect global solutions, i.e. we do not need to consider each
starting point separately.

3.6 Examples

3.6.1 Wald’s type optimal stopping for a Wiener process

Let (Xt)t≥0 be a standard Brownian motion and let the gain function be given by g(x) =
|x|p for some p ∈ (0, 2). This problem was studied in [GP97]. In this case the scale
function s and the function u (w.r.t a = 0) fulfill

s(x) = x, u(x) = cx2.

Now write
fλ(x) = |x|p − cx2 − λx for λ, x ∈ R.

One immediately sees that f0 has maximum points −x0,1 = x0,2 =
(
p
2c

) 1
2−p and all other

function fλ have unique maximum points xλ with xλ < x0,1 for λ > 0 and xλ > x0,2

for λ < 0. Furthermore xλ → −∞ for λ → ∞ and xλ → ∞ for λ → −∞. By the
intermediate value theorem the optimal stopping set is given

S =
(
−∞,−

(
p

2c

) 1
2−p
]
∪

[(
p

2c

) 1
2−p

,∞
)
.
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3.6.2 Portfolio optimization model by Morton and Pliska

In [MP95] a portfolio optimization problem under constant costs of observation was con-
sidered. This led to problems of optimal stopping for a diffusion on (0, 1) with generator
given by

A = 1
2x

2(1− x)2 d
2

dx2 + x(1− x)(1
2 − x) d

dx
.

We consider the gain function g(x) = | log( x
1−x)|.

The scale function and the function u are

s(x) = log
(

x

1− x

)
, u(x) =

(
log x

1− x

)2

and we again define the family of functions

fλ = g − u− λs, λ ∈ R.

By standard calculus we obtain that the maximum points of fλ are

xλ =
exp(1−λ

2c )
1 + exp(1−λ

2c )
for λ < 0 and xλ =

exp(−1−λ
2c )

1 + exp(−1−λ
2c )

for λ > 0,

as well as the two points

x0,1 =
exp( 1

2c)
1 + exp( 1

2c)
and x0,2 =

exp(−1
2c )

1 + exp(−1
2c ) for λ = 0,

so that the optimal stopping set is

S =
(

0,
exp(−1

2c )
1 + exp(−1

2c )

]
∪
[

exp( 1
2c)

1 + exp( 1
2c)
, 1
)
.

3.7 Some remarks on random cost structure

In [BL00] and [Day08] a more general optimal stopping problem is considered, namely

v(x) = sup
τ∈T

Ex(e−Aτ g(Xτ )1{τ<∞}), x ∈ I,

where (At)t≥0 is a non-negative continuous additive functional of the regular one-
dimensional diffusion (Xt)t≥0, i.e. (At)t≥0 is (Ft)t≥0-adapted, continuous, non decreasing,
A0 = 0 and As+t = As + At ◦ θs for all t, s ≥ 0. Here θ denotes the shift-operator.
Let σ· denote the generalized inverse of A, i.e.

σt := inf{s ≥ 0 : As > t} for all t ≥ 0.
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The process given by
X̃t = Xσt , F̃t = Fσt for all t ≥ 0.

induces a strong Markov process as explained in [RW94, III.21]. For stochastic opti-
mization the additive functional given by At =

∫ t
0 f(Xs)ds is of special interest, where

f : I → (0,∞) is assumed to be continuous and bounded away from 0. We assume this
structure in the following. If (Xt)t≥0 is generated by a second order differential operator,
then so is the time-changed process (X̃t)t≥0, see again [RW94, III.21.4].

In the following Proposition the problem with random discounting is reduced to the
problem we considered before.

Proposition 3.12. For all x ∈ I and g : I → R continuous it holds that

sup
τ∈T

Ex(e−Aτ g(Xτ )1{τ<∞}) = sup
τ∈T̃

Ex(e−τg(X̃τ )1{τ<∞}),

and
sup
τ∈TE

Ex(g(Xτ )− Aτ ) = sup
τ∈T̃E

Ex(g(X̃τ )− τ),

where T̃ denotes the stopping times with respect to (F̃t)t≥0.

Proof. Since both arguments are the same, we only prove the second statement.
For each (F̃t)t≥0-stopping time τ̃ the random variable στ̃ is an (Ft)t≥0-stopping time and
on the other hand for each (Ft)t≥0-stopping time τ the random variable Aτ is an (F̃t)t≥0-
stopping time, cf. [RW94, III.21].
Let τ0 ∈ TE, then τ̃0 := Aτ0 ∈ T̃ and we obtain

Ex(g(Xτ0)− Aτ0) = Ex(g(Xστ̃0
)− τ̃0) = Ex(g(X̃τ̃0)− τ̃0),

i.e. the left hand side of the assertion is smaller than or equal the right hand side. Now
let τ̃0 ∈ T̃E, then τ0 := στ0 ∈ T and we obtain

Ex(g(X̃τ̃0)− τ̃0) = Ex(g(Xτ0)− Aτ0)

and we obtain the converse inequality.

To illustrate the time-change method let us consider the Wald problem with state depen-
dent costs of the form

v(x) = sup
τ∈TE

Ex(|Xτ |p −
∫ τ

0
(X2

s + 1)ds), x ∈ R,
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where X denotes a standard Brownian motion. For simplicity we consider p = 3. Note
that this parameter leads to a trivial solution in the problem with constant costs. The
time changed process X̃ has a generator Ã given by

Ãw(x) = 1
2(x2 + 1)w

′′(x),

see [RW94, III.21.4, Formula (21.6)(i)]. We are faced with the problem

v(x) = sup
τ∈T̃E

Ex(|X̃τ |p − τ), x ∈ R,

that can be solved using Theorem 3.11. One immediately checks that the functions hλ
are given by

hλ(x) = −1
6x

4 + x2 + λx, λ ∈ R,

and the optimal stopping set is the union of the maximum points of x 7→ |x|3 − hλ(x).
For λ = 0 these are given by

x∗1 = −9 +
√

33
4 and x∗2 = 9 +

√
33

4 .

All other functions have unique maximum points xλ with xλ < x∗1 for λ > 0 and xλ > x∗2

for λ < 0. Furthermore xλ → −∞ for λ → ∞ and xλ → ∞ for λ → −∞. By the
intermediate value theorem the optimal stopping set is

S = (−∞, x∗1] ∪ [x∗2,∞) .

3.8 Optimal stopping of spectrally negative Lévy
processes

In the previous sections we considered one-dimensional Markov processes with continuous
paths. Now we change our focus to jump processes. As described in Section 2.2 an
important subclass of Lévy processes is the class of spectrally negative processes and we
study the problem

v(x) = sup
τ∈T

Ex(e−rτg(Xτ )1{τ<∞}), x ∈ R, r > 0

for these processes using our approach for a wide set of gain functions that includes the
Novikov-Shiryaev problem – g(x) = (x+)α – for example.
To introduce an easy to handle set of functions we use the Laplace exponent ψ as intro-
duced in Section 2.2. Because of convexity there exists a unique θ > 0 such that ψ(θ) = r.
For each λ ∈ R we consider

hλ : R→ R, x 7→ eλθx
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and write
H := {hλ : λ ∈ [0, 1]}.

For our considerations we need the following elementary

Lemma 3.13. For all λ ∈ [0, 1] the process Mλ = (e−rthλ(Xt))t≥0 is a positive super-
martingale under each measure Px. Furthermore M1 is a martingale.

Proof. Since (Xt)t≥0 has no upward jumps it has arbitrary positive exponential moments,
so that Mλ

t is integrable for each t ≥ 0 and we obtain by independence of the increments

Ex(Mt|Fs) = eλθXs−rsEx(eλθ(Xt−Xs)|Fs)e−r(t−s)

= Mse
(ψ(λθ)−ψ(θ))(t−s) ≤Ms

for each x ∈ R, 0 ≤ s ≤ t. For the last inequality we used that ψ(λθ) ≤ ψ(θ) by convexity
of ψ.

By Lemma 3.1 we obtain that the set

S̃ =
{
x ∈ R : There exists h ∈ H such that x ∈ arg max g

h

}
is a subset of the optimal stopping set S. To obtain a condition for equality we use an
argument inspired by the Beibel-Lerche approach:

Theorem 3.14. Assume g
h1

has a maximum point x0 and S̃ is an interval of the form
S̃ = [y,∞).
Then the stopping time

τ ∗ = inf{t ≥ 0 : Xt ≥ x0}

is optimal and

v(x) =

g(x) if x ≥ x0,

g(x0)
h1(x0)h1(x) otherwise .

Proof. As x0 ∈ S̃ it holds that x ∈ S̃ for all x ≥ x0 by assumption on S̃. This proves the
claim for all x ≥ x0. Now let x < x0. We define the change of measure by

dQx|Ft
dPx|Ft

= 1
h1(x)e

−rth1(Xt)

and remark that (Xt)t≥0 is a spectrally negative Lévy process that drifts to ∞ under Qx

(see [Kyp06, p. 213–214]). For each stopping time τ we obtain

Ex(e−rτg(Xτ )1{τ<∞}) = h1(x)EQx(
g

h1
(Xτ )1{τ<∞})

≤ h1(x) g
h1

(x0)Qx(τ <∞) ≤ g

h1
(x0)h1(x).
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Since Qx(τ ∗ < ∞) = 1 and g
h1

(Xτ∗) = g
h1

(x0) under Qx, the stopping time τ ∗ is optimal
and the value function is given as above.

To illustrate the previous result we generalize the results of Subsection 3.3 to spectrally
negative Lévy processes, i.e. we consider g(x) = (x+)α for some α > 0. Then the function
g
hλ

(x) = xα

eλθx
, x ≥ 0 has a unique maximum point at α

λθ
so that

S̃ = [α
θ
,∞)

and τ ∗ = inf{t ≥ 0 : Xt ≥ α
θ
} is optimal. This is a special case of the general solution

established in [NS07], but our result does not rely on the special structure of g.

Observation 3.15. Note that in this example the smooth fit condition v′(x0) = g′(x0)
holds. This is not surprising since for all spectrally negative Lévy processes 0 is regular
for (0,∞) (see [Kyp06, Theorem 6.5]). For a detailed discussion of this phenomenon we
refer to [PS06, IV, 9.1 and 9.2] and to [CI09] for the special case of Lévy processes.



Chapter 4

American options with guarantee

4.1 Introduction

Options with guarantee provide a safety belt against a substantial loss of fortune. Par-
ticularly in highly volatile markets the usage of these options can become reasonable for
risk averse investors, since they guarantee a payoff that is a fraction of the starting price.
I.e. we consider American options with payoff g(Xτ ) ∨ k(X0); here (Xt)t≥0 is the stock
price process, k ≤ g are increasing functions, τ is the (random) time to exercise the op-
tion and ∨ denotes the maximum. To our knowledge such American options have not
been treated in the literature. This problem is connected to the solution to the optimal
stopping problem

v(x) = sup
τ∈T

Ex(e−rτ (g(Xτ ) ∨ k(x))1{τ<∞}),

where r is the discounting factor. This motivates to consider such problems for a one-
dimensional Markov process (Xt)t≥0. But the optimal stopping theory for one-dimensional
processes – as described for diffusions in the previous section – does not apply immediately
since the payoff depends on the starting point. One possibility is to embed the problem
into the two-dimensional problem

v(x, y) = sup
τ∈T

E(x,y)(e−rτ (g(Xτ ) ∨ k(Yτ ))1{τ<∞}),

where Yt ≡ y; from this point of view, structural results can be obtained but explicit
calculations seem to be hard to handle.

Before starting let us establish a heuristic on the structure of the optimal stopping rule:
In many situations optimal stopping rules for problems with discounting and increasing
gain function have the form τ ∗ = inf{t ≥ 0 : Xt ≥ a} for some a. Such kind of strategies
does not seem to be appropriate in our setting: Assume that you want to stop at a
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reasonable high level a and you are far below it, then you have the option to stop and
accept the guarantee. Therefore it seems to be better to consider stopping rules that are
two-sided.

In this chapter we prove that this intuition is correct in many situations and give formulas
for an explicit computation of these optimal values. In Section 4.2 this is established for
the case that (Xt)t≥0 is a one-dimensional diffusion process by using the theory developed
in the previous chapter. The explicit computation of these optimal values and the value
function v for all starting points x at once leads to a system of two coupled first-order
ODEs. We derive this equation and illustrate all results by an example in Section 4.3.
Afterwards we assume (Xt)t≥0 to be a Lévy process in Section 4.4. In this case overshoot
plays a fundamental role. For the special case g(x) = (x − K)+ we demonstrate how
results about the shape of the optimal stopping set can be established for general Lévy
processes. Here explicit results can not be expected. Therefore we restrict our interest to
spectrally negative Lévy processes and prove that the optimal strategies are also two-sided
for arbitrary gain functions g. We again establish two first-order ODEs for the solution.

4.2 Diffusion processes

Let (Xt)t≥0 be a regular diffusion on an open interval I = (bl, br) as introduced in Section
2.1 and r > 0. For convenience we assume that the boundary points are natural, so that

lim
x→bl

ψ+(x) = lim
x→br

ψ−(x) = 0 and lim
x→br

ψ+(x) = lim
x→bl

ψ−(x) =∞.

Let g, k be as in the introduction, i.e. g, k increasing, g ≥ k and we assume g : I → R≥0 to
be continuous and to avoid trivialities sup k > 0. We consider the optimization problem

v(x) = sup
τ∈T

Ex(e−rτ (g(Xτ ) ∨ k(x))1{τ<∞}), x ∈ I,

i.e. for each x ∈ I we try to find a stopping time τ ∗x such that

v(x) = Ex(e−rτ
∗
x (g(Xτ∗x ) ∨ k(x))1{τ∗x<∞}).

In this setting we see that the optimal strategies are indeed of two-sided type:

Theorem 4.1. The following two assertions hold true:

(i) v ≡ ∞ if and only if lim supy→br
g(y)
ψ+(y) =∞.

