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1.1 Epigenetics 

Epigenetic mechanisms were originally described by the British embryologist C.H. 

WĂĚĚŝŶŐƚŽŶ ŝŶ ϭϵϯϵ ĂƐ ͞ƚŚĞ ĐĂƵƐĂů interactions between genes and their products, which 

bring the phenotype into being͟ (Waddington, 1939). Today, epigenetics is defined as the 

study of mechanisms that involve changes in gene expression which are not accompanied 

by changes of the DNA sequence (Holliday, 1987). The fact that classical genetics alone 

cannot explain ƚŚĞ ĚĞǀĞůŽƉŵĞŶƚ ŽĨ ĂŶ ŽƌŐĂŶŝƐŵ͛Ɛ ƉŚĞŶŽƚǇƉĞ, was exemplified by Fraga et 

al. and Humpherys et al., who showed that monozygotic twins or cloned animals can have 

different phenotypes and different susceptibilities to a disease although they exhibit 

identical DNA sequences (Mario F Fraga et al., 2005; Humpherys et al., 2001). Epigenetic 

mechanisms offer a partial explanation for these phenomena and by now, a range of 

different chemical modifications to deoxyribonucleic acid (DNA) and histones are known to 

be associated with changes in gene expression (see Figure 1.1). 

 

 

Figure 1.1: Epigenetic mechanisms: DNA methylation and histone modifications. 

Figure from (Qiu, 2006) 
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The most-studied epigenetic changes are DNA methylation and histone modifications. DNA 

methylation involves the addition of a methyl group from S-adenosylmethionin to the 5 

position of the cytosine pyrimidine ring or the number 6 nitrogen of the adenine purine ring 

(Holliday and Pugh, 1975). Histone modifications are post-translational enzymatic 

modifications of the histones by acetylation (addition of an acetyl group), methylation 

(addition of methyl group), phosphorylation (the addition of a phospholyration group) and 

ubiquitination (addition of an ubiquinitation protein) (Bártová et al., 2008). These epigenetic 

mechanisms are necessary for the development of higher eukaryotes and are particularly 

important in several key physiological processes, including regulation of gene expression, X-

chromosome inactivation, imprinting, as well as silencing of germline-specific genes and 

repetitive elements (Robertson, 2005). Detailed information about DNA methylation is 

provided in section 1.2. 

Inheritance is defined as the transmission of information between generations of organisms. 

Thus, the epigenetic property to be replicated during mitotic cell division should rather be 

considered as mitotic stability (Skinner, 2011). Mitotic stability of DNA methylation is 

comprehensively described in section 1.2. The ability of the epigenome (the overall 

epigenetic state of a cell) to be replicated between generations of species is called 

epigenetic meiotic inheritance (Bock and Lengauer, 2008). The pluripotency of cells of the 

early embryo is ensured by a reset mechanism of the epigenetic information after 

fertilization (Wolf Reik, 2007). This reprogramming enables embryonic stem cells (ES cells) 

to differentiate down to any pathway. Epigenetic meiotic inheritance occurs by an 

incomplete reprogramming in the early embryo (Morgan et al., 1999). Consequently, 

epigenetic patterns might be carried from parent to offspring. Meiotic inheritance was 

initially identified in plants (Bender and Fink, 1995). Bender and Fink described meiotic 

inheritance of DNA methylation patterns and their associated phenotypes of a gene family 

of the Wassilewskaija strain of Arabidopsis. They were able to show that methylated and 

silenced loci can be meiotically transmitted through self-pollination and outcrosses (Bender 

and Fink, 1995). Further research showed that DNA methylation patterns can be replicated 

over more than one generation (Johannes et al., 2009) (see section 1.5). However, the 

underlying functional mechanisms remain to be clarified. Epigenetic inheritance and stability 

and its impact on the cell population or associated physiology is part of recent epigenetic 
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research. Reik provided a fundamental insight into heritable aspects of epigenetic gene 

regulation in mammalian development (Wolf Reik, 2007). 

Interestingly, environmental factors are able to modify the epigenome of somatic cells 

(Skinner, 2011). The following section highlights environmental-based influences on 

epigenetic modifications. The replication of environmentally influenced epigenetic patterns 

by mitotic stability modifies the somatic cell differentiation and function throughout the 

development of an organism and its susceptibility to a disease (Jirtle and Skinner, 2007). 

Honeybees pose an interesting example for such an environmental-based alteration of a 

phenotype regulated by DNA methylation (Kucharski et al., 2008). Larvae predominantly fed 

royal jelly become more likely queens due to a specific signal cascade (Maleszka). Kucharski 

et al. pointed out that down-regulation of the DNA methyltransferase during larval 

development leads to an increased number of queens not fed royal jelly (Kucharski et al., 

2008). This study exemplifies a potential influence of nutrition on DNA methylation. 

Recent biological research shows the importance of studying epigenetic influences on 

complex diseases and aging (Flintoft, 2010) (see Table 1). Especially several potential links 

between epigenetic mechanisms and cancer have been identified so far (Manel Esteller, 

2008). A study in the field of aging research showed that age-dependent methylation 

patterns have an impact on neurologic disorders, autoimmunity, and the development of 

cancer in elderly people (Richardson, 2003). A tissue-specific loss of DNA methylation has 

been identified, which may lead to chromosomal instability and neoplasia and Richardson et 

al. stated that global DNA hypermethylation increases the risk of colon cancer with 

advancing age (Richardson, 2003). 
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Table 1: Associations between epigenetic modifications and human diseases. 

Table modified from (Rodenhiser and Mann, 2006) 

Disease/condition Gene Epigenetic process References 

Beckwith-Weidemann 

syndrome 

11p15 Imprinting (Weksberg et al., 2003) 

Breast cancer BRCA1 Hypermethylation (Mancini et al., 1998) 

Colon cancer Multiple 

genes 

Hypermethylation (M Esteller, Corn, et al., 2001) 

Leukemia p15 Hypermethylation (M Esteller, Corn, et al., 2001) 

Lung cancer p16, p73 Hypermethylation (M Esteller, Corn, et al., 2001) 

Prader-Willi syndrome or 

Angelman syndrome 

15q11-q13 Imprinting (Nicholls and Knepper, 2001) 

Shizophrenia RELN Hypermethylation (Sharma, 2005; Costa et al., 2002) 

Stomach cancer Cyclin D2 Hypomethylation (Oshimo et al., 2003) 

 

In summary, epigenetics involves the study of alterations in gene expression caused by 

heritable and non-heritable biochemical mechanisms, other than changes in the underlying 

DNA sequence. Recent research focuses on DNA methylation and histone modifications and 

their impact on transcriptional control. These mechanisms play a determining role in the 

development and growth of cells. It has been shown that epigenetic abnormalities pose a 

riskfactor for complex disease. 

 

1.2 DNA methylation 

Nowadays several research projects, such as the Human Genome Project, have sequenced 

various genomes (IHGSC, 2004). However the DNA sequence of an organism is insufficient to 

describe its phenotype. It is important to know when and where a specific gene will be 

transcribed. DNA methylation, as a heritable epigenetic modification, is able to control gene 

expression. It is the only known epigenetic mechanism that directly concerns the DNA 

without changing the underlying DNA sequence. 

DNA methylation involves the addition of a methyl group from S-adenosylmethionin to the 5 

position of the cytosine pyrimidine ring or to the number 6 nitrogen of the adenine purine 

ring (Holliday and Pugh, 1975). Eukaryotes solely make use of cytosine methylation, whereas 

in prokaryotes both cytosine and adenine can be methylated (Jeltsch, 2002). DNA 
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methylation in prokaryotes controls DNA replication and gene expression and has a 

protective function in terms of distinction of self and non-self DNA. This distinction has been 

associated with defense against bacteriophages (Arber and Linn, 1969). Such protective 

mechanism also exists in eukaryotes: transgenes, introduced into humans or mice, can be 

detected and silenced by DNA methylation (Kisseljova et al., 1998; Sasaki et al., 1993). Thus, 

this distinguishing mechanism seems to be conserved in evolution. 

During mitotic cell division, both genetic and epigenetic information must be replicated to 

daughter cells. This phenomenon results in differentiated states of cells and enables a 

normal development process. The enzyme DNA methyltransferase (DNMT) identifies DNA 

methylation patterns of the parental cell during the replication of the DNA (synthesis phase) 

and methylates the replicated strand of the daughter cell (Goll and T. H. Bestor, 2005). Goll 

and Bestor showed that especially repetitive DNA sequences and RNA-DNA interaction 

mediate the establishment and maintenance of DNA methylation by DNMT. Originally, the 

cytosine methylatransferase was identified in 1988 (T. Bestor et al., 1988) and so far several 

homologues of this enzyme are known. They are split into three groups categorized based 

on their C-terminal catalytic domains: DNMT1 family, DNMT3 family, and chromomethylase 

family (Goll and T. H. Bestor, 2005; Goll et al., 2006). Originally, DNMT2 was also identified 

as a DNA methyltransferase (Goll and T. H. Bestor, 2005), however, Goll et al. showed that 

DNMT2 acts as RNA specific methyltransferase (Goll et al., 2006). Meanwhile, DNMT2 is 

known as TRDMT1, which is the only identified RNA methyltransferase so far (Squires et al., 

2012). 

Human DNA methylation establishment and maintenance is regulated by DNMT1 and 

DNMT3 (T. Bestor et al., 1988). It has been shown that hemimethylated DNA (only one 

strand of a double-stranded DNA sequence is methylated) is much faster methylated than 

completely unmethylated DNA sequences (Stein et al., 1982). This maintaining mechanism is 

carried out by DNMT1, which involves a 5-30 times faster DNA methylation mechanism 

compared to de novo DNA methylation (Yoder et al., 1997). De novo DNA methylation in 

humans is mediated mainly by DNMT1 but can also be mediated by members of the DNMT3 

family, which consists of DNMT3A, DNMT3B, and DNMT3L (Okano et al., 1998; Goll and T. H. 

Bestor, 2005). In cancer, DNMT1 is used for de novo and maintaining DNA methylation of 

tumor suppressor genes (Jair et al., 2006; Ting et al., 2006). The DNMT3 family involves two 

different types of regulatory mechanisms. DNMT3A and DNMT3B mediate de novo and 
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maintaining DNA methylation of CpG dinucleotides (cytosine and guanine nucleotides 

separated by a phosphate). In contrast, DNMT3L does not involve any methyltransferase 

activity (Goll and T. H. Bestor, 2005). It especially regulates mechanisms in germ cells and is 

important for the establishment of maternal genomic imprinting patterns (Goll and T. H. 

Bestor, 2005). Goll and Bestor stated that DNMT3A and DNMT3B do not involve any 

sequence specificity beyond CpG dinucleotides (Goll and T. H. Bestor, 2005). 

In prokaryotes, DNA methylation regulates the mitotic replication process of the DNA 

sequence. After the replication, the synthesized strand is not directly methylated thereby 

allowing the mismatch repair system to differentiate between the template and nascent 

strands (Cooper et al., 1993). This self-adjusting error correction does not exist in eukaryotic 

organisms. Araujo et al. investigated whether there is also a lag between DNA replication 

and DNA methylation patterns by methyltransferase in mammalian cells (Araujo et al., 

1998). They stated that DNA methylation at CpG dinucleotides simultaneously occurs with 

the replication of the underlying DNA sequence. This tight coordination of genetic and 

epigenetic replication is characteristic for mammalian cells (Araujo et al., 1998). Methylation 

occurs independently of the genomic distance to the origin of the replication and prior to 

ligation of Okazaki fragments (short molecules of single-stranded DNA that are formed on 

the lagging strand during DNA replication). 

DNA methylation usually takes place at CpG dinucleotides (Pelizzola and Ecker, 2010). 

Almost a fifth (~19%) of all bases in the human reference (hg19/build37) DNA sequence are 

Cs and another 19% are Gs, whilst only ~1.8% of all dinucleotides are CpGs. The frequency of 

CpG dinucleotides is therefore much lower than expected based on the GC content (Bird, 

1980), which is due to the inherent mutability of methylated cytosines (Venter et al., 2001). 

Deamination of cytosine includes the hydrolysis reaction of cytosine into uracil, whereas 

spontaneous deamination of methylated cytosine results in thymine (Venter et al., 2001). 

Because uracils are a component of the RNA but not DNA, a mechanism exists, which 

recognizes and repairs deaminated cytosines, but deaminated methylated cytosines, namely 

thymines, remain unmodified (Singal and Ginder, 1999; Bird, 1980; Duncan and Miller, 

1980). As a consequence, methylated CpG sites are more likely to get lost during cell 

differentiation. 

Methylated CpG sites in the genome are not equally distributed. Regions characterized by a 

high G+C content and a high frequency of CpG dinucleotides, are called CpG islands (Bird, 
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1986). There are several numerical definitions of CpG islands but the most commonly used 

definition is: a CpG island is a genomic region with a G+C content of greater than 60% and a 

ratio of CpGs to GpCs of at least 0.6 (S B Baylin et al., 1998). Most of CpG islands are 

unmethylated and are often located within upstream regions of genes (Pelizzola and Ecker, 

2010). Hence, they have a strong impact on transcriptional gene regulation (Koga et al., 

2009). CpG sites within CpG islands usually involve weak DNA methylation levels in the germ 

line, which involves a protective mechanism regarding deamination of methylated cytosines 

during mitotic cell division (Fazzari and Greally, 2004). 

Methylated cytosines also occur outside of CpG dinulceotides. These sites are called non-

CpG methylation sites, whereas CHG and CHH (H being A, C or T) methylation sites involve a 

regulatory effect on transcriptional levels (Lister et al., 2009; Pelizzola and Ecker, 2010). 

Plants often exhibit an enrichment of methylated non-CpG sites, which mediate dynamical 

interaction with small interfering RNAs (siRNAs) (Koga et al., 2009). Variying distribution of 

CpG and non-CpG methylation frequencies can be found in different eukaryotic organisms, 

as exemplified in the following (see Table 2). A notably high amount of non-CpG methylation 

can be found in Physcomitrella patens, a moss plant, which exhibits 29.7% of methylated 

CHG and 23.2% of methylated CHH sites (Pelizzola and Ecker, 2010). Until today, non-CpG 

methylation in human genomes has predominantly been found in ES cells (Lister et al., 

2009). Almost 25% of all methylation sites in ES cells occur within non-CpG dinucleotides, 

which implicates further, so far unknown, regulatory mechanisms of methylation (Lister et 

al., 2011). Most often gene bodies show an enrichment of non-CpG methylation sites, 

whereby upstream regions of genes and protein binding sites are depleted (Lister et al., 

2009). Furthermore, non-CpG methylation disappears during cell differentiation and is re-

established in induced pluripotent stem cells (Lister et al., 2009) (see sections 1.2.1). 
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Table 2: Frequencies of CpG and non-CpG methylation in 23 eukaryotes. 

Table modified from (Pelizzola and Ecker, 2010) 

Eukaryotic organisms Genome size (Mb) mCpG mCHG mCHH 

Nematosella vectensis 297 9.4 0.16 0.15 

Mus musculus 2716 74.2 0.30 0.29 

Homo sapies 3080 67-82 0.09-2.8 0.04-0.9 

Tetraodon nigrovirdis 302 65.5 0.25 0.34 

Danio rerio 1563 80.3 1.22 0.91 

Ciona intestinalis 141 21.6 0.28 0.28 

Apis melifera 231 0.51 0.11 0.16 

Drosophila melanogaster 162 0.12 0.11 0.11 

Bombyx mori 431 0.71 0.08 0.09 

Tribolium castaneum 151 0.11 0.12 0.12 

Uncinocarpus reesii 22 0.67 - - 

7Coprinopsis cinerea 36 12.2 - - 

Phycomyces blakesleeanus 51 4.9 - - 

Selaginella moellendorffii 101 12.5 9.0 0.92 

Oryza sativa 372 50.0 27.4 5.2 

Arabidopsis thaliana 120 22.3 5.92 1.51 

Populus trichocarpa 485 41.9 20.9 3.25 

Physcomitrella patens 454 29.5 29.7 23.2 

Cholella sp. NC64A 42 80.5 2.2 0.25 

Volvox carteri 126 2.6 0.08 0.08 

Chlamydomonas 

reinhardtii 

120 5.4 2.59 2.49 

 

A modification of DNA methylation is the oxidation of 5-methylcytosine to 5-

hydroxymethylated cytosine (Ficz et al., 2011). Most of the methods, which are used to 

detect DNA methylation are inapplicable for the determination of hydroxymethylation 

patterns (Harris et al., 2010). Corresponding approaches make use of thin-layer 

chromotography (Jin et al., 2010). Hydroxymethylation is catalyzed by proteins of the ten-

eleven translocation (TET) family that are highly expressed in ES cells (Tahiliani et al., 2009). 

Recent studies showed that 5-hydroxymethylated cytosines are enriched in euchromatic 

parts of the genome including regulatory regions as for instance promoters and CpG islands 

(Ficz et al., 2011). Ficz et al. found out that frequent appearance of 5-hydroxymethylation 
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correlates with high expression level of the underlying DNA sequence. However, the 

underlying functional mechanism remains to be clarified. 

 

1.2.1 Human Methylomes 

Recent biotechnological developments in the field of next-generation sequencing enable 

cost-effective analysis of methylomes for multiple-gigabase genomes, like the human 

genome. Lister et al. provided the first genome-wide insight into DNA methylation at single-

base resolution in mammalian genomes in 2009 (Lister et al., 2009). They generated maps of 

methylated cytosines of human ES cells and fetal fibroblasts. Constitutive differences of 

DNA methylation patterns were identified for these two cell types (Lister et al., 2009). This 

primordial map of DNA methylation patterns can be used as a reference for methylomes of 

differentiated cell types. By now, additional human methylomes were analyzed, as for 

instance of human colon cancer cells and of human peripheral blood mononuclear cells 

(Hansen et al., 2011; Li et al., 2010). 

Typically, differences based on DNA methylation are associated with cell type specific 

patterns of CpG methylation. Lister et al. additionally detected substantial distinctions based 

on non-CpG methylation (Lister et al., 2009). ES cells exhibit an enrichment of methylated 

non-CpG sites compared to differentiated cells (Lister et al., 2009). Nearly 25% of all 

methylation sites in ES cells were within non-CpG dinucleotides, exhibiting an enrichment of 

CAH and CAG trinucleotides. They further reported the following sequence specificity of 

DNA methylation. CpG and non-CpG sites with a spacing of 8に10 bases were more likely 

methylated, whereas only for methylated CHG sites a periodicity of two pairs of 8-base 

separated cytosines with a spacing of 13 bases could be identified (Lister et al., 2009). Lister 

et al. found out that especially genes, involving a high transcriptional level, are affected by 

non-CpG methylation (Lister et al., 2009). More precisely, methylated CHH sites on the 

antisense strand in gene bodies were enriched, whereas CHG sites on the sense strand were 

almost exclusively unmethylated. Thus, non-CpG methylation might involve a stimulating 

effect on gene expression, in contrast to CpG methylation, which has a silencing effect. 

Lister et al. additionally identified specific CpG methylation patterns at exon-intron 

boundaries. These findings indicate the key role of non-CpG methylation in the origin and 

maintenance of ES cell as a pluripotent cell type. 
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A further publication of Lister et al. pursued the question whether similar DNA methylation 

properties, as they were observed in ES cells, also underlie induced pluripotent stem cells 

(iPSCs). They pointed out that iPSCs are subjected to a reprogramming mechanism for CpG 

and non-CpG methylation. Altogether, methylomes of iPSCs are very similar to those of ES 

cells (Lister et al., 2011). Nevertheless there are genomic regions, which exhibit differences 

in CpG DNA methylation patterns. Most of them are located in CpG islands and gene regions 

(Lister et al., 2011). These differentially methylated regions (DMRs) might be traced to 

transmission of incomplete reprogrammed somatic cell DNA methylation patterns or they 

might be even specific for iPSCs (Lister et al., 2011). Most of these DMRs were analyzed by 

analyzing independent iPSC lines. However, there seems to be unique DMRs for each iPSC 

line, which results in an interclone variability (Lister et al., 2011). Mega-scale genomic 

regions have been additionally indetified, which are resistant to reprogramming of non-CpG 

methylation patterns. These regions are also associated with histone modifications, such as 

H3K9me3, and transcriptional activity (Lister et al., 2011). In summary, CpG and non-CpG 

DMRs, varying histone modifications and expression patterns can be used as markers for 

incomplete reprogramming of iPSCs (Lister et al., 2011). 

 

1.2.2 DNA Methylation in Cancer 

Already in 1983 a first comparison of DNA hypomethylation (decrease of DNA methylation) 

in tumors and corresponding control tissue was published by Feinberg and Vogelstein (A P 

Feinberg and Vogelstein, 1983). Several articles have been published describing DNA 

hypomethylation in cancer (Bedford and van Helden, 1987; Cadieux et al., 2006). The 

opposite relative DNA methylation state, DNA hypermethylation, is especially associated 

with promoter regions of tumor suppressor genes (Graff et al., 1995; Melki et al., 1999; 

Costello et al., 2000). However, these gene-specific hypermethylated tumors additionally 

consist of genomic regions exhibiting predominant low DNA methylation (Manel Esteller, 

2008). Consequently, tumor methylomes cannot be categorized as DNA hypomethylated or 

DNA hypermethylated; they rather should be distinguished regarding their underlying 

genomic region. A large proportion of DNA hypomethylation is located within repetitive 

genomic regions, which are usually predominantly methylated (Hoffmann and Schulz, 2005). 

For example, satellites within pericentromeric heterochromatin of chromosome 1 are 
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predominantly unmethylated in many human cancers (N. Wong et al., 2001). There are 

several genes, which are affected by DNA hypomethylation in tumor cell lines, such as the 

unmethylated melanoma antigen family, which encode tumor antigens (De Smet et al., 

1999), the unmethylated S100 calcium binding protein A4 gene (S100A4) in colon cancer 

(Nakamura and Takenaga, 1998), the unmethylated serine protease inhibitor gene SERPINB5 

in gastric cancer (Akiyama et al., 2003), and the unmethylated oncogene á-synuclein (SNCG) 

in breast and ovarian cancer (Gupta et al., 2003). In summary, DNA hypomethylation can be 

separated into three different mechanisms. It affects genomic instability early in 

tumorigenesis, reactivates transposable elements, and can lead to loss of imprinting (Manel 

Esteller, 2008). 

DNA hypermethylation of CpG islands, especially for those overlapping promoter regions of 

tumor-suppressor genes, is also often associated with cancer cells (Peter A Jones and 

Stephen B Baylin, 2007). Several DNA hypermethylated CpG islands overlapping promoter 

regions of cancer associated genes could be identified: the tumor-suppressor genes 

retinoblastoma Rb (Greger et al., 1989; Sakai et al., 1991), VHL (associated with von Hippel-

Lindau disease) and p16
INK4a 

(J G Herman et al., 1994; Merlo et al., 1995; J G Herman et al., 

1995; Gonzalez-Zulueta et al., 1995), hMLH1 (a homologue of MutL Escherichia coli) (James 

G Herman and Stephen B Baylin, 2003), and BRCA1 (breast-cancer susceptibility gene 1) 

(James G Herman and Stephen B Baylin, 2003; M Esteller et al., 2000). The Knudson two-hit 

hypothesis states that all copies of a tumor-suppressor gene have to be impaired to obtain a 

complete loss of function (Knudson, 2001). In genetics, such a phenomenon might be given 

by a germ-line (in familial cancers) or a somatic (in non-inherited tumors) mutation within 

the coding region of one of two copies of a tumor-suppressor gene. The second copy of the 

tumor-suppressor gene is usually affected by a somatic mutation, which ultimately leads to 

a malignant transformation of the cell (Knudson, 2001). DNA methylation of promoter 

regions of tumor-suppressor genes might act as a disruption, which has a similar effect as 

mutations within the coding region of the underlying gene (M Esteller, M F Fraga, et al., 

2001). In familial cancer types, DNA methylation usually interferes with the activity of a 

tumor-suppressor gene on the second level of the Knudson two-hit hypothesis i.e. the first 

copy is affected by an inherited mutation (M Esteller, M F Fraga, et al., 2001). Esteller et al. 

additionally verified several types of nonfamilial tumors, which involve two fully methylated 

promoters of an associated tumor-suppressor gene. Altogether, it can be concluded that 
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there are more cancer-related genes influenced by DNA methylation than by mutations 

(Peter A Jones and Stephen B Baylin, 2002; Merlo et al., 1995). 

