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Chapter 1

Introduction

Advanced functional materials are a prerequisite for many major research and development

areas like informatics, medicine, energy and environment, the transport industry and space

exploration. Sophisticated nanomaterials and systems with novel functional properties are

a major desire. Much of this interest is powered by the growing expertise in fabrication

methods that allow increasingly sophisticated ways of realizing nanostructures with well–

controlled composition, size, and shape [1]. The development of synthetic methodologies

has also advanced to a level where nanostructures are produced from many kinds of mate-

rials with the required quality, quantity, and yield for the systematic investigation of their

peculiar properties. The precise synthesis of nanoparticles with well defined properties is a

prerequisite for the development and design of high–tech coatings based on selective high–

surface area materials of consolidated bulk materials [2, 3]. Additionally, for the case that

the nanoparticles are embedded in a matrix, the later also determines different physical

properties.

Nanostructured materials exhibit properties that are not observed for macroscopic

feature sizes. Examples related to metallic nanoparticles in a dielectric matrix include elec-

tronic conductivity ranging from tunneling to percolation, surface plasmons giving rise to

characteristic optical absorption [4–6] and enhancement of catalytic activity [7, 8]. As a

consequence, such nanocomposite coatings have been of strongly increasing fundamental

interest and great technological importance during the last decade [9–12].
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CHAPTER 1. INTRODUCTION 2

Organic frameworks [13] and metal oxide supports [14] have frequently been used to

maintain the dispersion of functional noble metal nanoparticles. Oxide materials like TiO2

are active hosts not only for promoting catalytic performance [14–16] but also antibacterial

effects [17]. Polymers and oxides are particularly attractive as dielectric matrices since they

are generally versatile, and can be easily processed into thin films. Several oxides such as

TiO2 [18, 19], SiO2 [20], ZnO [21], Al2O3 [22], MgO [23] and Indium Tin Oxide (ITO) [24]

exhibit interesting properties. These functional properties can be further enhanced when

the materials are used as a host matrix to form nanocomposites together with noble metal

nanoparticles.

In this work, the synthesis and characterization of such nanocomposites, their associ-

ated properties, optical and antibacterial as well as modification of nanocomposites by swift

heavy ion (SHI) irradiation are addressed. Despite the existence of various approaches to-

wards the synthesis of nanocomposites, vapor phase deposition techniques like co–sputtering

and co–evaporation are preferable because of being solvent–free and industrially viable [25].

Ag and Au nanoparticles embedded in different dielectric matrices, i.e., TiO2 and PTFE,

were synthesized by co–sputtering with varying metal volume fractions (MVFs) and were

irradiated by SHIs.

Ion beams are important and unique tools in modern science and technology [26]. The

availability of fast and heavy ions permits research on strongly perturbed solid–state regions.

Fast and heavy ions deposit more energy in a restricted local region than the most powerful

lasers currently available, being far from thermal equilibrium. The extremely high energy

that can be deposited along the flight path of an ion can destroy the chemical bonds, so

that permanent material modifications are left in the track [27]. The interaction of the ion

with material is the key factor in the ion beam induced material modification in the form of

ion tracks or the effects of overlapping ion tracks [28–30]. The effects of ion beams on the

material depends upon the ion energy, the fluence and the ion species [31, 32]. High energy

ions (energy > 1 MeV/nucleon) with a velocity equivalent to the Bohr velocity, known

as SHIs, have been used for engineering the functional properties of materials [33]. The

modification of any particular property depends on the amount of energy deposited into the
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material by the SHIs.

In this work, the primary focus has been on the SHI induced modifications in functional

properties of the nanocomposites. The SHI beamlines from both the Hahn–Meitner–Institute

(HMI) in Berlin, Germany and the Inter University Accelerator Center (IUAC) in New–Delhi,

India, were used in this work for producing modifications in the morphology, optical and

antibacterial properties of various nanocomposites.

Characterization of the pristine and irradiated nanocomposites in regards to the struc-

ture and morphology, optical and antibacterial properties have been carried out. Trans-

mission electron microscopy (TEM) is one of the most powerful tools to understand the

morphology and structure of nanoparticles directly in the matrix material and was used in

this work. Additionally the 3D morphological analysis by electron tomography of the TiO2

based nanocomposites was conducted in the later stage of the thesis due to the availability

of a sophisticated state-of-art TEM.

While the interaction of light with metallic nanoparticles is determined by their col-

lective electronic or plasmonic response, a compelling analogy exists between plasmon res-

onances of metallic nanoparticles and wave functions of simple atoms and molecules. Both

the size and the interparticle distances play a major role in determining the optical prop-

erties of these nanocomposite thin films [34–36]. The optical properties of nanocomposites

consisting of noble metal nanoparticles in a dielectric matrix are critically dependent on

the particle size, shape, composition and interparticle distance. In this work UV–Vis/NIR

spectroscopy was used to investigate the optical properties of the nanoparticles in order to

obtain information about the nanocomposites [1, 35]. The combination of both, advanced

TEM techniques and UV-Vis spectroscopy yields information on the correlation between the

optical properties and the underlying geometric features of the nanocomposites [12].

Silver, gold and copper nanoparticles can directly interact with some functional groups

of many bacterial cell membranes, and thus have strong cytotoxicity to various bacterial

cells at lower metal usage compared to that required for bulk metals [37–43]. Apart from

the excellent optical properties of the silver based nanoparticles [44], the silver ions released

from the silver based nanoparticles are known to inhibit bacterial growth, thus leading to
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the fact that silver nanoparticles are good antimicrobial agents [45–47] on some bacteria,

viruses, algae and fungi. Germicidal effects of silver kill many microbial organisms in vitro,

but testing and standardization of silver products proved to be rather difficult [48]. Also, Ag

nanoparticles are being doped by Titania for higher efficacy than pure silver nanoparticles

towards the inhibition and annihilation of E.coli bacteria [49]. Additionally, Ag nanoparticles

embedded in different matrices have become quite important because of the prospective

applications such as in imaging, biosensing, biodiagnostics, optical filters, antimicrobial,

water purification, catalytic and photocatalytic processes [18,45,50–54]. TiO2 itself is known

to be antibacterial when irradiated by UV light [55]. In this work the antibacterial properties

of these coatings, i.e., TiO2, Au–TiO2 and Ag–TiO2 through florescence microscopy have

been investigated by the group of Prof. Dr. Podschun. As the silver ion release plays an

important role, it has been investigated with respect to the silver volume fraction in the

Ag–TiO2 nanocomposites in the preliminary studies. X–ray photoelectron spectroscopy and

the UV–Vis spectroscopy were used for these studies. Additionally, it has been shown that

the silver ion release is enhanced after ion beam irradiation.

The temperature appears to be among the main criteria for the nanocomposites’ ap-

plication, as its variation results in the modification of the microstructure and thereby the

functional properties [56]. In–situ microscopy refers to the techniques that allow a direct

observation of the dynamic properties at nanoscale through imaging and diffraction. Thus

heating and cooling experiments within the TEM are powerful techniques for understanding

temperature effects by real–time observation [57, 58]. In–situ heating studies of Ag–TiO2

and Au–TiO2 in the transmission electron microscope, a comparison with the modification

by SHI was carried out.

The thesis is organized in seven chapters as follows:

Chapter 1 deals with the introduction into the field of nanocomposites, optical properties

and SHI irradiation.

Chapter 2 deals with the theories associated at various stages of this work.

Chapter 3 deals with the experimental and characterization techniques employed in this

work.
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Chapter 4 deals with the synthesis of metal–TiO2 nanocomposites, tomographic studies,

and associated SHI induced modifications. An insight into the antibacterial functionality and

optical properties of these nanocomposites is given. A comparison with the in–situ heating

in the transmission electron microscopy with the SHI is discussed as there is microstructural

modification in amorphous TiO2 thin films during annealing [59].

Chapter 5 deals with the synthesis of metal–polymer nanocomposites and multi–layered

systems with the associated SHI irradiation induced modifications.

Chapter 6 summarizes the work.

Chapter 7 gives an outlook.



Chapter 2

Theory

2.1 Vapor phase deposition

Several approaches such as reduction of a metal salt [60], ball milling [61], plasma poly-

merization in conjunction with metal deposition [62], co–evaporation of a metal and an

organic component [63] and co–sputtering [64,65] have been reported to produce functional

nanocomposites. Many applications require good control of the MVF and composition of

the particles. Generally wet chemical approaches are usually less or not suited. In most

cases, vapor phase deposition has proven to be very successful [64,66].

Vapor phase deposition processes involve the controllable transfer of atoms from a

source to a substrate where film formation and growth proceed atomistically. Due to the

absence of impurities, vacuum deposition has the advantage to be a very clean method. The

better the vacuum, the longer is the "mean free path" for collisions of atoms and high–energy

ions.

The basic vapor phase deposition methods to produce thin films are physical vapor

deposition (PVD), i.e., evaporation and sputtering and chemical vapor deposition (CVD).

CVD is a chemical process referring to the formation of a non–volatile solid film on

a substrate from the reaction of vapor phase chemical reactants containing the right con-

stituents. In a typical CVD process, the substrate is exposed to one or more volatile precur-

6
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sors, which react and/or decompose on the substrate surface to produce the desired film.

PVD process depicts a family of processes where at least one of the reactants, not in

a gas phase is dispersed in a high vacuum chamber by either evaporation, sputtering, or

arc–evaporation.

Evaporation involves the removal of atoms from the source by thermal means, whereas

sputtering involves their dislodgement from the source surface through impact of gaseous

ions. Evaporation has the advantages of good deposition rates, better vacuum, thus, cleaner

environments for film formation and growth, and general applicability to all classes of ma-

terials.

Plasma deposition like sputtering involves collisional impact by which source atoms

enter the gas phase. This deposition is based on the presence of vacuum, but is carried out

by pumping a certain amout of additional gas into the chamber. The gas pressure plays an

important role in the density of charged and uncharged particles and the energy distribution

of particles in the plasma, when plasma is established in a vacuum. Plasma in good vacuum

provides an ion source that can be accelerated to high energies in an electric field. In this

work the preparation of nanocomposite films was carried out using co–sputtering from two

sources simultaneously.

2.1.1 Sputtering

Sputtering is the erosion of solid surfaces during ion bombardment [67,68]. Sputtering is the

name given to the result of momentum transfer between gas ions and the target. Physical

sputtering is a non–thermal vaporization process. As mentioned earlier, sputter deposition

involves additional gas. This can be done in low pressure gas (< 1 mbar), where the sputtered

particles do not suffer gas phase collisions in the space between the target and the substrate.

The deposition under such conditions often leads to compressive stress within the deposited

film due to the densification by the high energy impact. On the other hand, sputtering

can also be done using a high gas pressure (>10 mbar) where the energetic particles that

are sputtered or reflected from the target are subjected to collisions, having two effects:
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Firstly, the collisions will thermalize the ions before they reach the substrate. Secondly,

they reach the substrate under various angles, alloying the deposition on complex surfaces.

A simple model of some processes that may occur when an ion strikes a cathode surface was

developed by Wehner and Anderson [69], where chemical effects were ignored and the atoms

were treated as spheres. Fig. 2.1 is a schematic depicting the energetic particle bombardment

effects on surfaces and growing films [70]which depends on the type of ion (mass, charge),

the nature of surface atoms involved and on the ion energy.

Figure 2.1 : Labeled schematic depicting the energetic particle bombardment effects on surfaces and

growing films [70].

Sputtering techniques are usually classified under DC, RF, magnetron and reactive.

Combinations of these techniques also exist. In the scope of this dissertation magnetron

sputtering, DC and RF were used. DC–sputtering is the oldest and simplest sputtering

technique and is limited to electrically conducting materials. In DC–sputtering, a constant

potential difference between anode and cathode is applied. The potential difference applied

between cathode and anode drops completely in the first millimeters in front of the cathode.

This cathode voltage drop sustains the plasma by accelerating secondary electrons emitted

for the cathode. Thus, to sustain a DC–discharge, the electrodes have to be conducting.

In this work, the metallic components have been sputter deposited by using a DC mag-

netron sputtering. If one or both are non–conductive, e.g., deposition of dielectric films,

the electrodes will be charged up due to the accumulation of positive or negative charges
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and the discharge will be extinguished. To overcome this problem an alternative voltage

(RF–sputtering) can be applied between cathode and anode, and the charge accumulated

during half cycle will be partially neutralized by the opposite charge accumulated during

the next half cycle. Thus charge build–up on insulating targets is avoided with the use

of RF–sputtering where the sign of the anode–cathode bias is varied at a high rate. RF–

sputtering works well to produce highly insulating oxide films, polymeric films but only with

the added expense of RF power supplies and impedance matching networks. Stray magnetic

fields leaking from ferromagnetic targets also disturb the sputtering process. In this work,

the dielectric components, i.e., PTFE and TiO2 have been deposited using RF magnetron

sputtering.

In addition to this a magnetic field can also be applied. The most well known type

of sputtering characterized by magnetron discharge is called magnetron sputtering and can

be divided in cylindrical, circular and planar [71]. In planar magnetron sputtering an ax-

isymetric magnetic field is applied with a permanent magnet behind the cathode in such

a way that the magnetic field lines start and return at the magnet, as shown in Fig. 2.2.

Thus, a "magnetic ring" is formed at the cathode surface and will be responsible to trap the

electrons that are accelerated away from the cathode. These electrons will move in helices

around the magnetic field lines and they will travel a much longer path–length in the plasma

than in conventional glow discharges, increasing the ionization collisions and consequently

the ion fluxes.

Figure 2.2 : Schematic depicting a magnetron sputtering device.
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The most common sputtering sources are planar magnetrons in which the plasma is

magnetically confined close to the target surface, thereby achieving a higher sputter rate.

This also enables reactive sputtering of compound films. Sputtering is used in this work to

deposit thin films of nanocomposites.

Sputter targets play a pivotal role in the entire process of sputtering. Generally, the

metal targets are fabricated by melting either in vacuum or under protective atmospheres,

followed by thermomechanical processing. Non–metallic targets are generally prepared by

hot–pressing of powders. The metal (Au/Ag) targets tend to have purities of 99.99 %,

whereas those of the non–metals (TiO2) are generally less pure with a typical upper purity

limit of 99.9 %. These metallurgical realities are sometimes reflected in emission of partic-

ulates, release of trapped gases non–uniform target erosion and deposited films of inferior

quality. Targets are available in a variety of shapes (e.g., disks, toroids, plates, etc.) and

sizes.

2.1.1.1 Advantages of sputter deposition

• Sputtered films have better adhesion as they can penetrate through high residual gas

absorbed on the surfaces, due to the high impact velocity.

• Sputter targets have longer life time being quiet suitable even for industrial applica-

tions. Large selection of materials can be used for sputter deposition and even on

larger areas.

• In magnetron sputtering, reactive sputtering can be easily accomplished using reactive

gaseous species activated in plasma.

• Compact design can be realized as source and substrate can be placed in close optimum

distance.
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2.1.1.2 Disadvantages of sputter deposition

• Sputter rates, i.e., deposition rates of some materials are lower than those that can be

obtained through other methods like evaporation.

• In magnetron sputtering, targets are not used efficiently, as a result of preferred local

material removal.

• The plasma can produce reactive radicals from the rest gas atoms.

• Difficulty exists in sputtering of magnetic materials through magnetron sputtering.

2.1.2 Nucleation and growth of noble metals in PTFE and TiO2

Contrasting properties of metals and polymer/oxides are exhibited while metals are densely

packed crystalline solids with a high cohesive energy and polymers are made up of large

covalently bonded macromolecules held together by weak van der Waals interactions in an

open structure. Cohesive energy of Metals in typically two orders of magnitude higher than

that of polymers [72]. Suitable polymers for sputter deposition were investigated in detail

through the interaction of low energy ions with polymers in the group of multicomponent

materials [73]. The competition between chain scission and crosslinking is pivotal. Generally,

Polymers with a high sputter rate should exhibit a low crosslinking tendency. Teflon exhibits

a sputter yield which is about two orders of magnitude above that of most other polymers

[65,73]. Biederman [64] also reported the excellent suitability of Teflon for sputter deposition.

On the other hand, deposition of TiO2 films is also known through the method of sputter

deposition [59, 74]. Condensation coefficient C (often also denoted as sticking coefficient)

is the ratio of the number of adsorbed metal atoms to the total number of metal atoms

arriving at the surface, which plays a significant role in evaporation. C of metal atoms

on metals are generally very close to unity in sputtering because of the high energy of the

impinging particles and also at elevated temperatures. Generally, depending on the host–

metal combination and the temperature, the C varies in magnitude [75]. For Teflon, C

is very small even at elevated temperatures [76]. The synthesis of nanocomposites by co–
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sputtering takes place between highly cohesive energy metals (Ag and Au) [77] and a low

cohesive energy polymer which leads to a very low interaction between the metal atoms and

the polymer matrix [72].

Since isolated metal atoms impinge on the polymer/oxide surface, various competing

process might be considered to occur like the random walk of the metal atoms, diffusion into

the host, metal atoms encountering each other on their diffusion path may form aggregates

at the surface or in the bulk, metal atom reemission into the vacuum, nucleation and agglom-

eration which have to be taken into account to understand the formation of nanoparticles

in the polymer/oxide matrix [72]. In both polymers and TiO2, the formation of clusters is

due to the difference in the surface energy between the metallic component and the host

material [72].

2.2 Irradiation of nanocomposites

The interesting feature of the SHI beam is the deposition of localized high energy den-

sity within a confined volume, being far from thermal equilibrium. The energy lost by the

ions, modifies different properties of materials. The modification of any particular prop-

erty depends on the amount of energy deposited into the material by the SHIs [26, 29, 78].

SHI beamline from both HMI, Germany and IUAC, India, had been used in this work for

producing modifications in various nanocomposites.

2.2.1 Swift heavy ions

Penetration of an energetic ion with any material results in loss of energy mainly by two

nearly independent processes:

• Elastic collisions with the nuclei known as nuclear energy loss (dE/dx)
n
, which domi-

nates at an energy of about 1 keV/amu

• Inelastic collisions of the highly charged projectile ion with the atomic electrons of
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the matter known as electronic energy loss (dE/dx)
e

which dominates at an energy of

about 1 MeV/amu or more.

In inelastic collisions, the transfer of energy from the projectile to the atoms through

excitation and ionization of the surrounding electrons takes place [79]. In each collision,

the amount of electronic loss varies between tens of eV and a few keV per Angstrom(Å).

The inelastic collision is the dominant mechanism for transfer of energy to the material

for producing tracks for a SHI moving at a velocity comparable to the Bohr velocity of the

electron when its value crosses a threshold value for track formation. The type and energy of

the beam, electrical and thermal conductivity of the material vary the diameter and length

of the track [33,80–82].

SHI are very useful for modification of the properties of films, foils and surface of bulk

solids [83]. Bombardment of solids with SHIs leads to the formation of damage zones in the

material. They penetrate deep into the materials and produce long and narrow disordered

zone along their trajectory. The passage of SHI induces very rapid processes which are

difficult to observe during or immediately after their passage. The resulting damage, such as

size, shape and structure of defects store the information about these processes. The degree

of disorder can range from point defects to continuous amorphized zone (Fig. 2.3) along the

ion path called latent track (damage zone created along the paths of SHIs) [84].

The passage of SHI in nanomaterials mainly produces electronic excitation of the atoms

in the materials. Quantitatively, it is capable of depositing electronic excitation energy of

about 1 to 10 keV/Å in the materials. Such large electronic excitation leads to various

changes in materials. Due to large amount of electronic energy deposition within a confined

volume, the materials go into the molten state transiently in a narrow cylindrical region.

Atomic motions in the columnar regions generated by SHI transfer the electronic excitation

to the displacement of lattice atoms.

The formation of track is the result of high local electronic energy deposition along

the ion path and hence conditions for track formation in different materials are different

because of their different properties. Two different mechanisms can be considered [85] for

track formation:
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Figure 2.3 : Interaction of SHI with samples, showing the importance of selectivity for ion type

and fluence.

• Coulomb explosion model

• Thermal spike model

Coulomb explosion model is based on the assumption that the energetic ion creates a

cylindrical region of highly ionized matter along its path. The charge separation correspond-

ing to ionized species present in the cylindrical zone gives rise to a nuclear–track potential

which attracts electrons and repels positively charged target ions, provided the recombina-

tion time of the electrons is long enough. Repulsive electrostatic forces (Coulomb force) act

during the period before electronic neutrality is restored and give rise to a violent explosion.

The Coulomb explosion is significant, if the charge neutralization time exceeds 10−14 s [86].

This phenomenon leads to the localized destruction of the lattice. The Coulomb explosion
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model describes the condition that the Coulomb repulsive forces within the ionized region

are sufficient to overcome the lattice bonding forces in terms of a local electrostatic stress

being greater than the local bonding strength. Through the calculation of the stress ratio

in different materials, Fleischer et al. [87] demonstrated that plastics are more sensitive to

radiation than glasses, which are more sensitive than most crystals.

On the other hand, the thermal spike model uses different approaches based on tran-

sient thermal processes [88]. The target is considered as a two–component medium:

1. the electrons, which are described by the quasi–free electron gas theory and

2. the atomic lattice with known thermal properties.

During the characteristic time 10−13 s, the projectile ion gives its energy to the electron gas,

thereby transferring the energy to the lattice through the electron–phonon coupling [89].

The electron–phonon coupling stands for the ability of electrons to transfer their energy to

the lattice. The interaction between electrons and phonons originate from the phenomenon

of local polarization. This is based on the assumption that when the temperature exceeds

the melting point of the crystal, then a molten state is formed in a localized zone. The rapid

thermal quenching of the hot region induces an amorphous track left along the ion path in a

short span of time (t=10−11 s), with the diameter of typically few nm. The narrow cylinder

of material that was heated to high temperature transiently and then rapidly quenched by

thermal conduction, results in the modification/disordering of the track core. Depending on

the target material, experimental observation [90,91] that only continuous tracks are formed

if the energy deposition along the ion path exceeds a threshold value of electronic energy

loss (Seth) is known. The evolution of the track morphology depends on stopping power,

proposed by Toulemonde et al. [90] and later confirmed by Meftah et al. [91]. Toulemonde

et al. [90] described the necessary and sufficient conditions for formation of ion tracks in

different materials.

