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Introduction

Networks and Distributed Operation

What is the worst overall degradation due to the absence of central
authority or a lack of cooperation when individuals use or form a net-
work? “Distributed operation” is our positive notion of “absence of
central authority” and “lack of cooperation”. The “price of anarchy”
is the measure for the worst overall degradation due to distributed
operation. All scenarios studied in this thesis have in common that
individuals have to allocate resources in order to perform certain tasks,
and that each possible configuration can be evaluated from the perspec-
tive of each individual and from a global perspective. We use the term
players to refer to the individuals. Evaluation from player-perspective
assigns to each player a single non-negative real number, called the
individual cost of that player. Evaluation from a global perspective is
expressed by a single non-negative number, called social cost. Such
a setting is referred to as a “game” and the efforts to its comprehen-
sion as “game theory”, although there is no relation to the recreational
activities.1

In our models, there is always an optimal configuration, i.e., with
minimal social cost, denoted OPT. We compare OPT to the social cost
of equilibria, i.e., configurations in which players do not have a way to
improve their individual cost, or at least they cannot see such a way.
How far players can “see” and what influence they have is different for
different models. In other words, optimal configurations are optima in

1Quoting Myerson [67]: “‘Conflict Analysis’ or ‘interactive decision theory’ might
be more descriptively accurate names for the subject, but the name ‘game theory’
seems to be here to stay.”
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the usual sense: we have an objective function, the social cost, and if a
central authority was in charge, it would try to minimize it. Whereas,
in a distributed model, players each optimize from their own point
of view using the individual cost as objective function. This has lead
to “system-optimized” and “user-optimized” attributes, which are
synonymous to our terms “optimal” and “in equilibrium”.

We restrict to models that are non-cooperative or only minimally
cooperative. That is, players do not form coalitions (or if they do, then
only small ones). We also describe such situations as having a high
degree of distribution – each player acts mostly on her own. Generally,
both the absence of central authority and a lack of cooperation can
be the reason for a tension between optimum and equilibrium. For
instance, in a network routing scenario, a central authority might sac-
rifice some of the players and force them to take a slow route – with
the effect that the rest of the players experience less congestion and
enjoy very fast routes. Such a distribution can be necessary to attain an
optimum. It may, in fact, happen that some players are worse off in any
optimum than any player would be in an equilibrium. But also lack of
cooperation alone can be the source of tension between optimality and
equilibrium. We elaborate on this in Sec. 1.8.

The price of anarchy is the social cost of a worst-case equilibrium
divided by OPT.2 When we view distributed operation as an approxi-
mation algorithm, the price of anarchy is its approximation ratio. We
study the price of anarchy with a special focus on network-related is-
sues. All our analysis are static: we do not consider how configurations
might evolve over time when players repeatedly change their strate-
gies in order to improve their individual cost. Instead, we describe
properties of equilibria and worst-case equilibria, with a special focus
on their relation to optima.

In Part I, a network is given and players use the network for routing.
This basic setting is also known as “selfish routing”, emphasizing that
players only care for their individual costs and not for the social cost.
“Non-atomic routing” means that a single player has only a negligible

2In our models, existence of best- and worst-case equilibria is guaranteed. More-
over, we assume OPT > 0; for our models, this is automatically the case or is enforced
by small restrictions.
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effect on the network, like it is the case in road traffic or when there is
a large number of small transmissions in a communication network.
We study multicast routing and this puts network structure more into
focus than unicast routing. We show that the price of anarchy depends
strongly on the network structure and prove almost tight lower and
upper bounds. This part also contains a comprehensive experimental
study of the price of anarchy.

In Part II, the network itself is formed in a distributed manner.
Each vertex represents a player. The players can build edges to other
players. Building edges incurs a cost but also has a positive effect since
it improves connectivity3 of the network. Both aspects are incorporated
into the players’ cost functions: the building cost and the indirect cost,
related to properties of the network. This area of research is a widely
open field. There seems to be an endless variety of interesting measures
to be used for the indirect part of the cost functions. Moreover, there
are at least two different ways in which links can be formed: in the
unilateral case, each player may connect to any other player and pays
an amount of α for each link (α > 0 being a parameter); whereas in the
bilateral case, the consent of both endpoints is needed, and then each of
them pays α. We make a contribution by considering robustness aspects
in a new way: we evaluate how good the network can withstand the
deletion of one edge, chosen by an adversary – a classical scenario, e.g.,
in the area of fault-tolerant networks [3, 21, 22, 29, 48, 81]. We consider
the unilateral and the bilateral case.

Aside from the price of anarchy, two further aspects are of interest;
first, one asks about the structure of (worst-case) equilibria: how traffic
is distributed in the routing model or how equilibrium networks look
like in the network formation model. Second, when different equilibria
can have different social cost, how expensive, compared to OPT, is
the cheapest equilibrium? We use the price of stability as the measure,
i.e., the social cost of an optimal equilibrium divided by OPT. We will
consider structural aspects and the price of stability occasionally along
the way, while our main theme remains the price of anarchy.

3“Connectivity” is used in a general sense here, not limited to k-connectedness
of graphs. Moreover, the model introduced in Ch. 5 offers clearance for notions of
connectivity where additional edges can have a negative effect.
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Both parts of this thesis, Part I and Part II, are written in a way
so that they can be understood independently of each other. Each of
them contains an outlook on possible future research at the end. Basic
terminology is collected in App. A.

Results of the Thesis

Part I. The main achievements in the first part are the introduction of
a new model, namely the model of non-atomic consumption-relevance
congestion games (NCRCG), almost tight lower and upper bounds on
the price of anarchy in NCRCGs, and a thorough experimental study.
NCRCGs are an extension of the well-known non-atomic congestion
games (NCG). They are motivated by selfish multicast routing, but
also interesting in their own right. They exhibit new phenomena not
present in NCGs (or selfish unicast routing).

In NCGs as well as NCRCGs, players have to allocate elementary
resources, called elements, in order to perform tasks. For example, ele-
ments can be links in a communication network and tasks can be data
transmissions. Elements can only be allocated in certain combinations,
called strategies, e.g., forming paths or trees in a network. Allocation
of elements induces congestion for each of the elements. Each element
completes its part of the task with a latency, expressed by its element
latency function, a real function, applied to the congestion of the re-
spective element. In other words, the element latency function of an
element expresses how this element’s performance reacts to congestion.
Element latencies reflect back to strategies, resulting in strategy latencies.
These are experienced by the players as the delay with which their
task is completed. In a Nash equilibrium, no player has an incentive
to switch the currently chosen strategy, given the decisions of other
players. The NCRCG model offers a larger variety than the NCG model
to express how occupation of strategies inflicts congestion and hence
element latency, and how element latency inflicts strategy latency. This
is the source for new phenomena and challenges.

An instance of the NCRCG model (shortly: “an NCRCG”) can
admit multiple Nash equilibria of different social cost, even when
restricted to the special case of multicast routing with strictly increasing
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link latency functions. An NCG instance, in contrast, only admits
Nash equilibria of the same social cost; for strictly increasing element
latency functions, all Nash equilibria of an NCG even induce the same
congestions.

The price of anarchy of an NCG can be bounded with the anarchy
value α(L) or the β(L) parameter, both dependent only on the class
L of occurring element latency functions. The price of anarchy of
an NCRCG, however, cannot be bounded with the anarchy value or
the β parameter alone, but we have to incorporate structural param-
eters in the bound. We prove an upper bound on the price of anar-
chy for s-super-homogeneous element latency functions. An element
latency function ` is s-super-homogeneous with s being a function
s : (0, 1] −→ (0, ∞) with s(1) = 1, if `(εx) ≥ s(ε)`(x) for all ε ∈ (0, 1]
and x ∈ R≥0. Denote function s̄(t) : [1, ∞) −→ (0, ∞), t 7→ s(t−1)−1.
Then s-super-homogeneity is equivalent to s̄-sub-homogeneity, i.e., the
property `(tx) ≤ s̄(t)`(x) for all t ∈ [1, ∞) and x ∈ R≥0. For exam-
ple, polynomials of degree at most p and non-negative coefficients
are (ε 7→ εp)-super-homogeneous and also (t 7→ tp)-sub-homogeneous.
Our bound on the price of anarchy is

1
1−β γs̄(γ) for all γ

min
{

1
1−γ β γ, 1

1−β γs̄(γ)
}

for γ < 1/β
.

Here, β = β(L) is the known β parameter, and γ is our new structural
parameter. It is γ = 1 for NCGs, in which case this bound collapses to
the well-known 1

1−β bound [33, 80]. If element latency functions are
polynomials of degree at most p and non-negative coefficients, denoted
Poly+(p), our bound is simplified and improved toγp+1 if γ ≥ (1 + p)

1
p

1
1−γ β γ if γ ≤ (1 + p)

1
p

,

where β = β(Poly+(p)) = p (p + 1)−1− 1
p .

We prove that the latter is tight up to a factor of γ. We also prove
a bicriteria bound: when scaling up demands by (1 + β(L)) γ, even
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an optimum is no less costly than a Nash equilibrium for the original
demands. This provides a natural extension to previous results on
NCGs, where a scaling factor of 1 + β(L) occurs. We also show that for
polynomials, the new scaling factor is the best possible up to a factor

of (1 + β(L)) γ
1

1+p .
We lay out a theoretical foundation for computation of Nash equi-

libria by characterizing them as optima of a non-linear program (NLP)
and devising a binary search scheme to find extreme equilibria. For
NCGs, one of the central tools – not limited to computation – is the
potential function. It allows characterization of Nash equilibria as op-
tima of a convex optimization problem. Computation of extreme Nash
equilibria does not pose an extra challenge in NCGs, since all Nash
equilibria have the same social cost there. Surprisingly, there seems
to be no way to use the potential function for NCRCGs. However,
we can still give an NLP formulation based on a different technique,
but unfortunately not necessarily yielding convex programs. To find
worst-case equilibria, and hence to determine the price of anarchy, we
devise a binary search scheme: in each step an NLP that carries an
additional linear constraint has to be solved. The additional constraint
pushes the social cost above some threshold. This threshold is adapted
in each step. We have no guarantee (yet) to find a worst-case Nash
equilibrium, or even to find any Nash equilibrium in this way, since
it is unclear whether the involved NLPs can be solved optimally. It is
to be regarded as a heuristic approach. However, our experimental
results are promising.

Our experimental studies utilize this NLP formulation and binary
search scheme. In total, we treat more than 10 million (small) randomly
generated NCRCGs with element latency functions from Poly+(p), for
p ∈ {1, 2, 3}, m = 4 elements, and n ∈ {2, . . . , 6, 9} strategies. We use
our own C++ implementation of more than 10,000 lines of code for the
generation of random instances, the binary search scheme, and most
of the experimentation framework; post-processing of the gained data
is done using the R System [74]. Solvers for general NLPs, namely
Ipopt [86, 89] and Lancelot [31], are used to treat the involved NLPs.
We use a simple test to determine whether the solution returned by the
NLP solver is in fact a Nash equilibrium, which may not be the case,
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e.g., if only a local optimum is found. However, for the majority of
cases, at least one Nash equilibrium was found, and we could in some
cases compute a price of anarchy up to the best known theoretical lower
bound (which is a factor of γ away from the upper bound). This points
to an ability of our algorithm to find worst-case equilibria. We call the
ratio between the social cost of a Nash equilibrium with maximum
social cost and the optimum, both emanating from our computations,
the observed price of anarchy. If the computation in fact yields a worst-
case Nash equilibrium and an optimum, the observed price of anarchy
equals the price of anarchy. The observed price of anarchy is a lower
bound on the price of anarchy in general.

It is notable that our study of more than 10 million random instances
yielded several ones with an observed price of anarchy equal to the
theoretical lower bound – but never above it (up to inaccuracies). This
justifies to raise the conjecture that the theoretical lower bound is in
fact an upper bound.

We also use the experiments to compare our bounds – the proven
and the conjectured one – to another type of bound, introduced by Per-
akis [72], which is based on the operator norm of a matrix related to the
Jacobian of the strategy latency function (as a function Rn

≥0 −→ Rn
≥0,

where n is the number of strategies). It is only applicable if the Jaco-
bian is positive (semi-)definite, which may or may not be the case for
NCRCGs. For those instances where Perakis’ bound is applicable, we
compare it to our bounds. Both approaches show their own strengths
and weaknesses: our bounds are computationally much simpler to
obtain than Perakis’; and indeed, at least our implementation for com-
puting Perakis’ bound yielded some extraordinarily high values, of
which it is not known whether they should be attributed to numerical
instabilities or represent the true values. On the other hand, for most
cases, Perakis’ bound is smaller than ours, and hence better. However,
the margin is considerably smaller for our conjectured bound than for
our proven bound. Our findings accentuate the importance of develop-
ing multiple structurally different approaches for computing bounds
on the price of anarchy.



xx Introduction

Part II. The main achievements in the second part are lower and
upper bounds on the price of anarchy in distributed network formation
when the network is subject to modification by an adversary. We recall
that in our framework of distributed network formation each vertex
represents a player and each player can build links to other players.
Links cost an amount of α each, but can also have a positive effect by
improving connectivity.

In our model, an adversary is allowed to delete one link after the
network is built. The adversary is modeled by a random experiment,
more precisely: by a probability distribution on the links of the network
that was built. This probability distribution may even depend on that
network, e.g., the adversary might favor links that separate a maximum
number of vertex pairs. The individual cost function of a vertex v
incorporates the expected number of vertices to which v will become
disconnected when the adversary strikes.

We study the unilateral case using Nash equilibrium, and the bilat-
eral case using pairwise Nash equilibrium and pairwise stability. Two
types of adversaries are analyzed: a simple-minded one, adhering to
the uniform probability distribution, and a smart one, which chooses
the link to destroy with the objective of separating a maximum num-
ber of vertex pairs. For the unilateral case and both adversaries, we
show a price of stability of 1 + o(1) and – as one of the main results
– an O(1) bound on the price of anarchy. Bounding building cost in
an equilibrium for both adversaries works by recognizing that equi-
librium graphs are chord-free. Bounding indirect cost, (i.e., the cost
expressing connectivity properties of the built network) works differ-
ently for both adversaries. For the simple-minded adversary, we use a
diameter argument, roughly similar to those found for other models in
existing literature, e.g., for the sum-distance model [41]. For the smart
adversary, a new approach has to be taken: we look at the macroscopic
structure of the network, represented by a tree, and distinguish several
ways in which vertices are distributed across subtrees.

For the bilateral case, the adversaries show different characteristics:
for the simple-minded one we show a bound of O(1 +

√
n/α) on the

price of anarchy; we do not know whether it is tight. For the smart ad-
versary, we show a lower bound of Ω(n) for α > 2 considered constant,
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which is the worst that can happen for any adversary in this model
if α = Ω(1). This provides an example that unilateral and bilateral
network formation can behave substantially different.

We also study convexity4 of individual cost functions. This is impor-
tant for the relation between pairwise Nash equilibrium and pairwise
stability: both equilibrium concepts are equivalent under convexity
of individual cost functions. We show that for the simple-minded ad-
versary, individual cost functions are convex. For the smart adversary,
we provide an example that they are not convex – however, we only
succeed in showing this outside the set of pairwise stable networks.
We do not yet know whether pairwise Nash equilibrium and pair-
wise stability are equivalent for the smart adversary. The example still
provides indication that network formation with a smart adversary
is in some sense substantially different from the known sum-distance
model [41] or our model with a simple-minded adversary, since these
have individual cost functions that are everywhere convex.

4This is a different convexity notion than the one we encounter in the first part.
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Future Work

Our results raise several questions that we expect to be a driving force
for future research. Can we prove the conjecture for the bound on the
price of anarchy in NCRCGs? Can better algorithms be devised for
computation of extreme equilibria? Our experimental findings can
serve as a benchmark for future approaches: will a new algorithm
deliver substantially higher observed prices of anarchy (for the same
random model)? More directions for future work on NCRCGs are
listed on p. 90.

Regarding network formation, we leave open as one of the most
intriguing questions how the situation changes when an adversary
is allowed to delete more than one link. Our proofs rely heavily on
the fact that only one link is deleted, so we expect this to be a new
challenge. Moreover, we pointed out substantial differences between
the unilateral and bilateral case. This is especially interesting since
comparison of unilateral and bilateral network formation under the
aspect of the price of anarchy has received much attention recently,
e.g., [32, 38], and models that combine aspects of both principles are
beginning to be discussed [14]. It would be interesting to study our
adversary model in such a new setting. More directions for future
work on network formation are listed on p. 165.
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Chapter 1

Non-Atomic Congestion Games

We briefly review previous work in this chapter. Everything is in a non-
atomic model, even when the term “non-atomic” is omitted sometimes.
That is, each player has only a negligible influence on the system; it
will be elaborated in detail what this means exactly. Our starting point
is selfish unicast routing. A large number of players wishes to send a
small amount of data each from one source to one destination through
a communication network. Each player decides on her own which
route to take, aiming to optimize the individual transmission time.
How is traffic expected to be distributed across available routes? How
efficient is the outcome?

We take an incremental approach for the presentation. In Sec. 1.1,
we consider unicast routing, mostly as a motivation. We then turn
to non-atomic congestion games (NCG), introduced in Sec. 1.2 and
Sec. 1.3. NCGs are one of the most general previously studied models.
They encompass unicast routing, but they do not fully encompass mul-
ticast routing, that is, when traffic flows from each source to multiple
terminals at the same time. We will introduce a new model for different
kinds of multicast in Ch. 2. In Sec. 1.4 we elaborate on the non-atomic
equilibrium concept from a more general perspective; this section is
particularly important for the rest of Part I. In Sec. 1.5 to Sec. 1.7 we
present known results on NCGs, with a special focus on the price of
anarchy, among others the results and proofs due to Roughgarden and
Tardos as well as Correa, Schulz, and Stier Moses. The essence is that
we can tightly bound the price of anarchy with a single parameter.
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Particularly important for the rest of Part I is Sec. 1.7.2, which intro-
duces the β parameter. This parameter will be helpful for the analysis
of non-atomic consumption-relevance congestion games (and selfish
multicast routing) in Ch. 2.

In Sec. 1.8 we take a step back and look at the model under the
aspect of what reasons are responsible for inefficiency of equilibria.
Both principles – “absence of central authority” and “lack of cooper-
ation” – will be recognized. We give a short chronological overview
over existing literature in Sec. 1.9.

1.1 Selfish Unicast Routing

We start with a simple example, originally due to Pigou [73]. Consider
two cities s and t, connected by two highways H1 and H2. Many
commuters have to travel from s to t at the same time, and each of
them can choose between H1 and H2. Highway H1 is rather long,
but broad enough so that no congestion effects occur: no matter how
many commuters choose highway H1, their travel time – the latency
– will always be one hour. Highway H2 is much shorter, but also
narrower. Commute time on H2 is influenced by congestion effects: the
time grows proportional to the number of drivers choosing H2, and it
equals one hour if all drivers choose H2 (and none chooses H1). Let us
normalize the total amount of drivers to 1, and say that the commute
time experienced by drivers on H2 takes x times one hour if x drivers
take that highway, x ∈ [0, 1].

If x < 1, then the drivers on H2 experience less commute time than
those on H1, and so we expect that as long as x < 1, the 1− x drivers
on H1 see an incentive in switching to H2. It follows that we have an
equilibrium if and only if x = 1. (We will give a formal definition of
equilibrium below.) As social cost we use the total travel time, which is
1 · (1− x) + x · x = 1− x + x2. It is minimum, namely OPT = 3

4 , when
x = 1

2 ; it is 1 when x = 1, i.e., in equilibrium. The price of anarchy
hence is 4

3 . If a central authority for minimizing the total travel time
was in charge, that authority would enforce x = 1

2 , i.e., one half of
the drivers would be allowed to take highway H2, and the other half
would be forced to take highway H1 and accept that those on highway
H2 are better off.
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s t

`1(x) = 1

`2(x) = x

Figure 1.1. Pigou’s example.

More generally, let G = (V, E) be a directed multigraph. Let there
be N source-terminal pairs si, ti ∈ V, i ∈ [N], and for each a demand
di > 0 that is to be routed from si to ti. Each edge e ∈ E has a real-
valued function `e : R≥0 −→ R≥0, called edge latency function. We
usually assume each edge latency function to be continuous and non-
decreasing. When an amount of x is routed through edge e, it takes
`e(x) units of time per unit, hence `e(x)x in total. Let Pi be the set
of all si-ti paths that shall be eligible for routing di, and assume for
simplicity that Pi ∩ Pj = ∅ for all i, j ∈ [N], i 6= j. Set P := ⊍i∈[N] Pi
and denote for each e ∈ E by P(e) those paths in P that traverse e.
A flow f is a vector ( fP)P∈P of non-negative real numbers such that
∑P∈Pi

fP = di for all i ∈ [N]. Let f be a flow and fix an edge e ∈ E.
The total flow through e is called its congestion, denoted ge( f ), i.e.,
ge( f ) := ∑P∈P(e) fP. Routing one unit of flow along a path P ∈ P takes
time LP( f ) := ∑e∈E(P) `e(ge( f )); we call this the path latency. The total
time for routing all the demands is SC( f ) := ∑P∈P LP( f ) fP; we call
this the social cost. Fig. 1.1 shows how Pigou’s example looks using this
formalism; we have N = 1 and d1 = 1.

Now we introduce the distributed aspect. Fix i ∈ [N]. Routing
of di from si to ti shall not be subject to a central control, but it rather
shall be controlled by a (large) number of individuals, which we will
call players. We assume a large number of players, of which each only
controls a negligible fraction of the demand. An illustrative example
for this is road traffic. The decision of a single driver which route to
take will have virtually no effect on congestions and latencies of the road
network. Another example is a communication network with a large
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number of users where each user has only got a small amount of data
to send or receive.

So, a flow f gives a distribution of players across available paths.
All players that have chosen a path P ∈ P experience latency LP( f );
this is their individual cost. If there are P, Q ∈ Pi such that LP( f ) <
LQ( f ), then the fraction fQ of the players that is on path Q has an
incentive of switching from path Q to path P. We choose as equilibrium
concept the Nash equilibrium, that is, in an equilibrium no player shall
have an incentive of switching to another path, given the decisions of
the other players. This is formalized as follows. We say that flow f is a
Nash equilibrium if

∀i ∈ [N] ∀P, Q ∈ Pi :
(

fP > 0 =⇒ LP( f ) ≤ LQ( f )
)

.

In other words, we have an equilibrium if and only if all flow trav-
els along minimum-latency paths. We will elaborate more on this
equilibrium concept and on existence of Nash equilibria in Sec. 1.4.

Routing in a distributed way is also known as selfish routing. We
speak of selfish unicast routing when emphasizing that routing goes from
each source to exactly one terminal each (but there can be multiple
source-terminal pairs). A comprehensive treatment of selfish unicast
routing can be found in Roughgarden’s dissertation [77]. Recall that we
restrict to non-atomic models, while selfish routing is also of concern
in other settings; see, e.g., the survey by Czumaj [35]. We will state the
most important known results on (non-atomic) selfish routing in the
context of the more general non-atomic congestion games (NCG) in
Sec. 1.5 to Sec. 1.7.

Concluding this introduction, we study a generalization of Pigou’s
example with a parameter p ∈ N≥1. The latency function `2(x) = x
is exchanged for `2(x) = xp. As before, we denote the upper path
by H1 and the lower path by H2, both consisting of only one edge
each. The edges are denoted 1 and 2. We compute the path latencies
and the social cost for some arbitrary flow f = ( fH1 , fH2). We have
LH1( f ) = `1(g1( f )) = 1 and LH2( f ) = `2(g2( f )) = `2( fH2) = f p

H2
and

SC( f ) = LH1( f ) fH1 + LH2( f ) fH2 = fH1 + f p+1
H2

fH1+ fH2=1
= 1− fH2 + f p+1

H2
.
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We see immediately that the only Nash equilibrium is f := (0, 1), for
if any fraction of the flow was to take the upper path, say, f ′ := (ε, 1− ε),
we would have LH2( f ′) = (1− ε)p < 1 = LH1( f ′), meaning that not all
flow would travel along minimum-latency paths. On the other hand,
simple real calculus gives that f ∗ := (1− (p + 1)−1/p, (p + 1)−1/p) is
the only optimal flow. Its social cost is

SC( f ∗) = 1− (p + 1)−1/p + (p + 1)−(p+1)/p

= 1− ((p + 1) (p + 1)−1− 1
p − (p + 1)−(p+1)/p)

= 1− (p (p + 1)−1− 1
p + (p + 1)−1− 1

p − (p + 1)−(p+1)/p︸ ︷︷ ︸
=0

)

= 1− p (p + 1)−1− 1
p .

(1.1)

Hence, the price of anarchy is SC( f )
SC( f ∗) = (1− p (p + 1)−1− 1

p )−1 =

Θ( p
ln p ), which (slowly) tends to ∞ as p tends to ∞. Pigou’s example

allows two observations: first, we see that arbitrary high prices of
anarchy can be achieved with very simple networks – just one source,
one terminal, and parallel edges in between. Second, we observe
a correlation between the price of anarchy and the kind of latency
functions used – the higher the degree of the polynomial `2, the larger
the price of anarchy becomes. In fact, Roughgarden [77] shows that the
price of anarchy in unicast routing can be upper-bounded by a value
only dependent on the class L of eligible edge latency functions, the
so-called anarchy value α(L), provided that L fulfills some moderate
conditions. For affine element latency functions, as in Pigou’s example
with p = 1, the anarchy value is 4

3 , and hence Pigou’s example marks
the worst case. We will elaborate on this in Sec. 1.7.

1.2 Non-Atomic Congestion Games

Many interesting results on the price of anarchy in selfish unicast
routing actually do not rely on a graph structure, but can be stated in
a more general context, described in the following. We have a set of
elementary resources, called elements, which can only be utilized in
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certain combinations, called strategies. Players have to choose one or
more strategies to accomplish certain tasks; in a non-atomic model, a
player can only choose one strategy. Each element performs its part of
the task with a latency. This latency is experienced by those players
who utilize the respective element via some strategy. Players try to
avoid long latencies – they want their tasks completed as soon as
possible. In unicast routing, the elementary resources are edges in the
network and strategies are paths. However, such a network-oriented
structure is not necessary for many results to hold.

1.1 Definition. An instance in the non-atomic congestion game model,
shortly referred to as “an NCG”, is defined by the following five items:

(i) A set E of elementary resources or elements, say E = [m] for an
m ∈ N.

(ii) For each e ∈ E a real, continuous, non-decreasing function
`e : R≥0 −→ R≥0, called the element latency function of e.

(iii) Non-empty subsets S ⊆ 2E of E, called strategies. Denote n :=
|S| and for each e ∈ E denote the set of strategies which contain e
by S(e) := {S ∈ S; e ∈ S}.

(iv) For each e ∈ E and S ∈ S a positive real number reS, called rate
of consumption (of e under S).

(v) Numbers d1, . . . , dN ∈ R>0, called demands, and a partition S =

⊍i∈[N] Si. We call each i ∈ [N] a player class. So each player class i
has a demand di and some strategies Si; denote ni := |Si|.

We also use the term element latency function to refer to any continu-
ous, non-decreasing function R −→ R.

All the following notions are relative to a fixed NCG. An action
distribution is a vector a ∈ Rn

≥0 such that ∑S∈Si
aS = di for all i ∈ [N].

So, an action distribution specifies a way of distributing the demand
of each player class across available strategies. Let A be the set of all
action distributions. We define congestion, strategy latency, and social
cost, respectively:

ge(a) := ∑
S∈S(e)

reSaS for a ∈ A and e ∈ E
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LS(a) := ∑
e∈S

reS`e(ge(a)) for a ∈ A and S ∈ S

SC(a) := ∑
S∈S

LS(a)aS for a ∈ A

For an action distribution a ∈ A and element e ∈ E we call `e(ge(a))
the element latency of e under a. Denote also for an action distribution
a ∈ A the following vectors:

~g(a) := (ge(a))e∈E ∈ Rm
≥0

~̀ (a) := (`e(ge(a))e∈E ∈ Rm
≥0

~L(a) := (LS(a))S∈S ∈ Rn
≥0

Then the social cost can be written as a scalar product SC(a) = ~L(a)>a.
Having the rates of consumption in congestions as well as in strat-

egy latencies may appear an arbitrary decision at first. In Sec. 1.6 and
Sec. 1.7, however, we will see that it is essential. It allows us to express
the social cost on strategy level as well as on element level, namely we
have

SC(a) = ∑
S∈S

LS(a)aS = ∑
e∈E

`e(ge(a))ge(a) . (1.2)

1.2 Definition.

(i) An action distribution a ∈ A is called a Nash equilibrium, abbrevi-
ated “N.E.”, if

∀i ∈ [N] ∀S, T ∈ Si :
(

aS > 0 =⇒ LS(a) ≤ LT(a)
)

.

(ii) An action distribution a∗ ∈ A is called optimal, or an optimum, if

SC(a∗) = min
a∈A

SC(a) .

Denote OPT := SC(a∗) for an optimum a∗.

Nash equilibria always exist in this model, as we will see in Sec. 1.4.
By continuity of~L and compactness of A, optima always exist as well.
We only consider the case OPT > 0. This is not a limiting assumption.
For, if there was an action distribution a with SC(a) = 0, then LS(a) = 0
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for all S ∈ S such that aS > 0. Hence a would be a Nash equilibrium.
We will see later that all Nash equilibria have the same social cost. So
all Nash equilibria would be optimal in this special case, and hence
distributed operation would have no negative effect on the social cost.
It also becomes clear now why we do not allow empty sets as strategies:
an empty strategy would provide a ‘free ride’ for everyone in the
respective player class. That would make the player class irrelevant,
and even lead to OPT = 0 if there are no other player classes.

1.3 Definition. We define the price of stability and the price of anarchy of
an NCG, respectively, by

inf
a∈A

a is N.E.

SC(a)
OPT and sup

a∈A
a is N.E.

SC(a)
OPT .

By continuity, we can replace the infimum and supremum by mini-
mum and maximum, respectively. We will see in Sec. 1.5 that price of
stability and anarchy coincide in NCGs. They may, however, diverge
in the NCRCG model studied in Ch. 2 and Ch. 3.

To describe a unicast routing game as an NCG, we simply let net-
work links correspond to elements, paths to strategies (a path is fully
specified by the set of its links), and source-terminal pairs to player
classes. The rates of consumption are chosen reS = 1 for all S ∈ S and
e ∈ S. So, the NCG model encompasses the unicast routing model.

NCGs are useful since they are more general. By an appropriate
setting of the rates of consumption, we can model two forms of multi-
cast routing with NCGs, as shown in Ch. 2. NCGs are, however, not
general enough to encompass certain other interesting forms of multi-
cast routing. This is where the NCRCG model comes in, also presented
in Ch. 2.

1.3 Formal Subtleties – Matrix Notation

We have defined the set of strategies as a subset of 2E. This gives a
good intuition, but it is also an unnecessary restriction. For, it does
not allow the same strategy being shared by two player classes (unless
we renounce that S1, . . . ,SN form a partition, which would cause
notational inconvenience in other places). The restriction also prevents
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us from having two ‘strategies’ on the same elements but with different
rates of consumption.

The common approach in the literature is to let S be a “multiset”.
This does not address the matter, however, since a multiset is just a
set where elements have multiplicities; it does not provide means to
refer to a particular ‘copy’ of the same element. A solution is to have
a mapping ι : [n] −→ 2E and to always refer to strategies by their
pre-image under ι, conveniently also referred to as index. When using
a notation such as Sj := ι(j), j ∈ [n], we also speak of an indexed family.

Another solution uses a matrix; this is the one we prefer. It allows
us to specify an NCG in the following way. Let

(reS)e=1,...,m
S=1,...,n

∈ Rm×n
≥0

be a matrix. We call its entries rates of consumption. We use letters “e”
and “S” for row and column indices, respectively, in order to remind
us that these indices point to something that conceptually is an ele-
ment or a strategy for us. Elements correspond to rows and strategies
correspond to columns; actually we continue speaking of elements and
strategies. Positive entries in column S mark elements that are included
in strategy S in the sense of the original notation. In particular there
is a positive entry in each column by our requirement that strategies
are non-empty. We have element latency functions as usual, one for each
element (or, in other words, for each row of the matrix). We denote
S := [n] and have a partition S = ⊍i∈[N] Si to express different player
classes. This means that Si contains the indices of columns in the matrix
that describe strategies available to player class i. There are positive
demands d1, . . . , dN as usual, one for each player class.

The matrix notation makes congestions and strategy latencies no-
tationally simpler: we can always sum over all strategies or elements,
respectively:

ge(a) := ∑
S∈S

reSaS for a ∈ A and e ∈ E

LS(a) := ∑
e∈E

reS`e(ge(a)) for a ∈ A and S ∈ S

We will assume the matrix notation from now on.
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1.4 Non-Atomic Equilibrium Concept

1.4.1 Basic Concept

Recall the equilibrium definition from Def. 1.2(i). It expresses that all
the demand is distributed across strategies with minimum latency.
We explain in more detail why this describes an equilibrium. More
precisely, we explain why this fits the notion of Nash equilibrium,
which is a fundamental equilibrium concept and reads: no player has
an incentive to switch strategies, given that all other players stick to their
current strategies. An incentive to switch strategies would be that the
new strategy offers strictly lesser individual cost. In a non-atomic
model, each player can only choose one strategy. In the NCG model,
the individual cost is the strategy latency. An incentive to switch from
strategy S to T would be that T offers strictly lesser latency than S.
Since a single player is assumed to have only a negligible impact on the
system (i.e., on congestions and latencies), the determination whether
strategy T offers a strictly lesser latency than S is easily done: simply
check whether LS(a) < LT(a) for the current action distribution a. We
do not have to take into account whether the change from S to T of
that single player in question might influence the strategy latencies
– we know, by assumption, that a single player does not change the
system. Actually, we never defined what a ‘single player’ is. Instead,
we subsume all players in class i to the real interval [0, di]. An action
distribution, from this perspective, defines a partition for each of those
intervals. Nash equilibria in such a model are also known as Wardrop
equilibria, since the specific concept expressed in Def. 1.2(i) is due to
Wardrop [87]. We quote [87, p. 344–345], emphasis added:

The problem is to discover how traffic may be expected to dis-
tribute itself over alternative routes, and whether the distribution
adopted is the most efficient one. [. . . ]

Consider two alternative criteria [. . . ] which can be used to
determine the distribution on the routes, as follows:

(1) The journey times on all the routes actually used are equal,
and less than those that would be experienced by a single
vehicle on any unused route.
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(2) The average journey time is a minimum.

The first criterion is quite a likely one in practice, since it might
be assumed that traffic will tend to settle down into an equi-
librium situation in which no driver can reduce his journey
time by choosing a new route. On the other hand, the second
criterion is the most efficient in the sense that it minimizes the
vehicle-hours spent on the journey.

Our definition of Nash equilibrium matches that first criterion.

1.4.2 Non-Atomic Games and Variational Inequality Formulation

We show how Nash equilibria in an NCG can be characterized by
a variational inequality. This result in fact goes far beyond NCGs: it
only uses the notion of strategy latency and does not require that the
relations between strategies are described via elementary resources or
rates of consumption. We will use this result throughout the first part
of this thesis, also for more general games than NCGs. Therefore, we
make the definition of a non-atomic game. It is a simplification of the
concept known under the same name in the literature, but it suffices
for our purposes.

1.4 Definition. An instance of a non-atomic game is defined by the
following items:

(i) A set S, say S = [n] for a number n ∈ N.

(ii) Numbers d1, . . . , dN ∈ R>0 and a partition S = ⊍i∈[N] Si. This
defines the set of action distributions A as for NCGs.

(iii) For each S ∈ S a function LS : U −→ R≥0 such thatA ⊆ U ⊆ Rn.

Social cost, optima, and Nash equilibria are defined as for NCGs.
Often,~L is given as a function Rn −→ Rn. Let

Λi(a) := min
S∈Si

LS(a)

for a ∈ A and i ∈ [N]. It follows directly from the definition:
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1.5 Proposition. For a non-atomic game, an action distribution a ∈ A is a
Nash equilibrium if and only if

∀i ∈ [N] ∀S ∈ Si :
(

aS > 0 =⇒ LS(a) = Λi(a)
)

.

Moreover, the social cost of a Nash equilibrium a is

SC(a) = ∑
i∈[N]

Λi(a)di . (1.3)

For the following characterization of Nash equilibria, we need the
mixed social cost, that is similar to the social cost, but dependent on two
action distributions:

SCa(b) := ∑
S∈S

LS(a)bS for a, b ∈ A.

The following theorem is due to Smith [84]. It will be crucial in the
following.

1.6 Theorem. For a non-atomic game, an action distribution a ∈ A is a
Nash equilibrium if and only if

SC(a) ≤ SCa(b) for all b ∈ A. (VAR)

Proof. Let first a be a Nash equilibrium. Fix any b ∈ A. By Prop. 1.5 we
have

SCa(b)− SC(a) = ∑
i∈[N]

∑
S∈Si

LS(a)︸ ︷︷ ︸
≥Λi(a)

bS − ∑
i∈[N]

Λi(a)di

≥ ∑
i∈[N]

(Λi(a) ∑
S∈Si

bS︸ ︷︷ ︸
=di

−Λi(a)di) = 0 .

Now, let a ∈ A such that (VAR) holds. Fix i0 ∈ [N] and pick
S0 ∈ Si0 such that LS0(a) = Λi0(a) =: Λ. Define b ∈ Rn

≥0 by

bS :=


di0 if S = S0

0 if S ∈ Si0 \ {S0}
aS otherwise

.
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That is, we shift all the demand for i0 to strategy S0. Then b is an action
distribution, and by (VAR) we have

0 ≤ ∑
i∈[N]

∑
s∈Si

LS(a) (bS − aS)︸ ︷︷ ︸
=0 if i 6=i0

= ∑
S∈Si0

LS(a) (bS − aS)

= LS0(a)︸ ︷︷ ︸
=Λ

di0 − ∑
S∈Si0

LS(a)︸ ︷︷ ︸
≥Λ

aS .

Since ∑S∈Si0
aS = di0 , it follows that LS(a) = Λ whenever aS > 0,

S ∈ Si0 . Because i0 was taken arbitrarily, a is a Nash equilibrium.

1.7 Theorem. Every non-atomic game for which LS is continuous for each
S ∈ S admits a Nash equilibrium.

Proof. Equation (VAR) is a well-studied variational inequality. We
know that solutions exist under the continuity assumption on the
strategy latency functions since A is compact and convex, see, e.g., [68,
Thm. 1.4] or [52, Thm. 3.1].

Since we require element latency functions to be continuous in
NCGs, we receive immediately:

1.8 Corollary. Every NCG admits a Nash equilibrium.

Condition (VAR) has an interesting interpretation for the non-atom-
ic equilibrium concept. The mixed social cost SCa(b) gives us a kind
of ‘social cost’ dependent on two parameters: the first one, namely a,
defines the system (i.e., congestions and corresponding element and
strategy latencies), and the second one, namely b, indicates how that
system is used. Condition (VAR) says that Nash equilibria are exactly
those action distributions a that give the optimal way to use the system
that is already fixed by a.

1.5 Uniqueness of Nash Equilibrium

We consider NCGs again. Nash equilibria are not unique in general –
just consider constant latency functions. However, all Nash equilibria
have the same element latencies and social cost, and if element latency
functions are strictly increasing, we have unique congestions.
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1.9 Theorem. Let a, a′ ∈ A be Nash equilibria. Then
(i) `e(ge(a)) = `e(ge(a′)) for all e ∈ E, and hence ge(a) = ge(a′) if `e is

strictly increasing;

(ii) SC(a) = SC(a′).

Proof. By Thm. 1.6, SC(a)− SCa(a′) ≤ 0 and SC(a′)− SCa′(a) ≤ 0, so

0 ≥ SC(a)− SCa(a′) + SC(a′)− SCa′(a)

= ∑
S∈S

(LS(a)− LS(a′)) (aS − a′S)

= ∑
S∈S

∑
e∈E

reS (`e(ge(a))− `e(ge(a′))) (aS − a′S)

= ∑
e∈E

(`e(ge(a))− `e(ge(a′))) ∑
S∈S

reS(aS − a′S)

= ∑
e∈E

(`e(ge(a))− `e(ge(a′))) (ge(a)− ge(a′)) .

The last equation was positive if we had `e(ge(a)) 6= `e(ge(a′)) for
some e; recall that element latency functions are non-decreasing. This
shows (i). It follows furthermore that LS(a) = LS(a′) for all S ∈ S and
also that Λi(a) = Λi(a′) for all i ∈ [N]. Assertion (ii) now follows with
Prop. 1.5.

Note how important it is for the proof that we have rates of con-
sumption in strategy latencies as well as in congestions. This allows
us to draw a bow from strategy latencies, about which we have some
knowledge by the variational inequality, to congestions and element
latencies, for which we want to prove something. We conclude with a
simple observation following from the previous theorem.

1.10 Corollary. The price of stability and price of anarchy coincide in NCGs.

1.6 Computation and Potential Function

1.11 Definition.
(i) An element latency function ` is called standard if it is continu-

ously differentiable1 and x 7→ `(x)x is convex.
1The original definition by Roughgarden [77, Def. 2.3.5] only demands differen-
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(ii) A class of element latency functions L is called standard if each
` ∈ L is standard and L contains at least one non-zero function.

(iii) For each p ∈ N≥1 let Poly+(p) be the class of polynomials of
degree at most p and non-negative coefficients. These classes are
clearly standard.

We start with the computation of optima. Optima are characterized
by the following non-linear program.

minimize ∑
e∈E

`e(xe)xe

subject to xe − ∑
S∈S

reSaS = 0 ∀ e ∈ E

di − ∑
S∈Si

aS = 0 ∀ i ∈ [N]

− aS ≤ 0 ∀ S ∈ S

(OPT NLP)

The constraints ensure that for any feasible (x, a) = ((xe)e∈E, (aS)S∈S)

we have that a ∈ A and x = ~g(a).
The set of action distributions A is convex, and so is the function

SC, if, e.g., each x 7→ `e(x)x is convex, as it is the case for standard ele-
ment latency functions. Hence, for standard element latency functions,
optima are characterized by a convex program. Convex programs often
are computationally convenient; we will make some more remarks on
this in Sec. 2.11.

To compute Nash equilibria, we define the potential function. Let

ˆ̀e : R≥0 −→ R≥0, x 7→
∫ x

0
`e(t)dt for each e ∈ E.

Then each ˆ̀e is differentiable on R≥0 and can be extended straightfor-
wardly to a differentiable function on R, simply set

ˆ̀e(x) :=
( d

dy
ˆ̀e(y)

)
(0) x = `e(0) x

tiability. However, we will need a continuous derivative later when we consider
marginal cost functions.



18 1. Non-Atomic Congestion Games

for x ∈ R<0. We assume this extension in the following. Define

Φ : Rm −→ R, (xe)e∈E 7→ ∑
e∈E

ˆ̀e(xe) .

We call Φ the potential; note that ∇Φ = ~̀ on Rm
≥0. Since each `e is non-

decreasing, each ˆ̀e and the potential Φ are all convex, and hence the
following is a convex program (not only for standard element latency
functions).

minimize Φ((xe)e∈E) (= ∑
e∈E

ˆ̀e(xe))

subject to xe − ∑
S∈S

reSaS = 0 ∀ e ∈ E

di − ∑
S∈Si

aS = 0 ∀ i ∈ [N]

− aS ≤ 0 ∀ S ∈ S

(Nash CP)

Optimal solutions to (Nash CP) coincide with Nash equilibria for the
NCG with element latency functions~̀ . This has been noted by Beck-
mann et al. [11], Dafermos and Sparrow [37], and Braess [18, 19]. We
will give a proof below.

A drawback in terms of practicability of (OPT NLP) and (Nash CP)
is that they involve as many variables as strategies, which might be
exponential in the number of elements. However, in the case of unicast
routing we can remedy this by using flow-conservation rules as con-
straints, hence expressing everything on edge level. Paths do not occur
explicitly anymore, which implies that for each commodity i ∈ [N], all
si-ti paths are eligible for routing. If certain paths shall be excluded,
this must be expressible by excluding certain edges, which may not
always be the case.

Assume notation from Sec. 1.1 for the rest of this paragraph. For a
vector x = (xe)e∈E and a vertex v ∈ V define

∂(v, x) := ∑
e∈δout(v)

xe − ∑
e∈δin(v)

xe .

We need a vector (x(i)e )e∈E for each source-terminal pair i ∈ [N]. Then
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the constraints for unicast routing are:

xe = ∑
i∈[N]

x(i)e ∀ e ∈ E

∂(v, x(i)) = 0 ∀ v ∈ V \ {si, ti} , i ∈ [N]

∂(si, x(i)) = di ∀ i ∈ [N]

x(i)e ≥ 0 ∀ e ∈ E, i ∈ [N]

These are only polynomially many (in N and m) constraints.

Now we prove that minimizing the potential function computes a
Nash equilibrium.

1.12 Theorem. A feasible (x, a) ∈ Rm+n
≥0 is optimal for (Nash CP) if and

only if the action distribution a is a Nash equilibrium.

Proof. We give names to the constraints of (Nash CP): define fS(x, a) :=
−aS for all S ∈ S, hi(x, a) := di − ∑S∈Si

aS for all i ∈ [N], and
he(x, a) := xe − ∑S∈S reSaS for all e ∈ E. Like the constraints, we
will also consider Φ a function of m + n variables, though it only de-
pends on the first m. Slater’s condition (see, e.g., [17, Sec. 5.2.3]) is
easily verified: take aS := di

ni
for all S ∈ Si and i ∈ [N], and xe := ge(a)

for all e ∈ E. Then (x, a) is in the interior of the domain of (Nash CP),
i.e., the set where the objective function and all constraint functions are
defined, which is Rn here. Moreover, fS(x, a) < 0 for this point and all
S ∈ S.

