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Abstract

The dynamics of spherical dust crystals created in a gaseous plasma (so-called “Yukawa
Balls”) is investigated by means of first-principle simulations and an analytic “cold-fluid”
theory. The analysis focuses on the dynamic formation of the characteristic shell structure
and the collective excitations in the strongly coupled liquid state. It is based on a model
of charged particles with screened Coulomb (Yukawa) interaction confined in an isotropic
harmonic trap.

The emergence of the shell structure in spherically confined plasmas is analyzed by
time-resolved Langevin dynamics and thermodynamic Monte Carlo simulations. The for-
mer are used to cool a Yukawa Ball from a weakly coupled initial state to a strongly coupled
final state. In this scenario, shell formation generally begins at the outer plasma edge, but
the screening parameter strongly determines the time for the formation of the shells inside
the cluster. Monte Carlo simulations are then used to study other trapping potentials. It
is found that the process can be initiated inside the plasma if the confinement is modified
such that the particles cannot enter the inner region of the trap.

The second main topic concerns the collective modes of Yukawa Balls in the strongly
coupled liquid phase. They are studied analytically by solving the linearized fluid equa-
tions for a cold plasma. In this “cold-fluid” theory, the mode spectrum of Yukawa Balls is
fully characterized by three mode numbers and a single parameter describing the effec-
tive range of the interaction potential. Since the cold-fluid theory is based on the mean-
field approximation and does not account for thermal effects, its results are compared with
mode spectra from molecular dynamics (MD) simulations. The comparison shows that the
cold-fluid theory accurately describes the low-order modes in systems with weak to mod-
erate screening. Larger deviations, however, are observed for the high-order modes and in
the strong screening regime. The MD simulations of strongly coupled Yukawa Balls further
contain additional low-frequency excitations that are not predicted by the cold-fluid the-
ory. Both the cold-fluid theory and the MD simulations yield additional insights into the
properties of the “breathing mode” in a confined Yukawa plasma and thereby complement
existing results in the literature.
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Kurzfassung

Die Dynamik sphärischer Staubkristalle, die in einem gasförmigen Plasma hergestellt wer-
den (sogenannte Yukawa Bälle), wird mit Hilfe von first-principle Simulationen und einer
analytischen Cold-Fluid Theorie untersucht. Die Untersuchung befasst sich primär mit
der dynamischen Entstehung der charakteristischen Schalenstruktur und den kollektiven
Anregungen in der stark gekoppelten flüssigen Phase. Ihr liegt ein Modell geladener Teil-
chen zugrunde, die in einer isotropen harmonischen Falle eingeschlossen sind und mit
einem abgeschirmten Coulomb (Yukawa) Potential wechselwirken.

Die Entstehung der Schalenstruktur in sphärisch eingeschlossenen Plasmen wird mit
zeitaufgelösten Langevin-Dynamik und thermodynamischen Monte Carlo Simulationen
untersucht. Die Ersteren werden verwendet, um einen Yukawa Ball aus einem schwach
gekoppelten Anfangszustand in einen stark gekoppelten Endzustand zu überführen. In
diesem Szenario beginnt der Aufbau der Schalenstruktur generell am äußeren Rand des
Plasmas, der Abschirmparameter bestimmt jedoch maßgeblich den Zeitpunkt für die Ent-
stehung der inneren Schalen. Monte Carlo Simulationen werden dann verwendet, um an-
dere Einfangpotentiale zu untersuchen. Es zeigt sich hierbei, dass es möglich ist die Bil-
dung der Schalenstruktur innerhalb des Plasmas auszulösen, wenn das äußere Potential
derart verändert wird, dass die Teilchen das Zentrum der Falle nicht erreichen können.

Die kollektiven Moden von Yukawa-Bällen in der stark gekoppelten flüssigen Phase bil-
den das zweite Kernthema. Sie werden analytisch durch Lösen der linearisierten Fluid-
gleichungen für ein kaltes Plasma untersucht. In dieser Cold-Fluid Theorie wird das Mo-
denspektrum eines Yukawa-Balls vollständig durch die Angabe von drei Modenzahlen und
einem einzelnen Parameter, der die effektive Reichweite der Wechselwirkung beschreibt,
bestimmt. Da die Cold-Fluid Theorie auf der Mean-Field Näherung basiert und keine ther-
mischen Effekte berücksichtigt, werden ihre Resultate mit denen aus Molekulardynamik-
Simulationen (MD) verglichen. Der Vergleich macht deutlich, dass die Theorie Moden
niedriger Ordnung in Systemen mit schwacher Abschirmung gut beschreibt, dass jedoch
bei Moden hoher Ordnung und bei starker Abschirmung größere Abweichungen auftreten.
Die MD-Simulationen für stark gekoppelte Yukawa-Bälle enthalten darüber hinaus zusätz-
liche, niedrig-frequente Anregungen, die nicht von der Cold-Fluid Theorie vorhergesagt
werden. Sowohl die Cold-Fluid Theorie als auch die MD-Simulationen liefern weitere
Erkenntnisse über die Eigenschaften der “Breathing” Mode in einem eingeschlossenen
Yukawa-Plasma und ergänzen damit bereits aus der Literatur bekannte Ergebnisse.
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CHAPTER 1

Motivation and Outline

This work aims at a theoretical investigation of dynamic processes in “Yukawa Balls” [1].
These clusters are created in dusty plasma experiments at the universities in Kiel and
Greifswald [2]. Dusty plasmas differ from ordinary plasmas by (i) the presence of macro-
scopic (µm-sized) particles in addition to the atomic constituents and (ii) their strong
Coulomb interaction. The latter aspect brings the dust subsystem into the parameter
regime of strongly coupled plasmas, which share many properties with liquids or even
solids compared to weakly coupled plasmas with gas-like behavior. Dusty plasma physics
constitutes a wide field of research because it combines the strong coupling of the dust
component with the properties of the weakly coupled background plasma. This leads to
interesting phenomena caused by the interplay between the different particle species.

The distinctive property of Yukawa Balls is their spherical shell structure, which is a
consequence of the experimental confinement conditions and the strong dust-dust in-
teraction [3]. Due to the universal behavior of strongly coupled plasmas, similar particle
arrangements are found in experiments with (spherically) confined ions [4, 5] and simula-
tions of ultracold neutral plasmas [6, 7]. The latter revealed a fundamental difference re-
garding the order of shell formation: While shell formation was found to proceed outward
starting near the core in ultracold neutral plasmas [6], the opposite direction was observed
in trapped ions [8]. A central concern of this thesis is to study the dynamic formation of
the shell structure and the associated correlation buildup in Yukawa Balls. Further, the in-
fluence of the confinement potential on the order of shell formation in strongly coupled
plasmas is investigated.

The normal modes of finite plasmas, which are the counterparts of waves in extended
systems, constitute the second main topic of this thesis. They determine the linear re-
sponse to external fields and the fluctuation spectra in unperturbed systems, i.e., they
carry valuable information about the plasma properties. In crystalline Yukawa plasmas,
the normal modes are well explained by the harmonic approximation of the potential en-
ergy [9, 10]. The second part of this thesis is concerned with the collective modes of Yukawa
Balls in the strongly coupled liquid phase, which resemble the dust acoustic wave in a uni-
form dusty plasma [11, 12]. As a special excitation of spherical clusters, the “breathing”
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Chapter 1 Motivation and Outline

mode (a radial expansion and contraction of the system) is studied in further detail. While
the existence conditions [13] and the temperature dependence [14] for uniform breath-
ing modes have been studied, deviations from this behavior have been demonstrated for
harmonically confined Yukawa systems [13]. The main goals of the analysis are the deter-
mination and classification of collective excitations in Yukawa Balls and to further study
the modifications of the breathing mode.1

Thesis Outline

• Chapter 2 serves as a brief survey on the physics of strongly coupled plasmas and dis-
cusses a few examples with particular relevance for this work. This is followed by an
introduction to the properties of dusty plasmas in general and Yukawa Balls in particu-
lar.

• Chapter 3 deals with the methods for the theoretical investigation of a strongly cou-
pled dusty plasma. The first part reviews how the dielectric response formalism can be
employed to include the screening properties of the plasma environment in an effec-
tive interaction potential between the dust grains. In the second part, the derivation of
the plasma fluid equations is outlined, with special emphasis on the involved approx-
imations and their applicability to the determination of collective plasma modes. The
algorithms utilized for the numerical simulation of Yukawa Balls are discussed in the
third part. Results obtained with these methods are reported in Chapters 4–6.

• In Ch. 4, Langevin dynamics simulations are used to study the time-dependent correla-
tion buildup in Yukawa Balls. The focus lies on the formation of the shell structure. In
addition, Monte Carlo simulations are performed to investigate density profiles in other
confinement potentials and to determine their influence on the emergence of concen-
tric shells in strongly coupled plasmas.

• Chapters 5 and 6 are concerned with the collective excitations of Yukawa Balls. A con-
tinuum theory for the normal modes of Yukawa Balls based on the cold-fluid equations
is presented in Ch. 5. Its results are compared with previous theories for harmonically
confined particles with long-range Coulomb and short-range Dirac delta interaction.
The eigenfrequency spectrum and the eigenmodes of Yukawa Balls are discussed in de-
tail.

• The results of the cold-fluid theory are compared with molecular dynamics simulations
in Ch. 6. They reveal the complete excitation spectrum of Yukawa Balls, which includes
additional modes not predicted by the fluid approach. Furthermore, the eigenmodes of
crystallized plasmas are computed to investigate the breathing mode and the tempera-
ture dependence of its frequency in more detail.

• The thesis concludes with a summary of the main results in Ch. 7. Some supplementary
mathematical details are presented in the Appendix.

1The relevant publications for the results presented in this thesis are indicated at the end of Chapters 4–6. A
complete list can be found in the List of Publications.
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CHAPTER 2

Introduction

The general properties and phenomena associated with strongly coupled plasmas are re-
viewed in the first part of this chapter. In particular, the Coulomb coupling parameter is
introduced as the key quantity for the classification of plasmas with respect to the impor-
tance of inter-particle correlations. The discussion of a few examples for strongly coupled
plasmas is complemented by a closer inspection of the properties of dusty plasmas and
Yukawa Balls in the second part.

2.1 Strongly Coupled Plasmas

2.1.1 Coupling Parameter

The classification of classical plasmas into the weak and strong coupling regime is based
on the Coulomb coupling parameter [15]1

Γ̄= q2/aws

kBT
, (2.1)

where the Wigner-Seitz radius aws = 3
p

3/4πn is a typical inter-particle distance in a plasma
with density n. It measures the characteristic potential energy of two adjacent particles
(q2/aws) in units of the thermal energy (kBT ), where q denotes the particles’ charge, kB

Boltzmann’s constant, and T the temperature.
The hot plasmas in the sun or in fusion reactors are weakly coupled plasmas with Γ̄¿ 1.

They are mostly dominated by collective effects due to the long-range Coulomb interac-
tion, and the weak collisional effects are caused by many small-angle collisions [16]. These
plasmas exhibit no internal structure, and their thermodynamic behavior is well described
by the ideal gas law [15]. On the other hand, strongly coupled plasmas (Γ̄& 1) have liquid-
like features and may even undergo a phase transition toward the solid state, see, e.g.,
Ref. [17].

1The overbar is introduced to distinguish the macroscopic coupling constant (Γ̄) from the corresponding
parameter (Γ) in finite Yukawa Balls, which will be used throughout this work.

3



Chapter 2 Introduction

The plasmas considered in this work are classical. However, quantum effects may be-
come important at high densities or low temperatures—depending on the value of the
quantum degeneracy parameter χ(n,T,m), where m denotes the particles’ mass [18]. In
this regime, the classical coupling parameter (2.1) must be replaced by the Brueckner pa-
rameter rs ∼ q2/(aws EF), where the Fermi energy EF has been substituted for kBT [17].

Theoretically, many properties of strongly coupled plasmas have been obtained from
investigations of the one-component plasma (OCP) model (“. . . a system consisting of a
single species of charged particles embedded in a uniform background of neutralizing
charges” [15]). The properties of the classical OCP are solely determined by the coupling
parameter Γ̄, which makes it an ideal system for studying the transition from weak to
strong coupling without the influence of other effects. Its natural extension is the Yukawa
OCP with a polarizable background, see, e.g., Ref. [19].

In the strong coupling regime, the (Yukawa) OCP shows several remarkable phenom-
ena, such as the existence of shear modes and viscosity [20–23], negative mode disper-
sion [11, 20], anomalous diffusion (in two-dimensional layers) [24, 25], or a liquid-solid
phase transition [26].

2.1.2 Examples

Since the coupling parameter (2.1) depends on several plasma variables (n,T, q), the strong
coupling regime can be reached in various ways. Consequently, there exists a great variety
of plasmas that are affected by strong correlations. The charge states are typically low,
which leaves the density and the temperature to achieve the necessary conditions.

Non-neutral plasmas composed of a single particle species can be realized in Paul or
Penning traps, see Ref. [5] for an overview. In such experiments, ions are laser-cooled to
very low temperatures in the mK regime, which allows for the creation of highly correlated
systems. They constitute experimental plasmas in which the assumptions of the OCP are
satisfied to a great extent, because the harmonic trapping potential mimics the properties
of a homogeneous background [5]. The finite system size, however, leads to the formation
of concentric shells near the crystallization temperature in addition to (or instead of) the
bcc lattice structure of infinite Coulomb systems—depending on the particle number [4,
8, 27], see Fig. 2.1.

Strong ionic correlations are also present in so-called warm dense matter (WDM). A re-
cent overview on the properties of these plasmas can be found in Ref. [28]. As a conse-
quence of its high (solid matter) density and low temperature, WDM is characterized by
quantum degenerate electrons and strongly coupled classical ions, which makes a theo-
retical treatment particularly challenging, see also Ref. [29]. Such plasmas are naturally
found inside giant planets or white dwarf stars but are also relevant to inertial confine-
ment fusion [28, 30]. X-ray Thomson scattering provides valuable information about their
properties from laboratory experiments [31].

Ultracold neutral plasmas constitute another class of plasmas with strong ion coupling,
see Ref. [7] for a review. They are created by photoionization of laser-cooled neutral atoms
in magneto-optical traps. This produces an expanding plasma cloud with a lifetime of
about 100µs [33]. Measurements of the time-dependent plasma density and temperature
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2.2 Dusty Plasmas

Figure 2.1: Left: CCD images of ion crystals of various shapes in a linear Paul trap. (Reprinted with
permission from [32]. Copyright 2010 by the American Physical Society). Right: Ra-
dial ion density in a simulation of an ultracold neutral plasma showing the formation of
spherical shells. (Reprinted with permission from [6]. Copyright 2004 by the American
Physical Society.)

yield information about the equilibration properties [34] and collective phenomena [35].
Strong ion correlations manifest themselves as oscillations of the kinetic energy [7, 34].
Even though the formation of highly correlated ions is usually hampered by the initial
disorder of the system, simulations show that crystallization should become feasible by
laser-cooling the ions in the expansion phase [6], see Fig. 2.1.

For a summary of various strongly coupled plasmas in a density-temperature phase di-
agram, the interested reader is referred to Refs. [7, 36].

2.2 Dusty Plasmas

2.2.1 General Properties

Plasmas enriched with small (sub) micron-sized particles are known as dusty plasmas.
They are found in, e.g., many space environments, humble candle flames, and (possibly)
in ball lightning [37, 38], see Ref. [39]. Today, dusty plasmas are routinely produced in rf or
dc discharges in laboratory experiments by particle injection into the plasma. As a result
of their interaction with the plasma environment (electrons, ions and neutrals), the dust
grains become highly charged with thousands of electrons. Despite the low dust density
and relatively high temperatures (for Yukawa Balls, nd ∼ 3mm−3 and Td ∼ 300−400K, see
Refs. [1, 10, 40]), the enormous charges lead to coupling strengths well within the parame-
ter regime of strongly coupled plasma physics.

Compared to plasmas where the ions represent the strongly correlated component, the
timescale for the dynamics of the dust particles is slowed down by several orders of mag-
nitude. In combination with their size and the low particle density, this allows for a direct
optical observation of their trajectories. The possibility of obtaining the complete phase
space information and thus all correlation properties offers unique experimental advan-
tages over other strongly coupled systems [41]. Even though similar favorable aspects ap-
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Chapter 2 Introduction

Figure 2.2: Left: Structural properties of a Yukawa Ball with 2823 particles: (a) particle positions in
cylindrical coordinates, (b) radial particle histogram, (c) pair correlation function. The
data reveal the existence of spherical shells and strong correlations. (Reprinted with per-
mission from [1]. Copyright 2004 by the American Physical Society.) Right: Experimen-
tal setup showing the dielectric glass box on the heated electrode for the confinement
of Yukawa Balls. (From [43]. Figure kindly provided by D. Block.)

ply to colloidal dispersions [42], they are subject to heavy damping, and are less suited for
the investigation of dynamic processes on short timescales. On the other hand, they have
other advantages, such as perfectly attained equilibrium conditions, and thus contribute
different (complementary) aspects to the study of classical systems at a kinetic level, see
Ref. [42].

2.2.2 Yukawa Balls: Spherical Dust Clusters

Yukawa Balls are spherically confined dust clouds and were created for the first time by Arp
et al. in 2004 [1], see Fig. 2.2. Due to their pronounced shell structure, they can be regarded
as the dusty plasma analog of spherical ion crystals, cf. Sec. 2.1.2. Compared to the latter,
Yukawa Balls allow for a fully kinetic investigation of structural and dynamic phenomena
in finite three-dimensional plasmas under the influence of strong correlations.

The experimental setup for Yukawa Balls requires modifications to the conventional de-
sign used for the confinement of two-dimensional crystals [1, 3], see Fig. 2.2. In com-
parison to the light plasma components, the dust particles are severely affected by grav-
ity, which must be compensated for a proper vertical confinement. For this purpose, the
lower electrode is heated, which generates an upward thermophoretic force that is com-
plemented by the electric field force. The application of this method often goes along with
the formation of a dust-free “void” region due to an outward ion flow, see Ref. [44] for a re-
cent investigation. A glass box on the lower electrode avoids this phenomenon in Yukawa
Balls [1]. The combination of all the various forces (electric field, thermophoresis, gravity,
ion-drag) was shown to provide an isotropic harmonic trap for the dust particles [3].

Since their discovery, the ground and metastable states of Yukawa Balls [45–48] and their
normal modes [10] have been analyzed experimentally. In the last few years, there has
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2.2 Dusty Plasmas

also been considerable progress regarding the particle observation techniques. They have
evolved from scanning video microscopy [1, 3] to stereoscopic [49] and holographic meth-
ods [50] toward a combination of the latter two [51], see also Ref. [2].

Yukawa Ball experiments with larger particles and at lower gas pressure have been per-
formed by Kroll et al. [52]. The clusters created in their experiments are characterized by
two forms of competing order: a shell-like order induced by the confinement and the for-
mation of vertical strings. They have shown that the latter is due to the presence of an
ion wake below the dust grains caused by a downward ion flow. Its implication on the
interaction potential between the dust particles in Yukawa Balls is discussed in Sec. 3.1.
Anisotropic clusters have recently been studied by Killer et al. [53].

7





CHAPTER 3

Theoretical Background and Simulation Methods

This chapter deals with the theoretical methods for the investigation of a strongly coupled
dusty plasma. The various particle species in the multi-component system make a con-
sistent theoretical description of a dusty plasma very difficult. For this reason, the first
part reviews how the inclusion of the light particles into an effective interaction potential
between the heavy dust grains [54] helps to circumvent this problem (Sec. 3.1). This is
accompanied by a discussion of the model Hamiltonian for Yukawa Balls.

Section 3.2 briefly discusses the derivation of the cold-fluid equations. They serve as the
basis for the analytic investigation of collective modes in Ch. 5. The applicability of the
fluid equations to the analysis of plasma waves is discussed.

Molecular dynamics and Monte Carlo simulations allow for a numerically exact treat-
ment of the model system. In addition to the former method, a Langevin dynamics simu-
lation accounts for the presence of frictional forces caused by the neutral gas and extends
the range of applications to dusty plasmas. The concepts of these methods are discussed in
Sec. 3.3. They are employed to study the shell formation dynamics in Yukawa Balls (Ch. 4)
and their collective excitations (Ch. 6).

3.1 Model System

Maxwell’s equations form the basis for the calculation of the electric and magnetic fields
in a plasma. They are coupled to Newton’s equations of motion via the Lorentz force. The
combined set of equations determines the dynamics of the (classical) plasma particles un-
der the influence of the electromagnetic fields. However, the different timescales for the
dynamics of electrons, ions, and dust grains make a direct numerical solution of these
equations extremely difficult. It is therefore necessary to use a simplified physical model
which is less demanding but at the same time captures the essential physics involved in the
process of interest. The focus thereby lies on a proper description of the dust dynamics.

In the following, it will be reviewed how the complexity of the system can be reduced,
and the effect of the light particles (electrons, ions and neutrals) can be integrated into an

9



Chapter 3 Theoretical Background and Simulation Methods

effective potential for the interaction between the heavy dust grains [29, 54]. This proce-
dure reduces the system to a single component and only requires the solution of Newton’s
equations for the dust component, while plasma effects are retained in the pair potential.
The important effect of dust-neutral collisions can directly be incorporated into the equa-
tion of motion, which leads to the Langevin method, see Sec. 3.3.2.

3.1.1 Dust Interaction Potential

The Plasma as a Dielectric Medium

The properties of highly charged massive dust particles are mainly determined by their
electrostatic interactions, and the effect of internal magnetic fields on their dynamics is
negligible. The ions and electrons can be eliminated from the equations by treating them
as a (possibly anisotropic) dielectric medium with a frequency (ω) and wavenumber (k)
dependent dielectric tensor εαβ(k ,ω) (α,β ∈ {x, y, z}) that describes their response to the
perturbation induced by the dust grains [55]. Linear response theory can then be used to
calculate the shielded potential of a moving test charge, φ(r , t ) (e.g., Refs. [54, 56–59]).

In the dielectric formalism, Gauss’ law becomes [55]

∇·D(r , t ) = 4πρd(r , t ), (3.1)

where D(r , t ) is the dielectric displacement, and the right-hand-side of the equation in-
volves only the dust charge density ρd(r , t ). Due to the simple relation between the dielec-
tric displacement and the electric field in Fourier space, D̂α(k ,ω) = ∑

β εαβ(k ,ω)Êβ(k ,ω),
Eq. (3.1) is readily solved by a Fourier transform [55]. The result for a single (dust) particle
with charge q moving at a velocity ud is the dynamically screened potential [29]

φ(r , t ) =
∫

dk

2π2

q

k2

e i k ·(r−udt )

ε(k ,k ·ud)
, (3.2)

where the full linear response of the electrons and ions is now contained in the longitudinal
dielectric permittivity [55] (or dielectric function)

ε(k ,ω) ≡
∑

α,β

kαkβ
k2 εαβ(k ,ω).

