
APPROXIMATION ALGORITHMS FOR
GEOMETRIC PACKING PROBLEMS

Dissertation

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

(Dr.-Ing.)
der Technischen Fakultät

der Christian-Albrechts-Universität zu Kiel

Dipl.-Inf. Lars Dennis Prädel

Kiel

2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MACAU: Open Access Repository of Kiel University

https://core.ac.uk/display/250311284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Gutachter: Prof. Dr. Klaus Jansen

2. Gutachter: Prof. Dr. Susanne Albers

3. Gutachter: Dr. Nikhil Bansal

Datum der mündlichen Prüfung: 21. Dezember 2012

Zum Druck genehmigt: 21. Dezember 2012

ACKNOWLEDGEMENTS

I would like to thank my advisor Klaus Jansen for the support, encouragement and motiva-
tion during my studies. I am also thankful to my colleagues and friends Ute Iaquinto and
Christina Robenek for many helpful discussions in various issues. Thanks to my coauthors
Florian Diedrich, Rolf Harren, Ola Svensson, Ulrich Schwarz and Rob van Stee. I would
also like to thank Manja Kürschner for proof-reading and even more for several talks during
our morning running. I am also grateful to my parents Maren and Dietmar Prädel for sup-
porting me during my studies and to my closest friends Sönke Thomsen, Jochen Webert and
Laura Paduch for always being there. Finally, I would like to thank Laura Garbers for her
patient and everlasting support.

iii

Acknowledgements

iv

ZUSAMMENFASSUNG

In dieser Arbeit stellen wir approximative Algorithmen für zwei-dimensionale, geometrische
Packungsprobleme vor. Hierbei haben wir eine Menge von Rechtecken gegeben, die in
einem oder mehreren bestimmten Zielbereichen angeordnet werden sollen. Solche Pack-
ungsprobleme finden in mehreren industriellen Bereichen Anwendung, so zum Beispiel bei
der Anordnung von Schaltelementen auf einem Computerchip oder bei Zuschnittproblemen.

Wir betrachten drei Probleme im Detail. Das sogenannte zwei-dimensionale Strip Packing
Problem hat als Eingabe eine Menge von Rechtecken und einen Streifen der Breite 1 und un-
endlicher Höhe. Das Ziel ist es eine Anordnung der Rechtecke in diesem Streifen zu finden,
so dass die Packungshöhe minimiert wird. Dabei müssen die Rechtecke achsenparallel an-
geordnet werden und dürfen sich nicht überschneiden. Auch eine Rotation der Rechtecke ist
nicht erlaubt. Wir präsentieren für dieses Problem einen approximativen Algorithmus mit
einer absoluten Güte von 5/3+ε, für ein beliebiges ε> 0.

Das zweite Problem, das wir untersuchen, ist das zwei-dimensionale Bin Packing Prob-
lem. Bei diesem Problem haben wir ebenfalls eine Menge von Rechtecken gegeben. Das
Ziel ist es alle Rechtecke in die kleinstmögliche Anzahl von Quadraten, auch Bins genannt,
mit einheitlicher Seitenlänge zu packen. Auch hier ist gefordert, dass die Rechtecke sich
nicht überschneiden und achsenparallel angeordnet werden. Wir betrachten hier zwei Vari-
anten des Problems. In der ersten Variante sind Rotationen um 90◦ erlaubt, d.h. wir können
die Breite mit der Höhe eines Rechteckes vertauschen. Bei der anderen Variante sind Ro-
tationen der Rechtecke nicht erlaubt. Für beide Varianten dieses Problems geben wir einen
approximativen Algorithmus an mit einer asymptotische Güte von 3/2+ε, wobei ε> 0 eine
beliebige Zahl ist.

Bei dem dritten Problem ist eine Menge von Rechtecken mit einheitlicher Höhe und be-
liebiger Breite und ein Streifen einer gegebenen ganzzahligen Höhe und unendlicher Breite
gegeben. Das Ziel ist es, eine achsenparallele, sich nicht überschneidende Packung der
Rechtecke zu finden, so dass die maximale Packungsbreite minimiert wird. Eine Rotation
der Rechtecke ist bei diesem Problem nicht erlaubt. Dieses Problem ist auch als Scheduling
Problem bekannt, wobei der Streifen von Maschinen repräsentiert wird und die Rechtecke
von Aufträgen. Die Problemdefinition ist wie folgt: Gegeben ist eine Menge von Aufträgen,

v

Zusammenfassung

die eine bestimmte Ausführungszeit haben und eine Menge von identischen Maschinen. Das
Ziel ist es, die Aufträge auf die Maschinen zu verteilen, so dass die gesamte Ausführungszeit
minimiert wird. Wir betrachten eine Variante dieses Problems, bei dem die ersten Aufträge
bereits auf bestimmten Maschinen zu bestimmten Zeiten vorplatziert sind. Wir geben für
dieses Problem einen approximativen Algorithmus mit einer absoluten Güte von 3/2 an.

vi

ABSTRACT

In this thesis we present approximation algorithms for two-dimensional, geometric packing
problems. We have given a set of rectangles that have to be placed in one or several predeter-
mined target regions. Such packing problems can be found in several branches of industry,
for example when placing logic elements on a chip, or when cutting stock. We consider
three problems in detail. First, the so-called two-dimensional strip packing problem consists
of a set of rectangles and a strip of width 1 and infinite height. The objective is to find an
axis-parallel and non-overlapping arrangement of the rectangles in this strip in order to min-
imize the total packing height. Furthermore, it is not allowed to rotate the rectangles. For
any ε > 0, we present an approximation algorithm with an absolute approximation ratio of
5/3+ε for this problem.

The second problem that we study is the two-dimensional bin packing problem. For
this problem a set of rectangles is given as input again. The objective is to find an axis-
parallel and non-overlapping packing of all rectangles into the minimum number of unit-
sized squares, which are also called bins. We consider two versions of this problem. In the
first version, we are allowed to rotate the rectangles by 90◦, i.e. to exchange the widths and
the heights of the rectangles. In the second version it is not allowed to rotate the rectan-
gles at all. For both versions, our result is an approximation algorithm with an asymptotic
approximation ratio of 3/2+ε for an arbitrary value ε> 0.

For the third problem, we have given a set of rectangles of heights 1 and arbitrary widths
and a strip of a given integral height and infinite width. The objective is to find an axis-
parallel and non-overlapping packing of the rectangles into the strip so that the maximum
packing width is minimized. In this setting, it is not allowed to rotate the rectangles. This
problem is also known as scheduling problem, with machines representing the strip and jobs
representing the rectangles. The definition is as follows: Given a set of jobs with certain
processing times and a set of identical machines. The objective is to schedule the jobs on
the machines in order to minimize the makespan, i.e. the total length of the schedule. We
consider a version of this problem in which the first jobs are already assigned to machines
and starting times. We give an approximation algorithm with an absolute approximation
ratio of 3/2 for this problem.

vii

Abstract

viii

CONTENTS

ACKNOWLEDGEMENTS III

ZUSAMMENFASSUNG V

ABSTRACT VII

1 INTRODUCTION 1
1.1 Approximation Algorithms . 2

1.2 Outline of this Thesis . 3

1.2.1 Two-Dimensional Strip Packing . 3

1.2.2 Two-Dimensional Bin Packing . 3

1.2.3 Scheduling with Fixed Jobs . 3

2 STRIP PACKING 5
2.1 Introduction . 5

2.2 Overview of the Algorithm . 7

2.2.1 Existence of Structured Packings. 8

2.2.2 Modifying Packings. 10

2.2.3 Algorithm . 10

2.3 Direct Methods . 14

2.3.1 Total Area of Very Wide Rectangles is Large 14

2.3.2 Large Total Width of the 2/3-high Rectangles 16

2.4 Modifying a Packing . 19

2.4.1 Rectangle of Height Greater Than 1/3 19

2.4.2 No 1/3-high Rectangles Close to the Side of the Bin 23

2.4.3 One Special Big Rectangle in P . 26

2.4.4 Two Rectangles of Height Between 1/3 and 2/3 28

2.4.5 Gap Between Innermost 2/3-high Edges 29

2.5 Algorithm Covers All Cases . 38

ix

Contents

2.6 Conclusion . 41

3 TWO-DIMENSIONAL BIN PACKING 43
3.1 Introduction . 43
3.2 Modifying a Packing . 46

3.2.1 Classify the Bins . 50
3.2.2 Case Analysis . 60
3.2.3 Rounding the Other Side . 82

3.3 Algorithm . 93
3.3.1 Transform an Instance I . 93
3.3.2 Packing the Rectangles . 98
3.3.3 Résumé of the Algorithm . 108

3.4 Conclusion . 110

4 SCHEDULING WITH FIXED JOBS 111
4.1 Introduction . 111
4.2 Scheduling with Fixed Jobs . 112

4.2.1 Quickly Discarding Too-Small T . 115
4.2.2 Packing Almost All Jobs . 116
4.2.3 Packing Remaining Jobs . 120

4.3 Scheduling with Non-Availability . 121
4.4 Conclusion . 122

5 CONCLUDING REMARKS 123

BIBLIOGRAPHY 127

x

1 INTRODUCTION

Two-dimensional packing problems arise in several branches of industry. For example in the
VLSI chip design, many logic elements have to be placed on one chip. We can treat each
logic element as one rectangle and the chip as a square and the problem is to place as many
rectangles as possible into this square, or to optimally exploit the space in this square. An-
other version of a two-dimensional packing problem occurs in stock cutting when we want
to cut some items out of some sheets of raw material, for example of metal or wood. We
want to minimize the total wasted material. Sometimes, it is not useful to rotate the items
that have to be cut out, since we have for example to take care of the grain of the wood.
In print layout we have to distribute advertisements within one newspaper. The objective
might either be to fit all advertisements into the minimum number of pages or into a fixed
number of pages while securing the maximum profit for the newspaper company. If you
want to ship packages of the same depth, the three-dimensional packing problem is reduced
to a two-dimensional problem. The aim of packing may vary in the logistics since you might
sometimes want to minimize the number of containers needed and on other occasions prefer
to minimize the size of one container that holds all packages. With regard to scheduling
further packing problems occur. Scheduling on identical machines can be modelled as a
packing problem while each job correspond to a rectangle of height 1 and the machines
correspond to a strip. This strip has an infinite width and a height that correspond to the
given number of machines. The objective is to place all rectangles into that strip so that the
total packing width is minimized, i.e. the total processing time is minimized. Moreover, we
can think of jobs that need several consecutive processors so that the height of the rectangle
corresponds to the number of processors that are needed for this job. These scenarios de-
scribe two-dimensional packing problems in which we want to place some rectangles into
some predetermined regions so that the rectangles are packed in a non-overlapping and axis-
parallel way. As the scenarios above occur in several industries, it is important to develop
procedures that improve the packing of rectangles. However, many of these problems are
strongly NP-hard and there is no hope in finding an efficient algorithm to solve the packing
problem optimally, unless P = NP. Therefore, we focus on algorithms that have an improved
running time at the expense of an optimal packing.

1

1 Introduction

1.1 APPROXIMATION ALGORITHMS

An optimization problem consists of a set of instances, a set of feasible solutions for each
instance and a non-negative value for each feasible solution. There are two kinds of opti-
mization problems called maximization and minimization problem. When facing a mini-
mization problem, the objective is to find a feasible solution that has the smallest possible
value for each instance. In the case of a maximization problem, the objective is to find a fea-
sible solution that has the largest possible value for each instance. Let Π be an optimization
problem and let A be an algorithm for this problem, i.e. A computes a feasible solution for
each instance of Π. Furthermore, for each instance I of Π, we denote the optimal value of
all feasible solutions of I with OPT(I) and the value of the feasible solution that is computed
by A with A(I). We call A an approximation algorithm for Π with an approximation ratio
α > 0 if A computes a feasible solution for each instance I in polynomial time of the input
length and if there is a constant β≥ 0 so that

A(I) ≤αOPT(I)+β

holds in case of a minimization problem and

A(I) ≥αOPT(I)−β

holds in case of a maximization problem.

The approximation ratio is called absolute approximation ratio, if β= 0. In all other cases,
it is called asymptotic approximation ratio. A family of approximation algorithms (Aε)ε>0 is
called a polynomial time approximation scheme (PTAS) if Aε has an absolute approximation
ratio of 1+ε in case of a minimization problem and 1−ε in case of a maximization problem.
This family is called a fully polynomial time approximation scheme (FPTAS) if it is a PTAS

and the running time of Aε is additionally bounded in a polynomial in 1/ε. An efficient poly-
nomial time approximation scheme (EPTAS), is a PTAS whose running time is bounded by
f (1/ε) ·p(n) for a function f , a polynomial p and for each instance of length n. Asymptotic
(fully) polynomial time approximation schemes (APTAS,AFPTAS) are similarly defined in
terms of an asymptotic approximation ratio. For a more detailed introduction concerning the
theory of complexity and approximation algorithms, we recommend a reading of the book
by Vazirani [53] and by Jansen & Margraf [32].

2

1.2 Outline of this Thesis

1.2 OUTLINE OF THIS THESIS

This thesis consists of three self-sufficient chapters. In Chapter 2, we present an approxima-
tion algorithm for the two-dimensional strip packing problem, in Chapter 3 we display an
approximation algorithm for the two-dimensional bin packing problem and in the Chapter 4
we propose an approximation algorithm for scheduling with fixed jobs.

1.2.1 TWO-DIMENSIONAL STRIP PACKING

In the two dimensional strip packing problem, a list of rectangles is given. We are looking for
an orthogonal and non-overlapping packing of these rectangles into a strip of unit width and
infinite height in order to minimize the total packing height. In this setting it is not allowed
to rotate the rectangles. In this chapter, a short introduction will give some background
information concerning this problem. Afterwards, our approximation algorithm with an
absolute approximation ratio of 5/3+ε for an arbitrary ε > 0 will be presented. This result
is published in [23, 24].

1.2.2 TWO-DIMENSIONAL BIN PACKING

In the two-dimensional bin packing problem, a list of rectangles as well as an infinite set of
squares of unit side lengths are given. These squares will be called bins in this chapter. The
objective is to find a non-overlapping, axis-parallel packing that is apt to put all rectangles
into bins in order to minimize the total number of bins used. We consider two versions: one
that allows 90◦ rotations and one that does not. In the Chapter 3, we propose an approxi-
mation algorithm with an asymptotic 3/2+ ε approximation for an arbitrary ε > 0 with an
additive constant of 69 in the version that does not allow rotation and an additive constant
of 39 in the version that allows 90◦ rotation. The main idea of this algorithm is to prove that
each solution can be modified so that we are able to round up the rectangles. The steps of
modification are explained in Section 3.2 subsequent to the introduction which summarizes
the results that have already been published. This modified solution can be processed with
the help of our algorithm that is explained in Section 3.3. This result is published in [33].

1.2.3 SCHEDULING WITH FIXED JOBS

In this problem, we have given a set of rectangles of heights 1 and arbitrary widths and a
strip of a given integral height and infinite width. The objective is to find an axis-parallel and
non-overlapping packing of the rectangles into the strip so that the maximum packing width

3

1 Introduction

is minimized. In this setting, it is not allowed to rotate the rectangles. This problem is also
known as scheduling problem, with machines representing the strip and jobs representing
the rectangles. The definition is as follows: Given a set of jobs with certain processing times
and a set of identical machines. The objective is to schedule the jobs on the machines in
order to minimize the makespan, i.e. the total length of the schedule. We consider a version
of this problem in which the first jobs are already assigned to machines and starting times.
In Chapter 4, a short introduction containing old and new results will be followed by our
presentation of an approximation algorithm with an absolute 3/2 approximation ratio for the
problem with fixed jobs. This result can also be adopted to a version of scheduling with non-
availability. This problem is similar to scheduling with fixed jobs, apart from the fact that
the fixed jobs do not count in the total completion time and that we require that a constant
fraction of the machines is always available, i.e. without fixed jobs. This result is published
in [16, 35].

4

2 A (5/3+ε)-APPROXIMATION FOR

STRIP PACKING

2.1 INTRODUCTION

Two-dimensional packing problems are classical in combinatorial optimization and continue
to receive a lot of research interest [4, 5, 6, 25, 34, 36, 40]. One of the most important ones is
the strip packing problem also known as the cutting stock problem: given a set of rectangles
I = {r1, . . . ,rn} of specified widths wi and heights hi , the problem is to find a feasible packing
for I (i.e. an orthogonal arrangement where rectangles do not overlap and are not rotated)
into a strip of width 1 and minimum height.

The strip packing problem has many practical applications in manufacturing, logistics,
and computer science. In many manufacturing settings rectangular pieces need to be cut out
of some sheet of raw material, while minimizing the waste. Scheduling independent tasks on
a group of processors, each requiring a certain number of contiguous processors or memory
allocation during a certain length of time, can also be modeled as a strip packing problem.

RESULTS. The Bottom-Left algorithm by Baker et al. [2] has asymptotic approximation
ratio equal to 3 when the rectangles are ordered by decreasing widths. Coffman et al. [13]
provided the first algorithms with proven approximation ratios of 3 and 2.7, respectively. The
approximation algorithm presented by Sleator [50] generates a packing of height 2OPT(I)+
hmax(I)/2. Since hmax(I) ≤ OPT(I) this implies an absolute approximation ratio of 2.5. This
was independently improved by Schiermeyer [49] and Steinberg [51] with algorithms of
approximation ratio 2.

In the asymptotic setting we consider instances with large optimal value. Here, the asymp-
totic performance ratio of the above algorithms was reduced to 4/3 by Golan [20] and then
to 5/4 by Baker et al. [1]. An AFPTAS with additive constant of O (hmax(I)/ε2) was given by
Kenyon & Rémila [40]. Jansen & Solis-Oba [36] found an APTAS with additive constant of
hmax(I).

5

2 Strip Packing

On the negative side, since strip packing includes the bin packing problem as a special
case, there is no algorithm with absolute ratio better than 3/2 unless P = N P . After the
work by Steinberg and Schiermeyer in 1994, there was no improvement on the best known
approximation ratio until very recently. Jansen & Thöle [37] presented an approximation
algorithm with approximation ratio 3/2+ε for restricted instances where the widths are of
the form i /m for i ∈ {1, . . . ,m} and m is polynomially bounded in the number of items.
Notice that the general version that we consider appears to be considerably more difficult.
Recently, Harren & van Stee [25] were the first to break the barrier of 2 for the general
problem and presented an algorithm with a ratio of 1.9396. Our main result is the following
significant improvement.

Theorem 2.1. For any ε > 0, there is an approximation algorithm A which produces a

packing of a list I of n rectangles in a strip of width 1 and height A(I) such that

A(I) ≤
(5

3
+ε

)
OPT(I).

Although our algorithm uses a PTAS as a subroutine and therefore has very high running
time for small values of ε, this result brings us much closer to the lower bound of 3/2 for this
problem.

TECHNIQUES. The algorithm approximately guesses the optimal height of a given in-
stance. In the main phase of the algorithm we use a recent result by Bansal et al. [3], a PTAS

for the so-called rectangle-packing problem with area maximization (RPA). Given a set I of
rectangles, the objective is to find a subset I ′ ⊆ I of the rectangles and a packing of I ′ into
a unit sized bin while maximizing the total area of I ′. For the iteration close to the minimal
height, the approximation scheme by Bansal et al. computes a packing of a subset of the
rectangles with total area at least (1−δ) times the total area of all rectangles in I .

After this step a set of unpacked rectangles with small total area remains. The main idea of
our algorithm is to create a hole of depth 1/3 and width ε in the packing created by the PTAS,
and use this to pack the unpacked tall rectangles (with height possibly very close to 1). (The
other unpacked rectangles account for the +ε in our approximation ratio.) Finding a suitable
location for such a hole and repacking the rectangles which we have to move out of the
hole account for the largest technical challenges of this chapter. To achieve a packing of the
whole input we carefully analyse the structure of the generated packing and use interesting
and often intricate rearrangements of parts of the packing.

The techniques of this geometric analysis and the reorganization of the packing could be
useful for several other geometric packing problems. Our reoptimization could also be help-

6

2.2 Overview of the Algorithm

ful for related problems like scheduling parallel tasks (malleable and non-malleable), three-
dimensional strip packing and strip packing in multiple strips. To achieve faster heuristics
for strip packing, we could apply our techniques on different initial packings rather than
using the PTAS from [3].

2.2 OVERVIEW OF THE ALGORITHM

Let I = {r1, . . . ,rn} be the set of given rectangles, where ri = (wi ,hi) is a rectangle with width
wi and height hi . For a given packing P we denote the bottom left corner of a rectangle ri

by (xi , yi) and its top right corner by (x ′
i , y ′

i), where x ′
i = xi +wi and y ′

i = yi +hi . So the
interior of rectangle ri covers the area (xi , x ′

i)× (yi , y ′
i). It will be clear from the context to

which packing P the coordinates refer.

Let Wδ = {ri | wi > δ} be the set of so-called δ-wide rectangles and let Hδ = {ri | hi > δ} be
the set of δ-high rectangles. To simplify the presentation, we refer to the 1/2-wide rectangles
as wide rectangles and to the 1/2-high rectangles as high rectangles. Let W = W1/2 and
H = H1/2 be the sets of wide and high rectangles, respectively.

For a set T of rectangles, let a(T) = ∑
i∈T wi hi be the total area and let h(T) = ∑

ri∈T hi

and w(T) = ∑
ri∈T wi be the total height and total width, respectively. Furthermore, let

wmax(T) = maxri∈T wi and hmax(T) = maxri∈T hi .

We now present two important subroutines of our algorithms, namely Steinberg’s algo-
rithm [51] and an algorithm by Bansal et al. [3]. Moreover, we prove the existence of a
structured packing of certain sets of wide and high rectangles.

STEINBERG’S ALGORITHM. Steinberg [51] proved the following theorem for his algo-
rithm that we use as a subroutine multiple times.

Theorem 2.2 (Steinberg’s algorithm). If the following inequalities hold,

wmax(T) ≤ a, hmax(T) ≤ b, and 2a(T) ≤ ab − (2wmax(T)−a)+(2hmax(T)−b)+

where x+ = max(x,0), then it is possible to pack all rectangles from T into R = (a,b) in time

O ((n log2 n)/ loglogn).

AREA MAXIMIZATION. Bansal, Caprara, Jansen, Prädel & Sviridenko [3] considered the
problem of maximizing the total area packed into a unit-sized bin. Using a technical Struc-

tural Lemma they derived a PTAS for this problem.

7

2 Strip Packing

Theorem 2.3 (Bansal, Caprara, Jansen, Prädel & Sviridenko). For any fixed δ> 0, the PTAS

from [3] returns a packing of I ′ ⊆ I in a unit-sized bin such that a(I ′) ≥ (1−δ)OPTmaxarea(I),

where OPTmaxarea(T) denotes the maximum area of rectangles from T that can be packed

into a unit-sized bin.

2.2.1 EXISTENCE OF STRUCTURED PACKINGS.

We show that for any set of wide and high rectangles that fits into a strip of height 1, there
exists a packing of the high rectangles and of wide rectangles with at least half of their total
height with a nice structure, i.e., such that the wide and the high rectangles are packed in
stacks in different corners of the strip.

Lemma 2.1. For sets H ′ ⊆ H and W ′ ⊆ W \ H ′ of high and wide rectangles with OPT(W ∪
H) ≤ 1 there exists a packing of W ∗∪H ′ with W ∗ ⊆W ′ and h(W ∗) ≥ h(W ′)/2 such that the

high rectangles are stacked in the top left corner of the strip, i.e. sorted by non-increasing

heights and packed from the left side with their top edges at height 1 and the rectangles from

W ∗ are stacked in the bottom right corner of the strip, i.e. sorted by non-increasing widths

and packed right-aligned on top of each other on the bottom of the strip.

Proof. See Figure 2.1 for an illustration of the following proof. Consider a packing of high
rectangles H ′ and wide rectangles W ′ into a strip of height 1. Associate each wide rectangle
with the closer boundary of the packing, i.e., either the top or bottom of the strip (a rectangle
that has the same distance to both sides of the strip can be associated with an arbitrary side).
Assume w.l.o.g. that the total height of the rectangles associated with the bottom is at least
as large as the total height of the rectangles associated with the top of the strip. Remove
the rectangles that are associated with the top and denote the other wide rectangles by W ∗.
Push the rectangles of W ∗ together into a stack that is aligned with the bottom of the strip by
moving them purely vertically and move the high rectangles such that they are aligned with
the top of the strip and form stacks at the left and right side of the strip. Order the stacks of
the high rectangles by non-increasing order of height and the stack of the wide rectangles by
non-increasing order of width.

Now apply the following process. Take the shortest rectangle with respect to the height
from the right stack of the high rectangles and insert it at the correct position into the left
stack, i.e., such that the stack remains in the order of non-increasing heights. Since the
total widths of both stacks of high rectangles remains the same, we can move the wide
rectangles to the right if this insertion causes an overlap. Obviously this process moves all
high rectangles to the left and retains a feasible packing. In the end, all high rectangles form

8

2.2 Overview of the Algorithm

1

(a) Packing of W and H

1

W ∗

(b) Remove rectangles on top;
align rectangles with the sides of
the strip

1

W ∗

(c) Insert the shortest rectangle
from the right in the stack on the
left; move W ∗ horizontally

1

W ∗

(d) Final packing with stacks in
the bottom right and top left

Figure 2.1: The insertion process of Lemma 2.1.

a stack in the top left corner of the strip. Move the wide rectangles to the right such that they
form a stack in the bottom right corner of the strip.

We utilize the previous existence result with the following Corollary.

Corollary 2.1. For sets H ′ ⊆ H and W ′ ⊆W \ H ′of high and wide rectangles with OPT(W ∪
H) ≤ 1 we can derive a packing of W ′∪H ′ into a strip of height at most 1+h(W ′)/2 such

that the wide rectangles are stacked in the bottom right of the strip and the high rectangles

are stacked above the wide rectangles at the left side of the strip in time O (n logn).

Proof. Consider a packing of height 1 of W ∗∪ H ′ with W ∗ ⊆ W ′ and h(W ∗) ≥ h(W ′)/2

such that the wide rectangles from W ∗ are stacked in the bottom right corner of the strip and
the high rectangles are stacked above W ∗ at the top left of the strip. Such a packing exists
by Lemma 2.1. Now move up W ∗∪H ′ by h(W ′ \W ∗), pack W ′ \W ∗ below W ∗ and restore
the order in the stack of the wide rectangles. This does not cause a conflict as the original

9

2 Strip Packing

surface of W ∗ is not violated. As h(W ′ \W ∗) = h(W ′)−h(W ∗) ≤ h(W ′)/2 the height bound
of the corollary in satisfied. Since the packing only consists of the ordered stacks of the
high and wide rectangles, we can easily derive a packing of at most the same height in time
O (n logn) by building the stacks and moving down the stack of H ′ as far as possible.

2.2.2 MODIFYING PACKINGS.

Our methods involve modifying existing packings in order to insert some additional rectan-
gles. To describe these modifications or, more specifically, the rectangles involved in these
modifications, we introduce the following notations—see Figure 2.2. Let PointR(x, y) be the
rectangle that contains the point (x, y) (in its interior; if no such rectangle exists PointR(x, y)

is empty). We use the notation of vertical line rectangles VLR(x; y1, y2) and horizontal line

rectangles HLR(x1, x2; y) as the rectangles that contain any point of the given vertical or hor-
izontal line in their interiors, respectively. Finally, we introduce two notations for rectangles
whose interiors are completely contained in a designated area, namely AR(x1, x2; y1, y2) for
rectangles completely inside the respective rectangle and AR(p) for rectangles completely
above a given polygonal line p, where p is a staircase-cut on [0,1].

To describe such a polygonal line p we define the vertical polygonal chain extension of a
point (x, y) inside a given packing P as follows. Start at position (x, y) and move leftwards
until hitting a rectangle ri . Then move upwards to the top of ri , that is, up to position y ′

i .
Repeat the previous steps until hitting the left side of the strip. Then do the same thing to the
right starting again at (x, y). We denote the polygonal chain that results from this process by
VPCE(x, y). In addition, let VPCEleft(x, y) and VPCEright(x, y) be the left and right parts of
this polygonal chain, respectively. Another way to describe a polygonal line is by connecting
a given sequence of points, which we denote as PL((x1, y1), (x2, y2), . . .).

2.2.3 ALGORITHM

We start now with the presentation of our algorithm. Let ε< 1/(28·151) = 1/4228 throughout
this chapter. With the following lemma we show that we can concentrate on instances I with
OPT(I) ≤ 1.

Lemma 2.2. If there exists a polynomial-time algorithm for strip packing that packs any

instance I with optimal value at most 1 into a strip of height h ≥ 1, then there also exists a

polynomial-time algorithm for strip packing with absolute approximation ratio at most h+ε.

Proof. Let ALG be the algorithm that packs any instance I with optimal value at most 1 into
a strip of height h and assume that h ≤ 2 by otherwise applying Steinberg’s algorithm. Let ε′

10

2.2 Overview of the Algorithm

x

y

(a) PointR(x, y)

x2

y

x1
(b) HLR(x1, x2; y)

x2

y2

x1

y1

(c) AR(x1, x2; y1, y2)

y

x
(d) AR(VPCE(x, y))

Figure 2.2: Notations

be the maximal value with ε′ ≤ ε/(2h) such that 1/ε′ is integer. We guess the optimal value
approximately and apply ALG on an appropriately scaled instance. To do this, we first apply
Steinberg’s algorithm on I to get a packing into height h′ ≤ 2OPT(I). We split the interval
J = [h′/2,h′] into 1/ε′ subintervals Ji = [(1+ ε′(i −1))h′/2,(1+ ε′i)h′/2] for i = 1, . . . ,1/ε′.
Then we iterate over i = 1, . . . ,1/ε′, scale the heights of all rectangles by 2/((1+ε′i)h′) and
apply the algorithm ALG on the scaled instance I ′. Convert the packing to a packing of the
unscaled instance I and finally output the minimal packing that was derived. We eventually
consider i∗ ∈ {1, . . . ,1/ε′} with OPT(I) ∈ Ji∗ . Then we have

1−ε′ < 1− ε′

1+ε′i∗ = (1+ε′(i∗−1)) h′
2

(1+ε′i∗) h′
2

≤ OPT(I ′) ≤ (1+ε′i∗) h′
2

(1+ε′i∗) h′
2

= 1

and thus

ALG(I)

OPT(I)
= ALG(I ′)

OPT(I ′)
< h

1−ε′ = h + ε′h
1−ε′ ≤ h +2ε′h ≤ h +ε.

Thus we concentrate on approximating instances that fit into a strip of height 1 and there-
fore assume OPT(I) ≤ 1 for the remainder of this chapter. The overall approach for our
algorithm for strip packing is as follows.

First, we use some direct methods involving Steinberg’s algorithm to solve instances I

11

2 Strip Packing

with h(W1−130ε) ≥ 1/3 or w(H2/3) ≥ 27/28, that is, special cases where many rectangles
have a width of almost 1, or almost all of the rectangles are at least 2/3 high. Having this
many high or wide rectangles makes it much easier to pack all rectangles without wasting
much space.

For any instance I that does not satisfy these conditions, we first apply the PTAS from [3]
with an accuracy of δ= ε2/2 to pack most of the rectangles into a strip of height 1. Denote
the resulting packing of I ′ ⊆ I by P and let R = I \ I ′ be the set of remaining rectangles. By
Theorem 2.3 we have a(R) ≤ ε2/2 ·OPTmaxarea(I) = ε2/2 ·a(I) ≤ ε2/2. Pack R ∩Hε/2 into a
container C1 = (ε,1) (by forming a stack of the rectangles of total width at most a(R)/(ε/2) ≤
ε) and pack R \ Hε/2 with Steinberg’s algorithm into a container C2 = (1,ε) (this is possible
by Theorem 2.2 since hmax(R \ Hε/2) ≤ ε/2, wmax(R \ Hε/2) ≤ 1 and 2a(R \ Hε/2) ≤ ε2 < ε).

We will now modify the packing P to free a gap of width ε and height 1 to insert the
container C1 while retaining a total packing height of at most 5/3. This is the main part of
our work. Afterwards, we pack C2 above the entire packing, achieving a total height of at
most 5/3+ε. The entire algorithm to modify the PTAS packing is given in Algorithm 2.1.

This chapter is organized as follows. Section 2.3.1 and Section 2.3.2 present the direct
methods to solve instances I with h(W1−130ε) ≥ 1/3 or w(H2/3) ≥ 27/28. In Section 2.4.1
we consider certain packings with a rectangle of height at least 1/3 (see Lemma 2.5 and
2.6 and Algorithm 2.2 and 2.3). Section 2.4.2 deals with packings without long rectangles
close to the left or right side of the strip (see Lemma 2.7 and Algorithm 2.4). An illustration
of the remaining cases, if Algorithm 2.2-2.4 are not applicable, is given in Figure 2.3. The
methods for solving these cases are presented in Section 2.4.3, 2.4.4 and 2.4.5. In Section
2.5 we prove that our Algorithm 2.1 covers all the cases.

1

x′` xr

2
3

1
3

1/2

r` rr

r1

(a) A 1/3-high rectangle almost
spans from I` to Ir : apply Algo-
rithm 2.5

1
3

x′`

1

r1
r2

xr

2
3

1/2

r` rr

(b) A 1/3-high rectangle spans from
I` to IM and a 1/3-high rectangle
spans from IM to Ir : apply Algo-
rithm 2.6

12

2.2 Overview of the Algorithm

1
3

1

r1

x′` xr

2
3

1/2

rrr`

(c) A 1/3-high rectangle spans from
IM to Ir but no 1/3-high spans
between I` and IM : apply Algo-
rithm 2.7

1

1
3

x′` xr

2
3

1/2

rrr`

(d) No 1/3-high rectangles span
across the intervals: apply Algo-
rithm 2.7

Figure 2.3: Schematic illustration of the main cases if Algorithm 2.2, 2.3 and 2.4 are not
applicable. The area to the left of r` and the area to the right of rr is almost
completely covered by 2/3-high rectangles (and shown in darker shade). I`, Ir

and IM are horizontal intervals very close to r`,rr and the middle of the strip.

Algorithm 2.1 Turn the PTAS packing into a strip packing
Requirement: ε< 1/4228, h(W1−130ε) < 1/3 and w(H2/3) < 27/28
Input: packing P produced by the PTAS from [3] with an accuracy of δ := ε2/2.

1: Pack the remaining unpacked rectangles into C1 = (ε,1) and C2 = (1,ε).
2: if there is a rectangle r1 of height h1 > 1/3 with one side at position x∗

1 ∈ [ε,1/2−ε],
and the total width of 2/3-high rectangles to the left of x∗

1 is at most x∗
1 −ε (or if these

conditions hold for P mirrored over x = 1/2) then
3: apply Algorithm 2.2 (Lemma 2.5), stop
4: if there is a rectangle r1 of height h1 ∈ [1/3,2/3] and width w1 ∈ [ε,1−2ε]

and y1 ≥ 1/3 or y ′
1 ≤ 2/3 then

5: apply Algorithm 2.3 (Lemma 2.6), stop
6: Let r` be the rightmost 2/3-high rectangle in AR(0,1/2−ε;0,1) and let rr be the leftmost

2/3-high rectangle in AR(1/2+ε,1;0,1) (We use dummy rectangles of height 1 and width
0 on the sides of the strip if no such rectangles exist). Redefine r` and/or rr if necessary
(see Section 2.5).

\\At this point, all vertical sides of 1/3-high rectangles are to the left of x = x ′
`
+ε,

\\to the right of x = xr −ε, or within ε distance of x = 1/2.
7: Let c3 = 2 if x(<)

`
1/2−3ε and xr > 1/2+3ε, and c3 = 5 otherwise. Let c1 = 5 · c3.

8: if there is no 1/3-high rectangle that intersects [c1ε, (c1+1)ε]×[0,1], and h(W1−5(c1+1)ε) <
1/3 (or if these conditions hold for P mirrored over x = 1/2) then

9: apply Algorithm 2.4 (Lemma 2.7), stop
10: Apply Algorithm 2.5, 2.6, or 2.7, depending on which of the cases in Figure 2.3 occurs

(see Figure 2.3)

13

2 Strip Packing

2.3 DIRECT METHODS

In this section, we display direct methods to solve instances I with h(W1−130ε) ≥ 1/3 or
w(H2/3) ≥ 27/28 without using the PTAS from [3].

2.3.1 TOTAL AREA OF VERY WIDE RECTANGLES IS LARGE

We compute a packing for instances with a large area guarantee of very wide rectangles.

Lemma 2.3. If h(W1−130ε) ≥ 1/3, then we can derive a packing into a strip of height 5/3+
260ε/3 in time O ((n log2 n)/ loglogn).

Proof. Let W ′ = W1−130ε. The total height of the very wide rectangles in W ′ gives us a
non-trivial additional area guarantee for the wide rectangles as follows.

A(W) = A(W ′)+ A(W \W ′) > h(W ′) · (1−130ε)+h(W \W ′) ·1/2

= h(W ′) · (1/2−130ε)+h(W)/2 ≥ 1/3 · (1/2−130ε)+h(W)/2.

For ξ = 1/3 · (1/2− 130ε) we have A(W) > ξ+h(W)/2 and 0 < ξ ≤ 1/6. We consider two
cases in which we use the additional area guarantee of ξ for the wide rectangles to derive a
packing into a strip of height 2−2ξ= 5/3+260ε/3.

h(W)
2

ξ

Steinberg’s

algorithm

b
=

2
−
h
(W

)
−

2ξ

a = 1

5
3

1

h
(W

)

(a) Case 1.2−h(W)−2ξ≥ 1

Steinberg’s

algorithm

b
=

2
−
h
(W

)
−

2ξ

a = 1− w(H1−2ξ)

H1−2ξ

h(W)
2ξ

5
3

1

h
(W

)

(b) Case 2.2−h(W)−2ξ< 1

Figure 2.4: Packing methods for Lemma 2.3

14

2.3 Direct Methods

CASE 1. 2−h(W)−2ξ≥ 1.
Stack the wide rectangles in the bottom of the strip and use Steinberg’s algorithm to pack
I \ W above this stack into a rectangle of size (a,b) with a = 1 and b = 2 − h(W) − 2ξ

(see Figure 2.4(a)). Steinberg’s algorithm is applicable since we have hmax(I \ W) ≤ 1 ≤ b,
wmax(I \W) ≤ 1/2 = a/2 and

2a(I \W) ≤ 2−2ξ−h(W) = ab = ab − (2wmax(I \W)−a)+(2hmax(I \W)−b)+.

The total height of the packing is h(W)+2−h(W)−2ξ= 2−2ξ.

CASE 2. 2−h(W)−2ξ< 1.
In this case we cannot apply Steinberg’s algorithm to pack I \ W into the area of size (1,2−
h(W)−2ξ) above the stack of W as hmax(I \W) might be greater than 2−h(W)−2ξ.

We have 1− 2ξ < h(W) ≤ 1 since 1 is a natural upper bound for the total height of the
wide rectangles. Pack the rectangles of W in a stack aligned with the bottom right corner of
the strip as before. Pack the rectangles of H1−2ξ \ W in a stack aligned with the left side of
the strip and move this strip downwards as far as possible (see Figure 2.4(b)). Corollary 2.1
shows that H1−2ξ \ W can be moved down such that the total height of the packing so far is
at most 1+h(W)/2 ≤ 3/2. Let T = I \(W ∪H1−2ξ) be the set of the remaining rectangles. We
have

a(T) ≤ 1−a(W)−a(H1−2ξ \W) ≤ 1−ξ− h(W)

2
− (1−2ξ)w(H1−2ξ \W).