Hence a feasible (x, a) is optimal if and only if the Karush-Kuhn-
Tucker (KKT) conditions hold. These are (see, e.g., [17, Sec. 5.5.3]):
there exist real numbers (λS)S∈S, (νi)i∈[N], (νe)e∈E such that λS ≥ 0 and
λSaS = 0 for all S ∈ S and

∇Φ(x, a)+ ∑
S∈S

λS∇ fS(x, a)+ ∑
i∈[N]

νi∇hi(x, a)+ ∑
e∈E

νe∇he(x, a) = 0 .

This last equation is equivalent to

`e(xe) + νe = 0 ∀e ∈ E

−λS − νi −∑
e∈E

νereS = 0 ∀S ∈ Si ∀i ∈ [N] .
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It follows that a feasible (x, a) is optimal if and only if there exist
(λS)S∈S, (νi)i∈[N] such that

λS ≥ 0 and λSaS = 0 ∀S ∈ S

∑
e∈E

`e(xe)reS − νi = λS ∀S ∈ Si ∀i ∈ [N] .

We have ∑e∈E `e(xe)reS = LS(a). Reformulating further, we see that
a feasible (x, a) is optimal if and only if there exist (νi)i∈[N] such that
we have for all i ∈ [N] and S ∈ Si the following: LS(a)− νi ≥ 0, and
LS(a)− νi = 0 in case of aS > 0. This is the Nash condition (we have
νi = Λi(a) if it holds).

The implications of this result go beyond the computation of equi-
libria. Assume a standard class of element latency functions and for
each e ∈ E define the marginal cost function `∗e to be the derivative of
x 7→ `e(x)x, i.e.,

`∗e : R≥0 −→ R≥0, x 7→ `′e(x)x + `e(x) .

Since `e is continuously differentiable, `∗e is continuous. Since x 7→
`e(x)x is convex, the function `∗e is also non-decreasing,2 and so it is
eligible to be an element latency function in some NCG. For an NCG
Γ let us denote Γ∗ a modification of Γ where each `e is replaced by `∗e .
Since

∫ x
0 `∗e (t)dt = `e(x)x, the potential for Γ∗ coincides with SC for Γ.

1.13 Corollary. An action distribution is a Nash equilibrium for Γ∗ if and
only if it is optimal for Γ.

Proof. Follows from Thm. 1.12.

This corollary is part of the motivation behind the techniques in the
proof of Thm. 1.16 in the following section. More on this motivation is
explained in detail (at the example of unicast routing) in [77, Sec. 3.2
and 3.3].

2This can be shown even if `e is not twice differentiable. For a real differentiable
convex function f , we have f (y) ≥ f (x) + f ′(x)(y− x). Hence ( f ′(y)− f ′(x))(y−
x) ≥ 0 for all x, y.
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1.7 Bounding the Price of Anarchy

We present three ways for bounding the price of anarchy in NCGs.
For the first two, it is essential that we can express the social cost on
strategy level as well as on element level, as shown in (1.2). Recall
that responsible for this is that the rates of consumption appear in
congestions as well as in strategy latencies. This equality also holds for
the mixed social cost, i.e.,

SCa(b) = ∑
S∈S

LS(a)bS = ∑
e∈E

`e(ge(a))ge(b) for all a, b ∈ A. (1.4)

1.7.1 The Anarchy Value

Let L be a standard class of element latency functions. For each ` ∈ L
choose a function µ` : R≥0 −→ R≥0 such that

`∗(µ`(v)) = `(v) and µ`(v) ≤ v for all v ∈ R≥0. (1.5)

In the context of an NCG, we often write µe instead of µ`e .

1.14 Proposition. Let ` be a standard latency function. Then a function µ`,
as given in (1.5), exists.

Proof. The case v = 0 is clear by setting µ`(0) := 0. Fix v > 0,
and define the function φv : R≥0 −→ R, x 7→ (`(v) − `(x))x. Since
φv(0) = φv(v) = 0, and, by monotonicity of `, φv(x) ≥ 0 for all
x ≤ v, and φv(x) ≤ 0 for all x ≥ v, it follows that φv attains its global
maximum in some x∗ ∈ (0, v). Real calculus gives that 0 = φ′v(x∗) =
`(v)− `′(x∗)x∗− `(x∗) = `(v)− `∗(x∗), hence `∗(x∗) = `(v). Defining
µ`(v) := x∗ concludes.

Now we are ready to define the anarchy value [80, Def. 4.3] of L,
denoted α(L). Fix a choice of µ`, ` ∈ L; we will soon prove that the
following definition is in fact independent of the actual choice of these



22 1. Non-Atomic Congestion Games

functions. Using the convention 0
0 := 0, we define

α(L) := sup
`∈L
v≥0

`(v)v
(`(µ`(v))− `(v)) µ`(v) + `(v)v

= sup
`∈L
v≥0

`(v)v
`(µ`(v)) µ`(v) + `(v) (v− µ`(v))

.
(1.6)

By the second formulation, we see that the denominator is always
non-negative, since µ`(v) ≤ v. If the denominator is 0 and `(v) > 0,
then v = µ`(v) and hence `(v)v = `(µ`(v))µ`(v), which is 0 since the
denominator is 0. So there is no division by 0 except 0

0 , which is defined
to be 0.

Since L is standard, which means in particular that it contains a
non-zero function, we moreover have α(L) > 0. The anarchy value
does not need to be finite. However, we are only interested in cases
where it is finite, and so we assume that in the following. For example,
α(Poly+(p)) is finite for any fixed p ∈ N≥1, as we will prove later.

Definition (1.6) implies

(`(µ`(v))− `(v)) µ`(v) + `(v)v ≥ `(v)v
α(L) ∀v ∈ R≥0 ∀` ∈ L .

(1.7)
The following lemma will also be essential in the next section.

1.15 Lemma. We have, using the convention 0
0 := 0 on the right-hand side:

1− 1
α(L) = sup

`∈L
v≥0

1
`(v)v

max
x≥0

(`(v)− `(x)) x . (1.8)

Hence the anarchy value is independent of the actual choices for µ`, ` ∈ L.

Proof. The independence follows from (1.8), since the right-hand side
is independent of any µ`, ` ∈ L. So we have to show (1.8), using an
arbitrary choice of µ`, ` ∈ L to define α(L). If for some ` ∈ L and
v ≥ 0 the enumerator in definition (1.6) is 0, then by monotonicity of `
and definition of µ` the denominator is 0 as well. Using the convention
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0
0 := 0 we can hence reformulate the expression in (1.6) and receive:

1− 1
α(L) = sup

`∈L
v≥0

1
`(v)v

(`(v)− `(µ`(v))) µ`(v) .

Fix ` ∈ L and v > 0 (the case v = 0 is clear) and consider again the
function φv from the proof of Prop. 1.14, i.e., φv(x) = (`(v)− `(x)) x
for all x ∈ R≥0. Since L is standard, x 7→ `(x)x is convex, and so φv is
concave. Hence any point x∗ ∈ (0, v) with φ′v(x∗) = 0 maximizes φv.
The condition φ′v(x∗) = 0 is equivalent to `∗(x∗) = `(v). So we have
φv(µ`(v)) = maxx≥0 φv(x) since `∗(µ`(v)) = `(v). By definition of φv,
it follows (`(v)− `(µ`(v))) µ`(v) = maxx≥0(`(v)− `(x)) x.

Although the expression defining the anarchy value may look com-
plicated at first, anarchy values for many interesting classes of functions
can be derived relatively easily, see [77, Sec. 3.5.2]. For instance

α(Poly+(p)) = (1− p (p + 1)−1− 1
p )−1 = Θ(

p
ln p

) , (1.9)

exposing Pigou’s example as a worst-case scenario. This also shows
that the anarchy value may be ∞, e.g., if we consider the set of all
polynomials with non-negative coefficients. We will give a formal
derivation of (1.9) in Cor. 1.23.

Correa, Schulz, and Stier Moses [33] show that the concept of an-
archy value can be simplified and generalized at the same time. This
will be our topic in the next section; in fact we already provided the
foundation for this in Lem. 1.15. Now we present a compact proof for
the upper bound along the lines of Roughgarden and Tardos.

1.16 Theorem (Roughgarden and Tardos [80]). Let L be a standard class
of element latency functions. The price of anarchy of any NCG with element
latency functions drawn from L is no more than α(L).

Proof. For any three reals x, y, z ∈ R≥0 and an element e ∈ E we have

`e(y)y = `e(z)z +
∫ y

z
`∗e (t)dt ≥ `e(z)z + `∗e (z) (y− z)

= (`e(z)− `∗e (z)) z + `e(x)x + `∗e (z)y− `e(x)x .
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We evaluate this for z := µe(x) and receive:

`e(y)y

≥ (`e(µe(x))− `∗e (µe(x))) µe(x) + `e(x)x + `∗e (µe(x))y− `e(x)x

= (`e(µe(x))− `e(x)) µe(x) + `e(x)x + `e(x)y− `e(x)x by def. µe

≥ `e(x)x
α(L) + `e(x)y− `e(x)x by (1.7).

Let a be a Nash equilibrium and a∗ an optimal action distribution.
Evaluating the above for x := ge(a) and y := ge(a∗) and taking the sum
over all e ∈ E yields:

SC(a∗) = ∑
e∈E

`e(ge(a∗))ge(a∗) by (1.4)

≥ 1
α(L) ∑

e∈E
`e(ge(a))ge(a) + ∑

e∈E
`e(ge(a))ge(a∗)−∑

e∈E
`e(ge(a))ge(a)

=
1

α(L)SC(a) + SCa(a∗)− SC(a)
by (VAR)
≥ 1

α(L)SC(a) .

This finishes the proof, since now we have SC(a)
SC(a∗) ≤ α(L).

The anarchy value bound is tight from a worst-case point of view,
even when restricting to selfish unicast routing. We make this precise.
A class L of latency functions is called diverse, if for each y ∈ R≥0 it
contains a function ` such that `(0) = y. We cite the following theorem
without proof.

1.17 Theorem (Roughgarden [77]). Let ε > 0 and L be standard and
diverse. Then there exists a unicast network consisting of one source, one
terminal, and parallel edges in between with latency functions drawn from L
such that its price of anarchy is at least α(L)− ε.

Hence, from a worst-case point of view, the price of anarchy in unicast
routing is independent of the network topology. On the other hand, for
a particular instance, it may be dependent on the network topology;
adding or removing edges may change the price of anarchy. A promi-
nent example for this is Braess’ Paradox [18, 19], see also Sec. 1.8, where
an additional edge worsens the price of anarchy.
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1.7.2 The β Parameter

Following Correa, Schulz, and Stier Moses [33], we present an extension
of the concept of anarchy value, which acts as a simplification at the
same time. It is also applicable for tightly bounding the price of anarchy
in unicast routing where each edge in addition to its latency functions
has got a capacity, which is the main theme of [33], but will not be
treated here.

Let L be a class of continuous, non-decreasing functions R≥0 −→
R≥0, not necessarily standard. Using the convention 0

0 := 0, define

β(L) := sup
`∈L
v≥0

1
`(v)v

max
x≥0

(`(v)− `(x)) x . (1.10)

Monotonicity ensures that there is no division by zero, except 0
0 , which

is defined to 0. It follows that

(`(v)− `(x))x ≤ β(L) `(v)v ∀v, x ∈ R≥0 ∀` ∈ L . (1.11)

It is easy to see that always β(L) ≤ 1. In case that L happens to be
a standard class with finite anarchy value α(L), we have β(L) < 1 and

1
1− β(L) = α(L) . (1.12)

This follows from Lem. 1.15.
A short proof for a bound on the price of anarchy including the

result from Thm. 1.16 is possible using the parameter β.

1.18 Theorem (Correa, Schulz, Stier Moses [33]). Let L be a class of
continuous, non-decreasing functions R≥0 −→ R≥0 such that β(L) < 1.
The price of anarchy of any NCG with element latency functions drawn from
L is no more than 1

1−β(L) .

Proof. Let a be a Nash equilibrium and a∗ an optimal action distribution.
Then

SC(a) ≤ SCa(a∗) by (VAR)
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= ∑
e∈E

(
`e(ge(a))ge(a∗)− `e(ge(a∗)) ge(a∗)

)
+ SC(a∗) by (1.4)

= ∑
e∈E

(`e(ge(a)︸ ︷︷ ︸
v:=

)− `e(ge(a∗)︸ ︷︷ ︸
x:=

)) ge(a∗)︸ ︷︷ ︸
x=

+SC(a∗)

≤ ∑
e∈E

β(L)`e(ge(a))ge(a) + SC(a∗) by (1.11)

= β(L)SC(a) + SC(a∗) .

Hence (1− β(L)) SC(a) ≤ SC(a∗), and so, using β(L) < 1, we receive
the claimed bound.

Good upper bounds on β can be derived in a simple way and for
large classes of functions, for instance for super- and sub-homogeneous
classes. We will make use of this later in Sec. 2.9 and do all necessary
preparations here.

1.19 Definition. Let s : (0, 1] −→ (0, ∞) such that s(1) = 1.

(i) An element latency function ` is called s-super-homogeneous if
`(εx) ≥ s(ε)`(x) for all ε ∈ (0, 1] and all x ∈ R≥0.

(ii) An element latency function class L is called s-super-homogeneous
if each ` ∈ L is s-super-homogeneous.

(iii) Define s̄ : [1, ∞) −→ (0, ∞), t 7→ s(t−1)−1.

1.20 Proposition. An element latency function ` is s-super-homogeneous if
and only if it is s̄-sub-homogeneous, i.e.,

`(tx) ≤ s̄(t)`(x) ∀t ≥ 1 ∀x ∈ R≥0 . (1.13)

Proof. If ` is s-super-homogeneous, we have

`(x) = `(t−1tx) ≥ s(t−1)`(tx) = s̄(t)−1`(tx)

for all t ≥ 1 and all x ∈ R≥0, so ` is s̄-sub-homogeneous. If, on the
other hand, ` fulfills (1.13) then

`(x) = `(ε−1εx) ≤ s̄(ε−1)`(εx) = s(ε)−1`(εx)

for all ε ∈ (0, 1] and all x ∈ R≥0, so ` is s-super-homogeneous.
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1.21 Lemma ([33, Lem. 4.1]). Let L be an s-super-homogeneous class of
element latency functions. Then β(L) ≤ sup0<ε<1 ε(1− s(ε)).

Proof.

β(L) = sup
`∈L
0≤v

1
`(v)v

max
0≤x

(`(v)− `(x)) x

= sup
`∈L
0≤v

1
`(v)v

max
0≤x≤v

(`(v)− `(x)) x by monotonicity

= sup
`∈L
0<v

1
`(v)v

max
0<x<v

(`(v)− `(x)) x

= sup
`∈L
0<v

1
`(v)v

max
0<x<v

(`(v)− `( x
v v)) x

≤ sup
`∈L
0<v

1
`(v)v

sup
0<x<v

(`(v)− s( x
v )`(v)) x since 0 < x

v < 1

= sup
0<ε<1

ε (1− s(ε)) .

A bound follows for (ε 7→ εp)-super-homogeneous classes, such as
Poly+(p).

1.22 Corollary (cf. [33, Cor. 4.4]). LetL be an (ε 7→ εp)-super-homogeneous
element latency function class. Then β(L) ≤ p (p + 1)−1− 1

p .

Proof.

β(L) ≤ sup
0<ε<1

ε− εp+1 by Lem. 1.21

= (p + 1)−
1
p − (p + 1)−1− 1

p real calculus

= (p + 1) (p + 1)−1− 1
p − (p + 1)−1− 1

p

= p (p + 1)−1− 1
p .

It follows an exact expression for β(Poly+(p)), and so α(Poly+(p)),
for some fixed p ∈ N≥1. Fig. 1.2 on the following page shows a plot.
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p

α(Poly+(p))
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Figure 1.2. The anarchy value α(Poly+(p)) = 1
1−β(Poly+(p))

plotted for differ-

ent values of p (including non-integer values). It is 4
3 for p = 1 and ≈ 1.63 for

p = 2.

1.23 Corollary. We have β(Poly+(p)) = p(p + 1)−1− 1
p < 1 and the

asymptotic α(Poly+(p)) = 1
1−β(Poly+(p))

= Θ( p
ln p ) for p→ ∞.

Proof. That β(Poly+(p)) ≤ p (p + 1)−1− 1
p follows from Cor. 1.22. In

particular

β(Poly+(p)) ≤ p (p + 1)−1− 1
p =

p
p + 1

1
(p + 1)1/p < 1 .

That β(Poly+(p)) ≥ p(p + 1)−1− 1
p follows from Pigou’s example,

see (1.1), and Thm. 1.18. The asymptotic can be shown by an invocation
of l’Hôpital’s rule.

Parameter β is invariant under scaling of element latency functions:

1.24 Proposition. Let L be a class of element lantency functions such that
β(L) < 1. Define

L̃ := {x 7→ c1`(c2x); c1, c2 ∈ R>0, ` ∈ L} .

Then β(L) = β(L̃).
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Proof. Let c1, c2 ∈ R>0 and ` ∈ L. Then

sup
v≥0

1
c1`(c2v)v

max
x≥0

(c1`(c2v)− c1`(c2x)) x

= sup
v≥0

1
`(c2v)v

max
x≥0

(`(c2v)− `(c2x)) x

= sup
v≥0

1
`(c2v)c2v

max
x≥0

(`(c2v)− `(c2x)) c2x

= sup
v≥0

1
`(v)v

max
x≥0

(`(v)− `(x)) x .

1.7.3 Jacobian Approach

This approach is due to Perakis [72] and works for non-atomic games
as defined in Def. 1.4, under additional requirements. We only state the
result for affine~L, say,

~L : Rn −→ Rn, x 7→ Gx + b

for G ∈ Rn×n and b ∈ Rn. Then for the Jacobian of~L we have J~L(x) =
G, independently of x ∈ Rn. This matrix may be positive definite or
not. If it is, and if b>a ≥ 0 for all a ∈ A, we can apply one of Perakis’
bounds. So, let G be positive definite. Then S := (G + G>)/2 is also
positive definite (hence invertible) and symmetric. Let 〈v, w〉S := v>Sw
for all v, w ∈ Rn and ‖v‖S :=

√
〈v, v〉 =

√
v>Sv for all v ∈ Rn. Then

〈·, ·〉S is a scalar product and ‖·‖S is a norm. Define

c(G) := ‖S−1G‖S = sup
v∈Rn

v 6=0

‖S−1Gv‖S

‖v‖S
,

which is the operator norm of S−1G using ‖·‖S as the vector norm.
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1.25 Theorem (Perakis [72]). The price of anarchy in a non-atomic game
with affine strategy latency function ~L : Rn −→ Rn, x 7→ Gx + b with
positive definite G and b such that b>a ≥ 0 for all a ∈ A, is bounded by{

c2 if c2 ≥ 2
4

4−c2 else
,

where c = c(G) = ‖S−1G‖S and S = (G + G>)/2.

Proof. Let a be a Nash equilibrium and a∗ an optimum. Then

SC(a) = ~L(a)>a

≤ ~L(a)>a∗ by (VAR)

= a>G>a∗ + b>a∗

= a>G>S−1 S a∗ + b>a∗

= (S−1Ga)> S a∗ + b>a∗ S−1 is symmetric

= 〈S−1Ga, a∗〉S + b>a∗

≤ ‖S−1Ga‖S ‖a∗‖S + b>a∗ Cauchy-Schwarz

≤ ‖a‖S ‖S−1G‖S ‖a∗‖S + b>a∗ operator norm

= c ‖a‖S ‖a∗‖S + b>a∗ definition.

We aim to turn the product ‖a‖S ‖a∗‖S into a sum. For all x, y ∈ R≥0

and t, u ∈ Rwe have

0 ≤ (
√

x t−√y u)2 = xt2 + yu2 − 2
√

xy tu ,

hence
2
√

xy tu ≤ xt2 + yu2 .

If we choose x, y such that c ≤ 2
√

xy, and x < 1 ≤ y, then this,
using t := ‖a‖S and u := ‖a∗‖S, implies

SC(a) ≤ c ‖a‖S ‖a∗‖S + b>a∗

≤ x‖a‖2
S + y‖a∗‖2

S + b>a∗

= xa>Sa + ya∗>Sa∗ + b>a∗
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= xa>Ga + ya∗>Ga∗ + b>a∗

= x(a>Ga + b>a) + y(a∗>Ga∗ + b>a∗)− xb>a− (y− 1)b>a∗

≤ xSC(a) + ySC(a∗) .

Using x < 1, it follows a bound on the price of anarchy

SC(a)
SC(a∗)

≤ y
1− x

.

We optimize:

minimize
y

1− x
subject to c ≤ 2

√
xy (⇐⇒ c2

4
≤ xy)

0 ≤ x < 1

1 ≤ y

The objective function is increasing in x and y, so an optimal solution
(x∗, y∗) has c2

4 = x∗y∗, i.e., c2

4y∗ = x∗. This leads to the equivalent
formulation:

minimize
y2

y− c2

4

subject to
c2

4
< y

1 ≤ y

The derivative of y 7→ y2 (y− c2

4 )
−1 tells us that this function falls until

y = c2

2 and climbs after that.

– If 1 ≤ c2

2 (i.e., 2 ≤ c2), then we may choose y := c2

2 . It follows that the
price of anarchy is bounded by c4/4

c2/4 = c2.

– If c2

2 ≤ 1, we choose y as small as possible, i.e., y = 1. It follows that
the price of anarchy is bounded by 1

1− c2
4

= 4
4−c2 .

If G is only positive semidefinite, Perakis proves another bound,
which coincides with the former if G is positive definite. We refer
to [72] for the details and also for the non-affine case.
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1.8 Reasons for Inefficiency

We point out two reasons for Nash equilibria being inefficient. Recall
that in the preface, p. xiii, we named “absence of central authority” and
“lack of cooperation” as the two principles under which we analyze the
use or the forming of a network. Both can be recognized in the selfish
unicast routing model. In Sec. 2.2 we will see how multicast routing
can amplify the negative effects of lack of cooperation.

Absence of Central Authority. This is the actual selfishness. Unless
forced to do so, no player would accept a higher latency than neces-
sary, even if this impairs other players. Pigou’s example shows what
happens: in an optimal flow, half of the players enjoy a latency of 1

2
on the lower link while the other half has to accept a latency of 1. In
equilibrium, the lower link is so crowded that it has latency 1; everyone
now experiences latency 1, there are no fast routes available anymore.
It might appear that an optimum only demands that some players
accept that other players are better off, but not that they have to accept
a higher latency than in equilibrium. A slight modification of Pigou’s
example shows that this is not true in general. We reduce the demand
to 1− ε for an appropriate ε > 0. Then an optimal flow would still
route a fraction of the demand on the upper link, forcing it to expe-
rience a latency of 1. In equilibrium, however, all demand flows on
the lower link and experiences latency 1− ε, which is strictly smaller
than 1. Roughgarden studies this “unfairness” of optima in detail [77,
Sec. 2.4.5].

Lack of Cooperation. This can be seen by considering Braess’ Para-
dox [18, 19]. Consider the instance shown in Fig. 1.3a on the next page
with a demand of 1. An optimal as well as a Nash flow splits the
demand evenly between the two alternative paths P1 := (s, w, t) and
P2 := (s, v, t), resulting in a latency of 3

2 for everyone. Now imag-
ine that we build an additional link with latency function `(x) = 0
from w to v, as shown in Fig. 1.3b. This offers a third alternative path
P3 := (s, w, v, t). The original flow f ∗ with f ∗P1

= f ∗P2
= 1

2 remains
optimal, but not a Nash equilibrium, for LP1( f ∗) = 3

2 > 1 = LP3( f ∗).
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s

v

w

t

`(x) = 1 `(x) = x

`(x) = x `(x) = 1

a. Original network.

s

v

w

t

`(x) = 1 `(x) = x

`(x) = x `(x) = 1

`(x) = 0

b. Including an additional link (w, v). In
equilibrium, all flow travels on the high-
lighted path.

Figure 1.3. Braess’ Paradox.

Instead, the flow f with fP3 = 1, where all players take the new path, is
a Nash equilibrium, since LP1( f ) = LP2( f ) = LP3( f ) = 2. The latency
experienced by everyone in equilibrium is worse, by factor 4

3 , than
without the additional link. This may be unexpected, since intuition
would suggest that additional links can only improve performance. It
looks less paradoxical, however, when viewing the addition of a link
as an extension of the set of available strategies and hence as giving
players more ‘opportunities’ for – unfortunate – decisions. We refer to
Roughgarden [77, Ch. 5] for an investigation into the algorithmic task
of detecting such harmful links.

For our purposes in this section, the most important observation is
that, given the network with the additional link, a lack of cooperation is
the reason for the inefficiency of equilibrium. For, the flow f ∗, splitting
traffic across P1 and P2, is still an option in the new network. It would
give everyone a better latency, it would even not lead to any player
experiencing less latency than another one. Unfortunately, it is not a
Nash equilibrium. However, if players would cooperate, they could
agree on using f ∗, i.e., sticking to P1 or P2, and not migrating to P3.
Such an agreement would be easy to reach since it would not require
anyone making sacrifices.
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1.9 Bibliographic Overview

We list some related work in roughly chronological order; this list is
of course not complete. For comprehensive treatments of the price of
anarchy we refer to the dissertation and the book by Roughgarden [77,
78] from 2002 and 2005 and the survey by Czumaj [35] from 2004.3

Pigou [73] in 1920 informally introduced what is nowadays known
as “Pigou’s Example”. It is a simple unicast network exhibiting a high
price of anarchy. See Sec. 1.1 for a formal treatment. We quote Pigou [73,
p. 194]:

Suppose there are two roads, ABD and ACD both leading from
A to D. If left to itself, traffic would be so distributed that the
trouble involved in driving a "representative" cart along each of
the two roads would be equal. But, in some circumstances, it
would be possible, by shifting a few carts from route B to route C,
greatly to lessen the trouble of driving those still left on B, while
only slightly increasing the trouble of driving along C.

Nash [69] in 1951 introduced the concept of non-cooperative games
and their equilibria in an atomic model. The term “Nash equilibrium”
was subsequently also used in other models to describe configurations
in which no player has an incentive to deviate from the chosen strat-
egy, given the strategies of the other players fixed. Wardrop [87] in
1952 studied a non-atomic model in the context of road traffic. He
introduced two principles, which are the base of our understanding
of Nash equilibria and optimal action distributions in the non-atomic
case, respectively. We quote Wardrop [87, p. 345], cf. p. 12:

(1) The journey times on all the routes actually used are equal,
and less than those that would be experienced by a single
vehicle on any unused route.

(2) The average journey time is a minimum.

The characterization of Nash equilibria as optimal solutions to a
convex program was noted by Beckmann, McGuire, and Winsten [11]
in 1956 in the context of road traffic, Dafermos and Sparrow [37] in

3However, those clearly cannot cover some of the more recent works cited below.
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1969, and Braess [18, 19] in 1968. Smith [84] in 1979 studied existence
and uniqueness issues in the Wardrop model and gave the variational
inequality formulation in Thm. 1.6, which is frequently used in this
thesis.

Rosenthal [76] in 1973 introduced congestion games in an atomic
setting. Existence of equilibria was proved by use of a potential func-
tion. Schmeidler [83] in 1973 introduced a general class of non-atomic
games and gave existence results for equilibria; see also the notes by
Mas-Colell [60] from 1984 and Rath [75] from 1992.

In 1999, Koutsoupias and Papadimitriou [54] in an atomic setting
of routing in a simple network studied the quantity that would soon
later be named “price of anarchy” [71]. Their model, also known as the
“KP model”, and variations of it were subsequently addressed, among
others, by Czumaj and Vöcking [36] in 2002, Lücking, Mavronicolas,
Monien, Rode, Spirakis, and Vrto [58] in 2003, and Lücking, Mavronico-
las, Monien, Rode [59] in 2004. The price of anarchy in atomic versions
of selfish unicast routing or congestion games has been studied by
Fotakis, Kontogiannis, and Spirakis [42] in 2004, Christodoulou and
Koutsoupias [28], Awerbuch, Azar, and Epstein [6] and Roughgar-
den [79] in 2005, Cominetti, Correa, and Stier Moses [30] in 2006, and
Yang, Han, and Lo [90] in 2008.

On the non-atomic side, the dissertation of Roughgarden [77] in
2002 and the work of Roughgarden and Tardos [80] introduced the
anarchy value, which has shown to be a strong concept for bounding
the price of anarchy; we presented part of their work in Sec. 1.7.1.
Subsequently, in 2004, that concept was generalized and simplified
by Correa, Schulz, and Stier Moses [33]; we presented part of their
work, around the β parameter, in Sec. 1.7.2. Recent work on atomic
models, e.g. [30], uses a similar parameter. Correa et al. recently gave
a graphical proof [34] for a bound on the price of anarchy. Chau and
Sim [25] in 2003 and Perakis [72] in 2004 and Han, Lo, and Yang [47] in
2008 studied the price of anarchy in generalized settings; we presented
part of Perakis’ work in Sec. 1.7.3. Milchtaich [63] in 2004 studied
efficiency of equilibria and cooperation aspects in a non-atomic model
related to that of [83], with the restriction “that each player’s payoff is
only affected by the measure of the set of players whose choice of action
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or facility is the same as his”. In 2005 and 2006 [64, 65], he studied the
effect of network topology on uniqueness and efficiency of equilibria
in settings related to selfish unicast routing.

More results on non-atomic models were published by Friedman [43]
in 1996, Milchtaich in a series of works beginning in 1996, e.g., [61, 62]
and those cited above, and Blonski [15] in 1999.



Chapter 2

Non-Atomic
Consumption-Relevance
Congestion Games (NCRCG)

We present the main new results in this chapter on selfish multicast
routing and the encompassing NCRCG model. The starting point
is an extension of selfish unicast routing to selfish multicast routing.
In Sec. 2.1 we show how selfish multicast routing can be modeled.
In Sec. 2.2 we give some examples, proving non-uniqueness of Nash
equilibrium and a lower bound on the price of anarchy – both results
exposing new phenomena not existing in the unicast case. In Sec. 2.3 we
explain the relation to NCGs, showing that some, but not all, variants
of selfish multicast routing can be modeled by NCGs. Motivated by
the limitations of the NCG model, we introduce the NCRCG model in
Sec. 2.4 and Sec. 2.5. The difference compared to the NCG model is that
we have two sets of rates of consumption, called consumption numbers
and relevance numbers, respectively. In Sec. 2.6 we show how NCRCGs
can be used to model more variants of selfish multicast routing than
NCGs can do. In Sec. 2.7 to Sec. 2.10 we study the price of anarchy
in the NCRCG model in depth. The most important result probably
is the upper bound on the price of anarchy in Thm. 2.12; it depends
on the β parameter and our newly introduced γ parameter (Sec. 2.5).
The known bounds on NCGs follow as a corollary for the special case
γ = 1. In Sec. 2.11 we consider computational issues. In Sec. 2.12 a few
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bibliographic remarks are made. We give a summary of our results
in Sec. 2.13.

2.1 Selfish Multicast Routing

Again, we have a directed multigraph (V, E) modeling a communi-
cation network, where each edge e ∈ E has a latency function `e. We
are given N sources si, i ∈ [N], each of them associated with ki ∈ N≥1

distinct terminals t1
i , . . . , tki

i . We call (si, {t1
i , . . . , tki

i }) a commodity. To
avoid notational conflicts, we assume that all commodities are distinct.
For each i ∈ [N], a demand of di has to be routed from si to each of
the terminals t1

i , . . . , tki
i simultaneously. Again, we assume the demand

to represent a large number of selfish players, each controlling only a
negligible fraction of it.

To realize the desired routing for some fraction of the demand di
for some i, we have to choose ki paths S := {P1, . . . , Pki}, where Pj

connects si with tj
i for each j ∈ [ki]. Such a set S will take the role that a

single path has in unicast routing. Anticipatory, we adopt terminology
from non-atomic games and call such a set of paths a strategy. Let Si
be the set of all eligible strategies for i and S := ⊍i∈[N] Si. For each
S ∈ S and e ∈ E denote S(e) := {P ∈ S; e ∈ E(P)}, i.e., those paths in
S containing e. Denote also E(S) := ⋃P∈S E(P).

A flow is a vector f : S −→ R≥0 such that ∑S∈Si
fS = di for all

i ∈ [N]. So far, everything has been roughly analogous to unicast; we
merely switched from paths to sets of path as strategies. The main
differences start now. There are at least two ways to realize a flow using
a strategy S. One is to realize a flow in the usual sense, obeying the
Kirchhoff flow conservation rule: the amount of flow entering a node
is exactly the amount of flow leaving the node (except sources and
terminals). This is called a conservation flow. A smarter way to realize a
flow using S is to exploit that we deal with data to be routed. Unlike
physical flows, data can be duplicated virtually without cost, provided
that the nodes in the network offer such a feature. Thus the same data
has to be sent down an edge only once, no matter how many terminals
are served by this. We call this duplication flows.
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Whether we use conservation or duplication flows, decides how
congestions look like. Clearly, duplication flows tend to cause fewer
congestion. We define for each edge e ∈ E and flow f :

ge( f ) := ∑
S∈S
|S(e)| fS for conservation flows,

ge( f ) := ∑
S∈S:

S(e) 6=∅

fS for duplication flows.

So for conservation flows we sum over all strategies S, and for each
such S we determine how many paths it contains that in turn contain
the edge e. This is the number |S(e)|; it is 0 if S does not use e at all.
In other words, this number gives how many terminals are served
through e when using S. To determine the congestion of e, we have to
multiply fS with this number. For, fS gives a fraction of the demand
that is routed to all the terminals simultaneously.

For duplication flows, we only have to determine for a given S
whether some path in it contains edge e. If so, then S contributes fS to
the congestion. For, it does not matter how many terminals are served
here, the data has just to be sent once.

Now we turn to strategy latencies. There are many different rea-
sonable ways in which the latency of a strategy S, i.e., the latency of
a set of paths, can be understood. Four of them were pointed out by
Baltz, Esquivel, Kliemann, and Srivastav in [9]. We focus on two of
them here, namely:

LS( f ) := ∑
e∈E(S)

`e(ge( f )) edge-based latency

LS( f ) := ∑
e∈E
|S(e)| `e(ge( f )) path-based latency

The latter can also be expressed via latencies of paths. Let the latency
of a path P, denoted LP( f ), be as in unicast routing, i.e., LP( f ) :=
∑e∈E(P) `e(ge( f )). Then we have

LS( f ) = ∑
P∈S

LP( f ) for path-based latency.
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For a motivation of path-based latency, think of the source as a
service provider and the terminals as customers which pay according
to the quality of service. A higher latency means a loss of income for
the service provider, which is proportional to the number of customers
that experience that higher latency. The provider will hence consider
an edge more important if it serves many customers.

2.2 Non-Uniqueness of Equilibrium and Lower Bound

We give an example instance for selfish multicast routing using the
combination of duplication flows and path-based latency. The example
serves two purposes: we show non-uniqueness of Nash equilibrium,
which is a novelty compared to unicast (cf. Sec. 1.5), and we show a
lower bound on the price of anarchy that breaks the anarchy value
of the involved edge latency functions (cf. Sec. 1.7.1). Consider the
multicast instance from Fig. 2.1 on the facing page. We have one source,
two terminals, and four strategies S1, . . . , S4 available (these are all
strategies that this network offers). Each strategy consists of two paths.
For example, strategy S1 consists of paths (s, e1, v1, e3, t1) to reach ter-
minal t1 and (s, e1, v1, e6, t2) to reach terminal t2. Edges e1 and e2 have
element latency function x 7→ xp, and edges e3 to e6 have element
latency function x 7→ θx, where p ∈ N≥1 and θ ∈ R≥0 are parameters.

We write out strategy latencies for all four strategies for an arbitrary
flow f :

LS1( f ) = 2`e1(ge1( f )) + `e3(ge3( f )) + `e6(ge6( f ))

= 2ge1( f )p + θge3( f ) + θge6( f )

LS2( f ) = 2`e2(ge2( f )) + `e5(ge5( f )) + `e4(ge4( f ))

= 2ge2( f )p + θge5( f ) + θge4( f )

LS3( f ) = `e1(ge1( f )) + `e3(ge3( f )) + `e2(ge2( f )) + `e4(ge4( f ))

= ge1( f )p + ge2( f )p + θge3( f ) + θge4( f )

LS4( f ) = `e1(ge1( f )) + `e6(ge6( f )) + `e2(ge2( f )) + `e5(ge5( f ))

= ge1( f )p + ge2( f )p + θge5( f ) + θge6( f )

Let the demand be d = 1. It follows that f ∗ := ( 1
2 , 1

2 , 0, 0) and f ′ := (0, 0, 1
2 , 1

2 )
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v1 v2

t1 t2

`e1,e2(x) = xp

`e3,e4,e5,e6(x) = θx
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e4

e5

S1 := {(s, e1, v1, e3, t1), (s, e1, v1, e6, t2)}

s

v1 v2

t1 t2

`e1,e2(x) = xp

`e3,e4,e5,e6(x) = θx

e1

e3 e 6

e 2

e4

e5

S2 := {(s, e2, v2, e5, t1), (s, e2, v2, e4, t2)}

s

v1 v2

t1 t2

`e1,e2(x) = xp

`e3,e4,e5,e6(x) = θx

e1

e3 e 6

e 2

e4
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S3 := {(s, e1, v1, e3, t1), (s, e2, v2, e4, t2)}

s

v1 v2

t1 t2

`e1,e2(x) = xp

`e3,e4,e5,e6(x) = θx

e1

e3 e 6

e 2

e4

e5

S4 := {(s, e2, v2, e5, t1), (s, e1, v1, e6, t2)}

Figure 2.1. Multicast instance admitting multiple Nash equilibria with different conges-
tions and different social cost. Parameters are p ∈ N≥1 and θ ∈ R≥0. The instance is
shown four times to highlight all four strategies S1, . . . , S4.
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t1 t2 t3 t4 t5

s

`(x) = xp

`(x) = 0

Figure 2.2. Example from [9] with k = 5 terminals. The links between the terminals have
latency function `(x) = 0. The links from the source s to each terminal have latency
function `(x) = xp.

are both Nash equilibria, since they induce the following congestions:

ge( f ∗) =
1
2
∀e ∈ {e1, . . . , e6} ,

ge( f ′) = 1 ∀e ∈ {e1, e2} and ge( f ′) =
1
2
∀e ∈ {e3, e4, e5, e6} ,

and so LS( f ∗) = ( 1
2 )

p−1 + θ and LS( f ′) = 2 + θ for all S ∈ {S1, . . . S4}.
These two flows have different social cost, namely SC( f ∗) = ( 1

2 )
p−1 + θ

and SC( f ′) = 2 + θ, and also induce different element latencies. This is
an example that in this form of selfish multicast routing, there may be
Nash equilibria of different social cost and different congestions, even
though all element latency functions are strictly increasing (consider
case θ > 0).

Regarding the price of anarchy, we note that it is at least

SC( f ′)
SC( f ∗)

= 2p−1 2 + θ

1 + θ2p−1 = Ω(2p) for θ = O(21−p).

This not only breaks the anarchy value bound, which would have
been O( p

ln p ), but also shows a huge gap between the social costs of
different Nash equilibria. A similar example can be constructed with k
terminals, for any number k ∈ N, yielding a lower bound of Ω(kp), as
shown in [9]. The construction is given in Fig. 2.2. Latency functions
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t1 t2 t3 t4 t5

s

`(x) = xp

`(x) = 0

Figure 2.3. Example from Fig. 2.2 with all links participating in any path from strategy S4
highlighted.

are `(s,ti)(x) = xp for all i ∈ {1, . . . , k}, `(ti ,ti+1)(x) = 0 for all i ∈
{1, . . . , k− 1}, and `(ti ,ti−1)(x) = 0 for all i ∈ {2, . . . , k}. In other words,
the source s has a connection with latency x 7→ xp to each terminal,
and neighboring terminals are connected in both directions with very
fast links, having latency 0. Let the demand be d = 1. Define strategies,
i.e., sets of paths S0, . . . , Sk, by

S0 := {(s, ti); i ∈ [k]}
Si := {(s, ti, ti+1, . . . , ti+j); j ∈ {0, . . . , k− i}}
∪ {(s, ti, ti−1, . . . , ti−j); j ∈ {0, . . . , i− 1}} for i ∈ [k].

S0 means sending traffic directly to each terminal, not making use of
duplication. Si means ‘injecting’ traffic along the link (s, ti) into the row
of terminals and then propagating it via the fast links to all terminals,
using duplication. There are more strategies than this available, but we
will only need these to define our flows. Fig. 2.3 shows an illustration
of one such a strategy.

Define f by fS0 := 1 and fSi := 0 for all i ∈ [k]. Then SC( f ) = k
and f is a Nash equilibrium. This can be seen as follows. All links
emanating from the source s have latency 1 under f . So each path in
any strategy has latency at least 1, and since there are k paths in each
strategy, any strategy has latency at least k (in fact exactly k). Since
LS0( f ) = k, we have a Nash equilibrium.
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For comparison, put f ∗S0
:= 0 and f ∗Si

:= 1
k for each i ∈ [k]. Then we

have strategy latency for each i ∈ [k]:

LSi( f ∗) = k `(s,ti)

(
g(s,ti)( f ∗)

)
link (s, ti) serves k terminals

= k `(s,ti)

(1
k
)

definition f ∗ and congestion

= k
1
kp = k1−p definition link latency function.

It follows for the social cost:

SC( f ∗) =
k

∑
i=0

LSi( f ∗) f ∗Si
definition social cost

=
k

∑
i=1

LSi( f ∗) f ∗Si
definition f ∗S0

=
k

∑
i=1

LSi( f ∗)
1
k

definition f ∗S1
, . . . , f ∗Sk

=
k

∑
i=1

k1−p 1
k
= k1−p previous calculation.

It follows that the price of anarchy is at least SC( f )
SC( f ∗) =

k
k1−p = kp.

Lack of Cooperation. These examples work by exploiting lack of co-
operation. In the inefficient flows, players block out the links that em-
anate directly from the source, making all possible strategies slow for
everyone. They do not even make use of duplication; each strategy con-
nects the source with each of the terminals via pairwise edge-disjoint
paths. With cooperation, they could agree on using f ∗, which would
be beneficial for everyone.

We make a general observation concerning the relation of price of
stability and lack of cooperation. Recall Prop. 1.5. The following is
restricted to the case that we have only one player class. It follows from
that proposition that a more efficient equilibrium (i.e., one with lower
social cost) provides lower latencies for everyone. Therefore, a gap
between price of stability and price of anarchy originates only from a
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lack of cooperation. In other words, a sufficient degree of cooperation
could reduce the price of anarchy to the price of stability. This holds
for general non-atomic games (as per Def. 1.4) with one player class.

2.3 Modeling as NCGs

The lower bound on the price of anarchy shown in the previous section
already proves that there is no way to model selfish multicast routing
with duplication flows and path-based latency as an NCG by using the
edge latency functions as element latency functions. Such a modeling
would imply a price of anarchy bounded by the anarchy value, which
is impossible as we have just seen. However, two other variants can be
modeled as NCGs:

2.1 Theorem. Selfish multicast routing in the following settings can be
modeled as an NCG that uses the edge latency functions as element latency
functions:
– Conservation flows combined with path-based latency.

– Duplication flows combined with edge-based latency.

Proof. We let network links correspond to elements, sets of paths eli-
gible for routing (which we already called “strategies”) to strategies,
and source-terminal pairs to player classes. Recall the matrix notation
from Sec. 1.3. Abusing notation, we use network links and strategies
(i.e., sets of paths) as indices for the matrix rows and columns, respec-
tively. All we are now left to do with is to define the correct rates of
consumption.

– For conservation flows combined with path-based latency, for each
e ∈ E and S ∈ S we define reS := |S(e)|.

– For duplication flows combined with edge-based latency, for each
e ∈ E and S ∈ S we define

reS :=

{
1 if e ∈ E(S)

0 else
. (2.1)

It is easily verified that the resulting congestions and strategy latencies
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in the NCG coincide with the respective notions of selfish multicast
routing.

It follows with Thm. 1.18:

2.2 Corollary. Let L be a class of element latency functions with β(L) < 1.
The price of anarchy in the selfish multicast routing variants listed in the
previous theorem using edge latency functions from L is upper-bounded by

1
1−β(L) .

The proof of Thm. 2.1 gives insight why we cannot model the com-
bination of duplication flows and path-based strategy latency as an
NCG in that way. If we were to follow the same approach, then on
the one hand, we would need reS to be as in (2.1) in order to have
the correct congestions. On the other hand, however, we would need
reS = |S(e)| in order to have the correct strategy latencies. The same
observation in reverse holds for the combination of conservation flows
and edge-based latency.

It appears that we need two different sets of rates of consumption –
one for congestions and one for strategy latencies. This generaliza-
tion is accomplished by the model of non-atomic consumption-relevance
congestion games, shortly “NCRCG”. We will introduce these games
in the next section and subsequently study their price of anarchy and
computational issues.

2.4 Non-Atomic Consumption-Relevance Congestion Games

Recall the matrix notation for NCGs from Sec. 1.3. The new model is
essentially the NCG model with two matrices: one for congestions and
one for strategy latencies. We give a self-contained definition.

2.3 Definition. An instance in the non-atomic consumption-relevance
congestion game model, shortly referred to as “an NCRCG”, is defined
by the following four items:

(i) Two numbers m, n ∈ N≥1. Denote E := [m] and S := [n], and
call them elements and strategies, respectively.

(ii) For each e ∈ E a real, continuous, non-decreasing function
`e : R≥0 −→ R≥0, called the element latency function of e.
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(iii) Two matrices C, R ∈ Rm×n
≥0 such that for all e ∈ E and S ∈ S we

have
CeS = 0 if and only if ReS = 0 . (2.2)

We call entries in C consumption numbers and entries in R relevance
numbers. We require that there is at least one non-zero entry in
each column.1

(iv) Numbers d1, . . . , dN ∈ R>0, called demands, and a partition S =

⊍i∈[N] Si. We call each i ∈ [N] a player class; so each player class
i has a demand di and some strategies Si.

All the following notions are relative to a fixed NCRCG. An action
distribution is a vector a ∈ Rn

≥0 such that ∑S∈Si
aS = di for all i ∈ [N].