The electric field of the test particle simply follows from E (r , t ) =−∇φ(r , t ).

Equation (3.2) involves the Fourier transform of the unscreened Coulomb potential,
φ̂C(k) = 4πq/k2, which is shielded by the ambient plasma. Since Maxwell’s equations are
linear, the full potential of N particles is just the sum of the individual potentials. This
makes the dielectric response approach particularly interesting for the numerical simula-
tion of the dynamics of a large collection of dust particles [54, 59, 60], where more elaborate
Particle-in-Cell based simulations [61] reach their computational limitations.
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3.1 Model System

Ion Wake Effects

The particular form of the dielectric function depends on the plasma properties. For a col-
lisionless Maxwellian plasma, it can be derived from the Vlasov equation, see, e.g., Ref. [16],
while the inclusion of ion-neutral collisions requires the addition of a collision term to the
kinetic equation [55]. In many dusty plasma experiments, electric fields create a downward
ion flow (e.g., Ref. [62]), which can be incorporated into the dielectric function by using a
shifted Maxwellian velocity distribution [63]. For electrons, these effects are negligible due
to their high thermal velocities. They are typically treated in the static approximation, see
Ref. [63] for an overview.

The dielectric function for a plasma with streaming ions yields an anisotropic wake-
field potential with non-reciprocal forces and several minima and maxima behind the test
charge—depending on the electron-ion temperature ratio, the ion Mach number, and the
pressure [54, 59, 63]. It has further been shown that the ion flow causes instabilities in the
dust subsystem [54, 60, 64, 65]. Additional effects such as magnetized ions [66–68] can be
included in the linear response model.

3.1.2 Yukawa Balls

Interaction Potential

The first experiments with Yukawa Balls were performed at a rather high gas pressure of
about 20−120Pa [3]. Under these conditions, the emergence of the ion focus behind the
grains is suppressed due to the high ion-neutral collision rate [2]. Further, the dust is con-
fined near the bulk region of the plasma, where the ion flow velocity is lower than in the
sheath [3]. Then, the effect of streaming ions in the dielectric response may be neglected,
and a static approximation can be used [46], i.e. [16],

ε(k ,k ·ud) ≈ ε(k ,0) = 1+ 1

k2λ2
De

+ 1

k2λ2
Di

, |ud|¿ ve, vi. (3.3)

Here, the electron and ion thermal velocities and Debye lengths are ve,i = (kBTe,i/me,i)1/2

and λDe,Di = (kBTe,i/4πn0e2)1/2, respectively. Their common density (n0) and respective
temperatures (Te,i) determine the shielding properties of the background plasma. Electron
and ion masses are denoted by me,i, while e is the elementary charge.

The resulting electrostatic potential from Eq. (3.2) is the Yukawa (or Debye-Hückel) po-
tential [16]

φ(r , t ) = q

|r −udt | exp(−|r −udt |/λD) , |ud|¿ ve, vi, (3.4)

where λD = λDeλDi/(λ2
De +λ2

Di)
1/2 is the combined Debye length of electrons and ions.

Equation (3.4) accounts for the relative motion of the particle with respect to the back-
ground but neglects the dynamic shielding of the environment, i.e., the plasma responds
adiabatically. Although the linear response approach may be questionable in the absence
of streaming [63], the Yukawa model is widely used in the literature and successfully de-
scribes the properties of Yukawa Balls at high pressure [46].
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Chapter 3 Theoretical Background and Simulation Methods

As already mentioned in Sec. 2.2.2, more recent Yukawa Ball experiments have been per-
formed with hollow glass spheres at significantly lower gas pressure (p ∼ 0.5− 6Pa) [52].
This reduces the ion-neutral collision rate and consequently the ion flow can no longer be
disregarded. The result is a chain-like ordering of dust particles, where the typical shell
structure of Yukawa Balls remains detectable only in the outer region of the cloud [52], see
also Ref. [53]. Besides the ion-neutral collision rate, also the dust-neutral friction coeffi-
cient is decreased at lower gas pressure. This makes the observation of dynamic phenom-
ena easier because the dust motion is significantly less damped [52].

Hamiltonian

In this work, the effects of the ion flow are neglected, and the grains are assumed to have
identical charge (q) and mass (m). The Hamiltonian for spherical Yukawa Balls composed
of N particles then reads [46]

H =
N∑

i=1

p2
i

2m
+

N∑

i=1
V (|r i |)+

1

2

N∑

i 6= j
v(|r i j |)

︸ ︷︷ ︸
U (r 1,...,r N )

, (3.5)

where r i j = r i − r j , and the sum of the confinement and the interaction energy yields the
total potential energy U (r 1, . . . ,r N ). Explicitly, the isotropic confinement [3] and interac-
tion potentials are given by [46]

V (r ) = m

2
ω2

0r 2, v(r ) = q2

r
exp(−κr ), (3.6)

respectively. The frequency of the harmonic trap is denoted by ω0, and the screening pa-
rameter is κ = λ−1

D . In the limit κ = 0 (λD →∞), the Yukawa potential reduces to the un-
screened Coulomb potential, and the Hamiltonian (3.5) is frequently applied to investigate
the properties of confined ions, e.g., Refs. [69, 70].

This simple model has been shown to reproduce the experimentally observed concen-
tric shell structures with the correct occupation numbers [46] and the occurrence prob-
ability of metastable states [47, 71]. Here, it turned out that a Hamiltonian description
without dissipation is not sufficient to reproduce the experimental results, and damping
by neutrals must be taken into account, see Sec. 3.3.2.

The ground states of the Hamiltonian (3.5) for Coulomb and Yukawa interaction have
been analyzed extensively with simulations [69, 72–75] and analytical theories [76–78].
Their typical shell structure has led to the development of simplified shell models [69, 72,
79, 80]. They accurately predict the occupation numbers and shell radii of the exact ground
states for Coulomb interaction, but more work is required for Yukawa systems [76, 81].
While an improved shell model for such systems has been derived in Ref. [82], a wider
class of confining potentials has been addressed in Ref. [83]. Further theoretical studies
include the investigation of melting transitions [70, 84–86], normal modes [9, 13, 74], and
density profiles at finite temperature [87–90].
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Simulations with the full ion wake potential for confined systems have been performed,
e.g., in Refs. [54, 59, 60]. This is expected to be necessary for the analysis of very low pres-
sure Yukawa Ball experiments such as those of Kroll et al. [52].

3.2 Theoretical Methods
In order to study the collective excitations of Yukawa Balls analytically, one needs to use
suitable approximations for the dynamic equations of motion of the complicated N -body
problem. The Liouville equation of Classical Mechanics is a convenient and often used
starting point [16]. In the following, the approximations involved in the derivation of the
cold-fluid equations are discussed—mainly based on Refs. [16, 91]. They are used for the
calculation of the normal modes of spherical Yukawa Balls in Ch. 5.

3.2.1 BBGKY Hierarchy

The BBGKY (Bogolyubov–Born–Green–Kirkwood–Yvon) hierarchy converts the exact Liou-
ville equation for the N -particle distribution function f (N )(r N , p N , t ) into a set of coupled
equations for the reduced distribution functions f (n)(r n , pn , t ), where n ≤ N .1 The latter
are obtained by integration of f (N ) over a subset of N −n degrees of freedom [91]. Even
though the hierarchy itself is equally complex as the Liouville equation, closure relations
can be used to derive simpler (manageable) equations [16, 91].

For the derivation of the fluid equations, the first equation for the one-particle distribu-
tion function f (1)(r , p , t ) ≡ f is needed. It is linked to the second equation of the hierarchy
via the two-particle distribution function f (2)(r , p ,r ′, p ′, t ), which is required for the eval-
uation of the interaction term. The latter can be expressed as an uncorrelated part (prod-
uct of two one-particle distribution functions) and the two-particle correlation function
c(r , p ,r ′, p ′, t ) as [16]

f (2)(r , p ,r ′, p ′, t ) = f (r , p , t ) f (r ′, p ′, t )+ c(r , p ,r ′, p ′, t ).

The first equation of the hierarchy [91] can then be written as [18]
[
∂

∂t
+ p

m
· ∂
∂r

− ∂U

∂r
· ∂
∂p

]
f (r , p , t ) =

Ï
∂

∂r
v(|r − r ′|) · ∂

∂p
c(r , p ,r ′, p ′, t )dr ′d p ′, (3.7)

where U (r , t ) = V (r )+ qφ(r , t ) is an effective one-particle potential composed of the ex-
ternal harmonic confinement (V ) and the mean-field potential produced by the particles
themselves (Yukawa interaction v). The latter is given by [91]

qφ(r , t ) =
Ï

v(|r − r ′|) f (r ′, p ′, t )d p ′dr ′ ≡
∫

v(|r − r ′|)n(r ′, t )dr ′, (3.8)

where the second equality defines the one-particle density n(r , t ), see Sec. 3.2.2.
The right-hand side of Eq. (3.7)—the so-called collision integral I (r , p , t ) [18, Ch. 3]—

accounts for the corrections to the dynamics arising from discrete particle effects, see
Refs. [16, 91] for a detailed discussion. Dust-neutral collisions could be incorporated by
means of a Fokker-Planck collision operator [14], cf. Sec. 3.3.2.

1The vectors r n and pn refer to the coordinates and momenta of n particles.

13



Chapter 3 Theoretical Background and Simulation Methods

3.2.2 Fluid Equations

The fluid equations constitute a further simplification of more general kinetic equations.
Instead of calculating the full one-particle distribution function, they reduce the problem
to finding solutions for its (low-order) moments [16], e.g.,2

〈p〉 ≡ 1

n(r , t )

∫
p f (r , p , t )d p ≡ m u(r , t ), n(r , t ) ≡

∫
f (r , p , t )d p . (3.9)

The first moment is associated with the (macroscopic) fluid velocity u(r , t ), where the one-
particle density n(r , t ) is required for a proper normalization [see also Eq. (3.8)]. Dynamic
equations for the moments can be obtained in a straightforward manner from Eq. (3.7).
They represent another hierarchy of equations coupling successive moments of the distri-
bution function—similar to the BBGKY hierarchy [16].

In many cases, only the first two equations for the density and the velocity are consid-
ered. Upon multiplying Eq. (3.7) by unity and p , followed by an integration over p , the
continuity and the momentum equation can be derived [16]. This leads to (∇= ∂/∂r )

∂n

∂t
+∇· (nu) = 0, (3.10a)

m
∂

∂t
(nu)+ 1

m
∇· (n 〈p ⊗p〉)=−n∇U +K , (3.10b)

where 〈. . .〉 denotes a momentum average over f [Eq. (3.9)], ⊗ the dyadic product, and K
the contribution from the collision integral. They are coupled to Eq. (3.8) for the electro-
static potential φ(r , t ) that is contained in U (r , t ). For Yukawa systems, φ(r , t ) can also be
calculated from the screened Poisson equation [76]

(
∆−κ2)φ(r , t ) =−4πqn(r , t ). (3.11)

3.2.3 Closure Relations and Application to Waves

The momentum equation (3.10b) has two essential drawbacks: First, the quantity K is
not known explicitly because it contains the correlation function c which, in turn, is de-
termined by the higher order equations of the BBGKY hierarchy. Second, the momentum
tensor 〈p ⊗p〉 is coupled to the higher order moments of f . While there exist methods to
approximate these terms, a particularly simple form can be obtained by neglecting ther-
mal and correlation effects entirely.

Mean-Field Approximation

In the mean-field (Vlasov) approximation, the BBGKY hierarchy is truncated by the as-
sumption of completely uncorrelated particle motion, i.e., c(r , p ,r ′, p ′, t ) ≡ 0. The result is
the famous Vlasov equation [16, 91], cf. Eq. (3.7). In this case, the inter-particle forces are
solely determined by the mean-field potential (3.8). For the momentum equation (3.10b)
this implies K = 0.

2The normalization in Ref. [16] uses velocities instead of momenta.
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3.2 Theoretical Methods

For weakly coupled plasmas (Γ̄¿ 1), this is usually a good approximation. However,
especially for coupling parameters on the order Γ̄& 1, the particles begin to exhibit short-
range correlations with their nearest neighbors, which become increasingly important and
more long-ranged at stronger coupling. Under these conditions, the existence of the un-
derlying potential landscape becomes apparent and can even lead to the “caging” of par-
ticles in potential wells created by the other particles [92, 93]. For many problems, it then
becomes essential to find an adequate approximation for the (dynamic) correlation func-
tion, e.g., by resorting to results in the static limit [94, 95].

Cold-Fluid Limit

In the cold-fluid approximation, the hierarchy of fluid equations is closed by approximat-
ing the one-particle distribution function as f (r , p , t ) ≈ n(r , t )δ(p−mu(r , t )), see Ref. [16].
This assumes that all particles at point r move at the same speed and neglects any super-
imposed thermal motion. The second-order momentum average then simplifies consid-
erably, 〈p ⊗p〉 = m2(u ⊗u), and Eq. (3.10b) reduces to [16]

m

[
∂u

∂t
+ (u ·∇)u

]
=−∇U , (3.12)

where Eq. (3.10a) has been used. Improvements are possible by, e.g., giving the particles
an isotropic finite-width velocity distribution in addition to u(r , t ), which would lead to
thermal pressure forces in Eq. (3.12) [16].

Contrary to the mean-field treatment of the interactions, the neglect of thermal effects
is typically a reasonable approximation in a strongly coupled plasma , see the following
discussion.

Dispersion Relation in an Uncorrelated Cold Yukawa Plasma

Within the approximations introduced above, the dispersion relation for the dust acoustic
wave in a Yukawa model is (e.g., Ref. [19])

ω(k) =ωp

√
k2

k2 +κ2 , (3.13)

see Refs. [96, 97] for a more general overview on waves in dusty plasmas. Here, ωp =√
4πq2n/m is the dust plasma frequency and n the uniform dust density. It is briefly

shown in Ch. 5 how the result can be derived from the cold-fluid equations.
Compared to the dispersion relation in a Coulomb plasma (κ≡ 0 and ω≡ωp), the wave

is acoustic in the long-wavelength regime, ω ∼ csk, where cs = ωp/κ is the dust acous-
tic speed [19, 96]. The relation (3.13) is valid for a weakly coupled plasma when thermal
effects are negligible. Since the mean-field treatment is appropriate for a weakly cor-
related plasma with Γ̄ ¿ 1, but the neglect of thermal motion requires a cold plasma,
these conditions are hard to satisfy simultaneously. Consequently, both strong correla-
tions [11, 95, 98, 99] and finite temperature effects [98, 100] lead to a modification of the
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Chapter 3 Theoretical Background and Simulation Methods

acoustic speed and the dispersion relation. Furthermore, the former give rise to shear
waves [12, 98, 99]; see the review articles by Donkó et al. [19] and Piel and Melzer [97].

In the strong coupling regime, the quasi-localized charge approximation (QLCA) de-
veloped by Kalman and Golden [101] provides a good description of the dispersion rela-
tion [12, 19]. It neglects thermal pressure forces (the so-called “direct thermal effect”)—just
like the cold-fluid equations—but includes correlation effects via the equilibrium pair dis-
tribution function g (r ). The “indirect thermal effect” is implicitly included in g (r ) and is
associated with the coupling dependence of the internal liquid structure [92]. The reason
for the success of the QLCA in the strongly coupled liquid phase was argued to be a scal-
ing relation [92]: The importance of correlation effects exceeds that of the direct thermal
effect by a factor O (Γ̄) (based on free energy calculations for the OCP [102–104]). For the
cold-fluid theory, this indicates that the mean-field treatment is a far more severe approx-
imation than the neglect of thermal effects at high Γ̄.

The accuracy of the cold-fluid theory with respect to the calculation of normal modes
for Yukawa Balls will be assessed in Ch. 6.

3.3 Simulation Methods
Computer simulations have become increasingly important and almost indispensable for
many-particle physics. Molecular dynamics and Monte Carlo simulations yield numeri-
cally exact solutions of the full N -body problem and are usually only limited by the as-
sumptions of the underlying physical model. The results of analytical methods often suffer
from severe approximations but typically offer a deeper insight into the physical processes
than a simulation. Therefore, the methods complement each other, and a theoretical study
greatly benefits from a combined investigation. The basic principles of the simulations
methods used in this work are briefly reviewed in this section, see Refs. [18, 91, 105, 106]
for more details.

3.3.1 Molecular Dynamics

Introduction

Molecular dynamics (MD) simulations (e.g., Ref. [18, Ch. 10]) solve the equations of motion
associated with the Hamiltonian (3.5) and yield the particles’ positions {r i } and momenta
{p i } as a sequence of snapshots separated by a timestep ∆t . This establishes a certain
analogy with dusty plasma experiments, where the particle motion is recorded in a similar
fashion by video cameras with a particular frame rate.

The trajectories {r i (t )} are the solutions of the 3N coupled equations (i ∈ {1, . . . , N })

mr̈ i = F i =−∇iU (r 1, . . . ,r N ), (3.14)

and describe the phase space evolution of the system at constant total energy E . In terms
of Statistical Mechanics, a molecular dynamics simulation thus represents the microca-
nonical ensemble. The forces F i are derived from the total potential energy U and include
the pairwise interaction and the external confinement, see Eq. (3.5). As the confinement
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potential for Yukawa Balls is isotropic, the total angular momentum is another conserved
quantity [107].

Since the complete N -particle distribution function is available, the MD method is very
versatile and widely used for strongly correlated systems [108]. In this thesis, MD simula-
tions are applied to investigate the excitation spectrum of Yukawa Balls. More details on
the simulation procedure are given in Ch. 6.

Verlet Integration

The Verlet integrator [109] has become a popular method for MD simulations since it is
very stable and has the ability to conserve the total energy over considerable time inter-
vals. Like Hamilton’s equations, it is time-reversible and phase space conserving (sym-
plectic) [18, 91].

The algorithm can be derived from a Taylor expansion for the coordinates or an expan-
sion of the Liouville operator [18, 91]. In the velocity Verlet implementation, the integra-
tion is carried out in three steps as

v
(

t + ∆t

2

)
= v (t )+a(t )

∆t

2
,

r (t +∆t ) = r (t )+v
(

t + ∆t

2

)
∆t , (3.15)

v (t +∆t ) = v
(

t + ∆t

2

)
+a(t +∆t )

∆t

2
,

where the acceleration is denoted by a(t ) = F (t )/m. Calculating the N (N −1) interactions
is the most expensive part of the algorithm.

3.3.2 Langevin Dynamics

Langevin Equation

In dusty plasma experiments, the dust grains are embedded in a partially ionized plasma
where they collide with neutral gas atoms. Instead of treating the dust-neutral collisions
explicitly, the Langevin dynamics method uses a stochastic approach to include their ef-
fects: A friction term emulates a damping mechanism, and a stochastic force accounts for
random heating effects. The neutral gas can be regarded as a large heat bath for the dust
particles, see Refs. [18, 36, 110].

The equation of motion for Langevin dynamics then becomes [36]

mr̈ i =−∇iU (r 1, . . . ,r N )−νmṙ i + f i (t ). (3.16)

The random force f i (t ) and the friction term are related by the fluctuation-dissipation
theorem

〈 f αi (t ) f βj (t ′)〉 = 2mνkBTδi jδαβδ(t − t ′), (3.17)
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where α,β ∈ {x, y, z} and i , j ∈ {1, . . . , N }[36]. The neutral gas temperature and the dust-
neutral friction coefficient are denoted by T and ν, respectively. Correlations of the ran-
dom force between different particles and coordinates, and at successive times are as-
sumed negligible. Due to the additional forces, the total energy and angular momentum
are no longer conserved. Langevin dynamics corresponds to the canonical ensemble in
the sense that the Boltzmann distribution (cf. Sec. 3.3.3) is a time-independent solution of
the associated Fokker-Planck equation for the distribution function [110].

Langevin dynamics is routinely used for simulations of dusty plasmas, e.g., Refs. [24,
25]. In highly damped systems inertial terms are of minor importance, and the resulting
overdamped Brownian motion is widely being studied in the context of colloidal suspen-
sions [42]. In this work, Langevin dynamics simulations are performed to investigate the
formation of radial shells in Yukawa Balls (Ch. 4) and to complement the molecular dy-
namics simulations of the collective modes (Ch. 6) by adding dissipation effects.

Integration Scheme

Two integration methods for the stochastic Langevin equation (3.16) with good perfor-
mance have been derived by Manella in Ref. [111]. The first is the SLO (symplectic low
order) algorithm, which advances the trajectories according to

r
(

t + ∆t

2

)
= r (t )+v (t )

∆t

2
,

v (t +∆t ) = c1

[
c2v (t )+a

(
t + ∆t

2

)
∆t + c3w

]
, (3.18)

r (t +∆t ) = r
(

t + ∆t

2

)
+v (t +∆t )

∆t

2
,

where the acceleration a(t ) only includes the potential forces. While the friction force is
implicitly included in the coefficients,

c1 =
1

1+ν∆t/2
, c2 = 1− ν∆t

2
, c3 =

√
2kBT

m
ν∆t ,

the stochastic character of the Langevin equation enters the algorithm via the random vari-
able w . Its components are drawn from a normal distribution with unit variance and zero
mean, see also Ref. [18].

3.3.3 Metropolis Monte Carlo

Statistical Mechanics

The classical Metropolis Monte Carlo algorithm [112] approaches the N -body problem
from the viewpoint of equilibrium Statistical Mechanics. Rather than following the phase
space trajectory of an isolated system with constant energy, one considers the phase space
distribution of an ensemble of systems that share a common temperature T , volume V ,
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and particle number N (in the canonical ensemble). The equivalency in the limit of large
system sizes is established by the ergodic hypothesis, see Ref. [91].

The ensemble average of a momentum independent quantity χ(r N ) in the canonical
ensemble is calculated with the Boltzmann probability distribution as [91, 105]

〈χ〉(N ,T ) = 1

Z (N ,T )

∫
χ(r N )e−βU (r N ) dr N , (3.19)

where the configuration integral is denoted by Z (N ,T ) = ∫
e−βU (r N )dr N , β= 1/(kBT ), and

U (r N ) is the total potential energy, see Eq. (3.5). As a particular example, consider the
ensemble averaged density profile in an isotropic confinement V (r ) [87, 91],

〈n(r )〉(N ,T ) =
〈

N∑

i=1
δ(r − r i )

〉
= N

Z (N ,T )

∫
e−βU (r ,r 2,...,r N ) dr 2 . . .dr N ,

which has an additional spatial dependence. In the liquid state, it only depends on r = |r |
due to the spherical symmetry of the chosen confinement.

