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Abstract
Evolutionary game theory and theoretical population genetics are two differ-

ent fields sharing many common properties. In both fields, theoretical models

are built to explore evolutionary dynamics; various evolutionary forces, such

as selection, mutation, and random genetic drift, are involved in the mod-

eling. However, in terms of concrete models, evolutionary game theory is

often considered to deal with phenotypes, while theoretical population genet-

ics describes genotypes. Is it possible and worth to combine approaches from

both fields? We address this question by analyzing the evolutionary dynamics

driven by random mutations in the framework of evolutionary game theory.

Mutations provide a continuous input of new variability into a population,

which is exposed to natural selection. In evolutionary game theory, mutations

are often assumed to occur among predefined types. This assumption initially

made in the study of behavioral phenotypes (i.e. human behaviors), might be

less reasonable in studies at the level of genes or genotypes. An alternative

assumption is made in the infinite allele model in theoretical population ge-

netics, where every mutation brings a new allele to the population. However,

the resulting evolutionary dynamics based on the infinite allele model has only

been studied in the context of neutral and constant selection. In this thesis, we

propose an evolutionary game theoretic model, which combines the assump-

tion of infinite alleles and frequency dependent fitness. We investigate the

evolutionary dynamics in finite and infinite populations based on this model.

The fixation probability of a single mutant, the diversity of a population, and

the changes of the average population fitness are strikingly different under

constant selection and frequency dependent selection scenarios. These results

imply that connecting evolutionary game theory and theoretical population

genetics approaches can bring a different and insightful view in understanding

evolutionary dynamics.



Kurzfassung
Evolutionäre Spieltheorie und Populationsgenetik sind zwei verschiedene wis-

senschaftliche Gebiete, die viele gemeinsame Eigenschaften teilen. In beiden

Gebieten werden theoretische Modelle zur Beschreibung evolutionärer Dy-

namiken entwickelt, wobei viele die Evolution treibende Kräfte berücksichtigt

werden, wie etwa Selektion, Mutation und zufälliger genetischer Drift. Nichts-

destotrotz beschreibt die evolutionäre Spieltheorie in konkreten Modelen den

Phenotyp und die Populationsgenetik den Genotyp. Ist es möglich und nüt-

zlich, Ansätze von beiden Gebieten zu verbinden? Wir beantworten diese

Frage durch die Analyse von durch Mutationen getriebenen evolutionären

Dynamiken im Rahmen von evolutionärer Spieltheorie. Mutationen verur-

sachen einen kontinuierlichen Zufluss von Variabilität in eine Population, die

dann natürlicher Selektion ausgesetzt ist. In evolutionärer Spieltheorie wer-

den Mutationen oft innerhalb vordefinierter Typen angenommen. Diese An-

nahme stammt ursprünglich aus der Studie von Verhaltensmustern (z. B. men-

schliches Verhalten) und ist auf dem Level von Allelen möglicherweise weniger

schlüssig. Eine alternative Annahme wird im Infinite Allele Model gemacht,

wo jede Mutation ein neues Allele in die Population einführt. Jedoch wurde

die auf dieser Annahme beruhende evolutionäre Dynamik nur im Zusammen-

hang mit konstanter oder neutraler Selektion untersucht. In dieser Arbeit

schlagen wir ein evolutionäres spieltheoretisches Model vor, das die Annah-

men des Infiniten Allele Models mit frequenzabhängiger Selektion kombiniert.

Wir untersuchen die dem Model zugrundeliegenden evolutionären Dynamiken

für endlich und unendlich große Populationen. Die Fixierungswahrschein-

lichkeit eines einzelnen Mutantens , die Vielfältigkeit der Population und die

Änderungen der mittleren Fitness sind für konstante und frequenzabhängige

Fitness erheblich voneinander verschieden. Diese Ergebnisse implizieren, dass

die Verbindung von spieltheoretischen und populationsgenetischen Ansätzen

neue Einsichten in das Verstehen von evolutionären Dynamiken bringen kann.
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Chapter 1

Introduction

1.1 Motivation

Game theory, invented by Neumann and Morgenstern, studies human behavior

in strategic decision making [1, 2, 3]. People display different behavior in social

interactions. In game theory, those interactions are described by a game,

consisting of a group of players and a set of strategies available to each of

these players. What players gain or lose for each combination of strategies are

called payoffs. As a player may have more than one available action, this raises

the question how do players choose their actions in different interactions? In

game theoretic models, a basic assumption is rationality. Rational players

choose an optimal action to obtain their highest payoffs, taking into account

that their co-players will make similar rational decisions [4].

Game theoretic approaches were first introduced to biology in order to

study individual interactions in animal populations by Maynard Smith and

Price [5, 6, 7, 8, 9]. In biological populations, strategies correspond to heri-

table traits, and payoffs are mapped to fitness [10]. As Individuals have fixed

strategies (heritable traits) in their life time, the assumption of rationality is

relaxed. This is known as evolutionary game theory. Here, the term ‘fitness’ is

used to describe different abilities of individuals with different traits to survive

and reproduce [11]. Fitness has different components, such as survival and

fertility. However, generally only one single component of fitness is studied
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for the sake of simplicity. This is not totally unreasonable, as trade-offs often

exist between different components of fitness. In evolutionary game theory,

fitness is often defined as the average number of offspring from an individual

with a certain trait [9].

A classical assumption is constant fitness, which means that fitness of a

certain type is a fixed value independent of other types in the population

[12, 13]. This assumption was initially made in studies of short-term evo-

lution, where the feedback of the frequencies of different types on the the

population dynamics is often ignored. On the contrary, frequency dependent

fitness is defined as that the fitness of a type depends not only on its own

frequency but also on the frequencies of other types in the population [9, 12].

The possibility that fitness might be frequency dependent was pointed out

by Fisher in his discussion on mimicry [14], and later discussed in other ex-

perimental and theoretical studies [15, 16]. Assuming constant fitness makes

mathematical models more tractable. Thus, this assumption is widely used in

many theoretical models. Instead, one of the advantages of using evolutionary

game theory to understand evolutionary processes is that it is a study based

on frequency dependent fitness [17].

There are many reasons why the concept of frequency dependent selection

is popular in evolutionary biology. One important reason is that negative

frequency dependent selection has the potential to explain stable polymor-

phisms. In this case, rare traits have higher fitness, and the fitness of one

trait increases when its relative frequency decreases in the population. This

pattern has been observed in many biological systems such as the color morphs

of flowers [18], the allelic variation at the self-imcompatibility S locus of plants

[19], the diverse genotypes of major histocompatibility complex (MHC) genes

[20], the high genetic variation of human immunodeficiency virus (HIV) [21],

and the polymorphisms of fruitfly foraging behavior [22].

On the other hand, positive frequency dependent selection, where the
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fitness of a type increases with its frequency, is also observed in biological

systems. For example, rare morphs produce fewer young than the common

morphs in wild snails [23], and common warning colors have advantages over

rare warning colors in beetles [24]. It is often argued that stable polymor-

phisms is driven by negative frequency dependent selection, and that positive

frequency dependent selection functions in the opposite way. However, there

are patterns in natural populations that can not be simply classified into these

two scenarios, but the variation of different types is also maintained.

One example is a rock-paper-scissors pattern in mating strategies in com-

mon side-blotched lizards [25, 26]. The orange-throated males defeat the blue-

throated males, the blue-throated males defeat the yellow-throated males, and

the yellow-throated males defeat the orange-throated males. Between any two

male types, frequency dependent selection favors one of them. However, for

all three male types, the interactions among them form a cyclic dynamics,

which leads to the coexistence of the three types. Their proportions fluctuate

in the short term, but are similar in the long term. Similar patterns of cyclic

dynamics have also been observed among sessile marine invertebrates, like

corals competing for space in reef environments [27, 28, 29]. In Escherichia

coli, colicin-sensitive cells have a growth-rate advantage over colicin-resistant

cells, colicin-resistant cells replace colicinogenic cells, and colicinogenic cells

kill colicin-sensitive cells [30, 31, 32, 33].

Those types of interactions defined in a simplified model with only two

types, might result in different dynamics in a population with more types.

Stable polymorphisms can arise from different types of frequency dependent

selection, which can be captured by evolutionary game theoretic models.

Besides of studying animal behavior in conflict interactions, evolutionary

game theory is also used to understand mutualism and other types of individ-

ual interactions [34, 35, 36, 37, 38]. Due to this extensive background, evolu-

tionary game theory is considered to typically deal with phenotypes [39] and
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ignore the complexity at the genotype level [6]. Although connections between

evolutionary game dynamics and population genetics are possible [36, 40, 41],

concrete models with population genetics ingredients in the framework of evo-

lutionary game theory are still rare. This thesis focuses on a model from such

a perspective.

Evolutionary dynamics is driven by many different natural forces such as

selection, mutation, random genetic drift, and migration [42, 12]. There are

many well-established methods to model selection and random genetic drift

in infinite and finite populations [43, 44, 45, 46, 47, 36, 48, 49, 50, 51]. Here,

we are interested in the impact of mutations on the population dynamics, es-

pecially when the fitness of mutants is frequency dependent. In this thesis, we

refer this type of mutants to ‘frequency dependent mutants’. Mutations can

result in different types of changes in different levels of an organism and pro-

vide a continuous source of variation in natural populations [12]. We consider

frequency dependent mutations in biological populations, and incorporate ap-

proaches and concepts from both population genetics and evolutionary game

theory.

In evolutionary game theory, it is often assumed that mutations happen

between fixed known strategies. In our model, every mutation brings a new

type into the population, which is analogous to the basic assumption of the

infinite alleles model in population genetics [52, 53]. In the infinite alleles

model, it is assumed that every new mutation brings a new allele which does

not exist in the population. This is because the probability of back mutation

is considered low enough to be negligible, and there are enough novel alleles

the original allele can mutate to. There are many theoretical studies based

on the infinite alleles model [54, 55, 56, 13]. However, they mainly consider

neutral or constant selection so far. Instead, our model is based on frequency

dependent selection and refers to any selection intensity (explained in details

in Section 1.3.3). We introduce randomness in the fitness of mutants (see
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Section 1.4), which allows any possible types of frequency dependent selection

in the same evolutionary process.

In this thesis, different quantities of biological interest are investigated

based on this model. We study the fixation probability of a single random

mutant, the frequency distribution of the number of types existing at the

same time, and the change of the population average population fitness. An

interesting and central question is whether this new model differs from the

corresponding model based on constant selection, and if so, how.

The following parts of the introduction will explain how random genetic

drift and selection are addressed in population dynamical models, and how we

implement frequency dependent mutants in the evolutionary game theoretic

framework. The main body of the thesis will focus on different population dy-

namical systems based on our frequency dependent mutant model. All models

discussed and explained in this thesis focus on a single locus. We compare fre-

quency dependent selection scenarios with constant selection scenarios. The

evolutionary dynamics of a population can be strikingly different under the

two scenarios. This comparison reveals that evolutionary game theory can

provide a different and insightful view on evolutionary problems.
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1.2 Infinite and finite populations

Population size has an important impact on the evolutionary dynamics. In

an infinite population model, the frequency changes of different types are

deterministic due to dynamic rules of the reproduction process. One of these

dynamic rules is the replicator dynamics. Here, the frequency of a certain type

changes deterministically in proportion to the difference of its own fitness and

the average population fitness [57, 58, 59]. The replicator dynamics is a good

approximation if the population size is sufficiently large [40].

When the population size is small, the frequencies will fluctuate by chance.

The smaller the population is, the greater the frequency fluctuations. In pop-

ulation genetics, this is called random genetic drift [12]. Random genetic

drift is considered to play an important role in evolution [60]. Mathemati-

cal models have been proposed to capture such stochastic effects [61, 62, 63].

Two models often used to describe finite populations are the Moran process

and the Wright-Fisher process. The Moran process describes the evolution-

ary dynamics in a population with overlapping generations [64, 65], and the

Wright-Fisher process corresponds to a population with non-overlapping gen-

erations [14, 66]. All the methods used or discussed in this thesis are focused

on well-mixed populations, which mathematically corresponds to populations

under random mating [40].

1.2.1 Replicator dynamics

In evolutionary game theory, the replicator equations are used to describe

a deterministic game dynamics [43, 36, 67]. The Replicator dynamics was

introduced by Taylor, Jonker and Zeeman [57, 58] as a dynamic foundation

for the concept of evolutionary stable strategies (ESS) [5].

Suppose there are only two types in the population. The frequency of the

first type is x and the frequency of the second type is 1 − x. We denote the



1.2. Infinite and finite populations 7

fitness of the first type as W1, and the fitness of the second type as W2. The

average fitness of the population W is given by

W = xW1 + (1− x)W2. (1.1)

We assume that the change in the frequency of the first type is given by the

replicator equation,

ẋ = x
(
W1 −W

)
= x (1− x) (W1 −W2) . (1.2)

If the fitness of the first type is larger than the average fitness, its frequency

will increase. If the fitness of the first type is below the average fitness, its

frequency will decrease. The type with a higher fitness will spread in the

population.

In a population of n types, the fitness of type i can be written as Wi, and

its frequency as xi, where i = 1, 2, 3..., n and
∑n

i=1 xi = 1. Generalizing the

replicator equations in such a population, the change of the frequency of type

i is given by

ẋi = xi
(
Wi −W

)
= xi

n∑

j=1

xj (Wi −Wj) . (1.3)

The equilibria of the replicator equations can be derived by solving ẋi = 0

for all i. For a population with two types, they are x =1, x = 0, and all

x ∈ (0, 1) fulfilling the condition W1 = W2 . To give an analytical solution of

the expression W1 = W2 and the stability of these equilibria, concrete imple-

mentation of fitness is required, see Section 1.3.3. The replicator equations in

n types are mathematically equivalent to the Lotka-Voltera equations in n−1

dimensions, which is used to study predator-prey dynamics [36]. In Chapter

4, which focuses on infinite populations, we use the replicator dynamics.

1.2.2 Moran process and fixation probabilities

The Moran process is one of the simplest stochastic models to describe finite

populations [65, 68, 13]. In a Moran process, there are one birth event and one
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death event in every time step. Thus, the total population size is constant.

Consider a finite population with N individuals. In every time step, one

random individual is chosen to produce one offspring, which in turn replaces

one random individual. If the individual chosen to reproduce is under uniform

random sampling among all individuals, the process is under neutral evolution.

Selection acts on the population dynamics when this sampling depends on the

fitness. Under selection, an individual with higher fitness is more likely to be

chosen for reproduction.

In a two-type population without mutations, the chosen individual pro-

duces an offspring of its own type. In a population with mutations, the cho-

sen individual produces an offspring of its own type with probability 1 − µ,
and produces an offspring of a new type with probability µ. Here, µ is the

mutation rate per individual per time step. In a Moran process, N time steps

are one generation. Thus, the mutation rate of the whole population per

generation is µ.

As a birth-and-death process, the Moran process can be considered as a

finite Markov chain [69, 70], a random process describing a system undergoing

transitions between a finite number of possible states. In a Markov Chain,

the transition probability to the next state depends only on the current state

and not on the transitions before it.
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Birth Death

Figure 1.1: The Moran process. Suppose that there are two types

in the population, the green mutant type and the yellow wild type,

and no further mutations are considered. In every time step, one

individual (in this illustration the green one) is chosen at random

to reproduce, and one individual (in this illustration one yellow

one) is chosen at random to die.

A simple illustration is the case of a population with only two types without

mutations (µ = 0), see Fig. 1.1. Suppose a population has yellow type and

green type individuals. Here, the population growth of the green type can

be defined as a Markov chain, see Fig. 1.2. Every state represents a certain

number of the green type individuals. Since there are N individuals in the

population, we have N+1 states in the Markov chain. The neighboring states

are natural numbers. Suppose the current state of the population is state j,

where j = 0, 1, 2..., N . When a green type individual reproduces and a yellow

type individual dies, the population goes from state j to j+1. The probability

of this transition is denoted as T+
j . When a green type individual dies and a

yellow type individual reproduces, the population moves from state j to state

j − 1. This transition probability is denoted as T−j . As in the Moran process,

at most one individual reproduces and dies in one time step, the population

will move to either one of its two neighboring states, or will stay in the same

state in the next time step. Thus, the probability of staying in the same state
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is 1− T+
j − T−j .

Since there are no mutations, two absorbing states, state 0 and state N ,

exist in this Markov Chain. A state is called absorbing, if the system can not

leave this state once reaches it [9]. This can be written as T+
0 = T−N = 0.

Under this assumption, no matter in which state the system initially starts,

the population will end up either in state 0 or state N . If the population

ends up in state N , we call it the fixation of the green type. The probability

of ending in state N , starting from state j, is called fixation probability, φj

[71, 72, 9, 51]. In other words, φj is the probability of j green type individuals

taking over the population, and φ1 is the probability of a single green type

individual being fixed in the population.

In a Moran process, the the fixation probability can be written as a recur-

sion equation for the intermediate states [9, 51],

φj = T+
j φj+1 + T−

j φj−1 + (1 − T+
j − T−

j )φj

Transition probability
j from     to j + 1  from     to 

Transition probability
j j − 1

Probability of 
jstaying in 

Fixation probability 
j + 1 in  in 

Fixation probability 
j − 1

Fixation probability 
 in j

The two absorbing states of the Markov chain give the boundary conditions

φ0 = 0 and φN = 1. The recursion equation can be rearranged as

T+
j (φj+1 − φj)︸ ︷︷ ︸

aj+1

−T−j (φj − φj−1)︸ ︷︷ ︸
aj

= 0. (1.4)

Denoting γj =
T−j
T+
j

, we have

aj+1 = γjaj. (1.5)
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... ...
1 j j + 1 N − 1j − 1

φ1

T+
jT−

j

state 0 state N

0 N

Figure 1.2: The Markov chain of a Moran process. In a popu-

lation with two types (the green type and the yellow type), the

state space consists of the possible numbers of green individuals

(the numbers in the bottom). The number of green individuals

increases by one when one green individual reproduces and one

yellow individual dies, remains the same when the two individuals

sampled (one to reproduce and one to die) are both the same type,

and decreases by one when the one yellow individual reproduces

and one green individual dies. Suppose there are j green individ-

uals at the current state. The probabilities that the three events

happen are denoted as T+
j , 1 − T+

j − T−j , and T−j respectively.

Given enough time, the population will end up in state 0 or state

N . The probability to eventually go from state 1 to state N is the

fixation probability of a single green type, denoted by φ1.
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Using the definition of aj in Eq. 1.4 and Eq .1.5, we obtain

a1 = φ1 − φ0 = φ1

a2 = φ2 − φ1 = γ1φ1

...

ak = φk − φk−1 = φ1

k−1∏

j=1

γj

...

aN = φN − φN−1 = φ1

N−1∏

j=1

γj . (1.6)

The sum over all aj is

N∑

k=1

ak = φ1 − φ0 + φ2 − φ1 + φ3 − φ2 + . . .+ φN−1 − φN−2 + φN − φN−1

= −φ0 + φN = 1. (1.7)

On the other hand, the sum over all aj can also be written as

N∑

k=1

ak = φ1

(
1 +

N−1∑

k=1

k∏

j=1

γj

)
. (1.8)

Using Eq. 1.7 and Eq. 1.8, the fixation probability of a single green type

individual, φ1, is given by

φ1 =
1

1 +
∑N−1

k=1

∏k
j=1

T−j
T+
j

. (1.9)

For intermediate states i, we have

φi = φ1 − φ0 + φ2 − φ1 + φ3 − φ2 + . . .+ φi−1 − φi−2 + φi − φi−1

=

j∑

k=1

ak

= φ1

(
1 +

i−1∑

k=1

k∏

j=1

γj

)

=
1 +

∑i−1
k=1

∏k
j=1 γj

1 +
∑N−1

k=1

∏k
j=1 γj

. (1.10)
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Under neutral evolution, all individuals have the same fitness. Thus, we have

T−j = T+
j and γj = 1. Putting these in Eq. 1.9 and Eq. 1.10, we obtain

φ1 = 1/N and φi = i/N .

