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Absctract

Hydrologic models are essential tools for examining the impact of land use on hydrology and

water quality. These models are used for watershed management and have proven to be effective

tools for assessing water resource and nonpoint-source pollution problems for a wide range of

scales and environmental conditions. Modeling efforts to assess the effectiveness of management

practices and conversion measures on water quality and attempts to assess the impacts of global

change on water processes have put increasing pressure on the accuracy of hydrologic models.

Currently, identifiable barriers to the use of such models are the quality and spatial resolution of

the input data, as well as the accuracy of the physical representation of the hydrologic processes

within the model. The recurring problem is the discretization of the watershed to best represent

watershed processes while, at the same time, not exceeding the limitation of available data

and computational time requirements. However, integrated river basin models should provide

a spatially distributed representation of basin hydrology and transport processes to allow for

spatially implementing specific management and conservation measures.

The currently insufficient implementation of spatially varying processes in many hydrologic mod-

els indicates a strong need for research to better represent these processes. Therefore, this dis-

sertation aims at the incorporation of greater spatial detail regarding the spatial distribution of

processes and data into the publicly available eco-hydrologic watershed model SWAT (Soil and

Water Assessment Tool). To achieve this, the model was enhanced with focus on (1) developing

an interface for setting up SWAT in a grid-based discretization scheme, (2) developing spatially

distributed routing capabilities between grid cells, and (3) improving the availability and quality

of spatial SWAT input data.

The enhanced model was tested by examining SWAT hydrology response at the watershed and

grid scale. Also, the most important sources of model error were identified and changes in the

temporal resolution and spatial accuracy of land use input data were quantified. To this end,

the new model was applied to the Lake Fork catchment (556 km2, Texas, USA), the Bünzau

catchment (210 km2, Schleswig-Holstein, Germany), and the Little River watershed (334 km2,

Georgia, USA). Results indicate that the new model performs well with regard to streamflow

and water balance at the watershed and grid scale.

The results of this dissertation suggest that the incorporation of more spatial detail into the

SWAT model by using a grid-based discretization scheme, routing capabilities between grid cells,

and temporally and spatially more accurate data will provide a more realistic basis for water

quantity and quality simulations. By developing spatially distributed hydrologic algorithms,

testing the applicability of the enhanced model, and identifying the main sources of uncertainty,

this dissertation laid the groundwork for further research in spatially distributed hydrologic

simulations required for water basin management (e.g. identifying non-point source pollutions).
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Kurzfassung

Die Qualität von Gewässern unterliegt einer Vielzahl unterschiedlicher Einflüsse. Um die Aus-

wirkungen menschlichen Handelns auf die Wassermenge und -qualität abschätzen zu können, wer-

den Wasserhaushaltsmodelle als Unterstützungswerkzeuge für ein integriertes und nachhaltiges

Management von Wasserressourcen genutzt. Belastungen von Gewässern ergeben sich zum einen

aus Punktquellen (z.B. industrielle Einleitungen) und zum anderen aus diffusen Quellen (z.B.

landwirtschaftliche Tätigkeiten). Während Punktquellen leicht zu lokalisieren sind, erfordert die

Identifikation diffuser Eintragspfade eine detaillierte und räumlich differenzierte Betrachtung.

Um solch eine räumlich differenzierte Betrachtung mit Modellen zu gewährleisten, ist es erforder-

lich, die in den verschiedenen Landschaften auftretenden hydrologischen Prozesse und Stofftrans-

portmechanismen zu berücksichtigen. Die Herausforderung bei der Entwicklung geeigneter Mod-

elle besteht in der Findung eines Kompromisses zwischen einer möglichst realistischen räumlichen

Prozessbeschreibung, einer limitierten Menge an zur Verfügung stehenden Modelleingabedaten

und einer möglichst geringen Rechenzeit. Modellergebnisse sind generell mit hohen Unsicher-

heiten verknüpft. Das lässt sich zum einen auf die nur unzulänglich verfügbaren Messdaten, die

zur Parametrisierung, Kalibrierung und Validierung des Modells benötigt werden, zurückführen.

Zum anderen trägt die häufig stark vereinfachte und ungenaue Beschreibung der hydrologischen

Prozesse zu den Modellunsicherheiten bei. Die vorliegende Dissertation beschäftigt sich daher

sowohl mit der Verbesserung der geographischen Datenbasis als auch mit der Weiterentwicklung

der räumlichen Abbildung von Prozessen für das öko-hydrologische Modell SWAT (Soil and Wa-

ter Assessment Tool). Dazu wurde eine auf Rasterzellen basierte Version von SWAT entwickelt,

welche hydrologische Transport- und Austauschprozesse zwischen den Rasterzellen beinhaltet.

Außerdem werden methodische Ansätze vorgestellt, die die Qualität und zeitliche Verfügbarkeit

von räumlichen Landnutzungsdaten verbessert.

Das im Rahmen der Dissertation modifizierte Modell wurde im Lake Fork Einzugsgebiet (556

km2, Texas, USA), im Einzugsgebiet der Bünzau (210 km2, Schleswig-Holstein, Deutschland)

und im Little River Einzugsgebiet (334 km2, Georgia, USA) angewandt, um Abfluss und Wasser-

bilanzen abzubilden und die wichtigsten Ursachen für Unsicherheiten in den Modellergebnissen

zu identifizieren. Die Ergebnisse zeigen, dass die Weiterentwicklungen des Modells gute Simu-

lationsergebnisse in den untersuchten Einzugsgebieten liefern. Die wesentlichen Verbesserungen

des Modells ergeben sich dabei aus einer räumlich detaillieren Beschreibung der hydrologischen

Prozesse in SWAT.

Die Ergebnisse dieser Arbeit deuten darauf hin, dass eine verbesserte geographische Datenbasis

und eine auf Rasterzellen basierte Version von SWAT, in der Wasser- und Stoffflüsse zwischen

den Rasterzellen berücksichtigt werden, zu einer realistischeren räumlichen Prozessbeschreibung

führen. Die vorliegende Dissertation stellt somit die Grundlage zur räumlich differenzierten

hydrologischen Modellierung mit SWAT dar und leistet einen Beitrag zur Entwicklung eines

integrierten Ansatzes zum effizienten und nachhaltigen Management von Wasserressourcen in

Flussgebietseinheiten.
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Chapter 1

Introduction

1.1 Motivation

During the past decades the awareness of the value of water increased, which is reflected

in a growing competition for limited fresh water resources among agriculture, urban and

industrial uses, fisheries and recreation (Sabatier et al., 2005). The increasing govern-

mental and public awareness of water pollution and environmental problems led to the

passage of the Clean Water Act (CWA) in the USA in 1972 and the Water Framework

Directive (WFD) in the European Union in 2000, both of which aim at watershed-based

restoration of water quality. The CWA as well as the WFD stimulated substantial re-

ductions in point-source pollution of lakes, rivers, wetlands, estuaries, coastal waters,

and groundwater (e.g., Hering et al., 2010; Copeland, 2012). However, efforts to con-

trol pollution from diffuse (i.e. non-point) sources are still ongoing. Data reported by

the European Commission and the U.S. Environmental Protection Agency indicate the

demand for substantial efforts in restoration: 60 % of European (Hering et al., 2013)

and 44 % of U.S. rivers (U.S. Environmental Protection Agency, 2006) do not meet the

specified water quality standards.

Both the CWA and the WFD require an integrated river basin management plan to

reduce non-point source pollution. They aim at the process of creating and implementing

plans, programs, and projects to sustain and enhance watershed functions that affect

the plant, animal and human communities within a watershed (Copeland, 2010; Hering

et al., 2010). Therefore, integrated river basin management should include water supply,

water quality, drainage, stormwater runoff and flood protection, and the overall planning

and utilization of watersheds. Landowners, government agencies, and environmental

scientists play an integral part in the management of a watershed (e.g., Sabatier et al.,

2005).

1
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A key component of integrated and sustainable watershed programs is the identifica-

tion of pollutants and possible remedies. While point sources are easy to locate, diffuse

sources are more difficult to assess due to their extensive spatial occurrence and their

temporal variability depending on a number of factors including climate and land use

(Carpenter et al., 1998; Ouyang et al., 2010b). Strategies to reduce non-point source

pollution are mostly identified by examining the feasibility of implementing various best

management practices (BMPs) and assessing their impact on pollutant loading (Bosch

et al., 2004). European and U.S. projects accomplished this assessment through environ-

mental monitoring and modeling of the physical processes within a watershed (e.g., Volk

et al., 2009; White et al., 2010). Field experiments and observations are time-consuming

and costly. The use of models facilitates timely and cost-effective quantification of the

impacts of land use and management practices on water quantity and quality. Also,

models can help to identify Critical Source Areas (CSA) within a watershed where the

implementation of BMPs to improve the state of water resources needs to focus on (Arabi

et al., 2006; White et al., 2009).

Watershed based models that take possible land use and management scenarios into

account can be helpful in determining measures to achieve a target ecological status

of a catchment (e.g., Born and Sonzogni, 1995; Krause et al., 2008; Prodanovic and

Simonovic, 2010). They are valuable tools for examining the impact of land use on

hydrology and water quality. Examples of such watershed models are AGNPS (Young

et al., 1989), HSPF (Bicknell et al., 1996), GWLF (Haith and Shoenaker, 1987), MIKE-

SHE (Refsgaard, 1997), SWAT (Arnold et al., 1998), SWIM (Krysanova et al., 2005),

and WaSiM (Schulla, 2012). Overviews of different eco-hydrological models are given

in Volk and Steinhardt (2001), Krysanova and Haberlandt (2002), Horn et al. (2004),

and Arnold and Fohrer (2005). Models used in the context of integrated river basin

management are required to provide information on a wide range of hydrologic aspects,

which cannot be achieved by using individual groundwater, water quality, or erosion

models (e.g., Seppelt et al., 2009). Therefore, water basin management requires spatially

distributed and process-oriented models. These models typically need more data, are

more sophisticated in structure, but allow more insight into the system behavior than

simple conceptual approaches (Blöschl and Sivapalan, 1995). However, Volk et al. (2009)

stated that experiences of different European and national projects dealing with the

model-supported implementation of the WFD revealed that the available models are

“still far from being suitable for operational applications”.

A key task of integrated river basin management is the identification of CSAs and

assessing the impact of BMPs on pollutant loading within a watershed (e.g., White

et al., 2009), which is mainly accomplished through monitoring and modeling hydrologic

processes. The primary transport mechanism of many environmental contaminants is
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through water flow. Therefore, the accurate simulation of the hydrology of a watershed

is a prerequisite for accurate contaminant transport modeling. Rinaldo et al. (1991)

and Saco and Kumar (2002) demonstrated that it is more realistic to use spatially vary-

ing parameters to represent the different flow processes. In this context Volk (2010)

stated that from the management perspective, a landscape with a defined extent rep-

resents the suitable scale for the planning of sustainable development. Integrated river

basin models should represent landscape processes to allow for implementing specific

management and conservation measures. For this, they require accurate spatial and

temporal data. Ideally, processes should be observed and modeled at the temporal and

spatial scale they occur. In practice, however, process, observation, and model scale

do not match; the modeling scale is often orders of magnitude larger or smaller than

the observation or management scale (Blöschl and Sivapalan, 1995). Each scale level

has specific dominant processes, data requirements, and controlling factors. Hence, the

accuracy of the physical representation of the hydrological processes within the model at

the scales relevant for planning should be evaluated carefully, before recommendations

for conservation measures or land use options are given based on model results. The

question, however, remains whether data necessary to describe these processes are avail-

able. Hence, consideration of the accuracy of the methods and data used for modeling

as well as examination of the sensitivity of the methods used to input data variation is

required (e.g., Jha et al., 2004; Romanowicz et al., 2005; Volk, 2010).

Reliable model simulations at multiple scales and locations can be obtained only if

the model was validated and conceptualized for the scale at which it is applied and

if a scale-specific, robust parameterization method is employed (Kumar et al., 2013).

Klemeš (1983) and Blöschl and Sivapalan (1995) give a detailed framework for scaling

and scale issues in hydrology. They demonstrate that hydrologic processes occur over a

wide range of scales of approximately eight orders of magnitude in space and time. The

processes range from unsaturated flow in a 1 m soil profile to floods in river systems of a

million square kilometers, from flashfloods of several minutes duration to flow in aquifers

over hundreds of years. Runoff generation associated with rainfall intensities exceeding

infiltration capacities (i.e. infiltration excess overland flow) is a point phenomenon that

is related to very small spatial scales. Saturation excess runoff is an integrating process

that is dependent on topographic, land use and soil characteristics and thus needs a

certain area to occur. Channel flow operates at scales ranging from a channel initia-

tion area up to the extent of large river basins (Jaeger et al., 2007). The time delay

of hydrologic processes increases as the water passes through the subsurface and the

main temporal scale of a basin clearly depends on the dominant runoff mechanisms

(Blöschl and Sivapalan, 1995). Infiltration excess overland flow response is very fast

(< 30 minutes), while saturation excess overland flow responds typically slower because
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the soil has to be saturated before runoff occurs. Subsurface flow is often significantly

slower, with response times of a day or longer for the same catchment size. Finally,

groundwater-controlled flows are associated with time scales from months to hundreds

of years (e.g., Dunne et al., 1975). There is, however, a relationship between spatial and

temporal scales of hydrologic processes. Small spatial scales tend to be related to small

temporal scales and the same applies to large spatial and temporal scales. According

to Dooge (1986) and Blöschl and Sivapalan (1995) typical modeling scales in space are

the local scale or ‘point’ scale (1 m), the hillslope scale (100 m), the catchment scale

(10 km) and the regional scale (1000 km). Common scales in time are the event scale

(1 day), the seasonal scale (1 year), and the long-term scale (100 years).

As hydrologic processes relevant for river basin management act at multiple scales in

space and time, modelers have to make compromises between the accuracy desired, the

computation time, and the availability of data. Simulating non-linear processes such as

precipitation, infiltration, and runoff requires hourly or daily time steps, whereas for sea-

sonal or annual predictions monthly steps are appropriate. The possible degree of spatial

resolution ranges from highly aggregating approaches in which the study area is divided

into a few sub-units with similar properties (lumped models) to models which take as

much variability of spatial characteristics into account as possible (distributed models).

The scope of distributed models has increased during the past years in accordance with

the requirements for river basin management, the development of faster computers, and

the increasing availability of geographic data sets (Volk et al., 2001; Volk, 2010). The ap-

propriate spatial resolution and discretization method depends, however, on the purpose

of modeling and the availability of data sources (Bennett et al., 2013). If the modeler’s

aim is the simulation of aggregated events (e.g., monthly values at the watershed outlet)

in a data scarce area a lumped approach may be adequate. But if the modeler’s scope

is a spatial description of a hydrologic system (e.g., detection of critical source areas)

a spatially distributed model is recommended, because spatial patterns of topography

and subsurface characteristics often exert significant control over hydrological processes

within a watershed (Schulz et al., 2006). Therefore, integrated river basin management

requires models that are able to represent runoff and infiltration processes that occur in

different parts of the landscape. Despite their wide range of scales, hydrologic processes

that are crucial for river basin management are typically related in response to precipi-

tation. These processes can be accounted for by eco-hydrologic models that operate at

the landscape or hillslope scale and use a daily time step.

Currently identifiable barriers for the use of models for river basin management are

the quality and spatial resolution of the input data, and the accuracy of the physical

representation of the hydrological processes within the model (Arnold et al., 2010).

In river basin management, models are required to contribute information on a wide
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range of processes related to hydrology and water quality, which cannot be provided by

individual groundwater, water quality or erosion models (Volk et al., 2009). The eco-

hydrological watershed-based Soil and Water Assessment Tool (SWAT, Arnold et al.,

1998) was found to be suitable for simulating hydrologic processes in the context of

integrated river basin management, even though further testing and improvement is

necessary (e.g., Horn et al., 2004; Volk et al., 2009). In particular, model revision is

required by (1) enhancing the spatial representation of hydrology and flow transport

processes within a watershed (Gassman et al., 2007), and (2) providing model input

data in the desired spatial and temporal resolution (e.g., Arnold et al., 2010). Hence,

this dissertation aims at improving the spatial representation of basin hydrology and

flow processes in the SWAT model.

1.2 Materials and Methods

1.2.1 The SWAT model

The eco-hydrological model SWAT has proven to be a useful modeling tool for a wide

range of scales and environmental conditions. Over the past decade SWAT has been used

worldwide to estimate anthropogenic, climate and other impacts on water resources.

Besides numerous applications in the U.S., SWAT has also been used extensively in

Europe. In the literature many specific SWAT applications have been reported. Arnold

and Fohrer (2005) and Gassman et al. (2007) summarized many of these. Numerous

applications exist using the outlet gauge discharge data for calibration and validation

purposes. They range from hydrologic and water resource assessments (water discharge,

groundwater dynamics, soil water, snow dynamics, and water management) through

water quality (land-use and land-management change in agriculture), climate change

impacts, and pollutant assessments (Gassman et al., 2007; Krysanova and Arnold, 2008).

Furthermore, SWAT can account for the effects of best management practices (Arabi

et al., 2006), identify critical source areas (e.g., White et al., 2009) and has shown its

capability to adequately represent general trends of water quality changes resulting from

various measures based on land use and management change (e.g., Fohrer et al., 2005).

SWAT is a physically based watershed-scale model, developed to simulate the impact of

land management practices on the water cycle, the flow of sediment, the nutrient cycle

and the behavior of pesticides and bacteria in complex watersheds. All model calcula-

tions are carried out in daily time steps, whereas the model output can be obtained at

a daily to annual time scale (Arnold et al., 2013). Recent versions of the model also

provide for simulations on an hourly time step, if hourly precipitation data is available.
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The model divides the hydrology of a watershed into two major phases. (1) The land

phase of the hydrologic cycle controls the quantitative flow of water, sediment, nutri-

ents and pesticides entering the reach allocated to the sub-watershed. (2) The routing

phase determines the movement of water through the channel network of the watershed

to its outlet using either a variable storage coefficient method (Williams, 1969) or the

Muskingum routing method (e.g., Linsley et al., 1982).

Simulated hydrologic processes in the land phase include surface and subsurface flow

mechanisms. Calculation of surface runoff is performed using either the SCS (Soil Con-

servation Services) curve number (Soil Conservation Service Engineering Division, 1972)

or Green and Ampt (Green and Ampt, 1911) infiltration equation. Lateral subsurface

flow in the soil profile is calculated with a kinematic storage model estimated simultane-

ously with percolation. Groundwater flow from shallow aquifers to streams is simulated

by creating a shallow aquifer storage using the classic linear tank storage model (Brut-

saert, 2005). SWAT offers using either the Hargreaves (Hargreaves and Samani, 1985),

the Priestley-Taylor (Priestley and Taylor, 1972), or the Penman-Monteith (Monteith,

1965) method for estimating evapotranspiration. Further model components include

snow melt, transmission losses from streams, and water storage and losses from ponds.

A detailed description of all components can be found in Arnold et al. (1998) and Neitsch

et al. (2011b).

Setting up a watershed simulation requires definition of the spatial arrangements of the

watershed’s elements (e.g., sub-watersheds, reach segments, or point sources). SWAT is

a semi-distributed model and the primary discretization technique used within SWAT is

the sub-watershed configuration. Based on the surface topography defined by a digital

elevation model (DEM), the model divides the watershed into sub-watersheds. The sub-

watersheds are further subdivided into hydrological response units (HRUs) to account

for heterogeneity in slope, soil type and land use. HRUs are lumped areas within a

sub-watershed with a unique combination of slope class, soil type and land use (Neitsch

et al., 2011b). They represent percentages of the sub-watershed area and are not spatially

related to one another. This aggregation of land use or soil type maps implies a loss of

spatial information during modeling, which might be important when studying diffuse

matter transport in agricultural areas. SWAT is not able to model flow and transport

from one landscape position to another prior to entry into the stream. Therefore, the

classic HRU concept fails to simulate interactions between HRUs and is not able to

represent spatial distributions of hydrologic processes that typically occur in landscapes.

Efficient river basin models should, however, link upstream and downstream parts of a

river basin. Hence, the non-spatial character of the HRUs and the inability to model

transport processes in the land-phase of the hydrologic cycle have been identified as key
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weaknesses of the model (e.g., Gassman et al., 2007; Arnold et al., 2010; Bosch et al.,

2010).

To overcome these shortcomings and to fulfill the requirements for river basin manage-

ment, SWAT has recently been enhanced by developing routing capabilities between

landscape units (Volk et al., 2007; Arnold et al., 2010). The new SWAT landscape

version simulates flow and transport processes between three landscape units (divide,

hillslope, and floodplain) within a sub-watershed; surface runoff, lateral subsurface flow,

and shallow groundwater flow is routed between these landscape units in the land phase

of the hydrologic cycle. The landscape model significantly improves spatial representa-

tion of basin hydrology (Arnold et al., 2010; Bosch et al., 2010) and is able to capture

channel and landscape flow processes related to specific landscape positions. The model

was evaluated by Bosch et al. (2007a), Volk et al. (2007), Arnold et al. (2010), and Bosch

et al. (2010). They concluded that simulated daily stream flow at the watershed outlet

after routing across the landscape units compared well to measured flow. However, they

also stated that additional development and testing of the landscape flow module is

necessary to realistically represent spatial distributions of flow and transport processes

within a watershed.

Using the SWAT landscape model together with a grid-based approach instead of the

sub-watershed discretization would incorporate even more spatial detail into the SWAT

model. A grid-based discretization avoids the aggregation of geographical datasets and

preserves spatial information. There are, however, advantages and disadvantages for

both the grid and the commonly used HRU method. The HRU approach used in the

current landscape model provides a fast and numerically efficient model, but leads to

a loss of flow paths and spatial information during modeling. The combination of the

grid configuration and the new landscape model results in a fully distributed SWAT

model that preserves spatial information and enables the model to simulate the impact

of management practices (e.g., conservation measures) implemented in specific landscape

positions on plant growth, crop yields, and runoff in full spatial detail.

1.2.2 Land use data

The anthropogenic factor land use affects the interactions between water, soil, geomor-

phology, and vegetation on several spatial and temporal scales in different manners and

intensities. Land use acts as an interface between natural and socio-economic systems

and is one parameter that controls the landscape water balance (Steinhardt and Volk,

2001). Information about the impact of land use changes on the functions of watersheds

provides knowledge for the development of sustainable land use concepts (Volk, 2010).
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Therefore, the effect of land use patterns on hydrologic processes should be evaluated

(Lorz et al., 2007).

The quality, spatial resolution and temporal availability of model input data can com-

promise the use of spatially distributed models for river basin management (Beven

and Freer, 2001). There are, however, numerous studies where hydrological models

are applied successfully for simulating the influence of land use on catchment hydrol-

ogy. Hörmann et al. (2005) give an overview of the prospects and limitations of eco-

hydrological models for the evaluation of land use options in mesoscale catchments.

Mostly, scenarios based on assumptions of climatic change or the influence of political

decisions are investigated (Volk, 2010). Land use can have a considerable impact on

the water cycle (e.g., Franklin, 1992; Miller et al., 2002), on sediment transport (e.g.,

Bakker et al., 2008; Ouyang et al., 2010a) and on nutrient leaching caused by agrochem-

ical losses (e.g., Allan et al., 1997; Turner and Rabalais, 2003). Chiang et al. (2010) even

stated that land use changes can mask the water quality improvements from conserva-

tion practices implemented in the watershed. However, when simulating water balances

for larger catchments, only massive land use changes result in noteworthy shifts of the

simulated total runoff (Volk, 2010).

Pai and Saraswat (2011) stated that accurate model prediction depends on how well

land use in a watershed is represented in the model. Thus, spatially and temporally

accurate land use data is crucial input data for hydrologic models. Due to the rapid

development of GIS (Geographic Information System) and remote sensing systems, an

increasing amount of land use data becomes available. However, land use maps based on

remote sensing data are known to contain data gaps. These gaps are caused by clouds

or classification thresholds (spatial data gaps) or by missing land use layers in a time

series (temporal data gaps). Both kinds of gaps hamper temporal availability and spatial

accuracy of land use data in a model. Existing interpolation methods of spatial data

gaps (e.g., nearest-neighbor method), produce poor results for large data gaps and there

are no methods available for interpolating temporal data gaps. This means that land use

data based on classification of remote sensing data seldom provides the required accuracy,

spatial availability and temporal observational frequency for river basin management.

Hence, the simulation of land use changes on water yield in river basins has been carried

out in a great number of research projects, but mostly without considering the spatial

distribution of land use (Lorz et al., 2007). Recent and future river basin management,

however, requires a spatially distributed description of basin hydrology and land use to

enable management practices as a factor in river basin management (Volk et al., 2007).

Thus, there is a high demand for accurate and spatio-temporal complete time series of

land use data. Currently both, quality and spatial distribution of land use data within
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hydrologic simulations hamper the applicability of models like SWAT for river basin

management.

1.3 Research topics and outline of the dissertation

This dissertation aims at improving the watershed-based eco-hydrologic model SWAT

to enhance its suitability for integrated river basin management. The improvements

have been investigated with the focus on (1) enhancing the spatial representation of

flow processes within the SWAT model and (2) developing a space-time interpolation

and revision approach for remotely sensed land use data to provide more accurate model

input data. The central research tasks are:

Research Task 1: Incorporating more spatial detail into SWAT by de-

veloping a model interface that setups SWAT in a grid-based discretization

scheme.

Research Task 2: Developing routing capabilities between grid cells and

adapting the SWAT hydrologic algorithms from the sub-watershed to the

hillslope scale.

Research Task 3: Improving SWAT input parameters by deriving input

data from remotely sensed data.

All tasks are addressed to the central research question: Does the incorporation of

more spatial detail into a SWAT model help to fulfill the requirements of integrated

water basin management?

Chapter 2 presents an interface that was developed to set up SWAT in a grid-based

discretization scheme: SWATgrid. A grid-based setup turns SWAT from a spatially

semi-distributed to a fully-distributed model. The gridded approach incorporates more

spatial detail into the model and avoids a loss of spatial information that is inherent to

the primarily used sub-watershed approach. An application study of a grid-based SWAT

setup was performed in the Lake Fork watershed (556 km2, Texas, USA). Chapter

2 addresses research task 1 by comparing the sub-watershed and grid approach and

analyzing the input effects of the two discretization techniques on model output.

In Chapter 3, a SWATgrid application study is presented to prove the general function-

ing of the grid-based approach. Hydrologic studies that use the SWAT model require
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calibration to fit the model to the environmental and hydrologic conditions of the catch-

ment. Compared to the sub-watershed approach, the grid-based setup significantly in-

creases model computation time and hence hampers calibration according to established

calibration guidelines. Chapter 3 describes how a set of calibrated parameters obtained

from a computationally efficient sub-watershed based setup can be used to calibrate the

corresponding grid-based model by down-scaling the parameter values to the grid scale.

In addition, this chapter analyzes input effects of the grid-based discretization technique

on SWAT model output. A sub-catchment of the River Elbe, the Bünzau catchment

(210 km2, Schleswig-Holstein, Germany), served as test site to present and validate the

proposed methodology.

To capture the channel and landscape flow and transport processes related to specific

landscape positions, the landscape routing model developed by Volk et al. (2007) and

Arnold et al. (2010) was modified to link these processes to the grid scale. Therefore,

Chapter 4 presents the development and evaluation of a grid-based version of the SWAT

landscape model. The new model is fully distributed and able to capture the channel

and landscape flow processes and distribute surface runoff, lateral subsurface flow and

shallow groundwater flow between grid cells. Model testing includes evaluation of model

output at discrete locations (i.e. stream gages), and a qualitative analysis of spatially

distributed hydrologic model output at the grid scale. The study area is the 334 km2

Little River experimental watershed in Georgia (USA).

Spatially detailed distributed models require high resolution input data to accurately

represent the spatial and temporal status of the watershed. Despite the rapid devel-

opment of geographic information systems and remote sensing techniques for data ac-

quisition, the temporal availability, spatial resolution and accuracy of input data (e.g.,

climate, topography, land use, soil) is often too coarse for detailed modeling. Chapter

5 presents a space-time Interpolation and revision approach for Remotely Sensed Land

use data (IRSeL) developed to improve model input data. IRSeL improves the data set

by filling data gaps in the temporal and spatial dimension of a land use data set and

minimizing classification errors based on statistical analysis. An area around the city

of Neumünster (Schleswig-Holstein, Germany) that is part of the Bünzau catchment

(see Chapter 3) served as a test site to demonstrate IRSeL’s functioning, effectiveness,

limitations, and challenges.

The aim of Chapter 6 is to assess the impact of the accuracy and temporal representation

of land use data on hydrologic SWAT model output, which includes a sensitivity anal-

ysis of the grid-based SWAT model to variations of input land use data. The Bünzau

catchment is taken to simulate hydrology using conventional and IRSeL revised land
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use input data. The impacts of the different land use data sets on water balance, flow

components, and streamflow are analyzed.

Finally, Chapter 7 summarizes the main findings of this dissertation and presents an

answer to the central research questions. It also discusses hydrologic processes and their

representation in the SWAT model across spatial scales, summarizes the implications

of the results for river basin management. Advantages, shortcomings, boundaries and

limitations of distributed grid-based SWAT modeling and the proposed methodologies

are presented. An outlook is given, which lists further research needs that were identified

in this study.
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Abstract

This paper presents a model interface that enables the user to incorporate spatial detail

into a SWAT (Soil and Water Assessment Tool) model run.

For modeling purposes a watershed has to be spatially discretized. All currently devel-

oped interfaces preparing SWAT input data use the sub-watershed discretization scheme.

The application of this concept results in a loss of spatial information in the input data

such as land-use or soil type maps. Setting up SWAT in a grid-based scheme would avoid

this loss of information. Therefore an interface preparing the input data for setting up

SWAT based on grid cells was developed: ”SWATgrid”. SWATgrid allows the user to

incorporate spatial detail into a SWAT model run and enables the coupling of spatial

information such as remote sensing data with SWAT.

In this article the functionality of SWATgrid will be demonstrated by comparing results

of SWATgrid with conventional SWAT model results. The development of the grid-

based discretization scheme will be presented using a SWAT test data set. Current
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developments as well as problems that occured will be discussed and future steps will

be pointed out.

2.1 Introduction

The eco-hydrological model SWAT (Soil and Water Assessment Tool (Arnold et al.,

1998)) has proven to be a very useful modeling tool for a wide range of scales and envi-

ronmental conditions. Over the past decade SWAT has been used worldwide to estimate

anthropogenic, climate and other influences on a wide range of water resources. Besides

numerous applications in the U.S. driven by the needs of government agencies, SWAT

has also been used extensively in Europe. In the literature many specific SWAT applica-

tions have been reported. Gassman et al. (2007) summarized many of these. Numerous

applications exist using the outlet gauge discharge data for calibration and validation

purposes. They range from hydrological and water resource assessments (water dis-

charge, groundwater dynamics, soil water, snow dynamics, water management) through

water quality assessments (land-use and land-management change in agriculture) and

climate change impacts and pollutant assessments (Gassman et al., 2007; Krysanova and

Arnold, 2008).

