
1 

 

 

M Aus der Klinik für Zahnärztliche Prothetik,  

Propädeutik und Werkstoffkunde 

  (Direktor: Prof. Dr. M. Kern) 

an der Christian-Albrechts-Universität zu Kiel 

 

 

 

Influence of zirconia ceramic abutment preparation  

on the fracture strength 

 of single implant restorations after chewing simulation. 

  

[Einfluss der Zirkonabutmentpräparation auf die Bruchfestigkeit von 

Einzelimplantatrestaurationen nach Kausimulation] 

 

 

 

Inauguraldissertation 

zur 

Erlangung der Würde eines Doktors der Zahnheilkunde 

der Medizinischen Fakultät 

der Christian-Albrechts-Universität zu Kiel 

 

 

Vorgelegt von 

 

Miltiadis Mitsias 

aus Athen, Griechenland 

 

Kiel 2011 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MACAU: Open Access Repository of Kiel University

https://core.ac.uk/display/250311603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Berichterstatter: Prof. Dr. Matthias Kern 

2. Berichterstatter: Priv.-Doz. Dr. H. Meyer-Lückel 

Tag der mündlichen Prüfung: 20.12.2011 

Zum Druck genehmigt, Kiel, den 20.12.2011 

 

 Gez.: Prof. Dr. H-J. Wenz 

 (Vorsitzender der Prüfungskommission) 

 



3 

 

 

Index 

 List of abbreviations………………………..…………………… p. 05 

1. Introduction………………..….………….……………………. p. 06 

1.1. Ceramics………………………………….…………….…..…… p. 06 

1.1.1. Pressable ceramics………………….…………………….….….. p. 07 

1.2.  Zirconium oxide ceramics (zirconia)…….………………….…... p. 07 

1.2.1. Medical and dental applications of zirconia…….………….…… p. 07 

1.2.2. General data of zirconia…………………………….……..…….. p. 08 

1.2.3. Stabilized zirconia………………………………………………. p. 08 

1.2.4. Zirconia transformation-toughening mechanism……….……….. p. 09 

1.2.5. Yttrium-tetragonal zirconia polycrystals (Y-TZP)……………… p. 10 

1.2.6. Chemical and physical properties of Y-TZP……………………. p. 12 

1.2.7. Biocompatibility of Y-TZP……………………………………... p. 12 

1.2.8. Aging of Y-TZP……………………………………………….… p. 13 

1.2.9. Y-TZP surface and heat treatments……………………………... p. 14 

1.3. Ceramic abutments……………………………………………… p. 16 

1.3.1. Zirconia implant abutments……………………………………... p. 17 

2. Purpose…………………………………………………………. p. 20 

3. Materials and methods………………………………………… p. 21 

3.1. Materials…………………………………………………………. p. 21 

3.1.1. ZirDesign (Astra Tech, Mölndal, Sweden)……………………… p. 22 

3.1.2. IPS e.max Press (Ivoclar Vivadent, Schaan, Liechtenstein)…….. p. 22 

3.1.3. Multilink Automix (Ivoclar Vivadent, Schaan, Liechtenstein)…. p. 22 

3.1.4. OsseoSpeed (Astra Tech Dental, Mölndal, Sweden)……………. p. 23 

3.2. Methods………………………………………………………….. p. 23 

3.2.1. Study outline………………………………………………..….... p. 23 

3.2.2. Abutment preparation……………………………………...….… p. 24 

3.2.3. Fabrication of the master dies…………………………..……..… p. 26 

3.2.4. Fabrication of the crowns……………………………..………..... p. 27 

3.2.5. Bonding procedure…………………………………..…………... p. 27 

3.3. Tests and statistics..................……………………..………..…… p. 28 

3.3.1. Dynamic loading test ……………...……………..…..…………. p. 28 

3.3.2. Quasi-static loading test...………………………..……..……….. p. 29 

3.3.3. Microscopic evaluation…………………………………..…….... p. 30 

3.3.4. Statistics…………………………………………………..……… p. 30 

4. Results……………………………………………………..……. p. 31 

4.1. Results of the dynamic loading……………………………..…… p. 31 

4.2. Results of the quasi-static loading……………...……………..…. p. 31 

4.3. Descriptive tables and diagrams of the study results………….… p. 32 

4.4. Statistical analysis………………………...…………………..…. p. 33 

4.5. Fracture mode…………………………………………………… p. 34 

5. Discussion………………………………………………………. p. 35 

5.1. Discussion of the methods…………………………………......... p. 35 

5.1.1. Abutment preparation…………………………………………..... p. 35 

5.1.2. Crown fabrication…………………………………………..……. p. 36 

5.1.3. Crown cementation…………………………………………..…... p. 36 



4 

 

 

5.1.4. Tests……………………………………………………………… p. 37 

5.2. Discussion of the results……………………………………..…... p. 39 

5.2.1. Dynamic loading…………………………………………….…... p. 39 

5.2.2. Quasi-static loading…………………………………………..….. p. 40 

5.2.3. Fracture mode…………………………………………………..... p. 42 

6. Conclusions…………………………………………………….... p. 44 

7. Summary……………………………………………………..…. p. 45 

8. Zusammenfassung…………………………………………….... p. 46 

9. References……………………………………………………..… p. 48 

10. Curriculum Vitae……………………………………………….. p. 55 

11. Acknowledgements…………………………………………….... p. 56 

12. Appendix……………………………………………………….... p. 57 

 

 

 

 

 

 

 

 

 



5 

 

 

List of Abbreviations  

 

CAD/CAM :  Computer Assisted Design/Computer Assisted Manufacturing 

F: Cubic phase 

LTD: Low Temperature Degradation 

M: Monoclinic phase 

Mg-PSZ: Magnesium- Partially Stabilized Zirconia  

mm: millimeter 

N: Newton 

PSZ: Partially Stabilized Zirconia 

T: Tetragonal phase 

Y-TZP: Yttrium-Tetragonal Zirconia Polycrystals 

Zr: Zirconium 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



6 

 

 

1. INTRODUCTION 

 

The concept of oral implants is based upon the process of osseointegration 

(Brånemark 1983). Resistance to bending forces in implants is essential for the long-

term clinical performance of the restoration (McGlumphy et al. 1992, Basten et al. 

1996). Clinical success depends upon many parameters such as connection design 

between implant and the abutment and the different materials used for the fabrication 

of either abutment or crown (Morgan et al. 1993, Tripodakis et al. 1995). 

Oral implants in combination with titanium abutments and porcelain fused to metal 

crowns are the “gold standard” treatment option in prosthodontics with excellent 

survival rates (Lindh et al. 1998, Priest 1999, Zitzmann et al. 2001, Leonhardt et al. 

2002). The technological evolution and development of innovative materials and 

techniques in implant dentistry has created a first class challenge for the clinical 

practitioner to evolve new clinical and esthetic standards. As a result, patients 

consider natural-looking teeth as an essential necessity of life and their tendency has 

focused on metal-free restorations (Meyenberg 1994, Vallitu et al. 1995).
 
Therefore, 

optimal pink and white esthetics is a thought-provoking goal for both the surgeon and 

the restorative dentist (Zarb and Lewis 1992, Studer 1994). However, the color of the 

attached mucosa can be influenced by the implant and the abutment material 

especially in the case of thin periimplant tissues (Hürzeler et al. 1994, Studer et al. 

1995). Abutment components often shine through the mucosa giving a grayish shade 

due the insufficient thickness of the periimplant soft tissues or the inadequate depth of 

the emergence profile (Prestipino and Ingber 1996). In addition, when metal  

abutments are used with all-ceramic crowns, the underlying metal  receives, through 

the all-ceramic crown, a certain percentage of incident light altering the final color 

establishment of the all-ceramic restoration (Zarb and Lewis 1992, Hegenbarth 1997). 

 

1.1. Ceramics 

Ceramics are defined as non-metallic inorganic man made solid objects, formed by 

baking raw materials (minerals) at high temperature (Cronin and Cagna 1997, 

Rosenblum and Schulman 1997, Neumann 1999). According to the chemical 

composition dental ceramics can be classified into 3 categories: a) silicate ceramics 

(i.e. IPS Empress, Ivoclar Vivadent, Schaan, Liechtenstein; ProCAD, Ivoclar 

Vivadent; Vita Mark II, Bad Säckingen, Germany ) b) non-silicate or high strength 
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oxide ceramics (i.e. In-Ceram Alumina and Spinell (Vita, Bad Säckingen, Germany) 

Procera All Ceram (NobelBiocare, Goteborg, Sweden) and zirconium oxide ceramics 

and c) non-oxide ceramics such as nitrides and carbides (Blatz et al. 2003a, Neumann 

1999). Based on the fabrication technique, all-ceramic restorations can be classified 

into five systems: traditional powder-slurry (i.e. Optec, Jeneric/Pentron Inc., 

Wallingford, CT, US.), castable ceramics (i.e. Dicor, Dentsply, York, PA, US), 

pressable ceramics (i.e. IPS Empress, Ivoclar Vivadent); machinable ceramics (i.e. 

Vita Blocks Mark II, Vita), and glass-infiltrated oxide ceramics (i.e. In-Ceram, Vita) 

(Cronic and Cagna 1997, Kelly et al. 1996, Rosenblum and Schulman 1997). 

 

1.1.1. Pressable ceramics 

Pressed ceramics such as the leucite reinforced glass-ceramic (i.e. IPS Empress, 

Ivoclar Vivadent) and lithium disilicate glass-ceramic (i.e. IPS e.max Press, Ivoclar 

Vivadent) use the principle of crystal dispersion. According to this principle a 

prefabricated colored ceramic ingot is heated and then pressed into an investment 

mold using a special furnace at a specific temperature (Evans and O’Brien 1999, van 

Djiken 1999). Dimensional changes occur during solidification of the molten glass-

ceramic can be compensated by accurately matched expansion of the investment 

material (Kelly et al. 1996). Frameworks can be pressed either in a full anatomical 

contour which is completed by color staining or to a partial anatomical contour that 

supports porcelain veneering (Evans and O’Brien 1999). Leucite reinforced glass-

ceramics may be used for laminate veneers, inlays, onlays, partial-coverage and 

complete crowns (Goulet 1997, Kelly 2004), while lithium disilicate glass-ceramics 

could be used for the same restorations plus three-unit anterior fixed dental prostheses 

(Djiken 1999, Kheradmandan et al. 2001). Due to the inherent glassy matrix of the 

intaglio glass-ceramic surface, it can be etched with hydrofluoric acid, silanated and 

bonded to tooth structure using resin cements (Özcan and Vallittu 2003, Filho et al. 

2004).  

 

1.2. Zirconium oxide ceramics (zirconia) 

1.2.1. Medical and dental applications of zirconia 

Zirconia-based materials were initially introduced for biomedical use in orthopedics 

for total hip replacement, because of their excellent mechanical properties and 

biocompatibility (Piconi et al. 1998, Piconi and Maccauro 1999). Zirconia ceramics 
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have also been used in dentistry (Vagkopoulou et al. 2009, Koutayas et al. 2009) as 

crown and full (Fritzsche 2003, Burke et al. 2006) and partial (Komine and Tomic 

2005, Wolfart et al. 2007) bridge framework material, as prefabricated post or/and 

core (Meyenberg et al. 1995, Koutayas and Kern 1999), as implant abutments 

(Wohlwend et al. 1996, Glauser et al. 2004) and as implants (Kohal and Klaus 2004). 

In addition, different zirconia dental auxiliary components where proposed for dental 

use as orthodontic brackets (Keith et al. 1994), precision attachments, cutting and 

surgical instruments. 