When mutations happen, there are potentially more than two types in the

population. No type will be fixed nor exist in the population forever. In such a

system, quantities other than fixation probabilities are required to understand

the population dynamics.

1.2.3 Wright-Fisher process

In a Wright-Fisher model, discrete generations are considered. Instead of

having one individual reproduce in one time step (as in a Moran process), all

individuals reproduce at the same time. Thus, one time step is one generation

in a Wright-Fisher process. There are two events happening in one time step,

reproduction and sampling. In every generation, all individuals reproduce

proportionally to their fitness. The descendants form a large offspring pool.

In the next generation, all individuals from the previous generation die, and

are replaced by a random sample of N individuals from the offspring pool [13].

A population with two types corresponds to a binomial sampling, and a

population with more than two types corresponds to a multinomial sampling.

If there is no fitness difference, the composition of the population will only be

changed by random genetic drift. When the fitness of different types varies,

the expected number of offspring of a certain type is in proportion to its

fitness.

Similar to a Moran process, a Wright-Fisher process can also be considered

with or without mutations. When there are mutations, an individual produces

an offspring of its own type with probability 1 − µ and an offspring of a

new type with probability µ. Note the unit of µ here is per individual per

generation, and the mutation rate of the whole population per generation is
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Nµ.

An example for a possible transition in a Wright-Fisher process is shown

in Fig. 1.3, where a population composed by two types without mutations is

considered. The fitness of the green type is W1, and the fitness of the yellow

type is W2. This process can be characterized by a Markov chain with state

space {0, ..., N}. State i corresponds to the number of green type individuals.

There are two absorbing states, state 0 and stateN . The transition probability

from a state i to a state j, Pij is

Pij =

(
N

j

)(
iW1

iW1 + (N − i)W2

)j (
(N − i)W2

iW1 + (N − i)W2

)N−j
. (1.11)

Under neutral evolution, the fixation probability of a single individual of the

green type is 1/N .

The current generation The next generation The offspring pool 

Figure 1.3: A classical Wright-Fisher model is based on a popula-

tion with two types (the green type and the yellow type) and con-

stant size N . In the current generation, every individual produces

a large number of identical offspring, and dies. The reproduction

can be neutral or under selection, where in the latter case the

number of offspring of an individual is proportional to its fitness.

N individuals are sampled at random to form the population in

the next generation.
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In population genetics, the Moran process is used less frequently than the

Wright-Fisher process [13]. However, the Moran process allows explicit ana-

lytical solutions for the fixation probabilities, which is difficult for the Wright-

Fisher process [73]. In the Moran process, one individual reproduces at one

time step, but in the Wright-Fisher process, all individual reproduce at the

same time. In an extreme case, the population can come from a single an-

cestor in one generation (one time step) in a Wright-Fisher process. This is

the basic difference of these two processes. For weak selection intensity (see

section 1.3.3) and large population size, the dynamics of these two process

can be very similar [51, 74]. When selection intensity is strong or population

size is small, these two processes can result in very different dynamics (see

our publications in Chapter 3). For computer simulations, a Wright-Fisher

process is much faster than a Moran process, given the same population size.

In Chapter 2, the Moran process is employed, as it is possible to compare

the analytical results with the simulation results for a population with only

two types. In Chapter 3, mutations are considered, which results in a much

more complex system where analytical solutions are not always possible. We

use both the Moran process and the Wright-Fisher process to obtain our

simulation results.
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1.3 Constant and frequency dependent selec-

tion

So far, we have not specified fitness. Is the fitness of an individual of a partic-

ular type a constant number? Does it depend on other variables, for example,

the composition of the population? How do different fitness specifications

effect the evolutionary dynamics? In this section, we discuss different as-

sumptions on fitness configuration and the comparison of those assumptions.

The resulting dynamics are discussed in the publications in Chapter 2− 4.

1.3.1 Constant selection

In population genetics models, fitness is typically assumed to be constant for

haploid populations [42, 61]. Assume that a population has non-overlapping

generations with only two types, A and B. The absolute fitness is defined as

the average number of offspring that an individual of a certain type has in the

next generation. The number of type A individuals in the next generation,

N
′
A, is given by the product of the number of type A individuals, NA, and

their absolute fitness WA. The same argument holds for type B, where N ′B
and NB are the number of individuals of type B in the next and the current

generation. These can be written as

N
′

A = WANA

N
′

B = WBNB (1.12)

Given that xA and xB are the frequencies of type A and type B in the pop-

ulation, and that x′A is the frequency of type A in the next generation, we
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have

x
′

A =
WANA

WANA +WBNB

=
WAxA

WAxA +WBxB

=
αxA

αxA + 1− xA
, (1.13)

where α = WA

WB
. Suppose the fitness of type B is 1 and the relative fitness of

type A is 1 + s. Here, we have s = α− 1, and thus s ≥ −1. In population ge-

netics, s is called selection coefficient [75]. If s is positive, type A has a greater

relative fitness than type B, and vice versa. For strict constant selection in

a haploid population, s is a constant number. In this case, the dynamics of

the population is only density dependent, but not frequency dependent. It

is hard to find evidence for strict constant selection in natural populations

[16]. However, the assumption that s is independent from the frequencies of

different types, or even constant in a haploid population, has proved to be

useful in many theoretical and experimental studies [76, 77, 78, 79, 80].

1.3.2 Frequency dependent selection and diploidy

In population genetics, frequency dependent selection arises from sexual re-

production [42, 12, 81]. As most sexual species are diploids, we focus on

diploid populations where the fitness of alleles is frequency dependent due to

the combination of two alleles at one locus. It is useful to connect the allele

frequencies with genotype frequencies. Because frequency dependent selection

is on alleles, but the reproduction unit is on genotypes. Suppose A and B

are two alleles at the same locus, xA and 1 − xA are the frequencies of these

two alleles. Under random mating, the frequencies and the fitness of different

genotypes are given as follow:
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Fitness 

Frequency 

Genotype

WAA WAB WBB

AA AB BB

x2
A 2xA(1 − xA) (1 − xA)2

.

In this table, the fitness of genotype AB and BA is considered identical, and

the maternal allele and paternal allele are equally expressed. If the mating

is random, the formulation of the genotype frequencies above always holds

whether selection is neutral or not. Under neutral evolution (WAA = WAB =

WAB), the allele and genotype frequencies will remain the same over genera-

tions, which is called Hardy-Weinberg equilibrium [82, 83, 84].

The frequencies of genotypes and alleles change when there are fitness

differences among the three genotypes. When the allele frequencies do not

change (and thus the genotype frequencies remain constant under random

mating), we call it an equilibrium of the population. One way to describe the

changes of alleles frequencies and to find such an equilibrium is to calculate

the fitnesses of alleles. Allele A can be found in genotype AA or AB. The

fitness of allele A, WA, can be written down by summing up the fitness of

genotype AA and AB weighted by the frequencies of allele A in them,

WA =
2x2

A

2x2
A + 2xA(1− xA)

WAA +
2xA(1− xA)

2x2
A + 2xA(1− xA)

WAB

= xAWAA + (1− xA)WAB .

(1.14)

Similarly, we have WB = xAWAB + (1− xA)WBB. In these two equations,

fitness depends linearly on the composition of the population. This method of

implementing fitness in diploids is mathematically equivalent to a symmetric

pairwise-interaction game in evolutionary game theory, as we will see in the

next section.
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1.3.3 Frequency dependent selection in evolutionary

game theory

Evolutionary game theory is based on the assumption that fitness is frequency

dependent, including constant selection as a special case. Frequency depen-

dent selection was initially proposed in population genetics, but it seems to

remain a special case. In population genetics, the interpretation of frequency

dependent selection on alleles is based on the genetic mechanism of inheri-

tance, for example, diploidy. In evolutionary game theory, frequency depen-

dent selection arises from a different mechanism, the interactions of different

types. The differences between these two frameworks in the interpretation of

frequency dependent fitness are more obvious in haploid populations, where

fitness is typically assumed constant in population genetics models.

Evolutionary games

First, we consider a population with two types (a single haploid locus with

two alleles), A and B. The frequencies of these two types are xA and 1− xA,
and the corresponding fitness values are WA and WB. The simplest case is

when fitness depends linearly on frequencies, where

WA = axA + b (1− xA) ,

WB = cxA + d (1− xA) . (1.15)

Here, a, b, c and d are coefficients, which can be written down in a matrix as

follow




A B

A a b

B c d


.

The first row refers to type A, and the second row refers to type B.
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We can also go the other way around, from matrix to fitness. In evolu-

tionary game theory, different types of individuals interact in a game. The

payoffs of individuals in specific pairwise interactions are captured by the pay-

off matrix. When a type A individual confronts a type A individual, it has

a payoff a. Correspondingly, it has a payoff b if interacting with a type B

individual, and so forth. In a well-mixed population, the probability to meet

an A individual is its frequency, xA, the probability to meet a B individual

is 1 − xA. Thus, the average payoff of type A individuals is given by Eq.

1.15. Interestingly, the fitness expressions (Eq. 1.15) in a haploid population

are mathematically equivalent to the fitness expressions of alleles in a diploid

population (Eq. 1.14), if b = c [59, 85, 41].

A general case is an evolutionary game between more than two types,

where the size of the payoff matrix needs to be expanded to accommodate the

number of types in the population. In summary, the payoff matrix is one way

to implement linear frequency dependent selection. There are also non-linear

frequency dependent models in evolutionary game theory [86], but they are

not the focus of this thesis.
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Stable and unstable equilibria in infinite populations

In Section 1.2.1 (Replicator dynamics), the equilibria of a population were

defined as states, where the changes of frequencies of different types are 0.

An equilibrium is stable if every trajectory starting near this state always

converges towards it [87, 9]. Otherwise, it is unstable. Maynard-Smith and

Price proposed a way to identify stable equilibria of the replicator dynamics

by comparing the fitness changes around these equilibria [5]. Here, examples

are given in the case of two-type games. The replicator equation based on

Eqs. 1.15, is

ẋA = xA(1− xA) [(a− b− c+ d)xA + b− d ] . (1.16)

There are at most three equilibria for this equation, xA = 0, xA = 1, and

x∗A = d−b
a−b−c+d . The third equilibrium x∗A exists only if a < c and b > d or

a > c and b < d. Otherwise, x∗A is not in the interval [0, 1]. We discuss the

stability of these three equilibria separately (see Fig. 1.4):

• xA = 0. IfWA < WB, the frequency of type A individuals decreases for

small xA. Thus, the population moves to xA = 0, and this equilibrium is

stable. Since WA = b and WB = d at xA = 0, the condition of stability

in this point can be simplified to b < d.

• xA = 1. If WA > WB, the frequency of type A individuals increases for

xA ≈ 1. The population moves to xA = 1, and the equilibrium is stable.

As WA = a and WB = c at xA = 1, this equals the condition a > c.

• x∗A. The interior equilibrium is stable, if d(WA−WB)
dxA

< 0. Let us see how

xA changes in a small environment around x∗A under this condition. If

x > x∗A, WA(x) −WB(x) < WA(x∗A) −WB(x∗A) = 0. The frequency of

type A will decrease, and the population will move to x = x∗A. If x < x∗A,

WA(x) −WB(x) > WA(x∗A) −WB(x∗A) = 0. The frequency of type A



1.3. Constant and frequency dependent selection 22

will increase, and the population will also move to x = x∗A. Using Eqs.

1.15, we obtain dWA

dxA
= a − b and dWB

dxA
= c − d. Thus, x∗A is stable if

a − b < c − d. Combined with the condition for the existence of this

interior equilibrium, we have a < c and b > d.

W
A
−W

B

xA

(b)
(a < c, b < d)
Dominance of Type 

a − c < b − d

a − c > b − d

B

(a) Dominance of Type A

xA

a − c > b − d

a − c < b − d
(a > c, b > d)

xA

(c) Positive frequency dependent selection
b < d)(a > c,

xA

(d) Negative frequency dependent selection
(a < c, b > d)

0 1 0

00 1 1

1

Figure 1.4: The stability of equilibria in an infinite population

with two types. The fitness difference between type A and type

B, WA −WB, is a linear function of the frequency of type A, xA.

According to Eqs. 1.15, the fitness difference is b − d at xA = 0,

and a−c at xA = 1. The slope of the linear function is larger than

0 if a− c < b− d (dashed lines), or smaller than 0 if a− c > b− d
(solid lines). In panel (a) and (b), there are only two equilibria;

in panel (c) and (d), there is an interior equilibrium besides of the

two boundary equilibria. When WA −WB > 0, xA will increase,

which is represented by black lines. When WA −WB < 0, xA will

decrease, which corresponds to red lines. An equilibrium is stable,

when the population returns back to this equilibrium after any

small deviation, which is shown by direction of the arrows in the

x-axis.
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Selection intensity and selection coefficient

In an infinite population, the relative fitness of a type can be represented by its

average payoff. Those types with higher payoffs will have higher reproduction

rates. When the population size is finite, there is another step to map the

payoff π to the fitness W . This involves another parameter called selection

intensity β. We use an exponential fitness mapping function in all of our finite

population models in this thesis [88]. That is

W = eβπ, β ≥ 0. (1.17)

There are many other possible fitness mapping functions, for example, a linear

fitness function, W = 1 − β + βπ [9]. We use exponential mapping function

to avoid negative fitness values for any selection intensities. For small β, the

exponential fitness mapping function can be expressed as W ≈ 1 + βπ. Thus,

these two fitness mapping functions are approximately the same if β is small.

One way to understand the meaning of selection intensity in this equation,

is to look at the relative fitness difference of two types. Suppose the fitness of

the second type is 1. The relative fitness of the first type can be written as

W1/W2 = eβ∆π, where ∆π = π1−π2 is the payoff difference. Thus, the relative

fitness difference is eβ∆π − 1. When β = 0, the relative fitness difference is 0

and unrelated to the payoff difference. This refers to neutral evolution. When

β > 0, the payoff difference ∆π will be transfered into the relative fitness

difference. For a fixed ∆π, the larger β is, the larger the relative fitness

difference is. When β is infinitely large but ∆π is not infinitely small, the

selection intensity is infinitely strong.

In Chapter 2, we expand the exponential fitness mapping function in Eq.

1.17 to the second order at β = 0, and we have W ≈ 1 + βπ + β2

2
π2. If 0 <

β∆π � 1, selection is considered to be weak. Weak selection is a particular

interesting parameter range. It has attracted a lot of attention in biology
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[89, 90, 91]. In addition, analytical solutions are more likely to be obtained

under such a condition [92, 93, 94].

In population genetics, selection coefficient s is used to denote the relative

fitness difference. If s = 0, the two types have the same reproduction rate. If

s = 0.1, the favored type produces 10% more offspring than the other type.

Under neutral evolution, s = 0 has the same meaning as β = 0 in dynamical

models. When selection is not neutral, the effects of the two parameters differ.

In evolutionary game theory, the definition of the relative fitness difference

includes two parts, the difference of payoffs ∆π, and the selection intensity

β. In population genetics, these two parts are not distinguishable, and are

absorbed into a single parameter s.

1.4 Frequency dependent mutant model

1.4.1 Random mutant model with two types

How can the concept of frequency dependent random mutants be incorporated

in evolutionary game theory? We start from the simplest case with only two

types. Suppose that a mutant type A appears in a population with only wild

type B individuals. In evolutionary game theory, the interaction of these two

types can be described by a 2× 2 payoff matrix,




A B

A a b

B c d


.

Since the population is initially homogenous, only the payoff entry of a wild

type interacting with another wild type, d, is known. There are three unknown

payoff entries, a, b and c. Since the fitness of a mutant is unknown and

maybe unpredictable, we define a, b and c as random numbers following a

certain probability distribution. In the simplest case, we assume that the
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three random numbers are taken from the same distribution named as payoff

distribution. Mathematically, the payoff distribution can be independent or

dependent of d. Here, we assume the latter case, which corresponds to the

concept of fitness distribution from population genetics.

1.4.2 Payoff distribution and fitness distribution

In population genetics, mutations are often be classified as deleterious, neutral

or advantageous. However, the fitness of mutations is a continuum of effects

rather than a group of discrete numbers. The probabilities of these continuous

variables follow a distribution within a certain interval, which is called fitness

distribution [95, 80]. Different approaches have been used to study the fitness

distribution, but it is very difficult to reach a common conclusion about its

accurate shape.

The most accurate investigation of fitness distribution is to measure the

fitness effects of single mutations. Most of this kind of experiments are done

in microorganisms, as they would require too much time in other species [80].

Sanjuan et al. studied mutations caused by single nucleotide substitutions in

an RNA virus [96], where the fitness distribution of deleterious mutations is

described by a log-normal distribution. Among all mutations, 40% of ran-

dom mutations are considered lethal. A best fit for beneficial mutations is a

gamma distribution. However, since observed beneficial mutations are much

less frequent than deleterious mutations, no distribution for the whole range

of fitness values is inferred by this study. Cowperthwaite et al. suggested

a Gumbel distribution of beneficial fitness effects in RNA [97]. Elena et al.

recorded the fitness effects of random insertion mutations in Escherichia coli

[98]. In this study, the possibility that a strain has more than one insertion

mutation can not be excluded. But it is claimed that background mutations

are not an important factor due to the low genomic mutation rate. The fre-
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quencies of different mutant fitness values follow a compound gamma plus

uniform distribution. More than 80% of mutations are classified as deleteri-

ous mutations, and no mutations with significant positive effect are identified.

Here, we only list some examples, and there are many other similar experi-

ments [99, 100, 101], which lead to various conclusions regarding the fitness

distribution. One common problem of measuring the fitness distribution of

single mutations is that it is only possible to detect large fitness effects [80].

Thus, a general fitness distribution of mutations with various fitness effects is

hard to obtain.

In summary, a general conclusion on the accurate shape of the fitness

distribution has not been made, but it is possible to estimate the mean or the

percentage of beneficial mutations. Instead of assuming a concrete density

function for the payoff distribution (see the definition in last section), we

consider an arbitrary distribution f(x), and address either the moments of

f(x) (Chapter 2) or the probability that the new payoffs are larger than the

payoff of the parent type (Chapter 4).

When we look for the proper quantities to represent the population dynam-

ics, we are especially interested in those which can be obtained independent of

the concrete shape of the payoff distribution. For a finite population with only

two types, one of such important quantities is the fixation probability φ1 of a

random mutant under different selection intensities. In a infinite population

with two types, the probability that the average population fitness increases

due to a random mutant, has similar properties.

