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Summary of the thesis 

Rapid, poleward range expansions are observed for an increasing number of species in 

the past decades. These distributional changes are commonly attributed to global 

environmental change. Recent research, however, indicates that genetic adaptation might 

also play an important role in explaining the success of range expansions. Considering 

the fast pace of many range expansions, such contemporary evolutionary processes are 

unlikely to rely on the emergence of new mutations. Instead, standing genetic variation 

acts as important resource to fuel adaptation. This variation can be present in a 

population´s gene pool or it is introduced by secondary contact and admixture of 

formerly isolated genetic lineages. In the past years, ample evidence has been compiled 

for an association of admixture, adaptation and range expansions for numerous plant and 

animal species.  

Here, I present an analysis of the recent range expansion of the European wasp spider 

Argiope bruennichi. Originally, this species inhabited the Mediterranean region and 

warm oceanic climates in France and South-Western Germany. From around 1930 

onwards, the spider started expanding its range into increasingly continental climates and 

can now be found as far north as Finland. This thesis aims to disentangle environmental 

and genetic factors, involved in the species´ range expansion. In particular, I analyze the 

interconnection of genetic admixture and invasion success. I approach these questions 

using population genetic and phylogeographic methods, morphological analyses, 

ecological experiments and finally whole genome- and transcriptome sequencing.  

In chapter one, I conduct a detailed genetic and ecological analysis of the spider´s range 

expansion. I base this study on a dense sampling of more than 2.000 contemporary 

specimens. In addition, I include about 500 historical spiders from natural history 

collections. I present genetic and morphological data, as well as several ecological 

experiments on thermal tolerance and preference and a reciprocal transplant study. My 

results indicate that the spider´s range expansion is associated with admixture of formerly 

isolated genetic lineages from around 1930 onwards. The ecological experiments indicate 

that invasive spider populations have simultaneously adapted to colder temperatures by 

shifting their thermal preference and tolerance.  
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Like many other spider species, Argiope bruennichi has a wide ranging Palearctic 

distribution. In chapter two, I conduct a phylogeographic survey over the species´ whole 

range, from the Macaronesian islands over Europe to East Asia. Next to Argiope 

bruennichi, I include a second widely distributed spider species, the nursery web spider 

Pisaura mirabilis. The study is based on mitochondrial and nuclear genetic markers. I 

highlight the importance of outer-European glacial refugia for the wasp spider. I then 

show the effects of secondary contact in shaping the postglacial genetic structure of the 

two species. The analysis identifies several instances of incongruent phylogenetic 

patterns for mitochondrial and nuclear DNA markers, possibly due to recurrent selection 

on mitochondria.  

DNA from natural history collections provides a valuable resource to trace historical 

genetic changes during range expansions. For that reason, I present an analysis of DNA 

sequencing and microsatellite genotyping success in historical spider specimens in 

chapter three. In addition, I exemplarily illustrate the utility of historical specimens to 

trace historical genetic changes in populations.   

In the above chapters, I have presented evidence for admixture leading to differential 

adaptation in spider populations. However, the functional basis of this adaptation remains 

unknown. For that reason I embark towards unraveling its genomic architecture in 

chapter four.  Initially, I generate the first available draft genome sequence of a spider 

species. Based on this data, I analyze genome-wide differences of native and invasive 

wasp spider populations across an environmental gradient.  

Gene regulatory evolution is a possible mechanism to provide the means for rapid 

contemporary adaptation to environmental stress. For this reason, I conduct a genome-

wide gene expression analysis of native and invasive wasp spiders, which have been 

exposed to temperature stress in chapter five. I discuss the gene expression divergence 

between Northern and Southern European spiders in relation to the possibility of recent 

contemporary adaptation.    
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Zusammenfassung der Dissertation 

In den letzten Jahrzehnten weiten immer mehr Tier- und Pflanzenarten ihr Areal in 

Richtung der Pole aus. Für gewöhnlich werden diese Expansionen auf den globalen 

Wandel zurückgeführt. Neue Forschungsergebnisse deuten allerdings darauf hin, dass 

auch genetische Anpassungen einen bedeutenden Anteil am Erfolg derartiger 

Arealausweitungen haben. Die hohe Geschwindigkeit vieler Invasionen macht eine 

Beteiligung neu auftretender Mutationen an solchen, rezenten evolutionären Prozessen 

unwahrscheinlich. Stattdessen könnte existierende genetische Variation als eine wichtige 

Quelle für Anpassungen dienen. Die nötige Variation kann im Genpool einer  Population  

bereits vorhanden sein oder durch sekundären Kontakt vormals isolierter Linien 

eingebracht werden. Einige Beispiele für eine Assoziation von genetischer 

Durchmischung, evolutionären Anpassungen und Arealausweitungen bei diversen 

Pflanzen- und Tierarten sind bereits bekannt.  

Die vorliegende Arbeit präsentiert eine Analyse der rezenten Arealausweitung der 

Europäischen Wespenspinne Argiope bruennichi. Ursprünglich war die Art vor allem im 

Mittelmeerraum und einigen warmen Regionen in Frankreich und Südwestdeutschland 

verbreitet. Um 1930 begann die Spinne ihr Areal in zunehmend kontinentale 

Klimaregionen auszuweiten und wird heute sogar in Finnland gefunden. In meiner 

Dissertation versuche ich sowohl Umwelteinflüsse als auch genetische Ursachen zu 

identifizieren, die an der Arealausweitung der Wespenspinne beteiligt sind. Im 

Besonderen untersuche ich die Verbindung von genetischer Durchmischung und dem 

Invasionserfolg. Zur Identifikation dieser Faktoren nutze ich populationsgenetische und 

phylogeographische Methoden, morphologische Analysen, ökologische Experimente und 

schließlich Gesamtgenom- und Transkriptomsequenzierungen.   

Im ersten Kapitel präsentiere ich eine detaillierte Untersuchung der Arealausweitung der 

Wespenspinne. Die Studie basiert auf einer flächendeckenden Besammlung von mehr als 

2.000 rezenten Spinnen. Zusätzlich untersuche ich ca. 500 historische Proben aus 

naturhistorischen Museen. Neben genetischen und morphologischen Daten präsentiere 

ich ökologische Versuche  über die Temperaturtoleranz und –präferenz  sowie ein 

reziprokes Transplantationsexperiment. Meine Ergebnisse zeigen, dass die 

Arealausweitung der Spinne mit der Durchmischung genetischer Linien  ungefähr seit 
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den 1930er Jahren assoziiert ist. Die ökologischen Versuche deuten an, dass invasive 

Spinnenpopulationen sich über eine Verschiebung ihrer Temperaturtoleranz und -

präferenz an kühlere Temperaturen angepasst haben.  

Argiope bruennichi ist eine weit verbreitete, paläarktische Art. In Kapitel zwei führe ich 

eine phylogeographische Untersuchung über das gesamte Areal der Art durch, von den 

Makaronesischen Inseln über Europa bis nach Ostasien. Neben Argiope bruennichi, 

untersuche ich eine zweite, weit verbreitete Spinnenart, die Raubspinne Pisaura 

mirabilis. Die Studie basiert auf mitochondrialen und nukleären Markern. Ich 

identifiziere mehrere, außereuropäische Glazialrefugien für Argiope bruennichi. 

Außerdem zeige ich die Bedeutung von sekundärem Kontakt um die postglaziale, 

genetische Struktur der beiden Arten zu erklären. Meine Analyse zeigt mehrere Fälle von 

inkongruenten phylogenetischen Mustern für mitochondriale und nukleäre Marker, 

möglicherweise aufgrund von wiederholter Selektion von Mitochondrien.  

DNA aus Naturhistorischen Sammlungen stellt eine wertvolle Ressource dar, um 

historische genetische Veränderungen während Arealausweitungen  zu verfolgen. Aus 

diesem Grund präsentiere ich in Kapitel drei eine Analyse des Genotypisierungserfolges 

bei historischen Spinnenproben. Zusätzlich zeige ich anhand einiger Beispiele den 

Nutzen alter DNA, um historische, genetische Veränderungen in Populationen zu 

verfolgen.  

In den vorhergehenden Kapiteln habe ich gezeigt, dass genetische Durchmischung mit 

differentieller Anpassung von Spinnenpopulationen einhergeht. Allerdings bleibt die 

funktionelle Basis dieser Anpassungen unbekannt. Aus diesem Grund unternehme ich in 

Kapitel vier einen ersten Schritt, um die genetische Architektur dieser Adaptionen zu 

entschlüsseln. Zunächst generiere ich die bislang erste, verfügbare Rohfassung der 

Genomsequenz einer Spinnenart. Darauf basierend analysiere ich genomweite  

Sequenzunterschiede zwischen nativen und invasiven Wespenspinnenpopulationen über 

einen Umweltgradienten. 

Genregulatorische Evolution ist ein möglicher Mechanismus, um schnelle Anpassung an 

Umweltstress zu ermöglichen. Daher untersuche ich in Kapitel fünf genomweite 

Genexpressionsunterschiede nativer und invasiver Wespenspinnen, die Temperaturstress 

ausgesetzt waren. Ich diskutiere  die Rolle von Genexpressionsdifferenzierung zwischen 
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Nord- und Südeuropäischen Populationen im Zusammenhang mit der Möglichkeit 

rasanter Anpassung.  
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General introduction 

Species ranges, their limits and expansion in a changing world 

“No species is truly cosmopolitan in its distribution. Most are confined to rather small 

areas, and all have limits to their geographic ranges beyond which they are not found” 

(Gaston, 2009). At first glance, this is a straightforward and obvious statement.  But on 

closer examination, the underlying causes of limited ranges turn out to be highly complex 

and are matter of intense, ongoing research (Sexton et al, 2009).   

In the simplest case, geographic limits to dispersal can prevent species from expanding 

their range, e.g. an ocean or a mountain chain. But apart from such physical barriers, 

countless other biotic and abiotic factors contribute to shape and extent of a range (Geber, 

2011). A species depends on climatic variables (e.g. temperature and humidity). Its 

occurrence is limited by the availability of nutrients or the presence of competitors, 

predators and parasites (Slatkin, 1987). Hybridization with neighboring taxa can result in 

fitness loss at the range edge and limit a geographic distribution (Sexton et al, 2009). All 

these factors act in concert and determine where a species can sustain a positive 

population growth (Alexander & Edwards, 2010).  

Species´ ranges are not static, and changing environmental conditions can allow their 

expansion, e.g., the extinction of a predator or warming climate (Alexander & Edwards, 

2010; Crozier, 2004). A classical example is provided by postglacial recolonizations. 

Countless plant and animal species followed the warming climate by shifting or 

expanding their range at the end of the Pleistocene (Hewitt, 1999; Taberlet et al, 2002). 

Today, global change confronts organisms with similar condition of warming climate and 

habitat changes (Bridle & Vines, 2007). Faced with a rapidly changing environment, 

organisms can respond in manifold ways. 1. Dispersal limited species will be hindered in 

following the environmental change, possibly leading to mass extinctions in the coming 

decades (Thomas et al, 2004). 2. More dispersive organisms will be able to trace 

environmental change and shift or expand their ranges towards the poles (Chen et al, 

2011; Thomas et al, 2001). 3. Species with a broad stress tolerance might endure the 

novel conditions (Pörtner & Farrell, 2008). 4. And last, some taxa could be able to cope 

with the new environmental settings by evolutionary change (Parmesan, 2006; Hoffmann 

& Sgro, 2011). Such adaptation could even allow organisms to benefit from 
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environmental change and lead to range expansions (Franks & Hoffmann, 2012; Thomas 

et al, 2001). The frequency of such rapid adaptation is matter of much research and 

discussion in recent years.  

 

Adaptations and range expansions - Impediments and possibilities  

From an evolutionary point of view, limited geographic ranges are a paradox (Bridle & 

Vines, 2007). Actually, organisms should constantly adapt to new conditions at their 

distributional edge, enabling repeated range expansions. However, adaptation at range 

margins can be constrained by several processes. First, populations at range edges are 

often genetically depauperate due to founder effects and small and scattered distributions 

(Eckert et al, 2008). This reduced variation can render them less responsive to selection 

(Pujol & Pannel, 2008). Moreover, migration of locally adapted alleles from central 

populations into marginal gene pools can lead to maladaptation in this new environment 

(Kirkpatrick & Barton, 1997; Gaston, 2009). In addition, a range expansion often requires 

simultaneous adaptation to opposing environmental factors or traits, e.g. temperature and 

humidity, or small body size and high fecundity (Colautti et al, 2010). Despite these 

theoretical impediments, recent research suggests that adaptation at range edges is 

possible. This generally holds true if the effect of genetic drift is mitigated by a large 

effective population size (Sexton et al, 2009) and selection not antagonized by high gene 

flow (Freeland, 2005). Gene flow does not even necessarily swamp adaptation, but might 

be a precondition for adaptation by introducing adaptive genetic variation into a 

population (Davis & Shaw, 2001; Kremer et al, 2012; Bridle et al, 2010). When dispersal 

is limited to juveniles, poorly adapted specimens may die before they reach maturity and 

thus before they can swamp a marginal population’s gene pool. Premature dispersal can 

thus fully unfold the positive effects of gene flow (Kawecki, 2008). Moreover, a reduced 

pressure from parasites and predators is often observed at range margins. Such relaxed 

conditions can allow a population to reach high densities and respond to other selective 

pressures (Phillips et al, 2010).  

In recent years, many examples have been compiled for adaptation at range edges. 

Potentially adaptive traits during a range expansion can be manifold. Initially, high 
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dispersal ability (Thomas et al, 2001; Hill et al, 2011; Phillips et al, 2006) or fecundity 

(Burton et al, 2010; Phillips et al, 2010) evolve in order to allow expanding populations 

to reach high densities. Later evolutionary responses include host switching and traits 

related to competitiveness (Thomas et al, 2001; Parmesan, 2006). Moreover, the 

evolution of phenotypic plasticity could be of major importance to cope with different 

ecological conditions (Richards et al, 2006; Sexton et al, 2009). A change of body size is 

often observed along geographic clines and could be of great evolutionary importance, as 

most life history traits scale with size (Gardner et al, 2011; Millien et al, 2006). As 

climate is an important determinant of species ranges (Parmesan, 2006; Gaston, 2003), 

another key adaptation does relate to climate tolerance (Hoffmann & Willi, 2008; Davis 

et al, 2005; Rehfeldt et al, 1999). An expansion towards the pole could require an 

increased cold tolerance or improved overwintering capabilities, e.g. the evolution of a 

diapausing phenotype (Igantowicz & Helle, 1986; Tanaka, 1997).  

Local adaptation allows the establishment of several ecotypes along an environmental 

cline (Davis & Shaw, 2001). It is maintained via different selective regimes, acting e.g., 

along a climatic gradient (Davis & Shaw, 2001). A linkage of ecologically relevant 

alleles, with those contributing to reproductive isolation or pleiotropic effects, can 

potentially even lead to reproductive isolation (Rundle & Nosil, 2005). Unlike allopatric 

speciation by geographic isolation, divergence of lineages during such ecological 

speciation is initiated by adaptation to different environmental regimes (Schluter, 2009).  

 

Hybridization – Destructive or creative force?  

A traditional view on molecular adaptation involves the emergence of novel mutations, 

on which selection can act (Orr, 2005). New mutations probably emerge too slow for 

providing the common means of adaptation in a rapidly changing environment (Prentis et 

al, 2008). But potentially adaptive mutations do not necessarily have to arise newly. 

Instead, they can already be present in a population in the form of standing genetic 

variation (Hermisson & Pennings, 2005; Barrett & Schluter, 2007). Another important 

possibility for the rapid introduction of potentially adaptive variants is the admixture of 

formerly isolated genetic lineages (Arnold, 1999 & 2006). Originally, such secondary 
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contact has been viewed as maladaptive, and authors have highlighted the negative 

effects of swamping or hybrid incompatibilities (Mayr, 1992; Rhymer & Symberloff, 

1996). Recent research has compiled compelling evidence for the association of 

admixture, adaptations and range expansions in many plant and animal species (Kolbe et 

al. 2004; Gaskin et al. 2009; Keller & Taylor 2010; Lucek et al. 2010; Turgeon et al. 

2011; Krehenwinkel & Tautz, 2013). The positive effects of population admixture range 

from a simple release of inbreeding depression (Hogg et al, 2006; Madsen et al, 1999) 

over the introduction of adaptive alleles into a gene pool (Whitney et al, 2010; Verhoeven 

et al, 2011), to the establishment of evolutionary novelty by recombination (Ellstrand, & 

Schierenbeck, 2000). The phenotypic consequences of this novel adaptive variation can 

manifest in several ways. First, hybrid offspring can show intermediate phenotypes 

between parental populations (Hermansen et al, 2011). Secondly, an introgression of 

adaptive traits from one population to the other is possible (Whitney et al, 2010; Song et 

al, 2011; Pardo Diaz, 2012). And last, novel combinations of alleles can lead to extreme 

phenotypes (Schwarzbach et al, 2001). This phenomenon is known as transgressive 

segregation and allows selection to act on a widened character space (Lexer et al, 2003). 

The hybridization of different species can even lead to the emergence of a differentially 

adapted lineage with species-like characteristics (Mallet, 2007; Nolte & Tautz, 2010). 

The resulting “hybrid species” can colonize a habitat, in which neither of its parental 

species could exist. Several authors have provided evidence, for such hybrid speciation 

scenarios (Rieseberg et al, 2003; Mavarez et al, 2006; Nolte et al, 2005; Larsen et al, 

2010; Hermansen et al, 2011). The incidence of secondary contact between formerly 

isolated lineages is expected to rise dramatically in the near future. Global change has 

tremendous impact on ecosystems and species distributions worldwide (Crispo et al, 

2011). Species are transported into new habitats, distributional barriers break down due to 

human activities, and global warming has contributed to range expansions of various 

species. This has caused numerous biological invasions and hybridization of formerly 

isolated species (Garroway et al, 2010; Mooney & Hobbs, 2000; Dukes & Mooney, 

1999). Considering this background, admixture has to be taken into account in studies on 

contemporary adaptation during global change (Nolte & Tautz, 2010). 
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Phylogenetics and phylogeography - Detecting genetic structure and hybridization 

Adaptation due to secondary contact is a straightforward concept. But the identification 

of the according evolutionary lineages and their hybrid progeny is much less simple. The 

emerging technologies of molecular genetics have offered a new perspective on 

taxonomy and phylogeny in the past decades. By comparing DNA sequences of different 

taxa or populations, diagnostic mutations can be identified, which allow distinguishing 

genetic lineages or to reconstruct their relationship (Field et al, 1988; Whelan et al, 2001; 

Tautz et al, 2003; Hebert et al, 2004). Different regions of the genome accumulate 

mutations at different rates. Accordingly, genetic markers are available for analyses on 

any level of the tree of life, from deeply split lineages down to recently diverged 

conspecific populations (Pace et al, 1986; Harrison, 1989; Sunnucks, 2000). In this 

regard, the discipline of phylogeography is well suited to unravel the genetic and 

geographic history of species. Phylogeography aims to explain geographic structure of 

lineages within and among species, with a focus on their biogeographical past (Avise, 

2001). The Pleistocene history of European species provides classical examples for 

phylogeographic work. Pleistocene glaciations trapped many European taxa in glacial 

refugia, most importantly Iberia, Italy and the Balkan Peninsula. The resulting isolation 

led to considerable genetic divergence between these regions and fueled allopatric 

speciation. During their postglacial recolonization, many of these lineages met and 

formed areas of secondary contact in Central Europe, so called hybrid zones (Hewitt, 

1999 & 2000; Taberlet et al, 1998). By analyzing fast evolving DNA sequences, e.g. 

mitochondrial genes or nuclear microsatellites, glacial lineages and their hybrid zones can 

be identified (Avise, 2001; Schmitt, 2007). An inclusion of DNA from natural history 

collections into a phylogeographic analysis does even allow tracing the movement of 

genetic lineages in real time (Wandeler et al, 2007).  

 

Detecting the phenotypic consequences of adaptation  

Genetic adaptation should usually manifest in an advantageous phenotype (Futuyma, 

2005). Accordingly, an initial screen for adaptation can involve the comparison of 

phenotypic characters. Adaptive characters can be manifold, ranging from morphological 
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(e.g. bodysize) (Gardner et al, 2011) over behavioral (e.g. dispersal) (Thomas et al, 2001; 

Hill et al, 2011; Phillips et al, 2006) and physiological traits (e.g. temperature tolerance) 

(Huey & Kingsolver, 1989; Douglas & Grula, 1978). While such traits are assessed 

studying whole organisms, phenotypic differences can be quantified on the molecular 

level as well. These involve protein structure (Wüthrich, 1989), metabolite profiles (Ding 

et al, 2010) or RNA expression levels of genes (Brawand et al, 2011).  

Phenotypes can be analyzed on contemporary samples, but another appealing approach 

involves the assessment of historical phenotypic change (Suarez & Tsutsui, 2004). In this 

regard, natural history museums present a promising source for historical phenotypic 

data, especially for morphological studies (Babin-Fenske et al, 2008; Ozgo & 

Schilthuizen, 2011). However, phenotypic differentiation of populations does not 

necessarily indicate adaptive divergence. The same genotype often produces divergent 

phenotypes under different environmental conditions, e.g. climate- or feeding regimes. 

Such environment-dependent plasticity is well known to contribute to the expression of 

different phenotypes (Richards et al, 2006). Even the environment, a parent was exposed 

to, can influence the expression of offspring phenotypes (Mousseau & Fox, 1998). 

Considering these sources of error, phenotypic analyses should be based on F1 or better 

F2 individuals, bred and raised under identical conditions (Crabbe et al, 1999). This idea 

of assessing phenotypes in common environmental conditions is underlying two classical 

approaches to detect local adaptation: common garden -and reciprocal transplant 

experiments. In a common garden, different ecotypes are kept under the same 

environmental conditions. Such an experimental design allows ruling out environmental 

effects on phenotypic expression (Townsend et al, 2009). In a reciprocal transplant, 

ecotypes are switched between their respective habitats. A fitness loss under transplanted 

conditions indicates local adaptation (Freeland, 2005). 

 

Genomics of adaptation - Detecting its functional signatures and architecture  

Phenotypic studies have compiled examples of local adaptation in various plant and 

animal species (Futuyma, 2005). However, these numerous findings in support of local 

adaptation do not clarify its genetic architecture, which can be highly complex. 
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Adaptation could result from a single mutation of major effect (Maynard-Smith & Haigh, 

1974) or due to the contribution of multiple loci (Pritchard & Di Rienzo, 2010). These 

genes could interact additively, each independently adding to a phenotype. On the other 

hand, phenotypic effects of different loci could be dependent from each other due to 

epistatic interactions (Wolf et al, 2000). An adaptive mutation could be translated into a 

functional amino acid change (Lang et al, 2012; Cavalli Sforza & Bodmer, 1971), or be 

located in non-coding, regulatory DNA (Chan et al, 2010). Adaptive regulatory mutations 

can alter gene expression, acting from within the sequence of a gene (e.g. an enhancer or 

promoter) (Chan et al, 2010) or as an external signal (e.g. a transcription factor) (Mandel 

et al, 2009; Romero et al, 2012). At the same time, gene expression could vary due to 

different gene copy numbers, which allow for simultaneous transcription (Perry et al, 

2007). Evidence exists for all these evolutionary scenarios. But their relative role in 

adaptation is still discussed and not satisfactorily understood. The emerging techniques of 

next generation sequencing offer increasing possibilities to examine genetic structure 

even across whole genomes (Hudson, 2008). Such technical advances make a large 

variety of genome wide tests for adaptation feasible.  

Several genetic approaches allow identifying loci, associated with phenotypic trait of 

interest, or directly test for signatures of adaptation in the genomic sequence. The first 

category comprises methods, which associate a phenotype to variation in the genome. 

The underlying assumption is that individuals, who share a certain phenotype, will also 

share the alleles, which contribute to its expression. These alleles in turn are linked to 

neutral genetic variants, which can easily be scored. Methods to link phenotypic traits to 

genomic variation include quantitative trait locus (QTL) mapping (Connor & Hartl, 

2004), bulked segregant analysis (Michelmore et al, 1991), genome-wide association 

studies (GWAS) (Manolio, 2010) or mutant screens (Nolan et al, 2000). An analysis of 

several parallel evolved selection lines can also reveal alleles, involved in phenotypic 

change (Chan et al, 2012).  

Phenotype independent tests for adaptation involve screening the genome for signatures 

of selection. Balancing selection maintains adaptive polymorphisms, leading to genomic 

regions of high variability. Positive selection on newly arisen or introduced variants will 

quickly shift adaptive mutations to high frequency. And negative selection is constantly 
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removing maladaptive variants (Biswas & Akey, 2006; Nielsen, 2005, Mead et al, 2003; 

Aguilar et al, 2004; Pagel & Pomiankowski, 2008). The corresponding genomic regions 

can be analyzed using neutral markers. Several tests have been developed to identify 

footprints of selection in genomic data. One of these methods is based on the ratio of 

non-synonymous (dN) and synonymous (dS) mutations per non-synonymous and 

synonymous site in a particular gene (Pagel & Pomiankowski, 2008). Assuming that an 

amino acid changing (non-synonymous) mutation is adaptive and selected for, a high 

dN/dS ratio indicates positive selection. However, this test is only feasible, when a 

considerable number of substitutions have already accumulated. It is thus not well suited 

to study contemporary adaptation.  

A genome wide screen for selective sweeps is a popular test for tracing more recent 

adaptation (Maynard-Smith & Haigh, 1974; Nielsen; 2005). The underlying theory 

assumes that positive selection leads to a wide window of reduced variation around an 

adaptive mutation in the genome, a selective sweep. In recent years, screens for genomic 

islands of divergence are gaining increasing popularity to identify genomic regions of 

ecological importance. Local adaptation in the face of gene flow will be initiated by 

divergent selection on small genomic regions between populations, so called islands of 

divergence (Via, 2012). 

Another widely used approach to detect adaptation in the genome involves the screening 

of allele frequency changes over environmental gradients (Freeland, 2005). An allele, 

involved in adaptation to certain ecological conditions, will occur in highest frequency in 

the respective environment.  

Apart from strong selection on single genes, adaptation could be mediated by many 

mutations of minor effect and in different loci (Kawecki, 2000; Pritchard & Di Rienzo, 

2010). As a consequence, subtle allele frequency shifts of many loci could be observed as 

a signal of adaptation. Such signatures would be hard to detect and distinguish from 

demographic effects (Pritchard & Di Rienzo, 2010). A parallel study on independent 

populations under similar selective pressures might help identifying loci, actually 

contributing to such polygenic adaptation (Pritchard & Di Rienzo, 2010).  
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During the past years, scientists searching for genomic signatures of selection have 

gleaned a substantial amount of candidate loci, potentially involved in recent local 

adaptation. However, the identification of a candidate locus is far from being the end of 

the scientific enterprise. To confirm a gene’s adaptive function, it has to be subjected to 

further downstream analysis. For example, gene knockout experiments can help to clarify 

the actual phenotypic effect of a locus (Austin et al, 2004). So far, only few studies 

arrived at this final stage and functionally confirmed ecologically important candidate 

loci. Well characterized examples include pelvic spine reduction and lateral plate 

development in sticklebacks (Chan et al, 2010; Colosimo et al, 2005), host switching in 

fruit flies (Lang et al, 2012) or bacteria (Mandel et al, 2009) and coat color 

polymorphisms in rodents (Hoekstra et al, 2006; Linnen et al, 2009). The functional 

genetic responses to recent global change are still largely unknown (Franks & Hoffmann, 

2012). Consequently, research into this topic is a worthwhile endeavor.  

 

The wasp spider Argiope bruennichi - A new model species for studying adaptation 

in the face of global change 

Here, I present a new model species for studying the evolutionary consequences of range 

expansions during global change, the European wasp spider Argiope bruennichi.  

Argiope spp. are orb-weaving spiders (family Araneidae). Due to its highly complex and 

diverse mating system, the genus has received considerable attention by behavioral 

ecologists (Huber, 2005). The genus Argiope consists of nearly 100 species and is 

distributed worldwide, predominantly in the tropics and subtropics (Platnick, 2013). Only 

few species reach the temperate climate zone. Of these, the Nearctic garden spider 

Argiope aurantia and its sister species, the Palearctic wasp spider Argiope bruennichi, 

show the northernmost distributions (Platnick, 2013. Argiope bruennichi is found from 

Japan over China and Central Asia throughout Europe, North Africa to Madeira and the 

Azores (Gutmann, 1979). It usually occurs on grasslands and fallows, where it constructs 

a horizontal web between grass stalks close to the ground. The spiders mature and mate 

in summer. The female will then produce several eggsacs until autumn and die before the 

winter. The offspring hatches a few weeks after oviposition, but remains in the protective 
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silk case of the eggsac for the coming winter. Around May, the little spiderlings leave the 

eggsac and reach maturity within the next weeks (Koehler & Schaller, 1987).   

Argiope bruennichi is considered to be a thermophilic species (Guttmann, 1979). Its 

European distribution was historically largely limited to the Mediterranean and some 

warm oceanic climate regions in France and Southwestern Germany. Apart from an 

isolated occurrence around Berlin, it was absent in Northern Europe (Guttmann, 1979). 

From approximately 1930 onwards, the species started to slowly expand its European 

range towards northern latitudes. The range shift accelerated in the past decades. Today, 

Argiope bruennichi has spread over most European countries and can be found as far 

north as Norway, Sweden, Estonia and Finland (Guttmann, 1979; Kumschick et al, 2011; 

Tervihuo et al, 2011). Consequently, the species expanded its range by more than 1000 

km in less than 100 generations.  

The wasp spider is a large and conspicuously colored species. Therefore, its range 

expansion is well documented (Guttmann, 1979; Kumschick et al, 2011; Tervihuo et al, 

2011). In addition, wasp spiders usually occur in large population densities (pers. obs.). 

These features make wasp spiders easy to find and collect in large quantities. 

Furthermore, Argiope bruennichi is easy to keep under laboratory conditions. All these 

characteristics make them an attractive model to study the biology of contemporary range 

expansions.  

Several authors have examined the spider’s spread across Europe, and different 

explanations have been brought forward. These include a tracking of warming climate, 

the increase of colonizeable fallows and historical dispersal limitation by long stretches 

of unsuitable habitat (Guttmann, 1979; Kumschick et al, 2011). However, the spider 

invaded significantly colder regions in the past 50 years, and suitable fallows were 

available long before it started expanding its range (Kumschick et al, 2011; Geiser, 

1997). Furthermore, wasp spiders are excellent long distance dispersers, capable of 

migrating huge distances by wind mediated dispersal, so called ballooning (Foelix, 2011; 

Follner & Klarenberg, 1995). A dispersal limitation is thus questionable. Instead, it has 

been speculated that genetic adaptation, e.g. to cooler temperatures, could have enabled 

the current range expansion (Kumschick et al, 2011; Geiser, 1997).  
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Argiope bruennichi fulfills several criteria for possible evolutionary adaptation at range 

edge. Its expansion is characterized by very high population densities, even at the range 

front (Krehenwinkel & Tautz, 2013). The spider’s passive wind mediated dispersal also 

gives reason to expect little genetic structure within large geographic regions. In 

combination with a highly monogynous mating system and obligate sexual cannibalism 

(Welke & Schneider, 2010), one can expect very large effective population sizes for the 

species. Argiope bruennichi is thus probably not very susceptible to random drift, which 

could counteract selection or impoverish genetic variation at the range edge. Moreover, 

its dispersal is limited to first instar offspring (Walter et al, 2005; Follner & Klarenberg, 

1995). Maladapted dispersers will probably be removed by selection, before they can 

contribute to the local gene pool. In addition, a secondary contact of formerly isolated 

wasp spider populations is likely due to the species´ dispersal ability. Argiope bruennichi 

is thus an interesting candidate species to study the evolutionary consequences of 

hybridization during global change. 

 

Summary  

In this PhD thesis, I establish the wasp spider Argiope bruennichi as a new model species 

for studying the genetics of adaptation during contemporary range expansions. In 

particular, I investigate the interplay of environmental and genetic factors and their role 

in determining a specie´s range expansion success.   

First, I provide a general framework, highlighting population genetic and phenotypic 

changes during the species´ range expansion. Secondly, I analyze the genomic signatures 

of adaptation during the range expansion, using next generation sequencing technology.  

I include a detailed analysis of the wasp spider’s contemporary European range 

expansion in chapter one. The analysis is based on genetic markers, several ecological 

experiments and morphological data. Using a dense sampling of contemporary spiders 

and historical museum material, I trace genetic changes during the range expansion in 

real-time and show that adaptation at the range edge seems to be indeed involved in the 

spider’s invasion success.  
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Based on a dense population sampling all over the species´ range, I introduce a broader 

phylogeographic framework for Argiope bruennichi in chapter two. The study is based on 

mitochondrial and nuclear DNA-markers. Moreover, I conduct a phylogeographic study 

on a second widely distributed spider species, the nursery web spider Pisaura mirabilis. 

A focus of these studies lies on the location of glacial refugia for highly dispersive 

Palearctic species and the potential role of selection in preventing mitochondrial gene 

flow. 

In order to trace temporal genetic changes during a range expansion, access to historical 

DNA material is desirable. However, old DNA is often degraded and not easy to work 

with. In Chapter three, I present a PCR-based screen for historical DNA amplification 

success of nuclear and mitochondrial DNA of distinct fragment sizes. I include samples 

of different age, starting from 1820 onwards and from two large natural history 

collections. The results provide a general framework to estimate the feasibility of 

historical DNA analyses in spiders and other wet preserved arthropods.  

Based on data from the phylogeographic studies and ecological experiments, I conduct a 

next generation sequencing-based approach to identify genome-wide signatures of 

adaptation. The results are presented in chapter four. The study comprises the 

establishment of a first draft genome sequence of a spider species. In order to identify 

signatures of adaptation, I then analyze whole genome data from population pools along 

two geographic clines through the spider’s range. The genomic analysis is extended by a 

screen of allele frequencies for several candidate loci over the whole geographic range of 

the wasp spider.  

In chapter five, the genomic analysis is complemented by a genome wide expression 

study, using RNA sequencing technology. For this study, lab bred first instar spiderlings 

from different populations in southern Portugal, Latvia and Estonia were subjected to 

heat and cold stress. Subsequently, gene expression profiles for Northern and Southern 

European spiders were evaluated. These experiments simulated hot or cold autumn days 

in the spider’s native and invaded range respectively. I discuss gene expression 

divergence in association with the results of a thermal tolerance experiment.  
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Chapter 1: Northern range expansion of European populations of the 

wasp spider Argiope bruennichi is associated with global-warming-

correlated genetic admixture and population specific temperature 

adaptations 

 

1.1 Introduction 

The past decades are distinguished by unprecedented global change, which is altering 

ecosystems to a not yet predictable degree. In particular, ongoing global warming affects 

biodiversity worldwide (Gitay et al, 2002; Willis & Bhagwat, 2009; Walther et al, 2002; 

Hickling et al, 2006; Chen et al, 2011). Many taxa are contracting their ranges or even 

facing extinction (Thuiller et al, 2011). Others adapt to the new environmental conditions 

(Bradshaw & Holzapfel, 2006; Hill et al, 2011), or escape the warmth by shifting their 

distributions to higher latitudes (Parmesan & Yohe, 2003; Walther et al, 2002; Chen et al, 

2011). Yet other species benefit and expand their ranges, apparently in response to global 

warming (Parmesan, 2006). However, the contribution of contemporary adaptive genetic 

changes to the success of such range expansions still needs to be fully evaluated.  

Considering the fast pace of global climate change, evolutionary responses must happen 

in very short timeframes, which in turn makes the accumulation of new adaptive 

mutations unlikely. Instead, selection on standing genetic variation is expected to provide 

the mechanism for fast adaptations (Barrett & Schluter, 2007). Adaptive alleles can 

already be present in a population’s gene pool or can be introduced by interpopulation 

admixture (de Carvalho et al, 2010; Dowling & Secor, 1997). In today’s globalized 

world, the secondary contact of formerly isolated lineages is increasingly likely (Crispo 

et al, 2011). Such admixture is well known to contribute to adaptive potential and has 

been linked to invasiveness and invasion success in many plant and animal species 

(Kolbe et al, 2004; Gaskin et al, 2009; Keller & Taylor, 2010; Lucek et al, 2010; Turgeon 

et al, 2011). Hybridization between different taxa can even lead to the emergence of 

differentially adapted hybrid lineages. The emerging “hybrid species” distinguishes itself 

by a set of characters, which allows the species to colonize a new habitat that was 

unsuitable for both parental species (Rieseberg et al, 2003; Mallet, 2008; Nolte & Tautz, 



 

22 

 

2010). Climate-change-induced hybridization could thus contribute to the expansion of 

species into new climatic regimes (Hoffmann & Sgro, 2011). 

Here, we analyze the recent range expansion of the European wasp spider Argiope 

bruennichi (Scopoli 1772), a well-studied model organism in behavioral ecology (e.g., 

Welke & Schneider, 2010). The species´ original European range comprised the whole 

Mediterranean and warm Oceanic climate regions (Figure 1.1). Apart from a single 

isolated occurrence around Berlin, it was absent from the Northern Continental climate 

region of Europe. From approximately 1930 onwards, the species started slowly 

expanding its range into increasingly Continental climate regions in, e.g., Western 

Poland. In the past decades, this range shift has accelerated and the spider is now found 

as far north as Norway, Sweden and Finland (Guttmann, 1979; Terhivuo et al, 2011). 

Compared to their original range, the spiders have moved into significantly colder 

habitats since the middle of the 20th century (Kumschick et al, 2011). Within a few 

decades, they have now reached latitudes, in which their persistence is hard to explain 

solely by global warming (Geiser, 1997; Kumschick et al, 2011).  

Wasp spiders are efficient long-distance dispersers. By wind-mediated transport, so 

called ballooning, spiderlings can cover distances of many kilometers (Follner & 

Klarenberg, 1995). Evidence from other spider species indicates that they are even 

capable of ballooning several hundred km (Foelix, 2011). This should allow them to track 

warming climate quickly, but also increases the likelihood of secondary contact between 

long separated populations. Consequently, wasp spiders are promising candidates for 

studying the evolutionary consequences of climate-change-induced admixture.  

Our study was set up to answer two general questions: First, we reconstructed the 

historical origin of populations that have invaded the Continental climate zone of 

Northern Europe and tested whether they show signs of recent admixture. To address this 

question, we analyzed approximately 2,000 contemporary and 500 historical museum 

specimens, using mitochondrial sequences as well as nuclear microsatellite and SNP 

markers. Our large sampling of museum specimens allowed tracing genetic changes in 

invading wasp spider populations over the past 100 years to narrow down the historical 

onset of the expansion and admixture of the spider populations. Second, we asked 

whether invading populations show signs of new adaptations, such as better cold 
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tolerance or differences in morphology. To address this question, we conducted a 

reciprocal transplant experiment between a Northern and a Southern population in the 

field to test overwintering ability of egg sacs. In addition, we tested thermal preference 

and tolerance of first instar spiderlings in the laboratory. Then, we assessed 

morphological size features of the different populations.  

Our results allow us to infer a historical scenario that involves an initial passive range 

expansion, as well as a secondary admixture of old lineages, possibly due to global 

warming. Our temperature adaptation experiments suggest that the Northern populations 

have indeed different temperature preferences, as well as a changed morphology, 

suggesting new adaptations. Since these adaptations correlate with the admixture of 

lineages, we speculate that hybridization of gene pools may have played a causal role in 

this.  

1.2 Material and methods 

Sample collection and morphological analysis 

About 2,000 wasp spiders from nearly 300 localities across the Palearctic were collected 

by hand or sweep net in 2010 and 2011, or were acquired from private collections. All 

these specimens are stored in 70% Ethanol in the collection of the Max Planck Institute 

for Evolutionary Biology in Plön, Germany. Additionally, about 500 samples were 

obtained from the arachnological collections of the Senckenberg Museum in Frankfurt, 

the Naturkundemuseum in Berlin, the Zoological Museum Alexander König in Bonn and 

the Institute of Zoology at the Chinese Academy of Sciences in Beijing. One leg of each 

specimen was removed with heat sterilized forceps for DNA extractions and stored in 

100% ethanol. A complete list of sampling localities and museum specimen identifiers is 

provided in supplementary table 1.1. Subsequently, we will distinguish historical and 

contemporary samples. Historical samples refer to spiders collected between the 19
th

 

century and 1960. This period comprises the majority of our museum samples and 

represents the time before and at the early phase of the spider´s range expansion. 

Contemporary samples were collected after 1960, with a focus on 2010 and 2011. This 

time represents the ongoing, rapid invasion of Northern Europe. 
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We distinguish six different geographic locations across the Palearctic (see Figure 1.1 & 

supplementary table 1.1). East Asian samples originate from Japan and Eastern China, 

while the Central Asian group comes from the dry steppe regions of Western China, 

Uzbekistan and Southern Iran. Russian samples come from Continental Western Russian 

steppe and Eastern Ukrainian steppe. Southern Caucasian samples come from the regions 

south of the Caucasus Mountains and along the Southern Caspian Sea. Within Europe, 

we distinguish native and invasive areas. The native areas correspond to regions that have 

been historically inhabited by the species. This is largely equivalent to Oceanic climates 

in, e.g., France and Southwestern Germany, and the Mediterranean region (based on 

genetic similarity, we include North-African spiders into this category). The invasive 

areas comprise Northern Continental European climate zones, which, apart from an 

isolated occurrence around Berlin, have been colonized approximately since the 1930´s.   

This distinction of native and invasive spiders is blurred at the species´ former 

distributional range limit in Southwestern Germany and Southern Austria. We thus fine-

scaled the geographic division, based on differences in our mitochondrial and nuclear 

genetic data (see Figure 1.2-1.5 & 1.7), as well as climatic differences between each 

region (see Peel et al, 2007). Consequently, we included populations from Western 

Germany and the Benelux states into the native group. Although they have been 

established during the species´ range shift, these populations are genetically coherent 

with other native European ones. In addition, they have been established in regions of 

rather mild Oceanic climate and not in the colder Continental parts of Europe.  

Selected specimens were examined under a Leica MZ95 binocular. A set of 

morphological measurements was generated, using a Leica measuring eyepiece or a Leica 

MRC Axiocam in combination with the Axiovision measuring software (Leica, Wetzlar, 

Germany). We chose adult female’s body size (prosoma width, as measured at the widest 

part) for our measurements.   

 

Molecular analysis  

Contemporary and historical samples were processed in different rooms and two separate 

sets of tools and laboratory equipment were used. Extractions were carried out with leg 
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tissue and the 5 PRIME Archivpure DNA Kit, according to the manufacturer’s protocol 

(5 PRIME, Hamburg, Germany). Slight changes were implemented for the historical 

samples: a negative control extraction was included, 1.5 µL Glycogen (20mg/mL) was 

added to the precipitation reaction and the amount of resuspension solution reduced to 

10-30 µL.  

PCR primers were designed using the Primer3Plus software (Untergasser et al, 2007). A 

1,200 bp fragment of the mitochondrial COI gene was amplified for contemporary 

samples. 10 µL PCRs were run in ABI verity fast thermal cyclers (Applied Biosystems, 

Foster City, US), using the Qiagen Multiplex PCR kit (Qiagen, Hilden, Germany), 

according to the manufacturer’s protocol. A published partial mitochondrial genome 

sequence of Argiope bruennichi (Hassanin et al, 2005) served as the template for primer 

design. 5 µL PCR product was purified in an 8 µL reaction by adding 0.12 µL 

Exonuclease I (20,000 units/ml) (NEB, Ipswitch, US), 0.45 µL Shrimp Alkaline 

Phosphatase (1U/µL) (Fermentas, St. Leon-Rot, Germany) and 2.33 µL water. This 

reaction was incubated for 20 min. at 37°C and then heat inactivated for 20 min. at 80°C. 

Cycle sequencing was performed using the ABI Big Dye Kit and samples subsequently 

cleaned up using the X-Terminator purification kit, according to manufacturer’s 

protocols. Sequencing was carried out on an ABI 3730 DNA Analyzer. Sequences were 

edited using the Codon Code Aligner software (Codon Code Corporation, Dedham, US) 

and then aligned with MEGA (Tamura et al, 2007) under default parameters. Based on 

sequence variation, we designed PCR primers for a short 95 bp COI fragment, which 

contained diagnostic SNPs to distinguish all major phylogeographic groups within the 

wasp spider. These primers resulted in successful PCR with most historical samples. In 

addition, we designed four primer pairs targeting DNA sequences, covering the whole 

1200 bp COI fragment. These primers could be amplified in a Multiplex PCR and proved 

useful for a large fraction of the old DNA samples.  

 

To derive polymorphic nuclear markers for Argiope bruennichi (microsatellites and 

SNPs) we performed a single lane 454 shotgun sequencing run (454 Life Sciences, 

Branford, US) of genomic DNA. This yielded over 80.000 fragments, of which nearly 

1,000 included microsatellites. Microsatellite primers were designed for 16 polymorphic 
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loci, which were typed for a selection of contemporary populations. Since the typing of 

Asian population suggested the presence of null alleles for the microsatellites screened, 

we derived also diagnostic SNP markers. To obtain these markers, we sequenced random 

nuclear DNA fragments of approximately 400 bp (derived from the 454 reads) for a 

selection of Asian and European samples. In this way we identified a set of seven loci, 

apparently reciprocally fixed for Asia and Europe respectively, which were combined in 

a Multiplex SNP genotyping assay. This assay targeted a fragment length between 66-

278 bp, such that it could be utilized also for a wide range of historical samples. SNPs 

were typed using the ABI SnapShot Multiplex Kit, according to the manufacturer’s 

protocol. Polymorphisms for microsatellites and SNPs were called and edited using the 

ABI Genemapper software. 