LetA be the set of all action distributions. We define congestion, strategy
latency, and social cost, respectively:

ge(a) := ∑
S∈S

CeSaS for a ∈ A and e ∈ E

LS(a) := ∑
e∈E

ReS`e(ge(a)) for a ∈ A and S ∈ S

SC(a) := ∑
S∈S

LS(a)aS for a ∈ A

For an action distribution a ∈ A and element e ∈ E we call `e(ge(a))
the element latency of e under a.

Denote also for an action distribution a ∈ A the following vectors:

~g(a) := (ge(a))e∈E ∈ Rm
≥0

~̀ (a) := (`e(ge(a))e∈E ∈ Rm
≥0

~L(a) := (LS(a))S∈S ∈ Rn
≥0

Then the social cost can be written as a scalar product SC(a) = ~L(a)>a.
The vector of congestions can also be written as a matrix-vector product
~g(a) = Ca.

1We know this requirement already from the previous chapter. The same justifica-
tion holds here, cf. p. 10. We can also anytime require without loss of generality that
there are no rows of only zeros, or in other words, that each element is contained in at
least one strategy.
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The congestion function ~g(·) is in fact, by a straightforward ex-
tension, defined for all vectors from Rn

≥0 and not only for action dis-
tributions. Since element latency functions are defined on R≥0, also
functions~̀ ,~L, and SC are defined for vectors from Rn

≥0. We will make
use of that in a few places; in particular, we will use it later when
scaling the demands and speaking of action distributions with respect
to those new demands.

2.4 Definition.
(i) An action distribution a ∈ A is called a Nash equilibrium, abbrevi-

ated “N.E.”, if

∀i ∈ [N] ∀S, T ∈ Si :
(

aS > 0 =⇒ LS(a) ≤ LT(a)
)

.

(ii) An action distribution a∗ ∈ A is called optimal, or an optimum, if

SC(a∗) = min
a∈A

SC(a) .

Denote OPT := SC(a∗) for an optimum a∗.

An NCRCG is a non-atomic game with continuous strategy latency
functions. Therefore, by the results in Sec. 1.4.2, Nash equilibria exist
and are characterized by the variational inequality (VAR) on p. 14. By
continuity of ~L and compactness of A, optima exist as well, and we
maintain our assumption of OPT > 0.

2.5 Definition. We define the price of stability and the price of anarchy of
an NCRCG, respectively, by

inf
a∈A

a is N.E.

SC(a)
OPT and sup

a∈A
a is N.E.

SC(a)
OPT .

By continuity, we can replace the infimum and supremum by mini-
mum and maximum, respectively.

If C = R, then the NCRCG model coincides with the NCG model.
Hence, all results that hold for NCGs also hold for NCRCGs with
C = R. The general case C 6= R, however, can behave very differently
from NCGs, as we have already seen. The rest of this chapter deals
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with the price of anarchy in the general case and with the computation
of optima and Nash equilibria.

2.5 New Parameters and Global Measures

Let an NCRCG be given. Using the convention 0
0 := 0, we introduce

three new parameters:

γ1 := max
e∈E,S∈S

CeS

ReS
, γ2 := max

e∈E,S∈S

ReS

CeS
, γ := γ1γ2 .

By (2.2), no division by 0 occurs, except 0
0 = 0. Since a maximum

is taken, it follows that 0-entries in C and R do not influence these
parameters.

2.6 Proposition.

(i) It is γ1, γ2 > 0.

(ii) It is γ ≥ 1.

(iii) If C = R, i.e., in case of an NCG, it is γ1 = γ2 = γ = 1.

Proof. (i) Every column of C and R has at least one row with a positive
entry in both C and R.

(ii) Let e ∈ E and S ∈ S such that the maximum for γ1 is assumed
there, i.e., γ1 = CeS

ReS
. Then for all f ∈ E and T ∈ S we have γ1 = CeS

ReS
≥

C f T
R f T

, and so by the definition of γ2 it follows 1
γ1

= ReS
CeS
≤ R f T

C f T
≤ γ2. This

yields 1 ≤ γ1γ2.
(iii) Immediately clear.

Now we turn to important global measures that depend on one or
two action distributions. We already know two measures on strategy
level, namely the social cost and the mixed social cost:

SC(a) := ∑
S∈S

LS(a)aS for a ∈ A

SCa(b) := ∑
S∈S

LS(a)bS for a, b ∈ A
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With NCGs, we often made use of that the social cost can also be
expressed on element level, cf. (1.2). This is no longer true for NCRCGs
in general. Therefore, we need separate measures on element level.
These are the following, called total element cost and mixed total element
cost, respectively:

EC(a) := ∑
e∈E

`e(ge(a))ge(a) for a ∈ A

ECa(b) := ∑
e∈E

`e(ge(a))ge(b) for a, b ∈ A

If C = R, i.e., if we have an NCG, then ECa(b) = SCa(b), and so
EC(a) = SC(a), but not in the general case.

2.6 Modeling Multicast Routing

We have seen in Sec. 2.3 that we can model two forms of selfish multi-
cast routing easily as NCGs. We already sketched how the remaining
two forms, namely duplication flows combined with path-based la-
tency and conservation flows combined with edge-based latency, could
be modeled as NCRCGs. We repeat this in detail here and also revisit
the example from Sec. 2.2 as an illustration. Proper settings for matrices
C and R in general are given in Tab. 2.1 on the next page. As in the
proof of Thm. 2.1, we abuse notation by using links and strategies (in
the sense of sets of paths) as matrix indices.

As an example, consider the multicast instance from Fig. 2.1 on p. 41.
We use duplication flows combined with path-based latency. Matrices
C and R are as follows. Recall that strategies correspond to columns,
and elements correspond to rows. We have

C =



1 0 1 1
0 1 1 1
1 0 1 0
0 1 1 0
0 1 0 1
1 0 0 1


and R =



2 0 1 1
0 2 1 1
1 0 1 0
0 1 1 0
0 1 0 1
1 0 0 1


.
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Table 2.1. How to set consumption and relevance numbers in four variants
of multicast. We have to set a consumption and a relevance number for
each pair of an edge e ∈ E and a strategy S.

edge-based latency path-based latency

conservation
CeS := |S(e)| CeS := |S(e)|

flow ReS :=

{
1 if e ∈ E(S)
0 otherwise

ReS := |S(e)|

duplication
CeS :=

{
1 if e ∈ E(S)
0 otherwise

CeS :=

{
1 if e ∈ E(S)
0 otherwise

flow
ReS :=

{
1 if e ∈ E(S)
0 otherwise

ReS := |S(e)|

It follows that γ1 = 1 and γ2 = 2. The price of anarchy was found to be
at least Ω(2p) = Ω(γ

p
2 ) for θ = O(21−p). For the example in [9] with k

terminals, for a number k ∈ N, we have γ2 = k and a lower bound of
Ω(kp) = Ω(γ

p
2 ).

Parameters γ1 and γ2 are network-related. If combining conserva-
tion flows with edge-based latency, γ1 gives the maximum number
of terminals that are served by one edge, the maximum taken over
all edges and strategies. For duplication flows with path-based strat-
egy, γ2 takes this role. So, in some sense, these parameters give the
maximum ‘bottleneck’ role that an edge can have. The complementary
parameters, γ2 and γ1, respectively, are 1 since we assume the terminals
to be all distinct, which implies that there is an edge that only serves
a single terminal. Without this assumption, these parameters may be
lesser than 1, the extreme case being that all terminals are on the same
vertex, resulting in γ = γ1γ2 = 1, which is not surprising, since such a
configuration is essentially unicast.
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2.7 Reducing γ by Scaling

Let ε ∈ R>0 and e ∈ E. If we scale that row of R corresponding to
e with ε and then replace `e by ˜̀e(x) := 1

ε `e(x), essentially nothing
changes for the game. Functions~L and SC are unchanged, and hence
so is the set of equilibria, optima, and their social costs. Also the β

parameter does not change; if ˜̀e extends the class of used element
latency functions from L to L̃, we have β(L) = β(L̃) by Prop. 1.24.
(The function EC changes, however.) Many of the upper bounds to
be established later will be non-decreasing in the term γ = γ1γ2 and
hence it is desirable to reduce that quantity, while preserving other
important properties of the game. We explain in the following how to
do so by scaling.

We call a vector~ε = (εe)e∈E ∈ Rm
>0 a relevance scaling (or here just

scaling) and define R~ε to be the matrix R where row e was multiplied
by εe for each e ∈ E. We would like to find an optimal scaling, i.e.,
one for that γ, taken with respect to R~ε, is minimal over all possible
scalings. It would be no extension to also consider series of scalings,
since the sequential application of two scalings ~ε and ~δ can as well
be expressed by the one scaling (εeδe)e∈E. We call an instance scalable
if it has a scaling that strictly reduces γ. So, if an instance Γ̃ is not
scalable, then there is no way to strictly reduce its γ by means of a
scaling. If a non-scalable Γ̃ is the result of scaling an instance Γ with
~ε, then that scaling is optimal for Γ. For, if ~δ was a better scaling for
Γ, then the scaling (ε−1

e δe)e∈E would reduce γ of the non-scalable Γ̃, a
contradiction.

We introduce notation for scaled ‘γ’-values:

γ~ε1(e) := max
S∈S

CeS

R~ε
eS

= max
S∈S

CeS

εeReS
for e ∈ E

γ~ε2(e) := max
S∈S

R~ε
eS

CeS
= max

S∈S

εeReS

CeS
for e ∈ E

and

γ~ε1 := max
e∈E

γ~ε1(e) , γ~ε2 := max
e∈E

γ~ε2(e) , γ~ε := γ~ε1γ~ε2 .
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Algorithm 1: Construction of an optimal relevance scaling.

~ε← (1, . . . , 1);
while 6 ∃e ∈ E such that γ~ε1 = γ~ε1(e) and γ~ε2 = γ~ε2(e) do

e∗ ← arg maxe∈E γ~ε2(e);

εe∗ ← εe∗ ·
γ~ε1(e

∗)

γ~ε1
;

return~ε;

Then, clearly, we have a simple relation to the known quantities γ1 =

γ
(1,...,1)
1 and γ2 = γ

(1,...,1)
2 . Denote γ1(e) := γ

(1,...,1)
1 (e) and γ2(e) :=

γ
(1,...,1)
2 (e) for each e ∈ E. (Strictly, we should write “(1, . . . , 1)>” in

the exponent, but we refrain from this for the sake of a more readable
notation.)

2.7 Proposition. If the maximum for γ1 and the maximum for γ2 are both
attained for the same element, then the instance is not scalable.

Proof. Let e ∈ E such that γi = γi(e), i = 1, 2. Let ~ε ∈ Rm
>0 be a

relevance scaling. We have γ~ε1(e) =
1
εe

γ1(e) and γ~ε2(e) = εeγ2(e). Since
for γ~ε1 and γ~ε2, the maximum is taken over all elements, they cannot
be smaller than γ~ε1(e) and γ~ε2(e), respectively. It follows γ~ε = γ~ε1γ~ε2 ≥
1
εe

γ1(e)εeγ2(e) = γ1(e)γ2(e) = γ.

2.8 Proposition. Algorithm 1 constructs an optimal relevance scaling in at
most m iterations.

Proof. By Prop. 2.7, the stopping criterion ensures that upon termina-
tion, the given relevance scaling is optimal. Hence it is left to show that
the procedure stops after at most m iterations.

Consider an arbitrary iteration. Let T∗ be such that the maximum
for γ~ε1(e

∗) is attained in T∗, i.e., γ~ε1(e
∗) = Ce∗T∗

R~εe∗T∗
. The scaling~ε is replaced

by a new one, say ~δ, such that by the choice of T∗ we have

γ
~δ
1(e
∗) = max

T∈S

Ce∗T

R~δ
e∗T

= max
T∈S

Ce∗T

R~ε
e∗T

Ce∗T∗
R~εe∗T∗

1
γ~ε1

=
R~ε

e∗T∗

Ce∗T∗
γ~ε1 max

T∈S

Ce∗T

R~ε
e∗T

= γ~ε1 .
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In other words, the new scaling is so that γ
~δ
1(e
∗) just not exceeds γ~ε1,

and this makes γ
~δ
1(e
∗) = γ~ε1. As a result, note that the ‘γ1’-value does

not change during the whole procedure. So the row is in fact left with
γ
~δ
1(e
∗) = γ1.

No row will be treated twice, for if a row e∗ was chosen a second
time, we would on the one hand have γ~ε1 = γ1 = γ~ε1(e

∗) as a result of
a previous iteration. On the other hand, by the selection criterion for
e∗, also γ~ε2 = γ~ε2(e

∗). It follows that the procedure would have stopped
before that. Hence, there are at most m iterations.

We make some remarks to illustrate further how the algorithm
works. In each iteration, the row responsible for γ~ε2 is scaled down as
much as possible without spoiling γ1. The row is indeed scaled down,

since the additional scaling factor γ~ε1(e
∗)

γ~ε1
is strictly smaller than 1 by the

properties of γ~ε1: by definition γ~ε1(e
∗) ≤ γ~ε1, and since γε

1 is not attained
in row e∗, this inequality holds strict. Since no row is treated twice, we

could as well have written “εe∗ ← γ~ε(e∗)
γ~ε1

” in the algorithm. Now, there

are two possible outcomes of scaling row e∗. Either is γ
~δ
2 still attained

for e∗ and the procedure terminates after this iteration. Or the row in
which γ

~δ
2 is attained has changed to some f 6= e∗. Since only row e∗ is

modified when switching from~ε to ~δ, we have γ
~δ
2( f ) ≤ γ~ε2.

Scaling rows of the consumption matrix C is also possible. If a row
e of C is scaled by δ ∈ R>0, then we have to replace `e by x 7→ `e(

1
δ x).

However, for the sake of reducing γ = γ1γ2 it does not matter whether
we scale rows of R, or of C, or of both. For, the combination of a
relevance scaling~ε and consumption scaling ~δ can be transformed into
an equivalent relevance scaling: set λe := εe/δe for each e ∈ E. Then
scaling R with~λ has the same effect on γ as the combination of~ε used
on R and ~δ used on C.

2.8 General Lower Bound on the Price of Anarchy

Using the construction from [9], we can have multicast instances with
a price of anarchy at least Ω(γ

p
2 ) for any desired γ2 ∈ N≥1, using
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element latency functions from Poly+(p). We can extend that using
the flexibility of general NCRCGs and also give a special bound for
small γ.

2.9 Theorem.

(i) Let p ∈ N≥1 and c, r ∈ R≥1. There exist non-scalable NCRCGs with
element latency functions only from Poly+(p) with γ1 = c and γ2 = r
such that the price of anarchy is at least γp = (γ1γ2)p.

(ii) Let p ∈ N≥1 and c, r ∈ R≥1 such that cr < (p + 1)
1
p . There exist non-

scalable NCRCGs with element latency functions only from Poly+(p)
with γ1 = c and γ2 = r such that the price of anarchy is at least

1
1− γ β

, where β = β(Poly+(p)) = p (p + 1)−1− 1
p .

Both lower bounds from Thm. 2.9 have an upper-bound counter-
part, which is no more than a factor of γ away and will be given in
Thm. 2.12.

Proof of Thm. 2.9. (i) Different kinds of instances can be used to show
this worst-case lower bound. We give one that, provided c, r ∈ N, only
uses integral numbers in C and R, and only integral coefficients in the
polynomials. Let N := 1, d := 1, m := r, and n := m + 1 and define:

C :=

1 c
. . .

...
1 c

 ∈ Rm×(m+1)

R :=

r 1
. . .

...
r 1

 ∈ Rm×(m+1)

(2.3)

Empty entries are 0. Then γ1 = c and γ2 = r, and the instance is
not scalable. Let each element latency function be x 7→ xp and a :=
(0, . . . , 0, 1) and a∗ := ( 1

m , . . . , 1
m , 0). Then a is a Nash equilibrium, since

∀S ∈ [m] LS(a) = rcp and
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Lm+1(a) =
m

∑
e=1

cp = mcp = rcp .

We have its social cost

SC(a) = rcpd = rcp . (2.4)

For a∗ we have the following (showing as a side-product that it happens
to be a Nash equilibrium as well):

∀S ∈ [m] LS(a∗) = r
( 1

m

)p
=
(1

r

)p−1
and

Lm+1(a∗) =
m

∑
e=1

( 1
m

)p
= m

( 1
m

)p
=
(1

r

)p−1
.

We have its social cost

SC(a∗) =
(1

r

)p−1
d =

(1
r

)p−1
.

It follows that SC(a)/SC(a∗) = rcp rp−1 = (cr)p = (γ1γ2)p = γp. This
proves (i).

(ii) We extend the example from (i) by a strategy with index r + 2
with constant latency Lr+2(·) = rcp. This can be implemented by an
additional element and the following matrices:

C :=


1 c

. . .
...

1 c
1

 ∈ R(m+1)×(m+2)

R :=


r 1

. . .
...

r 1
1

 ∈ R(m+1)×(m+2)

This instance is not scalable. The additional element (corresponding to
the last row) is given constant element latency function x 7→ rcp.
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By essentially the same argument as before, a := (0, . . . , 0, 1, 0) is a
Nash equilibrium with social cost SC(a) = rcp, just note that the newly
introduced strategy does not offer better latency than the other ones
under a. Define furthermore

a∗ :=
( c
(p + 1)1/p

, . . . ,
c

(p + 1)1/p
, 0, 1− r

c
(p + 1)1/p

)
∈ Rr+2

≥0 .

Then by assumption on cr, the vector a∗ is an action distribution. So
we follow the idea of the first lower bound, but additionally take
advantage of the fact that we can move some of the demand to the new
strategy with constant latency.2 The social cost of a∗ is

SC(a∗) =
r

∑
S=1

LS(a∗)a∗S + Lr+2(a∗)a∗r+2

=
r

∑
S=1

r
cp

p + 1
c

(p + 1)1/p
+ rcp

(
1− r

c
(p + 1)1/p

)
= rcp

(
r

1
p + 1

c
(p + 1)1/p

+
(

1− r
c

(p + 1)1/p

))
= rcp

(
1− rc ((p + 1)−

1
p − (p + 1)−1(p + 1)−

1
p )
)

= rcp
(

1− rc ((p + 1)(p + 1)−1− 1
p − (p + 1)−1− 1

p )
)

= rcp
(

1− rc p (p + 1)−1− 1
p
)

.

Recall that Nash equilibrium a has SC(a) = rcp. Hence

SC(a)
SC(a∗)

=
1

1− rc p (p + 1)−1− 1
p
=

1

1− γ p (p + 1)−1− 1
p
=

1
1− γβ

.

2.9 Upper Bound on the Price of Anarchy

Recall the characterization of Nash equilibria given in Thm. 1.6. We
can apply that to prove upper bounds on the price of anarchy, inspired

2The exact setting was obtained by introducing a parameter x, then defining
a∗(x) := (x, . . . , x, 0, 1− rx), and finally choosing an x with SC(a∗(x)) minimal under
the constraint that a∗(x) is an action distribution.
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by the basic idea from the proof of Thm. 1.18. We first relate (mixed)
total element cost to (mixed) social cost.

2.10 Proposition. Let a, b ∈ A. Then we have

1
γ2

SCa(b) ≤ ECa(b) ≤ γ1SCa(b) .

Proof. We start with the first inequality. We use the convention 0
0 := 0.

SCa(b) = ∑
S∈S

LS(a)bS = ∑
S∈S

∑
e∈E

ReS`e(ge(a))bS

= ∑
S∈S

∑
e∈E

ReS

CeS
CeS`e(ge(a))bS ≤ γ2 ∑

S∈S
∑
e∈E

CeS`e(ge(a))bS

= γ2 ∑
e∈E

`e(ge(a)) ∑
S∈S

CeSbS︸ ︷︷ ︸
=ge(b)

= γ2ECa(b) .

The second inequality follows likewise:

ECa(b) = ∑
e∈E

`e(ge(a))ge(b) = ∑
e∈E

`e(ge(a)) ∑
S∈S

CeSbS

= ∑
S∈S

∑
e∈E

CeS

ReS
ReS`e(ge(a))bS

≤ γ1 ∑
S∈S

bS ∑
e∈E

ReS`e(ge(a))︸ ︷︷ ︸
=LS(a)

= γ1SCa(b) .

For the rest of this section, we will treat NCRCGs with super-
homogeneous element latency functions. Recall the definition of su-
per-homogeneous element latency functions and their properties from
Sec. 1.7.2. An element latency function ` is s-super-homogeneous if
`(εx) ≥ s(ε)`(x) for all ε ∈ (0, 1] and x ∈ R≥0. This is equivalent to
being s̄-sub-homogeneous, i.e., `(tx) ≤ s̄(t)`(x) for all t ∈ [1, ∞) and
x ∈ R≥0 with s̄(t) = s(t−1)−1. A class L of element latency functions
is called s-super-homogeneous if each ` ∈ L is s-super-homogeneous.
For instance, class Poly+(p) is s-super-homogeneous for each p with
s(ε) = εp, so it is also s̄-sub-homogeneous with s̄(t) = tp.
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2.11 Lemma. Let L be an s-super-homogeneous class of element latency
functions. Let an NCRCG be given with element latency functions drawn
from L. Let a, b ∈ Rn

≥0 and t ≥ 1. Then

ECa(b) ≤ 1
t

β(L)EC(a) + s̄(t)EC(b) .

Proof.

t ECa(b) = ∑
e∈E

`e(ge(a)) tge(b)

= ∑
e∈E

(
`e(ge(a))− `e(tge(b)))tge(b) + t`e(tge(b))ge(b)

)
≤ ∑

e∈E

(
β(L)`e(ge(a))ge(a) + t`e(tge(b))ge(b)

)
(1.11) on p. 25

≤ ∑
e∈E

(
β(L)`e(ge(a))ge(a) + ts̄(t)`e(ge(b))ge(b)

)
s̄-sub-homogeneity

= β(L)EC(a) + ts̄(t)EC(b) .

Dividing by t yields the claimed inequality.

The following is our main result in this section.

2.12 Theorem.

(i) The price of anarchy in an NCRCG with element latency functions
drawn from an s-super-homogeneous class L for which β := β(L) < 1
holds is no more than

1
1−β γs̄(γ) for all γ

min
{

1
1−γ β γ, 1

1−β γs̄(γ)
}

for γ < 1/β
.

(ii) The price of anarchy in an NCRCG with element latency functions
drawn from Poly+(p) is no more thanγp+1 if γ ≥ (1 + p)

1
p

1
1−γ β γ if γ ≤ (1 + p)

1
p

,

where β = β(Poly+(p)) = p (p + 1)−1− 1
p .
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Figure 2.4. Comparison of three different bounds for polynomial latency
functions, p = 1 on the left and p = 2 on the right, and γ in the range between
1 and 3.5. The universal bound, using s̄(γ) = γp, upper-bounds the other
two. The bound specifically for polynomials, i.e., Thm. 2.12(ii), is the best one
for all γ. The refined version of the universal bound, i.e., the second bound in
Thm. 2.12(i), first follows the specific bound, then it is in between for some
range of γ, and finally it follows the universal bound; it is plotted thicker than
the other two.

Let us briefly discuss these bounds before starting the proof. The
bound 1

1−β γs̄(γ) is universal; it holds for all γ and all classes L of
element latency functions, provided only that β = β(L) < 1. The
bound 1

1−γ β γ is only proved for small γ and is sometimes better than
the universal one, depending on the function s̄. The second part of the
theorem treats the case of polynomial element latency functions, i.e.,
from Poly+(p) for a fixed p. We distinguish between large and small

γ. Large γ start at (1 + p)
1
p , and it will become clear from the proof

why we chose that threshold. The bound for large γ improves on the
universal one by a factor of 1

1−β . The bound for small γ is a corollary
from the bounds in part (i) of the theorem. In fact we get a bound of

min
{

1
1−γ β γ, 1

1−β γp+1
}

. However, real calculus shows that the first
expression is always upper-bounded by the second one and hence the
first is the better bound. Fig. 2.4 gives an illustration.
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Proof of Thm. 2.12. Let a be a Nash equilibrium and b be any action
distribution. For all t ≥ 1 we have

SC(a) ≤ SCa(b) ≤ γ2ECa(b) by Thm. 1.6 and Prop. 2.10

≤ γ2

(1
t

βEC(a) + s̄(t)EC(b)
)

by Lem. 2.11

≤ γ2γ1

(1
t

βSC(a) + s̄(t)SC(b)
)

by Prop. 2.10

= γ
(1

t
βSC(a) + s̄(t)SC(b)

)
.

Key observation: if t ≥ 1 is chosen such that 1− γ 1
t β > 0, the above

yields
SC(a)
SC(b) ≤

1
1− γ 1

t β
γs̄(t).

All bounds follow from the key observation by an appropriate
choice of t:

– For the first bound of part (i), i.e., the universal bound, choose t := γ

and note that t ≥ 1 holds then, as well as 1− γ 1
t β = 1− β > 0 since

β < 1.

– To prove the second bound of part (i), let γ < 1/β, hence γβ < 1.
We only have to show the 1

1−γ β γ bound, since the other one is the

universal bound. Choose t := 1. Then 1− γ 1
t β = 1− γβ > 0, and

the bound follows from the key observation, since s̄(1) = 1.

– To prove the first bound from part (ii), choose t := γ (p + 1)−
1
p ,

which is ≥ 1 by assumption on γ, and also implies

1− γ
1
t

β = 1− (p + 1)
1
p p (p + 1)−1− 1

p = 1− p
p + 1

> 0 .

The key observation yields

SC(a)
SC(b) ≤

γ tp

1− p
p+1

=
γγp(p + 1)−1

1− p
p+1

= γp+1 .



62 2. NCRCG

– For the second bound from part (ii) we just have to note that

γβ ≤ (p + 1)
1
p p (p + 1)−1− 1

p =
p

p + 1
< 1 ,

hence γ < 1/β, and invoke the second bound from part (i).

2.13 Remark. Bounds in Thm. 2.12(ii) are tight up to a factor of γ by
Thm. 2.9.

When establishing the upper bound from Thm. 2.12 for a concrete
instance with non-decreasing s̄ (as it is the case for polynomials), we can
first scale the instance in order to minimize γ, as described in Sec. 2.7.
If scaling extends the class of element latency functions occurring from
L to some L̃, we have β(L) = β(L̃) by Prop. 1.24. Since all bounds
are non-increasing in γ and, for part (ii), we have 1

1−γ β γ = γp+1 if

γ = (1 + p)
1
p , the bounds can only improve by the scaling.

The bounds for the scaled instance also hold for the original one.
So, in particular, it is not necessary to ‘really’ scale the instance – if, e.g.,
further algorithmic tasks shall be carried out with the instance, we can
well work with the original one. This is how we will proceed in our
experimental studies in Ch. 3.

2.10 Bicriteria Bound

The next theorem says that a Nash equilibrium is not worse in terms
of social cost than an optimum for (1 + β(L)) γ times the demand. It
is hence a natural extension to the known analogous result for NCGs,
which uses a scaling of the demand by 1 + β(L).

2.14 Theorem. Let Γ be an NCRCG with element latency functions drawn
from the s-super-homogeneous class L. Let a be a Nash equilibrium for Γ and
b any action distribution for that NCRCG resulting from Γ by a multiplication
of each demand di by (1 + β(L)) γ. Then SC(a) ≤ SC(b).

Proof. Let t, u ≥ 1 to be specified more precisely later. Let b be an
action distribution for the demands scaled up by u. Then 1

u b is an
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action distribution for Γ and hence

SC(a) ≤ SCa(
1
u

b) ≤ γ2ECa(
1
u

b) by Thm. 1.6 and Prop. 2.10

= γ2
1
u

ECa(b)

≤ γ2
1
u
(

1
t

β(L)EC(a) + s̄(t)EC(b)) by Lem. 2.11

≤ γ
1
u
(

1
t

β(L)SC(a) + s̄(t)SC(b)) . by Prop. 2.10

It follows that

SC(a)
(

u
γ
− β(L)

t

)
1

s̄(t)︸ ︷︷ ︸
φ(u,t):=

≤ SC(b) .

To receive “SC(a) ≤ SC(b)”, we need that φ(u, t) ≥ 1. Since φ(·, t) is
strictly increasing and we wish to have u as small as possible, we aim
for φ(u, t) = 1, i.e.,

u =

(
s̄(t) +

β(L)
t

)
γ . (2.5)

Choosing t := 1, we are forced to choose u := (1 + β(L)) γ and get
(2.5); recall that s̄(1) = 1. Note that for the case s̄(t) = tp, this choice
of t is optimal, since for such s̄ the right-hand side in (2.5) increases
with t.

2.15 Theorem. Consider element latency functions from Poly+(p). The
scaling factor (1 + β(L)) γ in the previous theorem is the best possible up to
a factor of (1 + β(L)) γ

1
p+1 .

Proof. Recall the first example from the proof of Thm. 2.9, displayed
in (2.3) on p. 55. We have parameters c, r, p ∈ N≥1, m = r, n = m + 1,
element latency functions x 7→ xp, and as shown in that proof, we can
construct a Nash equilibrium a with social cost SC(a) = rcp, see (2.4).
On the other hand, if we scale up the demand of 1 by factor of u ≥ 1,
then there is an action distribution b := ( u

m , . . . , u
m , 0) ∈ Rm+1

≥0 . Let us
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compute SC(b). We have

∀S ∈ [m] LS(b) = r
( u

m

)p
= r

(u
r

)p
and

Lm+1(b) =
m

∑
e=1

( u
m

)p
= m

( u
m

)p
= r

(u
r

)p
.

It follows that SC(b) = r
(

u
r

)p
u = r1−pup+1. This is strictly increasing

in u. If we set

u :=
(1 + β(L)) γ

(1 + β(L)) γ
1

p+1
= γ

1− 1
p+1 = (cr)1− 1

p+1 , (2.6)

then

SC(b) = r1−pup+1 = r1−p(cr)(1−
1

p+1 ) (p+1) = r1−p(cr)p = rcp = SC(a) .

Hence we have to scale the demands up by at least this much, i.e.,
by u as given in (2.6), in order to have SC(b̃) ≥ SC(a) for all action
distributions b̃ that are admissible for the scaled demands (such as b).

2.11 Computation

Non-linear programs play an important role for computation of optima
and Nash equilibria. Convex programs can be solved in polynomial
time up to an arbitrarily small error, given some mild additional prop-
erties. Some of the practical methods require certain boundedness
conditions, smoothness and efficiently computable first- and second-
order derivatives of the functions involved. See, e.g., [12, 17, 70] for
comprehensive treatments of convex optimization. The case of a con-
vex quadratic objective function and linear constraints is polynomially
solvable with the ellipsoid algorithm [55] or, up to an arbitrarily small
error, by interior-point algorithms [12, 17, 70]. We will encounter that
special case later with affine element latency functions, since then SC is
a quadratic function and can be convex in some cases.
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Computation of Nash equilibria and optima is hindered by two
changes that occur when we switch from NCGs to NCRCGs:

– SC is not necessarily a convex function anymore;

– there seems to be no way to use the KKT theorem to recognize Nash
equilibria as optima of a convex program, as it can be done for
NCGs [11, 18, 19, 37], see also Sec. 1.6.

We will address these concerns separately below. Before, we state a
fact about EC. By Prop. 2.10, an algorithm that minimizes EC yields a
γ-approximation for OPT. This is especially interesting if x 7→ `e(x)x is
a convex function for all e ∈ E, since then EC is a convex function, even
a separable one if considered a function of the congestions. However, it
is clear that such an approach can only be of limited use since the com-
putation does not involve matrix R. For a more accurate treatment, we
will show how to work on strategy level for optima and Nash equilibria
in the rest of this section.

2.11.1 Convexity and Non-Convexity of SC and Computation of
Optima

Let all element latency functions be twice continuously differentiable
on R>0, which implies that SC is a twice continuously differentiable
function on Rn

>0 with its Hessian ∇2 SC(v) at v ∈ Rn
>0 being(

∑
e∈E

{
(ReS1 CeS2 + ReS2 CeS1)`

′
e(ge(v)) + ∑

S∈S
ReSCeS1 CeS2`

′′
e (ge(v))vS

})
S1∈S
S2∈S

.

If all element latency functions are affine, say, `e(x) = θex + τe with
θe, τe ∈ R≥0, then ∇2 SC(v) is independent of v, namely

∇2 SC(v) =
(

∑
e∈E

θe(ReS1 CeS2 + ReS2 CeS1)

)
S1∈S
S2∈S

. (2.7)

A real-valued, twice differentiable function of multiple real vari-
ables is convex on a convex open set if and only if its Hessian is positive
semidefinite in every point of that set. We cannot apply that directly
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to SC with respect to A, since A is not open (it is convex, though).
If ∇2 SC is positive semidefinite in every point of some open convex
set U ⊆ Rn

>0 such that A ⊆ U, then SC is convex on U and hence,
by continuity, also on A. The converse, however, does not hold, and
so a test based on this can deliver false positives, i.e., categorize SC
as non-convex when, in fact, it is convex on A. As an example, con-
sider C :=

(
1 1

)
and R :=

(
3 1

)
, let the one element have latency

function x 7→ x, and a demand d = 1 be given. Then, SC is convex

on A = {(a1, a2); a1 + a2 = 1}. However ∇2 SC(·) =
(

6 4
4 2

)
is not

positive semidefinite; it has negative eigenvalue 4−
√

20.

For an exact test, we have to use the projected Hessian instead. Details
are explained in the following. Let strategies be ordered such that
strategies from one player class are grouped together and these groups
arranged in the order i = 1, . . . , N. Set ni := |Si| for each i ∈ [N].
So, in our ordering the first n1 strategies are from player class 1, the
next n2 strategies are from player class 2, etc. Let S′i be the set Si
without the last strategy, so |S′i| = ni − 1. We will use an ordering on
S′ := ⋃i∈[N] S

′
i similar to that on S, i.e., the first n1 − 1 strategies in

S′ are from player class 1, the next n2 − 1 strategies are from player
class 2, etc. Define the affine mapping T and its matrix MT ∈ Rn×(n−N)

as shown in Fig. 2.5 on the facing page. The version for N = 1 is as
follows, empty entries in the matrix are zero:

T : Rn−1 −→ Rn, (v1, . . . , vn−1)
> 7→


1

1
. . .

1
−1 −1 . . . −1


︸ ︷︷ ︸

MT :=

v+


0
0
...
0
d

 .

For each i ∈ [N] we have the following: ni − 1 real numbers are
mapped by T to ni real numbers such that the sum of the latter is
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T : Rn−N −→ Rn, (v1, . . . , vn−N)> 7→

1
1

. . .
1

−1 −1 . . . −1︸ ︷︷ ︸
n1−1

1
1

. . .
1

−1 −1 . . . −1︸ ︷︷ ︸
n2−1

. . .
. . .

1
1

. . .
1

−1 −1 . . . −1︸ ︷︷ ︸
nN−1


︸ ︷︷ ︸

=:MT∈Rn×(n−N)

v +



0
0
...
0
d1

0
0
...
0
d2
...

...
0
0
...
0

dN



Figure 2.5. The affine mapping T. Empty entries in the matrix are zero.

always di. Define the set of reduced action distributions

A′ := {v ∈ Rn−N
>0 ; ∑

S∈S′i

vS < di ∀i ∈ [N]} .

This is an open convex set in Rn−N . The image of A′ under T is
contained in Rn

>0 and it consists of all action distributions save those
which have one or more zero entries. It follows that T(A′) = A. By
continuity of SC, we hence know that SC is convex on T(A′) if and
only if it is convex on A. Since T is an affine mapping, SC is convex on
T(A′) if and only if SC ◦ T is convex on A′. The latter is the case if and
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only if ∇2(SC ◦ T)(v) is positive semidefinite for all v ∈ A′, since A′ is
open.

We know from calculus that for twice continuously differentiable
functions h : U −→ Rn and f : V −→ R, with h(U) ⊆ V, U ⊆ Rr, for
all v ∈ U we have

∇2( f ◦ h)(v) = J h(v)> · ∇2 f (h(v)) · J h(v) +
(
∇ f (h(v)) · h∗ji(v)

)
j=1,...,r
i=1,...,r

where h∗ji(v) = (∂j∂ihk(v))k=1,...,n for each i, j ∈ [r] is the vector of
second-order partial derivatives ∂j∂i of all component functions of h at
v, and J h(v) denotes the Jacobian of h at v, and ∇2 f (h(v)) denotes the
Hessian of f at h(v). Applying that to f := SC and h := T yields

∇2(SC ◦ T)(v) = M>T · ∇2 SC(T(v)) ·MT , (2.8)

since all second-order partial derivatives of T vanish. The matrix
given by (2.8) is also known as the projected Hessian. If element latency
functions are affine, we have constant Hessian for SC as shown in
(2.7), making it easy to check the projected Hessian for being posi-
tive semidefinite on A′. We summarize our findings in the following
theorem.

2.16 Theorem. Let all element latency functions be twice continuously differ-
entiable (suffices onR>0). Then SC is convex onA if and only if the projected
Hessian (2.8) is positive semidefinite for all v ∈ A′. If all element latency
functions are affine, the projected Hessian is independent of v and hence can
be checked efficiently3 for being positive semidefinite on A′.

Finally, if SC is convex on A, optima are characterized by a convex
program:

minimize SC(a)

subject to a ∈ A
(OPT NLP)

3Up to the numerical inaccuracies involved when, e.g., computing eigenvalues.
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2.11.2 Computation of Nash Equilibria

Recall that if C = R, Nash equilibria can be characterized by a con-
vex program [11, 18, 19, 37], see also Sec. 1.6. A technically different
approach can be taken in the general case, also leading to a characteriza-
tion of Nash equilibria as optimal solutions to minimization problems,
which are not necessarily convex, however. Denote d := (d1, . . . , dN)

the vector of demands. Then we have:

2.17 Theorem. A vector a ∈ Rn
≥0 is a Nash equilibrium if and only if there

exists λ ∈ RN such that (a, λ) is an optimal solution to the following NLP:4

minimize SC(a)− λ>d

subject to a ∈ A
λ ∈ RN

λi ≤ LS(a) ∀S ∈ Si ∀i ∈ [N]

(Nash NLP)

Proof. The objective function is always non-negative, since for all feasi-
ble (a, λ) we have

SC(a) = ∑
S∈S

LS(a)aS = ∑
i∈N

∑
S∈Si

LS(a)︸ ︷︷ ︸
≥λi

aS

≥ ∑
i∈N

λi ∑
S∈Si

aS = ∑
i∈N

λidi = λ>d .

From this inequality we also immediately deduce that for a feasible
(a, λ) we have objective function value 0 if and only if

– LS(a) = λi for all S ∈ Si and all i ∈ [N] which have aS > 0,

– and, trivially (due to feasibility), LS(a) ≥ λi for all S ∈ Si and all
i ∈ [N].

The claim now follows from Prop. 1.5.

4By Thm. 1.6 and Thm. 2.17 we have that the set of solutions to (VAR) coincides
with the set of optimal solutions to (Nash NLP). A more general result than this was
proved earlier by Aghassi, Bertsimas, and Perakis [1], using stronger tools, including
LP duality.
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If LS is concave for all S ∈ S and SC is convex onA, then (Nash NLP)
is a convex program. If we have affine element latency functions, then
the constraints of (Nash NLP) are linear and the objective function is
quadratic. If element latency functions are affine and SC is convex
on A, then we essentially have a linearly constrained convex quadratic
program. We wrote only “essentially”, because the objective function
of a convex quadratic program is usually specified as:

v 7→ 1
2 v>Av + b>v, with A being a symmetric, positive

semidefinite matrix, and b a vector.
(2.9)

If `e(x) = θex + τe with θe, τe ∈ R≥0 for each e ∈ E, and we define
matrix θ := diag(θe)e∈E ∈ Rm×m and vector τ := (τe)e∈E, then

SC(a) = ~L(a)>a = (R>~̀ (a))>a = (R>(θ~g(a) + τ))>a

= (R>(θCa + τ))>a = a>(R>θC)>a + (R>τ)>a .

As we have seen before, the Hessian ∇2 SC = R>θC + (R>θC)>, and
so also R>θC, needs not to be positive semidefinite, even if SC is convex
on A. However, if SC is convex on A, we can always bring it into the
form of (2.9) (plus the terms involving λ) using the affine mapping T.
The projected Hessian becomes matrix A, vector b has to be chosen
accordingly, and instead of A we use

{v ∈ Rn−N
≥0 ; ∑

S∈S′i

vS ≤ di ∀i ∈ [N]} .

Precisely, we have the following linearly constrained quadratic pro-
gram:

minimize
1
2

v> M>T
(

R>θC + (R>θC)>
)

MT v + (R>τ)>MT v− λ>d

subject to v ∈ Rn−N
≥0

∑
S∈S′i

vS ≤ di ∀i ∈ [N]

λ ∈ RN

λi ≤ (R>(θCMTv + τ))S ∀S ∈ Si ∀i ∈ [N]
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We can take the same approach for optima, receiving a simpler
program. As noted earlier, a linearly constrained convex quadratic
program is solvable in polynomial time by the ellipsoid algorithm [55]
or, up to an arbitrarily small error, by interior-point algorithms [12, 17,
70].

But even in cases where we do not have such a nice method avail-
able, the approach via (Nash NLP) is not entirely hopeless; a vector
returned by some algorithm (e.g., a solver for general non-linear pro-
grams) can be checked easily for being a Nash equilibrium by consid-
ering the corresponding objective value of (Nash NLP) or by checking
directly whether the solution fulfills the definition of Nash equilibrium.
So we can, at least, always determine whether some proposed solution
is in fact correct.

2.11.3 Extreme Nash Equilibria

Nash equilibria need not to be unique, and two different equilibria
may have very different social cost, as we have seen before in Sec. 2.2.
We add, for some numbers c0 ≤ c1, the additional linear constraint
c0 ≤ λ>d ≤ c1 resulting in the following non-linear program.

minimize SC(a)− λ>d

subject to a ∈ A
λ ∈ RN

λi ≤ LS(a) ∀S ∈ Si ∀i ∈ [N]

c0 ≤ λ>d ≤ c1

(Nash NLP’)

If we can check feasibility of (Nash NLP’), we can check whether
there exists a Nash equilibrium with social cost between c0 and c1. If we
can, in case of feasibility, solve (Nash NLP’), we can find a Nash equi-
librium with social cost between c0 and c1. For affine element latency
functions and SC convex on A, this is both possible: the constraints are
linear then and the objective function is convex quadratic.

Let ρ̃ denote an upper bound on the price of anarchy, and assume
that we know OPT. Then we know that all Nash equilibria have social
cost in the interval [OPT, ρ̃ OPT]. Using binary search, we can hence
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compute a worst or a best equilibrium with an error of ε by solving
at most dlog2

ρ̃−1
ε e instances of (Nash NLP’), provided the latter is

practical. We summarize our findings in the following theorem. A
detailed description and analysis of a binary search algorithm will be
given in the next chapter.

2.18 Theorem.

(i) Optima and Nash equilibria are characterized by the non-linear pro-
grams (OPT NLP) and (Nash NLP), respectively.

(ii) Let c0 ≤ c1. If (Nash NLP’) is feasible and has optimal value 0, it
characterizes all Nash equilibria with social cost between c0 and c1. If
(Nash NLP’) is infeasible or has optimal value > 0, no Nash equilib-
rium with social cost between c0 and c1 exists.

(iii) Let ρ̃ be an upper bound on the price of anarchy. We can compute5

a worst or best Nash equilibrium up to an error of ε (and possibly
an additional error introduced when solving the involved non-linear
programs) by solving one instance of (OPT NLP), and by solving or
showing to be infeasible at most dlog2

ρ̃−1
ε e instances of (Nash NLP’).

(iv) If LS is concave for all S ∈ S and SC is convex on A, then both
(OPT NLP) and (Nash NLP’) are convex programs.

(v) If element latency functions are affine and SC is convex on A, then
both (OPT NLP) and (Nash NLP’) are linearly constrained convex
quadratic programs.

In total, we have a satisfactory computational result for affine el-
ement latency functions: by Thm. 2.16 we can check whether SC is
convex on A or not, and if so, we can compute optima and extreme
Nash equilibria (up to a small error) by convex quadratic programming.

Practicability may, however, depend on the number of variables –
and so for our programs in particular on the number of strategies. If,
e.g., the set of strategies was to enumerate all possible multicast path

5This statement is to be understood relative to the practicability of solving
(OPT NLP) and (Nash NLP’). It is not intended to make any claim that we actu-
ally can solve these programs, it merely states the number of different instances that
would be needed to be solved. See also statements (iv) and (v).
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sets (or trees) in a network, this could be exponential in the number of
links. Efficiently handling such applications is left for future work.

2.12 Bibliographic Remarks

The price of anarchy in selfish multicast routing or a model similar to
the NCRCG model has to the best of my knowledge not been studied
before – except for [9], where we published early results on selfish
multicast routing, and except for approaches which cover the NCRCG
model partly, e.g., the work by Perakis [72].

Boulogne and Altman [16] in 2005 studied existence and unique-
ness issues in selfish multicast routing in an atomic and a non-atomic
model. They considered duplication flows and also discern edge-based
and path-based latency, see definitions “(A)” and “(B.1)” in [16, p. 24].
Regarding the non-atomic model, it was claimed that all Nash equi-
libria induced the same congestions under path-based latency, and so
are essentially unique. This is disproved by our example in Sec. 2.2.
The flaw lies in an incorrect re-arrangement of sums in the proof of [16,
Lem. 4.3].

2.13 Summary

We studied the price of anarchy in NCRCGs. NCRCGs are a generaliza-
tion of NCGs, motivated by selfish multicast routing. We introduced a
new parameter γ and showed how we can lower- and upper-bound
the price of anarchy using γ and the known parameter β, and, in case
of polynomial element latency functions, also the maximum degree p.
For polynomial element latency functions from Poly+(p), we proved
an upper bound on the price of anarchy of:γp+1 if γ ≥ (1 + p)

1
p

1
1−γ β γ if γ ≤ (1 + p)

1
p

,

where β = β(Poly+(p)) = p (p + 1)−1− 1
p . For comparison, the known

tight bound for NCGs is just 1
1−β . We then proved a lower bound, being
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only a factor γ away from our upper bound. The upper bound also
comes in a more general version, namely for s-super-homogeneous
element latency functions.

