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Zusammenfassung

In den vergangenen Jahren wurde das Aufnehmen von Unterwasserbil-
dern immer beliebter. Die Gründe sind einerseits, dass sich handelsübliche
Unterwasserkameras immer stärker verbreiten, andererseits wächst auch
das Interesse am Ozeanboden – sowohl in der Wissenschaft und For-
schung, als auch bei der Industrie. Bilder und Filme werden häufig nicht
nur aufgenommen und angeschaut, auch das Interesse an Anwendun-
gen aus dem Bereich des maschinellen Sehens ist gewachsen. Allerdings
wird dabei oft außer Acht gelassen, dass das Wasser großen Einfluss
auf die Bildentstehung hat. Zum einen wird Licht abgeschwächt und ge-
streut, während es sich im Wasser ausbreitet. Das ist ein von Wellenlängen
abhängiger Effekt, der die starke grünliche oder bläuliche Färbung in
Unterwasserbildern verursacht. Zum anderen brauchen Unterwasserka-
meras notgedrungen ein Gehäuse und betrachten daher die Szene durch
ein entweder flaches oder gewölbtes Glas. Im Gehäuse befindet sich Luft,
außerhalb ist Wasser. Das führt dazu, dass ein Lichtstrahl, der das Gehäuse
erreicht, zweimal gebrochen wird; einmal am Übergang zwischen Wasser
und Glas und ein zweites Mal am Übergang zwischen Glas und Luft, was
die Geometrie der Bildentstehung beeinflusst. In klassischen Ansätzen
zu Structure-from-Motion (SfM) wird üblicherweise das perspektivische
Kameramodell verwendet, allerdings kann man leicht zeigen, dass es
durch den Einfluss von Lichtbrechung in mehreren Medien (Luft, Glas
und Wasser) ungültig wird.

Daher wird in dieser Arbeit gezeigt, wie der klassische Ansatz für SfM-
Algorithmen angepasst werden kann, damit er Unterwasserkameragehäu-
sen mit flachen Glasscheiben gerecht wird. Dazu wird ein vollständiges
Verfahren vorgestellt, in dem die Lichtbrechung explizit modelliert wird,
welches aus einem Kalibrierverfahren, Algorithmen für absolute und re-
lative Poseschätzung, einer effizienten, nicht-linearen Fehlerfunktion für
Bündelausgleich und einem Plane-Sweep-Algorithmus mit Lichtbrechung
besteht. Außerdem kann im Falle von vorliegenden Kalibrierdaten ein
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Modell für die Lichtausbreitung unter Wasser parametrisiert werden, das
mit Hilfe dichter Tiefenkarten zur Korrektur der Texturfarben verwendet
werden kann.

Vergleichende Experimente mit einem perspektivischen und mit dem
vorgestellten Ansatz mit Lichtbrechung haben gezeigt, dass der perspekti-
vische Ansatz tatsächlich einen systematischen Fehler aufweist, der von
der Distanz zwischen Kamera und Glas und von einer möglichen Nei-
gung zwischen Glas und Bildsensor abhängt. Der hier vorgeschlagene
Ansatz weist keinen solchen Fehler auf, ist also in der Lage, genauere
Rekonstruktionsergebnisse für Unterwasserbilder zu berechnen.
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Abstract

In recent years, underwater imaging has gained a lot of popularity partly
due to the availability of off-the-shelf consumer cameras, but also due to a
growing interest in the ocean floor by science and industry. Apart from
capturing single images or sequences, the application of methods from
the area of computer vision has gained interest as well. However, water
affects image formation in two major ways. First, while traveling through
the water, light is attenuated and scattered, depending on the light’s wave-
length causing the typical strong green or blue hue in underwater images.
Second, cameras used in underwater scenarios need to be confined in an
underwater housing, viewing the scene through a flat or dome-shaped
glass port. The inside of the housing is filled with air. Consequently, the
light entering the housing needs to pass a water-glass interface, then a
glass-air interface, thus is refracted twice, affecting underwater image for-
mation geometrically. In classic Structure-from-Motion (SfM) approaches,
the perspective camera model is usually assumed, however, it can be
shown that it becomes invalid due to refraction in underwater scenarios.

Therefore, this thesis proposes an adaptation of the SfM algorithm to
underwater image formation with flat port underwater housings, i. e., in-
troduces a method where refraction at the underwater housing is modeled
explicitly. This includes a calibration approach, algorithms for relative
and absolute pose estimation, an efficient, non-linear error function that
is utilized in bundle adjustment, and a refractive plane sweep algorithm.
Finally, if calibration data for an underwater light propagation model
exists, the dense depth maps can be used to correct texture colors.

Experiments with a perspective and the proposed refractive approach
to 3D reconstruction revealed that the perspective approach does indeed
suffer from a systematic model error depending on the distance between
camera and glass and a possible tilt of the glass with respect to the image
sensor. The proposed method shows no such systematic error and thus
provides more accurate results for underwater image sequences.
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Symbols and Notations

Pn n + 1 -dimensional projective space, hosts Rn

a scalar
A matrix
x = (x, y, 1)T homogeneous 2D vector
X = (X, Y, Z, 1)T homogeneous 3D vector
x = (x, y)T euclidean 2D vector
X = (X, Y, Z)T euclidean 3D vector
X̃ =

(
X̃, Ỹ, Z̃

)T ray in 3D (normalized, i. e., ‖ X̃ ‖= 1)
Xc = (R, Z)T 3D vector in cylinder coordinates with R be-

ing the radial coordinate, angle ϕ is usually
omitted

X̃c = (R̃, Z̃)T ray in cylinder coordinates, angle ϕ usually
omitted

Xcc, Xwc homogeneous vectors in camera coordinate
system and world coordinate system

j P {1, ..., M} camera j from M rig cameras
i P {1, ..., N} image i from N captured images, i. e., images

captured with the whole rig or a monocular
camera

k P {1, ..., K} pixel position or 2D image point k
Xs starting point on outer glass interface in re-

fractive case and camera center in perspective
case

X̃a, X̃g, X̃w rays in air, glass, and water respectively
κ scaling rays, i. e., Xs + κX̃w, length of rays/un-

derwater travel distance
d distance camera center – interface in mm
dg glass thickness in mm
na, ng, nw indices of refraction (air, glass, water)
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λ wavelength, or color channel as discretized
wavelength

α white balancing of the different color chan-
nels

β offset of the different color channels
B8λ

veiling light color in color channel λ
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Chapter 1

Introduction

The world’s oceans are of great interest to mankind, although parts of
space are better known and researched than the seafloor. This is caused
by the great technical difficulty due to extremely high water pressure
at most seafloor regions and greatly hampers exploration and mapping
efforts. However, in times of scarce resources and global warming, it
becomes increasingly necessary to get to know those unexplored deep sea
regions. A first step of exploration is the detailed mapping of the seafloor
(bathymetry) for which usually acoustic methods are used because of
the water’s sound carrying characteristics. For greater detail, acoustic
mapping can be complemented by optical methods, i. e., utilizing camera
images in methods from the area of computer vision.

This thesis is about adapting existing methods from the area of com-
puter vision to the underwater imaging environment. In order to achieve
that, a closer look at existing underwater imaging systems is required. Not
all underwater imaging systems are designed for deep sea exploration.
A lot of off-the-shelf consumer cameras exist, which are water proof and
can be used by divers to capture underwater images (Figure 1.1, left).
The water depth that can be reached by those systems is limited, some
may be able to reach 100 m. Next to those systems, expensive, custom-
made systems, which are for example part of Remotely Operated Vehicles
(ROVs) are of interest (Figure 1.1, middle and right). ROVs are underwater
robots that are suspended into the water and depend on a tether for power
and control, usually provided by a ship on the surface. They are often
equipped with manipulators and cameras and are widely used by the
offshore industry for example oil and gas companies, but also by scientists.
ROVs are constructed for retrieving samples and measuring ocean water
parameters like salinity, temperature, etc. While doing so, video footage
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1. Introduction

Figure 1.1. Left: SLR camera in underwater housing. Middle: ROV Kiel 6000 from
Geomar Helmholtz center for Ocean Research. Right: deep sea flat port camera.

is captured, often to aid the pilots to navigate the ROV, however, only
recently, applying methods of computer vision to the captured footage
has received some interest. AUVs (Autonomous Underwater Vehicles) can
navigate through the water on their own on a pre-programmed path. They
have limited, on-board power supplies, usually no manipulators, but can
record video or single images using a strobe. The limited supply of power
often limits the amount of image data that can be captured, especially
because of power requirements for adequately lighting the scene. Addi-
tionally, AUVs continuously measure ocean water parameters, thus can
autonomously create profiles along their pre-defined paths. Both, ROVs
and AUVs can reach water depths up to thousands of meters. As an
example, the ROV Kiel 6000 of the Geomar Helmholtz Centre for Ocean
Research can reach up to 6000 m. This allows to reach more than 90% of
the ocean floor1. However, the deeper an underwater robot can dive, the
more technologically challenging it becomes to withstand the high water
pressures.

Apart from bathymetry, other computer vision methods can be applied
to the underwater images. In order to map the ocean floor, camera move-
ments can be registered and a mosaic of the floor can be computed. More
difficult, but also often more interesting, is the computation of 3D models
of objects or larger structures, which allows to measure distances and
volumes. The advantages of reconstructing 3D models become apparent
when considering the following situation: in order to determine how a
volcano came into existence, geologists will go into the field, measure

1http://www.geomar.de/en/centre/central-facilities/tlz/rovkiel6000/overview/
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physical properties of the deposits such as grain size distribution, thick-
ness and orientation of bedding, but also volcanotectonic features such
as faults and joints. Such features are only visible over a broad range of
scale, causing the scientists to wander around the outcrop, in order to
gain an overview over larger structures. This is fairly easy to do on land.
Underwater however, the geologists will need to use a ROV and record
many Gigabytes of image data. Then, after the cruise, the video data is
viewed and examined. However, it is neither possible to navigate freely,
nor possible to move back, away from the structure to get an overview,
nor possible to do distance or even volume measurements. When using
the captured image data to create a 3D model, however, the geologist can
do field work on a computer, long after the cruise, even measure small or
larger structures.

Other examples include non-rigid objects of interest like fish, plankton,
or other vagile fauna. Biologists for example often need to measure and/or
categorize fish or plankton [CLC+06, HS98]. Ideally, this measurement
can happen in situ, i. e., the fish do not need to be captured, but are
automatically detected in the images and then measured, which is reducing
stress for the animals. In this case a synchronized stereo camera rig can be
used to capture images of the fish. Similar measurements on a different
scale are required in case gas bubbles in the water column need to be
investigated. This is of great interest in different areas, e. g., Climatology
where it needs to be known how much carbon dioxide (CO2) or methane
(CH4), which is emitted from deposits buried beneath the seafloor, actually
reaches the atmosphere or how much is dissolved in the water. The
parameters to be measured include the average gas bubble size, which
is usually between 3 mm and 13 mm, the bubble’s rise velocity, the total
volume of a plume of gas bubbles, the size distribution histogram of a set
of bubbles, and changes in average size over time. In the literature, often
acoustic methods are applied in order to measure those parameters, e. g.,
[vDP12]. However, some optical methods exist as well [LdLC03, TZSB10].
Both approaches use only one camera to measure bubbles at a certain,
known distance from the camera.

Finally, optical methods and 3D reconstruction can be used to aid
vehicle navigation. This is due to the fact that the camera systems are
usually rigidly coupled with the vehicle, thus have the same trajectory in
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3D space. During 3D reconstruction, the camera path is computed and
can be utilized for autonomous vehicle navigation for example in AUVs.
In order to achieve that, the reconstruction algorithm needs to run in real
time and it needs to incorporate navigation data from the vehicle’s sensors.
Approaches like that are categorized as SLAM (Simultaneous Localization
and Mapping) and are widely used in robotics. A recent approach for
autonomous ship hull inspection can be found in [KE13].

Methods for computing mosaics and 3D models from image data, for
measuring distances or volumes using stereo camera rigs, or using image
data to aid robot navigation, are well established in the area of computer
vision for cameras moving through air.

Unfortunately, the water affects image formation in two different ways.
First, while traveling through the water, the photons are absorbed and
scattered by the water depending on the light’s wavelength, causing the
captured images to have the typical green or blue hue. Light attenuation
is particularly strong in the near infra-red part of the spectrum, and hence
many established measuring methods like infra-red-based structured light,
e. g., Kinect [HSXS13] or Time-of-Flight cameras [LSBS99] do not work
well underwater. If many particles are suspended in the water, viewing
distances can be extremely short, e. g., only centimeters in turbid water
and even in clear water viewing distances are limited to approximately
30 m.

The second effect on underwater image formation is refraction at the
camera’s underwater housing, which can usually be categorized into dome
ports and flat ports, with different glass thicknesses depending on water
depth. The inside of the housing is usually filled with air, outside is water.
Consequently, all light rays entering the housing are refracted twice, first
at the water-glass interface, and again at the glass-air interface if they do
not intersect the housing at a perfectly perpendicular angle. Thus, for
all flat port housings, the geometry of rays is distorted and for all not
perfectly fitting dome ports as well. The above mentioned applications like
mosaicing, 3D reconstruction, and stereo measurements utilize imaging
geometry and therefore are affected by refraction. This thesis will investi-
gate how established methods mainly for 3D reconstruction, but also for
stereo measurements can be adapted to underwater image formation.
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Main Contributions

In order to deal with effects on color, a simplified physical model of
light attenuation and scattering that is well established in the literature
is parametrized during a newly developed calibration routine and then
utilized to correct image colors. For this, the distance between camera and
object is required, hence, it can be used to correct the color textures of 3D
models after depth estimation.

More important than color correction is the explicit consideration of
refraction. Usually, cameras can be modeled geometrically using the
perspective camera model. However, due to refraction, the perspective
camera model becomes invalid because the extremal light rays do not
intersect in the common center of projection anymore, thus violating one
of the model’s basic assumptions. Therefore, the main contribution of
this thesis is the development and analysis of a method for reconstruction
that explicitly models refraction at flat port underwater camera housings.
In order to achieve that, the housing interface is first parametrized and
calibrated. Then, a refractive Structure-from-Motion approach is presented
with new algorithms for relative and absolute pose estimation. A major
challenge is that projecting 3D points into the camera is computationally
very expensive, requiring to solve a 12th-degree polynomial. Therefore,
the commonly used reprojection error cannot be used for non-linear op-
timization because its run-time becomes infeasible once the number of
views increases. This challenge is met by introducing a virtual camera
error function that allows to project 3D points efficiently and allows for
fast non-linear optimization, e. g., bundle adjustment. In order to compute
dense depth maps, a refractive plane sweep algorithm is developed.

Parts of the contributions of this thesis have been previously published
in:

� Anne Sedlazeck, Kevin Köser, and Reinhard Koch: 3D reconstruction
based on underwater video from ROV Kiel 6000 considering underwa-
ter imaging conditions, Proc. OCEANS ’09. OCEANS 2009-EUROPE
[SKK09], Chapters 4 and 6 (perspective SfM on underwater images with
calibration and application of a model for underwater light propagation
to correct texture colors)
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� Robert Wulff, Anne Sedlazeck, and Reinhard Koch: 3D Reconstruction
of Archaeological Trenches from Photographs. Proc. Scientifc Comput-
ing and Cultural Heritage (SCCH09), 2009. [WSK13], Chapter 6 (3D
reconstruction of archaeological trenches based on images captured on
orbital trajectory with explicit loop-closing)

� Robert Wulff, Anne Sedlazeck, and Reinhard Koch: Measuring in Au-
tomatically Reconstructed 3D Models. Geoinformatik 2010, [WSK10],
Chapter 6 (3D reconstruction of archaeological trenches with transfor-
mation in geo-referenced coordinate system and analysis of measuring
accuracy)

� Anne Sedlazeck and Reinhard Koch: Simulating Deep Sea Underwater
Images Using Physical Models for Light Attenuation, Scattering, and
Refraction, Proc. of VMV 2011: Vision, Modeling & Visualization
[SK11b], Chapter 3 (simulator for rendering underwater images with
refraction and an extension of Jaffe-McGlamery Model for underwater
light propagation)

� Anne Sedlazeck and Reinhard Koch: Calibration of Housing Param-
eters for Underwater Stereo-Camera Rigs, Proceedings of the British
Machine Vision Conference 2011 [SK11a], Chapter 5 (checkerboard-free
calibration of underwater housings for stereo camera rigs using bundle
adjustment)

� Anne Sedlazeck and Reinhard Koch: Perspective and Non-perspective
Camera Models in Underwater Imaging – Overview and Error Analysis,
Outdoor and Large-Scale Real-World Scene Analysis 2012, LNCS vol.
7474 [SK12], Chapters 3 and 4 (state-of-the-art paper concerning calibra-
tion and SfM based on underwater images, analysis of the systematic
model error introduced by using the perspective camera on underwater
images)

� Anne Jordt-Sedlazeck and Reinhard Koch: Refractive Calibration of
Underwater Cameras, Proc. of ECCV 2012, LNCS vol. 7576 [JSK12],
Chapter 4 (Analysis-by-Synthesis based approach for calibrating flat
port underwater housings)
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� Anne Jordt-Sedlazeck and Reinhard Koch: Refractive Structure from
Motion on Underwater Images, Proc. of ICCV 2013 [JSK13], Chapter 5
(refractive SfM and comparison to perspective SfM)

� Anne Jordt-Sedlazeck, Daniel Jung, and Reinhard Koch: Refractive
Plane Sweep for Underwater Images, accepted for publication in GCPR
Proceedings 2013 [JSJK13], Chapter 5 (dense depth estimation with
refractive camera model)

Overview

The following work is organized as follows. In Chapter 2, necessary con-
cepts like projective geometry and Plücker lines are briefly introduced,
followed by an introduction to conventional image formation with dif-
ferent camera models. In contrast to classic image formation, Chapter 3
discusses the water’s influence on image formation, and additionally gives
an overview of the state of the art concerning methods of computer vision
applied to underwater images. Chapters 4 and 5 introduce the thesis’ main
contributions. In Chapter 4, a method for calibrating flat port cameras
is presented, while Chapter 5 focuses on introducing the refractive SfM
routine and the refractive plane sweep, and compares the established
perspective routine to the newly presented refractive routine. Chapter 6
gives a more detailed overview over different applications of the proposed
methods including results. A conclusion is presented in Chapter 7.
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Chapter 2

General Concepts and Classic
Image Formation

The major goal of this thesis is to investigate feasibility and adaptations
for using computer vision algorithms for reconstruction on underwater
images. Crucial to this investigation are general concepts like projective
geometry, but especially image formation in air and water. Therefore, this
chapter aims at giving an introduction to basic geometric concepts and
image formation in air with a classification of different possible camera
models.

2.1 Projective Geometry

In this thesis, the concept of the projective space [HZ04] is used to describe
the geometrical theory of the algorithms. Therefore, this section will
introduce the projective space and the major geometrical concepts and
notations used throughout the thesis.

In order to be able to work with points that are infinitely far away and
to deal with transformations of points and scenes linearly, the euclidean
space Rn is extended by one dimension to form the projective space Pn

(Figure 2.1). Let’s consider the example of two dimensions. The additional
dimension of P2 causes points in the 2D euclidean space to become lines
in the 2D projective space. The additional dimension is denoted by w, and
hence points in the 2D projective space are of the form:

x =

 x
y
w

 . (2.1.1)
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R2 at w = 1

Point in P2

w

y

x

Figure 2.1. A point in P2 is a line intersecting the w = 1 plane. Since R2 is
embedded into P2 at that plane, the corresponding point in R2 is the intersection
between plane and line. Points at infinity are of the form (x, y, 0)T, thus are within
the xy-plane of P2 and do not intersect the w = 1 plane.

The euclidean space is embedded in the projective space as the plane at
w = 1. Therefore, a euclidean point can easily be retrieved from x by
division with w. Consequently, points in the projective space are only
determined up to scale. A projective point is a line through the origin of
the coordinate system and, in case of euclidean points, also through the
plane denoting the euclidean space at w = 1. A Point at infinity cannot
be described in the euclidean space. In the projective space however, it is
found to be a direction in the plane w = 0. The point that is the intersection
of two parallel lines, and therefore lies on the plane of infinity, is described
to be a direction of x- and y-components with w = 0. Another advantage
of using the projective space is the linear usage of transformations for
points or whole scenes. A transformation consisting of, e. g., a rotation

R =

[
r1 r2
r3 r4

]
(2.1.2)

10
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and a translation C = (cx, cy)T can be expressed by the matrix T:

x1 = Tx =

r1 r2 cx
r3 r4 cy
0 0 1

 x. (2.1.3)

Transformations are classified depending on their degrees of freedom
(DoF). In P2, euclidean transformations have six DoF, allowing to describe
rotation and translation. Similarity transforms have an additional scale
factor, thus have seven DoF. Finally, projective transformations have eight
DoF, and hence the 3� 3 transformation matrix is determined up to scale.
That means that the bottom row is not of the form (0, 0, 1) anymore and
can transfer points onto or away from the plane at infinity.

The examples shown here were all in the 2D space. However, the
extension to three dimensions is straight forward leading to up-to-scale
four-vectors for points and 4� 4 transformation matrices.

2.1.1 Plücker Lines

Compared to 3D points, lines in 3D space are more difficult to describe
because they have four degrees of freedom. One possible representation
of a line consists of a starting point P P R3 and a direction D̃ P R3. Points
X on the line are then described by:

X = P + κD̃, κ P R. (2.1.4)

In addition, Plücker lines or matrices are used in this thesis and the
following description is based on [HZ04], [SRL06], and [Ple03]. If two
homogeneous points X and Y are given, the corresponding Plücker matrix
L is determined by:

L = XYT � YXT. (2.1.5)

L is a 4� 4 skew symmetric (L = �LT) matrix that is determined up to
scale and has det(L) = 0, thus having four degrees of freedom. Note that
L is independent of the points used for its computation. A transformation
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x

y

z

X�Y

X

Y

M

Figure 2.2. The Plücker line (blue arrow) is determined by the two points X and Y.
The moment M is the plane defined by the cross product X�Y.

H is applied to L as follows:

L1 = HLHT. (2.1.6)

Apart from using a matrix to represent a Plücker line, there is also a vector
representation based on the euclidean versions of the vectors X and Y:

L =


Y�X︸ ︷︷ ︸
=D

X�Y︸ ︷︷ ︸
=M

 , (2.1.7)

where D is the direction of the line and M the normal of the plane A in
Figure 2.2, called moment. As in case of the Plücker matrix, the points on
the line for determining L can be chosen arbitrarily. In order to assure the
four degrees of freedom, L is determined up to scale only and L is a line
in 3D space if and only if DTM = 0.

If ‖ D ‖= 1, then D�M is the point on the line closest to the origin.
The plane M spanned by the origin and D is defined by the euclidean
vectors of X and Y by M = X� Y. A transform of a point X in space,
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defined by a rotation matrix R and a translation vector C is defined by:

X1 =
[

R C

0T 1

]
X. (2.1.8)

The corresponding transform of a Plücker line L is defined by:

L1 =

[
R 0

� [C]� R R

]
L. (2.1.9)

Thus, even though the transformation matrix is a 6� 6 matrix, transforma-
tions can be described as easily as in the case of 3D points.

The intersection of two Plücker vectors can be determined easily. Let
L1 = (D1, M1) be the first line and L2 = (D2, M2) be the second line, then
both lines intersect if and only if

DT
2 M1 + MT

2 D1 = 0. (2.1.10)

2.1.2 Coordinate Systems

In this thesis, the coordinate systems are defined as follows. Let Xwc P P3

be a 3D point in the world coordinate system and Xcc P P3 be the same
point in a local camera coordinate system. Let R be a 3� 3 rotation matrix
and C P R3 be a euclidean translation vector. With

T =

[
R C
0 1

]
(2.1.11)

the point Xcc can be transformed into the world coordinate system (local-
to-global transform):

Xwc = TXcc. (2.1.12)

Note that this corresponds to:

Xwc = RXcc + C (2.1.13)
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in euclidean coordinates. On the other hand:

T�1 =

[
RT �RTC
0 1

]
(2.1.14)

transforms the point in the world coordinate system into a local coordinate
system (global-to-local transform):

Xcc = T�1Xwc. (2.1.15)

Those transformations between the camera and world coordinate sys-
tems are utilized in the next section, which introduces different camera
models.

2.2 Geometry of Camera Models

This section deduces, how a camera projects a 3D point in space onto a 2D
point in the image and the inverse of such a projection, the back-projection,
i. e., the computation of a 3D ray corresponding to a 2D pixel in the image.
There are different possibilities and degrees of accuracy with which to
model a camera. The first one considered in this thesis is the pinhole
camera model.

2.2.1 Pinhole Camera Model with Distortion

The camera obscura, a box with a very small hole in one side, through
which the light enters, produces an image of the outside world on the side
of the box opposite to the hole. Replacing the backside of the box with a
plane able to record the amount of light hitting the plane at different pixel
locations, for example, a CCD (Charged Coupled Device) chip, allows
to record the image being projected – a very simple camera. Detailed
introductions to the pinhole camera model can be found in a variety of
books for example in [HZ04, Sze11].

As can be seen in Figure 2.3, a ray connecting a scene point with the
pinhole or center of projection intersects the image plane causing the
sensor to record its energy. Note that in Figure 2.3 the image plane is
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focal length

pinhole

image plane

principal point

Y

X

Zoptical axis

sceneray

x
y

Figure 2.3. The Pinhole camera model. A ray from the scene enters the camera
through the pinhole or center of projection, crossing the optical axis. After that, it
is recorded in the image at the point of intersection with the image plane. Note
that usually the image plane is located behind the pinhole causing the image to be
up-side-down. However, when sketching the model, the image plane can just as
well be drawn in front of the pinhole as depicted in the image.

set in front of the pinhole instead of behind the pinhole as is the case
in a physical camera. However, both are mathematically equivalent. All
rays contributing to the image pass through the center of projection or the
pinhole. In reality, a lens system replaces the hole, but the pinhole model
is sufficient for explaining the imaging process.

The transformation of a point in the camera coordinate system into
image coordinates is described by the camera matrix K containing the
intrinsic camera parameters:

K =

 f s cx
0 ar f cy
0 0 1

 , (2.2.1)

where f denotes the focal length and ar denotes the aspect ratio (which
is one in case of square pixels), s describes a possible skew of the single
pixels on the CCD-chip, and cx and cy denote the principal point, the
intersection of the optical axis with the image plane.

If X = (X, Y, Z, 1)T is a 3D point that is to be projected onto the point
x = (x, y, z)T in the image plane, the projection can be derived using
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Figure 2.4. Different distortion effects viewed on a characteristic pattern. From left
to right: original pattern, radial distortion with barrel effect, radial distortion with
cushion effect, tangential distortion only, radial and tangential distortion. Note
that tangential distortion is exaggerated in order to better visualize the effect.

Figure 2.3 and the camera matrix. In addition, the camera can have a
rotation and translation with respect to the world coordinate system. This
rotation and translation are described with a rotation matrix R and a
translation vector C. The projection matrix P, which combines camera
matrix, rotation, and translation is assembled as follows:

P = K[RT| �RTC] = K

1 0 0 0
0 1 0 0
0 0 1 0

 [ RT �RTC

0T 1

]
, (2.2.2)

resulting in the up-to-scale projection:

ρx = PX, ρ P R. (2.2.3)

A simple extension of the pinhole camera model to account for imperfect
lens systems also includes tangential and radial distortion [McG04]. Ra-
dial distortion moves pixels along the radius and is basically caused by
the usage of a lens system itself – the magnification is larger or smaller
depending on the distance of the ray from the principal point. Tangential
distortion is a translation perpendicular to the radius, which is caused
by de-centered lenses. Radial distortion is usually classified into cushion
and barrel distortion due to the deformation in the image (Figure 2.4).
Tangential distortion can often be neglected due to very precisely manufac-
tured lens systems. Instead of explicitly computing the refraction of rays
through the lenses, both distortion types are modeled by a polynomial. Let
(x, y) be a point in camera coordinates. With r =

√
x2 + y2, the distorted
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points can be estimated by [Bro71]:

xd =x + (x� cx)(r1r2 + r2r4 + r3r6 + ...)+ (2.2.4)

[t1(r2 + 2(x� cx)
2) + 2t2(x� cx)(y� cy)] + [1 + t3r2 + ...]

yd =y + (y� cy)(r1r2 + r2r4 + r3r6 + ...)+

[2t1(x� cx)(y� cy) + t2(r2 + 2(y� cy)
2)] + [1 + t3r2 + ...],

where ri are the coefficients for the radial distortion and ti are the coef-
ficients for the tangential or de-centering distortion. Note that the trans-
formation into image coordinates is applied after computing distortion.
In the literature, the models describing distortion mostly differ by the
exact definition of the polynomials and the number of coefficients used,
e. g., Brown [Bro71] uses three for radial and tangential distortion. [Tsa87]
uses a checkerboard pattern for calibration without tangential distortion
and only one coefficient for radial distortion. Heikkilä and Silvén [HS97b]
use two coefficients each and describe a calibration routine using a 3D
calibration target. One coefficient for radial distortion and none for tan-
gential distortion are used by Zhang [Zha99]. A Matlab implementation
of the above mentioned calibration routines that is widely used has been
implemented by Bouget1. A tool2 that not only calibrates one camera, but
rigs that may even contain active depth cameras is described in [SBK08].
Here, planar calibration patterns are used for calibration (see Chapter 4).

2.2.2 Entrance-Pupil Camera Model

Sometimes, more detailed models including explicitly modeled lenses
are required to explain effects like depth of field, focus, or photometric
properties. Exemplary models can be found in a variety of works from
the areas of photogrammetry and computer vision [AA02, Hec05, McG04,
JHG99, HMS99]. Usually, cameras contain more than one lens, a whole
system working together, in order to produce the final image. The aperture
can be a hole or a diaphragm, which effectively limits the number of rays
that can actually reach the image sensor and is usually located somewhere

1http:www.vision.caltech.edubouguetjcalib_doc
2http://www.mip.informatik.uni-kiel.de/tiki-index.php?page=Calibration
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optical axis

entrance pupil exit pupil image plane

possible physical
aperture

X = (X, Y, Z)T

x = (x, y)T
x1

ṽ

Figure 2.5. Pupil lens model. From scene point X light rays enter the system
through the entrance pupil, are refracted by the lens system, and exit through
the exit pupil. A scene point is imaged sharply, i. e., as a single point in x1, not
necessarily on the image plane in x. Adapted from [AA02].

in between the different lenses. Here, we consider the work of Aggarwal
et al. [AA02], who extent the Gaussian thick lens camera model, which
abstracts from modeling lenses explicitly and instead considers the camera
to have one thick lens. [AA02] models the aperture to be an entrance and
an exit pupil on the optical axis on the object and image side respectively
(Figure 2.5). Entrance and exit pupil do not necessarily coincide with the
real aperture and are purely virtual points. In [AA02], the authors derive
complete imaging equations for the pupil centric imaging model and come
the following conclusion, which is relevant for this thesis:

“...the pupil-centric model for an imaging system with a frontal
sensor and fixed imaging parameters is geometrically equiv-
alent to a pin-hole model with the following parameters: the
pin-hole is located at the center of the entrance pupil E1 and
the distance of the sensor plane from the pin-hole is ṽ...”3

Where ṽ denotes a distance depending on the focal length, the position of
the sensor on the optical axis, and the entrance pupil location. In essence,

3[AA02], p. 201
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this means that the center of projection of a camera can possibly be found
in front of the physical camera and its lens system. In Figure 2.5 it can be
seen that the rays coming from X enter the system through the entrance
pupil are refracted by the lens system, exit through the exit pupil and meet
eventually in the conjugate point x1. However, only if the image plane and
the conjugate point coincide, the object point can be imaged sharply, i. e.,
as a single point. As this cannot be the case for object points at different
distances from the camera, it explains the phenomenon of depth of field,
and hence the need of focusing the area on the z-axis that is required
to be imaged sharply. All points that are not conjugate for the current
setting will appear as blobs in the image. For a complete derivation of the
equations for a thin lens model refer to [Hec05].

2.2.3 General and Axial Camera Models

A common characteristic of the camera models described above is the
assumption that the camera has one center of projection in which all rays
of light intersect. However, cameras exist, for which this assumption does
not hold, e. g., catadioptric cameras, fish-eye cameras, camera systems
consisting of more than one camera that deliver one common image
[Ple03, SGN03], and also cameras in underwater housings. In this case,
more general camera models need to be used. Instead of having a few
parameters describing how a ray is computed for each pixel in the image,
each ray for each pixel is determined independently and described by its
starting point and direction. However, determining a calibration for such
a camera is difficult to achieve robustly. In [SGN03] cameras are classified
due to their distortions:

Perspective cameras have a center of projection and do not have any distor-
tion, i. e., the ideal pinhole camera.

Single-View-Point (SVP) cameras encompass for example wide-angle cam-
eras or perspective cameras with lens distortion. All rays pass through
a common center of projection. Image distortions can be compensated
if the camera model is known and calibrated.

Non-Single-View-Point (nSVP) cameras are for example clusters of rigidly
coupled cameras, some catadioptric cameras, but also underwater
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2. General Concepts and Classic Image Formation

cameras. In order to compensate for distortions, the camera model and
the 3D scene structure need to be known.