Metropolis Algorithm

In order to solve the high-dimensional integral in Eq. (3.19), the Metropolis algorithm [112]
can be used. It creates a sequence of microstates {r N

p } from a Markov chain (p ∈ {1, . . . , M })
that are distributed according to the Boltzmann distribution in the limit of an infinite sim-
ulation time (M →∞), see Refs. [91, 105]. By employing the method of importance sam-
pling, the canonical average (3.19) is transformed into a simple mean of the quantity χ(r N )
at the sampled phase space points,

〈χ〉(N ,T ) ≈ 1

M

M∑
p=1

ξ(r N
p )±σMC, (3.20)

where the statistical error σMC ∝ 1/
p

M decreases with the simulation length [105].
The success of the Metropolis algorithm in solving the integral (3.19) stems from sam-

pling the particle configurations with the Boltzmann distribution—compared to a straight-
forward method with uniform sampling probability. This yields a weighted average with
a significantly reduced statistical error, where the weighting is implicitly included in the
sampling mechanism [105].

The explicit transition probability for a move from r N
p to r N

p+1 in the Metropolis algo-
rithm is given by [105]

π(r N
p ,r N

p+1) =
{

e−β∆U , ∆U =U (r N
p+1)−U (r N

p ) > 0,

1, ∆U ≤ 0,

and depends on the potential energy difference ∆U and the temperature. It satisfies the
detailed balance condition, which ensures that all necessary criteria are met for the con-
vergence toward the Boltzmann distribution. For further details, see Refs. [91, 105].
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One of the numerous applications of the Metropolis algorithm was the calculation of the
free energy of the one-component plasma in the liquid and solid phase [102–104]. Here, it
is used to determine the finite temperature density profiles of confined particles in various
isotropic potentials (Ch. 4).
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CHAPTER 4

Shell Formation Dynamics

In recent years, the ground states of spherically confined plasmas and their shell structures
have been investigated in detail by numerical simulations [46, 69, 73–75] and theoretical
methods [76, 77]. In particular, the screening dependence of the ground state properties
is well understood by now [36]. On the other hand, the dynamic correlation buildup and
the associated time-resolved formation of the shell structure have received little attention,
and interesting questions arise when similar processes are considered in related strongly
coupled plasmas.

Simulations by Pohl et al. [6] showed that an ultracold neutral plasma can form con-
centric ion shells that are very similar to those in trapped ion experiments [4] if the ions
are laser-cooled during the expansion phase. They observed that shells started to emerge
in the inner region of the plasma. Previous investigations [113, 114] had indicated that it
would be difficult to reach the required coupling strength in these systems. A contrary ob-
servation regarding the direction of shell formation was made by Totsuji et al. [8], whose
simulations for confined ions showed shell formation starting at the surface and proceed-
ing toward the core upon increase of the coupling parameter, see also Ref. [115]. Schiffer
performed a general investigation on the influence of the trapping potential on the struc-
ture of confined ions [116]. The question of how the trapping potential affects the forma-
tion of radial shells in confined plasmas, and, particularly, the time-dependent correlation
buildup in dusty plasmas (Yukawa Balls) have been investigated during the course of this
work.

In order to answer these questions, a series of simulations have been performed [117,
118], which will be presented in the following. Langevin dynamics and Monte Carlo simu-
lations are used to emulate the cooling process from a weakly coupled system without shell
structure toward the strongly coupled limit. They reveal that both the screening parame-
ter and the confinement potential qualitatively affect the evolution of the density profile
and the emergence of the shell structure. While generally starting at the plasma edge, shell
formation can be triggered inside the plasma by making the central region inaccessible to
the particles.
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Chapter 4 Shell Formation Dynamics

This chapter is organized as follows.1 Some details on the Langevin dynamics simula-
tions are given in Sec. 4.1. The correlation buildup and the formation of the shell structure
are studied in Sec. 4.2. This is followed by an investigation of different confinement po-
tentials and their influence on the order of shell formation in Sec. 4.3. The findings are
summarized in Sec. 4.4.

4.1 Simulation Method
The static equilibrium properties (e.g., the density profile) of the system described by the
Hamiltonian (3.5) and the Langevin equation (3.16) are fully determined by the dimension-
less coupling parameter Γ= q2/(a kBT ) and the screening parameter κa. Here, T denotes

the heat bath temperature, and a = 3
√

q2/mω2
0 corresponds to the Wigner-Seitz radius in

a Coulomb system (κ = 0), cf. Ch. 2. The latter follows from the constant mean density
profile [76] and the analogy between a homogeneous background and a harmonic con-
finement [5], see also Ref. [87]. In Yukawa systems, the mean density is not constant, and Γ
should rather be interpreted as an inverse dimensionless temperature. For dynamic pro-
cesses such as the cooling process described next, the dimensionless dust-neutral friction
parameter ν/ω0 must be specified.

The correlation buildup is investigated in the following manner. In order to create a well-
defined initial state, the Langevin method is used with a friction coefficientνi to equilibrate
the system at low coupling (Γi = 0.2). At these conditions, correlation effects are weak, and
the density profile shows no signs of a shell structure. In experiments, this should be pos-
sible by using laser radiation pressure to transfer small random amounts of momentum to
the dust particles, which was demonstrated by Nosenko et al. [119] for 2D dust layers. The
Langevin method was also used to model laser cooling in an ultracold neutral plasma [6].
Once the laser is turned off (t = 0), the particles will cool down due to friction with the
neutral gas until a new equilibrium state is attained at the neutral gas temperature Tn. In
the simulations, this amends to changing the heat bath temperature from Ti to Tn, i.e.,
Γi → Γn. The cooling rate is then determined by the value of the friction coefficient ν.
The final coupling is chosen as Γn = 125—corresponding to a strongly coupled state with
well-defined shells—and should be within experimental feasibility [10]. For each set of pa-
rameters, several hundred to a few thousand independent simulation runs are performed.
This corresponds to averaging over the time evolution of a canonical distribution of initial
states. In an isotropic trap, the ensemble averaged time-dependent density profile, n(r, t ),
then only depends on the radial coordinate r .

Following the time evolution of the kinetic and potential energy, this scenario makes
it possible to study the time-dependent correlation buildup and the formation of radial
shells in a confined plasma (identified here by examining the radial density profile). Dur-
ing the cooling process, the system undergoes a transition from a weakly coupled initial
state toward a strongly coupled final state and thereby strides through the relevant cou-
pling regimes for shell formation. The feasibility of the cooling scenario for experiments
should make a direct comparison between experiment and theory possible.

1This chapter is based on a revised version of Ref. [117] with additional results from Ref. [118].

22



4.2 Correlation Buildup

1.0
1.2
1.4
1.6
1.8

0 10 20 30 40

E
in

t/
E

0 in
t

ω0t

(c)

1.0
1.2
1.4
1.6
1.8

0 3 6 9 12 15
ν t

(f)

0.6
0.7
0.8
0.9
1.0

E
p

ot
/E

0 p
ot

(b)

0.6
0.7
0.8
0.9
1.0 (e)

0.1

1

10

100

Γ
(t

)

Γn = 125

κa = 0.6

κa = 0 (a)
0.1

1

10

100

e2νt

ν/ω0 =
0.2

ν/ω0 = 2.5 (d)
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interaction energy are normalized to the respective equilibrium energy at t = 0 (Γi = 0.2).
From Ref. [117]. Copyright (2010) by the American Physical Society.

4.2 Correlation Buildup

4.2.1 Coupling Parameter and Potential Energy

The coupling parameter Γ is the key factor that determines the extent of the shell struc-
ture. In a system out of equilibrium, the definition of a well-defined temperature is difficult
since it is connected with the existence of a Maxwellian velocity distribution. In the limits
t = 0 and after a sufficiently long equilibration time after the cooling process, the system
has reached an equilibrium state, and this condition is fulfilled. However, in between these
two stages, this is not strictly valid. Nevertheless, it is possible to define a temperature [i.e.,
a coupling parameter Γ(t ) ∝ 1/T (t )] via Ekin(t ) = 3N kBT (t )/2. Even though the kinetic en-
ergy also contains macroscopic (ballistic) motion, this definition should give a reasonable
estimate of the coupling strength.

The so-defined coupling parameter and the potential energies are shown in Fig. 4.1. On
the one hand, the behavior of the time-dependent coupling parameter Γ(t ) is only weakly
affected by the screening parameter, see Fig. 4.1(a). Starting at Γ(0) = Γi = 0.2, it gradually
increases to a value within a few percent of Γn after a cooling time of roughly ω0t ≈ 35−40
has elapsed. Especially the last phase is characterized by a very slow increase of Γ(t ). On
the other hand, the friction parameter influences the results considerably, cf. Fig. 4.1(d).
While at low friction (ν/ω0 = 0.2) the increase is very smooth, it is accompanied by small
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modulations at intermediate values (ν/ω0 = 0.5,1) and transforms into an almost stepwise
behavior at large damping (ν/ω0 = 2.5). Here, the initial correlation buildup follows Γ(t ) ∝
exp(2νt ), which is the expected behavior for a damped free particle (ballistic regime), cf.
Fig. 4.1(d). Note that the typical timescale (in units of ν−1) for reaching Γn is significantly
longer in the high damping limit, see Fig. 4.1(d) and Ref. [118].

The potential and interaction energy,

Epot =
m

2
ω2

0

N∑

i=1
r 2

i , Eint =
1

2

N∑

i 6= j
q2 e−κ|r i j |

|r i j |
, (4.1)

show a similar time evolution during the cooling process [Figs. 4.1(b),(c),(e) and (f)]. The
former is proportional to the mean squared radius of the cluster and hence related to the
size of the plasma. As the temperature drops, the cluster contracts, Epot decreases and per-
forms small amplitude oscillations. On the other hand, the interaction energy increases,
but it exhibits the same kind of modulations as the potential energy. Due to the reduced
plasma size at strong coupling, the mean separation between the particles is being re-
duced, thus, the coupling strength increases.

The effect of the screening parameter is to enhance the effective loss (gain) of potential
(interaction) energy between the initial and the final state. This difference is unaffected
by the choice of the friction coefficient since the equilibrium states are independent of ν.
However, the time evolution is affected by the damping rate, see Figs. 4.1(e) and (f). While
the oscillations appear as rather weak modulations at low friction, they clearly lead to an
overshooting of Epot and Eint at intermediate values and diminish at high damping.

4.2.2 Breathing Mode Excitation

Oscillations of the mean squared radius are usually associated with a monopole oscillation
of the plasma [13]. At t = 0, the particles’ kinetic energy is being removed from the system
by the friction force, which aims at establishing a new equilibrium at Γn = 125—in com-
bination with the random force. Depending on the damping coefficient, the temperature
drops at a rate ∼ ν, which leads to an initial compression of the cluster. In a hypothetical
scenario with an infinitesimally low damping rate, the cluster evolves from one equilib-
rium state to another, because the particles always have sufficient time to adjust to the
current coupling parameter. At finite damping, however, this is not possible, and the par-
ticles’ inertia leads to the excitation of a normal mode after the initial compression. The
excitation amplitude is rather weak at ν/ω0 = 0.2, since the removal of kinetic energy is
performed slowly. After an initial growth of the amplitude for ν/ω0 = 0.5,1, the excitation
is rapidly damped out at strong friction, see Figs. 4.1(e) and (f).

The frequency of the oscillations is analyzed in Fig. 4.2(a). A low damping rate of ν/ω0 =
0.1 makes it possible to observe several oscillations during the cooling process. A time
dependent frequency ω∗([ti + ti+1]/2) can be determined from two successive minima
or maxima of Epot at ti and ti+1. The rapid changes observed in the early phase vanish
for ω0t & 30, and ω∗(t ) approaches a value that can be interpreted as the breathing fre-
quency of the new equilibrium state. The initial oscillations may be attributed to the non-
equilibrium behavior of the system.
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Since the frequency is measured in a damped system, the intrinsic frequency ω of the
plasma breathing mode can be extracted from the relation ω∗ =

p
ω2 −ν2/4, which de-

scribes the frequency variation of a harmonic oscillator subject to damping [9]. The con-
tinuum limit for the breathing frequency of a uniform sphere [120] is shown in Fig. 4.2(b)
for comparison. The plasma radius is computed according to Ref. [76]. In the Coulomb
limit, the simulation data agree well with the exact result for a crystallized plasma, ω/ω0 =p

3 [13, 121]. For κ > 0, the mean-field theory [120] accurately describes the simulation
results at low screening but shows increasing deviations for κa & 0.6. The good agreement
confirms that the observed oscillations correspond to the excitation of a breathing mode.
Chapters 5 and 6 continue the discussion of normal modes in Yukawa Balls.

4.2.3 Shell Formation

Density Profile

In the next step, the emergence of the shell structure will be investigated, see Fig. 4.3 for a
system with 1200 particles. At t = 0, i.e., Γi = 0.2, the density monotonically decreases with
the distance from the trap center. In this weakly coupled state, the profile is well described
by a mean-field theory [87, 90],

nMF(r,T = Ti) ∝ exp
{−[

V (r )+qφ(r )
]

/kBTi
}

, (4.2)

where V (r ) is the harmonic confinement and φ(r ) the effective potential to be calculated
self-consistently from Eq. (3.8). Equations (4.2) and (3.8) constitute a closed set of equa-
tions for the density at finite temperature but cannot describe the emergence of the shell
structure at strong coupling. For this purpose, an improved theory, e.g., the hypernetted-
chain approximation, is required [87–90].

As the system cools down, the first indications for the onset of the shell structure are
observed after a time ω0t ≈ 10 at the cluster boundary, where small density maxima are
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formed. At this stage, the density profile in the inner region of the plasma is well described
by the zero temperature limit of Eq. (4.2) [76],

nMF(r,T = 0) = (4πq2)−1 [
(∆−κ2)V (r )+κ2µ(N )

]
Θ(R − r ), (4.3)

where µ(N ) is the chemical potential, R the plasma radius, andΘ(R−r ) the Heaviside step
function, see the dashed lines in Fig. 4.3. It should be noted that Eq. (4.3) also accurately
describes the mean density of a crystallized system at the shell positions [76], at least up to
moderate screening.

Upon further increase of Γ(t ), the inner shells (i.e., density modulations) are formed.
For Coulomb interaction, shell formation clearly proceeds from the boundary toward the
center with shells emerging at almost constant time intervals, see Fig. 4.3(d). In Yukawa
systems, the general trend is the same, but the formation of the inner shells is being ac-
celerated by an increase of the screening parameter: While the effect is still rather weak at
κa = 0.6, the shells form almost simultaneously at κa = 2 [Figs. 4.3(e) and (f)]. The faster
shell formation may partially be attributed to an inward force produced by particles on the
outer shell [76], contrary to Coulomb systems, where only particles inside a sphere exert a
net force. Nevertheless, in all three cases the inner shells are much less defined than the
outer ones, where the density almost drops to zero between the maxima, while the central
density is only weakly modulated.

Local Screening and Coupling Parameter

The properties of the uniform Yukawa OCP are completely specified by the screening pa-
rameter κ̄ = κaws and the coupling parameter Γ̄ = q2/(awskBT ) [19], see also Sec. 2.1.1.
They determine the crystal structure (fcc or bcc) in a frozen system [26] and the effective
coupling strength in the liquid state. The latter can be quantified by the height of the first
maximum in the pair distribution function g (r ) [122, 123]. It compares the probability
of finding two particles at a certain distance r with the same probability in an uncorre-
lated system. Strong correlations manifest themselves as a “correlation hole” around each
particle near r = 0 and pronounced modulations of g (r ) at larger distances. Both effects
indicate increased order and strong coupling. In general, an increase of the screening (cou-
pling) parameter decreases (increases) the effective coupling strength [122–124]. Since the
inclusion of a realistic pair distribution function (i.e., correlation effects) turns out to be
the essential ingredient for the existence of a shell structure in confined systems [87, 88],
these effects will be discussed in the following.

The order of shell formation described in the previous section is completely different
from the observations in ultracold neutral plasmas [6], where the process starts near the
center and proceeds outward. In Ref. [6], this was attributed to the higher density. In
these plasmas, the weakly coupled electrons provide an effective background for the laser-
cooled ions with an approximately Gaussian density profile [125, 126]. However, the plas-
ma state is not stationary, and the whole system expands.

In the present case, the confinement potential can be regarded as an effective back-
ground with an inhomogeneous density profile nMF(r,T = 0). Thus, one may define a local
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Figure 4.3: (a)-(c) Snapshots of n(r, t ) at ω0t = 0,15,30 (oscillations grow with time) together with
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Ref. [117]. Copyright (2010) by the American Physical Society.
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radial coupling parameter

Γ̄(r ) = q2/aws(r )

kBT
∝ n1/3

MF(r,T = 0),

just like in a system with a homogeneous background (OCP). Here, the local Wigner-Seitz
radius is denoted by aws(r ) = 3

p
3/4πnMF(r,T = 0). For Coulomb interaction, this definition

indeed coincides with the coupling parameterΓ= q2/(a kBT ), cf. Sec. 4.1 and Eq. (4.3). The
observation that the density profile prior to shell formation is well described by the cold
mean-field limit (4.3) justifies the use of nMF(r,T = 0).

Based on the local coupling parameter, it now seems natural to assume that shell for-
mation starts at the position with the highest density. For κ > 0, this is clearly the center
of the trap, while the question cannot easily be answered for Coulomb interaction since
nMF(r,T = 0) is constant. However, in the simulations, the density at the plasma boundary
is lower than the mean-field result suggests, see Fig. 4.3(a), and the local coupling should
be weaker than at the center. Thus, one would expect shell formation from the center,
which is indeed the correct result for ultracold neutral plasmas but not for the present sys-
tem. Hence, judging only by the local coupling parameter can lead to contradictory results.

Another mechanism that must be taken into account in screened systems is the effective
range of the particle interaction, see also Ref. [127]. As was done for the coupling parame-
ter, one may define a local (dimensionless) screening parameter via

κ̄(r ) = κaws(r ) ∝ n−1/3
MF (r,T = 0).

From the homogeneous system, it is known that the effective coupling decreases when κ̄

increases and Γ̄ is kept constant [26, 123]. Since the density drops toward the boundary,
the local screening parameter κ̄(r ) should take its maximum at r ≈ R. This would further
enhance the effect of the reduced local coupling parameter at this point and should favor
shell formation from the center. Since the curvature of nMF(r,T = 0) is determined byκ [76]
[cf. Eq. (4.3) and Fig. 4.3], this effect should become more pronounced at strong screening.

The analysis shows that the radially decreasing density profile in Yukawa systems favors
a more rapid formation of inner shells compared to the Coulomb case—in agreement with
the simulations. The confinement model of Totsuji et al. [128, 129] uses a screening depen-
dent trapping potential to produce a constant MF density profile for Yukawa interaction.
In this sense, it is equivalent to the harmonic trap for κ= 0 and could be used to study the
screening effect in more detail.

Effect of Cooling Speed

In dusty plasma experiments, the dust-neutral friction coefficient can become significant
due to the high gas pressure [1, 2]. Since this was also found to have a large impact on the
occurrence probability of metastable states [71], its effect on the formation of shells will be
considered in the following [118].

It has already been shown in Fig. 4.1 that the friction coefficient determines the time at
which the system reaches the neutral gas temperature. Figure 4.4 displays how it affects
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the density profile. Consider first Fig. 4.4(a), which shows the density at t = t∗, where
t∗ is defined by Γ(t∗) = 120—slightly below the neutral gas limit Γn = 125. This coupling
strength is reached first for ν/ω0 = 3 at ω0t ≈ 6, closely followed by ν/ω0 = 1 at ω0t ≈ 11,
and finally by ν/ω0 = 0.3 at ω0t ≈ 30. Even though the coupling strengths are identical, the
density profiles are very different.

In the simulation with the highest friction coefficient (ν/ω0 = 3), only the outermost
shell has clearly developed, while the inner region of the plasma exhibits almost no mod-
ulations. More pronounced structures are observed at lower damping. The discrepancy
between the density profiles indicates that the formation of the shell structure cannot fol-
low the fast cooling process, i.e., the spatial profile does not correspond to the equilibrium
state defined by Γ = 120. Rather, the weak modulations of n(r, t ) suggest that the spatial
correlations correspond to a system at weaker coupling. One explanation for the differ-
ent results is the elapsed cooling time: At low damping, the simulation time is about three
times as long as for the high damping case, i.e., the particles had more time to equilibrate
and form the shell structure.

However, the results displayed in Fig. 4.4(b) show that this is not the only reason. At
a fixed time ω0t = 70, both systems have reached the final coupling parameter but the
densities still differ substantially. In the high damping case, the particles are readily being
slowed down and have no time to adjust their density from the weakly coupled initial to the
strongly coupled final state. Instead, the formation of spatial correlations is a slow diffu-
sion-like process at a rather low temperature, where the particles’ poor mobility hinders
the buildup of the shell structure. On the other hand, if the system is cooled slowly, the
particles can partially rearrange during the cooling process when the mobility is still high.
Comparisons with a Monte Carlo simulation of the same system at Γn = 125 show that in
the latter case equilibration is almost complete, while the density at high damping still
deviates considerably from the equilibrium result. At later times, both densities further
approach the Monte Carlo profile. Decreasingν further does not necessarily lead to a faster
equilibration. There should exist a lower limit below which the equilibration time is limited
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by the rate at which the particles lose kinetic energy. This also influences the initial phase
right after cooling has started, but this will not be studied in further detail.

The cooling scenario here is quite similar to the investigation in Ref. [71], where it was
shown that rapid damping leads to a higher probability of metastable states and slow cool-
ing favors the ground state. If the choice for the final temperature is Tn = 0, the random
force amplitude is zero, and the system can easily be trapped in a metastable state. This
is possible because their is no supply of kinetic energy to overcome the potential barriers
between the states. However, if Tn > 0, equilibration toward the associated equilibrium
state is always possible because the random force serves as a “reservoir” of thermal energy.

While affecting the time for the buildup of the shell structure, the damping rate has no
significant influence on the order of shell formation. Hence, a sequence of equilibrium
Monte Carlo simulations at different coupling strengths should be sufficient to answer this
question. This corresponds to an infinitesimally small cooling rate [Sec. 4.3].

Finite System Size

One aspect that has not been taken into account so far is the finite system size. In a strongly
coupled macroscopic plasma, the pair distribution function depends on κ̄ and Γ̄ and can
be used to characterize the plasma state [123]. The ensemble averaged density, however,
remains constant in the liquid state. In the finite system studied here, both the density and
the pair distribution function are affected.

For Coulomb systems, the extent to which a finite system displays macroscopic behav-
ior was investigated by Totsuji et al. [8]. It was shown that in large Coulomb crystals a
bcc lattice may be formed in the core which is covered by a shell structure with a few lay-
ers at the boundary. Schiffer [116] argued that due to the finite size, the plasma has to
satisfy “boundary conditions” at the surface that dictate the spherical symmetry. This in-
dicates that the surface of the plasma is the key to understanding the formation of the shell
structure. While the core is largely isolated from the surface and thus shows properties of
a macroscopic system, the shell structure is a consequence of the isotropic confinement
and the “vacuum” region around the plasma.

