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1 Introduction

1.1 Cancer and Metastasis

In 2000 Hanahan and Weinberg determined six hallmarks of cancer, which are required for 

multistep  development  of  tumors:  sustaining  proliferative  signaling,  evading  growth 

suppression, resisting programmed cell  death, enabling replicative immortality,  inducing 

angiogenesis, activating invasion and metastasis (Hanahan and Weinberg, 2000). During 

the  past  decade,  remarkable  discoveries  and  progress  towards  understanding  each 

hallmark of cancer have been made. Defining tumors not only as masses of proliferating 

cancer cells,  but as complex tissues composed of a variety of  cell  types implicated in 

mutual interaction (Figure 1.1.1), led to revision and modification of formulations originally 

postulated. Therefore, in 2011 Hanahan and Weinberg, next to existing six hallmarks of 

cancer, included four new hallmarks: avoiding immune destruction, genome instability and 

mutation,  deregulating  cellular  energetics  and  tumor-promoting  inflammation  (Hanahan 

and Weinberg, 2011). 

Figure  1.1.1  Tumor-stroma interactions  in  primary  tumor  development.  a  For  intravasation  of 
cancer cells into the bloodstream the presence of perivascular macrophages and BMDCs is necessary.  
Macrophages  and  BMDCs  supply  the  surrounding  tissue  with  proteases  for  vascular  basement 
membrane degradation and endothelial  cell  contact  disruption,  which  is  required for  tumor  cells  to 
escape into the bloodstream, b Migration of cancer cells is accompanied with cross-talk between tumor 
cells,  macrophages,  fibroblast  and  pericytes.  Cancer  cells  produce  CSF1,  which  stimulates 
macrophages to secrete growth factors like e.g. EGF. Furthermore, cancer cells express CXCR4 on 
their  surface,  which is  activated by CXCL12 produced by fibroblasts  and pericytes.  This  cross-talk 
induces tumor cell movement towards macrophages, fibroblasts and pericytes (marked with dashed 
arrows); CSF1 - colony stimulating factor 1,  CXCR4 - C-X-C chemokine receptor 4, CXCL12 - C-X-C 
chemokine 12,  EGF -  epidermal growth factor,  EGFR -  epidermal growth factor receptor,  CSF1R - 
colony-stimulating factor 1 receptor,  BMDC  -  bone marrow derived cells.  Picture was adopted from 
Joyce and Pollard, 2009.
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Most cancer cells fail to undergo metastasis because of one or more deficiencies during 

this process (Fidler, 2003). Metastasis-competent cancer cells should be able to invade 

locally  through  surrounding  extracellular  matrix,  intravasate  into  the  lumina  of  blood 

vessels, survive the rigors of transport through the vasculature and arrest at distant organ 

sites. At distant organs they have to extravasate into the parenchyma, initially survive in 

these  foreign  microenviroments  in  order  to  form  micrometastasis  and  reinitiate  their 

proliferative capability  at  metastatic  sites (Valastyan and Weinberg,  2011).  As the  end 

product of this multistep process – metastasis at distant organ, takes place.

Stephen Paget,  the creator of  the „seed and soil“  hypothesis,  postulated in 1889 that 

metastasis does not occur by chance, but that rather certain tumor cells with metastatic 

activity  („seed“),  choose a  specific  organ („soil“)  for  the growth-enhancing milieu.  This 

hypothesis  survived  until  today,  with  more  profound  explanations  why  metastasis-

competent  cells  have  particular  preferences  towards  specific  tissues.  Nowadays,  it  is 

known  that  gene  expression  in  certain  organs  can  guide  cancer  cells  to  metastatic 

colonization. Breast cancer cells e.g.  metastasize specifically to the lungs (Minn et al., 

2005) or the liver (Tabaries et al., 2011). 

Metastatic seeding can be enhanced by the action of primary tumors, that secrete factors, 

which „prepare“ distant organs for upcoming of cancer cells, thus forming a pre-metastatic 

niche  (Kaplan  et  al.,  2005).  Kaplan  and  colleagues  demonstrated  that  Lewis  Lung 

Carcinoma (LLC) cells, that metastasize to the lungs and occasionally to the liver, and B16 

melanoma cells, which possess a more widely disseminating metastatic potential, secrete 

vascular endothelial growth factor (VEGF) and placental growth factor (PlGF). VEGF and 

PlGF, produced by the primary tumor, can attract bone marrow-derived haematopoietic 

progenitor cells (BMDCs) via engagement of vascular endothelial growth factor receptor 1 

(VEGFR1). BMDCs that are VEGFR1+, can home to tumor-specific pre-metastatic sites 

and form cellular clusters before the arrival of tumor cells. 

1.2 A Disintegrin and Metalloprotease 17 (ADAM17) 

ADAM17  was  characterized  and  cloned  in  1997  as  a  protease  responsible  for  the 

cleavage of the membrane bound form of tumor necrosis factor-alpha, proTNF-α (Black 

and White, 1997), it was there initially termed TNF-α converting enzyme (TACE). It belongs 

2
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to  the  family  of  metalloproteases  with  high  sequence  homology  to  the  snake  venom 

metalloproteinases (SVMPs) (Blobel, 1997).

ADAM17 is  a  type I  transmembrane protein  with  a  domain structure  (Figure  1.2.1).  It 

consists  of  pro-domain,  catalytic,  disintegrin,  membrane proximal,  transmembrane and 

cytoplasmic domains. Each domain has unique functions. ADAM17 pro-domain acts as an 

inhibitor of the protease activity and it is only present when ADAM17 is in an inactive state 

(cleavage of pro-domain is regulated by furin protease in late Golgi compartment). The 

catalytic  domain  contains  the  Zn2+-binding  consensus  motif  H-E-X-G-H-X-X-G-X-X-H-D 

involved in coordinating Zn2+ with histidine residues and creating the active site of  the 

enzyme (Stöcker et al., 1995). A disintegrin domain is important for the interaction with 

integrins while membrane proximal domain is necessary for the recognition of substrates 

and dimerization. The transmembrane domain is responsible for localization in the lipid 

rafts.  Cytoplasmic  domain  is  necessary  for  subcellular  localization,  trafficking  and 

activation via phosphorylation (Scheller et al., 2011). 

Figure 1.2.1 ADAM17 domain structure. ADAM17 has six domains, each with unique functions.  
Picture was modified from Scheller et al., 2011.

ADAM17 has emerged as a sheddase with an extremely broad substrate range. ADAM17 

generates soluble proteins from their membrane-bound precursors in a process termed 

protein ectodomain shedding. ADAM17 is responsible for the membrane release of TNF-α 

and its receptors:  tumor necrosis factor alpha receptor I  and II  (TNFR  I  and TNFR II). 

Furthermore, ADAM17 is responsible for the proteolytic release of epidermal growth factor 

receptor  (EGFR)  ligands  like  e.g.  amphiregulin  (AR),  transforming  growth  factor-alpha 
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(TGF-α), heparin binding-epidermal growth factor (HB-EGF) (Sahin et al., 2004). Soluble 

forms of these proteins have a pivotal role in cell development, inflammation, migration, 

cell proliferation, angiogenesis and invasion (Figure 1.2.2). 

Figure  1.2.2  The implication of  ADAM17 in  inflammatory  and proliferatory  stimuli.  ADAM17 
releases  soluble  ligands  from  the  membrane  surface,  in  the  process  denoted  as  „ectodomain 
shedding“. sTNF-α activates TNFR  I, and induces activation and translocation of transcription factor NF-
κB to the nucleus  where it activates transcription of genes implicated in inflammation. EGFR can be 
activated with different ligands like AR, TGF-α, HB-EGF. Activation of EGFR induces cell survival and 
proliferation via Erk kinase signaling. The generation of sIL-6R is a prerequisite for IL-6 trans-signaling 
(explained in detail in section 1.4). IL-6 trans-signaling activates phosphorylation and dimerization of 
STAT 3 proteins which are important for cell proliferation; ADAM17 - A Disintegrin and Metalloprotease 
17, sTNF-α - soluble tumor necrosis factor alpha, TNFR I - Tumor Necrosis Factor Receptor I, NF-κB - 
Nuclear  Factor  kappa  B,  sIL-6R  -  soluble  interleukin-6  receptor,  STAT3  -  Signal  transducer  and 
activator of transcription 3,  EGF - epidermal growth factor,  TGF-α - transforming growth factor alpha, 
HB-EGF - heparin binding epidermal growth factor, EGFR - epidermal growth factor receptor, Erk 1/2 - 
extracellular-signal-regulated kinases.

ADAM17 deficient mice (ADAM17-/-) showed embryonic lethality between embryonic day 

17.5 and the first day of birth (Peschon et al., 1998). ADAM17 deficient embryos displayed 

defects reminiscent  of  those in TGF-α deficient  mice,  with additional  defects similar to 

those caused by the lack of EGFR. 

Chalaris and colleagues succeeded in generating viable mice with barely detectable levels 

of ADAM17 in all tissues (Chalaris et al., 2010). They introduced a novel strategy called 

exon-induced translational stop (EXITS), which is based on the insertion of an artificial 

exon in  the  ADAM17 gene.  This  extra  exon,  named exon 11a,  was inserted between 
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exon 11 and exon 12. The inserted exon contained an in frame translational stop codon 

and  it  was  flanked  by  splice  donor/acceptor  sites,  which  slightly  deviated  from  the 

canonical consensus sequence. Homozygous mice, denoted as ADAM17ex/ex mice (named 

ex/ex for the  EXITS strategy), expressed only  ~5% of ADAM17 protein in all cell types 

compared to wild type mice. ADAM17ex/ex mice had macroscopically visible eye and hair 

defects,  reminiscent  to  TGF-α knock out  mice.  Interestingly,  ADAM17ex/ex mice showed 

abrogated generation of soluble TNF-α and significantly reduced shedding of TNFR  I and 

TNFR II, indicating impaired ADAM17 activity. 

1.3. ADAM17 in cancer and metastasis

Over  the  last  few years  ADAM17 has  been  associated  with  tumorigenesis  and  tumor 

progression. A very common and vastly investigated type of human lung cancer is Non-

Small Cell Lung Cancer (NSCLC). NSCLC comprises any type of epithelial lung cancer 

except small cell lung carcinoma (SCLC). NSCLC is the leading cause of cancer-related 

deaths in the United States and Europe with very limited treatment options.  The most 

common types of NSCLC are adenocarcinoma, large cell carcinoma and squamous cell 

carcinoma.  In  a  recent  study,  Ni  and  colleagues  could  demonstrate  that  ADAM17 

expression  in  NSCLC correlated  with  patients  poor  prognosis  (Ni  et  al.,  2013).  They 

performed  quantitative  real  time  PCR  to  asses  the  ADAM17  mRNA expression  from 

tissues of 124 patients with clinicopathologically characterized NSCLC. Furthermore, they 

analyzed  the  expression  of  ADAM17  by  immunohistochemistry.  They  discovered  that 

ADAM17 mRNA and protein expression levels in NSCLC tissues were both significantly 

higher than those in non-cancerous tissues. Interestingly, Ni and colleagues demonstrated 

that  high expression of  ADAM17 significantly  correlated  with  tumor  size,  tumor  grade, 

lymph node metastasis, aggressive progression and poor prognosis. They suggested that 

ADAM17  could  be  an  important  molecular  marker  for  predicting  carcinogenesis, 

progression and prognosis of NSCLC.

1.3.1 The impact of ADAM17 on epidermal growth factor receptor (EGFR)

All  EGFR  ligands  are  produced  as  membrane-associated  molecules  that  require 

proteolytic processing by ADAM17 and A Disintegrin and Metalloprotease 10 (ADAM10) for 

the generation of the active forms. Upon binding of its active ligand, EGFR dimerizes and 

becomes activated. EGFR dimerization stimulates its intrinsic intracellular tyrosine kinase 
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activity,  which  leads  to  its  autophosphorylation,  and  subsequently  to  downstream 

activation  of  several  signal  transduction  cascades.  Principally  the  cascades  are  the 

MAPK/Erk (Mitogen-activated protein kinases/Extracellular signal-regulated kinases),  Akt 

(also known as Protein kinase B) and JNK (c-Jun NH(2)-terminal kinase) pathways. These 

pathways are implicated in cell proliferation, survival, migration and invasion. 

EGFR activation  has  been  implicated  in  cancer  development,  growth  and  metastasis 

(Olayioye et al., 2000). Shedding of TGF-α was necessary for tumor formation in a model 

of ovarian cancer (Borrell-Pages et al., 2003). Namely, Borell-Pages and colleagues could 

demonstrate that the transmembrane form of TGF-α (proTGF-α) interacted with, but did 

not activate the EGFR. They made a series of proTGF-α deletion constructs affecting the 

ADAM17 cleavage site and stably transfected these constructs in Chinese hamster ovary 

(CHO) cells. As a control for unimpaired ADAM17 shedding, they stably transfected CHO 

cells with a construct containing wild type proTGF-α. Interestingly, they demonstrated that 

over-expression of  wild  type proTGF-α in CHO cells  allowed vigorous growth  of  CHO 

xenografts  in  nude  mice.  In  contrast,  deletion  constructs  in  CHO  cells  resulted  in 

significantly reduced tumor growth of CHO xenografts in nude mice. They demonstrated 

that ectodomain shedding of proTGF-α by ADAM17 is required for activation of the EGFR 

and  for  maximal  tumor  growth  in  vivo,  thus  indicating  a  crucial  role  for  ADAM17  in 

tumorigenesis.

1.3.2  The implication of ADAM17 in Notch signaling

One of evolutionary the most conserved pathways involved in cell development and cell  

self-renewal is Notch signaling. It has been reported that Notch signaling participates in 

tumor-stroma and tumor-endothelium interactions  in  primary  tumors  and  in  metastasis 

(Pannuti et al., 2010). ADAM17, next to ADAM10, has a prominent role in activation of  

Notch signaling (Brou et al., 2000). There are four transmembrane Notch receptors (Notch-

1, Notch-2, Notch-3 and Notch-4) and five transmembrane ligands (Delta-like [DLL] 1, DLL 

2, DLL 3, DLL 4, Jagged-1 and Jagged-2).

 

Notch  receptors  are  synthesized  as  precursor  proteins,  which  are  subjected  to  three 

proteolytic cleavages. In signal-receiving cells, Notch precursor proteins are processed in 

the  trans-Golgi  apparatus  by  furin-like  convertases  to  generate  a  mature receptor. 
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This  cleavage  is  marked  as  S1  cleavage  (Figure  1.3.1).  The  mature  receptor  is  a 

heterodimer consisting of Notch extracellular and Notch transmembrane parts. The mature 

receptor  is  then  translocated  to  the  cell  membrane  where  it  can  be  engaged  with  

membrane associated ligands from the signal-sending cell. Upon binding of a ligand to the 

Notch receptor, S2 cleavage occurs. 

Interestingly, ADAM10 cleaves Notch in ligand-dependent activation, while ADAM17 can 

cleave Notch receptor in ligand-independent activation (Bozkulak et al., 2009). Bozkulak 

and colleagues demonstrated that ADAM17 cannot cleave Notch-1 in response to ligand. 

Performing coimmunoprecipitation, they demonstrated that ADAM17 does not interact with 

endogenous Notch-1, explaining that perhaps ADAM17 and Notch-1 occupy distinct cell 

surface microdomains.  However,  they were  able to  coimmunoprecipitate ADAM17 with 

ectopically expressed Notch-1. Furthermore, they could show that ADAM17 activation of 

ectopically  expressed Notch-1 did  not  require ligand interaction as well  as ectodomain 

shedding, thus excluding the possibility that ADAM17 cleaves Notch-1 at the cell surface. 

Although it was unclear where in the cell ADAM17 cleaves and activates Notch-1, they 

speculated  that  ADAM17  and  Notch-1  accumulate  at  high  levels  intracellularly.  This 

accumulation could enhance interactions between these two proteins, and subsequently 

activate Notch-1 receptor. 

After  S2  cleavage,  the  extracellular  part  of  Notch  receptor  bound  to  its  ligand  is 

endocytosed in the signal-sending cell and degraded. S3 cleavage, which is mediated by 

γ-secretase  at  the  plasma  membrane,  results  in  the  release  of  the  active  Notch 

Intracellular  Domain  (NICD).  NICD  translocates  into  the  nucleus  where  it  recruits 

transcriptional  regulators,  and forms the “Notch transcriptional  complex”  leading to  the 

transcription  of  genes  like  e.g.  Hairy/Enhancer  and  Split  1  or  5  (Hes  1,  Hes  5)  or 

Hairy/enhancer-of-split related YRPW motif like protein 1 (Hey1). This signaling is known 

as classic Notch signaling. 

7
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Figure  1.3.1  Classic  Notch  signalling.  Notch  precursor  is  processed  in  the  Golgi  apparatus  to 
generate a mature form of Notch (S1 cleavage). After S1 cleavage, mature Notch is translocated to the 
cell surface. After binding a ligand, extracellular part of Notch receptor is cleaved by ADAM10/ADAM17 
(S2 cleavage). Intracellular NICD is generated through the third (S3) cleavage by γ-secretase. NICD 
forms a complex with the transcriptional regulators Co-A, MAM and CSL, and acts as transcription 
factor;  NICD -  Notch Intracellular Domain,  ER -  Endoplasmic Reticulum,  Co-R – transcriptional  co-
repressors,  CSL -  DNA-binding  protein,  MAM -  co-activator.  Picture  was  adopted  from Kopan  and 
Liagan, 2009.

Baumgart and colleagues pointed out that ADAM17 contributes to tumor growth via Notch-

1-mediated up-regulation of EGFR expression in NSCLC (Baumgart et al., 2010). They 

demonstrated that ADAM17 knock down in NSCLC cells abrogated tumor growth in nude 

mice.  Interestingly,  they  managed  to  identify  Notch-1  signaling  as  the  main  pathway 

responsible for such significant tumor reduction in mice. Moreover, knock down of Notch-1 

in tumor cells lead to reduced EGFR expression. They could show that inhibition of Notch-

1 and ADAM17, but not of EGFR, resulted in tumor cell death. Until  now, targeting the 

EGFR  in  NSCLC  was  considered  to  be  a  promising  therapy.  Unfortunately,  the 
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majority  of  NSCLC patients  do  not  respond  to  EGFR targeted  therapy.  The  study  of 

Baumgart et al.  for the first time demonstrated that ADAM17 mediated Notch signaling 

contributes to the expression of EGFR. This finding marked ADAM17 and Notch-1 as a 

promising targets for the treatment of NSCLC.

In  a  recent  publication  Lu  and  colleagues  could  demonstrate  that  for  promotion  of 

colorectal  cancer metastasis angiocrine Notch signaling is necessary (Lu et al.,  2013). 

Hereby, the soluble Notch ligand Jagged-1 is liberated by ADAM17 from the surface of 

endothelial  cells.  Soluble Jagged-1 can interact  with Notch receptor  on the surface of 

cancer cell and stimulate γ-secretase-mediated release of NICD into the cytoplasm. NICD 

activates the transcription of genes necessary for the transformation of cancer cells into 

cancer-stem cells (Figure 1.3.2).  Cancer-stem cells (CSCs) posses properties like self-

renewal,  which drives tumorigenesis and resistance to cell  death, which leads towards 

tumor progression. This finding marked ADAM17 as a potential target for eradication of  

CSCs.

Figure 1.3.2 Angiocrine Notch signaling. Extracellular part of Jagged-1 is released from the surface 
of endothelial cells by ADAM17 mediated cleavage. Soluble Jagged-1 can interact with Notch receptor 
on  the  surface  of  cancer  cell  and  activate  transcription  of  Notch  genes  e.g.  Hes-1  which  drives 
transformation of cancer cell  to cancer stem cell  (CSC);  NICD  -  Notch Intracellular Domain,  CSL  - 
transcriptional repressor, Hes-1 - hairy and enhancer of split-1. Picture taken from Lu et al., 2013.

