
Investigating Minimally Strict
Functions in Functional Programming

Dissertation

zur Erlangung des akademischen Grades
Doktor-Ingenieur

(Dr.-Ing.)

der Technischen Fakultät
der Christian-Albrechts-Universität zu Kiel

Jan Christiansen

Kiel

2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MACAU: Open Access Repository of Kiel University

https://core.ac.uk/display/250311448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Gutachter Prof. Dr. Rudolf Berghammer

2. Gutachter Priv.-Doz. Dr. Frank Huch

Datum der mündlichen Prüfung 12. Januar 2012

ii

Contents

1 Introduction 1

2 Preliminaries 9
2.1 Introduction to Haskell . 9

2.1.1 Algebraic Data Types . 9
2.1.2 Functions . 11
2.1.3 Types . 15
2.1.4 Parametric Polymorphism . 16
2.1.5 Higher-Order . 18
2.1.6 Type Classes . 21

2.2 Denotation of a Simple Functional Language 24

3 Non-Strict Evaluation 33
3.1 Advantages of Non-Strict Evaluation . 34
3.2 Unnecessarily Strict Functions . 36

4 Mathematical Model of Minimally Strict Functions 43
4.1 Least Strict Functions . 43
4.2 Sequential and Demanded Positions . 49
4.3 Minimally Strict Functions . 65

4.3.1 Sufficiency of the Criterion . 69
4.3.2 Necessity of the Criterion . 75

5 Implementation of Sloth 83
5.1 Enumerating Test Cases . 84
5.2 Checking Test Cases . 90
5.3 Presenting Counter-Examples . 95
5.4 Identifying Sequential Positions . 97

6 Minimally Strict Polymorphic Functions 101
6.1 Introduction . 102
6.2 Free Theorems . 104
6.3 Less Strict Functions on Lists . 108
6.4 Less Strict Functions in the Presence of seq 114
6.5 Minimally Strict Functions on Lists . 122
6.6 Generalization . 123

iii

Contents

7 Case Studies 127
7.1 Deriving a Less Strict Implementation 127
7.2 Peano Multiplication . 133
7.3 Binary Arithmetics . 136
7.4 The split Package . 144

7.4.1 The Function splitWhen . 146
7.4.2 The Function insertBlanks . 153

7.5 Reversing Lists . 157

8 Conclusion 165
8.1 Summary . 165
8.2 Future Work . 168

8.2.1 Functional Programming . 168
8.2.2 Functional-Logic Programming 171

A Proofs from Chapter 4 173
A.1 Proofs from Section 4.2 . 173
A.2 Proofs from Section 4.3.1 . 175
A.3 Proofs from Section 4.3.2 . 179

B Proofs from Chapter 6 187
B.1 Proofs from Section 6.3 . 187

iv

Acknowledgments
First of all I am very grateful to Olaf Chitil for introducing me to his excellent idea
of checking whether a function is unnecessarily strict. Furthermore, I want to thank
Rudolf Berghammer for his support, for tolerating my occasional loose tongue, and
for not loosing patience with me. I am indebted to Fabian Reck for being an excellent
officemate and a wine expert, and for always lending me an ear. Besides, I want to
thank Daniel Seidel for being a great workmate and host and for even becoming a
good friend. I owe thank to Janis Voigtländer for introducing me to the idea of free
theorems and for collaborating with me in general. With respect to the work at hand
I want to thank Ole Cordsen, Nikita Danilenko, Sebastian Fischer, Hauke Fuhrmann,
Frank Kupke, Björn Peemöller, Matthias Quednau, Fabian Reck, Daniel Seidel, and
Gabriel Wicke for reading parts of this thesis. I want to thank the “gang from the
seventh floor”, which, besides some members already mentioned, includes Bernd
Braßel, Stefan Bolus, Michael Hanus, Thomas Heß, Frank Huch, Ina Pfannschmidt,
Peter Pichol, and Ulrike Pollakowski for providing a nice working environment and
sharing lunch. In particular, I would like to single out the benefits that we all enjoy
by having a great secretary like Ulrike. Moreover, thanks to the countless number
of students for giving me the opportunity to teach them the basic parts of functional
programming in several first term practical courses. Also, I would like to thank the
easily countable number of students that took my advanced courses. Finally, a very
big thanks to the team of the cafetaria of the “Studentenwerk Schleswig-Holstein”
without whose constant supply with coffee and sugar in the form of muffins and
donuts this work could not have been finished.

v

1 Introduction
In this thesis we consider the non-strict, functional programming language Haskell
(Peyton Jones 2003). First of all, functional programing languages belong to the
class of declarative programming languages. While in an imperative programming
language the programmer specifies a procedure to get a solution to a problem, in a
declarative language the programmer instead specifies the structure of a solution. In
other words, while in an imperative language we define how a solution is computed,
in a declarative language we rather define what is computed. Besides, Haskell has
a quite strong type system, which is able to catch some bugs at compile-time, while
these bugs do not emerge until run-time in a language with a weaker type system or
no type system at all. And, finally, features like higher-order functions and overload-
ing allow programmers to reuse code, which results in programs that are smaller and
easier to maintain.

However, even with a comparatively high-level language like Haskell, program-
mers may write programs that are not optimal with respect to a certain criterion.
Obviously, the most important criterion is correctness. That is, we prefer a pro-
gram that meets our specifications over a program that does not. There are several
approaches that assist programmers in writing correct Haskell programs like prop-
erty-based testing (Claessen and Hughes 2000) or even automatic proving (Sonnex
et al. 2011). Nonetheless, there are other important criteria to rate programs. For
example, we could classify several implementations of the same algorithm in one
language by means of run-time or memory consumption. This thesis investigates
another criterion, namely, rating Haskell programs by means of strictness.

Intuitively, in contrast to a strict programming language, in a non-strict program-
ming language like Haskell a function only inspects the part of its argument that is
needed to yield a certain part of its result. In the extreme case of a constant function,
for example, the function does not evaluate its argument at all as the result of the
function does not depend on the argument. Nevertheless, we can still define a con-
stant function in Haskell that unnecessarily inspects its argument. More generally
speaking, in Haskell a function definition rather non-declaratively specifies how an
argument is inspected. There are often several implementations of functions with
the same basic behavior that inspect different parts of their argument. While in the
case of a constant function it is quite easy to observe that it does not have to inspect
its argument, we will see that in general it is more difficult to observe whether a
function can yield the same result by inspecting a smaller part of its argument.

To rate functions with respect to strictness, we consider the following definition.
A function f is less strict than a function g if the function f never inspects a larger
part of its argument than the function g does, to yield a certain result. In addition,
there exists a result such that f inspects a strictly smaller part of its argument than g
does. We call a function f with these properties less strict than g. This “definition” is
quite informal, and we will later give a formal definition of the less-strict relation by

1

1 Introduction

means of a denotational semantics. For now this intuitive view should be sufficient
for this introduction and will be helpful later on.

As an example for the interest in less strict functions, let us consider the standard
Haskell function partition. Waldmann (2000) as well as Russell (2000) have stated
that the implementation of this function was more strict than necessary. The function
partition takes a predicate — a unary funtion that yields a Boolean value — and a list
— an ordered collection of values of equal type — and yields a pair — a container
for two values. The pair holds two lists where the first list contains the elements
that satisfy the predicate and the second list contains the elements that do not. It
has been observed that partition, at that time, was unnecessarily strict because the
implementation did not comply with an abstract specification given in the Haskell
language report (Peyton Jones 2003).

The language report specifies the behavior of partition by means of the standard
Haskell function filter. The function filter takes a list and a predicate and yields a
list of all elements that satisfy the predicate. The behavior of partition is specified by
the following equivalence where p is an arbitrary predicate and xs an arbitrary list.
Furthermore, the symbol ≡ denotes that the left-hand and the right-hand side yield
the same results when evaluated.

partition p xs ≡ (filter p xs, filter (not ◦ p) xs)

The application of a function is denoted by juxta-position, for example, partition p xs
denotes the application of the function partition to the arguments p and xs. The
parenthesis together with the comma on the right-hand side of the equivalence de-
note the construction of a pair. That is, partition applied to some predicate p and a
list xs yields the same result as the pair that consists of an application of filter to the
predicate and the list and an application of filter to the negation of the predicate and
the list. The operator ◦ denotes function composition and not is the Boolean nega-
tion, so the term not ◦ p denotes a predicate that first applies the original predicate p
and negates its Boolean result.

Waldmann (2000) named the following example, which demonstrates, that the
original implementation of partition does not comply with the behavior of two ap-
plications of filter.

let (xs, ys) = partition odd [1 . .] in (take 3 xs, take 3 ys)

The expression [1 . .] denotes an infinite list of increasing natural numbers that starts
with one. Because Haskell is a non-strict programming language we can use infinite
data structures as a function might only inspect a small part of the infinite structure.
The infinite list is partitioned into odd and even numbers by using partition and the
predicate odd, which is satisfied if its argument is an odd number. The let expression
simply introduces names for the components of the result, which is a pair, of the
function partition. By equating a pair constructed of the variables xs and ys with the
application partition odd [1 . .], the variables xs and ys become names for the first
and the second component of the result of partition, respectively. We can use the
variables xs and ys on the right-hand side of the keyword in as abbreviations for

2

these components. Finally, the applications take 3 xs and take 3 ys yield the prefixes
of length three of the lists xs and ys, respectively.

The evaluation of this let expression does not terminate if we use the original
implementation of partition. At that time the implementation of partition inspected
its whole argument, which is the infinite list [1 . .] in this example. In contrast, if
we define partition by means of filter the evaluation of the expression above yields
the pair ([1, 3, 5], [2, 4, 6]). Here, the square brackets denote a list and each pair
of consecutive elements of the list is separated by a comma. That is, a definition of
partition by means of filter yields a list with the first three odd numbers and a list with
the first three even numbers as this definition inspects only a small part of the infinite
list [1 . .]. More precisely, the application take 3 xs as well as take 3 ys only inspect the
first three elements of xs and ys, respectively. The application filter odd [1 . .] inspects
the first five elements of [1 . .] to yield the list [1, 3, 5]. Moreover, the application
filter (not ◦ odd) [1 . .] inspects the first six elements of [1 . .] to yield the list [2, 4, 6].
Thus, both applications of filter inspect only a finite part of the infinite list.

The implementation of partition has been improved by introducing a so-called lazy
pattern, which delays a check whether a value has a certain structure. Essentially,
the definition of partition has to check whether the result of its recursive application
is a pair to access the components of the pair. The original definition of partition
accessed the components of the recursive application before yielding the first part of
its result. To improve the behavior of partition with respect to strictness, the check
for the pair structure of the recursive application has to be delayed.

Waldmann (2000) has already proposed to develop means to formally reason if a
function can be improved by adding such a lazy pattern as well as tools that sup-
port the programmer in checking whether a function can be improved this way. One
contribution of this thesis is a part-solution to his proposals. First, we present a cri-
terion to check if a function is overly strict. This criterion is an answer to a more
general question than the question whether a function can be improved by a lazy
pattern. Furthermore, we present a tool called Sloth, which assists the programmer
in checking whether a function is unnecessarily strict. In particular, the tool states
that a function is overly strict in the case that it can be improved by introducing a
lazy pattern. For example, in Section 6.6, using Sloth, we improve an implementa-
tion of the enumeration of elements of a tree in breadth-first order by introducing a
lazy pattern. However, the tool only states whether a function is too strict and is not
able to discover how a function can be improved. The tool, in particular, does not
state whether a function can be improved by introducing a lazy pattern.

As another example for the interest in less strict implementations, let us consider
the standard function permutations, which takes a list and yields a list of all per-
mutations of the argument. The current definition of permutations emerged from a
discussion initiated by van Laarhoven (2007).

Via a thorough refinement process the contributors of the discussion have defined
a quite efficient implementation of permutations that, moreover, is less strict than
the naive implementation they first came up with. More precisely, they have spec-
ified how little strict they expected an implementation of permutations to be. Intu-
itively, they stated that permutations is supposed to enumerate n! permutations, each
of length n, by inspecting at most the first n elements of its argument list.

3

1 Introduction

This property can be considered as a kind of generalization of the concept of on-
line behavior by Pippenger (1997). A function that takes a list and yields a list pro-
vides on-line behavior if the function inspects at most the first n elements of its ar-
gument to yield n elements of the result. The property of permutations, stated above,
in fact, generalizes this idea to a function that yields a list of lists as result and to the
special case of a function that enumerates permutations.

As a side note, functions with on-line behavior play an important role with re-
spect to the expressiveness of pure functional programs with respect to complexity.
Pippenger (1997) has shown that there are certain functions with on-line behavior
that have a linear complexity in a strict functional language with destructive up-
dates — he considers LISP — while in a strict language without destructive updates
we always get an additional logarithmic factor. Bird et al. (1997) have provided an
implementation of the same function in a lazy functional language that has linear
complexity, too. That is, a lazy purely functional programming language is in a cer-
tain sense more expressive than a strict purely functional programming language.
In this context the notion pure refers to the absence of destructive updates. Bird
et al. (1997) make use of a less strict matrix transposition in order to get the desired
on-line behavior in the lazy language. We consider this function in more detail in
Section 8.2 and observe that they use a more liberal notion of less-strict than it is
used in this thesis.

The notion of boundedness in the context of pretty printers (Wadler 2003) can also
be considered as a kind of special case of on-line behavior. In the area of functional
programming a pretty printer is a program or a library that takes a document that is
represented by a tree structure and converts it into a string. The output has to reflect
the structure that is represented by the tree structure of the document. Additionally,
a pretty printer takes a width that restricts the number of characters in the string
before each line break. A pretty printer is supposed to be optimal in the sense that it
uses the smallest number of lines with respect to the given width, that is, line breaks
are only added if necessary. Furthermore, a pretty printer is called bounded if it uses
a look-ahead of at most w characters to pretty print a document with width w.

That is, boundedness aims for an implementation of pretty printers that inspects
only a small part of its argument to yield a certain part of its result in the same way as
the property of permutations and the more general term of on-line behavior. In other
words, all these concepts aim for implementations whose strictness does not exceed
a certain degree. In contrast, in this thesis we aim for implementations that are as
little strict as possible. A function that is as little strict as possible is called minimally
strict. For example, we can observe that permutations is actually minimally strict, at
least for lists up to six element, by using the tool that is presented in this thesiss.
For most functions we can only make a statement whether the function is minimally
strict for a restricted number of arguments where we use a notion of size for the
restriction. Sloth is only able to verify that permutations is as little strict as possible
for lists up to six elements as the result of permutations has factorial many elements
in the number of elements in the argument list. Thus, checking the result of each
application is quite expensive simply because of the number of elements.

Finally, there are two case studies that use a heap profiling tool for a lazy func-
tional programming language to improve the memory usage of a program. In both

4

cases, the memory usage of one of the considered functions is improved by using a
less strict implementation. First, Runciman and Wakeling (1993a) have applied their
profiling tool to check the memory usage of a compiler for the programming lan-
guage Lazy ML, a lazy dialect of the strict functional programming language ML.
In this case study they present an example of a function whose memory usage can
be improved by using a less strict definition. However, they do not provide enough
background information to relate this example to the results presented in this thesis.
Furthermore, Runciman and Wakeling (1993b) have used the profiling tool to in-
vestigate a program that takes a propositional formula and yields a clausal normal
form of this formula. We investigate this example in detail in Section 8.2 and observe
that their notion of less-strict goes beyond the notion of less-strict considered in this
thesis.

The related works considered so far make use of concepts that are similar to the
idea of minimally strict functions. Besides these works the most important related
work is a draft paper by Chitil (2006)1. He has presented the idea to automatically
check whether a function is as little strict as possible. Furthermore, he has presented
the idea of how to generally observe that a function is unnecessarily strict. The tool
presented in this thesis basically still applies the same idea. Chitil (2006) has even
presented a tool called StrictCheck that checks whether a function is as little strict
as possible. However, StrictCheck proposes functions that are only implementable
using parallel features like the ambiguous choice operator by McCarthy (1961). We
can model this operator in Haskell using non-pure features, which functional pro-
grammers want to avoid most of the time. Ambiguous choice and non-pure features
break referential transparency in the sense that we can no longer replace equals by
equals.

Finally, Coutts et al. (2007), as a side-product, have developed a tool that is re-
lated to the concept of minimally strict functions and Sloth. They have developed
a library for stream processing and implemented standard list functions on basis of
this library. Similar to the partition example they have used specifications from the
language report to check whether their implementations agree with the standard
definitions of these functions. To compare the functions they have implemented a
tool for checking whether two functions agree for all possible inputs up to a specific
size similar to SmallCheck by Runciman et al. (2008). However, in contrast to Small-
Check they also consider that an argument might contain an error or a non-termi-
nating expression. This approach circumvents the problem of parallel functions as
two functions are compared with each other. Thus, if the function that acts as spec-
ification is not parallel, the tool will not propose a parallel implementation. Nev-
ertheless, in most cases we do not have a specification that can be used to check a
function and, furthermore, we still do not know whether the function can be im-
proved with respect to strictness as the specification might be unnecessarily strict as
well. For example, in Section 3.2 we observe that the implementation of the function
intersperse as it is given in the language report is unnecessarily strict.

The rest of this thesis is organized as follows.

1An extended version is available as technical report (Chitil 2011).

5

1 Introduction

• Chapter 2 introduces the main features of the lazy, purely functional program-
ming language Haskell (Peyton Jones 2003). Furthermore, it provides a deno-
tational semantics for a simple non-strict, first-order, functional programming
language without polymorphism. This language is used as basis for a mathe-
matical model of minimal strictness in Chapter 4.

• Chapter 3 illustrates the concept of non-strict evaluation and presents a prac-
tical example that backs the interest in less strict functions. More precisely, it
presents an application whose memory usage can be improved by a factor of
20,000 by using a less strict implementation of a standard Haskell function,
namely above-mentioned intersperse.

• Chapter 4 first revisits the approach by Chitil (2006). Furthermore, it presents
a criterion to check whether a function is minimally strict and rule out par-
allel implementations by employing the notion of sequentiality. This chapter
as well as the underlying denotational semantics only consider monomorphic
functions. Finally, we prove that the presented criterion is necessary and suffi-
cient for the existence of a less strict, sequential function.

• Chapter 5 presents the basics of a light-weight tool, that is, a Haskell library,
called Sloth, that is based on the mathematical model of Chapter 4. In partic-
ular, the chapter illustrates certain approximations that are applied to gain a
light-weight tool. Parts of the results of this chapter have already been pre-
sented elsewhere (Christiansen 2011).

• Chapter 6 generalizes the concept of minimally strict functions to polymorphic
functions. We show how we can check whether a polymorphic function is min-
imally strict by checking a specific monomorphic instance of the polymorphic
function. Furthermore, we prove that we can reduce the number of test cases of
a polymorphic function significantly by employing this approach. The results
of this chapter have already been presented (Christiansen and Seidel 2011).

• Chapter 7 presents some case studies of checking whether functions are min-
imally strict. More precisely, we consider Peano arithmetic, arithmetic for a
representation of binary numbers by Braßel et al. (2008), and a Haskell library
called split (Yorgey 2011). Besides, we also present an approach to derive
less strict functions in certain cases and exemplarily discuss the connection
between less strictness and space usage by means of the function reverse that
reverses the order of the elements of a list.

Finally, we want to make some organizational remarks. All proofs that are omitted
in Chapter 4 and Chapter 6 are presented in Appendix A and Appendix B, respec-
tively. For all run-time and memory usage measurements we have used an Apple
MacBook Pro 2.3GHz with an Intel Core i5 and 4GB RAM. When we benchmark
Haskell programs, we use the Glasgow Haskell Compiler (GHC) version 7.0.3 in
single core mode. At last, we want to make a remark about mathematical rigorous-
ness. The mathematical model in Chapter 4 is based on the denotational semantics
presented in Section 2.2. In contrast, Chapter 6 as well as Chapter 7 use a more

6

loose approach and do not strictly separate syntax and semantics. This approach is
quite common in the context of functional programming as the semantics of a func-
tional language is very closely related to the syntax of the language. We only have
to take extra care to consider the cases that an expression yields an error or does not
terminate. Chapter 6 gives more details about this approach to reasoning.

7

1 Introduction

8

2 Preliminaries
This section presents some preliminaries for the remainder of this thesis. The first
part of this section presents the main features of the functional programming lan-
guage Haskell (Peyton Jones 2003). The reader who is familiar with Haskell may
safely skip Section 2.1. In Section 7.3 and Section 8.2.2 we also give an outlook to ap-
plications of the presented approach to the functional logic programming language
Curry (Hanus 2006), but we do not introduce the features of this language till we
need them.

Section 2.2 presents a simplified functional programming language and provides
a standard denotational model for this language. This denotational model is used
in Chapter 4 as the basis for a mathematical model of minimally strict functions.
The reader who is familiar with denotational semantics of non-strict functional lan-
guages may only inspect the syntax of the considered language presented in Fig-
ure 2.2.1 and note that we do not use arbitrary complete partial orders as domains
but bounded complete, algebraic cpos. Definitions of these concepts are found in
Section 2.2.

2.1 Introduction to Haskell

While in an imperative programming language the model of programming is based
on destructively modifying the contents of memory cells, in a functional program-
ming language the model of programming is based on the definition and application
of functions. In other words, while in an imperative programming language a vari-
able is a name for a location in the memory, in a functional programming language
a variable is a shortname for a more complex expression. That is, while we can
change the value that is assigned to a variable in an imperative language we cannot
change it in a functional language. In this section we introduce the main features
of the functional programming language Haskell. We start by showing how data
is represented in Haskell, more precisely, we introduce the concept of algebraic data
types.

2.1.1 Algebraic Data Types
A data type definition is introduced by the keyword data followed by the name of
the algebraic data type, which has to start with a capital letter. One of the simplest
algebraic data types, but a quite essential one is the type of Boolean values Bool.

data Bool = False | True

In the case of the data type of Boolean values the type is called Bool. The name is
followed by an equality sign and an enumeration of the constructors of the type,

9

2 Preliminaries

separated by vertical bars. In the case of Bool the constructors are called False and
True. The name of a constructor has to start with a capital letter as well. A construc-
tor is used to construct a value of the corresponding type. That is, the term False as
well as the term True construct a corresponding value of type Bool.

While the constructors of Bool are both constants we can define constructors that
take additional arguments. For example, the following data type Partial defines a
constant None and an unary constructor Some, which takes an integer as argument.

data Partial = None | Some Int

Besides algebraic data types, Haskell provides primitive data types, for example,
Int for integers, Integer for arbitrary precision integers, Float and Double for floating
point numbers, and Char for characters. To construct a value of type Partial we can
either use None or a term like Some 42, for example. That is, we apply a constructor
to an argument by juxtaposition of the constructor name and the argument.

A data type like Partial can be used to represent the result of a function if the
function is only defined for some inputs. For example, consider a function that takes
some kind of mapping from integers to integers and looks up a key in this mapping.
If the mapping does not contain a binding for a key, the result of the function is
None. If the mapping contains a binding, the result is Some i where i is the integer
that is associated with the provided key. Obviously, we potentially also need a data
type like Partial where the Some constructor contains a Boolean value, for example,
instead of an integer. As this data type would be very similar to Partial, Haskell
provides a mechanism to abstract over the concrete data type whose values may be
used for arguments of the Some constructor.

Instead of the data type Partial for integers and another data type for Boolean
values, Haskell provides the following data type, called Maybe.

data Maybe α = Nothing | Just α

The α in this equation is called type variable and denotes that the type Maybe takes
a type as argument. Types that take a type as argument are called type constructors.
Instead of the type Partial we can as well use the type Maybe Int, that is, we apply
the type constructor Maybe to the type Int. This way we instantiate the type variable
α with the type Int and get a type Maybe Int, whose values are Just applied to some
integer and Nothing. For example, the term Just 42 is a value of type Maybe Int. In
contrast, the term Just False constructs a value of type Maybe Bool.

Besides the simple data type definitions, considered so far, we can define more
complex data types by employing recursion. The following algebraic data type de-
fines a type of ordered collections of values of equal type, called lists.

data List α = Nil | Cons α (List α)

For an arbitrary type τ we can construct an empty list of type List τ by using the
term Nil. In the following we use the names α, β, γ for type variables and τ, τ1,
τ2, τ3 as meta-variables for concrete types. We can construct a non-empty list of
type List τ by using the constructor Cons that takes a value of type τ and a list with

10

2.1 Introduction to Haskell

elements of type τ as second argument. For example, the term Cons 1 Nil constructs
a list of integers, that is, a list of type List Int, that contains one element, namely 1.
Furthermore, the term Cons 1 (Cons 2 Nil) constructs a list with the elements 1 and
2. Note that a list like Cons 1 (Cons False Nil) is not a value of any list type. The
list Cons False Nil is an element of type List Bool. Therefore, Cons applied to this
value may only take a value of type Bool as first argument as the constructor Cons
states that its first argument has the same type as the elements of the list of its second
argument.

As lists are a very commonly used data type in Haskell, the actual syntax of the
list data type is prettier than the one above. The following definition is not valid
Haskell syntax, but it illustrates the syntax of lists in Haskell. The constructors of
this data type are [] and “:”, where the latter one is used infix.

data [α] = [] | α : [α]

We can construct the empty list by [] and a list of type [Int] with the element 1 by
1 : []. Furthermore, a list with 1 and 2 is constructed by 1 : 2 : []. Note that the infix list
constructor “:” is right associative, that is, the term 1 : 2 : [] stands for 1 : (2 : []). There
is also a pretty syntax for the construction of lists. For example, the term [False, True]
denotes the list False : True : [] and the term [1, 2, 3, 4] denotes the list 1 : 2 : 3 : 4 : [].

Type constructors are not restricted to a single argument. The following algebraic
data type defines a type of pairs by using a two-ary type constructor. Note that the
name of the type may agree with the name of a constructor.

data Pair α β = Pair α β

The constructor Pair takes two arguments. The first argument is a value of the type
that is passed as first argument to the type constructor Pair. The second argument
of the constructor Pair is a value of the type that is passed as second argument to the
type constructor Pair. For example, the term Pair False 42 constructs a pair of type
Pair Bool Int.

Haskell uses a pretty syntax for pairs, too. In contrast to the list data type, pairs
are not constructed by an infix constructor but by a mixfix constructor. Again, the
following definition is not valid Haskell syntax but illustrates the syntax of pairs in
Haskell.

data (α, β) = (α, β)

The pair that we have considered above is constructed by (False, 42) and it is an
element of the type (Bool, Int).

2.1.2 Functions
As mentioned before, functions are quite essential in a functional programming lan-
guage. In Haskell, functions are defined by means of pattern matching, where a pat-
tern is a kind of inverse of a constructor. While we can use a constructor to assemble
data, we can use a pattern to disassemble it again. As an example, we consider the
following function, which disassembles a value of type Maybe Int.

11

2 Preliminaries

fromJust (Just x) = x

A function definition starts with the name of the function, in this case fromJust. The
first character of a function name has to be lower case to distinguish function names
from constructor and type names. The name of a function is followed by a pattern.
In the case of fromJust the pattern matches if the argument is a value constructed
by using the constructor Just. All variables used in a pattern are bound to the cor-
responding value in the argument, the function is applied to. Note that we can
distinguish variables from constructors because variable names start with a lower
case letter. For example, if we apply fromJust to Just 42, then the variable x is bound
to 42 and the result of this application is 42 as well.

The application of a function to an argument, like the application of a constructor
to an argument, is denoted by juxtaposition of function name and argument. That
is, fromJust (Just 42) denotes the application of fromJust to the argument Just 42. If
we apply fromJust to Nothing, we get a run-time error as fromJust does not provide a
rule for this case.

To define a function that matches more than one constructor, we can use multiple
rules, written below each other. For example, the following function defines the
Boolean negation by using two rules, one for the case that the argument is False and
one for the case that the argument is True.

not False = True
not True = False

The rules of a function are processed from top to bottom. Furthermore, variables
are also valid patterns. For example, we can as well define the Boolean negation as
follows.

not False = True
not b = False

Here the first rule matches if the argument is False and the second rule matches in
all other cases, that is, if the argument is True. If a variable that is introduced by a
pattern is not used on the right-hand side of the equality sign, as it is the case for the
second rule of not, we can use an underscore instead of the variable in the pattern as
well.

A function can also take multiple arguments where the arguments are separated
by whitespaces. The following definition of andL defines the Boolean conjunction in
Haskell.

andL False = False
andL True b = b

If the first argument of andL is False, the result of the function is False as well, inde-
pendent of the second argument. If the first argument is True, then andL yields its
second argument.

12

2.1 Introduction to Haskell

By means of this simple example we can already observe that there are often sev-
eral ways to define the same basic behavior. For example, we can define the follow-
ing implementation of the Boolean conjunction, called andR, which performs pattern
matching on its second argument.

andR False = False
andR b True = b

Besides, there is one implementation of the Boolean conjunction, called and, that
explicitly lists all cases as follows.

and False False = False
and False True = False
and True False = False
and True True = True

Later we will observe that all these ways to define a Boolean conjunction lead to
different behavior with respect to strictness.

The predefined Boolean conjunction in Haskell is an infix operator called “&&”.
The definition of an infix operator does not follow the general rule of a function def-
inition. In contrast to a function definition, the name of an infix operator is written
between its two arguments.

False && = False
True && b = b

If we want to use an infix operator in the way as we can use a two-ary function,
we enclose its name in parentheses. For example, this way we can define the infix
operator (&&) by first stating its name.

(&&) False = False
(&&) True b = b

In the same way as we can transform an infix operator into a normal, two-ary
function by enclosing it in parentheses we can as well use a two-ary function as infix
operator by enclosing it in quotes. For example, the term False ‘and‘ True applies the
two-ary function and to the arguments False and True.

Besides pattern matching in function rules, we can use pattern matching in so-
called case expressions. By using a case expression a function can behave differ-
ently depending on the value of an expression in the same way as a function rule
specifies the behavior of a function depending on the argument of the function. The
following definition is an alternative to the definition of the negation function by
means of several rules.

not b =
case b of

False→ True
True → False

13

2 Preliminaries

The keyword case is followed by the expression over which we branch, in this case
the variable b. This expression is also called the scrutinee of the case expression
and it is itself followed by the keyword of. The keyword of is followed by pairs
of pattern and expression, also called branches, where each pattern is separated by
→ from the corresponding expression1. Like function rules, the patterns of a case
expression determine the right-hand side that is used, depending on the value of the
scrutinee.

The branches of a case expression can be separated by semicolons and enclosed
in braces to allow unambiguous definitions of cascaded case expressions. Alterna-
tively, as used in the example above, we can use a so-called offside rule (Landin 1966).
That is, the leftmost character of the first pattern introduces a column that is used
to identify the next pattern. All tokens that begin in this column are considered as
patterns and start a new branch. All tokens that begin to the right of this column
are still assigned to the previous rule while all tokens that begin to the left of this
column close the definition of the branches of the case expression. This way we can
leave out the braces and semicolons in the definition of a case expression.

Haskell also provides an if-then-else expression that can be considered as syntac-
tic sugar for a case expression that branches over a Boolean value. More precisely,
the following semantic equivalence holds where we use braces and semicolons to
explicitly separate branches instead of using the offside rule.

if b then e1 else e2 ≡ case b of {True→ e1; False→ e2}

Note that here and in the following we always use the symbol≡ for semantic equiv-
alence. In Section 2.2 we provide a formal definition of semantic equivalence for a
simple functional language, which can be considered as a subset of Haskell.

Before we go on, we introduce two other syntactical constructs that are often used
to define functions in Haskell. These constructs are called guards and where clause.
Instead of using an equality sign in the definition of a function we can use a vertical
bar to introduce a definition by means of guards. Guards are Boolean expressions
that, similar to a case expression, are used to branch over the value of an expression.
The vertical bar is followed by a Boolean expression and the expression is followed
by an equality sign and the corresponding right-hand side. For example, the fol-
lowing definition implements the signum function that takes an arbitrary integer
and yields −1 if the integer is negative, 0 if the integer is 0, and 1 if the integer is
positive.

signum i
| i < 0 = −1
| i == 0 = 0
| otherwise = 1

Guards are processed from top to bottom. The operator (<) is a two-ary Boolean
predicate that checks whether an integer is strictly smaller than another integer and
the operator (==) checks whether two integers are equal. In Section 2.1.6 we will

1Here and in the following, we use the symbol→ for the token ->.

14

2.1 Introduction to Haskell

observe that the operator (==) actually does not only work for integers but for
a much larger class of values. The constant otherwise is synonym for the Boolean
constant True. Therefore, signum yields −1 if i is smaller than zero, 0 if i is equal to
zero and 1 otherwise.

Finally, we want to present so-called where clauses. A where clause introduces
local function and variable definitions. We can add a where clause to each rule of a
function. The variables introduced by the patterns of the rule are visible in the right-
hand sides of the definitions in a where clause. Functions and variables defined in
a where clause are only visible in the right-hand side of the corresponding rule. For
example, consider the following implementation of the reverse function that uses an
accumulating parameter to achieve a linear complexity.

reverse = rev []
where

rev xs [] = xs
rev xs (y : ys) = rev (y : xs) ys

We define a local function called rev in the where clause. The function rev is neither
visible in additional rules of reverse nor in other top-level definitions. By top-level
definitions we denote function and variable definitions that are not defined within
a where clause or a let expression.

Note that we call it a where clause and not an expression as it does not play the
same role as an expression. For example, a where clause cannot be the argument
of an application while an expression can. However, there is also a counterpart of
the where clause in the family of expressions, called let expression. A let expres-
sion consists of two keywords let and in. Between these keywords we can define
functions and variables in the same way as we would define them using a where
clause. These functions and variables are only visible in the expression that follows
the keyword in. We can define the reverse function by employing a let expression as
follows.

reverse =
let rev xs [] = xs

rev xs (y : ys) = rev (y : xs) ys
in
rev []

Finally, note that the where clause as well as the let expression make use of offside
rules similar to the offside rule of the case expression. We abstain from a more
thorough explanation as we do not need a more precise understanding of offside
rules in the following and refer the interested reader to the Haskell language report
(Peyton Jones 2003).

2.1.3 Types
So far we have stated that each constructor belongs to a certain type. That is, we
can assign a type to every constructor. However, we can even assign a type to every
function and, moreover, to every expression in a Haskell program.

15

2 Preliminaries

Haskell has a strong, static type system with type inference. The type system is
said to be strong because there will be no type errors at run-time if we run a well-
typed program. Sometimes people also refer to a language as strongly typed if there
are no implicit coercions. For example, the expression False + 2 is not well-typed in
Haskell because (+) expects two values of type Int, and False is of type Bool. Note
that there are typed languages that use an implicit coercion to apply (+) to False and
2, for example, by considering the Boolean value False as the integer 0. The type sys-
tem of Haskell is said to be static because the compiler determines at compile time
whether a program is well-typed and rejects the program if it is not. In contrast, in a
dynamically typed language like python we might get a type error when we execute
the program. Finally, type inference means that the compiler is able to determine the
type of an arbitrary expression (Damas and Milner 1982). Therefore, we do not have
to annotate any types at all and the compiler is still able to check whether the pro-
gram is well-typed. Nevertheless, for documentation purposes, we annotate a type
to every top-level Haskell definition in the following.

We annotate a type to an expression by separating the expression and the type
by two colons. For example, the term False :: Bool annotates the type Bool to the
constructor False. If we annotate a wrong type, for example, False :: Int, the compiler
reports a type error.

We annotate a type to a function by preceding the function definition with the
function name, two colons, and the type of the function. We annotate the type
Bool→ Bool to the function not as follows.

not :: Bool→ Bool
not False = True
not True = False

Here the right-arrow→ is a two-ary type constructor that constructs a function type.
That is, not is a function that takes a Boolean value as argument and yields a Boolean
value as result. Consider the two-ary Boolean conjunction (&&) as another example.

(&&) :: Bool→ Bool→ Bool
False && = False
True && b = b

The type of this function is Bool → Bool → Bool. More precisely, if a function takes
more than one argument the additional arguments are separated by → from each
other. For example, a function that takes three arguments of types τ1, τ2, and τ3
has the type τ1 → τ2 → τ3 → τ4 where τ4 is the result type of the function. Note
that the function arrow is right-associative, that is, τ1 → τ2 → τ3 stands for τ1 →
(τ2 → τ3). Because the function arrow is right-associative, function application is
left-associative, thus, f e1 e2 e3 stands for ((f e1) e2) e3.

2.1.4 Parametric Polymorphism
In fact, we have already introduced parametric polymorphism when we have talked
about algebraic data types. Parametric polymorphism means that a data type or a

16

2.1 Introduction to Haskell

function is parametric over a type. For example, the list data type is parametric
over the type of the elements of the list. However, parametric polymorphism is not
restricted to data types but can also be used for function definitions. In the following
we present several examples of polymorphic functions.

Many functions, especially functions over collection types like lists or trees, be-
have equally for different element types. For example, counting the number of el-
ements in a list does not depend on the type of the elements in the list. Consider
the following definition of the standard Haskell function length that takes a list and
yields its length. Here and in the following, to avoid parentheses, we employ the
convention that a function, written prefix, has a higher precedence than an infix
operator. Hence, the expression 1 + length xs is short for 1 + (length xs).

length [] = 0
length (: xs) = 1 + length xs

Obviously, the function length has the type [Bool] → Int as it can calculate the
length of a list of Boolean values. However, it seems equally valid to assign the
type [Int] → Int to length as it can also calculate the length of a list of integers.
And, indeed, both types are valid types for length. The compiler does not report
a type error if we annotate one of these types to the function length. Nonetheless,
there is a more general type in the sense that we can apply the length function to
more arguments without risking the type checker to complain. In the same way as
we have used type variables to express that a data type is parametric, we use type
variables to express that length calculates the length of a list of an arbitrary element
type. More precisely, we can annotate the type [α]→ Int to length.

In Haskell the type of a function is always implicitly quantified over all type vari-
ables that occur in it. Furthermore, the variables are quantified at the beginning of
the type. For example, the type [α] → Int stands for the type ∀α.[α] → Int. It is just
a question of convenience to leave out the quantifier. Though, note that it is quite
important that all variables are quantified at the beginning of a type. For example,
the type ∀α.[α] → Int and the type [∀α.α] → Int mean totally different things. The
latter is also referred to as a higher-rank type (Odersky and Läufer 1996). The former
type denotes a function that takes a list of an arbitrary type τ and yields an integer
or, more precisely, we can choose some type τ and get a function of type [τ] → Int.
In contrast, the latter type denotes a function that takes a list of polymorphic val-
ues as argument and yields an integer. That is, if we assign the type [∀α.α] → Int
to length we can only apply it to lists where every element has the type ∀α.α. For
example, this is not the case for a list of Boolean values. Although Haskell provides
extensions to higher-rank types (Peyton Jones et al. 2007), in the following we only
consider rank-1 polymorphism. In other words, all type variables of function types
are implicitly quantified at the beginning of the type definition.

A more sophisticated example of a polymorphic function is the list concatenation
(++). In this case we employ a type variable to state that the element type of the
result list is the same as the element type of the argument list. Furthermore, as both
arguments are of type [α], we know that both argument lists have to have the same
element type, so we cannot concatenate a list of Boolean values with a list of integers.

17

2 Preliminaries

(++) :: [α]→ [α]→ [α]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

Note that we cannot define a concatenation function that takes one list of type [α]
and one list of type [β] because of the definition of the list data type. More precisely,
the application of the list constructor (:) to x and the result of xs ++ ys in the second
rule of (++) implies that x has the same type as the elements of the result of (++).
Furthermore, the first rule of (++) implies that the list ys has the same type as the
result of (++).

We can as well use multiple type variables in a function type to specify more com-
plex relationships. For example, the following function takes two lists of potentially
different element types and combines these lists point-wise to a list of pairs.

zip :: [α]→ [β]→ [(α, β)]
zip (x : xs) (y : ys) = (x, y) : zip xs ys
zip = []

By employing type variables we express that the elements of the first list have the
same type as the values of the first component of the pair and the elements of the
second list have the same type as the values of the second component of the pair.
Note that we could as well annotate the type [α] → [α] → [(α, α)] to zip, but in
this case the function is less general. For example, while we can apply zip to the
lists [False] and [42] this application would not be well-typed if we annotate the less
general type because the less general type only allows argument lists of equal type.

Finally, we want to introduce a function that, in particular, is intensively used in
Chapter 6. The list indexing function (!!) :: [α] → Int → α takes a list and an index
in the list (starting with zero) and yields the element at the corresponding position.

(!!) :: [α]→ Int→ α
[] !! = indexError
(x : xs) !! i
| i < 0 = indexError
| i == 0 = x
| otherwise = xs !! (i− 1)

If the list is empty or the index is smaller than zero, the function yields a run-time
error denoted by indexError. Using a guard we distinguish the cases that the index
i is smaller zero, equal to zero, or greater than zero. In the second case the first
element of the given list is the element we are looking for and in the third case we
have to project to position i− 1 of the list without the first element, denoted by xs.

2.1.5 Higher-Order

In Haskell, functions are first class citizens. That means a function can be used, like
any other data type, as argument or result of a function or even as argument of a
constructor.

18

2.1 Introduction to Haskell

As we have observed before, the function arrow→ is right associative. Therefore,
the type of a two-ary function τ1 → τ2 → τ3, in fact, stands for the type τ1 →
(τ2 → τ3). That is, if we apply the function to a value of type τ1 we get a function
of type τ2 → τ3. We can even partially apply any function that takes more than one
argument. If we apply a function that takes n arguments to m arguments, where m is
smaller than n, we get a function that takes another n−m arguments. For example,
the term and True denotes a partial application of the function and to the argument
True. More precisely, the term and True denotes a function of type Bool → Bool that
is semantically equivalent to the identity function of type Bool → Bool. In the same
way we can apply a function of type τ1 → τ2 → τ3 → τ4 to a value of type τ1 and
get a function of type τ2 → τ3 → τ4. If we, again, apply the resulting function to a
value of type τ2, we get a function of type τ3 → τ4.

To partially apply an infix operator we can use so-called left and right sections. We
enclose an infix operator together with one argument in parentheses and indicate by
the position of the argument to the left or to the right of the infix operator if we
partially apply the operator to its first or its second argument. For example, the
expressions (True &&) and (&& True) partially apply (&&) to True and the resulting
function still awaits its second and first argument, respectively.

As mentioned before, functions cannot only yield functions as result but also take
functions as argument. Consider the following function definition that takes a predi-
cate and a list and removes all elements from the list that do not satisfy the predicate.
Here, the variable pred stands for a function of type τ → Bool, and, therefore, we can
apply it to the list element x. When we apply pred to x, we get a Boolean value as re-
sult. Thus, we can use a guard to branch over the result of this application. Note that
we may not leave out the parentheses in the type of filter this time as the function
arrow is right-associative.

filter :: (α→ Bool)→ [α]→ [α]
filter [] = []
filter pred (x : xs)
| pred x = x : filter pred xs
| otherwise = filter pred xs

A mathematically natural higher-order function is the function composition (◦).
The function composition takes a function of type τ2 → τ3, a function of type τ1 → τ2
and a value of type τ1 and applies these functions one after the other to the value.

(◦) :: (β→ γ)→ (α→ β)→ α→ γ
(f ◦ g) x = f (g x)

Note that this definition shows how we can define an infix operator that takes more
than two arguments by using parentheses. As an example, the term not ◦ not is the
identity function of type Bool→ Bool as it takes a Boolean argument and applies not
twice to this argument.

Higher-order functions are a means to define abstractions that can be employed
in many contexts. The function map is one example for a frequently used abstraction

19

2 Preliminaries

of this kind. It takes a function as higher-order argument and applies this function
point-wise to all elements of a list.

map :: (α→ β)→ [α]→ [β]
map [] = []
map f (x : xs) = f x : map f xs

As an example, we can apply map to not and the list [False, True, True] and get the list
[True, False, False] as result.

Higher-order functions can be used to generalize first-order functions. For exam-
ple, by employing a higher-order function we can generalize the definition of zip,
presented in the previous section. Instead of constructing pairs from the elements of
the argument lists, we apply an arbitrary two-ary function to each pair of elements.
This two-ary function is provided in the form of a higher-order argument.

zipWith :: (α→ β→ γ)→ [α]→ [β]→ [γ]
zipWith f (x : xs) (y : ys) = f x y : zipWith f xs ys
zipWith = []

Note that we have zip ≡ zipWith (,) where (,) denotes the two-ary function that
takes two arguments and constructs a pair.

In the context of higher-order functions, it is often useful to define a function with-
out having to introduce a name for the function. Therefore, Haskell provides the
possibility to define anonymous functions. An anonymous function is introduced
by the symbol λ followed by patterns that are separated by whitespaces.2 The pat-
terns are followed by a right arrow and the right-hand side of the anonymous func-
tion. For example, the expression λx xs→ xs ++ [x] defines an anonymous function
that takes an element x and a list xs and appends the element at the end of the
list. As an example of the application of an anonymous function, the application
filter (λi → (i > 0) && (i < 10)) defines a function on lists of integers that removes
all elements from the list that are smaller than one or greater than nine. Note that
filter takes over the elements of the list for which the predicate is satisfied.

By using higher-order functions we can even define control structures that usually
are built-in in other languages. For example, the following higher-order function is
a functional implementation of the while loop, which is known from imperative
programming languages. The first argument of while is a function that takes the
current “state” of the loop and yields a Boolean value that determines whether the
loop is executed once more. The second argument of while is a state transformation
that is applied in every execution of the body to get a new state from the old one.

while :: (α→ Bool)→ (α→ α)→ α→ α
while pred trans x
| pred x = while pred trans (trans x)
| otherwise = x

As an example, we can use while (λ(c,) → c > 0) (λ(c, f) → (c− 1, c ∗ f)) (5, 1)
to calculate the factorial of 5. More precisely, this application yields the pair (0, 120)

2In Haskell programs the symbol λ is, in fact, represented by a backslash.

20

2.1 Introduction to Haskell

where the first component represents a counter that is decreased in every execution
of the loop body while the second component is the factorial of the initial counter, in
our example 5. The state transformation (λ(c, f)→ (c− 1, c ∗ f)) takes a counter and
the current factorial, multiplies the factorial with the current counter, and decreases
the counter.

A last comment about higher-order functions is in order to illustrate their power.
If we consider a language that does only provide primitive recursive functions, we
get an expressive power that is beyond primitive recursion if we add higher-order
functions to the language (Hutton 1999). For example, we can even define the Ack-
ermann function in a language with primitive recursion and higher-order functions.

2.1.6 Type Classes
Type classes (Wadler and Blott 1989) are an implementation of ad-hoc polymorphism,
in the context of object-oriented programming languages also called overloading,
in Haskell. Like a parametric polymorphic function can be applied to arguments
of different types, an ad-hoc polymorphic function can be applied to arguments
of different types as well. However, while a parametric polymorphic function be-
haves equally no matter which instance of the polymorphic function we consider,
an ad-hoc polymorphic function, in most cases, behaves differently for different ar-
gument types. That is, we can provide several implementations of the same function
that behave differently for different types. When we apply an overloaded function,
the types of the arguments determine the concrete implementation that is used.3

Let us consider a function that tests two values for equality. Obviously, we cannot
provide an equality check that works for arguments of different types. For example,
we would like to implement an infix operator (==Bool) that is able to check two
Boolean values for equality as follows.

(==Bool) :: Bool→ Bool→ Bool
False ==Bool False = True
True ==Bool True = True

==Bool = False

In the same way as we have defined a function that checks Booleans for equality,
we would like to define the following infix operator (==[Bool]) that checks two lists
of Boolean values for equality.

(==[Bool]) :: [Bool]→ [Bool]→ Bool
[] ==[Bool] [] = True
(b1 : bs1) ==[Bool] (b2 : bs2) = (b1 ==Bool b2) && (bs1 ==[Bool] bs2)

==[Bool] = False

In Haskell a type class called Eq is used to implement equality checks like (==Bool)
and (==[Bool]) and use the same name for both functions. The predefined type class
Eq provides a function (==) that implements an equality check.4

3In Haskell we can even choose the implementation depending on the result type of the function.
4In fact, Eq also provides an inequality check (/=) :: α→ α→ Bool that is left out for simplicity.

21

2 Preliminaries

class Eq α where
(==) :: α→ α→ Bool

The keyword class starts the definition of a type class, followed by the name of
the class. Like constructors and types, the names of type classes have to start with
a capital letter. The name of the class is followed by a type variable that denotes
the type that will be an instance of this type class. After the keyword where we
enumerate the functions that have to be implemented to make a type an instance
of this type class. In the case of the type class Eq, a type τ becomes an instance of
the class if we provide a function (==) of type τ → τ → Bool. For example, the
following code implements an instance of Eq for the type Bool.

instance Eq Bool where
False == False = True
True == True = True

== = False

To make a type an instance of a type class we use the keyword instance. The
name of the type class is followed by the specific type that becomes an instance of
the type class, in this case Bool. The type is followed by the keyword where and by
implementations of the functions of the type class, in this case (==).

If we reconsider the equality check for lists of Booleans, we observe a more gen-
eral structure. We define the equality check of lists by testing the elements of the list
point-wise for equality. The equality check for lists of integers will look very similar
to the equality check for lists of Booleans. We just have to replace all occurrences
of (==Bool) by an equality check for integers. That is, instead of using a specific
instance to check the equality of the elements (in the case of (==[Bool]) the specific
instance is (==Bool)) we would like to check the elements with the equality check of
the element type of the list. We can use a type class constraint to define an instance
like this. Using a type class constraint we make all types that satisfy a certain pre-
condition an instance of the type class. The following instance makes all types of the
form [τ] an instance of Eq, if the type τ is an instance of Eq.

instance Eq α⇒ Eq [α] where
[] == [] = True
(x : xs) == (y : ys) = (x == y) && (xs == ys)

== = False

The applications of (==) on the right-hand side are, in fact, applications of different
functions. More precisely, while the left application x == y invokes a function
of type τ → τ → Bool, the application xs == ys invokes a function of the type
[τ] → [τ] → Bool. Note that, although we assume that these functions implement
equality checks on the corresponding types, in fact, we do not know anything about
these functions except for their types and their name.

Type class constraints are also used to restrict the arguments of certain functions.
For example, consider that we want to define a function that takes a value and a
list and checks whether the value is an element of the list. We obviously need an

22

2.1 Introduction to Haskell

equality test on the element type of the list to implement this function. That is, we
want to define a function of type α → [α] → Bool but we do not want to instantiate
α with arbitrary types τ but only with types that are instances of Eq. We can express
this circumstance by adding the constraint Eq α to the front of the type signature.
The following definition of the membership test uses the Boolean disjunction imple-
mented by the infix operator (||).

elem :: Eq α⇒ α→ [α]→ Bool
elem [] = False
elem x (y : ys) = (x == y) || elem x ys

If we omit the type class constraint in the type of elem, the compiler even reports
a type error. By the use of (==), the compiler knows that x and y must be values of
a type that is an instance of Eq.

We cannot only define type classes whose instances are types, but we can also
define type classes whose instances are type constructors. This kind of classes is
called type constructor classes (Jones 1993). For example, the following type class
Functor is a quite prominent type constructor class.

class Functor ϕ where
fmap :: (α→ β)→ ϕ α→ ϕ β

To make a type τ an instance of Functor, the type has to be a type constructor because
the variable ϕ is applied to a type, in this case type variables α and β. The type
class Functor provides a function called fmap, which is a generalization of map. The
function fmap takes a function from some type to another type and a value of some
type constructor applied to the argument type of the function. Typically, an instance
of Functor is some kind of collection that is parametric over the type of the elements,
for example, a list, a tree, or some abstract data type like a set. In this case fmap
can be considered as a function that applies its argument f to every member of the
collection.

In the case of the list type constructor the function fmap is equivalent to the func-
tion map, presented before.

instance Functor [] where
fmap [] = []
fmap f (x : xs) = f x : fmap f xs

Note that the token [] in the first line of the definition denotes a type constructor
that takes the element type of a list as argument and constructs the type of lists with
this element type. In contrast, the occurrences of the token [] in the second line of
the definition denote the pattern and the constructor for the empty list, respectively.

We can also regard a tuple as a collection with respect to one of its components.
That is, for some type τ we can define an instance of Functor for the partially applied
type constructor ((,) τ) as follows. In this case we have to provide a function fmap
of type (α → β) → (τ, α) → (τ, β). The following code implements an instance of
Functor for ((,) τ) where τ is an arbitrary type.

23

2 Preliminaries

instance Functor ((,) α) where
fmap f (x, y) = (x, f y)

As mentioned before, instances of Functor are typically collections, but they don’t
have to be. For example, consider the two-ary type constructor → that constructs
function types. If we partially apply → to some type τ, denoted by ((→) τ), the
resulting unary type constructor takes the result type of the function type as argu-
ment. To make this type constructor an instance of the type class Functor, we have
to provide an implementation of fmap of type (α→ β)→ (τ → α)→ (τ → β). This
type is an instance of the type of the function composition (◦). Therefore, we can
define an instance of Functor for a partially applied function type as follows.

instance Functor ((→) α) where
fmap f g = f ◦ g

Nobody restrains us from defining “silly” instances of Functor. For example, the
following implementation is also a valid implementation of fmap for the list type
constructor. This instance ignores its arguments and yields the empty list.

instance Functor [] where
fmap = []

The type class Functor is inspired by a concept with the same name in category
theory. There, a functor is a homomorphism, that is, a structure preserving mapping,
between two categories. More precisely, a functor is a mapping F from a category
C to a category D that assigns every object X ∈ C an object F(X) ∈ D and every
morphism f : X → Y ∈ C a morphism F(f) : F(X) → F(Y) ∈ D. Furthermore, F
has to satisfy the following laws where ◦ denotes morphism composition.

F(id) = id
F(f ◦ g) = F(f) ◦ F(g)

In contrast, in Haskell the functor F is split into two parts, the type constructor that
maps an object (in the case of Haskell a type) to an object and the function fmap that
maps a morphism (in the case of Haskell a function) to a morphism. Moreover, for
all instances of Functor, the function fmap is supposed to satisfy the following laws.

fmap id ≡ id
fmap (f ◦ g) ≡ fmap f ◦ fmap g

For example, our “silly” list instance breaks the first law. However, note that Haskell
does not check whether an instance of Functor satisfies these laws.