Several epigenetic research projects identified hundreds of cancer genes associated with a 

DNA hypermethylated promoter region. Even an individual tumor type might include a 

variety of DNA hypermethylated loci. Recent cancer biology assumes that the stem cell state 

is an integral component of cancer development (Manel Esteller, 2008). Baylin and Ohm 

reviewed contributions of epigenetically silenced groups of genes at the chromatin level, 

which control the maintenance of cells in a stem cell state (Stephen B Baylin and Ohm, 

2006). TŚĞ ĐŽŶĐĞƉƚ ŽĨ ƚŚĞ ͞ĐĂŶĐĞƌ ƐƚĞŵ ĐĞůů͟ involves the cell population which is 

responsible for perpetuating the tumor (Bjerkvig et al., 2005). Cancer stem cells might 

originate from tissue-specific and bone marrow stem cells. Furthermore they might be 

derived from somatic cells that undergo transdifferentiation processes, or they are the 

result of cell fusion or horizontal gene-transfer processes (Bjerkvig et al., 2005). An accurate 

distinction of cancer stem cells and normal stem cells remains to be clarified.  

The strong association of DNA methylation and cancer raises the request of epigenetic 

therapeutics. Especially drugs involving a reduction of DNA methylation is of great interest, 

since it could reverse gene silencing of tumor-suppressor genes. Constantinides initially 

described the impact of azanucleoside drugs on the expression level of cells in 1977 

(Constantinides et al., 1977). In the meantime, it has been proven that treatment of 5-

azacytidine has an inhibiting effect on DNA methylation (Santi et al., 1983). Further DNA 

methylation influencing drugs, such as fluoro-Ϯ͛-deoxycytidine (P A Jones and Taylor, 1980) 

and zebularine (Cheng et al., 2004), are currently in development. A disadvantage of such 

nucleosides is their need to be incorporated directly into the DNA to exploit their full 

capability. Consequently, there have been several alternative attempts to develop drugs 

acting without any direct incorporation into DNA. Procainamide (Cornacchia et al., 1988) 

and tea polyphenols (Fang et al., 2003) include a DNA methylation inhibiting effect. 

However they solely have a weak effect on living cells (Peter A Jones and Stephen B Baylin, 

2007). 
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1.3 Genomic Imprinting 

Genomic imprinting is a epigenetic mechanism, that regulates gene expression in a parental-

origin-specific manner (Ferguson-Smith, 2011). Either the maternal or the paternal allele is 

transcribed while the respectively other allele is silenced by an epigenetic mechanism. Thus, 

imprinting does not follow Mendelian rules. Originally, this phenomenon was discovered in 

experiments with mouse embryos that contain only one of the two sets of parental 

chromosomes (uniparental embryos) and those that inherit solely specific chromosomes 

from one parent (uniparental disomy) (Surani et al.; McGrath and Solter, 1984). Both 

experiments showed that genes have different properties and effects depending on their 

parental origin. 

In 1991, the first imprinted genes could be identified, which are expressed in a parental-

specific manner (DeChiara et al., 1991; Barlow et al., 1991; Bartolomei et al., 1991). Today, it 

is known that genomic imprinting takes place in several mammalian organisms (W Reik and 

Walter, 2001). Today, especially DNA methylation is associated with genomic imprinting. 

Parental-specific incomplete reprogrammed DNA methylation patterns in the embryo result 

in varying gene expression levels of differentiated cells. Figure 1.2 exemplifies a hypothetical 

pedigree of familial inheritance of an imprinted disorder through five generations. In this 

case, the mutation takes place in a paternally imprinted gene. Hence a paternal mutation 

cannot affect the offspring, since it is repressed. 
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Figure 1.2: Hypothetical pedigree of inheritance of an imprinted disorder. 

Figure modified from (Aitman et al., 2011) 

 

Until today, especially imprinting in mice was studied and plenty of imprinted genes have 

been identified. A subset of these genes have even been validated in other mammalian and 

also in the human genome (Killian et al., 2000). Notably 80% of the imprinted genes 

annotated in the mouse cluster in specific genomic regions (Killian et al., 2000). Besides 

their affinity to appear in clustered groups, there is an enrichment of imprinted genes 

covering CpG islands that are located close to repeated genomic regions (Paulsen et al., 

2000). Most of the imprinted genes show differences in maternal and paternal DNA 

methylation patterns. However, it should be distinguished between imprinted genes 

established from parental germ cells and maintained during cell differentiation (Stöger et 

al., 1993; Olek and Walter, 1997; Tremblay et al., 1997; Shemer et al., 1997) and imprinted 

genes, which initially exhibit equal parental DNA methylation patterns and evolve into 

tissue-specific imprinted genes (R Feil et al., 1994). Another property of the imprinting 

mechanism is observed during the cell division process. Kitsberg et al. observed a time-

related property of imprinted genomic regions (Kitsberg et al., 1993) with a temporary shift 

in the replication of imprinted genomic regions during the cell cycle. The replication of the 

paternal copy usually occurs before the maternal one. Furthermore, it has been noted that 

Male Female Affected Carrier
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parental-specific meiotic recombination rates arise during the synthesis of imprinted 

genomic regions (Pàldi et al., 1995; Robinson and Lalande, 1995). 

It is certainly of great interest to understand the impact of genomic imprinting on an 

ŽƌŐĂŶŝƐŵ͛Ɛ ƉŚĞŶŽƚǇƉĞ͘ A human disorder that shows parental-origin effects, due to genomic 

imprinting, is the Beckwith-Wiedemann syndrome (BWS) (Lubinsky et al., 1974). Lubinsky et 

al. reported: ͞ĂĨĨĞĐƚĞĚ ŽĨĨƐƉƌŝŶŐ ŽĨ ĞŝƚŚĞƌ ƐĞǆ ďŽƌŶ ŽŶůǇ ƚŽ ĨĞŵĂůĞ ďƵƚ ŶŽƚ ƚŽ ŵĂůĞ ĐĂƌƌŝĞƌƐ͟ 

(Lubinsky et al., 1974). This disorder is additionally associated with an increased incidence of 

childhood tumors. However, BWS, a sporadic disease, is additionally associated with 

genomic alterations within the region 11p15 and is not only caused by imprinting (Michael R 

DeBaun et al., 2002). Chromosomal rearrangements, paternal uniparental disomy (maternal 

copy of chromosome 11 is replaced by the paternal one), or the presence of only one gene 

within the 11p15 region might also cause BWS (M R DeBaun and Tucker, 1998). 

Neurological disorders, such as the Prader-Willi syndrome and the Angelman syndrome, 

have as well been identified as diseases regulated by imprinted genes (Buiting et al., 1995). 

Both disorders are caused by genetic and epigenetic defects within the same genomic 

domain on human chromosome 15. However, they differ in their parental-origin-specific 

manner.  The Prader-Willi syndrome occurs in ~1 in 20,000 births and is characterized ͞by a 

failure to thrive during infancy, hyperphagia and obesity during early childhood, mental 

ƌĞƚĂƌĚĂƚŝŽŶ͕ ĂŶĚ ďĞŚĂǀŝŽƵƌĂů ƉƌŽďůĞŵƐ͟ (Robertson, 2005). It involves a ~2 Mb imprinted 

genomic region that consist of a combination of maternally and paternally imprinted genes 

(Robertson, 2005). The Angelman syndrome occurs in ~1 in 15,000 births and is 

ĐŚĂƌĂĐƚĞƌŝǌĞĚ ͞ďǇ ŵĞŶƚĂů ƌĞƚĂƌĚĂƚŝŽŶ͕ ƐƉĞĞĐŚ ŝŵƉĂŝƌŵĞŶƚ ĂŶĚ ďĞŚĂǀŝŽƵƌĂů ĂďŶŽƌŵĂůŝƚŝĞƐ͟ 

(Robertson, 2005). The imprinting-defect is caused by the loss of maternally expression of 

the gene UBE3A, which is solely imprinted in the brain.  

 

1.4 Epigenetics and the Environment 

Although epigenetic modifications are predominantly stable, it is often discussed whether 

they might be influenced by environmental factors. Thereby, environmental influences 

ŵŝŐŚƚ ŚĂǀĞ Ă ĚŝƌĞĐƚ ĞĨĨĞĐƚ ŽŶ ĂŶ ŽƌŐĂŶŝƐŵ͛Ɛ ŐĞŶĞ ĞǆƉƌĞƐƐŝŽŶ ůĞǀĞů ĂŶĚ ŝƚƐ ƉŚĞŶŽƚǇƉĞ͘ IŶ 

plants, persistent temperature changes can control epigenetic modifications (Chinnusamy 

and Zhu, 2009)͘ PůĂŶƚƐ͛ ǀĞƌŶĂůŝǌĂƚŝŽŶ might be regulated by epigenetic transitions in the 
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following manner. In temperate climates they are initiated to flower directly after having 

been exposed to the cold temperatures of winter (D.-H. Kim et al., 2009). In detail, Kim et al. 

show that vernalization of Arabidopsis is controlled by histone modifications of flowering 

suppressor genes (D.-H. Kim et al., 2009). Environmental-based epigenetic regulation in 

plants was also observed in Linaria vulgaris with a change of the fundamental symmetry of 

the blossom from bilateral to radial (Cubas et al., 1999). Cubas et al. identified Lcyc, a 

homologue of the cycloidea gene, as the regulating gene. Flowers, exhibiting a high level of 

DNA methylation within Lcyc, involve a change of symmetry. This DNA methylation 

regulated phenomenon is highly adaptable. A demethylation of Lcyc during somatic cell 

differentiation reverses the symmetry of the flower (Cubas et al., 1999). 

Environmental-based epigenetic regulation can also be observed in mammalian organisms. 

There are different animal models, which show a correlation between environmental 

influences and changes in the epigenome (Rosenfeld, 2010). The agouti viable yellow allele 

(A
vy

) in the mouse is an example of a metastable epiallele, an allele that can stably exist in 

more than one epigenetic state, resulting in different phenotypes (Rakyan et al., 2002). The 

epigenetic state of a metastable epiallele can switch and establishment is a probabilistic 

event. Once established, the state is mitotically inherited (Rakyan et al., 2002). The 

methylation level of the intracisternal A-particle retrotransposon of the A
vy

 locus is strongly 

associated with the coat colour of the mouse. A weakly methylated retrotransposon and 

therefore expressed agouti gene leads to a yellow coat colour, obesity and diabetes 

(Morgan et al., 1999). Folate (a B vitamin, which is abundant in green vegetables and fruits), 

and further compounds that affect one-carbon-transfer reactions, interfere with the DNA 

methylation level of A
vy

 of the developing offspring. The resulting coat color distribution of 

the offspring is shifted towards the brown pseudoagouti phenotype (Morgan et al., 1999). 

However, the methylation state of the mother remains unmodified (Waterland and Jirtle, 

2003). 

In humans, it is known that nutrition, emotional stress and toxic exposure might influence 

the phenotype by epigenetic changes (Gluckman et al., 2009) (see Table 3). Especially 

gestational effects can be observed in mammalians. An experiment gives proof that 

suboptimal nutrition during elementary gestation implicates increased incidence of type 2 

diabetes in the offspring of rats (Sandovici et al., 2011). Ewes showed also adverse effects 

during gestation. The offspring of pregnant ewes, who were fed a restricted amount of 
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folate, methionine and vitamin B12, showed health problems that were caused by 

decreases in the DNA methylation levels of specific CpG islands (Sinclair et al., 2007). 

Environmental-based epigenetic regulations, based on histone modifications, have 

additionally been identified. The offspring of japanese macaques, fed high-fat diet during 

gestation, show a globally high level of acetylation of histone H3 (Aagaard-Tillery et al., 

2008). In summary, fetal metabolic impairments due to nutritional restrictions are 

associated with epigenetic alterations, which affect the risk of chronic disorders throughout 

ĂŶ ŽƌŐĂŶŝƐŵ͛Ɛ ůŝĨĞƚŝŵĞ͘ 

 

Table 3: Environmental-induced epigenetic alterations that affect health. 

Table modified from (Robert Feil and Mario F Fraga, 2011) 

Compound Species Ontogenic 

stage 

Epigenetic 

alteration 

Tissues or cell 

types 

affected 

Phenotypic 

alterations 

References 

Tobacco 

smoke 

Human Adult life DNA 

methylation and 

histone 

modifications 

Lung, blood Lung cancer? (Pulling et al., 2004; 

Breitling et al., 2011; 

Hussain et al., 2009) 

Particulate 

air pollution 

Human, 

mouse 

Adult life DNA 

methylation 

Blood, sperm Unknown (Baccarelli et al., 2009; 

Yauk et al., 2008) 

Silica Human Adult life DNA 

methylation 

Blood Silicosis (Umemura et al., 2008) 

Benzene Human Adult life DNA 

methylation 

Blood Increased risk 

of AML 

(Bollati et al., 2007) 

 

Postnatal effects of environmentally-based epigenetic alterations can be observed as well. 

As already mentioned in the beginning of the introduction, Fraga et al. pointed out that 

monozygotic twins develop varying DNA methylation patterns during lifetime (Mario F Fraga 

et al., 2005). Moreover they showed that differences in DNA methylation correlate with 

increasing age. Some of these alterations might be explained by environmental factors.  A 

further experiment approaching the same question was done by Wong et al. in 2010 (C. C. Y. 

Wong et al., 2010). They use DNA of 46 monozygotic and 45 dizygotic twin-pairs to generate 

locus specific DNA methylation levels of the dopamine receptor 4 gene (DRD4), the 

serotonin transporter gene (SLC6A4/SERT) and the X-linked monoamine oxidase A gene 

(MAOA) at both ages 5 and 10 years. The results of their study confirmed individual 
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differences in DNA methylation patterns, which are already established in early childhood, 

whereas they additionally might be altered during lifetime (C. C. Y. Wong et al., 2010). This 

highlights the dynamic property of epigenetic modifications induced by varying life 

conditions. 

A direct association between altered global DNA methylation states and air pollution is 

given by an epidemiological study of Baccarelli et al. in 2009 (Baccarelli et al., 2009). Tissue-

specific alterations in DNA methylation of several loci were associated with environmental 

influences, such as chronic exposure to sunlight, asbestos and tobacco smoke, consumption 

of alcohol and use of hair dye (Christensen et al., 2009; Langevin et al., 2011; Grönniger et 

al., 2010). Especially the interference of tobacco smoking on DNA methylation is of great 

interest, since it has been validated that smokers and former smokers show an enrichment 

of methylated promoter regions of tumor-suppressor genes in non-transformed lung cells 

(Pulling et al., 2004). Altogether, it has been shown that toxic environmental exposure might 

bias global and locus-specific DNA methylation patterns, whereas it should be differentiated 

between directly affected tissues and indirectly affected tissues exposed to chemical 

pollutants. 

  

1.5 Transgenerational Epigenetic Inheritance 

Transgenerational epigenetic effects require epigenetic alterations in the germ line, which 

are not erased by the reprogramming mechanism in the early embryo (see section 1.2). It is 

often discussed, whether disease risk, influenced by environmental-based epigenetic 

alterations, can be inherited (see section 1.4). Most of the environmental-based epigenetic 

effects that affect the offspring can be observed during gestation (Robert Feil and Mario F 

Fraga, 2011) and cannot be attributed to a transgenerational transmission mechanism. For 

example, when a female of the F0 generation (initial parent generation in a multi-generation 

study) is exposed to toxic environmental influences, both the F1 embryo and the F2 

generation germ line are also affected by the exposure (Jirtle and Skinner, 2007). Thus, 

transgenerational environmental-based epigenetic effects have to be found in the F3 

generation. Even studies analyzing postnatal or adult transgenerational effects have to 

assess the F2 generation, since F1 generation germ line is also directly affected by parental 

exposure (Ikeda et al., 2005; Blatt et al., 2003; Barber et al., 2006). 
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Several human and animal studies based on nutritional deficiency emphasize that an F0 

exposure might influence the phenotype of the F2 generation (Pembrey et al., 2006; Csaba 

and Karabélyos, 1997; Ottinger et al., 2005; Anderson et al., 2006; Csaba and Inczefi-Gonda, 

1998; Newbold et al., 2006; Popova, 1989; Zambrano et al., 2005). Specific chemical 

exposures to the F0 generation show also effects in the F2 generation (Dubrova, 2005; Csaba 

and Inczefi-Gonda, 1998; Popova, 1989; Turusov et al., 1990). A transgenerational effect 

that is even passed to the F3 generation is caused by the endocrine disruptor vinclozolin, an 

antiandrogene (a blocker for steroid hormone that promotes male secondary sex 

characters), which causes spermatogenic defects, male infertility, breast cancer, kidney 

disease, prostate disease and immune abnormalities in up to four generations, but only 

when transmitted through the male germ line (Anway et al., 2006). Recent publications 

pointed out that these transgenerational effects were probably caused by epigenetic 

alterations (Jirtle and Skinner, 2007; Anway et al., 2005; Chang et al., 2006). 

As already indicated, most of transgenerational epigenetic studies describe effects based on 

maternal exposure during gestation (Robert Feil and Mario F Fraga, 2011) (see section 1.4). 

In 2010, Carone et al. identified transgenerational effects in metabolic gene expression of 

mice based on paternal diet (Carone et al., 2010). They combined microarray and next-

generation sequencing expression profiling analysis and MeDIP-seq (methylated DNA 

immunoprecipitation combined with next-generation sequencing) and RRBS (reduced 

representation bisulfite sequencing) to assess DNA methylation. On the transcriptional level, 

they showed that offspring of males, fed a low-protein diet, exhibit an upregulation of genes 

involved in lipid and cholesterol biosynthesis. Cholesterol ester levels were significantly 

downregulated compared to unexposed offspring. On the epigenetic level, they solely 

identified marginal alterations in liver methylomes of offspring depending on paternal diet. 

However, they indicated that a putative enhancer for a major lipid regulator, Ppara, is in 

low-protein offspring predominantly higher methylated compared to the offspring of males 

fed a control diet. 
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1.6 Thesis Structure 

The remainder of this thesis is structured as follows: 

 

Chapter 2 describes methodological considerations about NGS platforms for the 

determination of genome-wide DNA methylation patterns. Different biotechnological assays 

are discussed, whereas the main part focuses on bisulfite next-generation sequencing. 

Furthermore, primary analysis of raw sequencing data and their recommended quality 

controls are presented. Finally, secondary analyses including the alignment of bisulfite 

sequencing data are presented. All aspects considered, this chapter summarizes the 

biotechnological idea of next-generation sequencing assays, especially the one using 

bisulfite converted DNA and their bioinformatics challenges. 

 

Chapter 3 outlines findings of the dissertation, which I published as first author (the 

manuscript of Appendix C was submitted in June 2012). An application note presents a 

bioinformatics approach for the primary analysis of bisulfite next-generation sequencing 

data. An overview about recommendations and pitfalls of methylome analysis, using short 

bisulfite sequencing data on different platforms, is presented in a review article. A biological 

study about the methylome of a human B-cell lymphoma makes use of the results of the 

application note and the review mentioned above. 

 

Chapter 4 contains the discussion and conclusion of this thesis. Different bisulfite-based 

methods for genome-wide DNA methylation analysis are discussed and findings of this 

thesis are integrated ŝŶƚŽ ƚŽĚĂǇ͛Ɛ ĞƉŝŐĞŶĞƚŝĐ ƌĞƐĞĂƌĐŚ. Finally, future perspectives of 

computational epigenetics are presented. 
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For the Projects, incorporated in this thesis, next-generation sequencing (NGS) was carried 

out. The following section provides insight into different technologies and the respective 

challenges and limitations. The main part concerns bisulfite sequencing, a method for the 

determination of genome-wide DNA methylation levels at single-base resolution. Detailed 

information about the methods, used in each project, can be found in the supplement of the 

respective publication (see Chapter 3). 

 

2.1 Next-Generation Sequencing 

NGS enables the cost-efficient generation of large sequencing data sets for case-control and 

evolutionary studies based on whole genomes at single-base resolution. Today, NGS is 

especially used for variant detection by resequencing (personnel genomes), transcriptome 

analysis (RNA-seq), and the discovery of epigenetic variations (DNA methylation). Before 

NGS was established, research projects, including the generation of the human genome by 

the International Human Genome Consortium (IHGSC, 2004), were dependent on 

automated Sanger sequencing. 

The biotechnological workflow of NGS basically involves three steps: template preparation, 

sequencing or alternatively imaging, and the bioinformatics analysis including sequence 

mapping or genome assembly. The latter is specifically highlighted in section 2.3. The fast 

technological development reveals new systems within short periods of time. Selected 

methods, relevant for the projects incorporated in this thesis, are presented in this chapter. 

Two main assays are used for the preparation of templates, namely amplification-based 

methods and single molecule templates (the latter are discussed in section 4.5). For 

amplification-based template preparation, emulsion polymerase chain reaction (PCR) and 

solid-phase based methods are most often used (Dressman et al., 2003; Fedurco et al., 

2006). Emulsion PCR uses beads equipped with a primer to bind amplified single-stranded 

DNA molecules. Therefore, millions of beads are fixed in a polyacrylamide gel for the 

upcoming sequencing step. A substantial advantage of emulsion PCR is the cell-free 

environment avoiding the arbitrary loss of sequences, which is a problem in bacterial 

cloning methods (Metzker, 2010). The alternative amplification-based approach for 

template preparation, namely solid-phase amplification, fixes clusters of immediately 

adjacent primers to a solid surface in order that added single-stranded DNA molecules result 
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in bridges between their corresponding primers. The subsequent amplification takes place 

along these bridges. It has to take into account that amplification by PCR might imply biases 

as for instance transcription errors or underrepresentation of specific sequences (Acinas et 

al., 2005). 

The 454 technology by Roche was the first NGS platform established in 2005. It uses the 

emulsion PCR for the amplification step and the pyrosequencing technology (Ronaghi et al., 

1996). Pyrosequencing by the 454 approach basically involves the complementation of 

single stranded DNA and the simultaneous sensing of the signal emitted from the respective 

nucleotide (see Figure 2.1). This technology avoids electrophoresis as the decoding can be 

proceeded during the sequence extension. In detail, each nucleotide is added by a 

polymerase chain reaction and a pyrophosphate for each nucleotide is transformed to an 

ATP by an ATP sulfurylase (Metzker, 2010). Afterwards, unincorporated nucleotides are 

washed away and the same process is started for the adjacent base. The average error rate 

of the 454 method is in the range of 10
-3

-10
-4

 (Margulies et al., 2005; Quinlan et al., 2008), 

which is significantly higher than for Sanger sequencing. The error rate of the 454 approach 

increases towards the end of the underlying sequence, which is caused by a decrease of the 

productivity of the specifc enzyme resulting in weaker signals (Kircher & Kelso 2010). 
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Figure 2.1: The idea of the 454 pyrosequencing approach. 

Figure from (Metzker, 2010) 

 

The HiSeq 2000 technology of Illumina uses the solid-phase amplification. Effectively, this 

sequencing by synthesis approach is similar to the idea of Sanger sequencing. A reversible 

dye terminator is used to control the incorporation of solely one nucleotide (Metzker, 

2010). Free nucleotides are washed away and the respective integrated nucleotide is 

readout by four images using different filters and lasers to differentiate all genomic bases. 

Subsequently, dye terminators are removed and the procedure starts for the adjacent base. 