In the cold mean-field approximation for the density, the finite size and the surface are
typically associated with a finite density step, and the fraction of particles near the plasma
surface is largely determined by nMF(r,T = 0). For a monotonically increasing (decreasing)
profile, many (few) particles are located near the boundary. In particular, the number of
particles in the edge layer is proportional to the height of the density step nMF(R,T = 0).
Since these are the particles forming the outermost shell, it can be expected that shell for-
mation is more easily achieved in systems with a large density step at the boundary.

4.3 Other Confinement Potentials

Power Law Confinement

In this section, the effect of the confinement potential on the order of shell formation is
investigated since it determines the height of the density step at the boundary. The class of
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isotropic power law confinements, Vα(r ) = cαrα/α, is ideally suited for this purpose. Here,
cα is a numerical factor that determines the confinement strength.

In the Coulomb limit, these potentials create a mean density profile

nMF(r,T = 0) = α+1

4πrα+1
α

rα−2 Θ(Rα− r ), (4.4)

see Eq. (4.3) forκ= 0. From the normalization condition
∫

nMF(r,T = 0)dr = N , the plasma
radius Rα is determined as

Rα

rα
= α+1

p
N , rα = α+1

√
q2/cα.

The exponent in Eq. (4.4) shows that the density monotonically decreases (increases) from
the center outward for α < 2 (α > 2). The harmonic confinement with α = 2 yields a con-
stant density and has already been studied in the previous section. By choosing α appro-
priately, the height of the density step can now be manipulated. In the following, a quartic
(α = 4, large step) and a linear trap (α = 1, small step) are studied. In the latter case, the

exact form of V1(r ) is slightly changed to V1(r ) = c1

√
r 2

1 + r 2 to provide a stable position at
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r = 0, which would not exist without this regularization. The analysis presented here ex-
tends previous results by Schiffer [116], who studied various combinations of confinement
and interaction forces.

Density profiles in the quartic confinement obtained from MC simulations are displayed
in Fig. 4.5(a). By changing the temperature, one can mimic the cooling process of a full
Langevin dynamics simulation. As was observed for the harmonic trap, the density at
moderate temperatures (T4/T = 1) is well described by the respective cold mean-field re-
sult (4.4), except for a smoother decay at the surface. The parabolic density increase toward
the plasma boundary is clearly visible. As the temperature is decreased, the first hints for a
shell structure are observed slightly below r = R4 ≈ 4.37r4 at the surface, while the central
region of the trap is almost void of particles, see Figs. 4.5(b) and (c). Lowering the temper-
ature further leads to the formation of radial shells from the boundary toward the center,
as expected.

The MC results for the linear trap [Fig. 4.5(d)] show similar agreement with the associ-
ated cold mean-field result at T1/T = 10 as the other two confinements for comparable
temperatures. Despite the weak density step, shells start to emerge at the boundary. At
low temperatures, there are additional density modulations near the center, but they are
relatively weak and involve only few particles. The shell structure at the vacuum interface
is much more pronounced, see also Ref. [116]. This shows that even if the mean density
is manipulated in a way to favor outward shell formation, the general (opposite) trend is
hard to reverse.

Harmonic Confinement with Hard Core

The attempt in the previous section to find a suitable confinement that enables shell for-
mation from the core to the boundary has not been successful. Now, the trap will be mod-
ified in a different manner. Instead of merely changing the monotony of the mean density
profile, the inner region of the plasma will be blocked. Specifically, the harmonic trap is
shifted away from the center, and an infinite potential well is added for r < Rw, i.e., the
potential reads

Vw(r ) =
{
∞, r < Rw,
m
2 ω

2
0(r −Rw)2, r ≥ Rw.

Monte Carlo results for Coulomb and Yukawa interaction are shown in Fig. 4.6. Due to
the infinite potential well, the inner part of the plasma now becomes a void region. The
location of the wall is chosen to ensure that the ratio of the surface areas, ∼ R2

o/R2
w ≈ 31,

is comparable in both systems. Here, Ro is the (approximate) outer radius at which the
density goes to zero.

The main difference between Coulomb and Yukawa interaction in this type of confine-
ment is the density profile near the wall. At strong coupling, the density at r = Rw vanishes
for Coulomb interaction, while the Yukawa system forms a shell of particles attached to the
wall. This phenomenon can be understood with the help of Gauss’ law. It ensures that only
particles inside a sphere produce a net force on a particle located at a certain distance from
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Figure 4.6: Density profiles for N = 6000 particles from Monte Carlo simulations for the harmonic
confinement with inner hard core for (a) Coulomb (Rw/a = 3.5) and (d) Yukawa inter-
action (Rw/a = 2) with κa = 0.6. The figures on the right-hand side show snapshots
(cylindrical coordinates) from the simulation with the respective interaction at coupling
parameters (b) Γ= 8, (c) Γ= 80, (e) Γ= 5, and (f) Γ= 50. Only a third of the particles are
shown. After Ref. [117].

the center. For a particle at the wall, this implies that the force is very weak, since there are
no particles for r < Rw, and the outer particle distribution is almost isotropic. This princi-
ple does not apply to Yukawa interaction [76], and the outer particles do produce an inward
force pushing the particles toward the wall—thus the formation of a spherical layer.

The inner void region acts as a second surface just like the one around the plasma. Thus,
it creates a set of new spherical boundary conditions the system has to fulfill [116]. This
triggers the formation of spherical shells from the center. Inspecting the density profiles
more closely, one finds that density modulations are simultaneously formed inside and
outside the plasma. However, the trend is clearly more pronounced for Yukawa systems in
which the mean density [approximated by the low coupling (Γ = 1) MC result in Fig. 4.6]
decreases toward the outer boundary, whereas an increase is observed for Coulomb inter-
action. This is similar to the observations made for the harmonic confinement without
hard core.

4.4 Summary

In this chapter, the shell formation dynamics in a spherically confined plasma has been
investigated by means of Langevin dynamics and Monte Carlo simulations. Upon cooling
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a weakly coupled initial state toward the strong coupling limit, the formation of spherical
shell structures (pronounced radial density modulations) has been observed. During the
cooling process, the confinement energy decreases, while the interaction energy increases.
This goes along with the excitation of a plasma breathing mode, whose frequency is well
described by a mean-field theory [120] at low screening. In a harmonic confinement, shell
formation begins at the plasma boundary and proceeds inward after the initial formation
of a density step. Increasing the screening parameter leads to a faster formation of the
inner shells compared to the Coulomb limit. This can be explained by the inward force of
the outer particles and the radially decreasing mean density profile [76]. In highly damped
systems, the fast loss of kinetic energy slows down the buildup of correlations.

The influence of the confinement potential on the shell formation process has been
studied by considering a linear and a quartic trap in addition to the harmonic confine-
ment. By comparing equilibrium Monte Carlo density profiles at different coupling pa-
rameters, it has been shown that shell formation also proceeds inward. Even though the
density in the linear trap displays small maxima near the center, no clear shell structure is
observed.

In a shifted harmonic trap with a hard wall that prevents the plasma particles from en-
tering the central region, shell formation can be triggered inside the plasma. In a Coulomb
system the trend is relatively weak, but it becomes much more pronounced for Yukawa in-
teracting particles. Here, the inner particles accumulate at the wall due to the inward forces
of the outer particles, and shells start to form from the core to the periphery. This can be
explained by the existence of a second vacuum region inside the plasma, which imposes a
spherical symmetry [116]. However, this does not prevent the simultaneous formation of
shells in the opposite direction.

The analysis leads to the conclusion that a possible explanation for the different di-
rections of shell formation in confined plasmas [8] and the expanding ultracold neutral
plasma [6] is not only the density profile, but also the absence of a well-defined surface in
the latter. There, the Gaussian electron background is associated with a vanishingly small
density step, because the electron potential vanishes for r →∞. Further, it does not con-
fine the ions, and the expansion of the plasma hinders the formation of a shell structure
in the outer region, which is accompanied by a contraction of the plasma in the harmonic
confinement. Inner shells then form as a consequence of the increased coupling strength
and the spherical symmetry of the plasma cloud.

Related Journal Publications

• H. Kählert and M. Bonitz,
Time Evolution from Weak to Strong Coupling in a Spherically Confined Dusty Plasma,
Contrib. Plasma Phys. 51, 519 (2011)
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How Spherical Plasma Crystals Form,
Phys. Rev. Lett. 104, 015001 (2010)
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CHAPTER 5

Cold-Fluid Theory of Normal Modes

The collective excitations of many-particle systems can be regarded as the “fingerprints”
of their intrinsic properties. For experimentalists, a normal mode analysis constitutes a
non-invasive diagnostic tool for measuring various plasma parameters [10, 130]. However,
a theoretical description is required in order to extract the desired information from the
experimental data.

The ground state of spherical Yukawa Balls in the mean-field approximation was de-
rived by Henning et al. [76]. In the frame of this thesis, this theory has been extended
to time-dependent phenomena by solving the linearized cold-fluid equations [131]. For
spheroidal Coulomb plasmas, this analysis was carried out by Dubin [132]. The fluid ap-
proach is expected to be reasonably accurate for long-wavelength excitations, which are
less sensitive to the discrete particle nature than short-wavelength modes. Despite the ap-
proximations involved in the derivation of the equations (cf. Sec. 3.2), comparisons with
MD simulations [121] showed indeed that the theory accurately describes the low-order
modes in Coulomb plasmas. This was also verified experimentally [133] and recently in
Ref. [134]. Thus, the cold-fluid theory is expected to be applicable to Yukawa plasmas as
well, cf. Ref. [135] and Ch. 6.

The solution of the fluid equations yields the possible excitation frequencies of the in-
homogeneous plasma and relates them to a particular spatial mode form [131]—analogous
to the dispersion relation in a homogeneous plasma. It is shown that the mode spectrum
of a harmonically confined Yukawa plasma is qualitatively different from the results in the
Coulomb limit [132]. In particular, the analysis yields an explicit result for the deviation of
the lowest spherically symmetric eigenmode from a uniform breathing mode, see Ref. [13].

The derivation of the eigenmode spectrum is presented as follows:1 After the lineariza-
tion of the fluid equations in Sec. 5.1, the density profile is reviewed, and the total energy
in the mean-field approximation is calculated (Sec. 5.2). The normal mode equations are
solved and discussed in detail in Sec. 5.3. A brief summary of the results is given in Sec. 5.4.

1This chapter is based on a revised and extended version of Ref. [131].
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Chapter 5 Cold-Fluid Theory of Normal Modes

5.1 Linearization of Cold-Fluid Equations
For a spherically confined Yukawa plasma, the fluid equations (3.10) in the cold-fluid limit
read [see Eqs. (3.10a) and (3.12)]

∂n

∂t
+∇· (nu) = 0, (5.1a)

m

[
∂u

∂t
+ (u ·∇)u

]
=−∇U −mνu, (5.1b)

where U (r , t ) = V (r )+ qφ(r , t ) denotes the sum of the confinement potential V (r ) and
the electrostatic (mean-field) potential φ(r , t ) created by the density n(r , t ). In addition
to Eq. (3.12), a damping term with friction coefficient ν [cf. the Langevin equation (3.16)]
has been added to the momentum equation to account for neutral gas friction in a dusty
plasma. The fluid equations are coupled to the screened Poisson equation,

(∆−κ2)φ=−4πqn, (5.2)

for the electrostatic potential φ. The combined Eqs. (5.1) and (5.2) yield a self-consistent
description of a confined Yukawa plasma in the cold-fluid approximation.

A complete solution of the (non-linear) fluid equations is not necessary. Rather, a com-
monly used linearization according to the ansatz n(r , t ) ' n0(r )+n1(r , t ), u(r , t ) ' u1(r , t ),
φ(r , t ) 'φ0(r )+φ1(r , t ) yields the desired information about the ground state and the lin-
ear response of the system, see, e.g., Ref. [115]. In this procedure, products of first-order
terms are neglected. The drawback is that the approach is restricted to weak excitations
and small perturbations from the equilibrium state.

Using the above ansatz in Eqs. (5.1) and (5.2), one obtains the zeroth-order equations

q∇φ0 =−∇V , (5.3a)
(
∆−κ2)φ0 =−4πqn0, (5.3b)

where Eq. (5.3a) is the force balance equation. The ground state density n0(r ) must be
determined such that the mean-field potentialφ0(r )—determined by Eq. (5.3b)—compen-
sates the confining force [76].2 The continuity equation is trivially satisfied to zeroth order
and yields no contribution.

Comparing terms of first order leads to

∂n1

∂t
+∇· (n0u1) = 0, (5.4a)

m
∂u1

∂t
+mνu1 =−q∇φ1, (5.4b)

(
∆−κ2)φ1 =−4πqn1, (5.4c)

which determine the linear response of the plasma to a small perturbation of the equilib-
rium quantities. Equations (5.4) can be simplified further by performing a Fourier decom-
position into normal modes according to φ1(r , t ) = φ̂1(r ,ω)e−iωt (and similar expressions

2The finite size factor (N −1)/N of Ref. [76] is omitted.
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5.2 Ground State

for n1 and u1). The equations for the Fourier components then read

iωn̂1 =∇· (n0û1), (5.5a)

m(ω+ iν)û1 =−i q∇φ̂1, (5.5b)
(
∆−κ2) φ̂1 =−4πqn̂1. (5.5c)

After some algebraic manipulations, Eqs. (5.5) can be combined to the following single
equation for the perturbed potential (see Refs. [115, 132] for κ= 0),

∇· [ε(r,ω)∇φ̂1
]= κ2φ̂1, (5.6)

which involves the dielectric function

ε(r,ω) = 1−
ω2

p(r )

ω(ω+ iν)
. (5.7)

In contrast to a homogeneous plasma, the plasma frequency for a confined system is not
constant in general. Rather, it is a local function of the ground state density,

ωp(r ) =
√

4πq2n0(r )/m. (5.8)

It is evident from Eq. (5.6) that the dielectric function is the important factor that contains
the essential information about the linear excitation properties of the plasma.

5.2 Ground State
The problem of finding the ground state density profile for an isotropic harmonic con-
finement has been solved by Henning et al. in Ref. [76]. In this section, these results are
reviewed and used to calculate the total energy in the mean-field approximation.

5.2.1 Density Profile

Explicitly, the ground state density is given by the following stepped profile [76],

n0(r ) = 3

4πa3

(
1+ ξ2

6

3+ξ
1+ξ −

κ2r 2

6

)
Θ(R − r ), (5.9)

where ξ= κR is the ratio of the plasma radius R and the screening length κ−1. The length

unit a = 3
√

q2/mω2
0 corresponds to the Wigner-Seitz radius aws = 3

p
3/4πn0 in the Coulomb

limit (constant density) and has already been introduced in Ch. 4. For Yukawa interaction,
the density profile exhibits a quadratic decay toward r = R with the highest density at the
center of the trap. The plasma radius R = ξ/κ follows from [76]

ξ6 +6ξ5 +15
[
ξ4 +ξ3 −k3

C(ξ+1)
]= 0, (5.10)

with kC = κRC and RC = aN 1/3 being the radius for an unscreened Coulomb system.
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Chapter 5 Cold-Fluid Theory of Normal Modes

Asymptotic expansions for the solution ξ(kC) of Eq. (5.10) for kC ¿ 1 and kC À 1 can be
found by writing the solution in a power series of kC and k3/5

C , respectively (see Ref. [76]
for the first terms in the expansions). Choosing the coefficients such that terms with equal
powers of kC vanish, one finds

ξ(kC) ' kC − 2

15
k3

C + 1

9
k4

C − 1

25
k5

C + . . . (5.11)

in the Coulomb limit (kC ¿ 1) and

ξ(kC) '151/5 k3/5
C −1+ 1

152/5
k−6/5

C −151/5 3

25
k−12/5

C + 1

15
k−3

C + . . . (5.12)

for kC À 1. This particular limit corresponds to a system where the plasma radius is much
larger than the screening length and is encountered when κa N 1/3 À 1. A numerical eval-
uation of Eq. (5.10) shows that the relative error of the approximations (5.11) and (5.12) is
less than 10−2 for kC < 1.26 and kC > 1.26, respectively.

For a comparison of the cold-fluid theory and the density profile (5.9) with experimental
data, it is advantageous to consider the moments of the density,

〈r n〉 = 1

N

∫
r n n0(r )dr = Rn

N

(
R

a

)3 ξ3 + (n +6)ξ2 +3(n +5)(1+ξ)

(n +5)(n +3)(1+ξ)
,

which are directly accessible in experiments from the particle positions as a simple aver-
age. The ratio of two moments [Fig. 5.1(a)] could help determine the unknown parameters
ξ and R.

5.2.2 Comparison With Related Systems

It is evident that the limitκ= 0 (i.e., ξ= 0) corresponds to a Coulomb system. Here, Eq. (5.9)
reduces to n0 = 3/(4πa3) inside the plasma. This corresponds to the popular textbook
example of a uniformly charged sphere, which has a parabolic electrostatic potential for
r < R [82, 107], and often serves as a simple model for confined ions.

In the limit kC À 1 (i.e., ξÀ 1), the density (5.9) was shown to closely resemble the pro-
file obtained for the same Yukawa system in a local mean-field approximation (LDA) [77],

nLDA
0 (r ) = κ2

4πq2 [V (RLDA)−V (r )]Θ(RLDA − r ), RLDA = N 1/5

(
15 q2

mω2
0κ

2

)1/5

, (5.13)

where V (r ) = mω2
0r 2/2 is the harmonic confinement.3

In this approach, the energy density was first calculated for a system with uniform den-
sity, which was then replaced by the inhomogeneous density in the trap [77]. This corre-
sponds to substituting a local delta potential vLDA(r ) = 4πq2δ(r )/κ2 for the Yukawa po-
tential v(r ) = q2e−κr /r in the first place (see Eq. (3) in Ref. [77]). The prefactor of the delta
function can be identified as the k = 0 component of the Fourier transform of the interac-
tion potential [136]. The associated mean-field interaction term (3.8) to be used in the fluid

3Again, the factor N /(N −1) of Ref. [77] has been neglected.
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equations, qφLDA(r ) = 4πq2n(r )/κ2, locally depends on the density. This is equivalent to
neglecting the Laplacian in Eq. (5.2) [82] and assumes that potential variations occur on
length scales l À κ−1. A reduced integration volume due to the short-range character of
the potential explained the good agreement of the two approximations for kC À 1 (i.e.,
ξÀ 1). The important difference between them is the absence of the discontinuity at the
plasma radius in the LDA result [77], see also Ref. [82].

The mean-field LDA density profile is mathematically equivalent to the Thomas-Fermi
solution for a harmonically trapped Bose-condensed gas with zero kinetic energy [136,
137], which can be written as

nTF
0 (r ) = m

4πasħ2 [V (RTF)−V (r )]Θ(RTF − r ), RTF = N 1/5

(
15ħ2as

m2ω2
0

)1/5

.

In these systems, the interaction can effectively be described by a Dirac delta potential
as well, where vB(r ) = 4πħ2asδ(r )/m [138]. The density and the interaction potential be-
come identical to the corresponding expressions for Yukawa systems if the s-wave scatter-
ing length as is replaced according to as → mq2/(ħκ)2.

Further, the linearized equation of motion for the perturbed particle density used by
Stringari for the derivation of the normal modes [138] can be obtained in an equivalent
form from Eqs. (5.5) within the mean-field LDA, yielding (for zero damping)

ω2n̂1 =−
(
ω2

0

2

)
∇· [(R2

LDA − r 2)∇n̂1
]

.

Even though the two systems describe very different physical situations, their mathemat-
ical equivalence and the close similarity of the LDA density (5.13) with the mean-field re-
sult (5.9) for kC À 1 will allow for a comparison with the results obtained in the context
of confined Bose gases as well—in addition to the obvious Coulomb limit. Analogies of
the Yukawa potential with the Coulomb and the Dirac delta potential are also discussed by
Olivetti et al. [139].

5.2.3 Electrostatic Potential and Ground State Energy

The ground state energy for a confined plasma in the mean-field approximation is given
by Etot = Epot +Eint [76], where

Epot =
∫

V (r )n0(r )dr , Eint =
q

2

∫
φ0(r )n0(r )dr . (5.14)

It contains a contribution from the external confinement (Epot) and the electrostatic inter-
action energy (Eint), cf. Eqs. (4.1).

The evaluation of the interaction energy requires the ground state potentialφ0(r ), which
is determined by the screened Poisson equation (5.3b). Since the Yukawa potential is the
associated Green’s function with the boundary conditionφ0(r ) → 0 for r →∞ [76, 140], the
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Figure 5.1: Dependence of (a) ratio of nth to first density moment, and (b) ground state energy con-
tributions on the plasma parameter ξ. From Ref. [131]. Copyright (2010) by the Ameri-
can Physical Society.

solution is given by

φ0(r ) = q
∫

n0(r ′)
e−κ|r−r ′|

|r − r ′| dr ′ (5.15)

= q

a

(R/a)2

1+ξ

{
1
2

[
3+ξ− (1+ξ)

( r
R

)2
]

, r ≤ R,

R exp(ξ−κr )/r, r > R.

Details on the evaluation of the integral can be found in the Appendix. One can readily
check that the potential (5.15) satisfies Eq. (5.3a) and thus ensures local force equilibrium
inside the plasma [76]. Outside the plasma, φ0(r ) = Qeff e−κr /r has the form of a Yukawa
potential with an effective charge Qeff = q (R/a)3 eξ/(1+ξ). In the Coulomb limit, one re-
covers the result expected from Gauss’ law, Qeff = N q .

The potential and interaction energy then follow from Eqs. (5.14) as

Epot

q2/a
= (R/a)5

10

[
3+ ξ2

7

8+ξ
1+ξ

]
,

Eint

q2/a
= (R/a)5

210

[
126+147ξ+72ξ2 +18ξ3 +2ξ4

(1+ξ)2

]
.

The total energy Etot = Epot +Eint is given by

Etot

q2/a
= (R/a)5

210

[
189+273ξ+159ξ2 +45ξ3 +5ξ4

(1+ξ)2

]
. (5.16)

For Coulomb interaction, the result is Etot/N = (9/10) N 2/3q2/a [8, 69], which is recov-
ered from Eq. (5.16) upon taking the limit ξ = 0 and R/a = N 1/3. It corresponds to the
mean-field term in the energy expansion of the shell model [80]. In a Yukawa system, Etot

is a function of R and ξ, i.e., it depends on N and κa separately, see Fig. 5.1(b).
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In the limit ξÀ 1, one finds the asymptotic solution

Etot

q2/a
'

(
R

a

)5 ξ2

42
= 1

(κa)5

ξ7

42
' 157/5

42

N 7/5

(κa)4/5
, (5.17)

where ξ ' 151/5 k3/5
C has been used in the last step [76], cf. Eq. (5.12). This expression can

be compared with the total energy for a trapped Bose gas in the Thomas-Fermi approxi-
mation [137].4 When the replacement of the screening length and the charge is performed
as discussed in Sec. 5.2.2, the results are found to be identical.