(ii) Assume limy→br
g(y)
ψ+(y) = 0. Then for each x ∈ I with k(x) > 0 there exist two

constants ax, bx ∈ I with ax ≤ x ≤ bx such that

v(x) = Ex(e−rτ
∗
x (g(Xτ∗x ) ∨ k(x))1{τ∗x<∞}),
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where τ ∗x = inf{t ≥ 0 : Xt = ax or Xt = bx}.

Proof. For fixed x ∈ I we consider the problem

vx(y) = sup
τ∈T

Ey(e−rτ (g(Xτ ) ∨ k(x))1{τ<∞}), y ∈ I, (OSPx)

so that v(x) = vx(x) and use the theory developed in Chapter 3.

(i) Since

lim sup
y→bl

g(y) ∨ k(x)
ψ−(y) ≤ g(x) lim sup

y→bl

1
ψ−(y) = 0 <∞

the assertion holds by Proposition 3.6.

(ii) Using the assumption on the boundary behavior we observe that

sup
y≤x

g ∨ k(x)
ψ+

(y) ≥ k(x) sup
y≤x

1
ψ+

(y) =∞ > sup
y≥x

g(y)
ψ+(y) = sup

y≥x

g ∨ k(x)
ψ+

(y) (4.1)

and
sup
y≥x

g ∨ k(x)
ψ−

(y) = sup
y≥x

g(y)
ψ−(y) >

g(x)
ψ−(x) = sup

y≤x

g(y)
ψ−(y) . (4.2)

The functions

λ 7→ inf
y≤x

λψ+(y) + (1− λ)ψ−(y)
g(y) ∨ k(x) and λ 7→ inf

y≥x

λψ+(y) + (1− λ)ψ−(y)
g(y) ∨ k(x)

are continuous as infima taken over linear functions. Using the equations (4.1) and
(4.2) we obtain that for λ near 1

sup
y≤x

g(y) ∨ k(x)
λψ+(y) + (1− λ)ψ−(y) > sup

y≥x

g(y) ∨ k(x)
λψ+(y) + (1− λ)ψ−(y)

and for λ near 0

sup
y≤x

g(y) ∨ k(x)
λψ+(y) + (1− λ)ψ−(y) < sup

y≥x

g(y) ∨ k(x)
λψ+(y) + (1− λ)ψ−(y) .

Therefore by assumption on the boundary behavior there exist ãx ≤ x ≤ b̃x and
λ1, λ2 such that

ãx = arg max
y∈I

g(y) ∨ k(x)
λ1ψ+(y) + (1− λ1)ψ−(y) and b̃x = arg max

y∈I

g(y) ∨ k(x)
λ2ψ+(y) + (1− λ2)ψ−(y) .

The assertions follows from Proposition 3.8.

Remark 4.2. (i) The condition limy→br
g(y)
ψ+(y) = 0 in (ii) may be relaxed by a slight

refinement of the proof. But example 3.3.3 shows that it cannot be omitted at all.
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(ii) If k(x) ≤ 0, then by monotonicity k(y) ≤ 0 for all y ≤ x. For all these values the
optimal stopping problem reduces to an ordinary optimal stopping problem since no
guarantee occurs.

Theorem 4.1 states that for the question of optimal stopping with guarantee it is optimal
to choose boundaries depending on the starting point, and to stop at reaching these
boundaries. This provides a way to solve the optimization problem (OSPx) for each fixed
x. In ordinary problems of optimal stopping for diffusions (without an explicit starting
point dependence for the gain) the Markov property gives rise to an explicit solution for
all starting points in a connected component by the knowledge of an optimal stopping
time for one fixed x via the optimal stopping set.
Because of starting point dependence this is not so easy in our problem since the optimal
thresholds obviously depend on the starting point. But in Example 3.3.1 – i.e. g(x) = x

and geometric Brownian motion as the driving process – we reduced the problem to a
standard optimal stopping problem by homogeneity, so that it was enough to solve the
problem for the starting point x = 1.
The purpose of the following is to generalize this: We want to reduce the general problem
such that it is enough to solve the problem for one (or two) starting points. Then the
other boundary points can be computed as solutions of a certain system of two first order
ODEs.
To this end we assume that g is twice continuously differentiable and g = k in the
following. For fixed x ∈ I we again consider the problem

vx(y) = sup
τ∈T

Ey(e−rτ (g(Xτ ) ∨ g(x))1{τ<∞}) for all y ∈ I.

Writing τa = inf{t ≥ 0 : Xt = a}, τb = inf{t ≥ 0 : Xt = b} and τa,b = τa ∧ τb for all a, b
Proposition 2.5 yields for a ≤ x ≤ b

Ex(e−rτa,b(g(Xτa,b) ∨ g(x))1{τa,b<∞})

= g(x)Ex(e−rτa1{τa<τb}) + g(b)Ex(e−rτb1{τa<τb})

= g(x)ψ+(x)ψ−(b)− ψ+(b)ψ−(x)
ψ+(a)ψ−(b)− ψ+(b)ψ−(a) + g(b)ψ+(a)ψ−(x)− ψ+(x)ψ−(a)

ψ+(a)ψ−(b)− ψ+(b)ψ−(a)
=: F (x, a, b).

For fixed x Proposition 4.1 provides the existence of (ax, bx) that is a maximum point
of (a, b) 7→ F (x, a, b) and v(x) = F (x, ax, bx). In the following we assume that ψ+ and
ψ− are C2. As discussed in Section 2.1 this is no hard assumption since it holds for all
diffusion processes that are generated by a second order differential operator. In this case
the function F is C2 too and it holds that

D2,3F (x, ax, bx) = 0,
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where D2,3 is the total differential for F as a function of the second and third argument.
Write G = D2,3F : {(x, a, b) ∈ I3 : a ≤ x ≤ b} → R2 and assume that (ax, bx) is a unique
critical point of F , i.e. it is a unique zero of G for each x ∈ I. Hence x 7→ (ax, bx) is
implicitly defined by

G(x, a, b) = 0.

The elementary implicit differential formula yields that x 7→ (ax, bx) solves the following
system of first-order ODEs

d

dx
(ax, bx)T = −(D2,3G(x, ax, bx))−1D1G(x, ax, bx), (4.3)

where T means transposition.

4.3 Stock with guarantee revisited

In this section we treat the example studied in Subsection 3.3.2 again, i.e. we consider a
geometric Brownian motion as a driving process and g(x) = x.
Although the reduction is so easy in this case it is instructional to study it via differential
equations to see how the approach works without technical difficulties. Recall that the
function ψ+ and ψ− are power functions in this case. Using this fact one immediately
checks that the function

F (x, a, b) = x
ψ+(x)ψ−(b)− ψ+(b)ψ−(x)
ψ+(a)ψ−(b)− ψ+(b)ψ−(a) + b

ψ+(a)ψ−(x)− ψ+(x)ψ−(a)
ψ+(a)ψ−(b)− ψ+(b)ψ−(a)

fulfills
F (x, a, b) = xF (1, a

x
,
b

x
) for all a ≤ x ≤ b.

Using this identity the chain rule yields

D1F (x, a, b) = ∂

∂x
(xF (1, a

x
,
b

x
))

= F (1, a
x
,
b

x
) + xD2,3F (1, a

x
,
b

x
) · (− a

x2 ,−
b

x2 )T

= 1
x
F (x, a, b)− 1

x
D2,3F (x, a, b) · (a, b)T ,

hence

−[D2,3
2F (x, a, b)]−1 ·D1D2,3F (x, a, b)

= −[D2
2,3F (x, a, b)]−1 1

x
D2,3F (x, a, b)

+ 1
x

[D2
2,3F (x, a, b)]−1( ∂

∂a
,
∂

∂b
)(D2,3F (x, a, b) · (a, b)T )

= 1
x

(a, b)T
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and the differential equation (4.3) reads as

d

dx
(ax, bx) = 1

x
(ax, bx),

which proves that ax and bx are affine. Furthermore one immediately sees that ax, bx → 0
for x → 0, so that the problem is reduced to an ordinary optimal stopping problem for
an arbitrary starting point x.

4.4 Lévy-driven market

In the last years processes with jumps have become more and more popular as models for
financial markets. One standard model consists of two assets:
One deterministic bond (B0e

rt)t≥0, B0, r > 0 and the risky asset given by

St = S0e
Xt , S0 > 0, t ≥ 0,

where (Xt)t≥0 is a Lévy process. If (Xt)t≥0 is a Brownian motion we get the standard
Black-Scholes model that is extensively studied, but this model fails to satisfy the stylized
facts for financial data, such as skewness, asymmetry and heavy tails. To deal with this
problem (Xt)t≥0 is assumed to be a general Lévy process. Unfortunately this class is too
wide to provide explicit results. For more details we refer to [Sch03].
In the first subsection we investigate results for optimal stopping with guarantee in a
general Lévy market.
In the second subsection we assume the Lévy process to be spectrally negative. This leads
to tractable formulas using the scale function (cf. Section 2.2) and is flexible enough for
fitting financial data (cf. [CW02]). We show that the scale function leads to similar
results as investigated for diffusion processes.

4.4.1 General Lévy processes

We assume that an optimal stopping time τ ∗x exists. Then it is given as the first entrance
time into the optimal stopping set Sx for all starting points x in the problem

vx(y) = sup
τ∈T

Ey(e−rτ (g(Xτ ) ∨ g(x))1{τ<∞}), y ∈ R.

As described in the introduction this is true under natural conditions. Hence it is enough
to consider stopping times of the form

τS = inf{t ≥ 0 : Xt ∈ S} for S ⊆ R.
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A priori the optimal stopping set may have a very complex form and – since Lévy processes
do not have continuous paths – τ ∗x cannot be expected to be easily manageable.
Nonetheless the guarantee provides a simple form of Sx ∩ (−∞, x]:

Proposition 4.3. (i) For all x ∈ R there exists ax ∈ [−∞, x] such that

Sx ∩ (−∞, x] = (−∞, ax].

(ii) For all x ∈ R it holds that
Sx ∩ [x,∞) 6= ∅.

Proof. (i) Write ax = sup{a ∈ Sx : a ≤ x}. The case ax = −∞ is trivial, therefore we
assume ax > −∞. Since Sx is closed ax ∈ Sx. For all y ≤ ax and all stopping times
τ it holds that

E(e−rτ (g(Xτ + y) ∨ g(x))1{τ<∞}) ≤ E(e−rτ (g(Xτ + ax) ∨ g(x))1{τ<∞})

≤ g(ax) ∨ g(x) = g(x).

Therefore

vx(y) = sup
τ∈T

E(e−rτ (g(Xτ + y) ∨ g(x))1{τ<∞}) ≤ g(ax) ∨ g(x),

i.e. y ∈ Sx. Here we used the fact that the starting point dependence of Lévy
processes is explicitly given by adding the starting point to the process started in 0.

(ii) Write bx = inf{b ∈ Sx : b ≥ x} and assume that bx = ∞. Since x 6∈ Sx and Sx is
closed we obtain ax < x and since g(Xτ∗x ) ∨ g(x) = g(x) under Px we would have

Ex(e−rτ
∗
x (g(Xτ∗x ) ∨ g(x))1{τ∗x<∞}) = g(x)Ex(e−rτ

∗
x1{τ∗x<∞}) < g(x),

a contradiction to the optimality of τ ∗x .

The structure of Sx ∩ [x,∞) is much harder to handle and one can not expect it to be an
interval in general. But a stopping set of the form Sx = (−∞, ax] ∪ [bx,∞) is necessary
for semi-explicit results. In some examples elementary arguments provide this structure.
To demonstrate this we consider the gain function g(x) = (x−K)+ for some K ∈ R and
fix some x ≥ K. We write bx = inf{b ∈ Sx : b ≥ x}. Then for all y = bx + h ≥ bx and all
τ ∈ T it holds that

E(e−rτ [g(Xτ + y) ∨ g(x)]1{τ<∞}) ≤ E(e−rτ [((Xτ + bx −K)+ + h) ∨ g(x)]1{τ<∞})

≤ E(e−rτ ((Xτ + bx −K)+ ∨ g(x) + h)1{τ<∞})

= E(e−rτ (g(Xτ + bx) ∨ g(x))1{τ<∞}) + hE(e−rτ1{τ<∞})

≤ g(bx) + h = y −K.
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For the second inequality we used the elementary fact (a + h) ∨ b ≤ a ∨ b + h for all
h ≥ 0, a, b. This implies that Sx has the form Sx = (−∞, ax]∪ [bx,∞). In this case results
for the general representation of r-superharmonic functions provide a representation of
the optimal value function in terms of the running infimum and supremum as described
in [MS07].
But this result does not give rise to an explicit determination of the boundaries and the
value function. Even for the problem without guarantee no nontrivial, explicit results
for the two-sided case are known to our knowledge. But with further assumptions on
the jump-structure explicit calculations are possible. This is worked out in the next
subsection.

4.4.2 Spectrally negative Lévy processes

Now we assume that the Lévy process is spectrally negative, see Section 2.2. The following
results show that the guarantee structure leads to optimal stopping times of the same
simple form as in the diffusion-case.

Theorem 4.4. For each x ∈ R with g(x) > 0 there exist −∞ < ax ≤ x ≤ bx < ∞ such
that

τ ∗x = inf{t ≥ 0 : Xt ≤ ax or Xt = bx}.

Proof. Write ax = sup{a ∈ Sx : a ≤ x} and bx = inf{b ∈ Sx : b ≥ x}. By Theorem
4.3 the optimal stopping set has the form Sx = (−∞, ax] ∪ S∗x for some S∗x ⊆ [x,∞) and
furthermore bx <∞. Since (Xt)t≥0 has no positive jumps τ ∗x is given by

τ ∗x = inf{t ≥ 0 : Xt ≤ ax or Xt = bx}.