2.2 Denotation of a Simple Functional Language

In this section we define a denotational semantics for a simple, non-strict, first-order,
monomorphic functional language. This semantics is used in Chapter 4 to present a

24

2.2 Denotation of a Simple Functional Language

τ ::= Bool
| List τ

σ ::= τ1 × · · · × τn

P ::= D P
| ε

D ::= f :: σ→ τ; f 〈x1, . . . , xn〉 = e
e ::= x

| False
| True
| Nilτ
| Cons〈e1, e2〉
| f 〈e1, . . . , en〉
| case e of {False→ e1; True→ e2}
| case e of {Nilτ → e1; Cons〈x, xs〉 → e2}
| undefinedτ

Figure 2.2.1: Syntax of a Simple First Order Functional Language

mathematical model of minimally strict functions. Figure 2.2.1 presents the syntax
of the considered language. For simplicity we only consider Booleans and lists as
data types, but the results in Chapter 4 hold for arbitrary algebraic first-order data
types. The language presented here is similar to languages considered elsewhere.
For example, Plotkin (1977) presents a simple functional language called PCF (pro-
gramming language for computable functions). In contrast to the language consid-
ered here PCF does not provide lists but provides integers instead, and PCF uses an
explicit fixpoint combinator while we use a system of recursive function definitions.

Here and in the following, by τ we denote a type that is either Bool or a list type
whose argument type is a type of the form τ again. By σ we denote tuple types of
arbitrary arity whose components are types of the form τ. Tuple types only occur as
argument types of functions and constructors.

A program P is a sequence of declarations D where ε represents the empty pro-
gram. Furthermore, we use an uncurried notation for functions, that is, a function
f takes a tuple 〈e1, . . . , en〉 as argument. We do not use Haskell’s curried notation
as we do not consider higher-order functions and some of the following definitions
are simplified by an uncurried notation. Function application is denoted by juxta-
position, for example, f 〈e1, . . . , en〉. We identify f 〈〉 with f and f 〈x〉 with f x. Instead
of using semicolons to separate type annotation and function definition as well as
braces and semicolons to separate case branches, for simplicity, we employ Haskell-
like offside rules (Landin 1966). For convenience, we add an expression undefinedτ to
the considered language that denotes a run-time error and is used to model partially
defined case expressions.

25

2 Preliminaries

We assume that the reader is familiar with the basic concepts of partially ordered
sets and complete partial orders. More precisely, we consider the concepts of chain-
complete partial orders and directed set complete partial orders and use these terms
synonymously as these two concepts are equivalent. In the following we use the
abbreviation cpo for complete partial order. Furthermore, by

d
and

⊔
we denote

the greatest lower bound (infimum) and the least upper bound (supremum) with
respect to a corresponding ordering denoted by v and w, respectively.

Instead of complete partial orders we interpret types by bounded complete, al-
gebraic complete partial orders, also called Scott domains. Scott et al. (1989) show
that flat cpos are bounded complete and algebraic, and that all standard domain
constructions — which we employ here — preserve these properties.

A cpo is bounded complete if all subsets that have an upper bound also have a
least upper bound. A bounded complete cpo is also a complete meet-semilattice,
that is, the infima of all non-empty subsets exist. We can prove this statement by
defining the infimum of a set as the supremum of all lower bounds of the set. This
supremum exists because the cpo is bounded complete.

To establish algebraic cpos, we have to introduce the concept of finite (sometimes
also called compact) elements. We prefer the term finite here because in the con-
sidered setting the informal notion of finiteness like in “finite list”, for example,
coincides with the following definition of finite elements.

Definition 2.2.1 (Finite Element): An element x of a cpo (D,v) is called finite if for
all chains 〈xi〉i∈I in D with x v ⊔i∈I xi there exists i ∈ I such that x v xi. �

For any set S the powerset 2S together with the subset ordering ⊆ is a cpo. The
smallest element of a powerset cpo is the empty set, and the supremum of a chain
of sets is given by the union of these sets. In the powerset cpo the finite elements are
exactly the finite sets.

To prove the first direction, consider an infinite set X. Furthermore, consider a
chain 〈Xi〉i∈N of finite subsets of X such that |Xi| = i. The supremum of this chain
is the infinite set X, namely,

⋃
i∈N Xi = X. As there is no set Xi such that X ⊆ Xi, the

infinite set X is not a finite element of (2S,⊆).
To prove the missing implication we proceed as follows. If X is not finite, then

there exists a chain 〈Xi〉i∈I such that X ⊆ ⋃i∈I Xi, and for all i ∈ I we have X 6⊆ Xi.
If the index-set I was finite, then the chain 〈Xi〉i∈I would have a greatest element,
which is a contradiction. Thus, the index-set I is infinite. Furthermore, as for every
i ∈ I there exists x ∈ X such that x 6∈ Xi the set X is infinite as well.

In an algebraic cpo every element x is the supremum of the finite elements below
it. That is, if (D,v) is an algebraic cpo, then for all x ∈ D we have

x =
⊔
{y | y ∈ D, y v x, y finite}.

For example, the powerset cpo is an algebraic cpo as every (especially every infinite)
set is the supremum (in this case the union) of its finite subsets. In an algebraic cpo
the result of a (continuous) function for a non-finite element is the supremum of the
results for the finite elements below. In other words, the behavior of functions for
non-finite arguments is determined by the behavior for finite arguments. Note that

26

2.2 Denotation of a Simple Functional Language

Jσ→ τK = { f | f ∈ JσK→ JτK, f continuous}
Jτ1 × · · · × τnK = {〈x1, . . . , xn〉 | x1 ∈ Jτ1K, . . . , xn ∈ JτnK}

JBoolK = {⊥, False, True}
JList τK = {⊥, Nilτ} ∪ {Cons 〈x, xs〉 | x ∈ JτK, xs ∈ JList τK}

Figure 2.2.2: Type Semantics

this characteristic of algebraic cpos is closely related to the behavior of functions in a
functional programming language. In a functional programming language we can-
not explicitly check whether the argument of a function is an infinite data structure,
and, therefore, the behavior of this function for infinite arguments is determined by
its behavior for finite arguments. This illustrates that we can use algebraic cpos to
model the semantics of a functional programming language.

Figure 2.2.2 presents the interpretation of the types we are considering. The func-
tion J·K denotes type semantics as well as term semantics. We consider a standard
type semantics, that is, we interpret functions as continuous mappings with a point-
wise ordering. Here continuity means Scott-continuity, namely, monotonicity and
preservation of suprema of chains. Functions are ordered point-wise, that means,
we have f v g if and only if f x v g x for all x of appropriate type.

As we consider a first-order language, all functions take a single argument. We
denote mathematical function application by juxtaposition, that is, by terms of the
form f x where f is a function and x is an argument. The argument type of a syntactic
function has the form τ1 × · · · × τn and is interpreted as non-lifted direct product.
The elements of Jτ1 × · · · × τnK are denoted by 〈e1, . . . , en〉.

Because it is determined by the context, we use the symbol⊥ for all least elements
and mostly do not distinguish least elements of different domains, for example,⊥Bool
and ⊥List Bool. The type of Boolean values is interpreted by the three-element flat
ordered set {⊥, False, True}where ⊥ is the least element. Note that we use the terms
False and True for syntactic as well as for semantic objects.

The interpretation of List τ for some type τ contains terms over the constant Nilτ
that represents an empty list of type τ and the two-ary constructor Cons 〈·, ·〉 for
non-empty lists. The first argument of Cons 〈·, ·〉 is an element of the interpretation
of τ while the second argument is an element of the interpretation of List τ again.
These terms are ordered component-wise, that is, for elements t and t′ of JList τK
we have t v t′ if we get t′ by replacing subterms in t that are ⊥ by arbitrary values
of appropriate type. Figure 2.2.3 illustrates the ordering of some of the elements of
JList τK, where x and y are elements of the interpretation of τ.

The set of terms over Nil and Cons 〈·, ·〉 and the interpretation of τ together with
the component-wise ordering does not form a cpo. For example, consider the fol-
lowing infinite chain

⊥, Cons 〈x,⊥〉, Cons 〈x, Cons 〈x,⊥〉〉, Cons 〈x, Cons 〈x, Cons 〈x,⊥〉〉〉, . . .

27

2 Preliminaries

Cons 〈x, Cons 〈y, Nil〉〉 . . .

Cons 〈x, Nil〉 Cons 〈x, Cons 〈y,⊥〉〉

Nil Cons 〈x,⊥〉

⊥

Figure 2.2.3: Ordering of Finite Lists

for some element x of the interpretation of τ. The supremum of this chain would
be an infinite term. Therefore, we have to add representations for the infinite lists to
JList τK. We consider the least fixpoint of the recursive definition of JList τK that con-
stitutes a cpo. Schmidt (1987) uses an inverse limit construction to show that such
a least fixpoint exists. An element of JList τK is represented by an infinite tuple of dif-
ferent approximations of the element itself. For example, the list Cons 〈x, Cons 〈x,⊥〉〉
is represented by the infinite tuple

(⊥, Cons 〈x,⊥〉, Cons 〈x, Cons 〈x,⊥〉〉, Cons 〈x, Cons 〈x,⊥〉〉, . . .)

where the dots indicate that all following tuple components are Cons 〈x, Cons 〈x,⊥〉〉
as well. More precisely, we represent a finite list by an infinite tuple that becomes
stationary at some position of the tuple. The components of the tuple contain ap-
proximations of the original lists that become more precise. That is, each consecutive
pair of components of the tuple contains lists that are related by v. The component
where the tuple becomes stationary contains the original list. An infinite list is rep-
resented by an infinite tuple that contains approximations of the infinite list.

The inverse limit construction does not yield a solution to the recursive equation
for the list type presented in Figure 2.2.2. However, we get a solution that is order-
isomorphic to a solution of the concrete recursive definition. Therefore, in the fol-
lowing we consider the domain JList τK as the set of finite and infinite terms over Nil,
Cons 〈·, ·〉, and the interpretation of the content type τ. Schmidt (1987) has presented
a detailed construction of solutions to recursive domain equations.

Figure 2.2.4 presents the term semantics for the language shown in Figure 2.2.1.
The semantics of a variable x is its binding in the environment a. An environment
is a mapping from the set of variables to semantic objects. By a[x 7→ v] we denote
the modification of the environment a such that a[x 7→ v](x) = v and a[x 7→ v](y) =
a(y) if x 6= y. Furthermore, we denote the modification of multiple variable bindings
by a[x1 7→ v1, . . . , xn 7→ vn]. If the semantics of an expression e is independent of
the environment a, in other words, e has no free variables, then we use JeK instead of
JeKa.

28

2.2 Denotation of a Simple Functional Language

JxKa = a(x)
JFalseKa = False
JTrueKa = True
JNilτKa = Nil

JCons〈e1, e2〉Ka = Cons J〈e1, e2〉Ka

Jf 〈e1, . . . , en〉Ka = Jf K J〈e1, . . . , en〉Ka

J〈e1, . . . , en〉Ka = 〈Je1Ka, . . . , JenKa〉
Jf Ka = λ〈v1, . . . , vn〉. JeKa[x1 7→v1,...,xn 7→vn]

if f :: τ1 × · · · × τn → τ; f 〈x1, . . . , xn〉 = e ∈ P

Jcase e of {False→ e1; True→ e2}Ka =

⊥ if JeKa = ⊥
Je1Ka if JeKa = False
Je2Ka if JeKa = True

Jcase e of {Nilτ → e1; Cons〈x, xs〉 → e2}Ka =

⊥ if JeKa = ⊥
Je1Ka if JeKa = Nilτ
Je2Ka[x 7→v1,xs 7→v2] if JeKa = Cons 〈v1, v2〉

JundefinedτKa = ⊥τ

Figure 2.2.4: Term Semantics

The constants False, True, and Nil are interpreted by the corresponding mathe-
matical objects. The semantics of a list whose outermost constructor is Cons is the
semantical function Cons 〈·, ·〉 applied to the semantics of the arguments of the list
constructor. The term λa. b, used in the semantics of a function f , introduces an
anonymous mathematical function. Furthermore, in this rule we use a globally de-
fined program called P. Recursive function definitions result in recursive definitions
of the semantic function J·K. We use the least solution of the resulting system of
equations.

The semantics of a case expression performs a case distinction over the semantics
of the scrutinee. Note that, if the semantics of the scrutinee has the form Cons 〈x, xs〉,
then we have to adapt the environment a accordingly.

Finally, the constant undefinedτ is interpreted by the least element of the interpre-
tation of τ. This constant does not add expressiveness to the language as we could
define undefinedτ as a non-terminating recursive function loop in the language itself.

To assign a type to a term we employ the typing rules presented in Figure 2.2.5.
The typing rules are standard rules for a simply typed, monomorphic, functional
language. A typing judgement has the form Γ ` e :: τ and states that an expression
e has the type τ under a type assumption — also called type environment — Γ. A
type assumption Γ has the form Γ = {x1 :: τ1, . . . , xn :: τn} and assigns types to the
free variables of an expression. By Γ, x :: τ we denote splitting a type environment
into the binding of a variable x (here bound to a type τ) and an environment Γ that
does not contain a binding for x.

29

2 Preliminaries

Γ, x :: τ ` x :: τ (VAR) Γ ` False :: Bool (FALSE)

Γ ` True :: Bool (TRUE) Γ ` Nilτ :: List τ (NIL)

Γ ` e1 :: τ Γ ` e2 :: List τ
(CONS)

Γ ` Cons〈e1, e2〉 :: List τ

Γ ` e1 :: τ1 . . . Γ ` en :: τn (TUPLE)
Γ ` 〈e1, . . . , en〉 :: τ1 × · · · × τn

Γ ` f :: σ→ τ Γ ` e :: σ
(APP)

Γ ` f e :: τ

f :: σ→ τ ∈ P
(FUN)

Γ ` f :: σ→ τ

Γ ` e :: Bool Γ ` e1 :: τ Γ ` e2 :: τ
(BCASE)

Γ ` case e of {False→ e1; True→ e2} :: τ

Γ ` e :: List τ Γ ` e1 :: τ′ Γ, x :: τ, xs :: List τ ` e2 :: τ′
(LCASE)

Γ ` case e of {Nilτ → e1; Cons〈x, xs〉 → e2} :: τ′

Γ ` undefinedτ :: τ

Figure 2.2.5: Typing Rules for the presented Functional Language

In the typing rule for a function we again use a globally defined program P. We
call a program P well-typed if every type signature that is annotated to a function is
correct with respect to the typing rules of Figure 2.2.5. More precisely, a program P
is well-typed if we have ∅ ` f :: σ → τ for all functions f :: σ → τ in the program P.
In the following we assume that all programs P are well-typed.

Example 2.2.1: As an example for the semantics, presented in Figure 2.2.4, we con-
sider the function andL, which is frequently used as an example in the following. The
function andL corresponds to the standard Boolean conjunction (&&) in Haskell and
is defined as follows.

andL :: Bool× Bool→ Bool
andL〈x, y〉 =

case x of
False→ False
True → y

For any environment a we calculate the semantics of andL as follows.

JandLKa = λ〈v1, v2〉.Jcase x of {False→ False; True→ y}Ka[x 7→v1,y 7→v2]

= λ〈v1, v2〉.

⊥ if JxKa[x 7→v1,y 7→v2] = ⊥
JFalseKa[x 7→v1,y 7→v2] if JxKa[x 7→v1,y 7→v2] = False
JyKa[x 7→v1,y 7→v2] if JxKa[x 7→v1,y 7→v2] = True

30

2.2 Denotation of a Simple Functional Language

= λ〈v1, v2〉.

⊥ if v1 = ⊥
JFalseKa[x 7→v1,y 7→v2] if v1 = False
JyKa[x 7→v1,y 7→v2] if v1 = True

= λ〈v1, v2〉.

⊥ if v1 = ⊥
False if v1 = False
v2 if v1 = True

As the semantics of andL is independent of the environment a, we can use JandLK to
refer to JandLKa. �

31

2 Preliminaries

32

3 Non-Strict Evaluation
While we have already introduced the most important features of Haskell in Sec-
tion 2.1, in this chapter we talk about its operational model. Haskell is a call-by need
language, that is, programs are evaluated by so-called lazy evaluation (Wadsworth
1971; Launchbury 1993).

There are two main kinds of evaluation strategies, strict and non-strict evaluation.
In a language with strict evaluation the arguments of a function are evaluated before
the function is applied. In contrast, in a language with non-strict evaluation the ar-
guments of a function are only evaluated if they are needed for the evaluation of the
function application. Furthermore, there are two main kinds of non-strict evaluation
strategies, call-by name and call-by need. In contrast to call-by name, the evaluation
with call-by need avoids unnecessary re-evaluations, by sharing expressions. From
a denotational point of view, these evaluation mechanisms are not distinguishable
as they only differ with respect to efficiency. As we are mainly interested in the de-
notational aspects of evaluation, in the following, we only explain the call-by name
aspects of non-strict evaluation in detail. Nevertheless, when we consider the ef-
fects of less strict implementations with respect to memory usage, as it is the case in
Section 3.2 as well as in Chapter 7, we informally consider the effects of sharing.

In a language with call-by name evaluation, the arguments of a function are only
evaluated if they are needed to determine the value of the application. For example,
consider the following function, called const.

const :: α→ β→ α
const x = x

It takes a value of some type τ as first argument, ignores its second argument, and
yields its first argument as result. When we evaluate an expression of the form
const False expensive_computation, the expression expensive_computation is not evalu-
ated as we can determine the value of the application without evaluating the second
argument of const. More precisely, when const False expensive_computation is evalu-
ated, const is replace by its right-hand side where the corresponding variables are
substituted accordingly. Thus, the expression const False expensive_computation is
replaced by False.

We can also use a run-time error or a non-terminating expression to observe that
const does not cause the evaluation of its second argument. An expression that
causes a run-time error or does not terminate when it is evaluated is denoted by
⊥ in the following. For example, we have const False ⊥ ≡ False where ≡ denotes
semantic equivalence. That is, even if we apply const False to a run-time error, this
error is not raised because of non-strict evaluation. In the same way, even if the
second argument of const is an expression whose evaluation does not terminate, the
evaluation of the application of const terminates.

33

3 Non-Strict Evaluation

3.1 Advantages of Non-Strict Evaluation

From a practical point of view there are two main aspects of non-strict evaluation.
First, we can make use of infinite data structures. Consider the following function,
called iterate.

iterate :: (α→ α)→ α→ [α]
iterate f x = x : iterate f (f x)

This function takes an initial value and constructs a list by repeated application of
the provided function. Intuitively, we have iterate f x ≡ [x, f x, f (f x), . . .], where
the dots denote that the list continues infinitely. More precisely, the evaluation of
iterate f x yields a list whose n-th element is generated by applying f exactly n− 1
times to the initial value x. For example, consider the expression iterate (+1) 0.
When we evaluate this expression, we get an infinite list of increasing integers, start-
ing with zero.

An infinite list seems to be of little interest, however in a non-strict language like
Haskell we can make use of infinite data structures. For example, we can take an
initial segment of an infinite list by means of the function take :: [α] → Int → [α].
This function takes a list and an integer and yields the initial segment of the list
with the given number of elements. For example, when we evaluate the expression
take 5 (iterate (+1) 0) we get the list [0, 1, 2, 3, 4].

Infinite data structures allow for elegant definitions of certain algorithms. For
example, we can define the Fibonacci function as follows. First, we define a constant
fibs as the infinite list of Fibonacci numbers. The first two elements of the list of
Fibonacci numbers are zero and one. We get the third element of the list by adding
the first Fibonacci number to the second one, that is, we add the first element of fibs
to the second element of fibs. We get the fourth element of the list by adding the
second element to the third one. In general we simply use zipWith (+) to point-wise
add the elements of fibs to tail fibs where tail yields its argument list without the
head.

fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

Note that we use the arbitrary precision integer type Integer for Fibonacci numbers
as these numbers grow quite fast. By means of fibs we define a function fib that takes
an integer and yields the corresponding Fibonacci number as follows.

fib :: Int→ Integer
fib i = fibs !! i

By employing the list indexing function (!!), we simply project to a specific position
and look up the corresponding Fibonacci number in the infinite list.

In the example of the Fibonacci numbers we can generate Fibonacci numbers with-
out considering which number we are interested in. Thus, by using infinite data
structures we can separate the generation from the consumption of data. Another

34

3.1 Advantages of Non-Strict Evaluation

example for this style of programming is the calculation of the n-th prime number
(Turner 1976). We define a function that generates the infinite list of prime numbers
and get the n-th number by projecting to the n-th position of the list.

The other important practical aspect of non-strict evaluation has first been ob-
served by Hughes (1989), namely, that non-strictness contributes to the modularity
of programs. Haskell programs are often defined by means of predefined functions
like map, filter, and zipWith. Hughes (1989) has observed that this style of program-
ming heavily relies on non-strict evaluation.

For example, consider the function splitWhen :: (α → Bool) → [α] → [[α]] from
the Hackage1 package split by Yorgey (2010). The function splitWhen splits a list
into a list of sublists. The list is split at all positions that satisfy the predicate, and,
furthermore, the elements that satisfy the predicate are removed. For example, we
have

splitWhen (== ’a’) "abcada" ≡ ["", "bc", "d", ""].

Moreover, the predicate isAlpha :: Char → Bool from the standard library Data.Char
yields True if and only if its argument is an alphabetic character. As a string is de-
fined as a list of characters, we can use the application splitWhen (not ◦ isAlpha) to
split a string into substrings that only contain alphabetical characters. For example,
we have

splitWhen (not ◦ isAlpha) "a.,bc d" ≡ ["a", "", "bc", "d"].

Thus, by employing this function we can extract the words that occur in a text where
the text is represented by a single string.

By means of splitWhen we can define the following function, called wordCount. It
takes a word and a text and counts the number of occurrences of the word in the
text.

wordCount :: String→ String→ Int
wordCount = length ◦ filter (== word) ◦ splitWhen (not ◦ isAlpha)

First, we split the text into single words via splitWhen (not◦ isAlpha), then we remove
all words that are not equal to the provided word by using filter, and, finally, we
count the length of the filtered list.

Consider that we want to count occurrences of the string "mathematics" in a file
that contains Shakespeare’s collected works, which is freely available from Project
Gutenberg. In a strict programming language the function splitWhen evaluates its ar-
gument completely. That is, the string that represents Shakespeare’s collected works
is placed in the memory. In contrast, in a non-strict programming language like
Haskell the production of data by one function and the consumption of this data
by another function can be interleaved. As soon as the data is consumed, the mem-
ory can be deallocated by the garbage collector. This way, functions in a modular
programming style, which is very commonly used in Haskell, often have a small
memory footprint (Hughes 1989). For example, Figure 3.1.1 shows the heap profile
for counting occurrences of "mathematics" in Shakespeare’s collected works, which
has a size of about six megabyte.2

1Hackage is a database for Haskell libraries and is available at http://hackage.haskell.org.
2The word "mathematics" occurs three times in Shakespeare’s collected works.

35

http://hackage.haskell.org

3 Non-Strict Evaluation
Test 3,114 bytes x seconds Wed May 4 08:30 2011

seconds0.0 0.2 0.4 0.6 0.8

by
te

s

0

500

1,000

1,500

2,000

2,500

OTHER

base:GHC.STRef.STRef

ghc-prim:GHC.Tuple.(,)

FUN_1_0

base:GHC.IO.Encoding.Types.BufferCodec

FUN

base:GHC.ForeignPtr.MallocPtr

MVAR_CLEAN

PAP

BLACKHOLE

THUNK_1_0

THUNK

WEAK

MUT_VAR_CLEAN

FUN_2_0

base:GHC.IO.Buffer.Buffer

base:GHC.IO.Handle.Types.Handle__

MUT_ARR_PTRS_CLEAN

ghc-prim:GHC.Types.:

TSO

Figure 3.1.1: Heap Profile of Counting Occurrences of "mathematics" in Shake-
speare’s Collected Works.

Sansom and Peyton Jones (1995) have presented a tool to generate heap profiles
for Haskell programs. The current implementation of the Glasgow Haskell Com-
piler (GHC) provides an implementation of this kind of profiler. A heap profile plots
the occupied heap memory against the time. The GHC provides different kinds of
profiling. In this thesis we use the most basic form of profiling that distinguishes
memory occupied by different data constructors and different types of objects like
functions (FUN) and thunks (THUNK). We use this basic form of profiling as we do
not investigate the memory usage by means of profiling but only use the profiles for
illustrative purposes.

The profile of counting occurrences of "mathematics" shows that it needs less than
three kilobyte of memory to process the complete file. The different shades of gray
— or colors respectively — in the heap profile distinguish heap objects of different
kinds. For example, the topmost — or yellow — part of the heap represents the
amount of memory that is occupied by the stack of the program. The topmost but
one — or pink — part of the heap profile represents the amount of memory that
is occupied by occurrences of the list constructor (:) in the heap. The other parts
of the profile are not of interest as these are mostly constant overheads caused by
reading the content from a file and printing the result. In summary, we observe that
the total amount of memory that is occupied at one time is quite small compared to
the amount of data that is processed. And, even more impressively, the amount of
memory that is occupied at one time stays the same even if we increase the size of
the processed file.

3.2 Unnecessarily Strict Functions

Although Haskell is a non-strict programming language, functions can be unneces-
sarily strict. Consider the function intersperse from the standard library Data.List. It
intersperses an element between all pairs of succeeding elements of a list.

36

3.2 Unnecessarily Strict Functions
Test 37,628,228 bytes x seconds Thu May 5 10:54 2011

seconds0.0 0.2 0.4 0.6 0.8 1.0

by
te

s

0M

5M

10M

15M

20M

25M

30M

35M

40M

45M

50M

ghc-prim:GHC.Types.:

Test 1,805 bytes x seconds Thu May 5 10:54 2011

seconds0.0 0.2 0.4

by
te

s

0M

5M

10M

15M

20M

25M

30M

35M

40M

45M

50M

OTHER

base:GHC.STRef.STRef

BLACKHOLE

ghc-prim:GHC.Tuple.(,)

FUN_1_0

base:GHC.IO.Encoding.Types.BufferCodec

base:GHC.ForeignPtr.MallocPtr

MVAR_CLEAN

PAP

THUNK_2_0

WEAK

THUNK

MUT_VAR_CLEAN

FUN_2_0

THUNK_1_0

base:GHC.IO.Buffer.Buffer

base:GHC.IO.Handle.Types.Handle__

MUT_ARR_PTRS_CLEAN

TSO

ghc-prim:GHC.Types.:

Figure 3.2.1: Heap Profile of Replacing Umlauts in Shakespeare’s Work with the
Standard (left) and the Less Strict (right) Implementation of intersperse.

intersperse :: α→ [α]→ [α]
intersperse [] = []
intersperse [x] = [x]
intersperse sep (x : xs) = x : sep : intersperse sep xs

Furthermore, consider the function splitWhen :: (α → Bool) → [α] → [[α]] from
the Hackage package split again. By means of intersperse and splitWhen we define a
function replaceBy, which replaces all occurrences of a specific element in a list by a
given list.

replaceBy :: Eq α⇒ α→ [α]→ [α]→ [α]
replaceBy x sep = concat ◦ intersperse sep ◦ splitWhen (== x)

First, by using splitWhen we split the argument list at all occurrences of the element x.
Then, we intersperse the new separator sep between the elements of the resulting list,
and, finally, we concatenate the resulting list via concat :: [[α]] → [α]. For example,
we have replaceBy ’a’ "bb" "mathematics" ≡ "mbbthembbtics".

Let us consider an application of the function replaceBy. In HTML we have to
replace all occurrences of German umlauts by a specific HTML encoding. For this
example we only replace all occurrences of the character ’\228’, which is the Ger-
man umlaut “ä”, by the corresponding encoding "ä". Again, we process the
collected works by Shakespeare. Note that we consider the english version of Shake-
speare’s collected works, and, therefore, there are no umlauts. We will comment on
this issue at the end of this section. The left-hand side of Figure 3.2.1 presents the
heap profile for escaping umlauts in Shakespeare’s collected works, again, this pro-
file it generated by the GHC profiler.

The behavior of replaceBy is quite contrary to the expectations about memory us-
age in a non-strict programming language. The program uses more than 50 mega-
byte of memory while we would have expected a profile similar to Figure 3.1.1. In
Figure 3.2.1 the black part of the heap profile represents the amount of memory that

37

3 Non-Strict Evaluation

is occupied by the list constructor (:). The profile does not contain other parts be-
cause parts that sum to a total of less than 1% of the profile are removed from a
profile.

Unexpected consumption of memory like this is called a space leak (Wadler 1987).
In this case the space leak is caused by an unnecessarily strict implementation of
intersperse. We can use Sloth, the tool that is presented in this thesis, to observe that
the current implementation of intersperse is too strict. As Sloth is a light-weight tool,
we only have to add the following line to our module to check whether a function is
as little strict as possible.

import Test.Sloth

This module provides a function called strictCheck to check whether a function is
as little strict as possible for inputs up to a specific size. In the following we refer to a
function that is as little strict as possible as minimally strict. In Chapter 4 we provide
a formal definition of minimally strict functions. The size of a term is the number
of constructors in the term. That is, strictCheck (intersperse :: A → [A] → [A]) 4
checks whether the A-instance of intersperse is as little strict as possible for inputs
whose size in sum is at most four. Sloth generates test cases, that is, elements of
the argument type of a function, to check whether a function is minimally strict.
In the case of a polymorphic function this is hardly possible as we would have to
check every possible monomorphic instance of the polymorphic function. Instead,
we instantiate all type variables of a polymorphic function type with the opaque
data type A, which is provided by the module Test.Sloth. In Chapter 6 we prove
that a polymorphic function is indeed minimally strict if and only if its A-instance is
minimally strict.

Sloth reports the following result if we check whether intersperse is minimally

> strictCheck (intersperse :: A -> [A] -> [A]) 4
3: \a (b:⊥) -> b:⊥
5: \a (b:c:⊥) -> b:a:c:⊥
Finished 7 tests.

It presents two argument result pairs, which show that intersperse is unnecessarily
strict. The first one states that intersperse yields ⊥ if it is applied to a and b :⊥, where
a and b are arbitrary values. A minimally strict implementation of intersperse yields
b :⊥ for these arguments instead.3 Sloth highlights the subterm on the right-hand
side of -> where the tested function is too strict. That is, it highlights a term that
is not an error, while the current implementation yields an error at the highlighted
position instead. Moreover, there exists a less strict implementation that yields the
highlighted value. Note that Sloth does not only observe that intersperse is too strict
for the arguments a and b :⊥, but also that the first element of the result list has to
be the first element of the argument list. This is possible due to the special treatment
of polymorphic functions.

3For readibility we use ⊥ in the output while Sloth actually uses the symbol _ instead.

38

3.2 Unnecessarily Strict Functions

In the following we refer to an argument together with the current result of the
function and the proposed result as a counter-example. We use the term counter-ex-
ample as these informations show that the function is not minimally strict. The sec-
ond counter-example for intersperse states that intersperse yields b : a :⊥ if we apply it
to a and b : c :⊥, while there exists a less strict implementation that yields b : a : c :⊥
for these arguments instead.

To provide a less strict implementation of intersperse we consider the following
slightly different but equivalent implementation. We replace the pattern matching
that checks whether the argument list has exactly one element by a case expression.
Note that most compilers perform a similar transformation as many core languages
use case expressions and rules that do not perform pattern matching. To transform
intersperse into such a core language we would have to replace the pattern matching
in the remaining rules by a case expression as well.

intersperse :: α→ [α]→ [α]
intersperse [] = []
intersperse sep (x : xs) =

case xs of
[]→ x : []
→ x : sep : intersperse sep xs

Using the information provided by Sloth we can define a less strict implementa-
tion of intersperse by yielding the first element of the list “before” performing pattern
matching on the tail.

intersperse′ :: α→ [α]→ [α]
intersperse′ [] = []
intersperse′ sep (x : xs) =

x : case xs of
[]→ []
→ sep : intersperse′ sep xs

To get from intersperse to intersperse′ we distribute the partial application (x:) over
the case expression. We refer to this transformation as case deferment. In general,
case deferment does not always yield a less strict implementation, but we always
get an implementation that is at least as little strict as the original implementation.
In Chapter 7 we consider this transformation in more detail and develop conditions
when case deferment yields a less strict implementation.

There we observe that intersperse′ is indeed less strict than intersperse if there are
arguments sep and x : xs for which the evaluation of the scrutinee of the case expres-
sion yields an error. Furthermore, the context that is pulled over the case expression
has to be more defined than an error if we apply the context to an error. More pre-
cisely, in this particular case, we have to provide arguments sep and x : xs such that
xs is equivalent to an error and (x:) applied to an error is not an error. An arbitrary
value sep of type τ and a list of the form x :⊥, where x is an arbitrary value of type τ
and⊥ denotes an error, satisfy these requirements. The results from Chapter 7 show
that intersperse′ is, therefore, indeed less strict than intersperse.

39

3 Non-Strict Evaluation

The definition of intersperse′ still has a shortcoming, and, in fact, the definition of
intersperse has the same shortcoming. The function intersperse′ performs the same
pattern matching several times because intersperse′ checks whether xs is the empty
list and we perform the same check again in the recursive application. To calculate
an improved implementation of intersperse we apply the worker/wrapper transfor-
mation by Gill and Hutton (2009). We do not present the calculation itself, but, for
completeness, we provide the functions wrap and unwrap, used to derive the new
implementation. We use the following functions.

wrap :: (α→ [α]→ [α])→ α→ [α]→ [α]
wrap [] = []
wrap f sep (x : xs) = x : f sep xs
unwrap :: (α→ [α]→ [α])→ α→ [α]→ [α]
unwrap [] = []
unwrap f sep xs = sep : f sep xs

Using these functions for the worker/wrapper transformation we can derive the
following function intersperse′′, which is equivalent to intersperse′ and, therefore, less
strict than intersperse.

intersperse′′ :: α→ [α]→ [α]
intersperse′′ [] = []
intersperse′′ sep (x : xs) = x : work xs

where
work [] = []
work (y : ys) = sep : y : work ys

Because we only know that intersperse′′ is less strict than intersperse but not whether
intersperse′′ is as little strict as possible, we can use Sloth to check whether intersperse′′

is still unnecessarily strict. Sloth does not report any counter-examples for inputs up
to size 100.

The heap profile on the right-hand side of Figure 3.2.1 shows the memory usage of
escaping umlauts using the less strict implementation of intersperse. As both profiles
in Figure 3.2.1 use the same scaling, the heap profile for the less strict implementa-
tion is barely notable. There is a small black line at the bottom of the graph which
states that the process takes around 0.6 seconds. Figure 3.2.2 presents a magnified
version of the heap profile of escaping umlauts using the less strict implementation
intersperse′′. In this case the program uses less than three kilobyte of memory. That
is, one delay of a pattern matching improves the memory usage by a factor of 20,000.

Obviously, we seldomly generate HTML from a 6MB text file. Furthermore, we
have chosen a file that does not contain any umlauts on purpose. The presented
space leak is linear in the size of the longest substring that does not contain the char-
acter that is replaced. More precisely, intersperse does not yield a result until it is able
to observe whether its argument has exactly one element. The function splitWhen
checks whether any character of Shakespeare’s collected works is an umlaut and
when it finally arrives at the end the corresponding string yields a singleton list that
contains Shakespeare’s collected works. Therefore, splitWhen evaluates the string

40

3.2 Unnecessarily Strict Functions
Test 1,496 bytes x seconds Wed May 4 08:30 2011

seconds0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.5

by
te

s

0

500

1,000

1,500

2,000

2,500

OTHER

ghc-prim:GHC.Tuple.(,)

base:GHC.IO.Encoding.Types.BufferCodec

FUN_1_0

BLACKHOLE

FUN

THUNK_2_0

base:GHC.ForeignPtr.MallocPtr

MVAR_CLEAN

PAP

THUNK

WEAK

MUT_VAR_CLEAN

THUNK_1_0

FUN_2_0

base:GHC.IO.Buffer.Buffer

base:GHC.IO.Handle.Types.Handle__

MUT_ARR_PTRS_CLEAN

ghc-prim:GHC.Types.:

TSO

Figure 3.2.2: Magnified Version of the Heap Profile of Replacing Umlauts in Shake-
speare’s Work with the Less Strict Implementation of intersperse.

that represents Shakespeare’s collected works completely before it yields a result
with one element. Furthermore, intersperse keeps the result of splitWhen in the mem-
ory as it does not yield the first element of its result until it has checked whether its
argument has exactly one element. Therefore, we get a space usage that is linear in
the size of Shakespeare’s collected works.

In contrast to intersperse, as soon as splitWhen has observed that a character of
Shakespeare’s collected works is no umlaut, the function intersperse′′ passes this
character on. Thus, replaceBy passes Shakespeare’s collected works character-wise
to its surrounding context if we use intersperse′′. Therefore, if we consider a well-be-
haved context, the garbage collector is able to deallocate parts of the string of Shake-
speare’s collected works immediately. Hence, this process never occupies a large
amount of memory.

Although we have considered an input that does not contain umlauts, this is not
an artificial example. The presented space leak is a modification of a space leak
discovered by Fischer (2010) in his searchstring package (Fischer et al. 2010). Fur-
thermore, a priori we often do not know whether a file contains a certain character
or substring, and we also get a space leak if the character or substring occurs only
rarely in the file. In summary, this example is supposed to emphasise that being too
strict can have a tremendous effect with respect to memory behavior when process-
ing large amounts of data.

41

3 Non-Strict Evaluation

42

4 Mathematical Model of Minimally
Strict Functions

In this chapter we present the theoretical background for minimal strictness and
the implementation of Sloth. In Section 4.1 we use the denotational semantics pre-
sented in Section 2.2 as the basis for the definition of least-strictness, which has been
introduced by Chitil (2006) in an informal manner. We introduce the concept of se-
quentiality in Section 4.2, which is used in Section 4.3 to define minimal strictness.
Furthermore, we argue that the conecpt of minimally strict functions is an improve-
ment over the concept of least strict functions. Finally, we provide a criterion to
check whether a function is minimally strict and prove that this criterion is suffi-
cient (Section 4.3.1) and necessary (Section 4.3.2). As mentioned in the introduction
all proofs omited in this chapter are presented in Appendix A.

4.1 Least Strict Functions

Chitil (2006) has originally presented the idea of checking whether a function is as
little strict as possible. In this section we present his approach and argue that it has
a shortcoming that is undesirable in practice.

We start by defining a less-strict relation for functions. On basis of the semantics of
a type we define the set of total values of a type. A total value is a maximal element
of the interpretation of a type.

Definition 4.1.1 (Total Value): For a partially ordered set (P,v) we define the set of
all maximal elements P↑ ⊆ P as follows.

P↑ := {x ∈ P | ∀y ∈ P. x v y =⇒ x = y} �

In the following we refer to elements of JτK as values of type τ, to elements of
JτK↑ as total values of type τ, and to elements of JτK \ JτK↑ as partial values of type
τ. Furthermore, the name of a variable indicates its kind, more precisely, we use
variable names that start with v for values, pv for partial values, and tv for total
values.

The next definition provides a formal treatment of the less-strict relation estab-
lished by Chitil (2006). In other words, we define when we call a function f less or
equally strict than a function g.

Definition 4.1.2 (Less-Strict Relation): Let f , g ∈ Jσ→ τK. The functions f and g
are related by � if the following holds.

f � g :⇐⇒ ∀ tv ∈ JσK↑ . f tv = g tv ∧ ∀ v ∈ JτK. f v w g v

43

4 Mathematical Model of Minimally Strict Functions

If f ≺ g, that is, f � g and g 6� f , we say that f is less strict than g. �

The relation � is reflexive, antisymmetric, and transitive because = and w are re-
flexive, antisymmetric, and transitive; thus, � is a partial order.

Note that two functions are only related by � if they agree for total values. That
is, we assume that it is intended if a function yields a non-total result for a total
argument as we illustrate in the following example.

Example 4.1.1: Consider the function head that takes a list and yields its first ele-
ment. As our simple functional language does not provide polymorphism, we con-
sider the monomorphic Boolean instance of the head function. Naturally the head
function yields a run-time error if it is applied to an empty list.

head :: List Bool→ Bool
head xs =

case xs of
NilBool → undefinedBool
Cons〈y, ys〉 → y

We get the following semantics for head.

JheadK = λv.

{
v1 if v = Cons 〈v1, v2〉
⊥ otherwise

Now consider the function head′ that yields a Boolean value, namely, False, in the
case that its argument is the empty list.

head′ :: List Bool→ Bool
head′ xs =

case xs of
NilBool → False
Cons〈y, ys〉 → y

We get the following semantics for head′.

Jhead′K = λv.

False if v = Nilτ
v1 if v = Cons 〈v1, v2〉
⊥ otherwise

If we omit the requirement that two functions f and g are only related by � if they
agree for total values, then head′ is less strict than head. Furthermore, if we replace
False in the definition of head′ by True we get another function that is less strict than
head. Regarding a tool that checks whether a function is unnecessarily strict the tool
would have to suggest an arbitrary total value as result for the empty list. However,
more importantly, in the case of head the programmer intended to define a partial
function. Therefore, we do not want to suggest a total function only for the sake of
a less strict implementation. �

44

4.1 Least Strict Functions

Here and in the following we regard the behavior of a function for total values
as the one a programmer cares about. That is, we might change the behavior of
a function with respect to partial values but preserve its behavior with respect to
total values. In summary, we want to check whether a function is as little strict as
possible with respect to partial values while we preserve its behavior with respect
to total values. The following example illustrates the less-strict relation by means of
several implementations of the Boolean conjunction.

Example 4.1.2: Let us consider the Boolean conjunction andL from Example 2.2.1
and its strict counterpart and that is defined as follows.

and :: Bool× Bool→ Bool
and〈x, y〉 =

case x of
False→ case y of

False→ False
True → False

True → case y of
False→ False
True → True

We get the following semantics for and.

JandK = λ〈v1, v2〉.

⊥ if v1 = ⊥∨ v2 = ⊥
True if v1 = True∧ v2 = True
False otherwise

For all total values of type Bool× Bool, 〈False, False〉, 〈False, True〉, 〈True, False〉, and
〈True, True〉, the function andL yields the same results as and. For the partial value
〈False,⊥〉, the function andL yields False while and yields ⊥. For all other partial
values andL yields the same results as and. Therefore, by Definition 4.1.2 andL is less
strict than and, that is, andL ≺ and. For readability, here and in the following, we
sometimes identify a function f with its semantics Jf K.

Let us consider the symmetric counterpart of andL, called andR. While andL per-
forms pattern matching on its first argument, andR performs pattern matching on its
second argument.

andR :: Bool× Bool→ Bool
andR〈x, y〉 =

case y of
False→ False
True → x

In comparison to the semantics of andL, in the semantics of andR the arguments v1
and v2 have changed their roles.

45

4 Mathematical Model of Minimally Strict Functions

JandRK = λ〈v1, v2〉.

⊥ if v2 = ⊥
False if v2 = False
v1 if v2 = True

In the same manner as before, we can observe that andR is less strict than and.
However, andL and andR are incomparable. While andL yields a more defined result
than andR for the argument 〈False,⊥〉, the function andR yields a more defined result
than andL for the argument 〈⊥, False〉. Altogether we get andL ≺ and and andR ≺
and, but andR 6� andL and andL 6� andR. �

So, how can we check whether a function is least strict or not? Let f ∈ Jσ→ τK.
Because f is monotonic, for every value v of type σ and every total value tv of type
σ with v v tv, we have f v v f tv. Therefore, f v is a lower bound of the set

{ f tv | tv ∈ JσK↑, v v tv}.

As f v is a lower bound of this set, it is less or equally defined than the corresponding
greatest lower bound.

f v v
l
{ f tv | tv ∈ JσK↑, v v tv}

Chitil (2006) uses this inequality1 to check whether a function is least strict. A least
strict function is supposed to agree with this greatest lower bound for all possible
inputs v. The following definition states when a function is called least strict.

Definition 4.1.3 (Least-Strictness): For a function f ∈ Jσ→ τK we define a function
inf f : JσK→ JτK as follows.

inf f v =
d
{ f tv | tv ∈ JσK↑, v v tv}

The function f is called least strict if and only if f = inf f . �

We have to prove that the infimum in the previous definition exists. First of all, all
domains used here are interpreted as bounded complete cpos. A bounded complete
cpo is also a complete meet-semilattice. In a complete meet-semilattice the infima of
all non-empty subsets exist. That is, we have to show that the set

{ f tv | tv ∈ JσK↑, v v tv}

is non-empty for all v ∈ JσK. We consider the following non-empty set of upper
bounds of v.

U := {v′ ∈ JσK | v v v′}
As JσK is a cpo, every chain in U has a least upper bound. By monotonicity this least
upper bound is itself an element of U. Furthermore, (U,v) is a partially ordered set

1Accidentally Chitil (2006) uses
⊔

instead of
d

.

46

4.1 Least Strict Functions

and, by the Lemma of Zorn, U has at least one maximal element. Let m be a maximal
element of U. We show that we have m ∈ JσK↑ by employing the definition of JσK↑.
Let y ∈ JσK such that m v y. By transitivity we get v v y and, therefore, y ∈ U.
As m is maximal in U, we get m = y and, thus, m ∈ JσK↑. This shows that the set
{ f tv | tv ∈ JσK↑, v v tv} is non-empty and, thus, has a greatest lower bound. In the
following we frequently employ the fact that for every value v of type σ there exists
a total value tv of type σ with v v tv.

Note that f and inf f agree for total values, that is, we have f tv = inf f tv for all
total values tv. Furthermore, if a function f is not least strict there exists a partial
value pv such that f pv @ inf f pv. Thus, if f is not least strict the function inf f is less
strict than f . Hence, we are not only able to check whether a function is least strict
but can also provide a less strict function, namely, inf f .

The definition of least-strictness has a shortcoming. Some functions that one
would rank to be as little strict as possible are not least strict.

Example 4.1.3: Let us consider the function andL from Example 2.2.1 again. For the
argument 〈⊥, False〉, the function andL yields ⊥. On the other hand, we obtain the
following equality.

infJandLK 〈⊥, False〉 =
l
{JandLK tv | tv ∈ JBool× BoolK↑, 〈⊥, False〉 v tv}

=
l
{JandLK 〈False, False〉, JandLK 〈True, False〉}

=
l
{False, False}

= False

That is, andL is not least strict because JandLK 〈⊥, False〉 6= infJandLK 〈⊥, False〉. �

Besides the definition of least-strictness, Chitil (2006) has presented a tool, which is
called StrictCheck, that checks whether a Haskell function f agrees with inff for all
values up to a specific size. For example, the following application checks whether
the Boolean conjunction (&&) is least strict for values up to size ten. The function
test2, provided by StrictCheck, takes an integer that specifies the maximal size of the
generated test cases as first argument and a two-ary function as second argument.

Main> test2 10 (&&)
Function seems not to be least strict.
Input(s): (⊥, False)
Current output: ⊥
Proposed output: False

The result presented by test2 states that (&&) applied to an error (denoted by ⊥)
and False yields an error, but a least strict implementation is supposed to yield False
instead. Note that (&&) is the Haskell function that corresponds to andL, which is
defined in Example 2.2.1. That is, StrictCheck yields the result that we have observed
in Example 4.1.3. Besides checking whether we have JandLK = infJandLK for all inputs,
StrictCheck suggests

infJandLK 〈⊥, False〉 = False

47

4 Mathematical Model of Minimally Strict Functions

as result of JandLK for the argument 〈⊥, False〉 because we have

JandLK 〈⊥, False〉 6= infJandLK 〈⊥, False〉.

Actually, andL is indeed not as little strict as possible. We can define a Boolean
conjunction in Haskell that yields False for the argument 〈False,⊥〉 as well as for
the argument 〈⊥, False〉. For example, we can use the unamb operator, presented by
Elliott (2009). The function unamb :: α → α → α takes two arguments and yields
the argument that is not equal to ⊥. If both arguments are ⊥, it yields ⊥ as well.
To obtain this behavior even if ⊥ is a non-terminating computation, unamb uses
concurrency to fork two threads that evaluate the arguments of unamb in parallel. If
one of the two threads is successful, unamb yields the result of this thread.

Because Haskell is a pure functional language, concurrency, as it is provided by
Concurrent Haskell (Peyton Jones et al. 1996), for example, is performed in the IO
monad (Peyton Jones and Wadler 1993). Thus, to define a function of type α→ α→
α that uses concurrency we have to employ the function unsafePerformIO :: IO α→ α,
which takes an I/O action and yields a non-monadic value. As its name suggests,
unsafePerformIO is unsafe in the sense that it might destroy referential transparency.
For example, the expression unamb False True might be evaluated to False or True, de-
pending on the scheduling of the forked threads. Therefore, unamb breaks referential
transparency as we cannot replace equals for equals. For example, the evaluation of
let x = unamb False True in (x, x) might yield another result than the evaluation
of (unamb False True, unamb False True) as the two occurrences of unamb False True
might yield different results. Nevertheless, the function unamb is referential trans-
parent if its arguments have a common least upper bound.

In practice we often want to know whether there is a less strict implementation
that avoids the use of features like concurrency and unsafePerformIO. In fact, many
functions are not least strict because there is often a bias towards one argument
with respect to strictness. By using StrictCheck we have observed, that the functions
(&&), (||), (++), and, or, zip, as well as the list instances of (==) and compare are not
least strict, for example.

As an example, we examine the monomorphic instance of the equality check (==)
for lists of Boolean values. StrictCheck yields the following counter-example if we
check (==) :: [Bool]→ [Bool]→ Bool for Boolean lists up to size 10.

Main> test2 10 ((==) :: [Bool] -> [Bool] -> Bool)
Function seems not to be least strict.
Input(s): ([False], [⊥, False])
Current output: ⊥
Proposed output: False

That is, we are supposed to define an equality check that yields False for the argu-
ments False : [] and⊥ : False : []. Furthermore, as the current implementation of (==)
yields False for the arguments False :⊥ and True :⊥, a less strict implementation of
the equality check is supposed to yield False as well. However, we cannot define a
less strict implementation that satisfies these requirements and does not use features
like concurrency, and it is not necessarily easy to observe this fact.

48

4.2 Sequential and Demanded Positions

In contrast to StrictCheck, Sloth, the tool presented in this thesis, identifies (&&),
(||), (++), and, or, zip, as well as the list instances of (==) and compare as mini-
mally strict as it checks whether a function is too strict without allowing features
like concurrency. To restrict the considered functions we employ the concept of se-
quentiality by Vuillemin (1974). In the following section we introduce sequentiality
and the concept of minimally strict functions, which is based on sequentiality.

4.2 Sequential and Demanded Positions

In order to restrict the considered first-order functional language to functions that
do not use features like concurrency, we employ the definition of sequentiality by
Vuillemin (1974). The definition of sequentiality employs contexts, which we only
informally introduce here. Let Σ be the set of constructor and function symbols. A
context is a term over Σ and the additional symbol [·], called hole. Let C be a context
with n holes, that is, n occurrences of the symbol [·], and e1, . . . , en be expressions.
Then, C[e1, . . . , en] denotes the context C where the i-th hole is filled in with expres-
sion ei. Vuillemin (1974) has given the following definition of a sequential language.

Definition 4.2.1 (Sequentiality): A functional language is called sequential if it sat-
isfies the following. Let C be a context with n holes and

JC[undefinedτ1
, . . . , undefinedτn

]K = ⊥.

Then, there exists at least one i ∈ {1, . . . , n} such that

JC[e1, . . . , ei−1, undefinedτi
, ei+1, . . . , en]K = ⊥

for all expressions e1, . . . , en of appropriate types. �

The following example illustrates the definition of sequentiality.

Example 4.2.1: By using the definition of sequentiality we can show that a Boolean
conjunction that is less strict than andL is not sequential. We consider a Boolean
conjunction andL′ and a context C defined as andL′〈[·], [·]〉. We have

JC[undefinedBool, undefinedBool]K = JandL′〈undefinedBool, undefinedBool〉K
= JandL′K J〈undefinedBool, undefinedBool〉K
= JandL′K 〈⊥,⊥〉
= ⊥,

that is, we can apply Definition 4.2.1 to the context C. The last step of this equation
follows from monotonicity of JandL′K and the specification of a Boolean conjunction,
more precisely, JandL′K 〈True, False〉 = False and JandL′K 〈True, True〉 = True.

In a sequential language, andL has to be strict with respect to one of its arguments.
More precisely, we have

JC[undefinedBool, b]K = JandL′〈undefinedBool, b〉K = JandL′K 〈⊥, JbK〉 = ⊥

49

4 Mathematical Model of Minimally Strict Functions

for all Boolean expressions b or we have

JC[b, undefinedBool]K = JandL′〈b, undefinedBool〉K = JandL′K 〈JbK,⊥〉 = ⊥

for all Boolean expressions b. Because andL′ is less strict than andL, we have

JandL′K 〈False,⊥〉 w JandLK 〈False,⊥〉 = False.

This property together with sequentiality implies

JandL′K 〈⊥, False〉 = ⊥.

As we have observed in Example 4.1.3, a least strict Boolean conjunction is supposed
to yield False for the argument 〈⊥, False〉. However, this application of sequentiality
shows that there is no least strict Boolean conjunction in a sequential language. �

To adapt the definition of sequentiality to our needs we introduce the concepts
of positions, projections, and substitutions. The projections presented here are a
generalization of the continuous projections that come along with the direct product.
We start with the definition of the set of positions.

Definition 4.2.2 (Position): A position is a sequence of natural numbers. We denote
the set of positions by N∗, that is, the free monoid over the natural numbers. The
empty sequence is denoted by ε. If n is a natural number and p is a position, then
n.p is a position. Instead of n.ε we synonymously use n. For positions p and p′ we
define that p ≤ p′ if and only if p is a prefix of p′. �

Before we define projections and substitutions, we define the set of valid positions
of an element of JτK for some type τ. For simplicity, we define a single function that
takes an element of the interpretation of an arbitrary type and yields the set of valid
positions of this element. That is, we define a function Pos :

⋃
τ∈TypesJτK → 2N∗

where N∗ denotes the set of positions. As we want to define this function recur-
sively, we define it by means of a least fixpoint. Therefore, it is advantageous if do-
main and range of Pos are cpos. As mentioned before, the powerset of an arbitrary
set constitutes a cpo. As the domain of Pos is not a cpo, we add a least element de-
noted by ⊥−− to the set

⋃
τ∈TypesJτK. More precisely, we have ⊥−− @ ⊥τ for all τ ∈ Types.

