
Algorithm Engineering for some
Complex Practice Problems

Exact Algorithms, Heuristics and
Hybrid Evolutionary Algorithms

Dipl.-Math. Volkmar Sauerland

Dissertation
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
(Dr.-Ing.)

der Technischen Fakultät
der Christian-Albrechts-Universität zu Kiel

eingereicht im Jahr 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MACAU: Open Access Repository of Kiel University

https://core.ac.uk/display/250311389?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Gutachter: Prof. Dr. Srivastav
Christian-Albrechts-Universität zu Kiel

2. Gutachter: PD Dr. Jäger
University of Umea,
Christian-Albrechts-Universität zu Kiel

Datum der mündlichen Prüfung: 3. September 2012

ii



Zusammenfassung

Diese Arbeit befasst sich mit dem Entwurf von exakten und heuristischen Lö-
sungsverfahren für schwere Optimierungsprobleme, die aus drei praktischen
Anwendungen (Tourenplanung, Lehrgangsplanung, Parameteroptimierung)
und einer klassischen kombinatorischen Fragestellung stammen.

Exakte Verfahren bekommen wir durch die Modellierung als mathemati-
sche Optimierungsprobleme und die Anwendung geeigneter Standardsoft-
ware für deren Lösung. Für das Tourenplanungsproblem geben wir unter
Ausnutzung der Problemstruktur zusätzlich ein angepasstes exaktes Verfah-
ren an (inklusive Beweis der Exaktheit). Die Komplexität der behandelten
Probleme verbietet allerdings das exakte Lösen großer Instanzen in adäquater
Zeit.

Effiziente Heuristiken können wir zumeist durch geeignete Erweiterungen
bekannter Verfahren für verwandte mathematische Probleme der vorlie-
genden Praxisaufgaben gewinnen. Zum Anderen haben sich evolutionäre
Algorithmen sehr erfolgreich bei der Bewältigung vieler mathematisch schwe-
rer Optimierungsprobleme gezeigt, sodass wir in unseren Experimenten für
das jeweilige Problem geeignete EA-Rahmenwerke ermitteln. Eine wichtige
Rolle wird dabei eine geeignete Hybridisierung mit den zuvor gewonnenen
Heuristiken spielen.

Hinsichtlich Heuristiken sind Gütegarantien der erzeugten Lösungen in
Relation zum globalen Optimum von theoretischem Interesse. Wir können
für unsere Praxisaufgaben keine allgemeinen Gütegarantien im Voraus geben.
Die beiden Planungsprobleme gestatten dieses beweisbar nicht. Allerdings
können wir für gegebene Instanzen der Planungsprobleme untere Schranken
für deren Minimalwert gewinnen, indem wir Lösungen von Relaxierungen der
exakten mathematischen Modelle berechnen. Eine Verallgemeinerung unseres
dritten Praxisproblems ist die parametrische nichtlineare Ausgleichsrechnung.
Um für konkrete Instanzen dieses Typs untere Schranken zu beweisen,
können wir unter bestimmten Voraussetzungen eine Technik benutzen, die
auf einer parameterfreien Relaxierung beruht.
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Abstract

This work deals with the design of exact algorithms and heuristics for
complex optimization problems that origin from three practical applications
in tour planning, course scheduling and parameter optimization and one
classical combinatorial task.

We obtain exact algorithms by modeling our problems in terms of
mathematical optimization problems and applying suitable standard software
tools to solve this models. For the tour planning problem, we additionally
provide an own exact algorithm (we give a prove of its exactness) that utilizes
some structural properties. Because of the complexity of our problems, exact
algorithms cannot solve large instances within adequate time.

Therefore, on the one hand, we derive efficient heuristics by adapting
algorithms for similar mathematical problems in a suitable manner. On
the other hand, evolutionary algorithms have shown to be successfully
applicable to many hard mathematical problems. For that reason, we
will experimentally determine appropriate EA frameworks. Regarding this,
hybridization of the evolutionary operators with suitable problem specific
heuristics will play an important role.

Concerning heuristics, guaranties on the quality relation of calculated
solutions and the global optimum are of theoretical interest. For the practice
problems considered in this work we can give no general advance guaranties.
Such results are impossible for both the tour planning problem and the
scheduling problem. But dealing with certain instances of both problems,
lower bounds on their minimal value are given by relaxed solutions of the
corresponding exact mathematical models. A generalization of our third
practice problem is parameterized non-linear regression. Under certain
circumstances, we can use a kind of parameter-free relaxation in order to
prove lower bounds for given instances of this problem type.
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Pre Preface

"Properly speaking, such work is never finished;
one must declare it so when, according to time
and circumstances, one has done one’s best".

Goethe (German):
„So eine Arbeit wird eigentlich nie fertig,

man muss sie für fertig erklären, wenn man nach Zeit
und Umständen das Möglichste getan hat“.
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Preface

In industrial practice as well as in practical research tasks like "doing a job
as cheap as possible" or "fitting model parameters to measured data" appear
to have descriptions in terms of mathematical optimization problems. A very
general mathematical optimization problem formulation is

minimize fpxq,

subject to x P S,
(0.1)

with objective function f from a set X to an ordered set (usually R) and a
subset S � X.

Optimization Methods
Practice problems lead to various specializations of (0.1) which are differently
hard to solve and, thus, imply different demands on solution algorithms like
obtaining

1. the very best solution to the problem,

2. approximative solutions within warranted limits related to the very best
solution,

3. good approximative solutions after acceptable calculation time.

In Chapter 1 we give a brief overview on mathematical optimization problem
types and their complexity along with a rough classification of optimization
algorithms and some important general algorithmic techniques.

Topic of this Work
Our focus is on N P-hard practice problems that can be modeled in terms
of certain specification types of (0.1), namely (in three of four cases) by
integer linear programs and (in one case) by a non-linear, non-convex but
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smooth optimization problem. Our algorithmic view covers demands 1. and
3. from above, i. e.,exact algorithms and efficient heuristics for the problems.
Regarding heuristics, we distinct two algorithmic aspects. On the one hand,
we deal with problem specific tailored algorithms. On the other hand, as
effective application of evolutionary algorithms (EA) to several N P-hard
problems is documented in literature, we examine the effect of hybridizing
suitable EA frameworks with our tailored algorithms.

Practice Problems

Concerning the above algorithmic approaches, Chapters 2 to 5 separately
deal with one of our four practice problems. Here, we give a short introduc-
tion to these problems and our contributions.

TSP with Multiple Time Windows

This task was posed by an industrial cooperation with the FLS GmbH,
Heikendorf, a leading company for tour planning software in Germany. The
cooperation was founded by the program Hochschule-Wirtschaft-Transfer
(HWT) of the Innovationsstiftung Schleswig-Holstein (ISH) lasting from
2005 until 2006. The matter is to plan multi-day trips for single employees of
companies providing field service. Here, customers provide certain opening
time windows that must be met. Further constraints are given by working
rules, hotel options and penalty fees for omitted customers.

We provide a mixed integer linear programming model (MILP) which
we solve by two exact algorithms. On the one hand, we apply the standard
Cplex ILP solver to our model. On the other hand, we developed our
own branch and bound algorithm that accelerates search by utilizing some
properties of the problem. We also prove the exactness of our branch and
bound approach. In order to provide an efficient (inexact) algorithm we
developed a problem specific random insert heuristic. The solutions of
the heuristic can be checked by the exact methods and are observed to be
globally optimal for most of the small instances. Finally, we provide an EA
framework that operates on the arguments of the heuristic.
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Ocean Model Parameter Optimization

Within research area "Oceanic CO2 Uptake" of "The Future Ocean" cluster
of excellence we were concerned with parameter optimization of a biogeo-
chemical ocean model. This so called NPZD model simulates the circulation
of nitrogen in a vertical water column. It supposes nitrogen to occur in
four different states (which are eponym for the model) in the ocean: dis-
solved in water as inorganic nitrogen (N), within phytoplankton (P), within
zooplankton (Z) and within detritus (D), i. e., dead organic particles. The
parameters that have to be optimized belong to functions describing the
change of nitrogen states and vertical nitrogen fluctuation within partial
differential equations. The goal is to adapt those parameters in order to
best fit accordant measured data.

Together with the research group Algorithmic Optimal Control - CO2
Uptake of the Ocean we developed an optimization framework that hybridizes
genetic operators with deterministic gradient based search and that may
also be applied to other parameter optimization problems [RSS�10]. Our
experiments with that framework give more evidence for conjectures of
marine biologists about the need to revise/extend the ocean model. Our
second contribution is the introduction of a method to determine lower
error bounds for a generalization of our problem: non-linear regression.
The method utilizes smoothness properties of the model function and may
confirm its insufficiency, if high data resolution is given and there exist
processes of high frequency/amplitude that are not incorporated into the
model function.

Course Scheduling

Like TSP with Multiple Time Windows this problem comes from industrial
practice and was also founded by the HWT program of the ISH (from
11/2009 to 2/2011). Our cooperation partner is the MINT Software Systems
GmbH, Kiel, Germany. MINT provides course scheduling software for
personal training institutions in aviation industries. Concerning long term
planning (up to two years), there may be up to several hundred courses to
be held by several hundred instructors for several thousand trainees. High
planning complexity is given by various kinds of constraints, concerning
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curriculums of courses, qualifications and working rules of human resources,
capacities of rooms, etc.

Within the limits of our project we focused on two approaches. On
the one hand, we provide a quite comprehensive time indexed ILP model
of the scheduling problem. On the other hand, a sophisticated schedule
generation scheme (SGS) that considers the relationships between the MINT
constraints was developed as a planning heuristic and also embedded as
encoding function within a hybrid EA framework. The development of the
SGS and its implementation along with the EA framework is the work of
Torben Rabe. Details of the SGS will be presented within his Diploma
Thesis [Rab12]. Here, we will only give a rough description of its working
principles. Similar to the TSPTW problem, we are able to check the validity
of heuristic solutions with the ILP and vice versa. Exact solutions are
calculable for very small instances only, since the ILP formulation requires
many variables and constraints. However, precalculations should reduce the
size of the ILP and parts of it are intended to be utilized within LP-based
heuristics in future.

Discrepancy of Arithmetic Progressions
This problem does not origin from industrial practice nor practical research
but is a classical research object in combinatorics. Arithmetic progressions
are finite or infinite sequences of numbers with constant difference between
each two successive members. Considering the set rns of the first n positive
integers, one may ask for a partition rns � N1ẎN2 such that all arithmetic
progressions in rns are quite balanced between N1 and N2. The balance
measure of most relevance in research will be formally introduced in Chap-
ter 5. It is remarkable that, in terms of this measure, the exact asymptotic
order (w.r.t. n) of the best partition is known by now, but an efficient
algorithm for computing such a partition is unknown.

Using an ILP formulation of the problem, we are able to calculate exact
solutions for two-digit n, only. As we will show, the ILP matrix is dense
and of the size n times n2 logn. We provide a hybrid framework with the
option to either use a classical EA or a so called quantum inspired EA.
Hybridization is done by an encoding function that utilizes the features of a
problem method with the best theoretical performance guaranty. We prove
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that our framework guarantees the same exact asymptotic ratio. But the
EA solutions have minimum objectives within 4

5 of the objectives of the
base algorithm.
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Chapter 1

Problem Types, Complexity and
Algorithms

In this chapter we give a rough overview on mathematical optimization
problem types, especially those in terms of which we will formulate our
practice problems of Chapters 2, 3, 4 and 5. Since all our practice problems
belong to the class of N P-hard problems, we briefly discuss the topic of
complexity classes as well as some different algorithmic paradigms to handle
hard problems. We also introduce some general algorithmic techniques that
are applicable to our kinds of problems.

1.1 Problem Types
Considering a set X and an (objective) function f from X to R, the general
mathematical optimization problem

minimize fpxq,

subject to x P S,
(1.1)

with feasible set S � X, can be categorized by

1. the argument set X,

2. the function type of f ,

3. the (description of the) feasible set S.

Usual argument sets are Rn, Zn, {0, 1}n (referring to continuous optimiza-
tion, integer optimization and combinatorial optimization, respectively) or
products of these sets. Further frequent argument sets for combinatorial
problems are power sets and sets of permutations. Some important prop-
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1. Problem Types, Complexity, Algorithms

erties of f are smoothness, convexity and linearity. If the feasible set S is
not identical to the argument set X the problem is said to be restricted,
otherwise it is said to be unrestricted. The feasible set is usually described
in terms of equality and/or inequality constraints as follows

S �

{
x P X

∣∣∣∣ gpxq � 0,
hpxq ¤ 0

}
with constraint functions g : X ÞÑ Rm1 and h : X ÞÑ Rm2 , m1,m2 P N0.
Similar to f , the constraint functions provide further problem categorizations
by function type.

A wide amount of work considers the situation where X � Rn and f , g
and h are smooth (but non-linear in general), deriving optimality conditions
for solutions and iterative solution algorithms utilizing those conditions.
Monographs like [GMW81][Kos93][OR00][BV04] are dedicated to this field.
The parameter optimization problem of Chapter 3 is a special variant of this
situation, namely a non-linear least-squares problem. There, the objective
function has the form f �

∑N
i�1pFiq

2 and the constraint functions are given
by box constraints on the parameters (arguments of f).

Every other problem treated in this work is of combinatorial nature
(having discrete arguments) and allows a description by an integer linear
program (ILP) or mixed integer linear program (MILP). An ILP is an
optimization problem with argument set X � Zn and linear objective and
constraints

fpxq � cTx,

gpxq � Ax� b,

hpxq � Ãx� b̃,

c P Rn, A P Rm1�n, b P Rm1 , Ã P Rm2�n, b̃ P Rm2 , compactly written as

minimize cTx,

subject to Ax � b,

Ãx ¤ b̃,

x P X.

(1.2)

If some but not all arguments are integral, i. e.,

X � Zn1 �Rn2

2



1.2. Hard Problems

with n1, n2 P N0, n :� n1 � n2 � n2, (1.2) defines a MILP. Modeling combi-
natorial problems by ILPs in accordance with exact algorithmic approaches
to tackle ILPs came into the focus of interest in the middle of the 20th
century (see Section 1.3).

1.2 Hard Problems
Our practice problems belong to the algorithmic complexity class of N P-
hard problems. We give a brief introduction to complexity (classes),
here. Details about this topic are covered by pertinent monographs like
[VL90][PS98][Weg05].

1.2.1 Complexity of Algorithms
The aim to solve problems efficiently exists since ancient times. The Sieve of
Eratosthenes (determining all prime numbers up to a given natural number)
and Euclid’s Algorithm (calculating the greatest common divisor of two
integers) are examples to that effect. With respect to a certain instance of a
problem, the computational effort (efficiency, performance) of an algorithm
can be measured by counting the required number of arithmetic operations
or time units. Regarding computer systems, the required memory size is
also an important factor.

1.1 Remark. Talking about an algorithm and its effort, we intuitively think
about a procedure that enables us to evaluate a function by performing a
number of elementary calculations on both the input and recorded interim
results. This procedure might either be done by humans (using paper and
pencil) or by computers. One of the first theoretical models to this approach
is the Turing machine [Tur36] (1936). The development of complexity theory
formally relies on it (also see [FH03]).

Dealing with certain problem instances only, comparison of two algo-
rithms intended to solve the same problem may lead to inconsistent perfor-
mance results. For that reason, the main interest concerns the asymptotic
performance behavior of algorithms with respect to some characteristic
parameter of the instance size.
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1.2 Definition. Let A be an algorithm for a problem P and IP the set of
all instances of P . Let tP,A : IP Ñ N be a function that assigns every
problem instance of P to the computational effort A requires to solve it.
Let | � |P : IP Ñ N be some measure of the instance size. The worst case
complexity TA : NÑ N of A is defined by

TApnq � max{tP,ApIq | I P I, |I|P � n}. (1.3)

Asymptotic complexity bounds on algorithms are commonly expressed
by Landau Symbol notation, e. g.,

TA P Opfq, (1.4)

meaning that there is a positive constant C and an n0 P N such that
TApnq ¤ Cfpnq for all n ¥ n0. An efficient algorithm A satisfies (1.4) for
some function f that increases slowly with n, e. g., fpnq P {logpnq, n, n2, n3}
referring to logarithmic(-time/space) algorithm, linear(-time/space) algo-
rithm, quadratic(-time/space) algorithm and cubic(-time/space) algorithm,
respectively. From the practical point of view, high powers of n do not
describe asymptotic performance of efficient algorithms any more. But (look-
ing ahead to subsection 1.2.2) the theoretically essential term of efficiency
is polynomial(-time/space) algorithm, meaning that an algorithm A satisfies
TA P Opnkq for some k P N.

In addition to the worst case complexity definition, one sometimes
considers the average case complexity. We can replace the term "max"
in (1.3) by the term "expectation" to define it. Average case complexity
estimations require knowledge or assumptions on the distribution of the
problem instances.

1.2.2 Complexity of Problems
Efficient solution algorithms have been found for many problems, but until
the early computer age an increasing number of problems was recognized to
resist every endeavor concerning polynomial-time solution algorithms. Pop-
ular examples are the traveling salesman problem and scheduling problems,
variants of which we consider in Chapter 2 and Chapter 4. The aim to fix
similarities of those "hard" problems in order to obtain more evidence that
they are not solvable in polynomial-time led to the problem classes P, N P
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and N PC. We give informal descriptions of these concepts, here.
Problems of the form (1.1) are optimization problems. Corresponding

decision problems concern the question if there is a feasible solution such
that the objective function is bounded by a given value. The class P consists
of all decision problems for which a polynomial-time solution algorithm
exists. A probably easier task is to verify, if some suggested solution of a
decision problem is an actual solution. An algorithm that does this task is
called verification algorithm. The class N P consists of all decision problems
for which a polynomial-time verification algorithm exists. In fact, most of
the "hard" problems mentioned above are in N P (but not known to be in
P).

Another issue is the hardness of a decision problem P in relation to a
second decision problem Q. An algorithm A for P is called Karp reduction
from P to Q if

• A is a polynomial-time algorithm,

• for every instance I of P the output ApIq of A is an instance of Q,

• for every instance I of P , the answer to I is true, if and only if the answer
to ApIq is true.

The problem P is said to be Karp reducible to Q, denoted by P ¤ Q, if a
Karp reduction from P to Q exists. The properties of a Karp reduction
immediately yield that P is in P (resp. N P) if Q is in P (resp. N P) and
P ¤ Q. We also say that P is not harder than Q, if P ¤ Q.

The (virtually contrariwise) informal issue that a decision problem is
at least as hard as the hardest problems in N P is formalized by the terms
N P-hardness and N P-completeness. A decision problem Q is said to be
N P-hard if P ¤ Q holds for every problem P in N P. A problem in
N P that is also N P-hard is said to be N P-complete. The class N PC
consists of all N P-complete problems. Cook [Coo71] (1971) and Levin
[Lev73] (1973) independently proved that an N P-complete problem indeed
exists. Karp [Kar75] (1972) showed 20 further problems to be in N PC
by reducing the Boolean satisfiability problem (SAT) (the problem, Cook
proofed to be in N PC) to them. An increasing number of known N P-
complete problems made it easier to prove even more problems to be in
N PC by Karp reduction. In fact, most of the problems which were suspected
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P N P N P-hardN PC

Figure 1.1. Complexity classes P, N P and N PC, provided that P � N P.

to have no polynomial-time solution algorithm turned out to be in N PC.
This implies that a polynomial-time solution algorithm for any of these
problems would indirectly solve every other problem in N P and prove
P � N P. Thus, the conjecture that none of these problems is solvable in
polynomial time comes down to the still open conjecture that P � N P.

1.2.3 N P-hard Types
Integer linear programs are N P-hard in general [GJ78]. The same holds for
non-convex quadratic programs [Sah74].

1.3 Exact Algorithms
Despite the fact that a problem is N P-hard there is still the prospect to
find algorithms that are more efficient than others and able to solve quite
large instances to optimality in a satisfying amount of time. Most popular
example to that effect is the traveling salesman problem (TSP) a variation
of which we will consider in Chapter 2. An instance of the TSP consists of
a number of cities and their pairwise distances. The optimization version of
TSP asks for a shortest tour that visits every city exactly once. Its decision
version is one of the 20 problems Cook proved to be N P-complete. The
TSP was also benchmark problem for many inexact algorithmic approaches,
some of which are utilized in this work and discussed in the subsequent
sections.
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1.3.1 Brute Force
Brute force means full enumeration of all possible solutions and is the
most simple way to deal with finite optimization problems. The effort of
brute force corresponds to the size of the solution space (feasible set) which
grows exponential with the input size already for many easy combinatorial
problems. For example, the TSP on n cities has pn� 1q!{2 feasible solutions,
a number which exceeds the number of atoms in the cosmos, if n ¡ 60.

1.3.2 Relaxation based Algorithms
A relaxation of a problem emerges if its feasible set is enlarged. Under
certain circumstances relaxations are comparatively easy to solve and may be
utilized by algorithms for the original problem. This idea plays an important
role in the context of (M)ILP models. Here, enlargement of the feasible
set means omission of the integrality conditions of the (M)ILP resulting
in a corresponding linear program (LP) which is called LP-relaxation of
the M(ILP). While (M)ILP models in general belong to the N P-hard
problems, it has been shown that LPs are polynomial-time solvable. The
first proof of this fact was given by Khachiyan [Kha79] (1979) using the
ellipsoid algorithm. The method described by Khachiyan was not practically
efficient. On the contrary, variations of Dantzig’s simplex algorithm [Dan63]
for linear programming have shown to be very efficient in average but have
exponential worst case performance. Karmarkar’s algorithm [Kar84] was
the first interior point method that provided both theoretical and practical
efficiency.

Cutting Plane Method

The treatment of a 49 city TSP instance by Dantzig, Fulkerson and Johnson
[DFJ54] (containing Washington D.C. and all local capitals of the U.S.)
was a breakthrough for the solution of TSP problems. They started with
an ILP model which contained some easy necessary conditions, solved its
LP-relaxation, identified further necessary conditions that were violated
by the solution and added them in terms of new linear inequalities to
the LP. This procedure was repeated until the LP-solution represented an
actual tour which was implicitly optimal. It was the invention of cutting
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planes and the first successful application of integer linear programming
as a tool for solving combinatorial problems. Dealing with integer linear
programs, the general idea of the cutting plane method is to successively
add linear inequalities (cutting planes) to its LP-relaxation such that the
current solution but no integral solution is excluded from the feasible set.
If the current LP-solution is integral, it must be optimal to the original
ILP because the current LP still describes a superset of the feasible set.
Figure 1.2a) shows a 2-dimensional example. Gomory [Gom58] gave the
first generally applicable method to produce such cutting planes (Gomory
cuts). But despite their success in the problem specific usage, cutting planes
became no adequate general purpose method until being combined with
branch and bound.

Branch and Bound

The branch and bound (BnB) method is intended to accelerate the search
for the optimal solution x� of an integer optimization problem by excluding
parts of its feasible set. It was first introduced by Land and Doig [LD60].
Dakin [Dak65] described a branch and bound algorithm that is easier to
implement. The essence of the procedure is as follows. The feasible set S
is successively split (branched) into subsets Si, i � 1, . . . , defining a search
tree with vertices Si. The subsets Si are relaxed to sets Ri on which an
optimal solution xpiq is efficiently computable. The objective value αpiq of
xpiq is a lower bound for the best solution in Si and may be improved to
the maximum corresponding bound of the subsets of Si as soon as all their
relaxations have been solved. If xpiq is integral itself, αpiq is also an upper
bound on the value of x�. A subset Si can be excluded from the search
space if its lower bound is found to be greater than the minimal, so far,
upper bound on the value of x�.

Branching is often done at fractional components of the solution of the
current relaxation, say xi � β P RzZ. Then, one subset is forced to contain
every solution with xi ¤ bβc and the other subset is forced to contain every
solution with xi ¥ dβe. Figure 1.2b) illustrates branching at an ILP variable
in the 2-dimensional case. In practice, the performance of a branch and
bound strategy significantly depends on the order in which the branching
variables are considered and the corresponding sub-branches are searched.
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a) b)

R R1 R2

Figure 1.2. a) Cutting plane application to the LP relaxation of an ILP. The
polyhedron R is the feasible set of the LP relaxation. It contains the optimum of
the ILP (red dot) and some further ILP solutions (black dots). The LP optimum
(blue dot) gets separated from the ILP solutions by the cutting plane (blue line).
b) Branching at a variable with fractional value in the LP optimum splits the
feasible set of the ILP, yielding new relaxations R1 and R2 and new fractional
optima (blue dots).

Branch and Cut

Branch and cut (BnC) combines branch and bound with the cutting plane
method and is by now one state of the art technique for the solution of
(mixed) integer linear programs. Branch and cut first tightens the initial
LP-relaxation by iterative addition of cutting planes, making the subsequent
branch and bound procedure more efficient. Further cutting planes may
also be found and applied to subproblems within the branch and bound
procedure.

Standard solvers like Cplex (which we apply to solve instances of our
(M)ILP models), Xpress and others use branch and cut algorithms resting
upon simplex type LP solvers.

The success of branch and cut was again driven by research on the TSP
problem (see e. g., [CP80]). According to [JLN�10], a first fully automatical
algorithm was provided by Hong [Hon72] and (among others) advanced by
Grötschel and Padberg bringing in the benefit of their polyhedral research
(see e. g., [GP85]).
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1.4 Heuristics

Complexity theory gives strong evidence that no N P-complete problem
is solvable in polynomial time. In particular, no accordant optimization
problem is solvable to optimality in polynomial time. Yet, dropping the hope
to find exact solutions for large instances of such optimization problems,
the "compensation paradigm" is to efficiently find reasonable good solutions
for them. This is what heuristics are supposed to achieve.

1.4.1 Approximative Algorithms

Having no optimality proof for a heuristic problem solution, it is interesting
to know something comforting about its value in relation to the optimum.
Algorithms that permit some kind of guaranty on this relationship belong to
the category of approximative algorithms. The book of Jansen and Margraf
[JM08] gives a wide survey of this topic. A particularly nice approximative
algorithm type is the fully polynomial time approximation scheme (FPTAS).
For every ε ¡ 0, an FPTAS provides approximations of the optimal solution
value within a factor of 1 � ε in a time that is polynomial in both the
instance size and 1{ε. Weaker are "normal" polynomial time approximation
schemes (PTAS), which provide the same but are not polynomial in 1{ε,
and polynomial algorithms that provide a constant factor approximation.

The intensively researched example problem, TSP, has no approximation
algorithm with constant approximation ratio in general. In the metric case,
i. e., if distances satisfy the ∆-inequality, TSP permits 1.5 approximation
(Christofides Algorithm) [Chr76]. For the Euclidian TSP there is even a
PTAS (Arora Algorithm) [Aro98]. The TSP variation DTSP is defined
by imposing visiting deadlines to the cities (measuring distances in terms
of time units). It was shown in 2007 that, even in the metric case, no
polynomial constant factor approximation exists for DTSP [BHKK07].

For the problems considered in this work we can give none of the advance
estimations introduced above. Since DTSP is reducible to the problems
considered in Chapter 2 and Chapter 4 such results are impossible, there.
But at least we can obtain computational estimations for given instances
via model relaxations.
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1.4.2 Relaxation based Heuristics

As discussed in subsection 1.3.2, exact algorithms like branch and cut for
integer linear programming utilize relaxations of (sub)problems to accelerate
the search. Polynomial time solvable relaxations may also be utilized by
efficient heuristics.

First of all, an exact algorithm like branch and bound (branch and cut)
can serve as a heuristic, if the search is stopped after some satisfying integral
solution has been found. As there will also be a best lower bound due to
the relaxations solved until termination, one additionally obtains an upper
bound on the approximation ratio.

Randomized Rounding

Suppose we have a binary optimization problem (i. e., the argument set is
{0, 1}n) and a vector p P r0, 1sn, with p � pp1, � � � , pnq. We wish to generate
a binary solution x � px1, � � � , xnq P {0, 1}n guided by p. We can use naive
rounding and set for i � 1, � � � , n

xi �

{
1, if pi ¡ 0.5
0, if pi ¤ 0.5

Such a rounding is not flexible, and applied to constrained optimization
problems leads usually to infeasible solutions and bad objective values.
Raghavan and Thompson [RT87] introduced a randomized version:

Randomized Rounding (RR(p))
For i � 1, � � � , n independently set

xi �

{
1, with probability pi
0, with probability 1� pi

This is nothing else than a sequence of n independent Bernoulli trials Xi

(or n flips of a biased coin), where for all i � 1, � � � , n

PrXi � 1s � pi and PrXi � 0s � 1� pi.

11
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The corresponding probability distribution on {0, 1}n is

Ppxq �
∏

iPrns,
xi�1

pi
∏

iPrns,
xi�0

p1� piq for x P {0, 1}n.

Such a rounding scheme is much more flexible compared to the naive
rounding scheme, it is able to get out from local optima, and most important,
can be analyzed with probabilistic methods, like large deviation inequalities
of Chernoff, Hoeffding and others [RT87] [Sri01b].

1.4.3 Certain Heuristic Difficulties
For continuous optimization problems as well as for combinatorial opti-
mization problems, well suited algorithms have been developed. Classical
iterative methods are suited for continuous optimization problems. Those
methods grant fast convergence to a local optimum within its neighborhood,
if derivations of the objective function f (and optionally imposed inequal-
ity constraint functions gi, i P rm1s and equality constraint functions hj ,
j P rm2s), exist. The good-natured case is given by convexity of both the
objective function and the feasible set S (convexity of the gi and affinity of
the hj) since this additionally grants every local optimum to be a global
optimum. On the other hand, presence of multiple local optima in a con-
tinuous problem will make classical gradient-based methods likely to get
stuck at one (maybe bad) of these, unless a suitable starting point is known.
Figure 1.3 shows example objective function types having multiple local
optima for the univariate case.

Concerning combinatorial optimization, there are tailored algorithms
for every problem. The good-natured combinatorial problems are those in
P. Tailored algorithms for N P-hard combinatorial problems also behave
locally optimal, e. g., in the sense that
(a) every interim partial solution of a constructive algorithm is an optimal

extension of its predecessor,
(b) the final solution is a local optimum w.r.t. a distance measure implied

by a local search strategy.
Concerning the TSP, examples for (a) and (b) are insert heuristics and
k-opt heuristics, respectively.
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Figure 1.3. Univariate Griewank function (left) and modified sinc function (right)

1.3 Example. Let π be a permutation of n. For a TSP instance with n cities,
insertion w.r.t. π starts with the unique tour T p2qπ through the cities πp1q
and πp2q and subsequently builds T piqπ , i � 3, . . . , n, by inserting πpiq at
that position into T pi�1q

π that causes the cheapest loop way. In other words,
for i � 3, . . . , n, the interim solution T piqπ is the optimal extension of T pi�1q

π

by πpiq. There are different strategies to build the permutation π (either
in advance or during tour construction) that yield different insert heuristic
variations like nearest insertion, farthest insertion or random insertion.

1.4 Example. One step of the local search heuristic k-opt tries to improve a
given tour T by removing k edges and inserting other k edges such that the
result is a new but cheaper tour T 1, where T 1 is chosen to be the best of all
possibilities to change k edges. The step is repeated until it does not change
the actual tour any more. Defining the distance δpT, T 1q of two tours T and
T 1 to be the number of edges that are not contained in both tours, a k-opt
result is optimal in the k-neighborhood w.r.t. δ. The strategy origins from
the idea to remove crossing edges (case k � 2) of tours in the Euclidian
plane.