Pack T with Steinberg’s algorithm in the rectangle of size (a,b) with a = 1−w(H1−2ξ \ W)

and b = 2−h(W)−2ξ above W and to the right of H1−2ξ \W . We have w(H1−2ξ \W) ≤ 1/2

as otherwise all wide rectangles are either above or below a rectangle from H1−2ξ \ W in
any optimal packing and thus h(W) ≤ 4ξ (which is a contradiction to 2−h(W)−2ξ< 1 for
ξ≤ 1/6). Thus we have hmax(T) ≤ 1−2ξ≤ b and wmax(T) ≤ 1/2 ≤ a and with

ab − (2wmax(T)−a)+(2hmax(T)−b)+ ≥
(1−w(H1−2ξ \W))(2−h(W)−2ξ)−

(2 ·1/2− (1−w(H1−2ξ \W)))+ · (2(1−2ξ)− (2−h(W)−2ξ))+ ≥
2−h(W)−2ξ−2w(H1−2ξ \W)+h(W)w(H1−2ξ \W)+

2ξw(H1−2ξ \W)− (w(H1−2ξ \W))+(h(W)−2ξ)+ =
2−h(W)−2ξ−2w(H1−2ξ \W)+4ξw(H1−2ξ \W)

15

2 Strip Packing

we get 2a(T) ≤ ab − (2wmax − a)+(2hmax −b)+. We have (h(W)−2ξ)+ = h(W)−2ξ in the
last step of the calculation since h(W) > 4ξ. The total height of the packing corresponds
to the height of the wide rectangles h(W) plus the height of the target area for Steinberg’s
algorithm b = 2−h(W)−2ξ. In total we have a height of h(W)+2−h(W)−2ξ= 2−2ξ.

2.3.2 LARGE TOTAL WIDTH OF THE 2/3-HIGH RECTANGLES

In this section we assume that w(H2/3) ≥ 27/28, i.e., the total width of the 2/3-high rectan-
gles is very large. As in the previous section we can solve this case directly without using
the PTAS from [3].

For the ease of presentation, let α = w(H2/3) ≥ 27/28. Since the total height of the rect-
angles of W1−α/2 \ H2/3 plays an important role in our method, we introduce the notation
y = h(W1−α/2 \ H2/3). Moreover, we use the stronger area guarantee of the 5/6-high rectan-
gles and therefore denote their total width by β = w(H5/6). Finally, let δ = w(H1/3\H) be
the total width of the rectangles of height within 1/3 and 1/2.

BOUNDING y AND δ. Let α′ < α such that W1−α/2 = {ri | wi > 1 −α/2} = {ri | wi ≥
1−α′/2}, e.g., set α′ such that the shortest rectangle in W1−α/2 has width 1−α′/2. Note
that in any optimal packing, all rectangles from W1−α/2 occupy the x-interval (α′/2,1−α′/2)

of width 1−α′ completely. On the other hand, there has to be a rectangle from H2/3 that
intersects this interval since w(H2/3) =α>α′. Therefore we have

y = h(W1−α/2 \ H2/3) < 1/3. (2.1)

It follows directly that the sets W1−α/2 \ H2/3 and H1/3 are disjoint.
Since no rectangle of H1/3 fits above a rectangle of H2/3, only in a total width of 1−α can

rectangles in H1/3 \ H2/3 possibly be packed. It follows that a total width of at most 2(1−α)

of rectangles in H1/3 can exist, because at most two such rectangles can fit on top of each
other. By direct calculation for α> 4/5 we get

δ≤ 2(1−α) <α/2. (2.2)

In the following we distinguish three main cases according to y and β. See Figure 2.5(a)
for the first two cases and Figure 2.5(b) for the third case.

CASE 1. y ≥ 4
3

1−α
1−α/2 .

We use the methods of Corollary 2.1 for H ∪W1−α/2, and need a height of at most 1+ y/2

16

2.3 Direct Methods

which is less than 7/6 by Inequality (2.1). Above it, we define a container of width δ and
height 1/2 at the left side of the strip where we pack all remaining 1/3-high rectangles, i.e.,
H1/3 \ H . Next to it we have an area (a,b) of width a = 1−δ and height b = 2/3− y/2 > 1/2.
In it we pack all remaining rectangles, noted by T = I \ (H1/3 ∪W1−α/2), that have height at
most hmax(T) ≤ 1/3 < b, width at most wmax(T) ≤ 1−α/2 < 1−δ = a by Inequality (2.2),
and area at most

a(T) ≤ 1−a(H2/3)−a(W1−α/2 \ H2/3)−a(H1/3 \ H) ≤ 1− 2

3
α−

(
1− α

2

)
y − δ

3
.

This works according to the Steinberg condition for any y ≥ 4
3

1−α
1−α/2 since

ab − (2wmax(T)−a)+(2hmax(T)−b)+ = (1−δ)
(2

3
− y

2

)
− (1−α+δ)+

(y

2

)
+

= 2

3
− 2δ

3
− y + αy

2

= 2

3
− 2δ

3
−2y +αy + y(1− α

2
)

≥ 2

3
− 2δ

3
−2y +αy + 4

3

1−α
1−α/2

(1− α

2
)

= 2(1− 2

3
α− (1− α

2
)y − δ

3
)

≥ 2a(T).

CASE 2. β≥ 4(1−α).
We use the same packing as in Case 1. The total area of the high rectangles is now at least
5
6β+ 2

3 (α−β) = 2
3α+ 1

6β≥ 2/3. Therefore, the remaining unpacked rectangles, noted by T ,
have area at most

a(T) ≤ 1−a(H2/3)−a(W1−α/2 \ H2/3)−a(H1/3 \ H) ≤ 1

3
−

(
1− α

2

)
y − δ

3
.

Since only the area of T changes compared to Case 1, we only have to verify the third
Steinberg condition to pack T with Steinberg’s algorithm into the area (a,b).

ab − (2wmax(T)−a)+(2hmax(T)−b)+ = 2

3
− 2δ

3
− y + αy

2

= 2

3
− 2δ

3
− (2−α)y +

(
1− α

2

)
y

≥ 2
(1

3
− δ

3
−

(
1− α

2

)
y
)

≥ 2a(T).

17

2 Strip Packing

Steinberg’s

algorithm b
=

2/
3
−

y
/2

a = 1− δ

H \H5/6

y
W1−α/2

δ

αβ

1
2

5
3

1

H5/6

H1/3\H

(a) Case 1 or 2.
y ≥ 4

3
1−α

1−α/2 or
β≥ 4(1−α)

Steinberg’s

algorithm

b
=

5/
6
−
y

a = 1− 4(1− α)

H \H5/6

y

W1−α/2

H5/6

1
2

2
3

5
6

H1/3\H

δ

αβ

1
2

5
3

1

(b) Case 3.
y < 4

3
1−α

1−α/2 and
β< 4(1−α)

Figure 2.5: Packing methods for Lemma 2.4

CASE 3. y < 4
3

1−α
1−α/2 and β< 4(1−α).

Note that y < 4
3

1−α
1−α/2 ≤ 4

3
1−27/28
1−27/56 = 56

609 < 1
6 in this case. We pack the set H of the high

rectangles aligned with the bottom of the strip, sorted by non-increasing heights (from left
to right). We pack the rectangles of W1−α/2 \ H stacked in the area [0,1]× [5/3− y,5/3] and
the rectangles of H1/3\H in the area [0,δ]× [1,3/2] (this is possible because 3/2 ≤ 5/3− y).
We have δ < 4(1 −α), since by Inequality (2.2) we have δ < 2(1 −α). Furthermore, by
assumption we have β < 4(1−α). It follows that the area [4(1−α),1]× [5/6,5/3− y] of
width a = 1− 4(1−α) = 4α− 3 and height b = 5/3− y − 5/6 ≥ 2/3 is still free. We pack
all remaining rectangles, noted by T , in this area using Steinberg’s algorithm. We have
hmax(T) ≤ 1/3 ≤ b/2, wmax(T) ≤ 1−α/2 < 4α−3 = a, since α> 8/9, and area at most

a(T) ≤ 1−a(H2/3)−a(W1−α/2 \ H2/3) ≤ 1− 2

3
α−

(
1− α

2

)
y.

18

2.4 Modifying a Packing

Hence the Steinberg condition is satisfied for α≥ 27/28 ≥ (27−30y)/(28−30y) since

ab − (2wmax(T)−a)+(2hmax(T)−b)+ = ab

= (4α−3)
(5

6
− y

)
=−4α

3
+ yα+α

(28−30y

6

)
− 5

2
+3y

≥−4α

3
+ yα+ 27−30y

28−30y
· 28−30y

6

− 5

2
+3y

=−4α

3
+ yα+2−2y

≥ 2a(T).

Since the running time of our methods is dominated by the application of Steinberg’s
algorithm we showed the following lemma.

Lemma 2.4. If w(H2/3) ≥ 27/28, then we can derive a packing of I into a strip of height 5/3

in time O ((n log2 n)/ loglogn).

We have finished the presentation of the methods that we directly apply to the input if
h(W1−130ε) ≥ 1/3 (Section 2.3.1) or w(H2/3) ≥ 27/28(Section 2.3.2).

2.4 MODIFYING A PACKING

In the following sections we always assume that we already derived a packing P using the
PTAS from [3] and it remains to free a place for the containers C1 and C2 of size (ε,1) and
(1,ε), respectively.

2.4.1 RECTANGLE OF HEIGHT GREATER THAN 1/3

Lemma 2.5. If the following conditions hold for P , namely

1.1. there is a rectangle r1 of height h1 > 1/3 with one side at position x∗
1 ∈ [ε,1/2−ε], and

1.2. the total width of 2/3-high rectangles to the left of x∗
1 is at most x∗

1 −ε, that is

w(AR(0, x∗
1 ;0,1)∩H2/3) ≤ x∗

1 −ε,

19

2 Strip Packing

then we can derive a packing of I into a strip of height 5/3+ε in additional time O (n logn).

Note that Condition 1.1 leaves open whether x∗
1 refers to the left or right side of r1 as our

method works for both cases. In particular, r1 could be one of the 2/3-high rectangles from
Condition 1.2.

Proof. Assume w.l.o.g. y ′
1 > 2/3 by otherwise mirroring the packing P over y = 1/2.

We lift up a part of the packing P in order to derive a gap of sufficient height to insert the
container C1. In this case we mirror the part of the packing that we lift up. Algorithm 2.2
gives a compressed version of the following detailed description. See Figure 2.6 for an
illustration.

Consider the contour Clift defined by a horizontal line at height y = y ′
1 −1/3 to the left of

x∗
1 , a vertical line at width x = x∗

1 up to y ′
1 and a vertical polygonal chain extension to the

right starting at the top of r1. More formally, Clift = PL((0, y ′
1−1/3), (x∗

1 , y ′
1−1/3), (x∗

1 , y ′
1))+

VPCEright(x∗
1 , y ′

1), where the +-operator denotes the concatenation of polygonal lines (see
thick line in Figure 2.6(a)). Let T = AR(Clift) be the set of rectangles that are completely
above this contour.

Move up T by 2/3 (and hereby move T completely above the previous packing since
y ′

1 > 2/3 and thus y ′
1 − 1/3 > 1/3) and mirror T vertically, i.e., over x = 1/2. Let ybottom

be the height of Clift at x = 1/2 (Clift crosses the point (1/2, ybottom)). By definition, Clift

is non-decreasing and no rectangle intersects with Clift to the right of x∗
1 . Therefore, T is

completely packed above y = ybottom +2/3 on the left side of the strip, i.e., for x ≤ 1/2, and
P \T does not exceed ybottom between x = x∗

1 and x = 1/2. Thus between x = x∗
1 and x = 1/2

we have a gap of height at least 2/3.

Let B = HLR(0, x∗
1 ; y ′

1 −1/3) be the set of rectangles that intersect height y = y ′
1 −1/3 to

the left of x∗
1 (see Figure 2.6(a)). Note that r1 ∈ B , if x∗

1 corresponds to the right side of
r1. Remove B from the packing, order the rectangles by non-increasing order of height and
build a top-left-aligned stack at height y = ybottom +2/3 and distance ε from the left side of
the strip. Since we keep a slot of width ε to the left, the stack of B might exceed beyond x∗

1 .
This overhang does not cause an overlap of rectangles because Condition 1.1 ensures that
x∗

1 ≤ 1/2−ε and thus the packing of B does not exceed position x = 1/2 and Condition 1.2
ensures that the excessing rectangles have height at most 2/3 whereas the gap has height at
least 2/3.

Now pack the container C1 top-aligned at height ybottom +2/3 directly at the left side of
the strip. C1 fits here since ybottom +2/3− (y ′

1 −1/3) = 1+ ybottom − y ′
1 ≥ 1. Finally, pack C2

above the entire packing at height y = 5/3, resulting in a total packing height of 5/3+ε.

20

2.4 Modifying a Packing

Note that Lemma 2.5 can symmetrically be applied for a 1/3-high rectangle with one side
at position x∗

1 ∈ [1/2+ε,1−ε] with w(AR(x∗
1 ,1;0,1)∩H2/3) ≤ 1−x∗

1 −ε by mirroring P over
x = 1/2.

1

y′1

y′1 − 1
3

1
3

x∗1

r1

T

B

Clift

(a) Definition of Clift, T and B .

1

5
3

y′1

y′1 − 1
3

1
3

x∗1

r1

T
B

≥ 2
3

ybottom + 2
3

ybottom

C1

(b) Modified packing where C1 is packed in the shaded
slot of height 1 and width ε.

Figure 2.6: Packing methods for Lemma 2.5

Algorithm 2.2 Edge of height greater than 1/3

Requirement: Packing P that satisfies Conditions 1.1 and 1.2 and y ′
1 > 2/3.

1: Move up the rectangles T = AR(Clift) by 2/3 and then mirror the packing of these rect-
angles vertically at position x = 1/2.

2: Order the rectangles of B = HLR(0, x∗
1 ; y ′

1 −1/3) by non-increasing order of height and
pack them into a top-aligned stack at position (ε, ybottom +2/3).

3: Pack C1 top-aligned at position (0, ybottom +2/3) and pack C2 above the entire packing.

Lemma 2.6. If the following condition holds for P , namely

1.3. there is a rectangle r1 of height h1 ∈ [1/3,2/3] and width w1 ∈ [ε,1−2ε], and y1 ≥ 1/3

or y ′
1 ≤ 2/3,

then we can derive a packing of I into a strip of height 5/3+ε in additional time O (n).

21

2 Strip Packing

Proof. See Figure 2.7 for an illustration of the following proof. W.l.o.g. we assume that
y1 ≥ 1/3, by otherwise mirroring the packing horizontally, i.e., over y = 1/2. Furthermore,
we assume that x ′

1 ≤ 1−ε since w1 ≤ 1−2ε and otherwise mirror the packing vertically, i.e.,
over x = 1/2.

Define a vertical polygonal chain extension Clift = VPCE(x1, y ′
1) starting on top of r1 and

let T = AR(Clift). Move up the rectangles in T and the rectangle r1 by 2/3 and hereby move
r1 completely out of the previous packing, since y1 ≥ 1/3. Then move r1 to the right by ε,
this is possible, since x ′

1 ≤ 1−ε.
In the hole vacated by r1 we have on the left side a free slot of width ε (since w1 ≥ ε

and since we moved r1 to the right by ε) and height 2/3+h1 ≥ 1 (since we moved up T by
2/3 and since h1 ≥ 1/3). Place C1 in this slot and pack C2 on top of the packing at height
5/3.

1
T

2
3

1
3

r1
Clift

(a) Definition of T and Clift.

1

T

2
3

1
3

r1

5
3

C1

Clift

(b) Modified packing where C1 is
packed in the slot of height 1 and width
ε.

Figure 2.7: Packing methods for Lemma 2.6

Algorithm 2.3 Rectangle of height 1/3
Requirement: Packing P that satisfies Condition 1.3.

1: Define Clift := VPCE(x1, y ′
1) and move up T = AR(Clift) by 2/3.

2: Move up r1 by 2/3 and then by ε to the right, i.e., pack r1 at position (x1 +ε, y1 +2/3).
3: Pack C1 into the slot vacated by r1 and pack C2 above the entire packing.

22

2.4 Modifying a Packing

2.4.2 NO 1/3-HIGH RECTANGLES CLOSE TO THE SIDE OF THE BIN

Lemma 2.7. Let c1 > 0 be a constant. If the following conditions hold for P , namely

2.1. there is no 1/3-high rectangle that intersects [c1ε, (c1 +1)ε]× [0,1], and

2.2. we have h(W1−5(c1+1)ε) < 1/3,

then we can derive a packing of I into a strip of height 5/3+ε in additional time O (n).

Proof. Let W ′ = W1−5(c1+1)ε ∩VLR((c1 + 1)ε;0,1) be the set of rectangles of width larger
than 1− 5(c1 + 1)ε intersecting the vertical line x = (c1 + 1)ε. By Condition 2.2 we have
h(W ′) < 1/3.

Consider the rectangle r1 = PointR((c1 +1)ε,1/2) (if no such rectangle exists, we set r1

as a dummy rectangle of height and width equal to 0). We have to distinguish two cases
depending on this rectangle and the set W ′, or to be more accurate their amount of heights
above and below the horizontal line at height y = 1/2. Therefore, let a = 1/2− y1 be the
height of r1 below y = 1/2 and a′ = y ′

1 − 1/2 the height above y = 1/2. Furthermore, let
h = h(W ′∩VLR((c1 +1)ε;0, y1)) and h′ = h(W ′∩VLR((c1 +1)ε; y ′

1,1)) be the heights of W ′

above and below y = 1/2 excluding r1 (if r1 ∈W ′).
Note that by Condition 2.1 the height of r1 is h1 ≤ 1/3, hence it intersects at most one of

the horizontal lines at height y = 1/3 or y = 2/3.

We are going to cut a slot of width ε between c1ε and (c1 +1)ε down to a height ycut. The
value ycut depends on the particular packing. So we distinguish between two cases:

1. If a +h ≤ 1/6 or a′+h′ ≤ 1/6, we will assume w.l.o.g that a′+h′ ≤ 1/6 by otherwise
mirroring the packing horizontally over y = 1/2. In this case we set ycut = y ′

1.

2. If a +h > 1/6 and a′+h′ > 1/6, we will assume w.l.o.g that y1 ≥ 1/3 by otherwise
mirroring the packing horizontally over y = 1/2. Here we set ycut = y1.

Note, if r1 ∈ W ′ it follows that we are in the first case, since h + a + a′+h′ = h(W ′) < 1/3

and so h +a < 1/6 or h′+a′ < 1/6. In both cases we have ycut ∈ [1/3,2/3].

ALGORITHM. We are going to cut a slot of width ε between c1ε and (c1 + 1)ε down to
height ycut, which is either y ′

1 or y1 (hence PointR((c1 +1)ε, ycut) = ;). Let X = [c1ε, (c1 +
1)ε]×[ycut,1] be the designated slot that we want to free. To do this we differentiate four sets
of rectangles intersecting X . The entire algorithm is given in Algorithm 2.4—see Figure 2.8
for an illustration.

23

2 Strip Packing

1

c1ε

RW ′RR

B

I

X

1
2
1
3

r1 a′

(a) Definition of RW ′ , RR , B and I (here in
Case 1 with a′+h′ ≤ 1/6)

1

c1ε

CRW ′CRR
CB CI

C1

1
2
1
3

5
3

a′r1

(b) Modified packing where C1 is packed in
the shaded slot of height 1 and width ε.

Figure 2.8: Packing methods for Lemma 2.7 (the x-direction is distorted, i.e., ε is chosen
very large, to illustrate the different sets that intersect with X)

• Let RW ′ = VLR((c1+1)ε; ycut,1)∩W ′ be the set of rectangles in W ′ which intersect X by
crossing the vertical line at width x = (c1 +1)ε. Notice, that if r1 ∈W ′, then ycut = y ′

1.
Therefore, RW ′ has total height h′. Place the rectangles of RW ′ into a container CRW ′

of height h′ < 1/3 and width 1 and pack it at position (0,5/3−h′).

• Let RR = VLR((c1+1)ε; ycut,1)\W ′ be the set of remaining rectangles intersecting X by
crossing the vertical line at width x = (c1 +1)ε. Pack these rectangles left-aligned into
a container CRR of width 1−5(c1 +1)ε and height at most 1− ycut −h′. This container
is placed at position (5(c1 +1)ε,1). This does not cause a conflict, since ycut is always
greater than 1/3 and h(RR)+h(RW ′) ≤ 1− ycut ≤ 2/3.

• Let B = HLR(c1ε, (c1 +1)ε; ycut) be the rectangles which intersect X from the bottom.
Note, that there is no rectangle at position ((c1 + 1)ε, ycut). By Condition 2.1, these
rectangles have height at most 1/3 and fit bottom-aligned into a container CB of width
(c1 +1)ε and height 1/3. Place CB at position ((c1 +1)ε,1).

• Let I = AR(c1ε, (c1+1)ε; ycut,1)∪VLR(c1ε; ycut,1)\(RW ′∪RR ∪B) be the set of remain-
ing rectangles which are completely inside X or intersect X only from the left. This
packing has total height 1− ycut ∈ [1/3,2/3].

24

2.4 Modifying a Packing

We want to place I between height 1 and 5/3−h′ ≥ 4/3. Therefore, packing I into
a container C I of height 1/3 is sufficient. To do this we partition I into three sets.
Let I1 ⊆ I be the subset of rectangles that intersect height y = 2/3 (these rectangles fit
bottom-aligned into a container of size ((c1 +1)ε,1/3)) and let I2 ⊆ I and I3 ⊆ I be the
subsets of I that lie completely above and below y = 2/3, respectively. By preserving
the packing of I2 and I3 we can pack each into a container ((c1 +1)ε,1/3). In total we
pack I into C I = (3(c1 +1)ε,1/3). This container is placed at position (2(c1 +1)ε,1).

In total the container CB is placed on the right side of the slot X on height 1. Next to CB we
place the container C I of width 3(c1 +1)ε at position (2(c1 +1)ε,1). Between the container
C I and the right side of the strip we have a space of 1−5(c1+1)ε for the container CRR . The
container CB and C I have a height of 1/3 and CRR one of 1− ycut −h′. Since the height of
CRW ′ is h′ < 1/3 it fits on top of these containers so that the top edge of CRW ′ is on height 5/3.

Finally, we insert C1 into the free slot X and pack C2 above the entire packing. We have
to prove that the slot has sufficient depth for C1. The slot starts at height ycut and goes up to
5/3−h′. Therefore, we have to check whether 5/3−h′− ycut ≥ 1.

In the first case, we have h′+a′ ≤ 1/6 and ycut = y ′
1 = a′+1/2. Hence,

5/3−h′− ycut = 5/3−h′−a′−1/2 ≥ 5/3−1/6−1/2 = 1.

In the second case, we have h +a > 1/6 and ycut = y1 = 1/2−a. From our discussion above
we know that h +h′ < 1/3. Hence,

5/3−h′− ycut = 5/3−h′+a −1/2 > 5/3−1/3+h +a −1/2 ≥ 5/3−1/3+1/6−1/2 = 1.

Algorithm 2.4 No 1/3-high rectangles close to the side of the strip
Requirement: Packing P that satisfies Conditions 2.1 and 2.2.

1: Pack RW ′ = VLR((c1 +1)ε; ycut,1)∩W ′ into a container CRW ′ = (1,h′) at position (5/3−
h′,0).

2: Pack RR = VLR((c1 +1)ε; ycut,1) \ W ′ into a container CRR = (1−5(c1 +1)ε,2/3−h′) at
position (5(c1 +1)ε,1).

3: Pack B = HLR(c1ε, (c1 + 1)ε; y1) \ (RW ′ ∪ RR) into a container CB = ((c1 + 1)ε,1/3) at
position ((c1 +1)ε,1).

4: Pack I = (AR(c1ε, (c1 + 1)ε; ycut,1)∪VLR(c1ε; ycut,1)) \ (RW ′ ∪RR ∪B) into a container
C I = (3(c1 +1)ε,1/3) at position (2(c1 +1)ε,1).

5: Pack C1 into the slot X at position (c1ε, ycut) and pack C2 above the entire packing.

Obviously, the methods of Lemma 2.7 can similarly be applied if there is no 1/3-high
rectangle that intersects [1− (c1 +1)ε,1− c1ε]× [0,1] at the right side of P .

25

2 Strip Packing

2.4.3 ONE SPECIAL BIG RECTANGLE IN P

Lemma 2.8. Let c2 > 0 be a constant. If the following conditions hold for P , namely

3.1. there is a rectangle r1 of height h1 ∈ [1/3,2/3] and width w1 ∈ [(4c2 + 1)ε,1] with

y1 < 1/3 and with y ′
1 > 2/3, and

3.2. we have w(H2/3) ≥ 1−w1 − c2ε,

then we can derive a packing of I into a strip of height 5/3+ε in additional time O(n).

Proof. Since the height of r1 is h1 ≤ 2/3 we can assume w.l.o.g. that r1 does not intersect
y = 1/6, i.e., y1 ≥ 1/6 (by otherwise mirroring over y = 1/2).

We want to line up all rectangles in the instance I of height greater than h = max(1/2,1−
h1) and the rectangle r1 on the bottom of the strip. These rectangles fit there, since in any
optimal solution they have to be placed next to each other (all rectangles of Hh = {ri | hi > h}

have to intersect the horizontal line at height y = 1/2 and no rectangle of Hh fits above r1).
Since 1−h1 ≤ 2/3, H2/3 is included in the set Hh . See Figure 2.9 for an illustration of the
following algorithm and refer to Algorithm 2.5 for a compressed description.

Let T = AR(0,1;2/3,1) be the rectangles which lie completely above the horizontal line at
height y = 2/3. We move up the rectangles in T by 1/3 into the area [0,1]× [1,4/3]. Now
there is a free space of height at least 1/3 above r1.

Let B = AR(0,1;0,1/3) be the rectangles which lie completely below the horizontal line
at height y = 1/3. We pack these rectangles into a container CB = (1,1/3) by preserving the
packing of B and pack CB at position (0,4/3), i.e., directly above T . Since by assumption r1

does not intersect the horizontal line at height y = 1/6, there is a free space of height at least
1/6 below r1.

The remaining rectangles of height smaller than h except r1 have to intersect one of the
horizontal lines at height 1/3 or 2/3 or lie completely between them. We denote these
rectangles by M1 = HLR(0,1;1/3) \ (Hh ∪ {r1}), M2 = HLR(0,1;2/3) \ (Hh ∪ {r1}∪ M1) and
M3 = AR(0,1;1/3,2/3). Since each rectangle in H2/3 and r1 intersects both of these lines,
the rectangles in M = M1 ∪M2 ∪M3 lie between them in slots of total width c2ε. Therefore,
we can pack M1 and M2 each bottom-aligned into a container (c2ε,h). Furthermore, the
rectangles in M3 fit into a container (c2ε,1/3) by pushing the packing of the slots together.
In total we pack M into a container CM = (3c2ε,h) and pack it aside for the moment.
After these steps we removed all rectangles of height at most h except r1 out of the previous
packing. All remaining rectangles intersect the horizontal line at height y = 1/2. We line up
the rectangles in L = HLR(0, x1;1/2), i.e., the remaining rectangles on the left of r1, bottom-
aligned from left to right starting at position (0,0). The rectangles in R = HLR(0, x ′

1;1/2) (the

26

2.4 Modifying a Packing

1

2
3

1
3

T

B

L R

1
2

r1

(a) Definition of T , B , L, R and M (dark rect-
angles squeezed between L and R).

1
CM

T

B

2
3
1
2
1
3

5
3

C1\C ′
1

r1

C ′
1

(b) Modified packing where C ′
1 is packed in

the left-hand slot of height 1 and C1 \ C ′
1 is

packed in the right-hand shaded slot of height
h and width ε.

Figure 2.9: Packing methods for Lemma 2.8

Algorithm 2.5 Single big rectangle of height 1/3
Requirement: Packing P that satisfies Conditions 3.1 and 3.2.

1: Move up T = AR(0,1;2/3,1) by 1/3
2: Pack the rectangles in B = AR(0,1;0,1/3) into a container CB = (1,1/3) at position

(0,4/3).
3: Pack the rectangles in M = (AR(0,1;1/3,2/3)∪HLR(0,1;1/3)∪HLR(0,1;2/3))\(Hh∪{r1})

into a container CM = (3c2,h).
4: Line up the rectangles in L = HLR(0, x1;1/2) on the left of r1 starting at position (0,0).
5: Line up the rectangles in R = HLR(0, x ′

1;1/2) on the right of r1 starting at position (1,0)
from right to left.

6: Pack r1 at position (1−w(R)−w1,0), by moving r1 to the bottom of the strip and at most
c2ε to the right.

7: Pack CM and the resized container C1 on top of r1 into the area X ′.
8: Pack the rectangles C ′

1 ⊆C1 of height greater than h into the slot vacated by r1 and pack
C2 above the entire packing.

27

2 Strip Packing

remaining rectangles on the right of r1) are placed bottom-aligned from right to left starting
at position (1,0). Now move r1 down to the ground, i.e., pack r1 at position (x1,0). Above
r1 is a free space of height at least 1/2, since we moved T up by 1/3 and r1 down by at least
1/6. The free space has also height at least 1−h1, since there is no rectangle left above r1 up
to height 1. Hence, in total, this leaves us a free space of width w1 ≥ (4c2+1)ε and height h.
Denote this area by X = [x, x ′]× [h1,h1 +h] with x = x1 and x ′ = x1 +w1.

Move r1 to the right by at most c2ε until it touches the first rectangle in R, i.e., place
r1 at position (1− w(R)− w1,0). This reduces the width of the free area on top of r1 to
X ′ = [x + c2ε, x ′]× [h1,h1 +h]. Note, the width of X ′ is still at least (3c2 +1)ε.

In the next step we reorganize the packing of C1. Recall, that the rectangles in C1 are
placed bottom-aligned in that container. Let C ′

1 be the rectangles in C1 of height larger than
h. By removing C ′

1, we can resize the height of C1 down to h. The resized container C1 and
the container CM have both height h and total width at most (3c2+1)ε. Place them on top of
r1 in the area X ′.

Then place the rectangles in C ′
1 into the free slot on the left side of r1. They fit there, since

in any optimal packing all rectangles of height greater than h in the instance and r1 have
to be placed next to each other (all rectangles of height greater than h have to intersect the
horizontal line at height y = 1/2 and none of them fits above r1). Finally, pack C2 above the
entire packing at height 5/3.

2.4.4 TWO RECTANGLES OF HEIGHT BETWEEN 1/3 AND 2/3

Lemma 2.9. If the following conditions hold for P , namely

4.1. there are rectangles r1, r2 with heights h1,h2 ∈ [1/3,2/3] and widths w1, w2 ≥ ε, and

4.2. we have y1 < y ′
2 and y2 < y ′

1.

then we can derive a packing of I into a strip of height 5/3+ε in additional time O (n).

Proof. See Figure 2.10 for an illustration of the following algorithm which is given in Al-
gorithm 2.6. W.l.o.g. let r1 be the wider rectangle (w1 ≥ w2). Let C lift

1 = VPCE(x ′
1, y ′

1) and
C lift

2 = VPCE(x ′
2, y ′

2) be the vertical polygonal chain extensions of the top of r1 and r2, re-
spectively. Furthermore, let T1 = AR(C lift

1) and T2 = AR(C lift
2) be the rectangles above these

polygons.

Note that r1 ∉ T2 by Condition 4.2, since otherwise we have y1 ≥ y ′
2. The same argument

holds for the statement r2 ∉ T1.

28

2.4 Modifying a Packing

1
T3

1
3

2
3

C lift
2

C lift
1

r1 r2

(a) Definition of T3.

1

T3

1
3

2
3

5
3

C1

C lift
2

C lift
1

r1

r2

(b) Modified packing where C1 is packed in
the slot of height 1 and width ε.

Figure 2.10: Packing methods for Lemma 2.9

Let T3 = T1 ∪T2 be the rectangles above r1 and r2. We move up the rectangles in T3 by
2/3. This leaves a free area of height 2/3 above r1 and r2. We place r2 directly above r1 into
that free area. This is possible because w1 ≥ w2 and h2 ≤ 2/3. The hole vacated by r2 has
width w2 ≥ ε and height at least 1, since h2 ≥ 1/3 and T3 was moved up by 2/3. Finally, we
place C1 into that hole and C2 on top of the packing at height 5/3.

Algorithm 2.6 Two rectangles of height between 1/3 and 2/3
Requirement: Packing P that satisfies Conditions 4.1 and 4.2.

1: Define C lift
1 = VPCE(x1, y ′

1), C lift
2 = VPCE(x2, y ′

2), T1 = AR(C lift
1) and T2 = AR(C lift

2).
2: Move up T3 = T1 ∪T2 by 2/3.
3: Pack r2 at postion (x1, y ′

1).
4: Pack C1 into the slot vacated by r2 and pack C2 above the entire packing.

2.4.5 GAP BETWEEN INNERMOST 2/3-HIGH EDGES

The pre-conditions for this section are quite technical. We first state them formally and
present a motivation afterwards. Thus assume that the following conditions on P are satisfied
throughout this section for some small constant c3 (think of c3 = 2 for most cases).

29

2 Strip Packing

5.1. There are rectangles r`,rr ∈ H2/3 with x-coordinates x ′
`
∈ [4c3ε,1− 4c3ε] and xr ∈

[x ′
`
+4c3ε,1−4c3ε] (note that x ′

`
refers to the right side of r` whereas xr refers to the

left side of rr).

5.2. There is no 1/3-high rectangle that intersects with [x ′
`
+ (c3 −1)ε, x ′

`
+ c3ε]× [0,1] and

there is no 1/3-high rectangle that intersects with [xr − c3ε, xr − (c3 −1)ε]× [0,1].

To understand the motivation for these conditions assume that Lemma 2.5 is not applica-
ble, which reads as follows. If there is a 1/3-high edge on the left side of the bin then the

space to the left of this edge is almost completely occupied by 2/3-high rectangles. Now we
consider r` and rr as the innermost such 2/3-high rectangles. By Lemma 2.5 we know that
there are no further 1/3-high rectangles between x ′

`
and xr other than in a very thin slot next

to these edges and close to the x-coordinate 1/2 (exceptions are wide 1/3-high rectangles
that span across these areas—these cases are handled separately). This property is captured
in Condition 5.2. For technical reasons we require xr ≥ x ′

`
+4c3ε. If this is not the case (and

Lemma 2.5 is not applicable), we have w(H2/3) ≥ 1−6c3ε and can apply Lemma 2.4.

BASIC ALGORITHM. We are going to cut out a certain slot of width c3ε next to x ′
`
. The

depth of this slot depends on the particular packing P . In a first step we describe our basic
algorithm and assume that we cut down to height ycut ∈ [1/3,2/3]. In a second step we show
how this basic algorithm is used depending on P and prove that it actually returns a valid
packing.

Let X = [x ′
`

, x ′
`
+ c3ε]× [ycut,1] be the designated slot that we want to free. To do this we

differentiate five sets of rectangles that intersect X . The definition of these sets depends on
the rectangle rcorner = PointR(x ′

`
+c3ε, ycut) and on the rectangle rsplit = PointR(x ′

`
+c3ε, ycut+

1/3), which are the rectangles that reach into X from the right at height ycut and ycut +
1/3, respectively. If no rectangle contains (x ′

`
+ c3ε, ycut) or no rectangle contains (x ′

`
+

c3ε, ycut + 1/3) in its interior, we introduce dummy rectangles of size (0,0) for rcorner and
rsplit, respectively.

One further important ingredient of the basic algorithm (or rather its correctness) is the
following blocking property. No rectangle that intersects the designated slot X , i.e., that
intersects [x ′

`
, x ′
`
+c3ε]×[ycut, ycut+1/3], reaches to the left of x ′

`
or to the right of xr+c3ε, i.e.,

VLR(x ′
`

; ycut, ycut+1/3) =; and VLR(x ′
`
+c3ε; ycut, ycut+1/3)∩VLR(xr +c3ε; ycut, ycut+1/3) =

;.
Intuitively, we think of r` and rr as the blocking rectangles, i.e., y`, yr ≤ ycut and y ′

`
, y ′

r ≥
ycut+1/3. Hence no rectangle intersecting X can reach beyond r` and rr . In one special case,
we cannot ensure that rr is such a blocking rectangle, i.e., ycut +1/3 > y ′

r . In this case we

30

2.4 Modifying a Packing

1

r`

x′` xr

rr

ycut

1
3

X

(a) The rectangles r` and rr enforce the
blocking property in the bottom of X .

1

x′`

1
3

c3ε

2
3

1
3

B

R

T Clift

rcorner

rsplit

I

ycut

(b) Distorted close-up on all sets except X1/3

(which consists of 1/3-high rectangles than
can occur between x ′

`
and x ′

`
+ (c3 −1)ε) for

ycut = 1/3. I consists of all rectangles that lie
completely inside X (the shaded region), T
consists of all rectangles that lie completely
above Clift, rectangles in B reach into X from
below, rectangles in R reach into X from the
right.

Figure 2.11: Blocking property and definition of sets that intersect X .

need the additional area of width c3ε to the right of xr . See Figure 2.11(a) for an illustration
of this property, Figure 2.11(b) for an illustration of the different sets of rectangles that
intersect X and Figure 2.12 for an illustration of the following basic algorithm.

For the moment we assume that the blocking property is satisfied for ycut and thus no
rectangle reaches into X from the left below ycut +1/3.

• Let X1/3 = AR(x ′
`

, x ′
`
+ c3ε;0,1)∩ H1/3 be the set of 1/3-high rectangles that lie com-

pletely within c3ε distance to the right of x ′
`
. By Condition 5.2, the total width that

the rectangles of X1/3 occupy in the packing is bounded by (c3 −1)ε. Therefore, we
can remove these rectangles and pack them into a container CX1/3 = ((c3 − 1)ε,1) by
preserving the packing of the rectangles in X1/3. We put CX1/3 aside for later insertion
into the free slot X together with C1.

• Let B = HLR(x ′
`

, xcorner; ycut) \ (X1/3 ∪ {rcorner}) be the set of remaining rectangles that
intersect the bottom of X excluding rcorner. Pack B bottom-aligned into a container

31

2 Strip Packing

1

r`

x′` xr

rr

rcorner

rsplit

1
3

2
3

ycut

R 1
3

X

T

Clift

(a) Starting situation with ycut = 1/3.

1

R

1

5
3

2
3

CB

CI

4c3ε

potential
conflict

T

r`

x′` xr

rr

rcorner

rsplit

1
3

2
3

ycut

Clift

(b) Generated packing where C1 and CX1/3

are packed into the shaded slot of height 1
and width c3ε. Since rcorner reaches below 1
in this case, a conflict might occur between
rcorner and a rectangle that lies to the right of
rsplit and reaches into T . In the case shown
here, rcorner is moved to the right of rsplit to
resolve the potential conflict.

Figure 2.12: The basic algorithm

Algorithm 2.7 Basic algorithm
Requirement: Packing P that satisfies Conditions 5.1 and 5.2; ycut ∈ [1/3,2/3] that satisfies

the blocking property
1: Remove the rectangles X1/3 = AR(x ′

`
, x ′
`
+c3ε;0,1)∩H1/3 and pack them into a container

CX1/3 = ((c3 −1)ε,1).
2: Pack B = HLR(x ′

`
, xcorner; ycut) \ (X1/3 ∪ {rcorner}) into a container CB = (c3ε,1/3) at posi-

tion (0,1).
3: Pack I = AR(X) \ X1/3 into a container C I = (3c3ε,1/3) at position (c3ε,1).
4: Move up the rectangles T = AR(Clift) \ I by 2/3.
5: Move up the rectangles R = VLR(x ′

`
+c3ε; ycut, ycut+1/3) by 2/3 and left-align them with

x ′
`
+ c3ε.