9



Introduction                                                               

1.4 Nuclear factor-kappa B (NF-κB) in cancer 

According  to  Weinberg  and  Hannahan  there  are  ten  hallmarks  of  cancer  and  the 

transcription factor NF-κB can affect six of them through the transcriptional activation of 

genes  associated  with  angiogenesis,  metastasis,  tumor  promotion,  inflammation, 

suppression of apoptosis and cell proliferation (Baud and Karin, 2009). NF-κB activation 

can induce chemokine and cytokine expression like e.g. CXCL1, CXCL8, TNF-α, IL-6 and 

VEGF, which have been implicated in angiogenesis, or ICAM-1 and VCAM-1, which are 

necessary for cell adhesion. NF-κB can support tumor promotion via induction of matrix 

metalloprotease 2 (MMP2) and MMP9, which influence degradation of extracellular matrix 

and  promotion  of  metastasis.  There  are  different  mechanisms  of  NF-κB  activation  in 

cancer and some of them will be discussed.

The  innate  immune  system is  evolutionary  conserved  and  represents  the  first  line  of 

defense in host protection against invading microbial pathogens. Toll-like receptors (TLR) 

can elicit innate immune response after recognition of microbial components. TLRs are 

expressed on various immune cells,  such as  macrophages,  neutrophils,  dendritic  and 

epithelial cells. TLRs are transmembrane proteins with N-terminal extracellular leucine-rich 

repeats,  which  are  responsible  for  the  recognition  of  pathogen-associated  molecular 

patterns  (PAMPs).  The family  of  TLRs has  13 members  with  each member  detecting 

distinct PAMPs e.g. lipopolysaccharide (LPS) is recognized by TLR4, lipoproteins by TLR2, 

flagelin by TLR5. After recognition of PAMPs, TLRs recruit a set of adaptor proteins in the 

cytoplasm,  and trigger  downstream signaling cascades leading to  activation  of  NF-κB. 

Next to the induction of transcription of pro-inflammatory cytokines and chemokines, NF-

κB influences the upregulation of co-stimulatory molecules essential for T-cell activation 

(Kawai et al., 2007).

Interestingly, in some cases TLRs can be activated in response to tumor cells. 

In a recent report Kim and colleagues demonstrated activation of a TLR2/6 heterodimer in 

response to factors that are secreted by cancer cells (Kim et al., 2009).  They collected 

serum free conditioned media from several murine cancer cell lines, placed them to bone 

marrow derived macrophages (BMDMs) and assessed the production of pro-inflammatory 

cytokines such as TNF-α, IL-6 and IL-1β. Media from two cancer cell lines, Lewis Lung 

Carcinoma (LLC) and the breast cancer (4T1) cell line, stimulated BMDMs and induced 
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secretion of TNF-α and IL-6. Interestingly, Kim and colleagues identified several proteins, 

which are components of the extracellular matrix (ECM) in conditioned medium of LLC 

cells: versican V1, laminin β1, trombospondin 3 and pro-collagen type III α1. To investigate 

the role of these ECM proteins in the metastatic potential in vivo, they generated stable 

knock  down  LLC  cells  with  shRNA specific  to  detected  ECM  components  from  the 

conditioned medium and injected them into wild type mice. Silencing of versican V1 in LLC 

cells, resulted in a significant reduction of tumor growth, while silencing the expression of 

other  ECM  components  did  not  alter  tumor  growth.  To  determine  the  versican  V1 

mechanism of action, they assessed the production of IL-6 upon stimulation of  TLR2-/-, 

TLR3-/-, TLR4-/- and TLR9-/- BMDMs with LLC serum free conditioned medium. They were 

able to show that exclusively TLR2-/- BMDMs did not produce IL-6, thus indicating that IL-6 

production is fully dependent on TLR2 activation. To investigate whether TLR2 signaling 

contributes to LLC induced metastasis, Kim and colleagues injected wild type LLC cells 

into  TLR2-/-  mice.  They  were  able  to  confirm  greater  survival  and  a  significant  tumor 

reduction in TLR2-/- lungs compared to control mice. Interestingly, TNF-α-/- mice displayed a 

markedly reduced mortality and tumor burden after LLC injection as compare to IL-6 -/- and 

wild type mice. This work indicated that TLR2 and TNF-α but not IL-6 from the host are 

crucial for lung metastasis.

Interestingly, Pirinen and colleagues analyzed expression of versican in tumor stroma and 

in cancer cells from 212 patients suffering from NSCLC (Pirinen et al., 2005). They could 

show that high stromal staining for versican correlated with tumor recurrence, lymph node 

metastasis and poor prognosis, while the expression of versican in normal lung tissue was 

rather low. 

Taking into consideration that LLC cells produce pro-metastatic factors e.g. versican V1, 

and  that  expression  of  versican  in  NSCLC  in  the  stroma  strongly  correlates  with 

recurrences  and  poor  prognosis  in  patients  (Isogai  et  al.,  2005),  the  LLC  model  of 

experimental  metastasis  can  give  insight  into  molecular  mechanisms  of  lung  cancer 

development and metastasis.

TNF-α  was  identified  in  1975  as  an  endotoxin-induced  glycoprotein,  which  caused 

haemorrhagic necrosis  of  sarcomas that  had been transplanted into mice (Carswell  et  

al.,1975).  TNF-α  is  produced  predominantly  by  activated  myeloid  cells  and 
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T-lymphocytesas as a membrane bound 26 kDa protein, pro-TNF-α, which is cleaved from 

the membrane surface mainly  by ADAM17.  sTNF-α binds as a homotrimer  to  TNFR  I 

(Figure 1.4.1), while membrane  bound TNF-α binds and activates TNFR II (Grell et al., 

1995). TNFR I is expressed by all  tissue while TNFR  II  is mostly expressed in immune 

cells. The binding of TNF-α to its receptors causes the activation of two major transcription 

factors,  NF-κB and AP-1.  NF-κB is regulated primarily  by phosphorylation of  inhibitory 

proteins,  the  IκBs,  which  retain  NF-κB  in  the  cytoplasm  of  non-stimulated  cells.  In 

response to TNF-α and other agonists, the IκBs are phosphorylated by the IκB kinase 

(IKK) complex, resulting in their ubiquitination, degradation and , subsequently, in nuclear 

translocation  of  the  freed  NF-κB.  AP-1  represents  a  complex  of  transcription  factors 

consisting of Jun, Fos and ATF subunits.

Figure  1.4.1  Complexity  of  TNF-α  signaling.  Soluble  TNF-α  (sTNF-α)  is  generated  by  ADAM17 
mediated cleavage. To be able to interact with and activate TNFR I, sTNF-α has to form homotrimers. 
Active TNFR I leads to downstream activation of several kinases which induce phosphorylation of NF-
κB  inhibitory  subunit  IκB,  thus  releasing  NF-κB.  Active  NF-κB  translocates  into  the  nucleus  and 
activates transcription of genes; ADAM17  -  A Disintegrin and Metalloprotease 17,  TNFR I  -  Tumor 
Necrosis Factor Receptor I, DD - death domain, TRADD - TNFR I associated death domain containing 
protein,  TRAF2 -  TNFR associated factor  2,  RIP -  receptor  interacting protein,  MEKK1 -  mitogen-
activated  protein  kinase kinase kinase 1,  NF-κB -  Nuclear  Factor  kappa B,  NIK -  NF-κB-inducing 
kinase, IKK - IκB kinase,  IκB - inhibitor of NF-κB. Picture was modified from Palladino et al., 2003. 
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Upon stimulation with TNF-α, various Mitogen activated protein kinases (MAPKs) enter the 

nucleus  to  phosphorylate  DNA-bound  transcription  factors,  like  Jun,  and  induce  AP-1 

activity. The TNF-α promoter itself contains NF-κB and AP-1 binding sites and is a subject  

to positive autoregulation. TNF-α can mediate inflammation in the immune system, which 

is therapeutic if the inflammation is acute, short-term without permanent tissue damage. If 

the inflammation is chronic or long-term, it can cause a damage that is more likely to lead 

to chronic disease such as cancer. Therefore, TNF-α can be defined as a „double-edged 

sword“ cytokine. 

IL-6 is a multifunctional cytokine initially found to be a B-cell differentiation factor which 

induces immunoglobulin production (Muraguchi et al., 1988). Nowadays, it is known that 

IL-6 regulates immune response, acute phase response and inflammation. IL-6 is secreted 

by  various  lymphoid  cell  types  such  as  T-cells,  B-cells,  macrophages  and  monocytes 

(Kishimoto et al, 1995) and its production can be induced by NF-κB activation. On target 

cells, IL-6 in a complex with membrane bound IL-6R interacts with two gp130 molecules 

and  induces  activation  of  JAK/STAT (Janus  kinase/Signal  transducer  and  activator  of 

transcription)  pathway  (Rose-John,  2012). This  is  called  IL-6  classic  signaling  (Figure 

1.4.2). Only few cell  types like hepatocytes, some leukocytes and some epithelial cells 

express membrane bound IL-6R, while gp130 molecule is expressed by all  cells of the 

body. Cells, which do not express IL-6R, are unresponsive to IL-6 alone, since gp130 has 

no affinity to IL-6, but only to its complex with IL-6R. Interestingly, the soluble isoform of 

the  IL-6R  can  be  generated  by  alternative  splicing  or  by  proteolytic  cleavage  of  the 

membrane-bound  precursor.  For  the  constitutive  shedding  of  IL-6R  appears  to  be 

responsible  ADAM10,  while  ADAM17  accounts  for  the  stimulated  shedding  of  IL-6R 

(Matthews et al.,  2003).  sIL-6R can associate with IL-6 and form IL-6/sIL-6R complex, 

which can interact with gp130 molecule, induce its dimerization and subsequently activate 

JAK/STAT pathway. This is called IL-6 trans-signaling (Figure 1.4.2). IL-6 trans-signaling 

drastically enlarges the spectrum of IL-6 target cells.
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Figure 1.4.2 IL-6 classic and trans-signaling.  IL-6 classic signaling is limited to hepatocytes, some 
leukocytes and some epithelial cells. For IL-6 classic signaling engagement of membrane bound IL-6R 
is  required.  Complex  between  IL-6  and  mIL-6R  induces  dimerization  and  activation  of  signal 
-transducing gp130 molecules. IL-6 trans-signaling can be activated in all cell types in the body and it  
requires  engagement  of  soluble  IL-6R.  Complex  between  IL-6  and  sIL-6R  can  activate  signaling 
downstream of dimerized gp130 molecules. IL-6 - interleukin 6, sIL-6R - soluble interleukin 6 receptor, 
mIL-6R – membrane bound interleukin-6 receptor, gp130 - glycoprotein 130. Picture was modified from 
Rose-John, 2012.

In a recent publication, Yi and colleagues demonstrated importance of sIL-6R and IL-6 for 

the growth of cancer-stem cells (CSCs) in NSCLC (Yi et al., 2012). They isolated CSCs 

from H460 NSCLC and assessed proliferation rate and production of sIL-6R and IL-6 in 

their  medium,  compared  to  non-CSC.  CSCs  proliferation  compared  to  non-CSCs 

proliferation, was significantly slower. Since the growth rates of CSCs and non-CSCs were 

substantially different, to be able to compare the amounts of produced sIL-6R and IL-6 

from the cell medium, they normalized concentrations of sIL-6R and IL-6 based on the cell 

numbers.  Normalized concentration of sIL-6R was significantly higher in CSCs than in 

non-CSCs medium, while the concentration of IL-6 was the same in the medium of both 

CSCs  and  non-CSCs.  Interestingly,  blocking  IL-6  or  IL-6R  alone,  or  IL-6  and  IL-6R 

together, resulted in diminished growth of CSCs. The authors concluded that targeting of 

IL-6R and  IL-6  would  be beneficial  for  the  development  of  CSC-targeted lung  cancer 

therapies, and suggested that IL-6R can be a potential CSC marker in NSCLC. However, 

authors  did  not  comment  would  the  inhibition  of  ADAM17  or  ADAM10,  as  IL-6R 

sheddases, influence the growth of CSCs.
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1.5 Immune response in cancer and metastasis

The theory of immune surveillance was introduced in the early 1900s by Ehrlich,  who 

hypothesized that one critical function of the immune system was to detect and eliminate 

tumors from the host. Nowadays, it is known that T-cells are one of the crucial components  

of the immune system that can eliminate tumor cells (Toepfer et al., 2011).

T-cells are type of lymphocytes generated in the primary lymph organs: bone marrow and 

thymus.  They  play  a  central  role  in  cell-mediated  immunity.  T-cell  mediated  immune 

response  begins  in  the  secondary  lymph  organs:  spleen,  lymph  nodes  and  lymphoid 

tissues associated with mucosal surfaces. Secondary lymph organs have specialized T- 

cell  rich zones where naïve T-cells are concentrated. T-cells rest in the spleen for few 

hours and in the lymph nodes for about 1 day, before they leave through the lymphatic 

vessels and reach the bloodstream. From the bloodstream T-cells again enter lymphoid 

organs and, if they are not activated there by antigen presenting cells, repeat the cycle or 

they die by neglect.

T-cells  are  activated  via  their  T-cell  receptor  (TCR).  The  TCR  is  a  protein  complex 

consisting  of  ɑβ  heterodimers,  responsible  for  antigen  recognition,  and  Cluster  of 

Differentiation  3  (CD3)  molecules,  involved  in  intracellular  signaling.  CD3  molecules 

consist of several chains ζ, δ, ε and γ, with intracellular immuno-receptor tyrosine-based 

activation motif (ITAMs) which initiates signal transduction.

TCR binds to antigen peptides presented on two major histocompatibility complex class 

molecules (MHCs), MHC class I and MHC class II, on the surface of antigen presenting-

cells. Professional antigen-presenting cells (APCs) are dendritic cells (DC), macrophages 

and B-cells.  T-cells  have several  subsets,  which are distinguished by different  lineage 

markers and functional activities. CD4+ T-cells recognize antigen in the context of MHC 

class  II  molecules,  which  are  expressed  on professional  APCs.  CD4+ T-cells  produce 

cytokines and are marked as helper T-cells. CD8+ T-cells are activated by antigen peptides 

presented in the context of MHC class I molecules, which are expressed on all nucleated 

cells.  Following  the  recognition  of  peptides  presented  by  tumor  cells  in  MHC class  I 

molecules, activated CD8+ T-cells, named cytotoxic T lymphocytes (CTLs), can efficiently 

destroy  cancer  cells  using  one  of  two  major  apoptotic  pathways:  Ca2+ dependent 
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perforin/granzyme-mediated  apoptosis  or  Ca2+-independent  Fas  ligand/Fas-mediated 

apoptosis. Ca2+ dependent apoptosis is mediated by lytic granules, which contain enzymes 

perforin  and  granzyme  B  and  proteoglycan  serglycin  (Figure  1.5.1).  Granules  are 

transported into target cell as one complex in endocytosed vesicle. In the membrane of 

endocytosed vesicle, perforin forms a pore and enables granzyme B to enter the cytosol of  

target  cell  and  induce  apoptosis  in  caspase-dependent  mechanism.  Ca2+-independent 

apoptosis is initiated by binding of Fas molecule (known as CD95) on the target cell via 

Fas ligand (known as CD95L) on the CTL. Fas molecule is a member of TNF-receptor 

family with intracellular death domain, which initiates caspase-dependent apoptosis after 

binding to Fas ligand.

Figure 1.5.1 Cytotoxic T lymphocyte cytotoxicity. Cytotoxicity of CTL cells can be mediated by two 
distinct  pathways.  One  pathway  is  induced  via  secretion  of  perforin,  which  creates  pores  in  the 
membrane of the target cell, and granzyme B, which induces apoptosis of a target cell. The second 
pathway is via interaction of Fas ligand, on CTL cell, with Fas, on a target cell. This interaction induces 
sequential  caspase  activation,  which  leads  to  apoptosis;  TCR –  T  cell  receptor,  MHC  I –  Major 
histocompatibility complex class I,  CTL – cytotoxic CD8+ T-cell,  CD95 – cluster of differentiation 95, 
CD95L – cluster of differentiation 95 ligand. Picture adopted from Nijkamp and Parnham , 2011.

Peptides  presented by MHC class II molecules, play also an important  role in adaptive 

anti-cancer immunity. MHC class II molecules present peptides, which are recognized by 

CD4+ T-cells.  CD4+ T-cells can improve the capacity of DCs to induce CTLs by cross-

linking  the  co-stimulatory  molecule  CD40  on  DCs  with  the  CD40  ligand  (CD40L)  on 

activated CD4+ T-cells. Besides this, activated CD4+ T-cells can significantly boost cellular 

components of the innate immunity, such as macrophages, by enhanced IFN-γ secretion. 

IFN-γ stimulates higher expression of MHC class I molecules on antigen presenting cells 

thus improving the recognition capacity of CD8+ T-cells.
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Despite  ongoing surveillance by T-cells and other components  of  the immune system, 

tumors develop even in presence of an intact immune system and become eventually 

clinically detectable. 

The contribution of myeloid cells to tumor pathogenesis has been recognized more than 

100 years ago, but only in the last two decades their role in promoting angiogenesis, cell  

invasion and metastasis has been appreciated and explored in detail. Myeloid cells derive 

from bone marrow precursors of granulocytic linage (Jinushi et al., 2013). They consist of 

various types of cells including monocytes, macrophages, dendritic cells and granulocytes. 

Myeloid cells are the most abundant haematopoietic cells in the body, which protect the 

host from pathogens, eliminate dying cells and mediate tissue remodeling. During tumor 

progression, tumor microenvironment recruits myeloid cells and educates them in support 

to  tumorigenicity.  Recruited  myeloid  cells  are  then  converted  into  potent 

immunosuppressive cells, named myeloid-derived suppressor cells (MDSCs). 

Initially, MDSCs were identified in tumor-bearing mice as cells that co-express Cluster of  

Differentiation  11b  (CD11b)  and  granulocyte  marker  Ly6G/Gr1.  CD11b  mediates 

inflammation by regulating leukocyte adhesion and migration and has been implicated in 

several immune processes such as phagocytosis, cell-mediated cytotoxicity, chemotaksis 

and cellular activation. Expression of Ly6G/Gr1 in bone marrow correlates with granulocyte 

differentiation and maturation. However, the physiological role of Ly6G/Gr1, remains still 

unclear. Today, MDSCs are characterized as monocytic MDSCs or as polymorphonuclear/

granulocytic MDSCs. The murine monocytic lineage has CD11b+Gr1lowLy6ChiLy6G-CD49d+ 

phenotype and the murine polymorphonuclear/granulocytic linage has CD11b+Gr1hiLy6Clow

Ly6G+CD49d- phenotype  (Youn  et  al,  2008).  Monocytic  MDSCs,  and  monocytes/ 

macrophages are functionally and phenotipically very distinct. Monocytic MDSCs, but not 

monocytes, are immunosuppressive and unlike monocytes, express high levels of iNOS 

and  Arginase  1  (ARG1).  Granulocytic  MDSCs  and  neutrophils  are  functionally  and 

phenotipically  very  distinct.  Granulocytic  MDSCs,  but  not  neutrophils,  are 

immunosuppressive. Compared with neutrophils, granulocytic MDSCs are less phagocytic, 

have  increased  reactive  oxygen  species  (ROS)  production  and  express  less  C-X-C 

chemokine receptor 1 (CXCR1) and CXCR2. 
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The  main  function  of  both,  monocytic  and  granulocytic  MDSCs,  is  to  suppress  T-cell 

activation and proliferation. This suppression can be achieved via different mechanisms, 

which can be grouped into four classes.

The first mechanism:

Depletion of nutrients required for lymphocytes

L-arginine  (L-Arg)  is  conditionally  essential  amino-acid  for  adult  mammals,  which  is 

metabolized by arginase I, arginase II and inducible nitric oxide synthase (iNOS). At sights  

of  prominent  infiltration  of  MDSCs,  like  wounds  and  tumors,  L-Arg  is  present  in 

exceedingly low concentration in extracellular matrix. This is a consequence of increased 

consumption of L-Arg by infiltrated MDSCs (Albina et al., 1989). In the enzymatic reaction 

mediated by  arginase 1,  L-Arg is  converted  to  urea and L-ornithine.  In  the enzymatic 

reaction mediated by iNOS, L-Arg degradation generates nitric (II)-oxide (NO). Decreased 

concentration of L-Arg and increased concentrations of urea and NO inhibit T-cell function 

and growth through several different mechanisms:

- decreasing the expression of CD3 zeta chain (CD3ζ), which is a component of

TCR (Rodrigues et al., 2002)

- preventing the expression of cell cycle regulators cyclin D3 and cyclin-dependent 

   kinase 4 (CDK4) (Rodriguez et al., 2007)

- inhibiting Major Histocompatibility Complex (MHC) class II expression on antigen 

   presenting cells (Harari et al., 2004)

- inducing T-cell apoptosis (Rivoltini et al., 2002).