This approach exhibits a per base error rate of about 10
-2

-10
-3

, which is slightly higher 

compared to the 454 method
 
(Kircher et al., 2009; Dohm et al., 2008). The per-base error 

rate also increases towards the end of the sequence, which is mainly due to phasing (not 

synchronized amplification of a population of DNA molecules). This phenomenon 

significantly increases the background noise (Kircher & Kelso 2010). More precisely, uni-

directional phasing results in an incorrect reversible termination, which leads to an 

uncontrolled synthesis of further nucleotides (Kircher et al., 2009; Erlich et al., 2008). 
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Figure 2.2: The concept of the HiSeq 2000 approach using a reversible dye terminator. 

Figure from (Metzker, 2010) 

 

2.1.1 Two-base Encoding Sequencing 

The research projects, incorporated in this thesis, make use in particular ŽĨ ƚŚĞ “OLŝDΡ 

sequencing technology of Life Technologies (see Chapter 3). Therefore, this approach is 

comprehensively presented in the following section. “OLŝDΡ ƐĞƋƵĞŶĐŝŶŐ was developed by 

the Harvard Medical School and the Howard Hughes Medical Institute in 2005 (Shendure et 

al., 2005). It is the third NGS platform beyond the 454 platform and the Illumina Genome 

Analyzer (the predecessor of the HiSeq 2000 platform). The fundamental difference in 

“OLŝDΡ ƐĞƋƵĞŶĐŝŶŐ, compared to those mentioned above, is the fact that it uses a ligation 

reaction instead of a polymerase reaction (Shendure et al., 2005). Hereby, 8-mer probes 

modified with four different fluorescent labels are allocated for the ligation at single-

stranded sequences hybridized with primers (LifeTechnologies, 2008). The two ϯ͛-most 

nucleotides encoding the fluorophore are readout to determine the respective base. 

Subsequently, three bases including the dye ĂƌĞ ĐůĞĂǀĞĚ ĨƌŽŵ ƚŚĞ ϱ͛ ĞŶĚ ŽĨ ƚŚĞ ϴ-mer. The 



Methodological Considerations 

28 

remaining 5-mer ƉƌŽďĞ ǁŝƚŚ Ă ĨƌĞĞ ϱ͛ ƉŚŽƐƉŚĂƚĞ is used for the next ligation step. On 

average, 10 ligations are concatenated and the resulting sequence is then washed away to 

start the process for the next primer set. This upcoming primer set is solely shifted one base 

ƚŽǁĂƌĚƐ ƚŚĞ ϱ͛ ĞŶĚ ŽĨ ƚŚĞ ƵŶĚĞƌůǇŝŶŐ ĨƌĂŐŵĞŶƚ ;ƐĞĞ Figure 2.3). Each primer exists in four 

modifications to ensure the presence of all four nucleotides in the first ligation step. 

There are various sources of erroneous base call. Firstly, the emulsion PCR amplification 

step leads to a higher error rate than solid-phase amplification methods (Kircher & Kelso 

2010). Secondly, an incomplete cleavage of the dye can result in a biased ligation process. 

The efficiency of a phosphate-based termination in this NGS approach minimizes the per 

base error rate of phasing. Altogether, the estimated per base error rate is in the range of 

10
-2

-10
-4

, which depends on the availability of a reference genome to correct errors (Kircher 

& Kelso 2010) (see Figure 2.5). 

 

 

Figure 2.3: Sequencing by ligation using a two-ďĂƐĞ ĞŶĐŽĚŝŶŐ ƚĞĐŚŶŽůŽŐǇ ďǇ ƚŚĞ SOLŝDΡ system. 

Figure from (LifeTechnologies, 2008) 
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The sequence output of two-base encoding “OLŝDΡ sequencing is called color space. Sanger 

sequencing already encodes nucleotides by colors. However, “OLŝDΡ ĐŽůŽr space makes use 

of 4 colors, where each encodes 4 out of 16 transitions between all nucleotides (see Figure 

2.4). 

 

 

Figure 2.4: Scheme ŽĨ SOLŝDΡ ĐŽůŽƌ ƐƉĂĐĞ. 

Figure from (LifeTechnologies, 2008) 

 

Hence, two independent ligation steps determine each nucleotide, which results in a higher 

specificity. This fact enables the differentiation of sequencing errors and potential variants 

such as single nucleotide polymorphisms (SNPs). In detail, a single color change within a 

“OLŝDΡ ƐĞƋƵĞŶĐĞ ŝƐ ƚǇƉŝĐĂůůǇ ƚƌĂĐĞĂďůĞ to a measurement error (LifeTechnologies, 2008). 

However, two adjacent color changes normally indicate a SNP. Furthermore, insertions and 

deletions can be detected in a similar manner (see Figure 2.5). 
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Figure 2.5: Properties of color space reads containing measurement errors and variants. 

Figure from (LifeTechnologies, 2008) 

 

2.2 Bisulfite Sequencing-based Methods to Profile DNA Methylation 

2.2.1 Bisulfite Sequencing 

Currently, there are two different approaches for the detection of DNA methylation based 

on NGS. Basically, they can be split into enrichment-based and bisulfite-based methods. 

Enrichment-based methods consist of methylated DNA immunoprecipitation sequencing 

(MeDIP-seq) and methylated DNA binding domain sequencing (MBD-seq) (Jacinto et al., 

2008; Down et al., 2008; Serre et al., 2010). MeDIP-seq makes use of an anti-methylcytosine 

antibody to immunoprecipitate single-stranded DNA fragments. MBD-seq involves an 

enrichment of double-stranded DNA fragments via the MBD2 protein methyl-CpG binding 

domain. Recent publications have shown that enrichment-based and bisulfite-based 

methods generate comparable DNA methylation results (Harris et al., 2010; Bock et al., 

2010). 
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Bisulfite sequencing (BS-seq) involves the bisulfite conversion of genomic DNA combined 

with NGS. The bisulfite treatment of DNA molecules enables a differentiation between 

methylated and unmethylated cytosines at single-base resolution. Thereby, unmethylated 

cytosines are converted to uracils, whereas methylated cytosines remain unmodified 

(Frommer et al., 1992). Uracils are read as thymines by DNA polymerase. Thus, the 

amplification of bisulfite-treated DNA by PCR yields products in which unmethylated 

cytosines appear as thymines. Consequently, differences in methylation states at single-base 

resolution can be inferred depending on the amount of cytosines and thymines assigned to 

a specific genomic position. BS-seq is nowadays the gold standard for genome-wide DNA 

methylation analysis because of its clear readout at each cytosine position. A limitation of 

BS-seq is the fact that it cannot distinguish between DNA hydroxymethylation (see section 

1.2) and usual DNA methylation. In detail, bisulfite treatment converts unmethylated and 

non-hydroxymethylated cytosines to thymines and leaves methylated and 

hydroxymethylated sites unmodified (Krueger et al., 2012). Hence, the respective 

modification cannot be determined separately. 

 

2.2.2 Reduced Representation Bisulfite Sequencing 

BS-seq is an accurate method for the determination of genome-wide DNA methylation 

levels. However, it is still a cost-intensive approach especially for large genomes. Meissner 

et al. developed a genome-scale method, which also makes use of bisulfite converted DNA, 

providing insights into parts of the methylome (Meissner et al., 2005). Their reduced 

representation bisulfite sequencing (RRBS) approach enables the facilitation of case-control 

studies involving large sample sizes (Gu et al., 2010). The idea of RRBS is to digest genomic 

DNA with a methylation-insensitive restriction enzyme. Fragments of a specific length are 

selected to filter the most informative genomic subset. Then, a bisulfite conversion of end-

repaired, A-tailed, and adapter ligated fragments is carried out to determine DNA 

methylation levels as described in section 2.2.1 (Gu et al., 2011). Hereby, DNA methylation 

patterns of parts of the genome can be obtained. It has been shown that these restricted 

fragments cover especially core promoters and CpG islands (Gu et al., 2010), which include 

essential regulatory parts of the genome. Altogether, RRBS composes only ~1% of the 

underlying whole genome (Meissner et al., 2008). It has been shown that DNA amounts of 
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10-ϯϬϬ ɻŐ are sufficient to generate accurate DNA methylation levels with RRBS (Gu et al., 

2011). Consequently, it is well-suited for many clinical samples, such as tumors, which can 

only provide a small amount of genomic input DNA material. 

The following section describes selected steps of the preparation of a RRBS library using the 

digestion enzyme MspI (see Figure 2.6). Further bisulfite-based library preparation protocols 

are given in the respective supplemental information of projects incorporated in this thesis 

(see Chapter 3). 

 

 

Figure 2.6 Workflow of a RRBS library preparation. 

Figure modified from (Gu et al., 2011) 

 

 Isolation of genomic DNA: It is mandatory to use highly purified genomic input DNA to 

generate a high-quality RRBS library (Gu et al., 2011). Contaminated DNA molecules 

might interact with restriction enzymes and interfere with the bisulfite conversion. Gu et 

al. additionally recommend the use of DNase-free RNase in the lysis buffer to avoid DNA 

degradation (Gu et al., 2011). 

 Digestion reaction: Two different enzymes are commercially available by now: MspI 

(restriction ŵŽƚŝĨ͗ CљCGG) and TaqI (restriction ŵŽƚŝĨ͗ TљCGAͿ (Gu et al., 2011). Both, 

MspI and TaqI are insensitive for CpG DNA methylation, whereas MspI exclusively 

generates fragments containing CpG dinucleotides at both ends. A drawback of MspI is 

that a methylated cytosine at the first position of the restriction motif CљCGG interferes 
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with the digestion reaction (Gu et al., 2011). However, this situation can rarely be 

observed, at least in human methylomes, since methylated non-CpG sites hardly ever 

occur (Pelizzola and Ecker, 2010) (see section 1.2.2). 

 Filling in and A-tailing: ϯ͛-terminal recessive ends containing an adenine are added, 

since they are required for the adapter ligation of the upcoming library preparation (Gu 

et al., 2011). 

 Methylated adapter ligation: Both, single-end and paired-end sequencing can be carried 

out with RRBS libraries, whereas adapters have to consist of methylated cytosines to 

maintain their compatibility with the subsequent bisulfite conversion. Paired-end 

sequencing certainly has the advantage to increase the mapping efficiency by unique 

alignments. However, it can also bias DNA methylation levels, as overlapping pairs 

generate redundant DNA methylation information (Krueger et al., 2012). 

 Gel size selection: Before fragments are bisulfite converted, they are size selected. In-

silico analyses show that a size selection of 40-220 bp for fragments, containing the MspI 

restriction ŵŽƚŝĨ CљCGG, covers most promoter sequences and CpG islands (Gu et al., 

2011). 

 Bisulfite conversion, PCR amplification, and sequencing: Digested and size-selected 

fragments are finally bisulfite converted. In the end, fragments are amplified by PCR for 

the sequencing process on a NGS platform. To date, RRBS is solely carried out on 

Illumina platforms. 

 

The bioinformatics challenge of analyzing RRBS sequencing data is given by the fact that the 

alignment step requires an in-silico modified reference genome. Thus, the reference should 

consist of size-selected and enzyme specific digested genomic sequences. Apart from the 

alignment reference, RRBS depends on comparable bioinformatics primary and secondary 

analyses as they are applied to genome-wide BS-seq. Details about challenges and pitfalls of 

BS-seq data are given in section 2.3.1 and 2.3.2.  
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2.3 Analysis of Bisulfite Sequencing Data 

2.3.1 Quality Control 

Several quality control approaches for BS-seq data exist. Firstly, sequencing results can be 

validated by positive and negative controls incorporated into the sequencing library. 

Secondly, raw sequencing data can be controlled for quality by in-silico analyses to filter 

contaminations. 

An effective quality control can be performed with lambda phage (enterobacteria phage) 

DNA, which is spiked-in during the library preparation. The lambda phage genome is 

originally completely unmethylated and is therefore used as a positive control of the 

bisulfite conversion. Hence, the overall DNA methylation level in the lambda phage genome 

assesses the quality of the bisulfite conversion. Recent publications identified 1% of 

methylated cytosines within the lambda phage genome (Lister et al., 2009, 2011; Hansen et 

al., 2011). 

A critical part of genome-wide DNA methylation analyses is the determination of non-CpG 

sites. As already mentioned in section 1.2.1, ES cells involve the highest amount of 

methylated non-CpG sites in human cells. However, the principal part of these non-CpG 

sites involves DNA methylation levels of less than 0.4 (Lister et al., 2009). Hence, it is 

indispensable to distinguish between truly low methylated non-CpG sites and non-CpG sites, 

which involve a low DNA methylation due to an incomplete or defective bisulfite conversion. 

Considering that, Lister et al. developed the following approach using an estimation of the 

bisulfite conversion based on the lambda phage. They used the binomial distribution: 

 ݂ሺ݇Ǣ ݊ǡ ሻ݌ ൌ ቀ݊݇ቁ ௞ሺͳ݌ െ ሻ௡ି௞き aﾗヴ Ͳ݌ ൑ ݇ ൑ ݊ ;ﾐS ቀ݊݇ቁ ൌ ݊Ǩ݇Ǩ ሺ݊ െ ݇ሻǨ 
  

Parameters are defined as follows: n is the sequence coverage at a specific genomic 

position; k is the number of sequenced cytosines at the corresponding genomic position; p is 

the fraction of cytosines sequenced in the lambda genome and the sum of all thymines and 

cytosines sequenced in the lambda genome i.e. the genome-wide fraction of DNA 

methylation in the lambda phage genome. The result of this binomial distribution is the 

probability that the DNA methylation level of a specific cytosine arises from an incomplete 
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bisulfite conversion. In summary, this method enables a quality control for the bisulfite 

conversion, which then can be used for the classification of all DNA methylation levels. 

In the following section examples of bioinformatics quality controls are presented to 

validate bisulfite sequences obtained from NGS platforms. Detailed information about 

bioinformatics quality control of bisulfite sequencing data can be found in the publication 

incorporated as Appendix B. The following analyses are based on the publicly available tools 

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and Trim Galore 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). 

Firstly, it is mandatory to visualize the distribution of quality scores at each position in 

bisulfite sequences with FastQC. Low base call qualities, which most often arise towards the 

end of sequences, can be eliminated with Trim Galore. Therefore partial sums from all 

positions of the bisulfite sequence to its end are computed. The bisulfite sequence is 

truncated at the position involving the minimal relative partial sum. Thus, low base call 

qualities, which frequently involve false positive base-calls, are reduced. It has been shown 

that this quality control results in more precise DNA methylation levels (see supplemental 

information of Appendix B). 

Furthermore, it is recommended to control genome-wide frequencies of all four nucleotides 

at each position in bisulfite sequences. These frequencies are shifted for bisulfite sequences 

compared to usual genomic sequences due to the conversion of unmethylated cytosines to 

thymines. For the human genome, 67-82% of all CpG sites are methylated, whereas not 

more than 3% of all non-CpG sites are methylated. However, only 5% of all cytosines are 

located in CpG dinucleotides resulting in approximately 96% of unmethylated cytosines in 

the human genome. These unmethylated cytosines appear as thymines after the bisulfite 

conversion and the PCR (Pelizzola and Ecker, 2010). Thus, the percentage of cytosines is to 

the greatest extent very low, whilst the amount of thymines is cleary enriched. The analysis 

and adjustment of these frequencies can be performed with FastQC and Trim Galore (see 

supplemental information of Appendix B). 
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2.3.2 Mapping of Bisulfite Sequencing Data 

The mapping of sequences generated by BS-seq poses the main challenge for this type of 

data. Mapping approaches for usual genomic sequencing combine the alignment to the 

Watson and its complementary Crick strand. However, bisulfite conversion of DNA 

sequences results in non-complementary strands. In detail, there are up to four distinct 

strands, which have to be included in the mapping reference (see Figure 2.7). This situation 

can be avoided by a specific library preparation, which predetermines the ligation of 

adapter sequences before the PCR amplification is carried out. In this case, only two distinct 

bisulfite treated strands are sequenced. This type of BS-seq library is called a directional BS-

seq library, whilst a BS-seq library involving all four strands is called a non-directional BS-seq 

library (Krueger and Andrews, 2011). Further observations are based on BS-seq data 

obtained by directional libraries. In conclusion, the mapping of BS-seq data needs to be 

performed for the reference and additionally for its in-silico bisulfite converted 

modifications (see Appendix B). 

 

 

Figure 2.7: Impact of bisulfite conversion on double stranded DNA sequences. 

 

 

 

Watson >>GACCmGATTCCAGTCmGG>> Cm methylated

Crick <<CTGGCmTAAGGTCAGCmC<< C unmethylated

Watson >>GACCmGATTCCAGTCmGG>> Crick <<CTGGCmTAAGGTCAGCmC<<

BS-Watson >>GAUCmGATTUUAGTCmGG>> BS-Crick <<UTGGCmTAAGGTUAGCmU<<

BS-Watson >>GATCmGATTTTAGTCmGG>>

RCBSW <<CTAG CTAAAA TCAG  CC<<

BS-Crick <<TTGGCmTAAGGTTAGCmT<<

RCBSC >>AACCG ATT CC AATCG  A>>

Denaturation

Bisulfite conversion

PCR amplification

RCBSW: Reverse complement of BS-Watson RCBSC: Reverse complement of BS-Crick
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A further limitation of bisulfite sequences is the fact that their complexity is significantly 

reduced. About 96% of all cytosines in human methylomes are unmethylated and by this all 

of these cytosines appear as thymines in bisulfite sequences. Consequently, bisulfite 

sequences predominantly consist of three nucleotides: adenines, guanines, and thymines. 

Therefore, resulting sequences are less differentiated and involve an increased frequency of 

ambiguous mapping results. BS-seq mapping approaches additionally have to take into 

account that thymines in bisulfite sequences might be assigned to referential cytosines and 

thymines, since they might be unmethylated cytosines or original genomic thymines (see 

Figure 2.8). 

A detailed comparison of bioinformatics tools for the mapping of BS-seq data is described in 

Appendix B. 

 

 

Figure 2.8: Mapping asymmetry of bisulfite sequences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

C C

TT

Bisulfite sequence Reference



Methodological Considerations 

38 

 

 

 



 

39 

 

 

 

 

Chapter 3   Thesis Outline and Summary of Findings 



Thesis Outline and Summary of Findings 

40 

This thesis comprises a bioinformatics tool for the analysis of two-base encoding BS-seq 

data, a review about pitfalls and challenges of BS-seq analyses on different NGS platforms, 

and a biological study about a methylome of a B-cell lymphoma. 

 

3.1 Application Note (see Appendix A) 

BS-seq is currently the gold standard for the analysis of DNA methylation at single-base 

resolution. Originally, it was used on the Genome Analyzer platform of Illumina (Lister et al., 

2009). One of the main challenges within the framework of this thesis was the development 

of a bioinformatic tool for bisulfite sequencing analysis on the “OLŝDΡ ƉůĂƚĨŽƌŵ ŽĨ LŝĨĞ 

Technologies (see section 2.1.1). In the application note, I presented B-SOLANA, the first 

tool for the analyƐŝƐ ŽĨ ůĂƌŐĞ “OLŝDΡ B“-seq data sets. It includes the alignment and 

determination of DNA methylation levels in CpG as well as non-CpG sequence contexts. B-

SOLANA exhibited a high alignment efficiency compared to further approaches, which are 

available by now. 

 

3.2 Review (see Appendix B) 

BS-seq is a rapidly developing research field in the last few years. In this review article, 

bioinformatics aspects about BS-seq analyses were discussed. Therefore, challenges of BS-

seq alignment as they apply to both base and color-space data were summarized. There are 

different contaminations within raw sequences, which might interfere with genome-wide 

DNA methylation levels. Potential sources of contaminations are for instance platform-

specific sequencing errors and adapter sequences. This review article presented quality 

controls of BS-seq data and methods to minimize false positively detected DNA methylation 

levels. Finally, it gives a recommendation of the most appropriate way to analyze this type 

of data.  
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3.3 Study (see Appendix C) 

This study analyzed the methylome of the DAUDI cell line, an archetypal endemic Burkitt͛Ɛ 

lymphoma. It combined genome-wide DNA methylation results obtained by BS-seq on the 

HiSeq 2000 and the “OLŝDΡ ƉůĂƚĨŽƌŵ, whereas platform-independent data sets exhibited 

comparable results. DNA methylation levels of 91.1% of all referenced CpG sites and 90.2% 

of all referenced non-CpG sites of the DAUDI methylome were assessed. The genome-wide 

DNA methylation accounted for 68.99%, which is comparable to further human methylomes 

(Li et al., 2010; Lister et al., 2009). The study identified an enrichment of significantly 

methylated non-CpG sites within RefSeq genes, which was previously reported for the 

methylome of the ES cell line H1 (Lister et al., 2009). Correlation analysis revealed that 

transcription levels were strongly associated with the amount of methylated CpG sites 

around the transcription start site (TSS), where present transcripts involved CpG sites with 

minimal DNA methylation levels immediately at the TSS. Interestingly, sharp transitions of 

DNA methylation levels at exon-intron boundaries of absent transcripts could be identified. 

It was previously shown that DAUDI involves an upregulation of the Epstein-Barr virus (EBV) 

(D. N. Kim et al., 2011). In our study, the EBV and the mitochondrial methylome and their 

transcriptomes were analyzed, which showed that methylation in CpG dinucleotides 

significantly varied between nuclear (68.99%), mitochondrial (6.43%) and EBV (80.18%) 

genomes. In conclusion, the analysis revealed that the mechanisms of DNA methylation 

associated with transcriptional regulation in ĞŶĚĞŵŝĐ BƵƌŬŝƚƚ͛Ɛ lymphomas go by far beyond 

the usually studied promoter methylation. 
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The first part of this chapter integrates the results of this thesis into the current state of 

knowledge concerning DNA methylation analyses. The development from array-based to 

NGS-based DNA methylation analyses is described and different NGS-based methods, 

involving computational approaches for the determination of interindividual DNA 

methylation differences, are compared. The second part of this chapter comprises 

conclusions drawn from this thesis and discusses future perspectives of computational 

epigenetic studies. The following observations are based on analyses of DNA methylation in 

human genomes. 

4.1 From Array Technologies to Next-Generation Sequencing 

In the past, most epigenetic studies examined DNA methylation patterns within promoter 

regions to identify regulatory effects related to gene expression. Advantages and 

disadvantages of array-based and NGS-based methods are presented in the following 

section. 

In the following comparison, the Infinium HumanMethylation BeadChip of Illumina, an array 

method based on bisulfite converted DNA, is discussed. The current version assesses DNA 

methylation levels of about 485,000 CpG sites. It covers 99% of RefSeq genes, with an 

average of 17 CpG sites within the promoter, the ヵげ untranslated region, the first exon, the 

gene body, and the ンげ untranslated region. Additionally, DNA methylation in 96% of all CpG 

islands, with additional coverage in island shores is assessed. DNA methylation levels are 

quantified by beta values. Beta values range from 0 (low DNA methylation level) to 1 (high 

DNA methylation level). This technology is a hybrid approach of two different chemical 

assays, the Infinium I and Infinium II assays. The previous version of the HumanMethylation 

BeadChip array, assessing only 27,000 CpG sites, used the Infinium I assay. However, one 

third of the DNA methylation levels measured by the current version are obtained by the 

Infinium II assay, whereas recent publications indicated that this chemical assay is less 

accurate and reproducible (Sandoval et al., 2011; Bibikova et al., 2011; Dedeurwaerder et 

al., 2011). It is mandatory to correct the Infinium II results to obtain comparable DNA 

methylation levels assessed by both chemical assays. Varying bioinformatics approaches are 

available for this task by now (Dedeurwaerder et al., 2011). 

The choice of DNA methylation profiling technology certainly depends on which problem is 

studied. Whole genome DNA methylation analyses usually use sequencing-based methods. 
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However, gene-specific studies apply either array-based approaches or even candidate 

gene-specific methods, where the latter can be carried out with bisulfite Sanger sequencing. 

