
On Functional Logic Programming
and its Application to Testing

Dissertation

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften
(Dr. rer. nat.)

der Technischen Fakultät
der Christian-Albrechts-Universität zu Kiel

Sebastian Fischer

Kiel, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MACAU: Open Access Repository of Kiel University

https://core.ac.uk/display/250312008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Gutachter Prof. Dr. Michael Hanus

2. Gutachter Prof. Dr. Herbert Kuchen

3. Gutachter Priv.-Doz. Dr. Frank Huch

Datum der mündlichen Prüfung 27. Mai 2010

ii

In Deiner Sprache saßen andere Augen.
Klavki, †2009

iii

iv

Contents

1 Introduction 1
1.1 Syntax of programs . 1
1.2 Organisational remarks . 4

2 Declarative Programming 5
2.1 Functional programming . 6

2.1.1 Type polymorphism and higher-order functions 7
2.1.2 Lazy evaluation . 9
2.1.3 Class-based overloading 11
2.1.4 Summary . 19

2.2 Functional logic programming 19
2.2.1 Logic variables . 20
2.2.2 Nondeterminism . 21
2.2.3 Lazy nondeterminism 23
2.2.4 Call-time choice . 25
2.2.5 Search . 29
2.2.6 Constraints . 31
2.2.7 Summary . 34

2.3 Chapter notes . 34

3 Generating Tests 35
3.1 Black-box testing . 35

3.1.1 Property-based testing 36
3.1.2 Defining test-case generators 38
3.1.3 Enumerating test cases 42
3.1.4 Experiments . 51
3.1.5 Implementation . 57
3.1.6 Summary . 59

3.2 Glass-box testing . 60
3.2.1 Demand-driven testing 61
3.2.2 Fair predicates . 67
3.2.3 Practical experiments 70
3.2.4 Summary . 75

3.3 Chapter notes . 76

v

Contents

4 Code Coverage 79
4.1 Control flow . 81

4.1.1 Rule coverage . 82
4.1.2 Call coverage . 82

4.2 Data flow . 84
4.2.1 Constructors flow to patterns 85
4.2.2 Functions flow to applications 86
4.2.3 Comparison with Control Flow 87

4.3 Monitoring code coverage 88
4.3.1 Lazy coverage collection 88
4.3.2 Combinators for coverage collection 91
4.3.3 Formalisation of program transformation 96
4.3.4 Implementation of coverage combinators 100

4.4 Experimental evaluation . 103
4.5 Summary . 108
4.6 Chapter notes . 109

5 Explicit Nondeterminism 111
5.1 Nondeterminism monads . 111

5.1.1 Laws . 112
5.1.2 Backtracking . 113
5.1.3 Fair search . 120
5.1.4 Experiments . 123
5.1.5 Summary . 126

5.2 Combining laziness with nondeterminism 127
5.2.1 Explicit sharing . 128
5.2.2 Intuitions of explicit sharing 132
5.2.3 Laws of explicit sharing 135
5.2.4 Implementing explicit sharing 140
5.2.5 Generalised, efficient implementation 146
5.2.6 Summary . 153

5.3 Chapter notes . 154

6 Conclusions 157
6.1 Declarative programming promotes concepts that increase

the potential for abstraction. 158
6.2 The mechanism to execute functional logic programs is tailor

made for generating tests. 159
6.3 Declarative programs call for new notions of code coverage. . 162
6.4 Lazy nondeterministic programs can be turned into equiva-

lent purely functional programs. 164

vi

Contents

A Source Code 167
A.1 ASCII versions of mathematical symbols 167
A.2 Definitions of used library functions 167
A.3 Abstract heap data type . 169
A.4 Implementation of BlackCheck 171

A.4.1 Input generators . 171
A.4.2 Testable types . 173
A.4.3 Property combinators 173
A.4.4 Test annotations . 174
A.4.5 Testing with different strategies 174
A.4.6 Auxiliary definitions 176

A.5 Implementation of GlassCheck 179
A.5.1 Parallel answers . 182
A.5.2 Search strategies . 184
A.5.3 Tree search . 185

A.6 Implementation of explicit sharing 186
A.7 Benchmarks for explicit sharing 188

A.7.1 Permutation sort . 188
A.7.2 Naive reverse . 189
A.7.3 Functional logic last 190
A.7.4 Nondeterministic lists 191

B Proofs 192
B.1 Functor laws for (a→) instance 192
B.2 Monad laws for Tree instance 193
B.3 Laws for CPS type . 196

B.3.1 Monad laws . 196
B.3.2 MonadPlus laws . 197

vii

List of Figures

2.1 Safe placement of 8 queens on an 8× 8 chessboard 28
2.2 Safe placement of 15 queens on an 15× 15 chessboard . . . 33

3.1 Search space for an arbitrary value of type [Bool] 40
3.2 Level diagonalisation of [Bool] values 50
3.3 Combined randomised level diagonalisation of [Bool] values . 51

4.1 Computation of data flow for reverse [x, y] 90
4.2 Syntax of core Curry programs 97

5.1 The laws of a monad with nondeterminism and sharing . . . 135
5.2 The laws of observing a monad with nondeterminism and

sharing in another monad with nondeterminism 137

viii

List of Tables

3.1 Comparison of different strategies for black-box testing 56
3.2 Comparison of black-box and glass-box testing 71

4.1 Data flow in applications of reverse. 86
4.2 Experimental results of coverage-based testing 106
4.3 Sizes of reduced sets of tests for different coverage criteria . . 107

5.1 Performance of different monadic search strategies 124

ix

List of Tables

x

Acknowledgements
I thank my supervisor Michael Hanus for giving me the opportunity to re-
search in his group. I have enjoyed the free and inspiring environment as
well as the thoughtful advice you provide which allowed me to find and
work on topics that catch my interest. Many interesting discussions with
you, Bernd Braßel, Frank Huch, and Fabian Reck have influenced my work
beneficially.

Moreover, I thank all colleagues with whom I could collaborate on the
work presented in this thesis. Without Herbert Kuchen I would not have
started my work on testing. I have enjoyed visiting you and learned a lot from
your guidance during our collaboration. I thank Jan Christiansen for pushing
me to implement black-box testing. Working with you on EasyCheck was
a lot of fun and the beginning of interesting journeys both professionally
and personally. I am glad for the opportunity to work with Oleg Kiselyov
and Ken Shan. Oleg, programs you write are an invaluable source of ideas
and opportunity to learn. Ken, you have an inspiring desire to aspire—and
enviable ability to approach—clarity.

I am grateful to everyone who has provided feedback on preliminary drafts
of this thesis. Sergio Antoy’s comments on Chapter 2 have helped me gen-
erally to improve the presentation and specifically to give a more elegant
implementation of the n-queens solver. Comments by Jan Christiansen and
Frank Kupke have helped to improve the presentation of Chapters 3 and 4, re-
spectively. A discussion with Jan Spitzmann lead to insights in the properties
of random search discussed in Section 3.1.3.

xi

Acknowledgements

xii

1 Introduction
Like good wine, concepts developed in modern programming languages
need to ripen before they get applied outside of research communities. Struc-
tured programming was not immediately in widespread use after Edsger Di-
jkstra (1968) considered GOTO statements harmful. The breakthrough of ob-
ject oriented programming in C++ or Java came considerably later than its
birth in the language Simula 67. Polymorphic typing—developed long ago
in the functional programming community—has entered the mainstream in
the disguise of Java generics only recently. Nondeterministic programming
and search rarely find their way out of research communities.

In this thesis, we apply functional logic programming (FLP) in the field of
software testing. We argue that FLP is tailor made for generating thorough
tests for complex algorithms automatically and provide implementations of
test tools to support this claim.

1.1 Syntax of programs

All programs in this thesis are, if not stated otherwise, written in the program-
ming languages Haskell (Peyton Jones et al. 2003) or Curry (Hanus 2006).
Haskell is a statically typed, lazy, purely functional programming language
and Curry is a variant of Haskell that adds logic programming features. We
discuss declarative programming in detail in Chapter 2 and only introduce
the syntax of Haskell on a very basic level here. The syntax of Curry is
identical with respect to this basic introduction.

Basically, a Haskell program declares data types and functions that operate
on these types. For example, the type of Boolean values is defined as follows
in Haskell.

data Bool = False | True

This declaration uses the keyword data to define the data type Bool. The
right-hand side of this equation lists different alternatives to construct values
of type Bool separated by a vertical bar. Here, two constructors False and
True are defined as the only values of type Bool.

1

1 Introduction

Constructors can also have arguments and data types can be recursive.
For example, we can define the type of lists of Booleans by distinguishing
empty and non-empty lists.

data BList = EmptyBL | ConsBL Bool BList

With this declaration the empty list of Booleans can be constructed using
EmptyBL and a non-empty list of Booleans can be constructed as ConsBL b l
where b is a value of type Bool (either False or True) which denotes the first
element of the constructed list and l is a value of type BList which denotes
the list of remaining elements. For example, a list that contains both Boolean
values can be constructed as ConsBL False (ConsBL True EmptyBL).

Data-type declarations can also be parametrised to define many different
types at once. We can generalise the above data type for Boolean lists by
using a type parameter.

data List a = Empty | Cons a (List a)

Here, the type variable a denotes an arbitrary type and List a denotes the
type of lists with elements of type a. The type BList is equivalent to List Bool
but we can also use the data types defined so far to define different list types.
For example, List (List Bool) is the type of lists of lists of Booleans.

Haskell functions can be defined using rules that distinguish different
cases by pattern matching. The function null that checks whether a given
list is empty can be defined as follows.

null :: List a→ Bool
null Empty = True
null (Cons) = False

The first line is a type declaration that specifies that null takes a list as ar-
gument and yields a Boolean as result. If we would have left out the type
signature, Haskell’s type inference mechanism would have determined it
automatically from the implementation of null. The null predicate is imple-
mented by two rules that distinguish the given list by matching them against
constructor patterns. If the given list can be matched against the constructor
Empty then the result of null is True, if it can be matched against the pattern
Cons then the result of null is False. Underscores in a constructor pattern
denote anonymous variables that can be matched against arbitrary values.
As the null function matches all possible ways how lists can be constructed
it is a total function that will never fail with a pattern match error.

2

1.1 Syntax of programs

We can also use named variables in patterns in order to access the values
at the corresponding position of the input. The functions head and tail se-
lect the first element and the list of remaining elements of a non-empty list,
respectively.

head :: List a→ a
head (Cons x) = x
tail :: List a→ List a
tail (Cons xs) = xs

Both functions are partial. They fail with a run-time error when applied to
the empty list.

Haskell provides an alternative syntax for data-type declarations which
allows to define selector functions automatically. The following declaration
of the list type is equivalent to the declaration given before but also defines
the functions head and tail.

data List a = Empty | Cons {head :: a, tail :: List a}

We can also use this so called labeled-field- or record syntax1 to construct
and update lists. The list that contains only the value False can be con-
structed as follows.

falseList :: List Bool
falseList = Cons {head = False, tail = Empty}

Moreover, we can change the tail of falseList in order to obtain a list that
contains both Boolean values using the following notation.

boolList :: List Bool
boolList = falseList {tail = Cons True Empty}

In a declarative programming language, the values of variables never change.
Hence, the above function does not change falseList but yields a new up-
dated list. We can access both falseList and boolList in an interactive Haskell
environment which demonstrates that the value of falseList does not change.

> falseList
Cons { head = False, tail = Empty }
> boolList
Cons { head = False, tail = Cons { head = True, tail = Empty } }
> tail boolList
Cons { head = True, tail = Empty }

1Record syntax is not officially part of the Curry language but supported by some compilers.

3

1 Introduction

The definition of the tail of boolList shows that even if the data-type dec-
laration uses record syntax, values of the corresponding type can still be
constructed as if it was defined without labeled fields.

Haskell provides a built-in syntax for lists that is more concise than the
syntax presented so far. The empty list is denoted by [] and a non-empty
list is constructed using the constructor (:) which can be written infix as in
x : xs.2 With this syntax, we can write False : True : [] instead of boolList or
even shorter [False, True].

We can also use this notation in patterns as exemplified by the length
function which is defined as follows.

length :: [a]→ Int
length [] = 0
length (: xs) = 1 + length xs

The type declaration shows that also the type of lists is written more con-
cisely in Haskell. Finally, the second rule of length contains a recursive call
which shows that like data types also functions can be recursive.

Haskell provides built-in types, for example Int for numbers or Char for
characters, along with corresponding operations. We do not discuss such
types further because they behave as one would expect intuitively.

1.2 Organisational remarks

This thesis is structured as follows. We first discuss advanced concepts of
functional programming as well as logic extensions (Chapter 2), then use
them to implement automated testing (Chapters 3 and 4), show how to ex-
press the employed logic extensions purely functionally (Chapter 5), and
finally summarise the presented work (Chapter 6). The appendix contains
accompanying source code and proofs.

Most work presented in this thesis has been published previously. Each
chapter is concluded by chapter notes in which we mention previous pub-
lications and discuss relevant related work. Moreover, we usually provide
intermediate summaries after each section. Although the focus of this thesis
is on testing, Chapters 2 and 5 have a more general scope and can be under-
stood without considering the developments of the chapters in between.

As demonstrated in Section 1.1 we use a mathematical notation for type-
setting source code and typewriter font for terminal sessions. Translations be-
tween the mathematical notation and corresponding ASCII syntax are given
in an appendix.

2The empty list [] is usually pronounced nil for historical reasons; (:) is pronounced cons.

4

2 Declarative Programming
Programming languages are divided into different paradigms. Programs writ-
ten in traditional languages like Pascal or C are imperative programs that
contain instructions to mutate state. Variables in such languages point to
memory locations and programmers can modify the contents of variables us-
ing assignments. An imperative program contains commands that describe
how to solve a particular class of problems by describing in detail the steps
that are necessary to find a solution.

By contrast, declarative programs describe a particular class of problems
itself. The task to find a solution is left to the language implementation.
Declarative programmers are equipped with tools that allow them to ab-
stract from details of the implementation and concentrate on details of the
problem.

Hiding implementation details can be considered a handicap for program-
mers because access to low-level details provides a high degree of flexibil-
ity. However, a lot of flexibility implies a lot of potential for errors, and,
more importantly, less potential for abstraction. For example, we can write
more flexible programs using assembly language than using C. Yet, writing
large software products solely in assembly language is usually considered
impractical. Programming languages like Pascal or C limit the flexibility
of programmers, for example, by prescribing specific control structures for
loops and conditional branches. This limitation increases the potential of
abstraction. Structured programs are easier to read and write and, hence,
large programs are easier to maintain if they are written in a structured way.
Declarative programming is another step in this direction.1

The remainder of this chapter describes those features of declarative pro-
gramming that are preliminary for the developments in this thesis, tools it
provides for programmers to structure their code, and concepts that allow
writing programs at a higher level of abstraction. We start in Section 2.1 with
important concepts found in functional programming languages, namely,
polymorphic typing of higher-order functions, demand-driven evaluation,
and type-based overloading. Section 2.2 describes essential features of logic
programming, namely, nondeterminism, unknown values and built-in search

1Other steps towards a higher level of abstraction have been modularization and object orien-
tation which we do not discuss here.

5

2 Declarative Programming

and the interaction of these features with those described before. Finally, we
show how so called constraint programming significantly improves the prob-
lem solving capabilities for specific problem domains.

2.1 Functional programming

While running an imperative program means to execute commands, running
a functional program means to evaluate expressions.

Functions in a functional program are functions in a mathematical sense:
the result of a function call depends only on the values of the arguments.
Functions in imperative programming languages may have access to vari-
ables other than their arguments and the result of such a "function" may also
depend on those variables. Moreover, the values of such variables may be
changed after the function call, thus, the meaning of a function call is not
solely determined by the result it returns. Because of such side effects, the
meaning of an imperative program may be different depending on the order
in which function calls are executed.

An important aspect of functional programs is that they do not have side
effects and, hence, the result of evaluating an expression is determined only
by the parts of the expression – not by evaluation order. As a consequence,
functional programs can be evaluated with different evaluation strategies,
like demand-driven evaluation. We discuss how demand-driven, so called
lazy evaluation can increase the potential for abstraction in Section 2.1.2.

Beforehand, we discuss another concept found in functional languages
that can increase the potential for abstraction: type polymorphism. It pro-
vides a mechanism for code reuse that is especially powerful in combination
with higher-order functions: in a functional program functions can be argu-
ments and results of other functions and can be manipulated just like data.
We discuss these concepts in detail in Section 2.1.1.

Polymorphic typing can be combined with class-based overloading to de-
fine similar operations on different types. Overloading of type constructors
rather than types is another powerful means for abstraction as we discuss in
Section 2.1.3.

We can write purely functional programs in an imperative programming
language by simply avoiding the use of side effects. The aspects sketched
above, however, cannot be transferred as easily to imperative programming
languages. In the remainder of this section we discuss each of these aspects
in detail, focusing on the programmers potential to increase the level of
abstraction.

6

2.1 Functional programming

2.1.1 Type polymorphism and higher-order functions

Imagine a function length that computes the length of a string. In Haskell
strings are represented as lists of characters and we could define similar
functions for computing the length of a list of numbers or the length of a list
of Boolean values. The definition of such length functions is independent of
the type of list elements. Instead of repeating the same definition for different
types we can define the function length once with a type that leaves the type
of list elements unspecified:

length :: [a]→ Int
length [] = 0
length (: l) = 1 + length l

The type a used as argument to the list type constructor [] represents an
arbitrary type. There are infinitely many types for lists that we can pass to
length, for example, [Int], String, and [[Bool]] are some of them.

Type polymorphism (Damas and Milner 1982) allows us to use type vari-
ables that represent arbitrary types, which helps to make defined functions
more generally applicable. This is especially useful in combination with an-
other feature of functional programming languages: higher-order functions.
Functions in a functional program can not only map data to data but may also
take functions as arguments or return them as result. In type signatures of
higher-order functions, parentheses are used to group functional arguments.
Probably the simplest example of a higher-order function is the infix operator
$ for function application:

($) :: (a→ b)→ a→ b
f $ x = f x

At first sight, this operator seems dispensable, because we can always write
f x instead of f $ x. However, because of its low precendence, it is often use-
ful to avoid parenthesis because we can write f $ g $ h x instead of f (g (h x)).
Another useful operator is function composition2:

(◦) :: (b→ c)→ (a→ b)→ (a→ c)
f ◦ g = λx→ f (g x)

This definition uses a lambda abstraction that denotes an anonymous func-
tion. The operator for function composition is a function that takes two func-
tions as arguments and yields a function as result. Lambda abstractions have

2The ASCII representaitons of all used mathematical symbols are given in Appendix A.1.

7

2 Declarative Programming

the form λx → e where x is a variable and e is an arbitrary expression. The
variable x is the argument and the expression e is the body of the anonymous
function. The body may itself be a function and the notation λx y z → e
is short hand for λx → λy → λz → e. While the first of these lambda ab-
stractions looks like a function with three arguments, the second looks like a
function that yields a function that yields a function. In Haskell, there is no
difference between the two. A function that takes many arguments is a func-
tion that takes one argument and yields a function that takes the remaining
arguments. Representing functions like this is called currying.3

There are a number of predefined higher-order functions for list process-
ing. In order to get a feeling for the abstraction facilities they provide, we
discuss a few of them here.

The map function applies a given function to every element of a given list:

map :: (a→ b)→ [a]→ [b]
map f [] = []
map f (x : xs) = f x : map f xs

If the given list is empty, then the result is also the empty list. If it contains at
least the element x in front of an arbitrary list xs of remaining elements, then
the result of calling map is a non-empty list where the first element is com-
puted using the given function f and the remaining elements are processed
recursively. The type signature of map specifies that

• the argument type of the given function f and the element type of the
given list and

• the result type of f and the element type of the result list

must be equal. For example, map length ["Haskell", "Curry"] is a valid
application of map because the a in the type signature of map can be instanti-
ated with String which is defined as [Char] and matches the argument type
[a] of length. The type b is instantiated with Int and, therefore, the returned
list has the type [Int]. The application map length [7, 5] would be rejected
by the type checker because the argument type [a] of length does not match
the type Int of the elements of the given list.

The type signature is a partial documentation for the function map because
we get an idea of what map does whithout looking at its implementation. If
we do not provide the type signature, then type inference deduces it auto-
matically from the implementation.

3The term currying is named after the American mathematician and logician Haskell B. Curry.

8

2.1 Functional programming

Another predefined function on lists is dropWhile that takes a predicate,
which is a function with result type Bool, and a list and drops elements from
the list as long as they satisfy the given predicate.

dropWhile :: (a→ Bool)→ [a]→ [a]
dropWhile p [] = []
dropWhile p (x : xs) = if p x then dropWhile p xs else x : xs

The result of dropWhile is the longest suffix of the given list that is either
empty or starts with an element that does not satisfy the given predicate.
We can instantiate the type variable a in the signature of dropWhile with
many different types. For example, the function dropWhile isSpace uses a
predefined function isSpace :: Char→ Bool to remove preceding spaces from
a string, dropWhile (<10) removes a prefix of numbers that are less than 10
from a given list, and dropWhile ((<10) ◦ length) drops short lists from a
given list of lists, for example, a list of strings. Both functions are defined as
so called partial application of the function dropWhile to a single argument
– a programming style made possible by currying.

Polymorphic higher-order functions allow to implement recurring idioms
independently of concrete types and to reuse such an implementation on
many different concrete types.

2.1.2 Lazy evaluation

With lazy evaluation (Wadsworth 1971) arguments of functions are only
computed as much as necessary to compute the result of a function call.
Parts of the arguments that are not needed to compute a result are not de-
manded and may contain divergent and/or expensive computations. For
example, we can compute the length of a list without demanding the list
elements. In a programming language with lazy evaluation, like Haskell, we
can compute the result of the following call to the length function:

length [⊥, fibonacci 100]

Neither the diverging computation ⊥ nor the possibly expensive computa-
tion fibonacci 100 are evaluated to compute the result 2.

This example demonstrates that lazy evaluation can be faster than eager
evaluation because unnecessary computations are skipped. Lazy computa-
tions may also use less memory when functions are composed sequentially:

do contents← readFile "in.txt"
writeFile "out.txt" ◦ concat ◦map addSpace $ contents

where addSpace c | c =I ’.’ = ". "
| otherwise = [c]

9

2 Declarative Programming

This program uses Haskell’s do-notation (see Section 2.1.3) to read the con-
tents of a file in.txt, adds an additional space character after each period,
and writes the result to the file out.txt. The function concat :: [[a]] → [a]
concatenates a given list of lists into a single list4. In an eager language,
the functions map addSpace and concat would both evaluate their arguments
completely before returning any result. With lazy evaluation, these functions
produce parts of their output from partially known input. As a consequence,
the above program runs in constant space and can be applied to gigabytes
of input. It does not store the complete file in.txt in memory at any time.

In a lazy language, we can build complex functions from simple parts that
communicate via intermediate data structures without sacrificing memory ef-
ficiency. The simple parts may be reused to form other combinations which
increases the modularity of our code.

Infinite data structures

With lazy evaluation we can not only handle large data efficiently, we can
even handle unbounded, potentially infinite data (Hudak 1989). For exam-
ple, we can compute an approximation of the square root of a number x as
follows:

sqrt :: Float→ Float
sqrt x = head ◦ dropWhile inaccurate ◦ iterate next $ x

where next y = (y + x / y) / 2
inaccurate y = abs (x− y ∗ y) > 0.00001

With lazy evaluation we can split the task of generating an accurate approx-
imation into two sub tasks:

1. generating an unbounded number of increasingly accurate approxima-
tions using Newton’s formula and

2. selecting a sufficiently accurate one.

Approximations that are more accurate than the one we select are not com-
puted by the function sqrt. In this example we use the function iterate to
generate approximations and dropWhile to dismiss inaccurate ones. If we
decide to use a different criterion for selecting an appropriate approxima-
tion, like the difference of subsequent approximations, then we only need
to change the part that selects an approximation. The part of the algorithm
that computes them can be reused without change. Again, lazy evaluation
promotes modularity and code reuse.

4Definitions for library functions that are not defined in the text can be found in Appendix A.2.

10

2.1 Functional programming

In order to see another aspect of lazy evaluation we take a closer look at
the definition of the function iterate:

iterate :: (a→ a)→ a→ [a]
iterate f x = x : iterate f (f x)

Conceptually, the call iterate f x yields the infinite list

[x, f x, f (f x), f (f (f x)), ...

The elements of this list are only computed if they are demanded by the
surrounding computation because lazy evaluation is non-strict. Although it
is duplicated in the right-hand side of iterate, the argument x is evaluated at
most once because lazy evaluation is sharing the values that are bound to
variables once they are computed. If we call iterate sqrt (fibonacci 100), then
the call fibonacci 100 is only evaluated once, although it is duplicated by the
definition of iterate.

Sharing of sub computations ensures that lazy evaluation does not per-
form more steps than a corresponding eager evaluation because computa-
tions bound to duplicated variables are performed only once even if they
are demanded after they are duplicated.

2.1.3 Class-based overloading

Using type polymorphism as described in Section 2.1.1, we can define func-
tions that can be applied to values of many different types. This is often
useful but sometimes insufficient. Polymorphic functions are agnostic about
those values that are represented by type variables in the type signature of
the function. For example, the length function behaves identically for every
instantiation for the element type of the input list. It cannot treat specific
element types different from others.

While this is a valuable information about the length function, we some-
times want to define a function that works for different types but can still
take different instantiations of the polymorphic arguments into account. For
example, it would be useful to have an equality test that works for many
types. However, the type

(=I) :: a→ a→ Bool

would be a too general type for an equality predicate =I . It requires that we
can compare arbitrary types for equality, including functional types which
might be difficult or undecidable.

11

2 Declarative Programming

Class-based overloading (Odersky et al. 1995; Wadler and Blott 1989)
provides a mechanism to give functions like =I a reasonable type. We can
define a type class that represents all types that support an equality predicate
as follows:

class Eq a where
(=I) :: a→ a→ Bool

This definition defines a type class Eq that can be seen as a predicate on types
in the sense that the class constraint Eq a implies that the type a supports
the equality predicate =I . After the above declaration, the function =I has the
following type:

(=I) :: Eq a⇒ a→ a→ Bool

and we can define other functions based on this predicate that inherit the
class constraint:

(6=) :: Eq a⇒ a→ a→ Bool
x 6= y = ¬ (x =I y)
elem :: Eq a⇒ a→ [a]→ Bool
x ∈ [] = False
x ∈ (y : ys) = x =I y ∨ x ∈ ys

Here, the notation x ∈ xs is syntactic sugar for elem x xs, ¬ denotes negation
and ∨ disjunction on Boolean values.

In order to provide implementations of an equality check for them, we
can instantiate the Eq class for specific types. For example, an Eq instance
for Booleans can be defined as follows.

instance Eq Bool where
False =I False = True
True =I True = True

=I = False

Even polymorphic types can be given an Eq instance, if appropriate instances
are available for the polymorphic components. For example, lists can be
compared if their elements can.

instance Eq a⇒ Eq [a] where
[] =I [] = True
(x : xs) =I (y : ys) = x =I y ∧ xs =I ys

=I = False

12

2.1 Functional programming

Note the class constraint Eq a in the instance declaration for Eq [a]. The
first occurrence of =I in the second rule of the definition of =I for lists is
the equality predicate for values of type a while the second occurrence is a
recursive call to the equality predicate for lists.

Although programmers are free to provide whatever instance declarations
they choose, type-class instances are often expected to satisfy certain laws.
For example, every definition of =I should be an equivalence relation—re-
flexive, symmetric and transitive—to aid reasoning about programs that use
=I . More specifically, the following properties are usually associated with an
equality predicate.

x =I x
x =I y⇒ y =I x
x =I y ∧ y =I z⇒ x =I z

Defining an Eq instance where =I is no equivalence relation can result in
highly unintuitive program behaviour. For example, the elem function de-
fined above relies on reflexivity of =I . Using elem with a non-reflexive Eq
instance is very likely to be confusing. The inclined reader may check that
the definition of =I for Booleans given above is an equivalence relation and
that the Eq instance for lists also satisfies the corresponding laws if the in-
stance for the list elements does.

Class-based overloading provides a mechanism to implement functions
that can operate on different types differently. This allows to implement func-
tions like elem that are not fully polymorphic but can still be applied to values
of many different types. This increases the possibility of code reuse because
functions with similar (but not identical) behaviour on different types can
be implemented once and reused for every suitable type instead of being
implemented again for every different type.

Overloading type constructors

An interesting variation on the ideas discussed in this section are so called
type constructor classes (Jones 1993). In Haskell, polymorphic type vari-
ables can not only abstract from types but also from type constructors. In
combination with class-based overloading, this provides a powerful mecha-
nism for abstraction.

Reconsider the function map :: (a → b) → [a] → [b] defined in Sec-
tion 2.1.1 which takes a polymorphic function and applies it to every ele-
ment of a given list. Such functionality is not only useful for lists. A similar
operation can be implemented for other data types too. In order to abstract

13

2 Declarative Programming

from the data type whose elements are modified, we can use a type variable
to represent the corresponding type constructor.

In Haskell, type constructors that support a map operation are called func-
tors. The corresponding type class abstracts over such type constructors and
defines an operation fmap that is a generalised version of the map function
for lists.

class Functor f where
fmap :: (a→ b)→ f a→ f b

Like the Eq class, the type class Functor has a set of associated laws that are
usually expected to hold for definitions of fmap:

fmap id ≡ id
fmap (f ◦ g)≡ fmap f ◦ fmap g

Here, ≡ denotes semantic equivalence and two functions are equivalent if
they agree on all arguments.5. Let us check whether the following Functor
instance for lists satisfies the functor laws.

instance Functor [] where
fmap = map

We can prove the first law (for all finite lists6) by induction over the list
structure. The base case considers the empty list:

map id []
≡ { definition of map }

[]
≡ { definition of id }

id []

The induction step deals with an arbitrary non-empty list:

map id (x : xs)
≡ { definition of map }

id x : map id xs
≡ { definition of id }

x : map id xs

5Technically, ≡ can be defined as the smallest equivalence relation that contains the reduction
relation of lambda calculus.

6During equational reasoning, we gloss over the details of partial or infinite data structures.
Danielsson et al. (2006) show that such fast and loose reasoning is morally correct.

14

2.1 Functional programming

≡ { induction hypothesis }
x : id xs
≡ { definition of id (twice) }

id (x : xs)

We conclude map id =I id, hence, the Functor instance for lists satisfies the
first functor law. The second law can be verified similarly.

As an example for a different data type that also supports a map operation,
consider the following definition of binary leaf trees7.

data Tree a = Empty | Leaf a | Fork (Tree a) (Tree a)

A binary leaf tree is either empty, a leaf storing an arbitrary element, or
an inner node with left and right sub trees. We can apply a polymorphic
function to every element stored in a leaf using fmap:

instance Functor Tree where
fmap Empty = Empty
fmap f (Leaf x) = Leaf (f x)
fmap f (Fork l r) = Fork (fmap f l) (fmap f r)

The proof that this definition of fmap satisfies the functor laws is left as an ex-
ercise. More interesting is the observation that we can now define non-trivial
functions that can be applied to both lists and trees. For example, the func-
tion fmap (length ◦ dropWhile isSpace) can be used to map a value of type
[String] to a value of type [Int] and also to map a value of type Tree String
to a value of type Tree Int.

The type class Functor can not only be instantiated by polymorphic data
types. The partially applied type constructor→ for function types is also an
instance of Functor:

instance Functor ((→) a) where
fmap = (◦)

For f =I (→) a the function fmap has the following type.

fmap :: (b→ c)→ (→) a b→ (→) a c

If we rewrite this type using the more conventional infix notation for →,
we obtain the type (b → c) → (a → b) → (a → c) which is exactly the
type of the function composition operator (◦) defined in Section 2.1.1. It

7Binary leaf trees are binary trees that store values in their leaves.

15

2 Declarative Programming

is tempting to make use of this coincidence and define the above Functor
instance without further ado. However, we should check the functor laws
in order to gain confidence in this definition. The proofs can be found in
Appendix B.1.

Type constructor classes provide powerful means to overload functions.
This results in increased potential for code reuse – sometimes to a surpris-
ing extend. For example, we can implement an instance of the Functor type
class for type constructors like (a→) where we would not expect such possi-
bility at first sight. The following subsection presents another type class that
can be instantiated for many different types leading to a variety of different
usage scenarios with identical implementations.

Monads

Monads (Wadler 1990, 1995) are an important abstraction mechanism in
Haskell – so important that Haskell provides special syntax to write monadic
code. Besides syntax, however, monads are nothing special but instances of
an ordinary type class.

class Monad m where
return :: a→ m a
(>>=) :: m a→ (a→ m b)→ m b

Like functors, monads are unary type constructors. The return function con-
structs a monadic value of type m a from a non-monadic value of type a.
The function >>=, pronounced bind, takes a monadic value of type m a and
a function that maps the wrapped value to another monadic value of type
m b. The result of applying >>= is a combined monadic value of type m b.

The first monad that programmers come across when learning Haskell is
often the IO monad (Peyton-Jones and Wadler 1993) and in fact, a clear
separation of pure computations without side effects and input/output oper-
ations was the main reason to add monads to Haskell. In Haskell, functions
that interact with the outside world return their results in the IO monad, that
is, their result type is wrapped in the type constructor IO. Such functions
are often called IO actions to emphasise their imperative nature and distin-
guish them from pure functions. There are predefined IO actions getChar
and putChar that read one character from standard input and write one to
standard output respectively.

getChar :: IO Char
putChar :: Char→ IO ()

16

2.1 Functional programming

The IO action putChar has no meaningful result but is only used for its side
effect. Therefore, it returns the value () which is the only value of type ().

We can use these simple IO actions to demonstrate how to write more
complex monadic actions using the functions provided by the type class
Monad. For example, we can use >>= to sequence the actions that read and
write one character:

echoChar :: IO ()
echoChar = getChar >>= λc→ putChar c

This combined action will read one character from standard input and di-
rectly write it back to standard output, when it is executed. It can be written
more conveniently using Haskell’s do-notation as follows.

echoChar :: IO ()
echoChar = do c← getChar

putChar c

In general, do x← a; f x is syntactic sugar for a >>= λx→ f x and arbitrarily
many nested calls to >>= can be chained like this in the lines of a do-block.
The imperative flavour of the special syntax for monadic code highlights
the historical importance of input/output for the development of monads in
Haskell.

It turns out that monads can do much more than just sequence input/out-
put operations. For example, we can define a Monad instance for lists and
use do-notation to elegantly construct complex lists from simple ones.

instance Monad [] where
return x = [x]
l >>= f = concat (map f l)

The return function for lists yields a singleton list and the >>= function ap-
plies the given function to every element of the given list and concatenates
all lists in the resulting list of lists. We can employ this instance to compute
a list of pairs from all elements in given lists.

pair :: Monad m⇒ m a→ m b→ m (a, b)
pair xs ys = do x← xs

y← ys
return (x, y)

For example, the call pair [0, 1] [True, False] yields a list of four pairs:
[(0, True), (0, False), (1, True), (1, False)]. We can write the function pair

17

2 Declarative Programming

without using the monad operations8 but the definition with do-notation
is arguably more readable.

The story does not end here. The data type for binary leaf trees also has a
natural Monad instance:

instance Monad Tree where
return = Leaf
t >>= f = mergeTrees (fmap f t)

This instance is similar to the Monad instance for lists. It uses fmap instead
of map and relies on a function mergeTrees that computes a single tree from
a tree of trees.

mergeTrees :: Tree (Tree a)→ Tree a
mergeTrees Empty = Empty
mergeTrees (Leaf t) = t
mergeTrees (Fork l r) = Fork (mergeTrees l) (mergeTrees r)

Intuitively, this function takes a tree that stores other trees in its leaves and
just removes the Leaf constructors of the outer tree structure. So, the >>=
operation for trees replaces every leaf of a tree with the result of applying
the given function to the stored value.

Now we benefit from our choice to provide such a general type signature
for the function pair. We can apply the same function pair to trees instead
of lists to compute a tree of pairs instead of a list of pairs. For example, the
call pair (Fork (Leaf 0) (Leaf 1)) (Fork (Leaf True) (Leaf False)) yields the
following tree with four pairs.

Fork (Fork (Leaf (0, True))
(Leaf (0, False)))

(Fork (Leaf (1, True))
(Leaf (1, False)))

Like functors, monads allow programmers to define very general functions
that they can use on a variety of different data types. Monads are more
powerful than functors because the result of the >>= operation can have a
different structure than the argument. When using fmap the structure of the
result is always the same as the structure of the argument – at least if fmap
satisfies the functor laws.

The Monad type class also has a set of associated laws. The return function
must be a left- and right-identity for the >>= operator which needs to satisfy
an associative law.

8λxs ys→ concat (map (λx→ concat (map (λy→ [(x, y)]) ys)) xs)

18

2.2 Functional logic programming

return x >>= f ≡ f x
m >>= return ≡m
(m >>= f) >>= g≡m >>= (λx→ f x >>= g)

These laws ensure a consistent semantics of the do-notation and allow equa-
tional reasoning about monadic programs. The verification of the monad
laws for the list instance is left as an exercise for the reader. The proof for
the Tree instance is in Appendix B.2.

2.1.4 Summary

Inspired by Hughes (1989), we have discussed different abstraction mecha-
nisms of functional programming languages that help programmers to write
more modular and reusable code. Type polymorphism (Section 2.1.1) al-
lows to write functions that can be applied to a variety of different types
because they ignore parts of their input. This feature is especially useful
in combination with higher-order functions that allow to abstract from com-
mon programming patterns to define custom control structures like the map
function on lists. Lazy evaluation (Section 2.1.2) increases the modularity of
algorithms because demand driven evaluation often avoids storing interme-
diate results which allows to compute with infinite data. With class-based
overloading (Section 2.1.3), programmers can implement one function that
has different behaviour on different data types such that code using these
functions can be applied in many different scenarios. We have seen two ex-
amples for type constructor classes, namely, functors and monads and started
to explore the generality of the code they allow to write. Finally, we have
seen that equational reasoning is a powerful tool to think about functional
programs and their correctness.

2.2 Functional logic programming

Functional programming, discussed in the previous section, is one impor-
tant branch in the field of declarative programming. Logic programming
is another. Despite conceptual differences, research on combining these
paradigms has shown that their conceptual divide is not as big as one might
expect (Hanus 2007). The programming language Curry unifies lazy func-
tional programming as in Haskell with essential features of logic program-
ming. We use Curry to introduce logic programming features for two rea-
sons:

19

2 Declarative Programming

1. its similarity to Haskell allows us to discuss new concepts using famil-
iar syntax, and

2. the remainder of this thesis builds on features of both functional and
logic programming.

Therefore, a multi-paradigm language is a natural and convenient choice.
The main extensions of Curry compared to the pure functional language
Haskell are

• logic variables,

• implicit nondeterminism, and

• built-in search.

In the remainder of this section we discuss logic variables (Section 2.2.1)
and nondeterminism (Section 2.2.2) and show how they interact with fea-
tures of functional programming discussed in Section 2.1. We will give a
special account to lazy evaluation which allows to relate the concepts of
logic variables and nondeterminism in an interesting way (Section 2.2.3)
and which forms an intricate combination with implicit nondeterminism
(Section 2.2.4). Built-in search (Section 2.2.5) allows to enumerate different
results of nondeterministic computations and we discuss how programmers
can influence the search order by implementing search strategies in Curry.

2.2.1 Logic variables

The most important syntactic extension of Curry compared to Haskell are
declarations of logic variables. Instead of binding variables to expressions,
Curry programmers can state that the value of a variable is unknown by
declaring it free. A logic variable will be bound during execution according
to demand: just like patterns in the left-hand side of functions cause uneval-
uated expressions to be evaluated, they cause unbound logic variables to
be bound. Such instantiation is called narrowing (Antoy et al. 2000; Slagle
1974) because the set of values that the variable denotes is narrowed to a
smaller set containing only values that match the pattern.

Narrowing according to patterns is not the only way how logic variables
can be bound in Curry. We can also use constraints to constrain the set
of their possible instantiations. We discuss constraint programming in Sec-
tion 2.2.6 but Curry provides a specific kind of constraints that is worth
mentioning here: term-equality constraints. The built-in function =̈ :: a →
a → Success constrains two data terms, which are allowed to contain logic

20

2.2 Functional logic programming

variables, to be equal.9 The type Success of constraints is similar to the unit
type (). There is only one value success of type Success but we cannot pattern
match on this value. If the arguments of =̈ cannot be instantiated to equal
terms, the corresponding call fails, that is, does not yield a result. We can
use constraints—which are values of type Success—in guards of functions to
specify conditions on logic variables.

We demonstrate both narrowing and equality constraints by means of a
simple example. The function last which computes the last element of a
non-empty list can be defined in Curry as follows.

last :: [a]→ a
last l | xs ++ [x] =̈ l

= x
where x, xs free

Instead of having to write a recursive definition explicitly, we use the prop-
erty that last l equals x iff there is a list xs such that xs ++ [x] equals l. The
possibility to use predicates that involve previously defined operations to
define new ones improves the possibility of code reuse in functional logic
programs. Logic variables are considered existentially quantified and the
evaluation mechanism of Curry includes a search for possible instantiations.
During the evaluation of a call to last, the logic variable xs is narrowed by
the function ++ to a list that is one element shorter than the list l given to
last. The result of ++ is a list of logic variables that matches the length of l
and whose elements are constrained to equal the elements of l. As a conse-
quence, the variable x is bound to the last element of l and then returned by
the function last.

2.2.2 Nondeterminism

The built-in search for instantiations of logic variables can lead to different
possible instantiations and, hence, nondeterministic results of computations
(Rabin and Scott 1959). Consider, for example, the following definition of
insert:

insert :: a→ [a]→ [a]
insert x l | xs ++ ys =̈ l

9As Curry does not support type classes, the type of =̈ is too polymorphic because it does
not ensure on the type level that its arguments can be constrained to be equal. There is
an experimental implementation of the Münster Curry Compiler with type classes which,
however, (at the time of this writing) also does not restrict the type of =̈.

21

2 Declarative Programming

= xs ++ x : ys
where xs, ys free

If the argument l of insert is non-empty then there are different possible bind-
ings for xs and ys such that xs ++ ys =̈ l. Consequently, the result of insert
may contain x at different positions and, thus, there is more than one possi-
ble result when applying insert to a non-empty list. Mathematically, insert
does not denote a function that maps arguments to deterministic results but
a relation that specifies a correspondence of arguments to possibly nondeter-
ministic results. To avoid the contradictory term nondeterministic function
we call insert (and other defined operations that may have more than one
result) nondeterministic operation.

Traditionally, Curry systems use backtracking to enumerate all possible re-
sults of nondeterministic operations. For example, if we execute insert 1 [2, 3]
in a Curry system, we can query one solution after the other interactively.

> insert 1 [2,3]
[1,2,3]
More solutions? [Y(es)/n(o)/a(ll)] yes
[2,1,3]
More solutions? [Y(es)/n(o)/a(ll)] all
[2,3,1]

If we are not interested in all results of a computation, we can just answer
no to the interactive query, which is especially useful for computations with
infinitely many results.

Variable instantiations are not the only source of nondeterminism in Curry
programs. As the run-time system needs to handle nondeterminism anyway,
Curry also provides a direct way to define nondeterministic operations. Un-
like in Haskell, the meaning of defined Curry operations does not depend
on the order of their defining rules. While in Haskell the rules of a function
are tried from top to bottom committing to the first matching rule, in Curry
the rules of an operation are tried nondeterministically. As a consequence,
overlapping rules lead to possibly nondeterministic results.

We can use overlapping rules to give an alternative implementation of the
insert operation.

insert :: a→ [a]→ [a]
insert x l = x : l
insert x (y : ys) = y : insert x ys

This definition either inserts the given element x in front of the given list l
or—if l is non-empty—inserts x in the tail ys of l, leaving the head y in its

22

2.2 Functional logic programming

original position. This version of insert is more lazy than the version that uses
a guard shown previously: while the equality constraint in the guard forces
the evaluation of both arguments of insert, the version with overlapping rules
can yield a result without evaluating any of the arguments. In the following
we use the second definition of insert to benefit from its laziness.

The advantage of implicit nondeterminism (as opposed to explicitly using,
for example, lists to represent multiple results) is that the source code does
not contain additional combinators to handle nondeterminism which eases
the composition of more complex nondeterministic operations from simpler
ones. For example, we can compute permutations of a given list nondeter-
ministically by recursively inserting all its elements into an empty list.

permute :: [a]→ [a]
permute [] = []
permute (x : xs) = insert x (permute xs)

With an explicit representation of nondeterminism, we would need to use a
separate data structure that models nondeterministic results or use monadic
syntax to hide the actual structure used (cf. the definition of the pair function
in Subsection 2.1.3). Implicit nondeterminism helps to focus on algorithmic
details because no book-keeping syntax interferes with a nondeterministic
algorithm.

2.2.3 Lazy nondeterminism

In the previous subsection we have seen that the instantiation of logic vari-
ables can lead to nondeterministic computations. We can stress this observa-
tion and define an operation (?) for nondeterministic choice based on logic
variables:

(?) :: a→ a→ a
x ? y = ifThenElse b x y

where b free
ifThenElse :: Bool→ a→ a→ a
ifThenElse True x = x
ifThenElse False x = x

It is functional logic folklore, shown by Antoy (2001), that every Curry pro-
gram with overlapping rules can be translated into an equivalent Curry pro-
gram without overlapping rules by using (?) for nondeterministic choice.
Therefore, one could drop support for direct nondeterminism via overlap-
ping rules without restricting the class of programs that can be written.

23

2 Declarative Programming

A more recent discovery by Antoy and Hanus (2006) is that one can do
the opposite too: overlapping rules suffice to model narrowing of logic vari-
ables. This observation essentially relies on laziness and the remainder of
this subsection explains the details of combining laziness and nondetermin-
ism to model narrowing.