The second mechanism:

Generation of oxidative stress

By the combined and cooperative activities of arginase 1 and iNOS in MDSCs, reactive 

oxygen  species  (ROS),  like  peroxynitrite  and  hydrogen  peroxide,  are  produced. 

Interestingly, increased production of ROS has been detected in tumor-bearing mice and 

in patients suffering from cancer (Kusmartsev et al., 2004; Schmielau et al., 2001). In T-

cells  peroxynitrite induces post-translational  modifications of proteins,  like nitration and 

nitrosilation. Nitration and nitrosilation affect amino-acid residues like cysteine, methionine, 

triptophan and tyrosine (Vickers et al., 1999). Modified proteins loose their function, which 

on the end results in impaired cell signaling and apoptosis of T-cells.
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The third mechanism:

Interference of lymphocyte trafficking 

Naïve T-cells circulating in the blood express adhesion molecule L-selectin (CD62L) and 

CC chemokine receptor 7 (CCR7). Ligands present on the endothelial cells will bind to L-

selectin  expressed  by  T-cells.  This  interaction  induces  slowing  lymphocyte  trafficking 

through the blood, their rolling and adhesion on endothelium and extravasation through 

high endothelial venules, into secondary lymph organs. Naive T-lymphocytes, which have 

not  yet  encountered  their  specific  antigen,  need  to  enter  secondary  lymph  nodes  to 

encounter their antigen and to be activated. If the expression of L-selectin on the surface 

of T-cells is diminished or lost, T-cells cannot home to lymph nodes and they become 

unresponsive. Interestingly, L-selectin is cleaved from the cell surface by ADAM17. 

Hanson and colleagues demonstrated that the expression of L-selectin on the surface of T-

cells  inversely  correlated with the MDSCs level  in tumor bearing mice (Hanson et  al., 

2009).  Interestingly,  when  they  performed  FACS  staining  for  internal  and  for  surface 

expression of ADAM17 in leukocytes isolated from the blood of tumor bearing mice, they 

were able to show that both, T-cells and MDSCs, internally expressed ADAM17. However, 

only MDSCs, but not T-cells, expressed ADAM17 on the cell surface. They concluded that 

MDSCs express on their plasma membrane ADAM17 that cleaves the ectodomain of L-

selectin.

The fourth mechanism:

Activation and expansion of Treg cell population

Regulatory T-cells (Treg) is a subpopulation of CD4+ T-cells that maintain tolerance to self 

antigens.  The immune system must be able to discriminate between self and non-self. 

When self/non-self discrimination fails, the immune system destroys cells and tissues of 

the body and as a result causes autoimmune diseases. 

In tumors MDSCs promote the clonal expansion of antigen-specific Treg cells and also 

induce the conversion of naïve CD4+ T-cells into induced Treg cells.

In tumor model of colon carcinoma induced with colon cancer cell line MCA26, Huang and 

colleagues provided the evidence that MDSCs can induce development of Treg, in IFN-γ 

and IL-10 dependent mechanism (Huang et al., 2006). Namely, they isolated MDSCs from 

the spleens of tumor bearing mice and co-cultured them with CD4+ splenocytes. They 

detected significant levels of IL-10 and TGF-β, along with IFN-γ in the cell medium of co-
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cultured cells. IL-10 and TGF-β have been shown to induce the development of Treg cells 

(Seo  et  al.,  2001;  Fu  et  al.,  2004),  but  IFN-γ  was  unknown  actor.  Therefore,  they 

hypothesized that MDSCs can produce IL-10 and TGF-β in response to IFN-γ. To test this 

hypothesis, Huang and colleagues isolated MDSCs from mice with large tumor burdens 

and  cultured  them  in  presence  or  absence  of  IFN-γ.  They  demonstrated  that  the 

expression  of  IL-10  was  detectable  in  presence  of  IFN-γ,  but  not  in  IFN-γ  absence. 

Interestingly, MDSCs produced TGF-β in presence or absence of IFN-γ. 
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2 Aim of this study

It has become increasingly clear that inflammation can enhance tumor growth and tumor 

progression.  ADAM17,  as  primary  sheddase  of  transmembrane  protein  TNF-α  and 

sheddase of  adhesion  molecules,  is  required  for  recruitment  of  immune cells  into  the 

tissue  and  is  implicated  in  inflammatory  responses.  It  is  also  shown  that  the 

metalloprotease  ADAM17  is  responsible  for  cleavage  of  growth  factor  receptors  and 

ligands of EGFR, which are necessary for tumor growth and proliferation.

The aim of  present  study was to  investigate the importance of  ADAM17 in the tumor 

stroma for  metastatic  progression  and  spread.  To  address  this,  we used  Lewis  Lung 

Carcinoma (LLC) cells and ADAM17 hypomorphic mice (ADAM17ex/ex mice) in a model of 

experimental metastasis. In an experimental metastasis model, tumor cells are injected via 

the tail  vain.  This injection allows formation of metastatic lesions in the lungs of mice 

without formation of a primary tumor elsewhere in the body. At different time points we 

analyzed  the thickness  of  alveolar  septa,  infiltration  of  immune  cells,  cytokine  and 

chemokine expression to determine the level of lung damage in control and hypomorphic 

mice.

ADAM17ex/ex mice  revealed  significantly  lower  metastasis  than  ADAM17wt/wt  mice  at  all 

followed time points.  We demonstrated  that ADAM17 in  the  host  lung supports  tumor 

growth via inflammatory and proliferatory stimuli. 
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3 Material and Methods

3.1  Material

3.1.1 Solutions and buffers

TAE buffer (50x)     242 g Tris-HCl

57 ml                     Glacial acetic acid (17.4 M)

18.5 g EDTA

to 1000 ml ddH2O

DNA sample buffer 3 ml                         glycerol

1 ml                         0.5 M EDTA pH 8.0

10 mg          Br-phenolblue

10 mg         xylencyanol

to 10 ml ddH2O

(Ca)3(PO4)2 transfection 

reagens 

2 x                         HBS (precipitation buffer)

2 M                         CaCl2

HBS buffer (2x) 8 g NaCl

0.27g Na2HPO4 x 2H2O

12 g HEPES

to 1 l deionized water

Transfection Medium DMEM with Gln and high Glc

10 % FCS

1 mM                        Sodium Pyruvate

20 mM HEPES
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10 ml   Penicillin/Streptomycin

Lysis buffer      150 mM      NaCl

(Cell  and tissue lysis)   2 mM   EDTA

50 mM      Tris-HCl pH 7.4

1% (w/v) Triton X-100

1% (w/v) NP-40

added freshly: 1 mM  Na3VO4

1 mM   NaF

1 mM     PMSF

1x ABTS Tablets

Erytrocyte lysis buffer 8.29 g    NH4Cl 

1 g   KHCO3

0.372 g EDTA-Na

to 1000 ml ddH2O

Leammli buffer (2x)    4 g SDS

10 g 2-mercaptoethanol

20 g glycerol

4 g Br-phenolblue

125 mM Tris-HCl pH 6.8

to 100ml ddH2O

Running gel (10%)    2.5 ml 1.5 mM Tris-HCl pH 8.8

0.1 ml      10% SDS
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0.1 ml     10% APS

3.3 ml   30% acrylamide mix

4 µl TEMED

4 ml       ddH2O

Stacking gel 1.25 ml 1.5 mM Tris-HCl pH 6.8

0.1 ml      10% SDS

0.1 ml 10% APS

1.7 ml  30% acrylamide mix

 Protein Marker                             Page RulerTM Plus (Thermo Scientific)

SDS Running buffer    25 mM Tris-HCl pH 8.3

250 mM  Glycine

0.1%   SDS

                         

Transfer buffer     25 mM    Tris-HCl pH 8.3

192 mM  Glycine

20 % Methanol

                      

NETG - Blocking  and 150 mM      NaCl

Washing buffer   5 mM   EDTA

50 mM Tris-HCl pH 7.5

0.04%   gelatine

0.02%     Tween 20

Stripping buffer  15g Glycine pH 2.2

0.1g   SDS
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10ml     Tween 20   

Cell culture medium DMEM high glucose

10% FCS

10ml Penicilin/Streptavidin

Flushing medium MEM high glucose (Glutamax)

1 x non-essential amino acids

1 mM Sodium Pyruvate

50 µM β-mercaptoethanol

BMN medium MEM high glucose (Glutamax)

20 % FCS

1 x non-essential amino acids

1mM Sodium Pyruvate

50 µM β-mercaptoethanol

Complete medium  DMEM (Glutamax)

10% FCS

10 ml Penicilin/Streptavidin

50 µM beta-mercaptoethanol

ADAM10 inhibitor 3 µM GI254023X

ADAM17 and ADAM10 
inhibitor

3 µM GW280264X

Bouin's solution 5% acetic acid

9% formaldehyde
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0.9% Picric acid

PBS (1x) 137 mM   NaCl

 2.5 mM KCl

 8.1 mM Na2HPO4

 1.5 mM  KH2PO4  pH 7.2-7.4

Washing buffer  0.05%   Tween-20 in PBS pH 7.2-7.4

Blocking buffer/Reagent       1%    BSA in PBS pH 7.2-7.4

Diluent 

Streptavidin-HRP 1:200      Solution in Blocking buffer

Stop Solution    1.5 M   H2SO4

FACS Blocking solution 50 µl  PBS

per sample 2.5 µl FCS

5 µl FC Block

FACS buffer  per sample 50 µl PBS

2% FCS

                                                                         

3.1.2  Primers

All primers were purchased at Sigma.

Primer 
name

Primer sequence Product 
size (bp)

Tm 
(oC)

Number of 
cycles

Elongation 
time (s)

3' flox_ADAM17 
(genotyp.)

5'-CTTATTATTCTCGTGGTCACC-3' 250/500 52 40 60

5' flox_ADAM17 
(genotyp.)

5'-TATGTGATAGGTGTAATG-3'
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beta actin up 5'-GTGGGGCGCCCCAGGCACCA-3' 500 55 27 30

beta actin down 5'-CTCCTTAATGTCACGCACGATTTC-3'

HES1_fw 5'-AAGCACCTCCGGAACCTGCAGC-3' 609 64 30 33

HES1_rev 5'-AGTGGCCTGAGGCTCTCAGTTCC-3'

DLL1_fw 5'-CCTCGTTCGAGACCTCAAGGGAG-3' 550 65 30 30

DLL1_rev 5'-TAGACGTGTGGGCAGTGCGTGC-3'

IL-6_fw 5'-TCTCTGCAAGAGACTTCCATCCAGT-3' 71 64 31 5

IL-6_rev 5'-AGTAGGGAAGGCCGTGGTTGTCA-3'

TNF-alpha_fw 5'-AGCCCACGTCGTAGCAAACCAC-3' 411 64 28 25

TNF-alpha_rev 5'-TAGACCTGCCGGACTCCGC-3'

ICAM-1_fw 5'-GATCCCTGGGCCTGGTGATGCT-3' 740 66 28 45

ICAM-1_rev 5'-TGTGCTCTCCTGGGTCGGCA-3'

TGF-alpha_fw 5'-GCTACTCGCCAACCGCAGGG-3' 430 65 30 28

TGF-alpha_rev 5'-GCGGAGCTGACAGCAGTGGAT-3'

AR_fw 5'-TCACAGTGCACCTTTGGAAACGAT-3' 153 64 30 10

AR_rev 5'-TCCGGTGTGGCTTGGCAATGA-3'

MMP-9_fw 5'-TGGGCAAAGGCGTCGTGATCC-3' 893 66 29 54

MMP-9_rev 5'-AGGTGAGGGGGCGCCTGTAG-3'

IL-1beta_fw 5'-ACGGACCCCAAAAGATGAAGGGCT-3' 523 66 28 31

IL-1beta_rev 5'-TCCAGCTGCAGGGTGGGTGT-3'

PCNA_fw 5'-GCGTGAACCTCACCAGCATGTCC-3' 640 65 29 34

PCNA_rev 5'-CACGCTGGCATCTCAGGAGCA-3'

cxcl2_fw 5'-CAGGGGCTGTTGTGGCCAGTG-3' 250 66 30 15

cxcl2_rev 5'-CCCAGGCTCCTCCTTTCCAGGT-3'

ccl4_fw 5'-TCGTGGCTGCCTTCTGTGCTC-3' 280 65 29 16

ccl4_rev 5'-CTGAAGTGGCTCCTCCTGCCC-3'

cxcl12_fw 5'-GCTCTGCATCAGTCACGGTAAACCA-
3'

296 65 31 18

cxcl12_rev 5'-TGCCCTTGCATCTCCCACGGA-3'

cx3cl1_fw 5'-GCCTGGCCGCGTTCTTCCAT-3' 170 66 31 11

cx3cl1_rev 5'-CGTCTCCAGGACAATGGCACGC-3'

IL-10_fw 5'-GAGGCGCTGTCATCGATTTCT-3' 724 60 28 44

IL-10_rev 5'-GTTTTCAGGGATGAAGCGGC-3'

EGF_fw 5'-CTGTTGTTGGAGGGAGCGAT-3' 330 60 28 20

EGF_rev 5'-GGGTGACCTACGTCGTTCTG-3'

HGF_fw 5'-TCGGATAGGAGCCACAAGGA-3' 370 60 29 22

HGF_rev 5'-CGAAGGCCTTGCAAGTGAAC-3'

VEGFR_tr1_fw 5'-CCATCTGGGCCAAAGATACC-3' 173 59 30 12

VEGFR_tr1_rev 5'-CTGGGTGTGAGAGGTTCCAC-3'

VEGFR_tr2_fw 5'-AGCTGAGAAAGACTGCAAGGC-3' 547 60 30 31

VEGFR_tr2_rev 5'-GGCCCAGAGGATTTGGAAGAA-3'

cherry_fw 5'-GCTGTCCTTCCCCGAGGGCT-3' 270 66 32 15

cherry_rev 5'-TCGTAGTGGCCGCCGTCCTT-3'
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lego_17sh_fw 5'-
TGGTTAGTACCGGGCCCGCTCTAGAGA
GGGCCTATTTCCCATGATTCCTTC-3'

360 72 30 1200

lego_17sh_rev 5'-
AGCTTATCGATACCGTCGACGTCGACG
AATTCAAAAACCCTTGAAGAATAC-3'

3.1.3 Primary Antibodies

anti-β actin (8H10D10)                  rabbit polyclonal antibody which detects endogenously         

                                                       expressed human β-actin (45kDa) with species     

                                                       crossreactivity to mouse (Cell Signaling, Boston, USA); WB 

                                                       dilution: 1:1000 in NETG buffer    

                                                                                 

anti-STAT3 (124H6)                       mouse monoclonal antibody which detects endogenously   

                                                       expressed human STAT3 (79, 86kDa)  with species     

                                                       crossreactivity to mouse (Cell Signaling, Boston, USA); WB 

                                                       dilution: 1:1000 in NETG buffer 

anti-P-STAT3 (D3A7)                    mouse monoclonal antibody which detects endogenously   

                                                      expressed human STAT3 (79, 86kDa) only when 

                                                      phosphorylated at tyrosine 705  with species crossreactivity 

                                                      to mouse (Cell Signaling, Boston, USA); WB  dilution:

                                                     1:1000  in  NETG buffer        

  

anti-ERK1/2 (L34F12)                mouse monoclonal antibody which detects endogenously   

                                                      expressed human ERK (42, 44kDa)  with species     

                                                      cross-reactivity to mouse (Cell Signaling, Boston, USA); WB 

                                                      dilution: 1:1000 in NETG buffer   

anti-P-ERK1/2 (D1H6G)            mouse monoclonal antibody which detects endogenously   

                                                     expressed human p44 and p42 MAPK Kinase (Erk1 and

                                                     Erk2) when dually phosphorylated at Thr202 and Tyr204 of 

                                                     Erk1 and Thr185 and Tyr187 of Erk2 and singly 

                                                     phosphorylated at Thr202 at Erk1, with species

                                                     crossreactivity to mouse (Cell Signaling, Boston, USA); WB 
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                                                     dilution: 1:1000 in NETG buffer      

                                                    

anti-I-kappaB (L35A5)                mouse monoclonal antibody which detects endogenously 
                                                     expressed human IkappaBα (39kDa)  with species     

                                                     crossreactivity to mouse (Cell Signaling, Boston, USA); WB  

                                                     dilution: 1:1000 in NETG buffer    

   

anti-P-IKK (16A6)                         rabbit monoclonal antibody which detects endogenously   

                                                     expressed human P-IKKa/b only when IKKa phosphorylated  

                                                     at Ser176/180 and IKKb phosphorylated at Ser177/181 

                                                     (85, 87kDa) with species crossreactivity to mouse (Cell 

                                                     Signaling, Boston, USA); WB dilution: 1:1000 in NETG buffer 

anti-ADAM17                              rabbit polyclonal antibody 10.1 which recognizes the catalytic  

                                                    domain was used; kindly provided by Dr Athena Chalaris

                                                           

Secondary antibodies

Secondary  antibodies  were  horseradish-peroxydase  (HRP)-conjugated  and  used  in 
dilution 1:5000 in NETG buffer. They were purchased from Pierce (Rockford, USA).

3.1.4 Recombinant proteins

rm G-CSF                                  recombinant murine Granulocyte Colony Stimulating  

                                                   Factor used in experiments was produced in E.coli

                                                   (Immuno Tools) as a single non-glycosylated polypeptide

                                                   chain with 179 amino acids and molecular mass of 19kDa 

  

rm M-CSF                                  recombinant murine Macrophage Colony Stimulating

                                                   Factor used in experiments was produced in E.coli

                                                  (ImmunoTools) as a disulfide homodimer, non-glycosylated  

                                                   polypeptide chain  with 2 x 156 amino acids and molecular  

                                                   mass of 36.4 kDa

rm TNF-α                                  recombinant murine Tumor Necrosis Factor alpha used in 
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                                                  experiments was produced in E.coli (ImmunoTools) as a

                                                  solubile 156 amino acid protein (17.3 kDa) which

                                                  corresponds to C-terminal extracellular domain of the full 

                                                  lenght transmembrane protein

                        

3.1.5 ELISA (Enzyme Linked Immunosorbent Assay)                                                

TNF-α  (DY410)  and  IL-6  (DY406)  ELISA  kits  were  purchased  from  R&D  Systems 

(Wiesbaden-Nordenstadt, Germany). MCP-1/ccl2 (88-7391) ELISA kit was purchased from 

eBiosciences  (San  Diego,  USA).  ELISA microtiter  plates  were  purchased  at  Thermo 

Scientific, USA.