 

1.2.2. General data of zirconia 

Zirconium (Zr) is a metal (atomic number: 40) which was first discovered by the 

German chemist Martin Klaproth in 1789. It has a density of 6.49g/cm³, melting point 

of 1,852°C and a boiling point of 3,580°C. It has a hexagonal crystal structure and a 

grayish color. Zirconium does not occur in nature in a pure state but it can be found as 

mineral in conjunction with silicate oxide (i.e. ZrSiO4 known as Zircon) or as a free 

oxide (i.e. ZrO2 known as Baddeleyite) (Lindemann 2000, Piconi and Maccauro 1999). 

Minerals cannot be used as primary materials in dentistry because of impurities of 

different metal elements that color their mass and natural radionuclides like urania 

and thoria, which make them radioactive. Therefore, complex and time-consuming 

purification processes are generated to produce pure zirconia powders that can be 

used for biomedical applications (Piconi and Maccauro 1999). 

 

1.2.3. Stabilized zirconia 

By the addition of stabilizing oxides to pure zirconia, such as calcium (CaO), 

magnesium (MgO), cerium (CeO2) or yttria (Y2O3), material’s phase transformations 

can be inhibited and therefore allow the production of a multiphase material, termed 

as stabilized zirconia, at room temperature (Christel et al. 1989, Piconi and Maccauro 

1999).  

Fully stabilized zirconia is produced, when more than 16mol% CaO (7.9wt %), 

16mol% MgO (5.86wt %), or 8mol% Y2O3 (13.75wt %) is added into ZrO2 and has a 

cubic form. However, the most useful mechanical properties can be obtained when 

zirconia is in a multiphase form, known as Partially Stabilized Zirconia (PSZ) (Garvie 

et al. 1975). Several PSZ have been tested as ceramic biomaterials. Mg-PSZ is one of 

the most commonly used zirconia-based engineering ceramics (Sundh and Sjogren 
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2006). It has been reported that reinforcement by phase transformation toughening is 

less pronounced in Mg-PSZ than in Y-TZP (see §.1.2.5. Yttrium-tetragonal zirconia 

polycrystals) (Sundh and Sjogren 2006). Ceria (Ce)-doped zirconia ceramics were 

rarely considered, although they exhibit superior toughness (up to 20 MPa√m) and 

show no aging (Chevalier 2006, Ban 2008). 

 

1.2.4. Zirconia transformation-toughening mechanism 

Zirconia can be found in three crystallographic phases: 1) the monoclinic phase (M) 

between room temperature and 1,170
o
C, 2) the tetragonal phase (T) between 1,170 

and 2,370ºC and 3) the cubic phase (F) above 2,370
o
C (Figure 1.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Phase relationship in zirconia-yttria systems according to composition and 

processing temperatures (M: monoclinic, T: tetragonal, F: cubic), [Source: Piconi and 

Maccauro 1999]. 

 

In the presence of a small amount of stabilizing oxides such as Y2O3, it is possible to 

obtain at room temperature PSZ ceramics totally in the tetragonal phase, described as 

Tetragonal Zirconia Polycrystals (TZP). By the fine dispersion of stabilizing oxides 

grains within the cubic matrix, zirconia material can be maintained in a metastable 

state that able to transform into the monoclinic phase (Christel et al. 1989). This 

phenomenon can be explained through the lower surface energy of the tetragonal 
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Y2O3 particles and the constraint of the rigid matrix on them that opposes their 

transformation to the less dense monoclinic form. This process provides a powerful 

crack-inhibiting and therefore strengthening mechanism, termed as “transformation 

toughening” (Garvie et al. 1975). The tetragonal ZrO2-grains can transform into the 

monoclinic phase when the constraint exerted by the matrix is relieved, i.e. during 

crack propagation (Piconi and Maccauro 1999). At the edge of the crack, a 

compressive stress field, associated with a 3 to 5% volume expansion of the 

transformed tetragonal grains, acts against the crack propagation (Figure 1.2) The 

fracture energy is dissipated both in the T-M transformation (also known as 

martensite-like transformation which occurs in quenched steel) and in the process of 

overcoming the compression stress of matrix due to the volume expansion. Therefore, 

the progression of the crack is inhibited and the toughness of the ceramic material is 

enhanced (Christel et al. 1989, Piconi and Maccauro 1999).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Schematic drawing of the stress-induced transformation-toughening 

mechanism in TZP [Source: Piconi and Maccauro 1999]. 

 

1.2.5. Yttrium-tetragonal zirconia polycrystals (Y-TZP) 

The addition of approximately 2-3% mol yttria (Y2O3) as a stabilizing agent in 

zirconia allows the sintering of fully tetragonal zirconia ceramic material, made of 

100% metastable tetragonal grains, known as “yttrium-tetragonal zirconia 

polycrystals” (Y-TZP) (Christel et al. 1989). The amount of the T-phase at room 

temperature and therefore the mechanical properties of Y-TZP ceramics, are relative 
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to the yttrium content and grain size, the processing temperature and finally the 

constraint exerted on them by the matrix (Piconi and Maccauro 1999). The addition of 

Y2O3 in higher concentrations produces a fully stabilized zirconia ceramic in a 

complete cubic phase which presents lower fracture characteristics (Sato and Shimada 

1985b).  To obtain a metastable tetragonal structure at room temperature such as 

3mol% Y2O3-ZrO2, the ceramic grain size must be less than 0.8 μm (Theunissen et al. 

1992). A critical grain size exists, linked to the yttria concentration, above which 

spontaneous T-M transformation of grains takes place whereas this transformation 

would be inhibited in an overly fine-grained structure (Picconi and Maccauro 1999) 

(Figure 1.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Retention of tetragonal phase. Critical grain size against yttria content in 

TZP [Source: Piconi and Maccauro 1999]. 

 

Finally, the T-M transition in Y-TZP materials does not only depend on the Y2O3 

content, but also on its distribution in the material’s mass. For his reason, the 

stabilizing oxide should be added during the early stages of the ceramic powder 

manufacturing process. Alternatively, it can be co-precipitated with ZrO2 salts or coat 

the ZrO2-grains during zirconia powder production (Piconi and Maccauro 1999). 
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1.2.6. Chemical and physical properties of Y-TZP 

The chemical and physical properties of Y-TZP are listed below in Table 1.1. 

Table 1.1. Chemical and physical properties of Y-TZP [Source: Vakgokpoulou et al. 

2009]. 

Properties Y-TZP 

Chemical composition (wt %)  

ZrO2 + HfO2 + Y2O3  >99.0 

Y2O3  4.5 to 5.4 

Al2O3  <0.5 

Other oxides  <0.5 

Physical properties  

Density (g/cm
3
)  6.05  

Grain size (μm)  0.2  

Monoclinic phase (%)  1  

Porosity <0.1 % 

Mechanical properties  

Flexural strength [4 point] (MPa)  1,666.0  

Elastic modulus (GPa)  201  

Vickers hardness (HV)  1,270.0  

Fracture toughness (Kgf/mm
2/3

) 16.8 

Fracture toughness KIC (MPa m
-1

) 7-10  

Compressive strength (MPa)  4,900.0  

Impact strength (MPa) 137.0 

Thermal properties  

Thermal expansion coefficient (x10
-6

/°C) 11x10
-6

 K
-1

 

Thermal conductivity (W/m°K) 2  

Thermal Shock Resistance  (ΓT ºC) 280-360 

Specific heat J/kg°K 500 

Electrical properties  

Dielectric constant (1MHz @ R.T.) 26 @100kHz 

Dielectric Strength (kV/mm) 9.0 

Electrical Resistivity (Ωcm @ R.T.) >10
13

 

Optical properties  

Refractive index 2-2.2 

Light transmittance  <48% 

 

1.2.7. Biocompatibility of Y-TZP 

A small percentage of the population is hypersensitive to dental alloys (Hansen and 

West 1997). In vitro and in vivo studies have confirmed the high biocompatibility of 

Y-TZP when high purity zirconia-powders are used. As a result, no local (cellular) or 

systemic adverse reactions have been reported (Christel et al. 1989, Covacci et al. 

1999, Josset et al. 1999, Piconi and Maccauro 1999). Recent studies have 
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demonstrated that lower plaque accumulation around Y-TZP than titanium 

restorations (Rimondini et al. 2002, Scarano et al. 2004). This has led to the 

suggestion that zirconium oxide may be a suitable material for manufacturing implant 

abutments that exhibit reduced bacteria colonization potential (Scarano et al. 2004). 

 

1.2.8. Aging of Y-TZP 

Long-term stability of ceramics depends on the subcritical crack growth and the stress 

corrosion caused by water. ZrO2-ceramics are prone to age in wet environment, which 

is of particular concern for biomedical applications, because results to degradation of 

their mechanical properties (Chevalier 2006). This specific aging phenomenon is 

termed as “low temperature degradation (LTD)” of zirconia occurs because of a 

progressive spontaneous transformation of the tetragonal phase into monoclinic which 

leads to surface damage when Y-TZP is in contact with water or vapor (Sato and 

Shimada 1985b), body fluid, or during steam sterilization (Piconi and Maccauro 1999). 

In addition, non-aqueous solvents with a chemical structure similar to water can also 

destabilize Y-TZP, causing strength degradation (Sato and Shimada 1985b, Ardlin 

2002). 

According to Swab (1991), the critical points of Y-TZP aging are the following: 1) 

The most critical temperature range for this phenomenon is 200-300°C, 2) The effects 

of aging are the reduction in strength, toughness and density and an increase in 

monoclinic phase content. 3) The degradation of the mechanical properties is due to 

the T-M transition and is taking place with micro and macro cracking of the material, 

4) T-M transition starts on the surface and progresses inwards the mass of the material, 

5) grain size reduction and/or concentration increase of the stabilizing oxide reduce 

the transformation rate, and 6) T-M transformation is enhanced in water or in vapor. 

The formation of Zr-OH bonds accelerates crack growth of pre-existing flaws and 

promotes the T-M phase (Sato and Shimada 1985b, Piconi and Maccauro 1999). 

LTD results in surface degradation of zirconia, in terms of: a) roughening, which 

leads to increased wear, and b) microcracking, which leads to grain pullout, 

generation of particle debris and possible premature failure. Surface elevations take 

place because of the voluminous M-phase and depend on the different aging medium 

(Ardlin 2002). Apart from elevations, craters have also been observed, as a result of 

worn out monoclinic spots on the degraded surface of the material (Chevalier 2006).  
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LTD rate of Y-TZP is related to several factors, such as chemical composition, 

duration of exposure to aging medium, loading of the ceramic restoration and 

manufacturing processes, all of which affect the microstructure of the material (Ardlin 

2002, Chevalier 2006). 

In regard to Y-TZP chemical composition, changes in yttrium concentration and 

processing temperature define the amount of the tetragonal phase in the material and, 

thus, the amount of the transformed M-phase. It has been suggested that the initial 

amount of monoclinic phase should be less than 10% for every surface of the material 

in contact with body fluids (Chevalier 2006). In addition, reduction of grain size 

reduces the transformation rate (Sato and Shimada 1985b). Dramatic decrease of the 

LTD resistance has been observed, when the grain size was greater than 0.6μm. 

However, after the initial phase-transformation, a stable state with no further 

significant decrease in flexural strength (>700MPa) can be established (Ardlin 2002, 

Shimizu et al. 1993). 