Simulation of the hydrological balance is essential for watershed applications. The first

step in setting up a watershed simulation is to define the spatial arrangement of the

elements of the watershed, such as sub-watersheds, reach segments and point sources

(Neitsch et al., 2010). For reasons of computational efficiency and availability of in-

terfaces to prepare the input data, the primary technique used within SWAT is the

sub-watershed configuration. The watershed is divided into sub-watersheds which are

further subdivided into hydrologic response units (HRUs). The HRUs represent percent-

ages of the sub-watershed area and are not spatially related within a SWAT simulation

(Gassman et al., 2007). Individual areas of similar soil, topography and land-use are

lumped together within a sub-watershed to form a HRU. This approach fails to show

the interaction between the HRUs as they are not directly linked but are all routed in-

dividually to the sub-watershed outlet (Arnold et al., 2010). Depending on the scale of

the sub-watershed, high resolution spatial data such as land-use or soil maps can be lost.

Many studies have examined SWAT hydrology and water quality response to changes

in the sub-watershed scale (FitzHugh and Mackay, 2000; Chen and Mackay, 2004; Jha

et al., 2004; Haverkamp et al., 2005; Arabi et al., 2006; Cho et al., 2010). These studies

have emphasized that total streamflow is affected very little by watershed subdivision

level, whereas predicted sediment yield and many parameters of water quality are di-

rectly related to sub-watershed size. Jha et al. (2004) observed hat organic nitrogen (N)
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and phosphorus (P) in streamflow decrease as the area of the sub-watersheds decreases,

while opposite trends were found for nitrate and mineral P.

Due to the rapid development of remote sensing systems, more and more spatial infor-

mation becomes available as raster data. Currently remote sensing data used in SWAT

applications include the generation of land-use maps (Ouyang et al., 2010b; Pandey et al.,

2005; Xue et al., 2008) or the derivation of management practices (Quansah et al., 2008;

White et al., 2010). Due to limited availability of climate data in developing countries

Yan et al. (2010) derived spatial climate data from remote sensing systems as SWAT

input data. Evapotranspiration data obtained from remote sensing systems are used

for calibration (Immerzeel and Droogers, 2008) or sensitivity and uncertainty analysis

(Xie and Zhang, 2010). Therefore, a high potential for deriving spatially detailed model

parameters already exists. A high resolution grid-based approach avoids potential loss

of information and thus may improve model results. The use of smaller sub-watersheds

instead of grid cells would yield similar results, but incorporating raster data into the

sub-watershed approach would also require data transformation from a simple grid ge-

ometry to a patchy geometry of irregular polygons. Therefore, a grid-based approach

makes it easier to integrate grid input or validation data in SWAT simulations.

In theory it is possible to take a grid based approach with the SWAT model since

its inception (Arnold et al., 1994; Neitsch et al., 2010). Nevertheless, SWAT uses the

sub-watershed configuration as the primary discretization scheme (Arnold et al., 2010;

Neitsch et al., 2010); all GIS input interfaces use the sub-watershed discretization. These

interfaces are currently not able to delineate a watershed using a grid cell discretization

(Neitsch et al., 2010). Thus, there are only few applications and studies which actually

have used the grid approach.

White et al. (2009) used a grid-based approach to identify small areas with dispropor-

tionately high pollutant losses (i.e. critical source areas). Every possible combination

of soils, slope, and land-cover was simulated as an individual HRU in SWAT using

custom software. While many studies have assessed the impacts of spatial detail on

the sub-watershed configuration, few have assessed the output of different discretization

schemes for the same watershed. Manguerra and Engel (1998) illustrated the sensitivity

of SWAT runoff prediction to different schemes (HRU or sub-watershed and grid configu-

ration). They figured out that the discretization scheme did not result in any significant

discrepancies for the predicted stream runoff hydrograph. Four subdivision methods

were compared by using a modified SWAT version with a landscape routing method

in Arnold et al. (2010): lumped (dominant soil and land-use for the whole watershed),

HRUs, catena and grid. Their results suggest that lumped models can be calibrated as

well as the grid and catena configuration at the basin outlet, but cannot represent the
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impact of upslope management on downslope positions, which causes unrealistic spatial

model output. A high resolution grid approach would include the impact of an upslope

grid cell on a downslope grid cell and provide accurate spatial detailed output data.

Furthermore, lumped models are often less responsive to changes in land use, soil and

weather conditions and need to be recalibrated with each changing scenario.

To overcome the difficulties of the sub-watershed scheme (spatial generalization, no

interaction between the HRUs within a sub-watershed, missing impacts of upslope areas

on downslope positions, no geographic position of HRUs within each sub-watershed,

patchy subwatershed geometry) and to fill the gap for an interface that incorporates

grid-based cell data into SWAT, a model input interface for setting up SWAT based

on grid cells was developed: ”SWATgrid”. The Lake Fork SWAT example dataset

(Winchell et al., 2010) was used to present and validate the program methods and

algorithms. The functionality will be demonstrated by comparing conventional SWAT

(version 2009) model results with the results of the grid based approach.

2.2 The SWAT model

SWAT is a physically-based watershed-scale model, developed to simulate the impact of

land management practices on the water cycle, the flow of sediment, the nutrient cycle

and the behavior of pesticides and bacteria in complex watersheds. The hydrology of

a watershed is divided into two major phases: (1) The land phase of the hydrologic

cycle controls the quantitative flow of water, sediment, nutrients and pesticides entering

the reach allocated to the sub-watershed. The substances SWAT passes from the sub-

watershed to the reach at a given time step are termed as loadings of the particular

sub-watershed. (2) The routing phase, determining the movement of loadings through

the channel network of the watershed to its outlet. All model calculations are carried

out in daily time steps, whereas the model output can be obtained at a daily to annual

time scale (Neitsch et al., 2005).

According to Neitsch et al. (2010) the three most common techniques to discretize a

watershed are

• grid cell,

• representative hillslope and

• sub-watershed discretization.
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All of these techniques have strengths and applications for which they are most ap-

propriate. Due to the routing command language utilized in SWAT, it is theoretically

possible to use any of these schemes to model a watershed (Neitsch et al., 2010).

However, there are basically two separate parts to the software: the model executable

and the interface. Interfaces are necessary to define and discretize a watershed and

to prepare the input data to match the required SWAT format. The SWAT model

executable uses simple text files for both input and output. These files are created,

modified and displayed in the interface.

The first level of subdivision is the sub-watershed. The sub-watersheds are spatially

related and have a geographic position in the watershed. Fig. 2.1 illustrates a typical

sub-watershed discretization and a grid-based configuration for the Lake Fork water-

shed. Each of the sub-watersheds contain at least one HRU, a tributary channel and

a main channel or reach (Neitsch et al., 2010). Using the sub-watershed discretization

scheme, the land area in a sub-watershed may be divided into several HRUs, which rep-

resent a part of a sub-watershed with relative uniform land-use, management and soil

attributes. These areas are combined to form one HRU, while in reality they may be

scattered throughout a sub-watershed. So this concept may describe the heterogeneity

of a sub-watershed well, but information about the spatial distribution is lost and no

interaction exists between HRUs in one sub-watershed. Loadings of each HRU are calcu-

lated separately and then summed to determine the total loadings of the sub-watershed.

This implies a loss of spatial information during modeling, which might be important

for existing applications, for example when studying diffuse substance discharges in

agricultural areas or changing discharge patterns due to land use changes within a sub-

watershed. For these applications it may be useful to run the model grid cell discretized.

In SWATgrid, the sub-watersheds are divided into a large number of grid cells, which

are characterized by both a defined cell size and their geographic position. Similar to a

sub-watershed, each grid cell contains one HRU, a tributary and a main channel. SWAT

processes are calculated for every grid cell individually; therefore SWAT output can be

directly linked to individual grid cells (and thus to specific locations in a watershed).

2.3 SWATgrid

SWATgrid is a command line based program suite written in the programming lan-

guage Fortran 90. SWATgrid contains tools to generate SWAT input (”SWATgrid fig”,

”SWATgrid inp”) as well as output (”SWATgrid out”) data. SWATgrid fig and SWAT-

grid inp preprocess input data to set up SWAT in a grid cell discretization scheme (see

Fig. 2.2) and SWATgrid out generates maps from SWAT output files (see Fig. 2.3).
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Figure 2.1: Sub-watershed and grid-based configuration for the Lake Fork watershed

2.3.1 Preprocessing SWAT input data

The process of preparing the input data can be distinguished into two consecutive steps:

• Step 1: Defining the elements (sub-watersheds and reach segments) of the water-

shed and their spatial arrangement. This is done using a watershed configuration

file (.fig) (Neitsch et al., 2010), which specifies the spatial relationship of objects

within the watershed and instructs SWAT how to route the loadings through the

channel network of the watershed. The generation of this file is performed by

SWATgrid fig, using the digital landscape analysis tool TOPAZ (TOPographic

PArametriZation, version 3.1 (Garbrecht and Martz, 2000)).

• Step 2: Preprocessing remaining input files of given data using SWATgrid inp.

The required input data and output files is explained below.

2.3.1.1 Step 1: Generation of the watershed configuration file

The first step is the processing of a raster digital elevation model (DEM) using TOPAZ,

a software package for automated analysis of digital landscape topography. The overall

objective of TOPAZ is to provide drainage characteristics based on the application of

the deterministic eight-neighbour (D8) method (Douglas, 1986; Fairfield and Leymarie,
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Figure 2.2: SWATgrid fig, SWATgrid out and SWAT interdependence and applica-
tion order

1991). The processing of the digital elevation model using TOPAZ provides the following

data as a raster output:

• watershed boundary,

• local flow vector or drainage direction for every grid cell in one of eight directions,

• number of upstream cells draining into each cell,

• start and end points of flow paths and

• a map of the channel network including the stream order.

These TOPAZ output files are used by SWATgrid fig to generate a watershed configura-

tion file for SWAT. The general functioning of the SWATgrid fig algorithms is explained

below.

The TOPAZ output files contain their respective information for a rectangular grid.

Because SWAT is a watershed-based model the information is only needed for the part of

the grid inside the watershed. The watershed boundary file is used to delimit information

to the watershed area.

After modifying and loading the TOPAZ output files, SWATgrid fig writes the config-

uration file. Neitsch et al. (2010, see chapter 2 and appendix B) provide a detailed

description of the watershed configuration file and the routing command language used.

The set-up of the watershed configuration file for different discretization techniques is

also explained.
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Due to the HRU concept implemented in SWAT, spatial variability during simulation

can only be enhanced by increasing the number of sub-watersheds. Thus to incorporate

the spatial information given by raster data, each grid within the watershed has to be

defined as a sub-watershed. The horizontal resolution of the DEM therefore corresponds

to the maximum possible spatial variability. Dixon and Earls (2009) described the effects

of several resolutions of DEMs in SWAT watershed modeling and Chaubey et al. (2005)

refer to the effects of DEM data resolution on SWAT output uncertainty. They deduced

that every effort must be made to integrate DEM data at a high resolution to minimize

uncertainties in the model predictions.

Due to the large number of sub-watersheds being defined, small changes in the SWAT

2009 code have to be made. In modparm.f the dimension of hydgrp, kirr and snam has

to be set to the number of sub-watersheds needed. This does not affect the simulation

and produces only optical artefacts in some output files (sub-watershed numbers greater

than 9999 are displayed as ****).

SWATgrid fig starts with defining every grid cell within the watershed as a sub-watershed

by writing the sub-watershed command, the hydrograph storage location number where

SWAT stores the data of the loadings from the sub-watershed (Neitsch et al., 2010) and

the sub-watershed number for each cell in the watershed configuration file. Informa-

tion of the watershed boundary given by the modified TOPAZ output data is necessary

during this step. This command simulates the land phase of the hydrologic cycle.

Then the stream loadings are routed step-by-step through the flow path network, begin-

ning by routing the loadings of the headwater grid cells (grid cells with no upstream)

through the watershed. SWATgrid fig writes the following terms into the watershed

configuration file:

• the route command,

• the hydrograph storage location number containing the input data to be routed

through the reach,

• the storage location number where SWAT saves the results from the route simu-

lation and

• the number of the reach segment (corresponds to the number of the sub-watershed)

the inputs are routed through.

In this way the route command simulates the routing phase of the hydrological cycle

using TOPAZ data concerning the number of upstream cells draining into each cell.
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Finally, SWATgrid fig continues to route the loadings through the reach network by

writing the ”route” and ”add” (Neitsch et al., 2010) commands. The number of upstream

cells draining into each cell and the local flow vectors provided by TOPAZ are used to

identify the routing sequence. The start and end points of flow paths are used as

termination conditions.

2.3.1.2 Step 2: Preparing the remaining input files

SWATgrid inp is a tool for generating input data for SWAT by retaining the spatial

variability of the available grid files that should run on a grid based discretization scheme.

The required input and the functioning of SWATgrid inp are explained in the following.

The input data can be divided into three groups, which are required by SWATgrid inp.

• Files containing general input data, such as information about the location and

resolution of the grid data, the management practices, and databases of soil types

and groundwater parameters.

• Files containing information about modeling options, climate inputs, databases,

and the location of weather stations.

• Grid files containing spatial information such as a soil and land cover map, a map

of the channel network, a digital elevation model, a map containing the local flow

vectors, and the watershed boundary.

SWATgrid inp allows the user to vary SWAT input parameters. Parameters affecting

the land phase can be defined in dependence of soil type and land cover for each grid cell.

The DEM is used to derive topographic features as well as the local flow vectors. This

can be implemented by running for-loops on the raster data enabling the generation of

SWAT files that include detailed spatial information.

Parameters concerning the routing phase (e.g. trapezoidal channel dimensions or hy-

draulic conductivity) determine the movement of water and its loadings (sediments,

nutrients, pesticides, . . . ) through the channel network of the watershed to the outlet.

SWATgrid inp enables the user to set these parameters for each grid cell depending

on the stream order (Horton-Strahler number (Horton, 1945; Strahler, 1952)) and the

number of upstream cells.

The implementation of water bodies into a SWAT simulation is managed via land-use

maps. SWATgrid inp allows the user to set parameter information regarding water
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Figure 2.3: General organization of SWATgrid out

levels, sediment and nutrient concentrations for each grid cell or water body individ-

ually. Administration parameters such as definition of flood seasons or the hydraulic

conductivity may be set according to the conventional SWAT.

After generating the input files, the SWAT modeling takes place, where the SWATgrid

input files can be used in the same way as the standard input data.

2.3.2 Displaying SWAT output files

The availability of spatially distributed model output is a major advantage of SWATgrid.

SWATgrid out is an automatic and effective tool to generate grids of SWAT output files

(see Fig. 2.3). Every parameter calculated at sub-watersjed, reach or HRU level could

be spatially illustrated and processed for further applications using GIS software.

2.4 Results and discussion

2.4.1 SWAT model set-up

To test SWATgrid the SWAT example data set (Lake Fork Watershed in northeast

Texas) was used (see Fig. 2.4). This data set can be downloaded at the SWAT-website

(Winchell et al., 2010). The functionality of SWATgrid will be demonstrated by com-

paring conventional SWAT model results derived by ArcSWAT with the results of the

grid-based approach. In both model runs all parameters have been set without any

calibration as described in Winchell et al. (2010, Section 16: The Example Data Set).

The sub-watershed discretization scheme divides the watershed into 18 sub-watersheds

(see Fig. 2.1 and 2.4) and 128 HRUs. When using the input data prepared by SWATgrid

the basin is discretized to 55561 grid cells (100× 100 m), each containing a single HRU.

This demonstrates not only an advanced spatial representation of existing heterogeneities

but also a mapping of spatial relationships between the grid cells (see Fig. 2.1).
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Figure 2.4: River basin overview

As input data, the SWAT example data set provides raster datasets for the Lake Fork

Watershed in the Albers Equal Area projection with a resolution of 100× 100 m: a dig-

ital elevation model, a soil map (U.S. general soil map STATSGO) and a land-use grid

differing between six classes. Databases containing management practices and ground-

water and soil parameters are included. Precipitation and temperature data of three

weather stations are used as climate input data as well as climate data for the SWAT

weather generator (Neitsch et al., 2005). The input data enable a model run for a time

period between January 1st 1977 and December 31st 1978 (Winchell et al., 2010).

2.4.2 Watershed delineation

Looking at the ArcSWAT basin it becomes obvious that the watershed boundary does

not run along the ridges (see Fig. 2.4 and Winchell et al. (2010)). The watershed

boundary derived with TOPAZ seems to be more realistic and is defined by the DEM

grid cells with the highest elevation. This results in a different size of the catchment area:

The watershed derived by ArcSWAT has a size of 48683 ha whereas TOPAZ determines

an area of 55561 ha, resulting in a difference of 6878 ha or 14.13 %.

The watershed delineation between the two schemes needs to match in order to make a

comparison. Thus, the watershed delineation derived by TOPAZ was imported to the
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Table 2.1: Mean annual watershed parameters of the water balance equation of model
runs

Parameter sub-watershed grid cell relative
discretization discretization difference

[mm] [mm] [%]

Precipitation 1241.90 1241.20 -0.06
Snow fall 76.30 70.61 -7.46
Snow Melt 76.25 70.54 -7.49
Sublimation 0.05 0.07 40.00
Surface runoff 431.07 425.22 -1.36
Lateral soil runoff 1.82 1.92 5.49
tile runoff 0.00 0.00 0.00
Groundwater runoff 135.11 152.98 13.23
Revap* 8.84 9.44 6.79
Deep aquifer recharge 7.76 8.75 12.76
Total aquifer recharge 155.16 174.90 12.72
Total water yield 566.58 555.44 -1.97
Percolation out of soil 164.18 161.52 -1.62
Evapotranspiration 601.20 610.40 1.53
Potential evapotranspiration 1105.10 1112.90 0.71
Transmission losses 1.41 24.68 1650.35

* water in the shallow aquifer returning to the root zone

ArcSWAT interface. As a result the watershed size is equal in both schemes, but the

kind of discretization differs.

2.4.3 Mean annual water balance

The SWAT output file (output.std) provides mean annual parameters of the water bal-

ance of the catchment. Table 2.1 demonstrates, that most output parameters of the

water balance equation are in the same range. Large relative differences of approx-

imately 10 % are found at parameters concerning the snow cover, groundwater and

transmission losses.

The values of snow fall and snow melt between the two model runs differ by 7.5 %. The

spatial allocation of climate data occurs in SWAT at sub-watershed level, dependent

on the center coordinate. This means that each sub-watershed receives the data of the

weather station closest to the sub-watershed. Due to the number of sub-watersheds the

allocation of the grid-based approach is more realistic. The weather stations provide

measured precipitation and temperature, other climate parameters are simulated using

the SWAT weather generator. Differences between the three weather stations can be
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observed only with regard to temperature. Thus, the more accurate allocation of the

weather stations to every sub-watershed explains varying model outputs.

The differences of the aquifer recharge terms are all about 13 %. The spatial arrangement

and the new composition of the different soil types seem to be an important cause for

these differences. The aquifer recharge depends on the hydrological characteristics of

soil type, land-cover and slope. The allocation of these parameters is more detailed

when using the grid-based approach. Furthermore, rarely occuring soil types are not

taken into account by the sub-watershed scheme, but this cannot explain the differences

observed.

Transmission losses seem to have the greatest impact. Transmission losses are losses

of surface flow caused by leaching through the streambed into the aquifer. They are

a function of hydraulic conductivity, channel width, length and flow duration (Neitsch

et al., 2005). The average channel length and width are set dependent on upstream area

and stream order. Every grid cell has an associated reach or main channel, where the

stream loadings are routed through, so the overall length of the fluvial network is larger

when using the grid cell discretization scheme. All these facts result in an overestimation

of transmission losses. The absolute difference of total aquifer recharge is 19.74 mm and

the difference in transmission losses is 23.27 mm. Some difference may also be caused

by the spatial arrangement and the new composition of the different soil types.

However, the grid-based approach seems to work at an annual time scale. The spatial

distribution of modeled discharge for the year 1978 (see Fig. 2.5), which indicates a

stream network, confirms this statement. The ArcSWAT reach network (see Fig. 2.4)

and the grid based discharge results behave concordantly.

2.4.4 Outflow at the watershed outlet

When considering the monthly runoff at the catchment outlet it is obvious that the

model results match very well (see Fig. 2.6). Let Xm = (x1, . . . , x24) be the monthly

runoff results of the two year model run using the sub-watershed discretization scheme

and let Ym = (y1, . . . , y24) be the results by using the grid cell discretization scheme and

let x̄ and ȳ be the arithmetic mean respectively. The correlation coefficient between the

two data sets is defined as

RXm,Ym =

∑24
i=1 (xi − x̄) (yi − ȳ)√∑24

i=1 (xi − x̄)2∑24
i=1 (yi − ȳ)2

≈ 0.9977, (2.1)

which demonstrates that the results of the two model runs agree well.
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Figure 2.5: Spatial distribution of mean yearly discharge in 1978

Figure 2.6: Monthly outflow at the outlet of both model runs
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Figure 2.7: Daily outflow of both model runs at the outlet

The monthly runoff values of the sub-watershed scheme are little higher than the values

of the grid cell discretization scheme (see Fig. 2.6). This is most probably due to the

fact that the drainage density (total channel length divided by drainage area) increases

as the number of sub-watersheds or grid cells increases. As a result transmission and

deep aquifer losses increase and reduce discharge (see Table 2.1).

The same phenomenon is found when examining the differences of daily outflow at the

watershed outlet (see Fig. 2.7), where the grid-based approach generally underestimates

daily discharge.

However, model results match well. The observed underestimation of discharge caused

by a high drainage density could be fixed in the model set-up by decreasing the effective

hydraulic conductivity of the tributary channel alluvium from 0.5 to 0.15 mm/h. This

lowers groundwater runoff (to 133.37 mm), aquifer recharge (deep to 7.66 mm, total to

153.11 mm) and transmission losses (to 1.74 mm). All other values of the water balance

equation do virtually not change. Thus, the results match better (see Table 2.1).

2.5 Future steps

The model results demonstrate the general functioning of the grid-based approach. The

parameters of the water balance equation temporally match very well, proving the po-

tential to run SWAT in a grid-based discretization scheme in a complex watershed. For

future investigations the following aspects should be considered:

Besides the improvement of SWATgrid to a user-friendly program, testing the approach

in a well-documented catchment will be the next step. Model improvement is achieved
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by analyzing the sub-watershed discretization scheme. When the outputs of each HRU

are summed up to determine the total loadings of the sub-watershed (Neitsch et al.,

2005), information about the flow paths is lost.

A more difficult task is the determination of the channel dimension. This problem is

currently solved by setting the dimension in functional dependencies to the stream order

and the number of upstream cells draining into the grid cell. However, every SWAT grid

cell has at least one main and one tributary channel (Neitsch et al., 2005) and the edges

of every cell might be shorter than the distance to the nearest channel. Therefore, this

approach results in an overestimation of the overall length of the reach network and

thus of the drainage density. The current version of SWAT does not allow sediment and

runoff to distribute between cells or sub-watersheds in the land phase of the hydrologic

cycle. Therefore, interaction between grid cells is part of the routing phase and channel

routing processes are hold where no channel exists. This limitation hardly effects model

results of the water balance equation, while inaccurate results of sediment transport and

nutrient cycling parameters are to be expected. Modifying the SWAT code to enable

this distributional flow should be the second step.

However, to enable interaction between the grid cells by using the land-phase, modifi-

cations of the SWAT code and the routing command language are necessary. Arnold

et al. (2010) developed a command routing structure similar to the sub-watershed rout-

ing (Neitsch et al., 2010), which enables an overland routing fraction. Currently, the

new developed routing method is used in a modified version of SWAT, but might be

implemented in one of the next SWAT versions. This would simplify the solution of flux

interaction concerning transmission losses, sediment transport and nutrient cycling.

The primary goal of the grid-based approach is to incorporate spatially distributed data

and information into a simulation. DEMs and soil type maps are often available and

remote sensing products might be used for classifying the land cover. Moreover, remote

sensing data provides the potential to integrate the monitoring of vegetation growth and

condition or water quality. Thus, the development of methods determining SWAT input

parameters using remote sensing products will be the third topic to be addressed.

2.6 Conclusion

The grid-based discretization scheme allows the user to incorporate spatially distributed

information into a SWAT model run and future model runs may use spatial data for

improving model results.
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The command line based model interface SWATgrid enables the user to set up SWAT

based on grid cells. It is an automatic tool to process all files required by SWAT. SWAT-

grid fig generates the watershed configuration file, while the remaining input files are

generated by SWATgrid inp. Finally SWAT model results can be used by SWATgrid out

to generate maps. The general functioning of SWATgrid has been proven by comparing

conventional model results with the grid based approach, which correspond well: The

overall coefficient of determination of daily and monthly mean of the water equation

are about 0.99. The overestimation of the reach network can explain individual high

differences between the conventional and the grid-based model run. To address these

issues, modifications of the SWAT code are necessary. In some topics such as nutrient

cycle or reach dimensions, future research is needed.

Due to the rapid development of GIS and remote sensing an increasing amount data with

high spatial and temporal resolution becomes available. The integration of these data

in well-established eco-hydrological models seems to be very promising for an enhanced

spatial analysis of environmental issues in a watershed. Therefore, the challenges and

problems inherent to the grid based approach can be justified.

Taking spatially variable input data into account is one advantage, obtaining spatial

output data in the resolution of the provided DEM is another. Output data can be

processed by several applications, an advantage which enables detailed analysis of every

output grid cell with known geographical position.
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Abstract

The eco-hydrological model SWAT (Soil and Water Assessment Tool) is a useful tool

to simulate the effects of catchment processes and water management practices on the

water cycle. For each catchment some model parameters (e.g. ground water delay time,

ground water level) remain constant and therefore are used as constant values; other

parameters such as soil types or land use are spatially variable and thus have to be

spatially discretized. SWAT setup interfaces process input data to fit the data format

requirements and to discretize the spatial characteristics of the catchment area. The

primarily used configuration is the sub-watershed discretization scheme. This spatial

setup method, however, results in a loss of spatial information which can be problematic

for SWAT applications that require a spatially detailed description of the catchment

area. At present no SWAT interface is available which provides the management of

input and output data based on grid cells. To fill this gap, the authors developed a

grid-based model interface.

To perform hydrological studies, the SWAT user first calibrates the model to fit to

the environmental and hydrological conditions of the catchment. Compared to the

sub-watershed approach, the grid-based setup significantly increases model computation

time and hence aggravates calibration according to established calibration guidelines.
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This paper describes how a conventional set of sub-watershed SWAT parameters can

be used to calibrate the corresponding grid-based model. The procedure was evaluated

in a sub-catchment of the River Elbe (Northern Germany). The simulation of daily

discharge resulted in Nash-Sutcliffe efficiencies ranging from 0.76 to 0.78 and from 0.61

to 0.65 for the calibration and validation period respectively; thus model performance is

satisfactory. The sub-watershed and grid configuration simulate comparable discharges

at the catchment outlet (R2 = 0.99). Nevertheless, the major advantage of the grid-based

set-up is an enhanced spatial description of landscape units inducing a more realistic

spatial distribution of model output parameters.

3.1 Introduction

The eco-hydrological model SWAT (Soil and Water Assessment Tool (Arnold et al.,

1998)) is a useful tool for a wide range of scales and environmental conditions. In litera-

ture manifold SWAT applications have been reported; the topics cover hydrological and

water resource assessments (water discharge, groundwater dynamics, soil water, snow dy-

namics, water management), water quality assessments (land-use and land-management

change in agriculture), climate change impacts, and pollutant assessments (Gassman

et al., 2007); a detailed review can be found in Gassman et al. (2007) and Krysanova

and Arnold (2008).

To set up a SWAT model run, the watershed has to be delineated and the spatial

arrangement of catchment elements (e.g. sub-catchments, reach segments and point

sources) has to be defined (Neitsch et al., 2011a). The most popular setup is the sub-

watershed configuration, where the catchment is divided into sub-catchments and further

sub-divided into hydrologic response units (HRUs). The HRUs represent percentages

of the sub-catchment area (Gassman et al., 2007). Individual areas of similar soil,

topography and land-use are lumped together within a sub-catchment to form an HRU

while in reality they are scattered throughout the sub-catchment. Thus this approach

fails to show the interaction between the HRUs as they are spatially unlinked but routed

to the outlet of the sub-catchment separately (Arnold et al., 2010).

The grid-based setup within SWAT overcomes the difficulties of the sub-watershed con-

figuration (Rathjens and Oppelt, 2012b). The user is able both to refine the spatial

resolution of a SWAT model and to obtain spatially distributed model output data.

Various GIS (Geographic Information System) applications can process the grid-based

output; now the model output of every grid cell with its defined geographical position

can be analysed. Due to the open-source status of the SWAT code the grid-based ap-

proach will continue to evolve as users determine needed improvements, which is an
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advantage in comparison to other catchment scale raster-based models such as MIKE-

SHE (Refsgaard and Storm, 1995), TOPMODEL (Beven and Kirkby, 1979) or WASIM

(Schulla, 1997). The grid based approach, however, significantly increases computation

time. Arnold et al. (2010) stated that, applying a one-hectare grid cell size (approx.

50,000,000 grid cells) to the the Upper Mississippi River basin, the simulation of a single

year would require about 13 computation days on a 2.6 GHz processor.

After processing of the input data, model calibration is performed, i.e. model output

and in-situ data are compared to improve model input parameters iteratively. According

to Neitsch et al. (2011a) the calibration of stream flow is performed in two consecutive

steps. The model is calibrated for average annual conditions first; then the user shifts

to monthly or daily records to fine-tune the calibration. To obtain sufficient calibration

results several model runs might be performed. Model validation follows calibration;

the input parameters, which were derived during calibration, now are used to test the

resulting model performance for a series of subsequent years (Moriasi et al., 2007). Most

applications use the discharge at the catchment outlet to calibrate and validate model

performance.

For the grid-based model setup, however, this time-consuming procedure is impractical.

Therefore, this paper provides a method for grid-based SWAT setups to calibrate daily

discharge at the catchment outlet. To perform this analysis, calibration parameters are

derived with a sub-watershed configuration and then transferred to a grid-based model.

The GIS interface ArcSWAT (Winchell et al., 2010) is used to generate the input files for

the conventional sub-watershed setup; SWATgrid (Rathjens and Oppelt, 2012b) is used

to setup the grid cell model. A sub-catchment of the River Elbe, the Bünzau catchment,

serves as test site to present and validate the proposed methodology.

3.2 Materials and methods

3.2.1 Study area

The Bünzau catchment is located in the Northern German lowlands (see Fig. 3.1); it

covers an area of 210 km2 and is characterized by flat topography and shallow groundwa-

ter levels. The mean annual precipitation is 857 mm and the mean annual temperature

is 9.51 ◦C (stations Neumünster and Padenstedt (2000-2009)) (DWD, 2011). The Rivers

Buckener Au and Fuhlenau merge north of Aukrug-Innien and form the origin of the

River Bünzau; the Rivers Höllenau and Bredenbek form two downstream tributaries.

Several drainage pipes and ditches also flow into the Bünzau, which flows in southern

direction for 16 km before it flows into the Stör River. The gauge Sarlhusen is located
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Figure 3.1: The Bünzau catchment and its location in Germany.

close to the catchment outlet, where an average discharge of 2.51 m3/s was measured

between 2000 and 2009.