Suppose our language would support nondeterminism via overlapping
rules but no declarations of logic variables. We could redefine the opera-
tion (?) using overlapping rules instead of a logic variable.

(?) :: a→ a→ a
x ? = x

? x = x

As there is no pattern matching, both rules are trivially overlapping and,
therefore, executed nondeterministically when (?) is called. If the first rule
is chosen, (?) returns the first argument; if the second rule is chosen, it
returns the second argument.

Narrowing a logic variable means to bind it to a pattern when it is de-
manded by the evaluation of a defined operation. We can model this process
of binding a variable by using a nondeterministic operation that can be eval-
uated to every possible binding of the variable. If such an operation—we call
it nondeterministic generator—is matched with a pattern, a matching bind-
ing will be chosen nondeterministically. A logic variable is represented by
an unevaluated generator and evaluating a generator to a constructor corre-
sponds to the process of binding the represented variable to this constructor.

A logic variable of type Bool can be represented by the nondeterministic
generator bool.

bool :: Bool
bool = True ? False

Every definition that uses free variables of type Bool can use bool instead.
For example, the call ¬ b where b free narrows the variable b to True or
False nondeterministically and yields either False or True. Similarly, the call
¬ b where b = bool evaluates b to True or False nondeterministically and
yields either False or True.

This idea generalises to recursive data, where we see the importance of
laziness. For example, we can define an operation blist that represents logic
variables of type [Bool].

blist :: [Bool]
blist = [] ? (bool : blist)

24

2.2 Functional logic programming

The blist generator can evaluate to every possible list of Booleans nondeter-
ministically. Without laziness its evaluation would not terminate, because
there are infinitely many such lists. With lazy evaluation, however, it is only
evaluated as much as demanded – just like a logic variable of the same type
is only narrowed as much as demanded.

If we apply the head function to the blist generator, we obtain two nonde-
terministic results, namely, True or False, and the tail of blist is not evaluated
– just like the tail of a logic variable of type [Bool] is not bound by the
head function. Besides pointing out the similarity of lazy evaluation and
narrowing of logic variables, this example also demonstrates a difference:
logic variables can be results of computations in Curry. In fact, the result
of applying the head function to a logic variable of type [Bool] is a logic
variable of type Bool. Unevaluated generators that are part of the result of a
computation are evaluated by the eval-print loop of a Curry system whereas
logic variables can be shown to the user without instantiating them with all
possible bindings.

Another difference of logic variables to nondeterministic generators is that
the latter cannot be constrained deterministically using constraint program-
ming. For example, the constraint x =̈ x where x free can be solved deter-
ministically but x =̈ x where x = bool is solved nondeterministically with
two successful derivations. The call x =̈ x where x = blist even describes
infinitely many nondeterministic successful derivations.

2.2.4 Call-time choice

When comparing logic variables and nondeterministic generators, we have
made an implicit assumption on the meaning of variable bindings. To illus-
trate this assumption, consider the call ¬ x =I x where x free. What are
the possible results of this call? From a mathematical point of view, ¬ x =I x
should clearly be False regardless of the instantiation of x. And indeed,
the intuition behind logic variables is that they denote unknown values as
pointed out in Section 2.2.1. There is no possible instantiation of x to a
value such that the call ¬ x =I x yields True.

For the modeling of narrowing via generators to be correct, it is required
that ¬ x =I x where x = bool also cannot yield True. But now, x is not a
logic variable but bound to an expression that can evaluate to True or False
nondeterministically. While bool =I bool can evaluate to True or False non-
deterministically, because the two occurrences of bool denote independent
generators, binding the result of a single generator to a variable causes this
variable to denote the same value wherever it occurs.

25

2 Declarative Programming

This behaviour is called call-time choice (Hennessy and Ashcroft 1977)
and corresponds to an eager evaluation of variable bindings. If we first eval-
uate the binding of x to True or False nondeterministically and then evaluate
either ¬ True =I True or ¬ False =I False, we obtain the result False in every
nondeterministic branch of the computation. In Curry, variable bindings are
evaluated on demand but still the computed results are as if they were eval-
uated eagerly. This behaviour corresponds to sharing of variable bindings
in Haskell (cf. Section 2.1.2). If a duplicated variable is bound to an ex-
pression, the expression is evaluated at most once and also corresponding
nondeterministic choices are performed at most once.

Due to call-time choice, not only logic variables denote values but every
variable—even if duplicated and bound to a nondeterministic expression—-
denotes one deterministic value in each nondeterministic branch of the com-
putation.

This property of variables allows to elegantly express search problems us-
ing Curry. Because of lazy evaluation with call-time choice, Curry program-
mers can express search problems in the intuitive generate-and-test style
whereas they are solved using the more efficient test-of-generate pattern.
In the generate-and-test approach, programmers implement a nondetermin-
istic generator for candidate solutions and a test predicate to filter admissible
results independently. Due to lazy evaluation, however, candidate solutions
are not computed in advance but only as demanded by the test predicate
which can lead to a sophisticated interleaving of candidate generation and
testing. Being able to compose search programs in this way without loosing
the efficiency of an intricate interleaved approach is a major benefit of lazi-
ness. In later chapters, we will use this approach to generate test cases on
demand but let us first discuss it using a simpler example.

The n-queens problem poses the question how to place n queens on an
n× n chessboard such that no queen can capture another. We can solve this
problem elegantly by generating placements of queens nondeterministically
and check whether all placed queens are safe. In order to choose a suitable
representation of a placement of queens, we observe that it is immediately
clear that no two queens are allowed to be in the same row or in the same
column of the chess board. Hence, we can represent a placement as per-
mutation of [1 . . n] where the number qi at position i of the permutation
denotes that a queen should be placed at row qi in column i. With such
a representation we only need to check whether queens can capture each
other diagonally. Two queens are on the same diagonal iff

∃ 1 6 i < j 6 n : j− i = |qj − qi|

26

2.2 Functional logic programming

We can solve the n-queens problem in Curry by using this formula to check
if placements of queens are safe. We generate candidate placements by
reusing the permute operation defined in Section 2.2.2 to compute an arbi-
trary permutation of [1 . . n] and return it if all represented queens are placed
safely. Clearly, all occurrences of qs in the definition of queens must denote
the same placement of queens. Therefore, this definition is only sensible
because of call-time choice semantics.

queens :: Int→ [Int]
queens n | safe qs = qs

where qs = permute [1 . . n]

The predicate safe now checks the negation of the above formula: the dif-
ference of all columns i < j must not equal the absolute difference of the
corresponding rows. We use the function zip :: [a] → [b] → [(a, b)] to pair
every queen—represented by the row in which it should be placed—with its
corresponding column.

safe :: [Int]→ Bool
safe qs = and [j− i 6= abs (qj − qi) | (i, qi)← iqs, (j, qj)← iqs, i < j]

where iqs = zip [1 . .] qs

The function and :: [Bool] → Bool implements conjunction on lists and we
use a list comprehension to describe the list of all conditions that need to
be checked. List comprehensions are similar to monadic do-notation (see
Section 2.1.3) and simplify the construction of complex lists.

If we execute queens 8 in a Curry interpreter, it prints a solution—depicted
graphically in Figure 2.1—almost instantly:

> queens 8
[8,4,1,3,6,2,7,5]
More solutions? [Y(es)/n(o)/a(ll)] no

The call queens 10 has also acceptable run time but queens 15 does not finish
within 60 seconds. We will see how to improve the efficiency of this solu-
tion (without sacrificing its concise specification) using constraint program-
ming (see Section 2.2.6) but first we investigate the given generate-and-test
program.

Although the algorithm reads as if it would generate every permutation of
[1 . . n], lazy evaluation helps to save at least some of the necessary work
to compute them. To see why, we observe that the safe predicate is lazy –
it does not necessarily demand the whole placement to decide whether it
is valid. We can apply safe to (some) partial lists and still detect that they

27

2 Declarative Programming

Figure 2.1: Safe placement of 8 queens on an 8× 8 chessboard

represent invalid placements. For example, the call safe (1 : 2 : ⊥) yields
False. As a consequence, all permutations of [1 . . n] that start with 1 and 2
are rejected simultaneously and not computed any further which saves the
work to generate and test (n− 2)! invalid placements.

In order to make this possible, the permute operation needs to produce
permutations lazily. Thoroughly investigating its source code shown in Sec-
tion 2.2.2 can convince us that it does generate permutations lazily because
the recursive call to insert is underneath a (:) constructor and only executed
on demand. But we can also check the laziness of permute experimentally. If
we demand a complete permutation of the list [1, 2, 3] by calling the length
function on it, we can observe the result 3 six times, once for each permuta-
tion. If we use the head function, which does not demand the computation
of the tail of a permutation, instead of length, we can observe that permu-
tations are not computed completely: we only obtain three results, namely,
1, 2, and 3, without duplicates. As a consequence, laziness helps to prune
the search space when solving the n-queens problem because the permute
operation generates placements lazily and the safe predicate checks them
lazily.

Depending on the exact laziness properties of the generate and test op-
erations, laziness often helps to prune significant parts of the search space

28

2.2 Functional logic programming

when solving generate-and-test problems. This has sometimes noticeable
consequences for the efficiency of a search algorithm although it usually
does not improve its theoretical complexity.

2.2.5 Search

Implicit nondeterminism is convenient to implement nondeterministic algo-
rithms that do not care about the nondeterministic choices they make, that
is, if programmers are indifferent about which specific solution is computed.
But what if we want to answer the following questions by reusing the opera-
tions defined previously:

• How many permutations of [1 . . n] are there?

• Is there a safe placement of 3 queens on a 3× 3 chessboard?

With the tools presented up to now, we cannot compute all solutions of
a nondeterministic operation inside a Curry program or even determine if
there are any. Without further language support we would need to resort
to model nondeterminism explicitly like in a purely functional language, for
example, by computing lists of results.

Therefore Curry supports a primitive operation getAllValues :: a → IO [a]
that converts a possibly nondeterministic computation into a list of all its
results (Braßel et al. 2004; Hanus and Steiner 1998). The list is returned in
the IO monad (see Section 2.1.3) because the order of the elements in the
computed list is unspecified and may depend on external information, like
which compiler optimisations are enabled.

We can use getAllValues to answer both of the above questions using
Curry programs. The following program prints the number 6 as there are six
permutations of [1 . . 3].

do ps← getAllValues (permute [1 . . 3])
print (length ps)

In order to verify that there is no placement of 3 queens on a 3× 3 chess-
board we can use the following code which prints True.

do qs← getAllValues (queens 3)
print (null qs)

The function getAllValues uses the default backtracking mechanism to enu-
merate results. Backtracking corresponds to depth-first search and can be

29

2 Declarative Programming

trapped in infinite branches of the search space. For example, the following
program will print [[], [True], [True, True], [True, True, True]].

do ls← getAllValues blist
print (take 4 ls)

Indeed, backtracking will never find a list that contains False when searching
for results of the blist generator (see Section 2.2.3).

To overcome this limitation, some Curry implementations provide another
search function getSearchTree :: a → IO (SearchTree a) which is similar to
getAllValues but returns a tree representation of the search space instead of
a list of results. The search space is modeled as value of type SearchTree a
which can be defined as follows10.

data SearchTree a = Value a | Choice [SearchTree a]

Value a denotes a single result and Choice ts represents a nondeterministic
choice between the solutions in the sub trees ts11. The call getSearchTree bool,
for example, returns the search tree Choice [Value True, Value False].

As getSearchTree returns the search tree lazily, we can define Curry func-
tions to traverse a value of type SearchTree a to guide the search and steer
the computation. If we want to use breadth-first search to compute a fair
enumeration of an infinite search space instead of backtracking, we can use
the following traversal function.

bfs :: SearchTree a→ [a]
bfs t = [x | Value x← queue]

where queue = t : runBFS 1 queue
runBFS :: Int→ [SearchTree a]→ [SearchTree a]
runBFS n ts
| n =I 0 = []
| n > 0 = case ts of

Choice us : vs→ us ++ runBFS (n− 1 + length us) vs
: vs → runBFS (n− 1) vs

The bfs function produces a lazy queue12 containing all nodes of the search
tree in level order and selects the Value nodes from this list. We can use it
to compute a fair enumeration of the results of blist. The following program
prints the list [[], [True], [False], [True, True], [True, False]].
10The definition of the SearchTree type varies among different Curry implementations.
11Failure, that is, a computation without results, can be represented as Choice [].
12which is terminated by itself to enqueue new elements at the end

30

2.2 Functional logic programming

do t← getSearchTree blist
print (take 5 (bfs t))

Every list of Booleans will be eventually enumerated when searching for
results of blist using breadth-first search.

Curry’s built-in search provides means to reify the results of implicitly non-
deterministic computations and process them as a whole. With access to a
lazy tree representation of the search space, programmers can steer the com-
putation towards parts of the search space that are explored by their traver-
sal function. Especially, they can implement fair strategies like breadth-first
search.

2.2.6 Constraints

A key feature of logic programming is the ability to compute with unbound
logic variables that are bound according to conditions. In Subsection 2.2.1
we have seen two ways to bind variables, namely, narrowing according to
patterns and term-equality constraints. Narrowing can refine the possible val-
ues of a logic variable incrementally while an equality constraint determines
a unique binding.

For specific types, the idea of restricting the possible values of a variable
using constraints can be generalised to arbitrary domain specific predicates
(Jaffar and Lassez 1987). In order to solve such domain specific constraints,
sophisticated solver implementations can be supplied transparently, that is,
invisible to programmers. For example, an efficient solver for the Boolean
satisfiability problem could be incorporated into Curry together with a type
to represent Boolean formulas where unknown Boolean variables are just
represented as logic variables of this type. Or complex algorithms to solve
non-linear equations over real numbers could be integrated to support logic
variables in arithmetic computations.

Finite-domain constraints express equations and inequations over natural
numbers with a bounded domain. They can be used to solve many kinds of
combinatorial problems efficiently. The key to efficiency is to restrict the size
of the search space by incorporating as much as possible information about
logic variables deterministically before instantiating them to their remaining
possible values.

As an example for constraint programming, we improve the n-queens
solver shown in Section 2.2.4 using finite-domain constraints. Instead of
generating a huge search space by computing placements of queens and
checking them afterwards, we define a placement as list of logic variables,

31

2 Declarative Programming

constrain them such that all placed queens are safe, and search for possible
solutions afterwards.

The following queens operation implements this idea in Curry.

queens :: Int→ [Int]
queens n | domain qs 1 n & all_different qs & safe qs

& labeling [FirstFailConstrained] qs
= qs

where qs = [unknown | ← [1 . . n]]

This definition uses the predefined operation unknown—which yields a logic
variable—to build a list of logic variables of length n. The function (&)
denotes constraint conjunction and is used to specify

• that the variables should have values between 1 and n using the con-
straint domain qs 1 n,

• that all variables should have different values using a predefined con-
straint all_different, and

• that all queens should be placed safely.

Finally, the labeling constraint instantiates the variables with their possible
values nondeterministically. The list given as first argument to labeling spec-
ifies a strategy that determines the order in which variables are bound. The
strategy FirstFailConstrained specifies that a variable with the least number
of possible values and the most attached constraints should be instantiated
first to detect possible failures early.

The predicate safe that checks whether queens are placed safely is similar
to the version presented in Section 2.2.4.

safe :: [Int]→ Success
safe qs = andC [(j− i) 6=# (qj −# qi) & (j− i) 6=# (qi −# qj)

| (i, qi)← iqs, (j, qj)← iqs, i < j]
where iqs = zip [1 . .] qs

We use Success as result type because the condition is specified as a finite-
domain constraint. The function andC implements conjunction on lists of
constraints. As there is no predefined function to compute the absolute
value of finite-domain variables, we express the condition as two dis-equali-
ties. The operations with an attached # work on finite-domain variables and
otherwise resemble their counterparts.

32

2.2 Functional logic programming

Figure 2.2: Safe placement of 15 queens on an 15× 15 chessboard

This definition of queens is only slightly more verbose than the one given
previously. It uses essentially the same condition to specify which place-
ments of queens are safe. The algorithm that uses this specification to com-
pute safe placements of queens is hidden in the run-time system.

Unlike the generate-and-test implementation, the constraint-based imple-
mentation of the n-queens solver yields a solution of the 15-queens problem
instantly. Evaluating the call queens 15 in the Curry system PAKCS yields
the placement [1, 3, 5, 2, 10, 12, 14, 4, 13, 9, 6, 15, 7, 11, 8] which is depicted
graphically in Figure 2.2.

Constraint programming increases the performance of search algorithms
significantly, at least in specific problem domains. It is especially useful
for arithmetic computations with unknown information because arithmetic
operations usually do not support narrowing of logic variables.

33

2 Declarative Programming

2.2.7 Summary

Logic programming complements functional programming in the declarative
programming field. It provides programmers with the ability to compute
with unknown information represented as logic variables. Such variables
are bound during execution by narrowing them according to patterns or by
term-equality or other domain specific constraints.

Following Antoy and Hanus (2002), we have emphasised how a combina-
tion of functional and logic programming increases the expressive power of
programmers. For example, defining operations by conditions on unknown
data increases the amount of code reuse in software. Combining features
like polymorphic functions from functional languages with logic features
like logic variables and nondeterminism allows for a very concise definition
of search algorithms.

In this section we have discussed the essential features of logic program-
ming in the context of the multi-paradigm declarative programming language
Curry. Like Haskell, Curry uses lazy evaluation and we have discussed the
intricacies of combining laziness with nondeterminism that lead to the stan-
dard call-time choice semantics of functional logic programs.

2.3 Chapter notes

This chapter has been published previously on the authors website for pub-
lic review (Fischer 2009a). Anonymous comments on Reddit (2009) have
helped to improve its presentation.

34

3 Generating Tests
Software testing is an invaluable means to ensure correctness of code. Even
in declarative programs that are amenable to proofs via equational reason-
ing, thorough testing complements the effort of correctness proofs and helps
to identify bugs early. Tools that check a user-defined property for a large
number of automatically generated tests often expose bugs quicker than ex-
pensive proofs of preliminary code. Moreover, an extensive test suite greatly
supports the confidence in refactored code which can be checked automat-
ically using test functions of preliminary code with little effort. In contrast,
rewritten code may need a completely new correctness proof that considers
implementation details.

Tests can be generated with or without taking implementation details into
account. Testing a program only with respect to its interface by generating
arbitrary input values of appropriate types is called black-box testing because
the internals of the tested program remain invisible to the process of test-case
generation. Generating test cases for executing specific parts of the tested
program is called glass-box testing1 because the implementation of the tested
code is visible to—and considered by—the process of test-case generation.

In this chapter we show the benefits of using functional logic program-
ming for generating test cases automatically. The built-in notions of nonde-
terminism and search support an elegant specification of test-case generators
(Section 3.1) and lazy evaluation (see Sections 2.1.2 and 2.2.3) simplifies the
demand-driven generation of test cases which avoids generating redundant
tests (Section 3.2).

3.1 Black-box testing

In this section we highlight the advantages of functional logic programming
in the implementation and use of a library for specification-based black-box
testing. Implicit nondeterminism lets programmers define test-case genera-
tors elegantly, and an explicit search-tree representation of nondeterministic
computations (see Section 2.2.5) lets us enumerate tests according to user-de-
fined generators flexibly.

1Glass-box testing is often called white-box testing in contrast to black-box testing. We prefer
the term glass-box testing because one usually cannot see inside a white box.

35

3 Generating Tests

We provide an interface for automated, property-based testing of Curry
programs (Section 3.1.1), show how to define and use custom nondeter-
ministic test-case generators (Section 3.1.2), present different search strate-
gies to enumerate tests (Section 3.1.3), and compare the distribution of test
cases that they produce experimentally (Section 3.1.4). Apart from standard
search strategies like depth- and breadth-first search, we define desirable
properties of enumeration strategies for test cases and use them to develop
and investigate the search strategy randomised level diagonalisation. Finally,
we describe the Curry implementation of our library for specification-based
black-box testing of Curry programs (Section 3.1.5).

3.1.1 Property-based testing

Automated test tools generate a large number of tests. Having to check all
of them manually would probably preclude programmers from testing often.
Testing often and quickly, however, is a key ingredient for test-driven devel-
opment where programmers write tests manually before writing code that
passes them. Test-driven development leads to thoroughly tested programs
because no code is written before writing a test that justifies it.

Automated test tools like the one presented in this section advocate proper-
ty-driven development where programmers do not write tests but properties
manually. A property is a predicate on test input that can be applied to large
amounts of generated test data automatically. With properties, programmers
can specify test failure on a high level without having to write individual
tests. Like test-driven development, property-driven development leads to
extensive test suites that increase the confidence in refactorings. Moreover,
writing down properties of algorithms before implementing them can influ-
ence the design of their implementation beneficially.

Properties of deterministic functions

As an example for property-based testing, we specify a property that the
dropWhile function (see Section 2.1.1) must satisfy. The result of the call
dropWhile p xs should be the longest suffix of xs that is empty or starts with
an element x such that p x =I False. The following function specifies part of
this property.

dropWhileYieldsValidSuffix :: [Int]→ Bool
dropWhileYieldsValidSuffix xs = null suffix ∨ ¬ (p (head suffix))

where suffix = dropWhile p xs
p x = x =I 0

36

3.1 Black-box testing

This property passes a predicate p that checks if its argument equals 0 to
dropWhile. It then uses the predefined functions null and head to check
whether the result of applying dropWhile p to an arbitrary list of integers is
empty or starts with an element that is non-zero. The property does not
check that the suffix is as long as possible but we could check this using
another property.

We can use the function blackCheck to check whether dropWhile yields a
valid suffix.

> blackCheck dropWhileYieldsValidSuffix
100 tests passed.

This call generates 100 lists of integers and passes one after the other to the
property dropWhileYieldsValidSuffix. The blackCheck function is overloaded
and generates test inputs according to the type of the given property. We
discuss its implementation in Section 3.1.5.

This example demonstrates how property-based testing saves us from defin-
ing a sufficient number of meaningful tests manually. If 100 different lists do
not expose an error, then we can be more or less confident that the imple-
mentation satisfies the tested property (depending on the distribution of test
cases; see Section 3.1.3).

Properties do not necessarily have the result type Bool. There are also
library functions for defining more sophisticated properties of type Property.
We discuss a few of them here and a few more later, when we encounter
them in examples.

The implication operator =⇒ is often used to reject test input that is in-
valid or insignificant. For example, we can refine dropWhileYieldsValidSuffix
using =⇒ as follows.

dropWhileYieldsValidSuffix2 :: [Int]→ Property
dropWhileYieldsValidSuffix2 xs =

(length xs > 2) =⇒ dropWhileYieldsValidSuffix xs

When using blackCheck to check this property, 100 lists whose length is at
least 2 are checked.

Properties need to be decisive about whether they are satisfied or fail and,
hence, must not evaluate to different results nondeterministically. There are,
however, combinators to specify properties of nondeterministic operations.

Properties of nondeterministic operations

Functional logic programmers may also want to specify properties of non-
deterministic operations like insert introduced in Section 2.2.2. We deliber-

37

3 Generating Tests

ately restrict Boolean properties to succeed only when their result is deter-
ministic because it is questionable whether (0 ? 1) =I 0 should be satisfied
and whether it should be equivalent to 0 =I (0 ? 1). Nondeterministic prop-
erties need to be specific about the sets2 of different results and we provide
three operators3 for this purpose:

• The property x ⇀ y demands that x evaluates to every possible result
of y, that is, the set of possible results of x must be a superset of the set
of possible results of y.

• The property x ↽ y is the same as y ⇀ x and demands that the set of
possible results of x is a subset of the set of possible results of y.

• Finally, x
 y is satisfied iff the sets of possible results of x and y are
equal. Note that using
 differs from using =I which demands the
result sets to contain exactly one element.

With ⇀ we can specify that among the possible results of the insert opera-
tion the given element x appears at least as first and last element.

insertAsFirstOrLast :: Int→ [Int]→ Property
insertAsFirstOrLast x xs = insert x xs ⇀ (x : xs ? xs ++ [x])

We can again use blackCheck to generate test input for this property.

> blackCheck insertAsFirstOrLast
100 tests passed.

Using ↽ we can check that the permute operation (see Section 2.2.2) pre-
serves the length of its input for every result:

permutePreservesLength :: [Int]→ Property
permutePreservesLength xs = length (permute xs) ↽ length xs

We could also use
 instead of ↽ but using =I would not have the desired
effect because length (permute xs) may be nondeterministic.

3.1.2 Defining test-case generators

In order to check properties automatically, the function blackCheck needs
to generate values of specific types. Nondeterministic value generators like
discussed in Section 2.2.3 serve this purpose elegantly.

2We only consider sets of results, not multi sets. If a result is computed at all, we do not
distinguish computations that compute it a different number of times.

3The ASCII representations of all used operators are listed in Appendix A.1.

38

3.1 Black-box testing

We provide a type class4 Arbitrary with a single operation arbitrary that
yields test input of the corresponding type nondeterministically.

class Arbitrary a where
arbitrary :: a

Implementations of arbitrary may yield any value of type a or only specific
values. We provide instances for some predefined types. For example, the
Arbitrary instance for Bool yields False or True.

instance Arbitrary Bool where
arbitrary = False ? True

We can also define instances for parametrised recursive types that require
an Arbitrary instance for the type parameters. For example, the instance for
lists is defined as follows.

instance Arbitrary a⇒ Arbitrary [a] where
arbitrary = []
arbitrary = arbitrary : arbitrary

The first occurrence of arbitrary in the right-hand side of the second rule
belongs to the Arbitrary instance for the type a while the second occurrence
is a recursive call to the arbitrary operation for lists. These definitions gener-
alise the operations bool and blist defined in Section 2.2.3.

As there are infinitely many lists of type [Bool], the search tree for arbitrary
of type [Bool] is infinite. The first six levels of this tree are visualised in
Figure 3.1. Each inner node represents a nondeterministic choice for a con-
structor and its outgoing edges are labeled with the chosen constructor. The
leaves of the tree are labeled with the corresponding values of type [Bool].

As a more complex example, we define different Arbitrary instances for
a data type representing heaps which are labeled trees that satisfy the heap
property: the sequence of labels along any path from the root to a leaf must
be non-decreasing. We use the following data type, which does not estab-
lish the heap property but can represent arbitrary labeled trees, to represent
pairing heaps as described by Okasaki (1996).

data Heap a = Empty | Fork a [Heap a]
deriving Show

4At the time of this writing an experimental fork of the Münster Curry Compiler provides the
only implementation of type classes for Curry.

39

3 Generating Tests

[]

 [] (:)

 False True

[False]

 [] (:)

[True]

 [] (:)

 False True

[False,False]

 [] (:)

[False,True]

 [] (:)

 False True

[True,False]

 [] (:)

[True,True]

 [] (:)

Figure 3.1: Search space for an arbitrary value of type [Bool]

The deriving clause tells the compiler to generate code that converts Heap
values to a string which allows BlackCheck to print heaps as counter ex-
amples for a tested property. To ensure that users can only construct valid
heaps, we can make the Heap type abstract by hiding its data constructors
and provide constructor functions emptyHeap and insertHeap to construct
valid heaps5.

emptyHeap :: Heap a
insertHeap :: Ord a⇒ a→ Heap a→ Heap a

We need to be able to compare heap entries to maintain the heap property.
The implementations of both functions are given in Appendix A.3.

Simulating logic variables

A straightforward way to define an Arbitrary instance for the Heap data type
is to simulate a logic variable of the same type.

instance Arbitrary a⇒ Arbitrary (Heap a) where
arbitrary = Empty ? Fork arbitrary arbitrary

This definition relies on an Arbitrary instance for the heap entries and the
Arbitrary instance for lists described above to generate non-empty heaps. As
it uses the hidden Heap constructors, it needs to be defined inside the Heap
module. Another disadvantage is that it yields any value of type Heap a
which does not necessarily satisfy the heap property. In order to use this
definition for generating test input for properties on heaps, we need to use
=⇒ in combination with a predicate isValidHeap :: Ord a⇒ Heap a→ Bool
that checks the heap property.

5The type-class constraint Ord a ensures that the operation 6 is defined for values of type a.

40

3.1 Black-box testing

Generating valid test data

Instead of generating any value of type Heap a, we can also use the abstract
constructors emptyHeap and insertHeap to generate only valid heaps. As we
cannot define two Arbitrary instances for the same type, we use a newtype
declaration for valid heaps. Such declarations are equivalent6 to analogous
data declarations but do not incur run-time overhead for matching their
constructors which are not present at run time.

newtype ValidHeap a = Valid {validHeap :: Heap a}
deriving Show

We use record syntax to define the constructor Valid :: Heap a→ ValidHeap a
and the corresponding selector function validHeap :: ValidHeap a → Heap a
at the same time. Introducing newtypes to define different type class in-
stances for the same underlying type is a common idiom that serves well
to provide different test-case generators for the same type. Assuming an
Arbitrary instance for ValidHeap a, we can call validHeap arbitrary to gen-
erate test input of type Heap a according to the definition of arbitrary for
the type ValidHeap a. The Arbitrary instance for the ValidHeap type uses
the abstract constructors emptyHeap and insertHeap instead of the hidden
constructors of the underlying data type and, thus, requires an ordering op-
eration on the heap entries

instance (Arbitrary a, Ord a)⇒ Arbitrary (ValidHeap a) where
arbitrary = Valid emptyHeap
arbitrary = Valid (insertHeap arbitrary (validHeap arbitrary))

When using this instance to generate test input for predicates on heaps, we
do not need to check the heap property using =⇒ because all generated
heaps are guaranteed to be valid. Of course, this depends on the correctness
of emptyHeap and insertHeap which can be checked using blackCheck:

> blackCheck (isValidHeap . validHeap :: ValidHeap Int -> Bool)
100 tests passed.

We use the function composition operator ◦ to define an anonymous prop-
erty based on the isValidHeap predicate and the validHeap newtype selec-
tor. We need to provide an explicit type annotation in order to tell blackCheck
to generate heap entries of type Int.

6There is a subtle difference regarding laziness between data constructors and newtype con-
structors. The latter behave like strict data constructors. For example, Valid ⊥ is equivalent
to ⊥ because newtype constructors are eliminated.

41

3 Generating Tests

Generating custom test data

Instead of generating arbitrary valid heaps, we can also define a newtype
that represents custom heaps that we consider sufficient for testing our prop-
erties. This is often useful to influence the search space such that more sig-
nificant test input is generated. As an example, we define a type for custom
heaps where all labels are small integers.

newtype CustomHeap = Custom {customHeap :: Heap Int}
deriving Show

instance Arbitrary CustomHeap where
arbitrary = Custom emptyHeap
arbitrary = Custom (insertHeap digit (customHeap arbitrary))

digit :: Int
digit = 0; digit = 1; digit = 2; digit = 3; digit = 4;
digit = 5; digit = 6; digit = 7; digit = 8; digit = 9;

This instance is similar to the Arbitrary instance for ValidHeap a but instead
of using arbitrary to generate heap entries we use a custom operation digit
that yields an integer between 0 and 9.

We will compare the different ways to define test-case generators, espe-
cially the distribution of tests that they produce using different search strate-
gies, experimentally in Section 3.1.4.

3.1.3 Enumerating test cases

Infinite search spaces, like those generated by evaluating definitions of the
operation arbitrary, can be searched using different strategies. Curry systems
that support the operation getSearchTree to reify the possibly nondeterminis-
tic result of an operation into a deterministic tree structure (see Section 2.2.5)
usually provide functions to traverse the search tree in depth- or breadth-first
order. Neither of these strategies is well-suited to be used for enumerat-
ing test cases: depth-first search is easily trapped in infinite branches of the
search space and the memory requirements of breadth-first search prohibit
its use for enumerating a large number of tests.

In the remainder of this subsection we investigate three different approaches
that are better suited to enumerate test input.

1. Iterative deepening depth-first search trades memory requirements for
run time to achieve level-wise enumeration like breadth-first search
with the memory requirements of depth-first search.

42

3.1 Black-box testing

2. Randomly selecting an arbitrary branch at each inner node of the
search space instead of a specific one reduces the probability to di-
verge and leads to more diverse tests compared to depth-first search.

3. Searching the levels of the search space diagonally instead of sequen-
tially leads to faster enumeration of deeper values while preserving
good coverage of shallow levels.

We evaluate the different strategies experimentally in Section 3.1.4 and intu-
itively according to the following criteria:

1. We call an enumeration complete if every value in the search space
is eventually enumerated. This property allows us to prove properties
that only involve datatypes with finitely many values. Moreover, com-
pleteness implies that any node of an infinite search tree is reached in
finite time.

2. It is desirable to obtain reasonably large test cases early in order to
avoid numerous trivial test cases. We call a strategy advancing if it
visits the first node of the n-th level of a search tree after p(n) other
nodes where p is a polynomial.

3. We call an enumeration balanced if the overall distribution of enumer-
ated values is independent of the order of child trees in branch nodes.
Balance is important to obtain diverse test input.

Depth-first search is advancing7 but incomplete and unbalanced. Breadth-
first search is complete and almost balanced but not advancing because it
generates an exponential number of small values before larger ones.

Iterative deepening search

Iteratively incrementing the depth limit of depth-bounded depth-first searches
enumerates the nodes of a search tree in breadth-first order. Hence, iterative
deepening search is a complete strategy and, like breadth-first search, it is
balanced but not advancing. The level on which a test case is found corre-
sponds roughly to its size if the arbitrary operation is defined inductively and
produces larger values in every recursive call. For example, the arbitrary
operation for Boolean lists produces a search tree where larger lists are at
deeper levels as we have seen in Figure 3.1. As iterative deepening search
enumerates shallow levels completely before continuing with deeper levels,

7not always, however, because it is incomplete

43

3 Generating Tests

it enumerates small test input exhaustively but does not generate large test
input.

This behaviour is unfortunate if there are errors that are only exposed
by complex test input. However, the small scope hypothesis claims that if
there is a bug then it is almost always exposed by a simple test case. Or as
Runciman et al. (2008) put it: if no simple test case exposes a bug then there
hardly ever is any. Under this assumption it seems better to enumerate small
tests exhaustively than to produce a non-exhaustive sampling of large tests.

We provide functions depthCheck and smallCheck for depth-bounded and
iterative deepening testing. The call depthCheck d p checks the property
p using all tests that can be reached within a depth limit of d. The call
smallCheck d p checks the property p incrementally with all tests that can be
reached with depth limits from 0 to d. The advantage of smallCheck is that it
finds a smallest counter example first because it checks all levels from 0 to d
incrementally. We can demonstrate this property by checking if the head of
an arbitrary non-empty list of Booleans is always False.

> smallCheck 10 (\bs -> not (null bs) ==> not (head bs))
2nd test failed, arguments:
[True]

The function depthCheck is useful to reproduce a test failure if the depth of
the smallest failing test is already known: depthCheck avoids the repeated
enumeration of shallow levels that do not contain a counter example. The
following example demonstrates how to use depthCheck with a specific depth
formerly determined using smallCheck.

> smallCheck 12 (\l -> (length l>3) ==> (length l>head l))
51 tests passed.
> smallCheck 13 (\l -> (length l>3) ==> (length l>head l))
170th test failed, arguments:
[4,0,0,0]
> depthCheck 13 (\l -> (length l>3) ==> (length l>head l))
160th test failed, arguments:
[4,0,0,0]

The call to depthCheck 13 runs faster than the call to smallCheck 13 which
arrives at depth 13 only after checking all tests at level 12 and above. The
fact that depthCheck 13 finds the counter example ten tests earlier is due
to different search order: depthCheck 13 enumerates the first 13 levels in
depth-first order, smallCheck 13 in level order.

Both functions allow to prove properties if their set of possible input is
finite. For example, if we check that an arbitrary Boolean value is either
True or False then all two tests are generated.

44

3.1 Black-box testing

> smallCheck 10 (\b -> b || not b)
2 tests passed.
> depthCheck 10 (\b -> b || not b)
2 tests passed.

Non-exhaustive, incomplete strategies like random search may enumerate
the same test more than once and fail to detect a finite search space.

The test functions smallCheck and depthCheck are defined in terms of a
function betweenLevels that enumerates all values in a SearchTree that can be
found between the given levels.

betweenLevels :: Int→ Int→ SearchTree a→ [a]
betweenLevels from to = go 0

where go level (Value x)
| from 6 level ∧ level 6 to = [x]
| otherwise = []

go level (Choice ts)
| level > to = []
| otherwise = [x | t← ts, x← go (level + 1) t]

A call to smallCheck d executes a call to betweenLevels l l for each level l be-
tween 0 and d. A call to depthCheck d executes a single call betweenLevels 0 d.

For more fine-grained control of exhaustive testing, we provide a function
iterCheck that generalises smallCheck and depthCheck and takes two parame-
ters that specify how many levels to search in each iteration and how many
iterations to perform. In fact, smallCheck d is defined as iterCheck d 1 and
depthCheck d is defined as iterCheck 1 d. The complete implementation of
smallCheck, depthCheck, and iterCheck is listed in Appendix A.4.5.

Random search

The role model for all property-based testing tools is QuickCheck (Claessen
and Hughes 2000) which produces a random sampling of test input. Com-
pared to exhaustive testing of small values this leads to larger and more
diverse test cases.

We also provide a function quickCheck for random testing that searches
for counter examples in the search space of test input by randomly choosing
branches of inner nodes. When using quickCheck, tests are not reproducible
and a different counter example may be found in different runs.

> quickCheck (\l -> (length l>3) ==> (length l>head l))
22nd test failed, arguments:
[118,0,-1,0]

45

3 Generating Tests

> quickCheck (\l -> (length l>3) ==> (length l>head l))
12th test failed, arguments:
[10,1,-3,-2]
> quickCheck (\l -> (length l>3) ==> (length l>head l))
15th test failed, arguments:
[17,2,0,-5,-7]

Depending on how sparse counter examples are distributed in the search
space, quickCheck may be unable to find them, even if they are small. On the
other hand, it often finds counter examples sooner than exhaustive testing as
it generates large values quickly.

The evaluation of random search with respect to completeness, advance-
ment, and balance cannot be absolute but has to take probabilities into ac-
count.

If the probability to choose a leaf node as direct descendant of an inner
node of the search tree is p, then the probability to reach a leaf on level
n (for n > 0) is (1− p)n−1 · p. Whether random search arrives at deeper
levels frequently depends on the structure of the search space. If there are
few leaves, then random search will arrive at deep levels quickly; if there are
many leaves, it will reach deep levels rarely. A closer look reveals that ran-
dom search is not advancing: The expected number of found leaves on level
n (for n > 0) using m independent searches equals m · (1− p)n−1 · p. The
expected number of enumerated leafs before reaching the first leaf on level
n is the smallest number m such that the expected number of found leaves
on level n using m independent searches is greater or equal to one. Hence,
we are looking for the smallest m that satisfies the following inequality.

m · (1− p)n−1 · p > 1

If p = 1
q , which means that every q-th child of an inner node is a leaf, then

we can compute this m as follows.

m >
1

(1− p)n−1 · p

=
1

(q−1
q)n−1 · 1

q

= (
q

q− 1
)n · (q− 1)

This derivation shows that the expected number of runs necessary to find one
leaf on level n is exponential in n. Depending on p, however, reasonably
deep levels are reached frequently. For example, for p = 1

3 , the expected

46

3.1 Black-box testing

number of trials necessary to find a leaf on level n is d2 · (3
2)ne and for n < 10

this number is less than n2. As a consequence, random search behaves like
an advancing strategy when enumerating 102 leaves of a search tree where
every third child of an inner node is a leaf.

According to completeness, random search enumerates every value with
a certain probability but it may take very long to reach a specific value if
it is hidden deep in the search tree because values at shallow levels are
enumerated repeatedly. Moreover, random search has no complete view
of the search space and one cannot detect search space exhaustion when
searching repeatedly for a single value.

Finally, random search is perfectly balanced. The order of child nodes at
inner nodes of the search tree does not affect which results are enumerated
by random search which chooses among child nodes randomly.

We can implement random search by shuffling the search tree before
searching one value using depth-first search. The following function reorders
the branches at inner nodes of a SearchTree randomly.

shuffleST :: StdGen→ SearchTree a→ SearchTree a
shuffleST (Value x) = Value x
shuffleST g (Choice ts) = Choice (shuffle r (zipWith shuffleST rs ts))

where r : rs = splitGen g

The type StdGen is a type for random number generators and the function
splitGen :: StdGen → [StdGen] splits such a generator into an infinite list of
independent generators. The function shuffle :: StdGen→ [a]→ [a] reorders
the elements of a list randomly such that every permutation is produced with
equal probability (see Appendix A.4.6 for an implementation).

A call to quickCheck executes 100 calls to shuffleST followed by a depth-
first search to find the leftmost leaf in each shuffled tree which is equivalent
to following a random path from the root to the first found leaf in the original
search tree.

For more fine-grained control of random testing, the function rndCheck
generalises quickCheck. It takes three parameters that specify how many ran-
dom searches to perform, how many valid tests to collect in each of them,
and how many invalid tests to tolerate before giving up on finding a valid
one in each random search. Tests are considered invalid if they have an
unsatisfied precondition specified using =⇒. The quickCheck function is de-
fined as rndCheck 100 1 10. It performs 100 random searches, enumerates at
most 10 tests in each of them, and yields the first valid one. The rndCheck
function is useful to generate larger tests at the cost of loosing independence.
Enumerating multiple tests in a single run of depth-first search on a shuffled
tree will often give similar results of increasing size.

47

3 Generating Tests

Level diagonalisation

We have developed a new strategy for traversing infinite search spaces that
provides stronger guarantees about advancement and completeness than ran-
dom search and is more advancing than level-wise search. The improvement
comes at the cost of higher space complexity than the previous searches. In
its simple form our strategy is not balanced. We can combine it with ran-
domisation, however, to get a balanced strategy.

The idea of our strategy is to compute the levels of the search space
like breadth-first search but instead of enumerating the levels sequentially
process them in a diagonally interleaved order such that deeper levels are
reached before processing shallow levels completely. As a result, this strat-
egy will exhaustively check small values but also find some larger values.
Due to lazy evaluation (cf. Section 2.1.2) all levels are only produced as
much as demanded by the traversal which leads to improved memory re-
quirements compared to breadth-first search.

The following function computes a list of levels from a forest of SearchTrees.

levels :: [SearchTree a]→ [[SearchTree a]]
levels ts | null ts = []

| otherwise = ts : levels [u | Choice us← ts, u← us]

Each level is a list of sub trees whose root is on the corresponding level of the
search tree. Note that the function does not drop inner nodes to enumerate
only values. Instead, it enumerates all nodes of the tree which allows us to
consume them incrementally and is critical for the memory requirements of
our strategy. Filtering a level to produce a list of the values it contains may
demand large portions of the level which we avoid consciously.

We consume levels incrementally using the following function for list di-
agonalisation.

diagonals :: [[a]]→ [[a]]
diagonals [] = []
diagonals (l : ls) = zipCons l ([] : diagonals ls)

48

3.1 Black-box testing

zipCons :: [a]→ [[a]]→ [[a]]
zipCons [] ls = ls
zipCons (x : xs) [] = [[y] | y← x : xs]
zipCons (x : xs) (l : ls) = (x : l) : zipCons xs ls

This function is best explained by example. Consider the following call
and its result which shows that we can employ the diagonals function to
enumerate an infinite list of infinite lists.

> take 3 (diagonals [[(i,j) | j <- [1..]] | i <- [1..]])
[[(1,1)],[(1,2),(2,1)],[(1,3),(2,2),(3,1)]]

We layout this call to diagonals slightly differently to observe what happens:

diagonals [[(1, 1), (1, 2), (1, 3), ... = [[(1, 1)]
, [(2, 1), (2, 2), (2, 3), ... , [(1, 2), (2, 1)]
, [(3, 1), (3, 2), (3, 3), ... , [(1, 3), (2, 2), (3, 1)]
, ... , ...]

If we look at the input list as a matrix, then the output list is a list of its
diagonals. The first diagonal contains the top-left element, the second diag-
onal contains the second element of the first row and the first element of the
second row and so on.

Note that the first element of the n-th row of the matrix is enumerated after
processing n·(n−1)

2 elements. If the argument to the diagonals function is the
list of levels of a search tree, then the first node on the n-th level is reached
after visiting O(n2) other nodes8. As n2 is a polynomial in n, enumerating
the levels of search tree diagonally is an advancing search strategy. Its imple-
mentation combines the function levels and diagonals shown previously:

allValuesDiag :: SearchTree a→ [a]
allValuesDiag t = [x | d← diagonals (levels [t]), Value x← d]

Figure 3.2 shows part of the search tree for arbitrary lists of Booleans. The
first 100 nodes of the tree visited by level diagonalisation are highlighted. We
can observe that shallow levels are processed completely and larger values
are reached as well at the left spine of the tree. The grey colored parts
of the search tree have not been visited and, hence, not been computed
due to laziness. We can also see that level diagonalisation is complete: it
eventually enumerates every leaf. It also enumerates every value only once
and, hence, one can detect search space exhaustion. A disadvantage of level

8Depth-first search finds the first node on level n after O(n) other nodes, level-wise strategies
like breadth-first search or iterative deepening depth-first search after O(2n) other nodes.

49

3 Generating Tests

Figure 3.2: Level diagonalisation of [Bool] values

diagonalisation is that most visited nodes are in the left part of the tree which
makes this strategy unbalanced.