In order to deal with nSVP cameras, Grossberg et al. [GN05] introduce a
generic camera model, where each pixel captures one ray of light, called
raxel. Each raxel is modeled by a starting point and a direction that do not
necessarily coincide with the physical camera. Note that the actual ray and
its possible refractions and reflections are treated as a black box. One major
assumption in [GN05] is that the bundle of rays has a singularity (not
true for example for orthographic cameras). The locus of this singularity
is the caustic, a geometric construct to which all rays are tangents, that
uniquely describes the camera. Caustics are computed by differentiating
the mapping from image coordinates (x, y) P R2 to rays:

X(x, y, κ) =

X(x, y, κ)
Y(x, y, κ)
Z(x, y, κ)

 = Xs(x, y) + κX̃(x, y), (2.2.5)

with Xs being the starting point and X̃ being the direction of the ray. κ P R

is the length of the ray. In order to find the singularity, the determinant of
the Jacobi matrix of ray function X(x, y, κ) is computed and set to zero:

det(J(X(x, y, κ))) = 0. (2.2.6)

This allows to solve for the parameter κ and thus to determine the caustic
point for each pixel position (x, y). Note that for single-view-point cameras,
the caustic is only one point, the center of projection. In case of non-single-
view-point cameras however, the size of the caustic provides a possibility
of quantifying the deviation from the single-view-point camera. Even
more generic is the camera model described by Sturm et al. [SR04, SRL06],
where single rays are parametrized by starting point and direction as well.
However, it is not assumed that a caustic exists, merely that neighboring
pixels have neighboring rays, thus making this model even more general.

A different classification, based on ray geometry is described in
[Ple03, LHK08]. Here, general cameras are simulated by using a rig
of several cameras, which leads to the following classification (refer also
to Figure 2.6):
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a) b) c) d) e)

Figure 2.6. Camera types by ray geometry. a) single-view-point perspective camera,
b) locally central, axial camera, c) axial camera, d) locally central, general camera,
e) general camera.

a) Perspective camera with a single view point in which all rays intersect
(SVP camera)

b) Locally central, axial camera, a general camera comprised of a rig of
several perspective cameras, where all centers of projection lie on a
common axis (nSVP camera).

c) Axial camera, a more general camera where all rays intersect a common
axis (nSVP camera).

d) Locally central, general camera, a rig made of more than two perspective
cameras, where the centers of projection do not lie on a common axis
(nSVP camera).

e) General camera, the most general model, where no assumptions are
made for the light rays (nSVP camera).

2.3 Summary

In this chapter, projective geometry with Plücker Lines and coordinate
system transformations has been introduced briefly as a perquisite to
understand image formation. In a more detailed discussion, different
models for image formation, the pinhole camera model, the perspective
camera, but also more general camera models that do no fulfill the single
view point assumption were introduced and classified. All of the explained
concepts are valid for cameras used in air. However, the remainder of
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2. General Concepts and Classic Image Formation

this thesis will investigate how water affects image formation and what
adaptations to 3D reconstruction methods are required.
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Chapter 3

Underwater Image Formation

Chapter 2 describes how a camera in air captures an image of a scene.
When taking the camera below water, precautions must be taken. In order
to avoid electric shortening or implosion, the camera needs to be confined
in an underwater housing that can deal with the pressure of the water.
Since pressure increases with depth, underwater housings that can capture
images at water depths of several thousand meters are usually made of
titanium and have glass ports that can be several centimeters thick (refer
to [MBJ09] for more information on pressure housings).

When the light enters the camera housing, it is refracted twice: first
at the water-glass interface, then at the glass-air interface. This means
that all light rays entering the camera not parallel to the normal of the
underwater housing port change their direction, and thus are affecting
viewing geometry. However, even before the light rays enter the underwa-
ter housing, the light is affected by the water. Photons collide with water
molecules and other matter causing absorption and scattering effects, both
of which are wavelength dependent, and hence change the color recorded
by the image sensor. This leads to the typical green or blue hue and low
contrast in underwater images. First, the effects on color will be examined
and modeled in this chapter. After that, the state of the art of modeling
refractive effects and the model used in this thesis will be discussed.

3.1 Effects on Color

In addition to the described dominant green or blue colors in underwater
images, vision is limited, sometimes to a few centimeters, sometimes up
to 30 m. Those differences between light propagation through air and
light propagation through water are mainly caused by particles, which
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3. Underwater Image Formation

are far more densely packed in water compared to air. Single photons of
the light beam collide and interact with the particles in the water (and
to a far lesser extent with the particles in the air). These interactions are
mainly categorized into absorption and scattering, i. e., photons either
disappear or change their direction of travel after such a collision. The
physical explanation and modeling of these effects is very complex and out
of the scope of this work. Therefore, the next section introduces the basic
physical principles required for the Jaffe-McGlamery model [Jaf90, McG75],
a basic model, which can be utilized for computer vision purposes. The
required basic radiometric quantities can be found in the Appendix A.1.
[SK11b], which has been published in 2011, introduces a simulator for
rendering underwater images that extends the Jaffe-McGlamery model,
and parts of the following explanation are based on this work. After
explaining how the water influences scene color, it is interesting if and
to what extent it is possible to reverse the effect, thus restore image color.
Unfortunately, the fairly complex Jaffe-McGlamery model cannot be easily
inverted such that it is applicable to image color correction. However,
in the literature, several works exist that simplify the Jaffe-McGlamery
model until it can be used. Consequently, these methods are still based
on a physical model for underwater light propagation. Others apply a
set of heuristically determined filters, e. g., histogram stretching on the
different color channels. In the following section, first, physical principles
will be introduced briefly, then, simulating underwater color using the
Jaffe-McGlamery model with some extensions will be explained, followed
by a brief overview of methods for image color correction.

3.1.1 Physical Principles

This section is based on the works of Mobley [Mob94], Jerlov [Jer76],
Hecht [Hec05], and Dera [Der92] and focuses on the physical principles.
It concentrates on the visible part of the spectrum with comments on the
propagation of near infra-red light. The physical principles described here
only concern inherent optical properties, i. e., properties that depend on
the medium only, more concretely light absorption and scattering.
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3.1. Effects on Color

Figure 3.1. Different water bodies and their effects on underwater image color.
From left to right: swimming pool, Baltic sea (image by Florian Huber), and lab
experiment with tea.

Absorption

Absorption describes the loss of photons out of a beam of light traveling
through water, mainly by water molecules, but also by collisions between
photons and other, differently sized particles, such as organic, yellow
substances (dissolved remains of animals and plants suspended in the
water) and other organic or an-organic suspended particles. In addition to
the type of particle, absorption is also depending on the light’s wavelength
and the concentration of the particles in the water body. The dependence
on wavelength is documented in the absorption spectra for different types
of particles. In the range of visible light those spectra do not differ strongly
for clear, salt, and distilled water. However, the absorption spectrum of
organic substances differs considerably from the absorption spectrum of
clear water, explaining why organic substances cause very limited visibility
or water colors very different from the typical blue of clean water (see
also Figure 3.1). The absorption spectra of the different molecules overlap
especially in the infra-red part of the spectrum and cause a very strong
absorption of infra-red light – over 50% are absorbed by only centimeters
of water.

Multiple absorption spectra, describing different absorption effects for
different wavelengths and particles, can be summarized using the volume
absorption coefficient a(λ) measured in [m�1], a function depending on
the wavelength λ. It can be measured by special equipment and the effects
of different kinds of particles in the water aside from the actual water
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3. Underwater Image Formation

molecules are summarized:

a = aw + ay + ap + as + ad, (3.1.1)

with aw being the pure water absorption, as the absorption due to sea
salt, ay the absorption due to yellow substances, ap the absorption due to
suspended particles, and ad the absorption due to other artificial contami-
nants. All those initiators of absorption have different absorption spectra,
i. e., show different dependence on wavelength. For example, the yellow
substances are highly concentrated in some rivers causing the water to
appear yellow or brown. In the ocean however, they usually exist in very
low concentrations, having far less impact on the overall absorption.

For a beam of light traveling through the water for a distance κ, P R

in [m], Lambert’s law states that the loss of photons out of the beam is
exponential:

E(κ, λ) = E(0, λ)e�a(λ)κ [Wm�2], (3.1.2)

where E(0, λ) and E(κ, λ) are the irradiance before and after traveling the
distance κ through the water.

Scattering

Scattering of light is a complicated phenomenon that can be analyzed on a
molecular scale, where a photon colliding with a molecule is absorbed and
another photon is immediately released. If the wavelength after emitting
is the same as before, elastic scattering occurred, an assumption made
in [Mob94]. Taking into account how different waves of light overlap,
this allows to explain phenomenons like transmission, refraction, and
reflection, which are usually considered on a macroscopic scale [Hec05].
A multitude of different models and explanations for scattering effects can
be found in the literature [Hec05, Der92, Mob94].

In this thesis, scattering is considered to be a random change of a
photon’s direction after colliding with a particle. As in case of absorption,
particles can be water molecules, but also other matter found in the water
body. Consequently, particles can have different sizes and concentrations
and scattering is also depending on the wavelength. In contrast to absorp-
tion, the modeling of scattering effects requires to take into account the
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3.1. Effects on Color

angle ψ P [0, π] towards which the light is scattered. Note that scattering is
symmetric around the axis formed by the light’s direction of travel [Der92].
The dependence on ψ is described by the volume scattering function (VSF)
β(ψ, λ)[sr�1m�1] (sr - steradians, unit of solid angle A.1). In order to
determine the overall scattering coefficient b(λ) similar to the absorption
coefficient a(λ), the VSF needs to be integrated over all directions:

b(λ) = 2π
∫ π

0
β(ψ, λ) sin ψ dψ [m�1], (3.1.3)

thus b(λ) describes the number of photons that are scattered out of a beam
of light while traveling a certain distance:

E(κ, λ) = E(0, λ)e�b(λ)κ [Wm�2]. (3.1.4)

Consequently, the loss of photons from a beam per traveling distance can
be summarized in the attenuation coefficient:

η(λ) = a(λ) + b(λ) [m�1], (3.1.5)

i. e., the loss of irradiance after a distance κ[m] is:

E(κ, λ) = E(0, λ)e�η(λ)κ [Wm�2]. (3.1.6)

Another major difference to absorption is that apart from photons being
scattered out of a beam of light, photons can also be scattered into a beam
of light, thus causing in increase in irradiance. In order to model the gain
in irradiance, the scattering angle ψ needs to be taken into account, thus the
Volume Scattering Functions needs to be parametrized. From the models
described in the literature, a combination of the Einstein Smoluchowski
and the Kopelevich model, which are both introduced in [Mob94], will be
used in this thesis.

Scattering at sea water, i. e., very small particles is explained by the
Einstein Smoluchowski theory, where scattering is assumed to happen
at local fluctuations of molecule densities, i. e., scattering particles are
considered to be little, spontaneous clusters of water molecules. The

27



3. Underwater Image Formation

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

0 1/4 π 1/2 π 3/4 π π

β
(ψ

, 
λ

) 
[m

-1
 s

r-1
]

scattering angle in radians

Volume Scattering Function

Sea Water (Einstein Smoluchowski)
Small Particles (Kopelevich)
Large Particles (Kopelevich)

VSF

Figure 3.2. Volume Scattering Function for the red color channel using exemplary
parameters. Shown is the resulting function (magenta) and its additive components
derived from Einstein Smoluchowski (red), Kopelevich small particles (green) and
Kopelevich large particles (blue).

resulting model equation for scattering at sea water is:

βw(ψ, λ) = βw(90�, λ0)

(
λ0

λ

)4.32
(1 + 0.835 cos2 ψ) [sr�1m�1], (3.1.7)

where values for λ0 = 440 and
βw(90�, λ0) P {0.000284sr�1m�1, 0.000146sr�1m�1, 0.00008sr�1m�1}, for
the three color channels respectively, can be found in [Mob94].

The Kopelevich model considers small particles   1 µm, for example
minerals, and large particles ¡ 1 µm of biological origin separately:

βs(ψ, λ) = νsβ�s (ψ)

(
λ0

λ

)1.7
[sr�1m�1] (3.1.8)

βl(ψ, λ) = νlβ
�
l (ψ)

(
λ0

λ

)0.3
[sr�1m�1], (3.1.9)

where a set of discrete values for β�s β�l (ψ) can be found in [Mob94]. The
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3.1. Effects on Color

necessary interpolation of the missing values is responsible for the bumps
in the Kopelevich functions seen in Figure 3.2. νs and νl are the small and
large particle concentrations respectively that vary with the different water
bodies. The resulting VSF used in the remainder of this thesis is the sum
of all three components:

β(ψ, λ) = βw(ψ, λ) + βs(ψ, λ) + βl(ψ, λ) [sr�1m�1]. (3.1.10)

Figure 3.2 shows the resulting VSF for the red color channel. It can be
seen that most of the scattering happens at the small angles close to
zero. When modeling the gain by scattering effects, β is separated into
forward-scattering ψ P [0, π/2] and backward-scattering ψ P [π/2, π].
Small-angle-forward scattering can then be approximated using linear
filters [Vos91], which have low-pass character [SK04]. Backward-scattering
is modeled explicitly using the light sources and the VSF.

Note that the values for the models, especially of the parametrization
of the VSF are based on measurements conducted in real water bodies.

Measurements in Real Water Bodies

Instruments exist to measure the attenuation coefficient η in real water
bodies. Measurements for different wave lengths in different kinds of
oceans or pure water show that the attenuation coefficient is very different
for different wavelengths but also for different water bodies. Figure 3.3
shows the wavelength dependence of absorption and scattering coeffi-
cients for optically and chemically pure water based on [MP77]. When
it comes to measuring the absorption and scattering coefficients for pure
water, different authors come to different conclusions because it is very
difficult to purify water. In addition, there are several different methods
and instruments to measure the coefficients (refer to [Jer76]), and hence
the resulting values differ depending on the method of measurement.
However, the values in Figure 3.3 give the reader some idea about the
order of magnitude and serve as an approximation of a lower bound for
other types of water. Once higher concentration of other matter exists in
the water, the coefficients rise considerably.

In this thesis, RGB images are utilized in image processing, hence, the
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Figure 3.3. The attenuation coefficient η = a + b, is the sum of the absorption a on
the left and the scattering coefficient b on the right. Plotted are values measured
for pure water found in [MP77].

light is considered to be captured in three narrow bands of the visible
light spectrum (red, green, and blue). Consequently, in the following,
all wavelength-dependent effects like attenuation and backscatter of light
will be considered for the three color channels and not for the whole
spectrum. In order to show that infra-red light and with it standard
Time-of-Flight cameras or infra-red based structured-light cameras cannot
be used underwater, coefficients and transmittance for λ = 800 nm are
considered here in addition to the three standard color channels. When
entering the infra-red part of the spectrum, the attenuation coefficients
rise quickly. For λ = 800 nm, the coefficient is η = 2.051 m�1 according to
[Jer76]. Note that for larger wavelengths than λ = 800 nm, the attenuation
coefficient η is even larger [Mob94].

In Figure 3.4, the transmittance, i. e., the percentage of light that is left
after a certain traveling distance in m is plotted, using the attenuation
coefficients for pure water as shown in Figure 3.3. Red, green, and blue are
depicted in the corresponding colors and black shows the near infra-red
behavior, at λ = 800 nm. Exact values for 90%, 50%, 10%, and 1% are
presented in Table 3.1 and show that active cameras based on infra-red
light, like Time-of-Flight or ir-based, structured light, simply cannot be
used in underwater imaging.
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Table 3.1. Transmittance values for the three color channels and infra-red light for
pure water.

λ in [nm] attenuation
η in m�1

90% left
after (in
[m])

50% left
after (in
[m])

10% left
after (in
[m])

1% left
after (in
[m])

440 (blue) 0.015 5.545 36.48 121.2 242.4
510 (green) 0.036 2.773 18.24 60.59 121.2
650 (red) 0.350 0.301 1.98 6.579 13.16
800 (near
infra-red)

2.051 0.051 0.3381 1.123 2.246

3.1.2 Adapted Jaffe-McGlamery Model

The previous section described the basic physical principles behind under-
water light propagation. When working in the areas of computer vision or
computer graphics, the water’s influence on the imaging process needs
to be modeled. The previous section concerning transmittance in pure
water already gave an idea about how far the light of the wavelengths cor-
responding to the different color channels can travel through water. Once
the red part of the spectrum has been almost completely absorbed, for ex-
ample, reconstruction of the correct red color will not be possible anymore.
In the literature, most methods based on physical models for underwater
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3. Underwater Image Formation

light propagation are build on the Jaffe-McGlamery model [Jaf90, McG75],
e. g., [SK04, TS06, NCdB09]. In [SK11b], an extension of the model, which
will be explained now has already been published, allowing a simulator
to render underwater images using color and multiple light sources, to
compute shadows, and to compute refraction at underwater housings.

A lot of methods for rendering water or participating media exist
in the literature, which are based on different underlying mathematical
principles. For example, Jensen et al. [JC98] use photon maps that allow
caustic computation. In the context of underwater color/lighting, caustics
are flickering patterns caused by light refraction at waves on the surface. A
photon-map based bio-optical model with absorption, elastic and inelastic
scattering can be found in [GSMA08]. Mobley demonstrates a different
approach by solving the radiative transfer equation analytically. Often, the
ocean surface including waves is to be rendered and in this case, correct
water color also needs to be computed based on the underlying physical
principles. However, in this case the model can be simplified. Refer to
[DCGG11] for an overview and to [PA01] for a model that is similar to
the Jaffe-McGlamery model. Two other cases of rendering water bodies
close to the surface, i. e., with sun light illumination that include rendering
shafts of light and caustics can be found in [IDN02] and [PP09].

For this thesis, a simulator using a physical model is required in
order to be able to render synthetic underwater images. It is not based
on the radiative transfer equation, but uses the Jaffe-McGlamery model,
simplifications of which have already been often applied in the area of
computer vision. Two other, similar methods that divided the water
volume into voxels and/or use point spread functions for small angle
forward scattering can be found in [PARN04] or [CS02]. An important
advantage of the Jaffe-McGlamery model is that it can be easily combined
with the refractive camera model that will be introduced in the next
section. Jaffe’s work [Jaf90], which is concerned with the development of
underwater imaging systems, introduces a simulator for different camera-
light configurations. In this thesis, the goal is to experiment with computer
vision algorithms on underwater images and therefore ground truth data
needs to be rendered that is compliant with the underlying physical
principles. In order to achieve that, the Jaffe-McGlamery model is extended
to incorporate several light sources and to render shadows. Instead of
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Figure 3.5. This images shows the rays for signal and backscatter computation,
adapted from [Jaf90]. The backscatter portion is modeled by considering the
amount of light being incident upon slabs of water (top part). Attenuation is
modeled by explicitly computing the rays traveling from light source to object to
camera.

rendering the xy-plane of the coordinate system, textured triangle meshes
are rendered. In the model, light reaching the camera is considered to be
the sum of three different components that are influenced by scattering
and absorption and are described in the following paragraphs:

ET(total) = Ed + E f s + Ebs,d, (3.1.11)

with Ed being the direct component, E f s being forward scatter, and Ebs,d
being backscatter. In the following, the distance that light has been traveled
below water is considered to be the distance between the object and the
outer plane of the underwater camera housing.

Direct Light (Signal) The first component to be described is the signal
and it is comprised of the light traveling from all light sources via reflection
at the 3D structure to the camera. On its way, it is attenuated by photons
being absorbed or scattered out of the beam, described by the attenuation

33



3. Underwater Image Formation

coefficient η. The extension of the Jaffe-McGlamery model to several light
sources is achieved by modeling each light source Ij, j P {1, ..., M} as a
point light source with a position in 3D space, its power in W and wave-
length λ. For each pixel x, the corresponding ray in water is determined
(refer to the following section) and intersected with the structure in the
3D point X. Then, it is determined whether X is shadowed by other parts
of the structure or by which light sources Ij, j P {1, ..., M} it is illuminated.
According to Figure 3.5 and [Jaf90], the resulting irradiance being incident
upon the structure is then:

E1I(X, λ) =
M

∑
j=0

EIj (3.1.12)

EIj =

0 if X is shadowed

Ij(λ) cos(γj)
e�η(λ)Rsj

Rs2
j

else
[Wm�2],

where X are the coordinates on the structure in 3D space and Rsj is the
distance between the light source and X. γj is the angle between the ray
from the light source Ij and X and the structure’s normal. The irradiance
upon the structure is complemented by small angle forward scattering,
which adds flux to the beam. According to [Jaf90] and Section 3.1.1, it is
modeled by convolution:

EI(X, λ) = E1I(X, λ) � g(x|Rs, G, η(λ), B) + E1I(X, λ) (3.1.13)

g(x|Rs, G, η(λ), B) =
[
e�GRs � e�η(λ)Rs

]
F�1{e�BRs f },

where g is a filter mask with two empirical values G and B and F�1

stands for the inverse Fourier transform. Rs = 1
M ∑M

j=1 Rsj is the mean
of all distances Rsj, a simplification in order to efficiently incorporate
several light sources. Using the linearity of convolution, the forward
scattering for several light sources can thus be approximated with low
computational overhead, especially considering that Schechner and Karpel
determined in [SK04] that a low pass filter can be used. Hence, forward
scattering computation is further simplified by approximation with a with
a Gaussian filter with a variable filter mask size depending on the distance
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the light traveled through water, extended by an empirical factor K similar
to [TOA06], which weights the added forward scatter.

In [Jaf90], a reflectance map M(X) is used to model reflection at the
xy-plane of the coordinate system, which was rendered. Here, a textured
3D triangle mesh is rendered using a global reflectance factor M.

After reflection at the object point X the light traveling to the camera
is again attenuated on the way. The camera itself is no ideal pinhole
camera, but consists of a lens system that is modeled by vignetting, f-
number, and lens transmittance, which changes the light measured by the
sensor compared to the irradiance being incident upon the lens system. In
[Jaf90] these effects are modeled similarly to the fundamental radiometric
relation (A.2.1), explained in Section A.2:

Ed(x, λ) = (3.1.14)

EI(X, λ)e�η(λ)Rc M(λ)

π︸ ︷︷ ︸
Signal

cos4(θ)Tl(Rc � fl)
2

4 fnR2
c︸ ︷︷ ︸

Camera Transmittance

[Wm�2],

with Rc being the distance between X and the camera and θ being angle
between the incoming ray and the camera’s optical axis. The cosine term
models vignetting (refer also to [Sze11]) and Tl is the lens transmittance.
fn is the camera’s f-number (ratio between focal length and diameter of
the entrance pupil) and fl the camera’s focal length in mm.

Forward Scatter (Signal) The light that travels from the structure to the
camera is again complemented by small angle forward scattering, modeled
by a distance dependent Gaussian filter as in Equation (3.1.13):

E f s(x, λ) = Ed(x, λ) � g(x|Rc, G, η(λ), B). (3.1.15)

Note that small angle forward scattering does add some flux to the signal,
but has been found to mainly blur the image depending on the distance the
light has traveled. Thus, two of the three components in Equation (3.1.11)
for the irradiance on a pixel x are accounted for.
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Backscatter (Veiling Light) The final component in Equation (3.1.11) is
backscatter and it is caused by multiple scattering events in the water body
that eventually cause ambient or veiling light close to the light source
or water surface (illuminated by sun light). The veiling light is then per
chance scattered into beams traveling towards the camera and hence add
to the irradiance. In McGlamery’s work, backscatter is approximated by
slicing the 3D space in front of a camera into N planes of thickness ∆Zi
parallel to the camera’s image plane. Then, the light incidence by all
light sources upon each plane is computed including small angle forward
scattering. The total backscatter component is then the sum of the radiance
from all backscatter planes. In order to compute that, the Jaffe-McGlamery
model again needs to be extended to incorporate several light sources and
the Volume Scattering Function (VSF) β(ψj, λ) is applied to the irradiance
being incident upon the slab, which can be done due to the linearity of
convolution. This yields the irradiance on one backscatter plane:

Es(X
1) = Es,d(X

1) + Es, f s(X
1) (3.1.16)

Es,d(X
1) =

M

∑
j=0

Es,dj

Es,dj
=

0 if X1 is shadowed

Lj(λ)
e�η(λ)Rbsj

Rbs2
j

β(ψj, λ) else

Es, f s(X
1) = Es,d(X

1) � g(X1 Rbs, G, η(λ), B), (3.1.17)

where ψj is the angle between a line from the volume to the light source
and a line from the volume to the camera (see Figure 3.5). This determines
exactly the amount of light that is scattered out of the light source’s
beam into the light ray traveling towards the camera. The the sum of all
backscatter planes is computed, complemented by the above described
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3.1. Effects on Color

model for camera transmittance:

Ebs,d(x) =
N

∑
i=1

e�η(λ)Zbsi Es(X1, i)∆Zi
cos(θ)(X1)︸ ︷︷ ︸

Backscatter

cos4(θ)Tl(Zbsi
� Fl)

2

4 fnZ2
bsi︸ ︷︷ ︸

Camera Transmittance

[Wm�2],

(3.1.18)
with ∆Zi being the thickness of the backscatter volume slice, Zbsi

being
the distance between the center point of the slice i and the camera, and i
being the index of the backscatter plane. (3.1.18) is split into an irradiance
part being incident upon the camera and an camera transmission part,
identical to the one in (3.1.14).

3.1.3 Methods for Color Correction

The last two sections introduced the basic physical principles involved
in underwater light propagation and a physical model that can be used
to simulate the effect. However, there is another interesting issue related
to underwater light propagation: the question if and to what extent the
colors in images can be corrected. In the computer vision literature, many
methods can be found and are classified into two groups by Schettini
and Corchs in [SC10]. In the first group are methods that are based on a
simplification of the Jaffe-McGlamery model, thus a model based on the
underlying physical principles, which actually restores image colors. In
the second group are all methods that use differing sets of image filters in
order to enhance image colors, e. g., stretch the contrast on the different
color channels individually. In general, methods in the first group perform
better, however, it is often difficult to calibrate the necessary parameters
of the physical model because they need to be measured in the local
water body. Methods in the second group often consist of a set of filters
that were chosen heuristically, and hence it is sometimes unclear why
a particular filter performs well. In contrast to the parameters for the
restoration methods, the filter parameters cannot be measured, thus, need
to be determined by trial and error for each new image. Methods for both
categories are summarized in Table 3.2. The main equation derived by
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3. Underwater Image Formation

Figure 3.6. Simulation of viewing a colored checkerboard underwater from two
different distances and its color corrections. Note that at larger distances (approx.
5000 mm in the first image) the blue hue on the white cube is very strong, while
at close distances (approx. 600 mm in the third image), the blue hue is only very
slight.

simplifying the Jaffe-McGlamery model can be found in [SK04, SK05]:

Ecamλ
= Eobjλ e�κη(λ)︸ ︷︷ ︸

Signal

+ B8λ
(1� e�κη(λ))︸ ︷︷ ︸
Backscatter

, (3.1.19)

where Eobjλ is the irradiance, which is attenuated exponentially with
distance κ. B8λ

is the veiling light present in the water due to multiple
scattering events. Ecamλ

is the irradiance being incident upon the image
sensor. Note that in the course of simplification the effects on irradiance
while traveling from the light source to the object and the effects of the
lens system where omitted. (3.1.19) can be applied if κ is known for each
pixel. This is a geometric entity that must be estimated for example during
dense depth estimation (Chapter 5). Figure 3.6 shows simulation results
for the underwater color correction using Equation (3.1.19). Depicted
are two pairs of underwater and corrected images at different distances.
The checkerboard cube in the first pair is at a distance of approximately
5000 mm, while the cube in the second image pair is at a distance of
approximately 600 mm.
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3.1. Effects on Color

Table 3.2. Article overview for image color correction categorized into meth-
ods based on the underlying physical principles (restoration) and others using
heuristically determined sets of filters (enhancement). Note that the methods on
enhancement are only exemplary because so many works exist that listing all of
them would be out of the scope of this work.

Authors Category Method

Image Color Correction
Schechner et al.
[SK04, SK05]

restoration capturing two images through a polarization fil-
ter allows to use an equation similar to Equa-
tion (3.1.19) for image color restoration; method
works with sunlight; polarization can remove
backscatter, thus enhancing contrast

Treibitz,
Schechner, et al.
[TS06, TS08]

restoration similar to above, but adapted to deep sea scenar-
ios, where the scene is lit by a lamp that has a
polarization filter.

Trucco,
Olmos-Antillon
[TOA06]

restoration assumes small angle forward scattering to
be main source of degradation; from Jaffe-
McGlamery model a filter is derived based on
the attenuation coefficient η.

Hou et al.
[HWGF07,
HGWA08]

restoration de-blurring is achieved by deriving a point
spread function based on the assumption that
small-angle-forward scattering is the main source
of image degradation.

Yamashita et al.
[YFK07]

restoration parametrize the attenuation part of Equa-
tion (3.1.19) by using two or more images with
different distances κi and known camera transla-
tion; small-scale lab experiments

Queiroz et al.
and Nasimento
et al.
[QNCBC04,
NCdB09]

restoration apply model (3.1.19) during a stereo method to
enhance matching

Iqbal et al.
[ISOT07]

enhancement simple method with good results; contrast
stretching on each color channel, then conver-
sion to HSI, where saturation and intensity are
stretched

Bazeille et al.
[BQJM06]

enhancement use a lot of different filters, homomorphic fil-
tering, wavelet denoising, anisotropic filtering,
suppressing dominant color by equalization, etc.
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3. Underwater Image Formation

3.2 Geometric Effects

After traveling through the water, the light rays enter the camera’s under-
water housing, which usually consists of a piece of glass, either formed
as a flat port or a dome port (Figure 3.8). Therefore, the light is first
traveling through water, then glass, and finally air before it reaches the
actual camera. Due to the different media being traversed, refraction of
the rays occurs, thus underwater images are affected geometrically in
addition to the above described effects on color. In this section, the under-
lying physical principles will be explained along with a state-of-the-art
overview of related work found in the literature, followed by a description
of refractive ray computation utilized in this thesis.

3.2.1 Refraction at Underwater Housings

The physical principle of refraction [Hec05] is defined to be a change of
direction of a light ray compared to its former path. It is dependent on
the optical density of the media involved and causes a change in phase
velocity ν:

n =
c
ν

, (3.2.1)

with n being the index of refraction and c being the speed of light. The
effect can be described intuitively by Fermat’s principle: the light ray
travels the path that takes the least time to traverse. Figure 3.7 can be used
to understand Fermat’s principle: a ray travels from S, is refracted at O,
and then travels to P. The time required to travel this distance can be
calculated by [TSS08]:

t =

√
(Z� d)2 + (R2 � R1,2)2

ν1
+

√
d2 + R2

1,2

ν2
, (3.2.2)

where ν1 and ν2 denote the phase velocity in the corresponding medium.
This is minimized by computing the derivative [TSS08]:

Bt
BR1,2

=
�(R2 � R1,2)

ν1

√
(Z� d)2 + (R2 � R1,2)2

+
R1,2

ν2

√
d2 + R2

1,2

= 0, (3.2.3)
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d Z
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R1,2
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θ2

Figure 3.7. Fermat’s principle based on the ray from S to P being refracted at O.
Adapted from [TSS08].

and expressed by:
sin θ1

ν1
=

sin θ2

ν2
. (3.2.4)

With c being the speed of light in vacuum and n1 = c/ν1 and n2 = c/ν2,
Snell’s law follows:

sin θ1

sin θ2
=

n2

n1
. (3.2.5)

n1 and n2 are the indices of refraction and properties of the media denoted
by 1 and 2. Note that the index of refraction for a vacuum is set to 1
and the indices of refraction for all other media are calibrated relative
to the index for vacuum. The index of refraction for air is usually set to
na = 1, which will be sufficiently accurate for this thesis as well. In water,
the index of refraction is dependent on pressure, temperature, salinity,
and the light’s wavelength. However, according to [Mob94], the change
in the relevant range of ocean water is about 3% (see Table 3.3), so in
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3. Underwater Image Formation

Table 3.3. Indices of refraction for air, different kinds of water, and glass as in
[Hec05] p. 163 and [Mob94] p. 85.

Medium Index of Refraction

air (λ = 589 nm) 1.0003
pure water (λ = 700 nm, 30�C, p = 1.01e105 Pa) 1.329
pure water (λ = 700 nm, 30�C, p = 1.08e108 Pa) 1.343
sea water (λ = 700 nm, 30�C, p = 1.01e105 Pa) 1.335
sea water (λ = 400 nm, 30�C, p = 1.08e108 Pa) 1.363
quartz glass (λ = 589 nm) 1.4584
acrylic glass (Plexiglas, λ = 589 nm) 1.51
crown glass (λ = 589 nm) 1.52
light flint glass (λ = 589 nm) 1.58
dense flint glass (λ = 589 nm) 1.66
Lanthan flint glass (λ = 589 nm) 1.80

the remainder of this thesis, it will be set to nw = 1.333. The index of
refraction for glass on the other hand shows greater variance [Hec05] (see
Table 3.3), depending on the exact material, but it is usually known which
kind of glass is used, and hence can be considered explicitly.

Since refraction depends on the angle between the entering ray and
the normal of the interface, almost all rays are refracted in case of flat port
underwater housings (Figure 3.8 on the left). Only the light rays with
an incidence angle of zero to the interface normal can pass through the
interface without change of direction. When following the rays in water
without refraction at the interfaces (dashed lines), it can be observed that
the single-view-point camera model is invalid and flat port underwater
cameras can be classified as nSVP cameras (compare to Section 2.2.3).
In case of ideal dome ports (Figure 3.8, right), the light rays are not
refracted because all rays are exactly parallel to the interface normal at
the intersection point. Ideal dome ports need to be build such that the
camera’s center of projection coincides exactly with the dome port sphere’s
center. Especially, since the center of projection is difficult to determine in
practice [AA02] and can even lie in front of the physical camera and its
lens system (Section 2.2.2), it is difficult to build an underwater camera
with an ideal dome port. Consequently, for most real dome port cameras,
the single-view-point model is invalid as well.
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air glass water air glass water

Figure 3.8. Left: refraction at flat glass interface. Right: straight rays entering
the underwater housing through a dome port with a perfect fit, i. e., the center of
projection coincides with the sphere’s center.