 

Phylogeographic and population genetic analysis 

Sampling locality maps were created with GenGIS (Parks et al, 2009). Median joining 

haplotype networks were constructed for contemporary and historical samples using the 

software Network (Fluxus Technology Ltd, Suffolk, England). In order to reduce their 

complexity, the networks were preprocessed using one round of star contraction, with a 

maximum star radius of five. Estimates of nucleotide diversity for the mitochondrial 

sequences were generated by DnaSP (Librado & Rozas, 2009). Microsatellite analyzer 

(MSA) (Dieringer & Schlötterer, 2003) was used to generate estimates of heterozygosity 

for the analyzed populations and population-wise distance matrices (Nei´s standard 

genetic distance). The Phylip package served to construct a neighbor joining tree 

(Felsenstein, 1989), based on the distance matrix. In addition to the distance-based 

approach, we analyzed our data using the R package Geneland (Guillot et al, 2005). The 

Geneland analysis was carried out assuming a maximum of 10 populations, with 100.000 

iterations and thinning at every 100
th

 iteration. A non-correlated allele frequency model 

with enabled spatial model was used. The individual ancestry for the SNP dataset was 

calculated using STRUCTURE (Pritchard et al, 2000; Falush et al, 2003). STRUCTURE 

was run with a burnin period length of 50.000 and 10.000 MCMC replications after 

burnin.  
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Thermal preference tests and reciprocal transplant experiment 

Argiope bruennichi is an annual species that matures in summer, produces egg sacs until 

early autumn and then dies with the first frost. The spiderlings hatch a few weeks after 

oviposition, but overwinter in the protective silk envelope of the egg sac. Around May 

they leave their egg sac and reach maturity within about three months (Köhler & 

Schäller, 1987). This prolonged diapause constitutes a considerable part of the spider´s 

whole life span and includes the climatically most severe winter season. An adaptation 

that enables the spiders to colonize a new and possibly colder habitat will thus be likely 

expressed in the first instar´s phenotype. This life stage is therefore ideally suited for 

studying thermal adaptation and overwintering capabilities and was the stage chosen for 

our experiments. 

Mated adult females were collected in August 2011 in Northern Europe (Northern 

Germany, Poland, the Baltic States, Sweden and Denmark, in total 94 females from 24 

populations) and in early September 2011 in the Western Mediterranean (Portugal, Spain 

and Southern France; in total 76 females from 13 populations). The spiders were kept in 

200 mL plastic cups at room temperature, fed with house flies and their webs sprayed 

with water every day. Between September and early November 2011, they each 

constructed 1-2 egg sacs.  

To assess thermal preference parameters, 60 egg sacs were kept under laboratory 

conditions until early December. By this time the spiderlings had hatched and were 

forced to emerge from the egg sac by splitting the silken wall. Thermal preference was 

tested for four spiderlings from each egg sac in a temperature gradient, generated in an 

ABI verity fast cycler (Applied Biosystems, Foster City, US). This PCR cycler can be set 

to a gradient of six different temperatures, spanning a maximum temperature difference 

of 25°C. We set up a gradient from 4°C to 29°C and covered the PCR machine’s plate 

inlay with a layer of tissue paper. This in turn was covered with a black Makrolon plastic 

plate (128.5 x 86.5 x 11.75 mm). The plate contained eight channels (each 104 x 5.5 

mm), which each spanned the temperature gradient. We allowed the gradient to establish 

for 30 minutes before transferring one spiderling to each channel and adding a 
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transparent plastic cover plate. After initially walking around in the gradient, the 

spiderlings came to rest after about 30 minutes. We thus noted their position after 30 

minutes and repeated this two more times after 15 min intervals. The same setup, but 

with the gradient switched off, served as a control.  

The upper temperature tolerance was tested by putting single spiderlings (four from each 

egg sac) into a 1.5 mL Eppendorf tube and gradually heating them up. Preliminary tests 

showed that all spiderlings survived temperatures of up to 39°C. We thus started at 40°C 

and increased the temperature by 2°C every ten minutes. Confronted with raised 

temperatures the spiderlings increase their activity until they reach their tolerance limit 

and fall into rigor. After each round of heating, the spiders in rigor were identified and 

the temperature noted. We also tried to test lower temperature tolerance, but since all 

spiders reduce their movements at colder temperatures, a clear test could not be devised.   

To test for overwintering capacity, we set up a reciprocal transplant experiment with 228 

egg sacs to compare overwintering performance of Northern and Southern European 

populations under outdoor conditions. Each egg sac carries a silken collar on its upper 

side, through which twine was sewn. This twine was then attached to 20 cm bamboo 

poles with adhesive tape. These poles were placed into prepared transparent plastic tanks 

(79 x 57 x 42 cm). In order to create natural conditions, each tank contained a large piece 

of grass sod from a wasp spider habitat. Both sides, as well as the cover of each 

container, had large ventilation holes, covered with a fine mesh. This allowed for 

circulation, but prevented predators and parasites from entering. Each container was 

equipped with an equal number of egg sacs derived from Northern and Southern 

European spiders. Two containers were set up on the estate of the Max Planck Institute in 

Plön, Germany (54.16°N, 10.42°E, Dec. 3rd, 2011) and two in a Garden near Santa 

Eulalia on the Spanish island of Ibiza (38.99°N, 1.53°E, Dec. 1st, 2011). Egg sacs for the 

Northern European treatment were gradually adapted to the cooler climate by decreasing 

their ambient temperature from 20°C to 6°C over a 14 day period. The egg sacs were then 

overwintered on their respective sites until March 1st, 2012 (Ibiza) and March 3th, 2012 

(Plön). Weather conditions in Plön included weeks with snow coverage and several 

nights below -10°C. In contrast, subzero temperature was not recorded in Ibiza in the 

respective period. At the end of the experiments, each egg sac was opened and the 
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spider’s survival rate was estimated. We did not include egg sacs with completely dried 

eggs, as wasp spider offspring hatch within four weeks after oviposition (Welke & 

Schneider, 2012). Dried eggs were thus already damaged under laboratory conditions, 

before the experiment was set up. Most egg sacs contain several hundred spiderlings 

entangled in a dense network of silk, which makes exact counting difficult. Hence, we 

applied an estimate by classifying the egg sacs into two categories: clearly above or 

below 50% survival rate. Exact counting of dead versus live animals was done only for 

egg sacs that could not be clearly assigned to one of the two categories.  

 

1.3 Results 

To address the question of the historical origin of populations that expanded into 

Northern Europe, we conducted an extensive phylogeographic study encompassing also 

Asian populations. We analyzed mitochondrial sequences, as well as nuclear markers. 

The results will be presented in the following.  

  

Mitochondrial data     

1,200 bp of the mitochondrial COI gene was sequenced from 1,966 contemporary and 

181 historical specimens from all across the species´ range. In addition, we sequenced a 

short COI fragment of 95 bp of 187 historical samples, in which DNA was too degraded 

for longer PCR. As this DNA fragment enabled the scoring of all major haplotype 

groups, we included these samples in the historical haplotype network. Thus, this 

network does not cover derived haplotypes, but just represents frequencies of haplotype 

groups. Due to the different sample size, we present haplotype networks for 

contemporary and historical samples separately (Figure 1.2).  
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Figure 1.1 Sampling locations for historical (upper panel) and contemporary (lower panel) 

specimens. The colors represent geographic regions distinguished in the haplotype network in Figure 

1.2. Historical specimens refer to samples until 1960, the time before and at the early phase of the 

range expansion. Contemporary samples represent spiders during the more massive range shift in 

the past decades. For an overview of far Eastern Asian sampling sites, see supplementary table 1.1. 

The maps give an impression of the spiders range shift from its native Mediterranean and Oceanic 

climate range (yellow dots) into increasingly Continental climates in Northeastern Europe (red dots).  
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Figure 1.2 Median joining networks of mitochondrial sequences from Palearctic wasp spiders. The 

lower left network shows contemporary samples (N=1,966), based on 1,200 bp of the COI gene. The 

simplified upper right network is based on historical samples (N=368) from before 1960. Colors 

represent the geographic origin of sampled specimens (corresponding to the colors in Figure 1.1). 

The respective location designations (inset upper right) are used throughout the text. The white 

fractions in haplogroup A, B and C refer to 7 samples from Bulgaria and Romania which we could 

not unequivocally assign to a geographic region. Branches represent single mutational steps, if not 

indicated otherwise by numbers. Major haplotype groups discussed in the text are labeled with 

capital letters. White dots in the network represent hypothetical intermediates. Inset lower right: 

frequencies of haplogroup A in native (upper line) and invasive (lower line) European spider 

populations for the three time periods indicated on the x-axis. 

 

The contemporary network was pruned by one round of star contraction, reducing the 

actual number of haplotypes from 273 to 96. The networks show a dumbbell pattern 

between Eastern- and Western Palearctic populations (Avise, 2001). Both groups are 

distinct by 13 mutations, corresponding to 1.1% sequence divergence. The connection 

between Eastern and Western lineages is not completely resolved, with two possible 

Western Palearctic haplotypes associated with the Eastern group.  
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The Eastern Palearctic is distinguished by comparatively deep divergence of up to 6 

mutations between haplotypes, while the network of Western Palearctic populations 

shows rather shallow splits of only one or two mutations. Two major star-like radiations 

(Avise, 2001) are apparent (Figure 1.2), accounting for the majority of haplotypes 

observed in the region. We refer to these radiations as haplogroup A and B. Both groups 

are distinct by two mutational steps and connected by three specimens carrying an 

intermediate haplotype. With around 75% prevalence, haplogroup A is the most 

dominant Western haplogroup. It occurs in nearly every population from Portugal to 

central Asia. Aside from haplogroup A and B, only two additional independent groups 

can be found. Haplogroup D is distinct from both A and B by two mutations and only 

found in 45 contemporary samples. Haplogroup C is derived from haplogroup A and 

particularly prevalent in the Southern Caucasus region. The latter is the only location, in 

which haplogroups A, B and C have been present both historically and are still present. 

Contemporary populations from Russia display a similar haplotype distribution with all 

major groups present, except D. However, while haplogroup C amounts to the highest 

frequency in the Caucasus region, haplogroups A and B account for most of the Russian 

haplotypes. Russian populations also stand out by a high frequency of haplogroup B 

(nearly 50%). This makes their haplotype composition significantly different from 

European populations, which are distinguished by a lower frequency of haplogroup B 

(Chi-square test, d.f. = 2, Chi-square = 132.60, p < 0.0001). In addition, Russian 

populations harbor an Asian haplotype in low frequency (<1%). The respective haplotype 

is distinct from the closest Chinese and Japanese sequences by just a single mutation. We 

find this haplotype in one historical as well as one contemporary Russian sample.  

Oceanic and Mediterranean European populations (native European range - compare 

Figure 1.1 & 1.3) show a considerable genetic homogeneity, with haplogroup A as the 

most dominant mitochondrial variant. Most derived haplotypes in the native European 

range originate from haplogroup A.  

Invasive Continental European populations are distinguished by a very different 

haplotype composition. All major Western-Palearctic haplotypes are present in the 

spider’s invasive range. Invasive populations carry a large frequency of haplogroup B 

(~25%), including several derived haplotypes, and account for a large fraction of 
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haplogroup C and D (10 out of 21 & 34 out of 45 sampled haplotypes). In addition, an 

Asian haplotype occurs in invasive populations from around 1930 onwards (4% of 

samples). The respective haplotype is derived from the one found in Russia by just one 

mutation. Although the frequency of Asian haplotypes is low (about 1% in contemporary 

Continental populations), it is present in several recently invaded regions of Europe. On 

the other hand, it is completely absent from the native Mediterranean and Oceanic 

European range, as well as the Southern Caucasus region. This suggests that admixture of 

several formerly isolated lineages has probably led to the haplotype composition of 

invasive populations. This results in significantly higher nucleotide diversity in invasive 

compared to native populations (  = 0.0011 (N = 56) vs.  = 0.0017 (N = 60) on 

average, U-test, U = 1041.5, Z = -3.48, p < 0.0001).  

In order to narrow down the onset of this admixture, we conducted a more detailed 

analysis of historical haplotype frequency changes. Haplogroup A is most prevalent in 

native Western European populations. Hence, we chose frequency changes in this 

haplogroup as an indicator for admixture. We compared native and invasive European 

populations. The large number of short COI sequences allowed us to split our data into 

three categories (Figure 1.2, inset). The first one includes specimens sampled until 1930 

and represents populations from before the range expansion. The second is based on 

samples collected after 1930 until 1960 and corresponds to populations at the early phase 

of the range shift. The last category comprises samples from after 1960, with a focus on 

2010 and 2011. This analysis allowed us to draw a clear picture of historical genetic 

changes. Before the range expansion, native and invasive populations did not 

significantly differ in their haplotype composition (94% native vs. 89% invasive, Fisher’s 

exact test, two tailed p = 0.31). Until 1960, an increase of new haplotypes is observed in 

the invasive range, but little change is evident in native populations. The difference 

between native and invasive populations between 1930 and 1960 is significant (92% 

native vs. 78% invasive, Fisher’s exact test, two tailed p = 0.025). By today, an additional 

leap has shifted the haplotype frequency in native and especially invasive populations, 

leading to highly significant differences between those regions (87.2% native vs. 69.1% 

invasive, Fisher’s exact test, two tailed p < 0.0001). These results indicate that a large 
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part of genetic changes is attributable to the period after 1960, while we can narrow down 

the onset of admixture to the time around 1930.  

To summarize, invasive European populations are distinct from native ones by a higher 

degree of haplotypic admixture. This holds true for closely related lineages within Europe 

(haplogroups A, B, C & D), as well as introgression of distant Asian mitochondria. 

Moreover, the admixture seems to be a recent process and has been increasing in the past 

decades.  

 

Microsatellite data 

To obtain a better resolution at the population level, we genotyped 177 European 

specimens from 19 locations for 16 microsatellite loci. A Geneland analysis assigns these 

specimens to two genetic clusters (Figure 1.3). With an FST of just 0.03, these clusters 

show only slight differentiation. One cluster is distributed in the native Mediterranean 

and Oceanic climate range of the species. The other one covers the invasive populations 

in the Continental climate range of Europe. A phylogenetic analysis of the dataset, based 

on Nei´s genetic distance, confirms this clustering of populations into two different 

ecological zones (supplementary figure 1.1). The inclusion of 79 Russian samples into 

the microsatellite analysis shows these populations to be distantly related to European 

ones (supplementary figure 1.1). The closest relatives of invasive European spiders are 

hence found in the species´ native European range.  

Similar to the mitochondrial data (see above), the microsatellite data from the European 

locations show a significantly increased genetic diversity in invasive populations 

compared to native ones (averaged expected heterozygosity 0.61 vs. 0.53, t-test, equal 

variances not assumed, t = 2.483, d.f. = 9.292, p = 0.034). This result is indicative of 

nuclear genetic admixture in the invasive range.  
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Figure 1.3 Geographic clustering of European wasp spider populations according to Geneland 

analysis. The map represents the corresponding sampling sites, indicated by black dots. Axes 

represent geographic coordinates. The longitudinal coordinates are shifted by 7.85° to the east. The 

Geneland map shows wasp spider populations forming a distinct genetic cluster in the invasive range 

in Continental Europe with a high posterior probability. The colored areas within each isocline 

represent posterior probabilities of belonging to the native European genetic cluster. The probability 

is highest in the white regions (0.9-1) and drops to 0.1 in the invasive range (red region).  

SNP data 

To better trace the origin and extent of the admixture observed in the mitochondrial data, 

we developed a set of seven diagnostic SNP loci that differentiate East-Asian and 

Western Palearctic populations. We genotyped 362 contemporary and 126 historical 

specimens for these loci. A STRUCTURE analysis of the SNP dataset confirmed the 

genetic distinctness between East Asian and Western Palearctic populations for these 

markers in the larger population sample (Figure 1.4). East Asian populations are largely 

fixed for their respective genotypes (99% Asian background on average, Figure 1.4). 

These clusters correspond also very well to the mitochondrial network (Figure 1.2).  

This data allows assessing the degree of introgression of Asian alleles into Western 

Palearctic groups (Figure 1.5). We find that Central Asian populations carry 8% of Asian 

alleles on average. This is in contrast to the mitochondrial data, in which these spiders are 

completely fixed for the Western Haplogroup A. Russian populations show 5% Asian 
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introgression on average. Introgression into the Southern Caucasus region, on the other 

hand, is rather limited (1% Asian background on average), although they are located at 

similar longitudes compared to the Russian samples.  

Invasive and native European spiders are also very different with respect to the 

introgressed amount of Asian alleles (U-test, U = 1929, Z = -3.053 p < 0.0001). Native 

populations are almost completely fixed for Western alleles, while invasive spiders carry 

significantly more Asian alleles (5% on average). Again the nuclear introgression is 

somewhat higher than the mitochondrial introgression from Asia (1% in invasive, not 

existent in native populations - see above). This is most evident for Swedish populations, 

where Asian mitochondria are completely absent, but they still carry an average of 3% of 

Asian SNP alleles with outliers of up to 17%. 

European populations did not show much introgression before 1960 (0.7% Asian alleles 

on average). Few outliers are observed, but each of these belongs to samples from after 

1930, a time when the species had already started its range expansion. Before the range 

expansion, Asian alleles were largely absent. A comparison of contemporary and 

historical samples shows a significant change of introgression for the invasive 

populations (U-test, U = 2734, Z = -3.147, p < 0.0001), but no change for native ones (U-

test, U = 2510, Z = -0.64, p = 0.522). Thus, similar to mitochondrial admixture, the 

introgression of Asian nuclear alleles is of recent origin. In addition, the introgression is 

largely limited to invasive populations in Northern Europe.  

 

Figure 1.4 STRUCTURE analysis for the SNP dataset (k=2). Green bars correspond to Western 

Palearctic, red ones to East Asian genetic background. Bars represent single specimens from the 

regions depicted at the bottom. 
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Figure 1.5 Box plots of the fraction of Asian ancestry in different Western Palearctic populations 

according to STRUCTURE (logarithmic scale). The boxes depict median (black bar) and upper and 

lower quartiles. Distinction of geographic regions is based upon the classification in Figure 1.1. 

Native and invasive European spiders were split into historical samples (≤ 1960, grey boxes) and 

contemporary ones (> 1960). Due to limited sample size, we lumped historical and contemporary 

data for Central Asian as well as Southern Caucasian spiders. 



 

38 

 

 

Body size 

To assess whether size differences are evident between the different populations and the 

different collection times, we choose the measurement of prosoma width of female adult 

spiders for representing body size. This measure is more reliable than opisthosoma width, 

since the opisthosoma size is plastic and depends e.g. on the nutritional status. We find 

that Mediterranean spiders have a significantly larger prosoma width than the invasive 

ones from the Continental climate zones (Figure 1.6a). In addition, we find a significant 

size difference between Mediterranean and the more Northern Oceanic climate regions of 

the spider’s native range. Spiders from the Oceanic climate regions in turn are 

significantly larger than invasive spiders from the Northern Continental climate regions. 

This holds true for historical, as well as contemporary samples (mean: 5.26 & 5.25 mm in 

historical and contemporary Mediterranean vs. 4.11 & 3.84 mm in Oceanic, vs. 3.44 & 

3.38 mm in invasive material (ANOVA, F = 214.613, d.f. 895, p < 0.0001, Tamhane post 

hoc test shows Mediterranean, Oceanic and Continental invasive populations to form 

homogenous groups, all prosoma width distributions do not significantly deviate from 

normal, according to Kolmogorow-Smirnow test). Invasive as well as native spiders did 

not significantly change their mean body size within their respective groups in the past 

100 years (Figure 1.6a). However, invasive spiders show a significant decrease of 

variance in this character (Levene´s test, F = 23.18, p < 0.0001) between historical and 

contemporary samples. Until 1960, the invasive spider’s prosoma width varied from 

1.58-6.10 mm and today from 2.22-4.68 mm, a variance change that is not seen in the 

other samples (Figure 1.6a).  

In contrast to the adults, first instar spiders from the Mediterranean and Northern Europe 

did not show significant size differences (prosoma width, 0.55 vs. 0.56 mm on average, N 

= 196, t-test, equal variances assumed, p = 0.85, t = 0.19, d.f. = 194). The same holds true 

for egg sac sizes from the respective females (12.07 vs. 11.89 mm egg sac width on 

average, N = 160, t-test, equal variances not assumed, p = 0.62, t = -0.50, d.f. = 72). 

Hence, these populations are comparable with respect to these measures, which is of 

special relevance for the temperature tolerance experiments.  
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Thermal preference and overwintering 

To study possible differences in thermal preferences between the populations, we 

determined in the laboratory upper thermal tolerance and thermal preference for 

spiderlings. Spiderlings from invasive Northern European egg sacs show indeed a 

significantly decreased thermal tolerance compared to Mediterranean ones (44.7°C vs. 

48.3°C on average, N = 83, t-test, equal variances assumed, t = 6.99, d.f. = 81, p < 

0.0001,) (Figure 1.6b) as well as lower preferred temperatures (10.4°C vs. 14.6°C on 

average, N = 61, t-test, equal variances assumed, t = 4.72, d.f. = 58, p < 0.0001) (Figure 

1.6c).  

To test overwintering capacity, we conducted a reciprocal transplant experiment using 

egg sacs of spiders from the Mediterranean and from the Continental climate regions (see 

Methods). We found a significant association between overwintering locality and 

survival frequency within egg sacs (Chi-square test, Chi-square = 8.22, d.f. = 3, P = 0.04) 

(Figure 1.6d). Interestingly, invasive and native populations are equally affected by 

reverted overwintering conditions. 45% of Mediterranean and 42% of the Continental egg 

sacs had less than 50% survival of spiderlings under reversed overwintering conditions, 

while only 27% of the Mediterranean and 20% of the Continental egg sacs had less than 

50% surviving spiderlings at their native overwintering locality. The difference between 

native- and non-native overwintering locations is significant for invasive spiders (two 

tailed p = 0.023, N = 112, Fisher’s exact test), but not for Mediterranean ones (two tailed 

p = 0.25, N = 51, Fisher’s exact test), due to smaller sample size although the trend is the 

same. On the other hand, there is a significant difference between Continental and 

Mediterranean spiders overwintering in Continental climate (p = 0.024, N = 88, Fisher’s 

exact test). 
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Figure 1.6 Morphological and physiological differences between native and invasive European 

populations. a) Prosoma width (representing body size) of adult females from native Mediterranean, 

native Oceanic climate and invaded Continental climate regions of Europe. Historical (≤ 1960, grey 

boxes) and contemporary samples (> 1960) are plotted separately. b) Upper lethal temperature, c) 

preferred ambient temperature of first instar spiderlings from Mediterranean and Continental 

areas. Box plots in figure 1.6a-1.6c show median (black bar), upper and lower quartiles and outliers. 

d) Fraction of dead eggsacs (< 50% surviving offspring) after reciprocal overwintering of 

Mediterranean -and Continental animals. The letters correspond to origin and overwintering 

location, e.g., C/C represent Continental population overwintered in Continental Climate.  
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1.4 Discussion 

Our results indicate a correlation between historical admixture, contemporary adaptation 

and the successful colonization of a new habitat. Although such a correlation is no direct 

evidence for causation, this finding is in line with the notion of a contribution of 

hybridization to climate change triggered adaptation (Hoffmann and Sgro 2011). In the 

following, we will discuss these points in turn.  

 

Phylogeography of the species 

The mitochondrial and nuclear SNP data suggest two major divergent lineages, pointing 

to the existence of an Eastern and Western Palearctic Pleistocene glacial refugium for the 

species (see Figure 1.2 & 1.4). The genetic distance of 1.1% between these lineages 

corresponds to approximately 800,000 years of separation (Knowlton & Weigt, 1998). 

The comparatively low mitochondrial divergence within the Western Palearctic indicates 

a single refugium in the West. As the only region with all major European haplogroups 

(A, B, C) present, we suggest the Southern Caucasus as this refugial area. From here, a 

single Southwestern route could have led to the postglacial recolonization of the 

Mediterranean region. The Southwestern range shift was probably accompanied by a 

bottleneck and loss of mitochondrial lineages. An Eastern offshoot of the Mediterranean 

recolonization route possibly led into Central Asia. A common origin would explain the 

similar haplotype composition of Mediterranean and Central Asian populations. Apart 

from the Southern route, our data also support a Northern route over the Caucasus 

Mountains and along the Black Sea. This colonization event has been less affected by 

drift, as seen in the balanced haplotype distribution in, e.g., Russian populations. The 

star-like topologies of the haplotype networks indicate a recent recolonization from the 

species´ glacial refugium (see Figure 1.2). A more detailed treatment of the phylogeny 

and Palearctic-wide phylogeography of the species will be published elsewhere 

(Krehenwinkel et al, in preparation). 
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Introgression, admixture and range expansion 

Native Western European wasp spiders occur in the mild Oceanic climate regions, 

including the Mediterranean region as well as France and Southwestern Germany (Figure 

1.1).  However, apart from an isolated satellite population in the Berlin area, they did not 

invade the Northern Continental climate regions of Europe in the past. Due to the spider’s 

conspicuous coloration, it is easy to detect and has therefore been a focus of spider 

collectors since more than a century. Hence, its distributional pattern is very well 

documented (Kumschick et al, 2011). One reason for failing to expand further after the 

initial postglacial expansion could be a bottleneck, which may have exhausted the genetic 

potential of the wasp spider populations. This observation is in line with the general 

finding that the geographic ranges of many species are limited to a certain ecosystem and 

an invasion into new habitat is not easy (Bridle & Vines, 2007; Hoffmann and Sgro 

2011). Accordingly, adaptation to a new ecological niche at the range margin can be of 

great evolutionary importance and enable range expansions (Peterson & Holt, 2003). But 

sufficient genetic variation may be a necessary precondition for such adaptation to occur. 

Many species possess ample genetic variation for niche parameters (Holt, 2009), leading 

to intraspecific niche differentiation over sometimes even small geographical scales 

(Rehfeldt et al, 1999; Castenholz, 1973).  Populations with little variation however, will 

have difficulties to adapt to new niches or a changing environment (Kellermann et al, 

2009). Such depleted variation has been shown to occur after range expansions, rendering 

populations less responsive to selection (Pujol & Pannell, 2008; Olivieri, 2009).  

Nonetheless, from around 1930 onwards, the wasp spider started slowly expanding its 

range into increasingly Continental climate regions (Guttmann, 1979, Kumschick et al, 

2011). Interestingly, we observe that this range shift was accompanied by growing 

genetic diversity in the species´ invasive range. This may initially have been caused by 

admixture with inner European lineages. The Mediterranean and the Northern Black sea 

recolonization routes met in Central Europe, leading to a haplotype composition similar 

to that of the glacial refugium in the Southern Caucasus region. The further expansion 

into Northern areas is then associated with increasing introgression of alleles from Asian 

source populations. Such a correlation between a recent range shift and admixture 

between formerly isolated genetic lineages has been suggested for several plant and 
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animal taxa (Kolbe et al, 2004; Nolte et al, 2005; Gaskin et al, 2009; Keller & Taylor, 

2010; Lucek et al, 2010; Turgeon et al, 2011).  

East Asian wasp spiders colonize a wide range of ecological regimes, from the tropical 

south of Japan and China to China´s cold Northeast and even South Eastern Siberia. 

Cold-tolerant Far-Eastern spiders are thus already present in climate zones that are 

currently being colonized by European populations. One may therefore speculate that an 

introgression of pre-adapted Asian alleles could have directly conferred adaptive traits, 

like cold resistance, to the introgressed populations.  

Admixture is also known to have the potential to increase adaptive genetic variation, 

enabling quick responses to selection. A particularly interesting manifestation of such 

effects is provided by transgressive segregation (Rieseberg et al, 1999). This term refers 

to the occurrence of extreme phenotypes in hybrids far beyond each parental population. 

The degree of transgression is positively correlated with genetic distance between 

hybridizing lineages (Stellkens et al, 2009). This in turn implicates a particular 

evolutionary potential to the introduction of divergent Asian genetic material into the 

invasive European range. The possible evolutionary significance of Asian genetic 

material is additionally supported by its limited introgression into native European 

populations. East Asian alleles could have followed two routes into Europe, south and 

north of the Caspian Sea. However, significant introgression into the native Southern 

range is not observed. Asian mitochondria are completely absent from the Southern range 

and nuclear alleles appear to occur only at a very limited extent. A similar picture 

emerges for admixture of inner European lineages, which is largely limited to the spider’s 

invasive range (see Figure 1.2, 1.4 & 1.5). This observation is well supported by recent 

results, showing that selection acts against invasion of maladapted alleles entering the 

range of locally adapted populations (Nolte et al, 2006; Verhoeven et al, 2011). In a 

previously unoccupied ecosystem, on the other hand, novel variation can be 

advantageous and admixture is not prevented.  

The introgression of Eastern Palearctic alleles into Northern Europe has apparently 

occurred via Russian steppe populations. We detect the first Asian haplotype in a Russian 

specimen from 1902. Around 1930, Asian mitochondria appear in Northern European 

populations in Berlin for the first time. However, we do not observe a simple replacement 
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of Northern European populations by better adapted Russian ones, as has been argued for 

other recent evolutionary responses (Hansen et al, 2012). Our microsatellite analysis 

shows that the invasive European spiders are much more closely related to their Southern 

European relatives than to the Russian steppe populations (Figure 1.7).  

The introgression of nuclear alleles from Asia appears to have been stronger than that of 

mitochondrial haplotypes. This is particularly evident in central Asian populations with 

no Asian mitochondria, but a high nuclear Asian background (see Figure 1.2 & 1.5). The 

observed bias towards reduced mitochondrial introgression might indicate a selective 

disadvantage of Asian mitochondria in a Western Palearctic nuclear background. 

Interspecific genetic incompatibilities are known to evolve between mitochondrial and 

nuclear genomes (Lee et al, 2008; Burton et al, 2006). This would lead to a tradeoff 

between adaptive introgression of nuclear alleles and selection against mitochondria. 

Another explanation for the disparate mitochondrial and nuclear introgression might be 

male biased gene flow (Croucher et al, 2011; Mao et al, 2010), although there is currently 

no evidence that the ballooning mode of dispersal could be sex-specific. 

 

Adaptation and phenotypic responses 

An invasion of the climatically distinct Northern Continental Europe likely required 

adaptation to the new environment. In this regard, the differences in thermal preference 

and tolerance of invasive and native wasp spiders are particularly interesting (see Figure 

1.6 b & 1.6 c). These physiological changes indicate a shift in the ecological temperature 

niche in invasive spiders, possibly the result of adaptation to cooler Continental climate. 

If there would have been a purely environmentally induced range shift, such 

physiological changes would not have been observed. Similar intraspecific differences in 

thermal tolerance have been documented for a variety of taxa (Rehfeldt et al, 1999; 

Castenholz, 1973). A study on house spiders in Japan (Tanaka, 1996) showed a 

genetically determined latitudinal gradient in cold hardiness. This gradient must have 

been established recently and despite high gene flow in this global invasive species. 

Similar conditions probably apply to the wasp spider. 



 

45 

 

Our reciprocal transplant experiment shows a complementary association between 

survival and overwintering locality (see Figure 1.6d).  The reduced survival of 

Mediterranean spiders in a Northern European environment might be caused by lower 

cold tolerance. The high mortality of Northern European spiders in the Mediterranean, on 

the other hand, could be indicative of a recently evolved obligate diapause. In spider 

mites, the occurrence of winter diapausing phenotypes seems to have a simple genetic 

basis and is determined by a single gene locus (Ignatowicz & Helle, 1986). Evolution of 

an obligate diapause might thus be an initial adaptation of spiders to cold climates. 

Young spiders may require frost for normal development, as has been established for 

Northern European laboratory populations of this species (Zimmer pers. communication). 

The dependence on cold overwintering conditions is well known from insects, for 

example the gall rod fly (Irwin & Lee, 2000). Another possible explanation for disturbed 

overwintering could be a shift in photoperiodic response of Northern European spiders. 

Such a shift has been shown to be the initial evolutionary response of pitcher plant 

mosquitoes during a northward range expansion (Bradshaw et al, 2000). As the poleward 

colonization of the wasp spider is a recent process, we suggest that these adaptations are 

of recent origin, probably less than 100 years old. In sticklebacks the evolution of thermal 

tolerance has been shown to evolve within a few generations, if sufficient standing 

genetic variation is provided (Barrett et al, 2011). 

The successful colonization of a new habitat from the range edge is often associated with 

morphological changes. This is especially true for traits that influence dispersal 

capability, e.g., wing size in insects or leg length in cane toads (Thomas et al, 2001; Hill 

et al, 2011; Phillips et al, 2006). In addition to such dispersal-related characters, body size 

variation is a character of high ecological importance (Millien et al, 2006). Compared to 

their native Southern European range, invasive wasp spiders are confronted with a much 

shorter vegetation period. The spring is setting in later and the first autumn cold appears 

much earlier than in a Mediterranean habitat. The reduced body size of Northern 

European spiders may thus be a manifestation of a trade off in that Northern spiders have 

to mature earlier in order to be able to reproduce before the onset of autumn (see Figure 

1.6 a). At the same time, Mediterranean spiders can reach much larger sizes and produce 

more offspring. We visited Northern and Southern European field sites extensively and 
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found living spiders in the Mediterranean region until early December. In Northern 

Europe the adult spiders disappear by late September. A reduction in body size seems to 

be an initial evolutionary response of many species to climate change (Babin-Fenske et 

al, 2008; Gardner et al, 2011).  

Our comparisons with historical samples provide another interesting insight. In parallel 

with increased genetic variation, a high initial variance of body size is seen in the 

historical invasive specimens. This increased phenotypic variance could point to the 

initial formation of a hybrid swarm out of which new lineages have emerged, as it has 

been shown for hybrid speciation in Cottus fish (Stemshorn et al, 2011). Genetic 

admixture can lead to populations (hybrid swarms) with novel genetic combinations and 

consequently an increase in phenotypic variance. Within a few decades, a new, possibly 

optimized phenotype could then have arisen in the spider’s invasive range. In fruit flies it 

was shown that a size gradient could evolve within 30 years (Huey et al, 2000).  

It remains to be tested in how far plasticity is contributing to the observed phenotypic 

differences. Our common-garden set-up rules out environmentally-induced plastic 

responses for the thermal tolerance and preference tests. Such transplant experiments are 

generally considered to constitute the best test for genetic adaptation to climatic 

conditions (Hoffmann and Sgro 2011). But as we used offspring derived from wild-mated 

females, an influence of maternal effects cannot be excluded at present, although these 

would likely be genetic as well. A genetic component for the traits studied here has been 

shown to exist in various species. The genetics of body size differences as well as thermal 

preference and tolerance traits are well studied in insects (Edgar, 2006, Hoffmann et al, 

2002, Hoffmann & Willi, 2008) and there is evidence for a genetic component of body 

size control in spiders (Higgins, 1992).  

 

The role of other factors on the species´ invasion success 

Global warming has enabled various animal and plant species to expand their ranges into 

higher latitudes. Such spreads, however, are usually limited to regions with suitable 

climates. In contrast, the wasp spider has expanded its range into a new climate zone and 

can be found in much colder areas than 100 years ago (Geiser, 1997; Kumschick et al, 
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2011). In addition, the population density did increase to a near complete coverage of the 

invaded range, with populations in almost every meadow (personal observation). The 

spider’s spread is thus hard to explain by climate change alone. Apart from an adaptive 

genetic explanation it was also suggested (Guttmann, 1979; Kumschick et al, 2011) that 

the increase of fallow land could have opened dispersion corridors for the spider, which 

were previously blocked by unsuitable habitats like forests. But considering the high 

dispersal abilities of wasp spiders, this explanation seems less likely. Many spiders are 

efficient dispersers, capable of covering distances of up to several hundred km by aerial 

dispersal (Foelix, 2011). Aeronautic behavior has already been examined in the European 

wasp spider. Although it is not an obligate life history phase (Walter et al, 2005), it seems 

very common, enabling the spiders to travel several kilometers (Follner & Klarenberg, 

1995). The species is present on all Mediterranean islands and shows no signs of genetic 

isolation between mainland and island populations. We find the same haplotypes on 

Mediterranean Islands as on the Mainland. Even the Macaronesian islands have been 

colonized by the spider (Schmidt, 1990). Despite being located several 100 km away 

from Europe, they show evidence for recent gene flow from the mainland (Krehenwinkel 

et al, in preparation). In addition, spiders tend to show increased dispersal activity in 

unstable habitats (Richter, 1970) and invasive wasp spiders primarily colonize fallows, a 

rather unpredictable habitat. This could also contribute to dispersal propensity.  

Furthermore, suitable corridors of fallow land were available in many parts of Europe, 

long before the spider colonized those regions (Geiser, 1997). On the other hand, the 

rapid and wide-ranging colonization of new habitats corresponds very well to the 

historical increase of genetic variation at the range edge. We thus postulate that genetic 

admixture was an important trigger that enabled range expansion.  

The secondary contact of different wasp spider populations must have been initiated by 

significant changes to the environment. Admixture of formerly isolated lineages is 

associated with the onset of climate change for several species (Crispo et al, 2011). For 

example, climate change driven hybridization has recently been shown in an American 

squirrel species (Garroway et al, 2010). Such hybridization could act as an important 

driver of evolutionary processes (Hoffmann & Sgro, 2011). Interestingly, based on the 

museum samples, we can narrow down the initial admixture in the wasp spider to 
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approximately 1930 (see Figure 1.2 inset). This period approximates the initial onset of 

climate change (Delworth & Knutson, 2000). Additionally, we find a strong increase of 

this admixture after 1960, the approximate beginning of the currently ongoing global 

warming (Brönnimann, 2009). 

The wasp spider’s range expansion does not only fall into a period of increasing climate 

warming, but into a time of intense general global change. Several historic changes 

correlate with the initial introgression of Asian genetic material into Russia. By the end 

of the 19
th

 century, Russia was on the verge of industrialization and traffic throughout the 

country increasing. By 1901, the Trans-Siberian Railway came into operation, leading 

from the far eastern Vladivostok to Moscow (Liliopoulou et al, 2005). This railway was 

intensively used in the Russo-Japanese war (1904-1905) and could have very well 

transported ballooning wasp spider offspring over considerable distances. In fact, global 

trade is known as important mediator of spider invasions (Kobelt & Nentwig, 2008).  

 

1.5 Conclusion 

We conclude that the northward expansion of the wasp spider is not a simple 

consequence of moving into increasingly warmer areas due to global climate change. 

Still, it may have been triggered by global warming, in combination with general human-

induced changes that led to contact between long separated lineages. This resulted in a 

genetic admixture that may have facilitated the necessary adaptive changes to colonize 

areas that were previously not accessible by this species.  
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Chapter 2: Phylogeographic surveys of two widely distributed 

Palearctic spider species highlight the importance of extra-European 

glacial refugia and reveal a pronounced incongruence between nuclear - 

and mitochondrial markers  

 

2.1 Introduction 

Bear, hedgehog and grasshopper represent the major paradigms of European 

phylogeography and postglacial recolonizations. Countless studies confirmed three 

general patterns of genetic differentiation between glacial refugia, which are represented 

by these species (Hewitt, 1999 & 2000; Taberlet et al, 2002). Each species stands for 

certain Mediterranean centers of origin and postglacial recolonization routes into Central 

and Northern Europe. Brown bears recolonized Europe from an Iberian and an Eastern 

European refugium. Hedgehogs, moved into Central Europe from distinct refugia in 

Iberia, Italy and the Eastern Mediterranean region. And the grasshopper corresponds to a 

postglacial colonization from a single Balkan refugium. Iberian and Italian lineages were 

trapped by the Pyrenees and Alps, respectively (Hewitt, 1999; Schmitt, 2007). While 

recent work has contributed to a refined picture of European phylogeography (Habel et 

al, 2005; Provan & Bennett, 2008), the generality of the three paradigms is still widely 

accepted (Schmitt, 2007). A regional focus is common to most European 

phylogeographic studies, overlooking the Palearctic distribution of many taxa. In 

addition, much phylogeographic work solely relies on mitochondrial markers, whose 

information content can be blurred by demographic processes, selection or PCR artifacts. 

Paternal gene flow (Mao et al, 2010; Turmelle et al, 2011), infections with 

endosymbiontic bacteria (Hurst & Jiggins, 2005), selection (Bazin et al, 2006; Rand, 

2001) or the amplification of nuclear copies of mitochondrial genes (Song et al, 2008; 

Bensasson et al, 2001) are  known to lead to flawed divergence estimates for 

mitochondrial data. Consequently, the sole use of mitochondrial DNA as phylogenetic or 

taxonomic marker has been increasingly questioned in the past years (Ballard et al, 

2002). The inclusion of nuclear DNA markers is recommended for a proper 

phylogeographic reconstruction (Toews & Brelsford, 2012, Ballard & Whittlock, 2003; 

Munoz et al, 2011).  
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Spiders are a phylogeographically particularly understudied group of animals. Most 

phylogeographic work on spiders has been limited to species with small geographic 

ranges or onto only a fraction of the particular species´ distribution (e.g. Bond et al, 2001; 

Cooper et al, 2011; Bidegaray Batista et al, 2007; Kuntner & Agnarson, 2011; Garb & 

Gillespie, 2009; Arnedo & Ferrandez, 2007). This is quite surprising, as more than 300 

spider species are known to have a Palearctic or Eurasian distribution (Marusik, 1993). 

Here, I present a detailed phylogeographic survey of the wasp spider Argiope bruennichi. 

It has a wide ranging, Palearctic distribution from the Azorean Archipelago and Madeira 

(Schmidt, 1990) over Europe, Northern Africa and Central Asia to Japan (Guttmann, 

1979). The study comprises population samples from all over the species´ range. It is 

based on mitochondrial COI sequences, nuclear microsatellite markers and SNPs and two 

nuclear DNA sequences. In addition, I present an analysis of a second spider species, the 

nursery web spider Pisaura mirabilis, which has a similar distribution like Argiope 

bruennichi. I use mitochondrial COI and nuclear 28SrDNA sequences, as well as nuclear 

microsatellites and SNP markers in Europe-wide samples of the species. I then infer 

differences and parallels between the two species´ phylogeographic structures, in order to 

show general features of genetic structure.  

The present study was set up for two reasons. First, I present a general phylogeographic 

framework, highlighting genetic structure, glacial refugia and centers of diversity for the 

two species. This part of the study highlights the consequences of Pleistocene isolation. 

Thereby, the studied spiders serve as phylogeographic models for widely distributed 

Palearctic species. Secondly, I analyze the consequences of recent secondary contact 

between formerly isolated glacial lineages. Many spiders are efficient dispersers. They 

are capable of quickly expanding their range by passive aerial migration (Su et al, 2007), 

possibly by several 100 km in a single generation (Foelix, 2011). This dispersal ability 

makes a secondary contact of spider lineages from distinct glacial refugia likely. Ongoing 

global change and human impact on ecosystems will probably even increase the 

likelihood of contact and hybridization (Crispo et al, 2011). I thus focus the second part 

of the analysis on contemporary gene flow between refugial areas.  

My analysis highlights the importance of extra-European glacial refugia for the wasp 

spider, with a particular importance of East Asia and the Azores. Moreover, I can infer a 
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history of extensive gene flow between different glacial lineages in both spider species. 

Due to their high dispersal ability, secondary contact does not entail the establishment of 

narrow suture zones (Hewitt, 1999; Taberlet et al, 2002). Instead, different glacial 

lineages meet and nuclear gene pools are homogenized over huge geographic distances. 

At the same time, mitochondrial gene flow is severely restricted. Consequently, I find a 

pronounced incongruence between the phylogenetic signal of mitochondrial and nuclear 

markers. I speculate that the underlying cause of this incongruence might be strong 

selection against mitochondrial introgression or resilience of native populations towards 

immigration by females. Although the analysis shows that mitochondrial markers are 

very valuable to uncover historical population divisions, they are not sufficient to identify 

the actual contemporary genetic structure of spider populations.  

 

2.2 Material and methods 

Sample collection  

This study is partly based on data from the study on a recent range expansion of the wasp 

spider in Europe (Chapter 1 - Krehenwinkel & Tautz, 2013). While the first study 

focused on genetic structure and recent adaptations in European populations, I widened 

the geographic focus here. For this reason, I include several hundred samples from the 

Macaronesian islands and East Asia and analyzed a new set of nuclear genetic markers 

for the studied spider populations. Wasp spiders were caught by hand or sweep net 

between 2010 and 2012. In addition, I include some museum samples from the 

collections of the Naturkundemuseum in Berlin, the Senckenberg Museum in Frankfurt, 

the Zoological Museum Alexander König in Bonn and the Chinese Academy of Sciences 

in Beijing. Overall, the sampling covers the whole distributional range of Argiope 

bruennichi. Pisaura mirabilis specimens were collected between May and August 2012 

in Germany, Sweden, Lithuania, Latvia, Estonia and the Portuguese island Madeira. I 

acquired further European Pisaura samples from the Natural History Museum Berlin, the 

Senckenberg Museum Frankfurt and private collections. Sampling locations are plotted in 

Figures 2.1 and 2.7. All specimens were transferred to 70% ethanol and are currently 
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stored in the collection of the Max Planck Institute for Evolutionary Biology in Plön, 

Germany. 

 

Molecular analysis  

Sampling locality maps were created with GenGIS (Parks et al, 2009). Details on DNA 

methods are presented in chapter 1. I sequenced 1200 bp of the mitochondrial COI gene 

and two random nuclear fragments of ~350 bp for Argiope bruennichi. In addition, I 

genotyped a selection of wasp spider samples for 15 nuclear microsatellites and a set of 

five nuclear SNP loci (SNP markers SA16, 26, 23, 19 & 8 from Krehenwinkel & Tautz, 

2013). A ~650 bp fragment of the mitochondrial COI gene was amplified for all Pisaura 

mirabilis specimens using standard barcoding primers (Folmer et al, 1994). Moreover, I 

sequenced an 850 bp fragment of the 28SrDNA (28Srd4.8a–28Srd7b1, Schwendinger & 

Giribet, 2005), four random nuclear DNA fragments of ~200 bp each and genotyped 13 

nuclear microsatellite loci for the Pisaura mirabilis samples.  

DNA sequences were edited using Codon Code Aligner (Codon Code Corporation, 

Dedham, US) and SNPs and microsatellite alleles were called using Genemapper 

(Applied Biosystems, Foster City, US). Sequences were aligned with MEGA (Tamura et 

al, 2007) under default alignment parameters. One further Argiope aurantia sequence 

was downloaded from Genbank and added to the COI alignment as outgroup for Argiope 

bruennichi. Neighbor joining trees were constructed in MEGA for the COI sequence 

alignments. Next to the phylogenetic trees, I generated median joining haplotype 

networks of the mitochondrial and nuclear sequences, using the software Network 

(Fluxus Technology Ltd, Suffolk, England). Nucleotide and haplotype diversity were 

estimated for the mitochondrial and nuclear sequences, using DnaSP (Librado & Rozas, 

2009). I generated distance matrices for the microsatellite data (Nei´s genetic distance) 

using the software microsatellite analyzer (MSA) (Dieringer & Schlötterer, 2003). The 

PHYLIP package (Felsenstein, 1989) served to construct neighbor joining trees, based on 

the according matrices. SNP genotypes were edited by hand and allele frequencies for 

different populations calculated.  
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2.3 Results 

In the following, I present the results for Pisaura mirabilis and Argiope bruennichi 

separately, beginning with the latter species.  

