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Abstract

Simple games are a commonly used model for the analysis of voting systems in which
each participant can vote “yes” or “no” and where the outcome is “yes” or “no” as well.
Quasi-reduced and ordered binary decision diagrams, or QOBDDs for short, are well-
known as compact representations for subsets of powersets and Boolean functions. In this
thesis, we use QOBDDs to represent simple games and to develop practically applicable
algorithms to solve problems for simple games. We study properties of QOBDDs when
they are used to represent simple games as well as the runtime behavior of our algorithms.

Votes are popular for making decisions as in the Council of the European Union.
Unfortunately, voting systems are often complicated and it is a problem to verify that
they reflect the original intentions. Because for some frequently used representations of
simple games in practice even trivial problems are NP-hard already, it is indispensable
to have powerful methods at hand that can deal with real world voting systems.

Different representations for simple games are used in practice like (multiple) weighted
representations. Algorithms to solve problems are usually developed separately for each
such representation. We abstract from these representations and use QOBDDs as an
intermediate representation for simple games. We thereby exploit the fact that simple
games are essentially up-sets and monotone Boolean functions, respectively. On the
basis of this representation, we develop algorithms to solve some fundamental problems
for simple games like the computation of a priori power indices. The step to obtain the
QOBDD from a (multiple) weighted representation is answered separately.

If QOBDDs are used to represent simple games of a particular class, like those which
possess a weighted representation, then they often exhibit structural features. We study
these features and use them to establish upper bounds on the size of the QOBDDs as
well as to develop specialized algorithms in some cases.

For our algorithms we introduce two novel and fundamental techniques for QOBDDs.
On the one hand we present manipulators that can alter the set that is represented
by a QOBDD without modifying the QOBDD itself. On the other hand we show how a
counting problem for each player can be solved with only a constant number of traversals
of the QOBDD. This includes the computation of the Chow parameters for the players
which we use for some power indices.

We also study the problem whether a simple game, represented by a QOBDD, has a
weighted representation. To this end we present a heuristic which can be used to decide
if the simple game does not have such a weighted representation. Furthermore, based
on the structure of the QOBDD we develop a linear program that can be used to decide
if the simple game has a weighted representation. The resulting linear program has
often significantly less non-zero coefficients than linear programs in the literature that
are based on models of subsets of the winning and the losing coalitions, respectively.
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Notation and Symbols

Let N be a finite set. For an element © € N and a subset S of N we usually write S+ x
instead of SU{z} and we write S — z instead of S\ {x}. We declare that + and — have

precedence over U, N and \ .

A set A C 2V is called an up-set (resp. down-set), if for each two coalitions S, T C N
with S C T (resp. T'C S) and S € A it also holds T" € A.

In some situations we assign a weight to the elements in N by a weight function
w: N — R and at the same time we define the weight of a subset of the elements S C N
by > s w(i). By convention, the value of w(S) is usually a set of weights. Deviating
from that, as a convenience, we define w(S) by >,.sw(i) for a weight function w.

A partition of N is a list of disjoint sets whose union is N. A partition Py,..., P,

of N is a refinement of another partition @)y, ...

,Qm of N, if n > m and for each

ie{l,...,n}, thereisa j € {1,...,m} with P, C Q,.

In the following list, the leftmost column refers to the first occurrence in the text.

Page Notation Description
B Boolean truth values 0 (false) and 1 (true)
Ny, N natural number with and without 0, resp.
A, B sets of subsets
XA characteristic function of A
P, NP complexity classes for polynomial and non-deterministic poly-
nomial time
12 (N,W) simple game with players N and winning coalitions W
12 L set of losing coalitions (down-set)
13 minA, max.A minimal and, resp., maximal subsets in A
13 Wi, Lmax minimal winning and maximal losing coalitions
94 Wi blocking coalitions in W (up-set)
13 > desirability relation on individuals (preorder on V)
13 =~ relation of equally desirable players (equivalence relation
on N)
14 Ny,..., N types of players w.r.t. =; and players N (partition of N)
14 Wanire, Lenitt shift-minimal winning and shift-maximal losing coalitions

15

[Q; w]

weighted representation with quota ) € Ny and weight func-
tion w: N — N
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V(r), V;(r)
then(v), else(v)
var(v)

m-OBDD

size(r)

width;(r), width(r)
ite(i, ¢, e)

iet(v)

T
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node(v, 7, S)
uS

paths(u, v)
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doW

o(9)

weighted representation with quota ) € Ny and weights
wi,...,w, € Ny

m-vector-weighted representation with rules gq,..., gm
multiple weighted representation with formula ¢ and rules

di,--+,9m
BDD 0-sink and 1-sink, respectively

representatives of @ and I, resp., on level ¢

inner nodes of the BDD with root r (and label 1)

1-successor and 0-successor of the BDD node v

label of the BDD node v

OBDD with ordering 7

number of inner nodes in the BDD with root r

|Vi(r)| and max; |V;(r)], resp.

operation to create an inner node with label 7 and succes-
sors t, e

set represented by the QOBDD node v

same as QOBDD with root v, but the sinks are interchanged
thesets {S—i|ie€S,Se A} and {S € A|i¢g S}, resp.
node that is reached on level i starting at node v by the path S
node v is reached from node u by the path S

set of all paths from u to v

binary synthesis for QOBDD nodes u, v with label ¢ and binary
function ®

application of apply with ® to QOBDD nodes u, v

infimum of the weights of the sets in A w.r.t. weight func-
tion w

supremum of the weights of the sets not in A w.r.t. w
difference between u,,(A) and ,,(.A)

defined by 1,,(set(v)), uy(set(v)) and A, (set(v)), resp.
defined by set(u) C set(v) and set(u) C set(v), resp.
Lapidot’s desirability relation on coalitions

manipulator ® with successor functions &7 and ¢
identity manipulator defined by id := (then, else)
composition of manipulators

successors of the QOBDD nodes in S w.r.t. manipulator ¢

applys(u, ®, v, ¥, ®) binary synthesis for QOBDD nodes u, v and binary function ®

sete (V)
V(r,®),V;(r, @)

w.r.t. manipulators ¢, W
set represented by the QOBDD node v w.r.t. manipulator ¢

inner nodes of the QOBDD with root r (and label 7) w.r.t.
manipulator ¢
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number of inner nodes in the QOBDD with root r w.r.t. ma-
nipulator @, that is, |V(r, ®)|
|Vi(r, ®)| and max; |V;(r, ®)|, resp.

short for applys(u, @, v, ¥, A)

short for applys(u, @, v, ¥, V)
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variant of the binary synthesis for QOBDD nodes u, v and bi-

nary function ® w.r.t. manipulators ®, W that returns either
true or false

short for forall(u, ®,v, ¥, =)

short for forall(u, ®,v, U, <)

manipulator that interchanges the 1- and 0-successor of a node
manipulator to select all sets that do not contain element
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1. Introduction

Voting systems in which a decision is made by a set of voters with respect to a collection
of predefined decision rules are ubiquitous today. They directly or indirectly influence
important areas of our life, e.g., when a political decision is made on the European level.
Even though, we can easily find other examples for those voting systems in our personal
or professional environment, especially international organizations like the International
Monetary Fund and political unions like the European Union (briefly EU) use complex
and elusive voting systems with various decision rules. The aim of this thesis is to
support the understanding and the analysis of such voting systems.

By a voting system (resp. voting game) we mean a system in which a proposal, e.g., a
bill, is pitted against the status quo. Every voter (resp. player) can affirm the proposal
by saying “yes” or it can reject the proposal by saying “no”. Whether a proposal is
accepted depends on the assembly of the accepting players. Because there are only
two possible outcomes, namely, accepting or rejecting a proposal, we talk about binary
decision rules.

A voting game with n > 1 players corresponds to the mathematical concept of a
Boolean function f : B"™ — B with n arguments. This model is equivalent to the more
common model with a set of so-called winning coalitions. If N is a (finite) set of players,
then a coalition is exactly the subset of players that accept a proposal by saying “yes”.
If a coalition can accept the proposal and therefore, can enforce a positive outcome, then
it is called winning. The pair (N, W) consisting of the players N and the set of winning
coalitions W C 2V is called a simple game. We thereby always assume that supersets
of winning coalitions are winning as well, that is, if additional players accept a proposal
then this will not render the outcome negative. Formally, the set of winning coalitions
is an up-set.

An important special case are weighted voting games (Wvas). Here, every player
has a non-negative integer voting weight and there is a non-negative integer quota. A
coalition is winning in such a game exactly if the sum of the voting weights of its players
meets or exceeds the quota. Examples include the German Bundesrat and the Electoral
College to elect the President of the United States.

The expressive power of weighted voting games is limited. Therefore, it is common in
practice to use multiple WvGs to create more complex voting games. A coalition then
has to win in every WVG or in a combination of the WvaGs to win in the composite voting
game. Voting games with multiple decision rules are especially interesting, because on
the one hand they are elusive and on the other hand we have to suspect that this problem
is potentially exploited by some players during bargaining for the voting weights to gain
an advantage. It is therefore crucial to have powerful methods at hand to analyze and
assess voting games that are relevant in practice.
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Country Weight Maj. Popl. Country Weight Maj. Popl.
Germany 29 1 170 Bulgaria 10 1 17
United Kingdom 29 1 123 Austria 10 1 17
France 29 1 122 Slovak Republic 7 1 11
Italy 29 1 120 Denmark 7 1 11
Spain 27 1 82 Finland 7 1 11
Poland 27 1 80 Ireland 7 1 8
Romania 14 1 47 Lithuania 7 1 8
Netherlands 13 1 33 Latvia 4 1 )
Greece 12 1 22 Slovenia 4 1 4
Czech Republic 12 1 21 Estonia 4 1 3
Belgium 12 1 21 Cyprus 4 1 2
Hungary 12 1 21 Luxembourg 4 1 1
Portugal 12 1 21 Malta 3 1 1
Sweden 10 1 18 Quota 255 14 620

Table 1.1.: Voting weights and population in the Council of the EU as defined in the
Treaty of Nice. Every column corresponds to a WvG.

A good example on this is the Treaty of Nice, which currently governs the decision
making process in the Council of the European Union. During bargaining for the voting
weights there have been controversial opinions, which have been reinforced by numerous
analysis in scientific publications. See, for instance, Leech (2002), Heinemann (2003)
and Freixas (2004).

The council is part of the legislative branch of the European Union together with
the parliament of the EU. Its members (resp. players) are representatives of the 27
member countries of the EU. Depending upon the issue the council votes by simple
majority, qualified majority or unanimity. When qualified majority voting is used, a bill
(proposed by the commission of the EU) passes, if it is supported by 50% of the member
countries (14 out of 27) and by 74% of the voting weights (255 out of 345). Additionally,
every member can demand that the bill has to be supported by 62% of the population
of the EU (620 out of 1000). This voting game can be represented by three weighted
voting games (Freixas 2004) as listed in Table 1.1.

The fact that voting systems can be complex and elusive becomes apparent, if we
consider the alternate representation of the council in Table 1.2. The winning coalitions
are the same. By this representation we can see that the outcome of the vote mainly
depends on the negotiated voting weights. Furthermore, to additionally consider the
population is beneficial for only four players, namely Germany, the United Kingdom,
France and Italy. To obtain the representation in Table 1.2 we have used the methods
developed in this thesis and integer linear programming.

The mathematical structure of a simple game and a weighted voting game is so general,
that it naturally appears in various fields of research. In the preface of their monograph
on simple games, Taylor and Zwicker (1999) state in this respect:



Country Weight Majority Popl.
Germany 29 0 2
United Kingdom, France, Italy 29 0 1
Spain, Poland 27 0 0
Romania 14 0 0
Netherlands 13 0 0
Greece, Czech Republic, Belgium, Hungary, Portugal 12 1 0
Sweden, Bulgaria, Austria 10 1 0
Slovak Republic, Denmark, Finland, Ireland, Lithuania 7 1 0
Latvia, Slovenia, Estonia, Cyprus, Luxembourg 4 1 0
Malta 3 1 0
Quota 255 6 2

Table 1.2.: Alternate representation of the Council of the European Union as defined in
the Treaty of Nice. Every column corresponds to a WvaG.

Few structures in mathematics arise in more contexts and lend themselves
to more diverse interpretations than do hypergraphs or simple games.

Weighted voting games have been studied extensively in electrical engineering as linear
separable Boolean functions and threshold functions, respectively.

The analysis of a voting game is motivated by several questions. The central question
is mostly that of the “power” of a player. Here, we consider only that kind of power that
allows a player to influence the outcome of a voting, which is called I-power. Further-
more, we will only consider the structure of the voting game and ignore any assumptions
about the players and their interests. Hence, whether a coalition seems unlikely or not
does not matter in our considerations. In the literature this approach is known as a pri-
ort voting power. See Felsenthal and Machover (2004) for an introduction and critics.
A priori voting power is very often studied in the context of power indices. On the basis
of the structure of the voting game, a power index assigns a numerical value to each
player, which indicates the player’s power with respect to a certain understanding of
what influence means. Two of the most prominent representatives are the power indices
by Banzhaf (1965) and by Shapley and Shubik (1954). The list of power indices proposed
in the literature is much longer though. Some of them are presented in Section 6.7.

A weighted voting game instance consists of one voting weight for each player and
the quota. From an algorithmic perspective even very fundamental problems on WvaGs
are NP-complete already. For instance, by a polynomial time reduction from the NP-
complete partition problem one can show that the problem to decide if the player with
minimum weight can influence any decision is NP-complete. The same holds for the
computation of some power indices (Matsui and Matsui 2001) even though there are
pseudo-polynomial algorithms (Matsui and Matsui 2000). Therefore, the analysis of
voting games relies on methods, that are capable to handle real world voting games.

Current algorithmic approaches often rely on the representation of a voting game as
a single weighted voting game and disregard other representations, for instance, vot-
ing games with multiple decision rules. In practice, however, these representations are
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Which players are equally desirably?

Multiple WvaGs What is the desirability relation on players?
/
QOBDD for W —~

/‘ \\‘- Representable as a WvG?

Minimal winning coalitions What are the players’ power indices?

Which are the key players?

Wva

Figure 1.1.: Separation between the representation of voting games in practice (left) and
algorithms to solve problems on simple games (right).

frequently used as in the Council of the EU. Those approaches that do consider other
representations of voting games are often rigid and do only solve a single problem for a
specific representation. As an example, Algaba, Bilbao, Fernandez Garcia, and Lépez
(2003) present algorithms to compute some power indices for voting games with multi-
ple decision rules, but they do not consider other problems like the computation of the
desirability relation on individuals.

In this thesis we will take a different approach. We will use an intermediate represen-
tation of the set of winning coalitions W of a simple game, that we can easily obtain
from other representations of voting games in practice and that is often compact in
size. Problems on simple games are then solved by algorithms that use the intermediate
representation, so that there is a strict separation between the representation of voting
games in practice on the one hand and the algorithms which solve specific problems on
the other hand. Figure 1.1 illustrates the separation.

Compact representations of Boolean function and subsets of 2%V by their characteristic
function, respectively, are essential in many areas like electrical engineering. Ordered
binary decision diagrams and its variants are well-known for this purpose and they have
been successfully applied to numerous problems. For instance, ordered binary decision
diagrams have been used in the synthesis of Boolean circuits (Moller, Mohnke, and Weber
1993), for the representation of binary relations (Berghammer, Leoniuk, and Milanese
2002) and for multiple 0-1 knapsack problems (Behle 2008).

To be more precise, we will employ so-called quasi-reduced and ordered binary de-
cision diagrams (QOBDDs). Figure 1.2 shows a QOBDD and the represented Boolean
function with three variables in form of a truth table. QOBDDs are well-studied in the-
ory (Wegener 2000) and with respect to implementations (Brace, Rudell, and Bryant
1990; Minato, Ishiura, and Yajima 1990). They are known to be able to represent many
important Boolean functions and subsets of 2V compactly. Our approach thereby bor-
rows notions and methods from other research fields like Boolean function logic and
threshold logic but also presents new results and new ideas for these fields. For in-
stance, it is still a very important problem in threshold logic to identify weighted voting
games and threshold functions, respectively (Smaus 2007; Palaniswamy, Goparaju, and
Tragoudas 2010).

We will see that the use of QOBDDs as an intermediate representation has only little



variable 1 2 3 || f-value
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Figure 1.2.: A QoBDD for the Boolean function f : B®> — B.

negative effect on the time complexity of our algorithms in comparison to algorithms that
use a specific representation like WvaGs. To the contrary, the use of QOBDDs sometimes
allows to obtain better upper bounds for the running time. For instance, this will be
the case for computing some power indices when the QOBDD has been obtained from a
WvG, because in this case the QOBDD has a particular structure. However, this is at
the cost of a worse space complexity of our algorithms.

In this thesis we will solve various problems on simple games. As it will turn out, by
the use of QOBDDs some algorithms can easily be derived from the logical formulations
of the problems on simple games once a certain set of fundamental operations has been
acquired. Hence, most algorithms in this paper can easily be implemented and this
approach might therefore be interesting for other research fields as well. Exceptions are
those few operations that operate directly on the structure of a QOBDD. To address this
issue, in Section 6.1 we will present the idea of so-called manipulators that will reduce
the number of such algorithms.

Our main motivation for the use of QOBDDs has been the use of reduced OBDDs
(ROBDDs) to represent binary relations. By using relation algebraic methods for the
solution of some problems in the context of simple games (Berghammer, Bolus, Rusi-
nowska, and de Swart 2011) and the ROBDD-based tool RELVIEW (Behnke, Bergham-
mer, Meyer, and Schneider 1998; Berghammer, Leoniuk, and Milanese 2002), we en-
countered that some problems on simple games can be solved more efficiently by using
RoBDDs and, respectively, QOBDDs directly. RELVIEW offers the ability to compute
results by relation algebraic specifications and programs. Therefore, the use of QOBDDs
directly can be considered to be more complicated in general, because they operate on
a lower level of abstraction in contrast to the mathematical model of binary relations.
Nevertheless, in our case the benefits of using QOBDDs outweigh the drawbacks.

The research in this thesis has been conducted in the context of the European program
LogICCC! and the project SOCIAL SOFTWARE for elections, the allocation of tenders
and coalition/alliance formation (SSEAC) under the DFG grant BE 4206/1-1. As part
of this project we have developed a software to analyze simple games, called the Simple
Game Laboratory. The software is available as a user-friendly web application that only

IThe program title is Modelling intelligent interaction - Logic in the Humanities, Social and Com-
putational sciences (LogICCC).



1. Introduction

requires a recent web browser to run. It is available online at:
http://sourceforge.net /projects/simple-game-lab /

The laboratory implements nearly all algorithms and ideas that are presented in this
thesis. Moreover, it offers various examples and it is capable to visualize quasi-reduced
and ordered binary decision diagrams. The real world examples that we use in this thesis
refer to those in the laboratory. Even though most results in this thesis are theoretical
in nature, the reader may benefit from using the laboratory from time to time. The
author kindly remarks, however, that the implementation is not the most efficient one
possible due to the commitment to a web application. The software has been written in
ECMAScript which is better known as JavaScript.

Parts of this thesis are essentially based on already published articles by the author.
A list of the exact references can be found in the introductory texts of the chapters.

The next section presents a short outline of the thesis and its results. The reader is
also encouraged to use the index at the end of the thesis for reference.

Outline

This section presents an outline of the thesis and its results. Chapter 2 provides the
necessary foundations in the field of cooperative game theory, voting theory and simple
games. The main notions of a coalitional game, a simple game, a weighted voting game
and a multiple weighted voting game are introduced and exemplified. Concepts such as
the desirability relation on individuals, types and shift-minimal winning coalitions are
introduced. Further notions are introduced throughout the thesis when they are first
used. The index at the end of the thesis can be used for reference.

Chapter 3 complements Chapter 2 and presents the foundations of binary decision
diagrams (BDDs). The connection between simple games and BDDs is established in
Section 3.2. Section 3.3 discusses implementation issues that become relevant, when
we do use BDDs differently than one would usually expect. For instance, the costs of
having shared BDD nodes are discussed. The binary synthesis of QOBDDs is discussed in
Section 3.4. Here, the focus is on the complexity of the synthesis for a given expression
tree. This is necessary, because for multiple weighted and vector-weighted voting games
the expression tree is part of the input.

The subject of Chapter 4 is the process of building the QOBDD for a simple game
from a weighted representation and a multiple weighted representation with a formula,
respectively. Section 4.1 presents the framework in which we study QOBDDs representing
weighted voting games. This section also provides elementary results, that are used in
Section 4.2 to motivate and to analyze the output sensitive algorithm by Behle (2008) to
build the QOBDD representation of (the set of winning coalitions of) a weighted voting
game. Because WvGs are the building blocks for more complex voting games in practice
and even all simple games in theory, in Section 4.3 we will present the idea, how to use
the binary synthesis of QOBDDs to build the QOBDD for an arbitrary simple game.



Hosaka, Takenaga, and Yajima (1994) have shown, that QOBDDs representing thresh-
old functions with n variables (and therefore WvGs) have size at most O(2%/2). In
Section 5.3 we will define a new class of so-called flat QOBDDs. For each label ¢, all the
nodes of a flat QOBDD with label ¢ constitute an order-theoretic chain with respect to
the strict ordering D on their represented sets. Based on that we will prove that the
upper bound O(2"/2) does already hold for flat QoBDDs. We will see that being flat
depends on the ordering of the players and that being flat is a much weaker condition
than representing a Wva.

Beside the trivial upper bound of O(nQ) for the size of a QOBDD representing a
weighted voting game with quota @) and n players, the just mentioned bound of O(2"/2)
has been the lowest upper bound so far. In Section 5.3 we will establish an improved
bound of O(max{n —log @, 1}Q) for QOBDDs representing WvaGs.

Homogeneous simple games have been studied early in the area of cooperative game
theory (Morgenstern and von Neumann 1944). In Section 5.4 we will show that QQOBDDs
representing homogeneous simple games with n players have a size polynomial in n for
at least two orderings of the players. In contrast, we will also present an example and
an ordering of the players such that the corresponding QOBDD has size 2(27/2).

Chakravarty, Goel, and Sastry (2000) and Aziz and Paterson (2008) have presented
some classes of weighted voting games, for which some problems on simple games can
be solved in polynomial time in the number of players n. One such problem is the com-
putation of the Banzhaf power index. In both papers the class of WvGs with sequential
weights has been considered but neither of them has been able to find a polynomial
time algorithm for the computation of the Banzhaf power index for these games. In
Section 5.5 we will show that QOBDDs representing WvGs with sequential weights have
polynomial size and, therefore, such an algorithm exists. Similar to homogeneous simple
games we will also show that there is a Wva with sequential weights, whose QOBDD
has size 2(2"/?) for at least one ordering of the players.

Chapter 6 starts with an introduction of so-called manipulators in Section 6.1. Ma-
nipulators can be used to manipulate a traversal of a QOBDD without changing the
QoBDD itself. While without manipulators even trivial changes in a set represented
by a QOBDD can require a completely new QOBDD that has no inner node in common
with the previous one, manipulators can solve this problem gracefully in many situations
without creating additional nodes. The concept of manipulators is used throughout the
chapter.

Section 6.2 presents elementary counting algorithms for QOBDDs. Given n € N and a
set A C 2117} we will show that if A is represented by a QOBDD, then, for instance, the
values [{S € A |i € S} for all i € {1,...,n} can be obtained by just two traversals of
the QOBDD for A, what intuitively requires n traversals. In the context of simple games
we will use these values (and others) to compute power indices in Section 6.7. This
result, however, does also have potential to be useful in the identification of symmetric
Boolean variables in electrical engineering, even though the algorithms are less trivial in
the context of reduced OBDDs. Section 6.2 also presents a solution to obtain the values
{SeAl|ieS, |S|=k} forall k€ {0,...,n} and i € {1,...,n}. Here, an additional

factor of n in the running time is necessary.



1. Introduction

The remaining sections in Chapter 6 present solutions to various problems on simple
games. The problems include the computation of the desirability relation on individuals
=<7 in Section 6.3 and the test, if a simple game is complete, the computation of the
dual of a simple game and the test, if a simple game is proper and strong, respectively,
in Section 6.4, the computation of the QOBDD for the set of minimal winning and
the maximal losing coalitions in Section 6.5, and based on that, the computation of
the shift-minimal winning and shift-maximal losing coalitions in Section 6.6. Based on
the counting algorithms in Section 6.2, Section 6.7 presents formulas to compute the
Banzhaf, the Shapley-Shubik, the Holler-Packel, the Deegan-Packel and the Shift power
indices. As one of the main results we will see, that the Banzhaf power indices for all
players can be computed in time, linear in the size of the QOBDD that represents the
set of winning coalitions. Because of the results in Sections 4.2 and 5.3 we obtain an
algorithm with (deterministic) running time O(max{n—log @, 1}Q log Q) for a weighted
voting game with n players and quota (). This enhances the best known upper bound
of O(nQ) (Uno 2003) for this problem. Section 6.8 presents an algorithm to obtain the
so-called models for a QOBDD representing a set of subsets. An application of models is
sketched in Chapter 7. A general advantage of our approach is, that if the QOBDD for
a simple game is small, as it is the case for homogeneous simple games and WvGs with
sequential weights, then the problems can be solved quickly.

The problem to decide, whether a simple game can (not) be represented by a weighted
voting game, and if so, to find such a representation, is the subject of Chapter 7. The
problem does also naturally arise in the context of Boolean functions and has been
studied extensively in electrical engineering. Usually linear programming is used for this
purpose and the linear program is built from a subset of the winning and losing coalitions
or its models. In Section 7.1, however, we will see that we can build a linear program
for the same purpose by using the structure of the QOBDD, that represents the winning
coalitions of a simple game. In many relevant cases the resulting linear program has
less non-zero coefficients and therefore can be solved faster. This statement is justified
by experiments in Section 7.2. Section 7.3 presents a heuristic, based on flat QOBDDs
to identify QOBDDs, that do not present weighted voting games. Random experiments
are used to evaluate the heuristic. Section 7.4 presents a method to obtain a witness of
not representing a WvaG for a QOBDD, if the QOBDD is not flat. Chapter 7 closes with
some concluding remarks in Section 7.5.

Finally, Chapter 8 presents concluding remarks, comments and ideas for future work.
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2. Simple Games

In this chapter we lay the foundations for most parts of this thesis. We introduce the
notion of a simple game and many related concepts from the areas of cooperative game
theory and voting systems. We start with simple coalitional games, better known as
simple games, in Section 2.1 as a class of coalitional games. In Section 2.2 we introduce
the important class of weighted voting games. This class is often used to model real
world voting systems but it is not expressive enough in some cases. In these situations
vector-weighted representations and multiple weighted representations with a formula
are used which are introduced in Section 2.3. This brings us back to the class of simple
games again, because each simple game has such a representation.

The introduction of some notions is postponed until they are needed in later chapters.
For instance, homogeneous simple games are introduced in Section 5.4, power indices
are introduced in Section 6.7 and models of coalitions are introduced in Section 6.8.

2.1. Simple Coalitional Games

Cooperative game theory is about the idea that individuals (e.g., players, companies,
countries) can gain more when they work together instead of acting alone. Therefore,
concepts such as solutions and payoffs are central in this discipline. This thesis has
little to do with cooperative game theory in this respect. However, it is similar in
others like the Shapley value as a solution concept and the Shapley-Shubik index (see
Section 6.7) as a measure of “power”. In this thesis we are interested in the analysis and
the design of certain kinds of voting systems. From our perspective, a voting system is
a mathematical function for which the decisions of the individuals (resp. players) are
the function’s inputs and the output is the decision. In our considerations a decision is
either “yes” or “no”. The ability to influence the outcome is known as the “power” of a
player. Different definitions of this term exist as we will see in Section 6.7. Because we
do only consider the mathematical function and ignore any interests or preferences of
the players, we are concerned with a priori voting power; see Felsenthal and Machover
(2004) for an introduction.

We start by introducing the notation that we borrow from the classical cooperative
game theory.

Definition 2.1. Let N C N be a set of players and let v : 2 — R be a function. Then
(N,v) is called a coalitional game (with transferable utility). O

Many authors use the additional restriction that the empty coalition fulfills v()) = 0.
For n > 1 we will usually assume N = {1,...,n} as the set of players. The subsets of
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2. Simple Games
2N are called coalitions. For a coalition S C N the value v(S) is called the worth of S,
for instance, v(S) could be an amount of money. Usually, it is assumed that disjoint
coalitions S, 7" C N can earn more by working together, that is, v(SUT) > v(S) +v(T)
what is called superadditivity. Cooperative game theory is mainly about studying the
distribution of worth of a coalition among its players. Numerous solution concepts like
the core, the kernel and the nucleolus have been developed to this end. See Peleg and
Sudhélter (2007) for an introduction and an overview.

Let (N,v) be a coalitional game. By restricting the range of v from R to B and
additionally imposing v(S) < v(T') for S C T C N we obtain the class of simple games.
For a thorough introduction to the theory of simple games see the textbook by Taylor
and Zwicker (1999).

Definition 2.2. For players N C N such that n := |[N| > 1 and W C 2" the pair
(N, W) is called a (n-person) simple game if YV is an up-set. O

Most authors exclude the cases W = () and W = 2V, because they do not have
meaningful counterparts in the real world. We include these cases for technical reasons
and highlight possible conflicts with results in the literature on simple games.

A coalition in W is called winning while a coalition in the complement 2V \ W is called
losing. The losing coalitions are denoted by £ := 2V \ W. For a simple game (N, W)
the associated cooperative game is (N, xyy) where xyy : 2 — {0, 1} is the characteristic
function of W.

As has been mentioned by Taylor and Zwicker (1999), simple games cannot be studied
in isolation in the field of cooperative game theory or voting theory. The structure of
a simple game naturally appears in many other disciplines as monotone hypergraphs or
positive Boolean functions and even though each discipline has its own motivation and
goals, many results are useful in the others. In this thesis we emphasize the connection
to the area of electronic engineering and threshold logic that studies positive Boolean
functions and threshold functions. For that reason, we will sometimes refer to literature
in these areas even though the reader might not be familiar with either discipline.

In the remainder of this section, (N, W) is a simple game with players N, winning
coalitions W and losing coalitions £. The following notions are important in the analysis
of simple games. Algorithms are presented in Chapter 6.

Definition 2.3. A simple game (N,W) is called proper if the complement of each
winning coalition is losing and it is called strong® if the complement of each losing
coalition is winning. It is called constant-sum or decisive if it is both proper and strong,
and it is called dual-comparable if it is either proper or strong. O

We illustrate the notions that we have introduced so far.

Example 2.1. We consider players N = {1,2,3,4}. As a convenience we will use letters
instead of numbers in our examples. Hence, A denotes player 1, B denotes player 2 and

Definitions of strong simple games are inconsistent. For instance, in Peleg and Sudhélter (2007) a
strong simple game fulfills S € W if and only if N\ S € W for all § € 2V,

12



2.1. Simple Coalitional Games

so on. Furthermore, we shall write, for instance, AB instead of {A, B} to promote the

presentation. Let
W ={AB,ABC,ABD, ACD,ABCD}

be the set of the winning coalitions. Then the losing coalitions are:
L={0,A B,C,D,AC,AD,BC,BD,CD,BCD}.

By inspecting the complement of every winning coalition in W, we can see that the
simple game (N,W) is proper. It is not strong, though, because both coalitions AC
and BD and their complements are losing. Hence, the simple game (N, W) is dual
comparable, but it is not decisive. O

Because it is reasonable not to have two winning coalitions at the same time, real
world voting systems are at least proper. Many of them, however, fail to be strong and
therefore to be decisive. Examples include the US Electoral College (2004-2008, 2012-
2020) and the Council of the EU under the Treaty of Nice and the Treaty of Lisbon.

For A C 2V by min A (resp. max.A) we denote the subset of minimal (resp. maximal)
elements of A with respect to set inclusion.

Definition 2.4. A coalition in min W is called minimal winning while a coalition in
max L is called mazimal losing. The sets of the minimal winning and maximal losing
coalitions are denoted by Wy, and L., respectively. O

The idea is illustrated in the following example.

Example 2.2. We consider the simple game (N, W) from Example 2.1 again. Because
ABCD is winning, but also AB is winning, ABC'D is not minimal winning. The coalition
AB is minimal winning, because both A and B are losing. The corresponding sets are
Winin = {AB, ACD} and L,,.x = {AC, AD, BCD}. O

In voting systems some players are usually more “powerful” than others. One relation
in this respect is the so-called desirability relation on individuals (Isbell 1958).

Definition 2.5. Given players i,7 € N, player j is called at least as desirable as i,
denoted by j = i, if

VSCN\{i,j}:(S+ieW = S+jeW).

If 7 > ¢ then player ¢ is called at most as desirable as j. The strict part of the relation
is denoted by =;. We use i <7 j and 7 <7 j for j >=; 7 and j > i, respectively. Players
1,7 are called equally desirable, denoted by i ~; j, if both j >; ¢ and ¢ = j. m

Intuitively, it holds j > ¢ if in any winning coalition containing ¢ but not j, player ¢
can be replaced by j and the resulting coalition is still winning.

The relation > is a preorder and therefore reflexive and transitive (Isbell 1958). If
>~ is total, i.e., each pair of players is comparable w.r.t. >=;, then the simple game is
called complete. A complete simple game is called directed if

Vi,je N:(i>rj = i<j). (2.1)
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2. Simple Games

If N ={1,...,n} where n = |N| then (2.1) is equivalent to 1 >=; --- =1 n. Notice that
the players in every complete simple game can be renamed, so that the resulting simple
game is directed.

Example 2.3. We consider the simple game in Example 2.1 with players A, B, C' and
D again. This game’s desirability relation on individuals >=; C N X N corresponds to

AEIBEICEID and DEIC

and i »=; i for all players ¢ € N. It also holds A =; B, B »=; C' and C' ~; D. For
instance, because for all coalitions S € {(),C, D,CD} C 2" not containing A and B it
holds S U {A} is winning whenever S U {B} is winning, it holds A »; B. Because for
S = CD the coalition S U {A} is winning but S U {B} is not winning, it holds A > B.
The game is directed and therefore complete. O]

The relation = is an equivalence relation. Its equivalence classes are called types. The
types are denoted by Ni,..., N; and they are a partition of N where ¢ is the number
of types. W.l.o.g. we will assume that the types are ordered such that whenever ¢ > j
and 1 € N, and j € N, it holds x < y. For instance, /Ny contains the most desirable
players for a complete simple game.

A simple game can solely be represented by its minimal winning (resp. maximal
losing) coalitions, because every winning (resp. losing) coalition can be derived by the
up-set (resp. down-set) property. In other words it holds

W={T €2V |38 € Wawn:SCT}

and analogously,
L={T 2|35 € Lona:T C S}.

Because the set Wy, is usually much smaller than VW, the representation of a simple
game by Wy, is more compact. Such a representation, however, can let problems on
simple games become NP-hard. Freixas, Molinero, Olsen, and Serna (2012) have shown
that for the set Wy, as the input, the problem to decide whether the associated simple
game is strong, is NP-complete. For W as the input, however, the problem can be solved
in polynomial time in |N| and |[W].

The desirability relation on individuals can be used to obtain a subset of Wiy, (resp.
Liax) that represents a simple game already. This representation is usually more com-
pact, especially if the simple game is complete.

Let S,T € 2V be coalitions and 7, j € N be players such that i € S, j &€ S and i ¢ T,
j € T and which do not differ in the remaining players, that is, S\ {i} = 7'\ {j}. If
¢ > j then S is winning if 7" is winning. Thus, the information if S is winning, can
be derived from the information whether T' is winning and ¢ >=; 7. The replacement of
player j by player i is sometimes called a shift®.