3.1.6 FACS antibodies

Fc Block                                            rat anti-mouse CD16/CD32 (BD Pharmingen)   

IgG2b k Isotype Control FITC           rat IgG2b, k monoclonal antibody is used as an    

                                                          isotype control immunoglobulin (BD Pharmingen)

anti-Ly6G/Gr1                                    FITC labeled rat anti-mouse Gr1 antibody reacts  

                                                          with mouse Ly6G, a 21-25 kDa protein (eBioscience);  

                                                          FACS dilution 1:100  

anti-Ly6G/Gr1                                    Pe-Cy7 labeled rat ani-mouse Gr1 monoclonal  

                                                          antibody (RB6-8C5) reacts with mouse Ly-6G; a 21- 

                                                          25 kDa  protein (eBioscience); FACS dilution 1:100 

  

F4/80                                                  APC labeled rat anti-mouse F4/80 antibody reacts  

                                                           with mouse F4/80, a 160 kDa glycoprotein  

                                                           (BioLegend) ; FACS dilution 1:100  

                                                    

CD11b                                               FITC labeled rat anti-mouse M1/70 monoclonal  

                                                          antibody reacts with mouse CD11b, a 165-170 kDa  

                                                          integrin alpha M (eBioscience); FACS dilution 1:100
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CD11c                                                FITC labeled rat anti-mouse CD11c (N418)  

                                                           monoclonal antibody reacts with mouse CD11c, the  

                                                          integrin alpha x (eBioscience); FACS dilution 1:100 

anti-TNF-α                                         goat anti-mouse TNF-α monoclonal antibody (Capture  

                                                          antibody from TNF- α ELISA kit, R&D Systems) was  

                                                          used as a primary antibody (dilution 1:100); as the  

                                                          secondary antibody APC labeled anti-goat antibody  

                                                          was used (dilution 1:100) 

                                                         

anti-ADAM17                                     rat anti-mouse ADAM17 antibody against catalitic  

                                                          domain of  ADAM17 was used as a primary antibody;  

                                                          anti-goat APC labeled antibody was used as the  

                                                          secondary antibody, both kindly provided by Dr  

                                                          Ahmad Trad; FACS dilution 1:200

                                                         

3.1.7 Immunohistology                                                        

HE staining                                       Gill3 Hematoxylin (Thermo Scientific, Cheshire, United 

                                                            Kingdom) and Giemsa’s azur eosin methylene blue  

                                                            solution (Merck, Darmstadt, Germany) were used  

                                                            according to manufacture’s instruction

anti-Ly6B.2/G1                                 rat anti-mouse Gr1 monoclonal antibody  

                                                         recognizes Ly-6B.2, a polymorphic 40 kDa antigen 

                                                         expressed by polymorphonuclear cells, but absent on

                                                         resident tissue macrophages (AbDserotec, 

                                                         Duesseldorf, Germany);  dilution 1:200 

  

anti-F4/80                                         rat anti-mouse F4/80 monoclonal antibody recognizes

                                                         Kupffer  cells, Langerhans cells, peritoneal

                                                         macrophages, and splenic red pulp macrophages 

                                                        (Caltag); dilution 1:50  
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anti-PCNA                                       rat anti mouse PCNA monoclonal antibody recognizes

                                                        PCNA p36 protein expressed in proliferating cells 

                                                        (Santa Cruz Biotechnology, Texas, USA); dilution 1:100

3.1.8 Proteome Profiler Antibody Array

For simultaneous profiling of relative levels of multiple cytokines from tissue lysates, the 

Mouse  Cytokine  Array  Panel  A  (R&D  Systems,  Minneapolis,  USA)  was  used.  For 

simultaneous detection of the relative Receptor Tyrosine Kinase (RTK) phosphorylation in 

tissue lysates, the Mouse RTK Kit (R&D Systems, Minneapolis, USA) was used.

3.2 Methods

3.2.1  RNA Isolation

Total RNA from lung tissue was isolated using the NucleoSpin RNA II Kit (Macherey-Nagel 

GmbH,  Dueren,  Germany)  according  to  the  manufacturer's  instructions.  RNA 

concentration was determined using NanoDrop ND-1000 (peqLab Biotechnologie GmbH, 

Germany). For semiquantitative RT-PCR reaction 150 ng of RNA was used for the reverse 

transcription. For real time RT-PCR reaction 500 ng of RNA was used for the reversed 

transcription.  The  first  strand  cDNA  synthesis  was  performed  according  to  the 

manufacturer's instructions (Fisher Scientific GmbH, Schwerte, Germany): 

Template RNA total RNA  150ng-500ng

Primer oligo(dT) 0.5 µg (100pmol)

Master Mix ddH2O To 13 µl

5X reaction buffer 4µl

dNTP  Mix,  10mM 
each

2µl

Revert  Aid 
Transcriptase

1µl

Total volume 20µl

All  components  were  kept  on ice.  Each sample  was mixed with  the  Master  Mix,  and 

incubated at 37oC for 10 min. After this time samples were heated at 60oC for 1 h and the 

reaction was terminated by heating at 70oC for 10 min. 
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For semi-quantitative RT-PCR reaction, the following protocol was used:

cDNA 2 µl

Forward primer (10μM) 0.9 µl

Reverse primer (10μM) 0.9 µl

dNTP (10mM) 0.6 µl

Dream taq polymerase (1U/µl) 0.6 µl

Dream Taq Buffer (10x) 3 µl

ddH2O 22 µl

Total volume 30 µl

3.2.2 shADAM17_pLeGO_C/BSD vector vector

The  expression  plasmid  shADAM17-pLKO.1  containing  a  validated  murine  ADAM17 

targeted shRNA under the control of the human U6 promotor, was obtained from Sigma. 

The  shRNA  cassette  including  the  hU6  promotor  was  PCR  amplified  with  primers 

introducing a 5' Xba I site and 3' Sal I site.

ddH2O 34.5 µl

5 x HF buffer 10 µl

shADAM17pLKO.1 (50 ng) 1 µl

dNTP (10mM) 1 µl

lego_17sh_fw 1.5 µl

lego_17sh_rv 1.5 µl

Phusion Hot Start II Polymerase 0.5 µl

98oC          30 min
98oC          10 min
72oC          20 min     30 cycles
72oC            5 min
4oC                infin.

The resulting PCR product was purified from an agarose gel and Xba I/Sal I digested. 
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To remove the murine U6 promoter, the vector pLeGO-C/BSD was Xba I/Xho I digested 

according to the following protocol:

ddH2O 20 µl

10 x Tango buffer 6 µl

pLEGO-C/BSD (2 µg) 2 µl

Xba I 1 µl

Xho I 1 µl

Total volume 30 µl

PCR  amplific.  product  extracted 
from the gel

46 µl

10 x Tango buffer 12 µl

Xba I 1 µl

Sal I 1 µl

Total volume 60 µl

The digestion products were separated on an agarose gel and the digested vector was 

purified by gel extraction. Digested PCR product and vector were subsequently ligated.

pLEGO-C/BSD 2.5 µl

PCR  amplific.  product  extracted 
from the gel

1 µl

10 x T4 DNA Ligase buffer 2 µl

ddH2O 23.5 µl

T4 DNA Ligase 1 µl

Total volume 30 µl

The final product was termed sh17-pLeGO-C/BSD and verified by sequencing.

3.2.3  Generation of LLC cells with stable ADAM17 knock down

For generation of lentiviral particles following vectors were used:
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Vectors 10 µg/ 10 cm dish PMDLg/pRRE plasmid

5 µg/ 10 cm dish pRSV-Rev plasmid

2 µg/ 10 cm dish phCMV-VSV-G 

15 µg/ 10 cm dish Adam17 pLKO.1-puro

15 µg/ 10 cm dish LeGO-C/BSD

15 µg/ 10 cm dish Sh17-pLeGO-C/BSD

    1)Generation of lentiviral particles

Day 1:

In the afternoon 5 x 106 HEK293T cells were seeded into a 10 cm dish

Day 2:

All the reagents and plasmids were thawed at the room temperature.

Indicated amount of plasmids was diluted in water (437.5 µl) and it was added 62.5 µl of 2 

M CaCl2 solution. The 15ml falcon tube was filled with 500 µl of 2 x HBS and DNA/CaCl2 

solution  was  added  drop  wise  while  blowing  air  through  the  solution  using  a  pasteur 

pipette. This mixture was incubated for 10 – 20 min at room temperature. The medium 

from  the  cells  was  replaced  with  fresh  medium,  containing  25  µM  Chloroquine. 

Subsequently DNA mixture was added, drop wise, to the cells with gentle swirling . Cells 

were incubated for 6 – 12h at 37oC, 5% CO2 and 95% humidity.

Medium was changed 8h later to 8 ml. From this moment on, medium was harvested 

every 12h.

Day 3:

Early

The supernatant (supernatant 1) was harvested and filtered through 0.45 µm or 0.22 µm 

filter into 2 ml tubes. For the second collection, 8 ml of fresh medium was added to the  

supernatant of cells. Virus containing supernatant (supernatant 1) was quickly frozen at 

-80oC.

Late

The supernatant (supernatant 2) was harvested in the same way as supernatant 1 and the 

new 8 ml of fresh medium was added. Successful HEK293T transfection was verified by 

fluorescent microscopy.
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Day 4

Early

The supernatant 3 was harvested, as described above in Day3.

Late

The supernatant 4 was harvested, as described above in Day3.

  

    2) Titration of Lentiviral particles

The titration of Lentiviral particles was performed in the following way:

Day 1 

HEK293T cells, 50 000 cells per well, were seeded in a 24 well plate in a total volme of  

500  µl.  Cells  were  left  2  –  5h  to  attach  and  then  polybrene  was  added  to  a  final 

concentration of 8 µg/ml. Different volumes of viral particles ( 0.1 µl, 1 µl, 10 µl and 100 µl)  

were added in triplicates to the wells. The plate was centrifuged for 1h at 1000g and 24oC.

Day 2

The medium was changed (1 ml per well) to medium without polybrene.

Day 4

Cells were analysed in a BD FACS CantoTM (BD, Heildelberg, Germany) flow cytometer.  

The titer was calculated from the wells showing  5 – 20% of positive cells. 

Titer was calculated according to the formula:

T = N*P/V        T – titer

                        N – number of plated cells

                        V – volume of added supernatants

                        P – proportion of transduced cells

The  supernatants  with  the  best  titer  were  used  for  the  transduction  of  the  LLC  cells  

according to the protocol described above.

After transduction of LLC cells, 10 cells per ml were seeded in a 96 well plate and positive  

clones  were  identified  using  the  fluorescent  microscope.  After  clone  expansion,  the 

expression of ADAM17 was analysed using Western Blot Analysis, and semi-quantitative 

RT-PCR analysis.

3.2.4 Cell culture and cell lines

The murine cell lines LLC (Lewis Lung Carcinoma) and B16F1 (melanoma cell line), both 
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derived  from  C57Bl/6N  mice,  were  purchased  from  CLS  (Eppelheim,  Germany).  The 

human HEK293T cell line was purchased from DSMZ (Braunschweig, Germany). 

All  cell  lines were cultured in the cell  culture medium (see the section 3.1.1) at  37 oC, 

5%CO2  and 95% humidity. At the confluency of 70%-80%, cells were detached from the 

tissue flask using trypsin/EDTA and splited in a ratio 1:5. 

For mice injection LLC and B16F1 cells were prepared according to the following protocol:

1) Cells were detached from the tissue flask and centrifuged at 1200-2000 rpm for 7 
min

2) The cell pellet was resuspended in ice cold 1 x PBS (see the section 3.1.1) and 
cells were adjusted to a final concentration of  5 x 105

 cells per ml 
3) 1ml of  resuspended cells  was pipeted into  each eppendorf  tube,  centrifuged at 

1200-2000 rpm for 7 min and the cell pellet was resuspended in 250μl ice cold 1 x 
PBS for mice injection.

3.2.5 Proliferation assay

Cells were counted and seeded into six well plates to a final concentration of 5 x 10 5
 cells 

per well. Cells were incubated for 4 – 6h  at 37oC, 5% CO2 and 95% humidity in cell culture 

medium (see the section 3.1.1). Subsequently, medium was changed to DMEM without 

FCS and cells were starved over night. The following day, cell were stimulated with rm 

TNF-α (see the section 3.1.4) in the final concentrations of 0.01 ng/ml, 0.03 ng/ml, 0.1 

ng/ml and 0.3 ng/ml. Cells were counted 24h, 48h, 72h and 144h post stimulation.

3.2.6  Protein extraction from tissues and cultured cells

The same lysis buffer was used for the cell and tissue lysis (see the section 3.1.1). For the  

cell  lysis 500μl of a lysis buffer per 5 x 105
 cells was used. Cells were scraped from the 

plate  with  the  cell  scraper,  and  subsequently  transferred  into  eppendorf  tubes  and 
resuspended by pipetting. Lysates were cleared by centrifugation at 13,000 rpm for 10 min 
at 4oC. 30 μl of lysate was mixed with 5x Leammli , boiled at 95oC for 10 min and used for 
the SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently Western Blot 
analysis (see the following section).
For tissue lysis 750 μl of lysis buffer per 40 mg of tissue sample was used. Tissue was 
lysed  for 2 min at 5000 rpm using the Precellys homogenizer (PEQLAB Biotechnologie 
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GMBH, Erlangen, Germany). Lysate was centrifuged on 13,000 rpm for 10 min at 4oC. 
After centrifugation, protein concentration was determined from the supernatant using the 
BCA Protein Assay Kit according to manufacture's instructions (PierceTM , Rockford, USA) 
and 200  μg of protein lysate was used for the SDS-polyacrylamide gel electrophoresis 
(SDS-PAGE) and subsequently Western Blot analysis (see the sections 3.2.7 and 3.2.8).

3.2.7 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)

Proteins  were separated on a polyacrylamide gel,  according  to  ther  molecular  weight, 
using the Mini-Protein III system (BioRad). The gels were run for 90 min at 120 V const. 

3.2.8 Immunoblotting Analysis

After  the proteins were  separated by SDS-PAGE,  they were transferred onto a PVDF 
membrane  (GE  Healthcare,  Uppsala,  Sweden)  using  MINI  TRANSBLOT  apparatus 
(BioRad Laboratories GmbH, München, Germany). After the protein transfer for 90 min at 
100V const, the PVDF membranes were placed into a plastic container in NETG buffer 
(see  the  section  3.1.1)  and  blocked  for  1h  at  room  temperature.  Subsequently,  
membranes were incubated with primary antibody for 1h at room temperature or over night  
at 4oC. The excess of the primary antibody was removed by washing the membrane in 
NETG buffer 3 times for 10 min, after which the membrane was incubated  for 1 h with the 
secondary antibody followed by 3 times washing in NETG. ECL-Plus Western blotting 
Detection Kit  (Piers, Massachusetts, USA) was used for the protein detection with the 
CCD camera system LAS-1000 (Fujifilm, USA).

3.2.9 Generation of  Bone Marrow Derived Neutrophils (BMDNs)

7-11  weeks  old  mice  were  killed  via  cervical  dislocation,  and  femora  and  tibia  were 

dissected.  The  ends  of  the  bones  were  removed  and  the  bone  marrow  was  flushed 

through a 70 μm cell  mesh with  the flushing medium (see the section 3.1.1)  into the 

collection tube. The pellet from the collection tube was resuspended in BMN medium (see 

the section 3.1.1) to a final concentration of 1x106 cells per ml. rm G-CSF (see the section 

3.1.4) was added to a final concentration of 5 ng/ml. Finally, the cells were seeded into the 

24-well plate with 1ml per well.

After 4-5 days additional 500μl of fresh BMN medium was added. Cells were differentiated 

after 9 days. To ascertain the purity of differentiated cells after 9 days, extracellular FACS 
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staining was performed using anti-CD11b and anti-Gr-1 antibodies.

3.2.10 Generation of Bone Marrow Derived Macrophages (BMDMs)

7-11 weeks old  mice were killed via  cervical  dislocation, femura and tibia  bones were 

dissected, the ends of the bones were removed and the bone marrow was flushed with 

5ml of ice cold 1 x PBS (see the section 3.1.1) into a 50 ml falcon tube. Cell suspension  

was passed through a 70 μm cell strainer and subsequently centrifuged at 300 x g for 10 

min at  40C. Supernatant  was discarded.  The pellet  was resuspended in 5 ml  ice cold 

erythrocyte lysis buffer and incubated for 5 min at 40C. After incubation, 45 ml of PBS was 

added and centrifuged as above. Cell pellet was resuspended into the complete medium 

(see the section 3.1.1) supplemented with rm M-CSF in final concentration of 50 ng/ml,  

and cell density was adjusted to 7.5 x 105  cells per ml. Cells were seeded into 10 cm 

bacteria dishes, for less adherence, and cultured for 3 days. After 3 days, 5 ml of complete 

medium was added. After 5-6 days macrophages were differentiated and ready to use. To 

detach macrophages from the plate, 1-2 ml of 1% EDTA in 1 x PBS was used and the  

plates were placed at 370C in the incubator for 25 min. After 25 min detached cells were 

resuspended into 10 ml of ice cold 1 x PBS and centrifuged at 300 x g for 10 min at 4 0C. 

Cell were resuspended in the complete medium (see the section 3.1.1) and plated for the 

experiment.

3.2.11 Enzyme Linked Immunosorbent Assay (ELISA)

To determine the  precise  concentration  of  the  protein  of  interest  from the  cell  culture 

supernatants or of the tissue homogenates, the sandwich ELISA was used. The ELISA 

microtiter plate was coated with 100μl of Capture Antibody diluted in PBS according to the 

manufacture's protocol. Plate was sealed and incubated overnight at room temperature. 

The following day, the excess of the Capture Antibody was removed by washing 3-5 times 

in the Washing buffer (section 3.1.1) with complete removal of liquid at each step. The 

plate was blocked with the 300μl Reagent Diluent for 1h at room temperature. Plates were 
washed 3-5 times with Washing buffer to remove the excess of Capture antibody. After 
aspiration, 100μl of sample or Standard, diluted in the Reagent Diluent according to the 
manufacture’s recommendation, was added to the wells (each sample was measured in 
the  duplicate  or  triplicate)  and  incubated  for  2h  at  the  room  temperature.  The 
aspiration/wash step was repeated. Detection Antibody was diluted in Reagent Diluent 
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according to the manufacture's protocol and 100μl was added to each well and incubated 
for 2h at the room temperature. Streptavidin conjugated to horseradish-peroxidase and 
peroxidase  substrate  (Roche,  Mannheim,  Germany)  were  used  for  the  subsequent 
detection in the colorimetric reaction. Absorption was measured at 475nm in an ELISA 
plate reader TECAN RainBow (Tecan GmbH, Carlsheim, Germany).

3.2.12 Animal breedings

Hypomorphic male C57Bl/6N ADAM17ex/ex mice (Chalaris 2010), ADAM17wt/wt
 littermates, 

sgp130Fc transgenic mice and C57Bl/6N (Charles River, Sulzfeld, Germany) male mice 
were used in this study. ADAM17ex/ex mice were backcrossed to the C57Bl/6N background 
9 times. sgp130 mice were backcrossed to the C57Bl/6N background 8 times. Mice were 
maintained at a 12 hour light-dark cycle under standard conditions, provided with food and 
water ad libitum.

3.2.13 Model of experimental metastasis

For all animal experiments male mice 9-12 weeks of age were used. All experiments were 

performed according to the German guidelines for animal care and protection.
Hypomorphic ADAM17ex/ex

 mice and ADAM17wt/wt
 littermates, sgp130 and C57Bl/6N mice 

were  injected  through  the  tail  vain  with  LLC  or  B16F1  cells,  prepared  as  previously 
described (see the section 3.2.4). Mice were sacrificed via cervical dislocation at 20h, 7, 
14 and 21 days post injection, organs were excised and frozen in liquid nitrogen for further 
analysis. 

3.2.14  FACS analysis of tumor bearing lung tissue

The lungs were excised, cut in pieces and digested in 5 ml of 0.1% Collagenase Type IV 
(Serva, Electrophoresis GmbH, Heidelberg, Germany) diluted in PBS at room temperature 
for 2h. A single cell  suspension was generated by sucking through a 26G needle and 
passing through 70 μm cell strainer (BD Falcon, Germany). Cells were centrifuged for 8 
min at 400 g at 4oC, the pellet was resuspended in 5 ml of erythrocyte lysis buffer (see the 
section 3.1.1) and incubated at 37oC for 5 min. Cell lysis was stopped by adding a 10 fold 
volume  of  ice  cold  1  X  PBS.  After  sedimentation  for  8  min  at  400  g,  cells  were 
resuspended in the FACS buffer, stained and analysed with Flow Cytometer BD FACS 
CantoTM (BD, Heidelberg, Germany).
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3.2.15 Immunohistochemistry

Tissue samples  were  incubated in  4% formaldehyde  over  night  at  40C. The next  day 

samples were washed and kept in water for 3-5 hours at room temperature. After washing, 

they were incubated in 50% ethanol over night, and then it was proceeded with the alcohol 

dehydration series according to the protocol:

1 70% ethanol 60 min

2 96% ethanol I 30 min

4 100% ethanol I 60 min

5 100% ethanol II 30 min

6 Xylol I 120 min

7 Xylol II 120 min

8 Paraffin I 30 min

9 Paraffin II 60 min or over night

10 Paraffin III 60 min

After paraffin embedding, sections were cut to 5 μm thickness and stained according to the 

following protocols:

HE  staining -  Tissue  sections  were  incubated  for  10  min  in  Gill3  Hematoxylin, 

differentiated in 0.5% acetic acid, rinsed in tap water and counterstained with Giemsa's 

azur eosin methylene blue solution.

Neutrophil  and  Macrophage  stainings -  Tissue  sections  were  deparaffined  and 

rehydrated according to the protocol:

1 Xylol 3 x 5 min

2 100% Ethanol 2 x 5 min

3 95% Ethanol 2 x 5 min

4 70% Ethanol 1 x 5 min

5 ddH2O by choice

After  rehydratation,  peroxidase  was blocked with  H2O2 for  10  min,  and  sections  were 

washed several times first in distilled water and then in PBS. Sections were demasked 

with  proteinase K (1µl/1ml) digestion for 5 min, and subsequently washed with distilled 

water and PBS. 