 

Mitochondrial data 

I sequenced 1200 bp of the mitochondrial COI gene for 786 Argiope bruennichi 

specimens. In addition, I included one Genbank sequence from the wasp spider’s sister 

species, the Nearctic Argiope aurantia. I identified three distinct mitochondrial lineages 

within the Palearctic region, one in East Asia (Japan and Eastern China), one on the 

Azores and one in Europe, Northern Africa and Central Asia (referred to as European in 

the following text). Each of these lineages is divergent by roughly 1.6 % from the other 

and by 8% from the outgroup species Argiope aurantia (Figure 2.2). The mitochondrial 

data thus shows clearly defined ranges for East Asian, European and Azorean haplotypes. 

No mitochondrial introgression between these regions was found. In the following I 

describe phylogenetic networks and within lineage divergence for the three Palearctic 

wasp spider clades (Figure 2.2).  

1. The Eastern Palearctic comprises several independent haplotype radiations, each 

divergent by five to seven mutations from the other. All sequences converge to a 

hypothetical ancestral sequence, which is giving rise to several haplotypes with distances 

of two to three substitutions. Several rare and distantly related haplotypes stand basal to 

most radiations.  

2. The European region is distinct from East Asia by shallower phylogeographic splits. I 

identified four independent radiations, each just distinct by two nucleotide substitutions. 

Most derived haplotypes are distinct by just one substitution.  

3. Madeiran populations exclusively harbor one single European haplotype. I only find 

the basal form of this haplotype without any derived sequences. Madeiran populations are 

thus completely monomorphic on the mitochondrial level.   

4. The Azores are distinguished by a rather low phylogeographic divergence. I find two 

haplogroups (see Figure 2.2), separated by just one mutation. In comparison to Europe or 

East Asia, I generally find fewer derived haplotypes on the Azores.  
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Figure 2.1 Sampling location for populations of the wasp spider Argiope bruennichi, which were used 

in this study. The colors correspond to genotypic clusters I identify, based on mitochondrial and 

nuclear genetic data.  

 

 

Figure 2.2 Mitochondrial haplotype structure for Palearctic wasp spider populations, based on ~1200 

bp of the COI gene. In the upper left, I show a pruned neighbor joining phylogeny for all  

mitochondrial sequences, rooted using the wasp spider´s sister species Argiope aurantia. Each 

haplotype network shows genetic structure for one of the three major Palearctic mitochondrial 

clades. If not denoted by numbers, branches on the network signify a single substitution. Colors 

correspond to those on the sample map in Figure 2.1. Numbers on arrows correspond to the minimal 

number of mutation to connect networks. A black star on the upper part of the Western Palearctic 

network denotes the connection of the outgroup species Argiope aurantia to the Argiope bruennichi 

network.  
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Nuclear microsatellites - and SNP loci  

I genotyped the Palearctic specimens for a set of 15 microsatellite loci. However, I 

encountered a large problem with allelic dropout for Eastern Palearctic specimens. Many 

markers did not even amplify in a PCR for these populations. Consequently, I limited the 

microsatellite analysis to populations from the Western Palearctic region and included 

only few properly genotyped East Asian samples as outgroup.  

I generally find little differentiation over very large geographic regions. Only East Asian 

and European populations form largely separated clades. However, a few European 

specimens group into the East Asian cluster. In the whole Western Palearctic region, I 

find only two monophyletic populations, one on Madeira and one on the Azores, but both 

are paraphyletic within the European mainland populations (Figure 2.3). This close 

nuclear genetic relationship of Azorean and European spiders is quite contrary to the 

clear monophyly I observe 

in the mitochondrial 

dataset (see Figure 2.2).  

 

Figure 2.3 Allele sharing tree 

for Palearctic wasp spiders, 

based on 15 microsatellite loci. 

The tree is rooted using East 

Asian outgroup specimens. 

Azores and Madeira form 

monophyletic groups, but 

render European specimens 

paraphyletic with respect to 

them. Colors correspond to 

those on the sample map in 

Figure 2.1. 

 

 

As I refrained from 

microsatellite genotyping 

for most East Asian 

samples, I use a dataset of 

five diagnostic nuclear SNP loci to identify gene flow between Asian and European 

populations (Chapter 1 - Krehenwinkel & Tautz, 2013). I genotyped 310 specimens from 

all over the Palearctic region for these loci. The SNP data largely confirms the 
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microsatellite based phylogeny, with a genetic cluster in East Asia and one in the 

Western Palearctic (Figure 2.4). Azorean and Madeiran populations carry the same 

alleles as European mainland spiders. The Azores however, are distinguished by a unique 

mitochondrial haplotype. Asian nuclear alleles enter the European gene pool via Central 

Asia and Russia. The difference of mitochondrial and nuclear introgression is quite 

pronounced. For example are Central Asian populations completely fixed for western 

mitochondria despite a high amount of Asian allelic background (33 %). And Russian 

spiders carry less than one percent of Asian mitochondria, but harbor many nuclear 

alleles from Asia (26 %). Asian introgression is largely limited to these two regions. It is 

much less evident for Southern Europe (12 %) as well as the Macaronesian islands (5 % 

on the Azores and 10 % on Madeira). Moreover, introgression appears to be 

unidirectional, with few European alleles entering East Asia (2% European background 

in China and 1% in Japan).  

 
Figure 2.4 Fraction of European 

genotypes for wasp spider 

populations from different 

Palearctic regions. The blue dots 

depict the fraction of European 

mitochondrial haplotypes and the 

green ones are based on five 

nuclear SNP loci. I find a clear 

increase of Asian alleles, when 

moving towards the Eastern 

Palearctic, while mitochondria 

follow a step cline without any 

introgression. Azorean 

populations share the same 

nuclear alleles with European 

ones, but are fixed for a different 

mitochondrial haplotype.  

 

 

Nuclear DNA sequences 

In addition to the SNP genotyping assay, I sequenced two nuclear fragments of ~350 bp 

each for 150 samples from the Azores, Madeira, Western Europe and East Asia (Figure 

2.5). The nuclear DNA networks generally confirm the microsatellite analysis. Europe, 

Madeira and the Azores largely share the same alleles. The network analysis shows these 
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alleles to be derived from an East Asian ancestral sequence by just two to three 

mutations. This result is again very different from the mitochondrial data. Populations 

from Europe, the Azores and Madeira are distinguished by genetic homogeneity. They 

carry very few, slightly derived alleles, originating from a widely distributed ancestral 

sequence. Spiders from East Asia harbor a huge variety of distantly related sequences for 

these nuclear markers. Interestingly, the two sequenced fragments are completely 

divergent between East Asia and Europe. Introgression is not evident for the sequenced 

samples. However, I did not sequence Russian specimens for these markers, which might 

show a certain amount of Asian alleles. 

  

 

Figure 2.5 Median joining 

networks for Palearctic wasp 

spiders, based on two 

nuclear sequences. While 

East Asian spiders form a 

diverse and separate genetic 

cluster, European, Madeiran 

and Azorean spiders are 

genetically more 

homogeneous and share the 

same nuclear alleles. If not 

denoted by numbers, 

branches on the network 

signify a single substitution. 

Colors correspond to those 

on the sample map in Figure 

2.1. 

 

 

 

Genetic diversity  

I find quite contrasting diversity measures between mitochondrial and nuclear markers as 

well as between different Palearctic populations of the wasp spider (Figure 2.6). 

Nucleotide diversity is highest in Eastern Palearctic populations (nuclear π = 0.0116 and 

mitochondrial π = 0.0037). This difference is particularly pronounced for nuclear DNA 

markers, whose diversity is several-fold higher compared to the Western Palearctic and to 
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the East Asian mitochondrial diversity. European, Madeiran and Azorean populations are 

not significantly different in their nuclear genetic diversity (π = 0.0012, for Europe, 

Madeira and Azores). On the other hand, mitochondrial variation is significantly lower in 

Madeiran (π = 0) and Azorean (π= 0.0005) populations than in Europe (π = 0.001). This 

is especially evident on Madeira, where I find only one single mitochondrial COI 

haplotype (significant differences were identified using an ANOVA, Tamhane posthoc 

test, p < 0.05).  

 

Figure 2.6 Mean nucleotide 

diversities for the mitochondrial 

COI gene and two nuclear DNA 

fragments for Palearctic wasp 

spiders. I plotted data for Azorean, 

Madeiran, European and East Asian 

populations. For each of these 

geographic regions, the left bar 

represents mitochondrial and the 

right one nuclear diversity. Bars 

depict the 95 % confidence intervals 

of the mean.  I find significant 

differences between mitochondrial 

diversity of East Asian, European 

and Macaronesian populations. 

Nuclear diversity is only 

significantly different in East Asia. 

(ANOVA, Tamhane posthoc test, p < 

0.05). 

The nursery web spider Pisaura mirabilis 

I sequenced 650 bp of the mitochondrial COI gene for 138 European Pisaura mirabilis 

specimens. The mitochondrial haplotype network reveals a much deeper genetic 

differentiation over shorter geographic distances than in Argiope bruennichi (see Figure 

2.7 & 2.8). European nursery web spider populations are split into three geographically 

separated mitochondrial lineages, different by 4.3 - 5.1 % sequence divergence. It is 

possible to distinguish a Southwestern lineage from Madeira and Spain, one from the 

Balkans and one from Northern and Central Europe. I will refer to these lineages as the 

Southwestern, Balkan and Central one. The three clades are well separated from each 

other. Only the Central group carries 3.6 % of introgressed haplotypes from the 

Southwestern one (Figure 2.8). With a nucleotide diversity of 0.006-0.009, European 
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Pisaura mirabilis populations are rather diverse in comparison to wasp spiders 

(mitochondrial π = 0.001).  

 
Figure 2.7 Sampling locations for the studied nursery web spider (Pisaura mirabilis) populations. The 

colors represent the three identified mitochondrial clades.  

 

Figure 2.8 Median joining haplotype networks for ~1000 bp of the mitochondrial COI gene (upper 

network) and the nuclear 28SrDNA gene (lower network). Colors represent the collection sites from 

Southwestern Europe (red), the Balkans (black) or Central - and Northern Europe (yellow). Both 

COI and 28S networks indicate the existence of several divergent genetic lineages within Europe. 

Different populations share a considerable fraction of alleles.  If not denoted by numbers, branches 

on the network signify a single substitution. Colors correspond to those on the sample map in Figure 

2.7. 
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The nuclear genetic analysis for Pisaura mirabilis generally confirms the mitochondrial 

data. The microsatellite analysis uncovers the aforementioned three genetic groups in 

Europe. However, only the Balkan specimens seem to be clearly isolated from the other 

European populations (see Figure 2.9). They form a deeply split clade on the 

microsatellite allele sharing tree and carry private alleles in the 28SrDNA gene as well as 

the analyzed four nuclear DNA fragments (see Figure 2.8, 2.9 & 2.10). Southwestern and 

Central populations are also forming largely distinct genetic clusters, according to the 

microsatellite data (see Figure 2.9). However, their differentiation in the allele sharing 

tree is much shallower than that of the Balkan clade. Moreover, the 28SrDNA and 

nuclear fragments indicate a considerable fraction of shared alleles between the two 

groups (Figure 2.8 & 2.11).  

 
Figure 2.9 Allele sharing tree for European Pisaura mirabilis samples, based on 13 nuclear 

microsatellite loci. The colors correspond to sampling locations in Central - and Northern Europe 

(yellow) the Balkans (black) and South-Western Europe (red). Colors correspond to those on the 

sample map in Figure 2.7. 

 

All four examined nuclear loci allow the identification of divergent alleles for the 

Central- and South-Western groups (Figure 2.11a), but only few are clearly fixed 
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between regions. On average, South-Western and Central European nursery web spiders 

are distinct by 1.7 % nuclear distance (4.4 % mitochondrial distance). Balkan and South-

Western samples are distinct by 3.1 % at the nuclear level (5.1 % mitochondrial 

distance). Central and Balkan nuclear alleles are on average divergent by 3.6 % (4.3 % 

mitochondrial distance) (Figure 2.11a).  

By scoring the frequencies of divergent nuclear alleles between South-Western and 

Central clades, I find an average introgression of 18 % South-Western alleles into the 

Central genepool, but only 1 % Central alleles in South-Western populations. As for the 

mitochondrial data, introgression is thus largely unidirectional (Figure 2.11b).  

Figure 2.10 These neighbor joining trees 

depict the general phylogenetic structure 

for European Pisaura mirabilis populations 

as found for the mitochondrial COI gene 

(~650 bp, left tree) and four random 

nuclear DNA sequences (~800 bp, right 

tree). The trees were midpoint rooted. 

Colors represent the Balkan, Central and 

Southwestern clades. Although the tree 

topology is not identical, the three general geographic groups are clearly recovered using both 

marker types. Colors correspond to those on the sample map in Figure 2.7. The scale bar shows 

uncorrected, pairwise genetic distance.  

 

 

Figure 2.7 a) depicts the genetic distance between Central and South-Western, (C/SW), South-

Western and Balkan (SW/B) and Central and Balkan (C/B) populations of Pisaura mirabilis. The 

bars to the right represent the average distance for four nuclear sequences of ~200 bp each, while the 

single dot shows mitochondrial distances.  The bars represent the 95 % confidence interval of the 

mean. b) shows the percentage of presumably South-Western European alleles in South-Western and 

Central European populations, respectively. Mitochondrial data is shown in black, that for the four 

nuclear SNP loci in white.  
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2.4 Discussion 

In the following, I first discuss the results for the wasp spider Argiope bruennichi. Then, I 

compare the findings to the pattern observed in the nursery web spider Pisaura mirabilis.  

 

Pleistocene isolation and postglacial recolonization in Argiope bruennichi  

The mitochondrial phylogeny indicates the existence of three distinct glacial refugia, one 

in East Asia, one in Europe and one on the Azores. The genetic distance between these 

regions corresponds to roughly 1 million years of divergence time (Knowlton & Weigt, 

1998), agreeing with a Pleistocene isolation of lineages. Nearly trichotomous splits 

between the three regions and very similar genetic distances between them suggest a 

single isolating event (Hung et al 2012).  A high genetic diversity indicates the existence 

of a large glacial refugium in the Eastern Palearctic. East Asia was not affected as much 

by the Pleistocene glaciations as the Western Palearctic (Adams, 2002). This could have 

enabled the persistence of large populations during glacial periods. The deep divergence 

between mitochondrial radiations in East Asia even hints at the presence of several 

refugia in this region, as has been suggested for e.g. hares (Nunome et al, 2010) or bats 

(Flanders et al, 2011). Large stretches of tropical grassland dominated the landscape of 

Southern China during the last glacial maximum (Ray & Adams, 2001). And a simulation 

of suitable habitat for Palearctic Rosefinches during the last glacial maximum shows 

much larger refugial areas in East Asia than in Europe (Hung et al, 2013). East Asia thus 

possibly served as important Pleistocene refugium for many plant and animal species.  

Western Palearctic wasp spiders, probably survived the glaciations in small bottlenecked 

populations, as evident by their reduced diversity. Europe offered rather unsuitable 

conditions for the spiders during the last glacial maximum. It was covered by large ice 

sheets or cold forest steppe habitat. This habitat was connected to the Saharan desert in 

the South (Ray & Adams, 2001). European wasp spider populations were thus trapped 

between two hostile environments and possibly went extinct on most of the continent. A 

likely refugium for European spiders is found in the south of the Caucasus Mountains 

(Krehenwinkel & Tautz, 2013). This assumption is supported by previous work, showing 
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the Caucasus region as an important center of endemism and possible glacial refugium 

(Hung et al, 2012).  

The island of Madeira was probably colonized in the course of the last postglacial 

expansion into Europe. The colonization was accompanied by a pronounced founder 

effect, leading to the high mitochondrial homogeneity on Madeira. While the species 

went extinct in most of Europe and Madeira during the Pleistocene glaciations, it 

probably survived on the Azores. Argiope bruennichi can be found virtually everywhere 

and in huge populations sizes on the Azorean archipelago. This finding is contrary to 

many studies, which emphasize the importance of Madeira and the Canaries as 

Macaronesian centers of endemism for other species (Carine & Schaefer, 2010; Amorim 

et al, 2012; Cameron et al, 2006). However, the comparatively low measures for 

mitochondrial nucleotide diversity indicate a recent, postglacial bottleneck of Azorean 

mitochondria (Avise, 2001), similar to Madeira.  

To summarize, deep mitochondrial divergence between East Asia, Europe and Azores 

indicate the importance of Pleistocene glaciations for a long isolation of different wasp 

spider populations. However, this phylogeographic framework is only partly corroborated 

by an analysis of nuclear markers. In the following, I discuss possible causes of this 

incongruence. 

 

Secondary contact, differential introgression and limits to gene flow in a highly 

dispersive species 

Argiope bruennichi is a high gene flow species, which can cover large distance by 

passive, wind mediated dispersal (Follner & Klarenberg, 1995). Their dispersal ability 

allows the spiders to quickly expand their range in the limits of their ecological niche, as 

evident by a current range shift into Northern Europe (Kumschick et al, 2011). In this 

regard, secondary contact of formerly isolated spider populations during their postglacial 

range expansion is very likely. And indeed, I find signatures of extensive gene flow 

between glacial lineages. Little genetic structure over geographic distances of several 

hundred km and even over huge oceanic barriers underlines the efficient mode of 

ballooning dispersal.   
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East Asian and European populations meet and hybridize in Central Asia. Introgression is 

mostly unidirectional and limited to Asian nuclear alleles, entering the Western gene 

pool. From Central Asia, Asian alleles move into Russian populations north of the 

Caspian Sea. The area of admixture spans several thousand km, with no evidence for a 

clear contact zone, as they have been described for numerous other species (Hewitt, 

1999; Taberlet et al, 2002). The ballooning mode of dispersal rather entails the 

establishment of broad areas of admixture. Interestingly, introgression is predominantly 

limited to nuclear genes. Mitochondrial introgression is mostly absent. While Central 

Asian and Russian populations carry a substantial amount of East Asian nuclear alleles, 

they are largely fixed for Western mitochondria. An even more extreme case of such 

differential gene flow involves the Azorean archipelago. Here, I find a unique and deeply 

divergent mitochondrial haplogroup, but largely shared nuclear alleles with the European 

mainland. In the following, I discuss possible reasons for such nuclear mitochondrial 

discordance. 

1. Paternal gene flow, as e.g. found in bats is a common explanation (Mao et al, 2010; 

Turmelle et al, 2011). Ongoing nuclear gene flow would then contribute to genetic 

homogenization, despite mitochondrial differentiation. Published work on Southern 

German wasp spider population indicates a high dispersal rate of all offspring from a 

wasp spider eggsac, regardless of sex (Follner & Klarenberg, 1996). But dispersing 

females could suffer from a reduced reproductive success in established populations, 

leading to quick loss of their mitochondrial lineages. This explanation is not unlikely, 

considering the wasp spider’s life cycle. Females of the species grow much larger and are 

longer-lived than males. Consequently, they require access to more resources in a habitat 

and are prone to longer episodes of selection during their life cycle. Established wasp 

spider populations could thus be resilient against introduction of new females by long 

range dispersal.  

2. Interspecific incompatibilities between male and female reproductive organs constitute 

another possible reason for differential gene flow between mitochondrial and nuclear 

genes. Spider genital morphology can evolve quickly and is highly species specific, 

efficiently preventing interspecific mating (Kraus, 2000). It has been suggested, that these 

reproductive barriers could act unidirectional, allowing females of one spider species to 
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mate with males of the other, but not the other way round (Croucher et al, 2004). 

However, I would expect mitochondrial introgression happening in at least one direction, 

e.g. from Europe into Asia, if the isolation is unidirectional in this way, but this is not 

observed.  

3. Selection acting on mitochondria constitutes a third possible explanation for the 

observed incongruence. Contrasting diversity and divergence patterns between 

mitochondrial and nuclear DNA indicate that mitochondria might be affected by natural 

selection. Admixture could be coupled with purifying selection on mitochondrial lineages 

or the evolution of mitochondrial lineages speeded up due to positive selection and 

recurrent sweeps. The incongruent pattern of nuclear and mitochondrial differentiation on 

the Azorean Archipelago, in Russia and Central Asia might be explained by gene flow 

and following loss of one mitochondrial lineage. The near complete loss of one 

mitochondrial haplotype after secondary contact is not unusual. Many studies have shown 

strong mitochondrial gene flow or even complete mitochondrial replacement (e.g. 

Martinsen et al, 2007; Chen et al, 2009; Nevado et al, 2009; Wilson & Bernatchez, 1998; 

Renoult et al, 2009; Melo-Ferreira et al, 2005; Gantenbein & Largiader, 2002). Selection 

on mitochondria can have several causes, which I discuss in the following.  

3.1 Cytoplasmic incompatibility, induced by different strains of bacteria, e.g. Wolbachia 

spp. is one possible reason (Hurst & Jiggins, 2005; Toews & Brelsford, 2012). The 

observed pattern is not a case of actual selection on mitochondria, but a consequence of 

mitochondria, being inherited along with the bacterial lineages. Invasions by such 

reproductive parasites can induce recurrent sweeps of mitochondria and speed up 

evolution of a mitochondrial lineage, compared to the nuclear genome. The contrasting 

mitochondrial and nuclear pattern of divergence for Azorean populations could be 

induced by such an infection. By accumulating mutations at a faster rate, the Azorean 

mitochondrial genome would be divergent from mainland populations, while nuclear 

markers could be freely exchanged. But the nearly trichotomous pattern of mitochondrial 

divergence and similar genetic distances between Azorean, East Asian and European 

populations contradicts this assumption. It rather indicates a single incident during the 

Pleistocene as isolating agent, possibly glaciations (Hung et al, 2012).  
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In a PCR based assay, I did not find evidence for Wolbachia infection for the examined 

populations (unpublished data). Other studies confirm these results, showing no infection 

with the endosymbionts Wolbachia and Cardinium in Argiope bruennichi in Europe 

(Duron et al, 2008a) and Wolbachia in East Asia (Yun et al, 2011). A test for the 

presence of a wide range of reproductive parasites in the congeneric species Argiope 

lobata did not uncover any infections (Duron et al, 2008b). So far, there is no published 

evidence for an infection with reproductive parasites in the genus Argiope. Although I 

currently can not rule out an unknown reproductive parasite causing mitochondrial 

sweeps, other reasons seem more likely.  

3.2 Incompatibilities between nuclear and mitochondrial genomes are assumed to 

contribute to reproductive isolation (Lee et al, 2008; Burton et al, 2006; Hutter & Rand, 

1995). Such incompatibilities could have evolved between different glacial refugia and 

prevent the interaction of e.g. Asian mitochondria and a European nuclear background. 

Secondary contact of these genetic clusters would lead to limited introgression or sweeps 

of one mitochondrial lineage, as observed in e.g. Central Asian or Azorean populations. 

The probability of being a worse maternal parent in a hybrid cross is linked to increased 

mitochondrial substitution rate (Bolnick et al, 2008). Interestingly, I find that usually 

mitochondria from the less diverse populations are fixed during secondary contact in 

wasp spiders. A more detailed sequence analysis of, e.g., Azorean mitochondrial genes 

and their nuclear interaction partners will help elucidating this issue.  

3.3 A contribution of mitochondria to adaptation to environmental conditions, e.g. 

climate (Balloux et al, 2009; Mishmar et al, 2003; Melo-Ferreira et al, 2005; Doiron et al, 

2002; Bazin et al, 2006; Rand, 2001), is another possible explanation for mitochondrial 

sweeps. If mitochondria contribute directly to adaptation, divergence of haplotypes would 

occur despite ongoing nuclear gene flow.  

The phylogeography of Pisaura mirabilis - differences and similarities with Argiope 

bruennichi 

The phylogeographic analysis for the nursery web spider Pisaura mirabilis reveals clear 

differences, as well as surprising similarities with that of Argiope bruennichi. 

The high genetic variation within all European Pisaura mirabilis populations indicates 

comparably large glacial refugia and no pronounced loss of diversity during the ice ages. 
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Moreover, the very similar mitochondrial divergence between all three European lineages 

suggests a single isolating event during the Pleistocene. Based on these data, one can 

speculate about the existence of a Western- and Eastern Mediterranean refugium for the 

Southwestern and the Balkan lineage, as they have been described for many plant and 

animal species (Hewitt, 1999; Taberlet et al, 2002). Central populations might have 

survived the glaciations in more eastern regions of Europe, possibly even in Asia. This 

phylogeographic difference to Argiope bruennichi is surprising. Both species occur in 

very similar habitats and are often found synanthropically. However, Pisaura mirabilis is 

distributed far more to the north (Platnick, 2013), suggesting that it is more tolerant 

towards cold temperatures and should consequently have better survived the European 

glaciations. Even if species share a similar distribution and ecology, one should 

consequently be careful to generalize phylogeographic patterns. Even subtle ecological 

differences can lead to rather different genetic structure.   

Despite these major differences, I still find one important similarity between the wasp 

spider´s and nursery web spider´s phylogeographies. The incongruence between 

mitochondrial and nuclear markers in Pisaura mirabilis is comparable to that observed 

for Argiope bruennichi populations from the Azores, Europe and East Asia. The deep 

divergence in the COI gene suggests an isolation of several million years for refugial 

lineages in Pisaura (Knowlton & Weigt, 1998). In the course of their postglacial 

northward movement, these lineages probably established secondary contact. 

Reproductive isolation was only completed for the Balkan populations, which retain their 

genetic distinctness and are thus probably a different species. The current Central and 

South-Western European populations however, started to exchange genetic material. As 

for Argiope bruennichi, the ballooning mode of dispersal probably prevents the 

establishment of stable contact zones and leads to the emergence of broad geographic 

areas of admixture. The observed lack of mitochondrial introgression is most likely 

explained by a selection against mitochondria or resilience of populations against female 

colonizers.  

I interpret the observed divergent nuclear genetic lineages as evidence for a glacial 

isolation. However, incomplete lineage sorting might be another explanation for this 

divergence in Pisaura mirabilis. But considering the deep mitochondrial splits (Figure 
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2.8 & 2.11) and the clear divergence of nuclear fragments (Figure 2.10 & 2.11), 

incomplete sorting of nuclear alleles is unlikely.    

 

2.5 Summary 

The present study highlights the importance of extra-European glacial refugia for a 

thermophilic Palearctic species. East Asia probably offered the largest area of suitable 

habitat during the Pleistocene and thus serves as the most important source of unique 

genetic variation in the wasp spider. Consequently, a range-wide sampling is inevitable 

for a proper phylogeographic reconstruction of widespread species. In contrast, the more 

cold tolerant Pisaura mirabilis did survive the glaciations in several refugia in Europe.  

Due to their efficient mode of passive aerial dispersal, the studied spiders are capable of 

very high gene flow, leading to homogenizations of nuclear gene pools over huge 

distances. However, mitochondrial introgression is nearly absent during secondary 

contact of glacial lineages. One can assume selection on mitochondria or resilience of 

populations against introduction of females as most likely reasons for these incongruent 

patterns of gene flow.  

 



 

69 

 

Chapter 3: An assessment of genotyping success in museum specimens 

identifies unexpected predictors of DNA integrity and shows an 

historical increase in genetic diversity in an expansive spider species  

 

3.1 Introduction 

Natural history museums provide a rich source for historical DNA studies. DNA from 

museum specimens can be used for taxonomic assignments (Hajibabaei et al, 2006; 

Puillandre et al, 2012), phylogenetic reconstructions (Houde & Brown, 1988; Cooper et 

al, 2011), conservation biology (Paplinska et al, 2010) or to trace historical genetic 

changes in populations (Lister et al, 2011; Wandeler et al, 2007). However, molecular 

work on museum specimens is not unproblematic. When natural history collections were 

set up and until a few decades ago, the importance of molecular studies was still 

unforeseen. Storage conditions aimed for a long term preservation of the specimen’s 

phenotype and not its DNA integrity (Zimmermann et al, 2008). For example, unsuitable 

preservatives or insecticides dramatically decrease the molecule’s lifetime (Espeland et 

al, 2010). Consequently, DNA from museum specimens is often degraded, broken apart 

into small pieces and present in much lower concentrations than in fresh samples 

(Wandeler et al, 2007). Considering the degradation of historical DNA, mitochondrial 

sequences are usually the preferred genetic marker (Casas-Marce et al, 2010). Each cell 

has only one nuclear genome, but can contain more than thousand mitochondria (Robin 

& Wong, 2005). The probability of extracting stretches of well-preserved mitochondrial 

DNA is thus much higher, compared to unique nuclear sequences. However, the use of 

nuclear DNA is inevitable, when fast evolving markers are needed to study recent genetic 

processes, e.g. population subdivisions.  

Here, I present a detailed study on the feasibility of PCR analysis of historical DNA from 

spiders. Natural history museums all over the world house huge arachnological 

collections, usually stored in Ethanol, a well suited DNA preservative. Consequently, 

spiders are promising targets for work on historical DNA. I present a comparative study 

of PCR -and genotyping performance in Ethanol preserved museum specimens of the 

wasp spider Argiope bruennichi (Platnick, 2013). I include several hundred specimens 

from two large German natural history collections. 
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I test the amplification success of mitochondrial- and nuclear DNA markers of different 

fragment length and in relation to collection date and body size of the preserved 

specimens. Moreover, I discuss the influence of immediate treatment of a sample after 

collection on its DNA quality.  

The results show that molecular work on historical spiders is indeed a promising 

endeavor, although it is clearly hampered by DNA degradation. Not only the age of a 

specimen, but the immediate treatment and proper storage after its collection and the 

specimen´s body size explain most differences in amplification success. In addition, I 

provide an example for the practical use of historical DNA samples. Using mitochondrial 

sequences and microsatellite markers, I show that a range expansion of the studied 

species in Europe is associated with historical admixture and increasing genetic diversity 

at its range edge.  

 

3.2 Material and methods 

Sample preparation and tests for genotyping success 

Samples were acquired from two large German natural history collections, the 

Senckenberg Museum in Frankfurt (182 specimens) and the Naturkundemuseum in 

Berlin (215 specimens). Selected specimens were examined under a Leica MZ95 

binocular and their prosoma width was measured, using a Leica measuring eyepiece 

(Leica, Wetzlar, Germany). One leg of each specimen was removed with heat sterilized 

forceps and then kept in pure Ethanol. Laboratory work was carried out at the Max 

Planck Institute for Evolutionary Biology in Plön, Germany. For DNA extractions, the 

spider leg was removed from its preservative and allowed to air dry on a piece of tissue 

paper for a few minutes. Legs were then cut into several pieces with sterile scalpel 

blades. After being cut down, the tissue was transferred to lysis buffer and disrupted on a 

Tissuelyser by using 5 mm stain less steel beads (both Qiagen, Hilden, Germany) for 30s 

at 30 hz. The Archivpure Cell & Tissue Kit (5PRIME, Hamburg, Germany) was used for 

the DNA extractions according to the manufacturer’s protocol. Modifications of the 

protocol include the increase of all reaction volumes by ½ and the substitution of 

glycogen solution (20 mg/mL, 5PRIME, Hamburg, Germany) as a DNA carrier during 
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Isopropanol precipitation. Moreover, I used only between 20 µl of hydratation solution 

(10 mM Tris, 1 mM EDTA, pH 7–8) to eventually dissolve the DNA pellet. A negative 

control extraction was added. Work with museum specimens was carried out in a 

different room than that on contemporary specimens to avoid DNA carryover.  

Primer design was done using the primer 3 software (Untergasser et al, 2007). Primers for 

the mitochondrial COI gene were designed based on an alignment of 1200 bp of 

contemporary sequences (see Krehenwinkel & Tautz, 2013) and targeting two distinct 

fragment sizes of 130 and 350 bp. The respective PCR fragments both contained 

informative SNPs to distinguish the major mitochondrial haplogroups within the wasp 

spider. In addition to the mitochondrial DNA, I targeted four nuclear microsatellite 

fragments, two of approximately 150 and two of 250 bp, respectively (Primers MA53, 

MA55, MA56 & MA60 from Krehenwinkel & Tautz, 2013).  

PCRs were run with 1 µl of the DNA extract on an Applied Biosystems Veriti Thermal 

Cycler (Applied Biosystems, Foster City, US), using the Qiagen Multiplex PCR kit 

(Qiagen, Hilden, Germany) with 40 cycles, according to the manufacturer’s protocol. A 

negative control reaction was added to each PCR. Positive PCRs served as a measure of 

DNA extraction success. Due to limited amount of DNA extract, I refrained from other 

quantification measures, e.g. gel electrophoresis or photometry. DNA sequencing and 

microsatellite genotyping followed the protocols described in chapter 1. DNA sequences 

were edited using the Codon Code Aligner software (Codon Code Corporation, Dedham, 

MA, USA) and aligned with MEGA (Tamura et al, 2007) under default alignment 

parameters. Sequence diversity estimates were generated with DnaSP (Librado & Rozas 

2009). Microsatellites were called using Genemapper (Applied Biosystems, Foster City, 

USA) and allelic richness estimated with the Microsatellite Analyzer software (Dieringer 

& Schlötterer 2003). 

I then tested for an association of genotyping success and several other factors. First, the 

dependence of marker type and size and genotyping success was analyzed. Moreover, the 

influence of the age of the samples was estimated. I then tested for an effect of the 

specimen´s body size. As I used one leg per specimen, the body size relates directly to the 

amount of tissue used for DNA extraction. Last, I analyzed for the influence of museum 

collection and proximity of the specimen´s sampling site to the collection on DNA 
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integrity. The according museum collections are located in the federal states of Berlin and 

Hessen. I defined a spider as being collected in close proximity, if it was sampled in these 

states or in one of the bordering states. Using these criteria, I included samples from 

Berlin or Brandenburg as being close to the Naturkundemuseum. Samples from Hessen, 

Rhineland-Palatinate and Baden-Württemberg were considered close to the Senckenberg 

Museum.  

 

Changes of genetic diversity during a range expansion 

The success of range expansions and biological invasions is associated with genetic 

diversity of expanding populations (Kolbe et al, 2004). I analyzed changes of genetic 

diversity from populations at the wasp spider’s former northern range edge in Europe. 

The historically northernmost populations of Argiope bruennichi have been found in the 

area around Berlin. Due to its proximity to the natural history museum, a large collection 

of wasp spiders from this range edge population has been compiled. From around 1930 

onwards, Argiope bruennichi started expanding its range into more Northern latitudes. 

The range expansion than increased its pace in the past decades and by today the species 

can be found as far north as Finland (Guttmann 1979; Terhivuo et al, 2011). I split the 

museum samples into two time periods. The first corresponds to the time before the range 

expansion and includes specimens sampled until 1930. The second group accounts for the 

early phase of the range shift and comprises spiders collected until 1960. Finally, I 

analyzed specimens from after 1960, with a focus on those collected in the past few 

years. The contemporary specimens were genotyped for the same set of markers like the 

museum samples and as described above. The museum specimens comprise spiders 

collected from many different locations and at different years around Berlin. However, 

they do not include a large series from a single collection site. I thus can not estimate 

genetic diversity for single sites, but have to work on pooled data. 
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3.3 Results 

Factors, which affect DNA integrity in wet preserved spiders 

Overall, I extracted DNA from 397 specimens and tested it for PCR amplification and 

genotyping success. Mitochondrial DNA amplification was generally more successful 

compared to nuclear DNA (Fisher’s exact test p < 0.05). Moreover, PCRs on shorter 

DNA fragments yielded higher success rates for the mitochondrial DNA (Fisher’s exact 

test p < 0.001), but not the nuclear microsatellite markers (Figure 3.1).  

 

 

 

Figure 3.1 Percent of museum 

samples (N = 397) yielding 

genotyping data for a ~150 bp and a 

~350 bp mitochondrial fragment as 

well as nuclear microsatellite loci of 

~150 bp and ~250 bp. Mitochondrial 

markers show significantly more 

genotpyping results. This is especially 

evident for the short mitochondrial 

fragment (Fisher’s exact test p < 

0.05). 

 

 

 

I was able to acquire exact collection dates for 340 samples. As nearly all samples 

yielded sequences for the short mitochondrial fragment, I did not analyze the influence of 

collection date for this marker. For the remaining markers, the sample age is significantly 

associated with PCR success, with younger samples yielding more positive PCRs than 

older ones (ANOVA, Bonferroni corrected p-value p < 0.05). On average, samples with 

positive genotyping results have been collected in 1926 for the mitochondrial marker, in 

1929 for the short microsatellites and in 1930 for the longer microsatellite markers. The 

average collection date for non-amplifying samples was 1918 for the mitochondrial 

sequence and 1919 for both microsatellite markers (Figure 3.2).  
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Figure 3.2 Average ages of museum 

specimens (N = 340), which did or did not 

yield genotypes for a ~350 bp 

mitochondrial marker as well as ~150 bp 

and ~250 bp nuclear microsatellite 

markers. For each marker type, the right 

bars represent positive genotyping 

results and the left bars negative ones.  

Bars represent the 95 % confidence 

interval of the mean. The mean age 

difference between amplifying and non-

amplifying samples is significant for all 

markers types (ANOVA, Bonferroni 

corrected p-value p < 0.05). 

 

I find a highly significant association between the museum collection of origin and the 

usefulness of tissue samples for genotyping in all marker types. Except of the short 

mitochondrial fragments, all markers amplify significantly better in samples from Berlin 

(Fisher’s exact test p < 0.001). While only between 26 % and 29 % of samples from the 

Senckenberg Museum yielded positive genotyping results, I could genotype 42 to 66 % 

of the specimens from the Naturkundemuseum in Berlin (Figure 3.3). 

  

Figure 3.3 Fraction of genotyping data for 

samples from the Naturkundemuseum 

Berlin (black bars, N = 215) and the 

Senckenberg Museum Frankfurt (white 

bars, N = 182). I tested for genotyping 

success of a ~150 bp and a ~350 bp 

mitochondrial fragment as well as nuclear 

microsatellite loci of ~150 bp and ~250 bp. 

Samples from the Naturkundemuseum 

Berlin perform significantly better for all 

markers, except of the short mitochondrial 

fragment (Fisher’s exact test p < 0.001). 
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The data uncover a clear association between sampling location and genotyping success 

for samples from the Naturkundemuseum in Berlin (Figure 3.4). Specimens collected 

from regions in close proximity to the museum result in significantly higher genotyping 

success, than those collected in more distant localities. This association can be found for 

all marker types, except for the short mitochondrial fragment (Fisher’s exact test p < 

0.05). The difference is particularly pronounced for the nuclear microsatellites. They can 

be reliably genotyped for more than 70 % of the samples from the area around Berlin, but 

only about 30 % of the samples from outside of Berlin (Figure 3.4). In contrast, I do not 

find any significant association of genotyping success and collection origin for samples 

from Frankfurt.  

 

Figure 3.4 Percentage positive genotyping 

data for samples from the 

Naturkundemuseum Berlin, which have 

been collected in close proximity to the 

museum (black bars, N= 71), or from 

distant localities (white bars, N = 144). I 

tested for genotyping success of a ~150 bp 

and a ~350 bp mitochondrial fragment as 

well as nuclear microsatellite loci of ~150 

bp and ~250 bp. Except of the short 

mitochondrial fragment, all markers 

perform significantly better for samples 

collected in close proximity ot the museum 

(Fisher’s exact test p < 0.05). 

 

Another significant association is found for the body size of the analyzed specimen and 

it´s utility for genotyping. The smaller a specimen is, the more likely it was suited for 

genotyping (Figure 3.5). However, this association was again only valid for the 

Naturkundemuseum in Berlin (ANOVA, Bonferroni corrected p-value p < 0.05). 

Generally, specimens from the Naturkundemuseum in Berlin are distinguished by a 

smaller body size (4.1 mm on average) than those from the Senckenberg Museum (4.5 

mm on average) (t-test, p < 0,05, Figure 3.6).  
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Figure 3.5 Association of genotyping success and average body size of the analyzed specimen for a 

350 bp mitochondrial fragment and nuclear microsatellites of ~150 bp and ~250 bp for samples from 

a) the Naturkundemuseum Berlin (N = 74) and b) the Senckenberg Museum Frankfurt (N = 105). 

For each marker type, the right bars represent positive genotyping results and the left bars negative 

ones.  Bars represent the 95 % confidence interval of the mean. The association of smaller body size 

and higher genotyping success is only valied for samples from the Naturkundemuseum Berlin 

(ANOVA, Bonferroni corrected p-value, p < 0.05). 

 

 

Figure 3.6 Average body sizes of the analyzed 

specimens from the Naturkundemuseum 

Berlin (N = 74) and the Senckenberg Museum 

Frankfurt (N = 105). Bars represent the 95 % 

confidence interval of the mean. The analyzed 

samples from the Naturkundemuseum Berlin 

are significantly smaller than those from the 

Senckenberg (t-test, p < 0.05). 
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Changes of genetic diversity during a range expansion 

The mitochondrial and microsatellite data show a progressive increase of genetic 

diversity in the Berlin area, associated with the wasp spider’s range expansion (Figure 

3.7). I find the lowest estimates of mitochondrial (nucleotide diversity π = 0.0009) as well 

as microsatellite (allelic richness = 6.99) diversity for historical populations from before 

1930. Until 1960, diversity measures increase sharply, corresponding to the beginning 

range expansion (π = 0.0024; allelic richness = 9.25). Until today, both measures have 

additionally increased, although not as steep as between 1930 and 1960 (π = 0.0026; 

allelic richness = 11.16). 

 

Figure 3.7 Changes of genetic diversity in wasp spider populations around Berlin from before the 

spider’s range expansion (≤ 1930), at the early phase of the range shift (> 1930 ≤1960) and today (> 

1960). The plots represent changes in a) mitochondrial nucleotide diversity N≤ 1930 = 41; N >1930 ≤ 1960 = 

37; N > 1960 = 130 and b) microsatellite allelic richness (N≤ 1930 = 37; N >1930 ≤ 1960 = 37; N > 1960 = 51); 

3.4 Discussion 

Factors, which affect DNA integrity in wet preserved spiders 

Historical DNA can be routinely extracted and sequenced from preserved spiders. 

However, spider DNA seems to suffer from pronounced degradation. Only short 

mitochondrial PCR fragments can be amplified in nearly 100% of samples and 

irrespective of age. Molecular studies on historical spiders should thus rely on short PCR 
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fragments, only a few 100 bp long. Such short fragments can be sufficient for taxonomic 

or phylogeographic studies (Hajibabaei et al, 2006). However, the marker type is an 

important predictor of genotyping success. Due to their high copy number, mitochondrial 

markers will perform better than nuclear ones. A specimen’s utility for a molecular 

analysis does depend on its age. But I did not observe a clear cutoff after which a sample 

will not be useful anymore, as it has been described for insects (Watts et al, 2007). Even 

an analysis of very old specimens, collected more than 100 years ago, can yield positive 

results in many cases. Interestingly, not a specimen’s age, but collection schemes may 

determine their utility for PCR and genotyping. Samples from Berlin performed much 

better in my analysis than those from Frankfurt. Spiders are usually stored in 70% 

Ethanol and kept at room temperature. Moreover, the arachnological collections in Berlin 

and Frankfurt both use and have historically used similar Ethanol denaturants (Jaeger & 

Dunlop pers. comment). Consequently, no huge differences in storage conditions 

between collections should arise. Moreover, I find a clear association of genotyping 

success and the proximity of sampling sites to the museum collection in Berlin. This 

allows to imply that the immediate treatment of a specimen right after its collection may 

have a major influence on long term DNA integrity. Specimens from the area around 

Berlin have probably been transferred to the museum shortly after their collection. From 

work on contemporary wasp spider samples, I know that DNA of these animals degrades 

very quickly, possibly due to very effective DNAses in their digestive system. A dead 

spider, which is not immediately transferred into Ethanol, will show extreme DNA 

degradation after only 24 hours (pers. observation). Many historical samples have been 

collected during long expeditions, sometimes lasting several years. Unsuitable storage of 

these specimens could have destroyed their utility for molecular work shortly after their 

collection and before they have actually been stored in their respective museum. Many of 

the historical specimens from the Berlin area have been collected by the museum’s 

curators and are thus well preserved. On the other hand, the former curators of the 

Senckenberg Museum did not sample many spider specimens around the Frankfurt area 

(Jäger pers. comment). This could explain the lack of association between proximity of 

sampling sites to the Senckenberg Museum and genotyping success. Museum collections 

should consequently aim for an immediate and proper storage of samples. Another 
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explanation for the superior quality of samples from the Berlin museum is possibly found 

in the body size of spiders. Since I discover a very strong association of small body size 

and long term DNA preservation, the tissue of a larger specimen might simply be less 

accessible for the Ethanol preservative, leading to more DNA degradation.  

 

Changes of genetic diversity during a range expansion 

The analysis of historical and contemporary populations from Berlin allows insight into 

genetic changes, associated with range expansions. The historical Berlin populations 

show a lower genetic diversity than the more recent ones, which may be due to the fact 

that it was at a range edge during historical times (Eckert et al, 2008). Possibly they have 

just been a demographic sink, maintained by immigration from southern populations 

(Kawecki, 2008). From around 1930 onwards, the genetic diversity around Berlin 

substantially increased, probably due to immigration from Eastern European lineages 

(Krehenwinkel & Tautz, 2013). This admixture possibly enabled a range shift into more 

northern latitudes. The association of increasing genetic diversity and range expansions 

has been found in many other taxa (Kolbe et al, 2004; Keller & Taylor 2010; Lucek et al, 

2010). Bottlenecked range edge populations possibly have a reduced adaptive potential 

(Pujol & Pannell 2008), which can be restored by admixture of new lineages.  

 

3.5 Conclusion 

The age of spider specimen seems to be of minor importance for their utility for DNA 

work. Instead, the immediate and proper treatment after collection and possibly the size 

may be more important. My data suggest that it is advisable to immediately place spiders 

in alcohol, or to at least remove a leg for immediate storage in alcohol for optimal future 

DNA extraction. The removal of a single leg will not alter the utility of a spider specimen 

for morphological analysis. 
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Chapter 4: Whole genome sequencing reveals genetic signatures of 

ecological differentiation during a contemporary range expansion of a 

spider species 

 

4.1 Introduction 

“Starting with Darwin and continuing until very recently, speciation has been considered 

to be usually a very slow process - perhaps requiring millions of years” (Hendry, 2009). 

Populations were assumed to gradually diverge in allopatry and accumulate 

incompatibilities, which would finally lead to reproductive isolation and speciation 

(Mayr, 1942). But as the above statement implies, this view has been challenged by 

recent research. The emergence of new species can occur within short timeframes 

(Filchak et al, 2000) and even despite ongoing gene flow (Savolainen et al, 2006). 