A quite opposite behavior to the above heuristic approaches is given
by entirely random algorithms which draw samples from the search space
under some probability distribution. Clearly, the absence of any convergence
property prevents from getting trapped in a bad region of the search space
S. However, for α P R the probability of the sublevel set Sf pαq :� {x P
S | fpxq ¤ α} can be very small even if the global optimum is quite better
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than α.

1.5 Example. The n-dimensional version of the modified sinc function shown
at the right hand side of Figure 1.3 is given by

sincpxq � 1�
∏
xi�0

sinpxiq
xi

.

Its global minimum is sincp0q � 0 (since the empty product is equal to
1). For every feasible set S � Rn it holds that Sf p0.5q � r�2, 2sn. If
we choose a P R¡1 and set S � r�2a, 2asn, the ratio of both volumes
λpSf p0.5qq and λpSq is bounded by a�n. Thus, the probability to sample
an x P Sf p0.5q under uniform distribution shrinks exponentially with the
problem dimension n.

1.5 Evolutionary Algorithms

Briefly speaking, evolutionary algorithms are randomized meta heuristics
that simulate the mechanisms of natural evolution. Their origin goes back
at least to the 1950th. In the 1960th and 1970th, significant research was
carried out under the terms evolution strategy (ES) by Bienert, Rechenberg
[Rec73] and Schwefel [Sch81], evolutionary programming (EP) by Fogel et
al. [FOW66] and genetic algorithm by Holland [Hol75]. The three fields
coexisted independently until the first Parallel Problem Solving from Nature
(PPSN) workshop joined them in 1990. The collective terms evolutionary
computation (EC) and evolutionary algorithm (EA) have been found for the
common research field and its associated algorithms, respectively.

It has been found that computer code conversions of evolutionary mech-
anisms can be instrumental in the solution of several optimization tasks
for which tailored heuristics as well as simple randomized heuristics face
difficulties like those described in subsection 1.4.3. There, either a wide
spread search of the solution space or fast convergence to (local) optimal
solutions was not supported. In the context of evolutionary algorithms, these
properties are usually termed exploration and exploitation, respectively. A
problem specific EA is intended to strike a balance between both properties.
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1.5.1 Classical Evolutionary Algorithm Framework
There are some general common properties of classical evolutionary algo-
rithms that were inspired by natural evolution. An EA iteratively processes
an initially generated finite (small) subset P of possible solutions to a prob-
lem. Using the terminology from natural evolution, a solution and the set P
are called individual and population, respectively. As individuals are vectors
of some fix dimension n, one component of an individual is called a gene.
Further evolutionary terms are locus for the index of a gene and allele for
its value.

One EA iteration is also designated as generation and includes the
following steps. At first, a subset P 1 � P is chosen from which a set P 2 of
new solutions is obtained due to the application of variation operators. A
variation operator either performs random changes to a single individual
or combines sets of (usually two) individuals to new ones. Those variation
operations are referred to mutation and recombination, respectively. In
accordance to natural evolution, if recombination is incorporated, the set
P 1 is called mating pool and the individuals in P 2 are called offsprings. The
set P 1 can either be equal to P or assembled by random element selection.
Using random selection, the probabilities can (but do not need to) depend
on the objective values of the individuals in order to bring in some selective
pressure. In the EA context, the objective value fpxq of a solution x is
also called fitness, supposing that f has to be maximized. Note, that every
minimization problem can be transformed into a maximization problem,
e. g., by using �f instead of f . The set P is finally updated to P Y P 2 and
usually resized to its old cardinality by a second fitness dependent selection
(survival of the fittest). Figure 1.4 illustrates the generic EA procedure.

1.5.2 Encoding
Above, we said that an EA operates on the elements of the solution space of
an optimization problem. This set may be the feasible set S of the actual
mathematical optimization problem on hand. In other cases, the evolutionary
operations can take place on a different, possibly easier structured set G
which is mapped to the feasible set S of the actual problem by a so called
encoding function γ. This means, that the EA optimizes a modified problem
described by the set G and the induced fitness function F � f � γ. In this
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Figure 1.4. Schematic of a Classical EA

context, an individual x P G and the corresponding solution γpxq of the
actual problem are called genotype and phenotype, respectively. The standard
example for encoding is genetic algorithms that use binary representations
for the arguments of a continuous optimization problem, e. g., mapping
G � {0, 1}nl to S � Rn. But encoding can also be used to hybridize an
EA by the incorporation of problem specific heuristics into γ. In the latter
context, the encoding function is also said to be a solution generation
scheme.

1.5.3 Selection
Many selection operators have been proposed for the choice of the mating
pool and the integration of the offsprings, respectively. The aim to yield
faster convergence toward good solutions is the motivation to bring in some
amount of selective pressure by giving fit individuals a higher probability
to breed than unfit ones. Very popular selection operator examples for the
mating pool are roulette-wheel selection (RWS) and tournament selection,
respectively. Roulette-wheel selection assigns each individual a selection
probability that is proportional to either its fitness or some measure that is
deduced from the fitness values of all individuals. The probabilities can be
imagined as accordingly large segments of a roulette-wheel that is spun to
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realize the selection of one individual. Often, a ranking based valuation is
used for an individual, i. e., the selection probability depends on its rank
with respect to its fitness (the fittest individual has rank 1 and the most unfit
individual has rank |P |). We will use ranking based roulette-wheel selection,
choosing a selection probability of an individual i P P to be 2 |P |�1�rankpiq

|P |p|P |�1q .
This refers to linear ranking based roulette-wheel selection with selective
pressure 2 as described in [Ree03].

While each roulette-wheel selection uses global information, one tourna-
ment selection performs a local evaluation. The basic version of tournament
selection uniformly draws a subset of k P r|P |s individuals for a competition
which is won by the best of them. The tournament size parameter k is most
frequently set to 2, referring to binary tournament selection.

Good examples to imagine the possible exploitation advantage of selective
pressure are the functions that we considered in subsection 1.4.3, i. e., the
Griewank function and modified the sinc function. Here, good mutants
are likely to tend towards the global optimum (the zero vector) such that
an increasing proportion of the good individuals will gather within its
neighborhood during the evolution process. Then, selective pressure can
accelerate the convergence to that global optimum.

1.5.4 Genotype Specific Variation Operators
Depending on the problem type there are different evolutionary representa-
tions and generation schemes for problem solutions. We deal with binary
coded and real coded problems (G P {{0, 1}n,Rn}) as well as with permu-
tations (G � Sn). Binary representation is natural if the actual problem
depends on decision variables. Our two-coloring problem of Chapter 5 is of
this kind. As mentioned above, binary coding is also possible (and has been
extensively used) to cope with continuous problems. A disadvantage of this
approach is that high precision requires long binary strings to represent each
real number. According to Goldberg et al. [GDC92] (also see [Deb01]), the
population size requirement will be also large in this case, which increases
the computational effort. A second disadvantage is hamming cliffs, which
are binary strings that represent neighbored values but differ in many bits
(e. g., 011 and 100). For our real valued parameter optimization problem
in Chapter 3, we therefore prefer an EA that operates on real numbers.
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Concerning the TSP with time windows problem of Chapter 2, we operate
on permutations which are mapped to solutions of the actual problem by
an adapted insert heuristic. We introduce some of the established variation
operators for the three kinds of genotypes.

Binary Variation Operators

• Bit Flip Mutation. Having a binary solution string, each bit is flipped
with some small probability pm to obtain a mutated solution.

• Bit Swap Mutation. If we want to retain the number of 0 (1) bits for
some solution x P {0, 1}n, we can uniformly choose an index i from the
set rns0 :� {k P rns |xk � 0} and an index j from the set rns1 :� {k P
rns |xk � 1} and swap the i-th bit with the j-th bit.

• Single-Point Crossover. Having two binary parent strings x, y P {0, 1}n,
a random locus i called crossing site is drawn from rns and all bits on the
right site of the crossing site are exchanged between the parents yielding
two offspring solutions.

• Two-Point Crossover. Here, instead of one crossing site, two crossing
sites are chosen at random and the bits between both crossing sites are
exchanged between the two parents. The process can be generalized
to k-point crossover, choosing k crossing sites and exchanging alternate
substrings between parents.

• Uniform Crossover. This operator chooses every bit of an offspring
solution with probability 0.5 from either parent solution. This means an
extreme case of k-point crossover.

Real Number Variation Operators

• Uniform Mutation. For a given x P Rn, uniform mutation chooses the
mutation value of each component xi under uniform distribution from an
interval rxi � δi, xi � δis, where the δi are suitable values (e. g., fractions
of widths of possibly imposed box constraints).

• Gaussian Mutation. Here, a gaussian normal distribution N pxi, σ
2
i q is

taken as probability distribution for xi. Suitable values have to be chosen
for the variance σ2

i and may be adapted in each generation of the EA.
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• Blend Crossover (BLX-α). This operator was suggested by Eshelman
and Schaffer [ES92]. For two parents x, y P Rn, an offspring z P Rn is
generated by setting zi � γixi � p1 � γiqyi, i P rns, where the γi are
randomly chosen from r�α, 1� αs, α ¥ �0.5, under uniform distribution.
In the extreme case of α � �0.5, each zi is simply the arithmetic average
of xi and yi. For α � 0, we deal with random convex combinations of the
parent genes, while for α ¡ 0, an offspring gene zi may also be outside
the interval defined by xi and yi. Eshelman and Schaffer experimental
found that α � 0.5 is a good choice.

Permutation Variation Operators

Since a permutation π P Sn has the unique vector representation rπpiqsni�1,
variation operators are described with respect to permutation vectors, i. e.,
vectors in rnsn with pairwise distinct components. We use some of the
variation operators that are described in the recent book of Yu and Gen
[YG10]. Clearly, all variation operators (must) maintain the properties of
permutation vectors.
• Exchange Mutation (EM). Given a permutation vector x P rnsn, EM
randomly chooses a locus i from rns and a locus j from rnsz{i} under
uniform distribution. Then, the alleles at loci i and j are swapped.

• Simple Inversion Mutation (SIM). This operator reverses the order of
some consecutive genes of a permutation vector. The consecutive genes
are determined by the random choice of the minimum and maximum
locus, respectively. If we represent solutions to the classical TSP problem
by permutation vectors, SIM corresponds to a local search step of the
2-opt heuristic.

• Partially Mapped Crossover (PMX). For two parent permutation vectors
x, y P rnsn and random loci i, j P rns, i ¤ j, the consecutive genes between
locus i and locus j are exchanged between both parents to generate two
temporary offsprings u, v P rnsn. Since u and v usually violate the
permutation vector property, they are repaired as follows: For each gene
outside the exchanged substring, it is checked weather its allele repeats
within the exchanged substring. In this case, the allele is replaced by the
corresponding allele of the former substring (that at the same locus w.r.t.
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the substring). The procedure is repeated until the new allele of the gene
does not occur within the exchanged substring.

• Order Crossover (OX). We use this operator in accordance to [Dav91],
which is cited as its origin in [YG10] but has a somewhat different mode of
operation, there. We are given two parent permutation vectors x, y P rnsn.
The OX operator generates two offsprings u, v P rnsn as follows. First,
a random binary vector b of length n is generated, e. g., by randomized
rounding of the vector with all values 1{2. Set ui � xi for all i P rns
with bi � 1. Then, for the complementary loci (where bi � 0), the genes
of u are assigned to the remaining alleles of x in the order they appear
in y. Similarly, set vi � yi for all i P rns with bi � 0 and assign the
complementary genes of v with the remaining alleles of y in the order
they appear in x. If OX operates on TSP solutions, it keeps the visiting
orders of the inherited cities w.r.t. both parents.

1.5.5 Groups and Migration

The population P that is processed by an EA can be subdivided into groups
to which selection and variation operators are applied locally. Interaction
between groups is realized by migration operators that are periodically
applied after a number of generations. A simple migration operation is to
clone the very best individual over all groups into each group and to remove
the worst individual of each group, subsequently. The concept of processing
groups and doing migration from time to time is suitable for easy parallel
EA implementations on distributed computer systems. We simply can use
one CPU per group. To realize the migration principle, we will use the
Message Passing Interface (MPI) [mpi] technology since it is commonly
available.

1.5.6 Quantum Inspired Evolutionary Algorithms

Quantum inspired evolutionary algorithms (QiEAs) origin from the idea to
use quantum computational principles for EAs. But rather than dealing
with theoretical EA implementations in a quantum computer environment,
QiEAs aim to benefit from related principles using conventional digital
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computers. A recent survey of QiEAs is given in [Zha11]. We will apply the
QiEA framework proposed by Han and Kim [HK02][HK04] in Chapter 5.

Estimation of Distribution Algorithms

By now, the QiEA framework has been classed with estimation of distribution
algorithms (EDAs) (see e. g., [DPSK09]). Regarding a classical EA with
population size NP in some i-th generation, each subset of the set of
genotypes G with NP elements will have a certain probability to be the
population of generation i� 1. The accordant probability distribution on( G
NP

)
is implied by the randomness of the selection and variation operators.

The idea behind EDAs is to learn an explicit probability distribution from
selected individuals of the current population, which in turn is directly
sampled to build the population of the succeeding generation.

Sampling Probability Distributions by Observing Quantum Bits

The QiEA framework of Han and Kim is intended to solve binary opti-
mization problems and makes use of explicit probability distributions that
correspond to a quantum bit (qubit) representation for the genes of indi-
viduals. In quantum computing, a qubit q is a tuple q � pα, βq P C2 with
|α|2 � |β|2 � 1 which degenerates (collapses) to a binary number b P {0, 1}
in the moment of observation, namely to 0 with probability |α|2 respectively
1 with probability |β|2. One solution x P {0, 1}n of a binary optimization
problem can be obtained from an n-dimensional qubit

Q �

(
α1 α2 α3 � � � αi � � � αn
β1 β2 β3 � � � βi � � � βn

)
,

by component-wise observation. Having a probability vector p P r0, 1sn
and choosing pαi, βiq such that |αi|2 � 1 � pi and |βi|

2 � pi for i P rns,
this multi-dimensional observation means nothing else than sampling the
solution x by randomized rounding, i. e., x � RRppq (see Section 1.4.2).

Quantum Inspired Estimation of Distribution

A quantum gate acting on Cn is a unitary matrix C P Cn�n. Thus, multi-
plication of a qubit pα, βq P C2 with a 2-dimensional quantum gate yields a

21



1. Problem Types, Complexity, Algorithms

new qubit providing new probabilities for the outcome of an observation.
The QiEA framework of Han and Kim considers 2-dimensional rotation
gates, which are 2� 2-matrices C∆θ representing rotation in C2, where

C∆θ �

(
cosp∆θq sinp∆θq
� sinp∆θq cosp∆θq

)
,

and ∆θ is the rotation angle.
Having two qubits pα, βq, pα̃, β̃q with |β|2 � |β̃|2 and using the same

rotation matrix to obtain pα1, β1q � C∆θpα, βq
T and pα̃1, β̃1q � C∆θpα̃, β̃q

T

it holds that |β1|2 � |β̃1|2. Thus, if we want to change a probability vector
p P r0, 1sn, we may consider for i P rns the real values αppiq �

√
1� pi and

βppiq �
√
pi, apply the rotation matrices(

α1ppiq

β1ppiq

)
� C∆θi

(
αppiq

βppiq

)
and obtain the new probability vector p1 by setting p1i � β1ppiq

2. The pairs
pαppiq, βppiqq represent points on the unit circle in the plane. The angle
between pαppiq, βppiqq and the point p1, 0q is given by θppiq � arctanpβppiq

αppiq
q

and lies in r0, π{2s. The corresponding angle of p1i will be θppiq �∆θi (see
left hand side of Figure 1.5).

Suppose we are given a probability vector p P r0, 1sn and a binary sample
x P {0, 1}n with a good objective function value fpxq (according to an
optimization problem). Now, we aim to modify p such that it is more likely to
yield x by randomized rounding. This can be done by changing the values of
the components of p slightly towards the corresponding values of x. We also
say that x attracts p. Rather than using an additive learning rate parameter
∆ for changing the probabilities, QiEA applies the discussed rotation by an
angle ∆θ using suitable orientation. The rotation operation has less effect
on a probability pi if it is close to 0 or 1, as we have pi � sin2pθppiqq (see
right hand side of Figure 1.5). The procedure yields a particular estimation
of distribution.

QiEA Terminology

Dealing with one probability vector p P r0, 1sn only, the observation and
estimation (variation) process described above does already comprise both
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p0, 0q p1, 0q

p0, 1q

pα, βq

pα1, β1q

∆θ

θ

0 π{2
0

1

θ
p
�

sin
2 p
θq

Figure 1.5. For a given probability p P r0, 1s rotation of the unit circle point
pα, βq � p

√
1 � p,

√
pq by an angle ∆θ results in a new point pα1, β1q on the unit

circle and corresponding probability p1 � pβ1q2. A change in angle has higher
effect to the corresponding probability p, if p is close to 0.5 and less effect if p is
close to 0 or 1, respectively.

properties of classical EA populations: (initial) exploration capacity and
learning ability. However, the QiEA framework of Han and Kim allows two
more evolutionary levels by allowing populations of groups of individuals
I � pp, aq, each consisting of a probability vector p and a sample a of p.
The sample a is used to store good solutions and to modify the distribution
p as described above. For that reason, a is called the attractor of individual
I � pp, aq. In each generation of the QiEA the samplings of the individuals
are updated by observing the corresponding distributions and than the
distributions are updated w.r.t. the attractor.

Han and Kim use migration of elitist attractors, i. e., either the very
best attractor of the whole population (global migration) or the very best
attractor of a group (local migration) will replace the attractor of each
individual in the population or group, respectively. Note, that the corre-
sponding distributions do not migrate together with the attractors, here.
Empirical studies in [HK03] suggest local migration at every generation but
infrequent global migration (e. g., every 100th to 150th generation if 1000
generations are performed in total).
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1.5.7 Operational Notations
We will use the following notations for the operational parameters of our
EA frameworks.
• NP : population size
• Ngr: number of groups
• Nind: number of individuals per group (all groups are supposed to have
equal size ñ NP � NgrNind)

• Nmate: number of matings per group and iteration (classical EA)
• Nobs: number of observations per individual and iteration (QiEA)

1.6 Algorithm Engineering
In the former sections we introduced theoretical and practical aspects of
algorithm design. After the foundation of complexity theory, research has
considered both aspects rather separately. Theory focused on abstract
problems and the question if polynomial time algorithms exist for them.
Practitioners had to find sophisticated implementations and data structures
in order to obtain practically fast algorithms for certain real world problems.
Their work was supported by the insight of experimental studies. Theoretical
and practical efficiency, however, are not always as close related as desirable.
For example, the theoretically efficient ellipsoid algorithm for solving linear
programs has a polynomial worst running time but is impracticable for
real world instances while the simplex algorithm is practically fast for most
problems but not polynomial for worst case scenarios. Another example is
the classical traveling salesman problem, which is N P-complete. Despite
this fact, practical algorithms are by now able to exactly solve real world
instances of the classical TSP with more than 10000 cities.

The algorithm engineering paradigm arose circa 15 years ago and aims
to join theory and practice by the interplay of experimental impressions and
theoretical conjectures. A recent monograph on algorithm engineering is the
book of Müller-Hannemann and Schirra [MHS10]. Practice is supposed to
help theory by giving more experimental evidence for theoretical estimates
and even ideas concerning expedient analysis steps.
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Taking the two-coloring problem of the hypergraph H � pV, Eq �
prns,Anq in Chapter 5 as an example, the optimum of the problems objective
function has been shown to be Op 4

√
nq but the proof of this result does

not yield a practical algorithm to calculate such two-colorings. The best
known practical algorithm for the problem guarantees its solution objectives
to be Op 3

√
n lognq. We will therefore utilize the features of this algorithm

to find an improved optimization framework for the problem. A suitable
running time of our non-deterministic algorithm incorporates the number
|E | of hyperedges. We proofed that |E | is Θpn2 lognq after we have checked
the conjecture experimentally.
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Chapter 2

TSP with Multiple Time Windows

2.1 Introduction
Tour planning plays an important role in logistic practice. In particular, it
belongs to the central issues of companies providing field service. Facing
increasing traffic system costs in the near future, the application of efficient
tour planning will become an even more crucial factor.

2.1.1 Our Problem
The topic of multiple time windows occurs in the following specific problem
arising in commercial practice. This problem has been posed by the leading
company in Germany for complex service tour planning.

A salesman (which in practice is an employee of a company) has to
schedule a trip that lasts several days (usually one week) and visits several
customers with respect to their opening hours, which can be considered as
multiple time windows. On the first day the salesman starts at location S,
called the depot. We assume that the salesman’s home is close to the depot
and that the trip from the depot to home does not cause additional costs.
Similarly, we assume that there is a hotel close to each customer’s location.
At the end of each day, the salesman has two options. First, he may return
to the depot S, stay overnight at home and start the next working day again
at the depot. Second, he stays overnight at a hotel, which for each night
costs a fixed fee, and serves the next customer on the next day. Note that
hotel stays are allowed only on specified days. Between two customers and
between a customer and the depot, a wage is charged per time unit and
traveling expenses per distance unit. Each customer requires to be served
within specified time windows, and an individual penalty fee is assigned to
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2. TSP with Multiple Time Windows

each customer, if he remains unserved. The salesman’s maximal regular
working time for each day is fixed and lies within a specified time window.
A maximal working time is given for each day, possibly extended by some
overtime, where each overtime causes extra premium. Furthermore because
of holidays, some days in the period may not be allowed to be a trip day.
Note that all times are given in minutes, and the times of day are minutes
starting from midnight before the first working day. We call this earliest
possible starting time by EPST. Overall we have to schedule a trip with
minimum total costs using the following instance parameters:
• n P N: number of customers.
• cij P R¥0 for i, j P rn� 1s, i � j: distance units between customer/depot
i and customer/depot j, where the depot is represented by the number
n� 1.

• dij P R¥0 for i, j P rn�1s, i � j: ride time between customer/depot i and
customer/depot j, where the depot is represented by the number n� 1.

• pi P R¥0 for i P rns: service time required by customer i.
• τi P N for i P rns: number of time windows provided by customer i.
• rail, bils for i P rns; l P rτis, where ail, bil P R¥0 with ail ¤ bil: time
windows provided by customer i (measured from EPST).

• σi P R¥0 for i P rns: penalty fees for omitted customer i.
• w P N: number of working days.
• ml P R¥0 for l P rws: maximal regular working time for day l.
• U P R¥0: maximal overtime per working day.
• rαl, βls for l P rws, where αl, βl P R¥0 with αl ¤ βl: daily working time
windows (measured from EPST).

• γ P R¥0: traveling expenses (per distance unit).
• δ P R¥0: wage (per time unit).
• µ P R¥0: overtime premium (per time unit).
• λl P R¥0 for l P rw � 1s: hotel fee for day l.
Note that λl � �8 means that a hotel stay is forbidden between the days
l and l � 1.
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2.2. A MILP for the Problem

2.1.2 Related Work

Many problems from tour planning can often be modeled by variations of
the famous Traveling Salesman Problem (TSP) [ABCC06][GP02], where for
a given set of cities and distances between each pair of them, we have to find
a shortest tour traversing each city exactly once. One such variation is the
TSP with time windows (TSPTW) [AFG00][AFG01], where the distances
between two vertices are given in terms of time and each vertex is assigned
to a time interval in which the salesman has to arrive. Exact method
contributions w.r.t. the TSPTW were given by Ascheuer, Fischetti and
Grötschel who gave an ILP formulation and investigated the underlying
polyhedra [AFG00]. They also solved problem instances by a proposed
branch and cut algorithm [AFG01]. A further generalization is the TSP with
multiple time windows (TSPMTW) [PGPR99]. There are also some papers
about heuristics for the TSPTW like variable neighborhood search [dSU10]
and insertion [GHLS98]. Contributions about evolutionary algorithms rather
concern the classical TSP [Pot96][MMP05][ALED08]. A comparative study
is carried out in [BB09].

2.1.3 Complexity of the TSPTW

The standard TSPTW is a subproblem of ours. It is N P-hard as it contains
the classical TSP as a subproblem. Savelsberg [Sav85] showed that even
finding a feasible solution of the TSPTW is N P-complete. The TSPTW
also contains the TSP with deadlines problem (see 1.4.1) as a subproblem.
This implies, that it does not allow for a polynomial algorithm with constant
factor approximation (unless P � N P) in general.

2.2 A MILP for the Problem
The following MILP model is a variation of the model described in the
Diploma Thesis of Mourad El Ouali [EO07]. We introduce some auxiliary
variables which enable us to change some linear constraints and to discard
some other linear constraints. The changes allow for an easier verification
of the natural meaning of the MILP.
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Figure 2.1. Two possible trips for an instance with n � 6 and w � 3.

We use a directed graph G � pV,Eq with V � rn� w � 1s to represent
the problem described in subsection 2.1.1. For i � 1, 2, . . . , n, each customer
i corresponds to a vertex i. The depot S is added as vertex n� 1. As the
salesman may return to the depot after each day, we add an extra depot
vertex n� l� 1 for each day l P rws. The arc set E consists of the following
arcs:

• pn � l, iq for i P rns; l P rws: The salesman starts at the depot at day l
and then serves customer i.

• pi, n� l � 1q for i P rns; l P rws: The salesman serves customer i at day l
and then returns to the depot.

• pi, jq for i, j P rns, i � j: The salesman serves customer i, and after that
he serves customer j.

• pn� l, n� l � 1q for l P rws: The salesman stays at home at day l.

For this graph we seek for a path P from vertex n� 1 to vertex n�w� 1
.

2.1 Example. Figure 2.1 shows two example paths for an instance with
n � 6, w � 3. The first path corresponds to a solution, where the salesman
serves customers at each day and also returns to the depot at each day. In
the second path, the salesman stays at a hotel close to customer 4 at the
first day, then serves the remaining customers and returns to the depot at
the second day. Finally, he stays at home at the third day.

In order to include all required factors (number of customers, distances,
ride times, service times, hotel options, penalty fees, overtimes etc.) as
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optimization parameters in the MILP, we make use of the following variables:

xij :�
{

1, if pi, jq P P
0, otherwise

for pi, jq P E

yil :�
{

1, if the l-th time window of customer i is active
0, otherwise

for i P rns; l P rτis

hil :�


1, if the salesman stays overnight at a hotel close to customer i

between day l and day l � 1 after serving customer i
0, otherwise

for i P rns; l P rw � 1s

h1il :�


1, if the salesman stays overnight at a hotel close to customer i

between day l and day l � 1 before serving customer i
0, otherwise

for i P rns; l P rw � 1s

si :�
{

1, if customer i is omitted
0, otherwise

for i P rns
ti :� arrival time at customer i P rns (measured from EPST)
t1i :� starting time of service at customer i P rns (measured from EPST)
t2i :� leaving time from customer i P rns (measured from EPST)
ql :� starting time of work at day l P rws (measured from EPST)
el :� end time of work at day l P rws (measured from EPST)
ul :� overtime at day l P rws

Note that some values may become irrelevant in some cases, e. g., if the
customer i for i P rns is omitted, then the arrival time at customer i is not
considered. In such cases, these values may be arbitrary.
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Now, the minimization function of the overall costs is

min
n∑
i�1

σisi � γ �
( n∑
i�1

n∑
j�1
j�i

cijxij �

n∑
i�1

w∑
l�1

pcn�1,ixn�l,i � ci,n�1xi,n�l�1q
)

�

n∑
i�1

w�1∑
l�1

λlphil � h1ilq �

w∑
l�1

pδpel � qlq � µulq. (2.1)

In order to include all the specifications mentioned above, we have to add
several linear constraints to the objective function. We first force the starting
vertex to have exactly one successor and the destination vertex to have
exactly one predecessor in the path P :

xn�1,n�2 �

n∑
i�1

xn�1,i � 1, (2.2)

xn�w,n�w�1 �

n∑
i�1

xi,n�w�1 � 1. (2.3)

Furthermore, each further vertex from V z{n� 1, n� w � 1} must have as
much successors as predecessors in the path P :∑

pi,jqPE

xij �
∑

pj,iqPE

xji for i P V z{n� 1, n� w � 1}. (2.4)

The omission of a customer means that the corresponding vertex has no
arrival arc:

si �
∑

pj,iqPE

xji � 1 for i P rns. (2.5)

If a customer is visited, this must happen within exactly one active time
window:

si �
∑
lPrτis

yil � 1 for i P rns. (2.6)

The salesman does not stay overnight at the hotel close to an omitted
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customer.

si �

w�1∑
l�1

hil ¤ 1 for i P rns. (2.7)

si �

w�1∑
l�1

h1il ¤ 1 for i P rns. (2.8)

At the end of each working day, the salesman stays overnight either at a
hotel or at home:

xn�l,n�l�1 �

n∑
i�1

pxi,n�l�1 � hil � h1ilq � 1 for l P rw � 1s. (2.9)

For each day l, the starting time of work is not larger than the end time of
work.

ql ¤ el for l P rws. (2.10)

The actual working time at a trip day l starts at a time ql and ends at a
time el within the corresponding working time window:

ql ¥ αl for l P rws, (2.11)
el ¤ βl for l P rws. (2.12)

The actual working time of each day l does not exceed the corresponding
maximal value ml by more than the overtime ul:

el � ql ¤ ml � ul for l P rws. (2.13)

All overtimes are limited by U :

ul ¤ U for l P rws. (2.14)

The following conditions ensure that all arrival, leaving, starting and end
times are in chronological order for all cases. Note that (2.17) – (2.24) are
based on the fact that βw is the end time of the last working day and that
βw is multiplied by �1 or 0. If the traveler serves a customer, the arrival
time is not larger than the corresponding starting time of service:

ti ¤ t1i for i P rns. (2.15)
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If the traveler serves a customer, the end time of service is not larger than
the corresponding leaving time:

t1i � pi ¤ t2i for i P rns. (2.16)

For each customer i, the arrival time at the next customer j in the path is
not smaller than the leaving time at i plus riding time:

tj ¥ t2i � di,j � xij � pxij � 1q � βw for i � j P rns (2.17)

For each day l starting from the depot, the arrival time at the next customer
i is not smaller than the begin of work plus riding time:

ti ¥ ql � dn�1,i � xn�l,i � pxn�l,i � 1q � βw
for i P rns; l P rw � 1s. (2.18)

For each day l returning to the depot, the end time of work is not smaller
than the leaving time at the last customer i plus riding time:

el ¥ t2i � di,n�1 � xi,n�l�1 � pxi,n�l�1 � 1q � βw
for i P rns; l P rws. (2.19)

For each day l � 1, if the first customer i of the day is served after staying
overnight at the hotel close to customer i, the starting time of service at i
is not smaller than the starting time of work:

t1i ¥ ql�1 � ph1il � 1q � βw for i P rns; l P rw � 1s. (2.20)

For each day l� 1, if the last customer i of the previous day has been served
before staying at the hotel close to customer i, the leaving time at i is not
smaller than the starting time of work:

t2i ¥ ql�1 � phil � 1q � βw for i P rns; l P rw � 1s. (2.21)

For each day l, if the last customer i of the day is served before staying at
the hotel close to customer i, the end time of work is not smaller than the
end time of service at i:

el ¥ t1i � pi � phi,l � 1q � βw
for i P rns; l P rw � 1s. (2.22)

For each day l, if the first customer i of the next day is served after staying
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at the hotel close to customer i, the end time of work is not smaller than
the arrival time at i:

el ¥ ti � ph1i,l � 1q � βw
for i P rns; l P rw � 1s. (2.23)

The following conditions guarantee, that all arrivals occur within the chosen
time windows of the visited customers:

t1i ¥

τi∑
l�1

ailyil � siβw for i P rns. (2.24)

t1i � pi ¤

τi∑
l�1

bilyil � siβw for i P rns, (2.25)

Note that all these constraints are necessary for the correctness of the MILP
model.