It remains to prove that ax > −∞. So assume ax = −∞, i.e. Sx ∩ (−∞, x] = ∅. For all
y ≤ x it holds that

g(x) = g(x) ∨ g(y) < Ey(e−rτ
∗
xg(Xτ∗x )1{τ∗x<∞}) = g(bx)Ey(e−rτ

∗
x1{τ∗x<∞})

and on the other hand

Ey(e−rτ
∗
x1{τ∗x<∞}) = Ey−bx(e−rτ01{τ0<∞})

= Py−bx(er > τ0) = P0(Xer + y − bx > 0),

where er is an Exp(r)-distributed random variable independent of everything else and X
denotes the running minimum process. We obtain

Ey(e−rτ
∗
x1{τ∗x<∞})→ 0 as y → −∞.

This is a contradiction to g(x) > 0. Therefore Sx ∩ (−∞, x] 6= ∅.
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For fixed x the problem is reduced to the maximization of

va,b(x) := Ex(e−rτa,b(g(Xτa,b) ∨ g(x))1{τa,b<∞})

in a ≤ x ≤ b, where τa,b = inf{t ≥ 0 : Xt ≤ a or Xt = b}. To this end we need an explicit
expression for va,b(x), that is given in the following

Lemma 4.5. It holds that

va,b(x) = g(x)Z(x− a) + da,bW (x− a) for all a ≤ x ≤ b,

where da,b = g(b)−Z(b−a)
W (b−a) and Z,W are the functions defined in Section 2.2.

Proof. Write τa = inf{t ≥ 0 : Xt ≤ a} and τb = inf{t ≥ 0 : Xt = b}. Using Proposition
2.7 we obtain that

Ex(e−rτa,b(g(Xτa,b) ∨ g(x))1{τa,b<∞})

=Ex(e−rτag(x)1{τa<τb}) + Ex(e−rτbg(b)1{τb<τa})

=g(x)Ex(e−rτa1{τa<τb}) + g(b)Ex(e−rτb1{τb<τa})

=g(x)
(
Z(x− a)−W (x− a) Z(b− a)

W (b− a)

)
+ g(b)W (x− a)

W (b− a)
=g(x)Z(x− a) + da,bW (x− a).

Putting pieces together we obtain

Theorem 4.6. For each x ∈ R let (ax, bx) be a maximum point of the function given by

(a, b) 7→ g(x)Z(x− a) + da,bW (x− a).

Then
τax,bx = inf{t ≥ 0 : Xt ≤ ax or Xt = bx}

is an optimal stopping time and the value function is given by

v(x) = g(x)Z(x− ax) + dax,bxW (x− ax).

As for diffusion processes we would like to find a differential equation that provides the
opportunity to find all optimal thresholds at once. Again we may use the implicit functions
theorem. Write F (x, a, b) = g(x)Z(x−a)+da,bW (x−a) for all x, a, b ∈ R with a ≤ x ≤ b.
We again assume that g is a C2-function. For F to be C2 too we assume that Z is C2 on
(0,∞). This assumption was discussed recently in [CKS10]. We just mention that this is
the case under quite general conditions, e.g. whenever (Xt)t≥0 has a Gaussian part, i.e.
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σ 6= 0 in the Lévy triple. Note that if Z is C2, then W is C3.
We assume that (ax, bx) is the unique critical point of (a, b) 7→ F (x, a, b), i.e. the solution
to G(x, a, b) := D2,3F (x, a, b) = 0 (a < x < b). Implicit differentiation again yields the
following two coupled first-order ODEs

d(ax, bx)
dx

= −
(
D2

2,3F (x, a, b)
)−1

D1D2,3F (x, ax, bx).



Chapter 5

Multidimensional optimal stopping
problems

In this chapter we apply the idea described in Section 3.1 to optimal stopping problems
involving multidimensional processes. Before starting let us emphasize that our aim is to
find explicit solutions. This seems to be hopeless for general multidimensional processes;
even if the driving process is (t,Xt)t≥0, where (Xt)t≥0 is an “easy” process (such as a
one-dimensional Brownian motion) no explicit results can be expected in general. For
example problems with gain function given by g(t, x) = x+ − c(t) for a deterministic
function c were studied in detail in [IKP01], but one cannot expect more than asymptotic
results. Therefore we consider different special settings and apply our method to find
explicit results.

The structure of this chapter is as follows: In Section 5.1 we recall some facts of Martin
boundary theory and identify the minimal r-harmonic functions for a multidimensional
geometric Brownian motion that will be used in the next sections. The case of two-
dimensional geometric Brownian motion is treated in Section 5.2, where we concentrate
on the interesting case of homogeneous gain functions of arbitrary degree. In this setting
our approach works as shown in Theorem 5.5. We illustrate this general result by exam-
ples and show that all parameters can be treated simultaneously, even if the geometric
structure of the stopping set changes. In Section 5.3 we discuss a generalization to gain
functions of other type.
In Section 5.4 we discuss the problem of optimal investment for d ≥ 3 underlying compo-
nents. Using our method we disprove a conjecture given in [OS92] and [HØ98] about the
shape of the optimal stopping region. These first sections are extended versions of the
results in [CI10].
Section 5.5 shows that our approach is applicable for two-dimensional optimal stopping
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problems involving the maximum process and leads to easy solutions.

5.1 Martin boundary theory

In Chapter 3 the minimal r-harmonic functions ψ+ and ψ− play a major role. There-
fore it seems natural to determine this functions in more general settings. If X is a
multidimensional diffusion process the space of r-harmonic functions cannot expected
to be finite-dimensional. But Martin boundary theory gives a possibility to represent r-
harmonic functions as integrals taken over the family of all minimal r-harmonic functions.
See [Pin95, p. 285 ff.] for an overview of this theory.

In the case that X is a (multidimensional) Brownian motion with drift or a geometric
Brownian motion the minimal r-harmonic functions – and hence all r-harmonic functions
– can be represented explicitly as stated in the following result.

Proposition 5.1. Let X be a d-dimensional Brownian motion on Rd with covariance
matrix (σij) and drift µ = (µ1, .., µd), i.e. the generator of X is given by

L = 1
2
∑
i,j

σij
∂2

∂xi∂xj
+
∑
i

µi
∂

∂xi
.

Write
A = {a ∈ Rd : 1

2

d∑
i,j=1

σijaiaj +
d∑
i=1

µiai − r = 0}.

Then
{x 7→ exp(a • x) : a ∈ A}

is the set of all minimal positive r-harmonic functions, where • denotes the usual scalar
product.

Proof. As the generator of X is given by

L = 1
2
∑
i,j

σij
∂2

∂xi∂xj
+
∑
i

µi
∂

∂xi
,

one immediately sees that the functions are r-harmonic. The minimality is proved in
[Pin95, p.348]. There it is also proved that these are indeed all minimal positive r-
harmonic functions. The main tool for the proof is Harnack’s inequality.

Since Brownian motion and geometric Brownian motion are closely related we get the
analogous result for geometric Brownian motion.
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Corollary 5.2. Let X be a d-dimensional geometric Brownian motion on (0,∞)d with
generator

L = 1
2
∑
i,j

σijxixj
∂2

∂xi∂xj
+
∑
i

µixi
∂

∂xi
,

and let
A = {a ∈ Rd : 1

2

d∑
i,j

σijaiaj +
d∑
i=1

(µi −
σ2
i

2 )ai − r = 0},

where σ2
i = σii. Then

(i) {x 7→ xa : a ∈ A} is the set of all minimal r-harmonic functions, where xa :=
xa1

1 · ... · xadd .

(ii) For each positive r-harmonic function h there exists a finite measure µ on A such
that

h(x) =
∫
A
xaµ(da) for all x ∈ (0,∞)d.

Proof. (i) For each function f : (0,∞)d → R define the function f̃ : Rd → R by
f̃(y) = f(exp(y)), where the exponential function is applied componentwise and
define the operator L̃ by

L̃ = 1
2
∑
i,j

σij
∂2

∂yi∂yj
+
∑
i

(µi −
σ2
i

2 ) ∂
∂yi

,

so that L̃ is the generator of a Brownian motion on Rd. We have

L̃(f̃)(y) = L(f)(ey) for all y ∈ Rd and f ∈ C2((0,∞)d).

This immediately implies that all functions x 7→ xa, a ∈ A, are r-harmonic. To
prove the minimality let a ∈ A and f : (0,∞)d → R, x 7→ xa. If f = cf1 + df2 for
some c, d ≥ 0 and f1, f2 r-harmonic with respect to L, then f̃ = cf̃1 + df̃2 and f̃i is
r-harmonic with respect to L̃. Because f̃ is minimal r-harmonic w.r.t. L̃ we have
c = 0 or d = 0, hence f is minimal.
It remains to prove that each r-harmonic function is a power function for an exponent
in A. Let f be r-harmonic w.r.t. L. f̃ is r-harmonic w.r.t. L̃. Proposition 5.1 yields
that there exists a ∈ A such that f̃(x) = ea•x for all x ∈ Rd. Consequently it holds
that f(y) = f̃(log(y1), ..., log(yd)) = ya for all y ∈ (0,∞)d.

(ii) This result is not surprising keeping Choquet’s theorem in mind. Indeed it im-
mediately follows from (i) by the Martin representation theorem (see [Pin95, 7.1,
Theorem 1.2]).
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The case of one-dimensional diffusions suggests to consider the set H of all positive r-
harmonic functions and the candidate set

S̃ = {x ∈ E : ∃h ∈ H such that x ∈ arg max(g
h

)}.

This set is a subset of the optimal stopping set by Lemma 3.1 and equal to the stopping
set in the one-dimensional case. So the main question is: What can be said about equality
in multidimensional problems?

5.2 Homogeneous gain functions

In this section we consider homogeneous gain functions of arbitrary degree for two-
dimensional geometric Brownian motions and show that our approach is applicable in
this situation (i.e. S̃ is the stopping set). As examples we consider an extended version
of the the classical Margrabe option problem and a two-sided problem. Let X, Y be
geometric Brownian motions with dynamics

dXt = µ1Xtdt+ σ1XtdW
(1)
t , dYt = µ2Ytdt+ σ2YtdW

(2)
t ,

where W (1) and W (2) are standard Brownian motions with covariation [W (1)
t ,W

(2)
t ] = ρt.

Furthermore let g : (0,∞)2 → R be homogeneous of degree κ > 0, i.e. we assume for this
section that

g(λx, λy) = λκg(x, y) for all (x, y) ∈ (0,∞)2 and all λ > 0.

To avoid trivialities we assume that sup(g) > 0. Obviously v > 0.

In the working paper [AV05] the authors considered the optimal stopping problem for
homogeneous gain functions that were assumed to be twice continuously differentiable.
Under further assumptions on the monotonicity of g they solved the problem using ex-
cessive functions. Their method works for the case that the continuation set and the
optimal stopping set are both connected. Our approach is not restricted to this case as
demonstrated by the examples in the subsections at the end of this section.

Lemma 5.3. Let h be a positive r-harmonic function such that g
h
has a maximal point.

Then there exist a, b ∈ R and c, d ≥ 0 such that h(x, y) = cxayκ−a + dxbyκ−b for all
(x, y) ∈ (0,∞)2 and a, b are solutions of the quadratic equation

σ2

2 w
2 + (µ− σ2

2 )w + γ = 0, (5.1)

where σ2 = σ2
1 +σ2

2−2σ1σ2ρ, µ = (κ−1)(σ1σ2ρ−σ2
2)+µ1−µ2 and γ = κ(κ−1)σ

2
2
2 +κµ2−r.

In particular h is homogeneous of degree κ > 0.
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Proof. By the Martin representation theorem and Corollary 5.2 there exists a finite mea-
sure µ on

A = {a ∈ R2 : 1
2(

2∑
i=1

σia
2
i + 2σ1σ2ρa1a2) +

2∑
i=1

(µi −
σ2
i

2 )ai − r = 0}

such that h(x, y) =
∫
A x

a1ya2µ(da). Hence

g

h
(x, y) =

g(x
y
, 1)∫

A (x
y
)a1ya1+a2−κµ(da) .

If there exists (a1, a2) ∈ supp(µ) such that a1 + a2 − κ 6= 0 then

lim sup
‖(x,y)‖→0

g

h
(x, y) =∞ or lim sup

‖(x,y)‖→∞

g

h
(x, y) =∞

and g
h
has no maximum point in (0,∞)2.

The only elements of the form (a1, κ − a1) ∈ A are (a, κ − a) and (b, κ − b) as described
above, hence h(x, y) = cxayκ−a + dxbyκ−b for some c, d ≥ 0.

We need the following well known result concerning the Laplace transform of first exit
times of (geometric) Brownian motions (cf. Section 2.1 and (for this special result) for
example [Won08, Lemma 1]).

Lemma 5.4. Let Z be a geometric Brownian motion with drift µ and volatility σ. Let
γ ∈ R, 0 < l < q, τl = inf{t ≥ 0 : Zt = l}, τq = inf{t ≥ 0 : Zt = q} and τ = τl ∧ τq.

(i) If the quadratic equation (5.1) has real solutions a and b, then

Ez(eγτ1{τl<τq}) = zaqb − zbqa

laqb − lbqa

for all z ∈ (l, q).

(ii) If the quadratic equation (5.1) has no real solutions, then

Ez(eγτ1{τl<τq}) =∞

for all z ∈ (l, q).

Now we come to the main result of this section:

Theorem 5.5. The pair (x, y) is in the stopping set if and only if there exists an r-
harmonic function h such that (x, y) ∈ arg max

(
g
h

)
.
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Proof. Let (x, y) ∈ (0,∞)2. For 0 < l < x
y
< q set

τl = inf
{
t ≥ 0 : Xt

Yt
= l

}
, τq = inf

{
t ≥ 0 : Xt

Yt
= q

}
and τ = τl ∧ τq. Because g is homogeneous of degree κ, so is v. Write v(x, y) = yκṽ(x

y
),

where ṽ(·) = v(·, 1). It holds that

v(x, y) ≥ E(x,y)(e−rτv(Xτ , Yτ )1{τ<∞})

= ṽ(l)E(x,y)(e−rτY κ
τ 1{τl<τq}) + ṽ(q)E(x,y)(e−rτY κ

τ 1{τq<τl})

= ṽ(l)yκEQ
(x,y)(eγτ1{τl<τq}) + ṽ(q)yκEQ

(x,y)(eγτ1{τq<τl}),

where Q is defined by

dQ|Ft
dP |Ft

= 1
yκ
eγteκσ2W

(2)
t −(1/2)κ2σ2

2t, γ = κ(κ− 1)σ
2
2

2 + κµ2 − r.