In the Bünzau catchment dominant soils types are podzols and planosols; histosols are

found in river valleys and depressions. High proportions of arable land (43 %) and

pasture (30 %) indicate an intense agricultural use; Fig. 3.2 shows the land use in 2009

as well as the distribution of soil types.

3.2.2 The SWAT model

SWAT (Arnold et al., 1998) is a physically based catchment-scale model; it was developed

to simulate the water cycle, the corresponding fluxes of energy and matter (e.g. sediment,

nutrients, pesticides and bacteria) as well as the impact of management practices on

these fluxes. The design of the model is modular and includes components for hydrology,

weather, sedimentation, crop growth, nutrients and agricultural management. A detailed

description of all components can be found in Arnold et al. (1998) and Neitsch et al.

(2011b).

The simulated hydrological processes include surface runoff (SCS (Soil Conservation

Services) curve number or Green and Ampt infiltration equation), percolation, lateral
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Figure 3.2: Land use and soil types in the Bünzau catchment.

Figure 3.3: Grid-based model calibration in chronological order.

flow, groundwater flow from shallow aquifers to streams, evapotranspiration (Harg-

reaves, Priestley-Taylor or Penman-Monteith method), snowmelt, transmission losses

from streams and water storage and losses from ponds (Arnold et al., 1998).

In this study the SCS curve number method (Soil Conservation Service Engineering

Division, 1972) was used to calculate surface runoff; Penman-Monteith method was

applied to estimate potential evapotranspiration.

3.2.3 Model evaluation

To evaluate model performance four quantitative statistics were applied, i.e. the root

mean square error observations standard deviation ratio (RSR; Moriasi et al., 2007),
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Table 3.1: Model input data sources.

Data type Source Data description and properties

Topography (DEM) LVA (2008) Digital elevation model, 5 m × 5 m res-
olution

Soil map Finnern (1997) Physical properties of the soil (e.g.
available water capacity), scale
1:100 000

LLUR (2010) Physical properties of the soil (e.g.
available water capacity), scale 1:25 000

Land use map 2009 Oppelt et al. (2012) Classifications based on Landsat 5
imagery, 30 m × 30 m resolution
(03.07.2009)

Climate data DWD (2011) Daily measured values of tempera-
ture, precipitation, wind speed, relative
humidity (Neumünster station 2000-
2007, Padenstedt station 2007-2009)
and daily measured values of precipita-
tion (Gnutz station 2000-2006)

Discharge LKN (2011) Daily discharge data of the Bünzau
river at gauge Sarlhusen (2000-2009)

coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe,

1970) and percent bias (PBIAS; Gupta et al., 1999).

Most simulation studies use different model evaluation techniques to compare simu-

lated output and in-situ measurements (Moriasi et al., 2007). Thus, no comprehensive

standardization is available for model evaluation. Moriasi et al. (2007) presented sev-

eral model evaluation statistics and a step-by-step guideline for model calibration and

evaluation. They also reviewed value ranges of evaluation statistics and corresponding

performance ratings. They concluded that model simulation for discharge is satisfactory

if NSE > 0.50 (see also Santhi et al., 2001) and RSR < 0.70 (see also Singh et al., 2004)

and -25 % < PBIAS < 25 %.

The RSR standardizes root mean square error (RMSE) values using the standard devi-

ation of in-situ data and thus enables a comparison of error values of different studies.

RSR values can range from 0 to +∞ ; RSR = 0 indicates that RMSE = 0 or that the

model simulation fits perfectly to the measured data. Large positive RSR values indicate

a poor model performance (Moriasi et al., 2007).

The coefficient of determination determines which proportion of in-situ variance can be

explained by the model. The values range from 0 < R2 < 1 where higher values indicate

less error variance.
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The NSE is a normalized statistical index, which is often used to assess the quality

of hydrological models. It determines the relative magnitude of the residual variance

between simulated and measured data compared to the in-situ data variance. NSE

ranges from −∞ to 1. An NSE of 1.0 corresponds to a perfect match of modeled and

observed data (Moriasi et al., 2007).

PBIAS indicates whether the modelled data tend to be larger or smaller than the corre-

sponding in-situ values. The optimum value is PBIAS = 0.0 %; positive PBIAS values

indicate a model bias underestimation, whereas negative values indicate a bias overesti-

mation (Gupta et al., 1999).

3.2.4 Model input data

To setup a SWAT model, the essential input data are a digital elevation model (DEM),

soil types, land use and climate (see also Table 3.1). For this study all data were trans-

formed from Universal Transverse Mercator (UTM) to the Albers Equal Area projection.

The DEM is provided by the Land Survey Office Schleswig-Holstein with a vertical

resolution of 0.5 m and a horizontal resolution of 5 m (LVA, 2008).

The land use map (see Fig. 3.2) is based on a classification of Landsat 5 imagery

from July 3rd, 2009 (overall-accuracy: 83 %, Cohen’s kappa coefficient (Cohen, 1960):

0.80). Land use classifications for the years 2009, 2010 and 2011 are used to derive

crop rotations planted by the local farmers. Based on these results, SWAT management

practices were set as three-year crop rotation (wheat - wheat - rapeseed), mono-cultural

corn and pasture. Winter wheat and rape were planted at the end of September and

harvested at the beginning of August; corn is planted at the end of April and harvested

at the end of September.

Daily climate values from January 1st, 2000 to December 31st, 2009 on temperature,

precipitation, wind speed and humidity are integrated in the simulation as a composition

of three German Weather Service stations (see Table 3.1).

3.2.5 Model setup

This section demonstrates both how different discretization schemes affect the simulated

water balance and whether sub-watershed setups may be used to calibrate grid-based

model approaches. Fig. 3.3 shows the methodology, which is explained in the following

sub-sections.
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Table 3.2: Mean annual values of water balance components calculated by the two
model setups.

Parameter [mm] ArcSWAT Setup SWATgrid Setup Difference

Precipitation 853.80 853.80 0.00
Surface runoff 10.35 12.54 2.19
Lateral runoff 60.402 43.81 -16.59
Tile runoff 1.95 3.25 1.30
Groundwater runoff 290.47 303.48 13.01
Total water yield 362.95 362.88 -0.07
Percolation out of soil 297.40 310.69 13.29
Evapotranspiration (ET) 483.40 482.20 -1.20
Potential (ET) 628.60 627.80 -1.20

3.2.5.1 Initial setup (ArcSWAT)

The ArcSWAT interface was used to carry out the basic model setup: catchment and

sub-catchment areas were delineated using the DEM (LVA, 2008); then the catchment

was divided into sub-catchments. ArcSWAT calculated nine sub-catchments for the

Bünzau catchment. Based on the formation of unique combinations of slope, land use

and soil types, the sub-catchments were further divided into 480 HRUs. Finally, daily

climate values (see Table 3.1) from 2000 to 2009 (DWD, 2011) were included into the

setup.

3.2.5.2 ArcSWAT setup (calibrated)

After the initial setup, SWAT-CUP (Abbaspour, 2007) was applied to identify the most

sensitive model parameters. Sensitivity analysis was carried out using the optimiza-

tion algorithm SUFI-2 (Sequential Uncertainty Fitting; Abbaspour (2007)). The re-

sults showed a strong influence of groundwater parameters (GWQMN, ALPHA BF,

GW REVAP, REVAPMN), which confirms observations by Dobslaff (2005) and Schmalz

and Fohrer (2009). To perform a manual calibration of the most sensitive parameters es-

tablished guidelines for SWAT model calibration (Santhi et al., 2001; Moriasi et al., 2007;

Neitsch et al., 2011a) were applied. Afterwards a second SWAT-CUP calibration was car-

ried out; calibration parameters include the runoff curve number (CNOP), soil available

water capacity (SOL AWC), soil evaporation compensation factor (ESCO), groundwater

parameters (GWQMN, ALPHA BF, GW REVAP, REVAPMN) and hydraulic conduc-

tivity (CH K, SOL K). A detailed description of each parameter is provided by Neitsch

et al. (2011a).
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Table 3.3: Model performance (RSR, R2, NSE and PBIAS) during calibration (Cal)
and validation (Val) period for the different setups.

Setup
RSR R2 NSE PBIAS [%]

Cal Val Cal Val Cal Val Cal Val

ArcSWAT 0.47 0.60 0.78 0.67 0.78 0.65 -2.97 11.16
SWATgrid 0.49 0.62 0.77 0.64 0.76 0.61 -2.94 11.29

3.2.5.3 SWATgrid setup

The calibrated input parameter set was transferred to the grid based setup using the

SWATgrid interface (Rathjens and Oppelt, 2012b); no further calibration was carried

out. Therefore, the model parameter set remained equal except for the discretization

scheme.

Using SWATgrid the catchment was discretized into 84,273 grid cells with a grid res-

olution of 50 m by 50 m. To enable a comparison of setups the SWATgrid setup was

applied for the same time period.

The grid-based setup significantly increases the model computation time. While the

ArcSWAT setup (480 HRUs) takes 30 seconds on a single 2.67 GHz processor, the

SWATgrid setup lasts about 12 hours per year of simulation.

3.3 Results and discussion

3.3.1 Mean annual water balance

SWAT calculates annual means for the water balance components (see Table 3.2); for

both setups the resulting values are realistic. Dobslaff (2005) and Schmalz and Fohrer

(2009) reported similar values for the study area. The results of both model setups

demonstrate that groundwater runoff dominates the water balance, a fact that is caused

by the low gradients in the catchment. Table 3.2 also shows that the results of both

setups are comparable.

Regarding total water yield and evapotranspiration the model setups fit very well. Lat-

eral runoff calculated by SWATgrid, however, is 16.59 mm lower than indicated by

ArcSWAT. SWATgrid compensates this effect by higher amounts of groundwater runoff

(13.01 mm), surface runoff (2.19 mm) and tile runoff (1.30 mm). The runoff components

strongly depend on the hydrological characteristics of soil type, land use and slope for

which SWATgrid provides a more detailed distribution. Despite these differences, the
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Figure 3.4: Measured and simulated daily discharge (calibration period 2000-2005,
validation period 2006-2009) at the gauge Sarlhusen (a) ArcSWAT setup, (b) SWATgrid
setup, (c) differences of simulated daily discharge (SWATgrid setup - ArcSWAT setup).
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two model setups are consistent and confirm previous studies (Dobslaff, 2005; Schmalz

and Fohrer, 2009). To summarize both model setups result in a sufficient representation

of hydrological processes in the Bünzau catchment.

3.3.2 Simulation of daily discharge

Measures of model performance including RSR, R2, NSE and PBIAS values are listed in

Table 3.3. Figure 3.4 presents daily discharge values that resulted from the ArcSWAT

and SWATgrid setups in comparison to values measured at the gauge Sarlhusen. Overall

comparison of daily discharge simulation values (2000 - 2009) resulted in a high coefficient

of determination (R2 = 0.99).

The model evaluation indices RSR, R2 and NSE demonstrate that simulated and mea-

sured daily discharge agree well for both the calibration and the validation period. The

indices also indicate that the ArcSWAT setup performs slightly better that the SWAT-

grid setup. This might be explained by two facts: (1) values of summer and winter peak

flows are higher in ArcSWAT; (2) ArcSWAT shows a faster and more realistic reces-

sion of discharge (see also Fig. 3.4). The different proportions of fast and slow runoff

components (see also section 3.3.1), i.e. surface, lateral and groundwater runoff are gen-

erated at HRU or grid-cell level. Thus, modifications that affect the distribution and

composition of land use, soil types and slope do have an impact on modelled streamflow

components.

Values of PBIAS of the different model setups range from -3 to 11 %. The PBIAS differ-

ences between the setups are less than 0.2 percentage points; the low number indicates

that the modelled discharge is insensitive to changing discretization schemes. Drainage

density (total channel length divided by drainage area) increases as the number of grid

cells or sub-catchments increases. As a result transmission and deep aquifer losses in-

crease and reduce discharge. Thus, these losses cause the lower runoff calculated by the

SWATgrid setup compared to the ArcSWAT setup (see Table 3.3). Nevertheless, the dif-

ferences are relatively small compared to the differences of discharge components caused

by the kind of discretization. Similar observations were made by Bingner et al. (1997),

FitzHugh and Mackay (2000), Chen and Mackay (2004), Jha et al. (2004), Haverkamp

et al. (2005), Arabi et al. (2006) and Cho et al. (2010).

In summary, model performance statistics shows that simulated and observed daily

discharge is similar for both the calibration and the validation period. The grid-based

model calculates daily discharge at the catchment outlet according to the sub-watershed

model. The calibration of the grid-based model using the sub-watershed parameter set
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resulted in a satisfactory model performance. Statistical indices (RSR, R2, NSE and

PBIAS) confirm this finding.

3.4 Conclusion

The grid-based discretization scheme (SWATgrid) integrates spatially distributed data

into a SWAT model run and enables detailed analysis of every output grid cell at its

geographical position. The grid-based setup significantly increases the model computa-

tion time. While the conventional ArcSWAT model run takes 30 seconds on a single

2.67 GHz processor, the SWATgrid setup lasts about 12 hours per year of simulation;

therefore calibration using existing guidelines is impractical.

A time efficient procedure to calibrate grid-based setups was evaluated in a lowland

catchment in Northern Germany. An ArcSWAT interface was applied to provide an

initial, un-calibrated sub-watershed setup. Afterwards, the most sensitive parameters

to water balance were obtained using SWAT-CUP. The sub-watershed setup then was

calibrated with established manual and automatic calibration techniques. The resulting

parameter set was transferred to a grid-based setup using the SWATgrid interface.

The Bünzau catchment, a sub-watershed of the River Elbe, served as a test site to

evaluate the proposed methodology. Model performance according to (Moriasi et al.,

2007) was derived using statistical indices (RSR, R2, NSE and PBIAS). All indices

showed a satisfactory model performance.

Daily discharge derived from the grid configuration matched well with the sub-watershed

discharge (ArcSWAT setup) at the catchment outlet (R2 = 0.99). Thus, established sub-

watershed calibration techniques (Santhi et al., 2001; Moriasi et al., 2007; Neitsch et al.,

2011b) can be used to obtain a parameter set for a grid-based SWAT setup. The results

presented, however, are limited to the study area; further studies could compare this

calibration method with a ”real” grid-based model calibration to confirm these findings.
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Abstract

Integrated river basin models should provide a spatially distributed representation of

basin hydrology and transport processes to allow for spatially implementing specific man-

agement and conservation measures. To accomplish this, the Soil and Water Assessment

Tool (SWAT) was modified by integrating a landscape routing model to simulate water

flow across discretized routing units. This paper presents a grid-based version of the

SWAT landscape model that has been developed to enhance the spatial representation

of hydrology and transport processes. The modified model uses a new flow separation

index that considers topographic features and soil properties to capture channel and

landscape flow processes related to specific landscape positions. The resulting model is

spatially fully distributed and includes surface, lateral, and groundwater fluxes in each

grid cell of the watershed. Furthermore it more closely represents the spatially heteroge-

neous distributed flow and transport processes in a watershed. The model was calibrated

and validated for the Little River Watershed (LRW) near Tifton, Georgia (USA). Water

balance simulations as well as the spatial distribution of surface runoff, subsurface flow

and evapotranspiration are examined. Model results indicate that groundwater flow is

43
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the dominant landscape process in the LRW. Results are promising and satisfactory out-

put was obtained with the presented grid-based SWAT landscape model. Nash-Sutcliffe

model efficiencies for daily stream flow were 0.59 and 0.63 for calibration and validation

periods and the model reasonably simulates the impact of the landscape position on

surface runoff, subsurface flow and evapotranspiration. Additional revision of the model

will likely be necessary to adequately represent temporal variations of transport and

flow processes in a watershed.

4.1 Introduction

River basin models are valuable tools for examining the impact of land use and manage-

ment on landscape hydrology, sediment transport and water quality. The Soil and Water

Assessment Tool (SWAT) has proven to be a suitable tool under many landscape con-

ditions and in most applications the prediction accuracy was satisfactory for obtaining

knowledge of the hydrologic system and the watershed processes (Arnold and Fohrer,

2005; Gassman et al., 2007). However, previous studies showed that the assessment of

the effects of conservation practices on watershed-scale water quality relies strongly on

the flow and transport models used (e.g., Mausbach and Dedrick, 2004). The SWAT

model typically utilizes a hydrologic response unit (HRU) approach. The watershed

is divided into sub-watersheds which are further subdivided into HRUs. However, the

SWAT routing command language enables the model to use an HRU, a representative

hillslope or a grid cell configuration, alone or in combination, to model a watershed

(Arnold et al., 1994, 2013). Nevertheless, SWAT uses the HRU configuration as the

primary discretization scheme (Gassman et al., 2007; Arnold et al., 2013) and all GIS

(Geographic Information System) input interfaces use the computationally efficient HRU

discretization. Thus, there are only few SWAT applications and studies which actually

have used a different discretization approach (e.g., Manguerra and Engel, 1998; White

et al., 2009; Arnold et al., 2010; Rathjens and Oppelt, 2012a,b).

Within the HRU approach all areas in a sub-watershed with the same combination

of soil, topography and land use are lumped to form an HRU. The HRUs represent

percentages of the sub-watershed area and are not spatially related. Water, sediment

and agricultural chemical yields generated in the HRUs are currently routed directly

into the stream channel and SWAT is not able to model flow and transport from one

landscape position to another prior to entry into the stream. The non-spatial character

of the HRUs and the inability to model transport processes in the land-phase of the

hydrologic cycle (Neitsch et al., 2011b) have been identified as key weaknesses of the

model (e.g., Gassman et al., 2007; Arnold et al., 2010; Bosch et al., 2010). To fulfill the
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requirements of river basin management, integrated models should provide a spatially

distributed representation of basin hydrology and transport processes (Arnold et al.,

2010; Bosch et al., 2010). The incorporation of greater spatial detail into SWAT has

therefore been investigated with the focus on (1) developing routing capabilities between

landscape units (Volk et al., 2007; Arnold et al., 2010) and (2) developing a grid-based

SWAT model setup (Rathjens and Oppelt, 2012b).

The newly developed SWAT landscape model is able to capture the hydrologically dif-

ferent channel and landscape flow and transport processes related to specific landscape

positions (Arnold et al., 2010). The model links watershed processes from the hillslope

to the watershed scale using the concept of hydrologic landscape units (divides, hill-

slopes, floodplains; see Volk et al., 2007) and routes surface runoff, lateral subsurface

flow, and shallow groundwater flow between these landscape routing units. The model

was tested by Arnold et al. (2010) and Bosch et al. (2010); both studies concluded that

additional development and testing of the SWAT landscape model is necessary to con-

firm model operation. In particular, the landscape model may require additional detail

to properly describe interactions between soil surface, vadose zone, and groundwater to

accurately represent the hydrology in landscapes where subsurface processes dominate

(Bosch et al., 2010). The results are, however, “encouraging” (Bosch et al., 2010) and

show a realistic representation of landscape flow and transport processes in a watershed.

A detailed description of the landscape routing model is given by Arnold et al. (2010).

Understanding the two mechanisms of landscape and channel network transport is cru-

cial for obtaining knowledge of the hydrologic system of a watershed (e.g., Robinson

et al., 1995; D’Odorico and Rigon, 2003; Drewry et al., 2006). Many studies have focused

on analyzing the effects of landscape processes on the hydrologic response in a water-

shed by examining differences between landscape and channel flow travel times (e.g.,

van der Tak and Bras, 1990; Rinaldo et al., 1995; D’Odorico and Rigon, 2003). They

concluded that in small to medium size watersheds the share of landscape and channel

processes is essential to estimate streamflow at the outlet, whereas in larger river basins

landscape processes are less significant than channel and floodplain processes. Studies

examining the spatial variability of landscape and channel processes within watersheds

(e.g., Rinaldo et al., 1991; Saco and Kumar, 2002) suggest that it is more realistic to

use spatially varying parameters to represent the different flow processes. Therefore,

hydrologic models require a spatially detailed description of landscape and channel flow

processes controlling runoff generation and routing that can be provided by a grid-based

approach.

There are, however, advantages and disadvantages for both, the grid and the commonly

used HRU method. The HRU approach inherent in the current landscape model provides
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a fast and numerically efficient model, but leads to a loss of spatial information during

modeling and does not account for landscape position. This might be important for

existing applications, for example when studying diffuse matter transport in agricultural

areas. The grid configuration enables the model to simulate the impact of landscape

position on management, such as conservation measures, plant growth, crop yields and

runoff in spatial detail (Arnold et al., 2010). The appropriate spatial resolution and

discretization method depends on the purpose of modeling and the availability of data

sources. If the model’s aim is the replication of aggregated events (e.g., monthly values

at the watershed outlet) in a data scarce area the HRU approach may be adequate.

But if the modeler’s scope is a spatial description of a hydrologic system (e.g., detection

of critical source areas) a spatially distributed model is recommended, because spatial

patterns of topography and subsurface characteristics often exert significant control over

hydrological processes within a watershed (Schulz et al., 2006).

Furthermore, the process of calibrating a model at stream gages does not necessarily

improve the spatial accuracy of the model (e.g., Arabi et al., 2006; White et al., 2009).

Data collected at discrete locations contain no information concerning the source, only

that it must have originated somewhere upstream. Therefore, spatial model results can

be used to refine the model and help to detect disregarded processes, when spatial pat-

terns of model output indicate that the model is not representing the system’s behaviour

adequately (Bennett et al., 2013).

The purpose of this study was to develop a grid-based, spatially distributed hydro-

logic model that represents channel and landscape transport mechanisms and includes

surface, lateral, and groundwater fluxes in each grid cell of the watershed. Prior grid

applications (e.g., White et al., 2009; Rathjens and Oppelt, 2012b) are characterized by

the lack of landscape flow routing between grid cells (i.e., interaction between grid cells

was part of in-stream processes in the routing phase) or used a constant coefficient for

each landscape unit for partitioning landscape and channel flow (Arnold et al., 2010).

Therefore, an index of hydrologic similarity used by TOPMODEL (Beven and Freer,

2001) was modified to differentiate channel and landscape processes. Stepwise testing in

experimental watersheds at various scales and under different hydrologic, climatic and

topographic conditions will be developed to evaluate the model. The testing will include

(1) evaluation of model output at discrete locations (i.e., stream gages), (2) qualitative,

and (3) quantitative analysis of hydrologic model output at the grid scale, (4) exam-

ination of water quality at stream gages, and (5) at the grid scale, and (6) testing of

in-stream processes.

Here we cover the first two points; in particular, it is the aim of this paper (1) to present a

grid-based version of the SWAT landscape model, (2) to test the hydrologic components
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of the SWAT landscape model at a stream gage and at the grid-scale, and in addition (3)

to analyze the impact of a new parameter that controls the proportions of channel and

landscape flow in the watershed. The model is evaluated by comparing observed and

simulated daily discharge at the catchment outlet and analyzing the spatial distribution

of simulated surface runoff, subsurface flow and evapotranspiration. The study area

is the Little River Watershed (LRW), a coastal plain watershed near Tifton (Georgia,

USA).

4.2 Materials and methods

4.2.1 Study area

The Little River Watershed (LRW) is located near Tifton in Central South Georgia

(see Figure 4.1). It covers an area of 334 km2 and is characterized by a relatively flat

topography and a dense stream network (1.54 km·km−2). The streams are surrounded by

broad, flat alluvial floodplains, river terraces and gently sloping uplands with gradients

of less than 5 % and channel slopes ranging between 0.1 and 0.5 % (Sheridan, 1997).

Figure 4.1 gives an overview of the LRW stream network, topography, land use and

soil type distributions. Land use types occurring in the LRW are row crop agriculture,

pasture and forage, upland forest, riparian forest, urban land and water areas. Riparian

forest wetlands dominate the landscape close to the stream channels, while upland areas

are mostly characterized by agricultural use (Bosch et al., 2004). The most common

soil types are sands and sandy loams with high infiltration rates, which are underlain

by the shallow, relatively impermeable Hawthorne formation. This formation restricts

downward movement of water and promotes lateral movement of shallow groundwater

from uplands to the stream channels (Sheridan, 1997; Cho et al., 2013).

The climate is classified as humid subtropical with mean annual precipitation of 1208 mm

(1922-1988) and a mean annual temperature of 19.1 ◦C (Sheridan, 1997). Rainfall often

occurs as short-duration, high-intensity convective thunderstorms during midsummer

and winter months (Bosch et al., 1999).

Hydrology and water quality of the LRW have been monitored since 1967 (Sheridan,

1997). Additionally, many research projects including several SWAT related studies

(e.g., Bosch et al., 2004; Feyereisen et al., 2007; Cho et al., 2009, 2013) have investigated

water quantity and quality aspects during the past decades (see Bosch et al., 2010).

Bosch et al. (2010) tested the SWAT landscape model in a sub-basin of the LRW.

A frequently reported difficulty when modeling the LRW is the saturation condition
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Figure 4.1: Overview of the Little River watershed near Tifton in Georgia (USA), its
stream network, digital elevation model, and land use and soil maps.

of the alluvial aquifer (e.g., Shirmohammadi et al., 1986; Bosch et al., 2004). Runoff

processes in the LRW are mainly characterized by infiltration excess overland flow, but

saturation excess flow dominates when the shallow aquifer and the vadose zone are

near saturation, which is a normal condition from December to April. SWAT considers

primarily infiltration excess runoff mechanisms (White et al., 2009) and thus previous

studies underpredicted the observed data during saturated conditions and overpredicted

discharge during dry conditions, while further calibration of the models would likely

yield mixed results (Bosch et al., 2004).

4.2.2 SWAT and the SWAT landscape model

SWAT (Arnold et al., 1998) is a catchment-scale model developed to simulate hydrology

and water quality under varying land use and management conditions. The simulated

hydrologic processes include surface runoff, percolation, lateral and shallow groundwater

flow, evapotranspiration, snow melt, transmission losses from streams, channel routing

and water storage in and losses from ponds. A detailed description of all components

can be found in Arnold et al. (1998) and Neitsch et al. (2011b).
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SWAT divides the hydrology of a watershed into two major phases: (1) the land phase of

the hydrologic cycle controls the amount of water entering the channel. (2) The routing

phase determines the movement of water through the channel network to the watershed

outlet (Neitsch et al., 2011b). The current SWAT version does not distinguish individual

routing units in the land phase of the hydrologic cycle. Accordingly, the model is not

able to simulate runoff and infiltration processes that typically occur in a landscape.

Volk et al. (2007) and Arnold et al. (2010) developed a landscape routing method that

enables surface, lateral and groundwater flow interaction across the landscape between

divides, hillslopes and floodplains. The model uses a coefficient for each landscape unit

to partition the amount of flow into landscape and channel flow.

The grid-based version of the SWAT landscape model refines the concept of the three

discrete landscape units and uses a modified version of a topographic index that ranges

between 0 and 1 to spatially describe the landscape position of each grid cell. Valley

and floodplain grid cells have values close to 1, while grid cells near the divide have

values close to 0. The grid landscape routing model computes surface runoff, lateral

and shallow groundwater flow for each grid cell individually. While Arnold et al. (2010)

used a constant flow separation ratio, the new grid-based model estimates spatially

distributed proportions of channel and landscape flow with the modified topographic

index.

4.2.2.1 Surface runoff

The model simulates surface runoff using the curve number method. To determine

velocity (Vs) and ultimately travel time (trt), Manning’s equation is used assuming a

one-meter overland flow strip (see also Volk et al., 2007; Arnold et al., 2010):

Vs,i = q0.4
s,i · tan(βi)

0.3 · η−0.6
i , i = 1, . . . , n,

where n is the number of grids in the watershed and i is the number of a particular grid

cell. qs,i is the flow rate, βi is the slope angle, and ηi is Manning’s n. Travel time [h] is

trti = sli · (3600 · Vs,i)−1,

where sli is the slope length. Infiltration is calculated by multiplying the travel time by

the saturated hydraulic conductivity:

Ii = trti ·Ki +Rc,i, i = 1, . . . , n,
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where Ii is infiltration, Ki is saturated hydraulic conductivity, and Rc,i is roughness

storage.

4.2.2.2 Lateral flow

The model calculates lateral flow volumes with a kinematic storage model (Arnold et al.,

1998) as a function of saturated hydrologic conductivity, slope, slope length, and porosity

(see also Volk et al., 2007; Arnold et al., 2010):

Qlat,i = 0.048 · SWi ·Ki · tan(βi) · (φd,i · sli)−1, i = 1, . . . , n,

where SWi is soil water, and φd,i is porosity. The model also estimates surface seeps

during saturated conditions, which is considered as surface run-on to the next landscape

unit. Lateral flow (summed from each soi layer) flows to the adjacent downslope grid

cell and is distributed to each soil layer. When water enters the adjacent downslope grid

cell, it is subject to soil evaporation, plant water uptake, lateral soil flow, percolation

and groundwater recharge (Arnold et al., 1998).

4.2.2.3 Shallow groundwater

Groundwater flow is simulated as routing through a series of linear storage elements

(i.e., grid cells) using the classic linear tank storage model (e.g., Brutsaert, 2005). In

addition to routing flow to the next grid cell, water may also be lost to groundwater

evaporation or to seepage to the deep aquifer.

4.2.2.4 Landscape routing and channel interaction

Surface runoff and subsurface flow from each grid cell is routed through the landscape

or contributes to streamflow. The share of landscape and channel flow is estimated for

each grid cell individually with the modified topographic index (see next section).

4.2.3 Spatial distribution of landscape and channel flow

The SWAT landscape model enables the distribution of runoff between grid cells in

the land-phase of the hydrologic cycle. This raises the question which part of the flow

is routed as channelized flow and which part is routed through the landscape. The

concepts of hydrologically sensitive areas (HSAs, e.g., Walter et al., 2000; Agnew et al.,

2006), morphological types of channel heads (e.g., Montgomery and Dietrich, 1994) and
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channel head detection by average source areas (Jaeger et al., 2007) were selected as

useful methods to develop an index for partitioning landscape and channel flow.

HSAs are areas within a watershed where the probability that runoff will occur is high.

The importance of runoff generating areas for watershed management is well documented

in the literature. These areas have commonly been identified using topographic indices

(e.g., Beven and Kirkby, 1979; O’Loughlin, 1986; Beven and Freer, 2001; Lyon et al.,

2004). Agnew et al. (2006) used a topographic index (λ) that considers variations in

slope and soil properties to detect HSAs. They found that the general patterns of high

hydrologic sensitivity are similar to those of high λ values. The topographic index they

used takes the form

λi = ln

(
Ai

tan (βi) ·Ki · Zi

)
∈ R>0, i = 1, . . . , n, (4.1)

where n is the number of grids in the watershed and i is the number of a particular grid

cell. λi is the topographic index [ln(d m−1)], Ai is the upslope contributing area per

unit contour length [m], βi is the local surface topographic slope angle, Ki is the mean

saturated hydraulic conductivity of the soil [m d−1] and Zi is the soil depth [m]. λ can

be easily calculated for each grid cell in a watershed and solely requires a DEM and soil

data that are necessary for SWAT modeling (see also Agnew et al., 2006). Grid cells

with high λi values are expected to have a high probability to generate runoff and to be

dominated by channel flow.