It is worth to point out there is a difference between the fitness distribution

in population genetics and the payoff distribution in our model. In population

genetics, the concept of fitness distribution is based on constant selection. The

fitness of a mutant is one number measured in one time point, and the exper-

iments are repeated many times to infer such a distribution. Under frequency

dependent selection, the fitness of a mutant changes with the composition of
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the population. Thus, one measurement at one time point can not represent

all the properties of the fitness. In our model, we do not assume the fitness

of a mutant follows a distribution. Instead, the payoff values, which describe

the interactions of the mutant type with the wild type, are obtained from the

payoff distribution.

When we choose the payoff distribution, ideally we should consider the

shapes or some parameters based on the payoff distributions inferred by the

experiments. However, since the concept of frequency dependent selection still

needs to be absorbed into such experiments, we assume a null model for the

payoff distribution.

1.4.3 Random mutant games with n types

The evolutionary game dynamics with n types of individuals is based on an

n × n payoff matrix. The payoff of a type i individual when it interacts

with a type j individual is the entry aij in the payoff matrix. The average

payoff of an i type individual is a function of its corresponding payoffs and

the frequencies of all types, πi =
∑n

i aijxi. In the payoff matrix, every type

is represented by one row (the payoffs of this particular type interacting with

different types), and one column (the payoffs of different types interacting

with this type). When a mutant appears, the payoff matrix is extended by

an additional column and an additional row. When one resident type goes

extinct, its corresponding column and row are deleted.

There are different ways to choose the new payoff entries appearing to-

gether with a mutant type, see Fig. 1.5. When all the payoff entries in the

same row are identical, as in Fig. 1.5(a), we recover the case of constant se-

lection. Only one number is required to describe the mutant type, and this

number is related to the payoff of its parent type. In Fig. 1.5(b), the new pay-

off entries are drawn from a distribution related to the same number which is
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not associated to the current payoff entries. In Fig. 1.5(c), the new payoff en-

tries are drawn from the same distribution related to the payoff of the parent

type interacting with another parent type. Another option is shown in Fig.

1.5(d), where the payoff of a mutant interacting with any resident type is re-

lated to the payoff of the parent type interacting with the same resident type.

We think that Fig. 1.5(d) is a more reasonable case in biological applications,

because the fitness of a mutant is most close to its parent type compared with

other resident types in this case. When there are only two types (the wild

type and the mutant type), Fig. 1.5(c) and Fig. 1.5(d) are identical.
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


A B B′

A a b d′

B c d d′

B′ d′ d′ d′







S1 . . . Sj Sk

S1 a11 . . . a1j a1k

... ... . . . ... ...

Sj aj1 . . . ajj ajk

Sk ak1 . . . akj akk




1

(c)




A B B′

A a b d′

B c d d′

B′ d′ d′ d′







S1 . . . Sj Sk

S1 a11 . . . a1j a1k

... ... . . . ... ...

Sj aj1 . . . ajj ajk

Sk ak1 . . . akj akk




1

(d)




A B B′

A a b d′

B c d d′

B′ d′ d′ d′







S1 . . . Sj Sk

S1 a11 . . . a1j a1k

... ... . . . ... ...

Sj aj1 . . . ajj ajk

Sk ak1 . . . akj akk




1

(b)(a)




A B B′

A a b d′

B c d d′

B′ d′ d′ d′







S1 . . . Sj Sk

S1 a11 . . . a1j a1k

... ... . . . ... ...

Sj aj1 . . . ajj ajk

Sk ak1 . . . akj akk







S1 . . . Sj Sk

S1 a1 . . . a1 a1

... ... . . . ... ...

Sj aj . . . aj aj

Sk ak . . . ak ak




1

Figure 1.5: Different ways to add a mutant type Sk to the payoff

matrix. (a) For constant selection, the new column is identical

to all previous columns. The new line is a single random number

derived from the parent of the mutated individual. (b) All new

payoff entries are chosen from the same distribution with no rela-

tion to the mutant’s parent. (c) The new payoff entries are chosen

from a distribution with mean ajj, where j is the mutant’s par-

ent. (d) All new payoff entries are chosen from a distribution with

mean of the corresponding payoff entry of the mutant’s parent, i.e.

aki has mean aji and aik has mean aij.



Chapter 2

Fixation probability in the

frequency dependent mutation

model with two types

2.1 Fixation probability of random mutants un-

der frequency dependent selection

One important concept in evolutionary dynamics is the fixation probability

[9]. In a finite population, the success of a type depends not only on selection,

but also on the underlying stochastic processes. Fixation is often studied in

models, where the fixation or the lost of a mutant type is assumed to happen

before the next mutation event [12]. The mutation rate is low enough that

most of the time only two types, the mutant type and the wild type, exist in

the population at the same time. How small the mutation rate has to be to

fulfill such an assumption? It has been shown by numerical simulations that

µN2 � 1 is a sufficient condition if there is no stable coexistence of the two

types [102, 103]. The corresponding analytical result was given as µ� N lnN

[104]. If the two types stably coexist, it may take much longer time until one

of them get fixed in the population. For such a situation, the mutation rate

is necessary to be smaller than N (−1/2)e−N [104].

In finite populations with constant population size, the fixation probability

of mutant genes in one locus has been discussed extensively [105, 106, 66,
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42]. Under constant selection, an advantageous mutant can be lost, and a

deleterious mutant can be fixed. Haldane calculated the fixation probability

of a single mutant [105]. The number of offspring of an individual is assumed

to follow a Poisson distribution. Only the beneficial mutants have the chance

to be fixed. The relative fitness advantage of a beneficial mutant type is s.

In a large population, the fixation probability of a single beneficial mutant is

approximately 2s, valid for small selective advantage, s� 1.

If selection is frequency dependent, mutants can have various fitness prop-

erties, instead of being either beneficial or deleterious. A mutant type may

be advantageous when it is rare, but its fitness decreases when its frequency

increases and it becomes disadvantageous once its frequency reaches a thresh-

old. In such a biological system, the fixation probabilities of mutants are more

complicated quantities.

Kimura generalized the model of Haldane to the case of frequency depen-

dent selection in a diploid population under random mating [107, 71]. Suppose

the fitness of the wild type homozygote, the mutant homozygote and the het-

erozygote, are s, 1+s and 1+sh respectively. If the mutant allele is recessive,

the heterozygote has the same fitness as the wild-type homozygote and we

have h = 0. In the opposite, if the wild-type gene is recessive, the heterozy-

gote has the same fitness as the mutant homozygote and we have h = 1. For

a nearly recessive mutant allele (0 < h� 1) with positive selective coefficient

(s > 0), the fixation probability has been derived [71].

The model proposed by Kimura refers to a specific frequency dependent

selection. First, frequency dependent selection arise from symmetric diploidy,

where the maternal allele and the paternal allele are assumed to be equally

expressed. Second, the assumptions of positive selective coefficient and nearly

recessive mutant alleles, make the results valid for an even smaller group of

mutants.

In this section, the same question is addressed based on the frequency de-
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pendent mutant model in an evolutionary game theoretic framework. A hap-

loid population with two types, the mutant and the wild type, is considered.

Frequency dependent selection comes from the interactions of the mutant and

the wild type, which are captured by payoff matrices. The new payoff entries

introduced by mutations are variables independently drawn from the same

payoff distribution. This leads to all types of frequency dependent selection.

Under weak selection, we approximate the fixation probability by the Tay-

lor series expansion at β = 0. Here, β is the selection intensity (see section

1.3.3). A Taylor series of a function is a polynomial approximation, which

is an infinite sum of terms that are calculated from the derivatives of this

function at a single point [108]. The first few terms of the Taylor series are

often sufficient to approximate a function around that point. The more terms

are considered, the more accurate an approximation is. Interestingly, under

weak selection the fixation probability of a single mutant only depends on the

first moments of the payoff distribution, such as the mean and the variance.

Under strong selection, we classify the interactions of the mutant type

and the wild type into different cases, and obtain the fixation probability of

a single mutant by summing up the fixation probabilities for all cases. It is

shown, that the only thing matters is the probability that the mutant payoff

entries are larger than the corresponding payoff entires of its parent type.

For the intermediate selection intensities, simulations are performed based

on the Moran process. In the simulations, we need a concrete distribution to

generate random payoff entries. Here, we use a Gaussian distribution with

mean d, the payoff value of a wild type interacting with another wild type.
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a b s t r a c t

Evolutionary game dynamics describes frequency dependent selection in asexual, haploid populations.

It typically considers predefined strategies and fixed payoff matrices. Mutations occur between these

known types only. Here, we consider a situation in which a mutation has produced an entirely new type

which is characterized by a random payoff matrix that does not change during the fixation or extinction

of the mutant. Based on the probability distribution underlying the payoff values, we address the

fixation probability of the new mutant. It turns out that for weak selection, only the first moments of

the distribution matter. For strong selection, the probability that a new payoff entry is larger than the

wild type’s payoff against itself is the crucial quantity.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Evolutionary game theory is a method to study frequency
dependent selection in asexual populations (Maynard Smith,
1982; Weibull, 1995; Hofbauer and Sigmund, 1998, 2003; Cress-
man, 2003; Nowak and Sigmund, 2004). Whenever the fitness of
the individuals depends on the composition of the population, the
dynamics of the evolving population can be described based on an
evolutionary game. Constant selection, where the fitness of a type
is fixed, can be considered as a special case in this context, where
the payoff depends only on the strategy, but not on the
frequencies of other types in the population.

The standard approach to evolutionary game dynamics is the
replicator dynamics (Taylor and Jonker, 1978; Hofbauer et al.,
1979; Zeeman, 1980). It describes the change in frequency xi of
strategy i as _xi ¼ xiðpi�/pSÞ, where pi is the payoff of strategy i

and /pS is the average payoff in the population.
More recently, the focus of research has turned to finite

populations. The most popular model for evolutionary game
dynamics in finite populations is the frequency dependent Moran
process introduced by Nowak et al. (2004). Although, mutations
are often disregarded, they can be incorporated without any
problems. Typically, the mutations produce types that are pre-
defined in the payoff matrix and one considers the mutation–
selection equilibria of the system (Bomze and Buerger, 1995;
Nowak et al., 2004; Imhof et al., 2005; Imhof and Fudenberg,

2006; Traulsen et al., 2009; Antal et al., 2009a–c; Van Segbroeck
et al., 2009).

Here, we consider a different possibility in which mutants are
characterized by a new payoff matrix game with randomly chosen
entries. For low mutation rates, only one mutant is present at a
time. The average fixation time under neutral selection is N

generations. Thus, it is unlikely that several mutants are present
at the same time when the mutation rate m fulfills m5N�2. This
estimate holds for situations in which the mutant is advantageous
or disadvantageous for all abundances or if it is first disadvanta-
geous and becomes advantageous at high abundances (Antal and
Scheuring, 2006). When there is a stable coexistence between the
types, however, the average fixation time diverges exponentially
with the intensity of selection and the population size. In this
case, our approach is only valid when the mutation rates go to
zero. When the mutation rate is low, the crucial quantity of the
population dynamics is the fixation probability f1, the probability
that a new mutant takes over the population. We address the
fixation probability for the simple case of a 2� 2 game. The
entries of the payoff matrix, however, are chosen from a
probability distribution, excluding the interaction of the wild
type with itself, which should not be affected by the mutation. But
during the course of evolution, the payoff matrix remains fixed.
Due to the probabilistic payoff matrix, the fixation probability f
itself becomes a random number. Since Kimura (1968) introduced
the neutral theory, many evolutionary biologists believe that
changes in evolutionary confer only small or even vanishing
selective advantages. It is very unlikely that a new mutation leads
to a large selective advantage in a well adapted population. Thus,
small intensities of selection seem to be biologically highly
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relevant (Ohta, 2002). It turns out that in our case, weak selection
approximation corresponds to a moment expansion of the
probability distribution, such that only the first few moments of
the probability distribution of the payoff values matter. On the
other hand, for strong selection the fixation probability is
governed by the probability that a random mutant can invade
the population.

The remainder of this paper is organized as follows: in Section
2, we recall the Moran process as a standard model of frequency
dependent evolutionary dynamics in finite populations. In Section
3, we address payoff matrices with Gaussian distributed entries
and generalize the findings to arbitrary distributions in Section 4.
Finally, in Section 5 we discuss how our findings relate to fitness
distributions found empirically, based on frequency independent
selection, and relate our results to this scenario.

2. The Moran process and fixation probabilities

To model frequency dependence, we consider two player
games, which can be represented by the payoff matrix

A

B

A B
a b

c d

� �
:

When A interacts with another A, it obtains a, and when it
interacts with any B, it obtains b. Similarly, B obtains c or d, when
interacting with A or another B, respectively. Assuming there are i

type A individuals and N�i type B individuals, the average payoffs
of A and B in a mixed population are

pA ¼
i�1

N�1
aþ

N�i

N�1
b; ð1aÞ

pB ¼
i

N�1
cþ

N�i�1

N�1
d: ð1bÞ

Here, we have explicitly assumed that there are no self-
interactions. Note that the payoff difference is always a linear
function in i,

Dp¼ pB�pA ¼ uiþv; ð2Þ

where u¼ ð�aþbþc�dÞ=ðN�1Þ and v¼ ða�NbþNd�dÞ=ðN�1Þ.
The impact of the game on fitness is determined by the intensity
of selection b. While commonly it is assumed that fitness f is a
linear function for the payoffs, it is often mathematically more
convenient to choose f as an exponential function of the payoff.
Both approaches can be justified by mathematical simplicity. But
the exponential function allows to address a strong selection
limit, that can be relevant in specific biological situations where a
certain trait is necessary for survival, e.g. resistance towards
toxins. Moreover, the exponential function guarantees that fitness
is always positive, even when the payoffs p are negative (Traulsen
et al., 2008). This leads to

fA ¼ eþbpA ; ð3aÞ

fB ¼ eþbpB : ð3bÞ

We consider this game in the context of a frequency dependent
Moran process (Nowak et al., 2004; Taylor et al., 2004; Antal and
Scheuring, 2006). Suppose there is a finite population of N

individuals. One individual is chosen at random, but proportional
to fitness, to give birth to a new individual of the same type.
Before the new offspring is added, one individual chosen at
random is removed to keep the population size constant. The
probability to increase the number of type A individuals from i to
iþ1 is T þi , and the probability to decrease the number of type A

individuals from i to i�1 is T�i . For the Moran process, we have

T þi ¼
if A

if AþðN�iÞfB

N�i

N
; ð4aÞ

T�i ¼
ðN�iÞfB

if AþðN�iÞfB

i

N
: ð4bÞ

Due to the choice of an exponential function as payoff to fitness
mapping, the ratio of the transition probabilities becomes
particularly simple,

T�i
T þi
¼

fB

fA
¼ eþbðpB�pAÞ: ð5Þ

In the absence of mutations, we have T þ0 ¼ 0 and T�N ¼ 0, cf.
Eqs. (4). Thus, there are two absorbing states, the state with all A

and the state with all B. The fixation probability fi describes the
probability of i type A individuals to take over the entire
population. Obviously, the fixation probabilities fulfill the equa-
tion fi ¼ T�i fi�1þT þi fiþ1þð1�T�i �T þi Þfi, see e.g. (Goel and
Richter-Dyn, 1974) for a full derivation. Solving this recursion
with the boundary conditions f0 ¼ 0 and fN ¼ 1 leads to (Nowak,
2006; Antal and Scheuring, 2006)

fi ¼

1þ
Pi�1

k ¼ 1

Qk
i ¼ 1

T�i
T þi

1þ
PN�1

k ¼ 1

Qk
i ¼ 1

T�i
T þi

: ð6Þ

In particular, we are interested in f1, for which the enumerator is
simply one. Together with Eq. (5), we can write f1 as

f1 ¼
1

1þ
PN�1

k ¼ 1 exp½þb
Pk

i ¼ 1 ðpB�pAÞ�
: ð7Þ

The two sums in Eq. (7) can be solved analytically, leading to
closed expressions for the fixation probabilities (Traulsen et al.,
2007a). However, for our numerical and analytical considerations,
we consider Eq. (7) in the form given above.

3. Fixation of random mutants

We consider type B as the wild type and type A as the mutant
type. Typically, one is interested in the fixation probability of a
mutant with fixed values in the payoff matrix. But sometimes, the
payoff of the mutant may not be fixed or even unpredictable. For
this reason, we focus on payoff matrices with random entries.
First, we analyze the case in which the payoff values a, b, and c

that describe the mutant’s interactions are Gaussian random
variables with mean m and standard deviation s. Alternative
scenarios are discussed below. Note that the payoff matrix is
constant, in contrast to the work of Fudenberg and Harris (1992),
where the payoff is subject to noise during evolution.

No matter which kind of randomness we consider in the payoff
matrix, the fixation probability of a mutant in the population is
the expectation value of f1. Thus, we have to calculate the
expectation value of the right hand side of Eq. (7).

When the new payoff values a, b, c are continuous random
variables with probability density functions pðaÞ, pðbÞ, and pðcÞ,
respectively, we can write the expectation of the fixation
probability, Eq. (7), as follows:

Eðf1Þ ¼

ZZZ
1

1þ
PN�1

k ¼ 1 exp½þb
Pk

i ¼ 1 ðpB�pAÞ�
pðaÞpðbÞpðcÞda db dc:

ð8Þ

For a given population size N, and given probability density
functions, this equation can be solved by numerical integration in
three dimensions, see Fig. 1. However, the asymptotic for strong
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selection, b-1, can be inferred directly, because for strong
selection the fixation probability is either zero or one (Altrock and
Traulsen, 2009a). For weak selection, b51, we obtain an
analytical approximation for the solution of the integrals.

3.1. Weak selection approximation

To address the case of weak selection, we expand the fixation
probability f1, Eq. (7), at b¼ 0. First, we expand the exponential
function in Eq. (7) up to second order for b51,

exp þb
Xk

i ¼ 1

ðpB�pAÞ

" #
� 1þb

Xk

i ¼ 1

ðpB�pAÞþ
b2

2

Xk

i ¼ 1

ðpB�pAÞ

 !2

:

ð9Þ

Hence, we find for the fixation probability

f1 �
1

1þ
PN�1

k ¼ 1 ð1þb
Pk

i ¼ 1 ðpB�pAÞþ
1
2b

2
ð
Pk

i ¼ 1ðpB�pAÞÞ
2
Þ

¼
1

Nþb
XN�1

k ¼ 1

Xk

i ¼ 1
ðpB�pAÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C1

þb21
2

XN�1

k ¼ 1
ð
Xk

i ¼ 1
ðpB�pAÞÞ

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C2

:

ð10Þ

After another expansion for b51 we obtain

f1 �
1

N
�b

C1

N2
þb2 C2

1

N3
�

C2

N2

� �
: ð11Þ

Note that this expansion is valid for any payoff difference pB�pA.
For example, let us consider the situation in which Dp¼ pB�pA is
constant. This occurs for frequency independent selection, but
also for aþd¼ bþc, which is often referred to as ‘‘equal gains
from switching’’ (Nowak and Sigmund, 1990). In this case,
we have C1 ¼NðN�1ÞDp=2 and C2 ¼NðN�1Þð2N�1ÞDp2=6. This
leads to

f1 �
1

N
1�bðN�1Þ

Dp
2
�b2
ðN2�1Þ

Dp2

12

� �
: ð12Þ

For a first order expansion to be meaningful, b51 is not enough.
Instead, we have to ensure bNDp51.