Figure 3.9. Left: the caustic for a flat port camera with imperfect sensor-interface
alignment. Right: caustic in the dome port case with imperfect alignment of
camera center and sphere center.

As described in Section 2.2.3, nSVP cameras are more general then
single-view-point cameras and can be characterized by their caustics.
Exemplary caustic shapes for a flat port and a dome port underwater
camera are shown in Figure 3.9. [TSS08] analyzed caustics for flat port
underwater cameras without interface tilt and zero glass thickness. In the
flat port case in Figure 3.9 on the left, the caustic is asymmetric due to
a slight inclination of the interface normal with respect to the camera’s
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X̃a

X̃g

X̃w

Xs

πinner

πouter

ñπ

POR

Figure 3.10. POR is the plane of refraction, the common plane of all ray segments
X̃a, X̃g, and X̃w. Additionally, all rays in water intersect the line formed by the
interface normal ñπ and the center of projection.

optical axis.
The second part of Snell’s law of refraction states that both parts of

the ray before and after refraction and the interface normal all lie in one
common plane. Hence all three ray segments, in water, glass, and air,
lie in one common plane called the Plane of Refraction (POR) [ARTC12].
According to [ARTC12], in case of flat port cameras, this plane intersects
the axis formed by the interface’s normal and the camera center, thus all
rays (dashed line in Figure 3.10) intersect this axis (blue line). Consequently,
the flat port refractive camera is a special nSVP camera, an axial camera,
i. e., all rays intersect a common axis and the refractive camera can be
classified as an axial camera (refer to Section 2.2.3).

In the literature, often the perspective camera model is used on under-
water images despite the fact that it is invalid and has a systematic model
error. A more general camera model (completely ray-based or axial) can be
used to eliminate this systematic error. However, underwater housings can
also be modeled explicitly by very few parameters allowing to accurately
compute the light paths through the housing. All three possibilities will
now be examined more closely. Note that a similar literature overview
and camera model discussion has already been published in [SK12].
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3.2. Geometric Effects

3.2.2 Perspective Camera Model

When using the perspective camera model on underwater images, a simple
experiment reveals how the refractive effect can be approximated to some
extent: the camera needs to be calibrated above and below water. A
comparison of the results reveals that the camera parameters absorb part
of the model error. Two works exist that examine this effect more closely.
Fryer and Fraser [FF86] calibrate with the pinhole model extended by
three parameters for radial distortion and two for tangential distortion.
They conclude that refraction is compensated for by multiplying the focal
length measured in air fa by the index of refraction for water:

1.333 fa = fw. (3.2.6)

In addition, radial distortion added to the points in the image needs to be

changed by: δr =
(

cos θw
cos θa

� 1
)

r, with r being the radial distortion in air,
θw being the angle between optical axis and water ray, and θa being the
angle between optical axis and ray in air. Note that the angles required
for computing the distortion are usually unknown. Lavest et al. [LRL00]
come to the same conclusion concerning focal length. Concerning radial
distortion, they conclude:

1.333(rda � rradw) = rdw � rradw . (3.2.7)

In experiments using two different cameras, they found (3.2.7) to be a
good approximation. Figure 3.11 helps to understand why the perspective
model is only an approximation of the refractive camera by regarding the
situation in cylinder coordinates. (R1

w, Z1
w) is a 3D point to be projected

onto the point r on the image plane, when considering refraction explicitly.
Since (R2

w, Z2
w) is on the same ray segment in water, the point is projected

onto the same position on the image plane, when using the refractive
model. However, when using the perspective model, (R1

w, Z1
w) is imaged

onto r1
uncomp. The change in focal length is shown by the virtual image

plane, which is moved away from the center of projection. Here, the
projections of (R1

w, Z1
w) and (R2

w, Z2
w) are r1

per and r2
per. Radial distortion

can then be used to compensate the remaining error for r1
per, yielding
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Figure 3.11. Approximation of the underwater camera by the perspective model. A
virtual image plane is used in combination with larger radial distortion to project
the point onto the same radial coordinate. Despite that, the two 3D points lying on
the same ray in water are projected onto the same position using the underwater
model, but onto different positions using the perspective model.

the correct radial distance r = r1
per + r1

comp. However, in order to get the
correct radial distance for r2

per, a different radial distortion compensation
term is required. Unfortunately, this term is depending on the distance
of the original 3D point from the camera, a characteristic that is not part
of the common pinhole camera model. Hence, the substitution of the
refractive camera by the perspective camera is only valid at the calibration
distance.

Despite the systematic model error introduced by using the perspective
camera model in underwater scenarios, a lot of works can be found
in the literature, where methods, which were designed for perspective
cameras, are used on underwater images. Table 3.4 summarizes works
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Table 3.4. Literature on calibrating the perspective camera model on underwater
images.

Authors Application Method

Perspective Model
Freyer et al.
[FF86]

calibration calibrate in air and find perspective water cali-
bration by adapting focal length (1.333 fa = fw)

and distortion δr =
(

cosθw
cosθa

� 1
)

r, with r being
the radial distortion in air, θw being the angle
between optical axis and water ray, and θa being
the angle between optical axis and air ray

Lavest et al.
[LRL00]

calibration calibrate in air and find perspective water cali-
bration by adapting focal length (1.333 fa = fw)
and distortion (1.333ua + dua) = uw + duw, with
ua and uw being the distorted coordinates and
dua and duw being the distortion corrections

Bryant et al.
[BWAZ00]

calibration find checkerboard corners robustly in turbid en-
vironments; calibrate based on underwater im-
ages; using one coefficient for radial lens distor-
tion

Pessel et al.
[POA03b,
POA03a,
Pes03a]

calibration checkerboard-free self calibration approach us-
ing predefined trajectory; no distortion modeled
because lens system eliminated distortion effects
by 99%; calibrate on-site to adapt calibration to
changing index of refraction of water

concerned with calibration. Examples for applications include stereo-
based distance measurements and mosaicing (Table 3.5), or Structure-from-
Motion (Tables 3.6 and 3.7) Especially in case of SfM, these methods rely
on navigation data (e. g., from ROVs (Remotely Operated Vehicle)) and/or
extensive bundle adjustment [TMHF00] to at least partly counter act the
error. Even though, the error accumulated over time is considerable often
leading to inaccurate or even useless reconstruction results.
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Table 3.5. Literature describing stereo measurement and mosaicing based on
underwater images using the perspective camera model.

Authors Application Method

Perspective Model
Harvey et al.
[HS98]

stereo
measurement

usage of stereo rig to measure underwater struc-
tures; examination of calibration robustness in
different water bodies; 3D calibration frame

Costa et al.
[CLC+06]

stereo
measurement

automatically measure fish size using a stereo rig;
automatic contour detection and interest point
triangulation; initial calibration without distor-
tion, removal of inconsistencies by training neu-
ral network; 5% measuring accuracy

Gracias et al.
[GSV00,
GvdZBSV03]

mosaicing mosaic computation used for navigation after-
wards; self calibration with rotating camera on
pan-tilt unit, sequential mosaic building followed
by global optimization; geo-referenced

Garcia, Carreras
et al. [GBCA01,
CRGN03]

mosaicing mosaic computation used for navigation after-
wards; one parameter for radial distortion; sec-
ond work using robot in pool with coded pattern
on the ground for estimating the accuracy of
other on-board navigation devices

Xu,
Negahdaripour
et al. [NXKA98,
XN01]

mosaicing first: simultaneous mosaicing, navigation, and
station keeping; second: statistical combination
of image-based registration data and other navi-
gation data sources applied to mosaic computa-
tion

Eustice et al.
[ESH00]

mosaicing compares different methods for mosaicing un-
der consideration of movement with growing
complexity (from translation to full projective
transformations) in underwater environments

Trucco et al.
[TDO+00]

mosaicing mosaicing approach via tracked features and
homography estimation; registered images are
warped into common image
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Table 3.6. Literature overview on 3D reconstruction based on underwater images
using the perspective camera model.

Authors Application Method

Perspective Model
Hogue et al.
[HGZJ06,
HGJ07]

reconstruction a bumblebee stereo camera and IMU are com-
bined in one underwater housing and used to
reconstruct and register 3D structure; reconstruc-
tion shows a lot of drift if IMU is not used and au-
thors presume erroneous camera model to cause
part of it

Jasiobedzki
et al.
[JSBJ08, JDL12]

reconstruction real-time reconstruction using stereo images, reg-
istered using ICP; resulting model is bent, au-
thors plan to incorporate refraction to eliminate
the error; the second work contains an interest-
ing extension for photosynthetic life detection
using macroscopic fluorescence imaging

Sedlazeck et al.
[SKK09]

reconstruction classical, sequential SfM with adaptations to un-
derwater environment; calibration below water,
two coefficients for radial distortion, dense depth
maps are used for model computation; addi-
tional color correction; absolute scale from navi-
gation data

Pizarro et al.
[PES03b,
PES04]

reconstruction calibration below water including distortion; re-
constructions based on two or three images are
registered against each other by a graph based
algorithm; Delaunay triangulation; usage of nav-
igation data

Johnson et al.
[JRPWM10]

reconstruction sparse sets of 3D points are meshed using a De-
launay triangulation and registered via SLAM
utilizing navigation data; additional loop closing
and color correction; can process thousands of
images

Brandou et al.
[BAP+07]

reconstruction stereo rig is moved on predefined trajectory by a
ROV arm; model is computed using dense depth
maps; camera is calibrated on-site by deploying
checkerboard on the sea floor

Negahdaripour
et al.
[NSP07, NSP09]

reconstruction combination of optical and acoustic systems in
one rig; calibration and reconstruction theory in
presence of euclidean and spherical coordinates

Bingham et al.
[BFS+10]

reconstruction overview paper using AUV for shipwreck doc-
umentation with optical and acoustic methods;
navigation data is utilized
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Table 3.7. Literature overview on 3D reconstruction based on underwater images
using the perspective camera model.

Authors Application Method

Perspective Model
Beall et al.
[BLID10]

reconstruction compute 3D model of coral reef with a lot of
(moving) plants; use SAM (Smoothing and Map-
ping) to determine smooth camera path

Kang et al.
[KWY12a]

reconstruction small-scale reconstructions based on underwater
images with comparison to ground truth; con-
clusion is that perspective camera model can be
used to reconstruct perspectively

Inglis et al.
[ISVR12]

reconstruction combination of stereo camera rig and laser sheet
to obtain large area bathymetric maps; ROV
movement is computed using SLAM; can pro-
cess over 100,000 images

Queiroz-Neto,
Nascimento
et al.
[QNCBC04,
NCdB09]

underwater
stereo

color correction routine is combined with stereo
to match more robustly; no consideration of re-
fraction
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3.2.3 Ray-Based Axial and Generic Camera Models

Instead of using the perspective camera model, one can also apply more
general camera models. They can account for refraction explicitly and do
not require the cameras to have a single view point (refer to Section 2.2.3).

Grossberg et al. [GN05] introduced the raxel camera model (Sec-
tion 2.2.3), but the proposed calibration method requires an active display
and is therefore impractical in underwater calibration. A different work
by Narasimhan et al. [NNSK05] researches light sheet reconstruction as
an application of the described raxel model for small scale underwater
images in laboratory settings. A camera is put in front of a water tank,
and calibrated by placing two planes into the tank vertically with respect
to the optical axis and therefore gaining two points in space for each ray.

Sturm et al. [SR04, SRL06] describe models for generic camera cali-
bration and SfM, which in theory are applicable to the underwater case.
In [RLS06], a generic SfM framework is proposed, where a generic cam-
era is approximated by clustering rays such that each cluster can be
approximated by a perspective camera, thus making bundle adjustment
optimization feasible. [CS09] is specialized to the case of a refractive plane
in an underwater scenario. The derivation only works for one refractive
interface (thin glass) and has not yet been implemented. A complete
system for general camera systems, which has also been implemented
was introduced by Mouragnon et al. [MLD+07, MLD+09]. They use a
catadioptric camera or a rig of perspective cameras, which are assumed
to be calibrated such that for each pixel the ray in space is known. By
introducing an error function that is based on angles between rays, they
propose a SfM system that can run in real time.

Another possibility to deal with refraction by approximating ray-based
cameras is described in [Wol07]. Here, the camera is viewed as a nSVP
camera having a caustic instead of the single view point. Instead of
modeling the refractive effect physically or using a generic ray-based
camera, the camera is approximated by several perspective cameras for the
different areas of the image. The number of virtual perspective cameras
determines the accuracy of this system.

In summary, it can be said, that using a more generic camera model
than the pinhole model with distortion allows to deal with refractive
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Table 3.8. Ray-based methods that can be applied to underwater images.

Authors Application Method

Ray-based Models
Grossberg,
Narasimhan
et al.
[GN05, NN05,
NNSK05]

calibration,
reconstruction

cameras are defined via their caustics; calibration
routine using an active display; second work
specializes on underwater case with light sheet
based reconstruction in small tank environments

Sturm et al.
[SR04, SRL06]

calibration,
reconstruction

development of theory for generic cameras de-
scribed only by their rays (assumption is that
neighboring rays are close to each other); calibra-
tion by taking several checkerboard images

Ramalingam
et al. [RLS06]

reconstruction generic SfM based on generic camera calibration
above, propose to cluster generic camera rays to
approximate perspective cameras

Mouragnon
et al. [MLD+07,
MLD+09]

reconstruction based on an angular error between two rays,
real-time 3D reconstruction is introduced for ray-
based cameras

Wolff [Wol07] seafloor
reconstruction

reconstruction of sea floor in simulator (small
tank); ray-based, generic camera is approximated
by several perspective cameras suitable for dif-
ferent image regions

effects. However, using independent 3D origins and directions for each
ray leads to a high degree of freedom, making the robust calibration of
generic camera models difficult, especially in open water. The following
section shows that far less parameters need to be determined if refraction
is modeled explicitly.

3.2.4 Physical Models for Refraction

In the literature, several contributions exist that deal with refraction explic-
itly and propose corresponding calibration methods. Often, assumptions
for simplification are made, e. g., no normal inclination and a very thin, flat
glass port are assumed by Treibitz et al. [TSS08]. They argue that the glass
port in use has a glass thickness of only about 5 mm, causing a maximum
ray shift due to the distance traveled through glass of only about 0.28 mm.
Telem et al. describe in [TF06, TF10] a system for calibrating a camera also
with thin glass and parallelism of glass normal and optical axis, but in
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their model they determine a point on the optical axis for each 2D point
that serves as a correct center of projection and relate the measured 2D
image coordinates to image coordinates eligible for perspective projection.
This approach is extended in a second article [TF10] to account for normal
inclinations. However, in this case the error due to glass thickness is
absorbed by the interface distance, therefore, this approach is not an exact
model of the refractive camera. [Kwo99, KC06] describe an often cited
method, where the Direct Linear Transform (DLT) [HZ04] for pose estima-
tion is combined with refraction. Parallelism of interface and image sensor
is assumed and achieved by manually rotating the camera in front of the
glass port. The distance between camera and glass port is also measured
manually, and the authors have not included an automatic calibration
routine into their algorithm. Li et al. [LLZ+97, LTZ96] (see also [McG04])
described a photogrammetric approach for calibrating underwater stereo
cameras. They did not make any assumptions, except for the indices of
refraction, which need to be known. In [LTZ96], an additional reduced
central projection allows to project points from 3D through a refractive
interface onto the image plane with an iterative method that solves for the
required unknowns on the interfaces. Kunz et al. [KS08] consider dome
and flat ports in their work. They describe a model for the computation
of back-projection and a corresponding calibration routine. However, the
calibration routine is not implemented and therefore not tested. In addi-
tion, they show by some simulations that the error introduced by using
the perspective camera model is considerable.

A recent work by Agrawal et al. [ARTC12] has already been mentioned
above. They showed that the refractive camera is actually an axial camera
and proposed a calibration routine based on that insight. In addition, they
showed that the projection of 3D points into the camera can be computed
by solving a 12th degree polynomial instead of the non-linear optimization
required by [KS08], thus, making the projection of 3D points much more
efficient.

The computation of SfM using the refractive camera model has only
recently been considered in more detail. Chang and Chen [CC11] assumed
to have a camera looking through the water surface onto a submerged
scene with known vertical direction of the camera, i. e., the camera’s
yaw and pitch with respect to the water surface need to be known. The

53



3. Underwater Image Formation

method then only needs to compute the heading of the cameras instead
of complete pose estimation. Kang et al. [KWY12b] proposed a system
for computing refractive 3D reconstructions below water for two images
based on outlier-free correspondences, which need to be selected manually.
Using the reprojection error, they optimize their two-view scene with
bundle adjustment and in order to compute a dense model, they run a
modified version of PMVS (Patch-based Multi-view Stereo) [FP10] that can
compute refraction explicitly. Gedge et al. [GGY11] propose a method for
refractive dense stereo, where the epipolar curves caused by refraction are
approximated. However, in order to compute dense stereo, 3D points need
to be projected into images. Due to the assumed thin glass, a fourth-degree
polynomial needs to be solved for each projection.

Another approach to using physical models is found in the works of
Maas, [Maa92, Maa95] and a follow-up work by Putze [Put08b, Put08a].
The goal of both methods is optical fluid flow analysis in fairly small
laboratory tanks, where the fluid has been marked with a set of particles. In
the model, the actual 3D points in space are substituted by corresponding
virtual 3D points that fit the perspective back projection. The computation
of these points is based on an iteration with known interface parameters
and indices of refraction. In order to calibrate the system, a calibration
pattern below water at known distances is used and optimized by a bundle
adjustment routine. The method has been found to perform well if the
indices of refraction, especially for the glass are known. A statistical
correlation analysis shows high correlation between focal length and
distance between camera center and glass interface for all three calibrated
cameras. The works of Maas also contain an introduction to epipolar
geometry [HZ04] in case of refractive imaging, where the epipolar lines
are bent into curves. If the ray in water from one camera is known, several
points on this ray are projected into the second image defining a linear
approximation of the epipolar curve. This is for example used in [FW00]
examining surface reconstruction.

In addition, there exist some more unusual applications also consid-
ering refraction explicitly. In contrast to the approaches described above,
where the indices of refraction are assumed to be known, they can be
calibrated in confined laboratory scenarios. See [MK05, YHKK03, YFK08,
KYK09, FCS05] for more detailed information.
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A more complete overview and classification of existing methods can
be found in Tables 3.4 to 3.10. In summary it can be said that no refractive
SfM system with arbitrary camera movement and thick, possibly inclined
glass exists that can handle more than two cameras and does not require
to project points, i. e., to solve a 12th degree polynomial. Chapter 5 will
propose such a system.

3.2.5 Refractive Camera Model with Thick, Inclined Glass

The refractive model used in this thesis assumes potentially thick glass
ports, which are required for large water depths. In addition, the interface
may be tilted with respect to the imaging sensor. By parametrizing the
glass interface, refraction of rays can be modeled explicitly, thus eliminat-
ing the need to calibrate the ray for each pixel separately or to approximate
refraction using the pinhole camera model. The following parameters are
used in the flat port and dome port case:

1. Flat Port Underwater Housing (compare to Figure 3.10):

� indices of refraction for air, glass, and water (na, ng, and nw)
� interface distance and interface thickness (d, dg)
� interface normal with respect to the optical axis (ñ)

2. Dome Port Underwater Housing:

� indices of refraction for air, glass, and water (na, ng, and nw)
� inner radius of sphere d, glass thickness dg

� sphere center with respect to camera center (Xdome)

Using these parameters, refraction for each ray through the housing can
be computed explicitly. In the following, first the back-projection of a pixel
onto a ray will be described, then the projection of a 3D point to a 2D
pixel is derived. Both descriptions start with the flat port case (based on
[ARTC12]) and are extended by the necessary deviations for dome ports
(based on [KS08]).

Note that the interface normal is determined by a normalized three-
vector ñ = (n1, n2, n3)

T, but can also be described by angles θ1 =
tan�1(n2/n1) and θ2 = cos�1(n3) (Figure 3.12).
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Table 3.9. Literature overview of methods for calibrating refractive camera models.

Authors Application Method

Refractive Underwater Models
Treibitz et al.
[TSS08]

calibration physical model for underwater imaging is devel-
oped assuming thin glass and interface-sensor
parallelism; analytical derivation of projection
using cylinder coordinates; includes calibration
routine; link to caustics

Telem et al.
[TF06, TF10]

calibration each point is mapped to a point eligible for per-
spective projection by moving the point in the
image and computing the correct intersection
with the optical axis; second work extends this
mapping to the case of tilted interfaces; only
correct for thin glass

Kwon et al.
[Kwo99, KC06]

calibration,
measurement

refraction is modeled in combination with the
DLT for pose estimation; assumed thin glass; no
rotation between glass and camera sensor

Kunz et al.
[KS08]

calibration hemispherical and flat ports are modeled and
synthetic data is used to demonstrate inaccura-
cies using the perspective model; calibration rou-
tine is described, but not implemented; general
case for non-parallel interfaces and thick glass

Li et al. [LTZ96,
LLZ+97]

calibration development of complete physical model and its
calibration; stereo rig is used to triangulate the
derived rays in water; indices of refraction are
assumed to be known

Sedlazeck et al.
[SK11a]

calibration calibration of underwater housings of stereo rig;
no checkerboard required, runs with bundle ad-
justment based on features; virtual camera error

Agrawal et al.
[ARTC12]

calibration derive that flat port refractive cameras are axial
cameras, i. e., all rays intersect in common axis;
calibration routine for interface distance and tilt
based on that insight; derivation of projection
with 12th degree polynomial by computing poly-
nomial coefficients on POR

Jordt-Sedlazeck
et al. [JSK12]

calibration uses [ARTC12] for initialization, then a
non-linear optimization with an Analysis-by-
Synthesis approach is proposed that is indepen-
dent of errors in corner detection

Maas
[Maa92, Maa95]

fluid flow
measurement

a complete physical model for a rig is derived
assuming interface parallelism; calibration; 3D
points are iteratively moved to positions eligible
for perspective projection; rig is used to recon-
struct fluid flow marked by suspended particles;
indices of refraction not calibrated
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Table 3.10. Literature overview summarizing methods for different 3D applications
with a refractive camera model.

Authors Application Method

Refractive Underwater Models
Putze [Put08b,
Put08a]

calibration,
fluid flow
measurement

follow-up work to the one above increasing ro-
bustness

Förstner et al.
[FW00]

reconstruction [Maa92] and its specialized epipolar geometry
are used for surface reconstruction

Morris et al.
[MK05]

wave surface
reconstruction

a calibrated stereo rig views the bottom of a
water tank on which a checkerboard pattern is
placed; refraction is used to determine the wave’s
normals on the liquid’s surface

Yamashita,
Kawai et al.
[YHKK03,
YFK08, KYK09]

measurements in small water tanks within a lab, a stereo sys-
tem, a laser beam, or active patterns are used to
gain reconstructions of objects completely or half
emerged in the water

Ferreira et al.
[FCS05]

underwater
stereo

the underwater model is linearized to compen-
sate for the majority of the errors induced by
using the perspective model for stereo

Chang et al.
[CC11]

reconstruction 3D reconstruction of a scene viewed by a camera
through the water surface; camera’s yaw and
pitch need to be known

Gedge et al.
[GGY11]

dense stereo epipolar curves caused by refraction are approxi-
mated and used for stereo matching; requires to
project points into stereo image pairs

Kang et al.
[KWY12b]

reconstruction a system for 3D reconstruction computation from
two views; relative pose is computed on outlier-
free correspondences, then 3D points are triangu-
lated; perspective BA; sparse cloud is filled using
PMVS [FP10] adapted to the refractive camera
model

Chari et al.
[CS09]

reconstruction theory, but no implementation of refractive SfM
(thin glass)

Jordt-Sedlazeck
et al. [JSK13]

reconstruction refractive SfM for long image sequences; efficient
bundle adjustment using virtual camera error
function

Jordt-Sedlazeck
et al. [JSJK13]

dense stereo refractive plane sweep; can apply color correc-
tion; comparison between perspective and refrac-
tive plane sweep
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camera

glass interface

ñ

θ1

θ2

Figure 3.12. Angles describing interface normal. θ1 describes the rotation around
the interface normal ñ and θ2 is the angle between interface normal and the
camera’s optical axis.

Back-Projection from 2D to 3D

Let x denote a homogeneous 2D point that describes a pixel position. Then,
the first segment of the ray is determined by (refer to Section 2.2.1):

X̃a =
K�1x

||K�1x||2
, (3.2.8)

with additional consideration of lens distortion, where X̃a is normalized
to ‖X̃a‖ = 1. The next ray segment X̃g is determined using Snell’s law, the
interface normal ñ, the interface distance d, and the indices of refraction
for air na and glass ng. Considering Figure 3.13 the following equation is
derived in [Gla94]. The ray X̃g can be split into two components, with Xg‖
being parallel to the interface normal, and XgK being perpendicular to the
interface normal. From that, several properties between the angle θg and
the ray can be determined:

X̃g = Xg‖ + XgK (3.2.9)

Xg‖ = X̃g �XgK
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X̃a XaK

Xa‖
θa

X̃g

XgK

Xg‖
θg

ñ

m̃

Figure 3.13. Refraction of rays using Snell’s law. m̃ denotes the interface between
the two media, here air (bottom) and glass (top). X̃a is the ray in air, X̃g is the ray
in glass. Refraction is determined by the angles θa and θg and Snell’s law. Adapted
from [Gla94].

0 = XT
g‖XgK

‖X̃g‖2 = ‖Xg‖‖2 + ‖XgK‖2

XaK = X̃a � cos θañ

Note that Snell’s law can be applied to the angles θa and θg:

na sin θa = ng sin θg. (3.2.10)

This can be used to express cos θg with cos θa:

cos θg =
√

1� sin2 θg =

√
1�

(
na

ng

)2
sin2 θa =

√
1�

(
na

ng

)2
(1� cos2 θa).

(3.2.11)
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The vector m̃ perpendicular to the interface normal ñ, as depicted in
Figure 3.13, can be computed by:

m̃ =
1

sin θa
(X̃a � cos θañ) (3.2.12)

Using m̃, it follows that:

X̃g = m̃ sin θg + ñ cos θg (3.2.13)

=
sin θg

sin θa
(X̃a � cos θañ) + ñ cos θg

=
na

ng
(X̃a � cos θañ) + ñ cos θg

=
na

ng
X̃a +

(
�

na

ng
cos θa + cos θg

)
ñ

=
na

ng
X̃a +

�na

ng
X̃T

a ñ +

√
1�

(
na

ng

)2
(1� cos2 θa)

 ñ

=
na

ng︸︷︷︸
=:a

X̃a +

�na

ng
X̃T

a ñ +

√
1�

(
na

ng

)2
(1� (X̃T

a ñ)2)


︸ ︷︷ ︸

=:b

ñ

= aX̃a + bñ.

Equation 3.2.13 shows how a ray is refracted when entering a new medium.
By exchanging glass for air and water for glass, the ray in water X̃w can be
computed respectively. After normalization, the rays X̃a, X̃g, and X̃w are
known. With interface distance d and interface thickness dg, the starting
position of the ray in water on the outer interface Xs can be computed by:

Xs =
d

X̃T
a ñ

X̃a +
dg

X̃T
g ñ

X̃g. (3.2.14)

Thus, the ray in water is determined by starting point Xs and direction X̃a
for flat port underwater housings.
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In case of dome port housings with perfect alignment of the dome
center and the camera’s center of projection, the project and back project
functions are equal to the common pinhole camera model. However, in
case of imperfectly fitted dome ports, a ray needs to be refracted using
Equation (3.2.14). The only difference is that the normal ñ needs to be
computed for each ray using the ray in air X̃a and the dome port center
Xdome. In order to compute the intersection point, the inner and outer
dome spheres are parametrized by using the quadric:

Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

 . (3.2.15)

A transformation containing the sphere’s inner d or outer d + dg radius
and the translation of the dome’s center Xdome = (Xdome, Ydome, Zdome)

T

is applied to the quadric to get the matrix describing the dome [HZ04]:

Hd =


d 0 0 Xdome
0 d 0 Ydome
0 0 d Zdome
0 0 0 1

 (3.2.16)

Dd =(H�1
d )TQH�1

d .

A homogeneous point X lies on the quadric Dd if XTDdX = 0. Using the
parametrization for the ray in air or in glass, the intersections of the rays
with the inner or outer dome surface can be determined. The normals at
those intersection points can be found by using the line from the center
of the dome to the intersection points. Once the normals, the intersection
points, and the ray directions in air and glass are known, the remaining
derivation of the refraction is exactly the same as in the flat port case.

Additional Constraints

Agrawal et al. derived in [ARTC12] two constraints for flat port underwater
cameras. Both are based on an existing correspondence between a 3D point
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X and a 2D image point x. For the image point, the corresponding ray seg-
ments in water X̃w and air X̃a and the starting point on the outer interface
Xs are determined using Equations (3.2.13) and (3.2.14). The first constraint
is based on the idea that once a 3D point X is transformed into the camera
coordinate system, and then translated to the corresponding starting point
on the outer interface, it should be parallel to the corresponding ray in
water X̃w, resulting in the Flat Refractive constraint (FRC):

(RTX�RTC�Xs)� X̃w = 0. (3.2.17)

The second constraint introduced by Agrawal et al. in [ARTC12] is based
on the fact, that the all ray segments (in air, glass, and water) lie in a
common plane, the Plane of Refraction (POR). For a corresponding 3D
point X, which is transformed into the local camera coordinate system,
follows that it has to lie in the POR as well:

(RTX�RTC)T(ñ� X̃a) = 0. (3.2.18)

Projection from 3D to 2D

The previous section described the back-projection of a 2D image point
onto the corresponding 3D ray. Back-projections can be computed effi-
ciently in case of refractive underwater cameras. More involved is the
computation of the projection of a 3D point into the image. Here, it is
unknown, where the ray intersects the inner and outer interface planes and
therefore at which angles it is refracted. [KS08] use the above described
back-projection function in a numerical optimization scheme, which is ini-
tialized using the common perspective projection. In our implementation,
the Levenberg-Marquardt algorithm is used to compute the correct 2D
point. Using such an optimization scheme is time-consuming, however, it
allows to compute the correct projection even in case of the entrance pupil,
and thus the camera center, lying in front the actual glass (Section 2.2.2).

Another approach can be derived building upon [TSS08] and generaliz-
ing their proposed method to incorporate thick glass and a tilted interface.
A formula for the projection is derived by applying Fermat’s principle.
The total traveling time of the ray is the sum of three components: the
time spent in the underwater housing (in air), the time spent in the glass
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of the interface, and the time spent in the water. The derived equation
contains four unknowns, the x- and y-coordinates on the inner and outer
interface planes (Xin and Yin and Xs and Ys respectively) and depends on
the 3D point X = (X, Y, Z)T:

t(Xin, Yin, Xs, Ys) = (3.2.19)

na

√
X2

in + Y2
in + Z2

in+

ng

√
(Xs � Xin)2 + (Ys �Yin)2 + (Zs � Zin)2+

nw

√
(X� Xs)2 + (Y�Ys)2 + (Z� Zs)2.

Since the light always travels the path that takes the least time to tra-
verse (Fermat’s principle), this equation’s partial derivatives are used to
minimize the traveling time with respect to the unknowns:

Bt
BXin

= 0
Bt
BYin

= 0
Bt
BXs

= 0
Bt
BYs

= 0. (3.2.20)

The plane equations are utilized to eliminate the Z-components with
ñ = (n1, n2, n3)

T:

Zin =
d� n1Xin � n2Yin

n3
(3.2.21)

Zs =
d + dg � n1Xs � n2Ys

n3
.

The resulting system of equations with four unknowns and four equations
is solved numerically, starting from an initial solution, using e. g., Powell’s
hybrid method1 [PVT+02]. After that, the points on the inner and outer
interface planes are determined, however, only the point on the inner
interface plane is relevant for projecting it onto the image plane with the
usual perspective projection. In our tests, we found that it is difficult to
find the correct solution using this method, especially in case of a negative
camera-interface distance. In case of thin or no glass, parallelism between
interface and image sensor, and positive interface distance d, (3.2.20) is only

1e. g., in GSL library from www.gnu.org/software/gsl/
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depending on the radial coordinate on the refractive plane. The derivative
in this direction becomes a polynomial of fourth degree [GS00, TSS08].
For this special case, [GS00] proved that the correct/practical root is found
in the interval [0, Rw]. Experiments showed that in the more general case,
thick glass with possibly negative d and non-parallel interface, this is no
longer true.

Most recently, [ARTC12] determined that a flat port refractive camera
can be classified as an axial camera, i. e., all rays intersect a common
axis. By using this insight, Agrawal et al. developed a projection method
by deriving a 12th degree polynomial based on the idea of solving the
projection on the plane of refraction (POR). After eliminating all complex
roots from the set of solutions, Snell’s law can be used to determine the
correct root. This approach is far more time-efficient than both approaches
described above.

3.3 Simulation Results

Until now, this chapter has described effects of water on image formation.
While the light travels through the water, light intensity is effected depend-
ing on the color channels, then, the light is refracted when entering the
underwater housing either through a flat port interface or a dome port
interface. The described adaptations to the Jaffe-McGlamery model and
the described equations for refractions allow to implement a simulator
that can be used to render underwater images. Note that the following
results have already been published [SK11b].