We can overcome this limitation using randomisation. If we apply the
function shuffleST before enumerating the values of a search tree with the
function allValuesDiag, then the enumerated values are independent of the
order of child nodes in the original tree. Yet, especially enumerated values
from deeper levels come from contiguous parts of the search tree. Large tests
generated by level diagonalisation resemble each other even if we use ran-
domisation. We can improve the diversity of tests generated by randomised
level diagonalisation by running multiple searches on different randomised
versions of the original tree. This comes at the cost that the same value may
be enumerated as many times as we run searches—and especially for small
values in shallow levels this is likely to happen—but the benefit of searching
repeatedly is that more diverse large tests are generated. Figure 3.3 visualises
the effect of running randomised level diagonalisation twice and combining
the results. Still, the number of visited nodes is quadratic in the depth of the
deepest visited node in each run of the search and large parts of the tree do
not have to be computed.

The test function blackCheck shown previously combines different random-
ised runs of level diagonalisation to compute test input. As this strategy is
complete, we can detect search space exhaustion and prove properties if the
search space is finite. Reconsider the Boolean example used with smallCheck
previously.

> blackCheck (\b -> b || not b)
20 tests passed.

50

3.1 Black-box testing

Figure 3.3: Combined randomised level diagonalisation of [Bool] values

This time we need 20 tests to check the property because blackCheck com-
bines 10 random searches and enumerates every Boolean value 10 times.
Due to randomisation it may require multiple runs to find a counter exam-
ple using blackCheck. For example, a counter example for the list property
above is not always found:

> blackCheck (\l -> (length l>3) ==> (length l>head l))
21st test failed, arguments:
[635,-6,1,0]
> blackCheck (\l -> (length l>3) ==> (length l>head l))
100 tests passed.
> blackCheck (\l -> (length l>3) ==> (length l>head l))
1st test failed, arguments:
[6,-9,1,0]

For more fine-grained control of level diagonalisation, we provide a function
diagCheck with three parameters that control how many randomised searches
to perform, how many valid tests to enumerate in each search and how many
invalid tests (tests with a failing precondition) to tolerate before giving up
finding a valid one. In fact, blackCheck is defined as diagCheck 10 10 100
and, thus, performs 10 randomised searches, each time trying to enumerate
10 valid tests, and aborting a search run if it produces 100 invalid tests.

3.1.4 Experiments

We now compare the different strategies presented in Section 3.1.3 experi-
mentally using the heap data type and its corresponding Arbitrary instances

51

3 Generating Tests

from Section 3.1.2 for generating test input. In order to compare test-case
distribution, a simple property is sufficient, so we just check the predicate
isValidHeap as precondition to an always satisfied property.

heapProperty :: Heap Int→ Property
heapProperty h = isValidHeap h =⇒ True

BlackCheck provides a combinator collectAs to statistically evaluate test input
that we use to monitor the size and the depth of generated heaps.

heapSize :: Heap Int→ Property
heapSize h = collectAs "size" (size h) (heapProperty h)
heapDepth :: Heap Int→ Property
heapDepth h = collectAs "depth" (depth h) (heapProperty h)

The function size :: Heap a → Int computes the number of labeled nodes in
a heap and depth :: Heap a→ Int computes the length of a longest path from
the root to a leaf.

Exhaustive testing of small values

We can use smallCheck to count the size of heaps in the first 10 levels of
the search space using the various heap generators. If we use the simplest
generator that simulates a logic variable of type Heap Int, we obtain the
following distribution of test input.

> smallCheck 10 heapSize
180 tests passed.
166 size: 1
13 size: 2
1 size: 0

The output means that there are 180 valid heaps within depth 10, 166 of
them have size 1, and 13 have size 2. There is one heap of size 0 which is
the empty heap. The generated heaps are so small that their depth equals
their size. Therefore, we omit the results of measuring depth for the first
heap generator.

We can check the second heap generator by using the newtype selector
validHeap as follows.

> smallCheck 10 (heapSize . validHeap)
289 tests passed.
129 size: 2
127 size: 1

52

3.1 Black-box testing

31 size: 3
1 size: 4
1 size: 0

> smallCheck 10 (heapDepth . validHeap)
289 tests passed.
145 depth: 2
127 depth: 1
15 depth: 3
1 depth: 4
1 depth: 0

Using a generator that generates only valid heaps increases the number of
valid heaps within the depth limit 10. Moreover, there are now larger heaps
within this depth limit – one has a size and depth of 4. The numbers for
heaps of size one and two are similar showing that increasing depth is spent
evenly on larger heaps and larger numbers used as labels.

If we restrict the heap labels to be digits using the generator for custom
heaps the increasing depth can be spent to generate more large heaps.

> smallCheck 10 (heapSize . customHeap)
11111 tests passed.
10000 size: 4
1000 size: 3
100 size: 2
10 size: 1
1 size: 0

Now all heaps of size 0 to 4 that contain only digits are generated. Some of
them are generated and, hence, counted multiple times. For example, the
call insertHeap 0 (insertHeap 1 emptyHeap) has the same result as the call
insertHeap 1 (insertHeap 0 emptyHeap) but both calls are counted individu-
ally. The depth of the valid heaps that contain only digits and can be found
limiting the depth of the search space to 10 is distributed as follows.

> smallCheck 10 (heapDepth . customHeap)
11111 tests passed.
5050 depth: 2
4840 depth: 3
1210 depth: 4
10 depth: 1
1 depth: 0

53

3 Generating Tests

Random testing

The test-case distribution varies among different runs of the quickCheck func-
tion for random testing. Therefore, we perform general observations based
on example executions and later point out differences to the other strategies
based on multiple runs.

When using the simple generator that simulates a logic variable, there are
only 88 valid heaps among 1000 that have been generated before giving up
finding valid ones.

> quickCheck heapSize
88 tests passed.

51 size: 0
32 size: 1
3 size: 2
2 size: 3

Compared to smallCheck, quickCheck generates the empty heap in more than
half of all valid tests but also generates 2 heaps of size 3. Measuring depth
yields similar observations. Larger heaps are generated if we use a generator
that produces only valid heaps. Obviously, 100 valid tests can now be found
easily but still about half of the generated test input is the empty heap.

> quickCheck (heapSize . validHeap)
100 tests passed.

52 size: 0
28 size: 1
12 size: 2
3 size: 3
3 size: 4
2 size: 5

Using the custom heap generator to generate heaps that contain only digits
has no big effect on the size of heaps generated by quickCheck although
larger heaps seem to be a bit more likely than with the generator for arbitrary
valid heaps.

Level diagonalisation

Finally, we investigate the test-case distribution of the blackCheck function
that combines 10 randomised runs of level diagonalisation to enumerate test
input.

When enumerating results of the simple generator using blackCheck the
empty heap is generated 10 times and compared to quickCheck there are
more heaps of all other sizes.

54

3.1 Black-box testing

> blackCheck heapSize
100 tests passed.

78 size: 1
10 size: 0
9 size: 2
3 size: 3

Most of the generated heaps are of size one and as every heap is enumerated
at most 10 times, we know that at least 8 different heaps of size one have
been generated.

The depth and size of heaps enumerated using the generators for arbi-
trary valid heaps and custom heaps are similar. Here is an example call of
blackCheck to generate arbitrary valid heaps.

> blackCheck (heapSize . validHeap)
100 tests passed.

51 size: 1
17 size: 2
17 size: 3
10 size: 0
5 size: 4

Compared to quickCheck there are more heaps of size 1, 2, and 3, but fewer
large heaps.

Comparison

In order to compare the different strategies and strengthen the observations
made with the example executions, we measure the size and depth of gener-
ated heaps by enumerating more valid heaps than in the previous examples.
The execution times are similar for all strategies and lie within a few sec-
onds. We execute smallCheck with a depth limit of 13 instead of 10 and aim
at 1000 instead of 100 valid tests using random search and level diagonali-
sation. More specifically, we use rndCheck 1000 1 10 instead of quickCheck
and diagCheck 10 100 1000 instead of blackCheck. For the latter strategies we
compute an average of 5 independent runs to account for randomisation.

The results of our experiments are depicted in Table 3.1. There is one
column for each strategy that shows the size and depth of generated heaps
according to the different heap generators. For example, in the top-right
corner we can see that diagCheck produces 991 valid test cases using the
simple heap generator that simulates a logic variable, 10 of them have size
and depth 0 (are empty), 590 have size 1 and 655 have depth 1. If the
numbers for size and depth are equal we show a single number instead of

55

3 Generating Tests

smallCheck rndCheck diagCheck
size/depth size/depth size/depth

Heap Int
#valid 1627 902/889 991

#0 1 495/494 10
#1 1359/1359 348/336 590/655
#2 260/264 42/50 245/269
#3 7/3 13/8 91/56
#4 2/1 37/1
#5 1/0 12/0
#6 1/0 4/0
#7 2/0

ValidHeap Int
#valid 4060 1000 1000

#0 1 496/494 10
#1 1023 246/244 562/617
#2 1793/2496 131/196 270/270
#3 1023/486 65/49 107/40
#4 209/5 29/14 17/58
#5 11/4 17/2 17/4
#6 9/1 17/0
#7 4/0

#8-12 3/0
CustomHeap

#valid 111111 1000
#0 1 500/503
#1 10 248/252
#2 100/37741 131/181
#3 1000/48664 61/50
#4 10000/21406 28/11
#5 100000/3289 16/2
#6 7/1
#7 5/0

#8-12 4/0

Table 3.1: Comparison of different strategies for black-box testing

56

3.1 Black-box testing

the same number twice. The reason why there may be different numbers
even for size 1 is that they have been obtained in different randomised runs.

Comparing the different generators, we can see that all strategies benefit
from using the Arbitrary instance that generates values of type ValidHeap Int.
Exhaustive testing of small values using smallCheck shows the most signif-
icant improvement, random testing using rndCheck produces considerably
more heaps of size and depth 2 to 4, and level diagonalisation produces
only slightly larger heaps compared to the simple generator.

Only smallCheck benefits from using the third generator for custom heaps
that contain only digits and produces significantly more heaps of size and
depth 4 and 5. The rndCheck function shows a similar distribution for the
second and third generators. Finally, diagCheck 10 100 1000 fails to terminate
within several minutes when enumerating test input of type CustomHeap
and, therefore, there are no table entries for this combination.

Comparing the different strategies, we can see that smallCheck produces
much more tests than the other strategies that stop after enumerating enough
valid heaps. Random testing produces many small heaps – almost half of the
generated heaps are empty. Level diagonalisation produces slightly more
large heaps although it does not produce heaps larger than 7 which occa-
sionally happens with random search.

From this comparison of strategies it is difficult to identify a clear winner.
If a failing test can be found within a small depth bound, then exhaustive
testing of small values suffices to expose it. If there are many failing tests and
valid input can be generated easily, then random search might find them
using significantly fewer tests than exhaustive search. If failing tests are rare,
then a strategy that enumerates the search space more systematically than
random search but is more advancing than exhaustive search like level diag-
onalisation can find the error quicker than the other strategies.

As we cannot recommend a single strategy, the BlackCheck tool provides
all of them. The different strategies can be beneficially used in combina-
tion. For example, one could first try to find a failing test using random
search with quickCheck, if no error is exposed use level diagonalisation, and,
if blackCheck is too expensive, employ smallCheck to check small values ex-
haustively.

3.1.5 Implementation

In this subsection we highlight interesting aspects of the implementation
of BlackCheck on a high level. The complete implementation is listed in
Appendix A.4.

57

3 Generating Tests

Input generators for primitive types

BlackCheck provides instance declarations for the Arbitrary type class for
various predefined types. We have seen previously how to define Arbitrary
instances for algebraic or abstract data types and now describe the instances
that BlackCheck provides for the primitive types Int for integers and Char for
characters.

Instead of enumerating integers sequentially we define a generator that
creates a balanced tree of numbers.

instance Arbitrary Int where
arbitrary = 0
arbitrary = nat
arbitrary = −nat

nat :: Int
nat = 1
nat = 2 ∗ nat
nat = 2 ∗ nat + 1

The search space generated by arbitrary and nat is a tree where each inner
node has three children of which one is a leaf. All integers with an absolute
value less than 2n can be found within a depth limit of n + 1 in this tree.

We can select arbitrary characters from a list using the oneOf function that
selects an element from a list nondeterministically.

instance Arbitrary Char where
arbitrary = oneOf ([’A’ . . ’z’] ++ [’0’ . . ’9’] ++ " \t\r\n")

oneOf :: [a]→ a
oneOf (x : xs) = x ? oneOf xs

We restrict the arbitrary operation for the Char type to only generate specific
characters nondeterministically.

Testable types

The testing functions like blackCheck are overloaded and take an arbitrary
testable property as argument.

blackCheck :: Testable a⇒ a→ IO ()

The type class Testable provides an operation tests that takes a testable value
and yields a search space of tests.

58

3.1 Black-box testing

class Testable a where
tests :: a→ Search Test

A value of type Test represents a single test case storing the test result, a tex-
tual representation of the test input, and statistical information about the test.
There are Testable instance declarations for deterministic Boolean properties
and for more complex properties of type Property, for example, involving
preconditions or properties of nondeterministic operations. The most inter-
esting instance of Testable, however, is the instance for function types that
uses the arbitrary operation to generate test input.

instance (Show a, Arbitrary a, Testable b)⇒ Testable (a→ b)
where tests p = do x← Search (getSearchTree arbitrary)

fmap (λt→ t { input = show x : input t})
(tests (p x))

This instance declaration specifies that a function is testable if its argument
type supports test-input generation and its result type is testable. Addition-
ally, it requires the argument type to be an instance of the Show class which
provides the show function to convert corresponding values into a string.
The parametrised type Search is an instance of the type classes Monad and
Functor. Hence, we can use do-notation to combine different searches and
fmap to modify tests in the search space. The first line generates a search
space for test input of type a using getSearchTree arbitrary. The call to fmap
adds a textual representation of the input to all results of applying the given
function p to every input x.

3.1.6 Summary

We have presented BlackCheck, a tool for property-based black-box testing
of Curry programs. Compared to other approaches to property-based testing,
implicit nondeterminism significantly simplifies the specification of test-case
generators. We have seen how to define such generators for algebraic data
types like lists and trees and for an abstract heap data type that provides
custom constructor functions to maintain a data invariant.

The search features built into the functional logic language Curry provide
flexible means to implement various strategies for test-case enumeration. We
can provide the strategies ’exhaustive testing of small values’ (Runciman
et al. 2008) and ’random testing’ (Claessen and Hughes 2000) that resem-
ble strategies of existing tools for property-based testing and a new strategy,
namely, randomised level diagonalisation, in a single framework.

59

3 Generating Tests

We define desirable properties of search strategies used for testing. Com-
pleteness allows to proof properties by detecting search space exhaustion,
advancement ensures the generation of sufficiently large tests early, and bal-
ance ensures diverse test cases. Exhaustive enumeration is complete and bal-
anced but not advancing, random search is balanced but neither complete
nor advancing (although it often behaves as if it was—see Section 3.1.3) and
a randomised version of level diagonalisation is complete, advancing, and
balanced.

Our experimental comparison suggests that all strategies complement each
other and should be used in combination, which is simple using our tool that
provides them all. Random testing is useful to find some errors quickly, level
diagonalisation tests more thoroughly but also has higher memory require-
ments which precludes its use on some inputs. Exhaustive testing utilises the
small-scope hypothesis to search for bugs systematically but may be slow be-
cause it is not advancing.

3.2 Glass-box testing

The BlackCheck tool discussed in Section 3.1 generates test input that is in-
dependent of the tested property. Glass-box testing tries to be smarter and
generates test input according to the implementation of the property. For ex-
ample, the following property introduced in Section 3.1.3 only demands the
first element of the input list – all other elements do not influence whether
or not the property fails:

λl→ (length l > 3) =⇒ (length l > head l)

Generating concrete input that fixes not only the first but all elements of the
list is wasteful. In this example, black-box testing tries many lists that differ
only in elements behind the first and does not make use of the fact that all
those tests are equivalent. As a consequence, the search space for finding a
counter example grows unnecessarily.

We can restrict such search-space explosion using lazy evaluation (Sec-
tion 2.1.2). If we apply the above property to a nondeterministic value of
type [Int] only the first list element is evaluated. The nondeterminism hid-
den in other list elements does not influence the structure of the search space
as those elements are not demanded to decide the property. As a result, the
search space is much smaller than with black-box testing.

The deficiencies of black-box testing are apparent, when it is difficult to
satisfy the precondition of a property. For example, none of the testing func-

60

3.2 Glass-box testing

tions presented in Section 3.1 manages to find valid inputs for the following
slightly modified property.

λl→ (length l > 1000) =⇒ (length l > head l)

In this section, we present the design and implementation of a test frame-
work for glass-box testing that finds a counter example to this modified prop-
erty within a second. The implementation relies heavily on functional logic
programming features, namely, lazy nondeterminism and built-in search.
Lazy nondeterminism is crucial in order to avoid searching for parts of the
test input that is irrelevant to decide a property and the built-in search tree
representation of a nondeterministic computation is crucial to define differ-
ent strategies to traverse the search space.

In the remainder of this section we discuss GlassCheck – our proper-
ty-based framework for automated glass-box testing of functional logic pro-
grams and present an alternative to the sometimes too expensive level diag-
onalisation strategy (Section 3.2.1), discuss an implementation of fair predi-
cates that increase the laziness of some combined properties (Section 3.2.2),
and present practical benchmarks to compare black-box and glass-box test-
ing (Section 3.2.3). The complete implementation of GlassCheck is listed in
Appendix A.5.

3.2.1 Demand-driven testing

Unlike black-box testing, glass-box testing generates test input systematically
according to the program’s demand. Glass-box testing is useful for testing
algorithmically complex program units. For example, when testing different
implementations of height-balanced binary search trees, black-box testing
would use the same tests for each implementation. Glass-box testing will use
specific tests to execute the branches of the concrete implementation and is,
hence, more likely to test each implementation thoroughly. The execution
mechanism of lazy functional logic programming can be used to automate
the systematic demand-driven generation of test input.

In Curry, we can apply a function to logic variables as input to bind the in-
put exactly as demanded to compute a result. For example, we can evaluate
a call to the predefined reverse function to a logic variable l and observe the
result along with the binding for l.

> reverse l where l free
{l = []} []
More solutions? [Y(es)/n(o)/a(ll)] yes
{l = [_a]} [_a]

61

3 Generating Tests

More solutions? [Y(es)/n(o)/a(ll)] yes
{l = [_b,_c]} [_c,_b]
More solutions? [Y(es)/n(o)/a(ll)] yes
{l = [_d,_e,_f]} [_f,_e,_d]
More solutions? [Y(es)/n(o)/a(ll)] yes
{l = [_g,_h,_i,_j]} [_j,_i,_h,_g]
More solutions? [Y(es)/n(o)/a(ll)] no

This call to reverse has infinitely many nondeterministic results correspond-
ing to infinitely many bindings of l to finite lists. The input list l is bound
according to the demand of reverse and the list elements remain unbound.

In practice this approach is of limited use because not all operations bind
unbound arguments. Especially, arithmetic operations usually do not bind
unbound logic variables as arguments:

> map (+1) l where l free
{l = []} []
More solutions? [Y(es)/n(o)/a(ll)] yes
Suspended
More solutions? [Y(es)/n(o)/a(ll)] no

This example demonstrates that logic variables do not suffice as test-case
generators for all types. Instead of narrowing them, primitive operations
often suspend on unbound logic variables which hinders the process of test-
case generation. We have already seen the solution to this problem in Sec-
tion 3.1: The type class Arbitrary provides an operation arbitrary that can
be used instead of a logic variable.

> map (+1) (arbitrary :: [Int])
[]
More solutions? [Y(es)/n(o)/a(ll)] yes
[1]
More solutions? [Y(es)/n(o)/a(ll)] yes
[1,1]
More solutions? [Y(es)/n(o)/a(ll)] yes
[1,1,1]
More solutions? [Y(es)/n(o)/a(ll)] no

Using the Arbitrary type class, it is still possible to use logic variables but
we can also provide lazy nondeterministic generators as we did for integers.

Generators defined using the Arbitrary class can be evaluated lazily and,
hence, be used instead of logic variables for demand-driven testing. Opera-
tionally, narrowing of logic variables and lazy evaluation of nondeterministic
generators is very similar (see Section 2.2.3). Based on this idea, we provide
the GlassCheck tool for demand-driven testing of Curry programs.

62

3.2 Glass-box testing

Implementation of GlassCheck

The GlassCheck tool provides functions similar to quickCheck, smallCheck,
etc. shown previously. The functions are overloaded to allow checking
properties of different types, especially properties with a different number of
arguments (cf. Section 3.1.5).

quickCheck :: Testable a⇒ a→ IO ()

The type class Testable is defined differently in GlassCheck. Instead of com-
puting a search space of tests, the associated operation yields a single test
nondeterministically.

class Testable a where
test :: a→ Test

The type Test also differs from the type shown previously:

type Test = Maybe [String]

In GlassCheck, a test is an optional representation of a counter example. A
successful test is represented as Nothing and a failing test as Just input where
input is a textual representation of the arguments given to the corresponding
property that lead to the test failure. We can convert a Boolean value into a
test easily.

instance Testable Bool where
test True = Nothing
test False = Just []

The most important difference of GlassCheck compared to BlackCheck is the
definition of the Testable instance for function types that handles test input
generation.

instance (Show a, Arbitrary a, Testable b)⇒ Testable (a→ b)
where test p = fmap (show x:) (test (p x))

where x = arbitrary

Compared to the corresponding instance in BlackCheck, this definition is re-
markably simple. Instead of generating a deterministic representation of the
search space for the argument, the nondeterministic result of generating an
arbitrary value is passed to the property. No monad is involved to combine
the search spaces for the argument and for the result of the property. As the

63

3 Generating Tests

Maybe type is an instance of Functor (see Section 2.1.3), we can use fmap to
add a textual representation of the argument to the input list stored in failing
tests. For successful tests, the argument is ignored.

The benefits of laziness for glass-box testing come at a cost. When pass-
ing nondeterministic input to properties, nondeterminism caused by evalu-
ating the argument cannot be distinguished from nondeterminism caused
by evaluating nondeterministic operations used in the definition of proper-
ties9. Therefore, we do not provide combinators for testing nondeterministic
operations in GlassCheck.

Another disadvantage comes from the fact that arguments must only be
evaluated as much as demanded by the property. We cannot store a textual
representation of the arguments along with successful tests because convert-
ing an argument into a String would evaluate it completely and defeat the
goal of demand driven testing. As a consequence, we cannot provide com-
binators to collect statistical information about arguments of successful tests.

We do provide the implication operator to specify preconditions of proper-
ties. In GlassCheck, it is simply defined as partial function, failing on invalid
preconditions:

(=⇒) :: Bool→ a→ a
True =⇒ a = a

The effect of using =⇒ is that tests that correspond to input that fails to satisfy
the precondition of a property are pruned away from the search space. If the
precondition yields False without evaluating the test input completely, this
rejects many tests—possibly infinitely many—at once.

Different test functions

We provide different test functions for glass-box testing of properties that
employ different strategies to search for counter examples. The functions
quickCheck and rndCheck perform a random search. We can use quickCheck
to search for a counter example to the property shown above.

> quickCheck (\xs -> (length xs>1000) ==> (length xs>head xs))
Failure in test 1 for input:
[2165,0,3,0,1,1,-6,2,-234,0,0,-3,0,18,1,-3,0,...

9Recent research explores how to allow to distinguish between the nondeterminism inherent
to an operation and the nondeterminism passed in via arguments (see Section 3.3). How-
ever, at the time of this writing these ideas have not been implemented in a Curry compiler.

64

3.2 Glass-box testing

It finds a counter example within less than a second of which we only show
the first 17 elements10. Whether or not random search performs well de-
pends on the structure of the search tree, especially on the number of values
it contains. The search trees that originate from glass-box testing are much
less regular than those encountered during black-box testing because the
lazy pruning of preconditions influences the structure of the search space.
As invalid tests are not part of the search space, resulting search trees often
contain leaves much less frequently. The following example demonstrates
that this can be a problem for random search. Instead of using a fixed lower
bound for the length of lists, we use an additional parameter to the property.

> rndCheck 1 (\x xs -> (length xs>x)==>(length xs>head xs))
Not enough free memory after garbage collection
Current heap size: 1048576000 bytes

In this example, even a single run of random search can exhaust gigabytes
of memory if it does not arrive at a leaf. Although there are very small
counter examples, random search rarely finds one if there are few values in
the search tree.

We can use smallCheck to find small counter examples. Indeed, it quickly
comes up with the following counter example for the same property.

> smallCheck 10 (\x xs -> (length xs>x) ==> (length xs>head xs))
iterations: 5
Failure in test 2 for input:
0
[1]

On the other hand, searching small levels incrementally can take very long
if large test input is required to satisfy a precondition.

> smallCheck 10 (\xs -> (length xs>1000) ==> (length xs>head xs))
iterations: 10
OK, passed 0 tests.
> smallCheck 100 (\xs -> (length xs>1000) ==> (length xs>head xs))
iterations: 100
OK, passed 0 tests.
> smallCheck 1000 (\xs -> (length xs>1000) ==> (length xs>head xs))
iterations: 1000
OK, passed 0 tests.
> smallCheck 10000 (\xs -> (length xs>1000)==>(length xs>head xs))
iterations: 1020^C

10GlassCheck shows the complete counter example but we cut it for space reasons.

65

3 Generating Tests

The smallCheck function processes the first 1000 levels quickly because the
precondition rejects all test cases found within this limit without guessing
any elements of the input list. Hence, smallCheck reports 0 tests for all
runs searching up to 1000 levels. For lists of sufficient length, the search
slows down noticeably. The 1021st level is not reached within one minute
and no counter example is found. We can try depthCheck which performs
depth-bound search without increasing the depth limit incrementally.

> depthCheck 10000 (\xs -> (length xs>1000)==>(length xs>head xs))
Failure in test 12 for input:
[1024,0,0,0,0,0,0,...

It finds a counter example for this property in less than a second.
Finally we provide the functions sparseCheck and discrCheck that perform

limited discrepancy search on a randomised search tree either iteratively or
not, respectively. Limited discrepancy search is similar to level diagonalisa-
tion, as we describe shortly, but requires less memory.

Limited discrepancy search

In Section 3.1.4 we observed the memory requirements of level diagonalisa-
tion to be prohibitive when enumerating test input with respect to a nonde-
terministic generator for custom heaps. Iterative deepening depth-first search
enumerates the same results as breadth-first search with the memory require-
ments of depth-first search which are linear rather than exponential in the
depth of the deepest visited node. We can apply a similar approach to define
a search strategy which enumerates similar results to level diagonalisation by
incremental depth-first searches with a different notion of limit.

Instead of a depth-limit, we use the notion of discrepancy introduced by
Harvey and Ginsberg (1995). Limited discrepancy search is used with heuris-
tic search methods where children of inner nodes are ordered from left to
right according to some preference. The discrepancy of a node in the search
tree is the number of choices against the heuristics that are necessary on its
path from the root, that is, the number of steps to the right in a binary search
tree. Hence, limited discrepancy search is robust against a limited number of
wrong heuristic choices. Visiting only nodes with limited depth and discrep-
ancy leads to exploration of the search space similar as shown in Figure 3.2.
Because the limit is spend on both increasing depth and discrepancy, deep
nodes are only found in the left part of the tree.

In order to point out the similarities of level diagonalisation and limited
depth and discrepancy search, we reconsider the application of the diagonals
function to the infinite matrix discussed in Section 3.1.3.

66

3.2 Glass-box testing

diagonals [[(1, 1), (1, 2), (1, 3), ... = [[(1, 1)]
, [(2, 1), (2, 2), (2, 3), ... , [(1, 2), (2, 1)]
, [(3, 1), (3, 2), (3, 3), ... , [(1, 3), (2, 2), (3, 1)]
, ... , ...]

We can also compute the diagonals by enumerating the entries of the matrix
in an order determined by the required steps to the right and down.

Instead of computing the levels of the search tree first, we can implement a
variant of limited discrepancy search directly on values of type SearchTree a.

allValuesDiscr :: Int→ SearchTree a→ [a]
allValuesDiscr (Value x) = [x]
allValuesDiscr d (Choice ts)
| d 6 0 = []
| otherwise = concat (zipWith allValuesDiscr [d− 1, d− 2 . . 0] ts)

This function limits the depth and discrepancy of visited nodes and, thus,
produces an enumeration similar to level diagonalisation. As nodes within
the given limit are enumerated using depth-first search, allValuesDiscr needs
less memory than allValuesDiag which often retains the visited parts of levels
in memory.

Limited discrepancy search does not produce the same enumeration as
level diagonalisation but behaves similarly with respect to the properties
discussed in Section 3.1.3. Limited discrepancy search is complete. It is
advancing because it makes at most d steps to the right when visiting a node
at depth d and, thus, visits O(d2) nodes before reaching one on level d. As
we do not have an underlying heuristics that orders the nodes in the search
tree, being left-biased is a disadvantage of limited discrepancy search in our
setting. However, we can make it balanced using randomisation.

3.2.2 Fair predicates

The lazier a property checks whether it is satisfied, the smaller is the search
space of counter examples. Unevaluated nondeterministic choices in test
input do not influence the size of the search space.

The meaning of Boolean conjunction and disjunction is symmetric, yet
both are usually implemented sequentially, evaluating their first argument
before the second. If the first argument of a conjunction is expensive to com-
pute and the second is false, then evaluating the first argument is worthless
effort. If the first argument is nondeterministic and the second is determin-
istically false, then the result of sequential conjunction is needlessly nonde-
terministic. Similar observations can be made for sequential disjunction if

67

3 Generating Tests

the second argument is true. Ideally, implementations of conjunction and
disjunction would evaluate both arguments in parallel and stop if one de-
termines the result. Without concurrency, we can evaluate both arguments
stepwise interleaved. In this subsection, we discuss the implementation of
combinators for fair Boolean conjunction and disjunction. In Section 3.2.3
we will see how they help finding bugs quicker.

We provide combinators to construct primitive answers and functions for
negation, conjunction, and disjunction.

answer :: Bool→ Answer
fromAnswer :: Answer→ Bool
true, false :: Answer
neg :: Answer→ Answer
(
∧

), (
∨

) :: Answer→ Answer→ Answer

We also implement some convenience functions to work with answers – see
Appendix A.5.1 for the complete interface and its implementation.

Before the implementation idea, we show an example of using fair pred-
icates that demonstrates the fairness of conjunction. The function indefinite
is an answer that is neither true nor false:

indefinite :: Answer
indefinite = neg indefinite

The Boolean counterpart of this function diverges, and indeed,

fromAnswer indefinite

describes a diverging computation. We can, however, use indefinite as argu-
ment to fair predicate combinators and obtain a useful Boolean result from
applying fromAnswer to the result. Both

fromAnswer (false
∧

indefinite)

and

fromAnswer (indefinite
∧

false)

yield False without diverging.
In order to interleave the evaluation of predicates, we need to be able to

suspend it. We use lazy evaluation to suspend the computations of answers
and, hence, represent answers by a data type that resembles the Bool type
but has an additional case for suspended answers.

68

3.2 Glass-box testing

data Answer = Yes | No | Undecided Answer

If an answer is undecided it is only evaluated if we demand the evaluation
of the argument of the Undecided constructor. The function fromAnswer
evaluates an answer completely and yields the corresponding Boolean value.

fromAnswer :: Answer→ Bool
fromAnswer Yes = True
fromAnswer No = False
fromAnswer (Undecided a) = fromAnswer a

The Answer type is abstract. We hide its constructors to prevent users from
observing the internal representation of answers.

The function neg yields an undecided answer which can be evaluated
further to get the result:

neg :: Answer→ Answer
neg a = Undecided (negation a)

where negation Yes = No
negation No = Yes
negation (Undecided b) = neg b

Every call to neg introduces an additional occurrence of the Undecided con-
strutor which signals that more steps need to be done to compute the result
and some other expression may as well be evaluated first. Hence, indefinite
describes infinitely nested calls to the Undecided constructor.

To illustrate the interleaving in binary operations, we discuss the imple-
mentation of conjunction.

a
∧

b = Undecided (case (a, b) of
(Yes ,)→ b
(No ,)→ No
(, Yes)→ a
(, No)→ No
(Undecided x, Undecided y)→ x

∧
y)

The presence of undecided answers lets us check whether either of the ar-
guments is decided or both are undecided. If one answer is No, then the
result of

∧
is No; if one is Yes, then the result is the other argument. The

implementation is not completely balanced as the left argument is matched
before the right but if either argument is No and the other is undecided then
the result is No. Disjunction is implemented similarly, yielding Yes if either
argument is Yes.

69

3 Generating Tests

3.2.3 Practical experiments

In order to compare the presented functions for black-box and glass-box test-
ing, we have translated standard textbook algorithms to Curry, inserted dif-
ferent kinds of errors, and executed the different test functions on properties
that expose the error if a suitable counter example is found. These errors
range from deep algorithmic errors (like in Kruskal’s algorithm) based on
an insufficient understanding of the algorithm to simple oversights such as
switched arguments and wrongly selected operations (like mod instead of div
in the algorithm for matrix chain multiplication). Oversights are usually re-
vealed by many counter examples and almost all test functions expose them.
Although deep algorithmic errors require sophisticated test cases to expose
them, relatively small counter examples can be found. Where appropriate,
we define preconditions both using sequential Boolean predicates and fair
predicates as discussed in Section 3.2.2 to investigate the benefits and over-
head of the latter. In the following, we describe each experiment in detail.
See Table 3.2 for a summary.

Heap property

We have introduced an oversight in an internal merge function that is used
by the insert function for heaps shown in Section 3.1.2. The erroneous im-
plementation may generate heaps that violate the heap property and we ex-
pose the error by specifying that heaps generated by insertHeap must satisfy
the predicate isValidHeap if the original heap satisfies it.

Almost all test functions expose this simple error. The first two columns
in Table 3.2 correspond to black-box testing of small and random values re-
spectively. By + we denote that the error has been found and by − that it
remained undetected. If the run time exceeds one second, then we addition-
ally show it along with the + or − sign.

The remaining columns correspond to glass-box testing using limited depth
(denoted as small), randomised limited discrepancy (denoted as sparse),
or simple random search (denoted as random). It turns out that random
search is inappropriate for glass-box testing due to the effect described in Sec-
tion 3.2.1: if the search tree contains only few results, then random search
is likely to descend very deeply exhausting available memory quickly.

Heap sort

We have used the correct heap implementation to define a heap-sort func-
tion that works by first inserting all elements into the empty heap and then

70

3.2 Glass-box testing

bl
ac

k-
bo

x
te

st
in

g
gl

as
s-

bo
x

te
st

in
g

sm
al

l
ra

nd
om

sm
al

l
sp

ar
se

ra
nd

om
se

qu
en

tia
l

fa
ir

se
qu

en
tia

l
fa

ir
se

qu
en

tia
l

fa
ir

H
ea

p
+

+
+

+
+

+
−

(2
s)

−
(2

s)
H

ea
pS

or
t

+
+

+
+

+
A

V
L

in
se

rt
+

(2
s)

−
(1

1s
)

+
+

+
(1

s)
+

(5
s)

−
(2

s)
−

(2
s)

A
V

L
de

le
te
−

(4
9s

)
−

(9
s)

+
(1

m
8s

)
+

(1
m

1s
)

+
/
−

(6
m

)
+

/
−

(7
m

)
−

(2
s)

−
(2

s)
St

ra
ss

en
+

(4
s)

−
+

+
(1

s)
−

(5
s)

D
ijk

st
ra

+
(2

s)
−

+
+

+
(7

s)
+

(3
s)

−
(2

s)
−

(2
s)

K
ru

sk
al

+
(4

m
8s

)
−

+
(2

m
59

s)
+

(2
m

4s
)

+
/
−

(4
m

)
+

/
−

(3
m

)
−

(8
s)

−
(2

s)
D

yn
am

ic
+

+
+

+
+

+
−

(2
s)

−
(2

s)
Tr

ai
n

Ti
ck

et
−

(>
20

m
)
−

+
(2

4s
)

+
(4

5s
)

−
(3

s)

Ta
bl

e
3.

2:
C

om
pa

ri
so

n
of

bl
ac

k-
bo

x
an

d
gl

as
s-

bo
x

te
st

in
g

71

3 Generating Tests

transforming this heap into a list. To expose the simple oversight in the func-
tion that transforms a heap into an ordered list, we define a property that
checks whether the resulting list is sorted and contains all elements of the
original list.

Every test function quickly exposes the error. In fact, this is the only case
where random search works for glass-box testing. The reason is that the
heap-sort property does not involve a precondition and, hence, no tests are
pruned from the search space. Due to the lack of a precondition, we have
only used sequential Boolean predicates and there are no results for fair
predicates.

AVL trees

AVL trees (Adelson-Velskii and Landis 1962) are height-balanced binary search
trees that rely on sophisticated restructuring operations—so called rotation-
s—to maintain balance after inserting or deleting elements. AVL trees are
used in many of the following examples as auxiliary data structures. We
have investigated two different algorithmic errors. Both propagate balance
information incorrectly – the first one in the insert function and the second
one in an auxiliary function used by the delete function.

It turns out that the first error is detected more easily. Apart from those that
use random search, all test functions expose the error in the insert function
within a few seconds. In this example, random search is insufficient even for
black-box testing as it does not generate enough valid AVL trees that satisfy
the precondition.

The error in the re-balancing function used by the delete function is one
of the few that is not exposed by black-box testing of small values. Without
pruning the search space according to the precondition, the error remains
undetected. Glass-box testing of small values exposes the error in about a
minute and slightly faster if fair predicates are used. Randomised limited
discrepancy search finds the error only in some runs and takes significantly
longer than glass-box testing of small values. The run times for sparse testing
are rough averages of multiple runs incrementing the discrepancy until it
reaches a limit of 30.

Strassen’s algorithm for matrix multiplication

Strassen’s algorithm for matrix multiplication multiplies two n× n matrices
by performing seven multiplications of n/2× n/2 sub-matrices and adding
and subtracting the results in a tricky way. We have introduced an oversight
in the part of the algorithm that adds and subtracts sub-matrices and expose

72

3.2 Glass-box testing

it by comparing the result of the erroneous multiplication function with a
function for naive matrix multiplication. As a precondition we require that
the matrices generated as test input are square matrices of equal size. This
is the only example where we use a custom Arbitrary instance rather than
reusing predefined instances for base types. Our instance declaration gen-
erates only square matrices and an additional precondition checks whether
both matrices passed to the multiplication function are of equal size.

The error is exposed quickly by black-box and glass-box testing of small
values as well as sparse glass-box testing using discrepancy search. Ran-
dom search fails to find sufficiently large input matrices of equal size during
black-box testing and does not find test results during glass-box testing. We
did not express the precondition using fair predicates as it only consists of a
simple length comparison which cannot be interleaved.

Dijkstra’s shortest path algorithm

Dijkstra’s shortest path algorithm computes the distance of every node in a
weighted directed graph to some start node. It maintains a heap of nodes
ordered by upper bounds for their distance to the start node. In each iteration
a node v with minimal upper bound u is extracted from the heap and placed
in a set of finished nodes. Each unfinished neighbour v′ of v is inserted
into the heap with an upper bound computed from u and the weight of its
edge from v. Our implementation uses, in addition to the mentioned heaps,
(correct) AVL trees for representing weighted directed graphs and distance
tables.

We have introduced a deep algorithmic error that leads to incorrect han-
dling of the heap ignoring that it may contain nodes several times with differ-
ent upper bounds for their distance to the start node. We expose this error
using a property that compares the computed distance table with the result
of a correct implementation of Dijkstra’s algorithm. The property includes
a sophisticated precondition that checks whether the test input is a valid
representation of a weighted directed graph.

This error is detected quickly by all test functions that do not use random
search. Discrepancy search is again significantly slower than depth-bound
search and fair predicates cut its run time in half which shows the benefit of
interleaved property checking in the presence of complex preconditions.

Kruskal’s minimum spanning tree algorithm

We have implemented Kruskal’s algorithm to compute a minimum spanning
tree of a weighted undirected graph. The algorithm adds a selected edge to

73

3 Generating Tests

the spanning tree in each iteration. It always selects an edge with minimum
weight among all edges that do not introduce a cycle. We use a (correct)
heap to maintain the edges and a union-find data structure implemented us-
ing (correct) AVL trees to check whether a considered edge would introduce
a cycle. The weighted undirected graph is also represented as AVL tree.

Our implementation is based on the Haskell code found in the textbook
by Rabhi and Lapalme (1999). Interestingly, the code in the book contains
a deep algorithmic error in the use of the union-find data structure that we
are able to detect. We expose the error using a property that compares
the nodes and the weight of the computed spanning tree with the nodes
and weight computed by a correct implementation. The property includes
a sophisticated precondition that checks whether the test input is a valid
representation of a weighted undirected graph.

This error turns out most difficult to find among those checked in our
experiments. Black-box testing of small values reveals it after about four
minutes, glass-box testing of small values with a precondition expressed via
sequential Boolean predicates finds a counter example after three minutes,
and when using fair predicates the run time can be reduced further to about
two minutes. Whether or not randomised discrepancy search finds the error
depends on the particular program run. The run times shown for sparse test-
ing are rough averages of multiple runs iteratively increasing the discrepancy
up to the limit 30. Random search does not expose the error using black-box
or glass-box testing.

Dynamic programming

As an example for dynamic programming, we implement a higher-order
function for tabled computations and use it to solve the matrix chain mul-
tiplication problem: given a sequence of matrices find the most efficient
way to multiply them. As matrix multiplication is associative, the different
matrices can be multiplied in different orders which requires a varying num-
ber of primitive operations depending on the involved dimensions. Our
erroneous implementation spuriously uses the operation mod instead of div.
We expose this oversight by comparing the computed result with the result
of a correct implementation of the problem. The property involves a simple
precondition that checks that all given dimensions are positive.

This error is detected quickly by almost all testing functions. Only glass-box
testing with random search does not find a counter example.

74

3.2 Glass-box testing

Train ticket price

Finally, we have implemented a function that computes the price of the
cheapest ticket for the German railway company. After many simplifications
of the price structure, the managers of Deutsche Bahn have installed a sys-
tem where the price of a ticket depends on just 16 parameters. Implement-
ing this system leads to a sophisticated branching structure and some of the
branches are executed rarely. We have introduced an oversight into one of
these branches and exposed it by comparing the computed result with the
result of a correct implementation. The property includes a simple precon-
dition that ensures that the 16 input parameters are assigned sensibly.

Black-box testing does not expose the error hidden in one branch of the
computation. Even after 20 minutes of exhaustive testing of small values no
counter example is found. Glass-box testing reveals the error after half a
minute when checking small values exhaustively, randomised discrepancy
search takes a bit longer. As the run time of sparse glass-box testing varies,
we have computed an average of multiple runs.

The search space in this example is huge because many of the input param-
eters are numbers which are evaluated nondeterministically to all possible
values. An alternative representation of numbers as logic variables in combi-
nation with constraint programming to bind them could significantly reduce
the size of the search space in this example and others that rely heavily on
arithmetic computations.

3.2.4 Summary

Glass-box testing, as opposed to black-box testing, is the systematic gen-
eration of test input considering the concrete implementation of the tested
code. It is often performed by manually investigating the source code and its
branching structure to devise test input that executes specific parts of the pro-
gram. Lazy functional logic programming allows to automatically generate
test input according to the demand of a program, which results in test input
that is tailor made for executing different branches of its implementation.

One possibility to leverage the execution mechanism of functional logic
programming to generate test input is to call the tested function with logic
variables as input. As a result of executing such a call in a functional logic
programming environment, the input variables are bound exactly as much
as demanded by the tested function. A disadvantage of this approach is
that it does not generalise to arithmetic computations. Arithmetic functions
usually do not bind unbound arguments. Therefore, generating test cases
by binding logic variables is only possible with programs that do not use

75

3 Generating Tests

arithmetic functions or use an implementation of numbers as algebraic data
types (Braßel et al. 2008).

We generalise the idea of narrowing-driven test-case generation by using
class-based overloading which allows user-defined implementations of test-
case generators. The simplest form of nondeterministic generators simulates
the binding of unbound logic variables of algebraic data types using lazy
nondeterminism (see Section 2.2.3) but different implementations are pos-
sible. For example, we provide various implementations of generators for
an abstract heap data type and a generator for numbers that nondeterminis-
tically evaluates to every integer.

An alternative implementation for a generator of arbitrary type could sim-
ply yield a logic variable. This requires, however, that the operations that
demand the test input bind unbound arguments appropriately. For num-
bers this requires constraint programming which could complement our test
framework beneficially.

Demand-driven testing is useful for testing properties with preconditions.
While black-box testing may generate many tests that violate a precondition,
demand-driven testing can reject partially evaluated test input that represents
many invalid tests at once. Complex and restrictive preconditions often im-
prove the performance of glass-box testing as they prune the search space.

We have introduced errors in nine algorithmically complex programs to
compare black-box and glass-box testing with different strategies. We did
not consider level diagonalisation for black-box testing because of its perfor-
mance problems. Limited discrepancy search is a more efficient alternative
that we use for glass-box testing where it is outperformed by iterative deep-
ening depth-first search. Simple random search is rarely useful for glass-box
testing at least if the properties specify preconditions. In our experiments,
glass-box testing with depth-bound search outperforms all other strategies.

3.3 Chapter notes

The basis of the work presented in this chapter has been published previ-
ously. The idea of using Curry to systematically generate glass-box tests has
been published in the Proceedings of the ninth ACM SIGPLAN International
Symposium on Principles and Practice of Declarative Programming (Fischer
and Kuchen 2007). The design and implementation of a tool for black-box
testing of Curry programs appeared in the Proceedings of the 9th Interna-
tional Symposium on Functional and Logic Programming (Christiansen and
Fischer 2008). The benchmarks used in the comparison of black-box and
glass-box testing (Section 3.2.3) resemble those presented in work on code

76

3.3 Chapter notes

coverage (see Chapter 4) which has been published in the Proceedings of
the 13th ACM SIGPLAN International Conference on Functional Program-
ming (Fischer and Kuchen 2008). The implementation of fair, interleaving
predicates (Section 3.2.2) has been published online (Fischer 2009b) and is
available via the Haskell package database (Hackage).