The asymptotic dependence of the total energy on the particle number changes from
Etot ∝ N 5/3 in a Coulomb system to a weaker growth with Etot ∝ N 7/5 for Yukawa interac-
tion. Further, Fig. 5.1(b) shows that the main contribution to the total energy is due to the
interaction energy in a weakly screened system and due to the potential energy in a system
with strong screening. This can be explained by the exponential shielding of the Coulomb
potential. The critical point where Epot = Eint is at ξ≈ 1.72.

5.3 Normal Modes

5.3.1 Homogeneous System

Before the normal modes for a finite confined Yukawa plasma are derived, it is instructive
to review the associated results for a uniform macroscopic system.

Due to the uniformity of the ground state, the perturbed potential φ̂1(r ,ω) can be ex-
pressed as a superposition of plane waves, i.e., φ̂1(r ,ω) ∼ e i k ·r . Using this ansatz in Eq. (5.6)
in conjunction with a uniform dielectric function, ε(ω) = 1−ω2

p/ω2, leads to the dispersion
relation for the dust acoustic wave (see, e.g., Refs. [96, 97]),

ω(k) =ωp

√
k2

k2 +κ2 .

As discussed in Sec. 3.2.3, the wave is acoustic in the long-wavelength limit (k ¿ κ),
and its frequency approaches ωp for k → ∞. The latter is the characteristic property of
the long-ranged Coulomb system (ω≡ωp), while the former is found for the short-ranged
delta potential (ω ≡ csk) [138].5 The screening length is the length scale that determines
the extent to which the Yukawa dispersion relation resembles the two limiting forms.

Modifications of the eigenfunctions and eigenfrequencies for a confined plasma are dis-
cussed in the following.

4See Eq. (11) in Ref. [137] and the proceeding paragraph. In the notation of Ref. [137], useλ= 1,ω0
⊥ =ω0

z ≡ω0,

and the replacement as = mq2/(ħκ)2 for the s-wave scattering length.
5The sound speed for the Bose gas is cs = (4πħ2asn0/m2)1/2 [138] and becomes equivalent to the Yukawa

result cs =ωp/κ [96] after proper replacement of the s-wave scattering length.
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Chapter 5 Cold-Fluid Theory of Normal Modes

5.3.2 Eigenvalue Problem

General Properties of the Eigenvalue Problem

The spatial form of the eigenmodes is determined by Eq. (5.6) and the ground state den-
sity profile n0(r ) entering the dielectric function (5.7). However, this is not sufficient for a
complete determination of the normal modes. Additionally, one has to specify physically
relevant boundary conditions for φ̂1. Since the charge distribution is localized in space,
the potential must satisfy [132]

lim
|r |→∞

φ̂1(r ,ω) = 0. (5.18)

Boundary conditions on φ̂1 at the plasma radius, where the density drops to zero, will be
discussed in Sec. 5.3.4.

Equation (5.6) and the boundary condition (5.18) are already sufficient to obtain some
general results for the range of allowed eigenfrequencies. Following the procedure used by
Dubin [141], Eq. (5.6) is multiplied by φ̂∗

1 and subsequently integrated over R3. It is thereby
assumed that φ̂1 is a valid solution. After a partial integration using Gauss’ law and making
use of Eq. (5.18), the result can be expressed as

∫

R3

[
κ2|φ̂1|2 +ε(r ,ω)|∇φ̂1|2

]
dr = 0. (5.19)

Since the first term only yields positive contributions to the integral, there must be a re-
gion where ε(r ,ω) < 0. Considering the cold-fluid form (5.7) of the dielectric function, this
yields the allowed range of eigenfrequencies in the absence of damping (ν= 0) as

0 <ω2 < max
r∈R3

[
ω2

p(r )
]

. (5.20)

Thus, the highest permissible eigenfrequency is determined by the maximum of the plas-
ma frequency.

If friction is included, ω2 must be replaced by ω(ω+ iν), and the (complex) eigenfre-
quency ω(ν) is obtained from the relation ω(ν)[ω(ν)+ iν] = ω2(ν = 0). This is the same
relation as for a damped harmonic oscillator [9]. In the following, it is sufficient to con-
sider the frictionless limit.

Dielectric Function for Spherical Confinement

The results obtained so far are quite general and will now be applied to the ground state
density given by Eq. (5.9). The explicit result for the dielectric function can be written as a
function of x = κr as6

ε(x,Ω) =
{

1−Ω2
p(x)/Ω2, x ≤ ξ,

1, x > ξ,
(5.21)

6The regions inside and outside the plasma now correspond to x ≤ ξ and x > ξ, respectively.
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where Ω=ω/ω0 is the normalized eigenfrequency. These dimensionless variables will be
convenient for the calculations. The squared plasma frequency following from the defini-
tion of the plasma frequency [Eq. (5.8)] and the ground state density [Eq. (5.9)] is

Ω2
p(x) =

ω2
p(r )

ω2
0

= 3+ ξ2

2

3+ξ
1+ξ −

x2

2
, x ≤ ξ.

Since in this particular case the maximum is at the center of the trap, the eigenfrequen-
cies must satisfy 0 <Ω2 <Ω2

p(0), cf. Eq. (5.20). The remainder of this section will now be
devoted to finding the solutions of Eq. (5.6) with the dielectric function (5.21).

5.3.3 Eigenfunctions

Ansatz for Eigenfunctions

Due to the isotropy of the ground state, the perturbed potential can conveniently be ex-
panded in spherical harmonics, i.e.,

φ̂1(r ,ω) ∼ f`(r,ω)Y`m(θ,ϕ). (5.22)

When this ansatz is used in Eq. (5.6), an equation for the radial function f`(r,ω) can be
obtained by using the fact that the spherical harmonics are eigenfunctions of the angular
part of the Laplacian [107, 140],

∆Y`m(θ,ϕ) =−`(`+1)

r 2 Y`m(θ,ϕ).

Using the orthogonality relation of the spherical harmonics [140], one can pick out the
expansion coefficient for Y`m by multiplying the resulting equation by Y ∗

`m and integrating
over the angular coordinates. This leads to the following differential equation for f̃`(x,Ω),

∂

∂x

[
ε(x,Ω)x2 f̃ ′

`(x,Ω)
]− [

x2 +`(`+1)ε(x,Ω)
]

f̃`(x,Ω) = 0. (5.23)

Here, a change of variables was made from r to a dimensionless form with the radial co-
ordinate x = κr , accompanied by f`(r,ω) → f̃`(x,Ω). Further, the equation was multiplied
by x2.

Equation (5.23) shows that the form of the radial function is independent of m, which
justifies the ansatz (5.22). The ground state density—and consequently the dielectric func-
tion—both have a discontinuity at r = R (i.e., x = ξ). Therefore, Eq. (5.23) must be solved
separately inside and outside the plasma, and the two solutions must be matched appro-
priately at the boundary.

Solution Outside the Plasma

Outside the plasma, the dielectric function is simply ε ≡ 1 [cf. Eq. (5.21)], and Eq. (5.23)
reduces to the radial function of the screened Poisson equation with zero charge density,

x2 f̃ ′′
` (x)+2x f̃ ′

`(x)− [
x2 +`(`+1)

]
f̃`(x) = 0. (5.24)

43



Chapter 5 Cold-Fluid Theory of Normal Modes

Its solutions are the modified spherical Bessel functions of the first and second kind, i`(x)
and k`(x), respectively.7 They are defined in terms of modified Bessel functions as [140]

i`(x) =
√

π

2x
I`+1/2(x), k`(x) =

√
2

πx
K`+1/2(x). (5.25)

The general solution of Eq. (5.24) is a linear combination of the two. However, the
boundary condition (5.18) rules out i`(κr ) as a valid solution since it is divergent in the
limit r →∞ [140]. On the other hand, k`(κr ) → 0, and so the general solution outside the
plasma is

f out
` (r ) = k`(κr ). (5.26)

For Coulomb systems, the radial function is given by the familiar solution of Laplace’s
equation in spherical coordinates, f out

`
(r ) ∼ r−(`+1) [107, 115].

Solution Inside the Plasma

Inside the plasma, the differential equation (5.23) is more complicated as one has to deal
with the inhomogeneity of the dielectric function (5.21). In order to find a solution, the
radial function is written—in a first step—as f̃`(x,Ω) = x`g`(x,Ω). Insertion of the ansatz
in Eq. (5.23) yields

x
∂

∂x

[
ε(x,Ω)g ′

`(x,Ω)
]+2(`+1)ε(x,Ω)g ′

`(x,Ω)− [
x −`ε′(x,Ω)

]
g`(x,Ω) = 0. (5.27)

Further progress can be made by another change of variables from x to z = x2/x2
s , where

x2
s = 2[Ω2

p(0)−Ω2]. The notation for g`(x,Ω) is thereby changed to g̃`(z,Ω). Employing
Eq. (5.21) and performing the algebra, one arrives at the hypergeometric differential equa-
tion8

z(1− z)g̃ ′′
` (z,Ω)+ [`+3/2− (`+5/2)z] g̃ ′

`(z,Ω)− `−Ω2

2
g̃`(z,Ω) = 0, (5.28)

where the prime indicates differentiation with respect to z.
The general solution of Eq. (5.28) around z = 0 (i.e., the trap center r = 0) is

g̃`(z,Ω) =A 2F1

(
α`−δ`

2
,
α`+δ`

2
;α`; z

)
+B z1−α`

2F1

(
β`−δ`

2
,
β`+δ`

2
;β`; z

)
, (5.29)

with arbitrary constants A and B . The various parameters of the hypergeometric function

2F1 can be determined by comparison of Eq. (5.28) with the general form of the hypergeo-
metric differential equation. This results in

α` = `+
3

2
, β` =

1

2
−`, δ` =

√
`(`+1)+ 9

4
+2Ω2. (5.30)

7Many properties of the modified (spherical) Bessel functions can be found in Refs. [140, 142] and the corre-
sponding articles of Refs. [143, 144]

8For the hypergeometric differential equation and its solutions see, e.g., Refs. [140, 143, 144]. It is commonly
written in the form z(1− z)g ′′(z)+ [c − (a +b +1)z]g ′(z)−ab g (z) = 0 with constant coefficients a,b,c.
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When Eq. (5.29) is combined with the ansatz f̃`(x,Ω) = x`g`(x,Ω), one obtains the possible
solutions for the radial eigenfunction in the form

f̃ (1)
`

(x,Ω) ∼ x` 2F1

(
α`−δ`

2
,
α`+δ`

2
;α`;

x2

x2
s

)
,

f̃ (2)
`

(x,Ω) ∼ x−(`+1)
2F1

(
β`−δ`

2
,
β`+δ`

2
;β`;

x2

x2
s

)
.

The second solution, f̃ (2)
`

(x,Ω), diverges at the origin and must therefore be disregarded
for physical reasons. Finally, the solution inside the plasma is obtained as

f in
` (r,ω) = r ` 2F1

(
α`−δ`

2
,
α`+δ`

2
;α`;

κ2r 2

x2
s

)
. (5.31)

Again, this can be compared with the results in the Coulomb limit [115]. Here, the di-
electric function inside the plasma is constant, and the solutions are those of Laplace’s
equation, namely f in

`
(r ) ∼ r `.9 They simply constitute the first factor in Eq. (5.31). The

hypergeometric function accounts for the modifications of the solution compared to the
Coulomb limit and incorporates the combined effect of screening and the inhomogeneous
density profile.

5.3.4 Eigenfrequencies

Before the eigenfrequencies of the system are determined, it is necessary to comment on
the properties of the hypergeometric function. The associated differential equation (5.28)
has three regular singular points at z = 0,1,∞ [140]. The case z = 1 corresponds to x2 =
x2

s (Ω) = 2[Ω2
p(0)−Ω2] and is directly related to a root of the dielectric function, ε(xs ,Ω) = 0.

At these points xs , the eigenfrequency Ω equals the local plasma frequency, Ω = Ωp(xs),
see Ref. [141]. The solutions of the hypergeometric differential equation can be singular at
these points and must therefore be handled with care.

The series representation of the hypergeometric function is (e.g., Refs. [140, 143])

2F1(a,b;c; z) =
∞∑

k=0

(a)k (b)k

(c)k

zk

k !
(5.32)

= 1+ ab

c

z

1!
+ a(a +1)b(b +1)

c(c +1)

z2

2!
+ . . . ,

where (a)k = Γ(a +k)/Γ(a) denotes the Pochhammer symbol. It is convergent for |z| < 1
provided c is not a negative integer. In the following, only those frequencies of the spec-
trum are considered that satisfy

Ω2 <Ω2
p(ξ) = 3+ ξ2

1+ξ . (5.33)

9There is another class of solutions that will be discussed in Sec. 5.3.5, see Refs. [115, 121]
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Figure 5.2: Sketch of the plasma frequency profile. The shaded region indicates the considered fre-
quency rangeΩ2 <Ω2

p(ξ) in which local resonances are not possible.

This guarantees that |z| < 1 for all x inside the plasma. For a Coulomb system, this cor-
responds to the interval in which the spectrum is discrete, while the range Ω2 > Ω2

p(ξ)
would be associated with a continuous spectrum [145] and the possible existence of hid-
den (damped) quasi-modes, see Ref. [141]. The problem is illustrated in Fig. 5.2.

Boundary Conditions

As has been mentioned before, the eigenfrequencies are determined from the boundary
conditions at the plasma radius. They can be derived from two integrations of Eq. (5.23)
[more generally, Eq. (5.6)] across the plasma surface, see Refs. [132, 141].

In the present case, the first integration yields

x2ε(x,Ω) f̃ ′
`(x,Ω)−x2

inε(xin,Ω) f̃ ′
`(xin,Ω) =

∫ x

xin

[
(x ′)2 +`(`+1)ε(x ′,Ω)

]
f̃`(x ′,Ω)d x ′, (5.34)

where xin and x are radial coordinates inside and outside the plasma, respectively. Taking
the limits xin → ξ− and x → ξ+, one finds the first boundary condition

ε(x,Ω)
∂ f̃ in

`
(x,Ω)

∂x

∣∣∣∣∣
x=ξ

=
∂ f̃ out

`
(x,Ω)

∂x

∣∣∣∣∣
x=ξ

. (5.35)

The integral on the right-hand side of Eq. (5.34) vanishes since f̃`(x,Ω) is a well-behaved
function forΩ<Ωp(ξ).

Dividing Eq. (5.34) by x2ε(x,Ω) and integrating a second time (from x = x̃in to x = xout)
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leads to

f̃`(xout,Ω)− f̃`(x̃in,Ω) =
∫ xout

x̃in

d x

x2ε(x,Ω)

×
{

x2
inε(xin,Ω) f̃ ′

`(xin,Ω)+
∫ x

xin

[
(x ′)2 +`(`+1)ε(x ′,Ω)

]
f̃`(x ′,Ω)d x ′

}
.

Again, the integrand in this equation is well-behaved for Ω < Ωp(ξ), and the right-hand
side goes to zero upon taking the limits x̃in → ξ− and xout → ξ+. This gives the second
boundary condition

f̃ in
` (x,Ω)

∣∣
x=ξ = f̃ out

` (x,Ω)
∣∣

x=ξ . (5.36)

Equations (5.35) and (5.36) express the continuity of the radial component of ε∇φ̂1 and
the tangential components of ∇φ̂1, respectively.10 They are analogous to those between
two dielectric media [146].

Eigenvalue Equation

The general solutions for the radial functions inside and outside the plasma are of the
form a f in

`
(r,ω) and b f out

`
(r ), respectively [see Eqs. (5.26) and (5.31)]. The boundary condi-

tions (5.35) and (5.36) then constitute a set of linear equations for the unknown coefficients
a and b. A non-trivial solution requires the vanishing of the determinant, which yields the
eigenvalue equation in the form

D(Ω,ξ) =
[
`ε(ξ,Ω)−ξ

k ′
`

(ξ)

k`(ξ)

]
2F1

(
α`−δ`

2
,
α`+δ`

2
;α`;

ξ2

x2
s

)
(5.37)

+ε(ξ,Ω)
(`−Ω2)

α`

ξ2

x2
s

2F1

(
α`−δ`

2
+1,

α`+δ`
2

+1;α`+1;
ξ2

x2
s

)
= 0.

In general, Eq. (5.37) must be solved numerically, but it is possible to obtain analytic
results in both the Coulomb limit (ξ→ 0) and the macroscopic limit (ξ→ ∞). Note that
the solutions Ω(ξ) only depend on ξ and not on κa and N separately. The mathematical
details for the derivation of the analytic limits are presented in the Appendix.

Coulomb Limit

In the limit ξ→ 0, the density profile (5.9) becomes homogeneous inside the plasma. Thus,
the possible eigenmodes are those of a uniformly charged sphere for which two classes of
solutions are known to exist: surface modes and bulk modes, see Refs. [115, 121]. The
eigenfrequencies of the surface modes are given by Ω2

`
= 3`/(2`+1). Leading-order cor-

rections for Yukawa interaction with finite ξ are determined as

Ω2
`(ξ) ' 3`

2`+1
+

(
4`3 +6`2 −10`

8`3 +12`2 −2`−3

)
ξ2 + . . . , ξ¿ 1, (5.38)

10For the spherical system considered here with φ̂1(r ,ω) ∼ f`(r,ω)Y`m (θ,ϕ), the radial component of ∇φ̂1
only requires the derivative of f`(r,ω) and the tangential components only those of Y`m (θ,ϕ).
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see the Appendix. Except for the center-of-mass mode (`= 1), which is independent of the
particle interaction [147], all mode frequencies increase with the screening parameter.

The bulk modes in the Coulomb system are degenerate and oscillate at the plasma fre-
quency, Ω2

p = 3 [115, 121]. For ξ > 0, the degeneracy is found to be lifted, and the mode
frequencies depend on the angular mode number `= 0,1,2. Explicitly, one finds

Ω2
`(ξ) ' 3+ c`ξ

2 + . . . , ξ¿ 1, (5.39)

with the coefficients c0 ≈ 0.85031, c1 ≈ 0.98624, and c2 ≈ 0.99992. The increasing value of
the expansion coefficients shows that the eigenfrequencies approach the surface plasma
frequency Ω2

p(ξ) ≈ 3+ ξ2 + . . . upon increase of `. The behavior of the eigenvalues in the
vicinity ofΩp(ξ) will be discussed after the limit ξ→∞.

Macroscopic/Strong Screening Limit

It has already been pointed out that the convergence of the hypergeometric function (5.32)
is not generally guaranteed at z = 1. However, there are certain cases for which its series
representation reduces to a polynomial and thus converges regardless of the value of z.
These cases are encountered when a or b is a negative integer, see Eq. (5.32). This fact can
be used to find the solutions in the limit ξ→∞.

Employing the relation Ω2 < Ω2
p(ξ), it can be shown that ξ2/x2

s → 1 for ξ → ∞ in the
eigenvalue equation (5.37). The choice a = (α`−δ`)/2 =−n (n ∈N) reduces the hypergeo-
metric function to a polynomial. Solving the previous relation forΩ2 yields the solutions

lim
ξ→∞

Ω2
n`(ξ) ≡Ω2

n`,∞ = 2n2 + (2`+3)n +`. (5.40)

A more detailed analysis (see the Appendix) shows that for finite ξ the lowest-order correc-
tion is given by

Ω2
n`(ξ) 'Ω2

n`,∞− dn`

ξ2 + . . . , ξÀ 1, (5.41)

where the expansion coefficients dn` read

dn` = (2n +`+3/2)[(4n3 +12n2 +3n −9)n

+2`(4n3 +8n2 +2`n(n +1)+`−1)]. (5.42)

Compared to the Coulomb limit, the solutions are now determined by an additional mode
number n.

As was done for the ground state energy, this result can be compared with the corre-
sponding expression for a trapped (Bose) gas with delta interaction. In these systems, the
eigenfrequencies were derived by Stringari [138] and are found to be in full agreement
with Eq. (5.40). For (n,`) = (1,0), the result of Sheridan [120] for the breathing mode is re-
covered, see also the discussion in the next section. Considering the different forms of the
density profile (parabolic decay without step at r = R for the Bose gas [137, 138], the homo-
geneous sphere with step considered by Sheridan [120], and the “mixed” profile (5.9) [76]),
it is surprising that all three results coincide.
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Figure 5.3: Eigenfrequencies and their dependence on ξ for various modes (n,`) as indicated in the
figure. The arrows show the analytic limits for ξ= 0 and ξ→∞. The crosses denote the
parameters at which new modes appear to the right of ξcrit

n` . From Ref. [131]. Copyright
(2010) by the American Physical Society.

Eigenfrequencies for Arbitrary ξ

A numerical solution of the eigenvalue equation (5.37) yields the mode spectrum shown in
Fig. 5.3. The limits found in the previous section are recovered for ξ→ 0 and ξ→∞. Fur-
ther, the numerical solution allows one to find the relation between the Coulomb modes
and the modes with the new mode number n in the opposite limit.

Following the eigenmodes with n = 0 from ξ=∞ to ξ= 0, it is found that they connect to
the Coulomb surface modes in a continuous way. The same behavior is observed for n = 1
with ` = 0,1,2. These modes approach the frequency of the bulk modes in the Coulomb
system. In all other cases, the frequency approaches Ωp(ξ) as ξ decreases, but the corre-
sponding root in Eq. (5.37) vanishes at some critical point ξcrit

n` , i.e., these modes exist only
for ξ > ξcrit

n` . This is associated with the behavior of the hypergeometric function in the
vicinity ofΩp(ξ), see the Appendix.

Similar to the determination of the eigenfrequencies in the limit ξ → ∞, the critical
points ξcrit

n` can be found from the condition a = (α` −δ`)/2 = −(n + 1).11 However, in-
stead of solving forΩ2, one usesΩ2 =Ω2

p(ξ) = 3+ξ2/(1+ξ) and solves for ξ. The solutions
correspond to the values of the plasma frequency at the boundary, where the hypergeo-
metric series terminates at a finite order. From the numerical evaluation of Eq. (5.37) and
the analysis presented in the Appendix, they are identified as the critical points for the

11The particular choice of −(n +1) for the negative integer ensures that the modes are labeled consistently.
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emergence of new modes in the eigenvalue equation.
Explicitly, they are given by

ξcrit
n` = 1

2

[
ζn`+

√
ζn`(ζn`+4)

]
, (5.43)

ζn` = (2n −1)(n +`)−4,

where `≥ 3 for n = 1. The corresponding plasma frequency is

Ω2
n`(ξcrit

n` ) = (2n +1)(n −1)+ (2n −1)`. (5.44)

The mode spectrum can then be summarized as follows: The eigenfrequencies are de-
termined by the mode numbers (n,`) and the plasma parameter ξ. For n = 0 with arbitrary
` and n = 1 with ` = 0,1,2, the modes exist for all values of ξ, while the remaining modes
exist only for ξ > ξcrit

n` . A special case occurs for (n,`) = (1,3) with ξcrit
13 = 0. The main dif-

ference compared to a Coulomb system is the appearance of the new mode number n and
the degeneracy lifting of the bulk modes.