The simulator can render camera trajectories of a textured 3D model,
and hence allows to create synthetic ground truth data required for testing
refractive calibration and reconstruction methods. The simulator has
been realized as a ray-caster, i. e., for each pixel the refractive 3D ray is
computed that starts on the outer interface surface. It is determined if
any triangles of the model are intersected by this ray, how this triangle is
illuminated (direct, attenuated lighting from possibly several light sources
or shadows), or how much backscatter needs to be added. Triangle
illumination and back-scattering are determined using Equations (3.1.14)
(3.1.15) and (3.1.18).
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Figure 3.14. Lamps are placed on the left hand side of the camera. Single tiles, top
row from left to right: scene, 3D surface with shadows, depth map. Middle row:
light incident on 3D structure, signal, first backscatter plane. Bottom row: second
backscatter plane, overall backscatter, and final result.

The required model for refraction made it necessary to implement the
simulator instead of using a ready-made software package. The implemen-
tation is build upon BIAS2 and the open source library OpenSceneGraph3.
It was assumed that mainly the lighting situation created by using ROVs
is of importance. A ROV usually carries a set of lights at its front illu-
minating the scene in front of it. Also somewhere at the front are the
cameras, consequently, it can be assumed that the camera(s) and lights are
roughly in one common plane. The simulator allows placing an arbitrary
number of point light sources (refer to Section A.1) relative to the camera.

2http://www.mip.informatik.uni-kiel.de/tiki-index.php?page=BIAS
3http://www.openscenegraph.org/projects/osg
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Figure 3.15. From left to right, increasingly turbid water. In all three cases the
lamps were positioned above the camera, but close by. Top row: backscatter
components. The minimum and maximum image values show how strongly
backscatter increases with increasing turbidity (min/max backscatter image values
over the whole image from left to right: 7.74/16.6, 35.62/78.98, 70.13/156.23).
Bottom row: complete result.

Using this set-up, arbitrary, textured surface meshes can be rendered. This
was tested using a synthetic model of an underwater scene, containing
a background landscape, a cube textured with a checkerboard pattern,
and a rusty tube. Three lights were placed to the upper left of the camera.
Figure 3.14 shows the final rendering result and the different components.
The surface rendering clearly shows the shadows produced by three lamps
at the upper left of the camera. Geometric ground truth is rendered in
form of depth maps recording the camera-3D point distance for each pixel.
The fourth image shows the light that is incident on the structure including
the texture and reflection. After adding forward scatter and attenuating on
the way to the camera, the signal (fifth image) results. The first backscatter
plane is not yet occluded by the structure and clearly shows the falloff
of the backscatter with growing distance from the light source. The final
result is then the sum of the signal and the backscatter components.

The physical model for light propagation implemented in the simulator
allows to try out different camera-light configurations, but also to simulate
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Figure 3.16. The lamp was moved from being directly at the camera to 2 m at the
upper right. As Jaffe already concluded in his work, the backscatter portion is
causing the contrast to decrease if the lamp is close to the camera. The top row
shows the backscatter component and the bottom row the resulting images.

different kinds of water, i. e., to simulate poor or good visibility, etc. For
example Figure 3.15 shows the increasingly limited contrast due to strong
backscatter in increasingly turbid water. In Figure 3.16, a lamp was first
incident with the camera and then moved away increasing light-camera
distance to approximately 2 m. This was done in fairly turbid water, hence,
a large amount of backscatter reaches the camera. No structure, only
the backscatter is visible in the first image. With growing camera-light
distance, more of the structure becomes visible. This is in accordance
with one of the major conclusions in [Jaf90] concerning the placement
of camera and light in underwater imaging scenarios: there is always a
compromise between contrast and power reaching the imaging system
due to backscatter and attenuation.

Apart from simulating the color effects, the simulator can also demon-
strate how strongly refraction distorts imaging geometry compared to
using the same camera in air. Formerly straight lines become curves, and
the whole scene is enlarged by a factor of 1.333, the index of refraction
for water. This can be observed in Figure 3.17, where all three images are
partly rendered with and without water.
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Figure 3.17. All three images are partly rendered with and without water sim-
ulation. Note how much geometry differs at the borders between water and
air.

3.4 Summary

This chapter introduced the effects of water on image formation. In
summary, while still traveling through the water, light is attenuated and
scattered, mostly depending on the light’s wavelength and the distance
traveled. Effects on color can be modeled with the Jaffe-McGlamery model
or the proposed extension. It allows to render the effect in synthetic
images. A strong simplification of the model that has been widely used in
the literature in the recent years can be parametrized using checkerboard
images captured in the local water body. This allows to correct image
colors if the camera-object distance is known. Once, the light enters the
underwater housing, it is refracted at the glass port. In the literature, this
effect is often approximated using the perspective camera model. Only
recently, explicitly modeling refraction has gained some interest. However,
until now, no complete system for refractive SfM with general camera
movement exists. Additionally, the chapter introduced the methods for
projection and back-projection using the refractive camera model with thin
glass and a possibly tilted interface. The simulator can render synthetic
ground truth images with refractive and color effects that can be utilized
in experiments.
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Chapter 4

Calibration of Camera and
Underwater Housing

The perspective and refractive camera models described in the previous
chapters are parametrized by a set of parameters that can be grouped into
intrinsic camera parameters, housing parameters, and extrinsic camera
parameters including the rigid transformations between cameras of a rig.
In order to work with the implicitly contained geometry of the images,
all camera parameters need to be calibrated. This chapter will describe
the necessary calibration approaches starting with the calibration of the
camera’s intrinsic parameters. Then, the calibration of the camera housing
parameters will be described for flat port underwater housings. At this
point, the parameters for underwater light propagation can be conve-
niently calibrated in addition to the geometric properties. The last section
evaluates the calibration routines, with special emphasis on a comparison
of accuracy between calibrating on underwater images perspectively and
calibrating the housing parameters. Note that the described housing cali-
bration approach and its results on synthetic images have already been
published in [JSK12]. Results of the calibration of the underwater light
propagation model conclude the chapter.

4.1 Perspective Calibration

As briefly described in Section 2.2.1, the perspective camera model is
parametrized by focal length f , aspect ratio ar, principal point cx and
cy, skew s, and radial r1, r2 and tangential distortion t1, t2. In case of
a rig with several rigidly coupled cameras, one camera is appointed to
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Figure 4.1. Exemplary underwater checkerboard images from different points of
view.

be the master camera, which is defined to be in the origin of the rig’s
coordinate system. Accordingly, all other cameras, called slave cameras,
need to be calibrated with respect to the master camera. For multiple
camera rigs of perspective, rigidly coupled cameras, several calibration
methods exist. Often, they rely on special calibration targets, for example
a planar checkerboard (Figure 4.1). The camera to be calibrated is used
to capture a set of images of the calibration target from different view
points (Figure 4.2), then, the checkerboard corners are detected in all
images and the resulting 2D-3D-correspondences are used for calibration.
In this thesis, [SBK08] is used for perspective calibration, which is based
on the standard single-camera-calibration routine of OpenCV1, and then
proposes to optimize the initial solution using a model-based analysis-by-
synthesis (AbyS) approach [Koc93], where the camera model and a set of
parameters is used to render synthetic checkerboard images, which are
then compared to the real, captured checkerboard images. The pixel-wise
error is minimized during optimization. The AbyS approach makes the
algorithm independent of errors in corner detection. Additionally, Schiller
et al. propose how to calibrate PMD-cameras, i. e., infrared-based, active
cameras, which measure camera-object distance. However, this feature is
not used within the context of this thesis. Considering a set of N different
poses of captured checkerboard images with a rig of M cameras, the
following set of parameters needs to be calibrated:

� N poses of the rig, i. e., master camera poses defined in the world
coordinate system (6N),

1http://opencv.org/
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Figure 4.2. Calibration scenario with different views of the checkerboard.

� M cameras within the rig, i. e., each slave camera has a pose relative to
the master camera (6(M� 1)),

� each camera within the rig has a set of intrinsic parameters containing
focal length, principal point, and lens distortion (8M), and

� 2 parameters for each image for gray-level offset and white balance
(2NM).

Note that the calibration approach uses gray-level images, and hence for
each image one parameter is used for white balancing and one for offset.
OpenCV returns an initial solution with independent poses for each image
and an initial set of intrinsics for each camera in the rig. By definition, the
checkerboard lies in the xy-plane of the global coordinate system with the
upper left corner being in the world coordinate system origin. The camera
poses are determined relative to the checkerboard. After enforcing the
constraints on poses of a rigidly coupled rig, AbyS is used for non-linear
optimization. Note that after corner detection, it is known which set of
pixels xk, k P {1, ..., K} in each image observed the checkerboard. The error
function is derived as follows: for each pixel xijk seeing the checkerboard
in image i P {1, ..., N}, with rig camera j P {1, ..., M}, at pixel position
k P {1, ..., K}, a ray in the local camera coordinate system is determined
using the camera’s intrinsic parameters that is defined by a starting point
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Xcc
sijk

and a direction X̃cc
aijk

:

(Xcc
sijk

, X̃cc
aijk

) = Raypersp(xijk, K, r1, r2, t1, t2, Rj, Cj), (4.1.1)

where the function Raypersp is derived from Equations (2.2.3) and (2.2.4).
In case of the camera not being the master camera, the inverse, relative
rig transformation comprised of Rj and Cj is applied. Then, the ray is
transformed into the world coordinate system by:

(Xwc
sijk

, X̃wc
aijk

) = (RiX
cc
sijk

+ Ci, RiX̃
cc
aijk

). (4.1.2)

Based on the ray in world coordinates, κijk P R can be computed such that:

Xijk = Xwc
sijk

+ κijkX̃wc
aijk

(4.1.3)

intersects the xy-plane and thus the checkerboard in Xijk. Using Xijk and
information about the checkerboard (square sizes and number of squares),
the pixel color based on the parameter set can be synthesized Iren(xijk) =
αij Icheck(xijk) + βij and compared to the measured pixel color I(xijk), with
αij and βij being a white balancing factor and offset respectively. This
leads to the following residual r based on an explicit error function that
can be minimized using the Gauss-Markow model (Section A.4):

r = fAbyS�persp(pAbyS�persp)� l :=



Iren(x111)� I(x111)
...

Iren(xijk)� I(xijk)
...

Iren(xNMK)� I(xNMK)

 . (4.1.4)

In summary, for each image, the proportion showing the checkerboard
is rendered using the current parameter set and then compared to the
captured image. This yields a pixel-wise function fAbyS�persp for which
the Jacobian can be computed numerically and which is then minimized
using the Gauss-Markow method described in Section A.4.
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4.2 Underwater Housing Calibration

Once the intrinsic parameters have been calibrated, the housing param-
eters of all cameras in the rig can be determined in a similar fashion.
The method proposed in [JSK12] uses the refractive method introduced
in [ARTC12] for initialization instead of OpenCV. This gives an initial
estimation of camera poses and housing parameters interface distance d
and the interface normal ñ with respect to the optical axis. Usually, it can
be assumed that the type of glass, and hence the index of refraction ng,
and the thickness dg of the interface are known, consequently, they are not
optimized in this approach. Using the checkerboard corners, this initial
solution is optimized. Then, an AbyS approach similar to the perspec-
tive one above is applied, thereby making the method invariant against
errors in corner detection. In contrast to [SBK08] a different optimization
routine is utilized, for the reason that even in established methods like
[SBK08], it is a well-known problem that correlations between parameters
can cause the algorithm to converge towards a local minimum instead
of the global optimum. Therefore, instead of using the Gauss-Markow
model for housing calibration, CMA-ES (Covariance Matrix Adaptation
- Evolution Strategy) [HO01](Section A.4.2), an evolutionary algorithm,
is used for optimization. It performs well on non-linear, non-convex er-
ror functions with noisy observations and has been successfully used in
computer vision before [SGdA+10, JK11].

Similar to the perspective calibration described above, the following
parameters are optimized:

� N poses of the rig, i. e., master camera poses defined in the world
coordinate system (6N),

� M cameras within the rig, i. e., each slave camera has a pose relative to
the master camera (6(M� 1)),

� each camera within the rig has an interface with tilt and distance (3M),
and

� 2 parameters for each image for grey-level offset and white balance
(2NM).
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Once the geometric calibration is completed, the knowledge about black
and white areas on the checkerboard can be used to calibrate the simple
model for underwater light propagation (Equation (3.1.19)). In contrast
to the first step, where gray level images were used, color images are
required for calibrating underwater light propagation, hence, the following
parameters need to be optimized in this step:

� 2 parameters for water color correction for each color channel (6) and

� 2 parameters for each color channel and image parametrizing offset
and white balance (6NM).

As in the perspective case described above, for each pixel xijk that saw the
checkerboard in image i P {1, ..., N}, with rig camera j P {1, ..., M}, at pixel
position k P {1, ..., K}, a ray in the local camera coordinate system needs to
be computed. However, in contrast to the perspective case, this time, the
starting point Xcc

sijk
lies on the outer glass interface plane and the direction

is the ray in water X̃cc
wijk

. The function Rayrefr computes the ray in water
based on Equations (3.2.8) to (3.2.14), which is then transformed into the
global coordinate system and intersected with the xy-plane determining
the scalar κijk P R:

(Xcc
sijk

, X̃cc
wijk

) =Rayrefr(xijk, d, ñ, Rj, Cj) (4.2.1)

(Xwc
sijk

, X̃wc
wijk

) =(RiX
cc
sijk

+ Ci, RiX̃
cc
wijk

) (4.2.2)

Xijk =Xwc
sijk

+ κijkX̃wc
wijk

. (4.2.3)

After initialization, the known 2D corners of the checkerboard that were
detected in each image are used in a non-linear optimization, i. e., for each
2D corner, the corresponding point on the 3D checkerboard plane Xijk is
computed and compared to the real 3D checkerboard point X̌k. Since in
contrast to the perspective method described above, CMA-ES is to be used
for optimization, the fitness function is the sum of squared distances for
all checkerboard corners:

Ecorner�refr = ∑
i N

∑
j M

∑
k K

||Xijk � X̌k||
2
2. (4.2.4)
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After that, the AbyS method is applied, where Xijk is used to determine
the checkerboard color and the corresponding rendered color Iren(xijk) =
αij Icheck(xijk) + βij and then compared to the measured image color I(xijk)
for each pixel. The fitness function to be optimized using CMA-ES is the
sum of squared errors for all observations:

EAbyS�refr = ∑
i N

∑
j M

∑
k K

(Iren(xijk)� I(xijk))
2. (4.2.5)

Once, geometric calibration is completed, a set of images with known
camera poses and known black and white areas exists. That is a unique
situation, which can be utilized to calibrate the underwater light propa-
gation model described in Equation (3.1.19). In contrast to the geometric
calibration, this time, color images need to be used. For each color channel
λ P {R, G, B}, initially αλ = 1 and βλ = 0. Then,

Ecamλ
= αλij(Eobjλ + e�ηλz + B8λ

(1� e�ηλz)) + βλij , λ P {R, G, B}
(4.2.6)

can be used to determine initial values for ηλ and B8λ
by setting Eobjλ

to one or zero depending on the checkerboard color. Afterwards, Equa-
tion (4.2.6) is used in a non-linear Levenberg-Marquardt routine to op-
timize ηλ and B8λ for the whole scene and αijλ and βijλ as additional
parameters for white balance and offset for each image and color channel.

4.3 Experiments

The preceding sections introduced methods for perspective and refractive
calibration of cameras. The method for perspective calibration allows to
calibrate a perspective camera in air in order to determine its intrinsic
parameters, possibly in addition to the relative transformations between
rig cameras. The results can then be used to calibrate the underwater
housing configuration using checkerboard images captured below water.
However, as described in Section 3.2.2, a lot of methods in the literature use
the perspective model for underwater images, even though a systematic
model error occurs. In order to do that, checkerboard images captured
below water are used to calibrate the perspective camera model, which
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causes the parameters to absorb the model error to some extent. The
next section will extend the analysis shown in [SK12] and provides some
new insights on how interface distance or tilt changes affect the calibrated
intrinsic parameters.

4.3.1 Perspective Calibration on Underwater Images

For this experiment, a set of 68 different housing configurations was
created with d P {�10 mm, 0 mm, 10 mm, 20 mm, ..., 150 mm}, θ1 = 30�,
and θ2 P {0�, 1�, 2�, 3�}. The interface thickness was always dg = 30 mm.
For all sets, a stereo camera rig was used with no rotation between the
cameras and a translation of 200 mm along the x-axis. The image size of
both images was 800� 600 px with a focal length of 800 px. The principal
point was in the middle of the image and lens distortion was set to zero.
For each housing configuration, a set of 30 stereo underwater checkerboard
images was rendered from different points of view at a camera-object
distance between 1000 mm and 4000 mm. Then, each configuration was
calibrated perspectively using [SBK08] (described in Section 4.1). [FF86]
and [LRL00] noted that the focal length in water is fw = 1.333 fa, however,
Figure 4.3 on the top left shows an additional dependence on interface
distance and tilt. An additional discrepancy to the results in [FF86] and
[LRL00] is the direct influence of the interface tilt on the principal point
(Figure 4.3 second and third plot). Clearly, the error introduced by tilting
the interface is systematically absorbed by the principal point. The fourth
and fifth plots show the resulting coefficients for radial distortion r1 and
r2. Note that the actual perspective camera within the housing had zero
distortion, hence, all of the measured distortion is absorbing the refractive
effect and depends strongly on interface distance and tilt. The final plot in
the bottom row on the right shows the average error distance that arises
when a set of 3D points with different distances to the camera is projected
with the ground truth refractive projection and the calibrated perspective
projection. Note that with growing interface distance, but especially with
increasing interface tilt, the error increases. During the calibration process,
the average reprojection error was ∅ � 0.05 px, on exact corners, i. e.,
without any corner detection errors. The large discrepancy to Figure 4.3
(bottom, right) indicates that not only the intrinsics absorb the systematic
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model error, but also the extrinsics parameters, which are adapted for each
checkerboard view independently during calibration, but not in Figure 4.3
(bottom, right).

In Section 3.2.2, it was shown that the approximation of refraction using
the perspective camera model is only correct for a certain distance from
the camera (Figure 3.11). This distance is determined by the calibration
algorithm and the set of underwater checkerboard images captured. An
interesting question in this context is where this best fit occurs for the dif-
ferent housing configurations. Figure 4.4 examines the reprojection errors
depending on the camera-3D point distance for five exemplary housing
configurations of the above described image set. For each distance, the
principal point, the four corner points, and an additional four points be-
tween the principal point and the corner points were projected. Figure 4.4
shows the resulting mean reprojection errors and standard deviations for
both rig cameras compared to the true refractive projection. The most
interesting case is the first one, where the error is almost zero. Treibitz
et al. [TSS08] noted that in case of very thin glass, zero interface distance,
and zero interface tilt, the refractive effect can be absorbed completely by
the perspective camera model. In this experiment, the interface thickness
was dg = 30 mm. The ground truth underwater housing configuration
for the upper right result in Figure 4.4 has d = 10 mm and zero interface
tilt. It has the lowest average reprojection error of all cases, thus is the
configuration with the most accurate perspective approximation of the
refractive camera model. A comparison of all five test cases reveals that the
best fit of the perspective projection can be at different distances from the
camera. This indicates that it is not possible to predict where the closest
fit will be because it is determined by the captured checkerboard images.
In the next section, the caustic sizes depending on interface distance and
tilt for the 68 different housing configurations will be presented.
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Figure 4.3. Calibration results of calibrating the perspective camera model on
underwater images. The interface distance varied from -10 mm to 150 mm and the
interface tilt between 0� and 3�. Left column, from top to bottom: focal length
f /1.333 (true f = 800 px), principal point errors for cx and cy (true principal point
was in the middle). Right column, from top to bottom: resulting radial distortion
coefficients r1 and r2 (true r1 = 0, r2 = 0, and reprojection error of resulting
calibration on a random set of 3D points.
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Figure 4.4. Exemplary, distinct error curves for perspective calibration of the
described synthetic data set depending on the distance between 3D point and
camera. The table on the upper left shows the housing configuration for the five
following perspective error plots for both cameras of the stereo rig.
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Figure 4.5. Caustic sizes in x- and z-directions, depending on interface distance d
and interface tilt θ.

4.3.2 Caustics

In Section 2.2.3 caustics were introduced as the singularity of the bundle
of rays. In case of the camera being perspective, i. e., having a single
view point, the caustic size is zero because all rays intersect the center
of projection. Hence, for nSVP cameras, the caustic size serves not only
as a characterization of the camera, but also a as a measure of deviation
from the single-view-point camera model. Figure 4.5 depicts the caustic
sizes in x- and z-direction for all housing configurations in the synthetic
data set described above. Clearly, the caustic is smallest in case of zero
interface distance and tilt, where according to [TSS08], the perspective
camera model is valid, at least in case of very thin glass. With growing
interface distance, the caustic size increases, while a stronger interface tilt
mainly causes the caustic to become asymmetrical and to only slightly
increase in size.

4.3.3 Stereo Measurement Errors

A calibrated stereo rig can be used in case the scene or object of interest is
not rigid, e. g., moving gas bubbles or fauna. In these cases, the classic 3D
reconstruction approach cannot easily be applied. It is however possible
to capture images with a synchronized stereo camera rig. Especially, when
using only two images, the measurement error due to refraction can be
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Figure 4.6. Stereo triangulation with different camera configurations. A stereo
camera rig is depicted with interface distance d = 70 mm, interface thickness dg =
30 mm, and interface tilt θ = 2�. The baseline between the cameras is 200 mm long.
Three different points have been triangulated. Blue: refractive triangulation. Green:
perspective triangulation without approximation. Red: perspective triangulation
with approximation, i. e., underwater checkerboard images were rendered, then
used for perspective calibration, allowing focal length, principal point, and radial
distortion to absorb the bulk of the refractive effect.

very large, sometimes larger than the objects to be measured. Figure 4.6
visualizes the effect. A stereo camera rig is used to triangulate 3D points,
showing a comparison of different camera models for triangulation. In
blue, the refractively triangulated point, which is the correct point is given.
Shown in red is the point triangulated using the perspective camera model
with a calibration based on underwater images. As described and an-
alyzed above, most of the refractive effect has been absorbed by focal
length, principal point, and radial distortion. However, the red point is
still not correct. The green point has been triangulated by ignoring refrac-
tion completely, i. e., triangulated perspectively with the calibration of the
cameras based on checkerboard images captured in air and demonstrates
why objects imaged underwater appear enlarged. Since the error of the
green point is very large, it will not be considered any further. More
interesting is the error of the perspective triangulation with approximation
of refraction. Figure 4.7 shows 3D triangulation errors and the resulting
distance measurement errors between two points. The distance between
camera and 3D points was between 1000 mm and 1500 mm and for each
interface distance and tilt combination 1000 pairs of 3D points were ran-
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Figure 4.7. Errors in triangulation and stereo distance measurement depending
on interface distance and interface tilt. Top: average 3D triangulation errors and
standard deviation (sd) for 3D points being between 1000 mm and 1500 mm away
from the camera. Bottom: distance measurement errors resulting from the 3D
triangulation errors and the standard deviation for the distance errors.

domly generated sampling the whole overlap between the two views,
because the error depends on the incidence angle of the rays in air on the
interface. Figure 4.7 shows a strong dependence of the error depending
on the interface distance and angle.

The dependence on the pixel position in the image, and consequently
on the incidence angle between the ray in air and the interface can be
observed in Figure 4.8, where the blue planes are triangulated using the
underwater model (interface distance 120 mm, glass thickness 30 mm),
while the blue surfaces result from triangulation using perspective cali-
brations. The left image shows results for a refractive camera with zero
interface tilt, while in the right image, a slight rotation of the interface
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Figure 4.8. Two of the perspective calibration scenarios, both with interface
distance 120 mm were used to triangulate points on the xy-plane, with the camera
being approximately 2 m away, viewing the xy-plane at a 45� angle. The left
scenario has a parallel interface with respect to the imaging sensor, while in the
right scenario the interface was tilted by (30�, 2�) with the resulting errors in the
perspective calibration.

plane causes far larger errors.
Note that the actual error depends on variables such as the camera’s

focal length and image resolution, interface distance and tilt, camera-object
distance, and stereo baseline, but also on the accuracy of the calibration
of intrinsics, housing parameters, and extrinsics. The errors introduced
by using the perspective approximation can be eliminated by calibrating
refractively, for which the next section will show results.

4.3.4 Refractive Housing Calibration

In this section, it is assumed that the intrinsic camera parameters are
known, i. e., have been calibrated using the perspective method on images
captured in air. With known indices of refraction and glass thickness, this
allows to calibrate flat port underwater housings.

Synthetic Data

Note that the results presented here have already been published in
[JSK12]. In order to evaluate the accuracy of the proposed method, syn-
thetic checkerboard images were rendered. In contrast to the calibration
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experiments using the perspective camera model, the robustness against
noise in the images is more interesting in this case, because of the AbyS
approach. Therefore, a different set of rendered checkerboard images
is used, where several configurations with increasing image noise were
rendered. The intrinsic camera parameters, extrinsic stereo rig trans-
form, and checkerboard where chosen as above. For five noise levels
σ P {0, 6.4, 12.8, 19.1, 25.5}, eight sets of images were rendered, i. e., normal
distributed noise was added to the image color values which are in the
interval [0, 255]. The housing configuration was the same for all trials, in
order to measure robustness: the interface distance was d = 10 mm, the in-
terface thickness dg = 50 mm, and the interface tilt was set to θ1 = 30� and
θ2 = 0.5�. The main advantage of the AbyS-approach is its independence
of errors in corner detection. Therefore, this time, automatically detected
checkerboard corners were used, which are always slightly erroneous. The
results are plotted in Figure 4.9. Note that the normal error depicted is the
angle between the true normal and the computed normal.

In this refractive calibration approach, CMA-ES was used for non-linear
optimization (Section A.4.2). Over time, hundreds of different generations
of individuals are tested and allow learning the covariance matrix for
all parameters, hence, over time, not only the parameters improve, but
the algorithm also learns pair-wise correlations between parameters. In
Figure 4.10, this adaptation process can be observed on the example of
interface distance and camera translation in z-direction. Shortly after
generation 1000, the uncertainty of parameters within the generation
increases suddenly, i. e., CMA-ES suddenly tried a greater variety of values
for both parameters, which then leads to a quick drop in the absolute
errors, and hence a correlation was recognized and successfully dealt with.
Other possible parameter correlations detected in the proposed method
for housing calibration were between camera rotation around the x-axis
and the interface normal in y-direction and the camera rotation around
the y-axis and the interface normal in x-direction.

Real Data

The method was tested on images of a camera in a controlled lab scenario
and on images captured with a camera used on the ROV Kiel 6000. In
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Figure 4.9. Synthetic images, accuracy of the different parameters in presence
of growing noise in images. For rendered image intensity values I P [0, 255],
normal distributed noise was added: IN = I + N(0, σ), with a cut-off for IN   0
or IN ¡ 255. B8 (Binf) is the veiling light color. At the bottom: exemplary image
cut-outs with zero noise (left) and highest noise level (right). The checkerboards
were between 1000 mm and 4000 mm away from the camera. Data previously
published in [JSK12].

the first scenario, a tank (500 mm� 1000 mm� 500 mm) was filled with
water. A stereo camera rig was placed in front of the tank, allowing to
simulate different camera housing interface configurations by moving
the camera rig backwards or tilting the rig with respect to the interface.
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Figure 4.10. Estimation path for an exemplary camera. Left: interface distance
error (solid line) and standard deviation (sd) from CMA-ES adaptation (dashed
line). Right: camera translation error in z-direction (solid line) and standard
deviation from CMA-ES adaptation (dashed line). Data previously published in
[JSK12].

Note that seven different configurations were tested. Six of these settings
were captured using the stereo rig, one only using a monocular camera
(Figure 4.11).

The complete results of calibrating the intrinsics in air and of calibrat-
ing perspectively on underwater images are found in Tables A.3 and A.4.
Table 4.1 shows the results of calibrating refractively, i. e., calibrating the
interface distance d and the interface tilt ñ. a) to g) denote the seven dif-
ferent camera-interface settings. In case b) only one camera was used for
capturing images, in all other cases both cameras were used for calibration
alone, then the rig was calibrated. The true baselines between the two
rig cameras were about (�60 mm, 0 mm, 0 mm)T in cases c), e), f), and g)
and about (�50 mm, 0 mm, 0 mm)T in cases a) and d). Since the settings
are real-data settings, no ground truth is known. However, the results
of calibrating interface distance and tilt of both cameras alone and in the
stereo rig should be similar, thus comparing the results allows to examine
calibration stability. In Table 4.1, it can be seen that the differences be-
tween monocular and stereo calibrations indicate that correlations between
interface distance and camera translation in z-direction sometimes cause
challenges, however, the overall accuracy is good. The angle θ2 (compare
to Figure 3.12) can be estimated with high accuracy. Note that the angle θ1
cannot be estimated in case of the angle θ2 being close to zero. This can
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150 mm 100 mm 50 mm 0 mm

g) f)
e)

d)

c)

b)

a)

Figure 4.11. Calibration setting. On the right is a water-filled tank in which the
checkerboard is moved. The cameras were always placed at the short side of the
tank in order to allow maximum depth deviation. The different camera-interface
settings are denoted with a) to g). Note that only interface distance and tilt are
depicted correctly.

be seen in the results. However, in case of stronger interface tilts (cases d
and e), θ1 can be estimated accurately. A new conclusion from examining
the results of perspective calibration on underwater data on the synthetic
data in Section 4.3.1 was that the principal point absorbs interface tilts.
Table 4.1 shows that in cases d) and e) the interface was tilted strongly. The
perspective calibration results show an equally strong shift of the principal
point. In case d) the principal point moved about 90 px in x-direction,
while in case e) it moved about -201 px in x-direction. This is in direct
accordance to the calibrated interface tilts.

In the second scenario, a camera was calibrated based on images
captured in a pool with a strong blue hue (Figure 4.14, left). The estimated
interface distance in this case was 74 mm, the angle θ between optical axis
and interface normal was estimated to be 1.39�.

4.3.5 Calibrating Underwater Light Propagation

As seen in Section 4.2, the model for underwater light propagation can be
calibrated after the geometric calibration. This is due to known black and
white parts on the checkerboard images and the known camera poses from
calibration. The calibration routine is tested on synthetic data by creating
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4. Calibration of Camera and Underwater Housing

Table 4.1. Calibration results for refractive calibration. Shown are results for
seven different camera-interface configurations as depicted in Figure 4.11. With
exception of b), in all scenarios checkerboard images were captured using a stereo
rig, and calibration was run on both cameras alone and on the rigidly coupled rig.
Therefore, results are shown for camera 1 and camera 2, but also for both cameras
in the rig.

scenario d in mm θ2 in � θ1 in � Crig in mm

a) camera 1 7.88 0.34 -23.41
a) camera 2 8.07 0.29 25.06
a) rig 19.38 0.27 81.39

0.72 0.28 75.22 (�49.40, 0.39, 0.00)T

b) camera 1 10.60 0.25 -30.64

c) camera 1 51.95 0.29 -16.77
c) camera 2 44.47 0.23 20.35
c) rig 48.07 0.11 -43.71

58.82 0.42 -73.31 (�60.02, 0.24, 0.00)T

d) camera 1 50.53 8.06 178.77
d) camera 2 47.30 7.97 178.45
d) rig 45.30 7.99 178.32

28.34 7.79 180.33 (�48.89,�0.76,�0.00)T

e) camera 1 86.25 29.29 -0.74
e) camera 2 89.67 29.16 0.01
e) rig 79.96 28.40 -1.08

102.81 27.79 -0.26 (�59.92, 0.02, 0.00)T

f) camera 1 95.54 0.12 -82.37
f) camera 2 99.60 0.29 77.77
f) rig 100.39 0.22 -37.90

113.16 0.89 -44.37 (�60.92, 0.30,�0.02)T

g) camera 1 149.97 0.12 -46.54
g) camera 2 150.0 0.39 -33.99
g) rig 147.13 0.05 70.38

160.47 0.09 -6.06 (�59.85, 0.60,�0.00)T

a set of random distances for which black and white underwater colors are
determined. Normal distributed noise with σ = 5 is added to the eight-bit
image colors corresponding to 2 % noise. Then, the linear initialization
and the non-linear optimization routine are applied to the underwater
colors utilizing the known camera-object distances to determine η, B8, α,
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Figure 4.12. Estimation of parameters depending on the number of points. Left:
error when estimating η, right: error when estimating the veiling light color B8
(Binf).
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Figure 4.13. Estimation of parameters depending on distance between closest and
farthest point. Left: error when estimating η, right: error when estimating the
veiling light color B8 (Binf).

and β for all three color channels. Figures 4.12 and 4.13 show the results.
Two test scenarios are depicted. In Figure 4.12 the number of points has
been changed, testing the robustness, when only very few points have
been used. The left image shows the results of estimating η, the right
image the results of estimating the veiling light color. As can be seen, the
estimation has been fairly stable, even for 20 points.

In the second test case (Figure 4.13), the distance deviation between the
closest and farthest point has been varied. In general, the closest point has
always been 1 m away from the camera centers. The maximum distance
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4. Calibration of Camera and Underwater Housing

Figure 4.14. Left: original color image of checkerboard with strong green hue.
Right: corrected colors of the same image. Note that only the colors on the
checkerboard are corrected because they lie on the xy-plane of the world coordinate
system for which the camera-object distance is known after calibration.

has been varied between 1.5 m and 5 m causing a difference between 0.5 m
and 4 m as depicted in the figures. Figure 4.13 shows that the estimation
of η (left image) and the estimation of the veiling light color (right image)
generally become more stable with growing distance between the points
considered. This is not surprising, since increasing distance differences
lead to increasing differences in color, therefore resulting in a more stable
estimation of the physical parameters involved.