Genome-wide arrays, as described above, are a reliable and cost-efficient tool for the 

determination of quantitative DNA methylation levels at specific genomic loci. However, 

they should rather be used for large studies than for the measurement of different DNA 

methylation patterns between few samples. The relatively low density of array-annotated 

cytosines within a specific genomic domain implies a weak statistical power for the 

detection of DMRs. Even a small number of varying DNA methylation levels, potentially 

induced by technological biases, significantly influence test statistics (see section 4.2). 

Independent comparisons between array-based and NGS-based methods indicated 

comparable results (Kreck et al., 2011; Bock et al., 2010) (see Appendix A). However, 

extreme DNA methylation levels are assessed differently (see supplemental information of 

Appendix A). For NGS-based methods, completely unmethylated and fully methylated sites 

correspond to DNA methylation levels of 0 and 1. The HumanMethylation BeadChip method 

merely assigns these extreme sites to DNA methylation levels close to 0 and 1. The following 

correlation analyseƐ ŽĨ Ă “OLŝDΡ B“-seq data set, consisting of cytosines covered by at least 

10 bisulfite sequences, and DNA methylation levels assessed by the HumanMethylation 

BeadChip method target this phenomenon (the data belongs to the study of Appendix A 

(see Figure 4.1). Correlation analysis were carried out using residuals i.e. differences of DNA 

methylation levels ((Methylation level)“OLŝDΡ - (Methylation level)BeadChip) assessed by both 

platforms. Both methods assess DNA methylation levels in a similar way, because most of 

the residuals are located next to 0. Nevertheless, the distribution of residuals exhibits two 

maxima next to 0 (see Figure 4.1). The left peak represents completely unmethylated sites, 

ǁŚŝĐŚ ĂƌĞ ĂƐƐŝŐŶĞĚ ƚŽ Ϭ ďǇ “OLŝDΡ BS-seq and to beta values close to 0 by the 

HumanMethylation BeadChip. The right peak depicts the reverse effect of fully methylated 

sites assessed by both methods. In conclusion, this technology-specific fact has to be taken 

into account for the determination of weakly differentially methylated sites of extreme DNA 

methylation levels. 
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Figure 4.1͗ RĞƐŝĚƵĂůƐ ŽĨ DNA ŵĞƚŚǇůĂƚŝŽŶ ůĞǀĞůƐ ĂƐƐĞƐƐĞĚ ďǇ SOLŝDΡ BS-seq and the HumanMethylation 

BeadChip. 

 

Correlation analyses of DNA methylation vs. transcriptional levels are preferably carried out 

for regions upstream of genes and especially promoters. Array-based methods assess 

specific representative cytosines within these genomic regions. However, Appendix C 

pointed out that it is necessary to consider the majority of cytosines around the TSS to 

receive precise results of the correlation analyses. High transcriptional levels correlate with 

minimal DNA methylation at the TSS, which then rapidly increases towards downstream and 

upstream directions (see Appendix C). Thus, array-based methods only enable an insight 

into DNA methylation levels and are less conclusive concerning correlation analyses related 

to transcriptional levels. 

In the human genome, 67-82% of all cytosines within CpG dinucleotides are methylated 

(Pelizzola and Ecker, 2010). Cytosines within CpG dinucleotides are common sites of 

polymorphisms due to the deamination of methylated cytosines to thymines during 

evolution (Venter et al., 2001). This fact might interfere with the extraction of DNA 

methylation levels by bisulfite-based methods, since unmethylated cytosines appear as 

thymines in bisulfite converted DNA. The array-based Infinium HumanMethylation BeadChip 

technology cannot distinguish, whether variations are a result of deamination or bisulfite 

conversion (Byun et al., 2009). For this purpose, non-bisulfite converted genomic DNA has 

to be sequenced to detect potential polymorphisms. In contrast, NGS-based methods are 
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able to differentiate these two types of variations in the following way: A polymorphism 

generated by deamination of a methylated cytosine to thymine now has an adenine 

nucleotide on the opposite strand. However, the conversion of cytosines to thymines, 

induced by bisulfite treatment, leaves the guanine on the complementary strand 

unmodified. As bisulfite sequences need to be independently mapped to the forward and 

reverse strand, polymorphisms and variations, caused by bisulfite conversion can be 

independently detected. 

 

4.2 Epigenome-wide Association Studies 

Although genome-wide association studies (GWASs) identified more than 1,449 genomic 

loci that were associated to 237 diseases and traits so far, only a small proportion of the 

underlying genetic architecture can be explained (Hindorff LA, MacArthur J (European 

Bioinformatics Institute), Wise A, Junkins HA, Hall PN, Klemm AK, and Manolio TA. A Catalog 

of Published Genome-Wide Association Studies. Available at: www.genome.gov/gwastudies. 

Accessed [June, 2012]). With the establishment of NGS technologies, resequencing of 

genomes and exomes (the entirety of exons) is expected to reveal further genetic 

alterations, which might help to ĞǆƉůĂŝŶ ƚŚĞ ͞ŵŝƐƐŝŶŐ͟ ŚĞƌŝƚĂďŝůŝƚǇ (Manolio et al., 2009). 

However, increasing evidence points to epigenetic factors, especially to DNA methylation, 

which might influence the pathogenesis of complex diseases (Andrew P Feinberg and 

Irizarry, 2010; Petronis, 2010; Kulis and Manel Esteller, 2010). Most studies about DNA 

methylation so far have been carried out for either a few samples with high coverage, 

generated by NGS, or for many samples with low genome-wide coverage, generated by 

array methods. The recent biotechnological development increasingly enables large-scale 

DNA methylation analyses, so called epigenome-wide association studies (EWASs). 

Chips used for GWASs allow genotyping of hundreds of thousands SNPs (Manolio et al., 

2009). Statistical approaches subsequently test the genome-wide significance of individual 

SNPs. Comparable DNA methylation chips, as for instance the current HumanMethylation 

BeadChip, measuring DNA methylation of ~485,000 sites, are available by now. However, it 

is most often insufficient to compare DNA methylation levels of single sites. Potential 

variations in EWASs are: DMRs, variably methylated regions (VMRs), allele-specific DNA 

methylation (ASM), and haplotype-specific DNA methylation (HSM). VMRs are genomic 
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regions involving moderate alteration in DNA methylation, hence an attenuated type of 

DMRs. ASMs are genomic regions exhibiting variation in DNA methylation in a parent-of-

origin specific manner or based on a nearby SNP. HSMs are DMRs defined by a combination 

of alleles within a genomic domain. These different types of epigenetic variation, involving 

single sites and even genomic regions, show the variability of distinguishing marks of DNA 

methylation. In summary, EWASs pose further challenges compared to GWASs. 

DNA methylation is a highly dynamic epigenetic modification, which might change during 

lifetime and be altered by environmental influences or drug interventions (see section 1.4). 

Furthermore, it has been shown that genetic factors can considerably influence DNA 

methylation (Zhang et al., 2010; Kerkel et al., 2008; Hellman and Chess, 2010; Shoemaker et 

al., 2010). These observations have to be considered for the design and analysis of EWASs. A 

potential approach can be the integration of already existing GWASs results in upcoming 

EWASs to control the influence of genotypes on DNA methylation variation. In the end, a 

fundamental question of DNA methylation studies is: Is DNA methylation the cause or the 

consequence of a disease or even the consequence of a genotype causing the disease? So 

far, no study exists that specifies variation in DNA methylation as the cause of the disease 

(Rakyan et al., 2011)(S. Baylin and T. H. Bestor, 2002).  

GWASs typically involve case-control studies consisting of unrelated individuals, who are 

clustered based on their phenotype. However, a potential study design of EWASs includes 

parent-offspring pairs, where combined genetic and DNA methylation analysis helps to 

identify truly associated variations in DNA methylation by filtering family-based genetic 

variations, which might alter DNA methylation (Rakyan et al., 2011). This can be achieved by 

either results of combined GWASs and EWASs or by methods, which simultaneously 

determine genetic and DNA methylation variations. A further possibility to minimize genetic 

confounders is to study monozygotic twins who are discordant for a disease. This study 

design of EWASs can be used to exclude any DNA methylation variations, which were 

caused by germline genetic variations (Kaminsky et al., 2009; Bell and Spector, 2011). Even 

this type of EWASs cannot decides whether alterations in DNA methylation are a cause or 

consequence of a specific disease. Besides confounding by genetic-epigenetic interaction, 

the high ĚǇŶĂŵŝĐ ŽĨ DNA ŵĞƚŚǇůĂƚŝŽŶ͕ ƚŚƌŽƵŐŚŽƵƚ ĂŶ ŽƌŐĂŶŝƐŵ͛Ɛ ůifetime, influences the 

outcome of EWASs. Longitudinal EWASs address this key aspect considering disease-free 

people (ideally from birth) over the course of many years. In conclusion, probably the best-
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suited EWAS design, even though accompanied by great cost, is a longitudinal study of 

disease-discordant monozygotic twins, which integrates genetic-epigenetic interactions and 

environmental factors influencing DNA methylation. 

Altogether, EWASs have the potential to explain parts of the genetic architecture of diseases 

and traits, even though the study design needs to consider several confounding factors to 

decide, whether DNA methylation is a cause or a consequence of a disease. In GWASs, tags 

SNPs based on high linkage disequilibrium are often utilized for comprehensive variation 

coverage. Such sites need to be explored for EWASs to facilitate cost-efficient studies. 

However, only whole methylomes of embryonic stem cells, fetal fibroblasts, peripheral 

blood mononuclear cells, colon cancer cells and B-cell lymphomas are available by now 

(Lister et al., 2009, 2011; Li et al., 2010; Hansen et al., 2011) (see Appendix C). Thus, it is 

necessary to analyze further methylomes to identify appropriate DNA methylation sites or 

even genomic domains, which can be used for comprehensive array-based EWASs. 

 

4.3 Comparison of Sequencing-Based DNA Methylation Methods 

Different NGS-based methods for the determination of genome-wide DNA methylation are 

available by now (Bock et al., 2010; Harris et al., 2010) (see section 2.2). The four most 

commonly used sequencing-based methods are BS-seq, RRBS, MeDIP-seq, and MBD-seq. BS-

seq and RRBS enable an insight into DNA methylation at single-base resolution, whereas the 

enrichment-based methods, MeDIP-seq and MBD-seq, assess DNA methylation of genomic 

fragments ranging between 400-700 bp, which then are representative for all cytosines 

within the respective fragment (Down et al., 2008). All of these four methods exhibit 

comparable DNA methylation levels, but differ in their coverage, accuracy and cost (Bock et 

al., 2010; Harris et al., 2010). It has been shown that low sequencing coverage is most often 

sufficient to determine large differentially methylated domains or even global DNA 

methylation tendencies, but insufficient to detect loci-specific alterations. Depending on the 

problem, it is necessary to either sequence few samples more deeply or more samples less 

deeply. 

In the following section advantages and disadvantages of different sequencing-based 

methods are specified. The ability of BS-seq to assess DNA methylation at single-base 

resolution certainly results in a high accuracy and enables the simultaneous readout of 
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further variants, such as SNPs (see Appendix C). However, a substantial increase of BS-seq 

coverage is accompanied by much higher costs compared to RRBS, MeDIP-seq, and MBD-

seq. Enrichment-based methods benefitis from the fact that all four nucleotides are 

unmodified, which modestly increases the mapping efficiency compared to bisulfite-based 

methods, which predominantly involve adenines, guanines, and thymines in their bisulfite 

sequences. A further advantage of enrichment-based methods is the ability to determine 

DNA hydroxymethylation, the oxidation of methylated cytosines by the TET family (see 

section 1.2). Hydroymethylation cannot be detected by bisulfite-based methods (Krueger et 

al., 2012) (see section 2.2.1). 

Although most studies analyzed CpG methylation so far, the interest in non-CpG 

methylation increases (Lister et al., 2009, 2011; Pelizzola and Ecker, 2010). This type of DNA 

methylation can be easily detected by bisulfite-based methods. However, enrichment-based 

methods generate several difficulties. It is a challenge to separate the level of CpG and non-

CpG methylation because only entire genomic fragments are assessed. Furthermore, Lister 

et al. showed that methylated non-CpG sites are predominantly present in genomic regions 

with high CpG methylation. This fact additionally complicates the independent 

measurement of DNA methylation in different sequence contexts (Lister et al., 2009). 

In the following section, I compare RRBS and BS-seq. TŚĞ “OLŝDΡ B“-seq data set generated 

for the study of Appendix C and a RRBS data set obtained from the same cell line are 

analyzed. 79.9 gigabases (Gb) of “OLŝDΡ sequences and 5.8 Gb of HiSeq 2000 sequences 

were aligned to the human reference (hg19/NCBI 37). The log-scaled distribution of CpG 

coverage, assessed by both methods, is depicted in Figure 4.2. Obviously, the restriction of 

RRBS to genomic regions with high density of CpG dinucleotides results in considerably 

higher coverage. By absolute numbers, the mean coverage of RRBS accounts for 59.6抜 and 

16.5抜 for SOLiDΡ B“-seq. 
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Figure 4.2͗ DŝƐƚƌŝďƵƚŝŽŶ ŽĨ ĐŽǀĞƌĂŐĞ ŽĨ CƉG ƐŝƚĞƐ ĂƐƐĞƐƐĞĚ ďǇ SOLŝDΡ BS-seq and RRBS. 

 

It was previously shown that the accuracy of DNA methylation calls strongly depends on the 

coverage (Harris et al., 2010; Bock et al., 2010). This dependency was also analyzed for the 

RRB“ ĂŶĚ “OLŝDΡ B“-seq data sets discussed above. For the analysis, different groups of 

CpG sites, with increasing coverage, were generated. The Pearson correlation coefficient 

was used to compare DNA methylation levels of both methods (see Table 4). CpG sites, 

assessed by at least 5 bisulfite sequences, exhibit a Pearson correlation coefficient of 

r=0.902, which is in line with results of Bock et al. (Bock et al., 2010). Increasing coverage 

significantly results in higher correlations up to the threshold of 25 bisulfite sequences. 

Beyond that, coverage-specific variances are observed for single cytosines, but not for 

genomic domains. In the end, whole genome approaches, such as RRBS and BS-seq, should 

rather be used for the determination of DMRs than for DNA methylation alterations of 

single cytosines. For site-specific DNA methylation analysis, I would recommend genome-

wide arrays, such as the Infinium HumanMethylation BeadChip. 
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Table 4: Pearson correlation of RRBS and SOLiDΡ BS-seq based on increasing coverage. 

Coverage д5 д7 д9 д11 д13 д15 д17 

Pearson r 0.902 0.908 0.912 0.915 0.918 0.920 0.922 

Coverage ш19 ш21 ш23 ш25 ш30 ш40 ш50 

Pearson r 0.924 0.925 0.927 0.928 0.930 0.935 0.938 

 

Comprehensive analyses about platform-specific advantages and disadvantages are not 

published up to today. This issue is discussed in the remainder of this section. To date, 

bisulfite-based methods were carried out on the Genome Analyzer and HiSeq 2000 

platforms (Illumina)͕ ƚŚĞ “OLŝDΡ ƉůĂƚĨŽƌŵ (Life Technologies), and the 454 platform (Roche) 

(for details about NGS platforms see sections 2.1) (Lister et al., 2009; Kreck et al., 2011; 

Bormann Chung et al., 2010; Herrmann et al., 2011). Enrichment-based methods were only 

carried out on the Genome Analyzer and HiSeq 2000 platform (Illumina) (Bock et al., 2010).  

We showed that both BS-ƐĞƋ ĚĂƚĂ ŽĨ ƚŚĞ “OLŝDΡ ĂŶĚ ƚŚĞ Hŝ“ĞƋ ϮϬϬϬ ƉůĂƚĨŽƌŵ exhibit 

accurate and comparable CpG methylation measurements (Pearson correlation coefficient 

r=0.86) (see Appendix C). However, non-CpG methylation levels exhibit slightly different 

results. Non-CpG sites͕ ĂƐƐĞƐƐĞĚ ďǇ “OLŝDΡ B“-seq, were slightly weaker methylated 

compared to DNA methylation levels of the HiSeq 2000 platform (non-CpG mean 

methylation“OLŝDΡ=0.16, non-CpG mean methylationHiSeq 2000=0.47). This fact could also be 

observed for the same non-CpG sites assessed by RRBS, even though not to this extent (non-

CpG mean methylationRRBS=0.21). However, the latter observation may be related to the 

relatively low coverage of the HiSeq 2000 data set compared to the RRBS data set. In 

summary, both platforms are applicable to generate accurate DNA methylation 

measurements, whereas organisms with a high amount of methylated non-CpG sites should 

rather be analyzed by the HiSeq 2000 platform. 

 

4.4 Interindividual DNA Methylation Differences 

Epigenetic studies particularly aim to associate epigenetic alterations with specific 

phenotypes. In the case of DNA methylation, this is usually performed by the determination 

of DMRs. Sensitivity and specificity of approaches for the determination of DMRs notably 

vary between different technologies. Array-based methods only assess selected sites. The 
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low density of covered sites might significantly decrease the statistical power (see section 

4.1). Thus DMRs obtained by array-based analysis have to be considered cautiously (see 

section 4.2). NGS-based methods provide an extensive insight into DNA methylation. 

However, there are fundamentally different computational approaches for the 

determination of DMRs in NGS data. Below, selected approaches are discussed. 

Lister et al. at first published DMRs of methylomes of ES cells H1 and fetal fibroblasts IMR90 

(Lister et al., 2009). They used a binomial distribution to determine DNA methylation sites in 

both CpG and non-CpG sequence contexts (see section 2.3.1). However, differentially 

methylated cytosines were solely determined for CpG sites, since hardly any significantly 

methylated non-CpG sites could be identified for IMR90. To exclude coverage biases, they 

compare only CpG sites of H1 and IMR90 that involve a ratio of coverage between 0.8 and 

1.2. Subsequently, Lister et al. applied a two-tailed FiƐŚĞƌ͛Ɛ EǆĂĐƚ TĞƐƚ resulting in 6,023,738 

CpG sites that were more highly methylated in H1 compared to IMR90, and 124,161 CpG 

sites that were more highly methylated in IMR90 compared to H1. Finally, they used a 

sliding window approach to select 1,000 bp regions containing at least 4 differential 

methylated sites. Adjacent differentially methylated regions were joined together. 

A further publication by Lister et al. identified DMRs in iPSCs and ES cells (Lister et al., 2011). 

DMRs were detected based on more stringent test parameters than in their analysis of H1 

and IMR90 (Lister et al., 2009). They generated smoothed DNA methylation levels in 100 bp 

windows, whereas regions comprising a set of 10 adjacent windows over a distance less 

than 1,100 bp were considered. A non-parametric Wilcoxon Test (or Kruskal-Wallis Test for 

more than two samples, p<0.01) for regions involving a 4-fold enrichment of DNA 

methylation level was applied. 

Li et al. analyzed the methylome of human peripheral blood mononuclear cells (PBMCs) and 

compared it to the methylome of fetal fibroblasts IMR90 (Li et al., 2010). They used a sliding 

window approach combined with a Fisher Exact Test (p<1e
-20

). Windows should at least 

contain 5 CpG sites with a 2-fold change in DNA methylation level. They additionally 

required that both tissues do not involve DNA methylation levels of less than 0.2. Adjacent 

differentially methylation regions were as well joined together. 

Hansen et al. described methylomes of different cancer types, including colon, lung, breast, 

thyroid, and Wilms tumors (Hansen et al., 2011). They developed a bioinformatics approach 
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to smooth CpG methylation levels by their coverage and environmental CpG density. DMRs 

were determined using t statistics. 

Although it is known that different tissues and cell types involve varying methylomes, the 

respective computational method significantly influences the amount of DMRs. The 

numbers of DMRs for the methylome analyses range from 1,175 (ES cells and 5 iPSCs) (Lister 

et al., 2011) to 240,856 (PBMCs and IMR90) (Li et al., 2010). In summary, it is a challenge to 

strike a balance between methods detecting too many false positive DMRs and those, which 

miss too many DMRs. 

I developed a new sliding window approach for the determination of DMRs using smoothed 

DNA methylation levels considering environmental CpG density. Genomic windows 

containing at least 10 CpG sites within 1100 bp and 4-fold enrichment of mean DNA 

methylation levels are considered. CpG sites are then smoothed by a local polynomial 

regression fitting using the statistical software R (http://cran.r-project.org/). I use t statistics 

(p<0.01), since the Wilcoxon Rank-Sum Test is derived on the assumption that data consist 

of no ties. This assumption cannot be ensured a priori, as DNA methylation is usually 

bimodally distributed with a majority of clustered fully methylated sites (Pelizzola and Ecker, 

2010). 

For testing purposes of this DMR determination approach, methylome data of the DAUDI 

cell line (malignant B lymphocytes) and of PBMCs involving lymphocytes, monocytes, and 

macrophages were used (Li et al., 2010) (see Appendix C) (see Figure 4.3). 666 DMRs were 

identified, whereas the majority of DMRs involved higher DNA methylation in DAUDI 

compared to PBMCs (indicated as red boxes in the ideogram) and only 2 regions show a 

reverse effect (blue box in ideogram). DMRs were illustrated by a ideogram (the ideogram 

was generated with ideographica (Kin and Ono, 2007)) (see Figure 4.3). The heat map, 

incorporated in Figure 4.3, indicates densities of RefSeq genes within a specific genomic 

region, ranging from light gray (no RefSeq genes) to black (high density of RefSeq genes). 

To validate the determined DMRs by independent technologies, HiSeq 2000 and Infinium 

HumanMethylation BeadChip data of Appendix C were used. The mean difference between 

DNA methylation leveůƐ ǁŝƚŚŝŶ DMRƐ ĂƐƐĞƐƐĞĚ ďǇ “OLŝDΡ B“-seq and HiSeq 2000 accounted 

for 0.02, emphasizing high concordance of both methods. The comparsion of “OLŝDΡ B“-seq 

and HumanMethylation BeadChip DNA methylation levels within DMRs required further 

criteria due to the notably lower density of sites covered in the array. Only DMRs, assessed 
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by at least 3 sites of the array, were considered. The mean difference between DNA 

methylation levels within DMRs assessed by “OLŝDΡ B“-seq and HumanMethylation 

BeadChip finally accounted for 0.12, which is marginally higher than the mean difference 

between the NGS methods. This larger difference is probably related to the sigmoidally 

distributed correlation between extreme DNA methylation levels of BS-seq and array data 

(see section 4.1) (see Appendix A). 

Conclusions, based on these DMRs, should be drawn with care, since PBMCs are only partly 

suitable as a reference-methylome for DAUDI. At least it could be observed that the 

majority of DMRs were located within genomic regions involving a high density of RefSeq 

genes (see Figure 4.3). 

 

 

Figure 4.3: Ideogram of DMRs in DAUDI and PBMCs. 
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4.5 Conclusion and Future Perspectives 

The generation of the first human methylomes at single base resolution by Lister et al. 

initiated a rapid development of NGS-based DNA methylation analysis over the past three 

years (Lister et al., 2009). After this publication and the establishment of associated 

biotechnological methods, the bottleneck of genome-wide DNA methylation analysis 

especially shifted from data production to data analysis. Findings, incorporated in this 

thesis, can be integrated into the recent development of BS-seq analysis in the following 

way. Before the publication of Lister et al., BS-seq of human genomes was only carried out 

on NGS platforms using base space encoded sequences (see section 2.1) and DNA 

methylation levels could be only verified by array-based or loci-specific sequencing 

methods. A bioinformatics tool for the analysis of color-space (see section 2.1) BS-seq data 

henceforth represents an alternative for a platform-independent validation (see Appendix 

A). BS-seq analysis of both base and color-space data poses considerable challenges. These 

challenges and the most appropriate way to analyze this type of data are described in 

Appendix B. So far, whole methylomes are available for human embryonic stem cells, fetal 

fibroblasts, peripheral blood mononuclear cells, and colon cancer cells (Lister et al., 2009, 

2011; Li et al., 2010; Hansen et al., 2011). The study, incorporated in Appendix C, analyzed a 

further human methylome derived from an endemic Burkitt͛Ɛ ůymphoma cell line. BS-seq 

was carried out for base and color-space data, where a high correlation (r=0.86) could be 

observed. This study revealed new methylome characteristics for B-cell lymphomas and 

introduced new approaches for correlation analyses of DNA methylation and transcriptional 

levels. The DAUDI methylome might prove valuable as a reference methylome for future 

epigenetic studies. 