41



Material and Methods                                                           

Antibodies (see the section 3.1.7) were diluted in the Sample Diluent (Dako, Glostrup, 

Denmark) with 1:100 or 1:200 dilution for anti-Gr1 and 1:50 for anti-F4/80 over night at 

4oC.  After  incubation  with  biotinylated  polyclonal  rabbit  anti-rat  antibody  (Dako, 

Glostrup,Denmark)  and  EnVision-HRP  (Dako,  Glostrup,  Denmark),  the  signal  was 

developed with AEC Substrate (Dako, Glostrup, Denmark). Samples were counterstained 

with Shandon Gill3 Hematoxylin.

PCNA  staining - Cut sections were treated the same way as described in the section 
3.2.15 to the step of staining with the primary antibody. Antibody was diluted in the Sample 
Diluent (Dako, Glostrup, Denmark) with 1:100 dilution over night at  40C. After incubation 
with  biotinylated  polyclonal  rabbit  anti-rat  antibody  (Dako,  Glostrup,  Denmark)  and 
EnVision-HRP (Dako, Glostrup, Denmark), the signal was developed with AEC Substrate 
(Dako,  Glostrup,  Denmark).  Samples  were  counterstained  with  Shandon  Gill3 
Hematoxylin.

3.2.16 Proteome ProfilerTM – Mouse Cytokine Array

To determine the relative expression levels of multiple cytokines from tissue homogenates, 
Mouse Cytokine Array Panel A was used (see the section 3.1.8). Capture Antibodies for 
different  cytokines  were  spotted  in  duplicate  on  nitrocellulose  membranes.  200μg of 

sample was diluted and mixed with the cocktail of biotinylated detection antibodies. The 
sample/antibody mixture was then incubated with the Mouse Cytokine Array membranes 
over night at 4oC. To remove the excess of unbound material, membranes were washed in 
the Washing solution (provided by manufacturer), incubated with the Streptavidin-HRP and 
chemiluminescent detection reagents. The signal was detected with the CCD camera Fuji 
LAS1000. The quantification was determined with the program ImageJ version 1.47.

3.2.17 Proteome ProfilerTM – Mouse Phospho-RTK Array

Proteome Profiler Phospho-RTK antibody Array (RTK Array) is a tool which enables to 

detect changes in phosphorylation of receptor tyrosine kinases between different samples. 

Capture antibodies  for  different  phosphorylated receptors were spotted in duplicate on 

nitrocellulose membranes. Recombinant tyrosine phosphorylated proteins were used to 

choose  capture  antibodies.  200μg of  lung  tissue  lysate was  diluted  and  prepared 
according to manufacture's recommendation, and incubated with the RTK Array 
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membranes over night at  4oC.To remove the excess of unbound material,  membranes 
were  washed  in  the  Washing  solution  (provided  by  manufacturer),  incubated with  the 
Streptavidin-HRP and chemiluminescent detection reagents. The signal was detected with 
the  CCD camera  Fuji  LAS1000.  The  quantification  was  determined  with  the  program 
ImageJ version 1.47.
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4 Results

4.1 ADAM17ex/ex mice are protected in a model of experimental metastasis

In order to study the role of ADAM17 in the metastatic niche, we used a murine metastasis 

model. Hereby, syngeneic tumor cells were injected i.v. into the tail vein of wild type or 

ADAM17ex/ex mice. Animals were sacrificed at different time points post injection at 20h, 7, 

14 and 21 days (Figure 4.1.1).

Figure 4.1.1 Metastasis to the lungs and liver after LLC inoculation.  a Lungs of ADAM17wt/wt and 
ADAM17ex/ex mice 7,  14 and 21 days after inoculation with 5x105 LLC cells per mouse (tumors are 
indicated by black arrows; for the ease of detection, lungs were stained with Bouin's solution (right 
panel, 21 days, lungs colored in yellow),  b Liver of ADAM17wt/wt  mice 21 days after LLC inoculation 
(tumors are marked by black arrows),  c Number of surface tumors in the lungs and d lung weight of 
ADAM17wt/wt and ADAM17ex/ex mice 21 days after LLC inoculation. Data are represented as means  ± 
s.e.m.  * p<0.05.

We were not able to detect any macroscopic differences in the lungs between ADAM17wt/wt 

and ADAM17ex/ex mice as early as 20h and 7 days post LLC injection. First macroscopic 

differences  appeared  14 days  after  tumor  cells  injection  (Figure  4.1.1  a).  ADAM17wt/wt 

animals had several small visible tumors, while the lungs of  ADAM17ex/ex  animals revealed 
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normal  lung  morphology.  21  days  after  LLC  inoculation,  we  detected  a  significant 

difference in the number of microscopical tumors in the lungs (Figure 4.1.1 c). Wild type  

mice developed five times more tumor lesions in the lungs than ADAM17ex/ex mice. This 

was also reflected in a significant difference in total lung weight (Figure 4.1.1 d). While 

ADAM17ex/ex animals had normal lung weight, the weight of ADAM17wt/wt lungs was 2.5 

times higher. Metastasis to the liver,  while less frequent,  appeared only in ADAM17wt/wt 

mice (Figure 4.1.1 b).

In order to determine if the observed effects were restricted to lung carcinoma cells or the 

observed effects were the consequence of reduced ADAM17 expression in the host, we 

injected B16F1 melanoma cells i.v. into ADAM17wt/wt and ADAM17ex/ex mice. Metastasis was 

analyzed 21 days post B16F1 injection. We were able to detected metastatic lesions in the 

lungs  and  livers  in  both  animal  groups  (Figure  4.1.2  a),  with  higher  incidence  in 

ADAM17wt/wt than in ADAM17ex/ex mice (Figure 4.1.2 b). Metastasis to the kidneys appeared 

only in ADAM17wt/wt mice (Figure 4.1.2 c). 

Figure 4.1.2 Metastasis to the lungs, liver and kidneys 21 days after B16F1 inoculation. a Lobes 
of the lung of ADAM17wt/wt (n=3) and ADAM17ex/ex (n=3) mice were dissected for better tumor visibility. Tumor 
lesions are visible in black, as a consequence of melanin production by B16F1 melanoma cells, b Livers of 3 
different ADAM17wt/wt and ADAM17ex/ex mice 21 days after inoculation with 5x105 B16F1 cells per mouse 
(liver metastasis are indicated by white arrows), c kidneys of ADAM17wt/wt and Adam17ex/ex mice 21 days 
post B16F1 injection (metastasis is indicated by red arrows).
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The number of microscopical tumors in the lungs of ADAM17wt/w mice was ten times higher 

compared  to  ADAM17ex/ex mice  (Figure  4.1.3).  Differences  in  lung  weight  were  not 

significant  between  these two  groups,  although lung  weight  of  wild  type animals  was 

increased compared to the lung weight of hypomorphic animals.

Figure 4.1.3 Quantification of tumor burden in B16F1 injected animals.  Number of surface lung 
tumors and lung weight of ADAM17wt/wt  (n=3) and ADAM17ex/ex  (n=3) mice 21 days after  injection with 
5x105 B16F1 cells  per  mouse.  n.s. -  not  significant  Data  are  represented as  means  ±  s.e.m.  ** 
p<0.005.

Survival of ADAM17ex/ex mice was dramatically increased in comparison to wild type mice 

after LLC injection. The survival rate of 50% for ADAM17wt/wt animals was observed 24 

days post LLC cell  injection (Figure 4.1.4), whereas ADAM17ex/ex mice were completely 

protected from metastasis induced death within observed time. 

Figure 4.1.4 Survival rate of LLC injected animals. Survival of  ADAM17wt/wt (n = 11) and  Adam17ex/ex 

(n = 7) mice injected with 5x105 LLC cells in a time course of 43 days.
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4.2  ADAM17 in the metastatic niche supports metastatic progression

We  analyzed  inflammatory  infiltrations  in  tumor  bearing  lungs  of  ADAM17wt/wt and 

ADAM17ex/ex mice  by  immunohistochemistry.  Tumor  lesions  in  the  lungs  were  readily 

detectable in HE staining 3 weeks after injection, in both LLC and B16F1 injected mice 

(Figure 4.2.1).  ADAM17wt/wt animals displayed a 5 fold increased number of  Ly6G/Gr1+ 

myeloid  cell  infiltrations  compared to  ADAM17ex/ex hypomorphic animals  (Figure  4.2.2). 

Ly6G/Gr1+ cells were detectable mainly in the tumorous part of the lung tissue. 

Figure  4.2.1  Infiltration  of  Gr1+ myeloid  cells  depends  on  ADAM17  in  the  metastatic  niche. 
Immunohistochemical stainings of  tumor bearing lungs 21 days post tumor cell  injection (5x10 5 per 
mouse); HE - Hematoxylin and eosin staining,  Gr1/Ly6G – granulocyte staining, F4/80 -  macrophage 
staining,  ADAM17wt/wt LLC  - wild type mice injected with LLC cells,  ADAM17wt/wt B16F1 – wild type 
mice  injected  withB16F1  cells,  ADAM17ex/ex LLC  – hypomorphic  mice  injected  with  LLC  cells, 
ADAM17ex/ex B16F1  – hypomorphic  mice  injected  withB16F1  cells;  (black  dot-line  represents  the 
boundary between tumorous and non-tumorous tissue, red arrows indicate the presence of Ly6G/Gr1+ 

cells, black arrows indicate B16F1 tumor cells).
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F4/80 immunohistochemistry performed on lung tissue from tumor bearing mice on 21 

days post-tumor cells injection revealed the absence of these cells in the lungs in both  

ADAM17wt/wt and ADAM17ex/ex mice (Figure 4.2.1). Interestingly, this was the case in both, 

LLC and B16F1 injected mice. 

Figure 4.2.2 ADAM17wt/wt tumor bearing lungs reveal increased infiltration of Ly6G/Gr1+ myeloid 
cells.  Quantification  of  Ly6G/Gr1+ cells  from 3  different  tumorous  areas  of  each  ADAM17wt/wt and 
ADAM17ex/ex mice 21 days after LLC inoculation analyzed from immunohistological sections.  Data are 
represented as means ± s.e.m.  * p<0.05.

We attempted to quantify the number of Ly6G/Gr1+ and F4/80+ cells in lung tissue sections 

of ADAM17wt/wt and ADAM17ex/ex mice inoculated with B16F1 cells, but unfortunately we 

were not successful. B16F1 cells express a substantial amount of melanin, thus displaying 

a black color in the sections. Ly6G/Gr1+ and F4/80+ cells after staining are recognized by 

dark brown color, therefore making the identification impossible due to mutual overlapping. 

Since we did not reveal F4/80+ cells in the non-tumorous areas, we concluded that these 

myeloid cells did not infiltrate into the lung tissue.

Using FACS analysis of tumor bearing lungs from ADAM17wt/wt and ADAM17ex/ex mice 21 

days after LLC cells injection, we determined the precise phenotype of Ly6G/Gr1+ myeloid 

cells. We could identify Ly6G/Gr1+ myeloid cells as CD11b+CD11c-Ly6G/Gr1+F4/80-  cells 

(Figure 4.2.3). This phenotype of myeloid cells correlated to a specific subset of MDSCs 

called granulocytic MDSCs.  Interestingly, the granulocytic subset of MDSCs was already 

described in several mouse tumor models and it strongly correlated with poor prognosis 

(Movahedi et al., 2008).
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Figure  4.2.3  ADAM17wt/wt tumor  bearing  lungs  display  stronger  infiltration  of  MDSCs. 
Representative FACS analysis of single cell suspensions from whole lung tissue of ADAM17wt/wt (n=3) 
and  ADAM17ex/ex (n=3)  mice  21  days  after  LLC  cells  inoculation  (5x105 cells  per  mouse)  a 
CD11b+Ly6G/Gr1+ MDSCs, b CD11c+Ly6G/Gr1+ MDSCs, c CD11b+F4/80+ MDSCs. Data are represented 
as means ± s.e.m. 
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4.3 Early phase of metastasis is marked with accumulation of Ly6G/Gr1+ but not 

F4/80+ cells

To  better  understand  if  reduced  tumor  growth  in  ADAM17ex/ex animals  was  due  to 

decreased MDSCs recruitment, we analyzed earlier time points post LLC cell injection for 

MDSCs infiltration. Mice were sacrificed 7 and 14 days after LLC cell injection. Although 

we were unable to detect tumor nodules in the lungs of one week injected mice, we could 

see an increased thickening of the inter-alveolar septae in immunohistochemical stainings 

in ADAM17wt/wt but not in ADAM17ex/ex tumor bearing lungs (Figure 4.3.1). 

Figure 4.3.1 Myeloid infiltrations in the lungs of ADAM17wt/wt and ADAM17ex/ex mice 7 days after 
LLC cells injection. ADAM17wt/wt and DAM17ex/ex mice were injected with 5x105 LLC cells per mouse. 
After 7 days, lungs were excised and analyzed by immunohistochemistry;  a  Hematoxylin and eosin 
(HE) staining of lung tissue one week post LLC inoculation (black arrows indicate for different thickness  
of inter-alveolar septae), b Immunohistochemical stainings for Ly6G/Gr1/+ and F4/80+ immune cells (red 
arrows indicate Ly6G/Gr1/+ cells in the lungs).

One of the causes for thickening of inter-alveolar septae could be the infiltration of immune 

cells into the interstitium. We could detect an increased infiltration of Ly6G/Gr1+ cells as 

early as one week after injection. However, we were unable to detect infiltration of F4/80 + 

cells (Figure 4.3.1).  Macroscopically visible tumors in the lungs of ADAM17wt/wt but not 

ADAM17ex/ex  mice, appeared as early as 14 days after LLC cell inoculation. The increase 

in thickening of inter-alveolar septae in wild type animals was even more evident 14 days 

after LLC cell inoculation (Figure 4.3.2). However, it was absent in hypomorphic mice. The 

amount  of  Ly6G/Gr1+  cell  infiltrations  was  markedly  increased in  ADAM17wt/wt animals, 
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whereas  it was barely detectable in ADAM17ex/ex animals. We could not detect F4/80+ cells 

in both mice groups (Figure 4.3.2). 

Figure  4.3.2  ADAM17wt/wt mice  show  increased  myeloid  infiltration  14  days  after  LLC  cells 
injection.  ADAM17wt/wt and DAM17ex/ex mice were injected with 5x105 LLC cells per mouse. After 14 
days,  lungs  were  excised  and  analyzed  by  immunohistochemistry; Hematoxylin  and  eosin  (HE) 
staining,  immunohistochemical  staining for  Ly6G/Gr1 and  F4/80  myeloid  cells and proliferating cell 
nuclear antigen (PCNA) 14 days after LLC cells injection from paraffin embedded tissue samples (red 
arrows indicate stronger thickening of inter-alveolar septae in wilde type mice than one week after LLC 
inoculation, black arrows indicate Ly6G/Gr1+ cell staining).

Taken together, these data demonstrate a correlation of tumor progression in wild type 

animals with Ly6G/Gr1+ MDSCs recruitment. Therefore, we concluded that reduced tumor 

growth in ADAM17ex/ex animals was due to decreased recruitment of MDSCs infiltration.

4.4  Tumor-bearing  lungs  of  ADAM17ex/ex mice  produce less factors  implicated  in 

MDSCs expansion and survival

We sought to analyze inflammatory cytokine and chemokine production in different time 

points post LLC cells injection. We took advantage of the Proteome Profile Murine cytokine 

antibody array (see the section 3.2.16) using lung tumor tissue lysates from ADAM17wt/wt 

and ADAM17ex/ex animals 21 days after LLC cells injection (Figure 4.4.1). We could detect 

significant differences in protein expression for several cytokines and chemokines between 

wild type and hypomorphic animals. The strongest difference was detectable in levels of 

CCL2/MCP-1.  Interestingly,  in  previous  studies,  CCL2/MCP-1  has  been  linked  to  the 

recruitment  and  expansion  of  MDSCs  at  the  tumor  site  (Sawanobori  et  al.,  2008). 

51

ADAM17wt/wt

ADAM17ex/exADAM17ex/ex

ADAM17wt/wt

PCNAF4/80Ly6G/Gr1HE



Results                                                                   

 

Figure 4.4.1 Tumors of ADAM17wt/wt mice display increased production of inflammatory cytokines 
and  chemokines.  Tumorous  and  non-tumorous  parts  of  the  lung  tissue  21  days  after  LLC  cell 
inoculation from ADAM17wt/wt and ADAM17ex/ex mice were dissected, lysed (see the sections 3.1.4 and 
3.2.6) and 200 μg of protein lysate from tumorous part of the tissue was used for the Cytokine Array. 
Black and gray bars represent densitometric analysis; C5/C5a - complement component 5, sICAM1 - 
soluble  Intercellular  Adhesion  Molecule  1,  INF-γ -  interferon  gamma,  IL-1Ralpha –  interleukin  1 
receptor alpha,  IL-16 - interleukin 16,  CCL2/MCP1 - chemokine (C-C) motif 2/monocyte chemotactic 
protein1, CXCL9 - chemokine C-X-C motif ligand 9, CCL5 - chemokine (C-C) motif ligand 5, TIMP-1 - 
tissue inhibitor of metalloproteases 1,  IL-1alpha - interleukin 1 alpha,  IL-1beta -  interleukin 1 beta, 
CXCL10 - chemokine (C-X-C) motif ligand 10, KC/CXCL1 - chemokine (C-X-C) motif ligand 1, M-CSF - 
macrophage  colony  stimulating  factor,  CCL12/MCP5 -  chemokine  (C-C)  motif  ligand  12/monocyte 
chemotactic protein 5,  MIP-1a/CCL3 -  macrophage inflammatory protein 1 alpha/  chemokine (C-C) 
motif ligand 3, CXCL2 - chemokine (C-X-C) motif ligand 2, TREM 1 - triggering receptor expressed on 
myeloid cells 1.

We hypothesized that tumor cells could be the source of CCL2/MCP-1, thus contributing to 

strong  infiltration  of  CD11b+Ly6G/Gr1+Ly6C-F4/80-  MDSCs.  To  test  this  hypothesis,  we 

analyzed the cell culture medium of wtLLC and kdADAM17-LLC cells (see the section 4.9) 

for the production of CCL2/MCP-1. We were able to show that this chemokine  derived 

from tumor cells (Figure 4.4.2). Furthermore, we were able to validate the finding from 

Proteome Profile Murine cytokine antibody array for the protein expression of CCL2/MCP-

1 in tumor bearing lungs of ADAM17wt/wt and  ADAM17ex/ex mice by ELISA.
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Figure 4.4.2 CCL2/MCP-1 is predominantly produced by tumor cells. CCL2/MCP-1 concentration in 
200 μg of protein tissue lysates from ADAM17wt/wt (n=3) and ADAM17ex/ex (n=3) tumor-bearing lungs 21 
days after LLC cell inoculation measured by ELISA;  ex/ex T- tumorous part of the lung tissue from 
ADAM17ex/ex mice,  wt/wt T- tumorous part of  the lung tissue from ADAM17wt/wt mice,  wt/wt H- non-
tumorous part of the lung tissue from ADAM17wt/wt mice, ex/ex H- non-tumorous part of the lung tissue 
from ADAM17ex/ex mice,  wtLLC DMEM- filtered cell culture medium from wtLLC cells,  kdLLC DMEM- 
filtered  cell  culture  medium  from kdADAM17-LLC  cells,  DMEM was  used  as  a  control.  Data  are 
represented as means ± s.e.m. * p<0.05.

We were also able to detect CCL2/MCP-1 mRNA expression by qRT-PCR (Figure 4.4.3). 

Significant  differences  in  the  expression  of  CCL2/MCP-1  between  ADAM17wt/wt and 

ADAM17ex/ex mice appeared at early stages of metastasis. Only 7 days post LLC injection, 

with peaking after 14 days and sustaining until the final stage of metastasis in ADAM17wt/wt 

mice.  The  expression  of  CCL2/MCP-1  mRNA  was  slightly  increase  over  time  in 

ADAM17ex/ex mice.