2.3 A Problem Specific Branch and Bound Algorithm
A general BnC as used in many MILP solvers like Cplex [cpl] might not
be effective for such a special MILP, as introduced in Section 2.2, as it does
not make use of its special structure. Therefore, in this section we suggest
a problem based BnB for our MILP.

Compare a sub-path of a feasible path which has the form

X :� pn� 1, p1, p2, . . . , pt, qq

with 2 ¤ t ¤ n � w � 1, q P {1, 2, . . . , n, n � 2, n � 3, . . . , n � w � 1},
pi P {1, 2, . . . , n, n+2,n+3, . . . , n� w} for i � 1, 2, . . . , t. Consider a fixed
feasible permutation π on the set {1, 2, . . . , t} and the corresponding path

Y :� pn� 1, pπp1q, pπp2q, . . . , pπptq, qq,

where π is feasible, if for all r, s with 1 ¤ r   s ¤ t with n�1 ¤ pπprq, pπpsq ¤

n� w � 1 it holds: pπprq   pπpsq. Clearly, both sub-paths lead to sub-trips
of the salesman. If a complete path Z (ending with n� w � 1) starts with
a given sub-path X, then Z is called extended complete path of X. The
question is whether a sub-path has an extended complete path representing
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an optimal trip. In the following we will introduce a comparison criterion
between two paths, X and Y .

We observe that a sub-path does not uniquely determine the overall costs
of the sub-trip, as the choice which time windows are active and the starting
times ql for each day l with l P rws may affect the costs of the trip, too. For
a sub-trip g, the starting times of each day and the departure times of the
vertices are chosen such that the salesman reaches all possible time windows
and waiting times are minimized. Let cpgq be the accordant costs, which
are minimal for g. There is a minimum departure time tpgq and a (may be
identical) maximum departure time t1pgq for the (common) last vertex of
the sub-path, such that costs remain cpgq. The time t1pgq is obtained from
tpgq by adding the maximum possible service delay within the active time
windows of the customers of the current trip day. We proceed as follows.
First, we collect all possible trips resulting from the sub-paths X and Y ,
and receive the corresponding sets CX and CY . Second, we test for each
sub-trip h of CY , whether a sub-trip g of CX exists with the following two
conditions:
(a) cpgq   cphq,
(b) tpgq ¤ tphq.
Both steps do not cost much time, as usually in practice the number of
possible time windows is small for each customer. If the second criterion
is fulfilled, then it seems reasonable that all extended complete paths of
Y cannot represent an optimal trip and thus can be excluded from the
further search. Surprisingly, this is not the case, which can be observed in
Example 2.2.
2.2 Example. Suppose we have to serve four customers within one day, i. e.,
n � 4 and w � 1. Each customer requires a service of 30 minutes. The daily
opening hours of the customers as well as the distances in kilometer (km)
and riding times in minutes are shown in Figure 2.2, where edge labels have
the form km/minute. The traveling expenses per km are set to 1 cost unit
as well as the wage per minute. The distance of the sub-path X � 5, 1, 2, 3
is 120 km, and its minimum cost is cpXq � 330 � 120 � 120 � 90. The
sub-trip described by the sub-path Y � 5, 2, 1, 3 is 110. i. e., 10 km shorter,
and the minimum cost of Y is cpY q � 300 � 100 � 110 � 90. A further
parameter is the latest possible finish time, such that all time windows can
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Figure 2.2. Distance map and time windows for an instance with n � 4 and w � 1.

still be met. In the case of X, the time window of customer 2 enforces a
tour start not later than 10:25 h. This implies that the latest possible finish
time at customer 3 will be 13:55 h. In the case of Y we obtain 10:00 h as
latest possible starting time and 13:10 h as latest possible finish time at
customer 3. This time is enforced by the time window of customer 1. Thus
Y beats X w.r.t. three parameters: finish time, distance and minimum costs.
Concerning the unique completions X � 5, 1, 2, 3, 4, 6 and Y � 5, 2, 1, 3, 4, 6,
the afternoon time window of customer 4 causes waiting times. We obtain
the settings shown in Table 2.1. The remaining waiting time for Y is 45
minutes longer than that for X. The required working time is 365 minutes
for X and 390 minutes for Y . The distances are 240 km and 230 km for X
and Y , respectively. Thus, we have cpXq � 605   620 � cpY q, and X is the
optimal path.

The reason for this behavior is that possible waiting times are not
considered in the above criterion. We may remedy this as follows. If the
common last vertex q of both paths is a customer vertex, we denote by
dpgq (dphq) the day of the chosen time window for q in g (h). If q is an
extra depot vertex, we set dpgq � dphq � q � n� 1, i. e., we deal with the
corresponding working day "before" q. We further denote by wpgq (wphq)
the total working time of the traveler at day dpgq (dphq). Now, we change
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Table 2.1. Optimum schedules of two feasible trips for an instance with n � 4 and
w � 1.

X Y
No. Arr. Service Dep. No. Arr. Service Dep.
5 10:25 5 10:00
1 11:25 11:25-11:55 11:55 2 10:40 10:40-11:10 11:10
2 12:15 12:15-12:45 12:45 1 11:30 11:30-12:00 12:00
3 13:25 13:25-13:55 13:55 3 12:40 12:40-13:10 13:10
4 14:55 15:00-15:30 15:30 4 14:10 15:00-15:30 15:30
6 16:30 6 16:30

criterion (a) to (a’):

cpgq �maxp0, t1phq � t1pgqq � pδ � µq   cphq, if q P rns and dpgq � dphq

cpgq � pdphq � dpgqq � λ   cphq, if q P rns and dpgq � dphq

true, if q ¥ n� 2,

and introduce criterion (c):

wpgq ¤ wphq, if q P rns and dpgq � dphq

true, else

It holds the following

2.3 Lemma. Suppose, that for every subtrip h P CY there is a subtrip g P CX
such that (a’), (b) and (c) hold for g and h. Then, no extended complete
path of Y corresponds to an optimal trip.

Proof. Assume there is an extended complete path Y � pY, r1, r2, � � � , rsq

of Y that has an associated optimal trip h. Consider the restriction h P CY
of h to Y and choose g P CX such that (a’), (b) and (c) hold for g and h.
Construct the completion X � pX, r1, r2, � � � , rsq of X and choose g P CX
such that the customer vertices in {r1, � � � , rs} have the same time windows
and service times as in h. From (b) and (c), it follows that g is a valid
trip. We further see that, if at least one of the vertices q and r1 is an extra
depot vertex, the cost advantage of g in comparison to h is equal to the
cost advantage of g in comparison to h. Now, we consider the case that

38



2.3. A Problem Specific BnB Algorithm

both vertices q and r1 are customer vertices. If dpgq � dphq, the cost of g
in comparison to h may only be increased by a maximum waiting time of
maxp0, t1phq � t1pgqq before r1 multiplied with the maximum costs for this
working time, which in case of overtime is δ � µ. If dpgq � dphq, maximum
additional cost may be caused by fees λ for dphq � dpgq nights in hotel.
Thus, criterion (a’) implies that g is cheaper than h, which contradicts our
assumption.

Our problem based BnB traverses all possible sub-paths which are the
vertices of the search tree. Each sub-path begins with the initial depot
vertex n � 1. A next unvisited vertex is added step by step. We use two
pruning (backtracking) rules. The first one is the usual LP based rule,
i. e., we solve the current LP relaxation. If the received lower bound is
not smaller than the costs of the current best trip, this sub-path and its
extended complete paths may be excluded. For the branching process, we
prefer customer vertices to depot vertices, as omitting customers should
occur only rarely and abidance in the depot should be avoided. We also
prefer arcs whose value in the current LP solution is close to 1.

The second backtracking rule is our criterion concerning sub-paths. For
this purpose we use a memory data structure that stores the relevant
comparison information about the trips of already examined sub-paths
that are not dominated by other trips of other examined sub-paths. The
relevant comparison information about a trip g P CP of a sub-path P is
given by the end vertex of P , the set of vertices that are contained in P
and the parameters cpgq, tpgq and t1pgq. Since only trips of sub-paths are
comparable that have both the end vertex and the set of traversed vertices
in common, we subdivide our data structure into equivalence classes with
respect to this property. For every suitable sub-path length (between 4
and n � w) we will store relevant trip information of already examined
sub-paths for a maximum storage number of, say 100, equivalence classes.
A currently examined path P does either have an equivalence class rP s for
which a memory entry does already exist or adds rP s to our data structure
(maybe replacing the oldest class for sub-paths of the same length, if the
corresponding maximum number is reached). In the first case, the current
cost/time information about all undominated trips for rP s can be updated
by the associated information about P . If for every trip g P CP there is
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already information about a trip h that is superior to g, P will not change
the information associated with rP s and will thus be excluded from search.
In our implementation we use the C++ standard containers vector and
list and represent the sub-path classes as a vector of vectors, where each
element is composed of the information about the class (vertex set and end
vertex) and the list of (currently) undominated trips.

In order to give a pseudo code description of our BnB algorithm, we will
use a structure T with the following fields
• LP: Linear program that represents the current relaxation of the MILP
• ub: Upper bound on the objective value of the MILP
• P : List of integers in rn� w � 1s that represents the search path
• sP : List with schedule information about all relevant trips that correspond
to P (more precisely, each element of sP contains the necessary schedule
information about all trips that belong to the associated sub-path of P
and might have an extension to an optimal trip)

• branchArcs: List with the LP indices of the arcs that have been used to
reach the current branch of the search tree

• branchValues: List with the values from {0, 1} that are currently chosen
for the LP variables that correspond to branchArcs

• isBranchArc P {false, true}|E|: Indicator vector for the arcs that are
currently in branchArcs

• inPath P {false, true}|V |: Indicator vector for the vertices in P
• Pbest: List of integers that represent the best examined complete path
• sbest: schedule information of an optimal trip for Pbest

and a structure PM for the sub-path memory as described above. The main
algorithm uses the auxiliary routines initTree, updateTree, trackbackTree
and updatePathMemory. As the names imply, initTree initializes the binary
search tree with the root node while updateTree and trackbackTree perform
forward steps and backward steps, respectively. A forward step to the
next search tree node is done by adding a new vertex to the search path
and selecting the corresponding arc, i. e., fixing its LP variable to 1. In a
backward step, an arc that is currently selected will be forbidden by changing
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the fixing of its LP variable from 1 to 0 and removing the corresponding
vertex from the search path. If the arc of the current search tree node is
already forbidden, trackbackTree goes back to the first node of a selected arc
and changes that fixing. On the way back, the search path gets shortened
and the LP variables of former forbidden arcs have to be relaxed to the
range r0, 1s, again. In the main procedure, line 12 integrates our second
backtracking criterion. If we ignore this step, we deal with the general
branch and bound method for integer programs described by Dakin [Dak65]
but concerning the binary case. Our second backtracking criterion requires
the scheduling information of relevant trips of both the search path (stored
in T.sP ) and former examined sub-paths (stored in PM). The updating
process of T.sP performed in line 22 of updateTree requires some coding
effort as some case distinctions w.r.t. the properties of the current end vertex
of T.P and its predecessor have to be considered. Moreover, visit times that
correspond to the time windows at the last day of a trip must be scheduled
such that costs are minimized, i. e., possible waiting times are minimized
by delaying the start of that working day, if applicable. However, updating
T.sP is computational efficient in practice as the number of relevant trips
remains moderate for each sub-path. The same holds for the stored trips of
already examined paths in PM.

Algorithm 1: initTree
input : Instance parameters (see subsection 2.1.1) and upper bound ub
output : Initial search tree

1 obtain T.LP by relaxing each boolean MILP variable to r0, 1s;
2 T.ub � ub;
3 initialize T.Pbest to represent the empty tour pn� 1, n� w � 1q;
4 initialize T.P , T.sP , T.branchArcs and T.branchValues to be empty;
5 initialize all components of T.inPath and T.isBranchArc with false;
6 append the start vertex n� 1 to T.P ;
7 append the list with the schedule information of the unique relevant
trip g P CP (cpgq � 0, tpgq � α1, t1pgq � β1) for T.P to T.sP ;

8 T.inPathpn� 1q � true;
9 append 0 to both lists branchArcs and branchValues;
10 return T ;
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Algorithm 2: updateTree
input : search Tree T (by reference)
output : boolean value that indicates if T could be updated

1 let u be the current end vertex of the search path T.P ;
2 found � false;
3 ωbest � �1;
4 V1 � {v P rns | not T.inPathpvq};
5 V2 � {v P rn� w � 1szrns | not T.inPathpvq};
6 i � 1;
7 while i ¤ 2 and not found do
8 i � i� 1;
9 for v P Vi do
10 e � pu, vq;
11 if not T.isBranchArcpeq and v can be included into T.P such

that at least one of the trips in T.sP can be extended to a new
feasible trip then

12 found � true;
13 let ω be the value of the variable for the arc e in the

current solution of T.LP;
14 if ω ¡ ωbest then
15 vbest � v;
16 ωbest � ω;

17 if found then
18 v � vbest;
19 e � pu, vq;
20 append v to T.P ;
21 T.inPathpvq � true;
22 append a list of relevant trip schedules for the updated path T.P

to T.sP ;
23 append e to T.branchArcs;
24 T.isBranchArcpeq � true;
25 append 1 to T.branchValues;
26 fix value of the variable for e in T.LP to 1;
27 return found;
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Algorithm 3: trackbackTree
input/output : search Tree T (by reference)

1 while T.branchValues is not empty and last value of T.branchValues is
0 do

2 let e be the last arc of T.branchArcs;
3 relax the variable for e in T.LP to the range r0, 1s again;
4 delete last arc from T.branchArcs;
5 delete last value from T.branchValues;
6 T.isBranchArcpeq � false;
7 if T.branchValues is not empty then
8 let e be the last arc in T.branchArcs;
9 replace last value 1 of T.branchValues by 0;
10 fix value of the variable for e in T.LP to 0;
11 let v be the last vertex in T.P ;
12 T.inPathpvq � false;
13 delete last vertex v from T.P ;
14 delete last element from T.sP ;

Algorithm 4: updatePathMemory
input/output : search tree T and path memory PM (both by reference)
output : boolean value that indicates if updating changed PM

1 changed � true;
2 if a sub-path class entry for rT.P s exists in PM then
3 update the list of undominated trips for the class rT.P s by

comparison with the undominated trips for T.P that are given by
the last element of T.sP ;

4 if rT.P s entry remains unchanged then changed � false
5 else
6 generate a new entry for the class rT.P s that consists of the

relevant information of the undominated trips for T.P ;
7 Either add the new entry to PM or replace the "oldest" entry that

concerns sub-paths of the same length as T.P ;
8 return changed;
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Algorithm 5: BnB algorithm for TSPTW
input : Instance parameters as described in subsection 2.1.1
output : An optimal trip

1 T � initTree;
2 while |T.P | ¡ 0 and t ¤ tmax do
3 update lower bounds on the time variables of T.LP w.r.t. the

earliest finish time of T.sP ;
4 try to solve current T.LP;
5 if T.LP infeasible then trackbackTreepT q;
6 else
7 Let c� be the objective value of the current LP solution x�;
8 if c� ¡ ub then trackbackTreepT q;
9 else
10 if not updateTreepI, T q then trackbackTreepT q;
11 else
12 if not updatePathMemorypI, T q then trackbackTreepT q;

13 else if P is complete then
14 Let cpgq be the cost of the unique trip g for T.P

given by T.sP ;
15 Obtain tour cost c from cpgq by adding the penalty

fees of unvisited customers;
16 if c   T.ub then
17 T.ub � c;
18 T.Pbest � T.P ;
19 obtain schedule T.sbest of one optimal trip from

T.sP ;
20 trackbackTreepT q;

21 return T.Pbest � T.P and T.sbest;

Since our algorithm extends the classical algorithm of Dakin [Dak65] by
the backtracking criterion concerning sub-paths, we obtain from Lemma 2.3
that

2.4 Theorem. The problem based branch und bound algorithm finds an optimal
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trip.

2.5 Remark. In the moment when the search-path T.P becomes a complete
path from n� 1 to n� w � 1, we have already calculated the cost of the
associated optimal trip. We do not have to branch on the indicator variables
for the choice of time windows nor hotel options, since this task is implicitly
concluded within the updating process of the search paths trips in T.sP .

2.4 A Randomized Insert Heuristic
We chose a heuristic generalizing elementary techniques for the TSP as
Cheapest Insert [RSL77] and 2-OPT [LK73], and including a randomized
component by using the restarting technique [GSK98]. It was introduced in
[EO07]. We outline the main steps of the heuristic and then present some
specific refinements and optimizations of the heuristic.

1. Consider the path P :� pn� 1, n� w � 1q.
2. Generate a candidate list of customers in random order.
3. For each day l with l � 1, 2, . . . , w choose at random one of four options:

(a) A trip is forbidden at day l.
ñ The vertices n � l, n � l � 1 and the arc pn � l, n � l � 1q are
included in the path.

(b) After the work the traveler returns to the depot.
ñ The vertex n� l � 1 is included in the path.

(c) After the work he stays overnight at the hotel close to the last
customer of this day.
ñ If l �� w, the vertex n� l � 1 is not present in the path.

(d) After the work he stays overnight at the hotel close to the first
customer of the next day.
ñ If l �� w, the vertex n� l � 1 is not present in the path.

Note that the cases b), c), d) may lead to case a), if at the end of the
procedure it is not possible to include a customer i between n� l and
n� l � 1.
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4. Obtain a starting path P .
5. For each day l with l � 1, 2, . . . , w choose at random the overtime ul

from the set r0, U s.
6. Start with the first customer vertex in the candidate list.
7. Try to insert this customer vertex at a certain place. Choose the place of

insertion so that the costs are minimum over all places. Do this insertion
only if the costs of the path become smaller by this insertion (recall that
a penalty fee is assigned for omitting a customer).
Note that if a customer has more than one possible time window at a
day, then the earliest possible time window is chosen such that the tour
remains valid with respect to the settings of step 3 resulting in a unique
trip for the current path.

8. Update the candidate list be removing the current candidate.
9. GOTO 6.
10. Assume that in the current path at some day more than one cus-

tomer is served, say the customers C1, C2, . . . Ct with t ¥ 2. Then
for 1 ¤ i   j ¤ t, the order of the customers at this day is changed to
C1, C2, . . . , Cj�1, Ci, Cj�1, . . . , Ci�1, Cj , Ci�1, . . . , Ct�1, Ct, if all corre-
sponding time windows can also be met by the new order and if the
overall costs are decreased by this change. In other words, the positions
of customers i and j are exchanged, if possible. Note that such a step
can be viewed as an OPT step, where arcs contained in the path are
replaced by further arcs not contained in the path.

11. Apply step 10 for all possible days with more than one customer and as
long as such steps decrease the overall costs.

12. Repeat all steps 1 to 11 in multiple trials. In each trial a different random
order of the customers and a different combination of options for each
day is chosen.

13. Choose the best path of all considered trials.

Similar to the scheduling procedure in our branch and bound algorithm,
the visit times that correspond to the current path and time windows are
scheduled such that costs are minimized, i. e., possible waiting times are
minimized by delaying working day starts, if applicable.
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Further assume a customer has only few and small opening hours, and
the penalty fee for omitting him is large. The situation might occur that the
insertion step of the heuristic is tried relatively late such that the customer’s
opening hours cannot be reached by the salesman at this state. To avoid
this situation we suggest to introduce a probability distribution, where
such a customer is placed at the beginning of the customer’s list with large
probability.

If this situation still occurs and a customer i with large penalty fee cannot
be included any more, we suggest further modifications. First, replace an
already included customer j by the customer i. After that replacement it
might be possible to include also customer j. Second, consider also OPT
steps that slightly increase the costs of the trip, and test whether inserting
the customer i after that change may be possible.

2.5 EA Framework
Being rather satisfied with the results of the random insert heuristic, we
integrate its scheduling procedure (steps 6 to 11) as encoding function into
our EA framework. Thus, our genotypes are composed of a permutation of
rns that represents the scheduling candidate list (cf., step 2), a real valued
string of length w that represents the maximum allowed overtimes ul per day
(cf., step 5), and a binary string of length 3w that represents the daily tour
options (cf., step 3) where each option is represented by 3 bits indicating if
• a day is a working day or not,
• the traveler takes a hotel or returns to depot,
• a customer close to a chosen hotel is served in the evening or at the next
morning.

The initial population consists of randomly generated individuals. We use
linear ranking based roulette wheel selection with selective pressure 2 (see
subsection 1.5.3) to find the mating candidates for crossover operations. We
deal with every possible combination of the permutation variation operators
EM, SIM, PMX and OX. For the binary parts we use bit-flip mutation of
one randomly chosen gene (bit-swap mutation does not seam reasonable,
here) and two-point crossover. Uniform mutation and BLX-α crossover are

47



2. TSP with Multiple Time Windows

done for the real valued genes. Here, with probability 0.5 we mutate within
a 10% tolerance range of the current values and use α � 0.25 for crossover,
retaining the gene limits in both cases. Choosing the best found combination
of permutation variation operators, we further perform experiments with
multiple groups.

2.6 Experiments
We have implemented all our algorithms described above in C++ and
used the state-of-the-art package Cplex, version 12, to build and solve
our MILP (Section 2.2) and its LP relaxations, respectively. In order to
solve the MILP model we used both the Cplex MIP solver solitary and
the corresponding Cplex dual simplex solver within our branch and bound
algorithm of Section 2.3. We further have implemented the randomized
heuristic of Section 2.4 and combined it as solution generation scheme with
the EA framework of Section 2.5. Regarding the number r of trials in
the heuristic, we observed in pre-experiments that r � 100 � n is a good
choice. Thus we used this choice in the following experiments. All our
experiments were carried out on a Linux system with AMD Opteron CPUs
having 2100 MHz clock rate, 512 kB cache and 32 GB of RAM. Overall we
investigated 99 test instances, namely 28 real-world instances of FLS [FLS],
8 self-created instances and 63 random instances. The real-world instances
are denoted by the corresponding regions in Germany, where the customers
of these instances are located, and by an additional number if we have several
instances in this region. The first five self-created instances represent a
fictive service for restaurants in Schleswig-Holstein, where each day contains
three time windows. As further self-created test instances we considered
a possible politician journey from Kiel to the 15 other regional German
capitals. Berlin is visited a second time as federal capital of Germany, and
Kiel represents the depot vertex. Additionally, we tested one sub-instance
of this instance. The last self-created instance is a two days tour around
Kiel. The random instances differ in three parameters, namely the number
of customers n with values 5, 10, 15, 20, 30, 40, 50, the number of days w
with values 3, 5, 7, and the length of a grid square, where all locations are
uniformly and randomly chosen from, with values 100, 300, 500 kilometers.
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The remaining parameters were chosen in a random, but realistic way.
All 99 test instances with the most important parameters number of

customers (“Cu.”) and number of trip days (“Da.”) are listed in the Tables
2.2, 2.3 and 2.4. These tables also present the times of the Cplex MILP
solver, the BnB algorithm and the heuristic, where all times are given in
seconds and a time limit of 1 hour (3.600 seconds) was set for an experiment
on a single instance. Fortunately, if the MILP and the BnB, respectively,
was stopped after 1 hour, nevertheless upper bounds could be obtained,
which are also listed in the tables. Additionally, also the values of the
corresponding LP relaxations are listed as lower bounds (“LB”). Note that
if such a lower bound is omitted in the table, this means that one of both
exact methods terminated for this instance in less than 1 hour and verified
the optimum value. Additionally, all verified optimum values appear in bold
face in the tables.

Furthermore the upper bounds found by both exact methods and the
heuristic are compared.

The results show that the MILP solver of Cplex was not able to exactly
solve the MILP model of most instances with 15 or more customers within
1 hour. The lower bounds for the hard instances, where the MILP did not
terminate within 1 hour, are rather small. The large gap is probably caused
by the constraints that express implications with heavily weighted indicator
variables. This causes the corresponding relaxations to be rather lax.

The results concerning our own Branch-and-Bound algorithm are as
follows. On the 17 easy instances, when the MILP was able to verify the
optimum trip, the BnB verified it, too. For only one of these instances, it
was slightly slower than the MILP, but it was about 10.6 times faster in
geometric mean. Furthermore, it verified the exact optimum on 10 more
instances within one hour. For 38 of the remaining 72 � 99 � 17 � 10
instances, BnB gives better upper bounds than the Cplex MILP solver.
On the other hand, there are 31 instances for which the MILP gives better
upper bounds. We observe that BnB gives worse results for instances, where
customers have only few and different opening days and not all customers
can be served by a trip.

As already mentioned, an optimal trip was verified for 27 instances
(which appear in bold face in the tables), where 10 optimal trips were
verified only by the BnB. On 23 of these 27 instances, the optimal trip could
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Table 2.2. Relevant parameters and results for real and self-created instances.

Instance Param. Optimal costs Times
Cu. Da. RI MILP BnB LB RI MILP BnB

brunswick1 12 5 1299.66 1299.66 1299.66 0.08 1.94 1.33
brunswick2 18 5 1098.27 1098.27 1098.27 708.64 0.39 3600 1847
brunswick3 12 5 1239.88 1239.88 1239.88 0.09 3.34 1.55
brunswick4 17 5 1290.18 1290.18 1290.18 845.98 0.33 3600 313
brunswick5 11 5 1257.54 1257.54 1257.54 0.06 0.80 0.37
brunswick6 18 5 1275.82 1272.46 1272.46 764.69 0.36 3600 611
brunswick7 10 5 1176.10 1176.10 1176.10 0.05 0.12 0.26
brunswick8 16 5 1132.05 1132.05 1132.05 826.46 0.26 3600 162
brunswick9 20 5 1210.77 1210.77 3142.18 602.19 0.56 3600 3600
brunswick10 15 5 1285.64 1285.64 1285.64 0.18 837.10 10.29
rhineland1 32 5 5784.87 5807.45 9861.33 284.46 3.99 3600 3600
rhineland2 32 5 1650.05 1649.78 3647.49 307.67 2.91 3600 3600
rhineland3 31 5 7790.37 7804.70 9849.01 300.21 3.68 3600 3600
rhineland4 36 5 5563.77 5631.14 9742.29 252.99 6.25 3600 3600
rhineland5 32 5 5848.64 5852.85 9938.33 285.66 3.94 3600 3600
rhineland6 32 5 3546.37 3548.82 3641.16 281.46 3.74 3600 3600
rhineland7 28 5 7725.88 7724.93 7845.35 378.56 2.38 3600 3600
rhineland8 37 5 5611.94 5610.49 7725.13 257.81 6.95 3600 3600

baden1 47 5 4184.66 28055.44 35537.62 263.33 16.72 3600 3600
baden2 56 5 10121.23 28211.83 51403.23 278.25 32.07 3600 3600
baden3 55 5 10863.56 23985.45 69037.65 309.92 29.21 3600 3600
baden4 51 5 2457.98 16188.11 47226.46 204.44 18.21 3600 3600
baden5 45 5 3999.03 9988.24 55266.24 290.92 14.24 3600 3600
baden6 56 5 11854.83 26081.42 55425.96 233.85 30.98 3600 3600
baden7 49 5 5943.43 25807.29 27620.70 298.72 21.11 3600 3600
baden8 57 5 11879.94 30202.90 65564.49 189.86 34.41 3600 3600
baden9 45 5 1903.77 3824.54 45344.23 227.56 10.21 3600 3600
baden10 36 4 3817.70 11480.32 23275.06 184.51 6.95 3600 3600

restaurant1 5 2 335.35 335.35 335.35 0.01 0.97 0.40
restaurant2 7 2 706.35 704.37 704.37 0.02 38.06 11.84
restaurant3 9 2 829.72 813.76 813.76 408.60 0.04 3600 731
restaurant4 10 2 882.63 882.63 882.63 332.45 0.06 3600 3600
restaurant5 13 2 1084.72 1099.29 1086.85 349.10 0.14 3600 3600
germany1 16 5 2930.02 2930.02 3047.85 1419.41 0.32 3600 3600
germany2 8 5 2094.74 2094.74 2094.74 1512.76 0.04 3600 314

kiel 7 5 302.29 302.29 302.29 0.03 1125.91 97.17
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Table 2.3. Relevant parameters and results for small random instances.

Instance Param. Optimal costs Times
Cu. Da. km RI MILP BnB LB RI MILP BnB

rand1 5 3 100 426.62 426.62 426.62 0.01 9.56 1.01
rand2 5 3 300 1154.97 1154.97 1154.97 0.01 3.35 0.15
rand3 5 3 500 3340.08 3340.08 3340.08 0.01 4.74 0.12
rand4 5 5 100 294.84 294.84 294.84 0.01 139.65 7.21
rand5 5 5 300 858.86 858.86 858.86 0.01 168.83 6.84
rand6 5 5 500 1415.62 1415.62 1415.62 0.01 51.49 0.86
rand7 5 7 100 368.37 368.37 368.37 0.01 345.21 17.10
rand8 5 7 300 910.27 910.27 910.27 0.01 570.24 9.66
rand9 5 7 500 1549.42 1549.42 1549.42 0.01 534.51 12.84
rand10 10 3 100 533.79 533.79 543.71 185.98 0.08 3600 3600
rand11 10 3 300 1158.79 1158.79 1158.79 552.27 0.06 3600 367
rand12 10 3 500 11360.94 13264.52 11360.94 1037.55 0.06 3600 2
rand13 10 5 100 564.17 564.01 564.17 155.03 0.09 3600 3600
rand14 10 5 300 1125.74 1125.74 1126.15 414.07 0.09 3600 3600
rand15 10 5 500 1733.47 1733.47 1733.47 954.72 0.07 3600 368
rand16 10 7 100 532.46 532.46 558.38 186.79 0.10 3600 3600
rand17 10 7 300 1214.39 1211.05 1211.04 521.32 0.10 3600 3600
rand18 10 7 500 1875.01 1875.01 1875.01 826.82 0.08 3600 3600
rand19 15 3 100 778.40 790.58 842.60 203.24 0.30 3600 3600
rand20 15 3 300 7116.08 10184.73 6223.91 539.06 0.33 3600 3600
rand21 15 3 500 9216.67 12165.22 8371.80 777.54 0.24 3600 865
rand22 15 5 100 714.55 732.57 869.34 151.70 0.38 3600 3600
rand23 15 5 300 1595.80 1584.40 1584.40 586.27 0.31 3600 3600
rand24 15 5 500 8571.35 13266.42 9074.86 1008.64 0.35 3600 3600
rand25 15 7 100 707.67 667.18 772.74 171.87 0.41 3600 3600
rand26 15 7 300 1467.88 1488.19 1513.61 543.92 0.39 3600 3600
rand27 15 7 500 3342.27 14733.75 2844.34 1007.68 0.26 3600 3600
rand28 20 3 100 926.19 1942.16 1001.45 196.96 0.78 3600 3600
rand29 20 3 300 10729.13 18178.02 14236.97 615.75 0.64 3600 3600
rand30 20 3 500 14819.58 20361.16 14261.57 778.66 0.54 3600 3600
rand31 20 5 100 904.25 941.31 1145.55 171.15 1.01 3600 3600
rand32 20 5 300 1707.85 10849.94 1808.92 472.59 0.78 3600 3600
rand33 20 5 500 6494.18 12102.70 8205.38 983.87 1.08 3600 3600
rand34 20 7 100 870.72 907.23 974.46 198.32 1.09 3600 3600
rand35 20 7 300 2014.31 5501.70 2160.53 586.27 0.92 3600 3600
rand36 20 7 500 3324.53 13539.83 2872.09 1001.06 0.82 3600 3600
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Table 2.4. Relevant parameters and results for large random instances.