Although whole methylome analysis can be carried out by BS-seq in a cost-efficient manner 

by now, there are still certain limitations. Firstly, current BS-seq methods analyze mixed 

populations of cell types. Consequently, BS-seq results only reflect the composition of 

methylomes of different cell types, which are difficult to interpret. Secondly, DNA molecules 

are amplified prior to the sequencing step (see section 2.1). This might lead to uneven 

distributions of bisulfite sequences, which interferes with the determination of DNA 

methylation levels. These limitations can be addressed by recently developed single-

molecule real-time sequencing (SMRT) methods, which enable the direct detection of DNA 
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methylation without prior bisulfite conversion. In SMRT sequencing, DNA polymerases 

catalyze the incorporation of fluorescently labeled nucleotides into complementary DNA 

strands. Each nucleotide is attached to one of four different fluorescent dyes (Flusberg et 

al., 2010). During the incorporation of a nucleotide the fluorescent tag is detected by a zero-

mode waveguide (an optical approach for studying single-molecule dynamics), and base 

calls are carried out based on the fluorescence of the underlying dye (Levene et al., 2003). 

The arrival times and durations of the resulting fluorescence pulses reveal information 

about polymerase kinetics, enabling the direct detection of epigenetic modifications, such 

as DNA methylation and hydroxymethylation (Flusberg et al., 2010; Song et al., 2012). These 

SMRT sequencing methods currently pass the end of the development phase and first test 

runs were already carried out. However, they still exhibit an increased per-base error rate 

and ambiguous results (Eid et al., 2009; Song et al., 2012). Once these methods are well-

established, they will be very helpful and cost-effective to simultaneously readout genetic 

and different epigenetic variations.  

DNA methylation was described to be associated with transcriptional silencing by 

quantitative studies comparing DNA methylation and transcriptional levels (Lister et al., 

2009, 2011; Li et al., 2010; Hansen et al., 2011). However, the underlying regulatory network 

and its interaction partners are not yet clear. To address this issue, all DNA-binding proteins, 

affected or unaffected by DNA methylation, should be identified. Especially transcription 

factors, which are predominantly active in regions upstream of genes, are of great interest. 

DNA methylation is the most studied epigenetic modification so far. Future studies need to 

analyze further epigenetic modifications and in particular histone modifications to a similar 

extent because possibly only the functional interaction of all epigenetic modifications 

clarifies their impact on transcriptional levels. This presumption can be exemplified by the 

following examples. On the one hand, Esteller stated that tumor-suppressor genes are 

inactivated by hypermethylation of CpG islands in their promoter regions, which directly 

influence the growth of tumors (Manel Esteller, 2008). This mechanism is reversible by so-

called demethylating and methylating agents, which can awake and silence genes involving 

hypermethylation and hypomethylation in their promoter region (Manel Esteller, 2008). On 

the other hand, Lister et al. pointed out that DNA methylation might only be a consequence 

of closed chromatin structure, where DNA methylation in embryonic stem cells might be 

lost during differentiation, resulting in accumulation of repressive chromatin marks 



Discussion and Conclusion 

58 

(Pelizzola and Ecker, 2010; Lister et al., 2009). In summary, further functional studies on 

epigenetic modifications should be carried out to better understand the mechanism of DNA 

methylation and its regulatory effect on transcriptional levels. 

 

In conclusion to my experience of the last three years, future computational epigenetic 

studies on DNA methylation should consider the following aspects. Firstly, it has to be 

explored to which extent DNA methylation is regulated by environmental factors. This 

phenomenon has to be studied regarding its stability or even inheritance, since it is also 

conceivable that a dynamic modification like DNA methylation is affected by environmental 

factors over a specific period of time and initial DNA methylation patterns are then re-

established. In this regard, DNA hydroxymethylation, a possible pathway for de-methylation, 

might emerge as a helpful access. Secondly, DNA methylation needs to be analyzed in large-

scale studies to assess its effect on different diseases. However, these studies involve critical 

challenges as for instance genetic-epigenetic interaction and the determination of 

appropriate features of variation in DNA methylation (single site alterations, DMRs, ASMs 

etc.). For this purpose, further whole methylomes of different cell types and tissues should 

be analyzed and categorized to specify appropriate genomic domains. Even though all these 

points minimize the amount of confounding factors for the analysis of DNA methylation, it 

will be very difficult to ͞ĐŽŶƚƌŽů͟ such a dynamic modification and the following question will 

frequently come up: Is the observed alteration in DNA methylation the cause or the 

consequence of a specific disease? This question can possibly be addressed by the 

integration of all involved factors of the pathogenesis of a disease into for instance 

extended gene regulatory networks (GRNs), a system biological method to model DNA-

encoded interaction partners. The dynamics of DNA methylation requires GRNs to 

distinguish different diseases involving the same genotype but not the same epigenotype. 

Such a dynamic GRNs approach should initially be explored for a phenotype, where genetics 

and epigenetics and their interaction is investigated as far as possible. 

 

In summary, ͞dynamic times͟ are ahead for research in DNA methylation analysis!
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ABSTRACT

Summary: Bisulfite sequencing, a combination of bisulfite treatment

and high-throughput sequencing, has proved to be a valuable

method for measuring DNA methylation at single base resolution.

Here, we present B-SOLANA, an approach for the analysis of two-

base encoding (colorspace) bisulfite sequencing data on the SOLiD

platform of Life Technologies. It includes the alignment of bisulfite

sequences and the determination of methylation levels in CpG as

well as non-CpG sequence contexts. B-SOLANA enables a fast and

accurate analysis of large raw sequence datasets.

Availability and implementation: The source code,

released under the GNU GPLv3 licence, is freely available at

http://code.google.com/p/bsolana/.

Contact: b.kreck@ikmb.uni-kiel.de

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Methylation at position 5 of cytosines is a major epigenetic

modification, which has an important impact on transcriptional

and regulatory processes of DNA (Holliday, 1975). It is a stable

modification of the genome which can be inherited from one

generation to the next, even though it can also be dynamically

changed by environmental influences. There are several methods

based on high-throughput sequencing, such as methylated DNA

immunoprecipitation sequencing (MeDIP-seq), methylated DNA

capture by affinity purification (MethylCap-seq) and BS-Seq, which

can provide good-quality genome-wide DNA methylation data

(Bock, 2010).

Methods that currently provide genome-wide methylation

patterns at single base resolution make use of bisulfite conversion

and high-throughput sequencing. The treatment of DNA with

sodium bisulfite has no effect on methylated cytosines, but it

specifically converts unmethylated cytosines to uracils, which are

converted to thymines during subsequent polymerase chain reaction

amplification. As a result of bisulfite conversion, the Watson and

Crick strands of bisulfite-treated DNA are no longer complementary

to each other, they become essentially different genomes. This fact

∗To whom correspondence should be addressed.

leads to an enlarged alignment reference space. The prevalence of

T’s that have replaced C’s leads to reduced complexity in bisulfite

sequences, which increases the bioinformatics challenge of BS-

Seq analysis. Bioinformatics tools for BS-Seq have generally fallen

into two categories: (i) methylation-aware alignment tools, which

consider cytosines and thymines as potential matches to genomic

cytosine positions and (ii) tools which convert any residual cytosines

in bisulfite sequences and all cytosines of the reference genomes into

thymines.

2 COLORSPACE BISULFITE SEQUENCING

Due to the two-base encoding of SOLiD sequencing, in silico

conversions of any residual bisulfite read cytosines into thymines,

which can be carried out in basespace data to avoid bisulfite-

mismatches during alignment, cannot be performed on bisulfite

colorspace sequences, because sequencing errors would lead to

the incorrect translation of colorspace to basespace (Supplementary

Fig. 1). There are ways to align bisulfite colorspace sequences with

methylation-aware alignment approaches, which convert bisulfite

colorspace sequences to basespace and index all theoretically

possible alignments by creating a hash table. Such an approach is

implemented in SOCS-B, which is based on the iterative version

of the Rabin–Karp algorithm (Ondov, 2010). Even though SOCS-B

turns out to be an accurate tool for the analysis of colorspace BS-Seq

datasets, it becomes very computationally intensive for complex

genomes such as the human genome (∼150 000 CPU hours for the

analysis of 500 Million sequences). Therefore, it is not efficient

for huge datasets like those produced in genome-wide methylation

analyses with average coverage depths ≥10X and genome size

≥1000 MB.

Here, we present B-SOLANA, a tool which performs sequence

alignment and methylation calling for colorspace bisulfite

sequencing. It is based on the established short-read aligner

Bowtie (Langmead, 2009) and SAMtools utilities for manipulating

alignments (Li, 2009). B-SOLANA is divided into four individual

steps: (i) indexing, (ii) mapping, (iii) determination of best alignment

and (iv) methylation calling.

The idea of B-SOLANA is to use Bowtie to uniquely align

bisulfite sequences to two different conversions of the reference

genome and determine best alignments from the combined set

of results. The analysis of whole methylomes of 23 eukaryotic

organisms shows a variable percentage of methylation at CpG

© The Author(s) 2011. Published by Oxford University Press.
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B-SOLANA

Table 1. The 485 990 920 SOLiD BS-Seq reads (50 bp), taken from

SRR204024 (Hansen, 2011), were analyzed with B-SOLANA and

MethylCoder (one mismatch allowed) B-SOLANA exhibits a high

correlation with the results of Hansen et al.

Hansen et al.a B-SOLANA MethylCoderb

Uniquely mapped reads (%) 37.83 49.84 19.23

CpG positions: % C 69.84 72.83 67.07

CpG positions: % T 30.03 26.97 32.93

Non-CpG positions: % C 0.20 0.22 0.69

Non-CpG positions: % T 99.76 99.70 99.31

aIncluding post-processing quality control.
bOnly cytosine and thymine base calls are included.

dinucleotides, whereas the percentage of methylated CHG and CHH

is always lower (Pelizzola, 2010). The approach of B-SOLANA

reduces the number of bisulfite-induced mismatches by considering

the prevalence of methylated cytosines in their different sequence

contexts.

In order to identify CpG and non-CpG methylation sites,

B-SOLANA aligns bisulfite sequences to two in-silico conversions

of the reference genome (Supplementary Fig. 2). In the first modified

reference genome, all cytosines in a non-CpG context are converted

to thymines (Conversion I). In the second, all cytosines, irrespective

of their sequence context, are converted to thymines (Conversion

II). After alignment to these converted genomes, B-SOLANA

determines the best alignment for each bisulfite sequence in the

following way: bisulfite sequences that are aligned to different

genomic positions in Conversions I and II are assigned to the

position with the lowest number of mismatches. Reads with the

same number of mismatches at different positions are ignored. In its

final step, B-SOLANA determines methylation levels. B-SOLANA

is compatible with 50 bp directional single-end libraries and allows

a simple adjustment for the upcoming read lengths.

B-SOLANA was designed to generate accurate results for

methylomes with a low percentage of methylation in non-CpG sites

(<5%). This includes most eukaryotic organisms, with mammalian

genomes typically having methylation levels of <3% in CHG and

<1% in CHH context (Pelizzola, 2010).

A detailed test of B-SOLANA was performed for genomic DNA

extracted from a human lymphoma cell line. The library was

prepared using a protocol for single-end SOLiD BS-Seq (Bormann

Chung, 2010) and sequencing of the bisulfite-converted DNA was

performed using SOLiD versions 3 Plus and 4. This generated

2.79 billion bisulfite reads of which ∼52% were mapped uniquely

(genome build hg19/NCBI 37). The methylation results obtained

by B-SOLANA were then compared to the Illumina Infinium

HumanMethylation450 BeadChip (450 k) assay, an established

methylation analysis method, as a quality control (Supplementary

Fig. 3). We observed high concordance between the results of the

two independent methods (99% of 450 k sites were also represented

in the B-SOLANA results) and the methylation levels of cytosines,

which were assayed by both methods displayed a very high

correlation (Pearson correlation r >0.93). As a proof of principle,

we also generated different simulated datasets, reflecting varying

CpG and non-CpG methylation levels. Encouragingly, the results

generated by B-SOLANA closely match the expected methylation

degrees (Supplementary Table 1).

A further approach for the analysis of colorspace BS-Seq

was published with the tool MethylCoder (Pedersen, 2011).

MethylCoder applies a conversion of any residual bisulfite read

cytosines into thymines, which leads to erroneous alignments,

as discussed above. Therefore, we compared B-SOLANA and

MethylCoder (one mismatch allowed) by analyzing 485 990 920

SOLiD BS-Seq reads (50 bp), taken from SRR204024 (Hansen,

2011). We found a high concordance between methylation calls of

Hansen et al., analyzed by their yet unpublished and unavailable

approach, and B-SOLANA. Moreover, B-SOLANA turns out to

have a significantly higher mapping efficiency.

As a platform-independent benchmark, we demonstrate that the

analysis of colorspace BS-Seq data of the fibroblast cell line

IMR90 is comparable to methylome data published by Lister et al.

(2009), who used a BS-Seq approach on the Illumina platform

(Supplementary Information 1).

3 CONCLUSIONS

We present an efficient tool for the analysis of large colorspace

BS-Seq data. B-SOLANA provides a fast and accurate all-in-one

approach, including alignment and methylation calling. It is easy

to use and generates an intuitive output, which can be used for

genome-wide DNA methylation analysis.
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Supplementary Figure 1 (A) A SNP position in colorspace appears as two adjacent color transitions. (B) 

A measurement error in colorspace appears as a single color transition. (C) In silico conversion of C to T 

in bisulfite reads carrying a measurement error abrogates mapping to an equally converted reference 

sequence. This figure was adapted from Krueger F, Kreck B, et al., DNA Methylome Analysis Using Short 

Bisulfite Reads, in press. 

 

 

 

 

 

T C G C A A C GCC G

T C G T A A C GCC G

reference in base space

reference in color space

read in color space
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A

B
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reference in base space
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reference in base space

reference in color space
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Supplementary Figure 2 B-SOLANA performs four different mappings. Each bisulfite-treated sequence 

will be mapped to a modified reference genome in which all cytosines in non-CpG context are in silico 

converted to thymines and to a reference genome in which all cytosines, irrespective of their sequence 

context, are converted to thymines. B-SOLANA determines the best mapping in terms of lowest number 

of mismatches. Consequently, different methylation levels can be assessed. 

 

 

 

 

 

 

 

 

 

 

 

>>ATGGACmGCCTATGACTGAACmACmGCmGAT>> (bisulfite sequence)

>>ATGGACGTTTATGATTGAATACGCGAT>>

(Forward-reference conversion I (non-CpG C to T))

<<TATTTGCGGATATTGATTTGTGCGCTA<<

(Reverse-reference conversion I (non-CpG C to T))

>>ATGGATGTTTATGATTGAATATGTGAT>>

(Forward-reference conversion II (C to T))

<<TATTTGTGGATATTGATTTGTGTGTTA<<

(Reverse-reference conversion II (C to T))





 

 

Supplementary Figure 3 (A) Comparison of SOLiD BS-Seq to a single Illumina Infinium 

HumanMethylation450 BeadChip restricted to methylation calls of Typ I data. The distributions depict 

the residuals as the differences between SOLiD BS-Seq methylation levels and Infinium beta values, 

where values close to 0 mean that equal methylation levels were inferred by both methods. The green, 

blue, red and orange graphs represent the distribution of residuals of cytosines covered by at least 5, 10, 

15 and 20 bisulfite sequences, respectively. Higher read coverage generally results in narrower residual 

profiles, i.e. better correlation. The bimodal distribution of the residuals has a technology specific 

explanation. Unmethylated and fully methylated sites assessed by the 450k assay are usually not detected 

with beta values of 0 and 1 but rather assigned to beta values next to ~0.05 and ~0.94 In contrast, in BS-

Seq unmethylated and fully methylated sites correspond to methylation levels of 0 and 1. (C,D) This fact 

and the distribution of methylation levels (C,D) explain that the maxima in the distribution of residuals 

are located at ~-0.05 (0-0.05) and ~0.06 (1-0.94). Thus, the correlation of the 450k assay and BS-Seq is 

distributed sigmoidally.  (B) Scatter plot of methylation sites, which were assessed by 450k assay and BS-

Seq (coverage ≥ 5), shows a high correlation (Pearson correlation r=0.96). Bands at 0, 0.5, 1 (y-axis) 

correspond to the sigmoidal shift of the two assays at homozygous unmethylated, heterozygous 

methylated and homozygous methylated sites.  (C,D) Different distribution profiles of methylation levels 

in the 450k assay and BS-Seq, explaining the sigmoidal form of (A). 



 

 

Simulated data 1% CH methylation 3% CH methylation 5% CH methylation 

10% CG methylation 10.36 CG / 0.95 CH 9.79 CG / 2.62 CH 10.02 CG / 4.05 CH 

20% CG methylation 20.35 CG / 0.96 CH 20.00 CG / 2.60 CH 19.82 CG / 4.07 CH 

30% CG methylation 30.09 CG / 0.94 CH 29.83 CG / 2.59 CH 29.72 CG / 4.04 CH 

40% CG methylation 40.70 CG / 0.96 CH 40.68 CG / 2.61 CH 40.47 CG / 4.03 CH 

50% CG methylation 51.04 CG / 0.95 CH 50.77 CG / 2.66 CH 50.79 CG / 4.02 CH 

60% CG methylation 60.79 CG / 0.94 CH 61.00 CG / 2.62 CH 61.27 CG / 4.03 CH 

70% CG methylation 70.70 CG / 0.94 CH 70.98 CG / 2.61 CH 71.58 CG / 4.05 CH 

80% CG methylation 80.55 CG / 0.95 CH 80.36 CG / 2.59 CH 81.17 CG / 4.09 CH 

90% CG methylation 89.97 CG / 0.96 CH 89.92 CG / 2.63 CH 90.03 CG / 4.08 CH 

 

 

Supplementary Table 1 The accuracy of B-SOLANA was tested using simulation data from Sherman 

(bisulfite-treated Read FastQ Simulator (http://www.bioinformatics.bbsrc.ac.uk/projects/sherman/)). One 

hundred thousand reads (genome build HG19/NCBI 37) with different rates of bisulfite conversion (10% 

≤ CG methylation ≤ 90 %, 1% ≤ CH methylation ≤ 5 % - any combinations) were analyzed as indicated. 

B-SOLANA is able to accurately detect various levels of simulated methylation when methylation in 

non┽CpG context is fairly low (<5%). The latter is the case for most eukaryotic genomes, with 

mammalian genomes typically having methylation levels of less than 3% in CHG and less than 1% in 

CHH context (Pelizzola, 2010). 

 

 

 

 

Pelizzola, M., et al. (2010) The DNA methylome, FEBS Lett., 585, 1994–2000 

  



 Hansen et al.* B-SOLANA MethylCoder** 

Uniquely mapped reads (in %) (adenoma I) 32.13 42.60 10.58 

CpG positions:  % C (adenoma I) 66.29 70.12 65.68 

CpG positions:  % T (adenoma I) 33.59 29.70 34.32 

Non-CpG positions: % C (adenoma I) 0.24 0.25 1.31 

Non-CpG positions:  % T (adenoma I) 99.73 99.67 98.69 

    

Uniquely mapped reads (in %) (cancer I) 37.48 49.66 18.47 

CpG positions: % C (cancer I) 62.79 67.63 61.73 

CpG positions: % T (cancer I) 37.08 32.17 38.27 

Non-CpG positions: % C (cancer I) 0.23 0.24 0.69 

Non-CpG positions: % T (cancer I) 99.74 99.68 99.17 

 

* including post-processing quality control 
** only cytosine and thymine base calls are included  

 

 

Supplementary Table 2 Comparison of B-SOLANA and MethylCoder by analyzing SOLiD BS-Seq 

reads (50 bp), taken from (SRR204022 (adenoma I) and SRR204026 (cancer I)). The methylation calls of 

B-SOLANA show a high concordance with the results reported by Hansen et al., analyzed with their 

unpublished and unavailable approach. The mapping efficiencies of B-SOLANA and MethylCoder are 

substantially higher and dramatically lower, respectively, than reported by Hansen et al.. 

 

 

 

 

 

 

 

 

 



Supplementary Information 1 We include data of a SOLiD bisulfite sequencing run of IMR90, the 

same human diploid fibroblast strain which was also analyzed by Lister et al. (Lister 2009). Sequencing 

was performed using SOLiD version 3 which generated 515,699,253 bisulfite reads. The results were 

compared to those generated by Lister et al., who worked with BS-Seq data generated on the Illumina 

platform. For this purpose we used their publically available data at 

http://neomorph.salk.edu/human_methylome/ and used LiftOver (http://genome.ucsc.edu/cgi-

bin/hgLiftOver) to convert the data from HG18/NCBI 36 to HG19/NCBI 37. We performed correlation 

analyses for two biological replicates of IMR90 generated by Lister et al. and for colorspace bisulfite 

sequencing data of IMR90 compared to the combined set of results of Lister et al.. Both correlation 

analyses use CG methylation calls which are covered by at least five sequences and were present in both 

samples (either the two replicates of the Lister et al. data or colorspace vs. Lister et al. data). Calculations 

of the correlations yield the following results:  

 

 

 

 

These similar results let us conclude that bisulfite sequencing data generated on the SOLiD platform and 

the Illumina platform are comparable, despite the fact that the samples were derived from separate 

biological preparations of the IMR90 cell line.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lister, R., et al. (2009) Human DNA methylomes at base resolution show widespread epigenomic 

differences, Nature, 462, 315-322. 

 Pearson r 

Replicates sequenced on the Illumina platform 0.80 

Colorspace BS-Seq vs. BS-Seq on the Illumina platform 0.74 





 

 

Appendix B  
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DNA methylation involves the addition of a methyl 
group to the C5 carbon residue (5mC) of cytosines 
by DNA methyltransferases1,2. DNA methylation is 
an important epigenetic mechanism used by higher 
eukaryotes and is involved in several key physiologi-
cal processes, including regulation of gene expression,  
X-chromosome inactivation, imprinting, and silencing 
of germline-specific genes and repetitive elements3. 
Patterns of methylation are stably maintained through 
somatic cell division and can be inherited across gen-
erations. These patterns are sometimes perturbed in 
important human diseases, such as imprinting disor-
ders and cancer3–5. Understanding how methylation 
patterns are established and maintained is therefore 
of great importance.

The sequence context in which a cytosine occurs is a 
key factor in determining the regulation of its methyl-
ation. Cytosines that occur as part of a C-G dinucleo-
tide (CpG) are often highly methylated (~60–80% in 
mammals2) and are regulated differently to cytosines 
in other contexts. CpG methylation usually occurs on 
both DNA strands1 to maintain methylation at CpGs 
during DNA replication. In contrast, non-CpG meth-
ylation must be re-established de novo after each cell 
division. Although it is present at considerable levels 
during early development or in pluripotent cell types6–8,  
most non-CpG cytosines are generally unmethylated 
in differentiated tissues (~0.3–3% in mammals2).