Then we considered bicriteria bounds. We proved that when scaling
up demands by (1 + β(L)) γ, even an optimum is no less costly than a
Nash equilibrium for the original demands. This provides a natural
extension to previous results on NCGs, where a scaling factor of 1 +

β(L) occurs. We also showed that for polynomials, the new scaling

factor is the best possible up to a factor of (1 + β(L)) γ
1

1+p .
Finally, we considered computation of optima and (extreme) Nash

equilibria. We showed how both can be characterized by non-linear
programs and when and how convexity of the objective function can be
determined. The objective function is essentially the social cost function
SC with an additional linear term. We pointed out cases where we have
linearly constrained convex quadratic programs and also described a
heuristic procedure for the general case. We will show how to put that
into practice in the next chapter.



Chapter 3

Experimental Studies and
Conjecture

This chapter contains the first thorough experimental investigation
of the price of anarchy in NCRCGs with polynomial element latency
functions from Poly+(p) for p ∈ {1, 2, 3} and one player class. The
driving force for the experiments are the following three questions:

– Are there instances that provide a higher lower bound than given
in Thm. 2.9?

– How does a binary search scheme based on Thm. 2.18 perform in
practice?

– How do our upper bound on the price of anarchy (Thm. 2.12) and
Perakis’ bound (Thm. 1.25) compare, in cases where both are appli-
cable?

Our studies are based on several million randomly generated small
instances. We describe our computational procedure in Sec. 3.1, the ex-
perimental setup in Sec. 3.2, and the random model in Sec. 3.3. Results
are presented and discussed in Sec. 3.4 and Sec. 3.5. The main result
is that the lower bound of Thm. 2.9 essentially remains the best one
known. We did not succeed in finding an example for which we could
show a price of anarchy exceeding the bound by more than 1% for
p ∈ {1, 2} and 4% for p = 3. We attribute these small overstepping to
numerical inaccuracies. Moreover, for many settings of parameters, we
could span the whole range between 1 and the bound with examples.
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This is an indication that neither our computational procedure nor
the way we generate random instances is responsible for us not ob-
serving higher prices of anarchy. We hence conjecture that this bound,
namely the lower bound from Thm. 2.9, is in fact an upper bound (for
polynomials).

Conjecture. The price of anarchy in an NCRCG with element latency func-
tions drawn from Poly+(p) is no more thanγp if γ ≥ (1 + p)

1
p

1
1−γ β if γ ≤ (1 + p)

1
p

, where β = β(Poly+(p)) = p (p + 1)−1− 1
p .

It is worth noting that the finer facets of this conjecture were ob-
tained during the experiments. The starting point was a conjecture
inspired by the universal bound from Thm. 2.12 directly applied to
polynomial element latency functions, namely we conjectured an up-
per bound of simply 1

1−β γp. Most of the subsequent refinements that
lead to Thm. 2.9, Thm. 2.12, and finally to the above conjecture were
inspired by experimental results. We depict this more closely on p. 177
and p. 178.

Additionally, in Sec. 3.7, we compare our bounds with Perakis’
where applicable. We give a summary in Sec. 3.8. Experimental results
are given in detail in App. B; these plots and tables are explained in
this chapter in Sec. 3.5 to Sec. 3.7.

3.1 Computational Procedure

For each randomly generated instance, we do the following:

1.) If element latency functions are affine, then check whether SC is
convex onA or not. This is done by checking whether the projected
Hessian is positive semidefinite.

2.) If element latency functions are affine, then check whether Per-
akis’ bound for the positive definite case is applicable. If so, then
compute it.
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Algorithm 2: Binary search for a worst Nash equilibrium.

left← OPT;
right← ρ̃ OPT;
I ← dlog2

1
ε OPT (right− left)e (= dlog2

ρ̃−1
ε e);

i← 0;
c0 ← left;
while i < I do

if (Nash NLP) with c0 is feasible then
ã← optimal solution to (Nash NLP) using c0;

else
ã← NIL;

if ã is acceptable then
a← ã;
left← c0;

else
right← c0;

c0 ← left + right−left
2 (= left+right

2 );
i← i + 1;

return a;

3.) Try to find an optimum a∗ of (OPT NLP), using an NLP solver
back-end [31, 86, 89].

4.) Try to solve (Nash NLP) using the NLP solver back-end with differ-
ent c0, following a binary search scheme. The Nash equilibrium a
with the highest social cost obtained by this procedure is returned
as the result.

We describe the last step in more detail in the following. Recall the
non-linear program for Nash equilibria from Sec. 2.11.

minimize SC(a)− λ>d

subject to a ∈ A
λ ∈ RN

λi ≤ LS(a) ∀S ∈ Si ∀i ∈ [N]

c0 ≤ λ>d

(Nash NLP)
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For now, we call a vector a ∈ Rn acceptable when it is a Nash
equilibrium; this will be refined for practical purposes later in Sec. 3.2.

3.1 Theorem. Let ρ̃ be an upper bound on the price of anarchy ρ. Assuming
that we can determine the feasibility of (Nash NLP) and solve it optimally if
it is feasible, Alg. 2 on the previous page computes the price of anarchy up to a
relative accuracy of ε, i.e., ρ− SC(a)

OPT ≤ ε for the solution a.

Proof. All Nash equilibria have their social cost within the interval
[OPT, ρ̃ OPT]. This algorithm always finds a solution, since there is
a Nash equilibrium of social cost at least OPT. Let aw be a worst
Nash equilibrium, so the price of anarchy is ρ = SC(aw)

OPT . Then by the
resolution of the binary search, the result a of the algorithm fulfills
SC(aw)− SC(a) ≤ εOPT and so the error is ρ− SC(a)

OPT ≤ ε.

3.2 Definition. By observed price of anarchy we refer to the value SC(a)
SC(a∗) ,

where a∗ and a are as in 3.) and 4.) on page 76, respectively.

If we can correctly determine feasibility of the involved NLPs and
solve them optimally if feasible, then the observed price of anarchy
equals the price of anarchy, up to the error ε introduced by binary
search. In general, the observed price of anarchy is a lower bound on
the price of anarchy.

To better quantify how close the observed price of anarchy is to the
bound of the conjecture, we introduce the target ratio of an instance. It
is the ratio of observed price of anarchy to conjectured bound. A target
ratio of 1 means that the conjectured bound is hit, and a target ratio of
more than 1 would disprove the conjecture. We say that an instance
has TRx if its target ratio is x% or more, e.g., an instance with TR90
has a target ratio of at least 0.9. Since the conjecture is known to be
true for γ = 1, we are mostly interested in the target ratios of instances
with γ > 1. Later we will give numbers stating what percentage of
the randomly generated instances with γ > 1 have a certain TRx (we
call this percentage “TRx value”), and we will also state how many
instances have γ > 1.

For some instances in our experiments, the binary search could
not find any acceptable solution. This happens rarely for p = 1 and
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more frequently than that for p > 1, as can be seen in the tables
found in App. B.2 starting on p. 179, in the column named “%OK”. If
it happens, the most common cause is that the vector returned by the
NLP solver fails the test for being a Nash equilibrium. As a possible
explanation, it was considered that the solver was not adjusted to
produce sufficiently accurate solutions. Additional tests with the NLP
solver configured for higher accuracy, however, suggested that this is
not likely to be the cause. Another explanation, for the cases where
only the Nash condition is not met, is that the solver simply failed to
find a global optimum. This is substantiated by the observation that no
instance with SC convex onA showed that kind of problem (for p = 1).

3.2 Experiment Setup

We wrote an implementation in C++, using various libraries. Most impor-
tantly, we use Ipopt [86, 89] (version 3.7.1) to solve the non-linear pro-
grams involved in the computation of Nash equilibria. We use a com-
bination of Ipopt and Lancelot [31] to solve the non-linear programs
involved in the computation of optima. For eigenvalue computations,
needed for Perakis’ bound, we use the GNU Scientific Library [44].
Post-processing and plotting of gained data is done using the R Sys-
tem [74]. Experiments are run in parallel on several Barcelona R© and
Opteron R© multicore machines using the Linux operating system at the
Rechenzentrum Universität Kiel.

We apply the following counter-measures and workarounds for
numerical inaccuracies:

– As noted earlier, all γ values are with respect to an optimal scaling,
in order to reduce the bounds. That is, we use

γscaled := min
ε1,...,εm>0

{
max

e∈E,S∈S

CeS

εeReS
· max

e∈E,S∈S

εeReS

CeS

}
.

We do, however, not actually scale the instances to not risk numerical
instabilities. Since a scaled instance has the same optima and Nash
equilibria as the original one, this procedure is correct.

– Instead of checking γ > 1 for determining the target ratios, we check
for γ > 1.01.
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– We initialize the binary search with left ← 0.95 OPT. The accuracy
used in the binary search is ε = 10−4.

– A vector a ∈ Rn is considered acceptable if all of the following condi-
tions hold:

(i) the NLP solver does not signal an error,

(ii) |d−∑S∈S aS| ≤ 10−2d and aS ≥ 0 for all S ∈ S,

(iii) c0 − SC(a) ≤ c010−2,

(iv) aS(LS(a)−Λ(a))) ≤ dΛ(a)10−3 for all S ∈ S, where Λ(a) :=
minS∈S LS(a).

We generally rely on the NLP solver to signal errors and infeasibility
correctly, so (ii) and (iii) exist mostly as a precaution. In fact no
instance failed (ii) or (iii) without failing (i). Test (iv) is to determine
whether we have a Nash equilibrium or not.

– We use the following settings for Ipopt:

tol 1e-10
dual_inf_tol 1e-02
constr_viol_tol 1e-06
compl_inf_tol 1e-06
acceptable_tol 1e-08
acceptable_dual_inf_tol 1e+08
acceptable_constr_viol_tol 1e-04
acceptable_compl_inf_tol 1e-04
max_iter 5000

With these settings combined with those of the previous item, we
obtain accurate solutions when rounded to two decimal digits for a
set of known instances.

– Tests for matrix definiteness are done comparing eigenvalues not
against 0, but against 10−13. This had turned out to be necessary in
order to prevent problems due to numerical errors, e.g., the Hessian
being recognized as positive semidefinite but the projected Hessian
not, or Cholesky decomposition (needed for Perakis’ bound) failing
on an allegedly positive definite matrix.
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3.3 Random Model and Data Sets

Since the NCRCG model comprises quite a few different parameters,
which have several constraints to fulfill, it is not directly obvious how
to generate random instances. We chose the following way. Recall that
we restrict to one player class.

1.) Fix the number of elements m, number of strategies n, the demand
d, and a maximal degree p.

2.) For each k ∈ {0, . . . , p} fix 0 ≤ θk,min ≤ θk,max and Pk ∈ [0, 1].

3.) Fix numbers 0 < cmin ≤ cmax and 0 < rmin ≤ rmax.

4.) For each strategy S, fix PS,min, PS,max ∈ [0.0, 1.0].

5.) For each strategy S, choose a number PS ∈ [PS,min, PS,max] uniformly
at random.

6.) For each strategy S ∈ S:

Initialize P := PS. Then for e = 1, . . . , m do: with probability
1− P set CeS and ReS to 0, and with probability P choose CeS from
[cmin, cmax] uniformly at random and ReS from [rmin, rmax]. Until the
strategy has at least one non-zero entry, increase P after each step in
such a way that if e = m and still no non-zero entry exists, we will
have P = 1. After a non-zero entry was chosen, reset P := PS and
never touch it again until the next strategy is treated. This is just
one way to ensure our requirement that there must be no empty
strategy.

7.) For each element e ∈ E:

For each k ∈ [p] with probability 1 − Pk set θe,k to 0, and with
probability Pk choose θe,k from [θk,min, θk,max] uniformly at random.
If all so chosen coefficients are zero, start over again for that element.
Finally define `e(x) := ∑

p
k=0 θe,kxk. This procedure ensures that

`e(x) > 0 for all e ∈ E and x > 0, and so that OPT > 0.
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We do experiments in series. For each series, steps 1.) to 4.) are
executed once, and then steps 5.) to 7.) are executed many times, and
computations are done for each instance. We now describe the scheme
by which we fix the parameters in steps 1.) to 4.). We fix the following
parameters for all experiments: m := 4 and [PS,min, PS,max] := [0.1, 1.0]
for all S ∈ S. We also fix cmin := rmin := 1, which is without loss of
generality by a scaling argument.

The number of strategies n ranges in {2, . . . , 6, 9}, which was cho-
sen to cover the range where n is not far from m, and also to show
the effects of n being larger than m. Regarding demand, we run each
experiment once with d := 1 and once with d := 10, in order to cover
two different scales of congestions, latencies, and social costs.

Latency Functions. The maximum degree of polynomials in element
latency functions p ranges in {1, 2, 3}. Fix one p for now. We use
two different sets of parameters for the element latency functions.
Instances using the first set of parameters are called single: Pp := 1.0
and Pk := 0 for k 6= p, [θk,min, θk,max] := [1.0, 1.0] for all k. That is, we
have `e(x) = xp for all e ∈ E. We denote such a vector of parameters
by single := (θk,min, θk,max, Pk)k∈{0,...,p}.

Instances using the second set of parameters are called mixed: we
set Pk := 0.5 and [θk,min, θk,max] := [0.01, 1.0] for all k > 0, and P0 := 0.5
and [θ0,min, θ0,max] := [0.01, cmaxrmax]. That is, for each element latency
function, each of the coefficients has a probability of 0.5 to be non-zero,
and if so, it is chosen uniformly at random from the interval [0.01, 1.0]
in case of a non-constant term and [0.01, cmaxrmax] for the constant term.
The 0.01 is to prevent too small numbers and the cmaxrmax is inspired
(for p = 1) by the example in the proof of Thm. 2.9(ii). This will lead to
a variety of element latency functions: constant ones and non-constant
ones, and ones with or without constant term. We denote such a vector
of parameters by mixed := (θk,min, θk,max, Pk)k∈{0,...,p}.

Consumption and Relevance Numbers. For one group of series, we
fix the range for consumption numbers to [1.0, 9.0] and then go through
three different intervals for the relevance numbers: [1.0, 1.0], [1.0, 5.0],
and [1.0, 9.0]. For the other group of series, we fix the range for rele-
vance numbers to [1.0, 9.0] and then go through three different intervals
for the consumption numbers, just as above for relevance numbers.
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Table 3.1. Running times for increasing numbers of strategies. Each number
gives the total running time in seconds for 192 · Np = 19,200 instances with
the specified parameters on a 2.7 GHz machine, divided by 19.2 in order that
it corresponds to 1,000 instances. These are only rough measurements: gener-
ation of instances, scaling, computation of bounds, IO, etc. is all included.

n 2 3 4 5 6 7 8 9

p = 1 76 92 98 106 127 154 196 246
p = 2 90 118 135 157 199 233 304 389
p = 3 177 203 194 253 324 398 480 664

Summary. We run the following experiments. Fix m := 4. For each
p ∈ {1, 2, 3}, each d ∈ {1, 10}, each

(θk,min, θk,max, Pk)k∈{0,...,p} ∈ {single, mixed} ,

and each n ∈ {2, 3, 4, 5, 6, 9} do:

1. (Fixed consumption number range.) Fix [cmin, cmax] := [1.0, 9.0] and
rmin := 1.0. For each rmax ∈ {1.0, 5.0, 9.0} generate Np random
instances and compute their observed price of anarchy, bounds, and
parameters.

2. (Fixed relevance number range.) Fix [rmin, rmax] := [1.0, 9.0] and
cmin := 1.0. For each cmax ∈ {1.0, 5.0, 9.0} generate Np random in-
stances and compute their observed price of anarchy, bounds, and
parameters.

The numbers Np are N1 := 32,000, N2 := 32,000, and N3 := 16,000.
We treat fewer instances of p = 3 due to their higher computational
overhead. Tab. 3.1 gives a brief impression of running times. These
measurements were taken for one run of all experiments as described
above, with Np = 100 and itemized by maximum degree p and number
of strategies n. We additionally included the cases n ∈ {7, 8} here.

3.4 Qualitative Observations

We first state some qualitative observations and in the next sections
substantiate them by quantitative results. All statements concern-
ing convexity and Perakis’ bound are only based on the data gained
for p = 1.
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– Provoking an observed price of anarchy that is close to the conjec-
tured bound requires the choice of specific parameters. For many
settings, the observed price of anarchy usually is far away from that
bound, as can be seen by the TRx values, especially for n ≥ m.

– We observed the more instances with an observed price of anarchy
close or on the conjectured bound the smaller rmax − rmin was com-
pared to cmax − cmin. This can be seen by comparing the TR90 values
from series with fixed consumption number range, which is [1.0, 9.0],
and small relevance number range against values from series with
fixed relevance number range.

– For fixed m, the fraction of instances with SC convex on A decreases
with increasing n, and that decrease is rapid once n ≥ m.

– It makes a substantial difference using the projected Hessian instead
of the Hessian itself for determining the convexity of SC on A. There
are many instances with SC convex on A but not globally convex,
i.e., not convex on Rn.

A globally convex SC is equivalent to J~L being positive semidefinite,
and hence is equivalent to one of Perakis’ bounds being applicable.
Since so many instances have no globally convex SC, Perakis’ bounds
are also not applicable for many instances.

– We found only a very few instances where Perakis’ semidefinite
bound would have been applicable but the positive definite bound
not; see the differences between columns number four and five of
each table in App. B.2.1.

3.5 Hexagonal Binning Plots

We use kinds of scatter plots – namely hexagonal binning plots – to
receive an impression of the distribution of observed price of anarchy
in relation to the conjectured bound. A scatter plot is a method to
visualize two-dimensional data, e.g., a set of pairs of the form

(conjectured bound, observed price of anarchy) .
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a. Random instances with p = 1 from
all the series with fixed consumption
number range.
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b. Random instances with p = 1
from all series. Only those are shown
which have conjectured bound at
most the maximum observed price of
anarchy.

Figure 3.1. Hexagonal binning plots. Larger versions of these and other plots
are given in App. B.

For each such pair, a point is drawn in the plane at the coordinates
given by the pair. In a scatter plot for our application, a dot is drawn for
every single instance. The horizontal position of the dot is determined
by the conjectured bound, and the vertical position is determined by
the observed price of anarchy.

A hexagonal binning plot is similar to a scatter plot, and is better
suited for large data sets like the ones we have. For a hexagonal
binning plot, the plane is tessellated with small hexagons. Then an
imaginary scatter plot is conducted, and for each hexagon it is counted
by how many points it is hit. Finally, each hexagon is filled with a
shade of gray corresponding to the number of hits. We use the hexbin
R package [24] to create hexagonal binning plots. The number of
hexagons is chosen large, in order to have a fine resolution; the plots
thus closely resemble the underlying scatter plots. Darker shades of
gray indicate a higher number of hits, i.e., a higher density of points.
Our plots only show a higher density in the lower left corner, if at all.
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Our plots are shown in App. B.1 starting on p. 172; two small ex-
amples are also given in Fig. 3.1 on the previous page. In addition
to hexagons, a black line, which we call the borderline, is drawn, that
marks where the observed price of anarchy equals the conjectured
bound, i.e., it is simply a plot of the function x 7→ x. Instances repre-
sented by hexagons close to that line have TRx for x close to 100, and a
hexagon positioned to the upper left of that line would have indicated
a counter-example to the conjecture. A few are positioned vertically
below 1, which is an impossible value for the price of anarchy. A possi-
ble explanation is again numerical inaccuracies or that the NLP solver
failed to solve (OPT NLP) optimally. These dropout cases disappear
when we remove the non-convex cases from the data set.

3.6 Tables

Our results are shown in detail in several tables in App. B.2. The
eight tables starting with Tab. B.1 on p. 179 show results for p = 1
and several parameters with 32,000 randomly generated instances in
each row. Numbers are rounded to the shown number of decimal
digits. The first column gives the number of strategies. The second
column gives the upper bound on the range for consumption numbers
or relevance numbers, respectively. The next two columns give the
percentage of instances with SC convex on A (abbreviated “C”) and
globally convex SC (abbreviated “GC”), respectively. The next column
shows the percentage of instances for which Perakis’ positive definite
bound is applicable.

The sixth column (titled “%OK”) gives the percentage of instances
where the binary search found at least one acceptable solution. Only
these instances form the basis for the values in the following columns.
The next column gives the average price of anarchy. The eighth column
(titled “#(γ > 1)”) gives the number of instances with γ > 1 (recall that
we in fact test for γ > 1.01). In the following three columns we have
the percentages of instances with the specified TRx property (relative
to the number of instances with γ > 1) with x ∈ {50, 90, 100}. The
reason we give column number eight is to show how many instances
count for the TRx statistics.
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Starting with Tab. B.9 on p. 187 we give more TRx values, namely
for x ∈ {30, 40, . . . , 100} and for p ∈ {1, 2, 3}.

3.7 Comparison with Perakis’ Bound

We compare Perakis’ bound for the positive definite case to our proven
and our conjectured bound. Results are shown in App. B.3, starting on
p. 212. The basis are the 4,587,662 instances with p = 1 for which the
binary search yielded at least one acceptable solution. From those, we
pick those in which Perakis’ bound is applicable. This is approximately
20% of the instances, namely 926,254 instances in total. On p. 212 we
show a comparison with our proven bound by the means of two plots.
Perakis’ bound looks better than ours. However, the computation of
Perakis’ bound also yielded some extraordinarily high values, up to the
value of 9,007, which were removed from the data set before creating
the plot for the sake of a reasonable scale. It is currently not understood
whether these high values are to be attributed to numerical errors, or
reflect the true values. On p. 213 and p. 214 a comparison with our
conjectured bound is given. Based on this plot we recognize a good
performance of ours compared to Perakis’ bound. The values of our
bound barely reach beyond 50, whereas the values of Perakis’ bound
span the whole horizontal scale. Moreover, 1,395 values of Perakis’
bound are off-scale.

For a more quantitative evaluation, we give two histograms on
p. 215. They show the distribution of the ratios of Perakis’ bound to our
proven and conjectured bound, respectively. A ratio less than 1 means
that Perakis’ bound is smaller (hence better), and a ratio of more than 1
means that our bound is better. Relative to this measure, we recognize
by looking at the histograms that both our bounds are outperformed
by Perakis’ most of the time.

We conclude that our bounds have the following strengths:

– They are always applicable, not only under Jacobian definiteness
conditions.

– They are computationally simple to obtain.

– They can easily be roughly upper-bounded if we know ranges of
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consumption and relevance numbers. This rough bound is 9 · 9 = 81
in our experiments for our conjectured bound.

Perakis’ bound – if applicable – has the strength of being smaller than
ours, even our conjectured bound, in most cases.

3.8 Summary

We presented an experimental framework for the NCRCG model and
put the theoretical computational results of Sec. 2.11 into practice. The
per-instance running time for our small instances is close to negligible.
Expectedly, it grows with the number of strategies and the degree of
the polynomials. Regarding the quality of the solution delivered, it
was pleasant to see that we found at least one Nash equilibrium per
instance for the majority of instances (cf. column “%OK” in the tables
in App. B.2). We computed lower bounds on the price of anarchy – the
“observed price of anarchy” – up to the best known theoretical lower
bound, but not exceeding it (up to inaccuracies). The observed prices of
anarchy build up a line along the borderline drawn by the theoretical
lower bound, as depicted by the plots in App. B.1. Based on this, we
conjectured that the lower bound is also an upper bound.

We also compared our bounds to Perakis’ bound and pointed out
strengths and weaknesses of both approaches.



Conclusion and Future Directions

We have witnessed how a seemingly small change to the model of
non-atomic congestion games (NCG) affects profound structural and
quantitative changes, and qualitative new phenomena arise. All we
did was to exchange the rates of consumption for two sets of numbers:
consumption numbers and relevance numbers. This is the non-atomic
consumption-relevance congestion game (NCRCG) model. The model
extension was motivated by the extension of selfish unicast to multicast
routing, but of course it is also interesting in its own right. The most
important changes are:

– The price of anarchy in NCRCGs, even from a worst-case point
of view, depends on structural parameters not limited to element
latency functions (Sec. 2.2 and Sec. 2.8). As the relevant parameter,
we introduced γ (Sec. 2.5). If the NCRCG models multicast, this
parameter is related to the network structure. For comparison: in
NCGs, the worst-case price of anarchy only depends on the latency
functions used (Thm. 1.16, Thm. 1.18, and Thm. 1.17).

– If considering polynomial element latency functions, the worst-case
price of anarchy in NCRCGs depends exponentially on the maximum
degree p. (Sec. 2.2 and Sec. 2.8). For comparison: in NCGs, we have
a Θ( p

ln p ) bound. So roughly speaking, NCRCGs tend to exhibit a
much higher price of anarchy than NCGs.

– NCRCGs admit Nash equilibria with different social cost. For poly-
nomials from Poly+(p), there may even be a gap exponential in p
between the social costs of different equilibria (Sec. 2.2). For com-
parison: in an NCG, all Nash equilibria have the same social cost
(Sec. 1.5).
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We see the following challenges for future work:

1. Prove or disprove the conjectured upper bound on the price of
anarchy.

2. Study the price of stability, i.e., infa is N.E.
SC(a)
OPT . This is not an issue

in the NCG model, since all Nash equilibria have the same social
cost in an NCG and hence price of stability and price of anarchy
coincide. For NCRCGs, as seen in Sec. 2.2, the gap between price of
anarchy and price of stability can be exponential in p for element
latency functions from Poly+(p). It appears that the basic tool, the
variational inequality (VAR) on p. 14, which characterizes Nash
equilibria, is insufficient for bounding the price of stability. New
methods will be required, which hopefully might also yield a proof
for the conjectured bound on the price of anarchy.

3. Develop new algorithms to compute optima and Nash equilibria.
Our experimental results in Ch. 3 and App. B.2 can serve as a bench-
mark for future experimental studies: will a new algorithm be able
to deliver substantially higher TRx values for the same random
model? Will a new algorithm succeed in disproving the conjecture
by the discovery of a counter-example?

4. Analyze the causalities between the random model from Sec. 3.3
and the observations and results in Sec. 3.4.

5. Address the computational challenge in case that the number of
strategies is too large in order to store C or R explicitly in memory
or to treat mathematical programs that contain one variable for each
strategy. In unicast routing, if all paths are eligible for routing, or if
the exclusion of certain paths can be expressed by exclusion of edges,
everything of interest can be expressed on edge level using flow
conservation constraints, as described in Sec. 1.6. A representation
as an action distribution can be reconstructed from this, if desired.
It is unclear how to do something similar for general NCRCGs.



Part II

Distributed Network
Formation





Chapter 4

Distributed Network Formation

In Part I a network was given and a large number of players used it
for routing in a distributed manner. We saw that a network-related
parameter γ influenced the price of anarchy. Now, we consider a
network being built in a distributed manner. Many details will be
different, however, there are also similarities:

– Players wish to connect to each other, so there is a routing aspect.

– We will use the concept of Nash equilibrium (besides another equi-
librium concepts).

– In Ch. 5, we will again meet the basic notion “how many terminals
are reached via this edge” as a central concept.

Still, this part can be understood without the knowledge of Part I.

We mostly review previous work in this chapter and introduce
the relevant modeling and equilibrium concepts. New results will be
presented in Ch. 5.

In Sec. 4.1 and Sec. 4.2, we explain the basics of the model, including
the different ways that links can be formed (namely unilaterally or
bilaterally), individual and social cost functions, and Nash equilibrium.
Nash equilibrium is not the only equilibrium concept we will use, but
we restrict to it at first. Equipped with all necessary prerequisites, we
study a concrete model in Sec. 4.3, the sum-distance model. In Sec. 4.4 we
look at the bilateral case more closely and discuss several alternative
equilibrium concepts. We show that the sum-distance model behaves
differently under bilateral link formation. We give a bibliographic
overview in Sec. 4.5.
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We only use graphs and directed graphs in this part, we do not
need multigraphs or directed multigraphs. For basic graph-theoretic
terminology we refer to App. A.2.

4.1 Basic Idea

We work in an atomic model, that is, there is a finite number of play-
ers, each having a substantial influence on the system. Each player
represents a vertex in the to-be-built network. We use the terms player
and vertex synonymously. Let n be the number of players, and denote
V = [n] = {1, . . . , n}. So, while “n” denoted the number of strategies
in the previous part, now it is the number of players. Generally, the
models in this part have fewer parameters than those in the previous
part; in particular, we do not have to consider latency functions.

Players can build edges to other players, hence forming a graph.
Building edges incurs a cost – however, a cost is also incurred when the
graph has bad routing properties. We describe the basic idea informally
by a dynamic process, although we will only do static analysis later.
Consider n vertices without any edges. Each vertex wishes to be able
to route to each other vertex, and moreover the connectivity should be
‘good’ in some sense, e.g., with short path lengths. The empty graph is
clearly not suitable. So players will start building edges. Each player
v can build edges of the form {v, w}. All edges can be used in both
directions for routing. Each edge that player v builds, costs an amount
of α, where α > 0 is a parameter. Hence, depending on how great
α is, it may not be desirable for a player to build an edge to every
other vertex, although this would probably give a good connectivity.
The connectivity is expressed by an additional cost, which we call the
indirect cost. Good connectivity means small, or even zero indirect cost.
Bad connectivity means high indirect cost. For instance, the indirect
cost for player v could be the sum of distances to all other players. The
individual cost of each player is the cost incurred by building edges,
the building cost, plus the indirect cost. The social cost is the sum over
the individual costs of all players.

Several questions arise. What do equilibrium graphs look like,
that is, graphs in which, say, no player has an incentive to build any
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additional edges, remove existing edges, or exchange some currently
built edges for others?1 How high is the social cost in equilibrium
graphs? How much does it differ from the cost of an optimum graph,
i.e., what is the price of anarchy?

4.2 Model Framework

We introduce the model framework and all related notation here, that
will be used throughout this part. This is only a framework, not a com-
plete model; the framework offers placeholders that must be replaced
by actual definitions in order to form a model. We will demonstrate
how to do so in Sec. 4.3.

4.2.1 Strategy Profile, Final Graph, Cost

There are always these two parameters: the number of players n ∈ N,
usually n ≥ 3, and the edge cost α > 0. Each player v decides to which
other vertices she would like to be connected by an edge. The requests
of player v can be expressed as a vector Sv ∈ {0, 1}n. If Svw = 1,
then v would like the edge {v, w} to exist. Such a vector Sv is called a
strategy for player v. A vector of strategies S = (Sv)v∈V , one for each
player, is called a strategy profile. We can also denote a strategy profile
as an n× n matrix (Svw)v∈V,w∈V , then row number v is the strategy of
player v. Strategy profiles correspond to the concept known as “action
distribution” in Part I.

Let a strategy profile S be given. The graph which actually is built is
called the final graph, denoted G(S) = (V, E(S)). The actual definition
of the final graph is model-specific, i.e., one of the placeholders to be
filled in to form a concrete model. We will consider the following two
alternative definitions.

1Depending on the equilibrium concept, not all ways of deviating from the current
decisions must be taken into consideration, or additional properties must be given
for an equilibrium. Players might also not be allowed to make certain decisions
unilaterally, e.g., v might need w’s permission to build {v, w}. We will discuss different
equilibrium concepts later.
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4.1 Definition.

(i) We define the unilateral final graph2 GU(S) = (V, EU(S)) by

EU(S) := {{v, w} ; Svw = 1∨ Swv = 1} .

(ii) We define the bilateral final graph GB(S) = (V, EB(S)) by

EB(S) := {{v, w} ; Svw = 1∧ Swv = 1} .

Often we omit the “U” and “B” superscripts from our notation if
a statement is supposed to hold for both cases or if it was explained
earlier that we restrict to one of the two.

In the unilateral case, it suffices when one of the endpoints, v or w,
requests an edge {v, w} for it to appear in the final graph. In the
bilateral case, both endpoints, v and w, have to request an edge {v, w}
for it to appear in the final graph. Denote mU(S) := |EU(S)| and
mB(S) := |EB(S)| the number of edges in the final graphs.

Each player v ∈ V experiences an individual cost, denoted Cv(S, α),
comprised of building cost plus indirect cost. Building cost is different
for the unilateral and bilateral cases:

– In the unilateral case, player v pays an amount of α for incident
edges in the final graph that she has requested, i.e., v experiences
building cost ∑w∈V Svw α.

– In the bilateral case, for each edge {v, w} in the final graph, both
endpoints, v and w, are charged α, i.e., each v experiences building
cost degG(S)(v) α.

For the bilateral case, it is also common in the literature to charge
each player v an amount of α for every link that v requested, no matter
whether the link was actually built, i.e., no matter whether it occurs
in the final graph. So each v would be charged ∑w∈V Svw α, as in the
unilateral case. This makes players to pay even for useless requests.
For the unilateral case, even with our notion of cost, it is possible that
both endpoints pay for a link while it would have been sufficient if one
of them paid for it; in other words, players may be charged for unnec-

2This definition is also known as the closure of S, see, e.g., [7, 8, 46, 82].
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essary requests. We have chosen our notion of building cost since in
both the unilateral and bilateral case, it guarantees at least that no-one
is charged for a link that is not in the final graph. Ultimately, however,
this does not matter since we will rule out unnecessary and useless
requests soon when we restrict to so-called clean strategy profiles.

The indirect cost for player v is denoted Iv(G(S)) and only depends
on the final graph. We require the indirect cost to not even depend on v
itself, but only on v’s position in the final graph. This is of importance in
particular if G(S) has symmetry. For instance, if G(S) is a cycle, then all
vertices experience the same indirect cost. If G(S) is a path, then both
endpoints experience the same indirect cost. The actual definition of
indirect cost is model-specific; it is the second (and final) placeholder to
be filled in to form a concrete model. For instance, we could choose the
sum of distances to other vertices, i.e., Iv(G(S)) := ∑w∈V distG(S)(v, w).
Many other notions are possible. We will analyze a notion of indirect
cost expressing robustness in Ch. 5.

The social cost (or sometimes just cost), denoted C(S, α), is the sum
over all individual costs, i.e., C(S, α) := ∑v∈V Cv(S, α). The total build-
ing cost is the sum over the building costs of all players. The total
indirect cost is the sum over the indirect costs of all players. Hence,
social cost is total building cost plus total indirect cost.

Alternatively, instead of using indirect cost, one can also use a more
positive notion. Instead of experiencing a cost Cv(S, α), player v can
enjoy a payoff πv(S, α). Payoff is a quantity called income (or utility,
benefit) minus building cost. Income is the positive notion of indirect
cost. Essentially, it is the same concept expressed differently. We stick
to the notion of indirect cost.

In the unilateral case, strategy profiles can contain unnecessary re-
quests, i.e., Svw = 1 and Swv = 1, while one of the two would have
sufficed to have {v, w} in the final graph. In the bilateral case, strategy
profiles can contain useless requests, i.e., Svw = 1 and Swv = 0, while
{v, w} is not in the final graph even though v requested it. In many
respects, it is easier to work without unnecessary or useless requests.

4.2 Definition.
(i) A strategy profile S is called clean for the unilateral case if for all

v, w ∈ V the following implication holds: Svw = 1 =⇒ Swv = 0.
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(ii) A strategy profile S is called clean for the bilateral case if for all
v, w ∈ V the following implication holds: Svw = 1 =⇒ Swv = 1.

We will restrict to clean strategy profiles later. For each strategy
profile there exists a clean strategy profile with the same final graph
and with the same or less individual cost for each player. The reason is
simple: removing unnecessary or useless requests does not change the
final graph, hence it does not change indirect cost. It cannot increase
building cost for any player – in fact, it even reduces building cost for
certain players in the unilateral case. Hence in the study of optima, we
can restrict to clean strategy profiles. The same holds for all three kinds
of equilibria introduced later, as we will explain there.

4.2.2 Graph-Related Notions

Most of the time, we use a graph-related language when speaking of
strategy profiles and cost. We already know the notion of the final
graph, but unfortunately it does not always capture all relevant in-
formation. This can be compensated for by using a kind of directed
version of the final graph. For a strategy profile S, denote the directed
graph ~G(S) = (V,~E(S)) with

~E(S) := {(v, w); Svw = 1} .

Then S is completely determined by ~G(S) and vice versa – in fact, S is
the adjacency matrix of ~G(S). We give an example. We refer to players
by numbers V = {1, . . . , 9}. Denote the strategy profile S by a matrix:

S :=



0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 1 0 0 0


(4.1)
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Figure 4.1. Strategy profile S from (4.1) represented as a directed graph ~G(S).
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Figure 4.2. Final graph GU(S) for strategy profile S from (4.1).

Then Fig. 4.1 shows ~G(S) and Fig. 4.2 shows GU(S). Note that player 6
has three incident edges, although she did not issue any requests; row
number 6 has only zeros in the matrix. Player 6 has zero building cost
in the unilateral case. This strategy profile is not clean for the unilateral
case, since 3 and 4 name each other. It is also not clean for the bilateral
case, since, for instance, 1 names 3, but 3 does not name 1. So there is
no link {1, 3} in GB(S); in fact, the only link in GB(S) is {3, 4}.

Now we leave this example and consider the cost for a general
strategy profile S, first in the unilateral case. The final graph GU(S) is
a modification of ~G(S) where the directions of links are forgotten, i.e.,
the underlying undirected graph of ~G(S). The building cost of v is v’s
out-degree in ~G(S) times α. We can write the individual cost of v as

CU
v (S, α) = degout

~G(S)(v) α + Iv(GU(S)) .
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If S is clean, we have the social cost:

CU(S, α) = |EU(S)| α + I(GU(S)) .

So everything can be seen relative to a directed graph ~G = ~G(S); the
social cost is even fully determined by the underlying undirected graph
of ~G if S is clean.

Now consider the bilateral case. The situation is even simpler here:
individual and social cost can be expressed fully in terms of the final
graph. For a strategy profile S and player v the individual cost is:

CB
v (S, α) = degGB(S)(v) α + Iv(GB(S)) ,

and the social cost:

CB(S, α) = 2 |EB(S)| α + I(GB(S)) .

If S is clean, we can even determine S from knowing GB(S). This often
allows us to work with final graphs (which are undirected) instead
of strategy profiles (or directed graphs) in the bilateral case. In the
unilateral and bilateral case, the social cost of a clean strategy profile
only depends on the final graph, and so we sometimes write C(G, α)

instead of C(S, α), with G = G(S).

We use a short notation for strategy profile changes. Let S be a strat-
egy profile and v, w ∈ V. Then S + (v, w) and S− (v, w), respectively,
are defined by

(S + (v, w))xy :=

{
1 if (x, y) = (v, w)

Sxy otherwise
,

(S− (v, w))xy :=

{
0 if (x, y) = (v, w)

Sxy otherwise
,

for all x, y ∈ V. In other words, S + (v, w) means setting Svw to 1,
and S − (v, w) means setting Svw to 0. Inductively, we extend this
definition to sets F of pairs F ⊆ V × V. This is a similar notation as
for directed graphs. Indeed, we have ~G(S + (v, w)) = ~G(S) + (v, w)
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and ~G(S− (v, w)) = ~G(S)− (v, w). This notation is useful for both the
unilateral and the bilateral case. We have for F = {(v, w1), . . . , (v, wk})
and a clean strategy profile S:

GU(S + F) = GU(S) + {{v, w1} , . . . , {v, wk}}
GU(S− F) = GU(S)− {{v, w1} , . . . , {v, wk}}
GB(S + F) = GB(S)

GB(S− F) = GB(S)− {{v, w1} , . . . , {v, wk}} .

This shows that the two cases are similar regarding link deletion,
but different regarding link creation. We use the notion of “v selling (or
removing, deleting) an edge {v, w}” if v changes her strategy such that
{v, w} is no longer in the final graph. We use the notion of “v buying
(or creating, adding) an edge {v, w}” if v changes her strategy such
that {v, w} is now in the final graph. The latter is impossible for the
bilateral case and a clean strategy profile.

Convention. Strategy profiles in the following are assumed to be clean.

As mentioned earlier, this is without loss of generality for the study
of optima and equilibria, hence in particular the prices of anarchy and
stability.

4.2.3 Nash Equilibrium and Price of Anarchy

4.3 Definition.

– A strategy profile S is called a Nash equilibrium if

Cv(S + A− D, α) ≥ Cv(S, α)

for all v ∈ V and all A, D ⊆ {v} ×V.

– We call a directed graph ~G = (V,~E) a Nash equilibrium if there
exists a strategy profile S being a Nash equilibrium and ~G = ~G(S).

– We call an undirected graph G = (V, E) a Nash equilibrium if there
exists a strategy profile S being a Nash equilibrium and G = G(S).
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In other words, S is a Nash equilibrium if no player can strictly im-
prove her individual cost by changing her strategy, given the strategies
of the other players. Denote the set of all Nash equilibria for given n
and α by N (n, α). The concept of Nash equilibrium is not well suited
for the bilateral case; we will elaborate on this in Sec. 4.4.

With our definition of building cost, an unclean strategy profile
cannot be a Nash equilibrium (in the unilateral case), since a player
issuing unnecessary requests could strictly improve by removing those
requests. Thus, our restriction to clean strategy profiles is justified.3

4.4 Definition.
– A strategy profile with minimum social cost for fixed n and α is

called an optimum. The optimum social cost is denoted OPT(n, α).

– We call a directed graph ~G = (V,~E) an optimum if there exists a
strategy profile S being an optimum and ~G = ~G(S).

– We call an undirected graph G = (V, E) an optimum if there exists a
strategy profile S being an optimum and G = G(S).

The optimum social cost can be different for the unilateral and
bilateral case, and we write OPTU(n, α) or OPTB(n, α) to explicitly
distinguish the two cases where necessary.

We always assume that the optimum social cost is positive. All our
concrete models studied later will automatically fulfill this requirement.

4.5 Definition. We define the price of stability and the price of anarchy
with respect to Nash equilibrium, respectively, by:

σN(n, α) := min
S∈N (n,α)

C(S, α)

OPT(n, α)

and

ρN(n, α) := max
S∈N (n,α)

C(S, α)

OPT(n, α)
.

We omit the “N” superscript if it was explained earlier that we restrict
to Nash equilibrium.

3It would also be if we did not charge players for unnecessary requests, since then
those do not influence cost at all.
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4.3 A Concrete Model: Sum of Distances

To become familiar with the basic idea and the framework, we con-
sider a concrete model, which we call the sum-distance model. It was
the first such model for which a quantitative analysis of the price of
anarchy was conducted, namely in 2003 by Fabrikant, Luthra, Maneva,
Papadimitriou, and Shenker [41].

We stick to the unilateral case. The only placeholder left to fill in
the framework is the indirect cost. We define indirect cost for player v
as the sum of distances to all other players, i.e.,

Iv(G(S)) := ∑
w∈V

distG(S)(v, w) .

This indirect cost is suited to express routing cost: each player wishes
to route one unit of traffic to each other player, and the cost for routing
one unit along an edge is 1.

Recall that we can express strategy profiles as directed graphs
and that we restrict to clean strategy profiles. We will make use of
this extensively in this section and also use a streamlined notation.
First consider the social cost. It only depends on the final graph, say,
G = (V, E). As common in graph theory, we do not carry the name of
the concerning graph around in all our notation. For instance, we write
“dist(v, w)” instead of “distG(v, w)”. Denote m = |E| the number of
edges in the final graph. We then have a compact representation of the
social cost:

C(G, α) = m α + ∑
v,w∈V

dist(v, w) .

Since we are in the unilateral case, it is sometimes important who
pays for which edge. Then we use a directed version of G to express
that, denoted ~G = (V,~E), i.e., we choose ~G such that ~G = ~G(S), where
S is the strategy profile we wish to express. Then the number of edges
for which v has to pay is her out-degree degout(v), with respect to
~G. We can then express the individual cost of player v in only graph-
theoretic terms:

Cv(~G, α) = degout(v) α + ∑
w∈V

dist(v, w) .
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3 4 5

a. Strategy profile written as a di-
rected graph ~G.

12

3 4 5

b. The corresponding final graph G:
the link directions are simply forgot-
ten.

Figure 4.3. An example.

The distance “dist(v, w)” in the indirect cost is of course taken with
respect to the undirected version, namely G.

As an example, consider Fig. 4.3. We write out all individual costs
for a general α:

C1(~G, α) = 3 α + 1 + 2 + 1 + 1 = 3 α + 5

C2(~G, α) = 0 α + 1 + 3 + 2 + 2 = 8

C3(~G, α) = 0 α + 2 + 3 + 1 + 2 = 8

C4(~G, α) = 2 α + 1 + 2 + 1 + 1 = 2 α + 5

C5(~G, α) = 0 α + 1 + 2 + 2 + 1 = 6

Since dist(v, w) = ∞ if v and w are in different connected compo-
nents, optima and Nash equilibria are connected. Nash equilibrium
has a rather strong requirement. It does not only mean that no player
has an incentive to add one or more edges or to remove one or more
edges. It also means that no player has an incentive to do an exchange of
edges, i.e., to remove one or more edges and to add one or more other
edges instead. The difference can be seen by an example. Consider a
path on n vertices with arbitrary edge directions and, for simplicity,
α ≥ (n−1) n

2 . Then α is at least the largest individual indirect cost, so
there is no incentive for any player to buy one or more edges. There is
also no incentive to sell any edges, since that would make the graph
disconnected. Hence, if exchanges were not allowed, we would have a
Nash equilibrium. However, since exchanges are allowed, we do not
have a Nash equilibrium: most of the vertices can sell their one edge
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v

a. A path on n vertices.

v

b. Player v exchanges her edge.

Figure 4.4. If no exchanges were allowed, the path would be a Nash equilibrium if α is
large enough. In Fig. 4.4b, we see how player v can improve her cost from α + 22 to α + 16
by exchanging an edge.

(or one of their edges) and reconnect to the truncated part of the path
in a more efficient way, as shown in Fig. 4.4.

We will now analyze the sum-distance model to some extent. We
will not present all state-of-the-art results and techniques here, but
merely consider the max {1, O(

√
α)} bound on the price of anarchy,

which was first proved in [41]. We partly follow [41] and [85] in our
presentation. An overview of further results is given in Sec. 4.5. Let
n ≥ 3 in the following.

4.6 Proposition.

(i) If α ≤ 2, then the complete graph Kn is optimal.