Girsanov’s theorem yields that (W (1),W (2)) is a Brownian motion with drift (κσ2ρ, κσ2)
underQ. Hence Itô’s lemma shows that the stochastic process (X

Y
) is a geometric Brownian

motion with drift µ = (κ − 1)(σ1σ2ρ − σ2
2) + µ1 − µ2 and volatility σ under Q, where

σ2 = σ2
1 + σ2

2 − 2σ1σ2ρ.
Using Lemma 5.4 we obtain

EQ
(x,y)(eγτ1{τl<τq}) =


(x
y

)aqb−(x
y

)bqa

laqb−lbqa , equation (5.1) has real solutions a and b

∞ , otherwise
.

Case 1: Equation (5.1) has no real solutions.
Then v(x, y) = ∞, i.e. the stopping set is empty. On the other hand, Lemma 5.3
yields that under this conditions there exists no r-harmonic function h such that g

h
has a

maximum point, i.e. S̃ = ∅. That proves the assertion in this case.

Case 2: Equation (5.1) has real solutions a and b.
Then the equations above yield that

v(x, y) ≥ ṽ(l)yκ
(x
y
)aqb − (x

y
)bqa

laqb − lbqa
+ ṽ(q)yκ

(x
y
)bla − (x

y
)aqb

laqb − lbqa
,

i.e.

ṽ(x
y

) ≥ ṽ(l)
(x
y
)aqb − (x

y
)bqa

laqb − lbqa
+ ṽ(q)

(x
y
)bla − (x

y
)alb

laqb − lbqa

for all l < x
y
< q. Hence

ṽ(z)
za
≥ ṽ(l)

la
qb−a − zb−a

qb−a − lb−a
+ ṽ(q)

qa
zb−a − lb−a

qb−a − lb−a
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for all z, l, q with 0 < l < z < q. By changing the variables this shows that the function
z 7→ ṽ(z1/(b−a))

za/(b−a) is concave. This implies that for z0 := x
y
there exist c, d ≥ 0 such that

ṽ(z1/(b−a)
0 )

z
a/(b−a)
0

= dz0 + c and ṽ(z1/(b−a))
za/(b−a) ≤ dz + c for all z ∈ (0,∞). By a further change of

variables we obtain

ṽ(z0) = cza0 + dzb0 and ṽ(z) ≤ cza + dzb for all z ∈ (0,∞).

Define the function h by h(x, y) = cxayκ−a + dxbyκ−b. Corollary 5.2 shows that h is r-
harmonic, h ≥ v and h(x, y) = v(x, y). If (x, y) is in the stopping set, this implies h ≥ g

and h(x, y) = g(x, y) thus (x, y) ∈ arg max g
h
.

5.2.1 Power exchange options

In this section we study the special functions g : (0,∞)2 → R, (x, y) 7→ max(x− y, 0)α,
i.e. we study the problem

sup
τ∈T

E(x,y)(e−rτ ((Xτ − Yτ )+)α1{τ<∞}), x, y > 0. (Exch)

For α = 1 this problem is connected with pricing an exchange option in a Black-Scholes
market and with the timing of an investment (cf. [MS86]). The problem was studied from
different points of view and was solved for the whole range of parameters quite recently
(cf. [Won08] and the references therein). Our methods provide an immediate solution.
Use γ, µ, σ2 as in the previous section. Let a, b be the (possibly complex) solutions to
(5.1) (Lemma 5.3), assuming a ≥ b in the case that a, b are real.

Proposition 5.6. (Solution to (Exch))
In the problem (Exch) the stopping set S is given by

(i) S = {(x, y) ∈ (0,∞) : a
a−α ≤

x
y
≤ b

b−α}, if a, b are real and a, b > α.

(ii) S = {(x, y) ∈ (0,∞) : a
a−α ≤

x
y
}, if a, b are real and a > α ≥ b.

(iii) S = ∅ otherwise.

Proof. The results in the previous section yield that S consists of the maximum points of
the mappings

(x, y) 7→ ((x− y)+)κ
cxayκ−a + dxbyκ−b

=
((x
y
− 1)+)κ

c(x
y
)a + d(x

y
)b c, d ≥ 0.
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Because the maximum points are scale-invariant it is enough to find the maximum points
of the functions

fλ : (0,∞)→ R, z 7→ ((z − 1)+)κ
λza + (1− λ)zb , λ ∈ [0, 1].

In the following arguments we use the explicit formula

f ′(z) = κzκ−1(λza + (1− λ)zb)− zκ(λaza−1 + (1− λ)bzb−1)
(λza + (1− λ)zb)2 for z > 1.

First let a, b > κ. Then f1 resp. f0 has a maximum point at a
a−κ resp. b

b−κ . By the implicit
function theorem the maximum points of fλ are continuous in λ and the intermediate value
theorem yields that

{(x, y) ∈ (0,∞) : a

a− κ
≤ x

y
≤ b

b− κ
} ⊆ S.

Now let z 6∈ [ a
a−κ ,

b
b−κ ]. If 1 < z < a

a−κ resp. z > b
b−κ , then f ′0(z), f ′1(z) > 0 resp.

f ′0(z), f ′1(z) < 0. If we would have f ′λ(z) = 0, then (1 − λ)f ′0(z)z2b = −λf ′1(z)z2a, a
contradiction. This proves (i).
Now let a > κ, b ≤ κ. It holds that f ′0(z) > 0 for z > 1. Fix z ≥ a

a−κ and define
λ = f ′1(z)

f ′1(z)−f ′0(z) . Because f
′
1(z) ≤ 0 we have λ ∈ [0, 1]. Computing f ′λ shows that f ′λ(z) = 0

and fλ has a maximum point in z. This shows that the right hand side in (ii) is a
subset of the optimal stopping set. On the other hand for each z > 1 we have f ′0(z) > 0,
furthermore f ′1(z) > 0 for z ∈ (1, a

a−κ). Therefore the same argument as in case (i) yields
that there cannot be more maximum points - thus (ii).
Finally let a, b ≤ κ. Then fλ has no maximum points and therefore S = ∅. If a, b are not
real, then there exists no positive r-harmonic function of degree κ, therefore S = ∅, and
(iii) is proved.

Remark 5.7. The conditions on the solutions a and b of the quadratic equation can be
translated into conditions on the parameter of the process. For example, the conditions
for (ii) in the case α = 1 are given by

r > µ1 or (r = µ1 and r < µ2 −
1
2(σ2

1 − σ2
2 − 2σ1σ2ρ)).

This special case will play an important role in the next section.

5.2.2 Straddle exchange option

As a second example we consider a case where the continuation set is connected but the
stopping set is not, i.e. we consider a two-sided situation. Let the gain function be given
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Figure 5.1: Exchange-
Option in case (i)

Figure 5.2: Exchange-
Option in case (ii)

Figure 5.3: Straddle ex-
change option

by g(x, y) = (x− y) ∨ (y − x), where ∨ denotes the maximum.
As in the previous example we have to find the maximum points of the functions fλ
given by fλ(z) = fλ,1(z) = 1−z

λza+(1−λ)zb for z ∈ (0, 1] and fλ(z) = fλ,2(z) = z−1
λza+(1−λ)zb for

z ∈ (1,∞). For a < 1 or b > 0 it is easily seen that the problem becomes trivial. The
case a = 1 or b = 0 is interesting but the rather lengthy arguments are omitted and we
assume that a > 1, b < 0.
We have to consider λ ∈ (0, 1). By direct computation one immediately sees that fλ,1 and
fλ,2 have unique maximum points zλ,1 ∈ (0, 1) and zλ,2 ∈ (1,∞); furthermore sup(fλ,1) is
continuously increasing in λ, while sup(fλ,2) is decreasing and sup(f1,1) =∞ = sup(f0,2).
Therefore there exists a unique point λ∗ such that fλ∗,1(zλ∗,1) = fλ∗,2(zλ∗,2).
Furthermore zλ,1 decreases to 0 as λ → 1 and zλ,2 increases to ∞ as λ → 0. By the
implicit functions theorem we get that the set of maximum points of the functions fλ is
(0, z1,λ∗ ] ∪ [zλ∗,2,∞). By Theorem 5.5 the stopping set is given by

S = {(x, y) : x
y
≤ zλ∗,1 or x

y
≥ zλ∗,2}.

Furthermore the values zλ∗,1, zλ∗,2 and λ∗ are uniquely determined by the following system
of equations

f ′λ∗,1(zλ∗,1) = 0

f ′λ∗,2(zλ∗,2) = 0

fλ∗,1(zλ∗,1) = fλ∗,2(zλ∗,2).

5.3 Extensions to non-homogeneous gain functions

Although many interesting cases are covered by homogeneous gain functions, other func-
tions are of interest too. In this section we describe how our method can be extended to
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other situations too. In [Mak08] the gain functions g given by g(x, y) = exy is studied
under constant costs of observation and a solution is given under certain conditions. In
generalization of this example we consider gain functions of the form g(x, y) = f(x)yα for
an upper semicontinuous function f and a fixed α > 0 in our setting. From a financial
point of view an interesting example is given by the case that the option on Y can be
exercised only if X fulfills a certain condition, that is f(x) = 1{x∈A} for some closed set
A. As before we have

Theorem 5.8. The pair (x, y) is in the stopping set if and only if there exists an r-
harmonic function h such that (x, y) ∈ arg max

(
g
h

)
.

Proof. Because g is homogeneous of degree α as a function in y, so is v. Write v(x, y) =
ṽ(x)yα, where ṽ(·) = v(·, 1). Using the stopping times τl = inf{t ≥ 0 : Xt = l}, τq =
inf{t ≥ 0 : Xt = q} and τ = τl ∧ τq the proof works exactly as the proof of Theorem
5.5.

5.4 The problem of optimal investment

In [OS92] and [HØ98] the situation of subsection 5.2.1 was extended to a multidimensional
problem (Invest) in the form

sup
τ∈T

Ex(e−rτ (X(1)
τ −X(2)

τ − ...−X(d)
τ )1{τ<∞}), x ∈ (0,∞)d.

Here X(1), X(2), ..., X(d) are geometric Brownian motions with dynamic

dX
(i)
t = X

(i)
t (µidt+ dW

(i)
t ),

where W (1), ...,W (d) are Brownian motions with covariances [W (i),W (j)]t = σijt for all
i, j = 1, .., d and we write σ2

i = σii for short. We assume that the associated covariance
matrix is not singular.
One can interpret this problem as the question about the best time to invest when one
has to pay X(2)

t + ...+X
(d)
t to get X(1)

t (cf. [HØ98]). The difficulty in solving this problem
stems from the fact that the structure is not multiplicative but additive and the sum of
geometric Brownian motions is not easy to handle.

Remark 5.9. For d = 2 the difference between (Exch) and (Invest) is that in (Exch)
the positive part of the difference is considered while in (Invest) the difference itself is
treated. Because the stopping times τ may be infinite the values and optimal stopping
times are the same.
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We now consider the set

A ={a ∈ Rd : x 7→ x−a is r-harmonic}

={a ∈ Rd : p(a) = 0}

using the notations
p(a) = 1

2
∑
i,j

σijaiaj −
∑
i

(µi −
σ2
i

2 )ai − r

and zw := ∏d
i=1 z

wi
i and z, w ∈ (0,∞)d. We switch from a, Corollary 5.2, to −a in the

definition of A to facilitate some later computations. Note that the matrix associated
with the quadratic form p is positive definite as a non singular correlation matrix. Hence
the level sets of p are ellipsoids.

In the previous section a special role was played by the functions (x, y) 7→ x−a1y−a2

where −a2 = κ+ a1, see Lemma 5.3. This motivates to consider parameters a ∈ A where
just the first and one more component i is not 0 and it holds that a1 + ai = −1 (note
that κ = 1 in our situation). For any i, the existence of such parameters is ensured by
Remark 5.7 if and only if

r − µ1 > 0 or (r − µ1 = 0 and r < µi −
1
2(σ2

1 + σ2
i − σ1i) for all i > 1)

and then there are exactly two of them as solutions to a quadratic equation. We
assume this condition in the following. Then there exist unique λi > 1 such that
ui := (−λi, 0, .., 0, λi − 1, 0, ..., 0) ∈ A, where λi is at position i for i = 2, ..., d. In
[OS92] and [HØ98] the following conjecture was stated and was supported by numerical
calculations:

Conjecture. The halfspace

SH := {x ∈ (0,∞)d : x1 ≥
d∑
i=2

λi
λi − 1xi}

is the stopping set S for a wide range of the parameter-space.

The following theorem proves that this conjecture is not true in the above situation.

Theorem 5.10. If d > 2, then SH is a strict subset of the optimal stopping set S.

Proof. (i) A short calculation yields that for each a ∈ Rd the function

ga : (0,∞)d → R, x 7→ xa(x1 −
d∑
j=2

xj)
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has a maximum point if and only if
d∑
i=1

ai = −1, a1 < 0, and aj > 0 for j > 1;

in this case it holds that arg max(ga) = {λ(−a1, a2, a3, ..., ad) : λ > 0}.

(ii) If p(a) ≤ 0, then applying the generator

A = 1
2
∑
ij

σij
∂2

∂xi∂xj
+
∑
i

(µi −
σ2
i

2 ) ∂

∂xi

shows that x 7→ x−a is r-superharmonic. Thus Lemma 3.1 can be applied and yields
that R>0 · (−a1, a2, a3, ..., ad) is in the optimal stopping set S if condition (i) holds,
i.e.