In the modification of the functional properties of the nanocomposites by using ion

beams, a desired modification of materials can be achieved by selecting a particular ion type
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and its energy. This is difficult to achieve from other techniques, since the energy deposition

is very much localized in this method and the process is far from equilibrium.

Hence, selective modifications can be performed in comparison to other processes like

heating, where almost the whole system is modified. Controlled energy disposition with

spatial selectivity is the notable feature of ion beams. Due to these interesting features, SHI

have been proven to be the versatile tool for engineering materials and provide a broad range

of possibilities to modify the different materials and their properties.

The loss of energy due to the passage of energetic ions through matter is mainly through

collisions either with nuclei or with electrons [85, 88]. In low energy regime, the velocity of

ions is relatively less when compared with the Bohr velocity of orbital electrons. Hence the

incoming ions hit the target nuclei elastically and the energy is directly transferred to target

nuclei resulting in displacement of target atoms. This nuclear energy loss is dominant at

lower energies.

In contrast to the low energy regime, i.e., in the high energy regime the ions deposit a

large amount of energy within a confined volume. Due to huge amount of electronic energy

deposition, the material is in a molten state for a extremely short duration of time (a few

pico–seconds), creating a cylindrical track along their path. The material modification takes

place in this cylindrical track. The formation of these tracks involves a number of factors,

thus modifying not only the morphological properties but also the functional properties

which leads to immense interest in this field.

2.2.2 Ion–solid interaction

When energetic ions or charged particles penetrate, they lose their energy in colliding with

fundamental identities, i.e., atoms of the matter. The phenomenon of interaction of ions

with matter can be microscopically understood in terms of its interaction with electrons and

nuclei. The collisions of ions with nuclei are elastic collisions, which results in the transfer

of its energy to the target nuclei. However the collisions between charged ions and electrons

of the target materials are inelastic collisions resulting in excitation and ionization of target
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atoms. Both type of interaction processes, i.e., interaction of ion with nuclei and electrons

result in a loss of energy ion and they are termed as nuclear energy loss (Sn) and electronic

energy loss (Se). Both, the electronic and nuclear energy losses of the ion depend on the

energy of ion and are Coulombic in nature. In the case of electronic interaction, it is pure

Coulombic while it is screened Coulomb potential for nuclear case. The energy ∆E, an ion

loses when moving a given path is a stochastic quantity, i.e., a different ion will lose different

amount of energy. The mean value of the energy loss ∆E/(∆x→0) for a large number of

ions is termed the stopping power, S, which is the sum of the both energy losses and is given

by:

S = −1

ρ

dE

dx
= Se + Sn (2.1)

where Se and Sn are the electronic and the nuclear stopping powers respectively.

Figure 2.4 : Stopping powers (in keV/nm) for Ag–ions in TiO2 as calculated by SRIM.
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The Stopping and Range of Ions in Matter (SRIM) is a collection of software packages

which calculate many features of the transport of ions in matter. SRIM includes calculations

which produces tables of stopping powers, range and straggling distributions for any ion at

any energy in any elemental target [92]. The variation of energy loss of ions with the energy

of the ion is shown in Fig. 2.4 simulated by SRIM. The stopping power consists of two

components, (i) nuclear (region I) and (ii) electronic stopping power (region II + III). At

low energies (1 keV/nucleon), the nuclear energy loss predominates. The ion collides with

the target nuclei and transfers the energy and momentum to the recoil atom resulting in

the displacement of atoms and the changes in the direction of the ions (elastic collision).

At higher energies (1 MeV/nucleon), where the velocity of ion is comparable with the Bohr

velocity of orbital electrons, the ion interacts with the electrons of the target atoms resulting

in the ionization of the target atoms and/or transfer of electrons to higher states (inelastic

collision). Since the mass of the ion is much higher than the mass of the electron, the initial

direction of the ion in the solid remains almost unchanged.

2.2.2.1 Nuclear energy loss

The projectile ion moving with energy of the order of few keV/nucleon interacts with screened

or unscreened nuclei of the target atoms. The energy loss dE of an ion by elastic nuclear

interaction, in a layer dx, is proportional to the atomic density N as well as the total energy

transferred in all individual collisions Tn. As can be seen in Fig. 2.4, in the higher energy

regime, the contribution of Sn is insignificant.

2.2.2.2 Electronic energy loss

Projectile ions moving with very high energy and having velocity comparable to Bohr velocity

of orbital electrons are called SHIs. As they pass though the matter, they lose their energy

mainly through the interaction with electrons resulting in knocking of electrons from their

electronic orbit leaving atom in excited/ionized state. Regions II and III illustrated in

Fig. 2.4 are dominated by electronic energy loss. The difference between region II and III

depends on the difference in velocities of ions passing through solid.
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When velocity of ion is less than the orbital velocity of electrons (VI < VO), i.e., in

region II of Fig. 2.4. In this case the ion is not fully stripped. In this case, electronic energy

loss is approximately proportional to the velocity or E1/2 of the projectile ion, where E is

the elementary charge.

When velocity of ion is greater than or equal to the orbital velocity electrons (VI>VO),

i.e., beyond the Bragg peak (region III), the ion is fully stripped. Beyond the Bragg peak,

the charge state of the ion increases and finally becomes fully stripped from all its electrons

and moves with a velocity greater than the average velocity of the atomic electrons in the

shells of the target atoms.

In general, electronic stopping power can be divided into two regions. Firstly, the low

velocity, where the projectile is only to some extent ionized and the stopping is proportional

to VI . Secondly, the high velocity, where the projectile is fully stripped, leading to the inverse

square relation of velocity with stopping power.

2.2.2.3 Range of ions in solid

The projected ion range in solid is defined as the mean depth from the target surface at

which the ion comes to a halt. The main parameters governing the range are the energy

E0, the atomic number ZI of the ion and the atomic number of Z2 of the target. The range

along the path is the total distance the ion traversed along the trajectory. The energy loss

phenomenon is statistical in nature as the collisions between projectile ions and target atoms

are random. All ions penetrating the solid do not have the same penetration depth, but there

is distribution along its path called longitudinal straggling. Since each successive collision

of projectile ion with target atoms leads to deviation from its straight line path resulting in

a straggling in lateral direction called lateral straggling. As SHI penetrate the matter, they

lose their energy and the matter gains this energy. The projectile ions continuously lose the

energy and finally stop at some place called as projected range/penetration depth. Since

SHIs deposit large amount of electronic energy (a few keV/nm) within the confined volume

of the material, sufficient for the material to transform into molten state, the thermal energy

confined is dissipated to its surrounding by electron–phonon coupling.
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2.2.3 SHI irradiation facility

Figure 2.5 : Schematic of the 15UD Pelletron accelerator facility at IUAC.

SHI irradiation studies of nanocomposite are currently of enormous interest, because

this technology allows us to engineer the nanoscale materials within the ion tracks. The

material modification can be controlled by ion beam parameters. SHI irradiation of mate-

rials can result in crystallization, amorphization, growth and dissolution, and expansion of

materials along the ion track [29, 31, 78]. The Fig. 2.5 depicts the schematic of the 15UD

Pelletron accelerator facility at IUAC which enables the selection of the various parameters

involved for the irradiation of nanocomposites. As SHIs pass through nanocomposites, they

create the nanodimensional tracks in PTFE/TiO2 and the gold/silver nanoparticles present

within these tracks go into molten state. It has been seen from thermal spike calculations

that the temperature of cylindrical ion tack is larger than the melting point of nanoparticles

but temperature in an annular cylindrical zone surrounding the ion track is also sufficient

for nanoparticles to go into molten state.
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Ion fluence, i.e., the total number of ions incident on the material per unit area is

another significant parameter for modification of the materials due to SHI irradiation. The

amount of energy deposited into the materials is the product of electronic stopping power

and ion fluence (Sex). The qualitative picture of modifications in the properties (optical,

structural, electrical, magnetic, etc) of materials can be understood as a function of the

product (Sex). Since the size of ion tracks is of the order of few nanometers, SHI can be used

as a tool for synthesis of nanostructures [93].

2.3 Noble metal particles and surface plasmon resonance

Noble metals (Cu, Ag and Au) exhibit a particularly wide range of material behavior from

the bulk to atomic transition. These features become quite interesting in nanoscale re-

gion [36]. Hence a complete understanding and manipulation of size dependent physical

and chemical properties of noble metal nanoparticles has become the subject of intensive

research [2, 41]. The first characteristic length scale encountered in shrinking from bulk to

nanoparticles is the wavelength of light. In nanocomposites,the interaction of an electro-

magnetic wave reveals the optical properties of these materials caused by different intrinsic

and extrinsic size effects. Optical responses of large metal nanoparticles to external elec-

tromagnetic fields simply depend on their sizes, free electron density and therefore on their

dielectric function relative to that of the surrounding medium [1]. This size–dependent effect

is extrinsic because optical properties such as dielectric functions of the nanoparticles are

similar to those of bulk metals [35]. These optical properties can be quantitatively described

with Mie theory proposed in 1908 for small metallic spheres. Mie calculated the optical re-

sponse of a metal sphere using Maxwell’s equations under appropriate boundary conditions

and observed that the optical extinction (scattering + absorption) of light from metal parti-

cles strongly depends on their size and dielectric constant of metal and surrounding matrix.

When the size of nanoparticles approaches to electron mean free path (the average distance

an electron travels between two successive collisions, and ∼50 nm for gold and silver), the

dielectric function and refractive indices become size dependent [94]. As a result, the optical
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response such as plasmon absorptions of small metal nanoparticles (R«λ) have different size

dependencies compared with large nanoparticles and are called intrinsic or quantum size

effect. Intrinsic size effects focuses on the question of how electronic and structural prop-

erties such as ionization potentials, binding energies, chemical reactivity, crystallographic

structure, melting temperature and optical properties vary as a function of size and geom-

etry. The associate change in spacing between the electronic energy states with variation

in particle size is known as quantum size effect. The collective electronic excitations as a

function of size are known as Mie resonance. Mie theory can be applied to estimate the

optical response of metal particles upto quasi–static regime. Eventually, when particle size

becomes comparable to the Fermi wavelength of an electron, i.e., de Broglie’s wavelength of

an electron at the Fermi energy or 0.5 nm for gold and silver, optical, electronic and chem-

ical properties of metal particles are dramatically different and they behave like molecular

species with discrete electronic states [35].

Propagating electromagnetic wave in the dielectric medium with incorporated spherical

metal nanoparticle causes displacement of conduction electrons relative to the positively

charged ionic core and the Coulomb restoring force causes for oscillation of the conducting

electrons on the surface. The oscillation comprises an electromagnetic field coupled to the

oscillations of conduction electrons and are called surface plasmons. The formation of a

surface plasmon can be observed when the electric field of the incoming radiation induces

the formation of a dipole in the nanoparticle. There is a restoring force which tries to

compensate it, so that a unique resonance frequency matches this electron oscillation within

the nanoparticle. They are characterized by strong field enhancement at the interface, while

the electric field vector decays exponentially away from the surface (in the nm range) [95,96]

as depicted in Fig. 2.6. When the dimensions of the conductor are reduced, boundary and

surface effects become very dominant, and for this reason, the optical properties of small

metal nanoparticles are dominated by such a collective oscillation of conduction electrons in

resonance with incident electromagnetic radiation.

Many terms are used in the literature for "Localized Surface Plasmon Resonance"

(LSPR), such as Particle Plasmon, Mie Resonance (valid only for spheres), Surface Plasmon
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Figure 2.6 : Schematic description of the electronic cloud displacements in nanoparticles under the

incidence of an electromagnetic wave [1].

Resonance SPR (most common term), Surface Plasmon–Polariton, and Localized Surface

Plasmon–Polariton Resonance. Different nomenclatures exist for plasmons which might be

sometimes misleading namely, (1) Volume or bulk, (2) Surface and (3) Localized, depending

on the geometry of the metal under study.

The collective longitudinal oscillation of electrons that occurs within the bulk of the

metal, beyond the penetration depth or skin depth of any optical field, i.e., in the order of

20 nm – 80 nm is termed as volume or bulk plasmon. Having the highest energy, these are

typically measured by electron energy loss spectroscopy (EELS) using an XPS or in a TEM.

The collective longitudinal oscillations of electrons that occurs at a boundary between

a metal and a dielectric are termed as SPR. A related excitation is the surface plasmon–

polariton. The difference between both of them is that the polariton excitation is coupled

with photons, whereas a plasmon can also be exited by electrons or other radiation.

The surface plasmon–polariton in which the excitation is localized in three dimensions

is the localized plasmon. This is precisely the case with a metal nanoparticle, and it is the

type of plasmon to which we will refer mostly.

Surface plasmons are collective excitations of the electrons at the interface between

a conductor and an insulator. They are described by evanescent electromagnetic waves

that are not necessarily located at the interface. When a particle is under the action of an
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electromagnetic field, its electrons start to oscillate, transforming energy from the incident

electromagnetic wave into, for example, thermal energy in an absorption process. The

electrons can also be accelerated, and then, they can radiate energy in a scattering process.

The attenuation by the sum of scattering and absorption of an electromagnetic wave going

through a material is called the electromagnetic extinction.

Assuming non-interacting spherical particles, Mie was the first to describe the optical

properties of nanoparticles quantitatively by solving the Maxwell equations for the optical

response of spherical particles with arbitrary size immersed in a homogeneous medium, and

subjected to a plane monochromatic wave. The dielectric function �(ω) can be written as

an additive of an interband and intraband electron transitions [97].

�(ω) = �interband(ω) + �intraband(ω) (2.2)

The electron transitions from occupied to empty bands separated by an energy gap contribute

to the interband contribution. The electrons are bound by restoring force given by the energy

difference between ground and excited electronic states in metals, usually at the ultra violet

(UV) region.

The electron transitions at the Fermi level in incompletely filled bands, or when a filled

band overlaps in energy with an empty band gives rise to intraband contributions. At lower

energies, these transitions also provide an absorption mechanism. The contribution due to

the free conduction electrons can be described by the Drude model.

�intraband(ω) = 1− ωp
2

ω2 + iΓω
(2.3)

where ωp is bulk plasma frequency (ωp
2 = ne2/�0meff ) expressed in terms of the free electron

density n,the electron charge e, the vacuum permitivity �0 and the electron effective mass

meff . The damping constant Γ is related with the life time of all electron scattering processes

in the bulk material that are mainly due to electron–electron, electron–phonon, electron–

defect scattering. For a small particle, since the mean free path of the conduction electrons

is limited by the particle boundaries, the electron-surface scattering also becomes dominant.

Modifying the value of Γ corrects the dielectric function, when the particles are not

too small. The correction is complicated and results in band narrowing, band splitting, and
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frequency shifts in either direction, for very small particles (R < 50 Å). For particles that

are not too small, Γ can be related to the particle size by the expression

Γ(R) = Γb +
AυF
R

(2.4)

where the bulk damping constant Γb = υF/lb (lb bulk mean free path of electrons), υF is

the velocity of the electrons at the Fermi energy and A is a geometric factor that relates the

appropriate electronic mean free path to the average particle radius. The expression implies

that electrons in a small particle sustain scattering processes with a mean–free path of the

order of radius of the particle in addition to the electronic scattering processes occurring in

the bulk metal. Thus information regarding the scattering processes involved during optical

excitation are embedded in this equation, thereby correlating to the width of the SPR.

As a result, well separated metallic nanoparticles are characterized by a broad, intense

absorption band in the visible range of the spectrum. The bandwidth, the peak height, and

the position of the absorption maxima depend on the material, size, size distribution, shape,

interparticle separation, the surface state, surface coverage and the surrounding environment

of the nanoparticles. The different localized plasmon resonance frequencies and strengths

are related to the differences in the onset of interband transitions, e.g., Ag ∼4 eV, and Cu

∼2 eV.

The dielectric constant of the surrounding medium plays a predominant role in de-

termining both the plasmon frequency and the intensity. The dielectric environment of

the particle helps to determine the strength of the restoring force that the electrons ex-

perience. Changing the medium around the nanoparticles with a different refractive index

material strongly alters the plasmon behavior of the nanoparticles. Generally, for non–

absorbing surrounding, an increase in the index of refraction of the surroundings red–shifts

the LSPR [98, 99]. The geometrical distribution of the nanoparticles in or on host material

makes a pronouncing difference [94,100].

Intensity, position and bandwidth are affected by the changes in the nanoparticle size.

This is an intrinsic effect, which means that the variation in the size modifies the expression

with the dielectric constant of the metal and thus alters the resonance condition. As there

is a decrease in size on the nanoparticles, there is a blueshift in the SPR [35,101,102]. Both
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theoretical and experimental results indicate an inverse dependence of the bandwidth due

to surface scattering [103].

Shape dependence of the LSPR of nanoparticles is reported [1, 104]. Different shapes

like rods, disk, squares, triangles, stars and others exhibit double to multiple resonance bands

according to their shape. In the case of arbitrarily oriented nanorods, the existence of two

bands, i.e., longitudinal mode and the transverse mode is the optical signature [105, 106].

In addition, the distance between the neighboring nanoparticles affects the dipole–dipole

interaction between the nanoparticles thereby having a significantly affecting the surface

plasmon band. The surface plasmon band broadens and shifts to higher wavelength when

the inter–particle spacing becomes smaller [98,107].

As already mentioned, Mie first provided the complete solution concerning the absorp-

tion and scattering of light by a spherical single metallic particle. Models accounting for

the collective properties of metal particles in composites were developed. Maxwell–Garnett

(MG) theory and the Bruggeman effective medium approximation (EMA) are widely known

among them. The Maxwell Garnett geometry consists of small inclusion particles embedded

in a host material and the Bruggeman geometry consists of two intermixed components.

Modified theories also help to expand the applicability limits of the EMA to higher metal

volume fractions.

With these theories, an effective dielectric function is calculated from the dielectric

functions of both basic materials by using the MVF. The MG theory has been derived for

topologically asymmetric composites, where one constituent predominates and forms a host

medium (dielectric) for the small grains of the other constituent (metal) embedded in it.

The EMA approach is principally based on two assumptions. Firstly, the inhomogeneities

are so large that each point in the material can be associated with the macroscopic dielectric

function. Secondly, the system can be described as an effective medium if the random

unit region, embedded in the effective medium is not detectable in an experiment using

electromagnetic radiation confined to a specified wavelength range.

Both the MG and EMA models are limited to systems with low metal or nanoparticle

concentration. Also, difficulty exists in prediction of the far infrared absorption. With an
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increase in the MVF, the interparticle distance becomes smaller and leads to an interaction

between the nanoparticles. Hence, the EMA theory is unable to explain the experimental

results obtained for higher metal volume fractions, due to the multi–polar polarizability

contributions.

2.4 Antibacterial properties

Antibacterial properties of materials are of interest to mankind since ages. The basic impor-

tance of using the nanoparticles is that these nanoparticles with a larger surface–to–volume

ratio provide more efficient means for antibacterial activity.

Apart from Ag, Au in a variety of forms has been used in medicine throughout the

history of civilization. Over the recent decades, Au nanoparticles have attracted signifi-

cant interest as a novel platform for various applications such as nanobiotechnology and

biomedicine [108] because of convenient surface bioconjugation [109] with molecular probes.

The early work by Robert Koch demonstrated that gold compounds were active against the

tubercle bacillus [38]. Subsequent extensive work in the 1930’s and 1940’s demonstrated that

a variety of gold compounds were active against a broad spectrum of microorganisms [110].

With regard to antibacterial activity, Williams et al. [111] showed that Au nanoparticles

themselves do not affect the bacterial growth or functional activity, rather conjugates to Au

nanoparticles decrease the number of growing bacterial cells.

The widespread use of silver went out of fashion with the development of modern

antibiotics. Since the bacteria are unlikely to develop resistance against silver as compared to

antibiotics, as silver attacks a broad range of targets in the microbes, there has been renewed

interest in silver as a broad–spectrum antibacterial agent. In recent years, more and more

investigations have focused on the preparation and/or functionalization of Ag nanoparticles,

ranging from DNA–Ag assemblies [112] to various functionalizations [113,114] and polymer

stabilizations [115,116].

Silver in its metallic state is inert but it reacts with the moisture in the skin or the fluid

arround getting ionized which is highly reactive, as it binds to tissue proteins and brings
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structural changes in the bacterial cell wall and nuclear membrane leading to cell distortion

and death.

Feng et al. [117] say that the silver ions enter into the bacterial cells by penetrating

through the cell wall and consequently turn the DNA into condensed form which reacts with

the thiol group proteins and result in cell death. Also, the silver ions also interfere with the

replication process.

Two possible mechanisms were suggested by Matsumura et al. [118]: Firstly that the

bacterial cells take in silver ions which damages the bacterial cell. Secondly, the generation

of reactive oxygen species through inhibition of respiratory enzymes by silver ions damages

the bacterial cell itself.

Sondi et al. [119] also observed that the silver nanoparticles interact with the building

elements of the bacterial membrane and cause damage to the cell. They confirmed the

incorporation of silver nanoparticles into the membrane by formation of pits on the cell

surface. They concluded that nanomaterials could prove to be simple, cost effective and

suitable for formulation of new type of bacterial materials.

Morones et al. [120] studied the effect of different concentrations of silver on growth of

bacteria and demonstrated that at a concentration above 75 µg/ml there was no significant

bacterial growth. They also found the presence of silver in the cell membrane and inside the

bacteria. Only individual particles were found attached to surface membranes.

Yanaka et al. [121] found that the silver ions penetrate into the bacterial cells rather

than residing in the cell membrane. Their study pointed out that a ribosomal sub–unit

protein and some enzymes and proteins are affected by the silver ions. Thus, they concluded

that bactericidal action of silver ions is basically caused due to the interaction of silver

ions with ribosome and the suppression of enzymes and proteins necessary for Adenosine

triphosphate production.