Instance Param. Optimal costs Times
Cu. Da. km RI MILP BnB LB RI MILP BnB

rand37 30 3 100 7034.39 16949.77 9991.21 225.08 4.63 3600 3600
rand38 30 3 300 20658.92 31139.15 32139.01 579.26 2.74 3600 3600
rand39 30 3 500 36811.01 45183.04 36251.84 1079.17 1.27 3600 3600
rand40 30 5 100 1163.96 1291.42 1249.01 218.38 4.54 3600 3600
rand41 30 5 300 9383.70 22969.34 11909.15 685.52 4.68 3600 3600
rand42 30 5 500 26324.49 39065.96 27123.78 1048.96 3.46 3600 3600
rand43 30 7 100 1424.85 1582.90 1552.39 231.65 4.82 3600 3600
rand44 30 7 300 3468.30 16795.94 6839.07 683.70 3.68 3600 3600
rand45 30 7 500 12417.07 40430.71 18041.16 1210.25 5.22 3600 3600
rand46 40 3 100 19027.49 36056.00 28967.30 262.86 11.43 3600 3600
rand47 40 3 300 41203.02 53255.73 47252.69 795.59 5.36 3600 3600
rand48 40 3 500 51222.93 60319.39 50156.91 1313.08 3.80 3600 3600
rand49 40 5 100 1590.98 13757.03 6683.66 247.77 12.73 3600 3600
rand50 40 5 300 28380.71 53973.23 32910.02 779.97 11.95 3600 3600
rand51 40 5 500 32567.18 51729.08 43033.24 1241.64 7.17 3600 3600
rand52 40 7 100 1768.17 4415.88 1877.92 260.63 13.83 3600 3600
rand53 40 7 300 8100.58 35662.86 12840.61 733.77 18.30 3600 3600
rand54 40 7 500 24323.75 44544.10 25707.99 1176.18 13.09 3600 3600
rand55 50 3 100 45458.84 68063.20 53960.16 258.92 19.39 3600 3600
rand56 50 3 300 56200.00 67187.36 59194.93 826.29 9.97 3600 3600
rand57 50 3 500 77785.52 88087.58 82363.07 1412.40 6.02 3600 3600
rand58 50 5 100 12685.05 30832.51 10646.60 266.49 41.53 3600 3600
rand59 50 5 300 38405.97 70702.29 48937.16 768.63 23.34 3600 3600
rand60 50 5 500 51037.43 73980.61 59919.87 1318.53 14.91 3600 3600
rand61 50 7 100 3211.01 26440.91 5313.53 306.91 51.50 3600 3600
rand62 50 7 300 21163.32 43653.72 23635.75 838.22 41.17 3600 3600
rand63 50 7 500 41792.96 62931.39 44969.36 1428.77 24.14 3600 3600

also be found by the heuristic. Also for the difficult instances, in average
the heuristic found better trips in shorter time. The heuristic is bad in such
cases where the strategy to choose the earliest possible time window with
respect to a given service order fails.

The basics of our EA test framework are as described in Section 2.5. We
applied it to all 75 instances with more than 20 customers. The stopping
criterion was always a population live time of n3 milliseconds, where n is the
number of customers. We experimental found that a population size of 50 is
a good choice as well as 10 matings per iteration. A populations objective
value is the cost of the TSPTW solution associated with the best individual
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(the negative fitness value of the best individual). For each instance and each
considered operational parameter setting we normalized the time-dependent
convergence data to be in r0, 1s2, where the maximum cost does always
correspond to the penalty cost of the empty tour. The algorithmic settings
are evaluated by considering the averaged convergence behavior over all
instances. Dealing with 1-group populations of size 50, Figure 2.3 shows
corresponding plots for different combinations of permutation variation
operators. The left hand side of Figure 2.4 is the same for isolated crossover
and mutation operators. Guided by these results, we decided to use the
combination of order based crossover (OX) and simple inversion mutation
(SIM) within our multiple-group population experiments. We consider
isolated groups as well as cloning migration (cf., subsection 1.5.5) in every
n-th generation. We use 16 groups of size 50 in both cases. The application
of selection and variation operators within each group is the same as for the
1-group EAs. The results are shown on the right hand side of Figure 2.4
together with the results of the corresponding one-group EA and the solitary
random insert heuristic as benchmarks. As expected, multi-group EAs
converge faster than the single-group EA in the beginning. They also
provide slightly improved final results in average. We further see that the
curves of both multi-group EAs are quite congruent, indicating that the
migration between groups does not bring much benefit, here.
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Figure 2.3. Convergence of singe-group EA for different variation operator combi-
nations.
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Figure 2.4. Left: Convergence of single-group EA for different variation operators.
Right: Convergence of multi-group EA using OX and SIM (EA1 deals with isolated
groups, E2 with migration). Benchmarks are given by the corresponding 1-group
EA and the solitary random insert heuristic.
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Chapter 3

Parameter Optimization of an Ocean
Model

3.1 Introduction

The 1-dimensional maritime biogeochemical (BGC) model considered here
was developed by Schartau and Oschlies [SO03] in 2003. It simulates the in-
teraction of dissolved inorganic nitrogen (N), phytoplankton (P), zooplankton
(Z) and detritus (D). The aim of the NPZD model is to reproduce corre-
sponding observations at three North Atlantic locations by the optimization
of free parameters within credible limits. In turn, the optimized model can
be coupled with 3-dimensional ocean models and help in predicting future
oceanic CO2 uptake, which is supposed to be proportional to the nitrogen
concentration.

A Fortran implementation of the NPZD model, provided by Ben
Ward, NOC Southampton, UK, is currently used within the interdisciplinary
research project "Excellence Cluster Future Ocean" at Christian-Albrechts-
University, Kiel. The parameter optimization of ocean models is one of the
integral parts of the excellence cluster.

Details on the NPZD model and its implementation (which varies from
[SO03] in some points concerning the objective function) are given in Sec-
tion 3.3. A rough mathematical description is as follows.

The interaction of the four tracers is described by source-minus-sink
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Z
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P

Figure 3.1. The four considered nitrogen states and their interaction in the ocean.

equations

smspNq � p�µpaq � a2qP� a3Z� a5D,
smspPq � pµpaq � a2 � a6PqP� γpaqZ,
smspZq � pa1γpaq � a3 � a4ZqZ,
smspDq � pp1� a1qγpaq � a4ZqZ� a6P2 � a5D

which correspond to a given time unit and depend on the parameter vector
a P A � Rn and somewhat complex functions µ and γ from A into R. The
model has between n � 10 and n � 13 free parameters e. g., we deal with
• a1 - assimilation efficiency of zooplankton,
• a2 - linear mortality of phytoplankton,
• ...
• a13 - remineralization rate of detritus.
Figure 3.1 sketches the interaction of the four tracers. The 1D-model (66
layers of depth) couples the ocean circulation model OCCAM [OCC] with
the BGC model using partial differential equations (PDEs)

BC
Bt

� �wC
BC
Bz

�
B

Bz
pKρ

BC
Bz
q � smspCq, C P {N,P,Z,D},

with sinking velocity parameters wC, turbulent mixing coefficient Kρ from
OCCAM, time t and depth in the ocean z. Actual biweekly measured
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3.1. Introduction

tracer data YpC,t,zq, pC, t, zq P J , is available from the Bermuda Atlantic
Time-Series (BATS). Here, J is the set of all considered tracer-time-depth
triples. Accordant interpolation of the model output (1990-1995) leads to a
function

ϕ : A ÞÑ R|J|,

where the model output itself is approximatively calculated with sufficient
accuracy by finite differences. Finally, we have a weighted non-linear least
squares optimization (regression) problem

min
aPA

fpaq :�
∑

pC,t,zqPJ

ωC|YpC,t,zq � ϕpaqpC,t,zq|
2. (3.1)

The parameter domain A is actually given by box constraints, i. e., A �∏n
i�1rlbi,ubis � R is a product of intervals.
The task is difficult to solve since

• practical optimization of f requires many evaluations of ϕ, each requiring
CPU time in the order of a second,

• the objective function f is non-convex.

Marine biologists carried out efforts to optimize the model with the binary
GA framework provided by Carrol [Car] in Fortran language but found
the results to be unsatisfactorily far from the measured data. For that
reason, the task was resumed within the future ocean cluster of excellence,
accompanied by the question if the model has to be revised/extended.

Our contribution concerning this matter is twofold. In joined work with
the research group Algorithmic Optimal Control - Oceanic CO2 Uptake
we developed and applied a tool for the parameter optimization problem
[RSS�10] (see section Section 3.4).

In general, if no good data-fit is obtained for a parameterized non-linear
model, one would like to know some lower bounds on the model error.
Inspiration given by problems with (mixed) integer linear programming
formulations (like those of Chapter 2 and Chapter 4) is to utilize a kind
of relaxation. Under certain circumstances we can use a parameter-free
relaxation of the problem type considered here. We address this matter in
Section 3.6. The idea is to deal with upper bounds on the smoothness of
the objective function. Principally, differential equation based models like
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that considered here are well suited to give estimations on the smoothness.

3.2 Related Work
There is a lot of work on modeling physics and ecology of the ocean. We
only refer to [SO03] and the references there as an entry point.

The model function ϕ that appears within our box constrained non-
linear least squares problem (3.1) is an approximation of the solution
of the given PDEs. The corresponding Fortran code provided by the
maritime biologists does this approximation using a forward Euler scheme
with adequate step size. We use the provided code without changes. However,
faster evaluations of the objective function may be possible without loss of
accuracy, if other time step schemes (e. g., of Runge-Kutta type) are used. A
further approach to reduce evaluation time within optimization is proposed
by Pries, Slawig, Koziel [PKS11] and Pries, Slawig [PS12].

The optimization tool which we use within our EA framework is an
implementation of the sequential quadratic programming (SQP) approach and
suited for general constrained non-linear optimization problems. Methods
for local optimization of non-linear least squares problems are introduced in
pertinent monographs like [GMW81][Kos93][OR00][BV04].

3.3 Details on the NPZD Model

3.3.1 Model state variables and parameters
The time-dependent concentrations of the four state variables, N, P, Z and
D, are calculated within a 66 level vertical grid of increasingly thick layers.
The top 20 layers of the grid are those for which measurements are available.
The parameters that influence the interaction of the state variables are listed
in Table 3.1.

3.3.2 Data
Currently assimilated data are from the Bermuda Atlantic Time-Series
Study (BATS; 31N 64W), i. e., one location only. Other sources of data such
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3.3. Details on the NPZD Model

Table 3.1. Model parameters with their physical units, mathematical symbols,
traditional values and credible limits

units symbol default range
fixed parameters
growth coefficient 1 Cref 1.066 -
growth coefficient 1

�C c 1 -
PAR extinction length m kw 25 -
short-wave PAR fraction 1 fPAR 0.43 -
tunable parameters
zooplankton
assimilation efficiency

1 β 0.75 0.3 - 0.93

phytoplankton
growth rate parameter

1
day µm 0.6 0.2 - 1.46

slope of photosynthesis
vs light intensity

m2

Wday α 0.025 0.001 - 0.253

zooplankton
loss rate parameter

1
day Φz

m 0.01 0 - 0.63

phytoplankton
light attenuation

m2

mmolpNq
κ 0.03 0.01 - 0.073

grazing encounter rate m6

pmmolpNqq2day ε 1 0.025 - 1.6
maximum grazing rate 1

day g 2 0.04 - 2.56
phytoplankton
linear mortality

1
day Φp

m 0.014 0 - 0.63

zooplankton
quadratic mortality

m3

mmolpNqday Φ�
z 0.205 0.01 - 0.955

detritus
remineralisation rate

1
day γm 0.02 0.02 - 0.146

half saturation
for NO3 uptake

mmolpNq

m3 kN 0.5 0.1 - 0.73

detritus
sinking velocity

1
day ws 6 2 - 128

phytoplankton
quadratic mortality

m3

mmolpNqday Φ�
p 0.05 0.01 - 0.955
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as the North Atlantic Bloom Experiment (NABE; 47N 20W) and Ocean
Weather Ship-India (OWS-INDIA; 59N 19W) are not considered at this
time.

Measured ecological BATS data corresponding to the biogeochemical
model are available for dissolved inorganic nitrogen (DIN) (mmolpNqm�3),
chlorophyll a (Chl a) (mgpChl aqm�3), zooplankton biomass (ZOO) (mmolpNq
m�3), particulate organic nitrogen (PON) (mmolpNqm�3), and C-primary
production (CPP) (mmolpCqm�3day�1). Measurements for each of these
five tracers were done two times in a month. For each measurement, stored
values are the year of observation, the day of the year (one decimal place)
the depth (m), and the corresponding value of the tracer. Except for zoo-
plankton biomass, the tracer value is its concentration at the corresponding
depth. For zooplankton biomass, the tracer value is the integrated con-
centration in the water column from the given depth (approximately 200
meters) up to the ocean surface (zooplankton is measured by dragging a
2µm net from depth to the surface). The other tracers were measured at 10
to 15 different depths each time. The depths of measurements variate and
do not correspond to the depths in the vertical grid of the NPZD model.
The model further requires an initial DIN concentration profile with respect
to the vertical grid. This is calculated as the mean depth profile derived
from the gridded DIN observations.

The BGC model is forced by output from the OCCAM global circulation
model [OCC]. These data estimate the surface irradiance (Wm�2) and
the profiles of temperature (�C), salinity (dimensionless), vertical velocity
(m s�1), and vertical diffusivity (m s�2), respectively. Hourly OCCAM data
is given for every year of the study (1990-1999 inclusive) and (except for
irradiance) for the 66 layers of depth of the NPZD model.

3.3.3 NPZD-equations

The (mmol N m�3) concentrations of dissolved inorganic nitrogen, phyto-
plankton, zooplankton, and detritus are noted by N, P, Z, and D, respectively.
We use auxiliary variables with the same mathematical symbols as in [SO03].
Those are stated in Table 3.2.

Now, the biogeochemical source minus sink equations of the four tracers
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3.3. Details on the NPZD Model

Table 3.2. Auxiliary variables of the NPZD model

symbol equation meaning
z depth in water column
T temperature
VP � µm � pCref q

cT maximum growth rate of phyto-
plankton

γpT q � γm � pCref q
cT temperature dependent reminer-

alization rate
ΦzpT q � Φzm � pCref q

cT temperature dependent phyto-
plankton growth rate

ΦppT q � Φpm � pCref q
cT temperature dependent zooplank-

ton growth rate
u � N

kN�N factor for nutrient limited growth
rate of phytoplankton

µpzq light limited growth rate of phy-
toplankton, according to Evans
and Parslow [EP85], see 3.3.6

Jpµ, uq � minpµpzq, Vpq growth rate of phytoplankton af-
ter Liebig’s Law of the Minimum

Gpε, gq � gεP 2

g�εP 2 zooplankton grazing function

after [SO03] are given by

smspNq � r�Jpµ, uq � ΦppT qsP� ΦzpT qZ� γpT qD,
smspPq � rJpµ, uq � ΦppT q � Φ�

pPsP�Gpε, gq � Z,
smspZq � rβGpε, gq � ΦzpT q � Φ�

zZsZ,
smspDq � rp1� βqGpε, gq � Φ�

zZsZ� Φ�
pP2 � γpT qD.

(3.2)

The above equations are an extension of the model of Oschlies and Garcon
[OG99], where the quadratic loss of phytoplankton is excluded and the
linear loss of phytoplankton goes to detritus:

smspNq � �Jpµ, uqP� γpT qD� ΦzpT qZ,
smspPq � rJpµ, uq � ΦppT qsP�Gpε, gq � Z,
smspZq � rβGpε, gq � ΦzpT q � Φ�

zZsZ,
smspDq � rp1� βqGpε, gq � Φ�

zZsZ� ΦppT qP� γpT qD.

(3.3)
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Strictly speaking, the model of [OG99] does not use the values γpT q, ΦzpT q
and ΦppT q but simply their temperature invariant counterparts γm, Φzm and
Φpm in (3.3). The implementation provides the option (compiler flag) to use
either (3.2) or (3.3), but both with the temperature invariant values γm,
Φzm and Φpm instead of γpT q, ΦzpT q and ΦppT q.

The source minus sink equations are embedded into differential equations
of the form

BC
Bt

� �wC
BC
Bz

�
B

Bz
pKρ

BC
Bz
q � smspCq, (3.4)

where C P {N,P,Z,D}, Kρ is the turbulent mixing coefficient and wC the
sinking velocity, which becomes nonzero only for D.

The carbon-primary production is given by

PP � Jpµ, uq � P �R.

3.3.4 Modeloutput
Hourly model output profiles are calculated as follows. At the beginning,
the initial profile is used for N, and the components of the other profiles
(P,Z,D,PP) are set to small values. The profiles of the next hour are
calculated by using the source minus sink equations (3.2)(3.3) four times
(the discrete time resolution of the BGC processes is 15 minutes) and the
drift and diffusion equation (3.4) once. The procedure is iterated for every
hour of the whole considered time period.

3.3.5 Costfunction
Let C P {N,P,Z,D,PP} be a tracer, a be a runtime year and NpC, aq denote
the number of measurements of tracer C in the year a. For any i P NpC, aq
the i-th measurement of tracer C in the year a is written as ypC, a, iq and
the corresponding time and depth as tpC, a, iq and zpC, a, iq, respectively.

The depth of the middle of the k-th model layer, 1 ¤ k ¤ 66, is denoted
by zmpkq. We further set zmp0q � 0. The nearest upper and lower layers to
zpC, a, iq (with respect to their centers) are determined as

kC,a,i � max{0 ¤ k ¤ 66 | zmpkq ¤ zpC, a, iq}
kC,a,i � min{1 ¤ k ¤ 66 | zmpkq ¥ zpC, a, iq}
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3.3. Details on the NPZD Model

We define f̃pPP, a, h, kq as the modeled carbon-primary production in the
24 hours time interval rh� 12, h� 11s around the h-th hour of the year a in
layer k, whereas f̃pC, a, h, kq is only the corresponding single model output
value, if C � PP. We further set f̃pC, a, h, 0q � f̃pC, a, h, 1q for every C, a
and h.

Now, for every measurement ypC, a, iq a corresponding value fpC, a, iq
can be derived from the model output. Booth values are scaled with respect
to the same measuring unit. For C � Z, the linear interpolation

fpC, a, iq � α � f̃pC, a, hC,a,i, kC,a,iq � p1� αq � f̃pC, a, hC,a,i, kC,a,iq,

with hC,a,i � btpC, a, iqc and α � zmpk2q�zpC,a,iq
zmpk2q�zmpk1q

is taken, whereas fpZ, a, iq
is 1

zpC,a,iq times the integral of the accordant piecewise linear function over
the water column r0, zpC, a, iqs.

Now, the over all cost function is calculated as

1
ν

∑
aPA

∑
CPTr

1
σC �NpC, aq

NpC,aq∑
i�1

pfpC, a, iq � ypC, a, iqq2,

where A is the set of model runtime years except for the first year (spinup
year), Tr � {N,P,Z,D,PP} is the set of the tracers, ν is the cardinality of
{pC, aq |C P Tr, a P A,NpC, aq � 0} and σ weights the different tracers and
is currently set to 0.1 for N, 0.01 for P, 0.01 for Z, 0.0357 for D and 0.025
for PP.

3.3.6 Growth of Phytoplankton

The source minus sink equations of the NPZD model are effected by the
light limited growth rate µpz, tq of phytoplankton which varies with depth
z and time t. Average light limited phytoplankton growth rates µpk, tq
are calculated for every layer k of depth using a simplified version of an
approximative formula by Evans and Parslow [EP85].
The basic formula for the light limited growth rate as a function of depth
and time uses the curve of Smith, as recommended by Jassby and Platt
when analytic integration is desired. The curve of Smith is applied to the
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variable irradiance:

µpz, tq �
VP � α � Ipz, tq√
V 2

P � pα � Ipz, tqq2

where VP is the maximum growth rate of phytoplankton, α is the initial slope
of photosynthesis vs light intensity, and Ipz, tq is the solar irradiance at depth
z and time t. Evans and Parslow deal with a triangular approximation of
the daily curse of the sun leading to a double integral for the representation
of average phytoplankton growth rate within one layer of depth.
In our case, time dependent values of the solar irradiance Ip0, tq at the
ocean surface are taken from the physical model, and the solar incidence
angle βair at noon is assumed to be the equivalent daily averaged incidence
angle for direct and diffuse radiation. The cosine of the solar incidence angle
βwater in water corresponds to the relative way of light per depth and is
calculated after Snells law rsinpβwaterq � sinpβair{1.33qs:

cospβwaterq �
√

1� 1� cos2pβairq

1.332 .

The light attenuation factor per depth is supposed to be caused by water
and phytoplankton only. For the k-th grid box, it is calculated as

κpk, tq �
1

cospβwaterq � kw
�

κ � Ppk, tq
cospβwaterq

.

With zk and zk � 1 as the top of the k-th and pk � 1q-th box, respectively,
we obtain

µpk, tq �
VP

zk�1 � zk

∫ zk�1�zk

z�0

α � Ipzk, tq � e
�κpk,tqz√

V 2
P � pα � Ipzk, tq � e�κpk,tqzq2

dz,

where the irradiance Ipzk, tq at the top of the k-th box is given by

Ipzk, tq � Ip0, tq � e�
∑k

j�2
κpj,tqpzj�zj�1q

Substitution of depth z by light intensity ϕpzq � α � Ipzk, tq � e
�κpk,tqz gives

µpk, tq � �
VP

κpk, tqpzk�1 � zkq

∫ ϕpzk�1�zkq

y�ϕp0q

1√
V 2

P � y2
dy
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with analytical solution

µpk, tq �
VP

κpk, tqpzk�1 � zkq
� ln
(

ϕp0q �
√
V 2

P � ϕp0q2

ϕpzk�1 � zkq �
√
V 2

P � ϕpzk�1 � zkq2

)
.

3.4 EA Framework
In joint work with the research group Algorithmic Optimal Control - CO2
Uptake of the Ocean of Thomas Slawig we developed an optimization frame-
work for the model that can also be applied to other parameter optimization
problems. The article [RSS�10] concerns experimental studies using the
tool and confirms conjectures of the marine biologists about the NPZD
model. Our framework hybridizes genetic operators with deterministic gra-
dient based search. Base is the simple classical EA framework as described
in Section 1.5. The set of genotypes is G � r0, 1sn, i. e., we operate on
normalized parameter values. The selection operator is linear ranking based
roulette-wheel selection with pressure parameter 2 (see subsection 1.5.3).
Our variation operators are BLX-alpha crossover, which is well suited if
no preferences for offspring properties are given [YG10], and two mutation
operators. The first mutation operator performs single gradient based search
steps, supporting the exploitation ability of the algorithm. For this purpose,
we use the C software library CFSQP, an implementation of the sequential
quadratic programming (SQP) method. Having the option to provide first
order derivations of the fitness function to be passed to CFSQP, we used
automatic differentiation (AD) to generate corresponding code. This yields
both less computational effort and higher numerical stability of the SQP
steps. Since experiments will show frequent convergence to solutions with
the same unsatisfying objective value, we also use uniform mutation (i. e.,
xi � Upr0, 1sq, i P rns) in order to allow more exploration of the search space.
Here, a mutant x̃ of an individual x is obtained by choosing some random
alleles to become x̃i � UpIiq, where the interval Ii is either r0, 1s (global
search) or rminpxi, xbest

i q,maxpxi, xbest
i qs with currently fittest individual

xbest (increasingly local search). The probabilities for the choice of Ii can
be fix or tend from the first alternative in the beginning toward the second
alternative in the end of the algorithm running time. The latter realization
of uniform mutation corresponds to the quantum inspired evolutionary
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algorithm operation for real coded problems that is given in [BDP09].
Like in the former chapter, we parallelize the framework by subdivision

of the population into groups of equal size.

3.5 Experiments
Again, our experiments are carried out on a Linux system with AMD
Opteron CPUs having 2100 MHz clock rate, 512 kB cache and 32 GB of
RAM. Our framework allows entirely gradient based search with random
start solutions (using many individuals, switching off crossover and using
SQP mutation). Starting with this setting, we observe convergence of many
individuals (roughly one third of the population) to the fitness value that
marine biologist obtained before. The fact that this ratio is true for both,
the actual measured data from BATS (yielding an unsatisfying least squares
error norm) and former generated model output by a certain parameter
vector (yielding error norm � 0) does give some evidence to the conjecture
that the bad data-fit of the BATS measurements is already best possible
w.r.t. the model. The error norm of this data-fit is about 40% of the
associated norm of the measured data itself.

Concerning the BATS measurements, we further observed a wide pa-
rameter spread under those solutions the fitness value of which is close to
that of the best solution a�. We illustrate this fact by Figure 3.2. Here, we
first optimized each of 100000 individuals by 10 SQP steps and let the 1000
fittest survive. Their fitness values are within 25% of fpa�q, but their genes
are very widely spread. Applying 100 further SQP steps to each of them
and selecting the fittest 250 individuals, the fitness values are distributed
within 1% of fpa�q but many genes show still a quite large variation. At
least, we could check that the final optimization result (after termination of
the SQP procedure) is a KKT point, which for our problem means exactly
what one does intuitively expect:

∇fpaqi


� 0 if ai P plbi,ubiq
¤ 0 if ai � ui
¥ 0 if ai � li

Our remaining optimization attempts are done as follows. We use a parallel
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Figure 3.2. Distribution of the components (cf., Section 3.3) of the best 1000
normalized parameter vectors of the NPZD model after optimizing each of 100000
random start parameter vectors with 10 SQP steps (blue marks) and the best 250
parameter vectors after optimizing each of the 1000 parameter vectors with 100
further SQP steps (red marks).

implementation with 64 independent groups of size 10. As we seek for a
local optimal solution that is better than the frequently reached best known
solution, we abandon migration for exploration reasons, here. For the same
reason, we use the full interval r0, 1s for uniform mutations and try uniform
mutation only as well as the combination of uniform mutation with SQP
mutation. Both mutation variants were testet with BLX-alpha crossover and
without crossover, respectively. In addition to a random start population
that is generated using uniform distribution w.r.t. the whole parameter
domain, we also tried a start with an initial population that was given by
a set of pareto optimal solutions. Namely, we used the Euklidian distance
of individuals to the best known solution x� as second fitness function (in
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addition to the negated least squares error norm f of the associated model
output). The set of pareto optimal solutions (the set of solutions which are
not inferior to other solutions w.r.t. both objectives) that was obtained by
running the EA framework regarding both these objectives was chosen to be
our alternative initial population. Despite our observations concerning the
parameter spread of good individuals, our hope was to find better optima
than x� by starting with individuals that provide good data-fit errors but
are also quite far away from x�.

In contrast to Chapter 2 and Chapter 5, we refrain from comparing the
convergence behavior for different operational parameter settings since not
much conclusions can be drawn regarding the special situation of frequent
convergence to the same optimum value, here.

None of our optimization attempts yielded solutions that are superior to
x�, which gives more evidence that the considered NPZD model has to be
extended in order to meet the assimilated data properly.

3.6 Lower Bounds for Non-Linear Regression
Like for the NPZD model, the task to simulate physical, biological or chem-
ical processes is often a matter of regression problems. In this connection,
parameters of suitable model functions have to be adapted such that ex-
perimental data is fit as good as possible. Depending on the chosen error
norm, efficient computation of globally optimal parameter sets is possible
for certain model functions like linear functions or polynomials. But in
many cases, the functions that are supposed to mirror reality are non-linear
and non-convex. In such cases, only local optima may be obtained. Now,
if the obtained solutions are not satisfying (as for the NPZD model), one
is interested to know if there are satisfying model parameters at all. A
negative answer to this question would be given by a theoretical lower error
norm bound which is greater than desired. This would imply that either
the experimental data or the model is invalid. One reason for a model
to be improper to allow any good data-fit may be that there exist higher
frequency/amplitude processes as incorporated by the model. Concerning
this aspect, we give lower bounds on the least squares error norm under the
assumption that limits on the derivations of the model function are known.
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3.6.1 The Regression Problem
We consider the regression problem

min
aPA

fpaq :�
N∑
i�1

|ϕpa;xiq � yi|
2, (3.5)

where A � Rn is a set of free parameters, x1   x2   � � �   xN , are
independent sampling points and yi, i P rN s accordant measured data,
roughly supposed to depend on x as described by the parameterized model
function ϕ : A�RÑ R.
3.1 Remark. We suppose ϕ to be given analytically. In practice, ϕ is often
given implicitly, usually in terms of differential equations which have to be
solved by numerical methods causing some approximation error.

Let k P N0. We assume that ϕpa; �q is k � 1 times continuously differen-
tiable and |ϕpa; �qpk�1q| ¤ D for every a P A. We aim to find a maximum
α P R¡0 with

α ¤ fpaq for all a P A. (3.6)

Actually, although dealing with parameterized models in practice, our lower
bound is applicable to any k � 1 times continuously differentiable function
φ : RÑ R with |φpk�1q| ¤ D, D P R¡0. We denote the set of these function
with Ck�1pR,R, Dq. Since we assumed for all a P A that the functions
ϕpa; .q in (3.5) are in Ck�1pR,R, Dq, the task

min
φPCk�1pR,R,Dq

N∑
i�1

|φpxiq � yi|
2 (3.7)

is a relaxation of (3.5).

3.6.2 The 1-Norm Case
To illustrate the simple idea, let us first consider the ‖ � ‖1 norm. Figure 3.3
shows the plot of some experimental data and the graph of a model function
φ. We suppose that φ P C1pR,R, Dq for some D P R¡0. Thus, for some fix
x P R and the sampling points xi P R, i P rN s the difference between φpxiq
and the zeroth Taylor polynomial of φ around x (being the constant function
with value φpxq) is upper bounded by D|xi � x|. The light green region in
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Figure 3.3. Illustration on the construction of a lower bound on a regression problem
in the ‖ � ‖1 norm

Figure 3.3 is the possible region of φ with respect to a certain x and this
Taylor bound. It follows by ∆-inequality that the difference between the
modeled value of a sampling point and the corresponding measurement yi
satisfies

|φpxq � yi| ¤ |φpxq � φpxiq| � |φpxiq � yi| (3.8)
¤ D|xi � x| � |φpxiq � yi|

Summation of (3.8) gives
N∑
i�1

|φpxq � yi| ¤ D

N∑
i�1

|xi � x| �

N∑
i�1

|φpxiq � yi|. (3.9)

Now, let y� P R be the best constant ‖ � ‖1-approximation to the data, i. e.,

y� :� argmin
yPR

N∑
i�1

|yi � y�|.
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We may replace the constant φpxq on the left hand side of (3.9) by y�. Thus,
if we set

α :�
N∑
i�1

|yi � y�| �D

N∑
i�1

|xi � x|

we have

α ¤

N∑
i�1

|φpxiq � yi|.