S ′ := {λ · x : x ∈ (0,∞)d, p(Φ(x)) ≤ 0, x1 −
d∑
j=1

xj = 1, λ > 0} ⊆ S,

where the function Φ : Rd → Rd is given by Φ(x) = (−x1, x2, x3, ..., xd). Note that
Φ is self-inverse.

(iii) Let U be the hyperplane U := {x ∈ (0,∞)d : x1 −
∑d
j=2 xj = 1} and define SU =

S ∩U , SHU = SH ∩U and S ′U = S ′ ∩U . Thus S ′U is the intersection of an ellipsoid in
U with a quadrant hence it is strictly convex. Furthermore p(ui) = 0 holds for all
i = 2, ..., d by definition and hence

{x ∈ U : x1 =
d∑
j=2

λj
λj − 1xj} = conv(Φ(u2), ...,Φ(ud)) ⊆ S ′,

where conv(·) denotes the convex hull. If y ∈ SHU then y1 −
∑d
j=2 yj = 1 and

y1 −
∑d
j=2

λj
λj−1yj ≥ 0 and equivalently y1 −

∑d
j=2 yj = 1 and 1 ≥ ∑d

j=2
1

λj−1yj. Thus
there exists λ ∈ (0, 1] such that 1 = 1

λ

∑d
j=2

1
λj−1yj.

Define x = (x1, ..., xd) by xj = 1
λ
yj for j 6= 1 and x1 = 1 +∑d

j=2 xj. Then

1 =
d∑
j=2

1
λj − 1xj and x1 −

d∑
j=2

xj = 1

and equivalently

x1 =
d∑
j=2

λj
λj − 1xj and x1 −

d∑
j=2

xj = 1

i.e. x ∈ conv(Φ(u2), ...,Φ(ud)) ∩ U ⊆ S ′U . Because p(Φ(1, 0, ..., 0)) = µ1 − r ≤ 0 it
also holds that (1, 0, ..., 0) ∈ S ′U . We have that y = λx + (1− λ)(1, 0, ..., 0) ∈ S ′U as
a convex combination of elements in S ′U . This yields SHU ⊆ S ′U ⊆ SU . Because S ′U is
strictly convex, but SHU is not, the sets cannot be equal.
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Remark 5.11. After presenting and submitting our result K. Nishide and L.C.G. Rogers
found an independent proof for the case d = 3, see [NR10]. Their approach is based on
using the elementary inequality

X
(2)
t +X

(3)
t ≥ (X(2)

t /p)p(X(3)
t /q)q for all p ∈ [0, 1], q = 1− p.

Noting that the right hand side defines a one-dimensional geometric Brownian motion,
this leads to a lower bound for the value function.

5.5 On optimal stopping of the maximum process

Another two-dimensional process where explicit results can be expected is the process
(Mt, Xt)t≥0, where (Xt)t≥0 is a diffusion process and Mt = sups≤tXs ∨M0 denotes its
running maximum. Optimal stopping problems involving the running maxima were in-
troduced in finance by Shepp and Shiryaev in [SS93] and this so called “Russian options”
were discussed in different settings. Most authors use a free-boundary approach and ver-
ification theorems for a solution. Using this way an interesting class of examples in the
Black-Scholes setting was recently treated in [GZ10]. Using the martingale approach the
Russian-option problem in the Black-Scholes market was studied in [LU07, Section 4]. An
overview and further references are given in [PS06, Section 26].
In this section we demonstrate that our idea for a solution is applicable for these kind
of problems and gives rise to easy solutions. We want to illustrate it by the following
example:
Let (Xt)t≥0 be a one-dimensional Brownian motion with drift µ and volatility σ > 0 and
(Mt)t≥0 its running maximum. The process (Mt, Xt)t≥0 is a Markov process with state
space {(m,x) : x ≤ m}. We consider the problem

v(m,x) = sup
τ∈T

E(m,x)(e−rτ (Mτ −Xτ )α1{τ<∞}), m ≥ x, α > 0.

For α = 1 this problem is connected to pricing a lookback option in the Bachelier model.
To apply our idea it is necessary to have a simple class H of suitable functions h such that
the sets arg max(m,x)

g(m,x)
h(m,x) are subsets of the optimal stopping set, where g(m,x) = m−x.

To this end note thatMt is constant as long as Xt does not reach its maximum. Therefore
it seems natural to use the r-harmonic functions for (Xt)t≥0, i.e.

ψ−(x) = eβ1x, ψ+(x) = eβ2x.

Here β1 < 0 < β2 are the solutions to the quadratic equation
1
2β

2 + µβ − r = 0;
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for simplicity we assume w.l.o.g. that σ = 1. Furthermore we want to obtain a “large”
set of maximum points for each function h ∈ H, so that we consider functions that are
constant in m− x. This leads to the following

Lemma 5.12. For all λ ≥ 1 write

hλ : {(m,x) : m ≥ x} → R, (m,x) 7→ λce−β1meβ1x + e−β2meβ2x,

where c = −β2
β1
. Then

(i) The process (e−rthλ(Mt, Xt))t≥0 is a positive supermartingale for each λ ≥ 1.

(ii) The process (e−rth1(Mt, Xt))t≥0 is a positive local martingale.

(iii) The union of all maximum points of g
hλ
, λ ≥ 1, is given by

S̃ = {(m,x) : m ≥ x+ z∗},

where z∗ > 0 is the unique solution to

1 =
α
β2

+ z
α
β1

+ z
e(β1−β2)z.

Proof.
(i) and (ii): We apply Itô’s lemma to the process (Mt, Xt)t≥0. To this end note that
(Mt)t≥0 is non-decreasing and hence of locally bounded variation. Denote the generator
of (Xt)t≥0 by A. We obtain

e−rthλ(Mt, Xt) = hλ(M0, X0) +
∫

[0,t]
e−rs(A− r)hλ(Ms −Xs)ds

+
∫

[0,t]
e−rs

∂

∂m
hλ(Ms, Xs)dMs + "local martingale"

= hλ(M0, X0) +
∫

[0,t]
e−rs

∂

∂m
hλ(Ms, Xs)dMs + "local martingale"

since (A− r)hλ = 0. Furthermore

∂

∂m
hλ(m,x) = −λcβ1e

−β1meβ1x − β2e
−β2meβ2x,

hence
∂

∂m
hλ(m,m) = −λcβ1 − β2 = (λ− 1)β2 ≥ 0.

Since Mt increases only if Xt = Mt the process (e−rthλ(Mt, Xt))t≥0 is a positive local
supermartingale, i.e. a positive supermartingale. For λ = 1 the second summand vanishes
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too and (e−rthλ(Mt, Xt))t≥0 is a positive local martingale.
(iii): We define

fλ : [0,∞)→ R, z 7→ zα

λce−β1z + e−β2z
for all λ ≥ 1

so that
g

hλ
(m,x) = fλ(m− x), m ≥ x.

One immediately checks that fλ has a unique maximum point zλ that is the unique
solution to

λ =
α
β2

+ z
α
β1

+ z
e(β1−β2)z.

Since the right hand side is increasing to∞ in z we obtain that zλ is increasing in λ from
z∗ to ∞, i.e.

{zλ : λ ≥ 1} = [z∗,∞).

This proves the assertion.

Write
H = {hλ : λ ≥ 1},

where hλ is defined in the previous lemma. Now we can solve the optimal stopping
problem:

Proposition 5.13. The point (m,x) is in the optimal stopping set if and only if there
exists h ∈ H such that (m,x) ∈ arg max g

h
.

Furthermore τ ∗ = inf{t ≥ 0 : Mt − Xt ≥ z∗} is an optimal stopping time, where z∗ is
given in the previous lemma and

v(m,x) = h1(m,x) for all (m,x) with m− x < z∗.

Proof. By Lemma 5.12 and Lemma 3.1 we know that S̃ is a subset of the optimal stopping
set S. Now we prove that τ ∗ is optimal when the process is started in (m,x) 6∈ S̃:
Since in this case (Mτ∗ , Xτ∗) ∈ arg max g

h1
on {τ ∗ <∞} it seems natural to use the idea

of the Beibel-Lerche approach similarly to the arguments in [LU07, Section 4]. We obtain

E(m,x)(e−rτ (Mτ −Xτ )α1{τ<∞}) = E(m,x)(e−rτh1(Mτ , Xτ )
g(Mτ , Xτ )
h1(Mτ , Xτ )

1{τ<∞})

≤ max g

h1
E(m,x)(e−rτh1(Mτ , Xτ )1{τ<∞})

≤ max g

h1
h1(m,x)

for all stopping times τ , so that it is enough to prove

E(m,x)(e−rτ
∗
h1(Mτ∗ , Xτ∗)1{τ∗<∞}) = h1(m,x).
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To this end note that by Lemma 5.12 (ii) the process (e−rth1(Mt, Xt))t≥0 is indeed a
local martingale. Now take a localizing sequence (σn)n∈N of bounded stopping times for
(e−rth1(Mt, Xt))t≥0. Note that

h1(Mτ∗∧σn , Xτ∗∧σn) = c exp(−β1(Mτ∗∧σn −Xτ∗∧σn)) + exp(−β2(Mτ∗∧σn −Xτ∗∧σn))

≤ ce−β1z∗ + 1

for all n ∈ N. Since

lim
n→∞

e−r(τ
∗∧σn)h1(Mτ∗∧σn , Xτ∗∧σn) = e−rτ

∗
h1(Mτ∗ , Xτ∗)1{τ∗<∞}

dominated convergence and optional stopping yields

E(m,x)(e−rτ
∗
h1(Mτ∗ , Xτ∗)1{τ∗<∞}) = lim

n→∞
E(m,x)(e−r(τ

∗∧σn)h1(Mτ∗∧σn , Xτ∗∧σn))

= h1(m,x).

This yields v(m,x) = h1(m,x) if m − x < z∗ and v(m,x) = m − x if m − x ≥ z∗, i.e. S̃
is the optimal stopping set and τ ∗ is optimal.

Remark 5.14. Note that the special form of g was used for convenience only to determine
the maximum points in Lemma 5.12 (iii). The same arguments can be carried over to
other classes of functions g(m,x) = g̃(m−x) too, if one assumes that the set of maximum
points has the same form as in Lemma 5.12, (iii).



Chapter 6

Explicit results for optimal stopping
of autoregressive processes

6.1 Introduction

Let 0 < λ ≤ 1, (Zn)n∈N be a sequence of independent and identically distributed random
variables on a probability space (Ω,A, P ) and let (Fn)n∈N be the filtration generated by
(Zn)n∈N. Define the autoregressive process of order 1 (AR(1)-process) (Xn)n∈N0 by

Xn = λXn−1 + Zn for all n ∈ N

i.e.
Xn = λnX0 +

n−1∑
k=0

λkZn−k.

The random variables (Zn)n∈N are called the innovations of (Xn)n∈N0 . Using the difference
notation the identity Xn = λXn−1 + Zn can be written as

∆Xn = −(1− λ)Xn−1∆n+ ∆Ln,

where ∆Xn = Xn −Xn−1, ∆n = n− (n− 1) = 1 and ∆Ln = ∑n
k=1 Zk −

∑n−1
k=1 Zk = Zn.

This shows that AR(1)-processes are the discrete-time analogon to (Lévy-driven)
Ornstein-Uhlenbeck processes. We just want to mention that many arguments in the
following can be carried over to Ornstein-Uhlenbeck processes as well.
Autoregressive processes were studied in detail in the last years. The joint distribution of
the threshold-time

τb = inf{n ∈ N0 : Xn ≥ b}

and the overshoot Xτb − b over a fixed level b was of special interest. This first passage
problem was considered in different applications, such as signal detection and surveillance



CHAPTER 6. OPTIMAL STOPPING OF AUTOREGRESSIVE PROCESSES 64

analysis, cf. [FS06]. If λ = 1 the process (Xn)n∈N0 is a random walk and many results
about this distributions are well known. Most of them are based on techniques using the
Wiener Hopf-factorization – see [Fel66, Chapter VII] for an overview. Unfortunately no
analogon to the Wiener-Hopf factorization is known for AR(1)-processes, so that other
ideas are necessary. To get rid of well-studied cases we assume that λ < 1 in the following.

Most known results about the distribution of τb are based on martingales defined by using
integrals of the form ∫ ∞

0
euy−φ(u)uv−1du (6.1)

where φ is the logarithm of the Laplace transform of the stationary distribution discussed
in Section 6.4. For the integral to be well defined it is necessary that E(euZ1) < ∞ for
all u ∈ [0,∞) – cf. [NK08] and the references therein.
On the other hand if one wants to obtain explicit results about the joint distribution of
τb and the overshoot it is useful to assume Z1 to be exponentially distributed. In this
case explicit results are given in [CIN10, Section 3] by setting up and solving differential
equations. Unfortunately in this case not all exponential moments of Z1 exist and the
integral described above cannot be used.

The contribution of this chapter is twofold:

1. We find the joint distribution of τb and the overshoot for a wide class of innovations:
We assume that Z1 = S1 − T1, where S1 has a phasetype distribution and T1 ≥ 0 is
arbitrary. This generalizes the assumption of exponentially distributed innovations
to a much wider class. In Section 6.3 we establish that for this class τb and the
overshoot are – conditioned on certain events – independent and we find the distri-
bution of the overshoot. In Section 6.4 we use a series inspired by the integral (6.1)
to construct martingales with the objective of finding the distribution of τb.