In principle, we could assume any function for pB�pA. The
most important case, however, are 2� 2 games, which lead to a
linear dependence of the payoff difference Dp¼ pB�pA ¼ uiþv, cf.
Eq. (2). In this case, we have

C1 ¼
XN�1

k ¼ 1

Xk

i ¼ 1

ðuiþvÞ ¼
XN�1

k ¼ 1

uk2

2
þ
ðuþ2vÞk

2

 !
¼ u

NðN2�1Þ

6
þv

NðN�1Þ

2
:

ð13Þ

For the second order term in Eq. (10), we obtain

C2 ¼
1

2

XN�1

k ¼ 1

Xk

i ¼ 1

ðuiþvÞ

 !2

¼
1

2

XN�1

k ¼ 1

uk2

2
þ
ðuþ2vÞk

2

 !2

¼
u2

8

XN�1

k ¼ 1

k4þ
u2

4
þ

uv

2

� �XN�1

k ¼ 1

k3þ
u2

8
þ

uv

2
þ

v2

2

� �XN�1

k ¼ 1

k2

¼NðN�1Þ u2 3N3þ3N2�2N�2

120
þuv

3N2þN�2

24
þv2 2N�1

12

� �
:

ð14Þ

Thus, we find for the expectation value of f1 under weak selection

Eðf1Þ �
1

N
�b

EðC1Þ

N2
�b2 EðC2Þ

N2
þb2 EðC2

1 Þ

N3
: ð15Þ

Note that C1 is linear in the payoffs, whereas C2 is quadratic in the
payoffs.

So far, this equation is valid for any distribution of payoffs pðxÞ.
Next, we focus on the case in which a, b, and c follow Gaussian
distributions with mean m and standard deviation s2,
pðxÞ ¼ ð1=s

ffiffiffiffiffiffi
2p
p
Þexp½�ðx�mÞ2=2s2�. In our expectation value equa-

tion (15), we have only terms involving the first and the second
moment of the distribution. Using EðxÞ ¼ m and Eðx2Þ ¼ m2þs2, we
find

EðuÞ ¼�
d�m
N�1

; ð16aÞ

EðvÞ ¼ d�m; ð16bÞ

Eðu2Þ ¼
ðd�mÞ2

ðN�1Þ2
þ

3s2

ðN�1Þ2
; ð16cÞ

Eðv2Þ ¼ ðd�mÞ2þ N2þ1

ðN�1Þ2
s2; ð16dÞ

EðuvÞ ¼�
ðd�mÞ2

N�1
�

Nþ1

ðN�1Þ2
s2: ð16eÞ

With these terms, Eq. (15) reduces to

Eðf1Þ �
1

N
�b

N�2

3N
ðd�mÞþb2 N�2

N�1

16N2�57Nþ47

360N
ðd�mÞ2

þb2 N�2

N�1

6N2�7Nþ7

120N
s2: ð17Þ

In the simplest case, the average payoff entry associated with
the mutant is identical to the wild type’s payoff interacting with
himself, such that we have m¼ d. Then, the linear term in Eq. (17)
vanishes and only a second order weak selection approximation
will lead to deviations from the neutral case. We obtain

Eðf1Þ �
1

N
þb2 N�2

N�1

6N2�7Nþ7

120N
s2: ð18Þ

Now, the variance s can be absorbed into the selection intensity.
In other words, changing the variance of the Gaussian distribution
is equivalent to changing the intensity of selection. In Fig. 1, the
quadratic approximation equation (18) is compared to the

Selection intensity β

Fi
xa
tio
n
pr
ob
ab
ili
ty

φ 1

Excluding coexistence game
Including coexistence game

Weak selection approximation
Strong selection limit

Fig. 1. Fixation probability of a single mutant with random payoff values under

different selection intensities. Symbols are simulation results, lines are the

numerical solution of Eq. (8). The payoff values are Gaussian distributed with the

mean equal to the wild type individual’s payoff. We start from a single mutant and

wait until it is either lost or it takes over the whole population. The fixation

probability is the fraction of runs in which the mutants take over. Coexistence

games are only taken into account for weak selection, see text. The box represent

the region between strong selection and weak selection (population size N ¼ 100,

averages over 105 runs).
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numerical solution of the integrals in Eq. (8) and to individual
based simulations. For the third order weak selection approxima-
tion, we refer to the Appendix.

3.2. Strong selection limit

For strong selection, b-1, only those mutants that are
advantageous from the beginning of their invasion until the time
they finally reach fixation take over the population. This means
the mutant type A will reach fixation only if a4c and b4d, see
Eq. (1). In this case, the fixation probability is 1 for b-1.

However, the fixation probability is not only one for a4c and
b4d but also converges to one with b-1 in coexistence games
with aoc and b4d if we have aþb4cþd in addition. This
situation occurs for m¼ d with probability 1

8. However, for such
games the average fixation times diverge rapidly with population
size and intensity of selection (Antal and Scheuring, 2006;
Traulsen et al., 2007a). Thus, for practical purposes we can
neglect the fixation in coexistence games under strong selection,
as it can hardly ever be observed.

Thus, we only consider a4c and b4d here for the fixation
probability. The probability for this payoff ranking is the fixation
probability for strong selection. First, let us consider the situation
when a, b, and c follow a Gaussian distribution with mean m¼ d

and standard deviation s. The probability that a is larger than c is
1
2. The probability that b is larger than d is also 1

2. Therefore, the
fixation probability is simply 1

4, see Fig. 1.
In frequency independent mutant scenarios, the payoff of both

types does not depend on its interaction partner, i.e. a¼ b and
c¼ d. In this case, the fixation probability of a random mutant is 1

2

for m¼ d.

3.3. Computer simulations

We simulate the population dynamics exactly as described in
Section 2. In each time step, each individual interacts with all
others in the population and obtains a payoff. However, our
results for weak selection would not change significantly if they
interact only with a random subset of the population (Traulsen
et al., 2007b; Woelfing and Traulsen, 2009). Then, an individual is
selected with probability proportional to its fitness and produces
identical offspring. Another individual chosen at random is
removed. To compute fixation probabilities, we simulate this
birth–death process many times, each time with a new, different
payoff matrix. Note that we are combining two sources of
randomness, as the fixation process itself and the payoff matrix
are stochastic.

When we compare our analytical results to computer simula-
tions, a further difficulty appears: formally, we are always
considering a Markov chain with two absorbing states i¼ 0 and
i¼N. Eventually, we will end up in one of them. But the time until
we reach these states diverges with the intensity of selection and
the population size if aoc and dob (Antal and Scheuring, 2006;
Traulsen et al., 2007a; Altrock and Traulsen, 2009b), see above.
Thus, we have two choices: either, we include coexistence games
and say that no fixation has occurred if we have waited for a very
long time and still both types are present. However, then
we cannot expect that our numerical results coincide with the
analytical theory, because only the latter approach takes the
possibility of fixation in coexistence games into account. This
approach is appropriate when selection is not too strong. For
strong selection, alternatively, we can exclude coexistence
games from the beginning, both in our numerical solution
of the integrals in Eq. (8) and in our simulations. If we do this
and assume that fixation never occurs in coexistence games,

we find a convergence for strong selection towards a fixation
probability of 1

4.
As shown in Fig. 1, the simulations and the numerical results

agree nicely both under strong selection and weak selection if we
take these complications into account. However, under strong
selection the fixation probability from simulations temporarily
exceeds the strong selection limit. The reason is that in those
games in which wild type only slightly dominates the mutant, the
latter may still occasionally reach fixation. This makes the fixation
probability of the mutant type slightly higher than it should be
theoretically. For b-1, however, the fixation probability con-
verges to 1

4, as expected.

4. Alternative fitness distributions

So far, we have concentrated on Gaussian distributed payoff
entries. Next, we relax this restriction and consider more general
distributions. It turns out that for weak selection, only the first
moments of the distribution matter, whereas for strong selection,
fixation is governed by the probability that a payoff value is larger
than the average. Thus, our results from above generalize easily to
general distributions.

4.1. Weak selection approximation

The weak selection approximation equation (17) corresponds
to a moment expansion of the probability distribution: For the
linear term, only the difference between average m and the wild
type’s payoff against himself d matters. For the quadratic term,
we have to take into account the second moment as well. Thus,
Eq. (17) holds for any distribution with mean m and standard
deviation s. The same reasoning holds when we take higher order
terms in b into account, see Appendix. When m¼ d, the moments
of the distribution matter up to the order of our approximation in
b, see Fig. 2.

Fig. 2. The probability of fixation of a random mutant for general payoff value

distributions is determined by different properties of the distribution. For weak

selection, the fixation probability is determined by the first moments of the

distribution of the new payoff values a, b and c. If we approximate up to second

order, only d-m, the difference between mean m and the wild type’s payoff d

against itself and the standard deviation s affect the fixation probability. For

strong selection, the fixation probability of mutant type is determined by the

product of the probability that the mutant is advantageous when it invades, b4d

and the probability that it is advantageous when it is frequent, a4c. The latter

probability is 1
2 and the former probability is given by the shaded part of the

distribution in the figure.
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4.2. Strong selection limit

For strong selection, b-1, only those mutants whose fitness
always exceeds that of the wild type, will eventually reach
fixation. In game theory, such types are called dominant. The
probability of the mutant type to be dominant is based on the
fitness distribution.

If a, b, and c follow a symmetric distribution p with mean m and
standard deviation s, and m¼ d, we obtain the same strong
selection limit as for the Gaussian distribution with m¼ d, see
Section 3.2. This is because in our strong selection argument, we
only have to consider the probability that a certain payoff entry is
larger than another one or larger than the mean. If the fitness
distribution is asymmetric or mad, this argument no longer holds
and different strong selection limits will be reached under special
fitness distributions. Since both a and c are chosen from the same
distribution, the probability p1 that a is larger than c, and thus the
probability that the new mutant dominates when it has high
abundance, is simply p1 ¼

R1
�1

pðxÞpðyÞYðx�yÞdx dy¼ 0:5, where
Yðx�yÞ is the step function. Therefore, the only influence of the
details of the distribution occurs through the payoff entry b. The
mutant will be dominant if in addition b is larger than d, which is
the condition that the mutant is advantageous when it enters the
population. This occurs with probability p2 ¼

R1
d pðxÞdx. For d¼ m

and distributions in which the median is equal to the mean, we
obtain p2 ¼

1
2. But in general, the value of p2 depends on the

precise shape of the distribution, see Fig. 2, and the fixation
probability is given by p1p2.

For example, let us assume a, b, and c follow an exponential
distribution with mean l, e.g. pðaÞ ¼ ð1=lÞexp½�a=l�, such that
a; b; cZ0. Thus, we obtain

p2 ¼ l�1
Z 1

d
exp �

x

l

h i
dx¼ exp �

d

l

� �
:

Even for l¼ d, we have p2 ¼ exp½�1� � 0:368. Thus, the probability
that the mutant dominates the wild type is
p1p2 ¼ exp½�1�=2� 0:184. The asymptotic limit of the fixation
probability for strong selection, b-1, is also p1p2. For l¼ d=ln2,
we would obtain the same asymptotic limit as for the Gaussian
distribution.

5. Discussion

We have introduced a model in which a new mutant in asexual
population is characterized by a new payoff matrix. We have
calculated the probability that such a mutant interacting with the
wild type in a novel, unpredictable way can take over a
population. This depends on the details of the interactions, which
are in our case based on the distribution of payoff values. How
does this relate to the usual approaches of population genetics
that discuss fitness distributions? One simplifying assumption of
evolutionary game theory is that individuals are haploid and
reproduction is asexual. So we should first aim at e.g. comparing
to experimental data from bacteria.

Recent works in population genetics have attempted to
measure fitness distributions experimentally (Zeyl and DeVisser,
2001; Cowperthwaite et al., 2005; Kassen and Bataillon, 2006).
Also in our case, we have a distribution of fitness values, reflected
by the entries of a payoff matrix. However, our model is looking at
the invasion and fixation of mutants from a different perspective.
The first and most important point is the way we define fitness.
Mutations bring variety, and fitness is to describe the advantages
of one type over others. In the traditional population genetic view,
fitness is typically constant, but our model considers fitness under
frequency dependent selection. The evolutionary dynamics under

these two approaches will be quite different, especially when
selection is not weak, see Fig. 3. For constant fitness, a mutant in
an asexual population is either advantageous or disadvantageous
compared to the wild type. Therefore, the fixation or extinction of
the mutant type is usually fast for strong selection. But for
frequency dependent fitness, mutant and wild type may coexist
with each other for a long time. This occurs when a mutant
performs better than the wild type when it is rare, but the wild
type has a fitness advantage when the mutant is frequent. One
would expect that frequency dependence is the rule rather than
the exception, because the success of a strategy typically depends
on the actions and abundance of others.

The distribution of fitness values is a central concept in
population genetics. Gillespie (1983) and Orr (2002, 2003) have
proposed that the fitness distribution of beneficial mutants would
be approximately exponential. Alternative distributions like
gamma distribution, L-shaped distribution and slightly bell-
shaped distribution are also considered to be possible. The fitness
distribution is a function of the environment and thus it is
influenced by many factors, such as the adaption of the wild type
to the environment. It also makes a difference if only single-step
mutations are considered or if also mutants with several
mutations are taken into account. However, these attempts are
typically based on the assumption of fixed fitness values. If fitness
is frequency dependent, as in our model, the selective advantage
of a novel type depends on its frequency. A new mutation may be
able to invade, but not to take over the population. Alternatively,
new mutants may be disadvantageous, but turn highly successful
when they have crossed a certain threshold.

Payoff matrices with random entries have been considered
before: in a seminal paper, Fudenberg and Harris (1992) have
shown that a game with time-dependent random payoff matrix
can be described by a stochastic form of the replicator equation.
They have argued that the system spends most time in the
vicinity of the risk dominant equilibrium. This is the strategy with
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Fig. 3. In the main panel, we compare the probability of fixation under constant

fitness and frequency dependent fitness. Here, wild type’s payoff against itself d is

larger than mean m of the Gaussian random variables in the payoff matrix

(d¼ 2;m¼ 1). This is consistent with the notion in population genetics that

deleterious mutants are more common than beneficial ones. For weak selection,

the dynamics under both approaches are similar. However, the scenarios under

strong selection are quite different. In the inset, we show the weak selection

approximations of the fixation probability under frequency dependent fitness. As

the probability to be deleterious is higher, the fixation probability of a random

mutant decreases first with the intensity selection, before it starts to increase

again. It is obviously that the approximation becomes more accurate when higher

order terms are considered. In particular, the linear term cannot capture the

fixation probability when the intensity of selection is increased here (population

size N¼ 100, averages over 105 runs).
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the larger basin of attraction under positive frequency dependent
selection. The approach of Fudenberg and Harris leads to much
faster convergence to the risk dominant equilibrium than the
approach of Kandori et al. (1993), looking at mutations only under
strong selection. Our model assumes that the nature of interac-
tions, i.e. the payoff matrix, does not change in time, whereas
Fudenberg and Harris (1992) consider a situation in which fitness
is not only frequency, but also time dependent, such that fixation
probabilities are not meaningful.

Berg and Engel (1998) as well as Galla (2007) have considered
random bimatrix games with a large number of strategies to
address the number of Nash equilibria and the fraction of
strategies contributing to mixed Nash equilibria. Eriksson and
Lindgren (2001) have asked what kind of strategies is most
successful if the payoff matrix is chosen at random and change in
every round of game. These papers either consider large numbers
of strategies, sophisticated decision processes or temporal
changes of the payoff matrix that do not affect the identity of
the strategies. Our approach is different in many aspects: players
do not switch between strategies or choose a particular way to
play in each game. Rather, they play a fixed strategy that they also
pass on to their offspring. We consider an ensemble of fixed
games and explore how the probability that a mutant can take
over a population depends on that ensemble. It turns out that the
dependence on the underlying distribution of interaction para-
meters corresponds to a moment expansion for weak selection
and to an integral of a part of the fitness distribution for strong
selection.
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Appendix A. Third order weak selection

The third order expansion of the fixation probability of a single
mutant under weak selection is calculated here. We consider the
fitness as frequency dependent. First, we expand the exponential
function in Eq. (7) for b51,

exp þb
Xk

i ¼ 1

ðpB�pAÞ

" #
� 1þb

Xk

i ¼ 1
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Then, Eq. (7) can be written as
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where C1 and C2 are defined as Eqs. (13) and (14) in the main text.
Expanding Eq. (20) for b51, we have
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As pB�pA ¼ uiþv, cf. Eq. (2), we have
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When we assume that a, b, c follow an arbitrary distribution f ðxÞ

with mean m, variance s2 and skewness g, the fixation probability
under weak selection is the expectation value of f1,
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Compared with the second order approximation where only the
first and the second moment of the distribution are involved, we
need to include the third moment of the distribution
Eðx3Þ ¼ m3þ3ms2þg. Then, we obtain four new terms beside
those in Eq. (16)
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With all the items in Eqs. (16) and (24), the fixation probability for
a mutant in Eq. (23) becomes
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2.2 Generalizing the definition of the payoff dis-

tribution

The payoff distribution is an important concept in our frequency dependent

mutant model. As there is no general conclusion on the shape of the payoff

distribution from experiments, we assume an arbitrary distribution. Initially,

a Gaussian distribution with mean η and variance σ2 was considered. We

analytically calculated the fixation probability of a single mutant under weak

and strong selection. Under weak selection, it turns out only the mean and

the variance matter, if φ1 is expanded to the second order. This expression

of φ1 can be further simplified if η = µ, where the mean of the new payoff

entries is the payoff of a wild type interacting with another wild type. Under

strong selection, φ1 only depends on the probability that a new payoff entry

is larger than the initial wild type payoff, η > d.

There are two important results: First, assuming a concrete shape of the

distribution is not necessary for our analysis under weak and strong selection;

Second, the relation of the mean payoffs of the mutant η and the payoff of

its parents d, is an important parameter for the fixation probability for weak

and strong selection (also see Eq. 17 in the paper in Sec. 2). According

to these resutls, we generalize the definition of the payoff distribution in our

frequency dependent mutant model. It can be any distribution with first

moments, such as mean η and variance σ2. A new parameter θ is defined for

the payoff distribution. Here, θ =
∫∞
d
f(x)dx, where f(x) is the probability

density function of random payoff entries.

Interestingly, θ corresponds to the beneficial mutation rate under the con-

stant selection scenario. This is a key expression in Chapter 4, where infinite

populations are considered. As η, σ2 and θ are all statistical properties of

a distribution, it is more plausible to obtain these values than the concrete

shapes of a distribution in experiments.



Chapter 3

Diversity in the frequency

dependent mutation model with

many types

Polymorphism refers to the coexistence of at least two types in the same

population [109, 75, 110]. These can be different genotypes or phenotypes.

Polymorphism is commonly observed in natural populations. For example,

green and red morphs occur in the same population of the pea aphid [112]. In

social insects, different morphological forms with a specialized function exist in

the same sex within an individual colony [113]. Allele diversity at MHC genes

are reported in three-spined stickleback, mouse, human and other species [111,

114, 115, 116]. However, the basic mechanisms maintaining polymorphisms

are still under debate [111]. Various mechanisms like host-parasite coevolution

[117, 112], sexual selection [118, 119, 111], and heterozygote advantage [120,

121] are proposed to contribute to the maintenance of polymorphisms, where

negative frequency dependent selection is often involved. For example, in

the host-parasite coevolution, host and parasite genotypes are considered to

have a selective advantage when they are rare [122]. In sexual selection, some

individuals (usually females) prefer to mate with particular phenotypes or

genotypes when they are rare [123].