Figure  4.4.3  Tumor  bearing  lungs  of  ADAM17wt/wt mice  reveal  high  mRNA  expression  of 
CCL2/MCP-1. RNA was extracted from the lungs of ADAM17wt/wt (n=3) and ADAM17ex/ex (n=3) mice at 
indicated  time  points  after  LLC  inoculation  (  5x105  cells per  mouse).  Quantitative  RT-PCR  was 
performed and mRNA was quantified as above, the amounts in non-inoculated lungs from ADAM17wt/wt 

and ADAM17ex/ex mice  were  set  to  value  of  1.0;  H -  healthy/non-tumorous  part  of  the  tissue,  T - 
tumorous part of the tissue. Data are represented as means ± s.e.m.  * p<0.05.
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To better understand the mechanism behind such a strong difference in myeloid infiltration 

between ADAM17wt/wt and ADAM17ex/ex mice,  the whole lung tissue,  from different  time 

points post LLC cells injection, was analyzed for the expression of genes implicated in the 

infiltration of granulocytic MDSCs.

Expression of CXCL2/MIP-2 has been previously correlated with infiltration of Ly6G/Gr1+ 

myeloid  cell  (Belperio  et  al.,  2002).  We  could  observe  that  mRNA  levels  of  the 

inflammatory chemokine CXCL2/MIP-2 was induced in earlier time points,  reaching the 

maximum of its expression 14 days after LLC inoculation and persisting with unsignificant 

decrease  through  metastasis  progression  in  ADAM17wt/wt mice  (Figure  4.4.4).  mRNA 

expression for CXCL2/MIP-2 remained unchanged through all time points in ADAM17ex/ex 

mice. 

Figure  4.4.4  Early  phase  of  metastasis  is  characterized  by  an  increased  transcription  of 
inflammatory chemokines. RNA was extracted from the lungs of ADAM17wt/wt (n=3) and ADAM17ex/ex 

(n=3) mice at  the indicated time points after  LLC inoculation ( 5x105  cells per mouse).  mRNA was 
quantified as above and the amounts in non-inoculated lungs from  ADAM17wt/wt and ADAM17ex/ex mice 
were set to 1.0 - basal level; H - healthy/non-tumorous part of the tissue, T - tumorous part of the tissue. 
Data are represented as means ± s.e.m.  *p<0.05,  ***p<0.001.
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Furthermore,  we observed that  the  inflammatory  chemokine CCL4/MIP-1β mRNA was 

induced only 20h after LLC inoculation (Figure 4.4.4) in both ADAM17wt/wt and ADAM17ex/ex 

mice, peaking 7 days post injection with a slight decrease in a late stage in ADAM17 wt/wt 

animals.  In  ADAM17ex/ex animals  the  expression  of  CCL4/MIP-1β  mRNA  was 

unsignificantly decreased over time. 

4.5  TNF-α is  released from the surface of  Ly6G/Gr1+ cells  in  the early phase of 

metastasis 

We were able to see a significant upregulation of gene expression of the pro-inflammatory 
cytokines TNF-α and IL-1β predominantly at early phases of metastasis in ADAM17wt/wt  but 

not in ADAM17ex/ex tumor bearing lungs (Figure 4.5.1).

Figure  4.5.1  TNF-α and  IL-1β are  upregulated  at  early  time  points  of  metastasis.  RNA was 
extracted from the lungs of ADAM17wt/wt (n=3) and ADAM17ex/ex (n=3) mice at the indicated time points 
after LLC inoculation ( 5x105  per mouse). mRNAs were quantified as above and the amounts in non-
inoculated lungs from ADAM17wt/wt and ADAM17ex/ex mice was set to 1; H - healthy/non-tumorous part of 
the tissue, T - tumorous part of the tissue. Data are represented as means ± s.e.m. * p<0.05, **p<0.005.
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Since we could observe stronger accumulation of Ly6G/Gr1+,  but not of F4/80+ cells in 

immunohistological stainings of tumor bearing lungs (section 4.3) in ADAM17wt/wt mice at 

early stage of lung metastasis, we speculated that infiltrated myeloid cells could be the 

source  of  the  pro-inflammatory  cytokines  TNF-α and  IL-1β.  In  order  to  confirm  this 

hypothesis, bone marrow cells were isolated from ADAM17wt/wt and ADAM17ex/ex mice, and 

differentiated to neutrophils and macrophages with rm G-CSF or rm M-CSF, respectively 

(see  the  sections  3.2.9  and  3.2.10).  Successful  differentiation  was  verified  by  FACS 

analysis  for  the presence  of  Ly6G/Gr1,  CD11b and F4/80  antigens (data  not  shown). 

Differentiated cells were stimulated with conditioned medium of LLC cells. Interestingly, we 

could detect TNF-α in the supernatant of wild type bone marrow derived macrophages 

(BMDM)  and  bone  marrow  derived  neutrophils  (BMDN).  However,  as  expected,  in 

supernatants of BMDMs and BMDNs derived from hypomorphic mice, the amount of TNF-

α was strongly reduced (Figure 4.5.2).  To confirm that  ADAM17 is the main sheddase 

responsible for the cleavage of  TNF-α from the surface of BMDNs upon stimulation with 

LLC conditioned medium, two hydroxamate-based ADAM17 inhibitors, GI and GW, were 

tested.  The inhibitor  GW280264X (GW) has the ability to potently  block the activity of 

ADAM10 and ADAM17, whereas GI254023X (GI) has the ability to block ADAM10 100-fold 

better then ADAM17 (Ludwig et al., 2005). 

Figure 4.5.2 BMDNs and BMDMs produce TNF-α upon stimulation with LLC cell supernatant. 
BMDNs  and  BMDMs  were  cultured  with  conditioned  medium of  LLC  cells  for  24h.  BMDNs  were 
cultured in presence or absence of 3μM GI or GW, and production of TNF-α was measured by ELISA; 
ex/ex - bone marrow cells from ADAM17ex/ex mice.  wt/wt - bone marrow cells from ADAM17wt/wt mice. 
Data are represented as means ± s.e.m.  ***p<0.001.
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As shown in Figure 4.5.2,  GI  reduced shedding of  TNF-α for  35% while GW reduced 

shedding of TNF-α for 90% from the surface of wild type BMDNs. These data indicate that 

ADAM17 is  responsible  for  supernatant-induced release of  TNF-α from the surface of 

myeloid cells.

Taken together, we can conclude that factors secreted by LLC cells stimulate infiltrated 

myeloid cells to releace TNF-α in an ADAM17 dependent manner.

4.6 ADAM17 generates proliferatory signals during lung metastasis

Proliferating Cell Nuclear Antigen (PCNA) is a nuclear protein that is a cofactor of DNA 

polymerase delta. PCNA acts as a homotrimer and helps to increase the processivity of 

leading strand synthesis during DNA replication. Frequently, it is used as marker for cell  

proliferation.

We performed PCNA immunohistological staining of paraffin sections from lung tissue of 

ADAM17wt/wt and  ADAM17ex/ex  mice  21  days  after  LLC  cell  injection  (Figure  4.6.1). 

Interestingly, in the tumorous part of wild type mice we detected 3.5 times more PCNA+ 

cells than in lung sections of hypomorphic mice. 

Figure 4.6.1 ADAM17 in the host contributes to cell proliferation. Immunohistological staining and 
number of PCNA+ cells from 3 different tumorous tissue areas of ADAM17wt/wt and ADAM17ex/ex mice 21 
days after LLC inoculation; black arrows indicate PCNA+ cells in the tumorous part of the tissue, red 
arrows indicate  PCNA+ cells in the non-tumorous part of the tissue;  PCNA - proliferating cell nuclear 
antigen. Data are represented as means ± s.e.m.  * p<0.05.

In  recent  publication,  Rivas and colleagues demonstrated that  TNF-α can induce  the 

proliferation of murine mammary tumor cells C4HD in vitro and in vivo (Rivas et al., 2008). 
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They  demonstrated  that  through  the  activation  of  p42/p44  MAPK,  JNK,  PI3-K/Akt 

pathways and NF-κB transcriptional activation, TNF-α induces proliferation of C4HD tumor 

cells.  Interestingly,  they  showed  that  blockage  of  TNFR1  or  TNFR2,  with  specific 

antibodies,  was enough to impair  TNF-α signaling.  Furthermore,  Rivas and colleagues 

demonstrated that administration of TNF-α in vivo supported C4HD tumor growth. Injection 

of  a  NF-κB  selective  inhibitor,  Bay  11-7082,  in  mice  resulted  in  regression  of  TNF-α 

promoted tumor growth.

We hypothesized that  LLC cells can proliferate upon TNF-α stimulation. Therefore, we 

stimulated LLC cells for 120h with different concentrations of rm TNF-α (Figure 4.6.2).  

                           TNF-α [ng/ml]         0          0,01       0,03        0,1         0,3           

Figure 4.6.2 TNF-α increases proliferation of wild type LLC cells at early time points. 5x105 cells 
per well were seeded into 6 well plates; cells were cultured in DMEM supplemented with 0,5% FCS for 
120h in the presence or absence of rmTNF-α; cells were counted after 24, 48, 72 and 120h. RNA was 
isolated from the cells stimulated for 24h with different concentrations of rmTNF-α and gene expression 
for ICAM-1, MMP-9, VEGFR-1 and 2, TGF-α and PCNA was analyzed by semiquantitative RT-PCR; 
ICAM-1 – intercellular adhesion molecule 1, MMP-9 – matrix metalloprotease 9, VEGFR-1/-2 – vascular 
endothelial growth factor receptor transcript variants 1 and 2, TGF-α – transforming growth factor alpha, 
PCNA- proliferating cell nuclear antigen. Data are represented as means ± s.e.m. ** p<0.005. 
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Interestingly, preliminary data suggest that 24h after TNF-α stimulation, all stimulated LLC 

cells  had  a  significantly  higher  proliferation  rate  than  TNF-α  unstimulated  cells. 

Furthermore,  in  the  first  24h  of  stimulation,  we  could  detect  a  TNF-α concentration 

dependent  mRNA upregulation  of  intercellular  adhesion  molecule  1  (ICAM-1),  matrix 

metalloprotease 9 (MMP-9) and vascular endothelial growth factor receptor 2 (VEGFR-2). 

Furthermore,  48h  after  stimulation,  proliferation  rate  of  TNF-α  stimulated  and  non-

stimulated cells equalized. At later time points proliferation of all TNF-α stimulated cells 

was significantly reduced compared to unstimulated cells.

Taken into account that TNF-α was upregulated in the lungs shortly after LLC injection, we 

concluded that TNF-α can be a proliferatory stimulus for cancer cells at early stages of 

metastasis.

Receptor  tyrosine  kinases  (RTKs)  are  high-affinity  cell  surface  receptors  for  many 

polypeptide growth factors, cytokines and hormones. Receptor tyrosine kinases have been 

shown not only to be the key regulators of normal cellular processes but also to have a 

critical role in the development and progression of many types of cancer (Zwick et al.,  

2001). Ser/Thr kinase extracellular-signal-regulated kinase (ERK) is activated downstream 

of several RTKs. 

To investigate proliferatory signals in ADAM17wt/wt and ADAM17ex/ex tumor bearing lungs, we 

analyzed ERK phosphorylation by Immuno blot analysis (Figure 4.6.3). 

Figure 4.6.3 Tumor bearing lungs of ADAM17wt/wt mice show activation of ERK kinase. 200 μg of 
protein lysate from the lung tissue from 7, 14 and 21 days after LLC cells injection in ADAM17wt/wt and 
ADAM17ex/ex mice was used for Immuno blot analysis. Antibodies against P-ERK1/2 and ERK1/2 were 
used (see the section 3.1.8) for Immunoblot analysis; 1w -1 week,  2w -2 weeks,  3w -3 weeks, ex/ex 
-protein  lysates  from  ADAM17ex/ex  mice,  wt/wt  -protein  lysates  from  ADAM17wt/wt  mice,  ERK1/2 - 
extracellular-signal-regulated kinase, P-ERK1/2 - phosphorylated extracellular-signal-regulated kinase.
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Interestingly, tumorous parts of the lung tissue from wild type animals 21 days post LLC 

cells injection, revealed increased ERK phosphorylation, in wild type animals compared to 

hypomorphic animals.

To better understand which receptor tyrosine kinase was implicated in ERK activation, we 

performed a phospho-RTK antibody array (RTK array) (see the section 3.2.17). 

Figure 4.6.4 Phospho-RTK antibody array from lung tissue of ADAM17wt/wt and ADAM17ex/ex mice 
2 and 3 weeks post LLC cell injection. 200μg of protein lysate was used for the Phospho-RTK array; 
quantification  of  receptor  phosphorylation  in  the  tumor  lysates  3  weeks  after  LLC inoculation  was 
measured by densitometry. (Quantification of receptor phosphorylation in the lysates 2 weeks after LLC 
inoculation not shown); EGFR - epidermal growth factor receptor,  FGFR 2 - fibroblast growth factor 
receptor 2, FGFR 3 - fibroblast growth factor receptor 3, Insulin R - insulin receptor, IGF-1R  - insulin-
like growth factor receptor 1, Axl - Axl receptor tyrosine kinase, Mer - Proto-oncogene tyrosine-protein 
kinase MER,  HGF R  - hepatocyte growth factor receptor,  MSP R -  macrophage stimulating protein 
receptor, PDGFR alpha - platelet-derived growth factor receptor alpha, PDGFR beta - platelet-derived 
growth factor receptor beta, SCFR - stem cell factor receptor, Flt3 - Fms-like tyrosine kinase 3, M-CSF 
R - macrophage colony stimulating factor receptor, Tie1 - Tyrosine kinase with immunoglobulin-like and 
EGF-like domains 1, Tie 2 - Tyrosine kinase with immunoglobulin-like and EGF-like domains 2, Trk A - 
neurotrophic tyrosine kinase receptor type 1, Trk B - neurotrophic tyrosine kinase receptor type 2, Trk 
C - neurotrophic tyrosine kinase receptor type 3, VEGFR1 - vascular endothelial growth factor receptor 
1,  VEGFR2 -  vascular  endothelial  growth factor receptor 2,  VEGFR3 -  vascular  endothelial  growth 
factor receptor 3, MuSK - Muscle-Specific Kinase.
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We used tumor lysates from animals 14 and 21 days post LLC injection for the phospho-

RTK antibody array (Figure 4.6.4). We detected slight difference in the phosphorylation of 

ErbB3  and  ErbB4,  which  belong  to  the  EGFR  family.  However,  the  most  striking 

differences in the phosphorylation of RTKs between ADAM17wt/wt and ADAM17ex/ex tumor 

bearing  lungs  were  seen  in  PDGFRα and  Axl.  Phosphorilation  of  both  RTKs  was 

detectable 2 and 3 weeks post LLC injection. 

Taken together, these data indicate that ADAM17 expression in the host tissue correlates 

with Axl, PDGFR-α and ErbB3/4 activation.

4.7 ADAM17 is required for Notch activation at early phases of metastasis 

ADAM17 has been implicated in the shedding of Notch receptor ligand Jagged-1 (Lu et al, 

2013). As soluble Jagged-1 can induce cancer stem cell (CSC) phenotype in disseminated 

cancer  cells,  we analyzed Notch activation  in tumor  bearing lungs of  ADAM17wt/wt and 

ADAM17ex/ex mice  at  different  time  points.  We were  unable  to  detect  Notch-1  ICD by 

Immunoblotting and immunohistochemistry (data not shown). However, we could see an 

upregulation of the Notch-target genes Hes1 and Hey1 20h and 7 days after LLC cell  

injection (Figures 4.7.1 and 4.7.2). 

Figure 4.7.1 ADAM17ex/ex mice show decreased activation of Notch signaling in an early phase of 
metastasis.  RNA was extracted from the lungs of ADAM17wt/wt (n=3) and ADAM17ex/ex (n=3) mice at 
indicated time points after LLC inoculation (5x105 cells per mouse). Real time PCR was performed and 
mRNA  was  quantified  as  above,  the  amounts  in  non-inoculated  lungs  from   ADAM17wt/wt and 
ADAM17ex/ex mice were given value of 1.0 - basal level; H - healthy/non-tumorous part of the tissue, T - 
tumorous part of the tissue) Hey 1 - Hairy/enhancer-of-split related YRPW motif like protein 1, Hes 1 - 
Hairy/Enhancer and Split 1. Data are represented as means ± s.e.m.  * p<0.05. 
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Figure 4.7.2 ADAM17ex/ex mice show decreased activation of Notch signaling at early phase of 
metastasis.  RNA was extracted from the lungs of ADAM17wt/wt (n=3) and ADAM17ex/ex (n=3) mice at 
indicated time points after LLC inoculation (5x105 cells per mouse). Real time PCR was performed and 
mRNA  was  quantified  as  above,  the  amounts  in  non-inoculated  lungs  from   ADAM17wt/wt and 
ADAM17ex/ex mice were given value of 1.0 - basal level; H - healthy/non-tumorous part of the tissue, T - 
tumorous part of the tissue) Hey 1 - Hairy/enhancer-of-split related YRPW motif like protein 1, Hes 1 - 
Hairy/Enhancer and Split 1. Data are represented as means ± s.e.m.  * p<0.05, ** p<0.005. 

4.8 IL-6 trans-signaling does not promote lung metastasis 

IL-6 can act via IL-6 classic and IL-6 trans-signaling. Binding of IL-6 to the membrane 

bound IL-6 receptor  induces the recruitment  of  two gp130 molecules and downstream 

activation of intracellular signaling cascades. This process is marked IL-6 classic signaling. 

Binding of IL-6 to soluble IL-6R (sIL-6R) induces formation of IL-6/sIL-6R complex which 

can interact with gp130 molecule and induce its dimerization and downstream activation of 

intracellular signaling cascades. This process is marked IL-6 trans-signaling. 

Interestingly,  gp130  molecule  exists  in  a  soluble  form  (sgp130).  sgp130  molecule  is 

predominantly  generated  by  alternative  splicing.  It  can  associate  with  the  IL-6/sIL-6R 

complex and inhibit signaling via membrane bound gp130 (Montero-Julian, 2001; Mueller-

Newen et al., 1998). Jostock and colleagues postulated that sgp130 molecule acts as a 

natural inhibitor of IL-6 trans-signaling (Jostock et al., 2001). Therefore, a designer protein, 

was generated by fusion of the Fc part of a human IgG to extracellular portion of gp130 

molecule. The resulting protein, termed sgp130Fc, is a preformed homodimer and strongly 

resembles the endogenous receptor on the living cell. Interestingly, Becker and colleagues 

demonstrated  that  administration  of  sgp130Fc  has  tumor  suppressor  activity  in  colon 

cancer  (Becker  et  al.,  2004).  Furthermore,  Zhang  and  colleagues  were  able  to  show 
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that during severe acute pancreatitis (SAP) IL-6 trans-signaling promotes acute lung injury 

(ALI), as secondary effect of SAP (Zhang et al., 2013). They were able to reduce SAP 

induced ALI by administration of sgp130Fc protein. Symptoms of ALI very much resembled 

to  symptoms  of  strong  lung  inflammation  characteristic  for  initial  phases  of  lung 

metastasis.

We hypothesized that inhibition of IL-6 trans-signaling could decrease the inflammatory 

response and delay metastasis progression in LLC model of experimental metastasis. To 

test this hypothesis, we used sgp130Fc transgenic mice, which express sgp130Fc under 

the control  of  the liver-specific  PEPCK (phosphoenolpyruvate carboxykinase) promoter. 

However,  sgp130Fc protein is distributed via the bloodstream to all  organs except the 

brain (Rabe et al,  2008). Lung metastasis was induced via i.v. injection of LLC cells in 

sgp130Fc and control, C57Bl6/N mice. Lung and liver tissues were analyzed 21 days post  

LLC injection (Figure 4.8.1).

Figure 4.8.1 Experimental metastasis with LLC cells in sgp130Fc and C57Bl6/N mice. Lungs of 
sgp130Fc (n=3)  and C57Bl6/N (n=3)  mice 21 days after  LLC inoculation with  5x105 LLC cells  per 
mouse. Liver metastasis in one sgp130Fc mouse is indicated with white arrow. Data are represented as 
means ± s.e.m.

21 days after LLC cells inoculation, we did not detect any difference in lung appearance 

and tumor burden in sgp130Fc and C57Bl6/N mice. Total lung weight was 3 times above 

the average lung weight, with no significant difference between sgp130Fc and C57Bl6/N 
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mice.  Metastasis  to  the  liver  appeared  only  in  one  sgp130Fc  mouse  (Figure  4.8.2  – 

sgp130Fc liver).