5.3.5 Explicit Results for the Eigenmodes

The eigenmodes inside the plasma explicitly depend on the eigenfrequencyΩ [Eq. (5.31)].
With the results from the previous section, it is now possible to further study the form of
the eigenfunctions.

Coulomb Limit

The eigenfunctions for the oscillations of a uniformly charged sphere are well-known and
will be briefly reviewed here [115, 121]. As can be seen from Eq. (5.6) with a constant di-
electric function inside the plasma, the problem reduces to

ε(ω)∆φ̂in
1 (r ,ω) = 0, ∆φ̂out

1 (r ) = 0. (5.45)

While φ̂out
1 must always satisfy Laplace’s equation, two possibilities exist to fulfill the equa-

tion for φ̂in
1 . The surface modes are the solutions of Laplace’s equation, ∆φ̂in

1 (r ,ω) = 0,
whereas the bulk modes are characterized by ε(ω) = 0, i.e., ω=ωp [115].

In the former case, the explicit results are f in
`

(r ) ∼ r ` and f out
`

(r ) ∼ r−(`+1), while in the
latter, the form of the eigenfunctions inside the plasma remains undetermined. This is why
the bulk modes are highly degenerate. It can be shown from the boundary conditions that
in this case φ̂out

1 = 0 [115]. The continuity of the radial eigenfunction across the plasma
boundary then implies f in(R) = 0.

Eigenmodes for Yukawa Interaction

The different solutions of the eigenvalue equation are labeled by the mode number n.
Since the eigenfrequency directly determines the form of the radial eigenfunction accord-
ing to Eq. (5.31), n can be regarded as the radial mode number—analogous to the angular
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Figure 5.4: Radial eigenfunctions in the limit ξ→ ∞ for various modes as indicated in the figure.
From Ref. [131]. Copyright (2010) by the American Physical Society.

mode numbers ` and m. The radial eigenfunctions then follow from the various solutions
of Eq. (5.37) together with Eq. (5.31).

Instead of starting with the limit ξ¿ 1, it is advantageous to begin the discussion of the
eigenmodes with the case ξ→∞. It has been pointed out in Sec. 5.3.4 that in this case the
hypergeometric function terminates at a finite order n. Thus, the resulting eigenfunction
is an nth order polynomial in the parameter z = r 2/R2. The explicit result follows from
Eqs. (5.31), (5.32) and (5.40) as

f in
` (r,ωn`,∞) = r `

n∑

k=0

(−n)k

k !

(α`+n)k

(α`)k

( r

R

)2k
(5.46)

∝ r `P (`+1/2,0)
n

(
1− 2r 2

R2

)
,

which can be identified as a particular form of Jacobi polynomials P (`+1/2,0)
n (x) [142, 144].

This is in agreement with Stringari’s results for the perturbed density in the Bose gas [138],
see Ref. [148] for an expression in terms of the hypergeometric function. In this case, the
density serves as the “potential” for the perturbed velocity, i.e., û1 ∝∇n̂1.

For n = 0, the sum in Eq. (5.46) is just a constant, and it is readily seen that the eigen-
modes are equivalent to the (incompressible) surface modes in a Coulomb system. At fi-
nite ξ, the form of the eigenfunctions is only slightly changed, in particular, there exist no
radial nodes. In the case of the center-of-mass modes with (n,`) = (0,1), Ω1 = 1 is a solu-
tion for any ξ. Consequently, the associated eigenfunctions are also independent of ξ and
read φ̂in

1 (r ,ω01) ∼ r Y1m(θ,ϕ).
Several eigenmodes with n > 0 are depicted in Fig. 5.4. It shows that the number of

radial nodes is determined by the mode number n. Upon increase of n, the radial struc-
ture of the eigenfunction becomes more oscillatory, and the modes have several minima
and maxima. On the other hand, an increase of ` leads to a shift of the extrema and the
excitation toward the surface.
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Figure 5.5: Radial eigenfunctions for various ξ’s and mode numbers (n,`). From Ref. [131]. Copy-
right (2010) by the American Physical Society.

Following the modes with n > 0 from ξ = ∞ to ξ = 0, one must differentiate between
those with n = 1 and ` = 0,1,2 that extend up to ξ = 0, and those that vanish below a
critical ξcrit

n` . In the former case, the radial eigenfunctions at ξ= 0+ can be written as

f in
` (r,

p
3ω0) = r ` 2F1

(
α`−δ`

2
,
α`+δ`

2
;α`;

(r /R)2

3−2c`

)
, (5.47)

where δ` must be evaluated at Ω2
p = 3. The choice of the coefficients c` ensures that

f in
`

(R,
p

3ω0) = 0—as required for the bulk modes in the Coulomb limit. Consequently,
they also exist in a genuine Coulomb system, where they simply belong to the large class
of bulk modes. For finite ξ, the root at r = R becomes a node inside the plasma region, see
Figs. 5.5(a) and (b).

The other modes with n > 0 display a different behavior [Figs. 5.5(c) and (d)]. As ξ de-
creases and the critical ξcrit

n` is approached from above, the outermost node is displaced
toward the plasma boundary. The radial eigenfunction exhibits a strong variation near the
plasma edge. In Figs. 5.5(c) and (d), the solution of Eq. (5.31) with the eigenfrequency at the
critical point [Eq. (5.44)] is shown for comparison. Even though the eigenfunction tends
toward this limit, there is an important difference: For ξ & ξcrit

n` the potential has a node
in the close vicinity of the plasma edge that is absent in the limiting form. The first-order
velocities are related to the perturbed potential by û1 ∼∇φ̂1, see Eq. (5.5b). Since the radial
gradient of the aforementioned modes is very steep near the plasma edge for ξ& ξcrit

n` , the
excitation is primarily located near the surface.
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Breathing Mode

Among the various normal modes, the breathing mode has been of particular interest re-
cently [13, 14, 120] and therefore deserves a closer inspection. It is the lowest mode with
spherical symmetry, i.e., its indices are ` = 0 and n = 1. The very general analysis per-
formed in Ref. [13] shows that a universal breathing mode with uniform particle displace-
ments ∝ r s

i exists only for power-law interparticle forces and harmonic confinement po-
tentials. Here, the {r s

i } denote the equilibrium positions of the particles in a stationary
state s. For a Coulomb system in a harmonic trap, these conditions are fulfilled, and the
breathing frequency is given by Ωbr =

p
3. On the other hand, the Yukawa potential does

not satisfy the criteria and therefore no universal breathing mode exists [13]. Nevertheless,
the lowest monopole mode in the cold-fluid theory is very similar to a uniform breathing
mode.

In the limit ξ→ ∞, the eigenfunction for (n,`) = (1,0) has a constant and a quadratic
term, leading to û1 ∼ r êr , where êr is the unit vector in the radial direction [Eq. (5.5b)]. This
shows that the lowest monopole mode corresponds to a uniform breathing mode in the
macroscopic limit. However, for finite ξ the uniformity condition is violated, see Fig. 5.6.
In the limit ξ→ 0, one would expect that it is restored. However, this is not true, and the
mode form becomes even more non-uniform. On the other hand, this observation is not
alarming either since the mode is a valid solution of the eigenmode equations. The correct
breathing mode in the Coulomb limit is given by φ̂in

1 (r ) ∼ (r 2 −R2) [121], which has both
the quadratic r -dependence and satisfies the boundary condition φ̂in

1 (R) = 0.

The breathing mode for a harmonically confined Yukawa plasma has been investigated
by Sheridan [120] by assuming both the density and the particle displacements to be uni-
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form. Comparing the eigenfrequencies with those obtained here, it is found that the two
expressions agree to within 0.5% as a function of the dimensionless plasma radius ξ= κR.
One must note, however, that the parameter ξ introduced by Sheridan involves the radius
for a homogeneous sphere.

5.4 Summary
Based on previous results for the ground state density profile [76], analytic expressions
have been presented for the total energy and the density moments of a confined Yukawa
plasma. The density moments could be useful for a determination of the plasma parame-
ter ξ= κR and the radius R from experimental data. Furthermore, the linearized cold-fluid
equations have been solved to extend the static results to a time-dependent theory, which
represents the main result of this chapter.

While waves in a uniform plasma are specified by a wave vector k , the cold-fluid eigen-
modes of a harmonically confined Yukawa plasma are characterized by a radial mode
number n and two angular mode numbers (`,m). Their frequencies depend on the sin-
gle parameter ξ (or equivalently, the product kC = κaN 1/3), increase monotonically with
ξ, and saturate in the limit ξ→∞. It has been shown that the degeneracy of the Coulomb
bulk modes is lifted in a Yukawa system and that several new modes appear upon increase
of ξ. In the limit ξ→ ∞, the results for a trapped (Bose) gas with an effective local delta
potential [138] have been recovered.

In agreement with previous results based on the harmonic approximation [13], the fluid
theory confirms that a uniform breathing mode does not exist in harmonically confined
Yukawa plasmas. Surprisingly, the largest deviations from the uniformity condition occur
for ξ¿ 1, whereas it is restored in the limit ξ→∞.

Related Journal Publication

• H. Kählert and M. Bonitz, Fluid modes of a spherically confined Yukawa plasma,
Phys. Rev. E 82, 036407 (2010)
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CHAPTER 6

Molecular Dynamics Simulation of Collective
Excitations

The normal mode theory presented in the previous chapter is based on the cold-fluid
equations, i.e., correlation and thermal effects are completely neglected. A more sophisti-
cated analysis is required in order to fully understand the mode spectrum of strongly cou-
pled Yukawa Balls. For a uniform (Yukawa) one-component plasma, molecular dynamics
(MD) simulations provided a wealth of additional information about the collective modes,
e.g., the existence of harmonics of the plasma frequency [149] or shear modes with a cut-
off at finite wave vectors [12]. In addition to the mode frequencies, the wave spectra from
MD simulation also yield the damping rates via the peak widths [108]. They contain all cor-
relation and finite temperature effects and thus offer an exact description of the collective
excitations.

The good agreement of the cold-fluid theory with both simulations [121] and experi-
ments [133, 134] in the case of confined ions motivated its application to Yukawa Balls
(Ch. 5). For these systems, the accuracy of the mean-field approach to the ground state
was analyzed in Ref. [76]. While the agreement with exact results was good for weak and
moderate screening parameters, the deviations were found to increase in systems with
very short-ranged interaction. Thus, it is essential to evaluate the accuracy of the cold-
fluid equations for the normal modes as well.

In the frame of this work, molecular dynamics simulations have been performed that re-
veal both the complete excitation spectrum and the applicability limits of the fluid theory
for Yukawa systems [135]. They will be presented in this chapter. Mode spectra are ana-
lyzed for a wide range of screening and coupling parameters. They show that the agree-
ment between theory and simulation strongly depends on the particular normal mode
and the screening parameter, while temperature effects are rather weak. A qualitatively
new mode is observed in the MD spectra at strong coupling. In order to explore the pos-
sibility of observing the normal modes in Yukawa Ball experiments, Langevin dynamics
simulations with a finite damping rate are presented. Complementary to the finite tem-
perature MD simulations, the theory is compared with the exact eigenmodes of a crystal-

55



Chapter 6 Molecular Dynamics Simulation of Collective Excitations

lized plasma. A detailed analysis of the breathing mode reveals its complex temperature
dependence and further elucidates the shortcomings of the fluid theory.

The chapter is organized as follows.1 The details of the simulation method are given
in Sec. 6.1. This is followed by a discussion of the MD mode spectra in Sec. 6.2 and the
comparison with crystal eigenmodes in Sec. 6.3. The chapter concludes with a summary
of the excitation spectrum in Sec. 6.4.

6.1 Simulation Method

6.1.1 Preparation of the System

The MD simulations are based on the Hamiltonian (3.5) for particles in an isotropic, har-
monic confinement interacting via the Yukawa potential. This corresponds to an exact de-
scription of the same physical system as the approximate fluid treatment in the previous
chapter. The Hamiltonian is the same as in Ch. 4, but the simulation method is substan-
tially different.

The screening and coupling dependence of the normal modes is investigated with equi-
librium microcanonical simulations using the velocity Verlet algorithm (3.15). For a cho-
sen Γ = q2/(a kBT ), the kinetic energy in the simulation must satisfy 〈Ekin〉 = 3N kBT /2,
where the brackets denote a time average. This is achieved by rescaling the velocities in
the equilibration phase. Typically, the mean kinetic energy during the actual simulation is
slightly different from the desired value. However, the deviations are rather small and have
negligible influence on the mode spectra. In order to create well-defined conditions, any
residual linear and angular momentum of the whole plasma are removed. Since the ex-
ternal confinement is isotropic, the total angular momentum of the cluster is a conserved
quantity [107]. The total linear momentum is associated with the center-of-mass (COM)
motion and is only of minor interest here, because the COM mode is an exact eigenmode
in a harmonic trap [147].

For the simulations with a finite damping rate, the SLO scheme (3.18) is used for the
integration of the Langevin equation (3.16). In this case, equilibration of the cluster at the
Langevin temperature is established by the action of the random and frictional forces.

6.1.2 Mode Detection

For a spheroidal Coulomb plasma, the fluid eigenmodes were detected in MD simulations
by calculating multipole moments of the density [121]. With some modifications to ac-
count for the different particle interaction, the same technique can be applied here as well.

The starting point is the general solution of the screened Poisson equation for an arbi-
trary density n(r , t ) [76],

φ(r , t ) = q
∫

n(r ′, t )
e−κ|r−r ′|

|r − r ′| dr ′, (6.1)

1This chapter is based on a revised version of Ref. [135].
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6.1 Simulation Method

where the Yukawa potential is the associated Green’s function with the boundary condition
φ(r , t ) → 0 for |r |→∞ [140].

In the next step, the Green’s function is replaced by its corresponding expansion in mod-
ified spherical Bessel functions [see Eq. (5.25)] and spherical harmonics [140],

e−κ|r−r ′|

|r − r ′| = 4πκ
∑

`,m
i`(κr<)k`(κr>)Y ∗

`m(θ′,ϕ′)Y`m(θ,ϕ).

They are the radial solutions of the associated homogeneous equation, see Sec. 5.3.3. The
arguments r< = min(|r |, |r ′|) and r> = max(|r |, |r ′|) are familiar from the equivalent expan-
sion of the Coulomb potential.

Following Dubin and Schiffer [121], it is now possible to calculate multipole moments
of the density. Using the expansion of the Yukawa potential in Eq. (6.1), the spatial depen-
dence of the potential can be separated from the density integration, and one can define
the time-dependent multipole moments as

q`m(t ) = q

√
4π

2`+1

∫
n(r ′, t ) î`(κ,r ′)Y ∗

`m(θ′,ϕ′)dr ′. (6.2)

The Bessel functions are used in the following form,

î`(κ,r ) = (2`+1)!!

κ`
i`(κr ), k̂`(κ,r ) = κ`+1

(2`−1)!!
k`(κr ),

which ensures that the corresponding expressions for the Coulomb case [107], where the
Bessel functions now reduce to î`(κ,r ) → r ` and k̂`(κ,r ) → r−(`+1) [140], are recovered in
the limit κ→ 0.

In using r< as integration variable, it is assumed that the observation point r for the
potential is outside the smallest sphere where the density is non-zero, i.e., |r | > |r ′| for all
r ′ with n(r ′, t ) 6= 0. The result for the potential (6.1) can then be rewritten as

φ(r , t ) =
∑

`,m

√
4π

2`+1
q`m(t ) k̂`(κ,r )Y`m(θ,ϕ), (6.3)

where the full time-dependence is now contained in the multipole moments (6.2).2 A com-
parison of Eq. (6.3) with the form of the perturbed potential outside the plasma in the
fluid approach [Eqs. (5.22) and (5.26)] shows that the functional dependence is completely
equivalent. Thus, the multipole moments (6.2) contain all possible oscillations of the po-
tential for given ` and m [121].

In the simulation, the density is a sum of point particles with (spherical) coordinates
{ri (t ),θi (t ),ϕi (t )}, and Eq. (6.2) reduces to

q`m(t ) = q

√
4π

2`+1

N∑

i=1
î`(κ,ri (t ))Y ∗

`m(θi (t ),ϕi (t )). (6.4)

2A general study of Yukawa electrostatics in the context of electrolyte solutions can be found in Ref. [150].
In particular, the authors derive the true asymptotic expansion of the potential in powers of exp(−κr )/r n ,
where n ∈ N. In contrast to the Coulomb limit, they find that all multipole moments contribute to the
lowest order term (n = 1).
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In order to identify the collective modes in the time series of the multipole moments, the
associated power spectral density is calculated (see, e.g., Ref. [151]),

Q`m(ω) = lim
T→∞

|F (q`m(t )/N ,T,ω)|2
T

, (6.5)

where F ( f (t ),T,ω) denotes the Fourier transform of f (t ) over a finite time interval T .3

Maxima of Q`m(ω) indicate frequencies at which the system supports collective modes.
At finite temperature, the normal modes are thermally excited and manifest themselves

as fluctuations around equilibrium quantities. Therefore, an external driving mechanism
or an initial perturbation of the system [121] is not necessarily required.

6.2 Simulation Results
As discussed in Sec. 4.1, the properties of the N -particle system depend on the coupling
parameter Γ = q2/(a kBT ) and the screening parameter κa. It should be noted again that
their combination determines the effective coupling strength of the system [123, 124], cf.
the discussion in Sec. 4.2.3. In the following, the screening dependence is investigated
at constant Γ even if this leads to systems with different effective coupling. Compared to
a uniform system, an analysis of these effects in a harmonic trap is complicated by the
simultaneous change of the mean density profile with the screening parameter [76]. The
temperature dependence is investigated separately by performing simulations at constant
κa with variableΓ. A detailed investigation of the effective coupling strength or the melting
process in large-sized Yukawa Balls as performed by Schiffer for Coulomb systems [70] is
beyond the scope of this work; for small systems, see Refs. [82, 86].

6.2.1 Screening Dependence

A detailed study of the Coulomb modes has been carried out by Dubin and Schiffer [121].
Here, the main objective is to investigate the change of the mode spectra with the screen-
ing parameter, which is shown in Fig. 6.1 for a fixed coupling parameter Γ= 150 and two
different particle numbers. Near the Coulomb limit (κa ¿ 1), the mode spectra exhibit
maxima in the vicinity of the surface mode frequencies Ω = ω/ω0 = p

3`/(2`+1) [115].
Since the center-of-mass motion has been removed in the equilibration phase, there is no
peak for `= 1. In the simulations with a finite friction coefficient, a well pronounced maxi-
mum is observed at the expected position. For κ= 0, the monopole moment Q00 is simply
the total charge of the cluster and therefore a constant, i.e., it has only a static Fourier com-
ponent. In addition to the surface modes, the multipole spectra have maxima close to the
Coulomb plasma frequency,Ω=

p
3 [115].

The fluid theory discussed in the previous chapter predicts an increase of the mode fre-
quencies and the appearance of new modes upon increase of κa. In general, the MD mode
spectra confirm these results. Nevertheless, important differences are observed as well,
which will be discussed in the following.

3The spectra are obtained using a Hann window function and are moderately smoothed. Numerical routines
for Fourier transforms were kindly provided by David Hochstuhl.
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Figure 6.1: Screening dependence of the m = 0 multipole spectra Q`0(ω) (arb. units) for N = 1000
(left column) and N = 4000 particles (right column) at Γ = 150 without friction. The
solid lines show the results of the cold-fluid theory. From Ref. [135]. Copyright (2011) by
the American Physical Society.
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Monopole Modes

The first monopole (` = 0) mode is the breathing mode with n = 1, cf. Sec. 5.3.5. For this
particular excitation, the simulations are in very good agreement with the results of the
cold-fluid theory, see Figs. 6.1(a) and (e). The small deviations between the two methods
increase with the screening parameter. A second mode is evident in the simulation results
with a frequency above the breathing mode. Comparison with the theory shows that this
corresponds to the n = 2 mode. The cold-fluid theory predicts its existence only beyond
ξcrit

20 ≈ 2.73, see Eq. (5.43), which corresponds to κa ≈ 0.35 and κa ≈ 0.22, for N = 1000 and
N = 4000, respectively. While this is in good agreement with the simulations, the frequen-
cies are shifted upward by a small amount. The deviations are less pronounced for the
larger cluster with 4000 particles, though.

For the few higher order modes observed in the MD spectra, the disagreement with the
cold-fluid theory becomes obvious since (i) they do not yet exist in the theory at the simu-
lated screening parameters (see n = 3 for N = 1000), and (ii) the frequency upshift is rather
large (n = 3 for N = 4000).

Dipole Modes

In the case of the dipole modes (`= 1), the first mode has the radial index n = 0 and corre-
sponds to the center-of-mass motion. In a harmonic trap, the center-of-mass coordinate
R = N−1 ∑N

i=1 r i separately fulfills the equation of motion of a harmonic oscillator with
frequency Ω1 = 1 [74] and is an exact mode. This also implies that it is undamped and in-
dependent of Γ and κa (i.e., the particle interaction [147]). For these reasons and since the
cold-fluid correctly predicts the frequency, it is only of minor interest here.

For the high-order modes (n ≥ 1), the observations made for the monopole modes are
also valid here. The agreement between theory and simulation is very good for n = 1 at
low screening, but the deviations increase for larger κa. The n = 2 mode exists in the the-
ory only for ξ > ξcrit

21 , which agrees well with the MD simulation. Again, there is a small
upshift of the MD frequencies with respect to those of the cold-fluid theory. In general,
the deviations are smaller for the larger cluster with N = 4000. The agreement consider-
ably degrades for n ≥ 3, and the cold-fluid theory no longer captures the correct starting
points.

The main difference compared to the monopole spectra is the appearance of a low fre-
quency mode, which constitutes a new qualitative feature. Its frequency is only weakly
dependent on the screening parameter and lower for N = 4000 than for N = 1000. No such
excitation has been predicted by the fluid theory.

Quadrupole and Octupole Modes

The observations for the quadrupole and octupole modes with n ≥ 1 are not qualitatively
different from those for the monopole and dipole modes. There is good agreement for
the n = 1 mode and a rather substantial frequency upshift for n = 2. On examining the
starting points for the higher order modes (n ≥ 2), it is found that the accuracy of the fluid
theory degrades again. Only for N = 4000 and `= 2 the agreement is still satisfactory, see
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Figure 6.2: (a) Monopole and
(b) dipole spectra for various
screening parameters with
N = 1000 particles at Γ = 150.
The thick arrow in (b) indi-
cates the low frequency peak
in the dipole spectrum. From
Ref. [135]. Copyright (2011) by
the American Physical Society.