 

1.2.9. Y-TZP surface and heat treatments 

Processing and veneering of zirconia-based frameworks, fabricated with CAD/CAM 

technology, involves different laboratory stages such as grinding, polishing, air-borne 

particle abrasion and heat treatment. The critical influence of these stages on the aging 

sensitivity of zirconia affects the long-term stability and success of the material. 

Grinding. Generally grinding increases the strength of ceramics that contain 

metastable tetragonal zirconia. This is due to the T-M transformation on the surface of 

the material and the development of compressive strains from the transformation-

related volume increase, at a depth of several microns under the surface (Garvie et al. 

1975). The surface compressive stresses prevent microcrack formation or propagation, 

but promote surface and subsurface damage. After zirconia phase transformation, 

surface damage mechanism is by grain pullout and formation of microcraters (Denry 

and Holloway 2006). This leads to surface roughness and porosities which may 

influence the wear resistance of the material (Piconi and Maccauro 1999). Apart from 

the strained tetragonal grains, a rhombohedral zirconia phase has been found to form 

after grinding, with similar consequences on the behavior of zirconia as the tetragonal 

phase (Denry and Holloway 2006). 

Despite water-cooling, high stresses and temperatures are developed during grinding. 

These high temperatures are especially generated during machine grinding than 
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during manual grinding (Swain and Hannink 1989), and can activate the reverse M-T 

transformation (Ardlin 2002, Kosmac et al. 1999). For this reason, a certain amount of 

M-phase is removed from the surface and, thus, material’s strength is reduced. The 

use of water spray during grinding reduces stresses, resulting in a decrease of the 

critical flaw size by about 30% (Kosmac et al. 1999). Manual grinding is performed 

with less stress and at lower temperatures; therefore, it promotes the T-M 

transformation and increases the surface compressive layer (Ardlin 2002). 

Annealing after grinding may reverse zirconia M-T transformation but surface and 

subsurface damage remains and could subsequently lead to crack propagation (Denry 

and Holloway 2006). Furthermore, the introduction of deep surface flaws during 

machining (CAM) may concentrate stresses that also determine strength of the 

restoration (Kosmac et al. 1999, Luthardt et al. 2004). Grinding of the inner surface of 

zirconia crowns induces surface flaws and microcracks at the internal surface of the 

occlusal region. As shown in failed restorations, these areas concentrate the greatest 

tensile stresses during clinical loading. Thus, it is important that the concentration of 

microcracks in these areas is minimized (Luthardt et al. 2004). Moreover, coarse 

grinding tools that produce deep surface flaws and extensive heat may also determine 

the strength of the restoration (Ardlin 2002, Kosmac et al. 1999, Luthardt et al. 2004). 

The direction of tool rotation during machining and the sharpness and number of 

active diamond grains seem to be important determinants of surface properties of the 

material (Luthardt et al. 2004). Orientation of grinding was found irrelevant; however, 

fractures may be initiated under loading by the flaws which distributed perpendicular 

to the grinding orientation (Guazzato et al. 2005). 

Polishing. The polishing process develops scratches that induce residual stresses in 

the material. The influence of polishing on the aging sensitivity of zirconia is 

contradictory and relates to the type and amount of these stresses. 

Rough polishing produces a compressive surface stress layer beneficial for the aging 

resistance, while smooth polishing produces preferential transformation nucleation 

around scratches, due to tensile residual stresses caused by elastic/plastic damage 

(Deville et al. 2006). Fine polishing after grinding may remove the compressive layer 

of monoclinic phase from the surface, while further polishing may minimize the size 

of flaws and result in greater flexural strength (Guazzato et al. 2005). 

Air-borne particle abrasion. Air-borne particle abrasion of the inner surface of a 

restoration is usually used to enhance the adhesion strength of the luting agent to the 
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framework (Kern and Wegner 1998). According to Kosmac et al. (1999), it can also 

provide a powerful technique for strengthening Y-TZP at the expense of somewhat 

lower stability. The alumina particles can cause significant damage to the material’s 

surface, which is characterized by erosive wear and lateral cracks. However, a thin 

compressive layer of transformed M-phase is formed, which counteracts the strength 

degradation caused by air-borne particle abrasion-induced flaws and effectively 

increases strength. Lower temperatures and stresses are developed than in grinding 

allowing the M-phase to be maintained (Guazzato et al. 2005). 

The use of air-borne particle abrasion after grinding may reduce the critical size of 

flaws through chipping, which largely levels the material surface (Kosmac et al. 1999). 

On the other hand, it has been found that air-borne particle abrasion before 

cementation of Y-TZP restorations mechanically assists the growth of pre-existing 

flaws, reducing the strength the material when compared to  polished specimens 

(Zhang et al. 2004). Nevertheless in this research no restorations were tested and the 

inner surfaces of restorations are never polished but always machined. 

Heat treatment. Surface and heat treatments have a counteracting effect on flexural 

strength of dental Y-TZP ceramics (Guazzato et al. 2005). While the strength of Y-

TZP can be increased by wet grinding or air-borne particle abrasion, when followed 

by heat treatment it is reduced. The effect of heat, regardless of the holding time, 

initiates the reverse M-T transformation, eliminating the M-phase from the material 

surface and thus lowering the strength of the material (Guazzato et al. 2005). 

Clinically, a greater amount of monoclinic phase on the surface and therefore a 

greater flexural strength may be desirable. On the other hand, an excessive amount of 

M-phase could lead to microcracking (Guazzato et al. 2005) and predispose the 

material to a more rapid moisture-assisted transformation over time and loading in the 

acidic and aqueous oral environment (De Aza et al. 2002). 

 

1.3. Ceramic abutments
 

In the 90’s, individualized ceramometal abutments offered an esthetic approach for 

single implant crowns (Prestipino and Ingber 1993a, Pröbster and Groten 1997, 

Marinello and Meyenberg 1997). However, with the introduction of high toughness 

ceramics different all-ceramic abutments with improved physical and optical 

properties became available for dental use (Prestipino and Ingber 1993b). The bio-

esthetic outcome of all-ceramic abutments in combination with all-ceramic crowns 
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has been demonstrated in several clinical trials (Studer and Wohlwend, Wohlwend 

and Studer 1996, Sadoun and Perelmuter 1997, Heydecke et al. 2002, Bonnard et al. 

2001). All-ceramic abutments could positively contribute to the final color 

establishment of an all-ceramic restoration. This specific potential is related to a 

deeper diffusion and absorption of the transmitted light into the ceramic abutment 

mass, which approximates the translucency of the natural teeth (Pietrobon and Paul 

1997, Koutayas and Kern 1999, Tan and Dunne 2004). 

Current ceramic abutments are fabricated from either densely sintered high-purity 

alumina (Al2O3) ceramic (Dahlmo et al. 2001) or partially stabilized yttria (Y2O3)-

tetragonal zirconia (ZrO2) polycrystal (Y-TZP) ceramic (Glauser et al. 2004). Both 

materials demonstrate differences regarding their microstructure and mechanism 

against flaw propagation (Christel et al. 1989, Andersson and  Oden 1993, Mante et al. 

1993, Seghi et al. 1995). Y-TZP abutments presented 3-fold improved fracture 

strength than the alumina ones (Yildirim et al. 2003). The main disadvantage of the 

alumina abutments is related to reduced strength and fatigue resistance when 

compared to metal abutments (Ingber and  Prestipino 1991a, Ingber and  Prestipino 

1991b, Prestipino and  Ingber 1993).  

 

1.3.1. Zirconia implant abutments 

Expected high survival rates for implants and implant-supported single crowns (Jung 

et al. 2008) can be also accommodated by the clinical application of zirconia 

abutments (Kohal et al. 2008). Moreover, Y-TZP abutments may promote soft tissue 

integration (Welander et al. 2008) and provide clinically favourable peri-implant soft 

tissues (Glauser et al. 2004, Degidi et al. 2006, Bae et al. 2008). A systematic review 

revealed that Y-TZP abutments, compared to Ti or Au alloy and alumina ones, could 

equally preserve the peri-implant bone level (Linkevicius and Apse 2008). 

Prefabricated Y-TZP abutments are commercially available from different implant 

manufactures or can be fabricated customized by dental technicians. Regarding the 

latter, CAD/CAM technology can be beneficial in designing fully individualized Y-

TZP abutments. Selected prefabricated and custom-made Y-TZP abutments are 

shown in Table 1.2. Both types of abutments can be further customized either by 

extraoral or intraoral preparation.  

Most manufactures recommend either a pronounced chamfer or a shoulder 

preparation with rounded inner line angles. Subgingival preparation margins should 



18 

 

 

not be overextended beyond the point that provides access for cleaning (i.e. cement 

residuals). Moreover, the emergence profile especially for customized abutments 

should be rather concave (Rompen et al. 2007) and must follow known diagnostic 

regimens (Yildirim et al. 2000). Quasi-static loading testing (loading direction of 60º) 

after 0.5 and 1 mm of axial reduction of zirconia abutments (AstraTec) did not 

significantly affect the fracture resistance (between 429 and 576 N) of single implant 

crowns which was gathered above the estimated anterior incisive forces (Adatia et al. 

2009).  

Marginal adaptation of zirconia abutments can be achieved either by the abutment 

with or without an integrated titanium basis and a fastening screw (Brodbeck et al. 

2003) In-vitro precision fit evaluation of internal or external hexagon CAD/CAM 

custom abutments met clinical standards (Lang et al. 2003) and in case of hexagonal 

external connection showed less than 3º of rotational freedom (Vigolo et al. 2006). 

Screw joint ceramic abutments may present fracture or loosening implications due to 

misfit at the implant/abutment interface (Tripodakis et al. 1995, Papavasiliou et 

al.1996) should be avoided through appropriate laboratory processing (Vigolo et al. 

2005).  

In-vitro testing of CAD/CAM-processed implant single crowns supported by either 

prefabricated (Butz et al. 2005, Att et al. 2006a, Gehrke et al. 2006, Att et al. 2006b) 

or customized (Sundh and Sjogren 2006) Y-TZP abutments confirmed their feasibility 

to withstand physiologic incisive forces. Additional dynamic loading results using a 

chewing simulator, regarding of implant single crowns on Y-TZP abutments (Butz et 

al. 2005, Att et al. 2006a, Att et al.2006b, Gehrke et al. 2006) were also confirmed by 

clinical research that revealed cumulative survival rate of 100% up to 6 years of 

service. However due to the lack of the number and the moderate observation time of 

the existing clinical studies, further long-term evaluation is necessary (Linkevicius 

and Apse 2008). 
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Table 1.2. Selected zirconia abutments [Source: Koutayas et al. 2009]. 

 

 

 Manufacturer Friadent Nobel Biocare Straumann Biomet 3i Bego Astra Atlantis 

www. friadent.de nobelbiocare.com straumann.com biomet3i.com bego.com astratechdental.com atlantiscomp.com 

Name 
Cercon  

Balance 

Friadent 

Cercon 

Procera 

Abutment 

Zirconia 

Procera Abut.  

Zirconia for  

other implants 

RN SynOcta 

custom abut. 

[CARES] 

Ext. hex. 