The mechanism of action of silver is linked with its interaction with thiol group com-

pounds found in the respiratory enzymes of bacterial cells. Silver binds to the bacterial cell

wall and cell membrane and inhibits the respiration process. In some cases, silver acts by
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inhibiting the uptake of phosphate and releasing phosphate, mannitol, succinate, proline and

glutamine from bacterial cells [122]. On the other hand, the mechanism for the antimicrobial

action of silver ions is not properly understood however, the effect of silver ions on bacteria

can be observed by the structural and morphological changes. It is suggested that when

DNA molecules are in relaxed state the replication of DNA can be effectively conducted.

But when he DNA is in condensed form it loses its replication ability hence, when the silver

ions penetrate inside the bacterial cell the DNA molecule turns into condensed form and

loses its replication ability leading to cell death [122].

Extremely large surface area enables silver nanoparticles to show efficient antimicrobial

property compared to other salts, which provides better contact with microorganisms. The

nanoparticles get attached to the cell membrane and also penetrate inside the bacteria. The

bacterial membrane contains sulfur–containing proteins and the silver nanoparticles interact

with these proteins in the cell as well as with the phosphorus containing compounds like

DNA. When silver nanoparticles enter the bacterial cell it forms a low molecular weight

region in the center of the bacteria to which the bacteria conglomerates thus, protecting the

DNA from the silver ions. The nanoparticles preferably attack the respiratory chain, cell

division finally leading to cell death. The nanoparticles release silver ions in the bacterial

cells, which enhance their bactericidal activity [117–122]. Also, it is corroborated that the

bactericidal effect of silver nanoparticles is size dependent [120,123].

Despite the various efforts towards the effective use of silver as an antibacterial agent,

the exact mechanism of action of silver on the microbes/bacteria is still not known. But the

possible mechanism of action of metallic silver are the silver ions and silver nanoparticles

which have been suggested according to the morphological and structural changes found in

the bacterial cells [122].

Different groups have tried to synthesize metal–based TiO2 based nanocomposites

physical and chemical routes to meet various demands of different applications [124–127].

Biologists, medical doctors and material scientists work towards achieving better antibacte-

rial and antifouling nanomaterials capable of giving better properties [128]. In this thesis

the antibacterial properties are assessed through the method of fluorescence microscopy and
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the modified conventional disc diffusion method through the group of Prof. Dr. Podschun at

the Institute for Infection Medicine. Here, the antibacterial property of silver is related to

the amount of silver and the rate of silver released. Since silver ion release is a vital parame-

ter for understanding the antibacterial activity of materials, preliminary efforts towards the

measurement of silver–ion–release have been conducted through the studies using XPS and

UV-Vis spectroscopy both before and after irradiation.



Chapter 3

Experimental and characterization

techniques

In this chapter the experimental facilities for the synthesis of the nanocomposites, the ir-

radiation facilities used and the various characterization techniques employed towards the

analysis of the nanocomposites are discussed.

3.1 Experimental

The experimental section in this work is carried out as following (1) synthesis of the nanocom-

posites (2) characterization of the nanocomposites in terms of their morphology, MVF and

their functional properties, (3) SHI irradiation of the nanocomposites at different fluences

with respect to the MVF and (4) characterizing the irradiated nanocomposites in order to

observe the changes in the properties. These facilities will be discussed in the following

sections.

3.1.1 Preparation of nanocomposite thin films

Composite coatings were prepared by co–sputtering the host dielectric materials TiO2 and

PTFE and metal (silver/gold/copper) from two different magnetron sources, i.e., RF and

31
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DC respectively in a home–made deposition chamber(Fig. 3.1). The deposition chamber

was evacuated to base pressures of 10−7 mbar, by two different types of vacuum pumps: A

rotary pump (Pfeiffer DUO 005 M) was used to generate the pre–vacuum (10−1 mbar) and

a turbo molecular pump (Pfeiffer TMU 260) coupled to the rotary pump to create the end

vacuum. Both continuous and independent monitoring of the deposition rates of the metal

and dielectric material were done in–situ by using two quartz–crystal monitors. Metal was

deposited by using a DC planar magnetron source ION’X 2UHV (Thin Film Consulting). A

similar make RF magnetron source was used for sputtering the dielectric material copper–

bonded Titanium dioxide (Williams Advanced Materials) or Teflon (home–made) to prevent

charging of the target.

Figure 3.1 : Chamber employed in this work for the deposition of nanocomposite films. (a) Metal

magnetron (DC), (b) Polymer or oxide magnetron (RF), (c) Shutters, (d) Rotatable sample holder

and (e) Quartz–crystal monitors

In this work, Ag/Au/Cu and Teflon/TiO2 targets were disks of diameter 2.05 inches.

Pre–bonded TiO2 was used to avoid thermal cracking. Generally, metal–filled epoxy ce-

ments/Indium of high thermal conductivity are employed for bonding. The deposition rate

of TiO2 could be changed between 1 – 4 nm/min by variation of the RF power, while in the

case of polymer PTFE, the deposition rates were varied from 1 and 8 nm/min by varying the

RF power. On the other hand, typical deposition rates between 0.5 to 3 nm/min have been
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used for the deposition of Au and Ag. The deposition rate of the host and the metallic com-

ponent were controlled by variation of the power applied to the magnetron sources, thereby

controlling the MVF. The sample holder was rotated throughout the deposition process to

achieve uniform and homogeneous deposition on all the samples mounted on the sample

holder.

The thickness of the coating was measured by a surface profilometer (Dektak 8000)

through the nanocomposite coating on a masked silicon wafer. Subsequently, the metal con-

centration was determined by using an energy dispersive X–ray spectrometer (SEM–EDX

Philips XL30) which had been calibrated initially, thereby estimating the MVF. The mor-

phology of the nanoparticles has been studied by transmission electron microscopy (Philips–

CM30/Philips Tecnai F30 G2). With the availability of a new Philips Tecnai F30 G2, high

resolution TEM and electron diffraction studies were carried out on a particular set of

samples. Optical extinction studies were carried out by a UV/Vis/NIR spectrophotometer

(Perkin Elmer Lambda 900). Several pieces of nanocomposite coated POM polymer pieces

have been used for the bacteriostatic studies using fluorescence microscopy.

3.1.2 Irradiation of the functional nanocomposites

After the synthesis and characterization of the nanocomposites, the samples have been sub-

jected to irradiation. Irradiation has been primarily done by using the SHIs. Despite the

few possibilities of carrying out irradiation, in this work, the study has been primarily fo-

cused on the modifications in the functional properties of the nanocomposites. As shown

in Fig. 3.2, at the HMI, Germany, the chamber called Biber was used for the irradiation of

the nanocomposites. Samples are mounted in this chamber which is maintained under high

vacuum conditions for the purpose of irradiation.

Despite the fact that the facility in Berlin could be used only for a short time, be-

cause the facility has been closed, further work has been carried out at the material science

beamline facility at New–Delhi, India. The chamber that was used at IUAC India for the

irradiation of nanocomposites is shown in Fig. 3.3.
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Figure 3.2 : The facility at the HMI, Germany for the irradiation of nanocomposites using SHI.

Figure 3.3 : The facility at the IUAC, India for the modification of nanocomposites using SHI.

At both the facilities the irradiation of the nanocomposite coatings have been carried

out in chambers with high vacuum conditions (10−6 mbar). Also, the ion beam energy with

a particular fluence was selected based on the variation of time. Computerized scanning

functionality of the ion beam enabled the preprogrammed automated scanning of the entire

sample surface as shown in Fig. 3.2 at 4. Nanocomposite coatings on glass, Si wafer and

carbon coated Cu–TEM grid were used as samples for the irradiation. These samples were

mounted on 25 cm × 25 cm sample holders at HMI. At IUAC, a rotatable sample holder

capable of holding about 25 samples (1 cm2) was used.
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3.2 Characterization

3.2.1 Electron microscopy

An electron microscope is a type of microscope that uses a beam of electrons to illuminate

a specimen and create a highly magnified image. Electron microscopes have much greater

resolving power than light microscopes that use electromagnetic radiation and can obtain

much higher magnifications, while the best light microscopes are limited to magnifications.

Both electron and light microscopes have resolution limitations, imposed by the wavelength

of the radiation they use. The greater resolution and magnification of the electron microscope

results from the fact that the de Broglie wavelength of an electron is much smaller than that

of a photon of visible light. The two types of electron microscopes which were used in this

work are:

1. Scanning electron microscope SEM XL30 (Philips)

Figure 3.4 : SEM XL30 with an EDX detector used in this work towards the EDX analysis to

determine the volume fraction.

Cathode: LaB6 – Crystal

Accelerating voltage: 1 to 30 kV
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Minimum lateral resolution: about 10 nm

Maximum magnification: approximately 200, 000 times

Maximum sample size: 100× 100× 20 mm

Detectors: Everhart–Thornley detector, Detector for X–ray microanalysis (EDAX)

2. Transmission electron microscope

Tecnai F30G2 (Philips)

Figure 3.5 : Tecnai F30G2 (Philips) used in this thesis work.

Accelerating voltage: 80 – 300 kV,

Point resolution: 0.20 nm

Line Resolution: 0.102 nm

Information Limit: 0.14 nm

Magnification range (TEM): 60 x to 5000 Kx

STEM HAADF resolution: 0.19 nm
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Magnification range(STEM): 150 x to 230 Mx

Tilt angle (Double tilt): ±40◦

Tilt angle (Tomography): ±70◦

Detectors: Detector for X–ray analysis (EDAX), HAADF Detector

Gatan CCD camera (2k × 2k), Gatan GIF Tridem

CM 30 TEM (Philips)

Figure 3.6 : TEM CM30 used in the initial stages of this thesis work.

Accelerating voltage: 100 – 300 kV

Point resolution: 0.25 nm

Tilt angle: ±60◦

Beam diameter: 2 nm

Detectors: Detector for X–ray analysis (EDAX)

Gatan CCD–Camera



CHAPTER 3. EXPERIMENTAL AND CHARACTERIZATION TECHNIQUES 38

A brief description of the microscopes and the methods used are discussed in the

following sections.

3.2.1.1 Scanning electron microscopy (SEM)–Energy dispersive X–ray analysis

(EDX)

The SEM is a type of electron microscope that images the sample surface by scanning it

with a high–energy beam of electrons in a raster scan pattern. The electrons interact with

the atoms that make up the sample, producing signals that contain information about the

sample’s surface topography, composition and other properties as shown in the Fig. 3.7.

Electron beam microanalysis is a powerful, non–destructive, X–ray spectrochemical

technique capable of performing elemental analysis of micro volumes, typically of the order

of a few cubic micrometers in a non–destructive way. Analysis of X–rays emitted from

a sample can be accomplished by an energy dispersive spectrometer discriminating X–ray

energies. As a result of the interaction between the impinging electrons and the target atoms,

X–rays are emitted which are characteristic in energy for the constituent chemical elements.

A histogram of the X–ray intensities versus their energy called an X–ray spectrum enables

not only the identification but also the quantification of the chemical elements present in

the specimen. A quantitative analysis is performed by extracting the net intensities of the

different peaks present in the spectrum via background subtraction. These intensities are

then corrected for detection efficiency and matrix effects and also for the absorption and

fluorescence of X–rays in the specimen.

In view of the small volume involved, namely the beam–specimen interaction volume,

the EDX technique is particularly suited for determining the:

• local chemical composition of inhomogeneous specimens.

• chemical composition of very small quantities of material or small particles.

• spatial concentration distribution or gradients of constituent chemical elements, either

along a line or over an area.
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• chemical composition of films deposited.

Some characteristic features of the SEM–EDX technique are listed below:

• Range of elements: all elements of the periodic table from beryllium onwards.

• Minimum detectable mass fraction: from 0.2 % to 1 %.

• Relative accuracy of the quantitative results lies between 2 % and 20 % depending on

the correction method employed and the known chemical standards.

• Spatial resolution depends on the mean atomic number, density of the specimen and

on the primary beam energy. 0.2 to 10 microns.

The interaction of the electron beam with the specimen produces a variety of signals of

which the most important are the secondary electrons (SE), backscattered electrons (BSE)

and X-rays as shown in the Fig. 3.7. This represents the energy lost by the incident electrons

as they propagate through the specimen. The SE signal is most commonly used for imaging

mode and derives its contrast primarily from the topography of the sample. These electrons

are of low energy and are very easily influenced by voltage fields. The BSE signal is caused

by the elastic collision of a primary beam electron with a nucleus within the sample.

Two types of radiation can be detected when the electron beam strikes the specimen,

characteristic radiation and continuum radiation. For an electron to eject an inner shell

electron from the atom, it must possess a minimum amount of energy. This energy is

the binding energy of the particular inner shell electron, which is specific, characteristic

energy for each electron in the atom. The discrete and specific energy required to excite

any given X–ray line is called the "absorption edge energy" or "critical excitation energy"

or "ionization energy". It is always slightly higher in energy than the corresponding X–

ray emission line. From the analysis point of view one must select an acceleration voltage

exceeding the absorption energy of the line intended for analysis. In practice, one exceeds

the minimum energy by a factor of 2 to 3 (over voltage) to efficiently excite the X–ray line

with an electron beam. In EDX, the X–rays are arranged in a spectrum by their energy and
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Figure 3.7 : Interaction of electrons with materials (thick specimen) in a SEM.

from low energy to high atomic energy. The continuum X-rays are the background of the

EDX spectrum and are sometimes referred as the white radiation. In theory the continuum

is expected to extend from the maximum energy of the primary beam electrons and increase

exponentially to zero keV energy. In reality, the background goes to zero at the low end of

the energy spectrum due to the absorption by the detector window, the detector dead layer

and the gold layer. The total collected X–ray spectrum consists of both characteristic and

white radiation. Since the characteristic radiation carries most of the information related to

the composition of the specimen, the separation of the X–ray continuum is an important step

in the quantification of the elemental composition. The effect of the continuous background

radiation is partly responsible for the fact that there is a non–linearity between the different
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elements and the intensity of the corresponding X–ray line, resulting in decreasing peak

height towards high energies.

For EDX, X–rays create pulse heights in the energy dispersive detector, which depends

on the energy of the incoming X–ray. These pulses are collected by a multi channel Analyser

(MCA). The detector consists of a collimator that ensures that X-rays generated from parts

of the SEM column or chamber do not reach the detector. The X–ray detector is separated

from the specimen by a window which is transparent to the X–rays, at the same time securing

a vacuum in the region of the detector when the chamber area is vented. The detector itself

consists of lithium–doped silicon coated at the front with a thin layer of Au. The X-rays

produce charge pulses in the Si that are proportional to their energy and X-rays of all energies

are detected virtually simultaneously. Also, because there is no focusing involved, all X-rays

are detected if they occur within the solid angle subtended by the crystal.

The X–ray analysis has served as a powerful tool for understanding the composition

and therby served as an effective method for the determination of the metal–volume–fraction

(MVF). The ability of this technique to analyze the composition of the thin nanocomposite

coating at various places has led to the determination of the MVF. This has been done

by comparing it with a standard metallic film of the known comparable thickness. Thus

calculating the MVF.

Determination of the local atomic concentration of metal atoms in the composite films

was done by using the EDX. A uniform metal film with nearly the same thickness as the

composite film was used as the standard for EDX measurement. A comparison of the relative

atomic concentration of the metal between the composite films and the standard film of

known thickness is used to determine the atomic concentration in the composite film. The

fluorescence and adsorption contributions in this range of film thickness (40 – 70 nm) are very

small, which was supported by the linear dependence of the metal intensities on the standard

thickness. The MVF in the composite films were determined from the combination of EDX

analysis and thickness measurement by profilometry [129]. The MVF in the composite can

be determined from the ratio of the thickness of the metal in the composite to composite film

thickness. In order to minimize the error, an average of three values have been calculated
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from three representative areas on the sample and the standard exclusively prepared towards

the EDX analysis on a Si substrate.

3.2.1.2 Transmission electron microscopy (TEM)

As per the sorrow expressed by Feynman in 1952 "It would be very easy to make analysis of

any complicated chemical substance; all one should have to do would be to look at it and see

where the atoms are. The only trouble is that the electron microscope was one hundred times

poor." This really matters as better microscopes are necessary for better analysis even in the

field of materials science. Philips CM30 electron microscope with a maximum acceleration

energy of 300 keV was used in the initial stages to analyze the morphology of the metallic

clusters. During the final stages of my work the availability of Tecnai F30 G2 with advanced

facilities has provided additional possibilities.

3.2.1.2.1 Interactions and interaction volume :

Figure 3.8 : Interaction of high energy electrons with materials (thin specimen) in a TEM.
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When electrons enter the specimen, they interact with the constituent atoms in the

specimen through electrostatic forces. If electron travels close to an atom, the presence

of the atomic and nuclear electrostatic potential will affect the speed and/or direction of

the traveling electron. The initial velocity of the electron varies due to this interaction or

the electron is scattered. If only the direction has been changed, the scattering is called

elastic scattering. Elastic scattering involves Coulomb interaction with an atomic nucleus.

For inelastic scattering the change of speed is involved. Inelastic scattering occurs as a

result of Coulomb interaction between a fast incident electron and the atomic electrons

surrounding each nucleus. In other words, the incident electron does not pass its energy to

the atom during an elastic scattering process, while in inelastic scattering process, the energy

exchange between the incident electron and atoms in the specimen happens. An overview

of the interaction of high energy electrons with thin materials, i.e., in a TEM is shown in

Fig. 3.8.

Figure 3.9 : Tecnai F30 G2.
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The microscope consists essentially of three parts, the electron gun where the beam is

generated, the lenses, deflection coils and stigmators that make the image projecting it on

the screen and the projection chamber with one or more types of electron detectors to record

images, diffraction patterns, etc (plate camera, TV, etc.) as can be seen from the Fig. 3.9.

3.2.1.2.2 Modes of operation :

Figure 3.10 : Major factors affecting TEM image contrast.

Thickness, atomic number, orientation and defects are the major factors which affect

the contrast in the TEM images as shown in Fig. 3.10. Conventionally, image, diffraction

and spectroscopy are the three general modes of operation of the TEM used in this work are

as follows and are depicted in the Fig. 3.11.

Figure 3.11 : Modes of operation of the TEM.

The availability of a better microscope Tecnai F30 G2 towards the end of my work had
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led to better analysis procedures with associated better quality of results. The techniques

capable of structural characterization on the nanometer scale on the microscope were at

hand. Resolution being primarily discussed in terms of the ability of an imaging system to

discriminate between two discrete objects, which is closely coupled to the wavelength of the

incident illumination was enhanced.

3.2.1.2.3 Tomography :

Figure 3.12 : Principle and working of three dimensional electron tomography in a TEM.

Electron tomography allows the alignment, reconstruction and visualization of the

three dimensional (3D) structure of the nanocomposite thin film from a tilt series of 2D

images [130, 131]. Understanding the morphology related properties of the nanocomposites

requires both two dimensional and 3D visualization of the nanocomposites. With the ad-

vancing techniques, electron tomography has been applied both in the fields of materials

science and biological science to understand the location of different components in different

materials. Although conventional transmission electron microscopy (CTEM) has been ap-

plied to characterize the morphology of the nanocomposites, the limit of observation by top

view (CTEM) or by cross–sectional analysis methods cannot visualize the nanocomposite

thin film completely. In top–view observations, despite tilting the sample, superposition

leads to difficulty in assessing the morphology. On the other hand, in cross–sectional obser-

vations, either during the conventional preparation or focused ion beam method, complexity

in preparing the representative section without modifying the particles through the depo-
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sition of energy, generally exists. Despite considering meticulous sample preparation, the

probability of cutting the nanoparticle with the surface having the smaller diameter or larger

diameter is higher. Additionally, in nanocomposites all the nanoparticles are never uniformly

cut. This induces falsifying scientific information. Hence tomography offers the solution. In

practice, at first acquirement of a series of images through automated image acquisition at

defined angles, then alignment of the acquired tilt–series, followed by the reconstruction of

the aligned–series and visualization as can be seen in the Fig. 3.12.

In electron tomography, projection images of the specimen are acquired from a range

of different angles by tilting the sample relative to the electron beam. Alignment followed by

using a reconstruction algorithm, combines the information from the 2D projection images

towards obtaining a full 3D reconstruction [132]. From the existing different iterative recon-

struction algorithms [133], SIRT has been used in the present work as it is quiet suitable

to produce best signal–to–noise ratio images. Despite the large number of projections, the

reconstruction is affected by missing wedge artifacts due to the limited tilt range during

acquisition, leading to an elongation of the particles on z–direction [132].

Amira 4.1.1 (Visage Imaging GmbH) has been used to carry out the volume rendering

of the tomograms to provide a 3D impression of the overall morphology. Volume rendering is

a visualization technique that gives a 3D impression of the whole data set without segmenta-

tion. The underlying model for volume rendering is based on the emission and absorption of

light that pertains to every voxel of the view volume. The algorithm simulates the casting of

light rays through the volume from pre–set sources which determines how much light reaches

each voxel on the ray and is emitted or absorbed by the voxel. Then it computes what can

be seen from the current viewing point as implied by the current placement of the volume

relative to the viewing plane, simulating the casting of sight rays through the volume from

the viewing point. Volume texture visualization projects the dataset at any desired angle.

Hence, the morphology of the feature of interest is clearly visible [134].

Also, various imaging modes can be used for obtaining tomographic tilt series, depend-

ing on the nature of the specimen. The reconstruction computations use different iterative

reconstruction algorithms [135]. Furthermore, the functional properties are sensitive to the
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morphology of the nanocomposites, because the surface layers are predominantly sufficient

to induce a considerable alteration in the properties. This work also emphasizes the necessity

of taking into account the three–dimensional morphology of nanoparticles in nanocomposites

to understand and control their functionality.