Fig. 6.1(g). The `= 2 and `= 3 spectra exhibit the same kind of low frequency excitations
as the dipole spectrum, which the cold-fluid theory fails to predict.

In addition, the quadrupole and octupole spectra show the first non-trivial eigenmodes
with the radial index n = 0. For these modes, the accuracy of the fluid theory is very good.
The general agreement is comparable to that of the n = 1 modes, i.e., excellent at low
screening and slightly worse at larger κa.

Reentrant Behavior of Normal Modes

Figure 6.2 allows for a more detailed inspection of the multipole spectra. In particular, it
shows that the behavior of the modes with n ≥ 2 is partially different from the predictions
of the previous chapter, which has not been discussed so far. The simulations clearly reveal
that the excitation peaks do not completely vanish at a particular value of κa but reappear
at lower screening, see also Fig. 6.1.

Consider the case n = 3 for the monopole modes [Fig. 6.2(a)]. The spectrum shows a
clear maximum at κa = 2. Even though it has completely disappeared from the spectrum
at κa = 1.4, it reappears at κa = 1. A similar observation is made for the n = 2 dipole mode
[Fig. 6.2(b)]. The second maximum in the κa = 1 spectrum does not exist at the expected
position in the κa = 0.7 spectrum but reappears at a lower screening value κa = 0.5. These
excitations are not contained in the eigenfrequency spectrum derived in Ch. 5. However,
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they could be due to the part of the cold-fluid spectrum with frequencies in the interval
Ωp(ξ) <Ω<Ωp(0), see Fig. 5.2.

Discussion

The comparison between the exact MD simulations and the cold-fluid theory has revealed
good agreement for the low-order modes and weak to moderate screening parameters.
This behavior can partially be understood by resorting to the results for a macroscopic
system (see the discussions in Sec. 3.2.3 and Ref. [121]). While the cold-fluid result for the
dispersion relation qualitatively describes the (acoustic) long-wavelength regime, it com-
pletely fails to reproduce the results for intermediate and short-wavelength oscillations,
e.g., the observed negative dispersion or the oscillatory behavior at strong coupling [11,
12, 99]. This is an inherent inability of the mean-field continuum theory. Since it does not
contain any information about the (short-range) correlations in the system, it is incapable
of resolving oscillations on a length scale of a few inter-particle distances.

This explains why the agreement between the cold-fluid theory and the MD simula-
tions is only good for the low-order modes. Figures 5.4 and 5.5 in Ch. 5 show that the
eigenmodes of the cold-fluid theory become more oscillatory when the radial mode in-
dex n increases. The same applies to the angular eigenfunctions. Thus, the excitations
occur on increasingly smaller length scales, which corresponds to larger wave vectors in
a homogeneous system. Provided the cold-fluid form of the potential eigenfunctions is
approximately valid in the simulation, the improved agreement for larger systems can be
explained by the increased cluster size R, which stretches and forms an upper limit for the
length scale on which the oscillations occur.

More insight can be gained by resorting to previous comparisons of the density profile
with simulations. It was shown by Henning et al. [76] that the mean-field density profile in-
creasingly deviates from the average density obtained from exact MD simulations at large
screening parameters. The inclusion of correlation effects via the local-density approxi-
mation (LDA) removed the discrepancies [77]. Very similar behavior is observed for the
low-order modes (n = 0,1) here: While the theory accurately describes the MD frequen-
cies at low screening, the deviations increase with κa. Since the present normal mode the-
ory is directly based on the density profile without correlations, this can (at least partially)
be attributed to an inaccurate density. For Coulomb systems it was shown that average
correlation properties are sufficient to obtain the frequency corrections for the low-order
modes—without having to resolve the particular details of the density profile [115, 121].

Even the improved LDA result only describes the average trap density. In order to re-
produce the shell structure of Yukawa Balls, short-range correlations must be taken into
account [82], e.g., via the hypernetted-chain approximation [87–90]. These effects should
become particularly important for the high-order fluid modes which are associated with
small-scale excitations. In the quasi-localized charge approximation [99], this is demon-
strated by the non-monotonic (oscillatory) behavior ofω(k) or the Einstein frequency (the
k →∞ limit of the dispersion relation), which generally lies below the cold-fluid (mean-
field) result ωp.
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Figure 6.3: Screening dependence of the m = 0 multipole spectra Q`0(ω) (arb. units) for N = 1000
(left column) and N = 4000 particles (right column) at Γ= 30 without friction. The solid
lines show the results of the cold-fluid theory. From Ref. [135]. Copyright (2011) by the
American Physical Society.
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Figure 6.4: Same as Fig. 6.2
for Γ = 30. (a) Monopole and
(b) dipole spectra for various
screening parameters with
N = 1000 particles. The thick
arrow indicates the position
of the low frequency mode for
Γ = 150. From Ref. [135]. Copy-
right (2011) by the American
Physical Society.

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

0 1 2 3 4 5 6

Q
10

(ω
)

(a
rb

.u
n

it
s)

ω/ω0

κa = 1

0.7

κa = 0.5

(b) ℓ= 1 n = 1

n = 2

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Q
00

(ω
)

(a
rb

.u
n

it
s)

κa = 2

1.4

κa = 1

n = 1 n = 2(a) ℓ= 0

6.2.2 Influence of Coupling Parameter

Thermal effects on the mode spectra are controlled by the coupling parameterΓ. Figure 6.3
shows the same spectra as Fig. 6.1 but for a five times reduced coupling (Γ= 30). The main
difference between these two systems is the density profile. At high Γ, the system exhibits
a clear structure with well-defined radial shells, cf. Ch. 4. At intermediate Γ, however, the
shell structure disappears, and the density is well described by the cold-fluid (mean-field)
result, except for the boundary. At this point, the cold-fluid density [Eq. (5.9)] has a step
profile [76], while the simulation result smoothly decays to zero. In addition, the density
has one or several maxima near the boundary, depending on the exact coupling parameter,
see Refs. [87, 88, 115]. Despite the lowerΓ, the system is certainly still in the strong coupling
regime.

Consider now the changes of the mode spectra. As one can see from Fig. 6.3, the mode
frequencies are only weakly affected by the reduced coupling. The agreement between
theory and simulation is very similar to the previous case for Γ= 150. However, qualitative
changes of the spectra are observed. First, some of the high-order modes disappear and
the maxima become broader—indicating a higher damping rate due to the increased tem-
perature. Second, the low frequency modes in the ` = 1,2,3 spectra disappear and, third,
the effect of reappearing modes with n ≥ 2 at lower κa is greatly reduced. In general, the
maxima are less pronounced than before.
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Figure 6.5: Quadrupole and oc-
tupole spectra for N = 1000
and κa = 2 for three values of
the coupling parameter Γ as
indicated in the figure. From
Ref. [135]. Copyright (2011) by
the American Physical Society.

Figure 6.4 elucidates these effects in greater detail. It clearly shows that some of the
high-order modes are missing and that the n = 2 mode is more strongly damped than for
Γ= 150. Further, it does not reappear at lower screening (κa = 0.5) in the dipole spectrum.
The arrow in Fig. 6.4 shows the position of the low frequency mode in the dipole spectrum
at Γ= 150 (see Fig. 6.2), which is completely absent at Γ= 30.

For a gradual change of the effects with the coupling parameter for the quadrupole and
octupole modes, see Fig. 6.5. Evidently, the modes are most clearly defined at high cou-
pling. As Γ is decreased the maxima become broader, whereas the peak positions are only
marginally affected. The weak temperature dependence of the frequencies in the strongly
coupled regime is especially apparent in Fig. 6.6. For the particular case of the breathing
mode, a more detailed analysis is performed in Sec. 6.3.2. The high-order modes and the
low frequency excitations vanish at weak coupling, while the low-order modes with n = 1,2
are the most stable ones.

Discussion

The specific nature of the low frequency excitations is still unclear. However, a compar-
ison with the (transverse) shear waves in a macroscopic OCP helps to interpret the re-
sults. These modes are known to exist only in strongly coupled systems, and their frequen-
cies are typically below that of the longitudinal mode, at least for small wave vectors; see
Refs. [12, 19]. Because they are due to correlation effects, they are not contained in a mean-
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(c),(d). From Ref. [135]. Copyright (2011) by the American Physical Society.

field theory but, e.g., in the QLCA [92, 99]. Similar modes occur in non-uniform confined
Coulomb systems, see Refs. [115, 121].

Dubin and Schiffer [121] investigated incompressible torsional modes that arise from
correlations in a crystallized Coulomb plasma. The frequency range they observed for
these modes (ω ∼ 0.06. . .0.1ω0 for N = 1000) is in reasonable agreement with that found
for the low frequency modes here. Further, the analytic results they presented suggest a
decrease of the frequencies with the cluster radius. This also applies to the present results,
since the frequencies for the larger cluster with N = 4000 particles are found to be lower
than for N = 1000. These observations indicate that the modes could be closely related.
Screening generally increases their frequencies, see Figs. 6.1 and 6.2.

It should be noted that experimental mode spectra of a small Yukawa Ball with 31 parti-
cles [10] also contained a significant amount of low frequency modes with a high shear
contribution. It would therefore be highly desirable to gain additional insight into the
properties of the observed modes, which, however, requires a more sophisticated theory.
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6.2.3 Mode Spectra in the Presence of Dissipation

In dusty plasma experiments, the particles are subject to friction with the neutral gas. This
must be taken into account for a comparison of simulations with experimental data [9].
Figure 6.7 shows simulation spectra obtained with a finite damping rate in addition to a
spectrum without damping. In the zero damping limit, the spectrum has four maxima:
two main peaks at Ω = 1.32,2.48 and two weaker maxima at Ω = 0.3,2.8. As the friction
coefficient is increased, the width of the peaks increases. At rather weak damping (ν/ω0 =
0.01), all four modes are still discernible. For intermediate damping (ν/ω0 = 0.1), the low
frequency peak vanishes, while the high frequency mode is still visible in the spectrum.
Upon further increase of the damping coefficient (ν/ω0 = 1) only the main peak (n = 0)
“survives”.

This shows that a low damping rate will be necessary to detect the low and high fre-
quency excitations in experiments. Based on the observations in the previous section, the
analysis would also benefit from a high coupling parameter. Thus, the experiments should
ideally be performed at strong coupling conditions and low damping. Since a reduction
of the gas pressure in Yukawa Ball experiments goes along with a change of the effective
dust interaction potential [2, 52], it remains an open question if a parameter regime exists
where (i) the damping rate is sufficiently low to detect the modes, and (ii) the theoretical
model with the isotropic Yukawa potential is still applicable. Comparisons between high
and low pressure experiments indicate indeed that the mode spectra depend on the details
of the interaction [2].
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6.3 Comparison with Crystal Eigenmodes
The approach to the collective modes presented in Ch. 5 is based on a continuum fluid
model. A different method that is often employed specifically for small systems [9, 13, 74]
or to study lattice vibrations [152] is based on the harmonic approximation of the potential
energy. This theory provides an exact description of small amplitude excitations in a crys-
tallized plasma. In a three-dimensional system, it yields 3N normal modes as opposed to
the potential eigenmodes of the cold-fluid theory. In the following, the main ideas of the
harmonic approximation are reviewed, and a sum rule is deduced for the squared eigenfre-
quencies. As a mode that has recently attracted particular attention [13, 14], the breathing
mode is used to discuss the relations between the MD simulations, the cold-fluid theory,
and the harmonic approximation. Furthermore, its temperature behavior is investigated.

6.3.1 Frequency Sum Rule

In the harmonic approximation, the potential energy of a stationary state s,

U s =
N∑

i=1
V (r s

i )+ 1

2

N∑

i 6= j
v(|r s

i j |)
︸ ︷︷ ︸

E s
int

, (6.6)

is expanded in a Taylor series up to second order in the displacements from the equilib-
rium positions r N

s = (r s
1, . . . ,r s

N ) [9]. This could be either the ground or a metastable state.
The (state dependent) interaction energy is denoted by E s

int, while v(r ) is the (Yukawa) in-
teraction potential and V (r ) the confinement. The resulting equation of motion for the
displacements is linear and can be solved by diagonalization of the Hessian matrix U s . It
contains the second derivatives of U with respect to the particle coordinates, i.e.,

U s = ∂2U (r N )

∂rαi ∂rβj

∣∣∣∣∣∣
r N=r N

s

,

where α,β ∈ {x, y, z} and i , j ∈ {1, . . . , N }. For a detailed discussion of the harmonic approx-
imation, see Ref. [9].

A sum rule for particles with Coulomb interaction in a harmonic confinement V (r ) =
mω2

0r 2/2 is given by
∑3N

i=1 m(ωs
i )2 = Nω2

p = 3Nω2
0 [121], which has the same form in a

macroscopic homogeneous system. It is known as the Kohn sum rule [19, 153]. Here,
ω2

p = 3ω2
0 is the plasma frequency associated with the mean-field density profile for κ= 0,

see Eqs. (5.8) and (5.9). This is not entirely surprising because the harmonic confinement
is equivalent to a homogeneous background charge [5]. For Yukawa interaction, this does
not hold true any more, and the confinement equivalent to a homogeneous background
depends on the screening parameter κ, as was demonstrated by Totsuji et al. [128, 129].

In general, the eigenvalues of a matrix are related to its trace by
∑3N

i=1 m(ωs
i )2 = Tr(U s).

This can be used to obtain a simple expression for the squared eigenfrequencies of a sys-
tem with Yukawa interaction and any type of confinement. The trace of the Hessian matrix
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U s is given by

Tr(U s) =
N∑

i=1
∆i

[
N∑

k=1
V (r k )+ 1

2

N∑

j 6=k
v(|r j k |)

]∣∣∣∣∣
r N=r N

s

, (6.7)

see Eq. (6.6) for the explicit form of the potential energy.
The first (confinement) term in the above equation yields a single contribution for i = k.

In order to simplify the second term in Eq. (6.7), the relation (∆−κ2)e−κr /r =−4πδ(r ) [76]
can be employed. The delta function does not contribute to the result since |r s

i j | 6= 0. This
leads to

3N∑

i=1
m(ωs

i )2 =
(

N∑

i=1
∆i V (r i )+κ2

N∑

i 6= j
q2 e−κ|r i j |

|r i j |

)∣∣∣∣∣
r N=r N

s

. (6.8)

Up to a numerical factor, the second term in Eq. (6.8) can be identified as the interaction
energy E s

int. In a harmonic trap, the confinement contribution becomes a constant and
hence independent of the particle positions. The result can then be expressed in a more
compact form as

3N∑

i=1

(
ωs

i

ω0

)2

= 3N +2(κa)2 E s
int

q2/a
. (6.9)

The Coulomb case [121] is recovered upon taking the limit κ→ 0, see Ref. [154] for a wider
class of power-law potentials. It is a remarkable special case since its frequency sum is
independent of the stationary state used to evaluate the Hessian. For Yukawa interaction,
E s

int must be taken into account, which does depend on the particle configuration, e.g., the
number of shells or the particular arrangement of the particles within a shell (fine struc-
ture) [73–75]. It should be noted that in a different trap, this would also apply to Coulomb
systems due to the confinement term in Eq. (6.8), see also Ref. [154]. Even though the
harmonic confinement does not correspond to a homogeneous background for κ> 0, the
above expression is similar in form to the equation for the Einstein frequency of a homo-
geneous Yukawa system [19, 155].

The sum rule (6.9) establishes a link between the static (interaction energy) and dynamic
properties (eigenfrequencies) of confined Yukawa Balls.

6.3.2 Breathing Mode

The nature of the breathing mode has already been discussed in Sec. 5.3.5. Here, the re-
sults of the cold-fluid theory are used to identify the breathing mode among the 3N nor-
mal modes of the harmonic approximation. The frequencies are then compared with the
results of the MD simulations.

Projection Method

Since the harmonic approximation becomes exact in the zero temperature limit (small par-
ticle displacements), there must be a connection between the MD simulations at high Γ,
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the cold-fluid approximation as a zero temperature theory, and the exact normal modes.
The theoretical displacements (w s

i ) of the (n,`) = (1,0) fluid mode for the i th particle in a
crystal can be obtained from Eq. (5.5b) as w s

i = û1(r s
i ) ∼ ( f in

0 )′(r s
i ,ω10)êr , where êr denotes

the unit vector in the radial direction. This allows one to reconstruct the eigenvector of the
fluid breathing mode for a particular state s from the derivative of the radial fluid eigen-
function f in

0 (r,ω10) at the equilibrium positions, see Eq. (5.31). The full 3N -dimensional
eigenvector then reads w N

s = (w s
1, . . . , w s

N ), and is fully analogous to the exact (normalized)
eigenvectors {v s

i } from the Hessian. The breathing mode is identified as the mode with the
greatest projection,

c s
i =

(
w N

s

|w N
s | ·v s

i

)2

, (6.10)

on the theoretical mode [82, 121], where i ∈ {1, . . . ,3N } and 0 ≤ c s
i ≤ 1.

Stationary states are obtained from separate MD runs, where the particles are slowly
cooled until they settle into their equilibrium positions [71, 73]. Here, this procedure is
repeated 200 times with random initial conditions for all parameter sets (N ,κa), and the
lowest energy state is chosen to calculate the normal modes from the Hessian.4

The outcome of the projection method is shown in Fig. 6.8. While the majority of modes
have a negligible projection on the fluid mode, there exists a single mode with a signifi-
cantly greater projection, which can be identified as the breathing mode. For Coulomb
interaction, the breathing mode is the excitation with the highest frequency [121]. For
κ> 0, however, the cold-fluid theory predicts that additional modes appear upon increase
of the plasma parameter ξ= κR with ω>ωbr. This corresponds to an increase of either κa

4The numerical computation of the normal modes is based on a Mathematica notebook created by Dr. Chris-
tian Henning.

70



6.3 Comparison with Crystal Eigenmodes

−1.5

−1.0

−0.5

0.0

0.5

0 0.5 1 1.5 2

10
2
∆
ω

/ω
cr

ys
ta

l

κa
0 0.5 1 1.5 2

κa

(a) N = 100

150
30
10

5

(b) N = 400

Γ=

Figure 6.9: Deviation of the n = 1 monopole mode (MD) from the frequency of the exact eigenmode
with the greatest projection on the fluid mode for (a) N = 100 and (b) N = 400 at Γ =
5,10,30,150. The solid lines show a linear fit. From Ref. [135]. Copyright (2011) by the
American Physical Society.

or the particle number N . Qualitatively, this trend can be observed in Fig. 6.8, where the
maximum projection for κa = 0.4 is found at high frequencies, whereas it shifts to inter-
mediate frequencies for κa = 1.2 and κa = 2. The same observation was made in Ref. [74]
upon increase of the particle number at fixed screening.

Coupling Dependence

In comparison with those of other modes, the breathing mode peaks in the MD spectra
are very narrow and well pronounced (see Figs. 6.2 and 6.4), and therefore allow for a de-
tailed study of their coupling dependence. The relative deviation ∆ω/ωcrystal = (ωMD −
ωcrystal)/ωcrystal of the finite temperature MD result from the zero temperature frequency
of the harmonic approximation is depicted in Fig. 6.9. Even at a relatively weak coupling
of Γ= 5, the largest deviations are only on the order of 2%. The agreement becomes better
at higher Γ, and the results agree almost identically within the accuracy of the simulation
at Γ = 150. For a fixed coupling parameter, the screening dependence is approximately
linear.

The deviations clearly arise from the finite temperature in the simulation. The harmonic
approximation relies on the existence of a crystallized state from which the modes are ex-
cited. These conditions are only satisfied at high Γ, when the particles are essentially lo-
cated at their equilibrium positions and perform small amplitude oscillations. At weaker
coupling the displacements become larger, and a second order expansion of the potential
energy for a single state is no longer sufficient. Due to the large number of energetically
adjacent metastable states, the system may also undergo structural transitions during an
oscillation. This could be connected with a variation of the shell occupation numbers or a
rearrangement of the local order within a shell and is inherently linked to the melting pro-
cess [156]. Even in the very strong coupling limit, deviations from the harmonic approxi-
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mation can occur because it is not clear which particular state is excited in the simulation.
Therefore, the frequencies of a few stationary states have been compared. Typically, the
differences are on the order ∆Ω∼ 10−4 and thus significantly smaller those caused by the
finite temperature.

Qualitatively, the temperature dependence changes as soon as the screening parameter
exceeds a critical value. Figure 6.9 shows that at low screening (i.e., κa . 0.6 and κa . 0.4
for N = 100 and N = 400, respectively) the frequency decreases with Γ, which was also
observed by Dubin and Schiffer for Coulomb interaction [121]. Above the critical value
the behavior changes, and the breathing frequency increases. In the close vicinity of the
critical screening parameter, however, it is almost independent of the temperature.

A very similar observation was made by Olivetti et al. [14, 139] for the breathing fre-
quency of particles with homogeneous forces [i.e., F (λr ,λr ′) =λ−k F (r ,r ′)] in a harmonic
trap. Based on a scaling ansatz, they derived an equation that predicts an increase (de-
crease) of the breathing frequency with the coupling strength for short- (long-) ranged
forces (in three-dimensional systems). In particular, it was noted in Ref. [139] that even
though the Yukawa potential does not strictly belong to this class of potentials, it can be
represented by a long-ranged Coulomb potential (k = 2) in weakly screened systems and a
short-ranged Dirac delta potential (k = 4), when the Debye length far exceeds the system
size. For a genuine Yukawa potential, however, there is a smooth transition between these
two extreme cases, as demonstrated in Fig. 6.9, cf. also the corresponding discussion in
Ch. 5. Their theory further predicts a temperature independent frequency for k = 3, which
resembles the present results for the small intermediate screening interval.

The plasma parameter ξ= κR can be employed to quantify the results, since it relates the
extension of the plasma to the interaction range. The value of ξ at which the temperature
dependence in Fig. 6.9 changes is almost identical for the two particle numbers (ξ ≈ 2.3
and ξ≈ 2.4 for N = 100 and N = 400, respectively). This indicates that ξmight play a similar
role in determining the temperature dependence in Yukawa systems as the exponent k in
systems with homogeneous forces.

Comparison with Cold-Fluid Theory

The previous analysis has shown that the results of the MD simulations approach those of
the harmonic approximation in the strong coupling limit. Since the cold-fluid theory also
completely neglects effects of a finite temperature, the harmonic approximation is ideally
suited to assess its validity. First, it allows for a determination of the breathing frequency
with high accuracy, and, second, the infinite coupling assumption is already “built-in”.
This makes it easier to identify the reasons for the observed deviations.