Divergent selection for different ecological opportunity has been suggested to drive such 

differentiation (Via, 2009). Gene flow between ecologically diverging populations would 

be only reduced for genomic regions of adaptive significance. Small islands of elevated 

divergence in the vicinity of divergently selected mutations would constitute the genomic 

footprint of such recent ecological differentiation (Via, 2009). Theory suggests that these 

islands could quickly grow in size, contributing to increasing genetic differentiation (Via, 

2012). An association of traits, involved in, e.g. mate choice to the vicinity of growing 

islands, could then culminate in reproductive isolation and speciation (Feder et al, 2012; 

Via, 2009 & 2012).  

A major obstacle to ecological divergence is the prevention of gene flow and 

recombination in genomic regions of adaptive significance. Recombination coupled with 

gene flow could effectively prevent the built up of co-adapted gene complexes, for 

example those, which associate with ecologically relevant loci (Via, 2012). On the other 

hand, gene flow does not necessarily impede adaptation. Genetic exchange has been 

identified as an important driver of adaptation in many plant- and animal species (Arnold, 

2006). Instead of waiting for new adaptive mutations to arise, selectively advantageous 

variants could be introduced into populations by secondary contact (Nolte & Tautz, 

2010).  Especially the success of biological invasions has been associated with admixture 

of formerly isolated lineages (Keller & Taylor, 2010; Kolbe et al, 2004). In the face of 
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climate change and human impact on ecosystems, such secondary contact is becoming 

increasingly likely for many species (Garroway et al, 2010; Crispo et al, 2011). This in 

turn could lead to large numbers of new invasive species and pose a problem of major 

economic importance.  

In the past years, next generation sequencing has enabled a refined view into the actual 

genomic basis of ecological differentiation with gene flow (e.g. Renaut et al, 2012; 

Nadeau et al, 2012; Roesti et al, 2012; Turner et al, 2005; Hohenlohe et al, 2012). Today, 

even screens of whole genome sequences are becoming an affordable option for 

speciation researchers (Feder et al, 2012). So far no genomic study has particularly 

considered the importance of admixture during range expansions. Here, I provide a first 

insight into these processes.  

I apply a whole-genome sequencing approach using populations of the European wasp 

spider Argiope bruennichi. Originally predominantly inhabiting the Mediterranean 

region, this species has recently expanded its range into continental Northern Europe and 

can now be found as far North as Finland (Guttmann, 1979; Kumschick et al, 2011). The 

spider’s range expansion has probably been enabled by a recent ecological niche shift and 

is associated with historical genetic admixture (Chapter 1 - Krehenwinkel & Tautz, 

2013). Here I describe the results from whole genome and transcriptome sequencing of 

population samples from the historical native range in Portugal and Italy and the range 

expansion front in Sweden and the Baltic states. In addition, I include sequences from 

outgroup samples from five locations along the Japanese Islands.  

Currently, no spider genome has been fully sequenced. I thus first present an initial draft 

genome and transcriptome of the species and some general genomic features. Then, I 

discuss genomic differences between native and invasive populations. I initially focus on 

an association of admixture and increasing genetic diversity in Northern Europe with the 

species’ range expansion success. I examine which traces of divergence the range 

expansion left in the genomes of invasive wasp spider populations. I then discuss this 

genomic differentiation in regard to recent adaptation and demographic influences. 

Finally, I confirm a selection of candidate loci for reciprocal fixation between Northern 

and Southern Europe by PCR and sequencing.  
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In summary, I find a significantly increased genome wide genetic variation in expanding 

Northern European wasp spider populations, possibly as the result of recent admixture. 

At the same time, I identify a very low genetic divergence between Northern and 

Southern Europe. Despite this limited divergence, I discover genomic islands of high 

differentiation between expanding and native populations. The PCR screen shows that the 

examined candidate loci might indeed have been subject of recent selection. 

 

4.2 Material and methods 

Generation of a reference transcriptome from an ontogenetic series 

In order to cover as many genes as possible from the wasp spider’s genome, I generated a 

reference transcriptome based on an ontogenetic series of RNA samples. I prepared four 

different total RNA extractions using the Qiagen RNeasy Kit according to the 

manufacturer’s protocol (Qiagen, Hilden, Germany). In order to avoid DNA 

contamination on columns, a DNAse digestion step was carried out using Qiagen RNase-

Free DNase Set, according to the manufacturer’s protocol. Extractions were prepared 

from a whole adult male and female specimen. In addition, one extraction was carried out 

with 20 eggs and one using 20 spiders in the first nymphal instar. Female spiders are 

usually well nourished and their opisthosoma is filled with eggs and digested food 

remains. I consequently extracted the female in two separate reactions, one containing the 

prosoma including the legs and one containing the opisthosoma. All extractions were 

done with specimens from a population from Plön, Schleswig Holstein, Germany. The 

extraction series thus covered early and late developmental stages, as well as sex specific 

differences in gene expression. The RNA extracts were sent to the Center for Genomics 

at the University of Cologne, where tagged cDNA libraries with an average insert size of 

250 bp were prepared. These libraries were then sequenced on one lane of an Illumina 

HiSeq 2000 (Illumina, San Diego, USA) according to the manufacturer’s protocol.  

The raw data was quality trimmed using PoPoolation (Kofler et al, 2011) by using a 

minimum quality of 20. The quality was checked using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The paired reads were then 

assembled using SOAP de Novo (Li et al, 2009b) with a maximum read length of 100 bp. 
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I included a mapping and a scaffolding step. I tried assemblies of all four separate 

libraries and at distinct k-mer sizes (19-32). The best assembly was generated using a 

pooled dataset of all four libraries and a k-mer size of 25.  

Subsequently, I used CD-HIT-EST (Li & Godzik, 2006; Fu et al, 2012) with a similarity 

cutoff of 90% to remove redundant contigs from the de novo assembly. Last, the Galaxy 

server (Goecks et al, 2010) was used to remove contigs and scaffolds of less than 250 bp 

from the final assembly. I included this filtering step to remove a large part of contigs, 

which corresponded to very few assembled reads. The final reference dataset of 

transcripts was blasted (using BLASTX with an E-value cutoff of 10
-3

) using Blast2Go 

(Conesa et al, 2005). I then separately aligned the reads for every ontogenetic stage onto 

the reference transcriptome using CLC genomics workbench (CLC Bio, Cambridge, 

USA), with a mismatch cost of 1, insertion cost of 3 and a deletion cost of 3. The RPKM 

values of the resulting four alignments files were normalized using quantile 

normalization (Bolstad et al, 2003) and each dataset filtered for RPKM values of above 

0.5. This value served as a cutoff for reliably counting a transcript as expressed (as e.g. in 

Strout et al, 2011). I then calculated the number of uniquely expressed transcripts per 

ontogenetic stage.  

 

Generation of a wasp spider draft genome  

At present, no spider genome has been sequenced. In order to provide a suitable reference 

for my study, I consequently had to determine the genome sequence of the target species 

Argiope bruennichi. The quality of a de novo assembly can be greatly improved by 

reducing the amount of heterozygous loci, e.g. by sequencing DNA of an inbred 

specimen (Vinson et al, 2005). However, as I did not have inbred lines, I relied on a wild 

caught specimen from a very homozygous population of the wasp spider on the island of 

Madeira.  The spider was collected in August 2012 (near Camacha, 32.7°N, -16.8°E) and 

brought to the laboratory alive. I tried to maximize the DNA yield and integrity and used 

the whole spider for extraction. In previous DNA extractions, I experienced very fast post 

mortem DNA degradation in spiders. Consequently, I carried out the DNA extraction 

using the living specimen. DNA was extracted using the Archivpure blood and tissue kit 
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(5 PRIME, Hamburg, Germany). An RNA digestion step was included using RNase A 

solution (7000U/ml) (5 PRIME, Hamburg, Germany). The extractions were carried out 

according to the manufacturer’s protocols. The spider was first anesthetized using carbon 

dioxide. Then it´s prosoma was removed using a sterile scalpel blade, cut in two pieces 

and each transferred into a 2 ml Eppendorf tube. The tissue was disrupted at 30 hz for 30 

s on a Qiagen tissuelyzer (Qiagen, Hilden, Germany). The spider´s opisthosoma was not 

used for extractions, as it contains the hindgut and large parts of the digestive system, 

leading to impure DNA.    

DNA integrity and purity was checked on a 1% agarose gel and using a Nanodrop 

(PEQLAB, Erlangen, Germany). A paired end DNA library with an average insert size of 

250 bp was prepared by the Center of Genomics at the University of Cologne. The library 

was sequenced on one lane of an Illumina HiSeq 2000 to an approximately 20-fold 

coverage and according to the manufacturer’s protocols (Illumina, San Diego, USA). I 

did not know the exact genome size of Argiope bruennichi, and relied on available data 

for its sister species Argiope aurantia and other members of the genus Argiope. All of 

them have similar genome sizes of about 1.5 Gb (Gregory, 2006). The haploid number of 

chromosomes for Argiope bruennichi is known to amount to 13 (Araujo et al, 2011). 

The data was quality trimmed as described above for the transcriptomes. The trimmed 

data was then assembled using CLC genomics workbench, with a word size of 45, a 

bubble size of 98, a minimum contig length of 1000 and including a scaffolding step. The 

resulting DNA assembly was aligned to the previously generated reference transcriptome 

using BLAT (Kent, 2002) under default settings and at a similarity threshold of 98%. I 

subsequently filtered all hits of genomic DNA into transcripts of more than 100 bp 

length. I then assigned the according transcript names to each genomic hit, leading to 

combined names of transcript and genomic contigs. As a transcript usually consists of 

several exons separated by introns, the same RNA sequence can map into different 

stretches of DNA. Assuming that all exons of a gene are located in close distance to each 

other, DNA fragments can be combined to linkage groups. This way, the complexity of 

an assembly can be reduced.  
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Estimation of genomic divergence during a range expansion 

I analyzed specimens from several European and Asian populations, to investigate 

genomic divergence during the wasp spider´s range expansion. European spiders were 

sampled between 2010 and 2012 from each of two regions of Northern (Sweden and 

Baltic states) and Southern Europe (Portugal and Italy). While the latter sampling sites 

represent the historical native distribution of the spider, the first correspond to the current 

range edge in Northern Europe with populations established since less than ten years. I 

sampled five specimens from three populations in each of those four regions, resulting in 

15 specimens per region and 60 spiders in total. DNA was extracted from single animals 

as described above for the Madeiran reference specimen. The DNA quantity was then 

measured using a ND-3300 Fluorospectrometer (PEQLAB, Erlangen, Germany) 

according to the manufacturer’s protocol and equal DNA amounts of each specimen 

pooled for the 15 specimens per region. Each DNA pool was sequenced on one lane of an 

Illumina HiSeq 2000, as described above. Moreover, genomic DNA of five Japanese 

specimens from distinct populations from Northern Honshu to the Southern Pacific 

Amami Oshima Islands was sequenced on one HiSeq 2000 lane (see Figure 4.1 for the 

collection sites). 

The paired end reads were trimmed using PoPoolation as described above and then 

aligned to the Madeiran reference genome using Bowtie2 under default alignment 

settings (Langmead & Salzberg, 2012). The SAMtools (Li et al, 2009a) package was used 

to convert the SAM alignment files into sorted BAM files with a minimum alignment 

quality of 2. The mpileup command in SAMtools was applied for SNP calling from the 

generated alignments, using a maximum per BAM file depth of 200 and with disabled 

indel calling. PoPoolation and PoPoolation2 (Kofler et al, 2011) were then used to infer 

genome-wide nucleotide diversity and genetic differentiation between Northern and 

Southern European as well as Japanese populations. Allele frequency differences were 

calculated for each variable position in the genome alignment, while a pairwise FST and 

nucleotide diversity were estimated using sliding windows of 5000 bp. The analyses were 

run with a minimum quality per base of 20, at least 0.5 fold coverage per window and a 

minimum and maximum coverage of 10 and 50, respectively. I generated a distance 

matrix, based on the genome-wide averaged FST. This matrix served to construct a 
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neighbor joining tree for the studied populations using PHYLIP (Felsenstein, 1989). In 

addition, I generated mean values of nucleotide diversity for each population. 

Theory predicts that divergent selection will initially manifest itself in genomic islands of 

differentiation between ecologically diverging populations (Via, 2012). These islands 

correspond to ecologically relevant alleles and their linked, neutral variation. To gather a 

first insight into genomic divergence, I chose to filter the top percentile of divergent loci, 

based on the sliding windows of FST. I filtered genomic contigs with regions of at least 

5000 bp of elevated divergence from the genome assembly. I applied this filter for a 

pairwise comparison of Northern and Southern European populations (based on the 

means of Baltic and Swedish as well as Italian and Portuguese populations), which 

correspond to two ecologically divergent geographic regions.  A recent fixation of 

adaptive variants by selection will likely reduce genetic variation around the selected 

allele (Biswas & Akey, 2006). Consequently, I crosschecked the filtered genomic regions 

for a reduction in nucleotide diversity.  

An admixture of Asian and European populations has previously been shown to be 

involved in the range expansion of Argiope bruennichi (Chapter 1 - Krehenwinkel & 

Tautz, 2013). This Asian introgression seems to be primarily limited to invasive Northern 

European spiders. I consequently used the genomic data to estimate the amount of 

introgression from Japanese alleles into the European genepool. For that reason, I used 

the allele frequency data, to filter contigs of complete differentiation between European 

and Japanese populations.  

 

Figure 4.1 Sampling sites of the specimens, which were used for generating whole genome sequences 

of Palearctic wasp spiders. The green dot corresponds to the Madeiran reference specimen, the 

yellow ones to the five Japanese samples. Sampling sites for Northern and Southern European DNA 

pools are highlighted in black and red, respectively. The map was generated using GenGis (Parks et 

al, 2009).  
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A PCR based screen for range-wide genetic differentiation in genomic candidate loci 

I assume that an introgression of genetic material from East Asia could have conferred 

adaptive variation to Northern European wasp spider populations (Krehenwinkel & 

Tautz, 2013). Selection and migration should interact during this introgression, leading to 

a clinal pattern of Asian allele frequency across Europe. Argiope bruennichi is a high 

gene flow species, which is expected to flatten this genetic gradient. Very strong 

selection on the other hand, could override the effect of gene flow and steepen a cline 

(Futuyma, 2005; Sotka & Palumbi, 2006). I tested a subset of genomic candidate loci for 

clinal allele frequency patterns across Europe. These loci were sequenced for a selection 

of individuals from European populations. Candidate regions were chosen according to 

the following criteria: 1. They showed a pronounced genetic differentiation between 

Southern and Northern European populations over at least 5 kb. 2. A reduction of 

nucleotide diversity could be observed for the candidate region in Northern European 

populations, or both Northern and Southern European ones. 3. The candidate SNP was 

largely fixed between Southern European and East Asian spiders; it thus probably 

introgressed into Northern European populations from East Asia. The respective genomic 

regions were amplified in a multiplex PCR and genotyped as described in chapter 1. 

Primers were designed on an alignment of Japanese and European consensus sequences 

for the respective genomic contigs and using the Primer3Plus software (Untergasser et al, 

2007). The consensus sequences were generated from BAM alignment files and using the 

50% consensus option in Geneious (Biomatters, Auckland, New Zealand). In addition, I 

used published data from seven SNP loci, which were largely fixed between East Asian 

and European populations (see Krehenwinkel & Tautz, 2013 and chapter 1). This data 

served as a neutral background control for the potentially selected genomic candidate 

loci. I analyzed samples from several geographic regions over the European range of 

Argiope bruennichi and from two Japanese populations (see Figure 4.11 for collection 

sites). Allele frequencies for each population were plotted against geographic location 

and inspected for clinal patterns. As Argiope bruennichi is invading Continental climate 

zones in North-Eastern Europe, longitude alone will not suffice to show a clear clinal 

genetic pattern. Populations from e.g. the Balkans are expected to share alleles with those 

from Spain, although they originate from very distinct longitudes. I accounted for this 
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Northeastern ecological transition, by generating average measures for longitude and 

latitude.  

 

4.3 Results 

Reference transcriptome and - genome 

After quality trimming, the ontogenetic RNA sequencing yielded a total of 28,247,869 

paired reads for the eggs, 48,319,049 for the spiderlings, 42,878,220 for the male and 

38,369,736 for the female dataset. 622,782 reads of the eggs, 802,297 for the female, 

852,624 for the male and 883,171 for the spiderlings were removed during quality 

trimming. Even before quality trimming, the sequence quality was generally very high, 

with the majority of bases having a Phred score of above 30 (Figure 4.2).   

 

Figure 4.2 Sequence quality (Phred scores) from the FastQC  analysis for an RNA-seq library, before 

and after quality trimming using PoPoolation. 

 

The Madeiran reference specimen yielded 180,119,468 paired DNA reads of ~100 bp to 

each side. The sequencing of pooled DNA yielded 177,066,940 paired reads for the 

Swedish, 160,091,602 for the Baltic, 170,432,904 for the Portuguese and 142,163,319 for 

the Italian populations. The Japanese samples yielded between 33,480,135 and 

45,529,677 paired reads per library. The sequence quality was generally very high, 

comparable to the RNA-seq data (Figure 4.3).  
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Figure 4.3 Phred quality scores from the 

FastQC analysis for the untrimmed genomic 

DNA library of the Madeiran reference 

specimen.  

 

The initial transcriptome assembly 

yielded more than 150,000 contigs in 

approximately 130 million bases. After 

filtering redundant contigs with CD-

HIT-EST and application of a 250 bp 

size cutoff, the final assembly contained 87,262 transcripts. Only 20,764 of these yielded 

a significant BLAST hit with genes from other organisms.  

Using a minimum RPKM value of 0.5 per sample, 58,627 of these transcripts were 

sufficiently covered in at least one ontogenetic stage. 33,973 transcripts were expressed 

in all ontogenetic stages, while 24,654 were unique to a certain developmental stage. The 

smallest number of unique transcripts was identified in first instar nymphs (4.654), while 

the largest number was observed for eggs (7,490). The number of uniquely expressed 

male (5,154) and female (7,356) genes is intermediate (Figure 4.4). The average GC-

content of the transcriptome assembly is 32 % GC.  

 

Figure 4.4 Numbers of uniquely expressed transcripts for different ontogenetic stages of the wasp 

spider. A considerable amount of genes is only expressed at a certain ontogenetic stage. 7,490 

transcripts are exclusively found in developing eggs, 4,654 genes are only expressed in first instar 

nymphs, 7,356 in the female and 5,154 only in the male.  
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The reference genome assembly amounted to roughly 1.4 gigabases in 240,178 contigs 

with an average contig length of 6,055 bp, an N50 value of 11,151 bp and a maximum 

contig size of 201,766 bp (Table 4.1). In comparison to the RNA data, I find a 

considerably lower GC-content in the genomic DNA (29 % GC). Assuming, that the total 

assembly size is comparable to the actual genome size, the Madeiran DNA sequencing 

reads amount to an approximately 20-fold coverage. Using BLAT, about 77,000 

transcripts could be mapped into nearly 130,000 of these contigs. This allowed to 

combine previously separated contigs and reduced the total amount of contigs to 

approximately 200,000.  

 

Table 4.1 General sequence statistics for the genomic DNA and RNA assemblies 

 

RNA seq DNA 

Assembly software SOAP de Novo CLC genomics workbench 

Total size of assembly 130,769,830 1,454,196,420 

Number of contigs 165,709 240,178 

Mean contig size 798 6,055 

Longest contig 35,942 201,766 

N50 2,055 11,151 

GC-content 32 29 

 

Estimation of genomic divergence during a range expansion 

After mapping all genomic population pools to the Madeiran reference assembly, I 

measured genome-wide nucleotide diversity using PoPoolation. With an average π of 

0.016 Japanese spiders carry the highest diversity, while the lowest diversity is found in 

Mediterranean populations (π = 0.005 in Portugal and π = 0.006 Italy respectively). 

The invasive Northern European populations are distinguished by a significantly higher 

diversity than their native Southern European relatives (π = 0.008 on average for 

Swedish and Baltic populations) (Figure 4.5, ANOVA, Bonferroni posthoc test, p < 

0.05). This result is especially noteworthy, as these populations are located at the species´ 

northern range edge and have been found only a few years ago. 
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Figure 4.5 Averaged genome-wide 

nucleotide diversity for Palearctic 

wasp spider populations. Each plot 

shows the mean of ~150,000 separate 

sliding windows of 5,000 bases over 

the whole genome. A clear increase of 

diversity from Southern to Northern 

Europe and then towards Japan is 

evident. The difference between 

Northern and Southern Europe, as 

well as Europe and Japan is 

significant (ANOVA, Bonferroni 

posthoc test, p < 0.05). Bars around 

the mean represent the 95 % 

confidence interval.  

 

 

 

 

A genome-wide comparison for allele frequency differences yielded 32,000,000 

polymorphic nucleotides (SNPs) for all studied populations. Only about 1 % out of these 

are completely fixed between all European and Japanese populations. The divergence 

between Japan and Europe is biased towards southern European populations. Southern 

European populations are more divergent from Japan by roughly 4 % fixed differences on 

average. This corresponds to 89,306 genomic contigs. Northern populations are different 

from Japanese in only about 2 % of variable SNPs and 49,812 contigs. I find a large 

overlap of differentiated regions between Northern and Southern Europe and Japan 

(Figure 4.6). Northern European populations are distinguished by very few contigs, 

which exclusively distinguish them from Japanese ones (6,075). Southern European 

populations, on the other hand, carry a large amount of uniquely differentiated contigs 

(45,569). These numbers correspond to roughly one completely fixed difference between 

all European and Japanese populations per kilobase (supplementary figure 4.1). To 

summarize, Northern European spiders are distinguished from Southern ones by many 

more shared alleles with East Asian spiders.  
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Figure 4.6 Number of contigs, which 

contain at least one completely fixed SNP 

between European and Japanese 

populations. The left Venn shows 

divergent contigs between Southern 

European and Japanese (45,569) and the 

right one between Northern European and 

Japanese populations (6,075). I also find a 

considerable overlap, of divergent contigs 

between all European and Japanese 

populations (43,737). 

 

 

 

A comparison of genome-wide pairwise FST confirms the observed pattern of European 

and Japanese divergence (Figure 4.7). Northern European spiders are less divergent from 

Japanese (FST = 0.29) ones than their Portuguese and Italian relatives (FST =0.32). As 

these FST values indicate, Europe and Japan are not completely divergent, but still share 

a considerable fraction of alleles (supplementary figure 4.1). With an FST of just 0.1 on 

average, European populations appear very closely related to each other. Native 

European (Portuguese and Italian) populations form one monophyletic group (FST = 

0.09), with the two Northern European populations basal to this clade. Northern 

European populations are most closely related to each other (FST = 0.07). Northern and 

Southern European populations are distinct by an FST of 0.1 on average.  

 Italy

 Portugal

 Sweden

 Baltic States

 Japan

0.05  

Figure 4.7 FST-based neighbor joining phylogeny for European and Japanese wasp spider 

populations. Colors correspond to those in the sampling map (Figure 4.1). 
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Despite a low average genome-wide FST, Northern and Southern European populations 

are distinguished by several genomic regions of very high differentiation. The top 

percentile of divergent regions between Northern and Southern Europe contained 1712 

contigs and spanned an FST range from 0.24 to 0.60. However, a part of these regions 

showed an overlap with contigs, which belonged to the most divergent ones between 

Portuguese and Italian populations. After filtering these, 1102 contigs remained, which 

showed a high differentiation between Northern and Southern Europe. In parallel to the 

increased FST, I find a reduction of nucleotide diversity in those candidate contigs in 

Southern Europe (average π = 0.004 for the candidate regions vs. π = 0.006 for the 

whole genome) and Northern Europe (average π = 0.006 for the candidate loci vs. π = 

0.008 for the whole genome). The parallel increase of genetic differentiation and drop of 

nucleotide diversity is exemplarily shown for one candidate contig in Figure 4.8. 

However, it should be noted that we did not always observe a simultaneous decrease of 

nucleotide diversity in Northern and Southern European populations. For some contigs, a 

nucleotide diversity decrease was observed only Northern or Southern Europe.  

 

Figure 4.8 Patterns of genomic divergence and diversity between Southern and Northern European 

populations for a candidate contig. The left plot shows a steep increase of FST values over several 

kilobases for the candidate region (blue line) and in comparison to the average FST (red line). The 

right graph presents the same genomic region, but nucleotide diversity is plotted. A decrease of 

nucleotide diversity (blue line for Northern Europe & green line for Southern Europe) is evident in 

comparison to the genome-wide average (red lines). The windows of increased FST and decreased 

nucleotide diversity do clearly overlap in this example. Such an overlap of reduced diversity is, 

however not found for all diverged contigs.  
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A visual inspection of divergence patterns revealed two types of candidate contigs. The 

first shows a sudden and steep increase of divergence after an initial sequence stretch of 

low differentiation. The latter is distinguished by a high rate of divergence over the whole 

contig sequence. These two patterns are approximately equally prevalent among my 

candidate contigs and show a continuous transition into each other (Figure 4.9).  

 

Figure 4.9 Different patterns of divergence, which I observe for candidate contigs between Northern 

and Southern Europe. The left plot shows a steep increase and then drop of FST (blue line) in 

comparison to the genome-wide average (red line), giving the appearance of an island.  The right plot 

shows an elevated FST over the whole coting sequence. And the graph in the middle represents a 

transition of those two states.  

A PCR based screen for range-wide genetic differentiation in genomic candidate loci 

An inspection of candidate contigs for selective sweeps of introgressed haplotypes in the 

integrative genome viewer IGV (Robinson et al, 2011) revealed many shared SNPs 

between Japanese and Northern European populations (Figure 4.10, supplementary figure 

4.2). The following PCR screen is based on these alleles in four such candidate contigs.  

 

 

 

 

Figure 4.10 Integrative 

genome viewer tracks of 

one candidate contig for 

divergence between 

Northern and Southern 

Europe. The divergence 

between Baltic and 

Portuguese populations 

is based on shared SNPs 

with Japanese spiders.  
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I screened four genomic candidate SNPs in 200 specimens from 20 Palearctic populations 

(Figure 4.11). The respective contigs shared a pronounced FST between Northern and 

Southern Europe, and reduced nucleotide diversity compared to the genome wide 

average. Three of them map into a transcript with a significant BLAST hit (see Table 

4.2).  

Table 4.2 Genetic divergence, diversity and BLAST hits for the four genomic candidate contigs.  

  

Average 
FST 

Average nucleotide diversity π 

  Name Outlier contig 
 North.-
South. 

Northern 
Europe 

Southern 
Europe 

BLAST hit GI No. 

G1 C609506_contig_52661 0.32 0.0013 0.0004 Hypothetical protein   328714313 

G3 scaffold30462_contig_60388 0.39 0.0019 0.0004 
Dentin matrix 

protein   241608386 

G4 C441899_contig_75705 0.43 0.0017 0.0004 NA NA 

G7 C601208_contig_38174 0.36 0.0031 0.0014 Cysteine proteinase  301103674 

 

The SNP genotyping for the candidate loci revealed Japanese specimens to be mostly 

fixed for their respective diagnostic allele. The frequency of the four genomic candidates 

then decreases from Northeastern to Southern European populations in a steep clinal 

pattern (from 82 to 0 %). Longitude and latitude both seem to be involved in building up 

this frequency gradient. Using information for longitude and latitude, I find a less noisy 

clinal pattern (Figure 4.12). The emerging gradient approximates a transition from 

Southern and Western European Mediterranean and Oceanic climates towards 

Northeastern European Continental climate zones (Peel et al, 2007). While the frequency 

of Asian alleles is very low in Mediterranean and Oceanic populations, it quickly rises in 

Continental Europe. Populations from Berlin and Brno, which approximate the transition 

between both climate zones, are distinguished by an intermediate allele frequency (39 % 

and 34 %).  

Using the background dataset of seven SNP loci, I find a similar pattern of decreasing 

Asian allele frequencies towards Southern Europe. But the cline is much shallower, 

slowly increasing from around 5 % in Western Mediterranean to 21 % in Northern 

Continental Populations and up to 23 % in Central Asia. The allele frequency then peaks 

in Japanese populations with 98-99 %. A comparison of the slopes for the four candidate 

loci and background SNP shows a less steep clinal pattern within Europe (slope 0.02 vs. 

0.04). The background SNPs follow a two-step cline. A first, shallow cline is evident 
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from Southern - towards Northeastern Europe. The steep cline, which is observed for the 

four genomic candidates, is then shifted towards Central Asia.  

 

Figure 4.11 Sampling locations of Palearctic populations, which were PCR-genotyped for four 

genomic candidate loci for selective sweeps. The map was generated using GenGis (Parks et al, 2009).  

 

 

Figure 4.12 Average fraction of Asian alleles for Palearctic wasp spider populations, genotyped for a 

set of four genomic candidate loci (red) or seven random background SNPs (black). Each dot 

corresponds to the mean allele frequency of 10 genotyped specimens. The left plot shows allele 

frequency plotted against geographic longitude. The right graph accounts for a genetic change in 

northeastern direction, by plotting allele frequencies vs. the mean of latitude and longitude. 

 

4.4 Discussion 

Reference genome and transcriptome 

Considering the total number of only 13 chromosomes (Araujo et al, 2011) for Argiope 

bruennichi, my genome assembly of ~200.000 contigs is far from being complete. Using 

further mate pair information, which bridges long stretches of DNA, might however 

result in a significant improvement (Schatz et al, 2010). An additional linkage mapping 

will eventually be necessary, to group all major scaffolds onto chromosomes. With 
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around 1.4 gigabases, the species has a comparably large genome. Spider genomes seem 

generally to be quite large, usually above one billion basepairs (Gregory & Shorthouse, 

2003). The observed higher GC-content for the transcriptome is not surprising and is 

found in most animal and plant genomes. Moreover, my data clearly shows the 

importance of an ontogenetic series for transcriptome reconstructions. Using only one 

ontogenetic stage or sex, a large fraction of the species’ actual genes would not have been 

recovered.  

 

Genetic structure, - diversity and introgression  

The genomic data is well explained by the Palearctic-wide phylogeography of the wasp 

spider (see chapter 1 & 2). The deeply divergent Asian and European clades have 

probably been isolated since the last glaciations, leading to a considerable amount of 

nucleotide differences (chapter 2). The highly increased nucleotide diversity, which I 

observe for the Japanese population, could be explained by a much larger glacial 

refugium in the Far East. The importance of East Asia as major glacial refugium has been 

already shown in several species (e.g. Hung et al, 2012).  

East Asian spiders did apparently not undergo pronounced reductions in population size 

during the last glaciations, while European ones have possibly experienced bottlenecks 

(chapter 2). At least in part, however, the elevated diversity for Japanese samples might 

also be explained by a different sampling scheme, which I applied for theses spiders. My 

sampling of Japanese specimens aimed to cover a large part of the islands, includes 

samples from five distant populations, and thus probably artificially increases diversity.   

After their glacial bottleneck, European wasp spiders recolonized the Mediterranean 

region from their Caucasian refugial area (chapter 1). This probably led to an additional 

reduction in genetic variation and explains the low diversity in Southern Europe. Such 

genetic impoverishment is well known to reduce the adaptive potential of a population 

(Pujol & Pannell, 2008). Southern European populations might have consequently lacked 

the evolutionary potential to expand their range into continental Northern Europe.  

In this regard it is quite interesting that the currently ongoing range expansion is 

associated with a distinctive introgression of Asian alleles into Northern Europe. This 
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introgression of Asian genetic material is probably causing the pronounced increase of 

genetic diversity in Northern European populations. Moreover, an influx of Asian alleles 

could have supplied new genetic variation to adapt to new environmental conditions at 

the former range edge and enable a niche shift.  

Interestingly, the hybridization with Asian spiders seems to be largely limited to the 

invasive Northern European range of the species. This observation corresponds well to 

the assumption that hybridization and admixture will unfold their adaptive value only in a 

newly colonized ecosystem. For a well-adapted population from the range center, 

hybridization might lead to swamping, push the population form its adaptive peak and 

would thus be probably selected against (Verhoeven et al, 2011).     

But even in invasive Northern European populations, the amount of Asian alleles, 

entering the European gene pool, is very limited. With an averaged FST of 0.1 the 

invasive European spiders are still very closely related to their Southern European 

relatives, while they share much less genetic variation with East Asia. This highlights a 

mixed blessing of hybridization even in a newly colonized habitat. The divergent Asian 

and European populations might have accumulated many genetic incompatibilities during 

their long isolation (Presgraves, 2010). Loci involved in reproductive isolation, will not 

cross between different populations and introgression will be limited to selectively 

neutral or adaptive genomic regions (Arnold & Martin, 2009). This possibly allows 

Northern European spiders to keep most of their European genomic ancestry. On the 

other hand, the data could just represent a snapshot in time of an ongoing process of 

introgression and genomic replacement. Hybridization of distinct species might 

eventually culminate in assimilation of one lineage by the other (Rhymer & Simberloff, 

1996). Previous analyses have shown that the fraction of Asian alleles in Northern 

Europe has been increasing since about 100 years (Krehenwinkel & Tautz, 2013). This 

process could still be ongoing, leading to a step-wise gain of Asian ancestry in Northern 

Europe.  

Genomic divergence during a recent range expansion 

Northern and Southern European lineages of the wasp spider have genetically diverged 

since only about 100 years. Nevertheless, the expanding spiders have probably undergone 
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an ecological niche shift, which enabled their spread into colder continental climate zones 

(Krehenwinkel & Tautz, 2013). Considering the short time period of separation, the 

expected genomic signature of such recent divergence would be islands of elevated 

differentiation in an otherwise undifferentiated genomic background (Via, 2012). Such a 

pattern of differentiation has already been shown to be directly involved in cold 

adaptation of eukaryotic microorganisms (Ellison et al, 2011). Genomic islands are 

expected to start from rather small blocks of DNA around adaptive nucleotides, creating a 

genome-wide mosaic of divergence (Smadja et al, 2008). The association of further loci 

of only modest adaptive importance to such divergent regions can then lead to rapid 

growth of genomic islands to blocks of several million bases. This process was termed 

divergence hitchhiking (Via, 2012; Feder et al, 2012). Considering the very young 

divergence of wasp spider lineages, I would still expect rather small regions of 

divergence. On the other hand, I find recent Asian introgression to be involved in the 

species´ range shift. If adaptive variation is introduced by hybridization, it will initially 

be present in very large, introgressed blocks, before recombination can break it down. A 

recent study in mice showed introgressing blocks to be of several hundred kilobases on 

average (Staubach et al, 2012). The comparatively small size of my genomic contigs is 

still a limiting factor for the analysis. A more detailed view on the surrounding regions of 

each contig would be desirable to gather a significant understanding of genetic variation 

around possibly selected loci. In fact, the observed divergent contigs might actually be 

part of recently hitchhiked blocks of many megabases (Michel et al, 2010). However, I 

find several small divergent regions of only few kilobases. A possible explanation for 

these comparatively small candidate genomic islands in my data is selection from 

standing genetic variation (Barrett & Schluter, 2007). Adaptive nucleotides from standing 

variation have usually been subjected to many generations of recombination and might 

even have independently arisen several times. A sweep around these variants would 

consequently leave a smaller and less steep window then a hard sweep on a newly arisen 

mutation (Barrett & Schluter, 2007). The introgressing Asian genetic variants might have 

historically recombined with European genomes, before entering the Northern European 

gene pool. East Asian and European lineages meet in Central Asia, from where Asian 

genetic material has been entering the Russian steppe since at least 100 years 
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(Krehenwinkel & Tautz, 2013). The continental steppe regions of Southern Russia offer 

similar climatic conditions, like the currently colonized Northern European wasp spider 

habitats (Peel et al, 2007). Potentially adaptive Asian variants could have gone through a 

filtering process in Central Asia and Russia, before entering Europe. Many generations of 

recombination might have broken down initially large blocks of Asian DNA and possibly 

pre-packed it into adaptive complexes. Moreover, the observed regions of divergence 

could be located in genomic hotspots of recombination (Myers et al, 2005). A vastly 

increased recombination frequency around these regions could have quickly led to the 

observed genomic blocks. However, a high recombination rate might prevent the 

establishment of co-adapted gene complexes and foil adaptation in the first place (Via, 

2012). Signatures of genomic divergence are most often observed in regions of low 

recombination (Nachman & Payseur, 2012). 

Apart from a focus on single loci contributing to evolutionary change, one has to consider 

the possibility of multilocus adaptation. Many subtle allele frequency changes between 

Northern and Southern European populations could enable adaptation (Pritchard & di 

Rienzo, 2010) and successful range expansion. Based on my dataset of very closely 

related populations, I currently cannot rule out this pattern, nor can I confirm it. A 

parallel screen for allele frequency changes in wasp spider population along similar 

environmental gradients might help identifying such adaptive alleles. East Asian 

populations, which colonize a climatic gradient from the tropical South of China up to 

Southern Siberia (Guttmann, 1979), will probably be well suited candidates for that 

purpose. 

And last, the observed genomic changes between Northern and Southern Europe do not 

need to have any adaptive explanation. Demographic processes do not necessarily act 

evenly on each part of the genome and could consequently mimic islands of adaptation 

(Noor & Bennet, 2009). A parallel test, with different populations under the same 

selective pressure will help disentangling ecological from demographic responses 

(Freeland, 2005). By using each two populations from Northern and Southern Europe for 

my analysis, I am comparing potentially independent evolutionary events. However, 

these populations are still very closely related. A common bottleneck in the ancestors of 
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current Baltic and Swedish spiders could have easily affected the current genomic make 

up of both. 

 

Clinal allele frequency variation over an environmental gradient 

While moving from the Mediterranean region towards Northeastern Continental Europe, 

climatic conditions do not abruptly change. Instead, they transform gradually from e.g. 

warm to very cold winters. The genomic footprint of adaptation to such an environmental 

gradient could constitute a genetic cline of increasing allele frequencies. A mutation 

conferring, e.g. cold tolerance, could be fixed in Northern- and absent from Southern 

Europe. At the same time, intermediate allele frequencies or heterozygote genotypes 

might be advantageous in climatic transition zones, where the severity of winter cold is 

not predictable (Futuyma, 2005). In the absence of gene flow and if one homozygote 

genotype is favored by selection, a genetic cline is expected to occur in the form of a 

step. This even holds true for a gradually changing environment (Futuyma, 2005). 

However, no effective geographic barriers seem to disrupt gene flow in the wasp spider’s 

European range, leading to high genetic homogeneity (Krehenwinkel & Tautz, 2013). 

Selection for adaptive variants thus needs to counter the effects of migration. Such 

interplay of gene flow and selection will result in a less steep clinal pattern of allele 

frequencies. This is especially true for a highly dispersive species like Argiope 

bruennichi. The higher the homogenizing effect of gene flow and the less selection is 

acting on an allele, the less pronounced a genetic cline is (Sotka & Palumbi, 2006). All 

the four screened candidate loci show a pronounced clinal pattern of allele frequencies 

over Europe. This is especially true in comparison to the seven analyzed background loci, 

which increase in a comparably shallow manner. Interestingly, the observed clines are 

located in the climatic transition zone between Northern Continental to Oceanic and 

Mediterranean climate zones (Peel et al, 2007). Selection for adaptation to these climates 

might consequently shape the clines. Argiope bruennichi occurs in huge populations 

sizes, with a near complete colonization of Europe (Kumschick et al, 2011). A role of 

genetic drift in affecting the shape of the genetic clines is thus unlikely.  
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I cannot assign the direction of selection in this European cline. Asian alleles could be 

adaptive in Northern Europe, but might also be associated with genetic incompatibilities 

and selected against in Southern Europe. Theoretically both these assumptions could hold 

true (Sotka & Palumbi, 2006). In this regard, the observed shifted clinal pattern for the 

seven background loci is particularly noteworthy. The shift might actually indicate an 

adaptive importance for the four candidate loci in Northern Europe. Introgression of the 

background loci, on the other hand, could be deleterious even in Continental Northern 

Europe. Interestingly, one of the screened candidates maps into a cysteine proteinase 

gene. These proteins are known to be involved in cold tolerance in plants (Grudkowska & 

Zagdańska, 2004). Moreover, we find a cysteine proteinase gene to be associated with 

differential gene expression between Northern and Southern European wasp spiders (see 

chapter 5).  

 

4.5 Outlook  

First of all, the connectedness of my current genome assembly will have to be improved. 

The inclusion of long distance mate pairs is currently under way and will probably help 

to join contigs, separated by moderately repetitive sequences (Schatz et al, 2010). In 

addition, I have bred more than 1000 F2 spiders for the generation of a linkage map. 

Using these animals’ DNA for high throughput genotyping, I might be able to sort the 

scaffolded contigs into linkage groups. Ideally, these would correspond to the species’ 13 

chromosomes. Linkage mapping might additionally help to clarify the position of 

candidate regions, which could be tightly linked or scattered throughout the genome.  

Moreover, I will have to develop an appropriate population genetic model to quantify the 

actual amount of outlier loci and the relevance of introgression in the dataset. The 

filtering of the upper percentile of divergence only served to gather an initial overview of 

differentiation.  

Studying the role of inversion polymorphisms might be worthwhile for Argiope 

bruennichi. Inversions are well known to be associated with reduced gene flow and 

adaptive divergence between populations (Feder et al, 2012; Feder & Nosil, 2009). They 

are, for example, directly associated with climate tolerance in Drosophila flies (Sax et al, 

2005).   
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A screen for clinal variation in candidate allele frequency over the spider´s range might 

be advisable to study the interplay of gene flow and selection shaping genetic structure 

(Freeland, 2005). An analysis of historical DNA might reveal the pace of the genomic 

adaptation in Argiope bruennichi and its underlying structural changes. By quantifying 

patterns of linkage in historical DNA, I might be able to estimate the importance of recent 

recombination during the introgression of adaptive Asian alleles.  

The candidate regions, identified in my genome screen, could be cross checked using a 

QTL or association mapping approach. Genomic candidate regions for certain phenotypic 

traits should ideally fall into previously identified genomic islands of divergence (Via, 

2012).   

Eventually, functional test will be necessary to identify the actual contribution of 

candidate genes to adaptation. Genes could be knocked out or overexpressed in vivo, in 

order to uncover their role in e.g. cold tolerance (Noor & Feder, 2006).   

In the long run, genomic studies on closely related or even distinct species will help to 

uncover parallel genomic responses in recent adaptation. Argiope bruennichi populations 

in East Asia are already distributed along a comparable climatic gradient, like those in 

Europe are currently colonizing (Guttmann, 1979). The underlying genomic basis might 

be similar for European and Asian wasp spiders. The same might hold true for the wasp 

spider´s sister species Argiope aurantia, which is found along an environmental gradient 

from tropical Central America up to Southern Canada (Platnick, 2013). Several other 

European species currently undergo similar range expansions into continental climate 

zones, for example the toxic yellow sac spider (Muster et al, 2008), several butterflies 

(Hill et al, 2008), dragon flies (Hickling et al, 2005), praying mantids (Krawczynski & 

Wagner, 2013), and slugs (Engelke et al, 2011). Fundamental evolutionary change during 

range expansions might be shared between all those species. 
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Chapter 5: Genome-wide patterns of gene expression divergence and 

evidence for a thermal niche shift during a contemporary range 

expansion of a spider species 

 

5.1 Introduction 

Gene regulatory changes are believed to play an important role in evolution (Davidson & 

Erwin, 2006; Oleksiak et al, 2002; Tirosh et al, 2009; Ranz & Machado, 2006). 

Expression phenotypes are highly flexible and can be fine-tuned on many different levels 

(Chen & Rajewsky, 2007). Gene expression variation can be based on mutations in 

regulatory DNA (Wittkopp et al, 2004), posttranscriptional regulation of mRNA levels 

(Chen & Rajewsky, 2007) and posttranslational modifications of proteins (Gallego & 

Virshup, 2007). The flexibility of gene expression is additionally increased by an 

integration of genes into large regulatory networks with conserved hubs and 

interchangeable external elements (Davidson & Erwin, 2006; Chen & Rajewsky, 2007; 

Erwin & Davidson, 2009). These numerous levels of gene regulation provide ample raw 

material for natural selection to act on (Whitehead & Crawford, 2006a; Whitehead & 

Crawford, 2006b; Oleksiak et al, 2002). And indeed researchers have found large 

amounts of gene expression divergence between different taxa (Whitehead & Crawford, 

2006b) and even closely related populations of the same species (Bryk et al, 2013; 

Whitehead & Crawford, 2006b). Gene expression responses to environmental stress are 

known to evolve quickly under laboratory conditions (Bettencourt et al, 1999; Sorensen 

et al, 2007; & Cooper et al, 2003; Dekel & Alon, 2005; Ferea et al, 1999). And regulatory 

changes have been directly associated with adaptation to ecological conditions in nature 

(Mandel et al, 2009; Carleton & Kocher, 2001).  

Variation of gene regulation could consequently be an important driver of contemporary 

evolution (Larsen et al, 2007; Lopez-Maury et al, 2008). In the context of ongoing global 

change, populations are exposed to rapid alterations of their environment. Temperature is 

a particularly limiting ecological stressor for many species. (Preisser et al, 2008; 

Chinnusamy et al, 2007). Evolution of gene expression could constitute an early 

phenotypic response to such environmental stress (Crawford & Powers, 1992; Lopez-

Maury et al, 2008). On the other hand, a large extent of gene expression variation seems 



 

105 

 

to have evolved by the acquisition of selectively neutral changes in regulatory sequences 

(Staubach et al, 2009). And despite its potential flexibility, the regulation of many genes 

is stabilized by selection and expression changes can be highly maladaptive (Whitehead 

& Crawford, 2006b). Recent adaptation by positive selection might thus be the exception 

rather than the rule (Gilad et al, 2006). Phenotypic plasticity of gene expression could 

allow circumventing this constraint. A gene’s expression level would only be altered 

during certain environmental stress, while it remains unchanged during normal 

conditions. Even genes, whose transcription rate is highly stabilized by selection, could 

be sub-functionalized this way.  

In this chapter I use the European wasp spider Argiope bruennichi for studying 

transcriptome changes, associated with thermal adaptation during a contemporary range 

expansion. This originally Mediterranean species has expanded its range into increasingly 

colder regions of Northern Europe within the past decades (Kumschick et al, 2011). A 

previous reciprocal transplant experiment has shown that this range expansion is 

associated with rapid local adaptation to the novel climatic conditions in Northern Europe 

(Chapter 1 - Krehenwinkel & Tautz, 2013). Here, I introduce additional evidence for a 

climatic niche shift from a heat and cold tolerance experiment with first instar wasp 

spiders from Northern and Southern Europe. Based on these experiments, I analyze 

genome-wide gene expression variation between native Southern and expansive Northern 

European spiders in a reciprocal transplant design. I exposed first instar offspring to heat 

or cold before measuring gene expression. This pretreatment was supposed to mimic the 

actual ecological stress in respective habitats. I discuss the results in relation to the 

probability of ecological divergence in gene regulation. I then ask, whether Northern 

European wasp spiders have acquired novel plastic expression responses or if expression 

changes largely rely on modifications of already existing expression patterns. Last, I 

search for an enrichment of known stress related genes in the data to uncover possible 

evolutionary divergence due to thermal stress.  