Furthermore, two elements from the same cpo JτK are related byv if they are related
by v in JτK, and two elements from different cpos are incomparable. This construc-
tion is sometimes called separated sum as we sum up several cpos but separate the
sets in the sense that we distinguish least elements of different cpos. Figure 4.2.1
illustrates the structure of the resulting cpo. In the following we abbreviate the set
{⊥−−} ∪

⋃
τ∈TypesJτK to Στ∈TypesJτK.

Definition 4.2.3 (Valid Position): We define a function Pos : Στ∈TypesJτK→ 2N∗ that
yields the set of valid positions for an element of the interpretation of some type τ.
By Types we denote the set of first-order types, that is, the set Types contains tuples of
arbitrary arity, Booleans, and list types. As the domain of Pos contains an additional
least element ⊥−−, we define Pos⊥−− = ∅.

50

4.2 Sequential and Demanded Positions

Jτ1K

⊥τ1

. . .

. . .

⊥−−

JτnK

⊥τn

Figure 4.2.1: Separated Sum of some Cpos Jτ1K to JτnK

For the elements of the interpretation of a tuple type τ1 × · · · × τn we define the
set of valid positions as follows.

Pos 〈v1, . . . , vn〉 =
⋃

i∈{1,...,n}
{i.p | p ∈ Pos vi}

In other words, we precede each valid position of one of the components of the tuple
with the position of the component in the tuple.

For the elements of the interpretation of the type Bool we define the set of valid
positions as follows.

Pos⊥Bool = {ε} Pos False = {ε} Pos True = {ε}

That is, the only valid position of any Boolean value is the root position ε.
Next, we define Pos for the elements of the interpretation of List τ. Let v1 ∈ JτK

and v2 ∈ JList τK. We define the set of valid positions of a list as follows.

Pos⊥List τ = {ε} Pos Nilτ = {ε}

Pos (Cons 〈v1, v2〉) = {ε} ∪ {1.p | p ∈ Pos v1} ∪ {2.p | p ∈ Pos v2}

To solve this recursive definition we use the least solution of this equation. As the
set Στ∈TypesJτK as well as 2N∗ constitute cpos and the corresponding functional is
monotonic, the least fixpoint of this functional exists. �

We give some examples of valid positions in the following.

Example 4.2.2: We consider the Boolean list Cons 〈⊥Bool, NilList Bool〉. We have

Pos (Cons 〈⊥Bool, NilList Bool〉) = {ε, 1, 2},

that is, the root position as well as the first and the second argument of Cons are
valid positions.

51

4 Mathematical Model of Minimally Strict Functions

If we consider the tuple 〈False, Cons 〈⊥Bool, NilList Bool〉〉, which contains False in the
first component and the Boolean list considered above in the second component, we
have

Pos (〈False, Cons 〈⊥Bool, NilList Bool〉〉) = {1, 2, 2.1, 2.2}.
That is, the first and the second component of the tuple are valid positions and the
two arguments of Cons are valid positions. �

Next, we define a projection function of type Στ∈TypesJτK×N∗ → Στ∈TypesJτK that
takes a term e and a position p and yields the sub-term at that particular position
denoted by e|p. Intuitively, we want to project to valid positions only. Thus, we
could simply define a partial function that is not defined if the position is not a valid
position of the argument of the projection. However, consider a value like the list
Cons 〈⊥Bool,⊥List Bool〉. If we project to position 1 of this list, we want to get the first
element of the list, that is, we would like to have

(Cons 〈⊥Bool,⊥List Bool〉)|1 = ⊥Bool.

For proving statements involving projections it is advantageous if the projection
function is continuous. Now let us consider the supremum

⊥List Bool t Cons 〈⊥Bool,⊥List Bool〉.

By continuity we would get

(Cons 〈⊥Bool,⊥List Bool〉)|1 = (⊥List Bool t Cons 〈⊥Bool,⊥List Bool〉)|1
= ⊥List Bool|1 t (Cons 〈⊥Bool,⊥List Bool〉)|1.

If ·|· is a partial function, then ⊥List Bool|1 is not defined as we have Pos⊥List Bool =
{ε}. Therefore, instead of defining a partial projection function we define a function
that yields the least element ⊥−− if we project to a non-valid position.

Definition 4.2.4 (Projection): We define a projection

·|· : Στ∈TypesJτK×N∗ → Στ∈TypesJτK

that takes a term and a position and projects to the corresponding sub-term.
For all 〈v1, . . . , vn〉 ∈ Jτ1 × · · · × τnK and all valid positions i.p of 〈v1, . . . vn〉 we

define the projection as follows.

〈v1, . . . , vn〉|i.p = vi|p

Note that we do not have to define the projection to the root position as ε is not a
valid position of a tuple, in other words, we have ε 6∈ Pos 〈v1, . . . , vn〉.

For the elements of the interpretation of the type Bool we define a projection to a
valid position as follows.

⊥Bool|ε = ⊥Bool False|ε = False True|ε = True

52

4.2 Sequential and Demanded Positions

Let v1 ∈ JList τK, v2 ∈ JτK, and p ∈ Pos (Cons 〈v1, v2〉). We define the projection to
a valid position of a list as follows.

⊥List τ|ε = ⊥List τ Nilτ|ε = Nilτ

(Cons 〈v1, v2〉)|p =

Cons 〈v1, v2〉 if p = ε

v1|q if p = 1.q
v2|q if p = 2.q

If we project to a non-valid position, the projection yields ⊥−−. That is, for all v ∈
Στ∈TypesJτK and p ∈N∗ \ (Pos v) we define v|p = ⊥−−. We, again, use the least solution
of the recursive definition of ·|·. �

We give some examples of projections in the following.

Example 4.2.3: We consider the value 〈False, Cons 〈⊥Bool, NilList Bool〉〉 and abbreviate
it to v in the following. Example 4.2.2 presents the set of valid positions for this
value. We have

v|1 = False, v|2 = Cons 〈⊥Bool, NilList Bool〉, and v|2.2 = NilList Bool.

Furthermore, we have v|ε = ⊥−−, v|2.3 = ⊥−−, and v|2.1.1 = ⊥−− because ε, 2.3, and 2.1.1
are not valid positions of v. �

In the same manner as we have defined the projection function we define a sub-
stitution of type Στ∈TypesJτK× Στ∈TypesJτK×N∗ → Στ∈TypesJτK that takes two terms
e1 and e2 and a position p and substitutes a sub-term of the first term by the second
term denoted by e1[e2]p.

Definition 4.2.5 (Substitution): We define a substitution

·[·]· : Στ∈TypesJτK× Στ∈TypesJτK×N∗ → Στ∈TypesJτK.

Let 〈v1, . . . , vn〉 ∈ Jτ1 × · · · × τnK and i.p be a valid position of 〈v1, . . . , vn〉. Because
i.p is a valid position, there exists τ′ such that 〈v1, . . . , vn〉|i.p ∈ Jτ′K. For all v ∈ Jτ′K
we define the substitution of a valid position of a tuple as follows.

〈v1, . . . , vn〉[v]i.p = vi[v]p

For all values v of JBoolK we define the substitution of a valid position of an ele-
ment of the interpretation of Bool as follows.

⊥Bool[v]ε = v False[v]ε = v True[v]ε = v

Let v ∈ JList τK. We define the substitution of a list as follows.

⊥List τ[v]ε = v Nilτ[v]ε = v

53

4 Mathematical Model of Minimally Strict Functions

Furthermore, let v1 ∈ JτK, v2 ∈ JList τK, and p ∈ Pos (Cons 〈v1, v2〉). Because p is a
valid position, there exists τ′ such that (Cons 〈v1, v2〉)|p ∈ Jτ′K. For all v ∈ Jτ′K we
define the substitution of a valid position of a list by v as follows.

(Cons 〈v1, v2〉)[v]p =

v if p = ε

Cons 〈v1[v]q, v2〉 if p = 1.q
Cons 〈v1, v2[v]q〉 if p = 2.q

If we substitute a non-valid position or the second argument has the wrong type,
the substitution yields ⊥−−. More precisely, for all v, v′ ∈ Στ∈TypesJτK, and p ∈ N we
define v[v′]p = ⊥−− if p 6∈ Pos v. Furthermore, if v|p ∈ Jτ′K and v′ 6∈ Jτ′K we define
v[v′]p = ⊥−−. To solve the recursive definition we, again, use its least solution. �

We give some examples of substitutions in the following.

Example 4.2.4: We consider the value 〈False, Cons 〈⊥Bool, NilList Bool〉〉 and abbreviate
it to v in the following. Example 4.2.2 presents to set of valid positions for this value.
We have

v[True]1 = 〈True, Cons 〈⊥Bool, NilList Bool〉〉,
v[⊥List Bool]2 = 〈False,⊥List Bool〉,

and
v[Cons 〈False,⊥List Bool〉]2.2 = 〈False, Cons 〈⊥Bool, Cons 〈False,⊥List Bool〉〉〉.

For all v′ ∈ Στ∈TypesJτK we have v[v′]ε = ⊥−−, v[v′]2.3 = ⊥−−, and v[v′]2.1.1 = ⊥−− because
ε, 2.3, and 2.1.1 are not valid positions of v. Furthermore, we have v[NilBool]1 = ⊥−−
because v|1 = False ∈ JBoolK and NilBool ∈ JList BoolK. �

The following lemma states some properties about projections and substitutions
that are employed in several of the following proofs.

Lemma 4.2.1: Projections and substitutions satisfy the following properties.

• For all positions p the function ·|p : Στ∈TypesJτK→ Στ∈TypesJτK is continuous.

• For all positions p the function ·[·]p : Στ∈TypesJτK× Στ∈TypesJτK → Στ∈TypesJτK is
continuous.

• For all positions p and all v ∈ JτK the function v[·]p : Στ∈TypesJτK → Στ∈TypesJτK is
strictly increasing if the results differ from ⊥−−.

Note that continuity of ·[·]p means that for all chains 〈vi〉i∈I and 〈v′i〉i∈I we have

(
⊔
i∈I

vi)[
⊔
i∈I

v′i]p =
⊔
i∈I

(vi[v′i]p).

Furthermore, note that continuity of ·|p implies monotonicity of ·|p and continuity of
·[·]p implies monotonicity of ·[v]p for a fixed v ∈ JτK. Finally, note that the restriction

54

4.2 Sequential and Demanded Positions

v′v′|p

p

v
v′|p

p

Figure 4.2.2: Graphics illustrating v′|p and v[v′|p]p

v

p′

v[v′|p]p|p′

v′

p′

v′|p′

Figure 4.2.3: Graphics illustrating (v[v′|p]p)|p′ = v′|p′ if p′ ≥ p

to non-⊥−− results in the last property in fact restricts the property to valid arguments
with respect to position and type. To extend the presented approach to other data
types the corresponding projections and substitutions have to satisfy the properties
presented in Lemma 4.2.1 as well.

Besides these semantics related properties, there are some properties that specify
a connection between projections and substitutions. The first property states that
projections and substitutions are a kind of inverse to each other in the sense that
we have v[v|p]p = v for all values of some interpretation JτK and valid positions p.
The second property states that p′ ≥ p implies (v[v′|p]p)|p′ = v′|p′ . We informally
illustrate this equation in the following.

Consider the graphic on the left-hand side of Figure 4.2.2. The white triangle rep-
resents the term v′, and the gray triangle represents the sub-term at position p, that
is, v′|p. In the graphic on the right-hand side the white triangle represents another
term v. We replace the sub-term of v at position p by v′|p. That is, at position p we
insert the gray triangle into the white triangle. Now consider that we project to a
position p′ with p′ ≥ p in the term v[v′|p]p. On the left-hand side of Figure 4.2.3 this
sub-term is represented by the dark gray triangle. As we have p ≤ p′ (p is a prefix
of p′), we project to a term that is a sub-term of the light gray triangle. Thus, we get
the same result if we project to position p′ of the original term where the light gray
triangle is taken from. In other words we have (v[v′|p]p)|p′ = v′|p′ .

We can state a similar result if we finally project to a position that is neither a
prefix nor a suffix of the original position. That is, we consider (v[v′]p)|p′ and we
have neither p′ ≥ p nor p ≥ p′. Note that we replaced the innermost v′|p of the
previous property by v′ here as this third property holds in this more general con-

55

4 Mathematical Model of Minimally Strict Functions

v

p′

v[v′]p|p′
v′

v

v|p′

p′

Figure 4.2.4: Graphics illustrating (v[v′]p)|p′ = v|p′ if p′ 6≥ p and p 6≥ p′

text. Therefore, the light gray triangle on the left-hand side of Figure 4.2.4 represents
some arbitrary term v′ instead of v′|p as it was the case before. As the graphic on
the lefthand side of Figure 4.2.4 illustrates, because we project to a position incom-
parable with p, there exists some point where we leave the path defined by p. Thus,
we end up in a part of the term v that is disjunct to the light gray term. In this case
it does not matter whether v contains the light gray term or not. We can project to
position p′ in the term v instead of projecting to p′ in v[v′|p]p. The following lemma
states the properties we have just illustrated.

Lemma 4.2.2: Projections and substitutions satisfy the following properties.

• For all positions p and all v ∈ JτK we have v[v|p]p = v.

• For all positions p, p′ and all v, v′ ∈ JτK the following statements hold.
– If p′ ≥ p, then we have (v[v′|p]p)|p′ = v′|p′ .
– If p′ 6≥ p and p 6≥ p′, then we have (v[v′]p)|p′ = v|p′ .

We use positions and projections to state whether a function is sequential. In the
following we use ⊥ to denote ⊥τ for some type τ. In particular this means that we
have ⊥ 6= ⊥−−. In other words, in the following we only consider projections to valid
positions, but for simplicity we do not always state this condition explicitly. The
following lemma is an instance of the definition of sequentiality.

Lemma 4.2.3 (Sequential Function): In a sequential language the following holds. Let
f ∈ Jσ→ τK, pv be a partial value of type σ and rp ∈ Pos (f pv) such that (f pv)|rp = ⊥.
Then, there exists p ∈ Pos pv such that pv|p = ⊥, and for all values pv′ of type σ the
following holds.

pv′ w pv ∧ pv′|p = ⊥ =⇒ (f pv′)|rp = ⊥
Note that the previous lemma considers partial values pv of type τ, that is, elements
of JτK \ JτK↑. Therefore, a position p with pv|p = ⊥ always exists.

Definition 4.2.6 (Sequential/Non-Sequential Position): We call position p of Lem-
ma 4.2.3 a sequential position in pv at result position rp with respect to f .

We call a position p a non-sequential position in pv at result position rp with re-
spect to f if (f pv)|rp = ⊥ and p ∈ Pos pv such that pv|p = ⊥, and there exists a
value pv′ of type τ with the following property.

pv′ w pv ∧ pv′|p = ⊥∧ (f pv′)|rp 6= ⊥ �

56

4.2 Sequential and Demanded Positions

Note that a position might be neither sequential nor non-sequential. However, if
pv is a partial value and (f pv)|rp = ⊥, then all positions p ∈ Pos pv with pv|p = ⊥
are either sequential or non-sequential.

Example 4.2.5: We consider the Boolean conjunction andL from Example 2.2.1 again.
We have (JandLK 〈⊥,⊥〉)|ε = ⊥ and can apply Lemma 4.2.3. It states that there is a
sequential position p in 〈⊥,⊥〉 at result position ε. Because we need 〈⊥,⊥〉|p = ⊥,
the only sequential position candidates are position 1 and position 2, that is, the first
and the second argument of andL. As Lemma 4.2.3 guarantees the existence of a
sequential position, we have

∀v ∈ JBoolK. (JandLK 〈v,⊥〉)|ε = ⊥ or ∀v ∈ JBoolK. (JandLK 〈⊥, v〉)|ε = ⊥.

As we have (JandLK 〈False,⊥〉)|ε = False 6= ⊥, the first formula of the disjunction is
false and, hence, the second formula of the disjunction is true. Thus, position 1 is a
sequential position in 〈⊥,⊥〉 at result position ε and positions 2 is a non-sequential
position in 〈⊥,⊥〉 at result position ε. �

The first argument of andL is a sequential position in 〈⊥,⊥〉 because the function
performs pattern matching on its first argument. In fact, there is a close relation
between the argument positions a function performs pattern matching on and se-
quential positions. In the following we consider the position of an argument that
is demanded by a function if we demand a specific result position. A value is de-
manded if it is evaluated to head normal form.

Example 4.2.6: Haskell provides a function error :: String → α that takes a string
and yields a run-time error if it is evaluated. If an application of error is evaluated,
the execution is stopped and the corresponding string is printed. We can use this
mechanism to observe, which argument of a function is demanded if we demand the
result. For example, consider the evaluation of the expression error "1" && error "2"
in GHCi, the interpreter of the Glasgow Haskell Compiler (GHC).

> error "1" && error "2"
*** Exception: 1

As the error message "1" is printed, we know that && demands its first argument
if we demand the expression error "1" && error "2". By employing exception han-
dling we can even employ this information in Haskell itself.

If we replace the argument that is demanded by a non-erroneous value, the func-
tion might demand another argument. For example, the function && demands its
second argument if we demand the expression True && error "2".

> True && error "2"
*** Exception: 2

On the other hand, if the demanded argument is an error the function still evalu-
ates this error independent of the other arguments. For example, if we demand the
expression error "1" && True the function && still demands its first argument.

57

4 Mathematical Model of Minimally Strict Functions

Nilτ

Cons 〈. . . , . . .〉

ErrorList τ 1 . . .

⊥List τ

ErrorList τ n . . .

Figure 4.2.5: The Structure of JList τKErr

> error "1" && True
*** Exception: 1

Note that this behavior is closely connected to the existence of a sequential position.
With respect to demanded positions, errors take over the role of least elements in
the context of sequential positions.

In the previous examples the demand is caused by pattern matching on the cor-
responding argument position. A function can also demand an argument position
by projecting to it. For example, consider the Haskell function const :: α → β → α,
which takes two arguments and projects to its first argument. If we evaluate the
expression const (error "1") (error "2") in GHCi, we can observe that const demands
its first argument if we demand its result.

> const (error "1") (error "2")
*** Exception: 1

In this case the first argument is demanded because we demand the result and const
projects to its first argument. �

In the following, we refer to an argument position at which a value is demanded
if we demand a value at a certain result position as demanded position. To give a
more precise definition of demanded position and to show a connection between
demanded positions and sequential positions, we sketch how the semantics, pre-
sented in Figure 2.2.4, can be extended with exceptions in the following. We denote
the type and term semantics with exceptions by J·KErr.

For simplicity we do not use strings for error messages but natural numbers. Fur-
thermore, we do neither add a primitive to raise an exception like the Haskell func-
tion error :: String → α nor a primitive to catch such exceptions as we do not need
these in the following. However, adding these functions as primitives is straightfor-
ward.

We add an additional constructor Errorτ that takes a natural number as argument
to the interpretation of the Boolean type and the list types. In most cases we omit
the subscript type of Errorτ as it is determined by the context. Figure 4.2.5 illustrates

58

4.2 Sequential and Demanded Positions

Jcase e of {False→ e1; True→ e2}KErr
a =

⊥ if JeKErr

a = ⊥
Error n if JeKErr

a = Error n
Je1KErr

a if JeKErr
a = False

Je2KErr
a if JeKErr

a = True

Jcase e of {Nilτ → e1; Cons〈x1, x2〉 → e2}KErr
a

=

⊥ if JeKErr

a = ⊥
Error n if JeKErr

a = Error n
Je1KErr

a if JeKErr
a = Nilτ

Je2KErr
a[x1 7→v1,x2 7→v2]

if JeKErr
a = Cons 〈v1, v2〉

Figure 4.2.6: Term Semantics for Case Expressions in a Language with Exceptions

the structure of the resulting interpretation of a list type. All exceptions are more
defined than the least element ⊥List τ, but exceptions are incomparable to each other
and incomparable to the other elements of the domain. Note that v1 as well as v2
might be exceptions if we consider a value of the form Cons 〈v1, v2〉.

Basically, the exception semantics handles exceptions in the same way as it han-
dles the least element. That is, if we perform pattern matching on an exception we
yield a corresponding exception as result. However, in contrast to ⊥, we propagate
the number that is stored in an exception. Figure 4.2.6 presents the semantics for
case expressions. We have to add rules to the interpretation of case expressions that
apply if the scrutinee is an exception. In this case we wrap the number that indi-
cates the kind of exception in an Error constructor of appropriate type. For all other
expressions we take the definition of J·K over but replace all occurrences of J·K by
J·KErr.

The following example illustrates the semantics of the functions andL and a con-
stant function with respect to the exception semantics. Furthermore, we exemplar-
ily show that the exception semantics models the behavior as we have observed for
Haskell functions in Example 4.2.6.

Example 4.2.7: Consider the function andL from Example 2.2.1. In the exception
semantics, presented in Figure 4.2.6, we get the following semantics for andL.

JandLKErr
a = λ〈v1, v2〉.

⊥ if v1 = ⊥
Error n if v1 = Error n
False if v1 = False
v2 if v1 = True

If we apply JandLKErr to 〈Error 1, Error 2〉, we get Error 1, and, if we apply JandLKErr to
〈True, Error 2〉, we get Error 2. That is, the semantics of andL shows the same behavior
we have observed for the Haskell counterpart (&&) in Example 4.2.6.

59

4 Mathematical Model of Minimally Strict Functions

Let us consider the counterpart of the Haskell function const in our simple func-
tional language. As the simple language does not provide polymorphism, we con-
sider the following monomorphic Boolean instance of const.

const :: Bool× Bool→ Bool
const〈x, y〉 = x

In the exception semantics we get the following semantics for const.

JconstKErr
a = λ〈v1, v2〉.v1

Thus, we have JconstKErr 〈Error 1, Error 2〉 = Error 1, that is, const demands its first
argument if we demand its result. �

Definition 4.2.8 uses the exception semantics, sketched in Figure 4.2.6, to define
demanded positions. Analogous to Example 4.2.6 we apply a function to a value
where the number stored in an exception uniquely identifies its position within the
value. If we apply a function to a value of this kind and get an exception at a certain
result position, then the position in the argument where the exception is coming
from is called a demanded position with respect to the corresponding result position.

Because we want to show a correspondence between demanded and sequential
positions, we establish a relation between demanded positions and the original se-
mantics J·K. Therefore, we define a logical relation that relates elements of JτKErr with
elements of JτK, that is, with elements that do not contain any exceptions. The idea is
basically that the semantics J·K and J·KErr behave equally except for exceptions Error n
as these are not present in the domains of J·K. Furthermore, the semantic function
J·KErr treats exceptions Error n in the same way as J·K treats the least element ⊥.

A logical relation (Girard 1972; Mitchell and Meyer 1985; Honsell and Sannella
1999) is a family of relations indexed by types, that is, (Rτ)τ∈Types. For each type τ
the relation Rτ relates two elements of the interpretation of τ. The family of relations
is defined inductively over the type structure. Furthermore, if (Rτ)τ∈Types is a logical
relation, then we have (f , g) ∈ Rσ→τ if and only if for all (x, y) ∈ Rσ we have
(f x, g y) ∈ Rτ. In other words, two functions are related by a logical relation if and
only if the functions yield related results for all related arguments.

Intuitively, the following logical relation formalizes that the semantics J·KErr treats
exceptions in the same way as the semantics J·K treats the least element ⊥. The
logical relation errm

τ where m is a natural number relates an element v1 of JτKErr

with an element v2 of JτK if the value v2 contains ⊥ at all positions that contain the
exception Error m in v1. Furthermore, the value v2 contains an arbitrary value of
type τ at all positions that contain an exception Error n with m 6= n in v1. That is, the
relation errτ

m is a kind of v that treats exceptions like the least element ⊥. However,
all exceptions with a specific label, namely, with label m, have to become ⊥.

Definition 4.2.7 (Logical Relation errm
τ): We define a family of logical relations in-

dexed by a natural number and a type. For m ∈ N and τ ∈ Types we define

60

4.2 Sequential and Demanded Positions

errm
τ ⊆ JτKErr × JτK as follows.

errm
Bool = {(⊥, b) | b ∈ JBoolK}
∪ {(Error n, b) | b ∈ JBoolK, m 6= n}
∪ {(Error m,⊥)}
∪ {(False, False), (True, True)}

errm
List τ = {(⊥, l) | l ∈ JList τK}

∪ {(Error n, l) | l ∈ JList τK, m 6= n}
∪ {(Error m,⊥)}
∪ {(Nil, Nil)}
∪ {(Cons 〈x, xs〉, Cons 〈y, ys〉) | (x, y) ∈ errm

τ , (xs, ys) ∈ errm
List τ}

We use the least solution of the recursive equation in the definition of errm
List τ.

Two tuples are related by errm
τ1×···×τn

if all their components are pointwise related
by relations of corresponding types, that is, we define errm

τ1×···×τn
as follows.

errm
τ1×···×τn = {(〈x1, . . . , xn〉, 〈y1, . . . , yn〉) | ∀i ∈ {1, . . . , n}. (xi, yi) ∈ errm

τi
}

Finally, two functions are related if the images of related arguments are related,
that is, we define errm

σ→τ as follows.

errm
σ→τ = {(f , g) | ∀x ∈ JσKErr, y ∈ JσK. (x, y) ∈ errm

σ =⇒ (f x, g y) ∈ errm
τ }

Note that the definition of errm
σ→τ is determined by the demands on a logical relation.

Furthermore, note that errm
σ→τ relates a function that handles exceptions, that is, an

element of Jσ → τKErr, with a function that does not handle exceptions, that is, an
element of Jσ→ τK. �

In the following we define when we call a position a demanded position by means
of the exception semantics. We use the logical relation errn

σ to define demanded po-
sitions with respect to the original semantics J·K. The following definition considers
some global program P that is well-typed with respect to the typing rules from Sec-
tion 2.2.

Definition 4.2.8 (Demanded Position): Let f :: σ → τ ∈ P and pv ∈ JσK. If there
exists ev ∈ JσKErr and n ∈N such that (ev, pv) ∈ errn

σ and

∃! p ∈ Pos ev. ev|p = Error n
as well as

(J f KErr ev)|rp = Error n,

we call p a demanded position in pv ∈ JσK at result position rp with respect to f . �

In other words, we consider a partial value ev that contains an exception Error n at
a unique position p. If J f KErr projects the exception Error n to the result position rp,

61

4 Mathematical Model of Minimally Strict Functions

then we call p a demanded position at result position rp. The following example
presents demanded positions of andL.

Example 4.2.8: Consider the exception semantics of andL from Example 4.2.7 again.
We have

JandLKErr 〈Error 1, Error 2〉 = Error 1
and

(〈Error 1, Error 2〉, 〈⊥,⊥〉) ∈ err1
Bool×Bool

and, thus, position 1 is a demanded position in 〈⊥,⊥〉 at result position ε with re-
spect to andL. As the logical relation err1

Bool×Bool allows us to replace occurrences of
exceptions Error n with n 6= 1 by arbitrary values of the appropriate type, we have

(〈Error 1, Error 2〉, 〈⊥, True〉) ∈ err1
Bool×Bool.

Thus, position 1 is also a demanded position in 〈⊥, True〉 at result position ε with
respect to andL. Furthermore, we have

JandLKErr 〈True, Error 2〉 = Error 2
and

〈True, Error 2〉, 〈True,⊥〉) ∈ err2
Bool×Bool

and, thus, position 2 is a demanded position in 〈True,⊥〉 at result position ε with
respect to andL. �

To prove a connection between demanded and sequential positions we use two
utilities. The first utility is called the Basic Lemma or Fundamental Theorem in the
context of logical relations. Mostly, logical relations are defined for a simply typed
lambda calculus with an explicit fixpoint combinator. In this setting the follow-
ing lemma simply holds for all logical relations. As we do not consider a lambda
calculus but a language with data structures and explicit recursion, we prove the
following lemma in Appendix A.

We consider an expression e of some type τ and the interpretation of e with respect
to environments a1 and a2, that is, JeKErr

a1
and JeKa2 . The lemma states that these

interpretations are related by errm
τ if the images of a1 and a2 are related by errm

τ′ for
all variables. Here the type τ′ is the type of the corresponding variable. We use
the following lemma to prove that every demanded position is also a sequential
position.

Lemma 4.2.4: Assume Γ ` e :: τ and let a1 and a2 be environments such that for all x :: τ′

in Γ we have (a1(x), a2(x)) ∈ errm
τ′ . In this case we have (JeKErr

a1
, JeKa2) ∈ errm

τ .

The previous lemma in particular states that for a function f :: σ → τ we have
(J f KErr

a , J f Ka) ∈ errm
σ→τ for all m ∈ N. By means of this statement we get a connec-

tion between the interpretation of a function with respect to the two semantics. In
addition, we employ a connection between errm

τ and the projection defined in Defi-
nition 4.2.4. Therefore, we extend projections from JτK to JτKErr by handling values

62

4.2 Sequential and Demanded Positions

of the form Error n in the same way as we handle the least element ⊥. By means of
this extension of the projections we can characterize values ev ∈ JτKErr and pv ∈ JτK
with (ev, pv) ∈ errm

τ as follows. For all positions p we have

ev|p = Error m =⇒ pv|p = ⊥
as well as

m 6= n ∧ ev|p = Error n =⇒ pv|p w ⊥.

These implications provide a kind of formalisation of the intuitive interpretation of
the logical relation errm

τ . In other words, while we may replace occurrences of the
exception Error m in ev by⊥, we may replace occurrences of other exceptions Error n
with m 6= n by arbitrary values.

On the basis of these observations we can show that every demanded position
in pv at result position rp with respect to f is a sequential position in pv at result
position rp with respect to J f K. Note that we have defined demanded positions with
respect to a syntactic function f :: σ→ τ while we have defined sequential positions
with respect to a semantic function f ∈ Jσ→ τK.

Lemma 4.2.5: Let f :: σ → τ ∈ P. If p is a demanded position in pv at result position rp
with respect to f , then p is a sequential position in pv at result position rp with respect to
Jf K.

The previous lemma shows that the set of demanded positions is a subset of the
set of sequential positions. However, there are sequential positions that are not de-
manded positions. While with respect to some value at every result position there is
always only a single demanded position, there might be several sequential positions
at the same result position.

Example 4.2.9: Consider the following definition of a projection to the second argu-
ment that is strict in its first argument.

strictSnd :: Bool× Bool→ Bool
strictSnd〈x, y〉 =

case x of
False→ y
True → y

We get the following semantics for strictSnd with respect to the original semantics.
Note that we have combined the cases v1 = False and v2 = True to a single case.

JstrictSndK = λ〈v1, v2〉.
{
⊥ if v1 = ⊥
v2 otherwise

With respect to this semantics we have

(JstrictSndK 〈⊥, b〉)|ε = ⊥

63

4 Mathematical Model of Minimally Strict Functions

for all values b of type Bool. Likewise, we have

(JstrictSndK 〈b,⊥〉)|ε = ⊥

for all values b of type Bool. Thus, position 1 as well as position 2 are sequential
positions in 〈⊥,⊥〉 at position ε with respect to strictSnd.

Now, let us consider the exception semantics of strictSnd.

JstrictSndKErr = λ〈v1, v2〉.

⊥ if v1 = ⊥
Error n if v1 = Error n
v2 otherwise

With respect to this semantics we have

JstrictSndKErr 〈Error 1, Error 2〉 = Error 2
and

(〈Error 1, Error 2〉, 〈⊥,⊥〉) ∈ err2
〈Bool,Bool〉.

Therefore, position 2 is a demanded position in 〈⊥,⊥〉 at position ε with respect to
strictSnd. �

The exception semantics presented here does not match the semantics of Haskell
exceptions (Peyton Jones et al. 1999). The exceptions employed by Haskell are called
imprecise exceptions. The semantics of these exceptions is less restrictive to guar-
antee that certain transformations are semantic-preserving. The basic idea behind
imprecise exceptions is to use sets of exceptions. More precisely, instead of a sin-
gle natural number an exception contains a set of natural numbers where the set
denotes the set of possible exceptions that might be raised by the evaluation of an
expression. For example, consider the Haskell function head, which is defined as
follows.

head :: [α]→ α
head [] = error "empty list"
head (x: _) = x

If we apply head to an exception like error "argument", in the imprecise exceptions
semantics we get a set containing the exception "argument" as well as the exception
"empty list". If we catch the exception by employing the Haskell function catch,
it choses one of the possible exceptions non-deterministically. Therefore, catch is in
the IO monad as it can be considered to ask some kind of oracle, which exception to
choose.

As long as the compiler does not apply any optimizations, in practice, Haskell
exceptions behave in the way specified by the exception semantics J·KErr. In the
same manner as we assume a simplified exception semantics, the behavior of the
black-box testing tool Lazy Smallcheck by Runciman et al. (2008) is based on this
simplified exception model. Lazy Smallcheck employs exception handling mecha-

64

4.3 Minimally Strict Functions

nisms to implement a kind of needed narrowing (Antoy et al. 1994) to systematically
generate test cases for property-based testing.

We will reconsider demanded positions when we present the implementation of
Sloth. There, we are interested in demanded positions because they are an easy way
to identify sequential positions of a function. For now, we switch to the semantics
J·K again and deal with the question when a function is minimally strict.

4.3 Minimally Strict Functions

In this section we employ the definition of sequentiality, presented in the previous
section, to define a criterion to check whether a sequential function is minimally
strict. When we only consider sequential functions, we are looking for minimally
strict functions and not for a least strict function.

We start by providing a formal definition of “minimally strict”.

Definition 4.3.1: A sequential function f ∈ Jσ → τK is minimally strict if for all
sequential functions g ∈ Jσ→ τK the relation g � f implies g = f . �

In order to provide a criterion that states whether a function is minimally strict
we start with some preliminaries. By ΣC we denote the set of semantic constructor
symbols. As we only consider Booleans and lists as algebraic data types, we have
ΣC = {False, True, Nil, Cons}. The refinement of a partial value is the replacement of
a subterm that is ⊥ by a partial value of the form C ⊥ where C is a constructor from
ΣC. We consider two kinds of refinements: a refinement at a sequential position and
a refinement at a non-sequential position.

Definition 4.3.2 (Refinement Relations): For all values v of type τ and all positions
p ∈ Pos v with v|p = ⊥ and v|p ∈ Jτ′K we define the refinement of v as follows. We
have v lp v′ if there exists C ∈ ΣC such that C ∈ Jσ → τ′K and v′ = v[C⊥]p. Note
that, if C takes multiple arguments, then σ = τ1 × · · · × τn and ⊥ = 〈⊥τ1 , . . . ,⊥τn〉.

On basis of this definition and the notion of sequential and non-sequential posi-
tions we define two refinement relations. We relate values v and v′ of type τ and a
result position rp for a given function f by

v� f
rp v′

if there exists p ∈ Pos v such that v lp v′ and p is a sequential position in v at result
position rp with respect to f . We also refer to this as a sequential step. Furthermore
we relate values v and v′ of type τ and a result position rp for a given function f by

v f
rp v′

if there exists p ∈ Pos v such that v lp v′ and p is a non-sequential position in v at
result position rp with respect to f . We also refer to this as a non-sequential step.

Whenever f is determined by the context, we omit it. Furthermore, although f
is supposed to be a semantic function for simplicity we annotate the refinement
relations with the corresponding syntactic function. �

65

4 Mathematical Model of Minimally Strict Functions

In the following, if we have vlp v′ but disregard the refinement position, we omit
the position and write v l v′. In the more general setting of an arbitrary partially
ordered set (P,v) for elements x ∈ P and y ∈ P the relation l is called covering
relation and x l y is defined as x @ y and there exists no z ∈ P with x @ z @ y.

Let us consider some values that are related by one of the refinement relations.

Example 4.3.1: Consider andL from Example 2.2.1 again. We have

〈⊥,⊥〉�andL
ε 〈False,⊥〉

as well as
〈⊥,⊥〉�andL

ε 〈True,⊥〉
because position 1 is a sequential position in 〈⊥,⊥〉 at result position ε with respect
to andL. Furthermore, we have

〈True,⊥〉�andL
ε 〈True, False〉

as well as
〈True,⊥〉�andL

ε 〈True, True〉
because position 2 is a sequential position in 〈True,⊥〉 at position ε with respect to
andL. On the other hand we have

〈⊥,⊥〉 andL
ε 〈⊥, False〉

as well as
〈⊥,⊥〉 andL

ε 〈⊥, True〉
because position 2 is a non-sequential position in 〈⊥,⊥〉 at result position ε with
respect to andL. Note that we neither have

〈False,⊥〉�andL
ε 〈False, False〉

nor
〈False,⊥〉 andL

ε 〈False, False〉

because (JandLK 〈False,⊥〉)|ε = False 6= ⊥, and, therefore, position 2 is neither a
sequential nor a non-sequential position in 〈False,⊥〉 at result position ε with respect
to andL.

If we consider the function and from Example 4.1.2, we have

t1 �
and
ε t2

for all t1, t2 ∈ JBool× BoolK with t1 l t2 because JandK yields ⊥ as long as any of its
arguments is still undefined. In other words, all refinement steps with respect to
JandK are sequential steps. �

On basis of the definition of refinement steps we define the characteristic set of a
function. The elements of the characteristic set are test cases used to check whether
a function is minimally strict. The characteristic set of a function f ∈ Jσ→ τK is a
subset of the set of all pairs of argument values and valid result positions such that f
applied to the argument yields ⊥ at the result position. That is, the characteristic set

66

4.3 Minimally Strict Functions

is a subset of the set {(v, rp) | v ∈ JσK, rp ∈ Pos (f v), (f v)|rp = ⊥}. We omit pairs
from the characteristic set for which the behavior of f is determined by sequentiality.

Definition 4.3.3 (Characteristic Set): The characteristic set C f of a sequential func-
tion f ∈ Jσ→ τK is inductively defined as follows.

1. For all result positions rp such that (f ⊥)|rp = ⊥ we have (⊥, rp) ∈ C f .

2. For all pairs (v, rp) ∈ C f and all values v′ such that v � f
rp v′ and all result

positions rp′ such that (f v′)|rp′ = ⊥ we have (v′, rp′) ∈ C f . �

Obviously, we have C f ⊆ {(v, rp) | v ∈ JσK, rp ∈ Pos (f v), (f v)|rp = ⊥}. Fur-
thermore, if we have (v, rp) ∈ C f , then there exists a sequence of sequential steps
⊥ �∗ v that is monotonic with respect to the considered result positions. Thus, if
we have

⊥�∗ v1 �rp v2 �
∗ v3 �rp′ v4 �

∗ v,

then rp is a prefix of rp′, denoted by rp ≤ rp′.

Example 4.3.2: Let us consider the Boolean conjunctions andL from Example 2.2.1 as
well as and from Example 4.1.2, again. What do the characteristic sets for JandLK and
JandK look like?

In the following, for simplicity, we say that “a value v is not in C f ” or “v is not an
element of C f ” if we have (v, rp) 6∈ C f for all result positions rp.

First, we consider the function JandLK. We have (JandLK 〈⊥,⊥〉)|ε = ⊥, and, by
definition of the characteristic set, we have (〈⊥,⊥〉, ε) ∈ CJandLK. Note that 〈⊥,⊥〉 is
the least element of JBool× BoolK, which is denoted by⊥ in Definition 4.3.3. Position
ε is the only valid result position of JandLK 〈⊥,⊥〉, which yields ⊥, when evaluated.
Thus, the value 〈⊥,⊥〉 is not in CJandLK.

As we have observed in Example 4.3.1, we have

〈⊥,⊥〉�andL
ε 〈False,⊥〉

as well as
〈⊥,⊥〉�andL

ε 〈True,⊥〉.

Nevertheless, as JandLK 〈False,⊥〉 yields a total result, the value 〈False,⊥〉 is not in
CJandLK because there exists no result position rp such that (JandLK 〈False,⊥〉)|rp =
⊥. That is, some values v are not in the characteristic set because the considered
function yields a total result if it is applied to v. In contrast, the pair (〈True,⊥〉, ε) is
in the characteristic set as we have (JandLK 〈True,⊥〉)|ε = ⊥.

In Example 4.3.1 we have observed that

〈⊥,⊥〉 andL
ε 〈⊥, False〉

as well as
〈⊥,⊥〉 andL

ε 〈⊥, True〉

holds and, thus, 〈⊥, False〉 and 〈⊥, True〉 are not in the characteristic set. These values
are not in the characteristic set of JandLK because the behavior for these arguments

67

4 Mathematical Model of Minimally Strict Functions

is determined by sequentiality. More precisely, as position 1 is a sequential position
in 〈⊥,⊥〉 we have JandLK 〈⊥, False〉 = ⊥ and JandLK 〈⊥, True〉 = ⊥ by sequentiality.

The value 〈False, False〉 is not in the characteristic set because neither 〈False,⊥〉
nor 〈⊥, False〉 are in the characteristic set. We do not have to consider 〈False, False〉
because it is more defined than 〈False,⊥〉 and andL already yields a total result for
〈False,⊥〉. Therefore, all values more defined than 〈False,⊥〉 are not in the charac-
teristic set.

As we have observed in Example 4.3.1, we have the sequential steps

〈True,⊥〉�andL
ε 〈True, False〉

and
〈True,⊥〉�andL

ε 〈True, True〉.

However, as the results of JandLK for 〈True, False〉 as well as for 〈True, True〉 are total
we have neither 〈True, False〉 ∈ CJandLK nor 〈True, True〉 ∈ CJandLK.

In summary, we get the following characteristic set for JandLK.

CJandLK = {(〈⊥,⊥〉, ε), (〈True,⊥〉, ε)}

The value 〈False,⊥〉 is missing in CJandLK because andL yields a total value, namely,
False, for this argument. The arguments 〈⊥, False〉 and 〈⊥, True〉 are missing in
CJandLK because there is no sequence of sequential steps from (〈⊥,⊥〉, ε) to these
values.

In the case of JandK all steps are sequential with respect to the result position ε.

CJandK =

{
(〈⊥,⊥〉, ε), (〈False,⊥〉, ε), (〈True,⊥〉, ε),

(〈⊥, False〉, ε), (〈⊥, True〉, ε).

}
.

Therefore, the characteristic set consists of all pairs (v, ε) where v is a value of type
Bool× Bool for which JandK yields a non-total result. �

By means of the characteristic set we define a criterion to check whether a function
is minimally strict. The criterion states that a sequential function f ∈ Jσ→ τK is not
minimally strict if and only if there exists (v, rp) ∈ C f with (inf f v)|rp A ⊥. In the
remainder of this chapter we prove the following theorem, where inf f v is defined
by inf f v =

d
{ f tv | tv ∈ JσK↑, v v tv} (see Definition 4.1.3).

Theorem 4.3.1: A sequential function f ∈ Jσ→ τK is minimally strict if and only if
we have (inf f v)|rp = ⊥ for all (v, rp) ∈ C f .

In the following two sections (Section 4.3.1 and Section 4.3.2) we assume that all
considered functions are sequential.

68

4.3 Minimally Strict Functions

4.3.1 Sufficiency of the Criterion

In this section we show that (inf f v)|rp = ⊥ for all (v, rp) ∈ C f is a sufficient condi-
tion for f being minimally strict. In other words, we show that (inf f v)|rp = ⊥ for
all (v, rp) ∈ C f implies that f is minimally strict.

To prove this statement we show that the characteristic set of a function is in a
certain sense characteristic. We consider two functions f and g such that f � g. If
we have (f v)|rp = ⊥ for all values v ∈ JσK and valid result positions rp such that
(g v)|rp = ⊥, then we have f = g. In the following we show that we do not have to
check all values v and results positions rp such that (g v)|rp = ⊥. We already have
f = g if (f v)|rp = ⊥ for all (v, rp) ∈ Cg.

The characteristic set contains only finite values. Therefore, (f v)|rp = ⊥ for all
(v, rp) ∈ Cg merely implies that f and g agree for all finite values v. Nevertheless,
as we use algebraic cpos the behavior of continuous functions for non-finite values
is determined by their behavior for finite values. Consider two functions f , g ∈
Jσ→ τK and a non-finite value v ∈ JσK. If f and g agree for all finite values, they
also agree for all non-finite values as the following equational reasoning shows.

f v = f
⊔
{v′ | v′ ∈ JσK, v′ v v, v′ finite} algebraicity

=
⊔
{ f v′ | v′ ∈ JσK, v′ v v, v′ finite} continuity of f

=
⊔
{g v′ | v′ ∈ JσK, v′ v v, v′ finite} f and g agree for finite values

= g
⊔
{v′ | v′ ∈ JσK, v′ v v, v′ finite} continuity of g

= g v algebraicity

As a first step towards the sufficiency of the criterion, we show that for all pairs
(v, rp) with (f v)|rp = ⊥ that are not in the characteristic set there exists a pair (v′, rp)
that is in the characteristic set. Furthermore, there exists a sequence of non-sequen-
tial steps at position rp from v′ to v, that is, v′(rp)

∗v. Figure 4.3.1 illustrates
the statement. The white rectangle represents the set of all pairs (v, rp) such that
(f v)|rp = ⊥ while the gray rectangle represents the characteristic set C f . For ev-
ery pair (v, rp) that is not in the characteristic set there exists a pair (v′, rp) in the
characteristic set and a non-sequential path from v′ to v. Considering this sequence,
we then employ the following lemma to show that we have (f v)|rp = ⊥. In the
following we assume that ·[v]p has a higher precedence than function application,
that is, f v[v′]p stands for f (v[v′]p).

Lemma 4.3.1: Let p be a non-sequential position of f in v at result position rp. Then for all
values v′ of appropriate type we have (f v[v′]p)|rp = ⊥.

Note that the previous lemma implies that we have (f v2)|rp = ⊥ if v1 rp v2
because we have v2 = v1[C⊥]p for some constructor C and a non-sequential position
p. Thus, if there exists a non-sequential sequence v′(rp)

∗v we have (f v)|rp = ⊥.
To prove that there always exists a non-sequential sequence from a pair that is

in the characteristic set to one that is not, we consider an arbitrary pair (v, rp) 6∈ C f
with (f v)|rp = ⊥. The following lemma shows that v 6= ⊥ implies that there exists a
predecessor v′ in the sense that we have v′ rp v or we have v′�rp′ v and rp′ ≤ rp.

69

4 Mathematical Model of Minimally Strict Functions

{(v, rp) | v ∈ JτK, rp ∈ Pos (f v), (f v)|rp = ⊥}

C f
(v, rp)

(v′, rp)

Figure 4.3.1: Illustration of Lemma 4.3.5

Lemma 4.3.2: For all values v ∈ JτK \ {⊥} and rp ∈ Pos (f v) with (f v)|rp = ⊥ there
exists v′ ∈ JτK and rp′ ∈ Pos (f v′) such that v′ rp v or such that v′ �rp′ v and
rp′ ≤ rp.

Let us get back to the proof of the statement illustrated by Figure 4.3.1. We only
consider finite values v and prove the statement by induction over the number
of constructors in v. As mentioned before, we consider a pair (v, rp) 6∈ C f with
(f v)|rp = ⊥. By the previous lemma there exists a value v′ such that we have either
v′ rp v or we have v′ �rp′ v and rp′ ≤ rp. First we look at the former case. If
we have (v′, rp) ∈ C f , we are finished as we have a non-sequential sequence from
v′ to v. Therefore, we consider the case that (v′, rp) 6∈ C f . By using the induction
hypothesis we get a non-sequential sequence that arrives at v′. In other words, there
exists (v′′, rp) ∈ C f such that v′′(rp)

∗v′. Thus, we use v′ rp v to construct a new
non-sequential sequence that arrives at v.

Let us look at the remaining case, namely, v′ �rp′ v with rp′ ≤ rp. As we have
(v, rp) 6∈ C f , we get (v′, rp′) 6∈ C f by definition of the characteristic set. By induction
hypothesis we conclude that there exists (v′′, rp′) ∈ C f such that v′′(rp′)

∗v′�rp′ v.
As we are looking for a purely non-sequential sequence, in the following, we show
that we can rearrange this sequence such that all sequential steps are “performed”
before any non-sequential steps. Before we prove the statement for arbitrary se-
quences, we consider sequences of length two, that is, we have a sequence of the
form v1 rp v2 �rp v3.

Example 4.3.3: Consider andL from Example 2.2.1 again and the following sequence
of a non-sequential and a sequential step.

〈⊥,⊥〉 andL
ε 〈⊥, True〉 �andL

ε 〈True, True〉.

If we interchange the steps, we get the following sequence of two sequential steps.

〈⊥,⊥〉�andL
ε 〈True,⊥〉 �andL

ε 〈True, True〉

70

4.3 Minimally Strict Functions

Now consider the following sequence.

〈⊥,⊥〉 andL
ε 〈⊥, False〉�andL

ε 〈False, False〉.

If we first perform the sequential step, the step remains sequential.

〈⊥,⊥〉�andL
ε 〈False,⊥〉

However, we cannot perform a second step as we have (JandLK 〈False,⊥〉)|ε = False.
Thus, there exists neither a sequential nor a non-sequential position in 〈False,⊥〉. In
other words, we have neither

〈False,⊥〉�andL
ε 〈False, False〉

nor
〈False,⊥〉 andL

ε 〈False, False〉.

We have observed that a non-sequential step might become sequential or might
vanish if we interchange it with a sequential step. Finally, we show that the non-se-
quential step might even remain non-sequential. We define the following general-
ization of andL to three Boolean arguments, called andL3.

andL3 :: Bool× Bool× Bool→ Bool
andL3〈x, y, z〉 =

case x of
False→ False
True → case y of

False→ False
True → z

Employing the semantics of Figure 2.2.4 we get the following semantics for andL3.

JandL3K = λ〈v1, v2, v3〉.

⊥ if v1 = ⊥
False if v1 = False
⊥ if v1 = True∧ v2 = ⊥
False if v1 = True∧ v2 = False
v3 otherwise

Now consider the following sequence of a non-sequential and then a sequential step.

〈⊥,⊥,⊥〉 andL3
ε 〈⊥,⊥, True〉�andL3

ε 〈True,⊥, True〉

If we interchange these steps, we get a sequential and then a non-sequential step.

〈⊥,⊥,⊥〉�andL3
ε 〈True,⊥,⊥〉 andL3

ε 〈True,⊥, True〉

71

4 Mathematical Model of Minimally Strict Functions

To show that the second step is non-sequential we have to provide a value v with
v w 〈True,⊥,⊥〉 and v|3 = ⊥ such that (JandL3K v)|ε 6= ⊥. The value 〈True, False,⊥〉
satisfies these conditions because we have (JandL3K 〈True, False,⊥〉)|ε = False. �

As a next step, we prove that, if there exists a sequence of a non-sequential and a fi-
nal sequential step, then there exists a sequence of a sequential and an arbitrary step
that arrives at the same value as the original sequence. Let us consider a sequence
of a non-sequential and a sequential step, namely, a sequence of the following form.

v1 rp1 v2 �rp2 v3

In fact, we do not consider arbitrary sequences of this form, but only sequences that
are monotonic with respect to result positions, that is, we have rp1 ≤ rp2. In this
case by Lemma 4.3.1 we have (f v2)|rp1 = ⊥ and, therefore, rp1 = rp2. Thus, we can
even only consider a particular form of these sequences, namely, the following.

v1 rp1 v2 �rp1 v3

As Example 4.3.3 shows, we do not always arrive at the result value of the origi-
nal sequence if we consider sequences of this form. That is, if we first perform the
sequential step we might not be able to arrive at the final value by neither a se-
quential nor a non-sequential step. Therefore, we only consider sequences such that
(f v3)|rp3 = ⊥ for some result position rp3 with rp1 ≤ rp3. In this case we have
(f v)|rp2 = ⊥ for all values v with v1 v v v v3 and some result position rp2 with
rp1 ≤ rp2 ≤ rp3. This follows from the definition of the relation v of the considered
domains as well as monotonicity of f . As we have (f v)|rp2 = ⊥, there either exists
a sequential or a non-sequential step that arrives at v3.

Now that we know that we always arrive at the final value, let us consider a
sequence of the following form.

v1 rp1 v2 �rp1 v3

If we first perform the sequential step of this sequence, we have to distinguish two
cases. In the first case we get a sequential step from v1 to some value v and a non-se-
quential step from v to v2. As the latter step is non-sequential and by precondition
we have (f v2)|rp3 = ⊥, we get (f v)|rp3 = ⊥ because non-sequential steps do not
produce more defined function results (Lemma 4.3.1). In the other case the resulting
steps are both sequential. In this case the second step might be at a result posi-
tion rp2 that is between rp1 and rp3. In other words, we have (f v2)|rp2 = ⊥ and
rp1 ≤ rp2 ≤ rp3. The following lemma summarizes these observations.

Lemma 4.3.3: For all v1, v2, v3 ∈ JτK if

v1 rp1 v2 �rp1 v3

and (f v3)|rp3 = ⊥ with rp1 ≤ rp3, then there exists v ∈ JτK such that either

v1 �rp1 v rp3 v3 or v1 �rp1 v�rp2 v3

72

4.3 Minimally Strict Functions

for some rp2 with rp1 ≤ rp2 ≤ rp3.

We generalize the previous lemma to sequences of arbitrary length that are ter-
minated by a sequential step. By iterated application of the previous lemma we
can move this sequential step to the front of the sequence. Moving this step to the
front might result in new non-sequential steps that can be moved to the front again.
Finally, we get a sequence that first performs only sequential steps before it then
performs only sequential steps. Furthermore, the resulting sequence is monotonic
with respect to result positions. This monotonicity allows us to conclude that the
pair (v′, rp′) is in the characteristic set if the pair (v1, rp) is in the set as well.

Lemma 4.3.4: For all v1, v2, v3 ∈ JτK if

v1(rp)
∗v2 �rp v3

and (f v3)|rp′ = ⊥ with rp ≤ rp′, then there exist v, v′ ∈ JτK such that

v1 �rp v�∗ v′(rp′)
∗v3.

Furthermore, this sequence is montone with respect to result positions.

We use the previous lemma to show that for every pair of argument value and
result position that is not in the characteristic set of a function there exists a non-se-
quential sequence that arrives at this pair and starts from a pair in the characteristic
set.

Lemma 4.3.5: For all finite values v ∈ JτK with (f v)|rp = ⊥ the following holds.