6: Resolve potential conflicts.
7: Pack C1 and CX1/3 into the slot X at position (x ′

`
, ycut) and pack C2 above the entire

packing.

32

2.4 Modifying a Packing

CB = (c3ε,1/3). This is possible since xcorner − x ′
`
< c3ε and the 1/3-high rectangles

have been removed before. Place this container at the left side of the strip above the
current packing at position (0,1).

• Let I = AR(X) \ X1/3 be the set of remaining rectangles that lie completely inside of
X . There are no 1/3-high rectangles in I due to the removal of X1/3 but the packing
has a total height of 1− ycut ∈ [1/3,2/3]. We use a standard method to repack I into a
container of height 1/3 as follows. Let I1 ⊆ I be the subset of rectangles that intersect
height y = 2/3 (these rectangles can be bottom-aligned to fit into (c3ε,1/3)) and let I2 ⊆
I and I3 ⊆ I be the subsets of I that lie completely above or below y = 2/3, respectively.
By preserving the packing of I2 and I3 we can pack I into C I = (3c3ε,1/3). Place this
container next to CB at position (c3ε,1). The container does not intersect with the
space above the designated slot X since the combined width of CB and C I is 4c3ε and
x ′
`
≥ 4c3ε by Condition 5.1.

• Consider the contour Clift defined by height y = ycut +1/3 to the left of rsplit and by
the top of rsplit to the right. More formally, let Clift = PL((0, ycut + 1/3), (xsplit, ycut +
1/3), (xsplit, y ′

split),

(1, y ′
split)). Let T = AR(Clift) \ I be the set of rectangles that lie completely above this

contour but not in I . Move T up by 2/3. This does not cause an overlap with the
containers CB and C I since Clift lies completely above 2/3 (as ycut ≥ 1/3) and thus the
lowest rectangle in T reaches a final position above 4/3.

• Let R = VLR(x ′
`
+ c3ε; ycut, ycut + 1/3) be the set of rectangles that intersect with the

right side of X up to the crucial height of ycut + 1/3. Move R up by 2/3 and then
left-align all rectangles at x-coordinate x ′

`
+c3ε. This is the sole operation in the basic

algorithm that might cause a conflict. This potential conflict only affects rcorner and we
will later see how to overcome this difficulty. All other rectangles were entirely above
ycut in the original packing and are thus moved above height 1. Therefore, they cannot
overlap with any rectangle inside the original packing P . Since the blocking property
ensures that no rectangle of R has width greater than xr + c3ε− x ′

`
and xr ≤ 1−4c3ε

(by Condition 5.1) we can left-align all rectangles at x-coordinate x ′
`
+c3ε without any

rectangle intersecting the right side of the strip.

Finally, after resolving the potential conflict from the last step, we insert C1 and CX1/3 into
the slot X at position (x ′

`
, ycut) (they fit since w(C1)+w(CX1/3) ≤ c3ε and all rectangles in T

lie above ycut +1/3+2/3 = ycut +1) and pack C2 above the entire packing as always. See
Algorithm 2.7 for the complete basic algorithm.

33

2 Strip Packing

1

ytop

ybottom

1
3

1
3 r1

r2

r3

r4

ycut

X

r`

x′` xr

rr

(a) Definition of ytop, ybottom, r1,r2,r3 and
r4 and accentuation of the designated slot X
next to r`. Here r1 intersects with 1/3 and
w1 +w2 ≤ 1−x ′

`
− c3ε and thus ycut = 1/3.

1

y′top-right

y′top-left

y′top

2c3ε

y′bottom-right

y′bottom-right

y′bottom

2c3ε

X

r`

x′` xr

rr

(b) Definition of y ′
top and y ′

bottom. No rectangle from X
below y ′

top reaches beyond xr + c3ε.

Figure 2.13: Notations

We described the basic algorithm in a way that it always cuts down from the top of the
packing next to r`. But there are four potential cuts since we can also cut next to rr or from
below. To ease the presentation we will stick to cutting next to r` from above by otherwise
mirroring the packing horizontally and/or vertically.

Now let us see how to invoke the basic algorithm such that the blocking property is satis-
fied for ycut and how to resolve the potential conflict.

Let ytop = min(y ′
`

, y ′
r) > 2/3 and let ybottom = max(y`, yr) < 1/3. We get the rectangles

r1 = PointR(x ′
`+ c3ε, ytop −1/3),

r2 = PointR(x ′
`+ c3ε, ybottom +1/3),

r3 = PointR(xr − c3ε, ytop −1/3), and

r4 = PointR(xr − c3ε, ybottom +1/3)

as some potential corner pieces of the cut (see Figure 2.13(a)), corresponding to rectangle
rcorner in the basic algorithm. Note that the rectangles r1,r2,r3 and r4 do not necessarily have
to differ or to exist (while in the latter case we again introduce a dummy rectangle of size
(0,0)) . By Condition 5.2 we know that h1,h2,h3,h4 ≤ 1/3. In the following cases we set
ycut ∈ [1/3, ytop −1/3]. For this value of ycut the blocking property is satisfied since y`, yr ≤
1/3 ≤ ycut and y ′

`
, y ′

r ≥ ytop ≥ ycut +1/3. Thus VLR(x ′
`

; ycut, ycut +1/3) ⊆ VLR(x ′
`

; y`, y ′
`

) =;
and VLR(x ′

`
+ c3ε; ycut, ycut +1/3)∩VLR(xr + c3ε; ycut, ycut +1/3) ⊆ VLR(x ′

`
+ c3ε; ycut, ycut +

34

2.4 Modifying a Packing

1/3)∩VLR(xr ; yr , y ′
r) ⊆ VLR(xr ; yr , y ′

r) =; (no rectangle from [x ′
`

, x ′
`
+c3ε]×[ycut, ycut+1/3]

reaches beyond x ′
`

and xr).

We now describe the different cases in which we invoke the basic algorithm.

CASE 1. y1 ≥ 1/3, i.e., r1 lies above height 1/3.
In this case we invoke the basic algorithm with ycut = y1 ∈ [1/3, ytop−1/3] (hence the block-
ing property is satisfied). We have rcorner = (0,0) and r1 is the lowest rectangle in R. The
rectangle r1 is moved above height 1 since y1 ≥ 1/3. Thus no conflict occurs.

In the following assume conversely that y1, y3 < 1/3 and y ′
2, y ′

4 > 2/3 (using mirroring).
This implies that r1,r3 intersect the horizontal line at height y = 1/3 and r2,r4 intersect the
horizontal line at height y = 2/3 (by definition of the potential corner pieces and as ytop −
1/3 > 1/3 and ybottom +1/3 < 2/3). Hence, we have r1 6= r2 and r3 6= r4 since h1,h2,h3,h4 ≤
1/3.

CASE 2. w1 +w2 ≤ 1−x ′
`
− c3ε (and r1 intersect y = 1/3, r2 intersects y = 2/3).

In this case we potentially mirror the packing horizontally, i.e., over y = 1/2, to ensure that
h1 ≤ h2. We invoke the basic algorithm with ycut = 1/3 (hence the blocking property is
satisfied) and thus we have rcorner = r1 and rsplit = r2 (as we can assume from the previous
case that r1 intersects y = 1/3 and r2 intersects y = 2/3). Since r1 intersects the horizontal
line y = 1/3 it is not moved out of the original packing P (and could therefore cause a
conflict with the original packing). Since w1 +w2 ≤ 1− x ′

`
− c3ε and h1 ≤ h2 we can pack

r1 to the right of r2 which is left-aligned at x-coordinate x ′
`
+ c3ε, i.e., pack r1 at position

(x ′
`
+ c3ε+w2, y2 +2/3). This handles the potential conflict of the basic algorithm.

In the following we assume that w1+w2 > 1−x ′
`
−c3ε and accordingly w3+w4 > xr −c3ε.

Thus
∑4

i=1 wi > 1+ xr − x ′
`
−2c3ε> 2(xr − x ′

`
). This is obviously only possible if r1 = r3 or

r2 = r4. Let us thus assume r2 = r4 (by otherwise mirroring the packing over y = 1/2).

CASE 3. w1 ≤ xr − x ′
`
− 2c3ε (and r2 = r4 and r1 intersects y = 1/3 and r2 intersects

y = 2/3).
Again we invoke the basic algorithm with ycut = 1/3 (hence the blocking property is satisfied)
and accordingly we have rcorner = r1 and rsplit = r2. All rectangles above r2 are in T , hence
by moving up T by 2/3 no rectangle intersects the area above r2, that is, in particular, the
area [x ′

`
+c3ε, xr −c3ε]× [y ′

2,1]. Furthermore, since r2 intersects the horizontal line y = 2/3,
except r1 no rectangle is placed in [x ′

`
+ c3ε, xr − c3ε]× [2/3,1] after moving up R by 2/3.

The rectangle r1 has height at most 1/3 and width at most xr − x ′
`
−2c3ε. Hence by moving

35

2 Strip Packing

up r1 by 2/3 and left-aligning it at x-coordinate x ′
`
+ c3ε it intersects only with the free area

[x ′
`
+ c3ε, xr − c3ε]× [2/3,1] inside the original packing P . Thus no conflict occurs.

On the other hand, if conversely w1 > xr − x ′
`
−2c3ε and accordingly w3 > xr − x ′

`
−2c3ε

we have r1 = r3 since xr ≥ x ′
`
+4c3ε by Condition 5.1.

Thus for the last case we have r1 = r3 and r2 = r4 and r1 intersects height y = 1/3 and r2

intersects height y = 2/3. The challenge in this remaining case is that we cannot move r1

out of the original packing (since it intersects y = 1/3) and thus there might occur a conflict
close to rr . We now show how to resolve this potential conflict close to rr .

TWO WIDE CORNER PIECES. Let y ′
top-left be the height of the bottom of the lowest rect-

angle above r` that intersects x ′
`
− c3ε and x ′

`
+ c3ε, i.e., y ′

top-left = min{yi | ri ∈ VLR(x ′
`
−

c3ε; y ′
`

,1)∩VLR(x ′
`
+ c3ε; y ′

`
,1)}. If there is no such rectangle let y ′

top-left = 1. Let y ′
top-right,

y ′
bottom-left and y ′

bottom-right be defined accordingly as shown in Figure 2.13(b). Now we define
y ′

top = min(y ′
top-left, y ′

top-right) and y ′
bottom = max(y ′

bottom-left, y ′
bottom-right). Let us assume that

y ′
top = y ′

top-right (by otherwise mirroring over x = 1/2).

CASE 4. y1 ≥ y ′
top−2/3 (and r1 = r3 and r2 = r4 and r1 intersects y = 1/3 and r2 intersects

y = 2/3).
In this case we invoke the basic algorithm with ycut = 1/3 as usual (hence the blocking
property is satisfied) and again we have rcorner = r1 and rsplit = r2. Let r5 be the rectangle
that defined y ′

top = y ′
top-right = y5. Then the rectangles r2 and r5 intersect the vertical line

x = xr − c3ε. Since y ′
top ≥ min(y ′

`
, y ′

r) > 2/3 and r2 intersects the horizontal line y = 2/3 and
since r2 and r5 intersect the same vertical line, it follows that y5 = y ′

top ≥ y ′
2. So r5 and all

rectangles above r5 are in T and moved up by 2/3. Therefore, no rectangle intersects with
the area [x ′

`
+c3ε, xr +c3ε]×[y ′

top,1]. Since y1 ≥ y ′
top−2/3, we move up r1 above y ′

top and into
this area. Thus no conflict occurs. So in the following assume conversely that y1 < y ′

top−2/3

and accordingly y ′
2 > y ′

bottom +2/3.

CASE 5. y1 < y ′
top −2/3 and y ′

2 > y ′
bottom +2/3.

Now assume that ybottom = y` (by otherwise mirroring vertically—so y ′
top = y ′

top-right does not
necessarily hold any more). Note that we refer to the original definition of ybottom instead
of y ′

bottom here. We invoke the basic algorithm using ycut = y ′
1. So r1 is left in the original

position (and we have rcorner = (0,0)) and since y ′
1 > 1/3 all rectangles from R are moved out

of the original packing. It remains to verify the blocking property for ycut = y ′
1, since y ′

1 is
not necessarily in [1/3, ytop −1/3].

36

2.4 Modifying a Packing

We have y ′
`
> y` + 2/3 = ybottom + 2/3 ≥ y ′

1 + 1/3 = ycut + 1/3 (since y ′
1 ≤ ybottom + 1/3

as by definition r2 intersects with ybottom + 1/3 and r1 6= r2). So the blocking property is
enforced by r` to the left, i.e., VLR(x ′

`
; ycut, ycut +1/3) =;. Moreover, we have ycut +1/3 <

y ′
top since ycut + 1/3 = y ′

1 + 1/3 = y1 + h1 + 1/3 ≤ y1 + 2/3 < y ′
top. Thus by definition of

y ′
top no rectangle that intersects xr − c3ε between y ′

r and y ′
top reaches beyond xr + c3ε, i.e.,

VLR(x ′
`
+c3ε; ycut, ycut+1/3)∩VLR(xr +c3ε; ycut, ycut+1/3) =;. So the blocking property is

also satisfied for the right side.
In total we get the following lemma.

Lemma 2.10. Let c3 > 0 be a constant. If the following conditions hold for P , namely

5.1. there are rectangles r`,rr ∈ H2/3 with x-coordinates x ′
`
∈ [4c3ε,1− 4c3ε] and xr ∈

[x ′
`
+4c3ε,1−4c3ε], and

5.2. there is no 1/3-high rectangle that intersects with [x ′
`
+ (c3 −1)ε, x ′

`
+ c3ε]× [0,1] and

there is no 1/3-high rectangle that intersects with [xr − c3ε, xr − (c3 −1)ε]× [0,1],

then we can derive a packing of I into a strip of height 5/3+ε in additional time O (n logn).

We use the same methods, namely the basic algorithm invoked with ycut = 1/3 and c3 = 2

for another case where we do not have a blocking edge of height 2/3 on both sides. More
specifically, we get the following corollary where the right-hand blocking rectangle rr is
1/3-high.

Corollary 2.2. If the following conditions hold for P , namely

5.3. there is a rectangle r` ∈ H2/3 with x-coordinate x ′
`
∈ [8ε,1/2−9ε], and

5.4. there is a rectangle rr ∈ H1/3 that intersects y = 1/3 and y = 2/3 with x-coordinate

xr ∈ [1/2−ε,1/2+ε], and

5.5. there is no 1/3-high rectangle that intersects with [x ′
`
+ε, x ′

`
+2ε]× [0,1],

then we can derive a packing of I into a strip of height 5/3+ε in additional time O (n logn).

Proof. As stated above, we invoke the basic algorithm with ycut = 1/3 and c3 = 2. Note that
xr ≥ x ′

`
+8ε= x ′

`
+4c3ε. The blocking property is satisfied, since r` and rr intersects with the

horizontal lines at height y = 1/3 and y = 2/3. If rcorner = (0,0) or rsplit = (0,0) we can use the
same methods as in Case 1. Otherwise rcorner intersects y = 1/3 and rsplit intersects y = 2/3.
Since rr also intersects y = 1/3 and y = 2/3 we have wcorner ≤ xr − x ′

`
and wsplit ≤ xr − x ′

`
.

Thus wcorner +wsplit ≤ 2xr −2x ′
`
≤ 1+2ε−2x ′

`
< 1− x ′

`
−4ε = 1− x ′

`
−2c3ε. Hence we can

use the same methods as in Case 2.

37

2 Strip Packing

2.5 ALGORITHM COVERS ALL CASES

In this section we prove that our Algorithm 2.1 (stated on page 13) indeed covers all the
cases. Recall that ε< 1/(28 ·151) = 1/4228. Suppose (after the inapplicability of Lemma 2.3
and Lemma 2.4),

h(W1−130ε) < 1/3 and (2.3)

w(H2/3) < 27/28. (2.4)

Consider the intervals I` = [0, x ′
`
+ε], IM = [1/2−ε,1/2+ε] and Ir = [xr −ε,1], where x ′

`

and xr refer to the rectangles defined in line 6 of the algorithm. From the inapplicability of
Algorithm 2.2 (Lemma 2.5) on rectangles r` and rr follows that the intervals I` and Ir are
almost occupied with 2/3-high rectangles. To be more precise we have w(AR(0, x ′

`
;0,1)∩

H2/3) ≥ x ′
`
−ε and w(AR(xr ,1;0,1)∩H2/3) ≥ 1−xr −ε. Furthermore, the x-coordinates of the

sides of all 1/3-high rectangles are in I`, IM or Ir , since otherwise we could apply Algorithm
2.2 (Lemma 2.5) on this rectangle. To put it in another way the rectangles in H1/3 are either
completely inside one of these intervals or span across one interval to another.

If the algorithm reaches line 6 it is not possible that a 2/3-high rectangle r1 spans from I`

to Ir , as otherwise we have w(H2/3) ≥ w(AR(0, x ′
`

;0,1)∩ H2/3)+w(AR(xr ,1;0,1)∩ H2/3)+
w1 ≥ x ′

`
− ε+ 1− xr − ε+ xr − x ′

`
− 2ε ≥ 1− 4ε > 27/28 for ε < 1/112. The same holds if

there were two 2/3-high rectangles r1, r2, that span from I` to IM and IM to Ir , respectively
(w(H2/3) ≥ w(AR(0, x ′

`
;0,1)∩ H2/3)+w(AR(xr ,1;0,1)∩ H2/3)+w1 +w2 ≥ x ′

`
−ε+1− xr −

ε+xr −x ′
`
−4ε≥ 1−6ε> 27/28 for ε< 1/168).

If there is a 2/3-high rectangle r that intersects with x = x ′
`
+ε, i.e., r spans from I` to IM ,

then we redefine r` as the rightmost 2/3-high rectangle in IM , or r` = r if there is no 2/3-
high rectangle completely in IM . On the other hand, if there is a rectangle r that intersects
with x = xr − ε, i.e., r spans from IM to Ir , then we redefine rr as the leftmost 2/3-high
rectangle completely in IM , or rr = r if no 2/3-high rectangle is completely in IM .

P now (after line 6 of the algorithm) has the following properties.

• The areas to the left of r` and to the right of rr are almost completely covered by 2/3-
high rectangles, i.e., w(AR(0, x ′

`
;0,1)∩H2/3) > x ′

`
−4ε and w(AR(xr ,1;0,1)∩H2/3) >

1−xr −4ε.

• The x-coordinates of the sides of all 1/3-high rectangles are in I`, IM or Ir .

38

2.5 Algorithm Covers All Cases

• We have xr −x ′
`
> 143ε, since otherwise w(H2/3) ≥ w(AR(0, x ′

`
;0,1)∩H2/3)+

w(AR(xr ,1;0,1)∩H2/3) ≥ x ′
`
−4ε+1−xr −4ε≥ 1−151ε≥ 27/28 for an ε< 1/(28·151).

The first property follows from the inapplicability of Algorithm 2.2 (Lemma 2.5) and the
observation that only uncovered area of total width 3ε in [x ′

`
, x ′
`
+ε] (for the now outdated

value of x ′
`
) and [1/2− ε,1/2+ ε] can be added if we redefine r` and/or rr . Let c3 = 2 if

x ′
`
< 1/2−3ε and xr > 1/2+3ε and c3 = 5 otherwise. The intention of this definition is that

[x ′
`
+ (c3 −1)ε, x ′

`
+c3ε] does not intersect with I`∪ IM and [xr −c3ε, xr − (c3 −1)ε] does not

intersect with IM ∪ Ir (here we use xr − x ′
`
> 143ε as thus if I` lies close to IM we have a

bigger gap between IM and Ir and vice versa). Since the x-coordinates of the sides of all
1/3-high rectangles are in I`, IM and Ir we thus get the following property for P .

• If a 1/3-high rectangle intersects with [x ′
`
+ (c3 − 1)ε, x ′

`
+ c3ε]× [0,1], then it has to

cross the vertical line at x = x ′
`
+ c3ε.

• If a 1/3-high rectangle intersects with [xr − c3ε, xr − (c3 − 1)ε]× [0,1], then it has to
cross the vertical line at x = xr − c3ε.

Now assume that x ′
`
≤ 4c3ε and no 1/3-high rectangle intersects with x = x ′

`
+c3ε. Thus no

1/3-high rectangle spans across I` and IM and the precondition of Lemma 2.7 with c1 = 5c3

is satisfied (we have h(W1−5(c1+1)ε) = h(W1−5(5c3+1)ε) ≤ h(W1−130ε) < 1/3 by Condition 2.3).
We use Algorithm 2.4 (Lemma 2.7) to derive a packing into a strip of height 5/3+ε which
we return. For a packing P that is still not processed we get the following property.

• If no 1/3-high rectangle intersects with x = x ′
`
+ c3ε, then x ′

`
≥ 4c3ε and analogously

if no 1/3-high rectangle intersects with x = xr − c3ε, then xr ≤ 1−4c3ε.

The specific method that we apply in the next step depends on the existence of 1/3-high
rectangles that span across the intervals I`, IM and Ir . See Figure 2.3 for a schematic illus-
tration of the following four cases (by the considerations above, all 1/3-high rectangles that
span across the intervals have height at most 2/3).

• A 1/3-high rectangle reaches close to r` and rr —see Figure 2.3(a).

In this case we assume that there is a 1/3-high rectangle r1 that intersects with x =
x ′
`
+ ε and with x = xr − ε, i.e., that spans from I` to Ir . By Inequality (2.3) we

have w1 ≤ 1 − 130ε as h1 > 1/3. Moreover, we have w1 ≥ xr − ε− x ′
`
− ε ≥ 141ε

(since xr − x ′
`
> 143ε). Thus if y1 ≥ 1/3 or y ′

1 ≤ 2/3 we can apply Algorithm 2.3
(Lemma 2.6). Otherwise, we can apply Algorithm 2.5 (Lemma 2.8) with c2 = 10

since w1 ≥ xr − ε− x ′
`
− ε ≥ 141ε > (4c2 + 1)ε (since xr − x ′

`
> 143ε) and w(H2/3) ≥

39

2 Strip Packing

w(AR(0, x ′
`

;0,1)∩H2/3)+w(AR(xr ,1;0,1)∩H2/3) ≥ x ′
`
−4ε+1−xr −4ε≥ 1−w1−10ε=

1−w1 − c2ε.

In the following we also need to handle the case where r1 reaches only close to the
blocking rectangles r` and rr , i.e., r1 intersects with x ′

`
+11ε and xr −11ε. Here we

can also apply Algorithm 2.3 (Lemma 2.6) or Algorithm 2.5 (Lemma 2.8) with c2 = 30

(w1 ≥ xr −11ε−x ′
`
−11ε≥ 121ε= (4c2+1)ε and w(H2/3) ≥ w(AR(0, x ′

`
;0,1)∩H2/3)+

w(AR(xr ,1;0,1)∩H2/3) ≥ x ′
`
−4ε+1−xr −4ε≥ 1−w1 −30ε= 1−w1 − c2ε).

• Two 1/3-high rectangles lie between r` and rr —see Figure 2.3(b).

Assume that there is a 1/3-high rectangle r1 that intersects with x = x ′
`
+ε and with

x = 1/2− ε and there is a 1/3-high rectangle r2 that intersects with x = 1/2+ ε and
with x = xr −ε. Note, that if r1 or r2 spans from I` to Ir , then we are in the previous
case. Hence we assume that r1 spans from I` to IM and r2 spans from IM to Ir . If
x ′
`
≥ 1/2−3ε or xr ≤ 1/2+3ε we apply also the method of the previous case, since

then r2 intersects with x = x ′
`
+5ε and x = xr −ε, or r1 intersects with x = x ′

`
+ε and

x = xr −5ε. Otherwise we have w1, w2 ∈ [ε,1/2+ε]. Thus if r1 or r2 does not intersect
with y = 1/3 or with y = 2/3, we can apply Algorithm 2.3 (Lemma 2.6). Otherwise, we
have y1, y2 < 1/3 and y ′

1, y ′
2 > 2/3 and thus we can apply Algorithm 2.6 (Lemma 2.9).

The following two cases use Lemma 2.10 and Corollary 2.2. Recall that we have x ′
`
≥ 4c3ε

if no 1/3-high rectangle intersects with x = x ′
`
+c3ε and xr ≤ 1−4c3ε if no 1/3-high rectangle

intersects with x = xr − c3ε.

• A 1/3-high rectangle reaches from the middle close to rr but no 1/3-high rectangle

reaches from r` to the middle—see Figure 2.3(c).

In this case we assume that there is a 1/3-high rectangle r1 that intersects with x =
1/2+ ε and with x = xr − c3ε but there is no 1/3-high rectangle that intersects with
x = x ′

`
+ c3ε. We assume that x ′

`
≤ 1/2−3ε as otherwise we could apply the methods

of the first case (as r1 intersects with x = x ′
`
+ 4ε ≤ x ′

`
+ 11ε and x = xr − ε in this

case). Note that we have xr > 1/2+3ε as otherwise c3 = 5 and r1 would intersect with
x = 1/2− ε, i.e., span from I` to Ir , and the assumption that no 1/3-high intersects
with x = x ′

`
+c3ε would be violated. Thus we have c3 = 2 (by the definition above) and

x ′
`
≥ 8ε .

Obviously, we have w1 ∈ [ε,1−2ε] and can thus use Algorithm 2.3 (Lemma 2.6) if y1 ≥
1/3 or y ′

1 ≤ 2/3. Otherwise, the rectangle r1 intersects y = 1/3 and y = 2/3. Moreover,
we have x1 ∈ [1/2− ε,1/2+ ε] and thus can apply the methods of Corollary 2.2 to

40

2.6 Conclusion

derive a packing into a strip of height 5/3+ε. Here we use that no 1/3-high rectangle
intersects with [x ′

`
+ (c3 − 1)ε, x ′

`
+ c3ε] × [0,1] and that x ′

`
≤ 1/2 − 9ε since we are

otherwise in the first case again (r1 intersects with x = x ′
`
+11ε and x = xr −11ε).

The same methods can be applied if the rectangle r1 reaches from r` to the middle
instead.

• No 1/3-high rectangles span across the intervals—see Figure 2.3(d).

In this case we assume that no 1/3-high rectangle intersects with x = x ′
`
+ c3ε and no

1/3-high rectangle intersects with x = xr − c3ε. Thus we have x ′
`

, xr ∈ [4c3ε,1−4c3ε]

and no 1/3-high rectangle intersects with [x ′
`
+ (c3 −1)ε, x ′

`
+ c3ε]× [0,1] and no 1/3-

high rectangle intersects with [xr − c3ε, xr − (c3 −1)ε]× [0,1]. As we have xr − x ′
`
>

143ε> 4c3ε we can apply the methods of Lemma 2.10.

These four cases cover all possibilities and therefore our algorithm always outputs a pack-
ing into a strip of height at most 5/3+260ε/3. Thus with Lemma 2.2 we get an approximation
ratio for the overall algorithm of 5/3+263ε/3. By scaling ε appropriately we proved Theo-
rem 2.1. The running time of the algorithm is O (TPTAS+(n log2 n)/ loglogn), where TPTAS is
the running time of the PTAS from [3].

2.6 CONCLUSION

We presented an approximation algorithm for the strip packing problem that narrows the
approximability gap, which is now between 3/2 and 5/3+ε. This result is an important step
to settle the approximability of this problem. We do not see how to adapt our techniques to
improve the upper bound even further (for instance, the blocking property in Section 2.4.5
does not hold if we reduce the height of the blocking rectangles and increase the depth of
the cut at the same time). So enhancing the upper bound seems to require new techniques.
To the best of our knowledge no promising approach to improve the lower bound of 3/2 is
known.

41

2 Strip Packing

42

3 NEW APPROXIMABILITY RESULTS

FOR TWO-DIMENSIONAL BIN

PACKING

3.1 INTRODUCTION

In the two-dimensional bin packing problem it is desired to pack a list I = {r1, . . . ,rn} of rect-
angles with heights hi and widths wi into the smallest possible number of unit sized squares,
also called bins. The rectangles have to be packed axis-parallel and may not overlap. Our
problem consists of two versions; in the first version it is not allowed to rotate the rectangles
while in the other it is allowed to rotate the rectangles by 90◦, i.e. to exchange the widths
and the heights. Two-dimensional packing problems have many real world applications that
can be found in the area of scheduling, chip design and logistics. In particular the version of
the two-dimensional bin packing problem with rotations can be used for example for stock-
cutting, when we want to cut some items out of some sheets of raw material. The version
without rotations is for example used for the print and web layout, when we want to place
all ads into the minimum number of pages.

RELATED WORK Two-dimensional bin packing is a generalization of its one-dimensional
counterpart (where each rectangle has height 1) and is therefore strongly NP-hard. Further-
more Bansal et al. [5] showed that even an APTAS is ruled out. This asymptotic lower bound
was further improved by Chlebík & Chlebíková [11] to values 1+1/3792 and 1+1/2196 for
the version with and without rotations, respectively. On the positive side there is an asymp-
totic 2.125-approximation by Chung et al. [12]. The AFPTAS of Kenyon & Rémila [40]
and Jansen & van Stee [38] for the related strip packing problem can be used to achieve an
asymptotic 2+ε-approximation for the two-dimensional bin packing problem without and
with rotations, respectively. Caprara [8] gave the first asymptotic approximation algorithm
for the version without rotations that breaks the barrier of 2. The asymptotic approximation

43

3 Two-Dimensional Bin Packing

ratio of this algorithm is arbitrary close to the harmonic number T∞ = 1.69... This result
was further improved by Bansal et al. [4] with an asymptotic approximation ratio of arbi-
trary close to ln(T∞+1) = 1.52.. with and without rotations. The additive constant of this
algorithm depends on a precision ε of this algorithm.

In the non-asymptotic setting without rotations there is a 3-approximation by Zhang [54]
and by Harren & van Stee [26] with an improved running time. Harren & van Stee [26] also
developed a non-asymptotic 2-approximation with rotations. Independently this approxima-
tion guarantee is also achieved for the version without rotations by Harren & van Stee [25]
and Jansen et al. [34]. These results match the non-asymptotic lower bound of this problem,
unless P = NP.

OUR CONTRIBUTION We present the following result for the two-dimensional bin pack-
ing problem with and without rotations:

Theorem 3.1. For any ε > 0, there is an approximation algorithm A which produces a

packing of a list I of n rectangles in A(I) bins such that

A(I) ≤ (3/2+ε) ·OPT(I)+69.

The running time of A is polynomial in n.

This result is an important step in closing the gap between the current asymptotic lower
bound and the former best asymptotic approximation ratio. Furthermore, since we have a
small additive constant of 69, our algorithm already computes better results for instances
with OPT(I) ≥ 200 and ε ≤ 1/8, or for OPT(I) ≥ 150 and ε ≤ 1/30 than the non-asymptotic
2-approximations.

In the version that allows rotation we can further improve the additional constant to 39.
We obtain the following result.

Theorem’ 3.1. For any ε > 0, there is an approximation algorithm A which produces a

packing of a list I of n rectangles that are allowed to be rotated in A(I) bins such that

A(I) ≤ (3/2+ε) ·OPT(I)+39.

The running time of A is polynomial in n.

TECHNIQUES The main idea of our work is to analyse an arbitrary solution of the two-
dimensional bin packing problem. Here it does not matter whether the rectangles are rotated

44

3.1 Introduction

or not. We cut in each bin a small vertical or horizontal strip out of the solution, i.e. we
move some rectangles to additional bins, so that a horizontal or vertical strip at one side of
the bin is completely free of rectangles. We prove that this is possible for any bin in any
possible solution. At these modification steps, we do not rotate the rectangles in order to
ensure that it also works for the version where rotations are not allowed. When we have
removed a vertical strip of some width εc , it is possible to round the widths of all rectangles
of width at least εc to a multiple of ε2

c /2 and place them also on an x-coordinate whose
value is a multiple of ε2

c /2. When we have removed a horizontal strip of height εc we are
able to round the heights of all rectangles of height at least εc to a multiple of ε2

c /2. These
rectangles are placed on a y-coordinate whose value is a multiple of ε2

c /2. It follows that our
modified solution consists of two different types of bins. The packing of the bins of the first
type satisfy the following property.

Property 3.1. The width and the x-coordinate of each rectangle in Bi of width at least εc is

a multiple of ε2
c /2.

The packing of the bins of the second type satisfy the analogous property for rounding the
heights:

Property 3.2. The height and the y-coordinate of each rectangle in Bi of height at least εc

is a multiple of ε2
c /2.

We ensure one of these properties also on the additional bins that are used to modify the
solution and we obtain the following main result of our work:

Theorem 3.2. For any value εc , with 1/εc being a multiple of 24, and for any solution that

fits into m bins, we are able to round up the widths and the heights of the rectangles so that

they fit into (3/2+ 5εc) ·m + 37 bins while the packing of each of the bins satisfies either

Property 3.1 or Property 3.2.

After having rounded one side of the rectangles the rounding technique for the unrounded
side is fairly standard in the theory of packing algorithms. In general, we employ the round-
ing technique used in the AFPTAS by Kenyon & Rémila [40]. Small rectangles are packed
in containers using some techniques by Jansen & Solis-Oba [36]. Furthermore, we use the
algorithm of Steinberg [51], to pack some medium rectangles.

In the non-rotational version, our algorithm initially uses a flow network to assign some
big rectangles that have both side lengths at least εc to bins of the first and second type.
The same flow network is used in the setting that allows rotation to rotate these rectangles.
The remaining small, (rotated) long and (rotated) wide rectangles are packed into containers

45

3 Two-Dimensional Bin Packing

with a modified version of the algorithm by Kenyon & Rémila [40]. Afterwards we pack
the containers and the big rectangles with an integer linear program into the bins. There are
only minor differences to improve the additional constant in the version that allows rotation.
We state these differences at the end of each section.

3.2 MODIFYING A PACKING

In the following sections, we consider an arbitrary solution, which does not have to be the
optimal one, of the rectangles in m bins. We set a coordinate system to each bin, with the
origin (0,0) in the lower left corner and with the coordinate (1,1) in the upper right corner.
The lower left corner of the rectangle r j is placed at the position (x j , y j) and the upper right
corner at the position (x ′

j , y ′
j). The area of r j is defined by a j := h j · w j . For a set X of

rectangles, we have h(X) := ∑
r j∈X h j , w(X) := ∑

r j∈X w j and a(X) := ∑
r j∈X h j ·w j for the

total height, total width and total area of the rectangles in X . The maximal occurring width
and height in X is defined by wmax(X) := maxr j∈X w j and hmax := maxr j∈X h j .

Sometimes, we define a certain rectangular or Γ-shaped region in a bin Bi of our solution.
These regions are defined by a closed traverse starting at the lower left corner. A rectangular
region, defined by some corner points (x1, y1), (x2, y1), (x2, y2) and (x1, y2), is also defined by
the Cartesian product [x1, x2]× [y1, y2].

Let εc < 1 be a value, so that 1/εc is a multiple of 24. In order to round the rectangles in
our solution, we cut a horizontal strip of height εc and width 1 or a vertical strip of width εc

and height 1 out of each bin Bi . Therefore, we clear always one of the four strips at the sides
of the bin, i.e. we remove all rectangles that intersect one of them (except the bins Bi with a
very large rectangle that intersects simultaneously all four strips).

Denote the strips of width 1 and height εc at the top and at the bottom of the strip by
S(i)

U := [0,1]× [1− εc ,1] and S(i)
B := [0,1]× [0,εc]. The strips of height 1 and width εc to

the right and left of the bin are called S(i)
R := [1−εc ,1]× [0,1] and S(i)

L := [0,εc]× [0,1] (cf.
Figure 3.1). There are two kinds of rectangles that intersect these strips. The set of rectangles
that lies completely in one of these strips S(i)

K , K ∈ {U ,B ,R,L} is denoted by C (i)
K ; the set of

rectangles that does not lie completely inside a strip but intersects this strip is denoted by
I (i)

K .

In the following, we want to prove that the union of all sets C (i)
R ,C (i)

L ,C (i)
U and C (i)

B , i ∈
{1, . . . ,m}, covers a very small total area and can be moved into few additional bins.

Lemma 3.1. We move all rectangles in C (i)
R ,C (i)

L ,C (i)
U and C (i)

B for all i ∈ {1, . . . ,m} into

4εc m + 2 additional bins. The packing of these bins satisfy either Property 3.1 or Prop-

46

3.2 Modifying a Packing

1

1

1/2

0 1/2

S(i)
U

S(i)
L

S(i)
B

S(i)
R

Figure 3.1: Definition of S(i)
U ,S(i)

B ,S(i)
L and S(i)

R

erty 3.2.

Proof. The rectangles in C (i)
R and C (i)

L are already packed into a strip of height 1 and width
εc . We pack 1/εc of these strips into an additional bin. We have in total 2m strips to pack
into extra bins. Hence, we need at most d2εc ·me ≤ 2εc m + 1 bins. The rectangles of the
width εc are placed on an x-coordinate whose value is a multiple of εc . This value is also
a multiple of ε2

c /2. The remaining rectangles have a width of less than εc and hence, this
packing satisfies Property 3.1. The analogous packings for the rectangles in the strips SU

and SR satisfy Property 3.2, and we need in total 4εc m +2 bins.

In the following, we suppose that there is no rectangle completely situated in one of the
strips S(i)

K , K ∈ {U ,B ,R,L} and i ∈ {1, . . . ,m}, but only rectangles that intersect them. Further-
more, we suppose that the rectangles that intersect S(i)

K , i.e. the rectangles of I (i)
K , touch the

corresponding side of the bin. Therefore, we extend the widths or heights if necessary. Note
that this is only for the ease of explanation, the rectangles are rounded later. The rectangles
in the corners that intersect a vertical and a horizontal strip are extended in both directions
so that they are placed directly in the corners. If there is no such rectangle in one corner, we
employ a dummy rectangle of width and height εc . We denote the rectangles in the corners
by r (i)

u` ∈ I (i)
U ∩ I (i)

L ;r (i)
ur ∈ I (i)

U ∩ I (i)
R ;r (i)

b` ∈ I (i)
B ∩ I (i)

L and r (i)
br ∈ I (i)

B ∩ I (i)
R . Dummy rectangles of

the width or the height εc are also filled in the remaining gaps. Hence, we suppose that
h(I (i)

L) = 1,h(I (i)
R) = 1, w(I (i)

U) = 1 and w(I (i)
B) = 1. Consequently, the bins that contain a very

large rectangle that simultaneously intersects all four strips, contain no further rectangles.

47

3 Two-Dimensional Bin Packing

The width and the height of this rectangle is rounded up to 1, and so the packing of these
bins satisfies Property 3.1 and Property 3.2.

Lemma 3.2. If Bi is a bin in our solution that contains a rectangle that simultaneously

intersects the strips S(i)
U ,S(i)

B ,S(i)
R and S(i)

L , then we are able to round up this rectangle and

the packing satisfies Property 3.1.

The rectangles intersecting at least one of these strips and having a height or a width
larger than 1/2 play a crucial part in our analysis. Consequently, let L(i)

U ⊆ I (i)
U be the set

of rectangles intersecting S(i)
U and having a height larger than 1/2. L(i)

B ⊆ I (i)
B is the set of

rectangles intersecting S(i)
B and having a height larger than 1/2. Furthermore, let W (i)

R ⊆ I (i)
R

and W (i)
L ⊆ I (i)

L be the rectangles of a width larger than 1/2 and intersecting S(i)
R or S(i)

L ,
respectively. The rectangle of a maximum height in L(i)

U is denoted by r (i)
u and that of L(i)

B

is denoted by r (i)
b . The rectangle of a maximum width in W (i)

L is denoted by r (i)
`

and that of
W (i)

R is denoted by r (i)
r (cf. Figure 3.2(a)).