Channel heads represent a boundary between hillslope and channels and can be defined

as the initiation of a channel (Montgomery and Dietrich, 1989). They tend to have

characteristic morphologic forms and have been classified as either gradual (a swale

that gradually changes into a channel) or abrupt (channel initiation caused by seepage

water and erosion). Both abrupt and gradual channel heads are likely to occur in a

watershed. However, Montgomery and Dietrich (1989) stated that depending on climate,

topography and soil properties, one of the channel head types is likely to be dominant in

a watershed. To reasonably represent the dominant channel head type two modifications

of λ were developed in this study. First, λ is transformed into two normalized indexes:

λanorm,i =
λi

maxi=1,...,n{λi}
∈ (0, 1] and (4.2a)

λgnorm,i =
λi −mini=1,...,n{λi}

maxi=1,...,n{λi} −mini=1,...,n{λi}
∈ [0, 1], i = 1, . . . , n. (4.2b)

where λanorm is used for watersheds where abrupt channel heads dominate and λgnorm is

used for watersheds dominated by gradual channel heads.
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Second, λanorm and λgnorm are adjusted to realistically represent the position of channel

head locations in the watershed. Channel heads represent the major boundary between

landscape and channel flow processes. Thus, the channel head location is a crucial pa-

rameter to realistically represent flow and transport processes in a watershed. Jaeger

et al. (2007) stated that an average source area size based on field surveys may pro-

vide the most practical method for identifying channel head locations. Therefore, the

drainage density (DD [km−1]) of the watershed is used to adjust λanorm and λgnorm val-

ues. The drainage density is defined by the length [km] of all channels in the watershed

divided by its total drainage area (DA [km2]). Therefore, the smallest λanorm and λgnorm

values are set to zero (i.e., no channel flow) until the sum of all λanorm,i and λgnorm,i val-

ues multiplied with the unit contour length of the current grid cell divided by the total

drainage area matches the drainage density of the watershed. The resulting normalized

indexes can be stated as λaDD,i, λ
g
DD,i ∈ [0, 1], i = 1, . . . , n satisfying

DD ≈
∑n

i=1 λ
a
DD,ili

DA
≈
∑n

i=1 λ
g
DD,ili

DA
, (4.3)

where li [km] is the unit contour length of the current grid cell.

The indexes solely differ in the method selected for normalization (see Eq. 4.2a and

4.2b). Equation (4.2a) leads to discontinuous distribution of channelized flow fractions,

whereas equation (4.2b) results in a continuous distribution. Hence, λaDD,i represents the

fraction of channelized flow for grid cell i in a watershed dominated by abrupt channel

heads and 1 − λaDD,i represents the fraction of landscape flow. The same applies for

λgDD,i in watersheds dominated by gradual channel heads.

4.2.4 Modelling framework

The interface SWATgrid (Rathjens and Oppelt, 2012b) was used for developing grid-

based SWAT model input using weather data and spatially distributed geographic

datasets (digital elevation model (DEM), soil and land use data). An overview of the

essential input data sources is given in Table 4.1. Differences between the weather sta-

tions can dominate the spatial model output. To spatially analyze the output of the

SWAT landscape model, values of all weather stations were aggregated to one data set

and integrated in the simulation.

SWATgrid divides the watershed into linked grid cells. Flow paths are determined

from the DEM using the digital landscape analysis tool TOPAZ (Garbrecht and Martz,

2000), and runoff from a grid flows to one of the eight adjacent grid cells. A small

grid size is necessary to ensure an accurate representation of the flat topography in the
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LRW. A small grid size, however, leads to an increase of computation time and memory

requirements of the model. As a compromise between an accurate spatial representation

of landscape patterns and a manageable model, DEM, soil and land use data were

resampled to a resolution of 100 m (1 ha).

Grid-based simulations with the SWAT landscape model were conducted for a five-year

period from 2004 to 2008, plus a two year warm-up period from 2002 to 2003. The

accuracy of simulated streamflow, water budgets and spatial patterns of model output

were examined for this period. Three model setups were developed to evaluate the

grid-based landscape model and to analyse the sensitivity of the flow separation ratio.

The primary setup (Model 1.0DD) is used for the evaluation of the grid-based landscape

model and the additional setups (Model 1.5DD and Model 0.5DD) are used for analyzing

the impact, sensitivity and uncertainty of the flow separation ratio on model output.

Model 1.0DD uses the original drainage density DD and λaDD to represent the share of

channelized and landscape flow in the watershed as realistic as possible. Model 1.0DD

was calibrated manually to fit simulated to observed daily discharge. The grid dis-

cretization requires more computation time than the commonly used HRU approach;

the LRW model takes approximately one hour per simulated year on a single 2.67 GHz

processor. As a consequence, manual calibration was performed by comparing simulated

and observed discharge at the watershed outlet for the year 2004 only. The calibrated

parameter set was validated using the time period from 2005 to 2008. A sensitivity

analysis for SWAT LRW simulations was previously conducted by Bosch et al. (2004)

and Cho et al. (2013). Their results showed a strong influence of groundwater param-

eters. Based on these studies and a manual sensitivity analysis five parameters were

Table 4.1: Data sources for the LRW (downloadable at ftp://www.tiftonars.org/).

Data type Scale / Resolution Source Data description and usage

Topography 30 m Georgia GIS Data
Clearinghouse

Digital Elevation Model
(DEM), model input

Land use 30 m Sullivan et al.
(2007)

Land use classification based
on Landsat 7 imagery (20 Jul
2003), model input

Soils 1 : 12 000 Soil Survey Geo-
graphic Database
(SSURGO)

Soil physical properties, model
input

Weather 25 stations (rainfall), 2
stations (temperature,
wind speed, relative hu-
midity, solar radiation)

Bosch et al.
(2007b)

Daily weather data (1 Jan
2004 to 31 Dec 2008), model
input

Streams 7.5 minute quadrangle Sullivan et al.
(2007)

Mapped stream network,
model validation

Discharge 1 Station Bosch and Sheri-
dan (2007)

Daily discharge data, model
calibration and validation
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Table 4.2: SWAT input parameters chosen for hydrologic calibration and final cali-
brated values.

Parameters Default Lower limit Upper limit Value

ESCO.bsn 0.95 0.0 1.0 1.00
SURLAG.bsn 4.0 0.05 24 0.15
GW DELAY.gw 31.0 0.0 500 0.75
ALPHA BF.gw 0.048 0.0 1.0 0.96
GWQMN.gw 0.0 0.0 5 000 50.0

chosen for model calibration: soil evaporation compensation factor (ESCO), ground-

water parameters (groundwater delay time (GW DELAY), baseflow alpha factor (AL-

PHA BF), threshold depth of water in the shallow aquifer required for return flow to

occur (GWQMN)), and surface runoff lag coefficient (SURLAG). Table 4.2 shows the

parameters selected for calibration, their ranges and their calibrated values. A detailed

description of each parameter is provided by Arnold et al. (2013). Standard test statis-

tics recommended by Moriasi et al. (2007) (i.e., the coefficient of determination (R2),

Nash-Sutcliffe efficiency (NSE, see Nash and Sutcliffe, 1970) and percent bias (PBIAS,

see Gupta et al., 1999)) as well as visual comparisons of observed and simulated data

were used to evaluate daily, monthly and yearly streamflow simulations. At this stage,

it was not possible to perform a spatially distributed calibration of the model. Thus,

spatial distributions of model output were evaluated qualitatively. It was examined

whether spatial patterns of model output reasonably reflect hydrologic processes that

are expected to occur in the landscape.

In Model 1.5DD and Model 0.5DD the drainage density of the watershed, which deter-

mines the proportions of channel and landscape flow, was modified to analyze the sensi-

tivity and uncertainty of the flow separation ratio. The drainage density in Model 1.5DD

is 1.5 times larger than in Model 1.0DD, whereas in Model 0.5DD it is half as large; all

remaining parameters were set to the same values as in Model 1.0DD. The factors 0.5

and 1.5 correspond to previously observed variations in drainage density (e.g., Gregory

and Walling, 1968; Moglen et al., 1998). Thus, Model 0.5DD and Model 1.5DD results

indicate the range of uncertainty of the proposed approach. A comparison was made be-

tween simulated results obtained using Model 1.0DD, Model 1.5DD and Model 0.5DD.

Time series of daily simulated streamflow at the watershed outlet as well as spatial

patterns of model output were compared.
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4.3 Results and discussion

4.3.1 Spatial analysis and differences of the partitioning ratios

The development of a grid-based SWAT landscape model requires the spatial partitioning

of landscape and channel flow to realistically represent flow and transport processes in

a watershed. In this paper the topographic index λ (Eq. 4.1) that has been commonly

used to identify runoff generating areas was modified to obtain estimates of partitioning

ratios (see Eq. 4.2a and 4.2b). Figure 4.2 shows the spatial and frequency distributions

of λ, λaDD and λgDD values in the LRW. The histograms (Figure 4.2d-f) visualize the

effects of normalization and adjustment to the drainage density. The overall share of

channel and landscape flow is determined by the drainage density of the watershed and is

the same for λaDD and λgDD, but the ratios differ in their frequency distributions. While

calculations using the index λgDD result in few cells with no channel flow λaDD calculations

results in a large proportion of grid cells with no channel flow (i.e., λaDD,i = 0) and in

compensation a small number of grid cells with a high share of channel flow (≥ 0.3). Both

indexes realistically represent the share of channel and landscape flow determined by

the drainage density of the watershed. Their spatial patterns suggest a stream network

(Figure 4.2a-c) similar to the mapped network (see Figure 4.1).

Channel heads represent the boundary between landscape and channel flow and are thus

considered as a crucial parameter to realistically represent flow and transport processes

in a watershed. The methods selected for normalization result in a continuous (λgDD)

and discontinuous distribution (λaDD) of channelized flow fractions (see Figure 4.2e and

f), causing abrupt and gradual channel heads in the corresponding maps (see Figure 4.2b

and c). Previous channel initiation studies by Montgomery and Dietrich (1988, 1989)

found that in basins with gentle slopes and infiltration excess overland flow, which

applies for the LRW, channel heads caused be seepage erosion occur more frequently

than gradual channel heads. Therefore, the λaDD map is used to evaluate the grid-based

SWAT landscape model.

Both landscape and channel processes are related to heterogeneously distributed pa-

rameters within the watershed (such as soil properties, land use, topography, stream

roughness, and other physical properties). The newly developed separation index con-

siders this spatial variability within watersheds and shows the capability to realistically

represent spatial distributions of flow and transport processes in the LRW. There is,

however, a remaining uncertainty inherent to the analysis of flow and transport pro-

cesses in watersheds. The results should be considered as a rough estimate of landscape

and channel flow separation; future studies should focus on the identification of channel
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Figure 4.2: Spatial and frequency distributions of the topographic indexes λ, λaDD

and λgDD used for channel and landscape flow separation in the LRW.

head locations in different landscapes and the validation of the proposed flow separation

methodology.

4.3.2 Model evaluation at the watershed outlet

4.3.2.1 Calibration and validation results

One aim of this research was to assess how well the new grid-based landscape config-

uration performs. For this purpose simulations were conducted for the period from

2004 to 2008 using λaDD for estimating the share of landscape and channelized flow

(Model 1.0DD). Precipitation in the LRW is variable from year to year with a long term

(1922-1988) annual mean of 1208 mm. During the simulation period precipitation varies

between 884 and 1204 mm (2004: 1204 mm, 2005: 1197 mm, 2006: 884 mm, 2007:

896 mm, 2008: 1116 mm). Distribution within the year is also highly variable, although

the fall months are typically dry (Sheridan, 1997).

Measures of model performance including PBIAS, R2 and NSE values are listed in Table

4.3. They indicate satisfactory to good model performance during both calibration and

validation periods. Monthly NSE and R2 values are better than daily values, a result

that is often observed in model applications (Moriasi et al., 2007).

The hydrograph of daily streamflow for the 5-year period (see Figure 4.3a) indicates that

the grid-based SWAT model simulated daily streamflow satisfactorily in both low and
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Table 4.3: Summary of performance measures of grid-based Model 1.0DD SWAT
simulations for the LRW for 2004 (calibration period) and from 2005 to 2008 (validation

period).

Periods
Streamflow [mm/a]

PBIAS [%]
NSE R2

Observed Simulated Daily Monthly Daily Monthly

Calibration 297 275 7.18 0.60 0.92 0.59 0.92
Validation 212 193 8.96 0.63 0.79 0.65 0.82
Entire Period 229 210 8.50 0.62 0.81 0.63 0.83

high flow conditions. The model, however, tends to underpredict discharge peaks during

the entire period. Confirming the high variability of precipitation from year to year,

streamflow also varies significantly between the individual years of the simulation period.

In 2004 and 2005, observed streamflow is comparatively high (297 and 433 mm) while

from 2006 to 2008 values are lower (139 mm on average). During the drier years zero-flow

conditions were observed repeatedly. The model generally predicts the trends in observed

data well and a tendency of over-predicting streamflow during zero-flow conditions that

was reported by Bosch et al. (2004) and Feyereisen et al. (2007) does not occur. There

are, however, differences in magnitude and duration of observed and simulated daily

streamflow. In dry years the model generally overpredicts streamflow during wetting-up

periods and simulates flow events in periods where none were observed. The observed

baseflow component increases slowly, while the simulated baseflow rises too rapidly.

The opposite is happening during drying periods, where observed streamflow decreases

slowly while the simulated streamflow falls too rapidly. The simulated hydrograph during

wetting-up and drying periods indicates an underestimation of the available groundwater

storage. Greater groundwater storage would lead to slower filling in the wetting-up

period and a longer hydrograph on the falling side. The underestimation of available

groundwater storage could be related to the comparatively high precipitation in the

calibration year (2004). Saturation occurred throughout this year and groundwater

storage capacity is insignificant for model performance. Another factor contributing to

the error in simulated daily streamflow was the hydrograph timing, which was observed

by Bosch et al. (2004). The simulated hydrograph peaks occur approximately one day

prior to the observed peaks; shifting the simulated daily streamflow values one day

forward during the entire simulation period increases NSE values from 0.62 to 0.71 and

R2 values from 0.63 to 0.73.

Figure 4.3b displays monthly observed and simulated discharge values. The graphs con-

firm the differences between simulated and observed streamflow volume during wetting-

up and drying periods. The underestimation of streamflow peaks leads to an underes-

timation of flow volumes in wet months; the model, however, performs well in average

conditions, which is confirmed by monthly NSE and R2 values (see Table 4.3).
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Figure 4.3: Observed and simulated (Model 1.0DD)(a) daily, (b) monthly and (c)
annual total streamflow for the LRW from 2004 to 2008.

The annual time series of observed and simulated streamflow for the simulation period

is shown in Figure 4.3c. Visual comparison confirms the calculated PBIAS values. In

general, the model tends to underpredict annual discharge, which is mainly caused by

the underestimation of discharge peaks during wet periods.

4.3.2.2 Sensitivity of the partitioning ratio

The separation ratio of landscape and channel flow turned out to be a crucial parameter

to realistically represent flow and transport processes in a watershed. The impact of the

partitioning ratio on streamflow at the watershed outlet is analyzed by comparing the

results of Model 1.0DD, Model 1.5DD and Model 0.5DD. Figure 4.4 shows observed and

daily streamflow of the three models from 1 Nov 2005 to 30 Apr 2006, a time period

including wetting-up, drying, average and peak flow conditions (see also Figure 4.3).
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Figure 4.4: Precipitation and observed and simulated daily stream flows of Model
1.0DD, Model 1.5DD and Model 0.5DD in the LRW from 1 Nov 2005 to 30 Apr 2006.

Model 1.5DD has a higher share of channel flow than Model 1.0DD and the hydrograph

responds quickly to precipitation events. As a consequence, Model 1.5DD performs worse

during wetting-up and drying periods, but simulates streamflow peaks more accurately

than Model 1.0DD. However, the simulated hydrograph timing is too early. Model 0.5DD

has the lowest share of channel flow. As a consequence, water remains longer in the

watershed and streamflow rises and falls more slowly than Model 1.0DD. Accordingly,

Model 0.5DD simulates discharge during wetting-up and drying periods more accurately

than Model 1.0DD, but clearly underestimates peak events.

In summary, the simulated hydrographs displayed in Figure 4.4 indicate that the models

perform differently depending on the saturation of the watershed. Model 0.5DD predicts

streamflow most realisticly during wetting-up and drying periods; Model 1.5DD realis-

tically simulates discharge peaks when the watershed is saturated; and Model 1.0DD

shows good performance during average streamflow. These results suggest that land-

scape and channel flow processes in a watershed vary depending on watershed saturation

on temporal scales ranging from a single storm to seasonal fluctuations. Therefore, the

prediction of discharge during wetting-up periods still remains a challenge in hydrologic

modeling (e.g., Pinol et al., 1997; Beven and Freer, 2001).

The grid-based SWAT landscape model uses an index for flow separation that is based

on the topographic index λ (Eq. 4.1) and the drainage density (DD) of the watershed.
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Table 4.4: Precipitation (P [mm]) events ≥ 5 mm, accumulated runoff (Q [mm]) in
the five days following the end of the precipitation event, and the ratio of Q to P for

the first ten precipitation events between Nov 2005 and Mar 2006.

Event no. Date P [mm] Q [mm] Q / P

1 20 Nov 2005 – 26 Nov 2005 31.86 0.00 0.00
2 28 Nov 2005 – 3 Dec 2005 12.35 0.00 0.00
3 4 Dec 2005 – 13 Dec 2005 95.07 1.25 0.01
4 15 Dec 2005 – 23 Dec 2005 30.01 3.35 0.11
5 25 Dec 2005 – 7 Jan 2006 86.14 28.37 0.33
6 13 Jan 2006 – 22 Jan 2006 26.43 12.55 0.47
7 23 Jan 2006 – 28 Jan 2006 8.37 5.97 0.71
8 29 Jan 2006 – 6 Feb 2006 53.76 21.71 0.40
9 11 Feb 2006 – 15 Feb 2006 12.23 6.38 0.52
10 18 Feb 2006 – 3 Mar 2006 61.37 31.32 0.51

Implicit in this index is the assumption of a constant upslope area (Ai) at every location

in the watershed. This means the model expects downslope flow in the entire landscape,

which is clearly not the case when the landscape is dry. During such periods large

amounts of rainfall may produce little or no streamflow response at the gauging stations.

Table 4.4 shows the LRW streamflow-precipitation ratio for the first ten precipitation

events after a dry period; there is almost no response to the first three events. As the

wetting-up progresses the streamflow-precipitation ratio increases before it levels off at

a ratio of 0.5. The wetting-up of the watershed leads to saturation and downslope flow

of water in the shallow aquifer. Further wetting will start to link unsaturated areas

within the watershed. As the wetting-up period continues, the landscape becomes more

saturated, the upslope areas that contribute surface and subsurface flow increase and the

water yield per unit of rainfall increases in a non-linear way (see Table 4.4). Therefore,

it is expected that the effective contributing area varies over time (see also Barling

et al., 1994; Pinol et al., 1997; Beven and Freer, 2001) and is not ideally represented by

a constant upslope area derived from the DEM. Studies from Dunne and Black (1970),

Hewlett and Nutter (1970) and Dunne et al. (1975) confirm these results. They stated

that the size of runoff generating areas varies over time with watershed saturation on

temporal scales ranging from a single storm to seasonal fluctuations.

In this context, the assumption of a steady drainage density can also be questioned.

Moglen et al. (1998) reported that the drainage density is a seasonally variable param-

eter influenced by the climate, mainly precipitation, in the watershed. They illustrated

seasonal changes in drainage density that result from sinusoidal variability in precipi-

tation. The occurrence of zero-flow conditions confirms a seasonal variance of drainage

density in the LRW. During dry periods, parts of the watershed do not produce sig-

nificant downslope flow and channel head locations are expected to move downslope.
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Hence, the assumptions of a steady effective upslope area and a steady drainage density

limit the model’s capability to accurately simulate runoff peaks and discharge during

wetting-up periods. A dynamic flow separation ratio could be based on the index used in

this study and additionally include a space-time representation of soil or shallow aquifer

saturation, the interaction between precipitation and streamflow, and dynamics of the

effective upslope areas contributing to runoff generation.

4.3.3 Spatial analysis

A major advantage of the grid-based model is the availability of spatially distributed

model output. This section evaluates spatial model output at the grid scale and analyzes

the impact of the flow separation ratio on the spatial distribution of model output.

4.3.3.1 Spatial model evaluation

The spatial distribution of Model 1.0DD output parameters shows the impact of topog-

raphy, landscape position, land use classes and soil types on model output. To evaluate

the grid-based SWAT landscape model, spatial distributions of surface runoff (SURQ,

see Figure 4.5a), lateral flow (LATQ, see Figure 4.5b), groundwater runoff (GWQ, see

Figure 4.5c) and evapotranspiration (ET, see Figure 4.5d) were analyzed. At this stage,

the model is not spatially calibrated, so the spatial output can not be evaluated quan-

titatively and was analyzed qualitatively instead.

As expected, the highest SURQ values occur on urban areas. The model simulates more

surface runoff in the upland areas than in the floodplain areas adjacent to the channel

network. This can be explained by the comparatively steep, mostly agricultural upland

areas. However, sands and sandy loams with high infiltration rates dominate in these

parts of the watershed and thus, most of the water infiltrates and is not routed through

the landscape as surface runoff.

The spatial patterns of LATQ and slope values are similar and the spatial distribution

of LATQ values is reasonable. The highest LATQ values occur on the steepest slopes,

while almost no lateral flow occurs in the valley bottoms. In the steeper areas the

model routes the lateral flow through the landscape, whereas in the flat parts the water

percolates to the shallow groundwater aquifer.

In contrast to SURQ and LATQ, GWQ patterns indicate a routing scheme. This means

the main portion of flow routed through the landscape is groundwater flow, which in-

creases as the water moves across the watershed from the upland areas to the valleys.

Groundwater flow of several upslope grid cells concentrates in grid cells located directly
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Figure 4.5: Model 1.0DD simulated average annual (a) surface runoff [mm], (b) lateral
runoff [mm], (c) groundwater runoff [mm] and (d) evapotranspiration [mm] in the LRW

from 2004 to 2008.

upslope of channel heads, before it enters the stream channel. In these grid cells GWQ

values can be extraordinarily high (≥ 5000 mm), although this only affects 55 of 330055

grid cells in the LRW. The amount of groundwater decreases considerably as soon as the

water enters a stream channel. As the topographic index λaDD determines the position

in the landscape where the water is passed from the land-phase to the routing phase,

GWQ and λaDD (see Figure 4.5c and 4.2d) patterns look similar.

Considering inflow from higher landscape positions, the model produces more ET in

the valley bottoms than in the upland areas. Highest ET values occur in the water and

forested wetland areas around the channel network, while the urban land and agricultural

areas on higher landscape positions produce less ET (see Figure 4.5d).
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Figure 4.6: Differences ((a) Model 1.0DD − Model 1.5DD and (b) Model 1.0DD −
Model 0.5DD) of simulated average annual groundwater runoff [mm] in the LRW from

2004 to 2008.

4.3.3.2 Spatial sensitivity of the partitioning ratio

To spatially analyze the impact of drainage density, channel head location and flow

separation ratio on model output, differences in SURQ, LATQ, GWQ and ET between

the three models (Model 1.0DD - Model 1.5DD and Model 1.0DD - Model 0.5DD) were

analyzed. Differences in SURQ, LATQ and ET are relatively small and occur in small

areas. Therefore, spatial differences of SURQ, LATQ and ET are described in the text

and Figure 4.6 solely shows the GWQ difference maps.

In general, the Model 1.0DD − Model 1.5DD distributions are dominated by positive

values, while the Model 1.0DD − Model 0.5DD patterns mainly contain negative values.

The higher drainage density in Model 1.5DD compared to Model 1.0DD results in a

lower share of landscape flow and larger amounts of channel flow. The higher drainage

density reduces the impact of landscape processes in the watershed and SURQ, LATQ,

GWQ and ET values in Model 1.5DD are generally smaller than in Model 1.0DD. For

the same reason the Model 1.0DD − Model 0.5DD distributions mainly contain negative

values.
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The highest differences in SURQ values occur on urban and agricultural land and on

steep slopes and high LATQ differences occur at steep slopes in the upland areas. As

surface and lateral flow are relatively low in the LRW, SURQ and LATQ differences are

small (≤ 10 and 4 mm, respectively). ET differences are in the 40 mm range and mainly

occur in the upland areas, where the impact of the flow separation ratio is particularly

large. In contrast to the SURQ, LATQ and ET results, GWQ differences are very high

(up to 8000 mm). When the drainage density decreases, channel heads move downslope

and the share of landscape groundwater flow increases (see Figure 4.6). Thus, differences

in GWQ are strongly impacted by differences in channel head locations and indicate a

routing scheme that depicts the upslope (Model 1.0DD − Model 1.5DD) and downslope

(Model 1.0DD − Model 0.5DD) movement of channel head locations.

In general, the differences between the model output maps are reasonable and the results

show that the flow separation ratio is a crucial parameter for simulating the spatial

distributions of surface runoff, subsurface flow processes, and evapotranspiration in a

watershed.

4.4 Conclusion

In this study, a grid-based version of the SWAT landscape model was developed to sim-

ulate processes across grid cells in the land-phase of the hydrologic cycle. The fully

distributed model includes surface, lateral, and groundwater fluxes in each grid cell of

the watershed. The model was calibrated and validated for the Little River Watershed

(LRW, 334 km2) near Tifton, Georgia. The results suggest that the grid-based land-

scape model simulated the streamflow hydrograph at the outlet of the LRW satisfactorily

which is confirmed by the performance measures. The new model predicts trends in ob-

served data well and previously reported discrepancies between observed and simulated

streamflow e.g., during zero-flow conditions (Bosch et al., 2004; Feyereisen et al., 2007),

does not occur. However, model calibration can still be improved. Errors in the simu-

lated streamflow can be attributed to an underestimation of streamflow peaks and an

overestimation of streamflow during wetting-up periods. An additional challenge is the

extensive computation time associated with the grid based approach, which impedes

model calibration.

The new model requires a spatial description of landscape and channel flow processes.

For this purpose a flow separation ratio was selected that proved to be a crucial param-

eter for a plausible representation of flow and transport processes in a watershed. The

estimation of the partitioning ratio is based on a topographic index and considers soil

properties, topography, the drainage density of the watershed, and the morphology of
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the channel heads. The resulting index has shown the capability to plausibly represent

the spatial distribution of flow and transport processes in a watershed. The proposed

separation index assumes a steady drainage density and a steady size of the upslope

area contributing to runoff. However, the results of this study suggest that both as-

sumptions can be questioned. Drainage density and effective upslope contributing areas

seem to vary over time with landscape saturation on temporal scales ranging from a

single storm event to seasonal fluctuations. The selected separation index is able to

reasonably depict spatial variations of flow and transport processes in a watershed, but

fails to represent their temporal variations. Comparisons between the measured and

simulated hydrographs confirm that a dynamic partitioning ratio would significantly

improve the model.

As the availability of spatially distributed model output is a major advantage of the

grid-based model, the spatial distribution of the hydrologic components was analyzed

qualitatively. The spatial LRW model results indicate that the grid-based landscape

model is able to reasonably simulate the impact of the landscape position on surface

runoff, subsurface flow and evapotranspiration. To assess the impact of drainage den-

sity on model output a total of three models with different drainage densities that were

obtained from literature were constructed. Considerable differences in the resulting spa-

tial distributions of flow components and evapotranspiration suggest a strong influence

of drainage density and flow partitioning ratio and indicate the range of uncertainty

of the proposed approach. Thus, the results presented should be considered as a rough

estimate of the spatial distribution of hydrologic components and the presented method-

ology should be considered as a first step in the development of the grid-based SWAT

model. In general, the grid-based SWAT landscape model is able to provide a plausi-

ble basis for water quantity and quality simulations when a detailed spatial analysis is

required.

However, results presented in this paper are only valid for the LRW. To reduce the

range of model uncertainty additional development, calibration and testing of the grid-

based SWAT landscape model at various scales with different hydrologic and landscape

characteristics is necessary. Future studies will follow the stepwise testing of the model

and focus on the quantitative evaluation of hydrologic components, and on the validation

of the proposed flow separation methodology in small scale basins. In addition, future

research will include the development of a dynamic flow separation ratio and spatial

model validation using remote sensing data (e.g., evapotranspiration (see Glenn et al.,

2010; Vinukollu et al., 2011) or soil moisture (e.g., Cashion et al., 2005; Pierdicca et al.,

2010)). As testing and development of the model is expanded, the full utility of the

model will be realized.
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Due to the large number of spatial units in large watersheds, computation time of the

grid-based model is very long and thus grid-based model development and application

seems to be most efficient for small-scale watersheds. Furthermore, the spatial resolu-

tion of input data (climate, topography, land use, soil) is often too coarse for detailed

grid-based modeling. However, geographic information systems and remote sensing tech-

niques develop rapidly and an increasing amount of spatially and temporally detailed

data becomes available. The integration of these data into the SWAT landscape model

seems to be very promising for enhanced spatial analysis of environmental issues within

a watershed.

4.5 Acknowledgments

The authors would like to thank the U.S. Department of Agriculture Agricultural Re-

search Service Southeast Watershed Research Laboratory (SEWRL) for providing the

data sets. We also express our gratitude for the efforts of the anonymous reviewers.



Chapter 5

An interpolation and

improvement approach for

remotely sensed land cover data

H. Rathjens, K. Dörnhöfer, and N. Oppelt
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Abstract

Land cover data gives the opportunity to study interactions between land cover status

and environmental issues such as hydrologic processes, soil properties, or biodiversity.

Land cover data often bases on classification of remote sensing data that seldom provides

the requisite accuracy, spatial availability and temporal observational frequency for en-

vironmental studies. Thus, there is a high demand for accurate and spatio-temporal

complete time series of land cover. In the past considerable research was undertaken

to increase land cover classification accuracy, while less effort was spent on interpola-

tion techniques. The purpose of this article is to present a space-time interpolation and

revision approach for remotely sensed land cover data. The approach leverages special

properties known for agricultural areas such as crop rotations or temporally static land

cover classes. The newly developed IRSeL-tool (Interpolation and improvement of Re-

motely Sensed Land cover) corrects classification errors and interpolates missing land

cover pixels in the temporal or spatial dimension. The easy-to-use tool solely requires

an initial land cover data set. The IRSeL specific interpolation and revision technique,

the data input requirements and data output structure are described in detail. A case

67
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study in an area around the city of Neumünster in Northern Germany from 2006 to

2012 was performed for IRSeL validation with initial land cover data sets (Landsat TM

image classifications) for the years 2006, 2007, 2009, 2010 and 2011. The results of

the case study showed that IRSeL performs well; including years with no classification

data Cohen’s kappa values for IRSeL interpolated pixels range from 0.53 to 0.77. IRSeL

application significantly increases the accuracy of the land cover data; kappa values rise

about 0.08 in average resulting in kappa values of at least 0.84. Considering estimated

reliabilities, the IRSeL tool provides a temporally and spatially completed and revised

land cover data set that allows drawing conclusions for land cover related studies.