We performed immunohistochemical stainings from tumor bearing lungs of sgp130Fc and 

C57Bl6/N mice (Figure 4.8.2). 

                           HE                                     Gr1/Ly6G                                       F4/80

Figure 4.8.2 sgp130Fc and C57Bl6/N mice show same tumor burden. Immunohistological stainings 
of lung tissue from sgp130Fc and C57Bl/6N tumor bearing lungs 21 days after LLC inoculation; HE - 
haematoxilyn and eosin staining,  Ly6G - staining for granulocytes,  F4/80 - staining for macrophages 
white arrow indicate liver tumor of sgp130Fc mice; sgp130Fc liver - HE stainings of liver metastasis in 
sgp130Fc mice. 

From immunohistochemical stainings we concluded that there was no difference in the 

level of lung damage between sgp130Fc and control mice. We were able to detect strong 

infiltration of Ly6G/Gr1+ myeloid cells in both sgp130Fc and C57Bl6/N lung tissue. We 

could not detect F4/80+ cells in both mice groups. 

According to these data we can conclude that sgp130Fc does not play a protective role in 

lung metastasis.
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4.9 ADAM17 in tumor cells contributes to tumor cell growth in vitro and metastatic 

growth in vivo

In  the  model  of  experimental  metastasis  with  LLC  cells  we  could  demonstrate  the 

importance of ADAM17 in the stroma for metastatic progression and spread. Next, we 

were interested weather ADAM17 in the tumor cells was equally important for metastatic 

growth. To test this assumption, we generated  LLC cells with a stable ADAM17 knock 

down (kdADAM17-LLC) by lentiviral transduction (see the sections 3.2.2 and 3.2.3). The 

lentiviral vector, termed sh17-pLeGO-C/BSD, contained, as well, a cassette coding for the 

fluorescent  protein  mCherry  (the  'm'  in  the  name denotes  its  monomer  configuration).  

mCherry is a monomeric fluorescent protein with peak absorption/emission at 587 nm and 

610 nm, respectively.  It  matures quickly,  within 15 minutes,  allowing it  to be visualized 

soon after translation.

After  LLC  cell  transduction,  we  selected  single  cell  clones,  positive  for  mCherry 

expression,  expanded and tested them for  ADAM17 protein  and mRNA expression by 

Immunoblotting (WB) and RT-PCR, respectively (Figures 4.9.1).

Figure  4.9.1  ADAM17 protein  and mRNA expression in  different  kdADAM17-LLC clones.  106 

kdADAM17LLC cells were seeded into 6 well plates in DMEM supplemented with 10% FCS. After 24h 
mCherry protein expression was observed and photographed under fluorescent microscope (red cells 
in the upper right picture panel) and cells were lysed. After 24h RNA from kdADAM17-LLC cells, clone 
H,  was  isolated  and  RT-PCR  for  ADAM17  and  β-actin  was  performed.  SDS-polyacrylamide  gel 
electrophoresis from the cell lysates was performed on 8% gel. Immuno-blot was performed with anti-
ADAM17 antibody; + contr. - lysate of 106 ADAM17 wild type cells used as a positive control, - contr. - 
lysate of 106 ADAM17 knock down colon cancer cells (kdADAM17-CMT93) used as a negative control, 
proADAM17 - ADAM17 with pro-domain, mADAM17 - mature ADAM17, wt - wild type LLC cells, F, Z, 
R, D,Q, H, G -  different clones of kdADAM17-LLCs.
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From the Immunoblot analysis we could conclude that clones R and H did not express pro-

ADAM17,  while  only  clone  H,  but  not  clone  R,  expressed  mature  ADAM17.  Both 

kdADAM17-LLC cell clones had significantly reduced proliferation rate compared to wild 

type  LLC  cells  (data  not  presented  for  the  clone  R).  Interestingly,  clone  R  grew  less 

efficiently than clone H. Therefore, we decided to use the clone H for further experiments.

Proliferation of unstimulated kdADAM17-LLC cells was significantly reduced compared to 

unstimulated wild type LLC cells  (wtLLC).  Proliferation rates were significantly different 

already in the first 24h (Figure 4.9.3). We observed that the difference in proliferation was 

increasing over time. From this experiment we could conclude that ADAM17 in the tumor 

cells is necessary for tumor cell growth.

Figure 4.9.2 kdADAM17-LLC cells grow significantly slower than wild type LLC cells. 5x105 cells 
per well were seeded into 6 well plates  in DMEM supplemented with 10% FCS and P/S; cells were 
cultured  for  144h;  number  of  cells  was  analyzed  24h,  48h,  72h  and  144h  after  seeded.  Each 
measurement was performed in triplicate.  Data are represented as means  ±  s.e.m.  * p<0.05,  *** 
p<0.001.

In preliminary experiments, we analyzed the potential of kdADAM17-LLC cell to induce 

lung metastasis in vivo. kdADAM17-LLC cells were injected i.v. via tail vein into C57Bl6/N 

mice and the lung tissue was analyzed 21 days post injection (Figure 4.9.4). As a control 

for successful i.v. injection, we injected wtLLC cells into C57Bl6/N mice.
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Figure 4.9.3 ADAM17 in tumor cells is necessary for metastatic growth in vivo. 5x105 kdADAM17-
LLC or wtLLC cells per mouse were injected in C57Nl6/N mice; 3 mice per each group were used; 
lungs were excised and photographed 21 days after cells inoculation;  mice within the same group 
displayed an equal effect in lung metastases, therefore from each group, lung picture from a single 
mouse is presented here; wtLLC – C57Bl6/N mice injected with wild type LLC cells, kdADAM17-LLC – 
C57Bl6.N mice injected with kdADAM17-LLC cells.

We could show that lacking of ADAM17 in the tumor cells resulted in null development of 

lung metastasis. This was reflected in a significant difference in a total lung weight (Table 

4.9.1) between C57Bl6/N mice injected with wtLLC and kdADAM17-LLC cells (clone H).

Mouse Lung weight [mg]

C57Bl6/N  1 with kdADAM17-LLC 180

C57Bl6/N  2 with kdADAM17-LLC 200

C57Bl6/N  3 with kdADAM17-LLC 190

C57Bl6/N  1 with wtLLC 480

C57Bl6/N  2 with wtLLC 520

C57Bl6/N  3 with wtLLC 570

Table 4.9.1 Lung weight of C57Bl6/N mice 3 weeks after injection of wild type or kdADAM17-LLC 
cells. 5x105  cells were injected via the tail vain into C57Bl6/N mice. 21 days post tumor cells injection 
lungs were excised and measured.

We were able to detect the presence of kdADAM17-LLC cells in the tumor bearing lungs, 

performing RT-PCR for the expression of mCherry mRNA (Figure 4.9.4).
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Figure  4.9.4  mRNA  expression  of  mCherry  in  the  lungs  of  C57Bl6/N  mice  injected  with 
kdADAM17-LLC cells.  RNA was extracted from the whole lung tissue of 3 different C57Bl6/N mice 
(mouse 1, 2, 3) injected with kdADAM17-LLC cells 21 days post injection. Semiquantitative RT-PCR 
was performed for the expression of mCherry protein; + contr. - RNA from kdADAM17-LLC cells.
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5 Discussion

5.1 ADAM17 in model of experimental metastasis

In the present study we used a murine model of experimental metastasis to investigate the 

role  of  ADAM17  in  metastatic  progression.  We  used  ADAM17  hypomorphic  mice 

(ADAM17ex/ex) which express barely detectable level of ADAM17 protein (Chalaris et al., 

2010), thus mimicking the condition where ADAM17 is inhibited in the host. To induce lung 

metastasis we injected LLC lung carcinoma or B16F1 melanoma cells through the tail vein. 

We  were  able  to  show  that  three  weeks  after  inoculation  with  LLC  or  B16F1  cells,  

ADAM17wt/wt  animals displayed a significantly higher number of macroscopical tumors in 

the lungs than ADAM17ex/ex   animals, independent of the tumor entity. Furthermore, lung 

weight of control  mice was significantly increased while the lung weight of ADAM17ex/ex 

hypomorphic mice was in the normal range of 200±50 mg. In the case of B16F1 injection, 

all  control animals had multiple liver and kidney metastasis, while 67% of hypomorphic 

animals had single liver and no kidney metastasis. 

A remarkable difference was seen in the survival rate of ADAM17ex/ex mice compared to 

ADAM17wt/wt mice  within  an  observed  time  of  43  days  after  LLC  cell  inoculation.  All  

ADAM17ex/ex mice were alive, while 80% of wild type mice died in this time period. 

Our  results  indicate  that  ADAM17 in  the  metastatic  niche  plays  an important  role  for 

metastatic  progression  via  proliferatory,  inflammatory  and  immunosuppressive  stimuli 

(Figure 5.1).
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Figure 5.1 ADAM17 contribution to lung metastasis. ADAM17 in the metastatic niche plays a crucial 
role for progression of lung metastasis. It influences inflammatory and proliferatory signals via shedding 
of different substrates. Shedding of TNF-α induces early inflammatory response and transcription of 
chemokines necessary for myeloid cell infiltration. At early phases of lung metastasis increased amount 
of TNF-α can influence LLC cell proliferation, as well.  Infiltration of myeloid cells (MDSCs) leads to 
immunosuppression.  ADAM17 sheds growth  factors  implicated in  RTK EGF family  activation,  thus 
contributing to cell proliferation and survival. Cartoon of ADAM17 was taken from Scheller et al., 2011.

5.2. ADAM17 in the metastatic niche is important for inflammatory signals

We were able to demonstrate by quantitative real time PCR from whole lung tissue that 

TNF-α and  IL-1β are the major inflammatory mediators responsible for the induction of 

lung damage in  early  stages of  metastasis.  qRT-PCR analysis  of  genes implicated  in 

inflammatory response clearly demonstrated significant upregulation, even up to 10 times, 

of  TNF-α  and  IL-1β  in  ADAM17wt/wt compared  to  ADAM17ex/ex mice.  The  strongest 

difference in TNF-α mRNA expression was 20h and 7 days post LLC cell injection, with 

tendency to decrease almost to a basal level in later time points. Interestingly, we could 

demonstrate  that  soluble  TNF-α  (sTNF-α)  derives  from  myeloid  cells  in  vitro. 
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Bone  marrow  derived  macrophages  (BMDM)  produced  TNF-α  upon  stimulation  with 

conditioned medium of LLC cells. BMDMs from ADAM17wt/wt mice produced 50 times more 

sTNF-α  than  BMDMs  from  ADAM17ex/ex mice.  However,  we  were  not  able  to  detect 

macrophages stained against F4/80 antigen in lung tissue sections in all four time points. 

Surprisingly,  we could detect  cells  positive for Ly6G/Gr1 antigen in immunohistological 

analysis from all time points. 

Thus, we hypothesized, that bone marrow derived granulocytes/neutrophils (BMDN) might 

be  the  source  of  TNF-α in  tumor  bearing  lungs.  Stimulation  of  BMDNs  with  LLC 

conditioned  medium  resulted  in  the  production  of  TNF-α.  Interestingly,  BMDNs  from 

ADAM17wt/wt mice produced 4 times more sTNF-α than BMDMs when stimulated with the 

same conditioned medium. At the same time, BMDNs from ADAM17wt/wt  mice produced 4 

times more sTNF-α than BMDNs from ADAM17ex/ex mice. Our data demonstrated that the 

generation of sTNF-α by ADAM17 from the surface of wild type BMDNs was efficiently 

blocked (~90%) by  combined ADAM10 and  ADAM17 inhibitor,  GW280264X,  while  the 

ADAM10 specific inhibitor, GI254023X, was not as efficient in blocking of TNF-α shedding 

(~30%). 

Interestingly,  the group of  M. Karin  identified TNF-α as a major  inducer  of  metastasis 

progression in a model of experimental metastasis with LLC cells (Kim et al., 2009). They 

could  show  that  TNF-α-/- mice  had  increased  survival  rate,  less  tumors  and  reduced 

infiltration of myeloid cells into the lungs. However, ADAM17ex/ex mice display even higher 

protection  rate  than  TNF-α-/- mice.  Nevertheless,  they  excluded  IL-6,  as  inducer  of 

inflammation  and  proliferation  in  metastasis  in  this  model.  Using  IL-6 -/- mice  they 

demonstrated that  metastasis  progression was not  delayed or reduced,  but  it  was the 

same like in control mice. As well, they demonstrated that LLC cells, among several types 

of  cancer  cells,  were  the  most  potent  activators  of  macrophages  for  TNF-α  and  IL-6 

production. 

Our  results  indicate  that  sTNF-α  in  our  metastasis  model  was  mainly  generated  by 

infiltrated myeloid  cells.  We hypothesized that  abrogation of  TNF-α shedding from the 

surface of myeloid cells by ADAM17 would lead to reduced inflammation and subsequently  

reduced  metastasis  progression.  To  validate  this  hypothesis,  we  will  use  a  model  of 

experimental metastasis with LLC cells in ADAM17-LysM-Cre conditional knock out mice, 
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which lack ADAM17 in myeloid cells. 

During tumor development, myeloid cells are recruited and can be converted into potent 

immunosuppressive  cells.  Immature  myeloid  cells  with  the  same  phenotype  as 

immunosuppressive cells are generated in the bone marrow of healthy individuals and 

differentiated into mature myeloid cells without causing any kind of immunosuppression. 

However, in a cancerous state, myeloid cells are differentiated into pathological myeloid 

derived  suppressor  cells  (MDSCs)  which  can  suppress  the  host  anti-tumor  immune 

response. Human granulocytic MDSCs isolated from peripheral blood of patients suffering 

from breast, colon or lung cancer were indicators of poor prognosis (Greten et al., 2011). 

Following  tumor progression through 14 and 21 days post LLC cell inoculation, we were 

able to detect an increase in the number of Ly6G/Gr1+ cells in immunohistological staining 

from tumor bearing lungs of both ADAM17wt/wt  and ADAM17ex/ex animals. We were able to 

see the same effect in Ly6G/Gr1+ cell infiltration in the tumor bearing lungs of ADAM17wt/wt 

and ADAM17ex/ex animals 21 days after inoculation with B16F1 melanoma cells.  Tumor 

bearing  lungs  of  ADAM17wt/wt mice  had  stronger  infiltration  of  granulocytic  MDSCs 

characterized  with  CD11b+Ly6G/Gr1+F4/80-CD11c-  phenotype  (Youn  et  al.,  2008),  than 

tumor bearing lungs of ADAM17ex/ex mice.

ADAM17 has been shown to have an important role in immunosuppression of T-cells by 

MDSCs. Namely, ADAM17 on the surface of MDSCs can cleave L-selectin (CD62L) on the 

surface of  naïve CD4+ and CD8+ T-cells  in the tumor (Hanson,  2009).  Shedding of  L-

selectin from the surface of naïve CD4+ and CD8+ T-cells disables recirculation of T cells to 

the lymph nodes, thus reducing host immune response against the tumor. Unfortunately,  

until  now we did  not  determine the  presence of  CD4+ and CD8+ T-cells  in  the  tumor 

bearing  lungs  of  ADAM17wt/wt and  ADAM17ex/ex  mice.  We  hypothesized  that 

immunosuppression  is  much  stronger  in  tumor  bearing  lungs  of  ADAM17wt/wt than  in 

ADAM17ex/ex mice. Therefore, we assume that hypomorphic mice should have significantly 

higher number of CD4+ and CD8+ T-cells in tumor bearing lungs than wild type mice.

To better understand the mechanism of myeloid cells attraction into tumor bearing lungs, 

we performed quantitative real time PCR for mRNA expression of different chemokines 
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at  all  time  points  post  LLC  cell  injection.  We  found  increased  transcription  of  the 

inflammatory chemokine CCL4/MIP-1β only 20h after LLC inoculation in whole lung tissue 

from ADAM17wt/wt mice. Expression of CCL4/MIP-1β in ADAM17ex/ex lung tissue was on a 

basal level through all four time points. Interestingly, our data correlated with previously 

published  data  that  over-expression  of  IL-1β can  induce  production  of  CCL4/MIP-1β 

(Zhang et al., 2003). We could demonstrate that IL-1β mRNA expression was significantly 

upregulated in tumor bearing lungs of ADAM17wt/wt mice in all time points peaking 7 days 

post injection. Interestingly, IL-1β can be induced by TNF-α. We were able to detect an 

increased expression of TNF-α as early as 20h after LLC cell injection in wild type animals. 

We  can  hypothesize  that  sTNF-α,  generated  by  ADAM17  shedding,  induces  IL-1β 

expression thus  indirectly  contributing  to  CCL4/MIP-1β  production.  CCL4/MIP-1β 

chemokine is important for T-cell infiltration.

It is possible that secretion of TNF-α and IL-1β early after tumor cell extravasation induces 

expression  of  CXCL2/MIP-2  resulting  in  attraction  of  myeloid  cells  to  the  lungs. 

CXCL2/MIP-2 is a very potent neutrophil chemoattractant, and it has been correlated with 

infiltration of neutrophils before, in a model of acute lung injury induced by LPS (Gupta et  

al., 1996). 

One of the factors implicated in attraction, expansion and activation of MDSCs in cancer is 

CCL2/MCP-1. Isolating RNA from the whole lung tissue of ADAM17wt/wt and ADAM17ex/ex 

mice from all time points post injection, we were able to demonstrate an upregulation of 

CCL2/MCP-1 gene expression in control mice. Significant differences in the expression of 

CCL2/MCP-1 gene in ADAM17wt/wt and ADAM17ex/ex mice appeared 20h post LLC injection, 

peaking after 14 days and sustaining until the final stage of metastasis. The expression of 

CCL2/MCP-1 remained unchanged through all time points in ADAM17ex/ex mice. 20h post 

LLC cell injection CCL2/MCP-1 was 15 times more expressed in tumor bearing lungs than 

in  the  untreated  lungs  of  ADAM17wt/wt mice.  Finally,  we  wanted  to  ascertain  that 

upregulation  of  CCL2/MCP-1  gene  expression  lead  to  increased CCL2/MCP-1  protein 

production. We were able to confirm that protein expression from whole lung tissue of 

ADAM17wt/wt mice was significantly increased compared to ADAM17ex/ex mice in the final 

stage of  metastasis.  Furthermore,  we were  able  to  show that  produced CCL2/MCP-1 

mainly  derived  from  tumor  cells.  This  finding  supported  already  published  data 
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(Sawanobori et al., 2008). 

High  CCL2/MCP-1  serum  levels  in  breast  cancer  patients  correlated  with  disease 

progression and poor prognosis (Soria et al., 2008). Soria and colleagues demonstrated 

that MDSCs are recruited to the tumor via CCL2/CCR2 pathway (Huang et al., 2007). They 

isolated cancerous tissue from patients suffering from breast, ovarian or gastric cancer and 

demonstrated that migration of MDSCs was depended of CCL2/CCR2 pathway. Namely, 

they used a transwell aparatus where they placed tumor samples from patients in a lower 

chamber, and MDSCs isolated from the same patients blood in upper chamber. They could 

show significant reduction in transmigration of MDSCs towards tumorous tissue when anti-

CCL2 or  anti-CCR2 antibody was  used.  Interestingly,  production  of  CCL2/MCP-1  was 

already  recognized  in  murine  tumor  models  where  LLC  and  B16F1  cells  were  used 

(Gabrilovich et al., 2009). 

Our  data  demonstrate  that  ADAM17  plays  an  important  role  for  the  infiltration  of 

immunosuppressive myeloid cells to tumor bearing lungs initially via CXCL2/MIP-2 and in 

later stages via CCL2/MCP-1 chemokine production. This supports already published data 

that CCL2/MCP-1, which derives from the tumor cells, has implication in MDSC infiltration 

in later stages of cancer development (Huang et al., 2007). 