As methylated cytosines are susceptible to spon-
taneous conversion into thymines through chemical 

DNA methylome analysis using short 
bisulfite sequencing data
Felix Krueger1,3, Benjamin Kreck2,3, Andre Franke2 & Simon R Andrews1

Bisulfite conversion of genomic DNA combined with next-generation sequencing 
(BS-seq) is widely used to measure the methylation state of a whole genome, the 
methylome, at single-base resolution. However, analysis of BS-seq data still poses a 
considerable challenge. Here we summarize the challenges of BS-seq mapping as they 
apply to both base and color-space data. We also explore the effect of sequencing 
errors and contaminants on inferred methylation levels and recommend the most 
appropriate way to analyze this type of data.

 deamination, they tend to be generally underrepre-
sented in the genome9,10, and they are often grouped in 
dense patches termed CpG islands. These islands tend 
to be unmethylated in the germline and are conse-
quently less vulnerable to spontaneous deamination11. 
CpG islands are frequently associated with promoters, 
and the regulation of promoter methylation has been 
shown to affect the expression of the corresponding 
transcripts. Traditionally, CpG islands were defined 
using sequence-composition analysis12–14 which pre-
dicted that the mouse genome contained a substan-
tially lower number of CpG islands than the human 
genome. However, a recent report demonstrated that 
the occurrence of functional CpG islands is in fact 
quite similar in the two organisms15.

Measuring methylation

Several methods exist for measuring DNA methyla-
tion at specific genomic loci, and these have been 
reviewed recently16,17. They range from methylated 
DNA immunoprecipitation or methyl binding protein 
enrichment of methylated fragments18–20 to digestion 
with methylation-sensitive restriction enzymes21 and 
bisulfite modification of DNA22. Comparisons of these 
methods showed that they all can be used to produce 
accurate DNA methylation data21,23,24.

During bisulfite sequencing the treatment of 
DNA with sodium bisulfite converts cytosines into 
uracils, whereas methylcytosines remain unmodified. 
Uracils are read as thymines by DNA polymerase, so 

1Bioinformatics Group, The Babraham Institute, Cambridge, UK. 2Institute of Clinical Molecular Biology, Christian Albrechts University, 
Kiel, Germany. 3These authors contributed equally to this work. Correspondence should be addressed to A.F. (a.franke@mucosa.de) or 
S.R.A. (simon.andrews@babraham.ac.uk).
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 amplifying bisulfite-treated DNA by PCR yields products in which 
unmethylated cytosines appear as thymines. By comparing the 
modified DNA with the original sequence, the methylation state 
of the original DNA can therefore be inferred. Bisulfite treatment 
of 5-hydroxymethylcytosine (5hmC) yields a similar intermediate 
to 5mC, meaning that BS-seq can be used to detect whether a 
position is (hydroxy-) methylated but not to determine the exact 
type of modification21,25 (Fig. 1). This limitation does not apply 
to antibody-based techniques, which can be used to specifically 
enrich 5hmC26–28.

Capillary electrophoresis–based bisulfite sequencing was consid-
ered the gold standard for methylation analysis because of its clear 
readout and single-base resolution22, but it could only be applied 
to relatively small regions. New sequencing technologies mean that 
BS-seq is now a viable option for the sequencing of entire mam-
malian methylomes6–8,29–32 (Supplementary Table 1).

For researchers primarily interested in CpG island methylation, 
the cost of bisulfite sequencing can be reduced by enriching CpG-
dense regions by digesting genomic DNA with a methylation-
insensitive restriction enzyme containing a C-G as part of its 
recognition site and selecting short fragments6,30,33. Even though 
the selected fragments are used to interrogate only a few percent 
of the genome, these data are informative for the majority of CpG 
islands. This approach, termed reduced representation BS-seq 
(RRBS), has been extensively described and compared to other 
techniques23,33–35, and several genome-wide methylation maps 
based on RRBS have been reported6,30.

In this Review we provide an overview of the computational 
analysis of bisulfite sequencing data. We highlight points to con-
sider when designing a BS-seq experiment and point out pitfalls 
that can occur during the initial analysis. We also discuss dif-
ferent alignment strategies and their implementation by current 
bioinformatic tools. In particular, we present the main differences 
between the analysis of base space (Illumina) and color space 
(SOLiD, Applied Biosystems) BS-seq data.

Challenges of BS-seq data mapping

As the methylation state of bisulfite-treated DNA must be inferred 
by comparison to an unmodified reference sequence, a correct 
alignment is of critical importance. This is challenging because 
the aligned sequences do not exactly match the reference, and the 
complexity of the libraries is reduced. Also, as cytosine methyl-
ation is not symmetrical, the two strands of DNA in the reference 
genome must be considered separately. A single site can have a 
different methylation state in different cells. Thus, when sequenc-
ing cell mixtures or tissue fractions, the percentage of methylation 
at each site needs to be determined36.

When performing an alignment one must discriminate between 
different types of bisulfite-treated DNA libraries (for a schematic 

drawing, see ref. 16). In the first, termed directional libraries, adapters  
are attached to the DNA fragments such that only the original 
top or bottom strands will be sequenced7,30. Alternatively, all four 
DNA strands that arise through bisulfite treatment and subsequent 
PCR amplification can be sequenced with the same frequency in 
nondirectional libraries32,37,38. BS-seq mapping may therefore 
require up to four different strand alignments to be analyzed for 
each sequence. Because of the complexity of BS-seq alignments, 
standard sequence alignment software cannot be used. However, 
several different tools for BS-seq analysis have been developed.

Base-space BS-seq data alignments

Methylation-‘aware’ alignment tools consider both cytosine and 
thymine as potential matches to a genomic cytosine. This strategy 
provides the highest possible mapping efficiency (high sensitivity) 
because it makes optimal use of the information present in the 
reads. However, a drawback of this technique is that methylated 
sequences will be aligned with greater efficiency because they 
carry more information than their unmethylated counterparts, 
leading this type of aligner to overestimate methylation levels.

Alternatively, in unbiased approaches usually any residual 
cytosines in the BS-seq read and all cytosines in the reference 
genome are converted into thymines before the alignment is per-
formed7,30. This means that the read sequence to be aligned is 
unaffected by its methylation state. It also means that there will be 
an exact match between the converted read and converted genome 
sequence so that standard sequence alignment tools can be used 
to perform the mapping39,40. This approach, however, comes at 
the cost of slightly reduced mapping efficiencies (Fig. 2a).

BS-seq in color space

In contrast to the intuitive base-space sequence generated by 
Illumina sequencers, SOLiD sequencing (Applied Biosystems) 
encodes its reads in color space such that each color resembles 
the transition from one base to the next41. Single-nucleotide poly-
morphisms (SNPs) can be called with high confidence because 
they will result in two adjacent color changes, whereas technical 
errors are indicated by a single color change (Supplementary  

Fig. 1a,b). Owing to the way color-space encoding works, 
residual cytosines are correctly converted into thymines in the 
bisulfite reads in silico before the mapping only if the reads are 
completely error-free. A single measurement error in the read 
would lead to incorrect conversions throughout the rest of the 
read (Supplementary Fig. 1c). As a consequence, the in silico 
cytosine to thymine conversion, which guarantees unbiased align-
ments, should not be performed on color-space datasets.

Current tools to align color space BS-seq data to a reference 
genome either use methylation-aware alignments (SOCS-B42), 
which can be computationally intensive for complex genomes, 

PCR amplification

Bisulfite conversion

Top strand

mC

OT
CTOT

CTOB
OB

mC mC mC

mC

Bottom strand

Figure 1 | Effect of bisulfite treatment of DNA. Bisulfite conversion of 
genomic DNA and subsequent PCR amplification gives rise to two PCR 
products and up to four potentially different DNA fragments for any given 
locus. (Hydroxy)methylated cytosine residues are resistant to bisulfite 
conversion and can be used as a readout of the DNA methylation state. 
mC, 5-methylcytosine; hmC, 5-hydroxymethylcytosine; OT, original top 
strand; CTOT, strand complementary to the original top strand; OB, 
original bottom strand; and CTOB, strand complementary to the original 
bottom strand.
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or align reads to in silico–converted versions of the reference 
genome, with bisulfite-induced mismatches are treated as normal  
mismatches. As different levels of methylation can result in 
increased numbers of mismatches to the reference genome, this 
approach is, however, not free of bias. One possibility to reduce 
mapping bias is to apply different in silico conversions to the refer-
ence genome and determine best alignments from the combined 
set of results of different mapping runs. This approach, however, 
requires prior knowledge of the methylation characteristics of the 
organism to be analyzed.

BS-seq data alignment tools

Several tools have been developed for the analysis of BS-seq data-
sets17. These not only differ considerably regarding their align-
ment speed, flexibility and ease of use but also in the information 
they report. Many older BS-seq data aligners only reported a 
bisulfite read mapping output, and the user had to extract meth-
ylation information from the alignments. More recent tools 
provide a comprehensive methylation output, which enables the 
end user to explore the biological effects of methylation more 
quickly39,40,43. Most recent tools, such as Bismark40, BS-Seeker39 
or B-SOLANA44, use existing short-read aligners (Bowtie45 for 
the mentioned tools) and handle the requirements unique to BS-
seq data analysis internally.

An example for a color-space alignment tool is B-SOLANA, with 
which reads are initially aligned to a reference genome in which 
all cytosines in non-CpG context had been in silico–converted 
into thymines and are then aligned to a second reference genome 
in which cytosines in all sequence contexts are converted into 
thymines. Unlike bisulfite alignments in base space (Fig. 2b), this 
method is not suited to accurate detection of arbitrary methylation 
levels in unknown samples because a high degree of methylation in 
the non-CpG context would produce too many mismatches in the 
alignment step (Fig. 2c). This would lead to a dramatic decrease in 
mapping efficiency and an apparent bias toward hypomethylation 
in the non-CpG context. However, for the majority of eukaryotic  
genomes with less than 5% methylation in non-CpG context2, 
alignments can be generated efficiently and accurately (Fig. 2d).

In the rest of this Review we use Bismark to illustrate dif-
ferent aspects of BS-seq analysis. Bismark can accurately 
detect the simulated methylation state of cytosines in any 

sequence context while the mapping efficiency is completely  
unaffected (Fig. 2b). We summarize details of different software 
packages for BS-seq data analysis in Table 1.

Once a dataset consisting of best alignments has been deter-
mined based on predefined alignment criteria, the methylation 
state of positions involving cytosines in the reference sequence 
can be inferred. Then these methylation calls can serve to deter-
mine the ratios of methylated versus unmethylated cytosines at 
every position assayed. Later, analyses of the methylation data 
could include looking at minimum read depths, determining 
methylation states of individual cytosines or genomic features, 
or estimating cytosine-conversion errors or false discovery rates. 
The biological analysis of methylome data is manifold and beyond 
the scope of this review.

Factors affecting the accuracy of methylation calls

Two key factors are crucial when determining the methylation 
state of a read from a BS-seq experiment. First, the sequence of 
the read must be correct and derive entirely from a bisulfite-
 converted sequence in the original genome. Second, the read must 
be correctly mapped to the corresponding position of the targeted 
genome. Failure to meet either of these criteria will result in the 
generation of incorrect methylation calls and, in extreme cases, 
the noise from these miscalls can adversely affect the conclusions 
drawn from the whole experiment. If a base is misaligned or mis-
called, then on average it will display a methylation rate of 50% 
because both cytosine and thymine are equally likely to be mis-
placed against a genomic cytosine. If the true methylation level is 
close to 0% or 100%, then a relatively small number of errors can 
disproportionally shift the predicted overall level of methylation.

Base-call qualities

In real data, the quality of base calls tends to fall as the length of 
the reads increases (Supplementary Fig. 2a). As base-call errors 
are random, the frequency for each base will tend toward 25% 
each at positions with high error rates. Another source of con-
tamination that can lead to a change in base composition is the 
presence of (methylated) adaptor sequences, which we discuss 
below. Such deviations of the average nucleotide distribution 
toward later cycles of a library can usually be spotted in a base-
composition analysis (Supplementary Fig. 2b). A tradeoff can be 
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Figure 2 | Performance and accuracy of unbiased base-space and color-space BS-seq alignment tools. (a) A total of 106 random mouse genomic sequences 
of different lengths were aligned to the mouse genome (NCBIM37) with Bowtie as an example of methylation-aware mapping (biased) or with Bismark 
as an example of unbiased mapping (unbiased). Non-unique alignments were discarded. (b,c) A total of 106 random mouse base-space (Bismark; b) or 
human color-space (B-SOLANA; c) reads (75 base pairs) were simulated with different rates of bisulfite conversion (context is indicated) and aligned to 
the mouse (NCBIM37) or human (NCBI37) genomes. Bismark accurately detected various simulated methylation levels at a constant mapping efficiency. 
Alignment of color-space reads with B-SOLANA was efficient, and methylation calls were accurate only when methylation in non-CpG context was fairly 
low (ideally less than 5%). H (in CHG and CHH) stands for C, T or A. (d) Reads as in b,c were simulated with typical mammalian methylation levels  
(CpG context, 70%; CHG and CHH context, 3%) using Sherman (http://www.bioinformatics.bbsrc.ac.uk/projects/sherman/). 
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made, in which longer reads increase coverage but also increase 
the number of incorrect methylation calls. Although it would be 
possible to weight a bisulfite methylation call based on the quality 
of the original base call, this is not currently done by any of the 
commonly used analysis tools and would only be of benefit for 
miscalled bases rather than misaligned reads.

To quantify the effect of miscalled bases, we simulated a 75–
base-pair read dataset containing no methylation and added 
random miscalls at rates between 0.01% and 10% following 
an exponential decay model over the length of the sequence 
(Supplementary Fig. 2c). As the error rate increased, so did the 
apparent methylation level.

A way to counteract methylation miscalls or mismapping events 
as a consequence of base call errors in the reads, is to select strict 
alignment parameters. To demonstrate this, we simulated bisulfite 
reads with sequences carrying varying numbers of false base calls 
and aligned this dataset to the mouse reference genome using 
increasingly stringent cutoffs. Increasing the mapping stringency 
prevented sequences with several mismatches from aligning, thus 
reducing the number of erroneously inferred methylation states 
(Supplementary Fig. 2d) but at the cost of reduced mapping effi-
ciency. A better way of decreasing methylation call errors from 
such poor quality data is to trim off low-quality base calls before 
read alignments are carried out. Such adaptive quality trimming 
can be performed with several publically available tools, such 
as cutadapt (http://code.google.com/p/cutadapt/), the FASTX 
toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html), 
PRINSEQ46 (http://prinseq.sourceforge.net/), SolexaQA47 (http://
solexaqa.sourceforge.net/), Trimmomatic (http://www.usadellab.
org/cms/index.php?page=trimmomatic) and others.

Sequencing into the adaptor

In many libraries, a proportion of reads will run through the insert 
and begin to sequence the adaptor on the 3′ end. Including adaptor 
sequence in a read will dramatically decrease the mapping efficiency 
of the read and will add a subset of random methylation calls.

We simulated the addition of varying lengths of Illumina adaptor 
sequence onto a BS-seq library containing no base call errors and 
measured the effect on both mapping efficiency and methylation 
calls (Supplementary Fig. 3a). The mapping efficiency decreased 
steadily with increasing adaptor contamination, but methylation 
errors were tightly linked to the sequence of the adaptor. Each 
addition of a cytosine in the adaptor caused a dramatic spike in the 
observed level of methylation (data not shown). Nondirectional 
libraries are even more susceptible to adaptor contamination as 
the introduction of guanine or adenine into reads aligning to the 
complementary bisulfite strands can introduce additional errors. 
Appropriate steps to identify and remove adaptor contamina-
tion, such as k-mer analysis (Supplementary Fig. 3b) with tools 
such as FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/
fastqc/) and adaptor-trimming software (for example, cutadapt, 
the FASTX toolkit, Trimmomatic, FAR (http://sourceforge.net/
projects/theflexibleadap/) and others), should therefore always 
be taken before read alignments are carried out.

When we introduced both base call quality degradation and 
adaptor contamination into simulated BS-seq data reads, we 
observed a greatly reduced mapping efficiency compared to 
perfect genomic sequences (Supplementary Fig. 3c). When we 
universally trimmed the same sequences to shorter read lengths, Ta
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the mapping efficiency increased, reaching a maximum between 
50 and 75 base pairs. This demonstrates that increasing the read 
length of bisulfite sequences does not necessarily translate into a 
linear increase in methylation information gained from an experi-
ment. Similarly, paired-end reads do not automatically yield twice 
the amount of methylation data compared to single-end experi-
ments because they result in a considerable amount of redundant 
methylation calls where both reads overlap.

Bisulfite conversion rate

In a BS-seq experiment we implicitly assume that all unmethyl-
ated cytosines are converted into thymines. However, this con-
version may not run to completion. Incomplete conversion of 
unmethylated cytosines is indistinguishable from methylation 
and can thus introduce false positive methylation calls. In con-
trast, prolonged bisulfite treatment causes the sample to degrade 
in a way which enriches the small amount of remaining material 
for methylated reads.

Some studies have tried to avoid non-conversion errors by 
removing reads that exceeded an arbitrary threshold of methyl-
ation in a non-CpG context7,30,37; however, this procedure 
assumes very low methylation in a non-CpG context and hence 
introduces a potential bias against methylated reads. One option 
for estimating the bisulfite conversion rate is to use spike-in 

controls of nonnative DNA with a known methylation state. 
However, it should be kept in mind that such controls might 
not necessarily have the same conversion properties as the DNA 
sample to be analyzed.

End repair

It is crucial that the DNA methylation state of each fragment is not 
artificially modified before treatment with bisulfite because any 
amplification by a polymerase will erase any methylation marks 
that were present. In RRBS experiments, for instance, each frag-
ment is generated by the digestion of a genome with a restriction 
endonuclease. The most commonly used enzyme for this type of 
library is MspI, which, upon cleavage, leaves a 5′ C-G overhang 
on the ends of each fragment33. To allow the addition of sequenc-
ing adapters, the overhangs are end-repaired using either methyl-
ated or unmethylated cytosines. These filled-in bases will align 
perfectly against the reference genome but will not maintain the 
original methylation state, and care must therefore be taken to 
exclude these bases from methylation calling. This problem only 
affects the 3′ end of reads when the read length is longer than the 
fragment to be sequenced (RRBS is probably more affected as frag-
ments are usually size-selected to be 40 to 220 base pairs24,33). In 
such cases, reads should be screened for the occurrence of cytosine 
residues or a second MspI site just before reading into a potential 
adaptor contamination toward the 3′ end and trimmed back until 
the modified bases have been removed. In addition, paired-end 
or nondirectional RRBS libraries may also contain reads originat-
ing from filled-in MspI sites at the beginning of the reads, which 
consequently need to be excluded from downstream analysis38.

Single-nucleotide variants

Any SNPs that are a cytosine in the reference genome but a thym-
ine in the experimental sample would appear as consistent calls 
of unmethylated cytosines. Such errors would be impossible to 
detect from the quality of the reads because the base calls would 
be good and only the isolated nature of the effect seen might 
suggest that it is a technical rather than a biological effect. Both 
BS-seq alignments and methylation calls assume that the genomic 
reference sequence that reads are compared to is correct. Thus, 
if no SNP information is available, one has to expect a certain 
extent of systematic errors. These effects could be minimized by 
integrating available genomic-variation data, for example, from 
SNP databases into the reference sequence before bisulfite align-
ments are carried out or by using nucleotide information of the 
opposing genomic strand.

Conclusions

The primary analysis of BS-seq data should always start with a 
thorough assessment of the raw sequence data. Reads with low 
base call qualities or adaptor contamination should be identi-
fied and trimmed rigorously, even if this entails the risk of losing 
a few base pairs of real data, because the gain of confidence in 
correct alignments and methylation calls outweighs this minor 
data loss. Considering that mapping efficiencies of BS-seq and 
standard genomic reads converge quickly for read lengths greater 
than 40 base pairs (Fig. 1a), single-end reads of 50–75 base pairs 
seem to offer a reasonable compromise, providing good mapping 
capacity without running into problems associated with longer 
read lengths.
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For base-space data, it is critical not to tolerate a high level of 
non-bisulfite mismatches (mismatches not induced by bisulfite 
treatment—that is, all mismatches other than (unmethylated)  
C-to-T mismatches) during the alignments because this allows 
reads to align to incorrect positions in the genome, resulting in 
false methylation calls. This can become especially relevant for 
reads originating from highly repetitive sites or from regions that 
are not yet part of the genome assembly. Stringent alignments are 
equally important for color-space data, but because color-space 
mapping approaches work differently, the strategy may have to 
be adapted to the individual needs of specific tools.

Many of the aspects of BS-seq discussed here, taken on their 
own, do not seem to have particularly drastic effects. Their com-
bination, however, could easily lead to several million false methyl-
ation calls, which might have profound effects on the biological 
conclusions drawn from an experiment. Additional attention 
should be paid to reducing the number of artifacts that can only 
be spotted after the alignments have been performed. Duplicate 
reads or regions displaying abnormally high read coverage should 
be excluded from the analysis because they can comprise a size-
able proportion of the experiment and thereby introduce con-
siderable bias.

Given one has a choice before starting an experiment, it is cur-
rently most convenient to opt for a platform generating base-space 
data because it can measure methylation over a wide dynamic 
range of methylation levels in any cytosine context with equal effi-
ciencies, and most available tools are tailored to this kind of data. 
For small genomes or genomes fulfilling certain criteria regarding 
their methylation state, there are now also good tools available to 
handle color-space reads.

The best practices recommended here (Fig. 3) apply to data 
generated on current sequencing platforms. It will be interesting 
to see whether forthcoming single-molecule sequencing tech-
nologies will be able to live up to their promise to revolutionize 
the way in which methylation is measured.