5.1 Introduction

Land cover is a fundamental variable that impacts on and links many parts of the envi-

ronment (Foody, 2002). Furthermore, it is well established that land cover significantly

effects processes related to biogeochemical cycling (Turner and Rabalais, 2003), soil ero-

sion (Ouyang et al., 2010b), water quality (Allan et al., 1997), water quantity (Miller

et al., 2002), sustainable land use and biodiversity (Burkhard et al., 2012). DeFries

and Eshleman (2004) identified interactions between land cover change and hydrologic

processes as a major future research issue. Thus, there is a high demand for continu-

ously available land cover maps. During the past decades, researchers used time series

of land cover data for characterising, understanding and evaluating patterns of land

cover change. Kroll et al. (2012), for example, used time series of land cover data to

detect changes in ecosystem services, Guo and Gifford (2002) estimated the effects of

land cover change on soil carbon stocks, Jenerette and Wu (2001) developed an urban

land cover change model based on time series of remote sensing land cover data, and Pai

and Saraswat (2011) evaluated the impact of land cover change on the hydrologic cycle.

In this context, the terms “land cover” and “land use” are often used synonymously.

Land cover is defined as “the observed physical cover of the Earth’s surface”. In contrast,

land use is “characterised by the arrangements, activities and inputs people undertake

in a certain land cover type” (FAO, 1997; FAO/UNEP, 1999). Remote sensing has

shown the ability to provide a map-like representation of the Earth’s land cover status

using satellite imagery and image-processing software (e.g., Foody, 2002). The process

of land cover mapping is typically based on image classification techniques that convert

the spectral response of the Earth’s surface into a thematic map depicting land cover

classes. Over the last decade remote sensing and GIS (Geographic Information System)

developed rapidly and increased the availability of land cover data. Thus, remote sensing

became a commonly used source for land cover mapping.
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Understanding the significance of land cover as an environmental variable and predicting

the effects of land cover change is, however, limited by the availability of accurate land

cover data (Foody, 2002). For many applications the accuracy of image classifications is

often judged insufficient (Townshend, 1992; Gallego, 2004; Foody, 2008). A commonly

stated accuracy measure is 85 % correct allocation (Foody, 2008). Reviewing 15 years

of classification studies, Wilkinson (2005) stated that, despite all effort, no upward

trend in classification accuracy could be observed. In addition, remotely sensed land

cover data sets are often characterised by missing data in either the spatial or temporal

dimension. In general, an area remains unclassified if (1) no image data is available for

a required point in time, e.g., one year in a time series (temporal gap) or (2) no defined

spectral class is adequate for the pixel or clouds mask parts of the image (spatial gaps).

Despite an increasing availability, the acquisition of land cover data with sufficiently

high temporal availability and accuracy remained challenging; statistical analysis and

interpolation techniques are able to improve both.

There have been numerous attempts to advance spatio-temporal analysis including the

development of new data models and the extension of statistical techniques to the space-

time domain. Wentz et al. (2010) provided a review and references for various space-

time interpolation methods with details on how existing spatial interpolation methods

(e.g., inverse distance weighting, splining, kriging or spatial regression) may be extended

to the temporal dimension. They stated that most efforts, however, have focused on

interpolation in either the spatial or the temporal dimension. Thus, they developed an

ensemble approach which integrates multiple techniques and uses ancillary data to create

a complete data set in the temporal and spatial dimension for any Earth-related data.

They used point data sets which tend to have a high observational density in the temporal

dimension (e.g., climate data) and spatially highly dense raster data (e.g., Landsat data).

Other land cover related space-time interpolation approaches (e.g., Clarke and Hoppen,

1997; Clarke and Gaydos, 1998; Jenerette and Wu, 2001; Goldstein et al., 2004) focus

on the re-creation and prediction of urban sprawl.

Any interpolation technique has, however, advantages and limitations which depend on

both the spatial and temporal variation in the data. In the past, considerable research

was undertaken to increase land cover classification accuracy (Foody, 2008), while less

effort was spent on agricultural land cover interpolation techniques. Currently, no in-

terpolation technique exists for time series of remotely sensed land cover data which

addresses spatial and temporal gaps.

Most environmental studies demand accurate and spatio-temporal complete time series

of land cover data; the authors therefore developed a tool to improve existing land cover

series. The IRSeL (Improvement of Remotely Sensed Land cover) approach interpolates
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remotely sensed land cover data, considering characteristics of agriculturally used areas

such as land cover changes or crop rotations. IRSeL improves the data set by (1)

removing unclassified pixels using an individual function for each no-data pixel and (2)

minimising classification errors based on statistical analysis. Since the approach bases

on the statistics of the initial land cover data set, it can be applied in data scarce areas

where no further spatial data is available; it solely requires an appropriate initial land

cover data set of the area of interest.

This study has two major objectives: (1) to introduce an efficient and easy-to-use ap-

proach to improve remotely sensed land cover series and (2) to demonstrate its effec-

tiveness, limitations and challenges. An area around the city of Neumünster (Schleswig-

Holstein, Germany) served as a test site, where an initial land cover series from 2006 to

2012 was available. Based on this data, the paper describes the IRSeL framework and

explains its components and processors; overall management structure and data flow

handling is outlined afterwards. Using the Neumünster data series IRSeL turned out as

an efficient and easy-to-use post-classification tool.

5.2 Materials and methods

5.2.1 Study area

The study area (Figure 5.1) is located near the city of Neumünster in the federal state of

Schleswig-Holstein (Germany) and covers an area of approximately 1237 km2. The flat

landscape is interspersed with lakes and wetlands; urban areas cover the central part

while arable land, pasture and forests characterise the surroundings indicating an intense

agricultural use. The areas west of Neumünster are sandur outwash plains predominated

by corn and pasture on sandy and peaty, less fertile soils. Moraines of the Weichselian

glaciation form the eastern part of the study area; where winter wheat and rape occur on

the more fertile, loamy soils. Farmers plant corn mono-culturally or apply a three-year

crop rotation of winter wheat – winter wheat – rape (Oppelt et al., 2012).

5.2.2 Landsat data, image classification, reference data and classifica-

tion accuracy

Five almost cloud-free Landsat-5 TM (level 1T, see Geological Survey (U.S.), 1998)

images were available to classify the study area in a time period between 2006 and 2012

(see Table 5.1). The Landsat path 196, row 22 data entirely covered the study area;

subsets (1511 × 910 pixels) were used for the classification (see Figure 5.1). The map
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Figure 5.1: The study area and its location in Germany.

projection of the entire data set was Transverse Mercator UTM zone 32N, WGS84; in

addition, the images were co-registered with high accuracy.

For each classification, the input consisted of the green and red wavelengths of the

visible spectral region as well as the near and mid infrared (bands 2, 3, 4, 5 and 7).

Due to atmospheric influences the blue wavelengths (band 1) were excluded. Radiances

[W/(m2 µm ster)] were retrieved from the original grey values [Digital Number] of the

Landsat TM level L1T products by means of the equations supplied by the Science Data

Users Handbook (Geological Survey (U.S.), 1998). Clouded parts were masked prior to

the classification. All datasets were classified using a pixel-based, supervised maximum

likelihood approach included in the image analysis software ENVI 4.2 (ITTVIS, 2006).

Supervised classification approaches require reference data, which was collected during

field mappings for the years 2009 to 2012; each of the field mappings covered about

5 % of the study area. Prior to 2009, no detailed survey was available. Therefore, a

Table 5.1: Landsat-5 TM data used for classification, co-registration accuracies (root
mean square error (RMSE) in Y and X direction),

Year
Acquisition co-registration accuracy Cloud

Unclassified area OA
date RMSE–Y / RMSE–X coverage

2006 2006-06-09 0.64 m / 0.61 m 4.36 % 10.74 % 84 %
2007 2007-04-25 0.69 m / 0.66 m 0.66 % 5.56 % 86 %
2008 - - - 100.00 % 87 %
2009 2009-07-03 0.70 m / 0.63 m 0.32 % 2.95 % -
2010 2010-08-07 0.62 m / 0.52 m 0.30 % 4.40 % 85 %
2011 2011-08-26 0.73 m / 0.64 m 7.26 % 11.90 % 76 %
2012 - - - 100.00 % -
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Table 5.2: Land cover classes and number of pixels (#) used for accuracy assessment.

Land cover
# Description

class

CSIL ∼ 4000 Forage and energy corn silage
RAPS ∼ 2500 Rapeseed
WWHT ∼ 4000 Crop fields, mainly winter cereals (winter wheat, winter rye,

winter barley, winter triticale)
PAST ∼ 4000 Pasture, meadow
FRSD ∼ 3400 Deciduous forest land, mixed forest land, groves, orchards
FRSE ∼ 4400 Evergreen forest land
WETN ∼ 1300 Non-forested wetland
WATR ∼ 3900 Permanent water areas, lakes and streams
URBN ∼ 1100 Urban land, residential, commercial services, industrial,

transportation

dataset provided by the Ministry of Energy, Agriculture, the Environment and Rural Ar-

eas Schleswig-Holstein (MLUR, 2010) complements the information. It contains annual

agricultural data on field block level of the European IACS (Integrated Administration

and Control System) database from 2006 onwards. ATKIS (Official Topographical Car-

tographic Information System LVA, 2007) data of the year 2007 served as reference for

land cover classes which remain static over time (e.g., forest, water bodies, urban areas,

wetlands). Reference pixels were set to cover all land cover classes and then randomly

divided into two groups (for classifier training and accuracy assessment).

Since the land cover data set is mainly used as input for hydrologic models (see Rathjens

and Oppelt, 2012b; Oppelt et al., 2012), distinctions were made between classes that are

expected to have a different hydrological behaviour. Table 5.2 presents the nine resulting

land cover classes. Class histograms were checked for normality; then a supervised

maximum likelihood classification was performed. The maximum likelihood classifier

calculates probability density functions for each class based on the spectral behaviour

of the training pixels. During classification, the pixels are assigned to the class with

the highest probability for all spectral bands. A pixel is not assigned to any class if all

probabilities are below a user-defined threshold (Campbell and Wynne, 2011), which was

set to 0.95. No post-classification refinements such as urban masks or filter techniques

were applied.

Cross-tabulations of classified versus reference data (see Table 5.2) generate error matri-

ces. To ensure the comparable accuracy statistics over the years, the same set of reference

data was used for temporally static classes (FRSD, FRSE, WETN, WATR and URBN,

see Table 5.2 for abbreviations). For arable land and pasture (CSIL, RAPS, WWHT and

PAST) reference pixels were chosen separately for each classification or year. Overall ac-

curacy (OA), kappa coefficient and per-class (user’s and producer’s accuracy (UA, PA))
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statistics (see Congalton, 1991) were derived from the confusion matrices, which also in-

cluded unclassified areas. OA measures the percentage of pixels allocated correctly. The

kappa coefficient incorporates the off-diagonal elements of the confusion matrices (i.e.

classification errors) and represents agreement obtained after removing the proportion

of agreement that could be expected to occur by chance (Cohen, 1960). Values equal to

1 indicate a perfect agreement between observed and classified pixels, while values equal

to 0 indicate that there is no agreement among classification and reference other than

what would be expected by chance. UA provides the share of correctly allocated pixels

compared to the total number of pixels classified into a particular class. Thus, 1−UA

identifies the error of commission. PA is the percentage of correctly classified pixels to

all reference pixels a class. A value close to 1 indicates a large proportion of the pixels

that were assigned correctly. Hence, 1−PA represents the error of omission.

The accuracy target of a thematic map derived by an image classification depends on

the specific application for which the land cover data should be used (e.g., hydrologic

modelling or ecosystem service assessment). Although a generally applicable accuracy

is not appropriate, a widely reported value is 85 % (e.g., Foody, 2008). For the present

land cover classifications OAs range from 76 to 87 % (see Table 5.1). Referring to Foody

(2008), the 2006 and 2011 classification accuracies might be judged insufficient. Mis-

classifications occurred particularly in urban and wetland areas (URBN and WETN).

Furthermore, considerable parts of the land cover maps remained unclassified (up to

11.90 %); no land cover information is available for the years 2008 and 2012 (see Ta-

ble 5.1).

5.3 IRSeL: An interpolation and improvement approach

for remotely sensed land cover data

5.3.1 IRSeL framework

The goal of IRSeL is to refine land cover maps in both the spatial and temporal dimension

(see Figure 5.2). To handle data flow, IRSeL uses two temporal analysis processors

(TP1 and TP2), one spatial interpolation processor (SP) and two temporal interpolation

processors (TP3 and TP4). The remotely sensed land cover maps form a gridded space-

time cube L. Using L as input, TP1 provides an average (or mode) land cover grid

L; then TP2 is applied to calculate change statistics or crop rotations for each land

cover class. A maximum likelihood processor integrates the output from TP1, TP2 and

temporally static land cover classes to refine L. This maximum likelihood processor

combines three interpolation processors (SP, TP3 and TP4). For each no-data pixel,
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Figure 5.2: General organisation of IRSeL. Land cover data are input in the form
of a gridded space-time cube L on a yearly time step with missing data in either the
spatial or temporal dimension. A mode land cover grid (L) is derived from TP1 and
land cover change or crop rotation statistics are provided by TP2. The maximum
likelihood processor integrates a spatial processor (SP), two temporal processors (TP3
and TP4) and the intermediate data to interpolate the land cover cube for each year y
of the period of interest to complete the space-time cube. P̌ provides reliabilities for the
interpolated and revised pixels; and Ľ represents the completed and revised space-time

cube.

these processors calculate occurrence probabilities of all land cover classes; SP is based

on the spatial neighbourhood; TP3 is based on preceding time layers while succeeding

time layers set up TP4. Accordingly, the maximum likelihood processor calculates the

land cover class which is most likely to occur for each no-data pixel.

Based on the initial data set L, IRSeL creates a complete space-time cube Ľ. Input and

output of IRSEL as well as the relationship between the processors are illustrated in

Figure 5.2 and will be explained in detail below.

5.3.2 IRSeL input data

IRSeL requires an initial land cover series in the form of a gridded space-time cube and

a set of temporally static land cover classes. The period of interest is represented by

a set Y , in which, for the given example, each y ∈ Y represents one year; the number

of rows and columns in the land cover series defines the spatial extent in “x” and “y”

direction. Ω0 is the set of land cover classes, including the “no-data” or “unclassified”

class. Denote the set of temporally static land cover classes with ΩS ⊆ Ω0. All land

cover layers are assumed to have the same spatial resolution and to cover the same area,
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i.e. the number of rows (nrow) and the number of columns (ncol) remain constant; hence

the set of rows is Nrow := {1, . . . ,nrow} and Ncol := {1, . . . ,ncol} is the set of columns.

Thus, the annual land cover is arranged in a gridded data cube including no-data pixels:

L := (ly,i,j)y∈Y,i∈Nrow,j∈Ncol ∈ Ω
|Y |×nrow× ncol
0 ,

where ly,i,j is the value (i.e. the respective land cover class) of a pixel with a given

coordinate (y, i, j) explaining the temporal (year y ∈ Y ) and spatial (row i ∈ Nrow

and column j ∈ Ncol) location within the data cube. Define 0 as the no-data value,

i.e. ly,i,j = 0 for each no-data pixel. Hence, ly,i,j is a spatial data gap if i′ ∈ Nrow

and j′ ∈ Ncol exist satisfying ly,i′,j′ 6= 0 and a temporal data gap if ly,i′,j′ = 0 for each

i′ ∈ Nrow and j′ ∈ Ncol. IRSeL therefore provides a revised land cover data cube Ľ

without data gaps or unclassified pixels, i.e. all elements of Ľ are from Ω := Ω0\{0}.

5.3.3 Model processor TP1

TP1 calculates an average land cover to identify temporally static land cover classes. For

some pixels, classification errors may lead to inter-annual variations in class assignment,

even for these static land cover classes. Class assignment based on the average land

cover may therefore improve the quality of the land cover data.

ΩS ⊆ Ω represents the land cover classes that are expected to remain static over

time. Thus, ΩR := Ω\ΩS are defined as land cover classes varying in the temporal

dimension. Denote li,j ∈ Ω for each i ∈ Nrow and j ∈ Ncol as the most frequently

occurring land cover class in row i and column j during the period of interest; i.e.

li,j = mode((ly,i,j)y∈Y ). L contains the temporal most frequently occurring land cover

class for each pixel. It takes the form

L :=
(
li,j
)
i∈Nrow,j∈Ncol

∈ Ωnrow× ncol (5.1)

and can be interpreted as the average land cover layer during the period of interest.

5.3.4 Model processor TP2

TP2 calculates land cover change statistics (or crop rotations) for the entire study area

and the entire period of interest. The statistics reflect the temporal land cover change

in the study area; consequently they are crucial input for the space-time interpolation.

For each time step, the probability of a pixel to change its land cover (ω̂ ∈ Ω changes to

ω ∈ Ω) is calculated; in the forward direction the probability is calculated by dividing
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the number of occurring changes (ω̂ to ω) by the total number of changes (ω̂ to any

ω′ ∈ Ω); the calculation of changes backwards in time (current land cover ω̂, land cover

in previous time step ω) is analogous. The probabilities are specified by the stochastic

vectors

pω̂ := (pω̂ (ω))ω∈Ω , pω̂ (ω) :=
#p (ω̂, ω)∑

ω′∈Ω #p (ω̂, ω′)
and

fω̂ := (fω̂ (ω))ω∈Ω , fω̂ (ω) :=
#f (ω̂, ω)∑

ω′∈Ω #f (ω̂, ω′)
,

where pω̂ (ω) [fω̂ (ω)] determines the probability that land cover ω is the predecessor

[follower] of land cover ω̂ and #p (ω̂, ω) [#f (ω̂, ω)] is the number of backward [forward]

land cover combinations occurring in L. It is pω̂, fω̂ ∈ [0, 1]|Ω| and
∑

ω∈Ω pω̂ (ω) = 1 =∑
ω∈Ω fω̂ (ω) for each ω̂ ∈ Ω. Corresponding to the stochastic vectors, the probability

measures pω̂ and fω̂ can be expressed as

P p
ω̂ : 2Ω → [0, 1] , E 7→

∑
ω∈E

pω̂ (ω) and

P f
ω̂ : 2Ω → [0, 1] , E 7→

∑
ω∈E

fω̂ (ω) for each ω̂ ∈ Ω.
(5.2)

Thus, (Ω, 2Ω, P p
ω̂) and (Ω, 2Ω, P f

ω̂ ) are probability spaces for each ω̂ ∈ Ω. Both probability

measures provide temporal land cover statistics for the study area considering preceding

(P p
ω̂) and succeeding (P f

ω̂ ) changes in land cover.

5.3.5 Maximum likelihood processor

The maximum likelihood processor is used to find a land cover class appropriate for a

specific no-data pixel; it analyses the spatial and temporal neighbourhood of the data

gaps and replaces static land cover pixels that do not match L. Therefore, a spatial

(SP) and two temporal (TP3 and TP4) interpolation processors are applied parallel to

estimate the most likely land cover class for each pixel (also shown in Figure 5.2).

5.3.5.1 Model processors TP3 and TP4

TP3 and TP4 provide occurrence probabilities of land cover classes for each no-data

pixel. These probabilities base on the relation of the no-data pixel to its temporal

neighbourhood and the land cover change statistics (calculated by TP2). Both processors

operate analogously; TP3 analyses the preceding and TP4 the succeeding time slices.

The temporal distances of the no-data pixel ly,i,j ∈ L to the corresponding pixel assigned
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to a land cover class in preceding and succeeding time slices are given by:

ypy,i,j :=

∞, if ∅ = {y′ ∈ Y : y′ < y ∧ ly′,i,j 6= 0}

y −max{y′ ∈ Y : y′ < y ∧ ly′,i,j 6= 0}, else
and

yfy,i,j :=

∞, if ∅ = {y′ ∈ Y : y′ > y ∧ ly′,i,j 6= 0}

y −min{y′ ∈ Y : y′ > y ∧ ly′,i,j 6= 0}, else
,

(5.3)

where ypy,i,j is the temporal distance in years of ly,i,j to the nearest preceding data set

which includes data at that particular pixel location, while yfy,i,j is the temporal distance

to the nearest succeeding data set.

For each no-data pixel, TP3 and TP4 calculate the probability of ω ∈ Ω being assigned to

a realistic land cover class; they evaluate the probability measures provided by TP2 (Eq.

(5.2)) weighted by the temporal distances of the specific pixel (Eq. (5.3)). Formally,

TP3 and TP4 can be stated as

1

ypy,i,j
P p
ωp ({ω}) and

1

yfy,i,j
P f
ωf ({ω}) , (5.4)

where ωp = ly−yp,i,j and ωf = ly+yf ,i,j are the temporally nearest data pixels in row

i and column j, specified by the temporal distances ypy,i,j and yfy,i,j . Values close to 1

indicate a high reliability of ω while values close to 0 indicate a low estimation reliability.

According to TP3 and TP4, the statistically best estimates for the actual no-data pixel

are the arguments of the maximum of Eq. (5.4).

5.3.5.2 Model processor SP

SP provides occurrence probabilities of land cover classes for each no-data pixel ly,i,j ∈ L,

if i′ ∈ Nrow and j′ ∈ Ncol exist satisfying ly,i′,j′ 6= 0 (i.e. a spatial neighbourhood of the

no-data pixel exists). These probabilities rely on the relationship between the actual

no-data pixel and its spatial neighbourhood. Within a year y, the spatial distance (in

raster units dy,i,j) from the no-data pixel to the nearest pixel assigned to a land use class

can be expressed as

dy,i,j := min{(dr, dc) ∈ Nrow×Ncol : ly,i±dr,j±dc 6= 0}.

The corresponding neighbourhood Sy,i,j is defined as a subset of the current land cover

layer specified by a dy,i,j×dy,i,j matrix around the actual no-data pixel located in (y, i, j).
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The probability for each land cover class ω ∈ Ω to occur in Sy,i,j is given by the stochastic

vector

sy,i,j := sy,i,j (ω)ω∈Ω , sy,i,j (ω) =
#y,i,j (ω)∑

ω′∈Ω #y,i,j (ω′)
,

where sy,i,j(ω) indicates the probability of ω to occur in Sy,i,j ; #y,i,j (ω) indicates

how often a specific land cover class ω appears in the neighbourhood Sy,i,j . It is∑
ω∈Ω sy,i,j (ω) = 1 and sy,i,j (ω) ≥ 0 for each ω ∈ Ω. The probability measures

P s
y,i,j : 2Ω → [0, 1] associated to the stochastic vectors sy,i,j take a form analogous

to Eq. (5.2) and (Ω, 2Ω, P s
y,i,j) forms a probability space for each no-data pixel.

SP estimates the reliability for each no-data pixel for being assigned to a realistic land

cover class ω ∈ Ω. The estimation bases on the neighbourhood of the actual no-data

pixel, weighted by its spatial distance. SP can be stated as

1

dy,i,j
P s
y,i,j ({ω}) . (5.5)

Values close to 1 indicate a high reliability of ω to be the missing land cover. According to

SP, the statistically best estimate for the no-data pixel is the argument of the maximum

of Eq. (5.5).

5.3.5.3 Assemblage of model processors

All model processors are combined to a maximum likelihood approach to complete the

land cover space-time cube L.

For each no-data pixel, the processor estimates occurrence probabilities for each land

cover class. TP3, TP4 (Eq. (5.4)) and SP (Eq. (5.5)) provide statistical information

related to the temporal and spatial dimension. Together they form an individual prob-

ability measure P̌y,i,j which is used to find the statistically best land cover class for the

no-data pixels. P̌y,i,j , takes the form

P̌y,i,j : Ω→ [0, 1] ,

ω 7→ 1

3yp
P p
y,i,j ({ω}) +

1

3yf
P f
y,i,j ({ω}) +

1

3dy,i,j
P s
y,i,j ({ω}) .

(5.6)

The statistically best value ω̌y,i,j for the no-data pixel located in (y, i, j), excluding the

static land cover-classes, is given by the argument of the maximum of P̌y,i,j :

ω̌y,i,j := arg maxω∈ΩR
P̌y,i,j(ω). (5.7)
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Then the processor creates the revised land cover data set Ľ. For each pixel, the original

land use class (given by L), the most frequent value (given by L) or the most likely value

(given by Eq. (5.7)) is used. Ľ takes the form

Ľ : =
(
ľy,i,j

)
y∈Y,i∈Nrow,j∈Ncol

∈ Ω|Y |×nrow× ncol,

ľy,i,j : =


li,j if li,j ∈ Ωs

ω̌y,i,j if ly,i,j ∈ Ωs ∪ {0} ∧ li,j /∈ ΩS

ly,i,j else

,
(5.8)

where the first line in the definition of ľy,i,j represents the location of the static land

cover classes. The second line fills data gaps and replaces static land cover classes if

they do not match with the average land cover layer L. The third line represents initial

land cover classes without replacement or revision.

Finally, P̌y,i,j(ľy,i,j) provides a statistical estimation of the reliability of the interpolated

or revised land cover class. Values close to 1 represent very high reliabilities, whereas

values close to 0 indicate a less reliable interpolation.

5.3.6 IRSeL accuracy assessment

The accuracy of IRSeL was evaluated by answering two questions using the test data

series: (1) Does the approach work correctly for spatial and temporal data gaps? (2)

Does the approach improve the existing land cover classifications?

To evaluate if the approach estimated land cover for spatial data gaps correctly, inter-

polated pixels for the six years (2006, 2007, 2009, 2010 and 2011) were compared to

observed data using UA and PA derived from confusion matrices. To evaluate if the

approach estimated land cover for temporal data gaps correctly, estimated pixels were

compared to mapped data for the years 2008 and 2012, where reference data existed but

no Landsat TM image was available.

To evaluate whether IRSeL replaces unclassified pixels correctly, the classification accu-

racies (OA, kappa, UA and PA) were compared to the statistics derived from the IRSeL

maps. The same set of reference pixels was used for the accuracy assessment of the orig-

inal and IRSeL modified classifications. The non-parametric McNemar’s test (Foody,

2004; Agresti, 2007) was used to evaluate whether the differences in quality between

original and IRSeL maps (here the difference in the proportion of correctly allocated

pixels) are statistically significant.
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Figure 5.3: Scheme of the case study’s land cover space-time data cube before and
after IRSeL application. Black parts in the initial land cover maps (L) represent no-
data areas. Ľ shows the IRSeL interpolated land cover maps. Bright (dark) areas in P̌

depict high (low) reliabilities of IRSeL adjusted areas.

5.4 Results and Discussion

Figure 5.3 illustrates the structure of the IRSeL case study. IRSeL was applied using

the spatially and temporally fragmented initial land cover data set from 2006 to 2012

(see Table 5.1). In the following section results and accuracies obtained are discussed in

detail.

5.4.1 Crop rotations and land cover change statistics

Figure 5.3 provides information about crop rotations calculated by TP2; moreover, it

summarises the probabilities of the land cover classes to be preceded and followed by

other land cover classes, which were derived from the successive 2009 − 2011 Landsat

TM classifications. The classes WATR, FRSE and FRSD showed high probabilities

(> 0.60) to be the same class in the preceding and following year, while WETN and

URBN exhibited lower probabilities to be static. The low probabilities of the latter are

probably caused by their poor performance during the classification; knowledge about

the study area, however, underpinned a static character of all these classes. Thus, these

five classes were considered as static classes.

Regarding the four agricultural classes PAST, had highest probabilities (> 0.70) to be

followed and preceded by the same class. The same applies for CSIL (> 0.50) whereas

a RAPS pixel showed a probability > 0.50 to be WWHT in the next or previous year.

WWHT appeared most likely to remain WWHT (0.27 resp. 0.36). The probabilities
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Table 5.3: IRSeL (TP2, Eq. (5.2)) estimated probabilities of land cover change and
crop rotation from the original 2006, 2007, 2009, 2010 and 2011 classifications. Bold
numbers represent the highest change probabilities per class. Probabilities smaller than

0.01 are denoted as ”-”.

LC class Land cover change probabilities for the next / preceding year

current
CSIL RAPS WWHT PAST FRSD FRSE WETN URBN WATR

year

CSIL .52 / .53 .04 / .04 .11 / .18 .14 / .14 .06 / .04 - / - .01 / - .11 / .06 - / -
RAPS .15 / .10 .14 / .11 .58 / .50 .04 / .19 .01 / .02 - / - .01 / - .07 / .07 - / -
WWHT .22 / .19 .23 / .28 .27 / .36 .08 / .09 .05 / .03 .04 / - .01 / - .11 / .05 - / -
PAST .10 / .11 .05 / .01 .04 / .05 .70 / .76 .04 / .04 - / - .02 / .02 .06 / .02 - / -
FRSD .06 / .09 .01 / - .03 / .05 .08 / .08 .67 / .66 .06 / .02 .01 / .01 .08 / .08 - / -
FRSE - / .01 - / - - / .11 - / - .06 / .15 .85 / .68 .01 / - .07 / .06 - / -
WETN .08 / .15 .03 / .03 .03 / .09 .49 / .38 .07 / .06 - / .02 .19 / .14 .10 / .15 - / -
URBN .11 / .16 .05 / .03 .05 / .12 .04 / .13 .10 / .07 .03 / .02 .02 / .01 .60 / .46 - / -
WATR - / - - / - - / - - / - - / - - / .01 - / - - / .01 .99 / .97

of WWHT rotating to CSIL or RAPS were slightly lower. These results indicate the

predominance of CSIL mono-cropping and a crop rotation between WWHT and RAPS,

which confirms existing studies (Oppelt et al., 2012).

5.4.2 Interpolation accuracy

5.4.2.1 Interpolation accuracy of spatial data gaps

Table 5.4 lists accuracy measures derived from spatial gaps (i.e. unclassified or masked

pixels in 2007, 2009, 2010 and 2011) that were assigned to land cover classes by IRSeL.

The sample size depends on the coincidental intersection of spatial data gaps and valida-

tion pixels. Accuracy measures of classes with small sample sizes were not representative,

e.g., WATR in 2006 or FRSD in 2007. The use of the same validation data, however,

was essential to compare accuracies of different years.

For interpolated pixels, OA and kappa values ranged from 0.63 to 0.81 and 0.53 to

0.77 respectively. The dataset of 2010 offered highest accuracies. In this year IRSeL

could use land cover information from 2009 and 2011 to fill the gaps; the close temporal

neighbourhood (crop rotation statistics) and the spatial neighbourhood facilitated a

correct assignment.

The filling of no-data pixels with static land cover classes was based on the average land

cover map L (Eq. (5.2)). Errors of commission and omission < 0.20 underpinned that

IRSeL performed well for these classes. Whereas the static classes showed high accuracy

measures agricultural classes exhibited high variabilities between the classes and showed

inter-annual differences within a class. RAPS, for instance, tended towards low PAs

but high UAs. The low crop rotation probability of this class increased the error of

omission (1-PA) since actual RAPS pixels were most probably assigned to WWHT (see

Figure 5.3). Gap pixels are solely assigned to RAPS if the spatial neighbourhood was
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Table 5.4: Statistics (PA, UA, OA, kappa values and number of interpolated pixels
(#)) for the 2006, 2007, 2009, 2010 and 2011 IRSeL interpolated spatial data gaps.

Missing values are denoted as ”-”.