2The wording becomes clear from the representation of coalitions in directed simple games as
Boolean vectors (z1,...,2,) € B™. Replacing a player means to shift a 1 in the vector to the left
or to the right.
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2.2. Weighted Voting Games

Definition 2.6. A minimal winning coalition S € W,y is called shift-minimal winning,
if for players i,j7 € N withi € S, j & S and i > j it holds (S — i) + 7 € W. Dually, a
coalition S € L. is called shift-mazimal losing if

Vi,jEN: (€SN ESANjm1i = (S—i)+j&L).

The sets of the shift-minimal winning and shift-maximal losing coalitions for (N, W) are
denoted by Wi and Lgige, respectively. O

Intuitively, a coalition is shift-minimal winning if no player inside the coalition can be
replaced by a less desirable player outside the coalition such that it remains winning.

W [ Wnin| [ Wanits|
UN Security Council 848 210 210
Canadian Constitution (1995) 167 112 56
Treaty of Nice 2718 752 561 820 117055
Treaty of Lisbon 17196 173 4016553 53764
US Electoral College (2004-2008) | ~ 1.117-10* =~ 51.199- 102 =~ 17.054 - 10'2

Table 2.1.: Comparison of the representation size of some real world simple games.

The number of winning, minimal winning and shift-minimal winning coalitions for
some real world simple games is compared in Table 2.1. We have obtained the numbers
using the Simple Game Laboratory?.

Even the set Wipie can be further reduced by using so-called models of coalitions. They
are formally introduced in Section 6.8 due to technical reasons. The idea, however, is
very simple for the set W. Consider the types Ni,...,N; of (N,W). Any winning
coalition S € W can be represented by a vector m = (my, ..., m;) € N§ such that

Vke{l,...,t}imk:|NkﬂS|.

The vector 7 is then called a model of S. Obviously, when |Ng| > 1 for some k, then
this representation is more compact. Carreras and Freixas (1996) use the models of
shift-minimal winning coalitions to characterize complete simple games.

2.2. Weighted Voting Games

A very common paradigm in the design of voting systems is to assign weights to the
players and to set a quota, which has to be reached by the sum of weights of the players in
a winning coalition. This concept is usually known as weighted voting. The restriction
to integer weights and an integer quota in the introduction has been for illustration
purposes. Here, we do allow real weights and a real quota, even though in most parts
of the thesis we will use integers exclusively. The only exception is Chapter 7.

3See http://sourceforge.net/projects/simple-game-1lab/.
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2. Simple Games

Definition 2.7. Let N be a set of players, let () € R>o be a quota and let w : N — R
be a weight function. For ¢ € N the value w(i) is called the weight of player i. We

call the pair [Q;w] a real weighted representation and for a simple game (N, W) we say
[Q; w] represents (N, W) if

VS eV (SeW = w(S)>Q)

where w(S) = Y,cqw(i) is the weight of the coalition S € 2N. If the quota @, and
the weights w(i), ¢ € N, are elements from Ny, then we call [Q; w] an (integer) weighted
representation. We call (N, W) weighted or a weighted voting game (WvG) if it has a

real weighted representation. In case N = {1,...,n} for some n > 1 we usually use a
vector of weights wy, ..., w, instead of a weight function and write [Q;wy, ..., w,]. The
weight function in this case is implicitly defined by w(i) = w; for player i € N. O

One might expect that there is a simple game, that has a real weighted representation
but which does not have an integer weighted representation. This is not the case.
Because the rational numbers are dense in R, being a weighted voting game and having
an integer weighted representation is equivalent (Hu 1965). Another proof can be found
in Freixas and Molinero (2008, Proposition 2.2). Bohossian (1998) presents a sufficient
condition for the restriction of the sets of weights for a weighted voting game, that also
covers the case of integers.

Theorem 2.1 (Theorem 2.2 in Bohossian (1998)). Let D = {d;,ds,...} € R be an
ordered set with dy < dy < ---. If for any given arbitrarily large positive constant C' € R
there exists iy such that for any i > iy it holds (d;y1 — d;)C < d; then being a weighted
voting game is equivalent to having a real weighted representation [Q;wy, ..., w,| such
that Q,wn, ..., w, € D. O

If not explicitly stated otherwise, in the following we will always use integer weighted
representations. Moreover, we will use (integer) weighted representations and weighted
voting games interchangeably. For instance, by [@Q;w] we refer to the simple game
(N,W) with players N and winning coalitions W = {S € 2V | w(S) > Q}. This is
valid, because the set W is an up-set. The simple game (N, W) is called associated with
[Q; w].

The term weighted voting game is very specific to the areas of cooperative game theory
and voting systems. Other areas such as electronic engineering or neural logic prefer the
names* threshold function and linearly separable function.

Many aspects of weighted voting games have been studied in the different disciplines.
Beside the analysis of real world voting systems, one of the most interesting problems

4A nice quota about this fact can be found in Akers and Rutter (1964):

An unofficial contest appears to be underway to determine how many new terms may be
successfully applied to threshold functions. Current favorites include linearly separable
functions, majority decision functions, linear decision functions, linear-input functions,
vote-taking functions, and weighted decision functions with their popularity decreasing in
about the same order.
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2.2. Weighted Voting Games

in the design of voting systems is the problem to find a weighted voting game that fits a
given distribution of “power”, for instance, by a power index. The problem is therefore
sometimes called the inverse power index problem (Kurz and Napel 2012) or inverse
Banzhaf problem (Alon and Edelman 2010), which refers to the particular Banzhaf
power index, that is introduced in Section 6.7.

One of the most important problems in various areas is the identification of weighted
voting games and threshold functions, respectively. Here, a simple game in some repre-
sentation is given as the input and the question is, if there is a weighted representation
for it and, if so, to find one. In the field of electronic engineering, this problem has been
studied extensively in the 1960s (Winder 1962; Hu 1965; Lewis and Coates 1967; Sheng
1969). The main driver of this research was, and still is, the idea that we can build more
efficient switching circuits by using more complex gates, such as gates that implement
a threshold function instead of gates such as AND and NOR. In the area of the design
of voting systems, finding weighted representations is interesting for games for which no
weighted representation is known already, and for WvGs that might have a weighted
representation with, e.g., less quota, or which is minimal in some other respect; see, for
instance, Freixas and Molinero (2008) and the following example.

Example 2.4. The German parliament (lower house), called the Bundestag, currently
has 620 members and five factions, where the number in parenthesis is the current
number of seats: CDU/CSU (237), SPD (146), the liberal party (93), the left party (76)
and the green party (68). In some situations it requires an absolute majority of 311
votes for a bill to pass in the Bundestag which is called a Kanzlermehrheit. This voting
game can be represented by the Wva [311;237, 146, 93, 76, 68] if every faction votes en
bloc. However, this game does also have [3;2,1,1,1,0] as a weighted representation.
From the latter we can immediately see the structure of the game. O]

Weighted voting games are much less expressive than general simple games and even
complete simple games. There is no closed formula for the number of simple games (resp.
monotone Boolean functions) yet, but for n = 8 players there are® more than 5.61 - 1022
different simple games already. Even though, the number of complete simple games
(resp. regular Boolean functions) is much smaller, for n = 8 there are® 16,175,188+2
complete simple games after all. The “+2” takes into account the cases W = () and
W = 2. Kurz and Tautenhahn (2012) use cliques to enumerate complete simple games.
In comparison, the number of weighted voting games is less than 27* and for 8 players
there are” “just” 2,730,164+2 weighted voting games (Kurz 2011). For a discussion of
upper and lower bounds for the number of threshold functions, see Bohossian (1998,
Section 2.3.1).

Weighted voting games are sometimes inconvenient and sometimes insufficient in the
design of voting systems. In the next section we will use Wvas as the building blocks
of so-called vector-weighted representations and multiple weighted representations with

>This is sequence A000372 in the On-Line Encyclopedia of Integer Sequences (OEIS) (OEIS Foun-
dation Inc. 2012).

6This is sequence A132183 in the OEIS.

"This is sequence A000617 in the OEIS.
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2. Simple Games

a formula. These will lead back to the class of general simple games again, because each
simple game has such a representation.

2.3. Multiple Weighted Voting Games

Weighted voting games are sometimes inconvenient and they are sometimes insufficient
to represent a simple game. Because each WVG is complete, WvGs are unable to
represent simple games which are not complete. But even complete simple games in the
real world often do not have a weighted representation. Examples include the Council
of the European Union under the Treaty of Nice and the Treaty of Lisbon.

An example, when a WVG is inconvenient, is the Security Council of the United
Nations (UN), which has the weighted representation (Taylor and Zwicker 1999, Sec-
tion 1.2)

[39;7,...,7,1,...,1]. (2.2)

———
5-times 10-times

The UN Security Council has 15 members. Five of them are permanent members, each
of which can veto a decision, and the remaining ten members are elected every two years.
A resolution requires nine affirmative votes to pass and no veto member must reject it.
The possibility of abstention is ignored here. The game can therefore also be modeled
by two rules, each of which is a WvG:

51,...,1,0,...,0] and [9:1,...,1]. 2.3
[ [ (2.3)

5-times 10-times 15-times

The rule on the left models the veto power of the permanent members while the rule on
the right models the necessary nine votes of all members. A coalition has to win in both
Wvas in (2.3). In comparison to (2.2), the representation is self-explaining and hence,
preferable.

Representations of simple games in which a coalition has to win in multiple rules
simultaneously are well-known (Taylor and Zwicker 1999, Section 1.7).

Definition 2.8. Let N be a set of players and for m > 1 let ¢1,..., g, be WvGs with
gr = [Qr;wg] where k = 1,...,m. The set {g1,...,gm} is called a m-vector-weighted
representation or vector-weighted representation with m rules. For a simple game (N, W)
we say {gi,...,gm} represents (N, W) if

VS eV (SeW = Vke{l,...,m}:w(S) > Qy).
The game gy, is called the kth rule. [l

The name originates from the fact that m-vector-weighted representations can also
be defined like weighted representations with vectors from N{' for the weights and the
quota instead of scalars. As for WvaGs, we will use m-vector-weighted representations
and simple games interchangeably without any risk of confusion. The simple game
(N, W) in the following statement is called associated with {g1, ..., gm}-
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2.3. Multiple Weighted Voting Games

Proposition 2.2. For a set of players N and a m-vector-weighted representation with
rules gi, ..., gm, the pair (N, W) is a simple game where

W={Se2V|Vke{l,...,m}:w(S) > Qs}.
Proof. 1t is rather easy to see that W is an up-set. O

It is well-known that every simple game (N, W) has a vector-weighted representation
with at most |Lpax| rules (Taylor and Zwicker 1993, Section 2). How many rules are
necessary for a vector-weighted representation is usually not clear though.

Definition 2.9. The dimension d € N of a simple game (N, V) is the minimum number
such that there is d-vector-weighted representation for (N, W). O

A WvG has dimension 1. For a m-vector-weighted representation, the problem to
decide if there is a vector-weighted representation with less rules, is NP-complete in
general (Deineke and Woeginger 2006). A simple game for which there is a m-vector-
weighted representation, is sometimes referred to as m-vector-weighted voting game.

A m-vector-weighted voting game is the conjunction of m rules. As for Wvas, this
is sometimes inconvenient. For example, there is a situation in the Council of the EU®
under the Treaty of Lisbon where a coalition has to satisfy the following conditions:

1. It represents 55% of the countries (15 out of 27) and
2. it represents 65% of the population or

3. a blocking minority would otherwise have only three or less members.

Disregarding the exact rules, this game contains a disjunction, because a coalition ei-
ther has to fulfill the first two rules or it has to contain 24 members. The following
notion of a multiple weighted voting game with a formula allows to conveniently model
this situation. A very similar approach named Boolean Weighted Voting Games has
been studied quiet recently by Faliszewski, Elkind, and Wooldridge (2009) for modeling
decision-making processes in which decisions are delegated to committees.

Definition 2.10. Let N be a set of players and for m > 1 let ¢, ..., g, be WvGs with
gr = [Qr; wi]. Additionally, let ¢ be a propositional formula with variables 1, ..., m and
connectives A and V where each variable appears exactly once. The pair (¢, {g1,...,9m})
is called multiple weighted representation with formula ¢ and for a simple game (N, W)
we say (¢,{g1,.-.,9m}) represents (N, W) if

VS eV (SeW < P(yp,9))

where for a propositional formula v with variables 1,...,m and connectives A and V,
and a coalition S C N the predicate P is inductively defined by
> if 1,...
P(a,S)o P(B,S) if Y =aof where o € {A,V}

The game gy, is called the kth rule. [l

8The members of the council are representatives for the 27 countries in the EU.
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2. Simple Games

An example for ¢ is (1 A2)V 3 but not 1 A3 or (1 A2)V 1, because 2 is missing in the
former and 1 appears twice in the latter formula. The restriction to connectives A and V
is necessary, because otherwise the set defined by {S € 2V | P(y, S)} is not guaranteed
to be an up-set. In the current setting, each multiple weighted representation with a
formula represents a simple game. We therefore can safely use a simple game and a
multiple weighted representation with a formula of it interchangeably. The simple game
(N, W) in the following statement is called associated with (o, {g1,. .., gm})-

Proposition 2.3. Let (v, {g1,...,9m}) be a multiple weighted representation with for-
mula ¢ and players N. Then (N, W) is a simple game where the winning coalitions are
W={Se2V|P(p,9)}. ]

If for (p,{g1,...,9m}) the formula ¢ does only contain A as connective, then the
simple game represented by (¢, {g1,...,gm}) and by the m-vector weighted voting game
{91, -.,9m} are the same.

To support the presentation, if there is no risk of confusion, we will use the rules
g1, ---,9m of a multiple weighted representation with formula ¢ directly inside the for-
mula ¢ instead of the numbers 1,...,m. This is illustrated in the following example.

Example 2.5. Consider the WvaGs g1 = [2;1,1,1,1], go = [66;30,30,15,15] and g3 =
[3;1,1,1,1]. The rule g; models a majority of two players, g» models a 66% majority
and g3 avoids a blocking majority with only one player. The formula is ¢ = (1 A 2) V 3.
By using the rules in ¢ instead of 1,2, 3, the game can be stated more compact as

([2;1,1,1,1] A [66;30,30,15,15]) v [3;1,1,1,1].
We also denote this formula by ¢ for convenience. O

A particular class of representations is the following:

Definition 2.11. Let (N,W) be a simple game with types Ni,..., N;. A multiple
weighted representation with formula ¢ and rules [Q1;w1], ..., [@Qm; wy] of (N, W) is
called type preserving, if all players of the same type have the same weight in each rule:

Vie{l,...,t}:Vp,ge N, :Vk e {1,...,m} : wp(p) = wi(q). O

We will come back to type preserving vector-weighted representations in the conclu-
sions in Chapter 8. In Chapter 7 we consider type preserving weighted representation.
For this case Def. 2.11 can easily be adopted.
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3. Binary Decision Diagrams

In this chapter we lay the foundations of binary decision diagrams (BpD), which are used
throughout the thesis. In Section 3.1 we present basic notions and notation of BDDs
in general and QOBDDs in particular. After the introduction, Section 3.2 describes the
representation of simple games and, more generally, the representation of sets of subsets
by QOBDDs. Restrictions and concepts in implementations of BDDs are discussed in
Section 3.3. This is necessary, because sometimes we do things that cannot (easily) be
done with existing implementations and the results therefore might seem questionable.
The synthesis of QOBDDs is an important aspect in the process of building the QOBDD
for a simple game in practice. It is therefore discussed separately in Section 3.4.

3.1. Introduction to BDDs

Binary decision diagrams (abbreviated as BDDs) are a data structure and a model of
computation, that is widely used in computer science and electrical engineering. Even
though BDDs are around for some time (Lee 1959; Akers 1978), the contribution by
Bryant (1986) to use a fixed variable ordering is usually considered as one of the main
contributions that made BDDs applicable in practice. We will present a rather brief
introduction in this section. The interesting reader is referred to Bryant (1992) for an
introduction and Wegener (2000) for details.

Let n € N be a number and let N := {1,...,n} be a set of Boolean variables (labels).
A BDD is a directed, acyclic and labeled multigraph G with node set V U {Q, 1} where
O,I € V and edges E. The node set contains exactly one source, called the root of G,
and the two sinks @ and I, called the 0-sink and the 1-sink, respectively. The sinks are
also called terminal nodes. The non-terminal nodes in V' are called inner nodes. If G is
a BDD, then we use V(G) to denote the set of inner nodes of G. Each inner node has
two outgoing edges, called the 0-edge and the I-edge, respectively. Given an inner node
v € V(@) and the 0-edge (v,u) and the 1-edge (v,u’) of v, there are two functions then
and else, defined by then(v) = u and else(v) = u/, respectively. The nodes then(v) and
else(v) are called successors of v. Each inner node v € V is labeled with an element from
N, denoted by var(v), which is called the label of node v. The sinks have the special
label n + 1, i.e., var(Q) = var(l) = n + 1.

Example 3.1. BDDs are usually drawn in a layered top-down fashion as depicted in
Figure 3.1. The root is placed at the top and the two sinks are placed at the bottom
layer. Inner nodes are drawn as circles, while the two sinks are drawn as squares to
emphasize their special meaning. Labels of inner nodes are written inside the inner
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Figure 3.1.: A BDD for a Boolean function.

node’s circles. For the sinks the label n+ 1 is omitted. Instead, the truth-values identify
the sinks, i.e. 1 is written inside the square of the 1-sink and 0 inside the square of
the 0-sink. Edges are always directed downwards, so that arrows can be omitted. An
1-edge is drawn solid, while a 0-edge is drawn dashed. As example, for the root node
r in Figure 3.1, then(r) is the left node with label 2 and else(r) is the right node with
label 2. O

Each node v of a BDD G can be considered as the root of a BDD. The nodes of the
corresponding BDD are those in V(G), that are reachable from v, plus the sinks O, I.
We denote the subset of the reachable inner nodes by V(r). The labels and the edges
of the BDD with root v can be defined similarly. For this reason, in the remaining text
we will not distinguish between a BDD and its root. We usually prefer to use roots as
representatives for BDDs.

Each BDD node v with label i represents a Boolean function f, : B""1 — B as
follows. Let (z;,...,7,) € B" "l be an input vector for f,. We obtain the value for
fo(ziy, ..., x,) by a traversal of the BDD starting at v. At each node w, if u is not a sink
and the label of u is k, then take the 1-edge if x; = 1 and take the 0-edge otherwise. If
u is a sink, return 0 if v = O and return 1 otherwise. Figure 3.1 shows the BDD and the
truth table of the represented Boolean function with 3 variables.

Let the node v be (the root of) a BDD with label i. By ¥ we denote the comple-
mented BDD, that is, the BDD where both terminal nodes are interchanged. It holds
fo(ziy ... x,) = 1if and only if fo(x;,...,x,) =0 for x;,...,z, € B.

Let 7 : N — N be a permutation. The position of label i € N in the ordering 7 is
7 1(¢). A BDD G is called m-ordered (abbreviated as m-OBDD), if for each node v € V(G)
with then(v), else(v) ¢ {O, I} it holds

7 (var(then(v))) = 7 *(var(v)) +1 and 7 *(var(else(v))) = 7 *(var(v)) + 1.

The permutation 7 is called ordering (of the labels N ) or variable ordering. In case 7
is the canonical ordering (i) = i, then the explicit reference to 7 is omitted and we
call such a BDD ordered (OBDD). In most parts of this thesis we will make use of the
canonical ordering, that is, the label at the top is 1 and the label at the bottom is n.
The sinks have the special label n + 1. Statements hold without loss of generality for
arbitrary orderings, if not stated otherwise.
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3.1. Introduction to BDDs

An inner node v € V(G) is called redundant, if then(u) = else(u). Two different
inner nodes u,v with var(u) = var(v) are called equivalent, if then(u) = then(v) and
else(u) = else(v). A m-OBDD is called complete, if for each inner node v and each non-
terminal successor u of v it holds 7 !(var(u)) = 7~ *(var(v)) + 1, that is, the label of u is
the next label w.r.t. the ordering 7. A 7-OBDD is called quasi-reduced (m-QOBDD), if it
is complete and does not have any equivalent inner nodes. The BDD in Figure 3.1 is com-
plete, does not have any equivalent nodes and therefore is quasi-reduced. QOBDDs are
canonical, i.e., a T-QOBDD representing a Boolean function is unique up to isomorphism
(Bryant 1986).

For an OBDD with root r and label i € N, the nodes in V(r) with label i are {v €
V(r) | var(v) = i}. We denote this set by V;(r) and refer to it as level i of the OBDD
with root r. The term “level” has been chosen because of the vertical arrangement of
the nodes in illustrations of OBDDs. See Figure 3.1 again. For convenience, we define
Vyi1(r) == {O,I}. If the root of the OBDD is clear from the context, the reference to
the OBDD is omitted and as for V, we write V.

The size of a BDD with root r is defined as the number of its inner nodes, that is,
size(r) := |V(r)|. The width of the OBDD with root r is width(r) := max;cn |V;(r)|. For
instance, the QOBDD in Figure 3.1 has size 6 and width 3. The width of level © of r is
defined by width;(r) := |V;(r)|.

The ordering 7 of the labels (resp. variables) can have huge impact on the size of an -
OBDD. The problem to find an ordering that minimizes the size of an OBDD for a given
Boolean function has been investigated extensively. The problem is NP-complete for
OBDDs representing general Boolean functions (Bollig and Wegener 1996) and remains
NP-complete for OBDDs representing monotone Boolean functions!' (Iwama, Nozoe, and
Yajima 1998). For QOBDDs representing threshold functions? it is unknown if finding an
optimal variable ordering is still NP-hard. Behle (2008) has presented an integer linear
program to solve this problem. There are various heuristics and also exact methods to
find “good” variable orderings in the general case. See Somenzi (1999) for an overview.

Implementations like CUDD? (Somenzi 1998) use so-called reduced OBDD (ROBDDs)
instead of QOBDDs. ROBDDs neither have redundant nor equivalent nodes and therefore
usually require less nodes in comparison to QOBDDs. This reduction, however, comes at
the cost of more complex operations on ROBDDs. Liaw and Lin (1992) have evaluated
the number of redundant inner nodes experimentally. They have figured out that for
random QOBDDs the proportion of redundant nodes decreases if the number of variables
increases and at 14 variables the proportion of redundant inner nodes is less than 1%.
They also remark that in some situations it therefore could be beneficial to use QOBDDs
instead of ROBDDs, because a data structure for QOBDD nodes does not have to store
the label with each node. Furthermore, Wegener (1994) has shown that for almost all

LA Boolean function is called monotone, if it can be represented as a formula with only positive
literals. The notions of an up-set and a monotone Boolean function coincide.

2A Boolean function f : B™ — B is called a threshold function if there are (maybe negative) integers
wy,...,w, and T such that f(z1,...,2,) = 1if and only if Y ", ;- w; > T, where z1,...,2, € B.
The notions of a weighted voting game and a threshold function nearly coincide up to negative weights.

3Short for CU Decision Diagram.
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Boolean functions the number of redundant nodes is exponentially small.

The use of QOBDDs in this thesis is essential for our approach. Some of the ideas,
especially those in Sections 6.1 and 6.2, depend on the fact that all paths from the root
to the sinks are complete.

The operation to create a QOBDD node is called ite, short for if-then-else. Given a
label i and QOBDD nodes u, v such that var(u) = var(v) = i + 1 and there is no node
with label 7 in V(u) and V(v) then ite(i, u, v) returns a node w satisfying

var(w) = i, then(w) = u, else(w) = v.
For implementation details and the running time of ite see Section 3.3 below.

Example 3.2. Let v and v denote the left and right node with label 2 in Figure 3.1
and let r denote the root of the BDD. Because there is neither a node with label 1 in
V(u) nor in V(v), we could apply ite(1, u,v), which would return the root r, that is, the
BDD depicted in Figure 3.1. O

3.2. Representation of Simple Games

As in the previous section, BDDs are usually used to represent Boolean functions f :
B" — B. Our intention, however, is to represent simple games. Let (N,WW) be a n-
person simple game with players N = {1,...,n}. The characteristic function of W is
the function xyy : 2% — B such that:

VS eV (SeW = yw(S)=1). (3.1)

As described by Somenzi (1999, Section 8.1) to obtain a Boolean function, each subset
S of N can be encoded as a Boolean vector (z1,...,x,) € B" such that for each i € N
it holds x; = 1 if and only if ¢ € S. This is reasonable in most cases, but we prefer a
direct interpretation of a QOBDD as a subset of 2.

Definition 3.1. Let r be the root of a QOBDD. For a node v € V(r) U{0, 1}, we define

0 ifv=0
set(v) := ¢ {0} ifv=1I
{S +var(v) | S € set(then(v))} Uset(else(v)) otherwise

simple game (N, W) if v represents W. Additionally we say that v is (the root of) the
QOBDD for A and (N, W), respectively. O

For example, the QOBDD 7 in Figure 3.1 represents { AB, AC, BC, ABC'}, which are
the winning coalitions of the weighted voting game [5;4,3,2] and A denotes the first
player, B denotes the second player and so on.
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3.2. Representation of Simple Games

Due to the canonicity of QOBDDs, for two QOBDD nodes v, w with label ¢ € N it
holds v = w if and only if set(v) = set(w).

The set set(v) represented by the complemented QOBDD of v, is generally not the
same as the complement set(v) of the set represented by v, since the latter set operation
usually refers to the powerset 2V as universe.

node is redundant and it is very much related to the sinks @ and I, respectively. As a
convenience, in the following we denote v by the symbol O if set(v) = () and we denote

O and I,,1; as I. For 1 <i <mn, both [; and Q; can be absent, but if any of them exists,
then it is unique, because no two different nodes represent the same set. It is easy to
obtain these nodes by the recursive formula O; = ite(i, Q;41,0;41) and analogously for
I;. In the following we therefore can safely refer to these nodes as if they always exist.
For example, in the QOBDD depicted in Figure 3.1 the leftmost and rightmost nodes
with label 3 are I3 and Qj3, respectively, but neither of the nodes I;, @, and I, O, exists.

by A; and the set {S € A | i ¢ S} is denoted by A-;. The definition is motivated by
the observation that if A is represented by a QOBDD v with label ¢, then it holds:

A; = set(then(v)) and A, = set(else(v)).

In the context of sets, the if-then-else operation ite has the following meaning for a
QOBDD inner node v with label 7:

set(v) ={S +1i| S € set(then(v))} Uset(else(v)) = set(ite(i, then(v), else(v))) .

The notion of a path complements the concept of the set representation of a QOBDD
node. It will play a prominent role for some counting algorithms in Section 6.2 and it
will also facilitate a thorough understanding of QOBDDs representing sets and simple
games in general.

Definition 3.2. For a QOBDD node v, a label i € N with var(v) < i and a subset
S C{var(v),...,i— 1} the node that is reached on level i starting at v by S, denoted by
node(v, 7, S), is recursively defined by:

v if var(v) =i
node(v,i,S) := ¢ node(then(v),4, S — var(v)) if var(v) < i and var(v) € S .
node(else(v), 7, S) if var(v) < i and var(v) € S

[]

The set S in the previous definition is sometimes called a path. As an example, for the
QOBDD with root r in Figure 3.2 it holds node(r, 3, {1}) = v but also node(r, 3, {2}) = v.
For the former, at the root r we take the 1-edge, because the label 1 is in {1}. At the
node then(r) we take the 0-edge, because 2 ¢ {1}. Now, the node else(then(r)) has label
3 and this v.
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3. Binary Decision Diagrams

Figure 3.2.: Illustration how the node v is reached on level 3 starting at r by {1}.

The function node is total, but not necessarily injective. Having a starting node v and
a path S but no label 7 is insufficient to uniquely identify a node in general. Consider
for instance the empty set and the root r in Figure 3.2.

While the previous definition is convenient in proofs, the following notation is more
intuitive in many situations.

Definition 3.3. Let u, v be QOBDD nodes such that var(u) < var(v) and let S be a
subset of {var(u),...,var(v) — 1}. The fact that we reach v from u by S, denoted by

u > v, is defined by:
uS e node(u,var(v),S) =v.

If u > v then we call S a path from u to v. By paths(u,v) we denote the set of all paths
from u to v:

paths(u,v) := {S C {var(u),...,var(v) — 1} | u LA v}. O

Figure 3.2 shows an example for the path {1} from the root r to the node v. It does

also hold r {3; v. Other examples are r {1’—2’>3} I, r 2 0 and w B w for any node w. For
the set of paths of the QOBDD in Figure 3.2 we have:

paths(r,v) = {{1},{2}},
paths(r, ©) = {@7 {1}7 {2}7 {3}} )
paths(r, T) = {{1,2},{1,3}, {2,3},{1,2,3}}.

As we will see now, it holds paths(r,I) = set(r) and consequently paths(r, Q) = set(7).

Lemma 3.1. For a QOBDD node v with label i and a subset S of {i,...,n} it holds
S € set(v) if and only if v 5L
Proof. The proof is by induction on the distance between the label of a node v and the

label of the sinks n + 1. In the base case, v is a sink and the distance is 0. It then holds
S = and either v = O or v = I. If v = I then by definition both statements () € set(v)

and T -5 T are true. Otherwise, if v = O then both statements () € set(Q) and O 4
are false.
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3.2. Representation of Simple Games

Ou Or
. R
@U (i) v

1 0

Figure 3.3.: Illustrations of the statements in Lemma 3.2 (left) and Theorem 3.3 (right).
A dotted line represents a sequence of edges.

For the induction step we assume that the statement holds for then(v) and else(v). In
the following we will make use of the fact that A has precedence over V. Then we have:

S € set(v)
< i€ SNS —icset(then(v)) VS € set(else(v)) (Def. set(v))
<= i € S Athen(v) H1v else(v) 31 (Ind. Hyp.)
<= i € S Anode(then(v),n+ 1,5 —i) =1V node(else(v),n +1,S5) =1 (Def. 3.3)
<= node(v,n+1,5) =1 (Def. node)
=01, ]

By the following lemma it will be possible to decompose a path with respect to a
certain level 7. The statement is rather intuitive and illustrated in Figure 3.3.

Lemma 3.2. For QOBDD nodes u, w with var(u) < var(w), labeli € {var(u), ..., var(w)}
and sets R C {var(u),...,i — 1} and S C {i,...,var(w)} it holds

RUS R S
U w = u S oAU D w (3.2)

where v = node(u, i, R).

Proof. By applying Def. 3.3 to the right-hand side of (3.2), the equivalence in (3.2) can

be rewritten to

W™y = node(node(u, i, R), k,S) = w

where k = var(w). We prove this equivalence by induction on i. For i = var(u) it holds
R = () and therefore by Def. 3.3 we have

W™ = node(u,k, RUS) = w <= node(node(u,i, R),k,S) =w

because node(u,var(u),)) = u. For the induction step we assume that the statement
is correct for i € {var(u),...,k —1}. Then for ¢ + 1 we have R C {var(u),...,i} and
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3. Binary Decision Diagrams

S C{i+1,...,k} and there are two cases. First, if i € R then set R’ := R — i and
S":= S 4. Then for the induction step we have:

W w = " (RUS=RUY

<= node(node(u,i, R'),k,S") = w (Ind. Hyp.
<= node(then(node(u,i, R')), k,S" —i) =w (Def. node
<= node(node(u,i+ 1,R' +1i),k,S) =w (Def. node
— ( (u,i+1,R),k,S) =w.

)
)
)
)
node(node

The case ¢ € R can be shown similarly. O]

The next important statement weaves together the previous two statements. It is
the key for some results on counting later in Section 6.2. In the context of OBDDs
representing Boolean functions, a very similar statement exists, which is sometimes
referred to as structure theorem (Sieling and Wegener 1993). The statement is illustrated
in Figure 3.3.

Theorem 3.3. Let r be a QOBDD node and let i € {var(r),...,n} be a label. For sets
R C{var(r),...,i—1} and S C {i,...,n} and v := node(r,i, R) it holds

RUS € set(r) — rgv/\S€set(v).

Proof. By using Lemma 3.1 and Lemma 3.2 we have:

RUSEset(r)<:>rlq"—u>s]l<:>r£>v/\v£>]l<:>rﬁ>v/\5Eset(v). O

3.3. Implementation Notes

When Dijkstra’s algorithm for the single-source shortest path problem on an undirected
graph is implemented, the actual running time depends on the choice of the data struc-
ture, that is used for the priority queue; see for instance Cormen, Leiserson, and Rivest
(2001). Similarly, the running time for our algorithms later depends on some details
in the implementation of QOBDDs. We will first discuss so-called shared OBDDs and
the cost of creating an inner node using the operation ite whose running time is either
expected or deterministic constant. The second detail is the cost of storing information
for a BDD node. We begin by giving a brief overview on how OBDDs are implemented
in practice.

Even though, most details in this section originally refer to reduced OBDDs, they
do also apply to QOBDDs. An implementation of BDDs (regardless of the actual type
such as ROBDDs or QOBDDs) is usually called a BDD package. The implementation of
a BDD package is a topic on its own, because many design decisions have to be made
(Brace, Rudell, and Bryant 1990; Ossowski and Baier 2008). Among the numerous BDD
packages, CUDD (Somenzi 1998) supports many advanced features such as asynchronous
reordering of variables and some variants of BDDs. QOBDDs are not supported. The
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3.3. Implementation Notes

Operation shared non-shared
create inner node (ite) exp. O(1) O(1)
set(u) = set(v) for nodes u, v O(1) O(min{size(u), size(v)})

Table 3.1.: Running times for shared and non-shared QQOBDD nodes for some operations.

following brief overview of the high-level design of a BDD package will facilitate the
understanding of some subtle details.

A BDD package is usually divided into two kinds of objects: (BDD) nodes and man-
agers. The data structure for a node has fields for the two successors, usually realized as
pointers, the label and usually fields for reference counting and internal use. A Boolean
function in a BDD package is usually implemented as a pointer to a node. Beside others,
two main responsibilities of a manager are to maintain a set of non-equivalent inner
nodes and to create new inner nodes on demand. By this division and because OBDDs
are canonical for a fixed variable ordering, it is possible to let a set of nodes represent
different Boolean functions. Therefore, OBDDs that can be used to represent more than
a single Boolean function are sometimes called shared OBDDs (Minato, Ishiura, and
Yajima 1990). The opposite is to use a single OBDD for each Boolean function and then
one speaks of non-shared OBDDs.

When using shared nodes, the manager uses a so-called unique table to maintain a
set of non-equivalent nodes that is implemented by a hash table. If the manager M is
requested to create a node by the call

iteps (i, u, v) (3.3)

where ite now has to refer to the manager M for the unique table, it queries M’s unique
table and does only create a new node if no such node with successors u and v and
label i exists. Querying the unique table costs expected time O(1). In some situations,
however, we will never ask to create a QOBDD node twice and having non-shared nodes
is perfectly fine. In these situations that we will encounter at least once in the remaining
text, we do not use shared OBDDs and we will assume that the call in (3.3) does not
query the unique table. For these algorithms we will then have deterministic constant
time for creating a node by using the operation ite. See Table 3.1 for the differences of
shared and non-shared OBDDs for some operations.

The second detail is to store information for a BDD node. The data structure that is
used to store a BDD node in a BDD package is usually immutable by the user of such a
package. For example, if we would like to store an additional integer with each node v for
the value |set(v)|, this cannot easily be done. This restriction is mainly due to technical
reasons and other implementations are possible. The approach in BDD packages such
as CUDD is to use a hash table with the BDD nodes as the keys and the additional
information as the values. The drawback of such a solution is the expected time O(1)
to access these values. In this thesis (especially in Section 6.2) we assume that no such
restriction exists and therefore information for a node can be accessed in (deterministic)
constant time.
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3.4. Synthesis

The process of applying a binary Boolean function ® : B> — B to two QOBDD nodes
is called binary synthesis and it is realized by a recursive algorithm and a computed
table to avoid redundant computations. The algorithm is usually called apply and it
takes ® as an argument. We use apply as listed in Algorithm 1. The algorithm traverses
the QOBDDs with roots u, v and applies ® in the case that both nodes are a sink. For
nodes u, v with label i and a set S C {i,...,n} the term S € set(u) ® S € set(v) in the
postcondition of algorithm apply refers to the meta level where S € set(u) and S € set(v)
are considered as predicates.