Figure 4.14 shows an exemplary input image on the left and the result-
ing color corrected image on the right for the camera calibrated in the pool
mentioned above. The colors on the checkerboard are corrected with the
estimated distance between checkerboard and camera. Near the bottom
of the checkerboard, the red channel cannot be corrected due to the red
light being almost completely absorbed by the water. Figure 4.15 shows
that the color restoration also works in a water body with strong green
hue, like the Baltic sea. In this case, the method was also used to correct
texture colors, as can be seen in Figure 6.5.

4.4 Summary

In this chapter, methods for calibrating the intrinsics of a perspective
camera and for calibrating a flat port underwater housing were presented.
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Figure 4.15. Left: checkerboard with with strong green hue captured in the Baltic
Sea. Right: checkerboard and seafloor with corrected colors. Input image by
Florian Huber.

Additionally, both methods can calibrate relative rig extrinsics in case more
than one camera is used in a rigidly coupled camera rig. Experiments
were conducted for two scenarios. First, a set of underwater images was
rendered in order to investigate the systematic model error introduced
when calibrating the perspective model on underwater images. This
yielded the conclusion that all intrinsic parameters absorb part of the
model error depending on interface distance and tilt. Additionally, a part
of the error is compensated by the camera pose. Secondly, the proposed
refractive approach was tested on synthetic and real images. Here, it was
important to show the approach’s invariance against image noise and
errors in corner detection. The proposed method was shown to work
accurately. Finally, results for calibrating the model for underwater light
propagation were shown.

Utilizing the gained calibrations of intrinsics and housing parameters,
the next chapter will propose all necessary components for refractive SfM
and a refractive Plane Sweep algorithm.
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Chapter 5

Structure-from-Motion and
Multi-View-Stereo

When using camera models like the perspective model with lens distortion,
it is possible to extract the implicitly contained geometric information from
a set of 2D images of a scene. This can either mean the computation of a
panorama, where the camera is only allowed to rotate around its center
of projection, or the complete 3D reconstruction of a rigid object or scene
[Sze11, HZ04]. In the latter case, the camera is required to move, i. e.,
translate as well as rotate. Algorithms for reconstruction are usually
classified as Structure-from-Motion algorithms (SfM), where not only the
camera path, but also a sparse 3D point cloud is recovered. The first section
of the chapter will introduce the geometric concepts and algorithms used
in SfM methods. In order to retrieve a dense model instead of a sparse 3D
point cloud, multi-view stereo (MVS) is applied to the images once the
camera poses are known. The second section of the chapter will therefore
cover multi-view stereo and 3D model computation. Refer to Figure 5.1
for an overview of this chapter’s structure.

5.1 Structure-from-Motion

SfM algorithms for use on images captured in air are well researched
(for overviews refer to [Sze11, HZ04]). However, as seen in Section 3.2.1,
the perspective camera model is invalid in underwater scenarios due to
refraction and causes a systematic model error, especially in sequential ap-
proaches, where an error made at the beginning of the sequence can easily
accumulate to a considerable measuring error. In the previous chapter, it
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Figure 5.1. Overview Chapter 5.

was demonstrated how the underwater housing of a camera can be cali-
brated. The resulting information is now going to be utilized to develop
a Structure-from-Motion approach, which explicitly models refraction,
hence eliminating the systematic model error that can be observed when
reconstructing underwater scenes with a perspective approach (parts on
the method have been previously published in [JSK13]). Figure 5.2 shows
some exemplary input images on the left and the SfM result, the retrieved
camera path and sparse 3D point cloud on the right. The ultimate goal
is a refractive SfM approach that self-calibrates the underwater housing
assuming the camera’s intrinsics to be calibrated beforehand, thus elim-
inating the need of using a checkerboard below water, which is at best
impractical and often infeasible. In order to model refraction explicitly,
the nSVP nature of the refractive camera requires the use of more general
methods of geometry estimation compared to established methods using
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Figure 5.2. Left: exemplary input images of input sequence. Right: camera path
and sparse 3D point cloud of object resulting from SfM algorithm. Input images
by Christian Howe.

the perspective camera model. Some approaches for other camera models,
e. g., multi-view camera rigs or catadioptic cameras have already been
introduced in [Ple03, LHK08, SRL06], where usually a ray is computed for
each pixel and then used for geometry estimation, However, as can be seen
in Table 3.10, no complete system for refractive SfM has been introduced
and tested on real data and compared to perspective SfM. Therefore, this
section will introduce geometry estimation for refractive and perspective
cameras and will compare the performance of different methods.

5.1.1 Relative Pose

Perspective Relative Pose

A scene imaged twice by the same camera from different poses contains
implicit geometric information in the images. This geometric information
can be exploited by determining 2D-2D point correspondences between
the images. A multitude of methods exists for the detection and matching
of features [TM08]. In this thesis, SIFT features, introduced by Lowe
[Low04] are utilized, or more concretely [Wu07], a fast implementation
with great matching accuracy delivers key point matches, which are used
in the following algorithms for geometry estimation. Figure 5.3 depicts
such a situation. The first image on the left has a point x in the image
and the camera center C. It is clear, that the ray from the camera center
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epipolar line l
epipolar line l1

C C1
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X?

X?

epipolar plane

epipole e epipole e1

x
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Figure 5.3. Epipolar geometry. The epipoles e and e1 are computed by projecting
the camera centers C1 and C respectively and the ray through x and the baseline
connecting the camera centers forms the epipolar plane. The projections of all
possible points X form the epipolar line in the second image.

through x must contain the corresponding 3D point X that was imaged
onto x. Unfortunately, prior to determining any 3D structure, it is unclear
where on the ray the exact 3D point lies. It is possible, however, to image
the whole ray in the second image, which corresponds to the line, l1 in
Figure 5.3. Somewhere on this epipolar line, the corresponding point x1

must lie in the second image. The plane spanned by both camera centers
and the 3D point is called epipolar plane. The projections of the other
respective camera center into the images are called epipoles. Since all
rays intersect the camera center of one camera, all epipolar lines intersect
in the epipole of the other image. Without loss of generality, the first
camera is set into the coordinate system origin, thus the second camera’s
pose [RT| � RTC] is determined relative to the first camera’s pose. In
order to compute the epipolar line l1 in the second image, the epipole e1

is constructed by projecting the first camera center (0, 0, 0, 1)T into the
second camera such that e1 = K1[RT �RTC](0, 0, 0, 1)T. A second point on
l1 is determined by the infinite homography that maps the point via the
plane at infinity [HZ04] into the second image. l1 is then determined by
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the cross product:

l1 =
[
e1
]
� x18 =

[
e1
]
� K1RTK�1︸ ︷︷ ︸

H8

x, (5.1.1)

which defines the Fundamental matrix FT = [e1]� K1RTK�1. F describes
the mapping in Figure 5.3. In general, F is a 3� 3 up-to-scale matrix with
rank two ([e1]� has rank two), which has seven degrees of freedom (eight
ratios, and det(F) = 0).

In this thesis, however, it will in general be assumed, that the intrinsic
parameters of the cameras are known. The result is that all 2D-2D point
correspondences can be normalized using the camera matrices: xn = K�1x
and x1n = K1�1x1. Using these correspondences in epipolar geometry
and assuming the first camera to be located at the origin, this yields the
Essential matrix E instead of the fundamental matrix. The relation between
the two is:

E = KTFK1 = [C]� R (5.1.2)

assuming that K is the camera matrix of the first image, and K1 is the
camera matrix of the second image. Note that the essential matrix has only
five degrees of freedom, three for the rotation between the two cameras
and two for the baseline, which has no determined scale. This causes
constraints on the singular values of the Essential matrix: one singular
value is zero, while the other two are equal. Using E, this yields the
following relations between correspondences:

xT
nEx1n = 0 (epipolar constraint) (5.1.3)

Ex1n = l (epipolar line first image) (5.1.4)

ETxn = l1 (epipolar line second image). (5.1.5)

In case of computing reconstructions, one usually has a set of images
captured from different points of view. A pair of two such pictures can
now be brought into relation using the epipolar geometry in order to
determine the camera poses of the images. Assuming calibrated cameras,
a normalized set of K 2D-2D correspondences is matched between the two
images and each correspondence k P {1, ..., K} yields one constraint for
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estimating the Essential matrix:

xT
nk

Ex1nk = 0 k P {1, ..., K}. (5.1.6)

There are several algorithms for computing the essential matrix. The linear
Eight-Point algorithm uses a set of at least eight correspondences [HZ04].
In order to achieve that, Equation 5.1.6 is expanded and a set of eight
equations, i. e., one for each correspondence, is used to stack a linear
system of equations Ax = 0, with x being the vector with the unknown
elements of E, which is solved using the SVD (Section A.3) . Note that one
correspondence is required for each of the eight up-to-scale entries, but
the essential matrix does not have full rank. Therefore, the constraints on
the singular values need to be enforced after solving for the entries of E
using the SVD. In order to do that, the SVD is applied to E = Udiag(S)VT

and S = (a, b, c)T is changed as follows [HZ04]:

S1 =

(
a + b

2
,

a + b
2

, 0
)T

. (5.1.7)

The least squares approximation Ê is computed by:

Ê = Udiag(S1)VT. (5.1.8)

The described approach is simple to implement and easy to understand,
however, eight correspondences are required. There are other ways of esti-
mating the Essential matrix, which allow to use the theoretical minimum
of five correspondences for computing E [Nis04, BBD08]. Consequently,
the null space of matrix A used for solving the equation system has more
than one dimension. Constraints on the rotation R are used to find a set of
several possible solutions, from which the correct one needs to be chosen.

Refractive Relative Pose using Linear Estimation

When considering the relation between two views distorted by refraction,
the classic epipolar geometry needs to be generalized. In case of a set
of underwater cameras, the epipolar lines turn into curves [Maa92, CS09,
GGY11] (Figure 5.4). Instead of relating points in the first image to epipolar
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glass interface

image plane

C C1

ray in water

rays in air

Figure 5.4. Generalized epipolar geometry with (quartic) epipolar curve in under-
water case (after [Maa92]).

lines in the second image, an approach described by Pless [Ple03] utilizes
the intersection between Plücker lines corresponding to the rays in water
computed for both corresponding image points. The preceding chapters
already showed, that for a given point x = (x, y) P R2 in one image, the
Plücker line can be determined if the intrinsic parameters and the housing
parameters are known. Let Lk = (X̃wk , Mk) and L1k = (X̃1wk , M1

k) be the
Plücker lines for two image points of the kth correspondence, with X̃wk

denoting the line’s direction in water and Mk = X̃wk � Xsk denoting the
line’s moment. Note that both lines are still in the local camera coordinate
system. As in case of perspective epipolar geometry, the first camera is
assumed to be in the world coordinate system origin.

In order to determine the relative camera pose of the second camera,
R and C need to be determined, such that the line in the second local
camera coordinate system is transformed into the world coordinate system
[Ple03]:

L1
wc
k = (RX̃1wk , RM1

k � [C]� RX̃1wk ) (5.1.9)
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The intersection between both lines is determined by:

X̃T
wk

M1wc
k + MT

k X̃1
wc
wk

= 0 (5.1.10)

Equations 5.1.9 and 5.1.10 combined yield:

0 =X̃T
wk
(RM1

k � [C]� RX̃1wk ) + MT
k (RX̃1wk ) (5.1.11)

=

(
X̃wk

Mk

)T (
� [C]� R R

R 03�3

)
︸ ︷︷ ︸

EGEC

(
X̃1wk

M1
k

)

=LT
k EGECL1k,

where EGEC is the generalized Essential matrix and the equation is called
the Generalized Epipolar constraint (GEC)[Ple03]. Expanding this term
yields an equation with the unknown entries of EGEC for the kth point
correspondence:

LT
k EGECL1k = LT

k



e11 e12 e13 r11 r12 r13
e21 e22 e23 r21 r22 r23
e31 e32 e33 r31 r32 r33
r11 r12 r13 0 0 0
r21 r22 r23 0 0 0
r31 r32 r33 0 0 0

 L1k. (5.1.12)

Table A.5 shows the resulting coefficients for each entry in EGEC. At
this point, at least 17 equations with those coefficients from different
correspondences are used to build a matrix APless such that the equation
system APlessx = 0 can be solved using the SVD in order to determine the
entries of EGEC. x is the vector containing all the variables as in Table A.5.
The SVD solution is determined by finding the closest solution subject to
||x|| = 1, and the method will be called Pless-method in the remainder
of the thesis. In presence of noise in the correspondences, the necessary
constraints will need to be enforced on the resulting rotation matrix, i. e.,
the eigenvalues need to be set to one, as well as the determinant.

However, Li, et al. argue in [LHK08] that mainly due to the missing
constraints of the two rotation matrices involved being identical, this
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method does not work well in practical applications. [LHK08] propose a
more robust method, where instead of determining the solution subject to
||x|| = 1, the solution subject to ||(e11, ..., e33)

T|| = 1 is computed. This is
due to the matrix A often having one or more singular values close to zero
depending on the underlying ray configuration as depicted in Figure 2.6.
As described in the article, two matrices AE and AR need to be determined,
which is matrix A split according to whether the entries are constraints on
the variables e11, ..., e33 or r11, ..., r33. With A+

R denoting the pseudo inverse,
the SVD is used to solve

(ARA+
R � I)AE

 e11
...
e33

 = 0 (5.1.13)

This yields entries similar to the classic essential matrix. However, the
decomposition needs to account for the more general problem: as in case
of the classic essential matrix, two differing rotation matrices R can be
determined. For both of these rotation matrices an equation system is
used to solve for the entries in C using the GEC (5.1.11):

X̃T
wk

[C]� RX̃1wk = X̃T
wk

RM1
k + MT

k RX̃1wk , (5.1.14)

which yields coefficients for the unknowns in C as in Table A.6. The
computation of the linear least squares solution ACC = b for both ma-
trices R yields two solutions for C, the one with the smaller residuum
r = ||ACC� b|| is chosen. This method will be called Li-method in the
following. Note that in theory the overall scene scale is already encoded
in the rays being determined by the camera calibration, so there are six
degrees of freedom. Due to instabilities, the authors of Li et al. [LHK08]
propose to alternately compute the rotation and translation, thus creating
a method that converges quickly.

When applying the above described Pless-method to underwater im-
ages captured through a flat port, i. e., an axial camera, [LHK08] found
the number of non-zero singular values to be 16, and hence applying the
Pless-method yields a two-dimensional solution space spanned by the
vectors x1 and x2 corresponding to the zero-singular values. Consequently,
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all possible solutions can be described by:

x = µx1 + νx2 µ, ν P R, (5.1.15)

where µ can be set to one due to the solution being up to scale. In order
to find the correct solution, i. e., the correct ν, the part of the solution
vectors containing the entries for the Essential matrix EGEC are utilized. It
is known, that the determinant of EGEC is zero. Thus,

det(µxE1 + νxE2) = 0 µ = 1, ν P R, (5.1.16)

where ν can be determined by solving the corresponding 3rd-degree poly-
nomial. This method will be used in the following experiments. Note that
the minimal number of correspondences depends on the actual underlying
ray configuration and is 17 for a general ray configuration and 16 for axial
cameras, and thus the considered flat port underwater camera.

Refractive Iterative Computation

An approach tailored specifically to the underwater camera, can be derived
using the Plane of Refraction equation (POR) and the Flat Refractive
constraint (FRC) that have been proposed by Agrawal et al. in [ARTC12].
Starting from a set of K 2D-2D correspondences between two images, the
first camera is again set into the origin of the world coordinate system.
The rotation R and translation C of the second camera relative to the first
are computed. Two constraints are used for determining R and C for each
correspondence k P {1, ..., K}:

Xsk + κkX̃wk = RX1sk + C + κ1kRX̃1wk κk, κ1k P R (5.1.17)

and (RX1sk + C + κ1kRX̃1wk �Xsk )� X̃wk = 0,

where the first one is the triangulation constraint that describes the trian-
gulation of the unknown 3D point in which both rays intersect. κk and
κ1k are scaling factors for the rays in water such that both rays intersect in
their common 3D point. The second constraint is the FRC (3.2.17), where
the unknown 3D point is parametrized by RX1sk + C + κ1kRX̃1wk . In both
constraints, the unknowns are R, C, and κk and κ1k for all k P {1, ..., K}, thus,

102



5.1. Structure-from-Motion

both Equations (5.1.17) are non-linear in the unknowns. Consequently,
an iterative approach is applied to solve for the unknowns R and C, by
solving the equation system resulting of stacking Equations (5.1.17) for
all correspondences (refer to Table A.7). Note that of the six resulting
equations, three in linearly independent. This determines the minimum
number of required correspondences to be four, however, in order to in-
crease robustness, we use six. Then, using the updated R and C, κk and κ1k
for all k P {1, ..., K} are updated by solving for κk and κ1k in a constraint
based on the POR (3.2.18):

(RX1sk + C + κ1kRX̃1wk )
T(ñ� X̃wk ) = 0 (5.1.18)

(RT(Xsk + κkX̃wk )�RTC)T(n� X̃1wk ) = 0.

Both described linear and iterative approaches allow to determine an
initial estimate of the pose of the second camera. However, neither method
is very good in terms of absolute accuracy in presence of noise on the 2D-
2D-correspondences. Hence, a non-linear optimization step is necessary
to improve the initial estimate.

Scene Scale

Theoretically, the absolute scale of the scene can be estimated by the
relative pose problem for refractive underwater cameras as opposed to
the perspective relative pose problem, where the baseline between the two
views is usually set to one. This is due to the rays starting on the outer
interface being metric. Note that in case of perspective reconstructions, a
scene can be scaled consistently by applying the scaling transform T to
all projections and the inverse T�1 to all 3D points. However, in case of a
refractive reconstruction, interface distance and thickness would need to
be scaled additionally, thereby changing the starting points and direction
of the rays in water. Consequently, the relative pose problem in case of
refractive cameras is not invariant to scale changes of the translation vector.
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Optimization

In addition to noisy 2D-2D correspondences disturbing the initial pose
estimates, the need to enforce constraints on for example the rotation
matrix causes the result not to be the best fit. This can be improved by non-
linear optimization, therefore, different non-linear optimization functions
will be discussed now. The

Reprojection Error is the most commonly used error function in case of
perspective SfM:

rk = fRPk � x̌k (5.1.19)

ERP =
K

∑
k=0

||fRPk � x̌k||
2
2. (5.1.20)

3D points are projected onto 2D points xk by the function fRPk depend-
ing on the current camera parameters and the error is the distance
to the measured 2D points x̌k. fRPk is the function used in optimiza-
tion schemes like bundle adjustment or classic Levenberg-Marquardt
routines, while ERP is the function that can be optimized by CMA-
ES. However, projecting points in the presence of refraction requires
solving a 12th degree polynomial (Section 3.2.5). While, this insight
is a huge improvement compared to using non-linear optimization in
order to determine the projected point, it is still infeasible to use in
applications like bundle adjustment [TMHF00].

Angle Error was introduced by Mouragnon et al. [MLD+07, MLD+09] and
basically computes the angle between the ray in water corresponding
to a 2D image point and the ray corresponding to the 3D point trans-
formed into the camera coordinate system (Figure 5.5). Note that this
is basically the arccos of the the FRC:

gAk = arccos
(

X̃T
wk

Xcc
k �Xsk

||Xcc
k �Xsk ||

)
(5.1.21)

EA =
K

∑
k=0

∣∣gAk

∣∣ . (5.1.22)
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x

y

z

Xsk

X̃wk

Xcc
k �Xsk

θk

Figure 5.5. In order to compute the angular error θk, a 3D point Xk is transformed
into the camera coordinate system. For the corresponding image point the ray
in water is computed represented by starting point Xsk and direction X̃wk . To
compute θk, Xsk is subtracted from Xcc

k .

Note that in [MLD+07, MLD+09] for better convergence, coordinate
system (5.1.21) is rotated such that X̃k = (0, 0, 1)T

GEC Error is the error for all correspondences using Equation (5.1.11):

gGECk = X̃T
wk
(RM1

k � [C]� RX̃1wk ) + MT
k (RX̃1wk ) (5.1.23)

EGEC =
K

∑
k=0

∣∣gGECk

∣∣ (5.1.24)

Note that the GEC error can only be directly applied in two-view sce-
narios, i. e., not in applications like non-linear optimization of absolute
pose estimation or multi-view bundle adjustment. The GEC error is
an algebraic error, where the zero solution is always correct, but also
wrong.

POR/FRC Error uses specific characteristics of the flat port underwater
camera as described by Agrawal et al. in [ARTC12]. Using the Plane of
Refraction constraint to compute κ and κ1 as shown in Equation (3.2.18)
allows to retrieve a 3D point X for the current relative pose. The
Flat Refractive constraint as shown in Equation (3.2.17) then provides
an error measurement. This error function also only works in two-
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view scenarios.

Virtual Camera Error can be determined in case a 3D point is known or in
case a 3D point can be triangulated (refer to Section 5.1.2) in the two
view case. For each point k P {1, ..., K}, a virtual camera (Figure 5.6) is
determined with the camera center Cvk lying on the camera axis, i. e.,
the axis defined by interface normal ñ and center of projection, where
all rays in water X̃wk intersect. Cvk can be determined by solving for
κk in Xsk + κkX̃wk = ñ. The virtual rotation Rvk is defined by a rotation
axis and a rotation angle, which are defined by the cross product of
interface normal and optical axis and scalar product of interface normal
and optical axis respectively. The virtual focal length is set to fvk = d,
thus the image plane is parallel to the outer interface plane. A 3D
point Xk can then be transformed into the local coordinate system of
the virtual camera Xvk by:

Xlk = RTXk �RTC (5.1.25)

Xvk = RT
vk

Xlk �RT
vk

Cvk . (5.1.26)

In order to compute the error, the 2D image point xk is transformed
into its corresponding ray in water (XT

sk
, X̃T

wk
) and then transformed

into the virtual camera coordinate system as well:

Xvxk = RT
vk

Xsk �RT
vk

Cvk . (5.1.27)

Both points Xvk and Xvxk are then projected into the virtual camera
and used to compute the virtual camera error:

gvk
=

 fvk
Xvkz

Xvkx �
fvk

Xvxkz
Xvxkx

fvk
Xvkz

Xvky �
fvk

Xvxkz
Xvxky

 (5.1.28)

Ev =
K

∑
k=0

||gvk
||2. (5.1.29)

A similar, but far more time-consuming interface error was introduced
in [SK11a], where the virtual camera center Cv was the caustic point
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. 

waterglassair

virtual camera

axis

camera

Cv

Xv

X

Xs

ñ

Figure 5.6. Virtual camera definition. The virtual camera center Cv can be found
by intersecting the ray in water with the line defined by the camera’s center of
projection and the interface normal. The rotation Rv is defined by the interface
normal. Note that a 3D point X can be projected in the resulting virtual camera
perspectively.

corresponding to the 2D image point, the computation of which was
expensive. The insight of the flat port camera being an axial camera
eliminates the need to compute the caustic point. The intersection
with the axis defined by the camera’s center of projection and interface
normal can be computed much more efficiently. In addition, a fixed
virtual focal length is used, eliminating the strong correlation between
interface distance and error that was a problem in [SK11a]. Note that
the use of the virtual camera error function allows to compute analytic
derivatives of the error function in the direction of the parameters, an
advantage compared to the reprojection error and the former version
based on caustic points as virtual camera centers.
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All of the above described error functions can be used in different
configurations, i. e., different optimization frameworks like bundle ad-
justment, classic Levenberg-Marquardt, CMA-ES, or as outlier detectors
within RANSAC (Random Sampling Consensus) frameworks [FB81]. Ad-
ditionally, different configurations of parameters can be optimized, e. g.,
housing parameters and extrinsics or extrinsics only. For example in case
of using CMA-ES to optimize a relative pose estimate, the function

Ev =
K

∑
k=0

||gvk
(C, R, Xsk , X̃wk , Cvk , X1sk , X̃1wk , C1vk )||2 (5.1.30)

is optimized, where Xsk , X̃wk , Cvk , X1sk , X̃1wk , and C1vk are observations
describing the ray correspondence. By considering the additional rigid
rig transform, the reprojection error, angular error, and virtual camera
error can easily be extended to incorporate the optimization of rigid multi-
camera rigs. Note that computing the reprojection error is infeasible for
use in large applications due to its high computational cost. The GEC and
the POR/FRC errors are only defined for two-frame scenarios, thus will
not be considered for geometry estimation. That leaves the angular error
and the virtual camera error as the two most practical error functions to
be considered for optimization in refractive scenarios.

Experiments

A theoretic result of refractive relative pose computation is scene scale can
be determined as opposed to the perspective relative pose computation.
In case of synthetic data and zero noise, this was found to be true as can
be seen in Figure 5.7. A set of correspondences between two views was
used to compute all five of the above described error functions for an
exemplary translation and rotation of the second view. The first camera
was set into the world coordinate system origin. Then, while maintaining
everything else, the scale of the translation was changed. This was done
for zero noise, then, increasing amounts of noise were added to the 2D-2D
correspondences. The image size was 800 px� 600 px, and the noise was
normal distributed with σ in px. Obviously, even a small amount of noise
added to the correspondences causes the error functions to not be able
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Figure 5.7. Invariance of error function against scaling of scene/translation in case
of relative pose problem. Depicted are the results for the reprojection error, the
angular error, the GEC error, the POR/FRC error, and the newly proposed virtual
camera error.
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to determine scene scale correctly. Yet, for zero noise, the theoretical
possibility of correctly determining the scale holds true. In case of noise
being added to the correspondences, the starting points of the rays move
to some small extent. Considering the distances involved, i. e., a few
millimeters on the outer housing interface, a few centimeters of camera
movement, but a few meters of distance between 3D points and cameras,
it becomes clear that the noise is superimposing the signal and therefore
makes it impossible to correctly determine the scene’s scale.

Figure 5.8 shows the same data as Figure 5.7, with a non-logarithmic
scale and as a 3D plot, such that the errors are depicted depending on
the noise and the scaling factor. Due to the non-logarithmic scale on the
error axis, the clear minima at zero noise and the correct scale are no
longer visible. However, it becomes clear that the error functions are not
invariant against changes in scale. Figure 5.8 shows error functions for two
views only. In case of using a scene with 50 views and a correspondingly
large set of 3D points however, the error functions can still not be used
to determine scale, as can be seen in Figure 5.9. Note that in order to
be able to plot the GEC and the POR/FRC error for 50 views, 2D-2D
correspondences between pairs of two views were used. The conclusion
drawn from the investigations concerning the scene scale is that scene
scale cannot be determined with the proposed non-linear error-functions
in case of inexact, i. e., automatically detected corners. However, neither
are the error functions completely invariant against scale changes as in the
perspective case.

Due to not being able to correctly compute the scene’s scale, the
results of the test runs experimenting with the different methods for
relative pose estimation (Figures 5.11 to 5.13) have been determined after
applying the correct scale to the translation. The described relative pose
estimation algorithms were tested on synthetically, randomized sets of
2D-2D correspondences. In order to compare perspective and refractive
methods, the following procedure was followed:

1. Define refractive camera with image size 800� 600 px, focal length
f = 800 px, principal point at (399.5 px, 299.5 px), zero skew, aspect
ratio one, and radial distortion r1 = 0.1 and r2 = �0.2. The interface
distance was d = 10 mm, interface thickness dg = 20 mm, and interface
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Figure 5.8. For an exemplary set of two views, the translation scale between the
views was varied and is depicted on the scale-axis. The noise axis depicts the
normal distributed noise that was added to the 2D-2D correspondences. Shown
are the reprojection error, the angular error, the GEC error, the POR/FRC error
and the virtual camera error.
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Figure 5.9. Depicted are the five different error functions as in Figure 5.8. In this
case a scene with 50 views and a correspondingly large set of 3D points were used
for computing the error function instead of just two.
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tilt θ1 = 0�, θ2 = 0.5�.

2. Render calibration images to find the best fitting perspective camera,
which had focal length f = 1066.79 px, principal point
(400.48 px, 299.64 px), r1 = �0.19, and r2 = �0.93.

3. Create different relative poses for the second camera, while setting
the first camera into the world coordinate system origin. For each
configuration, project a set of 3D points by the perspective and by the
refractive camera models to obtain perspective and refractive ground
truth 2D-2D correspondences.

4. Three camera model configurations can now be experimented with:
perspective camera model on perspective data, perspective camera
model on underwater data, and refractive camera model on underwater
data.

5. By adding increasing amounts of normal distributed noise to the data,
robustness can be tested.

6. After adding outliers to the correspondences, RANSAC frameworks
[FB81] can be tested with a linear, initial estimation and a Maximum-
Likelihood (ML) optimization.

7. For each pose estimation method, the results are summarized in one plot
(example plot in Figure 5.10): the x-axis shows the increasing amount of
noise. On the left y-axis, the pose error is depicted, combining rotation
and translation, i. e., in case of translation (green) the unit is mm and
in case of rotation (red) the unit is degrees. On the right y-axis are
the reprojection error and the failure rate. That means in case of the
reprojection error (magenta) the unit is pixel and the failure rate (blue) is
the fraction of completely failed runs that are not part of the evaluation,
i. e., the failure rate is always between zero and one. Each column in the
following plots shows first the results of the linear method on outlier-
free data, the results of the linear method combined with a non-linear
optimization on outlier-free data, and finally a combination of the linear
and non-linear method within a RANSAC framework [FB81] on data
with outliers.
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Figure 5.10. Exemplary evaluation plot for pose estimation. On the x-axis is the
increasing amount of noise (in pixels) added to the 2D image points. On the left
y-axis is the pose error. In case of the camera translation (green), the unit is mm.
In case of rotation (blue), the unit is degrees. On the right y-axis is the reprojection
error (magenta) in px. Additionally, the failure rate is plotted in (blue). The failure
rate is always in the interval [0, 1] and shows how many pose results were not
considered in the evaluation due to computation failures.

Figure 5.11 shows results of relative pose estimation on perspective
data using the perspective camera model (left column), and for using the
perspective model on underwater data (right column). In Figures 5.12
and 5.13 are the results for applying different refractive methods on
underwater data to determine relative pose. The comparison between
perspective relative pose on perspective data and perspective relative pose
on underwater data shows that both methods perform similarly well and
there does not seem to be a large error introduced by ignoring refraction.
However, firstly, ignoring refraction causes a non-zero error for zero noise
and secondly, one has to keep in mind that no 3D points exist yet, and
hence the error is compensated for by triangulating 3D points during error
function computation. The extent of the error introduced by triangulation
has already been demonstrated in the analysis in Section 4.3.3. When con-
sidering the results of the refractive methods, the CAM-ES optimization
and the iterative approach have the highest accuracy and robustness in
case of the relative pose problem using refractive cameras. However, the
run-time of the CMA-ES optimization, especially in combination with a
RANSAC approach, is much higher compared to ML-optimization. There-
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Figure 5.11. Results of perspective, relative pose computation. Left column:
perspective camera model on perspective data. Right column: perspective camera
model on underwater data. From top to bottom are linear method on noisy data,
linear method with non-linear optimization, and RANSAC approach [FB81] using
a linear method for generating sample solutions and non-linear ML optimization.

fore, in the following, the iterative approach will be used to determine
initial solutions and the Levenberg- Marquardt algorithm will be used for
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optimization. The proposed virtual camera error function outperforms the
angular error, and hence will be used for non-linear optimization in the
following.

5.1.2 3D-Point Triangulation

Assuming the camera poses, intrinsics, and housing parameters of at least
two images are known in addition to a set of correspondences between
those images, it is possible to retrieve the 3D point for each correspondence.
Triangulation based on a set of rays (starting points and directions) can be
accomplished by using the midpoint method [HS97a]. It is assumed that
for N cameras (N ¡= 2), the poses are known and that a correspondence
between those cameras exists. If Xsi are the starting points and X̃wi are the
directions in the world coordinate system for i P {1, ..., N} respectively, the
common 3D point can be computed for each view X = Xsi + κiX̃wi κi P R.
Then, with X P R3 being the newly triangulated 3D point:

ε = min︸︷︷︸
X,κ1,...,κn

∑
iP{1,...,N}

|Xsi + κiX̃wi �X|2 (5.1.31)

is the linear least squares problem that needs to be solved in order to
calculate the 3D point X.
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Figure 5.12. Results of refractive relative pose computation. From top to bottom
are a linear method on noisy data, a linear method with non-linear optimization,
and the RANSAC approach [FB81] using a linear method for generating sample
solutions and a non-linear method for optimization. In the left column are results
of the refractive linear method with ML optimization using the virtual camera
error function. The right column shows results of using the iterative method with
ML optimization using the virtual camera error.
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Figure 5.13. Results of refractive relative pose computation. From top to bottom
are a linear method on noisy data, a linear method with non-linear optimization,
and the RANSAC approach [FB81] using a linear method for generating sample
solutions and a non-linear method for optimization. On the left are results of
CMA-ES and virtual camera error for determining the initial solution, then the
iterative method with CMA-ES optimization. The right column shows results for
the iterative approach for the initial, linear solution combined with the angular
error for optimization.
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5.1.3 Absolute Pose

After computing the relative pose and triangulating 3D points for monoc-
ular image sequences, or in case of a calibrated stereo rig, 2D-3D cor-
respondences can be matched, allowing to determine the absolute pose
with respect to the 3D points directly. In the following, perspective and
refractive methods for absolute pose will be discussed and compared in
experiments.