1

1

1/2

0 1/2

W (i)
L

rectangles of I (i)
Lr (i)

u`

r (i)
b`

r (i)
`

(a) Definition of the rectangles intersecting S(i)
L

12/244/246/248/2410/241/210/248/246/244/242/240

1

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

(b) The horizontal and vertical strips

Figure 3.2: Definition of rectangles and strips

We separate each bin Bi into 28 horizontal and vertical strips. Therefore, let

IN =
11⋃

i=0
{i /24}∪ {8/24−εc ,12/24−εc },

48

3.2 Modifying a Packing

be a set of numbers and let
IN′ := IN∪ {12/24}

be the extended set. We assume that these sets are sorted according to non-decreasing values.
We use two consecutive numbers i ni and i ni+1 of IN′ as x-coordinates of each vertical strip
of the height 1(cf. Figure 3.2(b)). Therefore, we define the 14 vertical strips on the left and
right side of the bin by VL(i)

i ni
:= [i ni , i ni+1]×[0,1] and by VR(i)

i ni
:= [1−i ni+1,1−i ni]×[0,1].

Analogously, we define the 14 horizontal strips of the width 1 in the lower half and upper
half of Bi by HB(i)

i ni
:= [0,1]× [i ni , i ni+1] and HU(i)

i ni
:= [0,1]× [1− i ni+1,1− i ni] .

If we completely remove one vertical strip of the width εc in one bin, including all rect-
angles that intersect it, we are able to round up the widths of all rectangles that have a width
of at least εc .

Lemma 3.3. If there is a vertical strip of the width εc free of rectangles in a bin Bi , then

we are able to round up the widths of the rectangles so that the packing of Bi satisfies

Property 3.1.

Proof. W.l.o.g. we assume that S(i)
R is the free strip of rectangles, since we can move all

rectangles on the right of one free strip by εc to the left. We divide the remaining bin into
2/εc −2 vertical strips of the width εc /2 by introducing vertical lines at the position i ·εc /2,
for i ∈ {1, . . . ,2/εc −2}. Each rectangle of a width larger than εc intersects at least 3 of these
strips and hence crosses at least 2 vertical lines. In a next step we enlarge the strips to a
width of εc /2+ ε2

c /2 by giving some extra space to a rectangle each time it intersects one
of these vertical lines by ε2

c /2. The total width of all strips is (2/εc − 2) · (εc /2+ ε2
c /2) =

(1/εc −1) · (εc +ε2
c) = 1+εc −εc −ε2

c = 1−ε2
c ≤ 1.

Let rk be a rectangle that intersects at least 2 vertical lines and that has a width of
wk ∈ (iε2

c /2,(i +1)ε2
c /2] and an x-coordinate xk ∈ (jε2

c /2,(j +1)ε2
c /2], for some values i ∈

{2/εc , . . . ,2/ε2
c − 2/εc − 1} and j ∈ {1, . . . ,2/ε2

c − 2/εc − 1}. The extra space of rk is at least
2 ·ε2

c /2 = ε2
c and is large enough for increasing the width from wk to wk := (i +1)ε2

c /2 and
the x-coordinate from xk to xk := (j +1)ε2

c /2. All rectangles of a width larger than εc inter-
sect at least 2 vertical lines and thus we round up their widths. It is possible that a rectangle
rk of a width exactly wk = εc does not intersect 2 vertical lines, because the x-coordinate is
already a multiple of ε2

c . In this case we do not have to change the position and the width of
rk .

Analogously, we can prove the same result when there is a horizontal strip of the height
εc free of rectangles.

49

3 Two-Dimensional Bin Packing

Lemma 3.4. If there is a horizontal strip of the height εc free of rectangles in a bin Bi ,

then we are able to round up the heights of the rectangles so that the packing of Bi satisfies

Property 3.2.

PACKING WITH ROTATIONS In the version with rotations, we always clear one of the
vertical strips S(i)

L or S(i)
R of the width εc . This is possible since we are able to rotate the

packing by 90◦. This also enables us to use less bins than in the version in which rotations are
not allowed. Nevertheless, in the version with rotations we use the same techniques as in the
version without rotations. Therefore, we first state the methods without rotations and explain
afterwards the minor differences occurring, when we are allowed to rotate the rectangles. In
Lemma 3.1, we obtain already an improvement of 1 additional bin, since we are able to
rotate the rectangles in the horizontal strips. Thus, we have 4εc ·m vertical strips to pack
into additional bins. The total number of additional bins is therefore d4εc ·me ≤ 4εc ·m +1.
We obtain the following lemma.

Lemma’ 3.1. We move all rectangles in C (i)
R ,C (i)

L ,C (i)
U and C (i)

B for all i ∈ {1, . . . ,m} into

4εc m +1 additional bins. The packing of these bins satisfies Property 3.1.

3.2.1 CLASSIFY THE BINS

In the Section 3.2.1 and Section 3.2.2 we explain how to clear a vertical or horizontal strip in
each bin of our solution. We start by displaying the following lemma that has some impact
on the structure of the packing in the remaining bins.

Lemma 3.5. Let there be two bins B1,B2 in our solution, with vertical strips S(1)
C1

,S(2)
C2

for

C1 ∈ {L,R} and C2 ∈ {L,R}. Furthermore, let there be an x ∈ [0,1/2], being a multiple of εc ,

and a value y ∈ [0,1/2]. If the following conditions hold

1.1. all rectangles of W (1)
C1

,W (2)
C2

have a width of at most 1−x,

1.2. h(W (1)
C1

) ≤ y and h(W (2)
C2

) ≤ y ,

1.3. there are rectangles in the set I (1)
C1

and I (2)
C1

that have a width of at most x and a total

height of at least y ,

then we are able to round up the rectangles and rearrange them into three bins, while the

packing of each of the bins satisfies Property 3.1.

50

3.2 Modifying a Packing

2/244/246/248/2410/241/210/248/246/244/242/240

1

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

1

(a) Rectangles of S(1)
L in bin B1

0 4/24 1/2 4/24 1

1

6/24 10/242/24 8/24 10/24 8/24 6/24 2/24

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

6/24

2/24

4/24

(b) Rectangles of S(2)
R in bin B2

Figure 3.3: Using Lemma 3.5 with y = 8/24 and x = 4/24

Proof. We clear the strips S(1)
C1

and S(2)
C2

in the bins B1 and B2 and pack the intersecting sets
of rectangles I (1)

C1
and I (2)

C2
into a new bin B3 (cf. Figure 3.3). The rectangles of I (1)

C1
and I (2)

C2

each have a total height of 1 (including the dummy rectangles).
In a first step, we sort these rectangles according to their widths. The rectangles of I (1)

C1
are

sorted according to non-increasing widths and placed with their x-coordinates at the position
0 in bin B3. The rectangle with the maximal width is placed at the bottom of the bin and
the rectangle with the minimum width is placed at the top. The rectangles of I (2)

C2
are sorted

according to non-decreasing widths and are placed left aligned with their x ′-coordinates at
the position 1. Here, the rectangle with the minimum width is at the bottom of the bin and
the rectangle with the maximum width is at the top (cf. Figure 3.4). To prove that these two
columns of rectangles do not intersect, we look at the three regions between the horizontal
lines at height 0, y,1− y and 1. Since y ≤ 1/2 we have always y ≤ 1− y .

All rectangles in W (1)
C1

have a total height of at most y (cf. Condition 1.2), and are therefore
placed in the left column below the horizontal line at height y . They have a width of at most
1−x (cf. Condition 1.1). There are rectangles of a total height of at least y that have widths
of at most x in I (1)

C1
(cf. Condition 1.3). These rectangles are placed in the right column

below the horizontal line at height y . Consequently, the rectangles below the horizontal line
at height y do not intersect each other. Vice versa, this also holds for the packing above the
horizontal line at height 1− y . The rectangles that are placed between the horizontal lines at
height y and 1− y have widths of at most 1/2. Thus, the rectangles in the two columns do

51

3 Two-Dimensional Bin Packing

not intersect each other.
After that there is a vertical strip of the width εc completely free of rectangles in bin B1

and B2. Hence, we are able to round the rectangles according to Lemma 3.3 in order to
satisfy Property 3.1. The widths of the rectangles in bin B3 are also rounded to the next
largest multiple of ε2

c /2, to values of at most x,1/2 and 1− x, respectively. These values are
all multiples of εc and therefore also multiples of ε2

c /2 (for 1/εc = i ·24 and x = jεc we have
x = jεc = 2 jε2

c /(2εc) = (2 · j · i ·24)ε2
c /2 = (48 · j · i)ε2

c /2; furthermore, since x = jεc ≤ 1 it is
1−x = 1− jεc = (1/εc − j)εc = (i ·24− j) ·εc = (48 · (i ·24− j) · i)ε2

c /2).

1

0 2/24 4/24 6/24 8/24 10/24 1/2 10/24 8/24 6/24 4/24 2/24 1

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

Figure 3.4: Combining the rectangles of S(1)
L and S(2)

R

The analogous lemma for rounding the heights is as follows. We omit the proof, since it
is analogous to the proof of Lemma 3.5.

Lemma 3.6. Let there be two bins B1,B2 in our solution, with horizontal strips S(1)
C1

,S(2)
C2

for

C1 ∈ {U ,B} and C2 ∈ {U ,B}. Furthermore, let there be an x ∈ [0,1/2], being a multiple of εc ,

and a value y ∈ [0,1/2]. If the following conditions hold

1.4. all rectangles of L(1)
C1

,L(2)
C2

have height at most 1−x,

1.5. w(L(1)
C1

) ≤ y and w(L(2)
C2

) ≤ y ,

1.6. there are rectangles in the set I (1)
C1

and I (2)
C1

that have a height of at most x and a total

width of at least y ,

52

3.2 Modifying a Packing

then we are able to round up the rectangles and rearrange them into three bins, while the

packing of each of the bins satisfies Property 3.2.

We are not able to use this lemma to all values of x and y , since there might be an un-
bounded number of them. Thus, we use a discretization and employ these lemmas only for
all x ∈ IN and for y ∈ {0,1/2}

Lemma 3.7. Let k denote the number of bins Bi in our solution, for which an x ∈ IN and a

y ∈ {0,1/2} exists so that one of the following conditions holds:

1.7. The total height of W (i)
L is at most y , all rectangles of W (i)

L have a width of at most

1−x and there are rectangles of a total height of at least y in I (i)
L that have a width of

at most x.

1.8. The total height of W (i)
R is at most y , all rectangles of W (i)

R have a width of at most

1−x and there are rectangles of a total height of at least y in I (i)
R that have a width of

at most x.

1.9. The total width of L(i)
B is at most y , all rectangles of L(i)

B have a height of at most 1−x

and there are rectangles of a total width of at least y in I (i)
B that have a height of at

most x.

1.10. The total width of L(i)
U is at most y , all rectangles of L(i)

U have a height of at most 1−x

and there are rectangles of a total width of at least y in I (i)
U that have a height of at

most x.

We are able to round the rectangles of these k bins and rearrange them into 3/2k +15 bins,

while the packing of each of the bins satisfies either Property 3.1 or Property 3.2.

Proof. We separate these k bins into 30 sets. For each x ∈ IN we denote the set of bins, for
which either Condition 1.7 or Condition 1.8 holds with y = 1/2, by Vx,1/2. Analogously, we
denote the set of the remaining bins, for which either Condition 1.9 or Condition 1.10 holds
with y = 1/2, by Hx,1/2. Furthermore, let V0 denote the set of remaining bins, for which
WL = ; or WR = ; holds and let H0 denote the set of remaining bins, for which LB = ; or
LU =; holds. These are the bins that satisfy one of the four conditions with y = 0.

We employ Lemma 3.5 with each sequence of two bins in each set Vx,1/2 and V0 and
Lemma 3.6 with each sequence of two bins in each set Hx,1/2 and H0. We need one additional
bin for each set with an odd cardinality `. This results in a packing of 3/2(`−1)+2 bins.
Consequently, we have at most 3/2(k −30)+2 ·30 = 3/2k +15 bins in total, when all 30 sets
have an odd cardinality.

53

3 Two-Dimensional Bin Packing

In the following, we present some corollaries following from the lemma above. We prove
that the packings in the remaining bins have a certain structure.

Corollary 3.1. Let Bi be a bin in our solution for which Lemma 3.2 and Lemma 3.7 are not

applicable. It follows that the sets L(i)
U ,L(i)

B ,W (i)
L and W (i)

R are non-empty and disjoint.

Proof. Suppose by contradiction that W (i)
L =;. It follows that all rectangles intersecting S(i)

L

have a width of at most 1/2. Hence, we have fulfilled Condition 1.7, with y = 0, which is a
contradiction. The proof for L(i)

U ,L(i)
B and W (i)

R is analogous. Thus, the sets L(i)
U ,L(i)

B ,W (i)
L and

W (i)
R are non-empty and as a consequence of Lemma 3.2 there is no rectangle simultaneous

in all four sets.
Suppose by contradiction that there is a rectangle r1 ∈ L(i)

U ∩L(i)
B . The rectangle r1 has a

height of 1. If r1 ∈ W (i)
L , then r1 ∉ W (i)

R and its x ′-coordinate has to be larger than 1/2. It
follows that each rectangle in W (i)

R intersects r1, which is a contradiction. If r1 ∉W (i)
L , then

its x-coordinate has to be larger than 1/2, since otherwise each rectangle in W (i)
L intersects r1.

However, each rectangle in W (i)
R intersects r1, which is again a contradiction. Consequently,

there is no rectangle in L(i)
U ∩L(i)

B and analogously there is no rectangle in W (i)
L ∩W (i)

R .
Suppose by contradiction that there is a rectangle r1 ∈ L(i)

U ∩W (i)
L . This rectangle has a

width and a height of larger than 1/2. Thus, its y-coordinate is less than 1/2 and its x ′-
coordinate is larger than 1/2. Each rectangle r2 ∈W (i)

R is therefore positioned below r1 with
a y ′-coordinate less than 1/2. If this was the case each rectangle in L(i)

B would intersect
either r1 or r2, which is a contradiction. The proof for the disjunction of the remaining sets
is analogously.

This result enables us to do a first analysis of the packings in the remaining bins. Let Bi be
a bin, in which Lemma 3.2 and Lemma 3.7 are not applicable. Suppose by contradiction that
there are two (not necessarily distinct) rectangles r1,r2 ∈ L(i)

U so that r1 has the x-coordinate
x1 ≤ 1/2 and r2 has the x ′-coordinate x ′

2 ≥ 1/2. The rectangles r3 ∈ W (i)
L and r4 ∈ W (i)

R have
to lie below r1 and r2 and their y ′-coordinates are less than 1/2. Hence, each rectangle in
L(i)

B intersects either r3 or r4, which is a contradiction.
Consequently, all x- and x ′-coordinates of the rectangles in L(i)

U are either less than 1/2

or larger than 1/2. W.l.o.g. we assume that all x-coordinates are less than 1/2, since we
are able to mirror the packing at the vertical line at the x-coordinate 1/2. All rectangles
of W (i)

L are placed below the rectangles of L(i)
U and their y ′-coordinates are less than 1/2.

Consequently, the rectangles of L(i)
B are on the right of the rectangles in W (i)

L and their x-
coordinates are larger than 1/2. The rectangles of W (i)

R are situated above the rectangles in
L(i)

B and their y-coordinates are larger than 1/2 (cf. Figure 3.5). We obtain the following
structural theorem.

54

3.2 Modifying a Packing

1

0 2/24 4/24 6/24 8/24 10/24 1/2 10/24 8/24 6/24 4/24 2/24 1

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

Figure 3.5: A packing as described in Theorem 3.2

Theorem 3.2. Consider a bin Bi in our solution, for which Lemma 3.2 and Lemma 3.7 are

not applicable. The rectangles of L(i)
U are, w.l.o.g., completely in the left half of these bins

(all x ′-coordinates are less than 1/2); the rectangles of L(i)
B are completely in the right half

of these bins (all x-coordinates are larger than 1/2); the rectangles of W (i)
L are completely

in the lower half of these bins (all y ′-coordinates are less than 1/2) and the rectangles of

W (i)
R are completely in the upper half of these bins (all y-coordinates are larger than 1/2).

It is very useful that this structure remains the same when turning the bin by 90◦,180◦ and
270◦ since sometimes we use analogous arguments. Note that by turning the bin by 180◦,

we rotate the packing but not the rectangles.

Corollary 3.2. Let Bi be a bin in our solution for which Lemma 3.2 and Lemma 3.7 are

not applicable. Furthermore, let there be a rectangle r1 in L(i)
U with an x ′-coordinate in an

interval VL(i)
v , for a v ∈ IN. It follows that the x-coordinates of all rectangles in L(i)

B are

situated in VR(i)
v .

Proof. Let w be an element of IN. Suppose by contradiction that w 6= v and that there is a
rectangle r2 in L(i)

B with an x-coordinate in VR(i)
w (cf. Figure 3.6).

Case 1, w > v . Let u ≤ w be the successor of v in IN, i.e. VL(i)
v = [v,u]× [0,1]. The

widths of all rectangles in I (i)
L that lie above the horizontal line at the y-coordinate y1 or that

intersect with it are bounded by the rectangle r1. Hence, their widths are bounded by the
value u ≤ w . The height of r1 is larger than 1/2, hence y1 < 1/2. Consequently, there are

55

3 Two-Dimensional Bin Packing

1

12/244/246/248/2410/2410/248/246/244/242/240

2/24

4/24

8/24

6/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

1/2

v u w 1−v1−u1−w

r1

r2

(a) Case 1 with v = 5/24 and w = 9/24

0 2/24 4/24 6/24 8/24 10/24 1/2 10/24 8/24 6/24 4/24 2/24 1

1

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

w u v 1−w1−u1−v

r1

r2

(b) Case 2 with v = 5/24 and w = 2/24

Figure 3.6: The two cases of Corollary 3.2

rectangles of the total height of at least 1/2 that have a width of at most w . The remaining
rectangles in I (i)

L that lie below the horizontal line at the y-coordinate y1 are bounded by the
rectangle r2. The x-coordinate of r2 is within VL(i)

w , it follows that these rectangles have a
width of at most 1−w . We have fulfilled Condition 1.7 with y = 1/2 and x = w , which is a
contradiction.

Case 2, w < v . Let u ≤ v be the successor of w in IN′, i.e. VR(i)
w = [1−u,1−w]×[0,1]. We

use the same argumentation as in the first case on the strip S(i)
R . The widths of the rectangles

in I (i)
R that are positioned below the y ′-coordinate y ′

2 are bounded by the rectangle r2. Their
total height is larger than 1/2 and their widths are at most u ≤ v . The widths of the rectangles
in I (i)

R that lie above the horizontal line at the y ′-coordinate y ′
2 are bounded by r1. The x ′-

coordinate of r1 is in VL(i)
v and hence the widths are bounded by 1− v . It follows that we

satisfy Condition 1.8 with y = 1/2 and x = v , which is a contradiction.

Consequently, if there is a rectangle in L(i)
U with its x ′-coordinate in an interval VL(i)

v , all
rectangles of L(i)

B have their x-coordinates in the interval VR(i)
v . Furthermore, we can use

this corollary after turning the bin by 180◦. We obtain: if there is a rectangle in L(i)
B with

its x-coordinate in an interval VR(i)
v , then all rectangles of L(i)

U have their x ′-coordinates in
the interval VL(i)

v . Hence, the x ′-coordinates of all rectangles in L(i)
U are in VL(i)

v and the
x-coordinates of all rectangles in L(i)

B are in VR(i)
v . The same holds for the wide rectangles

intersecting S(i)
R and S(i)

L by employing this corollary on the bin turned by 90◦. Thus, the

56

3.2 Modifying a Packing

y ′-coordinates of all rectangles in W (i)
L are in HB(i)

h and the y-coordinates of all rectangles
in W (i)

R are in HU(i)
h , for some h ∈ IN.

Corollary 3.3. Let Bi be a bin in our solution for which Lemma 3.2 and Lemma 3.7 are not

applicable. Furthermore, let there be a rectangle r1 6= r (i)
u` in L(i)

U with x ′-coordinate in an

interval VL(i)
v for v ∈ IN (r (i)

u` is the rectangle in the upper-left corner). It follows that the

x-coordinate of r1 is also situated in VL(i)
v .

Proof. Suppose by contradiction that there is a member w < v of IN and the x-coordinate of
r1 is in VL(i)

w . It holds that r1 6= r (i)
u` and hence r1 does not intersect S(i)

L (cf. Figure 3.7(a)).

2/24 4/24 6/24 8/24 10/24 10/24 8/24 6/24 4/24 2/24 10

1

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

1/2

w u v 1−v

r1

r2

(a) Corollary 3.3; v = 5/24, w = 2/24.

2/24 4/24 6/24 8/24 10/24 10/24 8/24 6/24 4/24 2/24 10

1

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

1/2

uv 1−u 1−v

r`

r1

(b) Corollary 3.4; v = 5/24.

Figure 3.7: The situation in the Corollary 3.3 and Corollary 3.4

Let u ≤ v be the successor of w in IN′, i.e. VL(i)
w = [w,u]× [0,1]. The widths of the

rectangles in I (i)
L that lie above the horizontal line at y-coordinate y1 or that intersect this

line are bounded by r1. It follows that their total height is at least 1− y1 > 1/2 and their
widths are at most u ≤ v . Furthermore, as a consequence of Corollary 3.1 and Corollary 3.2
there exists a rectangle r2 of L(i)

B that has its x-coordinate x2 within VR(i)
v . Thus, all remaining

rectangles in I (i)
L that are below the horizontal line at y-coordinate y1 have a bounded width

of at most 1− v . Consequently, we satisfy Condition 1.7 with y = 1/2 and x = v , which is a
contradiction.

As a consequence of Corollary 3.2 and Corollary 3.3, all rectangles of L(i)
U except r (i)

u`, if
r (i)

u` ∈ L(i)
U , are completely situated in an interval VL(i)

v . Again, we employ this corollary on

57

3 Two-Dimensional Bin Packing

each side of the bin and as a consequence, we achieve that all rectangles of L(i)
B \ {r (i)

br } are
completely in VR(i)

v . All rectangles of W (i)
L \ {r (i)

br } are completely in an interval HB(i)
h and all

rectangles of W (i)
R \ {r (i)

ur } are completely in HU(i)
h .

Corollary 3.4. Let Bi be a bin in our solution, for which Lemma 3.2 and Lemma 3.7 are not

applicable and let there be a rectangle r1 ∈ L(i)
U with x ′-coordinate in an interval VL(i)

v . It

follows that the x ′-coordinate x ′(i)
`

is situated within the interval VR(i)
v (r (i)

`
is the rectangle

of maximum width in W (i)
L).

Proof. Suppose by contradiction that r (i)
`

, does not intersect VR(i)
v , i.e. the x ′-coordinate x ′(i)

`

is not within the interval VR(i)
v (cf. Figure 3.7(b)). Let u be the successor of v in IN′, i.e.

VL(i)
v = [v,u]× [0,1] and VR(i)

v = [1−u,1− v]× [0,1].
Since r (i)

`
has the maximum width among the rectangles in W (i)

L , no rectangle of W (i)
L

intersects VR(i)
v . Thus all rectangles of W (i)

L have a bounded width of at most 1−u. The
rectangles of I (i)

L that lie above the horizontal line at height y1 or that intersect this line are
bounded by rectangle r1. Consequently, their total height is at least 1− y1 > 1/2 and their
widths are at most u. Thus, we satisfy Condition 1.7 with y = 1/2 and x = u, which is a
contradiction

We also adopt this corollary to the bins turned by 90◦,180◦ and 270◦ and obtain the follow-
ing structural theorem of the packing in the remaining bins in our solution (cf. Figure 3.8).

Theorem 3.3. Let there be a packing in one bin Bi of our solution for which Lemma 3.2

and Lemma 3.7 are not applicable. It follows that values h(i), v (i) ∈ IN with the following

conditions exist:

1.11. The sets L(i)
U ,L(i)

B ,W (i)
L and W (i)

R are non-empty and disjoint.

1.12. All rectangles in L(i)
U \r (i)

u` and L(i)
B \r (i)

br are completely situated within VL(i)
v (i) and VR(i)

v (i) ,

respectively.

1.13. All rectangles in W (i)
L \ r (i)

b` and W (i)
R \ r (i)

u` are completely situated within HB(i)
h(i) and

HU(i)
h(i) , respectively.

1.14. If r (i)
u` ∈ L(i)

U , then the x ′-coordinate x ′(i)
u` is situated within VL(i)

v (i);

if r (i)
br ∈ L(i)

B , then the x-coordinate x(i)
br is situated within VR(i)

v (i) .

1.15. If r (i)
b` ∈W (i)

L , then the y ′-coordinate y ′(i)
b` is situated within HB(i)

h(i);

if r (i)
ur ∈W (i)

R , then the y-coordinate y (i)
ur is situated within HU(i)

h(i) .

58

3.2 Modifying a Packing

1.16. the y-coordinates y (i)
u and y ′(i)

b are situated within HB(i)
h(i) and HU(i)

h(i) , respectively;

the x-coordinates x(i)
r and x ′(i)

`
are situated within VL(i)

v (i) and VR(i)
v (i) , respectively.

1

0 2/24 4/24 6/24 8/24 10/24 10/24 8/24 6/24 4/24 2/241/2

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

v v’

h

h’

1−h’

1−h

1−v’1−v

1

ru

r`

rr

rb`

ru`

rur

rb = rbr

Figure 3.8: A packing as described in Theorem 3.3, with v = 5/24, h = 4/24 and r (i)
br ∈ L(i)

B .

In the following, we classify the remaining bins Bi , for which Lemma 3.2 and Lemma 3.7
are not applicable according to the values v ∈ IN and h ∈ IN. Therefore, denote the values
for which Theorem 3.3 for bin Bi holds by h(i) ∈ IN and v (i) ∈ IN. Furthermore, let h′(i) ∈ IN′

and v ′(i) ∈ IN′ be the successor of h(i) and v (i), respectively.

The packing that is described in Theorem 3.3 consists of almost five different regions.
The region at the left of the rectangle r (i)

u , the region below r (i)
`

, the region to the right of
r (i)

b , the region on top of r (i)
r and the region in the middle of the bin. There are only few

rectangles that intersect two of these regions, since they have to lie completely inside the
horizontal strips HB(i)

h(i) or HU(i)
h(i) or inside the vertical strips VL(i)

v (i) or VR(i)
v (i) . We make use

of this structure in the following section and remove the rectangles from two of the regions
in order to remove a horizontal or vertical strip.

CLASSIFY THE BINS WITH ROTATIONS Before we continue with our analysis, we first
state the differences in the version with rotations. In the proof of Lemma 3.7 we use 30 sets
of bins Vx,1/2, Hx,1/2,V0 and H0, for x ∈ IN. We rotate the packing of one bin Bi that is in a
set Hx,1/2 or in H0. The packing of this bin satisfies either Condition 1.7 or Condition 1.8.
Therefore, it belongs to the set Vx,1/2 or V0, respectively. Thus, when we are allowed to

59

3 Two-Dimensional Bin Packing

rotate, we have only 15 different sets of bins. We use Lemma 3.5 on each sequence of two
bins in each set. If all 15 sets have an odd cardinality, we pack k bins, each satisfying at least
one of the conditions Condition 1.7-1.10, into 3/2(k −15)+2 ·15 = 3/2k +15/2 < 3/2k +8

bins.

Lemma’ 3.7. Let k denote the number of bins Bi in our solution for which an x ∈ IN and a

y ∈ {0,1/2} exist so that one of the Conditions 1.7-1.10 holds. We are able to round up the

rectangles of these k bins and rearrange them into 3/2k +8 bins, while the packing of each

of the bins satisfies Property 3.1.

3.2.2 CASE ANALYSIS

In the following, we suppose that for every bin there are values v (i) ∈ IN and h(i) ∈ IN so that
Theorem 3.3 holds. We do a case analysis for the values h(i) and v (i).

Lemma 3.8. Let B1, . . . ,Bk be k bins so that each bin Bi , for i ∈ {1, . . . ,k}, has a packing with

the following conditions:

2.1. r (i)
b` ∉W (i)

L or r (i)
ur ∉W (i)

R ,

2.2. h(i) ∈ IN,

2.3. v (i) ∈ {0/24, . . . ,7/24,8/24−εc }.

It follows that we are able to round up the rectangles in these bins and rearrange them into

3/2k+2 bins, while the packing of each of them satisfies either Property 3.1 or Property 3.2.

Proof. Let i ∈ {1, . . . ,k}. W.l.o.g. we assume that r (i)
b` ∉W (i)

L since we are able to turn the bin
by 180◦. We clear the strip S(i)

L in each of the k bins by using the property that the rectangles
W (i)

L of width larger than 1/2 are completely situated within HB(i)
h(i) and thus have a total

height of at most 1/24 (cf. Figure 3.9).
We divide the rectangles in I (i)

L into three sets. Let A(i) =W (i)
L be the set of rectangles that

have a width of larger than 1/2. Let B (i) ⊂ I (i)
L denote the set of rectangles that have a width

of at most 1/3. Finally, let C (i) denote the set of the remaining rectangles in I (i)
L that have a

width within (1/3,1/2]. As mentioned above, the total height of the rectangles in A(i) is at
most 1/24, since r (i)

b` ∉ W (i)
L (Condition 2.1). We pack these rectangles on top of each other

into a container of height h(A(i)) ≤ 1/24 and width wmax(A(i)) ≤ 1. We treat this container
as a rectangle r (i)

A of width w (i)
A = 1 and height h(i)

A = h(A(i)).
The rectangles in L(i)

U have their x ′-coordinates within VL(i)
v (i) . Thus, the rectangles of

I (i)
L that lie on the left of the rectangles in L(i)

U , including r (i)
u` if r (i)

u` ∈ L(i)
U , have a bounded

60

3.2 Modifying a Packing

B

C

A

2/244/246/248/2410/241/210/248/246/244/242/240

1

1

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

v v’ 1−v’1−v

1−h’

1−h

h’

h

(a) Bin with h = 7/24 and v = 5/24

B

C

A

2/24 4/24 6/24 8/24 10/24 1/2 10/24 8/24 6/24 4/24 2/24 10

1

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

v v’ 1−v1−v’

1−h

1−h’

h’
h

(b) Bin with h = 11/24 and v = 7/24

Figure 3.9: Two possible initial situations of Lemma 3.8.

width of v ′(i) ≤ 8/24 = 1/3 (Condition 2.3). Remember that v ′(i) is the successor of v (i) in
IN′. Therefore, these rectangles belong to the set B (i). Consequently, the total height of
the rectangles in the set B (i) is at least h(B (i)) = h(i)

u > 1/2. The rectangles are also packed
on top of each other into the container/rectangle r (i)

B of a width w (i)
B = wmax(B (i)) ≤ 1/3

and a height h(i)
B = h(B (i)) > 1/2. Moreover, the rectangles in C (i) are packed on top of

each other into a container/rectangle r (i)
C of a width w (i)

C = wmax(C (i)) ≤ 1/2 and a height
h(i)

C = h(C (i)) ≤ 1−h(B (i)) = 1−h(i)
B .

We clear the strips S(i)
L of each bin by packing the rectangles of each sequence of 6 bins

into 3 additional bins C1,C2,C3. Let B1, . . . ,B6 be 6 bins among the k bins. W.l.o.g. we
assume that these bins are sorted by non-decreasing heights of h(i)

B .

The rectangles r (1)
A , . . . ,r (6)

A have a total height of at most 6 ·1/24 = 1/4. We pack them on
top of each other at the bottom of bin C1 with their x-coordinates positioned on the value 0.
On top of these rectangles we pack r (1)

C and r (2)
C . They have both a width and a height of at

most 1/2 and fit next to each other on the positions (0,1/4) and (1/2,1/4). The uppermost
horizontal strip of the height 1/4 ≥ εc is still free of rectangles (cf. Figure 3.10(a)). We
employ Lemma 3.4 on this bin in order to round up the heights.

The rectangles r (i)
B and r (i)

C always fit on top of each other since h(i)
C < 1−h(i)

B . This allows
us to place r (3)

C and r (3)
B on top of each other in bin C2 with their x-coordinates positioned

on the value 0. The rectangles r (4)
C and r (4)

B are also placed on top of each other, where

61

3 Two-Dimensional Bin Packing

r (4)
C is placed on position (1/2,0) and r (4)

B is placed on top of r (4)
C on the x-coordinate 2/3.

Between the rectangles r (3)
B and r (4)

B there is a free space of width 1/3 and height at least
min{h(3)

B ,h(4)
B } = h(3)

B . Since h(1)
B ≤ h(3)

B and w (1)
B ≤ 1/3 this space is sufficient to place r (1)

B on
top of r (3)

C and r (4)
C on the x-coordinate 1/3 (cf. Figure 3.10(b)).

A horizontal or vertical strip free of rectangles does not necessarily have to exists in this
bin. However, we are able to round up the widths of the rectangles r (1)

B ,r (3)
B and r (4)

B to the
next largest multiple of ε2

c /2 that is at most 1/3. The widths of the rectangles r (3)
C and r (4)

C

are also rounded to the next largest multiple of ε2
c /2 that is at most 1/2. The rectangles

that are inside the rectangles r (i)
B and r (i)

C are packed on top of each other. This enables
us also to round up their widths to the next largest multiple of ε2

c /2, which is at most 1/3

or 1/2, respectively. Furthermore, their x-coordinates are either 0,1/3,1/2,2/3 and hence
multiples of ε2

c /2. Consequently, this packing satisfies Property 3.1. The packing of bin C3

C
C

A

A

A

A

A

A

0 2/24 4/24 6/24 8/24 10/24 1/2 10/24 8/24 6/24 4/24 2/24

1

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

1

(a) Structure of the packing in bin C1

B B

B

C

B

C

12/244/246/248/2410/241/210/248/246/244/242/240

1/2

1

2/24

4/24

6/24

8/24

10/24

10/24

8/24

6/24

4/24

2/24

(b) Structure of the packing in bin C2 and C3

Figure 3.10: The structure of the additional bins of Lemma 3.8

is analogous to the packing of C2 with rectangles r (5)
C ,r (6)

C ,r (2)
B ,r (5)

B and r (6)
B .

We modify each sequence of 6 of the k bins. If `≤ 4 bins remain, we pack the rectangles
that intersect SL into ` additional bins. In this case, we need in total 3/2(k−`)+2`= 3/2k+
`/2 ≤ 3/2k +2. If `= 5 bins remain, we adopt the same packing as described above without
the rectangles r (6)

A ,r (6)
B and r (6)

C . We need in total 3/2(k −`)+`+3 = 3/2k − (3/2 ·5)+8 ≤
3/2k +1. The case analysis in this paragraph is also used in some of the following lemmas,
we do not repeat it there.

62

3.2 Modifying a Packing

Analogously, we achieve the same result for the following corollary. By turning the bin
by 90◦, the proof is exactly the same. Consequently, we do not need this lemma, if we are
allowed to rotate the rectangles.

Lemma 3.9. Let B1, . . . ,Bk be k bins so that each bin Bi , for i ∈ {1, . . . ,k}, has a packing with

the following conditions:

2.4. r (i)
u` ∉ L(i)

U or r (i)
br ∉ L(i)

B ,

2.5. h(i) ∈ {0/24, . . . ,7/24,8/24−εc },

2.6. v (i) ∈ IN.

It follows that we are able to round up the rectangles in these bins and rearrange them into

3/2k+2 bins, while the packing of each of them satisfies either Property 3.1 or Property 3.2.

The following lemma covers the case that there is a bin Bi with r (i)
u` ∈ L(i)

U ,r (i)
br ∈ L(i)

B ,r (i)
ur ∈

W (i)
R and r (i)

b` ∈W (i)
L .

Lemma 3.10. Let B1, . . . ,Bk be k bins so that each bin Bi , for i ∈ {1, . . . ,k}, has a packing

with the following conditions:

2.7. h(i) ∈ {0/24, . . . ,7/24},

2.8. v (i) ∈ {0/24, . . . ,7/24,8/24−εc }.

It follows that we are able to round up the rectangles in these bins and rearrange them into

3/2k+1 bins, while the packing of each of them satisfies either Property 3.1 or Property 3.2.

Proof. Let i ∈ {1, . . . ,k}. W.l.o.g. we assume that x ′(i)
u ≤ 1− x(i)

b since we are able to turn the
bin by 180◦. We want to remove the rectangles intersecting the strip S(i)

L in each bin.

Similar to the proof of Lemma 3.8 we use containers/rectangles for grouping the rectan-
gles in I (i)

L . If r (i)
u` ∈ L(i)

U and r (i)
u` = r (i)

u , i.e. the rectangle in the upper left corner is the largest
rectangle in L(i)

U , the rectangle r (i)
A is r (i)

u`. In any other case, let A(i) ⊂ I (i)
L be the set of rect-

angles that are at the left of r (i)
u , i.e. the rectangles in I (i)

L that lie above the horizontal line
at height y (i)

u and that intersect with it. In this case, we define r (i)
A as a rectangle of height

h(i)
A = h(A(i)) and width w (i)

A = wmax(A(i)). The width of r (i)
A is limited in both cases to at

most w (i)
A ≤ x ′(i)

u ≤ v ′(i) ≤ 8/24 = 1/3 (Condition 2.8). Since r (i)
u intersects the horizontal in-

terval HB(i)
h(i) , the height of r (i)

A is at least h(i)
A ≥ 1−h′(i) ≥ 1−(8/24−εc) = 16/24+εc = 2/3+εc

(Condition 2.7).

63

3 Two-Dimensional Bin Packing

2/244/246/248/2410/2410/248/246/244/240 2/24 1

v v’ 1−v’1−v

1−h’

1−h

h’

h

2/24

4/24

8/24

1/2

8/24

6/24

4/24

2/24

1

10/24

10/24

6/24

1/2

A

B

ru

rb

(a) Rectangles intersecting S(i)
L

v v’ 1−v’1−v

1−h’

1−h

h’

h

2/244/246/248/2410/241/210/248/246/244/242/240

1/2

1

2/24

4/24

6/24

8/24

10/24

8/24

10/24

6/24

4/24

2/24

1

A

B

ru

rb

(b) Construction of rectangles r (i)
A and r (i)

B

Figure 3.11: A possible initial situation of Lemma 3.10

The widths of the rectangles in W (i)
L are bounded by the leftmost rectangle of L(i)

B . Hence,
their widths are at most x(i)

b ≤ 1−x ′(i)
u . We use a set B (i) = I (i)

L \A(i) of the remaining rectangles
that intersect S(i)

L . Analogously, we define a rectangle r (i)
B for these rectangles of width

w (i)
B = wmax(B (i)) ≤ x(i)

b ≤ 1−x ′(i)
u and height h(i)

B = 1−h(i)
A ≤ 1/3−εc . Note that w (i)

A +w (i)
B ≤

x ′(i)
u + (1− x ′(i)

u) = 1 and therefore the rectangles r (i)
A and r (i)

B fit next to each other in one bin
(cf. Figure 3.11).

In order to employ Lemma 3.3, we pack r (i)
A and r (i)

B and with them all rectangles that
intersect with S(i)

L into an additional bin. To this end, we pack the rectangles of each sequence
of 4 bins B1, . . . ,B4 of the k bins into 2 additional bins C1 and C2. W.l.o.g. we assume that
r (1)

A is the rectangle with the minimum width among the rectangles r (1)
A , . . . ,r (4)

A and r (2)
B is

the rectangle with the minimum height among the rectangles r (2)
B ,r (3)

B ,r (4)
B .