ZiReal 

post 

Certain 

ZiReal  

post 

BeCe  

Sub-Tec 

ceramic 

Zirdesign Atlantis 

Material Y-TZP Y-TZP Y-TZP 
Y-TZP  

Ti seating post 

Y-TZP 

Ti seating post 

Y-TZ P 

Ti seating ring or post 
Y-TZP Y-TZP Y-TZP 

Color whitish 
whitish, 

dentin 
whitish Whitish Whitish whitish Whitish whitish whitish 

Connection 
int. cone  

Ti screw 

int. hex  

Ti screw 

exτ. hex    

Ti screw 

int. hex  

Ti screw 

int. hex 

(SynOcta 1.5)  

Ti screw 

exτ. hex 

Au-screw 

int. hex 

Au-screw 

int. cone  

& hex &  

Ti screw 

int. cone  

& hex &  

Ti screw 

int. hex or 

ext. hex & 

system screw 

Implant  

Diameter (mm) 

Ankylos  

5.5, 7.0 

XiVe  

3.8, 4.5 

all 

Brånemark 

NP / RP / 

WP   

NobelReplace  

NP / RP / WP  

Straumann  RN 

4.8,  Camlog  

3.3- 6.0 

Straumann   

RN 4.8 

Osseotite 

nt, pw, xp 

4.1, 5.0 

Osseotite 

certain 

4.1, 5.0 

Bego S 

3.25-5.5  

Begor R  

3.75-5.5 

Osseospeed  

3.5/4.0, 4.5/ 5.0 

int. hexed impl.  

ext. hexed impl. 

Gingival  

Height (mm) 

1.5, 3.0 

scalloped 
1.0, 2.0 Customized Customized 4.0  

1.5, 3.0 

scalloped 
customized 

Inclination 
straight (0º), 

angled (15º) 

straight (0º), 

angled (15º) 
Customized Customized straight (0º) straight (0º) 

straight (0º), 

angled (20º) 
customized 

Type prefabricated prefabricated customized  (Procera 3-D CAD) 
customized 

Sirona InLab 
prefabricated Prefabricated prefabricated 

customized 

(Atlantis VAD) 
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2. PURPOSE  

 

Zirconia ceramic seems to be a very promising biomaterial for the fabrication of 

implant abutments. However, scarce data can be found in the literature regarding the 

influence of the preparation depth and design on the biomechanical and the feasibility 

behaviour of all-ceramic crowns luted to Y-TZP abutments. In addition, clinical 

evaluation in the highly loaded oral environment requires long-term studies which are 

costly and time-consuming.  

The hypothesis to be tested was that the increase of the preparation depth and the 

manual, instead the manufacturer milling, preparation mode of zirconia implant 

abutments will not negatively affect the fracture strength of lithium disilicate glass 

ceramic implant crown restorations under different loading conditions (quasi-static 

and dynamic loading).  

The purpose of the study was to evaluate the influence of the circumferential chamfer 

preparation depth (0.5, 0.7, 0.9 mm) using two preparation modes (milling by the 

manufacturer, milling by Celay system) on the fracture strength, and to explore the 

fracture mode of lithium disilicate glass ceramic crowns (IPS e.max Press, Ivoclar 

Vivadent) on single implant zirconia abutments (ZirDesign, Astra Tech, Mölndal, 

Sweden) under different loading modes (dynamic, quasi-static loading). 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 

 

 

3. MATERIALS AND METHODS 

 

3.1. Materials  

All materials used for the study are listed in Table 3.1. 

 Table 3.1. Study materials. 

 

 

  

Material Manufacturer Generic Name  LOT No. 

IPS e.max Press  
 

Ivoclar Vivadent,  
Schaan, Liechtenstein 

Lithium disilicate  
glass-ceramic  

H21370 

OsseoSpeed Astra Tech,  
Mölndal, Sweden  

Titanium  
alloy implant 

45334 

ZirDesign  
 
Type A, Ø 3,6 / Ø 4,1 
 
Type B, Ø 3,2 / Ø 3,7 
 

Astra Tech,  
Mölndal, Sweden 

Y-TZP  
implant   
zirconia  
abutments 

46952 
Charge No. 6417  
Index YA06 
Charge No. 6417  
Index YA06 

ZirDesign  

Abutment screw 

Astra Tech,  
Mölndal, Sweden 

Titanium  
Screw 

53758 

Multilink Αutomix Ivoclar Vivadent,  
Schaan, Liechtenstein 

Dual curing   
resin cement 

J05820 

Metal Ζirconia  
Primer 

Ivoclar Vivadent,  
Schaan, Liechtenstein 

Coupling  
Reagent 

H36277 

Steatite  
Ceramic Ball 

Höchst Ceram Tec, 

Wunsiedel, Germany 
Steatite  
Ceramic 

 - 

Technovit 4000  
Powder 
Technovit Syrup I 
Technovit Syrup II 

Heraeus Kulzer,  
Wehrheim, Germany 

Self-curing  
polyester resin 

 
010221 
011020 
012010 

Zwick Z010/TN2 Zwick,  
Ulm, Germany 

Universal  
testing machine 

 - 

Celay System Mikrona, Spreitenbach, 

Switzerland 
Copy-milling  
Machine 

 - 

Celay Milling pins  
YZ-54S 

Mikrona, Spreitenbach, 

Switzerland 
Diamond cutting 

instruments 
E284021 

Willytec  
Chewing Simulator  

Willytec,  
Munich, Germany 

Chewing  
Simulator 

 - 

Thermocycling 

apparatus  
Gebrüder Haake GmbH, 

Karlsruhe, Germany 
Thermocycling  
Apparatus 

 - 
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3.1.1. ZirDesign (Astra Tech, Mölndal, Sweden) 

ZirDesign (Astra Tech) is an yttria tetragonal zirconia polycrystal material which can 

be further customized modified through essential preparation to the desired 

anatomical demands. This specific transmucosal abutment is used for cement-retained 

restorations (i.e. all-ceramic crowns) in combination to a corresponding implant. This 

ivory colored ceramic abutment is used for implant supported restorations placed in 

the anterior, canine and first premolar regions and strives to serve high esthetic 

demands. According to the manufacturer, it has a bending strength between 1,000 and 

1,300 MPa, a fracture toughness of 9 to 10 MPa m⅓, a modulus of elasticity of 210 

GPa and a linear thermal expansion coefficient of 10.6 x 10
-6

 K
-1

. Detailed dimensions 

of this zirconia abutment and screw are shown in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.2. IPS e.max Press (Ivoclar Vivadent, Schaan, Liechtenstein) 

IPS e.max Press (Ivoclar Vivadent) is a lithium disilicate glass-ceramic that is 

manufactured in ingots of two different sizes and four opacity levels (LT, MO, HL, 

HO) each. The material contains different chemical compounds such as SiO2, Li20, 

K2O, P2O5, ZrO2, ZnO, Al2O3, MgO, La2O3 and pigments. The ingots exhibit an 

optimized homogeneity, which results in a consistently high strength of 400 MPa. 

Moreover, IPS e.max Press follows the well established heat pressing technique. The 

completed core generally provides a desirable depth of translucency that facilitates an 

esthetic outcome after veneering. IPS e.max Press crowns are recommended as single 

tooth restorations for all intraoral regions. 

3.1.3. Multilink Automix (Ivoclar Vivadent, Schaan, Liechtenstein)  

Fig. 3.1. Schematic drawing 

and dimensions of the 

abutment and screw. 

[H1:13.7 mm, H2= 10 mm, 

gingival height: 3.5 mm. 

screw diameter: 2.35 mm, 

screw length: 10.30 mm]. 
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Multilink Automix (Ivoclar Vivadent) is dual curing resin cement (self-curing luting 

composite with light-curing option) mainly composed by hydrolytically stable 

phosphonic acids (acidic monomers). The monomer matrix is composed of 22 to 26% 

dimethacrylate, 6-7% HEMA and 1% is benzoylperoxide. The inorganic fillers (40% 

in volume) are barium glass, ytterbium trifluoride and spheroidmixed oxide. 

Specifically, this cement has a particle size of 0.25-3.0 microns (mean particle size 0.9 

microns). Multilink Automix is commercially available in three shades (yellow, 

transparent, opaque) and can be used for the permanent adhesive cementation of 

different metal and ceramic (i.e zirconia, lithium disilicate) indirect restorations such 

as inlays, onlays, crowns, bridges and endodontic posts.  

 

3.1.4. OsseoSpeed (Astra Tech Dental, Mölndal, Sweden) 

OsseoSpeed implant (Astra Tech) is a two-piece system suitable for both one-stage 

and two-stage surgery. It has an improved titanium dioxide blasted surface which is 

fluoride-modified that as claimed by the manufacturer can rapidly stimulate bone 

formation. Furthermore, it has the ability to provide an increased bone-to-implant 

contact ratio and a stronger bone-to-implant interface.  In addition, the neck is 

designed with MicroThread™ minute threads that offer optimal load distribution and 

lower stress values. Implant abutment is fixed into the implant with a conical 

connection (Conical Seal Design™), which is a below the marginal bone level and 

therefore transfers functional loads deeper down in the bone. Last but not least, after 

abutment connection a special contour is achieved that allows for an increased 

connective soft tissue contact zone both in height and volume, which integrates with 

the transmucosal part of the implant, sealing off and protecting the marginal bone. 

OsseoSpeed implants (Astra Tech) are commercially available in four (4) diameters 

(3.0, 3.5, 4.0, 4.5, 5.0 mm) and eight (8) different lengths (6.0, 8.0, 9.0, 11.0, 13.0, 

15.0, 17.0, 19.0 mm). More specifically, OsseoSpeed implants with a 4.5 mm in 

diameter and 15.0 mm in length were used in this study. 

 

3.2. Methods 

3.2.1. Study outline 

Seventy single implant-supported all-ceramic crowns were manufactured using a 

lithium disilicate glass ceramic material (IPS e.max Press, Ivoclar Vivadent) to 

replace a maxillary central incisor. For the purposes of the study, a full wax-up of a 
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right maxillary central incisor (11) was fabricated (11.0 mm in height and 8.0 mm in 

width). For the study purposes, 56 zirconia abutments (ZirDesign, Astra Tech) were 

prepared in two depths (0.7 mm, 0.9 mm) following two preparation modes (milling 

by the manufacturer, milling by the Celay system). Additional abutments (n=14) that 

had been prepared by the manufacturer in the depth of 0.5 mm served as control. After 

the zirconia abutments were connected to 70 identical implants (Osseospeed, Astra 

Tech), 4.5 mm in diameter and 15.0 mm in length, all crowns were adhesively 

cemented (Multilink Automix, Ivoclar Vivadent). Study specimens were divided into 

five (5) groups of 14 specimens each. Subgroups of 7 specimens each were finally 

subjected to either quasi-static or dynamic loading test under 135° (Table 3.2.). 

Fracture strength values and number of loading cycles were recorded and statistically 

evaluated. Fracture modes were evaluated under low power stereo-magnification 

using an optical microscope. 

 

Table 3.2. Test groups. 

 

3.2.2. Abutment preparation 

The concept of this study was based on simulating and testing single implant crowns 

after different abutment preparation depths that can be clinically selected. The specific 

abutments are delivered by the manufacturer with a 0.5 mm circumferential chamfer 

margin. However; clinically this may be not enough and therefore can be further 

prepared both intraorally and extraorally by either the clinician or the technician, 

respectively. The selected circumferential chamfer preparations were extended 0.2 

and 0.4 mm in depth from the original abutment size. Regarding the maximum radius 

of the abutment (1/2 of the diameter), the 70 abutments used in this study were finally 

Group Preparation 

Depth (mm) 

Preparation 

Mode (milling) 

Quasi-static 

Loading (S) 

 

N 

Dynamic 

Loading (C) 

 

n 

A  0.5  manufacturer SA 7 CA 7 

B 0.7 manufacturer SB 7 CB 7 

C 0.9  manufacturer SC 7 CC 7 

PB 0.7  Celay system SPB 7 CPB 7 

PC 0.9  Celay system SPC 7 CPC 7 

Partial Sum 35  35 

Total Sum                                                                                                                      70 
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prepared as follows: 1) Preparation depth (mm): 0,5 mm [Group A (n=14, control)], 

2) Preparation depth (mm): 0,7 mm [Group B (n=28)] and 3) Preparation depth (mm): 

0,9 mm [Group C (n=28).]. A schematic drawing of all different abutment 

preparations is shown in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Appropriate abutment preparations were performed by milling either following the 

production line used for all commercially available abutments from the manufacturing 

company (Astra Tech) or using the Celay system (Mikrona) in a laboratory 

environment. Therefore, all abutments in Group A (n=14, control) and half of the 

abutments in Group B (n=14) and Group C (n=14) received the aforementioned axial 

preparations (milling) without height reduction by the manufacturer (Figure 3.2.). 