3.2.1.2.4 In–situ heating in the TEM :

In–situ microscopy refers to the techniques that allow a direct observation of the dynamic

properties at nanoscale through imaging and diffraction. Thermal induced structural trans-

formation and transition are the most traditional in–situ techniques. In–situ study of

the temperature induced phase transformation, structural and compositional evolution of

nanocomposites is important for understanding the structure and structural stability of the

nanocomposite coatings. TEM is an ideal approach for conducting this type of experiments,

in which a specimen can be heated upto 1000 ◦C in a Gatan double–tilt heatable sample

holder with a Tantalum furnace as can be seen from the Fig. 3.13.

Figure 3.13 : Gatan double tilt sample holder with Ta furnace used in this work to heat the samples

in the TEM.

Due to the size, structure and composition sensitivity of nanocomposites, the morphol-

ogy and the associated properties could be quite diverse. Characterizing the morphological

properties of the nanocomposites depending on the thermal induced transformation under
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equilibrium conditions is a study of basic importance. This aids towards a better under-

standing of the thermal transformations. In this work, in–situ thermal transformation of the

TiO2 based nanocomposites have been carried out. A comparative study with that of the

non–equilibrium ion beam induced modification is made.

3.2.2 Ultraviolet–Visible/Near Infra Red spectroscopy

Ultraviolet, visible and near infra red (UV–Vis/NIR) spectroscopy is the measurement of

the attenuation of a beam of light after it passes through a sample or after reflection from

a sample surface. This UV–Vis/NIR spectroscopy technique, includes a variety of absorp-

tion, transmittance and reflectance measurements in the ultraviolet, visible and near-infrared

spectral ranges. These measurements can be done at single wavelength or over an extended

spectral range. The spectral range of the instruments is generally from 185 nm to 3000 nm.

There is a linear relationship between absorbance and absorber, i.e., concentration, which

makes UV–Vis/NIR spectroscopy especially attractive for making quantitative measure-

ments.

A schematic diagram of the typical UV–Vis/NIR spectrophotometer is shown in the

Fig. 3.14. Materials that can be characterized by UV–Vis/NIR spectroscopy include semi-

conductors for electronics, lasers and detectors, optically active materials, solid-state laser

hosts, optical fibers, waveguides and amplifiers for communication and materials in the field

of solar energy conversion. The range of the spectroscopy also spans the human visual

perceptional range 400 nm to 750 nm, thus being useful in characterizing the absorption,

transmission and reflectivity of a variety of technologically important materials like pig-

ments, coatings for windows and filters. The use of UV–Vis/NIR spectroscopy in materials

science research can be divided into two broad categories:

1. Quantitative measurements in the gas, liquid or solid phase

2. Characterization of optical and electronic properties of materials

Being a diagnostic tool in quantitative applications, it is often only necessary to measure
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Figure 3.14 : Setup and ray diagram of the UV–Vis/NIR Spectrometer – Lambda 900 from Perkin

Elmer.

the absorbance or reflectivity at a single wavelength. Other qualitative applications require

recording at least a portion of the UV–Vis/NIR spectrum for optical or electronic charac-

terization. Since absorption of radiation corresponds to the excitation of outer electrons,

UV–Vis/NIR spectroscopy also helps in estimating the bandgap of materials.

In this thesis, UV–Vis/NIR spectroscopy Lambda 900 (Perkin Elmer) has been mainly

used to characterize the noble metal–dielectric nanocomposites because of their strong SPR

in the visible region of electromagnetic spectrum.

3.2.3 Profilometer

The Dektak 8000 is an advanced surface texture measuring system which accurately measures

surface texture and film thickness. Measurements are made electromechanically by moving

the sample beneath a diamond tipped stylus. A stylus based surface profiler measures

the actual physical surface of the sample. The radius of the standard diamond stylus is
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12.5 microns. When using a low stylus force the stylus may tend to lift off the surface if

large step is encountered at higher scan speeds.

3.2.4 X–ray photoelectron spectroscopy

X–ray photoelectron spectroscopy (XPS) is a surface analysis spectroscopic technique for de-

termining the elemental and chemical composition of materials’ surface using X–rays. XPS

involves irradiation of a sample with soft X–rays and the energy analysis of emitted photo-

electrons which are generated close to the sample surface. Energy is measured downwards

from an assumed zero level taken at Fermi level. Normally, vacuum level should be chosen

as zero level energy, but in XPS binding energies are measured with respect to the Fermi

level.

XPS is a non–destructive surface analysis technique based on photoelectric effect. The

photoelectric effect is the emission of electrons from a surface upon exposure to, and absorp-

tion of, electromagnetic radiation (X–rays). The electrons emitted are called as photoelec-

trons. The kinetic energy of the photoelectrons depends on the energy of photons expressed

by the Einstein photoelectric law.

Einstein’s relation EK = hν – BE

where BE is the Binding energy of the particular electron to the atom. The electrons ejecting

from the core level identify the element by binding energy. So BE is the unique signature of

the element present.

Einstein’s Conservation law states that when a sample is irradiated by photons with

energy hν, there is absorption of energy by an electron and ejection of photoelectron with

energy Ek as can be visualized from the Fig. 3.15.

hν = Ef − Ei

Ek = h − Eb − ϕs

where,

Ek = Kinetic energy of photoelectrons outside Sample
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Figure 3.15 : Einstein’s conversation law.

BE = binding energy of electrons

ϕs = work function of spectrometer (compensated electronically)

Photoionization crosssection (σ), is used for the quantitative analysis of elemental

concentrations

IA = [A] σATλA

[A]
[B]=

IA
IB

σ∗
B

σ∗
A

λB
λA

where,

IA Measured XPS intensity

T Energy transmission function of analyzer

λ Mean free path

[A] Atomic concentration of A

From above equations relative atomic concentration can be derived. Here A and B

refer to the atomic concentration of two different elements. I is the measured photoelectron

peak intensity.
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The Photoionization Crosssection for an element depends on

• BE – Binding Energy

• Atomic number (Z) and

• Relative direction of photon incidence and photoelectron emission (ϕ)

ϕ has a specific angle for XPS called Magic angle 54.7◦ (usual values 50◦– 60◦). The

photoionization crosssection also correspond to the number of photoelectrons produced from

a core level.

The analyzed photoelectrons in XPS come from the superficial layers, photoelectrons

from deeper layers suffer inelastic collisions in the material. The photoelectrons ejected from

the atoms very near the surface escape unscattered (i.e., suffer elastic scattering) resulting

in XPS spectrum. If Io is the flux of electrons originating at depth d then the flux emerging

without being scattered Id is given by following relation. It decreases exponentially with

depth.

Id = Io exp (- d / λe sinθ)

where,

Io = flux of electrons originating at depth d

Id = flux emerging without scattering

d/sinθ= distance traveled through solid

λe= inelastic mean free path

(For Energy 100 − 1500 eV, λe : 0.5 to 3.0 nm)

As can be seen in the Fig. 3.16, the bulk of the spectrum represents photoelectrons

emerging from the surface of the sample. As the electrons suffer energy loss during their way

coming out from the solid not all of the electrons ejected by X–ray can reach the analyzer. In

fact due to the low inelastic mean–free path, λe, only electrons ejected from 0.5 nm – 2.0 nm

depth below the surface can be extracted by the analyzer. This makes the XPS analysis an
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Figure 3.16 : XPS spectrum contribution.

extremely surface sensitive method. In addition the actual escape depth also depends on the

direction in which they are traveling within the solid.

Figure 3.17 : X–ray photoelectron spectroscopy (Omicron – full lab setup) used in this work towards

determining the surface concentration of Silver and thereby in the silver ion release studies.

Measurements in this thesis work were performed by XPS full lab setup from Omicron

Nanotechnology GmbH (Fig. 3.17) in its ultra high vacuum analytical chamber where the

pressure is usually in 10−9 mbar range. The analytical chamber consists of sample holder,

X–ray source, and a hemispherical electron analyser (VSW EA 125), a detection system

which counts the number of photoelectrons and a data acquisition and processing system.

An Aluminium anode of the X–ray source (VG Microtech XR3E2) was used here.
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3.2.5 Antimicrobial studies

The antimicrobial effects of nanocomposites coated surfaces were evaluated by means of two

different assays:

3.2.5.1 Modified conventional disc diffusion method

Antibacterial studies using the modified conventional disc diffusion method at different MVFs

required the nanocomposite coating to be deposited onto cleaned silicon 1 cm × 1 cm

wafer samples – two samples per bacteria species. In other words, bactericidal activity

due to silver release from the surface into the external milieu was determined. The coated

surface of a prepared specimen was placed top down onto a Mueller–Hinton agar plate

inoculated with the test bacteria. Ag ions, which are released at the interface between the

composite film and the agar plate, diffuse continuously into the agar gel. After overnight

incubation at 37 ◦C, a clear zone of growth inhibition around the test specimen could be

observed as shown in the Fig. 3.18. The antimicrobial activity, is determined by the diameter

of the growth inhibition zone. Prepared specimens were tested with reference strains of

Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis ATCC 155, and Bacillus

megaterium ATCC 14581.

3.2.5.2 Fluorescence microscopy

For the bacteriostatic studies using fluorescence microscopy, several pieces of POM polymer

cleaned in isopropanol in an ultrasonic cleaner, were mounted on the sample holder in the

vacuum chamber in a separate experiment. Antimicrobial activity on the surface of coated

specimen was estimated by means of direct visualization of bacterial surface growth by

microscopy of test specimen after incubation with the GFP–producing strain E. coli SAR 18.

Non–transparent black POM polymers coated with nanocomposites were incubated with 1×

107 bacteria/ml in 24 well tissue culture plates. After 1 h of incubation, non–adhered bacteria

were removed by washing and the test specimens were further incubated in PBS/10 % tryptic

soy broth for up to 24 h. Samples of test polymers were taken at t = 0, 1 h, 6 h and 24 h,
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Figure 3.18 : Schematic of the modified conventional disc diffusion method.

placed onto a cover slide, and examined under a Zeiss Axioskop 2 fluorescence microscope

equipped with a Canon EOS 300D digital camera at the group of Prof. Dr. Podschun.

3.2.5.3 Ag ion release

The silver based antimicrobial materials release Ag+ ions to create a pathogenic environment

in order to be effective. The oxidation of metallic silver to active species (Ag+) is mediated

through an interaction of the silver with the aqueous environment. The X–ray photoelectron

spectroscopy (XPS) was used to measure the Ag+ ion release due to the high sensitivity of

XPS to small amounts of silver. The samples were immersed in 1 ml of deionized water

for one day at room temperature. After that, samples were removed, blotted free of water

and transferred to 1 ml of deionized water to continue the release process. Daily, 0.1 ml of

the suspending fluid was removed and put on a clean Aluminium foil, where the fluid was

evaporated at 160 ◦C. The surface concentration of Ag after fluid evaporation at 160 ◦C was

measured by XPS.

Solutions of AgNO3 with difference in molarities were used to calibrate the XPS Ag

signal. The XPS signal of AgNO3 solutions with defined silver ion concentration led to a

calibration curve [136]. The calibration curve was obtained by plotting the XPS signal as a
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function of the silver ion concentration of the standard solution [136].

An effort to study the Ag ion release was also made by using the change in the SPR

of the nanocomposites through UV–Vis/NIR spectroscopy [137]. The relative change in the

position of plasmon absorption maxima and peak intensities were plotted for studying the

nature of silver release. All the measurements have been done after straight–line subtraction

of the peaks.

Although preliminary work pertaining to the antibacterial properties has been carried

out by M.Sc. A. Sbaei [136] and M.Sc. V. G. Kotnur [137] towards their masters thesis, that

has not been discussed in this thesis separately.



Chapter 4

Titanium dioxide based nanocomposites

The properties of TiO2 are promising for applications in photovoltaics, photocatalysis, pho-

toelectrochomics and sensors [19]. Different materials have been doped into TiO2 by dif-

ferent preparation methods like wet chemistry, high temperature treatment and ion im-

plantation [19]. TiO2 has been used in this work as it has a high refractive index, good

mechanical and chemical stability, low cost and widespread availability [138, 139]. Metal

nanoparticles in an amorphous matrix like TiO2 have been studied mainly because of their

optical properties, especially the nanoparticles of the noble metals like Ag [138–140] and

Au [141–147]. Different groups have tried to synthesize metal incorporated TiO2 based

nanocomposites through physical and chemical routes to meet various demands of different

applications [19,124–126,144,148,149].

In this work Ag–TiO2 and Au–TiO2 nanocomposite thin films that have been prepared

by co–sputtering from two different magnetron sources in a home made vacuum deposition

chamber are investigated.

4.1 Ag–TiO2 nanocomposites

Several efforts towards the synthesis of Ag–TiO2 based nanocomposites by various chemical

methods [18, 49, 139, 148, 150–153] have been made. The control of MVF in the thin films

57
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when they are prepared by wet chemical methods is rather difficult. In the case of sol–

gel methods, the heating involved during the synthesis of the nanocomposites makes the

synthesis route substrate dependent. Generally, the fabrication of optical composites is done

by vacuum deposition techniques. These require an array of sophisticated equipment: a high

vacuum chamber, very pure deposition materials, a means of evaporating these materials,

thermal control, a mechanism for monitoring the thickness of the materials deposited and

many characterization techniques [154]. The development of these nanomaterials and the

devices which exploit them require effective integrated relationships from the physics and

chemistry point of views.

Recent attempts for the synthesis of Ag–TiO2 nanocomposite coatings by physical

methods like reactive co-sputtering from mosaic targets have been made [155, 156]. Mosaic

targets generally have the problem of nearly fixed concentrations either by using pieces [157],

discs [139] or wires [155] of Ag on the TiO2 targets. Apart from this problem, the re–

sputtering effect causes a variation in the concentration of the nanocomposites with an asso-

ciated difficulty in reproducing the results. Despite the possibility to tune the properties of

the Ag–TiO2 nanocomposites, the ability to tune the MVF is rather difficult when using this

type of deposition [158]. Efforts towards the preparation of nanocomposite thin films by us-

ing reactive co–sputtering the nanocomposite films were also carried out. Difficulties existed

in maintaining the stoichiometry of TiO2, during the the preparation of nanocomposite thin

films of TiO2 by using reactive co–sputtering. Hence magnetron sputtering directly from the

targets of TiO2 was preferred and employed in this work.

4.1.1 Morphology

Nanoparticles are important for nanocomposite thin film applications like optical and an-

tibacterial coatings. The morphology of the nanocomposites plays a pivotal role in de-

termining the functional properties of the nanocomposite thin films. However, the use of

nanocomposite coatings requires further study of possible size effects on their properties. The

morphology of the nanoparticles has been studied by using transmission electron microscopy

(Philips Tecnai F 30 G2). HRTEM and electron diffraction studies were carried out.



CHAPTER 4. TITANIUM DIOXIDE BASED NANOCOMPOSITES 59

Figure 4.1 : Transmission electron microscopy images of Ag–TiO2 nanocomposites with MVFs of

(a)15 % (b)26 % (c)34 % and (d)47 %.

In this work, the formation of metallic nanoparticles upon vapor phase co–sputtering

of Ag and TiO2 can be understood in terms of the high cohesive energy of the silver and the

low silver–matrix interaction energy. This leads to high silver atom mobility on the growing

nanocomposite surface and silver aggregation whenever silver atoms encounter each other

or a silver cluster. When energetic Ag atoms impinge on the TiO2 surface, which is growing

simultaneously, the arriving metal atoms undergo various processes, like random walk on

the TiO2 surface, diffusion on the growing nanocomposite film, metal atoms encountering

each other within the diffusion path [159]. In the bright field TEM images of Fig. 4.1 the

Ag nanoparticles appear with darker contrast in the bright TiO2 matrix. The changes in

the MVF can be seen from the TEM micrographs in Fig. 4.1, with the MVF variation from

15 % to 47 % Ag in the Ag–TiO2 nanocomposites. On observation of the Fig. 4.2(a), two

different sizes of nanoparticles can be noticed. The small particles are more clearly evident

in the HRTEM micrograph of Fig. 4.2(b), which also show the nanocrystalline nature of the

Ag nanoparticles from their lattice fringes. The small nanoparticles have a particle diame-

ter between 1–2 nm and a mean distance of 4–5 nm from one another. The corresponding

electron diffraction pattern in Fig. 4.2(c) also shows that Ag particles are crystalline as

evidenced by the rings with diffuse intensity representing the various Miller planes. Based

on the SAED patterns, the d–spacings of the diffraction rings are determined to be 0.242,

0.207, 0.147 and 0.125 nm, and can be indexed as (111), (200), (220) and (311) reflections,

respectively. Pure TiO2 [74] and Ag–TiO2 [139] films prepared under similar room temper-
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ature conditions have an amorphous TiO2 matrix. The explanation for the formation of the

larger Ag particles would be an artifact of the sequence of switching off the sputter sources

(Ag source after the matrix source), which was clearly ruled out in this case. Additionally,

freshly prepared samples were considered for investigation to rule out the possibility of a

bimodal particle size by aging of the nanocomposite thin films through Ostwald ripening.

So far it has never been reported that metal clusters existing on a polymer prepared by

co–sputtering lead to bimodal size distribution by surface segregation [11]. Even embedding

of clusters deposited on the surface was seen upon annealing above the surface glass transi-

tion temperature [160]. Bimodal particle size distribution has been previously reported in

oxide matrices like TiO2 and SiO2 and also diamond–like–carbon attributing the observation

to diffusion [139, 161–165], but less importance has been given towards the position of the

nanoparticles in the nanocomposite.

Figure 4.2 : Transmission electron microscopy images of Ag–TiO2 nanocomposites with SAED of

the 15 % Ag–TiO2 nanocomposite showing the crystalline nature of the Ag through the rings with

varying intensity, representing the various Miller planes and the HRTEM image of the 15 % Ag–

TiO2 nanocomposite with bimodal distribution clearly showing the lattice planes of the Ag nanopar-

ticles.

Unlike the nanocolumns with a mean diameter of 20 nm as reported by Dakka et

al. [139] from the mosaic targets, nearly uniform distribution of Ag nanoparticles in the

TiO2 matrix has been observed. In this case, as the process of co–sputtering takes place

from two different magnetron sources simultaneously, there exists an advantage to vary the
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deposition rate of Ag and TiO2, thus being able to tune the MVF. On varying the MVF from

13 % to 47 %, there is an increase in the nanoparticle size with an associated decrease in the

interparticle distance [159]. Additionally, the silver is finely dispersed as nanoparticles, thus

saving additional material compared to the bulk Ag, considering the large effective surface

area for functionality.

Generally, changes in the MVF can be observed from the TEM micrographs in the Ag–

TiO2 nanocomposites [159]. Individual TEM images are generally 2D, which limit their usage

for understanding the 3D structure of nanomaterials. The solution to this problem is the

analysis through the state–of–art technique of 3D electron tomography. Understanding the

morphology related properties of the nanocomposites requires both 2D and 3D visualization

[166,167] of the nanocomposites [132,135,168,169].

Ag–TiO2 and Au–TiO2 nanocomposite thin films which have been prepared by using

the process of co–sputtering from two different magnetron sources have been studied by

using this technique of electron tomography. Tomography was performed on the functional

nanocomposite thin films with Ag nanoparticles in a TiO2 matrix with a GIF Tridiem

Camera (2k × 2k pixels). The image contrast was improved by energy filtering (Zero loss

peak, ZLP) [170] using a slit width of 20 eV. The tilt–series data set have been acquired

with 281 images by using a tomography holder from Fischione instruments and the Inspect

3D software. Small tilt steps of 0.5◦ and from +70◦ to −70◦ have been used to get a high

resolution. No evidence of beam damage was observed in the specimen during the acquisition

of the tilt series. A movie of the volume and surface rendered tomograms can be viewed in

the supporting information provided on the compact disc.

Alignment and reconstruction of the data were carried out using the software IMOD [171]

by a combination of cross–correlation and marker tracking. Reconstruction was performed by

25 iterations of the Simultaneous Iterative Reconstruction Technique (SIRT) algorithm [135]

implemented in Explore3D.

Keeping in mind the associated drawbacks of cross–sectional TEM (section 3.2.1.2),

the necessity of having information from the third dimension becomes rather pivotal in the

present case of thin films with a high nanoparticles density. The different volume rendered
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Figure 4.3 : Volume rendering of the Ag–TiO2 nanocomposite: (a) to (c) 1/3 and 2/3 sections

and the full thickness of the film seen in the XY–plane (d) and (e): Different orientations of the

nanocomposite film showing the larger nanoparticles on the top surface and the smaller clusters

inside the matrix of the nanocomposite film.

views depicted in Fig. 4.3(a – e) clearly provide evidence for large metallic nanoparticles

with a diameter of ∼ 7 nm, which are located on the surface and for smaller nanoparti-

cles with a diameter of ∼ 2 nm, which are fully embedded in the matrix. Figs. 4.3(a – c)

shows volume renderings of a part of the samples starting from the surface up to the full

film thickness. Figs. 4.3(d – e) shows the nanocomposite film on tilting it to views where

the larger particles on the top surface. Note, that such imaging by CTEM would be rather

difficult (section 3.2.1.2). The surface–rendered tomograms are provided on the compact

disc. Comparing the results from the 3D electron tomography and the CTEM (Fig. 4.2) the

morphology of the nanocomposite thin film can be unambiguously visualized in the former

case. Fig. 4.3(c) shows a volume rendered projection in the XY–plane of the whole nanocom-

posite from the 3D electron tomography, which is similar to that of the view obtained in the
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CTEM images.

The 3D images of the two tilted views in Fig. 4.3 clearly show that the larger metallic

nanoparticles are on the top surface. On the other hand, the smaller nanoparticles are em-

bedded in the matrix. Additionally, when analyzing only CTEM images, the MVF cannot

be estimated correctly. Different non–polymer matrix based nanocomposites have shown

distinct particle sizes [139, 161–165]. In most cases, neither importance nor detailed discus-

sions towards the size distribution has been provided. In the present case, it is possible that

the large nanoparticles result from diffusion of metal from smaller nanoparticles that are

present in the film as will be discussed in the following sections.