To summarize, the data indicates a clear divergence of gene expression during a climatic 

niche shift. A large number of genes are only differentially expressed during thermal 

stress conditions. This pattern of plasticity did not newly evolve in Northern Europe. 

Instead, invasive wasp spiders seem to rely on fine tuning of already existing plastic 
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expression responses. A majority of expression changes is based on down-regulation in 

Northern European populations. I speculate that this down-regulation might be a 

signature of an obligate diapausing state in Northern European wasp spiders as initial 

adaptation to colder winters.  

 

5.2 Methods 

Analysis of gene expression divergence 

Reciprocal transplant experiment and transcriptome sequencing 

Argiope bruennichi is an annual species, which overwinters as first instar nymphs in the 

protective silk case of the eggsac, before they hatch in late spring (Köhler & Schäller, 

1987). The spiders construct their eggsac on grass stalks, leaving them directly exposed 

to environmental influences. Temperature probably constitutes a major environmental 

difference for invasive and native spider populations (Krehenwinkel & Tautz, 2013). 

Southern European spiders can be exposed to pronounced heat in early autumn, while 

Northern European ones will have to cope with subzero temperatures. The first instar is 

thus ideally suited to study thermal adaptation in Argiope bruennichi.  

The subsequently described reciprocal transplant experiment served to study gene 

expression responses to opposing temperature stresses in Northern and Southern Europe, 

respectively. The experiments were carried out in the early overwintering phase and thus 

simulated Northern and Southern European locations during autumn.  The normal 

conditions in the experiment were supposed to simulate a common autumn temperature 

for Northern and Southern Europe. The heat treatment simulated a hot autumn day in the 

Mediterranean region. And the exposure to subzero temperatures mimicked a cold 

autumn day in Northern Europe.  

Mated wasp spider females were collected in August 2012 in Southern Portugal, Latvia 

and Estonia. Portuguese spiders represent the historical native Mediterranean range of the 

species. The Baltic populations have been found only a few years ago and thus constitute 

the invasion’s wave front (see Figure 5.1 for collection sites).  
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Figure 5.1 Sampling sites for wasp spiders, which were used for the gene expression experiment. The 

black dots correspond to samples used for the chill tolerance experiment. Red dots signify sampling 

locations of specimens, which were additionally used for the gene expression experiment. The map 

was generated using GenGis (Parks et al, 2009).  

 

The spiders were kept in the laboratory at room temperature (20°C) in 200 ml plastic 

cups, sprayed with water every second day and supplied with house flies, till they 

constructed an eggsac. I initially set up a day and night cycle of 14 hours light followed 

by 10 hours of darkness.  

After eggsac construction, the mother was removed from the cup, and stored in 70% 

Ethanol for further analysis. All eggsacs were then kept at room temperature (20°C) for 

four weeks and sprayed with water every day. Subsequently, the temperature was 

lowered to 15°C, the light cycle reverted to 10 hours of light and the eggsacs kept for 

additional two weeks. After six weeks, six eggsacs each from the Baltic and Portuguese 

populations were chosen for the reciprocal transplant experiment. I chose eggsacs, which 

had been built only a few days apart, to reduce age effects in the experiment. Each eggsac 

was opened and the spiderlings forced to emerge. 20 spiders per eggsac were then 

transferred to three Petri dishes, equipped with a slightly wetted paper tissue. One dish 

per eggsac was transferred into a Memmert IPP800 thermal chamber (Memmert, 

Schwabach, Germany) at 15°C. Three distinct thermal profiles were then set for the 

incubators. A control treatment was permanently set to 15°C, a cold treatment started at 
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15°C and lowered by 5°C every 2 hours. A heat treatment started at 15°C and increased 

by 5°C every two hours. The spiders were kept under these conditions for 10 hours, 

allowing the cold treatment to reach -10°C and the heat treatment to peak at 40°C. The 

Petri dishes were then taken out of the thermal chambers. The spiderlings were 

immediately snap frozen in liquid nitrogen and then stored on dry ice.  

Total RNA was extracted from the spiders using the Qiagen RNeasy Kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s protocol. The samples were sent to the Center 

for Genomics in Cologne for library preparation and sequencing (as described in chapter 

4). The 36 samples were sequenced on two lanes of an Illumina HiSeq 2000 according to 

the manufacturer’s protocol (Illumina, San Diego, USA). 

 

Gene expression analysis 

The reciprocal transplant data was analyzed using CLC genomics workbench (CLC Bio, 

Cambridge, USA). Each library was quality trimmed with a minimum quality score of 

0.05 and a maximum number of two ambiguous nucleotides. The trimmed reads were 

then aligned to the previously generated reference transcriptome (Chapter 4), with a 

mismatch cost of 1, insertion cost of 3, deletion cost of 3. Gene expression was analyzed 

based on RPKM values (reads per kilobase per million). A quantile correction (Bolstad et 

al, 2003) was applied for data normalization and a normalized RPKM of 0.5 per group 

used as threshold for a transcript to be considered in the analysis (as e.g. in Strout et al, 

2011). Significant differences in gene expression were evaluated using Baggerley’s test 

(Baggerly et al, 2003) at an FDR of 0.05. I first tested for expression changes between 

Northern and Southern European populations. In addition, I tested for differentially 

expressed genes between cold treatment and normal conditions, as well as heat treatment 

and normal conditions within Northern and Southern European populations. Using these 

conditions, lists of differentially expressed genes were prepared. The resulting sets of 

differentially expressed genes between Northern and Southern populations were then 

subjected to further analysis. As Northern European populations have been recently 

established in the course of the spider’s expansion, I interpreted the expression data of 

these samples as derived state. Expression of Portuguese specimens, on the other hand, 

served as ancestral trait. I compared the direction of expression changes between 
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Northern and Southern European populations by counting the numbers of up- or down-

regulated transcripts per region and experimental condition. I additionally analyzed fold-

change in expression for all differentially expressed genes. I further quantified and 

compared the amount and variation of differential gene expression for the six tested RNA 

pools. I blasted all transcripts using the BLASTX implementation in Blast2Go (Conesa et 

al, 2005) with an E-value cutoff of 10
-3

. BLAST hits were then annotated (with an E-

value cutoff of 10
-6

, an annotation cutoff of 55 and a GO-weight of 5) and datasets of 

differentially expressed genes tested for GO-term enrichment (using Fisher’s exact test 

with an FDR of 0.05). 

 

Testing for plasticity of gene expression 

I evaluated the contribution of phenotypic plasticity to the observed differential 

expression values between Baltic and Portuguese populations. For that reason, I 

quantified condition dependent changes in transcript abundance. A gene could respond to 

environmental stress in several ways. Its expression might be similar under all 

experimental conditions or it could only change during certain stress conditions. This, in 

turn, would lead to different reaction norms of expression at changing temperatures. I 

thus estimated the amount of changes in expression patterns for differentially expressed 

transcripts between Portuguese and Baltic spiders across the experimental temperature 

gradient. First, I tested for significant departures from even expression levels within 

populations, but between experimental conditions by using an ANOVA (using a 

Bonferroni posthoc test and a p-value cutoff of 0.05). A significant difference between 

e.g. normal and cold conditions signifies environment dependent plasticity. All genes 

with a significant plastic response were then tested for population differences in that 

response.  

 

Heat and cold tolerance experiments 

I tested cold tolerance and chill coma recovery in spiderlings from 16 Portuguese and 36 

Baltic eggsacs. They originated from the same stock of mated females as described above 

for the gene expression analysis. In addition, I collected mated females from Southern 
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Sweden and included 15 Swedish eggsacs (Figure 5.1). Ten spiders per eggsac were put 

into a petridish. As soon as five petridishes were prepared, they were placed in a freezer 

for six hours at -20°C. This freezing time was chosen based on a test series from 10 

minutes to 12 hours, with six hours showing the most distinctive differences. It is well 

known that cold adapted arthropods can easily withstand long periods of subzero 

temperatures (Preisser et al, 2008). Spider mites for example did easily survive many 

hours of freezing at -24°C (So & Takafuji, 1992). After the cold treatment, the spiders 

were allowed to recover in a tempered room at exactly 22°C for 120 minutes. During that 

time, the number of recovered spiders was counted every 30 minutes. 24 hours after the 

cold treatment, the fraction of spiders per eggsac was counted, which did not survive the 

freezing or were permanently damaged (showed problems walking properly). Moreover, I 

used data from a previous heat tolerance experiment (Chapter 1 - Krehenwinkel & Tautz, 

2013). To make the data comparable to the cold stress experiment, I used only Baltic and 

Swedish data from the thermal stress test. Briefly, the little spiders were gradually heated 

up until they fell into rigor. The temperature of heat knockdown was then noted (see 

chapter 1).  

 

5.3 Results 

Heat and cold tolerance experiments 

Compared to their Southern relatives, Northern European wasp spiders have shifted their 

thermal tolerance. They show a significantly reduced heat resistance (average heat knock 

down temperatures are 48°C vs. 44°C; t-test, equal variances assumed, p < 0.001), but are 

more tolerant to cold. 24 hours after a six hours cold shock at -20°C, I find 79 % of the 

Southern European spiderlings to be dead or severely damaged (could not walk properly), 

but only 37 % of the Northern European ones. The difference is highly significant (t-test, 

equal variances assumed, p < 0.001) (Figure 5.2). Northern European spiders do also 

recover significantly faster from cold knockdown than Southern ones (ANOVA, 

Bonferroni post hoc test, p < 0.05). 30 minutes after freezing, on average 12 % of the 

Northern European spiders have already recovered. At the same time only 1% of the 

Southern European ones have recovered. After 60 minutes this difference shifts to 41 % 
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vs. 15 %, after 90 minutes to 58 % vs. 31 % and after 120 minutes to 71 % vs. 50 % 

(Figure 5.3).  

 

Figure 5.2 Heat and cold tolerance of Southern and Northern European wasp spider nymphs. The 

left plot depicts the mean percentage of dead or severely damaged spiders 24 hours after a cold shock 

of -20°C. The right plot shows the mean upper lethal temperature. The bars show the 95 % 

confidence intervals. The differences between Northern and Southern European spiders are 

signifcant for both experimental treatments (t-test, p < 0.001). 

 

Figure 5.3 Cold shock recovery for Northern and Southern European wasp spider nymphs. The plots 

depict the mean percentage of spiders in cold rigor directly after a -20°C cold shock, and after 30, 60, 

90 and 120 minutes of recovery time. Bars show the 95 % confidence interval of the mean. The 

differences between groups are significant (ANOVA, Bonferroni post hoc test, p < 0.05). 



 

112 

 

Gene expression analysis  

Condition dependent gene expression within populations 

First, I present an analysis of gene expression differentiation within populations, i.e. the 

innately regulated differences. I highlight significant expression differences between the 

heat and control treatment and between the cold and control treatment for Baltic and 

Portuguese spiders separately.  

The analysis revealed generally a very pronounced response to heat stress (Figure 5.4). 

Out of more than 50,000 analyzed transcripts, nearly 4,000 genes were differentially 

expressed during heat stress compared to normal conditions in Baltic and Portuguese 

populations. This response is very similar for Portuguese and Baltic populations. This 

holds true for the number of differentially regulated genes, as well as the direction of 

expression. 1,717 out of 3,575 genes in Portuguese and 1,700 out of 3,593 in Baltic 

spiders were up-regulated during heat stress (Figure 5.4). This difference between up- 

and down-regulated transcript numbers is significant for the Baltic populations (Fisher’s 

exact test, p < 0.05), but not for the Portuguese. GO-term enrichment for heat responsive 

transcripts indicates an association with protein synthesis. Genes connected with the 

nucleolus, the endoplasmatic reticulum and the ribosomes were significantly 

overrepresented.  

 

Figure 5.4 Number of differentially expressed transcripts during heat stress compared to control 

conditions for Baltic and Portuguese populations. Slightly more transcripts are down-regulated in 

the Baltic population. The bias towards down-regulated transcripts is significantly different from 

even expectations in Baltic populations (Fisher’s exact test, p < 0.05) 
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In contrast to the large number of heat responsive transcripts, only two genes were found 

to be differentially expressed between cold and normal conditions for Portuguese spiders. 

One additional transcript was exclusively cold responsive in Baltic spiders. The 

expression of all these genes follows a very similar trend in Baltic and Portuguese 

populations (Figure 5.5). The two shared differentially expressed transcripts have 

significant BLAST hits for glucose-6-phosphatase and alanine-aminotransferase. Both 

genes are associated with Gluconeogenesis. Ubiquitin-C is significantly up-regulated 

only in Baltic populations during cold stress. However, the expression level observed for 

Ubiquitin is very similar in Baltic and Portuguese spiders.  

 

Figure 5.5  Expression levels of differentially expressed genes during cold stress, compared to control 

conditions. Alanine-aminotransferase (left plot) and glucose-6-phophatase (middle plot) are up-

regulated during cold stress both in Baltic and Portuguese spiders. Ubiquitin (right plot) is 

significantly up-regulated only in Baltic spiders, although a similar trend of expression is evident in 

Portuguese ones. Plots depict mean expression and 95% confidence intervals of the mean.  

 

Differential gene expression between Northern and Southern European animals  

Now I will present differential gene expression between Northern and Southern European 

spider populations, i.e. the evolved expression differences. Using an RPKM cutoff of 0.5, 

I analyzed the expression profiles of 52,717 genes between Portuguese and Baltic spider 

populations. Only a small fraction of genes was differentially expressed between the two 

groups across all experimental treatments. Using an FDR of 0.05, I identified a total of 

270 differentially expressed genes in the different treatments. Differential gene 

expression is generally biased towards heat responsive transcription. 162 genes were 
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differentially expressed during heat stress (40°C), 103 at control conditions (15°C) and 

115 during cold treatment (-10°C). Many transcripts are differentially expressed in two or 

more experimental conditions. (Figure 5.6). 

 

Figure 5.6 Number of genes differentially expressed between Northern and Southern European  

wasp spider populations during different experimental conditions. 

 

I find a higher number of down-regulated genes for Baltic spiders during all experimental 

treatments compared to Portuguese ones (Figure 5.7). This difference departs 

significantly from an even expectation during cold stress and control conditions (Fisher’s 

exact test, two tailed p < 0.05). 
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Figure 5.7 Number of differentially expressed genes, which are up-regulated (blue bars) or down-

regulated in Baltic spiders compared to Portuguese ones. The fraction of down-regulated transcripts 

in Baltic spiders departs significantly from an even expectation during cold stress and control 

conditions (Fisher’s exact test, two tailed p < 0.05).  

 

I do not identify significant differences in fold change of gene expression between Baltic 

and Portuguese populations. However, I discover a reduced variation of fold-change for 

down-regulated genes compared to up-regulated ones (Levene’s test p < 0.05). This 

increased variation is due to few extreme values of up-regulated transcripts with very 

high expression fold change (Figure 5.8). 
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Figure 5.8 Fold-change of gene expression for differentially expressed transcripts between Baltic and 

Portuguese populations. The plots show up-regulated and down-regulated transcripts and different 

experimental conditions separately. The boxes show the median (black bars) and upper and lower 

quartile. Outliers are shown as circles, extreme values as stars. The left plot includes extreme values, 

while they have been removed in the right one. The significant difference of variation for fold-change 

between up- and down-regulated transcripts is due to a few highly differentially expressed extreme 

values.    

 

I identified only slight differences in the mean expression and expression variation 

between Northern and Southern European populations. Generally, the higher expression 

levels are observed during heat stress and the lower during cold treatment or control 

conditions. The observed gene expression differences are, however, not significant 

(tested with an ANOVA). The same holds true for the variation of gene expression, 

which is not significantly different during all experimental conditions and between both 

populations (Figure 5.9).  
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Figure 5.9 Mean gene expression values (RPKM) for down-regulated and up-regulated transcripts. 

The left plot shows mean expression values for differentially expressed genes in Baltic populations, 

which are down-regulated, or up-regulated in comparison to Portuguese ones. The right plot presents 

the same pattern for Portuguese populations.  Bars depict the 95 % confidence interval of the mean.   

 

Possible functions of differentially expressed genes between Northern and Southern 

Europe 

A test for GO-term enrichment for the differentially expressed transcripts in comparison 

to the whole set of annotated genes, did not reveal any significantly enriched GO 

category. In order to gather insights into the functional importance of differentially 

expressed genes, I inspected the BLAST results for gene functions, with a focus on 

thermal stress. A selection of candidate genes and their respective BLAST hits is shown 

in Table 5.1. In the following, I will present some particularly interesting candidate 

genes, whose expression pattern distinguishes Northern and Southern European 

populations. Northern European spiders are more tolerant to cold, Southern European can 

endure higher temperatures. Gene expression patterns of the presented transcripts could 

thus directly relate to these tolerance phenotypes.  
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Table 5.1 Selection of BLAST hits for potentially ecologically important differentially expressed 

transcripts between Northern and Southern Europe. Rows printed in bold letters indicate 

transcripts, whose expression pattern is plotted in Figures 5. 8 - 5.11. Column two and three indicate 

if the transcript was up-regulated (B>) or down-regulated (B<) in Baltic populations. In addition the 

experimental conditions, at which differential expression was observed, are shown in column two and 

three (-10° C, Control, 40° C).  
RNA contig 

no. B> B< Gi number Gene Organism Function 

scaffold8541 10 
 

391348629 Cuticle protein M. occidentalis 
Cuticular 
structure 

C567890 
 

40 1345866 Cuticle protein 
A. diadematus 

Cuticular 
structure 

C576678 
 

10 
40 1345866 Cuticle protein 

A. diadematus 
Cuticular 
structure 

scaffold19587 
10 C 
40 

 
118094727 Cytochrome P450 G. gallus Detoxification 

C605328 
 

10 C 
40 30840237 Cytochrome P450 H. sapiens Detoxification 

scaffold9213 
 

10 C 405961234 Maltase C. gigas Digestion 

scaffold8606 
 

10 C 
40 390340227 Deoxyribonuclease-1 S. purpuratus Digestion 

scaffold1491
5 

 

10 
40 318087032 Astacin-like metalloprotease L. hesperus Ecdysis 

C585262 10 C 
 

240953838 Phosphatidylinositol transfer protein Ixodes scapularis Lipid transport 

scaffold2730
3 

 
C 209165353 Aggregate spider glue N. clavipes Prey capture 

scaffold8666 
 

40 475392972 Toxin GTx-VA1 G. rosea Prey capture 

scaffold3111
5 

 

10 C 
40 209165611 Toxin-like structure LSTX-B7 L. singoriensis Prey capture 

C491425 
 

10 C 55274120 Dragline silk spidroin Macrothele holsti Prey capture 

C530662 
 

10 C 193506891 Major ampullate spidroin N. clavipes Prey capture 

C587118 
 

10 
40 359552636 Cystatin (cysteinprotease inhibitor) A. ventricosus Stress 

C585880 
 

10 C  
40 344953542 Cathepsin E. coioides Stress 

scaffold2485
5 

10 C 
40 

 
307175778 Cysteine proteinase C. floridanus Stress 

scaffold2830
7 10 

 
391326081 Na-K ATPase M. occidentalis 

Thermal 
tolerance 

 

 

I find an up-regulation of cysteine proteinase in Northern European populations and an 

up-regulation of a cysteine proteinase inhibitor in Portuguese spiders (Table 5.1). Other 

up-regulated genes in Northern European populations are Sodium Potassium ATPase, a 

cuticular protein and a phospholipid transporter protein. All these genes have a potential 

association with cold tolerance (see discussion). Nevertheless, their expression pattern is 

not biased towards cold conditions. Instead, I find a general increase of condition 
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independent expression or an up-regulation during cold stress and control conditions 

(Figure 5.10).  

 

 

Figure 5.10 The plots depict mean expression values (RPKM) and 95% confidence intervals of the 

mean for selected differentially expressed genes between Baltic and Portuguese populations. Several 

up-regulated genes in Northern European populations can be associated with thermal stress 

tolerance (see discussion).  
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I observe an overexpression of cold stress-associated transcripts in Northern European 

spiders. At the same time the expression of several transcripts can be associated with heat 

conditions (see discussion). For example, I find several cuticular proteins and cathepsin 

to be down-regulated in Northern European spiders. Several presumptive heat responsive 

genes are exclusively up-regulated during high temperatures (Figure 5.11). Cold 

responsive ones, on the other hand, seem to be expressed less condition dependent 

(Figure 5.10).  

 

 

Figure 5.11 The plots depict mean expression values (RPKM) and 95 % confidence interval of the 

mean for selected differentially expressed genes between Baltic and Portuguese populations. 

Southern European populations show higher expression values for cathepsin and certain cuticular 

proteins during heat stress.  

 

Apart from heat stress related gene expression, Southern European spiders show an up-

regulation of several transcripts related to metabolic activity. Some of these are directly 

associated with prey capture, e.g., silk, toxin and capture glue genes (Table 5.1 & Figure 

5.12). Moreover, genes related to digestion are overexpressed in Portuguese populations, 

e.g., a maltase and DNAse gene. In addition, I find increased expression of an astacin-

like-metalloprotease in Southern spiders. This gene is known to be associated with 

ecdysis (Table 5.1, discussion). 
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Figure 5.12 The plots depict mean expression values (RPKM) and 95% confidence intervals of the 

mean for selected differentially expressed genes between Baltic and Portuguese populations. Several 

genes related to prey capture (e.g. capture glue, silk, toxin), digestion (maltase, DNAse) and growth 

(e.g. astacin-metalloprotease) are down-regulated in Northern European spiders.  

 

Testing for plasticity of gene expression 

The screen for plastic responses of gene expression for differentially expressed 

transcripts suggested the following six general response forms of transcription at different 

thermal regimes (Figure 5.13). 1. The gene did not show any significant plasticity of 

expression. 2. An up-regulation during heat stress was observed. 3. The transcript was 

down-regulated during heat stress. 4. Cold stress induced elevated expression. 5. The 

highest expression was observed during control conditions. 6. The lowest expression was 

found during control conditions. I did not find any transcript that was significantly down-

regulated only at -10°C. I also did not find significant stepwise patterns of expression 

with a gradual increase or decrease with temperature (ANOVA, p < 0.05).   
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Figure 5.13 Exemplary reaction norms of gene expression during different experimental conditions. 

The plots depict mean expression values and 95% confidence intervals of the mean. 1. Shows an even 

pattern of expression, independent of thermal condition. 2. Gene expression is up-regulated during 

heat stress. 3. Gene expression is down-regulated during heat stress. 4. Cold induced up-regulation of 

a transcript. 6. Highest expression during control conditions and 6. lowest expression during control 

conditions.   

 

The expression level of 154 out of 270 differentially expressed genes did not significantly 

depart from evenness (form 1.) between experimental conditions. For these 154 

transcripts, differential expression between Baltic and Portuguese populations is achieved 

by a general up- or down-regulation during all experimental conditions (an example is 

seen e.g. in the DNAse in Figure 5.12).  

The 116 remaining differentially expressed transcripts followed forms 2. - 6. in Baltic 

and/or Portuguese populations and thus show a plastic expression pattern. I found a 

change in the direction of the norms of reaction between Portuguese and Baltic 

populations for only 61 of these 116 transcripts. The reaction norm modifications are 

highly biased towards changes in the heat response. 39 expression patterns transform 

from heat responsive (form 2. and 3.) in Portuguese to an even pattern (form 1.) in Baltic 
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populations (an example is seen in Cathepsin in Figure 5.11). An additional 18 transcripts 

respond in the reverse order from even to heat responsive in Baltic spiders.   

I found only one transcript changing from highest expression during control conditions 

(form 5.) in Portuguese samples to a decrease during heat stress in Baltic ones (form 3.). 

One additional transcript changes from a pattern of up-regulation during heat stress to 

decreased expression at the control (form 6.). And last, the expression patterns of only 

two transcripts of Baltic spiders transform towards up-regulation during cold stress.  One 

changes from an even pattern and one from an up-regulated one at 40°C.  

Most changes in reaction norm are the result of decreased transcription rates in Baltic 

specimens compared to Portuguese ones (Fisher’s exact test, two tailed p < 0.005). I can 

confirm this pattern for 45 out of 61 genes. A significant down-regulation is evident for 

29 transcripts during cold stress, 31 at control conditions and 19 during heat stress. At the 

same time, only 10 transcripts are contributing to reaction norm changes by significant 

up-regulation in Baltic populations during cold conditions, 8 in the control and 9 at the 

heat treatment. 

To summarize, the majority of differentially expressed transcripts (154/270) is not 

expressed environmentally plastic. Moreover, plastic expression is largely biased towards 

heat responsive gene expression. A change in the actual reaction norm of expression 

between Northern and Southern European populations is rarely observed and mainly 

induced by down-regulation of transcripts in Baltic populations. Instead of de novo 

emergence of new reaction norms, the data indicate that expression differentiation relies 

on alterations of already existing plastic responses or a condition independent general up- 

or down-regulation.  

 

5.4 Discussion  

Range expansion, thermal niche shift and ecological divergence of gene expression 

Climatic stress is known as major limitation to species distributions, and overcoming this 

limitation might enable rapid distributional shifts (Preisser et al, 2008; Bettencourt et al, 

1999). At the same time, thermal tolerance is a trait known to evolve quickly (Barrett et 

al, 2011; Huey, 1991; Bettencourt et al, 1999; Gibert et al, 2001). My thermal tolerance 
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experiments support the idea of a recent ecological niche shift between Southern and 

Northern European wasp spiders. Corresponding to the actual climatic environment these 

animals are exposed to, they developed increased heat or cold resistance. Such clinal 

patterns of temperature resistance are well known from e.g. Drosophila species (Kimura, 

2004). Environmental stress could consequently act as major driving force of 

evolutionary innovation (Lopez-Maury et al, 2008). As Argiope bruennichi has colonized 

Northern Europe less than 100 years ago, the underlying adaptation is probably of recent 

origin. My gene expression experiment exposed Northern and Southern European spider 

offspring to their native and non-native temperature conditions. The footprints of 

reciprocal adaptation should then be visible in stress related differential gene expression. 

Such adaptive gene expression divergence due to thermal stress is e.g. known from 

studies in fishes (Crawford & Powers, 1992). 

I find a considerable number of genes, which are exclusively differentially expressed 

during temperature stress (167/270). This finding supports the idea of an ecological 

divergence between Northern and Southern Europe. Assuming selection has driven gene 

expression differentiation, I would find it to especially affect genes, which are involved 

in coping with actual environmental stressors. The data thus highlight a clear importance 

to quantify evolutionary young divergence in gene expression during ecologically 

relevant conditions. If I would have limited the analysis to control conditions, I would 

miss nearly two thirds of differentially expressed genes.  

The observed condition dependence of differential expression might be interpreted as a 

proof for the importance of the evolution of plasticity in early adaptation. However, the 

analysis shows that a large fraction of differential expression does not entail a plastic 

change within populations. Many reaction norm changes in Northern European 

populations even involve assimilation, the loss of plasticity. Most plastic expression 

responses in Baltic populations rely on a modulation of already existing patterns of 

plasticity. Considering my data, a de novo evolution of plastic expression patterns thus 

seems to be the exception rather than the rule in Argiope bruennichi. Instead, adaptive 

plasticity of gene expression might be enabled by only a slight increase of the reaction 

norm´s slope.  
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In order to successfully colonize a new climatic zone in Northern Europe, Argiope 

bruennichi populations must have been supplied with novel genetic variation. And 

indeed, I find increased genetic diversity in Northern European spider populations (see 

chapter 4). However, this is not mirrored in elevated variation of gene expression. It will 

therefore be necessary to further study the question whether Northern climate adaptations 

are driven by regulatory or coding changes. Alternatively, recent selection in the invasive 

Northern European wasp spider lineage might have already eradicated variation for gene 

expression. Selection is expected to quickly favor few novel adaptive variants, which 

might lead to a rapid loss of variation for gene expression divergence (Czypionka et al, 

2012).  

 

Differentially expressed genes between Northern and Southern Europe and their 

possible association with thermal tolerance 

The ecologically most relevant stress response for expanding wasp spiders might be 

genetic adaptation to cold exposure. And indeed, I identify several differentially 

regulated candidate genes, which might be directly related to cold tolerance. I find a 

pronounced up-regulation of cysteine proteinase in Northern European populations. At 

the same time, a cysteine proteinase inhibitor is up-regulated in Portuguese spiders. 

Interestingly, cysteine proteinase is known to be involved in cold tolerance in plants 

(Grudkowska & Zagdańska, 2004). One of the genomic candidate regions for reciprocal 

adaptation between Northern and Southern Europe maps into a cysteine proteinase gene 

(see chapter 4). And the expression level of Sodium Potassium ATPase has been assumed 

to be directly related to thermal tolerance in Drosophila (Feng et al, 1997). An alteration 

of cell membrane fluidity, as it is achieved by altering the phospholipid content, has also 

been described as important mediator of cold tolerance (Lee et al, 2006). An up-regulated 

phospholipid transporter could be directly involved in this process in Baltic spiders.  

The up-regulation of these genes during cold stress might be an important adaptation of 

Northern European spiders. In contrast, differential gene expression during heat stress 

might be directly related to the increased heat resistance of Southern European Argiope 

bruennichi. Cuticular proteins constitute one interesting group of differentially expressed 

transcripts. They constitute an important part of the animal’s exoskeleton and the 
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cuticle’s protein composition may strongly influence its physical properties (Anderson et 

al, 1995). By integrating different proteins into its exoskeleton, a spider could cope with 

different thermal stress, e.g. evaporation or cuticular stability. Different cuticular proteins 

could consequently be involved in heat and cold tolerance. A cathepsin gene shows a 

clear heat responsive overexpression in Portuguese spiders. This gene is involved in 

Protein degradation and has been associated with heat stress response (Buckley et al, 

2006). 

 

Condition dependent gene expression within populations 

I find a particularly strong general gene expression response during heat stress, with 

several thousand genes up- or down-regulated in populations in comparison to control 

conditions. This might be the result of extensive environmentally induced decanalization. 

Heat stress might release cryptic genetic variation leading to large numbers of up- or 

down-regulated genes (Gibson & Dworkin, 2004). It is unlikely that the expression of all 

these genes will have a pronounced biological function. Many genes are expressed in a 

highly unspecific manner during stress (Sorensen et al, 2007). Out of about 16,000 

temperature responsive genes in A. thaliana, only 16 have an actual functional role 

during thermal stress (Lopez-Maury et al, 2008). 

In comparison to the several thousand heat responsive transcripts, I found only three 

genes, differentially expressed between cold and control conditions. Two of these genes 

are associated with gluconeogenesis and highly up-regulated at -10°C in Portuguese and 

Baltic spiders. A stimulation of the glucose metabolism might be an initial cold stress 

response for wasp spiders. The use of saccharides as antifreeze is widely distributed in 

nature (Ohtsu et al, 1998). A significantly increased ubiquitin transcription is the only 

difference found between Baltic and Portuguese populations, when comparing cold and 

control conditions. However, both Baltic and Portuguese spiders express Ubiquitin C in a 

very similar manner and quantity. Its expression is up-regulated during heat and cold 

stress, an expression pattern known from other organisms (Müller-Taubenberger et al, 

1988). Ubiquitin is involved in manifold cellular processes, from protein degradation and 

folding, DNA repair to signaling and many more (Pickart & Eddins, 2004). Its 
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association with thermal stress is thus not surprising. The experiment was conducted over 

a comparatively short timeframe of only 10 hours. Perhaps a longer exposure to cold 

stress will be necessary, in order to trigger the expression of more cold responsive genes. 

Acclimatization of plants to cold does require a certain time, but will then involve the 

differential expression of a large number of genes (Lee & Lee, 2003; Zhu et al, 2004). 

And flesh fly larvae will be much more cold tolerant after a period of several weeks of 

diapausing (Lee & Denlinger, 2008).  

 

Diapausing as a simple and rapidly evolving adaptation during a range expansion 

Transcriptional responses to thermal stress are a highly complex trait, involving many 

epistatic interactions (Somorjai et al, 2003). Fine tuning of a single element of such a 

network might affect the expression of many associated genes. An interesting example 

for such a change is provided by arthropod winter-diapause behavior. Diapausing is a 

complex physiological process. At the same time it seems to underlie a simple genetic 

basis. A single, dominant gene locus is sufficient to induce diapausing behavior in spider 

mites of the genus Tetranychus (Takafuji et al, 1999). And in fruit flies, diapausing has 

evolved repeatedly due to a single amino acid change in the couch potato gene (Schmidt 

et al, 2008). For a very young ecological split, such a simple evolutionary change is 

probably more likely than single regulatory changes in many independently acting genes. 

In fact, diapausing behavior was one of the first traits to be identified to evolve in 

response to global warming (Bradshaw & Holzapfel, 2001). Diapausing is known to 

evolve along latitudinal clines and can even be directly associated with cold tolerance 

(Emerson et al, 2009; Schmidt et al, 2005; Dingle et al, 1977). Generally, the genetic and 

transcriptional basis of diapausing is quite well understood (Srere et al, 1992; Zhang & 

Denlinger, 2012; Morris et al, 1996; Kimura et al, 1997; Schmidt et al, 2008; Dingle et al, 

1977). It is a state of developmental arrest, involving a down-regulation of many 

metabolic genes (Yang et al, 2010; Kimura et al, 1997). In this regard, the observed bias 

towards down-regulated genes in Baltic populations is noteworthy. At the same time, 

Southern European spiders show up-regulation of genes like silk, capture glue and toxins 

and digestive enzymes, which are involved in prey capture and feeding. Moreover, I find 
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a repression of an astacin-like-metalloprotease in Northern European spiders. This gene is 

known to be associated with ecdysis (Stepek et al, 2011). Thus, Northern European 

spiders possibly have to go through an obligate dormancy phase, in which their whole 

metabolism is down-regulated. Southern European ones, on the other hand, could only 

facultatively choose to diapause. It is well known from laboratory experiments, that a 

pronounced dormancy is crucial for survival of wasp spiders from Northern Europe. This 

phase lasts several months and has to include subzero temperatures, for the spiders to 

actually hatch from their eggsacs and reach maturity (Zimmer pers. comment). Southern 

European wasp spiders will readily leave their eggsacs during warm winters and start 

developing without problems. In the course of the experiments, I could observe this for 

wasp spider eggsacs, which were kept at room temperature for several months. While 

most Portuguese spiders hatched, started building webs and caught prey, Northern 

European ones stayed inside of their eggs sacs and finally died. Overwintering behavior 

can be induced by different environmental triggers, of which photoperiod and 

temperature seem to play important roles in spiders and insects (Bradshaw & Holzapfel, 

2001, Dingle et al, 1977; So & Takafuji, 1992). The factors responsible for the induction 

of diapause in Argiope bruennichi are however not yet known. It could be a 

predetermined character, independent of environmental cues, or e.g. induced by lowering 

temperatures or shorter day length.  

A more simple explanation for the observed down-regulation of gene expression in Baltic 

spiders might be found in the genomic architecture of gene regulation. The repression of 

gene expression is achieved much easier than its activation (Chen & Rajewsky, 2007; 

Wray et al, 2003). Consequently, adaptation by transcriptional repression might be a 

more simple way to cope with rapid environmental changes.  

 

The influence of non-genetic factors on gene expression divergence 

Last, a non-genetic environmental influence could be responsible for the observed 

divergence in gene expression. As the analyzed spiders were kept under constant 

conditions, I can rule out environmentally induced plastic responses. But the mothers of 

eggsacs were collected in their natural environment. Consequently, I cannot exclude 
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maternal effects influencing gene expression between Northern and Southern Europe. 

Dependent on the environment it was exposed to, the mother could influence the 

phenotypic expression of its offspring. However, for unpredictable conditions, a 

dependence on the mother´s experience might lead to a less favorable response for her 

offspring. A very warm winter, followed by a very cold one, would then lead to a mass 

die off in Northern European wasp spiders. Such changing environmental conditions are 

very common in the wasp spider’s habitat. This in turn, makes a strong dependence on 

maternal effects less likely.   

 

5.5 Outlook 

Gene expression has many more levels to study, apart from the simple transcript 

abundance of whole specimens. For example, expression changes are well known to be 

highly tissue specific (Chinnusamy et al, 2007; Staubach et al, 2009; Bryk et al, 2013). 

An analysis of distinct body parts might consequently yield a refined picture of 

regulatory divergence during the range expansion of Argiope bruennichi. Apart from 

regulatory DNA elements, gene expression divergence could also be based on copy 

number variation of genes (Bettencourt et al, 1999; Gu et al, 2004). Gene duplication is 

enabling a rapid change of expression levels and might thus be particularly important 

during contemporary evolution (Gu et al, 2004). Posttranscriptional alteration of 

transcript levels by small RNA is another important part of the gene regulatory cascade 

and well known to be involved in stress responses (Chinnusamy et al, 2007; Chen & 

Rajewsky, 2007). The same holds true for posttranslational modifications of proteins 

(Chinnusamy et al, 2007). 

And last, an analysis of the genomic background of differentially expressed transcripts 

might yield interesting insights into the evolutionary divergence of gene regulation.  An 

evolutionary divergence of gene expression could be based on external trans-acting 

factors or cis-regulatory mutations in close vicinity to the actual gene (Wittkopp et al, 

2004). Selection on the latter might lead to detectable signatures of selective sweeps in 

the genomic vicinity of the according transcript. A correlative analysis of introgressed 

genomic regions (chapter 4) with the gene expression changes will provide further 

insights into the question of trans- versus cis-regulation of changes.  
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Concluding remarks 

Poleward range expansions and biological invasions constitute a biological phenomenon 

of global ecological and economic importance. A main result of my PhD thesis is that 

these movements are not purely defined by environmental change. Instead, an interaction 

of environmental effects and rapid evolutionary adaptation appears to pave the way for 

many expansive species. Even in the face of very high gene flow, populations are capable 

to adapt to different ecological regimes. My study identifies a climatic niche shift as the 

potential driver of the wasp spider´s ongoing expansion into Northern Europe. 

This finding is of twofold general importance. First, many species might be able to cope 

with global warming by evolutionary adaptation. Evolution could consequently 

counteract predicted mass extinctions in the coming decades. And second, evolutionary 

change has to be taken into account as a powerful force to promote biological invasions.  

Interestingly, global change itself might contribute to evolution, by enabling secondary 

contact of formerly isolated populations. Human made alterations of ecosystems could 

thus indirectly mediate adaptation and trigger invasions.  

The association of genetic admixture and the success of the wasp spider’s range 

expansion is another essential result of my thesis. In recent years, increasing evidence 

links secondary contact and contemporary evolution. Considering this background, a 

focus on hybridization solely in the context of genetic incompatibilities and their 

destructive impact is not justified anymore.  

And last, the emerging technologies of next generation sequencing do now enable an 

unprecedented view into the genomic basis of rapid adaptation. Whole genome 

sequencing allows obtaining insights into evolutionary processes in real time and will 

contribute to a revolution in evolutionary biology. A detailed analysis of my genomic 

data might eventually enable the identification of the underlying genomic changes of the 

wasp spider’s climatic niche shift. 
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Chapter 1 

Chapter 1 has been published in the journal Molecular Ecology. All data, on which the 

study is based, has been uploaded to the Dryad Digital Repository 
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1. Contemporary COI sequence alignment 
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3. Historical COI sequence alignment of short sequences 
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5. Microsatellite data 

 

6. SNP data including STRUCTURE output 

 

7. Morphological measurements 

 

8. Data from temperature preference -and tolerance experiments 

 

9. Data from reciprocal transplant experiment 

 

10. All primer sequences 

 

11. Sample list containing specimen identifiers, museum collection numbers and 
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Supplementary figure 1.1 Neighbor joining tree based on Nei`s genetic distance for 16 microsatellite 

Loci. Native- (yellow) & Invasive (red) European as well as Russian (green) populations are included.   
 

 

 

Supplementary table 1.1 Sampling locations for contemporary and historical Argiope bruennichi 

samples, which were used in chapter 1. The specimens are sorted according to the distinct geographic 

regions, which I distinguish in the chapter.  
Identifier/Museum 

No. 
Region Country District/state City  

GPS 
N  

GPS E Year Collector Collection 

13047-13050 & 
13056 

Central Asia Uzbekistan Samarqand Kata Kurgan  39.90 66.50 1903 E. Zoffmann Berlin 

13059 Central Asia Uzbekistan Surxondaryo Patta Hissar Termiz 39.77 64.43 1906 Ryssel  Berlin 

10724 Central Asia Iran Fars Maharlu See 29.35 52.82 1953 Roewer  Frankfurt 

CnXiXA01(Ar6340) Central Asia China Xinjiang unknown 39.45 75.98 1991   Beijing 

3509 East Asia Japan Kyushu Nagasaki  32.78 129.87 1882 Dönitz  Frankfurt 

13061 East Asia China Shandong Quingdao 36.07 120.38 1905 Glaue Berlin 

CnGuGA01(Ar5848) East Asia China Guizhou unknown 26.83 106.83 1978   Beijing 

CnYuYA01(Ar5862) East Asia China Yunnan unknown 24.50 101.50 1983   Beijing 

CnHuHA01(Ar6196) East Asia China Hubei unknown 30.97 112.23 1984   Beijing 

CnFuFA01(Ar5458) East Asia China Fujian unknown 25.90 118.30 1991   Beijing 

CnHeHA01(Ar5402) East Asia China Hebei unknown 39.30 116.70 1998   Beijing 

JpKaIA East Asia Japan Kagoshima  Isa-shi 31.60 130.56 2007 T.Tsukada  Plön 

JpKaSA East Asia Japan Kagoshima  Satsuma 31.60 130.56 2007 T.Tsukada  Plön 

JpKaYA East Asia Japan Kagoshima  unknown 31.60 130.56 2007 T.Tsukada  Plön 
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Identifier/Museum 
No. 

Region Country District/state City  
GPS 

N  
GPS E Year Collector Collection 

JpMyEA East Asia Japan Miyazaki  Ebino-shi 32.02 131.35 2007 T.Tsukada  Plön 

CnJaJA01(Ar19504) East Asia China Jiangxi unknown 27.63 115.77 2008   Beijing 

Cn East Asia China Fujian unknown 25.90 118.30 2010 RC. Cheng Plön 

JpHoHA East Asia Japan Hokkaido Hakodate 41.77 140.73 2010 K. Tanaka Plön 

JpMySA East Asia Japan Miyagi Sendai 38.27 140.87 2010 K. Tanaka Plön 

JpToToA East Asia Japan Tottori Prefecture Tottori, Katsurami 35.50 134.23 2010 N. Tsurusaki Plön 

JpEhYA East Asia Japan Ehime Yuyama 33.83 132.77 2011 N. Tsurusaki Plön 

JpFuFA East Asia Japan Fukuoka 
Fukuoka, Tarumaru 

Lizuka 
33.65 130.68 2011   Plön 

JpFuFB East Asia Japan Fukuoka 
Fukuoka, Yamada 

Ryokuchi 
33.57 130.72 2011   Plön 

JpIbTA East Asia Japan Ibaraki Tsukuba 36.00 140.10 2011 Y. Baba Plön 

JpKaAA East Asia Japan Kagoshima Amami-oshima Island 28.33 129.32 2011 Y. Baba Plön 

JpKaAB East Asia Japan Kagoshima Amami-oshima Island 28.28 129.43 2011 Y. Baba Plön 

JpKaAC East Asia Japan Kagoshima Amami-oshima Island 28.23 129.35 2011 Y. Baba Plön 

JpKaMA East Asia Japan Kagoshima  Hirata 31.60 130.56 2011 T. Maeda  Plön 

JpKaCA East Asia Japan Kagoshima  Mihama-chö 31.60 130.56 2011 K. Nakamura  Plön 

JpKaKA East Asia Japan Kagoshima  Shimofukmoto-chö 31.60 130.56 2011 T. Maeda  Plön 

JpKaHA East Asia Japan Kagoshima  Sogi,Ohkuchi 31.60 130.56 2011 K.Nakamura  Plön 

JpNaAA East Asia Japan Nagano Azusagawa-Azusa 36.23 137.97 2011 N. Tsurusaki Plön 

JpShOA East Asia Japan Shiga  Ozigaoka 35.12 136.07 2011 T. Masumoto Plön 

JpTcUA East Asia Japan Tochigi Utsunomiya 36.53 139.95 2011 Y. Baba Plön 

JpToKA East Asia Japan Tottori Kagamiganaru 35.28 133.48 2011 N. Tsurusaki Plön 

JpToSA East Asia Japan Tottori Katsurami 35.50 134.17 2011 N. Tsurusaki Plön 

3709 East Asia China Beijing Beijing 39.91 116.39 <1900 Möllenhoff Berlin 

13064 East Asia Japan Honshu Tokyo 35.69 139.69 <1900 Hilgendorff Berlin 

2900 East Asia Japan unknown unknown     <1900 Dönitz  Berlin 

2693 East Asia Japan unknown unknown     <1900 Hilgendorff Berlin 

JP2 East Asia Japan unknown unknown     >2000   Plön 

13065 East Asia Japan Hokkaido/Yezo unknown 43.28 143.08     Berlin 

CnLiLA01(Ar4926) East Asia China Liaoning unknown 41.10 122.30     Beijing 

13063 East Asia Polynesia Polynesia Polynesia       Putze Berlin 

13062 East Asia China Shandong Quingdao 36.07 120.38   Redinberg Berlin 

CnZhZA01(Ar4927) East Asia China Zhejiang unknown 29.20 120.50     Beijing 

13085 Invasive Germany Berlin Tegel 52.35 13.17 1897   Berlin 

13083 Invasive Germany Berlin Müggelsee 52.26 13.39 1903   Berlin 

13078 Invasive Germany Brandenburg Kotzen 52.63 12.52 1906 Zimmermann Berlin 

13084 Invasive Germany Brandenburg 
Königs 

Wusterhausen 
52.18 13.38 1909 Bäume Berlin 

13086 Invasive Germany Berlin Grunewald Havel 52.29 13.16 1919 Ulrich Berlin 

13079 Invasive Germany Brandenburg Erkener  52.25 13.45 1923 Ude Berlin 

13089 Invasive Germany Brandenburg Erkener 52.25 13.45 1926 Ude Berlin 

13066 Invasive Germany Brandenburg Erkener  52.25 13.45 1927 Ude Berlin 

13088 Invasive Germany Brandenburg Erkener 52.25 13.45 1928 Ude Berlin 

9307-9309 Invasive Germany Brandenburg Erkener 52.25 13.45 1929 Ude Berlin 

61280 Invasive Germany Saxony-Anhalt 
Dessau Roßlau 

Dellnau 
51.50 12.17 1933 Wiehle  Frankfurt 

4337 Invasive Germany Berlin Berlin 52.31 13.24 1934 Roewer  Frankfurt 

13091 Invasive Germany Brandenburg Caputh 52.21 13.00 1935 Sick Berlin 



 

163 

 

Identifier/Museum 
No. 