 

 

 

 

 

 

 

 

 

 

Height modifications were made using the Celay system (Mikrona) (Figure 3.3.a.) 

using special cutting diamond instruments (Figure 3.3.b.) under water coolant. The 

Figure 3.2. Schematic drawing 

of the three different prepared 

abutments.  

          : 0.5 mm reduction from 

original abutment size (Group A) 

          : 0.7 mm reduction from 

original abutment size (Group B) 

           : 0.9 mm reduction from 

original abutment size (Group C) 

Figure 3.2.  

Abutments prepared by the 

manufacturer (Astra Tech) 

without height reduction: 

Group A (left), Group B 

(middle), Group C (right). 
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incisal edge of the abutments was reduced in height so that each prepared abutment 

was 5.0 mm at the labial and 3.0 mm at the palatal aspect.  

 

 

 

 

 

 

 

 

 

 

Figure 3.3.a.: Prepared abutments made by the manufacturer after modification using 

the Celay system: Group A (left), Group B (middle), Group C (right). Figure 3.3.b: 

Fine grained cutting diamond instruments especially designed for the Celay system. 

Moreover, the additional half of the abutments in Group PB (n=14) and Group PC 

(n=14) received a manual preparation (milling) using the Celay system (Mikrona) and 

its special cutting diamond instruments under water coolant (Figure 3.3.b) and 

according the specification described previously (preparation depth of Group PB: 0.7 

mm and of Group PC: 0.9 mm, abutment height: 6.0 mm). 

Generally each zirconia implant abutment received a 360° circular chamfer 

preparation with rounded inner angles to the selected depth using the appropriate 

rotating instruments. All prepared abutments had a standardized 6° convergence and 

angle surfaces between the axial and palatal surfaces were rounded, as well as the 

incisal surfaces (minimum radius: 0.5 mm). However, a minimum width of 1.0 mm of 

the incisal edge in the vestibular-oral direction was retained to guarantee an exact 

reproduction of the internal framework surfaces by the milling unit.  

In order to achieve identical dimensions during preparation of the abutments with the 

copy-milling technique, a pre-prepared to the selected preparation size and depth 

master metal abutment was attached on the tracing chamber of the Celay system 

(Mikrona). Finally, 4.5 mm milling implant analogues were use to facilitate tracing 

and milling purposes. 

3.2.3. Fabrication of the master dies 

b a 
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Prior to the fabrication of the master dies all prepared zirconia abutments were 

connected onto identical titanium implants (Osseospeed, Astra Tech), 4.5 mm in 

diameter and 15.0 mm in length. According to the manufacturer’s recommendation, 

every abutment was fixed with a standard abutment titanium screw (2.35 mm in 

diameter, 10.30 mm in length) using a torque control screw driver with a torque of 25 

N/cm.  

Then, the implant/abutment specimens were embedded in a three-component, self-

curing polyester resin (Technovit 4000, Heraeus Kulzer, Wehrheim, Germany) using 

a preset silicon index that provided a horizontal inclination of 135°. Polyester resin 

material was poured into special cooper cylinders that also served as the specimen 

holders during testing. 

 

3.2.4. Fabrication of the crowns 

For the fabrication of the 70 lithium disilicate crowns, full wax-ups of the complete 

crown restorations were made onto the zirconia abutments in order to replace a right 

maxillary central incisor (11). Identical wax-ups were performed with respect to the 

external crown dimensions such as 11.0 mm in height and 8.0 mm in width. The latter 

were achieved with the use of a silicon index, which was taken from a master 

diagnostic wax-up, and verified, with the use of a digital caliper. After burn out of the 

wax crown analogue, a castable lithium disilicate glass-ceramic ingot (IPS e.max 

Press, Ivoclar Vivadent) was heated and pressed into an investment mold using the 

heat-pressing technique. Finally, all crowns were fitted down to the master dies and 

completed by appropriate grinding and polishing. 

 

3.2.5. Bonding procedure 

For the adhesive cementation, the zirconia implant abutments were air-abraded with 

50 µm alumina particles at 0.5 bars pressure until a marker coating (green) was 

completely removed. Moreover, they were ultrasonically cleaned in alcohol 96% for 2 

minutes, dried and pre-treated with a special primer (Metal-Zirconia primer, Ivoclar 

Vivadent). In addition, the inner surfaces of the lithium disilicate crowns were etched 

according to the manufacturer for 20 seconds with hydrofluoric acid (IPS Ceramic 

Etching Gel, Ivoclar Vivadent) and silanated (Monobond S, Ivoclar Vivadent). Then 

the crowns were bonded onto the abutments using the dual curing adhesive resin 

cement Multilink Automix (Ivoclar Vivadent), under a constant pressure of 50 N 
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during a setting period (3 minutes). However, after excess cement was removed, light 

curing was applied for 20 seconds at each side (buccal - palatal) according to the 

manufacturer recommendations (Figure 3.4.). 

 

 

 

Figure 3.4. Typical group after completion of the bonding procedure. 

 

 

3.3. Tests and statistics 

3.3.1. Dynamic loading test 

According to the study outline (Table 3.2.) groups CA, CB, CC, CPB, CPC (n=7) 

were subjected to thermo-mechanical dynamic loading in a computer-controlled dual-

axis chewing simulator (Kausimulator, Willytec, Munich, Germany) for 1,200,000 

loading cycles (Figure 3.5), that corresponds to a 5-year clinical fatigue (Kern et al. 

1999).  
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Figure 3.5. Schematic drawing of the dual-axis chewing simulator with eight 

chambers. (1) upper crossbeam, (2) lower crossbeam, (3a) water reservoir (in), (3b) 

water reservoir (out), (4) filter for cold water, (5) filter for warm water, (6) pump for 

removal of cold water, (7) pump for removal of warm water, (8) pump for application 

of cold water, (9) pump for application of warm water, (10) motor block, (11) table 

(Kern et al. 1999). 

 

During dynamic loading all specimens are allowed to reach a thermal equilibrium 

between 5°C and 55°C for 60 sec each with an intermediate pause of 12 sec, 

maintained by a thermostatically controlled liquid circulator (Haake, Karlsruhe, 

Germany). A loading force of 98 N was applied at an angle of 135° degrees to the 

horizontal axis, 3 mm below the incisal edge on the palatal aspect of the crown at a 

frequency of 1.6 Hz using a ceramic ball with a 6-mm diameter (Steatite Hoechst 

Ceram Tec, Wunsiedel, Germany).  

 

3.3.2. Quasi-static loading test 

According to the study outline (Table 3.2.) additional groups SA, SB, SC, SPB, SPC 

also of seven (7) specimens each and surviving specimens after dynamic loading of 

groups CA, CB, CC, CPB, CPC, were subjected to quasi-static loading until fracture 

using a universal testing instrument (Z010/TN2S, Zwick, Ulm, Germany). A semi-

spherical loading stamp was centrally positioned in the median plane of the crown 

between the upper end of the tuberculum and the incisal edge. However, a 1 mm-thick 

tin foil was placed between loading stamp and crown to achieve homogenous stress 
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distribution. Then, a compressive force was applied at the same angle of 135° degrees 

to the horizontal axis under stroke control with a cross-head speed of 0.5 mm/min 

until fracture and fracture strength values (N) achieved were recorded. 

 

3.3.3. Microscopic evaluation 

After the quasi-static and the dynamic loading tests, all fractured specimens were 

ultrasonically cleaned in 96 % alcohol and examined under low power (50 x) stereo-

magnification and incident light with the use of an optical microscope (Carl Zeiss, 

Jena, Germany) and representative photographs were made. The microscopic 

evaluation was performed to assess the mode of failure, therefore; all tested specimens 

were examined for incipient fractures and the mode of failure was classified according 

possible locations of the fractures. Different fractures types were investigated in order 

to determine a possible influence the preparation design under loading conditions. 

 

3.3.4. Statistics 

As previously described (see chapter 2 and 3.2), the current study examined three 

different influencing factors regarding the fracture strength of lithium disilicate single 

implant crowns; a) the preparation depth [0.5/0.7/0.9 mm], b) the preparation mode 

[milling by the manufacturer/milling using the Celay system] and c) the loading mode 

[dynamic/quasi-static]. After both dynamic and quasi-static loading tests, fracture 

strength values were statistically evaluated using the multiple linear regression 

method.  

Regression analysis is used to understand which among the independent variables, 

such as the preparation mode, the preparation depth and the loading mode, are related 

to the dependent variable, such as the fracture strength, and to explore the forms of 

these relationships. Regression analysis may include techniques for modeling and 

analyzing several variables, when the focus is on the relationship between a dependent 

variable and one or more independent variables. More specifically, regression analysis 

estimates the conditional expectation of the dependent variable given the independent 

variables; that is, the average value of the dependent variable when the independent 

variables are held fixed (Chan 2004). 
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4. RESULTS. 

4.1. Results of the dynamic loading 

With the exception of one specimen in the Group CPB which failed at 300,000 

loading cycles due to implant fracture, every specimen in all test groups CA, CB, CC, 

CPB, CPC survived the 1,200,000 loading cycles in the chewing simulator 

(Kausimulator, Willytec). Loading cycles (n) achieved for each specimen after 

dynamic loading are shown in Table 4.1. 

Table 4.1. Mean loading cycles (n) achieved after dynamic loading (No.: number of 

specimens, S.D.: standard deviation, group codes see Table 3.2.). 

Groups No. Mean  S.D. 

CA 7 1,2 10
6
0.00 

CB 7 1,2 10
6
0.00 

CC 7 1,2 10
6
0.00 

CPB 7 1,07 10
6
340.17 

CPC 7 1,2 10
6
0.00 

 

4.2. Results of the quasi-static loading 

Groups SA, SB, SC, SPB, SPC and surviving specimens after dynamic loading of 

groups CA, CB, CC, CPB, CPC, were subjected to quasi-static loading until fracture 

using a universal testing instrument (Z010/TN2S, Zwick). Fracture strengths (N) 

achieved for each specimen after quasi-static loading are shown in Table 4.2. 

 Table 4.2. Mean fracture strengths (in Newtons) achieved after quasi-static loading 

(No.: number of specimens, S.D.: standard deviation, group codes see Table 3.2). 

Groups  No. Mean (N) S.D. 

SA 7 383.8 83.9 

CA 7 403.4 67.0 

SB 7 294.3 95.4 

CB 7 374.0 75.0 

SC 7 331.7 52.4 

CC 7 372.7 105.0 

SPB 7 332.4 79.9 

CPB 6 499.0 90.7 

SPC 7 380.7 101.5 

CPC 7 358.1 53.8 

Total 69 371.2 91.5 
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4.3. Descriptive table and diagram of the study results 

A synopsis of the study results is given through Table 4.3 and Figures 4.1. and 4.2. 