It has social cost n (n−1)
2 α + n (n− 1) = Θ(n2α + n2).

(ii) If α ≥ 2, then a star is optimal.
It has social cost (n− 1) α + 2 (n− 1)2 = Θ(nα + n2).

Proof. Recall that the social cost is fully determined by the final graph,
so we can restrict to undirected graphs for considering optima. We
have dist(v, w) ≥ 2 for each pair v, w ∈ V, v 6= w that is not connected
by an edge. Therefore we have for any connected G = (V, E) with
m = |E| the social cost lower-bounded:

C(G, α) = mα + ∑
v,w∈V

dist(v, w) = mα + 2m + ∑
v,w∈V
{v,w}6∈E

dist(v, w)

≥ mα + 2m + 2 (n (n− 1)− 2m) = m(α− 2) + 2 n (n− 1) .

(4.2)
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This inequality is tight if diam(G) ≤ 2.
(i) If α ≤ 2, then α− 2 ≤ 0 and so the right-hand-side of (4.2) is

non-increasing in m, so it is minimal for maximum m. For the graph
with maximum m, the Kn, the inequality is tight, so Kn is optimal.

(ii) If α ≥ 2, then α− 2 ≥ 0 and so the right-hand-side of (4.2) is
non-decreasing in m, so it is minimal for minimum m. All trees have
minimum m, namely m = n− 1. So, a tree for which the inequality is
tight is optimal. A star has diameter 2, and so the inequality is tight
and hence a star is optimal. Its social cost also follows from (4.2).

4.7 Proposition.

(i) If α ≤ 1, then any S for which G(S) = Kn, is a Nash equilibrium.
Moreover, if α < 1, then these are the only Nash equilibria.

(ii) If α ≥ 1, then any S for which G(S) is a star, is a Nash equilibrium.

Proof. (i) Let α ≤ 1. If a player v sells an edge, her indirect cost rises
by at least 1. So if α ≤ 1, there is no incentive to sell any edges. If the
final graph is Kn, then selling is the only option players have. Hence
any strategy profile that has Kn as final graph is a Nash equilibrium.

If we have a graph with diameter at least 2, then there is a player
who can reduce her indirect cost by at least 1. So, if α < 1, no Nash
equilibrium can have diameter more than 1.

(ii) Let α ≥ 1. Let ~G = (V,~E) be a strategy profile such that the final
graph G is a star. The center vertex cannot buy additional edges. If an
outer vertex buys one or more additional edges, then her indirect cost
decreases by exactly 1 per new edge, since it reduces the distance to
exactly one vertex from 2 to 1. Since α ≥ 1, there is hence no incentive
to buy any more edges. If we assume that all edges point outward in ~G,
we are done here. This is because the center vertex is the only one that
could sell these edges, but then the graph would become disconnected.
The center vertex has no way of selling an edge and making the graph
connected again by adding a different edge.

However, we can even show that it does not matter who owns the
edges in the star. Let c be the center vertex and v be an outer vertex
that owns edge e = {c, v}, i.e., (v, c) ∈ ~E. Selling e and not buying
any new edges is impossible for v, since that would make the graph
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disconnected. This leaves us to consider whether it is beneficial for v to
sell e and to buy edges of the form {v, w0} , . . . , {v, wk}, with w0, . . . , wk
being outer vertices distinct from v.

Denote ei = {v, wi}, for i = 0, . . . , k. Consider e being sold and
then the edges e0, . . . , ek being bought one-by-one. When e is sold and
e0 bought, the building cost does not change. The indirect cost changes:
v is now 1 edge closer to w0, but also 1 edge farther from all other
n− 2 vertices. So we note an increase of n− 3 ≥ 0 in indirect cost, so
the strategy change was not beneficial so far. Now e1 is bought. This
reduces distance only to w1, namely by 1. So the indirect cost reduces
by 1, but the building cost increases by α ≥ 1. So the strategy change is
still not beneficial. The same holds for all further steps, where e2, . . . , ek
are bought. We conclude that there is no beneficial strategy change
possible for v, and hence we have a Nash equilibrium.

Now that we know some optima and Nash equilibria, we can easily
bound the price of stability.

4.8 Theorem. The price of stability is no more than 4
3 , for any n and α.

Proof. By Prop. 4.6 and Prop. 4.7, the price of stability is 1 for α ≤ 1 and
α ≥ 2: if α ≤ 1, then the complete graph is optimal and also a Nash
equilibrium, and if α ≥ 2 then the same is the case for a star. In the
range 1 < α < 2, we get a bound on the price of stability by dividing
the social cost of a star by that of the complete graph:

(n− 1) α + 2 (n− 1)2

n (n−1)
2 α + n (n− 1)

=
1
n

α + 2 (n− 1)
1
2 α + 1

≤ 1
n

2 + 2 (n− 1)
1
2 + 1

=
1
n

2n
3
2

=
4
3

.

Now we aim for a bound on the price of anarchy. From previous
propositions, we already know that it is 1 for α < 1. To have a bound
for larger α, we look at the diameter of Nash equilibria.

4.9 Lemma. The diameter of a Nash equilibrium is at most max {3, 2
√

α}.
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Proof. Let P = (v0, . . . , v`) be a shortest path between some vertices
v := v0 and w := v`. If ` ≤ 3, we are done. So assume ` ≥ 4. We
show that ` ≤ 2

√
α. We first treat the case that ` is even. By building

{v, w}, player v reduces the distance to vi to min {i, `− i + 1} for each
i ∈ [`]. The original distance to vi is i, so the improvement is positive if

i > `− i + 1, i.e., i > `
2 +

1
2 , that is if i ∈

{
`
2 + 1, . . . , `

}
since ` is even.

Total savings in indirect cost are at least:

`

∑
i=1

(
i−min {i, `− i + 1}

)
=

`

∑
i= `

2+1

(
i− (`− i + 1)

)

=
`

∑
i= `

2+1

(
2i− `− 1

)
=

`− `
2

∑
i=1

(
2
(

i +
`

2

)
− `− 1

)

=

`
2

∑
i=1

(
2i− 1

)
= 2

`
2 (

`
2 + 1)
2

− `

2
=
( `

2

)2
.

The actual savings may be higher, since the distance to other vertices
than those on P may be reduced as well. But for our result the above
estimation is good enough. Since we have a Nash equilibrium, the
improvement in indirect cost can be at most α, and so ` ≤ 2

√
α.

If ` is odd, i.e., ` ≥ 5, then we consider the savings resulting for v
from building {v, v`−1}. Since `− 1 is even, we already know that we
have savings of at least ( `−1

2 )2. This is augmented by savings equal to
`− 2, since v now can reach w via a path of length 2 instead of `. In
total, savings are at least( `− 1

2

)2
+ `− 2 =

1
4
(`2 − 2`+ 1) + `− 2

=
( `

2

)2
− `

2
+ `− 7

4
=
( `

2

)2
+

`

2
− 7

4
≥
( `

2

)2
.

We need ` ≥ 5 in the last step. It follows ` ≤ 2
√

α.

The lemma gives us a bound on the indirect cost part of the social
cost of any Nash equilibrium, namely O(n2√α), for α ≥ 1. Next we
relate the number of edges to the diameter. This is accomplished by
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v0

= v

v1

v2

v3

= u1

v4

= u2

v5

v6

v7

= v` = w

e4

x y

P1 P2

e

a. A shortest path from x to y via e is shown
at the top with (x, . . . , v) and (w, . . . , y)
each depicted as a zig-zag path. Below is a
shortest cycle containing e, here of length
`+ 1 = 8. Paths P1 and P2 are highlighted.
We have |P1|, |P2| ≤ diam(G).

v0

= v

v1

v2

v3

= u1

v4

= u2

v5

v6

v7

= v` = w

e4

x y

b. How we patch the shortest path when e
was removed. The replacement part is high-
lighted. The new path is at most 2 diam(G)
longer.

Figure 4.5. Distances increase by no more than 2 diam(G).

the following proposition and lemma.

4.10 Proposition. Let G = (V, E) be any graph and e = {v, w} ∈ E a
non-bridge. Then the removal of e does not increase the distance between any
two vertices by more than 2 diam(G).

Proof. Since e = {v, w} is not a bridge, there is at least one cycle
containing e. Let C = (v0, e1, v1, . . . , v`, e`+1, v`+1) be a cycle with
v = v0 = v`+1, w = v`, e = e`+1, chosen so that it has minimum
length `+ 1 among all cycles containing e. Let P1 := (v0, . . . , u1) with
u1 := vb `2 c and P2 := (v`, e`, v`−1, . . . , u2) with u2 := vd `2 e. If ` is even,

then the concatenation R := P1 ◦ P−1
2 connects v with w without using e.

If ` is odd, then R := P1 ◦ (u1, ed `2 e, u2) ◦ P−1
2 does the same. Fig. 4.5

shows the situation for odd `. In any case we have a ‘replacement’
R for e with |R| ≤ |P1| + |P2| + 1, so the distance between any two
vertices grows at most by |P1|+ |P2|.
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We are left to bound this against the diameter. We have |P1| =
|P2| = b `2c. Let P be a shortest path from v to u1 that is shorter than P1.
Since C is chosen as short as possible, P must start with e. The rest
of P cannot be shorter than P2, also because of the choice of C. Thus
|P1| > |P| ≥ 1 + |P2|, so b `2c > 1 + b `2c, a contradiction. The same
argument holds with P1 and P2 exchanged. It follows that P1 as well as
P2 are shortest paths, so |P1|, |P2| ≤ diam(G).

4.11 Lemma. Let ~G = (V,~E) be a Nash equilibrium and d := diam(G).
Then the number of edges in G is bounded by O(n + n2 d

α ).

Proof. There are at most n− 1 bridges, contributing the first term in the
bound. Let us consider non-bridges, i.e., edges that can be removed
without destroying connectivity. Fix v ∈ V and let {v, w1} , . . . , {v, wk}
be all non-bridges for which v pays, i.e., (v, w1), . . . , (v, wk) ∈ ~E. For
each i ∈ [k] let Vi be the set of vertices w such that all shortest v-w paths
lead via ei := {v, wi}. By Prop. 4.10, deleting ei increases the distance
to no vertex by more than 2d. Since v still chose to build ei, there must
be ‘many’ vertices to which ei reduces the distance to v, so that the
investment of α pays off. The vertices for which ei reduces the distance
to v are exactly those in Vi. Precisely, we have α ≤ |Vi| 2d. This holds
for each i. It follows a bound on the building cost of v:

kα =
k

∑
i=1

α ≤
k

∑
i=1
|Vi| 2d ≤ 2nd .

Summing this over all n players yields a bound of O(n2d) on the total
building cost for non-bridges, and hence the claimed bound on the
number of edges.

4.12 Lemma. The price of anarchy is bounded by the largest diameter of a
final graph, that is ρ(n, α) = O(max~G∈N (n,α) diam(G)), for all n and α.

Proof. For α < 1, it follows directly from Prop. 4.6(i) and Prop. 4.7(i)
that the price of anarchy is 1.

Let α ≥ 1. Then Prop. 4.6 gives a lower bound of Θ(nα + n2) on the
optimal social cost. Denote d := max~G∈N (n,α) diam(G). By Lem. 4.11,

we have an O((n + n2d
α ) α) = O(nα + n2d) bound on the total building
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cost of any Nash equilibrium fromN (n, α). We always have an O(n2d)
bound on the total indirect cost. It follows

ρ(n, α) = O
(

nα + n2d
nα + n2

)
= O(d) .

4.13 Theorem.

(i) If α < 1, the price of anarchy is 1.

(ii) If α ≥ 1, the price of anarchy is O(
√

α).

(iii) If α > (n−1) n
2 = Ω(n2), the price of anarchy is O(1).

Proof. (i) Follows directly from Prop. 4.6(i) and Prop. 4.7(i). (As in the
previous proof.)

(ii) Follows directly from Lem. 4.9 and Lem. 4.12.
(iii) The worst increase in indirect cost by selling a non-bridge is

clearly bounded by the maximum conceivable individual indirect cost.
The latter is attained if the graph is a path and for a player at one of its
ends, namely ∑n−1

k=1 k = (n−1) n
2 . So, if α is larger than this, there can be

no non-bridges in a Nash equilibrium, and hence all Nash equilibria
are trees. A tree has its social cost roughly bounded by O(nα + n3).
Dividing this by the social cost of a star, namely Θ(nα + n2), yields the
O(1) bound since nα = Ω(n3).

For the next result we only give the proof idea. It was proved
independently by Lin [57] and Albers et al. [2]; a proof is also given
in [85].

4.14 Theorem. The price of anarchy is O(1 + α√
n ). In particular, it is O(1)

for α = O(
√

n).

Proof Idea. Carefully bound the diameter of an arbitrary Nash equi-
librium, achieving a better bound than in Lem. 4.9, and then invoke
Lem. 4.12.

4.4 More on the Bilateral Case

We have worked in the unilateral case in the previous section: the wish
of one endpoint, v or w, is enough in order to have {v, w} built. In the
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bilateral case, both endpoints, v and w, have to request an edge {v, w}
for it to appear in the final graph. We will elaborate more on the bilat-
eral case in this section. In Sec. 4.4.1 we consider equilibrium concepts
that are better suited for the bilateral case than Nash equilibrium is.
In Sec. 4.4.2 we revisit the sum-distance model in the bilateral case and
discuss differences to the unilateral one. In Sec. 4.4.3 we show how
simple-structured equilibria can be transfered from the unilateral to
the bilateral case in general.

By definition of individual cost, each of the endpoints has to pay
α for the edge in the bilateral case. This models the situation that
establishing a link incurs a non-transferable cost at each end, and so
requires the consent of both ends. If these costs were transferable, it
would probably be reasonable to allow one endpoint to pay for both
and have the edge built unilaterally, if desired. So, each player v would
have the option to pay 2α and have an edge {v, w} in the final graph
even though, for whatever reason, player w does not request this edge.
Hence the bilateral case is justified only when building cost is not
transferable.

4.4.1 Bilateral Equilibrium Concepts

It is important to realize that in the bilateral case, a player can remove
links unilaterally (i.e., by only changing her strategy) but there is no
way for a player to unilaterally build a link (since we restrict to clean
strategy profiles). The bilateral case requires us to rethink our equi-
librium concept. Recall that Nash equilibrium means that no player
can improve her cost by changing her strategy, given the strategies of
all other players. It follows that the empty strategy profile, i.e., Svw = 0
for all v, w ∈ V, is a Nash equilibrium. This may not be obvious, but
it is true: by changing her strategy, each v cannot lower her indirect
cost, since she cannot influence the final graph when all other players
chose 0-vectors as their strategies. The empty strategy profile being
an equilibrium independently of any other consideration appears un-
reasonable; for the sum-distance model it would trivially push the
price of anarchy to ∞. Therefore, we add one more condition to the
definition of Nash equilibrium. This condition introduces a minimum
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of cooperation: if for each of the two endpoints the new link would be
no impairment – or even beneficial – then it shall be built.

4.15 Definition.
– A strategy profile S is called a pairwise Nash equilibrium if it is a

Nash equilibrium and for all v, w ∈ V such that {v, w} 6∈ E(S) the
following implication holds:

Cv(S + (v, w) + (w, v), α) ≤ Cv(S, α)

=⇒ Cw(S + (v, w) + (w, v), α) > Cw(S, α) .
(4.3)

– We call a directed graph ~G = (V,~E) a pairwise Nash equilibrium if
there exists a strategy profile S being a pairwise Nash equilibrium
and ~G = ~G(S).

– We call an undirected graph G = (V, E) a pairwise Nash equilibrium
if there exists a strategy profile S being a pairwise Nash equilibrium
and G = G(S).

In other words, absence of {v, w} in the final graph requires ad-
ditional justification: if adding the edge, i.e., changing from S to
S + (v, w) + (w, v), is no impairment for one end, then it is an im-
pairment for the other end. With this extension, the empty strategy
profile is ruled out as equilibrium in any model that assigns indirect
cost ∞ to a disconnected final graph. In fact, a pairwise Nash equilib-
rium is always connected then. This is so since additional links cannot
be an impairment for anyone as long as cost is ∞: it remains ∞ or drops
to some finite value, neither of which is an impairment.

It is also common in the literature to define pairwise Nash equilib-
rium with strict inequality on the left-hand side, i.e.,

Cv(S + (v, w) + (w, v), α) < Cv(S, α)

=⇒ Cw(S + (v, w) + (w, v), α) > Cw(S, α) .

With this definition, the above argument does not work anymore. It
does work, however, e.g., in the sum-distance model with a small
modification: we set dist(v, w) not to ∞ but to a large number, strictly
greater than 1 + α.4 This modified model is essentially equivalent to

4A variant of the sum-distance model assigning a finite distance β to pairs of dis-
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the original one, for the unilateral case with Nash equilibrium. Then
adding a link connecting two components, or adding it to the empty
graph for that matter, is beneficial for both endpoints, and so discon-
nected graphs are no pairwise Nash equilibria. We will stick to the
definition using non-strict inequality.

Regarding the restriction to clean strategy profiles, the same reason-
ing given for Nash equilibria in the unilateral case on p. 102 applies.
Additionally, we have to realize that removal of useless requests cannot
create additional possibilities for forming links unilaterally – on the
contrary, it eliminates such possibilities. Removing useless requests
can hence not threaten the Nash equilibrium property of a pairwise
Nash equilibrium.

Astonishingly, pairwise Nash equilibrium is equivalent – under ad-
ditional requirements on the individual cost functions – to a seemingly
much simpler concept, given in the next definition.

4.16 Definition.

– A strategy profile S is called pairwise stable if for all v, w ∈ V the
following two conditions hold:

(i) If {v, w} ∈ E(S), then removal of the edge does not improve
cost for any of the two endpoints v or w, i.e.,

Cv(S− (v, w), α) ≥ Cv(S, α)

and Cw(S− (w, v), α) ≥ Cw(S, α) .

(ii) If {v, w} 6∈ E(S), then if adding the edge is no impairment to
v, then it is an impairment to w, i.e.,

if Cv(S + (v, w) + (w, v), α) ≤ Cv(S, α)

then Cw(S + (v, w) + (w, v), α) > Cw(S, α) .

– We call a directed graph ~G = (V,~E) pairwise stable5 if there exists a
strategy profile S being pairwise stable and ~G = ~G(S).

connected players has been studied in [20], including the case β ≤ 1 + α. The concept
of having a finite value for disconnection is also used in [56], called “disconnection
penalty” there.

5This will hardly occur in practice, since pairwise stability can already be recog-
nized by looking at the final graph.
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– We call an undirected graph G = (V, E) pairwise stable if there exists
a strategy profile S being pairwise stable and G = G(S).

Condition (ii) is exactly the additional condition that distinguishes
the concept of Nash equilibrium from that of pairwise Nash equilib-
rium as per Def. 4.15. Pairwise stability is comfortable to work with,
since one only has to consider single-edge changes. Moreover, it suf-
fices to look at the final graph G(S) to decide whether S is pairwise
stable. In other words, pairwise stability can be seen as a property of
graphs, without requiring the notions of strategies, strategy profiles, or
players.

The restriction to clean strategy profiles is again justified, since with
our definition of building cost the pairwise stability condition is not
influenced by useless requests.6

4.17 Proposition. A pairwise Nash equilibrium is pairwise stable.

Proof. Def. 4.16(i) is implied by the Nash condition. Def. 4.16(ii) is
directly implied, since it is part of the definition of pairwise Nash
equilibrium.

Denote S(n) all strategy profiles for n players. We introduce nota-
tion for the price of anarchy relative to different equilibrium concepts:

ρPN(n, α) := max
S∈S(n)

S is a pairwise Nash eq.

C(S, α)

OPT(n, α)

ρPS(n, α) := max
S∈S(n)

S is pairwise stable

C(S, α)

OPT(n, α)

We omit the “PN” and “PS” superscripts if it was explained earlier that
we restrict to the respective equilibrium concept.

4.18 Proposition. For any n and α we have ρPN(n, α) ≤ ρPS(n, α).

Proof. Follows from Prop. 4.17.

6This still holds if we charge players for useless requests. However, if we do so,
there might in fact emerge more costly pairwise stable strategy profiles if we dropped
the restriction to clean ones. Still it would be reasonable to maintain this restriction.
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Fortunately, pairwise stability is even equivalent to pairwise Nash if
cost functions are convex. For the sake of a streamlined notation, we
fix α now and write Cv instead of Cv(·, α) for the rest of this section.

4.19 Definition.
– Let v ∈ V and S a strategy profile. The cost function Cv is called

convex in S if for all {w1, . . . , wk} ⊆ V we have

Cv
(
S− (v, w1)− . . .− (v, wk)

)
− Cv(S)

≥
k

∑
i=1

(
Cv(S− (v, wi))− Cv(S)

)
.

– The cost function Cv is called convex on a set of strategy profiles S , if
it is convex in every S ∈ S .

– The cost function Cv is called convex if it is convex on S(n), i.e., the
set of all strategy profiles for the given number n of players.

In other words, convexity means that removal of all the edges
{v, w1} , . . . , {v, wk} increases cost for v by at least the sum of cost
increments for each removal alone. When proving or disproving con-
vexity, we may restrict all considerations to indirect cost since the
convexity condition is equivalent to

Iv
(
G(S− (v, w1)− . . .− (v, wk))

)
− Iv(G(S))

≥
k

∑
i=1

(
Iv(G(S− (v, wi)))− Iv(G(S))

)
.

4.20 Lemma. Let S be a strategy profile. If Cv is convex in S for each v ∈ V,
then S is a pairwise Nash equilibrium if and only if S is pairwise stable.

Proof. One direction is Prop. 4.17.
Let now S be pairwise stable. We have to show that S is a Nash equi-

librium. Fix a player v ∈ V. There is no way that v could unilaterally
add an edge. So we only have to show that v has no incentive to delete
edges. Let {w1, . . . , wk} ⊆ V. By pairwise stability, there is no incentive
to remove a single edge {v, wi}, i ∈ [k], i.e., Cv(S− (v, wi))−Cv(S) ≥ 0
for each i ∈ [k]. By convexity, it follows

Cv(S− (v, w1)− . . .− (v, wk))− Cv(S)
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≥
k

∑
i=1

(
Cv(S− (v, wi))− Cv(S)

)
≥ 0 ,

and so v also has no incentive to remove all edges {v, w1} , . . . , {v, wk}.

4.21 Corollary. Let Cv for each v be convex (at least) on the set of pairwise
stable strategy profiles. Then pairwise Nash equilibrium and pairwise stability
are equivalent.

The following lemma is due to Corbo and Parkes [32], their proof
is based on a result by Calvó-Armengol and İlkiliç [23].

4.22 Lemma. The individual cost functions in the sum-distance model from
Sec. 4.3 are convex.

Proof. Fix v ∈ V and let w1, . . . , wk ∈ V. We do induction on k. The case
k = 1 is trivial, so let k > 1 and with S′ := S− (v, w1)− . . .− (v, wk−1)

assume

Cv(S′)− Cv(S) ≥
k−1

∑
i=1

(
Cv(S− (v, wi))− Cv(S)

)
.

For any strategy profile T and edge {v, w} ∈ E(T) denote

V{v,w}(T) := {u ∈ V; all shortest paths from v to u in G(T) go via {v, w}} .

Switching from T to T − (v, w) increases distance to all vertices
in V{v,w}. For all {v, w} ∈ E(S′) we have V{v,w}(S′) ⊇ V{v,w}(S). So
switching from S′ to S′ − (v, wk) affects at least all those vertices that
are affected by a switch from S to S− (v, wk). Let u ∈ V{v,wk}(S). After
removal of {v, wk}, a shortest path from v to u must go via a different
edge incident to v. There are fewer alternatives for this in S′ than
in S. Hence the effect for each such vertex u of switching from S′ to
S′− (v, wk) is at least as strong as when switching from S to S− (v, wk).
It follows

Cv(S′ − (v, wk))− Cv(S′) ≥ Cv(S− (v, wk))− Cv(S) . (4.4)
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By induction, we receive:

Cv(S− (v, w1)− . . .− (v, wk))− Cv(S)

= Cv(S′ − (v, wk))− Cv(S)

= Cv(S′ − (v, wk))− Cv(S) + Cv(S′)− Cv(S′)

= Cv(S′ − (v, wk))− Cv(S′) + Cv(S′)− Cv(S)

≥ Cv(S− (v, wk))− Cv(S) + Cv(S′)− Cv(S) by (4.4)

≥ Cv(S− (v, wk))− Cv(S)

+
k−1

∑
i=1

(
Cv(S− (v, wi))− Cv(S)

)
by induction

=
k

∑
i=1

(
Cv(S− (v, wi))− Cv(S)

)
.

4.23 Theorem. For the bilateral sum-distance model, ρPN(n, α) = ρPS(n, α)

for all n and α.

Proof. Follows from Cor. 4.21 and Lem. 4.22.

4.4.2 Lower Bound for Bilateral Sum-Distance Model

We study the bilateral sum-distance model using pairwise stability as
equilibrium concept, which is equivalent to pairwise Nash equilibrium
as shown in the previous section. Recall from Thm. 4.14 that the price
of anarchy is O(1) in the unilateral sum-distance model if α = O(

√
n).

We show that this bound no longer holds in the bilateral case, following
Demaine et al. [38]. We first consider optima.

4.24 Proposition.

(i) If α ≤ 1, then the complete graph Kn is optimal.

(ii) If α ≥ 1, then a star is optimal.
It has social cost 2 (n− 1) α + 2 (n− 1)2 = Θ(nα + n2).

Proof. We proceed as in the proof of Prop. 4.6, with the only difference
that each edge has to be paid for the amount of α by both endpoints.
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Figure 4.6. Generalized star with ` = 4 and N = 8.

We have the social cost lower-bounded:

C(G, α) ≥ m (2α− 2) + 2n (n− 1) = 2m (α− 1) + 2n (n− 1) . (4.5)

This inequality is tight if diam(G) ≤ 2.
(i) If α ≤ 1, then α− 1 ≤ 0 and so the right-hand-side of (4.5) is

non-increasing in m, so it is minimal for maximum m. For the graph
with maximum m, the Kn, the inequality is tight, so Kn is optimal.

(ii) If α ≥ 1, then α− 1 ≥ 0 and so the right-hand-side of (4.5) is
non-decreasing in m, so it is minimal for minimum m. All trees have
minimum m, namely m = n− 1. So, a tree for which the inequality is
tight is optimal. A star has diameter 2, and so the inequality is tight
and a star is optimal. Its social cost follows from (4.5).
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c

v

w

Figure 4.7. When the dashed edge is built, player v reduces distance only to
those vertices drawn non-filled.

Now we aim for the construction of costly pairwise stable graphs.
A generalized star with ray length ` and N rays is a graph on n = N`+ 1
vertices, consisting of N paths of length ` (so each has `+ 1 vertices)
connected all together at one of their end vertices, making it a single
vertex called the center vertex. Fig. 4.6 on the preceding page shows an
example.

4.25 Proposition. Let ` ∈ N≥1 and α > 2`2. Then a generalized star with
ray length ` and any number of rays N is pairwise stable. It has social cost at
least 2 (n− 1) α + (N − 1) N`2 (`+ 1) = Ω(nα + n2`).

Proof. Clearly, no edge can be sold, since that would make the graph
disconnected. Let c be the center vertex and v, w ∈ V chosen so that
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dv ≤ dw, where dv := dist(v, c) and dw := dist(w, c). If {v, w} is added,
then v reduces her distance to at most ` vertices, since all these vertices
are on w’s ray, the center vertex excluded. Fig. 4.7 on the preceding
page shows an example. The decrease per vertex is at most the former
distance, which is at most 2`, so the savings in total are at most 2`2,
which is strictly smaller than α be assumption. Hence adding this edge
would be an impairment to v. It follows that the graph is pairwise
stable.

For computing the social cost, we use that the indirect cost of a tree
T can be computed by summing over all edges, namely

I(T) = 2 ∑
e∈E(T)

ν(e) (n− ν(e)) ,

where ν(e) denotes the number of vertices in that component of T − e
with a minimum number of vertices. We compute this sum ray-wise
and get for the indirect cost:

2N
`

∑
i=1

i (n− i) = 2N
(

n
` (`+ 1)

2
− ` (`+ 1) (2`+ 1)

6

)
= N` (`+ 1)

(
n− 2

3
`− 1

3

)
= N` (`+ 1)

(
N`+ 1− 2

3
`− 1

3

)
≥ (N − 1) N`2 (`+ 1) .

4.26 Theorem. In the bilateral sum-distance model, for ε ∈ (0, 1), α ≥ 2+ ε

and n− 1 being a multiple of b
√

α−ε
2 c, we have the following lower bound on

the price of anarchy:

(i) If α ≤ n, then ρ(n, α) = Ω(
√

α).

(ii) If α ≥ n, then ρ(n, α) = Ω( n√
α
).

Proof. Since α ≥ 1, a star is optimal with social cost Θ(nα + n2) by

Prop. 4.24(ii). Let ` := b
√

α−ε
2 c, then ` ≥ 1 and `2 ≤ α−ε

2 < α
2 . Then

by Prop. 4.25, any generalized star on n vertices with ray length ` (it
has N = n−1

` rays then) is pairwise stable with social cost Ω(nα + n2`).
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It follows

ρ(n, α) = Ω
(

nα + n2`

nα + n2

)
= Ω

( α + n`
α + n

)
= Ω

(
α + n

√
α

α + n

)
.

If α ≤ n, then this is Ω(
√

α). If α ≥ n, then this is Ω( n√
α
).

Why does this example work in the bilateral and not in the unilat-
eral case? The unilateral case requires us to consider the exchange of
edges: for a Nash equilibrium, we have to make sure that no player
can improve her cost by selling some of her edges and building some
new ones instead. We have seen in Fig. 4.4 on p. 105 how this can defy
situations in which simply adding new edges is impossible without
strictly increasing cost. The same would happen to any strategy profile
S for which GU(S) is a generalized star with ` and N large enough.
But even without the option for exchange, no generalized star with
`, N ≥ 2 that is supposed to be a Nash equilibrium can provide a ratio
of more than O(1) to the optimum in the unilateral case. Consider a
modification of Nash equilibrium such that a strategy profile is already
considered an equilibrium if no player can improve her cost by either
selling some edges or buying some edges, but not both. When a player
at the end of a ray connects to the center vertex, she reduces distance
to at least (N − 1) ` vertices by an amount of `− 1 each. So it would
be required that α > (N − 1) ` (` − 1). It follows, using a ray-wise
computation as in the proof of Prop. 4.25, that the social cost is at most
(n− 1) α + (N`)2 (`+ 1) = O(nα + αN`) = O(nα), and so this does
not yield a ratio to the optimum of more than O(1).

4.4.3 Transformations

We point out two special cases in which a Nash equilibrium in the
unilateral case can be transformed into a pairwise Nash equilibrium in
the bilateral case. In the unilateral case, we call a Nash equilibrium S a
maximal Nash equilibrium if Cv(S + (v, w1) + . . . + (v, wk), α) > Cv(S, α)

for all {v, w1} , . . . , {v, wk} 6∈ E(S). That is, we exclude the possibility
that a player can buy additional links so that the gain in her indirect
cost and the additional building cost nullify each other.
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4.27 Remark. In particular, a Nash equilibrium is maximal, if indirect
cost has its minimum possible value for all players (which is 0 for most
models). A Nash equilibrium is also maximal, if there exists ε > 0 such
that it is still a Nash equilibrium for α− ε instead of α. Hence, if S is
a Nash equilibrium for all α ≥ f (n), for some function f , this implies
that S is a maximal Nash equilibrium for all α > f (n).

Let S be a strategy profile. Define SB by SB
vw := min {1, Svw + Swv}

for all v, w ∈ V. Then GU(S) = GB(SB).

4.28 Proposition. Let S be a maximal Nash equilibrium (in the unilateral
case) with G := GU(S) being a cycle. Then SB is a pairwise Nash equilibrium
in the bilateral case.

Proof. By the definition of maximal Nash equilibrium, any additional
link is an impairment for the buyer. So the premise of (4.3) is never
true, i.e., all absent edges are justified.

New edges cannot be formed unilaterally. We are hence left to show
that each edge is wanted by both endpoints, i.e., none of the endpoints
can improve her individual cost by deleting the edge. Let v be the
owner of an edge {v, w} in the unilateral case. Since we have a Nash
equilibrium there, v cannot improve her individual cost by selling this
edge. Selling the edge means that v would be at the end of the path
G− {v, w}. We note: it is worth or at least no impairment paying α for
not being at the end of the path that results from G by deletion of one
edge. Therefore, both of each two neighboring vertices maintain their
requests in SB for having an edge between them.

4.29 Proposition. Let S be a Nash equilibrium (in the unilateral case) with
G := GU(S) being a tree. Let the indirect cost assign ∞ to a disconnected
graph. Then SB is a pairwise Nash equilibrium in the bilateral case.

Proof. As in the previous proposition, (4.3) follows from the properties
of a maximal Nash equilibrium. So we are left to consider removals.
Since the final graph is a tree, removal of any edge would make it
disconnected, yielding indirect cost ∞. Hence no player wishes to
remove an edge.
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4.5 Bibliographic Overview

We give a short bibliographic overview. It is by far not complete. In
particular, the reader is encouraged to also consult the references in the
cited publications.

4.5.1 Sum-Distance Model

The work of Fabrikant, Luthra, Maneva, Papadimitriou, and Shenker
[41] from 2003 is to the best of my knowledge the first quantitative
study of the price of anarchy in a model that fits into the framework
considered here (Sec. 4.2). They considered the unilateral sum-distance
model and proved a bound of max {1, O(

√
α)} on the price of anarchy

in general, and an O(1) bound for α > (n−1) n
2 ; cf. Thm. 4.13. They

conjectured that for α = Ω(1), all non-transient Nash equilibria were
trees – the Tree Conjecture. A Nash equilibrium is called transient
when there exists a sequence of strategy changes in which each player
changing her strategy maintains her individual cost, and finally a
strategy profile is reached which is no Nash equilibrium anymore. The
Tree Conjecture was based on the observation that all Nash equilibria
constructed so far at that time, for α > 2, were trees or transient ones
(namely the Petersen graph for α ≤ 4). The Tree Conjecture was later, in
2006, disproved by Albers, Eilts, Even-Dar, Mansour, and Roditty [2] by
showing that for each n0, there exists a non-transient Nash equilibrium
graph on n ≥ n0 vertices containing cycles, for any 1 < α ≤

√
n/2.

Corbo and Parkes [32] in 2005 considered the bilateral version of the
sum-distance model. They showed an O(

√
α) bound for 1 ≤ α < n2

on the price of anarchy. As noticed later in 2007 by Demaine et al. [38],
the proof in fact yields O(min {

√
α, n/√α}).

Albers et al. [2] in 2006 not only disproved the Tree Conjecture, but
also improved the bounds on the price of anarchy for the unilateral
sum-distance model: they gave constant upper bounds for α = O(

√
n)

and α ≥ 12ndlog ne, as well as an upper bound for any α of

15 (1 + (min {α2/n, n2/α})1/3) .

An O(1) upper bound for α = O(
√

n) was independently also proved
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by Lin [57]. These bounds were again improved by Demaine, Haji-
aghayi, Mahini, and Zadimoghaddam [38] in 2007. They showed a

bound of 2O(
√

log n) for any α and a constant bound for α = O(n1−ε)

for any constant ε > 0. For the bilateral version, they proved the
O(min {

√
α, n/√α}) bound of Corbo and Parkes tight; we followed

their proof for the lower bound in Sec. 4.4.2.

4.5.2 Equilibrium Concepts and Further Models

There is a vast body of literature on game-theoretic network formation,
by far not limited to studies of the price of anarchy. A good starting
point is the survey by Jackson [49] from 2004.

The way links are formed in the bilateral case follows a concept
given by Myerson [67] in a different context. We quote [67, p. 228],
emphasis added:

Now consider a link-formation process in which each player
independently writes down a list of players with whom he
wants to form a link, and the payoff allocation is the fair al-
location above for the graph that contains a link for every pair
of players that have named each other.

Jackson and Wolinsky [50] in 1996 introduced the symmetric con-
nections model and the equilibrium concept of pairwise stability. The
symmetric connections model is best described using the notions of in-
come and payoff, cf. p. 97. The income for player v is ∑w∈V

w 6=v
δdistG(S)(v,w),

where δ ∈ (0, 1) is a parameter. Her payoff is income minus building
cost. Note that we have an exponential dependence on distance. This
models to some extent that each link has a probability of 1 − δ for
failure. We will elaborate on this in the next chapter.

Jackson and Wolinsky discussed several variations of pairwise sta-
bility, including what would later be known as pairwise Nash equilib-
rium. We quote [50, p. 67]:

Another possible strengthening of the stability notion would al-
low for richer combinations of moves to threaten the stability of
a network. Note that the basic stability notion we have consid-
ered requires only that a network be immune to one deviating
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action at a time. It is not required that a network be immune to
more complicated deviations, such as a simultaneous severance
of some existing links and an introduction of a new link by two
players [..].

Watts [88] in 2001 studied the symmetric connections model with
an extended equilibrium concept: a graph is considered stable if no
player wishes to sell any link and if no two players wish to establish
an additional link while deleting any number of their links. Calvó-
Armengol and İlkiliç [23] and Corbo and Parkes [32] in 2005 discussed
different equilibrium concepts and their relations: pairwise Nash equi-
librium, pairwise stability, and proper equilibrium [67]. In [23], among
other results, it was shown that the symmetric connections model has
convex individual cost functions.

Bloch and Jackson [14] in 2007 introduced a model with transfers:
each player v decides how much she is willing to pay for a link {v, w} or
how much she would demand the other endpoint w to pay for the link.
If v offers at least as much as w demands, or vice versa, the link {v, w}
is established in the final graph. Appropriate equilibrium concepts
were introduced and discussed. Bloch and Jackson also compared
pairwise stability, pairwise Nash equilibrium, and their transfer model
in a separate publication [13].

Bala and Goyal [7] in 2000 and in a unilateral setting studied a
model where players wish to be connected by a path to as many other
players as possible, but path lengths are unimportant. They also con-
sidered a unilateral version of the symmetric connections model. In
another publication [8] in the same year, they extended the first model
by allowing each link to fail with a probability 1 − p. Haller and
Sarangi [46, 82] in 2003 extended this model again by allowing each
link {v, w} to fail with its own probability 1− pvw. We will elaborate
on this in Sec. 5.2 in the next chapter.

Anshelevich, Dasgupta, Tardos, and Wexler [5] in 2003 studied the
price of anarchy and algorithmic aspects of a model in which each
player has a set of terminals and aims to construct a network which
connects her terminals. For a related model, Anshelevich, Dasgupta,
Kleinberg, Tardos, Wexler, and Roughgarden [4] in 2004 studied the
price of stability. Also in 2004, Christin and Chuang [26] studied a
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model for network formation with an extended cost function modeling
peer-to-peer networks, and Christin, Grossklags, and Chuang [27]
looked at it under the aspect of different game-theoretic principles.

Chun, Fonseca, Stoica, and Kubiatowicz [29] in 2004 experimentally
studied an extended version of the sum-distance model.

Johari, Mannor, and Tsitsiklis [51] in 2006 studied a model in which
each vertex wishes to send a given amount of traffic to some of the
other vertices, and only cares whether the traffic eventually arrives
at the destination. There is a handling cost at each vertex, which is
proportional to the amount of traffic through that vertex.

Moscibroda, Schmid, and Wattenhofer [66] in 2006 studied the price
of anarchy in a variation of the sum-distance model where the distance
between two vertices is generalized, that is, it may be given by any
metric. The cost function uses the stretch, that is the actual distance in
the constructed graph divided by the distance that a direct connection
would provide. Halevi and Mansour [45] in 2007 studied the price
of anarchy in the sum-distance model under the generalization that
each player has a list of “friends”, that is, a list of other vertices and
she is only interested in her distance to those. Demaine et al. in [38]
in 2007 also considered the max-distance model: indirect cost for v is
maxw∈V dist(v, w). Upper bounds were shown for the unilateral case
and tight bounds for the bilateral case. Brandes, Hoefer, and Nick [20]
in 2008 studied a variant of the sum-distance model assigning a finite
distance to pairs of disconnected players, allowing for disconnected
equilibria. They proved structural properties and bounds on the price
of anarchy. Laoutaris, Poplawski, Rajaraman, Sundaram, and Teng [56]
in 2008 considered a variant of the sum-distance model with player-
dependent link costs, lengths, and preferences w(u, v) expressing the
importance of player u for having a good connection to player v, and
finally a budget for each player limiting the number of links that this
player can build. They considered existence of equilibria and proved
bounds on the price of anarchy and stability. Baumann and Stiller [10]
in 2008 considered the price of anarchy in the symmetric connections
model. Demaine et al. [39] in 2009 studied the price of anarchy in a
cooperative variant of the sum-distance model. They also looked at the
case that links can only be formed for certain pairs of vertices, in other
words the underlying “host” graph needs not to be a complete one.





Chapter 5

Distributed Network Formation
Against an Adversary

As pointed out by Fabrikant et al. [41], the sum of distances does by
far not capture all potentially relevant aspects of a graph; in particular,
it misses congestion and robustness properties. In this chapter we
are concerned with robustness properties of the final graph. Such has
already been addressed in specific forms before, but has to the best
of my knowledge not yet been studied theoretically in a model like
this. The model is introduced in Sec. 5.1. We review previous work
which addresses robustness and explain features and differences of
the various models in Sec. 5.2. The remaining sections analyze our
model with a focus on the price of anarchy. The most interesting
upper bounds are for the unilateral case, presented in Sec. 5.4 and
Sec. 5.5. The bilateral case is also interesting, as we show in Sec. 5.6:
it exhibits a much higher price of anarchy for a certain subclass than
we have in the unilateral case. It so raises the question about how our
model behaves in alternative equilibrium concepts that are between the
unilateral and bilateral case, e.g., models with transfers like the one
recently introduced by Bloch and Jackson [14]; we leave this for future
work. We summarize our new results in Sec. 5.7.
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5.1 Model

We use the framework from Sec. 4.2. For the final graph, we consider
each of the two definitions from Def. 4.1, i.e., the unilateral and the bi-
lateral case. The indirect cost is chosen to express robustness properties
of the final graph in the following way. Imagine that after the network
is built, an adversary deletes one link of his choice. Players are not al-
lowed to react to the adversary’s decision by replacing the deleted link
immediately – they have instead to cope with the damaged network
and use it to perform their tasks as good as possible at least for some
period of time. So players have to think ahead and build the network
as robust as it seems appropriate given the link cost α. The adversary
is modeled by a random experiment, i.e., we specify a probability dis-
tribution on the links of the final graph and let the adversary pick its
target according to this distribution. So players know in advance that
exactly one link will be deleted, but in general they do not know which
one it will be. Knowing the adversary’s probability distribution, they
can, however, make statements in terms of expectation. We define the
objective of each player to stay connected to as many other vertices as
possible, in expectation.

Let a strategy profile S be given and PrG(S) be a probability dis-
tribution on the links E(S) of the final graph. It is PrG(S)({e}) the
probability that the adversary will delete link e. Note that we allow
the distribution to depend on the final graph. If G(S) is connected,
we define the indirect cost of player v to be the expected number of
vertices to which v will lose connection when the adversary strikes,
given PrG(S). If G(S) is not connected, we define the indirect cost to be
∞ for all players. In the following, we will use the term disconnection
cost instead of “indirect cost” for the sake of clearness. Neither an
optimum nor an equilibrium is disconnected, and so we will always
assume that G(S) is connected.

Define the relevance relG(S)(e, v) of a link e for player v to be the
number of vertices that can, starting at v, only be reached via e. In par-
ticular, relG(S)(e, v) = 0 for all v ∈ V if e is on a cycle, or – equivalently –
a non-bridge. If link e is deleted (by the adversary), then player v loses
connection to exactly relG(S)(e, v) other vertices. For each v ∈ V, denote
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the sum of relevances RG(S)(v) := ∑e∈E rel(e, v). For each e ∈ E(S),
denote sepG(S)(e) := ∑v∈V relG(S)(e, v) the number of separated vertex
pairs when e is deleted; it is sepG(S)(e) = 2 νG(S)(e) (n− νG(S)(e)). We
so have the individual and total indirect cost, respectively:

Iv(G(S)) := ∑
e∈E(S)

PrG(S)({e}) relG(S)(e, v) for v ∈ V,

I(G(S)) = ∑
v∈V

∑
e∈E(S)

PrG(S)({e}) relG(S)(e, v)

= ∑
e∈E(S)

PrG(S)({e}) sepG(S)(e) .

5.1.1 Simplified Notation

As in the previous chapter, we use a closely graph-related notation. We
roughly repeat the discussion from Sec. 4.2.2 here, filling in all concrete
definitions of our model, like we did in Sec. 4.3 for the sum-distance
model.

Most of the time we will not work with strategy profiles but with
the final graph directly and denote it simply by G = (V, E) and set
m := |E|. All subscripts “G(S)” are omitted; everything relates to the
graph G. So we write “rel(e, v)” instead of “relG(S)(e, v)”. The social
cost only depends on G (and α), and so we write “C(G, α)”, but omit
“G” otherwise. The social cost for the unilateral case is

CU(G, α) = m α + ∑
v∈V

∑
e∈E

Pr({e}) rel(e, v)

= m α + ∑
e∈E

Pr({e}) sep(e) .

For the bilateral case, the social cost is

CB(G, α) = 2m α + ∑
v∈V

∑
e∈E

Pr({e}) rel(e, v)

= 2m α + ∑
e∈E

Pr({e}) sep(e) .

The only difference is the factor 2 in the building cost.
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In the unilateral case, it sometimes is important which player pays
for which edge. Then we use a directed version of G to express that,
denoted ~G, i.e., we choose ~G such that ~G = ~G(S), where S is the
strategy profile we wish to express. Then the number of edges for
which v has to pay is her out-degree degout(v), with respect to ~G. We
can then express the individual cost of player v in only graph-theoretic
terms:

CU
v (~G, α) = degout(v) α + ∑

e∈E
Pr({e}) rel(e, v) .