The level diagonalisation search strategy that we have used for black-box
testing has been first presented by Christiansen and Fischer (2008). Only
later, we discovered the similarities to limited discrepancy search (Harvey
and Ginsberg 1995) which has similar properties but is more efficient. For
random search we use an approach similar to iterative sampling (Langley
1992) with the difference that our search algorithm does not stop at dead
ends in the search tree but backtracks until it finds the first result in each
randomised run.

Related work

Early tools for black-box testing of functional programs generate test input
randomly or deduce them from a specification (Claessen and Hughes 2000;
Koopman et al. 2002). Since they do not take the implementation into ac-
count, they cannot ensure that all parts of the program are actually executed
by the test cases. Hence, errors in uncovered parts of the program may
remain undetected by these tools.

Simultaneously with our developments, Lindblad (2007) and Runciman
et al. (2008) have developed new tools for demand-driven testing of Haskell
programs. Instead of using it, they simulate functional logic programming
in Haskell either by using a dedicated library (Naylor et al. 2007) or by ex-
ploiting a tricky combination of laziness and exceptions to simulate logic
variables. As these tools do not use a functional logic programming lan-
guage but simulate their features, their implementation is not as simple as
the implementation of our glass-box test tool (see Section 3.2.1).

In Section 3.2.1 we have mentioned that we cannot provide combinators
for nondeterministic properties when using glass-box testing. The reason
is that we cannot distinguish whether a nondeterministic choice is caused
by demanding (or narrowing) an unknown argument or by nondeterministic
operations used in the property. Nondeterminism in the arguments corre-
sponds to different test cases whereas nondeterminism in the property corre-
sponds to different results of a single test case. Recently, Antoy and Hanus
(2009) have proposed set functions that allow to make exactly the missing
distinction. The set function fS of a function f encapsulates only the non-
determinism in the definition of f but not that in arguments. If there was a
Curry system that would support both set functions and encapsulated search,

77

3 Generating Tests

then we could support nondeterministic properties during glass-box testing
by encapsulating the nondeterministic results of calling the corresponding
set functions of properties.

An approach for generating glass-box test cases for Java has been presented
by Lembeck et al. (2004); Müller et al. (2004). They incorporate techniques
known from logic programming into a symbolic Java virtual machine in or-
der to implement code-based test-case generation. A similar approach based
on a Prolog simulation of a Java Virtual Machine is presented in Albert et al.
(2007). A related approach to test-case generation for logic programs is dis-
cussed in Degrave et al. (2009). Here, test cases are not generated by execut-
ing the program but by first computing constraints on input arguments that
correspond to an execution path and then solving these constraints to obtain
test inputs that cover the corresponding path.

78

4 Code Coverage
In the previous chapter we have distinguished back-box testing and glass-box
testing. Glass-box testing aims at executing different parts of the source code
of a tested program systematically. We can use the notion of code coverage
to describe in detail how tests execute the tested program.

For imperative programming languages there are a number of established
code-coverage criteria. For example,

function coverage describes which functions, procedures, or methods of
the tested program have been executed by a test,

statement coverage describes which statements have been executed, and

condition/decision coverage describes to which results Boolean expressions
have been evaluated and which branches of conditional control struc-
tures like if-then-else statements or while-loops have been executed.

More complex criteria investigate the control or data flow of the tested pro-
gram. They allow to detect which edges of—or paths through—the con-
trol-flow graph of a program are executed or which assignments of variables
affect which of their uses in a specific program run.

Code coverage information serves different purposes. Most importantly,
it increases the confidence in tested code, if the tests cover it (almost) com-
pletely. It is important to note, however, that no coverage criterion can guar-
antee the absence of errors even if full coverage is achieved. A finite set of
covered items can only approximate the possibly infinite variety of program
behaviours. Coverage criteria differ in how accurately they distinguish inter-
esting differences in program runs and how well they expose errors when
full coverage is achieved.

Another possibility to leverage code coverage information is to present
programmers information about the items covered during failing tests. This
can narrow down the amount of code programmers need to review when
searching for the cause of test failure. For example, the information which
statements have been executed in a failing test and which branches were
taken in certain decisions may hint at where the error is.

Finally, code coverage can also be used to automatically minimise a large
set of generated tests. Tests that induce code coverage which is already ob-
tained by other tests can be considered redundant and eliminated from the

79

4 Code Coverage

test suite. Finding a small set of test cases that achieve the same code cover-
age as a much larger set of automatically generated tests is useful for regres-
sion testing where tests are re-executed after changes of the implementation.
Also, if the result of tests must be evaluated manually by programmers, it
is important not to present them with too many tests but show only a small
number of relevant ones.

Expression coverage

Although well investigated for imperative programming languages, code cov-
erage has received little attention in the area of declarative programming. Si-
multaneously with our developments, Gill and Runciman (2007) have devel-
oped Haskell Program Coverage (HPC) which implements expression cover-
age—a coverage criterion for the functional programming language Haskell
inspired by statement coverage. As an introduction to declarative code cover-
age we review this coverage criterion and discuss its benefits and limitations.

Expression coverage describes which expressions in a program are de-
manded. Coverage is monitored for every sub-expression of combined ex-
pressions and, hence, allows to observe coverage at a fine granularity: when
executing the call takeWhile (>0) (3 : 2 : 1 : 0 : 0 : 0 : []) HPC would mark the
first four list constructors and the first four elements as being demanded and
the remaining zeros as well as the constructor for the empty list as uneval-
uated. HPC is useful to get an overview which parts of a program are exe-
cuted by a program run. It can be combined with automated test tools like
QuickCheck and SmallCheck to get hints where testing can be improved.

Expression coverage can be easily presented to the user in the form of
colourised source code that shows which parts of a program have been exe-
cuted. Hence, in order to track down a bug, users can run a failing test and
highlight the executed parts of the program to find the error more quickly.

It turns out, however, that expression coverage is by no means a thorough
criterion. There are small programs—like the following—where HPC reports
100% code coverage for a program run that executes an erroneous function
without exposing the fault.

reverse [] = []
reverse (x : xs) = [x] ++ reverse xs
[] ++ ys = ys
(x : xs) ++ ys = x : xs ++ ys
test xs ys = reverse xs ++ reverse ys =I reverse (ys ++ xs)
main = print (test [1] [])

80

4.1 Control flow

This implementation of reverse is faulty: the arguments of ++ in the second
rule of reverse are swapped. Yet checking the anti-distributive property of
reverse with a singleton and an empty list demands every expression in the
program without revealing the bug. The result of the shown call test [1] []
is incidentally True because reverse is never called with a list with more than
one element (on such short lists the given definition of reverse is correct).
Calling test [1] [2] reveals the error—and automated test tools come up with
this or a similar test—but this call is not necessary to achieve full expression
coverage.

This qualifies the adequacy of expression coverage for two of the afore-
mentioned purposes of code coverage. Such a weak criterion does not
provide strong confidence in the correctness of tested code even if 100%
coverage is achieved and it is certainly inappropriate to minimise a set of au-
tomatically generated test cases with respect to expression coverage because
too many relevant tests would be considered redundant.

In this chapter we present more thorough criteria for control- and data-flow
coverage in declarative programs (Sections 4.1 and 4.2). After introducing
the different notions of coverage intuitively, we formally describe how to
compute such information for functional logic programs (Section 4.3). Fi-
nally, we evaluate the different criteria experimentally (Section 4.4).

4.1 Control flow

Lazy declarative languages like Curry have no assignments and a rather com-
plicated control-flow (due to laziness), which cannot easily be represented
by a control-flow graph. Therefore, we cannot simply transfer the code cov-
erage criteria from the imperative to the declarative world, but need adapted
notions. In this section, we will present two different coverage criteria:
Rule Coverage (Section 4.1.1) and Call Coverage (Section 4.1.2) which cor-
respond both to variants of control-flow coverage in imperative languages.

In imperative languages, control-flow coverage describes which branches
are taken in control structures like if-then-else statements. In declarative lan-
guages, control-flow is often expressed using pattern matching in multiple
rules of function definitions. Hence, our control flow criteria consider the
different rules of functions. Note that our criteria apply to if-then-else expres-
sions which are just function calls in Haskell or Curry.

81

4 Code Coverage

4.1.1 Rule coverage

Rule coverage describes which rules of which functions have been executed
during a specific program run. The idea is to label the rules of each function
uniquely and collect all labels that correspond to executed rules. If labels
corresponding to all rules of the tested function and all rules of directly or in-
directly called functions are collected during testing, then full rule coverage
is achieved. Note that rule coverage is subsumed by expression coverage
because each rule of a program is executed if and only if its right-hand side
is demanded.

In glass-box testing for imperative languages, typically only code that is
part of a single function or procedure declaration is considered. Due to
control structures like loops present in imperative languages, there is often
no need to consider more than one function to obtain interesting test cases.
In declarative programming, (recursive) function calls are used to express
control structures and to replace loops. Since the functions in a declarative
program are typically very small and consist of a few lines only, it is not
sufficient in practice to cover only the code of the function to be tested.
Thus, we aim at covering the code of all the directly and indirectly called
functions, too.

For example, a call to main defined in the introduction to this chapter
executes every rule of the shown program. Bugs can hide easily in rules of a
program despite testing with full rule coverage. If fact, all rules of the reverse
and ++ functions are already executed by calling reverse [1]: the second rule
of reverse is executed by the initial call, the recursive call to reverse executes
the first rule, the call to ++ in reverse executes the second rule of ++, and the
recursive call to ++ in the second rule of ++ executes the first rule of ++ in
this example.

Rule coverage is similar to expressions coverage: easy to explain and vi-
sualise but insufficient for building confidence in tested code or eliminating
redundant tests. It is even more basic than expression coverage as it does
not describe coverage of sub-expressions.

4.1.2 Call coverage

Rule coverage has two disadvantages: it does not ensure thorough testing
and the number of rules to be covered may be quite large if the tested func-
tion depends on many other functions. We can modify the notion of rule
coverage to overcome both disadvantages with a novel coverage criterion,
namely, call coverage. Full call coverage with respect to a function f is
achieved if every reachable call to f executes every rule of f .

82

4.1 Control flow

Call coverage ensures more thorough testing than simple rule coverage
because every call to a function needs to execute every rule individually.
It is not enough that all different calls in a program execute all rules of a
function together. Moreover, the number of possible items to be covered is
smaller than with simple rule coverage if we only aim at call coverage for
the tested function f : the reachable calls of f can only be in f or in functions
that are mutually recursive to f . Such functions are usually within a more
limited fraction of the code than all reachable functions.

We can illustrate the benefits of call coverage by reconsidering the erro-
neous reverse implementation. The call to main does not cause full call
coverage with respect to reverse because there are calls to reverse which do
not execute every rule of reverse:

• the recursive call in the second rule of reverse only executes the first
rule and

• each call to reverse in test executes only one rule of reverse.

We cannot achieve full call coverage with respect to reverse with a single
call to test. The following calls to the test function form a minimal set of test
cases that achieves full call coverage with respect to reverse and reveals the
bug.

test [] []
test [1] [2]

Using these tests, each call to reverse in test executes both rules and also the
recursive call to reverse in the second rule of reverse executes not only the
first but also the second rule because the third call to reverse in test is applied
to a list with two elements by the second test.

It is not always possible to achieve full call coverage. For example, we
cannot achieve full call coverage with respect to ++ in a program that calls
the erroneous definition of reverse. The call to ++ in the second rule of
reverse can never execute the first rule because ++ is applied to a non-empty
list explicitly.

Moreover, even full call coverage does not guarantee the absence of er-
rors. For example, the following set of calls to the test function also achieves
full call coverage with respect to reverse but does not reveal the error.

test [] []
test [1] []
test [] [1, 2]

83

4 Code Coverage

Although it is less likely to miss a bug with full call coverage compared to
rule coverage, it is not impossible which hints at the incomplete nature of
every coverage criterion. In Section 4.4 we evaluate experimentally that call
coverage works quite well to reveal bugs using practical example programs.

4.2 Data flow

Data-flow testing intends to provide a system of test cases which ensures
that each computed value reaches every possible place, where it is used.
In imperative languages, data-flow testing is usually based on covering all
so-called def-use chains. A def-use chain is a triple consisting of a variable,
a statement, where a value for this variable is computed (defined), and a
statement, where this value is used and where this value has not been over-
written in between. In the following C code, for instance, the assignments
in lines 1 and 4 form a def-use chain for variable x.

1 x = 1;
2 z = 2;
3 if (p()) {
4 y = x;
5 }

If p() never delivers true (which is undecidable in general), the def-use
chain is purely syntactic, but cannot be passed by a test case and it is hence
irrelevant for testing.

To the best of our knowledge there is no notion of data-flow coverage for
(lazy) declarative languages. The imperative criteria cannot be simply trans-
ferred, since there are no assignments in declarative languages and laziness
has to be taken into account. In this section, we propose a novel notion
of data flow in declarative programs. We do not adapt traditional criteria
from imperative programming languages that refer to definitions and uses of
variables. Rather, our notion is based on algebraic data types and pattern
matching – central abstraction mechanisms of declarative languages.

We define a declarative def-use chain as a pair of source code positions
that correspond to the creation and elimination of data. There are two kinds
of data that can flow through a declarative program: terms are created by
constructors and eliminated by pattern matching and functions are created
by partial applications or lambda abstractions and eliminated by applica-
tions. Hence, we regard constructors and partial applications or lambda ab-
stractions as definitions, and patterns or applications as uses in a declarative
def-use chain.

84

4.2 Data flow

4.2.1 Constructors flow to patterns

Consider the following (correct) implementation of the naive reverse func-
tion in Haskell.

reverse [] = []
reverse (x : xs) = reverse xs ++ (x : [])
[] ++ ys = ys
(x : xs) ++ ys = x : xs ++ ys

We use the notation x : [] instead of [x] in the second rule of reverse to be
able to distinguish the different list constructors and indicate possible data
flow as arrows from a constructor to a corresponding pattern. The function
reverse introduces three constructors, namely [] in the first and second rule
and (:) in the second rule. The function ++ also introduces the constructor
(:) in its second rule. It does not introduce new constructors in its first rule
but yields the value given as second argument.

For a given expression, we are interested in the data flow caused by its
lazy evaluation. We want to know, which values are matched against which
patterns, that is, to which patterns introduced data constructors flow. For ex-
ample, the expression reverse [] causes the constructor [] that is introduced
in this expression to flow to the pattern in the first rule of reverse – in fact, it
is matched immediately.

The expression reverse (42 : []) causes a more complex data flow. The
introduced constructor (:) is again matched immediately by reverse. The
number 42 is not matched during the execution and the constructor [] is
matched by reverse in the recursive call. However, there is more data flow
in this execution. The result of the recursive call to reverse is matched by
the function ++. During the execution of reverse (42 : []) there is only one
recursive call to reverse and its result is the constructor [] introduced in the
first rule of reverse. Therefore, this constructor flows to the pattern in the first
rule of ++.

In the previous examples, we have observed the data flow that is caused
by specific applications of reverse. If we are interested in the flow of data that
can be caused by any call to reverse, we can apply reverse to a logic variable
and observe which constructors in the program flow to which case expres-
sions. The results are depicted in Table 4.1. We refer to the constructors
introduced by reverse as []-rev1, []-rev2 and (:)-rev and the construc-
tor introduced by ++ as (:)-app. We refer to the patterns of the functions
as rev-[], rev-(:), app-[], and app-(:).

85

4 Code Coverage

Narrowed Call Result Def-Use Chains

reverse [] [] —
reverse [a] [a] []-rev1→ app-[]

reverse [a, b] [b, a]
[]-rev1→ app-[]
[]-rev2→ app-[]
(:)-rev→ app-(:)

reverse [a, b, c] [c, b, a]

[]-rev1→ app-[]
[]-rev2→ app-[]
(:)-rev→ app-(:)
(:)-app→ app-(:)

reverse [a, b, c, d] [d, c, b, a]

[]-rev1→ app-[]
[]-rev2→ app-[]
(:)-rev→ app-(:)
(:)-app→ app-(:)

Table 4.1: Data flow in applications of reverse.

An introduced constructor c and a pattern p where c is matched form
a def-use chain denoted by c → p. For def-use chains, only constructors
introduced in the program are considered. Constructors that are part of the
initial expression do not contribute to the data flow of a program. We can
observe that none of the constructors introduced in the program is matched
by reverse and all are matched by ++. It may be surprising that even the
constructor (:) introduced by ++ can be matched by ++ itself. The reason is
that this (:) is the result of a call to reverse with at least two arguments and,
therefore, it flows to the first argument of ++ in a call to reverse with at least
three arguments.

4.2.2 Functions flow to applications

Another source for data flow in declarative programs are higher-order func-
tions. Partial applications and lambda abstractions flow through a program
like constructed terms and, therefore, we treat them as data too. The dif-
ference is that functions are not matched in case expressions but applied.
Hence, a def-use chain can also be a pair of a functional value and an occur-
rence of an application where the functional value is applied.

86

4.2 Data flow

Consider a more efficient implementation of the reverse function.

rev l = foldl (flip (:)) [] l
foldl e [] = e
foldl op e (x : xs) = foldl op (op e x) xs
flip f y z = f z y

Apart from the constructors, the definition of rev introduces two partial ap-
plications – to flip and to (:). When rev is applied to a non-empty list the
partial application of flip to the argument (:) flows to the application of op
to e and x in the definition of foldl. The partial application of (:) to zero
arguments flows to the application of f to z and y in the definition of flip.

4.2.3 Comparison with Control Flow

Control Flow and Data Flow are complementary notions of code coverage.
None of them subsumes the other. We will substantiate this claim by means
of practical experiments in Section 4.4 but can also give an intuitive expla-
nation by means of simple examples.

The identity function can be covered with respect to rule coverage (see
Section 4.1.1) with one test case that executes it.

id :: a→ a
id x = x

Full dataflow coverage is already achieved with zero tests because it does
not contain any construtors.

We have already seen an example of why call coverage (Section 4.1.2)
is more difficult to achieve than rule coverage. The function test contains
three different calls to reverse which need to be covered separately when
considering call coverage whereas for rule coverage it would be enough if
one call executes the first rule of reverse and another executes the second.

Call coverage subsumes rule coverage and is, therefore, not subsumed by
data flow coverage, as the example with the identity function shows. That
data flow coverage is also not subsumed by rule coverage is again apparent
from the previous example: covering both rules in all calls to reverse, even in
the recursive call, requires only a call to reverse with an argument of length
two. However, to achieve full data-flow coverage, that is, to induce the flow
of the (:) constructor in ++ to the pattern of ++, requires a call to reverse with
an argument of length three.

87

4 Code Coverage

4.3 Monitoring code coverage

We have implemented a program transformation to collect coverage infor-
mation during the execution of a declarative program.

4.3.1 Lazy coverage collection

A distinguishing property of our approach is that instrumented programs do
not use side effects to collect information about the execution of the origi-
nal program. The instrumented program computes, along with the original
result, a set of items that are covered during the computation. Such items
represent information about the control- or data-flow of the execution.

In lazy declarative languages expressions are only evaluated as much as
demanded. If an expression is matched by a pattern, it is evaluated until the
top-level constructor is known but its arguments may remain unevaluated. If
a functional expression is applied to another expression, it is evaluated until
its argument variable and body is known and then applied to the uneval-
uated argument. Partly evaluated expressions like constructors with possi-
bly unevaluated arguments or functions with unevaluated bodies are called
(weak) head-normal forms.

When implementing a program transformation for coverage collection in
lazy declarative programs, we need to take laziness into account. The fact
that we monitor the coverage that is induced by the evaluation of certain
expressions must not influence the way in which those expressions are eval-
uated. The execution order of the instrumented program must reflect the
execution order of the original program in order to not distort the results.

As an example, consider the following application of the head function to
a result of calling ++.

head ([1, 2] ++ [3])
= head (1 : ([2] ++ [3]))
= 1

During this computation, the call to ++ is only evaluated to head-normal
form – the tail of the result, [2] ++ [3], remains unevaluated. Consequently,
the first rule of ++ which matches the empty list is not executed in order to
compute the result 1 of the shown call to head.

In order to preserve the evaluation order of the original program and col-
lect coverage information that corresponds to lazy computations, we attach
a set of covered items to every computed constructor rather than to the com-
plete result as a whole. As a result, coverage information that belongs to

88

4.3 Monitoring code coverage

unevaluated computations is not collected. For example, the covered items
attached to the result of [2] ++ [3] can be discarded in the instrumented
version of the above call to head.

Figure 4.1 shows the lazy computation of main defined as follows1:

main = reverse [x, y]

For the sake of clarity, we only collect data-flow information in this example
and omit control-flow coverage. We write constructors in prefix notation and
give a subscript to every constructor in the program in order to distinguish dif-
ferent occurrences of the same constructor. The data flow of a computation
is denoted by a superscript to corresponding expressions: a set of def-use
chains that is attached to an expression denotes exactly those def-use chains
that belong to the computation of its head-normal form.

After the unfolding of main, the initial call to reverse is unfolded. In this
call, the first occurrence of the constructor (:) in function main is matched
by reverse. This data flow is denoted as (:)main1 → rev and attached to the
result of the unfolding. The next step is again an unfolding of reverse. In
this call the second occurrence (:)main2 of (:) in main is matched and we
attach the corresponding data flow to the result of the unfolding. In its last
recursive call, reverse is applied to the empty list []main introduced in the
right-hand side of main. The result of this call is the first occurrence []rev1 of
[] in reverse and we attach the corresponding data flow []main → rev. The
empty list that was the result of the previous call is now matched in a call to
the function ++. Note that the matched value []rev1 has an attached def-use
chain []main → rev and that we attach this def-use chain to the result of the
call to ++. Additionally, the new def-use chain []rev1 → ++ is recorded. The
result of this call is again matched in a call to ++, and, again, we attach the
coverage information of the matched value to the result of the call and record
the new def-use chain (:)rev → ++. Now the computation to head-normal
form is finished and the data flow caused by this computation is attached to
the computed head-normal form. If we continue computing underneath the
top-level constructor (:)++, there is one step left that unfolds the last call to
++. The data flow []rev → ++ that is caused by this call is attached to the
singleton list underneath the top-level constructor (:)++. Attaching coverage
information to each sub term individually allows to collect data flow of lazy
computations. If the tail of the resulting list, computed in Figure 4.1, would
be discarded (for example, by projecting to the head) then the def-use chain
[]rev2 → ++ would be discarded as well.

1In the definition of main, the variables x and y denote arbitrary values.

89

4 Code Coverage

m
ain
→

reverse
((:)m

ain
1

x
((:)m

ain
2

y
[]m

ain))

→
(reverse

((:)m
ain

2
y

[]m
ain)++

((:)rev
x

[]rev
2)) {(:)m

ain1 →
rev}

→
((reverse

[]m
ain

++
((:)rev

y
[]rev

2)) {(:)m
ain2 →

rev}
++

((:)rev
x

[]rev
2)) {(:)m

ain1 →
rev}

→
(([] {[]m

ain →
rev}

rev
1

++
((:)rev

y
[]rev

2)) {(:)m
ain2 →

rev}
++

((:)rev
x

[]rev
2)) {(:)m

ain1 →
rev}

→
(((:)rev

y
[]rev

2) {(:)m
ain2 →

rev,[]m
ain →

rev,[]rev1 →
++
}
++

((:)rev
x

[]rev
2)) {(:)m

ain1 →
rev}

→
((:)++

y
([]rev

2 ++
((:)rev

x
[]rev

2))) {(:)m
ain1 →

rev,(:)m
ain2 →

rev,[]m
ain →

rev,[]rev1 →
++

,(:)rev →
++
}

→
((:)++

y
((:)rev

x
[]rev

2) {[]rev2 →
++
}) {(:)m

ain1 →
rev,(:)m

ain2 →
rev,[]m

ain →
rev,[]rev1 →

++
,(:)rev →

++
}

Figure
4.1:C

om
putation

ofdata
flow

forreverse
[x,y]

90

4.3 Monitoring code coverage

4.3.2 Combinators for coverage collection

We now describe our program transformation by example. We introduce
types to represent values with attached coverage information and combina-
tors that operate on values of such types starting with simple versions for
rule coverage that we subsequently refine to incorporate call coverage and
data-flow coverage.

Wrapping constructors

We represent values with attached coverage information as values of the
parametrised type C a. A number with attached coverage information has
type C Int, a string with attached coverage information has type C String and
a list with elements of an arbitrary type a with attached coverage information
has type C [a]. The implementation of the type C and its operations is
presented in Section 4.3.4 – for now we confine ourselves to discuss its
interface.

In order to construct nested values with attached coverage information,
we can use the following operations.

cons :: a→ C a
(~) :: C (a→ b)→ C a→ C b

The combinator cons wraps an arbitrary value into the C type attaching an
empty set of coverage information, and the apply operation ~ applies a
wrapped function or constructor to a wrapped argument. We only use ~
with constructors to construct nested values with attached coverage infor-
mation. For example, a wrapped representation of [42] is constructed by
cons (:)~ cons 42~ cons []. The combinator ~ binds left associatively and
we can decompose this nested application into individual parts to verify that
it is type correct. The term cons (:) has type C (a→ [a]→ [a]) and cons 42
has type C Int, hence, cons (:)~ cons 42 has type C ([Int] → [Int]). The
term cons [] has type C [a] and, thus, the nested application shown above
has type C [Int]. The resulting value stores distinct sets of coverage informa-
tion for each of the three constructors, (:), 42, and [].

Monitoring control flow

We use the correct implementation of the naive reverse function from Sec-
tion 4.2.1 to illustrate how we collect coverage information. We start with
rule coverage. In order to translate pattern matching, we need combinators

91

4 Code Coverage

that allow us to match values wrapped with coverage information. The com-
binator match :: C a → (a → C b) → C b serves half of this purpose2:
it takes a wrapped value to be matched, supplies the unwrapped value to
the given function and yields the result of this call. The function given as
second argument to match can match the original value without attached
coverage information. It computes the result of type C b using another com-
binator rulen that takes a representation of a rule as well as the arguments
of the matched constructor, and supplies wrapped arguments to the given
function.

rulen :: RuleID→ C a→ a1 → ... an → (C a1 → ... C an → C b)→ C b

An instrumented version of the reverse function using these combinators can
be defined as follows.

reverse :: C [a]→ C [a]
reverse l = match l rules where

rules [] = rule0 "rev-[]" l (cons [])
rules (x′ : xs′) = rule2 "rev-(:)" l x′ xs′

(λx xs→ reverse xs ++ (cons (:)~ x~ cons []))
(++) :: C [a]→ C [a]→ C [a]
l ++ ys = match l rules where

rules [] = rule0 "app-[]" l ys
rules (x′ : xs′) = rule2 "app-(:)" l x′ xs′

(λx xs→ cons (:)~ x~ (xs ++ ys))

We have instrumented both the reverse function and the ++ function used by
reverse. The types of both functions have changed to account for coverage
information attached to arguments and results.

The match combinator is applied to the matched argument l and a func-
tion rules that performs the matching on the unwrapped argument in both
functions. The right-hand side of rules is defined in terms of a rulen combi-
nator3 that takes a rule identifier, the matched value with attached coverage
information, and the arguments of the unwrapped value without coverage
information. The last argument to rulen is a function that takes wrapped
representations of the arguments of the matched constructor and uses them
in the transformed right-hand side of the original rule. The coverage infor-
mation attached to the wrapped arguments x and xs is extracted from the
wrapped representation of l and attached to the unwrapped arguments x′

and xs′ by the rule2 combinator. In this example, we use strings as rule

2The fact that the type of match hints at monadic bind is no coincidence (cf. Chapter 5).
3We provide implementations of rulen for different n.

92

4.3 Monitoring code coverage

identifiers for simplicity. Our implementation uses a different representa-
tion. The rulen combinators add the given rule identifier to the coverage
information attached to the head-normal form of their result to monitor the
corresponding rule coverage.

In order to monitor call coverage, we add an additional call identifier to
every function call. This argument is passed to the rulen combinators to
monitor not only which rule has been executed but also to which call of
the corresponding function it belongs. The instrumentation of the reverse
function can be extended to monitor call coverage as follows. The only
differences compared to the previous version are the additional argument
callID and that ++ is written in prefix notation.

reverse :: CallID→ C [a]→ C [a]
reverse callID l = match l rules where

rules [] = rule0 callID "rev-[]" l (cons [])
rules (x′ : xs′) = rule2 callID "rev-(:)" l x′ xs′

(λx xs→ (++) "app-rev"
(reverse "rev-rev" xs)
(cons (:)~ x~ cons []))

(++) :: CallID→ C [a]→ C [a]→ C [a]
(++) callID l ys = match l rules where

rules [] = rule0 callID "app-[]" l ys
rules (x′ : xs′) = rule2 callID "app-(:)" l x′ xs′

(λx xs→ cons (:)
~ x~ ((++) "app-app" xs ys))

Monitoring data flow

We now extend the presented approach such that not only control-flow cov-
erage can be monitored but also data-flow coverage. The key extension is
to not only label data constructors with coverage information but also with
an identifier that uniquely represents the occurrence of a constructor in the
source code. In order to label constructors, we change the cons combinator
such that it takes an additional identifier.

cons :: ConsID→ a→ C a

This is the only extension that is necessary to support the collection of de-
f-use chains from constructors to patterns: The rulen combinators can query
the label of the wrapped matched argument and collect a def-use chain from
this label to the given rule identifier.

93

4 Code Coverage

Here is the final version of the instrumented reverse function that supports
monitoring of both control-flow and data-flow coverage. The only difference
compared to the previous version is the additional identifier in calls of the
cons combinator.

reverse :: CallID→ C [a]→ C [a]
reverse callID l = match l rules where

rules [] = rule0 callID "rev-[]" l (cons "[]-rev1" [])
rules (x′ : xs′) = rule2 callID "rev-(:)" l x′ xs′

(λx xs→ (++) "app-rev"
(reverse "rev-rev" xs)
(cons "(:)-rev" (:)
~ x~ cons "[]-rev2" []))

(++) :: CallID→ C [a]→ C [a]→ C [a]
(++) callID l ys = match l rules where

rules [] = rule0 callID "app-[]" l ys
rules (x′ : xs′) = rule2 callID "app-(:)" l x′ xs′

(λx xs→ cons "(:)-app" (:)
~ x~ ((++) "app-app" xs ys)

This version of the instrumented reverse function can be used to monitor the
def-use chains depicted in Table 4.1.

As final example for an instrumented program, we consider the efficient
reverse function defined in terms of higher-order functions. We provide an
additional combinator to transform applications of higher-order functions:

apply :: AppID→ C (C a→ C b)→ C a→ C b

As we consider functions as data that flows through a program they are also
wrapped in the C type and have, hence, associated coverage information
and an identifier that represents their source code location.

Partial applications are transformed into possibly nested applications of
the cons combinator to lambda abstractions. For example, the call flip f can
be translated as follows:

cons i1 (λx→ cons i2 (λy→ flip i f x y))

If the original expression flip f is of type a → b → c then the instrumented
version shown above, which uses instrumented versions of flip and f , is of
type C (C a → C (C b → C c)). The identifiers i1 and i2 represent the
positions of the different lambda abstractions and can be the definition part
in def-use chains to the position of an application where the corresponding

94

4.3 Monitoring code coverage

lambda abstraction is applied. The two lambda abstractions can be applied
in completely different program positions, hence, we distinguish them in
order to monitor separate def-use chains for each application. The identifier
i represents the position of flip and is used to monitor call coverage.

Partial applications of constructors need to be handled differently because
constructors are not instrumented like functions and do not take wrapped
arguments. In order to transform a partial constructor application, we use
additional calls to the combinator ~. For example, the partial application of
the (:) constructor to zero arguments can be transformed as follows:

cons i1 (λx→ cons i2 (λxs→ cons i (:)~ x~ xs))

The original expression (:) has type a → [a] → [a] and the instrumented
version shown above has the type C (C a → C (C [a] → C [a])). The iden-
tifiers i1 and i2 can be recorded in def-use chains to applications while the
identifier i will be recorded in a def-use chain to every pattern that matches
this occurrence of (:).

We are now ready to instrument the definition of the reverse function
shown in Section 4.2.2.

rev :: CallID→ C [a]→ C [a]
rev callID l = rule callID "rev"

(foldl "foldl-rev" pflipcons (cons "[]-rev" []) l)
where pflipcons = cons "flip-rev1"

(λx→ cons "flip-rev2"
(λy→ flip "flip-rev" pcons x y))

pcons = cons "(:)-rev1"
(λx→ cons "(:)-rev2"

(λxs→ cons "(:)-rev" (:)~ x~ xs))

The function rule is a variant of rule0 that does not take a matched argu-
ment and is used to instrument rules without pattern matching. We have in-
troduced local declarations for the involved partial applications to increase
readability. Our implementation would generate code as if the occurrences
of pflipcons and pcons would have been substituted by their right-hand sides.
Finally, we show how to instrument the definitions of foldl and flip.

95

4 Code Coverage

foldl :: CallID→ C (C b→ C (C a→ C b))→ C b→ C [a]→ C b
foldl callID op e l = match l rules where

rules [] = rule0 callID "foldl-[]" l e
rules (x′ : xs′) = rule2 callID "foldl-(:)" l x′ xs′

(λx xs→ foldl "foldl-foldl" op
(apply "foldl-op2"

(apply "foldl-op1" op e) x)
xs)

The instrumented version of foldl uses the match combinator for pattern
matching and the apply combinator to apply the given wrapped function
op to the two wrapped arguments e and x. The instrumented version of flip
also uses apply to apply the given wrapped function to the given wrapped
arguments.

flip :: CallID→ C (C a→ C (C b→ C c))→ C b→ C a→ C c
flip callID f y z = rule callID "flip"

(apply "flip-f2" (apply "flip-f1" f z) y)

The reason why we need the apply combinator for some applications (for
example, those in flip) but not for others (for example, the applications of
foldl) will become apparent in the following section where we formalise our
transformation. Intuitively, foldl cannot be applied using apply as it is not
wrapped inside the C type, hence, using apply would be a type error.

4.3.3 Formalisation of program transformation

We formalise our program transformation in terms of a simplified core rep-
resentation of Curry programs. Every Curry program can be translated into
an equivalent core program with considerably simplified syntax. For exam-
ple, functions are defined by a single rule and pattern matching is expressed
using sequences of flat case expressions where patterns cannot be nested.

Such a restrictive representation of programs is inconvenient for program-
mers but well suited for tools that operate on programs because programs
are much simpler, and, hence, fewer special cases have to be considered.
The disadvantage of using a simplified core language is that it is sometimes
difficult to relate the code to the original source code. Although a simple
core language simplifies the implementation of an analysis tool, it may com-
plicate the presentation of analysis results to the user.

The syntax of core programs is depicted in Figure 4.2. A core program
is a sequence of equations that define operations. Each definition consists
of a left- and a right-hand side where the left-hand side is an application of

96

4.3 Monitoring code coverage

Program P ::= D1 . . . Dm

Definition D ::= f x1 . . . xn = e

Expression e ::= x (variable)
| c (constructor)
| f (defined operation)
| e1 e2 (application)
| λ x → e (abstraction)
| let {x1/e1; . . . ; xk/ek} in e (local declarations)
| case x of {p1 → e1; . . . ; pk → ek} (case distinction)
| e1 or e2 (nondeterminism)

Pattern p ::= c x1 . . . xn

Figure 4.2: Syntax of core Curry programs

the defined operation to variables and the right-hand side is an expression.
The number of arguments is called the arity of the defined operation. There
are different kinds of expressions. We denote variables using the letters x
and y possibly with subscripts, constructors are denoted by c, and defined
operations by f . As usual, application binds left associatively, that is, f x y
means (f x) y, and we occasionally write lambda abstractions with more
than one argument instead of nested lambda abstractions. In addition to
syntactic constructs for abstraction, local declarations, and case distinction,
we also provide nondeterministic choice to model functional logic program-
ming. Justified by the observations in Section 2.2.3, we do not consider un-
bound logic variables which can be simulated using nondeterminism. Note
that arguments of case expressions are always variables and patterns in case
expressions are flat which means that all arguments of matched constructors
are also variables. In patterns the number of arguments must match the arity
of the constructor c which we assume is given implicitly.

Transforming first-order programs

In a first step, we assume that there are no lambda abstractions and all appli-
cations apply defined operations or constructors according to their arity. In a
second step, we will drop these assumptions and describe the transformation
of lambda abstractions and arbitrary applications.

97

4 Code Coverage

Each defined operation of a program is transformed into another opera-
tion by applying a mapping τ to its definition. The transformation adds an
additional argument y for the call position, a call to the rule combinator, and
transforms the right-hand side of the operation recursively.

τ(f x1 . . . xn = e) = (f y x1 . . . xn = rule y f τ(e))

In this transformation, y denotes a fresh variable name and f is a unique
identifier that represents the transformed rule. This definition of the transfor-
mation τ adds more calls to rule combinators than necessary. In the exam-
ples in Section 4.3.2, we have introduced them only after pattern matching
and our transformation also avoids nested calls to rule combinators. We do
not discuss the technical details which would complicate the presentation
unnecessarily.

According to the transformation of right-hand sides, we have already seen
that the most interesting part—at least for first-order programs—is concerned
with constructor applications and case expressions. In fact, everything else
is left unchanged:

τ(x) = x (x variable)
τ(e1 or e2) = τ(e1) or τ(e2)

τ(f e1 . . . ek) = f f τ(e1) . . . τ(ek) (f defined operation of arity k)

τ(let {x1/e1; . . . ; xk/ek} in e) = let {x1/τ(e1); . . . ; xk/τ(ek)} in τ(e)

Here, f denotes a unique identifier that represents the call position of the
operation f . Constructor applications are transformed using the auxiliary
functions cons and ~:

τ(c e1 . . . ek) = cons c c~ τ(e1) . . .~ τ(ek)

Note that a constructor c without arguments is just represented as cons c c.
Here, c denotes a unique identifier of this occurrence of the constructor c.

The transformation of case expressions introduces calls to the auxiliary
functions match and rulen.

τ(case x o f {. . . (ci xi1 . . . xin)→ ei; . . .}) =
match x (λ x′ →
case x′ o f {. . .

ci x′i1 . . . x′in →
rulen r x x′i1 . . . x′in (λ xi1 . . . xin → τ(ei));

. . .})

98

4.3 Monitoring code coverage

Here, x′, x′i1 , . . . , x′in are fresh variable names. The transformation of a case
expression applies the auxiliary function match to the matched variable x
and a lambda expression that introduces a fresh variable x′. In the original
case expression all pattern variables xik are renamed to fresh variables x′ik
and passed—along with a unique identifier r and the matched variable
x—to the auxiliary function rulen. The original pattern variables xi1 , . . . , xin
are used as variables in the lambda expression that is also passed to rulen.
Hence, we do not need to rename variables in the right-hand sides ei of the
case branches.

Transforming higher-order programs

The transformation described so far assumes a first-order program, that is,
there are no lambda abstractions and all defined operations and constructors
are applied according to their arity. We now describe the transformation of
lambda abstractions and arbitrary applications. We assume that there are
no partial applications of defined operations or constructors. Partial applica-
tions (where the number of supplied arguments is less than the arity of the
applied operation or constructor) can be eliminated using lambda abstrac-
tions. For example, if f is a defined operation of arity two, then the partial
application f e can be replaced by (λx → λy → f x y) e where x and y
are fresh variable names. Note, that we do not use the simpler replacement
λy→ f e y which has a different semantics in Curry because e is not shared
if the lambda abstraction is duplicated.

Lambda abstractions are definitions that may be part of data flow and,
hence, transformed using the combinator cons.

τ(λ x → e) = cons λ (λ x → τ(e))

Here, λ denotes a unique identifier for this lambda abstraction. Note that
if the original abstraction has type a → b then the transformed abstraction
has type C (C a → C b′) where C b′ is the type of the transformed body of
the abstraction. Transformed lambda abstractions need to be applied with
the apply combinator which is introduced when transforming applications.

An expression of the form e1 e2 is transformed using the auxiliary function
apply if it is not part of an application of a defined operation or constructor
according to its arity:

τ(e1 e2) = apply apply τ(e1) τ(e2)

Here, apply is a unique identifier for the transformed application.

99

4 Code Coverage

4.3.4 Implementation of coverage combinators

The program transformation presented in the previous subsections intro-
duces calls to auxiliary functions that operate on values of type C a. In
this subsection we discuss the implementation of all used data types and
functions.

The type C a is defined as follows:

data C a = C Info a
data Info = Info ConsID Coverage [Info]

The type C a associates an unranked tree of type Info to a value of type
a. The structure of this tree reflects the structure of the corresponding data
term, and, hence, associates an identifier and a set of covered items to each
constructor. If the original value is a function, the associated tree has no
children.

We assume an abstract data type Coverage with the following interface:

noCoverage :: Coverage
mergeCoverage :: Coverage→ Coverage→ Coverage
addControlFlow :: CallID→ RuleID→ Coverage→ Coverage
addDataFlow :: ConsID→ RuleID→ Coverage→ Coverage

We do not discuss the implementation of this interface. It is straightforward
to implement a set of coverage items using efficient, purely functional imple-
mentations of map data structures.

To understand the correspondence between the structure of a value and
its associated tree of information we discuss the implementation of the func-
tions cons and ~ first. The function cons attaches a tree with the given
identifier, no coverage, and no children to the given value.

cons :: ConsID→ a→ C a
cons i x = C (Info i noCoverage []) x

The identifier i uniquely identifies the constructor x. The function ~ is used
to apply a wrapped constructor and build complex terms with attached in-
formation:

(~) :: C (a→ b)→ C a→ C b
cf ~ cx = C (Info i c (t : ts)) (f x)

where C (Info i c ts) f = cf
C t x = cx

100

4.3 Monitoring code coverage

The wrapped constructor and argument are unwrapped by pattern matching
in a local declaration. Hence, the arguments of ~ are evaluated only on
demand which is important to maintain the laziness of the original program.
The result of ~ is constructed from the application of the constructor to its
argument and a new tree of type Info. The new tree is identical to the tree
that was associated to the constructor before but has an additional child tree
– the one that was associated to the argument. We extend the list of child
trees at the head to achieve constant run time. Hence, the trees of infor-
mation that correspond to the arguments of a constructor appear in reverse
order.

As an example for a complex term with associated information consider
the following expression:

cons "c1" (:)~ cons "t" True
~ (cons "c2" (:)~ cons "f" False

~ cons "n" [])

This expression is equivalent to:

C (Info "c1" noCoverage
[Info "c2" noCoverage

[Info "n" noCoverage []
, Info "f" noCoverage []]

, Info "t" noCoverage []])
[True, False]

The shown tree of type Info reflects the structure of the corresponding value
((:) True ((:) False [])), which is [True, False], while arguments appear in
reverse order. The unique identifier for each constructor can be found at a
corresponding position in the tree, and, initially, no coverage information
has been collected.

Every case expression is transformed using the function match which is
defined as follows.

match :: C a→ (a→ C b)→ C b
match (C (Info cx) x) f = cover (f x)

where cover (C (Info i cy ts) y) =
C (Info i (mergeCoverage cx cy)) ts) y

The function match selects the originally matched value x from its wrapped
representation and provides it as an argument to the function f . The cover-
age information associated with the result of this call is updated to include

101

4 Code Coverage

the coverage associated with the top-most constructor of the matched value.
We need to collect the coverage of the top-most constructor because its eval-
uation is demanded by the case expression for the computation of the result.
The function match lies at the heart of our program transformation because
this implementation carefully merges exactly the coverage information of a
lazy computation without modifying the laziness of the original program.

A careful reader might have noticed that the match function ignores some
of the information that is associated with the matched argument. The iden-
tifier of the constructor and the information associated to its arguments are
discarded. This information is not redundant but used by a combinator rulen
in each branch of a case expression. Here, n is the arity of the constructor
matched in the corresponding rule. As an example, we consider the imple-
mentation of rule2:

rule2 :: CallID→ RuleID
→ C a→ a1→ a2→ (C a1→ C a2→ C b)→ C b

rule2 callID ruleID (C (Info consID [t2, t1])) x1 x2 f
= cover (f (C t1 x1) (C t2 x2))

where cover (C (Info i c ts) y) =
C (Info i (addControlFlow callID ruleID

(addDataFlow consID ruleID c)) ts) y

This definition selects the information stored in the sub trees associated to
the matched value and associates it to the corresponding unwrapped argu-
ments. Note that the argument trees are stored in reverse order in the tree
that is associated to the matched value. Finally, control- and data-flow cover-
age is associated to the head-normal form of the result.

We now turn to higher-order programs. The apply combinator is used to
apply a wrapped partial application to another argument:

apply :: AppID→ C (C a→ C b)→ C a→ C b
apply appID fun arg = C (Info i (addDataFlow funID appID

(mergeCoverage cf cres)) ts) res
where C (Info funID cf []) f = fun

C (Info i cres ts) res = f arg

This combinator selects the partially applied function from its wrapped repre-
sentation and applies it to the wrapped argument. The coverage information
of the result is updated twice:

• the coverage associated with the partial application is added to the
coverage of the result, and

102

4.4 Experimental evaluation

• a def-use chain from the partial application to the position where it is
applied is included.

The coverage information associated with the partial application needs to
be added to the coverage information of the result because an application
demands the evaluation of its left argument. We treat partial applications as
data and consider the flow of a partially applied function or constructor to
its application as data flow.

4.4 Experimental evaluation

We have implemented the described program transformation in a prototyp-
ical tool for coverage-based test-case generation. The tool uses narrowing
to bind initially uninstantiated input of a tested operation as described in
Chapter 3. Alternatively, the user can provide custom input generators as
nondeterministic generators (see Section 2.2.3).