(v, rp) 6∈ C f =⇒ ∃(v′, rp) ∈ C f : v′(rp)
∗v

The main theorem of this section shows that the characteristic set is indeed in a
certain sense characteristic for a function. Functions f and g with f w g are equal if
and only if (f v)|rp = ⊥ for all pairs (v, rp) of the characteristic set of g. Before we
prove this main theorem, we prove the following lemma, which shows a connection
between non-sequential refinement steps of functions that are related by w. Note
that we consider functions f and g with f w g and not f � g. We do not need the
additional constraint that the functions agree for total arguments to proof the fol-
lowing statements. Nevertheless, obviously these statements also hold for functions
f and g with f � g.

Lemma 4.3.6: Let f , g ∈ Jσ→ τK such that f w g. For all v, v′ ∈ JσK if v g
rp v′ and

(f v)|rp = ⊥, then v f
rp v′.

Proof: Let v, v′ ∈ JτK such that v g
rp v′. We have (f v)|rp = ⊥ and (g v)|rp = ⊥. Let

p be a non-sequential position in v at result position rp with respect to g. By defini-
tion of non-sequential steps there exists a position p such that v lp v′. Furthermore,
as p is a non-sequential position in v at result position rp with respect to g there
exists a value v′′ ∈ JτK such that v′′ A v and v′′|p = ⊥ and (g v′′)|p 6= ⊥. Because

73

4 Mathematical Model of Minimally Strict Functions

f � g, we have f v′′ w g v′′. Therefore, we have (f v′′)|p 6= ⊥ by monotonicity of
·|p. That is, p is also a non-sequential position in v at result position rp with respect
to f . �

The following theorem finally shows that functions f and g with f w g are equal
if we have (f v)|rp = ⊥ for all (v, rp) ∈ Cg.

Theorem 4.3.2: Let f , g ∈ Jτ → τ′K such that f w g. The following holds.

f = g⇐⇒ ∀(v, rp) ∈ Cg. (f v)|rp = ⊥

Proof: We prove both implications separately.

=⇒: Because we have (g v)|rp = ⊥ for all (v, rp) ∈ Cg and f = g, we get (f v)|rp =
⊥ for all (v, rp) ∈ Cg.

⇐=: As we have observed in the introduction of this section, in the setting we are
considering, if two functions agree for all finite values, they also agree for
non-finite values. Therefore, we only have to consider finite values in the fol-
lowing.

Because f w g, we have f v w g v for all v′ ∈ JτK. We assume that there exists a
finite value v′ ∈ JτK such that f v′ A g v′. Then, by definition of w there exists
a result position rp such that (f v′)|rp 6= ⊥ but (g v′)|rp = ⊥. Thus, we only
have to show that (g v)|rp = ⊥ implies (f v)|rp = ⊥ for all finite values v.

Let v ∈ JτK be a finite value and rp ∈ Pos (g v) such that (g v)|rp = ⊥. We have
rp ∈ Pos (f v) because f w g. If (v, rp) ∈ Cg, then by precondition we have
(f v)|rp = ⊥. If (v, rp) 6∈ Cg, by Lemma 4.3.5 there exists (v′, rp) ∈ Cg such that
v′(g

rp)
∗
v. As (v′, rp) ∈ Cg and (g v′)|rp = ⊥, we have (f v′)|rp = ⊥ as well.

By multiple applications of Lemma 4.3.6 and Lemma 4.3.1 we get v′(f
rp)
∗
v

and, thus, (f v)|rp = ⊥. �

A reformulation of one implication of the previous theorem reveals a connection
between Theorem 4.3.2 and the sufficiency of the criterion to check whether a func-
tion is minimally strict. More precisely, we observe that a less strict function is al-
ways more defined with respect to a pair from the characteristic set of the unneces-
sarily strict function.

Corollary 4.3.1: Let f , g ∈ Jσ→ τK. Then the following holds.

f A g =⇒ ∃(v, rp) ∈ Cg. (f v)|rp A ⊥

Proof: Let f , g ∈ Jσ→ τK such that f A g, that is, f w g and f 6= g. By Theorem 4.3.2
there exists (v, rp) ∈ Cg such that (f v)|rp 6= ⊥. Because we have f A g, we get
(f v)|rp A ⊥. �

Finally, we show the sufficiency of the criterion, which gives us one half of the
proof of Theorem 4.3.1.

74

4.3 Minimally Strict Functions

Lemma 4.3.7: Let g ∈ Jσ→ τK be sequential. If there exists a sequential function f ∈
Jσ→ τK with f A g, then there exists (v, rp) ∈ Cg with (infg v)|rp A ⊥.

Proof: If there exists a sequential function f with f A g, by Corollary 4.3.1 there
exists (v, rp) ∈ Cg such that (f v)|rp A ⊥. Furthermore, for all total values tv of type
τ we have f tv = g tv, and, therefore, for all values v of type τ we have inf f v =
infg v. As we have already observed (just before Definition 4.1.3), we have inf f v w
f v. Finally, we get (infg v)|rp = (inf f v)|rp w (f v)|rp A ⊥. �

The previous lemma also holds if we consider functions f and g such that f ≺ g.

4.3.2 Necessity of the Criterion

In this section we show that (inf f v)|rp = ⊥ for all (v, rp) ∈ C f is a necessary con-
dition for f being minimally strict. That is, we show that, if f is minimally strict,
then we have (inf f v)|rp = ⊥ for all (v, rp) ∈ C f . Actually, we prove the contra-
position of this statement: if there exists (v, rp) ∈ C f with (inf f v)|rp 6= ⊥, then f
is not minimally strict. To prove this statement, for a function f ∈ Jσ → τK with
(v, rp) ∈ C f and (inf f v)|rp 6= ⊥, we define a function f (v,rp) that is less strict than
f . Note that the less strict function is indexed by the counter-example. That is, for
every counter-example we can define a function that is less strict than f . Here and in
the following, by counter-example we refer to a pair (v, rp) ∈ C f with (inf f v)|rp 6= ⊥.
Furthermore, note that (inf f v)|rp 6= ⊥ implies (inf f v)|rp A ⊥ because inf f v w f v
and (f v)|rp = ⊥.

If there exists (v, rp) ∈ C f with (inf f v)|rp A ⊥, we are looking for a function
f (v,rp) that agrees with inf f v at result position rp. We are looking for a function

f (v,rp) with

(f (v,rp) v)|rp = (inf f v)|rp.

As a first approach for all other arguments v′ and result positions rp′, the function
f (v,rp) may agree with f , that is,

(f (v,rp) v′)|rp′ = (f v′)|rp′ .

However, the following example demonstrates that we cannot use this simple defi-
nition as the resulting function is not continuous.

Example 4.3.4: Consider a function that takes a list and yields a singleton list.

singleton :: [Bool]→ [Bool]
singleton xs =

case xs of
NilBool → Cons〈False, NilBool〉
Cons〈y, ys〉 → case y of

False→ Cons〈y, NilBool〉
True → Cons〈y, NilBool〉

75

4 Mathematical Model of Minimally Strict Functions

This function is unnecessarily strict for two reasons. First, it checks whether the ar-
gument is the empty list or not although it yields a list with one element in all cases.
Furthermore, it performs pattern matching on the first element of the argument list
although it yields a singleton list in both cases. We get the following semantics for
singleton.

JsingletonK = λv.

⊥ if v = ⊥
Cons 〈False, NilBool〉 if v = NilBool

⊥ if v = Cons 〈⊥, v2〉
Cons 〈v1, NilBool〉 if v = Cons 〈v1, v2〉 ∧ v1 6= ⊥

As we have (⊥, ε) ∈ CJsingletonK as well as

(infJsingletonK ⊥)|ε = Cons 〈⊥, NilBool〉 A ⊥ = JsingletonK⊥,

Theorem 4.3.1 would state that singleton is not minimally strict. Therefore, we are
looking for a less strict function and consider the following definition of JsingletonK.

JsingletonK v =

{
Cons 〈⊥, NilBool〉 if v = ⊥
JsingletonK v otherwise

Obviously, JsingletonK is less strict than JsingletonK. However, this function is not
monotonic as we have ⊥ v Cons 〈⊥,⊥〉, but

JsingletonK⊥ = Cons 〈⊥, NilBool〉
and

JsingletonK (Cons 〈⊥,⊥〉) = ⊥.

This example demonstrates that we may not change the definition of a function for
a single argument, in this case ⊥, as the resulting function is non-continuous. Thus,
we might consider the following definition, which does not change the behavior for
a single argument but for all arguments that are more defined than ⊥.

JsingletonK v =

{
Cons 〈⊥, NilBool〉 if v w ⊥
JsingletonK v otherwise

However, in contrast to the previous definition, this time JsingletonK is not less strict
than JsingletonK as the following example demonstrates. We have

JsingletonK (Cons 〈False,⊥〉) = Cons 〈⊥, NilBool〉
and

JsingletonK (Cons 〈False,⊥〉) = Cons 〈False, NilBool〉.

76

4.3 Minimally Strict Functions

This example shows that we have to take over the definition of JsingletonK if it yields
a more defined result than JsingletonK.

In order to define a function that shows this behavior we use the least upper
bound of the original result and the less strict result. Here and in the following,
we assume that function application by juxtaposition binds stronger than the binary
supremum operator t.

JsingletonK v =

{
JsingletonK v t Cons 〈⊥, NilBool〉 if v w ⊥
JsingletonK v otherwise

In this case the resulting function is continuous and less strict than the original func-
tion. In the general case of an arbitrary pair (v, rp) ∈ C f with inf f v A ⊥ we have to
spend some extra care. We have to guarantee that f is only more defined at the con-
sidered result position rp and not at other result positions. Otherwise the function
might become non-sequential. In the example at hand this task was easy because
we considered the result position ε. �

The following definition presents a function f that is continuous, sequential, and
less strict than f . In contrast to the previous example we use a substitution to only
refine the function with respect to result position rp. More precisely, we replace
the subterm of the result of f that is undefined but should be more defined by the
subterm of the supremum at the corresponding position.

Definition 4.3.4 (Less Strict Function): Let f ∈ Jσ→ τK and (v, rp) ∈ C f such that
(inf f v)|rp A ⊥. For all v′ ∈ JτK we define a function f (v,rp) : JσK→ JτK as follows.

f (v,rp) v′ :=

{
(f v′)[(f v′ t inf f v)|rp]rp if v′ w v
f v′ otherwise

In the following we mostly use f instead of f (v,rp). �

By employing the statements of Lemma 4.2.1 and Lemma 4.2.2 we can prove that
the first line is, in fact, equivalent to f v′ t (f v′)[(inf f v)|rp]rp.

To show that f is well-defined we have to show that the supremum f v′ t inf f v
always exists. Right after Definition 4.1.3 we have shown that for every value v there
exists a total value that is at least as defined as v. Therefore, for every value v′ ∈ JσK
there exists a total value tv ∈ JσK↑ with tv w v′. Furthermore, we have tv w v
because v′ w v. By monotonicity we have f tv w f v′. By definition of inf f we get
f tv w inf f v because inf f is an infimum of a set that, among other applications,
contains the application f tv. In a directed cpo every directed set has a least upper
bound. As { f v′, inf f v} is a directed set — f tv is an upper bound of this set — f v′

and inf f v have a least upper bound.

Example 4.3.5: Let us consider the functions andL from Example 2.2.1 and and from
Example 4.1.2 and their characteristic sets CJandLK and CJandK from Example 4.3.2. We

77

4 Mathematical Model of Minimally Strict Functions

have

(infJandLK 〈⊥,⊥〉)|ε =
l{

JandLK 〈False, False〉, JandLK 〈False, True〉
JandLK 〈True, False〉, JandLK 〈True, True〉

}
=

l
{False, False, False, True}

= ⊥
and

(infJandLK 〈True,⊥〉)|ε =
l
{JandLK 〈True, False〉, JandLK 〈True, True〉}

=
l
{False, True}

= ⊥.

By Lemma 4.3.7, which is one implication of Theorem 4.3.1, this implies that all
sequential functions g are not less strict than JandLK. Thus, JandLK is minimally strict.
On the other hand we have

(〈False,⊥〉, ε) ∈ CJandK

and
(infJandK 〈False,⊥〉)|ε =

l
{JandLK 〈False, False〉, JandLK 〈False, True〉}

=
l
{False, False}

= False
A ⊥

as well as
(〈⊥, False〉, ε) ∈ CJandK

and
(infJandK 〈⊥, False〉)|ε =

l
{JandLK 〈False, False〉, JandLK 〈True, False〉}

=
l
{False, False}

= False
A ⊥.

The unproven implication of Theorem 4.3.1 will show that this implies that and is
not minimally strict. We will prove this missing implication by showing that the ex-
istence of (v, rp) ∈ CJandK with (infJandK v)|rp A ⊥ implies that JandK(v,rp) is less strict
than JandK. Furthermore, the value of (infJandK v)|rp indicates how we can improve
and with respect to strictness. The implementation would be less strict if it would
yield False instead of ⊥ for the argument 〈False,⊥〉 or for the argument 〈⊥, False〉.
Note that there is no sequential function that satisfies both counter-examples.

As the pair (〈False,⊥〉, ε) as well as (〈⊥, False〉, ε) are counter-examples, there are
two possibilities to define functions that are less strict than and, namely,

JandK(〈False,⊥〉,ε)

78

4.3 Minimally Strict Functions

as well as
JandK(〈⊥,False〉,ε).

As an example, the following reasoning shows that the former function yields a
more defined result than JandK for the argument 〈False,⊥〉.

JandK(〈False,⊥〉,ε) 〈False,⊥〉
= (JandK 〈False,⊥〉)[(JandK 〈False,⊥〉 t infJandK 〈False,⊥〉)|ε]ε
= ⊥[(⊥t False)|ε]ε
= ⊥[False]ε
= False

Furthermore, it yields a result that is at least as defined as the result of JandK if we
consider an argument that is more defined than 〈False,⊥〉. In the case of JandK the
less strict definition agrees with the infimum, for example, we have

JandK(〈False,⊥〉,ε) 〈False, False〉
= (JandK 〈False, False〉)[(JandK 〈False, False〉 t infJandK 〈False,⊥〉)|ε]ε
= False[(Falset False)|ε]ε
= False[False]ε
= False.

Finally, if we consider a value that is less defined than or incomparable with the
value 〈False,⊥〉, the improved function yields the same result as the original func-
tion.

JandK(〈False,⊥〉,ε) 〈⊥, False〉 = JandK 〈⊥, False〉 = ⊥

In summary the function JandK(〈False,⊥〉,ε) is semantically equivalent to JandLK while
the function JandK(〈⊥,False〉,ε) is semantically equivalent to JandRK. �

As a first step towards a proof that f is well-defined, by case distinction we show
that f is indeed less strict than f . In particular, a function f (v,rp) yields a more de-
fined result than f if we consider the argument v.

Lemma 4.3.8: For all f ∈ Jσ→ τK if there exists v ∈ JσK and rp ∈ Pos (f v) such that
(inf f v)|rp A ⊥, then f (v,rp) is less strict than f .

The characteristic set of a function does not contain non-finite elements. For ex-
ample, if we consider a function f ∈ J[Bool]→ [Bool]K the characteristic set C f does
not contain infinite lists.

The following lemma states that the characteristic set only contains finite elements
where finite is defined in Definition 2.2.1. We prove this lemma by induction over
the structure of the characteristic set and by employing Lemma A.3.1.

79

4 Mathematical Model of Minimally Strict Functions

Lemma 4.3.9: For all (v, rp) ∈ C f the value v is finite.

To show that f is well-defined we have to prove that f is continuous, in other
words, f ∈ Jσ→ τK, and that f is sequential. First we show that f is a monotonic
and continuous function. We prove that f is monotonic by case distinction.

Lemma 4.3.10: Let f ∈ Jσ→ τK. If there exists (v, rp) ∈ C f such that (inf f v)|rp A ⊥,
then f (v,rp) is monotonic.

The following lemma shows that f is a continuous function. Note that we need
the monotonicity of f to show that 〈 f vi〉i∈I is a chain if we consider an arbitrary
chain 〈vi〉i∈I . Because we consider chain-complete partial orders, this implies that
the supremum ⊔

i∈I

(
f (v,rp) vi

)
exists. We prove that f is continuous by case distinction and the fact that the char-
acteristic set contains only finite values.

Lemma 4.3.11: Let f ∈ Jσ→ τK. If there exists (v, rp) ∈ C f such that (inf f v)|rp A ⊥,
then f (v,rp) is continuous.

To prove that f is sequential we have to prove a property about the characteristic
set C f . If we consider an arbitrary pair (v, rp), which is not an element of the charac-
teristic set, for the definition of f (v,rp) the resulting function might not be sequential.

Therefore, the sequentiality of f has to rely on some property of the characteristic
set. The following example provides a function f (v,rp) that is not sequential if we
use an arbitrary pair (v, rp) that is not an element of the characteristic set of f .

Example 4.3.6: For example, consider the function andL again. We have

(infJandLK 〈⊥, False〉)|ε = False A ⊥.

Although the pair (〈⊥, False〉, ε) is not in the characteristic set of andL, we consider
the function JandLK(〈⊥,False〉,ε) in the following. We have

JandLK(〈⊥,False〉,ε) 〈False,⊥〉 = JandLK 〈⊥, False〉 = False

as well as

JandLK(〈⊥,False〉,ε) 〈⊥, False〉
= (JandLK 〈⊥, False〉)[(JandLK 〈⊥, False〉 t infJandLK 〈⊥, False〉)|ε]ε
= ⊥[(⊥t False)|ε]ε
= False.

Therefore, the function considered above is not sequential as there exists no sequen-
tial position in 〈⊥,⊥〉 at position ε. This example demonstrates that we may not

80

4.3 Minimally Strict Functions

consider arbitrary pairs of values and result positions for the definition of f but only
pairs that belong to C f . �

Let us assume that we want to prove that f is sequential. That is, for every partial
value pv we have to provide a sequential position in pv. More precisely, we have to
provide some position p such that for all pv′ with pv′ w pv and pv′|p = ⊥ we have
(f pv′)|rp = ⊥. Now consider that there exists some partial value pv′ with pv′ w pv
and pv′|p = ⊥ such that pv′ w v while we have pv 6w v where (v, rp) ∈ C f is the
counter-example used to define f . By definition of f we have

f pv = f pv
but

f pv′ = (f pv′)[(f pv′ t inf f v)|rp]rp.

Furthermore, we have

(f pv′)|rp = ((f pv′)[(f pv′ t inf f v)|rp]rp)|rp

= (f pv′ t inf f v)|rp Lemma 4.2.2

= (f pv′)|rp t (inf f v)|rp continuity of · |rp

As (v, rp) is a counter-example, we have (inf f v)|rp 6= ⊥, and, therefore, (f pv′)|rp 6=
⊥. That is, although there exists a sequential position in pv with respect to f this
position is not sequential with respect to f . Thus, in this case we have to prove
that there exists another sequential position. More precisely, we need a sequential
position such that for all pv′ with pv′ w pv and pv′|p = ⊥ we have pv′ 6w v to avoid
the problem described above.

In Example 4.3.6 the role of pv is taken over by 〈⊥,⊥〉 and the role of pv′ is taken
over by 〈⊥, False〉. Furthermore, we have v = 〈⊥, False〉, and, therefore, pv 6w v but
pv′ w v. The definition of JandLK “destroys” the sequential position in 〈⊥,⊥〉 with
respect to andL, namely, position 1. But, as we did consider a pair (v, rp) that is not in
the characteristic there exists no other sequential position in 〈⊥,⊥〉, and, therefore,
JandLK is not sequential. In the following we illustrate why there always exists a
sequential position with the desired property if we only consider counter-examples
from the characteristic set.

The following lemma proves the property of the elements of the characteristic set
of a function we have just illustrated. In Lemma 4.3.13 we employ this property
to prove that f is a sequential function if f is a sequential function. We prove the
following lemma by employing Lemma A.3.1.

Lemma 4.3.12: Let p be a sequential position of f in pv at position rp and (v, rp) ∈ C f
with v 6v pv. Then there exists a sequential position p′ of f in pv at position rp such that
for all pv′ ∈ JτK with pv′ w pv and pv′|p′ = ⊥ we have pv′ 6w v.

With the help of the previous lemma we are ready to prove that f (v,rp) is sequential
if there exists (v, rp) ∈ C f such that (inf f v)|rp A ⊥.

81

4 Mathematical Model of Minimally Strict Functions

Lemma 4.3.13: Let f ∈ Jσ→ τK. If there exists (v, rp) ∈ C f such that (inf f v)|rp A ⊥,
then f (v,rp) is a sequential function. �

The following lemma finally proves that the presented criterion is necessary for
the existence of a less strict, sequential function and constitutes the missing halve to
the proof of Theorem 4.3.1.

Lemma 4.3.14: Let f ∈ Jσ→ τK be a sequential function. If there exists (v, rp) ∈ C f such
that (inf f v)|rp A ⊥, then there exists a sequential function g ∈ Jσ→ τK with g ≺ f .

Proof: As there exists (v, rp) ∈ C f with (inf f v)|rp A ⊥, we can define f (v,rp) and

we have f ≺ f by Lemma 4.3.8. By Lemma 4.3.10 and Lemma 4.3.11 we have f ∈
Jσ→ τK and by Lemma 4.3.13 f is sequential. �

82

5 Implementation of Sloth
In this chapter we present the implementation of Sloth. More precisely, we do not
present the implementation by means of source code but the basic approach in an
abstract manner and by means of examples.

Sloth can be used to check whether a function is unnecessarily strict. For example,
consider the Haskell implementation of the function and from Example 4.1.2.

and :: Bool→ Bool→ Bool
and False False = False
and False True = False
and True False = False
and True True = True

Sloth provides a function that is called strictCheck to check whether a function is
minimally strict for inputs up to a specific size. The size of a term is the number of
constructors in the term. For example, the following application checks whether and
is minimally strict for all pairs of Boolean values up to size five.

> strictCheck and 5
2: \False ⊥ -> False
Finished 7 tests.

Sloth reports one counter-example that states that the evaluation of the application
and False ⊥ yields ⊥ while there exists a less strict implementation that yields False
instead. The highlighting on the right-hand side of -> denotes that there exists an
implementation that yields the highlighted value while the current implementation
yields ⊥ instead of the highlighted value.

The remainder of this chapter shows how Sloth enumerates test cases and checks
whether a test case is a counter-example. Here, a test case is a value of the argument
type of the function. A counter-example is a test case together with the current result
of the function for this argument and a proposed, more defined, result. In contrast
to Chapter 4, Sloth does not use an uncurried notation but the Haskell style curried
notation for test cases. In the following, we use both notations synonymously. For
example, the counter-example for and consists of the test case 〈False,⊥〉, the current
result ⊥, and the proposed result False. Furthermore, in this chapter we present
functions in Haskell syntax and abstain from presenting their counterparts in our
simple functional language. Besides, we use Haskell-style list constructors [] and
(:) instead of Nil and Cons 〈·, ·〉 to emphasize the connection between the output of
Sloth and our considerations on the level of semantics.

We refer to the symbol ⊥ as error because this symbol, in fact, denotes a run-time
error in this context. Nevertheless, it could also denote a non-terminating compu-
tation as the considered functions behave equally for run-time errors and non-ter-
minating computations. This observation only holds if we disregard certain kinds

83

5 Implementation of Sloth

of exception handling mechanisms as a function otherwise could behave differently
for a run-time error than for a non-terminating computation.

As Theorem 4.3.1 proves, to check whether a function f is minimally strict, we
have to check whether we have (inf f v)|rp = ⊥ for all pairs (v, rp) of the charac-
teristic set of f . A pair (v, rp) consists of a value v of the argument type of f and a
position rp that references a sub-value of the value f v. The vertical bar followed by
the position rp denotes the projection to position rp. For now we consider inf f v as
some abstract value and explain its definition in more detail later.

Intuitively, a pair (v, rp) is an element of the characteristic set of a function f , if
the function may yield a more defined result for the argument v at result position
rp without contradicting sequentiality. That is, if we consider a function f ′ that is
equivalent to f but yields a more defined result for the argument v at result position
rp, then f ′ is still sequential. Besides, for all elements (v, rp) of the characteristic set
the current implementation of f yields an error for the argument v at result position
rp. Thus, yielding a more defined result for an element (v, rp) means yielding a
result that is not an error. In summary, the elements of the characteristic set are
candidates for making a function less strict. In Section 5.1 we illustrate how Sloth
enumerates the elements of the characteristic set.

To check whether there exists a sequential function that is less strict than a function
f , we check whether we have (inf f v)|rp = ⊥ for all pairs (v, rp) of the characteristic
set. Intuitively, the value (inf f v)|rp is not an error if f yields similar results at result
position rp for arguments that are more defined than v. The value (inf f v)|rp repre-
sents this similarity. As the function behaves similar for all more defined inputs, we
can define a function that yields this similarity instead of an error for the argument
v at result position rp. In other words, there exists a function that yields more parts
of the result of f by inspecting the same part of its argument. In Section 5.2 we show
how Sloth checks whether we have (inf f v)|rp = ⊥.

5.1 Enumerating Test Cases

So, how can we enumerate the elements of the characteristic set of a function f ?
If a pair (v, rp) is an element of the characteristic set, by Definition 4.3.3 the value
v is either the least element of the argument type of f or there exists another pair
(v′, rp′) in the characteristic set such that v′ lp v for some position p. For now we
ignore the additional requirements on rp and rp′ that are set up by the definition of
the characteristic set.

Two values v and v′ are related by v lp v′ if we get v′ from v by replacing an
occurrence of an error in v at position p by a constructor applied to errors only. Let
us consider the relation lp for values of type Bool × Bool. We can represent this
relation lp by a tree as shown in Figure 5.1.1. The root note of the tree is the least
element of the corresponding type. Each value is followed by an argument position
that contains an error, in other words, if a value v is followed by a position p, we
have v|p = ⊥. Furthermore, if two subsequent values v and v′ have an intermediate
argument position p, we have v lp v′. For example, in Figure 5.1.1 between the

84

5.1 Enumerating Test Cases

〈⊥,⊥〉 1 〈False,⊥〉 2 〈False, False〉

〈False, True〉

〈True,⊥〉 2 〈True, False〉

〈True, True〉

2 〈⊥, False〉 1 〈False, False〉

〈True, False〉

〈⊥, True〉 1 〈False, True〉

〈True, True〉

Figure 5.1.1: Tree representing the Relation lp for Pairs of Boolean Values.

values 〈True,⊥〉 and 〈True, True〉 there is a node labeled with 2 because we have
〈True,⊥〉l2 〈True, True〉.

If we omit the position nodes, the tree in Figure 5.1.1 resembles the Hasse diagram
for the ordering v for values of type Bool× Bool. The position nodes are actually
redundant as we can always deduce the position from the values of the preceding
and the subsequent value. Nonetheless, we keep these redundant nodes as it makes
this information explicit. Additionally, while the corresponding Hasse diagram is
a directed acyclic graph, for simplicity, here as well as in the implementation of
Sloth we use trees. As future work, we might check whether the performance of
the implementation improves when we switch from trees to directed acyclic graphs.
However, in most cases Sloth only generates small parts of these trees because of
lazy evaluation.

If we consider a type that has infinitely many values, the corresponding tree might
have infinitely many nodes as well. Therefore, we cut the tree at the depth that
corresponds to the number of constructors passed as second argument to strictCheck.
If a value v precedes a value v′ in the tree that represents l, then v has exactly one
constructor less than v′.

To calculate the characteristic set — as we will later see — and to calculate the
value (inf f v)|rp, we need the results of applications of f to values that are more
defined than some value v. In Figure 5.1.1 the subtree that is rooted at some value
v contains all values that are more defined than v. Therefore, we add the results of
applying the considered function to each node of the tree that represents the relation
l.

As an example let us consider the function andL, which is the Haskell implemen-
tation of the function with the same name from Example 2.2.1.

85

5 Implementation of Sloth

λ⊥1 ⊥2 → ⊥1 1 λFalse ⊥2 → False

λTrue ⊥2 → ⊥2 2 λTrue False→ False

λTrue True→ True

2 λ⊥1 False→ ⊥1 1 λFalse False→ False

λTrue False→ False

λ⊥1 True→ ⊥1 1 λFalse True→ False

λTrue True→ True

Figure 5.1.2: Tree representing the Relation lp for Pairs of Boolean Values with Re-
sults of Applying andL to these Values.

andL :: Bool→ Bool→ Bool
andL False = False
andL True x = x

Instead of a node 〈False,⊥〉, with respect to the Boolean conjunction andL we con-
sider a node of the form λFalse ⊥ → False. The value on the left-hand side of →
is the argument and the value on the right-hand side is the result of applying the
considered function to this argument. We refer to this kind of node as mapping node.

Figure 5.1.2 shows the result of applying andL to every node of the tree in Fig-
ure 5.1.1. To gain additional information we label errors in the argument value with
their position in the argument by using positions as presented in Definition 4.2.2. In-
tuitively, an error like ⊥1 is represented by a run-time error that carries the position
1 as error message. By employing exception handling mechanisms, we regain these
error messages from the result of an application as it is modeled by the exception
semantics, presented in Figure 4.2.6. For example, as andL performs pattern match-
ing on its first argument, the resulting error has the same label as the one in the
first argument, namely, position 1. Using this mechanism, for every result position
that contains an error we can determine the corresponding demanded position. For
example, as we have JandLK 〈⊥1,⊥2〉 = ⊥1, by Definition 4.2.8 position 1 is the de-
manded position in 〈⊥,⊥〉 at result position ε with respect to andL. The demanded
position is the position in the argument that is evaluated to head normal form if
we evaluate the value at a certain result position to head normal form. Note that
the definition of demanded positions requires that every label of an error is unique.
This requirement is satisfied as each error is labeled with its position in the argument
value.

The tree in Figure 5.1.2 does not contain the nodes λFalse False → False as well
as λFalse True → False. We omit successors of mapping nodes whose result value is
total. By monotonicity of the considered functions we know that all successors of a

86

5.1 Enumerating Test Cases

λ⊥1 ⊥2 → ⊥1

ε

result position node

1 λFalse ⊥2 → False

λTrue ⊥2 → ⊥2

ε 2 λTrue False→ False

λTrue True→ True

mapping node

2

argument position nodes

λ⊥1 False→ ⊥1

ε 1 λFalse False→ False

λTrue False→ False

λ⊥1 True→ ⊥1

ε 1 λFalse True→ False

λTrue True→ True

Figure 5.1.3: The Refinement Tree for andL, the Highlighted Part represents the Char-
acteristic Set for andL.

node like this will yield the same result. For example, as we have JandLK 〈False,⊥〉 =
False we get JandLK 〈False, False〉 = False as well as JandLK 〈False, True〉 = False.

Our final goal is to calculate the characteristic set of andL. As an element of the
characteristic set is a pair consisting of a value and a result position, we have to add
result positions to the tree in Figure 5.1.2. Intuitively, to calculate the characteristic
set, for every value v and every result position rp such that (f v)|rp = ⊥, we have to
identify all corresponding sequential positions. Therefore, we define a tree in which
every value v is followed by all eligible result positions. Each result position is itself
followed by all possible sequential positions with respect to the preceding result po-
sition and the preceding value. This way we define a tree that represents a superset
of the characteristic set. We refer to this tree as refinement tree. To calculate the char-
acteristic set we prune the refinement tree. Figure 5.1.3 presents the refinement tree
for andL. In the following, we explain the three kinds of nodes of a refinement tree
in detail.

mapping node A mapping node is labeled with a value of the argument type and
the result of the function for this argument. For example, the root node in
Figure 5.1.3, labeled with λ⊥1 ⊥2 → ⊥1, is a mapping node. To gain additional
information we label errors in the argument value with their position in the
argument. Using these labels, at each result position we can easily identify the
corresponding demanded position.

87

5 Implementation of Sloth

λv1 → r1

mapping nodes

rp

result position node

p

argument position node

λv2 → r2

rp′ . . .

Figure 5.1.4: A Path of a Refinement Tree.

result position node For every position of an error in the result value of a mapping
node, the node has a successor that is labeled with this position. We refer to
this kind of nodes as result position nodes. For example, the mapping node
labeled with λ⊥1 ⊥2 → ⊥1 has only one child, labeled with ε, because ε is the
only position of an error in the result value of this mapping node, namely, ⊥1.
Result position nodes of a refinement tree are ordered by the position ordering
≤. If a result position node labeled with rp is an ancestor of a result position
node labeled with rp′, then rp is a prefix of rp′. We may omit other result
positions by the definition of the characteristic set as we will observe soon.

argument position node For every position of an error in the argument value of a
mapping node, the corresponding result position nodes have a successor that
is labeled with the position of the error in the argument value. We refer to
this kind of nodes as argument position nodes. For example, the successors of
the topmost result position node, labeled with ε, are labeled with 1 and 2 be-
cause 1 and 2 are the positions of errors in the argument value of the preceding
mapping node, namely, λ⊥1 ⊥2 → ⊥1. In Figure 5.1.3 we additionally mark
argument position nodes that correspond to demanded positions with respect
to the preceding result position node.

In summary, on a path between two mapping nodes there is always a result posi-
tion node and an argument position node as illustrated in Figure 5.1.4. Here v1 and
v2 are argument values and r1 and r2 are result values. Furthermore, rp is a result
position such that r1|rp = ⊥, rp′ is a result position such that r2|rp′ = ⊥, and p is an
argument position such that v1|p = ⊥.

By definition of the characteristic set, the root node of a refinement tree is an ele-
ment of the characteristic set. More precisely, all pairs that contain the argument of
the root mapping node and the result position of a subsequent result position node
are elements of the characteristic set. In the case of the refinement tree for andL the
pair (〈⊥,⊥〉, ε) is an element of the characteristic set, because ε is the result position
of a result position node that succeeds the mapping node λ⊥1 ⊥2 → ⊥1.

When we consider a path as shown in Figure 5.1.4, if the pair (v1, rp) is in the
characteristic set, then the pair (v2, rp′) is in the characteristic set as well if the step
from v1 to v2 is sequential. Furthermore, rp′ has to be a prefix of rp and we need

88

5.1 Enumerating Test Cases

(f v2)|rp′ = ⊥. The last two requirements are satisfied by the definition of the re-
finement tree. Therefore, if the pair (v1, rp) is an element of the characteristic set,
we only have to check whether the step from v1 to v2 is sequential to observe that
(v2, rp′) is also an element of the characteristic set. By definition of the refinement
tree we have v1 lp v2 and p is either a sequential or a non-sequential position. That
is, all argument position nodes either correspond to a sequential or a non-sequen-
tial position by the definition of the refinement tree. In the rest of this section we
illustrate how we identify whether a position is sequential or non-sequential.

To determine additional elements of the characteristic set in Figure 5.1.3 besides
the root node, we have to identify sequential positions in 〈⊥,⊥〉 at result position ε.
Position 1 and position 2 are possible sequential positions in 〈⊥,⊥〉 at result position
ε. Lemma 4.2.5 states that all demanded positions are sequential positions. Thus,
we can identify one sequential position easily. Position 1 is a sequential position
in 〈⊥,⊥〉 at result position ε because it is a demanded position in 〈⊥,⊥〉 at result
position ε. This way we can quite efficiently identify one sequential position for
every mapping node and every subsequent result position node.

As we have observed in Example 4.2.9, there are sequential positions that are not
demanded positions. Therefore, we have to check whether any of the other possible
sequential positions is indeed a sequential position. For example, position 2 might
be a sequential position in 〈⊥,⊥〉 at result position ε. To eliminate non-sequen-
tial positions, Sloth searches for witnesses that prove that an argument position is a
non-sequential position. For example, let us consider the possible sequential posi-
tions in 〈⊥,⊥〉 at result position ε, namely, position 2. The mapping node labeled
with λFalse ⊥2 → False proves that position 2 is not a sequential position in 〈⊥,⊥〉
at result position ε as we have already observed in Example 4.2.5. To show that p is
a non-sequential position in v at result position rp, by definition of non-sequential
positions we have to find a value v′ such that v′ w v and v′|p = ⊥ but (f v′)|rp 6= ⊥.
In the particular case at hand we have 〈False,⊥〉 w 〈⊥,⊥〉 and

〈False,⊥〉|2 = ⊥ but (JandLK 〈False,⊥〉)|ε 6= ⊥.

Therefore, position 2 is not a sequential position in 〈⊥,⊥〉 at result position ε with
respect to andL.

To check whether a position p is a non-sequential position in a value v at position
rp, Sloth searches the subtree for mapping nodes of the form λv′ → r′ such that

v′|p = ⊥ and r′|rp 6= ⊥.

A mapping node with this property shows that position p is not a sequential position
in v at result position rp. Note that we have v′ w v as v′ is an element of the subtree
that is rooted at the mapping node, whose argument is v. Furthermore, note that a
single witness might prove that a couple of argument positions are non-sequential.

We do not have to randomly search the tree for witnesses. Instead we can employ
the information that is gained by identifying demanded positions. Because position
1 is the demanded position and, therefore, a sequential position in 〈⊥,⊥〉, at result
position ε we have JandLK 〈⊥, v〉 = ⊥ for all values v of type Bool. Therefore, we

89

5 Implementation of Sloth

will not discover a witness (arguments v1 and v2 such that JandLK 〈v1, v2〉 6= ⊥)
as long as the first argument is ⊥. When we search a tree for witnesses, at result
position nodes we only consider subtrees with respect to argument position nodes
whose positions are demanded positions. For example, we consider the mapping
node λ⊥1 ⊥2 → ⊥1. Because the argument position node labeled 1 is marked
as demanded position, we only search the subtree that is rooted at this argument
position node for witnesses.

As position 2 is not a sequential position in 〈⊥,⊥〉 at result position ε, we only
keep the highlighted part of the refinement tree in Figure 5.1.3. In this case the
resulting tree is already the characteristic set. For each result position node the tree
contains only a single argument position node, which is the demanded position in
each case.

If we consider a function whose argument type has infinitely many values, check-
ing whether a position is non-sequential cannot be done this way. We might simply
miss a witness because we do not consider arguments of sufficiently large sizes. For
now, we ignore this case but consider it in Section 5.4.

5.2 Checking Test Cases

After we have identified the tree that represents the characteristic set, we have to
check whether we have (inf f v)|rp = ⊥ for all argument values v of mapping nodes
and all subsequent result positions rp. All pairs (v, rp) with (inf f v)|rp 6= ⊥ are
counter-examples. As we have

inf f v =
l
{ f tv | tv ∈ JτK↑, v v tv},

for every value v in the tree we have to compute the set { f tv | tv ∈ JτK↑, v v tv}.
For example, to check whether mapping node λ⊥1 ⊥2 → ⊥1 together with result
position ε is a counter-example we search the corresponding subtree for mapping
nodes whose arguments are total values. In this particular case, we apply andL to
〈False,⊥〉, 〈True, False〉, and 〈False, False〉 and collect the values False, True, and False.
This way we observe that we have

(infJandLK 〈⊥,⊥〉)|ε = (
l
{False, False, True})|ε = ⊥|ε = ⊥,

and, hence, the partial value 〈⊥,⊥〉 together with result position ε is not a coun-
ter-example. When we search for total values, we, again, only consider demanded
positions. Note that the first argument, namely, 〈False,⊥〉, is not a total value. A
mapping node whose result value is a total value does not have any successors.

In the same way as we have observed that (〈⊥,⊥〉, ε) is not a counter-example, we
observe that all elements of the characteristic set of andL are no counter-examples,
thus, by Theorem 4.3.1 andL is minimally strict.

The argument type of andL has only finitely many values. If we consider func-
tions whose argument type has infinitely many values, we are faced with additional
problems. In the following we present the approach that is used to address these

90

5.2 Checking Test Cases

problems. We illustrate that Sloth distinguishes the following kinds of counter-ex-
amples. Sloth uses the same highlighting as the words “potential” and “definite” to
indicate the corresponding kind of counter-example.

definite counter-example A definite counter-example stays a counter-example no
matter what size we use for the test cases.

::::::::::
potential counter-example A potential counter-example might be no counter-exam-

ple if we consider inputs of larger sizes. That is, there might be a size greater
than the current size such that Sloth does not report the potential counter-ex-
ample anymore.

In the following we explain the difference between the two kinds of counter-ex-
amples in detail. If the argument type τ of a function f has infinitely many elements,
the set

Total v := { f tv | tv ∈ JτK↑, v v tv}
might be infinite for some value v of type τ. To check whether an element of the char-
acteristic set is a counter-example, we have to calculate the greatest lower bound of
the set Total v. If we approximate this set, that is, we calculate a set T′ that is a proper
subset of Total v, we get

d
T′ w

d
Total v because the operator

d
is monotonically

decreasing. Let us consider that we have discovered a counter-example, namely, a
pair (v, rp) with (

d
T′)|rp A ⊥. If we consider an approximation T′′ that is more

precise than the approximation T′, we might have
l

T′ A
l

T′′ and (
l

T′)|rp = ⊥.

Thus, with respect to the more precise approximation the pair (v, rp) is not a coun-
ter-example anymore.

The tool presented by Chitil (2006) classifies all arguments v with
d

T′ A f v as
unnecessarily strict. In contrast, we try to identify counter-examples that stay coun-
ter-examples even if we consider an arbitrarily precise approximation. Consider the
following definition.

potential :: [Bool]→ Bool
potential [] = True
potential (: xs) = potential xs

Obviously, this function is unnecessarily strict. It performs pattern matching al-
though it yields True for all total inputs. Sloth reports the following counter-exam-
ples if we check potential for Boolean lists up to size three.

> strictCheck potential 3
1: \⊥ ->

:::::
True

3: \(⊥:⊥) ->
:::::
True

Finished 7 tests.

In contrast to the counter-examples for intersperse from Section 3.2, these counter-ex-
amples are potential counter-examples. That is, there might be a size greater than

91

5 Implementation of Sloth

three such that Sloth does not report some of the counter-examples it reports for size
three. One way to confirm a potential counter-example is to increase the size. How-
ever, Sloth still reports only potential counter-examples for the function potential if
we consider arguments up to size four. The counter-examples even stay potential
no matter what size we use.

If we take a closer look at the test cases, we might wonder why the largest coun-
ter-example has only one constructor although we have checked potential for lists up
to size three, that is, lists with at most three constructors. When we check potential
for lists up to size three, using verboseCheck, we get the following result. In contrast
to strictCheck, the function verboseCheck additionally reports successful test cases.

> verboseCheck potential 3
1: \⊥ ->

:::::
True

2: \[] -> True
3: \(⊥:⊥) ->

:::::
True

4: \(⊥:[]) -> True
5: \(⊥:⊥:⊥) -> ?
6: \(⊥:⊥:[]) -> True
7: \(⊥:⊥:⊥:⊥) -> ?
Finished 7 tests.

As the output illustrates that current Sloth implementation checks lists up to size
three but does show all results when we use strictCheck.

If the size of the approximation T′ of the set Total v is very small, the result is quite
likely to be wrong. For example, if we consider a set T′ with a single element to
approximate the set Total v, then we most certainly have (

d
T′)|rp A ⊥. Therefore,

Sloth only considers approximations of the set Total v with at least three elements.
The question marks on the right-hand sides of -> state that the number of elements
of the approximation is too small in these cases. By using a configuration we can
specify the minimum number of elements for the approximation of the set Total v.
Although there are probably more useful heuristics than demanding a fixed number
of elements, we have not explored other heuristics.

Let us go back to the problem of identifying definite counter-examples. Consider
the following variation of the function potential.

potential′ :: [Bool]→ Bool
potential′ (: :) = False
potential′ = True

This function is semantically equivalent to potential with respect to arguments up
to size two. Therefore, if we only consider total values up to size two, potential′

is unnecessarily strict. The function is supposed to yield the value True without
inspecting its argument as potential′ yields True for all total arguments up to size
two. However, if we consider the total value [False, False], then we observe that
potential′ is not unnecessarily strict as we have Jpotential′K [False, False] = False. That
is, obviously, in general, we cannot decide whether a test case is a counter-example
by only considering a finite number of total values.

92

5.2 Checking Test Cases

We can manually verify a potential counter-example. A potential counter-exam-
ple is definitely a counter-example if all more defined total inputs lead to results
that are at least as defined as the recommended result. For example, consider the
first counter-example for potential. For all total inputs that are more defined than
⊥ the function potential yields True, which is as defined as the recommended result
True. Therefore, the first counter-example is definitely a counter-example. Note that
in most cases it is easy to verify a potential counter-example as we only have to
consider the behavior of a function with respect to total values.

Although some counter-examples are only potential counter-examples, there are
cases in which a finite approximation is sufficient to identify a definite counter-ex-
ample. For example, consider the following function.

definite :: [Bool]→ [Bool]
definite [] = [True]
definite (: xs) = True : definite xs

Both counter-examples for definite are definite counter-examples as it is indicated by
the highlighting.

> strictCheck definite 2
1: \⊥ -> True:⊥
3: \(⊥:⊥) -> True:True:⊥
Finished 5 tests.

Sloth employs monotonicity to identify definite counter-examples. Let us consider
the first counter-example. Sloth observes that we have

JdefiniteK [] = True : []
as well as

JdefiniteK (⊥ :⊥) = True :⊥.

Informally, these equations state that, no matter whether the argument of definite is
an empty or a non-empty list, the result is a list with at least one element whose
first element is True. We can formally justify this statement as follows. As definite is
monotonic, we have

JdefiniteK v w True :⊥
for all Boolean lists v such that v w ⊥ :⊥. To check whether definite is unnecessarily
strict for the argument ⊥ at result position ε we have to show that the following
inequality holds.

(infJdefiniteK ⊥)|ε A ⊥.

We can show this strict inequality by the following estimate.

(infJdefiniteK ⊥)|ε =
l
{JdefiniteK tv | tv ∈ J[Bool]K↑,⊥ v tv}

= JdefiniteK [] u
l
{JdefiniteK tv | tv ∈ J[Bool]K↑,⊥ :⊥ v tv}

93

5 Implementation of Sloth

= True : [] u
l
{JdefiniteK tv | tv ∈ J[Bool]K↑,⊥ :⊥ v tv}

w True : [] u JdefiniteK (⊥ :⊥)
= True : [] u True :⊥
= True :⊥

Hence, we can observe that definite is unnecessarily strict for the input ⊥ by only
considering two applications. As a side effect this approach allows us to evaluate
only a small part of the refinement tree to check whether an application is unneces-
sarily strict. More precisely, to observe that the application JdefiniteK⊥ is unneces-
sarily strict we even do not have to search the tree for applications of definite to total
values. Instead, we only have to evaluate a single level of the tree as the applications
JdefiniteK [] and JdefiniteK (⊥ :⊥) already provide sufficient information.

In the case of definite the estimate is actually an equality. However, there are cases
in which we get a strict inequality instead. As a consequence, the counter-examples
reported by Sloth may not agree with the behavior of a minimally strict implementa-
tion. For example, consider the following definition, which is a variation of definite.

definite′ :: [Bool]→ [Bool]
definite′ [] = [True, True]
definite′ (: xs) =

True : case xs of
[] → [True]

: ys→ True : definite′ ys

If we check this function, Sloth reports the following counter-examples.

> strictCheck definite’ 2
1: \⊥ -> True:⊥
3: \(⊥:⊥) -> True:True:⊥
Finished 5 tests.

That is, although a minimally strict implementation obviously yields True : True :⊥
for the argument⊥, Sloth proposes the result True :⊥ as the following strict inequal-
ity illustrates.

(infJdefinite′K ⊥)|ε =
l
{Jdefinite′K tv | tv ∈ J[Bool]K↑,⊥ v tv}

= Jdefinite′K [] u
l
{Jdefinite′K tv | tv ∈ J[Bool]K↑,⊥ :⊥ v tv}

= True : True : [] u
l
{Jdefinite′K tv | tv ∈ J[Bool]K↑,⊥ :⊥ v tv}

A True : True : [] u True :⊥
= True :⊥

This is the price that we have to pay for identifying counter-examples as definite
and for evaluating smaller parts of the tree.

94

5.3 Presenting Counter-Examples

5.3 Presenting Counter-Examples

As we have observed in Chapter 4, if we consider only sequential functions, we
are looking for minimal elements with respect to the less-strict ordering. Therefore,
there might be several less strict implementations for one function that are contra-
dictory to each other.

If we check and using verboseCheck, Sloth does not present all elements of the char-
acteristic set of and (see Example 4.3.2 for the characteristic set of and). Instead, Sloth
reports the following test cases.

> verboseCheck and 4
1: \⊥ ⊥ -> ⊥
2: \False ⊥ -> False
3: \True ⊥ -> ⊥
4: \False False -> False
5: \False True -> False
6: \True False -> False
7: \True True -> True
Finished 7 tests.

Figure 5.3.1 shows the tree that is generated by Sloth to check whether and is min-
imally strict. In this case the tree does not contain any witnesses that a position is
non-sequential. When we consider a function whose argument type has only finitely
many elements, like and, the absence of a witness implies that all remaining positions
are sequential. We will later consider the case of a function whose argument type
has infinitely many values.

The highlighted pairs of mapping node and result position node in Figure 5.3.1 are
counter-examples. As we have observed in Example 4.3.5, there exists no sequen-
tial Boolean conjunction that satisfies both counter-examples. Instead of presenting
all, potentially contradictory, counter-examples, Sloth presents one set of test cases
that contains a counter-example and is completely satisfiable by a single sequential
implementation.

By employing the structure of a refinement tree we can quite easily identify sets
that are satisfiable by a single sequential function. For every result position node we
may only consider a single argument position node. In other words, for every result
position node we only keep a single successor and drop the other successors. The
argument positions that remain after this process resemble the demanded positions
of the proposed less strict implementation. Furthermore, the resulting tree resem-
bles a kind of case cascade that implements the pattern matching of the less strict
implementation up to a given size.

In general, we may not keep more than one argument position node per result
position node as we otherwise might propose an implementation that is not sequen-
tial. For example, let us assume that we choose argument position 1 at the topmost
result position node of the tree in Figure 5.3.1. In this case we are supposed to im-
plement a function and′ such that Jand′K 〈False,⊥〉 6= ⊥. By sequentiality we have
Jand′K 〈⊥, v〉 = ⊥ for all Boolean values v. Therefore, we have to drop all counter-ex-
amples that occur in the tree rooted at argument position 2 and do not occur in the

95

5 Implementation of Sloth

λ⊥1 ⊥2 → ⊥1

ε 1 λFalse ⊥2 → ⊥2

ε 2 λFalse False→ False

λFalse True→ False

λTrue ⊥2 → ⊥2

ε 2 λTrue False→ False

λTrue True→ True

2 λ⊥1 False→ ⊥1

ε 1 λFalse False→ False

λTrue False→ False

λ⊥1 True→ ⊥1

ε 1 λFalse True→ False

λTrue True→ True

Figure 5.3.1: The Refinement Tree for and and two Counter-Examples.

tree rooted at argument position 1 as these are exactly the applications of the form
Jand′K 〈⊥, v〉 for v 6= ⊥. We can apply the same argument to show that we may only
choose a single argument position if we consider an arbitrary result position node
of an arbitrary refinement tree.

Thus, in Figure 5.3.1, with respect to the outermost result position node, we have
to select either the subtree that is rooted at argument position 1 or the subtree that is
rooted at argument position 2. The subtree that is rooted at argument position 1 re-
sembles andL while the subtree that is rooted at argument position 2 resembles andR.
If there are multiple subtrees that contain counter-examples, we apply the following
approach. First we select the subtree that contains the smallest counter-example
with respect to the number of constructors. In other words, if there are two subtrees
that contain counter-examples we choose the tree whose counter-example occurs in
the smaller depth. In the case of and both counter-examples occur in depth one.

If one of the argument positions in question is a demanded position, we consider
the corresponding subtree. That is, in the case of and we choose argument position
1 and not position 2 because position 1 is the demanded position of 〈⊥,⊥〉 at re-
sult position ε. Note that and first performs pattern matching on its first argument
because of the left-to-right pattern matching order used by Haskell. By preferring
demanded positions we keep the changes with respect to the pattern matching order
minimal that have to be applied to get a less strict implementation.

96

5.4 Identifying Sequential Positions

If none of the argument positions in question is a demanded position, we choose
the leftmost argument position. More precisely, we choose the smallest argument
position with respect to a lexicographical order on positions. We think that this de-
cision is the most natural one as it reflects the default left-to-right pattern matching
order of Haskell.

5.4 Identifying Sequential Positions

As we have observed before, if we consider a function whose argument type has
infinitely many values, the absence of a witness does not imply that a position is
sequential. We might simply have to consider arguments of larger sizes to find a
witness and, hence, observe that a position is non-sequential.

In this section we introduce a third highlighting, which highlights a whole test
case. In contrast to previous examples, sometimes we are not able to decide whether
a test case is an element of the characteristic set. Therefore, we introduce the fol-
lowing concept of potential test cases. Sloth uses the same highlighting as the word
“potential” to indicate that a test case is a potential test case.

potential test case A potential test case might be no test case anymore if we consider
inputs of larger sizes.

As an example, let us consider the following function that takes two Boolean lists
and checks whether its first argument is at least as long as its second argument.

greaterEqual :: [Bool]→ [Bool]→ Bool
greaterEqual [] [] = True
greaterEqual (:) [] = True
greaterEqual (: xs) (: ys) = greaterEqual xs ys

If we check greaterEqual, Sloth yields the following counter-example that is marked
as potential test case.

> strictCheck greaterEqual 3
2: \⊥ [] -> True
Finished 7 tests.

Thus, the counter-example might be no test case anymore if we consider inputs of a
larger size. Therefore, the reported counter-example might be no counter-example
anymore if we consider inputs of larger sizes. More precisely, there is no witness
that proves that position 2 is a non-sequential position in 〈⊥,⊥〉 at result position
ε if we consider arguments up to size three. Hence, position 2 might also be a se-
quential position in 〈⊥,⊥〉 at result position ε. If it is a sequential position, then
the pair (〈⊥, []〉, ε) is an element of the characteristic set and, thus, the presented
counter-example is indeed a counter-example. If, on the other hand, position 2 is
a non-sequential position in 〈⊥,⊥〉 at result position ε, then the pair (〈⊥, []〉, ε) is
not an element of the characteristic set and, thus, the counter-example is not a coun-
ter-example.