LC class
2006 2007 2009 2010 2011

PA UA # PA UA # PA UA # PA UA # PA UA #

CSIL .63 .50 638 .44 .51 232 .87 .35 52 .53 .72 217 .67 .55 940
RAPS .50 .97 133 .17 .63 168 .82 1.0 108 .26 1.0 46 .23 .51 197
WWHT .41 .55 752 .84 .60 346 .48 .73 206 .61 .37 31 .28 .55 864
PAST .88 .85 577 .49 .47 256 .88 .48 49 .79 .47 113 .83 .56 732
FRSD .88 .31 17 .71 .45 7 - - 0 .80 .92 71 .99 .94 552
FRSE .88 .97 130 .97 .97 36 - - 0 .91 .80 53 - - 1
WETN .81 1.0 58 .08 .33 12 .78 1.0 9 .97 1.0 74 .87 1.0 60
URBN .91 .78 261 .89 .87 301 .87 .97 299 .95 .95 327 .86 .93 306
WATR .67 .67 3 - - 2 .93 .93 14 .99 .99 169 .81 .93 16
OA .66 .63 .75 .81 .65
Kappa .57 .53 .68 .77 .57

predominated by RAPS resulting in low errors of commission (1-UA). Between the years,

the varying sample size of tested pixels hampered a direct comparison of class related

accuracy measures. Summarising the filling of spatial no-data pixels, IRSeL assignment

performed at least 53 % better than a random allocation (see kappa values in Table 5.4).

5.4.2.2 Interpolation accuracy of temporal data gaps

With respect to the lack of Landsat data for 2008 and 2012, kappa and OA values of in-

terpolated pixels were ≥ 0.65 (see Table 5.5). Higher accuracies for the year 2008 (kappa

0.76) entailed from preceding and subsequent datasets whereas the IRSeL application

on the year 2012 represented an extrapolation. In both cases neither remote sensing nor

classification data were available; the IRSeL land cover estimation was based solely on

crop rotation statistics and the average land cover map.

The average land cover map accurately represented static land cover classes and thus

IRSeL maps showed high accuracies within these classes, whereas IRSeL performance

for agricultural classes was on a lower level. Lower UA values for agricultural classes

were related to the specific behaviour of RAPS: the low probability of RAPS in the crop

rotation analysis (see Table 5.3) led to the absence of this class in IRSeL derived land

cover maps; RAPS showed highest probabilities to follow or precede a WWHT pixel

(0.23 resp. 0.28); at the same time, the probability for a WWHT pixel was highest to be

WWHT in the next (0.27) resp. earlier year (0.36). As a result, RAPS statistically had

no chance to be set in IRSeL fillings of temporal data gaps. Furthermore, RAPS was a

sparsely and unevenly distributed land cover in the study area (see Figure 5.4). Accord-

ing to the probabilities, IRSeL falsely assigned RAPS pixels to WWHT. Considering a

complete lack of data otherwise, PAs and UAs of agricultural classes were acceptable,

although they miss the 0.75 accuracy target for classifications (Foody, 2008). Referring

to kappa as an aggregated accuracy measure, IRSeL performed for extrapolated land



Chapter 5. Interpolation and improvement of remotely sensed land cover data 83

Table 5.5: Accuracy measures (PA, UA, OA and kappa values) for the 2008 and 2012
IRSeL interpolated temporal data gaps. Missing values are denoted as ”-”.

LC class
2008 2012

PA UA PA UA

CSIL .67 .69 .46 .48
RAPS .00 - .00 -
WWHT .68 .56 .54 .36
PAST .97 .68 .71 .73
FRSD .96 .89 .96 .88
FRSE .92 .98 .92 .98
WETN .93 1.0 .93 .99
URBN .90 .88 .90 .72
WATR 1.0 1.0 1.0 1.0
NoData 1.0 1.0
OA .79 .70
Kappa .76 .65

cover at least 65 % better than assignment by chance (see Table 5.5). Thus, IRSeL

turned out as an efficient tool for filling temporal data gaps.

5.4.3 Comparison of the original and IRSeL modified classification ac-

curacies

Table 5.6 summarises accuracy measures for the years 2006, 2007, 2009, 2010 and 2011.

The same reference pixels were used to estimate accuracies of the original classification

results and the IRSeL maps; no-data pixels were included in the accuracy analysis

to highlight IRSeL performance. For the entire dataset, aggregated OA and kappa

values of the original classification were already on a high level ≥ 0.73; according to the

McNemar’s test IRSeL further improved accuracies significantly and all land cover maps

clearly exceeded the accuracy target of 0.85 after IRSeL application.

IRSeL assigned land cover classes to former no-data pixels, whereas the number of ref-

erence pixels remained equal. Thus, PA increased for all classes and time steps (except

for WETN in 2007 and FRSE in 2011) and erroneous omissions were reduced. Oth-

erwise, UA values decreased, especially for some agricultural classes due to erroneous

commissions (see Table 5.6). Static classes improved the most. IRSeL re-assignment for

these classes was based on a comparison of the current land cover status and the average

map L, which reduced errors of commission and omission; therefore, PA and UA values

enhanced for most static classes. The greatest improvement was achieved for URBN

which performed poorly in all classifications (see Table 5.6).
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Figure 5.4: Classification results and IRSeL maps for the years 2011 (spatial data
gaps) and 2012 (temporal data gap).
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Table 5.6: Summary of original Landsat classification (before parentheses) and mod-
ified IRSeL (in parentheses) accuracies. The bottom portion lists aggregated accuracy

measures (OA and kappa) and share of no-data pixels.

LC class
2006 2007 2009 2010 2011

PA UA PA UA PA UA PA UA PA UA

CSIL 0.78 0.95 0.89 0.92 0.89 0.85 0.82 0.91 0.67 0.92
(0.87) (0.87) (0.91) (0.89) (0.91) (0.86) (0.92) (0.94) (0.84) (0.82)

RAPS 0.86 0.95 0.84 0.97 0.90 0.98 0.87 0.92 0.65 0.64
(0.88) (0.96) (0.85) (0.96) (0.94) (0.98) (0.94) (0.95) (0.69) (0.62)

WWHT 0.76 0.92 0.79 0.94 0.84 0.79 0.82 0.92 0.61 0.90
(0.83) (0.89) (0.87) (0.90) (0.91) (0.93) (0.91) (0.95) (0.67) (0.86)

PAST 0.79 0.80 0.86 0.91 0.90 0.93 0.87 0.80 0.76 0.90
(0.92) (0.85) (0.90) (0.87) (0.92) (0.92) (0.95) (0.86) (0.92) (0.80)

FRSD 0.90 0.88 0.87 0.83 0.92 0.93 0.94 0.83 0.75 0.84
(0.96) (0.87) (0.96) (0.87) (0.96) (0.89) (0.96) (0.89) (0.96) (0.86)

FRSE 0.90 0.97 0.82 0.96 0.73 0.99 0.88 0.98 0.95 0.95
(0.92) (0.98) (0.92) (0.98) (0.92) (0.98) (0.92) (0.98) (0.92) (0.98)

WETN 0.80 0.99 0.97 0.96 0.88 0.98 0.64 0.97 0.74 0.90
(0.93) (1.00) (0.93) (1.00) (0.93) (1.00) (0.93) (1.00) (0.93) (1.00)

URBN 0.63 0.74 0.66 0.46 0.59 0.41 0.57 0.45 0.68 0.44
(0.90) (0.75) (0.90) (0.78) (0.90) (0.82) (0.90) (0.84) (0.90) (0.76)

WATR 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.99 1.00 0.96
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

NoData 0.11 0.06 0.02 0.04 0.12
OA 0.84 0.86 0.87 0.85 0.76

(0.91) (0.92) (0.94) (0.94) (0.86)
Kappa 0.82 0.85 0.85 0.83 0.73

(0.90) (0.91) (0.93) (0.93) (0.84)

The confusion matrices in Table 5.7 illustrate the IRSeL performance to fill up no-data

pixels and to re-arrange land cover classes exemplary for 2011. In this year the classifi-

cation was based on a Landsat TM scene, which was both late in the vegetation period

and partly covered by clouds (see Figure 5.4). These are typical problems when clas-

sifying optical imagery. Clouds overlay the current land cover and their shadows and

feathering lead to disturbances in the spectral information of adjacent pixels. Further-

more, suboptimal image acquisition dates (early or late in the vegetation period) and

lack of multi-seasonal image data hamper accurate differentiation of vegetation types

(e.g., Reed et al., 1994). Owing to these difficulties the 2011 classification contained

the largest number of no-data pixels within the time series and showed a comparatively

poor kappa value. IRSeL, however, was able to remove all no-data pixels (pointed out

by zeros in the second row of the confusion matrix in Table 5.7).

For agricultural classes the number of correctly assigned pixels (bold numbers in the ta-

ble’s diagonal) increased throughout. The number of erroneously assigned pixels within

the agricultural classes was, however, larger after IRSeL application. The false alloca-

tion of IRSeL is evident in particular between CSIL and WWHT where the number of

incorrectly allocated pixels was five times higher than in the original classification. In

contrast, the number of actual agricultural pixels that were erroneously classified into a

static class, particularly URBN, decreased after IRSeL application. Re-assigning these

pixels reduced errors of commission for URBN. The increase in false allocation within

agricultural classes generally entailed reduced UA values for CSIL, RAPS, WWHT and

PAST. However, the increase in correctly assigned pixels dominated resulting in an

improvement of PA values (see Table 5.6).
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Table 5.7: 2011 Landsat classification (before parentheses) and IRSeL (in parentheses)
confusion matrix. The bold elements represent the main diagonal of the matrix that
contains the grid cells where the class labels depicted in the image classification and
reference data set correspond. The off-diagonal elements contain pixels which showed

no agreement.

Class CSIL RAPS WWHT PAST FRSD FRSE WETN URBN WATR Total

NoData 940 197 864 732 552 1 60 306 16 3668
(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

CSIL 3242 17 98 101 54 0 0 0 0 3512
(4024) (75) (534) (223) (5) (0) (7) (22) (0) (4890)

RAPS 81 1385 642 37 0 0 8 9 0 2162
(106) (1462) (721) (43) (0) (0) (3) (7) (0) (2342)

WWHT 26 329 3434 3 0 0 0 9 0 3801
(104) (459) (3768) (3) (7) (10) (3) (44) (3) (4401)

PAST 211 19 132 3292 7 0 4 12 0 3677
(474) (52) (416) (3981) (11) (0) (40) (25) (0) (4999)

FRSD 87 20 44 85 2577 181 38 20 1 3053
(1) (18) (71) (65) (3308) (332) (16) (11) (1) (3862)

FRSE 2 1 6 0 213 4240 6 0 0 4468
(0) (1) (4) (0) (96) (4097) (2) (0) (0) (4201)

WETN 10 18 62 17 0 0 979 0 0 1086
(0) (0) (1) (2) (0) (0) (1232) (0) (0) (1235)

URBN 219 130 358 82 29 35 76 744 1 1674
(69) (49) (125) (32) (5) (18) (20) (990) (1) (1309)

WATR 0 0 0 0 0 0 152 0 3973 4125
(0) (0) (0) (0) (0) (0) (0) (1) (3968) (3987)

Total 4818 2116 5640 4349 3432 4457 1323 1100 3991 31226

For static classes, the number of correctly assigned pixels generally rose for FRSD,

WETN and URBN; for WATR and FRSE the number decreased. False allocations of

FRSE mainly occurred with FRSD. Furthermore, IRSeL obviously removed 152 WETN

pixels which were classified as WATR. According to the average map, however, these

pixels represent WETN land cover. Wet weather conditions in 2011 led to temporarily

appearing shallow water bodies in the wetlands. These areas may have been classified

as WETN or WATR depending on the acquisition date of the satellite imagery. Since

WETN was defined as a static class IRSeL adjusted these effects by using the average

map.

Summarising the analysis of accuracy measures with respect to original and IRSeL-

modified land cover maps showed that IRSeL filled up spatial data gaps successfully.

Furthermore, IRSeL improved land cover classes whose spectral behaviour often leads

to misclassified results, e.g., WETN and URBN.

5.4.4 Spatial analysis

Figure 5.4 provides a comparison between the original classification results and the IRSeL

maps for 2011 (left hand side) and 2012 (right hand side). For 2011, the top image shows

the original classification result. The black areas in the West represent clouded parts of

the image which have been masked. URBN and no-data pixels are present at the edges

of the masked area. Although a mask excluded clouds from the classification, feathering

of clouds affects neighbouring pixels spectrally. Thus, pixels close to the cloud mask

were susceptible to remain unclassified or to be erroneously classified as URBN, a class
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that often shows a high spectral variability. In addition, URBN pixels were dispersed in

the agricultural parts of the study area. WETN pixels appeared south of Neumünster

and single fields and parts of the city remained unclassified.

The center image demonstrates that IRSeL reduced the scattered URBN pixels; narrow

traffic routes and small villages, however, remained which might be removed by a stan-

dardly used post-classification filter. Thus, the proportion of urban areas was reduced

from 15.2 % to 9.8 %. This percentage approximately meets the information of sealed

area in the ATKIS data base (10.2 %, see LVA, 2007). IRSeL was also able to fill the

masked areas with field structures. A simple interpolation algorithm that solely bases on

spatial neighbourhoods would have been lacking to set-up realistic field patterns. IRSeL

re-assigned overrepresented WETN pixels so as WETN class only appeared in the peat

bog areas north of Neumünster; thus, IRSeL reduced the number of WETN pixels about

4.5 times; moreover, it was able to reduce the salt-and-pepper effects apparent in the

original classification. Contrary to a standard post-classification or median filter, IRSeL

did not smooth field structures but arranged angular landforms realistically.

Furthermore, IRSeL calculated reliabilities for each interpolated or revised pixel. The

resulting reliability maps are illustrated at the bottom of Figure 5.4. The large no-data

area in 2011 showed lowest reliabilities for the 2011 land cover map. Increasing spatial

distances between no-data and land cover pixels (spatial neighbourhood) raises the im-

portance of crop rotation statistics (temporal neighbourhood) during the allocation of

land cover classes. Consequently, reliabilities were lower where the allocation of no-data

pixels solely based on crop rotation statistics since the spatial neighbourhood lacked in

land cover class information. Patches of higher reliabilities within the masked area oc-

curred where IRSeL assigned static classes. Regarding the other part of the 2011 map,

small patches with low reliabilities represent entire fields that remained unclassified.

The south eastern part of the study area exhibited low reliabilities; here, a considerable

amount of falsely classified URBN pixels had to be re-assigned. One distinct feature is

the large WETN patch north east of Neumünster; reliabilities are moderate as opposed

to the very high reliabilities of other static class patches. IRSeL was unable to re-assign

the area surrounding the WETN patch correctly; these pixels remained URBN.

Figure 5.4 further highlights that, for 2012, IRSeL produced a realistically structured

land cover map without any remote sensing data. Static pixels were adopted from the

average land cover map. The crop rotation probability statistics ruled the allocation of

agricultural pixels. The share of WWHT is overrepresented at the expense of RAPS.

WWHT, CSIL and PAST appeared in realistically structured patterns. The spatial

distribution of crop types matched previous classification results: WWHT has predom-

inately been cultivated in the eastern part of the study area whereas CSIL and PAST



88 Chapter 5. Interpolation and improvement of remotely sensed land cover data

dominated the western part. Reliabilities were reasonably highest for static classes; dy-

namic agricultural classes showed low reliabilities. The PAST class is the agricultural

class with highest reliabilities. The large no-data gap in 2011 became evident in the

2012 reliability map; the 2011 cloud mask corresponded to a low reliability area (black

area in Figure 5.4). The lapse of time to an originally classified land cover pixel reduced

the reliability to correctly determine a land cover class for these pixels.

The spatial analysis revealed that IRSeL interpolated spatial data gaps reasonably pre-

serving structural landscape patterns. The tool improved existing time series, especially

the assignment of static classes. IRSeL calculates probabilities based on land cover statis-

tics, which enabled the creation of a realistic land cover map for a year with complete

lack of input data.

5.5 Conclusion

Understanding the effects of land cover on the environment is a major research issue;

despite an increasing availability of remote sensing data, the acquisition of land cover

data with a sufficiently high temporal availability and accuracy still remains challenging.

Statistical revision and interpolation techniques are able to improve both; hence, the ob-

jective of this study was to introduce and test an approach to interpolate and improve

remotely sensed land cover data (IRSeL) that accounts for specific land cover character-

istics such as data gaps caused by clouds, crop rotations, or temporally static land cover

classes. IRSeL assigns spatial and temporal no-data pixels to land cover classes and

corrects classification errors. The IRSeL re-assignment of classification errors is based

on a statistically estimated average land cover map and the user’s knowledge about

temporally static land cover classes within the study area.

The application of IRSeL during a 7-year land cover study in a test area in Northern

Germany showed that the allocation of no-data pixels as well as the re-assignment of

classification errors increased the number of correct assignments and improved classifica-

tion results. IRSeL assignment of no-data pixels to land cover classes led to an increasing

probability of false allocation which resulted in higher commission errors but decreased

erroneous omission. The accuracy of IRSeL interpolated pixels varied depending on the

current land cover class and the extent of the spatial or temporal gaps. Thus, estimated

reliabilities and individual accuracy statistics for each class have to be examined before

drawing conclusions.

OA values of interpolated spatial gaps ranged from 0.63 to 0.81. The closer the tem-

poral and spatial neighbourhood of the no-data pixels, the higher the accuracy values.
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IRSeL corrected classification errors that typically occur when classifying optical im-

agery. Among these errors were false allocations caused by cloud feathering or subop-

timal image acquisition dates that led to a mix-up of spectral information. Comparing

original and modified classifications, the IRSeL interpolated pixels improved land cover

maps by 8 percentage points in average; after IRSeL application all maps exceeded the

accuracy target of 0.85. For interpolated temporal gaps, OA values varied from 0.70

to 0.79. Considering that these maps were based solely on crop rotation statistics, ac-

curacies were acceptable, but missed the target value. Additional image or land cover

data of the current time step would be necessary to improve these maps. The spatial

analysis of IRSeL outputs revealed that IRSeL interpolated spatial and temporal data

gaps reasonably and preserved landscape structural patterns. Contrary to a standard

post-classification or median filter, IRSeL preserved one pixel-wide narrow traffic routes

and did not smooth field structures. Based on the results, we conclude that IRSeL is

an efficient and easy-to-use approach to correct classification errors and to interpolate

missing spatial and temporal data.

Some difficulties further exist such as the argument that the interpolated space-time

pixels do not represent the true land cover reliably and therefore results and conclusions

may be questioned; this challenge, however, is inherent to any interpolation technique

(Wentz et al., 2010). Accuracy statistics obtained showed that interpolated values do

not reduce the virtue of estimated pixels. IRSeL helps to acquire land cover data that

provides the required spatial resolution and temporal availability. Future land cover

related studies may use IRSeL improved data sets. The results presented, however, are

limited to the case study; to confirm these findings, further studies should be carried

out to evaluate the IRSeL approach in other ecosystems and landscapes.
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Abstract

The impact of land use changes on the hydrology of a watershed has been identified

as a major future research issue. Models provide an efficient way to quantify these

impacts, while the model performance is directly linked to the accuracy of land use

representation in the model. In this study, the effect of the accuracy and temporal

representation of land use data on hydrologic model results was evaluated with the Soil

and Water Assessment Tool (SWAT). Comparisons were made between water balance

results obtained using a single land use layer (i.e. static land use setup) and those

obtained using more accurate individual land use layers for each simulation year (i.e.

variable land use setup). The results suggest that highly accurate spatio-temporal land

use input is less important when studying aggregated processes, but if the purpose of

modeling is to replicate spatially distributed events, accurate land use data is necessary.
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6.1 Introduction

Changes in land use may affect hydrological and ecological functions of a watershed.

During the past decades the awareness of environmental issues has led to the idea of

a sustainable management of landscapes. As a consequence, conservation practices are

targeted on arable land to improve water quantity and quality issues. Land use can have

a great impact on the water cycle (e.g., Franklin, 1992; Miller et al., 2002), on sediment

transport (e.g., Bakker et al., 2008; Ouyang et al., 2010a) and on nutrient leaching caused

by agrochemical losses (e.g., Allan et al., 1997; Turner and Rabalais, 2003). Chiang et al.

(2010) even stated that land use changes may masks the water quality improvements

from conservation practices implemented in the watershed. Thus, interactions between

land use change and hydrologic processes have been identified as a major future research

issue (DeFries and Eshleman, 2004). In the past, many studies have assessed the impact

of historical and hypothetical changes in land use such as deforestation (e.g., Weber et al.,

2001; Lorz et al., 2007), urbanization (e.g., Miller et al., 2002; Pai and Saraswat, 2011)

and conversion of grasslands to croplands (e.g., Twine et al., 2004), while no attention

was given to the impact of annual variability of land use proportions and distributions

caused by crop rotations.

Watershed models provide a cost efficient way to quantify the impacts of land use at

various spatial and temporal scales, and there are numerous studies where hydrological

models are applied successfully for simulating the influence of land use on catchment

hydrology. Hörmann et al. (2005) gave an overview of the prospects and limitations of

eco-hydrological models for evaluation of land use options in mesoscale catchments. In

this context, the SWAT (Soil and Water Assessment Tool, Arnold et al., 1998) model

has proven to be a suitable tool to adequately represent general trends of catchment

hydrology resulting from land use change (e.g., Volk et al., 2009). SWAT was developed

to simulate the effects of management practices on the water cycle and has been applied

in many studies evaluating the impact of land use changes on a watershed. Gassman

et al. (2007), Krysanova and Arnold (2008), and Pai and Saraswat (2011) summarized

many of these. Usually, land use layers are replaced by alternatives, which are based

on assumptions of climatic change or the influence of political decisions, in the model

to analyze the impact of land uses on water quantity and quality aspects by compar-

ing model outputs. Pai and Saraswat (2011, 2013) stated that among various causes,

accurate model predictions depend on how well the temporal status of land use in a

watershed is represented in the model and that using a single land use layer for each

scenario does not reflect temporal variation of land use in the catchment.

Usually, models represent annual variability of land use proportions in the watershed

using crop rotations (i.e. changing fixed proportions of land uses in a catchment each
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year). This method is simple and advantageous in data scarce areas, but leads to repet-

itive land use distributions and is not able to represent annual land use changes caused

by economic factors. In addition, land use proportions within a catchment might be

relatively constant, while its spatial distribution changes, which also cannot be reflected

by crop rotations. Therefore, most studies that are applied to assess the influence of

land use changes on hydrologic processes are based on conclusions drawn from catch-

ment wide model results (e.g., water yield at the watershed outlet) with less attention

to spatial results.

Due to the rapid development of GIS (Geographic Information System) and remote

sensing systems, an increasing amount of land use data has become available. Remotely

sensed land use data is often characterized by data gaps that are caused by clouds

or classification thresholds (spatial data gaps) or by missing land use layers in a time

series (temporal data gaps). Both kind of gaps hamper temporal as well as spatial

representation of land use in a model. Conventional interpolation methods of spatial

data gaps (e.g., nearest-neighbor method) produce poor results for larger data gaps

and no recommended methods exist for interpolating temporal data gaps. Thus, land

use data based on classification of remote sensing data seldom provides the requisite

accuracy and temporal observational frequency for environmental studies (e.g., Foody,

2008). Recognizing these limitations, an advanced statistic approach developed to revise

land use data was used in this study to represent the land use status of the study area as

accurately as possible. The newly developed IRSeL-tool (Interpolation and improvement

of Remotely Sensed Land cover, Rathjens et al., under review) corrects classification

errors and interpolates missing land cover pixels in the temporal and spatial dimension.

The approach leverages special properties known for agricultural areas such as crop

rotations and temporally static land cover classes.

This study aims to demonstrate the impact of an accurate representation of land use

data on SWAT model output. To perform this analysis, output of two SWAT setups

for a ten-year simulation period from 2002 to 2011 were compared. One setup used a

single land use layer, while for the second setup a series of ten IRSeL-improved land use

layers for each year of simulation was taken. To ensure an accurate spatial distribution

of land use data, both SWAT setups were based on grid cells; a sub-catchment of the

River Elbe, the Bünzau catchment, served as a test site.
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Figure 6.1: The Bünzau catchment and its location in Germany.

6.2 Materials and methods

6.2.1 Study area

The study area is the Bünzau catchment, located near the city of Neumünster in the

federal state of Schleswig-Holstein in the Northern Germany lowlands (Figure 6.1). The

catchment covers an area of 207 km2 and is characterized by a flat topography and

shallow groundwater levels. The rivers Buckener Au and Fuhlenau merge and form

the origin of the river Bünzau; the rivers Höllenau and Bredenbek are two downstream

tributaries. Several drainage pipes and ditches also flow into the Bünzau, which flows in

a southern direction for 16 km before it drains into the Stör River. The gauge Sarlhusen,

where an average discharge of 2.6 m3s−1 was measured between 2002 and 2011 (LKN,

2012), is located at the catchment outlet.

The mean annual temperature is 9.5 ◦C and the mean annual precipitation is 863 mm

(stations Neumünster and Padenstedt 2002 to 2011, DWD, 2012). On average, 136 days

per year experience rainfall greater than 1 mm, and on 4 days rainfall is greater than

20 mm. Precipitation is evenly distributed throughout the year, with rare occurrences

of convective thunderstorms and intense sudden rainfall.

In the Bünzau catchment the most prevalent land use types are pasture and arable

land, indicating an intense agricultural use. Farmers plant corn monoculturally and

cereals in a three-year rotation of winter wheat - winter wheat - rape (Oppelt et al.,

2012). Dominant soil types are podzols and planosols; histosols are found in river valleys
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Figure 6.2: Land use (2007) and soil types in the Bünzau catchment.

and depressions. Figure 6.2 shows the distribution of land use in 2007 as well as the

distribution of soil types.

6.2.2 The SWAT model

SWAT (Arnold et al., 1998) is a physically based catchment-scale model; it was devel-

oped to simulate the water cycle, the corresponding fluxes of energy and matter (e.g.,

sediment, nutrients, pesticides and bacteria) and the impact of management practices on

these fluxes. The design of the model is modular and includes components for hydrology,

weather, sediment transport, crop growth, nutrients and agricultural management. A

detailed description of all components can be found in Arnold et al. (1998) and Neitsch

et al. (2011b).

Calculation of surface runoff is performed using either the SCS curve number method

(Soil Conservation Service Engineering Division, 1972) or the Green and Ampt infiltra-

tion equation (Green and Ampt, 1911). Lateral subsurface flow in the soil profile is

calculated with a kinematic storage model estimated simultaneously with percolation.

Groundwater flow from shallow aquifers to streams is simulated by creating a shallow

aquifer storage using a linear tank storage model (Brutsaert, 2005). SWAT offers using

either the Hargreaves (Hargreaves and Samani, 1985), the Priestley-Taylor (Priestley
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Table 6.1: Overview of the land use data set (acquisition date, performance indexes,
and unclassified area) based on classifications from Landsat 5 imagery.

Acquisition Date
Overall

Kappa Unclassified [%]
Accuracy [%]

Apr 2003 92.50 0.91 5.90
Jun 2006 92.92 0.92 10.62
Apr 2007 94.25 0.93 4.98
Jul 2009 83.84 0.81 2.62
Jun 2010 96.96 0.97 4.06
Aug 2011 96.64 0.96 13.50

and Taylor, 1972), or the Penman-Monteith (Monteith, 1965) method for estimating

evapotranspiration. Further model components include snow melt, transmission losses

from streams, and water storage and losses from ponds.

In this study the Curve Number (CN) method was used to calculate surface runoff, the

Penman-Monteith method was applied to estimate evapotranspiration and the Musk-

ingum river routing method served to route the water through the channel network.

6.2.3 Land use data

Simulations with SWAT were conducted for a ten-year period from 2002 to 2011. These

years coincided with the availability of land use data (see Table 6.1). A comparison was

made between SWAT output obtained using a static (SWAT STA) and a variable land

use setup (SWAT VAR). In SWAT STA land use is represented by the 2007 land use

layer with three-year crop rotations derived from statistics, while in SWAT VAR land

use is updated yearly for each grid cell individually using IRSeL interpolated and revised

land use maps.

For the ten-year simulation period, classifications obtained from six Landsat 5 images

(see Table 6.1) were available. A detailed description of the land use classification data

and a discussion about its characteristics and accuracies is given in Rathjens et al.

(under review). To use the data for hydrological modeling, distinctions were made

between classes that are expected to have a different hydrological behavior. The resulting

nine classes are corn (CSIL), rape (RAPS), winter wheat (WWHT), pasture (PAST),

deciduous forest (FRSD), evergreen forest (FRSE), wetlands (WETN), water (WATR),

and urban areas (URBN). Land use (in the model setups) is represented by a single land

use layer (SWAT STA) or by yearly updated land use maps (SWAT VAR).

Crop rotation WWHT - RAPS - WWHT and mono cultural CSIL, WWHT and PAST

were defined for the agriculturally used areas in SWAT STA based on statistics provided



Chapter 6. Assessment of land use representation on SWAT model performance 97

Table 6.2: Statistically most likely crop rotations and their probabilities (in paren-
theses) provided by IRSeL.

Land use class Predecessor (probability) Follower (probability)

CSIL CSIL (0.56) CSIL (0.54)
RAPS WWHT (0.39) WWHT (0.49)
WWHT CSIL, WWHT (0.27, 0.25) WWHT (0.31)
PAST PAST (0.77) PAST (0.70)
FRSD FRSD (0.68) FRSD (0.68)
FRSE FRSE (0.64) FRSE (0.77)
WETN PAST (0.39) PAST (0.39)
URBN URBN (0.62) URBN (0.52)
WATR WATR (0.97) WATR (0.95)

by IRSeL (see Table 6.2) to represent annual variabilites of land use. Forest, wetland,

urban, and water areas are expected to be constant throughout the simulation period.

Figure 6.3 and Table 6.3 show land use proportions and distributions in the watershed.

Some land use classes indicate a high variability, but no significantly increasing or de-

creasing trends could be identified. Simple three-year crop rotations as implemented in

SWAT STA result in an annual redistribution of land use classes (e.g., all rape changes

to winter wheat) and the proportions of land use classes in the catchment repeats every

three years. Such crop rotations can not explain the variability of land use distributions

in the study area. Table 6.1 demonstrates that some land use classes are temporally

dynamic; e.g., the proportion of PAST ranges between 31 and 43 % without following

steady state principles. Even if the proportions of land use classes are constant within a

catchment, their locations might change. Crop rotations are not able to represent these

spatial changes. This means that a yearly land use update would significantly improve

both the temporal and spatial representation of land use in the watershed. Recognizing

the variability in land use data, the IRSeL-tool was applied to represent land use in

SWAT VAR as realistically as possible. A description of the specific IRSeL interpola-

tion and revision technique, the data input requirements, data output structure, and an

application study in the area of the Bünzau catchment can be found in Rathjens et al.

(under review).

Figure 6.4 shows the 2011 land use classification result and the IRSeL-processed land use

layer. There is a high proportion of unclassified cells in the original 2011 classification

(13.5 %, see Table 6.1 and Figure 6.4a) mainly caused by clouds and cloud shadows.

The land use interpolation tool was used to fill the data gaps and to revise the layer

by correcting classification errors. The IRSeL revised land use layer reflects land use

patterns realistically and provides a consistent land use layer without data gaps (see

Figure 6.4b).
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Figure 6.3: Box plots of yearly proportions of major land use types in the Bünzau
catchment based on classifications of Landsat 5 imagery.