Table 4.3. Mean, standard deviations, minimum, median, and maximum fracture 

strengths (in Newtons) of test groups. (Group codes see Table 3.2.). 

Groups  n Mean S.D. Min Median Max Range 

SA 7 383.8 83.9 292.0 372.0 544.0 252.0 

CA 7 403.4 67.0 313.0 389.0 501.0 188.0 

SB 7 294.3 95.4 198.0 270.0 474.0 276.0 

CB 7 374.0 75.0 265.0 380.0 481.0 216.0 

SC 7 331.7 52.4 270.0 332.0 421.0 151.0 

CC 7 372.7 105.0 251.0 396.0 499.0 248.0 

SPB 7 332.4 79.9 230.0 299.0 436.0 206.0 

CPB 6 499.0 90.7 370.0 517.5 613.0 243.0 

SPC 7 380.7 101.5 255.0 341.0 566.0 311.0 

CPC 7 358.1 53.8 308.0 327.0 452.0 144.0 

Total 69 371.2 91.5 198.0 370.0 613.0 415.0 
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Figure 4.1. Box-plot diagram indicating 

the load to fracture for all test groups. 

(Horizontal lines inside the boxes 

represent the median values of each 

group). 

Figure 4.2. Box-plot diagram indicating the 

overall fracture strength of the test groups 

subjected to either quasi-static loading or 

dynamic loading. (Horizontal lines inside 

the boxes represent the mean values of 

each test.) 
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4.4. Statistical analysis 

The multiple linear regression statistical method followed in the current study uses a 

linear model that examined the significance of all factors (preparation depth, 

preparation mode and loading mode) in relation to the fracture strength data 

(dependent variable). The application of the specific statistical method was validated 

performing a series of different tests (see appendix). A backward selection method of 

the independent variables was carried out in order to achieve the final statistical model. 

For the preparation mode and the loading mode variables, the “preparation by the 

manufacturer” and the “quasi-static loading” were entered to the abovementioned 

model as baselines, respectively. For the variable preparation depth, level labeled as 

B=0.7 was entered to the linear regression model as the baseline between the two 

dummy
1
 variables labeled as Α=0.5 and C=0.9. After the application of the data to the 

multiple linear regression model the following results were gathered (Table 4.4.). The 

analytical output of the multiple linear regression is stated at chapter 12 (appendix).  

Table 4.4. Multiple linear regression. 

Model summary 

R R square Adjusted R square 

0.397 0.158 0.105 

ANOVA 

Model Sum of squares Df Mean square F P value 

Regression 89953.766 4 22488.441 3.001 0.025* 

Residual 479587.481 64 7493.554    

Total 569541.246 68    

*Predictors: (Constant), loading mode, preparation mode, preparation depth (Α=0.5, C=0.9) 

Variables Category Regression Coefficient b SE(b) P value 

 Loading 

mode 

Quasi-Static Baseline   

Dynamic 54.60 20.85 0.01 

Preparation 

mode 

Manufacturer Baseline   

Celay system 46.67 23.36 0.05 

Preparation 

depth 

Β Baseline   

Α 44.56 30.65 0.15 

C -11.387 23.36 0.628 

 

Statistical analysis revealed that the mean fracture strength of the lithium disilicate 

implant crowns over manually prepared zirconia abutments was slightly increased 

than the ones over zirconia abutments prepared by the manufacturer (p=0.05). Thus, 

                                                 
1
 Categorical variable that represents subgroups of the study specimens in regression analysis. 



34 

 

 

“preparation mode” as influencing factor seems not to play a statistically important 

role concerning the fracture strength outcome. In addition, despite that level A (=0.5 

mm) resulted to an increase and, conversely, level C (=0.9 mm) to a decrease of the 

fracture strength, both data showed no statistical significance (p=0.15 and p=0.628, 

respectively). Therefore, it can be assumed that using zirconia implant abutments, the 

“preparation depth” had no influence on the fracture strength of the lithium disilicate 

implant crowns after dynamic and/or quasi-static loading. Last but not least, the mean 

fracture strength of the lithium disilicate implant crowns was found statistical 

significantly increased after dynamic loading (p=0.01<5%) than the ones subjected to 

quasi-static loading only.  From the observation of the beta values, it can also be 

concluded that the variable “loading mode” had a major effect on the fracture strength 

of the study specimens (beta= 0.300), followed by the “preparation mode” (beta= 

0.251).  Finally, it is notable that the variability of the fracture strength values was 

almost 16% (R square=0.158), leading to the hypothesis that there might be more 

influencing parameters than the ones examined in the current study. 

 

4.5. Fracture mode 

Fracture patterns were recorded and evaluated after failure in every specimen. All 

zirconia abutments had a typical failure mode. More specifically fractures occurred at 

the most-tapered part of the abutment internal to the implant hex as shown in Figure 

4.3. No screw bending or loosening were observed during both static and dynamic 

loading. However; during dynamic loading there was observed one implant fracture. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Microscopic image (x12.5) of a vertically sectioned specimen at the 

implant/abutment joint.  
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5. DISCUSSION 

 

5.1. Discussion of the methods 

5.1.1. Abutment preparation 

In several in-vivo and in-vitro studies, circumferential shoulder preparations of 1.0 to 

1.5 mm were routinely used for the fabrication of all-ceramic crowns (Attia and Kern 

2004a, Pröbster 1992, Beschnidt 1998). The study design of the current study 

followed the manufacturer’s (Ivoclar) preparation guidelines in conjunction with 

lithium disilicate crowns. Therefore the zirconia abutments in all groups were 

prepared with a circumferential chamfer preparation, however; sharp transitions, inner 

angles and feather edges were avoided. The preparation finish line can influence 

crown marginal adaptation (Lin et al. 1998), but using the chamfer preparation in 

comparison to the shoulder one either seems to improve the marginal fit (Pera et al. 

1994) or not to present a significant difference (Shearer et al. 1996). Moreover, the 

chamfer preparation finish line may help adhesive cement, used in this study, to 

escape during seating and therefore to improve marginal adaptation (Gavelis et al. 

1981).  

Furthermore three different preparation depths of 0.5 or 0.7 or 0.9 mm were also 

performed and tested according to the protocol (see Table 3.2. in chapter 3.2.1; study 

outline). The specific preparation depths, which are even narrower than the ones used 

for the preparation of natural teeth, were considered enough for implant abutment 

preparations. In addition, all abutments received a 6-degree tapered angle axial 

preparation which was also commonly used in laboratory studies (Mc Cormick et al. 

1993, Strub and Beschnidt 1998, Attia and Kern 2004a). 
 

Regarding the preparation mode, all zirconia abutments were prepared by appropriate 

milling following given specifications either by the manufacturer (Astra Tech) or by 

an experienced dental technician. Using prefabricated zirconia blocks, manual 

abutment milling with a corresponding system such as the Celay system (Mikrona) 

could be very beneficial in order to achieve identical abutment dimensions relative to 

a preset master die. However, zirconia grinding or milling might induce surface flaws 

or microcracks which might influence the mechanical properties of the material 

(Luthardt et al. 2004). It has been confirmed that the aforementioned surface 

treatment generally triggers T-M transformation which negatively influences the 

mechanical properties of the material after coarse grinding (Wang et al. 2008, Rekow 
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and Thompson 2005). A stress-free abutment preparation under water cooling using a 

fine-grained cutting diamonds, as followed in the current study, may decrease the 

critical flow size and increase the surface compressive layer which provides which 

improves strength (Kosmac et al. 1999, Kosmac et al. 2000).   

 

5.1.2. Crown fabrication 

In general the thickness of anterior all-ceramic crowns may differ from the incisal 

edge to the axial surfaces and is strongly influenced by the preparation design. Α 

minimum reduction of 1.5-2 mm in height and 1.0 to 1.5 mm circumferentially is 

critical for both the stability of anterior all-ceramic crowns under functional loading 

and the esthetic performance in order to provide space for the veneering materials. 

Metal implant abutments may provide even increased dimensions of preparation 

because there is no endodontic limitation such as during the preparation of the natural 

teeth, however; the all-ceramic crown restoration might fail to adequately mask the 

underlying metal-shade abutment. In the present study, lithium disilicate implant 

crowns achieved high fracture strengths when bonded over zirconia abutments which 

were prepared to the same extend as described above for the natural teeth. In addition, 

due to the pleasing abutment shade of the zirconia the combination of such crowns 

could be gathered advantageous from the esthetic point of view. 

The thickness of crowns was standardized during designing both the shape and the 

dimension of the crowns by duplicating the initial wax-up with a silicon index. 

Moreover, the thickness of lithium disilicate crowns (e.max Press, Ivoclar Vivadent) 

during the laboratory fabrication, was verified with the use of a caliper followed, if 

needed, by the removal of superficial ceramic mass  using a porcelain finishing stone 

(Attia and Kern 2004a, Attia and Kern 2004b). 

 

5.1.3. Crown cementation 

Adhesive cementation is recommended for all-ceramic restorations to enhance their 

fracture strength. Therefore, a dual curing resin cement (Multilink, Ivoclar Vivadent) 

was used for the purposes of this study. Resin cements may be used for the 

cementation of zirconia based restorations, but is not mandatory (Raigrodski 2004), as 

the bonding of resin with zirconia ceramic is difficult to be achieved (Derand and 

Derand 2000). Etching and silanization seem to be not effective in the case of zirconia, 

since it presents a very dense morphology which contains no glass phase. Similarly, it 
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has been reported that silica coating provides a non-durable bond to Y-TZP (Kern and 

Wegner 1998). Only bonding systems that contain a special adhesive monomer have 

been found to provide an acceptable, high strength, stable bond to air-abraded Y-TZP. 

However; the retention can be increased for instance by air-abrasion with 50 μm 

alumina particles (Wegner and Kern 2000). In this study a phosphoric / phosphonic 

acid reagent (Metal/Zirconia Primer, Ivoclar) was used to form low-soluble, stable 

phosphates / phosphonates with the zirconia abutment (Kern et. al. 2009, Lehmann 

and Kern 2009). The active reagent of the primer is a methacrylate monomer which 

has one phosphonic acid group. Similarly to silane on silicate ceramic, chemical 

bonding is made possible and the zirconium oxide surface can be wetted with the 

luting composite. According to the manufacturer, this conditioning is stable enough to 

withstand the stress of thermocycling. 

On the other hand, bonding to silica based ceramic may be very effective by using a 

resin luting agent after hydrofluoric etching, which can create a micro-retention 

pattern on the ceramic surface by dissolving silicate components, and silanization, 

which forms a chemical link to the glass-ceramic surface and provides better wetting 

(Blatz et al. 2003, Klosa et al. 2009).
  

 

5.1.4. Tests  

In order to accept a dental material or restoration design for clinical use, 5-year 

clinical results should be available. Moreover, a prosthetic restorative system can be 

successfully considered if it demonstrates a survival rate of 95% after 5 years and 

85% after 10 years (Strub 1992, Pröbster 1996). However, clinical studies that could 

accurately evaluate the biomechanical behavior or the clinical success of materials 

and restorations need increased costs and time (Kern et al. 1999). Therefore, in vitro 

tests which have the potential to simulate clinical conditions, as in the present study, 

could provide reliable outcomes and save expenses and evaluation time. 