The morphology of the nanocomposite thin film can be explained by a two step model.

The first step involves formation of small nanoparticles during vacuum phase deposition in

flight or on the growing surface. In the second step after the deposition process, the larger

particles are formed through particle coarsening by Ostwald ripening [172] (A) and surface

segregation (B) cf. Fig. 4.4(a). Differences in the chemical potential are inversely related

to the radius of the nanoparticle and are the driving force for Ostwald ripening. This can

also be observed in the reconstruction slice in Fig. 4.4(b) where on the surface no smaller

nanoparticles are seen between the larger nanoparticles. Additionally, segregation can also be

seen in the reconstruction slice of Fig. 4.4(b) where, beneath the larger nanoparticles, hardly

any smaller nanoparticles can be seen in the depletion zone. Thus this model would explain

the bimodal distribution for the present case. Additional proof for this theory comes from

the results of the work as discussed in [159] along with Mr. Tomislav Hrkac, who deposited

a TiO2 cover layer on the top of the Ag–TiO2 nanocomposite. Here, no Ag nanoparticles are

on the surface and thus having no local higher diffusivity leading to the formation of larger

nanoparticles.

The larger particles are formed on the surface of the nanocomposite through the mech-

anism discussed above. At higher MVFs, similar to the percolation of the smaller nanopar-

ticles in the matrix, the percolation of the larger particles also takes place on the surface.

As the contrast of the larger nanoparticles becomes dominant at higher filling fractions, dif-

ficulty exists to study the morphology of the nanocomposite thin film even through electron
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Figure 4.4 : (a) Model showing the two step process involved in the formation of nanocomposite thin

films with bimodal particle size distribution. Region "A" shows the Ostwald ripening and "B" depicts

surface segregation. (b) Electron tomographic reconstruction slice showing the larger nanoparticles

and smaller nanoparticles and also depicts clearly the area around the larger nanoparticles to be

nearly free from smaller nanoparticles.

tomography, thus leading to the falsifying conclusions. In conclusion, tomography is a very

useful technique to study the morphology of nanocomposites and thereby to understand

the growth of nanoparticles. Due to the fact that this is a very sophisticated method it

requires an in–depth knowledge of the process parameters and can accordingly be rather

time–consuming.
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4.1.2 SHI irradiation

4.1.2.1 Changes in the particle size

On irradiation with 100 MeV Ag8+ ions at various fluences of 1 × 1012, 3 × 1012 and

1 × 1013 ions/cm2, changes in the nanocomposite morphologies like the associated growth

of the nanoparticles have been observed. These changes in the particle morphologies after

irradiation at different fluences can be seen in the nanocomposites with 13 %, 15 % and 17 %

Ag. In all the studied MVFs, similar phenomena have been observed. To avoid redundancy,

only the 15 % MVF are shown here.

Figure 4.5 : TEM images and the respective particle size distributions of the 15 % Ag–TiO2

nanocomposite (a) in pristine state and after irradiation at fluences (b) 1 × 1012, (c) 3 × 1012

and (d) 1 × 1013 ions/cm2.

Particle size distributions were calculated by drawing lines across the smallest diameter

of the nanoparticles from the representative TEM images with same area. In Fig. 4.5(b), at

the fluence of 1 × 1012 ions/cm2, there is an increase in the particle size compared to the

smaller nanoparticles in the pristine sample (Fig. 4.5(b)) through the process of nucleation

and growth. This is also accompanied by the reduction in the number of nanoparticles. At



CHAPTER 4. TITANIUM DIOXIDE BASED NANOCOMPOSITES 66

even higher fluence of 3×1012 and 1×1013 ions/cm2, there is growth of larger nanoparticles in

cost of the smaller ones where particle coarsening is observed. Nearly uniform nanoparticles

with diameter ∼ 12 nm have been formed with an associated decrease in the number of

nanoparticles (from the particle size distribution) for the highest ion fluence (Fig. 4.5(d)).

This decrease is due to the phenomenon of dissolution and re–precipitation. Nanoparticle

synthesis using physical vapor deposition originally results in the formation of nanoparticles

with a bimodal particle size distribution as discussed in Fig. 4.3. This depends on the

MVF. For a particular metal fraction, the obtained size of nanoparticles is fixed. At this

metal fraction, the size of nanoparticles remains fixed and can further be enlarged by heat

treatment. This indicates a possibility to increase the nanoparticle size by ion fluence from

100 MeV Ag8+ SHI beam.

4.1.2.2 Changes in the matrix

Figure 4.6 : TEM images with the associated SAED patterns of the 15 % Ag–TiO2 nanocom-

posite (a) before and after irradiation at different fluences of (b) 1 × 1012, (c) 3 × 1012 and

(d) 1 × 1013 ions/cm2 showing the changes in the matrix.

On irradiation with 100 MeV Ag8+ ion beam at various fluences of 1 × 1012, 3 × 1012

and 1 × 1013 ions/cm2 changes in the particle morphologies have been observed. In this
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section, investigations for the modification of the matrix are reported.

Transmission electron microscopy investigation of pristine Ag–TiO2 nanocomposite

system, clearly confirm the amorphous nature of TiO2 matrix with Ag nanoparticles in the

crystalline phase. The typical TEM micrographs of the nanocomposites with 15 % Ag are

shown in Fig. 4.6 with the corresponding SAED patterns.

At all MVFs, similar behaviour was observed. Detailed analysis using SAED studies

and EDX analysis in nanoprobe mode confirmed the formation of crystalline TiO phase.

The detailed structural emergence of TiO in the Ag–TiO2 nanocomposite thin film system

induced by SHI will be discussed in detail in the following paragraphs.

On SHI irradiation of the nanocomposites with 13 % Ag, the formation of a large single

crystalline TiO has been observed at a particular fluence of 3 × 1012 ions/cm2 (Fig. 4.7).

The formed crystals are of the order of nearly 400 nm in size (Fig. 4.7) and have similar

d–spacings as reported in literature by Bartkowski et al. [173] for TiO. Relatively very few

reports about the formation of TiO nanostructures through various methods are seen in

literature [174,175].

Figure 4.7 : TEM micrograph of the TiO crystals that are formed at the fluence of 3×1012 ions/cm2

with the associated experimental (center) and simulated (right) SAED patterns showing clearly the

single crystalline nature in the zone axis of [2 1 1]. SAED pattern simulations were done using the

the software JEMS [176].

The formation of TiO nanostructures in the Ag–TiO2 nanocomposites is only possible

by SHI irradiation but not possible by conventional heating experiments. A comparative
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study involving the in–situ heating of the Ag–TiO2 nanocomposites in the TEM confirms

the absence of the formation of TiO as will be discussed later in section 4.3. Despite many

attempts towards the synthesis of TiO thin films for microelectronics and sensoric applica-

tions have been carried out [177]. But less reports towards the synthesis of nanostructured

TiO have been published. When compared to the films of TiO, enhancement of the nitrogen

dioxide sensing would be due to the increased surface area resulting from the nanostructures

of TiO. The observation that the precipitation of the TiO phase takes place only for a specific

fluence is rather unique.

Figure 4.8 : The HRTEM micrograph of the formed TiO phase showing the lattice fringes and the

associated FFT showing the zone axis orientation of [2 1 1].

SAED studies together with the HRTEM and EDX confirm the formation of TiO. From

the SAED patterns, one can clearly see the [2 1 1] zone axis of the TiO phase which agrees

with the simulated results of the TiO by using the JEMS software [176]. The difference of

the intensities in the SAED pattern can be attributed to the thickness of the formed TiO

phase. Similar to the SAED pattern in Fig. 4.7, the HRTEM micrograph depicts the lattice

fringes. The fast Fourier transformation (FFT) of the HRTEM micrograph yield an FFT

pattern (Fig. 4.8) which corresponds to the SAED pattern in Fig. 4.7.

The HRTEM image clearly show the lattice fringes of the TiO crystals in the Ag–
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Figure 4.9 : TEM nanoprobe EDX analysis on the TiO crystal and the matrix confirming the ratio

of Ti:O in both the areas to be 1:1 and 1:2 respectively.

TiO2 nanocomposite thin films. In spite of the well known problems of the light elements’

quantification by EDX, test measurements on distinct samples (e.g., amorphous TiO2) point

to a sufficient reliability of the setup for a semi–quantitative interpretation. Hence, the EDX–

nanoprobe analysis of the transmission electron microscope (Fig. 4.9) confirms that the ratio

of Ti:O in the nanocomposite is 1:2 and that it is 1:1 in the nanocrystal. Interestingly, the

desired equimolar ratio of Ti and O is well adjusted even on the nanoscale.

Usually, physical effects like the formation of carbonaceous clusters or excessive free

volume, or the mass density, spin density and conductivity enhancement in the case of
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irradiated insulating polymers [178] sets in above a certain critical energy density thresholds

in the order of 0.03 to 3 eV/Å. Thereafter these reach saturation values at typically 10 to 1000

times higher energy densities. Hence the fact that, in the present case the phase formation

briefly shows up and then vanishes again with increasing fluence can only be understood

by the interaction of two different counteracting mechanisms evolving at different fluences.

This can be also seen from the Fig. 4.10 where at lower fluences, one observes the tendency

towards the formation of TiO, with larger unaffected area. At higher fluences, one can see

the destruction of the evolved TiO phase into fragments.

Similar fluence dependence was reported by Bacmeister et al. [179] where they found

this effect for gas permeation through irradiated polymers. In this effect, at a low SHI

fluence of 4 × 1010 ions/cm2 the gas diffusion coefficient rose to a value twice a that of the

pristine material. On a slight increase in the fluence to 6 × 1010 ions/cm2, the coefficient

dropped to a value drastically below that of the pristine. Similar results were also observed

for electron irradiated materials. The decrease of the coefficient was explained by a three–

phase model [180] that assumed that gases in irradiated materials diffuse through both the

pristine bulk and the tracks. Individual ion impacts lead to the behavior that the ion tracks

act as zones of enhanced diffusivity. Multiple ion hits lead to volume compaction and hence

to a reduction of the diffusion along the tracks. This makes it highly probable that we

deal here with the counter play between "hit" and "no–hit", "single–hit" and "multiple–hit"

processes.

On assuming that the TiO phase emerges only within individual tracks and is destroyed

again upon multiple hits, then the probability to find such a track at a given projectile fluence

Φt (also the areal track density) on a given target unit area with cross–section σt = π(rt)2

is W1.

W1 = exp(−ξ). (4.1)

where ξ = 4P and P = Φtσt.

The formation of the TiO phase at an optimum fluence of about 3 × 1011 ions/cm2

signifies that the σt for this process is of the order of 3 × 10−12 ions/cm2. Hence, the
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Figure 4.10 : The effect of different fluences on this nanocomposites system showing effect of the

variation of fluence on the formation of single crystalline TiO is shown with a supporting model

about the formation of TiO only at a particular fluence.

effective ion track radius for this effect is in the order of nearly 6 nm (r1). With increasing

fluence, the chance that a given target area is hit twice increases, with the corresponding

probability being given by [181]:

W2 = ξexp(−1.185ξ). (4.2)

Riedel et al. [182] give the correlation for the areal fraction of overlapping tracks as:

P2 = 4Pexp(−6.645P ). (4.3)

with P = Φtπ(rt)2 being the total area covered with tracks without taking the track over-
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lapping into account.

According to the suggested model, this signifies that for the lowest values of P = Φtσt,

no TiO phase is seen, as the unaffected areal fraction still dominates. On increasing Φtσt,

TiO phase enriched areas emerge due to the appearance of individual ion tracks. When this

areal fraction (corresponding to the areal fraction of individual tracks) reaches its maximum,

already first pixels with double and triple overlapping tracks show up in the target. According

to this model, the emergence of a double or multiple hits signify phase destruction, the further

increase in fluence leads to the destruction of that previously created TiO phase as can be

clearly seen from the schematic of Fig. 4.10.

As the track populations follow Poisson distributions for the probabilities of i–fold ion

track overlapping with i≥ 0 (i = 0: no track, i = 1: individual tracks, i > 2: ion track

overlapping), the transition zones between "no hit", "single hit" and "multiple hit" areas in

dependence of the fluence (consequently also the transition regimes between the existence

and non–existence of the TiO phase) are relatively broad. However, additional diffusional

processes, depending on the diffusion and kinetics of the TiO clusters in the TiO2 matrix,

in the presence of a transient localized high temperature, tend to sharpen these transitions,

e.g., by dissolution of too small or too dispersed TiO phase clusters on the one hand, and

on the other hand by enabling the small ion track–induced precipitates to grow to the large

TiO clusters which were observed in the TEM images.

In addition to this, reflections corresponding to the Anatase form of crystalline TiO2

have also been observed at fluences of 3×1012 and 1×1013 ions/cm2. This can be attributed

to the transient local increase in the temperature during SHI irradiation.

4.1.3 Optical properties

In this work, the optical properties of the noble metal based nanocomposites were determined

by the collective oscillations of the metal’s conduction electrons with respect to the positive

ion background, known as SPR, as already discussed in the chapter 2. For noble metal

nanoparticles, the resonance occurs in the visible region of electromagnetic spectrum which
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enables them as the potential candidates for optical and sensor applications. The SPR

frequency not only depends on the size, shape and size distribution of the nanoparticles

[35,101,102] but also on the dielectric constant of the medium [98,99] and the inter–particle

spacing [98,107]. The decrease in the inter–particle spacing leads to the coupling of plasmons

which results in SPR broadening.

Figure 4.11 : Optical extinction spectra of the Ag–TiO2 nanocomposites with different MVFs from

13 % Ag to 47 % Ag in the visible regime showing the red shift in the SPR from 488 nm to 640 nm.

In Ag–TiO2 nanocomposites, when tuning the MVF from 13 % to 47 % Ag, the SPR

peak shows a red shift (Fig. 4.11) from 488 nm to 640 nm. Both the size and the interparticle

distances play a major role in determining the optical properties of these nanocomposite thin

films [35,98,101,102,107]. The SPR spectrum of the nanocomposite with 15 % Ag, shows a

peak at 500 nm (Fig. 4.12) with an additional shoulder peak.

On peak deconvolution of the SPR spectrum with a Gauss fit from 15 % Ag nanocom-

posite, a prominent peak at around 498 nm and a shoulder peak at around 630 nm (Fig. 4.12)

is seen. The near field interactions between closely spaced metal nanoparticles result in
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Figure 4.12 : Optical extinction spectra of the Ag–TiO2 nanocomposites with 15 % Ag MVF. Gauss

peak fit showing the deconvoluted peaks at 498 nm and 630 nm.

properties that are absent in the case of individual nanoparticles [183]. When two plasmon–

resonant particles are close, the plasmon modes in the individual nanoparticles can interact,

leading to resonances from the coupled system [184]. Similar to the case of the equal in-

tensity double plasmon resonance [100], in the present case, a near electromagnetic field

coupling from the lateral–to–surface and perpendicular–to–surface directions between two

metallic surfaces placed at short distance presents a large change compared to an isolated

surface [185]. The relaxation or damping frequency or parameter is related to the mean free

path of the conduction electrons and the velocity of electrons at the Fermi energy. The most

important parameter affecting the damping parameter is the particle size [186]. However,

in this case since the particle size on the surface is larger, the damping is more radiative in
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nature, which leads to further red–shift and broadening of the resonance. As the theoretical

treatments predict a red–shift and broadening of the corresponding peaks upon interaction

between plasmon resonances in different particles [187], the results in this case agree with

the strong coupling of plasmon resonances. Thus, segregation influences the properties of

the nanoparticles thereby affecting the nanocomposite. The driving force for the surface

segregations are reduction in surface free energy and bulk elastic strain energy as well as the

variation in the particle size. The increase in the MVF has also an effect on the increase in

the cluster size with an associated decrease in the interparticle distance, which leads to a shift

in the SPR to higher wavelengths, thus tuning the SPR. At higher MVFs of 47 % Ag, the

decrease in the interparticle spacing results in a SPR broadening as can be seen in Fig. 4.11.

Figure 4.13 : Particle size distribution of the nanocomposite in Fig. 4.2 showing clearly the two

particle sizes.

Thus, from the 3D nanostructure of the nanocomposite thin films obtained by electron

tomography (Fig. 4.3), the optical extinction and the peak deconvolution (Fig. 4.12), it can

be concluded that the lateral and perpendicular coupling between large nanoparticles and

small nanoparticles gives rise to the SPR resonances at 630 nm and 498 nm. This can also

be observed from the particle size distribution of the TEM image (Fig. 4.13). The ability to

control the exact position of nanoparticles within a dielectric matrix facilitates the tailoring
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of the resulting properties of the nanocomposite and remains a pivotal parameter.

4.1.3.1 SHI induced changes in the optical properties

Figure 4.14 : 15 % Ag nanocomposite before and after irradiation at different fluences.

On irradiation with the 100 MeV Ag8+ ion beam at various fluences of 1×1012, 3×1012

and 1×1013 ions/cm2 changes in the optical spectrum like narrowing of the SPR peak, along

with associated changes in the particle morphologies have been observed. Since the observed

changes in the optical spectra are similar at different MVFs, only MVF of 15 % has been

depicted here.

The changes in the optical extinction spectrum of the nanocomposites of Ag–TiO2

with 15 % Ag on irradiation can be seen in the Fig. 4.14. The red shift in the SPR can

be attributed to the changes in the matrix properties along with the associated narrowing

of the size distribution. The shift of the SPR from 465 nm to 550 nm can be clearly seen,

thus the ion beam fluence can be used as a tool in order to tune the SPR. The resulting
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Figure 4.15 : Plot showing the change in the SPR peak maximum with respect to fluences of

1 × 1012, 3 × 1012 and 1 × 1013 ions/cm2 for 13 %, 15 %, 17 % and 27 % MVFs in the Ag–TiO2

nanocomposite system.

shift in the plasmon resonance can be a result of interplay of many factors. Firstly, as the

particle diameter increases to about 12 nm, there is a corresponding shift of the SPR towards

higher wavelengths. From the experimental calculations in [188] (page 147), for a medium

with a refractive index of 1.4, an increase in the particle radius from ∼6 to ∼12.5 nm

yields a red shift in the SPR of about 8 nm. The refractive index is a key feature in

optical applications [6, 99, 189–191]. The effect of the changes in the refractive index of

the embedding matrix is also important, as for Ag nanoparticles with particle diameter of

about 10 nm, Quinten [188](pp200) has shown a red shift of 8 nm in the SPR peak. On

the other hand, for Ag nanoparticles, Mock et al. [190] have suggested a 1.6 nm red shift

for every increase of 0.01 in the refractive index. Amorphous TiO2, crystalline TiO2 with

Anatase sturucture and TiO have refractive indicies of 2.05 [140], 2.54 [192] and 2.27 [193].
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In our case, the transistion of the matrix from amorphous TiO2 to TiO + amorphous TiO2

or TiO and nanocrystalline TiO2 leads to an associated change in the refractive index of

the nanocomposites. Hence, there exists an interplay between the associated change in the

refractive index, the particle size distribution in the resulting red shift from 465 nm to

550 nm. This can be clearly seen by the plot between the ion fluence and the SPR peak

maxima for different MVFs (Fig. 4.15).

Figure 4.16 : Plot showing the change in the area under the SPR peak vs the ion fluence for 13 %,

15 %, 17 % and 27 % MVFs at different fluences of 1 × 1012, 3 × 1012 and 1 × 1013 ions/cm2 in

the Ag–TiO2 nanocomposite system.

Additionally, different MVFs follow a similar trend of the SPR shift towards higher

fluences. At a constant MVF, the area under the plasmon peak is a measure of particle size

distribution [194]. A plot showing the area under the SPR vs the fluence indicates a trend

in the particle size distribution. Hence, in Fig. 4.16, the increasing trend of all the MVFs at

different fluences confirms the results obtained from TEM images (Fig. 4.5).
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4.1.4 Antibacterial properties

In the recent years, silver embedded in different matrices have become quite important

because of the prospective applications such as in imaging, biosensing, biodiagnostics and

optical filters, as well as antimicrobial, catalytic and photocatalytic processes [18,45,50–52,

122, 164, 195, 196]. Apart from the excellent optical properties of the silver based nanopar-

ticles and the Ag–TiO2 nanocomposites (Fig. 4.11), the silver ions released from the silver

based nanoparticles are known to inhibit bacterial growth thus showing them to be as good

antimicrobial agents [122,197]. TiO2 itself is known to be antibacterial, however, this requires

UV light irradiation [198]. Here it has been shown that by incorporating Ag nanoparticles,

the nanocomposite exhibits antibacterial activity even in the dark. The experimental re-

sults of the synthesis, characterization of the nanocomposites, the release of silver and their

antibacterial properties based on bacteriostatic (growth inhibition) impact are presented in

the following sections. For the measurement of the antibacterial properties cultures of Bacil-

lus megaterium ATCC1458 (B.megaterium), Staphylococcus aureus ATCC6538 (S.aureus),

Staphylococcus epidermidis ATCC 155 (S.epidermidis) were used. Also, the bacteriostatic

impact, i.e., the time dependent bacterial growth of Escherichia Coli (E.Coli) SAR 18 on

these Ag–TiO2 nanocomposites deposited onto the POM substrates, was studied by using

the fluorescence microscopy. Additionally, silver ion release studies, i.e., the relative change

in intensity of the signal of Ag with respect to the time, has also been studied at different

MVFs.

4.1.4.1 Bacteriostatic impact from fluorescence microscopic studies

The bacteriostatic impact of these nanocomposite coatings was evaluated as a function of

time with Escherichia coli SAR 18 (E.Coli). The bacterial growth of E. coli SAR 18 on

these coatings on different time scales of 1 hr, 6 hrs and 24 hrs has been monitored through

fluorescence microscopic studies thus studying the bacteriostatic impact.