3.2 Remark. Clearly, the lower bound α may be negative if either our general
derivation bound D or the distances of the sampling points to x are too
large. If this is the case there may still be the chance to obtain a positive
lower bound by piecewise application of the above procedure. We will get
back to this matter when we have discussed the ‖ � ‖2 case.

3.6.3 The 2-Norm Case

Now, let D P R¡0 such that |φpk�1q| ¤ D and x P R. The k-th Taylor
polynomial of φ in x

T kx pxq :�
k∑
j�0

1
j!φ

pjqpxqpx� xqj

satisfies
|T kx pxiq � φpxiq| ¤

D

pk � 1q! |xi � x|k�1 �: Mi

which implies

|T kx pxiq � yi| ¤ |T kx pxiq � φpxiq| � |φpxiq � yi|

¤Mi � |φpxiq � yi|

i. e.,
|T kx pxiq � yi| �Mi ¤ |φpxiq � yi| (3.10)

From the single error bounds (3.10) we can obtain similar bounds concerning
the squared differences. If the left hand side of (3.10) is negative, we have

|T kx pxiq � yi|
2 �M2

i   0 ¤ |φpxiq � yi|
2
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Otherwise, we may square both sides and obtain

|T kx pxiq � yi|
2 � 2 � |T kx pxiq � yi| �Mi �M2

i ¤ |φpxiq � yi|
2

In both cases we have

|T kx pxiq � yi|
2 � 2 � |T kx pxiq � yi| �Mi �M2

i ¤ |φpxiq � yi|
2 (3.11)

By summation of (3.11) we obtain
N∑
i�1

|φpxiq � yi|
2 ¥

N∑
i�1

|T kx pxiq � yi|
2 � 2 �

N∑
i�1

|T kx pxiq � yi| �Mi �

N∑
i�1

M2
i .

(3.12)
The inequality of Cauchy Schwartz implies that the right hand side of (3.12)
is at least
N∑
i�1

|T kx pxiq�yi|
2�2�

√√√√( N∑
i�1

|T kx pxiq � yi|2

)
�

(
N∑
i�1

M2
i

)
�

N∑
i�1

M2
i . (3.13)

Let P� be a regression polynomial of degree k, i. e.,

P� :� argmin
PPΠk

N∑
i�1

|P pxiq � yi|
2.

The computation of P� can efficiently be done by solving a system of linear
equations. Clearly, P� is a better approximation to the measurements than
the approximation by our Taylor polynomial of degree k, i. e.,

N∑
i�1

|P�pxiq � yi|
2 ¤

N∑
i�1

|T kx pxiq � yi|
2. (3.14)

Now, setting

c :�
∑N
i�1M

2
i∑N

i�1 |P
�pxiq � yi|2
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we can rewrite (3.13) as

N∑
i�1

|T kx pxiq � yi|
2 � 2

√
c �

√√√√( N∑
i�1

|T kx pxiq � yi|2

)
�

(
N∑
i�1

|P�pxiq � yi|2

)
(3.15)

� c �

N∑
i�1

|P�pxiq � yi|
2.

We can make (3.15) smaller by replacing the second factor under the square
root with the right hand side of (3.14) which yields

p1� 2
√
cq �

N∑
i�1

|T kx pxiq � yi|
2 � c �

N∑
i�1

|P�pxiq � yi|
2. (3.16)

If we further assume that 1 � 2
√
c ¥ 0, i. e., c ¤ 1

4 , we can apply (3.14)
conversely and find that (3.16) is at least

p1� 2
√
c� cq �

N∑
i�1

|P�pxiq � yi|
2

We have proofed the following

3.3 Theorem. Let N P N and xi, yi P R, i P rN s. Let k P N0, D P R¡0 and
φ : RÑ R be any function in Ck�1pR,R, Dq. Let x P R and set

Mi :� D

pk � 1q! |xi � x|k�1.

Let P� be a regression polynomial of the data pairs pxi, yiq P R2, i P rN s,
i. e.,

P� :� argmin
PPΠk

N∑
i�1

|P pxiq � yi|
2.

Set

c :�
∑N
i�1M

2
i∑N

i�1 |P
�pxiq � yi|2
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and

α :� p1� 2
√
c� cq �

N∑
i�1

|P�pxiq � yi|
2.

If c ¤ 1
4 , it holds that

α ¤

N∑
i�1

|φpxiq � yi|
2.

3.4 Remark. Theorem 3.3 utilizes error bounds on a k � 1 times continuous
differentiable model function w.r.t. corresponding Taylor polynomial inter-
polation of degree k. Crucial is only the fact that we have some polynomial
of degree k for which such error bounds are known. Another polynomial
type that can be utilized is interpolation polynomials through k�1 different
sampling points x̂j , j P rk � 1s (not to be confused with the data samples
xi, i P rN s). This provides the more general error bounds

Mi :� D

pk � 1q!

k�1∏
j�1

pxi � x̂jq, i P rN s,

which are especially good if the x̂j are chosen as the Chebyshev roots

x̂j �
1
2 pa� bq �

1
2 pb� aq cos

(
2j � 1

2n π

)
, j P rk � 1s

within the interval ra, bs � rx1, xN s of interest (see e. g., [KC09]).

3.5 Remark. Similar to the ‖ � ‖1 case, the derived lower bound α can be
negative. This will particulary be true, if the sampling point interval is wide,
causing large Mi values. In this case, one may try to apply Theorem 3.3
piecewise by partitioning the interval rx1, xN s into narrow subintervals,
summing up the obtained lower bounds. As long as there are enough
sampling points within the subintervals, the constant c will decrease by an
order that depends on the degree of the regression polynomial P�. The
lower bound α will be positive if the ratio c of the summed squared Taylor
error bounds and the ‖ � ‖2

2-error of the regression polynomial is roughly less
than 1{6. The task will be to find a partition of the sampling point interval
such that the sum of the obtained lower bounds is as great as possible.
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3.6.4 Application Examples
The applicability of Theorem 3.3 may seem somewhat unclear without
examples. We give two simple examples, a self made one and a physical
application.

A Simple Harmonic Model

For our first example we simply draw 500 equidistant samples from a sine
wave sinpxq{2 on the interval r0, 2πs and add some Gaussian noise in order
to simulate measurement errors. The obtained data px1, y1q, . . . , px500, y500q

is the dots in Figure 3.4. The least squares error of this data w.r.t. the
original function is √√√√ 500∑

i�1
pyi �

sin xi
2 q2 � 1.058.

Considering the plot of samples it is still obvious that the underlying original
function was some sine wave. A modeler will use the parameterized function

ϕpa1, a2, a3, a4;xq � a1 � a2 sinpa3x� a4q

and find rough box constraints on the amplitude and the frequency, respec-
tively, say
• b P r0.4, 0.6s
• c P r0.9, 1.1s

i. e., the parameter set is A � r0.4, 0.6s � r0.9, 1.1s � R � R. Parameter
optimization finds an a� P A which is approximately the vector p0, 1

2 , 1, 0q
T

of the original (supposed to be unknown) function. The corresponding error
norm is � 1.055. If one regards a plot of this solution and the data points,
it will be reasonable to conjecture that no much better data fit is possible
by a similarly smooth model. For the given setting, we can calculate that
the third derivation of the model function satisfies

ϕp3qpxq ¤ 0.8 for all a P A.

Now, we can try and apply Theorem 3.3 for functions in C3pR,R, 0.8q using
a suitable division of the sampling interval r0, 2πs. For the division shown in
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Figure 3.4. Piecewise regression of a noisy sine wave sample by polynomials of
degree 2.

Figure 3.4 where the x are chosen to be the centers of the subintervals, we
calculate the corresponding Taylor bounds as well as regression polynomials
of degree 2 and finally derive a lower least squares error norm bound of
� 1.014. The bound is within 4% of the corresponding error of the optimized
model and, thus, proves the above conjecture.

A Solar UV Radiation Model

We consider a cloud of ultra-violet radiation measurements at clear sky
conditions depending on the solar elevation angle x. A simple model
supposes the extraterrestrial ultra-violet radiation u0 to be absorbed by a
thin atmospherical layer some h kilometers above the ground having some
attenuation factor at for perpendicularly passing light:

uv � ϕpuv0, h, at;xq � uv0 � at
� 1√

1�p r
r�h

�cospxqq2
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with Earth’s radius r. The parameters have constant values and box
constraints

uv0 � 0.6176
r � 6366
h P r10, 500s
at P r3, 10s
x P r0, π2 s.

If the parameters are within those natural bounds, we can estimate that
|ϕpuv0, h, at; �q1| ¤ 0.35 and |ϕpuv0, h, at; �q2| ¤ 1.2. We further have that
the considered model function is monotonically increasing for every param-
eter set. For that reason, we can estimate the quality of our bounds by
comparison with the best monotonic regression which is a step function and
can be efficiently calculated (see, e. g., [BBBB72]). Figure 3.5 shows a cloud
of 307nm UV measurements in dependence of the solar elevation angle and
the corresponding model function with optimized parameters as well as a
plot of the optimum monotonic regression function. Figure 3.6 shows lower
bounds obtained by Theorem 3.3 for different equidistant partitions of the
sampling interval, using Taylor bounds and regression polynomials of degree
0 and 1, respectively.

The measurements were taken at Sylt Island (Germany) and provided by
Prof. Dr. C. Stick, Institute of Medical Climatology, CAU-Kiel. The error
norm of the parameter optimized model function is 2.19 while monotonic
regression has a little bit less error norm of 2.15. The best lower bound
by our method using the second derivation estimation is 1.99. From the
results we can draw two conclusions. Monotonic regression provides a better
lower bound as our method, here. However, no such estimation can be done
for models that are not monotonic. The best lower bound by our method
is already good enough to state that the parameterized model is a quite
suitable choice in the set C2pR,R, 1.2q of all model functions with similar
smoothness properties. The second conclusion is that the obtained error
bounds confirm the impression that we get from a view of the data cloud,
namely that the error of a smooth curve approximation to the data will
always be great in relation to the norm of the data vector itself. The reason
is, that our model function does not incorporate all parameters on which
the ultra-violet radiation depends. An unconsidered but important factor is
the density of atmospherical aerosol. Aerosol is subject to variation and,
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Figure 3.5. UV measurements of 307nm wave at Sylt Island (1995-2004, every 6
minutes at clear sky conditions) and corresponding data fits by lines (piecewise),
the parameterized model and a monotonic function

actually, the ozone layer which absorbs most of the ultra-violet radiation is
subject to variation, too.

3.6.5 Application Difficulties Concerning the NPZD Model

As already mentioned, differential equation based models are principally
suited to give smoothness estimations in order to apply our regression bound
procedure. Concerning the biogeochemical ocean model, the variation of
the four considered tracers depends on their concentrations and the given
vertical drift and diffusion parameters, respectively. Assuming that we have
a time series that provides concentration measurements of all tracers and
for all depth grid points of the 1-dimensional model, we can proceed as
follows. In a first step we determine the maximum measured concentration
for each tracer and each layer of depth within either the whole time horizon
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Figure 3.6. Lower regression bounds on the UV model using different equidistant
subdivisions of the sampling interval

or within predefined subintervals of the time horizon. We decide to be
unsatisfied with our model if it exceeds those maximum values by more
than a certain factor, say 2. Thus, using twice the maximum measured
concentrations, we can separately estimate the maximum model variation
for each tracer and each layer of depth, incorporating the box constraints
on the free parameters. Finally, we sum all corresponding lower error norm
bounds to obtain the lower bound on the error norm of the ocean model.

Unfortunately, our assumption about the time series is not completely
fulfilled. As described in Section 3.3, measurements of dissolved nitrogen,
phytoplankton and detritus have been taken at varying depths which do not
correspond to the depth grid points of the ocean model. The measurements
have to be interpolated to meet the model depth grid. Even worse is
the situation concerning zooplankton dragnet measurements as they only
provide average values for the whole water column. Thus, we would have to
make assumptions about the actual distribution of zooplankton. Further,

79



3. Parameter Optimization

our regression bound procedure requires a rather dense time grid resolution.
The provided biweekly measurements may still be too sparse for making
suitable estimations on the error norm bound.

Thus, for now, we could only try our own optimization framework of
Section 3.4 in order to get even more evidence that the model is not able to
meet the actual data properly.
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Chapter 4

A Course Scheduling Problem

4.1 Introduction
The challenge of the Training Management System (TMS) of our corporation
partner MINT is to schedule the courses of personal training institutions.
Concerning long term planning (up to two years), there may be up to
several hundred courses to be held by several hundred instructors for several
thousand trainees. High complexity is given by various kinds of constraints,
concerning curriculums of courses, qualifications and working rules of human
resources, capacities of rooms, etc. We refer to this problem as MINT SP
(MINT Scheduling Problem).

Since the foundation of the MINT company in 1998, TMS was extended
to support many features that rose from the requests of acquired customers.
This lead to a very complex model terminology including some redundant
concepts. In joined work with Werner Lehmann from the MINT company,
the features of the current scheduling algorithm were worked out and
described in terms of an easier structured model [LRS10]. The new model is
also intended to allow for an easier integration of future customer demands.

4.1.1 Our Problem
Basic components of the problem model described in [LRS10] are events,
locations, resources and assignments. Events represent the atomic parts
of courses, e. g., one lesson in aerodynamics, a flight simulation or an
examination. Every event has a given duration. Locations are the different
places of training centers. Resources may be human resources like instructors,
tutors and trainees. Other resources are rooms and technical equipment.
Finally, every event has one assignment for every required resource type.
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Each assignment specifies a set of qualified resources, including periods of
qualification if necessary. Further, resources have limited capacities w.r.t.
both the number of simultaneously scheduled events and the allocation
of simultaneously scheduled assignments (each assignment will allocate a
predefined amount of the capacity of the selected resource).

We use the following notations:

• E: set of all events,

• R: set of all resources,

• L: set of all locations,

• A: set of all assignments,

• dj , j P E: duration of event j,

• cEr , r P R: event capacity of resource r,

• cAr , r P R: assignment capacity of resource r,

• RQi , i P A: set of qualified resources for assignment i,

• alloci, i P A: resource allocation of assignment i.

The planning horizon is supposed to be divided into sub intervals of equal
length (e.g. 15 minutes), all assignment durations and all possible time
spaces between two assignments being multiples of this length. Thus, we
can find a smallest N P N such that every real point in time within the
planning horizon may be transformed to a t P rN s. We define

• T :� rN s: set of normalized points in time.

This set will be used for our time indexed ILP model in Section 4.2. Some
resources (especially human resources) are mobile and allowed to travel
between different locations. Certain assignments do not allow resources that
have to travel longer than a given time limit. We write

• τl,l1 , l, l1 P L: required travel time (measured in time grid units) between
locations l and l1.

• ttri , i P A: maximum allowed travel time for the scheduled resource of
assignment i.
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A scheduling result assigns unique periods and locations to events and
unique resources to assignments, if possible. Some events or assignments
may also remain unscheduled.

Based on the above basic components, the complex system of planning
rules is formulated by round about 30 hard constraints, which can optionally
occur within problem instances. Some constraints also have soft counterparts,
formulated as corresponding objectives. We give an overview of the planning
rules by listing all constraints with a rough description of their meaning.
An instance of the MINT SP provides each constraint by an object which
represents all data that is necessary for the exact specification. From the
input objects, we derive corresponding parameters that we will use to
describe our ILP model. Those parameters are also introduced in the listing
below.

� Scheduled event: Events are either scheduled or unscheduled. Unscheduled
Events do neither have a starting time nor a location.

� Event duration: The actual duration of a scheduled event must accord
with its specification.

� Event period allowed start/end: Either all events or the earliest (latest)
event from a given set of events must start within a specified period.
Examples: Specifying the time horizon of a course or allowed times of
day for the events of a course.
Parameters:

• Eep � E: considered events
• Tep � T : allowed time grid points derived from allowed times of day
• modeep P {startOfFirst, endOfLast, startOfAll}: application mode of
Tep for Eep

• T 1ep � T : allowed time grid points that correspond to the time horizon
for Eep

� Event period minimum distance: Scheduled events of the event set Eep must
not overlap and have to use the earliest possible starting times w.r.t.
their chronological scheduling order.
Example: A scheduled course shall not have unnecessary idle time.
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� Event period zero distance: Scheduled events of the event set Eep must take
place consecutive and gapless without overlap (more restrictive version
of Event period minimum distance).

� Event period sequence: The starting time order of scheduled events of Eep
must correspond to a predefined order.
Example: Different subjects of a course build upon one another.
Additional parameter: permutation of the elements of Eep

� Timeframe rule: This rule defines periods within which certain assignments
have to take place. The periods may optionally depend on locations and
resources.

� Scheduling group: Events which belong to the same unit of a course must
be scheduled together (either all or none).
Parameters:

• Esg � E: events of the group
• APsg � A� 2T : see subsection 4.2.5

� Assignments running time: Scheduled assignments of a given assignment
set must take place within a bounding period of limited duration.
Example: Courses shall be prevented from being unnecessary long as
they require employees to be released from work.
Parameters:

• Aar � A: considered assignments
• minar,maxar limits on the bounding period
• unitar P {minutes, resourceDays}: measurement unit

� Event alternatives: Some events are alternatives to each other. For a
given system Eea � E of event sets, at most one event per set must be
scheduled.

� Event location: A rule el of this type defines a set of allowed locations Lel
for a given event set Eel. Moreover, it can be forced that the events have
to take place at the same location (by a Boolean flag useSameLocation).
Example: Providing convenient learning conditions.
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� Qualified resources: Resources must be qualified for their assignments.

� Resource event capacity: Resources r P R may not be scheduled simultane-
ously for more than the maximal allowed number of events cEr . Typical
numbers are 1 for employees and most other resources. Some resources
like rooms with working stations allow more than one event.

� Resource assign. capacity: Resources r P R may not be scheduled simulta-
neously for more than their maximum assignment allocation cAr (recall
that each assignment i has a certain allocation alloci).

� Allow non-local resources: The scheduled resource of certain assignments
i P A must satisfy the given travel time limitation ttri .

� Required continuity: A rule rc of this type defines a set Arc � A of
assignments that must use the same resource.
Example: All lessons of some subject of a course are desired to be taught
by the same trainer.

� Discontinuity: A rule dc of this type provides two sets Adc,1, Adc,2 � A

of assignments. No pair from Adc,1 � Adc,2 is allowed to use the same
resource.
Example: The trainer of a course is not allowed to be the examiner of
the course participants.

� Associated resources: For certain assignments (client assignments) which
directly depend on another assignment (master assignment) the resource
choice may depend on the chosen resource of the master assignment.
Example: Simulators that are associated with theoretical events in certain
rooms.
Parameters:

• amaster
ara P A: master assignment

• Aclient
ara � A: client assignments

• A set of associated resources Rara,r � R for each resource r P R that
is qualified for the master assignment
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� Resource day: Working days of human resources (which do not necessary
match calender days) must satisfy limits concerning the maximum work-
ing time window and the total amount of work.
Parameters:

• Rrd � R: resources that are affected by the rule
• Trd � T : validity period of the rule in terms of the time grid
• maxDrd: maximum total amount of work per resource day
• maxWrd: maximum working time window size per resource day

� Count duty in periods: There may be limits on the activities of resources
within fix periods or rolling periods, respectively. The limits may be
universal or restricted to certain locations.
Example: Definition of working rules.
Parameters:

• Rcd � R: considered resources
• Lcd � L: considered locations
• kcd P N: total number of periods that have to be checked
• Tcd,l,k � T , k P rkcds, l P Lcd: location dependent periods in terms of
the time grid

• mincd,maxcd P N: limits
• unitcd P {assignments,minutes, resourceDays}: measurement unit

� Count filter in periods: Similar to Count duty in periods, but independent
of locations and with the optional restriction to a given set of filter
assignments.
Alternatively to the sum of activity durations, this rule may also apply
to the duration of consecutive activity.
Example: Maintenance of the subject competence of teachers.
Parameters:

• Rcf � R: considered resources
• Acf � A: considered filter assignments
• kcf P N: total number of periods that have to be checked
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• Tcf,k � T , k P rkcfs: periods in terms of the time grid
• mincf ¤ maxcf : limits
• unitcf P {minutes, resourceDays}: measurement unit

� No resource sharing across locations: A resource cannot have two locations
at the same time.

� Assignment distance: Bounding periods of the scheduled assignments of
two given assignment sets must have a minimum/maximum distance
w.r.t. either their start times or the gap in between. Optionally, usage of
the first feasible time respecting the gap limit can be required (distance
mode minimalGap).
Example: Preparation time for examination. Parameters:

• Aad,1, Aad,2 � A: considered assignment sets
• minad ¤ maxad: limits
• unitad P {minutes, resourceDays}: measurement unit
• mode P {gap,minimalGap, startDistance}: distance mode

� Resource day sequence: Scheduled working days at which certain assign-
ments of a given resource take place must either consecutively use allowed
weekdays or comply with minimum and/or maximum gaps which are
defined w.r.t. the chronology of the working days.
Example: Definition of appropriate teaching/learning rhythms of a course.
Parameters:

• rrds: considered resource
• Ards: considered assignments
• δmin

rds,k, δ
max
rds,k, k P r|Ards| � 1s: gap limits (optional)

� Resource day assignments: A certain group of assignments Arda must be
scheduled for the same resource and take place at the same working day
of this resource.

� Travel time: If a resource is used at different locations, there must be
enough travel time between the corresponding activities.
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� Join validity: Certain events may be joined under corresponding rules
which have to be observed.

� Same resource setup time: Resources may require certain set-up times for
certain assignments. If several assignments share a resource, the required
set-up time must be the same for all of these assignments.

� Assignment period: The actual duration of a scheduled assignment must
match the duration of the associated event inclusive the possibly required
set-up time for the assignment.

� Assignment requires resource and period: An assignment of a scheduled
event must have a selected resource.

4.1.2 Related Work
There is a large amount of literature on the field of scheduling, which
concerns exact methods as well as approximation algorithms, heuristics
and evolutionary algorithms. We refer to the surveys [Alf04] [ANCK08]
[BSW07] [CDL04] [KLPS07] [LL00] [SSW00] [TB01].

The course scheduling problem on hand contains many hard combinato-
rial subproblems. Variants of algorithms that are dedicated to these subtasks
may be utilized for precalculations within an algorithmic framework for the
MINT SP. For example, we could reduce the number of variables of the ILP
model (Section 4.2) which is the main contribution of this chapter. We give
a few example problems along with their relation to the MINT SP.
4.1 Example. Resource Constrained Project Scheduling Problem (RCPSP):
Given are n jobs of predefined duration, optional precedence relations
between pairs of jobs and m kinds of limited but renewable resources. Each
job requires a certain amount of these resources. The objective is to find a
schedule with minimum makespan such that precedence relations hold and
there are always enough resources available. With respect to the MINT SP
the jobs can be parts of courses, e. g., events. Precedence relations concern
the order of learning contents as given by Event period sequence constraints.
Finally, resources are teachers, employees, rooms and equipment.
4.2 Example. Max-k-Cut Problem: Given is a graph G � pV, Eq with non-
negative edge weights and a number k P N. The goal is to find a partition
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of V into k subsets, such that the total weight of inter-partition edges is
maximized. Within the MINT SP we can consider V to be a set of employees
(teachers) in a region, E as travel connections and the corresponding weights
as travel distances. The parameter k is the number of available training
center locations in the region. A maximum weight partition of V is a
promising base to assign employees (teachers) to the training centers.

4.3 Example. k-Matching Problem: Here, a hypergraph H � pV, Eq is given
with non-negative hyperedge weights. A maximum k-matching is a maximum
weight subset M � E with the property that no vertex of V is contained in
more than k hyperedges in M . Concerning the MINT SP one could define
V to be a set of teachers and each hyperedge to represent those teachers
that are qualified for a certain assignment. The parameter k is a number
of events that must not be exceeded by the teachers within the planning
horizon (e. g., due to working rules). Then, a maximum k-matching might
be a good assignment selection for the schedule.

4.4 Example. k-Set Cover Problem (SCP): Again, a weighted hypergraph
H � pV, Eq is given. The task is to find a minimum weight subset S � E ,
such that at least k vertices are contained in some hyperedge of S. For
example, we can define V to be a set of courses that have to be offered and
for each available room a hyperedge containing all courses that are possible
in that room. Considering the hyperedge weights to be room charges, a
minimum k-set cover S is a cheapest room selection such that a (required)
selection of least k courses can be assigned to one of the rooms in S.

Some contributions like [FL05][HP11][SMOK06] are about ILP formula-
tions for (parts of) scheduling problems and solution algorithms based upon
these.

Due to the limitations of our project, we had to restrict our work to
some direction and decided to give a quite comprehensive ILP model of the
MINT SP on the one hand and to develop an EA framework on the other
hand. The EA framework is the topic of the Diploma Thesis of Torben
Rabe [Rab12] and can be understood as a sophisticated extension of the
EA approach to the RCPSP described in [Har02]. In the experimental part
of this chapter, both the ILP and the EA will be tested for rather small
problem instances of the MINT SP. Our intention is to utilize parts of the
ILP formulation within heuristics in future.
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4.1.3 Complexity of the MINT SP
Similar to the TSPTW considered in Chapter 2, the MINT SP contains
the TSP with deadlines problem (see 1.4.1) as a subproblem. Thus, it does
not allow for a polynomial algorithm with constant factor approximation
(unless P � N P). For that reason and since the MINT SP contains other
N P-hard subproblems (as mentioned above) it is N P-hard itself.

4.2 An ILP Formulation
We now model the MINT SP by a time indexed integer linear program (ILP).
For this task, we will deal with decision variables, the number of which
will be very large for the whole problem. A time continuous formulation
(like that for the TSPTW in Chapter 2) would be much more difficult, here.
LP based heuristics, using suitable restrictions of the ILP may help to find
approximate solutions of the problem in future.

4.5 Remark. For now, we do not consider assignment setup times nor the
option to join certain events. For that reason, a few of the constraints listed
above are not modeled by now, namely Join validity, Same resource setup time
and Assignment period.

4.6 Remark. we did not implement all the constraints that we have modeled
in terms of linear equalities and inequalities, yet. We only implemented
constraints that are covered by test instances so far. All implemented con-
straints is dealt with in this section. The remaining constraints are treated in
Section 4.5, namely Event period minimum distance, Assignments running time,
Event alternatives, Event location, Allow non-local resources, Associated resources,
No resource sharing across locations and Travel time as well as parts of Count
filter in periods and Assignment distance.

4.2.1 Index sets for the ILP
The most atomic variables (x and y in subsection 4.2.3) decide if

• some event j P E is active at some point t P T in time and some location
l P L,
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• some assignment i P A is active at some point t P T in time and some
location l P L while using some resource r P R.

Concerning these variables, there are rules which directly forbid certain
combinations in advance (see Event period allowed start/end, Timeframe rule,
Event location, Qualified resources). Thus, we can precalculate subsets of
E�T �L and A�T �L�R which only contain allowed combinations and
which are much smaller than the sets of all combinations. We introduce
• J :� {pj, t, lq P E � T � L | pj, t, lq allowed},
• I :� {pi, t, l, rq P A� T � L�R | pi, t, l, rq allowed}.
If we fix one or more components, only the allowed combinations with other
components are important. For example, if we consider a fix assignment
with a fix resource, what are the allowed times and locations for them?
We formally define accordant index sets as follows. Let S,S1 be disjoint
subsystems of {A, T, L,R} and S,S 1 be the cartesian products of the sets
in S and S1, respectively. For any tuple s1 in S 1, we define the set Ss1 of
allowed combinations in S with respect to s1 by

Ss1 �
{
s P S

∣∣∣∣ there is a ι P I such that each component of s and
each component of s1 appears as a component in ι

}
.

Similar notations are introduced with {E, T, L} and J .

4.7 Example. Let i P A, l P L and r P R. The set pT � Lqpi,rq contains all
allowed combinations of times and locations at which assignment i may be
active while using resource r. The set Tpi,l,rq contains all allowed times of
activity for assignment i at location l with resource r.
4.8 Remark. While our ILP formulations is based on the reduced index sets,
our implementation does not yet precalculate such sets but uses the full
index sets E, R, L, A and T . On the other hand, our implementation does
not deal with multiple locations. Thus, it uses location-free indices for all
ILP variables that are introduced below.

4.2.2 Basic Variables
A scheduling result mainly depends on five types of basic decisions. For
each event we have to decide, if it gets scheduled or not. The same holds
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for every assignment. We further have to determine a unique period and a
unique location for every scheduled event and a unique resource for every
scheduled assignment. We introduce indicator variables for this tasks:
• xXj P {0, 1}, j P E
xXj is 1, if and only if event j is scheduled.

• xES
j,t P {0, 1}, j P E, t P Tpjq
xES
j,t is 1, if and only if event j starts at time t.

• xLj,l P {0, 1}, j P E, l P Lpjq
xLj,l is 1, if and only if event j takes place at location l.

• yXi P {0, 1}, i P A
yXi is 1, if and only if assignment i is scheduled.

• yRi,r P {0, 1}, i P A, r P Rpiq

yRi,r is 1, if and only if resource r is assigned to i.

4.2.3 Auxiliary Variables
From the basic variables, we derive a couple of auxiliary variables which
make it easier to express the large number of objectives and constraints of
the MINT SP in terms of linear equalities and inequalities. We introduce
• ESj P T , j P E

ESj is the start time of event j.
• xj,t,l P {0, 1}, j P E, t P Tpjq, l P Lpj,tq
xj,t,l is 1, if and only if event j is active at time t and location l.

• ASi P T , i P A
ASi is the start time of assignment i.

• yAS
i,t P {0, 1}, i P A, t P Tpiq
yAS
i,t is 1, if and only if assignment i starts at time t.

• yAi,t P {0, 1}, i P A, t P Tpiq
yAi,t is 1, if and only if assignment i is active at time t.

• yLi,l P {0, 1}, i P A, l P Lpiq
yLi,l is 1, if and only if assignment i takes place at location l.
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• yASLR
i,t,l,r P {0, 1}, i P A, t P Tpiq, l P Lpi,tq, r P Rpi,t,lq

yASLR
i,t,l,r is 1, if and only if assignment i starts at time t and location l and
uses resource r.

• yi,t,l,r P {0, 1}, i P A, t P Tpiq, l P Lpi,tq, r P Rpi,t,lq

yi,t,l,r is 1, if and only if assignment i is active at time t and location l
while using resource r.

• zr,t P {0, 1}, r P R, t P Tprq
zr,t is 1, if and only if resource r is active at time t.

Due to working rules, many constraints concern the working days of
human resources (e. g., two days off within every time period of seven days).
Working days are generalized to resource days, as there may occur similar
rules for non human resources in future. Between two consecutive resource
days there must be an activity-free period of regeneration which has a
specified minimum length called turntime. For a given solution and a given
resource we need to identify the resource day of every assignment. This is
done by identifying working blocks of the resource. A working block of a
resource is a time interval which is maximal w.r.t. the property that the
resource is active at its bounds and that it does not contain a subinterval
of turntime length within which the resource is inactive. Every start of a
working block marks a day break and no further day break is contained in
a working block. The number of additional day breaks in the gap between
two consecutive working blocks is defined by the gap size. For an r P R

with turntime nturn
r , both the number of working blocks within T and the

number of resource days within T are limited by Wr :� dN{nturn
r e. We

introduce the following auxiliary variables to express working rules:

• zWS
r,j,t P {0, 1}, j P rWrs, r P R, t P Tprq Y {N � 1, � � � , N �Wr}
zWS
r,j,t is 1, if and only if j-th working block of resource r starts at time t.