Figure 6.10 shows the relative deviation∆ω/ωcrystal = (ωfluid−ωcrystal)/ωcrystal of the cold-
fluid result from the harmonic approximation. In the Coulomb limit, a universal uniform
breathing mode exists in both the harmonic approximation [13] and the cold-fluid the-
ory [121]—with identical frequencies. However, the ξ→ 0 limit of the Yukawa breathing
mode does not describe a uniform oscillation, see Sec. 5.3.5. Even though this form of the
radial eigenfunction is used to identify the breathing mode, it chooses the same mode as
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uniform displacements, i.e., w s
i = r s

i .5 This behavior is also found for κ> 0 and shows that
the actual deviations between the two mode forms are rather small. They vanish in the
limit ξ→∞, because the cold-fluid mode becomes uniform as well. A comparison of the
projections (6.10) for uniform and non-uniform displacements shows that the coefficients
are consistently greater in the latter case, i.e., the Yukawa breathing mode is indeed better
described by non-uniform displacements. The differences are small, though.

While the results coincide in the Coulomb limit, the fluid model underestimates the
frequencies for Yukawa interaction. The deviations grow linearly with κa [Fig. 6.10(a)] and
decrease with the particle number [Fig. 6.10(b)]. Since finite temperature effects can be
excluded, the discrepancies must be due to the neglect of correlations in the fluid model.
The analysis of Sheridan [120] shows indeed that taking a finite particle separation into
account gives rise to an increase of the breathing frequency.

6.4 Summary
In this chapter, the normal modes of a confined Yukawa plasma have been investigated
by three independent methods: molecular dynamics simulations, the harmonic approxi-
mation, and the cold-fluid theory presented in Ch. 5. The analysis shows that—despite its
limitations—the cold-fluid theory is capable of accurately reproducing the mode spectra
of a molecular dynamics simulation. However, its range of applicability must be kept in
mind when comparisons are made: It is limited to low-order modes and weak to moderate
screening—depending on the system size.

Specifically, the MD simulations confirm the existence of the high-order modes pre-
dicted by the cold-fluid theory. The lowest modes with n = 0,1 show good agreement with

5There is one exception for N = 100 and κa = 0.1.
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the theory but increasingly deviate from its predictions at strong screening. The frequen-
cies of the modes with n ≥ 2 are generally shifted upward with respect to the theoretical
result, and the critical screening parameters for their existence are predicted too large. In
addition, the MD simulations reveal that these modes reappear at lower screening param-
eters. A sole feature of the simulations is the existence of a low frequency excitation in
the ` = 1,2,3 spectra at strong coupling conditions, which is not predicted by the simple
mean-field theory.

Based on the harmonic approximation of the potential energy, a frequency sum rule
has been derived that relates the mean squared eigenfrequency to the interaction energy.
The analysis of the breathing mode shows that its temperature dependence is determined
by the screening parameter. A decrease of the frequency with the coupling parameter at
low κa turns into an increase at high screening, interrupted by a small screening interval
with almost no temperature dependence. The generally weak coupling dependence of the
eigenfrequencies identifies the neglect of correlation effects as the main source of error in
the cold-fluid theory at high screening parameters.

This observation and the properties of the low frequency mode call for an improved
theory that systematically incorporates correlation effects. However, this is beyond the
scope of this work.

Related Journal Publication

• H. Kählert and M. Bonitz, Collective excitations of a spherically confined Yukawa
plasma, Phys. Rev. E 83, 056401 (2011)
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CHAPTER 7

Conclusions

This work was concerned with two primary topics of interest: (i) the dynamic formation
of the shell structure and (ii) the collective modes in a strongly coupled confined Yukawa
plasma.

Shell Formation Dynamics

The correlation buildup and the order of shell formation (based on the examination of
radial density profiles) were first analyzed for confinement conditions relevant to Yuka-
wa Ball experiments. Langevin dynamics simulations of a simple cooling process revealed
that shells first emerge at the plasma boundary. At the same time, the plasma performs a
breathing oscillation. The time for the formation of the inner shells was shown to depend
on the screening parameter. At sufficiently strong screening, the inner and outer shells
were found to appear almost simultaneously.

In order to clarify the influence of the confinement potential and the mean density pro-
file on the order of shell formation, equilibrium Monte Carlo simulations were performed.
The analysis for quartic and linear potentials showed that the general trend of inward shell
formation can hardly be reversed by changing the average density distribution in the trap.
Simulations for a shifted harmonic potential with a blocked core then revealed that the
formation of density modulations can indeed be triggered in the inner part of the plasma.
While this feature is rather weak in Coulomb systems, it becomes more pronounced for
Yukawa interaction. In the latter case, inward and outward shell formation occur simulta-
neously upon increase of the coupling parameter.

With the recent availability of sophisticated particle tracking and laser heating tech-
niques, it should now be possible to test the simulation results in experiments.

Collective Modes

The collective excitations of strongly coupled Yukawa Balls were studied by a combination
of analytic theory and numerical simulation. A continuum theory based on the cold-fluid
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equations was presented that reveals a rich excitation spectrum for these plasmas. Con-
trary to other theories, it is not restricted to the breathing (lowest monopole) mode [14,
120], but yields all other modes (dipole, quadrupole, etc.) as well. They are character-
ized by two angular and a radial mode number. Their frequencies were shown to depend
solely on ξ—the ratio of the plasma size and the screening length. Existing results in the
literature for harmonically trapped particles with Coulomb [115, 132] and Dirac delta in-
teraction [138] were recovered in the limits ξ → 0 and ξ → ∞, respectively. This shows
that applications of the theory are not restricted to dusty plasmas. The fluid theory further
yields an explicit result for the deviation of the lowest monopole mode from a uniform
breathing mode [13].

Molecular dynamics simulations were performed to obtain the full excitation spectrum
of Yukawa Balls and to test the theoretical predictions. It was found that the fluid theory
properly describes the low-order eigenmodes but fails to reproduce the frequencies and
existence conditions of the high-order excitations. In general, the accuracy of the theory
decreases at large screening parameters. In addition to the cold-fluid modes, the MD sim-
ulations uncovered low frequency excitations in strongly coupled Yukawa Balls that could
not be explained by the simple mean-field theory. The breathing mode was then chosen
for a more detailed analysis and a comparison with the exact crystal eigenmodes. In par-
ticular, the temperature dependence of its frequency was found to change with a variation
of the screening parameter. While it decreases as a function of the coupling parameter at
low screening, it increases at larger screening parameters. In between these limits, a small
interval was identified where it is practically independent of the temperature—in qualita-
tive agreement with the theory of Olivetti et al. [14] for homogeneous forces.

Langevin dynamics simulations with a finite damping rate showed that the low fre-
quency excitations and the high-order modes are most severely affected by friction. The
low-order modes (n = 0,1), on the other hand, are rather stable and should thus be de-
tectable in Yukawa Ball experiments. Since these modes are properly described by the
cold-fluid theory, a direct comparison should (in principle) be possible. However, one
drawback of the theory is the neglect of wake effects observed in recent low pressure (i.e.,
low damping) Yukawa Ball experiments [52, 53], which might limit its applicability to these
conditions. Nevertheless, an intermediate pressure regime might exist, where the dust-
neutral friction is sufficiently low, and ion wake effects are negligible at the same time.

Another shortcoming of the cold-fluid theory is the neglect of thermal and (more im-
portantly) correlation effects. This affects the results both quantitatively and qualitatively.
First, the MD simulations showed that the eigenmode frequencies deviate from the theory,
which was found to be mainly due to missing correlations, while thermal effects are rather
weak. Second, the mean-field approach is generally unable to describe torsional (shear)
modes [121], which could be the origin of the low frequency peaks in the MD spectra at
strong coupling.

The inclusion of correlation effects in the theory can be achieved by several different
means. For the analysis of the breathing mode, Sheridan [120] introduced a finite particle
separation, while Olivetti et al. [14] used an approach based on the first (formally exact)
equation of the BBGKY hierarchy. Dubin [115] accounted for correlations in a Coulomb
system by using finite bulk and shear moduli. A general theory that describes arbitrary
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modes in non-uniform systems with different interaction potentials is still missing. The
BBGKY hierarchy represents the natural starting point for the derivation of such a the-
ory. The difficulty, however, lies in finding an appropriate representation for the correla-
tion function. For strongly coupled systems, the quasi-localized charge approximation of
Kalman and Golden [101] provides a general framework for the calculation of the disper-
sion relation of uniform systems with various interaction forces [92]. The application of
these ideas and concepts to non-uniform systems in traps is subject of ongoing work. First
results for inhomogeneous bilayers have been obtained by Lee and Kalman [157].
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Appendix

This Appendix presents the mathematical details for the calculation of the ground state
potential and the eigenfrequency spectrum of the cold-fluid theory discussed in Ch. 5.1

Calculation of Ground State Potential
The result of the angular integration in Eq. (5.15) is [76]

φ0(r ) = 2π
q

κr

∫ R

0
n0(r ′)r ′

[
e−κ|r−r ′|−e−κ(r+r ′)

]
dr ′.

Since the density is composed of a constant and a quadratic term, the problem now re-
duces to finding the solutions of the integrals

I
≷

n =
∫ R

0
(r ′)n

[
e−κ|r−r ′|−e−κ(r+r ′)

]
dr ′,

for n = 1 and n = 3.
Outside the plasma region (r > R), the calculation is simplified as |r − r ′| = r − r ′ for the

entire integration volume. This yields

I>
n = e−κr

∫ R

0
(r ′)n

[
eκr ′ −e−κr ′]

dr ′

= 2
e−κr

κ4

{
[ξcosh(ξ)− sinh(ξ)]κ2, n = 1,

ξ(ξ2 +6)cosh(ξ)−3(ξ2 +2)sinh(ξ), n = 3.

On the other hand, inside the plasma (r < R), certain care must be taken in order to prop-
erly evaluate |r − r ′|. Dividing the integration interval [0 : R] into the two sub-intervals
[0 : r ] and (r : R], one obtains

I<
n =I>

n (ξ→ κr )+
∫ R

r
(r ′)n

[
e−κ(r ′−r ) −e−κ(r+r ′)

]
dr ′

=I>
n (ξ→ κr )+2sinh(κr )

∫ R

r
(r ′)ne−κr ′

dr ′.

1This analysis is an extended version of the appendix in Ref. [131].
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The explicit result for the remaining integral is rather lengthy. The ground state potential,
Eq. (5.15), then follows from the previous results and the explicit form of the density profile,
Eq. (5.9). An alternative path to the potential inside the plasma is provided by Eqs. (7)
and (10) in Ref. [76].

Series Expansions for Eigenfrequencies
The eigenfrequency spectrum Ω(ξ) follows from the roots of D(Ω,ξ), see Eq. (5.37). In
the following, the limits ξ ¿ 1 and ξ À 1 are examined in detail, and the series expan-
sions (5.38) and (5.41) are derived. This is achieved by writing the squared eigenfrequency
as an expansion in the small parameters ξ and ξ−1, respectively. The unknown coefficients
are chosen such that D(Ω,ξ) = 0 is fulfilled to lowest order.

Coulomb Limit

The ansatzΩ2(ξ) ≈ ā+b̄ξ+ c̄ξ2 for the squared eigenfrequency leads to the following result
for the dielectric function (5.21),

ε(ξ,Ω) ≈ 1− 3

ā
+

(
3b̄

ā2

)
ξ+

(
3āc̄ −3b̄2 − ā2

ā3

)
ξ2.

Series expansions for the term involving the Bessel function k`(x) can be obtained from
the corresponding expansion for K`+1/2(x) [142, 144],

k`(x) =
√

2

πx
K`+1/2(x) ∝ 1

x`+1

[
1+ x2

2−4`
+ . . .

]
, x ¿ 1, `> 0.

This leads to −ξk ′
`

(ξ)/k`(ξ) ≈ (`+1)+ξ2/(2`−1) for `> 0. In the particular case `= 0, the
exact result is −ξk ′

0(ξ)/k0(ξ) = 1+ξ.
For an approximation of the hypergeometric function one can employ Eq. (5.32). To-

gether with x2
s ≈ 6−2ā, one obtains (for ā 6= 3),

2F1

(
α`−δ`

2
,
α`+δ`

2
;α`;

ξ2

x2
s

)
≈ 1+

(
ā −`
ā −3

)
ξ2

6+4`
.

The second hypergeometric function in Eq. (5.37) with shifted parameters can be approx-
imated by unity. The expansion coefficients ā, b̄, and c̄ for the surface modes given in
Eq. (5.38) then follow by equating the ξ0,ξ1, and ξ2 terms in Eq. (5.37) to zero.

For the bulk modes, the approach is slightly different. Here, ā = 3 and the above expan-
sion for the hypergeometric functions cannot be used. A linear term in the expansion of
the squared eigenfrequency fails because it would leave a constant term in Eq. (5.37). Em-
ploying a quadratic expansion,Ω2(ξ) ≈ 3+ c̄ ξ2, one obtains ξ2/x2

s ≈ 1/(3−2c̄). In this case,
the lowest-order term in Eq. (5.37) vanishes provided

2F1

(
α`−δ`

2
,
α`+δ`

2
;α`;

1

3−2c̄

)∣∣∣∣
Ω2=3

= 0.
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For ` = 0,1,2, a numerical solution of this equation yields the coefficients given below
Eq. (5.39). They satisfy c̄ < 1 and are thus below the plasma frequency at the boundary,
which has the expansionΩ2

p(ξ) ≈ 3+ξ2.

Macroscopic/Strong Screening Limit

For ξÀ 1, the small expansion parameter is y = ξ−1. Following the same procedure as in
the previous section withΩ2(y−1) ≈ ā + b̄y + c̄ y2, the dielectric function becomes

ε(y−1,Ω) ≈− 1

āy
+ ā(ā −2)+ b̄

ā2 ,

and y−2/x2
s ≈ 1−2y . The Bessel function can be written as k`(x) = x−(`+1)e−x p`(x), where

p`(x) is a polynomial of order ` [142, 143]. For the associated term in Eq. (5.37), this implies

k ′
`

(x)

k`(x)
= d

d x
lnk`(x) =

p ′
`

(x)

p`(x)
− `+1

x
−1.

The leading-order contribution from the first term is p ′
`

(x)/p`(x) ≈ `/x for x À 1. Conse-
quently, the result is −k`(y−1)/k`(y−1) ≈ 1+ y .

The expansion for the hypergeometric function in the vicinity of ξ2/x2
s . 1 is found

from [142, 144]

2F1(a,b; a +b −m; z) = (m −1)!Γ(a +b −m)

Γ(a)Γ(b)
(1− z)−m (A.1)

×
m−1∑

k=0

(a −m)k (b −m)k (1− z)k

k !(1−m)k
+ (−1)mΓ(a +b −m)

Γ(a −m)Γ(b −m)

×
∞∑

k=0

(a)k (b)k

k !(k +m)!

[− ln(1− z)+ψ(k +1)

+ψ(k +m +1)−ψ(a +k)−ψ(b +k)
]

(1− z)k ,

which can be used for |z − 1| < 1 and m ∈ N+. ψ(x) denotes the Digamma function. For
m = 0, the finite sum must be omitted.

The series expansion (A.1) can now be applied to the two hypergeometric functions
(HGF) in Eq. (5.37). In general, the parameters of the first HGF are a = (α` −δ`)/2, b =
(α`+δ`)/2, and c =α`, see Eq. (5.30). In the second HGF, the parameters are shifted by an
amount +1. In the following, they are abbreviated as 2F1[+0] and 2F1[+1], respectively.

With ā =Ω2
n`,∞ [see Eq. (5.40)], the parameters of 2F1[+0] can be written as a ≈−n−q(y)

and b ≈ n +α`+ q(y), where q(y) ¿ 1. The main contribution to the second sum of the
expansion is due toψ(a+k) ≈ψ(−n+k−q) ≈ q−1 (for k ≤ n), which yields a constant term
when combined with the prefactor Γ−1(a) ≈ Γ−1(−n − q) ≈ (−1)n+1n! q [144]. To lowest
order in y , the HGF then reads

2F1(−n −q,n +α`+q ;α`;1−2y) ≈ (−1)n

(α`)n
n!.
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Figure A.1: Comparison of the numerical solution of Eq. (5.37) (solid lines) with the approxima-
tions (5.38), (5.39) and (5.41) (dashed lines) for (a) ξ ¿ 1 and (b) ξ À 1. For a better
presentation, the data in (a) for (n,`) = (1,1) have been multiplied by a factor 10.

The expansion for 2F1[+1] can be obtained in a similar fashion from Eq. (A.1) with m = 1
and q(y) ≈ b̄y/χ. This yields (χ= 4n +2α`)

2F1(−n +1−q,n +1+α`+q ;α`+1;1−2y) ≈α`
(−1)n

(α`)n
n!

[
b̄

2χn(n +α`)
−1

]
.

The O (y−1) term in Eq. (5.37) disappears provided b̄ = 0. For n = 0, the previous equation is
not valid. Instead, 2F1[+1] ≈ (2y)−1 must be used, and the leading-order term in Eq. (5.37)
is O (y−2). It vanishes due to its prefactor ∼ (`− ā), since ā = ` for n = 0. The O (y−1) term
vanishes for b̄ = 0.

Since the coefficients for the O (y) terms of the squared eigenfrequency are equal to zero,
the HGF must be evaluated up to first order in y to find the lowest-order correction toΩ2(y)
for n = 1,2, . . . . The small correction to the parameters of the HGF now reads q(y) ≈ c̄ y2/χ,
and one obtains

2F1[+0] ≈ (−1)n

(α`)n
n!

[
1−2n(n +α`)y

]
,

2F1[+1] ≈α`
(−1)n

(α`)n
n!

{
−1+

[
(n −1)(n +α`+1)+ c̄

2χn(n +α`)

]
y

}
.

Choosing the coefficient c̄ such that terms O (y0) in Eq. (5.37) vanish, Eqs. (5.41) and (5.42)
follow for n > 0. If n = 0, the same procedure leads to c̄ =−2`(`−1)(`+3/2), i.e., Eq. (5.42)
also holds for n = 0 (here, ` 6= 0).

For a comparison of the analytic solutions for the squared eigenfrequencies with a nu-
merical evaluation of Eq. (5.37), see Fig. A.1.
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Eigenfrequencies Near the Surface Plasma Frequency
In the following, the appearance of new modes for ξ> ξcrit

n` will be exemplified by a numer-
ical evaluation of the eigenvalue equation (5.37) combined with an analytic investigation
of the limitΩ→Ωp(ξ). For this purpose, let ξ 6= ξcrit

n` and thusΩp(ξ) 6=Ωn`(ξcrit
n` ). The limits

of the different terms in Eq. (5.37) will now be considered separately.
Writing the eigenfrequency asΩ2 ≈Ω2

p(ξ)−∆, where 0 <∆¿Ω2
p(ξ), the dielectric func-

tion becomes ε(ξ,Ω) ≈ −∆/Ω2
p(ξ). For the hypergeometric function with shifted parame-

ters, one can use 2F1(c−a,c−b;c; z) = (1−z)a+b−c
2F1(a,b;c; z) [142, 144] with c = a+b+1

to obtain

2F1(a +1,b +1, a +b +1, z) = 1

1− z
2F1(a,b, a +b +1, z).

While (1− z)−1 diverges as z → 1, the hypergeometric function on the right-hand side re-
mains finite. Using (1− z)−1 ≈ ξ2/(2∆) and the identity [142, 144]

2F1(a,b, a +b +1,1) = Γ(a +b +1)Γ(1)

Γ(a +1)Γ(b +1)
,

it follows that the third term in Eq. (5.37) has the limit

lim
∆→0

ε(ξ,Ω)
`−Ω2

α`

ξ2

x2
s

2F1

(
α`−δ`

2
+1,

α`+δ`
2

+1;α`+1;
ξ2

x2
s

)

= ξ2

2α`

[
1− `

Ω2
p(ξ)

]
Γ(α`+1)

Γ
(
α`−δ`

2 +1
)
Γ

(
α`+δ`

2 +1
) . (A.2)

Here, it is understood that δ` must be evaluated atΩ2 =Ω2
p(ξ).

For the first and second term in Eq. (5.37), one can use the zeroth-order (k = 0) contri-
bution in the expansion (A.1) (for m = 0) to obtain

2F1

(
α`−δ`

2
,
α`+δ`

2
;α`;

ξ2

x2
s

)
≈ Γ(α`)

Γ
(
α`−δ`

2

)
Γ

(
α`+δ`

2

)
[
− ln

(
2∆

ξ2

)

+2ψ(1)−ψ
(
α`−δ`

2

)
−ψ

(
α`+δ`

2

)]
.

Again, δ` must be calculated at Ω2 =Ω2
p(ξ). Combining this expression with the previous

result for the dielectric function yields an approximation for D(Ω,ξ) in the vicinity ofΩp(ξ)
accurate to O (∆0):

D(Ω,ξ) ≈ ξΓ(α`)

Γ
(
α`−δ`

2

)
Γ

(
α`+δ`

2

)
k ′
`

(ξ)

k`(ξ)

[
ln

(
2∆

ξ2

)
−2ψ(1)+ψ

(
α`−δ`

2

)
(A.3)

+ ψ

(
α`+δ`

2

)]
+ ξ2

2α`

[
1− `

Ω2
p(ξ)

]
Γ(α`+1)

Γ
(
α`−δ`

2 +1
)
Γ

(
α`+δ`

2 +1
) .
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Figure A.2: Plot of the eigenvalue function D(Ω,ξ) [Eq. (5.37)] for the monopole modes as a function

of Ω for different ξ’s close to the critical parameter ξcrit
70 . The dashed lines show the

asymptotic limit given by Eq. (A.3).

The contribution from the dielectric function is neglected since it is O (∆ ln[2∆/ξ2]). Equa-
tion (A.3) shows that D(ξ,Ω) diverges logarithmically as ∆→ 0 if ξ 6= ξcrit

n` .
Being among the prefactors for the logarithmic term in Eq. (A.3), the asymptotic limit

crucially depends on the sign of the Gamma function with the argument (α`−δ`)/2. An in-
crease of ξ from ξ< ξcrit

n` to ξ> ξcrit
n` shifts the plasma frequency upward such thatΩn`(ξcrit

n` )
is within the allowed range of frequencies below the plasma frequency. This is accompa-
nied by a sign change of the Gamma function asΩp(ξ) exceedsΩp(ξcrit

n` ) =Ωn`(ξcrit
n` ), which

also reverses the sign of the asymptotic limit. The result is a zero crossing of D(Ω,ξ) and
the appearance of a new mode.

Figure A.2 illustrates the behavior of D(Ω,ξ) in the vicinity of the surface plasma fre-
quency. As ξ is increased from a value ξ< = 85 < ξcrit

70 to a value above the critical parame-
ter, ξ> = 91 > ξcrit

70 , the divergent limit changes from +∞ to −∞, and a new root of D(Ω,ξ)
emerges. This is in accordance with the behavior of Eq. (A.3), cf. the dashed lines. Since it
is very difficult to determine the new roots numerically in the close vicinity of the surface
plasma frequency for ξ& ξcrit

n` , they are approximated byΩp(ξ).
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