We use shared nodes here and therefore, ite is assumed to have expected constant
time throughout this section. The computed table is assumed to be in a global scope
and can be reused in subsequent calls to apply. It is usually implemented by a hash
table and we therefore assume expected constant time for the operations insertion and
lookup. If lookup is called with a key that has not already been stored, then L is
returned. Sometimes, as in Wegener (2000), the operator ® is not used in the key of the
computed table and each operator is assumed to possess a dedicated computed table.
Implementations like CUDD (Somenzi 1998), however, use it for the key. Which method
is used is of no relevance in our further considerations, though.

Algorithm 1 apply(i, u, v, ®)
Require: u,v are QOBDD nodes with label i and ® : B> — B.
Ensure: set(apply(i,u,v,®)) = {S € 2tm} | § € set(u) ® S € set(v)}

if (u=1)® (v=1) then return I

else if u € {I, O} then return O

else if ¢ # | then return e where e = lookup(T, (®,u,v))

else
r < ite(i, apply(i + 1, then(u), then(v), ®), apply(i + 1, else(u), else(v), ®))
insert(T, (®,u,v), )
return r

For QOBDD nodes u, v with var(u) = var(v) we will usually write u® v in the following
instead of apply(var(u), u, v, ®). The correctness and running time of algorithm apply in
Algorithm 1 can rather easily be shown. For details see Wegener (2000, Section 3.3) or
(Bryant 1986, Section 4.3).

Proposition 3.4. Let u,v be QOBDD nodes with label i. The binary synthesis using
apply(i,u, v, ®) is possible in expected running time O(3_;_,; , width;(u)width;(v)) and
on each level j € {i,...,n} there are at most width;(u)- width;(v) nodes in the result. [

Bryant (1986) has shown, that for ROBDDs with roots w, v the binary synthesis takes
expected time O(size(u) - size(v)). Wegener (2000) has presented an example, for which
this bound is tight regardless of the ordering of the labels. In the case of quasi-reduced
OBDDs we can expect a similar result w.r.t. to the complexity stated in Proposition 3.4.
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Om—1 S (m—1)/2
,'/ \Um ,'/ \\‘
/ / AN
&1 ®1 o Om—t
/ AN /s AN 7/ AN
Ui U2 U1 U2 Um—1 U,

Figure 3.4.: Expression tree for the sequential m-ary synthesis (left) and an expression
tree with height log,(m) (right).

To compute the QOBDD for an arbitrary expression we consider an expression tree
with QQOBDD nodes uy, ..., u,, for the leaves (operands) and Boolean binary functions
®1, ..., Qm_1 for the inner nodes (operators). Figure 3.4 shows two examples for an
expression tree. For sake of simplicity, in the following we assume var(ug) = 1 for
ke {l,...,m}. A node v in such an expression tree is either a leave uy for some k or a
triple (¢;, ®, t,.) with left (resp. right) child ¢; (resp. ¢,) and ® is one of the operators. The
expression is usually assumed to have constant size, so that the complexity to compute
the result is not considered. For our application to simple games, the formula is part of
the input, though. The leaves and the number of operators (also called size) for a node
t are denoted by leaves(t) and |t|, respectively. Because each operator node ¢ has two
children, it holds [t| = |leaves(t)| — 1.

Theorem 3.5. For an expression tree with leaves uy, . . ., u,, and root node s = (s;,®, s,
it takes expected time

H width(ug) + |si] - H width(v) + |s;| - H width(v)))
vEleaves(s;) vEleaves(sr)
to compute its results and the result QOBDD has size
Z H width;(u;) < n H width(uy) .
i=1 k=1

Proof. The QOBDD for an expression tree with root ¢, which we denote by f(¢), can be
recursively computed by

(1) = t if ¢ is a leave
) e f(t) ift=(t®,t,).

By using Proposition 3.4 and induction on the structure of the expression tree for each
level 7 € N it can easily be seen that

width; ( ) < H width;(

vEIeaves(t)
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This shows the size of the result QOBDD for t = s. For the running time we have to
accumulate the running times for the applications of the operators ®1,...,®,, 1. For a
node t = (t;,®,t,) in the expression tree with root s

o> [ widthi(v))

=1 v€leaves(t;)

and therefore
n - [ [ width(v)) (3.4)
v€leaves(t;)
is an upper bound for the expected running time for each single application of an operator
in ¢;. Because the number of operators is |¢;], the overall expected running time to obtain
f(t;) is therefore bounded by

O(Jty|n - [ [ width(v))

vEleaves(t;)

Analogously for ¢,. The expected running time for the application of the operator at
the top is similarly to (3.4) bounded by O(n[],_, _,, width(uy)). O

Because the expression tree is usually much smaller than the widths of the QQOBDDs,
in the expected running time of Theorem 3.5 the term n [[,_,  width(uy) is dominant
in most cases.

For the sequential m-ary synthesis ((u; ®1 us) Qg -+ ) @pm_1 Uy, which is also depicted
in Figure 3.4 (left), we can show an improved upper bound for the expected running
time.

Theorem 3.6. Let width(uy) < ... < width(u,,) and let W denote width(u,,). Then the
QOBDD for ((u; ®; uz) Qg+ + ) @1 Uy can be computed in expected time

+ %) ]Hl width(u))

Proof. Let v1 = uy and for k = 1,...,m — 1 let vg,, denote the result of vy ®k ugyy-
By induction on £ it holds width(vy) < Hk L width(u;) and all the results vy, ..., v, can

be computed in expected time (’)(Z _on[[5_, width(v;)). The overall result v,, can
therefore be computed in expected tlme

O n ][ width(v;)). (3.5)

p=2  j=1
For k =1,...,m we use wy, short for width(vy). We rewrite (3.5) to:
m m 1 ccccc wm Ko m m _
>onllws =3 F—2 = nTen - X0 1w (3.6)
p=2 j=1 p=2 +=p+l j=1 p=2 j=p+1
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Because H] mﬂw = 1 and w,' = W~! appears in each of the products for p =
2,...,m , the sum on the right-hand side in (3.6) can be bounded by:
m m m—1 m m—1 m
-1 _ -1
9IRS 91 % e
p=2 j=p+1 p=2 ] p=2

By applying this to (3.5) we can conclude with:

O(Zm:nHWIdth (vj)) <O nHW|dth (v) W)) O

p=2 j=1
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4. QOBDDs representing Simple
Games

Weighted voting games are the most important and most frequently used subclass of
simple games in practice. For that reason, in this chapter we will spend most time on
the analysis of QOBDDs representing weighted simple games. However, in the context
of QOBDDs, this restriction can also be justified by looking at WvGs as building blocks
for general simple games. In this respect, as we have already mentioned in Section 2.3,
it is well-known that every simple game has a vector-weighted representation with at
most |Lyax| rules. Even though this result is more of theoretical interest, in practice,
if a simple game is represented by multiple rules, then the rules often correspond to a
certain paradigm. For instance:

e Qualified majority or blocking minority. For n players these rules look like
[@Q;1,...,1] where @ is usually greater than [n/2] for a qualified majority, and @
is usually near n to avoid a blocking minority.

e Proportion. For n players let p; € [0, 1] be player ith proportion of a measure, say
population, contingent, area and so on, such that ),  p;=1and let r € [0,1]
be a rate such as 50% or 66%. The weight w; for player i is then chosen as the
rounded value of p;L and the quota @) is chosen as the rounded value of L where
L is a sufficiently large positive integer, say 10 or 100, such that all the weights and
the quota are nearly integers. This type of a rule is used very often in practice.
For instance, the population is used in the Treaty of Nice, the US Electoral College
and the German Bundesrat.

In this chapter we will show that the complexity of a simple game, which is made of
rules, is determined by the complexity of these rules. And, as we have just seen, those
rules often have a simple structure in practice. This is one of the main reasons, why
QOoBDDs are well suited to represent simple games, even if the number of players or the
quota is huge and despite the fact that the size of QOBDDs in general grows rapidly.
This chapter is structured as follows. The first section presents notation and elementary
results for WvGs represented by QOBDDs. Based on that, Sections 4.2 and 4.3 present
algorithms to obtain the QQOBDD representation of a simple game from a weighted rep-
resentation and multiple weighted representation with a formula, respectively. Parts of
the chapter are based on the article Bolus (2011b).
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4. QOBDDs representing Simple Games

4.1. QOBDDs representing Weighted Voting Games

In this section we present elementary results regarding the structure of a QOBDD that
represents the winning coalitions of a weighted voting game.

Threshold functions, and therefore, Wvas, have been studied extensively in the 1960s;
see Sheng (1969) for an overview and Coates and Lewis (1961) for an application. Most
ideas in this section can be attributed to results stated then. However, at that time,
OBDDs were unknown and it took 30 years before Hosaka, Takenaga, and Yajima (1994)
(implicitly) applied some of the ideas to prove upper bounds for the size of QOBDDs
representing threshold functions. Quite recently, Behle (2008) used QQOBDDs to represent
threshold functions in the context of 0-1 knapsack problems and thereby implicitly used
some of the results, too. The aim of this section is to lay a solid foundation for the
study of QOBDDs representing WvGs. The results in this section are used throughout
the thesis.

Definition 4.1. For finite and maybe empty sets N, M with N C M C N and a weight
function w : M — R>( we define mappings ly,, ty, Ay, : 22" S RU {—00, 00} by

lo(A) == sup{w(S) | S € 2V \ A}
Uy (A) ;== inf{w(S) | S € A}
Ay (A) == uy(A) — 1, (A)

where A C 2V and co — (—o0) = oo. The value A, (A) is called the gap of A w.r.t. w.

If there is no risk of confusion, the subscript w is omitted. O
If a vector (wy,...,w,) € R%, is given instead of weight function, then we suppose
that the weight function w is implicitly defined by w(i) := w; and the players are
N:={1,...,n}.
In the context of a weighted voting game [Q;wy, ..., w,] with winning coalitions W,

the value [,,(W) is the maximum weight of all losing coalitions or —oo if all coalitions
are winning and u, (W) is the minimum weight of all winning coalitions or oo if all

Later, we will use these mappings mainly for QOBDD nodes that represent sets of
subsets. Let v be a QOBDD node with label . We will always assume that the labels
of the nodes in V(v) are {i,...,n} for some n. Therefore, for a weight function w we
will implicitly assume, that w has domain at least {i,...,n}. We define l,,(v), u,(v) and
Ay, (v) by 1, (set(v)), uy,(set(v)) and A, (set(v)), respectively, and omit the subscript w
if there is no risk of confusion. It holds v = I; if I(v) = —oc0 and v = O if u(v) = cc.

Figure 4.1 shows an example using the vector of weights (wy, ws, ws) = (3,3,1). The
values of [ and u are annotated as half open intervals (I(v),u(v)] or as an open interval if
u(v) = oo. The reason for the use of half-open intervals will become clear in Lemma 4.2.

The following statement provides a recursive formula to compute the values [(v) and
u(v) for a QOBDD with root v bottom-up, starting at the sinks. It is a suggested to
re-enact the values for [ and u in Figure 4.1 again to memorize the formula.
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4.1. QOBDDs representing Weighted Voting Games

Figure 4.1.: Values of the functions [ and u for weights (wq, wq, w3) = (3,3, 1).

Lemma 4.1. For a weight function w it holds
Lp(I) = =00,  uy(l) =0, [,(0)=0, u,(0)=oc0
and for any QOBDD node v & {Q, 1} with label i it holds:
Ly (v) = max{l, (then(v)) + w(i), I, (else(v))}
Uy (v) = min{u, (then(v)) + w(7), u,(else(v))}
where 0o +x = 00 and —oco +x = —¢ for x € R.

Proof. The proof is by induction on the structure of the QOBDD. In the base case we
consider the sinks. For the 0-sink @ we have:

1(0) = sup{w(S) | S € 2°\ set(0)} = w(P) =
w(0) = inf{w(S) | S € set(0)} =supd =
A similar argumentation can be used for the 1-sink I.

Now, let v be an inner node with label ¢ and assume that the statement holds for
then(v) and else(v). In the induction step for u(v) we have:

u(v) = inf{w(9) | S € set(v)} (Def. u)
=inf{w(S) | S € {T +i|T € set(then(v))} Uset(else(v))}} (Def. set)
= mm{Tesetl(ItlEen(v)) w(T) + w(7), Tese%&fse(v)) w(T)} (Rearrange)
= min{u(then(v)) + w(i), u(else(v))} . (Ind. Hyp.)

The remaining case for I(v) can be shown analogously. O

The next statements shed light on the relation between the quota of a weighted voting
game with winning coalitions W and the values [(WV), u(W) and A(W).

Lemma 4.2. Let [Q;w] be a weighted voting game with winning coalitions YV. Then
Le(W) < Q < u,(W) and A, (W) > 0.
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4. QOBDDs representing Simple Games

Proof. Let N denote the set of players. If no coalition is losing, that is, YW = 2V, then
(W) = —oo and I(W) < @Q is trivially true. Otherwise, by Def. 4.1 there is a losing
coalition with weight /()V) and hence, (W) < Q.

Analogously, if all coalitions are losing, that is, W = (), then u(W) = oo and Q < u(W)
is true. Otherwise, there is a winning coalition with weight u(W), so @ < u(W). O

If a QOBDD with root r represents a weighted voting game with weight function w
and players N = {1,...,n}, then every node v € V(r) represents a WvG with weight
function w and a subset of the players. The formal restriction of the domain of the
weight function is omitted to keep the presentation easy. Unused weights are ignored.

Lemma 4.3. Let v be a QOBDD node with label i and let I denote the labels of the
nodes V(v), which are I = {i,...,n}. If (I,set(v)) is a weighted voting game, then also
(I —i,set(then(v))) and (I — i,set(else(v))) are WvaGs.

Proof. 1f [Q; w] is a weighted representation of (I, set(v)), then it can easily be seen that
[@Q —w(7); w] is a weighted representation of (I — i, set(then(v))) and [Q; w] is a weighted
representation of (I — i, set(else(v))). Note that the weight of player 7 is not used. [

The following property will lead us to the idea of so-called flat QOBDDs in Section 5.2.
See Figure 4.1 for an illustration.

Lemma 4.4. Let v,v’ be different QOBDD nodes with label i and let I denote the common
set of labels of the nodes V(v) and V (v"), which is I = {i,...,n}. If for a weight function
w : I — Rxq both nodes represent WVGs [Qy; w] and [Qy; w], respectively, then it holds:

u(v) <1(v') < set(v) D set(v').

Proof. Because we have WvGs, for S € 27 it holds S € set(v) if and only if w(S) > Q,
and analogously for set(v') and @,. For the direction “=" assume u(v) < [(v'). If
set(v') = (), then the statement is true, because v # v’ and therefore, set(v) # set(v’).
Otherwise let S € set(v'). By the definition of w, Lemma 4.2 and our assumption it
holds

w(S) > u(v) > (V) > u(v) > Q,

and hence, S € set(v) and set(v) 2 set(v'). The inclusion is proper due to v # v’

For the direction “<=" assume set(v) D set(v'). Then there is a set S € set(v)\set(v').
From S € set(v) it follows u(v) < w(S) and from S ¢ set(v') it follows w(S) < I(v').
Hence, u(v) < w(S) < 1(v). O

Let (N, W) be a simple game and let w be a weight function for the players. The simple
game has a weighted representation with w only if I,(W) < u,(W). If (W) > u(W)
then either (N, W) is not weighted, or there is no weighted representation with w. For
example, the QOBDD in Figure 4.1 represents the Wva [4;3,3,1]. For the weights
(wy,wa, w3) = (3,2, 1), however, the root r of the QOBDD would have [(r) = 3 = u(r).
Hence, the represented simple game does not possess a weighted representation with
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4.1. QOBDDs representing Weighted Voting Games

weights (3,2,1). Even though we have restricted the quota @ of a WvaG to be non-
negative, it does not make a difference whether () = 0 or @ < 0 if the weights are
non-negative. For technical reasons, we will sometimes allow the quota to be negative
as in the following statement.

Lemma 4.5. Let v be QOBDD node with label i and let I denote the labels of V(v), which
are I ={i,...,n}. Let w: I — Rxq be a weight function. For any @ € R it holds:

[(v) < Q <u(v) <= set(v) ={SCI|w(S)>Q}. (4.1)

Proof. The direction “<=" is for free, because if the right-hand side in (4.1) is satisfied,
then (7,set(v)) is a WvG with representation [@Q;w] and Lemma 4.2 can be used.

For the direction “=" we assume [(v) < @ < u(v). By Def. 4.1 for any S € set(v) it
holds w(S) > u(v) and thus, w(S) > Q. Now, let S C I such that w(S) > Q. Assume to
the contrary that S ¢ set(v). By the definition of [ in Def. 4.1 then it holds w(S) < I(v)
and therefore, w(S) < @. This is a contradiction, because w(S) > Q. O

In the remainder of this section we prove two simple properties regarding the size of
QOBDDs representing weighted voting games. Both will be used in Chapter 5.

Lemma 4.6. For a weighted voting game [Q; w1, . .., w,]| represented by a QOBDD with
root 1 it holds for each i € {1,...,n}:

g\l/u?)u(v) > max{0,Q —w({l,...,i—1})}
rer%/a_Jg() [(v) <min{@ — 1, w{{i,...,n})}.

Proof. Let v € V,(r). Because there are no negative weights, it holds u(v) > 0 and thus,
mingey, u(x) > 0. It holds max,ey, [(z) < w({i,...,n}), because in the worst case,
{i,...,n} & set(v) and hence, I(v) < w({i,...,n}).

For any node v € V(r) the set set(v) is an up-set so set(then(v)) 2 set(else(v)). By
induction starting at the root r it follows that then’'(r) is the maximal and else’ " (r)
is the minimal element in V; w.r.t. O and set, formally:

Vv € V; : set(then (1)) D set(v) D set(else’ ' (r)).
By Lemma 4.4 it is rather easy to see:

?Ebrllu(v) = u(then *(r)) and Ivréa\xz(l(v) = I(else’ ' (r)). (4.2)
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With Lemma 4.5 it holds @ € {l(r) +1,...,u(r)} because the weights and the quota @
are integers. Hence, I(r) < @ — 1 and u(r) > Q. Let I denote the set {1,...,i — 1}.
Again by induction and Lemma 4.1 it can be seen u(then’ *(r)) > u(r) — w(I) by

u(r) < u(then(r)) 4wy < -+ < u(then” ' (7)) 4+ w(I) (4.3)
and similarly, I(else’ *(r)) < I(r) by
I(r) > I(else(r)) > --- > I(else’*(r)). (4.4)

We can now conclude with

. (4.2) i—1 (4.3)
mlvnu(v) =" u(then" ' (r)) > u(r) —w(l) > Q —w(I)
veEV;
and
. (4.4)
max (v) L) Jelse™ (1)) < I(r) < Q 1. O
vEV;

The previous result can now be used in conjunction with the gap A(v) for a node v
to establish an upper bound for the number of nodes on each level. Because the weights

and the quota in weighted representations are non-negative integers, the gap is at least
1.

Lemma 4.7. For a weighted voting game [Q; w1, . .., w,| represented by a QOBDD with
root r it holds for each i € {1,...,n}:

P
N AR

Vi(r)l < min A(v)

veV,(r)

+2.

Proof. Let i € {1,...,n} =: N. Because set(r) is an up-set, it can be shown that if
I; € V; then then’ !(r) = I; and analogously, if Q; € V, then else’ *(r) = Q;. We define
X by

X :=V; \ {then" (1), else’ ()} (4.5)
and the function f : V; — 28—} by ¢ s {2 € R | I(v) < 2 < u(v)}. Because
all nodes v € V; expect Oy, I; have finite values for I(v) and u(v) and thus, A(v), we
have f(v) C R for v € X. Because all weights wy, ..., w, are non-negative integers,
it furthermore holds f(v) € Ny for v € X. By Lemma 4.4 for all v € V; it follows
mingey, u(xr) < I(v) and u(v) < max,ey, [(z) and therefore we get:

U fv) C {mlnu( )+ 1,.. ., max((v)}. (4.6)
veX veVi
For any two different nodes v,v" € V;, by Lemma 4.4 we have f(v) N f(v') = 0 and thus:

U r)=>"1fw)

veX veX
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Applying this to (4.6) yields:

Z If(v)] < maxl( ) — minu(v). (4.7)

vEV;
veX

By the definition of A for each v € X it holds A(v) = |f(v)|. Therefore:

Vil —2< X[ =Y )], > @I Zeex f0)

A(v) ~ minzev, A(z) 7 mingev, A(v)

The missing step is the application of (4.7). O

In the next section we show how the QOBDD for a weighted voting game can be
obtained from a weighted representation.

4.2. From Weighted Voting Games to QOBDDs

In this section we present an output sensitive algorithm for building the QOBDD repre-
sentation of a weighted voting game. The algorithm is used later as a building block to
build QOBDDs for arbitrary simple games. The algorithm has originally been presented
by Behle (2008) in the context of 0-1 knapsack problems and the optimal variable or-
dering problem for QOBDDs representing threshold functions. Its theory, however, goes
back to at least Coates and Lewis (1961), whose results for linear separable functions
can be used to prove the optimality of the caching strategy, which is at the heart of
the algorithm. If a QOBDD with root r is built from a weighted voting game, then the
algorithm has (expected) running time O(size(r) log width(r)) if AVL trees are used for
the caches. Whether the running time is expected or not depends on the implementation
of ite to create QOBDD nodes.

We start with a naive approach for illustration. Let [Q;wy,...,w,] be a Wva. Its
QOBDD representation can be obtained by the following recursive function f where 7 is
the current player (initially 1) and ¢ is the current remaining quota (initially @Q):

©) ifi>nand g>0
fli,q) =1 ifi>nand ¢g<0.
ite(, f(i +1,q —w;), f(1+1,q)) otherwise

Intuitively, the recursive call f(i+ 1,q — w;) corresponds to the case in which player i
says “yes”, so that in the remaining game with players i +1,...,n the quota is reduced
by the weight of player i. In the other recursive call f(i + 1, ¢), player i says “no” and
the quota remains unchanged. If ¢+ > n, then no player is left in the remaining game.
The correctness can be seen as follows.

Proposition 4.8. Fori € {1,...,n+ 1} and q € Z it holds:

set(f(i,q)) ={S S {i,...,n} [w(S) = ¢} . (4.8)
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Proof. The proof is by induction on the number of remaining players n + 1 — ¢ and the
induction starts at ¢ = n+ 1. Then no players remain and in case ¢ < 0 we have set(Il) =
20 = {5 € 2" | w(S) > q}. In case ¢ > 0 we have set(Q) = ) = {S € 2° | w(S) > ¢}.

For the induction hypothesis let i € {1,...,n} and assume that (4.8) is true for i + 1
and any ¢. Because i < n we only consider the third case of f. For S C {i,...,n} it
holds:

S € set(f(i,q))

— S e set(ite(q, f(1 + 1,¢ —w;), f(1 +1,9))) (Def. f)
— (e SANS—ieset(f(i+1,qg—w)))

V(igSASeset(f(i+1,q))) (Def. set, ite)
= (1eSAwS—i)>qg—w)V(igSAw(S)>q) (Ind. Hyp.)

— w(S) >q.
The last equivalence it due to w(S — i) + w; = w(S) if i € S. O

This approach has the obvious shortcoming that it requires exponentially many re-
cursive calls. As in the case of the knapsack problem, dynamic programming could be
used to reduce the running time to something like O(n@Q). The main idea for this ap-
proach would be to store and reuse the return value of f for arguments i, g, because the
algorithm returns the same QOBDD node for the same input. But, it sometimes returns
the same node for different inputs as well. For example, consider the Wvas [4; 3, 2]
and [5;3,2]. Even though the quotas are different, the games have the same winning
coalitions.

In Lemma 4.5 in the previous section we have seen when WvGs with the same weights
wj, . . ., w, have the same winning coalitions V. For any quota ) € R it holds

LeOW) < Q <u,(W) <= W={SC{i,...,n} | w(S) > Q}

where w is the implicitly defined weight function with w(i) = w;. We will use this result
to avoid multiple computations in f here. In Lemma 4.1 we have shown, how the values
ly(v) and u,,(v) can be computed recursively for a QOBDD node v. The new algorithm,
called BuildRec, that incorporates this computation, is listed in Algorithm 2. To argue
that the computation of the values for [,, and wu,, is correct, we will ignore the lines 3
and 9 and, respectively, the operations lookup and insert for now.

In the remaining section we will assume that [Q;ws,...,w,] is a weighted voting
game with players N = {1,...,n} for which the weight function w is implicitly defined.
Furthermore, we will assume that in the context of an algorithm the weights are in a
global scope.

As for the recursive function f, BuildRec is initially called with ¢ as 1 and ¢ as Q.
The following lemma states the correctness without the reuse of previously computed
results. The latter is taken into account in Theorem 4.10 below.

Lemma 4.9. Leti € {1,...,n+ 1} and let ¢ € Z be a remaining quota. If we ignore
the lines 3 and 9 in Algorithm 2, then for (v, x,y) := BuildRec(i, q) it follows x = l,,(v),
y = u,(v) and set(v) = {S € 2t} | w(S) > ¢}.
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4.2. From Weighted Voting Games to QOBDDs

Algorithm 2 BuildRec(i, q)

if i > n and ¢ > 0 then return (0,0, c0)
else if i > n and ¢ < 0 then return (I, —c0,0)
else if ¢ # | then return e where e = lookup(i, q)
else

(vr, xr,yr) < BuildRec(i + 1, q — w;)

(vg, g, yE) < BuildRec(i + 1, q)

(x,y)  (max{zrr +w;, xg}, min{yr + w;, yr})

v« ite(i, vr, vg)

insert(i, (v, x,y))

return (v, x,y)

+—~
@

Proof. The correctness of the node v is a direct consequence of Proposition 4.8. The
values x and y are correct by Lemma 4.1. O]

What remains is to reuse previously computed results. We use n balanced search trees
Ti,..., T, where T; is used if the current player in BuildRec is i. The search trees are
in a global scope and it is assumed that they are initially empty. We use AVL trees
(Adelson-Velskii and Landis 1963) for the balanced search trees, which can insert and
look up elements in time O(logm) where m is the number of elements in the tree. The
elements that we store in the trees are triples (v, z,y) where z,y are integers and v is a
QOBDD node. A search tree compares two entries (vy, z1,y1) and (va, a9, y2) by y1 < Y.
The insert(i, (v, x,y)) call in line 9 of Algorithm 2 is assumed to insert (v,z,y) into T;
while lookup(i, q) is assumed to perform a lookup in T;. For a lookup, a single integer
argument ¢ is used and an element (v, x,y) is returned if and only if x < ¢ < y. In case
that no such element exists, L is returned, which has the meaning of undefined.

From now on, we assume that the operations lookup and insert are implemented as
just described. The correctness of BuildRec with caching is shown next.

Theorem 4.10. Fori € {1,...,n+ 1}, I := {i,...,n}, remaining quota q € 7Z and
(v,7,y) := BuildRec(i, q) it holds set(v) = {S € 2! | w(S) > ¢}, z = (v) and y = u(v).

Proof. The proof is by induction and similar to that of Lemma 4.9. The case for ¢« > n
is omitted, because it is the same as in Lemma 4.9. Assume ¢ < n and the statement
holds for i + 1. The case where lookup(i,q) = L is analogous to that in Lemma 4.9
again. Hence, assume lookup(i,q) = (v,z,y) # L. Then there is a p € Z for which
(v, z,y) has been inserted into 7; in the call BuildRec(i, p). From the correctness of that
call it holds set(v) = {S € 2! | w(S) > p}, z = I(v) and y = u(v). By the definition
of lookup(i,q) it holds x < ¢ < y and hence, [(z) < ¢ < u(v). By using Lemma 4.5 it
follows set(v) = {S € 2! | w(S) > ¢} O

To illustrate this result, consider the Wvas [5;3,2] and [4;3,2] again. As we have
already mentioned, both games have the same set of winning coalitions and therefore,
the same QOBDD representation, say, the root is r. It holds I(r) = 3, u(r) = 5 and
therefore, [(r) < 4 < wu(r) and also I(r) < 5 < u(r).
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4. QOBDDs representing Simple Games

For the running time, we assume that 7},...,7), are initially empty and that the
QOBDD representation of [Q;ws,...,w,| is being built. The root of the QOBDD is
denoted by r. The initial call is BuildRec(1, Q).

Lemma 4.11. When (v,z,y) is inserted into T; in line 9 in BuildRec(i,q), then for
each (V',2',y") € T; it holds v # V.

Proof. At the moment when (v, z,y) is inserted into 7; it holds lookup(i,q) = L. Oth-
erwise we would not be in line 9. For that reason, by the definition of the operation
lookup there is no element (v',2',y’) € T; with 2’ < ¢ < y'. Assume to the contrary
that there is an element (v, 2',y’) € T; with v = v’. By the correctness of the algorithm
it holds set(v) = {S C {i,...,n} | w(S) > q}, x = l(v) and y = u(v). For the same
reason it holds ' = x and y = ¢/. Due to Lemma 4.2 it now holds 2’ < ¢ < 3 which is
a contradiction to lookup(i,q) = L. O

Because for each QOBDD node v in V(r) there is an entry in Ty, it follows:
Corollary 4.12. Fori=1,...,n it holds |T;| = |V;(r)| and Y ;_, |T;| = size(r). O

There is one initial call to BuildRec and for each element in T7,...,T,, there are two
recursive calls. Hence, the number of calls to BuildRec is exactly:

1+2) |T| =1+ 2size(r).

i=1

A call to BuildRec(i,q) with ¢ > n for any ¢ € Z takes time O(1). Taking into account
the time to lookup and insert an element into a search tree, every other call with : < n
takes time

O(log|T;]) = O(log |Vi(r)|) < O(logwidth(r)) .

Additionally, a node is created exactly size(r) times using the operation ite, which costs
either deterministic or expected constant time, depending on the implementation. In
conclusion, the running time is bounded in the size of the result QOBDD. Such an
algorithm is called output sensitive. We note this in the following theorem for future
reference.

Theorem 4.13. The QOBDD with root r for [Q; w1, ..., w,] can be build in (expected)
time O(size(r)log width(r)). Whether the running time is expected or not depends on
the implementation of the operation ite. [

Algorithm 3 Build([Q; wy, . .., w,)])
initialize the AVL trees T1,...,T,
set up the variables in the global scope
(r,x,y) < BuildRec(1, Q)
return r
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4.2. From Weighted Voting Games to QOBDDs

BuildRec(1, 4)

N
~
~

0,2] ‘ BuildRec(2, 4)

Figure 4.2.: Example of algorithm BuildRec.

The algorithm that builds the QOBDD for a WVG is listed in Algorithm 3. It accepts
a weighted representation [@Q;wy, ..., w,] and it returns the root of the QOBDD for the
game. The running time of algorithm Build has been stated in Theorem 4.13. We
illustrate the approach in the following example.

Example 4.1. We build the QOBDD for the WvG [4;3,2,2] with winning coalitions
{AB,AC,BC, ABC}. In what follows, we use the letters A, B,C and the numbers
1,2, 3 interchangeably.

Figure 4.2 shows our point of departure. At the very beginning, BuildRec(1,4) is
called by Build([4; 3, 2,2]). Because all the search trees are initially empty, the algorithm
BuildRec recursively calls BuildRec(2,4 —w(A)) in line 5. This is the situation in which
player A says “yes” and joins the coalition. The remaining quota is reduced by w(A)
and A withdraws from the remaining game. Thus, the recursive call considers the game
[4—w(A);w(B),w(C)]. After some recursive calls, BuildRec returns and BuildRec(2,4)
is called in line 6. This is the situation in which A says “no” and the remaining quota
does not change. Again, there is no entry in the corresponding search tree for this call.
We first consider the situation in which player B says “yes” and joins the currently
empty coalition (A said “no”). The recursive call is BuildRec(3,4 —w(B)) in line 5, i.e.,
the game [4 — w(B);w(C)] is considered. This time, there is an entry in the search tree
for the remaining quota 4 — w(B) = 2 on level 3 (player C'). The algorithm returns the
node x and its values [(x) and u(x) which are 0 and 2, respectively. Back on level 2
(player B), it remains the case when B says “no”. H

The fact that the procedure is output sensitive w.r.t. the result QOBDD is one of its
strengths. If we find a class of weighted voting games with small QOBDD representations,
then, without further proof, we have a “fast” algorithm to build the QOBDD for a game
in that class. For instance, in Section 5.4 we will show that homogeneous simple games
have QOBDD representations with size O(n?) and width O(n) if the weights are ordered
by wy > -+ > w,. For such a game we can therefore build the QOBDD representation
in time O(n*logn). The size of QOBDDs for general Wvas and classes of WvGs is
discussed in Chapter 5.

We have used balanced search trees and AVL trees, respectively, in BuildRec for the
caches. These added a factor of logwidth(r) to the running time where r is the result
QOBDD. It is an open question if this factor can be reduced or avoided.
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4. QOBDDs representing Simple Games

Figure 4.3.: Expression tree for the formula (1 A 2) V3 and QOBDDs with roots 71,79, 73
for the rules.

4.3. From Multiple Weighted Voting Games to
QOBDDs

In Section 2.3 we have seen, that weighted representations are sometimes inconvenient
and sometimes insufficient to model a simple game in practice. As an example we have
discussed the UN Security Council, which has the weighted representation

30:7,...,7,1,....1]

5-times 10-times

but which can more intuitively be represented by

5:1,...,1,0,...,00 A[9:1,...,1].
[ [

5-times 10-times 15-times

The structure of the game is apparent from the latter and this representation is therefore
preferable. In this section, we present a general purpose approach to obtain the QOBDD
from a multiple weighted representation with a formula. By using the binary synthesis
for QOBDDs and the algorithm from the previous section this is nearly for free.
Throughout this section let (¢,{g1,-..,9m}) be a multiple weighted representation
with formula ¢, n > 1 players and m > 1 rules ¢y,...,¢,. The kth rule is g, =
[Qr; Wi, - .., Wy It is a two stage process to obtain the QOBDD for (¢, {g1,...,9m}):

1. For each k € {1,...,m} obtain the QOBDD with root r; for g; by using the
algorithm Build from the previous section.

2. Transform the formula ¢ into an expression tree where the variables 1,...,m in
the formula become the QOBDD nodes 71, ..., 7, in the expression tree. Then use
the algorithm apply from Section 3.4 to obtain the QOBDD for (p,{g1,...,9m})
using the tree.

Example 4.2. Consider the multiple weighted representation with rules ¢, g2, g3 and
formula ¢ = (1 A 2) V 3. After the first step we have the QOBDD roots ry, ry, 73 such
that set(ry) are the winning coalitions of g for k = 1,2,3. The expression tree for ¢ is
shown in Figure 4.3. In the second step, the QOBDD for r; A ry is computed first, using
apply with A. Afterwards apply with V is used with the result of the previous application
for r1 A ro and r3. The result QOBDD now represents the simple game associated with

(0,191, 92, 93})- [l
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4.3. From Multiple Weighted Voting Games to QOBDDs

We omit a formal proof for the correctness of this approach, because it can easily be
derived from the correctness of the synthesis operation apply in Section 3.4 and that of
Build in Theorem 4.10. The more interesting part is the running time and the size of
the result QOBDD.