2. As an application we consider the (Markovian) problem of optimal stopping for
(Xn)n∈N0 with discounted non-negative continuous gain function g, i.e. we study
the optimization problem

v(x) = sup
τ∈T

Ex(ρτg(Xτ )) = sup
τ∈T

E(ρτg(λτx+Xτ )), x ∈ R, 0 < ρ < 1,

where T denotes the set of stopping times with respect to (Fn)n∈N0 ; to simplify
notation here and in the following we set the payoff equal to 0 on {τ = ∞}. Just
very few results are known for this problem. In [Nov09] and [CIN10] the innovations
are assumed to be exponentially distributed and in [Fin82] asymptotic results were
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given for g(x) = x. Our way to a solution is the following:
First we find easy conditions to ensure that the optimal stopping time is a threshold-
time; this is done in Section 6.2. In a second step we use the joint distribution of
τb and the overshoot to find the optimal threshold. One way is described in Section
6.5. Another way is the principle of continuous fit, that is established in Section
6.6. An example is given in Section 6.7.

6.2 Simple conditions for the optimality of threshold-
times

To tackle the optimal stopping problem described above it is useful to reduce the (infinite
dimensional) set of stopping times to a finite dimensional subclass. In Section 3.4 we
gave easy conditions for the optimal stopping time to be of threshold type in the case
of diffusion processes. But we proved them after characterizing the optimal stopping
time in a convenient way. Because we do not have such a characterization on hand for
AR(1)-processes we have two possibilities to proceed in a different way:

(a) We use elementary arguments to reduce the set of potential optimal stopping times
to the subclass of threshold-times, i.e. to stopping times of the form

τb = inf{t ≥ 0 : Xt ≥ b}

for some b ∈ R. Then we find the optimal threshold. An example for this type of
argument is given in Subsection 6.2.1. Cf. [CIN10, Section 2] for more results in this
direction.

(b) We make the ansatz that the optimal stopping time is of threshold type, identify the
optimal threshold and use a verification theorem to prove that this stopping time is
indeed optimal. Such a verification theorem is given in Subsection 6.2.2.

We want to remark that under very general conditions it holds that τb < ∞ Px-a.s. for
all x, b ∈ R – cf. Theorem 2 in [NK08] and the discussion on the existence of a stationary
distribution in Section 6.4. These conditions are fulfilled for all cases of interest in the
following.

6.2.1 The Novikov-Shiryaev-problem for AR(1)-processes

In the random walk case, the problem of optimal stopping for

g(x) = (x+)α, α > 0
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has been of particular interest and was completely solved in [NS04]. The solution is
based on the use of Appell polynomials and on the Wiener-Hopf factorization. After
establishing the solution it comes out that the optimal stopping time is of threshold type.
In this subsection we go the inverse way by giving elementary arguments to determine
the form of the optimal stopping time. The results of this subsection are included in the
article [CIN10].

If we consider AR(1)-sequences with nonnegative innovations we take [0,∞) as the state
space of (Xn)n∈N0 and consider

g(x) = xα, α > 0.

Then for any x > 0, 0 < δ ≤ 1, z ≥ 0

g(δx+ z)
g(x) =

(
δ + z

x

)α
is decreasing in x

hence so is
v(x)
g(x) = sup

τ∈T
E

(
ρτ
(
λτ + Xτ

x

)α)
.

Thus if x is in the optimal stopping set, then y is in the optimal stopping set too for all
y ≥ x, and the optimal stopping problem

sup
τ∈T

Ex(ρτXα
τ )

is solved by a threshold-time for any α > 0. Unfortunately this easy argument does not
work for general innovations so that another approach is necessary:

Without further assumptions on the innovations we consider

g(x) = (x+)α, α > 0

and denote the associated optimal stopping set by Sα. Under minimal assumptions it
holds that 0 < v(x) <∞ for all x and we have Sα ⊂ (0,∞). This yields

x ∈ Sα ⇔ E(ρτ (Xτ

x
+ λτ )α) ≤ 1 for all τ ∈ Tx,

where Tx is the set of all stopping times with Xτ + λτx > 0 P -a.s.
The following observation about the dependence of the stopping sets on α is useful to
establish the threshold structure of the stopping set:

Lemma 6.1. For all 0 < β ≤ α it holds that Sα ⊆ Sβ.
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Proof. Let x ∈ Sα and τ ∈ Tx. Jensen’s inequality yields

1 ≥ E(ρτ (Xτ

x
+ λτ )α) = E((ρ

β
α
τ (Xτ

x
+ λτ )β)α/β)

≥ (E(ρ
β
α
τ (Xτ

x
+ λτ )β))α/β ≥ (E(ρτ (Xτ

x
+ λτ )β))α/β,

i.e. E(ρτ (Xτ
x

+ λτ )β) ≤ 1.

Now we are prepared to show that the optimal stopping time is of threshold type:

Proposition 6.2. Fix n ∈ N and assume the first hitting time τ of Sn to be optimal.
Then τ is of threshold type, i.e. there exists xn ∈ (0,∞) such that Sn = [xn,∞).

Proof. Write x := xn := inf(Sn). Since Sn is closed x ∈ Sn.
Let m ∈ N such that mx ∈ Sn. We first prove that y = (m + c)x ∈ Sn for all c ∈ [0, 1].
Let τ be the optimal stopping time for the process started in y under P , i.e.

τ = inf{m ∈ N0 : Xm + λmy ∈ Sn}.

We have Xτ + λτy ≥ x P -a.s. and we obtain

Xτ + λτmx ≥ x− λτcx ≥ 0,

i.e. τ ∈ Tmx. Furthermore it holds that

v(y) = E(ρτ (Xτ + λτy)n) = E(ρτ ((Xτ + λτmx) + λτcx)n)

=
n∑
k=0

(
n

k

)
E(ρτ (λτcx)n−k(Xτ + λτmx)k)

Since mx is in the stopping set we obtain

v(y) =
n∑
k=0

(
n

k

)
E(ρτ (λτcx)n−k(Xτ + λτmx)k)

≤
n∑
k=0

(
n

k

)
(cx)n−kE(ρτ (Xτ + λτmx)k)

≤
n∑
k=0

(
n

k

)
(cx)n−k(mx)k = (cx+mx)n = yn.

By applying this to c = 1 we get by induction that mx is in the stopping set for all
positive integers m. Thus we obtain the statement for all y by applying the calculation
to general c. We remark that the induction is necessary to guarantee that Xτ + λτmx is
always non-negative.

Remark 6.3. Note that all arguments work for random walks and Lévy processes as well.
This can be used for another approach to the well-studied optimal stopping problem for
these processes.
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6.2.2 Verification theorem

To use the second approach described in the introduction of this section the following
easy verification theorem is useful.

Lemma 6.4. Let b∗ ∈ R, write v∗(x) = Ex(ρτb∗g(Xτb∗ )) and assume that

(a) v∗(x) ≥ g(x) for all x < b∗.

(b) E(ρv∗(λx+ Z1)) ≤ v∗(x) for all x ∈ R.

Then v = v∗ and τb∗ is optimal.

Proof. By the independence of (Zn)n∈N property (b) implies that (ρnv∗(Xn))n∈N is a su-
permartingale under each measure Px. Since it is positive the optional sampling theorem
leads to

v∗(x) ≥ sup
τ∈T

Ex(ρτv∗(Xτ )) ≥ sup
τ∈T

Ex(ρτg(Xτ )) for all x ∈ R,

where the second inequality holds by (a) since v∗(x) = g(x) for all x ≥ b. On the other
hand v∗(x) ≤ v(x), i.e. v∗(x) = v(x) and τb∗ is optimal.

6.3 Innovations of phasetype

In this section we recall some basic properties of phasetype distributions and identify the
connection to AR(1)-processes.
In the first subsection we establish the terminology and state some well-known results,
that are of interest for our purpose. All results can be found in [Asm03] discussed from
the perspective of queueing theory.
In the second subsection we concentrate on the threshold-time distribution for autore-
gressive processes when the positive part of the innovations is of phasetype. The key
result for the next sections is that – conditioned to certain events – the threshold-time is
independent of the overshoot and the overshoot is phasetype distributed as well.

6.3.1 Definition and some properties

Let m ∈ N, E = {1, ...,m}, ∆ = m+ 1 and E∆ = E ∪ {∆}.
In this subsection we consider a Markov chain (Jt)t≥0 in continuous time with state space
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E∆. The states 1, ...,m are assumed to be transient and ∆ is absorbing. Denote the
generator of (Jt)t≥0 by Q̂ = (qij)i,j∈E∆ , i.e.

q̂ij(h) := P (Jt+h = j|Jt = i) = qijh+ o(h) for all i 6= j ∈ E∆ and

q̂ii(h) := P (Jt+h = i|Jt = i) = 1 + qiih+ o(h) for all i ∈ E∆ and h→ 0, t ≥ 0.

If we write Q̂(h) = (q̂ij(h))i,j∈E∆ for all h ≥ 0, then (Q̂(h))h≥0 is a semigroup and the
general theory yields that

Q̂(h) = eQ̂h for all h ≥ 0.

Since ∆ is assumed to be absorbing Q̂ has the form

Q̂ =
 Q −Q1

0...0 0


for an m×m-matrix Q, where 1 denotes the column-vector with entries 1.
We consider the survival time of (Jt)t≥0, i.e. the random variable

η = inf{t ≥ 0 : Jt = ∆}.

Let α̂ = (α, 0) be an initial distribution of (Jt)t≥0. Here and in the following α =
(α1, ..., αm) is assumed to be a row-vector.

Definition 6.1. P η
α̂ is called a distribution of phasetype with parameters (Q,α) and we

write P η
α̂ = PH(Q,α) for short.

Let m = 1 and Q = (−β) for a parameter β > 0. In this case it is well-known that η
is exponentially distributed with parameter β. This special case will be the key example
we often think of. Furthermore let us mention that the class of phasetype distributions is
stable under convolutions and mixtures. This shows that the important classes of Erlang-
and hyperexponential distributions are of phasetype.
Exponential distributions have a very special structure, but phasetype distributions are
flexible:

Proposition 6.5. The distributions of phasetype are dense in the space of all probability
measures on (0,∞) with respect to convergence in distribution.

Proof. See [Asm03, III, Theorem 4.2].

The definition of phasetype distributions does not give rise to an obvious calculus with
these distributions, but the theory of semigroups leads to simple formulas for the density
and the Laplace-transform as the next lemma shows. All the formulas contain matrix
exponentials. The explicit calculation of such exponentials can be complex in higher
dimensions, but many algorithms are available for a numerical approximation.
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Proposition 6.6. (a) The eigenvalues of Q have negative real part.

(b) The distribution function of PH(Q,α) is given by

Hα(s) := Pα(η ≤ s) = 1− αeQs1, s ≥ 0.

(c) The density is given by
hα(s) = αeQsq, s ≥ 0

where q = −Q1.

(d) For all s ∈ C with Eα̂(e<(s)η) <∞ it holds that

Ĥα(s) := Eα̂(esη) = α(−sI −Q)−1q,

where I is the m×m-identity matrix.
In particular Ĥα is a rational function.

Proof. See [Asm03, II, Corollary 4.9 and III, Theorem 4.1].

An essential property for the applicability of the exponential distribution in modeling and
examples is the memoryless property, which even characterizes the exponential distribu-
tion. The next lemma can be seen as a generalization of this property to distributions of
phasetype.

Lemma 6.7. Let t ≥ 0 and write

H t
α(s) = Pα̂(η ≤ s+ t|η ≥ t) for all s ≥ 0.

Then H t
α is a distribution function of a phasetype distribution with parameters (Q, πt),

where πti = Pα̂(Jt = i|η ≥ t) for all i = 1, ...,m.

Proof. By Proposition 6.6 the random variable η has a continuous distribution. Therefore
using the Markov-property of (Jt)t≥0 we obtain

Pα̂(η ≤ t+ s|η ≥ t) = Pα̂(η ≤ t+ s|η > t)

=
∑
i∈E

Pα̂(η ≤ t+ s, Jt = i) 1
Pα̂(η > t)

=
∑
i∈E

Pα̂(η ≤ t+ s|Jt = i)Pα̂(Jt = i)
Pα̂(η > t)

=
∑
i∈E

Pei(η ≤ s)πti =
∑
i∈E

πtiHei(s),

where ei is the i-th unit vector.
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For the application to autoregressive processes we need the generalization of the previous
lemma to the case that the random variable is not necessarily positive.

Lemma 6.8. Let S, T ≥ 0 be stochastically independent random variables, where S is
PH(Q,α)-distributed. Furthermore let r ≥ 0 and Z = S − T . Then

Pα̂(r ≤ Z ≤ r + s) =
∑
i∈E

λi(r)Hei(s), s ≥ 0,

where λi(r) =
∫
Pα̂(Jr+t = i)P T

α̂ (dt).

Proof. Using Lemma 6.7 it holds that

Pα̂(r ≤ Z ≤ r + s) =
∫
Pα̂(r + t ≤ S ≤ r + s+ t)P T

α̂ (dt)

=
∑
i∈E

∫
Hei(s)Pα̂(Jt+r = i)P T

α̂ (dt).

6.3.2 Phasetype distributions and overshoot of AR(1)-processes

We again consider the situation of Section 6.1. In addition we assume the innovations to
have the following structure:

Zn = Sn − Tn for all n ∈ N,

where Sn and Tn are non-negative and independent and Sn is PH(Q,α)-distributed. In
this context we remark that each probability measure Q on R with Q({0}) = 0 can be
written as Q = Q+ ∗Q− where Q+ and Q− are probability measures with Q+((−∞, 0)) =
Q−((0,∞)) = 0 and ∗ denotes convolution (cf. [Fel66, p.383]).

As a motivation we consider the case of exponentially distributed innovations. If Zn is
exponentially distributed then it holds that for all ρ ∈ (0, 1] and measurable g : R →
[0,∞)

Ex(ρτg(Xτ )) = Ex(ρτ )E(g(R + b)), (6.2)

where τ = τb is a threshold-time, x < b and R is exponentially distributed with the same
parameter as the innovations (cf. [CIN10, Theorem 3.1]). This fact is well known for
random walks, cf. [Fel66, Chapter XII.]. The representation of the joint distribution of
overshoot and τ reduces to finding a explicit expression of the Laplace-transform of τ .
In this subsection we prove that a generalization of this phenomenon holds in our more
general situation.