97

5 Implementation of Sloth

Nevertheless, for every non-sequential position there exists a finite witness that
shows that this position is non-sequential. If a test case is not an element of the
characteristic set, by checking the function for arguments up to a larger size, Sloth
will eventually discover this witness and discard the test case. However, Sloth might
as well never discard the test case, no matter which size we use, as the corresponding
position is indeed a sequential position.

In fact, Sloth does not identify the test case for greaterEqual as a potential test case
because it applies an additional criterion to identify sequential positions. The only
way to identify a sequential position is to observe that it is a demanded position. For
example, we have JgreaterEqualK 〈⊥1,⊥2〉 = ⊥1, and, hence, position 1 is a sequential
position in 〈⊥,⊥〉 at result position ε. So, why is position 2 a sequential position in
〈⊥,⊥〉 at result position ε as well? After greaterEqual has performed pattern match-
ing on its first argument, it performs pattern matching on its second argument. In
other words, we have

JgreaterEqualK 〈[],⊥2〉 = ⊥2

and
JgreaterEqualK 〈(⊥1.1 :⊥1.2),⊥2〉 = ⊥2.

That is, if we refine the first argument, in both cases position 2 becomes a demanded
position. As every demanded position is also a sequential position, we have

JgreaterEqualK 〈[],⊥〉 = ⊥
and

JgreaterEqualK 〈v,⊥〉 = ⊥

for all lists v with v w ⊥ :⊥. As we, furthermore, have JgreaterEqualK 〈⊥,⊥〉 = ⊥, we
get JgreaterEqualK⊥v⊥ = ⊥ for all lists v. Thus, position 2 is also a sequential posi-
tion in 〈⊥,⊥〉. This way, Sloth observes that the test case (〈⊥, []〉, ε) is definitely an
element of the characteristic set of greaterEqual as position 2 is a sequential position
in 〈⊥,⊥〉 at result position ε.

However, even with this additional approach to identifying non-sequential posi-
tions, in some cases Sloth only reports potential test cases. For example, consider
the following constant function.

constBool :: [Bool]→ Bool→ Bool
constBool [] b = b
constBool (: bs) b = constBool bs b

All test cases for constBool are potential elements of the characteristic set.

> strictCheck constBool 5
2: \⊥ False ->

::::::
False

3: \⊥ True ->
:::::
True

5: \(⊥:⊥) False ->
::::::
False

7: \(⊥:⊥) True ->
:::::
True

Finished 15 tests.

98

5.4 Identifying Sequential Positions

Position 1 is a sequential position in 〈⊥,⊥〉 because it is a demanded position in
〈⊥,⊥〉, in other words, we have JconstBoolK 〈⊥1,⊥2〉 = ⊥1. However, in contrast to
greaterEqual, the function constBool does not demand its second argument after it has
performed pattern matching on its first argument. We have

JconstBoolK 〈[],⊥2〉 = ⊥2

but
JconstBoolK 〈(⊥1.1 :⊥1.2),⊥2〉 = ⊥1.2.

More generally speaking, constBool projects to its second argument if it is applied
to a list that is terminated by an empty list while it projects to the according error if
the list is terminated by an error. In other words, we have

JconstBoolK 〈(⊥1.1 : . . . : []),⊥2〉 = ⊥2

and
JconstBoolK 〈(⊥1.1 : . . . :⊥1.n),⊥2〉 = ⊥1.n.

Therefore, Sloth is not able to observe that we have JconstBoolK 〈v,⊥〉 = ⊥ for all
Boolean lists v by considering finitely many test cases only. There might as exist an
argument such that constBool does not demand its second argument. For example,
the following definition is semantically equivalent with constBool if we consider lists
up to size 2.

constBool′ :: [Bool]→ Bool→ Bool
constBool′ (: :) = True
constBool′ b = b

However, position 2 is not a sequential position in 〈⊥,⊥〉 at result position ε with
respect to constBool′ because we have JconstBool′K 〈(⊥ :⊥ :⊥),⊥〉 = True. In other
words, as position 2 is a non-sequential position in 〈⊥,⊥〉 at result position ε, there
exists a finite witness that proves this fact, in this particular case the smallest witness
is the argument 〈(⊥ :⊥ :⊥),⊥〉.

99

5 Implementation of Sloth

100

6 Minimally Strict Polymorphic
Functions

In Chapter 4 we have only considered monomorphic functions, that is, functions f
of type τ1 → τ2 where τ1 and τ2 are monomorphic types. In this section we show
how we can check whether a polymorphic function is minimally strict by check-
ing whether a specific monomorphic instance is minimally strict. More precisely,
we show that we only have to check a subset of all possible inputs for the integer
instance of a polymorphic function. This approach leads to a surprisingly small
number of test cases. For example, when we consider functions of type [α] → [α]
we only have to check a linear number of test cases in the number of elements in the
list while there is an exponential number of test cases in the number of elements in
the list for all naive monomorphic instances.

More precisely, we show that we can check whether two polymorphic functions
are related by the less-strict relation by checking the functions for all inputs where
we replace the polymorphic components by integers that encode the position of
the component in the data structure. This approach is similar to an approach by
Bernardy et al. (2010), but, in contrast, we consider non-termination and seq1. Fur-
thermore, we show that we can use a similar approach to check whether a polymor-
phic function is minimally strict. In fact, this is our actual goal as we want to use the
results of this chapter the improve the efficiency of testing polymorphic functions
using Sloth. On the way to this efficient test of polymorphic functions we obtain
several results about polymorphic functions in Haskell with/without a strict eval-
uation primitive. For example, we characterize a polymorphic data structure like a
list by its shape and its content and prove that a polymorphic function is character-
ized by its behavior on shapes. This approach is similar to the container view by
Bundy and Richardson (1999) and Prince et al. (2008) but, in contrast, we consider
non-termination and the strict evaluation primitive seq.

In contrast to Chapter 4, in this chapter we do not strictly separate syntax and se-
mantics because otherwise the proofs presented here become very hard to conceive.
This approach is often used in the context of equational reasoning for functional pro-
grams (Gibbons 1999; Danielsson and Jansson 2004; Fernandes et al. 2007) because
the semantics of a functional program is quite similar to the program itself. Note
that we, in contrast to some works that use equational reasoning, still consider the
influence of ⊥, that is, the influence of run-time errors and non-terminating expres-
sions.

In the following by ≡ we denote semantic equivalence. Furthermore, we relate
syntactic objects by the cpo ordering v and denote that their semantics are related.
When we have to consider several monomorphic instances of a polymorphic func-

1The function seq :: α→ β→ β satisfies the laws seq ⊥ y ≡ ⊥ and seq x y ≡ y if x 6≡ ⊥.

101

6 Minimally Strict Polymorphic Functions

tion, we use a subscript type to indicate the specific instance. All proofs that are
omitted in this section are found in the Appendix B.

6.1 Introduction

Consider the following polymorphic function called inits, which is defined in the
standard Haskell library Data.List. This function takes a list and yields a list of all
initial segments of this list, shortest first.

inits :: [α]→ [[α]]
inits [] = [[]]
inits (x : xs) = [[]] ++ map (x:) (inits xs)

To check this function, Sloth generates test cases, namely, elements of the argu-
ment type of inits. Therefore, we have to choose a monomorphic instance of the
polymorphic function inits. Obviously, we want to choose the monomorphic in-
stance of the polymorphic function that results in the smallest number of test cases.
A candidate that might come into mind is the monomorphic instance for the unit
type (), which has only a single element denoted by (). Though, unfortunately, that
a monomorphic unit instance of a polymorphic function is unnecessarily strict does
not imply that the corresponding polymorphic function is unnecessarily strict. For
example, consider the identity function id x = x. The function id :: () → (), that is,
the monomorphic unit instance of the polymorphic identity function, is unnecessar-
ily strict. Let us consider the unary function that emerges from applying const2 to ().
The function const () :: () → () is less strict than id because we have id ⊥ ≡ ⊥ but
const () ⊥ ≡ () and id () ≡ () as well as const () () ≡ (). That is, for the argument
⊥ the result of const () is more defined than the result of id. Though, apparently,
there exists no polymorphic function of type α → α whose unit instance behaves
like const ().

As we have already mentioned in Section 3.2, to check whether a polymorphic
function is as little strict as possible we instantiate all occurrences of type variables
by an opaque type, called A, which is provided by Sloth. If we check this instance of
inits for lists up to size two, Sloth reports the following counter-examples.

> strictCheck (inits :: [A] -> [[A]]) 2
1: \⊥ -> []:⊥
3: \(a:⊥) -> []:(a:[]):⊥
Finished 5 tests.

The first counter-example states that inits ⊥, yields ⊥ while there exists a less
strict implementation that yields [] :⊥ instead. The second counter-example states
that inits (a :⊥), where a is an arbitrary value, yields [] :⊥ while there exists a less
strict implementation that yields [] : (a : []) :⊥ instead.

If we reconsider the implementation of inits, we observe that it checks whether its
argument is the empty list although the first element of the result list is always the

2The function const :: α→ β→ α is defined by const x = x.

102

6.1 Introduction

empty list. If we consider the following equivalent definition of inits, this circum-
stance becomes even more obvious.

inits :: [α]→ [[α]]
inits xs =

case xs of
[] → [] : []
y : ys→ [] : map (y:) (inits ys)

Thus, we can apply case deferment to derive the following less strict implementa-
tion. That is, we apply the same transformation as we have used to derive a less
strict implementation of intersperse in Section 3.2. However, note that we first have
to apply another transformation to inits to observe that both right-hand sides of the
case expression have the same context. In Section 7.1 we will consider case defer-
ment in more detail.

inits′ :: [α]→ [[α]]
inits′ xs =
[] : case xs of

[] → []
y : ys→ map (y:) (inits′ ys)

If we reconsider the test cases generated by Sloth, we observe that Sloth has only
generated five test cases to check inits for lists up to size two. Furthermore, if we
check inits for lists up to size four, Sloth generates only nine test cases. In contrast,
Sloth checks exponentially many test cases in the length of the list if we test any
monomorphic instance of inits. For example, if we check the Boolean instance of inits
for lists up to size four, Sloth generates 21 test cases. As Sloth manages the same test
with linearly many test cases, it obviously treats the data type A in a special way. In
this chapter we prove that the approach for A-instances, which is used by Sloth, is
correct.

In Section 4 two functions are only related by the less-strict relation if they agree
for total arguments. For simplicity, we omit this requirement here, but we can extend
all results to the original definition by considering total arguments as a special case.
In other words, in this chapter we employ the following definition of the less-strict
relation for monomorphic functions.

Definition 6.1.1 (Less-Strict Relation, Monomorphic Functions): Let f , g :: τ1 → τ2
be monomorphic functions. The functions f and g are related by � if the following
holds.

f � g :⇐⇒ ∀x :: τ1. f x w g x

The right-hand side is equivalent to f w g by the semantic ordering of functions. �

As this definition of the less-strict relation, as well as the original Definition 4.1.2,
only consider monomorphic functions, we have to provide a generalization to poly-
morphic functions. Two polymorphic functions are related by the less-strict relation
if and only if all their monomorphic instances are related by the less-strict relation.

103

6 Minimally Strict Polymorphic Functions

Here, fτ denotes the instantiation of the polymorphic function f to the monomorphic
type τ.

Definition 6.1.2 (Less-Strict Relation, Polymorphic Functions): Let f and g be poly-
morphic functions of equal type. The functions f and g are related by � if the fol-
lowing holds.

f � g :⇐⇒ ∀τ :: ∗. fτ � gτ

By τ :: ∗ we denote that τ is a type. �

Here and in the following, we only consider non-empty types. That is, every type
τ has an inhabitant besides the least element⊥. Finally, note that most of the results,
presented in this chapter, are not restricted to considerations about the less-strict re-
lation as we can define f ≡ g by f � g ∧ g � f . For example, we can employ
our results to perform the tests by Coutts et al. (2007) more efficiently. They check
whether list functions that are implemented by means of their stream fusion library
are equivalent to their original definition by checking whether the two implemen-
tations agree for all partial inputs. We cannot only apply the results to the area
of testing but also to any form of verification that considers the influence of errors
and non-terminating expressions. For example, Abel et al. (2005) have presented a
transformation of Haskell programs into a monadic representation of the program,
to reason about Haskell programs using the proof assistent Agda. Employing the
results of the chapter at hand we can improve the efficiency of proving statements
about polymorphic functions using their approach.

6.2 Free Theorems

The proofs in this chapter make heavy use of free theorems (Wadler 1989). Free
theorems are semantic statements about functions that are derived from type infor-
mation only. That is, without considering the implementation of a function we can
derive semantic statements about a function. Free theorems are a mighty proof tool,
which have been applied successfully in a variety of contexts (Gill et al. 1993; Johann
2002; Voigtländer 2008a,b; Oliveira et al. 2010).

Consider the following definition of the standard Haskell function reverse, which
reverses a list.

reverse :: [α]→ [α]
reverse = rev []

where
rev xs [] = xs
rev xs (y : ys) = rev (y : xs) ys

For all functions g :: τ1 → τ2 and all lists xs :: [τ1] the following equation holds. By the
subscript types we indicate that the two applications of reverse are, in fact, specific
monomorphic instances.

map g (reverseτ1 xs) ≡ reverseτ2 (map g xs)

104

6.2 Free Theorems

Intuitively, this equality states that it does not matter, whether we first reverse a
list and apply a function to all elements of the result list afterwards or first apply a
function to all elements of a list and reverse the result afterwards.

We can justify this property as follows. The function reverse takes a list and re-
verses the order of the elements of the list. For example, consider a list

xs ≡ [x1, . . . , xn].

We have
reverseτ1 xs ≡ [xn, . . . , x1].

The behavior of reverse does not depend on the elements of the argument list, it only
depends on the shape of the argument list. The behavior of reverse cannot depend on
the elements of the list because it is polymorphic, and, therefore, it cannot inspect the
elements of the argument list. Furthermore, map preserves the shape of a list. That
is, reverse permutes xs in the same manner as it permutes map g xs. More precisely,
we have

map g xs ≡ [g x1, . . . , g xn]

and
reverseτ2 (map g xs) ≡ [g xn, . . . , g x1].

Therefore, we get

map g (reverseτ1 xs) ≡ reverseτ2 (map g xs).

Now let us consider an arbitrary function f of type [α] → [α] instead of reverse.
As f is polymorphic with respect to the element type of the list, the behavior of f can
only depend on the shape of the list. For example, consider a list

xs ≡ [x1, . . . , xn].

A polymorphic function like f can only use the elements of the argument list as
elements of the result list. But, in contrast to reverse, an arbitrary function f does
not have to use every element of the argument for the result, and, furthermore, it
may also use elements more than once. Thus, there exists a function i and a natural
number m such that index maps the indicies 1, . . . , m of the result list to indicies
1, . . . , n of the argument list and we have

fτ1 xs ≡ [xindex 1, . . . , xindex m].

Furthermore, as map g xs has the same shape as xs the function f chooses the same
elements from the list map g xs and we get

fτ2 (map g xs) ≡ [g xindex 1, . . . , g xindex m].

Hence, even in the more general case of an arbitrary function f :: [α]→ [α] we get

map g (fτ1 xs) ≡ fτ2 (map g xs).

105

6 Minimally Strict Polymorphic Functions

The statement that for all functions f :: [α]→ [α], for all functions g :: τ1 → τ2 and
all lists xs :: [τ1] we have

map g (fτ1 xs) ≡ fτ2 (map g xs).

is called the free theorem for the type [α] → [α]. In the following we will also use
the term “free theorem for g”, where g is a function. In this case we mean the free
theorem for the type of g where we replace monomorphic instances of the generic
function f :: [α]→ [α] by monomorphic instances of g. For example, the free theorem
for reverse is an instance of the free theorem for the type [α]→ [α] and states

map g (reverseτ1 xs) ≡ reverseτ2 (map g xs).

That is, we replace monomorphic instances of the generic function f in the free the-
orem for the type [α]→ [α] by instances of reverse.

We can derive free theorems for all polymorphic function types. For example,
consider the function

filter :: (α→ Bool)→ [α]→ [α],

which filters the elements of a list by a given predicate. The free theorem for filter
states that for all functions f :: τ1 → τ2 and predicates p :: τ1 → Bool, q :: τ2 → Bool if
we have

p x ≡ q (f x)

for all x :: τ1, then we have

map f (filterτ1
p xs) ≡ filterτ2

q (map f xs)

for all xs :: [τ1].
Throughout this chapter we employ various free theorems without stating them

explicitly. The web application Automatic generation of free theorems can be used
to generate these theorems from the corresponding type (Böhme 2007; Seidel and
Voigtländer 2009). If the step of a proof is labeled “free theorem for f ”, we can
generate the free theorem by inserting the type of f into the web application. For
example, the tool generates the following output for the type [α]→ [α].

The theorem generated for functions of the type

f :: ∀ a. [a]→ [a]

in the sublanguage of Haskell with no bottoms, is:

∀ t1, t2 ∈ TYPES, R ∈ REL (t1, t2).
∀ (x, y) ∈ lift{[]}(R). (ft1 x, ft2 y) ∈ lift{[]}(R)

lift{[]}(R)
= {([], [])} ∪ {(x : xs, y : ys) | ((x, y) ∈ R) ∧ ((xs, ys) ∈ lift{[]}(R))}

Reducing all permissible relation variables to functions yields:

106

6.2 Free Theorems

∀ t1, t2 ∈ TYPES, g :: t1 → t2.
∀ x :: [t1]. mapt1t2

g (ft1 x) = ft2 (mapt1t2
g x)

The most general form of a free theorem considers relations instead of functions.
The first part of the output presents the free theorem in relational form. The relation
lift{[]}(R) relates two lists x and y if and only if the lists have the same shape and
their elements are point-wise related by the relation R. Thus, the relational free
theorem states that, if the elements of two lists x and y are point-wise related by a
relation R, then the f -images of x and y are also point-wise related by R.

In contrast to this most general form of a free theorem, the most common form of a
free theorem is the instantiation of all relations with functions. That is, instead of an
arbitrary relation R we consider only functions. In this case the relation lift{[]}(R)
used in the relational form becomes an application of the list mapping map f for a
function f that corresponds to the relation R. The functional form is more common
as it is closer to the functional program, and the power of relational free theorems is
only rarely necessary. Later in this chapter we will see an example where we need
the power of relational free theorems to prove a statement.

As the output of the automatic generator states, the presented theorem only holds
in the “sublanguage of Haskell with no bottoms”, that is, in a language without run-
time errors and non-termination. For example, consider the following instantiation
of the free theorem for the type [α]→ [α].

f :: [α]→ [α]
f = [⊥]

g :: Bool→ Bool
g = True

If we consider the argument [], we have

map g (f []) ≡ map g [⊥] ≡ [True]

while on the other hand we have

f (map g []) ≡ f [] ≡ [⊥].

Hence, map g (f xs) ≡ f (map g xs) does not hold for all functions g :: τ1 → τ2 and all
lists xs :: [τ1]. The intuitive explanation of the free theorem fails in the presence of ⊥
because the polymorphic function cannot only use the elements of the argument list
for the result list, but it can also introduce ⊥. Wadler (1989) has already observed
that g has to be strict3 if we consider run-time errors and non-termination. The au-
tomatic generation of free theorems generates the side conditions that are necessary
to fix the free theorem in the presence of these features if we state that we want to
consider “general recursion”.

3A function f is strict if f ⊥ ≡ ⊥.

107

6 Minimally Strict Polymorphic Functions

An extension of free theorems by Johann and Voigtländer (2004) even considers
the influence of the strict evaluation primitive seq, which satisfies the laws seq ⊥ y ≡
⊥ and seq x y ≡ y if x 6≡ ⊥. Free theorems break in the presence of the standard
Haskell function seq even if we only consider strict functions. For example, consider
the following instantiation of the free theorem for the type [α]→ [α].

f :: [α]→ [α]
f (x : y: _) = [seq x y]

g :: Bool→ Bool
g True = True

If we consider the argument [False, True], we have

map g (f [False, True]) ≡ map g [seq False True] ≡ map g [True] ≡ [True]

while on the other hand we have

f (map g [False, True]) ≡ f [⊥, True] ≡ [seq ⊥ True] ≡ [⊥].

To fix free theorems in the presence of seq we have to assure that certain functions
are total4. In the case of the free theorem above g has to be total. In Section 6.3
we consider statements in a language without seq, and in Section 6.4 we consider a
language with seq.

6.3 Less Strict Functions on Lists

In this section we consider functions of type [α] → [α] that do not use seq. We
show that, if any monomorphic instance of two polymorphic functions is related
by the less-strict relation, then all other monomorphic instances are related as well.
This result implies that two polymorphic functions are already related if one of their
monomorphic instances is related. Note that this does not imply that a polymorphic
function is unnecessarily strict if a monomorphic instance is unnecessarily strict. As
we have observed in the introduction of this chapter, there may exist a monomor-
phic, less strict function that does not have a polymorphic generalization.

As a first step towards the result concerning the less-strict relation, we prove for
polymorphic functions f :: [α] → [α] and g :: [α] → [α] and an arbitrary type τ that
fτ � gτ implies f() � g().

Lemma 6.3.1: Let f , g :: [α]→ [α]. For all types τ the following holds.

fτ � gτ =⇒ f() � g()

Intuitively, this statement is proved by employing a free theorem and relating all
elements x of type τ such that x 6≡ ⊥ with () and ⊥τ with ⊥(). Note that the proof
employs that the type τ has an inhabitant.

4A function f is total if for all x with x 6≡ ⊥ we have f x 6≡ ⊥.

108

6.3 Less Strict Functions on Lists

Proving the converse of Lemma 6.3.1 is considerably more complex than proving
Lemma 6.3.1. We start with the definition of a function shape :: [α] → [Int] that
replaces the elements of a list by their index in the list, starting with index 0.

Definition 6.3.1 (Shape): We define the following function that replaces all elements
of a list by increasing natural numbers, starting with 0.

shape :: [α]→ [Int]
shape = zipWith (λn → n) [0 . .]

The expression [0 . .] generates an infinite list of increasing integers starting with 0.
The definition of the function zipWith can be found in Section 2.1.5. �

For example, we get the results

shape [False, True, True] ≡ [0, 1, 2],
shape (’z’ : ’a’ :⊥) ≡ 0 : 1 :⊥,

and
shape [⊥, 8] ≡ [0, 1].

Note that 0 : 1 : ⊥ is different from [0, 1,⊥] as the former one denotes a list that
contains the elements 0 and 1 and is terminated by ⊥ while the latter one denotes a
list that contains the elements 0, 1, and ⊥ and is terminated by the empty list. To be
more precise we could as well write 0 : 1 :⊥[Int] and [0, 1,⊥Int].

The function shape is similar to the function template defined by Voigtländer (2009).
While shape yields only the shape of a list, template additionally yields a mapping
from indices to the original elements of the list. By using this mapping it is possible
to reconstruct the original list. Here, we define the mapping by means of the list
indexing function (!!) :: [α]→ Int→ α. The function (!!) takes a list and an index in
the list (where the smallest index is 0) and yields the element at the corresponding
position. If the index does not exist, the function yields ⊥ instead. The definition
of (!!) is presented in Section 2.1.4. More importantly than the fact that we use
list indexing, shape can handle partially defined lists, while template cannot. For
example, we have template (3 : 10 :⊥) ≡ ⊥. Note that this difference is essential as
we want to use shape to prove statements about the less-strict relation.

To prove that we can characterize a list by its shape and (!!) we prove the following
lemma. The characterization of a list by means of shape and (!!) is similar to the
container approach by Prince et al. (2008). As Prince et al. (2008) do not consider⊥ or
seq, a list is represented by its length (that is, the shape, appearing as the parameter
of a dependent type) and a function from index to element.

Lemma 6.3.2: For all x :: τ and xs :: [τ] the following holds.

map ((x : xs)!!) [1 . .] ≡ map (xs!!) [0 . .]

Although this statement looks quite obvious, we have to use a relational free the-
orem to prove it. We cannot use a standard free theorem as we have to somehow
incorporate that (x : xs)!! on the left-hand side is never applied to the index 0.

109

6 Minimally Strict Polymorphic Functions

Now we are ready to show that a list is reconstructible from its shape by employ-
ing list indexing. In the following proof we employ the free theorem for zipWith,
which can be generated by entering “zipWith” into the free theorem generator. The
theorem states that for all functions f , g, h, p, and q of appropriate type that satisfy

h (p x y) ≡ q (f x) (g y)

for all values x :: τ1 and y :: τ2, we have

map h (zipWith p z v) ≡ zipWith q (map f z) (map g v)

for all lists z :: [τ1] and v :: [τ2]. We give a detailed proof of the following lemma as
we reconsider it in the presence of seq.

Lemma 6.3.3: For all lists xs :: [τ] the following holds.

map (xs!!) (shape xs) ≡ xs

Proof: Proof by structural induction over xs.

Base Cases: If xs ≡ ⊥ or xs ≡ [], we reason as follows.

map (xs!!) (shape (⊥ / []))
≡ { definition of shape }

map (xs!!) (zipWith (λn → n) [0 . .] (⊥ / []))
≡ { definition of zipWith }

map (xs!!) (⊥ / [])
≡ { definition of map }
⊥ / []

Inductive Step: If xs ≡ y : ys, we reason as follows.

map ((y : ys)!!) (shape (y : ys))
≡ { definition of shape }

map ((y : ys)!!) (zipWith (λn → n) [0 . .] (y : ys))
≡ { definition of [0 . .] }

map ((y : ys)!!) (zipWith (λn → n) (0 : [1 . .]) (y : ys))
≡ { definition of zipWith }

map ((y : ys)!!) (0 : zipWith (λn → n) [1 . .] ys)
≡ { definition of map }
((y : ys) !! 0) : map ((y : ys)!!) (zipWith (λn → n) [1 . .] ys)
≡ { definition of (!!) }

y : map ((y : ys)!!) (zipWith (λn → n) [1 . .] ys)
≡ { free theorem for zipWith, ((y : ys)!!) strict } (∗)

y : zipWith (λn → n) (map ((y : ys)!!) [1 . .]) ys)
≡ { Lemma 6.3.2 }

y : zipWith (λn → n) (map (ys!!) [0 . .]) ys)
≡ { free theorem for zipWith, (ys!!) strict } (∗∗)

110

6.3 Less Strict Functions on Lists

y : map (ys!!) (zipWith (λn → n) [0 . .] ys)
≡ { induction hypothesis }

y : ys

To show the use of a free theorem in detail, we exemplarily state the instantia-
tion of the free theorem for zipWith to prove the step labeled with (∗).

h = ((y : ys)!!) q = λn → n z = [1 . .]
p = λn → n f = ((y : ys)!!) v = ys
g = id

It is easy to show that we have h (p x y) ≡ q (f x) (g y) for all appropriate x
and y, which proves the step labeled with (∗). We return to the steps labeled
with (∗) and (∗∗) when we consider the presence of seq. �

The just proved characterization of lists directly allows for a characterization of
polymorphic list functions via their behavior on shapes. The Int instance of the poly-
morphic function f may be compared with a corresponding container morphism of
f (Prince et al. 2008).

The following proof employs the free theorem for functions of type [α] → [α],
which states that we have fτ2 (map g xs) ≡ map g (fτ1 xs) for all strict functions
g :: τ1 → τ2 and all xs :: [τ1].

Lemma 6.3.4: For all functions f :: [α]→ [α] and all lists xs :: [τ] the following holds.

fτ xs ≡ map (xs!!) (fInt (shape xs))

Proof: Let xs :: [τ]. We reason as follows.

fτ xs
≡ { Lemma 6.3.3 }

fτ (map (xs!!) (shape xs))
≡ { free theorem for f , (xs!!) strict } (†)

map (xs!!) (fInt (shape xs))

We return to the step labeled with (∗) when we consider the presence of seq. �

Lemma 6.3.4 enables us to prove a kind of standard lemma about functions of type
[α] → [α]. It is a formalization of the intuitive explanation of the validity of free
theorems.

A polymorphic function of type [α] → [α] can only use the elements of its argu-
ment list and⊥ for the elements of the result list. Therefore, for every element in the
result list there exists a position in the argument list, where it is taken from, or it is
⊥. Furthermore, because the function is polymorphic, it can distinguish argument
lists only by their shape. Thus, if we apply a polymorphic function to two lists with
equal shape it chooses elements from the same positions of the argument list for the
result list.

111

6 Minimally Strict Polymorphic Functions

The following proof employs an instance of the free theorem for functions of type
[α]→ α. More precisely, for a number n :: Int we consider the function (!!n) :: [α]→
α. The corresponding free theorem states that for all strict functions g :: τ1 → τ2 and
all xs :: [τ1] we have (map g xs) !! n ≡ g (xs !! n).

Lemma 6.3.5: Let f :: [α]→ [α] and xs :: [τ1] and ys :: [τ2] such that shape xs ≡ shape ys.
Then, for all n :: Int there exists k :: Int with

(fτ1 xs) !! n ≡ xs !! k and (fτ2 ys) !! n ≡ ys !! k.

Proof: Let xs :: [τ1] and n :: Int. We define k as (fInt (shape xs)) !! n and reason as
follows.

(fτ1 xs) !! n
≡ { Lemma 6.3.4 }
(map (xs!!) (fInt (shape xs))) !! n
≡ { free theorem for (!!n), (xs!!) strict }

xs !! ((fInt (shape xs)) !! n)
≡ { definition of k }

xs !! k

Let ys :: [τ2] such that shape xs ≡ shape ys. We reason as follows.

(fτ2 ys) !! n
≡ { like above }

ys !! ((fInt (shape ys)) !! n)
≡ { shape xs ≡ shape ys, definition of k }

ys !! k

Note that, if n is out of bounds, then (fInt (shape xs)) !! n ≡ ⊥, that is, k ≡ ⊥. �

Back on the road, the following lemma is the essential lemma to prove that f() �
g() implies fτ � gτ for all types τ, or, more precisely, to prove its contraposition, that
is, fτ 6� gτ implies f() 6� g(). This proof relies on mapping a list xs :: [τ] such that
fτ xs 6w gτ xs to a list ys :: [()] such that f() ys 6w g() ys. But, constructing a suitable
map, we encounter the following problem. When we consider an arbitrary type τ,
the type [τ] may contain values xs and ys such that xs !! k 6≡ ⊥, ys !! k 6≡ ⊥, and
xs !! k A ys !! k. This case does not occur for values of type [()] as the elements of a
list of type [()] are either ⊥ or (). By the following lemma we elude this problem. It
shows that for every problematic list there exists a non-problematic list that can be
considered instead.

Lemma 6.3.6: Let f , g :: [α]→ [α]. For every xs :: [τ] and n :: Int such that

(fτ xs) !! n 6≡ ⊥, (gτ xs) !! n 6≡ ⊥, and (fτ xs) !! n 6≡ (gτ xs) !! n

there exists ys :: [τ] such that

(fτ ys) !! n ≡ ⊥ and (gτ ys) !! n 6≡ ⊥.

112

6.3 Less Strict Functions on Lists

Now we are ready to prove that fτ 6� gτ implies f() 6� g() for all types τ. We
employ that we have xs 6w ys if and only if shape xs 6w shape ys or xs !! n 6w ys !! n
for some n :: Int. Furthermore, if there exists a list xs :: [τ] such that (fτ xs) !! n 6≡ ⊥,
gτ xs !! n 6≡ ⊥, and (fτ xs) !! n 6≡ (gτ xs) !! n by the previous lemma we can instead
consider a list ys :: [τ] such that (fτ ys) !! n ≡ ⊥ and (gτ ys) !! n 6≡ ⊥.

Lemma 6.3.7: Let f , g :: [α]→ [α]. If there exists a type τ such that fτ 6� gτ, then f() 6� g().

Let us summarize the statements so far. If for any type the monomorphic instances
of two polymorphic funcitons are related by the less-strict relation, then for all other
types the monomorphic instances are related by the less-strict relation as well.

Theorem 6.3.1: Let f , g :: [α]→ [α]. For all types τ1 and τ2 the following holds.

fτ1 � gτ1 ⇐⇒ fτ2 � gτ2

Proof: By Lemma 6.3.1 and Lemma 6.3.7 we have fτ � gτ ⇐⇒ f() � g() for all types
τ. We prove the statement by instantiations of τ to τ1 and τ2. �

Employing Theorem 6.3.1 we can check whether two polymorphic functions are
related by the less-strict relation by checking whether the unit instances are related
by the less-strict relation. But, the characterization of lists by means of shape allows
for a statement that is even more powerful than Theorem 6.3.1 with respect to ex-
haustive testing. We prove that it suffices to check two polymorphic functions for
all possible images of shape whether they are related by the less-strict relation. Note
that, if we consider lists of length n, then there are only linearly many shapes while
there are exponentially many lists of type [τ] for any non-empty type τ.

Theorem 6.3.2: For f , g :: [α]→ [α] the following statement holds.

fInt ◦ shape � gInt ◦ shape⇐⇒ f � g

Proof: =⇒: Let xs :: [τ]. We reason as follows.

fτ xs
≡ { Lemma 6.3.4 }

map (xs!!) (fInt (shape xs))
w { monotonicity, fInt ◦ shape � gInt ◦ shape }

map (xs!!) (gInt (shape xs))
≡ { Lemma 6.3.4 }

gτ xs

⇐=: We prove the contraposition of this implication. If there exists xs :: [τ] such
that fInt (shape xs) 6w gInt (shape xs), then there exists a list is :: [Int], namely,
is = shape xs, such that fInt is 6w gInt is. Thus, we have f 6� g by the definition of
the less-strict relation for polymorphic functions (Definition 6.1.2). �

113

6 Minimally Strict Polymorphic Functions

6.4 Less Strict Functions in the Presence of seq

In this section we consider a language that provides a strict evaluation primitive
seq. Although Theorem 6.3.1, proved in the absence of seq, seems quite natural, the
statement breaks when seq is available. In the presence of seq the property f() � g()
does not imply fτ � gτ for all types τ. For example, consider the following functions
of type [α]→ [α].

f :: [α]→ [α]
f (x : y: _) = [seq x y]

g :: [α]→ [α]
g (x : y: _) = [seq y x]

If one of the first two elements of the argument list is ⊥, then both functions yield
[⊥]. If both elements are (), then both functions yield [()]. That is, we have f() � g(),
or, more precisely, we even have f() ≡ g(). However, there are obviously types τ such
that fτ and gτ are incomparable. For example, we have fBool [False, True] ≡ [False]
but gBool [False, True] ≡ [True]. This example shows that Theorem 6.3.1 fails in the
presence of seq.

So, how about Theorem 6.3.2, does it break as well? It holds for the previous
example, but it breaks for the following functions.

f ′ :: [α]→ [α]
f ′ (x : y : z: _) = [seq x z]

g′ :: [α]→ [α]
g′ (x : y : z: _) = [seq y z]

The functions f ′ and g′ act identically on shapes but are incomparable with respect
to the less-strict relation. Hence, Theorem 6.3.2 is also not valid if we consider seq.

In contrast to Theorem 6.3.1 the assertion of Theorem 6.3.2 directly depends on
the notion of shape. Thus, maybe we can prove a similar statement when we alter
shape. Let us track back where the current proof is corrupted by seq. We start with
the proof of Lemma 6.3.4.

Lemma 6.3.3 is still valid because none of the considered functions uses seq. In this
case we are quasi considering a language without seq. In contrast, Lemma 6.3.4 con-
siders an arbitrary function f that might use seq. According to Johann and Voigtlän-
der (2004), the step labeled with (†) in the proof of Lemma 6.3.4 might not hold in
the presence of seq as (xs!!) is not total5. In fact, the lemma fails completely. For
example, consider the function f again. We have

f [⊥, True] ≡ [⊥],

and, on the other hand, the following holds.

5A function f is total if for all x with x 6≡ ⊥ we have f x 6≡ ⊥.

114

6.4 Less Strict Functions in the Presence of seq

map ([⊥, True]!!) (f (shape [⊥, True]))
≡ { definition of shape }

map ([⊥, True]!!) (f [0, 1])
≡ { definition of f }

map ([⊥, True]!!) [1]
≡ { definition of map }
[[⊥, True] !! 1]
≡ { definition of (!!) }
[True]

That is, we have f xs 6≡ map (xs!!) (f (shape xs)).
The function f is able to distinguish the list [⊥, True] from the list [0, 1] by em-

ploying seq, although these lists have the same shape. Hence, in the presence of seq
a polymorphic function cannot only distinguish two lists by their shape in the sense
of the function shape. It can also distinguish them by the occurrences of ⊥ as list ele-
ment. Thus, to take seq into account we have to consider a different notion of shape,
implemented by the function shapeseq.

shapeseq :: [α]→ [Int]
shapeseq = zipWith (λn x→ seq x n) [0 . .]

The function shapeseq replaces all elements x of a list with x 6≡ ⊥ by their position in
the list. However, in contrast to shape, shapeseq keeps all elements x with x ≡ ⊥. For
example, we have

shapeseq [False,⊥, True] ≡ [0,⊥, 2]

while
shape [False,⊥, True] ≡ [0, 1, 2].

In the remaining part of this section we prove that a theorem like Theorem 6.3.2
holds in the presence of seq if we replace shape by shapeseq. The proofs in particular
highlight the role of free theorems.

If we replace shape by shapeseq in Lemma 6.3.4 we can provide a characterization
of polymorphic functions in the presence of seq. To prove the characterization, first
we have to ensure that Lemma 6.3.3 also holds for shapeseq. This is not obvious,
because shapeseq uses seq, and consequently its free theorem is more restrictive. We
employ an extension of free theorems by Seidel and Voigtländer (2009) to manage
the proof. According to Johann and Voigtländer (2004), in the presence of seq, we
have to guarantee that certain functions are total. However, the extension by Seidel
and Voigtländer (2009) allows for less restrictive free theorems. Given a function
definition, it assigns a refined type to the function and uses this refined type to derive
less restrictive free theorems.

To generate a free theorem for a specific implementation of a polymorphic func-
tion we have to define the function in a simple functional language with a fixpoint
operator and a seq primitive. Figure 6.4.1 shows the free theorem that is generated

115

6 Minimally Strict Polymorphic Functions

∀f :: τ1 → τ2, f strict and total.
∀g :: τ3 → τ4, g strict.
∀xs :: [τ3]. t xs 6≡ ⊥ ⇐⇒ t (map g xs) 6≡ ⊥
∧ ∀ys :: [τ1]. map g (t xs y) ≡ t (map g xs) (map f ys)

Figure 6.4.1: The Specialized Free Theorem where t ≡ zipWith (λx n→ seq x n).

for zipWith (λn x→ seq x n) :: [α] → [β] → [α].6 By inspecting the implementation
the generator observes that we only use seq on the second argument of the function
passed to zipWith. Therefore, in contrast to the general free theorem, the specialized
version does not require g to be total. This enables us to prove the following adjusted
version of Lemma 6.3.3.

Lemma 6.4.1: For all lists xs :: [τ] the following holds.

map (xs!!) (shapeseq xs) ≡ xs

Proof: We reason the same way as in Lemma 6.3.3 but replace all occurrences of
shape by shapeseq and all occurrences of (λn → n) by (λn x → seq x n). Instead
of the general free theorem for zipWith we employ the specialized free theorem for
zipWith (λn x → seq x n) shown in Figure 6.4.1. We replace the steps labeled with
(∗) and (∗∗) in the proof of Lemma 6.3.3 by the following reasoning. We prove the
step labeled with (∗) by instantiating the specialized free theorem as follows.

g = ((y : ys)!!) x = [1 . .]
f = id y = ys

We prove the step labeled with (∗∗) by instantiating the specialized free theorem as
follows.

g = (ys!!) x = [0 . .]
f = id y = ys

Note that id is strict and total and that ((y : ys)!!) and (ys!!) are strict. �

To complete the proof of an adjusted version of Lemma 6.3.4 with shapeseq, we still
have to recover the step labeled with (†) in the original proof. That is, we want to
prove that

f (map (xs!!) (shapeseq xs)) ≡ map (xs!!) (f (shapeseq xs)).

If we consider Johann and Voigtländer (2004), we have to show that (xs!!) is total,
which is not the case. First of all the position we are projecting to might be out
of bounds, for example, [1, 2] !! 3. Furthermore, the list xs may contain ⊥, which

6The generator is available at www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi.

116

http://www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi

6.4 Less Strict Functions in the Presence of seq

also breaks totality if we project to the corresponding position, for example, [1,⊥] !!
1. We cannot employ the extension by Seidel and Voigtländer (2009) because we
do not consider a concrete function like zipWith before but an arbitrary function of
type [α] → [α]. Thus, we cannot weaken the requirements of a free theorem by
providing a concrete implementation. Nevertheless, there is rescue. For a specific
list the requirements proposed by Johann and Voigtländer (2004) are unnecessarily
strong. For example, for the free theorem

map g (f xs) ≡ f (map g xs)

they demand that g has to be total. However, it suffices that g is total with respect
to the elements of the list xs. The following theorem proves this observation by
employing the relational version of the free theorem for the type [α]→ [α].

Theorem 6.4.1: Let f :: [α]→ [α]. For all strict functions g :: τ1 → τ2 and for all xs :: [τ1]
with

g (xs !! n) ≡ ⊥ ⇐⇒ xs !! n ≡ ⊥
for all n :: Int, we have

map g (fτ1 xs) ≡ fτ2 (map g xs).

Proof: Let xs :: [τ1]. We define a relation that relates all elements of the list xs with
the image of g of this element and use the relational free theorem for f to prove the
statement. As Rxs has to be a continuous relation, we close the relation by relating
the suprema of all possible chains.

Rxs := {(
⊔
i∈I

(xs !! i),
⊔
i∈I

g (xs !! i)) | 〈xs !! i〉i∈I chain, I ⊆ Int}

In particular we have (xs !! i, g (xs !! i)) ∈ Rxs for all i :: Int as the set {i} is a chain.
First we show that Rxs is a strict, bottom-reflecting and continuous relation. For

details about these concepts consider Definition B.1.2 in the Appendix. By definition
of Rxs we have (xs !!⊥, g (xs !!⊥)) ∈ Rxs. Furthermore, we have xs !!⊥ ≡ ⊥ as well
as g (xs !!⊥) ≡ g ⊥ ≡ ⊥, that is, Rxs is strict.

Next we show that Rxs is bottom-reflecting. Let (x, y) ∈ Rxs. By definition of Rxs
we have x ≡ ⊔i∈I(xs !! i) and y ≡ ⊔i∈I g(xs !! i) and reason as follows.⊔

i∈I

(xs !! i) ≡ ⊥ ⇐⇒ ∀i ∈ I. xs !! i ≡ ⊥
⇐⇒ ∀i ∈ I. g (xs !! i) ≡ ⊥
⇐⇒

⊔
i∈I

g (xs !! i) ≡ ⊥

Finally, we have to show that Rxs is continuous. Let 〈xi〉i∈I and 〈yi〉i∈I be chains
whose elements are pair-wise related by Rxs. Then, for every index i ∈ I there is an
index-set Ii such that xi =

⊔
j∈Ii

(xs !! j) and yi =
⊔

j∈Ii
(g (xs !! j)). In the following,

117

6 Minimally Strict Polymorphic Functions

we use the set K := {j | i ∈ I, j ∈ Ii}. We have

(
⊔

k∈K

(xs !! k),
⊔

k∈K

g (xs !! k)) = (
⊔
i∈I

xi,
⊔
i∈I

yi),

and, by definition of Rxs, the left-hand side is an element of Rxs. Thus Rxs is contin-
uous.

We have (xs, map g xs) ∈ lift{[]}(Rxs) where lift{[]}(R) is the relational structural
lifting defined as follows.

lift{[]}(R) = {(⊥,⊥), ([], [])}∪{(x : xs, y : ys) | (x, y) ∈ R, (xs, ys) ∈ lift{[]})(R)}

Intuitively (xs, ys) ∈ lift{[]}(Rxs) means that ys is the point-wise g-image of xs
or, more precisely, ys ≡ map g xs. Because the relational free theorem states that
(xs, map g xs) ∈ lift{[]}(Rxs) implies (f xs, f (map g xs)) ∈ lift{[]}(Rxs), we ob-
tain that f (map g xs) is the point-wise g-image of f xs, that is, map g (f xs) ≡
f (map g xs). �

For proving statements about functions in the presence of seq the previous theo-
rem is quite useful as we are not restricted to total functions anymore. While the
previous theorem does only consider functions of type [α]→ [α], by employing the
generalization sketched in Section 6.6, we can generalize this theorem to arbitrary
first-order type constructors.

Additionally, this kind of generalization of a functional free theorem is also valu-
able in the absence of seq. For example, the standard functional free theorem for a
function f :: (α→ β)→ [α]→ [β] states that

h (p x) ≡ q (g x)

for all x of appropriate type implies

map h (f p xs) ≡ f q (map g xs)

for all xs of appropriate type. By employing the relation Rxs defined in the previous
proof we can derive a free theorem that states for a list xs that

h (p (xs !! n)) ≡ q (g (xs !! n))

for all n :: Int already implies

map h (f p xs) ≡ f q (map g xs).

That is, we only have to prove the relation between h, p, q, and g for the elements of
the list xs and not for all x of appropriate type. Actually, we have used exactly this
statement to prove Lemma 6.3.2.

We want to employ Theorem 6.4.1 to prove

map (xs!!) (f (shapeseq xs)) ≡ f (map (xs!!) (shapeseq xs))

118

6.4 Less Strict Functions in the Presence of seq

to fix step (†) in the proof of Lemma 6.3.4. Thus, we have to show that we have
xs !! ((shapeseq xs) !! n) ≡ ⊥ if and only if (shapeseq xs) !! n ≡ ⊥. Therefore, we show a
connection between (!!) and zipWith, namely, that

(zipWith f xs ys) !! n ≡ f (xs !! n) (ys !! n).

This statement is quite similar to the free theorem for (!!), which states that

(map f xs) !! n ≡ f (xs !! n).

Indeed, these statements are closely related. In the context of free theorems, mostly,
only two-ary logical relations are considered. The connection between zipWith and
(!!) is the functional instantiation of the relational free theorem for (!!) if we consider
three-ary relations. Alternatively, we can prove the following lemma by means of
structural induction.

Lemma 6.4.2: For all strict7 functions f :: τ1 → τ2 → τ3 and all lists xs :: [τ1], ys :: [τ2]
the following holds.

(zipWith f xs ys) !! n ≡ f (xs !! n) (ys !! n)

By employing the previous lemma we prove a characteristic property of shapeseq,
which is not valid for shape. The shape of a list with respect to shapeseq is ⊥ at a
certain position if and only if the “original list” is ⊥ at that position.

Lemma 6.4.3: For all lists xs :: [τ] and all n :: Int we have

(shapeseq xs) !! n ≡ ⊥ ⇐⇒ xs !! n ≡ ⊥.

Proof: We start with the following calculation.

(shapeseq xs) !! n
≡ { definition of shapeseq }
(zipWith (λn x→ seq x n) [0 . .] xs) !! n
≡ { Lemma 6.4.2, seq strict }

seq (xs !! n) ([0 . .] !! n)

If we have n ≡ ⊥ or n < 0, then seq (xs !! n) ([0 . .] !! n) ≡ seq ⊥ ⊥ ≡ ⊥ as well as
xs !! n ≡ ⊥. If we have n >= 0, then seq (xs !! n) ([0 . .] !! n) ≡ seq (xs !! n) n. That is,
(shapeseq xs) !! n ≡ ⊥ if and only if xs !! n ≡ ⊥. �

Employing the characterization of shapeseq we prove the analogue to Lemma 6.3.4
in the presence of seq.

Lemma 6.4.4: For all functions f :: [α]→ [α] and all lists xs :: [τ] we have the following.

fτ xs ≡ map (xs!!) (fInt (shapeseq xs))

7Here strict means f x ⊥ ≡ ⊥ and f ⊥ y ≡ ⊥ for all x, y.

119

6 Minimally Strict Polymorphic Functions

Proof: We reason as follows.

fτ xs
≡ { Lemma 6.4.1 }

fτ (map (xs!!) (shapeseq xs))
≡ { Theorem 6.4.1, Lemma 6.4.3 }

map (xs!!) (fInt (shapeseq xs))

This proof is very similar to the proof of Lemma 6.3.4, but instead of a general free
theorem we use the specialized version proved in Theorem 6.4.1. �

Now we have the means at hand to prove the analogue of Theorem 6.3.2 in the
presence of seq. The proof of this statement is analogous to the proof of Theo-
rem 6.3.2, but instead of Lemma 6.3.4 we employ Lemma 6.4.4.

Theorem 6.4.2: For all f , g :: [α]→ [α] the following holds.

fInt ◦ shapeseq � gInt ◦ shapeseq ⇐⇒ f � g

The previous lemma states that we can check whether a function f is less strict than
a function g in the presence of seq by checking them for all images of shapeseq. In fact,
we have observed that, in this setting, we probably can reduce the number of test
cases significantly. More precisely, in the following we illustrate that it is possible to
consider linearly many test cases in the length of a list instead of exponentially many
test cases in the length of the list to distinguish two functions of type [α] → [α] in
the presence of seq.

Let us consider a function of type α → α → α → α in a language without seq. By
employing free theorems we can show that every function f :: α → α → α → α is
semantically equivalent to one of the following functions.

f1 :: α→ α→ α→ α
f1 x y z = ⊥

f2 :: α→ α→ α→ α
f2 x y z = x

f3 :: α→ α→ α→ α
f3 x y z = y

f4 :: α→ α→ α→ α
f4 x y z = z

This observation can also be considered as the basis for the validity of free theorems.
In other words, for a function with a polymorphic type there are only a couple of se-
mantically distinguishable implementations. And, therefore, we can check whether

120

6.4 Less Strict Functions in the Presence of seq

two functions of type [α]→ [α] are equal by only checking them for a small number
of arguments, namely, all images of shape.

We can regard a function of type α → α → α → α as a function of type [α] → [α]
that takes lists with exactly three elements and yields lists with exactly one element.
As Theorem 6.3.2 states, two functions of this kind can be distinguish by checking
their behavior for the argument [0, 1, 2]. In other words, to check whether two func-
tions of type α→ α→ α→ α are equal we only have to apply them to the arguments
0, 1, and 2. If we consider the definitions above, this becomes quite obvious. That is,
for a function of type f :: α→ α→ α→ α we can check whether it is equivalent to f1,
f2, f3, or f4 by checking whether the application f 0 1 2 yields ⊥, 0, 1, or 2.

Now let us consider a function of type α → α → α → α in the presence of seq. If
we consider a function f :: α → α → α → α, this function has to be sequential if we
consider a sequential language. However, free theorems do not consider sequential-
ity. For example, by the corresponding free theorem, f might satisfy f x ⊥ ⊥ ≡ x,
f ⊥ x ⊥ ≡ x, and f ⊥ ⊥ x ≡ x for x 6≡ ⊥. Though, the function f would not be
sequential as no argument is a sequential position.

In a sequential language we have either f ⊥ y z ≡ ⊥, f x ⊥ z ≡ ⊥, or f x y ⊥ ≡ ⊥
for all x, y, and z. By sequentiality at least two of the applications f x ⊥ ⊥, f ⊥ x ⊥,
or f ⊥ ⊥ x yield ⊥ for all x as one of the arguments is a sequential position. Without
loss of generality we assume that there exists an x such that the application f x ⊥ ⊥
does not yield ⊥. A free theorem states that we have f x ⊥ ⊥ ≡ x in this case.
Therefore, regarding a function f :: α→ α→ α→ α, the behavior of the applications
f x ⊥ ⊥, f ⊥ x ⊥, and f ⊥ ⊥ x for all x is already determined by sequentiality. Thus,
we do not have to consider the corresponding test cases.

If we consider a function of type α → α → α → α as a function of type [α] → [α],
again, we would check it for the images of shapeseq, that is, for the lists

[⊥,⊥,⊥], [0,⊥,⊥], [⊥, 1,⊥], [⊥,⊥, 2], [⊥, 1, 2], [0,⊥, 2], [0, 1,⊥], and [0, 1, 2].

However, there are no two functions of type α → α → α → α that can be distin-
guished by the test cases f ⊥ ⊥ ⊥, f 0 ⊥ ⊥, f ⊥ 1 ⊥, or f ⊥ ⊥ 2 and cannot
be distinguished by one of the other test cases. Thus, using the test cases f 0 1 ⊥,
f 0 ⊥ 2, f ⊥ 1 2, and f 0 1 2 we can already distinguish all functions of type
α→ α→ α→ α.

We assume that we can generalize this observation from functions of type α →
α→ α→ α to functions on type f :: [α]→ [α] in a setting with seq primitive. Instead
of checking functions of type [α] → [α] for all images of shapeseq we can reduce the
number of test cases. We have to check functions of type [α] → [α] only for all
shapes where we replace one element of the list with ⊥. That is, we do not have
to consider test cases like [0,⊥,⊥] or ⊥ : 1 : ⊥ : 2 : ⊥. Note, that this reduces the
number of test cases from exponentially many in the length of the list to linearly
many in the length of the list. However, note that this observation does not hold
in the presence of a feature like unamb :: α → α → α (Elliott 2009) as it allows to
define non-sequential functions. Refining the concept of a shape in the presence of
seq as illustrated above is future work. More precisely, we would have to incorporate
sequentiality into the logical relation that is the basis for free theorems.

121

6 Minimally Strict Polymorphic Functions

6.5 Minimally Strict Functions on Lists

We return to a setting without seq to consider minimally strict functions. If we recon-
sider Theorem 6.3.2, one might assume that we can check whether a polymorphic
function f :: [α]→ [α] is minimally strict by checking whether there exists a function
h :: [Int] → [Int] that is less strict than fInt with respect to all shapes. Consider the
following function of type [α]→ [α] that yields a singleton list that contains the first
element of its argument list.

f :: [α]→ [α]
f (x: _) = [x]

The following function h :: [Int] → [Int] is less strict than fInt with respect to all
shapes as we have h ⊥ ≡ [0] A ⊥ ≡ fInt ⊥, for example.

h :: [Int]→ [Int]
h = [0]

Though, obviously there exists no polymorphic function whose integer instance be-
haves like h. The function h “invents” a list element, namely, 0. As Lemma 6.3.5
tells us, the elements of the result list of a polymorphic function of type [α] →
[α] are taken from the argument list or they are ⊥. To prevent the monomorphic
function from inventing elements we do not compare fInt xs with h xs but with
map (xs!!) (h xs). In the example above, h ⊥ is more defined than fInt ⊥, but
map (⊥!!) (h ⊥) is as defined as fInt ⊥. Therefore, h is not a witness that shows
that f is unnecessarily strict.