Region Country District/state City  
GPS 

N  
GPS E Year Collector Collection 

13069 Invasive Germany Brandenburg Genshagener Forst 52.19 13.19 1935 Ehlers Berlin 

13092 Invasive Germany Saxony Bötzener Wiesen 51.26 12.34 1935 Preuße Berlin 

13068 Invasive Germany Brandenburg Großbeeren 52.21 13.18 1936 Ehlers Berlin 

13073 Invasive Germany Brandenburg Ruhlsdorf 52.40 13.27 1936 Ehlers Berlin 

13076 Invasive Germany Berlin 
Krumme Laake 

Müggeheim 
52.25 13.42 1937 Ehlers Berlin 

13074 Invasive Germany Brandenburg Hennigsdorf 52.64 13.20 1937 Ehlers Berlin 

13071 Invasive Germany Brandenburg Höpenberge     1937 Ehlers Berlin 

13072 Invasive Germany Brandenburg 
Klosterwadle 
Uckermark 

53.07 13.30 1937 Ehlers Berlin 

13077 Invasive Germany Brandenburg 
Röddelin Mahlgast 

See 
53.07 13.30 1937 Ehlers Berlin 

13075 Invasive Germany Brandenburg Schmöckwitz  52.22 13.38 1937 Ehlers Berlin 

13067 Invasive Germany Brandenburg Summt  52.38 13.23 1937 Ehlers Berlin 

14696 Invasive Germany Brandenburg Oberer Falkensee 52.56 13.09 1960   Berlin 

9301 Invasive Germany Brandenburg Straupitz  51.91 14.12 1960 Crome Berlin 

  Invasive Germany 
Mecklenburg-
Vorpommern 

Thiessow  54.28 13.71 1978 Jaeschke Berlin 

27026 Invasive Germany Brandenburg Neuendorf Lübben 51.95 13.90 1985 Köhler Berlin 

30534 Invasive Germany Brandenburg Müncheberg  52.50 14.14 1992 Wendt Berlin 

30539 Invasive Germany 
Mecklenburg-
Vorpommern 

Hiddensee 54.54 13.09 1992 Eichler Berlin 

GeNsXA Invasive Germany Lower Saxony Buxtehude 53.48 9.80 2009   Plön 

GeBbBA Invasive Germany Brandenburg Belzig 52.13 12.53 2010 L. Friman Plön 

GeBbBB Invasive Germany Brandenburg Belzig 52.13 12.60 2010 L. Friman Plön 

GeBbEA Invasive Germany Brandenburg Eberswalde 52.73 13.73 2010 H. Krehenwinkel Plön 

GeBbEB Invasive Germany Brandenburg Eberswalde 52.73 13.75 2010 H. Krehenwinkel Plön 

PlEmOA Invasive Poland Ermland-Masuren Olsztyn 53.73 20.25 2010 H. Krehenwinkel Plön 

PlEmPA Invasive Poland Ermland-Masuren Paslek 54.02 20.25 2010 H. Krehenwinkel Plön 

GeHhHA Invasive Germany Hamburg Nordheide 53.28 10.03 2010 
J. Helms, K. Welke, T. 

Dirks 
Plön 

CzJkBA Invasive 
Czech 

Republic 
Jihomoravský  Brno 49.20 16.67 2010 S. Winkler, V. Brya Plön 

CzJk?A Invasive 
Czech 

Republic 
Jihomoravský  Brno? 49.20 16.61 2010 S. Winkler Plön 

CzJkMA Invasive 
Czech 

Republic 
Jihomoravský kraj Moravian Karst 49.28 16.73 2010 V. Hula Plön 

CzJkSA Invasive 
Czech 

Republic 
Jihomoravský kraj Skřinářov 49.35 16.18 2010 S. Winkler Plön 

SwKlKA Invasive Sweden Kalmar län Kalmar 56.83 14.15 2010   Plön 

LtKlPA Invasive Lithuania Klaipeda  Palanga 55.97 21.10 2010 H. Krehenwinkel Plön 

LvLpLA Invasive Latvia Liepaja District Liepaja 56.42 21.00 2010 H. Krehenwinkel Plön 

LvLpNA Invasive Latvia Liepaja District Nidasciems 56.08 21.12 2010 H. Krehenwinkel Plön 

LvLiAA Invasive Latvia Limbazi  Ainazi 57.85 24.35 2010 H. Krehenwinkel Plön 

AuNiVA/B/C Invasive Austria Lower Austria Sankt Valentin 48.17 14.53 2010 H. Krehenwinkel Plön 

AuNiVD Invasive Austria Lower Austria Sankt Valentin 48.17 14.53 2010 M. Freudenschuss Plön 

GeNsBA Invasive Germany Lower Saxony Braunschweig 52.32 10.43 2010 H. Krehenwinkel Plön 

GeNsBB Invasive Germany Lower Saxony Braunschweig 52.23 10.47 2010 H. Krehenwinkel Plön 

GeNsLA Invasive Germany Lower Saxony Lehrte 52.37 9.93 2010 H. Krehenwinkel Plön 

GeNsMA Invasive Germany Lower Saxony Mattierzoll 52.05 10.77 2010 K. Moschütz Plön 

GeNsOA Invasive Germany Lower Saxony Oldau 52.65 9.92 2010 H. Krehenwinkel Plön 

LtMaPA Invasive Lithuania Marijampole  Pasiekos 54.30 23.12 2010 H. Krehenwinkel Plön 

PlMaCA Invasive Poland Masowien Cosznow 52.38 20.73 2010 W. Wawer Plön 

PlMaJA Invasive Poland Masowien Jonina Cosznow 52.38 20.73 2010 W. Wawer Plön 

PlMaPA Invasive Poland Masowien Pienkow Cosznow 52.37 20.83 2010 W. Wawer Plön 
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Identifier/Museum 
No. 

Region Country District/state City  
GPS 

N  
GPS E Year Collector Collection 

PlMaDA Invasive Poland Masowien Siedlce 52.13 23.20 2010 S. Longhorn Plön 

PlMaTA Invasive Poland Masowien Tomna Las 52.38 20.78 2010 W. Wawer Plön 

GeMvSA Invasive Germany 
Mecklenburg-
Vorpommern 

Selmsdorf 53.88 10.82 2010 H. Krehenwinkel Plön 

DkMlMA Invasive Denmark Midtjylland Mols Bjerge 56.22 10.58 2010 S. Toft Plön 

PlPoGA Invasive Poland Pomerania Gdansk 54.30 18.57 2010 H. Krehenwinkel Plön 

PlPoLA Invasive Poland Pomerania Lebork 54.55 17.78 2010 H. Krehenwinkel Plön 

GeShAA Invasive Germany Schleswig Holstein Ascheberg 54.13 10.32 2010 H. Krehenwinkel Plön 

GeShLA Invasive Germany Schleswig Holstein Blankensee 53.78 10.70 2010 M.Lemke Plön 

GeShGA/B Invasive Germany Schleswig Holstein Grönauer Heide 53.80 10.72 2010 M.Lemke Plön 

GeShHA/B Invasive Germany Schleswig Holstein Hasenmoor 53.90 9.98 2010 J. Wolff Plön 

GeShBA Invasive Germany Schleswig Holstein Negernbötel 53.97 10.27 2010 H. Krehenwinkel Plön 

GeShBB Invasive Germany Schleswig Holstein Negernbötel 53.98 10.27 2010 H. Krehenwinkel Plön 

GeShNA Invasive Germany Schleswig Holstein Neumünster 54.07 10.00 2010 H. Krehenwinkel Plön 

GeShSA Invasive Germany Schleswig Holstein Schleswig 54.52 9.58 2010 H. Krehenwinkel Plön 

GeShRA Invasive Germany Schleswig Holstein Schwentinental 54.25 10.28 2010 H. Krehenwinkel Plön 

GeShRB Invasive Germany Schleswig Holstein Schwentinental 54.25 10.27 2010 H. Krehenwinkel Plön 

SwSlAA Invasive Sweden Skåne län Ahus, Horna 55.95 14.28 2010 L. Jonson Plön 

SwSlLA Invasive Sweden Skåne län Veberöd, Vaselund 55.67 13.45 2010 L. Jonson Plön 

SwSlVA Invasive Sweden Skåne län Vittskövle 55.85 14.15 2010 L. Jonson Plön 

FlSbSA Invasive Finland Südösterbotten Seinäjoki 62.80 22.83 2010 N. Fritzen Plön 

FlSsHA Invasive Finland Südsavo Hirvensalmi 61.63 26.77 2010 S.Koponen Plön 

DkSyKA Invasive Denmark Syddanmark Kolding 55.53 9.48 2010 S. Toft Plön 

GeThEA Invasive Germany Thüringia Ettersberg 51.03 11.27 2010 A. Grabolle Plön 

GeThJA Invasive Germany Thüringia Jena 50.95 11.57 2010 D. Neubert Plön 

GeThSA Invasive Germany Thüringia Saalborn 50.89 11.33 2010 A. Grabolle Plön 

GeThWA Invasive Germany Thüringia Weimar 50.93 11.33 2010 D. Neubert Plön 

SkTkNA Invasive Slovakia Trenčiansky kraj Novaky 48.72 18.53 2010 S. Pekar Plön 

AuObMA/B Invasive Austria Upper Austria Linz, Mitterwasser 48.25 14.37 2010 J. Nigl Plön 

AuViLA Invasive Austria Vienna Vienna 48.18 16.21 2010 H. Krehenwinkel Plön 

AuViVA Invasive Austria Vienna Vienna 48.20 16.37 2010 H. Krehenwinkel Plön 

GeBeMA Invasive Germany Berlin Müggelheim 52.40 13.65 2011 H. Krehenwinkel Plön 

SwBlAA Invasive Sweden Blekinge county Asarum 56.18 14.85 2011 H. Krehenwinkel Plön 

SwBlOA Invasive Sweden Blekinge county Öljersjö 56.18 15.70 2011 H. Krehenwinkel Plön 

GeBbKA Invasive Germany Brandenburg Erkner 52.40 13.75 2011 H. Krehenwinkel Plön 

GeBbFA Invasive Germany Brandenburg Fangschleuse 52.42 13.78 2011 H. Krehenwinkel Plön 

GeBbWA Invasive Germany Brandenburg Fürstenwalde 52.33 14.07 2011 H. Krehenwinkel Plön 

GeBbGA Invasive Germany Brandenburg Gosen 52.38 13.70 2011 H. Krehenwinkel Plön 

GeBbHA Invasive Germany Brandenburg Heidsee 52.30 13.78 2011 H. Krehenwinkel Plön 

AuBuRA Invasive Austria Burgenland unknown 47.50 16.42 2011   Plön 

PlEmYA Invasive Poland Ermland Masuren Pilchy 53.68 21.90 2011 W. Wawer Plön 

PlGPPA Invasive Poland Greater Poland Poznan 52.30 17.53 2011 H. Krehenwinkel Plön 

SwKaSA Invasive Sweden Kalmar county Söderakra 56.43 16.07 2011 H. Krehenwinkel Plön 

LtKaKA Invasive Lithuania Kaunas Kaunas 55.02 24.20 2011 H. Krehenwinkel Plön 

PlLPZA Invasive Poland Lesser Poland  Zawoja 49.63 19.53 2011 W. Wawer Plön 

LvLiAC Invasive Lativa Limbazi Ainazi 57.87 24.35 2011 H. Krehenwinkel Plön 



 

165 

 

Identifier/Museum 
No. 

Region Country District/state City  
GPS 

N  
GPS E Year Collector Collection 

PlLuGA Invasive Poland Lubusz Grodziszcze 52.25 15.53 2011 H. Krehenwinkel Plön 

LtMaNA Invasive Lithuania Marijampole Naujoji Valia 54.33 23.15 2011 H. Krehenwinkel Plön 

PlMaLA Invasive Poland Masovia Laski 52.32 20.55 2011 W. Wawer Plön 

PlMaBA Invasive Poland Masovien Budykierz 52.67 21.62 2011 H. Krehenwinkel Plön 

PlMaSA Invasive Poland Masovien Sochaczew 52.20 20.25 2011 H. Krehenwinkel Plön 

DkMjSA Invasive Denmark Midtjylland Skanderborg 56.07 9.97 2011 H. Krehenwinkel Plön 

EsPuMA Invasive Estonia Pärnu Mereküla 58.28 24.58 2011 H. Krehenwinkel Plön 

PlPlAA Invasive Poland Podlaskie Augustow 53.90 22.97 2011 H. Krehenwinkel Plön 

PlPlBA Invasive Poland Podlaskie Bialystok 53.33 23.10 2011 H. Krehenwinkel Plön 

LvSaSA Invasive Latvia Salaspils Salaspils 56.85 24.38 2011 H. Krehenwinkel Plön 

SwSkKA Invasive Sweden Skane county Kristianstad 55.95 14.10 2011 H. Krehenwinkel Plön 

LvSNSA Invasive Latvia Skriveru Novads Skriveri 56.62 25.10 2011 H. Krehenwinkel Plön 

PlScBA Invasive Poland Subcarpathian  Budy 50.18 21.77 2011 W. Wawer Plön 

LtUtUB Invasive Lithuania Utena Utena 55.50 25.48 2011 H. Krehenwinkel Plön 

LtUtUA Invasive Lithuania Utena Utena 55.47 25.37 2011 H. Krehenwinkel Plön 

LtUtZA Invasive Lithuania Utena Zarasai 55.73 26.30 2011 H. Krehenwinkel Plön 

FlVsKA Invasive Finland Varsinais-Suomi Kaarina, Turku 60.38 22.35 2011 C. Neffling & E. Virta Plön 

13041 Invasive Germany Berlin Berlin 52.31 13.24 <1945 HedIcke Berlin 

13087 Invasive Germany Brandenburg Groß Glienicke 52.47 13.12 <1960 Meise Berlin 

61274 Invasive Germany Europe unknown     <1960 H. Wiehle Frankfurt 

61272 Invasive Germany Saxony-Anhalt Dessau or Berlin     <1960 H. Wiehle Frankfurt 

GeThHA Invasive Germany Thüringia Hainich 51.10 10.38 >1990 T. Blick Plön 

13030 Native Italy Sicily Taurus  37.34 14.16 1846 Holz Berlin 

3521 Native Morocco Grand Casablanca Casablanca 33.35 -7.37 1872 Fritzsch & Rein  Frankfurt 

5589 Native Germany Hesse Frankfurt 50.07 8.41 1873   Frankfurt 

3506 Native Germany Hesse Frankfurt 50.07 8.41 1883 Koch  Frankfurt 

13027 Native Turkey Mersin Gülek 37.32 34.80 1897 Holtz Berlin 

13022 Native Croatia Istria Rovigno  45.05 13.38 1899 Müggeb. Berlin 

3514 Native Germany Hesse Mainkur Frankfurt 50.08 8.46 1901 Römer  Frankfurt 

3515 Native Germany Hesse Schwanheim 50.05 8.35 1901 Knoblauch  Frankfurt 

3508 Native Germany Hesse Frankfurt 50.07 8.41 1902 Römer Frankfurt 

13038 Native Croatia Istria Rovigno 45.05 13.38 1902 Büllener Berlin 

3512 Native Switzerland Ticino Lugano 46.01 8.58 1904 Edinger  Frankfurt 

13080 Native Germany Rhineland-Palatinate Trier 49.46 6.39 1905 Rübesaamen Berlin 

13031 Native Italy Trentino Trentino 46.04 11.07 1906   Berlin 

5594 Native Germany Hesse 
Michelstadt im 

Odenwald 
49.41 9.00 1908 Neuenburg  Frankfurt 

13026 Native Croatia Istria Fiume Buccari 45.32 14.53 1912 Ramme Berlin 

13039 Native Italy Sardinia 
Monti del 

Carmagenta 
40.02 9.04 1912 Krauß Berlin 

13035 Native Italy Sardinien  Sorgonj 40.02 9.04 1912 Krauße Berlin 

3507 Native Spain Catalonia La Fosca de Palemos 41.59 2.49 1914 Haas  Frankfurt 

3510 Native Spain Catalonia Flix 41.14 0.32 1915 Haas  Frankfurt 

6432 Native Germany Hesse 
Obertshausen 

Offenbach 
50.06 8.46 1915   Frankfurt 

13034 Native France Oise Noyon  49.58 3.00 1916 Welzkow Berlin 

3511 Native Spain Catalonia Pobla de Segur  42.15 0.58 1918 Haas  Frankfurt 

7354 Native Germany Rhineland-Palatinate Neustadt 49.21 8.09 1922 Stellwaag  Frankfurt 
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815 Native Greece Crete Meskla 35.00 25.00 1926 Rower  Frankfurt 

9269 Native Croatia Istria Opatija 45.33 14.30 1926 Enderlein  Berlin 

13082 Native Germany Hesse Offenbach  50.06 8.46 1928 Vogt Berlin 

1366 Native Hungary Tolna Tolna 46.42 18.79 1928 Roewer  Frankfurt 

14264 Native France Corsica  Piarea 42.09 9.05 1930 Schulze Berlin 

13042 Native Germany Baden-Würtemberg Freiburg im Breisgau 48.00 7.51 1931 Kracht Berlin 

5593 Native Germany Hesse Schwanheim 50.05 8.35 1931 Cürten  Frankfurt 

3513 Native Germany Hesse Darmstadt 49.52 8.39 1934 Haas Frankfurt 

3522 Native Germany Hesse Offenbach, Luhrwald 50.06 8.46 1935 Zilch  Frankfurt 

5597 Native Germany Hesse Darmstadt 49.52 8.39 1936 Donien  Frankfurt 

5596 Native Germany Hesse Eppstein 50.08 8.24 1936 Hohorst Frankfurt 

1794 Native Italy Sardinia unknown 43.47 11.15 1938 Roewer  Frankfurt 

5658 Native Italy Tuscany Florenz 40.02 9.04 1940 Roewer  Frankfurt 

1796 Native France Eastern Pyrenees unknown 42.50 2.75 1942 Roewer  Frankfurt 

5595 Native Germany Hesse Vockenhausen 50.09 8.23 1942 Pape  Frankfurt 

8992 Native France Cote d´Azur Marseille 43.18 5.23 1943 Roewer  Frankfurt 

9009 Native Macedonia unknown Ostrowo 42.00 22.00 1943 Roewer  Frankfurt 

6236 Native Germany Hesse Frankfurt 50.07 8.41 1948 Hesse, Herbst  Frankfurt 

5772 Native Germany Hesse 
Frankfurt Eukheimer 

Ried 
50.09 8.45 1948 Schuster  Frankfurt 

5773 Native Germany Hesse Hofheim 50.05 8.27 1948 Nothdurfth  Frankfurt 

5914 Native Germany Hesse 
Schwanheim am 

Main 
50.05 8.35 1948 Hesse  Frankfurt 

5774 Native Germany Hesse Sprendlingen  49.52 7.59 1948 Neubecker  Frankfurt 

6386 Native Germany Hesse Frankfurt Südfriedhof 50.07 8.41 1949 Lerner  Frankfurt 

6547 Native Germany Hesse Höchst  50.06 8.33 1949 Bott  Frankfurt 

6547 Native Germany Hesse Hofheim 50.05 8.27 1949 Nothdurft  Frankfurt 

6548 Native Germany Hesse Loßbach 50.05 8.27 1949 Nothdurft  Frankfurt 

6385 Native Germany Hesse Mönchsbruck 49.97 8.51 1949 Hesse  Frankfurt 

6545 Native Germany Hesse Wersau 49.47 8.52 1949 Schnellbäcker  Frankfurt 

7498 Native Germany Hesse Wisselsheim 50.23 8.46 1949 Scherf  Frankfurt 

7504 Native Germany Hesse Hengsten  50.04 8.50 1950 Zilch  Frankfurt 

7535 Native Germany Hesse Hofheim 50.05 8.27 1950 Nothdurft  Frankfurt 

7507 Native Germany Hesse Taunus Sulzbach 49.54 9.09 1950 Millowitsch  Frankfurt 

10143 Native Germany Hesse Wächtersbach 50.27 9.30 1950 Braun Frankfurt 

7509 Native Germany Hesse 
Wetterau 

Niederweisel 
50.28 8.95 1950 Kraus  Frankfurt 

7503 Native Germany Rhineland-Palatinate Pfalz Burrweiler 49.25 8.08 1950 Menges  Frankfurt 

10269 Native Germany Rhineland-Palatinate Waldorf 50.49 7.23 1950 Braun  Frankfurt 

10190 Native Germany Hesse Lorch am Rhein 50.03 7.48 1951 Braun  Frankfurt 

10304 Native Germany Rhineland-Palatinate Kühkopf 49.49 8.26 1951 Braun  Frankfurt 

8349 Native France Corsica Calacuccia 42.28 9.12 1952 Schnellb. Frankfurt 

8348 & 8351 Native France Corsica Casamozza 42.31 9.26 1952 Schnellb. Frankfurt 

8355 & 8353 Native France Corsica Corte 42.18 9.09 1952 Schnellb. Frankfurt 

8354 Native France Corsica  Col de Prato  42.09 9.05 1952 Schnellb. Frankfurt 

8352 Native France Corsica  Ponte Lecchia  42.31 9.32 1952 Schnellb. Frankfurt 

8350 Native France Corsica   Lumio Calenzana 42.35 8.49 1952 Schnellb. Frankfurt 

8422 Native Spain Catalonia Barcelona  41.24 2.10 1953 Schnellb. Frankfurt 
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8423 Native Spain Catalonia Castelldefels 41.28 1.97 1953 Schnellb. Frankfurt 

9523 Native Italy Sardinien Oschiri 40.44 8.59 1954 Kraus Frankfurt 

8810 Native Italy Sardinien  Olbia 40.55 9.30 1954 Kraus Frankfurt 

8811 Native Italy Sardinien  Tempio 40.54 9.06 1954 Kraus Frankfurt 

9931 Native Germany Hesse Mühlberg 50.29 8.37 1957 Braun  Frankfurt 

10168 Native Germany Hesse Schwanheim 50.05 8.35 1957 Braun  Frankfurt 

10480 Native Croatia Istria  Rovinj 45.05 13.38 1957 Kraus  Frankfurt 

3596 Native France Camargue unknown 43.53 4.50 1960 Kraus  Frankfurt 

TnGaGA Native Tunesia Galita Archipelago Ile de Galite 37.53 8.93 1972 Maija & J.E. Vesmaris Bonn 

Slovenia Native Slovenia         2009 J. Helms, M. Kuntner Plön 

GeNwBA Native Germany 
North Rhine-
Westphalia 

Bonn 50.73 7.10 2009 H. Krehenwinkel Plön 

FrAuBA/B Native France Auvergne Bizeneuille 46.40 2.73 2010 H. Krehenwinkel Plön 

FrAuCA Native France Auvergne Clermont Ferrand 45.88 3.13 2010 H. Krehenwinkel Plön 

FrAuCB Native France Auvergne Clermont Ferrand 45.95 2.98 2010 H. Krehenwinkel Plön 

FrAuLA Native France Auvergne Lindron 46.42 2.78 2010 H. Krehenwinkel Plön 

GeBwFA Native Germany Baden Württemberg Freiburg 48.00 7.85 2010 C. Hanner Plön 

GeBwRA Native Germany Baden Württemberg Rielingshausen 48.08 9.25 2010 V. von Wirth Plön 

GeBwZA Native Germany Baden Württemberg 
Stuttgart 

Zuffenhausen-Rot 
48.83 9.17 2010 T. Bauer Plön 

GeBwUA Native Germany Baden-Württemberg Unteruhldingen 47.72 9.23 2010 S. Huber Plön 

SpBIIA Native Spain Balearic Islands Ibiza 38.95 1.40 2010 B.  Hinrichs Plön 

FrBnAA Native France Basse Normandie Alencon 48.45 0.12 2010 H. Krehenwinkel Plön 

GeBvBA Native Germany Bavaria Berching 49.10 11.43 2010 R. Samm Plön 

GeBvCA Native Germany Bavaria Chamerau 49.20 12.75 2010 M. Thierer Lutz Plön 

GeBvTA Native Germany Bavaria Deining (Bad Tölz) 47.07 11.55 2010 E.Bausbach Plön 

GeBvEA Native Germany Bavaria Dollnstein  48.87 11.07 2010 E.Bausbach Plön 

GeBvDA Native Germany Bavaria Dorfen 48.27 12.08 2010 J. Haft Plön 

GeBvLA Native Germany Bavaria Landsberg am Lech 47.98 10.87 2010 A. Roglmayr Plön 

GeBvMA Native Germany Bavaria Perlacher Forst  48.07 11.57 2010 E.Bausbach Plön 

GeBvPA Native Germany Bavaria Pfarrkirchen 48.42 12.93 2010 M. Vogt Plön 

GeBvMB Native Germany Bavaria Sauerlach  47.97 11.65 2010 E.Bausbach Plön 

GeBvMC Native Germany Bavaria Straßlach-Digharting  48.00 11.52 2010 E.Bausbach Plön 

GeBvKA Native Germany Bavaria Trautskirchen 49.45 10.58 2010 M. Hecht Plön 

PoBeCA Native Portugal  Beja Corte Pequena 37.73 -7.85 2010 H. Krehenwinkel Plön 

ChBeHA Native Switzerland Bern Herzogenbuchsee 47.18 7.70 2010 S. Kumschick Plön 

TuBsBA Native Turkey Black sea region Black sea region 42.00 33.45 2010 R. Kaya Plön 

FrBuCA Native France Burgundy  Chalon Sur Saone 46.75 4.83 2010 H. Krehenwinkel Plön 

FrBuCB Native France Burgundy  Chalon Sur Saone 46.73 4.83 2010 H. Krehenwinkel Plön 

TuBuBC Native Turkey Bursa 
Terzioglu island 

Bursa 
40.18 29.07 2010 R. Kaya Plön 

ItCbAA Native Italy Calabria Agropoli 40.33 15.00 2010 H. Krehenwinkel Plön 

ItCbBA Native Italy Calabria Battpaglia 40.61 14.93 2010 H. Krehenwinkel Plön 

ItCbCA Native Italy Calabria Capaccio 40.47 15.02 2010 H. Krehenwinkel Plön 

ItCbOA Native Italy Calabria Crosia 39.57 16.72 2010 H. Krehenwinkel Plön 

ItCbMA Native Italy Calabria Montalto Uffugo 39.40 16.15 2010 H. Krehenwinkel Plön 

ItCbRA Native Italy Calabria Roseto Capo Spulico 39.97 16.60 2010 H. Krehenwinkel Plön 

ItCaGA Native Italy Campania Giugliano 40.93 14.05 2010 H. Krehenwinkel Plön 
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ItCaPA Native Italy Campania Pomigliani Di Arco 40.92 14.37 2010 F. Baldanza Plön 

ItCaSA Native Italy Campania 
Sessa Aurunca 

Caserta 
41.23 13.78 2010 H. Krehenwinkel Plön 

SpCaCA Native Spain Catalonia Cambrils 41.10 1.02 2010 H. Krehenwinkel Plön 

SpCaBA Native Spain Catalonia Cubelles 41.20 1.67 2010 H. Krehenwinkel Plön 

SpCaMA Native Spain Catalonia Mont Roig del Camp 41.08 0.97 2010 H. Krehenwinkel Plön 

SpCaPA Native Spain Catalonia Puigemma 42.10 2.80 2010 H. Krehenwinkel Plön 

SpCaRA Native Spain Catalonia Reus 41.13 1.13 2010 H. Krehenwinkel Plön 

SpCaRB Native Spain Catalonia Reus 41.15 1.13 2010 H. Krehenwinkel Plön 

SpCaFA Native Spain Catalonia 
Santa Colomna de 

Farners 
41.87 2.65 2010 H. Krehenwinkel Plön 

SpCaVA Native Spain Catalonia Vic 41.95 2.27 2010 H. Krehenwinkel Plön 

FrCeBA Native France Centre  Bourges 47.08 2.23 2010 H. Krehenwinkel Plön 

FrCeBB Native France Centre Bourges 47.03 2.33 2010 H. Krehenwinkel Plön 

FrCeTA Native France Centre Tours 47.32 0.47 2010 H. Krehenwinkel Plön 

GrEpIA/B Native Greece Epirus Igoumenitsa 39.52 20.18 2010 H. Krehenwinkel Plön 

GrEpIC Native Greece Epirus Igoumenitsa 39.52 20.23 2010 H. Krehenwinkel Plön 

GrEpID/E Native Greece Epirus Preveza 38.95 20.73 2010 H. Krehenwinkel Plön 

GrEpIF Native Greece Epirus unknown     2010 H. Krehenwinkel Plön 

ChGeAA Native Switzerland Geneve Avusy 46.15 5.98 2010 L. Monod Plön 

CrIsMA Native Croatia Istria Porec, Muzalik 45.22 13.58 2010 V. von Wirth Plön 

CrIsPA Native Croatia Istria Pula 44.85 13.58 2010 M. Dieter Plön 

SlJsPA Native Slovenia 
Jugovzhodna 

Slovenija  
Primostek 45.62 15.29 2010 

M. Kuntner, Gregorič, 
Lokovšek 

Plön 

FrLrCA Native France 
Languedoc-
Roussillon 

Carcassonne 43.25 2.13 2010 H. Krehenwinkel Plön 

FrLrNA Native France 
Languedoc-
Roussillon 

Nimes 43.78 4.40 2010 H. Krehenwinkel Plön 

ItLzPA Native Italy Lazio Puzzali 41.30 13.75 2010 H. Krehenwinkel Plön 

ItLiNA Native Italy Liguria Noli 44.20 8.40 2010 A. Trotta Plön 

NlLiVA Native Netherlands Limburg Venlo 51.38 6.17 2010 H. Krehenwinkel Plön 

NlLiVB Native Netherlands Limburg Venlo 51.40 6.17 2010 H. Krehenwinkel Plön 

FrLiMA Native France Limousin Mestes 45.50 2.32 2010 H. Krehenwinkel Plön 

FrLiNA Native France Limousin Nespouls 45.05 1.48 2010 H. Krehenwinkel Plön 

FrMpMA Native France Midi Pyrenees Montauban 43.98 1.33 2010 H. Krehenwinkel Plön 

FrNcVA Native France Nord Pas de Calais Valencienne 50.37 3.62 2010 H. Krehenwinkel Plön 

GeNwQA Native Germany 
North Rhine-
Westphalia 

Bochum-Querenburg 51.43 7.25 2010 H. Krehenwinkel Plön 

GeNwHA Native Germany 
North Rhine-
Westphalia 

Haltern 51.73 7.23 2010 H. Krehenwinkel Plön 

GeNwKA Native Germany 
North Rhine-
Westphalia 

Köln 50.93 6.95 2010 M. Krause Plön 

GeNwLA Native Germany 
North Rhine-
Westphalia 

Letmathe 51.35 7.62 2010 H. Krehenwinkel Plön 

GeNwWA Native Germany 
North Rhine-
Westphalia 

Wulfen 51.72 7.05 2010 H. Krehenwinkel Plön 

GeNwWB Native Germany 
North Rhine-
Westphalia 

Wulfen 51.72 7.03 2010 H. Krehenwinkel Plön 

SlOkSA Native Slovenia Obalno-kraška regija Slavnik 45.54 13.96 2010 M. Kuntner, Lokovšek Plön 

FrPlAA Native France Pays de la Loire Angers 47.48 -0.48 2010 H. Krehenwinkel Plön 

FrPlAB Native France Pays de la Loire Angers 47.50 -0.50 2010 H. Krehenwinkel Plön 

FrPlTA Native France Pays de la Loire Tierce 47.60 -0.47 2010 H. Krehenwinkel Plön 

ItPgTA Native Italy Puglia Taranto 40.47 17.30 2010 H. Krehenwinkel Plön 

FrRaLA Native France Rhône-Alpes Lyon 45.48 4.83 2010 H. Krehenwinkel Plön 

HuSoBA/BB Native Hungary Somogy Balatonbereny 46.70 17.30 2010 M. Freudenschuss  Plön 
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NlShOA Native Netherlands Südholland Oegstgeest 52.18 4.50 2010 P. van Helsdingen Plön 

61135 Native Lebanon unknown unknown     2010 Jäger  Frankfurt 

HuVeSB Native Hungary Veszprem Sümeg 46.85 17.20 2010 M. Freudenschuss Plön 

BeWaNA Native Belgium Wallonia Namur 50.48 4.72 2010 H. Krehenwinkel Plön 

PoAlBA Native Portugal Alentejo Borba 38.80 -7.45 2011 H. Krehenwinkel Plön 

GeBwDA Native Germany Baden Würtemberg Ditzingen 48.83 9.07 2011 H. Krehenwinkel Plön 

GeBwKA Native Germany Baden Würtemberg Korntal 48.83 9.12 2011 H. Krehenwinkel Plön 

SpBiEA Native Spain Balearic Islands Cala Lenya 39.02 1.58 2011 H. Krehenwinkel Plön 

SpBiEB Native Spain Balearic Islands Santa Eulalia 39.00 1.53 2011 H. Krehenwinkel Plön 

SpBaVA Native Spain Basque Country Vitoria 42.85 -2.68 2011 H. Krehenwinkel Plön 

PoBeCB Native Portugal Beja Corte Pequena 37.73 -7.85 2011 H. Krehenwinkel Plön 

SpCaAA Native Spain Catalonia Amposta 40.71 0.58 2011 H. Krehenwinkel Plön 

SpCaMB Native Spain Catalonia Mont Roig del Camp 41.09 0.96 2011 H. Krehenwinkel Plön 

SpCaTA Native Spain Catalonia Tarragona 41.12 1.25 2011 H. Krehenwinkel Plön 

PoCeFA Native Portugal Centro Figueira da Foz 40.15 -8.85 2011 H. Krehenwinkel Plön 

PoCeGA Native Portugal Centro Guarda 40.54 -7.27 2011 H. Krehenwinkel Plön 

PoCeNA Native Portugal Centro Nazare 39.61 -9.07 2011 H. Krehenwinkel Plön 

CrDaBA Native Croatia Dalmatia Brela 43.37 16.92 2011 H. Krehenwinkel Plön 

CrDaCB Native Croatia Dalmatia Ciovo 43.50 16.31 2011 M. Freudenschuss Plön 

CrDaSA Native Croatia Dalmatia Ston 42.83 17.73 2011 H. Krehenwinkel Plön 

FrAqDA Native France Dordogne   45.00 0.67 2011 A. Grabolle Plön 

SpExTA Native Spain Extremadura Trujillanos 38.95 -6.25 2011 H. Krehenwinkel Plön 

GeHeDA Native Germany Hesse Darmstadt 49.87 8.65 2011 H. Krehenwinkel Plön 

GeHeHA Native Germany Hesse Frankfurt Hoechst 50.10 8.55 2011 H. Krehenwinkel Plön 

GeHeSA Native Germany Hesse 
Frankfurt 

Schwanheim  
50.09 8.58 2011 H. Krehenwinkel Plön 

FrLrCB Native France 
Languedoc-
Roussillon 

Carcassonne 43.21 2.35 2011 H. Krehenwinkel Plön 

FrLrCC Native France 
Languedoc-
Roussillon 

Carcassonne 43.21 2.13 2011 H. Krehenwinkel Plön 

FrLrCD Native France 
Languedoc-
Roussillon 

Carcassonne 43.25 2.13 2011 H. Krehenwinkel Plön 

FrLrCE Native France 
Languedoc-
Roussillon 

Carcassonne 43.23 2.28 2011 H. Krehenwinkel Plön 

FrLrCF Native France 
Languedoc-
Roussillon 

Carcassonne 43.25 2.18 2011 H. Krehenwinkel Plön 

FrLrBA Native France 
Languedoc-
Roussillon 

Narbonne 43.18 3.00 2011 H. Krehenwinkel Plön 

FrLrNB Native France 
Languedoc-
Roussillon 

Nimes 43.78 4.40 2011 H. Krehenwinkel Plön 

SpVaCA Native Spain Valencia Benicarlo 40.42 0.42 2011 H. Krehenwinkel Plön 

SpVaBA Native Spain Valencia Bunol 39.42 -0.79 2011 H. Krehenwinkel Plön 

ItVeBA Native Italy Venetia Bibione 45.77 13.00 2011 H. Krehenwinkel Plön 

5591 Native Germany Hesse 
Frankfurt 

Eschenheimer Tor 
50.07 8.41 ~1900 von Heyden Frankfurt 

13021 Native Turkey Istanbul Istanbul 41.17 28.98 ~1900 Gottwald Berlin 

13025 Native France Meuse St Mihiel 4.89 5.54 ~1915   Berlin 

13036 Native Algeria Algiers Algiers 36.77 3.05 <1900 Quedenfeld Berlin 

13043 Native Germany Rhineland-Palatinate Mombach 50.02 8.22 <1900 L. Koch Berlin 

242 Native Greece unknown unknown     <1900 Krüper Berlin 

13019 Native Greece   Kunami  37.67 21.44 <1900   Berlin 

SpCaXA Native Spain Catalonia Barcelona 41.40 2.17 >2000 S. Nesseler Plön 

SpCaFA Native Spain Catalonia Flix 41.23 0.53 >2000 S.Nesseler Plön 

SpCaNA Native Spain Catalonia La Noguera 41.90 0.93 >2000 S. Nesseler Plön 
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SpCaLA Native Spain Catalonia Lleida 41.62 0.63 >2000 S. Nesseler Plön 

13045 & 484 Native Syria unknown unknown 34.88 35.88 
1820-
1825 

Ehrenberg Berlin 

5592 Native Germany Hesse 
Schwanheim am 

Main 
50.05 8.35     Frankfurt 

13017 Native Italy Tuscany Livorno 43.55 10.32   Weber Berlin 

13032 not assigned Romania 
Southern 

Carpathians 
Mogura Odobesti  45.77 27.07 1918 P. Schulze Berlin 

BuRiRA (40659) not assigned Bulgaria Kyustendil Rila  42.12 23.15 2005 Jäger, Kunz  Frankfurt 

BuKaDA01 not assigned Bulgaria Kavarna Durankulak 43.70 28.52 2010 C. Deltshev Plön 

BuSoVA01 not assigned Bulgaria Sofia Vitosha 42.70 23.32 2010 C. Deltshev Plön 

13033 Russia Russia Dagestan Buynaksk 42.82 47.12 1902 Haymons Berlin 

  Russia Ukraine Kiev Kiev  50.45 30.52 1963 Crome Berlin 

UAQ Russia Ukraine  Eastern Ukraine  unknown     2011 N. Polchaninova Plön 

UaKhGA Russia Ukraine Kharkov Gaidary Village  49.92 36.32 2011 N. Polchaninova Plön 

RuKuKA Russia Russia Kursk 
Khytor Stepnoy 

Village  
51.73 36.18 2011 N. Polchaninova Plön 

RuKuSA Russia Russia Kursk 
Selikhovy Dvory 

Village  
51.57 36.07 2011 N. Polchaninova Plön 

RuLiDB Russia Russia Lipetsk 
8. 8 km NW from 

Donskoye  
52.85 38.78 2011 N. Polchaninova Plön 

RuLiDA Russia Russia Lipetsk Donskoye Village  52.85 38.78 2011 N. Polchaninova Plön 

RuLiYA Russia Russia Lipetsk Yablonevoye Village  52.62 39.60 2011 N. Polchaninova Plön 

UaLuAA Russia Ukraine Lugansk Kalaus Village  48.57 39.30 2011 N. Polchaninova Plön 

UaLuKA/B Russia Ukraine Lugansk Krynichnoye Village  48.57 39.30 2011 N. Polchaninova Plön 

UaLuSA Russia Ukraine Lugansk Streltsovka Village  49.30 39.87 2011 N. Polchaninova Plön 

UaLuVA Russia Ukraine Lugansk Velokotsk Village  48.57 39.30 2011 N. Polchaninova Plön 

13024 Russia Russia Volgograd Sarepta 48.52 44.52 <1900   Berlin 

6020/bzw. 1630 Russia Russia Volgograd Sarepta 48.52 44.52 <1900   Berlin 

13016 Russia Ukraine Zaporizhia Melitopol 46.83 35.37 <1900   Berlin 

13023 & 1320 
Southern 
Caucasus 

Azerbaijan Lankaran Lankaran 38.75 48.85 1900 Karsch Berlin 

13040 
Southern 
Caucasus 

Caucasus unknown unknown     1901 Heymons & Sauter  Berlin 

GgAdBA (2647) 
Southern 
Caucasus 

Georgia Adjara Batumi 41.64 41.64 1975 Moritz det. Berlin 

GgKhGA01 
Southern 
Caucasus 

Georgia Khaketi Gareji 41.75 45.72 2006  C. Deltshev Plön 

GgTiGA/B 
Southern 
Caucasus 

Georgia Tiblisi Gamarjveba  41.64 45.00 2006 S. Otto Plön 

GgTiGC 
Southern 
Caucasus 

Georgia Tiblisi Gamarjveba  41.64 45.00 2010 S. Otto Plön 

61138 
Southern 
Caucasus 

Iran 
Coast of Caspian 

Sea 
unknown 42.12 23.15 >1960 Jäger Frankfurt 

 

 

Chapter 2 

Chapter 2 will be submitted to the Journal of Biogeography. Alignments as well as SNP - 

and microsatellite data will be uploaded to the Dryad Digital Repository. Primers for 

mitochondrial sequences, microsatellites and nuclear SNP loci for the wasp spider are 

identical with those used in chapter 1.   
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Supplementary table 2.1 Sampling sites for Argiope bruennichi populations, used in chapter 2. The 

majority of European and East Asian samples are identical with those, used in chapter 1.  