We now investigate how coverage-based testing behaves for example pro-
grams that resemble those presented in Section 3.2.3. The considered ex-
amples all contain non-trivial algorithms which makes it hard to cover every
relevant behavior. Coverage-based testing shows which items corresponding
to the considered criterion are covered by a generated test suite.

Our experiments have been performed on a VMware virtual machine with
700 MB memory running Suse Linux 10.2 on a machine with a 3.6 GHz
Xeon processor. We have compared control-flow coverage, data-flow cov-
erage, and a combined control- and data-flow coverage. The results of our
experiments are depicted in Table 4.2. We refer to control-flow coverage as
CFC, to data-flow coverage as DFC, and to combined control- and data-flow
coverage as CDFC.

For each of these three coverage approaches, we have investigated two
coverage scopes. The first of them, Module, only considers coverable items
inside the considered module. The second, Global, also considers control-
and/or data-flow between different modules and inside auxiliary modules.
In the following, a combination of coverage approach and coverage scope
will be called coverage criterion.

We have used breadth-first search (BF) as a search strategy for exploring
the search space in most experiments. The search is stopped, if n test cases
have been generated without covering any new items with respect to to the
considered coverage criterion. If n is chosen sufficiently large, one can be
relatively sure that all coverable items will be covered and that the generated
test cases really achieve the desired coverage. In most of our experiments we

103

4 Code Coverage

have used n = 200. This is often a conservative choice. With smaller n, the
run time can be reduced considerably while increasing the risk of missing a
coverable item.

Fixing n as above only makes sense with breadth-first search or similar
fair strategies that ensure that the progress in exploring the search space is
distributed over the whole breadth of the tree. It would not make sense with
depth-first search. Breadth-first search is sufficient if there is enough mem-
ory. In some cases we have experienced memory problems. For example,
for Kruskal with CDFC/Global. In such cases, one can reduce n or use a
less space-consuming search strategy such as iterative-deepening depth-first
search.

Our tool usually generates a large number of test cases nondeterminis-
tically and then minimises the set of generated tests according a coverage
criterion. We compare for different criteria how well they preserve failing
tests. In our experiments, the introduced bugs are always exposed by a gen-
erated test case. Whether a test case that exposes the error remains after
eliminating tests with redundant coverage often depends on the employed
coverage criterion.

Table 4.2 shows for each considered example application and coverage
criterion:

• which search strategy has been used,

• whether the error is exposed by a test case in the minimal covering test
suite (+/-),

• whether the error is exposed by a test case before redundancy elimina-
tion (+/-, in fact always +),

• how many test cases are necessary in order to fulfill the considered
coverage criterion,

• how many items (control- or data-flows) have been covered,

• how long the search has taken (in seconds),

• and how long the elimination of redundant test-cases has taken (in
seconds).

104

4.4 Experimental evaluation

pr
ob

le
m

co
ve

ra
ge

se
ar

ch
er

ro
r

er
ro

r
#

te
st

#
ite

m
s

se
ar

ch
el

im
in

at
io

n
cr

ite
ri

on
st

ra
te

gy
co

ve
re

d
re

ac
he

d
ca

se
s

co
ve

re
d

tim
e

(s
)

tim
e

(s
)

A
V

L
in

se
rt

C
FC

/M
od

ul
e

B
F2

00
+

+
5

25
17

.8
0.

5
C

FC
/G

lo
ba

l
B

F2
00

+
+

9
78

21
.8

3.
6

D
FC

/M
od

ul
e

B
F2

00
+

+
7

51
29

.3
2.

0
D

FC
/G

lo
ba

l
B

F2
00

+
+

12
16

5
33

.8
10

.9
C

D
FC

/M
od

ul
e

B
F2

00
+

+
8

45
+

51
32

.0
4.

4
C

D
FC

/G
lo

ba
l

B
F2

00
+

+
20

16
5+

16
5

45
.0

26
.6

A
V

L
de

le
te

C
FC

/M
od

ul
e

B
F2

00
-

+
9

41
29

.2
1.

2
C

FC
/G

lo
ba

l
B

F2
00

-
+

9
88

33
.3

4.
4

D
FC

/M
od

ul
e

B
F2

00
+

+
19

90
47

.6
2.

9
D

FC
/G

lo
ba

l
B

F2
00

+
+

23
22

3
57

.5
16

.2
C

D
FC

/M
od

ul
e

B
F2

00
+

+
24

77
+

90
53

.8
6.

7
C

D
FC

/G
lo

ba
l

B
F2

00
+

+
27

20
4+

22
3

70
.5

36
.8

H
ea

p
in

se
rt

C
FC

/M
od

ul
e

B
F2

00
+

+
2

9
2.

8
0.

0
C

FC
/G

lo
ba

l
B

F2
00

+
+

8
38

4.
8

0.
5

D
FC

/M
od

ul
e

B
F2

00
+

+
2

10
2.

7
0.

1
D

FC
/G

lo
ba

l
B

F2
00

+
+

7
25

4.
1

0.
3

C
D

FC
/M

od
ul

e
B

F2
00

+
+

5
17

+
10

4.
3

0.
4

C
D

FC
/G

lo
ba

l
B

F2
00

+
+

23
72

+
25

8.
6

1.
7

H
ea

p
de

le
te

C
FC

/M
od

ul
e

B
F2

00
+

+
2

9
1.

1
0.

0
C

FC
/G

lo
ba

l
B

F2
00

+
+

8
38

3.
2

0.
3

D
FC

/M
od

ul
e

B
F2

00
+

+
2

6
1.

0
0.

0
D

FC
/G

lo
ba

l
B

F2
00

+
+

10
25

3.
2

0.
1

C
D

FC
/M

od
ul

e
B

F2
00

+
+

4
14

+
6

1.
2

0.
1

C
D

FC
/G

lo
ba

l
B

F2
00

+
+

24
76

+
25

4.
5

1.
2

H
ea

ps
or

t
C

FC
/M

od
ul

e
B

F2
00

+
+

1
15

60
.2

0.
5

C
FC

/G
lo

ba
l

B
F2

00
+

+
6

47
74

.0
1.

7
D

FC
/M

od
ul

e
B

F2
00

+
+

2
27

10
4.

9
1.

5
D

FC
/G

lo
ba

l
B

F2
00

+
+

7
59

10
6.

3
4.

0
C

D
FC

/M
od

ul
e

B
F2

00
+

+
5

31
+

27
24

3.
8

6.
4

C
D

FC
/G

lo
ba

l
B

F2
00

+
+

16
90

+
63

23
4.

2
17

.5
St

ra
ss

en
C

FC
/M

od
ul

e
B

F5
0

+
+

1
12

45
.8

0.
2

C
FC

/G
lo

ba
l

B
F5

0
+

+
4

94
10

2.
8

8.
4

D
FC

/M
od

ul
e

B
F5

0
+

+
1

6
46

.8
0.

0
D

FC
/G

lo
ba

l
B

F5
0

+
+

13
24

0
17

0.
3

31
.7

C
D

FC
/M

od
ul

e
B

F5
0

+
+

2
35

+
6

44
.7

0.
7

C
D

FC
/G

lo
ba

l
B

F5
0

+
+

18
23

3+
24

0
19

8.
7

74
.0

105

4
C

ode
C

overage

problem coverage search error error # test # items search elimination
criterion strategy covered reached cases covered time (s) time (s)

Dijkstra CFC/Module BF200 - + 1 7 39.0 0.2
CFC/Global BF200 + + 6 110 101.6 13.7
DFC/Module BF200 - + 2 7 37.4 0.2
DFC/Global BF200 + + 9 192 119.6 23.3
CDFC/Module BF200 - + 2 8+7 39.6 0.4
CDFC/Global BF200 + + 10 202+192 140.4 62.2

Kruskal CFC/Module BF200 - + 1 19 1823.0 0.8
CFC/Global BF200 - + 4 161 2709.0 39.1
DFC/Module BF200 - + 1 18 1782.7 0.7
DFC/Global BF200 + + 9 370 2737.4 127.7
CDFC/Module BF200 - + 1 22+18 1796.5 2.3
CDFC/Global BF100 + + 10 328+370 2539.1 224.6

Matrix CM CFC/Module BF200 + + 1 9 17.4 0.1
CFC/Global BF200 + + 2 125 33.8 17.5
DFC/Module BF200 + + 1 3 17.4 0.0
DFC/Global BF200 + + 7 596 112.9 364.2
CDFC/Module BF200 + + 1 9+3 18.3 0.2
CDFC/Global BF190 + + 4 284+555 73.5 257.3

Train Ticket CFC/Module BF100 + + 3 19 50.0 0.4
CFC/Global BF100 + + 3 94 57.0 13.2
DFC/Module BF100 + + 4 13 56.7 0.2
DFC/Global BF100 + + 7 445 130.7 193.3
CDFC/Module BF100 + + 5 22+13 68.2 1.1
CDFC/Global BF100 + + 9 248+445 194.2 322.1

Table 4.2: Experimental results of coverage-based testing

106

4.4 Experimental evaluation

Control Flow Data Flow Control+Data Flow

AVL insert 9 12 20
AVL delete 9 23 27

Heap insert 8 7 23
Heap delete 8 10 24

Heapsort 6 7 16
Strassen 4 13 18
Dijkstra 6 9 10
Kruskal 4 9 10

Matrix CM 2 7 4
Train Ticket 3 7 9

Table 4.3: Sizes of reduced sets of tests for different coverage criteria

Generating test input on demand does not ensure a minimal set of test
cases. In order to get a minimal set, we need an additional step which re-
moves redundant tests. Obviously, this problem is the set covering problem
which is known to be NP-complete (Cormen et al. 1990). Since it is not
essential in our context that we really find a minimal solution, we are happy
with any heuristic that produces a small solution.

If the error is inside the search space, this means that our tool has consid-
ered a test case exposing the error. However, it may happen that this test
case is deleted during the elimination of redundant test cases, since the con-
sidered coverage criterion does not ensure it to be preserved. Except for the
coverage criterion, the tool has no means to tell which test cases are relevant.

As our experiments show and as one might expect, CDFC reaches a better
coverage than CFC and DFC, while needing more time (up to a factor of
roughly two compared to CFC) and space. If using coverage scope Global,
CDFC is able to cover every error in our example applications. With cover-
age scope Module, CDFC could find all errors except those in the Dijkstra
and Kruskal algorithms.

CFC does not cover the error in the Kruskal algorithm. In general, DFC
requires in most cases more time (up to a factor of roughly two) and space
than CFC. Interestingly, DFC/Global is able to expose all introduced errors.

Coverage scope Module is often insufficient. If the control- and data-flows
of auxiliary modules are taken into account, far more errors can be exposed.

Table 4.4 summarizes the benchmark results for the coverage scope Global.
It shows for each example the number of tests that remains after eliminating
redundant tests with respect to the different coverage criteria.

107

4 Code Coverage

Although data-flow coverage exposes all errors in our examples, the table
shows that additionally requiring control-flow coverage leads to more thor-
ough testing. Almost always is the number of required tests for combined
control- and data-flow coverage larger than the number of required tests for
data-flow coverage alone. Only for matrix chain multiplication were actu-
ally fewer tests necessary to achieve control- and data-flow coverage as were
necessary to achieve data-flow coverage only. The reason is that our tool gen-
erated larger tests when aiming at combined coverage and the elimination
program then picked few large test cases instead many small ones.

The run time of our tool is in almost all cases good or acceptable, namely
a few seconds or minutes. Only in the Kruskal example, almost half an
hour was needed. But even this is acceptable taking into account that the
generation of test cases does not have to be repeated often and that it can
be performed in the background while doing other work. As a result of
our experiments, we recommend the coverage criterion CDFC/Global. It
produces the best coverage and exposes most errors, while the overhead
compared to other criteria is acceptable.

4.5 Summary

We have developed a tool that generates a minimal set of test cases that sat-
isfy different coverage criteria. We have introduced novel notions of control-
and data-flow coverage for declarative programs to improve the quality of
test cases selected by our tool. We have presented a program transforma-
tion that instruments declarative programs such that they compute coverage
according to their execution along with the original result. The generated
program is a pure declarative program – it does not use side effects to moni-
tor coverage.

Coverage-based testing is especially useful for algorithmically complex
program units. We have selected a couple of such examples and compared
the quality of selected tests using different coverage criteria. For this pur-
pose, we have introduced a bug in each example and checked whether this
bug was exposed by the generated minimal set of test cases. It turns out that
most thorough testing is achieved by a combination of control and data flow.
During our experiments, our tool has exposed a subtle error in the descrip-
tion of Kruskal’s minimum spanning tree algorithm given in a textbook by
Rabhi and Lapalme (1999).

108

4.6 Chapter notes

4.6 Chapter notes

Work on the code coverage criteria presented in this chapter has been pub-
lished previously. The presented control-flow coverage criteria rule coverage
and call coverage have been published in the Proceedings of the ninth ACM
SIGPLAN International Symposium on Principles and Practice of Declarative
Programming (Fischer and Kuchen 2007) under different names: previously,
rule coverage has been called branch coverage and call coverage has been
called function coverage. In hindsight, we prefer to use the term rule (of an
operation) rather than branch (in a control-flow graph) and emphasise that
different calls of the same function need to be covered individually.

Our data-flow coverage criteria have been published in the Proceedings
of the 13th ACM SIGPLAN International Conference on Functional Program-
ming (Fischer and Kuchen 2008). The program transformation presented in
Section 4.3 is an extended version of the transformation presented previously
that incorporates control-flow coverage and is applicable to functional logic
rather than only functional programs. Unlike Albert et al. (2005), we also in-
corporate lambda abstractions in our core language which significantly sim-
plifies the transformation of partial applications compared to our previous
formalisation. The previously published program transformation relied on
lambda lifting to eliminate lambda abstractions and incorporated complex
rules for transforming partial applications with a variable number of missing
arguments.

Related work

Code coverage for declarative programs has gained interest only recently.
Simultaneously with our developments, Gill and Runciman (2007) have de-
veloped Haskell Program Coverage (HPC) – a tool that monitors code cover-
age for Haskell programs. HPC implements expression coverage discussed
in the introduction to this chapter and does not provide more sophisticated
notions of control- or data-flow. Coverage information as monitored by HPC
can be beneficially shown to the user in the form of colourised source code
but is of little value to ensure thorough testing or select a sufficient num-
ber of interesting tests from a large set of automatically generated tests. Our
more complex criteria are useful to evaluate the significance of tests but can-
not be visualised easily. For example, denoting data flow by arrows like in
Section 4.2.1 does not scale to larger programs.

Obtaining information about a computation by instrumenting a declara-
tive program such that it collects this information along with the original re-
sult is not new. For example, the Haskell Tracer Hat (Chitil et al. 2003) trans-

109

4 Code Coverage

forms Haskell programs in order to obtain a computation trace that can be
used for various debugging tools. Our transformation differs from others in
this area in that it does not introduce impure features like side effects. Rather,
the result of our program transformation is a pure declarative program. Using
side effects simplifies the collection of additional information about the ex-
ecution of programs. Especially, the original evaluation order is maintained
automatically. We show that this is also possible with a pure approach. In
fact, using side effects was not easily possible in our approach because of
nondeterminism. We generate test cases nondeterministically and need to
collect coverage information that corresponds to individual tests. With side
effects we could collect coverage information globally, for all tests together,
but it is non-trivial to associate globally collected information to individual
tests generated in different nondeterministic branches of the computation.
The disadvantage of our pure approach is that it incurs more run-time over-
head. However, our experiments show that this overhead is acceptable at
least for small-scale unit testing.

110

5 Explicit Nondeterminism
Logic programming languages like Prolog and functional logic languages like
Curry support nondeterminism implicitly. Prolog uses backtracking in order
to try different alternatives when proving goals; Curry evaluates different
rules of defined operations nondeterministically (see Section 2.2).

(Functional) logic programming can be modeled in a purely functional pro-
gramming language by representing nondeterministic choice explicitly. For
example, if we represent different results of a nondeterministic computation
by a lazy list of results then list concatenation expresses nondeterministic
choice and evaluating the list of all results is backtracking, that is, depth-first
search. Different implementations of explicit nondeterminism are possible
and lead to different search strategies.

In Section 5.1 we discuss nondeterminism monads, an abstraction that
provides a common interface to different implementations of explicit nonde-
terminism and present a framework that simplifies the definition of different
search strategies by focusing on failure and choice. We then observe that
monadic nondeterministic programs sacrifice laziness compared to corre-
sponding functional logic programs in Curry. Laziness is important to imple-
ment generate-and-test algorithms more efficiently as we have mentioned
in Section 2.2.4. We further motivate this importance and show how to
elegantly and efficiently express laziness in monadic nondeterministic pro-
grams in Section 5.2.

5.1 Nondeterminism monads

Logic programming functionality can be incorporated into Haskell by ex-
pressing nondeterminism explicitly as a computational effect modeled in the
framework of monads (see Section 2.1.3). Nondeterministic computations
can be expressed monadically using two additional monadic combinators
for failure and choice.

∅ :: m a
(⊕) :: m a→ m a→ m a

The four monadic combinators can be interpreted in the context of nonde-
terminism.

111

5 Explicit Nondeterminism

• ∅ represents a failing computation, that is, one without results;

• return x represents a computation with the single result x;

• a⊕ b represents a computation that yields either a result of the compu-
tation a or one of the computation b; and

• a >>= f applies the nondeterministic operation f to any result of a and
yields any result of such an application.

In Section 5.1.1 we discuss laws that describe how these combinators inter-
act. We can use them to define a function that yields an arbitrary element
of a given list.

anyof :: MonadPlus m⇒ [a]→ m a
anyof [] = ∅
anyof (x : xs) = anyof xs⊕ return x

The type signature specifies that the result of anyof can be expressed using
a parametrised type m that is an instance of the type class MonadPlus (a
monad for nondeterminism that supports the shown four operations). The
first rule of anyof uses the failing computation ∅ to indicate that no result
can be returned if the given list is empty. If it is nonempty, the second rule
either returns a result of the recursive call to the tail of the list or the first
element.

In Section 5.1.2, we introduce different implementations of parametrised
types m that can be used to compute results of the nondeterministic oper-
ation anyof . Starting with an intuitive but inefficient implementation, we
subsequently refine it using standard techniques. Specifically, we use dif-
ference lists to improve the asymptotic complexity of list concatenation and
transform computations to continuation-passing style, which provides an im-
plementation of monadic bind for free. Finally, we arrive at a well-known ef-
ficient implementation of backtracking by combining these techniques. We
show in Section 5.1.3 how to use the developed ideas to find novel imple-
mentations of breadth-first search and iterative deepening depth-first search
and compare different search strategies experimentally in Section 5.1.4.

5.1.1 Laws

Instances of the MonadPlus type class are usually required to satisfy laws that
describe how the new combinators ∅ and ⊕ interact with the monadic com-
binators return and >>=. In addition to the laws that only involve return and

112

5.1 Nondeterminism monads

>>= discussed in Section 2.1.3, the following identities need to be satisfied
for a valid MonadPlus instance.

∅ >>= f ≡∅
(a⊕ b) >>= f ≡ (a >>= f)⊕ (b >>= f)

These laws are supported by the intuition about the >>= combinator men-
tioned above. If the first argument to >>= is a failing computation then there
are no results to which the given nondeterministic operation f could be ap-
plied and, hence, the result is also a failing computation. If the first argument
to >>= is a nondeterministic choice between a and b then f is either applied
to a result of a or to one of b independently.

In addition to the above laws that describe the interaction of the combina-
tors for failure and choice with the monadic combinators, there are also laws
that specify properties of ∅ and ⊕ alone. Often, nondeterministic monadic
actions are required to form a monoid:

∅⊕ a ≡ a
a⊕∅ ≡ a
(a⊕ b)⊕ c≡ a⊕ (b⊕ c)

The ∅ combinator should be an identity for ⊕ which should be associative.

5.1.2 Backtracking

The most intuitive implementation of the MonadPlus type class uses lists of
successes to represent results of nondeterministic computations. The four
monadic operations are implemented on lists as follows. The failing compu-
tation is represented as empty list.

∅ :: [a]
∅ = []

A deterministic computation with result x is represented as list with a single
element x.

return :: a→ [a]
return x = [x]

To choose from the results of two nondeterministic computations, the results
of both are concatenated using the append function ++.

(⊕) :: [a]→ [a]→ [a]
xs⊕ ys = xs ++ ys

113

5 Explicit Nondeterminism

Nondeterministic operations can be applied to any result of a given compu-
tation, for example, by using a list comprehension.

(>>=) :: [a]→ (a→ [b])→ [b]
xs >>= f = [y | x← xs, y← f x]

It is easy to verify that these implementations indeed satisfy the laws given
above. As Haskell lists implement the interface of the MonadPlus type class,
we can use lists to compute results of the nondeterministic operation anyof .
For example, we can apply it to a list of numbers in order to get another list
of the numbers that are contained in the list.

> anyof [1..10] :: [Int]
[10,9,8,7,6,5,4,3,2,1]

We provide an explicit type annotation in the call above which specifies
that we want to use the list monad to compute the results. The resulting
list does indeed contain each number of the given list but in reverse order.
As different results of nondeterministic computations are independent their
order is irrelevant, at least from a declarative point of view. We should
expect different search strategies to enumerate results of nondeterministic
computations in different orders.

If we compute results of anyof for long lists, we recognise that the list
monad scales badly on this example. This is because of the specific imple-
mentation of anyof that uses a recursive call in the left argument of mplus.
Actually, if we use the list monad then the implementation of anyof is the
naive reverse function and, thus, has quadratic run time. We could change
the implementation of anyof to avoid left recursion by swapping the argu-
ments of mplus. However, we refrain from doing so and rather strive for a
monad that can handle it gracefully.

Difference lists

The reason why the list monad scales so badly in case of left associative use
of ⊕ is that the function ++ for list concatenation used for implementing ⊕
has linear run time in the length of its first argument. The standard technique
to avoid this complexity is to use so called difference lists. A difference list
is a function which takes a list as argument and yields a possibly longer list
that ends with the given list. We can define the type of difference lists using
Haskell’s record syntax as follows.

newtype DiffList a = DiffList {(+>+) :: [a]→ [a]}

This declaration automatically generates a selector function

114

5.1 Nondeterminism monads

(+>+) :: DiffList a→ [a]→ [a]

that can be used to append an ordinary list to a difference list. As an interface
to difference lists, we need a function to construct the empty difference list;

empty :: DiffList a
empty = DiffList {(+>+) = id}

a function to construct a difference list with a single element;

singleton :: a→ DiffList a
singleton x = DiffList {(+>+) = (x:)}

and a function to concatenate two difference lists.

(+++) :: DiffList a→ DiffList a→ DiffList a
a +++ b = DiffList {(+>+) = (a+>+) ◦ (b+>+)}

The function +++ is implemented via the function composition operator ◦
and has, thus, constant run time, which is a critical advantage compared to
ordinary lists. The disadvantage of difference lists is that we cannot perform
pattern matching without converting them back to ordinary lists. Such con-
version can be performed by using +>+ to stick the empty list at the end of a
difference list.

toList :: DiffList a→ [a]
toList a = a +>+ []

The constant run time of difference-list concatenation is useful because the
toList function has linear run time, regardless of the structure of the calls to
+++ that were used to build the difference list. As a consequence of this
improvement, the call toList ((singleton 1 +++ singleton 2) +++ singleton 3)
does not traverse a prefix of the result repeatedly like the call ([1] ++ [2]) ++
[3] does. If we drop the newtype constructors and selectors then the above
call is evaluated as follows.

toList (((1:) ◦ (2:)) ◦ (3:))
≡ (((1:) ◦ (2:)) ◦ (3:)) []
≡ ((1:) ◦ (2:)) (3 : [])
≡ (1 : 2 : 3 : [])

The number of steps in this derivation is linear in the number of list elements
although concatenation has been nested left associatively.

115

5 Explicit Nondeterminism

The three functions empty, singleton, and +++ correspond exactly to the
monadic combinators ∅, return, and ⊕ respectively. If we inline their defini-
tions in the definition of anyof we obtain the following definition of reverse.

reverse :: [a]→ [a]→ [a]
reverse [] = id
reverse (x : xs) = reverse xs ◦ (x:)

This is the well-known linear-time implementation of the reverse function
which uses an accumulating parameter to avoid repeated list concatenation.
The functions empty and +++ are implemented as identity function and func-
tion composition respectively and, hence, satisfy the monoid laws (see Sec-
tion 5.1.1). Nevertheless, we cannot instantiate the type parameter m of
anyof with the type DiffList which is no instance of MonadPlus. In order
to make the type of difference lists a monad for nondeterminism, we would
need to implement the bind operator. Unfortunately, this is only possible by
converting back and forth between difference and ordinary lists1 which is
unsatisfactory. We insist on a more elegant solution.

Continuation-passing style

To achieve a more elegant solution, we need another well-known technique,
namely, continuation-passing style. A function in continuation-passing style
does not yield its result to the caller but is called with an additional func-
tion—a so called continuation—that expects the computed result as argu-
ment. For example, we could define integer addition in continuation-passing
style as follows.

plusCPS :: Int→ Int→ (Int→ a)→ a
plusCPS m n k = k (m + n)

In general, if the result type of an ordinary function is a then the result type
of the same function in continuation-passing style is (a → b) → b. The
result type of the continuation is polymorphic. For example, we can pass
the IO operation print :: Show a ⇒ a → IO () as a continuation to plusCPS
to print the computed result on the standard output.

> plusCPS 17 4 print
21

We want to combine continuation-passing style with different effects mod-
eled by a parametrised type that represents computations. For this purpose,

1xs >>= f = DiffList {(+>+) = ([y | x← toList xs, y← toList (f x)]++)}

116

5.1 Nondeterminism monads

it turns out beneficial to restrict the result type of continuations to use some
parametrised type c. The type of so restricted computations in continu-
ation-passing style is defined as follows.

newtype CPS c a = CPS {(>>−) :: ∀b.(a→ c b)→ c b}

The CPS type uses so called rank-2 polymorphism to introduce the type
variable b used in the result type of the continuation. We use Haskell’s
record syntax again to get the following selector function.

(>>−) :: CPS c a→ (a→ c b)→ c b

A value of type CPS c a can be converted into a value of type c a by pass-
ing it a continuation of type a → c a using >>−. We define a type class
Computation for parametrised types that can represent computations and
support an operation yield that resembles the monadic operation return.

class Computation c where
yield :: a→ c a

We can now pass the operation yield as continuation using >>− to run CPS
values.

runCPS :: Computation c⇒ CPS c a→ c a
runCPS a = a >>− yield

Remarkably, CPS c is a monad for any parametrised type c. We get imple-
mentations of monadic operations for free.

instance Monad (CPS c) where
return x = CPS {(>>−) = λk→ k x}
a >>= f = CPS {(>>−) = λk→ a >>− λx→ f x >>− k}

The last definition looks very clever. Fortunately, we do not need to invent
it ourselves. It is the standard definition of monadic bind for continuation
monads.2

Monads for nondeterminism need to support the additional operations ∅
and ⊕. We define another type class for parametrised types, this time to
model computations that support failure and choice.

class Nondet n where
failure :: n a
choice :: n a→ n a→ n a

2Compare this with the implementation of the Cont monad in Haskell’s monad transformer
library.

117

5 Explicit Nondeterminism

This type class is similar to the MonadPlus type class; failure resembles ∅
and choice resembles ⊕. However, the class Nondet does not require the
parametrised type n to implement monadic bind, which the MonadPlus type
class does. As we get monadic bind for free from the CPS type, we don’t
need to require it for types that represent nondeterministic computations.

CPS c is not only a monad for any c. If n is an instance of Nondet then
CPS n is an instance of MonadPlus.

instance Nondet n⇒ MonadPlus (CPS n) where
∅ = CPS {(>>−) = λ → failure}
a⊕ b = CPS {(>>−) = λk→ choice (a >>− k) (b >>− k)}

In order to implement the operations for failure and choice we can simply
dispatch to the corresponding operations of the Nondet class.

Efficient backtracking

Now we combine difference lists and continuation-passing style. We use
the type DiffList for difference lists and wrap it inside CPS to get an efficient
implementation of the MonadPlus type class. Note that we do not need
to implement >>= on difference lists in order to obtain a monad on top of
DiffList. We only need to implement the functions failure, yield, and choice
that correspond to the monadic operations ∅, return, and ⊕ respectively. In
order to be able to unwrap the DiffList type from CPS, we need to provide an
instance of Computation for DiffList and to make CPS DiffList an instance
of MonadPlus, we need to provide an instance of Nondet. Both instance
declarations reuse operations for difference lists defined in Section 5.1.2.

instance Computation DiffList where
yield = singleton

instance Nondet DiffList where
failure = empty
choice = (+++)

We can now define efficient backtracking for nondeterministic computa-
tions.

backtrack :: CPS DiffList a→ [a]
backtrack = toList ◦ runCPS

If we inline the newtype declarations DiffList and CPS, we can see that the
type CPS DiffList a is the same as the following type.

118

5.1 Nondeterminism monads

CPS DiffList a≈ ∀b.(a→ [b]→ [b])→ [b]→ [b]

This type is the well-known type used for two-continuation-based depth-first
search (Hinze 2000). The first argument of type a → [b] → [b] is called
success continuation and the second argument of type [b] is the so called
failure continuation. If we inline the monadic operations, we can see that
they resemble the operations that are usually used to implement efficient
backtracking. The operation ∅ yields the failure continuation.

∅ succ fail = fail

The return function passes the given argument to the success continuation
and also passes the failure continuation for backtracking.

return x succ fail = succ x fail

The operation⊕ passes the success continuation to both computations given
as arguments and uses the results of the second computation as failure con-
tinuation of the first computation.

(a⊕ b) succ fail = a succ (b succ fail)

The bind operation builds a success continuation that passes the result of
the first computation to the given function.

(a >>= f) succ fail = a (λx fail→ f x succ fail) fail

These definitions have been devised from scratch earlier. We have obtained
them by combining difference lists with continuation-passing style.

Using backtrack to enumerate the results of calling anyof produces the
same order of results as using the list monad.

> backtrack (anyof [1..10])
[10,9,8,7,6,5,4,3,2,1]

When using backtrack, however, the resulting list is computed more effi-
ciently. The function backtrack ◦ anyof is a linear-time implementation of the
reverse function. We can inline the monadic operations into the definition
of anyof to verify this observation.

reverse′ :: [a]→ (a→ [b]→ [b])→ [b]→ [b]
reverse′ [] succ fail = fail
reverse′ (x : xs) succ fail = reverse′ xs succ (succ x fail)

119

5 Explicit Nondeterminism

If we specialise this definition for succ = (:) then we obtain again the im-
plementation of the reverse function that uses an accumulating parameter to
achieve linear run time. The advantage of CPS DiffList over DiffList is that
it has a natural implementation of monadic bind and can, hence, be used to
execute monadic computations.

5.1.3 Fair search

In Section 5.1.2 we have seen how to reinvent an existing implementation
of monadic backtracking. In this section we develop implementations of
breadth-first search and iterative deepening depth-first search that we have
not been aware of previously.

Breadth-first search

Backtracking can be trapped if the search space is infinite. If we apply anyof
to an infinite list then the function backtrack diverges without producing a
result. Breadth-first search enumerates the search space in level order which
results in a fair enumeration of all results.

newtype Levels n a = Levels { levels :: [n a]}

The parameter n of Levels is used to hold the elements of the different levels.
If n is an instance of Nondet, we can merge them.

runLevels :: Nondet n⇒ Levels n a→ n a
runLevels = foldr choice failure ◦ levels

We could later use lists to represent individual levels but we use difference
lists to benefit from more efficient concatenation. Thus, we define breadth-
first search as follows.

bfs :: CPS (Levels DiffList) a→ [a]
bfs = toList ◦ runLevels ◦ runCPS

We only need to provide instances of the type classes Computation and
Nondet such that bfs can be applied to nondeterministic monadic compu-
tations. The definition of yield creates a single level that contains the given
argument wrapped in the type n.

instance Computation n⇒ Computation (Levels n) where
yield x = Levels { levels = [yield x]}

120

5.1 Nondeterminism monads

The function failure is implemented as an empty list of levels and choice
creates a new empty level (using the failure operation of the underlying pa-
rametrised type n) in front of the merged levels of the given computations.

instance Nondet n⇒ Nondet (Levels n) where
failure = Levels { levels = []}
choice a b = Levels { levels = failure : merge (levels a) (levels b)}

The use of failure in the implementation of choice is crucial to achieve breadth-
first search because it delays deeper levels which are combined using merge.

merge :: Nondet n⇒ [n a]→ [n a]→ [n a]
merge [] ys = ys
merge xs [] = xs
merge (x : xs) (y : ys) = choice x y : merge xs ys

We could generalise the type Levels to use an arbitrary parametrised type
instead of lists to represent the collection of levels. Such a type would need
to provide a zip operation to implement merge which we could require using
another type class like Zipable. We favour a simpler description using lists.

Iterative deepening depth-first search

Breadth-first search has an advantage when compared with depth-first search
because it is fair. However, there is also a disadvantage. It needs a huge
amount of memory to store complete levels of the search space. We can
trade memory requirements for run time by using depth-first search to enu-
merate all results of the search space that are reachable within a certain
depth limit and incrementally repeat the search with increasing depth limits.

We can define a type for depth-bounded search as a function that takes a
depth limit and yields results that can be found within the given limit.

newtype Bounded n a = Bounded {(!) :: Int→ n a}

The type parameter n is later required to be an instance of Computation and
Nondet and holds the results of depth-bounded search. We use ordinary lists
that can be made an instance of these type classes as follows.

instance Computation [] where
yield x = [x]

instance Nondet [] where
failure = []
choice = (++)

121

5 Explicit Nondeterminism

We can define an instance of Nondet for Bounded n as follows. The imple-
mentation of failure uses the failure operation of the underlying type n.

instance Nondet n⇒ Nondet (Bounded n) where
failure = Bounded {(!) = λ → failure}
choice a b = Bounded

{(!) = λd→ if d =I 0 then failure
else choice (a ! (d− 1)) (b ! (d− 1))}

The choice operation fails if the depth limit is exhausted. Otherwise, it calls
the underlying choice operation on the given arguments with a decreased
depth limit, reflecting that a choice descends one level in the search space.

Iteratively increasing the depth limit of a depth-bounded computation
yields a list of levels.

levelIter :: (Computation n, Nondet n)⇒
Int→ CPS (Bounded n) a→ Levels n a

levelIter n a = Levels { levels = [(a >>− yieldB) ! d | d← [0, n . .]]}
where

yieldB x = Bounded
{(!) = λd→ if d < n then yield x else failure}

Between different searches the depth limit is incremented by n. If n equals
one then the returned levels are really the levels of the search space. If it is
greater then multiple levels of the search space are collected in a single level
of the result.

Instead of runCPS (which is defined as (>>−yield)) we use a custom func-
tion yieldB and pass it as continuation to the given computation. This al-
lows us to yield only those results where the remaining depth limit is small
enough which are those that have not been enumerated in a previous search.
We merge the different levels of iterative deepening search using an arbi-
trary instance of Nondet—using lists results in iterative deepening depth-first
search.

idfs :: (Computation n, Nondet n)⇒ Int→ CPS (Bounded n) a→ n a
idfs n = foldr choice failure ◦ levels ◦ levelIter n

This implementation of iterative deepening depth-first search is remarkable
because it does not require the depth limit to be returned by depth-bound
computations. If we wanted to implement >>= directly on the type Bounded n
we would need an updated depth limit as result of executing the first argu-
ment (see Spivey (2006)). We don’t need to thread the depth limit explicitly
when using the bind operation of the CPS type.

Both bfs and idfs can enumerate arbitrary infinite search spaces lazily.

122

5.1 Nondeterminism monads

> take 10 (bfs (anyof [1..])) == take 10 (idfs 1 (anyof [1..]))
True

In fact, when using lists for the results, idfs 1 always returns them in the same
order as bfs because it enumerates one level after the other from left to right.

5.1.4 Experiments

Using the types developed in the previous sections we can build numer-
ous variants of the presented search strategies. In this section we com-
pare experimentally three different versions of depth-first search and two
versions of both breadth-first and iterative deepening depth-first search. All
presented implementations can be built from the types developed in the pre-
vious sections: the parametrised types [], CPS [], and CPS DiffList are
all instances of MonadPlus that implement depth-first search. The types
CPS (Levels []) and CPS (Levels DiffList) implement breadth-first search
whereas CPS (Bounded []) and CPS (Bounded DiffList) implement iterative
deepening depth-first search.

What if we keep following this pattern further? We can also build the
types CPS (x (y z)) with x, y ∈ {Levels, Bounded} and z ∈ {[], DiffList}. We
can stack arbitrarily many layers of Levels and Bounded between CPS and []
or DiffList. If we define instances Computation (CPS c) and Nondet c ⇒
Nondet (CPS c) similar to the Monad and MonadPlus instances for CPS then
we can also include multiple layers of CPS between Levels and Bounded. The
inclined reader may investigate these types and the performance properties
of the resulting strategies. We include some of them in our comparison.

Pythagorean triples

We measure run time and memory requirements of the different nondeter-
minism monads using the anyof function and a slightly more complex action
that returns Pythagorean triples nondeterministically. A Pythagorean triple
is an increasing sequence of three positive numbers a, b, and c such that
a2 + b2 = c2.

pytriple :: MonadPlus m⇒ m (Int, Int, Int)
pytriple = do a← anyof [1 . .]

b← anyof [a . .]
c← anyof [b . .]
guard (a ∗ a + b ∗ b =I c ∗ c)
return (a, b, c)

123

5 Explicit Nondeterminism

anyof pytriple pytriple6
[] 179s/ 9MB —/— 44s/ 2MB

CPS [] 196s/11MB —/— 4s/ 2MB
CPS DiffList 0s/ 6MB —/— 10s/ 2MB

CPS (Levels []) 0s/ 1MB 21s/ 966MB 12s/ 966MB
CPS (Levels DiffList) 0s/ 1MB 23s/ 966MB 13s/ 966MB

CPS (Bounded []) 223s/17MB 38s/ 2MB 16s/ 2MB
CPS (Bounded DiffList) 7s/14MB 54s/ 2MB 25s/ 2MB

CPS (Bounded (CPS [])) 200s/19MB 47s/ 2MB 20s/ 2MB
CPS (Levels (Levels DiffList)) 0s/ 1MB 1206s/2041MB 24s/1929MB

Table 5.1: Performance of different monadic search strategies

The predefined function guard :: MonadPlus m ⇒ Bool → m () fails if its
argument is False and we use it to filter Pythagorean triples from arbitrary
strictly increasing sequences of three positive numbers.

That is a concise declarative specification of Pythagorean triples but can
we execute it efficiently? It turns out that (unbounded) depth-first search
is trapped in infinite branches of the search space and diverges without
returning a result. We need a complete search strategy like breadth-first
search or iterative deepening search to execute pytriple. In order to be able
to compare those strategies with unbounded depth-first search, we use a
variant pytriple6 :: MonadPlus m ⇒ Int → m (Int, Int, Int) that computes
Pythagorean triples where all components are less or equal a given num-
ber. For this task the search space is finite and can also be explored using
incomplete strategies.

Benchmark results

The run time and memory requirements of the different strategies are de-
picted in Table 5.1. The three columns correspond to three benchmarks:

anyof executes the call anyof [1 . . 50000] and enumerates the results accord-
ing to the strategies depicted in the leftmost column of the table.

pytriple enumerates 500 Pythagorean triples without an upper bound for
their components. This benchmark can only be executed using com-
plete strategies, there are no results for unbounded depth-first search.

pytriple6 enumerates all 386 Pythagorean triples with an upper bound of
500 using all search strategies.

124

5.1 Nondeterminism monads

All benchmarks were executed on an Apple MacBook 2.2 GHz Intel Core 2
Duo with 4 GB RAM using a single core. We have used the Glasgow Haskell
Compiler (GHC, version 6.10.3) with optimisations (-O -fno-full-laziness) to
compile the code. When executing breadth-first search, we have provided
an initial heap of 1 GB (+RTS -H1G). We have increased the depth-limit of
iterative deepening search by 100 between different searches.

The anyof benchmark demonstrates the quadratic complexity of depth-
first search strategies based on list concatenation. The corresponding search
space is degenerated as it is a narrow but deep tree. Hence, there is notice-
able overhead when performing iterative deepening search.

The search space for enumerating Pythagorean triples is more realistic.
With and without an upper limit, breadth-first search is faster than iterative
deepening depth-first search but uses significantly more memory. Using dif-
ference lists instead of ordinary lists does not improve the performance of
breadth-first search in our benchmarks. We have observed the memory
requirements of iterative deepening depth-first search to be constant only
when we disabled let floating by turning off the full-laziness optimisation of
GHC. This optimisation increases sharing in a way that defeats the purpose
of iteratively exploring the search space by recomputing it on purpose. Iter-
ative deepening depth-first search incurs noticeable overhead compared to
ordinary depth-first search which, however, can only be applied if the search
space is finite.

We have tested two more strategies, namely, CPS (Bounded (CPS [])) and
CPS (Levels (Levels DiffList)). The former demonstrates that even wrapping
the list type under multiple layers of CPS does not improve on the quadratic
complexity of the ⊕ operation when nested left associatively. Moreover,
the extra CPS layer causes moderate overhead compared to ordinary itera-
tive-deepening depth-first search. Using two layers of Levels for breadth-first
search blows up the memory requirements even more. Although we have
run this specific benchmark with 2 GB initial heap, the memory require-
ments are so huge that reclaiming memory is sometimes a significant perfor-
mance penalty. The large difference in run time between the pytriple and
the pytriple6 benchmarks is suspicious. Probably, the slowdown is caused
by limiting memory by the option -M2G.

The experiments suggest to use the monad CPS DiffList if the search space
is known to be finite and CPS (Bounded DiffList) if it is not. Although there
is a moderate overhead of difference list compared to usual lists, the latter
perform much worse in case of left associative uses of ⊕. The memory
requirements of breadth-first search prohibit its use in algorithms that require
extensive search.

125

5 Explicit Nondeterminism

5.1.5 Summary

We have presented monads for nondeterminism in Haskell and a novel ap-
proach to define them. By using our method, their implementation is split
into two independent parts: one is identical for every implementation, the
other captures the essence of the employed search strategy. The part that
is identical for every implementation includes the monadic bind operation,
which does not have to be reimplemented for every nondeterminism monad.
Programmers only need to define notions of failure and choice and can wrap
these definitions in a parametrised type to obtain a monad for nondetermin-
ism.

As the implementation of monadic bind is usually the most involved part
in the implementation of nondeterminism monads, our approach gives rise
to simpler implementations of search strategies that required a more com-
plex implementation before. For example, difference lists are a natural
choice to represent nondeterministic computations efficiently but do not
support a natural implementation of monadic bind. We show that wrap-
ping the type for difference lists in a continuation monad results in the well-
known two-continuation-based backtracking monad. Using different base
types—which both lack a natural implementation of monadic bind—we ob-
tain novel implementations of breadth-first search and iterative deepening
depth-first search.

We have compared variations of the presented search strategies exper-
imentally and found that the two-continuation-based backtracking monad
outperforms the other strategies. Iterative deepening search, which requires
little space compared to other complete search strategies, is also suitable for
infinite search spaces.

Monads for nondeterminism are usually expected to satisfy certain laws.
Instances of MonadPlus derived with the presented approach satisfy the
monad laws (see Sections 2.1.3 and 5.1.1) by construction because the
implementations of return and >>= are always those of the continuation
monad. Whether the derived instances satisfy the monoid laws for the
MonadPlus operations depends on the employed instance of Nondet.3 The
strategies presented in Section 5.1.3 do not satisfy the monoid laws, how-
ever, manipulating a nondeterministic program according to these laws has
no effect on which results are computed—it only affects their order.

3We prove all mentioned laws for CPS monads in Appendix B.3

126

5.2 Combining laziness with nondeterminism

5.2 Combining laziness with nondeterminism

At first sight, Haskell seems to provide all necessary features for functional
logic programming without further ado: it has

• lazy evaluation which turned out useful for solving generate-and-test
problems efficiently and

• nondeterminism, albeit explicitly via monads, which allows to de-
scribe search problems elegantly.

On closer inspection, however, it turns out that laziness and nondeterminism
cannot be combined easily in Haskell. Nondeterminism monads are not
lazy.

A monad is called lazy if its bind operation satisfies the following law for
every function f .

⊥>>= f ≡ f ⊥

As a counter example, the implementation of >>= for the list monad (see
Section 5.1.2) performs pattern matching on its first argument. Hence, in
the list monad ⊥>>= f ≡⊥ and, thus, the list monad is not lazy.

Substituting f = λ → a for some monadic action a leads to an intuitive
interpretation of the lazy monad property: If the result of a monadic action
is ignored, then its effects are ignored too. This property of lazy monads
is in conflict with the laws for nondeterminism monads described in Sec-
tion 5.1.1. For example, the law

∅ >>= f ≡∅

requires that the effect of ∅ is not ignored even if f ignores its argument.
Nondeterminism monads account for the effects (failure and choice) of mon-
adic actions even if their results are irrelevant. This property allows, for
example, to define an auxiliary function guard for nondeterminism monads:

guard :: MonadPlus m⇒ Bool→ m ()
guard False = ∅
guard True = return ()

This function was used in Section 5.1.4 to prune the search for Pythagorean
triples and would not have this desirable effect in a lazy monad.

The functional logic programming community has developed a sound
combination of laziness and nondeterminism, namely, call-time choice (see

127

5 Explicit Nondeterminism

Section 2.2.4). Roughly, call-time choice makes lazy nondeterministic pro-
grams predictable and comprehensible because their declarative meanings
can be described in terms of (and are often the same as) the meanings of
eager nondeterministic programs.