• zWE
r,j,t P {0, 1}, j P rWrs, r P R, t P Tprq Y {N � 1, � � � , N �Wr}
zWE
r,j,t is 1, if and only if j-th working block of resource r ends at time t.

• WSr,j P Tprq Y {N � 1, � � � , N �Wr}, r P R, j P rWrs

WSr,j is the start time of the j-th working block of resource r.

• WEr,j P Tprq Y {N � 1, � � � , N �Wr}, r P R, j P rWrs

WEr,j is the finish time of the j-th working block of resource r.
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• zWA
r,j,t P {0, 1}, j P rWrs, r P R, t P Tprq Y {N � 1, � � � , N �Wr}
zWA
r,j,t is 1, if and only if resource r is active within its j-th working block
at time t.

• GDr,j P rWrs, r P R, j P rWr � 1s
GDr,j is for resource r the number of resource days in the gap between
working block j and working block j � 1.

• WDr,j P rWrs, r P R, j P rWrs

WDr,j is the resource day which contains the j-th working block of resource
r.

• ybefore
r,i,j P {0, 1}, r P R, i P A, j P rWrs

ybefore
r,i,j is 1, if and only if assignment i starts before j-th working block of
resource r.

• ARDr,i P rWrs, r P R, i P A
ARDr,i is the resource day of r at which assignment i takes place.

• yARD
i,r,d P {0, 1}, i P A, r P Rpiq, d P rWrs

yARD
i,r,d is 1, if and only if assignment i takes place at the d-th resource day
of r.

• yARD
i,r,d P {0, 1}, i P A, r P Rpiq, d P rWrs

yARD
i,r,d is 1, if and only if assignment i is assigned to resource r and takes
place at its d-th resource day.

• yADLR
i,d,l,r P {0, 1}, i P A, r P Rpiq, d P rWrs, l P Lpi,rq
yADLR
i,d,l,r is 1, if and only if assignment i uses resource r and takes place at
location l and the d-th resource day of r.

• yAD
i,d P {0, 1}, i P A, d P rWrs

yAD
i,d is 1, if and only if i is assigned to a certain resource ri and takes
place at the d-th resource day of ri.

• ADi P rWads, i P A and Wad �Wr where r P Rpiq is any suitable resource
for i (it is supposed that Wr � Wr1 for every other suitable resources
r1 P R)
If i uses resource ri, ADi is the resource day of i with respect to ri.
Let rds be a Resource day sequence constraint and let rrds and Ards be

the associated resource and the considered set of assignments, respectively.
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We introduce the auxiliary variables
• SDrds,k P rWrds � 1s, k P r|Ards|s

SDrds,k is the resource day of the k-th working block w.r.t. rrds and Ards
where Wrds � 1 represents a dummy working block

• ySD
rds,k,d P {0, 1}, k P r|Ards|s, d P rWrds � 1s
ySD

rds,k,d is 1, if and only if SDrds,k is d

In order to verify if assignments consecutively use allowed weekdays, we
need to indicate times which lie between the start of the first scheduled
assignment in Ards and the end of the last scheduled assignment in Ards.
We introduce the variables
• yRDS1

rds,t P {0, 1}, t P T
yRDS1

rds,t is 1, if and only if rrds is active in r0, ts for some assignment in Ards

• yRDS2
rds,t P {0, 1}, t P T
yRDS2

rds,t is 1, if and only if rrds is active in rt, T s for some assignment in
Ards

• yRDS3
rds,t P {0, 1}, t P T
yRDS3

rds,t is 1, if and only if both yRDS1
rds,t and yRDS2

rds,t are 1.

Let cf be a Count filter in periods rule. Let Rcf , Acf be the corresponding
sets of resources and assignments, respectively. All resources in Rcf are
supposed to have the same turntime, i.e the same maximum number Wcf
of resource days. The constraint cf further defines if either active times
or inactive times must be considered. If cf concerns the total amount of
activity (inactivity), for every r P Rcf we need to indicate times which lie
between the resource days of the first scheduled assignment in Acf and the
last scheduled assignment in Acf . Thus, we introduce similar variables as
for the Resource day sequence constraint above:
• yCF1

cf,r,d P {0, 1}, r P Rcf , d P rWcfs

yCF1
cf,r,d is 1, if and only if r is active at a resource day in r0, ds for some
assignment in Acf

• yCF2
cf,r,d P {0, 1}, r P Rcf , d P rWcfs

yCF2
cf,r,d is 1, if and only if r is active at a resource day in rd,Wcfs for some
assignment in Acf
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• yCF3
cf,r,d P {0, 1}, r P Rcf , d P rWcfs

yCF3
cf,r,d is 1, if and only if both yCF1

cf,r,d and yCF2
cf,r,d are 1.

4.2.4 The Relationships between Variables
Relationships between basic variables and auxiliary variables are given by
the following constraints. We first state that every scheduled event j P E
has a unique start time ESj and that an unscheduled event has no start time
(4.1)(4.2). The start time of a scheduled event j P E has the property that
j is active at times t P {ESj , � � � ,ESj � dj � 1} (4.3) but at no other time
and unscheduled events can’t be active at any time (4.4). For a given event
j P E and a given time t P Tpjq we use the set T tj :� TpjqX{t, � � � , t�dj�1}.

xXj �
∑
tPTpjq

xES
j,t for all j P E (4.1)

ESj �
∑
tPTpjq

t � xES
j,t for all j P E (4.2)

∑
sPT t

j

∑
lPLpj,tq

xj,s,l ¥ |T tj | � x
ES
j,t for all j P E, t P Tpjq (4.3)

∑
tPTpjq

∑
lPLpj,tq

xj,t,l � dj � x
X
j for all j P E (4.4)

A scheduled event has exactly one location and an unscheduled event has
no location (4.5). An event has location l, if it is active there at some point
in time (4.6). ∑

lPLpjq

xLj,l � xXj for all j P E (4.5)

dj � x
L
j,l ¥

∑
tPTpj,lq

xj,t,l for all j P E, l P Lpjq (4.6)

An assignment can only be scheduled, if the accordant event is scheduled
(4.7) and the start time of a scheduled assignment is (for now) the start
time of its event (4.8)(4.9). The location of a scheduled assignment is the
location of its event (4.10).

yXi ¤ xXjpiq for all i P A (4.7)
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yAS
i,t ¤ xES

jpiq,t for all i P A, t P Tpjpiqq (4.8)

yAS
i,t ¥ xES

jpiq,t � yXi � 1 for all i P A, t P Tpjpiqq (4.9)

yLi,l � xLjpiq,l for all i P A, l P Lpiq (4.10)

Similar to the relationships (4.1)-(4.4), we have relationships between the
start time indicators of assignments with their schedule state indicators
(4.11), start times (4.12) and indicators for times of activity (4.13)(4.14).
We use the duration di of an assignment i P A, which is supposed to be the
duration of its event jpiq as we do not consider setup times, yet. For i P A
and t P Tpiq, we use the set T ti :� Tpiq X {t, � � � , t� di � 1}.

yXi �
∑
tPTpiq

yAS
i,t for all i P A (4.11)

ASi �
∑
tPTpiq

t � yAS
i,t for all i P A (4.12)

∑
sPT t

i

yAi,s ¥ |T ti | � y
AS
i,t for all i P A, t P Tpiq (4.13)

∑
tPTpiq

yAi,t � di � y
X
i for all i P A (4.14)

An assignment is active at time t, if and only if it is active at time t and
some location l while using some resource r.

yAi,t �
∑

lPLpi,tq

∑
rPRpi,t,lq

yi,t,l,r for all i P A, t P Tpiq (4.15)

Every scheduled assignment has a unique resource (4.16). An assignment
has a certain resource r, if it is active at some time and some location while
using r (4.17).∑

rPR

yRi,r ¥ yXi for all i P A (4.16)

di � y
R
i,r ¥

∑
tPTpi,rq

∑
lPLpi,t,rq

yi,t,l,r for all i P A, r P Rpiq (4.17)

The indicators yi,t,l,r and yASLR
i,t,l,r of combined assignment information are

derived from the corresponding single information indicators by (4.18)(4.19),

97



4. Course Scheduling

where the minimum notations actually mean 3 inequalities.

yAi,t � yLi,l � yRi,r � 2 ¤ yi,t,l,r ¤ min{yAi,t, yLi,l, yRi,r}
for all i P A, t P Tpiq, l P Lpi,tq, r P Rpi,t,lq (4.18)

yAS
i,t � yLi,l � yRi,r � 2 ¤ yASLRi,t,l,r ¤ min{yAS

i,t , y
L
i,l, y

R
i,r}

for all i P A, t P Tpiq, l P Lpi,tq, r P Rpi,t,lq (4.19)

A resource is active at time t if and only if there is an assignment i and a
location l such that i is active at time t and location l while using resource
r (4.20)(4.21).

zr,t ¥
1
cEr

�
∑

iPApt,rq

∑
lPLpi,t,rq

yi,t,l,r for all r P R, t P Tprq (4.20)

zr,t ¤
∑

iPApt,rq

∑
lPLpi,t,rq

yi,t,l,r for all r P R, t P Tprq (4.21)

Every working block of every resource has a unique start time and a
unique finish time∑

tPTprq

xWS
r,j,t �

N�Wr∑
t�N�1

xWS
r,j,t � 1 for all r P R, j P rWrs (4.22)

∑
tPTprq

xWE
r,j,t �

N�Wr∑
t�N�1

xWE
r,j,t � 1 for all r P R, j P rWrs (4.23)

which are determined as

WSr,j �
∑
tPTprq

t � xWS
r,j,t �

N�Wr∑
N�1

t � xWS
r,j,t for all r P R, j P rWrs, (4.24)

WEr,j �
∑
tPTprq

t � xWE
r,j,t �

N�Wr∑
N�1

t � xWE
r,j,t for all r P R, j P rWrs. (4.25)

The finish time of one working block is not before its start time but before
the start time of the next working block (in particular, the start times of
the working blocks of a resource are in ascending order):

WSr,j ¤ WEr,j for all r P R, j P rWrs, (4.26)
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WEr,j   WSr,j�1 for all r P R, j P rWr � 1s. (4.27)

For every r P R and every t P Tprq there starts a working block of r
at t, if and only if r is assigned at t but unassigned within the preceding
time interval of turntime length. The first implication of this equivalence
is expressed by (4.28) and (4.29). The other implication is given by (4.30).
We use the set T t�r :� Tprq X {t� nturn

r , � � � , t� 1} for r P R and t P Tprq.∑
jPrWrs

xWS
r,j,t ¤ zr,t for all r P R, t P Tprq, (4.28)

∑
sPT t�

r

zr,s ¤ |T t�r | � p1�
∑
jPrWrs

xWS
r,j,tq for all r P R, t P Tprq, (4.29)

zr,t �
∑
sPT t�

r

zr,s ¤
∑
jPrWrs

xWS
r,j,t for all r P R, t P Tprq. (4.30)

Similarly, for every r P R and every t P Tprq there ends a working
block of r at t, if and only if r is assigned at t but unassigned within the
following time interval of turntime length. Here, we use the set T t�r :�
Tprq X {t� 1, � � � , t� nturn

r } for r P R and t P Tprq.∑
jPrWrs

xWE
r,j,t ¤ zr,t for all r P R, t P Tprq, (4.31)

∑
sPT t�

r

zr,s ¤ |T t�r | � p1�
∑
jPrWrs

xWE
r,j,tq for all r P R, t P Tprq, (4.32)

zr,t �
∑
sPT t�

r

zr,s ¤
∑
jPrWrs

xWE
r,j,t for all r P R, t P Tprq. (4.33)

4.9 Remark. Working blocks that start/end in T are actual working blocks.
Dummy working blocks start/end in {N � 1, � � � , N �Wr}.
4.10 Remark. Gaps in Tprq, r P R, are supposed to be longer than nturn

r .
A variable zWA

r,j,t must be 1, if and only if zr,t is 1 and WSj ¤ t ¤

WEj . The implications of this equivalence are given by (4.34) and (4.35),
respectively, where the minimum notation actually means 3 inequalities.

zWA
r,j,t ¤ min{zr,t,

∑
s¤t

zWS
r,j,s,

∑
s¥t

zWE
r,j,s} for all r P R, t P Tprq, j P rWrs

(4.34)
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zWA
r,j,t ¥

∑
s¤t

zWS
r,j,s �

∑
s¥t

zWE
r,j,s � zr,t � 2 for all r P R, t P Tprq, j P rWrs

(4.35)

For every resource r P R and every working block j P rWr � 1s, the
number of resource days in the gap between working block j and working
block j � 1 is determined by

GDr,j ¤
WSr,j�1 �WEr,j

nday �
1
4 �

1
nday , (4.36)

GDr,j ¥
WSr,j�1 �WEr,j

nday �
3
4 , (4.37)

where nday is the number time grid units for 24 hours. This means that a
gap counts no resource day if its duration is less or equal to 18 hours, one
resource day if its duration is greater then 18 hours but less or equal to 42
(18� 24) hours, and so forth. The resource day of a working block is equal
to the number of preceding working blocks plus the sum of resource days in
the gaps in between:

WDr,j � j � 1�
∑

kPrj�1s

GDr,k for all r P R. (4.38)

The following inequalities define the variables that indicate, if an assign-
ment i starts before the j-th working block of a resource r:

ybefore
r,i,j ¤

WSr,j �ASi � 1
T

� 1 for all i P A, r P Rpiq, j P rWrs, (4.39)

ybefore
r,i,j ¥

WSr,j �ASi � 1
T

for all i P A, r P Rpiq, j P rWrs. (4.40)

Actually, the above indicator variables are undefined, if WSr,j � ASi � 1,
but this can’t happen if resource r is assigned to i. Now, the resource day
of an r P R at which an assignment i P A takes place can be determined by

ARDr,i ¤ WDr,j �Wrp1� ybefore
r,i,j�1q

for all i P A, r P Rpiq, j P rWr � 1s, (4.41)
ARDr,i ¥ WDr,j �Wry

before
r,i,j for all i P A, r P Rpiq, j P rWrs. (4.42)

The relationships between those variables and the corresponding indicator
variables are given by (4.43)(4.44) and the variables which indicate if an
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assignment i uses a resource r at a certain resource day d of r are derived by
(4.45)(4.46)(4.47). Indicators if assignments take place at certain resource
days of their own resource can be derived by (4.48)(4.49).∑

dPrWrs

yARD
r,i,d ¤ yXi for all i P A, r P Rpiq (4.43)

∑
dPrWrs

d � yARD
r,i,d � ARDr,i for all i P A, r P Rpiq (4.44)

yARD
i,r,d ¤ yARD

i,r,d for all i P A, r P Rpiq, d PWr (4.45)
yARD
i,r,d ¤ yRi,r for all i P A, r P Rpiq, d PWr (4.46)

yARD
i,r,d ¥ yARD

i,r,d � yRi,r � 1 for all i P A, r P Rpiq, d PWr (4.47)∑
dPrWads

yAD
i,d � yXi for all i P A (4.48)

yAD
i,d �

∑
rPRpiq

yARD
i,r,d for all i P A, d PWad (4.49)

The yADLR variables are derived from the yARD variables and the yL vari-
ables.

yARD
i,r,d � yLi,l

2 ¤ yADLR
i,d,l,r ¤ min{yARD

i,r,d , y
L
i,l}

for all i P A, r P Rpiq, d P rWrs, l P Lpi,rq (4.50)

Finally, the resource days of scheduled assignments w.r.t. their resource are

ADi �
∑

dPrWads

d � yAD
i,d for all i P A (4.51)

Variables that indicate if the k-th active resource day of a Resource day
sequence constraint rds with resource rrds and assignments Ards is day d are
given by

ySD
rds,k,d ¤

∑
iPArds

yAD
i,d for all d P rWsd � 1s, k P r|Ards|s (4.52)

ySD
rds,k,d ¥

1
|Ards|

∑
iPArds

yAD
i,d for all d P rWsd � 1s, k P r|Ards|s

(4.53)
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∑
dPrWsd�1s

ySD
rds,k,d � 1 for all k P r|Ards|s (4.54)

and the corresponding k-th active resource day is

SDrds,k �
∑

dPrWsd�1s

d � ySD
rds,k,d for all k P r|Ards|s. (4.55)

Variables that indicate times between the start of the first scheduled as-
signment in Ards and the end of the last scheduled assignment in Ards are
derived as follows:

yRDS1
rds,t ¤

∑
iPArds

t∑
s�1

yi,rrds,s for all t P T (4.56)

yRDS1
rds,t ¥

1
drds

∑
iPArds

t∑
s�1

yi,rrds,s for all t P T (4.57)

yRDS2
rds,t ¤

∑
iPArds

T∑
s�t

yi,rrds,s for all t P T (4.58)

yRDS2
rds,t ¥

1
drds

∑
iPArds

T∑
s�t

yi,rrds,s for all t P T (4.59)

yRDS3
rds,t ¤ yRDS1

rds,t for all t P T (4.60)
yRDS3

rds,t ¤ yRDS2
rds,t for all t P T (4.61)

yRDS3
rds,t ¥ yRDS1

rds,t � yRDS2
rds,t � 1 for all t P T (4.62)

with drds �
∑
iPArds

di.
Similarly, for every Count filter in periods constraint cf with resources Rcf

and assignments Acf the variables that indicate times between the start
of the first scheduled assignment in Acf and the end of the last scheduled
assignment in Acf are derived by

yCF1
cf,r,d ¤

∑
iPAcf

d∑
s�1

yi,r,s for all r P Rcf , d P rWcfs (4.63)

yCF1
cf,r,d ¥

1
|Acf |

∑
iPAcf

d∑
s�1

yi,r,s for all r P Rcf , d P rWcfs (4.64)
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yCF2
cf,r,d ¤

∑
iPAcf

Wcf∑
s�d

yi,r,s for all r P Rcf , d P rWcfs (4.65)

yCF2
cf,r,d ¥

1
|Acf |

∑
iPAcf

Wcf∑
s�d

yi,r,s for all r P Rcf , d P rWcfs (4.66)

yCF3
cf,r,d ¤ yCF1

cf,r,d for all r P Rcf , d P rWcfs (4.67)
yCF3

cf,r,d ¤ yCF2
cf,r,d for all r P Rcf , d P rWcfs (4.68)

yCF3
cf,r,d ¥ yCF1

cf,r,d � yCF2
cf,r,d � 1 for all r P Rcf , d P rWcfs (4.69)

4.2.5 Objectives and Constraints of the MINT SP
We are now ready to express many objectives and constraints of the
MINT SP.

Main objective is to maximize the profit of the training center, which
is the difference of all revenues (fees for the assignments) and expenses
(resource costs). Equivalently, we minimize the negated profit:

min
∑
rPR

∑
tPTprq

ρr,t � zr,t �
∑
iPA

xXi αi, (4.70)

where the different types of expenses and revenues used in (4.70) are given
by instance:

• time dependent resource costs per time unit ρr,t, r P R, t P T

• fees αi for assignments i P A

Scheduled event: The fact that events are either scheduled or unscheduled
and that an unscheduled event does neither have a period nor a location is
stated by (4.1) and (4.5).

Event duration: The period of a scheduled event must have the requested
duration. This condition is expressed by (4.3) and (4.4).

Event period allowed start/end: For every constraint ep of this type let
Eep � E be the associated set of events, Tep � T the set of all time grid
points that correspond to allowed start periods (given in terms of calender
date intervals) and T 1ep � T the set of all time grid points that correspond
to allowed start times (given in terms of week times).
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4.11 Remark. Deviating from [LRS10], we restrict to the case that the given
events have a common predefined location, yet.

Now, if Tep � T , we must enforce that the first scheduled event in Eep
starts at a time t P Tep. This is done by (4.71a), because its negation means
that there exists a t P T such that no event starts in Tep X {1, � � � , t} but
some event starts in pT zTepq X {1, � � � , t}.∑

sPTep
s¤t

∑
jPEep
jPEpsq

|Eep X Epsq| � x
ES
j,s �

∑
sPT zTep
s¤t

∑
jPEep
jPEpsq

xES
j,s ¥ 0 for all t P T

(4.71a)

One of the following constraint types has to be added, if T 1ep � T . Similarly
to (4.71a), we can enforce that the first scheduled event in Eep must start
at a time t P T 1ep (4.71b). The same can be done concerning the end of the
last scheduled event in Eep (4.71c).∑

sPT 1
ep

s¤t

∑
jPEep
jPEpsq

|Eep X Epsq| � x
ES
j,s �

∑
sPT zT 1

ep
s¤t

∑
jPEep
jPEpsq

xES
j,s ¥ 0 for all t P T

(4.71b)∑
sPT 1

ep
s¤t

∑
jPEep
jPEpsq

|Eep X Es| � x
ES
j,s�1�dj

�
∑

sPT zT 1
ep

s¤t

∑
jPEep
jPEpsq

xES
j,s�1�dj

¥ 0 for all t P T

(4.71c)

The case that all scheduled events in Eep must start/end at a time t P T 1ep
is already considered by generating the set J of allowed combinations for
event activities.

Timeframe rule: This constraint is already considered by generating the
set I of allowed combinations for assignment activities.

Event period zero distance: Let ep be a constraint of this type and let
Eep � E be the corresponding set of events. The events in Eep have to
be adjacent, i. e., their periods have to be pairwise disjoint (4.72) and the
duration of their bounding period must be limited by dmax :�

∑
jPEep

dj
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(4.73). ∑
jPEep
jPEptq

∑
lPLpj,tq

xj,t,l ¤ 1 for all t P T (4.72)

ESj � dj � ESj1 ¤ dmax for all j, j1 P Eep (4.73)

Event period sequence: Let ep be a constraint of this type and let Eep � E

be the corresponding set of events and let pj1, � � � , j|Eep|q be the events of
Eep in the order that is imposed by ep. The starts of their periods are
subject to this order.

ESjk
¤ ESjk1

�N � p1� xXjk1
q for all k, k1 P r|Eep|s, k   k1 (4.74)

Scheduling group: Let sg be a constraint of this type and let Esg � E be
the associated set of events. We further have to consider all intersections of
Esg with single event sets that belong to some Event alternatives constraint.
Let Esg be the system of all these event sets. Similarly, let Esg be the system
of all event sets, which are intersections of Esg with the union of the event
sets of some Event alternatives constraint. With Esg :� Esgz

⋃
FPEsg

F , we
denote the subset of all events in Esg that are not associated with any Event
alternative constraint. Events of the scheduling groups have to be scheduled
mutually together with exceptions concerning event alternatives, formally
• For all F P Esg Y {Esg} either all or none of the events in F must be
scheduled.

• If any event in Esg is scheduled, even every F P Esg Y {Esg} must contain
a scheduled event.

which is expressed by (4.75) and (4.76).

xXj � xXj1 for all F P Esg Y {Esg} and j, j1 P F (4.75)∑
jPF

|Esg| � x
X
j ¥

∑
jPEsg

xXj for all F P Esg Y {Esg} (4.76)

The second type of constraints modeled by sg concerns assignments. Namely,
that assignments must be scheduled if and only if their event is scheduled
within an appropriate period. Let APsg � A� 2T be the corresponding set
of pairs pi, T iq, where T i is the period within the event jpiq of i should start.
The desired constraints can be expressed by (4.77) and (4.78) together with
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(4.7).

yXi ¥ xXjpiq �
∑

tPTpiqzT i

xES
i,t for all pi, T iq P APsg (4.77)

yXi ¤ 1�
∑

tPTpiqzT i

xES
i,t for all pi, T iq P APsg (4.78)

Qualified resources: This constraint is already considered by generating
the set I of allowed combinations for assignment activities.

Resource event capacity: A resource r P R cannot be assigned to more
events than its event capacity cEr at any time.∑

iPApt,rq

∑
lPLpi,t,rq

yi,t,l,r ¤ cEr for all r P R, t P Tprq (4.79)

Resource assignment capacity: The allocation of the assignments of a
resource r P R cannot be more than its assignment capacity cAr at any time.∑

iPApt,rq

∑
lPLpi,t,rq

yi,t,l,r � alloci ¤ cAr for all r P R, t P Tprq (4.80)

4.12 Remark. The above capacity constraints are simplified versions of
the original constraints modeled in [LRS10] since we do not support join
opportunity, yet.

Required continuity: Let Arc � A be the set of assignments that belong to
an constraint of this type. All scheduled assignments in Arc must use the
same resource.

yRi,r ¤ yRj,r � 2� yXi � yXj for all i, j P Arc, r P Rpiq XRpjq, (4.81)

Discontinuity: Let A1
dc � A and A2

dc � A be the sets of assignments that
are given by a constraint of this type. No pair pi, jq P A1�A2 may use the
same resource.

yRi,r � yRj,r ¤ 1 for all i P A1dc, j P A2dc, r P Rpiq XRpjq (4.82)

Resource day: A constraint rd of this type defines limits maxDrd on the
number of assigned time grid units (actually the corresponding minute
values) within working blocks and the length maxWrd of working blocks,
respectively. The limits may be restricted to certain resources and a certain
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rule period. Let Rrd � R and Trd � T the sets of resources and time grid
points that have to be considered. Maintenance of the limits is expressed
by (4.83) and (4.84).∑

tPTrd

zWA
r,j,t ¤ maxDrd for all r P Rrd, j P rWrs (4.83)

WEr,j �WSr,j ¤ maxWrd for all r P Rrd, j P rWrs (4.84)

Count duty in periods: Every working rule constraint cd of this type defines
a set Rcd of resources, the duty of which is measured w.r.t. given locations
Lcd. Depending on the scheduled location, there may be one or more, say
kcd,l, time sets Tcd,l,k � T , k � 1, � � � , kcd, l P Lcd, within which the duty
has to be measured. Those sets are derived from accordant fix periods
or from rolling periods that are suitably represented by cd. Duty can be
measured in terms of number of assignments, minutes or resource days,
respectively. Concerning the number of assignments, given limits mincd and
maxcd are forced by constraints (4.85a). For the minutes case we use (4.85b),
where the limits are converted to units of the time grid. The resource days
case is handled by (4.85c).

min
cd

¤
∑
lPLcd

∑
tPTcd,k,l

∑
iPA

yASLR
i,t,l,r ¤ max

cd
for all r P Rcd, k P rkcds (4.85a)

min
cd

¤
∑
lPLcd

∑
tPTcd,k,l

∑
iPA

yi,t,l,r ¤ max
cd

for all r P Rcd, k P rkcds (4.85b)

min
cd

¤
∑
lPLcd

∑
dPrWrs

∑
iPA

yADLR
i,d,l,r ¤ max

cd
for all r P Rcd, k P rkcds (4.85c)

Count filter in periods: Let cf be a constraint of this type and Rcf , Acf sets
of resources and filter assignments that are defined by cf. For all r P Rcf the
times of activity or inactivity are measured w.r.t. the assignments in Acf
and rolling periods. Constraint cf further defines if either the total amount
of the measured times or the longest consecutive time of activity/inactivity
must be within given limits mincf and maxcf . From a rule period and rolling
periods given by cf, we obtain a system of time sets Mcf,1, � � � ,Mcf,kcf that
have to be checked. Times must either be measured in terms of minutes
(converted to time grid units) or in terms of resource days. Depending on the
corresponding time unit requirement of cf, we have Mk � T or Mk � rWcfs,
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respectively. If the total amount is considered, compliance with the given
limits is granted by (4.86)(4.87). If consecutive times are desired but only
upper bounds are imposed we can use (4.88). But if consecutive times of
positive minimum duration are required, we must introduce some more
auxiliary variables and use (4.134) of Section 4.5. The variables ỹ have (for
convenience) case dependent assignments as shown in Table 4.1.

Table 4.1. Assignments of ỹ for MINT constraint Count filter in periods depending
on the combination of unit and filter mode

parameters
unit filter mode ỹ

minute inclusive y
resource day inclusive yADLR

minute exclusive 1� y
resource day exclusive 1� yADLR

∑
tPMcf,k

∑
iPAcf

∑
lPLpiq

ỹi,t,l,r ¤ maxcf for all r P Rcf , k P rkcfs

(4.86)

mincf ¤
∑

tPMcf,k

p1� yCF3
cf,t �

∑
iPAcf

∑
lPLpiq

ỹi,t,l,rq for all r P Rcf , k P rkcfs

(4.87)

∑
iPAcf

∑
lPLpiq

t�maxcf∑
s�t

ỹi,t,l,r ¤ maxcf for all r P Rcf , t P T pt PWcfq (4.88)

Assignment distance: For the fully supported version of this constraint, see
Section 4.5. Our implementation for the given test instances considers only
a constraint variation ad that requires for two given sets Aad,1, Aad,2 � A

of assignments that for every pair of assignments pi, jq P Aad,1 �Aad,2 the
resource day of j is at least minad�1 days later than the resource day of i.

ADj ¥ ADi �minad � 1�Wadp2� yXi � yXj q for all i P Aad,1, j P Aad,2.
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Resource day sequence: Let rds be a constraint of this type and let Ards be
the corresponding set of assignments. If ranges {δmin

rds,k, δ
max
rds,k}, k P r|Ards|s,

are given, the gaps between subsequent active resource days for assignments
in Ards must comply with these ranges (4.89)(4.90)

SDk�1 ¥ SDk � p1� ySD
Wsd�1,k�1q � δ

min
rds,k for all k   |Ards| (4.89)

SDk�1 ¤ SDk � δmax
rds,k for all k   |Ards| (4.90)

On the other hand, if no δ values are specified, assignments must consecu-
tively use the allowed weekdays. Let Trds the set of all time grid points of
the planning horizon at which an allowed weekday begins. Then, for every
t P Trds which lies between the start of the first scheduled assignment of
Ards and the end of the last scheduled assignment in Ards, there must be
an active assignment for rrds in {t, � � � , t� nday � 1}:

yRDS3
rds,t �

∑
iPArds

∑
lPLpiq

t�nday�1∑
s�t

yi,l,rrds,s ¤ 0 (4.91)

Resource day assignments: All scheduled assignments Arda of a constraint
rda of this type must be scheduled at the same resource day of the same
resource.

yAD
i,d ¤ yAD

j,d � 2� yXi � yXj for all i, j P Arda, d PWad (4.92)

4.3 EA Framework
The EA framework for the MINT SP was developed and implemented
by Torben Rabe and is the topic of his Diploma Thesis [Rab12]. The
essence of Rabes work is the development of an encoding function (schedule
generation scheme, SGS) that considers precedence relations as well as all
other restrictions that are required within the couple of test cases provided
by the MINT company. His encoding function can be understood as a
sophisticated extension of the SGS for the RCPSP (see Example 4.1 of
subsection 4.1.2) described in [Har02]. Similar to the RCPSP, the MINT SP
imposes precedence relations (given by Event period sequence rules) that
provide the opportunity to update a set of eligible events in a sequential
scheduling procedure. Precalculations that take Event period zero distance
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and Assignment distance constraints into account allow for a reduction of the
search space by treating sets E � E of events at once. Considering such
event sets as top level objects, Rabes SGS seeks for the earliest feasible
starting times. This principle is similar to that of the heuristic for the TSP
with time windows problem in Section 2.4. For the TSPTW problem, this
task could still be managed by a single case differentiating procedure. There,
the procedure is called within the scheduling steps in Algorithm 2, line 22
of the exact method and item 7 of the heuristic, respectively. However, for
the MINT SP we have to consider a more complex system of constraints in
order to find the first feasible points in time. Rabe treats the constraints
hierarchically by the definition of corresponding functions. The hierarchy
is given by the object types of the scheduling problem. Top level is the
precalculated event sets, followed by single events, assignments for events
and, finally, qualified resources for assignments. Let us write f type

c,i to denote
a function that returns the first feasible starting time for an object type w.r.t.
some applicable instant constraint i of a certain MINT constraint type c.
Clearly, in addition to some point in time the functions require the instance
information that concerns the considered constraints (see subsection 4.1.1)
as input parameters. Overriding the associated method of an abstract Java
class, a function that belongs to a certain level in the hierarchy can be defined
by reverting to conjunctions of others. Herein, conjunction usually means to
determine the maximum value of either all applicable constraint types for the
object under consideration or necessary constraints that concern sub-level
objects of the considered object. Algorithm 6 sketches an implementation
of this principle. The resource level requires record keeping of the feasible
time slots of the resources.