Chewing consists a high number of low cyclic loads, therefore fatigue loading in a 

chewing simulator that generates cyclic patterns with physiological load 

characteristics could be gathered as clinical relevant testing conditions than 

monotonic loading (Kelly 1999). The wear of a restoration after 2.4 to 2.5 x 10
5
 

masticatory cycles in the chewing simulator corresponds to 1 year of clinical service 

(De Long 1985). In the present study, the chewing simulator was set to perform 1.2 x 

10
6
 masticatory cycles, simulating 5 years of clinical service (Kern et al. 1999).  
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In addition, the specific chewing simulator used in this study was developed to 

reproduce testing conditions under controlled moisture and thermocycling. Exposure 

to water has been found to induce aging-related phenomena which result in surface 

degradation of the material and thus affect the mechanical properties of zirconia-

ceramics (Chevalier 2006).  

The direction of the loading forces may significantly influence the fracture strength of 

all ceramic restorations (Koutayas et al. 2000). In this study, loading forces were 

applied under 135°, regarding the longitudinal axis, and with the use of a 6-mm 

ceramic ball, positioned in the midline of the crown, to imitate teeth contact 

correlation in the anterior region during physiological incisive movements. Antagonist 

steatite ceramic presenting a similar to enamel hardness (Vicker’s scale) and was 

gathered as a suitable substitute material for enamel in wear tests (Kelly 1999). The 

magnitude, duration and frequency of the loading force applied in the chewing 

simulator were comparable to the values reported in the literature (Krejci et al. 1990). 

The applied effective loading force of 100N was between the limits of the maximum 

physiological biting forces in the anterior region, however; such loading force 

magnitude has never tested before for so prolonged time (Koutayas et al. 2000, Butz 

et al. 2005, Att et al. 2006a, b, Steiner et al. 2009).  

Furthermore, dynamic loading using chewing simulators have been proved useful in 

mimicking human oral conditions and application of physiological chewing forces 

and therefore in testing such restorations under fatigue conditions (i.e. mechanical 

cyclic loading, thermocycling in aqueous environment) (Steiner et al. 2009). 

In-vitro evaluation under quasi-static loading of dentin-bonded all-ceramic crowns 

under compressive load might give some indication about the clinical durability of 

these restorations. Several factors influence the fracture loads of all-ceramic crowns, 

such as the microstructure of the ceramic material (Della Bona et al. 2002, Oh et al. 

2000), the fabrication technique, the final surface finishing of the crowns (Chen et al. 

1999) and the luting method (Burke and Watts, 1998, Malament and Socransky 2001). 

Other important factors are the test conditions such as the storage conditions, the type 

of the fatigue test used, and the direction or/and the location of the loading force 

(Kelly 1999, Yoshinari and Derand 1994). In the present these factors were 

standardized as close as possible to the clinical conditions.  

Finally, in order to provide meaningful results regarding the durability of such implant 

crowns quasi-static loading was carried out after mechanical testing in the chewing 
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simulator under dry and wet conditions within a thermal range (Attia and Kern 2004b, 

Ohyama et al. 1999, Yoshinari and Derand 1994).  

 

5.2. Discussion of the results 

5.2.1. Dynamic loading 

In the present study, half of the specimens of each test group were exposed to the 

chewing simulator before the fracture strength test was performed. All specimens, 

with one exception in group CPB (see Table 4.1.) survived the dynamic loading test 

(1.2 x 10
6
 loading cycles). The specific specimen was disassembled and evaluated 

with the use of an optical stereoscope and scanning electron microscopy (SEM). The 

observed failure at the implant level (implant fracture) under 100 N was considered as 

manufacturing liability since it was demonstrated that in order for an implant to be 

fractured a static force of at least 900N should be applied (Mitsias et al. 2010). All 

other components of the specimen, including the zirconia abutment and the all-

ceramic crown, were found in perfect condition without any fractures. Therefore, the 

specific specimen was not taken into the statistical evaluation for group CPB. 

According to the literature, an average of approximately 250,000 cycles in a chewing 

simulator corresponds to one year of clinical service (DeLong and Douglas 1991, 

Kreijci and Lutz 1990). Therefore mean 1.2 x 10
6 

dynamic loading cycles achieved by 

the implant crowns in all study groups (Table 4.1) without fracturing, corresponded to 

a 5-year service time. Comparing the physiological bite forces that may range from 10 

to 120 N during chewing of food or swallowing (De Boever et al. 1978, Kohyama et 

al. 2004) to the loading forces applied during dynamic loading, it was demonstrated 

that for the desired loading force of 100 N, the expected relative mean overload found 

up to 8.1% which is within the aforementioned physiological range (Steiner et al. 

2009). Therefore, it could be presumed that for an effective loading force of 100 N, 

adhesively cemented lithium disilicate single implant crowns over zirconia abutments 

could withstand maximum physiological biting forces on a long-term basis. 

Additionally, regardless the preparation mode or depth of the zirconia abutments, it 

was found that dynamic loading in the artificial mouth increased the fracture strength 

of all groups with the exception of group CPC. This finding, illustrated in Figure 4.2., 

cannot be supported by evidence based scientific data, however; it has been also 

previously observed after a similar dynamic loading test concerning all-ceramic 

crowns placed on endodontically treated teeth (Friedel and Kern 2006) and might 
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indicate an advantageous behavior of the adhesively cemented crowns under loading 

which should be evaluated through further in-vitro studies. 

Several in-vitro studies explored the feasibility of zirconia abutments to withstand 

functional loading in the oral environment (Butz et al. 2005, Att et al. 2006a, Att et al. 

2006b). These studies utilized similar methods where single implant all-ceramic 

crowns of a maxillary incisor placed on zirconia abutments were tested up to 

1,250,000 cycles in a chewing simulator under a loading force of 30 to 49 N. The 

aforementioned restorations in all these studies noted high survival rates of 100% 

after an equivalent of 5-year chewing simulation without any screw loosening in 

agreement to the present study in which even a twofold loading force was used (100 

N). Therefore, 5-year in-vitro data support the use of zirconia abutments in the 

anterior regions. The latter could be also verified by a recent systematic review that 

identified a 0.2% clinical failure rate of ceramic abutments [per 100 abutment years, 

(95% CI: 0.02–1.3%)] and a 5-year survival rate of 99.1% (95% CI: 93.8–99.9%) 

(Sailer et al. 2009). Additionally, it was concluded that, ceramic abutments when 

supporting implant crowns can be considered as a valid alternative to the metal ones 

as they exhibit similar survival (97.4%) and complication rates up to 3 years.  

 

5.2.2. Quasi-static loading 

Mean fracture strengths after every different loading test (dynamic and quasi-static 

loading or only quasi-static loading) are shown in Table 4.2. Linear regression model 

(R square =0.158) did not reveal any statistical differences between the groups 

meaning that the study variables (preparation mode and preparation depth) did not 

influence the strength characteristics of the specific implant crowns. Nevertheless 

statistics pointed out that the variable “loading mode” had a major effect on the 

fracture strength of the study specimens (beta= 0.300). The fracture strength 

improvement after dynamic loading might be attributed to strengthening 

transformation phenomena of zirconia abutment under loading or to the achieved 

stress relaxation of the complex implant/abutment/crown due to the cementation mean 

or/and the physical properties of the metal screw or even the enhancement of the 

adaptation due to a possible micro-abrasion between the abutment and the implant 

platform. Fracture strengths in all study groups varied between 294 and 499 N and 

therefore could be considered to be within or above the limits of the maximum 

physiological forces generated in the maxilla anterior region (Killiaridis et al. 1993). 
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Previous in-vitro studies that examined the mechanical stability of implant crowns 

placed on zirconia abutments by assessing the mean fracture strengths (in N) are 

included in Table 5.1. The preparation depth of the zirconia abutments in all studies 

stated above range between 0.5 to 1.0 mm while the preparation mode was performed 

either manual or it was used the original abutment. Regarding the specific zirconia 

abutment (ZirDesign, AstraTech), Mitsias et al. (2010) found a higher fracture 

strength value of 690 N which might be explained by the use of a stiffer crown 

material such as a non-precious alloy than in the present study. Adatia et al. in a 

recent study (2009) also tested the same abutment type using two different 

preparations depths of 0.5 and 1.0 mm, however; clinical relevance of the study might 

be doubtful because of the use of implant analogues instead of original implants and 

the lack of a crown restoration. Nevertheless, all laboratory studies (Table 5.1.) 

demonstrated mean fracture strengths beyond the clinical acceptance; therefore 

zirconia abutments seem to be a promising treatment option (Koutayas et al. 2009). 

 Table 5.1. Comparison of current in-vitro studies that examined the fracture strength 

of single anterior implant crowns placed on zirconia abutments [N.R.: not referred, 

(*): dynamic loading followed by static loading of the survived specimens].  

 Author, 

 Year 

Implant Zirconia 

Abutment  

Preparation, 

Depth (mm) 

Preparation 

Mode 

Ceramic 

Crown 

Loading 

Direction 

Loading 

Test(s) 

Mean F.S. 

(N) ±SD Name D(mm) L(mm) 

Yildirim 

et al.,  2004 

Brånemark 

External Analog, 

NobelBiocare 

N.R. N.R. 
Wohlwend 
Innovative 

Chamfer, 1.0  Celay  system 

Leucite 

reinforced 

ceramic 

30º Static 737±245 

Mitsias et 

al., 2009 

OsseoSpeed, 

AstraTech 
4.5 15 ZirDesign Chamfer, 0.5  

Manual 

Milling 

Non-
precious 

alloy 

30º Static 690±430 

Butz et  al., 

2005 

Osseotite 
(external), 

Biomet 3i 

4.0 13 ZiReal Chamfer, 0.5  Manufacturer 
Non-
precious 

alloy 

50º Dynamic* 281±N.R. 

Att et al., 

2006(a) 

Replace Select, 

NobelBiocare 
4.3 15 

Esthetic 
Zirconia 

Abutment 

Chamfer, 0.5  
Manual 

milling 

Densely 
sintered 

Alumina 

50º Dynamic* 470±152 

Att et al., 

2006(b) 

Replace Select, 

NobelBiocare 
4.3 15 

Esthetic 

Zirconia 
Abutment 

Chamfer, 0.5  
Manual 

milling 

Densely 

sintered 
Zirconia 

50º Dynamic* 593±292 

Aramouni 

et al., 2008 

Certain, 

 Biomet 3i 
4.0 13 

ZiReal 

 
Chamfer, 1.0  

Manual 

milling 

Lithium 

disilicate 
45º Static 

793±123 

 

Adatia et 

al., 2009 

OsseoSpeed 
Analogue, 

AstraTec 

N.R. N.R. ZirDesign 

Chamfer, 0.5  
Manual 

Milling Without 

crown 
30º Static 

576±140 

Chamfer, 1.0 
Manual 

Milling 
547±139 

CURRENT 

STUDY 

OsseoSpeed, 

AstraTech 
4.5 15 ZirDesign 

Chamfer, 0.5 Manufacturer 

Lithium 

disilicate 
30º Dynamic* 

40367 

Chamfer, 0.7 Manufacturer 37475 

Chamfer, 0.7 Celay system 372105 

Chamfer, 0.9 Manufacturer 49991 

Chamfer, 0.9 Celay system 35854 

For the given angle of load application of 30º, mean fracture strengths in the present 

study were found within the range of the fracture loads (≥500 N) described in a 
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systematic review, with respect to either the abutment and the restoration materials or 

the internal implant–abutment connection (Figure 5.1.). Finally, in order to achieve 

better direct comparisons and export high clinical relevant data, standardization of 

future laboratory tests that evaluate the strength of abutments is needed (Hobkirk and 

Wiskott 2009). 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1. Fracture load (N) with respect to abutment/restoration material [left] and 

zirconia abutment material, internal implant–abutment connection [right] and angle of 

load application (º) [Source:Sailer et al. 2009]. 