In Section 5.2.1 we exemplify the problems of combining laziness (non-
strictness with sharing) and nondeterminism in more detail to motivate the
introduction of a monadic combinator for explicit sharing that solves the
discussed problems. We clarify the intuitions of explicit sharing in Sec-
tion 5.2.2 and introduce equational laws to reason about explicit sharing in
Section 5.2.3. In Section 5.2.4 we develop an easy to understand implemen-
tation in several steps which we generalise and speed up in Section 5.2.5.

5.2.1 Explicit sharing

In this subsection, we revisit non-strictness, sharing, and nondeterminism
and explain why combining them is useful and non-trivial.

Consider the following Haskell predicate which checks whether a given
list of numbers is sorted:

isSorted :: [Int]→ Bool
isSorted (x : y : zs) = (x 6 y) ∧ isSorted (y : zs)
isSorted = True

The predicate isSorted only demands the complete input list if it is sorted. If
the list is not sorted then it is only demanded up to the first two elements
that are out of order.

As a consequence, we can apply isSorted to infinite lists and it will yield
False if they are unsorted. The iterate function defined in Section 2.1.2 pro-
duces an infinite list. Nevertheless, the test isSorted (iterate (‘div‘2) n) yields
False if n > 0. It does not terminate if n 6 0 because an infinite list cannot
be identified as being sorted without considering each of its elements.

A lazy evaluation strategy is not only non-strict. Additionally, it evaluates
each expression bound to a variable at most once. If the variable occurs
more than once then the result of its first evaluation is shared.

Consider the following monadic variant of the permute operation defined
in Section 2.2.2.

permute :: MonadPlus m⇒ [a]→ m [a]
permute [] = return []
permute (x : xs) = do ys← permute xs

zs← insert x ys
return zs

128

5.2 Combining laziness with nondeterminism

insert :: MonadPlus m⇒ a→ [a]→ m [a]
insert x xs = return (x : xs)

⊕ case xs of
[] → ∅
(y : ys)→ do zs← insert x ys

return (y : zs)

We demonstrate the advantage of combining laziness with nondetermin-
ism to solve generate-and-test style search algorithms with a toy example,
namely, permutation sort. Below is a simple declarative specification of sort-
ing. In words, to sort a list is to compute a permutation of the list that is
sorted.

sort :: MonadPlus m⇒ [Int]→ m [Int]
sort xs = do ys← permute xs

guard (isSorted ys)
return ys

Unfortunately, this program is grossly inefficient, because it iterates through
every permutation of the list. It takes about a second to sort 10 elements,
more than 10 seconds to sort 11 elements, and more than 3 minutes to
sort 12 elements. The inefficiency is mostly because we do not use the
non-strictness of the predicate isSorted. Although isSorted rejects a permuta-
tion as soon as it sees two elements out of order, sort generates a complete
permutation before passing it to isSorted. Even if the first two elements of
a permutation are already out of order, exponentially many permutations of
the remaining elements are computed.

As discussed in the introduction to this chapter, the usual, naive monadic
encoding of nondeterminism in Haskell loses non-strictness.

Retaining non-strictness by sacrificing sharing

The problem with the naive monadic encoding of nondeterminism is that
the arguments to a constructor must be deterministic. If these arguments are
themselves results of nondeterministic computations, these computations
must be performed completely before we can apply the constructor to build
a nondeterministic result.

To overcome this limitation, we can redefine all data structures such that
their components may be nondeterministic. A data type for lists with nonde-
terministic components is as follows:

data List m a = Nil | Cons (m a) (m (List m a))

129

5 Explicit Nondeterminism

We define operations to construct such lists conveniently:

nil :: Monad m⇒ m (List m a)
nil = return Nil
cons :: Monad m⇒ m a→ m (List m a)→ m (List m a)
cons x y = return (Cons x y)

We redefine the non-strict isSorted to test nondeterministic lists:

isSorted :: MonadPlus m⇒ m (List m a)→ m Bool
isSorted ml =

do l← ml
case l of

Cons mx mxs→
do xs← mxs

case xs of
Cons my mys→

do x← mx
y← my
if x 6 y then isSorted (cons (return y) mys)

else return False
→ return True

→ return True

By generating lists with nondeterministic arguments, we can define a lazier
version of the permutation algorithm.

permute :: MonadPlus m⇒ m (List m a)→ m (List m a)
permute ml = do l← ml

case l of
Nil → nil
Cons mx mxs→ insert mx (permute mxs)

Note that we no longer evaluate (bind) the recursive call of permute in or-
der to pass the result to the operation insert, because insert now takes a
nondeterministic list as its second argument.

insert :: MonadPlus m⇒ m a→ m (List m a)→ m (List m a)
insert mx mxs = cons mx mxs

⊕ do Cons my mys← mxs
cons my (insert mx mys)

The operation insert either creates a new list with the nondeterministic mx
in front of the nondeterministic mxs or it inserts mx somewhere in the tail

130

5.2 Combining laziness with nondeterminism

of mxs. Here, the pattern match in the do-expression binding is non-exhaus-
tive. If the computation mxs returns Nil, the pattern-match failure is a failing
computation.

Now, we can define a permutation-sort algorithm that lazily checks whether
generated permutations are sorted:

sort :: MonadPlus m⇒ m (List m Int)→ m (List m Int)
sort xs = let ys = permute xs in

do True← isSorted ys
ys

Unfortunately, this version of the algorithm does not sort. It yields every
permutation of its input, not only the sorted permutations. This is because
the shared variable ys in the new definition of sort is bound to the nondeter-
ministic computation yielding a permutation of the input rather than to the
result of this computation. Consequently, isSorted checks whether there is a
sorted permutation and, if so, sort yields an arbitrary permutation.

The presence of nondeterministic components in data structures conflicts
with the intuition that shared variables such as ys denote values, fully de-
termined if not yet fully computed. In order for sort to work, the shared
nondeterministic computation ys, used twice in sort, must yield the same
result each time.

Our new approach to nondeterminism is lazy in that it preserves both
non-strictness and sharing. We provide a combinator share for explicit shar-
ing, which can be used to introduce variables for nondeterministic computa-
tions that represent values rather than computations. The combinator share
has the signature4

share :: m a→ m (m a)

where m is an instance of MonadPlus that supports explicit sharing. (We de-
scribe the implementation of explicit sharing in Sections 5.2.4–5.2.5.) The
function sort can then be redefined to actually sort:

sort xs = do ys← share (permute xs)
True← isSorted ys
ys

In this version of sort, the variable ys denotes the same permutation wher-
ever it occurs but is nevertheless only computed as much as demanded by
the predicate isSorted.

4In fact, the signature has additional class constraints; see Section 5.2.5.

131

5 Explicit Nondeterminism

5.2.2 Intuitions of explicit sharing

In this subsection we present a series of small examples to clarify how to use
share and what share does. We define two simple programs. The computa-
tion coin flips a coin and nondeterministically returns either 0 or 1.

coin :: MonadPlus m⇒ m Int
coin = return 0⊕ return 1

The function duplicate evaluates a given computation a twice and returns a
pair of the results.

duplicate :: Monad m⇒ m a→ m (a, a)
duplicate a = do u← a

v← a
return (u, v)

Sharing enforces call-time choice

We contrast three ways to bind x:

dup_coin_let = let x = coin in duplicate x
dup_coin_bind = do x← coin; duplicate (return x)
dup_coin_share = do x← share coin; duplicate x

The operations dup_coin_let and dup_coin_bind do not use share, so we can
understand their results by treating m as any nondeterminism monad. The
operation dup_coin_let binds the variable x to the nondeterministic computa-
tion coin. The function duplicate executes x twice—performing two indepen-
dent coin flips—so dup_coin_let yields four answers, namely (0, 0), (0, 1),
(1, 0), and (1, 1). In contrast, dup_coin_bind binds x, of type Int, to share
not the coin computation but its result. The function duplicate receives a
deterministic computation return x, whose two evaluations yield the same
result, so dup_coin_bind yields only (0, 0) and (1, 1).

The shared computation x in the definition of dup_coin_share behaves like
return x in dup_coin_bind: both arguments to duplicate are deterministic
computations, which yield the same results even when evaluated multiple
times. As in Section 5.2.1, we wish to share the results of computations, and
we wish variables to denote values. In dup_coin_bind, x has the type Int and
indeed represents an integer. In dup_coin_share, x has the type m Int, yet it
represents one integer rather than multiple nondeterministic integers. Thus
dup_coin_share yields the same two results as dup_coin_bind.

132

5.2 Combining laziness with nondeterminism

Sharing preserves non-strictness

Shared computations, like the lazy evaluation of pure Haskell expressions,
take place only when their results are needed. In particular, if the program
can finish without a result from a shared computation, then that computation
never happens. The sorting example in Section 5.2.1 shows how non-strict-
ness can improve performance dramatically. Here, we illustrate non-strict-
ness with two shorter examples:

strict_bind = do x← ⊥ :: m Int
duplicate (const (return 2) (return x))

lazy_share = do x← share (⊥ :: m Int)
duplicate (const (return 2) x)

The evaluation of strict_bind diverges, whereas lazy_share yields (2, 2). Of
course, real programs do not contain ⊥ or other intentionally divergent com-
putations. We use ⊥ above to stand for an expensive search whose results
are unused.

Alternatively, ⊥ above may stand for an expensive search that in the end
fails to find any solution. If the rest of the program does not need any result
from the search, then the shared search is not executed at all. Thus, if we
replace ⊥ with ∅ in the examples above, strict_bind would fail, whereas
lazy_share would yield (2, 2) as before.

Sharing recurs on nondeterministic components

We turn to data types that contain nondeterministic computations, such as
List m a introduced in Section 5.2.1. We define two functions for illustration:
the function first takes the first element of a List; the function dupl builds a
List with the same two elements.

first :: MonadPlus m⇒ m (List m a)→ m a
first l = l >>= λ(Cons x xs)→ x
dupl :: Monad m⇒ m a→ m (List m a)
dupl x = cons x (cons x nil)

The function dupl is subtly different from duplicate: whereas duplicate runs a
computation twice and returns a data structure with the results, dupl returns
a data structure containing the same computation twice without running it.

The following two examples illustrate the benefit of data structures with
nondeterministic components.

133

5 Explicit Nondeterminism

heads_bind = do l← cons coin ⊥
dupl (first (return l))

heads_share = do l← share (cons coin ⊥)
dupl (first l)

Despite the presence of ⊥, the evaluation of both examples terminates and
yields defined results. Since only the head of the list l is needed, the unde-
fined tail of the list is not evaluated.

The expression cons coin ⊥ above denotes a deterministic computation
that returns a data structure containing a nondeterministic computation coin.
The monadic bind in the definition of heads_bind shares this data structure,
coin and all, but not the result of coin. The monad laws entail that heads_bind
yields cons coin (cons coin nil). When we later execute the latent computa-
tions (to print the result, for example), the two copies of coin will run inde-
pendently and yield four outcomes [0, 0], [0, 1], [1, 0], [1, 1], so heads_bind
is like dup_coin_let above. Informally, monadic bind performs only shallow
sharing, which is not enough for data with nondeterministic components.

Our share combinator performs deep sharing: all components of a shared
data structure are shared as well.5 For example, the variable l in the defini-
tion of heads_share stands for a fully determined list with no latent nondeter-
minism. Thus, heads_share yields only two outcomes, [0, 0] and [1, 1].

Sharing applies to unbounded data structures

Our final example involves a list of nondeterministic, unbounded length,
whose elements are each also nondeterministic. The set of possible lists is
infinite, yet non-strictness lets us compute with it.

coins :: MonadPlus m⇒ m (List m Int)
coins = nil⊕ cons coin coins
dup_first_coin = do cs← share coins

dupl (first cs)

The nondeterministic computation coins yields every finite list of zeroes and
ones. Unlike the examples above using ⊥, each possible list is fully defined
and finite, but there are an infinite number of possible lists, and generating
every list requires an unbounded number of choices. Even though, as dis-
cussed above, the shared variable cs represents the fully determined result

5Applying share to a function does not cause any nondeterminism in its body to be shared.
This behavior matches the intuition that invoking a function creates a copy of its body by
substitution.

134

5.2 Combining laziness with nondeterminism

return x >>= f ≡ f x (Lret)

a >>= return ≡ a (Rret)

(a >>= f) >>= g ≡ a >>= λx→ f x >>= g (Bassoc)

∅ >>= f ≡ ∅ (Lzero)

(a⊕ b) >>= f ≡ (a >>= f)⊕ (b >>= f) (Ldistr)

share (a⊕ b) ≡ share a⊕ share b (Choice)

share ∅ ≡ return ∅ (Fail)

share ⊥ ≡ return ⊥ (Bot)

share (return (C x1 . . . xn)) ≡ share x1 >>= λy1 → . . . (HNF)
share xn >>= λyn →
return (return (C y1 . . . yn))

where C is a constructor with n nondeterministic components

Figure 5.1: The laws of a monad with nondeterminism and sharing

of such an unbounded number of choices, computing dup_first_coin only
makes the few choices demanded by dupl (first cs). In particular, first cs rep-
resents the first element and is demanded twice, each time giving the same
result, but no other element is demanded. Thus, dup_first_coin produces
two results, [0, 0] and [1, 1].

5.2.3 Laws of explicit sharing

We now formalise the intuitions illustrated above in a set of equational laws
that hold up to observation as detailed below. We show here how to use the
laws to reason about—in particular, predict the results of—nondeterministic
computations with share, such as the examples above. In Section 5.2.4, we
further use the laws to guide an implementation.

The laws of our monad are shown in Figure 5.1. First of all, our monad
satisfies the monad laws, (Lret), (Rret) and (Bassoc) which we have discussed
in Section 2.1.3. Our monad is also a MonadPlus instance and we include
the first two laws described in Section 5.1.1, (Ldistr) and (Lzero). We do not
however require that ⊕ be associative or that ∅ be a left or right unit of ⊕,
so that our monad can be a probabilistic nondeterminism monad, for which
⊕ computes the average of probabilities.

135

5 Explicit Nondeterminism

Using the laws in Figure 5.1, we can reduce a computation expression in
our monad to an expression like (∅⊕ . . .)⊕ (return v⊕ . . .), a (potentially
infinite) tree whose branches are ⊕ and whose leaves are ⊥, ∅, or return v.
To observe the computation, we apply a function run to convert it to another
MonadPlus instance. Figure 5.2 gives the laws of run. The right-hand sides
use primes (return′, >>=′, ∅′, ⊕′) to refer to operations of the target monad.

Using the (Lret) and (Ldistr) laws, we can compute the result of the exam-
ple dup_coin_bind above, which does not use share.

(return 0⊕ return 1) >>= λx→
return x >>= λu→ return x >>= λv→ return (u, v)

≡ { (Lret) twice }
(return 0⊕ return 1) >>= λx→ return (x, x)
≡ { (Ldistr) }

(return 0 >>= λx→ return (x, x))
⊕ (return 1 >>= λx→ return (x, x))

≡ { (Lret) twice }
return (0, 0)⊕ return (1, 1)

To show how the laws enforce call-time choice, we derive the same result
for dup_coin_share, which is

share (return 0⊕ return 1) >>= λx→
x >>= λu→ x >>= λv→ return (u, v)

We first use the (Choice) law to reduce the expression share (return 0 ⊕
return 1) to share (return 0) ⊕ share (return 1). We then reduce the ex-
pression share (return 0) to return (return 0) (and share (return 1) to
return (return 1)) using the (HNF) law (HNF is short for "head normal form").
In the law, C stands for a constructor with n nondeterministic components.
Since 0 has no nondeterministic components, n = 0 and we have

return (return 0) >>= λx→
x >>= λu→ x >>= λv→ return (u, v)

≡ { (Lret) }
return 0 >>= λu→ return 0 >>= λv→ return (u, v)
≡ { (Lret) twice }

return (0, 0)

The overall result is thus the same as that for dup_coin_bind.
The preservation of non-strictness is illustrated by lazy_share. After reduc-

ing const (return 2) x there to return 2, we obtain

136

5.2 Combining laziness with nondeterminism

run ∅ ≡ ∅′ (rZero)

run (a⊕ b) ≡ run a⊕′ run b (rPlus)

run (return (C x1 . . . xn)) ≡ run x1 >>=′ λy1 → . . . (rRet)
run xn >>=′ λyn →
return′ (C (return′ y1) . . . (return′ yn))

Figure 5.2: The laws of observing a monad with nondeterminism and shar-
ing in another monad with nondeterminism

share ⊥>>= λx→ duplicate (return 2)

Because x is unused, the result can be computed without evaluating the
shared expression. And it is, as assured by the (Bot) law, which reduces
share ⊥ to return ⊥ (which is observably different from ⊥). The (Lret) law
then reduces the expression to duplicate (return 2), and the final result is
return (2, 2). The (Bot) law is discussed further shortly. The (Fail) law works
similarly.

We turn to data structures with nondeterministic components. heads_bind
reduces to return (Cons coin (return (Cons coin (return Nil)))) by monad
laws, where the constructor Cons takes two nondeterministic computations
as arguments. Whereas applying run to observe results without nondeter-
ministic components is a trivial matter of replacing ∅ by ∅′, ⊕ by ⊕′, and
return by return′ (so trivial as to be glossed over above), observing the result
of heads_bind requires using the (rRet) law in Figure 5.2 in a non-trivial way,
with C being Cons and n being 2. The result is

run coin >>=′ λy1 →
run (return (Cons coin (return Nil))) >>=′ λy2 →
return′ (Cons (return′ y1) (return′ y2))

which eventually yields four solutions due to two independent observations
of coin. In general, (rRet) ensures that the final observation yields only fully
determined values.

To predict the result of heads_share, we need to apply the (HNF) law in a
non-trivial way, with C being Cons and n being 2:

share (return (Cons coin ⊥))
≡ { (HNF) }

share coin >>= λy1 → share ⊥

137

5 Explicit Nondeterminism

>>= λy2 → return (return (Cons y1 y2))
≡ { (Bot) and (Lret) }

share coin >>= λy1 → return (return (Cons y1 ⊥))
≡ { definition of coin }

share (return 1⊕ return 1)
>>= λy1 → return (return (Cons y1 ⊥))

≡ { (Choice) }
(share (return 0)⊕ share (return 1))
>>= λy1 → return (return (Cons y1 ⊥))

≡ { (HNF) }
(return (return 0)⊕ return (return 1))
>>= λy1 → return (return (Cons y1 ⊥))

≡ { (Ldistr }
(return (return 0) >>= λy1 → return (return (Cons y1) ⊥))
⊕ (return (return 1) >>= λy1 → return (return (Cons y1) ⊥))

≡ { (Lret) }
return (return (Cons (return 0) ⊥))
⊕ return (return (Cons (return 1) ⊥))

This derivation shows that applying share to return (Cons coin ⊥) exposes
and lifts the latent choice coin in the list to the top level. Therefore, sharing
a list that contains a choice is equivalent to sharing a choice of a list, so
heads_share yields only two outcomes.

The (Bot) law and our discussion of lazy_share above suggest a more gen-
eral law

share a >>= λ → b≡ b, (Ignore)

which says that any unused shared computation, not just ⊥, can simply be
skipped. This law implies that ⊕ is idempotent: b⊕ b≡ b. The proof of the
implication is that

b⊕ b
≡ { (HNF) and (Lret) }

(share (return 0) >>= λ → b)⊕ (share (return 1) >>= λ → b)
≡ { definition of coin and (Choice) }

share coin >>= λ → b
≡ { (Ignore) }

b

Idempotence is justified if we observe a nondeterministic computation as
a set of outcomes, that is, if we care only whether a particular result is
produced, not how many times or in what order.

138

5.2 Combining laziness with nondeterminism

The (Ignore) law enables a simpler analysis of our last example program
dup_first_coin, which creates an infinite number of choices but demands
only a few of them. Without (Ignore), we can only reduce the program using
(Choice) and (HNF) to ∅⊕ (a⊕ b), where a≡ d0⊕ (a⊕ a), b≡ d1⊕ (b⊕ b),
and

di ≡ return (Cons (return i) (return (Cons (return i) (return Nil))).

Using (Ignore), we can arrive at a simpler result with no duplicate solutions,
namely ∅⊕ (d0 ⊕ d1).

Intuitions behind our laws

Call-time choice makes shared nondeterminism feel like familiar call-by-
value evaluation in monadic style, except ∅ and ⊥ are treated like values.
Indeed, the laws (Fail) and (Bot) would be subsumed by (HNF) if ⊥ and ∅
were return c for some c. The intuition of treating divergence like a value to
express laziness guides standard formalisations of functional logic program-
ming that inspired our laws (González-Moreno et al. 1999; López-Fraguas
et al. 2007).

Still, for an equational law, (Bot) is unusual in two ways. First, (Bot) is not
constructive: its left-hand side matches a computation that diverges, which
is in general not decidable. Therefore, it does not correspond to a clause
in the implementation of share, as we detail in Sections 5.2.4 and 5.2.5
below. Second, the function share is computable and thus monotonic in the
domain-theoretic sense, so (Bot) entails that share a > share ⊥≡ return ⊥
for all a. In particular, we have by (Choice) that share a⊕ share b≡ share (a⊕
b) > return ⊥. How can a nondeterministic value share a⊕ share b possibly
be as defined as the deterministic value return ⊥?

The key is that our laws hold only up to observation. That is, they only say
that replacing certain expressions by others does not affect the (non)termi-
nation of well-typed programs6 when the monad type constructors are held
abstract (Hinze 2000; Lin 2006). Observing a computation in our monad
requires applying run then observing the result in the target monad. Each
of the two steps may identify many computations. For example, the order of
choices may be unobservable because the target monad is the set monad.7

Also, we may be unable to disprove that share a⊕ share b is as defined as
return ⊥ because run (return ⊥) diverges.

6without selective strictness via seq
7The set monad can be implemented in Haskell just like the list monad, with the usual Monad

and MonadPlus instances that do not depend on Eq or Ord, as long as computations can
only be observed using the null predicate.

139

5 Explicit Nondeterminism

A positive example of our laws holding up to observation lies in Con-
structor-Based Rewriting Logic (CRWL) (González-Moreno et al. 1999), a
standard formalisation of functional logic programming. To every term e
(which we assume is closed in this informal explanation), CRWL assigns a
denotation JeK, the set of partial values that e can reduce to. A partial value
is built up using constructors such as Cons and Nil, but any part can be re-
placed by ⊥ to form a lesser value. A denotation is a downward-closed set
of partial values.

Theorem 1 of López-Fraguas et al. (2008) is a fundamental property of
call-time choice. It states that, for every context C and term e, the denotation
JC[e]K equals the denotation

⋃
t∈JeKJC[t]K which is the union of denotations

of C[t] where t is drawn from the denotation of e. Even if e is nondeter-
ministic, the denotation of a large term that contains e can be obtained by
considering each partial value e can reduce to. Especially, if e is an argument
to a function that duplicates its argument, this argument denotes the same
value wherever it occurs. The monadic operation ⊕ for nondeterministic
choice resembles the operation ? defined in Section 2.2.3. Using the theo-
rem above, we conclude that JC[a?b]K = JC[a]?C[b]K, which inspired our
(Choice) law.

5.2.4 Implementing explicit sharing

We start to implement share in this section. We begin with a very spe-
cific version and generalise it step by step. Revisiting the equational laws
for share, we show how memoisation can be used to achieve the desired
properties. First, we consider values without nondeterministic components,
namely values of type Int. We then extend the approach to nondeterminis-
tic components, namely lists of numbers. An implementation for arbitrary
user-defined nondeterministic types in terms of a transformer for arbitrary
instances of MonadPlus is given in Section 5.2.5.

The tension between late demand and early choice

Lazy evaluation means to evaluate expressions at most once and not until
they are demanded. The law (Ignore) from the previous subsection, or more
specifically, the laws (Fail) and (Bot) from Figure 5.1 formalise late demand.
In order to satisfy these laws, we could be tempted to implement share as
follows:

share :: Monad m⇒ m a→ m (m a)
share a = return a

140

5.2 Combining laziness with nondeterminism

and so share ⊥ is trivially return ⊥, just as the law (Bot) requires; (Fail) is
similarly satisfied. But (Choice) fails, because return (a ⊕ b) is not equal
to return a ⊕ return b. For example, if we take dup_coin_share from Sec-
tion 5.2.2 and replace share with return, we obtain dup_coin_let—which, as
explained there, shares only a nondeterministic computation, not its result
as desired. Instead of re-making the choices in a shared monadic value each
time it is demanded, we must make the choices only once and reuse them
for duplicated occurrences.

We could be tempted to try a different implementation of share that en-
sures that choices are performed immediately:

share :: Monad m⇒ m a→ m (m a)
share a = a >>= λx→ return (return x)

This implementation satisfies the (Choice) law, but it does not satisfy the
(Fail) and (Bot) laws. The (Lzero) law of MonadPlus shows that this imple-
mentation renders share ∅ equal to ∅, which is observationally different
from the return ∅ required by (Fail). This attempt ensures early choice using
early demand, so we get eager sharing, rather than lazy sharing as desired.

Memoisation

We can combine late demand and early choice using memoisation. The
idea is to delay the choice until it is demanded, and to remember the choice
when it is made for the first time so as to not make it again if it is demanded
again.

To demonstrate the idea, we define a very specific version of share that
fixes the monad and the type of shared values. We use a state monad to
remember shared monadic values. A state monad is an instance of the fol-
lowing type class, which defines operations to query and update a threaded
state component.

class MonadState s m where
get :: m s
put :: s→ m ()

In our case, the threaded state is a list of thunks that can be either unevalu-
ated or evaluated.

data Thunk a = Uneval (Memo a) | Eval a

Here, Memo is the name of our monad. It threads a list of Thunks through
nondeterministic computations represented as lists.

141

5 Explicit Nondeterminism

newtype Memo a =
Memo {unMemo :: [Thunk Int]→ [(a, [Thunk Int])]}

The instance declarations of Memo for the type classes Monad, MonadState,
and MonadPlus are as follows:

instance Monad Memo where
return x = Memo (λts→ [(x, ts)])
m >>= f = Memo (concatMap (λ(x, ts)→ unMemo (f x) ts)

◦ unMemo m)
instance MonadState [Thunk Int] Memo where

get = Memo (λts→ [(ts, ts)])
put ts = Memo (λ → [((), ts)])

instance MonadPlus Memo where
∅ = Memo (const [])
a⊕ b = Memo (λts→ unMemo a ts ++ unMemo b ts)

It is crucial that the thunks are passed to both alternatives separately in the
implementation of mplus. Using mutable global state to store the thunks
would not suffice because thunks are created and evaluated differently in
different nondeterministic branches.

We can implement a very specific version of share that works for integers
in the Memo monad.

share :: Memo Int→ Memo (Memo Int)
share a = memo a
memo a =

do thunks← get
let index = length thunks
put (thunks ++ [Uneval a])
return (do thunks← get

case thunks !! index of
Eval x → return x
Uneval a→

do x← a
thunks← get
let (xs, : ys) = splitAt index thunks
put (xs ++ [Eval x] ++ ys)
return x)

This implementation of share adds an unevaluated thunk to the current store
and returns a monadic action that, when executed, queries the store and ei-
ther returns the already evaluated result or evaluates the unevaluated thunk

142

5.2 Combining laziness with nondeterminism

before updating the threaded state. The argument a given to share is not
demanded until the inner action is performed. Hence, this implementation
of share satisfies the (Fail) and (Bot) laws. Furthermore, the argument is only
evaluated once, followed by an update of the state to remember the com-
puted value. Hence, this implementation of share satisfies the (Choice) law
(up to observation). If the inner action is duplicated and evaluated more
than once, then subsequent calls will yield the same result as the first call
due to memoisation.

Nondeterministic components

The version of share just developed memoises only integers. However, we
want to memoise data with nondeterministic components, such as permuted
lists that are computed on demand. So instead of thunks that evaluate to
numbers, we redefine the Memo monad to store thunks that evaluate to lists
of numbers now.

newtype Memo a =
Memo {unMemo :: [Thunk (List Memo Int)]

→ [(a, [Thunk (List Memo Int)])]}

The instance declarations of Memo for Monad and MonadPlus stay the same.
In the MonadState instance only the state type needs to be adapted. We also
reuse the memo function, which has now a different type. We could try to
define share simply as a renaming for memo again:

share :: Memo (List Memo Int)→ Memo (Memo (List Memo Int))
share a = memo a

However, with this definition lists are not shared deeply. This behavior cor-
responds to the expression heads_bind where the head and the tail of the de-
manded list are still executed whenever they are demanded and may hence
yield different results when duplicated. This implementation does not satisfy
the (HNF) law.

We can remedy this situation by recursively memoising the head and the
tail of a shared list:

share :: Memo (List Memo Int)→ Memo (Memo (List Memo Int))
share a = memo (do l← a

case l of
Nil → nil
Cons x xs→ do y← share x

ys← share xs
cons y ys)

143

5 Explicit Nondeterminism

This implementation of share memoises data containing nondeterministic
components as deeply as demanded by the computation. Each component
is evaluated at most once and memoised individually in the list of stored
thunks.8

Observing nondeterministic results

In order to observe the results of a computation that contains nondetermin-
istic components, we need a function (such as run in Figure 5.2) that evalu-
ates all the components and combines the resulting alternatives to compute
a nondeterministic choice of deterministic results. For example, we can de-
fine a function eval that computes all results from a nondeterministic list of
numbers.

eval :: List Memo Int→ Memo (List Memo Int)
eval Nil = return Nil
eval (Cons x xs) = do y ← x >>= eval

ys← xs >>= eval
return (Cons (return y) (return ys))

The lists returned by eval are fully determined. Using eval, we can define an
operation run that computes the results of a nondeterministic computation:

run :: Memo (List Memo Int)→ [List Memo Int]
run m = map fst (unMemo (m >>= eval) [])

In order to guarantee that the observed results correspond to predicted re-
sults according to the laws in Section 5.2.3, we place two requirements on
the monad used to observe the computation ([] above). (In contrast, the
laws in Section 5.2.3 constrain the monad used to express the computation
(Memo above).)

Idempotence of choice The (Choice) law predicts that executing the call
run (share coin >>= λ → return Nil) gives return′ Nil⊕′ return′ Nil. How-
ever, our implementation gives a single solution return′ Nil (following the
(Ignore) law, as it turns out). Hence, we require ⊕′ to be idempotent; that is,
a⊕′ a≡ a.

8This implementation of share does not actually type-check because share x in the body needs
to invoke the previous version of share, for the type Int, rather than this version, for the type
List Memo Int. The two versions can be made to coexist, each maintaining its own state, but
we develop a polymorphic share combinator in Section 5.2.5 below, so the issue is moot.

144

5.2 Combining laziness with nondeterminism

This requirement is satisfied if we abstract from the multiplicity of results
(considering [] as the set monad rather than the list monad), as is common
practice in functional logic programming, or if we treat ⊕′ as averaging the
weights of results, as is useful for probabilistic inference.

Distributivity of bind over choice According to the (Choice) law, the result
of the computation

run (share coin >>= λc→ coin >>= λy→ c >>= λx→
return (Cons (return x) (return (Cons (return y) (return Nil)))))

is the following nondeterministic choice of lists (we write 〈x, y〉 to denote
return′ (Cons (return′ x) (return′ (Cons (return′ y) (return′ Nil)))).

(〈0, 0〉 ⊕′ 〈0, 1〉)⊕′ (〈1, 0〉 ⊕′ 〈1, 1〉)

However, our implementation yields

(〈0, 0〉 ⊕′ 〈1, 0〉)⊕′ (〈0, 1〉 ⊕′ 〈1, 1〉).

In order to equate these two trees, we require the following distributive law
between >>=′ and ⊕′.

a >>=′ λx→ (f x⊕′ g x)≡ (a >>=′ f)⊕′ (a >>=′ g)

If the observation monad satisfies this law, then the two expressions above
are equal (we write coin′ to denote return′ 0⊕′ return′ 1:

(〈0, 0〉 ⊕′ 〈0, 1〉)⊕′ (〈1, 0〉 ⊕′ 〈1, 1〉)
≡ (coin′ >>=′ λy→ 〈0, y〉)⊕′ (coin′ >>=′ λy→ 〈1, y〉)
≡ coin′ >>=′ λy→ (〈0, y〉 ⊕′ 〈1, y〉)
≡ (〈0, 0〉 ⊕′ 〈1, 0〉)⊕′ (〈0, 1〉 ⊕′ 〈1, 1〉).

Hence, the intuition behind distributivity is that the observation monad does
not care about the order in which choices are made. This intuition captures
the essence of implementing call-time choice: we can perform choices on
demand and the results are as if we performed them eagerly.

In general, it is fine to use our approach with an observation monad that
does not match our requirements, as long as we are willing to abstract from
the mismatch. For example, the list monad satisfies neither idempotence nor
distributivity, yet our equational laws are useful in combination with the list
monad if we abstract from the order and multiplicities of results. We also do
not require that ⊕′ be associative or that ∅′ be a left or right unit of ⊕′.

145

5 Explicit Nondeterminism

5.2.5 Generalised, efficient implementation

In this subsection, we generalise the implementation ideas described in the
previous section such that

1. arbitrary user-defined types with nondeterministic components can be
passed as arguments to the combinator share, and

2. arbitrary instances of MonadPlus can be used as the underlying search
strategy.

We achieve the first goal by introducing a type class with the interface to
process nondeterministic data. We achieve the second goal by defining
a monad transformer Lazy that adds sharing to any instance of MonadPlus.
After describing a straightforward implementation of this monad transformer,
we show how to implement it differently in order to improve performance
significantly.

Both of these generalisations are motivated by practical applications in
nondeterministic programming.

1. The ability to work with user-defined types makes it easier to compose
deterministic and nondeterministic code and to draw on the sophisti-
cated type and module systems of existing functional languages.

2. The ability to plug in different underlying monads makes it possible to
employ different search strategies like those presented in Section 5.1.

The implementation of our monad transformer is given in Appendix A.6.

Nondeterministic data

We have seen in the previous section that in order to share nested, nondeter-
ministic data deeply, we need to traverse it and apply the combinator share
recursively to every nondeterministic component. We have implemented
deep sharing for the type of nondeterministic lists, but want to generalise this
implementation to support arbitrary user-defined types with nondeterminis-
tic components. It turns out that the following interface to nondeterministic
data is sufficient:

class MonadPlus m⇒ Nondet m a where
mapNondet :: (∀b.Nondet m b⇒ m b→ m (m b))→ a→ m a

A nondeterministic type a with nondeterministic components wrapped in
the monad m can be made an instance of Nondet m by implementing the

146

5.2 Combining laziness with nondeterminism

function mapNondet, which applies a monadic transformation to each non-
deterministic component. The type of mapNondet is a rank-2 type: the first
argument is a polymorphic function that can be applied to nondeterministic
data of any type.

We can make the type List m Int, of nondeterministic number lists, an
instance of Nondet as follows.

instance MonadPlus m⇒ Nondet m Int where
mapNondet c = return c

instance Nondet m a⇒ Nondet m (List m a) where
mapNondet Nil = return Nil
mapNondet f (Cons x xs) = do y ← f x

ys← f xs
return (Cons y ys)

The implementation mechanically applies the given transformation to the
nondeterministic arguments of each constructor.

An example for the use of mapNondet is the following operation, which
computes the fully determined values from a nondeterministic value.

eval :: Nondet m a⇒ a→ m a
eval = mapNondet (λa→ a >>= eval >>= return ◦ return)

This operation generalises the specific version for lists given in Section 5.2.4.
In order to determine a value, we determine values for the arguments and
combine the results. The bind operation of the monad nicely takes care of
the combination.

Our original motivation for abstracting over the interface of nondeterminis-
tic data was to define the operation share with a more general type. In order
to generalise the type of share to allow not only different types of shared
values but also different monad type constructors, we define another type
class.

class MonadPlus m⇒ Sharing m where
share :: Nondet m a⇒ m a→ m (m a)

Nondeterminism monads that support the operation share are instances of
this class. We next define an instance of Sharing with the implementation
of share for arbitrary nondeterministic types.

State monad transformer

The implementation of memoisation in Section 5.2.4 uses a state monad to
thread a list of thunks through nondeterministic computations. The straight-

147

5 Explicit Nondeterminism

forward generalisation is to use a state monad transformer to thread thunks
through computations in arbitrary monads. A state monad transformer adds
the operations defined by the type class MonadState to an arbitrary base
monad.

The type for Thunks generalises easily to an arbitrary monad:

data Thunk m a = Uneval (m a) | Eval a

Instead of using a list of thunks, we use a ThunkStore with the following
interface. Note that the operations lookupThunk and insertThunk deal with
thunks of arbitrary type.

emptyThunks :: ThunkStore
getFreshKey :: MonadState ThunkStore m⇒ m Int
lookupThunk :: MonadState ThunkStore m⇒ Int→ m (Thunk m a)
insertThunk :: MonadState ThunkStore m⇒ Int→ Thunk m a→ m ()

There are different options to implement this interface. We have imple-
mented thunk stores using the generic programming features of the modules
Data.Typeable and Data.Dynamic but omit corresponding class contexts for
the sake of clarity.

Lazy monadic computations can now be performed in a monad that threads
a ThunkStore. We obtain such a monad by applying the StateT monad trans-
former to an arbitrary instance of MonadPlus.

type Lazy m = StateT ThunkStore m

For any instance m of MonadPlus, the type constructor Lazy m is an instance
of Monad, MonadPlus, and MonadState ThunkStore. We only need to define
the instance of Sharing ourselves, which implements the operation share.

instance MonadPlus m⇒ Sharing (Lazy m) where
share a = memo (a >>= mapNondet share)

The implementation of share uses the operation memo to memoise the argu-
ment and the operation mapNondet to apply share recursively to the nonde-
terministic components of the given value. The function memo resembles
the specific version given in Section 5.2.4 but has a more general type.

148

5.2 Combining laziness with nondeterminism

memo :: MonadState ThunkStore m⇒ m a→ m (m a)
memo a = do key← getFreshKey

insertThunk key (Uneval a)
return (do thunk← lookupThunk key

case thunk of
Eval x → return x
Uneval b→ do x← b

insertThunk key (Eval x)
return x)

The only difference in this implementation of memo from before is that it
uses more efficient thunk stores instead of lists of thunks.

In order to observe a lazy nondeterministic computation, we use the func-
tions eval to compute fully determined values and evalStateT to execute ac-
tions in the transformed state monad.

run :: Nondet (Lazy m) a⇒ Lazy m a→ m a
run a = evalStateT (a >>= eval) emptyThunks

This function is the generalisation of the run function to arbitrary data types
with nondeterministic components that are expressed in an arbitrary instance
of MonadPlus.

This completes an implementation of our monad transformer for lazy non-
determinism, with all of the functionality motivated in Sections 5.2.1 and
5.2.2.

Optimising performance

We have applied some optimisations that improve the performance of our
implementation significantly. We use the permutation sort in Section 5.2.1
with the list monad as underlying nondeterminism monad for a rough mea-
sure of performance. The implementation just presented exhausts the search
space for sorting a list of length 20 in about 5 minutes.9 The optimisations
described below reduce the run time to 7.5 seconds. All implementations
run permutation sort in constant space (5 MB or less) and the final imple-
mentation executes permutation sort on a list of length 20 roughly three
times faster than the fastest available compiler for Curry, the Münster Curry
Compiler (MCC).

9We performed our experiments on an Apple MacBook with a 2.2 GHz Intel Core 2 Duo
processor using GHC with optimisations (-O2).

149

5 Explicit Nondeterminism

As detailed below, we achieve this competitive performance by

1. reducing the amount of pattern matching in invocations of the mon-
adic bind operation,

2. reducing the number of store operations when storing shared results,
and

3. manually inlining and optimising library code.

Less pattern matching The Monad instance for the StateT monad trans-
former performs pattern matching in every call to >>= in order to thread
the store through the computation. This is wasteful especially during com-
putations that do not access the store because they do not perform explicit
sharing. We can avoid this pattern matching by using a different instance of
MonadState.

We define the continuation monad transformer ContT:10

newtype ContT m a = C {unC :: ∀w.(a→ m w)→ m w}
runContT :: Monad m⇒ ContT m a→ m a
runContT m = unC m return

We can make ContT m an instance of the type class Monad without using
operations from the underlying monad m:

instance Monad (ContT m) where
return x = C (λc→ c x)
m >>= k = C (λc→ unC m (λx→ unC (k x) c))

An instance for MonadPlus can be easily defined using the corresponding
operations of the underlying monad. The interesting exercise is to define an
instance of MonadState using ContT. When using continuations, a reader
monad—a monad where actions are functions that take an environment as
input but do not yield one as output—can be used to pass state. More specif-
ically, we need the following operations of reader monads:

ask :: MonadReader s m⇒ m s
local :: MonadReader s m⇒ (s→ s)→ m a→ m a

The function ask queries the current environment, and the function local
executes a monadic action in a modified environment. In combination with
10This implementation differs from the definition shipped with GHC in that the result type w

for continuations is higher-rank polymorphic.

150

5.2 Combining laziness with nondeterminism

a continuation monad transformer, the function local is enough to implement
state updates:

instance Monad m⇒ MonadState s (ContT (ReaderT s m))
where

get = C (λc→ ask >>= c)
put s = C (λc→ local (const s) (c ()))

With these definitions, we can define our monad transformer Lazy:

type Lazy m = ContT (ReaderT ThunkStore m)

We can reuse from above the definition of the Sharing instance and of the
memo function used to define share.

After this optimisation, searching all sorted permutations of a list of length
20 takes about two minutes rather than five.

Fewer state manipulations The function memo just defined performs two
state updates for each shared value that is demanded: one to insert the un-
evaluated shared computation and one to insert the evaluated result. We
can save half of these manipulations by inserting only evaluated head-nor-
mal forms and using lexical scope to access unevaluated computations. We
use a different interface to stores now, again abstracting away the details of
how to implement this interface in a type-safe manner.

emptyStore :: Store
getFreshKey :: MonadState Store m⇒ m Int
lookupHNF :: MonadState Store m⇒ Int→ m (Maybe a)
insertHNF :: MonadState Store m⇒ Int→ a→ m ()

Based on this interface, we can define a variant of memo that only stores
evaluated head normal forms.

memo :: MonadState Store m⇒ m a→ m (m a)
memo a = do key← getFreshKey

return (do hnf ← lookupHNF key
case hnf of

Just x → return x
Nothing→ do x← a

insertHNF key x
return x)

Instead of retrieving a thunk from the store on demand if it is not yet eval-
uated, we can use the action a directly because it is in scope. After this

151

5 Explicit Nondeterminism

optimisation, searching all sorted permutations of a list of length 20 takes
1.5 minutes rather than two.

Mechanical simplifications The final optimisation is to

1. expand the types in ContT (ReaderT State m),

2. inline all definitions of monadic operations,

3. simplify them according to monad laws, and

4. provide a specialised version of memo that is not overloaded.

This optimisation, like the previous ones, affects only our library code and
not its clients; for instance, we did not inline any definitions into our bench-
mark code. Afterwards, searching all sorted permutations of a list of length
20 takes 7.5 seconds rather than 1.5 minutes. This is the most impressive
speedup during this sequence of optimisations, even though it is completely
mechanical and should ideally be performed by the compiler.

Surprisingly, our still high-level and very modular implementation (it works
with arbitrary monads for nondeterminism and arbitrary types for nested,
nondeterministic data) outperforms the fastest available Curry compiler. A
Curry program for permutation sort, equivalent to the program we used for
our benchmarks, runs for 25 seconds when compiled with MCC and −O2
optimisations.

We have also compared our performance on deterministic monadic com-
putations against corresponding non-monadic programs in Haskell and Curry.
Our benchmark is to call the naive reverse function on long lists, which in-
volves a lot of deterministic pattern-matching. In this benchmark, the mon-
adic code is roughly 20% faster than the corresponding Curry code in MCC.
The overhead compared to a non-monadic Haskell program is about the
same order of magnitude.

Our library does not directly support narrowing and unification of logic
variables but can emulate it by means of lazy nondeterminism. We have
measured the overhead of such emulation using the functional logic imple-
mentation of the last function given in Section 2.2.1. This Curry function
uses narrowing to bind xs to the spine of the init of l and unification to bind
x and the elements of xs to the elements of l. We can translate it to Haskell
by replacing x and xs with nondeterministic generators and implementing
the unification operator =̈ as equality check. When applying last to a list of
determined values, the monadic Haskell code is about six times faster than
the Curry version in MCC. The advantage of unification shows up when last

152

5.2 Combining laziness with nondeterminism

is applied to a list of logic variables: in Curry, =̈ can unify two logic vari-
ables deterministically, while an equality check on nondeterministic genera-
tors is nondeterministic and leads to search-space explosion. More efficient
unification could be implemented using an underlying monad of equality
constraints.

All programs used for benchmarking are listed in Appendix A.7.

5.2.6 Summary

We have presented an equational specification and an efficient implemen-
tation of non-strictness, sharing, and nondeterminism embedded in a pure
functional language.

Our specification (Figure 5.1) formalizes call-time choice, a combination
of these three features that has been developed in the FLP community. This
combination is intuitive and predictable because the results of computations
resemble results of corresponding eager computations and shared variables
represent fully determined values as opposed to possibly nondeterministic
computations. Our equational laws for lazy nondeterminism can be used
to reason about the meaning of nondeterministic programs on a high level.
They differ from previous formalizations of call-time choice, which use proof
calculi, rewriting, or operational semantics. We describe intuitively the cor-
respondence of López-Fraguas et al.’s formalizations (2007, 2008) with our
laws as well as why our implementation satisfies them.

Our implementation is novel in working with custom monadic data types
and search strategies; in expressing the sharing of nondeterministic choices
explicitly; and in implementing the sharing using first-class stores of typed
data.