Identifier/Museum No. Region Country District City  
GPS 
N  

GPS E Year Collector Collection 

13047-13050 & 13056 
Central 
Asia 

Uzbekistan Samarqand Kata Kurgan  39.90 66.50 1903 E. Zoffmann Berlin 

CnXiXA01(Ar6340) 
Central 
Asia 

China Xinjiang unknown 39.45 75.98 1991   Beijing 

CN Chonquing East Asia China Chonquing Chonquing 29.55 106.51 2010 Z. Zhang Plön 

3709 East Asia China Beijing Beijing 39.91 116.39 <1900 Möllenhoff Berlin 

CnFuFA01(Ar5458) East Asia China Fujian unknown 25.90 118.30 1991   Beijing 

Cn East Asia China Fujian unknown 25.90 118.30 2010 RC. Cheng Plön 

CnGuGA01(Ar5848) East Asia China Guizhou unknown 26.83 106.83 1978   Beijing 

CnHeHA01(Ar5402) East Asia China Hebei unknown 39.30 116.70 1998   Beijing 

CnHuHA01(Ar6196) East Asia China Hubei unknown 30.97 112.23 1984   Beijing 

CnJaJA01(Ar19504) East Asia China Jiangxi unknown 27.63 115.77 2008   Beijing 

CnLiLA01(Ar4926) East Asia China Liaoning unknown 41.10 122.30     Beijing 

13061 East Asia China Shandong Quingdao 36.07 120.38 1905 Glaue Berlin 

13062 East Asia China Shandong Quingdao 36.07 120.38   Redinberg Berlin 

CnYuYA01(Ar5862) East Asia China Yunnan unknown 24.50 101.50 1983   Beijing 

CnZhZA01(Ar4927) East Asia China Zhejiang unknown 29.20 120.50     Beijing 

JpEhYA East Asia Japan Ehime Yuyama 33.83 132.77 2011 N. Tsurusaki Plön 

JpFuFA East Asia Japan Fukuoka 
Fukuoka, Tarumaru 
Lizuka 

33.65 130.68 2011   Plön 

JpFuFB East Asia Japan Fukuoka 
Fukuoka, Yamada 
Ryokuchi 

33.57 130.72 2011   Plön 

JpHoHA East Asia Japan Hokkaido Hakodate 41.77 140.73 2010 K. Tanaka Plön 

JpIbTA East Asia Japan Ibaraki Tsukuba 36.00 140.10 2011 Y. Baba Plön 

JpKaAA East Asia Japan Kagoshima Amami-oshima Island 28.33 129.32 2011 Y. Baba Plön 

JpKaAB East Asia Japan Kagoshima Amami-oshima Island 28.28 129.43 2011 Y. Baba Plön 

JpKaAC East Asia Japan Kagoshima Amami-oshima Island 28.23 129.35 2011 Y. Baba Plön 

JpKaIA East Asia Japan Kagoshima  Isa-shi 31.60 130.56 2007 T.Tsukada  Plön 

JpKaSA East Asia Japan Kagoshima  Satsuma 31.60 130.56 2007 T.Tsukada  Plön 

JpKaYA East Asia Japan Kagoshima  unknown 31.60 130.56 2007 T.Tsukada  Plön 

JpKaMA East Asia Japan Kagoshima  Hirata 31.60 130.56 2011 T. Maeda  Plön 

JpKaCA East Asia Japan Kagoshima  Mihama-chö 31.60 130.56 2011 K. Nakamura  Plön 

JpKaKA East Asia Japan Kagoshima  Shimofukmoto-chö 31.60 130.56 2011 T. Maeda  Plön 

JpKaHA East Asia Japan Kagoshima  Sogi,Ohkuchi 31.60 130.56 2011 K.Nakamura  Plön 

JpMySA East Asia Japan Miyagi Sendai 38.27 140.87 2010 K. Tanaka Plön 

JpMyEA East Asia Japan Miyazaki  Ebino-shi 32.02 131.35 2007 T.Tsukada  Plön 

JpNaAA East Asia Japan Nagano Azusagawa-Azusa 36.23 137.97 2011 N. Tsurusaki Plön 

JpShOA East Asia Japan Shiga  Ozigaoka 35.12 136.07 2011 T. Masumoto Plön 

JpTcUA East Asia Japan Tochigi Utsunomiya 36.53 139.95 2011 Y. Baba Plön 

JpToKA East Asia Japan Tottori Kagamiganaru 35.28 133.48 2011 N. Tsurusaki Plön 

JpToSA East Asia Japan Tottori Katsurami 35.50 134.17 2011 N. Tsurusaki Plön 

JpToToA East Asia Japan Tottori Prefecture Tottori, Katsurami 35.50 134.23 2010 N. Tsurusaki Plön 

2693 East Asia Japan unknown unknown     <1900 Hilgendorff Berlin 

JP2 JpMySB East Asia Japan Miyagi Sendai 38.27 140.87 >2000 K. Tanaka Plön 

CrDaBA Europe Croatia Dalmatia Brela 43.37 16.92 2011 H. Krehenwinkel Plön 

CrDaCB Europe Croatia Dalmatia Ciovo 43.50 16.31 2011 M. Freudenschuss Plön 

CrDaSA Europe Croatia Dalmatia Ston 42.83 17.73 2011 H. Krehenwinkel Plön 
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Identifier/Museum No. Region Country District City  
GPS 
N  

GPS E Year Collector Collection 

CrIsMA Europe Croatia Istria Porec, Muzalik 45.22 13.58 2010 V. von Wirth Plön 

FrAuBA/B Europe France Auvergne Bizeneuille 46.40 2.73 2010 H. Krehenwinkel Plön 

FrBnAA Europe France Basse Normandie Alencon 48.45 0.12 2010 H. Krehenwinkel Plön 

FrBuCA Europe France Burgundy  Chalon Sur Saone 46.75 4.83 2010 H. Krehenwinkel Plön 

FrLrCA Europe France 
Languedoc-
Roussillon 

Carcassonne 43.25 2.13 2010 H. Krehenwinkel Plön 

FrLrNA Europe France 
Languedoc-
Roussillon 

Nimes 43.78 4.40 2010 H. Krehenwinkel Plön 

FrMpMA Europe France Midi Pyrenees Montauban 43.98 1.33 2010 H. Krehenwinkel Plön 

FrPlAB Europe France Pays de la Loire Angers 47.50 -0.50 2010 H. Krehenwinkel Plön 

FrRaLA Europe France Rhône-Alpes Lyon 45.48 4.83 2010 H. Krehenwinkel Plön 

GeBwKA Europe Germany Baden Würtemberg Korntal 48.83 9.12 2011 H. Krehenwinkel Plön 

GeHeDA Europe Germany Hesse Darmstadt 49.87 8.65 2011 H. Krehenwinkel Plön 

GeHeSA Europe Germany Hesse Frankfurt Schwanheim  50.09 8.58 2011 H. Krehenwinkel Plön 

GrEpIA/B Europe Greece Epirus Igoumenitsa 39.52 20.18 2010 H. Krehenwinkel Plön 

GrEpIC Europe Greece Epirus Igoumenitsa 39.52 20.23 2010 H. Krehenwinkel Plön 

GrEpID/E Europe Greece Epirus Preveza 38.95 20.73 2010 H. Krehenwinkel Plön 

GrEpIF Europe Greece Epirus unknown     2010 H. Krehenwinkel Plön 

HuSoBA/BB Europe Hungary Somogy Balatonbereny 46.70 17.30 2010 M. Freudenschuss  Plön 

HuVeSB Europe Hungary Veszprem Sümeg 46.85 17.20 2010 M. Freudenschuss Plön 

ItCbAA Europe Italy Calabria Agropoli 40.33 15.00 2010 H. Krehenwinkel Plön 

ItCbBA Europe Italy Calabria Battpaglia 40.61 14.93 2010 H. Krehenwinkel Plön 

ItCbCA Europe Italy Calabria Capaccio 40.47 15.02 2010 H. Krehenwinkel Plön 

ItCbOA Europe Italy Calabria Crosia 39.57 16.72 2010 H. Krehenwinkel Plön 

ItCbMA Europe Italy Calabria Montalto Uffugo 39.40 16.15 2010 H. Krehenwinkel Plön 

ItCbRA Europe Italy Calabria Roseto Capo Spulico 39.97 16.60 2010 H. Krehenwinkel Plön 

ItCaGA Europe Italy Campania Giugliano 40.93 14.05 2010 H. Krehenwinkel Plön 

ItCaPA Europe Italy Campania Pomigliani Di Arco 40.92 14.37 2010 F. Baldanza Plön 

ItCaSA Europe Italy Campania Sessa Aurunca Caserta 41.23 13.78 2010 H. Krehenwinkel Plön 

ItLzPA Europe Italy Lazio Puzzali 41.30 13.75 2010 H. Krehenwinkel Plön 

ItLiNA Europe Italy Liguria Noli 44.20 8.40 2010 A. Trotta Plön 

ItPgTA Europe Italy Puglia Taranto 40.47 17.30 2010 H. Krehenwinkel Plön 

ItVeBA Europe Italy Venetia Bibione 45.77 13.00 2011 H. Krehenwinkel Plön 

3521 Europe Morocco Grand Casablanca Casablanca 33.35 -7.37 1872 Fritzsch & Rein  Frankfurt 

PoCeGA Europe Portugal Centro Guarda 40.54 -7.27 2011 H. Krehenwinkel Plön 

PoBeCA Europe Portugal  Beja Corte Pequena 37.73 -7.85 2010 H. Krehenwinkel Plön 

SpBIIA Europe Spain Balearic Islands Ibiza 38.95 1.40 2010 B.  Hinrichs Plön 

SpCaBA Europe Spain Catalonia Cubelles 41.20 1.67 2010 H. Krehenwinkel Plön 

SpCaPA Europe Spain Catalonia Puigemma 42.10 2.80 2010 H. Krehenwinkel Plön 

SpCaFA Europe Spain Catalonia 
Santa Colomna de 
Farners 

41.87 2.65 2010 H. Krehenwinkel Plön 

SpVaCA Europe Spain Valencia Benicarlo 40.42 0.42 2011 H. Krehenwinkel Plön 

SpVaBA Europe Spain Valencia Bunol 39.42 -0.79 2011 H. Krehenwinkel Plön 

TnGaGA Europe Tunesia Galita Archipelago Ile de Galite 37.53 8.93 1972 
Maija & J.E. 
Vesmaris 

Bonn 

TuBsBA Europe Turkey Black sea region Black sea region 42.00 33.45 2010 R. Kaya Plön 

TuBuBC Europe Turkey Bursa Terzioglu island Bursa 40.18 29.07 2010 R. Kaya Plön 

13021 Europe Turkey Istanbul Istanbul 41.17 28.98 ~1900 Gottwald Berlin 

BuKaDA01 Europe Bulgaria Kavarna Durankulak 43.70 28.52 2010 C. Deltshev Plön 
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Identifier/Museum No. Region Country District City  
GPS 
N  

GPS E Year Collector Collection 

BuRiRA (40659) Europe Bulgaria Kyustendil Rila  42.12 23.15 2005 Jäger, Kunz  Frankfurt 

BuSoVA01 Europe Bulgaria Sofia Vitosha 42.70 23.32 2010 C. Deltshev Plön 

13032 Europe Romania 
Southern 
Carpathians 

Mogura Odobesti  45.77 27.07 1918 P. Schulze Berlin 

UaKhGA Russia Ukraine Kharkov Gaidary Village  49.92 36.32 2011 N. Polchaninova Plön 

UaLuAA Russia Ukraine Lugansk Kalaus Village  48.57 39.30 2011 N. Polchaninova Plön 

UaLuKA/B Russia Ukraine Lugansk Krynichnoye Village  48.57 39.30 2011 N. Polchaninova Plön 

13023 & 1320 Europe Azerbaijan Lankaran Lankaran 38.75 48.85 1900 Karsch Berlin 

GgAdBA (2647) Europe Georgia Adjara Batumi 41.64 41.64 1975 Moritz det. Berlin 

GgKhGA01 Europe Georgia Khaketi Gareji 41.75 45.72 2006  C. Deltshev Plön 

GgTiGA/B Europe Georgia Tiblisi Gamarjveba  41.64 45.00 2006 S. Otto Plön 

GgTiGC Europe Georgia Tiblisi Gamarjveba  41.64 45.00 2010 S. Otto Plön 

M1 Madeira Madeira Madeira Camacha  32.72 -16.83 2012 H. Krehenwinkel Plön 

M2 Madeira Madeira Madeira  Santana 32.80 -16.88 2012 H. Krehenwinkel Plön 

M3 Madeira Madeira Madeira Ribeiria Brava 32.70 -17.05 2012 H. Krehenwinkel Plön 

M4 Madeira Madeira Madeira Santa Maria  32.85 -17.18 2012 H. Krehenwinkel Plön 

M5 Madeira Madeira Madeira Santa Maria  32.85 -17.20 2012 H. Krehenwinkel Plön 

M6 Madeira Madeira Madeira Camacha  32.73 -17.83 2012 H. Krehenwinkel Plön 

AzPiRA Azores Azoren Pico Sao Roque 38.52 -28.32 2011 H. Krehenwinkel Plön 

AzPiCA Azores Azoren Pico Sao Caetano 38.42 -28.40 2011 H. Krehenwinkel Plön 

AzPiFA Azores Azoren Pico Fetais 38.40 -28.07 2011 H. Krehenwinkel Plön 

AzSjVA Azores Azoren Sao Jorge Velas 38.66 -28.20 2011 H. Krehenwinkel Plön 

AzSjRA Azores Azoren Sao Jorge Rosais 38.70 -28.23 2011 H. Krehenwinkel Plön 

AzSjTB Azores Azoren Sao Jorge Topo 38.55 -27.77 2011 H. Krehenwinkel Plön 

AzSmLA Azores Azoren Sao Miguel Livramento 37.77 -25.58 2011 H. Krehenwinkel Plön 

AzSmNA Azores Azoren Sao Miguel Nordeste 37.82 -25.13 2011 H. Krehenwinkel Plön 

AzSmPA Azores Azoren Sao Miguel Povacao 37.75 -25.22 2011 H. Krehenwinkel Plön 

AzSmFA Azores Azoren Sao Miguel Furnas 37.73 -25.32 2011 H. Krehenwinkel Plön 

AzSmJA Azores Azoren Sao Miguel Maia 37.82 -25.38 2011 H. Krehenwinkel Plön 

AzSmCA Azores Azoren Sao Miguel Capelas 37.83 -25.68 2011 H. Krehenwinkel Plön 

AzSmMA Azores Azoren Sao Miguel Mosteiro 37.88 -25.82 2011 H. Krehenwinkel Plön 

AzSmMB Azores Azoren Sao Miguel Mosteiro 37.88 -25.82 2011 H. Krehenwinkel Plön 

AzTeNA Azores Azoren Terceira Negrito 38.65 -27.27 2011 H. Krehenwinkel Plön 

AzFlFA Azores Azores Flores Faja Grande 39.45 -31.26 2010 N. Fritzen Plön 

AzSjTA Azores Azores Sao Jorge Topo 38.54 -27.75 2010 N. Fritzen Plön 

 

 

 

 

 
 

 

 

 

 



 

174 

 

Supplementary table 2.2 Sampling sites for Pisura mirabilis populations, which were analyzed in 

chapter 2. The geographic region for each genetic group is shown in column one. 

Region ID Country Site GPS N GPS E Date  Collector 

Central 

Ba6 Latvia Skulte 57.35 24.45 2012 Krehenwinkel 

Ba9 Estonia Ainazi 57.90 24.42 2012 Krehenwinkel 

S0 Sweden Karlshamn 56.16 14.85 2012 Krehenwinkel 

S1 Sweden Soderakra 56.45 16.08 2012 Krehenwinkel 

S2 Sweden Kalmar 56.63 16.22 2012 Krehenwinkel 

S3 Sweden Kristianstad 55.95 14.01 2012 Krehenwinkel 

D Denmark Ebeltoft 56.13 10.34 2012 Allen  

H Germany Greifswald 54.08 13.44 2012 Meese 

HT Germany Greifswald 54.09 13.38 2012 Meese 

Sue Germany Sünna 50.79 10.00 2012 Meese 

PP Germany Plön 54.16 10.43 2012 Meese, Frehse 

PME1.2 Bulgaria Blagoewgrad 42.01 23.10 2005 SMF62883 

PME1.4 Montenegro Ulcinij 41.92 19.20 2006 SMF62887 

PME2.2 Austria Burgenland 47.50 16.42 2011 
M. 

Freudenschuss 

PME2.5 Hungary Balatonbereny 46.71 17.32 2010 
M. 

Freudenschuss 

PME2.9 Austria Sankt Valentin 48.17 14.53 2009 
M. 

Freudenschuss 

Balkan 

PME1.3 Croatia Rab  44.77 14.77 2008 SMF62878 

PME2.3 Croatia Ciovo 43.50 16.28 2011 
M. 

Freudenschuss 

PME2.4 Croatia Ciovo 43.50 16.28 2011 
M. 

Freudenschuss 

South-
Western 

PME1.1 Spain Valencian 39.50 -0.75 2010 SMF62877 

M1 Portugal Camacha  32.72 16.83 2012 Krehenwinkel 

M4 Portugal Santa Maria  32.85 17.18 2012 Krehenwinkel 

M6 Portugal Camacha 32.73 16.83 2012 Krehenwinkel 

 

Supplementary table 2.3 Primer sequences for the two nuclear DNA fragments, which were 

sequenced for Argiope bruennichi populations.   
Primer 
Name 

454 read ID Sequence 5´-3 Tm Exp. Frag. length 

SA11F 
GD7TUPT01A6MC4  

GCAGTTCGGAGGCACTTAAC 59.9 453 

SA11R CGTGCCGAATTTGATTTCTA 58.8 453 

SA24F 
GD7TUPT01AR4L0 

TGTGGGGGTTAATAAGTAAAATGA 58.8 456 

SA24R TTCCTGATTTACTACGTCTTCGT 57.2 456 

 

Supplementary table 2.4 Primer sequences for the nuclear microsatellites, which were genotyped for 

Pisaura mirabilis.   

Primer ID Sequence 5'-3' 
Tm 
°C 

Product size 
(bp) 

Repeat 
motif 454-Fragment ID 

P_ms_33_F GCGGAACTTGTCCCAATAAA 59.9 
338 TATC HKQ7YSY03CUECY 

P_ms_33_R ACGACATGGCCGCTTAAA 60.2 

P_ms_34_F CATAGGGTAAGGGGCACACA 60.8 
350 AAAT HKQ7YSY03DICMD 

P_ms_34_R AGCTAGCAGACGTTGGTTCG 60.6 

P_ms_37_F GTGAAACAAGTTCCGCCATT 60 
248 AACA HKQ7YSY03DHR1E 

P_ms_37_R CGCCTACCGATCAAGCTATC 59.8 

P_ms_41_F TGTACACATTGACATCAAAAATACTTA 57 
148 ATCT HKQ7YSY03CXRPD 

P_ms_41_R TGGAACTTGCCGTCTATCAA 59.3 
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Primer ID Sequence 5'-3' 
Tm 
°C 

Product size 
(bp) 

Repeat 
motif 454-Fragment ID 

P_ms_44_F ATGCTGAACTTTCGCAGTGA 59.6 
229 AAT HKQ7YSY03DI3ER 

P_ms_44_R CTTAAAACCGCAAACCGAAA 60.1 

P_ms_45_F TGAATGCCTTTCAGACTTACTAAACA 60.5 
239 ATT HKQ7YSY03DGPKH 

P_ms_45_R TTTCCTTCGTCAAGATGTCG 58.8 

P_ms_47_F AGGCCATGGAAGCATAAGAA 59.7 
148 TTA HKQ7YSY03C8RCK 

P_ms_47_R ATTGCAGCCTAGGACGAAGA 60 

P_ms_49_F GAAATGGGTTGTCAATTACGG 59.2 
390 AC HKQ7YSY03DC6J8 

P_ms_49_R TGGTATGTGTTGTGTACTTTCTGA 57.3 

P_ms_50_F GGCAGAACACCGTCTTCATT 60.1 
333 AT HKQ7YSY03DE117 

P_ms_50_R ACTTGTTATTTTGTCAAACCATTTT 57.4 

P_ms_51_F GCTGTGGCGAAATGAATGTA 59.7 
394 AT HKQ7YSY03DDI30 

P_ms_51_R TCGAAAAATGCAAGACACCA 60.2 

P_ms_56_F TTTGCATTTCGACTATTATTTATCA 57.2 
134 TA HKQ7YSY03DAFJA  

P_ms_56_R CCGTCTAGCACATAATCACACA 58.7 

P_ms_57_F CCAAACACAGCGAATGGAT 59.5 
129 CA HKQ7YSY03DBFBU 

P_ms_57_R TCGTAAACGTGAACAAGGAGAA 59.8 

P_ms_59_F CAAACACGGTTAGAATTTTCAGTG 60 
112 AC HKQ7YSY03CZ0AC 

P_ms_59_R AAATATTGAAACGCAGGATTGT 57.7 

 

Supplementary table 2.5 Primer sequences for the four nuclear DNA fragments, which were 

genotyped for Pisaura mirabilis populations.  

Primer name 454 fragment Primer sequence 5'-3' Tm Product size bp 

PM_S_2F 
HKQ7YSY03C5NGE 

GCCAGATACAGCAGGAATCG 60.8 241 

PM_S_2R CTCAGAACGGCCAGTTTAGC 60 241 

PM_S_3F 
HKQ7YSY03CZXGG 

TCTGGTCCATGGTACTTTTGG 59.8 208 

PM_S_3R AACTGTTGAATGATTATTTGCTTTG 58.7 208 

PM_S_4F 
HKQ7YSY03C872R 

AAGCGATGCTGTATGCAAAA 59.5 265 

PM_S_4R CTGGAATGGGCCACAGTAGT 60 265 

PM_S_10F 
HKQ7YSY03CVBLU  

TCCGTTTTAGTGAAATGCAAA 58.3 315 

PM_S_10R TGACCAGAGACTGTCTTCCAAA 59.9 315 

 

Supplementary table 2.6 Allele - and haplotype frequencies for the four nuclear SNPs and the 

mitochondrial COI gene in Central and South-Western European Pisaura mirabilis populations.  

   
Freq. SW 

allele 
Freq. Central 

allele Marker Region N 

PMS2 Central 22 0.00 1.00 

PMS3 Central 14 0.15 0.85 

PMS4 Central 21 0.44 0.56 

PMS1 Central 10 0.15 0.85 

COI Central 117 0.03 0.97 

PMS2 South-Western 11 1.00 0.00 

PMS3 South-Western 8 1.00 0.00 

PMS4 South-Western 11 1.00 0.00 

PMS1 South-Western 10 0.95 0.05 

COI South-Western 22 100 0 
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Supplementary table 2.7 Mitochondrial - and nuclear nucleotide diversity for Argiope bruennichi 

populations, which were genotyped in chapter 2.  

Region Population 
Mitochondrial 

π 

Nuclear 

π 

East Asia JpKaAA 0.0000 0.0076 

East Asia JpNaAA 0.0044 0.0104 

East Asia JpTcUA 0.0036 0.0109 

East Asia JpIbTA 0.0033 0.0137 

East Asia JpToSA 0.0041 0.0153 

East Asia JpToKA 0.0033 NA 

East Asia JpFuFA 0.0029 NA 

East Asia JpFuFB 0.0043 NA 

East Asia JpShOA 0.0034 NA 

East Asia JpKaYA 0.0050 NA 

East Asia JpKaSA 0.0043 NA 

East Asia Chongqing 0.0052 NA 

East Asia Tsingtau 0.0038 NA 

East Asia JpEhYA 0.0040 NA  

Europe SpBiIA 0.0006 0.0000 

Europe ItCaGA 0.0014 0.0006 

Europe CrLsMA 0.0013 0.0008 

Europe PoBeCA 0.0015 0.0008 

Europe FrLrCA 0.0014 0.0008 

Europe ItPgTA 0.0007 0.0013 

Europe FrRaLA 0.0014 0.0023 

Europe GrEpIC 0.0023 0.0032 

Europe Katta Kurgan 0.0014 NA 

Europe Lankaran 0.0033 NA 

Europe HuSoBA 0.0011 NA 

Europe TnGaGA 0.0014 NA 

Europe ItCaSA 0.0000 NA 

Europe ItLzPA 0.0003 NA 

Europe ItCbBA 0.0003 NA 

Europe PoCeGA 0.0015 NA 

Europe SpCaFA 0.0012 NA 

Europe SpCaPA 0.0013 NA 

Europe SpCaBA 0.0013 NA 

Europe SpVaBA 0.0015 NA 

Europe SpVaCA 0.0010 NA 

Europe FrLrNA 0.0009 NA 

Europe FrMpMA 0.0005 NA 

Europe FrBnAA 0.0007 NA 

Europe FrPlAB 0.0008 NA 

Europe FrAuBA 0.0014 NA 

Europe FrBuCA 0.0019 NA 

Europe GeBwKA 0.0000 NA 

Europe GeHeDA 0.0007 NA 

Europe GeHeSA 0.0007 NA 

Europe UaLuKA 0.0031 NA 
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Region Population 
Mitochondrial 

π 

Nuclear 

π 

Europe UaKhGA 0.0029 NA 

Europe UaLuAA 0.0031 NA 

Madeira M6 0.0000 0.0010 

Madeira M1 0.0000 0.0013 

Madeira M2 0.0000 0.0013 

Madeira M4 0.0000 0.0013 

Azores AzTeNA 0.0004 0.0009 

Azores AzSmPA 0.0008 0.0010 

Azores AzSjTB 0.0004 0.0014 

Azores AzPiCA 0.0001 0.0016 

Azores AzSjRA 0.0000 NA 

Azores AzSjVA 0.0007 NA 

Azores AzSmCA 0.0008 NA 

Azores AzSmLA 0.0009 NA 

Azores AzSmMB 0.0003 NA 

Azores AzSmNA 0.0005 NA 

 

Chapter 3  

Chapter 3 will be submitted to Molecular Ecology Resources. Alignments and 

microsatellite data will be uploaded to the Dryad Digital Repository. Microsatellite and 

mitochondrial primers have been taken from those presented in chapter 1.  

 

Supplementary table 3.1 List of museum specimens, which were tested for genotyping success. The 

different DNA markers are shown in the first six columns, with 0 indicating no genotype and 1 

meaning successfully genotyped. The samples are sorted according to museum collection and 

collection date.  

~150 bp 
COI 

~350 bp 
COI  

MA53 
~150bp 

MA60 
~150bp 

MA55 
~250bp 

MA56 
~250 

bp 
Museum 

Collection 
date 

bodysize (mm) Collection site Extraction no. 

1 0 0 0 0 0  Berlin 1820 7.5 Syria 11_5 

1 0 0 0 0 0  Berlin 1820 7.5 Syria 11_6 

1 0 0 0 0 0  Berlin 1820 7.2 Syria 11_7 

1 0 0 0 0 0  Berlin 1820   Syria 11_8 

1 0 0 0 0 0  Berlin 1825   Syria 8_11 

1 0 0 0 0 0  Berlin 1825   Syria 8_27 

1 0 0 0 0 0  Berlin 1825   Syria 8_28 

1 0 0 0 0 0  Berlin 1825   Syria 8_29 

1 1 0 0 1 1  Berlin 1846 5.8 Taurus Sizilien 9_44 

1 0 1 1 1 1  Berlin 1897 4 Tegel 11_45 

1 0 0 0 0 0  Berlin 1897 5.2 Asia Minor Gülek 7_2 

1 1 1 1 1 1  Berlin 1899 3.9 Rovigno Campagne 7_8 

1 1 1 1 1 0  Berlin 1899 4 Rovigno Campagne 7_7 

1 1 1 1 1 1  Berlin 1900   Lenkorau 7_14 
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~150 bp 
COI 

~350 bp 
COI  

MA53 
~150bp 

MA60 
~150bp 

MA55 
~250bp 

MA56 
~250 

bp 
Museum 

Collection 
date 

bodysize (mm) Collection site Extraction no. 

1 1 1 1 1 1  Berlin 1900   Lenkorau 7_11 

1 0 1 1 0 0  Berlin 1900   Lenkorau 9_4 

1 1 1 1 1 0  Berlin 1900   Lenkorau 7_10 

1 0 0 0 0 0  Berlin 1900   Lenkorau 9_2 

1 1 1 1 0 0  Berlin 1900   Lenkorau 9_5 

1 1 0 1 1 1  Berlin 1900   Lenkorau 7_12 

1 1 0 1 1 0  Berlin 1900   Lenkorau 7_13 

1 1 1 1 1 1  Berlin 1900   Lenkorau 7_15 

1 1 0 1 1 0  Berlin 1900   Lenkorau 7_9 

1 1 1 1 1 0  Berlin 1900   Lenkorau 9_1 

1 1 1 1 1 1  Berlin 1900   Lenkorau 9_3 

1 0 1 1 0 1  Berlin 1901   Transkaspien oder Kaukasus 10_8 

1 1 0 1 0 0  Berlin 1901   Transkaspien oder Kaukasus 10_10 

1 0 1 1 0 0  Berlin 1901   Transkaspien oder Kaukasus 10_9 

1 1 0 0 0 0  Berlin 1902   Kaukasus Tamir Schau Schura 9_40 

1 1 1 1 0 1  Berlin 1902   Rovigno 10_46 

1 1 0 1 0 0  Berlin 1902   Rovigno 9_45 

1 0 0 0 0 0  Berlin 1902 4.6 Rovigno 9_46 

1 0 1 1 1 1  Berlin 1903   Kata Kurgan  10_24 

1 1 1 1 1 1  Berlin 1903   Kata Kurgan  10_25 

1 1 0 1 1 1  Berlin 1903   Kata Kurgan  10_26 

1 1 0 1 1 0  Berlin 1903   Kata Kurgan  10_27 

1 1 1 1 1 1  Berlin 1903   Kata Kurgan  10_34 

1 1 0 0 0 0  Berlin 1903   Kata Kurgan  10_35 

1 0 1 1 1 0  Berlin 1903 4.2 Müggelsee 11_44 

1 1 1 1 0 1  Berlin 1903   Kata Kurgan  8_18 

1 1 1 1 1 1  Berlin 1903   Kata Kurgan  8_19 

1 1 1 1 1 1  Berlin 1903   Kata Kurgan  8_20 

1 1 0 1 1 0  Berlin 1903   Kata Kurgan  8_21 

0 0 0 0 0 0  Berlin 1904   Formosa Pilam 10_15 

0 0 0 0 0 0  Berlin 1904   Formosa Pilam 10_16 

0 0 0 0 0 0  Berlin 1904   Formosa Pilam 10_17 

0 0 0 0 0 0  Berlin 1904   Formosa Pilam 10_18 

0 0 0 0 0 0  Berlin 1904   Formosa Pilam 10_21 

0 0 0 0 0 0  Berlin 1904   Formosa Pilam 10_22 

0 0 0 0 0 0  Berlin 1904   Formosa Pilam 8_15 

1 0 0 0 0 0  Berlin 1904   Formosa Pilam 10_19 

1 0 0 0 0 0  Berlin 1904   Formosa Pilam 10_20 

1 0 0 0 0 0  Berlin 1904   Formosa Pilam 8_13 

1 0 0 0 0 0  Berlin 1904   Formosa Pilam 8_14 
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1 0 0 0 0 0  Berlin 1904   Formosa Pilam 8_16 

1 0 0 0 0 0  Berlin 1904   Formosa Pilam 8_17 

1 0 1 1 0 0  Berlin 1905 4.4 bei Trier 13_4 

1 0 0 0 0 0  Berlin 1905   Kiautschau Tsingtau 10_36 

1 1 0 0 0 0  Berlin 1905   Kiautschau Tsingtau 10_37 

1 1 0 0 0 0  Berlin 1905   Kiautschau Tsingtau 10_38 

1 0 0 0 0 0  Berlin 1905   Kiautschau Tsingtau 10_39 

1 1 0 0 0 1  Berlin 1905   Kiautschau Tsingtau 10_40 

1 0 0 0 0 0  Berlin 1905   Kiautschau Tsingtau 10_41 

1 1 0 0 0 1  Berlin 1905   Kiautschau Tsingtau 10_42 

1 1 0 0 0 0  Berlin 1905   Kiautschau Tsingtau 10_43 

1 0 0 0 0 0  Berlin 1905   Kiautschau Tsingtau 10_44 

1 1 1 1 0 0  Berlin 1905   Kiautschau Tsingtau 10_45 

1 1 0 0 0 0  Berlin 1905   Kiautschau Tsingtau 11_1 

1 1 0 0 0 0  Berlin 1905   Kiautschau Tsingtau 11_2 

1 1 0 0 0 0  Berlin 1905   Kiautschau Tsingtau 11_3 

1 1 0 1 0 0  Berlin 1905   Kiautschau Tsingtau 11_4 

1 1 0 0 0 0  Berlin 1905   Kiautschau Tsingtau 8_22 

1 0 0 0 0 0  Berlin 1905   Kiautschau Tsingtau 8_23 

1 0 0 0 0 0  Berlin 1905   Kiautschau Tsingtau 8_24 

1 0 0 0 0 0  Berlin 1905   Kiautschau Tsingtau 8_25 

1 0 0 0 0 0  Berlin 1905   Kiautschau Tsingtau 8_26 

1 0 1 1 1 0  Berlin 1906   Hochbucharaa Patta hissar bei termes 10_23 

1 1 0 0 0 0  Berlin 1906   Kotzen 11_34 

1 1 1 1 1 0  Berlin 1906 5.9 Trient  9_26 

1 1 1 1 1 0  Berlin 1906   Trient  9_27 

1 0 0 0 1 1  Berlin 1909 3.3 Königswusterhausen 11_39 

1 1 0 1 0 0  Berlin 1912   Sardinien Monti del Carmagenta 9_35 

1 1 0 0 0 0  Berlin 1912   Sardinien Monti del Carmagenta 9_37 

1 1 0 0 0 0  Berlin 1912   Sardinien Sorgonj 10_11 

1 0 0 0 0 0  Berlin 1912 5.4 Sardinien Sorgonj 10_12 

1 1 0 0 0 0  Berlin 1912   Sardinien Sorgonj 10_13 

1 0 0 0 0 0  Berlin 1912 4.3 Sardinien Sorgonj 10_14 

1 1 1 1 1 0  Berlin 1912 4.5 Finn Bucari 7_6 

1 1 0 0 0 0  Berlin 1912   Sardinien Monti del Carmagenta 9_28 

1 1 0 0 0 0  Berlin 1912   Sardinien Monti del Carmagenta 9_29 

1 1 0 0 0 0  Berlin 1912   Sardinien Monti del Carmagenta 9_30 

1 1 0 0 0 0  Berlin 1912   Sardinien Monti del Carmagenta 9_31 

1 1 1 0 0 0  Berlin 1912   Sardinien Monti del Carmagenta 9_32 

1 1 0 0 0 0  Berlin 1912   Sardinien Monti del Carmagenta 9_33 
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1 1 0 0 0 1  Berlin 1912   Sardinien Monti del Carmagenta 9_34 

1 1 0 0 0 0  Berlin 1912   Sardinien Monti del Carmagenta 9_36 

1 1 0 0 0 0  Berlin 1912   Sardinien Monti del Carmagenta 9_38 

1 1 0 0 0 0  Berlin 1912   Sardinien Monti del Carmagenta 9_39 

1 1 0 0 0 0  Berlin 1916 5 Noyen NW Frankreich 10_5 

1 1 1 1 1 1  Berlin 1916 4.6 Noyen NW Frankreich 10_6 

1 1 0 1 0 1  Berlin 1916   Noyen NW Frankreich 10_7 

1 1 0 0 0 0  Berlin 1916   Noyen NW Frankreich 9_43 

1 0 0 0 0 1  Berlin 1918   
Transsylv. Alpen Mogura Odobesti 500-

600m 
10_4 

1 1 0 0 0 0  Berlin 1918   
Transsylv. Alpen Mogura Odobesti 500-

600m 
10_3 

1 0 1 1 1 0  Berlin 1919 4.5 Grunewald Havel 11_33 

1 1 1 1 1 1  Berlin 1923 3.2 Erkener Löcknitzer Wiesen 11_17 

1 1 1 1 1 1  Berlin 1923   Erkener Löcknitzer Wiesen 11_18 

1 1 0 1 0 0  Berlin 1924   Umgebung von Koldsz 13_24 

1 0 0 0 0 0  Berlin 1924   Umgebung von Koldsz 13_25 

1 1 1 1 0 1  Berlin 1926 4.1 Erkener 13_11 

1 1 1 1 1 1  Berlin 1926 3.4 Erkener 13_12 

1 1 1 1 0 0  Berlin 1926   Erkener 13_13 

1 0 0 0 0 0  Berlin 1926 5.51 Süd Istrien Abbazia  13_22 

1 1 0 1 1 0  Berlin 1927 3.6 Erkener bei Berlin 11_27 

1 1 0 1 1 1  Berlin 1927   Erkener bei Berlin 11_28 

1 1 0 1 0 0  Berlin 1927   Erkener bei Berlin 11_29 

1 1 1 1 1 1  Berlin 1928   Erkener 13_19 

1 1 1 1 1 0  Berlin 1928 4.1 Offenbach am main  11_19 

1 1 1 1 1 1  Berlin 1928 3.7 Erkener 13_14 

1 1 1 1 1 1  Berlin 1928   Erkener 13_15 

1 1 1 1 1 1  Berlin 1928 3 Erkener 13_16 

1 1 0 1 1 0  Berlin 1928   Erkener 13_17 

1 1 1 1 1 1  Berlin 1928 3.4 Erkener 13_18 

1 1 1 1 0 0  Berlin 1928 3.3 Erkener 13_20 

1 1 1 1 1 1  Berlin 1929 3.37 Fangschleuse Erkener 13_33 

1 1 1 1 1 1  Berlin 1929 2.89 Fangschleuse Erkener 13_43 

1 1 1 1 1 1  Berlin 1929 3.7 Fangschleuse Erkener 13_45 

1 1 1 1 1 1  Berlin 1929 3.22 Fangschleuse Erkener 13_30 

1 1 1 1 1 1  Berlin 1929 2.89 Fangschleuse Erkener 13_31 

1 1 0 1 1 1  Berlin 1929 2.68 Fangschleuse Erkener 13_32 

1 1 0 1 1 1  Berlin 1929 3.81 Fangschleuse Erkener 13_34 

1 1 1 1 1 1  Berlin 1929 2.97 Fangschleuse Erkener 13_35 

1 1 1 1 1 1  Berlin 1929 2.61 Fangschleuse Erkener 13_36 

1 1 0 1 1 1  Berlin 1929 3.47 Fangschleuse Erkener 13_37 
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1 1 1 1 1 1  Berlin 1929 3.35 Fangschleuse Erkener 13_38 

1 1 1 1 1 1  Berlin 1929 3 Fangschleuse Erkener 13_39 

1 1 1 1 1 1  Berlin 1929 3.31 Fangschleuse Erkener 13_40 

1 0 1 1 1 1  Berlin 1929 2.61 Fangschleuse Erkener 13_41 

1 1 1 1 1 1  Berlin 1929 3.39 Fangschleuse Erkener 13_42 

1 1 0 1 1 1  Berlin 1929 3.1 Fangschleuse Erkener 13_44 

1 1 1 1 1 1  Berlin 1929 3.22 Fangschleuse Erkener 13_46 

1 1 1 1 1 1  Berlin 1930 4.97 Corsica Piarea 13_26 

1 1 0 1 1 1  Berlin 1930 3.81 Corsica Piarea 13_27 

1 1 1 1 1 1  Berlin 1930 3.85 Corsica Piarea 13_28 

1 1 1 1 1 0  Berlin 1930 3.48 Corsica Piarea 13_29 

1 1 0 0 0 0  Berlin 1931 4.8 Freiburg im Breisgau 9_42 

1 0 1 1 0 0  Berlin 1935 6.1 Bötzener Wiesen 11_37 

1 1 1 1 1 1  Berlin 1935 4.7 Bötzener Wiesen 11_38 

1 0 0 0 0 0  Berlin 1935 4.8 Caputh 11_46 

1 0 1 1 1 1  Berlin 1935 4 Genshagener Forst 13_1 

1 1 1 0 1 1  Berlin 1935 4.1 Genshagener Forst 13_2 

1 1 1 1 1 1  Berlin 1935 3.2 Genshagener Forst 13_3 

1 1 1 1 1 1  Berlin 1936   Östlich Großbeeren 11_22 

1 1 1 1 0 0  Berlin 1936   Östlich Großbeeren 11_23 

1 1 1 1 1 1  Berlin 1936   Östlich Großbeeren 11_21 

1 1 1 1 1 1  Berlin 1936   Ruhlsdorf 13_10 

1 1 1 1 1 1  Berlin 1936   Ruhlsdorf 13_8 

1 0 1 1 1 1  Berlin 1936   Ruhlsdorf 13_9 

1 1 1 1 1 1  Berlin 1936 3.8 Östlich Großbeeren 11_20 

1 1 1 1 1 1  Berlin 1937 4 Krumme Laake Müggeheim 11_31 

1 1 0 0 0 0  Berlin 1937   Röddelin Mahlgast See 11_43 

1 1 1 1 1 1  Berlin 1937   Summt  11_24 

1 1 1 1 1 1  Berlin 1937 2.8 Summt  11_25 

1 1 1 1 1 1  Berlin 1937 3 Summt  11_26 

1 1 1 1 1 0  Berlin 1937 4 Höpenberge 11_30 

1 1 1 1 1 0  Berlin 1937 3.3 Krumme Laake Müggeheim 11_32 

1 0 1 1 1 1  Berlin 1937 4.5 Klosterwadle Uckermark 11_35 

1 0 0 1 1 1  Berlin 1937 3.2 Klosterwadle Uckermark 11_36 

1 0 1 1 1 0  Berlin 1937 3.5 Röddelin Mahlgast See 11_40 

1 1 0 0 0 0  Berlin 1937 3.5 Röddelin Mahlgast See 11_41 

1 1 1 1 1 1  Berlin 1937   Röddelin Mahlgast See 11_42 

1 0 1 1 1 0  Berlin 1937   Schmöckwitz Torfmoor 13_5 

1 0 1 1 1 1  Berlin 1937 3 Schmöckwitz Torfmoor 13_6 

1 1 0 0 0 1  Berlin 1937   Tegeler Forst Hennigsdorf 13_7 
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1 1 1 1 0 1  Berlin 1960 4.4 Oberer Finkensee 13_23 

1 1 0 0 0 0  Berlin 1963   Kaukasus No.3 Kiew Desna 7_3 

1 1 0 1 1 1  Berlin 1963   Kaukasus No.3 Kiew Desna 7_5 

1 1 1 1 1 1  Berlin 1963   Kaukasus No.3 Kiew Desna 7_4 

0 1 0 0 0 0  Berlin     Konstantinopel 9_25 

1 0 0 0 0 0  Berlin     Sarepta 8_1 

1 0 0 0 0 0  Berlin     Sarepta 8_2 

1 0 0 0 0 0  Berlin     Sarepta 8_3 

1 0 0 0 0 0  Berlin     Süd Russland orlow bei Melitopol 9_11 

1 0 0 0 0 0  Berlin     Sarepta 9_14 

1 0 0 1 1 0  Berlin   6.1 Konstantinopel 9_21 

1 1 1 1 1 1  Berlin     Lenkorau 9_8 

1 1 0 1 0 0  Berlin   5.6 Berlin 10_1 

1 1 0 1 1 0  Berlin   5.4 Berlin 10_2 

1 1 1 1 1 0  Berlin   4.8 Groß Glienke 11_16 

1 0 0 0 0 0  Berlin     Livorno 7_1 

1 0 0 0 0 0  Berlin     Madeira 8_4 

1 0 0 0 0 0  Berlin     Algier 8_7 

1 0 0 0 0 0  Berlin     Algier 8_8 

1 0 1 1 1 1  Berlin     Frankreich St Mihel 9_12 

1 0 1 0 0 0  Berlin     Sarepta 9_13 

1 1 1 1 0 0  Berlin     Sarepta 9_15 

1 1 0 1 0 0  Berlin   6 Konstantinopel 9_22 

1 1 1 0 1 0  Berlin     Konstantinopel 9_23 

1 1 0 0 0 0  Berlin     Konstantinopel 9_24 

1 1 0 0 0 0  Berlin     Nassau Mombach 9_41 

1 1 0 0 0 0  Berlin     Kunami Morea 9_6 

1 1 1 1 0 0  Berlin     Lenkorau 9_9 

1 0 0 0 0 0  Berlin     Polynesien 13_21 

1 0 0 0 0 0  Berlin     Azores Terceiro  8_10 

1 0 0 1 0 0  Berlin     Azores Terceiro  8_12 

1 1 0 1 0 0  Berlin     S. Miguel Fayal 8_5 

1 0 0 1 1 1  Berlin     S. Miguel Fayal 8_6 

1 1 0 0 0 0  Berlin     Azores Terceiro  8_9 

1 1 0 1 0 0  Berlin     Gisetro 9_16 

1 1 1 1 1 1  Berlin     Gisetro 9_17 

1 1 1 1 0 0  Berlin     Gisetro 9_18 

1 1 1 1 1 1  Berlin     Gisetro 9_19 

1 1 1 1 0 1  Berlin     Gisetro 9_20 

1 1 1 1 1 1  Berlin     Lenkorau 9_10 
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1 0 0 0 0 0  Berlin     Griechenland 9_7 

1 0 0 0 0 0 Frankfurt 7.1926 5 Kreta 2_1 

1 0 0 0 0 0 Frankfurt 1871   Russland Sarepta 5_12 

1 0 1 1 1 1 Frankfurt 1872 4.9 Marokko Casablanca 2_33 

1 1 1 1 1 0 Frankfurt 1872   Marokko Casablanca 3_10 

1 1 1 1 1 0 Frankfurt 1872 6.4 Marokko Casablanca 3_8 

1 1 0 0 0 0 Frankfurt 1872 6 Marokko Casablanca 3_9 

1 0 0 0 0 0 Frankfurt 1873 4.1 Frankfurt 3_11 

1 0 0 0 0 0 Frankfurt 1873 4.2 Frankfurt 3_12 

1 0 0 0 0 0 Frankfurt 1882   Japan, Nagasaki und Compina 3_1 

1 0 0 0 0 0 Frankfurt 1882   Japan, Nagasaki und Compina 3_2 

1 0 0 0 0 0 Frankfurt 1882   Japan, Nagasaki und Compina 3_3 

1 0 0 0 0 0 Frankfurt 1882   Japan, Nagasaki und Compina 3_4 

1 0 0 0 0 0 Frankfurt 1882   Japan, Nagasaki und Compina 6_28 

1 0 0 0 0 0 Frankfurt 1882   Japan, Nagasaki und Compina 6_29 

1 0 0 0 0 0 Frankfurt 1882   Japan, Nagasaki und Compina 6_30 

1 0 0 0 0 0 Frankfurt 1882   Japan, Nagasaki und Compina 6_31 

1 0 0 0 0 0 Frankfurt 1883   Frankfurt 2_23 

1 0 0 0 0 0 Frankfurt 1883 4.2 Frankfurt 2_24 

1 0 0 0 0 0 Frankfurt 1901 3.7 Mainkur Frankfurt 2_39 

1 0 0 0 0 0 Frankfurt 1901 4 Schwanheim 2_43 

1 0 0 0 0 0 Frankfurt 1901 3.8 Schwanheim 2_44 

1 0 0 0 0 0 Frankfurt 1901 4.3 Schwanheim 2_45 

1 0 0 0 0 0 Frankfurt 1901 3.4 Schwanheim 2_46 

0 0 0 0 0 0 Frankfurt 1902 4.7 Frankfurt 2_26 

0 0 0 0 0 0 Frankfurt 1902 3.1 Frankfurt 2_27 

0 0 0 0 0 0 Frankfurt 1902 3.8 Frankfurt 2_28 

1 0 0 0 0 0 Frankfurt 1902 4.3 Frankfurt 2_25 

0 0 0 0 0 0 Frankfurt 1904   Lugano 2_35 

0 0 0 0 0 0 Frankfurt 1904   Lugano 2_36 

0 0 0 0 0 0 Frankfurt 1904   Lugano 2_37 

1 0 0 0 0 0 Frankfurt 1908 4.5 Michelstadt im Odenwald 3_19 

1 0 0 0 0 0 Frankfurt 1914 6.5 La Fosca de Palemos Gerona 2_31 

1 0 0 0 0 0 Frankfurt 1914 5.4 La Fosca de Palemos Gerona 2_32 

1 0 0 0 0 0 Frankfurt 1914 6 La Fosca de Palemos Gerona 6_17 

1 0 0 0 0 0 Frankfurt 1914 4.7 La Fosca de Palemos Gerona 6_18 

1 0 0 0 0 0 Frankfurt 1914 6.2 La Fosca de Palemos Gerona 6_19 

1 0 0 0 0 0 Frankfurt 1914 5.5 La Fosca de Palemos Gerona 6_20 

1 0 0 0 0 0 Frankfurt 1914 4.4 La Fosca de Palemos Gerona 6_21 

1 0 0 0 0 0 Frankfurt 1914 4.8 La Fosca de Palemos Gerona 6_22 
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1 0 0 1 0 0 Frankfurt 1914 4.7 La Fosca de Palemos Gerona 6_23 

1 0 0 0 0 0 Frankfurt 1914 5.7 La Fosca de Palemos Gerona 6_24 

1 0 0 0 0 0 Frankfurt 1914   La Fosca de Palemos Gerona 6_25 

1 0 0 0 0 0 Frankfurt 1914   La Fosca de Palemos Gerona 6_26 

1 0 0 0 0 0 Frankfurt 1914   La Fosca de Palemos Gerona 6_27 

1 0 0 0 0 0 Frankfurt 1915 6.2 Flix Tarragona 2_29 

1 0 0 0 0 0 Frankfurt 1915 5.1 Flix Tarragona 2_30 

1 0 0 0 0 0 Frankfurt 1915   Obertshausen Offenbach 3_20 

1 0 0 0 0 0 Frankfurt 1915   Obertshausen Offenbach 3_21 

1 0 0 0 0 0 Frankfurt 1918 6.5 Pobla de Segur Lerida 3_6 

1 0 0 0 0 0 Frankfurt 1918 5.4 Pobla de Segur Lerida 3_7 

1 0 0 0 0 0 Frankfurt 1922 4 Pfalz Neustadt 3_22 

1 0 0 0 0 0 Frankfurt 1926 5.1 Kreta 2_2 

1 0 0 0 0 0 Frankfurt 1926 6.5 Kreta 2_3 

1 0 0 0 0 0 Frankfurt 1928   Ungarn, Strawatornya 2_4 

1 0 0 0 0 0 Frankfurt 1931 3.6 Schwanheim 3_26 

1 1 0 1 0 1 Frankfurt 1933 5 Dessau Roßlau Dellnau 5_24 

1 0 0 0 0 0 Frankfurt 1934 4.3 Berlin 2_8 

1 0 0 0 0 0 Frankfurt 1934 4.6 Messeler Parl, Darmstadt 2_38 

1 1 1 1 1 1 Frankfurt 1935 4.5 Offenbach, Luhrwald 2_40 

1 0 0 0 0 0 Frankfurt 1935 4.6 Offenbach, Luhrwald 2_41 

1 0 1 1 0 1 Frankfurt 1935 4.9 Offenbach, Luhrwald 2_42 

1 0 0 0 0 0 Frankfurt 1936   Scheftsheimer Wiese Darmstadt 3_23 

1 0 0 0 0 0 Frankfurt 1936 3.9 Scheftsheimer Wiese Darmstadt 3_24 

1 1 1 0 1 1 Frankfurt 1936 4.2 Taunus Eppstein 3_25 

0 0 0 0 0 0 Frankfurt 1938   Sardinien 6_11 

1 0 0 0 0 0 Frankfurt 1938   Sardinien 6_5 

1 0 0 1 0 0 Frankfurt 1938 6 Sardinien 2_5 

1 0 0 0 0 0 Frankfurt 1938 5.1 Sardinien 2_6 

1 0 0 0 0 0 Frankfurt 1938 5.2 Sardinien 2_7 

1 0 0 0 0 0 Frankfurt 1938   Sardinien 6_1 

1 0 0 0 0 0 Frankfurt 1938   Sardinien 6_10 

1 0 0 0 0 0 Frankfurt 1938   Sardinien 6_12 

1 0 0 0 0 0 Frankfurt 1938   Sardinien 6_13 

1 0 0 0 0 1 Frankfurt 1938   Sardinien 6_14 

1 0 1 0 1 1 Frankfurt 1938   Sardinien 6_15 

1 0 0 0 0 0 Frankfurt 1938   Sardinien 6_16 

1 0 0 1 0 1 Frankfurt 1938   Sardinien 6_2 

1 0 1 1 0 0 Frankfurt 1938   Sardinien 6_3 

1 0 0 0 0 0 Frankfurt 1938   Sardinien 6_4 
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1 0 0 0 0 0 Frankfurt 1938   Sardinien 6_6 