If we consider a less-strict relation that only relates functions if they agree for total
arguments, then h is not less strict than fInt as we have h [] ≡ [0], but fInt [] ≡ ⊥.
Note that we cannot resolve this issue by adding a rule for the empty list to f as it
would have to invent a list element. However, even in a setting that only relates
functions by the less-strict relation if they agree for total arguments, we can define a
similar example by considering the following data type of non-empty lists.

data NonEmpty α = NonEmpty α [α]

We have to define a notion of shape and indexing for the data type NonEmpty, which
is straightforward. Then, we can define a polymorphic function similar to f and
a monomorphic function similar to h such that h is less strict than fInt but f is still
minimally strict. Furthermore, h agrees with fInt for all total arguments.

Theorem 6.5.1: Let f :: [α] → [α]. The function f is not minimally strict if and only if
there exists a function h :: [Int]→ [Int] such that

g ≺ f

where g is defined as follows.

g :: [α]→ [α]
g xs = map (xs!!) (h (shape xs))

122

6.6 Generalization

Proof: =⇒: As f is not minimally strict, there exists a polymorphic function g ::
[α]→ [α] that is less strict than f . By Lemma 6.3.4 we have

g xs ≡ map (xs!!) (gInt (shape xs))

and take gInt as h.

⇐=: The function f is not minimally strict since g :: [α]→ [α] is less strict than f . �

We can prove a similar theorem in the presence of seq by employing shapeseq instead
of shape.

Sloth uses a slightly different approach to check whether a polymorphic func-
tion is minimally strict. Instead of considering a polymorphic function g as de-
fined in Theorem 6.5.1, with respect to a function h :: [Int] → [Int] Sloth considers a
monomorphic function g xs = map (xs!!) (h xs). To check whether a polymorphic
function f is minimally strict we check whether we have g ◦ shape ≺ fInt ◦ shape. It is
easy to prove this refined statement by Theorem 6.5.1 and Theorem 6.3.2.

By employing the standard approach for monomorphic functions we can check
whether for a polymorphic function f :: [α]→ [α] there exists a function h :: [Int]→
[Int] that is less strict than fInt with respect to some shape. To consider shapes only,
the test case generator for the type [A] simply generates list test cases as usually
but replaces occurrences of elements of type A by the index of the element in the
list. After we have discovered a shape ys :: [Int] such that h ys A f ys, we check
whether we also have map (ys!!) (h ys) A f ys. If this is the case, then ys is actually
a counter-example, and we propose map (ys!!) (h ys) as result of f for the argument
ys. Sloth presents the counter-example ys by substituting indices by unique names.

Note that we cannot check whether a polymorphic function that uses seq is mini-
mally strict by using the A-instance as we use the notion of shape as defined by shape
and not by shapeseq.

6.6 Generalization

In this section we consider polymorphic functions that do not have the type [α] →
[α]. For example, consider the following data type for binary trees.

data Tree α = Empty | Node (Tree α) α (Tree α)

We define a function breadthFirst that enumerates the elements of a tree in breath-first
order. The function partition takes a list of values and a list of subtrees and adds the
components of a Node to the corresponding lists.

partition :: Tree α→ ([α], [Tree α])→ ([α], [Tree α])
partition Empty level = level
partition (Node l v r) (vs, trees) = (v : vs, l : r : trees)

123

6 Minimally Strict Polymorphic Functions

The function breadthLevel takes one level of a tree, splits the level into values and the
next level by employing partition and concatenates the values of the current level
with the recursive result.

breadthLevel :: [Tree α]→ [α]
breadthLevel [] = []
breadthLevel level = values ++ breadthLevel nextLevel

where
(values, nextLevel) = foldr partition ([], []) level

breadthFirst :: Tree α→ [α]
breadthFirst tree = breadthLevel [tree]

We can check whether breadthFirst is minimally strict by instantiating all type vari-
ables with the data type A.

> strictCheck (breadthFirst :: Tree A -> [A]) 3
5: \(Node (Node ⊥ a ⊥) b ⊥) -> b:a:⊥
Finished 9 tests.

To investigate why breadthFirst is unnecessarily strict we check whether partition is
minimally strict. Sloth reports the following counter-examples.

> strictCheck
(partition :: Tree A -> ([A],[Tree A]) -> ([A],[Tree A])) 3

1: \⊥ ⊥ -> (⊥,⊥)
2: \Empty ⊥ -> (⊥,⊥)
3: \(Node ⊥ a ⊥) ⊥ -> (a:⊥,⊥:⊥:⊥)
Finished 5 tests.

The first counter-example states that partition applied to ⊥ and ⊥ yields ⊥ while
there exists is less strict implementation that yields (⊥,⊥) instead. And, even if the
first argument is not⊥ the function still yields⊥ as result. As partition performs pat-
tern matching on the tuple in the second argument, as long as the second argument
is ⊥, the result is ⊥ as well. Although this looks like a minor problem and will not
lead to bad performance in most cases, the consequences for breadthFirst are heavy.
The implementation presented above does not yield any value of a certain level if
any of the trees on the same level is ⊥. In other words, to yield the first value of a
level we have to evaluate all trees of this level to head normal form. Note that these
are exponentially many trees in the depth of the tree on a particular level .

In order to improve the implementation we simply have to replace the tuple pat-
tern matching in partition by a lazy pattern matching. This minor change has a quite
significant effect on the runtime of the function. Furthermore, this performance gain
increases with larger tree sizes.

To illustrate the benefit of the less strict implementation we perform a breadth
first traversal of a complete binary tree and calculate the length of the resulting
list. The following table presents the run-times for the presented implementation
of breadthFirst and a less strict implementation with a lazy pattern matching, called
breadthFirst′.

124

6.6 Generalization

depth breadthFirst breadthFirst′

20 2.61s 0.78s
21 8.67s 1.65s
22 30.91s 3.16s

These times were measured with an initial stack size of 50 megabytes as the unnec-
essarily strict implementation runs out of stack otherwise.

To test whether breadthFirst is minimally strict, Sloth uses a generalization of the
results presented in the previous sections. More precisely, Sloth, for example, only
uses the following test cases to check breadthFirst for trees up to size three.

⊥, Empty, Node ⊥ a ⊥, Node Empty a ⊥, Node (Node ⊥ a ⊥) b ⊥

The values a and b can be considered as integers that uniquely identify the position
of these values in the term. Sloth does not check the test cases Node ⊥ a Empty as
well as Node ⊥ a (Node ⊥ b ⊥) because the last argument of Node is not a sequential
position in Node ⊥ a ⊥ with respect to breadthFirst and, therefore, these values are
not elements of the characteristic set. In this section we sketch the idea that allows
us to reduce the number of test case for breadthFirst to a linear number of test cases
in the number of elements in the tree. More details about this approach and the
corresponding proofs for the generalization can be found in (Christiansen 2011).

Instead of considering functions of type [α] → [α] only, we consider functions of
type ϕ α → ψ α where ϕ and ψ are functors that are isomorphic to a functor com-
posed of the unit, the identity, the constant, the product, and the sum functor. In
the following, we refer to functors constructed from these building blocks as generic
functors. The approach to generic functors is very similar to the approach by Ma-
galhães et al. (2010). For arbitrary functors ϕ the user has to provide instances of
overloaded functions from and to, which constitute an embedding projection pair.
The function from transforms a value of type ϕ τ into a value of type Gen ϕ τ, where
Gen is a function on the type level (Chakravarty et al. 2005) that maps a type con-
structor to the isomorphic generic functor. In other words, Gen ϕ denotes a functor
that is a generic representation of ϕ. In the same way, the function to maps generic
values, that is, values of type Gen ϕ τ to elements of the original type, namely, ele-
ments of type ϕ τ.

To generalize the statements from the previous sections we have to provide gen-
eralizations of map, (!!), and shape for arbitrary first-order functors. Therefore, we
define instances of the type class Functor for all generic functors. Furthermore, we
define two type classes that provide functions called gproj and gshape and define
instances of these type classes for all generic functors. By means of a structural
induction over the structure of generic functors we can then prove the following
statement.

Lemma 6.6.1: For all generic functors ϕ and all x :: ϕ τ the following holds.

fmap (gproj x) (gshape x) ≡ x

By employing the functions from and to and the instances of fmap, gproj, and gshape
for generic functors we get instances of the functions for all functors that can be

125

6 Minimally Strict Polymorphic Functions

represented by generic functors. This way we can easily generalize the previous
lemma to all functors that provide an embedding projection pair from and to. To
generalize all the other statements from functions of type [α] → [α] to functions of
type ϕ α → ψ α we basically have to replace occurrences of map, (!!), and shape in
the proofs by fmap, gproj, and gshape.

126

7 Case Studies
In this chapter we present several case studies of applications of Sloth. Before we
apply Sloth to check whether several functions are minimally strict, in Section 7.1
we show how we can, in some cases, derive a less strict implementation. In Sec-
tion 3.2 we have already used this technique to derive a less strict implementation
of intersperse, and in Section 6.1 we have used this technique to derive a less strict
implementation of inits.

When we have the means to derive less strict implementations at hand, in Sec-
tion 7.2 we check whether the standard implementation of the multiplication of
Peano numbers is minimally strict. This function is a simple monomorphic example
of an unnecessarily strict function that furthermore demonstrates that we can benefit
from less strict function definitions if we consider infinite data structures.

In Section 7.3 we consider an implementation of binary numbers as algebraic data
type by Braßel et al. (2008). This example is of particular interest as it demonstrates
that minimally strict functions provide additional benefits in a functional logic pro-
gramming language like Curry (Hanus 2006).

In Section 7.4 we consider a somehow more practical example. We examine the
implementation of a function from the Haskell library split, which provides a variety
of functions to split a list into sublists.

Finally, in Section 7.5 we show that minmal strictness cannot be put on a level with
low memory footprint or even fast execution. More precisely, we consider a function
that reverses a list and show that the benefit of a minimally strict implementation
highly depends on the context of an application of a minimally strict function.

7.1 Deriving a Less Strict Implementation

As we have observed in Section 3.2, in some cases we can derive a less strict imple-
mentation of a function by distributing a context that occurs on all right-hand sides
of a case expression over the case expression. That is, we consider a function f of
the following form where C and D are contexts.

f x1 . . . xn = C[case e of
p1 → D[e1]

. . .
pm → D[em]]

Here, a context is an expression with the additional symbol [·], called hole. By C[e]
we denote the substitution of the hole by the expression e.

If the variables of the patterns p1 to pm do not occur free in D, we can transform
the function f into a function g.

127

7 Case Studies

g x1 . . . xn = C[D[case e of
p1 → e1

. . .
pm → em]]

In the following we refer to the transformation from the former into the latter form
as case deferment.

The function g is at least as little strict as the function f . Though, in general, g
is not necessarily less strict than f . To determine the conditions to get a less strict
implementation by case deferment, we consider this transformation in the simple
functional programming language introduced in Section 2.2. As this programming
language does not provide arbitrary algebraic data types, we examine the special
case of a case expression that matches lists. That is, we have a function of the fol-
lowing form where y and ys do not occur free in the context D.

f x = C[case e of
Nil → D[e1]
Cons〈y, ys〉 → D[e2]]

We calculate the semantics of f with respect to the semantics defined in Figure 2.2.4.
The semantics of a context C, denoted by JCKa where a is an environment, is a func-
tion that takes a semantic value v, fills the hole in the context with a fresh variable
x and updates the environment such that occurrences of x are replaced by v. More
precisely, we define

JCKa = λv.JC[x]Ka[x 7→v].

To calculate the semantics of f we use the fact that the semantics is compositional, in
other words, we use the equation

JC[e]Ka = JCKa JeKa.

In the following we abbreviate the environment a[x 7→ v] to a′ and calculate the
semantics of f .

Jf Ka = λv.JC[case e of {Nil→ D[e1]; Cons〈y, ys〉 → D[e2]}]Ka′

= λv.JCKa′

⊥ if JeKa′ = ⊥
JD[e1]Ka′ if JeKa′ = Nil
JD[e2]Ka′[y 7→v1,ys 7→v2] if JeKa′ = Cons 〈v1, v2〉

= λv.JCKa′

⊥ if JeKa′ = ⊥
JDKa′ Je1Ka′ if JeKa′ = Nil
JDKa′[y 7→v1,ys 7→v] Je2Ka′[y 7→v1,ys 7→v2] if JeKa′ = Cons 〈v1, v2〉

= λv.JCKa′

⊥ if JeKa′ = ⊥
JDKa′ Je1Ka′ if JeKa′ = Nil
JDKa′ Je2Ka′[y 7→v1,ys 7→v2] if JeKa′ = Cons 〈v1, v2〉

128

7.1 Deriving a Less Strict Implementation

= λv.

JCKa′ ⊥ if JeKa′ = ⊥
JCKa′ (JDKa′ Je1Ka′) if JeKa′ = Nil
JCKa′ (JDKa′ Je2Ka′[y 7→v1,ys 7→v2]) if JeKa′ = Cons 〈v1, v2〉

The last but one step of the calculation is valid because we only consider contexts D
that do not contain free occurrences of y and ys. In the same way we calculate the
semantics of the corresponding function g.

JgKa = λv.JC[D[case e of {Nil→ e1; Cons〈y, ys〉 → e2}]]Ka′

= λv.JCKa′

JDKa′

⊥ if JeKa′ = ⊥
Je1Ka′ if JeKa′ = Nil
Je2Ka′[y 7→v1,ys 7→v2] if JeKa′ = Cons 〈v1, v2〉

= λv.

JCKa′ (JDKa′ ⊥) if JeKa′ = ⊥
JCKa′ (JDKa′ Je1Ka′) if JeKa′ = Nil
JCKa′ (JDKa′ Je2Ka′[y 7→v1,ys 7→v2]) if JeKa′ = Cons 〈v1, v2〉

Thus, if we consider functions g and f of type τ1 → τ2 we have JgK A Jf K if there
exists v ∈ Jτ1K such that

JeK[x 7→v] = ⊥
and

JCK[x 7→v] (JDK[x 7→v] ⊥) A JCK[x 7→v] ⊥.

As case deferment is a purely syntactical transformation, a compiler could ap-
ply this transformation automatically by inspecting the right-hand sides of a case
expression. In some cases, we get a less strict implementation by applying this sim-
ple transformation. However, even if we do not get a less strict function, the re-
sulting function is as little strict as the original one. Furthermore, Gustavsson and
Sands (1999) show that case deferment preserves heap usage and improves stack
usage if D is a context that evaluates the hole to head normal form if the context
itself is evaluated to head normal form. They refer to this kind of contexts as reduc-
tion contexts. For all reduction contexts D we have JDK[x 7→v] ⊥ = ⊥ and, therefore,
JCK[x 7→v] (JDK[x 7→v] ⊥) = JCK[x 7→v] ⊥. Thus, they consider a form of case deferment
that does not yield a function that less strict. Note that it is not a necessary condition
for JCK[x 7→v] (JDK[x 7→v] ⊥) = JCK[x 7→v] ⊥ that D is a reduction context. They do not
consider the more general transformation presented here as it is not semantics pre-
serving. We did not check whether, using the theory by Gustavsson and Sands (1999,
2001), we can prove that case deferment never yields a function that consumes more
memory than the original implementation. However, a syntactical approach to less
strict implementations is certainly a direction for future considerations.

In the following sections, we will see some examples of functions that can be im-
proved with respect to strictness by applying case deferment. However, in most
cases, we have to apply other transformations first before we can apply case de-
ferment. Furthermore, we will as well see several examples where case deferment

129

7 Case Studies

cannot be used to derive a less strict implementation. In these cases we have to alter
the order of pattern matching.

The following lemma summarizes the observations so far, but, in contrast to the
considerations above, we do not use our simple functional language but full Haskell
and arbitrary algebraic data types instead of lists. Furthermore, we use an informal
notation where we do not separate syntax and semantics in the same line as we do in
Chapter 6. We do not present a proof for this statement as we would have to define
a semantics that provides arbitrary algebraic data types.

Lemma 7.1.1: Let f , g :: τ1 → · · · → τn → τ be functions defined as follows where C and
D are contexts of appropriate types, p1, . . . , pm are patterns of appropriate types, and e1, . . . ,
em and e are expressions of appropriate types. Furthermore, the variables of p1, . . . , pm do
not occur free in the context D.

f x1 . . . xn = C[case e of
p1 → D[e1]

. . .
pm → D[em]]

g x1 . . . xn = C[D[case e of
p1 → e1

. . .
pm → em]]

We have g A f if and only if there exist arguments v1 :: τ1, . . . , vn :: τn such that

e[x1 7→v1,...,xn 7→vn] ≡ ⊥
and

D[C[⊥]][x1 7→v1,...,xn 7→vn] A D[⊥][x1 7→v1,...,xn 7→vn].

Here, e[x1 7→v1,...,xn 7→vn] denotes the semantics of e with respect to the given substitutions.

Let us consider two examples of functions that do not become less strict by apply-
ing case deferment. Consider the following functions of type τ → [τ].

f x = case [] of
p1 → x : e1

. . .
pm → x : em

g x = x : case [] of
p1 → e1

. . .
pm → em

As we have [] 6≡ ⊥ for all arguments v :: τ, we get g ≡ f by Lemma 7.1.1. As another
example, consider the following functions of type τ → [τ].

130

7.1 Deriving a Less Strict Implementation

f x = tail (case e of
p1 → x : e1

. . .
pm → x : em)

g x = tail (x : case e of
p1 → e1

. . .
pm → em)

As we have tail (v :⊥) ≡ ⊥ for all arguments v :: τ, we get g ≡ f by Lemma 7.1.1.
Note that this is a case where the context D is not a reduction context as considered
by Gustavsson and Sands (1999) because x : [·] does not evaluate its hole to head
normal form if it is evaluated to head normal form itself.

As an example for a successful application of Lemma 7.1.1 we consider the def-
inition of intersperse from Section 3.2. First, we define intersperse by means of the
Haskell fixpoint operator fix :: (α → α) → α. That is, we consider the following
functional, as we have intersperse ≡ fix body.

body :: (α→ [α]→ [α])→ α→ [α]→ [α]
body [] = []
body f sep (x : xs) =

case xs of
[]→ x : []
→ x : sep : f sep xs

We apply case deferment to derive the following less strict implementation of the
functional body.

body′ :: (α→ [α]→ [α])→ α→ [α]→ [α]
body′ [] = []
body′ f sep (x : xs) =

x : case xs of
[]→ []
→ sep : f sep xs

To prove that body′ is indeed less strict than body, we have to provide arguments
f , sep, and x : xs such that xs ≡ ⊥ and x : ⊥ A ⊥. These requirements are met for
an arbitrary function f :: τ → [τ] → [τ], an arbitrary element sep :: τ and a list
x :⊥, where x is an arbitrary value of type τ. In particular this proves that we have
body′ f A body f for all functions f :: τ → [τ] → [τ]. We will later employ this
observation to show that fix body′ is less strict than fix body.

As we are not interested in a less strict functional but in a less strict recursive defi-
nition of intersperse, we have to provide some means to prove that fix body′ is indeed
less strict than fix body. Note that case deferment can only be applied to non-recur-
sive definitions, as the right-hand sides of the case expressions of the functions f

131

7 Case Studies

and g have to agree except for the context D. In other words, we cannot apply case
deferment to functions f and g if the right-hand sides of the case expressions of f
and g contain recursive applications of the corresponding functions. Therefore, we
prove the following Lemma by means of fixpoint induction (Bakker 1980).

Lemma 7.1.2: Let f , g :: τ → τ. If we have g x A f x for all x :: τ, then fix g A fix f .

Proof: We prove this statement by fixpoint induction. We define a predicate P(x, y)
that takes two values of type τ and is satisfies if and only if g x A f y. For the base
case of the induction we have to prove that P(⊥,⊥) holds. As we have g x A f x
for all x :: τ by precondition, the base case holds. For the inductive step we have to
show that for all x, y :: τ if P(x, y) holds, then P(g x, f y) also holds. We reason as
follows.

g (g x)
A { precondition }

f (g x)
w { induction hypothesis, monotonicity of f }

f (f y)

Thus, P(g x, f y) holds and, therefore, the inductive step holds as well. By the fix-
point induction principle this implies P(fix g, fix f) or, in other words g (fix g) A
f (fix f) which is equivalent to fix g A fix f . �

As we have observed before, we have body′ f A body f for all f :: τ → [τ] → [τ].
Thus, by the previous lemma we also have fix body′ A fix body. This shows that
intersperse′ from Section 3.2 is less strict than intersperse.

The notion of “less strict” considered above refers to the definition of the less-strict
relation from Definition 6.1.1. There a function f is less strict than a function g if we
have f w g, that is, f x w g x for all x of appropriate type. In contrast, according
to the original definition of the less-strict relation (Definition 4.1.2) a function f is
called less strict than a function g if we have f w g, and f and g agree for total
arguments. Therefore, we additionally have to show that two functions agree for
total arguments to apply these results to the definition presented in Chapter 4. In
most cases we consider functions that yield total results for all total arguments. If a
function g yields total results for all total arguments and we have f w g, that is, f x w
g x for all x of appropriate type, then f also yields total results for all total arguments.
For example, intersperse yields total results for all total arguments. In other words,
by applying Lemma 7.1.1 and Lemma 7.1.2 we already know that intersperse′ is less
strict than intersperse in the sense of Definition 4.1.2 because intersperse yields total
results for all total arguments. We only have to take additional care if we consider a
function that yields a non-total result for a total argument like the division function
on integers. All functions considered in the following sections yield total results for
all total arguments, so we can apply Lemma 7.1.1 and Lemma 7.1.2 to derive less
strict implementations in the sense of Definition 4.1.2.

132

7.2 Peano Multiplication

7.2 Peano Multiplication

In this section we observe that the standard implementation of the multiplication
of Peano numbers is too strict and present a benefit of less strict functions besides
memory usage. Later we show that the standard implementation of an intersection
of lists shows the same bad behavior as Peano multiplication.

Consider the following data type of Peano numbers.

data Peano = Zero | Succ Peano

We define addition and multiplication of Peano numbers as follows.

addP :: Peano→ Peano→ Peano
addP Zero n = n
addP (Succ m) n = Succ (addP m n)

multP :: Peano→ Peano→ Peano
multP Zero = Zero
multP (Succ m) n = addP n (multP m n)

Furthermore, we define an infinite Peano number called infinity.

infinity :: Peano
infinity = Succ infinity

This is a standard implementation of Peano number arithmetic. For example, the
numbers package by Augustsson (2009) provides an identical implementation.

The evaluation of multP Zero infinity yields Zero in a non-strict programming lan-
guage like Haskell. On the contrary, the evaluation of multP infinity Zero does not
terminate. So, do all implementations of the multiplication of Peano numbers be-
have this way? aThat is, can we give an implementation of Peano multiplication in
Haskell that yields Zero in both cases (without using parallelism)?

Sloth reports two counter-examples if we check multP up to size six.

> strictCheck multP 6
4: \(Succ ⊥) Zero ->

:::::
Zero

7: \(Succ (Succ ⊥)) Zero ->
:::::
Zero

Finished 23 tests.

As the counter-examples presented by Sloth are potential counter-examples, we
have to verify them. For all total inputs that are more defined than Succ ⊥ and
Zero the function multP yields Zero, which is as defined as the recommended result
Zero. Therefore, the counter-examples are definitely counter-examples.

In particular, the counter-examples show that a minimally strict implementation
of Peano multiplication only has to evaluate the outermost Succ constructor of its
first argument if the second argument is Zero. Therefore, a minimally strict imple-
mentation yields Zero for the arguments infinity and Zero. Thus, now we are able

133

7 Case Studies

to answer the question. There is an implementation of the multiplication of Peano
numbers that terminates no matter whether it is applied to Zero and infinity or to
infinity and Zero.

The evaluation of multP infinity Zero does not terminate because multP is induc-
tively defined over its first argument. Hence, even if the second argument is Zero,
the first argument is completely evaluated. Note that it, therefore, takes linear time
in the size of p to evaluate the application multP p Zero for any Peano number p.

To derive a less strict implementation, we inline the definition of addP into multP
and get the following equivalent definition.

multP :: Peano→ Peano→ Peano
multP Zero = Zero
multP (Succ m) n =

case n of
Zero → multP m Zero
Succ n′ → Succ (addP m (multP (m (Succ n′))))

If we consider this implementation, we observe that

multP m Zero

in the second rule yields Zero for all Peano numbers m. Well, in fact, not for all Peano
numbers, if m is terminated by ⊥, for example, m ≡ Succ (Succ (Succ ⊥)), then we
have multP m Zero ≡ ⊥. Therefore, we can replace the application multP m Zero
by the constant Zero and get the following less strict implementation of multP. We
slightly simplify the definition by employing the fact that pattern matching is per-
formed from top to bottom. However, we still use the pattern (Succ) instead of
in the second rule to emphasize that there is a bias towards the first argument with
respect to strictness.

multP′ :: Peano→ Peano→ Peano
multP′ Zero = Zero
multP′ (Succ) Zero = Zero
multP′ (Succ m) n = addP n (multP′ m n)

Sloth does not report any counter-examples if we check multP′ for Peano numbers
up to size 50. Note that for any Peano number p, it takes only constant time to
evaluate multP′ p Zero rather than linear time as for multP p Zero.

This is an example where we cannot apply case deferment to derive a less strict
implementation. Instead we have to change the order of pattern matching. If the
first argument has the form Succ m, the original implementation performs pattern
matching on m. In contrast, the less strict implementation performs pattern match-
ing on the second argument if the first argument has the form Succ m.

We might doubt the practical relevance of a minimally strict Peano multiplica-
tion. Therefore, we consider the function intersect :: Eq α ⇒ [α] → [α] → [α] from
the standard Haskell library Data.List that yields the intersection of two lists and is
probably of greater practical relevance than Peano multiplication.

134

7.2 Peano Multiplication

In fact, we do not know how we are supposed to check a function that has an
equality constraint. We can regard a function with a type class constraint as a high-
er-order function as we can apply dictionary transformation (Wadler and Blott 1989).
Therefore, we would be able to check intersect if we would be able to handle high-
er-order functions. Nevertheless, we conjecture that we can as well instantiate all
type variables that have an Eq contraint with an integer type to check whether a
function is minimally strict.

Although we did not prove this conjecture, we can easily show that it is not suffi-
cient to check a monomorphic instance with respect to a type that has only finitely
many values. For example, consider the function nub :: Eq α ⇒ [α] → [α] that re-
moves duplicate elements from a list. If we check the Boolean instance of nub, Sloth
reports the following counter-examples.

> strictCheck (nub :: [Bool] -> [Bool]) 7
11: \(True:False:⊥) -> True:False:

:::
[]

12: \(False:True:⊥) -> False:True:
:::
[]

17: \(True:False:⊥:⊥) -> True:False:
::
[]

19: \(False:True:⊥:⊥) -> False:True:
::
[]

24: \(True:False:⊥:[]) -> True:False:[]
26: \(False:True:⊥:[]) -> False:True:[]
Finished 45 tests.

These counter-examples state that, if the first two elements of a list are the Boolean
values False and True, the function nub does not have to inspect more elements as the
result will be a list that only contains the elements False and True anyway. For every
monomorphic instance with respect to a type that has only finitely many values
we get similar counter-examples. This example demonstrates that we cannot use
a monomorphic instance with respect to a type that has only finitely many values
to check whether a polymorphic function with an Eq constraint is minimally strict.
Thus, in the following we consider the integer instance of a polymorphic function
with Eq constraint to check whether the function is minimally strict.

Back on the road we consider the following implementation of intersect. For sim-
plicity, this implementation is an equivalent variation of the actual implementation
in Data.List. The function elem :: Eq α⇒ α→ [α]→ Bool takes a value and a list and
checks whether the value is an element of the list.

intersect :: Eq α⇒ [α]→ [α]→ [α]
intersect [] = []
intersect (x : xs) ys
| x ‘elem‘ ys = x : intersect xs ys
| otherwise = intersect xs ys

Note that, if the first argument of intersect contains duplicate elements, then the
result list will contain duplicate elements as well.

We check the implementation of the integer instance of intersect for arguments
up to size five. Sloth reports the following counter-example. Note that we, in fact,
use a data type with a finite number of constructors again as Int is restricted to a

135

7 Case Studies

finite number of bits1. Nevertheless, as the number of constructors is quite large,
technically, the finiteness of Int does not cause problems.

> strictCheck (intersect :: [Int] -> [Int] -> [Int]) 5
4: \(⊥:⊥) [] ->

::
[]

Finished 13 tests.

As we have intersect xs [] ≡ [] for all total list xs :: [Int], the potential counter-ex-
ample is definitely a counter-example. In fact, we do not only have intersect (⊥ :
⊥) [] ≡ ⊥, as stated by the counter-example, but intersect xs [] ≡ ⊥ for all lists xs
that are terminated by ⊥. For example, we have

intersect (replicate n x ++⊥) [] ≡ ⊥

for all n :: Int and all values x :: τ. Here, the application replicate n x yields a list
with n elements that only contains the value x. Furthermore, in the same way as
the evaluation of multP p Zero takes linear time in the size of p the evaluation of
intersect xs [] takes linear time in the size of xs.

We can define a less strict implementation of intersect by checking whether the
second argument is the empty list in the same way as multP′ checks whether the
second argument is Zero.

intersect′ :: Eq α⇒ [α]→ [α]→ [α]
intersect′ [] = []
intersect′ (:) [] = []
intersect′ (x : xs) ys
| x ‘elem‘ ys = x : intersect′ xs ys
| otherwise = intersect′ xs ys

Sloth does not report a counter-example if we check this implementation for integer
lists up to size ten. Note that the evaluation of intersect′ xs [] takes only constant
time.

7.3 Binary Arithmetics

In this section we want to emphasize that the concept of minimal strictness is of
particular interest if we consider functional logic programming languages. A func-
tional logic programming language like Curry (Hanus 2006) can be considered as a
functional language with non-determinism and free variables. In the following, we
assume that the reader is familiar with the basic concepts of non-determinism and
free variables.

Let us consider the algebraic data type for binary natural numbers presented by
Braßel et al. (2008) for the functional logic programming language Curry. The syntax
of Curry is very similar to the syntax of Haskell and the deterministic subset of Curry
resembles Haskell.

1The type Int uses 32 or 64 bits depending on the architecture of the system, the GHC is running on.

136

7.3 Binary Arithmetics

data Nat = IHi | O Nat | I Nat

This data type defines a little-endian representation of unsigned binary numbers
without leading zeros. The constructor IHi represents the most significant one-bit of
a binary number, while the constructors O and I represent a zero and a one-bit, re-
spectively. For example, the term O (I IHi) represents the decimal number six. Note
that, in contrast to Peano, the data type Nat does not include zero. Braßel et al. (2008)
furthermore define the following addition and multiplication of binary numbers,
where succN yields the successor of a binary number.

succN :: Nat→ Nat
succN IHi = O IHi
succN (O n) = I n
succN (I n) = O (succN n)

addN :: Nat→ Nat→ Nat
addN IHi n = succN n
addN (O m) IHi = I m
addN (O m) (O n) = O (addN m n)
addN (O m) (I n) = I (addN m n)
addN (I m) IHi = O (succN m)
addN (I m) (O n) = I (addN m n)
addN (I m) (I n) = O (addN (succN m) n)

multN :: Nat→ Nat→ Nat
multN IHi n = n
multN (O m) n = O (multN m n)
multN (I m) n = addN (O (multN m n)) n

We use Sloth to check whether multN is unnecessarily strict. Note that we, in fact,
check the corresponding Haskell implementation of multN as Sloth is implemented
in Haskell. As multN is deterministic, it behaves identically in Haskell and Curry if
we consider deterministic arguments. We check whether multN is minimally strict
for all pairs of binary numbers up to size five.

> strictCheck multN 5
32: \(I ⊥) (O IHi) -> O (I ⊥)
33: \(I ⊥) (O (O ⊥)) -> O (O ⊥)
34: \(I ⊥) (O (I ⊥)) -> O (I ⊥)
Finished 103 tests.

Sloth reports three counter-examples. The first counter-example states that, multN
applied to I ⊥ and O IHi yields O ⊥ while there exists a less strict implementation
that yields O (I ⊥) instead.

As all counter-examples consider arguments of the form I ⊥ and O m for some
natural number m, we consider the evaluation of the application multN (I ⊥) (O m).

137

7 Case Studies

multN (I ⊥) (O m)
≡ { definition of multN }

addN (O (multN ⊥ (O m))) (O m)
≡ { definition of addN }

O (addN (multN ⊥ (O m)) m)
≡ { definition of multN } (∗)

O (addN ⊥ m)
≡ { definition of addN }

O ⊥
If we consider the step labeled with (∗), intuitively, we might think that multN can
yield a more defined result. More precisely, for all total natural numbers m and n we
have

multN n (O m) ≡ O (multN n m).

That is, instead of replacing multN ⊥ (O m) by⊥we get a less strict implementation
if we replace the application by O (multN ⊥ m). In other words, in the third rule
of multN instead of performing pattern matching on m we would like to perform
pattern matching on n, that is, the second argument of multN. We get the desired
behavior if we swap the arguments of the recursive application of multN in the third
rule of multN. That is, we define the following function multN′.

multN′ :: Nat→ Nat→ Nat
multN′ IHi n = n
multN′ (O m) n = O (multN′ m n)
multN′ (I m) n = addN (O (multN′ n m)) n

We might assume, that this change improves the implementation with respect to
some arguments like I ⊥ and O IHi but worsens it with respect to other arguments.
For example, what about the application multN (I (O ⊥)) ⊥? In this case it seems
to be disadvantageous to swap the arguments of the recursive application of multN
as we get the application multN ⊥ (O ⊥) instead of the application multN (O ⊥) ⊥.

Let us consider the application multN (I m) ⊥ for an arbitrary binary natural
number m. We get the following equivalence.

multN (I m) ⊥
≡ { definition of multN }

addN (O (multN m ⊥)) ⊥
≡ { definition of addN }
⊥

As addN is strict in both arguments, no matter what the application of multN yields,
the result of this application is ⊥ as the second argument of the application of addN
is ⊥ as well. This examples shows that we have

multN (I m) ⊥ ≡ multN′ (I m) ⊥

for all natural numbers m. In other words, because addN consumes both its argu-
ments uniformily it is advantageous if the recursive application of multN in the third
rule of multN demands its second argument.

138

7.3 Binary Arithmetics

We might still not be convinced that multN′ is an improvement with respect to
strictness. Thus, we can check whether multN′ is minimally strict using Sloth. Sloth
does not report any counter-example if we check multN′ for binary numbers up to
size 10. However, note that this only states that multN′ is probably minimally strict
and not that multN′ is less strict than multN. The functions multN and multN′ may
still be incomparable.

So, why do we bother whether multN is unnecessarily strict? Braßel et al. (2008)
have introduced the data type Nat to guess numbers. In a functional logic program-
ming language we can non-deterministically guess elements of a specific type by
employing free variables. However, no Curry system can guess values of the prim-
itive integer type. By employing the data type Nat it is possible to guess numbers
while arithmetic operations for Nat are still reasonably fast (for example, in compar-
ison to a Peano representation).

In general, in a non-deterministic context, functions that are too strict can lead to
unnecessarily many non-deterministic branches, which in turn leads to unnecessary
overhead. For example, let us consider the following function.

context :: Nat→ Bool
context (O (I)) = True

The essence of an unnecessarily strict function is that it inspects a larger part of its
argument than necessary to yield a certain result. For example, if we evaluate the
expression context (multN (I unknown) (O IHi) the function multN performs pattern
matching on unknown, where unknown denotes a free variable. Therefore, the free
variable is instantiated. When a variable of type Nat is instantiated, it is instantiated
to all constructors of its type, applied to fresh free variables, namely, IHi, O unknown
and I unknown. For all these instantiations the considered expression yields True.
Hence, the evaluation yields the result True three times.

> context (multN (I unknown) (O IHi))
True
More?

True
More?

True
More?

No more Solutions

On the other hand, if we use the less strict implementation multN′ we only get a
single result.

> context (multN’ (I unknown) (O IHi))
True
More?

No more Solutions

139

7 Case Studies

Here, multN′ does not perform pattern matching on unknown. Therefore, the free
variable is not instantiated, and the expression is simply evaluated to True.

Thus, minimally strict functions are advantageous in a functional logic program-
ming language. We can observe this advantage when we compare run-times for the
generation of Pythagorean triples, using multN and multN′ respectively.2

pythagorean :: (Nat, Nat, Nat)
pythagorean | addN (multN a a) (multN b b) == multN c c = (a, b, c)

where
a, b, c free

The variables a, b, and c are defined to be free variables by the keyword free. That is,
pythagorean yields all triples of binary numbers a, b, and c such that a∗ a+ b∗ b = c∗ c.
For all numbers that do not satisfy this equation the guard yields a failure, that is,
the empty result set.

number of triples multN multN′

100 3.87s 1.10s
200 17.81s 5.87s
300 33.42s 12.78s

It takes around three times as long to enumerate Pythagorean triples if we use the
unnecessarily strict implementation of multiplication.

Most of the functions defined by Braßel et al. (2008) are unnecessarily strict. In
the following we consider one additional example, namely, the function cmpNat,
which compares two natural numbers and yields a value of type Ordering. The type
Ordering has three values, namely, EQ, LT, and GT, which specify the relation of two
values with respect to a given ordering. The following definition of cmpNat employs
a function isEQ whose implementation is self-explanatory.

compNat :: Nat→ Nat→ Ordering
compNat IHi IHi = EQ
compNat IHi (O) = LT
compNat IHi (I) = LT
compNat (O) IHi = GT
compNat (O m) (O n) = compNat m n
compNat (O m) (I n) =

if isEQ cmpmn then LT else cmpmn
where

cmpmn = compNat m n
compNat (I) IHi = GT
compNat (I m) (O n) =

if isEQ cmpmn then GT else cmpmn
where

cmpmn = compNat m n
compNat (I m) (I n) = compNat m n

2The run-times are measured with the Curry compiler KiCS (Braßel and Huch 2009).

140

7.3 Binary Arithmetics

In Haskell we would probably merge the second and the third rule of compNat
to a single rule. In Curry these definitions are not equivalent as overlapping rules
are not evaluated top to bottom but non-deterministically. When we check compNat,
Sloth reports the following counter-examples.

> strictCheck compNat 5
17: \(O IHi) (I ⊥) -> LT
20: \(I ⊥) (O IHi) -> GT
Finished 61 tests.

The first counter-example states that compNat yields ⊥ if we apply it to O IHi and
I ⊥, but there exists a less strict implementation that yields LT instead. And, indeed,
if we compare O IHi with I ⊥, that is, if we compare 2 with 2 ∗ n + 1 where n is a
natural number greater or equal to 1, the former one is certainly always smaller then
the latter one.

If we apply compNat to O IHi and I ⊥, the function compNat compares IHi and
⊥. In the case that the result of this test is EQ as well as if it is LT the result of
compNat (O IHi) (I ⊥) is LT. If the recursive application yields GT, then compNat
yields GT as well. That is, instead of applying the function compNat recursively in
the case that the arguments have the form (O m) and (I n) we can check whether
m is less or equal to n. This way compNat makes use of the fact that the result of
compNat is not EQ if the outermost constructors already differ. Or in other words,
if the outermost constructors differ we do not have to check whether the arguments
of the constructors are equal. Using this idea we define the following less strict
implementation of compNat. For readability we only present the rules that have
changed in comparison with compNat.

compNat′ :: Nat→ Nat→ Ordering
. . .
compNat′ (O m) (I n) = if m <= n then LT else GT
. . .
compNat′ (I m) (O n) = if n <= m then GT else LT
. . .

Braßel et al. (2008) have defined (<=) and (>=) by means of compNat. In this
case, compNat′ is as strict as compNat. In the following we analyse the behavior of
the comparison functions in more detail.

As Braßel et al. (2008) correctly observe, we “can do better [..] than defining

n == m = isEQ (compNat n m)
n /= m = not (n == m)

by sticking to the usual definition of (==), which directly compares the construc-
tors”. In other words, if we implement the equality check (==) by means of compNat
(as well as compNat′), it is unnecessarily strict. For example, Sloth reports the follow-
ing counter-examples if we check (==).

141

7 Case Studies

> strictCheck (==) 5
10: \(O ⊥) (I ⊥) =

::::::
False

12: \(I ⊥) (O ⊥) =
::::::
False

17: \(O IHi) (I ⊥) = False
20: \(I IHi) (O ⊥) = False
Finished 61 tests.

The first counter-example is definitely a counter-example as for all total inputs, that
are more defined than O ⊥ and I ⊥, the function (==) yields False as well. Obvi-
ously, a naive implementation of (==) also yields False for the arguments O ⊥ and
I ⊥. An implementation of (==) that is based on compNat cannot show the same be-
havior as compNat has to evaluate one of its arguments completely to yield a result.
For example, compNat cannot decide whether O ⊥ is greater or less than I ⊥.

Although Braßel et al. (2008) have observed that it is disadvantageous to define
(==) by means of compNat, they have not observed that the same holds for the other
comparison functions. We define (<), (>), (<=) and (>=) by means of compNat
like it is suggested by Braßel et al. (2008) and observe their behavior in the following.
We consider the following definitions of the comparison functions as suggested by
Braßel et al. (2008).

n < m = isLT (compNat n m)
n > m = isGT (compNat n m)
n <= m = not (n > m)
n >= m = not (n < m)

In the following we only consider the function (<=). We get similar results for the
other functions. When we check (<=) using Sloth, we get the following counter-ex-
ample.

> strictCheck (<=) 4
2: \IHi ⊥ -> True
Finished 37 tests.

The natural number IHi is less or equal to any other binary natural number. There-
fore, we do not have to check the second argument. However, as (<=) is defined
by means of compNat it checks whether the second argument is IHi as in this case
compNat yields EQ. If we increase the considered size, we observe that we also have
I ⊥ <= O IHi ≡ ⊥ while a minimally strict implementation yields False instead.
As we have observed before, compNat is unnecessarily strict for the arguments I ⊥
and O IHi and, therefore, (<=) is unnecessarily strict for these arguments as well.
Thus, we have to provide a specific definition for (<=) to get a minimally strict
implementation.

In fact, this is a quite common problem that is not restricted to the comparison of
binary numbers. For example, in Haskell the function (<=) :: Bool → Bool → Bool,
which implements the Boolean implication, is unnecessarily strict. Sloth yields the
following result.

142

7.3 Binary Arithmetics

> strictCheck ((<=) :: Bool -> Bool -> Bool) 3
2: \False ⊥ = True
Finished 7 tests.

In the same way as we expect False && ⊥ ≡ False we might expect False <= ⊥ ≡
True. However, (<=) is by default defined by means of compare. In other words, if
we do not provide an implementation of (<=) but an implementation of compare,
then (<=) is defined as follows.

(<=) :: Ord α⇒ α→ α→ Bool
x <= y =

case compare x y of
GT → False
→ True

This implementation of (<=) :: Bool → Bool → Bool evaluates its second argument
if its first argument is False.

In fact, we can show that every implementation of (<=) that is implemented by
means of compare for a data type that has a minimal element with respect to (<=)
is too strict. If the data type has a minimal element m with respect to (<=), we
can implement (<=) such that m <= ⊥ ≡ True. In contrast, the Haskell function
compare will always evaluate both arguments as they might be equal. Hence, if we
implement (<=) by means of compare we get m <= ⊥ ≡ ⊥. Lastly, note that
in most cases there is a minimal element with respect to (<=). For example, all
standard Haskell data types except for primitive data types like Int have a minimal
element.

In Haskell, instead of only providing an implementation of compare we can as
well only provide an implementation of (<=). In this case compare is by default
implemented by means of (<=) as follows.

compare :: Ord α⇒ α→ α→ Ordering
compare x y = if x == y then EQ else if x <= y then LT else GT

If so, both, (<=) and compare are minimally strict, but compare potentially traverses
its arguments twice because it first checks whether the arguments are equal and then
checks whether they are related by (<=). Therefore, it is advantageous to provide
definitions for both functions, compare and (<=). However, this is a very fine line
because we have to trade modularity for a minimally strict implementation. Note
that for all types whose (<=) instance is unnecessarily strict the implementations
of min and max are unnecessarily strict too as these functions are defined by means
of (<=) and the implementations of minimum and maximum are unnecessarily strict
as these are defined by means of min and max.

Besides the Nat data, presented here, Braßel et al. (2008) present a data type for
integer numbers that is based on Nat. A couple of functions for this integer type are
not minimally strict because they are based on functions for Nat that are not mini-
mally strict. Apart from these functions, subtraction of integers as well as division
are not minimally strict.

143

7 Case Studies
Test 50,351,154,872 bytes x seconds Fri Jun 3 12:32 2011

seconds0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0 550.0

by
te

s

0M

20M

40M

60M

80M

TSO

Figure 7.4.1: Heap Profile of Escaping Umlauts in Shakespeare’s Collected Works
using splitWhen from Version 0.1.2 of Split.

7.4 The split Package

In this section we check whether some functions of the Hackage package split, which
provides a variety of functions to split lists into sublists, are minimally strict. We
start by investigating the function splitWhen that splits a list by means of a predicate
into a list of sublists.

First, we take a look at three different functions that solve this task, that is, we
consider three functions of type (α → Bool) → [α] → [[α]], that behave equally
with respect to total arguments.

splitWhen from version 0.1.4 of split by Yorgey (2011) In Section 3.2 we have used
this implementation to define replaceBy. Using this function escaping an um-
laut in Shakespeare’s collected works uses constant space.

chop from the utility-ht package by Thielemann (2009) We have implemented the
function replaceBy by means of chop when we have originally observed that
intersperse is unnecessarily strict (Christiansen 2011). Using this function es-
caping an umlaut in Shakespeare’s collected works uses constant space as well.

splitWhen from version 0.1.2 of split by Yorgey (2010) We did not use the function
splitWhen when we originally observed that intersperse is unnecessarily strict,
because splitWhen from version 0.1.2 of split, which has been the current ver-
sion back then, causes a space leak itself. Using this function escaping an um-
laut in Shakespeare’s collected works does not use constant space at all.

Figure 7.4.1 presents the heap profile of escaping an umlaut in Shakespeare’s col-
lected works using splitWhen from version 0.1.2 of split. This task takes more than

144

7.4 The split Package

ten minutes and uses around one hundred megabyte of memory. In contrast, using
chop or the current version of splitWhen, this process takes less than one second and
less than three kilobyte of memory. That is, this application takes around 600 times
as long and more than 30,000 times the memory if we use the old implementation
of splitWhen. Even in comparison to the results for the unnecessarily strict imple-
mentation of intersperse, the consequences of using the implementation of splitWhen
from version 0.1.2 of split are worse.

By using Sloth we observed that some fundamental functions of the split pack-
age are unnecessarily strict. The improvements between version 0.1.2 and 0.1.4 of
the package are due to improvements of functions with respect to strictness com-
municated to the author of the package by private communication. In Section 7.4.1,
we show how we can observe that the original implementation of splitWhen (from
version 0.1.2 of split) is unnecessarily strict and improve its implementation. To im-
prove splitWhen we improve a function that is the basis for most of the functions
provided by the package split. That is, in fact, we do not only improve splitWhen but
most of the functions provided by the package. In Section 7.4.2 we consider another
function from split, called insertBlanks and improve it with respect to strictness.

Before we start, we want to state some preliminaries that are necessary to check a
function using Sloth. The argument as well as the result type of the function have to
be instances of the type classes Typeable and Data (Lämmel and Peyton Jones 2003).
Haskell provides a mechanism to derive instances of these type classes by using
the option DeriveDataTypeable. For example, using this option, to check the Peano
multiplication from Section 7.2 we have to add the following line after the data type
declaration for Peano.

deriving (Typeable, Data)

In Section 3.2, when we checked intersperse, we did not have to add a deriving state-
ment as lists as well as the data type A are already instances of Typeable and Data.

Moreover, we can use so-called stand-alone deriving to generate these instances.
More precisely, by using the option StandaloneDeriving we can derive instances of
type classes without having to change the source code. That is, we can derive the
required instances of data types that are defined in a library like split without chang-
ing the source code of the library. Without stand-alone deriving we would have to
add the deriving statement to the data type declaration of the corresponding data
type. The following code derives instances of Typeable and Data for the data type
Chunk, which will be used in the following sections.

deriving instance Typeable1 Chunk
deriving instance Data α⇒ Data (Chunk α)

Note that we have to derive an instance of Typeable1 instead of Typeable because
Chunk is a type constructor. Furthermore, if a type τ is an instance of Typeable and a
type constructor σ is an instance of Typeable1, then σ τ is an instance of Typeable as
well.

145

7 Case Studies

7.4.1 The Function splitWhen
After these preparations we would like to check if the function splitWhen is un-
necessarily strict. Sadly, we cannot check whether this function is minimally strict
as it has a higher-order type and Sloth does not support higher-order arguments.
Therefore, we investigate the consequences of checking if splitWhen applied to a
specific function is minimally strict. First, we check whether the partial application
splitWhen (const False) is minimally strict. That is, we consider splitWhen applied to
a predicate that is never satisfied. Sloth yields the following result.

> strictCheck (splitWhen (const False) :: [A] -> [[A]]) 3
1: \⊥ ->

:::::
⊥:[]

3: \(a:⊥) ->
::::::::::
(a:⊥):[]

Finished 11 tests.

First of all both counter-examples stay counter-examples if we increase the con-
sidered size. The first counter-example states that splitWhen always yields a list with
exactly one element. More precisely, if we apply splitWhen (const False) to ⊥, we get
⊥ while a minimally strict implementation yields [⊥] instead. Obviously, splitWhen
does not always yield a list with one element if we consider an arbitrary predicate.
That is, the counter-example that shows that splitWhen (const False) is unnecessarily
strict does not show that splitWhen is unnecessarily strict as well. Note that we can-
not check which function splitWhen is applied to, and, therefore, we cannot define a
function that satisfies the counter-examples if the functional argument of splitWhen
is const False.

This example is supposed to demonstrate that we cannot check whether a high-
er-order function is minimally strict by checking whether its partial application to an
arbitrary function is minimally strict. Nevertheless, at least in the case of splitWhen
there exists a predicate that allows us to derive some useful informations. We use
the identity function as predicate. In this case the elements of the list determine the
result of the predicate. Note that we can only use id as a predicate because splitWhen
is polymorphic. If we consider a monomorphic function similar to splitWhen, for
example, of type (Int→ Bool)→ [Int]→ [[Int]], we cannot use id as first argument.
Instead we would have to define a function that interprets integers as Boolean val-
ues.

We get the following results if we check whether splitWhen id is minimally strict.

> strictCheck (splitWhen id) 4
1: \⊥ ->

::::
⊥:⊥

3: \(⊥:⊥) ->
:::::
⊥:⊥

4: \(False:⊥) ->
:::::::::::::::
(False:⊥):⊥

5: \(True:⊥) -> []:
:::::
⊥:⊥

Finished 13 tests.

First of all, all counter-examples stay counter-examples if we increase the size. The
second question to answer is whether the counter-examples depend on the specific
predicate again. Let us consider the counter-example labeled with four. By evalu-
ating the first element of the list, we are always able to determine whether the first

146

7.4 The split Package

element satisfies the predicate no matter which predicate we consider. Therefore, if
we apply splitWhen p to False :⊥ independent, of the predicate p we know whether
the first element satisfies the predicate. In the case of the predicate id the first ele-
ment does not satisfy the predicate because the first element is False. In this case,
obviously, any implementation of splitWhen is supposed to be able to yield the el-
ement for which the predicate is not satisfied. For example, consider the standard
Haskell function words :: String→ [String] that takes a string and splits this string at
all occurrences of a whitespace. The following equivalence resembles the behavior
that Sloth proposes for splitWhen.

words (’a’ :⊥) ≡ (’a’ :⊥) :⊥

That is, the presented counter-example is independent of the specific predicate.
To improve the implementation of splitWhen with respect to strictness we examine

its implementation. The function splitWhen is defined as follows.

splitWhen :: (α→ Bool)→ [α]→ [[α]]
splitWhen = split ◦ dropDelims ◦whenElt

The function whenElt takes a predicate and yields a kind of configuration, and the
function dropDelims enriches this configuration with additional information. The
additional information is used to tell split that we want to drop the list elements
that satisfy the predicate. As dropDelims and whenElt do not perform any pattern
matching on the list, they cannot be the reason why splitWhen is unnecessarily strict.
Therefore, we consider the implementation of split.

split :: Splitter α→ [α]→ [[α]]
split s = map fromElem ◦ postProcess s ◦ splitInternal (delimiter s)

The argument of type Splitter α is the configuration that, among other things, con-
tains the predicate that is used to split the list. Without going into details about the
definition of split let use consider the implementation of splitInternal, which is the
basis for most functions defined in the package split.

splitInternal :: Delimiter α→ [α]→ [Chunk α]
splitInternal [] = []
splitInternal d xxs@(x : xs) =

case matchDelim d xxs of
Just ([], (r : rs)) → Delim [] : Text [r] : splitInternal d rs
Just (match, rest)→ Delim match : splitInternal d rest

→ x ‘consText‘ splitInternal d xs

consText :: α→ [Chunk α]→ [Chunk α]
consText z (Text c : ys) = Text (z : c) : ys
consText z ys = Text [z] : ys

When we apply splitWhen to the predicate id, the function splitInternal is applied
to DelimEltPred id where DelimEltPred is a wrapper that takes a predicate and yields

147

7 Case Studies

a value of the type Delimiter τ. To examine why the application splitWhen id is not
minimally strict, we check whether splitInternal (DelimEltPred id) is minimally strict.

When we check splitInternal (DelimEltPred id), we get similar results as we have
got for splitWhen id. Note that later the postprocessing of the result of splitInternal
will remove the Text constructors and drop the Delim elements. Sloth yields the
following results.

> strictCheck (splitInternal (DelimEltPred id)) 5
3: \(⊥:⊥) ->

:::::
⊥:⊥

4: \(False:⊥) ->
:::::
Text

::::::::::::::::
(False:⊥):⊥

7: \(False:⊥:⊥) ->
::::
Text

::::::::::::::::
(False:⊥):⊥

9: \(True:⊥:⊥) -> Delim (True:[]):
:::::
⊥:⊥

Finished 21 tests.