Our high-level monadic interface was crucial in order to optimize our im-
plementation as described in Section 5.2.5. Initial comparisons of monadic
computations with corresponding computations in Curry that use nondeter-
minism, narrowing, and unification are very promising. We outperform the
currently fastest Curry compiler (MCC) on the highly nondeterministic per-
mutation sort algorithm. In our deterministic benchmark we incur accept-
able overhead compared to pure Haskell. Simulated narrowing turned out
competitive while simulated unification can lead to search space explosion.
Our results suggest that our work can be used as a simple, high-level, and
efficient implementation target for FLP languages.

153

5 Explicit Nondeterminism

5.3 Chapter notes

The work on nondeterminism monads and how to combine them with lazi-
ness by explicit sharing has been published previously. The approach to
modularly compose monads for nondeterminism using continuations has
been presented at a German workshop on programming languages (Fischer
2009c). The formalisation and implementation of explicit sharing to model
purely functional lazy nondeterministic programming has been published
in the Proceedings of the 14th ACM SIGPLAN International Conference on
Functional Programming (Fischer et al. 2009).

Haskell implementations of the described ideas are available in the Haskell
package database (Hackage) as packages level-monad and explicit-sharing.

Related work

Wadler (1995) has introduced monads as a means to modularly incorporate
effects like global state, exception handling, output, or nondeterminism into
purely functional programs. Hinze (2000) derived monad transformers for
backtracking from equational specifications. We have reinvented the two-
continuation-based backtracking by Hinze as a combination of difference
lists and continuation-passing style. Using different base types in our ap-
proach, we have found implementations of breadth-first search and iterative
deepening depth-first search that we have not been aware of previously.

The latter strategies have also been implemented in Haskell by Spivey
(2006) but not as instances of the MonadPlus type class. Spivey uses a
slightly different interface with an operation ⊕ for nondeterministic choice
and an additional operation wrap to increase the search depth by one level.
Our implementations of breadth-first search and depth-bounded search use
a single operation choice that could be expressed as combination of ⊕ and
wrap in Spivey’s framework and allows us to implement both strategies in the
MonadPlus framework. Both implementations differ from the corresponding
implementations given by Spivey due to the use of a continuation monad.
Unlike Spivey’s implementation, we can use difference list to represent lev-
els for breadth-first search and don’t need to return updated depth limits in
depth-bounded search.

Kiselyov et al. (2005) also improved the search strategy in monadic com-
putations to avoid the deficiencies of depth-first search. However, we are the
first to introduce laziness in nondeterministic computations modeled using
monads in Haskell. Any instance of MonadPlus—including those developed
in the mentioned work—can be used in combination with our approach.

154

5.3 Chapter notes

The interaction of non-strict and nondeterministic evaluation has been
studied in the FLP community, leading to different semantic frameworks and
implementations. They all establish call-time choice, which ensures that
computed results correspond to strict evaluation. An alternative interpreta-
tion of call-time choice is that variables denote values rather than (possibly
nondeterministic) computations. As call-time choice has turned out to be
the most intuitive model for lazy nondeterminism, we also adopt it.

Unlike approaches discussed below, however, we do not define a new
programming language but implement our approach in Haskell. In fact, func-
tional logic programs in Curry or Toy can be compiled to Haskell programs
that use our library.

There are different approaches to formalising the semantics of FLP. CRWL
(González-Moreno et al. 1999) is a proof calculus with a denotational fla-
vor that allows to reason about functional logic programs using inference
rules and to prove program equivalence. Let Rewriting (López-Fraguas et al.
2007, 2008) defines rewrite rules that are shown to be equivalent to CRWL.
It is more operational than CRWL but does not define a constructive strat-
egy to evaluate programs. Deterministic procedures to run functional logic
programs are described by Albert et al. (2005) in the form of operational
big-step and small-step semantics.

We define equational laws for monadic, lazy, nondeterministic computa-
tions that resemble let rewriting in that they do not fix an evaluation strategy.
However, we provide an efficient implementation of our equational specifi-
cation that can be executed using an arbitrary MonadPlus instance. Hence,
our approach is a step towards closing the gap between let rewriting and the
operational semantics, as it can be seen as a monadic let calculus that can
be executed but does not fix a search strategy.

There are different compilers for FLP languages that are partly based on
the semantic frameworks discussed above. Moreover, the operational seman-
tics by Albert et al. (2005) has been implemented as Haskell interpreters by
Tolmach and Antoy (2003) and Tolmach et al. (2004). We do not define a
compiler that translates an FLP language; nor do we define an interpreter in
Haskell. We rather define a monadic language for lazy FLP within Haskell.
Instead of defining data types for every language construct as the interpreters
do, we only need to define new types for data with nondeterministic compo-
nents. Instead of using an untyped representation for nondeterministic data,
our approach is typed.

This tight integration with Haskell lets us be much more efficient than
is possible using an interpreter. The KiCS compiler from Curry to Haskell
(Braßel and Huch 2009) also aims to exploit the fact that many functional
logic programs contain large deterministic parts. Unlike our approach, KiCS

155

5 Explicit Nondeterminism

does not use monads to implement sharing but generates unique identifiers
using impure features that prevent compiler optimisations on the generated
Haskell code.

Naylor et al. (2007) implement a library for functional logic programming
in Haskell which handles logic variables explicitly and can hence implement
a more efficient version of unification. It does not support data types with
nondeterministic components or user-defined search strategies. The authors
discuss the conflict between laziness and nondeterminism in Section 5.4
without resolving it.

156

6 Conclusions
Functional logic programming is well suited for describing and implement-
ing automated testing. Finding appropriate tests is a search problem, nonde-
terminism of logic programming languages supports an elegant description
of search problems, and abstraction mechanisms of functional programming
languages support a modular implementation of nondeterminism.

Selecting test input automatically from a, generally infinite, set of possibil-
ities incorporates search. Regardless, whether a tool enumerates small test
input exhaustively, arbitrary test input randomly, or significant test input on
demand – it always searches an implicit or explicit search space of test in-
puts. Different approaches to generate test input differ in the search strategy
used to explore this search space.

Search spaces can be described elegantly using nondeterministic algo-
rithms. Instead of representing different nondeterministic alternatives explic-
itly and manipulating them as a whole, nondeterministic algorithms support
nondeterministic choice implicitly which allows to focus on a single compu-
tation path instead. Only after the implicitly nondeterministic description of
a search space is it made explicit to enumerate different results. The expres-
sive power of implicit nondeterminism is not only observable in the context
of logic programming. It is also apparent in other areas of computing sci-
ence. For example, nondeterministic finite automata (that recognise regular
languages) are often simpler than equivalent deterministic ones.

The advanced overloading mechanism of Haskell supports a very gen-
eral and modular implementation of nondeterminism. Nondeterministic
programs can be overloaded with respect to the search strategy such that,
for example, the same definition of a test case generator can be used to
enumerate test input according to different strategies. Moreover, lazy evalu-
ation plays a crucial role in order to enumerate a search space according to
different strategies. Parts of the search space that are not demanded by an
enumeration function do not need to be computed.

In this thesis we have

• introduced important declarative programming features (Chapter 2),

• shown how to use them to implement automated testing (Chapter 3),

157

6 Conclusions

• developed novel code coverage criteria for the declarative program-
ming paradigm (Chapter 4), and

• presented a lightweight approach to express lazy functional logic pro-
gramming purely functionally (Chapter 5).

We now summarise the main ideas laid out in the previous chapters, discuss
advantages and shortcomings, and propose possible future work.

6.1 Declarative programming promotes concepts
that increase the potential for abstraction.

In Chapter 2 we have given an introduction to declarative programming
emphasising the ability of programmers to increase the level of abstraction
by writing more modular and, thus, reusable code. We have introduced
features of purely functional programming languages, namely, polymorphic
higher-order functions, lazy evaluation, and class-based overloading as well
as features of logic and combined functional logic programming languages,
namely, logic variables, implicit nondeterminism, search, and constraints.

Polymorphic type systems provide a means to make functions more gen-
erally applicable without sacrificing static type safety. Parts of the input to
a function that are not considered by its definition do not need to be given
a specific type but can be abstracted using type variables. This is especially
useful in combination with higher-order functions (which are functions that
take functions as arguments or yield functions as result) to abstract and reuse
recurring patterns. Instead of using a predefined set of control structures,
declarative programmers can use and define higher-order functions like the
map function that applies a given function to every element of a list and,
thus, abstracts a specific form of a loop.

Lazy evaluation allows to split algorithms into modular parts that commu-
nicate via intermediate data structures which are not evaluated completely
in between. Optimising compilers may even eliminate the data structure
used for communication. Using intermediate data structures conceptually
but not actually computing them makes practical a programming style that
separates concerns which would otherwise need to be entangled. The use of
infinite data structures to separate the computation and selection of square
root approximations exemplifies this idea.

Class-based overloading—at first sight not much more than a mechanism
to reuse common operation symbols for different types—turns out to increase
the generality of declarative programs to an intriguing extend. It enables

158

6.2 Generating Tests

polymorphic functions that behave differently on different instantiations of
the overloaded type variables which turns out extraordinarily useful when ab-
stracting over type constructors. Executing nondeterministic programs with
different search strategies by changing not more than their type is one appli-
cation of overloaded type constructors. Overloaded operations often come
with equational laws that enable programmers to reason about overloaded
programs without considering specific instantiations of the overloaded type
variables.

The most intriguing feature of logic programming compared to functional
programming is the ability to compute with unknown information in form
of logic variables. Instantiating logic variables with possible bindings leads
to an implicitly nondeterministic execution and it turns out that support for
nondeterminism and logic variables can be defined in terms of each other
in a combined lazy functional logic programming language. This insight is
based on the idea to evaluate nondeterministic operations lazily in order to
simulate the demand driven instantiation of logic variables. This idea lies at
the heart of our approach to generate tests for declarative programs.

Functional logic programming languages often provide a built-in opera-
tion to reify the results of a nondeterministic computation in a deterministic
data structure. This feature is crucial in order to compute a test suite from
nondeterministically generated tests. We rely on the ability to compute a tree
representation of the search space that can be processed lazily to implement
different search strategies for enumerating tests.

The easiest way to determine possible bindings of logic variables is to
narrow them according to patterns when supplied as arguments to func-
tions. Constraint programming provides an alternative way to restrict the
possible bindings of logic variables. For specific problem domains, con-
straint solvers find possible solutions of a complex search problem much
faster than the generic narrowing approach. To exemplify the advantage of
constraint solving over narrowing we have compared corresponding solvers
for the n-queens problem expressed via predicates on integers with finite
domain.

6.2 The mechanism to execute functional logic
programs is tailor made for generating tests.

In Chapter 3 we have leveraged the execution mechanism of lazy functional
programming languages to generate test input for declarative programs. We
have shown how to generate test input for black-box testing based on the

159

6 Conclusions

argument types of the tested function and how to employ lazy evaluation in
order to generate glass-box tests according to the demand of the tested pro-
gram. We have defined different strategies to enumerate the search space of
generated tests, investigated them according to formal properties, and com-
pared them experimentally on algorithmically complex example programs.

Nondeterministic evaluation of expressions that contain unknown infor-
mation generates test input for free: if we apply a function to logic variables
as input then a result of this call is computed nondeterministically and the
input variables are bound to values that correspond to the computed result.
We can then check whether the computed result is the intended output for
the generated input and later—for example after optimising its implementa-
tion—apply the function to the input again to test whether it still computes
the intended result.

Although there are programs where checking the generated tests manually
is inevitable (for example, if a formal specification is almost identical to the
tested program and a test with respect to a verbal specification is preferable)
it is often more convenient to automate not only the generation of tests but
also their verification. Property-based testing allows to define functions that
check for arbitrary test input whether it leads to output that satisfies arbitrary
user-defined properties. Often, properties are simply functions with result
type Bool but property-based test tools usually provide additional combina-
tors to specify more sophisticated properties.

We transfer property-based testing, which has been previously developed
for functional programming languages, to the functional logic programming
paradigm. In addition to the usual combinators to test deterministic func-
tions we also provide combinators to specify properties of nondeterministic
operations. We provide two implementations of property-based testing for
functional logic programs that differ in how they generate input for proper-
ties. BlackCheck implements black-box testing and GlassCheck implements
glass-box testing.

For black-box testing, test input is generated by only considering the type
of test input and not the implementation of the property or the tested func-
tion. Type-based test input generators are defined via overloading and spec-
ify appropriate test input nondeterministically. We have discussed different
approaches to define nondeterministic test case generators: simulating logic
variables, using abstract data constructors to maintain invariants of test input,
and generating custom test data to restrict the search space. We enumerate
the results of such generators using different search strategies and supply the
generated input to tested properties.

For glass-box testing, test input is not only generated according to its type
but also according to the implementations of the property and the tested

160

6.2 Generating Tests

function. Instead of enumerating the results of a test case generator before
passing them as input to a tested property, we pass the nondeterministic in-
put generator to the property directly and enumerate the results of this call
instead. Because of lazy evaluation, the input generator is only evaluated
as much as demanded by the property which is especially useful in com-
bination with preconditions: if a precondition rejects test input without de-
manding it completely, the unevaluated parts of the nondeterministic input
generator do not contribute to the search space which often speeds up the
search for valid tests. The drawback of enumerating the results of properties
rather than their arguments is that we cannot distinguish nondeterminism
in the tested operation from nondeterminism in the input generators. As
a consequence, the additional combinators for nondeterministic operations
provided by BlackCheck are not provided by GlassCheck.

We have presented and compared different search strategies to enumerate
tests for black-box and glass-box testing based on a lazy tree representation
of the search space. In order to compare different strategies for generating
tests, we have defined the following distinguishing criteria:

• completeness ensures that every test in the search space is eventually
enumerated if only enough tests are computed,

• advancement ensures that reasonably complex tests are enumerated in
acceptable time, and

• balance ensures that the search is not biased towards a specific part of
the search space.

In addition to these formal criteria we have used experiments to compare
different strategies.

Depth-first search is only feasible with a depth limit because it is other-
wise trapped in infinite branches of the search space and often diverges.
Iteratively increasing the depth limit enumerates results similar to breadth-
first search requiring less space but more time. Despite the run-time over-
head due to repeated searches, iterative deepening depth-first search is well
suited for testing. It is not advancing and, hence, enumerates many small
tests during black-box testing but has been the most efficient strategy in our
experiments for glass-box testing.

Random search by repeatedly computing the first result of depth-first search
in a shuffled search tree generates very diverse tests and is an improvement
over iterative deepening depth-first search for black-box testing because it
enumerates larger tests. As different results are computed independently,
random search enumerates small tests repeatedly. For glass-box testing, ran-
dom search turned out impractical. In a search space that has been lazily

161

6 Conclusions

pruned via preconditions the test density is often so small that random search
has little chance to find a test before descending impractically deep into the
search space.

We have developed a novel strategy, namely randomised level diagonal-
isation, that has all of the properties mentioned above. For black-box test-
ing, the corresponding distribution of generated tests is superior to the other
strategies. However, its memory requirements are prohibitive for larger ex-
amples. It turns out that iterative discrepancy search has similar properties
as level diagonalisation but is more memory efficient and we have used
it instead of level diagonalisation in our experiments for glass-box testing.
Although iterative discrepancy search, unlike iterative depth-first search, is
advancing it did not outperform the latter strategy during glass-box testing.

In summary, our investigations suggest to use glass-box testing in combina-
tion with iterative deepening depth-first search for testing deterministic func-
tions and black-box testing with all investigated search strategies for testing
nondeterministic operations. Glass-box testing can sometimes be improved
considerably by specifying lazy preconditions and we provide a library for
lazy predicates to support them.

6.3 Declarative programs call for new notions of
code coverage.

In Chapter 4 we have developed novel code coverage criteria for declarative
programming languages, shown how to implement them by transforming
functional logic programs, and described experiments to evaluate how well
they expose errors in algorithmically complex programs. We have presented
criteria for control-flow coverage, namely rule coverage and call coverage
as well as two different forms of data-flow coverage. We present a program
transformation based on a core language for functional logic programs that
augments a program such that code coverage information is computed along
with the original result. Our experiments show that most thorough testing is
achieved with a combination of control- and data-flow coverage.

Our notions of control-flow coverage for declarative programs are based
on rules and call positions of defined operations. Rule coverage describes
which rules of which functions are executed during a specific program run.
Call coverage refines this criterion by distinguishing different call positions
when collecting covered rules of an operation. Rather than only ensuring
that every rule of an operation is executed eventually, this refined criterion
ensures that every rule of an operation is executed at each syntactic occur-

162

6.3 Code Coverage

rence of an operation.1 Call coverage is more difficult to establish than rule
coverage and, thus, ensures more thorough testing.

Our notions of data-flow coverage for declarative programs are based on
pattern matching and on higher-order application. We define a def-use chain
as a pair of source code locations where the first represents the definition
and the second a use of data. Definitions are the introduction forms of
data (constructors or abstractions) and uses are the elimination forms (pattern
matching and application). We explicitly do not only consider first-order
values as data but also lambda abstractions or partially applied operations.

We have shown that our coverage criteria are well suited to automatically
evaluate the significance of tests but also recognised that the more complex
criteria are hard to visualise intuitively. For example, the use of arrows to
visualise data flow as in Section 4.2.1 does not scale to larger programs
where data can flow between different modules.

The presented program transformation supports the collection of control-
and data-flow information without using side effects and without changing
the (lazy) evaluation order of the original program. Our transformation is
formalised based on a core language for functional logic programs that is
similar to other core languages for functional and functional logic program-
ming languages. Compared to other core languages for functional languages
we add a language construct for nondeterminism and compared to other
core languages for functional logic languages we include lambda abstrac-
tions to avoid the necessity of lambda lifting. It turns out that by incorporat-
ing lambda abstractions in our core language we can significantly simplify
the formalisation of our program transformation.2

Justified by the observation that logic variables can be simulated by lazy
nondeterministic generators (Antoy and Hanus 2006), we do not include
logic variables in our core language. As a consequence, our implementa-
tion relies on a separate program transformation that eliminates logic vari-
ables according to this idea. In fact, it is not easily possible to extend our
transformation such that it can handle logic variables because the structure
of the coverage information attached to a logic variable (which corresponds
to the structure of the data term to which the variable will be bound during
the computation) is unknown when the logic variable is declared. The prob-
lems with handling logic variables in our program transformation have been
an important motivation for the work presented in Chapter 5 which can pro-

1We do not distinguish different dynamic evaluations of the same syntactic occurrence of a
function call which could lead to infinitely many coverable items.

2Comparing the program transformation in Section 4.3.3 with the transformation published
previously by Fischer and Kuchen (2008) reveals the simplifying effect of transforming
lambda abstractions instead of arbitrary partial applications.

163

6 Conclusions

vide more control over nondeterminism and logic variables by representing
them explicitly.

We have measured how well the presented code coverage criteria expose
bugs in the example programs introduced in Section 3.2.3. It turns out that
a combination of control- and data-flow coverage is able to ensure that all
errors in the tested programs remain after eliminating redundant tests based
on coverage information. We have observed performance problems due
to search space explosion—especially when testing arithmetic computation-
s—that could be alleviated using arithmetic constraint solvers. Unfortunately,
there is currently no implementation of a functional logic programming lan-
guage that supports both constraint solving and complete search strategies
which has been another important motivation for the work presented in
Chapter 5. The monadic implementation of lazy nondeterminism presented
in Section 5.2 can be combined with recent work on monadic constraint
solving to provide functional logic programming with constraints and user
defined search strategies.

6.4 Lazy nondeterministic programs can be turned
into equivalent purely functional programs.

In Chapter 5 we have discussed monads for nondeterminism, presented a
new technique to modularly implement various search strategies as nonde-
terminism monads, and shown how to express lazy nondeterminism monad-
ically. We have used a combination of a continuation monad transformer
with difference lists to reinvent a well-known monad for efficient backtrack-
ing. We have then shown how breadth-first search and iterative deepening
depth-first search can be implemented using the same technique by replac-
ing difference lists with something else. After observing that the usual mon-
adic representation of nondeterminism destroys laziness, we have presented
an approach to model sharing explicitly to restore laziness, provided laws to
reason about explicit sharing, and developed an efficient implementation.

Monads provide a framework to model various computational effects like
hidden state, exceptions, or nondeterminism explicitly. Nondeterminism
can be expressed monadically with new monadic combinators to model
failure and choice. A straightforward but sometimes inefficient way to im-
plement nondeterminism monadically is to use lists in order to represent
the results of a nondeterministic computation. The list monad performs
backtracking because it traverses the implicit tree of choice operations in
depth-first order. The problem with using lists is that the implementation of

164

6.4 Explicit Nondeterminism

list concatenation can lead to quadratic run time in the number of choices
when they are nested left associatively.

Difference lists provide more efficient concatenation but do not support
a natural implementation of monadic bind. Instead of implementing mon-
adic bind for difference lists directly (or changing the type such that we can
implement monadic bind efficiently), we wrap the type for difference lists
in a continuation monad transformer which provides monadic bind for free.
The result is equivalent to the well-known two-continuation based monad
that uses success and failure continuations to backtrack efficiently. Our tech-
nique separates the implementation of failure and choice from the imple-
mentation of monadic bind and the continuation monad transformer which
provides monadic bind can be reused without change to implement differ-
ent search strategies modularly. Only the underlying type which provides
implementations of failure and choice needs to be adapted.

Monadic nondeterminism is usually not hidden in nested components of
structured data. For example, when representing nondeterministic lists of
numbers as values of type m [Int] for some nondeterminism monad m, the
head and tail of each represented list need to be deterministic. The ab-
sence of nondeterministic components in structured data impedes laziness
because algorithms that do not demand certain components of a nondeter-
ministic value still need to evaluate these components – at least to check
that their evaluation yields a result.

By using data types with nested monadic components one can hide nested
nondeterminism underneath constructors of nondeterministic values to im-
plement lazy nondeterministic algorithms. However, without further ado an
explicit representation of nested nondeterminism impedes sharing because
shared nondeterministic data represents multiple nondeterministic values. In
functional logic programs a shared nondeterministic value denotes the same
deterministic value wherever it occurs even if it is not yet evaluated and this
property is crucial in order to implement lazy generate-and-test algorithms
such as generating glass-box tests for properties with preconditions.

We have presented an approach to express sharing of unevaluated non-
deterministic structured data explicitly by using a monad transformer that
can be combined with user-defined types for nondeterministic data and any
nondeterminism monad. With our approach explicitly shared nondetermin-
istic data evaluates to the same deterministic value in every nondeterministic
branch of the computation but is still evaluated on demand. This behaviour
corresponds to the notion of call-time choice that has been developed in the
functional logic programming community to describe the meaning of lazy
nondeterministic programs.

165

6 Conclusions

We have formalised the meaning of our combinator for explicit sharing as
equational laws that hold up to observation. We have discussed intuitively
how our laws correspond to similar properties of lazy nondeterministic pro-
grams that inspired our approach. In order to observe the results of lazy
nondeterministic computations in our approach one has to apply an obser-
vation function that lifts latent nondeterminism out of nested components
of structured data and returns the results in the base monad to which our
monad transformer is applied.

We have developed an implementation of explicit sharing in several steps.
We have started with a specialised inefficient version that illustrates the un-
derlying idea and then generalised and optimised it in order to support ar-
bitrary user-defined nondeterministic data types and nondeterminism mon-
ads. Our implementation uses a store of shared computations that is updated
when stored computations are evaluated and passes it through the compu-
tation of nondeterministic programs. We have performed experiments to
compare our approach with corresponding Curry programs that use nonde-
terminism, narrowing, and unification. We outperform the Münster Curry
compiler in our experiments which suggests that our approach can be used
to implement a new compiler for functional logic programming languages.

As mentioned before, our work on expressing lazy nondeterminism purely
functionally has been motivated by a lack of control over nondeterminism
and logic variables in our program transformation for code coverage collec-
tion as well as by missing support for functional logic constraint program-
ming with user defined search strategies. However, we have not applied our
monadic implementation of lazy nondeterminism to coverage-based testing
or integrated it with monadic constraint solving which both offers possibili-
ties for future work.

166

A Source Code

A.1 ASCII versions of mathematical symbols

The source code in this thesis is typeset using mathematical notation. The
following table shows how to type the non-standard symbols.

⊥ undefined f ◦ g f . g
λx→ e \x -> e do x← a; b do x <- a; b

x =I y x == y x 6= y x /= y
x 6 y x <= y x > y x >= y
x =̈ y x =:= y xs ++ ys xs ++ ys
¬ x not x x ∧ y x && y

x ∨ y x || y x ∈ xs x ‘elem‘ xs
a >>= f a >>= f () ()
x 6=# y x /=# y x−# y x -# y

=⇒ ==> ⇐= <==
=̄ -=-
 <~>
⇀ ~> ↽ <~∧

/\
∨

\/
~ <*> } <.>
∅ mzero a⊕ b a ‘mplus‘ b
+>+ +>+ +++ +++

>>− >>-

A.2 Definitions of used library functions

Here we list definitions of library functions that are used but not defined in
the text.

The function ⊥ denotes a non-terminating computation.

⊥ :: a
⊥ = ⊥

The concat function merges a list of lists into a single list.

167

A Source Code

concat :: [[a]]→ [a]
concat [] = []
concat (l : ls) = l ++ concat ls

The absolute value of an integer can be computed using abs.

abs :: Int→ Int
abs n = if n > 0 then n else (−n)

There are Boolean functions for negation, conjunction, and disjunction.

¬ :: Bool→ Bool
¬ True = False
¬ False = True
(∧), (∨) :: Bool→ Bool→ Bool
True ∧ x = x
False ∧ = False
True ∨ = True
False ∨ x = x

The function otherwise is usually used in the last alternative of guarded rules.

otherwise :: Bool
otherwise = True

The zip function pairs the elements of given lists.

zip :: [a]→ [b]→ [(a, b)]
zip [] = []
zip (:) [] = []
zip (x : xs) (y : ys) = (x, y) : zip xs ys

The function take selects a prefix of given length from a given list, the (!!)
function selects the element with the specified index.

take :: Int→ [a]→ [a]
take [] = []
take n (x : xs) = if n 6 0 then [] else x : take (n− 1) xs
(!!) :: Int→ [a]→ a
n !! (x : xs) = if n =I 0 then x else (xs !! n)

The function concatMap is a combination of concat and map.

168

A.3 Abstract heap data type

concatMap :: (a→ [b])→ [a]→ [b]
concatMap = concat ◦map

The operation unknown returns an unbound logic variable.

unknown :: a
unknown = x where x free

Thre predicates and and andC implement conjunction on lists of Booleans
and constraints respectively.

and :: [Bool]→ Bool
and [] = True
and (b : bs) = b ∧ and bs
andC :: [Success]→ Success
andC [] = success
andC (c : cs) = c & andC cs

The parametrised type Maybe represents optional values.

data Maybe a = Nothing | Just a

A.3 Abstract heap data type

This is the complete implementation of an abstract data type for heaps, i.e.,
labeled trees where each sequence of labels from the root to a leaf is non-de-
creasing. We use so called pairing heaps as described by Okasaki (1996).

module Heap (
Heap, emptyHeap, insertHeap,
isEmptyHeap, splitMinHeap, isValidHeap,
size, depth
) where

import Arbitrary
import Answer

-- abstract data type for heaps (constructors not exported)
data Heap a = Empty | Fork a [Heap a]

deriving Show
-- defined here, because it uses Heap constructors

169

A Source Code

instance Arbitrary a⇒ Arbitrary (Heap a) where
arbitrary = Empty ? Fork arbitrary arbitrary

isEmptyHeap :: Heap a→ Bool
isEmptyHeap Empty = True
isEmptyHeap (Fork) = False

-- constructor functions
emptyHeap :: Heap a
emptyHeap = Empty
insertHeap :: Ord a⇒ a→ Heap a→ Heap a
insertHeap x = merge (Fork x [])

-- selector function
splitMinHeap :: Ord a⇒ Heap a→ (a, Heap a)
splitMinHeap (Fork x xs) = (x, mergeAll xs)

-- auxiliary functions
merge :: Ord a⇒ Heap a→ Heap a→ Heap a
merge Empty h = h
merge (Fork x xs) Empty = Fork x xs
merge (Fork x xs) (Fork y ys) | x 6 y = Fork x (Fork y ys : xs)

| otherwise = Fork y (Fork x xs : ys)
-- check heap property

isValidHeap :: Ord a⇒ Heap a→ Bool
isValidHeap = fromAnswer ◦ isValid

-- check heap property using fair predicates
isValid :: Ord a⇒ Heap a→ Answer
isValid Empty = true
isValid (Fork x hs) = Answer.all (answer ◦ (x 6)) [y | Fork y ← hs]∧

Answer.all isValid hs
-- Boolean version for benchmarks

isValidHeap′ :: Ord a⇒ Heap a→ Bool
isValidHeap′ Empty = True
isValidHeap′ (Fork x hs) = Prelude.all (x 6) [y | Fork y ← hs]

∧ Prelude.all isValidHeap′ hs
mergeAll :: Ord a⇒ [Heap a]→ Heap a
mergeAll [] = emptyHeap
mergeAll [x] = x
mergeAll (x : y : zs) = merge (merge x y) (mergeAll zs)

-- compute size and depth of a heap
size, depth :: Heap a→ Int

170

A.4 Implementation of BlackCheck

size = traverseHeap 0 (succ ◦ foldr (+) 0)
depth = traverseHeap 0 (succ ◦ foldr max 0)
traverseHeap :: a→ ([a]→ a)→ Heap b→ a
traverseHeap x Empty = x
traverseHeap x f (Fork hs) = f (map (traverseHeap x f) hs)

A.4 Implementation of BlackCheck

Blackcheck is a property-based test framework for automated generation of
black-box tests for functional logic programs. This section presents its imple-
mentation. A more high-level description can be found in Section 3.1.

A.4.1 Input generators

The type class Arbitrary specifies types that support an operation to yield
test input nondeterministically. We provide default instances for some pre-
defined types like Booleans, lists, numbers, and characters.

module Arbitrary where
class Arbitrary a where arbitrary :: a
instance Arbitrary () where arbitrary = ()
instance Arbitrary Bool where arbitrary = False ? True
instance Arbitrary Int where

arbitrary = 0
arbitrary = nat
arbitrary = −nat
-- we produce a balanced tree of natural numbers

nat = 1; nat = 2 ∗ nat; nat = 2 ∗ nat + 1

-- we generate upper- and lower-case characters
-- as well as spaces and newlines

instance Arbitrary Char where
arbitrary = oneOf ([’A’ . . ’z’] ++ [’0’ . . ’9’] ++ " \t\r\n")

oneOf :: [a]→ a
oneOf (x : xs) = x ? oneOf xs
instance Arbitrary a⇒ Arbitrary [a] where

arbitrary = [] ? (arbitrary : arbitrary)
instance Arbitrary a⇒ Arbitrary (Maybe a) where

arbitrary = Nothing ? Just arbitrary
instance (Arbitrary a, Arbitrary b)⇒ Arbitrary (Either a b) where

171

A Source Code

arbitrary = Left arbitrary ? Right arbitrary
instance (Arbitrary a, Arbitrary b)⇒ Arbitrary (a, b) where

arbitrary = (arbitrary, arbitrary)
instance (Arbitrary a, Arbitrary b, Arbitrary c)⇒ Arbitrary (a, b, c) where

arbitrary = (arbitrary, arbitrary, arbitrary)

We provide auxiliary functions to construct Arbitrary instances from con-
structors.

cons1 c = c arbitrary
cons2 c = cons1 (c arbitrary)
cons3 c = cons2 (c arbitrary)
cons4 c = cons3 (c arbitrary)
cons5 c = cons4 (c arbitrary)
cons6 c = cons5 (c arbitrary)
cons7 c = cons6 (c arbitrary)
cons8 c = cons7 (c arbitrary)
cons9 c = cons8 (c arbitrary)
cons10 c = cons9 (c arbitrary)
cons11 c = cons10 (c arbitrary)
cons12 c = cons11 (c arbitrary)
cons13 c = cons12 (c arbitrary)
cons14 c = cons13 (c arbitrary)
cons15 c = cons14 (c arbitrary)
cons16 c = cons15 (c arbitrary)
cons17 c = cons16 (c arbitrary)
cons18 c = cons17 (c arbitrary)
cons19 c = cons18 (c arbitrary)
cons20 c = cons19 (c arbitrary)

module BlackCheck (
Arbitrary (. .),
Property, (=⇒), (⇀), (↽), (
),
label, classify, trivial, collect, collectAs,
blackCheck, quickCheck, smallCheck,
depthCheck, iterCheck, rndCheck, diagCheck
) where

import Arbitrary

172

A.4 Implementation of BlackCheck

import List
import AllSolutions
import Random

-- We use lazy IO to handle infinite search trees
-- in the Search monad.

import Unsafe (unsafeInterleaveIO)

A.4.2 Testable types

We provide a type class Testable for types that can be used as argument to test
functions like blackCheck. Such types need to provide an operation to gener-
ate a search space of test cases. A single test case stores a representation of
the corresponding test input, a test result, and a list of attached information.
The Search type is a monad so we can use do-notation to construct search
spaces.

newtype Search a = Search {search :: IO (SearchTree a)}
newtype Property = Property {propTests :: Search Test}
data Test = Test { input :: [String], result :: Maybe Bool, info :: [String]}
noTest :: Test
noTest = Test [] Nothing []
class Testable a where

tests :: a→ Search Test
instance Testable Property where

tests = propTests
instance Testable Bool where

tests b = test1 b (λxs→ case xs of [x]→ x
→ False)

instance (Show a, Arbitrary a, Testable b)⇒ Testable (a→ b) where
tests p = do x← Search (getSearchTree arbitrary)

fmap (λt→ t { input = show x : input t}) (tests (p x))
-- BlackCheck can also check I/O properties.

instance Testable a⇒ Testable (IO a) where
tests a = liftIO a >>= tests

A.4.3 Property combinators

We provide combinators to construct complex properties from simpler ones.
The implication operation =⇒ is usually employed to ignore tests with in-

173

A Source Code

valid input. The combinators ⇀, ↽, and
 allow to define properties
involving nondeterministic operations.

(=⇒) :: Testable a⇒ Bool→ a→ Property
False =⇒ = Property (return noTest)
True =⇒ a = Property (tests a)
(⇀), (↽), (
) :: Eq a⇒ a→ a→ Property
x ⇀ y = y ↽ x
x ↽ y = Property (test2 isSubsetOf x y)
x
 y = Property (test2 (λa b→ a ‘isSubsetOf ‘ b

∧ b ‘isSubsetOf ‘ a)
x y)

A.4.4 Test annotations

We provide combinators to collect statistical information.

label :: Testable a⇒ String→ a→ Property
label s = Property ◦ fmap (λt→ t { info = s : info t}) ◦ tests
classify :: Testable a⇒ Bool→ String→ a→ Property
classify True name = label name
classify False = Property ◦ tests
trivial :: Testable a⇒ Bool→ a→ Property
trivial = (‘classify‘"trivial")
collect :: (Show s, Testable a)⇒ s→ a→ Property
collect = label ◦ show
collectAs :: (Show s, Testable a)⇒ String→ s→ a→ Property
collectAs name = label ◦ ((name ++ ": ")++) ◦ show

A.4.5 Testing with different strategies

No we can define the check operation which is parametrised by a strategy
and used to implement the other test functions like blackCheck. A strategy
maps a search space of tests to a list of traversals.

type Strategy = Search Test→ [IO [Test]]
check :: Testable a⇒ Strategy→ a→ IO ()
check s a = checkTraversals (s (tests a))

174

A.4 Implementation of BlackCheck

Based on this function, we can define functions smallCheck for exhaustive
testing of small test input, quickCheck for random testing, and blackCheck for
testing with randomised level diagonalisation.

Eshaustive testing of small values

We implement iterative deepening on the search space of the test input to im-
plement functions depthCheck and smallCheck similar to SmallCheck (Runci-
man et al. 2008). The function smallCheck iteratively searches for tests at
increasing depths up to the given depth and will find small counter exam-
ples before larger ones. The function depthCheck directly enumerates all tests
up to the given depth in the search space, which is useful to reproduce test
failure if the depth of a small counter example is known.

depthCheck :: Testable a⇒ Int→ a→ IO ()
depthCheck = iterCheck 1
smallCheck :: Testable a⇒ Int→ a→ IO ()
smallCheck = flip iterCheck 1
iterCheck :: Testable a⇒ Int→ Int→ a→ IO ()
iterCheck m n = check (iterDepth m n)
iterDepth :: Int→ Int→ Strategy
iterDepth m n a = map (λk→ searchBetween k (k + n− 1) a)

(take m [0, n . .])
searchBetween :: Int→ Int→ Search a→ IO [a]
searchBetween from to = fmap (betweenLevels from to) ◦ search
betweenLevels :: Int→ Int→ SearchTree a→ [a]
betweenLevels from to = go 0

where go level Fail = []
go level (Or ts)
| level > to = []
| otherwise = concatMap (go (level + 1)) ts

go level (Val x)
| from 6 level ∧ level 6 to = [x]
| otherwise = []

Random testing

We can also implement random testing similar to Claessen and Hughes
(2000) by shuffling the search tree before searching it using depth-first search.

175

A Source Code

quickCheck :: Testable a⇒ a→ IO ()
quickCheck = rndCheck 100 1 10
rndCheck :: Testable a⇒ Int→ Int→ Int→ a→ IO ()
rndCheck = checkPasses allValuesD
checkPasses :: Testable a

⇒ (SearchTree Test→ [Test])→ Int→ Int→ Int
→ a→ IO ()

checkPasses traverse m n max p =
do gs← fmap splitGen getStdGen

check (λa→ [values g a | g← take m gs]) p
where

values g a = fmap (takeTests ◦ traverse ◦ shuffleST g) (search a)
takeTests = take n ◦ filter isValid ◦ take max

Randomised level diagonalisation

Finally, we provide a function blackCheck that implements our own strategy
randomised level diagonalisation.

blackCheck :: Testable a⇒ a→ IO ()
blackCheck = diagCheck 10 10 100
diagCheck :: Testable a⇒ Int→ Int→ Int→ a→ IO ()
diagCheck = checkPasses allValuesDiag
allValuesDiag :: SearchTree a→ [a]
allValuesDiag t = [x | Val x← concat (diagonals (levels [t]))]
levels :: [SearchTree a]→ [[SearchTree a]]
levels ts | null ts = []

| otherwise = ts : levels [u | Or us← ts, u← us]
diagonals :: [[a]]→ [[a]]
diagonals [] = []
diagonals (l : ls) = zipCons l ([] : diagonals ls)
zipCons :: [a]→ [[a]]→ [[a]]
zipCons [] ls = ls
zipCons (x : xs) [] = [[y] | y← x : xs]
zipCons (x : xs) (l : ls) = (x : l) : zipCons xs ls

A.4.6 Auxiliary definitions

The remaining definitions are helper functions used previously.

176

A.4 Implementation of BlackCheck

isSubsetOf :: Eq a⇒ [a]→ [a]→ Bool
isSubsetOf = flip (all ◦ flip elem)
isValid :: Test→ Bool
isValid = maybe False (const True) ◦ result
test1 :: Eq a⇒ a→ ([a]→ Bool)→ Search Test
test1 x p = do xs← getValues x

return (noTest {result = Just (p (nub xs))})
test2 :: Eq a⇒ ([a]→ [a]→ Bool)→ a→ a→ Search Test
test2 p x y = do ys← getValues y

test1 x (‘p‘nub ys)
getValues :: a→ Search [a]
getValues = liftIO ◦ fmap allValuesB ◦ getSearchTree
liftIO :: IO a→ Search a
liftIO a = Search (a >>= return ◦Val)
instance Functor SearchTree where

fmap Fail = Fail
fmap f (Val x) = Val (f x)
fmap f (Or ts) = Or (map (fmap f) ts)

instance Functor Search where
fmap f = Search ◦ fmap (fmap f) ◦ search

instance Monad Search where
return = Search ◦ return ◦Val
a >>= f = Search (search a >>= fmap joinST ◦ sequenceST ◦ fmap (search ◦ f))

joinST :: SearchTree (SearchTree a)→ SearchTree a
joinST Fail = Fail
joinST (Val x) = x
joinST (Or ts) = Or (map joinST ts)

-- here we need lazy IO to be able to handle infinite search trees
sequenceST :: SearchTree (IO a)→ IO (SearchTree a)
sequenceST Fail = return Fail
sequenceST (Val x) = fmap Val x
sequenceST (Or ts) = fmap Or (mapM (unsafeInterleaveIO ◦ sequenceST) ts)
splitGen :: StdGen→ [StdGen]
splitGen g = l : splitGen r

where (l, r) = split g
shuffle :: StdGen→ [a]→ [a]
shuffle g l = shuffleWithLen (randoms g) (length l) l
shuffleWithLen :: [Int]→ Int→ [a]→ [a]
shuffleWithLen (r : rs) len xs
| len =I 0 = []
| otherwise = z : shuffleWithLen rs (len− 1) (ys ++ zs)

177

A Source Code

where
(ys, z : zs) = splitAt (abs r ‘mod‘ len) xs

shuffleST :: StdGen→ SearchTree a→ SearchTree a
shuffleST Fail = Fail
shuffleST (Val x) = Val x
shuffleST g (Or ts) = Or (shuffle r (zipWith shuffleST rs ts))

where r : rs = splitGen g
checkTraversals :: [IO [Test]]→ IO ()
checkTraversals ts = do putStr "0"

go ts (0, [])
where go [] (, is) = passedOK is

go (x : xs) nis = x >>= checkTests nis >>= maybe done (go xs)
passedOK :: [[String]]→ IO ()
passedOK is = do putStrLn " tests passed."

mapM_ putStrLn (table is)
where table = map entry

◦ sortBy (flip compare ‘on‘ fst)
◦ runLength
◦ sort
◦ filter (¬ ◦ null)

entry (n, i) = pad 5 (show n) ++ ’ ’ : concat (intersperse ", " i)
pad :: Int→ String→ String
pad n s = replicate (n− length s) ’ ’++ s
on :: (b→ b→ c)→ (a→ b)→ a→ a→ c
(. ∗ .) ‘on‘ f = λx y→ f x . ∗ . f y
runLength :: Eq a⇒ [a]→ [(Int, a)]
runLength = map (length &&& head) ◦ group
(&&&) :: (a→ b)→ (a→ c)→ a→ (b, c)
(f &&& g) x = (f x, g x)
checkTests :: (Int, [[String]])→ [Test]→ IO (Maybe (Int, [[String]]))
checkTests nis l = go l nis

where go [] nis = return (Just nis)
go (t : ts) nis = checkTest nis t >>= maybe (return Nothing) (go ts)

checkTest :: (Int, [[String]])→ Test→ IO (Maybe (Int, [[String]]))
checkTest (n, is) t = do putStr (replicate (length count) (chr 8))

putStr count
maybe (return (Just (n, is)))

(notify (info t))
(result t)

where count = show (n + 1)
notify i True = return (Just (n + 1, i : is))
notify i False = do putStr (nth ++ " test failed")

178

A.5 Implementation of GlassCheck

if null (input t) then putStrLn "."
else do putStrLn ", arguments:"

mapM_ putStrLn (input t)
return Nothing

nth | ((n + 1) ‘mod‘ 100) ∈ [11, 12, 13] = "th"
| otherwise = maybe "th" id (lookup ((n + 1) ‘mod‘ 10)

[(1, "st"), (2, "nd"), (3, "rd")])

A.5 Implementation of GlassCheck

GlassCheck is a property-based test framework for automated generation of
glass-box tests for Curry programs. Unlike BlackCheck it does not generate
test input in advance but applies properties to unevaluated nondeterministic
generators.

The disadvantage of this approach is that GlassCheck cannot distinguish
between nondeterminism caused by operations used in the definition of the
property and nondeterminism in the arguments passed to it. However, this
approach also has an important advantage: input is only evaluated as much
as demanded by the property. Parts of the input that are not demanded but
hide nondeterministic choices cannot blow up the search space. As a con-
sequence, GlassCheck is much more efficient than BlackCheck if properties
are lazy, but also more limited—it does not support properties of nondeter-
ministic operations or statistical evaluation of arguments.

It turns out that having only one level of nondeterminism also significantly
simplifies the implementation of GlassCheck compared to BlackCheck.

module GlassCheck (
module Arbitrary, module Answer,
(=⇒),
quickCheck, rndCheck, smallCheck,
depthCheck, sparseCheck, discrCheck
) where

We import the Arbitrary class with instances as well as search strategies and
fair predicates from separate modules.

import Arbitrary
import SearchStrategies
import Answer

179

A Source Code

import IO (hSetBuffering, stdout, BufferMode (. .))

The only combinator for constructing properties provided by GlassCheck is
the implication operator that prunes away parts of the search space using
a precondition. This combinator is the key to the efficiency of GlassCheck
because it avoids to search for test input that can be detected invalid lazily.