We pack r (1)
A in the lower left corner of C1 on the position (0,0). Since w (1)

A ≤ w (3)
A ≤

1−w (3)
B and w (1)

A ≤ w (4)
A ≤ 1−w (4)

B , we are able to pack the rectangles r (1)
B ,r (3)

B and r (4)
B on

the right side of r (1)
A . These three rectangles each have a height of at most 1/3− εc and

thus we are able to place them on top of each other on the positions (w (1)
A ,0), (w (1)

A ,1/3) and
(w (1)

A ,2/3). On top of r (4)
B there is still a free space of height εc . The rectangle r (1)

A also has
a height of at most 1−εc , as there would otherwise be no rectangle in W (1)

L . Consequently,
the uppermost strip of height εc is free and we are able to employ Lemma 3.3 on C1 (cf.
Figure 3.12(a))

64

3.2 Modifying a Packing

12/244/246/248/2410/241/210/248/246/244/242/240

1/2

1

2/24

4/24

6/24

8/24

10/24

10/24

8/24

6/24

4/24

2/24

B

B

A

B

(a) Structure of the packing in bin C1

2/244/246/248/2410/241/210/248/246/244/242/240

1

2/24

4/24

6/24

8/24

10/24

1/2

8/24

6/24

4/24

2/24

1

10/24

B

A A A

(b) Structure of the packing in bin C2

Figure 3.12: The structure of the additional bins of Lemma 3.10

The remaining rectangles r (2)
A ,r (3)

A ,r (4)
A and r (2)

B have to be packed into bin C2. It holds
that h(i)

A +h(i)
B = 1 and therefore h(2)

B ≤ h(3)
B = 1−h(3)

A and h(2)
B ≤ h(4)

B = 1−h(4)
A . Thus, the

rectangles r (2)
A ,r (3)

A and r (4)
A each fit above r (2)

B . The widths of r (2)
A ,r (3)

A and r (4)
A are at most

1/3. Hence, we are able to place r (2)
B on the position (0,0), r (2)

A on the position (0,h(2)
B), r (3)

A on
the position (1/3,h(2)

B) and r (4)
A on the position (2/3,h(2)

B)(cf. Figure 3.12(b)). A horizontal or
vertical strip free of rectangles does not necessarily have to exist in this bin. However, there
is no rectangle on the right of r (2)

B and therefore we are able to round up the rectangle r (2)
B

and the rectangles inside it to the next largest multiple of ε2
c /2. The rectangles r (2)

A ,r (3)
A and

r (4)
A are positioned on x-coordinates 0,1/3 and 2/3 that are multiples of ε2

c /2. We are able to
round up the widths of these rectangles to the next largest multiple of ε2

c /2 to at most 1/3.
If r (i)

A is a container, the rectangles within it are therefore also positioned on a multiple of
ε2

c /2 and can be rounded up to the next largest multiple of ε2
c /2. Consequently, this packing

satisfies Property 3.1.

We do this for each sequence of 4 of the k bins. Let `≤ 3 denote the number of remaining
bins. If `≤ 2 we employ an additional bin for each of the ` bins and we pack the rectangles
of the strip S(i)

L into it. We have 3/2(k−`)+2`= 3/2·k+`/2 ≤ 3/2·k+1 bins in total. If `= 3

we pack them according to the method described above without the rectangles r (4)
A and r (4)

B

and use 2 additional bins. We obtain in this case 3/2(k−`)+`+2 = 3/2·k−`/2+2 ≤ 3/2·k+1

bins.

65

3 Two-Dimensional Bin Packing

The lemma described above does not work for h(i) = 8/24− εc since the rectangles r (i)
B

might have a height close to 1/3 and hence the uppermost strip in bin C1 is not free. There-
fore, we have to use a slight modification.

Lemma 3.11. Let B1, . . . ,Bk be k bins so that each bin Bi , for i ∈ {1, . . . ,k}, has a packing

with the following conditions:

2.9. r (i)
ur ∈W (i)

R and r (i)
b` ∈W (i)

L ,

2.10. h(i) = 8/24−εc ,

2.11. v (i) ∈ {0/24, . . . ,7/24,8/24−εc }.

It follows that we are able to round up the rectangles in these bins and rearrange them

into (3/2+εc) ·k +2 bins, while the packing of each of them satisfies either Property 3.1 or

Property 3.2.

Proof. Let i ∈ {1, . . . ,k}. We use the same packing as in the proof of Lemma 3.10. The

2/244/246/248/2410/241/210/248/246/244/242/240

1

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

1

v v’ 1−v’1−v

1−h’

1−h

h’

h

A

rb

ru

rb`

Figure 3.13: Initial packing of Lemma 3.11

difference is that, after possibly turning the bin by 180◦, we have r (i)
b` ∈ W (i)

L and hence the
y ′-coordinate of r (i)

b` is within HB(i)
8/24−εc

(Condition 2.10). Furthermore, the rectangle r (i)
u

also intersects HB(i)
8/24−εc

and has its y-coordinate within it. All rectangles in I (i)
L that are

above the horizontal line at height y (i)
u and that intersect it, belong to A(i). Consequently,

the rectangles in B (i) consist of r (i)
b` and rectangles of a total height of at most εc . We move

66

3.2 Modifying a Packing

these rectangles of the total height at most εc into additional bins by packing them on top of
each other at the x-coordinate 0. For all k bins, we need at most dεc ·ke ≤ εc ·k+1 additional
bins. We are able to round up the widths to the next largest multiple of ε2

c /2 and satisfy
Property 3.1.

At this moment, we have B (i) = {r (i)
b`} and thus r (i)

B = r (i)
b` . We adopt the same packing as in

the proof of Lemma 3.10. We round the heights of the rectangles r (1)
b` ,r (3)

b` and r (4)
b` in the bin

C1 to the next largest multiple of ε2
c /2 which is at most 1/3. The rounding of the remaining

rectangles is the same as in the proof of Lemma 3.10. In total, we have (3/2+ εc) · k + 2

bins.

This finishes the case analysis for the values v (i) < 8/24 = 1/3 and h(i) < 8/24 = 1/3. What
is left is the case in that the rectangles of a height larger than 1/2 or the rectangles of a width
larger than 1/2 are situated close to the middle of the bin.

INTERVALS IN THE MIDDLE

If we have h(i) ∈ {0/24, . . . ,7/24,8/24−εc } and v (i) ∈ {0/24, . . . ,7/24,8/24−εc }, we are able
to use one of the lemmas above. Hence, the packing in the remaining bins has at least one
of the two values v (i) and h(i) in the set {8/24, . . . ,11/24,12/24−εc }.

Lemma 3.12. Let B1, . . . ,Bk be k bins so that each bin Bi , for i ∈ {1, . . . ,k}, has a packing

with the following conditions:

2.12. v (i) ∈ {8/24,9/24,10/24,11/24},

2.13. h(i) ∈ {2/24, . . . ,9/24}.

It follows that we are able to round up the rectangles in these bins and rearrange them into

3/2k+1 bins, while the packing of each of them satisfies either Property 3.1 or Property 3.2.

Proof. Let i ∈ {1, . . . ,k}. We want to move the rectangles in the middle of the bin Bi to an
additional bin, in order to free S(i)

R . Let w.l.o.g. y ′(i)
`

≤ 1− y (i)
r since we are able to turn the

bin by 180◦.
Define a non-rectangular, Γ-shaped region A(i), consisting of the rectangles in the mid-

dle and upper right side of Bi . We define this region along the rectangles r (i)
u ,r (i)

`
,r (i)

b

and the right and top of the bin, in order to ensure that there are only few rectangles
that intersect this region from the sides. The region A(i) is defined by the coordinates
(x ′(i)

u , y ′(i)
`

), (x(i)
b , y ′(i)

`
), (x(i)

b , y ′(i)
b), (1, y ′(i)

b), (1,1) and (x ′(i)
u ,1) (cf. Figure 3.14(a)). We treat

this region with all rectangles that are completely situated inside it as one object o(i)
A and

move this object to an additional bin. The heights and widths are bounded as follows:

67

3 Two-Dimensional Bin Packing

1−2v

1−h

A

h’

1−v

v’v 1−v’1−v

1−h

1−h’

h

h’

2/244/246/248/2410/241/210/248/246/244/242/240

1

1/2

8/24

1

2/24

4/24

6/24

8/24

10/24

10/24

6/24

4/24

2/24

r`

rbru

(a) Definition of region A(i)

A

v’v 1−v’1−v

1−h

1−h’

h

h’
B

C

1

0 2/24 4/24 10/24 1/2 10/24 8/24 2/244/246/248/246/24 1

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

r`

rbru

rr

(b) Definition of region B (i) and C (i)

Figure 3.14: The definition of the regions of Lemma 3.12

The longer, left side has a height of 1− y ′(i)
`

≤ 1−h(i) ≤ 1−2/24 = 22/24, the shorter, right
side a height of at most 1− y ′(i)

b ≤ 1− (1−h′(i)) = h′(i) ≤ 10/24 (Condition 2.12). The lower
part of this object has a width of at most x(i)

b −x ′(i)
u ≤ (1−v (i))−v (i) = 1−2v (i) ≤ 8/24 = 1/3,

the upper part one of 1−x ′(i)
u ≤ 1− v (i) ≤ 1−8/24 = 16/24 = 2/3 (Condition 2.13).

It is possible that there are rectangles that are not completely located inside this region,
but intersect it from below or from the left. The rectangles that intersect it from the left
have to be situated between the rectangles r (i)

`
and r (i)

u since we defined the region A(i) along
the right side of rectangle r (i)

u . The rectangles r (i)
`

and r (i)
u intersect both with HB(i)

h(i) , hence
the total height of these rectangles is bounded by 1/24. We call the set of these rectangles
B (i) and pack them into a container/rectangle r (i)

B of height h(i)
B = h(B (i)) ≤ 1/24 and width

w (i)
B = wmax(B (i)) ≤ x(i)

b ≤ 1− v (i) ≤ 1−8/24 = 16/24 = 2/3 (cf. Figure 3.14(b)).

The rectangles that intersect A(i) from below are situated on the right of the x ′-coordinate
x ′(i)
`

since A(i) is defined along r (i)
`

. Furthermore, these rectangles are all bounded by the rect-
angle r (i)

r that is completely situated inside A(i). Therefore, we define a region C (i) that con-
tains all rectangles that intersect A(i) from below by the coordinates (x ′(i)

`
,0), (1,0), (1, y (i)

r)

and (x ′(i)
`

, y (i)
r). There is no rectangle that intersects C (i) from above since we defined it

along the lower edge of r (i)
r . The rectangles that intersect region C (i) from the left above the

rectangle r (i)
`

are completely situated inside A(i). The rectangles that intersect C (i) from the
left below the rectangle r (i)

`
are bounded by the rectangle r (i)

b . Hence, they do not intersect

68

3.2 Modifying a Packing

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

v’v 1−v’1−v

1−h

1−h’

h

h’

C

1

0 2/24 4/24 6/24 8/24 10/24 1/2 10/24 8/24 6/24 4/24 2/24 1

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

(a) Moving r (i)
C on top of r (i)

`

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

v’v 1−v’1−v

1−h

1−h’

h’

h

C

1

0 2/24 4/24 6/24 8/24 10/24 1/2 10/24 8/24 6/24 4/24 2/24 1

2/24

8/24

8/24

6/24

4/24

2/24

10/24

1/2

10/24

4/24

6/24

(b) The strip S(i)
R is completely free

Figure 3.15: Moving the region C (i) in the proof of Lemma 3.12

S(i)
R and we do not move these rectangles. We treat the region C (i) as one container/rectangle

r (i)
C of height h(i)

C = y (i)
r ≤ 1− y ′(i)

`
and width w (i)

C = 1− x ′(i)
`

≤ 1− (1− v ′(i)) ≤ 12/24−εc that
contains all rectangles completely situated inside this region.

We move the objects o(i)
A and r (i)

B into an additional bin, while r (i)
C is moved inside Bi .

Without these three objects the region (x ′(i)
u , y ′(i)

`
), (1, y ′(i)

`
), (1,1) and (x ′(i)

u ,1) at the right side
of r (i)

u is completely free of rectangles. It is h(i)
C ≤ 1−y ′(i)

`
and w (i)

C ≤ 12/24−εc . Thus, we can
place r (i)

C on the position (1/2, y ′(i)
`

) leaving the left strip S(i)
R completely free of rectangles

(cf. Figure 3.15). We employ Lemma 3.3 on this bin in order to round up the rectangles and
to satisfy Property 3.1.

Let there be two bins B1 and B2 of the k bins and let C1 be an additional empty bin. We
pack the objects o(1)

A ,o(2)
A ,r (1)

B and r (2)
B into C1.

We place r (1)
B at the bottom of the bin C1 on the position (1/3,0). The object o(1)

A is turned
by 180◦ so that the long edge is at the bottom. We pack this object on top of r (1)

B at position
(1/3,1/24). Both objects occupy the region(1/3,0), (1,0), (1,23/24), (2/3,23/24), (2/3,11/24)

and (1/3,11/24).

The object o(2)
A is placed on top of o(1)

A with the top edge at height 22/24. It occupies the
region (0,0), (1/3,0), (1/3,12/24), (2/3,12/24), (2/3,22/24) and (0,22/24) (cf. Figure 3.16).
These regions do not overlap. On top of o(2)

A , there is still a free space of width 2/3 and
height 2/24. In this space we place r (2)

B on position (0,22/24). It follows that there is a strip

69

3 Two-Dimensional Bin Packing

A

A

B

B

1

0 2/24 4/24 6/24 8/24 10/24 1/2 10/24 8/24 6/24 4/24 2/24

6/24

8/24

8/24

6/24

4/24

2/24

1

4/24

2/24

10/24

10/24

1/2

Figure 3.16: Packing of the additional bins in the proof of Lemma 3.12

of the height 1/24 free of rectangles including the strip SU . This allows us to use Lemma 3.4
in order to round up the rectangles and to satisfy Property 3.2.

We repeat this step with each sequence of 2 of the k bins and achieve a packing of 3/2k+1

bins in total, when k is odd.

The analogous lemma by exchanging the values h(i) and v (i) is as follows. However, in
the version that allows rotation we do not need this lemma, turn the packing by 90◦ to adopt
Lemma 3.12 instead.

Lemma 3.13. Let B1, . . . ,Bk be k bins so that each bin Bi , for i ∈ {1, . . . ,k}, has a packing

with the following conditions:

2.14. h(i) ∈ {8/24,9/24,10/24,11/24},

2.15. v (i) ∈ {2/24, . . . ,9/24}.

It follows that we are able to round up the rectangles in these bins and rearrange them into

3/2k+1 bins, while the packing of each of them satisfies either Property 3.1 or Property 3.2.

In the following lemma we use the same technique as in the lemma above. We also move
the region in the middle and in the upper right corner into an additional bin. The region in
the lower right corner is shifted in the same way as in the Lemma 3.12 above. Furthermore,
we use the fact that the values v (i) and h(i) are in the same range.

70

3.2 Modifying a Packing

Lemma 3.14. Let B1, . . . ,Bk be k bins so that each bin Bi , for i ∈ {1, . . . ,k}, has a packing

with the following conditions:

2.16. h(i) ∈ {10/24,11/24},

2.17. v (i) ∈ {10/24,11/24}.

It follows that we are able to round up the rectangles in these bins and rearrange them into

3/2k+1 bins, while the packing of each of them satisfies either Property 3.1 or Property 3.2.

Proof. Let i ∈ {1, . . . ,bk/2c} and j ∈ {bk/2c + 1, . . . ,k} and let w.l.o.g. y ′(i)
`

≤ 1 − y (i)
r and

x(j)
b ≤ 1− x ′(j)

u since we are able to turn the bin Bi or B j by 180◦. We use a similar region
definition as in Lemma 3.12.

2/244/246/248/2410/241/210/248/246/244/242/240

1

8/24

6/24

1/2

10/24

8/24

6/24

4/24

2/24

1

1−v’1−vv’v

1−h

h’

1−h’

h

2/24

4/24

10/24

B

r`

rb

rr

ru

(a) Definition of the region B (i)

2/244/246/248/2410/241/210/248/246/244/242/240

1

2/24

4/24

6/24

8/24

10/24

1/2

10/24

6/24

8/24

4/24

2/24

1−v’1−vv’v

1−h’

1−h

h’

h

1

C

B

A

r`

rr

rb

ru

(b) Definition of region A(i) and C (i)

Figure 3.17: Definitions of the regions of the first bk/2c bins in the proof of Lemma 3.14

Let A(i) be the region defined by (x ′(i)
u , y (i)

r), (1, y (i)
r), (1,1) and (x ′(i)

u ,1). The region B (i)

in the middle of bin Bi is defined by (0, y ′(i)
`

), (1, y ′(i)
`

), (1, y (i)
r) and (0, y (i)

r). The region C (i)

is defined by (x ′(i)
`

,0), (1,0), (1, y (i)
r) and (x ′(i)

`
, y (i)

r) (cf. Figure 3.17). Again, we treat these
regions as containers/rectangles. r (i)

A has height h(i)
A ≤ 1−y (i)

r ≤ 1−(1−h′(i)) = h′(i) ≤ 12/24−
εc (Condition 2.17) and width w (i)

A ≤ 1−x ′(i)
u ≤ 1−v (i) ≤ 1−10/24 = 14/24 (Condition 2.16).

The width of r (i)
B is w (i)

B = 1 and the height is h(i)
B = y (i)

r − y ′(i)
`

≤ (1−h(i))−h(i) = 1−2h(i) ≤
1− 20/24 = 4/24 (Condition 2.16). The rectangle r (i)

C has width w (i)
C = 1− x ′(i)

`
≤ 1− (1−

h′(i)) = h′(i) ≤ 12/24−εc (Condition 2.16) and height h(i)
C = y (i)

r ≤ 1−y ′(i)
`

. All rectangles that

71

3 Two-Dimensional Bin Packing

2/244/246/2410/24 8/241/210/248/246/244/242/240

1

4/24

6/24

8/24

1/2

8/24

1−v’1−vv’v

1−h’

1−h

h’

h

1

2/24

10/24

10/24

6/24

4/24

2/24

E

r`

rb

rr

ru

(a) Definition of region E (i)

1−v’1−vv’v

1−h’

1−h

h’

h

E

2/244/246/248/2410/241/210/248/246/244/242/240

1

6/24

8/24

1/2

8/24

6/24

4/24

2/24

1

4/24

2/24

10/24

10/24

F

D

r`

rr

rb

ru

(b) Definition of region D (i) and F (i)

Figure 3.18: Definitions of the regions of the last dk/2e bins in the proof of Lemma 3.14

intersect the region B (i) from below are situated at the right of the rectangle r (i)
`

. Hence, these
rectangles are all completely situated inside the region C (i). The rectangles that intersect B (i)

from above have to be on the left of rectangle r (i)
r . Thus, they are completely situated at the

left of the vertical line at x-coordinate 1/2. These rectangles are not moved. This holds
especially for the rectangles that intersect the region A(i) from below between the rectangles
r (i)

u and r (i)
r . There are no further rectangles that intersect A(i) while they are not completely

situated inside this region. The rectangles that intersect region C (i) are either completely
situated inside region B (i) or are situated below r (i)

`
and thus bounded by rectangle r (i)

b .
The values of the x ′-coordinates of these rectangles is at most x(i)

b . We do not move these
rectangles.

We define similar regions in the bin B j . The only difference is that they are rotated by 90◦

(cf. Figure 3.18). Let D (j) be the region defined by the coordinates (x(j)
b ,0), (1,0), (1, y (j)

r)

and (x(j)
b , y (j)

r), E (j) is defined by the coordinates (x ′(j)
u ,0), (x(j)

b ,0), (x(j)
b ,1) and (x ′(j)

u ,1). The
region F (j) is defined by the coordinates (0,0), (x(j)

b ,0), (x(j)
b , y (j)

u) and (0, y (j)
u). The values

for the heights and the widths of the corresponding rectangles r (j)
D ,r (j)

E and r (j)
F are the same

as the values for r (i)
A ,r (i)

B and r (i)
C by exchanging the widths and the heights. Consequently,

w (j)
D ≤ 12/24−εc ,h(j)

D ≤ 14/24, w (j)
E ≤ 4/24,h(j)

E = 1, w (j)
F = x(j)

b ≤ 1−x ′(j)
u and h(j)

F ≤ 12/24−
εc .

In a first step, we move the regions out of the bins. Analogously to Lemma 3.12, we place

72

3.2 Modifying a Packing

1−v’1−vv’v

1−h’

1−h

h’

h

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

C

0 2/24 4/24 6/24 8/24 10/24 1/2 10/24 8/24 6/24 4/24 2/24

1

2/24

4/24

1/2

1

2/24

4/24

6/24

8/24

10/24

10/24

8/24

6/24

(a) Packing in the first bk/2c bins

1−v’1−vv’v

h’

h

1−h’

1−h

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

F

1

0 2/24 4/24 6/24 8/24 10/24 1/2 10/24 8/24 6/24 4/24 2/24

1/2

2/24

1

4/24

6/24

8/24

10/24

10/24

8/24

6/24

4/24

2/24

(b) Packing in the last dk/2e bins

Figure 3.19: Packing of the bins in the proof of Lemma 3.14

E E

1

0 2/24 4/24 6/24 8/24 10/24 1/2 10/24 8/24 6/24 4/24 2/24 1

2/24

4/24

6/24

8/24

10/24

1/2

8/24

10/24

6/24

4/24

2/24

A

A

(a) Packing in the additional bin C1

B

B

1

0 2/24 4/24 6/24 8/24 10/24 1/2 10/24 8/24 6/24 4/24 2/24 1

2/24

4/24

10/24

1/2

8/24

6/24

4/24

2/24

10/24

8/24

6/24

D D

(b) Packing in the additional bin C2

Figure 3.20: Packing of the additional bins in the proof of Lemma 3.14

73

3 Two-Dimensional Bin Packing

r (i)
C on the position (1/2, y ′(i)

`
) and r (j)

F on the position (x ′(j)
u ,1/2) (cf. Figure 3.19). Let there

be two bins B1,B2 of the first bk/2c bins and two bins B3,B4 of the remaining bins. We move
the rectangles r (1)

A ,r (2)
A and r (3)

E ,r (4)
E into an additional bin C1 and the rectangles r (3)

D ,r (4)
D and

r (1)
B ,r (2)

B into an additional bin C2 (cf. Figure 3.20).
We pack r (1)

A in the lower left corner of bin C1 on the position (0,0) and r (2)
A on top of it

on the position (0,1/2). The widths of both rectangles are at most 14/24. On the right side
there is enough space to place r (3)

E and r (4)
E . These rectangles have a total width of 8/24. On

the right side there is still a free space of width 2/24 and hence the strip SR is completely
free of rectangles.

The packing in C2 is analogous. r (3)
D and r (4)

D are placed next to each other at the bottom
of bin C2 on the positions (0,0) and (1/2,0). On top of them there is a free space of at
least 10/24. We place r (1)

B and r (2)
B on top of them, leaving the strip SU free of rectangles.

We repeat this method with each sequence of 4 of the k bins. Having observed the same
results as in the last paragraph of the proof of Lemma 3.10, we need 3/2k +1 bins in total,
when k is not a multiple of 4. In each bin there is either a horizontal or a vertical strip
free of rectangles, hence we are able to employ Lemma 3.3 or Lemma 3.4 to satisfy either
Property 3.1 or Property 3.2.

The next lemma considers the case that the horizontal intervals are close to the bottom
and to the top of the bin while the vertical intervals are close to the middle.

Lemma 3.15. Let B1, . . . ,Bk be k bins so that each bin Bi , for i ∈ {1, . . . ,k}, has a packing

with the following conditions:

2.18. v (i) ∈ {8/24,9/24,10/24,11/24},

2.19. h(i) ∈ {0/24,1/24}.

It follows that we are able to round up the rectangles in these bins and rearrange them into

3/2·k+2 bins, while the packing of each of them satisfies either Property 3.1 or Property 3.2.

Proof. Let i ∈ {1, . . . ,k}. We use a similar region definition as in the lemmas before. The
height of the region in the middle is very large, but the regions at the top and at the bottom
are small.

Let A(i) be the rectangular region defined by the points (x ′(i)
u , y ′(i)

`
), (x(i)

b , y ′(i)
`

), (x(i)
b , y (i)

r)

and (x ′(i)
u , y (i)

r). The corresponding rectangle r (i)
A of this region has a width of w (i)

A = x(i)
b −

x ′(i)
u ≤ 1− v (i) − v (i) ≤ 16/24−8/24 = 1/3 (Condition 2.18). The rectangles r (i)

`
and r (i)

r are
not completely situated inside the strips S(i)

B and S(i)
U , as they would have been removed in

Lemma 3.1. It follows that the height of r (i)
A is bounded by h(i)

A = y (i)
r −y ′(i)

`
≤ 1−2εc ≤ 1−εc .

74

3.2 Modifying a Packing

A

v v’

1−h

1−h’

h

h’

1−v1−v’

A

B

C

1

0 2/24 4/24 6/24 8/24 10/24 1/2 10/24 8/24 6/24 4/24 2/24

8/24

1

6/24

4/24

2/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

rb

ru

rr

r`

(a) Definition of the regions A(i),B (i) and C (i)

A

v v’

1−h

1−h’

h

h’

1−v1−v’

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������1

0 2/24 4/24 6/24 8/24 10/24 1/2 10/24 8/24 6/24 4/24 2/24

2/24

4/24

8/24

6/24

6/24

2/24

4/24

1

10/24

10/24

1/2

8/24

(b) The whole strip in the middle is free of rectangles

Figure 3.21: Definitions of the regions in the proof of Lemma 3.15

In the next step, we define the region B (i) by the coordinates (0,0), (x(i)
b ,0), (x(i)

b , y (i)
u), (0, y (i)

u)

and the region C (i) by the coordinates (x ′(i)
u , y ′(i)

b), (1, y ′(i)
b), (1,1), (x ′(i)

u ,1). The heights of
the corresponding containers/rectangles r (i)

B and r (i)
C of these regions are bounded by h(i)

B =
y (i)

u −0 ≤ h′(i) ≤ 2/24 and h(i)
C = 1− y ′(i)

b ≤ 1− (1−h′(i)) = h′(i) ≤ 2/24 (Condition 2.19). The
widths are bounded by w (i)

B = x(i)
b −0 ≤ 1−v (i) ≤ 1−8/24 = 16/24 = 2/3 and w (i)

C = 1−x ′(i)
u ≤

1−v (i) ≤ 1−8/24 = 16/24 = 2/3 (Condition 2.18). We move these rectangles and with them
all rectangles that are completely situated inside these regions into additional bins. There
are some rectangles left that intersect the region A(i) and that are not completely situated
in one of these regions. These rectangles have to intersect A(i) from above or below since
all rectangles that intersect A(i) from the left are below r (i)

u and hence located inside B (i)

and the rectangles that intersect from the right have to lie above r (i)
b and are hence situated

inside C (i). The rectangles that intersect A(i) from below have to be located between r (i)
`

and r (i)
b ; the rectangles that intersect from above have to be situated between r (i)

u and r (i)
r . It

follows that, after moving the rectangles r (i)
A ,r (i)

B and r (i)
C into additional bins, the complete

vertical strip between x(i)
r and x ′(i)

`
is completely free of rectangles (cf. Figure 3.21). Since

x ′(i)
`

≥ 1− v ′(i) ≥ 1− (12/24−εc) = 1/2+εc and x(i)
r ≤ v ′(i) ≤ 12/24−εc = 1/2−εc , the strip

has a width of at least 2εc . Thus, we can move all rectangles on the right of the x ′-coordinate
x ′(i)
`

by εc to the left and secure that the strip S(i)
R is completely free of rectangles.

We move the rectangles of each sequence of 6 bins B1, . . . ,B6 of the k bins into 3 addi-

75

3 Two-Dimensional Bin Packing

tional bins C1,C2,C3. The rectangles r (1)
A ,r (2)

A and r (3)
A are moved into bin C1, the rectangles

r (4)
A ,r (5)

A ,r (6)
A are moved into bin C2 and the remaining rectangles into bin C3. Each rectan-

gle r (i)
A has a width of at most 1/3. Thus, we place them on the positions (0,0), (1/3,0) and

(2/3,0) into bins C1 and C2. The uppermost horizontal strip SU of height εc is still free of
rectangles. The total height of the rectangles r (1)

B , . . . ,r (6)
B and the rectangles r (1)

C , . . . ,r (6)
C is

6 ·(2/24+2/24) = 1. We place them on top of each other into bin C3 with their y-coordinates
situated on position 0. Since they have a width of at most 2/3 the strip SR is still free (cf.
Figure 3.22).

A A A

1

0 2/24 4/24 6/24 8/24 10/24 1/2 10/24 8/24 6/24 4/24 2/24 1

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

(a) Packing in the bin C1 and C2

B

B

B

B

B

B

C

C

C

C

C

C

2/244/246/248/2410/241/210/248/246/244/242/240

1

1/2

1

2/24

4/24

6/24

8/24

10/24

10/24

8/24

6/24

4/24

2/24

(b) Packing in the bin C3

Figure 3.22: Packing in the additional bins in the proof of Lemma 3.15

Accordingly to the discussion in the last paragraph of the proof of Lemma 3.8, we need
3/2k +2 bins in total, if k is not a multiple of 6. In each bin there is either a vertical strip
of the width εc or a horizontal strip of the height εc free of rectangles. This allows us to
employ Lemma 3.3 or Lemma 3.4 in order to round up the rectangles and to satisfy either
Property 3.1 or Property 3.2.

The analogous lemma is stated as follows. In the version that allows rotation, we only use
Lemma 3.15.

Lemma 3.16. Let B1, . . . ,Bk be k bins so that each bin Bi , for i ∈ {1, . . . ,k}, has a packing

with the following conditions:

2.20. h(i) ∈ {8/24,9/24,10/24,11/24},

76

3.2 Modifying a Packing

2.21. v (i) ∈ {0/24,1/24}.

It follows that we are able to round up the rectangles in these bins and rearrange them into

3/2·k+2 bins, while the packing of each of them satisfies either Property 3.1 or Property 3.2.

Before concluding our case analysis, there is one remaining case left in which either h(i) =
12/24−εc or v (i) = 12/24−εc .

LAST REMAINING CASE

We distinguish, if the rectangles in the corners intersect the intervals that are very close to
the middle of the bin, or if they do not. If v (i) = 12/24− εc and r (i)

u` ∈ L(i)
U , then the width

of r (i)
u` is close to 1/2 and the height is larger than 1/2. If r (i)

u` ∉ L(i)
U , then there are only

rectangles of a total width of εc in I (i)
L . In the first lemma, we have v (i) = 12/24− εc and

r (i)
u` ∈ L(i)

U and r (i)
br ∈ L(i)

B . Hence there are two very large rectangles in the packing.

Lemma 3.17. Let B1, . . . ,Bk be k bins so that each bin Bi , for i ∈ {1, . . . ,k}, has a packing

with the following conditions:

2.22. v (i) = 12/24−εc ,

2.23. h(i) ∈ IN,

2.24. r (i)
u` ∈ L(i)

U and r (i)
br ∈ L(i)

B .

It follows that we are able to round up the rectangles in these bins and rearrange them into

3/2 ·k +1 bins, while the packing of each of them satisfies Property 3.1.

Proof. Let i ∈ {1, . . . ,k}. The rectangles r (i)
u` and r (i)

br have a width of at least 1/2−εc , since
they have to intersect the interval VL(i)

12/24−εc
and VR(i)

12/24−εc
. Therefore, the space between

the rectangles is very small. W.l.o.g. let h(i)
u` ≥ h(i)

br since we are able to turn the bin by 180◦.
We define the region A(i) between these rectangles by the coordinates (x ′(i)

u` ,0), (x(i)
br ,0),

(x(i)
br ,1) and (x ′(i)

u` ,1). We treat this region as a rectangle r (i)
A of height h(i)

A = 1 and width
w (i)

A = x(i)
br − x ′(i)

u` ≤ (1− v (i))− v (i) = 1− (12/24− εc)− (12/24− εc) = 2εc (Condition 2.22).
Moreover, we define a region B (i) by the coordinates (x ′(i)

u` , y ′(i)
br), (1, y ′(i)

br), (1,1) and (x ′(i)
u` ,1).

The corresponding rectangle r (i)
B has a width of at most w (i)

B = 1−x ′(i)
u` ≤ 1−v (i) = 1−(12/24−

εc) = 12/24+εc = 1/2+εc and a height of at most h(i)
B = 1− y ′(i)

br ≤ 1− (1−h′(i)) ≤ 1/2 (cf.
Figure 3.23). We move the rectangles r (i)

A and r (i)
B of each sequence of 2 bins into one

additional bin. We move r (i)
br out of bin Bi for a moment. There is no rectangle on the right

of r (i)
u`, since all rectangles that were on top of r (i)

br are situated in r (i)
B and all rectangles

77

3 Two-Dimensional Bin Packing

2/244/246/248/2410/241/210/248/246/244/242/240

1

1

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

h’

h

1−h’

1−h

v 1−v

A

r`

ru`

rbr

rr

(a) Definition of the region A(i)

2/244/246/248/2410/241/210/248/246/244/242/240

1

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

v 1−v

h’

h

1−h’

1−h

1

A

B

r`

ru`

rbr

rr

(b) Definition of the region B (i)

Figure 3.23: Definitions of the regions in the proof of Lemma 3.17

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

2/244/246/248/2410/241/210/248/246/244/242/240

1

6/24

4/24

2/24

1−v

h’

h

1−h’

1−h

1

v

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

ru` rbr

(a) Packing in the bin Bi

2/244/246/248/2410/241/210/248/246/244/242/240

1

1

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

B

B

AA

(b) Packing in the bin C1

Figure 3.24: Packing in the proof of Lemma 3.17

78

3.2 Modifying a Packing

that are located between r (i)
u` and r (i)

br are now to be found in r (i)
A . At this moment, we use

Lemma 3.3 on this bin since S(i)
R is completely free of rectangles. The width of the rectangle

r (i)
u` is rounded up to the next largest multiple of ε2

c /2 which is at most 1/2. Thus, the new
x ′-coordinate is x ′(i)

u` ≤ 1/2. We reinsert the rectangle r (i)
br into the bin after rounding up its

width to the next largest multiple of ε2
c /2 to at most 1/2. Since h(i)

u` ≥ h(i)
br , we can place r (i)

br

on the right side of r (i)
u` on the x-coordinate 1/2 (cf. Figure 3.24).

Let there be two bins B1,B2 of the k bins and let C1 be an additional bin. We pack r (1)
B

and r (2)
B on top of each other on the positions (0,0) and (0,1/2) into C1. On the right side

there is still a free space of at least 12/24−εc . Hence, there is enough space to place r (1)
A on

the position (12/24+εc ,0) and r (2)
A on the position (12/24+3εc ,0). There is still a space of

at least 12/24−5εc free of rectangles including the strip SR . Thus, we are able to employ
Lemma 3.3 on bin C1. In total, we have 3/2k +1 bins when k is odd while the packing of
each bin satisfies Property 3.1.

By exchanging the values v (i) and h(i), we obtain the following lemma. Since it is the
analogous lemma, by turning the bin by 90◦, we do not need it in the version that allows
rotation.

Lemma 3.18. Let B1, . . . ,Bk be k bins so that each bin Bi , for i ∈ {1, . . . ,k}, has a packing

with the following conditions:

2.25. v (i) ∈ IN,

2.26. h(i) = 12/24−εc ,

2.27. r (i)
ur ∈W (i)

R and r (i)
b` ∈W (i)

L .

It follows that we are able to round up the rectangles in these bins and rearrange them into

3/2 ·k +1 bins, while the packing of each of them satisfies Property 3.2.

If there are no such big rectangles in the packing of bin Bi , we cannot adopt the method
described above. However, when v (i) = 12/24− εc , the total width of either L(i)

U or L(i)
B is

very small.

Lemma 3.19. Let B1, . . . ,Bk be k bins so that each bin Bi , for i ∈ {1, . . . ,k}, has a packing

with the following conditions:

2.28. v (i) = 12/24−εc ,

2.29. h(i) ∈ IN,

79

3 Two-Dimensional Bin Packing

2.30. r (i)
u` ∉ L(i)

U or r (i)
br ∉ L(i)

B .

It follows that we are able to round up the rectangles in these bins and rearrange them into

(3/2+εc) ·k +2 bins, while the packing of each of them satisfies Property 3.2.

Proof. Let i ∈ {1, . . . ,k}. W.l.o.g. we suppose that r (i)
u` ∉ L(i)

U since we are able to turn the
bin by 180◦. The rectangles in L(i)

U have a total width of at most εc since they have to
be completely situated in the interval VL(i)

12/24−εc
. We move these rectangles in L(i)

U into an
additional bin. We are able to pack 1/εc sets next to each other at the bottom. Therefore, we
need at most dεc ·ke < εc ·k +1 additional bins for all k bins. We are able to round up the
heights of these rectangles to the next multiple of ε2

c /2 to at most 1 and satisfy Property 3.2.

No rectangle of a height larger than 1/2 remains to intersect S(i)
U . Thus, we are able to

employ Lemma 3.6 with y = 0 and x = 1/2, and achieve a packing into 3/2 ·k+1 bins, while
each packing satisfies Property 3.2. In total, we have a packing of (3/2+εc) ·k +2 bins.

The last remaining case is analogous to Lemma 3.19. We do not need it in the version that
allows rotation.

Lemma 3.20. Let B1, . . . ,Bk be k bins so that each bin Bi , for i ∈ {1, . . . ,k}, has a packing

with the following conditions:

2.31. v (i) ∈ IN,

2.32. h(i) = 12/24−εc ,

2.33. r (i)
ur ∉W (i)

R or r (i)
b` ∉W (i)

L .

It follows that we are able to round up the rectangles in these bins and rearrange them into

(3/2+εc) ·k +2 bins, while the packing of each of them satisfies Property 3.1.

RÉSUMÉ OF THE CASE ANALYSIS

In conclusion we obtain the following theorem:

Theorem 3.4. For any value εc , with 1/εc being a multiple of 24, and for any solution that

fits into m bins, we are able to round up the widths and the heights of the rectangles so that

they fit into (3/2+ 5εc) ·m + 37 bins while the packing of each of the bins satisfies either

Property 3.1 or Property 3.2.

80

3.2 Modifying a Packing

Proof. Let Bi be a bin in our solution. We prove that no matter how the packing looks
like, one of the previous lemmas can be employed. A packing that does not satisfy the
properties of Theorem 3.3 can be solved with Lemma 3.2 or Lemma 3.7. Thus, we suppose
that the packing has the properties of Theorem 3.3 with certain values h(i) ∈ IN and v (i) ∈ IN.
Depending on these values and whether the rectangles in the corner have width or height
larger than 1/2, we use different lemmas (cf. Figure 3.25).

Case 1: h(i) and v (i) are both in the set {0/24, . . . ,8/24−εc }.
If r (i)

b` ∉ W (i)
L or r (i)

ur ∉ W (i)
R , we employ Lemma 3.8, if r (i)

u` ∉ L(i)
U or r (i)

br ∉ L(i)
B , we employ

Lemma 3.9. Consequently, we conclude r (i)
b` ∈ W (i)

L , r (i)
ur ∈ W (i)

R , r (i)
u` ∈ L(i)

U and r (i)
br ∈ L(i)

B .
We solve this case either according to Lemma 3.10 or, if h(i) = 8/24 − εc , according to
Lemma 3.11.