Theorem 4.14. Let gy, ..., gn be the m > 2 rules of a multiple weighted representation
with formula ¢ = a o B where o € {A\,V}. W.lo.g. we assume that each variable in
« (resp. ) is less or equal (resp. greater) than j for some j € {1,...,m — 1}. The
QOBDD for the associated simple game can be computed in expected time

O(Z size(ry,) log width(ry) + n(H width(ry,)

k=1 k=1
J m
+(j — 1) [ [ width(ri) + (m — j — 1) [ | width(ry)))
k=1 k=j+1

where rq, ..., r, are the QOBDDS representing g1, - . . , gm and the result QOBDD has size

> T widthi(ry.) (4.9)

i=1 k=1
and thus, n [[,-, width(ry).
Proof. To obtain the QOBDD ry, for the game gx, k = 1,...,m, requires expected time
O(size(rg) log width(ry)) by Theorem 4.13. The overall expected time to obtain all the
QOBDDS 71, ..., Ty, is therefore O( ;" | size(ry) logwidth(r;)). The remaining parts are

a direct consequence of Theorem 3.5 when the formula ¢ is used for the expression
tree as described above. The partitioning of the variables in ¢ by j is used as upper
bound for the number of operators in the left and right children of the expression tree
in Theorem 3.5. O

The upper bound for the running time can be improved when we have a vector-
weighted representation.

Theorem 4.15. Let g4, ..., gm be the rules of a m-vector-weighted representation. The
QOBDD for the associated simple game can be computed in expected time

Z size(ry,) log width(ry) + mlogm + n(l + — H width(ry)) (4.10)
k=1
where r1, ...,y are the QOBDDs representing g1, - - ., gm and W is the maximum width

maxg_1,.m width(ry).

Proof. As in the previous Theorem 4.14, we compute the QOBDDs 71, ..., r,, for all rules
in expected time O(3," | size(ry) log width(ry,)).
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Figure 4.4.: Size of the QOBDDs for randomly generated WvGs with quota chosen as
50% of the sum of weights and 100 samples per point.

Let m be an ordering of the QOBDDs such that
width(7(1)) < --- < width(7(m)) .

The width of 7 can be obtained in O(size(ry)) steps by a single traversal of r;. It takes
additional O(mlogm) steps to obtain the ordering 7. Now, Theorem 3.6 can be applied
to rq,...,7, and the ordering m. The result QOBDD can be computed in expected time
O(n(14+m/W) T~ width(ry)). O

In Section 5.3 we will see that the QOBDD for a WvaG [Q;wy, ..., w,] has width at
most Q + 1. Therefore, for m rules with quotas @Q1,...,Q,, the width of the result
QOBDD is bounded by

(@i+1)-(Qm+1). (4.11)

If for each @ we know that Q) is polynomially bounded in n and m is a constant,
then the size of the result is also polynomially bounded in n and we therefore have
an expected polynomial time algorithm to build the QOBDD for the associated simple
game. In general, however, (4.11) grows exponentially in m. As already mentioned in
the introduction to this chapter, the number of rules in real world voting systems is
rarely above 3, though.

4.4. Conclusions

In this chapter we have studied the structure of QOBDDs representing weighted voting
games. Based on that, we have developed an output sensitive algorithm to obtain
the QOBDD for a WvG with running time O(size(r)log width(r)) where r is the result
QoOBDD. The algorithm uses balanced search trees to identify results that we have
already computed earlier. This adds the factor of log width(r) to the running time, when
AVL trees are used in the implementation. It would be very interesting to see if this
factor can be reduced.
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4.4. Conclusions

Some real world simple games cannot be represented by WvaGs and sometimes it is
more convenient to use more than one rule to represent a voting system as in the case
of the UN Security Council. Therefore, it is important to be able to obtain the QOBDD
representation from multiple weighted representations with a formula. We have used
binary synthesis for QOBDDs to this end. This approach permits to obtain the QOBDD
for any simple game, because each simple game has a vector-weighted representation.

Players Quota(s) QOBDD size
Canadian Constitution (1995) 10 (7,50) 37
Canadian Constitution (2005) 10 (7,50) 44
US Electoral College (2004-2008) 51 270 4558
German Bundesrat (2012) 16 35 162
Treaty of Nice 27 (255,14, 620) 635
Treaty of Lisbon 27 (15,32400,24) 4134
UN Security Council 15 (9,5) 53
US Federal Legislative System 537 (1,51,128,1,50,67,290) 141 650
International Monetary Fund (85%, 2009) 186 1884478 15712104

Table 4.1.: QOBDD sizes for some real world simple games.

Figure 4.4 shows the size of QOBDDs for random WvGs with different maximum
weights. We have obtained the sizes by a small program. As can be seen from the
figure, the size of random WvGs grows exponentially if the number of players increases
and if the weights are large enough. If the weights of the players are small and therefore,
the quota is small, then the size of the QOBDD is small, too. The connection between
the quota and the size is studied in Section 5.3. We will also see, that a QOBDD for a
WVG has size at most O(2"/?). Fortunately, real world voting systems usually have a
simple structure and therefore QOBDDs of moderate size. The size of some real world
voting systems is listed in Table 4.1. For instance, even though the QOBDD for the
International Monetary Fund is rather large, in comparison to the worst case size it is
still small. The same holds for the US Federal Legislative System which has 7 rules and
537 players.
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5. Size and Structure of QOBDDs for
Classes of Simple Games

In Section 4.1 we have seen that QOBDDs for WvGs have structural properties that could
be used in Section 4.2 to develop an output sensitive algorithm to build the QOBDD for a
WvG. In this chapter we study the structure and size of QOBDDs for some more classes
of simple games. The main contributions in this chapter are:

1. The definition of so-called flat QOBDDs and the proof that already flat QOBDDs
have size at most O(2"/2).

2. The proof that a QOBDD representing a weighted voting game with quota () has
size O(max{n —log @, 1}Q). So far, the best known upper bounds are O(n@)) and
O(27/?). Both will be discussed below.

3. The proof that QOBDDs representing directed and homogeneous simple games
have size O(n?), but that there are homogeneous simple games that have QOBDD
representations with exponential size for at least one ordering of the players and
weights, respectively.

4. A very similar result for WvGs with sequential weights.

Section 5.4 is based on the article Bolus (2011c).

5.1. Complete and Directed Simple Games

Intuitively, in a complete simple game every pair of players can be compared by the
desirability relation on individuals <;. Having a complete simple game is very common
in practice. Not only because every WVG is complete, but also because if more than
one rule is used, then the weights of a player are often related. For instance, if there are
two rules and one is the amount of money that everybody pays for a system (e.g., the
European Union) and the other is the proportion of the population, then usually both
numbers correlate, because countries with a large population pay more money.
Complete simple games have been studied extensively. Carreras and Freixas (1996)
have presented a characterization of complete simple games by so-called models of shift-
minimal winning coalitions; see also Section 6.8. Kurz and Tautenhahn (2012) have
studied the Dedekind problem for complete simple games and they have shown that
complete simple games can be counted and enumerated by cliques in a suitable graph,
a problem for which there are sophisticated algorithms already (Ostergard 2002). For
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5. Size and Structure of QOBDDs for Classes of Simple Games

instance, the number of complete simple games without the cases W = () and W = 2V
for 9 players (up to isomorphism) is 284,432,730,174.

In this short section, we show two auxiliary statements, that are used later in Sec-
tion 6.5 to simplify the computation of the QOBDDs for the minimal winning and the
maximal losing coalitions. The first one shows a simple statement for up- and down-
sets. A proof is omitted, because the statement can easily be verified. Note that the
subscripts ¢ and —i have precedence over the application of min and max, respectively.

Lemma 5.1. Let i € N and let A C 2157} If A is an up-set, then
min A ={S+i|S € (minA;)\ minA;} Umin A,
and if A is a down-set then
max A ={S+i|S € max A4} U ((max.A-;) \ max.A;). O
Our second statement exploits a structural property of directed simple games.

Lemma 5.2. Let i € N and let A C 25" be a set of coalitions. If ({i,...,n}, A) is
a directed simple game with A; # A-; then

(min A;) \ min. A, = min A4;

max(A)-; \ max(A); = max(A)-; .

Proof. We only show the first claim for the minimal subsets. The remaining claim can
be shown similarly. Assume to the contrary that there is a set .S € min A; N min A_,.
Then we have that 7 € S and that A is an up-set. It also holds () # S, because otherwise
0 € A_; would imply 2U+Lmt = A . and due to the up-set property A_; C A;, both
sets were equal in contradiction to A-; # A;. Hence, there is a player j in S. Since the
game is directed, it holds j <; i and thus, (S —j)+i € Aand S —j € A;. Thisis a
contradiction to the choice of S from min A;. O

By this result, for a directed simple game ({3, ...,n}, A) the equations in Lemma 5.1
can be rewritten to:

min A ={S+i|S €minA;}Umin A,
max A= {S +i|S € max(A);} Umax(A)_;.

As already mentioned, we will come back to this result in Section 6.5.
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5.2. Simple Games with flat QOBDDs

5.2. Simple Games with flat QOBDDs

Hosaka, Takenaga, and Yajima (1994) have shown, that every QOBDD for a weighted
voting game, regardless of the ordering of the players, has size at most (O(2"/?). This
seminal work is the origin of some interesting complexity results in the context of simple
games. For instance, in Section 6.7 we will develop an algorithm to compute the so-called
Banzhaf power index (Banzhaf 1965) of all players in time O(size(r)) where the QOBDD
r represents a simple game. Hence, by the previous observation and the complexity of
the algorithm to build the QOBDD for a weighted voting game in Section 4.2, we have
an O(n2"?) algorithm for this problem. This is a factor n better than the algorithm by
Klinz and Woeginger (2005) for this problem.

The result by Hosaka et al. (1994) is based on the values [(v) and u(v) and uses a
result similar to Lemma 4.4 to obtain an ordering of the nodes on a level in the QOBDD.
In this section we show, that much weaker conditions have to be fulfilled in order to
obtain this bound. Throughout this section let r represent a simple game (N, W) with
players N ={1,...,n}.

Definition 5.1. For nodes u,v with var(u) = var(v) we define v C v and v C v by
set(u) C set(v) and set(u) C set(v), respectively. We say a QOBDD with root r is flat if
for each level i € N the set V;(r) is a chain! w.r.t. C. O

Figure 5.1 shows a non-flat (left) and a flat QOBDD (right) for the same simple game
2:1,2,0,1] A[3;2,1,2,1]

but different orderings of the players. To see that the QOBDD with ordering A, B, C, D
for the players is not flat, consider the nodes u,v. It neither holds u C v nor u D v,
because set(u) = {D,CD} and set(v) = {C,CD}. However, if we interchange the
players B and C' in the ordering for the QOBDD, then the result on the right-hand side
in Figure 5.1 is flat. To see this, one could obtain the set represented by each node.
Therefore, whether a QOBDD is flat, can depend on the ordering of the players in general.
As we will see below, QOBDDs for WvGs are flat for every ordering of the players. This
fact will be used in Section 7.3 for a heuristic to identify QOBDDs that do not represent
WvGs.

Using Def. 5.1, we can now generalize the result in Hosaka et al. (1994) from QOBDDs
for WvGs to flat QOBDDs.

Lemma 5.3. Let r be the root of a QOBDD. For each level i € N and every two nodes
u,v € V; with w C v it holds then(u) C then(v) and else(u) C else(v) and at least one
inequality s strict.

Proof. This is rather easy to see. Assume that S € set(then(w)). Then i ¢ S and
S +i € set(u). Hence, by u C v we have S + i € set(v) and it follows (S + i) — i =
S € set(then(v)). A similar argumentation can be used to see else(u) C else(v). If
both inequalities were not strict, then it would hold set(u) = set(v) in contradiction to
u C . [

Tn a chain, each two elements are comparable with respect to the order.
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O ®m QO »

Figure 5.1.: A non-flat (left) and a flat QOBDD (right) for the same simple game.

The next result is a generalization of Lemma 3 in Hosaka et al. (1994).

Lemma 5.4. If the QOBDD with root r is flat, then for each i € {2,...,n} it holds
|Vz| S min{2|Vi_1|, 2’VZ+1| — 1}

Proof. Let 1 € N with ¢ > 2. Because each node on level i — 1 has two outgoing edges,
the number of nodes from level i — 1 to level ¢ can at most double. Hence, |V;| < 2|V,_4].

Let 7 be an element from N. For the second part, we define two functions ord : V; —
{0,...,|Vis| = 1} and sumord : V; — {0,...,2(|Viy1] — 1)} and we show that the latter
one is an injective mapping. The functions are defined as

ord(v) := |{u € V; | set(u) C set(v)}|

and, respectively,
sumord(v) := ord(then(v)) + ord(else(v)) .

To justify the injectivity, let u,v € V; such that w.l.o.g. u C v. Then we have ord(u) <
ord(v) and by Lemma 5.3 it holds

ord(then(u)) < ord(then(v)) and ord(else(u)) < ord(else(v))
and at least one of these inequalities is strict. Thus we get:
ord(then(u)) + ord(else(u)) < ord(then(v)) + ord(else(v))
and this yields sumord(u) < sumord(v). The injectivity of sumord now implies
Vil < {0, 2([Vinl) = 1} = 2Via| = 1. 0
The next result is a generalization of Lemma 4 in Hosaka et al. (1994) and establishes
the upper bound for the size of a flat QOBDD. The proof is omitted, because the main

work has already been done in Lemma 5.4. In Theorem 5.11 in Section 5.3 we will see
a similar proof for the case of QOBDDs representing WVvGs.

Theorem 5.5. If the QOBDD with root 1 is flat, then size(r) € O(2/?). O
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This result rises two questions. First, now that we do not need a weighted voting game
in the proof for the upper bound ©(2"/2) anymore, it is an open question whether we can
prove a better upper bound for the size of QOBDDs representing WvGs. We postpone
this question to Section 5.3. Second, do flat QOBDDs have a comparable concept in the
context of simple games?

For the transition from flat QOBDDs to simple games we make use of Lapidot’s de-
sirability relation on coalitions (Lapidot 1972). A similar desirability relation has been
defined by Winder (1962), which is not considered here. See, for instance, Taylor and
Zwicker (1999) for a discussion and a comparison.

Definition 5.2. Let S, T € 2V be coalitions. We say T is at least as desirable as S,
denoted by S =<, T, if

YUCN\(SUT): (SUUEW = TUU€EW). O

In contrast to the desirability relation on individuals <;, the relation is not necessarily
transitive (Taylor and Zwicker 1999) and therefore not even a preorder. Totality of <,
on 2V is a necessary condition for being a weighted simple game, because for any pair
of coalitions S, T € 2V, w(S) < w(T) implies S <, T

Proposition 5.6. If (N, W) is weighted, then =<y is total on 2. O

The converse does not hold as has been shown by Einy (1985). Taylor and Zwicker
(1995) present a class of non-weighted simple games for which < is total on 2. How-
ever, these games are “nearly” weighted (Taylor and Zwicker 1996). For a given ordering
7 of players we can show the following fact:

Lemma 5.7. Let r be a m-QOBDD representing the simple game (N, W). If for each
leveli € N and each S,T C w({1,...,i—1}) it holds S X, T or T <1 S, then r is flat.

Proof. Let i € N be a level and let u,v € V() be dlfferent nodes. By I we denote the

set {4,...,n}. Then there are S,T C m(N \ ) Such that 7 = w and r - v, respectively.
W.lo.g. we assume S <y T. It holds:

S=.T
< VYUCN\(SUT): (SuUeW=TUUeW) (Def. <1)
= VU Crn(l): (SUUeW=TuUeW) (N\(SUT)2n(I))
<= VYU Cn(I): (U € set(u) = U € set(v)) (Thm. 3.3)
< set(u) C set(v) (set(u), set(v) C 27))
= ucCwv. (u #v)
This completes the proof. n

A QOBDD is therefore flat, if just some coalitions can be compared w.r.t. <; which
is a much weaker condition than that < is total on 2. We can therefore expect to
find flat QOBDDs for simple games, that are far from being weighted. For instance, the
QOBDD representing the Treaty of Nice is flat, if the players are ordered by 1 >=; -+ > n
even though this game has no weighted representation.
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Theorem 5.8. The relation <y, is complete on 2V for (N, W) if and only if for every
ordering 7 of the players the m-QOBDD for (N, W) is flat.

Proof. The direction “=" is a direct consequence of Lemma 5.7. For the direction
“="let S,T C N, seti:=|SUT|+ 1 and let m be an ordering of the players such
that the first ¢ — 1 players are 7({1,...,i —1}) = SUT. Let r denote the root of the
m-QOBDD for (N, ). Intuitively, by the choice of the ordering all the players in S and
T have made their choice at level ¢ in the QOBDD. There are usually many choices for
7. We set u := node(r,i,S) and v := node(r,,7"). The QOBDD with root r is flat and
therefore it holds u C v or v C u. W.lo.g. we assume © C v. Let U C N\ (SUT) and
assume that SUU € W. Because set(r) = W it follows SUU € set(r). By the choice
of m we get U C w({i,...,n}). Therefore, by Theorem 3.3 it holds U € set(u). Because
u C v, it also follows U € set(v). Again by Theorem 3.3 it now holds T"U U € set(r).
Consequently, T"U U € VW and therefore, S <, T O]

It is an open question, if there is a complete simple game, whose QOBDD representation
is not flat for every ordering of the players. Hosaka et al. (1994), Takenaga, Nouzoe,
and Yajima (1997) and Hosaka, Takenaga, Kaneda, and Yajima (1997) have studied
the variable ordering problem for QOBDDs representing WvGs and threshold functions,
respectively. It seems reasonable to put at least some of their results into the context of
flat QOBDDs which, however, is out of the scope of this thesis.

5.3. Weighted Voting Games

Most structural properties of QOBDDs representing Wvas have already been discussed
in Section 4.1, because they were used in earlier sections. What remains is the size of
a QOBDD representing a WvG. In the previous section we have seen that if Lapidot’s
desirability relation on coalitions is complete on 2V, then the size of the QOBDD is
bounded by O(2"/2) and this is the case for WvGs. In this section we will answer the
question whether this bound can be improved for WvGs.

Throughout this section let [Q;wy, ..., w,] be a weighted representation of the simple
game (N, W) with players N = {1,...,n} and quota > 1. The QOBDD with root r
represents (N, W).

We start by showing a rather rough, but well-known upper bound for the size of a
QOBDD representing a WVG.

Proposition 5.9. It holds width(r) < Q+1 and size(r) < n(Q+1) € O(nQ) for Q > 1.

Proof. Due to the commitment to integer weighted representations it holds A(v) > 1 for
each node. By applying Lemma 4.6 and 4.7 from Section 4.1 we obtain for each i € N:

A A (o Vi

Vg1

V| —2<
Vil T mingey, A(v) T 1
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size

2i_1 2n—i+2

levels

Figure 5.2.: Idea for the upper bound of the size of QOBDDs representing WvGs.

From this it follows width(r) < @+ 1. The size of any QOBDD is bounded by the product
of its width and its height, where the height is n here. Therefore, we get for the size:

size(r) < > Vi <> width(r) = n - width(r) <n(Q +1). O

iEN iEN
By using Lemma 5.4 from the previous section, we can improve this upper bound. In
comparison to the upper bound in Proposition 5.9, it states that the influence of the

quota overrides that of the number of players, when @) grows. We need the following
lemma.

Lemma 5.10. It holds:

2Q(n —2log, Q +7) if Q < 2P

size(r) < .
12Q) otherwise

Proof. Because r represents a WvG, regardless of the ordering of the players, with
Lemma 5.4 (and induction) it follows
IV;| < min{2"~t, 22}

Additionally, by Proposition 5.9 for every level i € N it holds |V;| < @ + 1. Hence:

size(r) = > [Vi| <> min{27!,Q + 1,27} (5.1)
=1 =1

Set k :=log, ) and set a := k+1 and b :=n — k+ 2. The idea for the remaining proof
is illustrated in Figure 5.2. We have 22! = Q for x = @ and 2" **2 = (Q for x = b. Both
functions are equal for x = (n+3)/2, that is, 2°~! = 2"72*2, The levels are divided into
three blocks, where the block in the middle is empty if a > b. This is the reason for two
cases in the upper bound of size(r) which correspond to a < b and a > b. The former
inequality can be rewritten to:

a<b <= k+l<n—k+2 < log,Q < (n+1)/2 «— Q <20+D/2
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For the following, keep in mind that —|z| = [—z] for any x € R. Starting with (5.1)
we have:
D min{271 28 + 1,27 <Y "2 dmax{0,b—a} (2 + 1)+ Y27 (5.2)
i=1 i=1 i=|b]

For the two sums on the right-hand side of (5.2) it holds:

[a] n
221 + Z gn—i+2 < 2(a-|+1 + 2n7LbJ+3 < 2(k-\+2 + 2[k1+1 <3 2k+2 _ 12@ ) (53)
i=1 i=|b]

Therefore, if b < a then size(r) < 12¢Q). Intuitively, this means, that @ is above the
intersection of 27! and 2"~**2 in Figure 5.2. If, however, b > a, then it is

max{0,b —a}(2* + 1) =(b—a)2*+1)=(n—2k+1)(2" +1) < 2" (n — 2k + 1)

which in turn can be used in conjunction with our previous result for the sums in (5.3)
to conclude with:

size(r) < 6- 25Tt 4 28 (p — 2k + 1) = 2Q(n — 2log, Q + 7). O
The proof of our main result is rather straightforward now.

Theorem 5.11. [t holds size(r) € O(max{n —log @, 1}Q).

Proof. We have to show that there is a constant C' > 0 and M € N such that for each
Wva satisfying n,Q > M it holds size(r) < C|max{Q, (n — log, Q)Q}|. Because @
is assumed to be at least 1, the maximum is always positive. We set C' := 16 and
M := 3 and consider two cases. First, we assume @ > 2("*1)/2 Then from the previous
lemma we know size(r) < 12@Q) and consequently, size(r) < C'@Q. Second, we assume
Q < 20tD2 Let k = log, Q. Because n > 2, n — k is always positive and from
E<(n+1)/2wegetn—k>(n—1)/2>1forn> 3. By the result from the previous
lemma we get:

size(r) <2Q(n —2k+7) <2Q(n—k+7) <2Q-8(n—k) <CQn—k). O

In the following sections, we will consider weighted voting games with additional
restrictions. For these classes of Wvas, we will prove lower upper bounds for the size of
their QOBDDs. We begin with so-called homogeneous simple games in the next section.

5.4. Homogeneous Simple Games

In this section we study the size of QOBDDs representing homogeneous simple games,
a subclass of weighted voting games. We will show that the QOBDD for a directed and
homogeneous n-person simple game has size O(n?), but the size can be exponential in
n, if the game is not directed.
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Definition 5.3. A weighted representation [Q; wy, ..., w,] is called homogeneous, if for
each minimal winning coalition S € Wy, it holds w(S) = Q. The simple game (N, W)
is called homogeneous, if it has a homogeneous weighted representation. O]

As an example in the real world, consider the UN Security Council together with its
homogeneous representation

39;7,7,7,7,7,1,...,1].

10-times

Each minimal winning coalition in this game has weight 5 - 7 for the five veto players
plus weight 4 - 1 for four additional players, so that in the end, its weight is 39.

Homogeneous simple games have been mentioned as early as in the famous book
“Theory of Games and Economic Behavior” by Morgenstern and von Neumann (1944).
They have been studied extensively in the 1980’s by a group of researchers in Bielefeld,
Germany, which has published several papers on structural properties of homogeneous
simple games, see Rosenmiiller (1984), Ostmann (1987) and Rosenmiiller (1987). A
characterization of homogeneous simple games by so-called incidence vectors has been
presented by Sudhoélter (1989).

In the first part of this section we show that the QOBDD for a directed and ho-
mogeneous simple game has size O(n?). We will make use of the following auxiliary
statements.

Lemma 5.12. If the weighted representation g == [Q;wy, . .., wy,] with wy > -+ > w, is
homogeneous, then both h := [Q — wy;wsy ..., w,| and h' == [Q;ws, ..., w,] are homoge-
neous weighted representations.

Proof. A coalition S is minimal winning in ¢ if and only if

w(S) > Q > w(S) — Iglelélwk

Let S be minimal winning in h. We have to verify w(S) = Q) —w;. By the minimality
of S in h it follows w(S) > @ — w; > w(S) — mingeg wy and hence, w(S) + wy > @ and
Q > w(S) + w; — mingeg wy. Because wy > mingeg wy we get

w(SU{l}) >Q >w(SU{l}) — kerglir{ll} W, .

Therefore, S U {1} is minimal in g. By the homogeneity of g is follows w(SU{1}) = @
and thus, w(S) = @ — w;. The remaining case for h’ can be shown analogously. O

The next statements brings QOBDDs into play.

Lemma 5.13. If the QOBDD node v with label © represents the weighted voting game
[Q;w;, ..., wy,]|, then then(v) represents [QQ — wy;wity,...,w,] and else(v) represents
[Qa Wity - - 7w7’b]'
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Proof. For a subset S of {i +1,...,n} by the definition of set(v) it holds:

S € set(then(v)) <= SU{i} € set(v)
= w(SU{i}) > Q
— w(S)+w; >Q
— w(S)>Q —w;.

The remaining case for S € set(else(v)) can be shown similarly. O

The first important statement can be shown by induction on the structure of the
QOBDD and the previous two lemmas. A proof is therefore omitted.

Lemma 5.14. If the QOBDD with root r represents a simple game with the homogeneous

weighted representation [Q;wy, ..., w,| and wy > --- > wy,, then for each i € N and
each v € V,(r) the node v represents a simple game having a homogeneous weighted
representation with weights w;, ..., wy. [

The second important statement corresponds to Lemma 1.2 in Rosenmiiller (1984).
It states that given a set of n weights, there are at most n different quotas for which the
weights and the quota constitute a homogeneous weighted representation. Its proof is
straightforward and therefore omitted.

Lemma 5.15. If [Q;w1,...,w,]| is a homogeneous weighted representation such that
wy > >w, and w, < Q < wyp + -+ + w,, then there is ig € {1,...,n} with

Q=w{1,...,i}).

The restrictions w,, < @ and Q) < w; + ... + w, guarantee that at least one coalition
is losing and winning, respectively. The lemma does not cover the cases where all
and, respectively, no coalitions are winning. In the former case, [0;wy,...,w,] is a
homogeneous weighted representation, whereas in the latter case [w(N) + 15wy, ..., wy]
is such a representation. These cases correspond to the QOBDD nodes [; and Q;, if the
remaining weights are w;, ..., w,.

To get the idea of the following theorem, we take a look at any level 7 of the QOBDD for
a directed and homogeneous simple game. From Lemma 5.14 we known that each inner
node on level 7 represents a simple game having a homogeneous weighted representation
with weights wy, . .., w,. Furthermore, from Lemma 5.15 and the extreme cases I;, Q;, we
know that the number of homogeneous weighted representations with weights wy, ..., w,
is at most n — ¢ + 3. This observation is used in the proof of the following result.

Theorem 5.16. Let r be the QOBDD for a directed and homogeneous simple game. For
each i € {1,...,n} it holds width;(r) < n — i+ 3 and therefore it follows:

n? +5n

) <
size(r) < 5

€ O(n?).
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Proof. Let [Q;wy,...,w,] be the natural representation of (N,WW) and for i € N let
v € V; be a node with label 7. Because the game is directed we have w; > --- > w,.
By Lemma 5.14, the pair ({4, ...,n},set(v)) is a directed and homogeneous simple game
having a homogeneous weighted representation with weights wy, ..., w,. If v & {O;, L},
then by Lemma 5.15 there is a player kg € {i,...,n} such that v has the homogeneous
weighted representation [w({i,..., ko});w;,...,w,]|. Hence, there are at most n —i + 1
possible quotas for the nodes in V; \ {Q;,I;} and therefore, it follows |V;| < n —i+ 3.
Based on that, for the size of the QOBDD it holds:

n? +5n

size(r) = » Vi| <) (n—i+3)= o O
=1 i=1

Hosaka, Takenaga, Kaneda, and Yajima (1997) have shown, that if the ordering of
the players for a QOBDD representing a WVG is reversed, then the size of the result
increases by at most n — 1 additional inner nodes. Therefore, there are at least two
orderings for which the QOBDD for a homogeneous simple game has size O(n?).

In the remainder of this section we show that there is a homogeneous simple game
and an ordering of the players, such that the corresponding QOBDD has size (2"/?) and
thus, the restriction to directed simple games in the previous analysis is crucial.

For the proof, we use a slightly altered version of the weighted voting game Exp,, in
Hosaka, Takenaga, and Yajima (1994) that we call Exp, + 1. In order to end up with a
homogeneous game, we increase the quota of Exp, by 1. We do only consider the case
of an even number of players to keep things easy.

Definition 5.4. For an even number of players n > 2, the WvG ExP, + 1 has weights
Wy := Wy_py1 =21 for k=1,...,n/2 and quota @ := 1+ "1 w;/2 =22, O

For instance, Exp,, + 1 for n = 8 is [16;1,2,4,8,8,4,2,1]. In comparison, the original
Exp, for n = 8 has the same weights but quota 15. By rearranging the players it can
easily be seen, that the weighted representation of EXp,, + 1 is homogeneous. Therefore,
by reordering the players and by Theorem 5.16 we can conclude:

Proposition 5.17. For 7 : N — N fulfilling wx) > Wxitn), 1 <@ < n— 1, the

7-QOBDD for EXP, + 1 has size O(n?). O

However, if the players remain as they are, the QOBDD representation of Exp, + 1
has an exponential size in n.

Proposition 5.18. The m-QOBDD for EXP, + 1 with w(i) = i has size Q(2"/?).

Proof. This result has been shown by Hosaka, Takenaga, and Yajima (1994) for Exp,,.
We therefore just sketch the proof. For a quota z € {0,1,...,2%2 — 1} consider the
WVG g(x) = [z; w241, - . ., wy], that contains only the second half of the players. For
each such z there is no 2/, such that g(z) and g(z') have the same winning coalitions, so
that the number of games for the possible quotas is 2*/2. On the other hand, each such
game g(x) appears as an inner node in the QQOBDD with root r representing Exp,, + 1,
because there is a subset of the first half of the players S C {1,...,n/2} with w(S) = x.
Thus, |V, /211(r)| = 27/2. O
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We will use ExXP,, + 1 in the next section on WvGs with sequential weights again.

5.5. Sequential Weights

In this section we study weighted voting games with sequential weights. This class of
simple games is not so interesting because it appears very often in practice, but because
it has been posed as an open question in Chakravarty, Goel, and Sastry (2000) and in
Aziz, and Paterson (2008) if, for instance, the Banzhaf power index for a player (see
Section 6.7) can be computed in time polynomial in the number of players n, or if this
problem is NP-hard already. We will answer this question and show that this problem
can be solved in polynomial time. We will also show that there is a WvG with sequential
weights, whose QOBDD representation has size €(27/2) for at least one ordering of the
players. Hence, as for homogeneous simple games, for WvGs with sequential weights
the ordering of the players matters.
In the following for a,b € N, we write a|b if and only if a divides b.

Definition 5.5. A list of weights wy,...,w, is called sequential if w;|w;;; for each
i€ {l...,n—1}. In other words, wy is a multiple of wy, ws is a multiple of w, and so
on. O

For instance, the WvaG [20; 1,2, 4, 8, 16] has sequential weights, because 1 divides 2, 2
divides 4 and so on. The players of the WvG Exp, 4+ 1 from the previous sections can
be reordered such that the game has sequential weights. For a weighted representation
with sequential weights the players are always ordered by non-decreasing weights. We
first show our positive result.

Theorem 5.19. Let [Q; w1, ..., w,] be a WVG with sequential weights represented by
the QOBDD with root r. Then it holds |V;(r)| < i+ 1 and hence, size(r) € O(n?).

Proof. We show that the gap for almost all nodes on level ¢ € N can be divided by the
weight w;:

Vie N:VveV;,\{L,O0;} : w;]A(v). (5.4)
Let i € N and v € V;\{[;,0;}. The gap A(v) of node v is defined by A(v) = u(v)—1(v),
and for u(v) and {(v) by definition it holds u(v) = w(S), {(v) = w(R) for some coalitions
R,S C {i,...,n}, respectively. Because we have a Wva, it holds {(v) < u(v). By
Wi | Wity -« oy Wy |wy, it follows w;|(w(S) —w(R)) and hence, we get w;|A(v). The nodes
I;, O; are excluded, because they have an infinite gap.

With Lemma 4.6 and because we have sequential weights it follows:

max [(v) — minu(v) < (Q —1) — (Q — Zwk) <Y w, < (10— Dw—g . (5.5)

’UGVZ' ’UGV,L'

By (5.4) we obtain w; < A(v) for each node v € V;. If V; C {I;,0;}, then it trivially
holds |V;| < i+ 1. Otherwise min,ey, A(v) € N, because at least one node has a finite
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gap. With Lemma 4.7, (5.5) and w;_; < w; we get:

W~ )

: Lo iz D
min A(v) w;
vEV;

V| < +2<i+1.

The size of the QOBDD is a direct consequence now:

n

size(r) = » [Vi| <> (i+1) € O(n). O

=1 i=1

As mentioned in the previous section, reversing the ordering of the players only slightly
affects the size of the QOBDD for a weighted voting game. In concrete, at most one
additional node on each level is needed. Therefore, we get the following result:

Corollary 5.20. If wy,...,w, are sequential weights, then for the QOBDD with root r
that represents [Q;wy, . .., wi| it holds |V;| < i+ 2 and hence, size(r) € O(n?). O

The WvaG Exp, + 1 from Def. 5.4 has sequential weights, if the players are ordered
such that w; < w;;1 for 1 < ¢ < n. In the previous section we have also seen, that its
QOBDD has exponential size in n, if the weights are not reordered. Hence, we can state
without further proof:

Corollary 5.21. There is a WVG with sequential weights, namely EXp, + 1, whose
QOBDD has size Q(27/?) for at least one ordering of the players. [

This result is likely the reason why both Chakravarty et al. (2000) and Aziz and
Paterson (2008) have not been able to prove, that the Banzhaf power index for WvGs
with sequential weights can be computed in polynomial time in n. But this is the case,
because, as we will see in Section 6.7, that problem has time complexity linear in the
size of the QOBDD.

5.6. Conclusions

In this chapter we have studied the structure and size of QOBDDs for specific classes
of simple games. Namely, we have discussed complete simple games, weighted voting
games, homogeneous simple games and WvGs with sequential weights. We have also
defined and analyzed flat QOBDDs, which correspond to the very intuitive concept,
that the nodes on each level of a QOBDD are totally ordered w.r.t. set inclusion. The
upper bound O(2"/2) for the size of QOBDDs representing WvGs presented in Hosaka,
Takenaga, and Yajima (1994) does already hold for flat QOBDDs, but being flat is a much
weaker condition. In the context of simple games, many non-weighted real world simple
games have flat QOBDD representations. We have used Lapidot’s desirability relation on
coalitions to establish a connection between flat QOBDDs and simple games. The exact
meaning of flat QOBDDs in the context of simple games remains open though. It is also
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unknown, how to find an ordering of the players, for which the QOBDD representation
is flat in general. It would be interesting to see if this problem, given a vector-weighted
representation, is NP-hard.

For QOBDDs representing weighted voting games we have been able to improve the
upper bound for the QOBDD size to O(max{(n —log Q), 1}Q), where @ is the quota and
n is the number of players. This result is interesting, because by using the algorithm to
build the QOBDD for a WvG in Section 4.2 we immediately obtain an algorithm with
(deterministic) running time

O(min{n2"? max{(n — log Q), 1}Qlog Q})

to solve the 0-1 knapsack problem. See Behle (2008) for details on the connection be-
tween the different problems. In the context of simple games, as we will see in Section 6.7,
this finding improves some complexity results for computing power indices for WvaGs.