In natural populations, stable coexistence may arise from various complex

interactions between different types (see Section 1.1). Negative frequency
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dependent selection is only one of them. As the fitness of mutants is unknown

or unpredictable before their appearance, it is hard to impose a particular type

of frequency dependence among the mutant type and resident types. Instead,

we assume the payoff entries introduced by mutations as random variables,

and thus include all types of interactions. In this chapter, we are interested

in the origin and the maintenance of the stable coexistence of different types

based on our frequency dependent mutant model.

We consider dynamic processes starting from homogenous populations.

The evolutionary dynamics unfolds for continuous mutations without prede-

fined fitness. The diversity of a population is under the interplay of mutation

and selection. As we are interested in polymorphisms stabilized by selection

rather than the presence of several mutants simultaneously driven by high

mutation rates, we focus on low mutation rates (see Section 2.1).

For the same mutation rates, we compare the population dynamics under

constant selection and frequency dependent selection. For weak selection, the

diversity under these two scenarios is similar due to large random genetic

drift. Polymorphism arises when the selection intensity becomes stronger

under frequency dependent selection, while the opposite pattern occurs under

constant selection. Interestingly, although our model allows for an infinite

number of mutations over evolutionary time, the diversity of the population

typically remains at an intermediate level with only a few coexisting types.

3.1 Diversity under neutrality

One important assumption in our frequency dependent model is that every

mutation brings a new game to the population. This corresponds to the

assumption of the infinite alleles model, where every mutation results in a

new allele in the population [42, 124, 12]. When the mutation rate is low

enough, a stationary state will be reached by the population given sufficient
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time. In a population with mutations, the frequencies of different types are

always changing. A population remains at a stationary state in the sense that

the probabilities to observe a certain number of types do not change. These

probabilities can be the measure of diversity levels of a population. Under

neutral selection, they were derived by Ewens sampling formula [54].

Ewens sampling formula (ESF) describes the probability distribution of a

configuration of alleles from a selectively neutral locus, when a sample of Ns

individuals is drawn from a population with size N [12]. As a sampling theory,

ESF was initially proposed for the Wright-Fisher process (see Section1.2.3).

Starting from the probability that two sampled individuals are the same type,

it gives a group of sampling properties. According to ESF, the probability of

m different alleles present in the population P (m), is given by

P (m) =

[
Ns

m

]
θm/SNs(θ), (3.1)

where
[
Ns

m

]
are the unsigned Stirling numbers of the first kind, and SNs(θ) =

∏Ns−1
i=0 (θ+ i) [13, 108]. The unsigned Stirling numbers of the first kind arises

in the framework of permutation theory. They are the coefficients of the

rising factorial, x(x+ 1) · · · (x+Ns− 1) =
∑Ns

m=0

[
Ns

m

]
xm [108]. For a haploid

Wright-Fisher process, we have θ = 2Nµ. For a haploid Moran process, the

parameter θ is Nµ, because random genetics drift in a Moran process is twice

as strong as in a Wright-Fisher process under neutral evolution [125].

In our frequency dependent mutant model, we address the population

dynamics from near neutral selection to strong selection. The results obtained

under near neutral selection in our model, are captured by ESF (see Fig. 3

and Supplementary Figures in the publication included in the next section),

in the same way as for the constant selection case.
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3.2 Diversity under frequency dependent selec-

tion for various selection intensities

Publication: Emergence of stable polymorphisms driven by evolu-

tionary games between mutants

Weini Huang, Bernhard Haubold, Christoph Hauert, and Arne Traulsen
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 E
volutionary dynamics is characterized by the interplay of 
mutation, selection and random drift  1 – 4 . Evolutionary experi-
ments in microbes provide powerful demonstrations of all 

these forces at work 5 – 8 . Typically, it is assumed that mutants with a 
random fi tness value, which remains constant throughout, arise and 
either go extinct or reach fi xation 9 . Advantageous mutations can 
quickly reach fi xation in the population. However, such events are 
too rare to substantially increase genetic diversity over time 10 – 12 . 
Evolutionary game theory provides an alternative perspective on 
evolutionary change, by modelling the fi tness of a mutant as a func-
tion of the frequencies of all types of individuals in the population. 
For example, a mutant may be advantageous at the beginning of an 
invasion, but its fi tness may drop below the residents ’  fi tness when it 
reaches a certain abundance 2,4 ,13,14 . In such models, the number of 
types is usually fi xed from the outset 13,15 . Th is corresponds to two 
(or few) allele models in population genetics 1,3 . 

 Here we present a model where each mutation generates a new 
evolutionary game characterized by a payoff  matrix with an addi-
tional row and an additional column. Th is represents a generaliza-
tion that is analogous to the infi nite-alleles model that has mainly 
been considered in the context of neutral or constant selection so 
far 3 . Th is approach results in substantially higher diversity than 
observed under the established models of neutral or frequency-
independent selection and permits the coexistence of an arbitrary 
number of types, but predicts an intermediate average diversity.  

 Results  
  Description of the model   .   We propose an approach where 
every mutation leads to a new game between the mutant and the 
residents. We use stochastic evolutionary game dynamics with 
 n  types of individuals in a fi nite population of size  N  (refs   16,17). 
Interactions between individuals are captured by an  n × n  payoff  
matrix. Th e payoff  of a type  i  individual when it interacts with a 
type  j  individual is the entry  a   ij   in the payoff  matrix. Th e average 
payoff  of an individual determines its fi tness and is a function 
of the frequencies of all types. In our model, any new mutation 
increases the number of types in the game. We assume that mutant 
 m  inherits the payoff  entries of its parent  p , subject to Gaussian 
noise. Th us, the mutant ’ s payoff  against type  j ,  a   mj  , has mean  a   pj  , 
and the payoff  of type  j  against the mutant,  a   jm  , has mean  a   jp  . If 
there are  n  resident types when the mutant appears, the  n × n  
payoff  matrix is extended by an additional column (the payoff  
entries of residents interacting with the mutant) and an additional 
row (the payoff  entries of the mutant interacting with residents) 
( Fig. 1 ). Conversely, when type  j  goes extinct, row  j  and column  j  in the 
payoff  matrix are deleted, such that it is reduced to an ( n     −    1) × ( n     −    1) 
matrix. Our reference scenario is frequency-independent (constant) 
selection, where each type has a fi xed fi tness. In this special case, 
each row in the payoff  matrix consists of identical numbers,  a   ij      =     a   ik   
for all  i ,  j , and  k .   

  Mutant games between two types   .   First, we consider the case of a 
single mutant  B  in a homogeneous population of  A -types. Fitness 
diff erences depend on the distribution of payoff  values and on the 
intensity of selection  w . To avoid negative fi tness values, we assume 
that fi tness is an exponential function of the average payoff  multi-
plied by  w  (see Methods). Under constant selection with Gaussian 
distributed payoff s around the parent type payoff , the probability for 
an advantageous mutation is 50 % . For frequency-dependent selec-
tion, 50 %  of the mutants are also initially advantageous. In 25 %  of 
the cases, the mutants ’  fi tness is greater than that of the wild type 
regardless of the mutants ’  abundances. In these cases, the mutants 
will take over the population deterministically for strong selection 
 w , or large population size  N . Some of these mutations increase the 
average fi tness and some of them will decrease it, the latter rep-
resenting Prisoner ’ s Dilemmas 13 . Th is game is characterized by a 

specifi c ordering of payoff s,  a  BA > a  AA > a  BB > a  AB , a situation that is 
typically described as interactions between cooperators (type  A ) 
and defectors (type  B ). Th e payoff  ordering implies that defectors 
always have higher fi tness and tend to spread, but this decreases the 
average fi tness of the population. Another 25 %  of the mutations are 
initially advantageous but lose this advantage once they become 
abundant and hence promote coexistence, which is reminiscent 
of the Hawk – Dove game 13  or the Snowdrift  game 18  and charac-
terized by the payoff  ordering  a  BA > a  AA > a  AB > a  BB . Th e remaining 
50 %  of the mutants are disadvantageous at low frequencies and 
will typically be lost. However, for weak selection,  w N�1/   , the 
stochastic nature of the process allows even slightly disadvanta-
geous mutants to invade and fi x  . Conversely, advantageous mutants 
can also be lost for the same reason. Th e corresponding fi xation 
probabilities can be calculated from a moment expansion of the 
distribution of payoff s 19 .   

  Mutant games between  n  types   .   Here we focus on a more general 
case of a continuously evolving population. New types appear and 
old types go extinct. No type can be fi xed in the population forever. 
Instead of looking at the fi xation probability of a certain type, we 
will focus on the evolutionary dynamics in such a population and 
see under which conditions a stable polymorphism can naturally 
emerge. 

 In population genetics, frequency-dependent selection in dip-
loids has been considered in the past, but the focus has been on 
special cases such as symmetric overdominance 20,21 . In evolution-
ary game theory, it is argued that frequency-dependent selection 
is generic, with constant selection describing a special case 2,14,16 . 
Our model allows us to address the consequences of frequency-
dependent selection. We focus on the average number of diff erent 
types simultaneously present in the population. Th e interactions 
can be any two-player game, leading to any kind of linear frequency 
dependence. 

 Whereas previous models of evolutionary games with variable 
numbers of types were based on deterministic dynamics 22 – 25 , we 
focus on the more general case of stochastic evolutionary dynamics. 
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   Figure 1    |         Dynamic payoff matrices. Mutant games are characterized by 

growing and shrinking payoff matrices, as shown in this example with 3 

and 4 types. All elements of the payoff matrix can be different, whereas 

for the special case of constant selection payoff entries in each row are 

identical. ( a ) A mutation increases the dimension of the payoff matrix 

from 3 to 4. The new column describes interactions of the previous types 

with the new mutant, whereas the new row describes the interactions 

of the new mutant with the previous types. ( b ) Extinction of a type  S  2  

decreases the dimension of the payoff matrix from 4 to 3. Whenever 

a type goes extinct, the corresponding row and column of the payoff 

matrix are deleted.  
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We consider a Moran process in a population of constant size  N . In 
every time step, one individual is randomly chosen proportional to 
its fi tness, and produces a mutant with probability   μ   or an identical 
off spring with probability 1    −      μ  . A randomly chosen individual in 
the population is replaced by this off spring. Th e fi tness of a given 
individual is determined from its interactions within the popula-
tion (see Methods). Mutations increase and extinctions decrease the 
dimension of the payoff  matrix ( Fig. 1 ). To ensure that the selec-
tion intensity is independent with evolutionary time, we normalize 
the payoff  matrix aft er each mutation and aft er each extinction such 
that the highest absolute payoff  value equals one.   

  Diversities under constant selection and mutant games   .   An exam-
ple for the diff erent dynamics arising through mutant games com-
pared with constant selection is shown in  Fig. 2 . For weak selection, 
 Nw     �       1, the extinction times are of the order of  N  generations and 
frequency-dependent selection is not markedly diff erent from con-
stant selection. However, for larger populations or higher intensity 
of selection  w , stable alliances can coexist for a long time 26 . Mutants 
can aff ect the population by (i) destroying existing alliances and tak-
ing over the population, (ii) enabling one of the residents or a new 
alliance of residents to take over or (iii) leading to another stable 
alliance together with a subset of the resident types or all of them. 
Only if the mutant type enters the population without displacing 
any resident, does the number of types increase. Nonetheless, fre-
quency-dependent selection leads to a signifi cant increase in the 
diversity of the population compared with neutral or constant selec-
tion. Th e balance between selection and drift  is governed by the 
product of the selection intensity and the population size. For fi xed 
selection intensity, the smaller the population, the larger the genetic 
drift . For fi xed population size, the smaller the selection intensity, 
the larger the genetic drift . Here we assess the eff ect of genetic drift  

by varying the selection intensity in a population of fi xed size (see 
Methods). 

 To further analyse diversity, let us recall population genetics 
under weak selection. Under neutrality and low mutation, the 
average number of diff erent types, which can sometimes increase 
by mutation and always decreases by extinction, is described by 
Ewens ’  sampling formula 27  (see Methods). To ensure that there 
can be an equilibrium between mutations and extinctions, we must 
assume   μ      �        N      −    1  .  In large populations, this condition is violated and 
the diversity is substantially higher. Even in this case, frequency-
dependent selection leads to more diversity than constant selection 
(see Methods). Our weak selection results recover Ewens ’  sampling 
formula, both under constant and frequency-dependent selection. 
However, for strong selection, the results are strikingly diff erent 
in these two cases. For constant selection, diversity decreases with 
increasing intensity of selection, because the extinction and fi xation 
times become shorter. In contrast, increasing the selection intensity 
under frequency-dependent selection stabilizes alliances between 
diff erent types and typically increases diversity ( Fig. 3 ). For small 
mutation rates,   μ      �        N      −    2 , neutral mutations go extinct on a faster 
timescale than new mutations arise, but polymorphisms may still 
exist for a long time. Mutations lead to transitions between mono-
morphic states or coexistence states involving 2,3,4 or more types 
under strong selection ( Fig. 4) . Th e stationary distribution of these 
coexistence states can be computed based on the transition prob-
abilities (see Methods). Th is recovers our results for the distribution 
of the number of coexisting types ( Fig. 3) . Evolutionary dynamics 
selects stable polymorphisms, but diversity is an emergent property 
because our mutant games lead to all possible payoff  matrices.   

  Th e nature of the games   .   As soon as more than two types coexist, we 
can also analyse the interactions of each pair of types. Here we focus 
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   Figure 2    |         Sample trajectories of the evolutionary dynamics in a Moran process. The left panels are for constant selection and the right panels are for 

frequency-dependent selection. Top: for weak selection,  w     =    0.0001, the dynamics with constant selection ( a ) is similar to that with frequency-dependent 

selection ( b ), because possible coexistences disappear due to genetic drift. As on average   μ   /  N  mutations appear per generation,   μ   neutral fi xation events 

are expected per generation, and a single type dominates over 1 /   μ   generations. Bottom: for strong constant selection,  w     =    10, successive fi xation events 

of the 50 %  advantageous mutants are observed ( c ), the expected number of such events per generation is  N μ   / 2. For frequency-dependent fi tness ( d ), 

pairwise coexistences are stable over long periods of time. Additional mutants can arise and lead to the coexistence of 3 or even more types (population 

size  N     =    1,000, mutation rate   μ      =    10     −    4  per time step, all simulations start from a monomorphic state).  
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on 2 × 2 subgames of the observed 3 × 3 games. As a polymorphism of 
 n  types usually arises from a previous polymorphism of  n     −    1 types, 
the vast majority of the 2 × 2 subgames ( ~ 90 % ) show stable coexist-
ences. However, there is a small fraction of 2 × 2 games in which one 
type dominates over the other. In particular, when viewed in isola-
tion, a few of these pairs engage in Prisoner ’ s Dilemma interactions 
( ~ 1 % ). Despite the metaphorical power of the Prisoner ’ s Dilemma 
in the theory of evolution of cooperation, there is a striking lack of 
empirical cases described by this model 28 . Th e relative rarity of Pris-
oner ’ s Dilemma relationships occurring in mutant games seems to 
corroborate the dearth of empirical evidence for it. Besides, restrict-
ing the analysis to pairwise interaction in this way can be mislead-
ing, because any pair of individuals represents just a subset of a more 
complex interacting community of many types. For example, they 
could be part of a rock-scissors-paper-type cyclic dominance hier-
archy that is known for its capacity to support coexistence 29,30 . In 
contrast,  ~ 10 %  of pairwise interactions represent Snowdrift  games, 
which do not mandate the presence of further types or other mecha-
nisms to account for polymorphisms. Hence the Snowdrift  game 
seems a biologically appealing and possibly more relevant frame-
work to address cooperation 18 .    

 Discussion 
 Complex communities can only be observed when the intensity 
of selection is strong, which means that the rate of adaptation of 
a population to external conditions is relatively high. HIV evolu-
tion, host-parasite coevolution, or antibiotic resistance are examples 

for high selective pressures. Moreover, intraclonal polymorphism is 
frequently observed in bacterial species 31,32 . Our mutant games 
show an intriguing resemblance to recent observations in long-term 
evolutionary experiments with  Escherichia coli : When kept in a 
constant environment, these bacteria alternate between monomor-
phic phases and coexistence of up to a handful of distinct genotypes 
for hundreds of generations 32 , similar to our strong selection case 
in  Fig. 2 . 

 Frequency-dependent selection is a recurrent theme in evolu-
tionary biology, with applications as diverse as Fisher ’ s explanation 
of the 1:1 sex ratios 33 , sympatric speciation 34 , and the allelic diver-
sity of the immune system driven by host parasite coevolution 35 . 
In each case, the most important consequences for the evolution-
ary process arise through frequency dependence and, in particular, 
through stable polymorphisms. In our model, any mutation pro-
duces a new game between mutant type and resident types, which 
takes the full spectrum of frequency dependence into account. It 
is straightforward to extend our framework to diploid populations, 
where pairwise games correspond to the interactions of two alle-
les at one locus 21  (see Methods), and frequency-dependent selec-
tion arises from diploidy rather than interaction between diff erent 
genotypes. 

 Under constant selection, the average fi tness of a population 
keeps increasing (neglecting occasional dips due to the stochas-
tic fi xation of disadvantageous mutants), which contrasts with the 
proposed mutant games where frequency-dependent selection may 
result in an increase as well as a decrease of fi tness. Evolutionary 
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low mutation rate,   μ      =    10     −    6  per time step. For constant selection ( a ), diversity decreases slightly with increasing intensity of selection. For frequency-

dependent selection ( b ), diversity increases substantially with increasing intensity of selection. For strong selection, we can alternatively compute the 

stationary distribution from the transitions between the different polymorphisms ( Fig. 3  (open symbols)). Although the number of types is not limited 

in our model, there are typically 4 or less types coexisting in our simulations at the same time. The bottom panels show higher mutation rates,   μ      =    10     −    4  

per time step, where the diversity under neutral selection is already high. Under frequency-independent selection ( c ) diversity increases compared with 

( a ), owing to the increasing mutation rate. But frequency-dependent selection ( d ) increases diversity further compared with constant fi tness ( c ) or lower 

mutation rates ( b ) (population size  N     =    1,000, averages obtained over 500 independent realizations and 10 7  generations per realization. All simulations 

begin in a monomorphic state, averages start after 25,000 generations).  
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processes represent an optimization to a changing environment 14 , 
but in addition, evolutionary trajectories are constrained through 
inheritance and mutations. Mutant games capture all these eff ects in 
a concise framework and present a complementary perspective on 
the emergence of polymorphisms and the degree of diversity.   

 Methods  
  Payoff and fi tness   .   In evolutionary game theory, the fi tness of individuals is 
determined through games, that is, interactions with other individuals. In our 
case, the game is characterized by a payoff  matrix. If only two types,  S  1  and  S  2 , 
interact, the payoff  matrix is given by
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In our model, the payoff  is determined from interactions with all other individu-
als in the population, excluding self interactions. Th us, the payoff  of type  S  1  is  
p1 11 12= 1 1 1( ) ( ) ( ) ( )i N a N i N a− − + − −   , where  i  is the number of  S  1  individuals 
in the population. Equivalently, we have  p2 21 22= 1 1 1i N a N i N a( ) ( ) ( )− + − − −    
for the payoff  of type  S  2 . To avoid the complications of negative fi tness, we defi ne 
the fi tness,  f  j , of type  j  as an exponential function of its payoff    π    j  ,  f wj j= + ⋅exp[ ]p   . 
Here  w  (0 ≤  w     <     � ) controls the selective diff erences between players with diff erent 
payoff s 36 . If  a  11     =     a  12 , and  a  21     =     a  22 , the payoff s are independent of interactions and 
are only determined by the type of the individuals. Th is special case corresponds 
to constant selection, where the fi tness of one type does not depend on the fre-
quency of the types in the population. Neutral selection corresponds to  w     =    0 or 
to  a  11     =     a  21     =     a  12     =     a  22 . 