1 0 0 0 0 0 Frankfurt 1938   Sardinien 6_7 

1 0 0 0 0 0 Frankfurt 1938   Sardinien 6_8 

1 0 0 0 0 1 Frankfurt 1938   Sardinien 6_9 

0 0 0 0 0 0 Frankfurt 1940 4.4 Florenz 2_14 

1 0 0 0 0 0 Frankfurt 1940 4.2 Florenz 2_13 

1 0 0 0 0 0 Frankfurt 1942 4 Ostpyrenäen 2_10 

1 0 0 0 0 0 Frankfurt 1942 3.4 Ostpyrenäen 2_11 

1 0 0 0 0 0 Frankfurt 1942 3.6 Ostpyrenäen 2_12 

1 0 0 0 0 0 Frankfurt 1942 4.2 Ostpyrenäen 2_9 

1 1 0 0 1 0 Frankfurt 1942 4 Taunus Vockenhausen b. Eppstein 3_43 

1 1 1 1 1 1 Frankfurt 1943 5.8 Macedonien Ostrow See 2_15 

1 0 1 1 1 1 Frankfurt 1943 5.6 Macedonien Ostrow See 2_16 

1 1 0 1 1 1 Frankfurt 1943   Marseille 2_19 

1 1 0 1 1 1 Frankfurt 1943 4.4 Marseille 2_20 

1 1 1 1 1 1 Frankfurt 1943 3.5 Marseille 2_21 

1 0 1 1 0 1 Frankfurt 1943 4.5 Marseille 2_22 

0 0 0 0 0 0 Frankfurt 1948   Eifel Herchenberg 3_34 

1 1 1 1 1 1 Frankfurt 1948 4 Frankfurt 3_29 

1 1 1 1 1 1 Frankfurt 1948 4.3 Schwanheim am Main 3_30 

1 1 0 1 1 0 Frankfurt 1948 4 Taunus zw Loßbach und Hofheim 3_33 

1 1 0 0 0 1 Frankfurt 1948 4.5 Frankfurt Eukheimer Ried 3_38 

1 0 0 0 0 0 Frankfurt 1948 3.8 Sprendlingen Offenbach 3_40 

1 0 0 0 0 0 Frankfurt 1949 3.2 Taunus Hofheim 3_31 

1 1 0 1 1 1 Frankfurt 1949 4.5 Taunus Loßbach 3_32 

1 1 0 0 0 0 Frankfurt 1949 2.8 Mönchsbruck 3_35 

1 0 1 1 0 1 Frankfurt 1949   Mönchsbruck 3_36 

1 0 0 0 0 0 Frankfurt 1949 4.5 Wetterau Wisselsheim 3_37 

1 0 0 0 0 0 Frankfurt 1949 4 Frankfurt Südfriedhof 3_39 

1 0 0 0 1 0 Frankfurt 1949 3.3 Odenwald Wersau 3_41 

1 1 0 1 0 0 Frankfurt 1949 3.3 Höchst a.M. 3_42 

1 0 0 0 0 0 Frankfurt 1950 4.8 Taunus Sulzbach 3_44 

1 0 0 0 0 0 Frankfurt 1950   Wetterau Niederweisel 3_45 

1 1 0 0 0 0 Frankfurt 1950 3.9 Hengsten bei Obertshausen 4_10 

1 1 0 0 0 0 Frankfurt 1950 3.7 Hengsten bei Obertshausen 4_11 

1 0 1 1 0 1 Frankfurt 1950 4.5 Hengsten bei Obertshausen 4_12 

1 1 0 0 0 0 Frankfurt 1950   Hengsten bei Obertshausen 4_13 

1 1 1 0 0 1 Frankfurt 1950   Hengsten bei Obertshausen 4_14 

1 1 0 0 0 0 Frankfurt 1950 4.6 Pfalz Bürzweiler 4_2 

1 1 0 1 0 0 Frankfurt 1950 5 Taunus Lorsbacher Tal bei Hofheim 4_3 
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1 1 0 1 1 1 Frankfurt 1950 3.8 Hengsten bei Obertshausen 4_4 

1 0 0 0 0 0 Frankfurt 1950 4.9 Hengsten bei Obertshausen 4_5 

1 0 0 0 0 0 Frankfurt 1950 4.9 Hengsten bei Obertshausen 4_6 

1 0 1 0 0 0 Frankfurt 1950 4.6 Hengsten bei Obertshausen 4_7 

1 0 1 1 0 1 Frankfurt 1950 3.9 Hengsten bei Obertshausen 4_8 

1 1 0 1 1 1 Frankfurt 1950 4.2 Hengsten bei Obertshausen 4_9 

1 1 1 1 1 1 Frankfurt 1950   Wächtersbach 5_1 

1 0 0 0 0 0 Frankfurt 1950   Waldorf 5_8 

1 1 0 0 0 1 Frankfurt 1951 5 Lorch am Rhein 4_28 

1 0 0 1 0 0 Frankfurt 1951   Kühkopf 5_10 

1 1 1 0 0 1 Frankfurt 1951   Kühkopf 5_11 

1 1 0 0 0 0 Frankfurt 1951 3.4 Kühkopf 5_9 

1 0 0 0 0 0 Frankfurt 1952 4.5 Corsica Casamozza 4_22 

1 0 1 1 0 1 Frankfurt 1952 4.7 Corsica Col de Prato 980 m 5_2 

1 1 0 0 0 0 Frankfurt 1952 4.5 Corsica Casamozza 3_46 

1 0 1 1 1 1 Frankfurt 1952 5.8 Corsica Calacuccia, 1000-1500m 4_1 

1 1 1 1 0 1 Frankfurt 1952 3.7 Corsica Corte 400m  4_15 

1 1 0 1 1 1 Frankfurt 1952 4.8 Corsica Corte 400m  4_16 

1 1 0 1 1 1 Frankfurt 1952 5.1 Corsica Corte 400m  4_18 

1 0 0 0 0 1 Frankfurt 1952 4.1 Corsica Corte 400m  4_19 

1 1 1 1 1 1 Frankfurt 1952 3.5 Corsica Corte 400m  4_20 

1 1 1 1 1 1 Frankfurt 1952 4.8 Corsica Casamozza 4_21 

1 0 1 0 1 1 Frankfurt 1952 3.5 Corsica Ponte Lecchia 185 m 4_23 

1 1 1 1 1 1 Frankfurt 1952   Corsica Col de Prato 980 m 5_3 

1 1 1 1 1 1 Frankfurt 1952 5.4 Corsica Lumio Calenzana 30 m 5_7 

1 0 0 0 0 0 Frankfurt 1953   Iran, Maharlu See 2_17 

1 0 0 1 0 0 Frankfurt 1953   Iran, Maharlu See 2_18 

1 0 0 0 0 0 Frankfurt 1953   Spanien Casteldefels 4_29 

1 1 0 0 0 0 Frankfurt 1953 6.2 Barcelona 500 m 5_6 

1 0 1 1 1 0 Frankfurt 1954 6 Sardinien bei Oschiri 400 m  4_17 

1 1 1 1 1 0 Frankfurt 1954 6.5 Sardinien Olbia 4_25 

1 0 1 1 1 1 Frankfurt 1954 5.7 Sardinien Olbia 4_26 

1 0 1 0 0 0 Frankfurt 1954 6 Sardinien Tempio 4_27 

1 1 0 0 0 0 Frankfurt 1957   Schwanheim 4_30 

1 0 1 1 1 1 Frankfurt 1957 4 Mühlberg bei Niederkleen 5_4 

1 1 1 1 0 0 Frankfurt 1957 5.2 Istrien Rovinj 5_5 

1 1 0 1 1 1 Frankfurt 1960 6 Süd Frankreich Camargue 3_15 

1 0 1 1 1 1 Frankfurt 1960 6.2 Süd Frankreich Camargue 3_16 

1 0 1 1 0 0 Frankfurt 1960   Süd Frankreich Camargue 3_17 

1 0 0 1 1 1 Frankfurt 1960   Süd Frankreich Camargue 3_18 
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~150 bp 
COI 

~350 bp 
COI  

MA53 
~150bp 

MA60 
~150bp 

MA55 
~250bp 

MA56 
~250 

bp 
Museum 

Collection 
date 

bodysize (mm) Collection site Extraction no. 

1 1 1 1 1 1 Frankfurt 1966   Mexico Guerrero 5_13 

1 0 0 0 0 0 Frankfurt <1915 2.9 Frankfurt Eschenheimer Tor 3_13 

1 0 0 0 0 0 Frankfurt <1915 3.9 Frankfurt Eschenheimer Tor 3_14 

1 1 0 1 1 1 Frankfurt 1930ies 2.9 Dessau, Berlin 5_15 

1 0 1 0 0 0 Frankfurt 1930ies 3.2 Dessau, Berlin 5_16 

1 1 0 1 0 1 Frankfurt 1930ies 2.7 Dessau, Berlin 5_21 

1 0 0 0 0 0 Frankfurt 1930ies 2.6 Dessau, Berlin 5_17 

1 0 1 1 0 1 Frankfurt 1930ies 3 Dessau, Berlin 5_18 

1 1 0 0 0 0 Frankfurt 1930ies 2.3 Dessau, Berlin 5_19 

1 0 0 1 0 1 Frankfurt 1930ies 2.7 Dessau, Berlin 5_20 

1 0 0 0 0 0 Frankfurt 1930ies   Europa 5_25 

1 1 1 1 1 1 Frankfurt 1930ies   Europa 5_26 

1 1 1 1 1 1 Frankfurt 1930ies   Europa 5_28 

1 1 1 0 0 1 Frankfurt 1930ies   Europa 5_29 

1 1 0 1 1 1 Frankfurt 1930ies 2.6 Dessau, Berlin 5_22 

1 1 0 1 0 0 Frankfurt 1930ies 3.1 Dessau, Berlin 5_23 

1 0 0 1 0 0 Frankfurt 1930ies   Europa 5_27 

0 0 0 0 0 0 Frankfurt     Frankfurt 3_5 

1 0 0 1 1 0 Frankfurt     Java 2_34 

1 0 0 0 0 0 Frankfurt     Schwanheim am Main 3_27 

1 0 0 0 0 0 Frankfurt     Schwanheim am Main 3_28 

1 0 0 1 0 1 Frankfurt     Libanon 5_14 

1 0 0 0 0 0 Frankfurt     Iran Coast of Caspian Sea 6_32 

 

 

 
 

 

Supplementary table 3.2 Genetic diversity (mitochondrial nucleotide diversity and microsatellite 

allelic richness) of Argiope bruennichi populations from the former range edge in Berlin and for three 

time periods.  

Collection date Mitochondrial π  
Nuclear allelic 

richness 

≤ 1930 0.0009 6.9931 

> 1930 ≤ 1960 0.0024 9.2500 

> 1960 0.0026 11.1636 
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Chapter 4  

All genome and transcriptome mapping files, as well as assemblies, gene expression data 

and BLAST results will be uploaded on a publicly available server of the Max Planck 

Institute for Evolutionary Biology, as soon as the thesis is ready for publication. 

 
 

 
Supplementary table 4.1 Sampling sites for Argiope bruennichi samples, which were used for whole 

genome sequencing. The first column denotes sample identifiers in the DNA libraires.  

 

J20 JpIbTA Japan Ibaraki Tsukuba 36.00 140.10 Y. Baba 

J22_1 JpKaKA Japan Kagoshima  Shimofukmoto-chö 31.60 130.56 T. Maeda  

J25_1 JpNaAA Japan Nagano Azusagawa-Azusa 36.23 137.97 N. Tsurusaki 

J27_1 JpKaAB Japan Kagoshima Amami-Oshima  28.28 129.43 Y. Baba 

J28_1 JpShOA Japan Shiga  Ozigaoka 35.12 136.07 T. Masumoto 

Pool2 

B5 Latvia Dobele Annenieki Parish 56.70 23.13 H. Krehenwinkel 

B6 Latvia Limbazi Skulte 57.35 24.45 H. Krehenwinkel 

B8 Estonia Pärnu Pärnu 58.30 24.62 H. Krehenwinkel 

B10 Latvia Limbazi  Ainazi 57.87 24.37 H. Krehenwinkel 

Pool1 

S2 Sweden Kalmar county Soderakra 56.45 16.67 H. Krehenwinkel 

S3 Sweden Kalmar county Kalmar 56.63 16.22 H. Krehenwinkel 

S4 Sweden Skane county Kristianstad 55.95 14.10 H. Krehenwinkel 

Pool3 

P2 Portugal Alentejo Corte Pequena 37.70 -7.85 H. Krehenwinkel 

P3 Portugal Alentejo Santo Jao 37.67 -7.83 H. Krehenwinkel 

P4 Portugal Alentejo Mertola 37.68 -7.60 H. Krehenwinkel 

P5 Portugal Alentejo Mertola 37.65 -7.60 H. Krehenwinkel 

P6 Portugal Alentejo Beja 37.80 -7.85 H. Krehenwinkel 

Pool4 

ItCaGA Italy Campania Giugliano 40.93 14.05 H. Krehenwinkel 

ItCbOA Italy Calabria Crosia 39.57 16.72 H. Krehenwinkel 

ItPgTA Italy Puglia Taranto 40.47 17.30 H. Krehenwinkel 

IM4 M1 Portugal Madeira Camacha 32.70 -16.80 H. Krehenwinkel 

 

 

 

 

 
 

 

 



 

189 

 

Supplementary table 4.2 Primer sequences for the analysis of genetic clines in different genomic 

candidate SNPs.  

ID Outlier contig Primer name Sequence 5'-3' Tm 
product 

(bp) 

Position 
in 

alignment 
SNP 

North/South 

G1F1 C609506_contig_52661 C609506_c_52661_1F CTTTCTTTTTCGCCTCATGTT 58.5 102 34585 A/G 

G1R1 C609506_contig_52661 C609506_c_52661_1R GCTCAGCTGACTTCAAAATCC 59.1 102 34585 A/G 

G3F1 s30462_contig_60388 s30462_c_60388_1F CTTAAGCACTCCGCCAAAAT 59.4 189 14176 A/T 

G3R1 s30462_contig_60388 s30462_c_60388_1R TGAAGTGAAACCAGCAAGTCA 59.5 189 14176 A/T 

G4F1 C441899_contig_75705 C441899_c_75705_1F GGCAGCACATAGATAAAAGCAA 59.4 146 16000 T/C 

G4R1 C441899_contig_75705 C441899_c_75705_1R TCTTTCCAGCAACGTCTATTATTTT 59.6 146 16000 T/C 

G7F1 C601208_contig_38174 C601208_c_38174_1F CCGAACAGATTGAATCACCA 59.5 238 24177 A/G 

G7R1 C601208_contig_38174 C601208_c_38174_1R AGATCAGAATGGAGCAAATGA 57.3 238 24177 A/G 

 

 

 

Supplementary table 4.3 SNP frequency data for the four genotyped candidate loci in different 

European Argiope bruennichi populations. 

Collection site GPS coordinates Frrequency of candidate SNP Freq. of 
background 

SNPs Country Region GPS N GPS E 
Mean 

NE 
G1 G3 G4 G7 Average 

Germany Berlin 52.52 13.41 32.97 0.34 0.33 0.41 0.49 0.39 0.14 

Spain Catalunia 39.48 -0.37 19.56 0.07 0 0 0 0.02 0.08 

France Nimes 43.84 4.36 24.1 0.06 0 0 0.06 0.03 0.04 

Croatia Istria 44.87 13.84 29.36 0.07 0.06 0.07 0 0.05 0.1 

France Auvergne 45.7 3.3 24.5 0.33 0 0.06 0.13 0.13 0.08 

Sweden Kalmar 56.67 16.36 36.52 0.45 0.63 0.66 0.63 0.59 0.15 

Poland Podlaskie 53.33 23.1 38.22 0.42 0.56 0.5 0.94 0.6 0.21 

Poland Masovia 52.67 21.62 37.15 0.5 0.79 0.6 0.71 0.65 0.19 

Batic states Baltic 57.86 24.36 41.11 0.67 0.77 0.85 0.67 0.74 0.15 

Russia Lipetsk 52.62 39.6 46.11 0.67 0.93 0.92 0.79 0.82 0.18 

Czech 
Republic 

Brno 49.2 16.61 32.91 0.18 0.31 0.37 0.5 0.34 0.21 

Germany Wulfen 51.72 7.02 29.37 0.13 0.31 0.29 0.13 0.21 NA 

Switzerland Geneve 46.2 6.15 26.18 0.25 0 0 0.14 0.1 NA 

France Lyon 45.76 4.84 25.3 0.06 0.06 0.06 0.06 0.06 0.08 

Germany Stuttgart 48.78 9.18 28.98 0.06 0.13 0.13 0.31 0.16 0.13 

Italy Puglia 40.47 17.23 28.85 0.08 0.05 0.08 0.06 0.07 0.1 

Portugal Allentejo 37.64 -7.66 14.99 0 0 0 0 0 0.11 

Central Asia 
Katta 

Kurgan 
39.9 66.26 53.08 NA NA NA NA NA 0.23 

Japan Ehime 33.83 132.77 83.3 1 1 1 1 1 0.99 

Japan Tottori 35.28 133.48 84.38 1 1 1 1 1 0.98 
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Supplementary figure 4.1 Distribution of average pairwise allele frequency differences within 

European populations (left plot) and between European and Japanese populations (right plot). The 

plots are based on all variable sites in approximately 6,000,000 bp of DNA in 276 genomic contigs. 

These contigs contain at least one completely fixed difference between Europe and Japan. The mean 

difference is 0.13 for the within European comparison and 0.45 for the comparison of Europe and 

Japan. On average, I find one completely fixed SNP between all European and Japanese samples per 

~ 1000 bp. European and Japanese populations still share much variation. These shared SNPs could 

be based on retained ancestral variation. 

 

Supplementary figure 4.2 Distribution of average pairwise allele frequency differences between 

Portugal and Japan (left plot) and between Baltic States and Japan (right plot). The plots are based 

on all variable sites in approximately 35,000 bp of DNA in the genomic candidate contig 

C601208_contig_38174 (see Table 4.2). Baltic populations share distinctively more variation with 

Japan, than Portuguese ones. On average Portuguese and Japanese populations are divergent by an 

allele frequency difference of 0.47, and Baltic and Japanese populations by only about half of that. 

The shared alleles between Portuguese and Japanese population are probably due to common 

differences towards the mapping reference, which is a single specimen from an isolated population on 

Madeira.  
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Chapter 5 

All transcriptome mapping files, as well as gene expression data and BLAST results will 

be uploaded on a publicly available server of the Max Planck Institute for Evolutionary 

Biology, as soon as the thesis is ready for publication. 

 

 

 
Supplementary table 5.1 Sampling sites for wasp spiders, which were used for transcriptome 

sequencing after thermal stress.  The second column denotes the respective library identifiers.  

Region ID Country Region City 
GPS 

N 
GPS 

E 
Collector 

Baltic 

B4 Latvia Saldus Viduskrogs 56.68 22.13 
H. Krehenwinkel 

B5 Latvia Dobele Annenieki Parish 56.70 23.13 
H. Krehenwinkel 

B8 Estonia Pärnu Pärnu 58.30 24.62 
H. Krehenwinkel 

Portuguese 

P2 Portugal Alentejo Corte Pequena 37.70 -7.85 
H. Krehenwinkel 

P4 Portugal Alentejo Mertola 37.68 -7.60 
H. Krehenwinkel 

P5 Portugal Alentejo Mertola 37.65 -7.60 
H. Krehenwinkel 

 

 

 
Supplementary table 5.2 Sampling sites for spiders, used for the cold tolerance experiment. Column 2 

denotes sample identifiers.  

Region ID Country Region City 
GPS 

N 
GPS 

E 
Collector 

Southern  

P2 Portugal Alentejo Corte Pequena 37.70 -7.85 H. Krehenwinkel 

P4 Portugal Alentejo Mertola 37.68 -7.60 H. Krehenwinkel 

P5 Portugal Alentejo Mertola 37.65 -7.60 H. Krehenwinkel 

Northern 

B1 Lithuania Klaipeda Klaipeda 55.80 21.15 H. Krehenwinkel 

B2 Latvia Liepaja Niedasciems 56.08 21.12 H. Krehenwinkel 

B4 Latvia Kurzemes Viduskrogs 56.68 22.13 H. Krehenwinkel 

B5 Latvia Dobele Annenieki Parish 56.70 23.13 H. Krehenwinkel 

B7 Estonia Pärnu Pärnu 58.30 24.62 H. Krehenwinkel 

B8 Estonia Pärnu Pärnu 58.31 24.60 H. Krehenwinkel 

B10 Latvia Limbazi  Ainazi 57.87 24.37 H. Krehenwinkel 

S2 Sweden 
Kalmar 
county 

Soderakra 56.45 16.67 H. Krehenwinkel 

S4 Sweden Skane county Kristianstad 55.95 14.10 H. Krehenwinkel 
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Supplementary table 5.3 Data from the cold tolerance experiment. The table shows the numbers of  

woken up spiders at certain time after cold shock. The eighth column shows the number of dead or 

permanently damaged spiders.   

Region 
Eggsac 

ID 

Woken up animals, minutes  after cold shock 
Damaged or death 

after 24 h 
Total 

spiders 30min 45min 60min 90min 120min 

Baltic B10.1x5 1 2 3 1 1 2 9 

Baltic B10.2x6 3 5 1 0 1 1 10 

Baltic B10x1 5 1 2 1 1 1 10 

Baltic B1ax9 0 0 1 0 3 2 9 

Baltic B1mn1 6 4 0 0 0 1 10 

Baltic B1x12 0 0 1 2 1 8 10 

Baltic B1x13 7 1 1 0 0 1 10 

Baltic B1x14 0 1 2 3 3 1 9 

Baltic B1x2 0 2 2 2 2 3 10 

Baltic B1X4 3 0 1 2 1 5 10 

Baltic B1x7 0 0 2 1 3 4 10 

Baltic B2ab1 0 1 2 5 1 3 10 

Baltic B2x11 0 0 1 0 0 9 10 

Baltic B2x16 0 1 0 3 4 3 10 

Baltic B2x18 3 5 0 2 0 0 10 

Baltic B2x5 0 0 2 4 3 2 10 

Baltic B2x9?1 0 1 6 2 1 0 10 

Baltic B2x9_2 1 2 2 3 1 1 10 

Baltic B4fz1 8 1 1 0 0 0 10 

Baltic B4x1 0 0 2 1 2 6 10 

Baltic B4x4 0 0 0 6 1 3 10 

Baltic B4x5 0 2 2 2 3 3 10 

Baltic B4x9 0 1 2 4 0 3 10 

Baltic B5.4x12 0 0 0 0 0 9 10 

Baltic B5c1 2 5 2 0 0 1 10 

Baltic B5x2 1 1 0 2 2 7 11 

Baltic B5x5 0 1 0 4 2 6 10 

Baltic B5x7 0 0 0 0 0 8 10 

Baltic B5x8 1 4 3 0 1 0 10 

Baltic B7ab2_2 1 1 3 2 1 5 10 

Baltic B7x12 0 4 0 0 3 5 10 

Baltic B7x3 0 1 1 3 1 2 10 

Baltic B7X4 0 2 0 2 1 6 10 

Baltic B7X6 0 7 2 1 0 1 10 

Baltic B8X2 3 2 2 1 1 2 10 

Baltic B8x3 2 1 1 1 0 6 10 
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Region 
Eggsac 

ID 

Woken up animals, minutes  after cold shock Damaged or death 
after 24 h 

Total 
spiders 30min 45min 60min 90min 120min 

Portugal P2.10x1 0 0 1 5 1 6 10 

Portugal P2.1Ax1 0 0 0 0 3 10 10 

Portugal P2.2Ax2 0 0 1 3 0 9 10 

Portugal P2.4Ax1 0 0 0 0 2 9 10 

Portugal P2.5Ax1 0 0 1 1 3 9 10 

Portugal P2.6Ax2 0 1 1 1 2 6 10 

Portugal P2.6x1 0 2 0 4 1 7 10 

Portugal P2.8x1 0 3 0 0 4 9 10 

Portugal P2.8x2 0 2 2 4 1 4 10 

Portugal P2.xz 0 2 2 4 1 5 9 

Portugal P2x1 0 0 1 2 2 10 10 

Portugal P2x2 0 0 0 0 2 10 10 

Portugal P2xy  0 0 1 1 0 3 8 

Portugal P4.2x1 0 0 1 0 2 10 10 

Portugal P5.1x1 1 1 0 0 1 10 10 

Portugal P5.1x1.2 0 1 0 0 4 8 10 

Sweden S2.3x2.1 5 4 0 1 0 0 10 

Sweden S2x12 0 1 0 1 5 6 10 

Sweden S2x12g 0 1 0 1 3 9 10 

Sweden S2x17yg 0 6 2 0 0 1 9 

Sweden S2X18 0 0 2 2 3 4 10 

Sweden S2x4 0 2 2 4 0 1 8 

Sweden S2X9 1 4 0 2 1 5 10 

Sweden S4.3x20 1 1 0 3 1 5 10 

Sweden S4x11 6 1 2 0 1 0 10 

Sweden S4X12 1 1 1 0 2 9 10 

Sweden S4x13 0 2 1 5 2 1 10 

Sweden S4X14 0 0 0 0 4 7 10 

Sweden S4x18 0 0 0 3 0 9 10 

Sweden S4X4 0 1 2 2 0 4 10 

Sweden S4Xz3 0 0 0 2 3 6 10 
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Supplementary table 5.4 Data from the heat stress experiment. The left three columns show 

Northern European and the right three ones Southern European spiders.  

Region Eggsac ID 
Lethal 

temperature 
(°C) 

Region Eggsac ID 
Lethal 

temperature 
(°C) 

Baltic LtMaNA03 45.5 Mediterranean SpBiIBI1.1A 50.0 

Baltic LtMaNA08 46.0 Mediterranean SpBiIBI1.2A 47.5 

Baltic LtKaKA11 42.0 Mediterranean SpBiIBI1.6? 52.0 

Baltic LtKaKA03 43.0 Mediterranean SpBiIBI1.7?A 49.0 

Baltic LvSaSA01 49.0 Mediterranean SpBiIBI1.7?B 51.3 

Baltic LvSaSA02 44.0 Mediterranean SpBiIBI1.8? 51.0 

Baltic LvSaSA04 40.0 Mediterranean SpBiICI2.2 51.0 

Baltic LvSaSA08 42.5 Mediterranean SpBiICI2.3 48.5 

Baltic LvLiAC04 41.3 Mediterranean SpBiICI2.4 46.0 

Baltic LvLiAC09 41.5 Mediterranean SpBiIBW 45.0 

Baltic EsPuMA04 42.0 Mediterranean PoBeCB 49.3 

Sweden SwKaSA01 46.0 Mediterranean PoAlBA01 47.0 

Sweden SwKaSA15 45.5 Mediterranean SpVaBA 48.0 

Sweden SwKaSA02 46.0 Mediterranean SpVaBA05 48.0 

Sweden SwKaSA05 45.0 Mediterranean SpVaBA55 48.0 

Sweden SwKaSA06 46.5 Mediterranean SpVaBA04 50.0 

Sweden SwBlAA03 44.5 Mediterranean SpVaBA09 48.5 

Sweden SwSkKA01 46.5 Mediterranean SpVaCA05 44.5 

Sweden SwSkKA12 41.0 Mediterranean SpCaMB01 45.0 

Sweden SwSkKA17 48.5 Mediterranean SpCaMB 48.0 

Sweden SwSkKA02 44.7 Mediterranean SpCaTA03 47.0 

Sweden SwSkKA06 43.8 Mediterranean SpCaTA07 49.5 

Sweden SwSkKA08 41.0 Mediterranean SpCaTA11  44.0 

 

Supplementary table 5.5 Gene expression values (RPKM) for the three genes, which were 

differentially expressed between control and cold stress conditions. The RPKM values for each six 

samples per condition and gene are shown.  

Region/Condition 

Glucose-6-
phophatase 

Ubiquitin  
Alanine-

aminotransferase 

 RPKM C598444 RPKM scaffold1784 RPKM scaffold29285 

Baltic -10°C 156.533 1198.032 19.491 

Baltic -10°C 204.155 1083.685 18.681 

Baltic -10°C 216.658 1215.142 24.417 

Baltic -10°C 204.384 1225.627 13.583 

Baltic -10°C 121.575 1137.610 24.324 

Baltic -10°C 137.323 1079.329 15.810 

Baltic 15°C 21.077 1265.932 10.440 

Baltic 15°C 19.806 1346.151 11.259 

Baltic 15°C 28.385 1312.037 10.765 

Baltic 15°C 45.561 1194.400 10.331 

Baltic 15°C 35.917 984.230 9.149 

Baltic 15°C 74.746 1309.411 14.174 
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Region/Condition 

Glucose-6-
phophatase 

Ubiquitin  
Alanine-

aminotransferase 

 RPKM C598444 RPKM scaffold1784 RPKM scaffold29285 

Baltic 40°C 95.526 895.768 9.903 

Baltic 40°C 49.356 869.194 7.768 

Baltic 40°C 58.235 1040.439 9.189 

Baltic 40°C 78.661 859.535 5.758 

Baltic 40°C 92.924 831.784 6.848 

Baltic 40°C 52.168 958.170 9.134 

Portugal -10°C 185.898 1116.592 24.915 

Portugal -10°C 142.056 1153.977 29.386 

Portugal -10°C 161.273 1085.907 19.970 

Portugal -10°C 173.313 845.896 17.351 

Portugal -10°C 97.675 1024.804 18.841 

Portugal -10°C 169.587 883.910 15.600 

Portugal 15°C 24.352 1157.819 7.395 

Portugal 15°C 22.237 1056.923 9.590 

Portugal 15°C 30.809 1139.523 9.874 

Portugal 15°C 12.962 1346.257 8.366 

Portugal 15°C 22.072 1049.272 7.892 

Portugal 15°C 13.001 1047.876 6.331 

Portugal 40°C 70.800 651.994 6.267 

Portugal 40°C 49.884 737.363 11.069 

Portugal 40°C 41.146 845.561 9.644 

Portugal 40°C 39.468 785.627 8.283 

Portugal 40°C 64.934 728.827 6.878 

Portugal 40°C 59.112 796.195 8.638 

 

Supplementary table 5.6 Mean gene expression values (RPKM) for differentially expressed 

transcripts between Northern and Southern European wasp spider populations. The table shows 

data for the cold stress experiment (blue), the control (green) and heat stress (red). 

Differentially expressed at -10 °C Differentially expressed at 15 °C Differentially expressed at 40 °C 

Contig ID 
RPKM 
Baltic 

RPKM 
Portugal 

Contig ID 
RPKM 
Baltic 

RPKM 
Portugal 

Contig ID 
RPKM 
Baltic 

RPKM 
Portugal 

C408562 4.06 13.00 C420849 17.42 7.24 C397354 75.78 56.35 

C422786 6.47 0.54 C422271 27.68 41.62 C397684 48.62 116.05 

C428988 87.20 236.13 C428988 100.91 243.40 C408562 6.38 13.65 

C430705 48.60 151.36 C430705 45.47 143.82 C420849 16.43 6.13 

C437766 671.45 1219.33 C437766 678.95 1327.87 C422908 2.14 6.99 

C452375 0.00 3.50 C449357 26.49 42.26 C428166 103.27 76.46 

C470153 1.71 6.64 C454093 62.91 44.76 C430357 1356.78 989.68 

C471259 334.95 253.88 C462948 25.31 13.80 C430705 57.96 162.91 

C473781 6.14 14.12 C473781 4.64 15.57 C431061 20.81 10.57 
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Differentially expressed at -10 °C Differentially expressed at 15 °C Differentially expressed at 40 °C 

Contig ID 
RPKM 
Baltic 

RPKM 
Portugal 

Contig ID 
RPKM 
Baltic 

RPKM 
Portugal 

Contig ID 
RPKM 
Baltic 

RPKM 
Portugal 

C478133 1385.91 2297.64 C478327 23.84 7.72 C449087 101.53 64.17 

C491425 241.64 583.69 C483589 1.04 6.61 C452375 0.00 2.98 

C497253 4.52 13.92 C485990 0.92 5.19 C460758 114.87 81.12 

C513159 27.66 49.31 C491425 306.67 664.52 C461884 49.35 13.63 

C516569 903.22 1347.29 C516569 906.67 1369.53 C478133 1273.08 2624.92 

C524020 6.03 13.93 C518583 2.66 0.00 C483589 2.50 10.84 

C530662 152.04 395.86 C524020 5.90 15.05 C494991 1853.18 1346.72 

C530678 42.30 24.27 C530662 174.74 380.26 C498737 1.32 6.33 

C532832 26.97 48.77 C544331 223.88 108.11 C503755 467.69 533.42 

C539244 12.26 4.57 C551725 92.41 132.94 C513023 1556.94 2903.89 

C544331 226.13 103.46 C554717 81.76 113.37 C513159 28.26 45.17 

C550389 686.76 532.23 C554733 1.31 5.76 C516233 222.21 181.04 

C551725 93.76 135.32 C557257 70.41 134.42 C516569 849.41 1542.18 

C554733 1.26 5.72 C573116 15.57 28.97 C523889 28.23 60.09 

C557257 71.35 132.52 C575630 35.24 50.74 C524020 3.83 12.23 

C565118 37.48 74.33 C585262 24.34 11.62 C543445 116.06 293.43 

C567022 870.26 508.95 C585880 416.52 618.17 C544331 167.81 82.18 

C575630 38.41 54.07 C591912 4.20 0.00 C548697 57.43 82.69 

C576678 11.59 45.57 C591936 8.31 16.27 C550389 576.78 456.07 

C578794 0.31 7.71 C592296 9.43 17.98 C551247 6.83 17.42 

C585262 24.36 13.28 C595206 114.66 211.69 C557257 73.36 122.54 

C585880 431.67 669.19 C599518 36.18 58.10 C563210 622.63 919.66 

C587118 75.25 306.57 C600600 77.23 119.55 C565118 32.57 58.32 

C590888 16.63 28.88 C600924 3.00 0.00 C565510 22.31 34.03 

C592296 10.91 20.72 C603096 11.39 4.40 C566178 2.99 17.78 

C596362 207.85 137.33 C605328 5.72 16.80 C567890 32.65 74.36 

C596472 9.89 20.43 C608432 16.68 42.05 C570268 260.47 184.76 

C597028 2.00 6.94 C608448 100.10 63.75 C570572 866.52 1135.94 

C597864 99.00 72.03 scaffold10510 142.09 90.69 C571050 15.34 27.66 

C599518 37.33 67.06 scaffold12736 293.33 346.83 C574014 86.56 56.60 

C600600 74.93 121.82 scaffold1455 5.26 0.33 C576678 10.64 39.97 

C603096 12.80 4.22 scaffold1457 5.35 0.51 C577774 3.46 13.46 

C605328 5.59 20.83 scaffold1458 16.21 1.34 C578794 0.42 6.55 

C608432 17.61 43.76 scaffold1784 948.83 741.23 C578924 24.15 14.23 

C608558 157.57 81.21 scaffold17865 4.73 19.37 C580504 377.73 255.49 

scaffold10510 144.02 86.07 scaffold19587 34.17 18.24 C582750 29.65 17.04 

scaffold11590 25.99 48.59 scaffold20228 37.29 65.69 C585880 454.63 937.90 

scaffold12056 112.93 77.90 scaffold20480 7.22 15.40 C586314 409.33 1339.27 

scaffold13008 0.55 4.04 scaffold20481 5.17 20.70 C587118 60.21 289.11 
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Differentially expressed at -10 °C Differentially expressed at 15 °C Differentially expressed at 40 °C 

Contig ID 
RPKM 
Baltic 

RPKM 
Portugal 

Contig ID 
RPKM 
Baltic 

RPKM 
Portugal 

Contig ID 
RPKM 
Baltic 

RPKM 
Portugal 

scaffold13048 7.26 19.98 scaffold22035 33.76 61.74 C591912 6.72 0.00 

scaffold13629 288.54 211.31 scaffold22583 7.77 16.53 C594018 584.17 430.94 

scaffold14228 11.14 29.74 scaffold229 4.44 0.00 C594244 8.24 16.72 

scaffold1455 5.05 0.61 scaffold24855 156.51 0.59 C596148 6.97 24.07 

scaffold1457 5.17 0.19 scaffold2517 2.78 23.99 C596362 225.30 161.03 

scaffold1458 13.98 1.86 scaffold27303 2.15 9.46 C598126 10.88 22.15 

scaffold14915 11.00 31.89 scaffold2757 19.33 32.84 C599518 30.55 52.27 

scaffold14916 4.01 14.07 scaffold28600 70.75 93.11 C600692 18.28 8.41 

scaffold15117 11.52 23.27 scaffold29335 50.43 28.32 C600924 3.49 0.00 

scaffold16424 13.54 25.82 scaffold30086 109.09 74.88 C600952 185.34 143.04 

scaffold17219 376.25 266.36 scaffold31115 3.40 15.31 C605328 5.80 18.66 

scaffold18366 32.61 15.20 scaffold31581 30.27 12.83 C605410 32.86 48.73 

scaffold19587 36.61 21.05 scaffold32648 0.95 4.77 C608432 13.26 31.62 

scaffold20133 1.95 6.62 scaffold33027 16.59 29.74 C608558 187.74 99.96 

scaffold20481 4.80 18.73 scaffold33034 51.00 87.59 scaffold10341 55.75 39.07 

scaffold21043 108.43 41.98 scaffold34950 76.71 100.01 scaffold11414 75.14 52.87 

scaffold21046 11.00 22.48 scaffold36946 60.65 98.63 scaffold1228 1.88 7.87 

scaffold22035 29.67 65.15 scaffold37821 428.20 549.75 scaffold12335 0.48 3.70 

scaffold24855 124.90 0.74 scaffold38017 49.13 90.18 scaffold12538 1.00 6.24 

scaffold2517 2.91 21.81 scaffold39566 35.86 55.05 scaffold13008 0.13 2.98 

scaffold26374 5.35 17.85 scaffold40311 76.35 106.93 scaffold1316 1117.36 677.82 

scaffold2756 34.65 56.29 scaffold42067 32.33 47.34 scaffold1455 3.42 0.36 

scaffold28307 58.85 28.71 scaffold42249 76.27 56.86 scaffold14915 10.80 27.20 

scaffold29229 15.98 27.90 scaffold42386 9.54 19.92 scaffold14916 4.54 14.33 

scaffold29335 42.76 20.18 scaffold42452 28.74 51.32 scaffold15363 2205.16 1006.13 

scaffold30086 103.94 72.78 scaffold42576 24.03 46.13 scaffold15365 242.53 112.25 

scaffold31115 5.10 16.10 scaffold42587 3.13 10.55 scaffold16705 18.80 9.86 

scaffold31581 28.19 11.98 scaffold42687 136.56 69.24 scaffold17222 2.47 0.00 

scaffold31590 0.93 6.39 scaffold43622 189.81 93.61 scaffold19044 732.43 1233.04 

scaffold32756 2.17 7.71 scaffold43738 0.69 4.93 scaffold19587 74.90 33.14 

scaffold36275 4.45 12.79 scaffold44995 24.67 43.05 scaffold20160 14.57 31.31 

scaffold36353 18.16 29.27 scaffold45807 31.21 15.17 scaffold21567 143.83 58.50 

scaffold36770 41.52 63.58 scaffold47381 3.72 0.03 scaffold22035 20.41 33.49 

scaffold38017 53.29 93.77 scaffold47692 42.18 81.38 scaffold22069 3.44 10.02 

scaffold39216 50.15 34.28 scaffold48122 3.69 0.04 scaffold229 6.61 0.00 

scaffold39980 115.46 70.86 scaffold48324 162.09 131.41 scaffold2321 5.92 15.93 

scaffold41507 134.08 89.76 scaffold49338 31.30 47.26 scaffold24855 137.22 0.79 

scaffold42067 29.84 47.60 scaffold49566 31.15 53.21 scaffold24856 64.32 186.53 

scaffold42249 77.61 55.82 scaffold50169 17.37 33.62 scaffold2517 2.44 18.00 
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Differentially expressed at -10 °C Differentially expressed at 15 °C Differentially expressed at 40 °C 

Contig ID 
RPKM 
Baltic 

RPKM 
Portugal 

Contig ID 
RPKM 
Baltic 

RPKM 
Portugal 

Contig ID 
RPKM 
Baltic 

RPKM 
Portugal 

scaffold42386 8.26 20.45 scaffold50328 20.93 9.34 scaffold25956 107.77 81.86 

scaffold42452 25.18 48.65 scaffold50460 97.96 138.85 scaffold26522 10.67 4.07 

scaffold42576 24.68 46.72 scaffold5139 51.27 22.74 scaffold26888 21.44 7.85 

scaffold42587 3.47 10.98 scaffold5213 155.91 102.49 scaffold28531 127.60 245.69 

scaffold43177 4.37 12.78 scaffold5250 21.21 35.75 scaffold28626 16.39 32.63 

scaffold43622 183.15 95.54 scaffold5476 12.77 23.96 scaffold30456 141.04 180.21 

scaffold44901 88.23 119.03 scaffold5499 564.82 368.26 scaffold30927 96.02 42.30 

scaffold44995 27.75 42.93 scaffold5503 6.01 1.36 scaffold31115 3.75 11.17 

scaffold47692 46.89 84.01 scaffold6005 2.66 13.15 scaffold31136 59.85 32.99 

scaffold47990 19.68 32.58 scaffold6164 50.38 19.04 scaffold33588 179.53 103.63 

scaffold48340 27.51 48.80 scaffold7244 182.54 128.07 scaffold34950 89.90 118.92 

scaffold48517 2.66 8.24 scaffold7682 11.43 22.80 scaffold35083 50.40 72.28 

scaffold48637 45.66 29.94 scaffold8606 13.33 32.69 scaffold35207 50.68 30.89 

scaffold48900 18.28 29.51 scaffold8843 31.03 75.36 scaffold36353 22.97 35.83 

scaffold49392 6.98 16.19 scaffold9213 4.75 11.39 scaffold36984 55.20 37.04 

scaffold49566 28.09 51.24 scaffold9867 99.35 77.63 scaffold37404 31.19 19.14 

scaffold50328 36.04 16.87       scaffold3761 5.50 12.74 

scaffold5139 44.58 18.80       scaffold37821 346.18 458.86 

scaffold5213 148.98 99.92       scaffold38017 43.62 65.68 

scaffold5250 19.35 35.57       scaffold38612 123.79 149.37 

scaffold5373 123.15 151.69       scaffold39030 58.59 140.47 

scaffold5476 10.91 24.77       scaffold3971 5.09 14.92 

scaffold5499 594.04 361.95       scaffold3973 8.88 2.15 

scaffold7244 210.45 135.33       scaffold39980 115.81 69.80 

scaffold7682 10.77 23.07       scaffold40081 120.18 95.41 

scaffold8541 44.06 20.35       scaffold40205 76.13 55.99 

scaffold8606 12.41 31.72       scaffold40655 20.99 53.44 

scaffold9213 4.65 11.68       scaffold40812 169.75 117.70 

            scaffold41505 12.51 22.03 

            scaffold42249 74.07 50.71 

            scaffold4233 43.93 24.87 

            scaffold42370 14.54 48.21 

            scaffold42452 35.36 52.75 

            scaffold42587 2.86 8.65 

            scaffold42687 65.40 27.79 

            scaffold4327 26.68 49.60 

            scaffold43355 22.81 11.70 

            scaffold43622 166.08 95.22 

            scaffold44441 12.87 5.67 
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            Differentially expressed at 40 °C 

            Contig ID Contig ID Contig ID 

      
scaffold44618 2.24 15.48 

      
scaffold45454 24.86 47.17 

            scaffold45676 98.06 67.97 

            scaffold45789 36.74 17.61 

            scaffold45829 174.39 136.06 

            scaffold45850 52.63 36.74 

            scaffold46005 683.87 452.48 

            scaffold46019 104.03 51.14 

            scaffold47377 2.37 11.04 

            scaffold47381 5.74 0.07 

            scaffold48122 8.96 0.08 

            scaffold48236 249.16 192.42 

            scaffold48732 462.17 231.37 

            scaffold48785 40.28 68.76 

            scaffold49367 20.03 34.41 

            scaffold49566 25.31 49.59 

            scaffold4960 2.19 7.13 

            scaffold50328 24.90 11.41 

            scaffold50466 6.65 31.46 

            scaffold5139 52.34 18.65 

            scaffold5213 115.64 74.43 

            scaffold5215 22.10 12.59 

            scaffold5373 121.04 147.49 

            scaffold59 3.87 10.76 

            scaffold5918 23.55 41.65 

            scaffold6016 86.20 248.46 

      scaffold6164 52.43 25.78 

            scaffold6459 116.18 63.55 

            scaffold661 172.56 125.00 

            scaffold720 39.52 24.63 

            scaffold7244 144.55 112.01 

            scaffold7462 23.95 49.59 

            scaffold8606 11.84 31.14 

            scaffold8666 2.08 27.30 

            scaffold8843 33.43 65.09 

            scaffold9925 6.31 22.32 
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