For the bilateral case, it is even easier. We only have to consider
the degree deg(v) with respect to G, and so denote the individual cost
dependent on G:

CB
v (G, α) = deg(v) α + ∑

e∈E
Pr({e}) rel(e, v) .

Since connectivity under deletion of an edge is of importance, one
may ask whether it would be wise to allow multigraphs instead of
graphs now. This question will have been answered by the end of this
chapter: none of our results becomes false when we allow multigraphs.
In places where this is not obvious, explanations are given. Hence there
would be no justification to go through the unpleasantness of adapting
all formalism to multigraphs.

5.1.2 Illustration

We provide an illustrative interpretation of the individual cost. Con-
sider that each vertex v has a facility to efficiently produce a commodity
of type tv, called the native commodity of v. All types (tw)w∈V are dis-
tinct, and each vertex requires commodities of each type. For vertex v,
commodities of type tw, w 6= v, are called foreign commodities. As long
as v is connected to all other vertices via paths in the final graph, v
receives all foreign commodities from other vertices. Each vertex v
is also able to produce foreign commodities locally, i.e., directly at v
and not requiring any network. However, local production of foreign
commodities is less efficient and hence more costly than production of
native ones. If a vertex was disconnected from only one other vertex



5.2. Previous Work and Comparison 133

for a longer period of time, say, for one time unit, the extra expenses
would exceed her budget. This is expressed by the indirect cost being
∞ for a disconnected final graph. Construction and maintenance of
each link costs α per time unit for the vertex which built the link. The
adversary destroys one link per time unit. Then, some vertex pairs
may be disconnected, and so, some foreign commodities have to be
produced locally. Fortunately, the link can be repaired in a period of
time that is relatively short compared to one time unit, so the budget
is not necessarily exceeded. Let the extra cost for local production
of foreign commodities while the link is being repaired be 1 for each
vertex and each foreign commodity. Then the disconnection cost of v is
the expected extra cost per time unit.

5.2 Previous Work and Comparison

Chun, Fonseca, Stoica, and Kubiatowicz [29] experimentally study
an extended version of the sum-distance model. They also address
robustness. To simulate failures, they remove some vertices randomly.
To simulate attacks, they remove vertices starting with those having
highest degree.

The symmetric connections model of Jackson and Wolinsky [50]
can also be interpreted from a robustness point-of-view. Recall that in
the symmetric connections model there is a parameter δ ∈ (0, 1), and
the payoff πv(S, α) for player v under strategy profile S is defined

πv(S, α) := ∑
w∈V
w 6=v

δdistG(S)(v,w) − degG(S)(v) α .

An interpretation is that v receives one unit of income from each other
vertex w along a shortest path between v and w. However, each link has
a probability 1− δ of failure, so the expected income from w is the prob-
ability that none of the distG(S)(v, w) links fails, which is δdistG(S)(v,w) if
we assume stochastic independence of failures. In the bilateral case,
Baumann and Stiller [10] give an expression for the exact price of anar-
chy for α ∈ (δ− δ2, δ− δ3), which implies an O(1) bound. The price of
anarchy is 1 for α < δ− δ2, following from [50]. The price of anarchy
in the range α > δ− δ3 is not fully understood yet.
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The symmetric connections model is different from ours in many
respects:

– All links have the same probability of failure. In our model, links
can have different probabilities, and these may even depend on the
final graph.1

– The failure of a link e and the failure of a link f are independent
events for e 6= f , at least along the concerned paths. In our model,
the failures of e and f are mutually exclusive events.

– Alternative paths are not considered; it is assumed that routing
happens along a specific shortest path that is fixed before the random
experiment that models the link failures is conducted. In our model,
all paths are considered. However, we do not consider path lengths.

Bala and Goyal [8] study a variation of the symmetric connections
model, which is closer to ours. In their model, each vertex receives an
amount of 1 from each vertex it is connected to via some path. Each
link has a probability 1− p of failure, p ∈ [0, 1] being the same for all
links and independent of the final graph. Failures of two distinct links
are stochastically independent. The income of a vertex v is the expected
number of vertices to which v is connected via a path. Unilateral link
formation is used. They consider structural properties of optima and
Nash equilibria, in particular pointing out cases where Nash equilib-
ria are “super-connected”, i.e., connected and not containing bridges.
They also show that for some regions of parameters, there exist Nash
equilibria that are also optima (i.e., they show a price of stability of 1
for these regions).

Haller and Sarangi [46, 82] study an extension of the model of Bala
and Goyal [8]. In their model, each link {v, w} may fail with its own
probability 1− pvw. They also consider structural properties of optima
and Nash equilibria as well as relations of optima and Nash equilib-
ria, including the price of stability similar to [8]. Like the symmetric
connections model, their model shows several differences to ours:

– The failure probability of each link {v, w} is 1− pvw, independent of

1However, our analysis will be restricted to two specific cases: one in which the
adversary picks a link uniformly at random and another in which he picks a link that
causes maximum overall damage.
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the final graph.2 In our model, failure probabilities depend on the
final graph.

– Failures of two different links are stochastically independent. In our
model, they are mutually exclusive events. (This difference is exactly
as between the symmetric connections model and ours.)

5.3 General Bounds and the Bridge Tree

We turn to our model now. Throughout this chapter we assume n ≥ 3.
Without further knowledge on PrG(·)(·), and also without specifying
whether we use GU or GB, or which equilibrium concept, we can give
two simple bounds on the price of anarchy.

5.1 Proposition. Fix any link formation rule and equilibrium concept.

(i) The price of anarchy is O(n + n
α ).

(ii) If m = O(n) for all equilibria, and if α = Ω(n), then the price of
anarchy is O(1).

Proof. Since m = O(n2) and sep(e) = O(n2) for all e, we have

C(G, α) = O
(
mα + n2 ∑

e∈E
Pr({e})

)
= O(mα + n2) = O(n2α + n2)

in general. Since an optimum is connected, the optimal cost is Ω(nα).
Both bounds on the price of anarchy follow.

Later, in Sec. 5.5.2, when bounding the price of anarchy by O(1),
we will show m = O(n) first, and then by the previous proposition we
are allowed to restrict to α ≤ n.

In order to analyze equilibria, it will be helpful in several places
to consider a variation of the block graph,3 which we call the bridge
tree. Its definition requires some preparation. If W ⊆ V is maximal

2Haller and Sarangi also briefly discuss failure probabilities depending on the final
graph. They consider an example where for non-increasing functions fv(·) and param-
eters Pvw the probabilities are defined pvw(S) := fv(degG(S)(v)) fw(degG(S)(w)) Pvw
if v and w have a link between them, and 0 otherwise.

3See, e.g., [40, p. 56] for the definition of the block graph.
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under the condition that the induced subgraph G[W] is connected and
does not contain any bridges of G[W], we call W a bridgeless connected
component, abbreviated “BCC”.

5.2 Proposition. We get exactly the same BCCs when we request that G[W]

does not contain any bridges of G in the above definition.

Proof. Let W be maximal under the condition of G[W] being connected
and not containing any bridges of G[W], i.e., we follow the original
definition given above. Clearly, G[W] does not contain any bridges of G,
since if removal of some edge disconnects G, then it also disconnects
G[W] if the endpoints of this edge are in W. We choose U ⊇W maximal
under the condition that G[U] is connected and G[U] does not contain
any bridges of G. Suppose U 6= W. Then G[U] contains a bridge e
of G[U]. Since this is no bridge of G, it is located on a cycle C. Then
V(C) * U, since e is a bridge of G[U]. But G[U ∪ V(C)] would still
be connected and would contain no bridge of G. This contradicts the
maximality of U.

Now let W be maximal under the condition of G[W] being con-
nected and not containing any bridges of G. If G[W] contained a bridge
e of G[W] (but not of G), we could use the cycle-argument from before
to augment W and have a contradiction to its maximality. Suppose
there is U ) W such that G[U] is connected and G[U] does not contain
any bridges of G[U]. Then G[U] contains a bridge of G. As noted
earlier, this is also a bridge of G[U], a contradiction.

What we call “BCC” is sometimes called “block” in the literature,
and what we call “bridge tree” is then called “bridge-block tree”. We
refrain from using the term “block” here, since it usually is related to
vertex-connectivity; see, e.g., [40, p. 55].

Every vertex is contained in exactly one BCC. If W is a BCC, we have
to remove at least 2 edges from G[W] in order to make it disconnected.
A graph from which we have to remove at least 2 edges to make it
disconnected is also called being “2-edge-connected” in common ter-
minology, provided that it has more than 1 vertices; see, e.g., [40, p. 12].
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a. A graph G.

7

34

b. The corresponding bridge tree G̃.

Figure 5.1. Bridge tree construction. Vertices representing BCCs of more than 1 vertices
have their number of vertices attached, here 4, 7, and 3, respectively.

Now we introduce the bridge tree. It is the graph G̃ = (Ṽ, Ẽ)
defined by:

Ṽ := {B ⊆ V; B is a BCC} ,

Ẽ := {{B, B′} ; B, B′ ∈ Ṽ, ∃v ∈ B, w ∈ B′ : {v, w} ∈ E} .

Then G̃ is a tree (assuming G is connected). By Prop. 5.2, there is a 1 : 1
mapping between the edges of G̃ and the bridges of G. We make the
following special convention concerning the bridge tree:

Convention. Whenever we speak of the number of vertices in a sub-
graph T of the bridge tree, we count |B| for each vertex B ∈ V(T).

In other words, we count the vertices that would be there if we
expanded T back to its corresponding subgraph of G. Fig. 5.1 shows
an example. Since each vertex of G is in exactly one BCC, counting in
this way for Ṽ yields the number of vertices in G, i.e., n.

On several occasions, when considering the effect of building ad-
ditional edges, we treat vertices of the bridge tree as players. This is
justified since edges inside BCCs have relevance 0. Hence for a strategy
profile S and B, B′ ∈ Ṽ the effect in disconnection cost of a new edge
between a player from B and a player of B′ is specific to the pair {B, B′}
and not to the particular players.
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For a path P in G, let P̃ be its contracted counterpart in G̃, i.e., we
replace in P each maximal sequence of vertices from the same BCC

B ∈ Ṽ with B. Then the length |P̃| of P̃ is the number of bridges in P.
For each pair v, w ∈ V denote P(v, w) an arbitrary shortest path from v
to w; and P(v) := {P(v, w); w ∈ V}. The bridge tree helps bounding
the disconnection cost. We conclude this section with a preparation for
this. For each v ∈ V and e ∈ E we easily observe:

rel(e, v) =

{
0 if e is a non-bridge

|{P ∈ P(v); e ∈ E(P)}| if e is a bridge.
(5.1)

5.3 Lemma. For each v ∈ V we have R(v) ≤ (n− 1)diam(G̃).

Proof. The idea is that it is the same to count for each edge the number
of paths that cross this edge as to count for each path the number of its
edges. Fix v ∈ V. We have

R(v) def
= ∑

e∈E
rel(e, v) = ∑

e∈E
e is a bridge

|{P ∈ P(v); e ∈ E(P)}|

= ∑
P∈P(v)

|{e ∈ E(P); e is a bridge}|

= ∑
P∈P(v)

|P̃|

≤ (n− 1)diam(G̃) .

The last estimation is true since the bridge tree is a tree and so every
path is a shortest path.

5.4 Simple-Minded Adversary

We work in the unilateral case and consider an adversary that picks
one edge uniformly at random, i.e., Pr({e}) = 1

m for each e ∈ E. Then
we have the individual and social cost, respectively:

Cv(~G, α) = degout(v) α +
1
m ∑

e∈E
rel(e, v) for v ∈ V,
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C(G, α) = m α +
1
m ∑

v∈V
∑
e∈E

rel(e, v) = m α +
1
m ∑

e∈E
sep(e) .

As an example, we consider the path. This example shows that the
social cost can very well be of order Ω(nα + n2).

5.4 Proposition. The social cost of the path is (n− 1) α + 1
3 n (n + 1) =

Θ(nα + n2).

Proof. We have the social cost of the path:

m α +
1
m ∑

v∈V
∑
e∈E

rel(e, v) = (n− 1) α +
1

n− 1 ∑
e∈E

∑
v∈V

rel(e, v)

= (n− 1) α +
1

n− 1 ∑
e∈E

sep(e)

= (n− 1) α +
1

n− 1 ∑
e∈E

2 ν(e) (n− ν(e))

= (n− 1) α +
2

n− 1

n−1

∑
k=1

k (n− k)

= (n− 1) α +
2

n− 1

(
n
(n− 1) n

2
− (n− 1) n (2n− 1)

6

)
= (n− 1) α +

1
3

n (n + 1) = Θ(nα + n2) .

We now show how optima look like in our model. Then we will
investigate what kind of cycles can occur in Nash equilibria and give
some concrete Nash equilibrium graphs; this shows existence of Nash
equilibria for all n and α, and it proves a lower bound on the price
of anarchy and an upper bound on the price of stability. Then we
upper-bound the social cost of Nash equilibria, which finally leads to
our main result, the O(1) bound on the price of anarchy.

5.4.1 Optima, Equilibria, and the Price of Stability

5.5 Proposition. An optimum has cost Θ(nα). More precisely:
(i) If α ≤ 2 (n− 1), the cycle is an optimum; it has cost nα.

If α < 2 (n− 1), then the cycle is the only optimum.
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(ii) If α ≥ 2 (n− 1), a star is an optimum; it has cost (n− 1) (α + 2).
If α > 2 (n− 1), then stars are the only optima.

Proof. An optimum can only be the cycle or a tree. For, any graph
containing a cycle has already the cost nα of the cycle, and the cycle
has optimal disconnection cost. So an optimum is either the cycle, or it
is cycle-free. Let T be any tree. We have

∑
e∈E(T)

sepT(e) = 2 ∑
e∈E(T)

ν(e) (n− ν(e))

≥ 2 ∑
e∈E(T)

1 (n− 1) = 2 (n− 1)2 .

Hence the cost of a tree is at least

(n− 1) α +
1

n− 1
2 (n− 1)2 = (n− 1) (α + 2) .

The cost of the cycle is nα. So if α ≤ 2 (n− 1), the cycle is better or as
good as any tree, so it is an optimum. If α ≥ 2 (n− 1), then we look for
a good tree. A star has cost (n− 1) (α + 2), which matches the lower
bound given above, and is hence optimal.

The following proposition is purely graph-theoretic and will be
used here and later when we study convexity of cost functions.

5.6 Proposition. Let G = (V, E) be a graph and e = {v, w} ∈ E a non-
bridge. Let C be any cycle with e ∈ E(C). Then all bridges of G− e that are
non-bridges in G, are in E(C).

Proof. Let f be a non-bridge in G and a bridge in G − e. Then G − e
consists of two subgraphs G1 and G2 that are connected only by f .
Since f was no bridge before e was removed, e must also connect G1

with G2. Moreover, there are no other edges between G1 and G2. It
follows that any cycle that contains e also contains f .

Now we estimate the benefit for a player of building or selling a
particular edge. Fix a player v ∈ V and recall R(v) = ∑e∈E rel(e, v).

5.7 Proposition. We have R(v) ≤ n (n−1)
2 .
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Proof. We repeat the counting argument from the proof of Lem. 5.3:

R(v) def
= ∑

e∈E
rel(e, v) = ∑

e∈E
e is a bridge

|{P ∈ P(v); e ∈ E(P)}|

= ∑
P∈P(v)

|{e ∈ E(P); e is a bridge}| ≤ ∑
P∈P(v)

|E(P)| = ∑
w∈V

dist(v, w) .

This is maximal if G is a path with v at its end; then R(v) = n (n−1)
2 .

Let R := R(v) and let R′ be the same quantity when an additional
edge e is built by v. By the previous proposition, we have R, R′ ≤
n (n−1)

2 . The benefit in disconnection cost of building this edge for player
v is 1

m R− 1
m+1 R′. Due to the change in denominators from “m” to “m +

1” this expression looks somewhat unhandily. Yet, we can give good
bounds incorporating the change in relevances, ∆R := R− R′ ≥ 0, with
one denominator. We can do something similar for the case when the
player sells an edge, where we put ∆R := R′ − R ≥ 0.

5.8 Proposition.

(i) If a player builds an additional edge and the sum of her relevances
decreases by ∆R, then her improvement in disconnection cost is at least

1
m+1 ∆R and at most 1

2 +
1

m+1 ∆R ≤ n
2 .

(ii) If a player sells a non-bridge and the sum of her relevances increases by
∆R, then her impairment in disconnection cost is at least 1

m ∆R and at
most 1

2 +
1
m ∆R ≤ n

2 .

Proof. (i) We have

1
m

R− 1
m + 1

R′ =
1
m

R− 1
m + 1

(R + (R′ − R))

=
( 1

m
− 1

m + 1

)
R +

1
m + 1

∆R

=
1

m (m + 1)
R +

1
m + 1

∆R

{
≤ 1

2 +
1

m+1 ∆R ≤ n
2

≥ 1
m+1 ∆R

.

We used ∆R ≤ n (n−1)
2 and n − 1 ≤ m for the upper bound. (ii) is

proved alike, using n ≤ m since the graph contains a cycle.
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5.9 Proposition.

(i) If a player builds an edge creating a cycle of length `, the improvement
in disconnection cost is at most 1

2 +
1

m+1 (`− 1) (n− `
2 ).

(ii) If a player sells an edge destroying a cycle of length `, the impairment
in disconnection cost is at most 1

2 +
1
m (`− 1) (n− `

2 ).

Proof. (i) The restriction to any single cycle is admissible since any
new cycle contains all the edges that become non-bridges due to the
new edge; this can be seen by considering the bridge tree. Let C =

(v, e1, v1, . . . , v`−1, e`, v) be a new cycle, created by the new edge e`
bought by v. In the best case, i.e., in case of maximal improvement,
without the additional edge, n − 1 vertices are reached from v only
through e1, n− 2 through the next edge, and so on; edge e`−1 is relevant
for (n− (`− 1)) vertices. It follows ∆R ≤ ∑`−1

k=1(n− k) = (`− 1) n−
∑`−1

k=1 k = (`− 1) n− (`−1) `
2 = (`− 1) (n− `

2 ). The statement follows
with Prop. 5.8(i).

(ii) The restriction to any single cycle is admissible by Prop. 5.6. The
rest is the same calculation as for (i).

5.10 Proposition. Let ` < α + 1
2 .

(i) If a player builds an additional edge creating a cycle of length `, she
suffers an impairment in her cost.

(ii) If a player sells an edge destroying a cycle of length `, she experiences
an improvement in her cost.

Proof. (i) By Prop. 5.9(i), the player suffers an impairment in her cost if

α >
1
2
+

1
m + 1

(`− 1)
(

n− `

2

)
.

Since m ≥ n− 1, this is the case if α > 1
2 +

1
n (`− 1) (n− `

2 ), which is
the same as n (α + 1

2 ) > ` (n− `
2 +

1
2 ). Since ` ≥ 3 ≥ 1, this is the case

if n (α + 1
2 ) > `n.

We show (ii) in almost exactly the same way, using Prop. 5.9(ii) and
that m ≥ n, since the original graph contains a cycle.



5.4. Simple-Minded Adversary 143

It follows a structural result:

5.11 Corollary. No Nash equilibrium contains cycles shorter than α + 1
2 .

Nash equilibria always exist:

5.12 Proposition.

(i) If α ≤ n
2 , then the cycle with all edges pointing in the same direction

(either all clockwise or all counter-clockwise) is a Nash equilibrium.

(ii) If α ≥ 3
2 , then a star with all edges pointing outwards is a Nash

equilibrium.

Proof. (i) The cycle has minimum disconnection cost, namely 0, so there
is no incentive to buy any more edges. If a player sells her one edge e,
we have ∆R = n (n−1)

2 , and since the new graph has n− 1 edges, this
means an impairment in disconnection cost of n

2 ≥ α. Hence the player
has no incentive to sell the edge. There is also no incentive in building
one or more different edges instead of e, since that cannot reduce the
disconnection cost to the original value of 0.

(ii) Since all edges point outward, the center is the only vertex
that could sell an edge, but this would make the graph disconnected.
The center cannot buy additional edges. An outer vertex cannot sell
edges. We have to check whether it is beneficial for an outer vertex to
buy additional edges. Building one or more edges induces per edge
∆R ≤ n− 1 + 1 = n, and so by Prop. 5.8(i) an improvement per new
edge of at most 1

2 +
1
n n = 3

2 ≤ α.
If multiple edges were allowed, also the center vertex could build

additional edges. They would induce ∆R = 1 each, and so an improve-
ment of at most 1

2 +
1
n ≤

3
2 ≤ α.

5.13 Remark. By Rem. 4.27, in the previous proposition, the cycle is a
maximal Nash equilibrium and the star is a maximal Nash equilibrium
for α > 3

2 .

Knowing optima and examples for Nash equilibria, we can show:

5.14 Proposition. We can choose α so that ρ(n, α) ≥ 2 + 1
3 − o(1) for

n→ ∞.
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Proof. Let α := 3
2 and n be large enough so that the cycle is optimal.

Then a star with all edges pointing outward is a Nash equilibrium with
social cost (α+ 2) (n− 1) = αn+ 2n− (α+ 2). Dividing that by nα, the
cost of the cycle, yields a lower bound of 1 + 2

α − o(1) = 1 + 4
3 − o(1)

on the price of anarchy.

5.15 Theorem. The price of stability is 1 + o(1) for n→ ∞.

Proof. For α ≤ n
2 the cycle is a Nash equilibrium as well as an optimum,

and so the price of stability is 1. For α ≥ 2 (n − 1) a star is a Nash
equilibrium as well as an optimum, and so the price of stability is 1.
For n

2 ≤ α ≤ 2 (n− 1), a star is a Nash equilibrium and the cycle is
an optimum. The price of stability so is upper-bounded by 1 + 2

α ≤
1 + 4

n = 1 + o(1).

5.4.2 Bounding the Price of Anarchy

We aim for an upper bound on the price of anarchy. The following
observation is the key to show that a Nash equilibrium does not have
many more edges than a tree.

5.16 Proposition. A Nash equilibrium is chord-free.

Proof. Selling a chord e = {v, w} from a cycle C = (v, . . . , w, . . . , v)
does not increase the relevance of any edge for any player. For, let
C′ be a cycle which contains e. Then C′ − e also forms a cycle with a
part of C, say (v, . . . , w). Hence, if the graph is bridgeless, removing
a chord would decrease the player’s building cost without increasing
the disconnection cost. Let now the graph contain a bridge e′. Due to
the decrease in the denominator of the disconnection cost, removing
a chord impairs the disconnection cost. However, the player owning
the chord, say v, would rather remove the chord and instead build an
edge to form a new cycle containing e′. The only case where this is
impossible is when v is one endpoint of the bridge e′ = {v, u}, and u is
a leaf vertex. Then, a double-edge between v and u would be needed,
which is not allowed unless we use a multigraph.

We consider this case now and show that we in fact do not need a
multigraph. By selling the chord, the disconnection cost for v increases
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by 1
m (m−1)R(v). If this increase is strictly smaller than α, we are done.

Hence assume 1
m (m−1)R(v) ≥ α now. Edge {v, u} has relevance n− 1

for u. The positions of v and u imply R(u) = R(v) + (n− 1)− 1. If u
builds an edge to any other vertex, save v, edge e′ is put on a cycle. The
improvement in disconnection cost for u due to such an edge is at least

1
m

R(u)− 1
m + 1

(R(u)− (n− 1))

=
1
m
(R(v) + n− 2)− 1

m + 1
(R(v)− 1)

=
( 1

m
− 1

m + 1

)
R(v) +

n− 2
m

+
1

m + 1

=
1

m (m + 1)
R(v) +

n− 2
m

+
1

m + 1

=
( 1

m (m− 1)
+

1
m (m + 1)

− 1
m (m− 1)

)
R(v) +

n− 2
m

+
1

m + 1

≥ α− 1
m

( 1
m− 1

− 1
m + 1

)
R(v) +

n− 2
m

+
1

m + 1

≥ α− 1
m

( 1
m− 1

− 1
m + 1

) n (n− 1)
2

+
n− 2

m
+

1
m + 1

≥ α−
( 1

m− 1
− 1

m + 1

) n− 1
2

+
n− 2

m
+

1
m + 1

= α− 2
(m− 1) (m + 1)

n− 1
2

+
n− 2

m
+

1
m + 1

≥ α− 1
m + 1

+
n− 2

m
+

1
m + 1

> α .

So u has an incentive to buy an additional edge, a contradiction to
Nash equilibrium.

The next two are graph-theoretic results. The first is a straight-
forward adaption of a result (and its proof) on vertex-connectivity to
edge-connectivity; see, e.g., [40, Prop. 3.1.3] for the version for vertex-
connectivity.

5.17 Proposition. Any bridgeless connected graph can be constructed from
a cycle by successively adding paths of the form (u, e1, v1, . . . , vk, ek+1, w),
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where u, w are vertices of the already constructed graph and v1, . . . , vk are
zero or more new vertices.

Proof. Clearly, any graph that was constructed in this manner is con-
nected and bridgeless. Now let G be connected and bridgeless and H a
subgraph of G that is constructible in this manner, chosen such that it
has a maximum number of edges among all such subgraphs. Since G
contains a cycle, H is not empty. Also, H is an induced subgraph since
H + e is also constructible for any edge e. If H 6= G, then since G is
connected, there is an edge e = {v, w} with v 6∈ V(H) and w ∈ V(H).
Since G is bridgeless, this edge is on a cycle C = (w, e, v = v1, . . . , vk, w).
Let vi be the first vertex with vi ∈ V(H). Then P := (w, . . . , vi) is a
path of the form used in the construction, and so H + P is constructible
and has more edges than H, a contradiction.

5.18 Proposition. A chord-free graph on n vertices contains no more than
3n = O(n) edges.

Proof. Let G be a chord-free graph, w.l.o.g. being connected. We first
consider the case that G is bridgeless. By the previous proposition,
G can be constructed from a cycle on, say, N0 vertices, by succes-
sively adding paths of the form (u, e1, v1, . . . , vk, ek+1, w), where u, w
are vertices of the already constructed graph and v1, . . . , vk, k ∈ N0,
are zero or more new vertices. For any two vertices u, w in the al-
ready constructed graph, there is a cycle C with u, w ∈ V(C). Since
G is chord-free, we may not add a path (u, e1, w). Hence k ≥ 1
in each step, i.e., at least one new vertex is added. It follows that
there are at most t ≤ n − N0 =: N1 steps in this construction. Let
ni and mi be the number of new vertices and edges, respectively, in-
serted in step i. Then mi = ni + 1 for each i ∈ [t] and so we add
∑t

i=1 mi = ∑t
i=1(ni + 1) = N1 + t ≤ 2N1 edges to the initial cycle. It

follows that G has at most N0 + 2N1 ≤ 2N0 + 2N1 = 2n edges.
If G is not bridgeless, we consider each of its BCCs; these correspond

to vertices of the bridge tree. Altogether, they cannot contribute more
than 2n edges. In addition, there are at most n − 1 edges, namely
bridges of G. So we have a bound of 2n + n− 1 ≤ 3n.

5.19 Corollary. A Nash equilibrium has at most 3n = O(n) edges.
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Proof. Follows from Prop. 5.16 and 5.18.

Now we know that the total building cost in a Nash equilibrium is
O(nα), and so of the same order as the optimal social cost. In order to
bound the price of anarchy, we are left with bounding the disconnection
cost. To this end, we make use of the bridge tree. The following is a
corollary to Lem. 5.3.

5.20 Corollary. The disconnection cost is bounded by n diam(G̃).

Proof. We have by Lem. 5.3:

1
m ∑

v∈V
∑
e∈E

rel(e, v) =
1
m ∑

v∈V
R(v) ≤ 1

m ∑
v∈V

(n− 1)diam(G̃)

=
n
m
(n− 1)diam(G̃) ≤ n diam(G̃) .

5.21 Lemma. The bridge tree of a Nash equilibrium has diameter O(α).

Proof. Let G be a Nash equilibrium. Let P̃ = (v0, e1, v1, . . . , e`, v`) be
a path in the bridge tree G̃ connecting two leaves v0 and v`. Let ¯̀ :=
d `2e ≥ 1. Then at least one of the following is true (recall the convention
on p. 137 regarding vertex-counting in the bridge tree):

– At least d n
2 e vertices lie beyond e ¯̀ from the view of v0.

– At least d n
2 e vertices lie beyond e ¯̀ from the view of v`.

Let us assume the first; the other case can be treated alike. Let
v := v0 and w := v` and recall that we may treat vertices of the bridge
tree G̃ as single players with respect to building of new links. Then
e1, . . . , e ¯̀ for v have relevance at least d n

2 e each. So ∑
¯̀
i=1 rel(ei, v) ≥

¯̀ n
2 ≥

`
2

n
2 = Ω(`n). By building {v, w}, player v would have a benefit

in disconnection cost of at least 1
m+1

`n
4 ≥

1
3n+1

`n
4 = Ω(`), using the

bound m ≤ 3n from Cor. 5.19. Since the edge is not built, α is larger
than this benefit, so ` = O(α).

5.22 Corollary. The disconnection cost in a Nash equilibrium is O(nα).

Proof. Follows from Cor. 5.20 and Lem. 5.21.

5.23 Theorem. The price of anarchy with a simple-minded adversary is
bounded by O(1).
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Proof. The building cost and the disconnection cost in a Nash equilib-
rium are both O(nα) by Cor. 5.19 and 5.22. The theorem follows with
Prop. 5.5, which states that the optimum social cost is Θ(nα).

5.5 Smart Adversary

We remain in the unilateral case and consider an adversary that de-
stroys an edge which separates a maximum number of vertex pairs. If
there are several such edges, one of them is chosen uniformly at ran-
dom. In other words, we replace the uniform probability distribution
on the edges for one that is concentrated on the edges which cause max-
imum overall damage. Recall that sep(e) is the number of separated
vertex pairs when edge e is deleted. Let sepmax := maxe∈E sep(e) and
Emax := {e ∈ E; sep(e) = sepmax} and mmax := |Emax|. These are the
edges of which each causes a maximum number of separated vertex
pairs when it is deleted. We call them the critical edges. We have the
individual and social cost, respectively:

Cv(~G, α) = degout(v) α +
1

mmax
∑

e∈Emax

rel(e, v) for v ∈ V,

C(G, α) = m α +
1

mmax
∑

e∈Emax

sepmax = m α + sepmax .

If sepmax = 0, then the graph is bridgeless and all edges are crit-
ical – however, their removal does not separate any vertex pairs. If
sepmax > 0, then there are one or more critical edges, and each of them
is a bridge. If there are multiple critical edges, then for any two of
them, say e, e′, we have ν(e) = ν(e′). Recall that if e is a bridge, ν(e)
denotes the number of vertices in the smaller component of G− e, or
n
2 if both components are of equal size. Recall also the convention on
vertex-counting in the bridge tree on p. 137.

5.24 Proposition. If there are more than one critical edges, they form a
subgraph that is a star in the bridge tree G̃.

Proof. Let sepmax > 0. For any two distinct bridges e and e′, one
component of G− e is strictly contained in one component of G− e′.
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Therefore, with multiple critical edges, ν(e) < n
2 for all e ∈ Emax, and

so also for all other bridges (since they have smaller ν(·) value). In
other words, there is always a small and a large component of G− e,
with e being a bridge.

Let P = (v0, e1, v1, . . . , v`−1, e`, v`) be a path in the bridge tree G̃
with e1 and e` being distinct critical edges. First assume that v` is in
the larger component of G− e`. Then v0 is in the smaller component of
G− e1. Then the smaller component of G− e2 cannot contain v0, since
otherwise ν(e1) < ν(e2), and e1 would not be critical. So the component
of G− e2 containing v0 is the larger one, and then the same holds for
the component of G− e` containing v0. This contradicts that v` is in the
larger component of G− e`. We can carry out the same argument with
v0 and e1. Summarizing, now we know that the smaller component of
G− e1 is located ‘before’ P and that the smaller component of G− e` is
located ‘beyond’ P.

If ` ≥ 3, then there is an edge f between e1 and e` on P. The smaller
component of G − f strictly contains either the smaller component
of G − e1 or G − e`. Since ν(e1) = ν(e2), we have thus in particular,
ν( f ) > ν(e1), a contradiction that e1 is critical. Hence there is no such
edge f , and so ` = 2. Since this holds for all pairs (e1, e`) of critical
edges, the set of all critical edges forms a star (in the bridge tree).

5.25 Proposition. If there are k ≥ 2 critical edges, say Emax = {e1, . . . , ek},
and e1 is put on a cycle by an additional edge, but not e2, . . . , ek, then the new
critical edges are e2, . . . , ek. If k ≥ 3 and the additional edge puts e1 and e2

on a cycle, but not e3, . . . , ek, then the new critical edges are e3, . . . , ek.

Proof. An additional edge e only changes the ν(·) value of those edges
which are put on a cycle by e, namely it reduces them to 0. Hence, none
of the edges in {e2, . . . , ek} (or {e3, . . . , ek}) becomes less attractive for
the adversary when e is added. Also no other edge becomes more
attractive by the addition of e, since no ν(·) value increases.

5.5.1 Optima, Equilibria, and the Price of Stability

5.26 Proposition. Optima are exactly as for the simple-minded adversary,
namely cycle or star, for the same ranges of α. The optimum social cost is
Θ(nα).
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Proof. With the same argument as for the simple-minded adversary,
an optimum is either the cycle or a tree. The cycle has social cost nα.
Since sep(e) = 2ν(e) (n− ν(e)) for each e ∈ E, a tree with minimum
social cost is again a star, with social cost (n− 1) α + 2 · 1 · (n− 1) =
(n− 1) (α + 2). The proposition follows as in the proof of Prop. 5.5.

We can as before construct simple-structured Nash equilibria for
all ranges of α, similar to Prop. 5.12.

5.27 Proposition.

(i) If α ≤ n
2 , then the cycle with all edges pointing in the same direction

(either all clockwise or all counter-clockwise) is a Nash equilibrium.

(ii) If α ≥ 1, then a star with all edges pointing outwards is a Nash
equilibrium.

(iii) If α ≥ n
2 , then a path with all edges pointing to the nearest end (in

case of even n, the middle edge having arbitrary orientation) is a Nash
equilibrium with social cost Θ(nα + n2).

Proof. (i) There is no incentive to build additional edges, since the cycle
already has 0 disconnection cost. Each vertex can sell only one edge, so
that the graph will be a path. This creates a disconnection cost for the
seller of n

2 if n is even, and 1
2 (b

n
2 c+ d

n
2 e) =

n
2 if n is odd; in both cases it

is at least α. Buying further edges increases building cost to at least the
previous value (which was α) but cannot yield a better disconnection
cost than the cycle does.

(ii) Since all edges point outwards, we only have to show that
building additional edges is not beneficial for the builder. We include
the possibility of multiple edges, i.e., a multigraph, in the analysis. If
an outer vertex connects to another outer vertex, her improvement in
disconnection cost is

(n− 1) + (n− 2) · 1
n− 1

− n− 3
n− 3

= 1− 1
n− 1

≤ α .

The same holds if the outer vertex builds another connection to the
center vertex. The center vertex building an additional edge (to an
outer vertex) experiences improvement 0 in disconnection cost. Further
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a. A path with all edges pointing to the nearest end.

b. Center vertex cannot improve by exchanging her edges.

Figure 5.2. Nash equilibrium if α ≥ n
2 . Critical edges are drawn dashed. Disconnection

cost for the center vertex is b n
2 c in both cases, which is 4 here.

edges bring no benefit, no matter who the builder is, save the last one,
which can bring an improvement of 1 ≤ α.

(iii) The social cost of the path is (n− 1) α + b n
2 cd

n
2 e = Θ(nα + n2).

The adversary removes the one or two – depending on whether n is
even or odd – middle edges. The disconnection cost for each player
is n

2 ≤ α if n is even and at most 1
2 (b

n
2 c+ d

n
2 e) = n

2 ≤ α if n is odd.
Hence, there is no incentive for any player to build more edges than
she currently owns, even after exchanging the currently built edges for
others.

Now consider that a player v sells one (or two) of her edges and
buys one (or two) different ones instead. First consider that one edge
is exchanged. Since all edges point outwards, the part of the path
that becomes disconnected from v does not contain the critical edge(s).
So, after reconnecting it with v via a new edge, there are as many
vertices on both sides of the formerly critical edge(s) as before the
exchange. No separation value increases. Hence the formerly critical
edges remain critical. They also maintain their relevance for v. With
the same argument, if the exchanged edge itself was critical, the new
one will be critical as well, also with the same relevance for v.

When two edges are exchanged, v is the center vertex, and in
particular all critical edge(s) are among the exchanged ones, see Fig. 5.2.
This again means that the disconnected parts do not contain critical
edges, and so the exchange cannot change that each of the two edges
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has b n
2 c vertices on the one and d n

2 e vertices on the other side, so they
remain critical. Also, their relevance for v does not change.

5.28 Remark. By Rem. 4.27, in the previous proposition, the cycle is a
maximal Nash equilibrium, the star is a maximal Nash equilibrium for
α > 1, and the path is a maximal Nash equilibrium for α > n

2 .

5.29 Remark. The lower bound on the price of anarchy and the bound
on the price of stability (Prop. 5.14 and Thm. 5.15, respectively) carry
over.

Proof. The proofs for the simple-minded adversary work by comparing
social cost of known Nash equilibria and optima. Optima are the same
for the smart adversary. The proof of Prop. 5.14 uses that a star is a
Nash equilibrium for large n. We have the same prerequisite for the
smart adversary.

The proof of Thm. 5.15 uses that the cycle is a Nash equilibrium
for α ≤ n

2 and that a star is a Nash equilibrium for α ≥ n
2 . Both is also

given for the smart adversary.

5.5.2 Bounding the Price of Anarchy

The proof of the following is even easier than previously:

5.30 Proposition. A Nash equilibrium is chord-free.

Proof. Removing a chord does not change the relevance of any edge,
nor does it change sepmax, hence it does not change Emax. Selling a
chord so is always beneficial.

With Prop. 5.18, it follows immediately:

5.31 Corollary. A Nash equilibrium has only O(n) edges.

We are again left with bounding the disconnection cost of Nash
equilibria. This requires some effort and is accomplished in the follow-
ing proof.

5.32 Theorem. The price of anarchy with a smart adversary is O(1).
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Proof. By Prop. 5.1, we only have to consider α ≤ n. Fix a Nash equi-
librium with sepmax > 0. The aim is to show sepmax = O(nα). Let
first be mmax ≥ 3. Fix two critical edges e1 and e2, and set n0 := ν(e1).
For each i ∈ {1, 2} fix a player vi in the smaller component of G− ei.
Then for each i ∈ {1, 2} we have rel(ei, vi) = n− n0 and rel(e, vi) = n0

for all critical edges e 6= ei; recall that all critical edges have the same
ν(·) value. Building {v1, v2} puts e1 and e2 on a cycle and leaves the
other mmax − 2 critical edges critical by Prop. 5.25. For each i ∈ {1, 2},4
player vi has her disconnection cost decreased by:

1
mmax

∑
e∈Emax

rel(e, vi)−
1

mmax − 2 ∑
e∈Emax

e 6∈{e1,e2}

rel(e, vi)

=
1

mmax
((mmax − 1) n0 + n− n0)−

1
mmax − 2

(mmax − 2) n0

=
1

mmax
((mmax − 2) n0 + n)− n0 =

1
mmax

(n− 2n0) .

Since we are in a Nash equilibrium, this is at most α. Since n ≥
mmaxn0, we have n− 2n0 ≥ (mmax − 2) n0, and so it follows α ≥ (1−

2
mmax

) n0 ≥ 1
3 n0. Moreover, it follows mmaxα + n0 ≥ n− n0. With these

two inequalities at hand, we can bound sepmax. We have

sepmax = 2n0 (n− n0) ≤ 2n0 (mmaxα + n0) ≤ 2 (n0mmaxα + 9α2)

≤ 2 (nα + 9α2) = O(nα + α2) = O(nα) .

Now we consider the case mmax = 2. A player can make the two
critical edges part of a cycle by building an additional edge. The
difficulty lies in that new critical edges, with a smaller separation value,
can emerge. We will have to put some more effort into estimating the
improvement in disconnection cost that a player is able to achieve by
building another edge. Consider the bridge tree. There are two subtrees
T1 and T2 that are connected to the rest by the two critical edges e1 and

4It would suffice to restrict to i = 1 or i = 2. However, we point out all arguments
that are symmetric in the sense that both endpoints would like to build the edge. This
is also the reason why we treat the cases mmax = 2 and mmax = 1 separately. This is
interesting for the bilateral case discussed in Sec. 5.6.
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T1

T3 TN

T2

u1u2

u3 uN

eN

e1e2

e3

Figure 5.3. Schematic
view of the bridge tree
with two critical edges
e1 and e2, drawn dashed.
Subtrees are represented
by triangles.

e2, respectively. They both have n0 := ν(e1) = ν(e2) vertices. There
may be more subtrees T3, . . . , TN connected by e3, . . . , eN to the center
vertex. To streamline notation, we often write Tk instead of V(Tk),
k ∈ [N], when we refer to the set of vertices of a tree. Fig. 5.3 depicts
the situation. Fig. 5.4 on the facing page shows how a new edge would
put e1 and e2 on a cycle.

First assume that we can arrange v1 ∈ T1 and v2 ∈ T2 such that after
building {v1, v2}, there are no critical edges in T1 nor in T2. If there
are no subtrees except T1 and T2, i.e., if N = 2, this means that we can
make the graph bridgeless by the additional edge. The improvement in
disconnection cost for v1 (and also for v2) of building {v1, v2} is hence
their original disconnection cost, i.e., 1

2 (n − n0 + n0) = 1
2 n = Ω(n),

and so α = Ω(n) and by Prop. 5.1 we are done. If N ≥ 3, then critical
edges emerge in one or more of the T3 + e3, . . . , TN + eN after building.
Fix k ∈ {3, . . . , N}. Since ek is not critical without the new edge, we
have |Tk| < n0 or |Tk| ≥ d n

2 e. The latter can be excluded, since it would
imply that the smaller component of G− ek includes T1 and the center
vertex, and so ν(ek) > n0 = ν(e1), in which case e1 would not be critical.
Moreover, we have |Tk| ≤ n− 2n0 < n− 2 |Tk|, so |Tk| < 1

3 n. For a
player in T1 (or T2), a critical edge in Tk + ek can have relevance at most
|Tk| and so no more than 1

3 n. The improvement in disconnection cost
for v1 (and also for v2) gained by building {v1, v2} is hence at least the
original disconnection cost minus 1

3 n, i.e., 1
2 (n− n0 + n0)− 1

3 n = Ω(n),
and so α = Ω(n), and by Prop. 5.1 we are done.
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Figure 5.4. How e1 and
e2 are put on a cycle by a
new edge {v1, v2}. Paths
that are part of the new
cycle and located inside
T1 and T2 are depicted as
zig-zag paths. New crit-
ical edges can emerge,
e.g., e3 can become crit-
ical.

T1

T3 TN

T2

u1u2

u3 uN

eN

e1e2

e3

v1v2

Now consider that for all choices of v1 ∈ T1 and v2 ∈ T2, building
{v1, v2} induces a critical edge in at least one of T1 or T2. For each
i ∈ {1, 2} we can do the following. Let ui be the vertex where Ti is
connected to the rest of the graph and consider Ti being rooted at ui.
Let Pi be a path starting at ui and ending at one of the leaves of Ti,
say wi, such that the path always descends into a subtree that has a
maximum number of vertices, as shown in Fig. 5.5 on the next page. If
we choose vi := wi, i = 1, 2, then each Pi does not contain a critical edge
when we build {v1, v2}, since these paths then both are located on a
cycle. However, by assumption, there is a critical edge f in, say T1. By
construction of P1, we have ν( f ) ≤ n0

2 . So, player v1 (and also v2) can
reduce her disconnection cost to no more than n0

2 . It follows that the
improvement in disconnection cost is at least 1

2 (n− n0 + n0)− 1
2 n0 =

1
2 (n− n0), which is at most α, since we are in a Nash equilibrium. It
follows sepmax = 2n0 (n− n0) ≤ 2n0 · 2α = O(nα).

The remaining case of mmax = 1 can be treated similarly. Let e1 be
the critical edge and T1 the subtree with n0 := ν(e1) vertices. There
are zero or more additional subtrees, say T2, . . . , TN . If there are zero
such trees, define T2 := G̃ − T1, which consists of just one vertex in
the bridge tree then (but can consist of multiple vertices in G). Let
the ordering be such that |T2| ≥ |Tk| for all k ∈ {3, . . . , N}. Then
we argue similar to before with T1 and T2 in the roles of the former
subtrees of the same name. Assume first that we can find v1 ∈ T1 and
v2 ∈ T2 such that building {v1, v2} does not induce any critical edges
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ui

vi

Figure 5.5. Detailed view of Ti for
one i ∈ {1, 2}. Path Pi is high-
lighted. Recall that vertices of the
bridge tree are counted according
to the size of the respective BCCs.
Here, in this example, we assume
that each vertex counts 1. The path
is drawn accordingly, i.e., always de-
scending into a subtree with a maxi-
mum number of vertices.

in T1 nor T2. If N ≤ 2, then we can make the graph bridgeless and
this means an improvement for v1 of at least n− n0, and so sepmax =

2n0 (n− n0) ≤ 2n0 α = O(nα). If N ≥ 3, then fix k ∈ {3, . . . , N}. We
have |Tk| < n0. Moreover, we have |Tk| ≤ n− (|T2|+ n0) ≤ n− 2 |Tk|,
and so |Tk| ≤ 1

3 n. Then building {v1, v2} reduces the disconnection
cost of v1 to no more than 1

3 n. This means an improvement for v1 of at
least n− n0 − 1

3 n ≥ 2
3 n− 1

2 n = Ω(n), and we are done by Prop. 5.1.
If each choice of v1 and v2 induces a critical edge in T1 or T2, we

can, as before, show that by a careful choice of these vertices, building
{v1, v2} reduces the disconnection cost for v1 (and v2) to at most n0

2 .
Player v1 originally has disconnection cost n− n0 ≥ n0, so she experi-
ences an improvement of at least n0

2 . (Player v2 originally has disconnec-
tion cost n0, so she as well experiences an improvement of at least n0

2 .)
It follows n0 ≤ 2α and so sepmax = 2n0 (n− n0) ≤ 4αn = O(nα).