 In a population of  n  types, we use a  n  ×  n  matrix to describe the payoff s. When a 
mutant appears, an additional column and row are added to the matrix to describe 
the additional interactions. In the general frequency-dependent case, 2 n     +    1 new 

(1)(1)

payoff  matrix entries have to be defi ned. In contrast, for constant selection, only 
one new variable is needed to describe the fi tness of a mutant. Th ere are several 
ways to generate these new variables. Suppose that  m  is the mutant type,  j  is a 
resident type, and  p  is the mutant ’ s parent type. In the simplest case, the payoff s 
of the mutant  m  against the resident types  j ,  a   mj  , and the payoff s of the resident 
types against the new mutant,  a   jm  , are chosen randomly and independently of 
the current types from some probability distributions. But it is more natural, if 
the mutants are similar to their parents by inheriting some aspects of their payoff  
entries. To this end, we randomly choose the payoff  of the mutant against a 
certain resident from a distribution around its parent ’ s payoff  against that resident. 
Although we can take arbitrary distributions for the payoff  entries in our model, we 
focus on the simplest case, where the payoff  entries of the off spring are Gaussian 
distributed around its parent ’ s payoff  entries. In other words, the mean of the new 
payoff  entries  a   mj   for the mutant  m  is given by the payoff   a   pj   of its parent type  p  
against a type  j  individual. An equivalent rule holds for the payoff  of the resident 
types against a mutant, the new payoff  entries  a   jm   have mean  a   jp  . For the Gaussian 
distribution, a change in the variance corresponds to a change in the intensity of 
selection 19 . Th us, we always set the variance to one. 

 Th is approach implies that mutations with selective advantage are favoured, 
such that the average fi tness increases over time. In our case, this would mean that 
the eff ective intensity of selection is also increasing, making the system nonstation-
ary. To avoid this eff ect, we rescale the payoff  matrix by dividing it by the largest 
absolute value of all payoff  entries aft er every mutation and every extinction. 

 With the full information on the payoff s, we can calculate the fi tness of all types 
in the population based on the payoff  matrix. For example, type  j  obtains the payoff  
 p j k

d
jk k jja i a N= 11( )/( )Σ = − −    where  i   k   is the number of type  k  individuals in the 

population and  d  is the number of types.   

  Moran dynamics   .   Th e Moran process describes the evolutionary dynamics in a 
fi nite population with overlapping generations 16,36,37 . We start with a homogene-
ous population with constant size  N     =    1,000 and payoff   a  11     =    1. In every time step, 
one individual is chosen randomly in proportion to its fi tness, and produces an 
identical off spring with probability 1    −      μ   or a mutant with probability   μ  . Th e off -
spring then replaces a randomly chosen individual. In nature, mutation rates 
can range from 10     −    8  to 10     −    3  per base, per generation 38 . Although mutation rates 
are not aff ected by local population size, the eff ect of mutation rates on diversity 
is directly related to it. To investigate realistic mutation rates in our model, we 
consider it based on the population size  N . As our primary interest is diversity 
driven by selection rather than diversity driven by mutations, we focus on low 
mutation rates here. When the mutation rate is high,   μ  >1 /  N , the diff erences 
between the population dynamics under frequency-dependent and constant 
selection are less obvious, as the diversity is mainly driven by mutation. In the 
case of   μ      =    1 /  N , frequency-dependent selection still leads to higher diversity, 
compared with constant selection ( Supplementary Fig. S1) . In either case 
diversity tends to decrease for strong selection, which becomes more 
pronounced for higher mutation rates ( Fig. 3;   Supplementary Fig. S1 ). Th e 
reason is that there are only relatively few coexistence games and mutant 
types may destabilize them — and the stronger the selection, the faster 
this occurs. 

 When a mutation occurs, we generate the payoff  matrix according to the 
method described above. We record the number of individuals of diff erent types 
in every time step, which gives a straightforward picture of the population 
dynamics over time. As the system evolves for a long time, we record the 
number of types in every generation. To avoid dependence on the initial 
condition, we excluded the data of the fi rst 25,000 generations (see the captions 
of fi gures) in the averages. To compare constant fi tness and frequency-
dependent fi tness, we run simulations in both cases, which only diff er in 
the process for generating payoff  matrices. 

 Th e results under weak selection refl ect the usual statistical properties of 
genetic data samples. Th e probability of  m  diff erent alleles present in the popula-
tion under neutral selection,  P ( m ), can be calculated by Ewens ’  sampling formula,  

P m Sm
N m

N( ) = / ( )⎡⎣ ⎤⎦q q   , where  S iN i
N( ) = ( )0

1q qΠ =
− +   , and  m

N⎡⎣ ⎤⎦    are the unsigned 

Stirling numbers of the fi rst kind 3,39 . For a haploid Moran process, as in our case, 
the parameter   θ   is  N μ  .   

  Transition probabilities between different coexistence states   .   Let us consider 
selection scenarios generated by introducing mutants. Under strong selection 
and low mutation rates, a population is usually in an equilibrium where diff erent 
types coexist with each other. Th e appearance of a new mutant during a phase of 
coexistence can lead to establishment of a new alliance with the new mutant as an 
additional type, formation of a new alliance with fewer types (which may include 
the mutant type or not), replacement of one type from the previous alliance with 
the new mutant, or extinction of the mutant. 

 Here we infer the probabilities of these selective consequences under the 
Moran process. We assume a mutation rate   μ      �        N      −    2  .  In this case, the average time 
of waiting for a new mutant is much longer than the average time a population 
needs to reach a new equilibrium aft er a mutation. We start simulations from a 
homogeneous population. Mutants show up at random. Aft er a mutant appears, 
we wait until the population reaches a new equilibrium, and infer whether the 
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    Figure 4    |         Transition probabilities between different levels of diversity. 
The consequences of mutations for the diversity are described by 

transition probabilities for low mutation rates under strong selection. 

The transition probability between different levels of diversity results 

from the appearance of a mutant. Each circle marks a certain number of 

coexisting types and the probability that the population is in this state (cf. 

to  Fig. 3b ), arrows mark the probabilities of the transitions between these 

states after the appearance of a mutant. A mutation can only increase the 

diversity by at most one type, but this probability decays rapidly with the 

number of coexisting types. A new mutation can also lead to a decrease 

in the diversity to any level. Here we show the transitions for up to four 

coexisting types under strong selection; as illustrated in  Fig. 3b , the 

probability to be in states with  n >4 under strong selection is negligible for 

the present parameter combination. (population size  N     =    1,000, mutation 

rate   μ      =    10     −    6  per time step, selection intensity  w     =    10, averages obtained 

over 500 independent realizations and 10 7  generations per realization 

after a transient period of 25,000 generations. All simulations start from a 

monomorphic state).  
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diversity has decreased, increased or been maintained. Each state is characterized 
only by the number of coexisting types. For example, state one represents that 
the population is homogeneous, and state two represents that there are two types 
coexisting. We are interested in the probability that a population changes from one 
state to another. Th e transition matrix between diff erent states  T  is obtained by 
averaging over the evolutionary trajectories. Th e element  t   ij   denotes the transition 
probability from  i  to  j  coexisting types. For low mutation rates,  t   ij   is very small for 
 j>i     +    1. Th e fraction of time that the population spends in each state of diversity is 
then given by the stationary distribution of the Markov chain determined by the 
transition matrix  T  ( Fig. 4 ).   

  Population size   .   For fi xed selection intensity, the smaller the population size is, the 
larger the genetic drift . For fi xed population size, the smaller the selection intensity 
is, the larger the genetic drift . Th us, the stochastic eff ect from the small population 
size is similar to a smaller intensity of selection. Instead of having two parameters 
that lead to the same eff ect, we focussed our discussion on the case of  N     =    1,000 for 
various intensities of selection. Focussing on variable selection intensities is compu-
tationally less costly than varying the population size. For both the Moran process 
and the Wright – Fisher process, the required CPU time scales with the population 
size, but not with the intensity of selection. For comparison, we also carried out 
simulations for  N     =    100, where the same patterns of diff erence between frequency-
dependent selection and constant selection are observed ( Supplementary Fig. S2) .   

  Diploid populations   .   Th e evolutionary game dynamics for Mendelian popula-
tions has been studied in detail in the past 40 – 42 ; the interaction of two alleles at a 
diploid locus can be interpreted as a special kind of two-player game, which has 
a symmetric payoff  matrix 43 – 45 . Suppose there are two types of alleles, allele A 
and allele B. Th e fi tness of a homozygous individual AA is  w  AA , the fi tness of a BB 
individual is  w  BB  and the fi tness of a heterozygous individual AB is  w  AB . Th is can 
be formalized as
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When  w  AA > w  AB  and  w  BB > w  AB , it corresponds to under-dominance, where 
heterozygous individuals have a lower fi tness than homozygous individuals. When 
 w  AA     <     w  AB  and  w  BB     <     w  AB , a condition of over-dominace is described. A diploid 
population with more than two types of alleles at a single locus can be described 
by a symmetric  n  ×  n  matrix, where  n  is the number of diff erent alleles and matrix 
element  w   ij   represents the fi tness of a diploid individual with genotype  ij . 

 We have simulated the dynamics of such a diploid population under diff erent 
selection intensities based on the Moran process ( Supplementary Fig. S3) . In every 
time step, one allele is replaced, and thus the time for one generation is twice as 
long as the one in a haploid Moran model. Under the same mutation rate, the 
diversity of a diploid population ( Supplementary Fig. S3a ) is higher compared with 
the frequency-dependent case in a haploid population ( Fig. 4b ). Th is is because 
symmetry of the payoff  matrix  w   ij      =     w   ji   favours coexistence of diff erent types. In 
the simplest case with only two alleles, a coexistence game corresponding to over-
dominance has the ordering of payoff s,  w  AA     <     w  AB  and  w  BB     <     w  AB . Suppose allele 
 A  is a random mutant from allele  B , and the payoff s of the new genotypes,  w  BB  and 
 w  AB , are random variables with mean  w  BB . Th us, the probability to have a coexist-
ence of these two alleles is 37.5 % , which is larger than 25 % , the probability to have 
a coexistence in a two-allele haploid model. In the diploid approach, the fi tness of 
a genotype  ij ,  w   ij  , is a constant number, and does not change with the composition 
of the frequencies of diff erent genotypes (but the fi tness of an allele is frequency 
dependent). Hence, this kind of frequency dependence corresponds to constant 
selection in a haploid population. To introduce frequency dependence on this level 
leads to serious mathematical intricacies 40,43,45,46 .   

  Wright-Fisher dynamics   .   In the Wright-Fisher Model, all individuals produce a 
large number of off spring proportional to their fi tness. Th en, all individuals from 
the previous generation die, and are replaced by  N  new individuals sampled at 
random from the off spring pool. Th is corresponds to a multinomial sampling of 
off spring. Th e expected number of off spring of a certain type,  j , in the next genera-
tion is proportional to its fi tness. Neglecting mutations, the expected number of 
type  j  is  N i f i fj j k

d
k k( )/ Σ =1   , where,  i   j   and  f   j   are the number of individuals and the 

fi tness of type  j . If there is no diff erence in fi tness between types in the popula-
tion, the expected number of individuals of the diff erent types is constant and the 
composition of the population will only be changed by random drift . When we 
consider mutations, the probability that an off spring mutates is   μ  . On average, 
there are  N μ   new mutants in the population per generation. 

 We analyse the same quantities in the Wright – Fisher process as above in the 
Moran process. We see similar patterns in the diff erences between constant selec-
tion and frequency-dependent selection ( Supplementary Fig. S4) . However, for 
very strong selection, diversity decreases in our set-up. Th is can be understood as 
follows: consider a stable coexistence between two types. If a fl uctuation leads the 
system away from this point, one type has a slight payoff  advantage, which causes 

a large fi tness advantage owing to our exponential payoff  to fi tness mapping. Such 
a fl uctuation can lead to the immediate fi xation of one type in the next generation 
and thus destroy the stable coexistence quickly. 

 Again, under weak selection and low mutation rates, we recover the diversity 
given by Ewens ’  sampling formula. Under neutral selection, random drift  in a 
Moran process is twice as strong as in a Wright – Fisher process 47 . Th us, we have 
  θ      =    2 N μ   in Ewens ’  sampling formula for the Wright – Fisher process.                                                             
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Supplementary Figure S1: Distribution of the number of types under high mutation rates.

The expected number of types for different selection intensities is shown in a Moran process

with a high mutation rate, µ = 1/N . The symbols are simulation results, and the lines are

Ewens’ sampling formula under neutral selection. Under neutral or weak selection, the diversity

is much higher than for smaller mutation rates, both for constant selection (top) and frequency-

dependent selection (bottom). It is unlikely that any type occurs with a high frequency, and

it is most likely to observe a comparatively large number of low-frequency types. For strong

selection, the diversity under frequency-dependent selection is much higher compared with

constant selection (population size N = 1000, mutation rate µ = 10−3 per time step, average

over 500 independent realizations, and 107 time steps, after an initial period of 25000 time

steps).
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Supplementary Figure S2: Distribution of number of types for a small population. The

expected number of different types for different selection intensity is shown under a Moran

process for N = 100, the case of N = 1000 is shown in the main text. As for N = 1000, our

simulations (filled symbols) agree with Ewens’ sampling formula under weak selection (lines).

The top panels show a low mutation rate, µ = 5 × 10−5 per time step. The bottom panels

show a higher mutation rate, µ = 5× 10−4 per time step. For constant selection (left), diversity

decreases when selection becomes stronger. For frequency dependent selection (right), from

nearly neutral selection to extremely strong selection, the number of types coexisting in the

population for most of the time increases. (population size N = 100, averages obtained over

500 independent realizations and 106 generations per realization, where the data of first 25N

generations are excluded).
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Supplementary Figure S3: Distribution of number of types in a diploid population under

a Moran process. The symbols are simulation results, and the lines represent Ewens’ sam-

pling formula. The top panel shows a low mutation rate, µ = 10−6 per time step. The bottom

panel shows a higher mutation rate, µ = 10−4 per time step. From nearly neutral selection

to extremely strong selection, the number of types which stably coexist in the population in-

creases (population size N = 1000, averages obtained over 500 independent realizations and

107 generations per realization, where the data of first 25000 generations are excluded).
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Supplementary Figure S4: Distribution of number of types under a Wright-Fisher process.

The expected number of different types for different selection intensities is shown here. The

symbols are simulation results, and the lines are Ewens’ sampling formula derived for neu-

tral selection. For constant selection (left), diversity decreases when selection becomes strong.

For frequency dependent selection (right), from nearly neutral selection to extremely strong se-

lection, the number of types coexisting in the population for most of the time increases. The

decrease of diversity for very high selection intensity is due to the effect that even minimal

fluctuations can quickly destroy stable coexistence under strong selection in the Wright-Fisher

process (population size N = 1000, average over 500 independent realizations, and 107 gener-

ations per realization, where the data of first 25000 generations are excluded).
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3.3 Rescaling the average fitness

Under the interplay of mutation and selection, the population dynamics differs

for different selection intensities. Under strong selection, frequency dependent

selection leads to higher diversity than constant selection. In this part, we will

discuss the change of the average fitness under strong selection.

In Section 3.2, we assume that the payoff entires of the offspring are Gaus-

sian distributed around its parent’s payoff entries. The beneficial mutation

rate under frequency dependent selection is θ = 0.5 (see the definition of θ

in Section 2.2). Under constant selection, mutants with higher fitness take

over the whole population sequentially, and thus the average fitness of the

population increases. Interestingly, for frequency dependent selection, we also

observe an increase of the average fitness over time for θ = 0.5. This might

be related to the increase of fitness values, which is exponential under our

fitness mapping function, F = eβπ. Here, F , β and π are the fitness value,

the selection intensity and the payoff value respectively.

On one hand, this brings a difficulty in our computer simulations, since

we are interested in stationary properties, but fitness quickly increases in this

way. The more generations realized in one simulation, the large the fitness

values become. However, since we look at the stationary distribution of allele

frequencies, it is necessary to simulate a certain number of generations in one

realization to obtain stable results. To solve this problem, we normalize the

payoff matrix after every mutation and every extinction such that the highest

absolute payoff value equals one.

One the other hand, the observation that the average fitness increases

under θ = 0.5 leads to some interesting questions. How does the average

fitness of the population change due to frequency dependent mutations? Can

the average fitness decrease under certain conditions? Is this change related

to the beneficial mutation rate θ? We carry out the same simulations without



3.3. Rescaling the average fitness 58

normalizing the payoff values under different θ in finite populations. They

show that the average fitness can decrease if the beneficial mutation rate is

small enough. To have a further and more accurate understanding of this

question, we turn back to a deterministic system with infinite population

size. In the next chapter, we analytically calculate the probability that the

average fitness increases after a random mutation in a population with two

types. Simulations are performed for populations with more than two types,

see Chapter 4.



Chapter 4

Average fitness in the frequency

dependent mutation model in

infinite populations

4.1 The average population fitness

The average fitness of a population (shortened as the average fitness in the

following context) is also called mean population fitness, and defined as the

sum of the fitness of different types weighted by their frequencies [75, 12].

Fitness is considered as the average number of offspring from a certain type of

individuals, and the reproduction unit is the individual rather than the pop-

ulation. Hence, comparing the average fitness between different populations

may make limited sense. Instead, the changes of the average fitness of the

same population over time is a more interesting quantity from the perspective

of evolutionary dynamics.

These changes have different causes: a fluctuating environment can re-

sult in fluctuations in the total number of offspring of all types, mutations

or migration can bring new types of individuals into the population, and the

average fitness can change because the frequencies of different types change

under selection and random genetics drift. To seperate the effects of differ-

ent factors, we consider the change of the average fitness due to frequency

dependent mutations in infinite populations in a constant environment.
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Constant selection in haploid populations

There are many theoretical studies addressing this question for constant se-

lection in haploid populations, or frequency dependent selection based on

diploidy. In a haploid population with two types, the average fitness is non-

decreasing under strong constant selection [12]. When a mutant type with

lower fitness appears, it will be removed from the population under strong

selection, and the average fitness remains the same. When an advantageous

mutation happens, it can take over the population and increases the average

fitness. Thus, in total, the average fitness in a haploid population will increase

over time.

This result can also be derived mathematically. Here, we give an example

of a haploid population of infinite size and discrete generations. Suppose there

are two types, A and B in the population. The fitness of type A isWA and the

fitness of type B is WB. In the current generation, the frequencies of type A

and B are xA and xB respectively. The average fitness of the whole population

in the current generation can be written asW = xAWA+xBWB. The variance

of the fitness in the population, denoted as σ2
W , is xAW 2

A + xBW
2
B − (xAWA +

xBWB)2.