Perspective Absolute Pose

For perspective camera models, the absolute pose problem has been consid-
ered in the computer vision community for several years and is known as
PnP (Perspective-n-Point) problem. Hence, a large number of algorithms
exists. In the Direct Linear Transform ([HZ04], p. 178) the projection of
a 3D point Xk onto a 2D point xk, k P {1, ..., K} by a projection matrix
xk = PXk is used to derive a set of linear equations in the unknowns
of P. It requires a minimal set of six correspondences. A widely used
approach that does not estimate the pose directly, but iteratively, was
proposed in 1995 by Dementhon and Davis [DD95]: in the POSIT (Pose
from Orthography and Scaling with ITerations) algorithm, the pose is com-
puted by iteratively refining an approximation that is based on a scaled
orthographic camera model. Both methods cannot easily be adapted to the
refractive camera model. Haralick et al. [HLON94] present an extensive
analysis of the P3P problem with different methods by utilizing the basic
insight that distances between 3D points are the same in the camera and
the world coordinate systems (Figure 5.14). The distances and the angles
between the corresponding rays in the camera coordinate system (red lines
in Figure 5.14) allow to derive a set of equations that can be solved for the
camera-point distances yielding 3D points in the camera coordinate system.
Finally, the absolute orientation problem remains to be solved. Meaning
rotation and translation between two sets of 3D-3D point correspondences
need to be determined. [HLON94] describes a linear procedure as follows.
Rotation matrix R and translation vector C are required to transform the
points in the camera coordinate system into points in the world coordinate
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Figure 5.14. P3P pose estimation. The distances between the points (length of the
red lines) are invariant to rotation and translation.

system:
X

wc

k = RX
cc

k + C, k P {1, 2, 3}. (5.1.32)

This problem cannot be solved linearly directly due to 12 unknowns and
given only nine equations. However, the properties of the rotation matrix
allow to compute the third column by using the first two columns:

r3 = r1 � r2. (5.1.33)

In addition, the points in the camera coordinate system are coplanar, thus
the transform can be computed for a set of points with zero z-component.
Hence, the resulting equations are for i P {1, 2, 3}:

r11Xcc
k + r12Ycc

k + Cx = Xwc (5.1.34)

r21Xcc
k + r22Ycc

k + Cy = Ywc

r31Xcc
k + r32Ycc

k + Cz = Zwc.

They can be utilized in a linear equation system and be solved for the first
two columns of R and the translation vector C.
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Refractive Linear Approach using FRC and POR

In [ARTC12], a method for camera calibration was proposed based on
the Flat Refractive constraint (3.2.17) and the Plane of Refraction con-
straint (3.2.18). Since camera calibration usually involves the computation
of the camera’s pose, the idea in [ARTC12] for calibration can be adapted
to absolute pose computation without calibrating the housing parameters:

X̃wk � (R1Xk + C1 �Xsk ) = 0 (5.1.35)

(R1Xk + C1)T(ñ�Xsk ) = 0,

for each 2D-3D correspondence k P {1, ..., K}. Both constraints are linear in
the unknowns R1 and C1. In Table A.8 the entries of the resulting linear sys-
tem of equations can be found. Since the FRC is a constraint that basically
determines an angle between two rays and the constraint based on the POR
determines if a point is on a plane that extends from the camera center
along its viewing ray, this method cannot robustly determine the correct
camera translation in z-direction (compare to [ARTC12]). However, using
the virtual camera error described above, the translation in z-direction can
be optimized efficiently, using the Levenberg-Marquardt algorithm with
one parameter. Afterwards, R1 and C1 need to be transformed into the
global-to-local transform by: R = R1T and C = �RTC1.

Iterative Approach

Similar to the iterative method for computing relative pose as described
above, an iterative method for absolute pose can be derived using a set of
K 2D-3D correspondences. The constraint directly involves the 3D points:

Xk = RXsk + C + κkRX̃wk @k P {1, ..., K}, (5.1.36)

where the matrix R, and the translation C are unknown. Hence, (5.1.36)
is non-linear in the unknowns and is therefore solved iteratively, by alter-
natively solving for the transformation and all κk, k P {1, 2, ..., K} in each
iteration. The linear system of equations resulting from stacking (5.1.36)
for all k P {1, ..., K} and keeping all κk constant is solved for R and C. Note
that due to r3 = r1 � r2, the result for the z-coordinate can be determined
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separately:

Zk = κk(r1 � r2)
TX̃wk + (r1 � r2)

TXsk + Cz (5.1.37)

ñCz = Zk � (κk(r1 � r2)
TX̃wk + (r1 � r2)

TXsk ).

This leaves two equations per correspondence to be used for linear estima-
tion of eight parameters.

A =


(κ1X̃w1 + Xs1)

T 0T 1 0
0T (κ1X̃w1 + Xs1)

T 0 1
...

(κKX̃wK + XsK )
T 0T 1 0

0T (κKX̃wK + XsK )
T 0 1

 , (5.1.38)

with x = (r11r12r13r21r22r23CxCy)T and b = (X1Y1...XKYK)
T. Then, all κk

are updated using:

κk = κk + (RX̃wk )
T(Xk � C�RXsk )� κk = (RX̃wk )

T(Xk � C�RXsk ),
(5.1.39)

which can be derived from Equation (5.1.36) due to X̃wk having unit length
and by applying the scalar product on both sides.

Sturm’s Method

The method described by Sturm et al. [SRL06] has a similar idea to the
method described in [HLON94], but can deal with refractive and also other
general, ray-based camera models. The values for the κk described in the
section above, can be determined without knowing the pose of the camera
within the world coordinate system. This is done by utilizing the known
distances between the 3D points, i. e., take a set of three 3D points in the
world coordinate system and compute the pair-wise distances between
them: d12, d13, and d23. Then, the rays in the camera coordinate system
Xsk + κkX̃wk must result in 3D points with the corresponding distances:

‖ Xs1 + κ1X̃w1 �Xs2 � κ2X̃w2 ‖2
2= d12 (5.1.40)

‖ Xs1 + κ1X̃w1 �Xs3 � κ3X̃w3 ‖2
2= d13
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‖ Xs2 + κ2X̃w2 �Xs3 � κ3X̃w3 ‖2
2= d23,

which is a non-linear system with three equations in three unknowns
κk. It is possible to eliminate two unknowns and retrieve one equation
with one unknown, which can be turned into an 8th order polynomial
in one variable (e. g., κ3), for which the coefficients can be determined
using a toolbox like Maxima or Matlab’s symbolic toolbox. Up to eight
solutions can be found for the polynomial, and hence up to eight solutions
for the three κk can be determined. For each real solution, a rigid 3D-3D
transformation needs to be estimated in a second step, which is done
linearly (refer to [HLON94]). An optional fourth correspondence is used
in the optimization in order to determine the correct solution robustly.

Nistér Approach

Nistér and Stewénius [NS07] propose a different method for solving the
absolute pose problem with only three points for a general camera model.
The solution is based on the idea of reducing the problem to the computa-
tion of intersections between a circle and a ruled quartic surface, which
results in an 8th degree polynomial of which the roots need to be found.

Maximum Likelihood Optimization

The initial poses computed by any of the methods described above need
to be optimized in case of noise in the 2D-3D correspondences. As in
case of the relative pose problem, a suitable error function is required for
this. The above described reprojection error, the angular error, and the
virtual camera error can be straightforwardly applied to the absolute pose
problem as well. Any of these error functions can then be used within a
Levenberg-Marquardt algorithm or a CMA-ES algorithm for optimizing
the initial pose.

Experiments

The described absolute pose algorithms were tested on synthetic data
in the same scenario described in the relative pose section. Only this
time, a set of 3D points was used in order to get the required 2D-3D
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correspondences. Figure 5.15 shows the results of the perspective absolute
pose algorithm (here POSIT and a Levenberg-Marquardt optimization) on
perspective data (left column) and of applying the perspective method
to underwater data (right column). Figures 5.16 to 5.18 depict results
of the refractive or general camera model methods on underwater data,
starting with Sturm’s method, followed by Nistér’s, the proposed iterative
approach with Levenberg-Marquardt optimization, and the proposed
linear approach using the FRC and POR. In Figure 5.18, results are give for
using the CMA-ES method with high initial deviation as an initial method,
of the iterative method with CMA-ES as an optimization method, and for
using the iterative method and CMA-ES within a RANSAC framework
[FB81] on underwater data with outliers.

Applying the POSIT algorithm to perspective data shows the expected
results. With growing noise on the 2D points, the pose error, but also
the reprojection error increases. Using a non-linear optimization method
on the initial POSIT estimate decreases mainly the pose error. Applying
the RANSAC routine on data with outliers allows to estimate the pose
robustly. More interesting is the case of applying the perspective methods
to underwater data. In this case, the pose error caused by the model
error is evident, this time, the 3D points cannot compensate for the error
introduced by refraction. Note that absolute pose is often computed
for a large number of views, consequently, the error made for each view
accumulates over time. This problem can be avoided by applying a method
for absolute pose estimation that explicitly incorporates refraction. As
can be seen in the top row in Figure 5.16, Sturm’s and Nistér’s methods
work if no noise is present in the data, but the performance quickly
deteriorates if noise is added to the 2D image points. However, similar to
the relative pose estimation, the non-linear optimization can be used to
fix the large initial error. The same is true for initial estimation and non-
linear optimization on data with outliers within a RANSAC framework.
Figure 5.17 on the left shows results for the described iterative method as
an initial estimator, followed by the Levenberg-Marquardt optimization
with the virtual camera error as error function. Note that the results are
very accurate even when compared with the POSIT results on perspective
data. Strongly sensitive to noise is the linear method using the POR and
FRC for absolute pose estimation (Figure 5.17 on the right). However, it
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can still be used because the non-linear optimization can cure the problem.
Figure 5.18 shows that by far the best initial results can be obtained
by using CMA-ES. Combining the iterative approach with CMA-ES for
optimization yields results of comparable accuracy and the combination
of both within a RANASC framework yields the most accurate pose.
However, using CMA-ES, especially in a RANSAC framework is very time
consuming.

Usually, one strives to minimize the number of correspondences re-
quired for initial pose estimation. The reason for this is that during the
RANSAC algorithm, the chances of drawing a sample without outliers
are maximized. However, if the minimal solution, i. e., Nistér’s or Sturm’s
methods, are very sensitive to noise, this may not always be advantageous.
Especially, in case of a correspondences set with very few true outliers, but
naturally noisy correspondences (degraded contrast, backscatter, marine
snow, etc. in underwater images), methods less sensitive to noise can
outperform the minimal solutions because they may require less samples
during the RANSAC algorithm. Therefore, in the following, the iterative
method will be used for initialization and the Levenberg-Marquardt op-
timization with the virtual camera error will be used for optimizing the
initial solution.
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Figure 5.15. Perspective absolute pose estimation results. The top row shows
linear estimation results, middle row the non-linear optimization results based on
the top row, and the bottom row shows RANSAC results using the linear and the
optimization method. Left column: perspective results on perspective data. Right
column: perspective results on underwater data.
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Figure 5.16. Refractive absolute pose estimation results. Top row shows linear
estimation results, middle row the non-linear optimization results based on the
top row, and the bottom row shows the RANSAC results using the linear and the
optimization method. The left column depicts underwater results on underwater
data with Sturm’s method, the right column results for Nistér’s method.
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Figure 5.17. Refractive absolute pose estimation results with the proposed iterative
method and the proposed linear method
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Figure 5.18. Refractive absolute pose estimation results using CMA-ES for initial-
ization (top row on the left), followed by a combination of the iterative method
and CMA-ES on the right. In the bottom row are the RANSAC results.
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5.1.4 Bundle Adjustment

In the context of Structure-from-motion, bundle adjustment (BA) is a
term used for a non-linear optimization of the whole reconstructed scene.
Camera poses, 3D points, and possibly camera intrinsics or housing pa-
rameters are optimized simultaneously using the 2D observations. An
introduction to bundle adjustment in general can be found in [TMHF00]
and [McG04]. Overviews in the context of SfM are treated in [HZ04] and
[Sze11]. In common perspective bundle adjustment scenarios, the reprojec-
tion error in all images is minimized, i. e., there can be thousands or even
hundreds of thousands of parameters and many more observations. In
order to simultaneously optimize all parameters, a squared error function
is minimized, usually using the Levenberg-Marquardt algorithm. This
requires the Hessian of the error function, hence, very large matrices need
to be handled, which results in one of the major challenges of bundle
adjustment: it is time and memory consuming and therefore requires
special care when being implemented. Luckily, careful ordering of the
parameters and observations causes the required matrices to be sparse
and of block structure, which allows a multitude of optimizations in the
implementation. The theoretical basics and some general implementation
issues are addressed in Appendix A.4.

Bundle adjustment often runs for each newly added view, hence, it
is probably the component in the SfM process that requires most of the
run-time and its performance is therefore usually the bottleneck. Not
surprisingly, still a lot of research is done to optimize bundle adjustment
and to improve convergence. Recent works allow to deal with tens of
thousands of images with accordingly large 3D point clouds [WACS11,
JNS+10, JNS+12].

For less ambitious projects, different implementations are available, a
commonly used example is [LA09]. However, it only supports explicit
constraints of the type f(p) = l, with p being the vector of all parameters
and l being the vector of all observations, and hence the library cannot be
used to optimize the virtual camera error described above. Additionally,
no parameters can be shared between all views, i. e., for a camera moving
through a scene with constant intrinsics, those cannot be optimized.

Another recent work considering stereo rigs [KTS11] is concerned with
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a general setup of current stereoscopic systems for capturing 3D movies. In
case of rigidly coupled rigs of two or more cameras, the relative transform
between master and slave cameras is assumed to be constant throughout
the image sequence. Consequently, the transformation of the whole stereo
rig Ti, i P {1, ..., N} is applied to 3D points, then, points can be transformed
into the local coordinate systems of the slave cameras by the relative slave
transformation Tj, j P {1, ..., M}. Note that this does not destroy the sparse
block structure of the matrices used.

As mentioned above, [LA09] can only deal with explicit constraints.
This is a common in perspective scenarios, where the reprojection error is
minimized, and hence only explicit constraints are required. Only very
few works can be found in the literature, where implicit constraints need
to be optimized. A recent work by Steffen et al. [SFF12] addresses the
problem of optimizing scenes based on implicit trifocal constraints, which
does not require approximated values for the 3D points.

In this thesis, a system is implemented for implicit constraints that
supports parameters that all cameras have in common, i. e., intrinsic
parameters in the perspective case or underwater housing parameters. In
addition, constraints between parameters are supported, hence, quaternion
unit length, interface normal unit length, or a fixed rig baseline length, are
supported. Such a system requires applying the Gauss-Helmert model
[McG04], which solves the following system of equations in each iteration:[

AT
g(BgCllBT

g)
�1Ag HT

h
Hh 0

]
︸ ︷︷ ︸

N

[
∆p
kh

]
=

[
�AT

g(BgCllBT
g)
�1g(p, l)

�h(p)

]
, (5.1.41)

where g(p, l) = 0 is the error function containing all observations de-
pending on the parameter vector p and the observation vector l. Ag is the
Jacobian with respect to the parameters and Bg is the Jacobian with respect
to the observations. h(p) = 0 contains all constraints between parameters
with Hh being the corresponding Jacobian. Cll comprises uncertainties
of the observations and can be set to identity if those uncertainties are
unknown. ∆p is the update on the parameters resulting in the iteration and
kh contains a set of Lagrange Multipliers (for more detailed information
see Appendix A.4).
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Perspective Bundle Adjustment

In case of perspective bundle adjustment, the error function measures the
reprojection error for all camera views i P {1, ..., N}, i. e., the pair-wise
distances between the set of 2D points measured x̌ijk and projected points
xijk. Each projected point is determined by the master pose parameters,
quaternion q̃i and translation Ci, for each i P {1, ..., N} and by the intrinsic
parameters. In case of multi-camera rigs, those are extended by the
relative rig transforms q̃j, Cj for each j P {1, ..., M} and corresponding sets
of intrinsic parameters for each slave camera. As mentioned above, the
perspective projection can be expressed by explicit constraints of the form:

fijk(Xk, Pij, dj) = x̌ijk, (5.1.42)

with Xk being the 3D point, Pij being the projection matrix combining in-
trinsics for rig camera j, slave extrinsics for camera j, and master extrinsics
for camera i. Vector dj contains lens distortion parameters for camera j.
Note that the Jacobian with respect to the observations Bg is the identity.
It is also possible to keep the intrinsic parameters constant and only opti-
mize 3D points and camera poses. This is applied in scenarios, where the
camera is assumed to be calibrated with high accuracy beforehand. No
matter which parameters are to be optimized, the Jacobian of the function
f in Equation (5.1.42) needs to be computed using all the parameters.
For this thesis, analytical derivatives for the monocular and stereo case
were computed using the analytic toolbox Maxima1. When knowing this
derivation, the bundle adjustment system can be implemented by solving
(5.1.41) in each iteration. Rotations were parametrized using quaternions,
which proved to be superior to incremental Euler angles.

Careful ordering of the parameters causes the matrix N in (5.1.41) to
be sparse and of block structure. In Figure 5.19 only colored parts are
non-zero. This is the case no matter if a stereo rig is optimized or if
constant intrinsics across the whole sequence are improved.

1http://maxima.sourceforge.net/
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3D points

camera poses
rig poses
intrinsics

p. c.

Figure 5.19. Sparse matrices N in (5.1.41) for perspective bundle adjustment. Left:
general block structure with color coding. p.c. stands for parameter constraints,
i. e., for constraints between parameters like quaternion unit length. Middle: sparse
matrix for optimization of 3D points and camera poses (monocular). Note that
only colored pixels stand for non-zero entries. Right: stereo sequence with pose
and 3D point optimization and optimization of intrinsics for both cameras. Colors:
3D points blue, master poses green, rig transform magenta, intrinsics yellow,
constraints between parameters cyan.

Refractive Bundle Adjustment

In case of refractive bundle adjustment, the error function cannot easily
describe how a 3D point is projected onto a 2D image point because the
12th-degree polynomial that needs to be solved for each observation causes
the approach to be infeasible in terms of computation time. However, the
above described virtual camera error can be computed efficiently, thus the
error function is the distance between observation and projected 3D point
compared in the virtual camera (5.1.28). Therefore, the implicit constraints
to the bundle adjustment system are:

gijk(Xk, Pij, hj, x̌ijk) = 0, (5.1.43)

with hj containing the housing interface parameters that are used to com-
pute the projection into the virtual camera. In order to be able to minimize
a system comprised of constraints of the type (5.1.43), the derivatives of
function g need to be computed with respect to both: the parameters, but
also the observation x. Only then can the matrices Ag and Bg in Equa-
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3D points

camera poses
rig poses
housing

p. c.

Figure 5.20. Sparse matrices for refractive bundle adjustment. Left: general block
structure of sparse matrix N. Middle: optimization of 3D points and camera
poses (monocular). Note that only colored parts are non-zero. Right: stereo
optimization of housing parameters, 3D points, and camera poses. Colors: 3D
points blue, master poses green, rig transform magenta, housing parameters
orange, constraints between parameters cyan.

tion (5.1.41) be determined. Note that the interface parameters in h can be
optimized or kept constant depending on the knowledge prior to running
the system. As in the perspective case, the derivatives were computed
using Maxima. However, the case of the interface normal coinciding with
the optical axis, i. e., ñ = (0, 0, 1)T, needs to be considered separately. If
the housing parameters are to be optimized, each observation consists
of the ray in air X̃a within the local camera coordinate system, which
always starts at (0, 0, 0)T. In case the housing parameters are not part of
the optimization, but considered to be known, each observation consists of
the ray in water X̃w with starting point on the outer interface plane Xs and
the corresponding intersection with the camera axis Cv, which is defined
by the coordinate system origin and the interface normal (Figure 5.6). Rigs
can be handled as described above.

Using the virtual camera error and the Gauss-Helmert model does
not destroy the sparse block structure shown in the perspective case
above. In fact if comparing the refractive sparse matrices in Figure 5.20
to the perspective sparse matrices in Figure 5.19, they do not exhibit any
structural differences.
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Table 5.1. Parameters and camera models in the eight different application scenar-
ios.

case cam.
model

3D
points

master
poses

rig
pose

intrinsics housing

1 persp yes yes - no -
2 persp yes yes - yes -
3 persp yes yes yes no -
4 persp yes yes yes yes -
5 refr yes yes - - no
6 refr yes yes - - yes
7 refr yes yes yes - no
8 refr yes yes yes - yes

Experiments

In order to test the bundle adjustment implementation, eight different
cases are investigated more closely. Table 5.1 summarizes the parameters
optimized for each case. Constraints between parameters are summarized
in Table 5.2. In Section 5.1.1, the experiments showed that in theory the
absolute scale of a scene can be determined, however, that in case noise is
added to the 2D image points, absolute scale estimation fails. For all five
considered error functions, scale estimation does not work in the presence
of noise, no matter if the scene contains two or 50 views. Therefore, the
scene scale in the bundle adjustment implementation was always fixed.

For each of the eight adjustment scenarios, 50 tests using a scene with
eight camera views and at least 500 points with a minimum trail length of
three, i. e., each 3D point was seen by at least three views, were conducted.
The initial values of rotations and translations were disturbed randomly.
In case intrinsics and housing parameters were optimized, those initial
values were randomly disturbed as well. Figures 5.21 to 5.23 summarize
the resulting parameter errors after optimization.

Figure 5.21 contains rotation errors in degrees after optimization, Fig-
ure 5.22 gives camera translation errors and 3D point errors in mm on
the left axis and the reprojection error in px on the right axis. Figure 5.23
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Table 5.2. Constraints on parameters for the different scenarios.

case ||q̃ij||2 =
1

fixed
scale

fixed first
camera

||ñj||2 = 1

1 yes yes yes -
2 yes yes yes -
3 yes yes yes -
4 yes yes yes -
5 yes yes yes -
6 yes yes yes yes
7 yes yes yes -
8 yes yes yes yes

depicts errors in the intrinsic parameters after optimization in the first
two rows and errors of housing optimization in the bottom row. Note
that in contrast to the experiments shown above, this time the perspective
camera model is tested on perspective data only and the refractive camera
model is tested on underwater data. There were no major differences in
convergence between the two. Run times for the refractive camera model
are a bit higher compared to the perspective camera model, however, due
to the analytic derivatives for the virtual camera error function, refractive
BA is not much slower than perspective BA. This is a great improve-
ment compared to using the reprojection error or even the preliminary
version of the virtual camera error based on caustic points, published
in [SK11a]. In [SK11a] run-time for only eight images was in the order
of several hours, while the newly proposed virtual camera error can be
optimized in a matter of seconds. In terms of accuracy, the perspective
BA outperforms the refractive BA especially in case of stereo camera rigs,
where the housing parameters need to be optimized. However, as will be
seen when comparing refractive SfM on underwater data to perspective
SfM on underwater data, accuracy of refractive BA is very good. The
implementation used for this thesis works well and reasonably fast. Its
performance and scalability are not yet comparable to state-of-the-art sys-
tems like [WACS11, JNS+10, JNS+12]. However, it allows to efficiently
optimize the virtual camera error, and thus to explicitly model refraction.
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Figure 5.21. Rotation estimation results of bundle adjustment. Plotted are the re-
sulting mean errors and standard deviation in brackets, initial errors and standard
deviation were 0.22�(0.15�).
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Figure 5.22. The left axis shows BA estimation results for translation and 3D points,
the right axis for the reprojection error. Initial errors and standard deviation (in
brackets) were 12 mm(10 mm) for translation, 3D point error: 48 mm(19 mm),
reprojection error: (RE) 8.5 px(1.5 px).
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Figure 5.23. First row: BA estimation of intrinsic parameters, on the left axis are
focal length and principal point in pixels. On the right axis is the aspect ratio.
Second row: BA estimation of distortion. Note that distortion parameters were
set to zero for initialization. Third row: results of interface distance and normal
estimation (for initialization the interface distance was set to 10 mm in all cases
and the interface normal was ñ = (0, 0, 1)T.
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5.1.5 Structure from Motion

Sequential Approach

During a sequential reconstruction, correspondences are matched between
the first two input images using for example SIFT [Wu07]. Then, the
relative pose of the second camera with respect to the first is estimated
using those correspondences. Once the two camera poses are known, a
sparse set of 3D points is triangulated. Even though a RANSAC framework
is usually used for estimating relative pose, outliers should be detected and
removed after triangulating points. Bundle adjustment is then applied to
optimize the two-view scene. After this initialization of the reconstruction,
other views are added sequentially, i. e., correspondences between the last
view in the reconstruction and the new view are matched. Since 3D points
exist for the last view in the reconstruction, this automatically yields a set
of 2D-3D correspondences for the new view. Hence, the absolute pose
can be used to determine the camera pose of the new view. Note that the
error made at the subsequent steps accumulates during the reconstruction,
sometimes causing the algorithm to fail entirely before all images have
been added. Advantages of sequential SfM are:

� stereo rigs can be easily incorporated by omitting relative pose and
directly triangulating 3D points using the two rig cameras and

� intrinsic parameters in the perspective case and housing parameters in
the refractive case can be optimized using bundle adjustment at any
time.

Hierarchical Approach

A disadvantage of the sequential SfM approach is that errors made in pose
estimation tend to accumulate over time, causing the scene to drift. In
order to prevent that, Farenza et al. and Gherardi et al. in [FFG09, GFF10]
proposed a hierarchical approach. Here, correspondences are computed
between all pairs of input images, thus the input images do not have to be
ordered. For each image pair that has a certain number of shared 2D-2D
correspondences, the relative pose of the second view is estimated using a

140



5.1. Structure-from-Motion

Algorithm 5.1 Sequential SfM
match 2D-2D correspondences between I0 and I1.
Init: set the camera for I0 into origin of the world coordinate system
Init: compute relative pose of I1 using RANSAC
Init: remove outliers
Init: triangulate 3D points using I0 and I1
for Images Ii, 2   i   n do

match 2D-2D correspondences between Ii�1 and Ii
compute absolute pose of Ii using RANSAC
remove outliers
triangulate 3D points using In�1 and In
remove outliers
(optional: run bundle adjustment)

end for
(optional: run final bundle adjustment)

RANSAC framework. Then, for each image pair a score called connectivity
depending on the number of shared 2D-2D correspondences and the
distribution of the correspondences across the images is computed. Image
pairs are then ordered according to this score. Starting with the highest
ranking image pairs, two-view clusters are formed by triangulating a set
of 3D points and optimizing the two-view scene using bundle adjustment.
Note that each image can only be in one cluster. After that, two different
actions are possible: a new view can be added to an existing cluster using
2D-3D correspondences and absolute pose followed by triangulating new
3D points and bundle adjustment, or two existing clusters can be merged
by computing a suitable transform with rotation, translation, and scale for
the second cluster based on 3D-3D point correspondences. The algorithm
is summarized in 5.2 Using such an hierarchical approach has several
advantages compared to the sequential approach:

� the input images do not need to be ordered,

� closed loops in the camera path, i. e., cases were the camera intersects
its former path, are automatically detected and contribute to a more
stable reconstruction of the camera path with less drift, and
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Algorithm 5.2 Hierarchical SfM
Init: compute 2D-2D correspondences between all image pairs
Init: compute relative pose for all pairs Ii, Ij using RANSAC
Init: remove outliers
Compute connectivity for all image pairs (I1, I2)i
Compose ordered list L with all image pairs according to their connec-
tivity
while L � H do

if I1 and I2 are no part of any cluster then
create new cluster using relative pose results

end if
if I1 part of cluster j then

add I2 to cluster j using absolute pose
end if
if I2 part of cluster j then

add I1 to cluster j using absolute pose
end if
if I1 part of cluster j and I2 part of cluster k then

merge clusters j and k
end if
remove outliers
triangulate new 3D points
run bundle adjustment

end while
(optional: run final bundle adjustment)

� by starting with the best fitting image pairs, instead of the first two
images, a possible error made at the beginning of the reconstruction is
as small as possible.

When considering scene scale in case of refractive reconstruction, a dis-
advantage of the hierarchical approach can be revealed. Due to the need
to compute the relative pose between all suitable image pairs, scene scale
needs to corrected in all those cases and therefore needs to be known
before the reconstruction even starts. This can easily be achieved by uti-
lizing navigation data, however, in case the absolute scale is determined
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by a known distance in the scene and depends on accurate localization of
the corresponding points in all images, fixing the baseline scales becomes
more difficult. Therefore, in this thesis, the sequential approach will be
used for reconstruction, even though the hierarchical approach is advan-
tageous in general. In case of navigation data or a resolved scaling issue,
it would be very interesting to experiment with the combination of the
hierarchical approach and refractive geometry estimation.

Experiments

The last sections showed how a reconstruction of a set of input images
can be computed using the classic perspective camera model, but also
by explicitly modeling refraction of light at underwater housings. In
Chapter 3, different existing approaches in the literature were discussed
with the conclusion that most existing approaches do not model refraction
explicitly, but use the perspective camera model to approximate the effect.
In this section, both methods are therefore compared by applying them
to image sets. This is done using synthetic images rendered using the
simulator described in Section 3.3, as well as real images captured in a
fairly well controlled lab environment.

Simulated Images

Two sets of synthetic images of different scenes were rendered with differ-
ent housing configurations, where the interface distance was chosen from
d P {�5 mm, 0 mm, 5 mm, 10 mm, 20 mm, 50 mm, 100 mm} and the inter-
face tilt was θ2 P {0�, 0.5�, 1.0�, 3.0�}, resulting in a total of 28 configura-
tions for testing. The error was determined by comparing the resulting
3D points and camera poses to ground truth geometry data and deter-
mining the average error over all pixels and images. In addition, another
data set was rendered using a stereo rig with a denser sampling of inter-
face distances and tilts (d P {�10 mm, 0 mm, 10 mm, 20 mm, ..., 140 mm},
θ2 P {0�, 1.0�, 2.0�, 3.0�}) with 68 different configurations. Figure 5.24
summarizes rendering paths, scene structure, and camera-point distances
for all three scenes. To all image sets, the perspective and the refractive
SfM algorithm is applied, thus, the accuracy of estimating the camera
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Figure 5.24. Top row: exemplary images from the rendered scenes. Bottom row:
scene structure and camera trajectory. Note that the scenes differ not only in
structure and camera path, but also in camera-object distance, i. e., in the first scene
the closest views have camera-object distances between 550 mm and 1900 mm,
while the furthest views have 1300 mm-2300 mm. The second scene is larger, such
that the closest views have camera-object distances between 4600 mm and 9000 mm
and the furthest have 7700 mm-12000 mm. In the third (stereo) scene, the camera
was moved in an approximate orbit around the scene, hence the camera-object
distances were almost constant for all views (3000 mm-6000 mm).

poses and 3D points can be investigated. Figures 5.25, 5.26, and 5.28 show
the resulting errors depending on interface distance d and interface tilt
θ. Depicted are the 3D error, measured in mm using the known ground
truth depth maps, the camera translation error in mm and the reprojection
error for the perspective case (left columns) and the refractive case (right
columns). In all three cases, the systematic model error introduced by
using the perspective camera model to approximate refractive effects is
clearly increasing with increasing interface distance and tilt. This is in
accordance with the results in Chapter 4, where it was demonstrated
using the depicted stereo data set, how the caustic sizes increase with
increasing interface distance and tilt, thus showing an increasing deviation
from the single-view-point camera model. Figure 5.27 gives results for
the refractive reconstruction on the box sequence without correction of
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the scene scale after relative pose estimation. As can be seen, the errors
are larger compared to the refractive reconstruction with correction of
scale (Figure 5.26), however, the error is not systematic as in case of the
perspective reconstruction and also lower. This is in accordance with the
results depicted in Figure 5.9, where it was demonstrated that the different
non-linear error functions cannot be used to estimate scale, but are not
invariant against scale changes either. Note that for all other SfM results,
scene scale was corrected after relative pose estimation.

Real Images

The refractive and perspective algorithms were also compared using real
images captured in a fairly controlled lab environment. A fish tank of
the size 500 mm� 1000 mm� 500 mm was filled with water and a pair of
cameras (Point Grey firewire) were placed outside the tank viewing the
inside, simulating an underwater housing. A disadvantage of this set-up
is that the cameras are not allowed to move with respect to the glass, i. e.,
once calibrated, the scene inside the tank needs to be moved instead of
moving the cameras around the scene. Therefore, the scene consisted of a
model of the entry to the Abu Simbel temple in Egypt (Figure 5.29, top
left), the size of which was approximately 380 mm� 280 mm� 180 mm. It
was rotated around its vertical axis in front of the cameras at distances
between 300 mm and 750 mm. As can be seen in Figure 5.29 in the upper
left image, the scene was mirrored at the bottom of the tank. Additionally,
the tank itself, but especially small gas bubbles at the tank walls violated
the rigid scene assumption. Therefore, all input images needed to be
roughly segmented.

Images were captured using seven different camera-glass configura-
tions (compare to Figure 4.11). Corresponding results of refractive cal-
ibration have already been presented in Chapter 4. Figure 5.29 shows
the results of the perspective (red) and refractive (blue) SfM algorithm.
It is difficult to determine the ground truth camera poses and, therefore,
measure an absolute error as in case of the synthetic data. However, it
can be seen that in cases a) and f) the perspective reconstruction failed
completely. Additionally, Table 5.3 shows the average differences and stan-
dard deviation in mm between refractive and perspective camera poses.
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Figure 5.25. Results of monocular SfM on fish sequence. Left column: perspective
camera model on underwater images. Right column: refractive camera model on
underwater images. From top to bottom: 3D error in mm, camera translation error
in mm, and reprojection error in px.
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Figure 5.26. Results of monocular SfM on box sequence. Left column: perspective
camera model on underwater images. Right column: refractive camera model on
underwater images. From top to bottom: 3D error in mm, camera translation error
in mm, and reprojection error in px.
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Figure 5.27. Refractive results of monocular SfM on box sequence without scene
scale correction after relative pose estimation. Upper left: 3D error in mm, upper
right: camera translation error in mm, and bottom: reprojection error in px.
Compare these results to the right column in Figure 5.26

It can be seen that larger interface distances and tilt angles tend to cause
larger differences in camera translation between perspective and refraction
reconstructions, indicating the influence of the systematic model error.