5.6 Bilateral Case

Now we study the adversary model in the bilateral setting as per
Def. 4.1(ii). We proceed in roughly the same order as in the sections
before: first we briefly consider optima and equilibria, then we bound
the price of anarchy. Our equilibrium concept is pairwise stability. In
Sec. 5.6.2 we show that this is equivalent to pairwise Nash equilibrium
for the simple-minded adversary. We do not succeed in proving a
similar result for the smart adversary – however, we give a tight lower
bound (for α > 2) on the price of anarchy in Sec. 5.6.1, which also holds
for pairwise Nash equilibrium.

Prop. 5.1 holds independently of the equilibrium concept. The cycle
is optimal for α ≤ n− 1 and a star is optimal for α ≥ n− 1 with social
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cost Θ(nα). Ranges for α are different from those in the unilateral
case, accounting for the factor 2 in building cost, cf. p. 131. Otherwise,
arguments are the same. Our existence results for maximal Nash
equilibria, Rem. 5.13 and 5.28, also carry over, by the transformation
rules in Sec. 4.4.3.

5.6.1 Bounding the Price of Anarchy

Simple-Minded Adversary

Recall that we have shown in Prop. 5.16 that a Nash equilibrium is
chord-free. The proof does not fully carry over to the bilateral case,
since it contains an argument of the form “then the player would rather
build a different link instead.” Yet, we can use the idea of that proof to
show chord-freeness if α is not too small. For small α, we can show a
bound on the number of edges by a different simple argument.

5.33 Proposition. Let a pairwise stable graph G be given.

(i) If α > 1
2 , then G is chord-free and hence only has O(n) edges.

(ii) In general, G is chord-free (with O(n) edges) or has at most n√
2α

+ 1
edges.

Proof. If G is bridgeless, selling a chord is beneficial since disconnection
cost 0 is maintained. So for both parts we assume that G contains
bridges.

(i) The impairment in disconnection cost for a player v of selling a
chord is only due to the change in the denominator of the disconnection
cost and is precisely 1

m (m−1) R(v), which is upper-bounded by 1
2 since

R(v) ≤ n (n−1)
2 . Hence if α is larger than that, there is an incentive to

sell the chord.
(ii) Let G possess a chord. This means that any of its two endpoints,

say v, deems it being no impairment to pay α for this edge, hence
1

m (m−1) R(v) ≥ α. It follows

n2

2
≥ n (n− 1)

2
≥ R(v) ≥ m (m− 1) α ≥ (m− 1)2 α ,

hence n√
2α

+ 1 ≥ m.
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Figure 5.6. Cycle with path attached, here n = 16 and ` = 4.

As for bounding disconnection cost, Lem. 5.21 is no longer true, but
Lem. 5.3 is. We can at least show a bound of O(1 +

√
n/α) on the price

of anarchy; we do not know whether it is tight.

5.34 Lemma.

(i) The diameter of the bridge tree of a pairwise stable graph is O(
√

nα).

(ii) For α = 1, the bridge tree can have diameter Ω(
√

n), even if the graph
is pairwise stable.

Proof. (i) Building an edge that puts a path in the bridge tree of length
` ≥ 1 on a cycle brings to both endpoints at least the ∆R of that path
alone, i.e., ∑`

k=1 k = ` (`+1)
2 . So the edge brings an improvement in dis-

connection cost of at least 1
m+1 ∆R ≥ 1

3n+1
` (`+1)

2 , hence 7nα ≥ ` (`+ 1)
≥ `2. (We use the 3n bound from Prop. 5.18 here.)

(ii) Consider a cycle with a path of length ` attached to it with one
of its ends, as shown in Fig. 5.6. Let n be the total number of vertices
and let 1

n
` (`+1)

2 ≤ α ≤ 1
n
((n−`)−1) (n−`)

2 ; such an α exists if n ≥ 3`. The
bridge tree has diameter `. Because of the lower bound on α, no vertex
on the cycle wishes to connect to a vertex on the path, and also no
vertex on the path wishes to connect to a vertex that is located away
from the cycle. Because of the upper bound on α, it can also be shown
easily that no two neighboring vertices on the cycle wish to sell the edge
between them. Trivially, no edge on the path will be sold. Hence this
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graph is pairwise stable. However, we can choose n ≥ 9, ` := b
√

nc,
and α := 1, and so have a diameter of Ω(

√
n).

5.35 Remark. The example in the proof of Lem. 5.34(ii) does not prove a
price of anarchy beyond Θ(1).

Proof. The total disconnection cost is

1
n

2
`

∑
k=1

(n− k) k =
` (`+ 1)

n

(
n− 2`+ 1

3

)
.

For a lower bound on the price of anarchy, we have to divide this by
Θ(nα), so we choose α as small as possible, i.e., α = 1

n
` (`+1)

2 . Then we
divide the disconnection cost by Θ(nα) = Θ(` (`+ 1)) and receive a
lower bound on the price of anarchy of only

Θ
( 1

n

(
n− 2`+ 1

3

))
= Θ

(
1− 2`+ 1

3n

)
= O(1) .

5.36 Theorem. The price of anarchy for a simple-minded adversary in the
bilateral case with pairwise stability is O(1 +

√
n/α).

Proof. By Prop. 5.33, building cost of a pairwise stable graph is O(nα)

or O(( n√
2α

+ 1) α), both having a ratio of O(1 + 1√
α
) to the optimum.

By Lem. 5.34(i) and Cor. 5.20, disconnection cost of a pairwise stable
graph is O(n

√
nα), having a ratio of O(

√
n/α) to the optimum.

Smart Adversary

The proof of Prop. 5.30, showing that a Nash equilibrium is chord-free,
clearly carries over to the bilateral case and pairwise stability. This is
easier compared to the simple-minded adversary, where we had to
prove Prop. 5.33.

We always have the O(n + n
α ) bound of Prop. 5.1. Since m = O(n),

it improves to

O
(

1 +
n
α

)
. (5.2)

The proof of Thm. 5.32 is almost completely symmetric in v1 and v2

and so at first appears to apply in the bilateral case as well, which
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u0

u1

u2

u3

Figure 5.7. Three stars of sizes n0, n0 − 1,
and n0 − 2; here n0 = 5. The n0 players in
the star around u1 would like to put the one
critical edge on a cycle, if α < n0. Building,
e.g., {u1, u2} would reduce their disconnec-
tion cost from n− n0 to n0 − 2, meaning an
improvement of n0. But no player from the
stars around u2 or u3 is willing to cooperate.

would have meant an O(1) bound. The case of exactly one critical edge,
however, is not symmetric and provides an idea to a counterexample:
if there is only one critical edge e0, then it can happen that vertices in
the smaller component of G− e0 wish (desperately) to put e0 on a cycle,
but they cannot find a partner in the other component that is willing to
cooperate. The following lower bound is tight by (5.2).

5.37 Theorem. Consider the smart adversary and pairwise Nash equilibrium
or pairwise stability. If α > 2 and n ≥ 10, then ρ(n, α) = Ω(1 + n

α ).

Proof. First assume there is an integer n0 ≥ 4 such that n = 3n0 − 2.
Consider three stars Si, i = 1, 2, 3 with center vertices ui, i = 1, 2, 3,
and n0, n0 − 1, and n0 − 2 vertices, respectively. Connect the stars
via an additional vertex u0 and additional edges {u0, ui}, i = 1, 2, 3.
This construction uses 3n0 − 2 vertices. See Fig. 5.7 for an illustration.
Then e0 = {u0, u1} is the only critical edge and n0 = Θ(n), namely
slightly more than 1

3 n. We have a total disconnection cost of 2ν(e0) (n−
ν(e0)) = 2n0 (n − n0) = Ω(n2). We have a ratio to the optimum of
Ω(1 + n

α ). We are left to show that this graph is a pairwise Nash
equilibrium, which implies pairwise stability. It is clear that no edge can
be sold, since that would make the graph disconnected. Therefore we
only have to ensure that no link can be added that would be beneficial
for one endpoint and at least no impairment for the other one, i.e., we
have to show (4.3).
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An edge e that improves disconnection cost for some player has
to put {u0, u1} on a cycle. If e connects a vertex in S1 with a vertex in
S2, then {u0, u3} will become critical. For a vertex in S2, this reduces
disconnection cost from n0 to n0 − 2. So, since α > 2, no vertex in S2

agrees to build such an edge.
A similar situation holds if e connects a vertex in S1 with a vertex

in S3 + u0. It will result in {u0, u2} becoming critical. For a vertex in
S3 + u0, this reduces disconnection cost from n0 to n0 − 1. So, since
α > 1, no vertex in S3 + u0 agrees to build such an edge.

If n + 2 is not a multiple of 3, we can do a similar construction.
We let n0 be as large as possible so that n ≥ 3n0 − 2 and do the same
construction as above. The remaining 1 or 2 vertices are connected
directly to u0. Then the previous arguments essentially carry over.

If we consider α > 2 a constant, then the previous theorem gives a
lower bound of Ω(n). For α = Ω(1) this is the worst that can happen
for any adversary in this model. Hence the ‘overall worst-case’ is
attained by the smart adversary in the bilateral case.

5.6.2 Convexity and Non-Convexity of Cost

Simple-Minded Adversary

We show that for the simple-minded adversary, individual cost func-
tions are convex, hence pairwise Nash equilibrium and pairwise sta-
bility are equivalent. The following proposition is purely graph-theo-
retical.

5.38 Proposition. Let G = (V, E) be a connected graph, v ∈ V a vertex,
e = {v, w} ∈ E an edge, and F ⊆ E \ {e} a set of edges, each incident with
v, so that G′ := G − F − e is still connected. Let B1 be those edges that
are non-bridges in G but bridges in G − e. Let B2 be those edges that are
non-bridges in G− F but bridges in G− F− e. Then B1 ⊆ B2.

Proof. Since G′ is connected, there is a path (v, e1, v1, . . . , w) in G′. Then
the cycle C := (v, . . . , w, e, v) is in G− F. By Prop. 5.6, we have B1 ⊆
E(C). Hence all edges in B1 are on a cycle that is not destroyed by
removal of F, so no edge in B1 is made a bridge by removal of F. It
follows B1 ⊆ B2.
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To streamline notation, we fix α and write Cv instead of Cv(·, α) for
the rest of this section.

5.39 Lemma. The individual cost function Cv for the simple-minded adver-
sary is convex for each v ∈ V.

Proof. Let v ∈ V and w1, . . . , wk ∈ V. Let S be a strategy profile. We
proceed by induction, as in the proof of Lem. 4.22. The case k = 1 is
clear. Let k > 1 and set S′ := S− (v, w1)− . . .− (v, wk−1). We have
to show that switching from S′ to S′ − (v, wk) increases cost for v at
least as much as switching from S to S− (v, wk). Since G(S′) has fewer
edges than G(S), it suffices to consider changes in relevance R(·).

When removing {v, wk}, relevance of zero or more edges changes
from 0 to a positive value; these are precisely those edges which be-
come bridges by the removal and which were no bridges before. No
relevance is reduced by removal of edges.

Let B1 be all those edges that become bridges by the switch from S
to S− (v, wk), and let B2 those that become bridges by the switch from
S′ to S′− (v, wk). Then B1 ⊆ B2 by Prop. 5.38. The increase in relevance
from 0 to a positive value for e ∈ B1 given S′ is at least as high as when
given S. In other words, while {v, w1} , . . . , {v, wk−1} are removed, the
effect of all edges in B1 becoming bridges is saved until the removal of
{v, wk}.

Smart Adversary

The difficulty with the smart adversary is that its probability measure
can change substantially when edges are removed. Indeed, exploiting
this feature we show that the individual cost functions are not convex
for the smart adversary.

5.40 Proposition. Consider the graph in Fig. 5.8 on the facing page and the
player v. Then Cv is not convex, since

Cv(G− e1 − e2)− Cv(G)

< (Cv(G− e1)− Cv(G)) + (Cv(G− e2)− Cv(G)) .
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ve1

f1

e2

f2

Figure 5.8. Example for a non-convex individual cost function Cv. The dashed edge is
critical. Since the number of vertices on the cycle on the right is large enough, removal of
ei makes fi critical for each i ∈ {1, 2}.

Proof. Let k be the number of vertices on the cycle on the right. If k
is large enough, removal of ei makes fi critical, for each i ∈ {1, 2}.
Removing both e1 and e2 makes f2 critical. Thus we have:

Cv(G− e1)− Cv(G) = 3− 1− α = 2− α ,

Cv(G− e2)− Cv(G) = k− 1− α , and

Cv(G− e1 − e2)− Cv(G) = k− 1− 2α .

So Cv(G− e1)− Cv(G) + Cv(G− e2)− Cv(G) = 2 + k− 1− 2α = k +
1− 2α, which is strictly larger than k− 1− 2α by a difference of 2.

This result is only partly satisfactory, since non-convexity is not
shown on the set of pairwise stable strategy profiles. It remains unclear
how to construct an example of a pairwise stable graph that is not
a pairwise Nash equilibrium. In an attempt to make the example
from Fig. 5.8 pairwise stable, we need α ≤ 1, or else u would sell {u, w},
which would make e1 critical. However, then there is an incentive for x
to put the critical edge on a cycle by building an additional edge, and
no potential partner can decline such a request.

Yet, this example provides evidence that the smart adversary is in
some respect a substantially different model than the sum-distance
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model or the simple-minded adversary. For, these two have convex
cost functions on the whole set of strategy profiles, which the smart
adversary has not.

5.7 Summary

We considered distributed network formation in a model where players
know that exactly one link will be deleted at some point in the future
and each player v wishes to keep the number of other players to which
v will become disconnected low. Link deletion happens according
to a probability distribution, which is also known to the players, but
which may depend on the network actually built. We call such a
mapping from the set of networks to the set of probability distributions
an adversary, since it models an entity which looks at the network
and then makes a more or less random decision which link to delete.
We considered two adversaries: a simple-minded adversary, who just
picks one link at random and is modeled by the uniform distribution,
and a smart adversary, who picks a link which separates a maximum
number of vertex pairs. We proved an O(1) bound on the price of
anarchy for both adversaries in the unilateral case. Then we considered
the bilateral case. We could only prove an O(1 +

√
n/α) bound on the

price of anarchy here, for the simple-minded adversary. We do not
know whether it is tight. For the smart adversary, we could prove a
tight lower bound of Ω(1 + n

α ) for α > 2. In other words, distributed
bilateral network formation against a smart adversary can be really
disadvantageous.



Conclusion and Future Directions

Network formation games are a vivid field of research. New interesting
models and equilibrium concepts appear to come at the same rate as
results concerning their analysis. We attempt an explanation why this
is so:

– We have a framework that is rather simple on the one hand but on
the other hand can be used to formulate a variety of models with
quite different properties.

– The models offer clearance for many different equilibrium concepts.

– The topic has strong relations to graph theory.

We have seen how a new definition of indirect cost, in our case
the disconnection cost, can provide new challenges and interesting
phenomena. New definitions of indirect cost can be created in many
different ways, for instance by combining existing definitions. We only
point out three directions for future work here, which have a close
connection to the model and results presented in this chapter:

1. Our proofs for the adversary model rely heavily on the restriction
that the adversary only deletes one link. What happens if we allow
two, three, or more links to be deleted?

2. The bilateral model shows a high price of anarchy (see Thm. 5.37),
the highest possible for any adversary when α = Ω(1). Will it be
reduced when switching to a model with transfers, like the one
introduced by Bloch and Jackson [14]?

3. An interesting indirect cost is maximum congestion. If each vertex v
connects to each other w by a path Pvw, we can count, for each link e,
how many of those paths traverse e. This is the congestion of e,
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similar to the notion of congestion we know from Part I. What if
we use the maximum congestion – for an optimal choice of paths
(Pvw)v,w∈V – as indirect cost? For a bridge e, the congestion is our
familiar separation value sep(e). So we touched this topic already.
However, for a non-bridge the congestion is not always zero, and so
we did not cover that fully.



Appendix A

Basic Terminology and Notation

A.1 Miscellaneous

For an integer n, denote [n] := {1, . . . , n}. We usually write larger
numbers in the text like this: 100,000,000. This example means 108, i.e.,
100 million.

The transpose of a matrix A is denoted A>. Vectors in Rn are
(n× 1)-matrices. We write products between numbers, vectors, or
matrices sometimes with a “·”, but usually without. For a set U ⊆ Rn

denote U its closure.
Let f : U −→ R be a real-valued function on some set U and

V ⊆ U be a subset on which f is known to attain a maximum. By
arg maxx∈V f (x) we denote an arbitrary maximum point, i.e., an arbi-
trary x ∈ V with the property that f (x) ≥ f (y) for all y ∈ V.

Regarding “O” and “Ω” notation, we use (for the results proved
here) the following understanding. We write “x = O(y)” if there exists
a constant c > 0 such that x ≤ cy. The constant may only depend on
other constants and is in particular independent of the non-constant
quantities that constitute x and y. We do not implicitly require that
some quantities have to be large. However, it may happen that the
expression making up y is only defined when some quantities are large;
the statement is then meant to hold only for those cases where the
expression is defined. For example, in a statement of the form “Let
p ∈ N≥1. Then we have . . . and . . .= O( p

ln p )” the “O” statement is only
meant to hold for p ∈ N≥2.
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Analogously to “O”, we write “x = Ω(y)” if there exists a constant
c > 0 such that x ≥ cy. Note that “O” indicates an upper bound,
making no statement about a lower bound; while “Ω” indicates a
lower bound, making no statement about an upper bound. We write
x = Θ(y) if x = O(y) and x = Ω(y); the constants used in the “O” and
the “Ω” statement may be different, of course.

A.2 Graphs and Networks

A graph is a pair (V, E), where V is a finite set and E ⊆ (V
2). A directed

graph is a pair (V, E), where V is a finite set and E ⊆ V × V. In both
cases, we call elements of V vertices or nodes, and we call elements
of E edges or links (we use both terms interchangeably). In case of
a directed graph, we also use the terms directed edge or directed link.
For a directed edge e = (v, w) denote the reverse edge e−1 := (w, v).
Since E is a set, each edge can occur at most once. We sometimes
call a graph an undirected graph to emphasize that it is not a directed
graph. If not indicated otherwise, for a graph or directed graph on
n := |V| vertices, we assume V = [n]. The adjacency matrix of a graph
G = (V, E) on n vertices is an n × n matrix A over {0, 1} such that
Avw = 1 if and only if {v, w} ∈ E. The adjacency matrix of a graph
is symmetric. The adjacency matrix of a directed graph G = (V, E)
on n vertices is an n × n matrix A over {0, 1} such that Avw = 1 if
and only if (v, w) ∈ E. It is not symmetric in general. For a directed
graph G = (V, E), define its underlying undirected graph Ĝ = (V, Ê) by
Ê := {{v, w} ; v, w ∈ V : (v, w) ∈ E ∨ (w, v) ∈ E}.

Let G = (V, E) be a graph or directed graph. We say that a vertex v
and an edge e are incident if there exists a vertex w such that e = {v, w}
for a graph, or e = (v, w) or e = (w, v) for a directed graph. If e is an
edge, we write G− e for the graph or directed graph that results from
G by removing e from E. We use the same notation for sets of edges. If
v is a vertex, we write G− v for the graph or directed graph that results
from G be removing v from V and all incident edges from E. We use
the same notation for sets of vertices.

For an undirected graph and a vertex v, the degree of v, denoted
deg(v), is the number of edges that v is incident with, i.e., deg(v) :=
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|{{v, w} ; w ∈ V} ∩ E|. For a directed graph and vertex v, the out-edges
of v are those edges that v is incident with and which point away from v,
i.e., δout(v) := ({v} × V) ∩ E. The in-edges are defined analogously,
namely δin(v) := (V × {v}) ∩ E. The out-degree of v is the number
of edges that v is incident with and which point away from v, i.e.,
degout(v) := |δout(v)|. The in-degree is defined analogously, namely
degin(v) := |δin(v)|.

Let W = (v0, e1, v1, . . . , v`−1, e`, v`) be a sequence consisting al-
ternately of vertices and edges such that for all i ∈ [`] we have
ei = {vi−1, vi} ∈ E for a graph and ei = (vi−1, vi) ∈ E for a directed
graph. Then W is called a walk of length `. Sometimes, we omit specify-
ing the edges, then a walk is denoted as a sequence of vertices. Denote
V(W) := {v0, . . . , v`} and E(W) := {e1, . . . , e`}. A path is a walk where
all vertices are distinct. A cycle is a walk such that all edges are distinct,
all vertices v0, . . . , v`−1 are distinct, and v0 = v`. We say that two ver-
tices v and w are connected, or we say that there exists a path between
them, if there exists a path of the form (v, . . . , w). If W = (v0, . . . , v`)
and W ′ = (v′0, . . . , v′`) are walks with v` = v′0, we denote the concatena-
tion of W and W ′ by W ◦W ′ := (v0, . . . , v`, . . . , v′`). For an undirected
graph, W−1 := (v`, e`, . . . , e1, v0) is the reverse sequence corresponding
to W. The reverse sequence (in an undirected graph) is always a walk.

The distance between two vertices v and w, denoted distG(v, w),
is the length of a shortest path from v to w, or ∞ if there is no path
between v and w. The diameter is the longest distance, i.e., diam(G) :=
maxv,w∈V distG(v, w). We omit the “G” subscripts when it is obvious
which graph is meant.

A graph or directed graph H = (W, F) is called a subgraph of G =

(V, E) if W ⊆ V, F ⊆ E. If a subgraph is just given as “H”, we write
V(H) for its vertices and E(H) for its edges. A subgraph H = (W, F)
is called induced if F = E ∩ (W

2 ) for a graph and F = E ∩ (W ×W) for
a directed graph. For a set of vertices W ⊆ V, there is exactly one
induced subgraph on W, denoted G[W]. Sometimes, we identify W
with G[W] and call W a “subgraph”.

We define the following notions concerning connectedness only for
undirected graphs G = (V, E). We call G connected if any two vertices
v, w ∈ V are connected, i.e., if there is a path in G between any two
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vertices v, w ∈ V. We call it disconnected otherwise. A set W ⊆ V is
called connected if G[W] is connected, and it is called disconnected other-
wise. If W ⊆ V is maximal under the condition of being connected, we
call W a connected component or just component. A connected graph has
exactly one connected component, namely G itself (or more precisely
the set of all its vertices). An edge e is called a bridge if G− e has more
connected components than G; we know then that G− e has exactly
one more connected component than G. If G is connected and e is
a bridge, we define ν(e) to be the number of vertices in the smaller
connected component of G− e, or |V|2 if both components have an equal
number of vertices. If e is no bridge, we define ν(e) := 0. We call a
graph bridgeless if it does not contain any bridges. If W ⊆ V is maximal
under the condition that the induced subgraph G[W] is connected and
does not contain any bridges of G[W], we call W a bridgeless connected
component, abbreviated “BCC”.

Sometimes, it is convenient to have multiple edges between a pair of
vertices (even pointing in the same direction in the directed case). This
is impossible for a graph or directed graph, since E is a set. To overcome
this limitation, we introduce multigraphs and directed multigraphs.
A multigraph is a pair (V, E), where V is a finite set and E ⊆ (V

2)×N.
The elements of E are called edges or links. We call i the index of an
edge ({v, w} , i). We omit the index whenever it is irrelevant, and this
will in fact be the case throughout this thesis. For instance, we write
“{v, w} ∈ E” meaning that there exists i ∈ N such that ({v, w} , i) ∈ E.
A directed multigraph is a pair (V, E) where V is a finite set and E ⊆
V×V×N. The elements of E are called edges or links. We use the same
simplified notation for directed multigraphs as for multigraphs, i.e.,
we omit the index whenever it is of no importance.

Most notions that we introduced for graphs and directed graphs
carry over straightforwardly to multigraphs and directed multigraphs.
In some places, we have to pay attention that two edges, although
connecting the same pair of vertices, may be distinct on ground of their
indices. In particular, a multigraph can have cycles of length 2, while
this is impossible for graphs (it is possible for directed graphs, though).

We use “network” as an informal term referring to a graph, directed
graph, multigraph, or directed multigraph possibly plus additional
information, e.g., latency functions on the edges or certain vertices
being marked as sources or terminals.
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Experimental Results

We give plots and tables to display in detail our experimental findings.

– Hexagonal binning plots depicting the relation of conjectured bound
and observed price of anarchy are on pages 172 to 178.

– Detailed tables for p = 1 are on pages 179 to 186.

– Tables giving more TRx values for p ∈ {1, 2, 3} and x ∈ {30, 40, . . . , 100}
are on pages 187 to 210.

– Plots comparing Perakis’ bound to our bounds are on pages 212 to 215.

Further explanations are given in Ch. 3.
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B.1 Hexagonal Binning Plots
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Figure B.1. Random instances with affine element latency functions, i.e.,
p = 1. All 2,293,023 instances from the series with fixed consumption number
range are shown that yielded an acceptable solution in the binary search. The
borderline on the left is barely visible, since it is covered with hexagons.
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Figure B.2. Random instances with affine element latency functions, i.e.,
p = 1. All 2,294,639 instances from the series with fixed relevance number range
are shown that yielded an acceptable solution in the binary search.
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Figure B.3. Random instances with affine element latency functions, i.e.,
p = 1. The altogether 4,587,662 instances from Fig. B.1 and Fig. B.2 are consid-
ered. However, for the sake of a better scale, only those are shown which have
conjectured bound at most the maximum observed price of anarchy, resulting
in 3,556,306 instances shown.
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Figure B.4. Random instances with p = 2. All instances are considered that
yielded an acceptable solution in the binary search. However, for the sake of
a better scale, only those are shown which have conjectured bound smaller
than the maximum observed price of anarchy, resulting in 4,030,513 instances
shown.
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Figure B.5. Random instances with p = 3. All instances are considered
that yielded an acceptable solution in the binary search. However, for the
sake of a better scale, only those are shown which have conjectured bound
smaller than the maximum observed price of anarchy, resulting in 1,787,304
instances shown. If watching the borderline closely, one notices slightly more
overstepping than for p ∈ {1, 2}. We attribute these to numerical inaccuracies.
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Figure B.6. These are the instances from Fig. B.3, i.e., with p = 1. We use an
early version of our conjecture, which we call “original conjectured bound”.
It states a bound of 1

1−β γp. It clearly is too pessimistic, except for γ = 1.
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Figure B.7. Similar to the previous plot, but we use an improved conjecture.
It is not yet the final one, so we call it “intermediate conjectured bound”. It

states a bound of 1
1−β γp for γ ≤ (1 + p)

1
p (this threshold is 2 here) and γp for

γ > (1 + p)
1
p . It is still too pessimistic in the lower range of γ. Fig. B.3 on

page 174 shows the currently final version of the conjecture.
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B.2 Tables

B.2.1 Detailed Tables for p = 1

Table B.1. Single element latency functions, d = 1, fixed consumption number range.

n rmax %C %GC %Perakis %OK avg. #(γ > 1) %TR50 %TR90 %TR100

2 1.0 90.10 88.99 88.99 100.00 1.09 26331 51.79 1.82 0.1861
3 1.0 72.14 61.53 61.52 100.00 1.13 31504 28.74 1.55 0.1397
4 1.0 43.09 22.37 22.36 100.00 1.17 31982 15.10 0.97 0.1126
5 1.0 12.90 0.00 0.00 100.00 1.21 31999 9.41 0.62 0.0469
6 1.0 0.00 0.00 0.00 100.00 1.25 32000 6.97 0.40 0.0375
9 1.0 0.00 0.00 0.00 100.00 1.35 32000 3.90 0.12 0.0062

2 5.0 93.01 88.55 88.55 99.70 1.07 26108 38.06 0.04 0.0000
3 5.0 73.61 56.47 56.45 99.57 1.09 31371 16.02 0.04 0.0000
4 5.0 41.02 16.98 16.97 99.54 1.11 31834 5.24 0.00 0.0000
5 5.0 10.91 0.00 0.00 99.56 1.12 31860 1.56 0.01 0.0000
6 5.0 0.00 0.00 0.00 99.57 1.13 31862 0.52 0.01 0.0000
9 5.0 0.00 0.00 0.00 99.57 1.15 31863 0.04 0.00 0.0000

2 9.0 91.70 86.56 86.56 99.62 1.07 26322 33.25 0.06 0.0000
3 9.0 70.97 52.81 52.81 99.51 1.10 31333 13.16 0.04 0.0000
4 9.0 37.40 14.69 14.68 99.31 1.12 31768 3.89 0.01 0.0000
5 9.0 9.09 0.00 0.00 99.27 1.13 31766 0.95 0.00 0.0000
6 9.0 0.00 0.00 0.00 99.25 1.14 31759 0.29 0.00 0.0000
9 9.0 0.00 0.00 0.00 99.34 1.16 31788 0.01 0.00 0.0000
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Table B.2. Single element latency functions, d = 1, fixed relevance number range.

n cmax %C %GC %Perakis %OK avg. #(γ > 1) %TR50 %TR90 %TR100

2 1.0 90.33 89.36 89.36 100.00 1.01 26242 48.08 0.00 0.0000
3 1.0 71.79 61.25 61.24 100.00 1.02 31512 23.74 0.00 0.0000
4 1.0 43.02 22.12 22.12 99.99 1.03 31980 9.70 0.00 0.0000
5 1.0 13.37 0.00 0.00 99.97 1.03 31989 3.57 0.00 0.0000
6 1.0 0.00 0.00 0.00 99.97 1.04 31990 1.13 0.00 0.0000
9 1.0 0.00 0.00 0.00 99.93 1.04 31979 0.06 0.00 0.0000

2 5.0 92.56 88.19 88.19 99.82 1.05 26335 38.09 0.03 0.0000
3 5.0 73.82 56.61 56.59 99.70 1.07 31430 15.99 0.03 0.0032
4 5.0 41.18 17.38 17.38 99.64 1.09 31865 4.91 0.00 0.0000
5 5.0 11.27 0.00 0.00 99.55 1.09 31856 1.44 0.00 0.0000
6 5.0 0.00 0.00 0.00 99.67 1.10 31893 0.40 0.00 0.0000
9 5.0 0.00 0.00 0.00 99.67 1.11 31894 0.01 0.00 0.0000

2 9.0 91.77 86.53 86.53 99.67 1.07 26260 33.53 0.04 0.0000
3 9.0 70.91 52.46 52.45 99.52 1.10 31353 13.17 0.03 0.0000
4 9.0 37.19 14.67 14.67 99.28 1.12 31755 3.80 0.00 0.0000
5 9.0 8.94 0.00 0.00 99.33 1.13 31787 1.04 0.00 0.0000
6 9.0 0.00 0.00 0.00 99.18 1.14 31739 0.29 0.00 0.0000
9 9.0 0.00 0.00 0.00 99.38 1.16 31800 0.03 0.00 0.0000
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Table B.3. Mixed element latency functions, d = 1, fixed consumption number range.

n rmax %C %GC %Perakis %OK avg. #(γ > 1) %TR50 %TR90 %TR100

2 1.0 77.38 55.46 55.46 100.00 1.04 26511 48.35 0.72 0.0943
3 1.0 43.76 21.63 21.63 100.00 1.06 31545 26.08 1.01 0.1014
4 1.0 14.82 3.38 3.38 100.00 1.09 31980 12.42 0.85 0.1376
5 1.0 1.77 0.00 0.00 100.00 1.12 32000 7.08 0.76 0.1438
6 1.0 0.00 0.00 0.00 100.00 1.14 31999 4.59 0.58 0.0906
9 1.0 0.00 0.00 0.00 99.99 1.23 31998 3.29 0.47 0.0469

2 5.0 83.87 55.25 55.24 99.90 1.01 26323 35.82 0.02 0.0000
3 5.0 49.34 20.77 20.76 99.96 1.02 31498 15.27 0.05 0.0000
4 5.0 15.27 2.74 2.73 99.89 1.02 31946 4.92 0.02 0.0000
5 5.0 1.68 0.00 0.00 99.92 1.03 31975 1.38 0.01 0.0000
6 5.0 0.00 0.00 0.00 99.92 1.04 31976 0.55 0.02 0.0000
9 5.0 0.00 0.00 0.00 99.87 1.07 31958 0.15 0.00 0.0000

2 9.0 83.49 54.28 54.28 99.96 1.01 26450 31.04 0.01 0.0000
3 9.0 47.66 18.80 18.80 99.94 1.01 31476 11.94 0.03 0.0000
4 9.0 13.53 2.48 2.48 99.96 1.02 31968 3.40 0.01 0.0031
5 9.0 1.29 0.00 0.00 99.96 1.03 31987 1.02 0.01 0.0000
6 9.0 0.00 0.00 0.00 99.94 1.04 31982 0.31 0.00 0.0000
9 9.0 0.00 0.00 0.00 99.92 1.06 31973 0.05 0.00 0.0000
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Table B.4. Mixed element latency functions, d = 1, fixed relevance number range.

n cmax %C %GC %Perakis %OK avg. #(γ > 1) %TR50 %TR90 %TR100

2 1.0 77.60 55.47 55.46 100.00 1.00 26372 46.16 0.00 0.0000
3 1.0 43.88 21.55 21.55 100.00 1.00 31504 23.36 0.01 0.0000
4 1.0 14.13 3.44 3.44 100.00 1.01 31978 9.83 0.00 0.0000
5 1.0 1.86 0.00 0.00 100.00 1.01 32000 3.47 0.00 0.0000
6 1.0 0.00 0.00 0.00 99.99 1.01 31998 1.18 0.00 0.0000
9 1.0 0.00 0.00 0.00 100.00 1.01 31999 0.04 0.00 0.0000

2 5.0 84.36 55.87 55.86 99.98 1.00 26451 35.46 0.01 0.0000
3 5.0 49.10 20.24 20.24 99.98 1.01 31477 14.60 0.03 0.0000
4 5.0 14.87 2.72 2.72 99.98 1.01 31974 4.74 0.02 0.0000
5 5.0 1.49 0.00 0.00 99.97 1.02 31989 1.32 0.00 0.0000
6 5.0 0.00 0.00 0.00 99.97 1.02 31990 0.45 0.00 0.0000
9 5.0 0.00 0.00 0.00 99.96 1.04 31987 0.04 0.00 0.0000

2 9.0 83.50 54.82 54.81 99.93 1.01 26425 31.32 0.02 0.0000
3 9.0 47.10 18.87 18.87 99.94 1.01 31523 11.90 0.03 0.0000
4 9.0 13.43 2.44 2.44 99.95 1.02 31967 3.43 0.01 0.0000
5 9.0 1.29 0.00 0.00 99.93 1.03 31977 0.99 0.02 0.0000
6 9.0 0.00 0.00 0.00 99.95 1.04 31985 0.25 0.01 0.0000
9 9.0 0.00 0.00 0.00 99.90 1.06 31967 0.04 0.00 0.0000
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Table B.5. Single element latency functions, d = 10, fixed consumption number range.

n rmax %C %GC %Perakis %OK avg. #(γ > 1) %TR50 %TR90 %TR100

2 1.0 90.50 89.46 89.46 100.00 1.09 26210 51.85 1.84 0.0229
3 1.0 71.85 61.02 61.02 99.99 1.13 31486 28.34 1.52 0.0032
4 1.0 43.54 22.01 22.01 99.99 1.17 31982 15.45 0.92 0.0125
5 1.0 13.60 0.00 0.00 99.97 1.20 31990 9.03 0.57 0.0000
6 1.0 0.00 0.00 0.00 99.90 1.24 31967 6.66 0.36 0.0000
9 1.0 0.00 0.00 0.00 99.97 1.35 31991 3.84 0.08 0.0000

2 5.0 92.57 88.15 88.14 99.38 1.06 26269 37.93 0.05 0.0000
3 5.0 74.32 56.79 56.79 98.91 1.08 31132 15.72 0.01 0.0000
4 5.0 41.23 17.32 17.31 98.54 1.10 31517 4.81 0.00 0.0000
5 5.0 10.67 0.00 0.00 98.26 1.11 31442 1.63 0.00 0.0000
6 5.0 0.00 0.00 0.00 98.23 1.12 31433 0.40 0.00 0.0000
9 5.0 0.00 0.00 0.00 98.27 1.14 31445 0.06 0.00 0.0000

2 9.0 91.76 86.29 86.29 99.43 1.07 26306 32.98 0.03 0.0000
3 9.0 70.53 52.11 52.10 98.58 1.09 31049 13.22 0.02 0.0000
4 9.0 37.04 14.65 14.64 98.28 1.10 31438 3.87 0.00 0.0000
5 9.0 9.53 0.00 0.00 98.06 1.11 31380 1.03 0.00 0.0000
6 9.0 0.00 0.00 0.00 97.94 1.12 31340 0.25 0.00 0.0000
9 9.0 0.00 0.00 0.00 97.75 1.15 31279 0.01 0.00 0.0000
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Table B.6. Single element latency functions, d = 10, fixed relevance number range.

n cmax %C %GC %Perakis %OK avg. #(γ > 1) %TR50 %TR90 %TR100

2 1.0 90.29 89.27 89.27 100.00 1.01 26530 47.57 0.00 0.0000
3 1.0 71.96 61.52 61.52 99.98 1.02 31471 24.16 0.00 0.0000
4 1.0 42.50 22.23 22.22 99.92 1.03 31955 9.80 0.00 0.0000
5 1.0 13.22 0.00 0.00 99.90 1.03 31968 3.31 0.00 0.0000
6 1.0 0.00 0.00 0.00 99.92 1.04 31973 1.14 0.00 0.0000
9 1.0 0.00 0.00 0.00 99.91 1.04 31972 0.04 0.00 0.0000

2 5.0 92.80 88.53 88.52 99.54 1.05 26224 37.36 0.03 0.0000
3 5.0 73.76 56.34 56.33 99.17 1.07 31244 15.47 0.02 0.0000
4 5.0 41.26 17.29 17.28 99.02 1.08 31662 5.00 0.00 0.0000
5 5.0 11.24 0.00 0.00 98.86 1.08 31634 1.47 0.00 0.0000
6 5.0 0.00 0.00 0.00 98.82 1.09 31622 0.40 0.00 0.0000
9 5.0 0.00 0.00 0.00 98.80 1.11 31617 0.01 0.00 0.0000

2 9.0 91.50 86.26 86.26 99.28 1.06 26127 33.44 0.02 0.0000
3 9.0 70.90 52.46 52.45 98.72 1.09 31112 13.05 0.01 0.0000
4 9.0 37.33 14.70 14.69 98.28 1.11 31436 3.83 0.00 0.0000
5 9.0 9.16 0.00 0.00 98.09 1.11 31388 1.01 0.00 0.0000
6 9.0 0.00 0.00 0.00 97.98 1.12 31353 0.26 0.00 0.0000
9 9.0 0.00 0.00 0.00 97.74 1.14 31276 0.02 0.00 0.0000
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Table B.7. Mixed element latency functions, d = 10, fixed consumption number range.

n rmax %C %GC %Perakis %OK avg. #(γ > 1) %TR50 %TR90 %TR100

2 1.0 77.61 55.93 55.93 100.00 1.10 26298 52.99 0.96 0.0114
3 1.0 44.25 21.95 21.95 99.99 1.12 31501 28.55 0.77 0.0032
4 1.0 14.79 3.51 3.51 100.00 1.14 31979 14.13 0.58 0.0094
5 1.0 1.75 0.00 0.00 99.99 1.14 31997 7.00 0.33 0.0031
6 1.0 0.00 0.00 0.00 99.94 1.16 31982 4.28 0.24 0.0031
9 1.0 0.00 0.00 0.00 99.99 1.18 31996 1.72 0.12 0.0031

2 5.0 84.36 55.55 55.55 99.46 1.03 26131 36.85 0.03 0.0000
3 5.0 48.97 20.59 20.58 99.34 1.04 31306 15.71 0.06 0.0000
4 5.0 14.97 2.84 2.84 99.19 1.05 31726 5.31 0.01 0.0000
5 5.0 1.45 0.00 0.00 99.15 1.06 31728 1.53 0.02 0.0000
6 5.0 0.00 0.00 0.00 99.18 1.06 31738 0.45 0.00 0.0000
9 5.0 0.00 0.00 0.00 99.01 1.08 31683 0.04 0.00 0.0000

2 9.0 83.10 54.33 54.33 99.60 1.02 26359 31.68 0.04 0.0000
3 9.0 46.82 18.47 18.46 99.48 1.03 31326 12.52 0.03 0.0000
4 9.0 13.59 2.30 2.29 99.28 1.04 31751 3.97 0.01 0.0000
5 9.0 1.31 0.00 0.00 99.28 1.05 31768 0.96 0.00 0.0000
6 9.0 0.00 0.00 0.00 99.30 1.05 31775 0.25 0.00 0.0000
9 9.0 0.00 0.00 0.00 99.16 1.07 31730 0.01 0.00 0.0000
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Table B.8. Mixed element latency functions, d = 10, fixed relevance number range.

n cmax %C %GC %Perakis %OK avg. #(γ > 1) %TR50 %TR90 %TR100

2 1.0 77.73 55.53 55.52 100.00 1.01 26317 46.55 0.00 0.0000
3 1.0 44.38 21.86 21.86 99.98 1.02 31490 24.51 0.09 0.0000
4 1.0 14.90 3.71 3.71 99.95 1.03 31957 10.22 0.01 0.0000
5 1.0 1.86 0.00 0.00 99.95 1.03 31984 3.91 0.00 0.0000
6 1.0 0.00 0.00 0.00 99.95 1.03 31984 1.50 0.00 0.0000
9 1.0 0.00 0.00 0.00 99.95 1.04 31984 0.09 0.00 0.0000

2 5.0 84.28 55.63 55.63 99.72 1.02 26283 35.84 0.03 0.0000
3 5.0 49.16 20.12 20.11 99.52 1.03 31345 15.01 0.04 0.0000
4 5.0 15.04 2.84 2.84 99.53 1.04 31835 5.01 0.01 0.0000
5 5.0 1.49 0.00 0.00 99.49 1.04 31836 1.47 0.00 0.0000
6 5.0 0.00 0.00 0.00 99.49 1.05 31838 0.41 0.00 0.0000
9 5.0 0.00 0.00 0.00 99.50 1.06 31839 0.02 0.00 0.0000

2 9.0 83.46 54.38 54.38 99.60 1.02 26323 32.02 0.02 0.0000
3 9.0 47.39 18.79 18.78 99.41 1.03 31326 12.31 0.03 0.0000
4 9.0 13.53 2.41 2.41 99.36 1.04 31779 3.84 0.02 0.0000
5 9.0 1.33 0.00 0.00 99.30 1.05 31777 1.00 0.01 0.0000
6 9.0 0.00 0.00 0.00 99.25 1.06 31761 0.31 0.00 0.0000
9 9.0 0.00 0.00 0.00 99.17 1.07 31736 0.03 0.00 0.0000
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B.2.2 TRx Values for p ∈ {1, 2, 3}

Table B.9. TRx values for degree p = 1, demand d = 1, single element latency functions,
and fixed consumption number range.

n rmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 100.00 26331 81.31 66.34 51.79 36.77 15.98 2.76 1.82 0.1861
3 1.0 100.00 31504 63.63 43.37 28.74 17.30 7.51 2.64 1.55 0.1397
4 1.0 100.00 31982 46.38 26.34 15.10 8.23 3.90 1.67 0.97 0.1126
5 1.0 100.00 31999 35.08 17.87 9.41 4.97 2.32 1.03 0.62 0.0469
6 1.0 100.00 32000 28.42 13.47 6.97 3.57 1.65 0.71 0.40 0.0375
9 1.0 100.00 32000 20.41 9.00 3.90 1.52 0.57 0.27 0.12 0.0062

2 5.0 99.70 26108 68.24 51.85 38.06 24.80 8.63 0.14 0.04 0.0000
3 5.0 99.57 31371 44.43 27.17 16.02 8.13 2.20 0.11 0.04 0.0000
4 5.0 99.54 31834 24.90 11.48 5.24 2.07 0.43 0.02 0.00 0.0000
5 5.0 99.56 31860 13.55 4.71 1.56 0.42 0.07 0.02 0.01 0.0000
6 5.0 99.57 31862 7.15 1.97 0.52 0.10 0.03 0.01 0.01 0.0000
9 5.0 99.57 31863 1.26 0.21 0.04 0.01 0.00 0.00 0.00 0.0000

2 9.0 99.62 26322 61.29 46.14 33.25 21.83 7.53 0.17 0.06 0.0000
3 9.0 99.51 31333 36.59 22.04 13.16 6.81 1.96 0.09 0.04 0.0000
4 9.0 99.31 31768 18.41 8.35 3.89 1.67 0.35 0.02 0.01 0.0000
5 9.0 99.27 31766 8.37 2.84 0.95 0.32 0.06 0.01 0.00 0.0000
6 9.0 99.25 31759 4.24 1.10 0.29 0.06 0.00 0.00 0.00 0.0000
9 9.0 99.34 31788 0.51 0.07 0.01 0.00 0.00 0.00 0.00 0.0000
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Table B.10. TRx values for degree p = 1, demand d = 1, single element latency functions,
and fixed relevance number range.

n cmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 100.00 26242 77.17 61.95 48.08 33.10 12.13 0.00 0.00 0.0000
3 1.0 100.00 31512 57.80 37.98 23.74 12.41 3.11 0.00 0.00 0.0000
4 1.0 99.99 31980 39.89 20.31 9.70 3.77 0.53 0.00 0.00 0.0000
5 1.0 99.97 31989 26.15 10.13 3.57 0.88 0.06 0.00 0.00 0.0000
6 1.0 99.97 31990 16.08 4.45 1.13 0.17 0.00 0.00 0.00 0.0000
9 1.0 99.93 31979 3.99 0.53 0.06 0.00 0.00 0.00 0.00 0.0000