As expected, the function splitInternal is not minimally strict. So, why is the ap-
plication splitInternal (DelimEltPred id) (False : ⊥) unnecessarily strict? The func-
tion splitInternal passes its arguments to matchDelim. By evaluating the application
matchDelim (DelimEltPred id) (False : ⊥) we observe that it yields Nothing. Thus,
the first two cases of the pattern matching in splitInternal do not match but the third
one does. More precisely, the considered application of splitInternal yields the re-
sult of consText False (splitInternal (DelimEltPred id) ⊥). Furthermore, the following
equivalence holds.

consText False (splitInternal (DelimEltPred id) ⊥)
≡ { definition of splitInternal }

consText False ⊥
≡ { definition of consText }
⊥

As the result of matchDelim is Nothing, and, therefore, cannot be less strict, we check
whether consText is minimally strict. Note that we can use the more efficient type A
in this case as consText is polymorphic. Moreover, we do not have to bother about
higher-order as consText is a first-order function. Sloth yields the following coun-
ter-examples for consText.

> strictCheck (consText :: A -> [Chunk A] -> [Chunk A]) 3
1: \a ⊥ -> Text (a:⊥):⊥
3: \a (⊥:⊥) -> Text (a:⊥):⊥
Finished 5 tests.

Sloth reports that consText is unnecessarily strict. The first element of the result list is
always a Text element. Nevertheless, the implementation performs pattern matching
on its argument before it yields the first result element.

By replacing pattern matching by a case expression we get the following equiva-
lent implementation of consText. This implementation shows that we can apply case
deferment to derive a less strict implementation.

consText :: α→ [Chunk α]→ [Chunk α]
consText x cs =

148

7.4 The split Package

case cs of
Text text : rest→ Text (x : text) : rest

→ Text (x : []) : cs

However, in this case we would need a context with multiple holes, more precisely,
the context C = Text (x : [·]) : [·]. Instead of generalizing case deferment to contexts
with multiple holes we introduce a tuple that combines the contents of the holes to a
single value. More precisely, we introduce let expressions on all right-hand sides of
the case expression and get the following equivalent implementation of consText. In
a similar way we can handle all cases of contexts with multiple holes by introducing
a let expression.

consText :: α→ [Chunk α]→ [Chunk α]
consText x cs =

case cs of
Text text : rest→ let (text′, rest′) = (text, rest) in Text (x : text′) : rest′

→ let (text′, rest′) = ([], cs) in Text (x : text′) : rest′

Now, we can use a context with a single hole, namely,

C = let (text′, rest′) = [·] in Text (x : text) : rest.

Furthermore, we use D = [·] and apply Lemma 7.1.1 to derive the following imple-
mentation by moving the context C to the front of the definition.

consText′ :: α→ [Chunk α]→ [Chunk α]
consText′ x cs =

let (text′, rest′) = case cs of
Text text : rest→ (text, rest)

→ ([], cs)
in Text (x : text′) : rest′

To show that this implementation is less strict we consider the arguments x = a
where a is an arbitrary value of some type τ and cs = ⊥. In this case, we have
cs ≡ ⊥ and

D[C[⊥]]
≡ { definition of C and D }

let (text′, rest′) = ⊥ in Text (a : text′) : rest′

≡ { semantics of let expression }
Text (a :⊥) :⊥
A
⊥.

Thus, consText′ is less strict than consText. Note that we do not have to consider the
definition of consText by means of an explicit fixpoint to apply case deferment as its
definition is non-recursive.

149

7 Case Studies
Test 1,401 bytes x seconds Mon Jun 6 19:56 2011

seconds0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5

by
te

s

0

500

1,000

1,500

2,000

2,500

OTHER

base:GHC.STRef.STRef

ghc-prim:GHC.Tuple.(,)

FUN_1_0

base:GHC.IO.Encoding.Types.BufferCodec

FUN

BLACKHOLE

base:GHC.ForeignPtr.MallocPtr

MVAR_CLEAN

PAP

THUNK

WEAK

MUT_VAR_CLEAN

FUN_2_0

THUNK_1_0

base:GHC.IO.Buffer.Buffer

base:GHC.IO.Handle.Types.Handle__

MUT_ARR_PTRS_CLEAN

ghc-prim:GHC.Types.:

TSO

Figure 7.4.2: Heap Profile of Escaping Umlauts with the Less Strict Implementation
of splitWhen.

As we will reuse it later, we define a function splitText at top-level instead of using
a case expression and use the following definition of consText′ that is equivalent to
the derived implementation.

consText′ :: α→ [Chunk α]→ [Chunk α]
consText′ x cs = Text (x : text) : rest

where
(text, rest) = splitText cs

splitText :: [Chunk α]→ ([α], [Chunk α])
splitText (Text text : rest) = (text, rest)
splitText cs = ([], cs)

Figure 7.4.2 shows the heap profile of escaping umlauts if we use this less strict
implementation of consText and, therefore, a less strict implementation of splitWhen.
This profile is quite similar to the profile that we get for chop (Thielemann 2009) and
splitWhen from version 0.1.4 of the split package (Yorgey 2011).

So, why do we get a significant performance improvement by improving the in-
conspicuous looking function consText? When we take a closer look at the coun-
ter-example, we observe that if the predicate yields False for all list elements, then
splitInternal does not yield a first Text element until the list is terminated by the
empty list. For example, for the function splitInternal from version 0.1.2 of split we
have

splitInternal (DelimEltPred id) (replicate n False ++⊥) ≡ ⊥
for all n :: Int. That is, we have to completely evaluate the list structure to get the first
element of the result list. As we consider a predicate that is not satisfied for any list
element — we check whether any character of Shakespeare’s collected works is the

150

7.4 The split Package

umlaut “ä” —, we have to completely evaluate the argument of splitWhen, which
is the string containing Shakespeare’s collected works. If we take another look at
the profile in Figure 7.4.1, we observe that the heap is filled by TSO elements. TSO
is the abbreviation of Thread State Object. Although the name includes “Thread”,
these objects also occur in non-threaded programs where they refer to the stack us-
age of the main thread. In this particular example, by being unnecessarily strict, the
compiler has to evaluate a cascade of non-tail recursive applications and to allocate
stack space for all these applications. If the first element of a list does not satisfy the
predicate, then an application of splitInternal reduces to an application of consText
to the first element of the list and a recursive application of splitInternal to the rest
of the list. However, consText does not yield a result before it has evaluated its sec-
ond argument, namely, the application of splitInternal to the rest of the list. Thus, if
all elements of a list do not satisfy a predicate, we have to allocate stack space for
as many applications of splitInternal as the list has elements. In the case of Shake-
speare’s collected works the compiler allocates stack space for as many applications
of splitInternal as Shakespeare has written down characters.

As we have observed, the function splitWhen is another example of a function
whose performance can be improved by improving its implementation with respect
to strictness. Yet, there are many ways to interfere with the memory behavior even
if a function is minimally strict. For example, an implementation of splitWhen that
is based on consText′ causes a space leak if a compiler would use a naive approach
to the implementation of lazy pattern matchings like the where clause in consText′.
Wadler (1987) has presented an optimization that prevents this kind of space leak.

To get the basic idea of this optimization let us consider the naive approach using
the example of consText′. The naive approach introduces a variable, called pair, for
the result of the application of splitText. Furthermore, it replaces the variable text by
fst pair and rest by snd pair, where fst and snd are projections to the first and the sec-
ond component of a pair, respectively. That is, we get the following implementation.

consText′2 :: α→ [Chunk α]→ [Chunk α]
consText′2 x cs = Text (x : fst pair) : snd pair

where
pair = splitText cs

To cause a space leak we have to consider a context that first evaluates the first
list element of the result of consText′2 and afterwards evaluates the rest of the list.
When the application fst pair is evaluated, the application splitText cs is evaluated.
Although, the function does not reference the first component of the pair anymore,
the garbage collector is not able to deallocate the corresponding memory as the pro-
gram still keeps a reference to the whole pair via the application snd pair. To over-
come this problem, intuitively, when fst pair is evaluated occurrences of snd pair are
replaced by a shortcut to the second component of the tuple. This way, there is no
reference that keeps the whole pair alive. The interested reader may consider the
work by Wadler (1987) and Sparud (1993) for more details about this problem and
its solution.

151

7 Case Studies

Although this optimization prevents consText′ from causing a space leak, we can
use a denotationally equivalent implementation of consText′ that does not allow for
this kind of optimization. For example, consider the following function consText′3.

consText′3 :: α→ [Chunk α]→ [Chunk α]
consText′3 x cs = Text (x : text cs) : rest cs
text (Text t: _) = t
text = []

rest (Text : cs) = cs
rest cs = cs

If we define splitWhen by means of consText′3, escaping an umlaut uses less memory
than using the original definition of splitWhen, but it uses significantly more memory
than using an implementation of splitWhen that is based on consText′.

Let us consider a context as we have done above, that is, a context that first eval-
uates the first list element of the result of consText′3 and afterwards evaluates the rest
of the list. If the first list element of the result is evaluated, the application text cs is
evaluated. Although the function text projects to a part of the argument of cs that is
not used later on, the garbage collector is not able to deallocate the occupied mem-
ory because the program still has a reference to the argument list cs. Instead, the
function holds the part of cs that has been evaluated until the expression rest cs is
evaluated.

This example reveals a general problem of minimally strict functions. From the
point of the less-strict relation, as defined in this thesis, the functions consText′ and
consText′3 are equivalent as we use a denotational view on functions. That is, among
all minimally strict implementations we want to chose the implementation that uses
the smallest amount of memory. Obviously, an operational view on functions is de-
sirable if we want to reason about memory behavior. In Section 7.5 we will observe
that even with a denotational model we can still draw some connections between
the less-strict relation and memory usage.

Let us switch back to the undertaking of defining a minimally strict implementa-
tion of splitWhen, we observe that, in fact, splitInternal and, thus, splitWhen are still
unnecessarily strict. By splitInternal′ we denote an implementation of splitInternal
that uses the minimally strict implementation consText′ instead of the original imple-
mentation consText. Sloth reports the following counter-examples for splitInternal′.

> strictCheck (splitInternal’ (DelimEltPred id)) 2
3: \(⊥:⊥) -> ⊥:⊥
Finished 5 tests.

If we take a second look at the definition of splitInternal, we observe that all right-
hand sides of the case expression yield a list with at least one element. In other
words, there is a common context that occurs on all right-hand sides of the case
expression. Hence, we can use case deferment to derive the following less strict
definition.

splitInternal′′ :: Delimiter α→ [α]→ [Chunk α]
splitInternal′′ [] = []

152

7.4 The split Package

splitInternal′′ d xxs@(x : xs) = hd : tl
where
(hd, tl) = case matchDelim d xxs of

Just ([], (r : rs))→ (Delim [], Text [r] : splitInternal′′ d rs)
Just (match, rs) → (Delim match, splitInternal′′ d rs)

→ (Text (x : text), rest)
(text, rest) = splitText (splitInternal′′ d xs)

However, this implementation is still unnecessarily strict as the following coun-
ter-example demonstrates.

> strictCheck (splitInternal’’ (DelimEltPred id)) 3
6: \(⊥:[]) -> ⊥:[]
Finished 13 tests.

At first sight, this counter-example might look as it contradicts the sequentiality of
splitInternal′′ as we have splitInternal′′ (False :⊥) ≡ Text (False :⊥) :⊥. That is, we
are supposed to perform pattern matching on the head of the list and the rest of the
list. The counter-example does not contradict sequentiality as we are supposed to
perform pattern matching on the head and the tail of the list with respect to differ-
ent result positions. With respect to the head of the result list, we perform pattern
matching on the head of the argument list and with respect to the tail of the result
list, we perform pattern matching on the tail of the argument list.

The application splitInternal′′ (DelimEltPred id) (⊥ : []) applies matchDelim to the
arguments DelimEltPred id and ⊥ : []. This application yields ⊥ and the result of
splitInternal′′ is ⊥ :⊥. To define a less strict implementation, we add an additional
check whether the tail of the argument list is the empty list. We replace the expres-
sion

head : tail
by

head : if null xs then [] else tail.

Note that this new implementation is not more strict than the original one. If we
have xs ≡ ⊥, then tail ≡ ⊥, and, therefore,

if null xs then [] else tail ≡ ⊥ ≡ tail.

However, if x ≡ ⊥ and xs ≡ [], then tail ≡ ⊥ and, thus,

if null xs then [] else tail ≡ [] A tail.

7.4.2 The Function insertBlanks
There are several other functions in the split package that are unnecessarily strict.
In the following, we exemplarily consider the function insertBlanks. It takes a list of
Chunks, that is, a list of Text and Delim elements and inserts blanks, namely, Text el-
ements with an empty list, between all pairs of succeeding delimiters. Furthermore,

153

7 Case Studies

the function adds a blank at the end of the list, and if the first list element is a delim-
iter the function adds a blank at the front. We do not discuss the implementation of
insertBlanks in detail as we will only apply purely syntactical transformations in the
following.

insertBlanks :: [Chunk α]→ [Chunk α]
insertBlanks [] = [Text []]
insertBlanks (d@(Delim) : l) = Text [] : insertBlanksRest (d : l)
insertBlanks l = insertBlanksRest l

insertBlanksRest :: [Chunk α]→ [Chunk α]
insertBlanksRest [] = []
insertBlanksRest [d@(Delim)] = [d, Text []]
insertBlanksRest (d1@(Delim) : d2@(Delim) : l) =

d1 : Text [] : insertBlanksRest (d2 : l)
insertBlanksRest (c : l) = c : insertBlanksRest l

When we check insertBlanks using Sloth, we get the following result.

> strictCheck (insertBlanks :: [Chunk A] -> [Chunk A]) 2
1: _ -> Text _:_
3: \(_:_) -> Text _:_
Finished 5 tests.

The first counter-example states that the first element of the result of insertBlanks is
always a Text element. Nevertheless, insertBlanks first evaluates its argument before
it yields the first element of the result list.

We start with a simple transformation of the definition of insertBlanks. The data
type Chunk provides two constructors, namely, Text and Delim, which both take a
list as argument. Hence, in the last rule of insertBlanks the variable l has the form
Text text : l. Besides this observation, we use the following equality

insertBlanksRest (Text text : l) ≡ Text text : insertBlanksRest l

and arrive at an equivalent definition of insertBlanks.

insertBlanks :: [Chunk α]→ [Chunk α]
insertBlanks [] = [Text []]
insertBlanks (d@(Delim) : l) = Text [] : insertBlanksRest (d : l)
insertBlanks (Text text : l) = Text text : insertBlanksRest l

To derive a less strict implementation of insertBlanks we consider the following
equivalent implementation of insertBlanks that uses a case expression. Furthermore,
we use the equivalence insertBlanksRest [] ≡ [] and change the order of the rules in
the case expression.

insertBlanks :: [Chunk α]→ [Chunk α]
insertBlanks cs =

154

7.4 The split Package

case cs of
Text text : l→ Text text : insertBlanksRest l
l → Text [] : insertBlanksRest l

Now, we can apply case deferment to derive a less strict implementation. We
consider the contexts D = [·] and C = Text [·] : [·] and apply Lemma 7.1.1. As we
consider a context with multiple holes, we have to introduce a let expression, but
we abstain from developing the implementation step by step and simply present the
final result. After applying case deferment we observe that we can reuse splitText
and get the following less strict implementation.

insertBlanks′ :: [Chunk α]→ [Chunk α]
insertBlanks′ l = Text text : insertBlanksRest rest

where
(text, rest) = splitText l

However, this new implementation of insertBlanks is still unnecessarily strict as
the following result shows.

> strictCheck (insertBlanks’ :: [Chunk A] -> [Chunk A]) 4
8: \(Delim _:_) -> Text []:Delim _:Text _:_
13: \(Delim _:_:_) -> Text []:Delim _:Text _:_
Finished 23 tests.

Because the counter-examples only affect the tail of the result list, probably the func-
tion insertBlanksRest is too strict. We verify this assumption by checking whether
insertBlanksRest is minimally strict.

> strictCheck (insertBlanksRest :: [Chunk A] -> [Chunk A]) 4
3: \(_:_) -> _:_
4: \(Delim _:_) -> Delim _:Text _:_
7: \(Delim _:_:_) -> Delim _:Text _:_
Finished 19 tests.

And, indeed, we get similar results when we check insertBlanksRest. Thus, we exam-
ine insertBlanksRest in detail. As the definition of insertBlanksRest is quite unwieldy,
we define the following equivalent implementation of insertBlanks by introducing a
case expression to perform pattern matching if the first list element is a delimiter.
We replace the second and third rule of insertBlanksRest by the following rule.

insertBlanksRest (d1@(Delim) : l1) =
d1 : case l1 of

[] → [Text []]
d2@(Delim) : l→ Text [] : insertBlanksRest (d2 : l)
c : l → c : insertBlanksRest l

When we take a closer look at the case expression of this rule, we observe that it is
equivalent to the original definition of insertBlanks. Thus, we can replace the case
expression by an application of insertBlanks′ as follows.

155

7 Case Studies

insertBlanksRest :: [Chunk α]→ [Chunk α]
insertBlanksRest′ [] = []
insertBlanksRest′ (d@(Delim) : l) = d : insertBlanks′ l
insertBlanksRest′ (c : l) = c : insertBlanksRest′ l

Now, we are able to apply case deferment and get the following less strict imple-
mentation. For simplicity, we replace the case expression by a predicate that checks
whether its argument is a delimiter, called isDelim.

insertBlanksRest′ :: [Chunk α]→ [Chunk α]
insertBlanksRest′ [] = []
insertBlanksRest′ (c : l) =

c : if isDelim c then insertBlanks′ l else insertBlanksRest′ l

We have presented insertBlanks for a particular reason. The memory performance
of replacing umlauts in Shakespeare’s collected works using the less strict imple-
mentation of insertBlanks is worse than the memory behavior if we use the original
implementation. As we have mentioned before, the compiler applies an optimiza-
tion to prevent a space leak in the presence of lazy pattern matching as it is used in
the definition of insertBlanks′. However, in some cases, the current implementation
of this optimization implemented in the GHC fails (Marlow 2008). More precisely,
by applying other optimizations first, the compiler is unable to observe that the re-
sulting program projects to the components of a tuple (Felgenhauer 2010). We can
always prevent the space leak, caused by a lazy pattern matching, by replacing it by
a case expression as follows.

insertBlanks′2 :: [Chunk α]→ [Chunk α]

insertBlanks′2 l =
case splitText l of

(text, rest)→ Text text : insertBlanksRest′ rest

However, this implementation is too strict again, as we have insertBlanks′2 ⊥ ≡ ⊥.
Yet, there even exists an implementation that does not have a space leak and is still
minimally strict. We use a mixture of a lazy pattern matching by means of a where
clause and a strict pattern matching on the tuple. In the original definition, the
compiler is unable to apply the optimization because we apply a function to one of
the components of the tuple. Therefore, we introduce a case expression that applies
this function to one of the components of the tuple but yields the complete tuple
structure. The resulting tuple is destructed lazily by a where clause. More precisely,
we consider the following function.

insertBlanks′3 :: [Chunk α]→ [Chunk α]

insertBlanks′3 l = Text text′ : rest′

where
(text′, rest′) = case splitText l of

(text, rest)→ (text, insertBlanksRest′ rest)

156

7.5 Reversing Lists

Because we do not apply a function to the variable rest′ anymore, the compiler is able
to identify the tuple selectors in contrast to the original minimally strict definition
insertBlanks′. We did not investigate whether this transformation can be applied in
general when using the current version of the GHC to derive an implementation
that does not cause the space leak characterized by Wadler (1987).

7.5 Reversing Lists

When we considered memory improvements that arise from less strict implementa-
tions in the previous sections, we have always considered only one specific applica-
tion. We have demonstrated that minimally strict implementations of intersperse and
splitWhen are advantageous with respect to memory usage when we consider a pro-
gram that replaces all occurrences of an umlaut in Shakespeare’s collected works. In
this section we discuss the memory behavior of two minimally strict implementa-
tions in comparison to the original implementation with respect to different contexts.
We consider three different implementations of reverse and examine their behavior
with respect to three contexts. We will observe that the space usage of an implemen-
tation depends highly on the context it is used in. Gustavsson and Sands (1999, 2001)
have provided a formal model for reasoning about space usage in a lazy language,
but we will only informally argue about the space usage of a function here.

To begin with, consider the following linear complexity implementation of reverse.

reverse :: [α]→ [α]
reverse = rev []

where
rev xs [] = xs
rev xs (y : ys) = rev (y : xs) ys

When we check reverse using Sloth we, somehow surprisingly, observe that it is not
minimally strict.

> strictCheck (reverse :: [A] -> [A]) 4
3: \(a:⊥) ->

::::
⊥:⊥

5: \(a:b:⊥) ->
::::::::
⊥:⊥:⊥

Finished 9 tests.

These counter-examples state that, although the argument list is terminated by ⊥,
reverse is supposed to yield the spine of the result list. If we apply reverse to a total
list that is more defined than a :⊥, that is, to a list with at least one element, the result
is always a list with at least one element. Therefore, the potential counter-examples
are indeed counter-examples. However, every function that uses an accumulator
parameter, like reverse, yields ⊥ if the argument list is terminated by ⊥.

We can define a minimally strict implementation of reverse as follows. The func-
tion last :: [α] → α yields the last element of a non-empty list and the function
init :: [α]→ [α] yields a list without this last element.

157

7 Case Studies

reverse′ :: [α]→ [α]
reverse′ [] = []
reverse′ xs = last xs : reverse′ (init xs)

This implementation yields⊥ :⊥ for the argument a :⊥ as the following equivalence
shows.

reverse′ (a :⊥)
≡ { definition of reverse′ }

last (a :⊥) : reverse′ (init (a :⊥))
≡ { definition of last }
⊥ : reverse′ (init (a :⊥))
≡ { definition of init, namely rule init [x] = [] }
⊥ : reverse′ ⊥
≡ { definition of reverse′ }
⊥ :⊥

While reverse′ is minimally strict, in contrast to reverse it has a quadratic complexity.
Note that the naive quadratic complexity implementation of reverse by means of (++)
is not minimally strict.

Though, there is even a linear complexity implementation of reverse that is mini-
mally strict. The result of reverse has as many list constructors as its argument. We
define a function withShapeOf , that takes the result of reverse and its argument and
reconstructs the spine of the result by performing pattern matching on the argument.
By using a lazy pattern matching, the function withShapeOf only performs pattern
matching on l if any of the elements of the result of withShapeOf is evaluated.

withShapeOf :: [α]→ [β]→ [α]
‘withShapeOf ‘ [] = []

l ‘withShapeOf ‘ (: ys) = x : (xs ‘withShapeOf ‘ ys)
where x : xs = l

reverse′′ :: [α]→ [α]
reverse′′ xs = reverse xs ‘withShapeOf ‘ xs

The function reverse′′ is also minimally strict as the following equivalence illustrates.

reverse′′ (a :⊥)
≡ { definition of reverse′′ }

reverse (a :⊥) ‘withShapeOf ‘ (a :⊥)
≡ { definition of withShapeOf }

head (reverse (a :⊥)) : (tail (reverse (a :⊥)) ‘withShapeOf ‘⊥)
≡ { definition of reverse }

head (reverse (a :⊥)) : (tail ⊥ ‘withShapeOf ‘⊥)
≡ { definition of tail }

head (reverse (a :⊥)) : (⊥ ‘withShapeOf ‘⊥)
≡ { definition of withShapeOf }

158

7.5 Reversing Lists

head (reverse (a :⊥)) :⊥
≡ { definition of reverse }

head ⊥ :⊥
≡ { definition of head }
⊥ :⊥

Although the function withShapeOf might look somehow artificial, Chitil (2005)
uses an equivalent function, called copyListStructure, to reimplement an imperative
pretty printing algorithm in a functional language. By cleverly employing the func-
tion copyListStructure, the resulting algorithm has the same complexity as the imper-
ative algorithm (Wadler 2003).

Finally, note that there are other functions that show a similar behavior as reverse.
For example, a function that takes a binary tree and yields the list of elements in the
tree in in-order shows a similar behavior. A minimally strict implementation of this
function is supposed to yield the first list constructor even if it is applied to a tree
whose left children is undefined.

As we have observed in the previous sections, there are minimally strict imple-
mentations that use a non-constant factor less space than their unnecessarily strict
counterparts with respect to a specific context as it is the case for intersperse and
splitWhen. Here, we will argue that there always exists a context such that a less
strict implementation uses a non-constant factor less space than the unnecessarily
strict implementation.

So, which context might be a candidate for a non-constant improvement? The
counter-example that shows that a function is unnecessarily strict provides a context
in which the less strict implementation uses less space than the original implemen-
tation. For example, reverse is not minimally strict while reverse′ is minimally strict
because we have

reverse (⊥ :⊥) ≡ ⊥
but

reverse′ (⊥ :⊥) ≡ ⊥ :⊥.

As context we consider a function, that yields ⊥ if we apply it to the result of the
unnecessarily strict implementation. In contrast, the function yields the empty tuple,
denoted by (), if we apply it to the result of the less strict implementation. For
example, in the case of reverse we consider the following function context.

context :: [α]→ ()
context (:) = ()

Then we have

context (reverse (⊥ :⊥)) ≡ ⊥
but

context (reverse′ (⊥ :⊥)) ≡ ().

159

7 Case Studies

Now we look for an argument that is more defined than ⊥ :⊥ such that both appli-
cations are evaluated to (). For example, we have

context (reverse (⊥ : [])) ≡ ()

and
context (reverse′ (⊥ : [])) ≡ ().

This way we observe that, in comparison to reverse′, the function reverse inspects a
larger part of its argument to yield the same result. More precisely, reverse evaluates
the second argument of the cons constructor, in this case the empty list, to yield the
first list constructor as result. Note that in Chapter 1 we characterized the less-strict
relation exactly this way, that is, by referring to the inspected part of an argument.

Next, we define a function that yields the first argument, namely,⊥ :⊥, in constant
space while it needs linear space in the size of some integer to yield the more defined
argument, in this case⊥ : []. For example, we can use the following definition, which
is inspired by the motivating example by Gustavsson and Sands (1999).

argument :: Int→ [α]
argument n = ⊥ : if y == x then ⊥ else []

where
xs = [0 . . n]
x = head xs
y = last xs

We assume that n is always greater or equal to one. Furthermore, in this context by
⊥ we always denote a run-time error and not a non-terminating expression as the
evaluation of a non-terminating expression might result in space usage while this is
not the case for a run-time error. Finally, the following considerations are based on
the fact that the equality check (==) on integers first evaluates its first argument.

To evaluate the expression if y == x then ⊥ else [] we first have to evaluate y
due to the left to right evaluation order of (==). This causes the evaluation of the
whole list structure of xs and, therefore, occupies linear space in the size of n. The
garbage collector cannot deallocate the occupied memory as we hold a reference to
xs by means of x.

Now we consider the following application.

context (reverse′ (argument n))

The evaluation of this application has a constant space usage as reverse′ does not
evaluate the conditional. In contrast, the evaluation of

context (reverse (argument n))

causes the evaluation of the expression if y == x then ⊥ else []. The evaluation of
this expression uses a linear amount of space in the size of n. Therefore, by consid-
ering an arbitrary large integer n, we get a context in which reverse uses an arbitrary

160

7.5 Reversing Lists

context reverse reverse′ reverse′′

null 1.90s / 460MB 0.001s / 44KB 0.001s / 44KB
head 2.65s / 460MB 0.41s / 28KB 2.65s / 460MB

double 2.99s / 460MB >1min / >2GB 10.29s / 2GB

Figure 7.5.1: Run-Times and Space Usage for the Evaluation of an Application of a
Reverse Function to [1 . . 2 ∗ 10ˆ7] in the Corresponding Context.

large amount of space while reverse′ uses only a constant amount of space. The same
holds if we use reverse′′ instead of reverse′.

In the same way we can derive a context in which an arbitrary less strict func-
tion is an improvement over its unnecessarily strict counterpart. For example, for
intersperse we can use a quite similar construction as for reverse. More precisely, the
evaluation of the application

context (intersperse ⊥ (argument n))

uses linear space while the evaluation of

context (intersperse′ ⊥ (argument n))

uses only constant space. Obviously, as future work we have to formally verify these
statements by using appropriate semantic models.

Instead of the artificial argument argument n we can also use a more natural one,
namely, [1 . . n]. That is, we do not have to attribute the linear amount of space to
the evaluation of the empty list, but we can as well attribute it to the evaluation of
a linear-sized list structure. Note that there are examples where we indeed have to
attribute a linear amount of space to the evaluation of a single constructor. Thus,
we have used the function argument above to illustrate that it is possible to attribute
an arbitrary amount of space usage to the evaluation of a single constructor. Fur-
thermore, instead of the context context, we can as well use the function null that
checks whether its argument is the empty list. Figure 7.5.1 presents run-times and
space usages if we apply null to applications of reverse, reverse′, and reverse′′ to the
list [1 . . 2 ∗ 10ˆ7]. Here, the term [1 . . 2 ∗ 10ˆ7] denotes the list with the integers from
one to 20 million. The numbers in Figure 7.5.1 together with results for smaller lists
not presented here confirm that the unnecessarily strict implementation uses a lin-
ear amount of space in the length of the list, while the less strict implementations
reverse′ and reverse′′ use only a constant amount of space.

Now let us consider another context, namely, head. As Figure 7.5.1 shows, the
space usage of reverse′ is quite good if we consider the context head, because the ap-
plication head (reverse′ xs) reduces to last xs and last [1 . . n] runs in constant space for
all n. In contrast, the application head (reverse xs) constructs the reversed list com-
pletely. Therefore, reverse′ also uses a non-constant factor less space than reverse if we
consider the context head. In contrast to reverse′, the application head (reverse′′ xs) re-
duces to head (reverse xs) and, thus, the space usage of reverse′′ [1 . . n] is linear in n as

161

7 Case Studies

it is the case for reverse. In the case of the context head the difference between reverse′

and reverse′′ with respect to space usage is not reflected by the less-strict ordering
because reverse′ and reverse′′ are denotationally equivalent.

However, there even exists a context in which the space usage of reverse′ as well
as the space usage of reverse′′ is quadratic in the size of the argument list while the
space usage of reverse is linear in the size of the argument. We consider the function
double. Its definition uses the predefined length function, which uses a strict evalu-
ation primitive to evaluate intermediate results. If we do not evaluate intermediate
results, length itself causes a space leak.

double :: [α]→ Int
double ys = length (ys ++ ys)

When we evaluate the expression double (reverse′ xs), the spine of reverse′ xs is evalu-
ated by the application of length. Furthermore, length does not evaluate the elements
of the list. Therefore, ys is evaluated to a structure, that can be illustrated by the
following expression.

last xs : last (init xs) : last (init (init xs)) : . . .

The applications of last and init to the list xs are unevaluated thunks. The garbage
collector cannot collect this structure because in double we keep a reference to the list
ys in the second argument of (++). As this example illustrates, we get a quadratic
number of thunks in the length of the list. According to the space model by Gustavs-
son and Sands (1999), a quadratic number of thunks occupies a quadratic amount
of space. Thus, the evaluation of the application double (reverse′ [1 . . n]) uses a
quadratic amount of space in n.

The evaluation of the application double (reverse′′ [1 . . n]) also uses a quadratic
amount of space. In the case of reverse′′, unevaluated applications of last and init
become unevaluated projections to the head and the tail of the list reverse xs. As these
projections are never evaluated, we cannot benefit from the optimization proposed
by (Wadler 1987) in this case.

This example demonstrates that the theory and practice of minimally strict func-
tions lacks a more thorough investigation of space usage of minimally strict func-
tions. Furthermore, it might be advantageous to aim for implementations that are
minimally strict with respect to a specific context and not minimally strict with re-
spect to all possible contexts. For example, if we check the function double ◦ reverse ::
[A] → Int, Sloth does not report any counter-examples. That is, if we use the con-
text double we do not have to alter reverse because it is already minimally strict with
respect to this context. However, if we consider the context null, that is, if we check
whether null ◦ reverse :: [A]→ Bool is minimally strict, we observe that it is not. Nev-
ertheless, checking whether the result of reverse is the empty list is an quite unusual
application as we can perform the same check on the argument of reverse. Though,
note that abstraction can still lead to this kind of application. For example, in an
implementation of efficient queues by means of two lists as presented by Okasaki
(1998) we have to regularly check whether the result of an application of reverse is

162

7.5 Reversing Lists

the empty list. In summary, to provide the best implementation we might have to
evaluate which kinds of contexts are the most common ones.

163

7 Case Studies

164

8 Conclusion
In the first part of this chapter we summarize the most important results and obser-
vations of the previous sections. While we already provide some ideas for future
work in this first part, in the second part of this chapter we discuss possibilities for
more sophisticated future work within the area of functional programming as well
as an extension to the area of functional logic programming.

8.1 Summary

We have started by motivating why less strict functions matter. More precisely, in
Section 3.2 we have considered the function intersperse from the standard Haskell
library Data.List. We have observed that intersperse can cause a space leak and that
this leak is due to intersperse being unnecessarily strict. By deferring a single pat-
tern matching of intersperse, we have decreased the space usage of a program that
replaces an umlaut in Shakespeare’s collected works by a factor of 20,000.

Then, in Section 4.1 we have observed that the current approach to unnecessarily
strict functions by Chitil (2006) proposes refactorings that have to use non-pure fea-
tures like non-monadic concurrency. For example, the standard implementation of
the list concatenation (++) is not least strict in the sense of Chitil (2006). A least strict
concatenation is supposed to satisfy [1] ++ ⊥ ≡ 1 : ⊥ as well as ⊥ ++ [1] ≡ ⊥ : ⊥
(Chitil 2011). The standard Haskell implementation of (++) satisfies the former but
not the latter requirement. Moreover, there is no implementation that satisfies both
requirements without using non-pure features like concurrency.

Once we are convinced that we do not want to implement functions like list con-
catenation using non-pure features, we have to refine the notion of least strict. A
function is least strict if there exists no less strict function, where the notion of func-
tion is defined in the sense of a denotational semantics, that is, we consider mono-
tonic and continuous functions on corresponding domains. In contrast, in Section 4.2
we state that a function is minimally strict if there exists no less strict function that is
also sequential. That is, we consider only functions that are monotonic, continuous,
and sequential. In this way we exclude functions that have to use non-pure features.

Using this approach we define that a function is minimally strict if there exists no
less strict, sequential function. In the context of sequential functions we use the term
“minimally strict” and not “least strict” because, regarding sequential functions,
there does not always exist a least element with respect to the less-strict ordering.
For example, while the parallel and is least strict, there are two implementations of
the Boolean conjunction that are minimally strict, one that performs pattern match-
ing on its first argument, sometimes called left-strict, and one that performs pattern
matching on its second argument, sometimes called right-strict.

165

8 Conclusion

Checking manually whether the proposed improvements with respect to strict-
ness, like the improvements proposed for (++), result in a non-sequential imple-
mentation is quite challenging. Therefore, in Section 4.3 we have presented a first
step towards a more detailed investigation, namely, a criterion to check whether
there exists a less strict, sequential function. Moreover, we have proved that this
criterion is necessary and sufficient for the existence of a less strict, sequential func-
tion. This criterion is defined for monomorphic, first-order functions, only. While
we have later considered an extension to polymorphic functions we did not examine
higher-order functions.

This criterion provides a basis for further investigations into checking whether
functions are minimally strict. First of all, it allows us to formally argue whether a
function is minimally strict by a more mechanical approach than using the defini-
tion of sequentiality. Furthermore, the criterion provides the means to develop new
tools to check whether a function is minimally strict. For instance, while we have
presented a tool that regards only the “semantics” of a function in form of an higher
order argument, we can use the criterion to implement more sophisticated tools that
incorporate the syntactical definition of a function.

As indicated, on the basis of the formal criterion we have implemented a light-
weight tool, called Sloth, that checks whether a function is unnecessarily strict for
arguments up to a given size. Here, size refers to the number of constructors of a
term. In Chapter 5 we have presented several optimizations to a naive implementa-
tion of the tool that are used to improve the practical applicability. Nevertheless, we
consider Sloth a prototype as it still has some limitations.

Most notably, testing a function that uses a more sophisticated data type can result
in a quite large number of potential counter-examples that are no counter-examples
if we consider arguments of larger sizes. As an extreme example consider the data
type Char. Conceptually, this data type has 1114112 different constructors. The cur-
rent implementation of Sloth considers only the 128 most common characters. The
size, that is, the number of constructors, of any element of type Char is one. Thus,
we would already generate test cases for all characters if we check a function for
arguments up to size one. Therefore, we treat characters, as well as well as inte-
gers, differently. Namely, we consider these data types in the manner proposed by
Runciman et al. (2008). The size of an element of type Int is the absolute value of the
integer. In contrast, the size of an element of type Char is the number of bits of its
integer representation. Hence, the number of test cases of type Char grows exponen-
tially in the size while the number of test cases of type Int grows linearly in the size.
Although this choice is fixed right now, it would be desirable to have control over it,
for example, to be able to get an exponential growth for integers, as well.

However, this kind of enumeration of primitive data types causes other problems.
Whether a given function is minimally strict or not might depend on one specific
test case. Consider, for example, the function lines, which breaks up a string into a
list of strings at all positions of a newline character. To observe that this function
is minimally strict we have to generate a test case that contains the character ’\n’.
Depending on the order of the generation of characters, we might have to generate
all other characters before we generate a newline character. For all strings that do
not contain a newline character, lines yields a list with a single element. Thus, if

166

8.1 Summary

we only consider strings that do not contain the character ’\n’, it looks as if lines
yields a list with a single element in all cases. Therefore, we might wrongly attribute
the function lines as unnecessarily strict as it could yield a list with one element
without inspecting its argument. More precisely, for every possible partial value,
the function lines is classified as potentially unnecessarily strict as long as we do not
consider a more defined argument that contains a newline character.

For example, with the current implementation of Sloth we have to check lines
for strings up to size nine to observe that the application lines (⊥ : ⊥) is not un-
necessarily strict. When we consider arguments up to size nine, we, among other
test cases, generate the test case ’\n’ : ⊥ and, therefore, observe that the applica-
tion lines (⊥ : ⊥) is not unnecessarily strict. However, in this case, Sloth reports
potential counter-examples for all applications of lines to arguments that are more
defined than ⊥ : ⊥, like ’a’ : ⊥, as Sloth does not generate a test case that is more
defined than ’a’ :⊥ and contains a newline character. In cases like this an interac-
tive presentation of counter-examples, like it is used by StrictCheck (Chitil 2006), is
advantageous. We have implemented a function called interactCheck that presents
counter-examples one at a time and only presents the next counter-example if de-
manded. By employing this function we are able to only consider the most reli-
able counter-example. Sloth first presents the counter-examples based on the largest
number of values for the corresponding infimum.

The problem of large numbers of potential counter-examples is not restricted to
functions that use primitive data types like Char and Int. We can get similar behav-
ior for functions that use ordinary algebraic data types with several constructors.
To provide a more elaborated evaluation of the practical applicability of Sloth, we
have to collect more data, that is, apply Sloth to more examples. Additionally, lines
demonstrates another problem, we are faced with. Namely, we might have to gen-
erate a quite large number of test cases to observe that one specific application is not
unnecessarily strict. Testing a function for a large number of test cases is time as well
as space consuming or can even be infeasible.

To reduce the number of test cases we would like to employ background knowl-
edge by the user. For example, to check the function lines it would be sufficient to
consider strings that consist only of the undefined character ⊥, an arbitrary defined
character like ’a’, and the special newline character ’\n’. The function lines handles
all other defined characters in the same way as it handles the character ’a’. With
this knowledge we may define a test case generator that only generates these kinds
of strings. Thus, user defined test case generators are a topic for future work. In the
area of property-based testing there are even approaches to automatically reduce
the number of test cases in this way, using a criterion for code coverage. In other
words, a test case is not considered if there exists another test case that covers the
same code with respect to some kind of criterion. For example, Gill and Runciman
(2007) have presented an approach for displaying code coverage while Fischer and
Kuchen (2007) use code coverage to automatically reduce the number of test cases.

In Chapter 6 we have extended the less-strict relation to polymorphic functions.
Furthermore, we have presented an approach that is related to the reduction of test
cases for lines, as presented above. Namely, we use additional knowledge, provided
by the type of a function, to reduce the number of test cases for polymorphic func-

167

8 Conclusion

tions. If a function is polymorphic, it basically cannot perform pattern matching on
the polymorphic component. We have proved that we can check whether a poly-
morphic function is minimally strict by checking its monomorphic integer instance.
We don’t even have to check the polymorphic function for all possible inputs of the
monomorphic integer instance but only for a small number of test cases. More pre-
cisely, we have to check only a linear number of test cases in the number of polymor-
phic components in the data structure. For example, to test a polymorphic function
that takes lists as arguments we have to check only a linear number of test cases
in the length of the list. We have integrated this approach to testing polymorphic
function into Sloth and we can easily check polymorphic functions efficiently using
a simple type annotation.

Although, as illustrated, interpreting potential counter-examples for complex data
types is problematic in some cases, even if we consider quite simple data types like
lists and trees, there are lots of interesting examples of unnecessarily strict functions.
As an example, the innocent looking function reverse is, somehow surprisingly, not
minimally strict. Furthermore, at least we would not have guessed that there are
any unnecessarily strict functions in a standard Haskell library like Data.List or that
a well-known function like Peano multiplication is unnecessarily strict. Further-
more, in Section 7.4 we have illustrated that we can use Sloth to improve the mem-
ory behavior of a real world Haskell package, namely, the package split. Finally,
in Section 7.5, we have illustrated that we can always derive a context in which
an unnecessarily strict implementation performs worse than the corresponding less
strict implementation. This result implies that a less strict implementation is not
necessarily better than the original implementation but it is also not worse. All in
all, a prototype implementation like Sloth is quite useful for collecting examples of
unnecessarily strict functions as we have presented throughout this work.

8.2 Future Work

In this section we present future work, first, in the area of functional programming
and, then, in the area of functional logic programming. Note that we do not repeat
all statements about future work that have been mentioned in the previous chapters.

8.2.1 Functional Programming

To motivate one direction for future work let us consider a case study by Runciman
and Wakeling (1993b) that is “famous” for showing that some space leaks can be
fixed by using an implementation that is “more lazy” (Hudak et al. 2007). We have
only touched this particular example in Chapter 1 as the notion of “more lazy” with
respect to this example is more sophisticated than our notion of less strict. Runci-
man and Wakeling (1993b) have presented a tool for profiling the memory usage of
programs in a lazy functional programming language. Using this tool, they have
investigated the memory usage of a program that takes a propositional formula and
yields a clausal normal form of this formula. They have observed that the memory
usage can be improved by using a “more lazy” implementation of one particular

168

8.2 Future Work

function. However, in the sense of the less-strict relation, presented here, the pro-
posed improved implementation is incomparable to the original implementation.
The function in question yields a list and, with respect to some arguments, the im-
proved implementation changes the order of the elements of the list in comparison
to the original implementation. Therefore, these functions are incomparable with
respect to the less-strict relation. As the algorithm employs lists as a simple imple-
mentation of sets, the order of the elements does not matter. This example demon-
strates that we sometimes do not look for a less strict implementation with respect
to the canonical semantic ordering that is based on the structure of the result data
type but for a less strict implementation with respect to a more abstract ordering.
For example, in the case at hand we would like to use an ordering that ignores the
order of the elements in the list. This example can be considered as one instance of
the more general case of testing whether a function that uses an abstract data type is
minimally strict.

To illustrate another related limitation of the less-strict relation we consider the
purely functional implementation of a certain on-line algorithm by Bird et al. (1997).
By employing a less strict matrix transposition they were able to provide an imple-
mentation of the considered on-line algorithm that has linear complexity. In this case
a matrix is represented by a list of lists. If we check the original, unnecessarily strict
implementation of the transposition, Sloth does not report any counter-examples. In
fact, the standard implementation as well as the implementation presented by Bird
et al. (1997) are minimally strict. But, again, these functions are incomparable as
they yield incomparable results for total arguments. More precisely, these function
do not agree for arguments that are outside of the intended domain of the functions.
A transposition that takes a list of lists as argument is only well defined if we apply
it to a list that contains lists of equal length, as other kinds of lists of lists do not
represent valid matrices. We conjecture that these two implementations of trans-
position become comparable with respect to the less-strict relation, if we consider
only valid inputs. Hence, for future work we would like to incorporate a means
into Sloth to constrain the considered arguments of a function. A naive way to con-
strain the arguments is to apply a partial identity to the arguments of a function and
map all undesired arguments to ⊥. However, it is very difficult to implement the
corresponding partial identity as we have to regard partial values.

In our opinion, the most important and probably most difficult future work is a
connection between the less-strict relation and space usage. As we have illustrated
in Section 7.5, we can always construct a context in which a less strict implementa-
tion is an improvement over an unnecessarily strict implementation. As a first step,
we have to formally verify this informally stated conjecture. Furthermore, we have
to verify a second conjecture that is concerned with reverse. We assume that there
is no minimally strict implementation of reverse that is an improvement over the
unnecessarily strict implementation with respect to all possible contexts. If we can
show that there are functions for which no minimally strict function exists that is an
improvement with respect to all contexts, we provide a strong argument for consid-
ering only functions that are minimally strict with respect to a specific context.

A syntax-driven approach by means of transformations like case deferment might
provide an easier access to a connection between memory consumption and strict-

169

8 Conclusion

ness. It is much easier to reason about memory behavior of two functions that are
related by a transformation like case deferment than reasoning about memory be-
havior of two arbitrary functions that are related by the less-strict relation. If we con-
sider two arbitrary functions that are related by the less-strict relation the functions
can behave quite differently from an operational point of view while two functions
that are related by the case deferment behave operationally quite similar.

Furthermore, we would like to take a closer look at the trade-off between abstrac-
tion and minimally strict implementations. In Section 7.3 we have already observed,
using the example of the function (<=), that abstraction by means of a default im-
plementation of a type class function can result in an unnecessarily strict implemen-
tation. As another example for the trade-off between modularity and a minimally
strict implementation, consider the function sequence :: Monad m ⇒ [m α] → m [α].
If we consider the list monad instance of this function, it calculates the cross product
of an arbitrary number of lists. For example, we have

sequence [[1], [3, 4], [5, 6]] ≡ [[1, 3, 5], [1, 3, 6], [1, 4, 5], [1, 4, 6]].

Because sequence is implemented generically for all monads, its implementation for
the list mond is unnecessarily strict. For example, the evaluation of the expression
sequence [[1 . .], []] does not terminate. In contrast, a minimally strict implementa-
tion would yield the empty list instead. Simplified, the reason is that the list instance
of sequence can check whether any for the elements in the argument list is the empty
list while an implementation for an arbitrary monad cannot.

Finally, we could take a quite contrary approach in comparison to the basic idea of
minimally strict functions. Instead of considering sequential functions only, we can
stick to the concept of least strict functions and consider a more powerful language
that makes it possible to define least strict functions. For example, we can employ
the Haskell operator unamb by Elliott (2009), which is an implementation of the quite
intensively studied operator amb by McCarthy (1961). However, we assume that this
operator causes a significant run-time overhead that cannot be outweighed by the
benefits of a least strict definition.

Even more revolutionary, we would like to investigate a more declarative ap-
proach to pattern matching in lazy functional programming. As we have touched
on in the introduction the current approach to pattern matching in Haskell is rather
non-declarative as a programmer specifies the order of evaluation by means of case
expressions1. More precisely, we want to regard the definition of pattern matching
only with respect to total values and provide a transformation that looks for the
optimal implementation with respect to partial values. In this context we have to
mention that there are even more declarative approaches to the transformation of
rules into case expressions. More precisely, the programming language Curry uses
a transformation (Antoy 1992) that can be regarded as more declarative as it abstract
over the order of the rules and results in less strict functions.

1Rules can be considered as syntactic sugar for case expressions.

170

8.2 Future Work

8.2.2 Functional-Logic Programming
We expect that non-strict functional logic programming languages like Curry are
a very interesting field of future work. As we have illustrated in Section 7.3, deter-
ministic functions that are applied to free variables can benefit from less strict imple-
mentations. But, we can also consider non-deterministic functions. To be applicable
to full Curry we would have generalize the notation of minimally strict functions
to non-deterministic functions. We have already presented a denotational seman-
tics for Curry (Christiansen et al. 2011a)2 that seems adequate for further investi-
gations as it provides a kind of functional view on functional logic programming
and, therefore, should allow for a quite natural extension of the less strict relation to
non-deterministic functions.

To illustrate that the extension to non-deterministic functions is valuable let us
consider the following function, called insertND, that non-deterministically inserts
an element at any position of a list. The operator (?) denotes a non-deterministic
choice of its two arguments. That is, if the argument of insertND is a non-empty list
y : ys, we either insert the element x at the front of y : ys or we insert it non-determin-
istically in the list ys and put y to the front of the result.

insertND :: α→ [α]→ [α]
insertND x [] = [x]
insertND x (y : ys) = (x : y : ys) ? (y : insertND x ys)

This is a standard implementation of the non-deterministic insertion function that,
for example, is proposed on a webpage with Curry example programs (Hanus).

However, there is another implementation of this function that behaves equally
for all total arguments. As overlapping rules induce a non-deterministic choice, we
can define one rule that matches in the case that the list is empty as well as in the
case that the list is non-empty as follows.

insertND′ :: α→ [α]→ [α]
insertND′ x ys = x : ys
insertND′ x (y : ys) = y : insertND′ x ys

The function insertND′ is less strict than insertND if we consider a less-strict rela-
tion that is based on the semantic ordering used to model a denotational seman-
tics for a non-deterministic language (Christiansen et al. 2011a). For example, we
have insertND x ⊥ ≡ ⊥ but insertND′ x ⊥ ≡ x : ⊥. While in this case the re-
sult of both functions is actually kind of deterministic, there are also non-deter-
ministic cases. For example, we have insertND x (y : ⊥) ≡ (x : y : ⊥) ? (y : ⊥) and
insertND′ x (y :⊥) ≡ (x : y :⊥) ? (y : x :⊥). Therefore, to state that insertND′ is less
strict than insertND we have to regard non-determinism.

Let us consider an implementation of permutation sort, which is a standard ex-
ample for functional logic programming. If we implement permutation sort by
means of these functions we get a much more efficient implementation using the
“less strict” implementation of insertND. For example, it takes around 20 times as

2A corrected version is available as technical report (Christiansen et al. 2011b).

171

8 Conclusion

long to sort a list with 15 elements using insertND than it takes to perform the same
task with insertND′.

Furthermore, we can even observe another close relation between this example
and a result presented in this thesis. We can derive the implementation insertND′

from the implementation insertND by means of a generalization of case deferment
to functional logic programming. More precisely, if we consider an equivalent im-
plementation of insertND′ that is defined by means of (?), we can derive insertND′

from insertND by moving the context (x : xs) ? [·] over a case expression.
Finally, we have also started to investigate free theorems in a functional logic pro-

gramming language (Christiansen et al. 2010). More precisely, we have provided
an example-driven investigation that shows how we can adapt free theorems to the
context of functional logic programming. A formalization by means of the semantics
presented in (Christiansen et al. 2011a) will allow us to generalize the observations
from Chapter 6 to functional logic languages.

172

A Proofs from Chapter 4

A.1 Proofs from Section 4.2

Proof (of Lemma 4.2.4): We prove this statement by structural induction over the
typing rules.

Base Cases: Obviously we have (JeKErr
a1

, JeKa2) ∈ errm
τ for the rules Γ, x :: τ ` x :: τ,

Γ ` True :: Bool, Γ ` False :: Bool, Γ ` Nilτ :: List τ, and Γ ` undefinedτ :: τ.

Inductive Cases: We consider the rule for list construction.

Γ ` e1 :: τ Γ ` e2 :: List τ

Γ ` Cons〈e1, e2〉 :: List τ

By induction hypothesis we have (Je1KErr
a1

, Je1Ka2) ∈ errm
τ and (Je2KErr

a1
, Je2Ka2) ∈

errm
List τ. We reason as follows.

(Je1KErr
a1

, Je1Ka2) ∈ errm
τ ∧ (Je2KErr

a1
, Je2Ka2) ∈ errm

List τ

⇐⇒ (Cons 〈Je1KErr
a1

, Je2KErr
a1
〉, Cons 〈Je1Ka1 , Je2Ka1〉) ∈ errm

List τ

⇐⇒ (Cons J〈e1, e2〉KErr
a1

, Cons J〈e1, e2〉Ka2) ∈ errm
List τ

⇐⇒ (JCons〈e1, e2〉KErr
a1

, JCons〈e1, e2〉Ka2) ∈ errm
List τ

Next we consider the rule for tuple construction.

Γ ` e1 :: τ1 . . . Γ ` en :: τn

Γ ` 〈e1, . . . , en〉 :: τ1 × · · · × τn

We have (JeiKErr
a1

, JeiKa2) ∈ errm
τi

for all i ∈ {1, . . . , n} by induction hypothesis
and reason as follows.

∀i ∈ {1, . . . , n}. (JeiKErr
a1

, JeiKa2) ∈ errm
τi

⇐⇒ (J〈e1, . . . , en〉KErr
a1

, J〈e1, . . . , en〉Ka2) ∈ errm
τ1×···×τn

In the case of a function application we have to consider the following rule.

Γ ` f :: σ→ τ Γ ` e :: σ

Γ ` f e :: σ

173

A Proofs from Chapter 4

By induction hypothesis we have (J f KErr
a1

, J f Ka2) ∈ errm
σ→τ and (JeKErr

a1
, JeKa2) ∈

errm
σ and reason as follows.

(J f KErr
a1

, J f Ka2) ∈ errm
σ→τ ∧ (JeKErr

a1
, JeKa2) ∈ errm

σ

⇐⇒ ∀(a, b) ∈ errm
a . (J f KErr

a1
a, J f Ka2 b) ∈ errm

τ ∧ (JeKErr
a1

, JeKa2) ∈ errm
σ

=⇒ (J f KErr
a1

JeKErr
a1

, J f Ka1 JeKa2) ∈ errm
τ

=⇒ (Jf eKErr
a1

, Jf eKa2) ∈ errm
τ

We consider the rule for function types.

f :: σ→ τ ∈ P
Γ ` f :: σ→ τ

As the program P is well-typed we have Γ ` f :: σ→ τ. Therefore, by induction
hypothesis we have (J f KErr

a1
, J f Ka2) ∈ errm

σ→τ.