In summary, it can be said that the use of the perspective camera model
causes a systematic model error, which can be eliminated by modeling
refraction explicitly. Even though the errors demonstrated here do not
seem to be large, one has to keep in mind that usually longer camera
trajectories are reconstructed, which causes the model error to accumulate
over time. Additionally, the failures of the perspective reconstruction on
Abu Simbel data demonstrates that perspective reconstruction on refractive
data is not always possible.
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Figure 5.28. Results of monocular SfM on orbit sequence. Left column: perspective
camera model on underwater images. Right column: refractive camera model on
underwater images. From top to bottom: 3D error in mm, camera translation error
in mm, and reprojection error in px.
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a)

b) c) d)

e) f) g)

Figure 5.29. The first image shows an exemplary input image. Due to the mirrored
scene in the tank bottom and other features like small air bubbles on the tank
walls, all input images have been roughly segmented (second image). Images a)
to g) show reconstruction results for seven different camera-glass configurations
(Figure 4.11). Blue is the camera trajectory and point cloud from the refractive
reconstruction, red is from perspective reconstruction (refer to Table 5.3 for differ-
ences in mm between perspective and refractive results).

150



5.2. Multi-View-Stereo and 3D Model Generation

Table 5.3. Average distance and standard deviation between perspective and
refractive camera translations for seven different camera-glass configurations. Note
the large differences in trials a) and f), which are cases, where the perspective
reconstruction failed (compare to Figure 5.29).

Trial #imgs d in mm θ in � ∅inmm sd in mm
a 46 7.88 0.34 350.879 312.876
b 52 10.60 0.25 24.791 4.423
c 67 51.95 0.29 26.4426 14.4046
d 65 61.47 7.36 186.571 82.5256
e 76 76.96 29.29 115.596 31.4714
f 87 95.45 0.12 609.384 194.478
g 79 149.39 0.12 79.5105 37.9085

5.2 Multi-View-Stereo and 3D Model Genera-
tion

Once the SfM algorithm determined a sparse 3D point cloud and all cam-
era poses, a dense 3D model can be created. One approach to that is an
adaptation of PMVS (Patch-based Multi-view Stereo) [FP10] to explicitly
incorporate refraction, which has been done in [KWY12b] for two-view
scenes. In order to determine a dense scene, features are detected and
matched and for each successful match, a 3D patch is created. Holes
between the patches are then filled by searching more 2D-2D correspon-
dences between the images, along the epipolar lines in the perspective
case. However, in the refractive case, searching along the epipolar lines is
not possible. Therefore, the whole image space needs to be searched or
epipolar curves need to be determined. Additionally, the method requires
a lot of projections of 3D points into the images, thus the method is infea-
sible for more than ten images. In this thesis, it is therefore proposed to
compute dense depth maps for each image as a reference image, which
are then merged into a 3D model. This approach to compute dense depth
maps has already been published in [JSJK13].
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5.2.1 Refractive Plane Sweep

In order to compute dense depth maps for each image as a reference image
with explicit incorporation of refraction, several constraints need to be
considered for algorithm design. First of all, epipolar geometry is invalid,
hence, images cannot be rectified (refer to [Sze11]), which eliminates all
established methods relying on rectification for multi-view stereo, e. g.,
[Hir01]. As described in Chapter 3, Gedge et al. [GGY11] showed how to
approximate refractive epipolar curves piecewise linearly, however, in the
course of their method many projections of 3D points into refractive images
are required, making the method infeasible for long image sequences.

Therefore, the proposed method is a refractive plane sweep (refer to
[Sze11] for an introduction to the classic Plane Sweep algorithm), which
does not rely on rectified images or epipolar geometry. The idea of the
plane sweep algorithm is to sweep a set of hypothesis planes through
space in front of the reference camera for which the dense depth map is
to be computed (Figure 5.30). For each pixel in the reference camera, a
patch around the pixel is compared to the corresponding patch from other
images determined by the depth hypothesis, thus yielding a cost value
for each depth hypothesis. The lowest cost determines the final depth.
In case of perspective cameras, a homography is used to efficiently warp
entire images from one image into another using the depth hypothesis
plane. This allows to quickly compare all image patches. However, due
to the refractive camera being an nSVP camera, such homographies for
warping are invalid. Additionally, Section 3.2.5 showed that the projection
of 3D points into images is very time-consuming in case of refractive
cameras. Therefore, replacing homography warping by a combination of
back-projection and projection for each pixel in each image and for each
hypothesis plane in case of refractive cameras is infeasible.

Considering all these constraints, the following method is proposed.
Instead of comparing patches in the reference image, comparison is done
by projecting images on the hypothesis planes, which can be achieved by
the following steps for each hypothesis plane:

� project the image corners of the refractive image onto the hypothesis
plane, thereby defining the 3D image corners of what will be called
plane image in the following,
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reference camera

target camera

hypothesis image plane

Figure 5.30. In the proposed plane sweep, the images from reference and target
view are mapped onto the hypothesis plane, where the corners of the reference
view (blue) determine image boundaries. Adapted from [JSJK13].

� apply forward-mapping from the reference image to the plane image, by
projecting all pixel positions onto the plane image in order to determine
colors for each plane image pixel,

� apply forward-mapping to the target view by projecting all pixel posi-
tions of the second image onto the plane image defined for the reference
image, hence determining the image color for each pixel of the second
plane image, and

� for each pixel in the reference image, compare the two corresponding
patches in the two plane images.

Since the described plane image computation is a forward-mapping, the
resulting plane images can be incomplete, i. e., contain holes. In order
to get an efficient implementation of the proposed algorithm, it is im-
plemented on the GPU, which allows not only to efficiently compute all
back-projections using shaders, but also to fill all resulting holes by inter-
polation. GPU shaders are then used to compare corresponding image
patches. In a first sweep, Normalized Cross Correlation (NCC) is used
to measure similarity. Is invariant against changes in lighting caused by
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Figure 5.31. Exemplary plane images of a rendered scene. From left to right: plane
image of reference image, plane image of the target image, and difference image
between the two plane images.

the water. Then, in a second sweep, the depth hypothesis can be used
to correct image colors in the warped images using the model for color
degradation in underwater images (3.1.19) and the Sum of Absolute Dif-
ferences (SAD) can be used in a shiftable window approach to compute
similarity. Good results from the first NCC-sweep are used as weights
for the matching costs in the second sweep and improve robustness. In
case NCC cannot find a clear minimum in the cost volume, SAD can
distinguish finer structures, because it can be implemented as a separable
filter and, therefore, can run efficiently in a shiftable window approach.
Consequently, the second sweep is used to improve results from the first
sweep and fill possible holes in the dense depth map. In order to get
more accurate and robust results, the described plane sweep was used
on three images simultaneously, i. e., the middle image was the reference
image and the other two were used to determine depth. Thus, a three-view
refractive plane sweep scheme is defined that can be used to determine
accurate dense depth maps for each camera with known pose. The re-
quired minimal and maximal depth values for the sweeping distance are
acquired from the sparse 3D point cloud result from SfM. Note that after
computing starting point and direction for each pixel, the underlying
refractive camera model is not utilized in the remainder of the method.
This makes it possible to apply the proposed method to other, general
camera models as long as a ray with starting point and direction can be
computed for each pixel.

Once all refractive depth maps have been computed, they are fused into
a 3D surface model that can be textured. In order to compute the depth
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map fusion, 3D points need to be projected into the images for each pixel
in each image, an operation that is inefficient with the refractive camera
model. However, as described in Section 2.2.3, distortions of nSVP cameras
can be corrected if depth is known. Consequently, using each refractive
dense depth map, it is possible to determine a corresponding perspective
dense depth, where refractive distortions are corrected. Note that the
resulting perspective depth map and texture are not an approximation,
but that due to known scene depth for each pixel, an exact, but perspective
depth map and texture can be computed. The set of perspective depth
maps and textures for all cameras can be used to create the final 3D model.
All depth maps are fused by detecting outliers by the voting scheme
proposed in [PDH+97]. Then, the Marching Cubes algorithm [LC87] can
be applied to build a triangle mesh, which can be textured to get the final
3D model. The transformation of refractive depth maps to perspective
depth maps does not change the resulting model, but eliminates the need
of costly refractive projections of 3D points during depth map fusion, thus
preventing the approach from becoming infeasible.

5.2.2 Experiments

The described plane sweep algorithm has been tested on synthetically
rendered data and on real images captured in an the above described
water tank.

Synthetic Data

In order to test the described plane sweep algorithms on synthetic data,
the two first data sets that have already been used for experiments with
the refractive SfM are used.

Figures 5.32 and 5.33 show results of the described three-view plane
sweep algorithm on synthetic images with known ground truth camera
poses. The proposed method performs better than using the perspective
camera model on underwater images and is completely invariant against
changes in the underwater housing configuration.

The extent of the systematic error introduced by the perspective camera
model can be observed in Figure 5.34, where the resulting depth maps are
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Figure 5.32. Refractive plane sweep results. Results for a close scene with distances
up to 4000 mm. From left to right, top to bottom: exemplary input image and
ground truth depth map of scene, results of perspective model on perspective im-
ages, results of perspective camera on underwater images, and results of refractive
camera on underwater images. Reprint from [JSJK13].

shown in the top row. The result for using the perspective camera model
on underwater images is clearly less accurate than the result for using the
refractive camera model. The extent of the error becomes particularly clear,
when observing the bottom row, where the pixel-wise difference maps
with the ground truth depth map are shown. The planar surface in the
back ground was reconstructed with a systematic error of up to 200 mm
in case of the perspective plane sweep and about 20 mm in the refractive
case. Clearly, the accuracy of the perspective method depends on the pixel
position in the image and the camera-object distance.
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Figure 5.33. Refractive plane sweep results. Results of a scene with distances
between 4000 mm-9000 mm. From left to right, top to bottom: exemplary input
image and ground truth depth map of scene, results of perspective model on
perspective images, results of perspective camera on underwater images, and
results of refractive camera on underwater images. Reprint from [JSJK13].

Real Data

Figure 5.35 shows some exemplary results of depth maps created using
the described refractive plane sweep algorithm. As can be seen, the depth
maps for both cases, the refractive and the perspective accurately show
the scene. Due to the missing ground truth data, the camera poses used
for the plane sweep algorithm are the results from SfM. Consequently,
they already contain the systematic model error introduced by using the
perspective camera model on underwater data. Unfortunately, it is not
possible to quantitatively analyze the error, however, the last column
in Figure 5.35 shows difference images between the refractive and the
perspective depth maps and it is clear that the differences increase with
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Figure 5.34. Exemplary result of refractive plane sweep with housing configuration
d = 100 mm and θ2 = 3�. Top row: ground truth depth map, resulting depth map
using the perspective model, and resulting depth map using the refractive model.
Bottom row: input image, pixel-wise difference to ground truth for perspective
result, and pixel-wise difference to ground truth for refractive result. reprint from
[JSJK13].

increasing camera-object distance.
After determining the depth maps, a textured 3D model can be com-

puted. Figure 5.36 shows the perspectively (red) and refractively (blue)
computed 3D models for test case g). Note that both camera models
yield plausible reconstructions (top row) with seemingly valid geometry.
However, when rendering both models at the same time (bottom row), it
becomes clear that they have a slightly different size and different posi-
tions in space even though the first cameras in both cases are placed at the
world coordinate system origin.

5.3 Summary

In this chapter, the main contribution of this thesis was presented, a
complete system for refractive 3D reconstruction. Components that are
required to be adapted to refraction are relative and absolute pose, non-
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Figure 5.35. Depth estimation results for Abu Simbel model. Top: results for
sequence one. Botton: results for sequence two. From left to right: input image,
resulting perspective depth map, resulting refractive depth map, negated, pixel
wise, difference between perspective and refractive depth maps with differences
between 25 mm - 33 mm for the first sequence and differences on the model
between 15 mm - 27 mm for the second sequence. Reprint from [JSJK13].

Figure 5.36. Abu Simbel model for case g) (refer to Figure 5.29). Top row from
left to right: untextured perspective model, textured perspective model (in red),
untextured refractive model, textured refractive model (in blue). Bottom row:
different views of both models rendered together (red: perspective model, blue:
refractive model).
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linear optimization, especially in the context of bundle adjustment, and
dense depth estimation. In order to develop a time-efficient system, no 3D-
to-2D projections can be used in any component. Experiments compared
different methods for relative and absolute pose and a combination with
a good accuracy and run-time relation was chosen for the final system.
Further experiments with the final system demonstrated that the perspec-
tive algorithm suffers indeed from a systematic model error, when being
applied to underwater images, which can be eliminated successfully by
explicitly modeling refraction during SfM. The same was shown for the
proposed refractive plane sweep algorithm.
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Chapter 6

Applications

The described methods and concepts for dealing with refraction of light
at underwater camera housings have various different applications. This
is mainly due to the increasing popularity and availability of underwater
cameras, but also because of the increasing interest in resources being
mined on or below the seafloor. Additionally, many objects of scientific
interest can be found in the water or on the seafloor. In this chapter, it will
be demonstrated how the methods proposed in Chapters 4 and 5 can be
applied in the areas of Geology and Archaeology.

6.1 Geology

In the area of Geology or more specifically Volcanology, it is of interest
how underwater volcanoes came into existence, for example a specific
volcano that was found near the Cape Verdes [KHDK13]. Unfortunately,
the volcano was found at a depth of 3500 m. Thus, the ROV Kiel 6000
was used to examine it by capturing a dense HDTV video sequence and
a set of images using a stereo rig of SLR cameras. As already mentioned
in the introduction, having to rely on such image data greatly hampers
the way geologists usually do their fieldwork. It is very difficult to get an
impression of the whole volcano when studying hours of video, where the
ROV had to navigate along the volcano flank at a very close distance. By
applying the reconstruction methods proposed in this thesis, parts of the
volcano can be modeled. This allows to detect geological structures like
joints [KHDK13] due to the possibility to interactively view the model,
e. g., to veer away from the closely captured flank in order to gain a better
overview. Input images, captured using the ROV’s HDTV camera and
the final result are shown in Figure 6.1. The underwater camera used for
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Figure 6.1. Top row: exemplary input images chosen as example from 2700 images
captured of an underwater volcano near the Cape Verdes at approximately 3500 m
water depth. Every 25th image was used for the reconstruction. Bottom row from
left to right: reconstructed point cloud with camera path, reconstructed 3D model
with exemplary detected geological feature, here a joint (within marked in red
rectangle) according to [KHDK13]. Input images from Geomar Helmholtz Centre
for Ocean Research.

capturing the images was a deep sea HDTV video camera, i. e., the housing
glass was several centimeters thick. Unfortunately, it cannot be removed
from its housing, thus, calibration in air without the glass is impossible.
In order to reconstruct the model, the camera was calibrated perspectively
using checkerboard images captured in air, thus, the thick glass was
approximated using radial distortion. Then, based on underwater images,
the camera was calibrated refractively. Additionally, grain sizes can be
measured.

Figure 6.2 shows reconstruction results of parts of the volcano that
have been reconstructed refractively using the camera calibration shown
in Chapter 4. As can be seen in the input images, a lot of image regions
exhibit poor contrast due to bad lighting or homogeneous sand, where the
depth maps cannot be computed reliably. This problem can possibly be
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Figure 6.2. Depicted are an exemplary input image, the 3D point cloud and camera
path, and the depth map for four sequences showing parts of the Cape Verdes
underwater volcano. Note that there are image regions with very low contrast due
to darkness and sand, where the depth maps cannot be computed reliably. Input
images from Geomar Helmholtz Centre for Ocean Research.

solved by using a more robust method for finding the minimum depth in
the cost volume than the applied local patch comparison.

A second example can be found in the study of black smokers, hy-
drothermal vents in the ocean floor. Black smokers can for example be
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Figure 6.3. Black smoker reconstruction results. Top row: exemplary input images.
Bottom row from left to right: exemplary dense depth map, 3D point cloud with
camera path, and textured 3D model. Input images from Geomar Helmholtz
Centre for Ocean Research.

found at the middle Atlantic ridge, where new oceanic crust is produced
and magma chambers lie shallow beneath the seafloor. Above such magma
reservoirs, seawater percolates through the heated crust and is heated in
turn, causing an exchange of minerals and metals with the surrounding
country rock. When the water enters the sea through hydrothermal vents,
it has been heated to several hundred degrees Celcius, but is still liquid
because of the high water pressure. Due to the contact with the cold sea-
water, the minerals and metals spontaneously precipitate (“black smoke”)
and slowly accumulate around the seepage: a black smoker develops.
Black smokers are of great interest to Geologists for several reasons. They
are explored as possible deposits of minerals and metals, they serve as a
unique habitat for chemosynthetic communities despite the great water
pressure, and they are surprisingly common: on average, one such vent
field can be found every one hundred kilometers along the axis of the
global mid-oceanic ridge system [BG04]. 3D models allow to measure their
size, but also to determine their volume, a characteristic, which is subject
to constant change. Figure 6.3 shows exemplary reconstruction results of a
black smoker. The input images were captured using the ROV’s Kiel 6000
HDTV video camera.
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Figure 6.4. Reconstruction of an inside wall of a lava lake. Top row: exemplary
input images. Bottom row from left to right: exemplary dense depth map, 3D
point cloud with camera path viewed from the top, and textured 3D model. Input
images from Geomar Helmholtz Centre for Ocean Research.

Figure 6.4 shows the reconstruction of the inside wall of a lava lake,
where decreasing lava levels caused the edges to tear horizontally. It was
also found at the middle Atlantic ridge at at 4�481S, 12�22.51W.

6.2 Archaeology

Typically, the process of archaeological excavations involves a complex
documentation routine because the scientists need to dig to deeper layers,
which requires to remove everything that has been found in the current
layer from the scene. Even in this scenario (in air), the computation of
3D reconstructions is gaining popularity [WSK13] due to the possibility
to measure object sizes even long after the excavation and to document
the finds. Whenever such a find is below the water surface on the seafloor
or lake bottoms, archaeological excavations become far more difficult.
Depending on the water depth, either specially trained, scientific divers
or ROVs are required and in both cases diving time is limited. Especially
in case of larger finds, it is very difficult to convey the find’s significance
and layout to other scientists or even to the general public. For all of
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Figure 6.5. Reconstruction of the Hedvig Sophia shipwreck. Top: exemplary input
images. Middle: color corrected images and depth map. Bottom: resulting model
with color correction. Input images by Florian Huber.

these reasons, the computation of digital 3D models of the finds or even of
different layers during the excavation is of great interest. An example is the
shipwreck of the Hedvig Sophia, which was found in the Baltic Sea in the
Kiel fjord, Germany. In this case, the water depth was about 5 m, so divers
were able to examine the wreck in person. The images were captured
with an SLR camera, confined in a hand-held underwater housing with
a dome port. Since dome ports cause less or even no refractive effects
in ideal settings, no algorithm with explicit consideration of refraction
at dome ports was developed in this thesis. Therefore, the ship wreck
was reconstructed using the traditional perspective approach. However,
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Figure 6.6. Reconstruction results for a human skull. Top row: exemplary input
images. Bottom row from left to right: exemplary dense depth map, 3D point
cloud with reconstructed camera path, and screenshot of textured 3D model. Input
images by Christian Howe.

Table 6.1. Calibration results for dome port camera with the dome being a lens
that corrects the refractive effect.

air water
focal length 605.92 616.75
princ. point (484.29, 258.41)T (489.78, 290.86)T

rad. dist -0.1331, 0.0276 -0.0899, -0.0529

interesting results concerning image color correction can be presented. In
this case, the viewing distance in the Baltic Sea was less than 1 m. The
images show a strong green hue. Even though, texture colors on the final
model (Figure 6.5) were corrected successfully using the simple model
for color correction introduced in Section 3.1.3 in combination with the
proposed calibration routine (Chapter 4).

The input images of the skull and the sloth in Figures 6.6 and 6.7 were
captured in even more difficult circumstances deep inside a cave system in
Yucatan, Mexico. In this case, the scientific divers needed a lot of time, and
hence gas, to even reach their objects of interest. They were not allowed to
remove any finds from the cave system and did not have enough time for a
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Figure 6.7. Results of sloth bones reconstruction. Top row: exemplary input
images. Bottom row from left to right: dense depth map, 3D point cloud with
camera path, and textured 3D model. Input images by Christian Howe.

detailed documentation and investigation. Apart from having to reach the
find in a labyrinthine cave system and to find the way back out, staying at
the scene of interest for longer than a few minutes caused the exhaled gas
to congregate at the cave roof, which in turn caused sediments to trickle
down, and hence to deteriorate visibility. Consequently, the possibility to
reconstruct 3D models of the find were a huge asset in the documentation
process, allowing for example Anthropologists to examine the bones in
detail even though they were not able to dive in person.

Note that in both cases the camera also had a dome port, this time with
the dome being a lens and thus correcting most of the refractive effect
such that the perspective model was not required to even compensate
refraction with focal length, radial distortion and principal point. Thus,
the perspective model can be used for reconstruction, theoretically based
on a calibration using checkerboard images captured in air. Calibration
results are shown in Table 6.1. The underlying checkerboard images were
captured in air and below water and calibrated perspectively. All intrinsic
calibration results, excepting the principal point in y-direction are very
similar. Note that both models were reconstructed using the hierarchical
method described in Section 5.1.5.
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6.3. Summary

6.3 Summary

This chapter pointed out a set of different applications for the methods
and concepts introduced in this thesis. The 3D reconstruction capabilities
can be utilized for different applications in the areas of Geology and
Archaeology.

169





Chapter 7

Conclusion and Future Work

Due to readily available off-the-shelf underwater camera systems, but also
custom made systems in the area of deep-sea robotics, increasing amounts
of images or video footage are captured underwater. These images are
utilized in a multitude of applications that often profit from capabilities in
the area of computer vision. Therefore, this thesis investigated how water
affects image formation and, thus, methods from the area of computer
vision, in this case Structure-from-Motion (SfM) and dense stereo. The two
major effects on image formation, color attenuation and refraction, were
described along with the current state-of-the art in the literature. Especially
the geometric effects of refraction at the underwater housing were found
to require adaptions of classic computer vision methods like SfM and
dense stereo. This is due to the perspective camera model being invalid,
when capturing underwater images, i. e., causing a systematic model
error. The main contribution of this thesis is therefore the elimination
of this systematic model error, by explicitly modeling refraction in a
3D reconstruction approach. Color attenuation is a wavelength – and
depth – depending function and can be corrected if scene distance is
known. Chapter 3 discusses this topic. Chapter 4 is concerned with a
refractive calibration approach, allowing to calibrate interface distance
and a possible interface tilt of underwater camera housings. A detailed
analysis demonstrates the accuracy of the proposed method, but also
reveals how and to what extent the perspective camera model can absorb
part of the model error introduced by refraction. However, synthetic tests
with a stereo camera rig also show that the perspective approximation is
unsatisfactory for underwater distance measurements.

Refractive housing calibration is an essential part of refractive SfM,
which is developed in detail in Chapter 5. Proposed algorithms include
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methods for estimating relative and absolute pose and are compared to
methods previously published in the literature. Particularly important is
the fact that the projection of 3D points into images is computationally
very expensive using the refractive camera model. Therefore, a new error
function for non-linear optimization was proposed that eliminates the
need for point projection, thus allowing to efficiently optimize the scenes
to be reconstructed. Experiments show for the first time that not only does
a systematic model error exist when using the perspective method, but
that explicitly modeling refraction eliminates the systematic error.

Finally, a method for a refractive plane sweep is introduced, in order
to determine dense depth maps allowing to compute textured 3D models.
Experiments showed again that a considerable systematic model error
exists when computing dense depth maps perspectively and that the error
can be eliminated by explicitly modeling refraction. Note that the proposed
method can also be applied to other nSVP cameras like catadioptric camera
systems.

The relevance of researching methods for underwater reconstruction
was pointed out using examples from the fields of Archaeology and
Geology.

Future Work It would be interesting to further address the question
of how to correctly estimate absolute scene scale. In this thesis, it was
shown that the correct scene scale can theoretically be retrieved due to
the calibrated underwater housing interface, however, it fails in presence
of noise in the correspondences. Secondly, the description of the method
for bundle adjustment showed that the camera housing interface can be
optimized if an initial solution is known. However, detailed experiments
that investigate if this method eliminates the need of having to calibrate
the interface using checkerboard images have not been conducted yet. This
would greatly improve the method’s applicability in real world scenarios,
where the capture of checkerboard images in the local water body is at
best impractical. The proposed refractive plane sweep algorithm has the
great advantage that it is applicable not only to refractive cameras, but
also to other general camera models as long as a ray with starting point
and direction can be computed for each pixel. However, so far finding
the best depth for each pixel in the cost volume is only implemented
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as a local method. It would be interesting to extend the algorithm to
global methods and try to improve the robustness of the results. Another
challenge is scalability in the sense of the need to process more than
a few images. For example for one black smoker shown in Chapter 6,
several image sequences each of which contains several thousand images
were captured. The system described and implemented for this thesis
can handle image sequences of several hundred, but not yet thousands
of images. In addition, those image sequences were captured using the
ROV Kiel 6000, which has a set of navigation instruments. Another useful
extension to the described approach is to explicitly use the navigation data
and the resulting camera trajectory in a real time approach to aid robot
navigation. Finally, it would be interesting to see if refractive optical and
acoustic methods can be coupled in a rig, allowing to make use of the
advantages each method has.

173





Appendix A

Appendix

A.1 Radiometric Quantities and Local Illumina-
tion

The following section gives an introduction to radiometric quantities,
which are required for studying underwater light propagation. The intro-
duction is based on [EeK96], [SSC02], [Der92], and [Mob94].

Light can be considered to be a stream photons, i. e., little quantized
packages of energy where each photon has the energy Q measured in
Joule. Photons can interact with matter on a molecular basis, e. g., can
be absorbed or scattered. However, light can also be seen as a wave
with frequency υ. Let c = 2.998e8ms�1 be the speed of light and h =
6.62517e�34Js be Planck’s constant. A a photon’s energy can then be
computed by:

Q = hυ =
hc
λ

, (A.1.1)

thus relating the energy to the photon’s wavelength λ.
In order to model light propagation, transformations between polar

and Euclidean coordinates and the solid angle measured in steradian
(sr) are utilized. Let the three-dimensional vectors (E1, E2, E3) define
a common Euclidean coordinate system with V being a unit vector in
this coordinate system. Let V = V1E1 + V2E2 + V3E3. Then, V can be
equivalently rewritten in polar coordinates as follows:

V(θ, ϕ) =

(
cos�1 V3

tan�1 V2
V1

)
. (A.1.2)
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Table A.1. Radiometric quantities.

Quantity Symbol Unit Description

Radiant
Energy

Q joules
[J] = [ kg

m2s2 ]

quantity of energy transferred indepen-
dently of direction and time

Radiant
Power
(radiant
flux)

F = dQ
dt [J/s] = [W] quantity of energy per second

Radiant
Intensity
(Light
Intensity)

I(θ, ϕ) =
dF(θ,ϕ)
dΩ(θ,ϕ)

[W/sr] a portion of the radiant flux that is prop-
agated through a very small solid angle
around the direction dΩ(θ, ϕ) (this sys-
tem works for point sources only – now a
surface emitting light is considered to be
made up of infinitesimal point sources)

Radiance
(Light Flux)

L(θ, ϕ) =
dI(θ,ϕ)
dAcosθ

[
W

m2sr

]
light intensity per surface area dA de-
pending on the angle θ between the
plane normal and the direction of the
light

Irradiance E = dF
dA

[
W
m2

]
Radiant flux being incident upon a unit
area of a surface (integrated over hemi-
sphere).

Light
Intensity 2

I1 = dF
dAcosθ

W
m2 the flux F transfers a directed beam of

light perpendicularly through an ele-
ment of its cross-section dAcosθ.

It follows: V1
V2
V3

 =

sin θ cos ϕ
sin θ sin ϕ

cos θ

 . (A.1.3)

The solid angle is a projection of a surface onto the unit sphere. Imagine a
surface A with distance r from a sphere’s center. The solid angle can then
be calculated by Ω = A

r2 . Hence, the solid angle of the whole sphere is the
surface of the unit sphere, Ω = 4π and the solid angle of the hemispheres

is Ωhemisphere = 2π =
∫ 2π

0

∫ π
2

0 sin θdθdϕ = 2π
∫ π

2
0 sin θdθ = 2π[� cos θ]

π
2
0 .

Starting with the radiant energy measured in Joule J, radiometry de-
fines the physical quantities depicted in Table A.1.
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Light emission can be computed using the radiance L and integrating
over the hemisphere:

E =
∫

hemisphere
L(ϕ, θ) cos θdΩ (A.1.4)

=
∫ 2π

ϕ=0

∫ π
2

θ=0
L(ϕ, θ) cos θ sin θdθdϕ.

In case L is not depending on the direction, i. e., a Lambert light source is
considered, this can be solved:

E = �L
∫ 2π

ϕ=0

∫ π
2

θ=0
cos θ sin θdθdϕ (A.1.5)

= �2πL
∫ π

2

θ=0
cos θ sin θdθ

= �2πL
[
�

1
2

cos2 θ

] π
2

0

= �2πL(0�
1
2
)

= Lπ

From the definition of radiance follows that the emission of a Lambert
light source is only depending on the angle between the surface normal
and the light source direction.

Note that in Chapter 3 where, the simulator for underwater light prop-
agation is described, point light sources are used, which can be attached to
the ROV. Point light sources are assumed to emit light isotropically in all
directions with a quadratic fall-off in intensity with growing distance from
the light source. Thus, the irradiance, which is incident upon a surface
point and comes from a point light source, is E = I

r2 cos θ with r being the
distance and θ being the angle between surface normal and the direction
of the incoming light.

In order to model reflectance [Sze11], the Bidirectional Reflectance
Distribution Function (BRDF) describes how light is reflected by surfaces
in the scene. It depends on incoming θi and φi and reflected angles θr, φr,
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but also on the light’s wavelength λ:

fr(θi, φi, θr, φr; λ). (A.1.6)

On isotropic surfaces, this can be simplified to:

fr(vi, vr, ñ; λ), (A.1.7)

where vi and vr are incoming and reflected rays and ñ is the normal of the
surface. Reflectance is thus modeled by the incoming irradiance and the
reflectance function fr:

L(vr, λ) = fr(vi, vr, ñ; λ)E(vi, λ). (A.1.8)

This describes the emitted radiance of a surface due to reflection. However,
to determine the overall radiance emitted by a surface, integration over
the contribution of all light sources is needed:

Lr(vr, λ) =
∫

Li(vi, λ) fr(vi, vr, ñ; λ) cos+ θi dvi, (A.1.9)

with cos+ θi = max(cos θi, 0). In case of a finite number of light sources,
the integral is replaced by a sum.

A.1.1 Phong Model

The concepts explained above are utilized in the area of computer graphics
in order to compute artificial illumination of scenes. A common model for
this is the Phong model (introduced in 1975), where reflection at an object
surface is modeled in three components, diffuse, specular, and ambient
parts of light, hence, the BRDF is split into three different functions [Sze11]:

diffuse reflection from surfaces is modeled by a constant function, de-
pending only on wavelength: fd(vi, vr, ñ; λ) = fd(λ). Here, the light is
reflected into all directions.

178



A.1. Radiometric Quantities and Local Illumination

surface

θi θi
θr

ñvi

vr

s

camera

Figure A.1. Phong model specular part.

specular reflection from shiny surfaces is modeled by:

fs(vi, vr, ñ; λ) = ks(λ) cosk θr (A.1.10)

In this case the light is mainly reflected at the same angle under which it
hit the surface. The light reaching the camera is therefore depending on
the angle between the reflected light and the camera ray (Figure A.1).

ambient light is the third component of the Phong model. It describes
light that has been scattered, reflected, and refracted so often, that it
is perceived as surrounding light, which cannot be assigned to any
particular light source:

fa = kaLa(λ). (A.1.11)

Combining all three components for a finite number of light sources yields:

Lr(vr, λ) = kaLa(λ) + kd(λ)∑
i

Li(λ)(v
T
i ñ)+ + ks(λ)∑

i
Li(λ)(v

T
r s)k.

(A.1.12)
In Chapter 3, the simulator uses only the diffuse part of the model. This is
due to the assumption that the underwater scenes are assumed to not have
a lot of materials that have strong specular reflections. The ambient light
is replaced by explicitly modeling backscatter, which allows to compute
a specialized ambient light that is not completely uniform but stronger
closer to the light sources.
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A.2 Camera Optics

In general, it can be said that images capture radiance (Section A.1) coming
from the scene in front of the camera. In order to model that effect, different
illumination models exist, e. g., the Phong model (Section A.1.1) [Sze11].
The entrance pupil model described in Section 2.2.2 already showed that
several light rays are actually captured by one pixel and that if the scene
is not exactly in focus, blobs are imaged instead of sharp images. This
depends on the distance and explains the depth-of-field effect. To make
things worse, the use of lenses causes the light to be refracted, which is
a wavelength-dependent effect called chromatic aberration, i. e., different
colors are focused at slightly different distances. Compound lenses with
different materials and therefore different refractive indices can help to
minimize this effect in modern cameras [Sze11]. Another effect causes the
image brightness to fall off with increasing distance from the center of
the image and is called vignetting. It can have multiple causes, among
them the lens system and the aperture. The fundamental radiometric
relation describes how the radiance L coming from the scene is related to
the irradiance E (refer to Section A.1), which is incident upon the sensor
[Sze11]:

E = L
π

4

(
d
f

)2
cos4θ [Wm�2], (A.2.1)

with d being the aperture diameter, f being the focal length, and θ being
the angle between the main incoming ray and the optical axis.