Note: Supplementary information is available on the Nature Methods website.
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sequence on the 3’ end. (c) 75 bp

reads were simulated with varying

mean perͲbase error rates as

indicated (106 reads for each

condition with a bisulfite conversion

rate of 100%; mapping with Bismark

was performed tolerating many

mismatches (default options with Ͳe
500)). (d) A simulated dataset

containing 75 bp sequences with

various amounts of miscalls was

mapped to the mouse genome

(NCBIM37). Increasingly strict

mapping parameters reduce the

number of erroneous methylation

calls at the expense of mapping
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and 5%; bisulfite conversion rate was

100%). n: number of tolerated
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sequence length; e: mismatch ceiling
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Supplementary Figure 3: Influence of

adapter contamination on BSͲSeq
alignments. (a) Various amounts of

adapter sequence (variable but with

increasing length) were introduced

into a 75 bp BSͲSeq data set (106

reads, bisulfite conversion rate

100%). (b) Adapter sequences of

variable length were introduced into

150 bp reads assuming normally
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Sample  Organism Average coverage Platform  Reference

ADS  Homo sapiens 11.5 x Illumina  1

ADSͲadipose  Homo sapiens 12.3 x Illumina  1

ADSͲiPSC  Homo sapiens 13.1 x Illumina  1

FF  Homo sapiens 8.4 x Illumina  1

FFͲiPSC 6.9  Homo sapiens 4.8 x Illumina  1

FFͲiPSC 19.7  Homo sapiens 4.7 x Illumina  1

FFͲiPSC 19.11  Homo sapiens 4.1 x Illumina  1

FF iPSC 19.11ͲBMP4 Homo sapiens 8.5 x Illumina  1

IMR90  Homo sapiens 14.7 x Illumina  2

IMR90ͲiPSC  Homo sapiens 4.5 x Illumina  1

H1  Homo sapiens 14.0 x Illumina  2

H1ͲBMP4  Homo sapiens 16.5 x Illumina  1

H9  Homo sapiens 4.6 x Illumina  1

fibroblasts (newborn) Homo sapiens 9.0 x Illumina  3

fibroblasts (hESCͲderived)  Homo sapiens 9.0 x Illumina  3

WA09 hESC  Homo sapiens 9.0 x Illumina  3

Peripheral Blood MC Homo sapiens 12.3 x Illumina  4

HSF1 hESC  Homo sapiens 2.6 x Illumina  5

Arabidopsis  Arabidopsis thaliana 20 x Illumina  6

Arabidopsis  Arabidopsis thaliana 8.0 x Illumina  7

Honey Bee  Apis mellifera 20 x Illumina  8

Silkworm  Bombyx mori 7.4 x Illumina  9

Escherichia coli  Escherichia coli > 270 x SOLiD  10
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Abstract 35 

Recent epigenomic studies suggest Burkitt lymphoma (BL), in contrast to its few 36 

chromosomal alterations, to carry a high number of DNA methylation changes. 37 

Therefore, we here generated and analyzed the DNA methylome of an archetypal 38 

endemic BL cell line (DAUDI) at base-pair resolution using different platforms. The 39 

extent of cytosine methylation in CpG dinucleotides significantly varied between 40 

nuclear (68.99%), mitochondrial (6.43%) and EBV (80.18%) genomes. Despite being 41 

rare on the genome-wide level, non-CpG methylation was significantly enriched 42 

within genes. Gene expression was strongly associated with lacking CpG methylation 43 

immediately at transcription start sites. Expressed and non-expressed genes were 44 

associated with distinct patterns of gene body methylation with remarkably sharp 45 

transitions at exon-intron borders. At lower resolution, we could confirm presence of 46 

this pattern also in primary sporadic BL. Our findings show that the mechanisms of 47 

DNA methylation in lymphomas, which are associated with transcriptional 48 

regulation, extend by far the usually studied promoter methylation. 49 

 50 

Keywords:  Burkitt Lymphoma, Epigenetics, DNA Methylation, Bisulfite Sequencing 51 
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Introduction 52 

The Burkitt translocation t(8;14), first identified in the 1970s in biopsies and cell lines 53 

from BL,
1,2

 and its variants juxtapose the MYC oncogene to one of the 54 

immunoglobulin (IG) loci.
3
 Nowadays, it is assumed that (nearly) all BL carry an IG-55 

MYC translocation, rendering this somatic mutation a diagnostic marker for all three 56 

subtypes of BL (endemic, sporadic and immunodeficiency-related BL).  57 

In contrast to many other lymphomas, BL show a quite simple karyotype, i.e. with 58 

few if any chromosomal changes in addition to the IG-MYC translocation.
4
 Though 59 

there is evidence for some few recurrent secondary genetic changes the number of 60 

epigenetic alterations in BL as compared to normal B-cell subsets seems to 61 

outnumber the genetic changes by far. Indeed, we and others have identified several 62 

hundred genes showing de novo DNA methylation in aggressive B-cell lymphoma, 63 

including BL as compared to normal B-cell subsets.
5-7

 Nevertheless, the mentioned 64 

DNA methylation studies focused on a maximum of probably 10% (by HELP assays) 65 

of the CpGs of the genome, and were biased towards promoter regions and CpG 66 

islands and did not systematically analyze non-CpG methylation.
5-8

 Therefore, we 67 

here aimed at generating a complete DNA-methylome of a BL, allowing for unbiased 68 

analyses of all cytosines in the genome. To this end, we chose the archetypal DAUDI 69 

cell line, established from an endemic BL that was derived from a 16-year-old African 70 

male patient in 1967.
9,10

 We selected this cell line as it has been pivotal for the 71 

identification of t(8;14), still carries a simple karyotype despite being many years in 72 

culture and because it shows the prototypic features of eBL. Moreover, considering 73 

the strong association of eBL with Epstein-Barr virus (EBV) infection, the EBV-positive 74 
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DAUDI cell line offers the opportunity for a direct comparison of its lymphoma and 75 

EBV methylomes. 76 

 77 

Methods 78 

Genomic characterization of DAUDI cells 79 

DAUDI cells (ACC-ϬϳϴͿ ĂŶĚ DNA ǁĞƌĞ ƉƌŽǀŝĚĞĚ ďǇ ƚŚĞ ͞DĞƵƚƐĐŚĞ “ĂŵŵůƵŶŐ ǀŽŶ 80 

Mikroorganismen und Zellkulturen͟ (DSMZ). Chromosomal R-banding analysis and 81 

Genome-Wide Human SNP Array 6.0 (Affymetrix, Santa Clara, CA, USA) analysis were 82 

performed according to standard methods. Whole exome capture and sequencing 83 

ǁĞƌĞ ĐĂƌƌŝĞĚ ŽƵƚ ƵƐŝŶŐ IůůƵŵŝŶĂ͛Ɛ TƌƵ“ĞƋ Exome Enrichment Kit (Illumina, San Diego, 84 

CA, USA). A subset of mutations identified by exome sequencing was verified by 85 

Sanger Sequencing (see Supplementary Data). 86 

 87 

DNA methylation profiling using Bisulfite-Sequencing (BS-seq) 88 

We performed genome-wide BS-ƐĞƋ ŽŶ ƚŚĞ “OLŝDΡ ;LŝĨĞ TĞĐŚŶŽůŽŐŝĞƐ͕ CĂƌůƐďĂĚ͕ CAͿ 89 

and the HiSeq 2000 platform. 90 

For the prior, two bisulfite-ĐŽŶǀĞƌƚĞĚ “OLŝDΡ ĨƌĂŐŵĞŶƚ ůŝďƌĂƌŝĞƐ ǁĞƌĞ ĐŽŶƐƚƌƵĐƚĞĚ ĂƐ 91 

described previously.
11,12

 Briefly, 15 µg of genomic DNA were sheared to 92 

approximately 125 bp using a Covaris S2 system (Life Technologies, Carlsbad, CA, 93 

USA). After end-repair of the DNA fragments, methyl-P1 and P2 adaptors were 94 

ligated (for details on methyl-P1 and P2 see Ranade et al.
12

). The DNA was then size 95 

selected on an agarose gel and nick-translated with a modified dNTP Mix containing 96 

methyl-dCTPs instead of regular dCTPs in order to protect the adaptor sequences 97 
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during bisulfite conversion. Bisulfite conversion was carried out in solution as 98 

described previously
12

 and recovered DNA fragments were PCR amplified using 8 99 

cycles. The bisulfite converted fragment library was clonally amplified on SOLiD P1 100 

beads using emulsion PCR. Templated (P2 positive) beads were then enriched and 101 

deposited on a slide for sequencing. 102 

For the HiSeq 2000 analyses, genomic DNA was sonicated using the Diagenode 103 

Bioruptor (Diagenode, Denville, NJ) to a final size distribution ranging from 100 bp to 104 

800 bp. Libraries were prepared from the sonicated DNA using the NEBNext Sample 105 

Prep Master Mix Set 1 (New England Biolabs, Ipswich, MA) according to the 106 

ŵĂŶƵĨĂĐƚƵƌĞƌƐ͛ ŝŶƐƚƌƵĐƚŝŽŶƐ͘ IůůƵŵŝŶĂ͛Ɛ EĂƌůǇ AĐĐĞƐƐ MĞƚŚǇůĂƚŝŽŶ AĚĂƉƚĞƌ OůŝŐŽ ǁĂƐ 107 

used for the ligation. The adapter-ligated DNA was treated with sodium bisulfite 108 

using the Imprint DNA Modification Kit (Sigma, St. Louis, MO) according to the 109 

ŵĂŶƵĨĂĐƚƵƌĞƌƐ͛ ŝŶƐƚƌƵĐƚŝŽŶƐ͘ TŚĞ ďŝƐƵůĨŝƚĞ-treated product was amplified with 16 110 

cycles using a uracil stalling-free polymerase (Agilent, Santa Clara, CA, USA) followed 111 

by size selection on a gel (200 bp ʹ 250 bp) and purification with the Qiagen Gel 112 

Extraction Kit (Qiagen, Hilden, Germany). 113 

SĞƋƵĞŶĐŝŶŐ ƵƐŝŶŐ “OLŝDΡ ǀϰ͘Ϭ ĐŚĞŵŝƐƚƌǇ ĂĐĐŽƌĚŝŶŐ ƚŽ ŵĂŶƵĨĂĐƚƵƌĞƌ͛Ɛ ŝŶƐƚƌƵĐƚŝŽŶƐ 114 

yielding 50 bp reads, which were analyzed with B-SOLANA.
13,14 

 115 

For the HiSeq 2000 analyses, V3 chemistry was used ĂĐĐŽƌĚŝŶŐ ƚŽ ŵĂŶƵĨĂĐƚƵƌĞƌ͛Ɛ 116 

instructions yielding 100 bp reads, which were analyzed with Bismark.
14,15

 117 

 118 

 119 

DNA methylation profiling using universal BeadArrays 120 
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DNA from DAUDI and four proto-typic sporadic BL was bisulfite-converted using the 121 

Zymo EZ DNA Methylation Kit (Zymo Research, Orange, CA, USA) and hybridized to 122 

the HumanMethylation450 DNA Analysis BeadChip (Illumina). Hybridization signals 123 

were analyzed using GenomeStudio software (ver. 2011.1, Methylation Analysis 124 

Module ver. 1.9.0; Illumina Inc). 125 

 126 

Gene expression analyses 127 

We combined expression data from the U133A gene chip (Affymetrix, Santa Clara, 128 

CA) and RNA-sĞƋ ƵƐŝŶŐ ƚŚĞ “OLŝDΡ ƉůĂƚĨŽƌŵ ;LŝĨĞ TĞĐŚŶŽlogies, Carlsbad, CA). The 129 

RNA-seq library was prepared by a modified Whole Transcriptome Analysis Kit 130 

(WTAK) (Life Technologies, Carlsbad, CA) and analyzed as previously described,
16

 131 

with the modification that we used TopHat
17

 to carry out alignments.  132 

 133 

See the provided Supplemental Material and Methods section for details. 134 

 135 

Results and Discussion 136 

To obtain a base-pair resolution DNA methylome of a prototypic eBL we subjected 137 

the widely-used t(8;14)- and EBV-positive DAUDI cell line to full bisulfite-sequencing, 138 

using two different platforms. By karyotyping, SNP-array analysis and exome 139 

sequencing we confirmed that the cells under study show the typical features of BL, 140 

including the t(8;14) plus a few secondary chromosomal changes and mutations in 141 

genes like ID3 and B2M (Supplemental Table 1).  142 

We aligned 79.9 Gb of bisulfite sĞƋƵĞŶĐĞƐ ŽĨ ƚŚĞ “OLŝDΡ ĂŶĚ ϳ͘ϴ Gď ŽĨ the HiSeq 143 

2000 platform and compared the results to the DNA methylation levels determined 144 
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by HumanMethylation450 BeadChip analysis (Supplemental Figure S1). We 145 

ŽďƐĞƌǀĞĚ ŚŝŐŚ ĐŽƌƌĞůĂƚŝŽŶ ŽĨ ƚŚĞ “OLŝDΡ ĚĂƚĂ ǁŝƚŚ ďŽƚŚ ƚŚĞ sequence-based HiSeq 146 

2000 (Pearson r=0.86; Supplemental Figure S2) and the array-based (Pearson r=0.96, 147 

Supplemental Figure S3) methylation levels. This led us to focus our further analyses 148 

ŽŶ ƚŚĞ ŵŽƐƚ ĞǆƚĞŶƐŝǀĞ ĚĂƚĂƐĞƚ ĚĞƌŝǀĞĚ ĨƌŽŵ “OLŝDΡ B“-seq.  149 

In total, 91.1% of all CpG sites and 90.2% of all non-CpG sites of the genome were 150 

ĐŽǀĞƌĞĚ ďǇ Ăƚ ůĞĂƐƚ ĨŝǀĞ “OLŝDΡ ƌĞĂĚƐ ;Supplemental Figure S4). On the genome-151 

wide level 68.99% cytosines in CpG dinucleotides were methylated which is in line 152 

with previous pyrosequencing-based determinations using LUMA (Figure 1). In 153 

contrast, the 450K BeadArray shows a mean methylation level of 59.24%, which is 154 

mostly due to the selection bias of the array-loci, which are predominantly located 155 

within regions upstream of genes. We observed a mean CpG methylation level of 156 

70.88% in high-complex regions, whereas mean CpG methylation in repeats 157 

accounted for 65.79% in LINEs and 78.84% in SINEs (Supplemental Figure S5). 158 

Bisulfite sequencing shows the DNA methylation patterns on the forward and 159 

reverse strand to be comparably established (Pearson r=0.90). 160 

Considering the recent description of non-CpG methylation in ESC, and the fact that 161 

the MYC oncogene deregulated in BL is also one of the four factors used to induce a 162 

stem cell-like phenotype in differentiated cells,
18

 we analyzed the level of non-CpG 163 

methylation. The genome-wide fraction of methylated cytosines in a non-CpG 164 

context does not exceed the respective threshold of 0.003 given by the 165 

unmethylated lambda control DNA that was tested in parallel.
8
 Moreover, we 166 

confirmed absence of non-CpG methylation at hallmark sites described in ESC
8
 by BS 167 

pyrosequencing (Supplemental Figure S6). Despite this overall low frequency of non-168 
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CpG methylation, we could identify a remarkable 6.7-fold enrichment of non-CpG 169 

methylcytosines within genes (p<2.2×10
-16

; Figure 2). Such non-CpG methylation 170 

might be linked to transcriptional activity (Supplemental Figure S7). 171 

We next determined the sequence-based methylation status of 969 genes recently 172 

shown by us to exhibit de novo promoter hypermethylation in mature aggressive B-173 

cell lymphoma (including BL) as compared to normal B-cells.
5
 We could confirm that 174 

in DAUDI cells ϵϭ͘Ϯϭй ŽĨ ƚŚĞƐĞ ŐĞŶĞƐ ŚĂǀĞ Ă DNA ŵĞƚŚǇůĂƚŝŽŶ ůĞǀĞů шϲϬй ŝŶ ƚŚĞŝƌ 175 

promoter region and lack transcription. As compared to all other RefSeq genes, the 176 

mean CpG methylation level within promoter regions of the 969 genes was 177 

significantly higher (84% vs. 41%; Supplemental Tables S2). 178 

Gene expression analyses confirmed that DAUDI cells show the typical signature of 179 

molecular Burkitt Lymphoma (mBL).
19

 Correlating methylation and expression 180 

patterns in our data revealed that significant presence of transcripts is associated 181 

with absence of DNA methylation particular at and closely around the transcription 182 

start site (TSS). In contrast, DNA methylation exactly at the TSS correlates with lack 183 

of transcription (Figure 3). Whereas the group of non-expressed genes showed an 184 

overall high mean DNA methylation level across the whole gene with highest 185 

methylation levels in exons, genomic regions comprising expressed genes were 186 

characterized by particular high methylation levels in the first intron. Moreover, the 187 

patterns of both expressed and non-expressed genes were characterized by sharp 188 

transitions of methylation levels at exon-intron borders (Figure 3). 189 

In order to exclude that this pattern of DNA methylation is limited to the DAUDI cell 190 

line, we analyzed 450K BeadArray data from four primary prototypic sporadic BL 191 

(sBL) Though DAUDI contains significantly more methylated CpGs than the primary 192 
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sBL (59.24% vs. 47.50%) the targets of DNA methylation are coincident suggesting a 193 

significant epigenomic (and regulation thereof) analogy (Supplemental Figure S8). 194 

We observed a similar association of transcriptional activity and DNA methylation in 195 

sBL like in DAUDI cells, both around the TSS and in the gene body (Supplemental 196 

Figure S9). These findings indicate that correlation analyses between DNA 197 

methylation and expression in BL strongly depend on the localization of the CpGs 198 

under study. 199 

Finally, we studied the DNA methylation of the mitochondrial and EBV genomes of 200 

DAUDI cells.
20-22

 We estimated 80 EBV and 370 mitochondrial copies per DAUDI cell 201 

based on coverage analyses, which is in accordance with previous studies.
23

 Whereas 202 

mitochondrial DNA is mostly unmethylated (mean methylation 6.43%; Figure 1), CpG 203 

methylation in the human and EBV genome is comparably distributed, though the 204 

EBV genome exhibits hardly any fully methylated sites (Figure 1). Overall, EBV shows 205 

a high level of DNA methylation (mean methylation 80.18%), as it was previously 206 

shown for BL cell lines.
24

 Nevertheless, DNA methylation within the EBV genome 207 

correlates with expression only at high transcript levels (FPKM>=15) (Supplemental 208 

Figure S10). 209 

In summary, we have characterized the nuclear DNA methylome of an endemic BL 210 

along with its mitochondrial and EBV methylome. We unravel significant differences 211 

between the different sub-methylomes and moreover show that gene transcription 212 

is associated with complex patterns of methylation, extending beyond simple 213 

promoter and CpG methylation. As the DAUDI cell line has been used over decades 214 

in many laboratories in the world, the obtained methylome data might serve as a 215 

͞ƌĞĨĞƌĞŶĐĞ ĞƉŝŐĞŶŽŵĞ͟ ĨŽƌ ĨƵƚƵƌĞ ƐƚƵĚŝĞƐ͘  216 
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Note: Supplementary information available 217 
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Figure Legends 317 

Figure 1. Distribution of CpG DNA-methylation in DAUDI cells 318 

The graphs show genome-wide distributions of CpG methylation of the human 319 

nuclear, EBV and mitochondrial genomes. The y-axis indicates DNA methylation 320 

ůĞǀĞůƐ ĂƐƐĞƐƐĞĚ ďǇ “OLŝDΡ B“-seq. Green: Human nuclear CpG methylation, Red: EBV 321 

CpG methylation, Blue: Mitochondrial CpG methylation. 322 

 323 

Figure 2. Distribution of non-CpG DNA-methylation in DAUDI cells 324 

Significantly methylated nonCpG sites of DAUDI within RefSeq genes (comprising 325 

424,969,306 non-CpGs) are 6.7-fold enriched compared to those outside of RefSeq 326 

genes (comprising 689,750,660 non-CpGs). Red: Fraction of significantly methylated 327 

non-CpGs of DAUDI within RefSeq genes, Blue: Fraction of significantly methylated 328 

non-CpGs of DAUDI outside of RefSeq genes. 329 

 330 

Figure 3. Correlation of DNA methylation levels and transcriptional states 331 

CpG methylation levels were averaged for annotated RefSeq gene regions and 332 

transcripts are clustered by their expression level in present (n=7662 transcripts) and 333 

absent (n=5429 transcripts) calls. A strong dependency of the location of CpGs 334 

related to their distance to the TSS and the transcript expression level can be 335 

observed. Green: Average methylation pattern for present transcripts, Red: Average 336 

methylation pattern for absent transcripts. 337 

  338 
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Supplementary Material and Methods 25 

Characterization of the DAUDI cell line 26 

The cell line DAUDI has been established in 1967 from an endemic BL (eBL) 27 

presenting in the left orbita of a 16-year-old African boy.
1
 The cell line is positive for 28 

EBV (HHV-4) but lacks expression of immediate-early protein BZLF-1 and lately 29 

expressed capsid protein. By PCR, the cell line is negative for HBV, HCV, HHV-8, HIV, 30 

HTLV-I/II and SMRV. The immunophenotype has been determined as CD3 -, CD10 +, 31 

CD19 +, CD20 +, CD37 +, CD38 +, cyCD79a +, CD80 +, CD138 -, HLA-DR +, sm/cyIgM +, 32 

sm/cyIgG -, sm/cykappa +, sm/cylambda ʹ (data available from DSMZ at 33 

www.dsmz.de). 34 

Cytogenetic analysis using chromosomal R-banding revealed a karyotype 35 

46,XY,t(8;14)(q24;q32). These findings are in line with those from Multicolor 36 

Fluorescence In Situ Hybridization (M-FISH) of the DAUDI cell line and showing that it 37 

has remained karyotypically stable along decades of continuous cultivation (E.M.M.P 38 

et al., manuscript in preparation). 39 

The Genome-Wide Human SNP Array 6.0 was performed according to 40 

ŵĂŶƵĨĂĐƚƵƌĞƌ͛Ɛ ƉƌŽƚŽĐŽů ;AĨĨǇŵĞƚƌŝǆ͕ SĂŶƚĂ CůĂƌĂ͕ CAͿ ƵƐŝŶŐ ƚŚĞ FůƵŝĚŝĐƐ SƚĂƚŝŽŶ ϰϱϬ 41 

and the GeneChip Scanner 3000 (Affymetrix, Santa Clara, CA). The Birdseed v2 42 

algorithm was used to genotype tumour samples. Copy number analysis, Loss of 43 

heterozygosity (LOH) analysis and segmentation was calculated using Genotyping 44 

Console software version 3.0 (Affymetrix, Santa Clara, CA). Segments with significant 45 

imbalances were considered as copy number aberration only if they consisted of at 46 

least 20 sequential probes, comprised a minimal size of 100 kb, and mapped outside 47 



 3 

known copy number polymorphisms. Data analysis revealed two gains and four 48 

chromosomal losses: arr 4q13.3(75,205,069-75,765,823)x1,5p11.1(46,361,933-49 

49,591,883)x1,7q31.32q31.33(121,093,529-123,683,639)x1, 50 

8q24.21q24.3(128,682,912-146,268,947)x3,14q32.31q32.33(101,614,613-51 

105,400,262)x4,15q12q21.1(25,151,945-45,290,444)x1 (NCBI36/hg 18) 52 

 53 

 54 

 55 

Whole Exome Sequencing 56 

We ƉĞƌĨŽƌŵĞĚ ǁŚŽůĞ ĞǆŽŵĞ ĐĂƉƚƵƌĞ ƵƐŝŶŐ IůůƵŵŝŶĂ͛Ɛ TƌƵSĞƋ EǆŽŵĞ EŶƌŝĐŚŵĞŶƚ Kŝƚ 57 

and sequencing of 2x100 bp paired-end reads was performed on one quarter lane of 58 

an Illumina HiSeq2000. Reads were mapped against the human reference genome 59 

build hg18 using BWA,
2
 followed by the removal of PCR duplicates with Picard 60 

(http://picard.sourceforge.net). Variant calling was performed with SAMtools 61 

mpileup and GATK,
3,4

 for SNP annotation and filtering we applied our own in-house 62 

tool snpActs. InDels were annotated using ANNOVAR.
5
 63 

A total of 62,578 on target SNPs were filtered against 8 exomes of healthy 64 

individuals, allowing for a maximum frequency of 1% in the 1000 genomes project 65 

and keeping only non-synonymous and splice-site SNPs that were not present in 66 

dbSNP130 resulting in 2,313 SNP after filtering. 67 

 68 

Sanger Sequencing 69 

Selected SNVs detected by exome sequencing were verified by Sanger Sequencing 70 

on an ABI Sequencer 3100 (Applied Biosystems). 71 



 4 

Primer sequences used for validation of potentially protein changing mutations: 72 

Gene Primer name Sequence 5´-3´ 

B2M B2M_FP TCCCTCTCTCTAACCTGGCAC 

B2M_RP ACTTGGAGAAGGGAAGTCACG 

TET2 TET2_FP TGCATGCAAAATACAGGTTTC 

TET2_RP CAGCTTGCAGGTGGATTCTC 

ID3 ID3_FP TCCAGGCAGGCTCTATAAGTG 

ID3_RP CCGAGTGAGTGGCAATTTTT 

KIT KIT_FP CACAGACCCAGAAGTGACCA 

KIT_RP TACCTGGCCTCACTTTCAGG 

 73 

Gene expression analyses 74 

U133A raw data was analyzed using the panp package of the R statistical software 75 

(Peter Warren, panp R package version 1.20.1.) and the Affymetrix Microarray 76 

Analysis Suite version 5.0 (MAS).
6
 77 

The paired-end RNA-seq library was prepared using the RiboMinusΡ EƵŬĂƌǇŽƚĞ 78 

IƐŽůĂƚŝŽŶ Kŝƚ ĂŶĚ ƚŚĞ RŝďŽMŝŶƵƐΡ CŽŶĐĞŶƚƌĂƚŝŽŶ Kŝƚ ;LŝĨĞ TĞĐŚŶŽůŽŐŝĞƐ͕ CĂƌůƐďĂĚ͕ CAͿ͘ 79 

SƵďƐĞƋƵĞŶƚůǇ͕ ƚŚĞ SOLŝDΡ WŚŽůĞ TƌĂŶƐĐƌŝƉƚŽŵĞ AŶĂůǇƐŝƐ Kŝƚ ;WTAKͿ ǁĂƐ ƉĞƌĨŽƌŵĞĚ 80 

and sequencing was carried out at 50 bp in the forward and 35 bp in the reverse 81 