6.2.4 Modeling framework

SWAT STA and SWAT VAR results were compared to evaluate how the spatial and

temporal representation of land use in the watershed affects simulated streamflow and

water balance. Figure 6.5 shows the methodology. The ArcSWAT interface (Winchell

et al., 2010) was used to carry out an initial sub-watershed model setup based on the

2009 land use map. Calibration was performed based upon comparison of simulated and

observed discharge at gauge Sarlhusen in the Bünzau River from 2002 to 2006 (see Figure

6.1 and LKN, 2012). The calibrated parameter set was validated using the time period

from 2007 to 2011. Hydrologic simulations in Northern Germany lowlands that included

parameter sensitivity analysis were previously conducted by Dobslaff (2005), Schmalz

and Fohrer (2009) and Kiesel et al. (2010). Their results showed a strong influence of

groundwater parameters. Based upon their studies, nine parameters were included in

Table 6.3: Distribution of major land uses (corn CSIL, rape RAPS, winter wheat
WWHT, pasture PAST, deciduous forest FRSD, evergreen forest FRSE, wetlands
WETN, urban areas URBN and water WATR) in the Bünzau catchment based on

classifications of Landsat 5 imagery (see Table 6.1).

Year CSIL RAPS WWHT PAST FRSD FRSE WETN URBN WATR

2003 24.51 1.01 5.56 42.59 14.10 4.47 2.07 5.56 0.13
2006 15.78 2.84 9.63 41.65 16.41 6.30 1.34 5.92 0.13
2007 21.73 2.71 9.13 36.50 12.92 6.30 1.70 8.82 0.20
2009 27.14 2.53 14.09 30.85 12.33 3.08 1.79 8.02 0.15
2010 23.01 3.38 7.16 38.17 15.03 4.62 0.89 7.64 0.09
2011 20.80 8.36 6.63 27.41 15.00 7.87 2.23 11.53 0.18
2012 22.16 3.47 8.70 36.19 14.30 5.44 1.67 7.92 0.15
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Figure 6.4: 2011 land use layer: (a) original classification results and (b) IRSeL
interpolated and revised classification results.

Figure 6.5: Flowchart of the SWAT STA and SWAT VAR model setups.

model calibration: runoff curve number (CNOP), soil evaporation compensation factor

(ESCO), groundwater parameters (GW DELAY, GWQMN, ALPHA BF, GW REVAP,

REVAPMN), and hydraulic conductivity (CH K, SOL K). A detailed description of each

parameter is provided by Arnold et al. (2013). The sub-watershed based setup performed

well for both calibration and validation periods (NSE: 0.77, 0.67).

The interface SWATgrid (Rathjens and Oppelt, 2012b) was used to transfer the cal-

ibrated parameter set to the two grid setups without further parameter adjustments.
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Table 6.4: Model input data sources.

Data type Source Data description

Topography (DEM) LVA (2008) Digital elevation model, 5 m × 5 m resolution
Soil map Finnern (1997) Physical properties of the soil, scale 1:100 000

LLUR (2010) Physical properties of the soil, scale 1:25 000
Land use maps own classifications Classifications based on Landsat 5 imagery, 30 m ×

30 m resolution (see Table 6.1)
Climate data DWD (2012) Daily measured values of temperature, precipitation,

wind speed, relative humidity (Neumünster station
2000-2007, Padenstedt station 2007-2011)
Daily measured values of precipitation (Gnutz sta-
tion 2000-2006)

This means that SWAT STA and SWAT VAR are the same except the land use data. In

order to reduce the impact of model calibration (ArcSWAT setup) on the effects that dif-

ferent land use maps have on model output, different sets of land use data were taken for

calibration and for the static setup; the ArcSWAT setup is based on 2009 land use data,

while SWAT STA uses 2007 data (see Figure 6.5). SWATgrid generated grid-based

SWAT model input using weather data and spatially distributed geographic datasets

(Digital Elevation Model (DEM), soil and land use data). An overview of the essential

input data sources is given in Table 6.4. Daily climate data obtained from three German

weather service stations (DWD, 2012) from January 1st, 2002 to December 31st, 2011,

including temperature, precipitation, wind speed and relative humidity, were integrated

into the simulation. The Land Survey Office Schleswig-Holstein provided a DEM with a

vertical resolution of 0.5 m and a horizontal resolution of 5 m (LVA, 2008). A soil layer

as a composition of two soil type maps was obtained from the Agency for Nature and

Environment Schleswig-Holstein (LLUR, 2010) and Finnern (1997).

SWATgrid divides the watershed into linked grids. Each grid has an individual combi-

nation of soil, land use and slope. Flow paths were determined from the DEM using the

digital landscape analysis tool TOPAZ (Garbrecht and Martz, 2000), and runoff from a

grid flows to one of the eight adjacent grids. A topographic analysis using TOPAZ and

DEMs with different resolutions demonstrated that a small grid size of at least 50 m or

0.25 ha is necessary to ensure an accurate representation of the flat topography in the

Bünzau catchment. A smaller grid size would lead to an increase of computation time

and memory requirements of the model. As a compromise between a spatially accurate

representation of landscape pattern and a timely manageable model, DEM, soil, and land

use data were resampled to a resolution of 50 m. The Universal Transverse Mercator

(UTM) projection is neither area nor distance accurate, so all layers were transformed

to the Albers Equal Area projection.
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6.2.5 Performance criteria

Standard test statistics recommended by Moriasi et al. (2007) as well as visual compar-

isons of observed and simulated data were used to evaluate daily, monthly and yearly

streamflow SWAT simulations. Percent bias (PBIAS) was taken as a quantitative mea-

sure to compare observed and simulated total streamflow. PBIAS is calculated with

equation (6.1):

PBIAS [%] =

∑n
i=1

(
Qobs

i −Qsim
i

)
100∑n

i=1Q
obs
i

, (6.1)

where Qobs
i and Qsim

i are the observed and simulated daily discharge for day i = 1, . . . , n,

and n is the number of observed values.

The RSR (RMSE-observations standard deviation ratio, Moriasi et al., 2007) was se-

lected as an standardized error statistic. The RSR standardizes root mean square error

(RMSE) values using the standard deviation of in-situ data and thus enables a compar-

ison of error values of different studies. It is calculated with equation (6.2):

RSR =

√∑n
i=1

(
Qobs

i −Qsim
i

)2√∑n
i=1

(
Qobs

i −Qobs
mean

)2 . (6.2)

PBIAS as well as RSR are expected to reach 0 as the performance of the simulation

improves.

The Nash-Sutcliffe efficiency (NSE, Nash and Sutcliffe, 1970) was selected as a nor-

malized, correlation-related statistical index, which is often used to assess the quality

of hydrological models. An NSE of 1 indicates a perfect match between observed and

simulated data, while values lower than 0 indicate that the average of observed data is a

better predictor than the simulated value. The NSE is calculated using equation (6.3):

NSE = 1−
∑n

i=1

(
Qobs

i −Qsim
i

)2∑n
i=1

(
Qobs

i −Qobs
mean

)2 . (6.3)

Performance ratings published by Moriasi et al. (2007) were used for evaluating the

simulation results for daily and monthly streamflow (see Table 6.5). The model was

considered satisfactory if -25 % < PBIAS < 25 %, RSR < 0.7 (see also Singh et al.,

2004) and NSE > 0.5 (see also Santhi et al., 2001). In addition, graphical techniques

were used to identify trends and general differences between simulated and measured

values.
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Table 6.5: Model performance ratings for streamflow as established by Moriasi et al.
(2007).

Performance rating PBIAS [%] RSR NSE

Very good |PBIAS| < 10 0.0 ≤ RSR ≤ 0.5 0.75 ≤ NSE ≤ 1.00
Good 10 ≤ |PBIAS| < 15 0.5 < RSR ≤ 0.6 0.65 < NSE ≤ 0.75
Satisfactory 15 ≤ |PBIAS| < 25 0.6 < RSR ≤ 0.7 0.50 < NSE ≤ 0.65
Unsatisfactory |PBIAS| ≥ 25 RSR > 0.7 NSE ≤ 0.50

Table 6.6: Comparison of the ten-year average (2002 - 2011) of observed and simulated
water balance components resulting from SWAT simulations with static (SWAT STA)
and variable (SWAT VAR) land use data. Values in parentheses indicate the percentage

of annual precipitation made up by the parameter.

Parameter [mm] Observed SWAT STA SWAT VAR Differencea

Precipitation 867.60 867.60 867.60 0.0
Surface Q - 28.44 (3.3 %) 34.11 (3.9 %) 5.67
Lateral Q - 19.35 (2.2 %) 18.99 (2.2 %) -0.36
Groundwater Q - 330.83 (38.1 %) 326.28 (37.6 %) -4.55
Total water yield 389.19 (44.9 %) 378.38 (43.6 %) 379.08 (43.7 %) 0.70
GW rechargeb 8.68 (1.0 %) 17.63 (2.0 %) 17.38 (2.0 %) -0.25
ETc 469.73 (54.1 %) 465.70 (53.7 %) 465.50 (53.7 %) -0.20
a Difference: SWAT VAR − SWAT STA
b Observed groundwater recharge calculated as 1 % of observed precipitation based on data
from Preuss (1977).
c Observed evapotranspiration calculated by difference between precipitation (with 1 % ground-
water recharge) and total water yield.

6.3 Results and Discussion

6.3.1 Evaluation of the annual water balance

Grid-based simulations were run for the period from 2002 to 2011 to assess the impact

of land use data on SWAT model output. The 2007 land use layer was taken for the

static setup and the IRSeL interpolated and revised land use data set was used for the

variable setup. Table 6.6 shows annual means of the water balance components. For the

observed data, total water yield was obtained from streamflow measurements, and evap-

otranspiration was calculated from the difference between precipitation and total water

yield, assuming that storage components do not change between years and groundwater

recharge was 1 % (Preuss, 1977) of annual precipitation. A shallow groundwater table,

low hydraulic gradients, and high groundwater – stream water interactions character-

ize the Bünzau catchment. These interactions have been identified as the dominant

processes (e.g., Schmalz and Fohrer, 2009) in the watershed. Groundwater contributes

significantly to streamflow (approximately 38 % of the mean annual water balance),

whereas hillslope surface runoff is very low (<4 %, e.g., Dobslaff, 2005).
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Figure 6.6: Comparison between the observed and simulated (SWAT VAR) water
balance components for the Bünzau catchment from 2002 to 2011 (a) as absolute values
[mm] and (b) as fraction of precipitation. Due to negligible differences between the

results of the two setups, SWAT STA is not included in the figure.

For both model setups, results show a good agreement with the observed data. Differ-

ences between simulated and observed values were in a range of 1.2 percentage points

(pp) of the mean annual water balance (see Table 6.6). Regarding total water yield

and evapotranspiration, the model setups fit very well. The land use data seem to af-

fect mainly surface and groundwater runoff. Mean annual surface runoff calculated by

SWAT VAR was 5.67 mm higher than with SWAT STA, which is compensated by a lower

amount of groundwater runoff (4.55 mm). Figure 6.6 shows annual values of total water

yield and evapotranspiration from 2002 to 2011. In both setups, values are almost the

same; differences between the the two setups for each year are smaller than 4.0 mm for

water yield and 2.5 mm for evapotranspiration. For each year, simulated and observed

total water yield were within a range of 8 pp of precipitation. The greatest difference

was observed in the least humid year (2003), when observed and simulated water yield

was 41 % and 33 % of precipitation, respectively (see Figure 6.6b). The greatest devi-

ation in evapotranspiration was 10 pp, observed in 2011, where observed and simulated

fraction of precipitation were 49 % and 39 %, respectively (see Figure 6.6b). Although

observed data for flow components are not available, both model setups result in a suf-

ficient representation of hydrological processes in the Bünzau catchment, as results are

consistent and confirm previous studies by Jelinek (1999), Dobslaff (2005), and Schmalz

and Fohrer (2009).
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6.3.2 Evaluation of streamflow simulations

The hydrograph of daily streamflow (see Figure 6.7a for the ten-year period and Fig-

ure 6.8 for 2008) indicates that daily streamflow is accurately simulated in low flow

conditions, while flow peaks are underestimated. Considering monthly streamflow, Fig-

ure 6.7b shows a good agreement between observed and simulated values in dry and

wet months for both setups. The annual time series of observed and simulated total

streamflow for the 2001 to 2011 period is shown in Figure 6.7c. Visual comparisons indi-

cate good model agreement between observed and simulated daily, monthly and annual

streamflow.

The main factors contributing to the errors between observed and simulated discharge

were hydrograph timing and consistent underestimation of peak discharge (see Figure

6.7a). The simulated hydrograph peaks occurred approximately one day prior to the

observed peaks. By shifting the calculated daily flows one day forward, performance

statistics improved. Considering the period from 2002 to 2011, SWAT VAR NSE val-

ues increased from 0.61 to 0.64 and RSR values were reduced from 0.62 to 0.60. As

groundwater flow is the predominant process in the Bünzau catchment, hydrograph

timing and underestimation of peak discharge indicate that the streamflow simulations

may be improved with better knowledge of groundwater conditions. SWAT simulates

two aquifers, the shallow, unconfined aquifer causes return flow to streams within the

watershed and the deep, confined aquifer contributes return flow to streams outside

the watershed (Neitsch et al., 2011b). The model setups used in this study assume

that groundwater parameters remain constant throughout the catchment. In addition,

tile drains and depressions were neglected, although these landscape features heavily

influence groundwater and streamflow processes in lowland catchments (Kiesel et al.,

2010). Thus, model performance may be improved by using a multi-storage ground-

water concept (e.g., Pfannerstill et al., 2013) and integrating tile drains, depressions,

and spatially distributed groundwater conditions into the model. This paper, however,

focuses on assessing the affect of land use data on model performance.

Test statistics (PBIAS, RSR, NSE) and visual comparison of the simulated and observed

data at the watershed outlet were used to evaluate model performance. On a ten year

basis the measurements summarized in Table 6.7 indicate that SWAT VAR performs

slightly better than SWAT STA. According to Moriasi et al. (2007), model performance

ratings for daily streamflow are within a satisfactory range for both setups and monthly

ratings performed were very well, a trend typically observed in model applications (e.g.,

Moriasi et al., 2007).
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Figure 6.7: Observed and simulated (a) daily, (b) monthly, and (c) annual streamflow
for the Bünzau catchment, 2002-2011.
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Figure 6.8: Observed and simulated daily streamflow for the Bünzau catchment, 2008.

Table 6.7: Accuracy measures of daily and monthly (in parentheses) simulated dis-
charge for the SWAT STA and SWAT VAR results of the Bünzau catchment from 2002

to 2011.

Setup PBIAS [%] RSR NSE Performance rate

SWAT STA 3.61 0.64 (0.46) 0.60 (0.79) satis- (very
SWAT VAR 3.45 0.62 (0.45) 0.61 (0.79) factory good)

Although SWAT VAR and SWAT STA performance measures are similar for the whole

simulation period, larger differences occured on an annual scale. Figure 6.9 shows per-

formance statistics of daily model output calculated for each year of the simulation

period. Figure 6.9a shows similar percent bias values for both setups (differences are

< 1.5 pp). These results indicate that annual differences of total water yield and evap-

otranspiration are negligible. Annual RSR and NSE values are shown in Figure 6.9b

and c. The values indicate satisfactory model performances (RSR < 0.7, NSE ≥ 0.5)

except for 2006 and 2007. In these years, the weak performance may be attributed

to overprediction of flow volumes alongside underprediction of evapotranspiration (see

Figure 6.6). SWAT VAR performs better than SWAT STA for each year of the ten-year

simulation period, except 2009. However, no reasons (e.g., classification accuracy, vary-

ing streamflow characteristics, or particularly dry or wet year) were found for the better

performance of SWAT STA in 2009. These results and the minor streamflow differences

between the setups (see Figure 6.7 and 6.8) indicate that in the Bünzau catchment, other

SWAT parameters (e.g., groundwater parameters) seem to be more important for model

performance than land use data. However, a more accurate representation of land use

patterns and its hydrologic properties in SWAT VAR leads to a better representation of

the spatio-temporal land use status of the catchment, improves model performance and
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Figure 6.9: Annual performance measures (a) PBIAS, (b) RSR, and (c) NSE of daily
discharge from the static (SWAT STA) and variable (SWAT VAR) land use setups.

reduces uncertainties.

As SWAT STA is based on the 2007 land use data, this year is of particular interest.

SWAT STA uses classification results with an overall accuracy of 86 %, while SWAT VAR

simulations are based on the IRSeL revised land use data with an overall accuracy of 92 %

(Rathjens et al., under review). Differences between 2007 SWAT STA and SWAT VAR

daily streamflow performances are similar to differences observed for the rest of the

simulation period (see Figure 6.9). The highest difference in test statistics between the

setups was observed in 2003, the least humid year in the simulation period. The static

land use model seems to be less responsive to changes in weather conditions and tends

to require recalibration with changing weather conditions.

In general, varying performance measures indicate that there is a difference between

model results, but contain no information concerning the source of difference. Recog-

nizing this limitation, visual comparisons and a statistical analysis were applied. Visual

comparisons confirm a better performance of SWAT VAR, which can be explained by two

facts. First, simulation of peak discharge is better in SWAT VAR. Second, as indicated

by Figure 6.8, streamflow simulated by SWAT VAR rose and fell more realistically than

in the SWAT STA setup. Despite the differences observed at peak discharge and rising

and falling hydrographs, there is almost no difference between the two setups during low

flow conditions. Differences only occur if intense rainfall events cause rapidly rising and
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falling streamflow hydrographs. Figure 6.10 visualizes the reason of differences between

SWAT STA and SWAT VAR. Figure 6.10a shows the coherence between the absolute

slope of measured discharge and differences between the setups. The higher the absolute

slope in observed discharge, the higher the probability that there is a difference between

the setups (solid line in Figure 6.10a); the higher the absolute slope of measured dis-

charge, the higher the absolute difference between SWAT STA and SWAT VAR. Also,

it was examined which proportion of differences between the setups were caused by a

rapid change of measured discharge (i.e. a high absolute slope greater than two times its

standard deviation of 3.2 m3s−1). Figure 6.10b shows the coherence between the abso-

lute differences between the setups and the slopes of measured discharge. The higher the

absolute differences between the setups, the higher the probability that the difference

was caused by a rainfall event that led to rapidly rising or falling streamflow hydrograph

(solid line); and the higher the absolute difference between the setups, the higher the

absolute slope of observed discharge.

Overall, Figure 6.10 proves a strong correlation between the rate of rising and falling

observed streamflow and the differences between the two setups; differences mainly occur

if discharge changes rapidly. These events are often linked to more intense rainfall

events which are expected to exceed the infiltration capacity of soil and therefore cause

overland flow. SWAT uses the curve number equation to simulate surface runoff, which

is parametrized by soil type, antecedent soil moisture, and land use. Each are associated

with infiltration capacity, which imply infiltration excess runoff (e.g., Garen and Moore,

2005). Therefore, the effect of land use data on processes related to saturation excess flow

or variable source area hydrology are hardly covered by this study. Plant characteristics

affecting overall water yield or evapotranspiration seem to be negligible.

To sum up, flow components are the main hydrologic difference between SWAT STA and

SWAT VAR, which can be confirmed by visual comparisons (see Figure 6.8), statistical

analysis of the hydrographs (see Figure 6.10), and values of the average annual water

balance (see Table 6.6). Flow components, especially surface runoff, are known to be

extremely sensitive to CN values (Singh et al., 2004) that are associated to land use

classes in the SWAT model. Due to the different proportions of land use distribution

between the two setups (see Figure 6.3), CN values are updated each year in SWAT VAR

or changed based on crop rotations in SWAT STA. A more accurate land use representa-

tion leads to more accurate CN values, which improves model performance and reduces

model uncertainties.
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Figure 6.10: Coherence between rates of rising and falling streamflow and differences
between SWAT STA and SWAT VAR. (a) The solid line shows the probability that
slopes of observed streamflow (i.e. |Qobs

i − Qobs
i+1|, i = 1, . . . , n − 1, n observed val-

ues) coincide with differences between SWAT VAR and SWAT STA. The dashed line
shows the associated absolute mean difference between the two setups (|SWAT VAR −
SWAT STA| [m3s−1]). (b) The solid line shows the probability that absolute differences
between the two setups (|SWAT VAR − SWAT STA| [m3s−1]) coincide with changes
in observed discharge greater 3.2 m3s−1 (two times the standard deviation of measured
discharge). The dashed line shows the associated absolute rate of observed discharge

in m3s−1.

6.4 Conclusion

In this study, the impact of the spatial and temporal representation of land use data on

SWAT model output during a ten-year simulation period was examined. The Bünzau

catchment, a sub-watershed of the Elbe River, served as a test site. A comparison

was made between the simulation results obtained by using a single land use layer

(SWAT STA), and the results obtained by updating the land use data each year (SWAT

VAR). For this purpose, a land use interpolation and revision tool (IRSeL) was applied

to obtain accurate land use data for each year of the simulation period.

Graphical comparisons and test statistics (PBIAS, RSR and NSE) were used to evaluate

model performances. SWAT model results for the ten-year simulation period indicate

that both setups yield reasonable estimates of daily, monthly and annual streamflow

within the study area (|PBIAS| ≤ 25 %, RSR < 0.7, and NSE > 0.5). Both setups,

however, showed a one-day time lag between simulated and observed streamflow peaks,

which may be an indication that the dominating interaction between groundwater and

surface water is not well represented by the current model structure. Additionally, both

setups underestimated peak discharge. It appears that additional model refinement may

be necessary to better represent groundwater – surface water interactions. A satisfactory
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output can, however, be obtained with both setups. Due to the better representation

of land use distributions, slightly more accurate simulation results were obtained with

SWAT VAR. In nine years of the ten-year simulation period, SWAT VAR provided bet-

ter results than SWAT STA. Graphical and statistical comparisons between the setups

indicate that SWAT VAR simulates flow components more realistically. With the results

from this study we can conclude that an accurate spatial and temporal representation

of land use data helps to reduce uncertainties in model predictions.

In general, models are evaluated based on their ability to simulate behavior at discrete

locations (e.g., stream gages) because no spatially distributed data for model validation is

available. Spatial heterogeneity becomes attenuated at the catchment scale and therefore

differences observed between SWAT VAR and SWAT STA are hardly observable at

the watershed outlet. These results confirm the findings of Volk (2010), which stated

that only massive land use changes result in noteworthy shifts of the simulated water

balances. However, even if no differences are observable at the catchment scale, there

might be noteworthy spatial shifts within the catchment caused by land use changes.

Such changes cannot be captured by using a single land use layer and crop rotations.

Therefore, updating the land use data each year improves the model and leads to a

spatially and temporally more accurate representation of spatial heterogeneity within

the catchment, although the improvement is hardly observable at the catchment outlet.

Despite these difficulties, the impact of land use on SWAT output was evaluated based on

the model’s ability to correctly simulate flow hydrographs with less attention to spatial

results. Almost negligible daily, monthly, and annual differences between SWAT STA

and SWAT VAR observed at the catchment scale suggest that models using less accurate

land use maps can be calibrated as well as models using high accuracy maps. This means

that spatio-temporal accurate land use input is less important when studying aggregated

(e.g., monthly values at the watershed outlet) behavior, but if the purpose of modeling

is to replicate spatially distributed events (e.g., for identifying critical source areas of

surface runoff, nutrients or pesticides) spatially accurate land use data is necessary.

The results presented are limited to the study area. With a generally shallow groundwa-

ter table, low temperatures and relatively evenly distributed rainfall, the Bünzau flow

system is dominated by saturation excess (i.e. Hewlettian) overland flow (Stomph et al.,

2002), while SWAT considers primarily infiltration excess runoff mechanisms (White

et al., 2009). Thus, flow processes in the Bünzau catchment are expected to be more

closely related to topography than to soils or land use. Smaller changes in land use

data examined in this study (i.e. in the magnitude of its uncertainty and temporal

variability) seem to be solely relevant for flow components. No significant differences

in evapotranspiration or total water yield between the setups could be observed. This
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means that in the Bünzau catchment, land use parameters affecting the infiltration ca-

pacity of the soil are more sensitive than parameters related to evapotranspiration or

plant water consumption.

In order to verify the affects of the temporal representation of land use data on hydro-

logic model output, further studies in different watersheds using different models are

necessary.
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Chapter 7

Discussion and conclusion

7.1 Summarizing key achievements

The main objective of this dissertation is to improve the spatial representation of

basin hydrology and flow processes in the SWAT model. This poses a particular chal-

lenge, as SWAT was originally designed as a semi-distributed model, operating at the

sub-watershed scale, to predict agricultural management impacts on long-terms (i.e.

decades) in relatively large watersheds (i.e. up to several thousand km2). In the fol-

lowing, the results will be discussed with regard to the achievements of the research

tasks, the answer to the main research question posed in Chapter 1 as well as the open

questions and limitations of the developed model system.

Research Task 1: Incorporating more spatial detail into SWAT by de-

veloping a model interface that setups SWAT in a grid-based discretization

scheme.

This research task has been addressed in Chapters 2 and 3. Chapter 2 presents the

interface SWATgrid that was developed to set up SWAT based on grid cells. A grid-

based simulation allows the user to incorporate more spatial detail than the conventional

sub-watershed approach. The primary goal of the grid-based setup is to simulate pro-

cesses for every grid cell individually. Therefore, the model output can be directly linked

to specific locations in a watershed (i.e. individual grid cells), making SWAT provide

spatially distributed results. SWATgrid enables the modeler to incorporate spatially dis-

tributed information into a simulation. The functioning of SWATgrid is demonstrated

in Chapter 3, in which a basic application of SWATgrid to a sub-catchment of the Elbe

River, in Northern Germany, is presented. A comparison between SWATgrid and con-

ventional sub-watershed-based results demonstrates that the two approaches agree well

113
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at the watershed outlet, which proves the general functioning of the grid-based approach.

Components of the water balance equation and streamflow at the watershed outlet tem-

porally match well. Moreover, results suggest that the sub-watershed approach can be

calibrated to a similar quality as the grid-based SWAT version but cannot provide spa-

tially distributed results, and thus loses spatial information regarding flow paths. The

grid-based SWAT version preserves the hierarchically organized structure of the model,

i.e. its performance is as good as the well-established sub-watershed approach, and addi-

tionally, provides spatially distributed results. Taking spatially variable input data into

account without information loss and obtaining spatial output data in the resolution of

the applied DEM are the main advantages of the grid-based approach.

Chapter 3 also presents a time-efficient procedure to calibrate grid-based setups. To

perform hydrological studies, a SWAT user first calibrates the model to fit it to the

environmental and hydrological conditions of the catchment. Model output and in-situ

data are compared to improve model input parameters iteratively. Compared to the

sub-watershed approach, the grid-based setup significantly increases model computation

time and, hence, aggravates calibration, according to established calibration guidelines.

Research Task 2: Developing routing capabilities between grid cells and

adapting the SWAT hydrologic algorithms from the sub-watershed to the

hillslope scale.

This research task is the main focus of Chapter 4 , in which a grid-based version of the

SWAT landscape model is presented. The newly developed model uses a new flow sepa-

ration index that considers topographic features and soil properties to capture channel

and landscape flow processes related to specific landscape positions. The resulting model

includes surface, lateral, and groundwater fluxes in each grid cell of the watershed and is

able to capture heterogeneously distributed flow and transport processes in a watershed.

The model was calibrated and validated for the Little River Watershed (LRW, 334 km2)

near Tifton, Georgia, USA. The results suggest that the grid-based landscape model

simulated the streamflow hydrograph at the outlet of the LRW satisfactorily. The new

model predicts observed streamflow well and previously reported discrepancies between

observed and simulated streamflow, for example, during zero-flow conditions (Bosch

et al., 2004; Feyereisen et al., 2007) does not occur. Errors in the simulated streamflow

can be attributed to an underestimation of streamflow peaks and an overestimation of

streamflow during wetting-up periods. The results presented in Chapter 4 demonstrate

that the grid-based SWAT version is generally able to simulate spatially distributed

hydrological processes. However, the results also stress the importance of a model revi-

sion, specifically, the saturation excess concept, which has also been reported by White
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et al. (2011) and Easton et al. (2011). The most important sources of uncertainty in the

SWAT model are related to Variable Source Area (VSA) hydrology, soil moisture, and

saturation excess overland flow at the hillslope scale. These uncertainties are discussed

in a separate chapter (Chapter 7.3) below.

Research Task 3: Improving SWAT input parameters by deriving input

data from remotely sensed data.

Distributed modeling demands high quality spatial input data. Achieving this task is

the central aim of Chapter 5, which presents a space-time interpolation and revision

approach for remotely sensed land use data. The approach leverages special proper-

ties known for agricultural areas, such as crop rotations or temporally static land cover

classes. The newly developed IRSeL-tool (Interpolation and improvement of Remotely

Sensed Land cover) corrects classification errors and interpolates missing land cover

pixels in the temporal or spatial dimension. Afterwards, Chapter 6 presents an appli-

cation study, which assesses the impact of the accuracy and temporal representation of

land use data on SWAT model performance. Comparisons were made between SWAT

results obtained using a single land use layer and those obtained using more accurate

IRSeL-modified individual land use layer for each simulation year. The results suggest

that models using less accurate land use maps can be calibrated to make them as good

as models using high accuracy maps, but they cannot represent the impact of the annual

variability of land use data on model output. Chapter 6 demonstrates that an accurate

temporal representation of land use data helps to reduce uncertainties in model predic-

tions. The requirements of distributed models on spatial input data and its effects on

model uncertainties are discussed in a separate chapter (Chapter 7.2) below.

Central research question: Does the incorporation of more spatial detail

into a SWAT model help to fulfill the requirements of integrated water basin

management?

Most decisions on water policy are addressed at larger watersheds (Beven and Freer,

2001). Integrated water basin management, however, requires spatially detailed model

results for the identification of critical source areas within a watershed, where the im-

plementation of the best management practice need to be focused on. As SWAT was

developed to assist water resource managers to assess the impact of management on

water supplies on the watershed scale (Arnold et al., 1998) a model revision seems

necessary. This dissertation achieved spatial enhancement of the SWAT model by in-

corporating a grid-based discretization scheme, revising the spatial representation of
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hydrologic processes, and improving the quality of input land use data. Results indicate

that the performance of the grid-based model is as good as the conventionally used sub-

watershed approach at the watershed-outlet (i.e. on the catchment scale), and reduces

model uncertainties at the hillslope scale.

However, the quality and spatial resolution of input data as well as physical representa-

tion of processes create barriers to the use of SWAT for river basin management. The

recurring problem in its use for watershed management is the discretization of the water-

shed to best represent watershed processes without exceeding the limitation of available

data and computational time requirements. For this reason, SWAT is based on assump-

tions for up-scaling processes that exist at the hillslope scale. The model aggregates

processes acting at different scale levels by combining empirically derived functions with

physically based ones. Of course, the applicability of SWAT for distributed modeling is

also restricted by a lack of suitable data for the different scales. A review of scale-specific

data requirements and processes, as well as process representation in the SWAT model

is crucial to assess model uncertainty at specific scales. If it is known which scale is

important for watershed management, which processes act at which scale, and how they

are represented in the model, uncertainties can be assessed and future research needs

can be pointed out (Blöschl and Sivapalan, 1995; Volk et al., 2008).