A.3 Singular Value Decomposition

The Singular Value Decomposition (SVD) is a useful method of decompos-
ing matrices, which has a variety of applications especially in geometry
estimation ([PVT+02], [Sch05], [BS99], and [HZ04]). It can be used to
determine the null-space of a matrix, to solve homogeneous and inho-
mogeneous systems of linear equations, to enforce rank constraints on
matrices, and to compute pseudo-inverses of matrices.
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Definition Let A be an m� n matrix with m ¥ n. Then, the Singular
Value Decomposition of A is:

A = USVT (A.3.1)

with S being an n � n diagonal matrix with singular values ordered
by size (smallest one in the last row), U being an m � n matrix with
orthonormal columns (UTU = In�n, but UUT � Im�m), and V being an
n� n orthonormal matrix. There is a connection between singular values
and eigenvalues for the m� n matrix A:

ATA = VSTUTUSVT = VS2VT (A.3.2)

AAT = USVTVSTUT = U
[

S2 0
0 0

]
UT, (A.3.3)

Thus, the singular values are the square roots of the eigenvalues of the
matrix ATA. In order to determine the null- or image-space, let A be an
m� n matrix or linear function for vector x P Rn:

Ax = y, y P Rm. (A.3.4)

Then, the null- and image spaces of A can be found by:

� for all singular values = 0, the corresponding columns in VT span the
null space of A and

� for all singular values � 0, the corresponding columns in U span the
image space of A.

In addition, the SVD can be used to enforce rank constraints on matrices.
Let A be a 3� 3 matrix that has been determined for example by the
eight-point algorithm for computing the Fundamental matrix from noisy
2D correspondences. The rank-two constraints can be enforced by the
following steps:

� compute SVD: A = USVT,

� set smallest singular value in S to 0 and get S1, and
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� compute A1 = US1VT.

Another application of the SVD is solving linear systems of equations.
For example, let A be an m� n matrix containing measurements that have
recorded data in each row for n variables. Then, the following system can
be solved by computing the SVD of A:

Ax = 0. (A.3.5)

The singular values are then an indicator to the number of possible solu-
tions:

� if no singular value equals 0, no exact solution exists (see Linear-Least-
Squares problems),

� if one singular value equals 0, the corresponding column in V yields
the up-to-scale solution, and

� if more than one singular value equals 0, a multi-dimensional space of
solutions exist. It is spanned by the corresponding column vectors in
V.

In case of the linear system of equations being inhomogeneous, the pseudo
inverse can be computed using the SVD, by inverting the m� n matrix A:

A�1 = (USVT)�1 = VS�1UT. (A.3.6)

In case A is diagonal, inverting the matrix is trivial if all singular values
¡ 0. If not, all non-zero elements are inverted, the others remain zero. The
pseudo inverse can then be used to solve inhomogeneous systems of linear
equations of the form:

Ax = b, (A.3.7)

with b � 0. In practical problems, the data is often noisy, e. g., measure-
ments. Then, the linear system of equations does not have an exact solution
and the SVD can be used to find the best solution in a Linear-Least-Squares
sense. Find:

x, such that r � |Ax� b|2 is minimized. (A.3.8)
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r is the residuum of the solution, which equals the smallest singular value
in case of homogeneous systems of equations.

A.4 Parameter Estimation using Numerical Op-
timization

In this section, two different approaches to parameter optimization are
introduced. The objective in both cases is to use a set of observations
and find a set of parameters describing a model that fits the observations
as closely as possible. The classic case for this is a set of cameras each
parametrized by an individual camera pose, but sharing intrinsic param-
eters common for all cameras. In addition, a set of 3D points in space
exists that has been reconstructed using the cameras. 3D points, camera
poses, and intrinsics are the parameters to be optimized. The model is the
perspective projection, thus the detected feature points in the images are
the observations. Classical bundle adjustment is the process of optimizing
the scene description such that the average (squared) reprojection error
in all images is minimized. This is achieved by applying a method for
non-linear optimization, usually by locally minimizing a linearized ver-
sion of the error function. First, possibilities for such an optimization are
described. Note that in case of camera calibration with known 3D points
(checkerboard) this can be applied as well. Then, a global method that
does not require the computation of derivatives is introduced.

Notations and assumptions:

� parameter vector p P Rn with initialization p0

� observation vector l P Rm, Cll P Rm�m observation covariance matrix

� in general m ¡ n is assumed

� model can be described by:

1. Explicit model constraints of the form:

f : Rn Ñ Rm, f(p) = l with Af =
Bf
Bp

(A.4.1)
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2. Implicit model constraints e. g., refractive checkerboard error:

g : Rn Ñ Rk, g(p, l) = 0 with Ag =
Bg
Bp

P Rk�n Bg =
Bg
Bl
P Rk�m

(A.4.2)

3. Parameter constraints e. g., unit length of normal or quaternions:

h : Rn Ñ Rl , h(p) = 0 with Hh =
Bh
Bp

P Rl�n (A.4.3)

� Functions f, g, h are not necessarily linear.

When parametrizing rotations and 3D points, one has to take care not
to over-parametrize, which yields correlations between parameters, but
also to avoid discontinuities in the parameter space because the approach
is to use an iterative approach on a linearized version of the model. Triggs
et al. [TMHF00] have some suggestions as to how parametrize rotations
and 3D points and how to deal with outliers:

rotations use quaternions with extra h-constraint for unit length or incre-
mental Euler angles RδR = R(I + [δr]x). In this thesis, quaternions
are used for parametrizing rotation during SfM and incremental Euler
angles in the described calibration approach.

3D points if 3D points can be close to infinity (far away points, outliers,
etc.) they can come close to or even move across the plane of infinity
during optimization. In this case it is better to parametrize them as
homogeneous points instead of euclidean vectors. Due to limited
visibility underwater, 3D points are not assumed to be close to infinity
and are hence parametrized as euclidean vectors.

outliers in the input data are not a problem as long as they are reflected as
uncertain in the weight matrix and as long as the input data weight ma-
trix is used in an ML estimation. Better yet is to derive an optimization
scheme that makes explicit use of a robust error function.

In general, it can be summarized that the parameters space must not
have singularities in the relevant area, it needs to be continuous, and
differentiable [HZ04].
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Optimizing a system as described above can be achieved using sev-
eral different approaches, two of which will now be introduced starting
with least squares using derivatives of the error functions, followed by a
derivative-free, global, evolutionary method.

A.4.1 Least Squares

This section is based on [TMHF00], [McG04], and [HZ04].

Linear Least Squares

In case f is linear [HZ04], a matrix Af exists such that Afp = l + v, with
v = Afp � l being the residual that needs to be minimized. Af is an
n�m matrix and is assumed to have full column rank i. e., rank(Af) = n.
In order to optimize the problem using the least squares approach, the
following function is minimized:

argminpΦ = vTv = (Afp� l)T(Afp� l) = (Afp)
T(Afp)� 2(Afp)

Tl + lTl.
(A.4.4)

Setting the derivative of Φ to zero yields the solution:

BΦ

Bp
= 2AT

f Afp� 2AT
f l = 0 (A.4.5)

ñ AT
f Afp = AT

f l (A.4.6)

ñ p = (AT
f Af)

�1AT
f l, (A.4.7)

where either the normal equation system (A.4.6) can be solved or the SVD
can be used to compute the pseudo inverse in (A.4.7).

Linear Least Squares with Consideration of Observation Weights

In case an observation covariance matrix exists (usually diagonal or block
diagonal) [TMHF00], the observations can be weighted according to their
uncertainty. The function to be minimized from (A.4.4) is changed to:

argminpΦ = vTC�1
ll v = (Afp� l)TC�1

ll (Afp� l) (A.4.8)
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= (Afp)
T(C�1

ll Afp)� 2(Afp)
TC�1

ll l + lTC�1
ll l.

Following the derivation as in the linear least squares case above, this
leads to:

AT
f C�1

ll Afp = AT
f C�1

ll l (A.4.9)

p = (AT
f C�1

ll Af)
�1AT

f C�1
ll l.

According to the Gauss-Markov theorem, if p and l are random variables,
rank(Af) = n and the error vector v = Afp� l has zero mean and zero
correlations, then p = (AT

f C�1
ll Af)

�1ATC�1
ll l is the best linear unbiased

estimator (BLUE) for the parameter vector and the covariance matrix of
the parameters is given by cov(p) = σ2(AT

f C�1
ll Af)

�1 with σ2 = 1
m�n (l�

Afp)
TC�1

ll (l�Afp). R = m� n is called redundancy, σ2 is the variance
factor.

In addition, it is possible to derive the covariance matrix of the residu-
als:

Cvv = σ2(Cll �Afcov(p)AT
f ), (A.4.10)

allowing to evaluate the result (compare to [McG04]).

Linear Least Squares with Constraints Between Parameters

In case linear constraints between parameters of the form h(p) = Hhp +
b = 0 exist, the linear least squares approach described above needs to be
extended using Lagrange Multipliers k P Rn [TMHF00]:

argminpΦ = vTv + 2 kT(Hhp + b)︸ ︷︷ ︸
commutative scalar product

. (A.4.11)

In this function, the vector p and the Lagrange Multipliers kT are unknown:

BΦ

Bp
= 2AT

f Afp� 2AT
f l + 2HT

hk = 0 (A.4.12)

BΦ

BkT = Hhp + b = 0,
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which yields the linear system of equations:[
AT

f Af HT
h

Hh 0

] [
p
k

]
=

[
AT

f l
�b

]
. (A.4.13)

Solving the system of equations yields the parameter vector p while at the
same time full-filling the constraints h.

Gradient Descent for Non-Linear Functions

In case of non-linear functions, the solution is found iteratively, start-
ing with an initialization of the parameter vector. argminpΦ = vTv =

(f(p)� l)T(f(p)� l) is the sum of least squares functions that needs to be
minimized iteratively with respect to p. When optimizing parameters p
from a starting point p0 it is possible to determine the gradient of the
function in p0 and using it to determine the direction of steepest descent
along the error function and use this as an update for the parameters
[HZ04]:

λ∆p = �
BΦ

Bpν
λ P R (A.4.14)

pν+1 = pν + λ∆p,

λ is a damping factor determining the step size to be taken in the current
iteration. It can for example be determined using line search. i. e., starting
with λ = 1, it is determined if the parameter update leads to a decrease
in the error function. If not, half the step size is tried. Note that gradient
descent sometimes converges only slowly. An often better choice are
the Newton-Iterations, which can be derived using the same scheme as
described in the linear least squares scheme above.

Non-Linear Least Squares (Gauss-Newton Iterations and Levenberg-
Marquardt Algorithm)

As opposed to the assumption in the linear least squares case, the function
f is now non-linear, resulting in a similar computation only this time an
initial solution p0 needs to be known and is then updated iteratively in
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order to find the best fitting parameter vector p. This is achieved by using
a Taylor approximation of the error function:

f(p + ∆p) � f(p) + Af∆p (A.4.15)

v = f(p) + Af∆p� l

ñ argminpΦ = vTv

= (f(p) + Af∆p� l)T(f(p) + Af∆p� l)

= f(p)Tf(p) + 2(Af∆p)Tf(p) + (Af∆p)T(Af∆p)� 2f(p)Tl� 2(Af∆p)Tl + lTl,

which is again derived in the direction of ∆p and set to zero:

BΦ

B∆p
= 2AT

f f(p) + 2AT
f Af∆p� 2AT

f l = 0, (A.4.16)

and leads to the following iterative updating scheme:

AT
f Af∆p = �AT

f (f(p
ν)� l) (A.4.17)

pν+1 = pν + ∆p.

Note that at this point AT
f Af is the same approximation of the Hessian as

used in Gauss-Newton iterations (compare to [HZ04]), the advantage of
which is that the second derivatives do not have to be computed explicitly
and the approximation is usually positive definite.

In order to stabilize convergence, the Levenberg-Marquardt algorithm
combines gradient descent and Gauss-Newton iterations. This is achieved
by using the augmented normal equations [HZ04]:(

AT
f Af + λI

)
∆p = �AT

f f(pν), (A.4.18)

with λ = 0.001 P R. In case the error function increases, λ is multiplied
by a fixed factor, if it decreases, λ is divided by the same factor [HZ04].
Thus, for large λ, the iterations are essentially a gradient descent, while
for small λ, Gauss-Newton iterations are computed. According to [ESN06]
the identity matrix I can also be substituted by N = diag(AT

f Af), yielding
a set of normal equations with even better convergence.
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Non-Linear Least Squares with Parameter Constraints and Observation
Weights

Combining all cases derived so far yields an optimization scheme that can
deal with non-linear, explicit error functions, weights for observations, and
additional (non-linear) constraints between parameters. First, the error
function and parameter constraints need to be linearized:

f(p + ∆p) � f(p) + Af∆p (A.4.19)

h(p + ∆p) � h(p) + Hh∆p

v = f(p) + Af∆p� l

ñ argminpΦ = vTC�1
ll v = 2kT(h(p) + Hh∆p),

where k is a set of Lagrange-Multipliers. Computing derivatives of Φ in
direction of ∆p and kT and setting them to zero yields:

BΦ

B∆p
= 2AT

f C�1
ll f(p) + 2AT

f C�1
ll Af∆p� 2AT

f C�1
ll l + 2HT

hk = 0 (A.4.20)

BΦ

BkT = 2(h(p) + Hh∆p) = 0,

which directly yields the following linear system of equations:[
AT

f C�1
ll Af HT

h
Hh 0

] [
∆p
k

]
=

[
�AT

f C�1
ll (f(p)� l)
�h(p)

]
. (A.4.21)

Non-Linear Least Squares with Implicit Constraints

Up until now, only explicit constraints of the form f(p) = l were considered.
Sometimes, e. g., when calibrating underwater housings, formulating ex-
plicit constraints is not possible. Therefore, non-linear, implicit constraints
of the form g(p, l) = 0 are now considered:

g(p + ∆p, l + v) � g(p, l) + Ag∆p + Bgv = 0 (A.4.22)

v = �B�1
g g(p, l)� B�1

g Ag∆p

ñ argminpΦ = vTv.
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As before, the derivative in direction of ∆p is computed and set to zero:

BΦ

B∆p
= 2(B�1

g Ag)
T(B�1

g g(p, l)) + 2(B�1
g Ag)

T(B�1
g Ag)∆p = 0 (A.4.23)

ñ AT
g(BgBT

g)
�1Agg(p, l) + AT

g(BgBT
g)
�1Ag∆p = 0

ñ AT
g(BgBT

g)
�1Ag∆p = �AT

g(BgBT
g)
�1Agg(p, l).

Full Iterative Scheme with Implicit Error Function, Observation Weights,
and Parameter Constraints

In this section, all of the above options are combined in order to describe
the most general model with implicit error function, observation uncer-
tainty, and constraints between parameters. In [McG04], this corresponds
to the Gauss-Helmert model for optimization. This time, the error function
is formulated using Lagrange Multipliers for the linearized versions of g
and h.

g(p + ∆p, l + v) � g(p, l) + Ag∆p + Bgv = 0 (A.4.24)

h(p + ∆p) � h(p) + Hh∆p = 0

ñ argminpΦ = vTC�1
ll v + 2kT

g(g(p, l) + Ag∆p + Bgv) + 2kT
h(h(p) + Hh∆p),

where kg are the Lagrange Multipliers for g and kh are the Lagrange
Multipliers for h. In order to minimize Φ, derivatives in the directions v,
∆p, kT

g , and kT
h are computed and set to zero:

1
2
BΦ

Bv
= vTC�1

ll + kT
gBg = 0 ñ v = �CllB

T
gkg (A.4.25)

1
2
BΦ

B∆p
= kT

gAg + kT
hHh = 0 (A.4.26)

1
2
BΦ

BkT
g
= (g(p, h) + Ag∆p + Bgv) = 0 (A.4.27)

ñ kg = (BgCllB
T
g)
�1(g(p, l) + Ag∆p) (A.4.28)

1
2
BΦ

BkT
h
= h(p) + Hh∆p = 0. (A.4.29)
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Algorithm A.1 Gauss-Helmert Model

Initialization l, p0, Cll , step size λ P R

while not converged do
Ag =

Bg
Bpi

Bg =
Bg
Bli

Hh = Bh
Bpi

solve (A.4.30) for ∆p and invert N = AT
g(BgCllBT

g)
�1Ag

v = �CllBT
g(BgCllBT

g)
�1(g(p, l)�Ag∆p) (A.4.25, A.4.28)

Ω = vTC�1
ll v = (g(p, l)�Ag∆p)T(BgCllBT

g)
�1(g(p, l)�Ag∆p)

R = m + size(h)� n
σ0 = Ω

R
r = λr
∆p = λ∆p
pi+1 = pi + ∆p

convergence if
∆pj

N�1
jj
  thres @j   n

end while

After substituting kg in Equation (A.4.26), (A.4.26) and (A.4.29) form the
linear system of equations to be solved in each iteration:[

AT
g(BgCllBT

g)
�1Ag HT

h
Hh 0

] [
∆p
kh

]
=

[
�AT

g(BgCllBT
g)
�1g(p, l)

�h(p)

]
(A.4.30)

Equation (A.4.30) leads to the iterative scheme for estimating the parame-
ters p described in Algorithm A.1. Note that the step size λ and parameter
update can also be computed as described for the Levenberg-Marquardt
algorithm above or using a line search routine.

Implementation Strategies for Non-Linear-Least Squares

When implementing the above described system for non-linear optimiza-
tion, usually huge matrices need to be expected because in case of bundle
adjustment, there can easily be thousands or even hundreds of thousands
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of parameters and even more observations. Therefore, running such a
system is time and memory consuming. However, the large matrices are
usually sparse and of block structure and in the literature, several methods
have been found to deal with those challenges, e. g.,:

� Inversion of matrix with constraints (see [TMHF00] 4.4)

� Schur complement (see [TMHF00] 6.1)

� Using sparseness/block structure of Hessian for example in top-down
methods (see [TMHF00] 6.3.2)

� Multi-Core strategies (see [WACS11])

Compressed Column Form for Sparse Matrices Bundle adjustment in-
volves the handling of very large, but also very sparse matrices, i. e., only
few entries are non-zero. Such sparse matrices can be handled efficiently
[Dav06]. In order to do that, the matrices are saved in the compressed col-
umn form, which allows rapid access of columns, but is time-consuming
when accessing rows. SuiteSparse1 is a software library that was used
in the implementation of bundle adjustment in this thesis. It offers basic
matrix operations as well as the data structure itself.

Schur Complement The sparseness and special block structure of matri-
ces in bundle adjustment problems can be utilized for fast inversion of N
and/or solving the normal equation system. For this purpose, the block
structure of matrix N is depicted in example cases with perspective and
refractive, monocular and stereo cameras and 3D points in Figure 5.19
and Figure 5.20. The upper left block is diagonal and contains the entries
concerning the 3D points. The not-sparse upper middle block contains
entries concerning the cameras, the far right block contains entries arising
from parameter constraints. The overwhelming part of the matrix is thus
comprised of the 3D point block matrix. This upper left part can be in-
verted very efficiently. The Schur complement method (see also [TMHF00])
allows to decompose the matrix into blocks and invert them separately or
reduce the size of the linear system of equations to be solved.

1http://www.cise.ufl.edu/research/sparse/SuiteSparse/
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Note that matrix N is symmetric. This fact will be utilized here,
although it is not necessary for the Schur complement method. Let:

N =

[
A B
BT D

]
D̄ = D� BTA�1B, (A.4.31)

then N can be inverted by:

N�1 =

[
A�1 + A�1BD̄�1BTA�1 �A�1BD̄�1

�D̄�1BTA�1 D̄�1

]
, (A.4.32)

with symmetry of D̄ and A, it follows:

N�1 =

[
A�1 + A�1BD̄�1BTA�1 �A�1BD̄�1

�(A�1BD̄�1)T D̄�1

]
. (A.4.33)

The last pages gave an introduction into optimization using the Gauss-
Helmert model and pointed out some implementation issues. In addition
to implementing the system itself, the derivatives of the error functions
need to be computed as well. Ideally, analytic derivatives are used, but
for example finding the analytic derivative of the virtual camera error
can be involved. Therefore, the analytic derivatives for this thesis were
computed using Maxima2, a software that can manipulate and especially
differentiate symbolic expressions.

A.4.2 Global Evolutionary Optimization (CMA-ES)

The method for optimization in case of classic bundle adjustment as de-
scribed above often fails or delivers slightly incorrect results, in case of
non-convex error functions. A well known example is the ambiguity be-
tween rotation and translation in case of camera calibration. The error
function then has local minima, which the optimization can present as the
final result. In order to circumvent this problem with non-convex error
functions, different optimization strategies are required. In addition, it
is often not possible or at least very involved to derive analytic deriva-
tions of the error function. In this case, either numeric derivations or

2http://maxima.sourceforge.net/
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Figure A.2. CMA-ES algorithm. The green ellipse depicts the error function
with the minimum being the center. The blue square is the initial solution and
the black dots are the results of the fitness function of all samples of the first
population, which are drawn according to the initial parameters variances. Then,
the worst individuals of the population are discarded (red dots) and the parameter
covariance is updated using the remaining samples. A new mean is computed
(third image) and a new population is generated based on the updated covariance
matrix. The images in the bottom row show how those steps are repeated and the
mean gradually converges against the minimum (center of the green ellipse) while
the parameter covariance is learned. Reprint from [JSK12].

derivative-free optimization strategies need to be applied. One example
for an optimization algorithm fulfilling both criteria is CMA-ES, short for
Covariance Matrix Adaptation Evolution Strategy described by Hansen
and Ostermeier in [HO01]. It can optimize non-linear, non-convex error
functions of the form E : Rn Ñ R¡0, given an initial solution p P Rn and
an expected initial deviation from this solution. Starting from this, the
following steps are repeated for each generation. Based on current mean
and deviation, a sample population of the size λ = 4 + floor(3 � log(n)) is
drawn and for each sample, the error function is evaluated. Figure A.2, top
row on the left shows the current mean (blue rectangle) and the evaluated

194



A.4. Parameter Estimation using Numerical Optimization

fitness function values (black dots) for the different individuals of the
current population. Then, in the second image, the worst individuals
are discarded (red dots) and the covariance is updated (black circle). In
addition, a new mean is computed (third image). The covariance and
mean updates are based on current and older iterations. This is the reason
why only so few samples are required in each iteration.

These steps are repeated until convergence, e. g., the mean fitness value
does not change any more or a predefined certainty is reached for all
parameters.

Note that by specifying the initial deviation and population size, the
algorithm can be a global method (large deviations and population size)
or a local method (small deviations and population size). In addition, the
parameter covariance is learned more precisely over the generations, thus
in the end, correlations between parameters and uncertainties of parame-
ters are known and can be analyzed. In contrast to the derivative-based
methods for non-linear least squares described above, the fitness function
E used in CMA-ES can be far more general and especially functions with
explicit and implicit constraints as described above can be used easily.

A.4.3 Robust Error Functions

In practical applications of the above non-linear least squares algorithm,
the data usually contains outliers. In this case, a squared error function is
known to weight outliers strongly. Therefore, it is often advisable to use
error functions that are more robust than the least squares error function
[Ste09, TMHF00]. If it is possible to assume the error in the observations to
have a Gaussian distribution and if the variance of the single observations
is known, the use a covariance matrix as described above already down-
weights erroneous observations. However, in some cases it might help to
replace the least squares error function with another, more robust error
function that does not weigh the outliers as strongly.

In the algorithm described above, the error function was argminpΦ =

vTC�1
ll v, which can be replaced by another function from Table A.2.
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A.4.4 Gauge Freedom

Triggs et al. [TMHF00] contains a chapter about gauge freedom, i. e., the
different possibilities of fixing the reference frame, the global coordinate
system for the reconstruction. That means that basically the bundle
adjustment error function is invariant under similarity transformations,
i. e., translation, rotation, and scale. Additionally, 3D points parametrized
as homogeneous vectors can have an arbitrary scale, which can change
without changing the error function in case of this being the perspective
reprojection error. In order to prevent the optimization method to just
move the scene around within the global coordinate system by similarity
transformation, Gauge constraints are required. This can be achieved
in different ways [McL00]. For this thesis, the first camera was simply
fixed using h constraints as described above, thus fixing the scene in the
world coordinate system. The scene scale was fixed by finding the longest
distance between the first camera and the other camera poses and fixing its
scale. In case of stereo rigs, the rig baseline was fixed to a certain distance.
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Table A.3. Calibration results for the camera’s intrinsics calibrated using checker-
board images captured in air. The true camera baselines were about (�60, 0, 0)T

and (�50, 0, 0)T.

sce-
nario

cam. fl (px, py) r1 r2 Crig

c), e),
f), g)

cam. 1 912.14 (404.97, 317.85) -0.23 0.16
cam. 2 910.45 (396.85, 326.42) -0.23 0.19
rig 912.14 (404.97, 317.85) -0.23 0.16

910.45 (396.85, 326.42) -0.23 0.19 (�60.83,�4.25,�1.53)T

a), b),
d)

cam. 1 909.69 (406.54, 322.10) -0.24 0.26
cam. 2 910.13 (385.88, 318.37) -0.22 0.14
rig 909.69 (406.54, 322.10) -0.24 0.26

910.13 (385.88, 318.37) -0.22 0.14 (�45.27, 0.74,�0.82)T

A.5 Real Data Calibration Results

Chapter 4 showed calibration results for the seven different camera-
interface configurations a) - g). Here more detailed results of calibrating
perspectively are shown. First, Table A.3 gives results for calibrating the
intrinsic parameters in air using the method described in [SBK08]. The first
column shows for which of the seven scenarios (Figure 4.11) the intrinsic
calibration is valid. The true baselines between the two cameras were
about (�60, 0, 0)T and (�50, 0, 0)T in mm, thus the result in the second
case was not very accurate. Table A.4 shows the results of calibrating the
perspective camera model on underwater images for all seven image sets.
The seven cases are ordered such that the interface distance increases. It
is difficult to distinguish dependencies comparable to the results of the
synthetic data, except for the principal point calibration in cases d and
e, which both had a strongly tilted interface. The results on distortion
cannot be compared to the synthetic case directly because the perspective
cameras did not have zero distortion (Table A.3). However, r1 increases
with increasing interface distance.
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Table A.4. Calibration results of perspective calibration on underwater images.

scenario fl (px, py) r1 r2 Crig

a) camera 1 1216.93 (436.02, 328.62) 0.03 0.25
a) camera 2 1219.70 (416.74, 336.31) -0.04 0.46
a) rig 1231.43 (427.68, 346.18) 0.02 0.03

1205.58 (429.14, 321.07) -0.09 0.74 (�49.10,�0.11, 12.70)T

b) camera 1 1215.59 (410.69, 327.21) -0.09 0.28

c) camera 1 1218.36 (393.30, 332.28) -0.10 0.51
c) camera 2 1211.17 (381.86, 332.36) -0.05 0.18
c) rig 1213.08 (411.48, 339.90) -0.11 0.42

1209.05 (400.79, 339.72) -0.06 0.22 (�59.56, 0.18,�1.72)T

d) camera 1 1231.00 (494.76, 327.45) -0.09 0.25
d) camera 2 1221.19 (475.96, 326.94) -0.03 0.07
d) rig 1232.77 (503.66, 315.08) -0.08 0.25

1231.14 (489.49, 305.63) -0.06 0.24 (�50.29,�0.88, 0.89)T

e) camera 1 1287.15 (206.93, 305.27) -0.01 0.06
e) camera 2 1264.86 (190.41, 317.01) -0.11 0.18
e) rig 1293.56 (196.21, 306.69) -0.04 0.17

1263.17 (199.32, 307.82) -0.12 0.18 (�61.60, 0.14, 1.41)T

f) camera 1 1222.31 (395.65, 329.83) -0.11 0.21
f) camera 2 1218.09 (380.51, 333.25) -0.13 0.34
f) rig 1225.24 (390.54, 325.64) -0.11 0.30

1223.16 (384.39, 331.06) -0.12 0.27 (�59.73, 0.13,�1.29)T

g) camera 1 1224.65 (389.66, 324.41) -0.13 -0.02
g) camera 2 1215.26 (371.14, 331.47) -0.16 0.30
g) rig 1223.32 (397.45, 324.04) -0.14 0.13

1216.60 (378.27, 331.00) -0.15 0.23 (�59.61,�0.27, 0.36)T
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A.6 Equation Systems

Table A.5. Coefficients for matrices AE and AR for relative pose using linear
estimation.

variable coefficient variable coefficient

e11 �X̃w1 X̃1w1 r11 X̃w1 M1
1 + M1X̃1w1

e12 �X̃w1 X̃1w2 r12 X̃w1 M1
2 + M1X̃1w2

e13 �X̃w1 X̃1w3 r13 X̃w1 M1
3 + M1X̃1w3

e21 �X̃w2 X̃1w1 r21 X̃w2 M1
1 + M2X̃1w1

e22 �X̃w2 X̃1w2 r22 X̃w2 M1
2 + M2X̃1w2

e23 �X̃w2 X̃1w3 r23 X̃w2 M1
3 + M2X̃1w3

e31 �X̃w3 X̃1w1 r31 X̃w3 M1
1 + M3X̃1w1

e32 �X̃w3 X̃1w2 r32 X̃w3 M1
2 + M3X̃1w2

e33 �X̃w3 X̃1w3 r33 X̃w3 M1
1 + M3X̃1w3

Table A.6. Coefficients in matrix AC for retrieving C after determining the gener-
alized essential matrix.

variable coefficient

C1 �X̃w2 X̃1w1 r31 � X̃w2 X̃1w2 r32 � X̃w2 X̃1w3 r33 + X̃w3 X̃1w1 r21 +

X̃w3 X̃1w2 r22 + X̃w3 X̃1w3 r23
C2 X̃w1 X̃1w1 r31 + X̃w1 X̃1w2 r32 + X̃w1 X̃1w3 r33 � X̃w3 X̃1w1 r11 �

X̃w3 X̃1w2 r12 � X̃w3 X̃1w3 r13
C3 �X̃w1 X̃1w1 r21 � X̃w1 X̃1w2 r22 � X̃w1 X̃1w3 r23 + X̃w2 X̃1w1 r11 +

X̃w2 X̃1w2 r12 + X̃w2 X̃1w3 r13
b1 X̃w1(r11M1

1 + r12M1
2 + r13M1

3) + M1(r11X̃1w1 + r12X̃1w2 +

r13X̃1w3)

b2 X̃w2(r21M1
1 + r22M1

2 + r23M1
3) + M2(r21X̃1w1 + r22X̃1w2 +

r23X̃1w3)

b3 X̃w3(r31M1
1 + r32M1

2 + r33M1
3) + M3(r31X̃1w1 + r32X̃1w2 +

r33X̃1w3)
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Table A.7. Coefficients for building matrix for iterative approach for relative pose
estimation using Equation (5.1.17).

variable coefficient equation 1 coefficient equation 2

r11 0 �X1s1 X̃w3 � κ1X̃1w1 X̃w3

r12 0 �X1s2 X̃w3 � κ1X̃1w2 X̃w3

r13 0 �X1s3 X̃w3 � κ1X̃1w3 X̃w3

r21 X1s1 X̃w3 + κ1X̃1w1 X̃w3 0
r22 X1s2 X̃w3 + κ1X̃1w2 X̃w3 0
r23 X1s3 X̃w3 + κ1X̃1w3 X̃w3 0
r31 �X1s1 X̃w2 � κ1X̃1w1 X̃w2 X1s1 X̃w1 + κ1X̃1w1 X̃w1

r32 �X1s2 X̃w2 � κ1X̃1w2 X̃w2 X1s2 X̃w1 + κ1X̃1w2 X̃w1

r33 �X1s3 X̃w2 � κ1X̃1w3 X̃w2 X1s3 X̃w1 + κ1X̃1w3 X̃w1

C1 0 �X̃w3

C2 X̃w3 0
C3 �X̃w2 X̃w1
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Table A.8. Coefficients for matrix A based on constraints on FRC and POR for
absolute pose estimation.

variable FRC
equation
1

FRC
equation
2

FRC
equation
3

POR
equation 1

r11 0 X̃w3 X �X̃w2 X X(ñ� X̃w)1
r12 0 X̃w3Y �X̃w2Y Y(ñ� X̃w)1
r13 0 X̃w3 Z �X̃w2 Z Z(ñ� X̃w)1
r21 �X̃w3 X 0 X̃w1 Z X(ñ� X̃w)2
r22 �X̃w3Y 0 X̃w1 Z Y(ñ� X̃w)2
r23 �X̃w3 Z 0 X̃w1 Z Z(ñ� X̃w)2
r31 X̃w2 X �X̃w1 X 0 X(ñ� X̃w)3
r32 X̃w2Y �X̃w1Y 0 Y(ñ� X̃w)3
r33 X̃w2 Z �X̃w1 Z 0 Z(ñ� X̃w)3
C1 0 X̃w3 �X̃w1 (ñ� X̃w)1
C2 �X̃w3 0 X̃w1 (ñ� X̃w)2
C3 X̃w2 �X̃w1 0 (ñ� X̃w)3

b X̃w2 Xs3 �
X̃w3 Xs2

X̃w3 Xs1 �
X̃w1 Xs3

X̃w1 Xs2 �
X̃w2 Xs3

0
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