2 5.0 99.82 26335 67.67 51.51 38.09 24.53 8.64 0.13 0.03 0.0000
3 5.0 99.70 31430 43.99 26.90 15.99 8.23 2.10 0.09 0.03 0.0032
4 5.0 99.64 31865 24.32 11.25 4.91 1.87 0.38 0.02 0.00 0.0000
5 5.0 99.55 31856 12.97 4.33 1.44 0.42 0.06 0.01 0.00 0.0000
6 5.0 99.67 31893 6.56 1.73 0.40 0.09 0.02 0.00 0.00 0.0000
9 5.0 99.67 31894 0.90 0.11 0.01 0.01 0.00 0.00 0.00 0.0000

2 9.0 99.67 26260 61.33 45.89 33.53 21.80 7.66 0.15 0.04 0.0000
3 9.0 99.52 31353 36.52 22.02 13.17 6.79 1.76 0.07 0.03 0.0000
4 9.0 99.28 31755 18.46 8.38 3.80 1.49 0.30 0.02 0.00 0.0000
5 9.0 99.33 31787 8.71 2.93 1.04 0.31 0.05 0.02 0.00 0.0000
6 9.0 99.18 31739 4.03 1.14 0.29 0.10 0.03 0.01 0.00 0.0000
9 9.0 99.38 31800 0.57 0.12 0.03 0.01 0.00 0.00 0.00 0.0000



B.2. Tables 189

Table B.11. TRx values for degree p = 1, demand d = 1, mixed element latency functions,
and fixed consumption number range.

n rmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 100.00 26511 77.99 62.60 48.35 33.67 13.88 1.27 0.72 0.0943
3 1.0 100.00 31545 59.16 39.57 26.08 15.26 5.91 1.92 1.01 0.1014
4 1.0 100.00 31980 42.69 23.10 12.42 6.22 2.82 1.44 0.85 0.1376
5 1.0 100.00 32000 29.94 14.07 7.08 3.64 1.92 1.22 0.76 0.1438
6 1.0 100.00 31999 22.55 9.56 4.59 2.43 1.50 0.93 0.58 0.0906
9 1.0 99.99 31998 12.76 5.91 3.29 2.08 1.38 0.83 0.47 0.0469

2 5.0 99.90 26323 64.50 48.71 35.82 23.24 7.92 0.07 0.02 0.0000
3 5.0 99.96 31498 41.14 25.29 15.27 7.73 2.14 0.15 0.05 0.0000
4 5.0 99.89 31946 22.20 10.52 4.92 1.96 0.44 0.07 0.02 0.0000
5 5.0 99.92 31975 11.34 4.04 1.38 0.52 0.13 0.03 0.01 0.0000
6 5.0 99.92 31976 6.02 1.75 0.55 0.18 0.10 0.03 0.02 0.0000
9 5.0 99.87 31958 1.18 0.35 0.15 0.06 0.02 0.02 0.00 0.0000

2 9.0 99.96 26450 57.05 42.52 31.04 19.70 6.80 0.03 0.01 0.0000
3 9.0 99.94 31476 33.20 19.97 11.94 6.10 1.69 0.11 0.03 0.0000
4 9.0 99.96 31968 15.97 7.21 3.40 1.41 0.33 0.04 0.01 0.0031
5 9.0 99.96 31987 7.24 2.58 1.02 0.34 0.07 0.03 0.01 0.0000
6 9.0 99.94 31982 3.20 0.98 0.31 0.11 0.04 0.01 0.00 0.0000
9 9.0 99.92 31973 0.46 0.15 0.05 0.03 0.01 0.00 0.00 0.0000
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Table B.12. TRx values for degree p = 1, demand d = 1, mixed element latency functions,
and fixed relevance number range.

n cmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 100.00 26372 75.92 60.22 46.16 31.23 11.68 0.01 0.00 0.0000
3 1.0 100.00 31504 56.55 36.97 23.36 12.38 2.99 0.08 0.01 0.0000
4 1.0 100.00 31978 38.35 19.50 9.83 3.94 0.65 0.03 0.00 0.0000
5 1.0 100.00 32000 24.08 9.29 3.47 0.93 0.09 0.00 0.00 0.0000
6 1.0 99.99 31998 15.44 4.44 1.18 0.20 0.01 0.00 0.00 0.0000
9 1.0 100.00 31999 3.34 0.37 0.04 0.00 0.00 0.00 0.00 0.0000

2 5.0 99.98 26451 63.64 48.11 35.46 22.73 7.91 0.03 0.01 0.0000
3 5.0 99.98 31477 39.98 24.26 14.60 7.52 1.99 0.10 0.03 0.0000
4 5.0 99.98 31974 21.88 10.13 4.74 1.90 0.39 0.05 0.02 0.0000
5 5.0 99.97 31989 10.75 3.72 1.32 0.38 0.07 0.02 0.00 0.0000
6 5.0 99.97 31990 5.46 1.47 0.45 0.12 0.03 0.01 0.00 0.0000
9 5.0 99.96 31987 0.79 0.14 0.04 0.02 0.01 0.00 0.00 0.0000

2 9.0 99.93 26425 57.66 43.04 31.32 20.30 7.01 0.06 0.02 0.0000
3 9.0 99.94 31523 32.96 20.08 11.90 6.25 1.81 0.10 0.03 0.0000
4 9.0 99.95 31967 15.87 7.42 3.43 1.33 0.27 0.03 0.01 0.0000
5 9.0 99.93 31977 7.42 2.63 0.99 0.41 0.12 0.04 0.02 0.0000
6 9.0 99.95 31985 3.31 0.88 0.25 0.07 0.03 0.01 0.01 0.0000
9 9.0 99.90 31967 0.51 0.16 0.04 0.01 0.00 0.00 0.00 0.0000
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Table B.13. TRx values for degree p = 1, demand d = 10, single element latency
functions, and fixed consumption number range.

n rmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 100.00 26210 81.40 66.24 51.85 36.45 15.60 2.69 1.84 0.0229
3 1.0 99.99 31486 62.71 43.02 28.34 17.15 7.30 2.70 1.52 0.0032
4 1.0 99.99 31982 46.39 26.87 15.45 8.56 4.11 1.68 0.92 0.0125
5 1.0 99.97 31990 34.56 17.41 9.03 4.79 2.30 0.98 0.57 0.0000
6 1.0 99.90 31967 28.07 13.29 6.66 3.33 1.54 0.67 0.36 0.0000
9 1.0 99.97 31991 20.54 8.96 3.84 1.42 0.50 0.18 0.08 0.0000

2 5.0 99.38 26269 68.38 52.18 37.93 24.47 8.38 0.13 0.05 0.0000
3 5.0 98.91 31132 45.01 26.78 15.72 8.23 2.25 0.04 0.01 0.0000
4 5.0 98.54 31517 24.55 11.04 4.81 1.79 0.34 0.03 0.00 0.0000
5 5.0 98.26 31442 13.05 4.53 1.63 0.46 0.06 0.01 0.00 0.0000
6 5.0 98.23 31433 6.78 1.69 0.40 0.06 0.01 0.00 0.00 0.0000
9 5.0 98.27 31445 1.28 0.24 0.06 0.01 0.00 0.00 0.00 0.0000

2 9.0 99.43 26306 60.47 45.27 32.98 21.36 7.46 0.11 0.03 0.0000
3 9.0 98.58 31049 36.24 22.10 13.22 6.75 1.74 0.05 0.02 0.0000
4 9.0 98.28 31438 18.31 8.44 3.87 1.58 0.30 0.01 0.00 0.0000
5 9.0 98.06 31380 8.60 2.94 1.03 0.28 0.02 0.00 0.00 0.0000
6 9.0 97.94 31340 3.68 0.94 0.25 0.06 0.01 0.00 0.00 0.0000
9 9.0 97.75 31279 0.45 0.07 0.01 0.00 0.00 0.00 0.00 0.0000
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Table B.14. TRx values for degree p = 1, demand d = 10, single element latency
functions, and fixed relevance number range.

n cmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 100.00 26530 76.94 61.59 47.57 32.45 12.02 0.00 0.00 0.0000
3 1.0 99.98 31471 58.08 38.10 24.16 12.80 3.02 0.00 0.00 0.0000
4 1.0 99.92 31955 40.11 20.38 9.80 3.78 0.55 0.00 0.00 0.0000
5 1.0 99.90 31968 25.46 9.57 3.31 0.78 0.03 0.00 0.00 0.0000
6 1.0 99.92 31973 16.70 4.54 1.14 0.17 0.00 0.00 0.00 0.0000
9 1.0 99.91 31972 4.22 0.47 0.04 0.01 0.00 0.00 0.00 0.0000

2 5.0 99.54 26224 67.39 51.59 37.36 23.99 8.24 0.11 0.03 0.0000
3 5.0 99.17 31244 43.78 26.56 15.47 7.76 2.09 0.03 0.02 0.0000
4 5.0 99.02 31662 24.05 10.96 5.00 1.98 0.36 0.01 0.00 0.0000
5 5.0 98.86 31634 12.95 4.46 1.47 0.46 0.04 0.00 0.00 0.0000
6 5.0 98.82 31622 6.58 1.70 0.40 0.06 0.01 0.00 0.00 0.0000
9 5.0 98.80 31617 0.93 0.11 0.01 0.00 0.00 0.00 0.00 0.0000

2 9.0 99.28 26127 61.02 45.62 33.44 21.71 7.48 0.09 0.02 0.0000
3 9.0 98.72 31112 36.68 22.12 13.05 6.74 1.87 0.04 0.01 0.0000
4 9.0 98.28 31436 17.74 8.11 3.83 1.51 0.25 0.02 0.00 0.0000
5 9.0 98.09 31388 8.55 2.91 1.01 0.25 0.03 0.00 0.00 0.0000
6 9.0 97.98 31353 3.95 0.99 0.26 0.07 0.01 0.01 0.00 0.0000
9 9.0 97.74 31276 0.43 0.08 0.02 0.00 0.00 0.00 0.00 0.0000
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Table B.15. TRx values for degree p = 1, demand d = 10, mixed element latency
functions, and fixed consumption number range.

n rmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 100.00 26298 81.33 66.95 52.99 37.25 16.35 2.51 0.96 0.0114
3 1.0 99.99 31501 62.54 42.67 28.55 16.77 6.79 1.87 0.77 0.0032
4 1.0 100.00 31979 45.23 25.27 14.13 6.98 2.96 1.19 0.58 0.0094
5 1.0 99.99 31997 31.92 15.00 7.00 3.15 1.40 0.65 0.33 0.0031
6 1.0 99.94 31982 23.62 9.54 4.28 1.93 0.90 0.44 0.24 0.0031
9 1.0 99.99 31996 11.07 3.89 1.72 0.79 0.43 0.21 0.12 0.0031

2 5.0 99.46 26131 65.98 50.20 36.85 23.88 8.97 0.21 0.03 0.0000
3 5.0 99.34 31306 42.40 26.07 15.71 8.49 2.73 0.37 0.06 0.0000
4 5.0 99.19 31726 23.62 11.06 5.31 2.22 0.62 0.11 0.01 0.0000
5 5.0 99.15 31728 12.65 4.53 1.53 0.52 0.09 0.02 0.02 0.0000
6 5.0 99.18 31738 6.06 1.66 0.45 0.13 0.04 0.02 0.00 0.0000
9 5.0 99.01 31683 0.95 0.19 0.04 0.02 0.00 0.00 0.00 0.0000

2 9.0 99.60 26359 57.86 43.71 31.68 20.51 7.56 0.18 0.04 0.0000
3 9.0 99.48 31326 34.24 20.74 12.52 6.83 2.19 0.25 0.03 0.0000
4 9.0 99.28 31751 16.88 8.11 3.97 1.63 0.43 0.06 0.01 0.0000
5 9.0 99.28 31768 7.48 2.63 0.96 0.29 0.05 0.01 0.00 0.0000
6 9.0 99.30 31775 3.54 0.90 0.25 0.06 0.01 0.00 0.00 0.0000
9 9.0 99.16 31730 0.36 0.05 0.01 0.01 0.00 0.00 0.00 0.0000
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Table B.16. TRx values for degree p = 1, demand d = 10, mixed element latency
functions, and fixed relevance number range.

n cmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 100.00 26317 76.13 60.62 46.55 31.63 12.04 0.09 0.00 0.0000
3 1.0 99.98 31490 57.14 38.16 24.51 13.71 4.50 0.53 0.09 0.0000
4 1.0 99.95 31957 39.18 20.43 10.22 4.26 1.03 0.15 0.01 0.0000
5 1.0 99.95 31984 26.20 10.29 3.91 1.28 0.26 0.03 0.00 0.0000
6 1.0 99.95 31984 16.83 4.92 1.50 0.34 0.06 0.01 0.00 0.0000
9 1.0 99.95 31984 4.43 0.65 0.09 0.01 0.00 0.00 0.00 0.0000

2 5.0 99.72 26283 64.48 49.11 35.84 22.91 8.29 0.19 0.03 0.0000
3 5.0 99.52 31345 41.35 25.30 15.01 7.98 2.51 0.30 0.04 0.0000
4 5.0 99.53 31835 23.07 10.69 5.01 2.04 0.48 0.08 0.01 0.0000
5 5.0 99.49 31836 11.63 4.11 1.47 0.45 0.10 0.02 0.00 0.0000
6 5.0 99.49 31838 6.05 1.62 0.41 0.08 0.01 0.00 0.00 0.0000
9 5.0 99.50 31839 0.73 0.08 0.02 0.01 0.00 0.00 0.00 0.0000

2 9.0 99.60 26323 58.09 43.46 32.02 20.90 7.41 0.17 0.02 0.0000
3 9.0 99.41 31326 34.04 20.57 12.31 6.66 2.11 0.23 0.03 0.0000
4 9.0 99.36 31779 16.89 8.00 3.84 1.67 0.48 0.09 0.02 0.0000
5 9.0 99.30 31777 7.87 2.75 1.00 0.35 0.08 0.02 0.01 0.0000
6 9.0 99.25 31761 3.36 0.93 0.31 0.09 0.02 0.01 0.00 0.0000
9 9.0 99.17 31736 0.45 0.10 0.03 0.01 0.00 0.00 0.00 0.0000
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Table B.17. TRx values for degree p = 2, demand d = 1, single element latency functions,
and fixed consumption number range.

n rmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 98.13 25765 50.11 39.23 26.95 8.18 3.32 2.42 1.79 0.5007
3 1.0 97.87 30806 25.67 17.26 10.14 4.40 2.15 1.39 1.01 0.2986
4 1.0 98.05 31362 13.07 7.89 4.57 2.33 1.21 0.84 0.65 0.2264
5 1.0 97.73 31273 7.27 3.75 2.02 1.05 0.63 0.42 0.32 0.0927
6 1.0 97.57 31222 4.99 2.45 1.22 0.68 0.42 0.29 0.19 0.0801
9 1.0 97.23 31114 2.34 0.91 0.40 0.20 0.14 0.08 0.04 0.0129

2 5.0 94.55 24637 33.99 24.33 13.88 2.02 0.23 0.10 0.04 0.0000
3 5.0 95.20 29974 13.26 7.85 3.49 0.41 0.05 0.03 0.00 0.0000
4 5.0 96.34 30815 3.79 1.72 0.65 0.11 0.02 0.01 0.00 0.0000
5 5.0 96.99 31038 1.01 0.40 0.10 0.01 0.00 0.00 0.00 0.0000
6 5.0 97.17 31095 0.32 0.08 0.03 0.00 0.00 0.00 0.00 0.0000
9 5.0 98.01 31364 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.0000

2 9.0 94.40 24661 29.87 21.00 11.72 1.71 0.14 0.06 0.02 0.0041
3 9.0 94.67 29814 10.99 6.67 3.20 0.39 0.05 0.03 0.01 0.0000
4 9.0 95.52 30550 3.01 1.33 0.53 0.07 0.01 0.00 0.00 0.0000
5 9.0 95.69 30622 0.70 0.22 0.06 0.00 0.00 0.00 0.00 0.0000
6 9.0 96.08 30745 0.14 0.05 0.01 0.00 0.00 0.00 0.00 0.0000
9 9.0 97.17 31095 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.0000
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Table B.18. TRx values for degree p = 2, demand d = 1, single element latency functions,
and fixed relevance number range.

n cmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 100.00 26227 41.61 30.88 18.18 1.99 0.00 0.00 0.00 0.0000
3 1.0 99.38 31302 19.08 11.61 5.21 0.39 0.00 0.00 0.00 0.0000
4 1.0 99.60 31860 6.83 3.27 1.10 0.05 0.00 0.00 0.00 0.0000
5 1.0 99.80 31937 2.15 0.70 0.15 0.00 0.00 0.00 0.00 0.0000
6 1.0 99.87 31957 0.60 0.18 0.01 0.00 0.00 0.00 0.00 0.0000
9 1.0 99.94 31980 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.0000

2 5.0 95.51 25004 33.41 23.28 13.18 1.69 0.20 0.08 0.04 0.0000
3 5.0 95.93 30204 12.93 7.78 3.56 0.37 0.04 0.01 0.00 0.0000
4 5.0 96.79 30958 3.77 1.80 0.63 0.08 0.03 0.00 0.00 0.0000
5 5.0 97.38 31160 0.98 0.37 0.11 0.02 0.00 0.00 0.00 0.0000
6 5.0 97.94 31342 0.30 0.08 0.01 0.00 0.00 0.00 0.00 0.0000
9 5.0 98.45 31504 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0000

2 9.0 94.41 24674 29.85 21.12 12.10 1.56 0.16 0.06 0.02 0.0000
3 9.0 94.45 29769 10.88 6.50 3.03 0.36 0.02 0.01 0.00 0.0000
4 9.0 95.25 30467 2.98 1.51 0.54 0.06 0.01 0.00 0.00 0.0000
5 9.0 95.85 30671 0.67 0.26 0.07 0.01 0.01 0.01 0.00 0.0000
6 9.0 96.31 30819 0.16 0.03 0.01 0.00 0.00 0.00 0.00 0.0000
9 9.0 97.38 31163 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0000
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Table B.19. TRx values for degree p = 2, demand d = 1, mixed element latency functions,
and fixed consumption number range.

n rmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 99.26 26118 47.49 35.81 22.93 6.71 1.83 0.69 0.35 0.0613
3 1.0 99.18 31259 24.74 16.19 9.25 3.87 1.44 0.68 0.36 0.0864
4 1.0 98.81 31598 10.85 6.01 3.03 1.33 0.53 0.28 0.15 0.0348
5 1.0 98.70 31584 5.10 2.39 1.19 0.54 0.30 0.20 0.14 0.0222
6 1.0 98.33 31466 2.67 1.13 0.50 0.24 0.12 0.08 0.04 0.0127
9 1.0 97.36 31154 0.84 0.35 0.22 0.13 0.08 0.04 0.02 0.0000

2 5.0 98.75 26007 32.63 23.51 13.67 2.83 0.45 0.04 0.02 0.0000
3 5.0 98.78 31126 13.29 8.23 4.37 1.28 0.31 0.05 0.01 0.0000
4 5.0 98.77 31583 4.35 2.23 0.98 0.28 0.08 0.02 0.01 0.0000
5 5.0 98.87 31637 1.19 0.42 0.17 0.07 0.02 0.01 0.00 0.0000
6 5.0 98.87 31638 0.42 0.14 0.04 0.02 0.00 0.00 0.00 0.0000
9 5.0 98.84 31630 0.06 0.01 0.01 0.01 0.00 0.00 0.00 0.0000

2 9.0 98.98 25936 27.69 19.95 11.57 2.35 0.45 0.05 0.02 0.0000
3 9.0 98.86 31148 10.77 6.50 3.35 0.87 0.22 0.06 0.01 0.0000
4 9.0 98.77 31587 2.96 1.43 0.54 0.15 0.03 0.00 0.00 0.0000
5 9.0 98.86 31634 0.81 0.31 0.10 0.03 0.01 0.00 0.00 0.0000
6 9.0 98.71 31588 0.25 0.07 0.03 0.01 0.01 0.01 0.00 0.0000
9 9.0 98.71 31586 0.03 0.02 0.01 0.01 0.01 0.00 0.00 0.0000
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Table B.20. TRx values for degree p = 2, demand d = 1, mixed element latency functions,
and fixed relevance number range.

n cmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 100.00 26349 41.97 30.90 18.40 3.31 0.42 0.00 0.00 0.0000
3 1.0 99.99 31503 19.97 12.21 5.85 1.05 0.16 0.02 0.00 0.0000
4 1.0 99.98 31974 7.82 3.81 1.30 0.23 0.04 0.00 0.00 0.0000
5 1.0 99.99 31996 2.86 1.00 0.29 0.04 0.02 0.00 0.00 0.0000
6 1.0 99.98 31995 1.11 0.33 0.06 0.02 0.00 0.00 0.00 0.0000
9 1.0 99.99 31996 0.13 0.03 0.00 0.00 0.00 0.00 0.00 0.0000

2 5.0 99.33 26299 31.09 22.38 13.05 2.57 0.37 0.03 0.00 0.0038
3 5.0 99.35 31319 13.15 8.05 4.04 1.02 0.25 0.03 0.01 0.0000
4 5.0 99.27 31753 4.11 1.96 0.74 0.17 0.06 0.03 0.00 0.0000
5 5.0 99.38 31800 1.14 0.41 0.16 0.06 0.03 0.01 0.00 0.0000
6 5.0 99.28 31771 0.44 0.11 0.03 0.01 0.00 0.00 0.00 0.0000
9 5.0 99.29 31774 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.0000

2 9.0 98.91 26112 28.24 20.27 11.57 2.38 0.41 0.03 0.00 0.0000
3 9.0 98.84 31139 11.32 7.04 3.58 0.99 0.27 0.05 0.01 0.0000
4 9.0 98.82 31609 3.10 1.47 0.65 0.16 0.03 0.01 0.01 0.0000
5 9.0 98.89 31645 0.76 0.33 0.10 0.03 0.01 0.00 0.00 0.0000
6 9.0 98.87 31637 0.23 0.06 0.03 0.01 0.00 0.00 0.00 0.0000
9 9.0 98.78 31609 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.0000
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Table B.21. TRx values for degree p = 2, demand d = 10, single element latency
functions, and fixed consumption number range.

n rmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 96.37 25102 49.95 39.02 26.76 7.71 2.82 1.96 1.34 0.1593
3 1.0 94.98 29893 24.34 15.96 8.87 3.25 1.13 0.63 0.42 0.0569
4 1.0 95.87 30661 11.96 7.15 3.81 1.76 0.69 0.40 0.30 0.0457
5 1.0 96.00 30721 6.73 3.51 1.73 0.81 0.37 0.23 0.16 0.0391
6 1.0 95.64 30605 4.34 2.01 0.93 0.45 0.25 0.17 0.10 0.0098
9 1.0 93.37 29878 2.06 0.79 0.36 0.19 0.14 0.06 0.04 0.0067

2 5.0 93.55 24300 34.00 23.75 13.29 1.67 0.07 0.01 0.01 0.0041
3 5.0 92.38 29087 13.12 7.95 3.64 0.40 0.04 0.01 0.01 0.0000
4 5.0 92.73 29660 3.86 1.77 0.62 0.06 0.01 0.01 0.00 0.0000
5 5.0 93.03 29770 0.98 0.32 0.08 0.01 0.00 0.00 0.00 0.0000
6 5.0 92.82 29702 0.26 0.04 0.01 0.00 0.00 0.00 0.00 0.0000
9 5.0 92.95 29743 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0000

2 9.0 93.54 24470 29.59 20.85 11.87 1.72 0.11 0.04 0.01 0.0082
3 9.0 92.16 28997 11.01 6.46 3.10 0.42 0.03 0.00 0.00 0.0000
4 9.0 92.20 29486 3.03 1.42 0.54 0.05 0.00 0.00 0.00 0.0000
5 9.0 91.83 29386 0.61 0.21 0.06 0.00 0.00 0.00 0.00 0.0000
6 9.0 91.83 29386 0.13 0.04 0.01 0.00 0.00 0.00 0.00 0.0000
9 9.0 91.58 29305 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000
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Table B.22. TRx values for degree p = 2, demand d = 10, single element latency
functions, and fixed relevance number range.

n cmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 100.00 26312 41.94 30.59 17.73 2.15 0.00 0.00 0.00 0.0000
3 1.0 99.27 31258 19.46 11.81 5.31 0.37 0.00 0.00 0.00 0.0000
4 1.0 99.30 31761 6.88 3.26 1.04 0.06 0.00 0.00 0.00 0.0000
5 1.0 99.26 31762 2.15 0.73 0.14 0.00 0.00 0.00 0.00 0.0000
6 1.0 99.32 31782 0.62 0.14 0.01 0.00 0.00 0.00 0.00 0.0000
9 1.0 99.34 31790 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000

2 5.0 94.97 24753 33.53 23.61 13.16 1.72 0.08 0.02 0.00 0.0000
3 5.0 93.52 29431 12.61 7.58 3.39 0.41 0.01 0.01 0.00 0.0000
4 5.0 94.30 30157 3.67 1.68 0.59 0.05 0.01 0.00 0.00 0.0000
5 5.0 94.27 30166 0.89 0.27 0.07 0.02 0.00 0.00 0.00 0.0000
6 5.0 94.57 30263 0.24 0.05 0.00 0.00 0.00 0.00 0.00 0.0000
9 5.0 94.81 30338 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000

2 9.0 93.69 24275 30.32 21.38 12.13 1.47 0.10 0.02 0.00 0.0000
3 9.0 91.79 28890 10.67 6.54 3.04 0.30 0.03 0.02 0.01 0.0000
4 9.0 91.87 29378 3.03 1.49 0.56 0.06 0.01 0.00 0.00 0.0000
5 9.0 91.67 29336 0.58 0.20 0.06 0.00 0.00 0.00 0.00 0.0000
6 9.0 91.51 29283 0.15 0.05 0.00 0.00 0.00 0.00 0.00 0.0000
9 9.0 91.54 29292 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000
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Table B.23. TRx values for degree p = 2, demand d = 10, mixed element latency
functions, and fixed consumption number range.

n rmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 97.81 25619 54.06 42.94 30.63 13.87 6.93 4.25 2.24 0.0351
3 1.0 98.03 30866 28.89 19.69 12.11 5.93 3.06 1.92 1.15 0.0065
4 1.0 98.13 31381 14.30 8.32 4.75 2.61 1.46 0.91 0.48 0.0064
5 1.0 97.80 31296 7.42 3.97 2.13 1.21 0.73 0.44 0.23 0.0032
6 1.0 97.36 31156 4.40 2.21 1.28 0.75 0.50 0.30 0.17 0.0032
9 1.0 95.79 30653 1.51 0.68 0.35 0.20 0.13 0.07 0.03 0.0033

2 5.0 94.77 24759 35.83 25.74 15.25 3.46 0.70 0.18 0.03 0.0000
3 5.0 94.17 29622 14.04 8.44 4.26 1.01 0.18 0.02 0.00 0.0000
4 5.0 94.57 30246 4.54 2.23 0.91 0.23 0.04 0.01 0.00 0.0000
5 5.0 95.45 30543 1.45 0.50 0.19 0.05 0.01 0.00 0.00 0.0000
6 5.0 95.88 30682 0.41 0.12 0.02 0.00 0.00 0.00 0.00 0.0000
9 5.0 97.11 31075 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.0000

2 9.0 95.21 24905 30.97 22.17 12.98 2.69 0.53 0.12 0.02 0.0000
3 9.0 94.25 29695 11.80 7.41 3.74 0.94 0.19 0.05 0.00 0.0000
4 9.0 94.86 30338 3.35 1.79 0.78 0.21 0.03 0.01 0.00 0.0000
5 9.0 95.44 30542 0.82 0.33 0.12 0.02 0.00 0.00 0.00 0.0000
6 9.0 95.93 30696 0.30 0.08 0.02 0.00 0.00 0.00 0.00 0.0000
9 9.0 96.92 31014 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000
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Table B.24. TRx values for degree p = 2, demand d = 10, mixed element latency
functions, and fixed relevance number range.

n cmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 100.00 26253 42.49 31.44 18.58 3.26 0.50 0.01 0.00 0.0000
3 1.0 99.79 31432 20.43 12.76 6.17 1.48 0.23 0.02 0.00 0.0000
4 1.0 99.75 31898 8.10 4.09 1.61 0.42 0.08 0.02 0.00 0.0000
5 1.0 99.69 31902 3.06 1.09 0.37 0.08 0.01 0.00 0.00 0.0000
6 1.0 99.78 31928 1.20 0.29 0.08 0.02 0.01 0.00 0.00 0.0000
9 1.0 99.84 31950 0.19 0.03 0.00 0.00 0.00 0.00 0.00 0.0000

2 5.0 96.29 25326 34.46 24.63 14.43 3.12 0.62 0.11 0.02 0.0000
3 5.0 95.86 30166 14.07 8.75 4.33 1.06 0.22 0.05 0.00 0.0000
4 5.0 96.59 30895 4.25 2.11 0.93 0.20 0.04 0.00 0.00 0.0000
5 5.0 96.99 31037 1.25 0.48 0.15 0.03 0.01 0.01 0.00 0.0000
6 5.0 97.25 31119 0.39 0.12 0.03 0.01 0.01 0.00 0.00 0.0000
9 5.0 98.14 31405 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.0000

2 9.0 95.26 25013 31.36 22.45 13.31 2.94 0.57 0.09 0.01 0.0000
3 9.0 94.31 29698 12.16 7.33 3.80 0.97 0.17 0.03 0.00 0.0000
4 9.0 94.86 30344 3.30 1.65 0.71 0.21 0.04 0.00 0.00 0.0000
5 9.0 95.48 30553 0.92 0.36 0.09 0.03 0.00 0.00 0.00 0.0000
6 9.0 95.83 30667 0.22 0.06 0.01 0.00 0.00 0.00 0.00 0.0000
9 9.0 96.92 31013 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.0000
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Table B.25. TRx values for degree p = 3, demand d = 1, single element latency functions,
and fixed consumption number range.

n rmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 71.86 8620 48.12 35.57 17.98 4.78 3.50 2.88 2.32 1.0673
3 1.0 89.54 14066 16.50 10.64 5.79 2.84 2.08 1.68 1.44 0.6043
4 1.0 94.41 15099 7.22 4.41 2.70 1.72 1.26 0.93 0.74 0.3908
5 1.0 93.31 14930 3.34 1.95 1.13 0.82 0.60 0.48 0.33 0.1741
6 1.0 92.04 14726 1.83 1.05 0.69 0.46 0.36 0.28 0.25 0.1494
9 1.0 90.64 14502 0.58 0.35 0.22 0.10 0.07 0.03 0.03 0.0207

2 5.0 88.84 11380 22.77 13.48 3.44 0.37 0.18 0.12 0.04 0.0088
3 5.0 90.41 14238 6.62 3.28 0.68 0.09 0.04 0.02 0.01 0.0000
4 5.0 92.69 14820 1.30 0.52 0.10 0.00 0.00 0.00 0.00 0.0000
5 5.0 94.03 15044 0.23 0.05 0.01 0.01 0.01 0.00 0.00 0.0000
6 5.0 95.38 15261 0.05 0.02 0.01 0.00 0.00 0.00 0.00 0.0000
9 5.0 96.81 15489 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000

2 9.0 88.91 11434 18.55 11.12 2.64 0.24 0.14 0.04 0.01 0.0000
3 9.0 88.92 14005 5.81 2.93 0.59 0.04 0.03 0.01 0.00 0.0000
4 9.0 91.58 14637 1.18 0.46 0.08 0.01 0.01 0.00 0.00 0.0000
5 9.0 92.53 14804 0.18 0.06 0.00 0.00 0.00 0.00 0.00 0.0000
6 9.0 93.98 15037 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.0000
9 9.0 95.49 15279 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000
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Table B.26. TRx values for degree p = 3, demand d = 1, single element latency functions,
and fixed relevance number range.

n cmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 100.00 13163 27.53 16.80 3.63 0.00 0.00 0.00 0.00 0.0000
3 1.0 98.73 15562 9.72 4.67 0.63 0.00 0.00 0.00 0.00 0.0000
4 1.0 99.26 15868 2.47 0.88 0.05 0.00 0.00 0.00 0.00 0.0000
5 1.0 99.32 15890 0.60 0.13 0.00 0.00 0.00 0.00 0.00 0.0000
6 1.0 99.54 15927 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.0000
9 1.0 99.81 15970 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000

2 5.0 90.03 11588 21.25 12.69 2.99 0.23 0.14 0.06 0.02 0.0000
3 5.0 91.85 14477 6.70 3.26 0.59 0.08 0.03 0.01 0.00 0.0000
4 5.0 93.97 15028 1.35 0.49 0.07 0.01 0.01 0.00 0.00 0.0000
5 5.0 94.92 15187 0.20 0.05 0.01 0.01 0.00 0.00 0.00 0.0000
6 5.0 96.16 15386 0.05 0.01 0.01 0.00 0.00 0.00 0.00 0.0000
9 5.0 97.59 15615 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000

2 9.0 88.83 11493 18.72 10.94 2.69 0.21 0.13 0.08 0.01 0.0000
3 9.0 89.33 14075 5.51 2.69 0.49 0.04 0.01 0.01 0.00 0.0000
4 9.0 91.37 14613 1.12 0.43 0.08 0.01 0.00 0.00 0.00 0.0000
5 9.0 92.53 14805 0.16 0.03 0.01 0.01 0.01 0.00 0.00 0.0000
6 9.0 93.69 14991 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.0000
9 9.0 95.73 15317 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000
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Table B.27. TRx values for degree p = 3, demand d = 1, mixed element latency functions,
and fixed consumption number range.

n rmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 97.38 12796 35.85 25.31 11.87 3.81 1.89 1.03 0.38 0.0156
3 1.0 98.01 15457 14.32 8.62 3.93 1.49 0.82 0.53 0.25 0.0712
4 1.0 97.73 15626 4.65 2.50 1.18 0.51 0.22 0.11 0.07 0.0192
5 1.0 97.12 15540 1.68 0.75 0.39 0.21 0.14 0.06 0.05 0.0064
6 1.0 96.31 15409 0.55 0.27 0.16 0.10 0.06 0.04 0.01 0.0065
9 1.0 94.23 15076 0.14 0.06 0.05 0.02 0.01 0.00 0.00 0.0000

2 5.0 95.38 12450 21.45 13.16 3.91 0.49 0.08 0.02 0.01 0.0000
3 5.0 96.33 15185 6.99 3.83 1.33 0.43 0.12 0.05 0.00 0.0000
4 5.0 97.09 15525 1.55 0.81 0.27 0.08 0.03 0.02 0.00 0.0000
5 5.0 97.44 15591 0.24 0.10 0.03 0.01 0.00 0.00 0.00 0.0000
6 5.0 97.86 15658 0.08 0.03 0.00 0.00 0.00 0.00 0.00 0.0000
9 5.0 98.09 15695 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000

2 9.0 96.01 12638 18.09 11.09 3.46 0.59 0.17 0.03 0.00 0.0000
3 9.0 96.07 15140 5.67 3.22 1.26 0.33 0.10 0.01 0.01 0.0000
4 9.0 96.88 15493 1.45 0.64 0.23 0.07 0.03 0.01 0.00 0.0000
5 9.0 96.92 15507 0.19 0.04 0.02 0.00 0.00 0.00 0.00 0.0000
6 9.0 97.46 15593 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.0000
9 9.0 97.63 15621 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000
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Table B.28. TRx values for degree p = 3, demand d = 1, mixed element latency functions,
and fixed relevance number range.

n cmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 100.00 13135 26.80 16.51 4.24 0.21 0.03 0.00 0.00 0.0000
3 1.0 99.97 15734 9.95 5.17 1.34 0.18 0.05 0.01 0.00 0.0000
4 1.0 99.97 15984 2.83 1.08 0.20 0.04 0.01 0.00 0.00 0.0000
5 1.0 99.99 15998 0.69 0.26 0.07 0.03 0.00 0.00 0.00 0.0000
6 1.0 99.96 15994 0.13 0.03 0.01 0.00 0.00 0.00 0.00 0.0000
9 1.0 99.97 15995 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000

2 5.0 97.38 12812 19.65 12.20 3.51 0.41 0.09 0.01 0.00 0.0000
3 5.0 97.78 15387 6.92 3.87 1.34 0.36 0.16 0.04 0.01 0.0000
4 5.0 97.81 15641 1.51 0.65 0.19 0.04 0.01 0.01 0.00 0.0000
5 5.0 98.35 15736 0.32 0.10 0.01 0.00 0.00 0.00 0.00 0.0000
6 5.0 98.29 15727 0.04 0.01 0.01 0.01 0.01 0.01 0.00 0.0000
9 5.0 98.35 15736 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000

2 9.0 95.86 12593 18.91 11.74 3.78 0.50 0.17 0.02 0.00 0.0000
3 9.0 96.38 15163 5.74 3.46 1.35 0.34 0.11 0.03 0.00 0.0000
4 9.0 96.58 15444 1.21 0.56 0.27 0.04 0.01 0.01 0.00 0.0000
5 9.0 97.16 15545 0.23 0.08 0.03 0.00 0.00 0.00 0.00 0.0000
6 9.0 97.26 15561 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.0000
9 9.0 97.88 15660 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0000
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Table B.29. TRx values for degree p = 3, demand d = 10, single element latency
functions, and fixed consumption number range.

n rmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 87.41 11163 40.65 30.28 15.30 4.64 3.20 2.46 2.01 0.6181
3 1.0 88.11 13859 16.00 10.17 5.06 2.02 1.16 0.85 0.63 0.2381
4 1.0 90.64 14489 6.44 3.73 2.18 1.24 0.81 0.64 0.50 0.1242
5 1.0 91.27 14603 3.23 1.86 1.06 0.68 0.52 0.40 0.27 0.0685
6 1.0 89.09 14255 1.92 1.10 0.70 0.48 0.32 0.20 0.14 0.0351
9 1.0 87.09 13934 0.69 0.42 0.32 0.17 0.12 0.09 0.06 0.0072

2 5.0 86.58 11125 22.52 13.56 3.02 0.11 0.04 0.03 0.01 0.0000
3 5.0 86.43 13579 6.61 3.57 0.68 0.02 0.01 0.01 0.00 0.0000
4 5.0 87.25 13952 1.52 0.59 0.10 0.02 0.00 0.00 0.00 0.0000
5 5.0 86.91 13906 0.27 0.06 0.00 0.00 0.00 0.00 0.00 0.0000
6 5.0 87.61 14017 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.0000
9 5.0 88.46 14154 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000

2 9.0 88.08 11229 19.57 11.63 2.48 0.20 0.04 0.02 0.01 0.0000
3 9.0 85.61 13433 5.69 2.57 0.54 0.04 0.02 0.00 0.00 0.0000
4 9.0 84.79 13557 1.05 0.46 0.04 0.00 0.00 0.00 0.00 0.0000
5 9.0 85.05 13608 0.12 0.04 0.01 0.00 0.00 0.00 0.00 0.0000
6 9.0 85.41 13665 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.0000
9 9.0 85.77 13723 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000
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Table B.30. TRx values for degree p = 3, demand d = 10, single element latency
functions, and fixed relevance number range.

n cmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 100.00 13202 26.96 16.53 3.39 0.00 0.00 0.00 0.00 0.0000
3 1.0 98.39 15486 9.82 4.67 0.61 0.00 0.00 0.00 0.00 0.0000
4 1.0 98.00 15676 2.39 0.82 0.11 0.00 0.00 0.00 0.00 0.0000
5 1.0 97.55 15608 0.49 0.15 0.01 0.00 0.00 0.00 0.00 0.0000
6 1.0 97.44 15590 0.12 0.02 0.00 0.00 0.00 0.00 0.00 0.0000
9 1.0 97.80 15648 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000

2 5.0 88.78 11397 20.65 11.80 2.54 0.18 0.11 0.04 0.00 0.0000
3 5.0 87.85 13809 6.83 3.55 0.70 0.02 0.00 0.00 0.00 0.0000
4 5.0 88.09 14088 1.40 0.63 0.06 0.00 0.00 0.00 0.00 0.0000
5 5.0 89.04 14247 0.27 0.12 0.02 0.00 0.00 0.00 0.00 0.0000
6 5.0 89.66 14345 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0000
9 5.0 90.96 14554 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000

2 9.0 87.74 11210 19.01 11.38 2.41 0.20 0.11 0.04 0.00 0.0000
3 9.0 85.58 13459 5.71 2.82 0.51 0.01 0.01 0.01 0.00 0.0000
4 9.0 84.91 13578 1.13 0.47 0.05 0.01 0.01 0.00 0.00 0.0000
5 9.0 85.21 13633 0.15 0.04 0.00 0.00 0.00 0.00 0.00 0.0000
6 9.0 85.52 13684 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0000
9 9.0 85.62 13700 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000
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Table B.31. TRx values for degree p = 3, demand d = 10, mixed element latency
functions, and fixed consumption number range.

n rmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 97.31 12793 42.83 33.00 20.07 10.62 7.65 5.46 3.66 0.2032
3 1.0 97.06 15281 18.79 12.48 7.35 4.30 3.24 2.54 1.94 0.2094
4 1.0 96.16 15377 8.79 5.54 3.49 2.52 1.82 1.38 0.98 0.1301
5 1.0 95.29 15247 3.96 2.59 1.76 1.30 1.06 0.76 0.54 0.0853
6 1.0 93.41 14946 2.13 1.34 0.84 0.63 0.43 0.29 0.19 0.0201
9 1.0 90.97 14556 0.80 0.50 0.34 0.23 0.18 0.10 0.05 0.0069

2 5.0 89.02 11423 23.16 13.72 3.81 0.56 0.19 0.05 0.02 0.0000
3 5.0 87.88 13789 7.46 3.92 0.96 0.16 0.05 0.03 0.01 0.0000
4 5.0 88.96 14224 1.43 0.58 0.16 0.04 0.01 0.01 0.00 0.0000
5 5.0 90.38 14460 0.18 0.04 0.02 0.01 0.00 0.00 0.00 0.0000
6 5.0 91.89 14702 0.04 0.01 0.01 0.01 0.00 0.00 0.00 0.0000
9 5.0 94.16 15065 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000

2 9.0 89.38 11548 19.88 12.32 3.06 0.43 0.20 0.09 0.04 0.0000
3 9.0 87.87 13807 5.87 2.80 0.73 0.07 0.04 0.01 0.01 0.0000
4 9.0 88.92 14218 1.09 0.50 0.12 0.02 0.00 0.00 0.00 0.0000
5 9.0 89.85 14376 0.19 0.08 0.04 0.00 0.00 0.00 0.00 0.0000
6 9.0 90.61 14498 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.0000
9 9.0 93.39 14943 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000
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Table B.32. TRx values for degree p = 3, demand d = 10, mixed element latency
functions, and fixed relevance number range.

n cmax %OK #(γ>1) %TR30 %TR40 %TR50 %TR60 %TR70 %TR80 %TR90 %TR100

2 1.0 100.00 13197 27.49 16.38 4.20 0.22 0.02 0.00 0.00 0.0000
3 1.0 99.41 15644 9.74 4.99 1.20 0.08 0.01 0.00 0.00 0.0000
4 1.0 99.06 15841 2.66 1.16 0.21 0.02 0.00 0.00 0.00 0.0000
5 1.0 98.76 15802 0.68 0.18 0.03 0.00 0.00 0.00 0.00 0.0000
6 1.0 98.78 15804 0.18 0.03 0.01 0.00 0.00 0.00 0.00 0.0000
9 1.0 99.34 15894 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000

2 5.0 91.17 11797 22.81 14.04 3.93 0.47 0.19 0.05 0.00 0.0000
3 5.0 90.49 14254 6.70 3.39 0.86 0.15 0.03 0.01 0.01 0.0000
4 5.0 91.67 14654 1.34 0.57 0.12 0.02 0.00 0.00 0.00 0.0000
5 5.0 92.63 14821 0.31 0.09 0.01 0.01 0.00 0.00 0.00 0.0000
6 5.0 93.40 14944 0.07 0.02 0.00 0.00 0.00 0.00 0.00 0.0000
9 5.0 95.44 15270 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0000

2 9.0 89.66 11464 20.80 12.76 3.89 0.56 0.19 0.09 0.02 0.0000
3 9.0 88.22 13882 5.75 2.99 0.71 0.07 0.03 0.01 0.00 0.0000
4 9.0 89.14 14256 1.23 0.56 0.13 0.01 0.01 0.00 0.00 0.0000
5 9.0 89.99 14399 0.20 0.05 0.00 0.00 0.00 0.00 0.00 0.0000
6 9.0 90.87 14539 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0000
9 9.0 93.57 14971 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0000
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B.3 Comparison with Perakis’ Bound
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Figure B.8. Hexagonal binning plots with the observed price of anarchy over Perakis’
bound and our proven bound of Thm. 2.12, respectively. The data set comprises 926,254
instances. The horizontal scale is trimmed to the largest value of our bound, resulting in
10 values of Perakis’ bound being omitted (in the upper plot). Those values of Perakis’
bound range up to 9,007.
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Figure B.9. Hexagonal binning plots with the observed price of anarchy over Perakis’
bound and our conjectured bound, respectively. We use the same data set as for the previ-
ous plot. The horizontal scale is trimmed to two times the maximum of our conjectured
bound, resulting in 1,395 instances being omitted (in the upper plot).
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Figure B.10. Observed price of anarchy over Perakis’ bound and our conjectured bound,
respectively. These are magnifications of the left parts of the plots from the previous
page; we trimmed the horizontal scale to the maximum value of our conjectured bound,
resulting in 2,903 instances being omitted (in the upper plot).



B.3. Comparison with Perakis’ Bound 215

Perakis'�Bound�/�Our�Proven�Bound

D
e
n
s
i
t
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.
0

0
.
5

1
.
0

1
.
5

2
.
0

2
.
5

Perakis'�Bound�/�Conjectured�Bound

D
e
n
s
i
t
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.
0

0
.
5

1
.
0

1
.
5

2
.
0

2
.
5

Figure B.11. Histograms for the ratio between Perakis’ bound and our bounds: in the
first we compare to our proven bound and in the second we compare to our conjectured
bound. The underlying data set is the same as for the previous plots. However, only
those instances were chosen to contribute to the histograms for which both ratios –
namely Perakis’ bound divided by our proven bound and Perakis’ bound divided by our
conjectured bound – are at most 3. This results in 912,152 instances contributing to each
of the histograms and 14,102 being omitted each.
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