CHAPTER 6. OPTIMAL STOPPING OF AUTOREGRESSIVE PROCESSES 72

To this end we use an embedding of (Xn)n∈N0 into a stochastic process in continuous time
as follows:
For all n ∈ N denote the Markov chain which generates the phasetype-distribution of Sn
by (J (n)

t )t≥0 and write

Jt = J
(nt+1)
t−
∑nt

k=1 Sk
, where nt = max{n ∈ N0 :

n∑
k=1

Sk ≤ t} for all t ≥ 0 .

Hence the process (Jt)t≥0 is constructed by compounding the processes J (n) restricted to
their lifetime. Obviously (Jt)t≥0 is a continuous time Markov chain with state space E,
as one immediately checks (cf. [Asm03, III, Proposition 5.1]). Furthermore we define a
process (Yt)t≥0 by

Yt = λXnt − Tnt+1 + t−
nt∑
k=1

Sk.

See Figure 6.1 for an illustration. It holds that

Xn = Y(S1+...+Sn)− for all n ∈ N,

so that we can find (Xn)n∈N0 in (Yt)t≥0. Now let τ̂ be the threshold-time of the process
(Yt)t≥0 over the threshold b, i.e.

τ̂ = inf{t ≥ 0 : Yt ≥ b}.

By definition of (Yt)t≥0 it holds that

Yt = b ⇔ t = −λXnt + Tnt+1 +
nt∑
k=1

Sk + b for all t ≥ 0. (6.3)

For the following result we need the event that the associated Markov chain is in state i
when (Yt)t≥0 crosses b ≥ 0, i.e. the event

Gi = {Jτ̂ = i} for i ∈ E.

For the following considerations we fix the threshold b ≥ 0.
In generalization of the result for exponential distributed innovations the following theo-
rem states that – conditioned on Gi – the threshold-time and the overshoot are indepen-
dent and the overshoot is phasetype distributed as well.

Theorem 6.9. Let x < b, n ∈ N, y ≥ 0 and write

τ = τb = inf{n ∈ N0 : Xn ≥ b}.

Then
Px(Xτ − b ≤ y, τ = n) =

∑
i∈E

Hei(y)Px(τ = n,Gi).
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b

x

λx− T1

S1 S1 + S2

Yt

τ̂

Figure 6.1: A path of (Yt)t≥0

Proof. Using Lemma 6.8 and the identity (6.3) we obtain

Px(Xτ − b ≤ y, τ = n) = Ex(1{τ≥n}Px(Xn ≥ b,Xn − b ≤ y|Fn−1))

= Ex(1{τ≥n}Px(b ≤ Xn ≤ b+ y|Fn−1))

= Ex(1{τ≥n}Px(b− λXn−1 ≤ Zn ≤ b+ y − λXn−1|Fn−1))

= Ex(1{τ≥n}
∑
i∈E

Hei(y)Px(J (n)
b−λXn−1+Tn = i|Fn−1))

=
∑
i∈E

Hei(y)Px(τ = n, Jτ̂ = i).

This immediately implies a generalization of (6.2) to the case of general phasetype distri-
butions:

Corollary 6.10. It holds that

Ex(ρτg(Xτ )) =
∑
i∈E

Ex(ρτ1Gi)E(g(b+Ri)),
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where Ri is a Ph(Q, ei)-distributed random variable (under P ).

Hence we reduced the problem of finding Ex(ρτg(Xτ )) to the problem of finding Ex(ρτ1Gi)
for all i ∈ E. This problem is treated in the following section:

6.4 Construction of appropriate martingales

The aim of this section is to construct martingales of the form (ρn∧τh(Xn∧τ ))n∈N as a tool
for the explicit representation of Φb

i(x) = Φi(x) = Ex(ρτ1Gi) for τ = τb and b > x. To
this end some definitions are necessary.
We assume the setting of the previous section, i.e. we assume that the innovations can
be written in the form

Zn = Sn − Tn for all n ∈ N,

where Sn and Tn are non-negative and independent and Sn is PH(Q,α)-distributed.

Let exp(ψ) be the Laplace-transform of Z1, i.e. ψ(u) = logE(euZ1) for all u ∈ C+ :=
{z ∈ C : <(z) ≥ 0} with real part <(u) so small that the expectation exists. Since
E(euZ1) = E(euS1)E(e−uT1) and T1 ≥ 0 Proposition 6.6 yields the existence of ψ(u) for all
u with <(u) smaller then the smallest eigenvalue of −Q. ψ is analytic on this stripe and
– because of independence – it holds that

ψ(u) = ψ1(u) + ψ2(u),

where exp(ψ1) denotes the Laplace-transform of S1 and exp(ψ2) is the Laplace-transform
of −T1. ψ2 is analytic on C+ and ψ1 can be analytically extended to C+ \ Sp(−Q) by
Proposition 6.6. Here Sp(·) denotes the spectrum, i.e. the set of all eigenvalues. Hence
ψ can be extended to C+ \ Sp(−Q) as well and this extension is again denoted by ψ.
Note that this extension can not be interpreted from a probabilistic point of view because
E(euZ1) does not exist for u ∈ C+ with too large real part.
To guarantee the convergence of (Xn)n∈N0 we assume a weak integrability condition – the
well known Vervaat condition

E(log(1 + |Z1|)) <∞, (6.4)

see [GM00, Theorem 2.1] for a characterization of such conditions in the theory of per-
petuities. We do not go into details here, but just want to use the fact that (Xn)n∈N0

converges to a (finite) random variable θ in distribution, that fulfills the stochastic fixed
point equation

P θ = P λθ ∗ PZ1 ,
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where ∗ denotes convolution. Since the AR(1)-process has the representation

Xn = λnX0 +
n−1∑
k=0

λkZn−k

and convergence in distribution is equivalent to the pointwise convergence of the Laplace-
transforms the Laplace-transform exp(φ) of θ fulfills

φ(u) =
∞∑
k=0

ψ(λku) (6.5)

for all u ∈ C+ such that the Laplace-transform of S1 exists.
The right hand side defines a holomorphic function on C+ \ P̂ that is also denoted by
φ, where we write P̂ = ⋃

n∈N0 Sp(−λ−nQ). For the convergence of the series note that –
as described above – it converges for all u ∈ C+ such that E(euZ1) < ∞. For all other
u ∈ C+ the series also converges since there exists k0 such that E(eλkuZ1) < ∞ for all
k ≥ k0.
Furthermore the identity

φ(u) = φ(λu) + ψ(u) (6.6)

holds, whenever u, λu are in the domain of φ. To avoid problems concerning the applica-
bility of (6.6) we assume that

Sp(λnQ) ∩ Sp(Q) = ∅ for all n ∈ N. (6.7)

We would like to mention, that the function φ was used and studied in [NK08] as well.

The next two lemmas are helpful in the construction of the martingales.

Lemma 6.11. Let δ ∈ C+ such that E(eδS1) exists. Then for all x < b it holds that

ρE(eδ(λx+Z1)1{λx+Z1≥b}) = αδe
−λxQq,

where αδ = ρα(−δI −Q)−1e(δI+Q)b+ψ2(−Q).

Proof. In the following calculation we use the fact that all matrices commutate and that
all eigenvalues of δI +Q have negative real part. It holds

E(eδ(λx+Z1)1{λx+S1≥b}) = eδλx
∫ ∞

0
E(eδ(S−t)1{λx+S1−t≥b})P T (dt)

= eδλx
∫ ∞

0

∫ ∞
b+t−λx

eδ(s−t)αeQsqdsP T (dt)

= eδλx
∫ ∞

0
e−δtα

∫ ∞
b+t−λx

e(δI+Q)sdsqP T (dt)

= −eδλx
∫ ∞

0
e−δtα(δI +Q)−1e(δI+Q)(b+t−λx)qP T (dt).
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We obtain

ρE(eδ(λx+Z1)1{λx+Z1≥b}) = −ρeδλxα
∫ ∞

0
eQtP T (dt)(δI +Q)−1e(δI+Q)(b−λx)q

= −ρα
∫ ∞

0
e−QsP−T (ds)(δI +Q)−1e−Qλxe(δI+Q)bq

= αδe
−Qλxq.

We write Qγ = −γQ for short. For all γ ∈ C+ fulfilling

Sp(λnQγ) ∩ P̂ = ∅ for all n ∈ N (6.8)

we define the function

fγ : R→ Cm×m, x 7→
∑
n∈N

exλ
nQγ−φ(λnQγ)ρn−1.

This series converges because exλnQγ−φ(λnQγ) is bounded in n. Note that the summand of
this series is similar to the integrand in (6.1).

Lemma 6.12. There exists δ > 0 such that for all x ∈ R and γ ∈ C+ with |γ| < δ it
holds that

ρE(fγ(λx+ Z1)) = fγ(x)− eλxQγ−φ(λQγ).

Proof. For all γ ∈ C+ with |γ| sufficiently small the expected value E(eQγλnZ1) exists for
all n ∈ N since Q has (finitely many) negative eigenvalues. This leads to

E(fγ(λx+ Z1)) = E(
∑
n∈N

e(λx+Z1)λnQγ−φ(λnQγ)ρn−1)

=
∑
n∈N

e(λx)λnQγ−φ(λnQγ)E(eλnQγZ1)ρn−1

=
∑
n∈N

exλ
n+1Qγ−φ(λnQγ)+ψ(λnQγ)ρn−1

(6.6)= 1
ρ

∑
n∈N

exλ
n+1Qγ−φ(λn+1Qγ)ρn

= 1
ρ

(fγ(x)− eλQγx−φ(λQγ)).

The next step is to find a family of equations characterizing

Φ(x) = (Φ1(x), ...,Φm(x)) = (Ex(ρτ1G1), ..., Ex(ρτ1Gm))
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using martingale techniques where τ = τb, x < b. To this end we consider

hγ,δ : R→ C, x 7→ eδx1{x≥b} + βγ,δfγ(x)q,

for all δ ∈ C+ \ SP (−Q) and γ fulfilling (6.8) where βγ,δ = αδe
φ(λQγ). For the special

value γ = 1 we write hδ = hγ,δ and this function is well-defined by (6.7).

Putting together the results of Lemma 6.11 and Lemma 6.12 we obtain the equation

ρEx(hγ,δ(X1))− hγ,δ(x) = αδe
−λxQq − αδe−λγxQq for all x < b (6.9)

for all γ, δ ∈ C+ with sufficiently small modulus.

Before stating the equations we need one more technical result.

Lemma 6.13. Let Ri be a PH(Q, ei)-distributed random variable and denote by ψi(·) =
log(ei(− · I −Q)−1q) the holomorphic extension of the logarithmized Laplace-transform of
Ri. Here ei denotes the i-th unit vector. Let |γ|, |δ| be so small that E(hγ,δ(b+Ri)) exists.
Then it holds that

E(hγ,δ(b+Ri)) = eδbαγ,i(−δI −Q)−1q =: ηγ,δ,i,

where
αγ,i = ei + αeQb+ψ2(−Q)+φ(λQγ) ∑

n∈N
ebλ

nQγ−φ(λnQγ)+ψi(λnQγ)ρn.

Proof. Simple calculus yields the result:

E(hγ,δ(b+Ri)) = E(eδ(b+Ri) + βγ,δ
∑
n∈N

e(b+Ri)λnQγ−φ(λnQγ)ρn−1q)

= eδbei(−δI −Q)−1q + βγ,δ
∑
n∈N

ebλ
nQγ−φ(λnQγ)E(eλnQγRi)ρn−1q

= eδbei(−δI −Q)−1q

+ ρα(−δI −Q)−1e(δI+Q)b+ψ2(−Q)+φ(λQγ)(
∑
n∈N

ebλ
nQγ−φ(λnQγ)+ψi(λnQγ)ρn−1)q

= eδb(ei + αeQb+ψ2(−Q)+φ(λQγ) ∑
n∈N

ebλ
nQγ−φ(λnQγ)+ψi(λnQγ)ρn)(−δI −Q)−1q.

Theorem 6.14. For all x < b and δ ∈ C+ \ Sp(−Q) it holds that
m∑
i=1

ηδ,iΦi(x) = hδ(x),

where ηδ,i = η1,δ,i is given in the previous Lemma.
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Proof. Write h := hγ,δ for δ, γ ∈ C+ with |δ|, |γ| so small that E(h(Z1)) <∞.
The discrete version of Itô’s formula yields

ρnh(Xn)−
n−1∑
i=0

ρi(ρEx(h(Xi+1)|Xi)− h(Xi))

=h(X0) +
n−1∑
i=0

ρi+1(h(Xi+1)− Ex(h(Xi+1)|Xi)) =: Mn

and (Mn)n∈N is a martingale. The optional sampling theorem applied to τ = τb yields

h(x) = Ex(Mτ∧n) = Ex(ρn∧τh(Xn∧τ ))− Ex
(
n∧τ−1∑
i=0

ρi(ρEx(h(Xi+1)|Xi)− h(Xi))
)

= Ex(ρn∧τh(Xn∧τ ))− Ex
(
n∧τ−1∑
i=0

ρi(αδe−λXiQq − αδe−λγXiQq)
)

using equality (6.9). The dominated convergence theorem shows that

hδ,γ(x) = Ex(ρτhδ,γ(Xτ ))− Ex
(
τ−1∑
i=0

ρi(αδe−λXiQq − αδe−λγXiQq)
)

;

note that the dominated convergence theorem is applicable to both summands since Q
has negative eigenvalues and so e−sQ is bounded in s for s with <(s) being bounded above.
Corollary 6.10 leads to

hγ,δ(x) =
m∑
i=1

Ex(ρτ1Gi)E(hγ,δ(Ri + b))− Ex
(
τ−1∑
i=0

ρi(αδe−λXiQq − αδe−λγXiQq)
)
,

where Ri is PH(Q, ei)−distributed and the previous Lemma implies

E(hγ,δ(Ri + b)) = eδbαγ,i(−δI −Q)−1q.