For homogeneous simple games and for weighted voting games with sequential weights,
we have been able to establish an upper bound of O(n?) for fixed orderings of the players
and weights, respectively, even though for other orderings the size might be exponential
in n. We have used the weighted representation of EXp,, + 1 to this end, which is
homogeneous and has sequential weights.

Some classes of weighted voting games, like WvGs with k-unbalanced weights, have
been omitted. The interested reader is referred to Chakravarty, Goel, and Sastry (2000)
and Aziz and Paterson (2008) for an overview of candidates for future research.
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Solving Problems on Simple Games
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6. Algorithms for Simple Games

In Chapter 4 we have seen how the QOBDD for a simple game can be built and in
Chapter 5 we have considered the size of the QOBDDs for some classes of simple games,
like weighted voting games. The aim of this chapter is to develop methods and algorithms
to solve problems on simple games represented by QOBDDs.

Essential parts of this chapter have been published in Berghammer and Bolus (2010),
Bolus (2011b) and Berghammer and Bolus (2012). The presentation is different here
though. In Section 6.1 we start by introducing the idea of a manipulator, which can be
used to manipulate a traversal of a QOBDD. As we will see, the use of manipulators
requires the adaption of some ideas for QOBDDs. To the authors knowledge, the idea
of manipulators is novel. The reason for this might be, that the idea cannot easily be
applied to ROBDDs, but most practitioners use that kind of decision diagrams.

Section 6.2 presents a thorough discussion of counting algorithms for QOBDDs that
have been used in Bolus (2011b) to compute power indices. Power indices are discussed
later in Section 6.7. One of the main results of Section 6.2 is the following. Let (N, W)
be a simple game with players N = {1,...,n} that is represented by the QOBDD with
root r. For a player i € N we consider the cardinality ¢; == [{S € W | i € S}|. We
will show, that all the values ¢y, ..., ¢, can be obtained with just O(size(r)) arithmetic
operations.

The remaining sections cover fundamental problems like the computation of the desir-
ability relation on individuals in Section 6.3, and the minimal winning (resp. maximal
losing) coalitions in Section 6.5. We will make use of some of these results in Chapter 7.
In Section 6.9 we draw conclusions and present running times of our algorithms for some
real world simple games which frequently appear in the literature.

6.1. Manipulators

In this section we present a novel approach to improve the performance when using
operations which cause only local changes to the QOBDD structure.

Developing a QOBDD package is a complex problem and involves many fundamental
design decisions. One such design decision usually is, that once a QOBDD has been
created, it is immutable and represents the same Boolean function (resp. subset of 2V
for labels N) during its lifetime. This, however, has a very negative effect on memory
usage because even trivial changes in the represented set A C 2V can require a completely
new QOBDD and both QOBDDs do not share a single inner node. This is illustrated in
Figure 6.1. By switching only the edges for the node v, the resulting QOBDD for the set
A’ cannot reuse any inner node. The memory usage therefore doubles. Memory, however,
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is limited and cannot easily be traded for computation time. So, saving memory can be
considered more important than saving computation time.

Figure 6.1.: Even though the QOBDDs for the sets A and A’ structurally differ only in
one node, they do not share a single inner node.

Our approach is easy, but powerful enough to be useful in practice. Its fundamental
idea is to manipulate decisions in a QOBDD. For instance, a manipulation could mean
that for every inner node with label i« € N we take the 0-edge instead of the 1-edge and
vice versa. Another example for a manipulator could be the redirection of the 1-edge to
another inner node, say, Q1.

Definition 6.1. A pair & = (®r, Pg) of functions $r, Pp that for each ¢ € N maps
QOoBDD nodes of label 7 to QOBDD nodes of label 7 + 1 is called a manipulator. n

Intuitively, a manipulator can be considered as an abstraction of the functions then
and else for a node. Therefore, whenever ® is a manipulator we refer to ®7 (“then”)
as its first component and to ®g (“else”) as its second component. The most trivial
manipulator is the identity id that is defined by:

id := (then, else) . (6.1)

The composite ® o U of two manipulators ®, ¥, which is a manipulator again, is defined
component-wise by:
(ONRVE (@TO\I/T7<DEO\I/E). (62)

For a set of QOBDD nodes S, as a convenience, we define the successors w.r.t. ® as
O(S) := Dp(S)UPg(S).
The set represented by a QOBDD changes when a manipulator is used:

Definition 6.2. Let ® be a manipulator and let v be a (maybe terminal) QOBDD node.
We define the set represented by v w.r.t. ®, denoted by setq(v), as:

0 itv=0
setgp(v) = ¢ {0} ifv=1I
{S +var(v) | S € sete(Pr(v))} Usete(Pr(v)) otherwise

To stay consistent with our previous definition of set we redefine set as set;q. O

Before we introduce additional manipulators, we have to reconsider some fundamentals
for QOBDDs in the context of manipulators.
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Lemma 6.1 (Shannon decomposition). Let ® be a manipulator. For an inner QOBDD
node v with label i and a set S C {i,...,n} it holds S € sete(v) if and only if

(i€ SAS—ic€sete(Pr(v)) V(i € SAS € sete(Pp(v))) . (6.3)

Proof. The equivalence follows straight from the definition of sety in Def. 6.2 and
sety(v) C 20 ®)n} for any QOBDD node v. O

We will usually omit the parenthesis and instead use that A has precedence over V.
Because for the prerequisites of the previous lemma, S € sete(Pg(v)) implies var(v) &
S, in some situations we will omit the ¢ ¢ S part in (6.3) and instead use:

S esetp(v) <= 1€ SNS —i€sete(Pr(v)) VS € sete(Pr(v)). (6.4)

One of our main intentions is to use the binary synthesis in conjunction with manip-
ulators. Similar to the original algorithm apply from Section 3.4 we use Algorithm 4
for this purpose. In the postcondition of algorithm applys, we use S € sete(u) and
S € sety(v) as predicates on a meta level.

Algorithm 4 applys(u, ®,v, ¥, ®)
Require: u,v are QOBDD nodes with label ¢ = var(u), ®, ¥ are manipulators and
® : B2 — B is a function.

if (u=1)® (v=1) then return I

else if u € {I, 0} then return O

else if ¢ # | then return e where e = lookup(T, (®, (u, ®), (v, ¥)))

else w « ite(i, applys(Pr(u), D, Ur(v), ¥, ®), apply2(Pp(u), @, Vi(v), ¥, ®))
insert(T, (®, (u, ®), (v, ¥)),w))
return w

The correctness can similarly be shown to that of the original algorithm apply. The
proof of the following theorem is therefore omitted.

Theorem 6.2. If u and v are QOBDD nodes with label i, ® and V are manipulators

S € set(applya(u, ,v, ¥V, ®)) <= S € sete(u) @ S € sety(v) . O

Notice that it is crucial for the computed table to contain the nodes as well as the
manipulators in the keys. This is, because the same node can have a different meaning
for different manipulators.

The running time of applys(u, ®, v, U, ®) is more subtle. The idea for the proof of the
running time O(Z?:var(u) width; (u) - width;(v)) of the algorithm apply without manipu-

lators is, that the size of the computed table is bounded by

U Vi x ).

i=var(u)
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But when we use manipulators, this does not hold anymore, because the manipulators
may map to inner nodes not in V(u) or V(v). The nodes that are reachable from the
node u with label 1, without a manipulator, are {u} = Vi(u), Va(u), V3(u) and so on.
When a manipulator ® is used, the sets of reachable inner nodes are

{u}, o({u}), ©*({u}), @°({u}),..., 2" ({u})

where ®F applies ® exactly k-times. These are the nodes on the levels of the “manip-
ulated” QOBDD. Therefore, similar to V;(u), for a manipulator ® we define V;(u, ®) as
&1 ({u}) and V(u,®) as the union of V;(u,®) for all i = 1,...,n. Analogous to the
definition for QOBDDs without manipulators, we define width;(u, ®) := |V;(u, ®)| and
width(u, @) := max;e y width;(u, ®). The size of u w.r.t. ® is size(u, @) := |V(u, P)|.

Theorem 6.3. Disregarding the time necessary to evaluate the manipulators, the algo-
rithm applys(u, ®,v, ¥, ®) has expected running time
O( Y width;(u, ®) - width;(v, V)
k=var(u)

which in turn, is bounded from above by O((n — var(u) + 1) - width(u, ®) - width(v, ¥)).

Proof. The size |T'| of the computed table is an upper bound for the number of recursive
calls. Each recursive call costs expected time O(1) due to the use of a hash table for T
The size of T" is bounded by

> width;(u, ®) - width;(v, ¥),
k=var(u)

because in the worst case on each level i € {var(u),...,n} each element in
[@} x (Vi(u, ®) x {0}) x (Vi(v, ¥) x {¥})
appears in an entry in 7. O
We define shorthands for some special cases for the function ®:

and(u, ®,v, V) := applys(u, ®,v, U, A)
or(u, ®,v,¥) := applys(u, ®,v, ¥, V)
minus(u, ®, v, ¥) := applys(u, ®,v, ¥, 4.

By Theorem 6.2, these definitions have straightforward set-theoretic interpretations:

set(and(u, ®,v, V)) = sete(u) N sety (v)
set(or(u, ®,v, ¥)) = sety(u) Usety(v)
set(minus(u, ®,v,V)) = sete(u) \ sety(v) .
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The algorithm applys can also be used to compare the sets represented by two QOBDD
nodes u, v with label . It holds:

sete(u) C sety(v) <= minus(u, ®,v, V) =0 .

Because it is sufficient to know if the result is the node O; it would be superfluous to
create any temporary nodes (Brace et al. 1990). Therefore, we use a variant of applys
called forall, that coincides with applys with the exception that true or false is returned
instead of a QOBDD node. The recursive calls in Line 4 in Algorithm 4

w < ite(i, applyz (Pr(u), @, ¥ (v), ¥, ®), apply2(Pp(u), @, Vi (v), ¥, ®))
are replaced by
w < forall(®r(u), @, Ur(v), ¥, ®) A foral(Pg(u), P, Vg(v), ¥, ®)). (6.5)
A proof for the correctness is omitted again. We only state the corresponding result:

Theorem 6.4. For QOBDD nodes u,v with label v, manipulators ®,V and a function
® : B* — B it holds forall(u, ®,v, ¥, ®) = true if and only if

VS € 2timh 1 G € setg(u) ® S € sety(v).
The running time is the same as for applys in Theorem 6.35. [

Further variations are possible, e.g., existential quantification by using disjunction
instead of conjunction in (6.5). We are especially interested in the subset and the
equality relation and therefore, we define:

subseteq(u, ®,v, ¥) := forall(u, ®,v, ¥, =) (6.6)
equal(u, ®,v, V) := forall(u, ®,v, U, <) (6.7)

We then have subseteq(u, ®, v, ¥) = true if and only if setep(u) C sety(v) and we have
equal(u, ®,v, ¥) = true if and only if sete(u) = sety(v).

It is well-known that the set-equality test set(u) = set(v) for QOBDDs without ma-
nipulators can be implemented in deterministic running time O(min{size(u), size(v)})'.
We use a weaker result which does hold for our approach using forall.

Corollary 6.5. Disregarding the time necessary to evaluate the manipulators, the algo-
rithm equal(u, ®,v, VU, ®) has expected running time O(min{size(u, ), size(v, ¥)}). O

We now present the manipulators that we will use in the remainder of the thesis. With
id we have already seen a manipulator at the beginning of this section. This manipulator
is special, because it is the only manipulator that directly refers to the 1-edge then(v)
and the 0-edge else(v) of a node v. All other manipulators will be defined relative to
another manipulator ®. For instance, the manipulator compls that interchanges the

I This fact uses that QOBDDs are canonical for a fixed ordering of the variables and in case the sets
coincide, the structure of the QOBDDs is isomorphic. This special case can therefore be implemented
without a computed table.

73

compls



without;

6. Algorithms for Simple Games

edges of each node is defined as:
complso @ := (Op, Or) . (6.8)

As a consequence, the composition compls o compls o id would rule out the effect of each
compls. As a simplification later, we usually omit the composition with id, so that, for
example, compls actually refers to compls o id.

Lemma 6.6. Let ® be a manipulator and let v be a QOBDD node with label ©. For
S CH{i,...,n} it holds:

S € seteompison (V) <= {i,...,n}\ S € sety(v).

Proof. By ¥ we denote compls. For & < n + 1 we denote the set {k,...,n} by Dg. The
proof is by induction on the ordering of the labels, i.e., we start with label n+ 1 and the
sinks. The induction base is trivially correct. For the induction step let v be a QOBDD
node with label 7 and assume the statement is true for nodes with label i+1. For S C D,
we have:

S e Set\poq)(v)
<~— 1€ SANS—i¢€ setq,oq>((\IJ o @)T(U)) V

i€ SNAS € setyon((¥od)p(v)) (Eq. 6.3)
<= i1€SNS —i€setyon(Ppr(v))V

i ¢ SNS € setyon(Pr(v)) (Def. compls)
<= 1€ SNANDi1\ (S —1) €sete(Pp(v))V

i€ SNADii1\S € sete(Pr(v)) (Ind. Hyp.)
<= i ¢€D;\SAND;\S €sete(Pr(v))Vie D;\ SA(D;\S)—ic€sete(Pr(v)) (*)
<= D;\ S € setgp(v) . (Eq. 6.3)

The equivalence of the left-hand sides of the disjunctions in the step marked with (*)
can be seen as follows. It is ¢ € S if and only if ¢ ¢ D;\ S. By having i € S we also have

Dici\ (S =) = (Dis + )\ (S — 1) +1) "Z (Diy +0)\ S = D, \ .

The missing equivalences of the right-hand sides of the disjunctions in (*) can be seen
analogously. O]

Let i« € N be a label. The next manipulator without; makes a decision based on the
label of the node passed to it and it may map to a node that is not in the QOBDD,
namely, @, 1. Similar to compls, without; is defined relative to a manipulator ®:

. if —
without, 0 @ = [ vy 4 Ot Hvartw) =i 4 (6.9)
Or(v) otherwise

For any node v with var(v) # i, the manipulator behaves like ®. Otherwise, as illustrated
in Figure 6.2, if var(v) = i then instead of ®7(v) the node O, is returned. In the context
of simple games this means, that every coalition containing player ¢ becomes losing.
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50 0 %00

(I)T(U) (I)E(U) @)i—i—l (I)T(U) (I)E U) @i—i-l

Figure 6.2.: Effect of ® (left) and without; o ® (right) for an inner node v with label 1.

Lemma 6.7. Let ® be a manipulator, let k € N be a label and let v be a QOBDD node
with label i. For S C{i,...,n} it holds:

S e setwithoutkmb(v> <~— k g SAS € set¢(v) .

Proof. By ¥ we denote without;. The proof is again by induction on the ordering of the
labels. Let v be a QOBDD node with label i. We have to distinguish the cases i > k,
i =k and i < k. First, if i > k then it is rather easy to see that S € setyoq(v) if and
only if S € setg(v). This case includes the induction base v € {Q,I}. Second, if k =i
then for S C {i,...,n} we have:

S e setq,o@( )
—=ieSANS—-ic€ Set\poq)((\l’ o ®)r(v))V

S € setyop((W o @)p(v)) (Eq. 6.4)
= i1eSNS—i€ Setqjo¢(©k+1) V S € setyon(Pr(v)) (Def. withouty, i = k)
<= false V S € setyon(Pp(v)) (Def. Opyq)
< S € sety(Pp(v)) (Case var(®g(v)) > k)
= kESNS €setp(v) . (Eq. 6.4)

Finally, for ¢ < k we assume the statement holds for nodes with label ¢ + 1. We have:

S e Set\poq;(v)
= i€ SNS —ié€setyon((Vod)r(v))V
)

S € setyos (Vo D)p(v) (Eq. 6.4)
<=1 € SNS —i€ setyon(Pr(v))V
S € setyos(Pr(v)) (Def. withouty, i < k)
i€ SNkgS—iNS—ic€setey(Pr(v)))V
(k€ SNAS €sete(Pr(v))) (Ind. Hyp.)
= kgSN(i€SAS—icsete(Pr(v) VS € sete(Pp(v))) (Rearrange)
= kg SNS €sety(v). (Eq. 6.4)
This completes the proof. n

Let i € N be a label. For a QOBDD node v with label var(v) < i, the last two
manipulators remove; and add; are used two remove label i from (resp. add label i to)

)

remove;

addl
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Figure 6.3.: Effect of ® (left) and remove; o ® (right) for an inner node v with label 1.

all sets in set(v) that contain i (resp. do not contain i). For a manipulator ® they are
defined relative to ® by:

remove, o & = (v = {@Hl if var(v) =1 s {(I)T(v) if var(v) = z) (6.10)

Op(v)  otherwise ®p(v) otherwise

add o (UH {@E@) ifvar(v) =i {@i+1 ifvar(v):i> (611)

Op(v)  otherwise ®p(v) otherwise

Because both manipulators are very similar, we do only discuss remove;. For an inner
node v, the manipulator behaves like ® if var(v) # i. For var(v) = i, its behavior is
illustrated in Figure 6.3. In this case, the 1-edge is “redirected” to the node O0;;; and
the 0-edge is “redirected” to ®r(v).

Lemma 6.8. Let ® be a manipulator, let k € N be a label and let v be a QOBDD node
with label i. For S C {i,...,n} it holds
S € setremoveon(V) <= k&SNS +k € setgp(v)
S € setaggon(V) <= k€ SANS —k € sete(v)

if 1 < k and otherwise,
S € Setremove,on (V) <= S € setaugon(v) < S € sets(v).

Proof. By ¥ we denote remove,. The proof is again by induction on the ordering of the
labels. Let v be a QOBDD node with label i. We have to distinguish the cases i > k,
i =k and i < k. First, if ¢ > k then it is rather easy to see that S € sety.e(v) if and
only if S € setg(v). This case includes the induction base v € {O,1}. Second, if & =1
then we have for S C {7,...,n}:

S < setq,c,q)(v)
= i€ SNS—i€setyos((Vod)r(v))V

S € setgoa((V o @)g(v)) (Eq. 6.4)
<= ie€SANS—1i€setyop(Qpi1)V

S € setyoa(Pr(v)) (Def. removey, i = k)
<= false V S € setyoa(Pr(v)) (Def. Opy1)
< S € sete(Pr(v)) (Case var(®r(v)) > k)

= kg SNT+kesete(v).

76



6.1. Manipulators

Finally, for ¢ < k we assume the statement holds for nodes with label ¢ + 1. We have:

S € sety(v)
1€ INS —ié€setyos((Vod)r(v))V

S € setyos (Vo P)p(v)) (Eq. 6.4)
1€ SNS —i€ setyon(Pr(v))V

S € setygon(Pr(v)) (Def. removey, i < k)
i€ SNkZgSNS —1i)+kesete(Pr(v)))V

(kg€ SANS+E € sete(Pr(v))) (Ind. Hyp.)
= kgSN(i€SA(S+E)—icsete(Pr(v)VS+kEesetsg(Pp(v))) (Rearrange)
< kg SNS+kesets(v). (Eq. 6.4)

The statement for add; can be shown analogously. ]

For the running time later, we have to discuss the potential blow-up caused by the
manipulators. Fortunately, it is very moderate.

Proposition 6.9. For a QOBDD node v with label © < n and for k € N it holds

width;(v, compls o ®) = width;(v, D)

width; (v, withouty, o @) {Widthi(v o) ifi <k

width; (v, removey, o ®
( co®) IVi(v, @)\ {O;}| +1 otherwise

width; (v, addy, o @)
and therefore it follows

size(v, compls o @) = size(v, D)

size(v, withouty, o D)
size(v, removey, o @) » < size(v, ®) +n — k.
size(v, addy, o D)

Proof. We first discuss the blow-up on level 7. The manipulator compls does not cause
any new inner node. The same holds for the remaining manipulators if var(v) < k,
because they imitate ®’s behavior. If ¢ > k, then the node O; has to be taken into
account. The blow up is therefore at most 1.

The equality for size(v, compls o @) follows from:
size(v, compls o @) = Zwidthj (v, compls o @) = Zwidthj(v, Q) = size(v, D).
j=i j=i

Let ¥ denote any of the manipulators without, remove, or add,. If ¢ > k, then some of
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the sums below are 0. The upper bound for size(v, U o ®) follows from:

n

k
size(v, Vo ®) = Zwidthj(v, Vod)+ Z width; (v, ¥ o ®)

j=i Jj=k+1
k n
<) width;(v, @) + Y (width;(v, ®) + 1)
Jj=t j=k+1

=n—k+ Y width;(v, )
j=t

=size(v,P)+n—k. O

Experiments and the Effect of the compls Manipulator

As for the binary synthesis of QOBDDs without manipulators, the formal upper bound
in the case with manipulators does not coincide with what we experience in practice.
In this section, we therefore present some experiments that we have obtained by our
implementation and that shed light on what we can expect in practice, when we use
manipulators. To keep things simple, we do only consider the case of the manipulator
compls and the very specific case

forall(r, compls, r, id, ®) (6.12)

for a QOBDD with root r and any ® that can be computed in constant time. This case
is used later in Section 6.4 to decide if a simple game is proper and strong, respectively.
The main result of this section is, that if r represents a WvG, then this case has expected
running time O(size(r)) instead of O(n - width(r)?). With respect to the nearly trivial
effect of compls, this does not look very surprising. However, even if we relax the
requirement to r slightly and “only” assume a flat QOBDD, the arguments used in the
proof do not hold anymore.

Because we are only interested in the effect of the manipulator compls, we use forall
with a function ® that always maps to true.

reachable(u, ®,v, V) := forall(u, ®, v, ¥, (u,v) > true) (6.13)

This has two benefits. First, no matter which binary Boolean function ® we use later,
the size of the computed table of reachable(u, ®,v, V) is an upper bound for the size of
the computed table used in forall(r, compls, 7, id, ®) and second, the computed tables for
reachable(u, ®, v, U) and reachable(v, ¥, u, ®) have the same size. Both variants are used
in our application later.

In the following, the computed table that is used for reachable(r, compls, 7, id) is de-
noted by 7" and |T'| is its size. Figure 6.4 shows the average ratio between the size of
the computed table T" and the size of r for vector-weighted voting games with weights
between 0 and 10°, for 30 players and different numbers of rules (100 samples per point).
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From the figure we can see that the quota rate, as well as the number of rules, have a
big impact on the ratio and hence, on the running time. At a quota rate of 50% for
WvGs the average ratio is nearly 1. This is because, most games are decisive (strong
and proper) for these parameters. We also notice, that for just one rule (resp. a WvaG),
the average ratio is never above 2. This observation motivates Theorem 6.11 below.

4

Rules

ot

Average |T'|/size(r)

Quota (%) of w(N)

Figure 6.4.: Average ratio of the size of the computed table T" to the size of the input
QOBDD with root r for reachable(r, compls, r,id) and 30 players.

Figure 6.5 shows another perspective. Here we have a fixed rate for the quota at
45% and a varying number of players. Instead of what we would expect from the upper
bound in Theorem 6.4, the actual size of the computed table and hence, the running
time grows much slower when the number of players increases.

4 T
Rules

3.5 -1
3 | 2 —a—

4 -

Average |T'|/size(r)
[\
ot

1.5
1
5 10 15 20 25 30
Players

Figure 6.5.: Average ratio of the size of the computed table T" to the size of the input
QOBDD with root r for reachable(r, compls, r,id) and a quota rate of 45%.

To ease the proof of the upcoming Theorem 6.11, we use the following statement that
can easily be verified.

Proposition 6.10. Assume that (N,set(r)) is a WvG and that [Q;wy,...,w,] is a
weighted representation of the game. For i € N let u,v € V;(r) be two different nodes.

Let R,S C{1,...,i— 1} be sets such that r B w and r > v. Then it holds:

uCv <= wR) <w(S). O
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After these observations, we now prove our main result for the manipulator compls.

Theorem 6.11. If (N,set(r)) is a weighted simple game, then the size of the computed
table T' that is used in reachable(r, compls,r, id) has size at most 2 - size(r).

Proof. To keep things simple, we assume that the entries in T are pairs of nodes. This
is appropriate, because we consider two fixed manipulators. Because compls does only
map to nodes in V(r), it holds T C V(r) x V(r). For i € N by T; we denote the subset
of T whose nodes all have label 7, that is, T; = T'N (V;(r) x V,;(r)). The sets T3, ..., T,
are disjoint and T'=T, U ---UT,.

Because the simple game (IV,set(r)) is weighted, there is a weighted representation
[Q; wy, ..., w,| for it, that we use in the remainder of the proof.

For all i € N we will show |T;| < 2|V;(r)|, what then implies

7| =Y T <) 2Vi| =2 " |Vi| =2 size(r).
iEN iEN iEN

Let i € N be a player. The set {1,...,i—1} is denoted by I. First of all, if (z,y) € T;
then it is rather easy to see that also (y,z) € T;. Second, if (z,z), (y,y) € T; then z = y.
To see this, assume to the contrary that x # y. The QOBDD r is flat and therefore
w.l.o.g. we can assume z D y. Because (z,x), (y,y) € T;, there are coalitions R, S C I
with r 5 x, T Ny and r S Y, T ng y. Hence, because both w(R) and w(I \ R) are
greater than w(S) and w(I \ S), it follows:

w(l) =w(S)+w(I\S) <w(R)+w(\R)=w).

This a contradiction and therefore it holds z = y.

For the remainder of the proof we define an undirected graph H = (V;, E) with edge
set B ={{z,y}| (z,y) € T,z # y}. Then we have |T;| < 2|E|+ 1. We will show that
H is bipartite and without cycles what implies |E| < |V,;| — 1 and finally,

T3 < 2|B| +1< 2V, —1.

To see that H is bipartite, we need some notation. Let x be a node in V;. We define
the set F'(z) as {w(R) |FRC I :r LS x}. It can easily be seen that F(z) # 0, because

there is always a subset R of I with r K. Using F(z), for  we denote the maximum
and, respectively, minimum value in F'(z) by f(z) := max F'(x) and f(x) := min F'(x).
Obviously, it holds f(z) < f(x). Let y € V; be another node. It can rather easily be
seen that _

flx)>fly) <= zDy. (6.14)

It is a direct consequence that the sets F'(x) and F(y) are disjoint, because being flat
implies either z Dy or x C y.

We will use f, f and the value m := w(I)/2 to define the bipartition of the graph H.
The set V; is obviously partitioned by:

P:={veV,| flv)>m}
Q:={veV;| flv)<m}.
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To see that the graph is bipartite, let {z,y} € E be an edge. Because z,y are different
nodes in V; and the QOBDD is flat, w.l.o.g. we can assume x O y. We show that x € P

and y € (). By the definition of the edge set E, there is a set R C I with r £ 2 and
r y. With Proposition 6.10 it follows w(R) > w(I \ R). Because we have a WVG,
the weights of w(R) and w(/ \ R) sum up to w(l). From this observation we obtain

w(R) >m > w(l \ R). The fact w(R) > m can be seen by
w(R) >w(R)/2+w(I\R)/2=w(I)/2=m

and the remaining inequality can be shown analogously. From w(R) > m it follows
f(z) > m and therefore, z € P. Beside that, from w(I \ R) < m it follows f(y) < m. In
order to verify 3 € @, we have to show that also f(y) < m. To see this, we assume to the
contrary, that f(y) > m. Using f(y) < m and {y,y} € E the following two inequalities
can be shown: B

— (f(y) —m),
+(m— f(y)).

>m
<m

Because these inequalities are contradictory, it follows ?(y) < m. We show the first
inequality for illustration. Let S be a subset of I with w(S) = f(y). Then S is a path
from r to y. Because {y,y} € E, the complement [ \ S is not a path to y, that is,
node(r,i,1 \ S) # y. Let z denote that node. It can easily be seen that w(S) > m and
hence, w(I \ S) < m. Therefore, using Proposition 6.10 we get y D z. With (6.14) it
follows f(y) > f(2) and we finally obtain:

fy) > f(z) > w(I\ S) =w(l) —w(S) =2m —w(S) =m— (f(y) —m).

To see that H is free of cycles, we show that a particular subgraph does not appear
in H. Afterwards, we will show that a cycle would imply such a subgraph and hence, it
will follow that H is free of cycles.

Let a,b € P and ¢,d € @ be nodes with b D ¢. By the choice of the nodes it follows
aDb>DcDd Wewill prove {a,c} & E or {b,d} € E.

(@ > (B

@ < ©
Assume to the contrary that {a,c},{b,d} € E. Then there are R,S C I such that

ria,rchandrib,r&fd. Because a D b D ¢ D d it holds
w(R) >w(S) >w({ \R) >w(l\S5).

However, this implies w(R) + w(I \ R) > w(S) + w(I \ S) which is a contradiction,
because both sides are equal to w(I).
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For convenience, we consider an edge e as a pair whose first (resp. second) component
is the edge’s node in P (resp. @)). We define the following partial order on the edges E:

(u,v) 2 (W, V") = uDdu AvCo'. (6.15)

For different edges e, ¢’ with a common node (as in the path below), one of the subset
relations in (6.15) is equality and the other is strict, because r is flat.

Assume to the contrary, that there is a cycle with edges ey, ..., e; of length [ without
multiple occurrences of an edge. Because the graph is bipartite, it holds [ > 4. W.l.o.g.
we assume that the edges are arranged such that e; < ey < --- < ¢, and k is maximal.
If £ < [ then it trivially holds e, A egyq. If, however, k = [ then we set ¢;,1 := e;. By
the antisymmetry of < and [ > 4 it then follows e, A ex11 = e;. We also have k£ > 1,
because otherwise it would hold e; < e; due to [ > 4 and the remark for (6.15) above.
In conclusion, we have e, < e, & epi1 as follows:

D
€L—1
Ck+1 Ck
C
This, however, is a contradiction to our forbidden subgraph above. O]
6.2. Counting
In our considerations, a QOBDD represents a subset A of 2 where N = {1,...,n} is a

set of players. For the root r of a QOBDD we will assume var(r) = 1 in this section unless
stated otherwise. When it comes to questions about the cardinality of A, we know that
for any QOBDD node v, the cardinality of set(v) can be computed recursively by the
following formula:

0 ifv=0
|set(v)] =< 1 ifv=1I (6.16)
|set(then(v))| + |set(else(v))| otherwise

It can easily be used to derive an algorithm that requires O(size(v)) arithmetic opera-
tions, if a computed table (e.g., a hash table) is used to avoid redundant computations.
This result is well-known. Much more interesting is the computation of the cardinality
{S € A|i e S} for each i € N. Together with |A|, these n + 1 values are known as
Chow parameters (Chow 1961).

Definition 6.3. Let A be a subset of 2. The Chow parameter for player i € N,
denoted by chow 4(), or just chow(7) if there is no risk of confusion, is defined by:

chow (i) :=|[{S e A|ieS}. O
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Chow parameters can, for instance, be used to identify non-equally desirable play-
ers in simple games (see Section 6.3) and they are used in the identification of non-
symmetric players in general Boolean functions (Moller, Mohnke, and Weber 1993).
Furthermore, Chow parameters have the remarkable property that they characterize
WvaGs and threshold functions (Chow 1961), respectively, which in our context can be
formulated like this. Let (N, W) and (IV, W) be simple games. If |W;| = [Ws] as well as
chowyy, (i) = chowy, (i) for each player i € N and if at least one of the games is a Wvg@,
then W, = W,. Consequently, (derivatives of) Chow parameters are frequently used in
approaches to find weighted representations of a simple game, for instance, Palaniswamy;,
Goparaju, and Tragoudas (2010) use the so-called modified Chow parameters. As we will
see in Section 6.7, Chow parameters are used in the Holler-Packel, Deegan-Packel and
Shift power indices.

In a naive approach, the Chow parameters are computed one by one. However, as a
main result of this section we will show that, among other values, the Chow parameters
of all players can be computed by means of QQOBDDs with just O(size(r)) arithmetic
operations.

For the previously mentioned Deegan-Packel power index it is not sufficient to have the
Chow parameters of the players. Instead of |{S € A | i € S}| we need the number of sets
that contain a given number of players. Clearly speaking, for i € N and k € {0,...,n}
we need the cardinality

{SeAlicSA|IS|=k}|. (6.17)

The ability to compute these numbers for all combinations of ¢ and k£ without multiple
traversals of the QOBDD representation for A requires some generalizations and also, an
additional factor of n in the running time.

Throughout this section, we use a variant of the Cartesian product, denoted by X,
which for disjoint sets X,Y and A C 2%, B C 2Y is defined by

AxB:={RUS|Re A, SeB}, (6.18)

so that we have sets in the result instead of pairs.
The following statement is a prototype lemma that is used multiple times in this
section. For i € N we say that a predicate P : 2V — B does only depend on {i,. .. ,n} if

vS e 2V P(S)=P(SNn{i,...,n}).

In the remainder of this section we will choose P such that, for instance, P(S) is satisfied
if and only if 7 € S. This will be the case for the Chow parameter of player i.

Lemma 6.12. For a QOBDD with root r and a player i € N let P : 2V — B be a
predicate that only depends on {i,...,n}. Then it holds:

{S eset(r) | P(S)} = U paths(r,v) x {S € set(v) | P(S5)}.

veEV;
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Proof. With D :={1,...,i — 1} it holds:

(S € set(r) | P(S)}

={RUS|RCD,SCN\D, RUS €set(r), P(5)} (Choice of P)
=|J{RUS|RC D, r v, S €set(v), P(S)} (Thm. 3.3)
vEV;
= J{RCD|r 5 v} x {S eset(v) | P(S)}
vEV;
= U paths(r,v) x {S € set(v) | P(S)}. (Def. paths)
vEV;
This completes the proof. O

By choosing P as a predicate that is always satisfied (and hence, does not depend on
anything), we can easily verify the following equation for any QOBDD root r:

[set(r)] =| | paths(r,v) x set(v)| (Lem. 6.12)
veEV;

= Z paths(r,v) x set(v)] (Disjoint)
veEV;

=) _ [paths(r, v)| - [set(v)|. (Def. x)
vEV;

Our next step is to define a generalized version of the cardinality |A| of A C 2V which
takes the size of the sets in A into account as in (6.17). Notice that in this section,
subscripts of elements in a vector usually start with 0 instead of 1, because the subscript
has the meaning of the size of a set and a set can be empty.

Definition 6.4. Let A be a non-empty subset of 2. By maxsize(A) we denote the
size of the largest set in A, that is, maxge 4 |S|. We set m := maxsize(A). By ||.A]| we
denote the vector (vg,...,v,) € NJ"*! such that for each j € {0,...,m} it holds:

v =HSeAlj=I[S[}.
For the empty set we define ||()]| as the vector (0). O
For a,b € N and vectors u € N§ and v € Nj the component-wise addition of u and
v usually requires vectors of same size, that is, @ = b in our case. In the remainder
of this section, we will be more liberal. If a # b then the missing components in u or

v are assumed to be 0. The result of u + v has max{a,b} components. For instance,
(1) +(2,3,4) + (5,6) would be calculated as

(1,0,0) + (2,3,4) + (5,6,0) = (8,9,4)..
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For disjoint sets A, B C 2V it is easy to see, that similar to |A U B| = |A| + |B|, it
holds || AU B|| = || A|| 4+ ||B]|. By induction, this result can easily be extended to a finite
number of disjoint sets A1, ..., A,:

AU U A = A+ -+ Al

Let : € N be a player and let A C 2{Li=1} and B C 2{--n} he (finite) sets. We have
|A x B| = |A| - |B|. This, however, does not work with ||.4 x B|| anymore, because the
ordinary multiplication is insufficient and we do not have an appropriate alternative for
vectors, yet.