The bactericidal effect of 15 % Ag nanocomposites was evaluated by means of deter-

mining the time course of bacterial growth of E.Coli on the nanocomposites. To study the
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Figure 4.17 : Fluorescence microscopy images from the growth of E.Coli SAR18 on the substrates

with coatings of TiO2, Ag–TiO2 (15 % Ag), Au–TiO2 and without coatings, with respect to time

scale on POM substrates. The glowing color in the images represents the bacteria grown in the

respective areas.

antibacterial effect on its surface we used an approach that aims at direct visualization of

bacterial surface growth by microscopy of test specimen. Significant inhibition of the growth

of E.Coli could be noted over the observed time period (1–24 hrs) as shown in Fig. 4.17.

To compare and remove the effects from the POM substrates, the bacterial growth studies

were performed on the uncoated substrate as well. Pure TiO2 and Au–TiO2 nanocomposites

have also been examined. From the Fig. 4.17, the glowing of the bacteria grown can be seen

on the POM substrates with pure TiO2. As one can clearly observe, the growth of bacteria

is not significant in the Ag–TiO2 nanocomposites. This retardation of the growth of E.coli

SAR 18 bacteria has been found to be maximum on the substrates coated with Ag–TiO2

nanocomposites making these coatings better than the other coatings. Since pure TiO2 is

also antibacterial in nature when activated by UV–light, here the effect is shown in the

absence of UV–light [159].
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4.1.4.2 Antibacterial effect from modified conventional disc diffusion method

Different bacteria need different minimal concentrations of silver ions to show a significant

antibacterial effect. Bacillus megatherium ATCC1458, Staphylococcus aureus ATCC6538

and Staphylococcus epidermidis ATCC 155 were used as test bacteria for the antibacterial

studies by using the modified conventional disc diffusion method at different MVFs. These

bacteria have been chosen because of the typical problems caused by these bacteria in med-

ical environments. The results shown in Table 4.18, clearly demonstrate the antibacterial

effect of MVFs from 26 %–47 % Ag, to be dependent on the growth medium. Further-

more, the table 4.18 shows enhancement of growth inhibition with increasing MVFs of the

nanocomposites.

Figure 4.18 : The tabular results from the modified conventional disc diffusion method showing the

effect of MVF from 26 % Ag to 47 % Ag. The corresponding inhibition zone is in mm.

The "negative" results from the table 4.18 for MVF– 26 % do not say that the nanocom-

posite is not antibacterial in nature but rather that the response in the form of the diameter

of the transparent ring around the nanocomposite is smaller than 1 mm. For nanocomposites

with lower MVF, one can clearly observe the antibacterial behavior through the fluorescence

microscopic technique.

Two different approaches were used for the antibacterial testing of the nanocompos-

ites. The direct visualization of the bacterial growth is a very sensitive method of an-

tibacterial analysis compared to the modified conventional disc–diffusion method. The later

method uses the response in the form of Ag diffusion through the Agar medium and the

former method uses the growth of bacteria directly on the surface. The application of

these nanocomposites is a necessary criteria towards the appropriate testing conditions for

these nanocomposites, i.e., if larger liquid environment is used during application, then the
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modified-conventional disc diffusion method would serve as a good alternative because of

the usage of higher MVF. On the other hand, if the application involves the growth on sur-

faces, then the florescence microscopy is a better alternative. The aim of this work was to

demonstrate the antibacterial effect of this nanocomposites. Further detailed antimicrobial

analysis of the nanocomposites is a detailed work which has to be performed by varying the

MVF and at lower MVFs.

4.1.4.3 Silver ion release

Bacteria can survive on its host surface for a long period of time, thus increasing the chance

of transmission to food, liquids and human skin [122]. Surfaces coated with the optimal Ag–

TiO2 based nanocomposite should show a maximum antibacterial effect, thus decreasing the

chance of transmission of these bacteria. Previously, detergent solutions being bactericidal to

S.aureus were studied, but this allowed the survival but not multiplication of E.Coli [199]. In

our case, with our Ag–TiO2 coatings, we have the possibility of antibacterial and bacterici-

dal properties from the same material to different types of bacteria. Furthermore, infections

related with intravascular devices, prosthetic joints, catheters, etc. are frequently associated

with S. epidermidis. Generally, S.epidermidis contaminates the patient–care equipment and

environmental surfaces, possibly explaining the high incidence of this species in the hospital

setting. Thus, if coated with Ag–TiO2, corresponding surfaces provide antibacterial efficacy.

At this point, one also needs to consider many other factors like the cytotoxicity and bio-

compatibility of these materials. These nanocomposites are functional as they have been

proved to be antibacterial through the bacteriostatic and antibacterial studies.

Since the silver ion release is the key parameter involved in the antibacterial activity

[122] of the Ag based nanocomposites, studies towards this have been carried out. when

considering the optical properties of the nanocomposites, the area under the SPR peak

represents the MVF of the nanoparticles. Thus one way to study the Ag ion release can be

done by by UV–Vis/NIR spectroscopy.

By studying the decrease in the area under the SPR curves, in turn, a decrease in the

amount of silver in the composite can be understood. In the previous sections, Fig. 4.11
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Figure 4.19 : Decrease in the amount of Ag in the Ag-TiO2 nanocomposites with varying volume

fraction from 26 % Ag to 44 % Ag by using the phenomenon of SPR with respect to time.

shows the change in the SPR with respect to the MVF. Here, Fig. 4.19 shows a correlation

between the MVF and the change in the area under the SPR for different time. Two of the

MVFs, i.e., 26 % and 31 % are below percolation and 44 % is above percolation (Fig. 4.1).

From the area under the SPR over time, i.e., from 0 to 888 hrs, one can clearly see a decrease

in the amount of silver. Here, there are two different scales for rate of decrease. At lower

time scales, i.e., until 48 hrs the rate of decrease is proportional to the MVF. Faster diffusion

in the initial stages results from the significant release in the amount of silver ions. These

results until 48 hrs from the area under the SPR were also confirmed by the XPS studies as

shown in Fig. 4.20 until 48 hrs. The silver ion release behavior is generally controlled by the

diffusion from the bulk to the surface.

The XPS studies of the Ag ion release from the surface in deionized water were carried

out on samples with MVFs ranging from 26 % to 44 %. As the method is highly surface
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Figure 4.20 : The decrease in the amount of Ag in the Ag–TiO2 nanocomposites with varying MVF

from 26 % Ag to 44 % Ag evaluated by the change in XPS intensity ratio of Ag/TiO2 with respect

to time(a), (b), (c) and (d) depicts the relative change in the concentration of Ag/TiO2 (∆C/C,

where C is the intensity of Ag/TiO2) from the XPS signal after 48 hours showing an increase in

the concentration of Ag correlating with the results from the modified conventional disc diffusion

method.

sensitive, conclusions about the surface concentration changes of the samples can be made

as discussed in chapter 2. By varying the time the samples are kept in water upto 48 hours,

the decrease in the amount of silver on the surface was determined from the decrease in

the XPS intensity ratio of Ag/TiO2 as shown in Fig. 4.20. A similar trend was followed

by all samples with different MVFs until 48 hrs. These results also correlate with the data

obtained through the other methods with different bacteria.

At higher time scales in Fig. 4.19 there is enhanced Ag ion release for the sample with

MVF 44 % when compared to the 26 % and the 31 % MVFs. Above the percolation threshold,
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there is easy supply of Ag ions from the bulk to the surface. This supply enhancement is

due to the percolated network and the possibility for the Ag ion release from the new silver

surface availiable through the previously created channels through the Ag ions diffused.

Engineering the silver ion release (an important parameter for the antibacterial activ-

ity) through the tuning of the TiO2 barrier plays a pivotal role in order to obtain a user

defined antibacterial activity for a thin film nanocomposite which has to be further dealt in

detail.

4.1.4.4 SHI induced modification of the Ag ion release

SHI irradiation causes the formation of ion tracks which results in the variation of the

transport properties [178, 200]. As a result, the transient melting along the ion trajectories

may lead to a redistribution of the Ag nanoparticles. Because of this redistribution, these

ion trajectories might act as tracks for the release of the silver ions. Also, the redistribution

of Ag nanoparticles after SHI irradiation also contributes to the silver ion release from the

surface. This can be observed from the case of nanocomposites with 27 % Ag. Enhancement

of the silver ion release after SHI irradiation with 1×1012 ions/cm2 has been observed when

compared to the pristine sample as can be seen in the Fig. 4.21.

Figure 4.21 : Enhanced release of silver ions after SHI irradiation at a fluence of 1×1013 ions/cm2

when compared to the pristine sample.
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The enhancement in the silver ion release after irradiation from the surface might be

due to the fact that the ion trajectories after irradiation provide better silver ion release.

4.2 Au–TiO2 nanocomposites

In this work, the Au–TiO2 nanocomposite thin films with varying MVFs have been prepared

in the same way as the Ag–TiO2 nanocomposites and are also subsequently subjected to

SHI irradiation. Studies about the particle morphologies, the effect of SHI on the TiO2

matrix and the associated optical properties at different MVFs have been carried out. In

the following sections we discuss the respective studies.

4.2.1 Morphology

Figure 4.22 : Transmission electron microscopy images of Au–TiO2 nanocomposites with MVFs

of (a) 7 % (b) 11 % (b) 13 % (b) 50 % Au and associated selected area electron diffraction patterns

(SAED) showing the crystalline nature of Au nanoparticles.

The morphology of the nanocomposites have been studied by using transmission elec-

tron microscopy (Philips Tecnai F 30 G2). Also, HRTEM, SAED and electron tomographic
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studies have been carried out.

Figure 4.23 : Electron tomographic volume rendering depicting different orientations showing the

large Au nanoparticles on the surface with smaller Au nanoparticles in the 15 % MVF Au–TiO2

nanocomposite thin film.

In the bright field TEM images of Fig. 4.22 the Au nanoparticles appear with a dark

contrast in the bright TiO2 matrix. The changes in the MVF can be seen from these

TEM micrographs (Fig. 4.22), with a variation from 7 % to 50 % Au in the Au–TiO2

nanocomposites. On careful observation of the Fig. 4.22, two different sizes of nanoparticles

can be noticed, both large nanoparticles and small nanoparticles can be noticed.

Similar to the case of Ag–TiO2 nanocomposites (Fig. 4.4), here the bimodal particle

size distribution is observed. On conducting the 3D electron tomographic studies, the volume

rendering confirmed the presence of large particles on the surface in this case also, as observed

from the Fig. 4.23 in different orientations.
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4.2.2 SHI irradiation

4.2.2.1 Variations in particle size

The morphology of the Au–TiO2 nanocomposites play a pivotal role in regard to their

functional properties. In this work, the nanocomposites with different MVFs (7 %, 9 %,

11 %, 15 % Au), were subjected to SHI irradiation with 100 MeV Ag8+ ions at various

fluences of 1× 1012, 3× 1012 and 1× 1013 ions/cm2. Since a similar tendency was observed

for the different MVFs, only the 15 % Au MVF will be presented in the following sections.

Figure 4.24 : TEM images and the respective particle size distributions of the 15 % Au–TiO2

nanocomposite (a) before and after SHI irradiation with 100 MeV Ag8+ ions at fluences of (b) 1×

1012, (c) 3× 1012 and (d) 1× 1013 ions/cm2.

For the Au–TiO2 nanocomposites, from the TEM studies, one identifies a trend of

particle size growth. In the pristine nanocomposite film, there are nanoparticles as well as

metal atoms throughout the film. During SHI irradiation, enormous amount of energy (few

keV/nm) is deposited into the nanocomposite thin film. This initiates the phenomenon of

nucleation and growth. As can be seen from the TEM micrographs and the corresponding

particle size distributions (Fig. 4.24), an increase in the particle size initially at a fluence of

1× 1012 ions/cm2 is evident. Upon an increase in the fluence by three times, further growth
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of particles continues. This particle coarsening is due to ostwald ripening. which can be seen

from the particle size distribution of Fig. 4.24(b) and (c). Also, right from 1×1012 ions/cm2

to 1 × 1013 ions/cm2, there is a reduction in the average number of nanoparticles. Further

increase in the fluence by three times leads to a significant particle coarsening (∼7 nm),

i.e., at a fluence of 1 × 1013 ions/cm2 with an associated decrease in the average number

of nanoparticles due to the dissolution and re–precipitation phenomena. According to the

energy deposited by the change in the fluence, the amount of dissolution varies [178, 200].

At the fluence of 1 × 1013 ions/cm2, an increase in the particle diameter to ∼7 nm is due

to the intensive transient melting and re–precipitation. An explanation for the observed

change is due to the SHI induced ripening of small Ag nanoparticles during SHI irradiation.

Nanocomposite synthesis using co–sputtering at a particular MVF originally resulted in the

formation of nanoparticles with a bimodal particle size distribution as discussed in Fig. 4.23.

For a particular MVF, the obtained size of nanoparticles was fixed. Thus, the SHI irradiation

indicated a possibility of controlled increase of the nanoparticle size by ion fluence from

100 MeV Ag8+ SHI beam.

4.2.2.2 Changes in the matrix

As in the case of the Ag–TiO2 nanocomposites, there is also ion beam induced crystallization

of the matrix leading to the formation of precipitates of TiO in the Au–TiO2 nanocomposites.

However, unlike in the case of Ag–TiO2 system, large single crystalline TiO precipi-

tates could not be observed. In the Fig. 4.25(c) one can observe the smaller fractions of

TiO distributed in the nanocomposites. The condition for the optimum formation of the

larger nanostructures of TiO still remains unknown in this case. The MVF, the type of the

metal, the ion fluence and the type of ion beam remain vital parameters towards nanostruc-

turing the nanocomposites. Hence, additional experiments with a broader variation of the

ion fluence are required to achieve the condition where nanostructuring occurs, i.e., large

single crystalline particles of TiO are formed. Additionally, as in the case of the Ag–TiO2

nanocomposites, right from an ion fluence of 3 × 1012 ions/cm2, one can observe the for-

mation of TiO2 with Anatase structure. Together with the changes in the matrix, as the
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Figure 4.25 : TEM images depicting the changes in the matrix of the 15 % Au–TiO2 nanocom-

posite (a) before and after SHI irradiation at at fluences of (b) 1 × 1012, (c) 3 × 1012 and

(c) 1× 1013 ions/cm2.

particle morphologies play a major role in determining the optical properties, in the next

section we discuss the optical properties of these nanocomposites.

4.2.3 Optical properties

In the case of Au–TiO2 nanocomposites, the change in the MVF from 7 % Au to 15 % Au

has resulted in the SPR shift from 572 nm to 584 nm (Fig. 4.26).

From the experimental calculations in Au colloids by [188] (page 147), for a medium

with a refractive index of 1.4, a red shift in the SPR of about 12 nm is a result of an increase

in the particle radius from ∼13 nm to ∼27 nm. The red shift of 12 nm clearly depicts the

change in the particle size with respect to the MVF. Hence in our case, the red shift in SPR

can be regarded to be resulting from an interplay of effect of change in the particle size and

the plasmon coupling phenomena. This change in the optical absorption is related to the

MVF of the nanocomposites and is also in agreement with the results obtained from the
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Figure 4.26 : SPR resonance with a variation in the MVF from 7 % to 15 % Au

transmission electron microscopy (Fig. 4.22).

4.2.3.1 SHI induced changes in the optical properties

The changes in the extinction spectra for the Au–TiO2 nanocomposites with varying MVFs

after irradiation at different fluences follow a similar trend. In order to compare with the

Ag based nanocomposites, the MVF of 15 % will discussed here.

In comparison with the SPR from the Ag–TiO2 nanocomposites with the same MVF

(Fig. 4.12), the SPR from the Au–TiO2 nanocomposites is broad and does not show signs

of having a shoulder peak (Fig. 4.27). Although the size of both the large and the small

nanoparticles plays a major role in determining the SPR, the observation of a shoulder peak

in Ag–TiO2 nanocomposites only at a particular MVF could be because of the optimum

coupling between the plasmons. Similarly, in the present Au–TiO2, no optimum coupling
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Figure 4.27 : 15 % Au nanocomposite before and after SHI irradiation at fluences of 1 × 1012,

3× 1012 and 1× 1013 ions/cm2.

resulting a significant shoulder peak was observed.

From the extinction spectra (Fig. 4.27) of the nanocomposites irradiated at fluences of

1×1012, 3×1012 and 1×1013 ions/cm2, there is a clear evidence of the narrowing of the SPR

peak with a red shift, i.e., 584 nm to 648 nm and an associated reduction in the FWHM and

increase in the area under the SPR. Thus, through the variation of the ion beam fluence,

the tuning of the SPR frequency from 584 nm to 648 nm in the Au–TiO2 nanocomposites

with 15 % Au by SHI irradiation is evident. The combined effect of the morphology of the

nanoparticles and the changes in the matrix are observed from the changes in the optical

properties. This effect cannot be separately attributed to a particular contribution.

By SHI irradiation, according to the variation of the SHI fluence and MVF, the SPR

frequency shows a red shift from 572 nm to 648 nm in the Au–TiO2 nanocomposites. This

change in the optical extinction spectra of the Au–TiO2 nanocomposites can be seen in a
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Figure 4.28 : Plot showing the change in the SPR peak maximum with respect to the ion fluence

for 7 %, 9 %, 11 % and 15 % MVFs in the Au–TiO2 nanocomposite system.

consolidate form in the plot of the ion fluence vs the SPR peak maxima for different MVFs in

Fig. 4.28. Additionally, one can clearly observe that different MVFs follow a similar red shift

of SPR towards higher fluences. This red shift in the SPR can be attributed to the changes

in the matrix properties along with the associated narrowing of the size distribution. The

interplay between the associated change in the refractive index and the size distribution of

the Au nanoparticles determines the optical properties of these nanocomposites. Since the

area under the SPR peak signifies the total density of the nanoparticles, a plot showing the

area under the SPR vs the SHI fluence indicates the trend of the particle density at different

fluences. Hence, in Fig. 4.29, the increasing trend is in agreement with the results obtained

through the transmission electron microscopy.
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Figure 4.29 : Plot showing the change in the area under the SPR peak vs the ion fluence for 7 %,

9 %, 11 % and 15 % MVFs in the Au–TiO2 nanocomposite system.

4.3 In–situ heating of the nanocomposites

Both the matrix and the size of the nanoparticles decide the functionality of the nanocom-

posites. Temperature is one of the most important factors which affects the size of the

nanoparticles and the structure of the host matrix in the nanocomposites [58]. The melting

point of free nanoparticles is size dependent and is much lower than the bulk melting tem-

perature (Au = 1064 ◦C, Ag = 962 ◦C and TiO2 = 1640 ◦C) [201]. Although the particle

coarsening and the mechanism is known [202], we study the effect of temperature on the

nanocomposite morphology as a whole, i.e., nanoparticle in a host matrix. In this work we

applied in–situ TEM heating to have a comparative study with the SHI irradiation in regard

to the particle morphologies and the changes in the matrix. In both the cases, an in–situ

heating holder as described in chapter 3 has been used to heat the nanocomposites up to
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500 ◦C at a heating rate of 5 ◦C per minute. At intermediate temperatures, imaging and

associated SAED patterns were taken.

4.3.1 Au–TiO2 nanocomposites

The effect of temperature on the nanocomposites of Au–TiO2 have been studied by in–situ

heating. During the process, at intermediate temperatures of 100 ◦C, 200 ◦C, 300 ◦C, 400 ◦C

Figure 4.30 : In–situ heating of the 11 % MVF Au–TiO2 nanocomposites at (a) room temperature

(b) 100 ◦C(c) 200 ◦C, (d) 300 ◦C, (e) 400 ◦Cand (f) 500 ◦C (total time 3 hrs).

and 500 ◦C imaging and SAED patterns were recorded. At room temperature as already

discussed, the bimodal particle size distribution is observed. Until the temperature of 400 ◦C,

there is a growth of the large nanoparticles with an accompanied decrease in their number.

Additionally, the marginal decrease in the number of smaller nanoparticles is also observed.

Generally, the driving force for the Ostwald ripening or particle coarsening is the surface

energy reduction experienced as the surface area of the new nanoparticle is less than that

of the sum of the surface areas of the original two nanoparticles. However, this driving

force decreases with increasing nanoparticle size. During the particle coarsening process,

the nanoparticles tend towards a more stable structure displacing the defects and releasing

internal stresses. Particle coarsening in the case of the large nanoparticles on the surface

is through surface diffusion. For the small nanoparticles in the matrix, volume diffusion

occurs. In both the cases the kinetics are different, but cannot be separately observed.
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Figure 4.31 : Particle size distribution of the Au–TiO2 nanocomposite in Fig. 4.30 at (a) room

temperature (b) 100 ◦C(c) 200 ◦C, (d) 300 ◦C, (e) 400 ◦Cand (f) 500 ◦C (total time 3 hrs).

The particle size distribution of the TEM micrographs in Fig. 4.30 are shown in

Fig. 4.31. Marginal nanoparticle growth is evident from the particle size distributions in

Fig. 4.31 from room temperature to 500 ◦C. The diffuse intensities from in the SAED pat-

terns at 300 ◦C correspond to the reflections from Anatase form of crystalline TiO2. These

reflections become clearly visible at 500 ◦C with the development of ring pattern from these

reflections. This remains the same even after cooling to the room temperature. The change

in the particle size distribution resulting from the change in the structure of the matrix is

also evident as the kinetics for the particle coarsening differ in the crystalline matrix. Thus,

Au nanoparticle coarsening and the transformation of the matrix from the initially amor-

phous TiO2 into crystalline TiO2 with Anatase structure takes place during in–situ heating.

Similar changes were also observed in the case of the Ag–TiO2 nanocomposites as will be

discussed in the next sub–section.
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4.3.2 Ag–TiO2 nanocomposites

The variation in the morphology of Ag nanoparticles in the Ag–TiO2 nanocomposites upon

in–situ heating is shown in Fig. 4.32, where at intermediate temperatures of 150 ◦C, 300 ◦C,

400 ◦C and 500 ◦C, imaging and associated SAED patterns were collected. At room tem-

perature, as already discussed (section 4.1.1), bimodal particle size distribution is observed.