 

5.2.3. Failure mode 

Study findings in the majority of the specimens revealed that fractures were located at 

the cervical aspect of the abutments at the level of the implant/abutment internal 

connection. Fractures occurred through the most tapered part, towards the platform 

level and this typical failure pattern was observed in all groups regardless the loading 

mode. The internal cone of the particular zirconia abutment seems to be a high loaded 

component that receives torque and stress concentrations. Crack propagation seems to 

be related to the magnitude and the application point of the loading forces and the 

fulcrum location (=pivot where the lever moves). Therefore induced loading forces (≥ 

294 N) when applied under an angle of 30º (or 150º) may cause levering effects such 

as in a second class lever. In a second class lever the input effort is located at the end 

of the bar and the fulcrum is located at the other end of the bar, opposite to the input, 

with the output load at a point in between the input and the fulcrum (Fig. 5.2.). For 

this reason, the output load is applied in an area where the internal cone of the 
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abutment originally has thinner walls which obviously cannot withstand the specific 

loading. Moreover, the fracture strength depends on the extension of the crown 

margin relative to the location of the screw head (Tripodakis et al. 1995). Implant 

design with internal connection, such as the ones used in the current study, may 

increase this abovementioned extension, however; it was illustrated that internal 

connection of abutments tends to be beneficial both in laboratory and in clinical 

studies (Sailer et al. 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2. Second class levering effects within the internal connection of the zirconia 

abutment (Red dashed line represents the loading direction). 
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6. CONCLUSIONS 

 

Within the limitations of the present study the following conclusions can be drawn: 

1. The preparation mode (CAD/CAM machining or manually controlled) of 

customized zirconia implant abutments seems not to influence the fracture 

strength of adhesively cemented single implant lithium disilicate crowns and their 

abutments. 

2. A zirconia ceramic abutment preparation depth up to 0.9 mm circumferentially 

had no negative effect on the fracture strength of adhesively cemented single 

implant lithium disilicate crowns and their abutments. 

3. Dynamic loading may improve fracture strength and therefore the durability of 

adhesively cemented single implant lithium disilicate crowns placed on zirconia 

abutments. 

4.  Failure of single implant lithium disilicate crowns placed on zirconia abutments 

was located at the level of the implant/abutment internal connection. However; 

fractures occurred under higher forces than the expected maximum physiological 

chewing forces. 
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7. SUMMARY 

Zirconia implant abutments offer enhanced esthetics and promote biological sealing; 

however, the effect of mechanical processing due to preparation has not been 

investigated under functional loading. The purpose of the study was to evaluate the 

influence of the zirconia abutment preparation depth and preparation mode on the 

survival rate, the fracture strength and fracture mode of all-ceramic single implant 

crowns.  

Seventy single implant-supported lithium disilicate glass-ceramic crowns (IPS e.max 

Press, Ivoclar Vivadent) were adhesively cemented (Multilink Automix, Ivoclar 

Vivadent) onto  zirconia abutments (ZirDesign, Astra Tech) using implants with a 

diameter of 4.5 mm and a length of 15.0 mm (Osseospeed, Astra Tech). They 

replaced a maxillary central incisor (11.0 mm in height and 8.0 mm in width). Lithium 

disilicate implant crowns were divided into 5 study groups (n=14) according to the 

abutment preparation depth [(A: control) 0.5, (B:) 0.7, (C:) 0.9 mm,  and preparation 

mode [milling by the manufacturer, (P:) milling by the Celay System (Mikrona)]. 

Subgroups (n=7) were subjected to dynamic loading (C) at 135° with 98N in a 

thermomechanical chewing simulator (Kausimulator, Willytech) up to 1.2x10
6
 

loading cycles; followed by quasi-static loading until fracture.  

All specimens survived dynamic loading except one (in group CPB) that fractured 

early and was considered as manufacturer’s mal-production. Additional subgroups 

(n=7) were subjected to quasi-static loading (S) at 135° in a universal testing machine 

(0.5 mm/min, Z010/TN2S, Zwick). Mean fracture strengths (N) were: Group SA: 

384±84; Group CA: 403±67; Group SB: 294±95; Group CB: 374±75; Group SC: 

332±52; Group CC: 373±105; Group SPB: 332±80; Group CPB: 499±91; Group 

SPC: 380±101; Group CPC: 358±54.  Statistical analysis using multiple linear 

regression showed that both the preparation depth and mode had no influence on the 

fracture strength of the implant crowns (p>0.05), however; fracture strength increased 

statistically significantly after dynamic loading (p=0.01).  

Adhesively luted single implant lithium disilicate crowns placed on zirconia 

abutments have the potential to withstand physiological maximal incisive biting 

forces for more than 5 years of simulated fatigue. Manually controlled circumferential 

chamfer zirconia abutment preparation had no effect after 5 years simulated dynamic 

loading. However, single implant lithium disilicate crowns placed on zirconia 

abutments seem to increased fracture strength after dynamic loading.  
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8. ZUSAMMENFASSUNG 
 

Zirkonimplantatabutments erfüllen erhöhte ästhetische Ansprüche und verbesserte 

biologische Integration. Die Auswirkung mechanischer Belastungen in Abhängigkeit 

unterschiedlicher präparativer Bearbeitung wurde noch nicht unter funktioneller 

Belastung untersucht. In dieser Studie wurde die Überlebensrate, Bruchfestigkeit und Art 

des Versagens von Lithiumdisilikat-Glaskeramikkronen (IPS e.max Press, Ivoclar 

Vivadent) auf Zirkonoxidkeramikabutments (Astra Tech AB) nach künstlicher Alterung 

im Kausimulator überprüft.  

Siebzig einzelne implantatgetragene Lithiumdisilikat-Glaskeramikkronen (IPS 

e.maxPress, Ivoclar Vivadent) wurden adhäsiv (Multilink Automix, Ivoclar Vivadent) auf 

Zirkonoxidkeramikabutments (ZirDesign, Astra Tech) befestigt. Die Implantate 

(Osseospeed, Astra Tech) hatten einen Durchmesser von 4,5 mm und eine Länge von 15 

mm. Die Implantatkronen ersetzen zentrale Oberkiefer-Frontzähne mit einer Höhe von 11 

mm und einer Breite von 8 mm. Die Implantatkronen aus Lithiumdisilikat wurden unter 

Berücksichtigung der Abutmentpräparationstiefe [A (Kontrollgruppe): 0.5, B: 0.7, C: 0.9 

mm und Präparationsart - Fräsung durch den Hersteller, P: Fräsung mit Hilfe des Celay-

Systems (Mikrona)] in 5 Gruppen (n=14) eingeteilt. Untergruppen (n=7) wurden für 

1,2x10
6
 Zyklen in einem  Kausimulator (Willytech) dynamischen Belastungen (C) unter 

einem Winkel von 135° mit 98 N ausgesetzt. Anschließend folgte eine quasi-statische 

Belastung bis zum Bruch. 

Alle Proben überlebten die dynamischen Belastungen außer eine aus der Gruppe CPB, 

die vorzeitig gebrochen war; dieses Versagen wurde einem Herstellungsfehler zugeordnet. 

Zusätzliche Untergruppen (n=7) wurden quasi-statischen Belastungen (S) in einem 

Winkel von 135° in einer universellen Testmaschine (0,5 mm/min, Z010/TN2S, Zwick) 

ausgesetzt.  

Die resultierenden Bruchfestigkeiten (N) waren: Gruppe SA: 384.8±83.9; Gruppe CA: 

403.4±67.0; Gruppe SB: 294.3±95.4; Gruppe CB: 374.0±75.0; Gruppe SC: 331.7±52.4; 

Gruppe CC: 372.7±105.0; Gruppe SPB: 332.4±79.9; Gruppe CPB: 499.0±90.7; Gruppe 

SPC: 380.7±101.5; Gruppe CPC: 358.1±53.6. Die statistische Analyse mittels multipler 

linearer Regression zeigte, dass weder die Präparationsart noch die Präparationstiefe 

einen signifikanten Einfluss auf die Bruchfestigkeit der Implantatkronen (p>0,05) hatte: 

hingegen war die Bruchfestigkeit nach dynamischer Belastung statistisch signifikant 

erhöht (p=0,01).  
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Adhäsiv befestigte Lithiumdisilikat-Einzelkronen auf Zirkonabutments haben das 

Potential, maximalen, physiologischen Kaukräfte für mehr als 5 Jahre simulierter 

Abnutzung zu widerstehen. Manuell durchgeführte umlaufende Stufenpräparationen 

hatten keine Auswirkung nach 5 Jahren auf die Belastbarkeitund nach dynamischer 

Belastung. Lithiumdisilikatkronen auf Einzelimplantaten mit Zirkonabutments wiesen 

nach dynamischer Belastung eine Erhöhung ihre Bruchfestigkeit auf. 
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12. APPENDIX 

Detailed data of the results  

Table 12.1. Loading cycles (n) of all specimens after dynamic loading. 

Groups Specimen No. 

1 2 3 4 5 6 7 

CA 1.2x10
6
 1.2x10

6
 1.2x10

6
 1.2x10

6
 1.2x10

6
 1.2x10

6
 1.2x10

6
 

CB 1.2x10
6
 1.2x10

6
 1.2x10

6
 1.2x10

6
 1.2x10

6
 1.2x10

6
 1.2x10

6
 

CC 1.2x10
6
 1.2x10

6
 1.2x10

6
 1.2x10

6
 1.2x10

6
 1.2x10

6
 1.2x10

6
 

CPB 1.2x10
6
 1.2x10

6
 1.2x10

6
 1.2x10

6
 1.2x10

6
 1.2x10

6
 1.2x10

5
 

CPC 1.2x10
6
 1.2x10

6
 1.2x10

6
 1.2x10

6
 1.2x10

6
 1.2x10

6
 1.2x10

6
 

Table 12.2. Fracture strengths (N) of all specimens after quasi-static loading.  

Groups Specimen No. 

1 2 3 4 5 6 7 

SA 300 407 401 544 372 371 292 

CA 439 313 377 343 462 389 501 

SB 335 474 198 200 322 270 261 

CB 398 439 353 380 265 302 481 

SC 302 270 366 332 421 348 283 

CC 413 269 251 499 495 396 286 

SPB 298 416 299 262 386 230 436 

CPB 613 527 416 508 560 370 - 

SPC 393 341 566 450 330 330 255 

CPC 318 452 327 322 383 308 397 

 

Testing the assumptions of multiple linear regression 
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Figure 12.1. Test of independence data 

(Durbin-Watson Index= 1.705).  

Figure 12.2. Test of normality of 

residuals. 
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Regression  

Table 12.3. Descriptive statistics. 

 
  

 
 
 

Table 12.4. Correlations. 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 

Table 12.5. Model summary. 
 
 

 
 
 
 
 
 
 

Table 12.6. Variables entered/removed 
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Figure 12.3. Test of linearity. Figure 12.4. Test of homoscedasticity. 
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Table 12.7. ANOVA. 
 

 
 
 
 
 
 
 
 
 
 

Table 12.8. Coefficients. 
 

 
 
 

 

 

 

 

 

 

Table 12.9. Coefficient correlations. 

 

 

 

 
 

 
 

 
 

 

 

 

Table 12.10. Excluded variables. 
 

 

 

 
 
 
 

Table 12.11. Residuals statistics. 
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