Case 2: v (i) = 12/24−εc or h(i) = 12/24−εc .
If v (i) = 12/24− εc , we employ either Lemma 3.17, if r (i)

u` ∈ L(i)
U and r (i)

br ∈ L(i)
B and else

Lemma 3.19. If h(i) = 12/24−εc and if r (i)
ur ∈W (i)

R and r (i)
b` ∈W (i)

L we adopt Lemma 3.18 and
else Lemma 3.20.

Case 3: v (i) ∈ {8/24, . . . ,11/24} and h(i) ∈ {0/24, . . . ,9/24}.
If h(i) ∈ {0/24,1/24} we make use of Lemma 3.15. Otherwise, if h(i) ∈ {2/24, . . . ,9/24}, we
employ Lemma 3.12.

Case 4: h(i) ∈ {8/24, . . . ,11/24} and v (i) ∈ {0/24, . . . ,9/24}.
Analogous to the third case we use Lemma 3.16 if v (i) ∈ {0/24,1/24} and Lemma 3.13 if
v (i) ∈ {2/24, . . . ,9/24}.

Case 5: h(i) and v (i) are both in the set {10/24,11/24}.
In this case we employ Lemma 3.14.

In each lemma mentioned here we modify a packing of k bins into a packing with at
most (3/2+εc)k bins and a constant number of additional bins. Furthermore, we remove all
rectangles that are completely in the strips at the sides of the bin and need therefore 4εc ·m+2

additional bins in Lemma 3.1. It follows that we need (3/2+5εc) ·m bins plus a constant
number of bins in total.

In Lemma 3.7, the constant number of additional bins is 15. Two additional bins are
needed in the Lemma 3.8, Lemma 3.9,Lemma 3.11,Lemma 3.15,Lemma 3.16, Lemma 3.19
and Lemma 3.20. We need one additional bin in the Lemma 3.10, Lemma 3.12, Lemma 3.13,
Lemma 3.14, Lemma 3.17 and Lemma 3.18. By summing up these constant numbers, we
obtain a value of 2+15+2 ·7+6 = 2+15+20 = 37.

81

3 Two-Dimensional Bin Packing

v (i)\h(i) 0/24 1/24 2/24 3/24 4/24 5/24 6/24 7/24 8/24−εc 8/24 9/24 10/24 11/24 12/24−εc

0/24 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.11 3.16 3.16 3.16 3.16 3.18,3.20
1/24 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.11 3.16 3.16 3.16 3.16 3.18,3.20
2/24 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.11 3.13 3.13 3.13 3.13 3.18,3.20
3/24 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.11 3.13 3.13 3.13 3.13 3.18,3.20
4/24 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.11 3.13 3.13 3.13 3.13 3.18,3.20
5/24 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.11 3.13 3.13 3.13 3.13 3.18,3.20
6/24 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.11 3.13 3.13 3.13 3.13 3.18,3.20
7/24 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.11 3.13 3.13 3.13 3.13 3.18,3.20

8/24−εc 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.10 3.8,3.9,3.11 3.13 3.13 3.13 3.13 3.18,3.20
8/24 3.15 3.15 3.12 3.12 3.12 3.12 3.12 3.12 3.12 3.12,3.13 3.12,3.13 3.13 3.13 3.18,3.20
9/24 3.15 3.15 3.12 3.12 3.12 3.12 3.12 3.12 3.12 3.12,3.13 3.12,3.13 3.13 3.13 3.18,3.20

10/24 3.15 3.15 3.12 3.12 3.12 3.12 3.12 3.12 3.12 3.12 3.12 3.14 3.14 3.18,3.20
11/24 3.15 3.15 3.12 3.12 3.12 3.12 3.12 3.12 3.12 3.12 3.12 3.14 3.14 3.18,3.20

12/24−εc 3.17,3.19 3.17,3.19 3.17,3.19 3.17,3.19 3.17,3.19 3.17,3.19 3.17,3.19 3.17,3.19 3.17,3.19 3.17,3.19 3.17,3.19 3.17,3.19 3.17,3.19 3.17,3.18,3.19,3.20

Figure 3.25: Overview of the lemmas that are applied for different v and h

RÉSUMÉ OF THE CASE ANALYSIS WITH ROTATIONS The additive constant changes in
the version that allows rotation. We employ Lemma’ 3.1 with an additive constant of 1 and
Lemma’ 3.7 with an additive constant of 8 instead of Lemma 3.1 with an additive constant
of 2 and Lemma 3.7 with an additive constant of 15, respectively. Furthermore, we do not
need Lemma 3.9, Lemma 3.13, Lemma 3.16, Lemma 3.18 and Lemma 3.20. This reduces
the additive constant to the value 1+8+2 ·4+4 = 21.

Theorem’ 3.4. For any value εc , with 1/εc being a multiple of 24, and for any solution that

fits into m bins, we are able to rotate and to round up the widths of the rectangles so that they

fit into (3/2+5εc) ·m +21 bins while the packing of each of the bins satisfies Property 3.1.

3.2.3 ROUNDING THE OTHER SIDE

In this section, we round the remaining unrounded side of the rectangles after employ-
ing Theorem 3.4 on an optimal solution in OPT bins. However, before we adopt Theo-
rem 3.4 we divide the instance into big, wide, long, small and medium rectangles. Let
ε′ ≤ min{ε/39,1/48}, so that 1/ε′ is a multiple of 24. Similar as in [36], we find a value δ,
so that the rectangles with at least one side length between δ and δ4 have a small total area.

Lemma 3.21. We find a value δ≤ ε′, so that 1/δ is a multiple of 24 and all rectangles ri of

the width wi ∈ [δ4,δ) or the height hi ∈ [δ4,δ] have a total area of at most ε′ ·OPT.

Proof. Define a sequence σ1, . . . ,σ2/ε′+1, whereas σ1 is the largest value with σ1 = ε′ and
σk+1 =σ4

k , for k ∈ {1, . . . ,2/ε′}. Each reciprocal of the members in the sequence is a multiple
of 24. This is a consequence of an inductive argument: 1/ε′ is a multiple of 24; let 1/σk =
i ·24 for one integer i . It follows that, 1/σk+1 = 1/σ4

k = (1/σk)4 = (i ·24)4 = (i 4 ·243) ·24.
Hence, 1/σk+1 is a multiple of 24.

Let Mσk be the set of rectangles ri with wi ∈ [σk+1,σk) or hi ∈ [σk+1,σk). Each rectangle
ri in the instance belongs to at most two sets Mσk . Since the area is a lower bound for OPT

we have
∑2/ε′

k=1 a(Mσk) ≤ 2OPT. Suppose that all sets have an area of a(Mσk) > ε′ ·OPT, for

82

3.2 Modifying a Packing

all k ∈ {1, . . . ,2/ε}. We obtain
∑2/ε′

k=1 a(Mσk) > 2/ε′ ·ε′OPT = 2 ·OPT, which is a contradiction.
Therefore, there exists at least one set with a(Mσk) ≤ ε′ ·OPT. We set δ := σk , so that k is
the smallest value with a(Mσk) ≤ ε′ ·OPT.

The rectangles are separated into big rectangles of width and height at least δ, wide rectan-
gles of width at least δ and height smaller than δ4, long rectangles of width smaller than δ4

and height at least δ, small rectangles of width and height less than δ4 and medium rectangles
of width or height in [δ4,δ).

Since 1/δ is a multiple of 24 we are able to adopt Theorem 3.4 with an optimal so-
lution consisting of OPT bins and with εc := δ. The resulting solution consists of k ≤
(3/2+ 5δ)OPT+ 37 bins which satisfy Property 3.1 or Property 3.2. A bin is of Type 1,
if its packing satisfies Property 3.1 and otherwise it is of Type 2. Therefore, let B1, . . . ,Bp1 ,
be the bins of Type 1 and Bp1+1, . . . ,Bk be the bins of Type 2.

The widths of the big and wide rectangles in the bins B1, . . . ,Bp1 and the heights of the big
and long rectangles in the bins Bp1+1, . . . ,Bk are therefore multiples of δ2/2. We denote the
set of big and wide rectangles that are packed into the bins B1, . . . ,Bp1 and that have a width of
iδ2/2, for i ∈ {2/δ, . . . ,2/δ2} by B w

i and W w
i , respectively. The set of big and long rectangles

that are packed in the bins Bp1+1, . . . ,Bk and that have a height of iδ2/2 are denoted by
B h

i and Lh
i , respectively. The wide rectangles that are packed in the bins Bp1+1, . . . ,Bk are

denoted by W h and the long rectangles that are packed in the bins B1, . . . ,Bp1 are denoted
by Lw . The set of small rectangles is denoted by S. The set of medium rectangles that have
a width within [δ4,δ) are denoted by Mwδ and the remaining rectangles of height within
[δ4,δ) are denoted by Mhδ.

The medium rectangles have a total area of at most ε′ ·OPT. Therefore, we are able to
move them into few additional bins with Steinberg’s Algorithm [51] (cf. also Section 2.2)

Theorem 3.5 (Steinberg’s algorithm). If the following inequalities hold,

wmax(T) ≤ a, hmax(T) ≤ b, and 2a(T) ≤ ab − (2wmax(T)−a)+(2hmax(T)−b)+

where x+ = max(x,0), then it is possible to pack all items from T into R = (a,b) in time

O ((n log2 n)/ loglogn).

Therefore, we only have to partition the set of medium rectangles into subsets of a total
area of at most 1/2.

Lemma 3.22. We pack the medium rectangles into at most 3ε′OPT+2 additional bins

83

3 Two-Dimensional Bin Packing

Proof. We split the sets Mhδ and Mwδ into sets of a total area of at most 1/2. Each medium
rectangle has an area of at most δ. Therefore, we are able to greedily divide Mhδ and
Mwδ into sets of rectangles of a total area within (1/2−δ,1/2] and two additional sets of
rectangles with a bounded total area of at most 1/2−δ. It holds that 3ε′OPT · (1/2−δ) >
3ε′OPT · (1/2−1/6) = ε′OPT, since δ ≤ ε′ ≤ 1/48 < 1/6. Hence, the total number of sets is
bounded by d3ε′OPTe ≤ 3ε′OPT+2. The rectangles in each set have either a maximum width
of at most δ< 1/2 or a maximum height of at most δ< 1/2. This enables us to pack each set
into one bin using Steinberg’s Theorem 3.5.

In the next step, we round up the heights of the big and long rectangles in the bins
B1, . . . ,Bp1 and the widths of the big and wide rectangles in the bins Bp1+1, . . . ,Bk . Fur-
thermore, we pack the wide and long rectangles fractionally into wide and long containers.

PACKING MEDIUM RECTANGLES WITH ROTATIONS We use the same construction in
the version that allows rotation. The difference is that we rotate the rectangles in the set
Mhδ. Consequently, these rectangles belong to the set Mwδ. We partition this set analogous
as in the proof of Lemma 3.22 into 3ε′OPT+1 subsets of total area at most 1/2. These sets
are packed with Steinberg’s Theorem 3.5. We obtain the following lemma for the version
that allows rotation.

Lemma’ 3.22. We rotate and pack the medium rectangles into at most 3ε′OPT+1 additional

bins

The next steps are explained for the bins B1, . . . ,Bp1 , the rounding for the remaining bins
is analogous.

ROUNDING BIG AND LONG RECTANGLES

We round the heights of the big and long rectangles in the sets B w
i and Lw

i , for each i ∈
{2/δ, . . . ,2/δ2}.

To do this, we adopt a similar rounding technique as in the algorithm by Kenyon &
Rémila [40] and in the algorithm by Fernandez de la Vega & Lueker [19]. We focus on
one set B w

i of big rectangles, for i ∈ {2/δ, . . . ,2/δ2}. We sort the rectangles in this set ac-
cording to non-decreasing heights. Let ki be the number of rectangles in B w

i , denoted by
ri ,1, . . . ,ri ,ki . The rectangle ri ,1 has the largest and ri ,ki the smallest height. We define at
most 1/δ2 subsets B w

i , j , which consist of bδ2 ·ki c rectangles except the last subset with pos-
sibly less items. This is done by assigning bδ2 ·ki c rectangles into one subset, then we leave
one rectangle out and assign the next bδ2 ·ki c rectangles into the next subset. Thus, the first

84

3.2 Modifying a Packing

rectangle ri ,1 is not assigned to a subset and is called the first cut-rectangle. The rectangles
ri ,2, . . . ,ri ,bδ2·ki c+1 are assigned to subset B w

i ,1. The rectangle ri ,bδ2·ki c+2 is called the second
cut-rectangle. The rectangles ri ,bδ2·ki c+3, . . . ,ri ,2·bδ2·ki c+2 are assigned to subset B w

i ,2 and so
on. Hence, the j th cut-rectangle is ri ,(j−1)·bδ2·ki c+ j and the subset B w

i , j contains the rectangles
ri ,(j−1)·bδ2·ki c+(j+1), . . . ,ri , j ·bδ2·ki c+ j . We have at most 1/δ2 cut-rectangles and subsets, since
we have at most 1/δ2 · (1+bδ2 ·ki c) ≥ 1/δ2 ·δ2 ·ki = ki rectangles.

We round the heights of the rectangles in each subset B w
i , j to the height of the j th cut-

rectangle. Afterwards, we move the rectangles of the first subset B w
i ,1 into additional bins.

Note that the total width of subset B w
i ,1, denoted by w(B w

i ,1), is at most bδ2 · ki c · iδ2/2 ≤
δ2 ·ki · iδ2/2 = δ2 ·w(B w

i), with w(B w
i) being the total width of all rectangles in B w

i . Each
rectangle in a remaining subset B w

i , j is placed on a position of one rectangle in subset B w
i , j−1.

This is done by placing the `th rectangle of subset B w
i , j on the position of the `th rectangle

of subset B w
i , j−1. This is possible since all rectangles have the same width, all subsets, except

the last, have the same cardinality and the height of the `th rectangle in subset B w
i , j−1 is larger

than or equal to the height of the j th cut rectangle. The cut-rectangles are reinserted at their
origin positions.

This step is done for all sets B w
i . The rounding method for the long rectangles in Lw is

almost the same. However, we do not have the property that the rectangles in Lw have all
the same width. Therefore, we have to slice the long rectangles vertically. We also sort the
rectangles of set Lw according to non-decreasing heights. w(Lw) denotes the total width of
the rectangles in set Lw . We divide the set Lw into subsets Lw

1 , . . . ,Lw
1/δ2 of the same total

width, by splitting rectangles vertically if necessary. The subset Lw
1 contains the largest and

the subset Lw
1/δ2 the shortest rectangles. The rectangles in each subset have a total width

w(Lw
i) of δ2 ·w(Lw). We round up the heights of the rectangles in each subset to the height

of the largest rectangle in it. The rectangles in subset Lw
1 are packed later into additional bins.

The rectangles of the remaining subsets are packed on the positions where the rectangles of
the previous subset have been. Again, we split the rectangles vertically if necessary.

It is left to pack the rectangles in the subsets Lw
1 ,B w

2/δ,1, . . . ,B w
2/δ2,1

into additional bins.
The total width of all rectangles in all sets w(Lw ∪B w

2/δ∪ . . .∪B w
2/δ2) is at most 1/δ ·p1, since

each rectangle has a height of at least δ and they would not fit into p1 bins otherwise. Hence,

w(Lw
1)+

2δ2∑
i=2/δ

w(B w
i ,1) ≤ δ2 ·w(Lw)+

2δ2∑
i=2/δ

δ2 ·w(B w
i) =

δ2 · (w(Lw)+
2/δ2∑

i=2/δ
w(B w

i)) ≤ δ2 ·1/δ ·p1 = δ ·p1.

85

3 Two-Dimensional Bin Packing

We pack these rectangles greedily on the floor of additional bins. We start by packing each
big rectangle of width larger than 1/2 into one additional bin. This bin is closed and we do
not pack further rectangles into it. The remaining big rectangles have a width of at most 1/2.
We pack these rectangles greedily on the floor of the bin, until the next big rectangle does
not fit. Then a new bin is opened and we continue with the packing. Afterwards, we pack
the long rectangles with the same method. We secure, that the rectangles in each but the last
bin have a total width of at least 1/2. In total, we need at most d2(δ ·p1)e ≤ 2δ ·p1 +1 bins
while each packing satisfies Property 3.1, since each big rectangle is placed on a multiple of
δ2/2.

The same steps are done analogously for rounding the widths of the big and wide rect-
angles that are packed in the bins Bp1+1, . . . ,Bk . Therefore, we need 2δ · (1− p1)+ 1 ad-
ditional bins. In doing so, we use similar subsets B h

i , j and W h
j for i ∈ {2/δ, . . . ,2/δ2} and

j ∈ {1, . . . ,1/δ2}.

With the above discussion we obtain the following result.

Lemma 3.23. We round up the heights of the long and big rectangles in each set Lw and B w
i ,

and the widths of the wide and big rectangles in each set W h and B h
i for i ∈ {2/δ, . . . ,2/δ2}

to at most 1/δ2 values. Therefore, we need 2δ ·k +2 additional bins.

ROUNDING BIG AND LONG RECTANGLES WITH ROTATIONS In the version that al-
lows rotation, we only have bins with a packing that satisfies Property 3.1. In this version,
we employ Theorem’ 3.4 and obtain a solution in k ′ ≤ (3/2+δ)·OPT+21 bins. Consequently,
we have the following lemma.

Lemma’ 3.23. We round up the heights of the long and big rectangles in each set Lw and

B w
i for i ∈ {2/δ, . . . ,2/δ2} to at most 1/δ2 values and need therefore 2δ·k ′+1 additional bins.

CONTAINERS FOR THE WIDE AND LONG RECTANGLES

In this section, we construct rectangular containers for the wide and long rectangles. To do
this, we employ some techniques of Jansen & Solis-Oba [36]. We explain these steps only
for the bins B1, . . . ,Bp1 of Type 1 as it works analogously for the remaining bins. We define
a set of long containers C w

L for the long rectangles and a set of wide containers C w
W for the

wide rectangles. We focus on one bin Bi , for i ∈ {1, . . . , p1}.

We define slots of width δ2/2 by drawing vertical lines on each multiple of δ2/2 in the bin
Bi for the long containers. A small or long rectangle that intersects one of these vertical lines
is vertically cut by it. Each wide and big rectangle intersects either a slot completely or it

86

3.2 Modifying a Packing

does not intersect it at all. Hence, a long container is a part of a slot which is bounded at the
top and at the bottom by a wide or a big rectangle or the top or the floor of the bin. We only
consider containers with at least one long rectangle, i.e. the height of each long container is
at least δ. The width of each long container is δ2/2 (cf. Figure 3.26). As an upper bound
there are at most 1/δ−1 long containers in each slot separated by wide rectangles of small
height. Hence, in bin Bi there are at most (1/δ−1) ·2/δ2 = 2/δ3−2/δ2 long containers. This
is an upper bound when there are no big rectangles situated in this bin. Each big rectangle
that is situated in this bin decreases the number of long containers by 2/δ since it intersects
2/δ slots and it has a height of at least δ.

(a) Part of a packing in one bin (b) Construction of long containers

Figure 3.26: Construction of long containers; long and small rectangles are sliced vertically

Afterwards, we construct horizontal lines by extending the upper and lower edge of each
big rectangle and each long container in both directions until it hits another big rectangle,
a long container or the sides of the bin. Wide and small rectangles are horizontally cut by
these lines. The horizontal lines are the upper and lower edges of the wide containers. Since
they are bounded at the sides by big rectangles, long containers or the sides of the bin, the
wide containers always have a width of a multiple of δ2/2. There are at most 2/δ3−2/δ2 big
rectangles and long containers in the solution, hence we extend at most 2/δ3 −2/δ2 upper
and lower edges. Furthermore, we have two additional lines with the bottom and the top of
the bin. Each extended upper edge is a possible lower edge of one wide container. Each
extended lower edge may be the lower edges of two wide containers, one on the left and one

87

3 Two-Dimensional Bin Packing

on the right side. Furthermore, the bottom of the bin is a possible lower edge of one wide
container. It follows that there are at most 3·(2/δ3−2/δ2)+1 = 6/δ3−6/δ2+1wide containers
in bin Bi . At this moment, the complete region of the bin is filled with big rectangles, long
containers and wide containers. There is no empty space left, hence all small rectangles are
fractionally in the long and wide containers (cf. Figure 3.27). This construction is done for
all bins B1, . . . ,Bp1 .

(a) Drawing horizontal lines (b) Construction of wide containers

Figure 3.27: Construction of wide containers; wide and small rectangles are sliced
horizontally

ROUNDING THE WIDE AND LONG CONTAINERS

Let cw be one of the wide containers in C w
W . The height of cw is now reduced so that it has

a height of a multiple of δ4. We cut the uppermost wide and small rectangles horizontally
by the new height. The (fractions of the) wide and small rectangles of height less than
δ4 that do not fit in the reduced container are placed next to each other into an additional
bin. We do this with all wide containers in the bins B1, . . . ,Bp1 . Since all rectangles have a
height of less than δ4 we are able to place the rectangles of 1/δ4 containers on top of each
other into one bin. In total, we have less than 6/δ3 ·p1 wide containers and hence we need
dδ4 ·6/δ3 ·p1e ≤ 6δ·p1+1 additional bins. These bins contain only wide and small rectangles,
whereas the wide rectangles are placed on x-coordinates of a multiple of δ2/2. Hence, the

88

3.2 Modifying a Packing

packing of these bins satisfy Property 3.1. We treat each additional bin as one wide container
of height and width 1.

After the construction of the wide containers we round down the heights of the long con-
tainers. We focus one long container c` in C w

L in the bins B1, . . . ,Bp1 . We remove all short
rectangles in this container and shift all long rectangles vertically down, so that they all
touch either the bottom of the container or another long rectangle. The total used height in
this container is a combination of the heights of the long rectangles. Since the heights of
the long rectangles are rounded, the possible number of heights is bounded by a polynomial
in the length of the input. If the remaining space on top of the uppermost long rectangle
in the container c` has a height of at least δ4, then we are able to round the height of the
container down to the next multiple of δ4. If the remaining space is less than δ4 we round
the height of c` down to the height of the top edge of the uppermost long rectangle in c`.
Hence, the height of c` is either a combination of the rounded heights of the long rectangles
or a multiple of δ4.

It is not possible to reinsert all small rectangles. Hence, we pack them fractionally into
the reduced container until the free space is exceeded. The remaining rectangles are packed
fractionally into additional bins. The total area loss for each long container is at most δ4 ·
δ2/2 = δ6/2. There are at most 2/δ3 long containers in each bin, hence the total area is at
most δ6/2 ·2/δ3 ·p1 = δ3 ·p1. Thus, we need at most dδ3 ·p1e ≤ δ3 ·p1 +1 additional bins.
These additional bins contain only small rectangles and the packing satisfies Property 3.1.
We treat each bin as one wide container of height and width 1, in order to ensure that all
small rectangles are packed into containers. By this construction, the total number of wide
containers is at most (6/δ3 −6/δ2 +1) ·p1 +6δ ·p1 +1+δ3 ·p1 +1 = (6/δ3 −6/δ2 +6δ+δ3 +
1) ·p1 +2 < 6/δ3 ·p1 +2.

We also construct long containers in the 2δ·p1+1 additional bins that are needed to round
the heights of the long rectangles (cf. Lemma 3.23). The long rectangles are placed on the
bottom of these bins and there are no small rectangles in it. Furthermore, we packed them
after we packed the big rectangles so that there is at most one bin that contains big and long
rectangles. The other bins contain either only big rectangles or only long rectangles. We
draw also vertical lines in the bins that contain long rectangles at each multiple of δ2/2 and
cut the long rectangles intersecting these lines. These lines form already the long containers
in these bins, since there are no rectangles on top of the long rectangles. Therefore, we have
in these bins at most (2δ ·p1 +1) ·2/δ2 = 4/δ ·p1 +2/δ2 long containers of width δ2/2 and
height 1.

There is still a huge number of different types of the long containers, since we have
1/δ2 different heights of the long rectangles and hence at least (1/δ2)1/δ possibilities for

89

3 Two-Dimensional Bin Packing

the heights. In order to reduce this number to 1/δ2 different heights, we use the same round-
ing technique as for the big rectangles.

Let k` ≤ (2/δ3 −2/δ2) ·p1 +4/δ ·p1 +2/δ2 ≤ 2/δ3 ·p1 +2/δ2 be the total number of long
containers in C w

L , i.e. in the bins of Type 1. We sort all k` containers according to non-
decreasing heights and denote the sorted containers by c1, . . . ,ck` . We partition the long
containers into at most 1/δ2 subsets of bδ2k`c containers. The construction is analogous to
the rounding of the big rectangles by calling c1 the first cut-container and assigning the next
bδ2k`c containers to the first subset and so on. The heights in each subset are rounded up
to the height of the previous cut-container. The containers in the first subset are moved into
additional bins, whereas we are able to pack 2/δ2 containers next to each other at the bottom
in one bin. Hence, we need at most dbδ2k`c·δ2/2e ≤ dδ2·(2/δ3·p1+2/δ2)·δ2/2e ≤ δ·p1+δ2+1

additional bins. The long containers in the remaining subsets are packed on the position of a
long container in the previous subset and the cut-container are placed at their origin position.

We do the analogous steps for the bins Bp1+1, . . . ,Bk and achieve the set of wide containers
C h

W and the set of long containers C h
L with analogous bounds by replacing p1 with k −p1.

This leads us to the following result:

Lemma 3.24. Suppose we have a packing without medium rectangles in k bins, while the

packing of each of them satisfies either Property 3.1 or Property 3.2. If the long and wide

rectangles are rounded according to Lemma 3.23, then we are able to pack the wide, long

and small rectangles fractionally into containers with at most 8δ · k + 2δ2 + 6 additional

bins. The rectangles of W w and W h are sliced horizontally and packed into wide containers

of C w
W and C h

W , respectively. The long rectangles of Lw and Lh are sliced vertically and

packed into long containers of C w
L and C h

L . All small rectangles are packed fractionally

(vertically and horizontally sliced) into these containers. The containers have the following

properties:

3.1. there are at most 6/δ3 ·p1 +2 wide containers in C w
W , that have a width of a multiple

of δ2/2 and a height of a multiple of δ4.

3.2. there are at most 2/δ3 ·(k−p1)+2/δ2 wide containers in C h
W , of at most 1/δ2 different

widths of either a multiple of δ4 or a combination of the rounded widths of the wide

rectangles in W h and of a height δ2/2

3.3. there are at most 6/δ3 · (k − p1)+ 2 long containers in C h
L , that have a height of a

multiple of δ2/2 and a width of a multiple of δ4.

90

3.2 Modifying a Packing

3.4. there are at most 2/δ3 · p1 + 2/δ2 long containers in C w
L , of at most 1/δ2 different

heights of either a multiple of δ4 or a combination of the rounded heights of the long

rectangles in Lw and of a width δ2/2

Proof. By rounding the heights of the wide containers in C w
W in the bins of Type 1 and the

long containers in C h
L in the bins of Type 2 to a multiple of δ4 we need 6δ ·p1 +1+6δ · (k −

p1)+1 = 6δ ·k +2 additional bins. The heights of the long containers in C w
L in the bins of

Type 1 are rounded to at most 1/δ2 values of either a multiple of δ4 or a combination of
the rounded heights of the long rectangles. Therefore, we need δ3 ·p1 +1+δ ·p1 +δ2 +1 =
(δ+δ3) ·p1+δ2+2 additional bins. The analogous steps for rounding the widths of the wide
containers in C h

W in the bins of Type 2 need (δ+δ3) · (k − p1)+δ2 +2 additional bins and
hence together (δ+δ3) ·k +2δ2 +4 additional bins. The total number of additional bins is
thus (6δ+δ+δ3) ·k +2δ2 +6 ≤ 8δ ·k +2δ2 +6.

To conclude, we obtain the following result:

Theorem 3.6. Given an optimal solution of an instance I into OPT bins. We are able to

round up the widths and heights of the rectangles and to modify the solution so that it

fits into at most (3/2+ 25ε′) ·OPT+ 55 bins, while all medium rectangles are packed into

3ε′ ·OPT+2 bins and 3/2OPT+22δOPT+53 bins have a packing that satisfies either Prop-

erty 3.1 or Property 3.2. Furthermore, the heights of the long and big rectangles in each

set Lw and B w
i , and the widths of the wide and big rectangles in each set W h and B h

i for

i ∈ {2/δ, . . . ,2/δ2} are rounded up to at most 1/δ2 values. The wide and long rectangles are

sliced horizontally and vertically, respectively. They are packed into wide and long contain-

ers with the Properties 3.1-3.4. The small rectangles are packed fractionally into the wide

and long containers.

Proof. In the first step we employ Theorem 3.4 and need in total k ≤ (3/2+ 5δ)OPT+ 37

bins. Afterwards, we pack all medium rectangles into 3ε′ ·OPT+ 2 additional bins with
Lemma 3.22. We round up the big, long and wide rectangles with Lemma 3.23 and need
2δ · k + 2 additional bins. The wide and long rectangles are packed into long and wide
containers with Lemma 3.24. Therefore, we need 8δ ·k +2δ2 +6 additional bins. It holds
δ≤ 1/48, hence in total we need at most

(1+10δ) · ((3/2+5δ) ·OPT+37)+2δ2 +8 =
3/2 ·OPT+5δ ·OPT+15δ ·OPT+50δ2 ·OPT+37+370δ+2δ2 +8 ≤

3/2 ·OPT+20δ ·OPT+50δ/48 ·OPT+45+370/48+2/482 ≤
3/2 ·OPT+22δ ·OPT+53

91

3 Two-Dimensional Bin Packing

bins that have a packing that satisfies either Property 3.1 or Property 3.2. Since δ ≤ ε′, we
have at most (3/2+25ε′) ·OPT+55 bins (including the bins for the medium rectangles).

This finishes our analysis and modification of an optimal solution. It enables us to con-
struct an algorithm that computes a packing that almost matches the modified solution.

ROUNDING THE WIDE AND LONG CONTAINERS WITH ROTATIONS The steps are
analogous for the versions with rotations.

Lemma’ 3.24. Suppose we have a packing without medium rectangles in k ′ bins, while the

packing of each of them satisfies Property 3.1. If the long and wide rectangles are rounded

according to Lemma 3.23, then we are able to pack the wide, long and small rectangles

fractionally into containers with at most 8δ ·k ′+δ2 +3 additional bins. The rectangles of

W w are sliced horizontally and packed into wide containers of C w
W . The long rectangles

of Lw are sliced vertically and packed into long containers of C w
L . All small rectangles are

packed fractionally (vertically and horizontally sliced) into these containers. The containers

have the following properties:

3.5. there are at most 6/δ3 ·k ′+2 wide containers in C w
W , that have a width of a multiple

of δ2/2 and a height of a multiple of δ4.

3.6. there are at most 2/δ3 · k ′ + 2/δ2 long containers in C w
L , of at most 1/δ2 different

heights of either a multiple of δ4 or a combination of the rounded heights of the long

rectangles in Lw and of a width of δ2/2

To conclude, we obtain a better additional constant for modifying the packing.

Theorem’ 3.6. Given an optimal solution of an instance I into OPT bins. We are able to

rotate and round up the widths and heights of the rectangles and to modify the solution so

that it fits into at most (3/2+25ε′) ·OPT+31 bins, while all medium rectangles are packed

into 3ε′ ·OPT+1 bins and 3/2 ·OPT+22δ ·OPT+30 bins have a packing that satisfies Prop-

erty 3.1. Furthermore, the heights of the long and big rectangles in the sets Lw and B w
i for

i ∈ {2/δ, . . . ,2/δ2} are rounded to at most 1/δ2 values. The wide and long rectangles are

sliced horizontally and vertically, respectively. They are packed into wide and long contain-

ers with the Property 3.5 and Property 3.6. The small rectangles are packed fractionally into

the wide and long containers.

Proof. We adopt Theorem’ 3.4 with an optimal solution and obtain k ′ ≤ (3/2+5δ)OPT+21

bins. We round up the big and long rectangles according to Lemma’ 3.23 and need 2δ ·k ′+1

92

3.3 Algorithm

additional bins. For rounding the containers with Lemma’ 3.24, we need 8δ · k ′ +δ2 + 3

additional bins. The additional constant is therefore, 21+10δ ·21+δ2+1+3 ≤ 25+210/48+
1/482 ≤ 25+5 = 30. Together with the 3ε′ ·OPT+1 additional bins that are used to pack the
medium rectangles in Lemma’ 3.22, we obtain (3/2+25ε′) ·OPT+31 bins.

3.3 ALGORITHM

In the last sections we modified an optimal solution in order to achieve a simpler structure.
In this section we describe our algorithm. The algorithm works in two parts. The first part
is to transform an instance I of n rectangles into the rounded instance, the second part is to
pack the rounded rectangles into the bins.

3.3.1 TRANSFORM AN INSTANCE I

For dual approximation we use binary search to find the optimum OPT = OPT(I) of I . In
each iteration with a candidate OPT′ for OPT we either find a solution with at most (3/2+
22δ) ·OPT′+ 69 bins or conclude that OPT′ < OPT. In the first case we decrease OPT′ in
order to try if there is a solution with less bins and in the second case we increase OPT′.
The upper bound for OPT is the number of rectangles in the instance I , the lower bound is
the total area of the rectangles. In the following, we assume that we found an OPT′ ≤ OPT

so that our algorithm is able to compute a solution. In the next step we are able to set δ
according to Lemma 3.21 and divide the instance into big, long, wide, small and medium
rectangles. We pack all medium rectangles with Steinberg’s Theorem 3.5 into 3ε′OPT+2

additional bins (cf. Lemma 3.22). Afterwards, we have to distinguish whether the width or
the height of each big rectangle is rounded up to a multiple of δ2/2. In other words, we have
to distinguish, whether a rectangle belongs to a bin of Type 1, i.e. it is in a set B w

i , or to a
bin of Type 2, i.e. it is in a set B h

i , for one i ∈ {2/δ, . . . ,2/δ2}.

In the version that allows rotation, we only have bins of Type 1. However, we do not know
which side we have to round up to the next largest multiple of δ2/2. Therefore, we have to
solve a similar problem.

TRANSFORM BIG RECTANGLES

Let i ∈ {2/δ, . . . ,2/δ2} and j ∈ {1, . . . ,1/δ2}. We guess the number of big rectangles that are
rounded to each width of iδ2/2 and to each height of iδ2/2. In other words, we guess the
cardinality of the sets B w

i and B h
i . This can be done by choosing less than 2 ·2/δ2 = 4/δ2

93

3 Two-Dimensional Bin Packing

1

1

1

1

1
1

1

1

nw
i , j

nh
i , j

1

11

ts

Figure 3.28: The flow-network

values out of n. With the guessed cardinality we compute the number of the at most 1/δ2

subsets B w
i , j and B h

i , j and also the number of the at most 1/δ2 cut-rectangles. We guess the
cut-rectangles by choosing 2 ·2/δ2 ·1/δ2 = 4/δ4 rectangles out of n possible rectangles. We
denote the number of rectangles that are rounded up to the width i ·δ2/2 and to the height of
the j th cut-rectangle in B w

i by nw
i , j and we denote the number of rectangles that are rounded

up to the height i ·δ2/2 and to the width of the j th cut-rectangle in B h
i by nh

i , j .

These values give us the structure of the subsets of the Section 3.2.3, since we know the
rounded heights and widths of the big rectangles and the number of rectangles with these
side lengths. To assign big rectangles to these subsets we set up a flow network G = (V ,E)

with the set V of vertices and the set E of edges. Each big rectangle of I has a corresponding
node in this network and is connected with an edge of capacity 1 to the source s. Either the
width or the height of a big rectangle is rounded up to the next multiple of δ2/2. If this is
decided, we know also the corresponding subset where the rectangle belongs to since it has
to be between the heights or the widths of two cut-rectangles. However, when the height or
the width is exactly that one of a cut-rectangle it could belong to possibly more subsets. For
each subset B w

i , j and B h
i , j we have one node in the network and connect it to each rectangle

that may belong to it with an edge of capacity 1. There are at most 2 · 2/δ2 · 1/δ2 = 4/δ4

subset-nodes and each big-rectangle-node is connected to at most 2 ·1/δ2 = 2/δ2 of them,
when all cut-rectangles have the same height and width, respectively. Each subset-node

94

3.3 Algorithm

B w
i , j and B h

i , j is connected with an edge to the sink t of capacity nw
i , j and nh

i , j , respectively
(cf. Figure 3.28). The total number of vertices is in total |V | ≤ 2+n +4/δ4. The number
of edges is n +n · 2/δ2 + 4/δ4. We find a flow with the algorithm of Dinic [17] in time
O (|E | · |V |2) = O ((n + (2n)/δ2 +4/δ4) · (2+n +4/δ4)2) = O (n3/δ2 +n2/δ6 +n/δ10 +1/δ14).
If there is a possible assignment of big rectangles to the subsets then there is a flow with
the same value as the number of big rectangles, hence each edge at the source s is satisfied.
If there is no flow with this value at all, there exists no assignment of big rectangles to the
subsets and we have to try another guess.

TRANSFORM BIG RECTANGLES WITH ROTATIONS In the version that allows rotation,
we only have subsets B w

i , j . In this setting we connect each big rectangle with the correspond-
ing subset-nodes before and after rotating it by 90◦. When we find a flow that satisfies each
edge from the source we have assigned all big rectangles to the corresponding subsets and
have decided whether we have to rotate a big rectangle, or not.

TRANSFORM WIDE AND LONG RECTANGLES

We explain these steps for the wide rectangles, the transformation for the long rectangles
is analogous. We have to decide whether a wide rectangle belongs to a bin of Type 1, i.e.
to one set W w

2/δ, . . . ,W w
2/δ2 , or to a bin of Type 2, i.e. to one set W h

1 , . . . ,W h
1/δ2 . To do this,

we guess the 1/δ2 widths wc1 , . . . , wc1/δ2 that are used to round up the rectangles in the sets
W h

1 , . . . ,W h
1/δ2 . This is done by choosing 1/δ2 rectangles rc1 , . . . ,rc1/δ2 out of n rectangles.

Remember that wc1 ≥ wc2 ≥ . . . ≥ wc1/δ2 . The total heights of the sets are identical, therefore
we guess the total height of the whole set W h approximately and divide it by 1/δ2 to obtain
the total height of each subset. The total height of all wide rectangles is bounded by δ4 ·n

since each wide rectangle has a height of at most δ4. We choose 1 integral value i0 out of
1/δ4 ·δ4 ·n = n, so that i0 ·δ4 ≤ h(W h) < (i0 +1) ·δ4 holds. This leads to an approximately
guessed structure of the sets W h

1 , . . . ,W h
1/δ2 , since we know the widths and the heights.

The widths of the wide rectangles that are in the sets W w
2/δ, . . . ,W w

2/δ2 are rounded up to
the next multiple of δ2/2, hence the width of each rectangle in the set W w

j is rounded up
to jδ2/2. We guess approximately the total height of the rectangles in each set. Therefore,
we choose 2/δ2 −2/δ+1 integral values i2/δ, . . . , i2/δ2 out of 1/δ4 ·δ4 ·n = n, so that i j ·δ4 ≤
h(W w

j) < (i j +1)δ4 holds for all j ∈ {2/δ, . . . ,2/δ2}. Consequently, we have the structure of
all sets of wide rectangles and we have to assign the wide rectangles into them.

Note that (i0+1)δ4+∑2/δ2

z1=2/δ(iz1 +1)δ4 is larger than the total height of all wide rectangles
in the instance.