ĚŝƌĞĐƚŝŽŶ ƵƐŝŶŐ SOLŝDΡ ǀϰ͘Ϭ ĐŚĞŵŝƐƚƌǇ ĂĐĐŽƌĚŝŶŐ ƚŽ ŵĂŶƵĨĂĐƚƵƌĞƌ͛Ɛ ŝŶƐƚƌƵĐƚŝŽŶƐ͘ 82 

A combined set of results was generated in the following manner. Present 83 

transcripts are the intersection of U133A-determined present calls and RNA-seq calls 84 

consisting of a FPKM value >0.01. However, transcripts including an absent 85 

ĂƐƐŝŐŶŵĞŶƚ ďǇ ƚŚĞ UϭϯϯA ĂƐƐĂǇ ĂŶĚ Ă FPKM ǀĂůƵĞ чϬ͘Ϭϭ ǁĞƌĞ ĐŽŶƐŝĚĞƌĞĚ ĂƐ ĂŶ 86 

absent call. In total, we could assess 7662 present calls and 5429 absent calls. 87 
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Expression analyses of EBV are restricted to RNA-seq data, due to missing EBV-88 

annotations on the U133A-chip. We raise the FPKM threshold for transcripts within 89 

ƚŚĞ EBV ŐĞŶŽŵĞ ĨƌŽŵ Ϭ͘Ϭϭ ƚŽ ϭ ĞƐƚŝŵĂƚĞĚ ďǇ ƚŚĞ ŶƵŵďĞƌ ŽĨ уϭϬϬ ĐŽƉŝĞƐ ;ĐŽŵƉĂƌĞĚ 90 

ƚŽ уϴϬ ĐŽƉŝĞƐ ĂƐƐĞƐƐĞĚ ďǇ ĐŽǀĞƌĂŐĞ ĂŶĂůǇƐĞƐͿ ŽĨ ǀŝƌƵƐ ƉĂƌƚŝcles per cell.
7
  91 

 92 

Identification and analyses of significant non-CpG methylation sites 93 

Potential methylcytosines in a non-CpG context were detected as described by Lister 94 

et al..
8
 Hereby, the binomial distribution was used to exclude false positive non-CpG 95 

methylation sites arisen by incomplete bisulfite conversion. Furthermore, we 96 

corrected for potential non-CpG sites including a mutation (N to G) in their adjacent 97 

base (+1). Although the genome-wide amount of methylated cytosines in non-CpG 98 

context does not exceed the expected threshold, given by an estimation based on 99 

spiked-in lambda phage, we were able to identify a local enrichment of non-CpG 100 

methylcytosines within gene regions (Figure 1B). In detail, we observed 9533 RefSeq 101 

genes containing significant non-CpG sites. The ratio of these present and absent 102 

transcripts is slightly enriched compared to the genome-wide level (OR=1.11). 103 

However there is no significant difference between absent and present transcripts in 104 

terms of the ratio of significant and existing non-CpG sites within RefSeq genes 105 

(Table S2). 106 

 107 

HumanMethylation450 DNA Analysis BeadArray  108 

DNA of DAUDI cells and of four primary sporadic BL was subjected to 450K 109 

BeadArray-analysis. Primary samples were proto-typic IG-MYC positive BL derived 110 

from children. Bisulfite conversion was performed using the Zymo EZ DNA 111 



 6 

MĞƚŚǇůĂƚŝŽŶ Kŝƚ ;)ǇŵŽ RĞƐĞĂƌĐŚ͕ OƌĂŶŐĞ͕ CA͕ USAͿ ĂĐĐŽƌĚŝŶŐ ƚŽ ƚŚĞ ŵĂŶƵĨĂĐƚƵƌĞƌ͛Ɛ 112 

instruction. Subsequent analysis steps were performed according to the 113 

ŵĂŶƵĨĂĐƚƵƌĞƌ͛Ɛ ƉƌŽƚŽĐŽů ŵĞĂƐƵƌŝŶŐ DNA methylation at >485,000 CpG sites selected 114 

from more than 21,000 genes in parallel. Hybridization signals were analyzed using 115 

GenomeStudio software (default settings; GenomeStudio ver. 2011.1, Methylation 116 

Analysis Module ver. 1.9.0; Illumina Inc) and internal controls for normalization.  117 

 118 

Bisulfite Pyrosequencing 119 

Bisulfite pyrosequencing of two regions identified by Lister et al., to carry non-CpG 120 

methylation in differentiated and stem cells were pyrosequenced.
8
 Bisulfite 121 

pyrosequencing was carried out as described by Lamprecht et al..
9
 Briefly, genomic 122 

DNA was bisulfite converted using the EpiTect Bisulfite Conversion Kit (Qiagen). In a 123 

subsequent PCR amplification locus-specific primers were used with one primer 124 

biotinylated at the 5´ end (sequencing primer sequences are shown below). 125 

Amplification was verified by agarose gel electrophoresis. Using the VacuumPrep 126 

Tool (Biotage, Uppsala, Schweden) single strands were prepared followed by a 127 

denaturation step at 85C for two minutes and final sequencing primer 128 

hybridization. Pyrosequencing was performed using the Pyrosequencer ID and the 129 

DNA methylation analysis software Pyro Q-CpG 1.0.9 (Biotage), which was also used 130 

to evaluate the ratio T:C (mC:C) at the CpG sites analyzed. All assays were optimized 131 

and validated using commercially available completely methylated DNA (Millipore) 132 

and pooled DNA isolated from peripheral blood of 10 healthy male and female 133 

controls, respectively. 134 

 135 



 7 

Primer sequences used for bisulfite pyrosequencing: 136 

Primer name 5´-3´sequence 5´modification 

methyl_chr1_FP AAATTTGGTTTTTTTATATGG   

methyl_chr1_RP CTAAAACCTCTTAAACTTTTATCA Biotin 

methyl_chr1_seq GGTTTTTTTATATGGTTA  

methyl_chr10_FP GATGGGTGATTTTTTAGA   

methyl_chr10_RP ACATTTCCTACAATTTCAA Biotin 

methyl_chr10_seqa TGGGTGATTTTTTAGAGTT   

methyl_chr10_seqb GATTTGTGGAAGATAGA   

 137 

 138 

Luminometric Methylation Assay (LUMA) 139 

To analyze global genomic DNA methylation, LUMA was performed as previously 140 

described.
10

  141 

 142 

Data availability: Methylome data are available at 143 

sftp://134.245.63.215/export/home/daudi (login: daudi; password: 144 

daudismethylome2012) 145 

  146 
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Supplementary Results 147 

 148 

Supplemental Table 1: SNP filtering of Exome sequencing data (a) and potentially 149 

protein changing mutations detected by Exome sequencing and validated by 150 

Sanger Sequencing (b). 151 

 152 

Supplementary Table 1a 153 

SNPs on target 62,578 

 ф 

SNPs not in healthy controls
* 

25,752 

 ф 

SNPs involving a frequency in 1000 genomes pilot of 

max. 1% 

18,822 

 ф 

SNPs not in dbSNP130 10,650 

 ф 

non-synonymous SNPs
**

 2,313 

*
Healthy controls are taken from published datasets

11,12
, whereas we solely used the 154 

HapMap probes published by Ng et al..
12

 Additionally, we included exome data 155 

generated in-house. 
**

Due to lack of germline control from the patients from which 156 

the DAUDI cell line has been established it is not possible to differentiate somatic 157 

(lymphoma-associated) mutations from germline variants. 158 

 159 

Supplementary Table 1b 160 

Gene chr position ref/ alt allele Aa consequence note 

B2M 15 42791039 G/C p.Met1Ile Confirmed 



 9 

TET2 4 106377217 C/T p.Ser911Leu Confirmed 

ID3 

1 23758264 G/A p.Leu52Val Confirmed 

1 23758345 G/C p.Gln81* Confirmed 

KIT 4 55259372 C/T p.Ala67Ser Confirmed 

 161 

  162 
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 163 

Supplemental Figure S1: Comparison of four HumanMethylation450 BeadArray 164 

replicates 165 

Scatter plots depict the comparison of all four replicates of 450K runs of DAUDI cells. 166 

Aůů ŽĨ ƚŚĞŵ ƐŚŽǁ ŚŝŐŚ ĐŽƌƌĞůĂƚŝŽŶƐ ĂŵŽŶŐ ĞĂĐŚ ŽƚŚĞƌ ƌшϬ͘ϵϵ͘ 167 

168 
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 169 

Supplemental Figure SϮ͗ CŽŵƉĂƌŝƐŽŶ ŽĨ SOLŝDΡ ĂŶĚ IůůƵŵŝŶĂ BS-seq 170 

TŚĞ ŚŝƐƚŽŐƌĂŵ ĚĞƉŝĐƚƐ ƚŚĞ ĚŝĨĨĞƌĞŶĐĞƐ ;SOLŝDΡ BS-seq ʹ Illumina BS-seq) in 171 

methylation levels ((methylated reads)/(unmethylated reads + methylated reads)) 172 

for CpGs with coverage of at least 5 reads. Values close to 0.0 indicate that equal 173 

methylation levels were inferred by both methods. Both approaches show 174 

comparable genome-wide DNA methylation levels r=0.86. 175 

176 

Residuals (methylationSOLiD ʹ methylationIllumina)
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 177 

SƵƉƉůĞŵĞŶƚĂů FŝŐƵƌĞ Sϯ͗ CŽŵƉĂƌŝƐŽŶ ŽĨ SOLŝDΡ BS-seq and HumanMethylation450 178 

Beadchip data. TŚĞ ƐĐĂƚƚĞƌ ƉůŽƚƐ ĚĞƉŝĐƚ ƚŚĞ ĐŽŵƉĂƌŝƐŽŶ ŽĨ SOLŝDΡ BS-seq and 450k 179 

methylation levels. Higher read coverage generally results in better correlation. (a) 180 

ŝŶĐůƵĚĞƐ SOLŝDΡ BS-SĞƋ ĚĂƚĂ ǁŝƚŚ ĐŽǀĞƌĂŐĞшϱ͕ (bͿ ŝŶĐůƵĚĞƐ SOLŝDΡ BS-Seq data with 181 

ĐŽǀĞƌĂŐĞшϭϬ͕ (c) incluĚĞƐ SOLŝDΡ BS-SĞƋ ĚĂƚĂ ǁŝƚŚ ĐŽǀĞƌĂŐĞшϭϱ ĂŶĚ (d) includes 182 

SOLŝDΡ BS-SĞƋ ĚĂƚĂ ǁŝƚŚ ĐŽǀĞƌĂŐĞшϮϬ͘ Aůů ŽĨ ƚŚĞŵ ƐŚŽǁ ŚŝŐŚ ĐŽƌƌĞůĂƚŝŽŶ ƌшϬ͘ϵϰ͘ 183 

184 
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 185 

SƵƉƉůĞŵĞŶƚĂů FŝŐƵƌĞ Sϰ͗ CŽǀĞƌĂŐĞ ĨŽƌ SOLŝDΡ BS-seq  186 

PĞƌĐĞŶƚĂŐĞ ŽĨ ƵŶŝƋƵĞůǇ ĂůŝŐŶĞĚ SOLŝDΡ BS-Seq reads to the human reference 187 

(hg19/NCBI 37) for the forward (a) and the reverse (b) strand. Both strand coverages 188 

are equally distributed. 189 

190 



 14 

 191 

Supplemental Figure S5: Genome-wide comparison of DNA methylation for 192 

different annotated repeat regions. In total, 64.82% of all CpG sites within 193 

annotated repeat regions and 84.05% of all CpG sites outside of repeat regions were 194 

covered. Bar plots show distributions of DNA methylation levels within non-repeat 195 

regions, SINEs, LINEs, LTRs and Satellites. The y-axis indicates DNA methylation levels 196 

;;ŵĞƚŚǇůĂƚĞĚ ƌĞĂĚƐͿͬ;ƵŶŵĞƚŚǇůĂƚĞĚ ƌĞĂĚƐ н ŵĞƚŚǇůĂƚĞĚ ƌĞĂĚƐͿͿ ĂƐƐĞƐƐĞĚ ďǇ SOLŝDΡ 197 

BS-seq.  198 

MeanMethylation(Outside of repeat regions)=0.68 199 

MeanMethylation(SINEs)=0.79, MeanMethylation(LINEs)=0.66 200 
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MeanMethylation(LTRs)=0.64, MeanMethylation(Satellites)=0.63 201 

DNA methylation patterns on the forward and reverse strand were comparably 202 

established (Pearson r=0.90).203 
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204 

Supplemental Figure S6: Comparison of hallmark non-CpG sites showing significant 205 

non-CpG methylation in ESC cells
3 

analyzed by BS pyrosequencing and methylome 206 

sequencing. No significant non-CpG methylation could be identified for hallmark 207 

sites on chromosome 1 (a) and chromosome 10 (b). For each region above the IGV 208 

plot of the bisulfite methylome data and below the BS pyrosequencing data are 209 
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shown. The results of pyrosequencing are indicated as percentiles above each 210 

potentially methylated position (colored in grey). In each region one CpG site was 211 

analyzed which showed near to complete methylation.  212 

 213 

214 
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 215 

Supplemental Figure S7: Correlation analysis of significantly methylated non-CpG 216 

sites and transcriptional levels within RefSeq genes in DAUDI cells: RefSeq genes 217 

ǁĞƌĞ ĐůƵƐƚĞƌĞĚ ;ǆсϬ͕ ϬфǆчϬ͘ϬϬϱ͕ Ϭ͘ϬϬϱфǆчϬ͘Ϭϭϭ͕ Ϭ͘ϬϭϭфǆчϬ͘ϬϭϴͿ ďǇ ƚŚĞŝƌ ĨƌĂĐƚŝŽŶ ŽĨ 218 

significantly methylated non-CpG sites related to the number of referenced non-219 

CpGs within the respective RefSeq gene. The y-axis depicts transcriptional levels 220 

measured by FPKM values. A modest positive correlation between significantly 221 

methylated non-CpG sites and respective transcriptional levels can be observed. 222 

Similar results could be observed for transcriptional levels assessed by the Affymterix 223 

U133A chip (p;ǆсϬ͕ Ϭ͘ϬϭϭчǆчϬ͘ϬϭϴͿ=0.005, p;ϬфǆчϬ͘ϬϬϱ͕ Ϭ͘ϬϭϭчǆчϬ͘ϬϭϴͿ=0.004, p;Ϭ͘ϬϬϱфǆчϬ͘Ϭϭϭ͕ 224 

Ϭ͘ϬϭϭчǆчϬ͘ϬϭϴͿ=0.15). 225 

226 

p=0.002

p=0.003

p=0.04
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Supplemental Tables S2: Hypermethylation in mature aggressive B-cell lymphoma 227 

Comparison of genome-wide DNA methylation within RefSeq genes (Table S2a) and 228 

hypermethylated genes associated with mature aggressive B-cell lymphoma 229 

including BL (Table S2b). 230 

 231 

Supplemental Table S2a 232 

RefSeq genes 1000 bp 

upstream 

First exon First intron Second exon Second exon 

to last exon 

Mean methylation 

(watson strand) 

0.40 0.40 0.70 0.80 0.78 

Mean methylation 

(crick strand) 

0.41 0.39 0.69 0.81 0.78 

 233 

Supplemental Table S2b 234 

Genes de novo 

methylated in 

mature aggressive 

B-cell lymphoma
13 

1000 bp 

upstream 

First exon First intron Second exon Second exon 

to last exon 

Mean methylation 

(watson strand) 

0.84 0.90 0.63 0.81 0.60 

Mean methylation 

(crick strand) 

0.84 0.90 0.66 0.84 0.63 

 235 

 236 

 237 

238 
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 239 

Supplemental Figure S8: Comparison of DAUDI and four primary proto-typic 240 

sporadic BLs based on 450K data. Barplots depict residuals 241 

(MethylationLevel(DAUDI)-MethylationLevel(primary proto-typic sporadic BLs)) of 242 

450k data based on DAUDI and four primary proto-typic sporadic BLs. Residuals are 243 

clustered by their frequency i.e. red barplots involve CpG sites having the same 244 

residual (rounded to the next decimal place) for DAUDI and one BL, green barplots 245 

involve CpG sites having the same residual (rounded to the next decimal place) for 246 

DAUDI and two BLs, darkblue barplots involve CpG sites having the same residual 247 

(rounded to the next decimal place) for DAUDI and three BLs, lightblue barplots 248 
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involve CpG sites having the same residual (rounded to the next decimal place) for 249 

DAUDI and four BLs. A high similarity of DAUDI and at least one primary proto-typic 250 

sporadic BL can be observed. 251 

252 
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253 

Supplemental Figure S9: Analysis of the DNA methylation status in four (a-d) proto-254 

typic sporadic Burkitt lymphomas using Illumina 450K Methylation arrays with regard 255 

to presence and absence of transcription of the respective genes in DAUDI cells. The 256 

analysis shows that the pattern of methylation in the gene groups defined by 257 

expression in DAUDI cells is quite conserved also in primary sporadic BL with 258 



 23 

expressed genes in DAUDI being characterized by absence of DNA methylation 259 

around the TSS and increased methylation in the gene body. 260 

261 
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 262 

Supplemental Figure S10: Methylation-expression correlation analyses 263 

CpG Methylation levels were averaged for annotated RefSeq gene regions and 264 

transcripts are clustered by their expression level in present and absent calls. A 265 

strong dependency of the location of CpGs related to their distance to the TSS and 266 
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the transcript expression level can be observed for human data (a). Regarding the 267 

mitochondria (b), we observed an overall low DNA methylation degree independent 268 

from their expression levels. However, EBV (c) DNA methylation does not correlate 269 

within transcripts until an exƉƌĞƐƐŝŽŶ ůĞǀĞů ŽĨ FPKMшϭϱ͘ 270 

271 
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Summary 

 

The scientific contribution of this thesis consists of three articles that have been published in 

Bioinformatics (Oxford Journals) and Nature Methods and the third article being under 

review at Leukemia (Nature Publishing Group), respectively. The implications of these 

articles for the field of computational epigenetics and future perspectives of this research 

area are discussed. 

The main challenge within the framework of this thesis was the development of a 

bioinformatics tool for bisulfite sequencing analysis. The article in Bioinformatics presents 

the bioinformatics tool B-SOLANA for the analysis of DNA methylation data generated by 

two-base encoding bisulfite sequencing on the SOLiDΡ ƉůĂƚĨŽƌŵ ŽĨ LŝĨĞ TĞĐŚŶŽůŽŐŝĞƐ. 

Additionally, benchmark analyses revealed that B-SOLANA exhibits a significantly higher 

sensitivity and specificity compared to other software approaches which were developed at 

the same time. The review article in Nature Methods summarizes challenges of bisulfite 

sequencing analysis as they appear on different high-throughput sequencing platforms. 

Especially primary analyses including the quality control and mapping of raw sequences are 

discussed. Furthermore, the article debates the effect of sequencing errors and 

contaminations on inferred DNA methylation levels and recommends the most appropriate 

way to analyze this type of data. This review is a helpful reference for the analysis of DNA 

methylation by high-throughput sequencing, a currently rapidly developing research area. 

The third article, which has been submitted to Leukemia, comprises the analysis of a DNA 

methylome of the DAUDI cell line at single base resolution. On the genetic level, this 

endemic Burkitt Lymphoma cell line is characterized by the presence of the hallmark IG-MYC 

translocation. Recent publications about this cell line suggested a high number of DNA 

methylation changes. However, until now only array-based studies were published, which 

have concentrated their focus on loci-specific DNA methylation patterns. We showed that 

the mechanisms of DNA methylation associated with transcriptional regulation in 

lymphomas go by far beyond the usually studied promoter methylation. Furthermore, we 

characterized the DNA methylome of the mitochondria and the Epstein-Barr virus, whereas 

upregulation of the latter has already been identified in DAUDI before. As the DAUDI cell 

line is used over decades in many laboratories throughout the world, the obtained 

methylome data prove valuable as a ͞ƌĞĨĞƌĞŶĐĞ ĞƉŝŐĞŶŽŵĞ͟ ĨŽƌ ĨƵƚƵƌĞ ƐƚƵĚŝĞƐ͘



Zusammenfassung 

 

Die Grundlage dieser Dissertation bilden drei Publikationen, die in den Fachjournalen 

Bioinformatics (Oxford Journals) und Nature Methods erschienen sind, während der dritte 

Artikel zur Zeit bei Leukemia (Nature Publishing Group) begutachtet wird. Die Ergebnisse der 

beiden Veröffentlichungen und des eingereichten Manuskriptes werden in die aktuelle 

epigenetische Forschung integriert. Abschließend wird ein Ausblick auf mögliche zukünftige 

epigenetische Forschungsschwerpunkte gegeben.  

Die Problemstellung dieser Arbeit war die Entwicklung eines bioinformatischen Programmes 

zur Analyse von Bisulfit-“ĞƋƵĞŶǌŝĞƌƵŶŐƐĚĂƚĞŶ ĚĞƌ “OLŝDΡ HŽĐŚĚƵƌĐŚƐĂƚǌƚĞĐŚŶŽůŽŐŝĞ ǀŽŶ 

Life Technologies. Dazu wurde das Programm B-SOLANA entwickelt, welches in 

Bioinformatics publiziert wurde. Benchmark-Analysen zu B-SOLANA und weiteren 

Programmen belegen die hohe Sensitivität und Spezifizität unseres Ansatzes. Der Artikel in 

Nature Methods fasst die Herausforderungen von Bisulfit-Sequenzierungsanalysen mittels 

unterschiedlicher Technologien zusammen. Insbesondere werden Primäranalysen zur 

Qualitätskontrolle und dem Mapping von Rohsequenzen diskutiert. Hierbei können 

Sequenzierungsfehler und Kontaminationen zu fehlerhaften DNA Methylierungsergebnissen 

führen. Wir erläutern Ansätze zur Detektion und Qualitätskontrolle dieser negativen 

Einflussfaktoren. 

Der bei Leukemia eingereichte Artikel beinhaltet die Analyse des basengenauen DAUDI 

Methyloms, einer endemischen Burkitt-Lymphom Zelllinie. Genetische Eigenschaften, wie 

die IG-MYC Translokation, konnten bereits für DAUDI identifiziert werden. Aktuelle 

Forschungsergebnisse weisen auf epigenetische Eigenschaften dieser Zelllinie hin. Allerdings 

wurden bisher nur Array-Studien durchgeführt, die lediglich Lokus-spezifische DNA-

Methylierungsmuster untersucht haben. Korrelationsanalysen zeigen, dass Gentranskription 

komplexen Methylierungsmustern innerhalb der Promotorregion unterliegt, welche mit 

array-basierten Studien nicht identifiziert werden können. Außerdem haben wir das 

Methylom der Mitochondrien und des Epstein-Barr Viruses, welches in DAUDI im 

besonderen Ausmaß vorliegt, analysiert. Das in diesem Artikel publizierte Methylom könnte 

als ͣReferenz-EƉŝŐĞŶŽŵ͞ für eine Zelllinie dienen, die in den letzten Jahrzehnten in vielen 

Laboren untersucht wurde. 


	DNA methylome analysis using short bisulfite sequencing data
	Measuring methylation
	Challenges of BS-seq data mapping
	Base-space BS-seq data alignments
	BS-seq in color space
	BS-seq data alignment tools
	Factors affecting the accuracy of methylation calls
	Base-call qualities
	Sequencing into the adaptor
	Bisulfite conversion rate
	End repair
	Single-nucleotide variants
	Conclusions
	Acknowledgments
	COMPETING FINANCIAL INTERESTS
	References
	Figure 1 Effect of bisulfite treatment of DNA.
	Figure 2 Performance and accuracy of unbiased base-space and color-space BS-seq alignment tools.
	Figure 3 Recommended workflow for the primary analysis of BS-seq data.
	Table 1 |  Software packages for BS-seq analysis and their performance parameters

	nmeth.1828_SI contents
	NMETH-R13074C-BS-Seq review - Supplementary Figures