Figure 4.32 : In–situ heating of the Ag–TiO2 nanocomposites at (a) room temperature (b) 150 ◦C,

(c) 300 ◦C, (d) 400 ◦C and (e) 500 ◦C (total time 3 hrs).

On in–situ heating, from room temperature to 500 ◦C, there is an increase in the size of

the nanoparticles due to Ostwald ripening, similar to the case of the Au–TiO2 nanocompos-

ites. Additionally, evidence for the changes in the matrix at 500 ◦C is also observed through

the SAED patterns. Although signatures for the change in the matrix are evident right from

300 ◦C through the diffuse intensities corresponding to the reflections from the Anatase

form of TiO2, at 500 ◦C these appear as ring patterns confirming the crystallization of TiO2

into Anatase type. The sharp transition in the particle size(Fig. 4.32(e)) is a result of the

crystallization of TiO2 inducing a change in the kinetics of the ongoing diffusion processes.

Thus similar results as in the case of Au–TiO2 system were also observed in this case.
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4.3.3 In–situ heating vs SHI irradiation

Both the processes of in–situ heating and SHI irradiation are carried out in ultra high

vacuum conditions. In contrast to the SHI irradiation, during in–situ heating, as one ap-

proaches 500 ◦C, from the selected area diffraction studies, there is a transformation of the

amorphous TiO2 matrix into a crystalline Anatase–type, but no nanostructures of TiO have

been observed. Hence only through SHI irradiation, one can obtain the formation of TiO

nanostructures either in the form of large crystals or fragments in the nanocomposites. In

both the cases of Au and Ag nanoparticles in TiO2, upon irradiation, nanoparticles with very

small size tend to dissolve and re–precipitate with other nanoparticles in order to minimize

the total surface free energy. Since the interparticle spacing between the smaller nanopar-

ticles is very small, they might agglomerate to form larger nanoparticles. The location of

the nanoparticles, thereby the morphology of the nanocomposites is pivotal to understand

the observations, which involves a number of tomographic experiments. In the case of SHI

irradiation, the change in the particle size is higher than that is observed through in–situ

heating. The other possible way to understand the results from SHI irradiation is that

the SHI creates a molten zone as expected from the thermal spike model [82], transiently

(for picoseconds) of a few nm in which the atoms from the surface region of the particles

desorbed and diffuse in the matrix. The creation of a cylindrical zone (referred to as ion

track) following the passage of ion in insulting matrix and the formation of ion track is well

known and has been explained by thermal spike and Coulomb explosion model [26]. In the

region where the interparticle distance is very small, the particles agglomerate to form big-

ger particles by diffusion of small clusters as can be seen from both the systems of Ag–TiO2

and Au–TiO2. In earlier work, Biswas et al. [203] studied the effect of SHI irradiation on

Au and Ag polymer nanocomposites depicting the coalescence of nanoparticles with SHI

irradiation. In this work, tuning the SPR without varying the MVF is possible by using the

SHI irradiation. It has been shown that by using Ag (13 % to 27 %) and Au (7 % to 15 %)

based nanocomposites with a TiO2 matrix along with SHI irradiation, it is possible to tune

the SPR from 485 nm to 687 nm.



Chapter 5

Polymer based nanocomposites

Metal nanoparticles embedded in polymer matrices have been a subject of extensive research

due to their potential applications [11]. Development of nanocomposites in which the SPR

is tunable has also attracted sustained interest [39, 51, 96, 204]. A detailed understanding

of their optical properties is of interest from both fundamental and technological point of

view. The development of techniques for the synthesis of monodisperse nanoparticles of

desired size and size distribution has been a major challenge over the years. Several phys-

ical and chemical techniques are used to prepare metal nanoparticles embedded in various

dielectric matrices such as ion implantation [205], co–sputtering [65], sol–gel approach [206],

spin–coating [207], co–evaporation [50], cluster deposition [208], flame synthesis [209], and

other chemical synthesis methods [12,210]. This chapter deals with the synthesis and char-

acterization of noble metal (Ag and Au) nanoparticles embedded in a PTFE matrix using

co–sputtering from two independent sources. Also, multi–layered nanocomposites and the

studies pertaining to the respective irradiation are carried out and discussed.

5.1 Synthesis of Ag-PTFE nanocomposites

As discussed in the section 3.1.1, nanocomposite coatings were prepared by co–sputtering

of PTFE and silver from two different magnetron sources simultaneously in a home–made

99
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deposition chamber under high vacuum (10−7 mbar) conditions. The thickness of the coating

was measured by a surface profilometer (Dektak 8000). The films were deposited on a silicon

wafer, TEM grid and glass substrates and their thickness was maintained approximately be-

low 35 nm (section 3.1.1). The MVF was determined by using an EDX (section 3.2.1.1). The

morphology of the nanoparticles has been studied with a transmission electron microscope,

Philips–CM30 (section 3.6). Optical extinction studies were carried out by using the UV–

Vis/NIR spectrophotometer (Perkin Elmer Lambda 900) as discussed in section 3.14. After

sputtering the polymer is highly crosslinked, the structural description of the cross–linked

polymer was discussed in previous doctoral works from the group [211,212]. Ag co–sputtered

with Teflon does not wet the polymer surface around but forms three–dimensional clusters

(Fig. 2.1.2). Through the process of co–sputtering, when the MVF is increased, an interplay

between the particle morphology and the interparticle spacing exists. Fig. 5.1 shows that

the average particle size increases from ∼4 nm to ∼14 nm with an increase in the MVF from

9 % to 33 %.

Figure 5.1 : TEM images showing the increase in MVF (a)9 % (b)14 % (c)21 % (d)26 % to

(e)33 %. One can observe the increase in particle size and decrease in the interparticle spacing.
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5.2 SHI induced modification of PTFE based nanocom-

posites

The study of ion irradiation of nanocomposite systems provides a unique opportunity to

understand the physics of ion interaction with nano–dimensional systems. In this work the

Ag–PTFE nanocomposites were subjected to irradiation with Ag8+ ions. The corresponding

simulations from SRIM based on the ion energy with respect to the electronic energy loss is

shown in the Fig. 5.2 [92].

Figure 5.2 : SRIM simulation showing the plot of electronic energy loss vs ion energy for Ag ions

in PTFE [92].

The variation of the energy loss of the ions respective to the energy of the ions is

shown in Fig. 5.2. The stopping power consists of two components, (i) nuclear, region I

(section 2.2.2.1) and (ii) electronic stopping power, region II + III (section 2.2.2.2). At

low energies (1 keV/nucleon), the nuclear energy loss predominates. At higher energies
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(1 MeV/nucleon), where the velocity of the ions is comparable with the Bohr velocity of the

orbital electrons, the Ag8+ ions interact with the electrons of the target atoms resulting in the

ionization of the target atoms and/or transfer of electrons to higher energetic states (inelastic

collision). Since the mass of the ions is much higher than the mass of the electrons, the initial

direction of the ions in the solid remains almost unchanged. In the case of nanocomposite

system, at high MVF, since the stopping power of metals is very high, the energy loss will

be much more when compared with the low MVF and pure PTFE systems.

Figure 5.3 : Se versus depth plot for 100MeV Ag8+ ions in PTFE. The grey region depicts the

sample thickness used in this work [92].

The variation of energy loss versus penetration depth for 100 MeV Ag8+ ions in PTFE

is shown in Fig. 5.3. The energy loss phenomenon is statistical in nature as the collisions

between projectile ions and target atoms are random. All ions penetrating the solid do not

have the same penetration depth, but there is a distribution along its path called longitudinal

straggling. Since each successive collision of projectile ion with target atoms leads to a

deviation from its straight line path resulting in a straggling in lateral direction called lateral
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straggling. The projectile ions continuously lose energy and finally come to a stop, which is

called as projected range or penetration depth.

Nanoparticle synthesis using physical vapor deposition results in the formation of

nanoparticles with a certain size depending on the MVF. For a particular MVF, the ob-

tained size of the nanoparticles is fixed. At this MVF, the size of nanoparticles can further

be enlarged by heat treatment. Here, the SHI beam irradiation is used as a tool to tune

the particle size for a given MVF based on the SHI fluence. The effect of SHI irradiation

on the size and size distribution of Ag nanoparticles embedded in a PTFE matrix and the

resulting changes in the optical properties were studied. Indications of a marginal reduction

in the size of nanoparticles by ion fluence from 100 MeV Ag8+ ions have been observed. Thin

nanocomposite films on glass and TEM grids were irradiated by 100 MeV Ag8+ ions at a flu-

ence of 3×1011, 6×1011 and 1×1012 ions/cm2 delivered from the 15UD Pelletron accelerator

at IUAC. The UV–visible absorption spectra of pristine and irradiated films were recorded

using a UV–Vis spectrophotometer. The microstructural morphology of the films that were

deposited on carbon coated copper TEM grids were investigated with a transmission electron

microscope, Philips CM30.

Fig. 5.4 shows the optical extinction spectra of the pristine and irradiated Ag–PTFE

nanocomposite films. The SPR band at 420 nm in case of the pristine sample (a) is a

clear signature of formation of Ag nanoparticles during sputtering (section 2.3). As these

nanocomposite films are irradiated with 100 MeV Ag8+ ions, the SPR peak broadens and

a red shift is observed. With increasing ion fluence, the broadening and the shift of the

SPR peak becomes prominent. An increase in full width at half maximum (FWHM) and a

red shift of 10 nm from 420 nm to 430 nm are observed after irradiation up to a fluence of

1 × 1012 ions/cm2. The broadening in SPR absorption band after ion irradiation indicates

a reduction in the nanoparticle size and a change in the number density of the nanopar-

ticles. One explanation for the observed red shift is due to the morphological changes in

the nanocomposites and also due to modifications in the polymer matrix induced by ion

irradiation.

Transmission electron micrographs of the pristine and irradiated samples are shown in
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Figure 5.4 : Extinction spectra (a) for pristine and (b)to(d) for irradiated samples at fluences of

3 × 1011, 6 × 1011 and 1 × 1012 ions/cm2 respectively, delivered by 15UD Pelletron accelerator at

IUAC.

Figure 5.5 : Transmission electron micrographs of (a) pristine and irradiated samples at fluences

of (b) 3× 1011, (c) 6× 1011 and (d) 1× 1012 ions/cm2.

Fig. 5.5. The average particle diameter (D) of nanoparticles in case of the as–deposited film

is about 4.4 nm (Fig. 5.5a). A marginal decrease in the nanoparticle size from 4.4 nm to

3.3 nm is observed after irradiation at a fluence of 1× 1012 ions/cm2 from the corresponding

size distribution in Fig. 5.6. Particle size distribution were calculated by drawing lines across
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the smallest diameter of the nanoparticles from the representative TEM images. It has been

observed that the sizes of the nanoparticles marginally decrease with increasing ion fluence.

The presence of some larger Ag nanoparticles can also be seen (Fig. 5.5(c) and 5.5(d))

after irradiation. One explanation for the observed change is due to the agglomeration

of a few small Ag nanoparticles during ion irradiation. The passage of SHIs deposits the

electronic energy into the Ag-PTFE system. The pristine film has particles with a certain

size distribution along with some Ag atoms in the atomic state itself. Similar to the diffusion

of clusters and atomic species within the ion track [213], the diffusion of some Ag atoms and

smaller particles to bigger particles leads to ripening of Ag nanoparticles around the ion path

due to thermal spike produced by the ions for a transient duration of time. In case of Figs.

5.4(c) and (d), the contribution of the larger Ag nanoparticles to SPR have to be ignored

as their number is relatively less than their counterparts. Marginal decrease of the particle

size is observed through SHI irradiation using ion fluence as the controlling parameter.

As the ions pass through matter, they lose their energy by electronic (Se) excitations

(inelastic collisions) and nuclear (Sn) collisions (elastic collisions). Se is dominant at higher

energies of irradiating ions, i.e., when the velocity is comparable to the Bohr velocity, like in

the present case. The energy that is lost by the irradiating ion (100 MeV Ag8+) is absorbed

by the Ag–Teflon nanocomposite matrix, which leads to a change of its properties. The

irradiating ions deposit an energy of Se = 12.2 keV/nm in the nanocomposite film through

in–elastic collisions, as estimated from the SRIM simulations [92]. With such a high energy

deposited in the system, the surface atoms of the Ag nanoparticles can gain sufficient energy

higher than their binding energy with the nanoparticles, resulting in migration of surface

atoms, which leads to the dissolution of the nanoparticles. Particles with very small size

can agglomerate with other nanoparticles in order to minimize their surface free energy.

Both the process of migration of atomic species from nanoparticles and Ostwald ripening

can result in the observed size distribution (Fig. 5.6). The other possible way is that the ion

creates a molten zone as expected from the thermal spike model [87], transiently (picosec-

onds) of a few nm in which the atoms from the surface region of the particles desorb and

diffuse in the matrix. The creation of a cylindrical zone following the passage of the ions

in the PTFE matrix and the formation of ion track is well known and has been explained
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Figure 5.6 : Size distribution Ag nanoparticles before and after ion irradiation. (a) Pristine and

irradiated samples at fluences of (b) 3× 1011, (c) 6× 1011 and (d) 1× 1012 ions/cm2 respectively.

(e) shows the variation of particle size D, with ion fluence.
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by the thermal spike and Coulomb explosion models [82, 90]. In the region where the in-

terparticle distance is very small, the particles can agglomerate to form a bigger particles

by diffusion of small clusters [213]. The increase in FWHM in optical absorption spectra

(Fig. 5.4) of the irradiated nanocomposites reveals the marginal changes in the size which is

in agreement with the microstructural results from the TEM (Fig. 5.6). This occurs because

of the large electronic energy (12.5 keV/nm) deposited into the nanocomposite system by

SHI irradiation. Since it is well known from the theoretical calculations [35, 214], that the

SPR peak position strongly depends on the shape and the size of the nanoparticles as well

as on the refractive index of the surrounding matrix, this SPR shift after ion irradiation

can be accounted from an interplay of SPR from the dissoluted small and the agglomerated

large Ag nanoparticles, the changes in matrix and the modification of the chemical interface

surrounding the nanoparticles or a combination of the aforementioned factors (Fig. 5.4.

The study of the particle size distribution from the TEM micrographs of the pristine

and irradiated samples show that there is a marginal decrease in particle size by varying

the ion beam parameters. Additionally, SHI irradiation causes stoichiometric changes in

the polymer, which results in changing the dielectric properties of the polymer matrix.

Polymer matrices are very sensitive to ion irradiation, because on irradiation with energetic

ions structural modifications occur [81, 215]. Lighter elements like hydrogen may evaporate

resulting in an increase in film density, which leads to changes in the refractive index of the

polymer. Evolution of gases takes place through these cylindrical zones (paths of the ions)

referred to as ion tracks in the polymer [216]. The passage of ions through the polymer causes

electronic excitation of constituent atoms, followed by breaking of bonds of the type C–C

and C–F in PTFE. Thus an incident ion along its path releases a number of fluorocarbons

and fluorine as observed by Prakash et al. [217]. The reactions occur within the ion tracks

created in PTFE by the ions passing through the system. Due to emission of fluorine and

fluorine–rich fluorocarbons from PTFE, it turns into a carbon rich structure. This suggests

that evolution of various fluorocarbons and loss of fluorine with increasing fluence leads to

graphitization and carbonization [217]. In the case of Ag–PTFE system, at higher fluences

of 3 × 1012 ions/cm2, in low magnification TEM images, one can observe the carbon rich

amorphized regions that are the result of the SHI irradiation at high fluences(Fig. 5.7). This
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Figure 5.7 : SHI irradiation induced changes in the PTFE matrix of the nanocomposite along the

ion tracks.

might be as a result of the carbonization along the ion tracks as has been reported previously

in different polymer matrices [33, 213]. The aggregation and the densification of carbon

rich areas along the ion path might be a result of independent and simultaneous diffusion

processes taking place in the transient molten state of the latent tracks. It is known that

the electronic energy loss of typically a few keV/nm is adequate to create columnar defects

in polymers [81, 82]. Hence, it is expected that each incident ion will create a columnar

defect in the entire thickness of the polymer layer [81,200]. According to the study by Mock

et al. [190], in Ag nanoparticles, 1.6 nm red shift per 0.01 increase in refractive index. Hence,

SHI irradiation leads to carbonization of the matrix, which also contribute to an alteration

in the plasmonic properties of nanocomposites.
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5.3 Synthesis and properties of bimetallic nanocompos-

ites based on sandwich geometry

When two metals are combined, the optical properties are governed by a combination of the

properties (dielectric functions) of both metals. Such a combination strongly depends on the

arrangement of the metallic clusters in that geometry. This can be either an alloy [218], a

perfect or a quasi core–shell [219–221] or a geometry based effect. Bimetallic nanoparticles

of various metallic combinations fabricated by various wet chemical and physical deposition

techniques have been studied by several groups [103,222–225] with a focus on the study of the

optical properties or on their catalytic or biological applications. In all cases the interaction

of the metals plays a vital role in optical nanocomposites for the creation of equal intensity

double plasmon resonance (EIDPR). In this context, silver and gold have attained a huge

interest. A combined advantage of the chemical stability from gold and a higher signal–

noise ratio from silver results in tuning the optical response to form two clearly separated

plasmon peaks which is a challenge for the demanding applications like sensors based on

surface plasmon resonance [226]. However, such an effect of double plasmon resonance is

difficult in the case of Au and Ag because of their nearly identical bulk lattice constants and

the resulting mutual miscibility [227]. As a result, an optical response shows the absence of

double plasmon peaks so that one peak or seemingly two peaks is shown in the extinction

spectra by most of the researchers [218, 220], due to difficulties in the synthesis [220]. In

spite of the results from Mulvaney et al. [223] and Link et al. [103] on the generation of

two plasmon absorption bands, mostly, one of the absorption bands is in the form of a

shoulder peak. Also, Ung et al. [98], studied the optical properties of Au particles based

on varying the shell thickness by chemical routes achieving a change in the single plasmonic

peak for disordered Au particle films. In addition Malikova et al. [228], studied the effect

of layer–by–layer assembly with the mixed particles of gold and the associated interparticle

interactions.

Here, a strategy based on vapor phase deposition methods to develop well separated

plasmon peaks (i.e., EIDPR) using arrangements of nanoparticles in sandwich geometry for



CHAPTER 5. POLYMER BASED NANOCOMPOSITES 110

engineering the plasmon resonance. The excitation and decay of the plasmon responses is

controlled by the plasmon sequences based on the geometric effect; the amount of metals at

a fixed separation distance and varying the separation thickness at fixed amount of metal. In

this case, vapor phase tandem deposition was employed to synthesize quasi two–dimensional

nanocomposites of Teflon AF–Ag and Teflon AF–Au. Distinct double plasmon resonance

absorption maxima were obtained from such sandwich structures. The evolved systems

are capable to engineer the double plasmon resonance by tailoring the amount of metallic

nanoclusters and the dielectric separation layer at different wavelengths, originating from two

optically active layers. The approach used here to prepare the sandwich structures involves

four consecutive steps: evaporation of Teflon AF (TAF), deposition of metallic particles

of one type, second evaporation of TAF and finally the deposition of metallic particles of

another type, using vapor phase evaporation.

In sandwich geometry as shown in Fig. 5.8(a), three cases were studied: firstly by

sandwiching Au and varying the amount of Ag on top; secondly by sandwiching Ag and

varying the amount of Au on top; and thirdly by keeping the amount of Ag and Au constant

and varying the dielectric barrier thickness (TAF). In the first case, 0.6 nm of Au has been

sandwiched between 3.3 nm of TAF layers, followed by varying the amount of Ag on the

top from 0.6 nm to 1.8 nm. In the second case, 0.6 nm of Ag has been sandwiched between

3.3 nm of TAF layers, followed by varying the amount of Au on the top from 0.6 nm to

2.7 nm. Thirdly, on the 3.3 nm TAF, keeping the 0.6 nm of Ag and 2.7 nm of Au as

constant, the dielectric barrier layer thickness in between the metallic clusters was varied

from 1 nm to 6.6 nm.

Near–field interactions between closely spaced metal nanoparticles resulted in fasci-

nating properties, absent in the case of individual nanoparticles [183]. When two plasmon

resonant particles are brought close, the plasmon modes in the individual nanoparticles can

interact, leading to resonances from the coupled system [184]. A near electromagnetic field

between two metallic surfaces placed at a short distance presents a large change compared

to an isolated surface, which appears promising for applications such as nanosensors and

surface enhanced Raman spectroscopy (SERS) for molecular detection [229].
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Most of the research was directed towards the investigation of lateral–to–surface di-

mensions [230]. However, it is more interesting to investigate the perpendicular–to–surface

direction, a type which is well known for the dipole/surface interaction [231]. Additionally,

tailoring the separation between the nanoclusters in the Z–direction of the sandwich geom-

etry could be very useful for applications in nanooptics like SERS [232], nanosensors based

on surface plasmon resonance (SPR) [233] and nanocapacitors [234,235] where the polymer

as a dielectric barrier would determine the effective capacitance of the system [220].

Figure 5.8 : (a) sketch of the sandwich structure. The extinction spectra (b) showing the increase in

the amount of Ag on a sandwich of 0.6 nm Au sandwiched between 3.3 nm of Teflon AF, (c) showing

the increase in the amount of Au on a sandwich of 0.6 nm Ag sandwiched between 3.3 nm of Teflon

AF and (d) showing the increase in the amount of Teflon AF sandwich layer, from 3.3 nm to 10 nm,

between 0.6 nm of Ag and 2.7 nm of Au.
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The optical properties of the geometry in Fig. 5.8(b), where Au (0.6 nm) is sandwiched

and the amount of Ag is varied, are shown in Fig.5.8(b). Initially a particle plasmon peak

(PPP) maximum from the sandwiched Au at 550 nm is observed. On deposition of 0.6 nm

of Ag, an Ag PPP develops at 402 nm. Further increasing the amount of Ag, increases

the red–shift of the Ag PPP and its intensity, which is accompanied by submergence of

the sandwiched Au PPP. Additional increase of the amount of Ag leads to a further shift,

broadening of the PPP and quasi–disappearance of the Au PPP shoulder, as shown in

Fig. 5.8(b). Increasing the amount of Ag in turn nucleates additional Ag on the top of

already deposited Ag nanoclusters (nucleation sites), which leads to the increase in the size

of the nanoclusters, and thus the red–shift of the plasmon peak.