(=⇒) :: Bool→ a→ a
True =⇒ a = a

Types that can be passed to the test functions need to support an operation
that generates tests for this type nondeterministically. A test is an optional
counterexample, i.e., success is represented as Nothing.

type Test = Maybe [String] -- list of arguments that lead to failure

class Testable a where
test :: a→ Test

instance Testable Bool where
test True = Nothing
test False = Just []

instance Testable Answer where
test = test ◦ fromAnswer

The most interesting Testable instance is the one for function types that
guesses arbitrary input an passes it to the property. Unlike the corresponding
definition in BlackCheck, the input is not enumerated but the property takes
nondeterministic input.

instance (Show a, Arbitrary a, Testable b)⇒ Testable (a→ b)
where test p = fmap (show x:) (test (p x))

where x = arbitrary

Now we define the test functions based on strategies defined in the module
SearchStrategies. The quickCheck function performs 100 random tests to find
a counter example.

quickCheck :: Testable a⇒ a→ IO ()
quickCheck = rndCheck 100
rndCheck :: Testable a⇒ Int→ a→ IO ()
rndCheck = check

◦ randomised (strategy ◦ ((take 1 ◦ dfs)◦) ◦ shuffledST)

180

A.5 Implementation of GlassCheck

The smallCheck function traverses the search space in level order an is thus
guaranteed to find a counter example at the lowest level, i.e., a smallest
counter example. The depthCheck function performs depth bound search
without enumerating levels incrementally and is useful to reproduce test
failure without repeating unsuccessful searches at lower levels.

smallCheck :: Testable a⇒ Int→ a→ IO ()
smallCheck = check ◦ iterative (strategy ◦ (dfs◦) ◦ depthSlice 5)
depthCheck :: Testable a⇒ Int→ a→ IO ()
depthCheck = check ◦ strategy ◦ (dfs◦) ◦ (λd→ depthSlice d d)

The sparseCheck function performs incremental limited discrepancy search
on a randomly shuffled search space. Like smallCheck it is useful if there are
very few counter examples but unlike smallCheck it is advancing and gener-
ates large test cases more quickly. The discrCheck function performs limited
discrepancy search without increasing the discrepancy limit incrementally.

sparseCheck :: Testable a⇒ Int→ a→ IO ()
sparseCheck = check ◦ iterative (λd→

randomised (λr→
strategy (dfs ◦ discrSlice 0 d ◦ shuffledST r)) 10)

discrCheck :: Testable a⇒ Int→ a→ IO ()
discrCheck b = check (randomised (λr→

strategy (dfs ◦ discrSlice b b ◦ shuffledST r)) 10)

All test functions are defined in terms of check which takes a strategy as
argument, employs it to enumerate tests, and processes the result to print
found counter examples.

check :: Testable a⇒ Strategy Test→ a→ IO ()
check s a = do hSetBuffering stdout NoBuffering

s (getSearchTree (test a)) >>= checkAll 0
checkAll :: Int→ [Test]→ IO ()
checkAll n [] = putStrLn $ "\nOK, passed "

++ show n ++ " tests."
checkAll n (t : ts) = maybe ((checkAll $! (n + 1)) ts) (printFail n) t
printFail :: Int→ [String]→ IO ()
printFail n args =

do putStr ("\nFailure in test "++ show (n + 1))
if null args then putStrLn "."

else do putStrLn " for input:"
mapM_ putStrLn args

181

A Source Code

A.5.1 Parallel answers

This module provides combinators to constructs fair predicates. The binary
operations for conjunction and disjunction are not sequential but evaluate
both arguments stepwise interleaved. Properties formulated using these com-
binators are lazier than corresponding Boolean properties if one argument
suffices to determine the result of a conjunction or disjunction.

module Answer (
Answer, answer, fromAnswer,
true, false, neg, (

∧
), (

∨
),

and, or, all, any, elem, allDifferent
) where

import Prelude hiding (and, or, all, any, elem)
infixr 3

∧
infixr 2

∨
Internally, answers are represented by a data type similar to Bool but with an
additional case for undecided answers that allows to suspend the evaluation
of an answer. The data type is abstract and the exact structure of an answer
is not directly observable from the outside.

data Answer = Yes | No | Undecided Answer
instance Show Answer where

show a = if fromAnswer a then "true" else "false"
instance Eq Answer where

a =I b = fromAnswer a =I fromAnswer b

The functions answer and fromAnswer convert between answers and Booleans,
the latter demands the complete evaluation of an answer by stripping off all
suspensions.

answer :: Bool→ Answer
answer b = Undecided (if b then true else false)
fromAnswer :: Answer→ Bool
fromAnswer Yes = True
fromAnswer No = False
fromAnswer (Undecided a) = fromAnswer a

There are combinators to construct primitive answers and for negation, con-
junction, and disjunction.

182

A.5 Implementation of GlassCheck

true, false :: Answer
true = Yes; false = No
neg :: Answer→ Answer
neg a = Undecided (negation a)

where negation Yes = No
negation No = Yes
negation (Undecided a) = neg a

Conjunction and disjunction evaluate both arguments in an interleaved or-
der.

(
∧

), (
∨

) :: Answer→ Answer→ Answer
a

∧
b = Undecided $ case (a, b) of

(Yes ,)→ b
(No ,)→ No
(, Yes)→ a
(, No)→ No
(Undecided x, Undecided y)→ x

∧
y

a
∨

b = Undecided $ case (a, b) of
(Yes ,)→ Yes
(No ,)→ b
(, Yes)→ Yes
(, No)→ a
(Undecided x, Undecided y)→ x

∨
y

Finally, we provide convenience functions to process lists of answers.

and, or :: [Answer]→ Answer
and = foldr (

∧
) true

or = foldr (
∨

) false
all, any :: (a→ Answer)→ [a]→ Answer
all p = and ◦map p
any p = or ◦map p
elem :: Eq a⇒ a→ [a]→ Answer
elem x = any (answer ◦ (x=I))
allDifferent :: Eq a⇒ [a]→ Answer
allDifferent [] = true
allDifferent (x : xs) = all (answer ◦ (x 6=)) xs

∧
allDifferent xs

183

A Source Code

A.5.2 Search strategies

This module provides search strategies used by the GlassCheck tool to enu-
merate tests. Rather than defining fixed strategies, we define strategy combi-
nators that can be combined with strategies from the TreeSearch module to
perform bounded searches with an incrementally increasing limit or to run
the same search on different shuffled versions of a tree.

We use lazy IO in the form of unsafeInterleaveIO to return the result of
combined searches lazily.

module SearchStrategies (
module TreeSearch,
Strategy, strategy, iterative, randomised
) where

import Monad
import TreeSearch
import Unsafe (unsafeInterleaveIO)
type Strategy a = IO (SearchTree a)→ IO [a]
strategy :: (SearchTree a→ [a])→ Strategy a
strategy = fmap
iterative :: (Int→ Strategy a)→ Int→ Strategy a

-- iterative f n = runAll . zipWith f [0..n] . repeat
iterative f n a = do putStr "iterations: "

runAll (map pass [0 . . n])
where pass k =

do putStr (replicate (length (show (k− 1))) (chr 8)
++ show k)

f k a
randomised :: (StdGen→ Strategy a)→ Int→ Strategy a
randomised f n a = do rs← fmap (take n ◦ splitGen) getStdGen

runAll (zipWith f rs (repeat a))
runAll :: [IO [a]]→ IO [a]
runAll = fmap concat ◦ sequenceLazy
sequenceLazy :: [IO a]→ IO [a]
sequenceLazy [] = return []
sequenceLazy (m : ms) =

liftM2 (:) m (unsafeInterleaveIO (sequenceLazy ms))

184

A.5 Implementation of GlassCheck

A.5.3 Tree search

This module provides different functions to traverse search trees.

module TreeSearch (
SearchTree, getSearchTree,
StdGen, getStdGen, splitGen, shuffled,
dfs, depthSlice, discrSlice, shuffledST
) where

import AllSolutions
import Random

We reexport depth-first search under a shorter name for convenience.

dfs :: SearchTree a→ [a]
dfs = allValuesD

There are combinators to prune a search tree w.r.t. depth- or discrepancy
and to shuffle a search tree.

depthSlice :: Int→ Int→ SearchTree a→ SearchTree a
depthSlice Fail = Fail
depthSlice w d (Val x) | d 6 w = Val x

| otherwise = Fail
depthSlice w d (Or ts)
| d 6 0 = Fail
| otherwise = Or (map (depthSlice w (d− 1)) ts)

discrSlice :: Int→ Int→ SearchTree a→ SearchTree a
discrSlice Fail = Fail
discrSlice w d (Val x) | d 6 w = Val x

| otherwise = Fail
discrSlice w d (Or ts)
| d 6 0 = Fail
| otherwise = Or (zipWith (discrSlice w) [d− 1, d− 2 . . 0] ts)

The shuffling function comes with auxiliary functions to split a random gen-
erator and to shuffle a list.

shuffledST :: StdGen→ SearchTree a→ SearchTree a
shuffledST Fail = Fail
shuffledST (Val x) = Val x

185

A Source Code

shuffledST g (Or ts) = Or (shuffled r (zipWith shuffledST rs ts))
where r : rs = splitGen g

splitGen :: StdGen→ [StdGen]
splitGen g = l : splitGen r

where (l, r) = split g
shuffled :: StdGen→ [a]→ [a]
shuffled g l = shuffleWithLen (randoms g) (length l) l
shuffleWithLen :: [Int]→ Int→ [a]→ [a]
shuffleWithLen (r : rs) len xs
| len =I 0 = []
| otherwise = z : shuffleWithLen rs (len− 1) (ys ++ zs)

where
(ys, z : zs) = splitAt (abs r ‘mod‘ len) xs

A.6 Implementation of explicit sharing

In this section we present the efficient implementation of explicit sharing
as described in Section 5.2.5. It is also available via the Haskell package
database (Hackage) and the source code can be found along with the bench-
mark programs listed in Appendix A.7 online.1

module ExplicitSharing where
import Data.IntMap
import Control.Monad
import Unsafe.Coerce

Our approach is based on two type classes Nondet and Sharing which are
interfaces to data with nondeterministic components and nondeterminism
monads that support explicit sharing of such data respectively.

class MonadPlus m⇒ Sharing m where
share :: Nondet m a⇒ m a→ m (m a)

class MonadPlus m⇒ Nondet m a where
mapNondet :: (∀b.Nondet m b⇒ m b→ m (m b))→ a→ m a

The eval function employs the Nondet class to expose all nested nondeter-
minism to the top level.

1http://github.com/sebfisch/explicit-sharing/tree/0.1.1

186

A.6 Implementation of explicit sharing

eval :: Nondet m a⇒ a→ m a
eval = mapNondet (λa→ a >>= eval >>= return ◦ return)

We define a monad transformer Lazy as an optimised version of a continua-
tion monad transformer applied to a reader monad transformer along with a
function to evaluate Lazy computations in the base monad.

newtype Lazy m a =
Lazy { fromLazy :: ∀w.(a→ Store→ m w)→ Store→ m w}

evalLazy :: Monad m⇒ Nondet (Lazy m) a⇒ Lazy m a→ m a
evalLazy m = runLazy (m >>= eval)
runLazy :: Monad m⇒ Lazy m a→ m a
runLazy m = fromLazy m (λa → return a) (Store 1 empty)

The type constructor Lazy m is a monad and an instance of MonadPlus if the
base type m is.

instance Monad m⇒ Monad (Lazy m) where
return x = Lazy (λc→ c x)
a >>= k = Lazy (λc s→ fromLazy a (λx→ fromLazy (k x) c) s)
fail msg = Lazy (λ → fail msg)

instance MonadPlus m⇒ MonadPlus (Lazy m) where
∅ = Lazy (λ → ∅)
a⊕ b = Lazy (λc s→ fromLazy a c s⊕ fromLazy b c s)

The Sharing instance for the Lazy monad transformer uses the memo func-
tion to memoise nested nondeterministic data. This version of memo is a
specialised version of the overloaded memo function shown in Section 5.2.5.

instance MonadPlus m⇒ Sharing (Lazy m) where
share a = memo (a >>= mapNondet share)

memo :: Lazy m a→ Lazy m (Lazy m a)
memo a =

Lazy (λc (Store key heap)→
c (Lazy (λc s@(Store heap)→

case Data.IntMap.lookup key heap of
Just x → c (typed x) s
Nothing→ fromLazy a

(λx (Store other heap)→
c x (Store other (insert key (Untyped x) heap))) s))

(Store (key + 1) heap))

187

A Source Code

A value of type Store stores explicitly shared thunks and is threaded through
Lazy computations.

data Store = Store Int (IntMap Untyped)

In order to be able to store values of arbitrary types, we use an existential
type to hide the actual type of stored values.

data Untyped = ∀a.Untyped a
typed :: Untyped→ a
typed (Untyped x) = unsafeCoerce x

A.7 Benchmarks for explicit sharing

We show Curry and Haskell versions of three different programs to evaluate
the performance of our approach to lazy nondeterminism in Haskell. Permu-
tation sort is a standard example for a generate-and-test algorithm, the naive
reverse function performs a lot of deterministic pattern matching, and the
functional logic version of the last function lets us examine how well logic
variables and unification can be simulated via lazy nondeterminism.

A.7.1 Permutation sort

The Curry implementation of the permutation sort algorithm used for our
experiments is as follows.

sort l | isSorted p = p
where p = permute l

isSorted [] = True
isSorted (x : xs) = isSorted′ x xs
isSorted′ [] = True
isSorted′ x (y : ys) = x 6 y ∧ isSorted′ y ys
permute [] = []
permute (x : xs) = insert x (permute xs)
insert x xs = x : xs
insert x (y : ys) = y : insert x ys

For the Haskell version we need to import the explicit sharing module de-
fined in Appendix A.6.

188

A.7 Benchmarks for explicit sharing

import Control.Monad
import ExplicitSharing
import Prelude hiding (reverse)

We define monadic variants for all presented Curry operations. We occa-
sionally use a flipped version =<< of the bind operator >>= which resembles
monadic application.

sort :: Sharing m⇒ m (List m Int)→ m (List m Int)
sort l = do xs← share (perm =<< l)

True← isSorted =<< xs
xs

isSorted :: Monad m⇒ List m Int→ m Bool
isSorted Nil = return True
isSorted (Cons mx mxs) = isSorted′ mx =<< mxs
isSorted′ :: Monad m⇒ m Int→ List m Int→ m Bool
isSorted′ Nil = return True
isSorted′ mx (Cons my mys) =

do x← mx
y← my
if x 6 y then isSorted′ (return y) =<< mys

else return False
perm :: MonadPlus m⇒ List m a→ m (List m a)
perm Nil = nil
perm (Cons x xs) = insert x (perm =<< xs)
insert :: MonadPlus m⇒ m a→ m (List m a)→ m (List m a)
insert e l = cons e l

⊕ do Cons x xs← l
cons x (insert e xs)

A.7.2 Naive reverse

We use the naive reverse function to measure the overhead of our approach
for purely functional computations. In Curry, we use the usual recursive
implementation in terms of the append function ++.

reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

The monadic Haskell version is as follows.

189

A Source Code

reverse :: Monad m⇒ List m a→ m (List m a)
reverse Nil = nil
reverse (Cons x xs) = append (reverse =<< xs) (cons x nil)
append :: Monad m⇒ m (List m a)→ m (List m a)→ m (List m a)
append mxs ys = do xs← mxs; appendLists xs ys
appendLists :: Monad m⇒ List m a→ m (List m a)→ m (List m a)
appendLists Nil ys = ys
appendLists (Cons x xs) ys = cons x (append xs ys)

A.7.3 Functional logic last

Finally, we can investigate the efficiency of simulating logic variables and
unification via lazy nondeterminism by means of the functional logic imple-
mentation of the last function:

last :: [a]→ a
last l | l =̈ xs ++ [x]

= x
where x, xs free

The monadic Haskell version of last uses a nondeterministic generator for
lists of Booleans instead of a logic variable.

last :: Sharing m⇒ m (List m Bool)→ m Bool
last l = do x← share freeBool

l =̈ append freeBoolList (cons x nil)
x

freeBool :: MonadPlus m⇒ m Bool
freeBool = return False⊕ return True
freeBoolList :: MonadPlus m⇒ m (List m Bool)
freeBoolList = nil⊕ cons freeBool freeBoolList

The constraint equality operator =̈ is implemented as monadic equality.

(=̈) :: MonadPlus m⇒ m (List m Bool)→ m (List m Bool)→ m ()
mxs =̈ mys = do xs← mxs; ys← mys; eqBoolList xs ys
eqBoolList :: MonadPlus m⇒ List m Bool→ List m Bool→ m ()
eqBoolList Nil Nil = return ()
eqBoolList (Cons x xs) (Cons y ys) = do True← liftM2 (=I) x y

xs =̈ ys
eqBoolList = ∅

190

A.7 Benchmarks for explicit sharing

A.7.4 Nondeterministic lists

The Haskell versions of our benchmarks all use a data type for nondetermin-
istic lists which is defined as follows.

data List m a = Nil | Cons (m a) (m (List m a))
nil :: Monad m⇒ m (List m a)
nil = return Nil
cons :: Monad m⇒ m a→ m (List m a)→ m (List m a)
cons x xs = return (Cons x xs)

In order to be able to explicitly share nondeterministic lists of numbers or
Booleans we need appropriate Nondet instances.

instance Nondet m a⇒ Nondet m (List m a) where
mapNondet Nil = return Nil
mapNondet f (Cons x xs) = do y← f x

ys← f xs
return (Cons y ys)

instance MonadPlus m⇒ Nondet m Int where
mapNondet = return

instance MonadPlus m⇒ Nondet m Bool where
mapNondet = return

191

B Proofs
B.1 Functor laws for (a→) instance

This is a proof of the functor laws

fmap id ≡ id
fmap (f ◦ g) ≡ fmap f ◦ fmap g

for the Functor instance

instance Functor (a→) where
fmap = (◦)

The laws are a consequence of the fact that functions form a monoid under
composition with the identity element id.

fmap id h
≡ { definition of fmap }

id ◦ h
≡ { definition of (◦) }

λx→ id (h x)
≡ { definition of id }

λx→ h x
≡ { expansion }

h
≡ { definition of id }

id h

This proof makes use of the identity (λx → f x) ≡ f for every function f .
The second law is a bit more involved as it relies on associativity for function
composition.

fmap (f ◦ g) h
≡ { definition of fmap }

(f ◦ g) ◦ h
≡ { associativity of (◦) }

f ◦ (g ◦ h)

192

B.2 Monad laws for Tree instance

≡ { definition of fmap (twice) }
fmap f (fmap g h)

≡ { reduction }
(λx→ fmap f (fmap g x)) h

≡ { definition of (◦) }
(fmap f ◦ fmap g) h

Now it is only left to verify that function composition is indeed associative:

(f ◦ g) ◦ h
≡ { definition of (◦) (twice) }

λx→ (λy→ f (g y)) (h x)
≡ { reduction }

λx→ f (g (h x))
≡ { reduction }

λx→ f ((λy→ g (h y)) x)
≡ { definition of (◦) (twice) }

f ◦ (g ◦ h)

B.2 Monad laws for Tree instance

This is a proof of the monad laws

return x >>= f ≡ f x
m >>= return ≡ m
(m >>= f) >>= g ≡ m >>= (λx→ f x >>= g)

for the Monad instance

instance Monad Tree where
return = Leaf
t >>= f = mergeTrees (fmap f t)

mergeTrees :: Tree (Tree a)→ Tree a
mergeTrees Empty = Empty
mergeTrees (Leaf t) = t
mergeTrees (Fork l r) = Fork (mergeTrees l) (mergeTrees r)

for the data type

data Tree a = Empty | Leaf a | Fork (Tree a) (Tree a)

193

B Proofs

The left-identity law follows from the definitions of the functions return,
>>=, fmap, and mergeTrees.

return x >>= f
≡ { definitions of return and >>= }

mergeTrees (fmap f (Leaf x))
≡ { definition of fmap }

mergeTrees (Leaf (f x))
≡ { definition of mergeTrees }

f x

We prove the right-identity law by induction over the structure of m. The
Empty case follows from the observation that Empty >>= f ≡ Empty for every
function f , i.e., also for f ≡ return.

Empty >>= f
≡ { definition of >>= }

mergeTrees (fmap f Empty)
≡ { definition of fmap }

mergeTrees Empty
≡ { definition of mergeTrees }

Empty

The Leaf case follows from the left-identity law because return ≡ Leaf .

Leaf x >>= return
≡ { definition of return }

return x >>= return
≡ { first monad law }

return x
≡ { definition of return }

Leaf x

The Fork case makes use of the induction hypothesis and the observation
that Fork l r >>= f ≡ Fork (l >>= f) (r >>= f)

Fork l r >>= f
≡ { definition of >>= }

mergeTrees (fmap f (Fork l r))
≡ { definition of fmap }

mergeTrees (Fork (fmap f l) (fmap f r))
≡ { definition of mergeTrees }

194

B.2 Monad laws for Tree instance

Fork (mergeTrees (fmap f l)) (mergeTrees (fmap f r))
≡ { definition of >>= (twice) }

Fork (l >>= f) (r >>= f)

Now we can apply the induction hypothesis.

Fork l r >>= return
≡ { previous derivation }

Fork (l >>= return) (r >>= return)
≡ { induction hypothesis (twice) }

Fork l r

Finally we prove associativity of >>= by structural induction. The Empty
case follows from the above observation that Empty >>= f ≡ Empty for every
function f .

(Empty >>= f) >>= g
≡ { above observation for Empty (twice) }

Empty
≡ { above observation for Empty }

Empty >>= (λx→ f x >>= g)

The Leaf case follows again from the first monad law.

(Leaf y >>= f) >>= g
≡ { definition of return }

(return y >>= f) >>= g
≡ { first monad law }

f y >>= g
≡ { first monad law }

return y >>= (λx→ f x >>= g)
≡ { definition of return }

Leaf y >>= (λx→ f x >>= g)

The Fork case uses the identity Fork l r >>= f ≡ Fork (l >>= f) (r >>= f) that
we proved above and the induction hypothesis.

(Fork l r >>= f) >>= g
≡ { property of >>= }

Fork (l >>= f) (r >>= f) >>= g
≡ { property pf >>= }

Fork ((l >>= f) >>= g) ((r >>= f) >>= g)
≡ { induction hypothesis }

195

B Proofs

Fork (l >>= (λx→ f x >>= g)) (r >>= (λx→ f x >>= g))
≡ { property of >>= }

Fork l r >>= (λx→ f x >>= g)

This finishes the proof of the three monad laws for the Tree instance.

B.3 Laws for CPS type

In this section we prove various laws about the CPS type defined in Sec-
tion 5.1.2 as follows.

newtype CPS c a = CPS {(>>−) :: ∀b.(a→ c b)→ c b}

We start with a preliminary observation which we will use in the subsequent
proofs. For all a :: CPS c a we have the identity CPS (λk → a >>− k) ≡ a.
Let f :: (a→ c b)→ c b such that a = CPS f :

CPS (λk→ a >>− k)
≡ { a = CPS f }

CPS (λk→ CPS f >>− k)
≡ { record selection }

CPS (λk→ f k)
≡ { expansion }

CPS f
≡ { a = CPS f }

a

B.3.1 Monad laws

Now, we verify the monad laws

return x >>= f ≡ f x
a >>= return ≡ a
(a >>= f) >>= g ≡ a >>= (λx→ f x >>= g)

for the Monad instance

instance Monad (CPS c) where
return x = CPS (λk→ k x)
a >>= f = CPS (λk→ a >>− λx→ f x >>− k)

We use the definitions of return and >>= to prove the first monad law.

196

B.3 Laws for CPS type

return x >>= f
≡ { definition of >>= }

CPS (λk→ return x >>− λy→ f y >>− k)
≡ { definition of return }

CPS (λk→ (CPS (λk′ → k′ x)) >>− λy→ f y >>− k)
≡ { record selection and reduction }

CPS (λk→ f x >>− k)
≡ { preliminary observation }

f x

The second monad law is verified similarly:

a >>= return
≡ { definition of >>= }

CPS (λk→ a >>− λx→ return x >>− k)
≡ { definition of return and record selection }

CPS (λk→ a >>− λx→ k x)
≡ { expansion }

CPS (λk→ a >>− k)
≡ { preliminary observation }

a

Finally, we show the associative law for >>=.

(a >>= f) >>= g
≡ { definition of >>= }

CPS (λk→ (a >>= f) >>− λx→ g x >>− k)
≡ { definition of >>= }

CPS (λk→ CPS (λk′ → a >>− λx′ → f x′ >>− k′) >>− λx→ g x >>− k)
≡ { record selection and reduction }

CPS (λk→ a >>− λx′ → f x′ >>− λx→ g x >>− k)
≡ { record selection and reduction }

CPS (λk→ a >>− λx′ → CPS (λk′ → f x′ >>− λx→ g x >>− k′) >>− k)
≡ { definition of >>= }

CPS (λk→ a >>− λx′ → (f x′ >>= g) >>− k)
≡ { definition of >>= }

a >>= (λx→ f x >>= g)

B.3.2 MonadPlus laws

We now consider the MonadPlus instance for the CPS type.

197

B Proofs

instance Nondet n⇒ MonadPlus (CPS n) where
∅ = CPS (λ → failure)
a⊕ b = CPS (λk→ choice (a >>− k) (b >>− k))

We first address the interaction of ∅ and ⊕ with >>=:

∅ >>= f ≡ ∅
(a⊕ b) >>= f ≡ (a >>= f)⊕ (b >>= f)

The ∅ combinator causes >>= to fail.

∅ >>= f
≡ { definition of >>= }

CPS (λk→ ∅ >>− λx→ f x >>− k)
≡ { definition of ∅ }

CPS (λk→ CPS (λ → failure) >>− λx→ f x >>− k)
≡ { record selection and reduction }

CPS (λk→ failure)
≡ { definition of ∅ }

∅

The >>= combinator distributes over ⊕.

(a⊕ b) >>= f
≡ { definition of >>= }

CPS (λk→ (a⊕ b) >>− λx→ f x >>− k)
≡ { definition of ⊕ }

CPS (λk→ CPS (λk′ → choice (a >>− k′) (b >>− k′)) >>− λx→ f x >>− k)
≡ { record selection and reduction }

CPS (λk→ choice (a >>− λx→ f x > − k) (b >>− λx→ f x >>− k))
≡ { record selection and reduction }

CPS (λk→ choice (CPS (λk′ → a >>− λx→ f x >>− k′) >>− k)
(CPS (λk′ → b >>− λx→ f x >>− k′) >>− k))

≡ { definition of >>= (twice) }
CPS (λk→ choice ((a >>= f) >>− k) ((b >>= f) >>− k))

≡ { definition of ⊕ }
(a >>= f)⊕ (b >>= f)

The CPS type inherits the monoid properties from the underlying Nondet
instance.

∅⊕ a ≡ a
a⊕∅ ≡ a
(a⊕ b)⊕ c ≡ a⊕ (b⊕ c)

198

B.3 Laws for CPS type

According to the identity laws, we only show that ∅ is a left identity of ⊕ if
failure is a left identity for choice. The proof for the right identity is analogous.

∅⊕ a
≡ { definition of ⊕ }

CPS (λk→ choice (∅ >>− k) (a >>− k))
≡ { definition of ∅ }

CPS (λk→ choice (CPS (λ → failure) >>− k) (a >>− k))
≡ { record selection and reduction }

CPS (λk→ choice failure (a >>− k))
≡ { failure is left identity for choice }

CPS (λk→ a >>− k)
≡ { preliminary observation }

a

If choice is associative then ⊕ also is.

(a⊕ b)⊕ c
≡ { definition of ⊕ }

CPS (λk→ choice ((a⊕ b) >>− k) (c >>− k))
≡ { definition of ⊕ }

CPS (λk→ choice (CPS (λk′ → choice (a >>− k′) (b >>− k′)) >>− k)
(c >>− k))

≡ { record selection and reduction }
CPS (λk→ choice (choice (a >>− k) (b >>− k)) (c >>− k))

≡ { choice is associative }
CPS (λk→ choice (a >>− k) (choice (b >>− k) (c >>− k)))

≡ { record selection and reduction }
CPS (λk→ choice (a >>− k)

(CPS (λk′ → choice (b >>− k′) (c >>− k′)) >>− k))
≡ { definition of ⊕ }

CPS (λk→ choice (a >>− k) ((b⊕ c) >>− k))
≡ { definition of ⊕ }

a⊕ (b⊕ c)

199

B Proofs

200

Bibliography
Adelson-Velskii, Georgii Maximovich, and Evgenii Mikhailovich Landis.

1962. An algorithm for the organization of information. In Proceedings
of the USSR Academy of Sciences, vol. 146, 263–266.

Albert, Elvira, Miguel Gómez-Zamalloa, Laurent Hubert, and German
Puebla. 2007. Verification of Java bytecode using analysis and transforma-
tion of logic programs. In Proceedings of the 9th International Symposium
on Practical Aspects of Declarative Languages. LNCS, Springer-Verlag.

Albert, Elvira, Michael Hanus, Frank Huch, Javier Oliver, and German Vidal.
2005. Operational semantics for declarative multi-paradigm languages.
Journal of Symbolic Computation 40(1):795–829.

Antoy, Sergio. 2001. Constructor-based conditional narrowing. In Proceed-
ings of the 3rd ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, 199–206. ACM Press.

Antoy, Sergio, Rachid Echahed, and Michael Hanus. 2000. A needed nar-
rowing strategy. Journal of the ACM 47(4):776–822.

Antoy, Sergio, and Michael Hanus. 2002. Functional logic design patterns.
In Proc. of the 6th International Symposium on Functional and Logic Pro-
gramming (FLOPS 2002), 67–87. Springer LNCS 2441.

Antoy, Sergio, and Michael Hanus. 2006. Overlapping rules and logic vari-
ables in functional logic programs. In Proceedings of the International
Conference on Logic Programming (ICLP 2006), 87–101. Springer LNCS
4079.

Antoy, Sergio, and Michael Hanus. 2009. Set functions for functional logic
programming. In PPDP ’09: Proceedings of the 11th ACM SIGPLAN con-
ference on Principles and practice of declarative programming, 73–82.
New York, NY, USA: ACM.

Braßel, Bernd, Sebastian Fischer, and Frank Huch. 2008. Declaring num-
bers. Electronic Notes in Theoretical Computer Science 216:111 – 124.
Proceedings of the 16th International Workshop on Functional and (Con-
straint) Logic Programming (WFLP 2007).

201

Bibliography

Braßel, Bernd, Michael Hanus, and Frank Huch. 2004. Encapsulating
non-determinism in functional logic computations. In Journal of func-
tional and logic programming, vol. 6. EAPLS.

Braßel, Bernd, and Frank Huch. 2009. The Kiel Curry System KiCS. In WLP
2007, 195–205.

Chitil, Olaf, Colin Runciman, and Malcolm Wallace. 2003. Transforming
Haskell for tracing. In Implementation of Functional Languages: 14th
International Workshop, IFL 2002, ed. Ricardo Pena and Thomas Arts,
165–181. LNCS 2670. Madrid, Spain, 16–18 September 2002.

Christiansen, Jan, and Sebastian Fischer. 2008. EasyCheck – test data for
free. In FLOPS ’08: Proceedings of the 9th International Symposium on
Functional and Logic Programming. Springer LNCS 4989.

Claessen, Koen, and John Hughes. 2000. QuickCheck: a lightweight tool
for random testing of Haskell programs. In ICFP ’00: Proceedings of the
5th ACM SIGPLAN International Conference on Functional Programming,
268–279. New York, NY, USA: ACM.

Cormen, Thomas H., Charles E. Leiserson, and Ronald L. Rivest. 1990. In-
troduction to algorithms. The MIT Press, Cambridge, MA.

Damas, Luis, and Robin Milner. 1982. Principal type-schemes for func-
tional programs. In POPL ’82: Proceedings of the 9th ACM SIGPLAN-SI-
GACT Symposium on Principles of Programming Languages, 207–212.
New York, NY, USA: ACM.

Danielsson, Nils Anders, John Hughes, Patrik Jansson, and Jeremy Gibbons.
2006. Fast and loose reasoning is morally correct. In POPL ’06: Confer-
ence record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, 206–217. New York, NY, USA: ACM.

Degrave, François, Tom Schrijvers, and Wim Vanhoof. 2009. Automatic gen-
eration of test inputs for Mercury. In Logic-Based Program Synthesis and
Transformation: 18th International Symposium, LOPSTR 2008, Revised
Selected Papers, 71–86. Springer-Verlag.

Dijkstra, Edsger W. 1968. Letters to the editor: go to statement considered
harmful. Commun. ACM 11(3):147–148.

Fischer, Sebastian. 2009a. Declarative programming overview.
http://www-ps.informatik.uni-kiel.de/˜sebf/haskell/fp-overview.html,
http://www-ps.informatik.uni-kiel.de/˜sebf/haskell/dp-overview.html.

202

Bibliography

Fischer, Sebastian. 2009b. Fair predicates library. available online at:
http://sebfisch.github.com/fair-predicates/.

Fischer, Sebastian. 2009c. Reinventing Haskell backtracking. In 4. Arbeitsta-
gung Programmiersprachen (ATPS’09).

Fischer, Sebastian, Oleg Kiselyov, and Chung-chieh Shan. 2009. Purely func-
tional lazy non-deterministic programming. In ICFP’09: Proceedings of
the 14th ACM SIGPLAN International Conference on Functional Program-
ming. New York, NY, USA: ACM Press.

Fischer, Sebastian, and Herbert Kuchen. 2007. Systematic generation of
glass-box test cases for functional logic programs. In PPDP ’07: Proceed-
ings of the 9th ACM SIGPLAN International Symposium on Principles and
Practice of Declarative Programming, 63–74. New York, NY, USA: ACM
Press.

Fischer, Sebastian, and Herbert Kuchen. 2008. Data-flow testing of declar-
ative programs. In ICFP’08: Proceedings of the 13th ACM SIGPLAN In-
ternational Conference on Functional Programming. New York, NY, USA:
ACM Press.

Gill, Andy, and Colin Runciman. 2007. Haskell Program Coverage. In
Haskell ’07: Proceedings of the ACM SIGPLAN workshop on Haskell
workshop, 1–12. New York, NY, USA: ACM.

González-Moreno, Juan Carlos, Maria Teresa Hortalá-González, Fran-
cisco Javier López-Fraguas, and Mario Rodríguez-Artalejo. 1999. An ap-
proach to declarative programming based on a rewriting logic. Journal of
Logic Programming 40(1):47–87.

Hackage. Haskell package database. http://hackage.haskell.org/.

Hanus, Michael. 2006. Curry: An integrated functional logic language (vers.
0.8.2). http://www.curry-language.org.

Hanus, Michael. 2007. Multi-paradigm declarative languages. In Proceed-
ings of the International Conference on Logic Programming (ICLP 2007),
45–75. Springer LNCS 4670.

Hanus, Michael, and Frank Steiner. 1998. Controlling search in declarative
programs. In Principles of Declarative Programming (Proc. Joint Interna-
tional Symposium PLILP/ALP’98), 374–390. Springer LNCS 1490.

203

Bibliography

Harvey, William D., and Matthew L. Ginsberg. 1995. Limited discrepancy
search. 607–613. Morgan Kaufmann.

Hennessy, Matthew, and Edward A. Ashcroft. 1977. Parameter-passing
mechanisms and nondeterminism. In STOC ’77: Proceedings of the ninth
annual ACM Symposium on Theory of Computing, 306–311. New York,
NY, USA: ACM.

Hinze, Ralf. 2000. Deriving backtracking monad transformers (functional
pearl). In ICFP ’00: Proceedings of the fifth ACM SIGPLAN International
Conference on Functional Programming, 186–197. New York, NY, USA:
ACM.

Hudak, Paul. 1989. Conception, evolution, and application of functional
programming languages. ACM Comput. Surv. 21(3):359–411.

Hughes, John. 1989. Why functional programming matters. Computer Jour-
nal 32(2):98–107.

Jaffar, Joxan, and Jean-Louis Lassez. 1987. Constraint logic programming. In
POPL ’87: Proceedings of the 14th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, 111–119. New York, NY, USA:
ACM.

Jones, Mark P. 1993. A system of constructor classes: overloading and im-
plicit higher-order polymorphism. In FPCA ’93: Proceedings of the Confer-
ence on Functional Programming Languages and Computer Architecture,
52–61. New York, NY, USA: ACM.

Kiselyov, Oleg, Chung-chieh Shan, Daniel P. Friedman, and Amr Sabry.
2005. Backtracking, interleaving, and terminating monad transformers
(functional pearl). In ICFP’05: Proceedings of the 10th ACM SIGPLAN
International Conference on Functional Programming, 192–203.

Koopman, Pieter, Artem Alimarine, Jan Tretmans, and Rinus Plasmeijer.
2002. Gast: Generic automated software testing. In The 14th Interna-
tional workshop on the Implementation of Functional Languages, IFL’02,
Selected Papers, ed. R. Peña, vol. 2670 of LNCS, 84–100. Madrid, Spain,
Springer.

Langley, Pat. 1992. Systematic and nonsystematic search strategies. In Pro-
ceedings of the first International Conference on Artificial Intelligence
Planning Systems, 145–152. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.

204

Bibliography

Lembeck, Christoph, Rafael Caballero, Roger Müller, and Herbert Kuchen.
2004. Constraint solving for generating glass-box test cases. In Proceed-
ings of International Workshop on Functional and (Constraint) Logic Pro-
gramming (WFLP), 19–32.

Lin, Chuan-kai. 2006. Programming monads operationally with Unimo. In
ICFP ’06: Proceedings of the 11th ACM SIGPLAN International Confer-
ence on Functional Programming, 274–285.

Lindblad, Fredrik. 2007. Property directed generation of first-order test data.
http://cs.shu.edu/tfp2007/drafts/71.pdf.

López-Fraguas, Francisco Javier, Juan Rodríguez-Hortalá, and Jaime
Sánchez-Hernández. 2007. A simple rewrite notion for call-time choice
semantics. In PPDP ’07: Proceedings of the 9th ACM SIGPLAN Interna-
tional Symposium on Principles and Practice of Declarative Programming,
197–208. New York, NY, USA: ACM Press.

López-Fraguas, Francisco Javier, Juan Rodríguez-Hortalá, and Jaime
Sánchez-Hernández. 2008. Rewriting and call-time choice: The HO case.
In FLOPS ’08: Proceedings of the 9th International Symposium on Func-
tional and Logic Programming, 147–162. Springer LNCS 4989.

Müller, Roger, Christoph Lembeck, and Herbert Kuchen. 2004. A symbolic
Java virtual machine for test-case generation. In Proceedings IASTED.

Naylor, Matthew, Emil Axelsson, and Colin Runciman. 2007. A functional-
logic library for wired. In Haskell ’07: Proceedings of the ACM SIGPLAN
Workshop on Haskell, 37–48. New York, NY, USA: ACM.

Odersky, Martin, Philip Wadler, and Martin Wehr. 1995. A second look
at overloading. In FPCA ’95: Proceedings of the seventh International
Conference on Functional Programming Languages and Computer Archi-
tecture, 135–146. New York, NY, USA: ACM.

Okasaki, Chris. 1996. Purely functional data structures. Ph.D. thesis, School
of Computer Science, Carnegie Mellon University. Available as Technical
Report CMU-CS-96-177.

Peyton Jones, Simon, et al. 2003. The Haskell 98 language and libraries:
The revised report. Journal of Functional Programming 13(1):0–255.
http://www.haskell.org/definition/.

205

Bibliography

Peyton-Jones, Simon L., and Philip Wadler. 1993. Imperative functional pro-
gramming. In POPL ’93: Proceedings of the 20th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 71–84. New York,
NY, USA: ACM.

Rabhi, Fethi, and Guy Lapalme. 1999. Algorithms – a functional program-
ming approach. Addison Wesley.

Rabin, Michael O., and Dana Scott. 1959. Finite automata and their decision
problems. IBM Journal of Research and Development 3:114–125.

Reddit. 2009. Comments on declarative programming overview.
http://www.reddit.com/r/haskell/comments/8xzsx/sebastian_-
fischer_a_brief_overview_on_functional/,
http://www.reddit.com/r/haskell/comments/8zqm4/sebfisch_-
declarative_programming_overview/.

Runciman, Colin, Matthew Naylor, and Fredrik Lindblad. 2008. Small-
Check and Lazy SmallCheck: automatic exhaustive testing for small val-
ues. In Haskell ’08: Proceedings of the first ACM SIGPLAN Symposium
on Haskell, 37–48. New York, NY, USA: ACM.

Slagle, James R. 1974. Automated theorem-proving for theories with simpli-
fiers commutativity, and associativity. Journal of the ACM 21(4):622–642.

Spivey, Michael. 2006. Algebras for combinatorial search. In Workshop on
mathematically structured functional programming.

Tolmach, Andrew, and Sergio Antoy. 2003. A monadic semantics for core
Curry. In WFLP 2003, 33–46. Valencia, Spain.

Tolmach, Andrew, Sergio Antoy, and Marius Nita. 2004. Implementing func-
tional logic languages using multiple threads and stores. In ICFP’04: Pro-
ceedings of the 9th ACM SIGPLAN International Conference on Func-
tional Programming, 90–102.

Wadler, Philip. 1990. Comprehending monads. In LFP ’90: Proceedings of
the 1990 ACM Conference on LISP and Functional Programming, 61–78.
New York, NY, USA: ACM.

Wadler, Philip. 1995. Monads for functional programming. In Advanced
functional programming, first international spring school on advanced
functional programming techniques—tutorial text, 24–52. London, UK:
Springer-Verlag.

206

Bibliography

Wadler, Philip, and Stephen Blott. 1989. How to make ad-hoc poly-
morphism less ad hoc. In POPL ’89: Proceedings of the 16th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
60–76. New York, NY, USA: ACM.

Wadsworth, Christopher Peter. 1971. Semantics and pragmatics of the
lambda calculus. Ph.D. thesis, Programming Research Group, Oxford
University.

207

Index
abstraction, 5, 6, 8, 13, 16, 111, 157
advancing strategy, 43
anonymous function, 7
approximation, 10
assembly language, 5
assignment, 5
AVL tree, 72

backtracking, 22, 29, 111, 113, 118
balanced strategy, 43
binary leaf tree, 15
black-box tests, 35, 70
Boolean values, 1
breadth-first search, 30, 42, 120

call-time choice, 25, 26, 127, 132,
136, 139

class constraint, 12
code coverage, 79

call coverage, 82, 93
criterion, 79, 104
rule coverage, 82

code reuse, 9, 10, 13, 16, 21, 33
complete strategy, 43
computational effect, 111
constraints, 31

equality, 20
finite domain, 31

constructor, 1
continuation, 116, 150
control flow, 81, 91, 104
core language, 96
Curry, 1, 19
currying, 8

data flow, 84, 89, 93, 104
data type, 1
declarative programming, 5
def-use chain, 84, 86, 89, 93, 94

depth-bound search, 66
depth-first search, 29, 42, 111
diagonalisation, 48
difference list, 114, 118
discrepancy search, 66
diverging computation, 9
do-notation, 17, 27, 59
dynamic programming, 74

equational reasoning, 13, 14, 19, 35,
135

evaluation order, 6
explicit sharing, 128, 131, 132
expression coverage, 80

failure, 21
failure continuation, 119
fair predicates, 67
free variable, see logic variable
function, 1
function application, 7
function composition, 7, 15
functional logic programming, 19
functional programming, 6
functor, 14

generate-and-test, 26, 127, 129
glass-box tests, 35, 60, 70, 79

Haskell, 1
head-normal form, 88
heap, 39, 51, 70
heap sort, 70
higher-order function, 7, 74, 86, 99,

102

infinite data structure, 10, 128, 134
input/output, 16
IO monad, 16
iterative deepening search, 43, 121

208

Index

iterative sampling, 77

Kruskal’s algorithm, 73

labeled field, see record syntax
lambda abstraction, 7, 94, 99
lazy evaluation, 9, 22, 26, 48, 60, 64,

68, 88, 127, 128, 157
level diagonalisation, 48
list comprehension, 27
list monad, 17
logic variable, 20, 31, 40, 52
logic variables, 23, 62

matrix multiplication, 72
memoisation, 141
minimum spanning tree, 73
modularity, 10, 157
monad, 16, 111, 117, 127

laws, 18, 112, 135, 137
laziness, 127

multi-paradigm language, 20

narrowing, 20, 23
newtype declaration, 41
non-strictness, 128, 129, 133, 136
nondeterminism, 21, 35, 111, 127,

128, 157
generator, 24, 38, 52, 62, 157
laziness, 23, 61, 67

nondeterministic operation, 22, 37

overlapping rules, 22, 23
overloading, 11, 157

partial application, 9, 94, 99
partial function, 3
pattern matching, 2
permutation, 23, 26, 38, 129
polymorphism, 7
probability, 46
program transformation, 88, 97
programing paradigm, 5
property-driven development, 36
Pythagorean triples, 123

railway, 75
random testing, 45, 54, 64
randomised level diagonalisation, 36,

54, 66
readability, 17
record syntax, 3, 41, 114
recursion, 2, 4, 8, 24, 39, 82, 133
refactoring, 35
rule coverage, 92

search, 26, 28, 61, 157
heuristic, 66

search space, 28, 42, 60, 67
search strategy, 30, 104, 111
set functions, 77
set monad, 139
sharing, 11, 128, 129
shortest path, 73
side effect, 6, 16, 88
small scope hypothesis, 44
square root, 10
state monad, 141, 147
state monad transformer, 148
Strassen’s algorithm, 72
structural induction, 14
success continuation, 119
syntax, 1

test-case generation, 35
test-driven development, 36
testing, 35
ticket price, 75
total function, 2
tree monad, 18
type annotation, 112, 114
type class, 12, 39, 58, 63

constructor class, 13
instance, 12, 39, 59, 63

type constructors, 16
type declaration, 2
type inference, 8
type parameter, see type variable
type variable, 2, 7
type-class constraint, 40
type-class deriving, 40

209

Lebenslauf
Persönliche Daten

Sebastian Fischer

geboren am 16. März 1980 in Gießen,
ledig

Beruf
seit Sep 2005 wissenschaftlicher Angestellter am Institut für Informatik der

CAU Kiel

Studium
16. Aug 2005 Diplom in Informatik

9. Okt 2002 Vordiplom in Informatik

Okt 00 - Aug 05 Studium der Informatik an der CAU Kiel

Zivildienst
Aug 99 - Jun 00 Malteser Hilfsdienst Kiel

Schulzeit
3. Juli 1999 Abitur

1990 - 1999 Ernst-Barlach-Gymnasium Kiel

1986 - 1990 Reventlouschule Kiel

Kiel, 2010