Any set T € A x B with j elements can be partitioned into 7' = R U S such that
Re A, S e Band |R|+|S| =j. Therefore, by the definition of || - || it is:

J
X Bll; = 1Al - 1Bl - (6.19)
k=0
Based on this observation in the following we define a vector multiplication ® such that
A x Bl = [[All © [|B]|
Definition 6.5. For vectors @ = (ug,...,u,) € N§™ and ¥ = (vo,...,v;) € Ni™ we
define the vector @ ® ¥ € Na™*! for j € {0,...,a + b} by
(€ © v); Z{Uw v |0<z<a,0<y<ba+y=j},

where Y X sums up all the elements in a set X. ]

For @ € N4™ and ¢ € N the vector @ ® ¥ can be computed with (a + 1)(b + 1)
arithmetic operations using two for-loops. For future reference we state:

Lemma 6.13. For a player i € N and sets A C o=} gnd B C 28t Gt holds
A x Bl = [|All© B O

By using this result we can now prove our second prototype lemma which we will use
multiple times in the remainder of this section. An explanation is given below.

Lemma 6.14. Let r be the root of a QOBDD, let A be a subset of 2V and let i € N be
a player. By D we denote the set {1,...,1 —1}. If f and g are functions with domain
Vi(r) such that for each v € V(r) it holds f(v) C 2P, g(v) C 2N\ and A is the disjoint

A= flv) x g(v), (6.20)

vEV;
then it holds

A=) 1@ -lg@)]  and A=Y I @)@ llg@)]-

vEV; vEV;
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Proof. As an example, you can think of paths(r,v) as f(v) and set(v) as g(v). Let the

pair m, o be either |- |,- or || - ||, ®. In general it holds:
m(A) =m(J f(v) x g(v)) (Eq. 6.20)
vEV;

= Z m(f(v) x g(v)) (Disjoint union)

veV;
=Y m(f(v)) om(g(v)). (Lem. 6.13 for m = @)

vEV;
This completes the proof. n

The lemma frees us from tedious work later at the cost of an rather abstract statement.
However, things become clearer by considering a concrete example. Assume set(r) = W
for the QOBDD. The first question is, why A can be different from set(r). At this point,
remember the Chow parameters from the beginning of this section. For player ¢ € N
the set {S € W | i € S} is used for chowyy(7) which is different from W. So assume A
is that set. The second question is the role of the functions f and g. These are very
much related to paths and set, respectively. In the case of chowyy (i), f is chosen as
v — paths(r,v) and g is chosen as v — {S € set(v) | i € S}.

As another example, we reconsider a result that we have already seen before for | - |
and the scalar multiplication. Using Lemma 6.14, this time, we can also use || - || and ©.

Corollary 6.15. For any QOBDD with root r and any i € N it holds:

[set(r)| = ) _ |paths(r,v)| - [set(v)] ,

vEV;

Iset(r)[| = ) _ llpaths(r, v)|| © [lset(v)].

vEV;

Proof. Let P be a predicate on 2V that is always satisfied. Then by Lemma 6.12 for
set(r), P and any i € N we have:

set(r) = U paths(r,v) X set(v).

vEV;

We apply Lemma 6.14 with set(r) as A, paths(r,v) as f(v) and set(v) as g(v). The
prerequisites of the lemma are then trivially fulfilled. Hence, we directly obtain the
claimed equations. O

The component-wise definition of ® is sometimes laborious as in Lemma 6.16 below,
where we need the result of (0,1) ® @ for some vector @. In these situations it is more
convenient to use the following right-shift operation instead. Let @ = (uy, ..., u,) € No*+!
be a vector and let k € Ny be a scalar. The vector @ > k € N§T**! is defined for
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j€40,...,a+k} by:

0 if 7 <k
(@> k); = { AR (6.21)
uj_p otherwise
Hence, @ > k is equal to (0,...,0,ug,...,u,) with k zeros at the front. The vector can
be computed in O(k + a + 1) steps. We use the right-shift as follows:
Lemma 6.16. Fori € N and A C 2V we have the equations
{i} x A[=[A]  and  |{i} x Al = [|A]| > 1.
Proof. The case of | - | is trivial. The remaining case holds due to:
{i} x All = [{1} @ [|A]l = (0, 1) © [JA]] = [|Al > 1. O

We can now state our first main result regarding the Chow parameters for the players.
An example for the statement is provided at the end of this section.

Theorem 6.17. For any QOBDD with root r and each i € N it holds:

chowsey(r (2 Z |paths(r, v)| - |set(then(v))|,

veEV;

I{S € set(r) |i e S}| = Z |paths(r,v)|| @ (||set(then(v))|| > 1).

veEV;

Proof. For a coalition S € N and a player i € N we define the predicate P : 2V — B
to be satisfied for S if and only if ¢ € S. By using P and Lemma 6.12 the coalitions in
set(r) containing player i can be rewritten to:

{S eset(r)|ieS}= ] paths(r,v) x {S € set(v) | i € S}. (6.22)

vEV;

By the properties of set(v), for the right-hand side of x in (6.22) it holds for any v € V;:
{S €set(v) |ie S} ={SU{i}|S € set(then(v))} = {i} x set(then(v)).

We can now apply Lemma 6.14 with paths(r,v) as f(v) and {i} x set(then(v)) as g(v).
Thereby we obtain the equations

{S €set(r) |ie S} = Z |f(v)| - [{i} x set(then(v))]|

veV;
and
I{S € set(r) [ i € SH| =D [ f(0)]| © [{i} x set(then(v))||.
’UEVi
Now, the claimed equations follow from Lemma 6.16. n
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The importance of this result lies in the fact, that if the values for |paths(r,v)| and
|set(v)| were known in advance for every node in V(r), then O(|V;(r)|) operations of type
+,- or +,®,> would be sufficient to compute chowse()(7) and ||{S € set(r) | i € S},
respectively. We will see later in this section, how these values can be obtained.

Besides the Chow parameters we are also interested in counting the so-called swings
for a player. Swings are fundamental for the Banzhaf and Shapley-Shubik power indices
in Section 6.7.

Definition 6.6. Let A C 2V be an up-set. For a coalition S € A we say player i € N
is critical for S, if i € S and S —i ¢ A. In that case, we call S a swing for player i.
We denote the set of all swings for players ¢ by swings 4(i) and swings(i), respectively, if
there is not risk of confusion. O

Usually, the swings are used in the context of simple games and the set A equals W
as in the following example.

Example 6.1. Consider players A, B,C, D and winning coalitions AB, AC, BCD,
ABC, ACD and ABCD. For instance, because neither player A, nor B is winning
alone, both players are critical for the coalition AB. In comparison, no player is critical
for ABC'D. In a minimal winning coalition all players are critical. O]

Similar to Theorem 6.17 for the Chow parameters, we can show the following result
for the swings:

Theorem 6.18. For a QOBDD with root v such that set(r) is an up-set and for each
level i € N 1t holds:

swings,eu(r)(i)] = 3 [paths(r, v)] - ([set(then(v))] — [set(else(v))]) .

vEV;

Iswingseey(r) (6)l| = > Ilpaths(r, v)|| © ((|lset(then(v))|| — [|set(else(v))]) > 1) .

’UGVZ'

Proof. Similar to the proof of Theorem 6.17, the prototype lemmas are used. For a
coalition S C N we define the predicate P : 2V — B to be satisfied for S if and only if
i€ S and S —1i ¢ set(r). By using P and Lemma 6.12, the swings of player ¢ can be
rewritten to:

swings(i) = U paths(r,v) x {S € set(v) |i € S, S —i ¢&set(v)}. (6.23)

’UEVi

By the properties of set(v), for the right-hand side of x in (6.23) we have for any v € V;:
{S eset(v) |ieS, S—i¢gset(v)} ={i} x (set(then(v)) \ set(else(v))) .

We can now apply Lemma 6.14 with f(v) as paths(r,v) and g(v) as {i} x set(then(v)),
so that with D(v) := set(then(v)) \ set(else(v)) we obtain the equations

[swings(i)| = > [f(v)| - [{i} x D(v)|

veEV;
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and

Iswings(i)l| = > [l/()ll © I{i} x D(v)]l.

veEV;

Because the set set(r) is an up-set, it holds then(v) D else(v) for any node v € V. As a
consequence, for m € {|- |, || - ||} we get:

m(D(v)) = m(set(then(v))) — m(set(else(v))) .
The claimed equations finally follow from Lemma 6.16. O]

What remains is to compute the values [set(v)], |paths(v)| and ||set(v)]|, ||paths(r, v)||,
respectively, for any inner node v € V(r) U {OQ,I} and a QOBDD with root r. In the
following we shift towards a more algorithmic perspective.

We use integers variables ¢, and p, to store the values |set(v)| and |paths(r,v)|, re-
spectively, for a node v € V(r)U{Q,I}. These values are initially 0 and can be obtained
as follows. We know that [set(I)] = 1 and |set(Q)| = 0, and therefore we set ¢ 1
and cg < 0. The remaining values for ¢, can be computed by a depth-first traversal of
the QOBDD with root r and by using the formula in (6.16) from the beginning of the
section.

The empty set is a path from r to r. Therefore we set p, <— 1. For the remaining
values p, we use the following short algorithm:

for i =1tondo
for v € V,(r) do
Pthen(v) € Pthen(v) + Dy
Delse(v) <~ Delse(v) + Do

The computation of all the values ¢, and p,, v € V(r) U{Q, 1}, requires O(size(r)) steps
and arithmetic operations of type +, respectively.

Computing the values ||set(v)|| and ||paths(r)|| for each node in V(r) U {Q, I} is more
expensive, because we have vectors in this case. We use integer vectors (e.g., arrays of
variables) C, and P, to store the values ||set(v)| and ||paths(r,v)]||, respectively, for a
node v € V(r) U{0,I}. These values are initialized with the vector (0). We know that
set(l) = {0} and set(Q) = 0, so we set Cy < (1) and Cgp + (0). As in the case of |- |, we
use a depth-first traversal of the QOBDD with root r to compute the remaining values
of C,. We make use of the fact, that for an inner node v we have

|lset(v)|| = (||set(then(v))]| > 1) + ||set(else(v))]| . (6.24)

If S is in set(then(v)) then the set S+ is in set(v) and it holds |S+i| = |S|+ 1. This is
the reason for the right-shift in (6.24). Each appearing vector has length at most n + 1.

Because r 5 r, there is a path without an 1-edge to r and hence, we set P, < (1).
Similar to the case of |-|, for the remaining values P, we use the following short algorithm:
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for i =1 ton do
for v € V,(r) do
Pthen(v) A Pthen(v) + (Pv > 1)
Pelse(v) A Pelse(v) + Pv

The computation of all the values C, and P,, v € V(r) U{Q, 1}, requires O(n - size(r))
steps and arithmetic operations of type 4+, respectively. We state these results in the
following theorem for reference.

Theorem 6.19. For a QOBDD with root r, the values |set(v)| and |paths(r,v)| for all
nodes v € V(r)U{O,1} can be computed using O(size(r)) steps and arithmetic operations
of type +, respectively. The values ||set(v)|| and ||paths(r,v)|| for all nodes v € V(r) U
{O,1} can be computed using O(n - size(r)) steps and arithmetic operations of type +,
respectively. [

We consider an example to illustrate the idea.

Example 6.2. We consider the QOBDD in Figure 6.6 which represents the 3-person
simple game (N, W) with 4 winning coalitions W = {AB, AC, BC, ABC'}. The values
in Figure 6.6 have been computed as described above. For instance, the value ||set(ve1)]|
can be computed using (6.24):

[set(va,1)]| = ([|set(vs )]l > 1) + [|set(vs2) ||
= ((1, 1) > 1) + (0, 1) = (O, 1, 1) (O 1) (O, 2, 1)

We use Theorem 6.17 to compute the values z; := |[{S € W | i € S}|| for each player
i€ {A B,C}:

za= ) |Ipaths(r,v)| ® (|lset(then(v)))|| > 1) = [[paths(r, )| © (|lset(vs1)]| > 1)

=(1)A © ((0,2,1) > 1) = (1) ©(0,0,2,1) = (0,0,2,1).
xp=(0,1)o(1,1)>1)+ (1) ((0,1)>1)=(0,0,1,1) 4+ (0,0,1) = (0,0,2,1).
zc =(0,0,1) © ((1) > 1) +(0,2) © (1) > 1) + (1) © ((0) > 1)

=(0,0,0,1) + (0,0,2) + (0) = (0,0,2,1).

It is not a coincident that all the values are equal. All players are equally desirable. The
game (N, W) has the weighted representation [2; 1,1, 1]. ]

6.3. Desirability Relation on Individuals

In this section, we apply our approach of using QOBDDs to represent simple games to the
desirability relation on individuals <; and the relation ~; for equally desirable players.
Having these relations at hand is a necessity to answer more complex questions. For
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Figure 6.6.: Values for ||set(v)|| (left) and ||paths(r,v)|| (right) for each node v € V(r).

instance, the desirability relation =<; is used to decide if a simple game is complete and
it is necessary to obtain the set of the shift-minimal winning and shift-maximal losing
coalitions in Section 6.6. Throughout this section, let (N,W) be a simple game with
players N = {1,...,n} that is represented by the QOBDD with root r.

In the following discussion we consider the relations <; and & as oracles which can
be queried for a pair i, j of players. The query will be answered in various ways. The
fallback solution is to use an algorithm that operates on the QOBDD that represents
(N,W). There is one algorithm for each relation. Using these algorithms is rather
expensive, so that one of the main intentions in this section is to reduce the number
of cases when the algorithms have to be used, and therefore to reduce the costs to
solve a given problem. The problems we are concerned with are the identification of
the equivalence classes of =, the decision if a simple game is complete and directed,
respectively, and the sorting problem for <;. As in Daskalakis, Karp, Mossel, Riesenfeld,
and Verbin (2011) by sorting problem we refer to the disclosure of all the relationships
between the elements in N.

We start with some implications of the Chow parameters of the players for the relations
=<; and =;, which can easily be verified. As we have seen in Section 6.2, the Chow
parameters of all players for W can be computed with O(size(r)) arithmetic operations.

Lemma 6.20. For players i,7 € N it holds:
1. If i <; j then chow(7) < chow(j).
2. If i <1 j then chow(i) < chow(j).
3. If i = j then chow(i) = chow(j). O

Furthermore, if we know in advance that (N, W) is complete, e.g., because the QOBDD
is built from a weighted representation, then <; is entirely determined by the Chow
parameters. This result is well-known in the context of Boolean functions and threshold
functions; see Sheng (1969), Theorem 4.3.2.

Proposition 6.21. If (N, W) is complete, then fori,j € N it holds i <; j if and only
if chowyy (i) < chowyy (7).
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Proof. The direction “==" is obvious from Lemma 6.20. For the direction “<="
suppose chow(i) < chow(j) and assume to the contrary that i Z; j. Because the
game is complete, ¢ A; j is equivalent to ¢ >; j which implies the contradiction
chow(i) > chow(j). O

In general, if a query ¢ =<7 j or i &~y j cannot be answered by Lemma 6.20 or Propo-
sition 6.21, then we use the QOBDD for (N, W) to answer it.

Theorem 6.22. Fori,5 € N it holds i <; j if and only if
subseteq(r, without; o remove;, r, without; o remove;) = true
and i =y j if and only if
equal(r, without; o remove;, r, without; o remove;) = true.

We can decide in expected time O(>,_, width,(r)?) and thus, O(n - width(r)?) if i <; j,
and we can decide in expected time O(size(r)) if i =5 j.

Proof. For the first equivalence we use the definition of ¢ <; j, which is
i=1j == VS €2V 1 (igSAJESAS+ieW=>S+ieW),

and we use the general equivalence p A = pif and only if p A = ¢ A p for
formulas ¢, 1, p. By using the manipulators from Lemma 6.7 and 6.8, respectively, for
S € 2V we obtain:

((€SNJjESANSH+HieW)=S+jeW
< (igSNjE€SNS+icset(r) = (T&SANJESNS+JEset(r))
(&SNS E setremove, (1)) = (i € S A S € Setremove, (7))
<= 5 € setuithoutjoremove; ) (1) = S € Setuithout;oremove; (7) -

The missing step is the application of subseteq from Eq. (6.6) on page 73. By using
Theorem 6.4, the expected running time for the first case is

O(Z widthy (7, without; o remove;) - width (7, without; o remove;)) .
k=1

For k € {1,...,n} both widths have upper bound widthy(r) + 1 by Proposition 6.9. The
remaining step follows from (widthy(r) + 1)? € O(widthy(r)?).

Similar arguments can be used for the case of i ~; j with equal instead of subseteq.
By Proposition 6.9 it holds size(r, ®) < size(r) + (n — k) for any manipulator under
consideration. Therefore, by using Corollary 6.5 and size(r) > n we obtain

O(size(r, ®)) < O(size(r) 4+ (n — k)) < O(size(r))

as the expected running time to decide if i ~; j. O
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After these preparations we can now discuss the problems in the domain of simple
games. We first decide if the simple game (N, W) is complete. To answer that question
requires at most n — 1 queries to <; that use the fallback solution. To see this, obtain
from the Chow parameters (for W) an ordering 7 of N such that

chow(m(1)) > -+ > chow(w(n)) .

By Proposition 6.21 the game is complete if w(i) =; w(i + 1) for i = 1,...,n — 1. This
can be decided with at most n — 1 queries to <;. The game is directed, if 7 can be
chosen as the identity function on N, that is, w(i) = fori =1,... n.

Proposition 6.23. If the Chow parameters of the players are known, then we can decide
in expected time O(n? - width(r)?) if (N, W) is complete.

Proof. The running time is dominated by the n — 1 queries each of which requires
expected time O(n - width(r)?). O

To identify the equivalence classes of ~, that is, the ¢ types Ny, ..., N;, at most O(tn)
queries to & are necessary that use the fallback solution. Due to 3. of Lemma 6.20 we
can use the Chow parameters again. Let C' be the equivalence relation on N, such that
(,7) € C if and only if chow(7) = chow(j), and for i € N let [i]c denote the equivalence
class of ¢ w.r.t. C. It is rather easy to see that the quotient set N/~ is a refinement of
the partition N/C.

To find out the equivalence classes of ~; in [i]¢ for player i € N at most

[ile/=1l - lilc]

queries to ~; are necessary. Hence to identify the types NVy,..., N; requires
DX ml X< DY X< tn
XeN/C XeN/C

queries to /=;. In the worst-case, ¢t = n and all players have the same Chow parameters.

Proposition 6.24. If the Chow parameters of the players are known, then the equiva-
lence classes Ny, ..., Ny of =1 can be identified in expected time O(tn - size(r)). O

To solve the sorting problem for <;, we first compute the equivalence classes (resp.
types) Ny, ..., N, of ~;. Using these we define a relation <; on the types such that

N, <y N, <= F €N, jeEN,:i =]

where p,q = 1,...,t. The relation <; is a partial order and we can use the al-
gorithm by Daskalakis, Karp, Mossel, Riesenfeld, and Verbin (2011) which requires
O(twlog wlog(t/w)) queries of kind <; and thus, of kind =<, where w is the width? of
<;. In practice some of the query results are implied by the Chow parameters using
Lemma 6.20.

2The width of a partial order is the size of the maximum antichain, that is, the maximum number
of incomparable elements.
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Proposition 6.25. If the Chow parameters of the players are known, then the sorting
problem for =<1 can be solved in expected time

O(tn - size(r) + twlog w log(t/w)n - width(r)?)
where w s the width of the induced partial order of <; on the equivalence classes of ~j.

Proof. Tt takes expected time O(tn-size(r)) to find the types Ny, ..., N;. The complexity
of the algorithm POSET-MERGESORT in Daskalakis et al. (2011) is (without queries)
O(tw*logwlog(t/w)), if the width of the partial order is not known in advance. The
number of queries is bounded by O(tw logwlog(n)/w) in this case and each query takes
expected time O(n - width(r)?). The expected running time for the sorting algorithm is
therefore dominated by the expected time for all queries. O

6.4. Blocking Coalitions, the Dual and Properties of
Simple Games

In this section, we are concerned with some important properties of simple games, and
on this occasion we address the so-called dual of a simple game, which is closely related
to the properties, that we will discuss.

The problem to decide if a weighted voting game [Q;wy, ..., w,] is proper, is co-
NP-complete (Freixas, Molinero, Olsen, and Serna 2012). Therefore, we cannot expect
to find a polynomial time algorithm for WvGs unless NP=co-NP. Pseudo-polynomial
algorithms exist though. We will arrive at a similar result by using the QOBDD for a
WvaG.

We begin with the notions of a blocking coalition and the dual of a simple game as
they are used by Taylor and Zwicker (1999). Throughout this section let (N, W) be a
simple game represented by the QOBDD with root r.

Definition 6.7. A coalition S € 2V is called blocking if N\ S & W. The set of all
blocking coalitions of (N, W), which is denoted by W, is an up-set. The simple game
(N, W) is said to be the dual of (N, W). O

The intuitive idea behind a blocking coalition is, that one has a collection of players
that can prevent any collection of the remaining players from being a winning coalition.
For example, in the WvaG [4;2, 1,1, 1] the coalition AB is blocking because the weight
of the remaining players is just 2. But AB is losing as well.

Because set(r) = W, the set represented by the QOBDD with root 7 are the losing
coalitions L of (N, W). By Def. 6.7 and the manipulator compls in Lemma 6.6 for every
coalition S € 2% it holds:

SEWle= N\SEW <= N\ S Cset(F) <= S € seteompis(T) - (6.25)

By using the blocking coalitions and the dual of (N, W), now it is straightforward to
decide if (N, W) is proper and strong, respectively.

94



6.4. Blocking Coalitions, the Dual and Properties of Simple Games

Proposition 6.26 (Taylor and Zwicker (1999), Prop. 1.3.7). We have that (N, W) is
proper if and only if W C W< and (N, W) is strong if and only if W CW. O

Testing set inclusion is easily realizable using QOBDDs by the algorithm subseteq from
Section 6.1. By Proposition 6.26 and (6.25) we have

(N, W) proper <= W C W <= W C setcompis(F) <= subseteq(r,id, 7, compls)
and analogously
(N, W) strong <= WY CW <= setompis(F) C W <= subseteq(F, compls, 7, id) .
For the running time we get the following result:

Theorem 6.27. We can decide in expected time O(n-width(r)?) if (N, W) is proper and
strong, respectively. Furthermore, if (N, W) is weighted, then we can decide in expected
time O(size(r)) if the game is proper and strong, respectively.

Proof. We have size(r) = size(T) and by Proposition 6.9 it holds size(r) = size(r, compls).
The expected running time for the general case follows from the expected running time
of the algorithm applys; in Theorem 6.3 which is used by subseteq. The result for the
case of a weighted simple game is a direct consequence of Theorem 6.11. O

Finally, the following well-known dependencies are sometimes useful in practice:
Proposition 6.28. For the simple game g = (N, W) it holds:

1. If g is decisive, then |W| = 2""1,

2. If W| = 2" and g is not decisive, then g is neither proper nor strong.

3. If g is a weighted voting game, then |W| = 2"71 if and only if g is decisive.

Proof. Tt holds |W| + |£] = 2". The function f : 2V — 2V S+ N\ S is a bijection.
It can easily be seen that if g is proper (resp. strong), then it holds f(W) C L (resp.
f(L£) € W). For the first statement, if g is both proper and strong, then it follows
IW| = |£] and hence, [W| = 2"/2.

To see the second statement, we suppose that [W| = 277! and that ¢ is not decisive.
Assume to the contrary that g is proper but not strong. The opposite case can be shown
similarly. Because g is proper is holds f(W) C L. From |W| = 2" it follows |W| = |L]|.
Therefore, by the injectivity of f we have f(W) = L. However, f is a bijection and
because ¢ is not strong, it holds f(L£) # W. This contradicts the fact f(W) = L.

The last claim is a consequence of the fact, that a Wva is proper, strong or both. [
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6.5. Minimal Winning and Maximal Losing Coalitions

The minimal winning coalitions W,,;, and the maximal losing coalitions £, are funda-
mental for the computation of some power indices in Section 6.7 and they are necessary
to compute the set of shift-minimal winning and shift-maximal losing coalitions in Sec-
tion 6.6. In this section we present algorithms to compute the QOBDDs for W,,;, and
L nax, respectively. In the special case of a directed simple game we will show, that this
can be done in time linear in the size of the QOBDD for W.

Algorithm 5 MinWin(i, v)
Require: v is a QOBDD node with label i and set(v) is an up-set.
Ensure: Returns node v’ such that minset(v) = set(v’).

1. if v € {I, O} then return v
2: else if then(v) = else(v) then return ite(i, ©; 1, MinWin(i 4 1, else(v)))
3: else return ite(i, minus(MinWin(: + 1, then(v)), e), e)

where e = MinWin(i + 1, else(v))

Throughout this section let (N,) be a simple game with players N = {1,...,n}
represented by the QOBDD with root r. We discuss the computation of the QOBDD
for the set Wy, from r first. We use Algorithm 5 to this end. The explicit use of a
computed table in MinWin has been omitted to ease the presentation.

Proposition 6.29. It holds minset(r) = set(MinWin(1,7)).

Proof. The proof is by induction on the structure of the QOBDD. For the induction base
assume v is a sink. If v = O then minset(v) = () = set(v). Otherwise if v = I then
minset(v) = {0} = set(v).

For the induction step, let v be an inner node with label ¢ € N and assume the
statement holds for then(v) and else(v). If then(v) = else(v) then:

set(MinWin(i,v)) = set(ite(i, Q;41, MinWin(i + 1, else(v)))) (Alg.)

= set(MinWin(i + 1, else(v))) (Def. set)

= min set(else(v)) (Ind Hyp )

= minset(v) . (then(v) = else(v))

Otherwise, v is not redundant. Let e denote the node returned by MinWin(i+ 1 eIse( )

and set A := minset(else(v)). By our induction hypothesis we have set(e) = A and we
can conclude with:

set(MinWin(i, v))

= set(ite(é, minus(MinWin(i + 1, then(v)), e), €)) (Alg.)
={S+1i|S € set(minus(MinWin(i + 1, then(v),e)))} U set(e) (Def. set)
={S+1i|S € set(MinWin(i + 1, then(v))) \ set(e)} U set(e) (Alg. minus)
={S+1i|S € minset(then(v)) \ A} UA (Ind. Hyp.)
= minset(v) .
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The last equality is due to Lemma 5.1 on page 54. O

The idea to obtain the QOBDD for L., from the QOBDD for L is similar. By rec-
ognizing that £ = set(7), however, we can also compute the QOBDD for L., directly
from r. This fact has been incorporated in Algorithm 6 by twisting the sinks.

Algorithm 6 MaxLosing(i,v)

Require: v is a QOBDD node with label ¢ and set(v) is an up-set.
Ensure: Returns node v’ such that maxset(v) = set(v').

if v =1 then return O
else if v = O then return I
else if then(v) = else(v) then return ite(i, MaxLosing(i + 1, then(v)), Q;41)
else return ite(7, t, minus(MaxLosing(i + 1, else(v)), t))
where ¢ = MaxLosing(i + 1,then(v))

Because the structure of the algorithm is very similar to that of MinWin, a proof of
the following statement is omitted.

Proposition 6.30. [t holds max set(7) = set(MaxLosing(1,r)). O

The running time of the algorithms MinWin and MaxLosing suffers from the recursive
application of the algorithm minus in line 3. Fortunately, for the important class of
directed simple games we can prove, that slightly modified versions of the algorithms
have expected running time O(size(r)). Most real world simple games are complete and
therefore have an ordering of the players, such that the simple game is directed.

In the following we assume, that (N,)V) is directed. Let v € V(r) be an inner
node. Because set(r) is an up-set, also v represents an up-set. Additionally, because
(N,set(r)) is a directed simple game, also v represents a directed simple game with
players {var(v),...,n} and winning coalitions set(v). By Lemma 5.2 on page 54 it
follows:

min set(then(v)) \ minset(else(v)) = min set(then(v)).

Therefore in Algorithm 5, the expression
minus(MinWin(i + 1, then(v)), MinWin(i + 1, else(v)))

always evaluates to MinWin(i + 1, then(v)) and thus, it can be substituted by the latter.
The resulting algorithm has running time linear in the size of the input QOBDD. Similar
arguments can be used to show that MaxLosing can be altered to run in linear time for
directed simple games. The structural changes between the QOBDDs for W, Wy, and
L.y are illustrated in Figure 6.7.

Theorem 6.31. For a directed simple game (N, W) represented by a QOBDD with root
1, the QOBDDS for Winin and Lumax, respectively, can be computed in time O(size(r)) and
either QOBDD has size at most size(r) + n.

Proof. The running time is clear from the previous discussion. The upper bound for the
size follows because at most n inner nodes are created for Oy, ..., Q,. O
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Figure 6.7.: Difference between the QOBDDs for W (left), Wiin (center) and L.y (right)
for the (directed) weighted voting game [2;1, 1, 1].

6.6. Shift-minimal Winning and Shift-maximal Losing
Coalitions

In this section we show how to obtain the QOBDD for the shift-minimal winning coalitions
Wnite from the QOBDD for minimal winning coalitions W,,;, and, analogously, how to
obtain the QOBDD for the shift-maximal losing coalitions Ly from the QOBDD for the
maximal losing coalitions L,.x. These coalitions and their models play an important
role in the characterization of complete simple games (Carreras and Freixas 1996), they
can be used to find weighted representations of simple games using (integer) linear
programming (Freixas, Molinero, Olsen, and Serna 2012) and, recently, they have been
used to define a new power index (Alonso-Meijide and Freixas 2010).

Throughout this section let (N, W) be a simple game with players N = {1,...,n}
represented by the QOBDD with root r and let the set of the minimal winning coalitions
Whin be represented by a QOBDD with root rpy;,.

In the following, we will focus on the shift-minimal winning coalitions. The case of
Lqnire can be treated similarly. We develop the algorithm successively, starting at the
formal definition of a shift-minimal winning coalition in Def. 2.6 on page 14. A coalition
S € 2V is in Wi if and only if S € Wi and

Vi,jEN:(j<1iNi€SAjES = (S—i)+j&W). (6.26)

By negation we obtain S € 2V is not in Wapig if S € Wain or (6.26) is false for S. The
negation of (6.26) is:

i, jEN:j=1iNi€SATESA(S—i)+jEW. (6.27)

We define @, ;(S) as a shorthand for the formula i € SAj & SA(S —i)+j €W, so
that (6.27) can be rewritten to

3i,j € N:j<rih® (). (6.28)

It suffices to consider a subset of all pairs 7, j of players in N to decide if (6.28) is true
for a given S. To this end, for player i € N we define the set A; as the set of players
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7 € N such that j <; ¢ and there is no player k € N with j <; k < 7. Intuitively, if
j € A; then j is a direct predecessor of ¢ w.r.t. <;. We use the following equivalence
where Ny, ..., N; are the t equivalence classes of & (types):

Lemma 6.32. For S € 2V it holds:
Ji,je N:j=<riN®;;(S) < Tke{l,...;t}:FieN,:3jeA:D;(9).

Proof. The direction “<=" is obvious, because j € A; implies ;7 <; 7. For the remaining
direction, assume there are players i,j € N such that j <; ¢ and ®; ;(5) is satisfied.
Because every player belongs to some type, we only have to show that there are i, j € N
with j € A; and @, ;(S5). To this end, for players i,j € N with j <; ¢ we define the
distance between i,j € N, denoted by d(i, j), as the minimum number of edges between
i and j in the directed graph (N, <;). It is j € A; if and only if d(7, j) = 1.

Assume to the contrary, that there is no pair 4, j such that j € A; and ®, ;(.S). Let i, j
be a pair of players with ®; ;(S) and with minimum distance d(7, j). Because j ¢ A; it
follows d(i,j) > 1 and hence, there is a player p € N, such that j <; p <; i. There are
two cases. First, assume p € S. Because ®; ;(5) is satisfied, we have (S—i)+j € W and
together with p <; ¢ this implies (S —p)+j € W and ®; ,,(S). Since d(p, j) < d(i, j) this
contradicts the minimality in the choice of i. Second, assume p ¢ S. Because ®; ;(.5) it
holds (S —14)+j € W and together with j <; p this implies (S —14)+p € W and @, ;(.5).
Since d(i,p) < d(i,j) this contradicts the minimality in the choice of j. Consequently,
there are players ¢, 7 € N with @, ;(S5) and d(7, j) = 1 and therefore, j € A;. O

By using disjunctions instead of existential quantifications in the right-hand side of
Lemma 6.32 we can rewrite (6.28) to:

\t/\/\/z'es/\jngA(S—z')JrjeW. (6.29)

k=14EN}, jEA;

The manipulators remove and add from Section 6.1 can now be used for the transition to
QOBDDs and sets. By using set(r) = W and the manipulator remove from Lemma 6.8
we have that (6.29) is equivalent to:

V'V VieSAjgsSn(S—i)+jeset(r)

k=1i€Ny jEA;

t
= \/ V Vi€SAS—i€setiemoe,(r)

k=1i€Ny jEA;

t
= \/ VieSrnS—ie | setiemoe,(r)- (6.30)

k=1i€N, JEA;

For player i € N the QOBDD for

U Setremove, () (6.31)

JEA;
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can be computed successively using the algorithm or as can be seen in Algorithm 7
below. The result QOBDD node is denoted by x. By using this and by Lemma 6.8 for
the manipulator add, we rewrite (6.30) to:

t t
\V VieSnS—icset(z) < \/ \/ 5 € seto,(z)
k=1 ’L'EJ\/Y;C k=1 iENk

Finally, we have that a coalition S € 2V is shift-minimal winning if and only if

t

S € set(rmin) A 7 \/ \/ S € setaqgq, () .

k=1ieNy
By using set operations instead of logical operators, this is equivalent to
t
S € set(Tmin) \ U U setadd; () -
k=1 Z'ENk

From this it is rather easy now to obtain the algorithmic formulation in Algorithm 7.

Algorithm 7 Shift MinWin(r, ryin)
Require: r and r,;, such that set(r) = W and set(rmin) = Wi, respectively.
Ensure: Returns QOBDD node v such that set(v) = Wipig.-

1 y < @1

2: for k=1,...,tdo

3: €T < @1

4 let p be any player in N},

5 for j € A, do

6: x < or(x,id, r, remove;)
7 for : € Ni, do

8 y + or(y,id, x,add;)

9: return minus( oy, y)

We will omit a theoretical analysis of the running time for the algorithm ShiftMinWin,
because the upper bound that we would obtain by a naive analysis, would be rather
distracting from what we experience in practice. We therefore refer to the experiments
later. We briefly discuss the number of QOBDD operations instead.

Because the types Ny, ..., N, are disjoint in line 7 of Algorithm 7, each player appears
once as i. In line 5, a player may appear multiple times or not at all as j. We therefore
can bound the number of QOBDD operations from above by

“A
1+n+z|—” (6.32)
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where 7 : N — {1,...,t} with 7(p) = k if and only if p € Nj. The algorithm depends
mainly on the relation <;. Therefore, if many pairs of players are incomparable, then
the computation becomes quicker. If all players are incomparable, that is <; = 0, then
the sum in (6.32) evaluates to 0 and the minus operation in line 9 has expected running
time O(size(rmin)). Many real world simple games are complete, though. If the simple
game is complete and ¢ = n, then the sum in (6.32) evaluates to n — 1.

Algorithm 8 ShiftMaxLosing(s, Smax)

Require: s and sy, such that set(s) = £ and set(Syax) = Lmax, respectively.
Ensure: Returns QOBDD node v such that set(v) = Lopigy-

Y < @1
for k=1,...,tdo
T < @1
let p be any player in N,
for j € A, do
x < or(x,id, s,add,)
for : € N, do
y < or(y,id, x, remove;)
return minus(syax, ¥)

Similarly to the computation of the QOBDD for Wi, one can use Algorithm 8 to
compute the QOBDD for the shift-maximal losing coalitions Lgpig.