Arguments of Rabes schedule generation scheme are random key geno-
types the EA operates on. Random keys are random numbers in r0, 1s and
are often used to represent the order of the objects in an actual solution
of a hard constrained problem (see, e. g., [YG10], Subsections 7.3.3.3 and
7.4.3.1). One can simply use general real-coded EAs (see subsection 1.5.4) in
order to deal with random key genotypes. Random keys may also represent
operational order preferences of a planning heuristic that is used within the
encoding function of a hybrid EA. The latter possibility was chosen for the
MINT SP, where the genotypes represent the order in which the SGS tries
candidate objects that are about to be scheduled.
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Algorithm 6: Recursive definition of first feasible function
input : t P T , instance and partial planning information
output : first feasible s P T

1 let ot be the (sub-level) object type that must be considered;
2 let C be the set of MINT constraint types that must be considered;
3 for each c P C let Ic be the set of constraints specified by instance;
4 while s � t do
5 s � t;
6 for c P C do
7 for i P Ic do t � fot

c,iptq;

8 return s;

4.4 Experiments

Based on the new model [LRS10] our corporation partner MINT generated 14
test instances for which the actual planning algorithm TMS faces difficulties.
Table 4.2 gives an overview about the properties of these instances. Table 4.3
presents algorithmic results. The ILP experiments were performed on an
Intel Atom processor with 1.6 GHz clock rate and 512 MB RAM while the
EA experiments ran on an Intel Pentium Dual Core machine with 2.1 GHz
clock rate and 4 GB RAM (here, times are given per SGS). For the EA,
a population size of 200 individuals was chosen. We ran 10 EA trials for
every instance. The detection of a feasible solution was chosen as stopping
criterion. We always state the average number of EA generations. The
check mark X means that the algorithm terminated with a solution. For
the ILP, X means that the feasibility of a given solution could be verified.

We see, that the EA is able to solve most of these rather small test cases
very fast and within one generation. The genetic operators take effect only
for three instances, the size and complexity of which requires a corresponding
longer running time being proportional to the product of the population
size, the required number of generations and the required time per SGS.

Imposing a time limit of 10 minutes, only four instances could be solved
by the ILP (using Cplex) proving both the feasibility and optimality of the
corresponding EA solutions. For four another instances the ILP was able to
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Table 4.2. Test instances for the MINT SP. Each instance is given along with the
number of events, assignments and resources (|E|,|A| and |R|), respectively.

Parameters
Instance Name |E| |A| |R|

Continuities 57 198 12
EighteenClassesFiveSlots 144 216 21

Flexible 360 360 4
FlexibleForceSkipDay 5 6 2
GreedyDayDeadEnd 2 4 3
GreedyStartDeadEnd 2 4 3

Range1 4 4 4
Range2 4 4 1

RequirementMultiDay 9 27 3
RequirementOneDay 3 9 3

Sequential 360 360 4
SixClassesFiveSlots 48 72 7

ThreeClassesTwoSlots 12 18 4
Weekday 360 360 4

Table 4.3. Performance results concerning the MINT SP test instances.

ILP Heuristic
Instance Name Sec. Sec./SGS ∅Gen.
Continuities - - X 0.150 9

EighteenClassesFiveSlots - - X 0.061 78.3
Flexible - - X 0.150 1

FlexibleForceSkipDay X ¡600.0 X 0.010 1
GreedyDayDeadEnd X 0.5 X 0.015 1
GreedyStartDeadEnd X 2.0 X 0.017 1

Range1 X 415.1 X 0.020 1
Range2 X ¡600.0 X 0.024 1

RequirementMultiDay X ¡600.0 X 0.050 1
RequirementOneDay X 42.2 X 0.016 1

Sequential - - X 1.600 1
SixClassesFiveSlots - - X 0.024 16.9

ThreeClassesTwoSlots X ¡600.0 X 0.020 1
Weekday - - X 1.800 1
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verify the feasibility of EA solutions after being provided with them. Since
the current ILP implementation does no preprocessing in order to reduce
the number of decision variables (see subsection 4.2.1), it already requires
too much memory for the six larger test instances. Such preprocessing is
also supposed to improve the performance of the ILP. However, concerning
large real-world problems, only partial ILP formulations are intended to be
used as integral parts of LP-relaxation based heuristics.

4.5 Further ILP Constraints

4.5.1 Further Auxiliary Variables
In order to handle mobile resources we introduce the variables
• λr,t,l P {0, 1}, r P R, t P Tprq, l P Lpt,rq
λr,t,l is 1, if and only if resource r is assigned at time t and location l.

• λr,t,l,l1 P {0, 1}, r P R, t P Tprq, l P Lpt,rq, l1 P Lpst,rq

λr,t,l,l1 is 1, if and only if resource r has location l at time t and location
l1 at time st being is the earliest time in Tprq that is greater than t.

Let cf be a Count filter in periods constraint and Rcf and Acf be the
corresponding sets of resources and assignments, respectively. If cf concerns
consecutive times of minimum length mincf ¡ 1, we need the following
indicators.
• zcons

cf,r,t P {0, 1}, r P Rcf , t P T
zcons

cf,r,t is 1, if and only if r is active (inactive) w.r.t. assignments in Acf
for every s P rt, t�mincf �1s

• zconsD
cf,r,d P {0, 1}, r P Rcf , d P rWrs

zconsD
cf,r,d is 1, if and only if r is active (inactive) w.r.t. assignments in Acf
at every resource day d1 P rd, d�mincf �1s

Let ad be an Assignment distance rule and let Aad,1, Aad,2 � A be the cor-
responding sets of assignments. We need to introduce a couple of additional
auxiliary variables in order to model ad
• LSad,k P T , k P {1, 2}

LSad,k is the earliest start time of all assignments in Aad,k.
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• yLS
ad,k,t P {0, 1}, k P {1, 2}, t P T
yLS

ad,k,t is 1, if and only if LSad,k is t.
• LEad,k P T , k P {1, 2}

LEad,k is the latest finish time of all assignments in Aad,k.
• yLE

ad,k,t P {0, 1}, k P {1, 2}, t P T
yLE

ad,k,t is 1, if and only if LEad,k is t.
• LSDad,k PWad, k P {1, 2}

LSDad,k is the resource day of the earliest assignment in Aad,k.
• yLSD

ad,k,d P {0, 1}, k P {1, 2}, d P rWads

yLSD
ad,k,d is 1, if and only if LSDad,k is d.

• LEDad,k PWad, k P {1, 2}
LEDad,k is the resource day of the latest assignment in Aad,k.

• yLED
ad,k,d P {0, 1}, k P {1, 2}, d P rWads

yLED
ad,k,d is 1, if and only if LEDad,k is d.

• GSad P T

GSad is the beginning of the gap between both assignment lists, Aad,1
and Aad,2.

• yGS
ad,t P {0, 1}, t P T
yGS

ad,t is 1, if and only if GSad is t.
• GEad P T

GEad is the end of the gap between both assignment lists, Aad,1 and
Aad,2.

• yGE
ad,t P {0, 1}, t P T
yGE

ad,t is 1, if and only if GEad is t.
• GSDad P rWads

GSDad is the first resource day in the gap between both assignment lists,
Aad,1 and Aad,2.

• yGSD
ad,d P {0, 1}, d P rWads

yGSD
ad,d is 1, if and only if GSDad is d.

• GEDad P rWads

GEDad is the last resource day in the gap between both assignment lists,
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Aad,1 and Aad,2.
• yGED

ad,d P {0, 1}, d P rWads

yGED
ad,d is 1, if and only if GEDad is d.

If the constraint ad requests a minimal gap, we further need variables that
indicate if a time t P T within the gap should be disallowed for every
assignment that starts directly after the gap. Defining plus and minus by

plus �
{

minad, if unit is minutes
nday minad�

nturn

2 , if unit is resource days
,

minus �
{

0, if unit is minutes
nturn

2 , if unit is resource days
,

those indicators are given by
• yUad,t P {0, 1}, t P T
yUad,t is 1, if and only if t P U � rGSad � plus,GEad �minuss

4.5.2 Further Relationships between Variables
Every resource has exactly one location at one point in time (4.93). A
resource has location l at time t if it is used by an active assignment at time
t and location l (4.94).∑
lPLpt,rq

λr,t,l � 1 for all r P R, t P Tprq (4.93)

λr,t,l ¥
1
cEr

�
∑

iPApt,l,rq

yi,t,l,r for all r P R, t P Tprq, l P Lpt,rq (4.94)

The meaning of variables λr,t,l,l1 is expressed as follows

2 � λr,t,l,l1 ¤ λr,t,l � λr,st,l1 for all r P R, t P Tprq, l P Lpt,rq, l1 P Lpst,rq

(4.95)∑
l1PLpst,rq

λr,t,l,l1 � λr,t,l for all r P R, t P Tprq, l P Lpt,rq (4.96)

Whenever a resource changes its location, we want it to be immediately
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active upon arrive. This convention will be used for the formulation of
MINT constraints Allow non-local resources and Travel time.∑

l,l1PLprq

l�l1

λr,t,l,l1 ¤ zr,st
for all r P R, t P Tprq. (4.97)

The auxiliary variables that concern assignment lists (given by Assignment
distance rules ad) are derived from the corresponding variables for single
assignments. A unique start time of the bounding period of an assignment
list exists, if and only if it contains a scheduled assignment (4.98a)(4.99a).
The relationship between start time and the corresponding indicators is
given by (4.100a). A time that isn’t start time of any assignment in a list
can’t be start time of its bounding period (4.101a) and the start time of the
bounding period must be less or equal to the start time of every assignment
in the list (4.102a). Similar conditions must hold for the finish time of a
bounding period (4.103a)-(4.107a), the resource day at which a bounding
period starts (4.98b)-(4.102b) and the resource day at which a bounding
period ends (4.103b)-(4.107b).

∑
tPT

yLS
ad,k,t ¤

∑
iPAad,k

yXi for all k P {1, 2} (4.98a)

∑
dPrWads

yLSD
ad,k,d ¤

∑
iPAad,k

yXi for all k P {1, 2} (4.98b)

∑
tPT

yLS
ad,k,t ¥ yXi for all k P {1, 2}, i P Aad,k (4.99a)∑

dPrWads

yLSD
ad,k,d ¥ yXi for all k P {1, 2}, i P Aad,k (4.99b)

LSad,k �
∑
tPT

t � yLS
ad,k,t for all k P {1, 2} (4.100a)

LSDad,k �
∑

dPrWads

d � yLS
ad,k,d for all k P {1, 2} (4.100b)

116



4.5. Further ILP Constraints

yLS
ad,k,t ¤ yAS

i,t for all k P {}, i P Aad,k, t P Tpiq (4.101a)
yLSD

ad,k,d ¤ yAD
i,d for all k P {}, i P Aad,k, d P rWads (4.101b)

LSad,k ¤ ASi for all k P {1, 2}, i P Aad,k (4.102a)
LSDad,k ¤ ADi for all k P {1, 2}, i P Aad,k (4.102b)

∑
tPT

yLE
ad,k,t ¤

∑
iPAad,k

yXi for all k P {1, 2} (4.103a)

∑
dPrWads

yLED
ad,k,d ¤

∑
iPAad,k

yXi for all k P {1, 2} (4.103b)

∑
tPT

yLE
ad,k,t ¥ yXi for all k P {1, 2}, i P Aad,k (4.104a)∑

dPrWads

yLED
ad,k,d ¥ yXi for all k P {1, 2}, i P Aad,k (4.104b)

LEad,k �
∑
tPT

t � yLE
ad,k,t for all k P {1, 2} (4.105a)

LEDad,k �
∑

dPrWads

d � yLS
ad,k,d for all k P {1, 2} (4.105b)

yLE
ad,k,t ¤ yAS

i,t�1�di
for all k P {1, 2}, i P Aad,k, t P Tpiq (4.106a)

yLED
ad,k,d ¤ yAD

i,d for all k P {1, 2}, i P Aad,k, d P rWads (4.106b)

LEad,k ¥ ASi � di � 1 for all k P {1, 2}, i P Aad,k (4.107a)
LEDad,k ¤ ADi for all k P {1, 2}, i P Aad,k (4.107b)

Note, that all time variables of an assignment list are 0, if the list does
not contain any scheduled assignment.
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The gap has unique bounds, if and only if both assignment lists contain
a scheduled assignment, which is the case, if they both have a unique start
time (4.108a)-(4.111b)∑

tPT

yGS
ad,t ¥

∑
tPT

pyLS
ad,1,t � yLS

ad,2,tq � 1 (4.108a)∑
dPrWads

yGSD
ad,d ¥

∑
dPrWads

pyLSD
ad,1,d � yLSD

ad,2,dq � 1 (4.108b)

∑
tPT

yGS
ad,t ¤

∑
tPT

yLS
ad,k,t for all k P {1, 2} (4.109a)∑

dPrWads

yGSD
ad,d ¤

∑
dPrWads

yLSD
ad,k,d for all k P {1, 2} (4.109b)

∑
tPT

yGE
ad,t ¥

∑
tPT

pyLS
ad,1,t � yLS

ad,2,tq � 1 (4.110a)∑
dPrWads

yGED
ad,d ¥

∑
dPrWads

pyLSD
ad,1,d � yLSD

ad,2,dq � 1 (4.110b)

∑
tPT

yGE
ad,t ¤

∑
tPT

yLS
ad,k,t for all k P {1, 2} (4.111a)∑

dPrWads

yGED
ad,d ¤

∑
dPrWads

yLSD
ad,k,d for all k P {1, 2} (4.111b)

The relationships between the gap bounds and the corresponding indicators
are as usual (4.112a)-(4.113b).

GSad �
∑
tPT

t � yGS
ad,t (4.112a)

GSDad �
∑

dPrWads

d � yGSD
ad,d (4.112b)

GEad �
∑
tPT

t � yGE
ad,t (4.113a)
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GEDad �
∑

dPrWads

d � yGED
ad,d (4.113b)

The gap start time is minpLEad,1,LEad,2q � 1 (4.114a)(4.115a) and the first
resource day of the gap is minpLEDad,1,LEDad,2q � 1 (4.114b)(4.115b).

GSad ¤ LEad,k � 1 for all k P {1, 2} (4.114a)
GSDad ¤ LEDad,k � 1 for all k P {1, 2} (4.114b)

t�1∑
s�1

yGS
ad,s ¤

t∑
s�1

pyLE
ad,1,s � yLE

ad,2,sq for all t P T (4.115a)

d�1∑
s�1

yGSD
ad,s ¤

d∑
s�1

pyLED
ad,1,s � yLED

ad,2,sq for all d P rWads (4.115b)

The gap end time is maxpLSad,1,LSad,2q � 1 (4.116a)(4.117a) and the last
day of the gap is maxpLSDad,1,LSDad,2q � 1 (4.116b)(4.117b).

GEad ¥ LSad,k � 1 for all k P {1, 2} (4.116a)
GEDad ¥ LSDad,k � 1 for all k P {1, 2} (4.116b)

N∑
s�t�1

yGE
ad,s ¤

N∑
s�t

pyLS
ad,1,s � yLS

ad,2,sq for all t P T (4.117a)

Wad∑
s�d�1

yGED
ad,s ¤

Wad∑
s�d

pyLSD
ad,1,s � yLSD

ad,2,sq for all d P rWads (4.117b)

The variables that indicate if times t P T are in the interval U � rGS �
plus,GE�minuss of times that should be unallowed by timeframe rules for
each assignment that starts directly after the end of the gap (minimalgap
case) are given by (4.118)(4.119)(4.120).

yUad,t ¤

N�minus∑
s�t

yGE
ad,s�minus for all t P T (4.118)
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yUad,t ¤

t∑
s�1�plus

yGS
ad,s�plus for all t P T (4.119)

1� yUad,t ¥

t∑
s�1�plus

yGS
ad,s�plus �

N�minus∑
s�t

yGE
ad,s�minus for all t P T

(4.120)

We derive the additional indicators that are required by working rules cf
of the Count filter in periods type for the case that the length of consecutive
activities must at least be mincf ¡ 1. The case that counting units are
minutes (converted to time grid units) is expressed by (a) and (b) while (c)
and (d) deal with resource days. Times of activity are considered by (a)
and (c), times of inactivity by (b) and (d).

zcons
w,r,t ¥ 1� 1

mincf

∑
iPAw

∑
lPLpiq

t�mincf�1∑
s�t

yi,s,l,r for all r P Rw, t P T

(4.121a)

zcons
w,r,t ¥ 1� 1

mincf

∑
iPAw

∑
lPLpiq

t�mincf�1∑
s�t

p1� yi,s,l,rq for all r P Rw, t P T

(4.121b)

zconsD
w,r,d ¥ 1� 1

mincf

∑
iPAw

∑
lPLpiq

d�mincf�1∑
d1�d

yADLRi,d1,l,r for all r P Rw, d P rWrs

(4.121c)

zconsD
w,r,d ¥ 1� 1

mincf

∑
iPAw

∑
lPLpiq

d�mincf�1∑
d1�d

p1� yADLRi,d1,l,r q for all r P Rw, d P rWrs

(4.121d)

mincf � z
cons
w,r,t ¤

∑
iPAw

∑
lPLpiq

t�mincf�1∑
s�t

yi,s,l,r for all r P Rw, t P T (4.122a)
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mincf � z
cons
w,r,t ¤

∑
iPAw

∑
lPLpiq

t�mincf�1∑
s�t

p1� yi,s,l,rq for all r P Rw, t P T

(4.122b)

mincf � z
consD
w,r,d ¤

∑
iPAw

∑
lPLpiq

d�mincf�1∑
d1�d

yADLRi,d1,l,r for all r P Rw, d P rWrs

(4.122c)

mincf � z
consD
w,r,d ¤

∑
iPAw

∑
lPLpiq

d�mincf�1∑
d1�d

p1� yADLRi,d1,l,r q for all r P Rw, d P rWrs

(4.122d)

4.5.3 Further Constraints of the MINT SP
Event period minimum distance: Let ep be a constraint of this type and let
Eep � E be the corresponding set of events. The events in Eep must have
disjoint periods (4.123). Moreover, all but the earliest scheduled event in
Eep must use the earliest allowed start time with respect to their order.
This may be expressed as follows. If some event j P Eep takes place at some
location l and starts at some time t and other events in Eep start before t,
we can calculate the latest allowed start time spj, t, lq of event j at location
l that is before t and must ensure that another event j1 P Eep is active at
time spj, t, lq (4.124).∑

jPEep
jPEptq

∑
lPLpj,tq

xj,t,l ¤ 1 for all t P T (4.123)

∑
j1PEep

xj,spj,t,lq,l ¥ xES
j,t � xLl �

1
|Eep|

∑
t1 t

∑
j1PEep

xES
j1,t1 � 2

for all j P Eep, l P Lpjq, t P Tpj,lq (4.124)

Assignments running time: Let ar be a constraint of this type and Aar
be the accordant set of assignments. By ar, limits minar and maxar on
the duration of the bounding period w.r.t Aar are either given in terms
of time grid units (converted from minute values) or in terms of resource
days. Constraints (4.125a) and (4.126a) enforce the required limits in
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4. Course Scheduling

the time grid unit case. For given i P Aar and t P Tpiq we use the set
T i,tar :� Tpiq X p{1, � � � , t� 1}Y {t�minar, � � � , N}q in (4.125a). Constraints
(4.125b) and (4.126b) do the same in the resource days case.∑

sPT i,t
ar

yAi,s ¥ 1 for all i P Aar, t P Tpiq with T i,tar � H

(4.125a)
t�1∑
s�1

yAD
i,s �

W∑
s�t�minar

yAD
i,s ¥ 1 for all i P Aar, t P rW � 1�min

ar
s (4.125b)

ASi � di � 1�ASj ¤ maxar for all i, j P Aar (4.126a)
ADi � 1�ADj ¤ maxar for all i, j P Aar (4.126b)

Event alternatives: Let ea be a constraint of this type. Let Eea be the
corresponding system of subsets of E that represents the event alternatives
and let Eea :�

⋃
FPEea

F be the union over all this event sets. At most one
of the alternatives may be scheduled.

xXj � xXj1 ¤ 1 for all F P Eea, j P F, j
1 P EeazF (4.127)

Event location: Let el be a constraint of this type. Let Eel � E be
the set of events and Lel � L the set of locations that are given by el.
None of the events in Eel may have a location in LzLel. This constraint
is already considered by generating the set J of allowed combinations for
event activities. If desired, all scheduled events in Eel must have the same
location:

xLj,l ¤ xLj1,l � 2� xXj � xXj1 for all l P Lel, j, j
1 P Eel (4.128)

Allow non-local resources: An assignment i P A cannot get a resource that
has to travel longer than the maximum allowed travel time ttri .∑

l,l1PLpi,rq

λr,t,l,l1 � τl,l1 ¤ ttrmax � pttri � ttrmaxq �
∑

lPLpi,rq

yi,spt,i,rq,l,r

for all i P A, r P Rpiq, t P Tpi,rq (4.129)

Herein, τl,l1 is the required travel time from location l to location l1, ttrmax is
the maximum possible travel time between two locations and spi, t, rq is the
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4.5. Further ILP Constraints

earliest possible time of activity for assignment i with resource r after t.
Associated resources: Let a � amaster

ara P A be the master assignment and
Aclient

ara � A be the set of client assignments that belong to a constraint ara
of this type. For r P R, we denote by Rara,r the set of associated resources
of r. We further use variables arar to indicate if r has associated resources
(arar � 1) or if Rara

r is empty (arar � 0). If the use of associated resources
is required, we must ensure the following:

• Every scheduled client assignment must use a resource which has an empty
set of associated resources.

• If any client assignment is scheduled, the master assignment must be
scheduled, too.

• The resources of all scheduled client assignments must be associated
resources of the master assignments resource.

• If the master assignment is scheduled and uses resource r P R, there must
exist a scheduled client assignment using one of the associated resources
of r.

This is done by constraints (4.130)-(4.133).∑
rPR

yRi,rp1� ararq ¥ yXi for all i P Aclient
ara (4.130)

yXa ¥ yXi for all i P Aclient
ara (4.131)∑

r1PRara,r

yRi,r1 ¥ yRa,r for all i P Aclient
ara , r P R (4.132)

∑
iPAclient

ara

∑
r1PRara

r

yRi,r1 ¥ yRa,r for all r P R (4.133)

If the use of associated resources is optional, only (4.130)-(4.132) have to
be satisfied.

Count filter in periods: Let cf be a rule of this type and Rcf , Acf sets of
resources and filter assignments that are defined by cf. For all r P Rcf the
times of activity or inactivity are measured w.r.t. the assignments in Acf
and rolling periods. Let Mcf,1, � � � ,Mcf,kcf be the system of time sets that
have to be checked. Here, we consider the case that the shortest consecutive
time of activity/inactivity must be greater than a given bound mincf ¡ 1.
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4. Course Scheduling

Times must either be measured in terms of minutes (converted to time grid
units) or in terms of resource days. We set

z̃c :�
{
zcons, if unit is minutes
zconsD, else

and can model the rule by

1 ¤
∑

tPMcf,k

z̃ccf,t,r for all r P Rcf , k P rkcfs (4.134)

Recall, that the value mincf is incorporated in z̃c, which indicates if a certain
point in time belongs to an interval of consecutive activity as required.

No resource sharing across locations: The fact that every resource has
exactly one location at a time is stated by (4.93).

Assignment distance: A constraint ad of this type defines two sets Aad,1
and Aad,2 of assignments that must observe given limits minad and/or maxad
w.r.t. their distance in time. The distance is either measured in terms of
minutes (converted to time grid units) or in terms of resource days. The
constraint ad further defines one of three possible modes of distance. In the
first mode, the limitations concern the gap between the bounding periods of
both assignment lists. This can be written by (4.135a)(4.136a) (unit minute)
or (4.135b)(4.136b) (unit resource day).

p
∑
tPT

yGS
ad,tq �minad ¤ GEad �GSad (4.135a)

p
∑
tPT

yGS
ad,tq �minad ¤ GEDad �GSDad (4.135b)

GEad �GSad ¤ maxad (4.136a)
GSDad �GEDad ¤ maxad (4.136b)

Additionally, in the second mode, for every assignment i P Aad,1YAad,2 that
starts directly after the gap, no time t that is allowed for i by a time frame
rule must be contained in the interval U � rGSad � plus,GEad �minuss:

yASi,t�1 � yGE
ad,t �

1
N

∑
sPTpi,l,rq

yUad,s ¤ 2
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for all i P Aad,1 YAad,2, l P Lpiq,r P Rpi,lq, t P T (4.137)

In the third mode, the limits concern the distance from the start of the first
assignment list to the start of the second assignment list and may also be
negative:

minad ¤ LSad,2 � LSad,1 ¤ maxad (4.138)

Travel time: For each two locations l, l1i P L let τl,l1 be the time in time
grid units that is required to travel from l to l1. If a resource has location l
at time t P T and location l1 at time t� 1, we may assume that it is duty at
time t� 1. Under this assumption, it must not be duty for the travel time
duration before t� 1:

λr,t,l,l1 �
1
τl,l1

t∑
s�t�1�τl,l1

zr,s ¤ 1 for all r P R, t P Tprq, l, l1 P L (4.139)
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Chapter 5

Two-Color Discrepancy of Arithmetic
Progressions

5.1 Introduction
5.1.1 The Problem
Two-Color Discrepancy

Let H � pV, Eq denote a finite hypergraph, where V is a finite set (called
vertices or nodes) and E is a family of subsets of V (called hyperedges). Let
n � |V | and m � |E |. A two-coloring of H is a function χ : V Ñ C, where
C is a set of cardinality 2. For convenience, we choose C � {�1,�1} and
may think of �1 as color "red" and 1 as color "blue". The color classes
χ�1p�1q and χ�1p�1q are a partition of V . Let E P E be a hyperedge.
With χpEq :�

∑
iPE χpiq, the number |χpEq| is the imbalance of the two

colors in E and we define the discrepancy of H with respect to the coloring
χ by

discpH, χq � max
EPE

|χpEq|. (5.1)

Let C2pHq be the set of all two-colorings of H. The hypergraph parameter

discpHq � min
χPC2pHq

discpH, χq (5.2)

is called the (combinatorial) discrepancy of H.

Arithmetic Progressions

For a, d, l P N denote by Aadl :� {a � id | 0 ¤ i ¤ l � 1} the arithmetic
progression with starting point a, difference d and length l. Denote by
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5. Two-Color Discrepancy of Arithmetic Progressions

En the set of all arithmetic progressions in the first n positive integers
rns � {1, � � � , n}, that is En � {Aadl X rns|a, d, l P rns}. Set An � prns, Enq.
An is the hypergraph of arithmetic progressions in the first n positive
integers.

5.1.2 Related Work
A celebrated result of Spencer [Spe85], the six-standard-deviation theorem,
says that for a hypergraph H with n � m, we have discpHq ¤ 6

√
n. Since

hypergraphs with a Hadamard matrix of order n as their incidence matrix
have discrepancy at least c

√
n, for a constant c ¡ 0, the upper bound is

tight up to a constant. Spencer’s proof that a two-coloring with discrepancy
at most 6

√
n does exist, relies on the pigeonhole principle applied to the

exponential large space C2pHq. It has been a long-standing open problem
whether or not there is a polynomial-time algorithm which can construct
an Op

√
nq-discrepancy two-coloring. It is known that already the simple

randomized algorithm where we choose a random two-coloring of H by
flipping a fair coin, independently for each vertex, returns for any 0  

p   1 with probability at least p a two coloring with discrepancy at most
Op
√
n logpmp qq. Moreover, this algorithm can be derandomized, which

means it can be converted to a polynomial-time algorithm retrieving a
two-coloring with the same asymptotic discrepancy bound. So for n � m

the algorithmically reachable discrepancy bound of this algorithm is of
the asymptotic order

√
n logpnq. A positive answer to the above question

was recently given by Bansal and Spencer, who provide a deterministic
polynomial-time two-coloring algorithm with asymptotic order

√
n [BS11].

Beside its difficulty, two-color hypergraph discrepancy is a fundamental
combinatorial problem with far-reaching applications, i. e., to the design of
efficient algorithms in e. g., combinatorial optimization [MNN94] [Sri01a]
[KS08], in computational geometry [Mat00] and numerical integration. Com-
binatorial discrepancy theory is a classical but vivid area in combinatorics
[BC87] [BS95] [Mat99] [Cha00] [AS08].

For the hypergraph An of arithmetic progressions in rns the gap between
the optimal discrepancy bound and what is efficiently computable is even
an order of magnitude. Roth [Rot64] proved the celebrated lower bound
discpAnq � Ωp 4

√
nq. Roth himself believed that this bound was too small and
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that the discrepancy actually should be close to
√
n. This was disproved

by Sárközy (see [ES74]), who showed an upper bound of Op 3
√
n lognq.

Inventing the partial coloring method, Beck [Bec81] showed a nearly tight
bound of Op 4

√
n 5
√
plognq2q. Finally Matoušek and Spencer [MS96] solved the

discrepancy problem for An by proving the asymptotically tight upper bound
Op 4

√
nq. From these results we now know that the minimum discrepancy

for the graph of arithmetic progressions is of the asymptotic order 4
√
n.

The probabilistic method gives a randomized polynomial-time algorithm
returning a two-coloring for An of discrepancy at most Op

√
n logpnqq, while

the polynomial-time algorithm of Sárközy stated in [ES74] can compute
a Op 3

√
n lognq discrepancy coloring. But the algorithmically fundamental

problem of computing a two-coloring of discrepancy Op 4
√
nq remains unsolved.

Since we know what the asymptotic order of the minimum discrepancy for
An is, and since no efficient algorithm for computing a minimum discrepancy
two-coloring of An is known, it can serve as a challenging benchmark problem
for the progress of algorithmic advances in the area of discrepancy theory.

5.1.3 Complexity of the Two-Color Discrepancy Problem

A zero discrepancy coloring for a simple graph, where each edge consists of
exactly 2 vertices, is nothing else than a two-coloring in the well-known sense
of graph theory. Whether or not there is a zero-discrepancy two-coloring of
graphs is decidable in polynomial time, as it is equivalent to the bipartiteness
of the graph. In contrast to this fact, for hypergraphs the same problem
is N P-complete [Kni97]. Thus, finding low discrepancy two-colorings of a
hypergraph is a complexity-theoretic hard problem.