95

3 Two-Dimensional Bin Packing

ASSIGNING THE RECTANGLES We sort the wide rectangles according to non-increasing
widths. Let rw be a wide rectangle. rw is a candidate for the set W w

j , if rw has a width
of ww ∈ ((j −1)δ2/2, jδ2/2], for j ∈ {2/δ+1, . . . ,2/δ2} and a candidate for W w

2/δ if ww = δ.
Furthermore, this rectangle is a candidate for W h

j , if ww ∈ [wc j , wc j+1], for j ∈ {1, . . . ,1/δ2−1}

or for W h
1/δ2 if δ≤ ww ≤ wc1/δ2 .

First, we assign the wide rectangles greedily to the set W w
2/δ2 . Therefore, we take the

widest candidates for this set until the total height exceeds (i2/δ2 +1) ·δ4, i.e. the total height
of these rectangles is at most (i2/δ2 +1) ·δ4+δ4. If we run out of candidates before we reach
this height, we take the widest candidates for W w

2/δ2−1
and so on. This is repeated for all sets

W w
2/δ2−1

, . . . ,W w
2/δ. We selected the widest candidates for these sets (cf. Figure 3.29). The

remaining wide rectangles are greedily assigned in the same way into the sets W h
1 , . . . ,W h

1/δ2 .

Lemma 3.25. For the right guess of the values i0, i2/δ, . . . , i2/δ2 and for the right guess of the

rectangles rc1 , . . . ,rc1/δ2 we assign each wide rectangle to one of the sets W w
2/δ, . . . ,W w

2/δ2 and

W h
1 , . . . ,W h

1/δ2 .

Proof. Suppose by contradiction that there are rectangles that can not be assigned to one
set for the right guess of the values i0, i2/δ, . . . , i2/δ2 and for the right guess of the rectangles
rc1 , . . . ,rc1/δ2 . Let the rectangle rw be the widest rectangle among them. Suppose that rw is
a candidate for W w

i and a candidate for W h
j , for the largest possible j if rw is a candidate

for several sets. All rectangles that have a width of at least ww , including rw , have to fit
fractionally into the sets W w

2/δ2 , . . . ,W w
i and the sets W h

1 , . . . ,W h
j . Let X denote the set of

wide rectangles that have a width of at least ww , including rw . Consequently, we have

h(X) ≤
2/δ2∑
z1=i

h(W w
z1

)+
j∑

z2=1
h(W h

z2
) ≤

2/δ2∑
z1=i

(iz1 +1)δ4 +
j∑

z2=1
(i0 +1)δ4 ·δ2

On the other hand, the sets have to be completely full, since we are not able to pack rw into
one of these sets, i.e. the total height of the rectangles of W w

z1
is larger than (iz1 +1)δ4 and

the total height of the rectangles in W h
z2

is larger than (i0 +1)δ4 ·δ2, for all z1 ∈ {i , . . . ,2/δ2}

and z2 ∈ {1, . . . , j }. It follows that h(X) > ∑2/δ2

z1=i (iz1 + 1)δ4 +∑ j
z2=1(i0 + 1)δ4 ·δ2 which is a

contradiction.

Consequently, all rectangles have to fit into these sets. Afterwards, we remove the short-
est rectangles in each set W w

2/δ, . . . ,W w
2/δ2 and W h

1 , . . . ,W h
1/δ2 , in order to secure that the total

height is at most i jδ
4 and i0δ

4 ·δ2, respectively. Therefore, we have to remove wide rect-
angles of a total height of at most 3δ4 for each set since we have to reduce the total height
by at most 2δ4 and we have to remove the wide rectangle of height δ4 that is cut by the new

96

3.3 Algorithm

W w
2/δ2

W w
2/δ2−1

i jδ
4

(i j +1)δ4

(i0+1)δ4 ·δ2

i0δ
4 ·δ2

W h
3

W h
1

W w
2/δ2−2

W h
2

W h
4

Figure 3.29: A greedy assignment of wide rectangles; sort the rectangles by their widths,
pack them into the sets W w

2/δ2 , . . . ,W w
2/δ until the last rectangle exceeds (i j+1)δ4;

afterwards pack the remaining rectangles into the sets W h
1 , . . . ,W h

1/δ2 .

height. In total, we have wide rectangles of a total height of (2/δ2−2δ+1+1/δ2)·3δ4 ≤ 9δ2.
These rectangles fit into one additional bin by packing them on top of each other. The same
steps are done to assign the long rectangles to the sets Lw

1 , . . . ,Lw
1/δ2 and Lh

2/δ, . . . ,Lh
2/δ2 and

we need one additional bin.

To conclude, we guess 2 · (1/δ2+1+2/δ2−2/δ+1) ≤ 6/δ2 rectangles and values out of n

values and need two additional bins to transform the wide and long rectangles.

TRANSFORM LONG AND WIDE RECTANGLES WITH ROTATIONS In the version that
allows rotation, we rotate each long rectangle in order to have only wide rectangles. We
assign them to the sets W w

2/δ, . . . ,W w
2/δ2 and Lw

1 , . . . ,Lw
1/δ2 . As above, we guess approximately

the total width of Lw and the total height of the sets W w
2/δ, . . . ,W w

2/δ2 . Furthermore, we guess
the heights of the cut-rectangles, in order to get the structure of the sets Lw

1 , . . . ,Lw
1/δ2 . There-

fore, we choose 1/δ2 rectangles and take the widths of the selected rectangles as the heights
of the cut-rectangles, i.e. we rotate the selected rectangles. Afterwards, we greedily assign
the wide rectangles to the sets W w

2/δ2 , . . . ,W w
2/δ. The remaining rectangles are rotated and

they are assigned to the sets Lw
1 , . . . ,Lw

1/δ2 . The rectangles that have to be removed fit into
one additional bin. These are the only algorithmic differences between the version with and

97

3 Two-Dimensional Bin Packing

without rotations and the remaining steps work for both versions. However, in the following
we continue to state the minor differences to improve the additive constant.

CONSTRUCT THE CONTAINERS

We do the following steps for the long and wide containers that are packed in the bins of
Type 1, the construction of the containers in the bins of Type 2 is analogous. Each wide
container of C w

W has a height of a multiple of δ4 and a width of a multiple of δ2/2 (cf.
Lemma 3.24). Hence, there are at most 1/δ4 ·2/δ2 = 2/δ6 different types of wide containers
in the solution. We guess the number nw

i , j of the wide containers of each width iδ2/2 and
each height jδ4 by choosing 2/δ6 values out of n (we suppose, that each wide container
contains at least one wide or small rectangle).

There are at most 1/δ2 different types of long containers in C w
L since all long containers

have the same width and we rounded their heights to at most 1/δ2 values. Each height
is either a combination of the rounded heights of the long rectangles or a multiple of δ4

(cf. Lemma 3.24). There are at most (1/δ2 +1)1/δ possibilities for the combinations of the
rounded heights, since we have to choose at most 1/δ values out of 1/δ2 different heights.
The additional 1 represents a dummy rectangle to choose less than 1/δ values. We guess the
heights of the long containers by choosing 1/δ2 values out of 1/δ4 + (1/δ2 +1)1/δ. In a next
step we guess the number n`

i of long containers of the `th height by choosing 1/δ2 values
out of n.

This is also done for the long and wide containers that are packed in the bins of Type 2.
In total, we have to guess 2 · (2/δ6 +1/δ2) = 4/δ6 +2/δ2 values out of n and 2/δ2 values out
of 1/δ4 + (1/δ2)1/δ. Note that each wide container has a width of at least δ2/2, no matter
if it is packed in a bin of Type 1 or in a bin of Type 2. Furthermore, we can assume that
((3/2+22δ) ·OPT+53) ≤ n, since otherwise we can pack each rectangle in a separate bin.
Hence, the total height of the wide containers is bounded by 2/δ2 ·k ≤ 2/δ2 · ((3/2+22δ) ·
OPT+53) ≤ 2/δ2 ·n. The same holds for the total width of all long containers.

3.3.2 PACKING THE RECTANGLES

We assigned the rectangles to their corresponding sets. It remains to pack the small, wide
and long rectangles into the containers and to pack the containers and the big rectangles into
the bins.

98

3.3 Algorithm

PACKING WIDE AND LONG RECTANGLES INTO THE CONTAINERS

For packing the wide and long rectangles into the containers we use four similar linear
programs. We explain the next steps for packing the wide rectangles into the wide containers,
the packing for the long rectangles is analogous. A similar linear program formulation can
be found in the AFPTAS by Kenyon & Rémila [40]. First, we focus on the wide containers
of C w

W that are packed in the bins of Type 1. Remember that all wide rectangles of W w fit
fractionally into the wide containers of C w

W . There are at most t := 2/δ2 different widths
of wide containers. We pack all containers of the same width ` ·δ2/2, for ` ∈ {1, . . . , t }, on
top of each other and treat them as one target region T` of height h(T`) = h(C w

W`
) and width

w(T`) = `·δ2/2. The linear program will divide the target regions into slots of a certain width
in which we will pack wide rectangles of the same width. Therefore, let m := 2/δ2 −2/δ+1

be the number of different slots that have a width of (i −1) ·δ2/2+δ, for i ∈ {1, . . . ,m}. For
each target region T` we define a set of configurations C(`)

j . A configuration in C(`)
j consists

of a set of at most 1/δ slots that have a total width of at most w(T`) = ` ·δ2/2. The total
number of possibilities to select at most 1/δ slots out of m different types is (m + 1)1/δ.
Therefore, the total number of configurations q (`) for target region T` is bounded by the
number (m +1)1/δ. The value a(i ,C(`)

j) gives the number of slots of width (i −1) ·δ2/2+δ
in configuration C(`)

j . We solve the following feasibility linear program, where the variable
x(`)

j describes the height of configuration C(`)
j .

q (`)∑
j=1

x(`)
j = h(T`) ` ∈ {1, . . . , t }

t∑
`=1

q (`)∑
j=1

a(i ,C(`)
j) · x(`)

j ≥ h(W w
i) i ∈ {1, . . . ,m}

x(`)
j ≥ 0 j ∈ {1, . . . , q`},` ∈ {1, . . . , t }

The first t constraints ensure that the total heights of the configurations do not exceed
the total height of the target regions. We pack the wide rectangles of width (i −1) ·δ2/2+δ
into the slots of the same width. To this end, the following m constraints ensure that the
total height of the slots is large enough to occupy the wide rectangles (cf. Figure 3.30).
For the right guess of the values above, this linear program computes a feasible solution.
The corresponding matrix of the linear program has t +m ≤ 4/δ2 rows and q :=∑t

`=1 q (`) ≤
t · (m + 1)1/δ ≤ (2/δ2)2/δ+1 columns. Each entry of the matrix is bounded by 1/δ. Since
the total height of all containers is bounded by 2/δ2 · n the entries on the right side are
bounded by 2/δ2 ·n. It follows that the encoding length of the input is bounded by L :=

99

3 Two-Dimensional Bin Packing

(t+m)·(q+1)·log(2/δ2·n) ≤ 4/δ2·((2/δ2)2/δ+1+1)·log(2/δ2·n) ≤ 4·(2/δ2)2/δ+2·log(2/δ2·n).
We can solve this linear program with a result of Vaidya [52], that computes a feasible
basic solution in time O ((((t +m)+q)q2 + ((t +m)+q)3/2q)L) =O (q3 ·L) =O ((2/δ2)6/δ+3 ·
(2/δ2)2/δ+2 · log(2/δ2 ·n)) =O ((2/δ2)8/δ+5 · log(2/δ2 ·n))

(a) The slots in the configurations computed by the
linear program

(b) Packing the rectangles into the slots

Figure 3.30: Packing the wide rectangles into the containers

The rank of the matrix is bounded by the number of constraints which is at most m + t =
2/δ2 − 2/δ+ 1+ 2/δ2 < 4/δ2. It follows that the feasible basic solution contains less than
4/δ2 non-zero variables x`j and thus we have less than 4/δ2 configurations. We pack the
wide rectangles of W w

2/δ, . . . ,W w
2/δ2 greedily into the configurations, by packing them on top

of each other into a slot of the same width until the last rectangle exceeds the height of
the configuration. Since the rectangles fit fractionally into the slots, there is no rectangle
unpacked. Afterwards, we remove the uppermost rectangles that exceed the height of the
configuration. Therefore we pack the removed rectangles of one configuration next to each
other into an additional bin. Thus, we need a total height of δ4 · 4/δ2 = 4δ2 to pack all
rectangles into one additional bin.

We sort the slots in each configuration by non-increasing packing heights, i.e. the leftmost
slot occupies rectangles of the largest total height and the rightmost slot occupies rectangles
of the smallest total height. The free space on the right of the configurations is separated
into rectangular regions in order to pack small rectangles into it. This is done by drawing

100

3.3 Algorithm

a horizontal line on the topmost rectangle in each slot. We have at most 1/δ slots in each
configuration and hence at most 1/δ+1 different rectangular regions. In total, there are less
than (4/δ2) · (1/δ+1) = 4/δ3 +4/δ2 ≤ 5/δ3 different rectangular regions (cf. Figure 3.31).

Figure 3.31: Rectangular regions for the small rectangles

We use the same linear program for the wide rectangles that are packed in wide containers
in the bins of Type 2. The difference is that there are only t = 1/δ2 different target regions
and that there are only m = 1/δ2 different widths of the rectangles and slots. Hence, we have
only m + t = 2/δ2 constraints and therefore only 2/δ2 different configurations. We pack
the wide rectangles of W h

1 , . . . ,W h
2/δ2 greedily into the configurations and we remove again

the topmost rectangles. The removed rectangles are packed on top of the wide rectangles
in the additional bin above. They need an additional space of height δ4 ·2/δ2 = 2δ2. This
results into a total packing height of at most 4δ2 + 2δ2 = 6δ2. On the right side of these
configurations we have at most 2/δ2 · (1/δ+1) ≤ 3/δ3 rectangular regions.

We do the same steps for packing the long rectangles into the long containers by packing
some remaining long rectangles into a second additional bin. Consequently, we have at most
2 · (5/δ3 +3/δ3) = 2 ·8/δ3 free rectangular regions for small rectangles. In the version that
allows rotations we only use one additional bin for occupying the wide and the rotated long
rectangles.

SOLVING THE LINEAR PROGRAMS APPROXIMATELY We give now a short description
how to solve the linear programs approximately in order to reduce the running time. How-
ever, for the sake of readability we assume in the following sections that we have solved the
linear programs exactly, as mentioned above. We solve each linear program approximately
with an algorithm for the max-min resource sharing problem [22, 29] as explained in [7].
For a precision of δ4 the algorithm stops after O (m(1/δ8 + lnm)) = O (1/δ10) iterations. In
each iteration a block problem has to be solved approximately with precision δ4/6. In our
case the block problem consists of t knapsack problems with m unbounded variables. The
t knapsack problems can be solved in time O (t · (m log(1/δ4)+1/δ16)) =O (1/δ18) [41]. The

101

3 Two-Dimensional Bin Packing

total running time is therefore O (1/δ28). We obtain variables x(`)
j that satisfies

t∑
`=1

q (`)∑
j=1

a(i ,C(`)
j) ·x(`)

j ≥ (1−δ4)h(W w
i) i ∈ {1, . . . ,m}

q (`)∑
j=1

x(`)
j = h(T`) ` ∈ {1, . . . , t }

x(`)
j ≥ 0 j ∈ {1, . . . , q`},` ∈ {1, . . . , t }.

The number of configurations is bounded by the number of iterations multiplied with t by
O (t ·1/δ10) =O (1/δ12). We reduce the number of configurations to t+m by solving O (1/δ12)

systems of t+m linear equalities with t+m+1 variables in time O ((t+m)3·1/δ10) =O (1/δ16)

as explained in [29].

In order to secure the covering constraints we extend each configuration by setting x(`)
j :=

(1+2δ4)x(`)
j . Since δ4 ≤ 1/2 we have for each i ∈ {1, . . . ,m}

t∑
`=1

q (`)∑
j=1

a(i ,C(`)
j) · x(`)

j ≥ (1+2δ4)(1−δ4)h(W w
i) = (1+δ4 −2δ8)h(W w

i) ≥ h(W w
i).

The heights of the configurations are extended for each target region T` to
∑q (`)

j=1 x(`)
j =

(1+2δ4)h(T`).

We approximately solve also the linear program for packing the wide rectangles into the
bins of Type 2 and pack all wide rectangles as described above. Afterwards we have to
remove the rectangles in the uppermost strips of each target region. There are 2/δ2 +1/δ2 =
3/δ2 target regions for the wide rectangles that are packed in bins of both types. We remove
strips of wide rectangles of the total height at most 2δ4h(T`)+δ4 from each target region.
The total height of all target regions is bounded by 2/δ2 ·((3/2+22δ) ·OPT+53) (each target
region has a width of at least 2/δ2). Therefore, we remove strips of wide rectangles of the
total height

2δ4 ·2/δ2 · ((3/2+22δ) ·OPT+53)+δ4 ·3/δ2 =
4δ2 · ((3/2+22δ) ·OPT+53)+3δ2 ≤

(6δ2 +88δ3)OPT+215δ2 ≤
(6δ2 +88δ2/48)OPT+215/482 ≤

8δ2OPT+1

102

3.3 Algorithm

We pack these strips on top of each other and cut the packing on each integral height in
order to pack the rectangles in d8δ2OPT+1e additional bins. We remove the rectangles that
are split by these cutting lines and pack them separately. We are able to pack rectangles of
1/δ4 cutting lines on top of each other into one bin. Therefore, we need dδ4 ·(8δ2OPT+1)e ≤
dδ2OPT+1e additional bins. In total we need less than 9δ2OPT+4 additional bins. The same
holds for packing the long rectangles into the target regions.

PACKING SMALL RECTANGLES INTO RECTANGULAR REGIONS

We pack the small rectangles into the rectangular regions defined above. Remember that
they fit fractionally into these regions. We have at most 2 ·8/δ3 different rectangular regions
for the small rectangles. We use Next Fit Decreasing Height by Coffman et al. [13] to pack
them into these regions. Since these rectangles are small we are able to cover almost the
whole region with small rectangles.

We give a short description of this algorithm for the sake of completeness. Next Fit
Decreasing Height sorts the rectangles according to non-increasing heights. In this order the
algorithm packs the rectangles left-justified on a level, until there is insufficient space at the
right to accommodate the next rectangle. This level is closed and the algorithm packs no
further rectangle on it. If this is the first level, the algorithm packs the level on the ground
of the target region, in any other case, we place this level on top of the first rectangle of the
previous level. Then the algorithm proceeds packing on the next level, until it runs out of
rectangles, or the next level does not fit into the target region.

We obtain the following Theorem by Coffman et al. [13]:

Lemma 3.26. Let A be a rectangular region of width w A and height hA. We are able to pack

small rectangles into A with a total area of at least w A ·hA − (w A +hA) ·δ4.

Proof. Let t be the number of levels L1, . . . ,Lt that are packed with Next Fit Decreasing
Height into region A. We suppose that we have enough small rectangles and the algorithm
stops, because the next level does not fit into A. Let ri be the first rectangle on the level Li

and let ri ′ be the last rectangle on the level Li . The height of the level Li is the height hi of
the first rectangle on this level. Additionally, let ht+1 = hA −∑t

i=1 hi be the free space on top
of the level Lt . Consequently, we have

∑t+1
i=1 hi = hA. It holds hi ′ ≥ hi+1 since the rectangles

are sorted according to non-increasing heights. Furthermore, let w(Li) be the total width
of the rectangles on level Li . We have w(Li) > w A −δ4 since the next small rectangle of
width at most δ4 does not fit on this level. The total area of the rectangles on level Li is
hence a(Li) ≥ hi ′ ·w(Li) ≥ hi+1 ·w(Li) > hi+1 · (w A −δ4). Thus, the total area of the packed

103

3 Two-Dimensional Bin Packing

rectangles is at least

t∑
i=1

a(Li) >
t∑

i=1
hi+1 · (w A −δ4) = (hA −h1) · (w A −δ4) >

(hA −δ4) · (w A −δ4) > w A ·hA − (w A +hA) ·δ4.

The total height of the wide containers in the bins of Type 1 and Type 2 is bounded by
2/δ2 ·((3/2+22δ)·OPT+53) (each wide container has a width of at least δ2/2). Thus, the sum
of the heights of the rectangular regions on the right side of the configurations with the wide
rectangles is bounded by 2/δ2 · ((3/2+22δ) ·OPT+53). The width of each wide container is
at most 1 and hence the sum of the widths of the at most 8/δ3 rectangular regions is bounded
by 8/δ3. Therefore, in all target regions A for the wide rectangles there is only a free total
area of at most

∑
A

(w A +hA) ·δ4 = δ4 · (
∑
A

w A +∑
A

hA)

≤ δ4 · (8/δ3 ·1+2/δ2 · ((3/2+22δ) ·OPT+53))

= 8δ+2δ2 · ((3/2+22δ) ·OPT+53)

= 3δ2 ·OPT+44δ3 ·OPT+8δ+106δ2

≤ 3δ2 ·OPT+44δ2/48 ·OPT+8δ+106δ/48

< 4δ2 ·OPT+11δ

left. The same bound holds also for the target areas for the long rectangles and we obtain a
total free area of at most 2 · (4δ2 ·OPT+11δ) ≤ 8δ2 ·OPT+22δ. Since all small rectangles fit
fractionally into the containers, it follows that the total area of the unpacked small rectangles
is bounded by this value.

These small rectangles fit with Lemma 3.26 into δOPT+1 additional bins, since we are
able to pack small rectangles of a total area at least 1− (1+1) ·δ4 = 1−2δ4 into one bin and
we have

(1−2δ4) · (δOPT+1) = δOPT−2δ5OPT+1−2δ4

≥ 48δ2OPT−2δ5OPT+48δ−2δ4 ≥ 8δ2OPT+22δ.

104

3.3 Algorithm

CUTTING OUT CONTAINERS

We treated all wide containers of the same width and all long containers of the same height
as one target region. The total number of containers is bounded in Lemma 3.24 by 6/δ3 ·
p1 +2+2/δ3 · (k −p1)+2/δ2 wide containers and 6/δ3 · (k −p1)+2+2/δ3 ·p1 +2/δ2 long
containers. It is left to cut the containers out of the target regions. We cut hereby wide and
small rectangles of height δ4 or long and small rectangles of width δ4. Hence, we are able
to pack the cut rectangles of 1/δ4 horizontal or vertical cut lines into one additional bin.
Consequently, we need

dδ4 · (6/δ3 ·p1 +2+2/δ3 · (k −p1)+2/δ2)e+
dδ4 · (6/δ3 · (k −p1)+2+2/δ3 ·p1 +2/δ2)e ≤

δ4 · (8/δ3 ·k +4/δ2 +4)+2 ≤
δ4 · (8/δ3 · ((3/2+5δ)OPT+37)+4/δ2 +4)+2 =

8δ · ((3/2+5δ)OPT+37)+4δ2 +4δ4 +2 =
8δ · (3/2+5δ)OPT+8δ ·37+4δ2 +4δ4 +2 =

(12δ+40δ2)OPT+296δ+4δ2 +4δ4 +2 ≤
(12δ+40δ/48)OPT+296/48+4/482 +4/484 +2 ≤

13δOPT+7+2 =
13δOPT+9

additional bins.

CUTTING OUT CONTAINERS WITH ROTATIONS The number of wide containers and
long containers in the version that allows rotation is bounded in Lemma’ 3.24 by 6/δ3 ·k ′+2

and 2/δ3 ·k ′+2/δ2, respectively. Therefore, we have 6/δ3 ·k ′+2+2/δ3 ·k ′+2/δ2 = 8/δ3 ·k ′+
2/δ2 +2 cutting lines. We rotate the rectangles that are cut by the construction of the long
containers. Thus, we have only horizontal cutting lines and thus cut rectangles of height δ4.

105

3 Two-Dimensional Bin Packing

Consequently, we need dδ4 ·(8/δ3 ·k ′+2/δ2+2)e ≤ δ4 ·(8/δ3 ·k ′+2/δ2+2)+1 bins. We obtain

δ4 · (8/δ3 ·k ′+2/δ2 +2)+1 ≤
δ4 · (8/δ3 · ((3/2+5δ)OPT+21)+2/δ2 +2)+1 ≤

8δ · (3/2+5δ)OPT+8δ ·21+2δ2 +2δ4 +1 ≤
13δOPT+168δ+2δ2 +2δ4 +1 ≤

13δOPT+168/48+2/482 +2/484 +1 ≤
13δOPT+4+1 =

13δOPT+5

additional bins.

PACKING BIG RECTANGLES AND CONTAINERS

The last remaining step is to pack the big rectangles and the long and wide containers into
the bins. Therefore, we use almost the same linear program as above. Again, we explain the
following steps for the bins of Type 1. One configuration C j , for j ∈ {1, . . . , q}, consists of a
packing into one bin. There are at most 2/δ2 ·1/δ2 = 2/δ4 different types of big rectangles,
2/δ6 different types of wide containers and 1/δ2 different types of long container. In each
bin/configuration there are at most 1/δ2 big rectangles, 6/δ3 wide containers and 2/δ3 long
containers (see description above Lemma 3.24). Therefore, there are at most (2/δ4 +1)1/δ2

possibilities to select at most 1/δ2 big rectangles out of 2/δ4 different types. The additional
1 represents a dummy rectangle and is needed for selecting less than k big rectangles. There
are at most (2/δ6 + 1)6/δ3

possibilities to select at most 6/δ3 wide containers out of 2/δ6

different types and (1/δ2 + 1)2/δ3
possibilities to select at most 2/δ3 long containers out

of 1/δ2 different types. All together, the number q of different configurations is therefore
bounded by

q ≤ (2/δ4 +1)1/δ2 · (2/δ6 +1)6/δ3 · (1/δ2 +1)2/δ3

< (4/δ4)1/δ2 · (4/δ6)6/δ3 · (2/δ2)2/δ3

= (1/δ)4/δ2 · (1/δ)36/δ3 · (1/δ)4/δ3 ·22/δ2 ·212/δ3 ·22/δ3

≤ (1/δ)41/δ3 ·215/δ3
.

We have to verify, if a candidate for a configuration fits into a bin. Each wide and long
container and each big rectangle has a width of a multiple of δ2/2. Therefore, we are able

106

3.3 Algorithm

to pack them with its x-coordinate on a multiple of δ2/2. For each candidate we guess
the x-coordinates of all containers and big rectangles by choosing 1/δ2+6/δ3+2/δ3 ≤ 9/δ3

values out of 2/δ2. Consequently, we have for each multiple of δ2/2 one set of big rectangles
and containers that starts on the corresponding x-coordinate or intersect this x-coordinate
completely. It remains to find an order of these containers and big rectangles to find a
packing. Since there are at most 1/δ4 objects in each set, there are at most 1/δ4! possible
permutations. In total we have to try 2/δ2 ·1/δ4! ≤ 2/δ2 · (1/δ4)1/δ4

permutations to find a
packing of this configuration. If we do not find a packing at all, then there exists no packing
of this configuration and we delete it.

Afterwards, we select the configurations that have to be packed into the bins. We need
for each configuration one bin. To select these configurations we employ an integer linear
program. Therefore, denote with b(i , j ,Ck) the number of big rectangles in the set B w

i , j in
configuration Ck . With w(i , j ,Ck), we denote the number of wide containers of width iδ2/2

and height jδ4 and with `(i ,Ck) we denote the number of long containers of the i th height
in configuration Ck . The total number of big rectangles in the set B w

i , j is denoted by nb
i , j , the

total number of wide containers of the width iδ2/2 and of the height jδ4 is denoted by nw
i , j

and the number of long containers of the i th height by n`
i .

The integer linear program is defined as follows:

min
q∑

k=1
xk

s.t .
q∑

k=1
b(i , j ,Ck) ·xk ≥ nb

i , j i ∈ {2/δ, . . . ,2/δ2}, j ∈ {1, . . . ,1/δ2}

q∑
k=1

w(i , j ,Ck) ·xk ≥ nw
i , j i ∈ {2/δ, . . . ,2/δ2}, j ∈ {1, . . . ,1/δ4}

q∑
k=1

`(i ,Ck) ·xk ≥ n`
i i ∈ {1, . . . ,1/δ2}

xk ∈N k ∈ {1, . . . , q}

This integer linear program can be solved with the algorithm of Kannan [39] in time
qO (q)·s, while s is the input size. We have (2/δ2−2/δ)·1/δ2+(2/δ2−2/δ)·1/δ4+1/δ2 ≤ 3/δ6

constraints. Each coefficient in the matrix is bounded by 6/δ3 and the values nb
i , j ,nw

i , j and
n`

i are bounded by n. It follows, that s ≤ (q +1) ·3/δ6 · log(n). Thus, the the total running
time, including the construction of the configurations, is bounded by O (log(n) · qO (q)). We
can improve the running-time with a result of Eisenbrand & Shmonin [18]:

Theorem 3.7. Let X ⊂ Zd be a finite set of integer vectors and let b ∈ {
∑t

i=1λi xi |t ≥

107

3 Two-Dimensional Bin Packing

0; x1, . . . , xt ∈ X ;λ1, . . .λt ∈Z≥0}. Then there exists a subset X̃ ⊆ X such that b ∈ {
∑t

i=1λi xi |t ≥
0; x1, . . . , xt ∈ X̃ ;λ1, . . .λt ∈Z≥0} and |X̃ | ≤ 2d log(4d M) with M = maxx∈X ‖x‖∞.

In our case, the set X belongs to the configurations. We have at most 3/δ6 constraints, thus
d ≤ 3/δ6. The coefficients of the matrix are bounded by M = 6/δ3. Theorem 3.7 states that
there are at most q ′ := 2d log(4d M) ≤ 2 ·3/δ6 log(4 ·3/δ6 ·6/δ3) ≤ 6/δ6 log(62/δ9) non-zero
variables in any solution b of our integer linear program. We enumerate all configurations of
cardinality at most q ′ and have at most (q +1)q ′

possibilities. For each set of at most q ′ con-
figurations we solve the reduced integer linear program with the algorithm of Kannan [39] in
time q ′O (q ′) · s′ while s′ is the input size of the reduced integer linear program. We bound s′

by (q ′+1)·d ·log(n). Hence, the total running time is bounded by O ((q+1)q ′ ·log(n)·q ′O (q ′)).
The same integer linear program is solved for the bins of Type 2. Since we know that

there is a packing into (3/2+24δ) ·OPT+53, these integer linear programs compute for the
right guess of all above described values a solution with at most (3/2+24δ) ·OPT+53 bins.

3.3.3 RÉSUMÉ OF THE ALGORITHM

A compressed version of our algorithm is given in Algorithm 3.1.

Algorithm 3.1 Algorithm for Two-Dimensional Bin Packing
1: set ε′ := min{ε/39,1/48}
2: Find OPT′ ≤ OPT with binary search so that algorithm computes feasible solution for

each guess do
3: Compute δ and pack medium rectangles with Steinberg’s Theorem 3.5
4: Find structure of the set of big, long and wide rectangles and of the set of wide and

long containers for each guess do
5: Solve flow network with the algorithm of Dinic [17]
6: Greedy assignment of long and wide rectangles into groups
7: Pack the long and wide rectangles into containers with linear programs that

are solved by the algorithm of Vaidya [52]
8: Pack the small rectangles with Next Fit Decreasing Height by Coff-

man et al. [13]
9: Pack containers and big rectangles with integer linear programs that are solved

by the algorithm of Kannan [39]

The running time of the steps are given as follows. The binary search takes O (logn) time.
To find δ, we have to compute 2/ε′ sets and check whether their value is at most ε′ ·OPT.
This takes time O (n ·2/ε′) =O (n/ε).

We pack the 3ε′OPT+2 sets with the algorithm of Steinberg that has a running time of
O ((n log2 n)/ loglogn). Since OPT ≤ n and ε′ < 1, we obtain a total running time for this step

108

3.3 Algorithm

of O ((n2 log2 n)/ loglogn). The value of δ is at least δ≥ ε′4·2/ε′ . For the structure of the sets
for the big rectangles we have to guess 4/δ2 +4/δ4 values out of n. We obtain the structure
of the sets of the wide and long rectangles by guessing at most 6/δ3 values out of n. We
compute the structure of the wide and long containers by guessing 4/δ6+2/δ2 values out of
n and 2/δ2 values out of 1/δ4+(1/δ2)1/δ. In total we have to choose less than 5/δ6 values out
of n and 2/δ2 values out of 1/δ4+(1/δ2)1/δ. This takes time O (n5/δ6 ·(1/δ)2/δ). To solve the
flow network, we need time O (n3/δ2 +n2/δ6 +n/δ10 +1/δ14). The assignment of the long
and wide rectangles into the groups is done in linear time. We solve the four linear programs
to pack the wide and long rectangles into the containers in time O ((2/δ2)8/δ+5 · log(2/δ2 ·n)).
The packing of the small rectangles and to cut out the containers afterwards is done in less
than O (n logn/δ3) time. The integer linear programs are solved in time O ((q +1)q ′ · log(n) ·
q ′O (q ′)), with q ≤ (1/δ)41/δ3 ·215/δ3

and q ′ ≤ 6/δ6 log(62/δ9).

To conclude, the running time is bounded by O (n f (1/ε) · g (1/ε)) for some functions f and
g . We obtain the following result for the two-dimensional bin packing problem with and
without rotations:

Theorem 3.1. For any ε > 0, there is an approximation algorithm A which produces a

packing of a list I of n rectangles in A(I) bins such that

A(I) ≤ (3/2+ε) ·OPT(I)+69.

The running time of A is polynomial in n.

Proof. The integer linear programs packs the big rectangles and the containers in at most
(3/2+ 22δ) ·OPT+ 53 bins. The medium rectangles are packed into 3ε′OPT+ 2 bins. To
transform the wide and long rectangles we need 2 additional bins. We pack the wide and
long rectangles with the linear programs into the target regions. Therefore, we need also
2 additional bins. The small rectangles are packed into the target regions and into δOPT+
1 additional bins. Afterwards, we cut the containers out of the target regions and need
13δOPT+9 additional bins. It follows that we need

(3/2+22δ) ·OPT+53+3ε′OPT+2+2+2+δOPT+1+13δOPT+9 ≤
(3/2+39ε′) ·OPT+69

bins. Since ε′ ≤ ε/39 we obtain (3/2+ε)OPT+69 bins in total.

109

3 Two-Dimensional Bin Packing

RÉSUMÉ OF THE ALGORITHM WITH ROTATIONS In the version that allows rotation,
the integer linear program packs the rectangles into k ′ ≤ (3/2+ 22δ) ·OPT+ 30 bins. The
medium rectangles are packed into 3ε′ ·OPT+1 additional bins. To assign the long and wide
rectangles to the groups and to pack them into the target regions we need in total 2 additional
bins. To pack the small rectangles we need δOPT+1 additional bins and to cut the containers
out of the target regions we need 13δOPT+5 additional bins. Consequently, the total number
of used bins is at most

(3/2+22δ) ·OPT+30+3ε′ ·OPT+1+2+δOPT+1+13δOPT+5 ≤
(3/2+39ε′) ·OPT+39 ≤ (3/2+ε) ·OPT+39

bins. We obtain the following result:

Theorem’ 3.1. For any ε > 0, there is an approximation algorithm A which produces a

packing of a list I of n rectangles that are allowed to be rotated in A(I) bins such that

A(I) ≤ (3/2+ε) ·OPT(I)+39.

The running time of A is polynomial in n.

3.4 CONCLUSION

We presented a technique that allows us to modify any solution of the two-dimensional bin
packing problem into a solution that consists of a simpler structure. This enables our al-
gorithm to compute a solution into (3/2+ ε) ·OPT+ 69 bins and an improved solution of
(3/2+ε) ·OPT+39 in the version that allows rotation for any fixed ε > 0 and any instance
that fits optimally into OPT bins. The current lower bound is given by Chlebík & Chle-
bíková [11] with values 1+1/3792 and 1+1/2196 for the version with and without rotations,
respectively. An open question is to close the gap between the current lower bounds and our
presented asymptotic approximation ratios. Therefore, it is of interest to find an approxima-
tion algorithm with an asymptotic approximation ratio of 4/3, if there is any. Maybe there
is a way to adopt our techniques by modifying an optimal solution so that the rectangles are
rounded up. However, there would be only one additional bin for each sequence of three
bins, instead of one additional bin for each sequence of two bins. Therefore. it would be
necessary to do a much more sensitive and complex case analysis.

110

4 FASTER APPROXIMATION

ALGORITHMS FOR SCHEDULING

WITH FIXED JOBS

4.1 INTRODUCTION

We consider the problem of parallel machine scheduling where either some jobs are already
fixed in the system or there are intervals of non-availability of some machines. These prob-
lems are already studied in [14, 15, 28, 42, 43, 44, 47] and relevant for turnaround schedul-
ing [45] and distributed computing where machines are donated on a volunteer basis.

Formally, the problem can be defined as follows: an instance consists of m, the number
of machines, considered part of the input and n jobs with non-negative processing times
p1, . . . , pn ∈N. The first k jobs are fixed via a list (m1, s1), . . . , (mk , sk) giving a machine index
and starting time for the respective job. We assume that these fixed jobs do not overlap. A
schedule is a non-preemptive assignment of the jobs to machines and starting times such that
the first k jobs are assigned as encoded in the instance and that the jobs do not intersect.

For the problem with fixed jobs, the objective is to minimize the makespan Cmax of all
jobs, including the fixed ones. In the setting with non-availability, the fixed jobs are not
included when finding the makespan.

Without loss of generality, we may assume m < n: if m ≥ n, there are at least m−k ≥ n−k

machines without fixed jobs on them, which can execute the n −k unfixed jobs optimally in
a trivial way.

Both problems generalize the well-known problem P||Cmax(scheduling jobs on parallel
identical machines to minimize makespan) [27] and hence are strongly NP-hard.

RELATED WORK. Scheduling with fixed jobs was studied by Scharbrodt [46] and Schar-
brodt et al. [47]. They mainly studied the problem for constant m; for this strongly NP-hard
formulation (which consequently does not admit an FPTAS) they present a PTAS. They also

111

4 Scheduling with Fixed Jobs

found approximation algorithms for general m with ratios 3 [46] and 2+ ε [47]; since the
finishing time of the last fixed job is a lower bound for the optimal makespan OPT, we
can simply use a PTAS for the well-known problem P||Cmax [27] to schedule the remaining
n −k jobs after the fixed job which finishes last. Scharbrodt et al. [47] also proved that for
scheduling with fixed jobs there is no approximation algorithm with ratio 3/2− ε, unless
P = NP, for any ε ∈ (0,1/2]. In [14], Diedrich and Jansen present a 3/2+ε-approximation for
arbitrary ε> 0 for both settings, however, it relies on large enumeration steps and involves up
to m1/ε1/ε2

calls to a subroutine to approximately solve a difficult maximization subproblem,
the multiple subset sum problem (MSSP; see Section 4.2), with accuracy ε. We denote by
TMSSP (n,ε) the time complexity of this subroutine.

RESULTS. We present improved algorithms for scheduling with fixed jobs and scheduling
with non-availability. These algorithms on the one hand achieve exactly the bound of 3/2

and, on the other hand, are both faster and conceptually simpler than the previous algorithms
in [14]. Formally stated, our results are the following with pmax = max j∈{1,...,m} p j :

Theorem 4.1. Scheduling with fixed jobs admits an approximation algorithm with ratio 3/2

and running time O (n logn + log(npmax)(n +TMSSP (n,1/8))).