7.2 Spatial input data and distributed modeling

The need to precisely describe the characteristics of a watershed is well-known in envi-

ronmental modeling. Spatial input data (such as climate, topography, land use, and soil

type) are time-consuming and costly to obtain, especially when large areas are consid-

ered. The quality of the spatial input data is assumed to directly affect the simulation

results of hydrologic models (e.g., Quinn et al., 1991; Chaplot, 2005). Therefore, the

analysis of the sensitivity of models to the accuracy of these relatively expensive and

difficult-to-obtain data has become a challenging issue in environmental modeling (e.g.,

Beven, 1993; Chaplot, 2013). Chaplot (2013) recently stated that a consensus on the

sensitivity of models to the whole range of spatial input data and different environmental

conditions has not been reached. Modelers are still challenged by the question concern-

ing how to weigh the level of investment to be made in generating spatial input data;

i.e. decisions about the resolution and the precision of input maps (e.g., soil type and

land use) have to be made.

By using SWAT, Chaplot (2005) demonstrated that hydrology is hardly affected by the

resolution of land use maps. They explained these results by slight differences in the

proportion of the different crops between the low and high resolution maps. Lower
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soil map resolution, however, greatly degrades the prediction quality (e.g., Geza and

McCray, 2008). Chaplot (2013) stated that the minimum spatial input data resolution

needed to achieve accurate modeling results could be predicted from a watershed’s relief

and mean annual precipitation. These studies evaluated model performance, based on

the model’s ability to correctly predict flow hydrographs with lesser attention to spatial

results. The process of calibrating a model at discrete locations (e.g., streamgages)

does not necessarily improve the spatial accuracy of the model (White et al., 2009). In

this context, Arnold et al. (2010) showed that aggregated datasets and models can be

calibrated to be as good as more detailed catchment representations but cannot account

for spatial heterogeneity within a catchment. Therefore, the appropriate precision and

resolution of spatial input strongly depends on the modeling purpose and the ability

of the model to capture small-scale processes. If the model is developed to replicate

spatially distributed events, high resolution spatial data is necessary, but if it is more

important to simulate aggregated behavior at the watershed outlet, lower resolution data

may be appropriate.

Chapters 5 and 6 demonstrate that the lack of high quality and accurate long-term

series of model input data having the desired spatial resolution limits the capacity to

perform distributed water basin simulations. This issue represents a general problem in

environmental modeling and results in uncertainty. As shown in Chapter 6, modelers

can help to reduce uncertainty by analyzing and improving existing datasets statistically

as well as developing appropriate monitoring and data sampling strategies (e.g., Ullrich

et al., 2008). Generally, remote sensing has the potential to become a useful tool to

provide environmental information needed for water basin management and for deriving

spatially detailed model input parameters. This includes information about topography

(DEM), climate data (e.g., Yan et al., 2010), land use patterns (e.g., Ouyang et al., 2010b;

Pandey et al., 2005; Xue et al., 2008), vegetation parameters and vitality (e.g., Strauch

and Volk, 2013), or soil parameters (e.g., Pause et al., 2008). Besides, remote sensing

data has shown a high potential for spatial model validation e.g., evapotranspiration

(e.g., Glenn et al., 2010; Vinukollu et al., 2011) or soil moisture (e.g., Cashion et al.,

2005; Pierdicca et al., 2010).

7.3 Hydrological processes and their representation in the

SWAT model across spatial scales

The role of models in reflecting our understanding of hydrologic systems is important to

the establishment of the best management practice in integrated management plans. A

review of the underlying drivers that control hydrology at scale levels relevant for spatial
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Figure 7.1: Processes and scale (adapted from Quinn, 2004; Garen and Moore, 2005).
(A) A typical 1 m2 soil column where hydrologic processes are dominated by soil conduc-
tivity, roots and macroporosity. (B) Water fluxes and streamflow generating processes
on a typical hillslope section terminating at a stream channel.Ground water table is
shown as a dashed line. (C) Schematic representation of saturated zones (variable
source areas) under relatively dry conditions (dashed line), where dominant land use,

soil type, topography and rainfall gradients dominate hydrologic processes.

planning should be carried out before any model is applied. Ideally, processes should be

modeled at the scale that is relevant for planning and river basin management. Generally,

process representation is the most fundamental problem of model development. As

scale increases, processes integrate to yield responses requiring data sets and simulation

strategies that differ markedly from those appropriate for smaller scales (e.g., Quinn,

2004). This underscores the importance for modeling strategies and stresses the need

for multi-scale catchment models that operate at all scale levels relevant for spatial

planning. By showing the processes at each scale, it is possible to look at some problems

of process simulation and measurement. Figure 7.1 (inspired by Quinn (2004), and Garen

and Moore (2005)) is an attempt to demonstrate how hydrological processes change with

scale, helping to identify key factors that influence hydrology. It is then possible to check

at which scales the SWAT model is appropriate. The following review focuses on the

processes, while the problem of actual availability of data needed for describing these

processes still remains.

7.3.1 Point scale

In Figure 7.1A, 1 m2 of soil is assumed to be the plot scale or ‘point’ scale where soil

type, crop type, and leaching processes are dominant. The soil, roots and macropores

are shown, all of which control the soil moisture (Quinn, 2004). Once water infiltrates

into the soil, it is still affected by gravity and either infiltrates to the water table or

travels downslope (e.g., Selby, 1993); capillary pressure and gravity thresholds dictate

hydraulic conductivity in the unsaturated soil matrix (Spence, 2010). As water drains

from the soil, a larger number of voids become empty, leaving a more circuitous route

for the remaining water (Knapp, 1978), which results in asymptotic drainage. Void
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heterogeneity dictates that saturation is not a complete reversal of drainage. The result

is the non-linearity and hysteresis between water content and hydraulic conductivity

(Spence, 2010). The hysteresis is, however, neglected in many applications and models

because of its complicated nature (Spence, 2010) although its importance for processes

acting at larger scales (e.g., hillslope runoff) has been noted (Sloan et al., 1983; Quinton

et al., 2008).

The frequency at which macropores conduct pipe flow is controlled by macropore storage

thresholds and the ability of the soil matrix to receive and conduct water. The rate

of transfer from the soil matrix needs to equal or exceed infiltration losses from the

macropore to the soil matrix in order to fill the macropore and initiate and sustain pipe

flow (Spence, 2010). Furthermore, macropores have different thresholds of response,

which is due to two controls. First, the area contributing flow to the macropore may be

different. Second, the number, size and connectivity of macropores within the soil profile

can differ (McDonnell, 1990). Already saturated macropores do not require upslope

water or filling by the soil matrix. Thus, they react more quickly to rainfall events. This

means that the moisture status of the soil matrix and its moisture-characteristic curves

determine how, when, and where the soil and macropore network become saturated in

response to a given input of water (Spence, 2010).

SWAT’s soil moisture routine greatly simplifies processes that govern water movement

through porous media in partly-saturated regions. It represents soil moisture dynamics

with a volume-balance equation applied over the root zone of a plant. Guswa et al.

(2002) demonstrated that the use of such a simple routine to predict soil moisture is

not appropriate if the plant lacks the ability to compensate for spatial variation in sat-

uration of the soil profile. Saturation excess flow is a dominant streamflow-generating

process during most storms of ordinary intensity. Soil column scale hysteresis has a

significant impact on soil saturation, which determines saturation excess flow that orig-

inates only in certain areas, not over the entire watershed. As a consequence, SWAT

considers primarily infiltration excess runoff mechanisms (e.g., White et al., 2009), while

saturation excess flow may also be an important factor (Garen and Moore, 2005). An-

alyzing hydrological processes at the plot scale demonstrates that storage thresholds

occurring at this scale must be necessarily breached to initiate the transfer of surface or

subsurface downslope flow. Therefore, processes acting at the plot scale affect hillslope

scale runoff processes (Torres et al., 1998; Spence, 2010). Chapter 4 of this dissertation

demonstrates that SWAT is not able to adequately simulate saturation excess overland

flow, which might be related to the soil moisture equations implemented in the SWAT

model. The saturation status of the watershed is not well represented by the model.

Streamflow during wetting-up periods is generally overpredicted, while peak streamflow

is underestimated if the watershed is saturated. The results presented in Chapter 4
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clearly indicate that model performance strongly depends on the saturation status of

the watershed.

7.3.2 Hillslope

Figure 1B shows that many differing flow processes are in operation at the hillslope

scale. In general, hydrological processes tend to vary greatly between the catchment

divide and the main channel, reflecting a change in landscape. The dynamics of both

the unsaturated and saturated flow processes are spatially and temporarily complex

(Quinn, 2004).

Once a soil column becomes saturated, hydraulic conductivity across that section of the

hillslope increases exponentially (Spence, 2010), making different processes important.

These processes transmit water through the hillslope and include infiltration and satu-

ration excess overland flow, subsurface flow, and fill-and-spill runoff. The importance

of each process in different landscapes is well discussed in the literature (e.g., Beven,

2012). Depending on the landscape features, each runoff generation process is dictated

by its own inherent thresholds. The spatial distribution of infiltration excess runoff is

controlled by where infiltration capacity is exceeded (Betson, 1964), saturation overland

flow is generated at the topographic surface when the rate at which water is supplied to

the soil column is higher than the hydraulic conductivity (Hewlett and Hibert, 1967),

and fill-and-spill runoff occurs if spatially variable key stores across the hillslope are sat-

isfied (Tromp van Meerveld and McDonnell, 2006). Accurate estimates of soil thickness,

soil type, slope, relief shape, potential contributing area and local hydrometeorology are

needed to adequately describe these processes (e.g., Spence, 2010). Dunne and Black

(1970), for example, analyzed the impact of soil thickness and convex and concave slopes

on runoff. All these mechanisms result in dynamic contributing areas on hillslopes over

space and time (McNamara et al., 2005; Tromp van Meerveld and McDonnell, 2006).

Different surface and subsurface flow processes have been observed on the same hillslopes

under different saturation conditions (Montgomery and Dietrich, 1995; Spence, 2010).

The potential exists for any runoff mechanisms to occur on any hillslope, but it is the

interplay between inputs and storage thresholds that defines when and how frequently

each process’ thresholds will be breached (Spence, 2010).

The grid-based SWAT landscape model (based on the versions of Volk et al. (2007)

and Arnold et al. (2010)) presented in Chapter 4, computes surface runoff for each

grid cell with the curve number method. Run-on to an adjacent downslope landscape

unit is estimated using an individual coefficient to partition the amount of flow that is

channelized before leaving the grid cell and the amount that is direct surface run-on.
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The curve number varies non-linearly with the moisture content of the soil (that is cal-

culated using a simple volume-balance equation). It drops as the soil approaches the

wilting point and increases as the soil approaches saturation. Due to the curve num-

ber method, SWAT primarily considers infiltration excess runoff mechanisms (White

et al., 2009). Arnold et al. (1998) explained their choice of curve number instead of an

infiltration equation for use in the SWAT model with data availability issues (rainfall

and soil data), computation time, and the model application scale. The curve number

procedure was, however, designed to predict streamflow (i.e. total water yield) on the

catchment scale (Soil Conservation Service Engineering Division, 1972). Applying the

equation to the hillslope scale means that the calculated values are interpreted to be

overland flow (i.e. unchannelized water flowing over the surface into the next channel);

assuming equivalence between streamflow and overland flow implies, in terms of the

curve number equation, that only overland flow is responsible for streamflow generation

(Garen and Moore, 2005). In the SWAT model (and in this dissertation), the curve

number procedure is applied to the hillslope scale, although the equation seems unable

to capture the variety of runoff generating processes and its associated thresholds. There

are a few applications and studies that analyzed SWAT model results qualitatively at

the hillslope scale (e.g., Chapter 4 of this dissertation; Bosch et al., 2007a; Volk et al.,

2007; Arnold et al., 2010) and only Bosch et al. (2010) evaluated SWAT model perfor-

mance quantitatively. They stated that there was a relatively poor fit to the monthly

surface runoff observations (negative monthly Nash-Sutcliffe efficiency), but the trends

in general were correct. Results were considered ‘encouraging’, while additional calibra-

tion and testing of the SWAT landscape model was necessary. In particular, the model

requires additional detail to properly describe interactions between the soil surface, the

vadose zone, and groundwater (Bosch et al., 2010). In this context, the empirical curve

number equation seems to be a key weakness of the SWAT model. Observations made

in Chapter 4 of this dissertation demonstrate that SWAT is not able to adequately

simulate saturation excess runoff mechanisms. SWAT can be calibrated to an average

saturation condition of the watershed, but model performance significantly decreases as

the watershed saturation differs from its average. Streamflow is underestimated when

the watershed is saturated and overestimated during low-flow conditions. Spatial results

obtained with the curve number, however, are reasonable. Highest surface runoff values

occur in urban areas, and the model simulates more surface runoff in upland areas than

in flat floodplain areas. Hence, the curve number method is able to account for spatial

heterogeneities related to topography (i.e. slope), soil type, and land use, but is not

able to simulate the temporal, dynamic nature of saturation excess runoff in the flood-

plains. Alternative concepts should be considered to overcome the difficulties inherent

in the curve number method. Agnew et al. (2006) stated that there are several physi-

cally based distributed hydrologic models that consider variable source area hydrology,
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requiring large amounts of input data and/or substantial calibration and yielding mixed

results (e.g., Bernier, 1985; Beven, 1989; Wigmosta et al., 1994), making their applica-

tion to ungaged watersheds and data-scarce catchments uncertain (Grayson et al., 1992;

Beven, 2012). Grayson et al. (1992) stated that complex, process-based models are

useful in research, but models used for river basin management should be simple, with

few data requirements and clearly stated assumptions. TOPMODEL (e.g., Beven and

Kirkby, 1979) and the Soil Moisture Routing model (SMR, e.g., Frankenberger et al.,

1999; SWL, 2003) are two physically-based, simple watershed-based models (Agnew

et al., 2006). Both models are able to capture Variable Source Area (VSA) hydrology

and have been shown to successfully identify saturated areas (e.g., Mehta et al. (2004),

for SMR; Holko and Lepistö (1997), for TOPMODEL). TOPMODEL is based on the

assumption that a catchment-wide water table intersects the landscape to predict sat-

urated runoff generating areas. It uses a topographic index that implies steady-state

assumptions and requires some calibration. In contrast, SMR assumes that saturated

areas are controlled by transient interflow, perched on a shallow restricting layer. The

model uses a simple physically-based water budget equation that requires virtually no

calibration (e.g., Agnew et al., 2006). It is fully distributed, runs on a daily time step,

and predicts daily saturation-excess overland flow occurring at any point in a watershed.

SMR’s input requirements include digital elevation data, soil parameters, and land use

data (Frankenberger et al., 1999); data that is needed for SWAT simulations anyway.

Both TOPMODEL and SMR are watershed-based models that operate on a daily time

step. Their concepts are thus considered to have strong potential to improve spatial

distribution of hydrologic processes in the SWAT model that are related to VSA hy-

drology, particularly to soil moisture and saturation excess runoff. In Chapter 4, parts

of the TOMPODEL framework are integrated into SWAT, and the results obtained

demonstrate that using a modified version of the topographic TOPMODEL index im-

proved spatial representation of basin hydrology. Data requirements, spatial scale, and

time step of SWAT and SMR are similar and SMR’s methods are simple, but physically

based and fully distributed. Therefore, incorporating the well-evaluated hydrological

algorithms used in SMR into SWAT seems to be a promising task for future studies.

Lateral soil flow volumes are simulated using a kinematic storage model with multiple

soil layers as a function of saturated hydrological conductivity, slope, slope length, and

porosity (Arnold et al., 1998). SWAT represents associated soil moisture dynamics with

a volume-balance equation. Guswa et al. (2002), however, demonstrated that the use

of such a simple routine may not be appropriate for predicting vertical soil moisture

distribution. Furthermore, the curve number method used for calculating surface runoff

is unable to directly model infiltration (Neitsch et al., 2011b). The amount of water

entering the soil profile is calculated as the difference between the volume of precipitation
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and the volume of surface runoff. The Green & Ampt infiltration method (Green and

Ampt, 1911), which is also integrated in the SWAT model, models infiltration directly

but requires precipitation data in smaller time increments that are often not available.

Groundwater flow is calculated as routing through a series of linear storage elements

(often named tank model, see Brutsaert, 2005) that may be influenced by groundwater

evaporation or seepage to the deep aquifer (Arnold et al., 2010). Pfannerstill et al. (2013)

demonstrated recently that an extended groundwater concept, using multiple storage

components, can significantly improve the representation of groundwater processes in

the SWAT model. Streamflow results of the SWATgrid application study performed

in Chapter 4 of this dissertation indicate systematic differences between the observed

and simulated baseflow component. The model generally overpredicts baseflow during

wetting-up periods; the observed baseflow component increases slowly, while the simu-

lated baseflow rises too rapidly. The opposite happens during drying periods, when the

observed streamflow decreases slowly, while the simulated streamflow falls too rapidly.

The model, however, performs well during average saturation conditions. These results

indicate an underestimation of the available groundwater storage at wetting-up and dry-

ing periods. A multiple groundwater storage concept will be able to consider a greater

groundwater storage capacity during these periods, leading to a slower filling in the

wetting-up period and a longer hydrograph on the falling side.

SWAT greatly simplifies both surface and subsurface hillslope runoff processes. Review

of SWAT’s hydrological algorithms leads to the conclusion that SWAT seems unable

to capture the interplay among multiple storage thresholds that define when surface or

subsurface hillslope runoff will occur; results presented in previous studies (e.g., Bosch

et al., 2010) and in Chapter 4 confirm this finding. Hydrological runoff processes acting

at the hillslope scale (i.e. infiltration and saturation excess overland flow, subsurface

flow, fill-and-spill runoff) heavily rely on the spatial distribution of soil thickness and soil

moisture (e.g., Guswa et al., 2002; Zehe et al., 2005; Spence, 2010), water table height

(e.g., McCaig, 1983), and topography (e.g., Dunne and Black, 1970). Hence, hillslope

runoff process is hysteric, highly non-linear, its occurrence is not static, it does not fol-

low steady state principles, and is threshold-mediated (McGlynn and McDonnell, 2003;

Spence, 2010). The suitability of the SWAT model for analyzing how different land-

scape units interact over time to produce a catchment runoff signal can be questioned.

However, the role of topography, soil, and human influences are at their greatest at the

hillslope scale (Quinn, 2004). Integrated models should reflect impacts of hillslope scale

conservation measures and landscape features (e.g., wetlands, hedgerows, and buffer

zones) and capture the impact of the dominant hillslope flow path on the channel. The

temporal dynamics of saturated areas and the surface and subsurface flow connectivity

of these areas to the receiving channels need to be addressed in future studies.
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7.3.3 Catchment

Many water resource management problems occur at the catchment scale, and it is often

accepted that, as catchment size increases, complex local patterns become attenuated.

Hewlett and Hibert (1967) and Dunne and Black (1970), however, demonstrated how

storage thresholds associated with different hydrologic processes at the hillslope scale

dictate catchment runoff response (see also Spence, 2010). The most profound effect

at the catchment scale is that the area contributing to surface and subsurface runoff

is diverse and variable. This phenomenon showed how the distribution of landscapes

features and associated storage thresholds determine the organization of the stream

network, the flow contributing areas overtime, and thus runoff response at the catchment

outlet (e.g., Spence et al., 2010).

However, the superimposition of processes is accepted as the scale increases, and SWAT

has proven to be a suitable model at the catchment scale. The use of the curve number

method for catchment runoff, as well as simple soil storage, groundwater, and lateral flow

equations is appropriate. Numerous applications use the outlet gauge discharge data for

validation purposes. Results presented in Chapters 2, 3, 4, and 6 of this dissertation

confirm the good model performance at the catchment scale. The model still performs

well even if model calculations are made at a finer spatial scale. Up-scaling processes from

smaller scales to the catchment scale and superimposing smaller scale runoff processes

produces a non-linear relationship between inputs and runoff, reflecting a catchment

runoff response. The use of these methods in non-point source water quantity and

quality models for answering complex questions on detailed spatial and temporal scales

is, however, questionable.

7.4 Conclusions and further research needs

A broad re-classification of the landscape at the hillslope scale is needed for river basin

management to reflect the hydrologically dominant processes, including both natural

and man-made factors (Quinn, 2004; Volk, 2010). In the light of the relatively sim-

ple hydrologic algorithms and equations used in the SWAT model, the question arises

whether SWAT represents an adequate choice of model for simulating such complex,

spatially and heterogeneously distributed processes at the hillslope scale. Environmen-

tal modeling generally involves the challenge of finding a balance between an adequate

representation of crucial processes in a model and its data requirements. Empirical

models like the curve number method are still used because of their ease of application

and low data requirements (Arnold et al., 1998). However, empirical models are not able
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to simulate physical processes, and the reliability of results should be carefully verified.

In contrast, physically based models provide an accurate and detailed representation of

processes, but are computationally intensive and require a large amount of data. SWAT

combines empirically derived algorithms with physically based ones. To use models for

integrated watershed management it is necessary that they provide information on a

wide range of abiotic and biotic aspects of hydrology (Seppelt et al., 2009). Among

the numerous hydrological and water quality models that have been recently developed,

SWAT is one of the most suitable models for simulating water quantity and quality

under various environmental conditions (e.g., Behera and Panda, 2006). SWAT simula-

tions performed in this dissertation yielded promising results, demonstrating the general

applicability and suitability of the model for river basin management, while additional

development is necessary to improve representation of processes that are spatially het-

erogeneously distributed throughout the catchment. For this purpose, the use of the

freely available, open-source model SWAT is advantageous, as users can easily modify

the model if desired.

Spatial modeling requires a framework that includes a clear idea of the modeling purpose

and the associated selection of an appropriate model and data scale. Processes relevant

to river basin management act at the catchment and at the hillslope scale level. The

key influence of hydrology at the catchment scale is the large-scale variability of soil

type, land use, rainfall, and topography. Any integrated river basin model should try to

reflect this variability. As conservation measures need to focus on critical source areas

affecting processes that act at the hillslope scale, integrated river basin models should

also provide a spatially distributed representation of basin hydrology and transport

processes. Spatial results obtained from distributed models can only be as good as the

quality of the input data. This means that the performance of distributed hydrological

models depend on both the quality of the model (i.e. representation of processes) and

the quality of the input data (i.e. accuracy and resolution issues).

Hence, fulfilling the demand for distributed data is a major challenge in distributed hy-

drological modeling (Shrestha et al., 2006). Chapter 6 analyzes the hydrologic predictive

uncertainty associated with the gap between the need, on the one hand, and the avail-

ability and quality of land use input data, on the other. Results indicate that overall

basin hydrology and model performance is only slightly affected by variations in land use

data. Model calibration seems to be much more important for model performance than

land use representation. However, modeling small-scale processes (e.g., infiltration and

overland flow processes) requires high quality and high resolution input data. Therefore,

accurate land use representation helps to reduce uncertainties in spatial model predic-

tions. Chapter 5 of this dissertation suggests a method that shows how existing land
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use data sets can be used to improve land use input data in the spatial and temporal

dimension.

A landscape with defined ranges is close to both the local and the national decision-

making levels (Briassoulis, 1999) and represents a suitable scale for water basin manage-

ment (Volk, 2010). The landscape (or land phase) components implemented in SWAT

can be divided into hydrology, weather, sedimentation, soil, crop growth, nutrients, pes-

ticides, and agricultural management. SWAT combines concepts and modules of several

models (Neitsch et al., 2011b) to simulate processes on a wide range of abiotic and biotic

aspects of hydrology. Some models that contributed to the development of SWAT are

CREAMS (Chemicals, Runoff, and Erosion from Agricultural Management Systems,

Knisel, 1980), GLEAMS (Groundwater Loading Effects on Agricultural Management

Systems, Leonard et al., 1987), SCS-CN (Soil Conservation Service Engineering Divi-

sion, 1972), and EPIC (Erosion-Productivity Impact Calculator, Williams et al., 1984).

Each of them was developed and tested for specific applications and scales. CREAMS

and EPIC are field scale models that simulate the impact of land management on water,

sediment, nutrients, pesticides (CREAMS), and erosion (EPIC), while the SCS curve

number model was designed to predict stream flow generated by large rain storms at

the catchment scale. Generally, SWAT was developed as a long-term water yield model

operating on a daily time step (Arnold et al., 1998). Hence, process representation of the

model should be checked carefully at the relevant scales before conclusions are drawn,

based on model results. In this context, reviewing hydrologic processes across scales and

analyzing their representation in the SWAT model lead to the conclusion that results

provided at the hillslope scale are questionable.

There are numerous SWAT applications that use the outlet gauge discharge data for

validation purposes, i.e. validating the model at the catchment scale. This turns out to

be one of the most serious shortcomings of current watershed simulations using models

like SWAT (Agnew et al., 2006); the models are mostly evaluated on the basis of their

ability to correctly predict flow hydrographs with lesser attention to the locations of

runoff producing areas. Integrated models should, however, preserve geographically

distributed information and capture VSA processes for identifying saturated source areas

in the landscape. In this context, the empirical curve number equation seems to be

another key weakness of the SWAT model. Daily precipitation is input to the model

and the empirical curve number equation is applied to daily rainfall without accounting

for intensity to calculate surface runoff. The curve number equation implemented in

SWAT is parameterized by soil type, antecedent soil moisture, and land use, each of

which is associated with infiltration capacity, thus, implying infiltration excess runoff.

Gburek et al. (2002), however, proposed a method for identifying potential saturated

areas based on curve numbers and the assumption that saturated areas concentrate
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around perennial waterways. Integrated hydrological models demand a more physically

based, robust alternative for saturated variable source area hydrology (e.g., Agnew et al.,

2006). To sum up, spatial distributed simulations as well as estimating hydrological

processes at the hillslope scale seem to require a revision of the SWAT model.

In general, SWAT has proven to be a very useful tool and has shown its capability

to adequately represent general trends of water quantity and quality changes resulting

from various measures based on land use and management change at the catchment

scale (Fohrer et al., 2005; Gassman et al., 2007). The model helped to obtain a working

knowledge of hydrological systems and the processes occurring on a wide scale of wa-

tersheds and environmental conditions. However, spatially detailed simulations at the

hillslope scale seem to touch the boundary of the model; in its current status, a revision

of the hydrological processes seems to be needed. This dissertation is a first step in the

development of a spatially distributed SWAT model that helps to fulfill the requirements

of river basin management. This was achieved by improving the spatial representation

of processes in the SWAT model and providing more accurate input data. The research

conducted in this dissertation has created new options for spatial modeling. Depending

on the purpose of modeling and the data available, the user can choose between a grid-

based version, with limited routing capabilities (see Chapters 2 and 3), and a version

that includes landscape processes (see Chapter 4). Each model version can be run using

either conventional land use maps or land use data with an improved spatial accuracy

and temporal availability (i.e. IRSeL-modified land use data, see Chapters 5 and 6).

Therefore, the groundwork for distributed hydrological modeling with the SWAT model

has been laid successfully.

As testing and development of the model is expanded, the full utility of the model will be

realized. However, reviewing the processes at the hillslope scale and its representation

in the SWAT model increases the importance of analyzing whether models based on

simple, empirical equations (e.g., the curve number method) can appropriately represent

complex hydrological runoff processes at the hillslope scale. Of course, the problem

whether data needed for more sophisticated models are actually available still remains.

As stated by Garen and Moore (2005), “complex questions will require complex models,

which are data- and resource-intensive; there are no short cuts.” This seems to be true

for spatially detailed, fully distributed hydrological simulations.
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Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein – Agency for

Nature and Environment Schleswig-Holstein.

Lorz, C., Volk, M., Schmidt, G., 2007. Considering spatial distribution and functionality of forests

in a modeling framework for river basin management. Forest Ecology and Management 248,

17 – 25.

LVA, 2007. ATKIS (official topographical cartographic information system). Landesamt für

Vermessung und Geoinformation Schleswig-Holstein – Land survey office Schleswig-Holstein.

LVA, 2008. ATKIS-DEM 5 m grid size derived from LiDAR data. Landesamt für Vermessung

und Geoinformation Schleswig-Holstein – Land survey office Schleswig-Holstein.

Lyon, S.W., Walter, M.T., Gérard-Marchant, P., Steenhuis, T.S., 2004. Using a topographic

index to distribute variable source area runoff predicted with the SCS curve-number equation.

Hydrological Processes 18, 2757–2771.

Manguerra, H.B., Engel, B.A., 1998. Hydrologic parameterization of watersheds for runoff pre-

diction using SWAT. JAWRA Journal of the American Water Resources Association 34,

1149–1162.

Mausbach, M.J., Dedrick, A.R., 2004. The length we go: measuring environmental benefits of

conservation practices. Journal of Soil and Water Conservation 59, 96A–103A.

McCaig, M., 1983. Contributions to storm quickflow in a small headwater catchment – the role

of natural pipes and soil macropores. Earth Surface Processes and Landforms 8, 239–252.

McDonnell, J.J., 1990. A rationale for old water discharge through macropores in a steep, humid

catchment. Water Resources Research 26, 2821–2832.

McGlynn, B.L., McDonnell, J.J., 2003. Quantifying the relative contributions of riparian and

hillslope zones to catchment runoff. Water Resources Research 39, n/a–n/a.

McNamara, J.P., Chandler, D., Seyfried, M., Achet, S., 2005. Soil moisture states, lateral flow,

and streamflow generation in a semi-arid, snowmelt-driven catchment. Hydrological Processes

19, 4023–4038.



138 References

Tromp van Meerveld, H.J., McDonnell, J.J., 2006. Threshold relations in subsurface stormflow:

2. the fill and spill hypothesis. Water Resources Research 42, n/a–n/a.

Mehta, V.K., Walter, M.T., Brooks, E.S., Steenhuis, T.S., Walter, M.F., Johnson, M., Boll, J.,

Thongs, D., 2004. Application of SMR to modeling watersheds in the Catskill Mountains.

Environmental Modeling & Assessment 9, 77–89.

Miller, S.N., Kepner, W.G., Mehaffey, M.H., Hernandez, M., Miller, R.C., Goodrich, D.C.,

Kim Devonald, K., Heggem, D.T., Miller, W.P., 2002. Integrating landscape assessment and

hydrologic modeling for land cover change analysis. JAWRA Journal of the American Water

Resources Association 38, 915–929.

MLUR, 2010. IACS (Integrated Administration and Control System) land use data. Minis-

terium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-
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Zehe, E., Becker, R., Bárdossy, A., Plate, E., 2005. Uncertainty of simulated catchment runoff

response in the presence of threshold processes: role of initial soil moisture and precipitation.

Journal of Hydrology 315, 183 – 202.



Acknowledgements

I wish to express my gratitude to all those who have contributed to the completion of

this dissertation.

First and foremost, I wish to thank Prof. Dr. Natascha Oppelt for her supervision and

her helpful support during the past 4 years.

I also wish to thank PD Dr. Martin Volk for long discussions about SWAT and the

SWAT landscape model, and for always giving helpful advice when I needed it.

I sincerely thank Prof. Dr. Nicola Fohrer and my colleagues from the Department of

Hydrology and Water Resources Management for providing data used in this study and

for all their help and support.
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