5.2 Theoretical Results

There are constants c and C such that c 4
√
n ¤ discpAnq ¤ C 4

√
n holds for all

n P N. While an explicit value for the constant C of Matoušek and Spencer
is not known, Roth showed that 1{π is a suitable choice for c. A crucial
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point in Roth’s proof is the lower bound 1{π2 for the following function

gpn, αq �
1
n

b
√
nc∑

j�1

∣∣∣∣∣∣∣
b

√
n

2 c�1∑
k�0

e2πijkα

∣∣∣∣∣∣∣
2

, n P N, α P r0, 1s.

Numerical calculations show that, already for small n, this bound is quite
tight. For example, we have that minα gpn, αq approximatively is 0.16 for
n � 1000 and 0.148 for n � 10000.

5.2.1 The Size of An

The computational effort of our two-coloring algorithms depends on the
number |En| of hyperedges of An. For that reason we give an estimation of
this number, here

5.1 Proposition. The number of hyperedges in An is

|En| � n�

n�1∑
a�1

n�a∑
d�1

bn� a

d
c.

which is asymptotically close to n2 logpnq
2 , i. e., Θpn2 logpnqq.

The number of single vertex edges in An is n and for given a ¤ n � 1
and d ¤ n � a, the term bn�ad c counts the exact number of arithmetic
progressions with starting point a, difference d and length greater than 1.
This proofs the exact formula. In order to proof the asymptotic estimation
of the exact number of hyperedges, we use the following facts

5.2 Lemma. Let n P N, Hn :�
∑n
i�1

1
i be the n-th partial sum of the harmonic

series and Sn :�
∑n
i�1 i logpiq. It holds that

logpnq ¤ Hn ¤ logpnq � 1, (5.3)
n2 logpnq

2 �
n2

4 �
1
4 ¤ Sn ¤

pn� 1q2 logpn� 1q
2 �

pn� 1q2

4 �
1
4 . (5.4)

Inequalities (5.3) are well known. For the proof of (5.4), we also use
the fact that the range of sums of the form

∑n
i�1 fpiq with monotonically

decreasing/increasing function f : RÑ R can be estimated by accordant
integrals:
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5.3 Lemma. Let a, b P N and f : ra, b� 1s Ñ R be monotonically decreasing
and g : ra, b� 1s Ñ R monotonically increasing. It holds that∫ b�1

t�a

fptqdt ¤

b∑
i�a

fpiq ¤ fpaq �

∫ b

t�a

fptqdt, (5.5)

gpaq �

∫ b

t�a

gptqdt ¤

b∑
i�a

gpiq ¤

∫ b�1

t�a

gptqdt. (5.6)

Proof. Define f : ra, b � 1s Ñ R to be the piecewise constant function
satisfying

@i P NX ra, bs @t P ri, i� 1q : fptq � fpiq.

Then, fptq ¤ fptq for all t P ra, b � 1s and fptq ¤ fpt � 1q for all t P ra, bs.
We further have

b∑
i�a

fpiq �

∫ b�1

t�a

fptqdt.

This proofs (5.5), while (5.6) corresponds to (5.5) with f � �g.

Proof of Lemma 5.2 (5.4). The function F : R¥1 Ñ R, t ÞÑ t2 logptq
2 � t2

4
satisfies F 1ptq � t logptq for all t P R¥1. This implies

n2 logpnq
2 �

n2

4 �
1
4 �

∫ n

t�1
t logptqdt �

∫ n�1

t�2
pt� 1q logpt� 1qdt

which, due to Lemma 5.3 (5.6), is bounded by
n∑
i�2

i logpiq � Sn.

The second inequality of (5.4) is also implied by Lemma 5.3 (5.6):

Sn ¤

∫ n�1

t�1
t logptqdt � pn� 1q2 logpn� 1q

2 �
pn� 1q2

4 �
1
4 .
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Now, for an a ¤ n� 1, (5.3) gives
n�a∑
d�1

bn� a

d
c ¤

n�a∑
d�1

n� a

d
¤ pn� aq logpn� aq � pn� aq, (5.7)

n�a∑
d�1

bn� a

d
c ¥

n�a∑
d�1

p
n� a

d
� 1q ¥ pn� aq logpn� aq � pn� aq. (5.8)

Inserting (5.7)(5.8) into the exact formula for |En| and using (5.4) we obtain

|En| ¥ n�

n�1∑
a�1

ppn� aq logpn� aq � pn� aqq � n�

n�1∑
a�1

pa logpaq � aq

¥ n�
pn� 1q2 logpn� 1q

2 �
pn� 1q2

4 �
1
4 �

npn� 1q
2 ,

|En| ¤ n�

n�1∑
a�1

ppn� aq logpn� aq � pn� aqq � n�

n�1∑
a�1

pa logpaq � aq

¤ n�
n2 logpnq

2 �
n2

4 �
1
4 �

npn� 1q
2 ,

which proofs the claim that En is Θpn2 logpnqq.

5.3 Exact Algorithm

5.3.1 Limits of Integer Linear Programming
The two-coloring problem of An has an equivalent formulation as integer
linear program (ILP):

min disc

s.t. 2
∑
vPE

xv � disc ¥ |E| @E P En,

2
∑
vPE

xv � disc ¤ |E| @E P En,

x P {0, 1}n,
disc P N.
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The relationship between a solution vector x P {0, 1}n of the ILP and a
coloring of the form χ : V Ñ {�1, 1} is given by χpvq � 2xv � 1.

Standard solvers like Cplex can be applied to this formulation and
provide optimal two-colorings for very small n and upper bounds for larger
n. But the application of standard solvers is limited for memory reasons,
since the problem matrix of the ILP formulation isn’t very sparse, has n
columns and about n2 logpnq rows (two rows for every hyper edge). We
applied Cplex with default settings to the ILP formulation above. The
discrepancy of An is 2 for n P {3, . . . , 8}, 3 for n P {9, . . . , 26} and 4 for
n P {27, . . . , 60}. For the first instance with discrepancy 5, A61, Cplex
required about 40 minutes running time to solve the corresponding ILP.

5.4 Heuristics

5.4.1 Random Half-Half Coloring
A simple random strategy of 2-coloring a hypergraph’s vertices is the random
two-coloring. We independently flip a fair coin for each vertex of the
hypergraph to decide its color. For this algorithm an upper discrepancy
bound of Op

√
n lognq is easily derived by the probabilistic method [AS08].

5.4.2 Algorithm of Sárközy
The algorithm of Sárközy stated in [ES74] runs in polynomial-time. The
algorithm first determines a prime number p such that n �

√
p3 log p and

colors each number j P rp� 1s with the Legendre symbol(
j

p

)
:�
{
�1, if j is quadratic remainder modulo p
�1, else

,

p with one and each number j � p� 1, . . . , n with the same color as j � p.
The following theorem is stated in [ES74].

5.4 Theorem. The discrepancy of a two-coloring due to Sárközy is Op 3
√
n lognq.

The algorithm of Sárközy has been now for about 35 years the algorithm
with the best theoretically worst-case performance for computing the dis-
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crepancy of arithmetic progressions, but practical experiments were not
documented, yet.

Our first experiments with Sárközy colorings showed some discrepancy
variation in dependence of the chosen prime module. Additional to the usage
of the Legendre symbol, we also tried to color the first p numbers randomly
but balanced w.r.t. the number of red and blue vertices, respectively, while
retaining Sárközy’s color replication idea for the remaining numbers in rns.
For the better prime modules, we observed that between 1 and 5 percent of
the randomly generated two-colorings were at least as good as the colorings
based on the usage of the Legendre symbol. Since we will deal with such
Sárközy based random colorings within our EA frameworks in Section 5.5
and since a proof of Theorem 5.4 seems to have never been published, we
proof a corresponding probabilistic result below.

We call a two-coloring χ of H balanced, if |χpV q| ¤ 1, i. e., if its color
classes have either the same cardinality (if n is even) or differ by 1 (if
n is not even). By the probabilistic method [AS08] one easily obtains a
general upper 2-color discrepancy bound of

√
2n logp2mq for hypergraphs.

A modification concerning balanced two-colorings is given by

5.5 Proposition. There is a balanced two-coloring χ of H with

discpH, χq ¤
√

4n logp4mq � 1

Proof. We first suppose that n is even and use the following random two-
coloring procedure, called RandomBalancepnq. Let V1, V2 � V with |V1| �

|V2| � n{2 be a partition of V and ϕ be a bijection between V1 and V2. For
v P V1 let Xv be independent random variables with

PrXv � �1s � PrXv � �1s � 1
2 .

RandomBalancepnq generates a balanced random two-coloring χ of H by
setting χpvq � Xv and χpϕpvqq � �Xv for all v P V1. Now, the proof is
similar to that of [AS08] for general two-colorings. We set α �

√
n logp4mq.

For every hyperedge E P E , it holds that

P [|χpEq| ¡ 2α] ¤ P [|χpE X V1q| ¡ α _ |χpE X V2q| ¡ α] (5.9)
¤ P [|χpE X V1q| ¡ α]� P [|χpE X V2q| ¡ α] .
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For i P {1, 2}, application of Chernoff bounds gives

P [|χpE X Viq| ¡ α] � P

[
|
∑

vPEXVi

Xv| ¡ α

]
(5.10)

  2e�α
2{p2|EXVi|q ¤ 2e�α

2{n �
1

2m.

By (5.9) and (5.10) we have P [|χpEq| ¡ 2α]   1
m , which yields

P [DE P E : |χpEq| ¡ 2α] ¤
∑
EPE

P [|χpEq| ¡ 2α]   1.

Thus, there exists a balanced two-coloring χ of H such that |χpEq| ¤ 2α
holds for every hyperedge E P E . In the case that n is not even, we may pick
one vertex v P V and consider the subhypergraph of H that is induced by
V z{v}. Its discrepancy is also bounded by

√
4n logp4mq and the discrepancy

of H is at most one more.

5.6 Remark. We can easily modify the existence statement of Proposi-
tion 5.5 into a probability dependent statement by introducing an ε ¡ 0.
Then, with probability greater than 1 � ε the two-coloring generated by
RandomBalancepnq has discrepancy at most

√
4n log

( 4m
ε

)
� 1.

In the following, we utilize arithmetic progressions in Zp. An arithmetic
progression in Zp, p prime, consists of all residual classes that are represented
by the elements of some arithmetic progression Aa,d,l. Denote by EZp

the
set of all arithmetic progressions in Zp. Set AZp � pZp, EZpq. AZp is the
hypergraph of arithmetic progressions in Zp. The number of hyperedges
in AZp is bounded by p3, since EZp is induced by arithmetic progressions
Aa,d,l with a P {0, . . . , p� 1} and d, l P rps. For this reason, we obtain

5.7 Corollary. Let p be a prime number and ε ¡ 0. With probability greater
than 1� ε RandomBalanceppq finds a two-coloring χZp

of AZp
with

discpAZp , χZpq ¤

√
4p logp4p

3

ε
q.

Choosing x P R¡0 such that n �
√
x3 log x, the assumption n �√

p3 log p about the prime module p for the algorithm of Sárközy can
be specified to p P rx2 , xs, which exists due to Bertrands postulate and yields
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√
p3 log p P rn4 , ns. Now, using Corollary 5.7, we can proof the following

version of Theorem 5.4.

5.8 Theorem. Let p be a prime module such that
√
p3 log p P rn4 , ns. Let χ

be a two-coloring of Arns, where χ|rps is obtained by RandomBalanceppq and
χpvq :� χpv � pq for v P rnszrps. We have discpArns, χq ¥

3
√

1
9n logn and

with probability greater than 1
2 we have discpArns, χq ¤ 8 3

√
2
3n logn.

Proof. The arithmetic progression A1,p,d n
p e is monochromatic w.r.t. χ and

thus has discrepancy at least
n

p
¥
√
p log p.

It holds that

log n4 ¤ log
√
p3 log p ¤ logpp2q � 2 log p,

which implies logn ¤ 9
4 log p and yields

9
√
p3plog pq3 � 9 logppq

√
p3 log p ¥ n logn,

i. e.,

discpArns, χq ¥
n

p
¥
√
p log p ¥ 3

√
1
9n logn.

The prime module p further satisfies
n

p
¤ 4
√
p log p (5.11)

and
3
2
√
p3plog pq3 � 3 log p

2
√
p3 log p � log

(√
p3
)√

p3 log p ¤ n logn,

i. e., √
p log p ¤ 3

√
2
3n logn. (5.12)

Let Aa,d,l be any arithmetic progression in rns with starting point a, dif-
ference d and length l. Due to (5.11) and (5.12) it suffices to show that
|χpAa,d,lq| ¤

n
p � 4

√
p log p with probability greater than 1

2 . We distinguish
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the cases gcdpd, pq � p and gcdpd, pq � 1. In the first case, d is multiple of
p which yields |χpAa,d,lq| ¤ l ¤ n

p . In the second case, let l � qp� r with
q P N0, q ¤ n

p and r P {0, . . . , p� 1}. The arithmetic progression Aa,d,l has
a partition into q arithmetic progressions of length p and one arithmetic
progression of length r:

Aa,d,l �

q�1⋃
k�0

Aa�kpd,d,p YAa�qpd,d,r

Since d and p are coprime, the q subprogressions of length p correspond to
the full arithmetic progression in Zp. Thus, by the construction of χ all
these subprogressions have discrepancy 1 (w.r.t. χ). The last subprogression
Aa�qpd,d,r of Aa,d,l corresponds to some arithmetic progression in Zp which
implies that its discrepancy is at most discpAZp , χ|rpsq. After Corollary 5.7
with probability greater than 1

2 the latter is bounded by√
4p logp8p3q �

√
4pplogp8q � 3 logppqq ¤

√
16p logppq � 4

√
p log p.

Thus we have |χpAa,d,lq| ¤ n
p � 4

√
p log p with probability greater than 1

2
as desired.

5.4.3 Local Search
A given two-coloring may possibly be improvable by changing the color
of some single vertex or by swapping the colors of two differently colored
vertices, respectively. We can test all vertices, resp. pairs of vertices, and
apply the corresponding variation. The procedure can be repeated until
no improvement is possible any more. We implemented this local search
procedure (LS) as a further benchmark heuristic. In each iteration, the
faster bit-flip step is tried first while, optionally, the bit-swap step is only
tried if bit-flip is not successful. We denote the variant that only tries to
flip bits by LS1 and the variant that also tries to swap bits by LS2.

5.5 EA Framework
Since the two-coloring problem is of purely binary nature, we apply a
classical binary EA framework and the QiEA framework after Han and Kim
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(see Section 1.5), here.

5.5.1 Genotypes and Encoding
In order to proof the upper discrepancy bound of Op 3

√
n lognq (cf., The-

orem 5.4), Sárközy chose a prime module p such that n �
√
p3 log p and

constructed a two-coloring of rns by repeating a generating Legendre symbol
coloring of rps. We may two-color modulo p within other algorithms, e. g.,
replacing the Legendre symbol with the outcomes of random variables. The
Legendre symbol is symmetric in the sense that(

p� j

p

)
� �

(
j

p

)
, j P rp� 1s.

We further know that an optimal two-coloring of An must be balanced
[DS03]. For that reason, our genotypes will be binary strings b of length
p�1

2 . The encoding function that yields the corresponding coloring χ of rns
is defined by

χpvq :�


2bv � 1, if v P rp�1

2 s

1� 2bp�v, if v P {p�1
2 , . . . , p� 1}

2b p�1
2
� 1, if v � p

(5.13)

for the generating part of χ and by

χpvq :�


χpv � pq, if v P {p� 1, p� 2, . . . , n}zpZ
χppq, if v P {p� 1, p� 2, . . . , n}X 2pZ
�χp, if v P {p� 1, p� 2, . . . , n}X ppZz2pZq

(5.14)

for the remaining vertices. This approach reduces the search space size from
2n to 2

p�1
2 .

We denote with ppnq the smallest prime number that satisfies n  √
ppnq3 logpppnqq. We made the following observations by precalculations.

1. The original Sárközy coloring described in [ES74] is generated by (5.13)
and (5.14), if we set χpvq � χpv � pq in all cases of the second formula.
However, the discrepancy results of all examined two-coloring algorithms
are better, if we use the balanced version.

2. For a given n P N, the best prime module for (5.14) using the Legendre
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symbol for the generating part of χ, say p�pnq, is also small related to n.
3. For every prime module p we can generate additional random color-

ings by choosing b P {0, 1}
p�1

2 under uniform distribution and applying
(5.13)(5.14). If we repeat the random experiment for many, say 10000,
trials and do the same for every prime module between ppnq and n, the
discrepancy of the best obtained coloring is often at least as good as
that for ppnq. Since p�pnq is sometimes too small to allow for further
discrepancy optimization (see initial experiments, Table 5.1) the prime
module of our choice, say p��pnq, will sometimes differ from p�pnq.

Consequently, the modules ppnq�� of 3. are our favorites for the encoding
function (5.13)(5.14) within our EA frameworks.

5.5.2 Fitness Function
We use the negative discrepancy as standard fitness function.

Refinement of the Fitness Function

Suppose we have two two-colorings χ and χ1, such that d � discpAn, χq �

discpAn, χ
1q. We can distinguish the qualities of both colorings, if we can

measure how far they are from having discrepancy d� 1. An obvious way
to do this is to determine the number md of hyperedges with discrepancy d.
We can include this number as fractional term into the fitness function by
returning f � �d� md

m�1 . We alternatively use this refinement of the fitness
function as it should support the ability of an evolutionary algorithm to
head for lower discrepancy solutions.

Early Termination of the Fitness Function

During a two-coloring algorithm, whenever the discrepancy d of a current
two-coloring is decisive, we may only need to know if it is better than
the discrepancy d� of a former observed two-coloring (e. g., the best one).
For this reason it suffices, if our fitness function implementation returns
maxp�d,�d�q instead of �d. Since the discrepancy d of a two-coloring
χ of An is maxEPEn |χpEq| we return �d�, if |χpEq| ¥ d� holds for some
hyperedge E P En. A similar approach is realized for the refined version
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of the fitness function. Then, we also count the edges that have the same
discrepancy as that of the most imbalanced edge w.r.t. the current two-
coloring. The fitness function implementation with the options of refinement
and early termination is given by Algorithm 7.

Algorithm 7: Genotype Fitness
input : Number n of vertices, prime module p, b P {0, 1}

p�1
2 ,

flag refine, fitness bound fmin
output : Fitness value f

1 Generate coloring χ of rns from b using (5.13) and (5.14);
2 f � disc � count � 0;
3 stop � false;
4 a � d � 1;
5 while a ¤ n and not stop do
6 while d ¤ n� 1� a and not stop do
7 lmax � 1� bn�ad c;
8 colorsum � 0;
9 l � 1;
10 while l ¤ lmax and not stop do
11 v � a� pl � 1qd;
12 colorsum � colorsum� χpvq;
13 edgedisc � |colorsum|; // discrepancy of Aa,d,l
14 if edgedisc � disc then count � count� 1;
15 if edgedisc ¡ disc then
16 disc � edgedisc;
17 count � 1;
18 f � �disc;
19 if refine then f � f � count

|En|�1 ;
20 if f   fmin then
21 f � fmin;
22 stop � true;
23 l � l � 1;
24 d � d� 1;
25 a � a� 1;
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5.5.3 Operational Settings
Optional EA variation operators are bit-flip mutation, bit-swap mutation,
two-point crossover and uniform crossover. The local search heuristics LS1
and LS2 from subsection 5.4.3 are further mutation operators. We will
try different population (group) sizes for the classical EA where the initial
population always consists of randomly generated individuals.

Concerning the QiEA, we use a group size of one, since one individual
does already comprise both a good (initial) exploration capacity and a
good learning ability. In each generation, we do multiple observations
(Nobs � 5) of the qubits and replace the associated attractor by the best of all
obtained offsprings and the current attractor. Subsequently, we update the
probabilities. Rather than applying rotation gates (cf., subsection 1.5.6 and
[HK02][HK04]) we change probabilities by simple additive terms �∆ (with
overflow prevention) since we observed this to provide better performance.
For our settings, we found ∆ :� 10�4 to be a suitable choice.

Algorithm 8 describes the top level of the classical EA framework for the
two-coloring problem. The top level of the QiEA framework is quite similar.
Using the simple top level QiEA framework as described above, its pseudo
code is quite similar to Algorithm 8. The procedure iterateEA (Algorithm 9)
will be replaced with iterateQiEA (Algorithm 10) and migration is performed
by replacing the attractor of the unique individual of each group.

The stopping criterion for all operational parameter settings is a time
limit of n2 logpnq � 10�5 seconds which is proportional to the number of
hyper edges.

5.6 Experiments
Similar to our experiments in Section 2.6 and Section 3.5 we use the Linux
system with 2100 MHz clock rate AMD Opteron CPUs. We start with
the algorithm of Sárközy, using (5.14) and the Legendre symbol for the
generating part of the coloring. Table 5.1 shows the discrepancy results
and lower discrepancy bounds for both the smallest prime module ppnq that
satisfies n  

√
ppnq3 logpppnqq and the best prime module p�pnq in rns. We

further state the same for the prime modules p��pnq that we have chosen
considering 10000 additional random two-coloring trials (as described in
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Algorithm 8: EA framework for the two-coloring problem
input : Number n of vertices, prime module p,

operational parameters
output : Two-coloring χ of rns

1 Generate initial population P that consists of Ngr groups with Nind

random binary individuals of length p�1
2 ;

2 tmax �
n2 logn
10000 ;

3 tmig � 0;
4 while trun ¤ tmax do
5 for j P rNgrs in parallel do
6 iterateEA(Gj);
7 take current running time trun;
8 if allowMigration and trun � tmig ¡

tmax
10 then

9 migrate best individual of all groups to each group by
replacing the most unfit one in a group;

10 tmig � trun;

11 obtain χ from the very best individual using (5.13) and (5.14);

subsection 5.5.1). The chosen module p��pnq differs from p�pnq if either a
better discrepancy was obtained or the discrepancy associated with p�pnq
does not provide enough space for further optimization. We see that the
prime modules ppnq are too small, since the corresponding lower discrepancy
bounds dnp e do always exceed the results that are obtained for p�pnq and
p��pnq.

The principle of dealing with generator bit-strings and obtaining full two-
colorings by (5.13)(5.14) will be used for all algorithms under consideration,
where the prime numbers p��pnq are the default modules. Moreover, the
refined fitness function and the early termination of the fitness function
calculation are utilized for all algorithms.

We consider the classical EA framework with a single-group population
and make the first guess that
• the prime modules p��pnq determined before,
• a population size of 25 and 5 matings per generation
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Algorithm 9: iterateEA
input : Group G and operational parameters

1 for k P rNmates do
2 select parent index i1 P rNinds by linear ranking based RWS (see

subsection 1.5.3);
3 select parent index i2 P rNinds by linear ranking based RWS until

i2 � i1;
4 pick individuals parent1, parent2 that correspond to i1, i2;
5 apply the chosen crossover operator to the parents in order to

generate two children child1, child2 or set child1 � parent1 and
child2 � parent2, if no crossover is desired;

6 apply the chosen mutation operator to both children in order to
generate two mutants mutant1, mutant2 or set mutant1 � child1
and mutant2 � child2, if no mutation is desired;

7 insert both mutants into group G;
8 sort the group members w.r.t. the fitness function and resize the
group to Nind by deleting its most unfit members;

Algorithm 10: iterateQiEA
input : Individual I � pp, aq and operational parameters

1 for k P rNobss do
2 get binary state b by observation (randomized rounding) of p;
3 if the fitness of b is better than the fitness of a, replace a with b;
4 change all probabilities of p towards the corresponding value of a by
an amount of ∆;
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Table 5.1. Initial two-coloring algorithm results (specifications are given in the
text).

n p d dnp e p� d� d n
p� e p�� d�� d n

p�� e
1000 67 16 15 83 15 13 101 13 10
2000 97 23 21 127 19 16 163 17 13
3000 127 24 24 223 22 14 229 21 14
4000 149 30 27 283 24 14 283 24 14
5000 173 32 29 283 26 18 307 25 17
6000 191 34 32 283 27 22 307 27 20
7000 211 34 34 283 29 25 337 28 21
8000 229 35 35 467 30 17 367 28 22
9000 251 39 36 367 32 25 439 30 21
10000 263 40 39 587 32 18 467 30 22
15000 347 44 44 587 37 26 587 35 26
20000 409 49 49 587 41 35 653 40 31
25000 467 54 54 587 45 43 743 43 34
30000 541 56 56 1307 47 23 859 46 35
40000 631 64 64 1307 54 31 1307 54 31
50000 727 69 69 1307 55 39 1307 55 39
60000 821 74 74 1307 59 46 1307 59 46
70000 907 78 78 1307 63 54 1663 64 43
80000 977 82 82 1663 66 49 1663 66 49
90000 1051 89 86 1663 69 55 1663 69 55
100000 1129 89 89 1907 71 53 1907 71 53

• uniform crossover,
• bit-swap mutation,
• the refined fitness function and
• the fitness of the worst individual as a bound for early termination of the
fitness calculation

are suitable operational settings. There are too many operational parameter
combinations to experiment with all of them. For that reason, we try if a
better combination is obtained by varying the six settings from above one
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Sárközy
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Module p��pnq
Module ppnq
Module n

Figure 5.1. Convergence of different heuristics using prime module p��pnq (left)
and the classical EA with default settings and different prime modules (right).

by one. We perform our experiments for n P {1000, 2000, . . . , 10000} and
consider normalized convergence plots as we did in Section 2.6. Normaliza-
tion is done w.r.t. a discrepancy limit of 2 3

√
n logn and the runtime limit of

n2 logpnq � 10�5 seconds, which is the stopping criterion for every algorithm.
Figure 5.1, Figure 5.2, Figure 5.3 and Figure 5.4 show the results.

On the left hand side of Figure 5.1 we consider three benchmark heuristics.
The best out of repeated random two-coloring trials does soon beat the
Legendre symbol generator coloring, but better results are obtained if the
generator coloring with the Legendre symbol is improved by local search
(see subsection 5.4.3). The right hand side of Figure 5.1 confirms that
operating on short binary generator strings which induce the corresponding
full colorings yields better results than dealing with strings of full length.
Figure 5.2 shows that a population size of 25 with 5 matings per iteration
is the best of our three alternatives (w.r.t. the default other operational
parameters) and also confirms that uniform crossover behaves well. Since
the local search results are already quite good, we decided to incorporate LS
as further alternatives for the mutation operator. Figure 5.3 shows that the
local search mutation operators, LS1 and LS2, do indeed outperform both,
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0 0.5 10.3

0.35

0.4
nI = 10, nM = 2
nI = 50, nM = 10
nI = 25, nM = 5

0 0.5 10.3

0.35

0.4
UX
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Figure 5.2. Convergence of the classical EA for default settings (blue lines) and
other population parameters (left) and crossover operators (right), respectively.
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Bit-Swap M
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Figure 5.3. Convergence of the classical EA for default settings and other mutation
operators.
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Bound = n

Figure 5.4. Convergence of the classical EA for default settings and alternatives
concerning the fitness function.

bit-flip mutation and bit-swap-mutation. From Figure 5.4 we conclude that
the refined fitness function yields better results than the standard fitness
function. Our conjecture concerning the bound for early termination was
that the fitness fworst of the worst individual would be a better choice than
the fitness fbest of the best individual. The disadvantage using fbest is that
it is not possible to integrate a new individual into the population the fitness
of which lies between fbest and fworst. On the other hand, depending on
the population size, much more fitness evaluations can be done if fbest is
used. Referring to Figure 5.4, this advantage seems to be stronger than the
disadvantage.

Concerning QiEA we use the framework and settings as described in
subsection 1.5.6 and Section 5.5. We refrain from hybridizations with the
local search heuristic since we do not want to disturb the QiEA working
principle of changing attractors by observation only. Figure 5.5 shows the
results for the single-group QiEA compared to the best of our isolated
benchmark heuristics as well as to the best found operational setting for
the classical single-group EA. In average, QiEA outperforms the benchmark
algorithms w.r.t. both efficiency and effectivity.
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Figure 5.5. Left: Convergence of the best heuristic, the best classical single-group
EA setting and the single-group QiEA. Right: Convergence of the QiEA with 1
group, 16 isolated groups and 16 groups with migration.

Finally, we repeat the QiEA experiments with 16 groups instead of
one group only, processing each group with its own CPU (i.e. using 16
fold processing power). Similar to the TSP with time windows problem, a
somewhat surprising observation is that periodic migration of the very best
attractor to all groups does not yield better results than isolated groups.
We also observed short migration periods to be inferior to long migration
periods. Although qubits are slowly influenced by a migrated attractor,
migration seems to cause a loss of diversity which is not compensated by the
chance to make more observations in the neighborhood of the good migrant.
In the left plot of Figure 5.5 the migration period is 10% of the total running
time. Table 5.2 compares the discrepancy results of the modified Sárközy
algorithm using the optimal prime modules p�pnq (also stated in Table 5.1)
with the single-group EA (25 individuals, 5 matings per generation, two-
point crossover and bit-flip local search mutation), the single-group QiEA
and the 16-group QiEA without migration. All EAs ran with the chosen
prime modules p��pnq. For n ¥ 40000, we only ran the modified Sárközy
algorithm and the single-group QiEA since the 16-group QiEA would already
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Table 5.2. Two-coloring results of the modified Sárközy algorithm (using prime
modules p�pnq) and three EAs (using prime modules p��), respectively.

n Discrepancies
Sárközy 1-group EA 1-group QiEA 16-group QiEA

1000 15 13 13 12
2000 19 17 17 16
3000 22 18 19 18
4000 24 21 21 20
5000 26 22 21 21
6000 27 24 23 23
7000 29 25 24 23
8000 30 25 26 24
9000 32 26 27 25
10000 32 28 28 27
15000 37 32 30 30
20000 41 33 33 33
25000 45 36 35 35
30000 47 37 37 37

require a high quota of the shared computational environment but yield
at most little better final discrepancies (cf., n ¤ 30000). The results are
shown in Table 5.3 Figure 5.6 shows a plot of the discrepancy results for the
16-group QiEA (blue) in comparison with random two-coloring (green) for
n P {1000, 2000, . . . , 10000}Y {15000, 20000, 25000, 30000} and the chosen
prime modules p��pnq. It further shows the results of the modified Sárközy
algorithm w.r.t. its optimal prime module p�pnq (red) and the results of
random two-coloring applied to the full bit-strings (black).

149



5. Two-Color Discrepancy of Arithmetic Progressions

0 5000 10000 15000 20000 25000 300000

10

20

30

40

50

60

70

80

90

100

n

di
sc
re
pa

nc
y

Randn coloring
Sárközyp�pnq coloring
Randp��pnq coloring
QiEAp��pnq coloring

Figure 5.6. Discrepancy results for different algorithms.
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Table 5.3. Two-coloring results of the modified Sárközy algorithm (using prime
modules p�pnq) and the single-group QiEA (using prime modules p��), respec-
tively.

n Discrepancies
Sárközy 1-group QiEA

40000 54 42
50000 55 46
60000 59 46
70000 63 51
80000 66 52
90000 69 55
100000 71 55
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