6.7. Power Indices

Measuring the “power” of a player in a simple game is one of the most important topics
in practice. However, there is no single notion of power. Various notions have evolved
over time. In this thesis we consider so-called a prior: voting power; see Felsenthal and
Machover (2004) and Taylor (1995) for an introduction. In contrast to actual voting
power, a priori voting power does only consider the structure of a simple game. In other
words, the players neither have preferences, intentions nor predispositions. Power indices
are one of the most common approach to a priori power. Roughly speaking, a power
index maps each player to a numerical value which corresponds to its power. There is
vast literature on this topic from different perspectives. Some of the most commonly
used power indices are those of Shapley and Shubik (1954), Banzhaf (1965), Deegan
and Packel (1978) and Holler (1982). Further power indices have been developed over
time, such as the power index of Johnston (1978) and quite recently, the shift power
indez (Alonso-Meijide and Freixas 2010). Some authors consider additional restrictions
on the game, like so-called a priori unions of players. These lead to modified versions
of existing power indices; see for instance Alonso-Meijide, Bilbao, Casas-Méndez, and
Ferndndez (2009) and Alonso-Meijide and Fiestras-Janeiro (2002) for an introduction.
In the context of politics, power indices have been used, e.g., to assess the Council of
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the European Union® (Algaba, Bilbao, and Fernandez 2007; Kirsch and Langner 2011)
and the International Monetary Fund (Leech 1998; Leech 2002). Beside that, power
indices have also been used in completely different contexts. Kirstein (2009) studies the
distribution of power in the supervisory board of the Porsche Automobile Holding SE
after the takeover of the Volkswagen AG in 2008. Bachrach, Rosenschein, and Porat
(2008) apply power indices to the so-called network reliability problem to decide which
servers in a computer network should be maintained first, and Lucchetti and Radrizzani
(2010) use power indices to rank genes, which are potentially responsible for genetic
diseases in so-called microarray games with a large number of players (resp. genes).

The most common approach to compute power indices for weighted voting games is to
use dynamic programming by so-called generating functions. For an overview see Mat-
sui and Matsui (2000) and Leech (2002). For a weighted voting game [Q;wy, ..., wy,],
the problem of computing most power indices is NP-complete, e.g., the Banzhaf and
Shapley-Shubik power indices (Matsui and Matsui 2001). Klinz and Woeginger (2005)
have presented algorithms, that can compute the Banzhaf and Shapley-Shubik power
index for a single player in time O(n?2"/2) and O(n2"/?), respectively, while Uno (2003)
has presented pseudo-polynomial time algorithms to compute the Banzhaf and Shapley-
Shubik power index for all players in time O(nQ) and O(n?Q), respectively. Approxima-
tion algorithms exist for some classes of WvGs. See again Leech (2002) for an overview.

Even though most algorithms work very well for weighted voting games, the case
of vector-weighted voting games or simple games in general has been studied less ex-
tensively. Algaba et al. (2003) use generating functions to compute the Banzhaf and
Shapley-Shubik power index for vector-weighted representations with an application to
the Council of the European Union as defined in the Treaty of Nice. In comparison, by
means of QQOBDDs, we are able to compute power indices for any simple game.

In this section we show how to compute five power indices for the players of a simple
game. Namely, we discuss the Banzhaf, Shapley-Shubik, Deegan-Packel, Holler-Packel
and the shift power indices mentioned earlier.

Throughout this section, the simple game (N, W) with players N = {1,...,n} is
represented by a QOBDD with root r, the set W, is represented by the QOBDD with
root rpin and the set Wi is represented by the QOBDD with root rgi. We start by
defining the power indices. In the remainder of this section by an indexr we mean a
power index.

The absolute Banzhaf index bz(i) for player ¢ € N is the fraction of coalitions that
contain ¢ and for which player ¢ is critical:

bz (i) = {SeW|i 625/1\5 i € W .
If 7 is not a member of any minimal winning coalition, then bz(i) = 0. Such a player
is called a dummy player. The Banzhaf index can be normalized to sum up to 1. This
version is called the normalized Banzhaf index.

Let 7 be a permutation of the players N. For a position p € N the player 7(p) is
called pivotal for w if S :={m(1),...,7(p)} € W, but S — w(p) € W. If i is critical for

3For both, the Treaty of Nice and the Treaty of Lisbon

(6.33)
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a coalition S € W, then there are (|S| — 1)! - (n — |S|)! permutations for which player i
is pivotal. The Shapley-Shubik index ss(i) of player i is the fraction of permutations for
which player ¢ is pivotal:
, 1
ss(i) = — > (SI=1)! - (n =S| (6.34)
Sew,
S—igW
The Holler-Packel index?* and the Deegan-Packel index both use the minimal winning
coalitions Wy,. Both indices have similar structure. The normalized Holler-Packel
index hp(i) for player ¢ € N is the fraction of minimal winning coalitions containing
player ¢:

. SGWmin 1€ 8
SMICEUAIEL]

In comparison, the Deegan-Packel index dp(i) for player ¢ sums up player i’s shares of
the minimal winning coalitions containing i. It is defined by:

dp(i) : ! > % : (6.36)

- |Wmln| SEWmin:
€S

(6.35)

The shift power indez sh(i) is similar to the Holler-Packel index, but it uses the shift-
minimal winning coalitions instead of the minimal winning coalitions:
_ {S € Wanite | © € S}

[ Wanits| .

sh(i) : (6.37)
To compute these indices, we only have to apply our results from Section 6.2. The

main work has already been done there. Let ¢ € N be a player. In case of the Banzhaf

index we use (6.33) and the definition of the swings of player i in Def. 6.6 and get:

bz(i)- 2" ' =|{SeW |i€ SAS —igW} = |swings,(i)].

The Shapley-Shubik index does also use the swings of player ¢, but this time, the size of
the coalitions is taken into account. With S; := swings,,,(7) and || - || as in Def. 6.4 we
rewrite (6.34) by:

ss(i)-nl = > (|IT] = Dl(n — |T])! (Eq. 6.34)

TEeS;

=> > (TI=1n—|T)!

k=0 T€S;,
|T|=k

maxsize(S;)

— Z (k—D(n—k)!|Sillx

k=1

4Also known as public good inde.
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6. Algorithms for Simple Games

where ||S;||; is the number of swings of size k. We can safely start at k = 1, because a
swing S for player ¢ always fulfills ¢ € S. For the Holler-Packel index we have

(6.35)

hp(2) - [Winin| {5 € Whain | i € S} = chowyy (i)

while, similar to ss(i), for the Deegan-Packel index we again have to use || - || from
Def. 6.4. With C; :={S € W | i € S} we get:

maxmze

dp(i) - W] (6.36) Z Z Z Z ”Cka

Sewmm, k=1 TeCZ, k=1
ieS |T|=k

Finally, the shift power index is structurally similar to the Holler-Packel index again.

We obtain:
(6.37)

( ) |Wsh1ft |

The main result in this section is the following.

’{S € Wit | (&S S}| - ChOWWshft( )

Theorem 6.33. The (absolute) Banzhaf, (normalized) Holler-Packel and shift power
indices of all players can be computed with O(size(r)), O(size(rmin)) and O(size(rgnit))
arithmetic operations, respectively, and the Shapley-Shubik and Deegan-Packel indices of
all players can be computed with O(n-size(r)) and O(n-size(rywin)) arithmetic operations,
respectively.

Proof. We explain the idea for the Deegan-Packel index. It can similarly be applied to
the other indices. The coalitions of interest are in Wy, so our QOBDD has root 7.
First, we compute the values ||paths(rum, v)|| and ||set(v)|| for each v € V(rp,) U {0, 1}
using O(n - size(rmn)) arithmetic operations as shown in Theorem 6.19. The cardinality
of Whin can be calculated by

n
Wanin| = Z |set(rmin)|[x -
k=0

For player i € N, the vector |[{S € Wiin | © € S}|| can be computed using O(n|V;(7min)|)
arithmetic operations. Therefore, all the values can be computed with O(n - size(rpin))
arithmetic operations. O

It should be mentioned again, that the majority of work has already been done in
Section 6.2. Here, we have only applied the results from that section and therefore, we
have added a convenient level of abstraction between the concept of power indices and
the computational problem which is mainly a counting problem.

Because a QOBDD for a WvG has bounded size, for this class of simple games we can
state the following result using Theorem 5.5 and Theorem 5.11. The running time does
not include the time to build the QOBDD. This would add an additional factor of n and
log @), respectively, to the running time.
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Corollary 6.34. If the QOBDD with root r represents a WVG with n players and quota
@ > 1 then we can compute the Banzhaf power index for all players in time

O(min{2"? max{n —log @, 1}Q})
and we can compute the Shapley-Shubik power index for all players in time
O(n - min{2"? max{n — log Q,1}Q})

under the assumption of constant time arithmetic. [

6.8. Models of Coalitions

In this section we discuss so-called models of sets and present algorithms to count and
enumerate them. Models are vectors that abstract from individual elements to equiva-
lence classes of elements. In the context of simple games the equivalence classes are the
types Ni,..., N, the elements are players and the sets are coalitions. The idea is the
following. If there is a winning coalition in a simple game with x players of type k then
for any other combination of x players of type k there is another winning coalition with
these players that does not differ in the remaining players. However, the information
about the number of players of each type would suffice to generate all the possible com-
binations. As an example, for the Wva [2; 1,1, 1] it is sufficient to know, that a coalition
wins, if it contains 2 or 3 players instead of enumerating all the winning coalitions with
2 and 3 players, respectively.

For some problems, it is sufficient to consider a set of models instead of the corre-
sponding set of coalitions. For instance, as we will see in Section 7, the models of the
shift-minimal winning and shift-maximal losing coalitions can be used to decide if a
simple game has a weighted representation.

To use models instead of coalitions is beneficial only if the number of players n is bigger
than the number of types ¢t. If ¢ = n then each model is in a one-to-one relationship to
a coalition. Fortunately, many real world simple games have several equally desirable
players. For instance, the US Electoral College (2010-2012) has 51 players but only 19
types. The Council of the European Union as defined in the Treaty of Nice has 27 players
and 10 types. The US Federal Legislative System has 537 players but just 4 types. In
the latter example there are more than 6.77 - 105 minimal winning coalitions but there
are just three models® for them:

(50,218,1,1)  (51,218,1,0)  (67,290,0,0).

Hence, the number of models can be much smaller than the number of coalitions, so
that using models instead of coalitions can make the difference between tractability and
intractability in practice.

5Order of types: Members of the senate, member of the house of representatives, president, vice-
president.
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In this section we present algorithms to count and enumerate the models of an arbi-
trary subset A of 2. In the context of a simple game (N, W), A usually is one of the
sets

W, Wmina Wshifta E, ﬁmaxa /v‘shift . (638)

The notion of a model is not limited to simple games. Unfortunately, the desirability
relation on individuals has been stated in this context and it would be confusing to apply
the notion of desirability to non-players. We, however, remain committed to subsets of
2N where N = {1,...,n} for n € N but the elements 1,...,n are not called players
anymore.

Definition 6.8. For A C 2V we say two elements i,j5 € N are symmetric (in A)
(denoted by i = j) if

VSCN\{i,j}: (S+icd < S+jcA. O

The relation =~ is an equivalence relation. For a simple game (N,WV) it can easily be
seen, that being symmetric and being equally desirable is the same. The following defi-
nitions are also consistent with those from Section 2 for simple games. The equivalence
classes of ~ are denoted by Njy,..., N, where t is their number.

It is not necessary to use exactly the equivalence classes of ~ to talk about models. It is
perfectly fine to use any refinement of the partition Ny, ..., Vy, for instance, {1},...,{n}.

Definition 6.9. Let the partition Pi,..., P; of N be a refinement of the equivalence
classes of ~ and let S be a set in A. The vector m = (my,...,my) € N is called a
model of S (w.r.t. Py,...,P;), if

Vie {l,....d}:m;=|PNS|.

The vector mi is a model of A (w.r.t. Py,...,P;), if m is a model of some element in A

modelsp, . p,(A) wr.t. Pp,..., Py The set of models A w.r.t. P,..., Py is denoted by modelsp, _ p,(A).

models(.A)
Pi.....P,
D1,---,Pd

We write models(.A) if the partition of N is clear from the context. O

Notice that for the case of a simple game (N, W) and in which A is one of the sets in
(6.38), the types of the players in (N, W) are a refinement of the equivalence classes of
the relation = for A.

In the following, it is crucial that variables for symmetric elements form consecutive
levels in the QOBDD. In contrast, the order of the partitions is irrelevant.

Definition 6.10. A partition Pi,..., P; of N is said to be consecutive, if for each
ke {1,...,d} it holds

Vre N:(minP, <z <maxP, — x € FP). O

In the remainder of this section, we assume that A C 2 is represented by the QOBDD
with root 7, and the partition P, ..., P; of N is consecutive and a refinement of N/~.
For k € {1,...,d} we define py as |Pg|. As a convenience and w.l.o.g. we suppose:
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Py

UO/\QO w(2) +2

Figure 6.8.: QOBDD structure for a consecutive refinement of N/=.

Py

Vk e {l,...,d— 1} : max P, < min Py .

Hence, we have P, = {1,...,p1}, P ={p1+1,...,p1+p2} and so on. The element with
lowest index in Py will play a prominent role in the following discussion. Therefore, we
define a mapping u by
pk) =1+ > p; (6.39)
j=1,.,k—1
for each k € {1,...,d+ 1}. For instance, pu(1) =1, p(2) = 1 +p1, p(3) = 1+ p1 + po
and so on. Notice that p(d + 1) =n + 1 and thus, V(7),a+1) = {O,1}.

Because the partition Pj,..., P; is consecutive, we have the following property. Con-
sider the node u in Figure 6.8 with label u(2). Starting at u the node v is reached by
first taking the 1-edge of u and then taking the 0-edge, that is, v = else(then(u)). Now,
because P, ..., Py is a consecutive refinement of N/~ it also holds v = then(else(v)). In
general, if on a path all variables are symmetric then it does not matter which path we
take, as long as the number of 1-edges (and hence, 0-edges) coincides. As a consequence,
on level pu(k+ 1) there are at most py + 1 different nodes reachable from u. One for each
number of 1-edges. We use this insight to define a successor function for the nodes in
V) for any k€ {1,...,d} as follows.

Definition 6.11. We say that succ is a successor function (for r and Pi,...,P;) if
for any k € {1,...,d}, for any node u € V,)(r) and for any j € {0,...,px} it holds
succ(u, j) = v if and only if

() v € Vyquan (1) and
(ii) starting at node u the node v is reached by taking j 1-edges and (px—j) 0-edges. [J

The successor function is unique for a QOBDD and a partition of N, because the
successors of each node are unique. It is the key to get rid of individual elements (resp.
variables). Figure 6.9 illustrates the idea. We discuss the problem to obtain the successor
function later. The inner nodes \J,_; 4 V) (r) together with the terminal nodes O, T
and the successor function can be considered as a multivalued decision diagram. See
Wegener (2000), Section 9.1 for a formal definition of this type of decision diagrams.

Before we present a method to obtain the successor function, we briefly discuss algo-
rithms to count the number of models and to enumerate the models of A. Thanks to

our successor function, this is nearly as easy as counting and enumerating the sets in A.
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p(k)

p(k+1)
succ(u,2) succ(u,1) succ(u,0)

succ(v,2) succ(v,1) succ(v,0)

Figure 6.9.: Example for the successor function succ and u,v € V) with label ().

Using the successor function succ, for & € {1,...,d + 1} and for a QOBDD node
v € V) (r) the number of models can be calculated recursively by the formula:

0 ifv=0
CountModels(k,v) = ¢ 1 ifo=1
>, CountModels(k + 1, succ(v, j)) otherwise

It is straightforward to turn this into a complete algorithm and it is also rather easy
to verify its correctness. The latter is a direct consequence of the definition of the
successor function succ. A computed table should be used to store temporary results.
Disregarding the costs for insertion and lookup, as well as costs for arithmetic operations,
the algorithm can be implemented with running time O(size(r)).

Algorithm 9 EnumModelsy(k,v, (mq,...,mg_1))
Require: 1 <k <d+1andveV,y.
1. if v =1 then {It holds k = d + 1 in this case}

2: call f(mq,...,mg)

3: else if v # Oyar(y) then

4: for j =0 to p, do

5: EnumModelss(k + 1, succ(v, j), (m1, ..., mk_1,7))

By enumerating the models of A, we denote the process of calling a user supplied
unary function f for each model in models(.A). As an example, if f puts its arguments
into a list that is initially empty, then in the end, the list contains exactly the elements in
models(.A). We use the algorithm that is listed in Algorithm 9. Comments are enclosed
in curly braces. The successor function succ and the numbers pq, ..., pg are assumed to
be in a global scope.

Proposition 6.35. After the call EnumModels;(1,r,()), for each m € N& the function
f has been called with argument m ezxactly if m € models(A). The algorithm has running
time O(1 4+ n|models(A)|).

Proof. The correctness follows straight from the definition of succ.
No computed table is used for the algorithm and therefore, nodes are visited multiple
times. If models(.A) = () then » = @ and therefore, constant time is needed. Otherwise,
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Algorithm 10 first(v, k)
Require: 1 <k <d+1and v € V,y)(r).
if v ¢ {I,O} and v has not been visited before then
next(v, k, pg, true, (v, 0))

for each model, d inner nodes have to be visited starting at the root r. The overall costs
for this are O(d|models(.A)|). Let 7t = (my, ..., mg) be a model from models(.A) and let
v1,...,Uq be the inner nodes that are visited for m. Additionally, let v4.; denote the
sink I. For the nodes there are indices j, ..., jq such that for & € {1,...,d} it holds
Vg1 = succ(uvg, jx). The calls

EnumModels;(1,v1,()), ..., EnumModels¢(d, vg, (M1, ..., m4-1))

cause p; + - - - + pg recursive calls. In the worst case, all except d of these recursive calls
lead to the nodes O, ), ..., Q,u+1) and therefore, have to be accounted to the model
m. Because p; + - - - + pg = n they can be bounded by n for the model m. m

Now we discuss how to obtain the successor function succ for the QOBDD with root
r and the refinement Py, ..., P; of N/~. While it is rather easy to state any algorithm
for this problem and to prove its correctness, it is more challenging to find an economic
algorithm with respect to time and space usage. Because of the usual trade-off between
being easy to understand and begin economic in the sense just mentioned, we go without
a formal proof and instead provide a thorough description of the algorithm’s ideas. For
reasons of simplicity, the algorithm is split into two parts which are listed in Algorithm 10
and 11, respectively. The variables r, d, p1, . .., pg and the computed table are assumed to
be in a global scope. The successor function succ is assumed to be a computed function
in the global scope which can, for instance, be implemented by a hash table.

The short algorithm first handles the case in which a node v is the first node with a
label in Py, that is, var(v) = (k) or v is a sink.

Proposition 6.36. After first(v, k) was called for k € {1,...,d+ 1} and v € V,4(r)
we have that succ is the successor function for v and Py, ..., Py. O

Intuitively, the successor function for r» and Pj,..., P; has been assigned partially.
The correctness follows from the mutual recursion with the algorithm next.

Our workhorse next uses two main ideas: reuse of previously computed results and
avoidance of unnecessary recursive calls. We discuss them in reverse order.

For k € {1,...,d} let v be a node with label p(k) as illustrated in Figure 6.10. Then
for any j € {0,...,px} the successor succ(v, 7) is the node after taking a path with any
j 1-edges and any (py — j) O-edges starting at v. For j = 0 there is a unique path. For
j =1 we can first take (pr — 1) 0-edges and then a 1-edge. In general we can first take
(pr — j) 0O-edges and then the remaining j 1-edges. This kind of recursion is realized by
using the parameter takeZeroEdge in Algorithm 11, which is either true or false. Once
false, it never becomes true again until a call to the algorithm first.
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Algorithm 11 next(v, k, left, takeZeroEdge, (o, s))
1: if left = 0 then

2: succ(o, s) < v

3: first(v, k + 1)

4: else if lookup(T,v) # L then

5: (0/,8") « lookup(T,v)

6: if 0 # o' then {All successors of o’ are known}
7: for 7 =0 to left do

8: succ(o, s + j) < succ(od', s + j)
9: else {takeZeroEdge is false}

10: succ(o, s + left) < succ(o’, s’ + left)
11: else

12: if takeZeroEdge then

13: next(else(v), k, left — 1, true, (o, s))
14: next(then(v), k, left — 1, false, (0, s + 1))
15: insert(T', v, (o, s))

The algorithm next assigns a successor node in line 2 when it reaches it, that is, if no
node with a label in Py is left (left = 0). When next is called by the algorithm first for
the node v with label p(k), then p; edges have to be traversed (left is initially py) until
we arrive at a successor of v. We denote this node v by o (for origin). If the argument
left, after some calls to next, is 0, then the label of the current node v is u(k 4+ 1). At
this point we have to set succ for 0o and the number of 1-edges we have seen on the path
from o to the current node v. We keep track of this number in the argument s (for seen),
which is increased if a 1-edge is taken in line 14. Because v is now the first node with a
label in P,y we call first for v and k + 1.

p(k) Y
: then(v) /C)\ else(v)

u(k +1) d | \\Q

succ(v, pg) succ(v,pr — 1) - -+ succ(v,0)

Figure 6.10.: Recursion for algorithm next.

For the computed table T" in the algorithm next a hash table can be used. The idea
for the use of the computed table in case o # ¢ is illustrated in Figure 6.11. A dotted
edge represents an arbitrary directed path between two nodes and the label next to it
indicates the number of 1-edges on the path. As an example, the path from v to the
node succ(o’, s’ + j) contains j 1-edges.

The idea now is, that when the current node v was visited before with origin o’ after
taking s’ 1-edges and we visit v again with origin o after taking s 1-edges then for any
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TONENON O
o J
pk+1) O

succ(o’, s" + 7)

Figure 6.11.: Idea for reusing already computed results in the algorithm next.

number of remaining 1-edges j € {0,...,left} to a node on level p(k + 1) it holds
succ(o, s + j) = succ(d’, 8" + 7).

We therefore can reuse the corresponding successors as performed in lines 7 and 8 of
next. The case in which we have visited v before, but the origins o and o’ coincide is
different. By the recursion of next all the values

succ(o,0),...,succ(o, (s — 1) + left)

are known and this time, takeZeroEdge is false. We therefore have to set succ(o, s + left)
which is, similar to the case of 0 # o, equal to succ(o, s’ + left).

For the costs to compute the successor function of our QOBDD with root r and the
partition P, ..., P; we remark:

Theorem 6.37. Disregarding the costs for insertion and lookup operations of the com-
puted table, the successor function succ for r and Py, ..., P; can be computed in expected
time O(size(r) - maxg—1,.qpr) by the initial call first(r,1).

Proof. The additional factor is due to the assignments in line 7 and 8 in the algorithm
next. The running time is expected due to the potential use of a hash table for the
computed table T'. O

Concrete running times are listed in the next section.

6.9. Experiments and Conclusions

In this chapter we have presented QOBDD-based algorithms for some fundamental prob-
lems on simple games. To this end, we have introduced two fundamental techniques. By
the use of manipulators (Section 6.1) we are able to alter the set (resp. simple game),
that is represented by a QOBDD, without modifying the QOBDD itself. This works by an
abstraction of the successor functions then and else for the inner QOBDD nodes. We have
adopted some of the foundations and algorithms for QOBDDs, like the binary synthesis.
Afterwards, we have presented manipulators for some fundamental set-theoretic opera-
tions, that we have used in the subsequent sections to solve problems on simple games.
Examples include the insertion of a player into every coalition, that is represented by a
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QOBDD, and to filter all coalitions that contain a given player. In Section 6.2 we have
presented an approach by which we can compute, for instance, the Chow parameters for
all players and the swings for every player w.r.t. a set, that is represented by a QOBDD
with root r, by only O(size(r)) arithmetic operations. Both, the Chow parameters and
the swings for the players are necessary to compute some power indices.

In the following sections we have presented algorithms to solve various problems on
simple games. Regarding the use of QOBDDs, we can distinguish three different proce-
dures. For the desirability relation on individuals in Section 6.3 and for the QOBDDs
for the shift-minimal winning and shift-maximal losing coalitions in Section 6.6, we have
not used the structure of the QOBDD directly. Instead, we have just used the meaning
of the manipulators, and the binary synthesis. In these cases, our argumentation has
been rather formal. We have started with a specification and then, we have transformed
it until we have been able to replace logic or set-theoretic parts with equivalent QOBDD
constructs. A good example for this is the test to decide if i <; j for players i,j € N
in Theorem 6.22. On a similar high level of abstraction we have shown how some power
indices can be computed by the approach in Section 6.2. Starting with the formula for
a particular power index, we just have substituted relevant numbers like the swings for
the players. In contrast, for the computation of the QOBDD for the minimal winning
coalitions and for the algorithms for the models of coalitions in Section 6.8, we have
fallen back on the QOBDD structure. These algorithms are comparably elusive and less
elegant. However, by using these algorithm, other problems can be solved on a rather
high level of abstraction again. Hence, the results in this chapter can be considered as
a toolbox for simple games.

For the manipulator compls we have shown in Theorem 6.11, that if a QOBDD with
root r represents a WvG with winning coalitions VW and players IV, then

reachable(r, compls, 7, id) (6.40)

has expected running time O(size(r)). We have used this result in Section 6.4 to show
that we can decide in time O(size(r)) whether (N, W) is proper and strong, respectively.
Because we know from Section 5.3, that the size of a QOBDD for a WvG [Q; w] with n
players is in

O(min{2"? max{n —log @, 1}Q}), (6.41)

we immediately obtain an algorithm with expected running time (6.41) to decide if
(N, W) is proper and strong, respectively, if the QOBDD for (N, W) has already been
built. However, we have put considerable effort into the proof for the bound of the
running time in (6.40). And because this is a rather simple case with only a single
manipulator and a single QOBDD, we may expect that more complex cases are not
getting much easier. Therefore, our approach is likely not the best choice to obtain
complexity results for problems on simple games.

In general, the formal upper bounds for the running times of our algorithms are
rather disappointing, except for a few special cases. One such exception is the linear
time algorithm to obtain the QOBDD for Wy, given the QOBDD for W. Apart from
these exceptions, the formal upper bounds are far away from the running times that
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we encounter in practice for real world instances. For example, this is the case for the
computation of the QOBDD for Wi in Section 6.6. For that reason, we abstained from
providing a formal upper bound in this case. However, if we have got a good formal
upper bound for the running time, as it is the case for the power indices in Section 6.7,
then we can use it together with the knowledge of classes of simple games with QOBDDs
of bounded side. The upper bound for the size can be used to obtain a lower upper
bound for the running time. As an example, we have already seen in Corollary 6.34 that
we can compute the Banzhaf power index of all players in (deterministic) running time

O(min{Q"/Q, max{n —log @, 1}Q})

if the QOBDD for W has already been built and under the assumption of constant time
arithmetic.

Experiments

Table 6.1 shows the running times (in ms) of the algorithms in this chapter for some
real world simple games. The algorithms have been implemented in C++ with a bare
implementation of a QOBDD package with shared QQOBDD nodes. Our test machine has
an AMD Phenom IT X4 955 processor and 16 GB of main memory. The columns two and
three in Table 6.1 show the number of players and the size of the QOBDD for the simple
game, respectively. The remaining columns refer to particular problems and algorithms,
respectively.

The fourth column shows the time to build the QOBDD for the winning coalitions W
by the algorithms presented in Chapter 4. The fifth column lists the average running
time to compare two players w.r.t. to <; and &, respectively, if the QOBDD approach in
Theorem 6.22 is used. We have chosen a random set of samples here for some examples
due to the large number of players. Because all games in Table 6.1, except the US Federal
Legislative System, are complete, there is no need to perform any such comparison in
practice. For complete simple games, the desirability relation on individuals can be
obtained by the Chow parameters of the players as shown in Lemma 6.21.

The sixth column shows the running times to decide whether the simple game is proper
and strong, respectively, by the algorithms in Section 6.4. The difference in the running
times for the two algorithms are likely due to the fact that most games are proper but
not strong and that it is easier to falsify a property.

The columns with titles r,;, and rg,; show the running times to compute the QOBDDs
for the sets Wi and Wipig, respectively. Because most games are directed, computing
the QOBDD for Wy, is a linear time operation by the algorithm from Section 6.5. The
only exception is the US Federal Legislative System again. But even for this game the
QOBDD has been computed in less than a second. The computation of the QOBDD for
Wnite is comparably expensive though. This does not only hold for time, but also for
memory consumption. For the International Monetary Fund (IMF) we have not been
able to compute the corresponding QOBDD due to insufficient memory.

The last two columns show the running times to compute the successor function succ
from Section 6.8 and to count the number of models of the winning coalitions. For all
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instances except the IMF we have been able to compute succ in less than 100ms. For
the US Federal Legislative System it should be mentioned in this respect, that this game
has only four types and therefore, the successor function has a very simple structure.

We have not performed any experiments for the computation of the power indices.
This is because these problems can be solved quickly in comparison to most other prob-
lems. Moreover, for the counting algorithms and thus, for the computation of the power
indices, we have satisfying formal upper bounds for the running time.

Roughly speaking, we can summarize the experiments as follows. For a simple game
whose QOBDD has just a few thousand nodes, most problems can be solved in less
than a second. This can be considered as fast and the amount of available memory is
not an issue. If the QOBDD becomes larger, say some millions of nodes, then we run
into problems for some instances. Not only because it can take some time to solve a
particular problem, but rather because the memory usage grows too fast. Fortunately,
many simple games that appear in practice have rather small QOBDDs. To the author’s
knowledge, real world simple games with more than a few dozen of players and with
more than three rules are rare.
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7. Weighted Representations

In comparison to explicit representations of simple games by their winning coalitions,
weighted representations are compact and coherent, and therefore desirable for real world
voting systems. However, finding a weighted representation for a simple game (if there
is one) is not so easy. In Section 7.1 we will present a new method based on the QOBDD
for a simple game and linear programming to decide if a simple game is weighted and to
find a weighted representation if so. The method is evaluated in Section 7.2. Beside that,
we will employ the property that the QOBDD representation of a weighted simple game
is flat, regardless of the ordering of the players, for a heuristic to identify non-weighted
simple games in Section 7.3. Based on this property, in Section 7.4 we will show how a
witness of not being weighted in form of a 2-trade can be constructed from a non-flat
QoBDD. This chapter is essentially based on the article Bolus (2011a).

There is rich literature on the problem to decide whether a Boolean function is a
threshold function and a weighted voting game, respectively. For an overview in the area
of electrical sciences, see the textbooks of Sheng (1969) and Lewis and Coates (1967). See
the textbook of Taylor and Zwicker (1999) for an overview in the area of simple games
and weighted voting games. Coates and Lewis (1961) use a so-called tree expansion
technique based on backtracking. Hu (1963) uses integer linear programming to decide
if a regular positive function (resp. directed simple game) is a threshold function. Freixas
and Molinero (2008) use linear programming and the models of the shift-minimal winning
and the shift-maximal losing coalitions to decide if a simple game is weighted. Because
even the number of models can grow rapidly, new methods are necessary which can
exploit the structure of the simple game. Additionally to the exact methods, there is a
number of heuristics for the problem. Gowda and Vrudhula (2008) use a so-called tree-
based decomposition for the synthesis of a threshold circuit made of threshold functions.
Palaniswamy, Goparaju, and Tragoudas (2010) try to choose weights based on the so-
called modified chow parameters which can be derived from the chow parameters and
the number of winning coalitions.

Beyond that, the identification of threshold functions is a basic step in some ap-
proaches for threshold logic and network synthesis. Applications can be found in, for
instance, Avedillo and Quintana (2004) and Zhang, Gupta, Zhong, and Jha (2005).

7.1. Characterization of Weighted Simple Games and
Linear Programming

In this section we present a novel linear programming approach to decide if a QOBDD
represents a weighted simple game and to find a real weighted representation if so. In
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7. Weighted Representations

contrast to most other chapters, the focus here is on weighted representations with real
and, respectively, rational weights. Some of the ideas in this section are related to
the characterization of linearly separable functions by Coates and Lewis (1961). These
authors have used the characterization to develop an algorithm to find a real weighted
representation of a simple game by means of a tree representation of the game; see
Coates, Kirchner, and Lewis (1962) for a shorter version of the algorithm. Some parts of
the algorithm have been rediscovered by Smaus (2007). The original algorithm consists
of three stages. The first stage is a heuristic that tries to find weights for the players. If
at some point the algorithm encounters a contradiction in the weights assigned so far,
two other stages revise the current assignment and the algorithm either continues with
the first stage or it terminates and reports that the input is not a linearly separable
function, that is, it has no real weighted representation.

Coates and Lewis developed their algorithm long before the seminal papers on binary
decision diagrams were published by Akers (1978) and Bryant (1986). Otherwise they
had likely used QOBDDs instead of their redundant tree representation. The algorithm
is quiet complex and it never became very popular. Its exact running time is unknown.
Furthermore, the solutions found by the algorithm can be quite disappointing if you
are looking for weighted representations with minimal weights for the players or with
minimum quota.

Given the minimal winning coalitions Wy, and the maximal losing coalitions L£,,.y
of a simple game (N, W), there is an easy linear programming approach to decide if the
simple game is weighted. An introduction to linear programming can, for instance, be
found in the textbook by Karloff (1991). The linear program (LP) is:

Minimize f(Q,w)

subject to Z w; > Q for all S € Whin
i€s
Zwi <Q-—1 forall S € L.
i€s

Q,wi,...,w, >0

The objective function f(Q),w) has to be linear. For instance, we can choose f(Q,w) as
( to minimize the quota.

Example 7.1. The inequalities for the 3-person simple game with minimal winning
coalitions Whin = {{1}, {2, 3}} and maximal losing coalitions L., = {{2},{3}} are

wlZQ? wZSQ_17
wy + w3 > Q) wz < Q-1

and @, wy, ws, w3 > 0. The simple game has the weighted representation [2;2,1,1]. O

The major drawback of this approach is the number of constraints which, in general,
grows exponentially in n. Freixas and Molinero (2008) improve this linear programming
approach. First, they use the shift-minimal winning and shift-maximal losing coalitions
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Players models(Wspir) models(Lghirr) QOBDD size
Canadian Constitution (1995) 10 1 2 37
Canadian Constitution (2005) 10 3 3 44
US Electoral College (2004-2008) 51 40966 550 40972234 4558
German Bundesrat (2012) 16 12 12 162
Treaty of Nice 27 341 364 635
Treaty of Lisbon 27 20202 19927 4134
UN Security Council 15 1 2 53

Table 7.1.: Comparison of the number of models of the shift-minimal winning and shift-
maximal losing coalitions and the QOBDD sizes for some real world simple
games.

and second, they use models of these coalitions instead of the coalitions. The latter idea
uses the fact that each WvG has a representation where all equally desirable players
have the same weight. A weighted representation with this property is called type
preserving. However, care has to be taken if the weights are restricted to be integers. In
this case, some “minimum representations” are no feasible solutions of the corresponding
integer linear program anymore; see Freixas and Molinero (2008) for details. For sake
of convenience, we assume that the simple game (N,WW) is directed and the types are
Ny, ..., N; where t is the number of types. Furthermore, we assume that the types
Ni,..., N, are ordered by decreasing desirability. Formally, if 7 € N, and j € N, for
x,y € {1,...,t} then i <; j if and only if z > y. Hence, N; contains the most desirable
and V; the least desirable players. The linear program with one weight for each type is:

Minimize f(Q, Ny,..., Ny, @) )
subject to Z my - wy > Q for all m € models(Wipitt)
k=1,..t
Z my - wp < Q — 1 for all m € models(Lgpigt) (LP modets)
k=1,...,t
w; —1>w;;  forallie{l,...,t—1}
Q,wl,...,thO )

To minimize the weights, the objective function has to be chosen as >}, |Ny| - wy.