Now we look at the frequencies and the average fitness in the next gener-

ation, x′A, x
′
B and W

′

. According the definition in Eq. 1.13 in Chapter 1.3.1,

we have

x
′

A =
xAWA

xAWA + xBWB

and

x
′

B =
xBWB

xAWA + xBWB

.

Thus, the average fitness in the next generation is

W
′

= x
′

AWA + x
′

BWB =
xAW

2
A + xBW

2
B

xAWA + xBWB

.
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The difference between the average fitness in the current and the next gener-

ation can be written as

W
′

−W =
xAW

2
A + xBW

2
B

xAWA + xBWB

− (xAWA + xBWB)

=
xAW

2
A + xBW

2
B − (xAWA + xBWB)2

xAWA + xBWB

=
σ2
W

W
.

As the variance of the fitness is non-negative and the average fitness is

always positive, the difference of the average fitness between the next genera-

tion and the current generation is always larger than or equal to 0. Thus, the

average fitness remains the same or increases over generations in a haploid

population under strong constant selection.

Diploid populations and Fisher’s fundamental theorem

Under frequency dependent selection, the effects of mutations on the aver-

age fitness are more complicated. In population genetics, frequency dependent

selection arises in Mendelian populations (Chapter 1.3.2). One well-known

study on diploid populations is Fisher’s fundamental theorem of natural se-

lection [14].

The fundamental theorem of natural selection was first formulated in the

second chapter of Fisher’s book The Genetical Theorem of Natural selection.

It is stated that "the rate of increase in fitness of any organism at any time

is equal to its genetic variance in fitness at that time" [14] . There are many

standard assumptions in the fundamental theorem [126, 127]: for the one-

locus case, it assumes a limited number of allele types withouts mutations;

the fitness of alleles linearly depend on the allele frequencies, but the fitness

of the genotypes are fixed values; discrete generations are considered for an

infinite population without genetic drift.
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Suppose there are n types of alleles in one locus, allele 1, 2, ..., n. The

frequency of allele i is xi, where i ∈ {1, 2, ..., n}. Genotype ij consists of

allele i and allele j with order, and its frequency and fitness are xij and Wij

respectively. In the fundamental theorem, genotype ij and genotype ji are

considered to be identical, which leads to xij = xji and Wij = Wji. Thus,

the frequency of genotype ij without allelic order is 2xij when i 6= j, and

xi =
∑

j xij. The average fitness of the whole population,W , is
∑

i

∑
j xijWij.

Suppose the frequency of genotype ij with order in the next generation is xij
′ .

The change of the average fitness between the next generation and the current

generation is

∆W =
∑

i

∑

j

(xij
′ − xij)Wij, (4.1)

as the genotype fitness Wij is a fixed value. The change of the average fitness

can be positive or negative according to this definition. Interestingly, this

seems to disagree with the conclusion of the fundamental theorem, which

states that the average fitness will always increase in such a model [14, 128,

127].

Price and Ewens pointed out that there was an universal misunderstanding

on the Fisher’s fundamental theorem in population genetics [129, 127]. The

change of the average fitness referred in the fundamental theorem is not the

total change of the average fitness, but a partial change only related to the

change of the genotype frequency, xij
′ − xij in Eq. 4.1. The fundamental

theorem considers a special situation, where Wij can be written as

Wij = W + αi + αj. (4.2)

Here, αi is called the average effect of the allele i, and assumed to be a fixed

value. For all allele types,
∑

i xiαi = 0. Ewens proofed thatW is exactly equal

to the additive genetic variance,
∑

i

∑
j xij(αi +αj)

2, which is a non-negative

value, under all assumptions above [127].
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Obviously, Eq. 4.2 is not a general case. In a diploid population with n

alleles, there exist n(n+ 1)/2 genotypes. Thus, the degree of freedom on the

left side of this equation is n(n+ 1)/2, but the degree of freedom on the right

side of this equation is n+ 1. The genotype fitness can not be written as Eq.

4.2 in all situations. In a summary, Fisher’s fundamental theorem describes

the change of the average fitness in a special case. How does the average fitness

changes under frequency dependent selection is still an unanswered question.

Here, we consider a haploid population, where frequency dependent selection

comes from the interaction of different types (Chapter 1.3.3). In this chap-

ter, we extend our frequency dependent mutant model to infinite populations,

where the population dynamics is captured by the replicator equations. For

a model with only two types, we calculate the probabilities that the aver-

age fitness increases, decreases and remains the same according to the payoff

distribution. Interestingly, it is only related to the probability that a mu-

tant payoff entry exceeds the payoff of its parent under frequency dependent

selection, θ (see the detailed definition in Section 2.2 ).

For a model with more than two types, we numerically simulate the evo-

lutionary processes based on the replicator equations. We assume that every

mutation brings a new game and thus a new group of replicator equations.

A new mutation happens immediately after the population reaches the equi-

librium, which is given by the current group of replicator equations and the

initial composition of the population. This corresponds to low mutation rates,

where the time a population needs to reach an equilibrium is shorter than the

waiting time for the next mutation.
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Abstract

In addition to selection, the process of evolution is accompanied by stochastic effects, such as

changing environmental conditions, genetic drift and mutations. Commonly it is believed that

without genetic drift, advantageous mutations quickly fixate in a halpoid population due to strong

selection and lead to a continuous increase of the average fitness. This conclusion is based on

the assumption of constant fitness. However, for frequency dependent fitness, where the fitness

of an individual depends on the interactions with other individuals in the population, this does

not hold. We propose a mathematical model that allows to understand the consequences of

random frequency dependent mutations on the dynamics of an infinite large population. The

frequencies of different types change according to the replicator equations and the fitness of a

mutant is random and frequency dependent. To capture the interactions of different types, we

employ a payoff matrix of variable size and thus are able to accommodate an arbitrary number

of mutations. We assume that at most one mutant type arises at a time. The payoff entries to

describe the mutant type are random variables obeying a probability distribution which is related

to the fitness of the parent type. We show that a random mutant can decrease the average fitness

under frequency dependent selection, based on analytical results for two types, and on simulations
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for n types. Interestingly, in the case of at most two types the probabilities to increase or decrease

the average fitness are independent of the concrete probability density function. Instead, they

only depend on the probability that the payoff entries of the mutant are larger than the payoff

entries of the parent type.

Background

Mutations provide a continuous source of variation in natural populations, on which natural

selection can act. When fitness is assumed to be constant, only those mutations with higher

fitness values will be fixed in a haploid population under strong selection and negligible

random drift. Thus, the average fitness of the population would monotonically increase in

evolutionary time. There have been numerous hypotheses why this is not what is observed in

nature: for instance, environmental changes require new adaptions [1, 2] or coevolution can

imply continuous adaptation without increasing the average fitness [3–5]. However, these

are not aspects that we intend to include here. Instead, we focus on a haploid population

in a constant environment, and explore frequency dependent fitness, which can be described

by evolutionary game theory [6–11]. In this framework, the fitness of a type depends on

the frequencies of other types of individuals in the population. We address the very general

question of how the average fitness changes when it is driven by random mutations under

frequency dependent selection.

The fitness effects of new mutations have gained significant attention both in experimental

research and theoretical work [12, 13]. In experiments, the distribution of fitness effects

depends on several aspect of the experimental setup, e.g. how well adapted the organism is to

the environment and whether only single mutants or also double mutants (mutants differing

from the wild type by two mutations) are considered. Different shaped distributions were

proposed to capture the fitness distributions of random mutants under constant selection

[14–17]. The concrete shape of fitness distributions of spontaneous mutations varies between

species and even within the same species on different parts of DNA [18]. Although no

common conclusion on this has been obtained yet – and a universal fitness distribution may as

well not exist – it is often possible to estimate some general properties, such as the proportion
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of advantageous mutations and the mean value of the fitness of the mutations [19,20].

The concept of random distributed and frequency dependent fitness of mutations can be

addressed by evolutionary game theory [21], which considers evolutionary processes under

frequency dependent selection [22]. In this framework, a population of interacting individuals

is considered. In the simplest case of linear frequency dependence, the interactions of different

types of individuals are captured by a payoff matrix for a game. Those types which are more

successful in the game will have a higher reproduction rate. We introduce a payoff matrix

with variable size to capture mutations and extinctions. The new payoff entries introduced

by mutations are independently drawn from a probability distribution, which corresponds to

the concept of randomly distributed fitness. By tracking the dynamics of the payoff matrix

and the compositions of the population, we are able to investigate several aspects of an

evolving system, such as the average fitness changes of the population, the impact of the

fitness distribution on these changes and the expected level of diversity.

Results
Dynamics for populations with two types

Let us start with a population of a resident wild type (R) and a mutant type (M). Suppose

the fitness of a wild type in a homogenous population is d. For constant selection, the fitness

distribution is simply a one dimensional distribution around d. For frequency dependent

selection, the fitness of a mutant must be defined based on more than a single number. We

can write it as an evolutionary game based on a 2 × 2 payoff matrix with three new payoff

entries, a, b and c




M R

M a b

R c d


.

When a mutant and a wild type interact, the mutant obtains fitness a, and the wild type

obtains c. When a mutant meets another mutant, it obtains b. Following the concept of

randomly distributed fitness of mutations, the entries a, b and c are defined as random

variables. We assume that a, b and c independently follow the same probability distribution
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given by a probability density function f(x). While this is the simplest possibility, it may

be more realistic to assume correlations between the payoff entries characterizing each type,

i.e. between a and b as well as between c and d (see below, section Games with equal gains

from switching). However, in the extreme case of a = b and c = d, this would recover

the case of constant selection, so we expect that such correlations would lead to results

intermediate between constant and frequency dependent selection. We discuss how this

distribution affects the changes in the average fitness during the evolutionary process. It

turns out, the probability θ =
∫∞
d

dx f(x) that a payoff entry is larger than the fitness of the

wild type (the parent type in the case of n types) d, is of particular interest and determines

the change in the average fitness when initially only a single type is present. Remarkably,

all other aspects of the fitness distribution turn out to be irrelevant for this observable.

The dynamics of evolving populations of interacting individuals shows stochastic fluc-

tuations when selection is weak and when populations are small. In addition, stochasticity

can arise based on environmental changes or stochastic effects due to mutations. As we are

interested in the effects of frequency dependent selection, we only consider stochasticity aris-

ing from random frequency dependent mutations and use the replicator equations to model

evolutionary dynamics. The frequency of a certain type changes deterministically according

to the difference of its own fitness to the average fitness in the population.

Suppose x is the frequency of the mutant type and 1− x the frequency of the wild type,

respectively. We can define the fitness of the mutant type, W1, and the fitness of the wild

type, W2, as

W1 = ax+ b(1− x),

W2 = cx+ d(1− x), (1)

where a, b, c, and d are the entries in the payoff matrix. The average fitness of the population

W is given by

W = xW1 + (1− x)W2. (2)

If the fitness of the mutant type is larger than the average fitness, its frequency will increase.

If the fitness of the mutant type is below the average fitness, its frequency will decrease. We

follow the usual assumption that the change of the frequency of the mutant type is given by
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the replicator equation [23–25]

ẋ = x
(
W1 −W

)
= x (1− x) (W1 −W2) . (3)

The change of the wild type frequency follows immediately as −ẋ. This dynamics is fully

determined by the entries of the payoff matrix. Different constellations of the payoff entries

cause different dynamical patterns. In the following, we discuss all generic cases of two-

type interactions and how the average fitness of the population changes under the different

situations.

First, we analyze the case where the mutant has higher fitness than the wild type for

all frequencies x. This is the case for a > c and b > d. The wild type goes extinct and

the mutant type will be fixed in the population. Thus, the average fitness W in the new

equilibrium x = 1 is given by the payoff entry of the mutant type interacting with itself, a.

We are interested in the probability, that the fitness of the population is increased after the

fixation of the mutant. This becomes a conditional probability of a > d given that a > c

and b > d. Applying Bayes Rule, this can be expressed as

p(W (1) > d | a > c, b > d) = p(a > d | a > c, b > d)

=
p(a > d, a > c, b > d)

p(a > c, b > d)

=
p(a > d, a > c)

p(a > c)
. (4)

We assume that the random variables a, b and c are independently derived from the same

probability distribution. Hence, b does not depend on a or on c. Thus, the probability of

b > d is independent from the probability that a > d, which is used in Eq. (4). Since a and

c are sampled from the same distribution, we have p(a > c) = 1/2 in the denominator. For

the numerator, we have

p(a > d, a > c) =

∫ ∞

d

da

∫ a

−∞
dc f(c)f(a)

=

∫ ∞

d

daF (a)F ′(a)

=
1

2
− F (d)2

2
, (5)
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where F (x) is the cumulative distribution function of a random variable with probability

density function f(x). As the probability that one of the new payoff entries a, b, c is greater

than the wild type fitness d is θ =
∫∞
d

dx f(x) = 1− F (d). Using this expression in Eq. (5),

we arrive at

p(W (1) > d | a > c, b > d) = 2θ − θ2. (6)

Strikingly, this only depends on θ, and is independent of the concrete choice of the probability

density function f (x). In population genetics, beneficial mutation rates are measured based

on the concept of constant fitness, where the fitness of the mutant and the fitness of the

wild type are both constant numbers. However, if we consider frequency dependent fitness,

a new parameter is needed to represent the proportion of beneficial mutations. One option

arising from our approach is to compare the payoff value of the mutant with the payoff

value of the wild type when they are confronted by the same opponent. Since θ is the

probability that the new payoff value of the mutant is larger than the wild type’s payoff d,

it corresponds to the probability that a mutation is beneficial under the constant selection

scenario. If θ can be measured, the probability that the average fitness is increased by a

random mutant is independent of the payoff distribution according to Eq. (5). But different

choices of probability density functions f(x) will result in different values of θ, thus leading

to different probabilities to increase the average fitness.

Next, we assume that a mutant type occurs with lower fitness than the wild type. With

frequency dependence, there are two situations for such a mutant type. The mutant type

can either have lower fitness than the wild type for all frequencies, or it can have a lower

fitness only for small frequencies. In both cases, the mutant will go extinct and the average

fitness will remain unchanged, since a mutant type is supposed to arise with a small amount.

Finally, a mutant type could be initially advantageous compared to wild types, but turn

to be disadvantageous when it has reached a certain frequency. This occurs for a < c and

b > d. In this case neither the wild type nor the mutant type can take over the population,

but there exists a mixed equilibrium consisting of mutant types at a frequency x∗ = b−d
b−d−a+c

and wild types at a frequency 1− x∗. In this coexistence equilibrium, the fitness of the wild

type subpopulation is equal to the fitness of the mutant type subpopulation. The average
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fitness of the system in the equilibrium is given by

W (x∗) = ax∗ + b(1− x∗) =
bc− ad

b− d− a+ c
. (7)

Again, we ask for the probability of having a coexistence game that increases the average

fitness. This is the conditional probability that W (x∗) > d given that a < c and b > d,

which can be written as

p(W (x∗) > d | a < c, b > d)

= p ((b− d) (c− d) > 0 | a < c, b− d > 0)

= p (c > d | a < c)

=
p (c > a, c > d)

p (c > a)
(8)

This is identical to Eq. (4) if one exchanges a↔ c. Since a and c have the same distribution,

we recover the result from Eq. (6),

p(W (x∗) > d | a < c, b > d) = 2 θ − θ2. (9)

In other words, the probability to increase fitness is the same in a coexistence game as in a

game where the mutant dominates the wild type.

Let us now combine the results and consider the changes of the average fitness over all

types of interactions. The probability to increase the fitness due to a new mutation is given

by

p(W > d) = p(W > d | a > c, b > d)︸ ︷︷ ︸
2θ−θ2

p(a > c, b > d)︸ ︷︷ ︸
θ
2

+ p(W > d | a < c, b > d)︸ ︷︷ ︸
2θ−θ2

p(a < c, b > d)︸ ︷︷ ︸
θ
2

+ p(W > d | b < d)︸ ︷︷ ︸
0

p(b < d)︸ ︷︷ ︸
1−θ

= 2 θ2 − θ3 (10)

In a similar manner, we can calculate the probability to decrease the average fitness due

to a new mutation. When the mutant dominates the wild type, the average fitness may still
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decrease. This is exactly what happens in the Prisoner’s Dilemma [26, 27]. Equivalently to

the calculation above, we have

p(W (1) < d | a > c, b > d) =
p(a < d, a > c, b > d)

p(a > c, b > d)

=
p(a < d, a > c)

p(a > c)

= (1− θ)2. (11)

For the probability to decrease the average fitness in a coexistence game, we find

p(W (x∗) < d | a < c, b > d) = (1− θ)2. (12)

Thus, using a calculation similar to Eq. (10), the overall probability to decrease the average

fitness is given by

p(W < d) = θ − 2θ2 + θ3. (13)

Also the probability to maintain a constant average fitness can be calculated in this way.

For continuous fitness distributions, there are no strictly neutral mutations. As the fitness of

the wild type is a specific value of the continuous random variable, the probability of having

a strict neutral mutation, the fitness of which is equal to the fitness of the wild type, is 0.

Thus, the average fitness is only maintained when the mutant goes extinct, which occurs

with probability

p(W (0) = d) = p(b < d) = 1− θ (14)

We discussed the changes of the average fitness in a two-type population under frequency

dependent selection above. Under constant selection, the average fitness will increase with

probability θ and decrease with probability 0. As for frequency dependent selection, it will

remain constant with probability 1 − θ. Fig. 1 illustrates these results and compares fre-

quency dependent selection to constant selection for all values of θ. For frequency dependent

selection, there is an intersection point θ∗, where the probability to increase the average fit-

ness and to decrease the average fitness are equal. Using Eq. (10) and Eq. (13), this becomes

2 θ2∗−θ3∗ = θ∗−2θ2∗+θ3∗, and we have θ∗ =
√
2−1√
2

. Small values of θ are typically considered to
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be of biological relevance. In this case, frequency dependent selection tends to decrease the

average fitness: for θ <
√
2−1√
2

, it is more likely that the average fitness of the population is

decreased by a single random frequency dependent mutation; for θ >
√
2−1√
2

, it is more likely

that it is increased.

Frequency-dependent selection can arise from different mechanisms. In a haploid popula-

tion, frequency-dependent selection are caused by the interactions of different types. In this

case, the fitness of a particular type depends on the frequency of its own and other types in

the population. However, in a diploid population, frequency dependent selection on alleles

can arise also from the interactions of two alleles at one locus [8, 28, 29]. Thus, our model

can be easily extended to a diploid population in such a case, which leads to different results

for the average change in fitness, see Appendix.

Games with n types

So far, we have discussed the change of the average fitness of a population consisting of at

most two types. However, when two types coexist in a stable polymorphism, an additional

type can enter the population and persist. To describe the interaction of individuals in a

population with more than two types, we extend the 2 × 2 payoff matrix to a n × n payoff

matrix A, where n is the number of types in the population. The entry in the i-th row and

the j-th column, Aij represents the fitness of an i-type individual interacting with a j-type

individual. The fitness of type i on average can be written as Wi(x) =
∑
Aijxj, where

j = 1, 2, 3..., n, and xj is the frequency of type j, such that
∑n

j=1 xj = 1.

In our model, n is not a fixed number. When a type goes extinct, the corresponding

row and column are deleted in the payoff matrix. Thus, the value of n decreases by one.

When a mutation occurs, one row and one column are added to describe the interactions

of the mutant type and resident types, which increases the size of the payoff matrix by

one. The new entries introduced by a mutation are generated based on the assumption that

the interactions between the mutant type m and any resident type i are similar to those

between the parent type p and the resident type i. In our case, we assume amj is a random

variable which is drawn from a probability density function f(x) and is larger than apj with

probability θ.