However, interesting results are observed in the opposite case shown in Fig. 5.8(c). The

PPP maximum from the sandwiched Ag is at 390 nm. The initial deposition of Au causes

the development of a shoulder Au PPP. Further increasing the Au amount, we notice the

clear development of the PPP of Au with a shift from 556 nm to 584 nm. Similar to the case

of Au sandwich, the newly deposited Au nucleate on the already existing Au nanoparticles

which leads to the increase in the size of the nanoclusters and thus the red–shift of the

plasmon peak. This size dependence effect is shown by the TEM images in Fig. 5.9.

Figure 5.9 : TEM images of 0.6 nm of Au sandwiched between 3.3 nm of Teflon AF and (a) 0.6 nm

gold, (b) 1.8 nm gold, (c) 2.1 nm gold and (d) 2.4 nm gold on the top. The amount of Ag and Au

are also confirmed by the attenuation in the signal from XPS studies.

Surprisingly, the development of the Au PPP does not affect the Ag PPP, but rather

results in equal intensity double plasmon resonance [100]. In addition, the TEM images in
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Fig. 5.9(a) and (b) show the presence of nanoparticles. Differences between the Au and Ag

cannot be observed from the diffraction patterns through the differences in the d–spacings

as they have similar d–values. On increasing the amount of metallic content at the top, the

possibility to distinguish between them becomes difficult because of percolation.

It is well known that the position of particle plasmons in bimetallic materials has

a great influence on the overall plasmonic properties. In this work, we believe that the

intensity increase and the broadening are not only determined by the well known factors

like size and shape effects, but also accompanied by the submerged Au PPR and its decay.

The damping of the plasmon resonance is thus determined by the energy relaxation time.

The energy relaxation of a plasmon oscillation is composed of a non–radiative decay channel

and radiative decay channel. It is well established that the decay channel of a surface

plasmon resonance from a metallic nanoparticle is size dependent. In the case of size in the

range 5 nm < D < 30 nm, plasmon decay is due to the non–radiative processes whereas

by D > 30 nm radiative processes are dominant [236]. A strong damping of the plasmon

resonance for gold nanoparticles is determined theoretically and experimentally to be in the

range between 500 nm and 700 nm, whereas for silver nanoparticles it is between 320 nm and

630 nm, with a decay time of 2–4fs [237]. In this regime there is a competition between the

plasmon excitation and d–sp interband (Au = 500 nm, Ag = 320 nm) absorption preventing

efficient plasmon oscillation. In our result, as observed in the case of Ag sandwich geometry,

the plasmon peak from the sandwiched Ag occurs at λ = 390 nm and remains at a constant

position far away from the competition between the plasmon excitation and d–sp interband

of gold nanoparticles. Increasing the amount of Au (Fig. 5.9) leads to an increase in the

particle size and also the plasmon shifts away from the interband transition towards higher

wavelengths. However, as the particle size increases (as observed in Fig. 5.9(c) and (d)),

the damping is more radiative in nature, which leads to further red–shift and broadening

of the dipole resonance. In this context the red–shift from the Au nanoclusters does not

have an impact on the Ag peak position in the optical spectrum, but rather on its intensity,

as seen in Fig. 5.8(c). This is because the Ag peak position is at much lower wavelengths

than the broadening Au peak resonance as well as its interband transition, which in this

case cannot engulf the Ag peak during its red–shift, but rather give a persistent Ag particle
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plasmon resonance with increasing intensity by its decay. In the Au sandwich geometry, an

increase in the amount of Ag causes a plasmon shift towards higher wavelengths onto the Au

interband transition and its plasmon peak position. Also, here a competition exists between

the Au plasmon with its interband and the Ag plasmon. Due to the higher intensity plasmon

resonance of Ag nanoparticles as compared to that of Au nanoparticles, the decay of the Au

plasmon peak is accelerated, which leads to the engulfing of the Au plasmon resonance and

a broad single peak.

Indeed, in addition to the geometry and EIDPR, the results clearly show a plasmon

sequence effect and visualize a positive or negative role for the decay. Based on this simple

strategy and using the aforementioned effects, the creation of EIDPR became plausible. In

this context, the separation distance between the two metals will play an important role on

the EIDPR behavior. Such effects are distance dependent, as shown in the case of Maier

et al. [183], where the lateral distance between two nanoparticles plays a vital role in the

optical properties. In our case, one expects the similar behavior, but in the Z–direction.

Holland et al. [231] has shown in earlier studies the presence of a critical thickness of a

dielectric separation layer for optimum coupling by perpendicular dipolesurface interaction.

In analogy, we test this observation in our case. In this case, the amount of Au and Ag are

fixed and the thickness of the dielectric barrier is varied. The optical responses, as shown

in Fig. 5.8(d), were found to vary with the thickness of the sandwiched dielectric layer,

indicating the critical thickness of 3.3 nm of the dielectric layer for optimum EIDPR. In

case of 1 nm separation we observed the formation of a single peak which exhibits the same

behavior as that in the case without the separation, because of the mixing of the two metallic

materials. Indeed an interesting feature in Fig. 5.8(d) is that, by increasing the thickness of

Teflon AF from 3.3 nm to 6.6 nm, the extinction intensity decreases along with a blue–shift

of the gold plasmonic peak.

It is well known that the intrinsic intensity and confinement of plasmon fields at the

surface of noble metal fields is maximum at the nanoparticle surface and decays exponen-

tially away from it. For instance, it was found that a plane wave impinging on a 20 nm

diameter Ag particle is strongly "focused" into the particle, leading to a large electric field
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density in a 10 nm region around the particle [4]. In this case the Teflon AF thickness

is varied within this range where field enhancement is expected, as it was below 10 nm.

A qualitative explanation could be established by considering the all layers as one layer.

Hence, increasing the TAF thickness is like increasing the amount of dielectric material

when compared to the metal part "diluted effect". Accordingly, a reduction in the intensity

of the plasmonic response accompanied by a blue–shift is observed. However, this needs

more work to fully understand the underlying mechanisms. The tandem deposition proce-

dure employed here, along with the sandwich geometry, allows the analysis of the changes

in the optical properties, as well as the selection of the stage at which the procedure should

be stopped to achieve the EIDPR. Strong changes in the optical properties occur when the

plasmon frequency of one particle is near the plasmon frequency of another particle type,

as a result of the dipole–dipole coupling/decoupling. In resonant conditions, when another

particle is nearby, upon polarization additional forces act on both the particles [238]. In

this case we show how plasmon decay can be used beneficially. The most salient features of

these spectra are that special features show up at specific wavelengths, which corresponds

to the plasmon resonances of the coupled system under consideration. A dipole moment

oriented towards the cluster surfaces is able to create oscillating charges of dipolar origin in

the clusters, which drive a strong enhancement [183]. Proximity to nearby metallic surfaces

increases the local field and modifies the excitation. In other words, the transfer of energy

by coupling/decoupling is possible by the plasma oscillation energy [230].



Chapter 6

Summary

Nanocomposite thin film coatings with a wide range of MVFs were prepared by co–sputtering

of TiO2/Teflon and Ag/Au from two different magnetron sources simultaneously in a home–

made deposition chamber under high vacuum (10−7 mbar) conditions. Two different types

of host materials a polymeric and a ceramic were studied in this work. Morphology, optical

and antibacterial properties of these nanocomposites were studied.

The formation of metallic nanoparticles upon vapor phase co–deposition of a metal

and a dielectric matrix component can be understood in terms of the high cohesive energy

of the metal and the low metal-matrix interaction energy which lead to high metal atom

mobility on the growing composite surface and metal aggregation whenever metal atoms

encounter each other or a metal cluster. This process, however, never leads to a bimodal

distribution of the cluster size and suggests that the larger clusters to be located at the

surface. This is opposite to the behavior of Ag and other metal clusters on polymers where

surface segregation has never been reported and even embedding of clusters deposited on the

surface was seen upon annealing above the surface glass transition temperature. Embedding

is favorable for the metal clusters on the polymer because the high surface energy of the

metal clusters can be reduced if they are surrounded by the polymer. Elastic distortions do

not play any role in the polymer matrix above the softening temperature. In the case of Ag

clusters on TiO2, segregation of the clusters on the surface also provides a fast pathway for

Ostwald ripening without any restrictions by elastic distortions at least for those clusters
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which are in direct contact with the surface.

Due to the drawbacks of cross–sectional TEM (section 3.2.1.2), the necessity of having

information from the third dimension became rather important. Additionally, when analyz-

ing only CTEM images, the MVF cannot be properly related with the TEM images. As

the morphology of the nanocomposites plays a pivotal role in understanding the functional

properties of the nanocomposite thin films, advanced transmission electron microscopic in-

vestigation pertaining to the geometrical arrangement of the nanoparticles in the host matrix

were carried out in the case of Ag–TiO2 and Au–TiO2 nanocomposites leading to the mecha-

nism for the formation of larger nanoparticles in the Ag–TiO2 system. The 3D images of the

two systems clearly show that the large nanoparticles are on the top surface and the smaller

nanoparticles are embedded in the matrix of TiO2. The morphology of the nanocomposite

thin film was explained by a two step model involving the formation of small nanoparticles

during vacuum phase deposition or on the growing surface and after the deposition process,

the formation of larger particles through particle coarsening by Ostwald ripening [172] and

surface segregation. Hence, it was shown that only MVF is not enough to understand the

properties, because of the bimodal particle size distribution.

Strong relation exists between the optical properties and the microstructure of the

nanocomposites. The position, intensity and width of the SPR are understood to be function

of the MVF, particle size, shape, distribution, interparticle separation, the type of metal and

the surrounding dielectric medium. In the case of Au–TiO2 nanocomposites, the change in

the MVF from 7 % to 15 % Au has resulted in the SPR shift from 572 nm to 584 nm

and in Ag–TiO2 nanocomposites from 13 % to 47 % Ag, resulted a red shift from 488 nm

to 640 nm which corresponds to an increasing particle size and a decrease in interparticle

distance from the TEM analysis. On peak deconvolution of the SPR spectrum with a Gauss

fit from 15 % Ag nanocomposite, a prominent peak at around 498 nm and a shoulder peak

at around 630 nm was observed. Similar to the case of the equal intensity double plasmon

resonance [100] and as the theoretical treatments predict a red–shift and broadening of

the corresponding peaks upon interaction between plasmon resonances in different particles

[187], the results were explained with regard to the strong coupling of plasmon resonances.
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Thus, from the 3D nanostructure of the nanocomposite thin films obtained by electron

tomography, the optical extinction and the peak deconvolution, it can be concluded that

the lateral and perpendicular plasmon coupling between the larger nanoparticles and the

smaller nanoparticles give rise to the SPR resonances at 630 nm and 498 nm.

Special attention was laid on the SHI irradiation of the nanocomposites. On SHI irradi-

ation with the 100 MeV Ag8+ ion beam at fluences of 1×1012, 3×1012 and 1×1013 ions/cm2

changes in the optical spectrum like narrowing of the SPR peak, along with associated

changes in the particle morphologies have been observed. Thus, through the variation of the

ion beam fluence and the MVF, a red shift of the SPR was observed from 572 nm to 648 nm

(Au–TiO2) and 487 nm to 577 nm (Ag–TiO2). As the particle diameter increases to about

12 nm, there is a corresponding shift of the SPR towards higher wavelengths in agreement

to the experimental calculations by Quinten [188] (page 147). The SHI irradiation of the

13 % Ag nanocomposite resulted in the formation of a large single crystalline TiO at a par-

ticular fluence of 3× 1012 ions/cm2 which was confirmed by SAED studies together with the

HRTEM and EDX analysis. The TiO phase formation with increasing fluence was under-

stood by the interaction of two different counteracting mechanisms, where at lower fluences,

the tendency towards the formation of TiO existed with the larger unaffected areas. At

higher fluences, the destruction of the evolved TiO phase into fragments was evident. This

served as an evidence for the counter play between "hit" and "no–hit", "single–hit" and

"multiple–hit" processes. A comparative study involving the in–situ heating of the Ag–TiO2

nanocomposites in the TEM confirms the absence of the formation of TiO. The refractive

index is a key parameter in optical properties which have been altered due to SHI irradiation.

Amorphous TiO2, crystalline TiO2 with Anatase structure and TiO have different refractive

indices of 2.05 [140], 2.54 [192] and 2.27 [193]. Hence, an interplay between the associated

change in the refractive index and the particle size distribution in the resulting red shift

from 465 nm to 550 nm existed. All the studied MVFs followed a similar trend of the SPR

shift towards higher fluences. Thus the nanostructuring of the nanocomposites was possible

by SHI irradiation.

Changes of the microstructure of the composite film upon annealing allowed to demon-
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strate the absence of the formation of TiO but rather only the crystallization of the TiO2. As

it was suggested that the shift in SPR depends on the original microstructure, the annealing

temperatures and duration of the annealing [129], in–situ annealing studies confirmed the

changes in the microstructure of the Ag–TiO2 and Au–TiO2 nanocomposites. The change in

the morphology was attributed to Ostwald ripening phenomena which led to particle coars-

ening and also the changes in the structure of the matrix. In contrast to the SHI irradiation

under non–equilibrium conditions, during in–situ heating, there is a transformation of the

amorphous TiO2 matrix into a crystalline TiO2 with Anatase–type structure. No evidence

towards the formation of TiO nanostructures were observed. Also, the change in the par-

ticle size is higher in the case of SHI irradiation than that through in–situ heating. Hence

through in–situ heating, the nanostructuring of the nanocomposites by the formation of TiO

nanostructures is not possible, but rather crystallization of the matrix occurs with marginal

particle size increase.

Functionality of the nanocomposites in terms of their antibacterial properties were

studied. In this study cultures of B.megaterium, S.aureus, S.epidermidis and E.Coli were

used to study the effect on the Ag–TiO2 nanocomposites. The retardation of the growth of

E.coli cultures was found to be maximum on the substrates coated with Ag–TiO2 nanocom-

posites than the TiO2 and the Au–TiO2 substrates. In this work, two different approaches

were used for the antibacterial testing of the nanocomposites. The direct visualization of the

bacterial growth was a sensitive method of antibacterial analysis compared to the modified

conventional disc–diffusion method. Additionally, silver ion release studies were carried out

at different MVFs by using XPS and UV-Vis/NIR spectroscopies. Enhancement of the silver

ion release after SHI irradiation at a fluence of 1 × 1012 ions/cm2 was observed to the fact

that the ion trajectories after irradiation provide better silver ion release.

PTFE based nanocomposites with Ag/Au nanoparticles with varying MVF have been

also prepared using the process of co–sputtering. The growth of metallic nanoclusters in

PTFE is due to the differences in their cohesive energies. Through the process of co–

sputtering, on increasing the MVF, an interplay between the particle morphology and the

interparticle spacing was observed. SHI irradiation of metal nanoparticles embedded in
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PTFE matrix was necessary to understand the role of matrix after ion irradiation. Thin

films of Ag–PTFE nanocomposites on glass and TEM grids were subjected to irradiation

with 100 MeV Ag8+ ions at fluences of 3 × 1011, 6 × 1011 and 1 × 1012 ions/cm2 delivered

by the Pelletron accelerator at IUAC. The results from the optical and TEM studies show

that there is a marginal dissolution of Ag nanoparticles along with a slight agglomeration

of nanoparticles after SHI irradiation. At higher fluences of 3 × 1012 ions/cm2, carbon

rich areas were observed, which were the result of the carbonization along the ion tracks

as has been reported previously in different polymer matrices [33, 213, 216] and in PTFE

matrix [217]. This also contributes to the alteration in the plasmonic properties of the

PTFE based nanocomposites.

In bimetallic nanocomposites based on sandwich geometry, the changes in the particle

plasmon spectra of sandwiched Au nanoclusters as a result of the presence of Ag nanoclusters

in their vicinity and vice versa was studied. Also, the optimum dielectric barrier thickness

for the observation of EIDPR was reported [100]. This allows tuning of the double PP

resonances by tailoring the dielectric separation, in contrast to an earlier reported difficult

experimental procedure [220]. The dipole-dipole coupling was found to be strongest for a

TAF spacing of 3.3 nm. The layer thickness is confirmed by XPS studies through the attenu-

ation of the silver signal from XPS spectra. The present geometrical way of tuning provides

a unique means of tailoring the plasmon resonance with high accuracy. This plasmon tuning

obtained through thickness control is much superior to that obtained through particle size

control and also one of its kind in tuning the EIDPR. These results also indicate that the

EIDPR occurs at critical coupling levels, a fact suggesting that the experimental geometry

used in experiments at hand may offer new directions for investigations of surface enhanced

optical properties involving double plasmon resonances from nanoclusters. Engineering of

the plasmon decay and implementation of various functions to the present structures are

further to be investigated.



Chapter 7

Outlook

Generally, the fabrication of optical filters and components is done by vacuum deposition

techniques and they require an array of sophisticated equipment: a high vacuum chamber,

very pure deposition materials, a means of evaporating these materials, thermal control, a

mechanism for monitoring the thickness of the materials deposited and many characterization

techniques. The development of these nanomaterials and the devices which exploit them

require effective integrated relationships from the physics, chemistry and biological point

of views. Considering the results from the 3D electron tomography, apart from the work

towards the noble metal–polymer system, many unraveled systems still exist. The systems

of noble metals in different hosts like Al2O3, ITO, MgO, SiN, TiN and ZrO2 thin films

prepared by the process of co–sputtering are still necessary to be investigated in depth in

order to understand the particle size distribution in different matrices with varying cohesive

energies as they offer interesting applications [239–241]. The important questions which

arise are the geometrical arrangement of the nanoparticles in the host matrix, thereby the

morphology of the nanocomposite and their functional properties are tailored. Not only does

the nanocomposite have the properties from the matrix but also additional functionalities

from the nanoparticles and their arrangement in the host thereby can be altered according

to the applicational requirement.

Transmission electron tomography allows to reconstruct the 3D morphology of the

specimen with a nanometer resolution. It appears thus well–suited to the study of nanocom-
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posite thin films and is currently applied to various fields of nanotechnology. Since the

catalytic, electronic and optical properties of nanocomposite thin films strongly depend on

their size, distribution and shape, the determination of their exact 3D morphology is of

importance in order to understand and control their physical properties.

From the results obtained by using the SHI irradiation, the changes in the matrix

crystallinity has induced changes in the refractive index, which would be extremely useful to

derive a better understanding of the SHI irradiation by ellipsometry. Additional fine tuning

the fluences and the MVFs in order to optimize the parameters required for nanostructuring

by the formation of TiO would be much helpful. Additionally, the changes in the morphology

of the nanoparticles on SHI irradiation is interesting to be study not only by using electron

tomography but also by using the polarizing light where, e.g., the changes resulting from

the elongation of the nanoparticles can be observed through the splitting in the SPR peak.

The encouraging results from the antibacterial studies from TiO2 based nanocomposites

need a further detailed study, i.e., towards the silver ion release behavior. The changes

in the antibacterial properties of the nanocomposites resulting from the changes in the

morphology of the nanocomposite is an interesting point to investigate. On the other hand,

establishment of a possible mechanism towards the antibacterial activity of these Ag based

nanocomposites is still necessary to be carried out. Despite the antibacterial properties,

the cyto–compatibility of these coatings would be really interesting to study. The growth of

defined cells on the nanocomposites with quiet less MVFs would be interesting to understand

the effect of these nanocomposites. Cyto–compatibility would be certainly dependent on the

morphology of the nanocomposite coatings, but to establish a relationship between the MVF

and the cell growth would result in a boon to the medical community.

The properties of nanostructured materials in nature are extremely interesting like the

bones, shells and teeth. These natural hybrid materials combine the strength of ceramics and

the stretchability of polymers. Thereby, making the systems with combination of oxides and

polymers are quiet interesting. Various efforts towards the creation of composites of oxides

and polymers through wet chemistry are in progress. The use of oxides as filler materials

in a polymer host is really interesting towards applications which demand flexibility, e.g.,
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bendable, transparent electronics, sensors, long lasting bone and dental implants, etc. But

the efforts through the application of vapor phase deposition techniques is not yet completely

in practice. These nanocomposites also tend to exhibit huge changes in the optical properties

resulting from the changes in the refractive index, which might be at a later stage enhanced

by the use of the third component as noble metals. An interplay of optical properties

resulting from the changes in the MVF and the refractive index is helpful to study. The

optical and the antibacterial properties would not only be interesting but also a variety of

functional properties making the materials multi–functional nanocomposites.

Advancement in the field of transmission electron microscopy has led towards the de-

velopment of new filters with the capability of studying the electron energy loss spectroscopy.

Studying the response of the nanocomposites with defined geometries would be quiet useful

to compare the plasmons from light and electrons.

Figure 7.1 : sketch of a optic sample holder with a possibility to measure the optical response from

a localized area as a result of the change in the interparticle distance by in–situ heating.

The possibility of constructing an optical sample holder for transmission electron mi-

croscope so that the sample holder has the ability to heat the samples accompanied with

the possibility to define light at a localized and variable area. This gives the possibility to

spectroscopically measure the response with the change in the interparticle distance as a

result of the heating until the growth of the nanoparticle. Fig. 7.1 depicts a sketch of such

a light holder. This gives the possibility to study in–situ, the interaction of light on a few
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nanoparticles. Also, this gives the advantage to observe the changes in the structure of the

nanoparticles under the electron beam through heating and simultaneously the response in

the form of the particle plasmon resonance.
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