Since ∑τ−1
i=0 ρ

i(αδe−λXiQq − αδe−λγXiQq) is bounded both sides of the equation

hδ,γ(x) =
m∑
i=1

ηγ,δ,iΦi(x)− Ex
(
τ−1∑
i=0

ρi(αδe−λXiQq − αδe−λγXiQq)
)

are holomorphic in {γ ∈ C+ : P̂∩Sp(−γλnQ) = ∅ for all n ∈ N} and the identity theorem
for holomorphic functions yields that these extensions agree on their domains. Keeping
(6.7) in mind we especially obtain for γ = 1

hδ(x) =
m∑
i=1

ηδ,iΦi(x).

Furthermore both sides of the equations are again holomorphic functions in δ on
C+ \ Sp(−Q). Another application of the identity theorem proves the assertion.

The equation in the theorem above appears useful and flexible enough for the explicit
solution as shown in the next subsections.
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6.4.1 The case of exponential positive innovations

As described above the case of Exp(µ)-distributed positive innovations is of special inter-
est. In this case we obtain the solution directly from the results above. Hence let m = 1,
α = 1, Q = −µ and q = µ. It is not relevant which δ we take; because the expressions
simplify a bit we choose δ = 0. Then we obtain

η0,1 = 1 + eψ2(µ)−µb+φ(λµ) ∑
n∈N

eλ
nµb−φ(λnµ)+ψ1(λnµ)ρn

(6.6)= 1 + eψ2(µ)−µb+φ(λµ) ∑
n∈N

eλ
nµb−φ(λn+1µ)−ψ2(λnµ)ρn

= eψ2(µ)−µb+φ(λµ) ∑
n∈N0

eλ
nµb−φ(λn+1µ)−ψ2(λnµ)ρn

and
h0(x) = eψ2(µ)−µb+φ(λµ) ∑

n∈N
eλ

nµx−φ(λnµ)ρn

for x < b. Theorem 6.14 yields

Theorem 6.15.

Ex(ρτ ) = h0(x)
η0,1

=
∑
n∈N e

λnµx−φ(λnµ)ρn∑
n∈N0 e

λnµb−φ(λn+1µ)−ψ2(λnµ)ρn
for all x < b.

In [CIN10] the special case of positive exponential distributed innovations was treated by
finding and solving ordinary differential equations for Ex(ρτ ). For this case – i.e. T1 = 0
– we obtain

Ex(ρτ ) =
∑
n∈N e

λnµx−φ(λnµ)ρn∑
n∈N0 e

λnµb−φ(λn+1µ)ρn
.

To get more explicit results we need a simple expression for φ(λnµ). Using identity (6.5)
we find such an expression as

eφ(λnµ) =
∞∏
k=0

eψ1(λn+kµ) =
∞∏
k=0

µ

µ− λn+kµ
=
∞∏
k=0

1
1− λn+k

=
∏n−1
k=1(1− λk)∏∞
k=1(1− λk) = (λ, λ)n−1

φe(λ) ,

where (a, q)n = ∏n−1
k=1(1 − aqk−1) denotes the q-Pochhammer-symbol and φe(q) = (q, q)∞

denotes the Euler function. This leads to

Ex(ρτ ) =
∑
n∈N

ρn

(λ,λ)n−1
eλ

nµx∑
n∈N0

ρn

(λ,λ)n e
λnµb
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and the numerator is given by

∑
n∈N

ρn

(λ, λ)n−1
eλ

nµx =
∑
k∈N0

(µx)k
k!

∑
n∈N

(ρλk)n
(λ, λ)n−1

=ρ
∑
k∈N0

(µxλ)k
k!

∑
n∈N

(ρλk)n−1

(λ, λ)n−1

=ρ
∑
k∈N0

(µxλ)k
k!

1
(ρλk, λ)∞

= ρ

(ρ, λ)∞
∑
k∈N0

(ρ, λ)k(µλx)k
k! .

Note that we used the q-binomial-theorem in the third step (see [GR04, (1.3.15)] for a
proof). An analogous calculation for the denominator yields

∑
n∈N0

ρn

(λ, λ)n
eλ

nµb = 1
(ρ, λ)∞

∑
k∈N0

(ρ, λ)k(µb)k
k!

and we obtain

Theorem 6.16. If S1 is Exp(µ)-distributed and T1 = 0 it holds that

Ex(ρτb) = ρ ·
∑
k∈N0(ρ, λ)k (µxλ)k

k!∑
k∈N0(ρ, λ)k (µb)k

k!

for all x < b.

For the special case µ = 1 this formula was obtained by an approach via differential
equations based on the generator in [Nov09, Theorem 3].
Noting that

Eb(ρτb+) = ρ ·
∑
k∈N0(ρ, λ)k (µbλ)k

k!∑
k∈N0(ρ, λ)k (µb)k

k!

by direct calculation we find

d

db
Ex(ρτb) = Ex(ρτb)µ(Eb(ρτb+)− 1).

This reproduces Theorem 3.3 in [CIN10]. Note that in that article the stopping time
τ̃b = inf{n ∈ N0 : Xt > b} was considered. But this leads to analogous results since

τb+ = τ̃b under Pb

and
τb = τ̃b Px a.s. for all x 6= b.
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6.4.2 The general case

Theorem 6.14 gives a powerful tool for the explicit calculation of Φ in many cases of
interest as follows:
By Lemma 6.13 we see that ηδ,i is a rational function of δ with poles in Sp(−Q) for all
i = 1, ..,m. We assume for simplicity that all eigenvalues are pairwise different (for the
general case see the remark at the end of the section). Then partial fraction decomposition
yields the representation

ηδ,i =
m∑
j=1

ai,j
µj − δ

for some ai,1, ..., ai,m

and since hδ(x) is rational in δ with the same poles we may write

hδ(x) =
m∑
j=1

cj(x)
µj − δ

for some c1(x), ..., cm(x).

Theorem 6.14 reads
m∑
j=1

∑m
i=1 aijΦi(x)
µj − δ

=
m∑
j=1

cj(x)
µj − δ

and the uniqueness of the partial fraction decomposition yields
m∑
i=1

aijΦi(x) = cj(x),

i.e.
AΦ(x) = c(x),

where A = (aij)mi,j=1, c(x) = (cj(x))mj=1. This leads to

Theorem 6.17. If A is invertible, then Φ(x) is given by

Φ(x) = A−1c(x) for all x < b.

Remark 6.18. Note that the assumption of distinct eigenvalues was made for simplicity
only. When it is not fulfilled we can use the general partial fraction decomposition formula
and obtain the analogous result.

6.5 On the explicit solution of the problem

Now we are prepared to solve the optimal optimal stopping problem

v(x) = sup
τ
Ex(ρτg(Xτ )), x ∈ R.
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Section 6.2 gives conditions for the optimality of threshold-times. In this cases we can
simplify the problem to

v(x) = sup
b
Ex(ρτbg(Xτb)), x ∈ R.

Now take an arbitrary starting point x. Then we have to maximize the real function

Ψx : (x,∞)→ R, b 7→ Ex(ρτbg(Xτb)) =
m∑
i=1

Φb
i(x)E(g(b+Ri)),

where Ri is Ph(ei, Q)-distributed, b ≥ 0. The results of the previous section give rise to
an explicit calculation of Φb

i(x) and of Ψx.
Hence we are faced with the well-studied maximization problem for real functions, that
can – e.g. – be solved using the standard tools from differential calculus.
If we have found a maximum point b∗ of Ψx and Ψx(b∗) > g(x), then

τ ∗ = inf{n ∈ N0 : Xn ≥ b∗}

is an optimal stopping time when (Xn)n∈N0 is started in x.
A more elegant approach for finding the optimal threshold b∗ is the principle of continuous
fit:

6.6 The principle of continuous fit

The principles of smooth and continuous fit play an important role in the study of many
optimal stopping problems. The principle of smooth fit was already introduced in [Mik56]
and has been applied in a variety of problems, ranging from sequential analysis to mathe-
matical finance – cf. Subsection 2.4.1 for the case of diffusions. The principle of continuous
pasting is more recent and was introduced in [PS00] as a variational principle to solve
sequential testing and disorder problems for the Poisson process. For a discussion in the
case of Lévy processes and further references we refer to [CI09]. Another overview is given
in [PS06, Chapter IV.9] and one may summarize, see the above reference, p. 49:

“If X enters the interior of the stopping region S immediately after starting on ∂S, then
the optimal stopping point x∗ is selected so that the value function v is smooth in x∗. If
X does not enter the interior of the stopping region immediately, then x∗ is selected so
that v is continuous in x∗.”

Most applications of this principle involve processes in continuous time. In discrete time
an immediate entrance is of course not possible, so that one can not expect the smooth-
fit principle to hold. In this section we prove that the continuous-fit principle holds in
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our setting and illustrate how it can be used for an easy determination of the optimal
threshold.
We keep the notations and assumptions of the previous sections and – as before – we
assume that the optimal stopping set is an interval of the form [b∗,∞) and consider the
optimal stopping time τb∗ = τ = inf{n ∈ N0 : Xn ≥ b∗}.
Furthermore we assume that

lim
ε↘0

Φb∗

i (b∗ − ε) = lim
ε↘0

Φb∗+ε
i (b∗) for all i = 1, ...,m. (6.10)

Note that this condition is obviously fulfilled in the cases discussed above. If g is contin-
uous under an appropriate integrability condition it furthermore holds that

E(g(Ri + ε+ b∗))→ E(g(Ri + b∗)) as ε→ 0, i = 1, ...,m. (6.11)

Proposition 6.19. Assume (6.10) and (6.11). Then it holds that

lim
b↗b∗

v(b) = g(b∗).

Proof. Let ε > 0. First note that v(b) > g(b) for all b < b∗ so that

lim inf
b↗b∗

v(b) ≥ lim inf
b↗b∗

g(b) = g(b∗).

Furthermore using Corollary 6.10

v(b∗ − ε)− g(b∗) = Eb∗−ε(ρτg(Xτ ))− v(b∗)

≤ Eb∗−ε(ρτg(Xτ ))− Eb∗(ρτb∗+εg(Xτb∗+ε))

=
m∑
i=1

(
Φb∗

i (b∗ − ε)E(g(Ri + b∗))− Φb∗+ε
i (b∗)E(g(Ri + ε+ b∗))

)
→ 0

as ε↘ 0. This proves lim supb↗b∗ v(b) ≥ g(b∗).

Figure 6.2 illustrates how the continuous fit principle can be used: We consider the
candidate solutions

v(b, x) =

Ψx(b) , x < b

g(x) , x ≥ b

and solve the equation Ψb−(b) = g(b), where Ψ· is defined as in the previous section. If
the equation has a unique solution we can conclude that this solution must be the optimal
threshold as illustrated in the following Section.
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Figure 6.2: Some candidate solutions for different thresholds in the case g(x) = x

6.7 Example

We consider the gain function g(x) = x and Exp(µ)-distributed innovations; in this setting
we always assume (Xn)n∈N0 to have values in [0,∞). Subsection 6.2.1 guarantees that the
optimal stopping time is of threshold-type. The optimal threshold can be found by the
continuous fit principle described in the previous section:
The problem is solved if we find a unique b∗ ∈ [0,∞) that solves the equation

b = Ψb−(b) = Φb−(b)(b+ 1
µ

) =
ρ
∑
k∈N0(ρ, λ)k (µbλ)k

k!∑
k∈N0(ρ, λ)k (µb)k

k!

(b+ 1
µ

),

where we used Theorem 6.16 in the last step. This equation is equivalent to
∞∑
k=0

(ρ, λ)k
µk

k! b
k+1 =

∞∑
k=0

ρ(ρ, λ)k
µkλk

k! bk+1 +
∞∑
k=0

ρ

µ
(ρ, λ)k

µkλk

k! bk

i.e. ρ

µ
−
∞∑
k=0

(ρ, λ)k
µk

k! (1− ρλk − ρ

µ
(1− ρλk)µλ

k+1

k + 1 )bk+1 = 0

i.e. f(b) = 0,

where
f(b) = ρ

µ
−
∞∑
k=0

(ρ, λ)k+1
µk

k! (1− ρλk+1

k + 1 )bk+1.

Note that f(0) = ρ
µ
> 0 and

f ′(b) = −
∞∑
k=0

(ρ, λ)k+1
µk

k! (1− ρλk+1

k + 1 )(k + 1)bk < 0 for all b ∈ [0,∞).
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Since f(b) ≤ ρ
µ
− (1− ρ)(1− ρλ)b we furthermore obtain f(b)→ −∞ for b→∞. Hence

there exists a unique solution b∗ of the transcendental equation f(b) = 0.
The optimal stopping time is

τ ∗ = inf{n ∈ N : Xn ≥ b∗}

and the value function is given by

v(x) =


(b+ 1

µ
)ρ ·

∑
k∈N0

(ρ,λ)k (µxλ)k
k!∑

k∈N0
(ρ,λ)k (µb∗)k

k!

, x < b∗

x , x ≥ b∗.

In Figure 6.2 v is plotted for the parameters µ = 1, ρ = λ = 1/2.



Notations

N {1, 2, 3, ...}
N0 {0, 1, 2, 3, ...}
R set of real numbers
C set of complex numbers
C+ set of complex numbers with nonnegative real part
<(z), =(z) real, imaginary part of a complex number z
x ∧ y minimum of x and y
x ∨ y maximum of x and y
x+ maximum of x and 0
log main branch of complex logarithm
f |G restriction of a function f to G
f(t−), f(t+) left-hand, right-hand limit of a real function f in t
1A indicator function of a set A
(Ω,A, (Ft)t≥0, P ) the underlying filtered probability space
PX distribution of a random variable X
Px P (·|X0 = x)
ψ+, ψ− the minimal r-harmonic functions
σ· time shift of a Markov process
Exp(λ) exponential distribution with mean 1

λ

PH(Q,α) phasetype distribution with parameters Q,α
ess supi∈I Xi essential supremum of (Xi)i∈I
int(A) the interior of a set A
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