Since the complexity of the population dynamics increases considerably with the number
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of types, it would be difficult to obtain the changes of the average fitness in a polymor-

phic population of n > 2 types analytically. Therefore, we use the replicator equations to

simulate the dynamics of the system with several types. We start the simulation from a

homogenous population. However, since we are interested in the average fitness changes and

other stationary quantities averaged over a long time period, the initial number of types

has no effects on the results. The time intervals are sufficiently small that at most one

mutant type can appear during one time interval. The probability that a resident type i

produces a mutant type is µxiWi (x) /W (x), where i = 1, 2, 3, ..., n. Thus the probability

that a mutant arises from a resident type i increases with the fitness of this type. However,

for the whole population, the probability that a mutant type appears is just the mutation

rate,
∑n

i=1 µxiWi (x) /W (x) = µ.

We can chose arbitrary mutation rates in our simulations. However, when the mutation

rate is very high, a population might experience a new mutation when it is still in a non-

equilibrium state triggered by the previous mutation. In this case, the fate of a mutant is

not only driven by selection, but also by the interplay of mutations. Since we are interested

in the fitness consequences of frequency dependent selection, we choose the mutation rate

small enough such that a population disturbed by a mutation reaches the new equilibrium

before the next mutation arises.

We first look at the transition probability between different levels of diversity under

mutation and selection. Once a mutation occurs it can coexist with all resident types,

replace one resident type, outcompete some resident types, or go extinct. The transition

matrix T describes this dynamics. Suppose the number of types in the current population

is n. The element Tni denotes the transition probability from n to i coexisting types, where

i = 1, 2, 3, ..., n+ 1, see Fig. 2. We obtain the values in the transition matrix from numerical

simulations. Every transition event triggered by a mutation is recorded and the probability

to go from a certain number of types to another number of types is averaged over many

realizations. These transition probabilities show some interesting properties. The probability

to keep the current diversity (the element in the main diagonal in a row) is always higher

than the probabilities to decrease or increase the diversity (all the other elements in the

same row), see Fig. 2 and Ref. [30]. Interestingly, for a population consisting of less than
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4 types, the probability to increase the diversity Tii+1 is higher than the probability to

decrease the diversity
∑i−1

j=1 Tij in the parameter regime of Fig. 2. Once the population

reaches the threshold of 4 types, this pattern reverses. Thus in the long run the population

tends towards an intermediate level of diversity. Furthermore, we observe the ranking,

T12 > T23 > T34 > T45. This suggests that the probability to reach higher levels of diversity

decreases with increasing diversity even for larger number of initial types. The transition

probability from one type to a two-type coexistence can be calculated analytically based on

the comparison of payoff entries, see above. Thus, T12 = p(a < c)p(b > d) = θ/2, which is

confirmed by our simulation results of T12 under different θ for the n-type model.

For a population with n types, the changes of the average fitness are more complicated, as

the interactions between different types are much more diverse than in a two-type population.

Even a classification of different types of interactions in such a population is difficult and of

limited value to understand the change in average fitness. Instead, we evaluate the changes

of the average fitness between these states numerically.

A mutation can increase, maintain, or decrease the diversity level of the population.

We present the changes of the average fitness in these three scenarios, see Fig. 3, for those

transitions which happen most frequently (see Fig. 2). For small θ, mutants are more likely to

obtain lower fitness than their parents type does, in the interactions with the same resident

type. This can cause the decrease of the average fitness in all three situations. If θ is

sufficiently small, the average fitness will decrease all the time. When θ becomes larger, the

average fitness can increase. The larger θ is, the larger the increase is. Thus, our results

under the replicator dynamics provide not only the change of the average fitness under a

constant θ, but also the direction and magnitude of the average fitness changes. In real

systems, one may expect that θ decreases during the adaption of the population. However,

e.g. environmental changes could also increase it.

Games with equal gains from switching

So far, we have assumed that the payoff of the mutant interacting with another resident

type is derived from the payoff of its parent interacting with the same resident type. In

a population with only two types, this leads to the case where the three random payoff

entries, a, b and c, are all related to d. As a null model, we have assumed that a, b and c
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are uncorrelated. While this is the simplest possibility, it may not be the case for concrete

biological systems. Therefore, we analyze an different case here which focuses on particular

cases of frequency dependence, but includes such correlations.

We focus on an evolutionary game with the payoff matrix




M R

M d+ ε+ δ d+ δ

R d+ ε d


,

where ε and δ are independent random variables with probability distributions fε(x) and

fδ(x) respectively. ε represents the effect of a mutation on the mutant type, and δ represents

the effect of a mutation on those who interact with the mutant type. This game has the

property of “equal gains from switching”, where the sum of the payoff values in the main

diagonal is equal to the sum of the payoff values in the other diagonal [31]. It can arise

from the assumption that the two types are close to each other in a continuous phenotype

space [32]. The case of δ = 0 corresponds to constant selection. Note that there are no

coexistence games when we assume such payoff matrices. If ε > 0, the mutant will take over

the population (d + ε + δ > d + δ and d + ε > d), and the new average fitness becomes

W = d+ ε+ δ. Compared with the former average fitness d, the average fitness increases if

ε+ δ > 0, and decreases if ε+ δ < 0. If ε < 0, the mutant will be outcompeted by the wild

type (d + ε + δ < d + δ and d + ε < d), and the average fitness of the population remains

the same.

The probability to increase the average fitness becomes p(W > d) = (1−θε) ·0+θε ·p(ε+

δ > 0 | ε > 0), where θε is the probability that ε is larger than 0, and p(ε+ δ > 0 | ε > 0) is

the conditional probability that the sum of ε and δ is larger than 0 given ε is larger than 0.

This conditional probability can be written as

p(ε+ δ > 0 | ε > 0) =
p(δ > −ε, ε > 0)

p(ε > 0)

=

∫∞
0

dx
∫∞
−x dy fδ(y) fε(x)

θε
. (15)

The values of θε and p(ε+ δ > 0 | ε > 0), which determine the probability that the average

fitness increases, depend on the concrete choice of fε(x) and fδ(x). The integrals can only

be carried out in special cases.

12



It is worth to mention there is a difference between games with equal gains from switch-

ing and games with independent random payoff entires on the population dynamics. In an

infinite population, where genetic drift has no effect on the population dynamics, the result-

ing dynamics under positive frequency dependent selection and under constant selection are

similar, as there are no stable coexistences. Successful mutants will invade and take over the

population sequentially. The diversity will only increase if the mutation rate is high enough.

On the contrary, when different kinds of interactions, especially negative frequency depen-

dent selection, are allowed (for example, the case with independent random payoff entires),

diversity can increase even for lower mutation rates (see above).

Discussion

Mutants with high individual fitness do not necessarily increase the average fitness of the

population under frequency dependent selection. Similarly, the mutants which maximize the

average fitness of a population are not necessarily those leading to a stable equilibrium in this

scenario. An example for a two-type population is that a mutant interacts with the wild type

in a game like Prisoners’ Dilemma [7,26]. This is a special case of a dominance game, where

the defector (the mutant) outcompetes the cooperator (the wild type) and causes a reduction

in the average fitness. For example, in the RNA phage φ6, the competitive interactions

among the high multiplicities-of-infection phage (the defector) and the low multiplicities-of-

infection phage (the cooperator) in the same host cell are studied, which conforms to the

Prisoners’ Dilemma [33]. In this experiment, when the defector invades with a low frequency,

it has higher fitness than the residents (c > a), but the average fitness decreases when the

defector becomes fixed (d > a).

Since natural selection works on an individual level rather than a population level, it

does not always lead to an increase of the average fitness. Our random mutant games

model accommodates mutations under frequency-dependent selection, which can result in

an increase or decrease in the average fitness, not only for the simplest case of two types but

also for an arbitrary number of mutant types. An interesting aspect of our model is that even

though it allows for an infinite number of mutant types, it does not result in a continuous

growth of diversity in a population, but leads to an intermediate level of diversity [30]. We
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assume that the payoffs are constant in time and identical for individuals of the same type.

If individuals vary in their payoffs despite being of the same type, the results are altered by

this additional source of randomness [34, 35]. In a population with two types, we calculate

a particular value θ∗, where the probability that the average fitness increases is equal to the

probability it decreases. The exact value of θ∗ depends on the concrete implementation of

the payoff matrix. An interesting result of our model is that the probability to decrease or

increase fitness depends only on a particularly simple property of the fitness distribution.

While this may not be of direct relevance to a concrete biological system, it illustrates

conceptually that a decreasing fitness may not be counterintuitive even under the simplest

possible assumptions of frequency dependence.

We have discussed the changes in the average fitness for an infinite asexual population

under mutation and selection. Additional effects occur when the population size becomes

finite and genetic drift is not negligible [30]. However, our main observation is that the

average fitness at equilibrium can only increase or remain constant by random mutations

under constant selection, but also decrease under frequency-dependent selection. This can

shed new light on problems in evolutionary biology and leads to the exciting question on the

dynamics of the average population fitness in real biological populations. In an asexual finite

population, random genetic drift leads to the accumulation of deleterious mutations and an

continuous decrease in the average fitness, which is well known as Muller’s ratchet [36].

Without any forms of recombination and epistasis, beneficial mutations are the only source

to compensate the average fitness decline. Since the probability of increasing the average

fitness by random mutations is lower under frequency-dependent selection (see Fig. 1),

we must conclude that asexual populations face an even bigger challenge to maintain their

average fitnesses under frequency dependent selection than under constant selection in a

finite population. This is particularly striking when θ is small, a case that is typically

thought of as the biologically most relevant case.

In population genetics, the change of the average fitness has also been studied in diploid

systems [37, 38]. However, our approach starting from a different point of view, not only

allows the interplay of mutation and selection, but also a wider interpretation of the fitness of

heterzygotes. Suppose A and B are two alleles at the same locus. In population genetics, the
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fitness of genotype AB and BA is usually considered to be identical, which is a special case

in our model called symmetric diploids. However, this does not hold in asymmetric diploids

where the maternal allele and paternal allele are not equally expressed. Our model and our

analysis allow both cases. In the framework of a well-mixed symmetric diploid population

(corresponding to random mating), our result that the average fitness never decreases is

consistent with the former statement in population genetics (see Appendix).

Frequency dependent interactions can lead to a decrease of the average fitness of a pop-

ulation during the process of evolution despite natural selection. This is because natural

selection works on individual fitness instead of the average fitness of a population.

Appendix
Diploid populations with two alleles

The impact of Mendelian inheritance on the population dynamics has been discussed in

the framework of evolutionary game theory before [25, 39–41]. In a diploid population, the

combinations of two alleles at a given locus on a pair of homologous chromosomes, can be

interpreted by a special two player game. Suppose there are allele A and allele B. The

fitness of different genotypes, WAA, WAB and WBB can be described by a 2× 2 matrix




A B

A WAA WAB

B WAB WBB


.

This is mathematically identical to the game with two types discussed above. Here, WAA

corresponds to a, WAB to c = b, and WBB to d. For a population initially only with

homozygotes BB, the probability of increasing the average fitness W caused by a random
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new allele A, can be calculated by setting c = b in Eq. (10). This becomes

p(W > WBB) = p(a > d | a > b, b > d)︸ ︷︷ ︸
1

p(a > b, b > d)︸ ︷︷ ︸
θ− θ2

2

+ p(
b2 − ad

2b− d− a > d | a < b, b > d)
︸ ︷︷ ︸

1

p(a < b, b > d)︸ ︷︷ ︸
θ− θ2

2

+ p(d > d | b < d)︸ ︷︷ ︸
0

p(b < d)︸ ︷︷ ︸
1−θ

= 2 θ − θ2 (16)

The probability that the average fitness decreases in such a population is 0, because the

diploid AB and the diploid BA is indistinguishable, c = b. In asymmetric diploids, where

the maternal alleles and paternal alleles are not equally expressed, the average fitness changes

are exactly the same as shown in a general case of haploid populations.
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0.001 0.024 0.087 0.157 0.653 0.078

0.005 0.115 0.745 0.135 0.0000.000

0.020 0.798 0.182 0.0000.000 0.000

0.750 0.250 0.000 0.000 0.0000.000

Figure 2: Transition probabilities between different levels of diversity. The entry in row i
and column j is the transition probability from a stable coexistence of i types to a stable
coexistence of j types, numbers are also color coded. The mutation rate is so low that the
transitions between different states are caused by the appearance of a single mutation. The
higher the number of coexisting types is, the more difficult the state is to be reached. Here
we show the transition for up to six co-existing types (θ = 0.5, averages obtained over 500
independent realizations and 20000 mutations per realization).
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Figure 3: Changes in the average fitness when a population evolves between different levels
of diversity under various probabilities that a mutant payoff values is larger than the parent’s
θ. The symbols are simulation results based on replicator dynamics. The number of different
types can either stay the same, increase by one or decrease by any number, because at most
a single mutation enters the population. Note that the average fitness of the population in
the new equilibrium decreases for small θ in all three cases after a transition. Thus even
if a mutant takes over a population, the average fitness can decrease. With increasing θ,
the average fitness will increase over time, but the fitness gain reduces with increasing di-
versity. The difference among results under Gaussian distribution and uniform distribution
with the same variance, shows that the absolute changes of the average fitness also depends
the concrete shapes of the probability distribution (every symbol is averaged over 500 inde-
pendent realizations and 20000 mutations per realization. The probability distribution f(x)
is Gaussian (left) or uniform (right) with variance 1).
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Chapter 5

Summary and outlook

5.1 Summary

Evolutionary game theoretic models deal with various types of individual in-

teractions, where complicated dynamics at different levels can arise [41]. In

this thesis, we present an evolutionary game theoretic model that describes

random frequency dependent mutations. The evolutionary dynamics of this

system at the population level is explored based on this model.

In our frequency dependent mutation model, the interactions of the mutant

types and the resident types are described by a payoff matrix with changing

size. Using a payoff matrix to obtain the fitness values of different types

implies linear frequency dependent selection [9]. We focus on haploid popula-

tions, but our model corresponds to diploid populations if the payoff matrix

is symmetric.

Most evolutionary game theoretic models assume that mutations happen

between fixed and known types. This means that the number of arising muta-

tions is limited, and the payoff entries of those mutations are predefined. Our

model differs from these models in two aspects. First, the new payoff values

arising with the presence of mutants are represented by random variables, i.

e. values unknown before the mutations appear. We introduce the concept

of the payoff distribution, which describes the possible payoff values that a

mutant or a resident type can have during their interactions. In population

genetics, a corresponding concept is fitness distribution, which is based on
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the assumption of constant selection. Second, we assume that every muta-

tion brings a new type into the population. Thus, the number of possible

mutations appearing in a population is infinite in a continuous evolutionary

process. The same assumption is made in infinite alleles models in theoretical

population genetics [54, 52, 12]; typically these models are based on neutral

evolution or constant selection.

Our frequency dependent mutation model has striking results in both finite

and infinite populations. In finite populations, we have two types of stochas-

ticity, the randomness in the payoff entries and the random genetic drift from

the interplay of finite population size and selection intensity. To separate the

effects of different types of stochasiticity, we extend our analysis to infinite

populations with non-determinstic property. When a mutant type shows up,

the new payoff entries are random variables. Until the next mutation hap-

pens, the interactions between the mutant type with all the resident types are

deterministic.

Mathematical approaches have been used to study evolutionary questions,

starting from the work of Fisher and Wright [17, 130, 131]. Under simpli-

fied assumptions, for example two-type models or neutral evolution, some

properties of a biological system can be obtained analytically. When further

complications, ranging from many types to various selection intensities, are

considered, computational approaches are often required. In this thesis, both

mathematical and computational approaches are employed.

In a finite haploid population with two types, the fixation probability of a

random mutant is an important quantity [9]. In the case of weak and strong

selection, analytical approximations have been made. The corresponding re-

sults reveal an interesting relation of the first moments of the payoff distri-

bution with the fixation probability. For all selection intensities, simulation

results are obtained, and comparison is made between these simulations and

analytical results.
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When more than two types exist in the population, the population dy-

namics rapidly becomes much more complicated. Important questions we

have addressed in the thesis are: does the diversity level of the population

always increase when a high number of types becomes possible? What is the

mechanism of the origin and maintenance of stable coexistence of different

types in the population? We look for the answers in a finite population with

unlimited number of types by simulations. Under the interplay of relatively

strong selection, random genetic drift, and low rate of mutation, intermediate

levels of diversity are maintained under frequency dependent selection. On

the contrary, substantially lower diversity is observed under the same condi-

tions when the fitness is assumed to be constant. The stable polymorphism

driven by frequency dependent selection, is different from the diversity caused

by high mutation rates. When the mutation rate is high, the diversity is the

collection of random types staying shortly in the population, but the stable

coexistence of different types for a long time period is not observed.

The same patterns are obtained for infinite populations, which is the sit-

uation of extremely strong selection. In addition to the diversity of the pop-

ulation, we are also interested in how the average population fitness changes

due to random mutations. Again, analytical solutions on the probabilities of

increasing or decreasing the average fitness are given for haploid populations

with two types. Under constant selection, only mutant types with a fitness ad-

vantage can be fixed in the population. Thus, the average fitness may fluctuate

in short time, but will always increase in the end. Under frequency dependent

selection, the average fitness can also decrease, because interactions resem-

bling the Prisoner’s dilemma exist [132]. The relative changes of the average

fitness are recorded in a population with unlimited types by computational

approaches.
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5.2 Outlook

There still remain many questions that can be explored based on this model.

In Chapter 3, we have a short discussion about how this model could be

extended to diploid populations. For the sake of simplicity, the fitness of a

genotype is assumed to be constant, and only the fitness of an allele type is

frequency dependent [85, 133]. This is also an assumption for most diploid

models in population genetics [12]. It would be interesting to introduce an-

other level of frequency dependent selection on genotypes [126].

In Chapter 3 and Chapter 4, we conclude that the average fitness can

increase, decrease or remain the same during the evolutionary process. In a

constant environment, this might lead to the flourishing or diminishing of a

population. If the average fitness increases, the total number of offsprings

in the future may increase. If the average fitness decreases, the population

size may decrease accordingly. The fluctuating population size will lead to

different strength of random genetic drift. The types which might be lost very

fast in a large population, may stay longer in a small population. This effect

from changing strength of random genetic drift might play an important role

in evolution. The evolutionary dynamics in such a population with changing

size due to the changes of the average fitness, would be one of the most exciting

subjects to analyze in the future.

In our model, some assumptions are based on the genotypic level, for

example the infinite alleles model. Payoff matrices are used to describe the

interactions of individuals with different genotypes. However, it may also

be possible to extend this model to study the phenotype diversity or species

coexistence [10, 134], if reasonable assumptions can be made to capture the

corresponding context.
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Population genetics is concerned with genotype and gene frequencies [42, 12,

13], and evolutionary game theory is typically considered to deal with pheno-

types [9, 135]. In this thesis, we propose a frequency dependent mutant model,

which can be used to understand the changes of the genotype frequencies and

the resulting dynamics under frequency dependent selection, genetic drift, and

random mutations. It covers the case of weak selection, intermediate regimes,

and strong selection. Thus, it may help to further develop the connections

between theoretical population genetics and evolutionary game theory.
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