For scheduling with non-availability, the result is slightly weaker for technical reasons.
In [16, 35] the following inapproximability result is displayed: Scheduling with non- avail-
ability, even if at any time, there is only at most one unavailable machine, does not admit a
polynomial time algorithm with a constant approximation ratio unless P = NP.

Theorem 4.2. Scheduling with non-availability, as long as a constant fraction ρ ≥ 1/m of

machines is always available, admits a 3/2-approximation with running time O (n logn +
log(npmax/(ρm))(n +TMSSP (n,ρ/8))).

The remainder of this chapter is structured as follows: in Sections 4.2, we describe the
algorithm and prove its correctness for the case of fixed jobs, i.e. Theorem 4.1. In Sec-
tion 4.3, we show the minor changes that are needed to use our algorithm for the case of
non-availability.

4.2 SCHEDULING WITH FIXED JOBS

Our approach, as well as the one presented in [14], relies heavily on algorithms for the
multiple subset sum problem(MSSP). In its optimization variant, this problem is defined as
follows:

112

4.2 Scheduling with Fixed Jobs

Definition 4.1. Given n items with sizes w1, . . . , wn and m ≤ n target capacities C1, . . . ,Cm ,

possibly not all equal, we are asked to find a partition of the items into m+1 sets S1, . . . ,Sm+1

so that
∑

j∈Si
w j ≤ Ci for all i ∈ {1, . . . ,m} and

∑m
i=1

∑
j∈Si

w j is maximized. The set Sm+1

collects items that remain unpacked.

This problem in itself is strongly NP-hard, as shown by Caprara et al. [9]. The problem
that is more commonly considered is the multiple knapsack problem(MKP), where items
have profits that may be different from their size and the overall packed profit has to be
maximized. Chekuri and Khanna were the first to present a PTAS for this problem [10]. The
best currently known algorithm for both MKP and MSSP is an EPTAS due to Jansen [30]
with a running time of TMSSP (n,ε) = 2O (log(1/ε)·1/ε5) +poly(n) for n items and m ≤ n target
capacities, which was subsequently improved to TMSSP (n,ε) = 2O (log(1/ε)4·1/ε) +poly(n) [31]
and, if the Modified Integer Roundup Conjecture (MIRUP) of Scheithauer and Terno [48]
holds, this even reduces to TMSSP (n,ε) = 2O (log(1/ε)2·1/ε) +poly(n) [31].

The connection of MSSP to our scheduling problem is the following: guessing a makespan
T for the scheduling problem will induce, along with the prepositioned jobs, bins of different
sizes into which the remaining jobs have to be placed, so solving MSSP exactly is equivalent
to solving the decision version of the scheduling problem. Since MSSP is hard, we can only
solve it approximately, but with arbitrary precision ε. The major problem now is that even
though the total size of jobs not assigned by an MSSP algorithm (which will have to be
scheduled after the guessed optimal makespan T) will only be a small fraction of the total
length of all jobs, some of these rejected jobs may still be long, which results in a bad
approximation ratio.

Much of the running time of the algorithm in [14] is spent in solving network flow prob-
lems for a very large number of candidate solutions which have to be enumerated in order
to avoid this problem by placing large jobs in advance. In contrast, our new algorithm uses
a single post-processing step and does not need any enumerative steps, nor network flow
solvers, beyond those in the MSSP subroutine.

The outline of our algorithm is given in Algorithm 4.1. We give a relaxed decision algo-
rithm that generates a schedule of length at most 3/2 ·T provided there exists some schedule
that packs all jobs in the interval [0,T). This algorithm is combined with a binary search.
The number of iterations of the binary search is polynomially bounded in the input length
by the following easy insight:

Remark 4.1. For the shortest possible makespan, OPT, we have

max
j∈{1,...,k}

(s j +p j) ≤ OPT ≤ max
j∈{1,...,k}

(s j +p j)+n max
j∈{k+1,...,n}

p j

113

4 Scheduling with Fixed Jobs

Algorithm 4.1 Outline of the approximation algorithm for scheduling with fixed jobs.
1: Set LB := max j∈{1,...,k}(s j +p j), UB := LB+max j∈{k+1,...,n} p j + 1

m

∑n
j=k+1 p j

2: Let σbest a schedule of makespan at most UB.
3: Sort the jobs by non-increasing length.
4: Generate and sort the gaps G(T) as described in Section 4.2.1.
5: while UB−LB ≥ 1 do
6: Set T := d(UB+LB)/2e.
7: Update the gaps and partition into large and small jobs JL(T) ∪̇ JS(T) as described

in Section 4.2.1. Keep the gaps sorted by non-increasing sizes.
8: for j = 1, . . . ,m do
9: if the j th largest job is large and bigger than the j th largest gap then

10: reject T .
11: Run a 7/8-approximation for MSSP on G(T) and the jobs, as described in Sec-

tion 4.2.2.
12: if more than mT /8 is unpacked then
13: reject T .
14: if T was rejected then
15: LB := T
16: else
17: set σbest to the generated packing and UB := T .
18: Modify the packing to include all items from JL(T) as described in Section 4.2.2.
19: Partition the remaining jobs into two groups and use a Next-Fit heuristic to schedule the

remaining jobs in the interval [UB,3/2UB] as described in Section 4.2.3.

114

4.2 Scheduling with Fixed Jobs

i.e. the range to be searched over has length max j∈{1,...,k}(s j + p j)+n max j∈{k+1,...,n} p j −
max j∈{1,...,k}(s j +p j) ≤ npmax, for pmax = max j∈{1,...,n} p j which is pseudopolynomial in the

instance size. In particular, we have a polynomial number O (log(npmax)) of binary search

steps.

Proof. The lower bound follows from the fact that the “latest” fixed job counts towards the
makespan; a schedule proving the upper bound is easily obtained in linear time by scheduling
all unfixed jobs on a single machine.

We note that by using Graham’s List Scheduling algorithm [21] after all the fixed jobs
have finished, we can reduce the size of the search region to

∑
j∈{k+1,...,n} p j /m +Pmax ≤

(1+n/m)pmax, which would be preferable for a practical implementation.

Hence, we will concentrate on one iteration of the binary search in the following. In
each iteration, we first apply a low-complexity check, described more closely in Section
4.2.1, that correctly rejects some infeasible guesses of T . We then pack almost all jobs into
the schedule as described in Section 4.2.2. A novel postprocessing step ensures that the
unpacked jobs have suitable properties to pack them later. Finally, we pack these jobs into
an extra timeframe of length T /2 as described in Section 4.2.3.

4.2.1 QUICKLY DISCARDING TOO-SMALL T

For a given target makespan T we generate all intervals of availability of machines, in the
following called gaps, within the planning horizon [0,T) from the k encoded fixed jobs.

Let q(T) ∈N∗ denote the number of gaps and let G(T) := {G1, . . . ,Gq(T)} denote the set of
gaps. For each i ∈ {1, . . . , q(T)} we also use Gi to denote the size of gap Gi . Without loss of
generality, we assume G1 ≥ . . . ≥ Gq(t). Note that q(T) ≤ k +m ≤ 2n since at most k fixed
jobs induce a gap “left” to them and there are at most m gaps whose “right” limit is not
created by a fixed job but by the limit of the planning horizon. In total, q(T) is polynomially
bounded in the instance size. These gaps can easily be processed by sorting the fixed jobs
on each machine by their execution times and assigning the gaps between them. This is
done in time O (n logn). Furthermore, we need that in each iteration of the while-loop all
gaps are sorted. The gaps that are not limited by the planning horizon will not changed
in the algorithm. Hence we can sort them by their sizes in line 4 before the while-loop is
processed. The sizes of the other gaps are modified in each loop by the same amount. Hence
we can sort them also before the while-loop is processed and update only the lengths of the
gaps in line 7. Afterward we do a merge step of the two sets of gaps to have a sorting of
all gaps by their sizes. In total we need O (n logn) to compute and sort the two sets of gaps,

115

4 Scheduling with Fixed Jobs

before the while-loop in line 5 is processed. In each iteration we need time O (n) to update
the lengths of the gaps and merge them. We define

JL(T) := { j ∈ {k +1, . . . ,n}|p j ∈ (T /2,T]},

JS(T) := { j ∈ {k +1, . . . ,n}|p j ∈ (0,T /2]}

to partition the set of non-fixed jobs into large and small jobs. If any unplaced job is longer
than T , we can obviously immediately reject the guessed makespan of T as too small. We
can partition the jobs and sort the large jobs in each iteration in linear time, by taking the
sorting of all jobs before the while-loop is processed.

The procedure in step 8 of the algorithm quickly checks a necessary condition for feasible
solutions: bear in mind that a large job has length p j > T /2, so there are at most m large
jobs, one per machine, and no gap, being of size at most T by definition, can be large enough
to accommodate two large jobs at once.

Lemma 4.1. If a guessed makespan T is rejected in step 10 of the algorithm, then no feasible

schedule of length T exists.

Proof. Assume j minimal such that the j th largest job is large and does not fit into the j th
biggest gap. For convenience, denote the lengths of the j largest jobs p1 ≥ . . . ≥ p j and the
size of the gaps G1 ≥ . . . ≥G j , adding “dummy gaps” of size 0 if needed.

By definition, we have p1 ≥ . . . ≥ p j > G j , hence a feasible schedule of length T would
have to assign these j jobs to at most j −1 gaps G1, . . . ,G j−1. This is a contradiction, since

p1 ≥ . . . ≥ p j > T /2 ≥G1/2 ≥ . . . ≥G j−1/2,

so no two large jobs fit into one single gap.

4.2.2 PACKING ALMOST ALL JOBS

In this section, we will show that if T ≥ OPT, we can generate a schedule of length T that
assigns “almost all” jobs. To ensure an approximation guarantee of 3/2 ·T it is critical that
all jobs are scheduled within the time window [0,T]. We proceed in two steps. First, we
show:

Lemma 4.2. If a feasible schedule of length T exists, then step 11 generates a packing such

that the total length of unpacked jobs is bounded by mT /8.

116

4.2 Scheduling with Fixed Jobs

To do this, we create an instance of MSSP as follows: each gap Gi corresponds to a
knapsack of capacity Gi and each job of length pi , i = k +1. . .n, corresponds to an item of
size pi . We run the EPTAS of [30, 31] on this instance with accuracy 1/8.

Observe that if (and only if) our current guessed makespan T is at least the optimal
makespan OPT, it is possible to pack all items into the gaps, so the EPTAS will leave items
of total area at most (

∑n
i=k+1 pi)/8 ≤ mT /8 unpacked. Here, we use that mT is a natural

upper bound on
∑n

i=1 pi if T ≥ OPT. Hence, if more than total length mT /8 is not packed,
we can also immediately reject our guessed T .

At this stage, the unpacked jobs may still include up to b(mT /8)/(T /2)c = bm/4c large
jobs. Obviously, if large jobs, which have length > T /2, are not packed in the gaps in the
period [0,T), we cannot hope to find an overall schedule of length at most 3

2 T . Hence,
we modify the packing to include all large jobs, at the cost of increasing the total area of
unpacked jobs by a constant factor, using the following construction:

Lemma 4.3. Given a packing of some jobs into the gaps such that jobs of total length δ are

unpacked, amongst them a large job j1 of length p j1 > T /2, we can either find in polynomial

time a modified packing such that the total length of unpacked jobs is at most δ+p j1 and the

additional large job j1 is packed as well as all previously packed large jobs or else prove

that no packing of all jobs into the gaps exists at all.

Proof. Let t1 be the largest index such that Gt1 ≥ p j1 . (Recall that T ≥ G1 ≥ ·· · ≥ Gq(T).)
Clearly, p j1 can only possibly be scheduled in one of the gaps G1, . . . ,Gt1 , so if each one of
these already contains a job at least as large as p j1 , no packing can exist at all. This condition
is already tested for in step 8 of the algorithm, before the EPTAS is called. Hence, we select
one gap G j1 among the gaps G1, . . . ,Gt1 that contains a large job of minimal size. For this
purpose, a gap without large job contains a ‘dummy large job’ of size 0. Denote this job
j2, of size p j2 < p j1 . We temporarily unpack j2, and permanently unpack all small jobs that
might have been in its gap as well, which have total length `1 ≤ G j1 −p j2 ≤ T −p j2 . (See
also Figure 4.1 for this construction.)

If p j2 = 0, we have now scheduled one more large job. Otherwise, we need to re-schedule
j2. As for j1, let t2 ≥ t1 be the largest index so that Gt2 ≥ p j2 . Furthermore, we already know
that gaps G1, . . . ,Gt1 all carry large jobs at least as large as j2, since j2 was chosen to be of
minimal size amongst the large jobs there. Hence, we can restrict our attention to the gaps
Gt1+1, . . . ,Gt2 . Again, if all these gaps already contain jobs at least as large as j2, no feasible
packing exists for this choice of T at all. Otherwise, we select a gap G j2 with a large job
j3 of minimal size p j3 (possibly 0) and iterate as above, discarding small jobs of total size
`2 ≤G j2 −p j3 ≤Gt1+1 −p j3 ≤ p j1 −p j3 .

117

4 Scheduling with Fixed Jobs

Gt1

Gt2

Gt3

Gt4

pj1

pj2

pj3

pj4

Figure 4.1: Choice of gaps G j1 , . . . in the proof of Lemma 4.3. Shaded areas indicate possible
small jobs; the darker areas are actually unpacked.

After some number r ≤ m of iterations, we have p jr+1 = 0, i.e. we did not need to unpack
another large job, and the number of packed large jobs has increased by one. (Otherwise,
step 10 would have rejected T already because there are more large jobs than large gaps.)
Finally, the total size of small jobs that were unpacked can be bounded by

r∑
i=1

`i ≤ (T −p j2)+ (p j1 −p j3)+·· ·+ (p jr−1 −p jr+1)

= T +
r−1∑
i=1

p ji −
r+1∑
i=2

p ji = T +p j1 −p jr ≤ 2p j1 .

The final inequality holds since we know that jr is a large job, so T − p jr < T /2 < p j1 .
Since we have now additionally packed p j1 , the net loss incurred is bounded by p j1 .

With a slight modification we can schedule all large unpacked jobs of total size mT /8 in
time O (n logn). Note that a naive approach would require n2 steps to assign all large jobs.

Lemma 4.4. Given a packing of some jobs into the gaps such that jobs of total length mT /8

are unpacked, we obtain a packing that includes all large jobs and has unpacked jobs with

total size at most 2mT /8 = mT /4.

The running time of the procedure is bounded by O (n logn).

Proof. We schedule the unpacked large jobs with the Algorithm 4.2. Here we assume that
the large unpacked jobs are initially sorted by non-increasing lengths and the gaps by non-
increasing sizes.

118

4.2 Scheduling with Fixed Jobs

Algorithm 4.2 Outline of the algorithm for scheduling the unpacked large jobs.
1: Build the heap J H of all unpacked jobs, sorted by non-increasing lengths.
2: Let G H be an empty heap of the gaps.
3: Let t = 1.
4: while J H is not empty do
5: extract root jh of J H , i.e. the unscheduled job of maximal processing time.
6: while Gt ≥ p jh do
7: add Gt to G H sorted by non-decreasing sizes of large jobs containing in the

gaps.
8: t = t +1.
9: extract root Gh of G H , i.e. the gap that contains a job jGh of minimal size, or one

gap with a dummy large job.
10: if jGh has processing time larger 0 then
11: add jGh to J H .
12: unpack all jobs in Gh .
13: schedule jh on Gh .

For the data structure we use two heaps, one heap stores jobs, denoted by J H , and one
heap stores the gaps, denoted by G H . The heap J H is sorted by non-increasing processing
lengths of the unscheduled jobs, i.e. the root of this heap is a large job of maximal processing
time. The heap G H is initially empty and we add the gaps one after another. This heap is
sorted by non-decreasing lengths of a large job inside the gap (note that there is at most one
large job in each gap). The gap that contains a large job of minimal size, possibly a ’dummy
large job’ of length 0, is the root of the heap. By using heaps it allows us to extract the root
(and rebuild the heap) and insert an element in logarithmic time in the number of elements
inside the heap.

For the analysis we use the same sequences of job replacements as in Lemma 4.3. It does
not matter for the analysis whether we schedule one sequence after another, or we schedule
the jobs sorted by their lengths. Note that after we scheduled a job into a gap, the gap will
never be considered again, since afterwards we schedule only jobs of smaller sizes. We use
the analysis of Lemma 4.3 for all initially large unscheduled jobs of total size mT /8. Here
consider the sequence of jobs generated by our algorithm to schedule the unpacked large
jobs. Using the analysis in Lemma 4.3, each large job of length p j1 is inserted by removing
small jobs of total length 2p j1 . Therefore, we have removed (or unpacked) small jobs of
total size at most 2mT /8 = mT /4 after applying the algorithm.

The running time of the algorithm given in Algorithm 4.2 is as follows. The algorithm
re-schedules at most n jobs, hence the while loop in step 4 has at most z ≤ n iterations. In
each iteration i we extract one job of the heap J H , which will not re-scheduled again. To

119

4 Scheduling with Fixed Jobs

extract and delete one job and rebuild the heap we need time at most O (logbm/4c), since
there are at most bm/4c many jobs in the heap. We possibly add one job to the heap J H ,
which needs the same amount of time as extracting one.

While we are in the i th iteration of the outer loop, let vi denote the number of itera-
tions of the inner while loop in step 6. Since we add at most q(T) gaps to the heap G H

we have
∑z

i=1 vi ≤ q(T). The time for extracting or adding one gap needs time at most
O (log q(T)). In total, we have in each iteration i one extraction of a large job, vi additions
of gaps, one extraction of a gap, and possibly one addition of a job. Since m, q(T) ≤ n

we have
∑z

i=1 2O (logbm/4c)+ (vi + 1)O (log q(T)) ≤ ∑n
i=1(vi + 3)O (log(n)) = 3nO (logn)+∑n

i=1 vi O (log(n)) =O (n logn).

4.2.3 PACKING REMAINING JOBS

After the construction of the previous section, we are left with the minimal value T such
that we first have successfully packed almost all jobs, (all but total processing time mT /8),
which we have modified by Lemma 4.3 to a packing of all but total processing time 2mT /8 =
mT /4. Since the construction is valid for makespan T = OPT, we know that the final T ≤
OPT.

We will now schedule the remaining jobs in the interval [T, 3
2 T] using a Next-Fit heuristic

as follows: for convenience, denote these jobs j1 . . . , jn′ . Partition the jobs into

J ′S(T) := {i ∈ {1, . . . ,n′}|p ji ∈ (T /4,T /2]},

J ′′S (T) := {i ∈ {1, . . . ,n′}|p ji ∈ (0,T /4].}

Then schedule each of the jobs in the set J ′S(T) on one machine. These machines will not
considered again. For every remaining machine, we greedily assign jobs in J ′′S (T) to it until
its extra load would exceed 1

2 T or we run out of jobs. Clearly, the running time of this
procedure is O (n).

Lemma 4.5. If the total size of jobs to be scheduled in this way is at most mT /4, all jobs

can be assigned in the interval [T, 3
2 T].

Proof. Each machine is not closed unless its load is larger than T /4, either from a job in
J ′S(T) or because a job of size at most T /4 could not be assigned to it. Hence, assuming we
run out of machines, the total length would be strictly larger than mT /4.

In total, this proves the correctness of the algorithm. As to the running time, note that for
each iteration of the binary search, the running time is essentially O (n)+TMSSP (n,1/8). By

120

4.3 Scheduling with Non-Availability

Lemma 4.1, the number of iterations is bounded by O (log(npmax)), so the overall running
time is bounded by O (log(npmax)(n +TMSSP (n,1/8))+n logn).

In total, we obtain:

Theorem 4.1. Scheduling with fixed jobs admits an approximation algorithm with ratio 3/2

and running time O (n logn + log(npmax)(n +TMSSP (n,1/8))).

4.3 SCHEDULING WITH NON-AVAILABILITY

In this section, we briefly discuss how the algorithm given above can be adapted to schedul-
ing with non-availability. This setting is very closely related to scheduling with fixed jobs,
the main difference is that where for fixed jobs, the makespan is given as

Cmax = max
j∈{1,...,n}

s j +p j ,

it is
Cmax = max

j∈{k+1,...,n}
s j +p j

here, i.e. the “fixed jobs” are not proper jobs, but, for example, downtime needed for main-
tenance reasons.

This difference makes the problem slightly harder, as a reservation late in the schedule
does not increase lower bounds on the optimal value. In [14], it is shown that this can be
exploited to prevent any constant approximation ratio (unless P = NP), as long as reserva-
tions can occur on all the machines. In [16, 35] there is a slightly stronger result presented:
Scheduling with non-availability, even if at any time, there is only at most one unavailable
machine, does not admit a polynomial time algorithm with a constant approximation ratio
unless P = NP.

If we parametrize the problem by the fraction ρ ∈ (0,1) of machines that is guaranteed not
to have any non-availability at all, Diedrich and Jansen [14] again give a 3/2+ε approxima-
tion (with running time doubly exponential in 1/ε and 1/ρ) and show that an approximation
ratio of 3/2−ε is not possible unless P = NP.

Again, we can apply the algorithm described above for fixed jobs also to the case of
unavailability. The relaxed decision procedure is virtually the same: first, “almost all” of
the jobs are scheduled in the interval [0,T) using the multiple subset sum problem as a
subroutine. The remaining jobs are scheduled in the interval [T, (3T /2)], but only on the
ρm machines which are not affected by reservations. To make this possible, the notion of
“almost all” needs to be slightly stronger, i.e. the total size of unscheduled jobs must be

121

4 Scheduling with Fixed Jobs

bounded by ρ/8 instead of 1/8, which simply means we call the MSSP EPTAS subroutine
with a higher accuracy ρ/8. After applying the exchange step of Lemma 4.3, unpacked non-
large jobs of total area at most ρT /4 remain. Then, Lemma 4.5 can be applied on the ρm

machines which are guaranteed to be available after time T .
The only other consideration that needs to be made is the range over which the binary

search is to be conducted: since the “fixed jobs” do not count towards the makespan, our
bounds are different. The optimal makespan OPT certainly satisfies OPT ≥ pmax; on the
other hand, there exists a schedule of size 1/(ρm)

∑n
j=1 p j + pmax ≤ (1+n/(ρm))pmax by

using Graham’s List Scheduling Algorithm [21] on the permanently-available machines.
Hence, we can use the lower bound pmax and the upper bound (1+n/(ρm))pmax. Again, the
range is pseudopolynomial in the instance size, so the number of binary search steps needed
in the outer loop of the algorithm is polynomial in the input length. Hence, we obtain:

Theorem 4.2. Scheduling with non-availability, as long as a constant fraction ρ ≥ 1/m of

machines is always available, admits a 3/2-approximation with running time O (n logn +
log(npmax/(ρm))(n +TMSSP (n,ρ/8))).

4.4 CONCLUSION

We have studied non-preemptive scheduling with fixed jobs where the objective is to mini-
mize the makespan. For this problem, we obtain a polynomial time algorithm with ratio 3/2,
which is tight unless P = NP holds. These techniques can also be used for the closely related
setting of scheduling with non-availability; there, one needs to additionally assume that a
constant percentage of the machines is permanently available.

In total, our approach yields a tight approximation result. However, our algorithm uses
a very general MKP EPTAS for a fixed value of ε = 1/8. It is an interesting open question
if the more restricted problem MSSP admits a faster EPTAS or a faster combinatorial 7/8-
approximation that can be used to speed up our algorithm. So far, the best known non-PTAS

result is a 3/4-approximation due to Caprara et al. [9] for the case of identical bin capacities.

122

5 CONCLUDING REMARKS

In this thesis, we presented approximation algorithms for the strip packing problem in Chap-
ter 2, the two-dimensional bin packing problem in Chapter 3 and for scheduling with fixed
jobs in Chapter 4.

For the strip packing problem we displayed an absolute 5/3+ ε-approximation for any
arbitrary ε> 0. This result is an important step to settle the approximability of this problem.
However, it is still open, whether there exists an approximation algorithm that matches the
current lower bound with an absolute approximation ratio of 3/2.

For the two-dimensional bin packing problem, we proposed for any ε > 0 an asymptotic
3/2+ε-approximation with an additive constant of 69 and an improved additive constant of
39 for the version that allows rotation. There is no asymptotic approximation algorithm with
an approximation ratio of less than 1+1/3792 for the version with rotations and 1+1/2196

for the version without rotations, unless P = NP [11]. An open question is to close the gap
between this lower bound and the current best asymptotic approximation ratio of our algo-
rithm. Therefore, it is of interest to find an approximation algorithm with an asymptotic
approximation ratio of 4/3, if there exists any. Maybe there is a way to adapt our tech-
niques by modifying an optimal packing so that the rectangles of each sequence of 3 bins
are rounded by using only 1 additional bin.

We settled the approximability for scheduling with fixed jobs by developing an approxi-
mation algorithm whose absolute approximation ratio matches the lower bound of 3/2. For
an improved running time it would be of interest to find a fast 7/8-approximation for the
multiple subset sum problem.

123

LIST OF FIGURES

2.1 The insertion process of Lemma 2.1. 9

2.2 Notations . 11

2.3 Schematic illustration of the main cases if Algorithm 2.2, 2.3 and 2.4 are not
applicable. The area to the left of r` and the area to the right of rr is almost
completely covered by 2/3-high rectangles (and shown in darker shade).
I`, Ir and IM are horizontal intervals very close to r`,rr and the middle of
the strip. 13

2.4 Packing methods for Lemma 2.3 . 14

2.5 Packing methods for Lemma 2.4 . 18

2.6 Packing methods for Lemma 2.5 . 21

2.7 Packing methods for Lemma 2.6 . 22

2.8 Packing methods for Lemma 2.7 (the x-direction is distorted, i.e., ε is chosen
very large, to illustrate the different sets that intersect with X) 24

2.9 Packing methods for Lemma 2.8 . 27

2.10 Packing methods for Lemma 2.9 . 29

2.11 Blocking property and definition of sets that intersect X 31

2.12 The basic algorithm . 32

2.13 Notations . 34

3.1 Definition of S(i)
U ,S(i)

B ,S(i)
L and S(i)

R . 47

3.2 Definition of rectangles and strips . 48

3.3 Using Lemma 3.5 with y = 8/24 and x = 4/24 51

3.4 Combining the rectangles of S(1)
L and S(2)

R . 52

3.5 A packing as described in Theorem 3.2 . 55

3.6 The two cases of Corollary 3.2 . 56

3.7 The situation in the Corollary 3.3 and Corollary 3.4 57

3.8 A packing as described in Theorem 3.3, with v = 5/24, h = 4/24 and r (i)
br ∈ L(i)

B . 59

3.9 Two possible initial situations of Lemma 3.8. 61

125

List of Figures

3.10 The structure of the additional bins of Lemma 3.8 62
3.11 A possible initial situation of Lemma 3.10 64
3.12 The structure of the additional bins of Lemma 3.10 65
3.13 Initial packing of Lemma 3.11 . 66
3.14 The definition of the regions of Lemma 3.12 68
3.15 Moving the region C (i) in the proof of Lemma 3.12 69
3.16 Packing of the additional bins in the proof of Lemma 3.12 70
3.17 Definitions of the regions of the first bk/2c bins in the proof of Lemma 3.14 71
3.18 Definitions of the regions of the last dk/2e bins in the proof of Lemma 3.14 72
3.19 Packing of the bins in the proof of Lemma 3.14 73
3.20 Packing of the additional bins in the proof of Lemma 3.14 73
3.21 Definitions of the regions in the proof of Lemma 3.15 75
3.22 Packing in the additional bins in the proof of Lemma 3.15 76
3.23 Definitions of the regions in the proof of Lemma 3.17 78
3.24 Packing in the proof of Lemma 3.17 . 78
3.25 Overview of the lemmas that are applied for different v and h 82
3.26 Construction of long containers; long and small rectangles are sliced vertically 87
3.27 Construction of wide containers; wide and small rectangles are sliced hori-

zontally . 88
3.28 The flow-network . 94
3.29 A greedy assignment of wide rectangles; sort the rectangles by their widths,

pack them into the sets W w
2/δ2 , . . . ,W w

2/δ until the last rectangle exceeds (i j +
1)δ4; afterwards pack the remaining rectangles into the sets W h

1 , . . . ,W h
1/δ2 . . 97

3.30 Packing the wide rectangles into the containers 100
3.31 Rectangular regions for the small rectangles 101

4.1 Choice of gaps G j1 , . . . in the proof of Lemma 4.3. Shaded areas indicate
possible small jobs; the darker areas are actually unpacked. 118

126

BIBLIOGRAPHY

[1] B. S. Baker, D. J. Brown, and H. P. Katseff. A 5/4 algorithm for two-dimensional
packing. Journal of Algorithms, 2(4):348–368, 1981.

[2] B. S. Baker, E. G. C. Jr., and R. L. Rivest. Orthogonal packings in two dimensions.
SIAM Journal on Computing, 9(4):846–855, 1980.

[3] N. Bansal, A. Caprara, K. Jansen, L. Prädel, and M. Sviridenko. A structural lemma in
2-dimensional packing, and its implications on approximability. In Proceedings of the

20th International Symposium on Algorithms and Computation (ISAAC 2009), LNCS

5878, pages 77–86, 2009.

[4] N. Bansal, A. Caprara, and M. Sviridenko. A new approximation method for set cov-
ering problems, with applications to multidimensional bin packing. SIAM Journal on

Computing, 39(4):1256–1278, 2009.

[5] N. Bansal, J. R. Correa, C. Kenyon, and M. Sviridenko. Bin packing in multiple di-
mensions: Inapproximability results and approximation schemes. Mathematics of Op-

erations Research., 31(1):31–49, 2006.

[6] N. Bansal and M. Sviridenko. New approximability and inapproximability results for
2-dimensional bin packing. In Proceedings of the 15th Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA 2004), pages 196–203, 2004.

[7] M. Bougeret, P.-F. Dutot, K. Jansen, C. Robenek, and D. Trystram. Approximation al-
gorithms for multiple strip packing and scheduling parallel jobs in platforms. Discrete

Mathematics, Algorithms and Applications, 3(4):553–586, 2011.

[8] A. Caprara. Packing d-dimensional bins in d stages. Mathematics of Operations Re-

search, 33:203–215, 2008.

[9] A. Caprara, H. Kellerer, and U. Pferschy. A 3/4-approximation algorithm for multiple
subset sum. Journal of Heuristics, 9(2):99–111, 2003.

127

Bibliography

[10] C. Chekuri and S. Khanna. A polynomial time approximation scheme for the multiple
knapsack problem. SIAM Journal on Computing, 35(3):713–728, 2005.

[11] M. Chlebík and J. Chlebíková. Inapproximability results for orthogonal rectangle pack-
ing problems with rotations. In Proceedings of the 6th Conference on Algorithms and

Complexity (CIAC 2006), LNCS 3998, pages 199–210, 2006.

[12] F. R. K. Chung, M. R. Garey, and D. S. Johnson. On packing two-dimensional bins.
SIAM Journal of Algebraic Discrete Methods, 3:66–76, 1982.

[13] E. G. Coffman Jr., M. R. Garey, D. S. Johnson, and R. E. Tarjan. Performance bounds
for level-oriented two-dimensional packing algorithms. SIAM Journal on Computing,
9(4):808–826, 1980.

[14] F. Diedrich and K. Jansen. Improved approximation algorithms for scheduling with
fixed jobs. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA 2009), pages 675–684, 2009.

[15] F. Diedrich, K. Jansen, F. Pascual, and D. Trystram. Approximation algorithms for
scheduling with reservations. Algorithmica, 58(2):391–404, 2010.

[16] F. Diedrich, K. Jansen, L. Prädel, U. M. Schwarz, and O. Svensson. Tight approxi-
mation algorithms for scheduling with fixed jobs and non-availability. Transactions on

Algorithms, 8(3):27–27:15, 2012.

[17] E. Dinic. An algorithm for solution of a problem of maximum flow in a network with
power estimation. Soviet Mathematics Doklady, 11(5):1277–1280, 1970.

[18] F. Eisenbrand and G. Shmonin. Carathéodory bounds for integer cones. Operations

Research Letters, 34(5):564–568, 2006.

[19] W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1+ ε in
linear time. Combinatorica, 1(4):349–355, 1981.

[20] I. Golan. Performance bounds for orthogonal oriented two-dimensional packing algo-
rithms. SIAM Journal on Computing, 10(3):571–582, 1981.

[21] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied

Mathematics, 17(2):416–429, 1969.

128

Bibliography

[22] M. D. Grigoriadis, L. G. Khachiyan, L. Porkolab, and J. Villavicencio. Approximate
max-min resource sharing for structured concave optimization. SIAM Journal on Op-

timization, 11(4):1081–1091, 2001.

[23] R. Harren. Two-Dimensional Packing Problems. PhD thesis, Saarland University,
2010.

[24] R. Harren, K. Jansen, L. Prädel, and R. van Stee. A (5/3+ ε)-approximation for strip
packing. In Proceedings of the 12th International Symposium on Algorithms and Data

Structures (WADS 2011), LNCS 6844, pages 475–499, 2010.

[25] R. Harren and R. van Stee. Improved absolute approximation ratios for two-
dimensional packing problems. In Proceedings of the 12th International Workshop on

Approximation Algorithms for Combinatorial Optimization Problems (APPROX 2009),

LNCS 5687, pages 177–189, 2009.

[26] R. Harren and R. van Stee. Absolute approximation ratios for packing rectangles into
bins. Journal of Scheduling, 15(1):63–75, 2012.

[27] D. S. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for schedul-
ing on uniform processors: Using the dual approximation approach. SIAM Journal on

Computing, 17(3):539–551, 1988.

[28] H.-C. Hwang, K. Lee, and S. Y. Chang. The effect of machine availability on the
worst-case performance of LPT. Discrete Applied Mathematics, 148(1):49–61, 2005.

[29] K. Jansen. Efficient Approximation and Online Algorithms, chapter Approximation al-
gorithms for min-max and max-min resource sharing problems and applications, LNCS
3484, pages 156–202. Springer, 2006.

[30] K. Jansen. Parameterized approximation scheme for the multiple knapsack problem.
SIAM Journal on Computing, 39(4):1392–1412, 2009.

[31] K. Jansen. A fast approximation scheme for the multiple knapsack problem. In Pro-

ceedings of the 38th International Conference on Current Trends in Theory and Prac-

tice of Computer Science (SOFSEM 2012), LNCS 7147, pages 313–324, 2012.

[32] K. Jansen and M. Margraf. Approximative Algorithmen und Nichtapproximierbarkeit.
de Gruyter, 2008.

129

Bibliography

[33] K. Jansen and L. Prädel. New approximability results for two-dimensional bin packing.
In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA 2013), pages 919–936, 2013.

[34] K. Jansen, L. Prädel, and U. M. Schwarz. Two for one: Tight approximation of 2d bin
packing. In Proceedings of the 11th International Symposium on Algorithms and Data

Structures (WADS 2009), LNCS 5664, pages 399–410, 2009.

[35] K. Jansen, L. Prädel, U. M. Schwarz, and O. Svensson. Faster approximation algo-
rithms for scheduling with fixed jobs. In Proceedings of the 17th Computing: The

Australasian Theory Symposium (CATS 2011), CRPIT 119, pages 3–10, 2011.

[36] K. Jansen and R. Solis-Oba. Rectangle packing with one-dimensional resource aug-
mentation. Discrete Optimization, 6(3):310–323, 2009.

[37] K. Jansen and R. Thöle. Approximation algorithms for scheduling parallel jobs. SIAM

Journal on Computing, 39(8):3571–3615, 2010.

[38] K. Jansen and R. van Stee. On strip packing with rotations. In Proceedings of the 37th

annual ACM symposium on Theory of computing (STOC 2005), pages 755–761, 2005.

[39] R. Kannan. Minkowski’s convex body theorem and integer programming. Mathematics

of Operations Research, 12(3):415–440, 1987.

[40] C. Kenyon and E. Rémila. A near-optimal solution to a two-dimensional cutting stock
problem. Mathematics of Operations Research, 25(4):645–656, 2000.

[41] E. L. Lawler. Fast approximation algorithms for knapsack problems. Mathematics of

Operations Research, 4:339–356, 1979.

[42] C.-Y. Lee. Machine scheduling with an availability constraint. Journal of Global

Optimization, Special Issue on Optimization of Scheduling Applications, 9:363–384,
1996.

[43] J. Y.-T. Leung. Handbook of Scheduling: Algorithms, Models, and Performance Anal-

ysis. Chapman and Hall/CRC, 2004.

[44] C.-J. Liao, D.-L. Shyur, and C.-H. Lin. Makespan minimization for two parallel ma-
chines with an availability constraint. European Journal of Operational Research,
160:445–456, 2003.

130

Bibliography

[45] N. Megow, R. H. Möhring, and J. Schulz. Decision support and optimization in shut-
down and turnaround scheduling. INFORMS Journal on Computing, 23(2):189–204,
2011.

[46] M. Scharbrodt. Produktionsplanung in der Prozessindustrie: Modelle, effiziente Algo-

rithmen und Umsetzung. PhD thesis, Technical University of Munich, 2000.

[47] M. Scharbrodt, A. Steger, and H. Weisser. Approximability of scheduling with fixed
jobs. Journal of Scheduling, 2(6):267–284, 1999.

[48] G. Scheithauer and J. Terno. The modified integer round-up property of the one-
dimensional cutting stock problem. European Journal of Operational Research,
84(3):562 – 571, 1995.

[49] I. Schiermeyer. Reverse-fit: A 2-optimal algorithm for packing rectangles. In Proceed-

ings of the 2nd European Symposium on Algorithms (ESA 1994), LNCS 855, pages
290–299, 1994.

[50] D. D. Sleator. A 2.5 times optimal algorithm for packing in two dimensions. Informa-

tion Processing Letters, 10(1):37–40, 1980.

[51] A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM

Journal on Computing, 26(2):401–409, 1997.

[52] P. M. Vaidya. An algorithm for linear programming which requires O (((m +n)n2 +
(m+n)1.5n)L) arithmetic operations. Mathematical Programming, 47:175–201, 1990.

[53] V. V. Vazirani. Approximation algorithms. Springer-Verlag New York, Inc., 2001.

[54] G. Zhang. A 3-approximation algorithm for two-dimensional bin packing. Operations

Research Letters, 33(2):121–126, 2005.

131

	Acknowledgements
	Zusammenfassung
	Abstract
	Introduction
	Approximation Algorithms
	Outline of this Thesis
	Two-Dimensional Strip Packing
	Two-Dimensional Bin Packing
	Scheduling with Fixed Jobs

	Strip Packing
	Introduction
	Overview of the Algorithm
	Existence of Structured Packings.
	Modifying Packings.
	Algorithm

	Direct Methods
	Total Area of Very Wide Rectangles is Large
	Large Total Width of the 2/3-high Rectangles

	Modifying a Packing
	Rectangle of Height Greater Than 1/3
	No 1/3-high Rectangles Close to the Side of the Bin
	One Special Big Rectangle in P
	Two Rectangles of Height Between 1/3 and 2/3
	Gap Between Innermost 2/3-high Edges

	Algorithm Covers All Cases
	Conclusion

	Two-Dimensional Bin Packing
	Introduction
	Modifying a Packing
	Classify the Bins
	Case Analysis
	Rounding the Other Side

	Algorithm
	Transform an Instance I
	Packing the Rectangles
	Résumé of the Algorithm

	Conclusion

	Scheduling with Fixed Jobs
	Introduction
	Scheduling with Fixed Jobs
	Quickly Discarding Too-Small T
	Packing Almost All Jobs
	Packing Remaining Jobs

	Scheduling with Non-Availability
	Conclusion

	Concluding Remarks
	Bibliography