The US Federal Legislative System has more than 5.62 - 10'%° winning coalitions but
only two models for the shift-minimal winning coalitions, which can be obtained by the
methods in Section 6.6 and Section 6.8. Therefore, the second LP can be significantly
smaller than the first one. However, as can be seen from Table 7.1, for instance, for
the US Electoral College (2004-2008) the number of models of Weyig is still huge. In
comparison, the size of the QOBDD for this game is small. This is the main motivation for
our novel approach based on the QOBDD structure here. Moreover, the computation of
the models of Wiynire and Ly itself is relatively expensive as we have seen in Section 6.9,
while the QOBDD for W is usually available without additional costs. We have used the
methods in Chapter 6 to obtain the numbers in Table 7.1.
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In the remainder of this section we assume that N := {1,...,n} is aset of n > 1
players and r is the root of a QOBDD for a subset of 2V. In contrast to our usual
assumptions, set(r) does not have to be an up-set.

The definition of a valid weight function below is central in the following presentation.
It makes use of the functions [, u,, from Def. 4.1 on page 38.

Definition 7.1. A weight function w : N — Ry is called valid for the QOBDD with
root v if L,(1) < wy(r). O

We will use the following characterization of being a real weighted representation for
a simple game.

Theorem 7.1. For (Q € R and a weight function w : N — R the following statements
are equivalent:

1. (N,set(r)) is a simple game and [Q;w] is a real weighted representation of it.
2. It holds 1,,(r) < Q < uy(r) and therefore, w is valid for r.

Proof. The equivalence follows from the statement of Lemma 4.5, which is:
I(r)<@Q<u(r) < set(r) ={S C N |w(S) >Q}. (7.1)

The implication “1 = 2” holds, because if (N, set(r)) has the real weighted represen-
tation [@Q;w], then set(r) = {S C N | w(S) > Q}. By the direction “<=" of (7.1) it
follows I(r) < @ < u(r). The fact that w is valid for r can be seen without further proof,
because I(r) < u(r) is implied.

For the implication “1 <= 2” we assume that [(r) < @ < wu(r). By the direction
“=" of (7.1) it holds set(r) ={S C N | w(S) > Q}. Therefore, (N,set(r)) is a simple
game with the real weighted representation [Q;w]. ]

As a direct consequence, we obtain a very simple algorithm to test if a weight function
can be used for a real weighted representation for the set represented by a QOBDD. For
this to work, the QOBDD does not have to represent a simple game. If set(r) is not an
up-set, then no weight function is valid for r.

Corollary 7.2. For a weight function w : N — Rsq we can decide in time O(size(r))
whether (N,set(r)) is a simple game and if there is a quota Q) such that [Q;w] is a real
weighted representation of it. [

Our next step is to develop a linear program based on the QOBDD with root r, that
can be used to find a valid weight function for r» or which has no feasible solution, if
r does no represent a weighted voting game. The idea is to map the structure of the
QOBDD and the values I(v), u(v), v € V(r) U {0, I}, directly into the variables and the
constraints of the linear program. By doing this we obtain three types of variables in
our LP. We have the weights @ = (wy, ..., w,) and two vectors & and ¥, where for each
v € V(r) U {0O,I} we map [,(v) to the LP variable x, and wu,(v) to y,. We denote a
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feasible solution of such a linear program as triple (Z, ¥/, W).
In Lemma 4.1 we have seen how the values [(v) and u(v) can be calculated bottom-up
for the inner nodes by the equations

[(v) = max{l(then(v)) + w(7), (else(v))},
w(v) = min{u(then(v)) 4+ w(z), u(else(v))},

where v is an inner node with label 7. The values for the sinks are constant with
[(I) = —o0, u(l) = 0, {(0O) = 0 and u(Q) = oo. For the constraints of the linear
program, we would like to use the aforementioned equations, but we cannot model the
minimum and maximum in the LP. However, as we will see in Theorem 7.3 below, a
relaxation with inequalities for the constraints is sufficient for our purposes.

The definition of a valid weight function w for r contains the strict inequality {(r) < u(r)
which is replaced by x, < g, — 1 in the LP formulation. The set of feasible solutions still
contains the set of all integer weighted representations, because the difference between
the maximum weight of all losing coalitions and the minimum weight of all minimal
coalitions is at least 1 for integer weights.

Let v be an inner node. In general, the value x, can be negative as it is always the
case for x;. By the equations above, [(v) is negative only if [(then(v)) and I(else(v))
are negative. Consequently, x,, is negative only if v = I.(,) and therefore, only a small
number of at most n + 1 inner nodes has a negative weight for x,,.

The linear program (LP,) for the QOBDD with root r is given below, where, for
instance, f(Z,y,w) can be chosen as x, + 1 to minimize the quota.

Minimize f (@, g, )
subject to Ty Sy —1
Ty > { Fihen() Farl0) o all € V
Telse(v)
Yo < { Yihen(o) T ) for all v € V
Yelse(v)
zo,yr =0 (LP,)
rp < —1
Yo = 0
T, < —1 for all v € V, v = Lyaw)
z, >0 for all v € V, v # Lar(v)
Yy >0 for allv € V
Wy, ..., Wy >0

Vs

The following theorem proves the correctness of the linear program. Its essential idea
is, that we can obtain a feasible solution of (LP,) from a real weighted representation
[Q; w] for (INV,set(r)) and vice versa. Because the difference u,,(r) — l,,(r) might be less
than 1 for real weighted representations, in such a case we can “spread” the difference
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by multiplying the weights with a constant ¢ € R>;. As an example, assume that r
represents the WvaG [2;3/2,1,1/2]. Then u(r) = 2 and [(r) = 3/2 and the difference is
therefore 1/2. By multiplying the weights with 2, the difference becomes 1.

Theorem 7.3. Let W = (wy,...,w,) € RZ, be a vector of weights and let w denote the
weight function w with w(i) := w; fori € N. If w is valid for r, then there are vectors
T,y and a constant ¢ € Rsq such that (Z, 1, c-w) is a feasible solution of (LP,). In turn,
if (Z,9,W) is a feasible solution of (LP,.) then w is valid for r.

Proof. For the first part we assume that w is valid for r, that is, [, (r) < u,(r). We set

the constant ¢ to:
1

U (1) — Ly (7)

It then follows ¢+ (uy (1) — L, (r)) > 1. We use the weight function c-w, which is defined
by (¢-w)(i) :== c-w(i) for i € N. By the definition of [ and w it holds [..,,(v) = ¢+ [, (v)
and U, (v) = ¢+ uy,(v). Therefore, we arrive at e, (1) — lew(r) > 1 what is equivalent
t0 leaw (1) < Uey(r) — 1. We obtain a feasible solution for (LP,.) by using l..,(v) for x,
and ., (v) for y, for all nodes v € V(r) and 21 and yg.

For the second part we assume that (Z, 7, @) is a feasible solution of (LP,). First,
by induction on the structure of the QOBDD we show that z, < y, for every node
v € VU{QO,T}. The induction base is the root r and z, < y, holds due to the constraint
z, <y, — 1 in (LP,). For the induction step, let v be an inner node in V with label
i. We assume that z, < y, holds. Because we have a feasible solution, from (LP,) it
follows

}.

¢ = max{l,

ZTthen(v) + w; } <z, < Yo < { Ythen(v) + w;
Telse(v) o B Yelse(v)

and therefore, we have Tipen(v) < Ythen(v) AN Telse(v) < Yelse(v)-
Second, we show [,,(v) < x, and y, < u,(v) for every node v € V(r)U{Q, 1}. Because
we already know z, < y,, for v = r it then follows

lw(r) S Ty < Yr S uw(T)

and thus, that w is valid for r, as claimed. This time, we start at the sinks. For the sinks,
the statement is directly implied by the definition of the mappings [,, and u,,. Now, we
assume to the contrary, that there is a node v € VU {Q, I} such that at least one of the
inequalities does not hold for v. We choose the node v such that ¢ is maximal. Because
both inequalities hold for the sinks, v is an inner node. If [,,(v) < z, were violated, then
this would be in contradiction to:

lw(v) = max{l,(then(v)) + w;, I, (else(v))} (Def. 1,(v))
S InaJX{xthen(v) + Ws, xelse(v)} (ChOiCG of Z)
< x,. (LP,)
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Similarly, if v, < u,(v) were violated, then this would be in contradiction to:

Yo S min{ythen(v) + Wy, yelse(v)} (LPr>

< min{u, (then(v)) + w;, uy, (else(v))} (Choice of 7)

= Uy (V) . (Def. uy,(v))

Hence, 1,(r) < u,(r) and w is valid for 7. O

The number of constraints and the number of variables in (LP,) is bounded by
O(size(r)). Because a linear program can be solved in polynomial time in its size we
obtain we following complexity result.

Corollary 7.4. We can decide in time O(poly(size(r))) whether r represents a weighted
simple game, where poly(size(r)) is a polynomial in size(r). O

If the types Ny,..., N; are known in advance, then we can use one weight for each
type in the linear program (LP,.), so that we end up with a type preserving real weighted
representation if there is a feasible solution. To this end, we use the function 7: N —
{1,...,t} with 7(i) = k if and only if ¢ € Ny. In (LP,), each appearance of w; is then
replaced by w;(;) and the number of weights is reduced from n to ¢.

7.2. Experiments

In this section we present some experimental results which compare the existing approach
with (LPeqeis) and the new QOBDD approach with (LP,.) that is based on the structure
of the QOBDD for the winning coalitions. For our experiments we have used the dual
simplex solver that comes with Gurobi! 4.5. Our test machine has a AMD Phenom II
X4 955 processor and 16 GB of main memory.

min w(N) min )
Time (s) Opt. Obj. | Time (s) Opt. Obj.
UN Security Council < 0.01 45 < 0.00 39
Canadian Constitution (1995) < 0.01 - < 0.01 -
Treaty of Nice 0.03 - 0.03 -
Treaty of Lisbon 0.29 - 0.57 -
US Electoral College (2004-2008) 0.73 538 1.32 270

Table 7.2.: Solver times for some real world voting systems.

Table 7.2 shows the solver times and the optimal objective values (or the symbol “-”
if not weighted) for some real world simple games and the linear program (LP,). The
objective functions have been the sum of weights of all players, denoted by min w(N),
and the quota, denoted by min @), in Table 7.2.

!See http://www.gurobi.com.
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In the following, we compare both approaches by means of random weighted vot-
ing games with varying maximum weight for each player and quota |3w(N)]. For the
QOBDD approach the players were always ordered by non-increasing weights. The max-
imum weights were 50, 100, 500, 1000, 5000, 10000 and 50000. For each number of
players and each maximum weight we have evaluated 50 samples. The samples have
been the same for both approaches.

[ ‘ o 1 Max. weight
100 | ) 3 50 +
B * 1 100 x
= 10 F o 1 1 50
e I o ! 1 1000 o
g 1 i 1 5000
= i . 1 10000 o
0.1 k- . ' J 50000 e
I ! ]
0.01 P | | | |
15 20 25 30 35
Players

Figure 7.1.: Solver times for the existing approach with (LP 0qels)-

Figure 7.1 shows the solver times for the existing approach with (LPy04e1s). The time
axis has a logarithmic scale. As can be seen, the solver time grows rapidly if the number
of players increases, even if the maximum weight for each player and thus, the quota
remains small. However, for games with up to 18 players, solving (LPdeis) requires
slightly more than 10 ms.

The benefit from using models instead of coalitions depends mainly on the number
of types t in comparison to the number of players n. If ¢ = n then there are as many
models as coalitions and any positive effect vanishes. While equally desirable players in
real world games appear frequently, in random weighted voting games this is not the
case anymore if the maximum allowed weight for each player grows.

L ‘ e ¢ ] Max. weight
100 & o 8 8 m5 90 +
2wk R EEERRE N .
2] F * =
Y I - . %« ] 1000 @
£ 1L O T A A V(I
3 i et 1 10000 o
01 o Tt -| 50000 e
TEERS :
0.01 hi \ \ \ \
15 20 25 30 35
Players

Figure 7.2.: Solver times for the QOBDD approach with (LP,.).
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Figure 7.2 shows the solver times for the QOBDD approach with (LP,.). In comparison
to the existing approach with (LPcges), the solver times for the QOBDD approach
are strongly influenced by the maximum weight for the players. This is because small
weights imply a small quota and the size of a QOBDD for a WVG is bounded in the size
of the quota as we have seen in Section 5.3.

500
450 + Ap]‘proach (Ma)‘(. weight) ‘ |
400 | QOBDD (50K) —_—

350 - QOBDD (10K) — —— ]
Z 300 |- QOBDD (5K)  —o— . _
¢ 250 [QOBDD (IK)  —a— y i
= 200 - Existing (1K) — -
&

150

100

50

0 —s

26

Players

Figure 7.3.: Direct comparison of the existing approach with (LP,0q4e1s) and the QOBDD
approach with (LP,.).

Depending on the maximum weight, for just a few players the existing approach is
superior over the QOBDD approach while the converse holds if the number of players
increases or the maximum weight for each player remains small. This observation is
justified by Figure 7.3 where we compare the solver times for the existing approach and
a maximum weight of 1000 with the solver times of the QOBDD approach and different
maximum weights.

7.3. ldentifying non-weighted Simple Games using
non-flat QOBDDs

Solving a linear program is usually considered to be efficient, because polynomial time
algorithms exist and the (dual) simplex algorithm has good runtime behavior in practice.
However, in our case the QOBDD size can grow rapidly in the number players, so that
heuristics become necessary to decide if a simple game is not weighted. In this section
we present a promising heuristic based on the fact, that weighted voting games have flat
QOBDDs, regardless of the ordering of the players.

There are some necessary conditions for a weighted simple game that we have discussed
and each of which can be used as a heuristic:

1. A weighted simple game is complete.
2. A weighted simple game is strong, proper or both.

3. A QOBDD for a weighted simple game is flat for any ordering of the players.

125



7. Weighted Representations

Here we discuss the 3rd necessary condition. In Section 5.1 we have seen, that the
QOBDD for a simple game is flat for each ordering of the players if and only if the
desirability relation on coalitions =<y, is complete on 2. Taylor and Zwicker (1996) have
noted in this respect, as a rule of thumb, that any non-weighted simple game that arises
in practice as a voting system has a non-complete relation <;. Therefore, in practice
we can expect to prove a simple game to be non-weighted by just testing its QOBDD
representations to be flat for a sufficiently large number of orderings of the players.
Before we shed light on the question of what “sufficiently large” could mean in practice,
we discuss Algorithm 12 which can be used to decide if a QOBDD is flat.

Algorithm 12 IsFlat(v)

Require: v is the root of a QOBDD with label 1.
1: for each u € V(v) U{I, O} compute c(u) := |set(u)| as described in Section 6.2
2: for : =n to 2 do

3: sort V;(v) = {u1, ..., up,w)} such that c(ur) < c(upir)

4: for k =1 to |V;(v)|—1do

5: if c(then(uy)) € c(then(ugy1)) or c(else(uy)) £ c(else(uyy1)) then
6: return false

7: return true

In the proof of the correctness of algorithm IsFlat, we will make use of the following
lemma that can easily be shown.

Lemma 7.5. Let v be a QOBDD node and let i be an element from {var(v),...,n+ 1}.
If V;(v) is totally ordered w.r.t. C, then it follows:
Vu,u' € V;(v) : (u Cu' < |set(u)| < [set(u')]). O

The correctness and running time of the algorithm are considered next.

Theorem 7.6. Given the rootv of a QOBDD with label 1, the algorithm IsFlat(v) returns
true if and only if the QOBDD is flat. The running time is O(size(v) - log width(v)).

Proof. For i =1,...,n+ 1 let m; denote |V;(v)|. We show that the nodes on each level
V; are totally ordered w.r.t. C if and only if IsFlat(v) returns true. For this purpose
we use induction on the levels, starting with the sinks at level n + 1. In the base
case, we obviously have set(Q) C set(I) for the sinks. For the induction hypothesis, let
i€ {1,...,n} and assume that V,;1 = {z1,...,2pm,,, } is totally ordered w.r.t. C, that
18, 11 C -+ C Ty -

In the induction step we assume that the nodes V; = {u1, ..., u,, } are ordered:

c(ur) < clug) < -+ < ety,) -

This is the case after line 3. For k € {1,...,m; — 1} it then holds:

U € Ug41
<= then(uy) C then(ugi1) A else(uy) C else(ugi1) (Property C)
<= c(then(uy)) < c(then(ugi1)) A c(else(ur)) < c(else(ugs1)) - (Lemma 7.5)

126



7.3. Identifying non-weighted Simple Games using non-flat QOBDDs

For the last equivalence, Lemma 7.5 can be applied because of the induction hypothesis.
Hence, after the inner for-loop in line 4, we have u; C uy C --- C u,,,. Because the
nodes uq, ..., u,, are different, the subset relations are proper.

To see the running time, we first notice that by the results in Section 6.2 the values
|set(u)| for all u € V(v) U{Q, I} can be computed in time O(size(v)). Fori € {2,...,n},
sorting the nodes in V;(v) takes time O(m;logm;). Therefore, the total running time
for sorting all levels is

O(Z m;logm;) < O((Z m;) - log width(v)) < O(size(v) - log width(v)) . (7.2)

=2 =2

The for-loop in line 4 has running time O(m;). The total running time of all iterations
of line 5 is therefore, O(_,_, , mi) < O(size(r)) and hence, dominated by (7.2). O

We have performed experiments on the average number of orderings of the players
necessary to find a non-flat QOBDD for a non-weighted simple game. To this end, we
randomly generated m-vector-weighted representations for m = 1,2,3,4,5. We have
evaluated 1000 samples for each m and each number of players n. In an iteration we
have generated a random permutation 7 of the players and tested the m-QOBDD for
being flat.

17 b Number of rules _|

’ 2 —
. 1.6 3 —a— |
_8 1.5 4 —o—
v 14 | -
g 13 | |
T 12 b -
1.1 + —

1 ‘ Bt 4 o 4 o=
6 8 10 12 14 16 18 20 22 24

Players

Figure 7.4.: Average number of orderings necessary to find a non-flat QOBDD for random
vector-weighted representations.

Figure 7.4 shows the average number of iterations necessary to find a non-flat QOBDD
for the simple game. Here, the necessary number of iterations falls very fast and starting
at 13 players the average is nearly 1.

For Figure 7.5 only instances were created with weights wy(1) > --- > wy(n) for each
rule k € {1,...,m}. The simple game associated with a vector-weighted representation
fulfilling this property is always complete. Here the number still falls quickly, but slower
than in Figure 7.4. This is probably the case, because these games are more likely to
have a flat QOBDD representation.

In conclusion it seems reasonable first to try to find a non-flat QOBDD representation
before using the linear program to decide if a simple game is weighted.

127



7. Weighted Representations

\ \ \
L BN Number of rules |
2 — _

ot

3 —e—

N

Iterations
= Ot UTLW UL Lot Oty
\

4 —eo—

[N)

—_

6 8 10 12 14 16 18 20 22 24
Players

Figure 7.5.: Average number of orderings necessary to find a non-flat QOBDD for random
vector-weighted representations with decreasing weights in each rule.

7.4. Counterexamples for being Weighted using non-flat
QOBDDs

Having a simple game for which no weighted representation is known, for political scien-
tists it can be considered as a standard procedure to decide whether the present simple
game is weighted or to find a counterexample otherwise. The latter is usually in the
form of exchanges of players between a collection of winning coalitions, a concept that
has been introduced by Taylor and Zwicker (1992) for simple games. In this section we
show how a counterexample, a so-called 2-trade, can be constructed if the QOBDD for
the simple game is not flat.

Definition 7.2. A list of & > 1 coalitions X1,..., Xy, Y1,...,Y. C N is said to be a
(k- )trade, if for each player i € N it holds:

Hie{l,....k}|ie X;H ={je{l,....k} |i€Y;}. O

The intuition behind a k-trade is the following. Take k coalitions Xi,..., X and
move players around as you like. The only restriction is, that every player has to appear
the same number of times in the resulting coalitions Y7, ..., Y} as in the original ones.

Definition 7.3. A simple game (N,W) is called trade robust if for any k there is no
k-trade Xi,..., Xy, Yi,...,Y, such that all the Xy,..., X, are winning and all the
Y1, ..., Y, are losing. O

Using this definition, Taylor and Zwicker (1992, Theorem A) have shown that a simple
game is weighted if and only if it is trade robust. An important special case is a 2-trade
with the additional restriction that only a one-for-one exchange of two players, a so-called
swap, is allowed. A simple game is called swap robust if there is no such 2-trade for which
the two coalitions are winning before the trade and they are losing after the swap. It is
well-known that a simple game is swap robust if and only if it is complete (Taylor and
Zwicker 1996). The concept of trade robustness for simple games is very much related to
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the concept of asummability for Boolean functions and threshold functions. See Sheng
(1969, Section 4.4) for details on the latter.

Figure 7.6.: QOBDD for [2;1,2,0,1]A[3;2,1,2,1] in Example 7.2 with winning coalitions
AD and BC (left) and losing coalitions BD and AC' (right).

Example 7.2. We consider the simple game associated with the multiple weighted
representation

2:1,2,0,1] A [3:2,1,2,1] (7.3)

and players A, B,C' and D. The QOBDD for this game is depicted in Figure 7.6. Let
X1, Xo denote the coalitions AD and BC, respectively. Both coalitions are winning. By
exchanging player A for B we obtain the losing coalitions Y; := BD and Y, := AC.
Therefore, the simple game has no weighted representation. Because we have a 2-trade
and an one-for-one exchange of players, the game is not even swap robust and therefore
not complete. O

Taylor (1995) exemplifies the use of trades to show that the System to amend the
Canadian Constitution and the US Federal Legislative System are not weighted. Felsen-
thal and Machover (2001, Section 4) use a trade to reason that the game for the Council
of the European Union, as defined in the Treaty of Nice, is not weighted. Beside that,
Freixas (2004) shows that the dimension of this game is in fact 3 after the enlargement
to 27 members.

As we have already mentioned in the previous section, most real world simple games
that are not weighted, have an ordering of the players such that the corresponding
QOoOBDD is not flat. Therefore, in the following we can assume that the QOBDD with
root r for the simple game (N, V) is not flat. What remains is to find a witness for having
no weighted representation. We construct a 2-trade that contradicts trade robustness.

Because the QOBDD is not flat, there is a level ¢ and two different nodes u,v € V;(r)
such that neither set(u) D set(v) nor set(u) C set(v). Consequently, both sets are not
empty. Let By € set(u) \ set(v) and let By € set(v) \ set(u). For the players to be
exchanged we choose Ay := By \ By and Ay := By \ B;. It holds:

(Bi\ A1) UAy = By,
(BQ\AQ)UAlzBl.
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To complete our 2-trade we choose any coalitions Ay, Ay C {1,...,7— 1} such that A, is
a path from the root to u, formally, r A u, and Ay is a path from the root to v, formally,

r 23 4. Then by Theorem 3.3 it follows that A; U By and Ay U By are elements of set(r)
and therefore, both coalitions are winning. On the other hand, by the choice of By, Bs
we get A1 U By ¢ set(r) and also Ay U By ¢ set(r) and therefore, the coalitions after the
trade are losing. The trade can be formulated as:

AQU(AlLJBl)\Al:AlUBQ and A1U(A2UBQ)\A2:A2U81
We close this section with an example that illustrates the construction.

Example 7.3. We consider the game (7.3) from Example 7.2 again, whose QOBDD is
depicted in Figure 7.6. The nodes u,v are incomparable w.r.t. C, because set(u) =
{D,CD} and set(v) = {C,CD}. Therefore, the QOBDD is not flat. The only options
for By and By are {D} and {C?}, respectively. It follows A; = By \ By = {D} and

Ay = {C}. As can be seen in Figure 7.6 (left), we have r W and r o we

set Ay := {A} and Ay := {B}. In Figure 7.6 (right) it can now be seen that neither
Ay U By = AC nor A; U By = BD is winning. O

7.5. Conclusions

It is an important problem to identify weighted voting games and to prove the opposite
otherwise. The method based on QOBDDs and the linear program (LP,), that we have
presented in this chapter, can be seen complementary to the existing approach with the
linear program (LPqes) that uses the models of the shift-minimal winning and the
shift-maximal losing coalitions, as it is somewhat slower on instances with only a few
players, but it significantly outperforms the existing method when the number of players
increases while the quota, and hence the QOBDD size, remains small.

We were able to test most of the real world simple games in this thesis in a couple of
seconds and thus, from a practical point of view our contribution fills an important gap.

The formulation of (LP,) offers some room for optimizations, that have not been
considered in Section 7.1. For instance, it seems that for many QOBDDs it holds that
most nodes v fulfill u(v) = I(v)+1 and hence, the weighted representation for the simple
game represented by v is normal (Sheng 1969). If this would be known in advance,
the variables x, and ¥, could be replaced by a single variable in the linear program.
Another possible optimization is to merge the constraints of nodes which have only a
single incoming edge.

Solving a linear program can still be considered intractable for very large (QOBDDs.
For these instances, we have presented a heuristic that can be used to identify a QOBDD
that does not represent a weighted simple game. To this end, we have used the fact
that a QOBDD for a Wva is flat regardless of the ordering of the players. We have
evaluated the performance of this approach by random experiments with vector-weighted
representations. It would be especially interesting to obtain deeper insight into the
number of orderings of the players for which a QOBDD is flat.
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7.5. Conclusions

In the case that the simple game is not weighted and the QOBDD representation is
not flat, we have presented a method to derive a witness in form of a 2-trade. This form
of a witness is widely used to prove, that a simple game is not weighted. It is an open
question how to find a minimum 2-trade though.
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8. Conclusions and Future Work

Nowadays, voting systems play an important role in decision making processes in politics
and economy. Unfortunately, voting systems tend to be complicated and elusive. To
ensure that voting systems express what we mean, we therefore rely on methods that
support the analysis and the understanding of such voting systems. In this thesis we
have presented a practically applicable approach to represent and to analyze a particular
type of voting systems, namely simple games.

Our main idea has been to represent simple games, which are essentially up-sets, by
quasi-reduced and ordered binary decision diagrams, or QOBDDs for short. Problems on
simple games have been solved on the basis of the representation as QOBDDs. Examples
for such problems have been the computation of power indices to measure a priori voting
power and to decide whether a simple game has a weighted representation and if so, to
find a minimal one. In practice, various representations of simple games, like weighted
representations, are used. A variety of representations in practice can be challenging
though, because each of them requires the development of dedicated algorithms for the
problems. In contrast to that, we have used QOBDDs to split off the representation
which is used in practice from the algorithms to solve the problems on simple games.
After we have laid the necessary foundations in Part I of this thesis, in Part II we have
discussed the step from a representation of a simple game in practice to a QOBDD, while
in Part III we have developed algorithms on the basis of QOBDDs.

By the separation, we are not tight to a particular representation in practice anymore.
Once we have found a way to obtain a QOBDD from a particular representation, we can
apply all the algorithms that we have presented in this thesis. Therefore, our approach
can be considered as an all in all approach by which we can solve a problem for any
simple game. Obviously, there are many potential representations of simple games that
could have been used for that purpose. For instance, we could have enumerated the set of
the minimal winning coalitions, or we could have used a vector-weighted representation
with |Lpax| rules. It is well-known that every simple game has such a representation and
algorithms exist to solve at least some of the aforementioned problems. The difference
is, that QOBDDs are often much more compact for practically relevant instances.

The separation between the representation of simple games in practice and algorithms
to solve particular problems involves the risk of losing information that could otherwise
be used to solve some problems more quickly. For instance, if a simple game is weighted,
it is desirable to exploit that fact. QOBDDs are rather accommodating in this respect.
We have seen for some classes of simple games, that the QOBDDs exhibit structural
features. Examples include weighted voting games in Section 4.1 and homogeneous
simple games in Section 5.4. We have used these features twofold. As for WvGs in
Section 5.3 and homogeneous simple games in Section 5.4 we have derived upper bounds
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for the size of the QOBDD for classes of simple games. We have also used the structure of
QOBDDs to derive more efficient algorithms. For the important class of directed simple
games we have developed a specialized algorithm to obtain the QOBDD for the minimal
winning coalitions with running time linear in the size of the QOBDD for W. Hence,
even though (QOBDDs can represent any simple game, for classes of simple games, they
often exhibit structural features that facilitate the solution of particular problems.

One of our main goals has been to solve problems for real world simple games. Even
though in general almost all QOBDDs have a size that is exponential in the number of
decision variables, QOBDDs for real world simple games are often surprisingly small.
As we have discussed in the introduction to Chapter 4, simple games in practice are
often made of various weighted representations, each of which is inherently simple. This
simplicity induces, that also the QOBDD for the overall simple game has a particular
structure and small size. We have evaluated our approach by a list of different real world
simple games. Our results suggest, that except for very large instances, our approach
solves most problems in acceptable time. The only exception is the computation of the
QOoOBDDs for the shift-minimal winning and the shift-maximal losing coalitions.

Most algorithms in this thesis are short and concise. The algorithms to compute the
successor function in Section 6.8 are an exception here. Therefore, it is without difficulty
to implement the algorithms if a QOBDD package for the fundamentals, like computed
tables, binary synthesis and manipulators, is provided. By virtue of manipulators and
the binary synthesis, for some problems we have been able to derive an algorithm just by
rewriting the formal specification as in the case of the desirability relation on individuals
in Section 6.3. It has been especially easy to perform the transition from weighted voting
games to multiple weighted voting games with a formula, because the binary synthesis
for QOBDDs is well-known.

For some algorithms, we have been able to establish useful formal upper bounds for
the (expected) running times. In Section 6.7 we have seen, that we can compute some
power indices in time polynomial in the size of the QOBDD for WW. Consequently, for any
class of simple games whose QOBDD representations have size polynomial in the number
of players n, we immediately obtain algorithms with running time polynomial in n to
compute the considered power indices. Examples for such classes are homogeneous
simple games and weighted voting games with polynomially bounded weights in n.

Many results in this thesis are not limited to simple games. Even though many
results have been stated in the context of simple games, this is mainly due to the topic
of the thesis. The notions of a simple game and a monotone Boolean function and,
respectively, a weighted voting game and a threshold function, are interchangeably in
many statements. Additionally, QOBDDs are well established in a wide variety of research
fields. For that reason, some of our results directly contribute to other research areas
like threshold logic. In threshold logic it is a major problem to decide whether a Boolean
function is representable as a threshold function and to find such a representation.

Even though the QOBDD for [Q; w1, . . ., wy] has size O(min{2"/2, max{n-log Q, 1}Q}),
it is sometimes too large for some problems to be solved. We have encountered this issue
for the International Monetary Fund and the computation of the QOBDD for Wy For
the considered problems, it usually does not matter if it takes a second, a minute, or
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even an hour to solve a problem. Unfortunately, this does not hold for memory usage.
The available amount of memory is the major limitation of our approach if the instances
are very large. For most instances, however, the space complexity is not an issue.

Future Work

In general, it would be interesting to see more applications of the QOBDD-specific meth-
ods and ideas that we have presented in this thesis to other research problems. The
linear programming approach and the heuristic to identify QOBDDs, that do not rep-
resent a weighted voting game (resp. a threshold function) from Section 7 could be
interesting to the field of electrical engineering. Especially, because reduced and ordered
binary decision diagrams, or ROBDDs for short, are very well established there. Another
example is the computation of the Chow parameters for a Boolean function represented
by a ROBDD or a QOBDD. This is an important step to identify non-symmetric vari-
ables in general Boolean functions (Méller, Mohnke, and Weber 1993). While current
methods have time complexity O(n - size(r)) for an ROBDD and QOBDD with root 7, re-
spectively, our approach for QOBDDs could be an alternative to those methods, because
it takes only linear time in the size of the input QOBDD. An adaption of our approach
to ROBDDs requires some effort though.

In the introduction to Chapter 4 we have briefly presented two types of WvGs (resp.
decision rules), that are often used in practice to design voting systems. Even though
most problems on weighted representations are NP-hard, it is an open question whether
“hard” instances even exist in the real world. In the same vein, it would be also inter-
esting to identify further paradigms that are used in practice to design voting systems
and to derive a class of simple games from that, if possible.

The algorithm to build a QOBDD with root r from a weighted representation, which
we have discussed in Section 4.2, has (expected) running time O(size(r) - log width(r)).
The logarithmic factor is due to the use of AVL trees for the identification of previously
computed results. It is an open question, if there is a data structure that exploits the
specific structure of the problem, that has (maybe amortized) constant time operations
for insertion and lookup.

In Section 5.2 we have defined the class of flat QOBDDs. These QOBDDs rise several
questions. For instance, is it NP-hard to find an ordering of the players (resp. decision
variables) such that the QOBDD is flat? Hosaka, Takenaga, Kaneda, and Yajima (1997)
study similar questions in the context of threshold functions. It seems interesting to
generalize some of their results to the class of flat QOBDDs. Furthermore, what is the
number of orderings so that the QOBDD is flat? An answer to this question would be
interesting in the context of our heuristic to identify QOBDDs that do not represent
Wvas in Section 7.3.

We have considered the problem whether a simple games has a weighted representation
and how to find one in Section 7. The same problem can be asked for a given number
of rules m and a formula ¢. The question then is:

Is there a multiple weighted representation with formula ¢ and m rules?
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For the Council of the European Union as defined in the Treaty of Nice, we have seen
an alternative representation in Chapter 1. This representation has been obtained by
an integer linear program (ILP), the models of the coalitions Wy, and L., and the
so-called Big-M method. The latter has been used to model disjunctions inside the ILP
(Chen, Batson, and Dang 2010). However, things are much more complicated here and
there are some fundamental questions. For WvGs it is well-known, that there always
is a type preserving weighted representation, that is, there is a weighted representa-
tion [Q;wy,. .., wy,]| such that i ~; j implies w; = w; for all players 7,7 = 1,...,n.
This does not hold for vector-weighted representations and therefore, multiple weighted
representations anymore. To get the idea, we show that the directed simple game

3:3,0,1,1,1,1] A [4;1,3,1,1,1,1]

with 6 players and types Ny = {A, B} and N, = {C, D, E, F'} does not possess a type
preserving m-vector-weighted representation for any m. The models of the minimal
winning coalitions include (2,0) and (0,4). The vector (1,2) is a model of a maximal
losing coalition. It can be represented as convex combination of (2,0) and (0,4) by

(1,2) = A(2,0) + (1 — A\)(0,4) (8.1)

with A = 1/2. We assume to the contrary that there is a type preserving m-vector-
weighted representation with rules g1, ..., g, and gy = [Qk; wi]. Because the represen-
tation is type preserving it holds wy(A) = wi(B) and wi(C) = wi(D) = wi(E) = wy(F).
The necessary information for the representation can be stated more compactly as:

wi(A)  w(C) ) O}
Y = : : and @ := :
Wi (A) Wi (C) Qm

We use the superscript ¢ to transpose a vector. It holds Y(2,0)" > Q and Y (0,4)" > Q
for the models of the coalitions in Wy, and Y'(1, 2)t Z# (@ for the model of a coalition in
Liax- By using the convex combination in (8.1) we get a contradiction with:

v(y) =y (5) ra-n (=50 (5)+v (§) 2 5@+ d-a.

The main idea of the previous example has been, that the set models(Ly,ax) and the
convex hull of models(W,,in) are not disjoint. Hence, this property is a necessary condi-
tion for having a type preserving vector-weighted representation. A sufficient condition
for this property remains as future work.
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