We consider the rule for list case expressions.

Γ ` e :: List τ Γ ` e1 :: τ′ Γ, x :: τ, xs :: List τ ` e2 :: τ′

Γ ` case e of {Nilτ → e1; Cons〈x, xs〉 → e2} :: τ′

We have (JeKErr
a1

, JeKa2) ∈ errm
List τ by induction hypothesis and distinguish five

cases.

• If JeKErr
a1

= ⊥List τ, by definition of case we have to show that

(⊥τ′ , Jcase e of . . .Ka2) ∈ errm
τ′ .

This statement is true because for all types τ we have (⊥τ, v) ∈ errm
τ for

all v ∈ JτK.

• If JeKErr
a1

= ErrorList τ n and m 6= n by definition of case we have to show
that

(Errorτ′ n, Jcase e of . . .Ka2) ∈ errm
τ′ .

If m 6= n for all types τ we have (Errorτ n, v) ∈ errm
τ for all v ∈ JτK.

• If JeKErr
a1

= ErrorList τ m and JeKa2 = ⊥List τ by definition of case we have to
show that (Errorτ′ m,⊥τ′) ∈ errm

τ′ which is true for all types τ′.

• If JeKErr
a1

= Nilτ and JeKa2 = Nilτ by definition of case we have to show
that (Je1KErr

a1
, Je1Ka2) ∈ errm

τ′ which is given by induction hypothesis.

• If JeKErr
a1

= Cons 〈v1, v2〉 and JeKa2 = Cons 〈v3, v4〉 with (v1, v3) ∈ errm
τ and

(v2, v4) ∈ errm
List τ by definition of case we have to show that

(Je2KErr
a1[x 7→v1,xs 7→v2]

, Je2Ka2[x 7→v3,xs 7→v4]
) ∈ errm

τ′

which is given by induction hypothesis.

174

A.2 Proofs from Section 4.3.1

The proof for Boolean case expressions is analogous to the proof for list case
expressions. �

Proof (of Lemma 4.2.5): Because p is a demanded position in pv at position rp, there
exists ev ∈ JσKErr such that (ev, pv) ∈ errn

σ. Furthermore, position p is the only
position such that

ev|p = Error n
and

(J f KErrev)|rp = Error n.

To show that p is a sequential position in pv at position rp with respect to J f K we
first have to show that (J f K pv)|rp = ⊥. We have (ev, pv) ∈ errn

σ, and by Lemma 4.2.4
we get (J f KErr, J f K) ∈ errn

τ and, thus, (J f KErrev, J f K pv) ∈ errn
τ . By definition of de-

manded positions we get

(J f KErr ev)|rp = Error n
and get

(J f K pv)|rp = ⊥

because (J f KErr ev, J f K pv) ∈ errn
τ.

Finally, we have to show that for all pv′ ∈ JσK the following holds.

pv′ w pv ∧ pv′|p = ⊥ =⇒ (J f K pv)|rp = ⊥

Let pv′ ∈ JσK such that pv′ w pv and pv′|p = ⊥. As position p of ev contains
an exception, that is, ev|p = Error n, by definition of demanded positions, p is the
only position that contains the error labeled with n. This implies (ev, pv′) ∈ errn

σ.
By Lemma 4.2.4 we have (J f KErr, J f K) ∈ errn

τ and, thus, (J f KErr ev, J f K pv′) ∈ errn
τ .

Furthermore, as

(J f KErr ev)|rp = Error n
we get

(J f K pv′)|rp = ⊥

because (J f KErr ev, J f K pv′) ∈ errn
τ. This finally completes the proof that p is a sequen-

tial position in pv at position rp. �

A.2 Proofs from Section 4.3.1

Proof (of Lemma 4.3.1): As f is sequential, there exists a sequential position p′ in v
at result position rp. We have p′ 6≤ p and p 6≤ p′. By definition of sequential position
we have v|p′ = ⊥ and, therefore, (v[v′]p)|p′ = v|p′ = ⊥ by Lemma 4.2.2. Finally,
because v[v′]p w v[⊥]p = v and p′ is a sequential position in v we get (f v[v′]p)|rp =
⊥. �

175

A Proofs from Chapter 4

Proof (of Lemma 4.3.2): Because v 6= ⊥, there exists v′ ∈ JτK and p ∈ Pos v′ such
that v′ lp v. By monotonicity there exists rp′ ∈ Pos (f v′) such that (f v′)|rp′ = ⊥
and rp′ ≤ rp. Because we have (f v′)|rp′ = ⊥, we have either v′ rp′ v or v′�rp′ v.
If we have a non-sequential step v′ rp′ v, by Lemma 4.3.1 we have (f v)|rp′ = ⊥,
and by definition of v we get rp = rp′. �

Lemma A.2.1: If we have v1 rp1 v2 and (f v2)|rp2 = ⊥with rp1 ≤ rp2, then rp1 = rp2.

Proof: We have v2 = v1[C⊥]p for some constructor C and a non-sequential position
p. By Lemma 4.3.1 we have (f v2)|rp1 = (f v1[C⊥]p)|rp1 = ⊥. By definition of v we
get rp1 = rp2. �

Lemma A.2.2: If v1 rp v2 �rp v3 and v1 lp v2 lp′ v3 then p 6≤ p′.

Proof: As v1 rp v2 there exists v ∈ JτK with v w v1, v|p = ⊥ and (f v)|rp 6= ⊥.
We have v = v[⊥]p v v[v2|p]p by monotonicity of v[·]p and by monotonicity of f we
have

⊥ 6= (f v)|rp v (f v[v2|p]p)|rp,

that is, (f v[v2|p]p)|rp 6= ⊥. By monotonicity of ·[v2|p]p we have v2 = v1[v2|p]p v
v[v2|p]p. If p ≤ p′ we have v[v2|p]p|p′ = v2|p′ by Lemma 4.2.2 and, therefore, p′

is a non-sequential position in v2 at position rp. This is a contradiction as p′ is a
sequential position in v2 at position rp. That is, we have p 6≤ p′. �

Proof (of Lemma 4.3.3): There exist positions p and p′ such that v1 lp v2 and v2 lp′

v3. Because we have v1 lp v2 there exists a constructor C such that v2|p = C ⊥
and v1|p = ⊥. Because we have v2 lp′ v3 there exists a constructor D such that
v3|p′ = D ⊥ and v2|p′ = ⊥. By Lemma A.2.2 we have p 6≤ p′ and p′ 6≤ p and set
v := v1[D⊥]p′ . We get v[C⊥]p = v3 and, thus, v1 lp′ v and v lp v3.

We have to show that p′ is a sequential position in v1 at position rp1. That is, we
have to show that for all v′ ∈ JτK the following holds.

v′ w v1 ∧ v′|p′ = ⊥ =⇒ (f v′)|rp1 = ⊥

Let v′ ∈ JτK with v′ w v1 and v′|p′ = ⊥. We distinguish two cases.

Case 1 (v′ w v2): Because v′ w v2, v′|p′ = ⊥, and p′ is a sequential position in v2 at
position rp1, we have (f v′)|rp1 = ⊥.

Case 2 (v′ 6w v2): We consider the values v1[v′|p]p and v′[C⊥]p. We have

v1 = v1[⊥]p v v1[v′|p]p

by monotonicity of v1[·]p,

v1[v′|p]p v v′[v′|p]p = v′

176

A.2 Proofs from Section 4.3.1

by monotonicity of ·[v′|p]p, and

v2 = v1[C⊥]p v v′[C⊥]p

by monotonicity of ·[C⊥]p. The following Hasse diagram depicts the situation.

v1[v′|p]p v2 = v1[C⊥]p

v1

v′ v′[C⊥]p

In the following we consider the value v′[⊥]p, which is both less equal v′[C⊥]p
and less equal v′. As p 6≤ p′ and p′ 6≤ p we have (v′[C ⊥]p)|p′ = v′|p′ by
Lemma 4.2.2. Because we have v′[C ⊥]p w v2 and p′ is a sequential posi-
tion in v2 we get (f v′[C ⊥]p)|rp1 = ⊥. Furthermore, by monotonicity we get
(f v′[⊥]p)|rp1 = ⊥ as well.

Next we show that we can decompose v′ into v′[⊥]p and v1[v′|p]p.

v′[⊥]p t v1[v′|p]p = (v′ t v1)[⊥t v′|p]p continuity of · [·]p
= v′[v′|p]p v1 v v′ and ⊥ v v′

= v′ property of · |p and · [·]p

We use this decomposition and continuity to show that we have (f v′)|rp1 = ⊥.

(f v′)|rp1 = (f (v′[⊥]p t v1[v′|p]p))|rp1 decomposition

= (f v′[⊥]p t f v1[v′|p]p)|rp1 continuity of f
= (f v′[⊥]p)|rp1 t (f (v1[v′|p]p)|rp1 continuity of · |rp1

= (f v′[⊥]p)|rp1 t⊥ Lemma 4.3.1
= ⊥t⊥ argumentation above
= ⊥

This shows that p′ is a sequential position in v1, that is, v1 �rp1 v.

We finally have to show that either v rp2 v3 or there exists rp2 with rp1 ≤
rp2 ≤ rp3 and v �rp2 v3. Because we have (f v1)|rp1 = ⊥ and (f v3)|rp3 = ⊥
by monotonicity there exists rp2 with rp1 ≤ rp2 ≤ rp3 and (f v)|rp2 = ⊥. This
implies either v rp2 v3 or v �rp2 v3. By Lemma A.2.1 we have rp2 = rp3 if
v rp2 v3. �

177

A Proofs from Chapter 4

Proof (of Lemma 4.3.4): By induction over n we show that for all n ∈N0 if

v1(rp1)
nv2 �rp1 v3

then
v1 �rp v�∗ v′(rp′)

∗v3.

In the induction hypothesis we assume that the statement holds for all m ∈N0 with
m ≤ n.

Base Case: We have v2 �rp1 v3 and set v := v3 and v′ := v3.

Inductive Case: We have v1(rp1)
n+1v2 �rp1 v3. There exists v ∈ JτK such that

v1(rp1)
nv rp1 v2 �rp1 v3. We consider the sub-sequence v rp1 v2 �rp1

v3. By Lemma 4.3.3 there exists v′2 ∈ JτK such that v �rp1 v′2 rp3 v3 or there
exists rp2 with rp1 ≤ rp2 ≤ rp3 such that v �rp1 v′2 �rp2 v3. We distinguish
these two cases.

Case 1 (v�rp1 v′2 rp3 v3): We have a sequence of the form

v1(rp1)
nv�rp1 v′2.

As we have (f v′2)|rp3 = ⊥ by induction hypothesis there exist v′, v′′ ∈ JτK
such that

v1 �rp1 v′�∗ v′′(rp3)
∗v′2,

which is montone with respect to result positions. Finally we get the
monotonic sequence

v1 �rp1 v′�∗ v′′(rp3)
∗v3.

Case 2 (v�rp1 v′2 �rp2 v3): We have a sequence of the form

v1(rp1)
nv�rp1 v′2.

As we have (f v′2)|rp2 = ⊥ by induction hypothesis there exist v′, v′′ ∈ JτK
such that

v1 �rp1 v′�∗ v′′(rp2)
∗v′2,

which is montone with respect to result positions. Furthermore, there
exists m ∈N0 such that

v′′(rp2)
mv′2 �rp2 v3.

By definition of sequential steps we have m ≤ n − 1. Because we have
(f v3)|rp3 = ⊥, by induction hypothesis there exist v′′′, v′′′′ ∈ JτK such
that

v′′�rp2 v′′′�∗ v′′′′(rp3)
∗v3.

178

A.3 Proofs from Section 4.3.2

That is, we get a sequence

v1 �rp1 v′�∗ v′′�rp2 v′′′�∗ v′′′′(rp3)
∗v3,

which is monotonic with respect to result positions.

If we have v1(rp)
∗v2 �rp v3 there exists n ∈ N0 such that v1(rp1)

nv2 �rp1 v3
with (f v3)|rp3 = ⊥. �

Proof (of Lemma 4.3.5): As we consider only finite values we can prove the state-
ment by induction over the number of constructors in v.

Base Case: For all (⊥, rp) with (f ⊥)|rp = ⊥ we have (⊥, rp) ∈ C f .

Inductive Case: Let v ∈ JτK and rp ∈ Pos (f v) such that (f v)|rp = ⊥ and (v, rp) 6∈
C f . By Lemma 4.3.2 there exists (v1, rp′) with v1 rp v or v1 �rp′ v and
rp′ ≤ rp. We distinguish two cases.

Case 1 (v1 rp v): If (v1, rp) ∈ C f then we set v′ := v1 and are finished. If
(v1, rp) 6∈ C f because (f v1)|rp = ⊥ by induction hypothesis there exists
(v2, rp) ∈ C f such that v2(rp)

∗v1 and, therefore, v2(rp)
∗v.

Case 2 (v1 �rp′ v): Because (v, rp) 6∈ C f we have (v1, rp′) 6∈ C f . Because
(f v1)|rp = ⊥ by induction hypothesis there exists (v2, rp′) ∈ C f such
that v2(rp′)

∗v1. That is, we have a sequence of the form

v2(rp′)
∗v1 �rp′ v.

Because (f v)|rp = ⊥ by Lemma 4.3.4 there exist v′, v′′ ∈ JτK such that

v2 �rp′ v′�∗ v′′(rp)
∗v.

As this sequence is monotonic with respect to result positions (v2, rp) ∈
C f implies (v′′, rp) ∈ C f . That is, (v′′, rp) ∈ C f and v′′(rp)

∗v. �

A.3 Proofs from Section 4.3.2

Proof (of Lemma 4.3.8): The functions f (v,rp) and f agree for total values because
we have inf f tv = f tv for all total values tv.

Let v′ ∈ JτK. We show that we have f (v,rp) v A f v and f (v,rp) v′ w f v′ if v′ 6= v.
We distinguish three cases.

Case 1 (v′ = v): Because (v, rp) ∈ C f we have (f v)|rp = ⊥. Furthermore, because
(inf f v)|rp A ⊥ we have

(f v)|rp t (inf f v)|rp A (f v)|rp.

179

A Proofs from Chapter 4

By continuity of ·|rp we get

(f v t inf f v)|rp A (f v)|rp.

Because (f v)[·]rp is strictly increasing and by a property of ·|rp we get

f (v,rp) v = (f v)[(f v t inf f v)|rp]rp A (f v)[(f v)|rp]rp = f v.

Case 2 (v′ A v): We have
f v′ t inf f v w f v′

By monotonicity of ·|rp we get

(f v′ t inf f v)|rp w (f v′)|rp.

By monotonicity of (f v′)[·]rp we get

(f v′)[(f v′ t inf f v)|rp]rp w (f v′)[(f v′)|rp]rp.

Finally by a property of ·|rp we get

(f v′)[(f v′)|rp]rp = f v′

and, therefore, we get

f (v,rp) v′ = (f v′)[(f v′ t inf f v)|rp]rp w f v′.

Case 3 (v′ 6w v): By definition of f (v,rp) we have f (v,rp) v′ = f v′. �

Lemma A.3.1: Let v1 ∈ JτK, v2 ∈ JτK, v3 ∈ JτK, and p ∈ Pos v1 a position such that
v1 lp v2 and v2 v v3. For all v ∈ JτK with v1 v v, v v v3, and v2 6v v we have v|p = ⊥.

Proof: The following diagram illustrates the situation.

v3

v

v1

v2

Additionally, v1 and v2 are related by v1 lp v2 for some position p. We have p ∈ Pos v
because v1 v v and p ∈ Pos v1. Because v1 lp v2, we have v1|p = ⊥ and there exists a
constructor C such that v2|p = C ⊥. As we furthermore have v2 v v3, the outermost
constructor of v3 at position p is also C. Because v v v3, we have v|p = ⊥ or the
outermost constructor of v at position p is C. Finally, v v v3 and v2 6v v imply
v|p = ⊥. �

180

A.3 Proofs from Section 4.3.2

Proof (of Lemma 4.3.9): If (v, rp) ∈ C f there exists a sequence of the form ⊥�n v.
By induction on n we show that v is finite.

Base Case (⊥�0 ⊥): Let 〈vi〉i∈I be a chain such that ⊥ v ⊔i∈I vi. We have ⊥ v vi
for all i ∈ I. Thus, ⊥ is finite.

Inductive Case (⊥�n+1 v): Let 〈vi〉i∈I be a chain with v v ⊔
i∈I vi. There exists v′

such that ⊥ �n v′ � v. Because v′ v v we have v′ v ⊔
i∈I vi. By induction

hypothesis there exists i ∈ I such that v′ v vi. We consider a subset J of I such
that J = {i ∈ I | vi w v′}. As there exists at least one element vi v v′ we have⊔

i∈I vi =
⊔

j∈J vj.

We assume that we have v 6v vj for all j ∈ J. Let j ∈ J. We have v′lp v, v′ v vj,
v 6v vj, and vj v

⊔
j∈J vj and v v ⊔j∈J vj. The following diagram illustrates the

situation.

⊔
j∈J vj

vj

v′

v

By Lemma A.3.1 we get vj|p = ⊥. That is, we have vj|p = ⊥ for all j ∈ J.
Because ·|p is continuous we get

(
⊔
j∈J

vj)|p =
⊔
j∈J

(vj|p) = ⊥.

This is a contradiction to v v ⊔
i∈I vi as we have v|p 6= ⊥ . Thus there exists

j ∈ J with v v vj, that is, v is finite. �

Proof (of Lemma 4.3.10): Let v1, v2 ∈ JτK with v1 v v2. We distinguish two cases.

Case 1 (v1 6w v): We reason as follows and employ monotonicity of f and f ≺ f .

f v1 = f v1 v f v2 v f v2

Case 2 (v1 w v): Because v1 w v and v1 v v2 we have v2 w v. By v1 v v2 and
monotonicity of f we get

f v1 v f v2.

By monotonicity of · t inf f v we get

f v1 t inf f v v f v2 t inf f v

181

A Proofs from Chapter 4

and by monotonicity ·|rp we have

(f v1 t inf f v)|rp v (f v2 t inf f v)|rp.

By monotonicity of (f v1)[·]p we get

(f v1)[(f v1 t inf f v)|rp]rp v (f v1)[(f v2 t inf f v)|rp]rp

and by monotonicity of ·[(f v2 t inf f v)|rp]p we get

(f v1)[(f v2 t inf f v)|rp]rp v (f v2)[(f v2 t inf f v)|rp]rp.

This final inequality shows that we have f v1 v f v2. �

Proof (of Lemma 4.3.11): Let 〈vi〉i∈I be a chain in JτK. We have to prove the follow-
ing equality.

f (v,rp) (
⊔
i∈I

vi) =
⊔
i∈I

(f (v,rp) vi)

Case 1 (
⊔

i∈I vi 6w v): In this case we have vi 6w v for all i ∈ I and reason as follows.

f (
⊔
i∈I

vi) = f (
⊔
i∈I

vi) definition of f

=
⊔
i∈I

(f vi) continuity of f

=
⊔
i∈I

(f vi) definition of f , vi 6w v

Case 2 (
⊔

i∈I vi w v): We consider a subset J of I such that J = {i ∈ I | vi w v}.
By Lemma 4.3.9 v is finite. That is, there exists i ∈ I such that vi w v and,
therefore, J is not empty. Because 〈vi〉i∈I is a chain we only remove dominated
elements, that is,

⊔
i∈I vi =

⊔
i∈J vi. Furthermore, by monotonicity of f we have⊔

i∈I(f vi) =
⊔

i∈J(f vi). We reason as follows.

f (
⊔
i∈I

vi) = f (
⊔
i∈J

vi) supremum property

= (f (
⊔
i∈J

vi))[(f (
⊔
i∈J

vi) t inf f v)|rp]rp definition of f

= (
⊔
i∈J

f vi)[(
⊔
i∈J

f vi) t inf f v)|rp]rp continuity of f

= (
⊔
i∈J

f vi)[(
⊔
i∈J

(f vi t inf f v))|rp]rp supremum property

= (
⊔
i∈J

f vi)[
⊔
i∈J

(f vi t inf f v)|rp]rp continuity of · |rp

=
⊔
i∈J

(f vi)[(f vi t inf f v|rp]rp) continuity of · [·]rp

182

A.3 Proofs from Section 4.3.2

=
⊔
i∈J

(f vi) definition of f , vi w v

=
⊔
i∈I

(f vi) supremum property

This shows that f is continuous. �

Proof (of Lemma 4.3.12): We only have to consider the case that there exists pv′ ∈
JτK with pv′ w pv and pv′|p = ⊥ and pv′ w v. Otherwise p already satisfies the
requirements we are looking for and we can set p′ := p.

Let (v, rp) ∈ Cτ with v 6v pv. Then there exists a sequence of sequential steps of
the form ⊥ �∗ v. There exists a sub-sequence of the form v1 �∗ v2 with v1 v pv
and v2 6v pv because ⊥ v pv and v 6v pv. We consider such a sequence of minimal
length. This sequence has length one because there exists no value v′ such that
v′ 6v pv and v′ v pv. Therefore, we have a step of the form v1 �rp′ v2 with v1 v pv
and v2 6v pv. The following Hasse-diagram illustrates the situation.

pv′

pv

v1

v2

⊥

Let p′ be the corresponding sequential position of v1 �rp′ v2. We show that p′

is a sequential position in pv at position rp. We have v1 lp′ v2, v2 v pv′, v1 v pv,
pv v pv′, and v2 6v pv. By Lemma A.3.1 we have pv|p′ = ⊥.

Because p′ is a sequential position in v1 at position rp′ and we have v1 v pv and
pv|p′ = ⊥ by definition of sequential positions p′ is also a sequential position in pv
at position rp′. By definition of the characteristic set C f we have rp ≥ rp′ which
implies rp = rp′ because (f pv)|rp = ⊥ and (f pv)|rp′ = ⊥.

That is, p′ is a sequential position in pv at position rp. Because v2|p′ 6= ⊥ and
v w v2 we have v|p′ 6= ⊥. This implies pv′ 6w v for all pv′ ∈ JτK with pv′|p′ = ⊥. �

Proof (of Lemma 4.3.13): Let pv be a partial value of type τ and rp′ ∈ Pos (f pv)
such that (f pv)|rp′ = ⊥. We have to show that there exists p ∈ Pos pv such that
pv|p = ⊥ and for all pv′ ∈ JτK the following holds.

pv′ w pv ∧ pv′|p = ⊥ =⇒ (f pv′)|rp′ = ⊥

We distinguish two cases.

183

A Proofs from Chapter 4

Case 1 (pv w v): We have

⊥ = (f pv)|rp′ = ((f pv)[(f pv t inf f v)|rp]rp)|rp′

and distinguish further sub-cases.

Case a (rp′ ≥ rp): We reason as follows.

((f pv)[(f pv t inf f v)|rp]rp)|rp′

= (f pv t inf f v)|rp′ rp′ ≥ rp

= (f v)|rp′ t (inf f v)|rp′ continuity of · |rp′

This implies (f pv)|rp′ = ⊥ and (inf f v)|rp′ = ⊥. Because f is sequential,
there exists a sequential position p such that pv|p = ⊥.

Let pv′ ∈ JτK with pv′ w pv and pv′|p = ⊥. The following equality proves
that p is a sequential position in this case.

(f pv′)|rp′ = ((f pv′)[(f pv′ t inf f v)|rp]rp)|rp′ definition of f , pv′ w pv

= (f pv′ t inf f v)|rp′ rp′ ≥ rp

= (f pv′)|rp′ t (inf f v)|rp′ continuity of · |rp′

= ⊥t (inf f v)|rp′ p sequential position

= ⊥ (inf f v)|rp′ = ⊥

Case b (rp′ 6≥ rp ∧ rp 6≥ rp′): We have

((f pv)[(f pv t inf f v)|rp]rp)|rp′ = (f pv)|rp′ .

Because f is a sequential function, there exists a sequential position p such
that pv|p = ⊥.

Let pv′ ∈ JτK with pv′ w pv and pv′|p = ⊥. We reason as follows.

(f pv′)|rp′ = ((f pv′)[(f pv′ t inf f v)|rp]rp)|rp′ definition of f , pv′ w pv

= (f pv′)|rp′ rp′ 6≥ rp ∧ rp 6≥ rp′

= ⊥ p sequential position

Case 2 (pv 6w v): We have
⊥ = (f pv)|rp = (f pv)|rp.

Because f is sequential, there exists a sequential position p in pv at position rp.
By Lemma 4.3.12 there exists a sequential position p′ in pv at position rp such
that for all pv′ ∈ JτK with pv′ w pv and pv′|p′ = ⊥ we have pv′ 6w v.

184

A.3 Proofs from Section 4.3.2

Let pv′ such that pv′ w pv and pv′|p′ = ⊥. We show that p′ is a sequential
position as follows.

(f pv′)|rp = (f pv′)|rp pv′ 6w v
= ⊥ p′ sequential position

This completes the proof that f is a sequential function. �

185

A Proofs from Chapter 4

186

B Proofs from Chapter 6
B.1 Proofs from Section 6.3

To prove Lemma 6.3.1 we define a function strictConst that behaves like the constant
function const but which is strict in its second argument.

Definition B.1.1 (StrictConst): The function strictConst :: α→ β→ α satisfies

strictConst x y =

{
⊥ y = ⊥
x otherwise

.

We can define strictConst as strictConst x y = seq y x. If we are not equipped with
seq we can as well define a function strictConstτ :: α → τ → α for every type τ by
pattern matching. The functions strictConst and strictConstτ are strict and total with
respect to to their second argument. �

Proof (of Lemma 6.3.1): Let xs :: [()]. Let y be an element of type τ. We consider
the list ys = map (strictConst y) xs. That is, we replace all occurrences of () in
xs by y and all occurrences of ⊥() by ⊥τ. We can reconstruct xs from ys if we
replace all occurrences of y in ys by () and all occurrences of ⊥τ by ⊥(), that is,
xs ≡ map (strictConst ()) ys. We reason as follows.

f() xs
≡ { xs ≡ map (strictConst ()) ys }

f() (map (strictConst ()) ys)
≡ { free theorem for f , strictConst () strict }

map (strictConst ()) (fτ ys)
w { monotonicity and fτ � gτ }

map (strictConst ()) (gτ ys)
≡ { free theorem for g, strictConst () strict }

g() (map (strictConst ()) ys)
≡ { xs ≡ map (strictConst ()) ys }

g() xs

Thus, we have f() xs w g() xs for all xs :: [()], that is, f() � g(). �

Definition B.1.2 (Free Theorem Basics): In this definition we present some of the
basic definitions by Johann and Voigtländer (2004).

strict A relation R is strict if (⊥,⊥) ∈ R.

bottom-reflecting A relation R is bottom-reflecting if for every (x, y) ∈ R we have
x 6= ⊥ if and only if y 6= ⊥.

187

B Proofs from Chapter 6

continuous A relation R is continuous if for all chains 〈xi〉i∈I and 〈yi〉i∈I whose
elements are pair-wise related by R we have (

⊔
i∈I xi,

⊔
i∈I yi) ∈ R. �

To prove Lemma 6.3.2 we prove the following generalization of the functional free
theorem for a function of type f :: (α → β) → [α] → [β]. The standard functional
free theorem states that

h (p x) ≡ q (g x)

for all x :: τ1 implies
map h (f p xs) ≡ f q (map g xs)

for all xs :: [τ1]. In contrast, the following lemma shows that we do not have to show
h (p x) ≡ q (g x) for all x :: τ1 but only for the elements of xs.

Lemma B.1.1: Let f :: (α → β) → [α] → [β]. For strict functions g :: τ1 → τ2, h :: τ3 →
τ4, p :: τ1 → τ3, and q :: τ2 → τ4 such that

h (p (xs !! n)) ≡ q (g (xs !! n))

for all n :: Int we have
map h (f p xs) ≡ f q (map g xs)

for all xs :: [τ1].

Proof: Let xs :: [τ1]. We define the relations

Rxs := {(
⊔
i∈I

(xs !! i),
⊔
i∈I

g (xs !! i)) | 〈xs !! i〉i∈I chain, I ⊆ Int}

and S := {(x, h x)}. Theorem 6.4.1 shows that Rxs is strict and continuous. Further-
more, S is strict and continuous because h is strict and continuous.

The relational free theorem for f :: (α → β) → [α] → [β] states that, if for all
(x, y) ∈ Rxs we have (p x, q y) ∈ S, then for all (xs, ys) ∈ lift{[]}(Rxs) we have
(f p xs, f q ys) ∈ lift{[]}(S). Let (x, y) ∈ Rxs. To show that (p x, q y) ∈ S we
have to show that h (p x) ≡ q y. By definition of Rxs we have x =

⊔
i∈I(xs !! i) and

y =
⊔

i∈I g (xs !! i). We reason as follows.

h (p (
⊔

xs !! i)) ≡
⊔

h (p (xs !! i)) continuity

≡
⊔

q (g (xs !! i)) precondition

≡ q (
⊔

g (xs !! i)) continuity

That is, h (p x) ≡ q y.
Thus, for all (xs, ys) ∈ lift{[]}(Rxs) we as well have (f p xs, f q ys) ∈ lift{[]}(S).

As we have (xs, map g xs) ∈ lift{[]}(Rxs) we get (f p xs, f q (map g xs)) ∈ lift{[]}(S),
that is, map h (f p xs) ≡ f q (map g xs). �

The following lemma shows a simple property about [n . .] and (!!). Here and in
the following we consider [n . .] as shortform of iterate (+1) n.

188

B.1 Proofs from Section 6.3

Lemma B.1.2: For all n :: Int and all m :: Int with m ≥ 0 we have [n . .] !! m ≡ n + m.

Proof: By induction over m.
Base Case:

iterate (+1) n !! 0
≡ { definition of iterate }
(n : iterate (+1) (n + 1)) !! 0
≡ { definition of (!!) }

n

Inductive Case:

iterate (+1) n !! (m + 1)
≡ { definition of iterate }
(n : iterate (+1) (n + 1)) !! (m + 1)
≡ { definition of (!!) }

iterate (+1) (n + 1) !! m
≡ { induction hypothesis }

n + 1 + m

Proof (of Lemma 6.3.2): Let x :: τ and xs :: [τ]. We reason as follows.

map ((x : xs)!!) [1 . .]
≡ { definition of [1 . .] }

map ((x : xs)!!) (iterate (+1) 1)
≡ { free theorem for iterate, (+1) strict & total }

map ((x : xs)!!) (map (+1) (iterate (+1) 0))
≡ { Lemma B.1.1 and Lemma B.1.2 } (∗)

map (xs!!) (iterate (+1) 0)
≡ { definition of [0 . .] }

map (xs!!) [0 . .]

To prove the step labeled with (∗) we have to prove the following equality.

(x : xs) !! ([1 . .] !! n) ≡ xs !! ([0 . .] !! n)

To prove this statement we distinguish two cases.

Case 1 (n ≡ ⊥∨ n < 0): We reason as follows.

(x : xs) !! ([1 . .] !! n)
≡ { definition of (!!) }
(x : xs) !!⊥
≡ { definition of (!!) }

xs !!⊥
≡ { definition of (!!) }

xs !! ([0 . .] !! n)

189

B Proofs from Chapter 6

Case 2 (n ≥ 0): We reason as follows.

(x : xs) !! ([1 . .] !! n)
≡ { Lemma B.1.2 }
(x : xs) !! n + 1
≡ { definition of (!!) }

xs !! n
≡ { Lemma B.1.2 }

xs !! ([0 . .] !! n)

This step finally concludes the proof . �

Proof (of Lemma 6.3.6): Let xs :: [τ] and n :: Int such that fτ xs !! n 6≡ ⊥, gτ xs !! n 6≡
⊥, and fτ xs !! n 6≡ gτ xs !! n. By Lemma 6.3.5 there exist k, l :: Int such that the
following holds.

xs !! k ≡ fτ xs !! n 6≡ gτ xs !! n ≡ xs !! l

This implies k 6≡ l. Furthermore we have k 6≡ ⊥ and l 6≡ ⊥ because fτ xs !! n 6≡ ⊥
and gτ xs !! n 6≡ ⊥. This also implies xs !! k 6≡ ⊥ and xs !! l 6≡ ⊥.

If we replace the element of xs at position k by ⊥ we get a list ys :: [τ] with ys !!
k ≡ ⊥ and ys !! l 6≡ ⊥. We have shape xs ≡ shape ys and by Lemma 6.3.5 we get
fτ ys !! n ≡ ys !! k ≡ ⊥ and gτ ys !! n ≡ ys !! l ≡ xs !! l 6≡ ⊥. �

Proof (of Lemma 6.3.7): Because we have fτ 6� gτ there exists xs :: [τ] such that
fτ xs 6w gτ xs. We distinguish three cases.

Case 1 (shape (fτ xs) 6w shape (gτ xs)): We set ys ≡ map (strictConst ()) xs and rea-
son as follows.

shape (f() ys)
≡ { ys ≡ map (strictConst ()) xs }

shape (f() (map (strictConst ()) xs))
≡ { free theorem for f , strictConst () strict }

shape (map (strictConst ()) (fτ xs))
≡ { free theorem for shape, strictConst () strict }

shape (fτ xs)
6w

shape (gτ xs)
≡ { free theorem for shape, strictConst () strict }

shape (map (strictConst ()) (gτ xs))
≡ { free theorem for g, strictConst () strict }

shape (g() (map (strictConst ()) xs))
≡ { ys ≡ map (strictConst ()) xs }

shape (g() ys)

Therefore, there exists ys :: [()] such that shape (f() ys) 6w shape (g() ys) which
implies f() 6� g().

190

B.1 Proofs from Section 6.3

Case 2 (∃n :: Int. fτ xs !! n ≡ ⊥∧ gτ xs !! n 6≡ ⊥): We set ys ≡ map (strictConst ()) xs
and reason as follows.

f() ys !! n
≡ { ys ≡ map (strictConst ()) xs }

f() (map (strictConst ()) xs) !! n
≡ { free theorem for f , strictConst () strict }

map (strictConst ()) (fτ xs) !! n
≡ { free theorem for (!!), strictConst () strict }

strictConst () (fτ xs !! n)
≡ { definition of strictConst, fτ xs !! n ≡ ⊥ }
⊥

For g we reason the same way.

g() ys !! n
≡ { ys ≡ map (strictConst ()) xs }

g() (map (strictConst ()) xs) !! n
≡ { free theorem for g, strictConst () strict }

map (strictConst ()) (gτ xs) !! n
≡ { free theorem for (!!), strictConst () strict }

strictConst () (gτ xs !! n)
6≡ { definition of strictConst, gτ xs !! n 6≡ ⊥ }
⊥

That is, there exists ys :: [()] and n :: Int such that f() ys !! n ≡ ⊥ and g() ys !! n 6≡
⊥ which implies f() 6� g().

Case 3 (∃n :: Int. fτ xs !! n 6≡ ⊥ ∧ gτ xs !! n 6≡ ⊥ ∧ fτ xs !! n 6≡ gτ xs !! n): According to
Lemma 6.3.6 there exists ys :: [τ] and n :: Int such that fτ ys !! n ≡ ⊥ and gτ ys !!
n 6≡ ⊥. That is, we reason as in Case 2. �

191

Bibliography
Andreas Abel, Marcin Benke, Ana Bove, John Hughes, and Ulf Norell. Verifying

haskell programs using constructive type theory. In Proceedings of the 2005 ACM
SIGPLAN workshop on Haskell, Haskell ’05, pages 62–73, New York, NY, USA, 2005.
ACM.

Sergio Antoy. Definitional trees. In Hélène Kirchner and Giorgio Levi, editors, Alge-
braic and Logic Programming, volume 632 of Lecture Notes in Computer Science, pages
143–157. Springer Berlin / Heidelberg, 1992.

Sergio Antoy, Rachid Echahed, and Michael Hanus. A needed narrowing strategy.
In Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’94, pages 268–279, New York, NY, USA, 1994. ACM.

Lennart Augustsson. numbers package. http://hackage.haskell.org/package/
numbers, August 2009. version 2009.8.9.

Jaco W. de Bakker. Mathematical Theory of Program Correctness. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1980.

Jean-Philippe Bernardy, Patrik Jansson, and Koen Claessen. Testing polymorphic
properties. In Andrew Gordon, editor, Programming Languages and Systems, vol-
ume 6012 of Lecture Notes in Computer Science, pages 125–144. Springer Berlin /
Heidelberg, 2010.

Richard Bird, Geraint Jones, and Oege de Moor. More haste, less speed: lazy versus
eager evaluation. Journal of Functional Programming, 7:541–547, September 1997.

Sascha Böhme. Free theorems for sublanguages of haskell, 2007. Master’s thesis,
Technische Universität Dresden.

Bernd Braßel and Frank Huch. The Kiel Curry System KiCS. In Dietmar Seipel,
Michael Hanus, and Armin Wolf, editors, Applications of Declarative Programming
and Knowledge Management, volume 5437 of Lecture Notes in Computer Science,
pages 195–205. Springer Berlin / Heidelberg, 2009.

Bernd Braßel, Sebastian Fischer, and Frank Huch. Declaring numbers. Electronic
Notes in Theoretical Computer Science, 216:111–124, July 2008.

Alan Bundy and Julian Richardson. Proofs about lists using ellipsis. In Harald
Ganzinger, David McAllester, and Andrei Voronkov, editors, Logic for Program-
ming and Automated Reasoning, volume 1705 of Lecture Notes in Computer Science,
pages 1–12. Springer Berlin / Heidelberg, 1999.

193

http://hackage.haskell.org/package/numbers
http://hackage.haskell.org/package/numbers

Bibliography

Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones. Associated
type synonyms. In Proceedings of the tenth ACM SIGPLAN international conference
on Functional programming, ICFP ’05, pages 241–253, New York, NY, USA, 2005.
ACM.

Olaf Chitil. Pretty printing with lazy dequeues. ACM Transactions on Programming
Languages and Systems (TOPLAS), 27:163–184, January 2005.

Olaf Chitil. Promoting non-strict programming. In Draft Proceedings of the 18th Inter-
national Symposium on Implementation and Application of Functional Languages, IFL
’06, 2006.

Olaf Chitil. StrictCheck: a tool for testing whether a function is unnecessarily strict.
Technical Report 2-11, University of Kent, School of Computing, June 2011.

Jan Christiansen. Sloth – a tool for checking minimal-strictness. In Proceedings of the
13th international conference on Practical aspects of declarative languages, PADL ’11,
pages 160–174. Springer Berlin / Heidelberg, 2011.

Jan Christiansen and Daniel Seidel. Minimally strict polymorphic functions. In Pro-
ceedings of the 2011 Symposium on Principles and Practice of Declarative Programming,
PPDP ’11, pages 53–64, New York, NY, USA, 2011. ACM.

Jan Christiansen, Daniel Seidel, and Janis Voigtländer. Free theorems for functional
logic programs. In Proceedings of the 4th ACM SIGPLAN workshop on Programming
languages meets program verification, PLPV ’10, pages 39–48, New York, NY, USA,
2010. ACM.

Jan Christiansen, Daniel Seidel, and Janis Voigtländer. An adequate, denotational,
functional-style semantics for typed flatcurry. In Julio Mariño, editor, Functional
and Constraint Logic Programming, WFLP ’11, pages 119–136. Springer Berlin / Hei-
delberg, 2011a.

Jan Christiansen, Daniel Seidel, and Janis Voigtländer. An adequate, denotational,
functional-style semantics for typed FlatCurry without letrec. Technical Report
IAI-TR-2011-1, University of Bonn, March 2011b.

Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random testing
of haskell programs. In Proceedings of the fifth ACM SIGPLAN international con-
ference on Functional programming, ICFP ’00, pages 268–279, New York, NY, USA,
2000. ACM.

Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion: from lists to
streams to nothing at all. In Proceedings of the 12th ACM SIGPLAN international con-
ference on Functional programming, ICFP ’07, pages 315–326, New York, NY, USA,
2007. ACM.

Luis Damas and Robin Milner. Principal type-schemes for functional programs. In
Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, POPL ’82, pages 207–212, New York, NY, USA, 1982. ACM.

194

Bibliography

Nils A. Danielsson and Patrik Jansson. Chasing Bottoms, a case study in program
verification in the presence of partial and infinite values. In Dexter Kozen, editor,
Proceedings of the 7th International Conference on Mathematics of Program Construc-
tion, volume 3125 of MPC ’04, pages 85–109. Springer Berlin / Heidelberg, July
2004.

Conal M. Elliott. Push-pull functional reactive programming. In Proceedings of the
2nd ACM SIGPLAN symposium on Haskell, Haskell ’09, pages 25–36, New York, NY,
USA, 2009. ACM.

Bertram Felgenhauer. Wadler space leak. Glasgow Haskell Users Mailing List, Oc-
tober 2010.

João Paulo Fernandes, Alberto Pardo, and João Saraiva. A shortcut fusion rule for
circular program calculation. In Proceedings of the ACM SIGPLAN workshop on
Haskell workshop, Haskell ’07, pages 95–106, New York, NY, USA, 2007. ACM.

Daniel Fischer. Unnecessarily strict implementations. Haskell-Cafe Mailing List,
September 2010.

Daniel Fischer, Chris Kuklewicz, and Justin Bailey. stringsearch Package. http:
//hackage.haskell.org/package/stringsearch, 2010. Version 0.3.1.

Sebastian Fischer and Herbert Kuchen. Systematic generation of glass-box test cases
for functional logic programs. In Proceedings of the 9th ACM SIGPLAN international
conference on Principles and practice of declarative programming, PPDP ’07, pages
63–74, New York, NY, USA, 2007. ACM.

GHC. The Glasgow Haskell Compiler. http://haskell.org/ghc.

Jeremy Gibbons. A pointless derivation of radix sort. Journal of Functional Program-
ming, 9:339–346, May 1999.

Andrew Gill, John Launchbury, and Simon Peyton Jones. A short cut to deforesta-
tion. In Proceedings of the conference on Functional programming languages and com-
puter architecture, FPCA ’93, pages 223–232, New York, NY, USA, 1993. ACM.

Andy Gill and Graham Hutton. The worker/wrapper transformation. Journal of
Functional Programming, 19:227–251, March 2009.

Andy Gill and Colin Runciman. Haskell program coverage. In Proceedings of the
ACM SIGPLAN workshop on Haskell workshop, Haskell ’07, pages 1–12, New York,
NY, USA, 2007. ACM.

Jean-Yves Girard. Interprétation functionelle et élimination des coupures dans
l’arithmétique d’ordre supérieure. PhD thesis, Université Paris VII, 1972.

Jörgen Gustavsson and David Sands. A foundation for space-safe transformations
of call-by-need programs. Electronic Notes in Theoretical Computer Science, 26:69 –
86, 1999.

195

http://hackage.haskell.org/package/stringsearch
http://hackage.haskell.org/package/stringsearch
http://haskell.org/ghc

Bibliography

Jörgen Gustavsson and David Sands. Possibilities and limitations of call-by-need
space improvement. In Proceedings of the sixth ACM SIGPLAN international con-
ference on Functional programming, ICFP ’01, pages 265–276, New York, NY, USA,
2001. ACM.

Michael Hanus. Curry: Example programs. http://www.informatik.uni-kiel.de/
~curry/examples.

Michael Hanus. Curry: An integrated functional logic language (version 0.8.2).
http://curry-language.org, 2006.

Furio Honsell and Donald Sannella. Pre-logical relations. In Computer Science Logic,
volume 1683 of Lecture Notes in Computer Science, pages 826–826. Springer Berlin /
Heidelberg, 1999.

Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of
haskell: being lazy with class. In Proceedings of the third ACM SIGPLAN conference
on History of programming languages, HOPL III, pages 12–1–12–55, New York, NY,
USA, 2007. ACM.

John Hughes. Why functional programming matters. The Computer Journal, 32:
98–107, April 1989.

Graham Hutton. A tutorial on the universality and expressiveness of fold. Journal of
Functional Programming, 9:355–372, July 1999.

Patricia Johann. A generalization of short-cut fusion and its correctness proof. Higher
Order Symbolic Computation, 15:273–300, December 2002.

Patricia Johann and Janis Voigtländer. Free theorems in the presence of seq. In Pro-
ceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’04, pages 99–110, New York, NY, USA, 2004. ACM.

Mark P. Jones. A system of constructor classes: overloading and implicit high-
er-order polymorphism. In Proceedings of the conference on Functional programming
languages and computer architecture, FPCA ’93, pages 52–61, New York, NY, USA,
1993. ACM.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical design
pattern for generic programming. In Proceedings of the 2003 ACM SIGPLAN inter-
national workshop on Types in languages design and implementation, TLDI ’03, pages
26–37, New York, NY, USA, 2003. ACM.

Peter J. Landin. The next 700 programming languages. Communications of the ACM,
9:157–166, March 1966.

John Launchbury. A natural semantics for lazy evaluation. In Proceedings of the 20th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL
’93, pages 144–154, New York, NY, USA, 1993. ACM.

196

http://www.informatik.uni-kiel.de/~curry/examples
http://www.informatik.uni-kiel.de/~curry/examples
http://curry-language.org

Bibliography

José Pedro Magalhães, Atze Dijkstra, Johan Jeuring, and Andres Löh. A generic
deriving mechanism for haskell. In Proceedings of the third ACM Haskell symposium
on Haskell, Haskell ’10, pages 37–48, New York, NY, USA, 2010. ACM.

Simon Marlow. Inlining defeats selector thunk optimisation. Glasgow Haskell Com-
piler Trac, September 2008. Ticket #2607.

John McCarthy. A basis for a mathematical theory of computation, preliminary
report. In Papers presented at the May 9-11, 1961, western joint IRE-AIEE-ACM
computer conference, IRE-AIEE-ACM ’61 (Western), pages 225–238, New York, NY,
USA, 1961. ACM.

John Mitchell and Albert Meyer. Second-order logical relations. In Rohit Parikh,
editor, Logics of Programs, volume 193 of Lecture Notes in Computer Science, pages
225–236. Springer Berlin / Heidelberg, 1985.

Martin Odersky and Konstantin Läufer. Putting type annotations to work. In Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’96, pages 54–67, New York, NY, USA, 1996. ACM.

Chris Okasaki. Purely functional data structures. Cambridge University Press, 1998.

Bruno C. d. S. Oliveira, Tom Schrijvers, and William R. Cook. Effectiveadvice: disci-
plined advice with explicit effects. In Proceedings of the 9th International Conference
on Aspect-Oriented Software Development, AOSD ’10, pages 109–120, New York, NY,
USA, 2010. ACM.

Simon Peyton Jones and Philip Wadler. Imperative functional programming. In Pro-
ceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’93, pages 71–84, New York, NY, USA, 1993. ACM.

Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell. In
Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, POPL ’96, pages 295–308, New York, NY, USA, 1996. ACM.

Simon Peyton Jones, Alastair Reid, Fergus Henderson, Tony Hoare, and Simon Mar-
low. A semantics for imprecise exceptions. In Proceedings of the ACM SIGPLAN
1999 conference on Programming language design and implementation, PLDI ’99, pages
25–36, New York, NY, USA, 1999. ACM.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields.
Practical type inference for arbitrary-rank types. Journal of Functional Program-
ming, 17:1–82, January 2007.

Simon L. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

Nicholas Pippenger. Pure versus impure Lisp. ACM Transactions on Programming
Languages and Systems (TOPLAS), 19:223–238, March 1997.

197

Bibliography

Gordon D. Plotkin. Lcf considered as a programming language. Theoretical Computer
Science, 5(3):223 – 255, 1977.

Rawle Prince, Neil Ghani, and Conor McBride. Proving properties about lists using
containers. In Proceedings of the 9th international conference on Functional and logic
programming, FLOPS ’08, pages 97–112. Springer Berlin / Heidelberg, 2008.

Project Gutenberg. http://www.gutenberg.org, 2011.

Colin Runciman and David Wakeling. Heap profiling of a lazy functional com-
piler. In Proceedings of the 1992 Glasgow Workshop on Functional Programming, pages
203–214, London, UK, 1993a. Springer Berlin / Heidelberg.

Colin Runciman and David Wakeling. Heap profiling of lazy functional programs.
Journal of Functional Programming, 3(02):217–245, 1993b.

Colin Runciman, Matthew Naylor, and Fredrik Lindblad. Smallcheck and Lazy
Smallcheck: automatic exhaustive testing for small values. In Proceedings of the
first ACM SIGPLAN symposium on Haskell, Haskell ’08, pages 37–48, New York,
NY, USA, 2008. ACM.

George Russell. List.partition a bit too eager. Haskell-Cafe Mailing List, December
2000.

Patrick M. Sansom and Simon Peyton Jones. Time and space profiling for non-strict,
higher-order functional languages. In Proceedings of the 22nd ACM SIGPLAN-SI-
GACT symposium on Principles of programming languages, POPL ’95, pages 355–366,
New York, NY, USA, 1995. ACM.

David A. Schmidt. Denotational Semantics: A Methodology for Language Development.
McGraw-Hill Professional, 1987.

Dana S. Scott, Carl A. Gunter, and Peter D. Mosses. Semantic domains and denota-
tional semantics. Technical Report DAIMI PB-276, Computer Science Department,
Aarhus University, Denmark, 1989.

Daniel Seidel and Janis Voigtländer. Taming selective strictness. In Arbeitstagung
Programmiersprachen, Lübeck, Germany, Proceedings, volume 154 of Lecture Notes in
Informatics, pages 2916–2930. GI, October 2009.

Daniel Seidel and Janis Voigtländer. Automatic generation of free theorems. http:
//www-ps.iai.uni-bonn.de/ft, 2009.

William Sonnex, Sophia Drossopoulou, and Susan Eisenbach. Zeno: A tool for the
automatic verification of algebraic properties of functional programs. Technical
report, Imperial College London, February 2011.

Jan Sparud. Fixing some space leaks without a garbage collector. In Proceedings of
the conference on Functional programming languages and computer architecture, FPCA
’93, pages 117–122, New York, NY, USA, 1993. ACM.

198

http://www.gutenberg.org
http://www-ps.iai.uni-bonn.de/ft
http://www-ps.iai.uni-bonn.de/ft

Bibliography

Henning Thielemann. utility-ht Package. http://hackage.haskell.org/package/
utility-ht, 2009. Version 0.0.5.1.

David A. Turner. The SASL language manual. Technical report, University of St
Andrews, 1976.

Twan van Laarhoven. Add ’subsequences’ and ’permutations’ to data.list (ticket
#1990). Libraries Mailing List, December 2007.

Janis Voigtländer. Proving correctness via free theorems: the case of the de-
stroy/build-rule. In Proceedings of the 2008 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation, PEPM ’08, pages 13–20, New
York, NY, USA, 2008a. ACM.

Janis Voigtländer. Much ado about two (pearl): a pearl on parallel prefix computa-
tion. In Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, POPL ’08, pages 29–35, New York, NY, USA, 2008b.
ACM.

Janis Voigtländer. Bidirectionalization for free! In Proceedings of the 36th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL
’09, pages 165–176, New York, NY, USA, 2009. ACM.

Jean Etienne Vuillemin. Proof-techniques for recursive programs. PhD thesis, Stanford
University, 1974.

Philip Wadler. Fixing some space leaks with a garbage collector. Software: Practice
and Experience, 17(9):595–608, 1987.

Philip Wadler. Theorems for free! In Proceedings of the fourth international confer-
ence on Functional programming languages and computer architecture, FPCA ’89, pages
347–359, New York, NY, USA, 1989. ACM.

Philip Wadler. The Fun of Programming, chapter 11, pages 223–244. Cornerstones in
Computing. Palgrave, 2003.

Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc.
In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’89, pages 60–76, New York, NY, USA, 1989. ACM.

Christopher P. Wadsworth. Semantics and pragmatics of the lambda calculus. Ph.D.
thesis, Programming Research Group, Oxford University, September 1971.

Johannes Waldmann. List.partition is too strict. Haskell Mailing List, September
2000.

Brent Yorgey. split Package. http://hackage.haskell.org/package/split, Decem-
ber 2010. version 0.1.2.

Brent Yorgey. split Package. http://hackage.haskell.org/package/split, April
2011. Version 0.1.4.

199

http://hackage.haskell.org/package/utility-ht
http://hackage.haskell.org/package/utility-ht
http://hackage.haskell.org/package/split
http://hackage.haskell.org/package/split

	1 Introduction
	2 Preliminaries
	2.1 Introduction to Haskell
	2.1.1 Algebraic Data Types
	2.1.2 Functions
	2.1.3 Types
	2.1.4 Parametric Polymorphism
	2.1.5 Higher-Order
	2.1.6 Type Classes

	2.2 Denotation of a Simple Functional Language

	3 Non-Strict Evaluation
	3.1 Advantages of Non-Strict Evaluation
	3.2 Unnecessarily Strict Functions

	4 Mathematical Model of Minimally Strict Functions
	4.1 Least Strict Functions
	4.2 Sequential and Demanded Positions
	4.3 Minimally Strict Functions
	4.3.1 Sufficiency of the Criterion
	4.3.2 Necessity of the Criterion

	5 Implementation of Sloth
	5.1 Enumerating Test Cases
	5.2 Checking Test Cases
	5.3 Presenting Counter-Examples
	5.4 Identifying Sequential Positions

	6 Minimally Strict Polymorphic Functions
	6.1 Introduction
	6.2 Free Theorems
	6.3 Less Strict Functions on Lists
	6.4 Less Strict Functions in the Presence of seq
	6.5 Minimally Strict Functions on Lists
	6.6 Generalization

	7 Case Studies
	7.1 Deriving a Less Strict Implementation
	7.2 Peano Multiplication
	7.3 Binary Arithmetics
	7.4 The split Package
	7.4.1 The Function splitWhen
	7.4.2 The Function insertBlanks

	7.5 Reversing Lists

	8 Conclusion
	8.1 Summary
	8.2 Future Work
	8.2.1 Functional Programming
	8.2.2 Functional-Logic Programming

	A Proofs from Chapter 4
	A.1 Proofs from Section 4.2
	A.2 Proofs from Section 4.3.1
	A.3 Proofs from Section 4.3.2

	B Proofs from Chapter 6
	B.1 Proofs from Section 6.3