Since CCL2/MCP-1 mainly derived from cancer cells, we hypothesize that the difference in 

CCL2/MCP-1 expression between ADAM17wt/wt and ADAM17ex/ex mice correlates with the 

different number of tumor cells in the lungs. The difference in tumor cell number could be 

explained  by  a  different  ability  of  tumor  cells  to  extravasate  into  the  lung  tissue. In 

endothelial and epithelial cell junctions, a variety of proteins are involved. JAM-A is located 

at tight endothelial and epithelial junctions and it has been shown to be a substrate of  

ADAM17 (Dreymueller et  al.,  2012).  When it  is  shed,  like in ADAM17wt/wt animals,  the 

extravasation of tumor cells can be unimpeded and when JAM-A is not shed, potentially 

like in ADAM17ex/ex animals, extravasation of tumor cells can be reduced. To validate this 

hypothesis,  we  will  use  a  model  of  experimental  metastasis  with  mCherry-LLC  cells. 

mCherry-LLC cells are LLC cells  stably  transduced with an empty vector  containing a 

cassette coding for the fluorescent protein mCherry. Since we were successful in tracing 

the mCherry labeled kdADAM17-LLC cells via RT-PCR (section 4.9), we want to use this 
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method to investigate is tumor cells extravasation altered in ADAM17ex/ex mice.

5.3 ADAM17 enhances metastatic progression via proliferatory stimuli

We were able to detect significantly higher number of PCNA+ cells in tumor bearing lungs 

of ADAM17wt/wt than ADAM17ex/ex animals.  PCNA+ areas in the lung tissue were mainly 

tumorous areas, while the surrounding tissue was less proliferating. In the line of these 

findings, we could detect an increased phosphorylation of ERK1/2 kinase 21 days after 

injection. Impressive difference in activation of ERK1/2 kinase between ADAM17wt/wt  and 

ADAM17ex/ex mice was mainly in the tumorous part of the lung tissue. Interestingly, we were 

not  able  to  detect  any  phosphorylation  of  ERK1/2  kinase  in  tumor  lysates  from 

hypomorphic mice. To better understand from which signaling pathway such  significant 

difference  derived,  we  tested  tumor  lysates  from  2  and  3  weeks  injected  mice  for 

phosphorylation  of  different  receptor  tyrosine  kinases  using  a  Phospho-RTK  antibody 

array. We could detect increased phosphorylation of PDGFR-α and Axl in tumor samples 

of ADAM17wt/wt compared to ADAM17ex/ex mice. 

PDGFR-α  and  PDGFR-β  are  receptor  tyrosine  kinases  highly  implicated  in  tumor 

development and metastasis. They have been implicated in lymphangiogenesis, alteration 

in tumor vasculature and interactions between metastatic microenviroment and malignant 

cells (Oestman et al.,  2007). In a recent study Rikova and colleagues identified PDGFR-α 

to  be  highly  activated in  NSCLC  (Rikova et  al.,  2007).  The group of  C.  Blobel  could 

demonstrate  that  activation  of  the  PDGFR-β  induced  ADAM17  activity  and  increased 

shedding of TNF-α and TGF-α from the cell surface (Mendelson et al., 2010). 

Axl belongs to the TAM family (Tyro3, Axl and Mertk) of receptor tyrosine kinases. It is a 

transmembrane protein, which is activated upon interaction with its ligand - growth arrest-

specific protein 6 (Gas6). It regulates cell survival, growth and migration thus influencing 

tumorigenesis  (Linger  et  al.,  2008).  Interestingly,  Axl  can  influence  proliferation  via 

activation of Ras/MAPK pathway upon Gas6 stimulation (Fridell et al., 1996) or expression 

of anti-apoptotic factors Bcl-XL and Bcl-2 via NF-κB activation (Demarchi et al.,  2001). 

Namely,  Gas6  stimulation  can  increase  IkB  degradation,  thus  releasing  NF-kB  and 

allowing its translocation to the nucleus where it act as a transcription factor. Increase of 

Axl  activity  and  its  over-expression  is  common  in  many  pathological  conditions, 
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mainly in cancer (Linger et al., 2010). Inhibition of Axl signaling downregulates expression 

of pro-inflammatory cytokines, which are important mediators of tumor metastasis (Holland 

et al., 2010).

Taking into consideration that tumors of ADAM17wt/wt mice have sustained inflammatory 

status which is reflected in TNF-α production and NF-κB activation, we can hypothesize 

that synergistic effect of Axl and TNF-α in activation of NF-κB in tumors of ADAM17wt/wt 

mice can lead to stronger inflammatory stimuli,  thus to increased infiltration of myeloid 

cells and poor prognosis.

A strong correlation between high EGFR activity and high ADAM17 levels in breast tumors 

was reported (Borrell-Pages et al., 2003). Interestingly, we did not see expected significant 

difference  in  phosphorylation  of  EGFR  between  ADAM17wt/wt and  ADAM17ex/ex mice. 

However, we could notice a slight difference in phosphorylation of ErbB3 and ErbB4 in 

tumor lysates of 3 weeks injected mice by Phospho-RTK antibody array.

Performing quantitative real time PCR, we were able to show that target genes of Notch 

signaling, Hes 1 and Hey 1, were upregulated in the whole lung tissue as early as 20h post 

LLC injection, peaking 7 days and at later time points decreasing to a basal level. We 

noticed a significant difference in the expression of these genes in tumor bearing lungs 

between  ADAM17wt/wt and  ADAM17ex/ex  animals.  Hypomorphic  mice  displayed  an 

upregulation of transcription of Notch target genes only at the earliest time point, and just 2 

times higher then the basal level with relapse to normal at later time points. Control mice 

had 3-4 times higher expression of both genes compared to untreated mice (basal level) 

20h after LLC inoculation. Maximum of the Hes 1 and Hey 1 expression was measured  7  

days  post  injection  with  relapse  to  basal  level  at  later  time  points.  This  implied  that 

ADAM17 was implicated in Notch activation shortly after tumor cell injection. We  assume 

that Notch is activated within the cancer cells. Because of the lack of ADAM17 activity in 

hypomorphic mice, endothelial  cells might be incapable to release a soluble Jagged-1, 

therefore impairing cancer stem cell formation. However, analysis of cancer stem cells in 

our model is still ongoing.
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It is known that Notch signaling has a multiple role in lung development, repair and cancer.

Notch  promotes  proximal  cell  fate  in  early  lung  development,  it  coordinates  alveolar 

formation via cell fate specification and cell differentiation in the parenchyma and vascular 

compartments. Knock-out studies for Notch-1, Notch-2, and the Notch ligands Jagged-1 

and  DLL-1  clearly  demonstrate  how  important  Notch  signaling  is  for  embryonic 

development, since these mutants die in an early embryonic stage. During development 

and progression of lung cancer, Notch signaling has a prominent role. In 30% of human 

lung cancers expression of the Notch inhibitor Numb is reduced, which was linked to a 

poor prognosis  (Westhoff  et al.,  2009).  Also,  Notch receptor signaling was analyzed in 

different lung cancer cell lines under hypoxic conditions, thus mimicking the surrounding in 

tumors. It was found that Notch-1 signaling was increased under hypoxic conditions and 

that  it  was  imperative  for  cancer  cell  survival  (Chen et  al.,  2007).  Interestingly,  under 

conditions  of  severe  hypoxia,  ADAM17  expression  and  activation  was  upregulated 

(Ryzmski et al., 2012). Ryzmski and colleagues could demonstrate that hypoxia inducible 

factor-1 alpha (HIF-1α) was important to maintain basal levels of ADAM17 mRNA under 

hypoxic conditions. Additionally, proteolytic release of Jagged-1 from endothelial cells by 

ADAM17 has been shown to be important for the transformation of colorectal cancer cells 

into cancer stem cells (Lu et al., 2013). Collectively, these findings point out the complexity  

and significance of Notch signaling, both for the host and for cancer cells, and the possible 

implication of ADAM17 in Notch activation.

Interestingly, in some cases activation of NF-κB signaling can support proliferatory signals. 

Therefore, we tested the influence of TNF-α on proliferation of LLC cells. Wild type LLC 

cells were treated for 144h with different concentrations of rm TNF-α.  24h after TNF-α 

stimulation,  all  stimulated  LLC  cells  had  a  significantly  higher  proliferation  rate  than 

unstimulated cells. 48h after TNF-α stimulation, there was no difference in the proliferation 

rate between TNF-α stimulated and unstimulated LLC cells. 

From these data we can conclude that TNF-α can be a proliferatory stimulus for cancer 

cells at very early stages of metastasis.

5.4  IL-6  trans-signaling  does  not  play  a  protective  role  in  LLC  induced  lung 

metastasis

In  previous  publications  IL-6  classic  and  trans-signaling  have  been  correlated  with 
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tumorigenesis (Bollrath et al., 2009).  Elevated level of IL-6 in patients suffering from lung 

and  breast  cancer,  was  strongly  correlated  with  a  poor  prognosis  (Qu  et  al.,  2009). 

Interestingly,  patients who suffer  from severe acute pancreatits  (SAP) as a secondary 

effect of disease develop acute lung injury (ALI) which much resembles the inflammatory 

state  in  lung  cancer.  Zhang  and  colleagues,  using  sgp130Fc  transgenic  mice,  could 

determine the underlying molecular mechanism in ALI development (Zhang et al., 2013).  

They demonstrated that blocking IL-6 trans-signaling increased survival rate via reduction 

of ALI in a mouse model of SAP. Using IL-6-/- mice, in a situation where IL-6 signaling is 

completely blocked, progression of disease was even enhanced. These data suggested 

that protective signals derive from classic IL-6 pathway, while disease stimulatory signals 

derived from IL-6 trans-signaling.  

Using sgp130Fc mice in our model of experimental metastasis with LLC cells we were 

able to show that blocking IL-6 trans-signaling did not have a beneficial effect on tumor 

metastasis. Both mice groups displayed same the tumor development and lung damage. 

Total lung weight was increased 3 times more than normal in both mice groups compared 

to untreated mice. We were able to detect one liver metastasis in sgp130Fc mice and none 

in control mice. Immunohistological analysis revealed the same immune response in the 

lungs of sgp130Fc mice like in C57Bl6/N control mice. Tumor bearing lungs of sgp130Fc 

mice displayed strong infiltration of Ly6G/Gr1+ cells but not of F4/80+ cells.

5.5 ADAM17 in tumor cells is necessary for tumor cell growth in vitro and in vivo

In order to investigate the importance of ADAM17 in tumor cells for tumor cell growth in 

vitro and in vivo, we generated LLC cells with stable ADAM17 knock down (kdADAM17-

LLC).  We  were  able  to  demonstrate  that  proliferation  of  kdADAM17-LLC  cells  was 

significantly reduced already in the first 24h. As compared to wtLLC cells, we observed 

that the difference in proliferation rate was increasing with time progression.

In preliminary experiments, we could see that lack of ADAM17 in tumor cells influences 

tumor growth  in vivo. We performed i.v. injection of kdADAM17-LLC cells into C57Bl6/N 

mice. We were able to see that lack of ADAM17 in the tumor cells resulted in null tumor 

formation in the lungs. 21 days after kdADAM17-LLC cell inoculation there were no visible 

tumors  in  the  lungs,  compared  to  control  mice  injected  with  wild  type  LLC  cells.  To 
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investigate the presence of kdADAM17-LLC cells in the lungs of injected mice, we isolated 

RNA from  the  whole  lung  tissue, and  performed  semiquantitative  RT-PCR  for  gene 

expression of mCherry. Confirming the expression of mCherry in the lungs of kdADAM17-

LLC injected mice, we were able to confirm the presence of kdADAM17-LLC cells in the 

whole lung tissue.

Our data demonstrate that  expression and activity  of  ADAM17 in the metastatic  niche 

significantly contributes to the growth of metastatic tumors. Targeting ADAM17 in the tumor 

stroma seem to be very promising as the tumor stroma is not prone to mutations (Junttila 

et al., 2013).
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6 Summary 

Most cancer deaths are not the result of primary cancer development, but rather the result 

of its spread, a process called metastasis. Metastasis is a complex process where cancer 

cells leave the original tumor site, intravasate into the bloodstream, migrate to a distant 

organs  and  initiate  invasive  growth.  Numerous  studies  have  contributed  to  better 

understanding the underlying cellular and molecular processes of metastasis.

In the present study we could show that ADAM17 plays a crucial role in the tumor cell  

growth in the metastatic niche of lung metastasis.

In a murine metastasis model using the LLC and B16F1 tumor cell lines we could see that 

ADAM17ex/ex animals,  that  express low levels  of  ADAM17,  had a much reduced tumor 

burden.  The reduced metastatic  growth  was  accompanied with  reduced expression  of 

inflammatory chemokines like e.g. MCP-1 and MIP-2.

Consequently,  we  observed  a  reduced  infiltration  of  inflammatory  cells,  in  particular 

Ly6G/Gr1+CD11b+ myeloid derived suppressor cells in ADAM17ex/ex mice.

Furthermore, ADAM17 seems to influence metastatic growth through the activation of the 

receptor  tyrosine  kinases  PDGFR-α and  Axl,  as  well  as  the  activation  of  the 

transmembrane protein Notch.

Taken  together,  ADAM17  represents  a  promising  drug  target  for  the  inhibition  of 

metastasizing process.
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6 Zusammenfassung

Mortalität bei Tumorerkrankungen ist meistens nicht auf das Wachstum des Primärtumors 

zurückzuführen,  sondern  vielmehr  auf  seine  maligne  Streuung,  der  Metastasierung. 

Metastasierung  ist  ein  komplexer  Prozess,  bei  dem  Tumorzellen  den  Primärtumor 

verlassen, in die Blutzirkulation eintreten, zu entfernten Organen wandern und dort invasiv 

wachsen.  Zahlreiche  Studien  haben  bereits  dazu  beigetragen,  die  zugrundeliegenden 

zellulären und molekularen Prozesse besser zu verstehen und dem Schritt einer kausalen 

Therapie metastasierender Erkrankungen näher zu kommen.

In  der  vorliegenden  Studie  können  wir  zeigen,  dass  ADAM17  in  metastasiernden 

Tumorzellen,  aber  vor  allem auch in  Zellen der  Metastasennische eine unverzichtbare 

Rolle für das Wachstum von Lungenmetastasen spielt. 

In  einem  tierexperimentellen  Metastasierungsmodell  mit  murinen  LLC  und  B16F1 

Tumorzellen konnten wir sehen, dass ADAM17ex/ex Mäuse, die nahezu kein ADAM17 mehr 

exprimieren,  eine  deutlich  reduzierte  Tumorlast  aufwiesen.  Das  reduzierte 

Metastasenwachstum  ging  einher  mit  einer  verminderten  Expression  entzündlicher 

Zytokine,  wie  TNFa  und  IL1b  und  einer  verminderten  Expression  an  enzündlichen 

Chemokinen wie z.B. MCP-1 und MIP-2. Als Resultat konnten wir in ADAM17ex/ex Tieren 

eine  reduzierte  Infiltration  entzündlicher  Zellen,  insbesondere  sg.  Ly6G/Gr1+CD11b+ 

myeloider Immunsupressorzellen feststellen. 

ADAM17  scheint  darüberhinaus  das  Metastasenwachstum  durch  die  Aktivierung  der 

Rezeptortyrosinkinasen  PDGFR-α und  Axl,  sowie  dem  Transmembranprotein  Notch 

maßgeblich zu beeinflussen.

Zusammengefasst stellt  ADAM17 ein vielversprechendes drug target  für  die  Hemmung 

metastasierender Prozesse dar.
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8 Abbreviations

ADAM17 A Disintegrin and Metalloprotease 17

AR Amphiregulin

APS Amonium- persulphat

B16F1 Murine melanoma cell line

BCD Blasticidin

BMDC Bone Marrow Derived Cells 

BMDM Bone Marrow Derived Macrophages

BMDN Bone Marrow Derived Neutrophils

BSA Bovine Serum Albumin

Br Bromine

bp base pair

OC degrees of Celsius

C5/C5a Complement component 5

CaCl2 Calcium (II) - chloride

(Ca)3(PO4)2 Calcium (II) - phosphate

CCL2 Chemokine (C-C motif) ligand 2

CCL3 Chemokine (C-C motif) ligand 3

CCL4 Chemokine (C-C motif) ligand 4

CCL5 Chemokine (C-C motif) ligand 5

CCL12 Chemokine (C-C motif) ligand 12

CD Cluster of Differentiation

CDK2 Cyclin-dependent kinase 2

Co-R Transcriptional co-repressors

CSF-1 Macrophage colony-stimulating factor 1
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CSF1R Macrophage colony-stimulating factor 1 Receptor

CSL DNA-binding protein

CXCR4 C-X-C chemokine receptor type 4

CXCL12 C-X-C motif chemokine 12 (also known as SDF-1)

CXCL1 C-X-C motif chemokine 1 (also known as KC)

CXCL2 C-X-C motif chemokine 2 (also known as MIP-2α)

CXCL8 C-X-C motif chemokine 8

CXCL9 C-X-C motif chemokine 9

CXCL10 C-X-C motif chemokine 10

DD Death Domain

ddH2O Double-distilled water

DMEM Dulbecco's Modified Eagle Medium

DNA Deoxyribonucleic Acid

dNTP Deoxy-nucleoside triphosphate

EDTA Ethylenediaminetetraacetic acid

EGF Epidermal Growth Factor 

EGFR Epidermal Growth Factor Receptor

ELISA Enzyme-Linked Immunosorbent Array

EMT Epithelial-Mesenchymale Transition

ER Endoplasmic Reticulum

Erk1/2 extracellular-signal-regulated kinases 1/2

FACS Fluorescence-activated cell sorting

FCS Fetal Calf Serum

FGFR 2 Fibroblast growth factor receptor 2

FGFR 3 Fibroblast growth factor receptor 3
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g gram

G-CSF Granulocyte Colony-stimulating Factor 

GI GI254023X – hydroxamate inhibitor of the ADAM10

Glc Glucose

Gln L-glutamine

gp130 Glycoprotein 130

Gr1 Granulocyte marker

GW GW280264X –  hydroxamate inhibitor of the ADAM17 and 

ADAM10

HB-EGF Heparin Binding – Epidermal Growth Factor 

HBS Hepes Buffered Saline

HE Hematoxylin/Eosine

HEK293T Human Embryonic Kidney 293 cells 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

Hes Hairy and enhancer of split-1

Hey Hairy/enhancer-of-split related with YRPW motif protein 1

HRP Horseradish-peroxidase

H2SO4 Sulfuric acid

ICAM-1 Intercellular Adhesion Molecule 1

IGF-1R Insulin-like growth factor 1 receptor

INF-γ Interferon gamma

IkB Inhibitor of NF-κB

IKK IκB kinase

IL-1β Interleukin 1 beta

IL-1R Interleukin 1 receptor
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IL-6 Interleukin 6

IL-6R Interleukin 6 Receptor

IL-8 Interleukin 8

IL-16 Interleukin 16

iNOS Inducible nitric oxide synthase

KCl Potassium (I) - Chloride

kDa kiloDalton

KHCO3 Potassium-hydrogen carbonate

L liter

LLC Lewis Lung Carcinoma 

LPS Lypopolisaccharide

MAM Mastermind - co-activator

MAPK Mitogen activated protein kinase

MCP-1 Monocyte chemotactic protein-1

M-CSF Macrophage-Colony stimulating factor 

MDSC Myelod Derived Suppressor Cells 

MEM Minimum Essential Medium

MEKK 1 Mitogen-activated protein kinase kinase kinase 1

min minute

MIP-1β Macrophage Inflammatory protein – 1 beta

MIP-2 Macrophage Inflammatory protein - 2

mg milligram

ml milliliter

mM millimolar

µl microliter
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μM micromolar

MMP2 Matrix metalloprotease 2

MMP9 Matrix metalloprotease 9

mRNA Messenger Ribonucleic acid

MSPR Macrophage-stimulating protein receptor

MuSK Muscle-Specific Kinase

NaCl Sodium Chloride

NaF Sodium Fluoride

Na2HPO4 Sodium hydrogenphosphate

Na2HPO4x2H2O Sodium hydrogenphosphate dihydrate

Na3VO4 Sodium vanadate

NH4Cl Amonium chloride

NF-κB Nuclear Factor kappa B

NICD Notch intracellular domain

NIK NF-κB-inducing kinase

ng nanogram

NO Nitric-oxide

NK Natural killer cell 

NP-40 Nonyl phenoxypolyethoxylethanol

NSCLC Non-small cell lung cancer 

ONOO- Peroxynitrite

PBS Phosphate buffered saline

PCNA Proliferating Cell Nuclear Antigen 

PDGF Platelet-derived growth factor

PDGFRα Platelet-derived growth factor receptor alpha
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PDGFRβ Platelet-derived growth factor receptor beta

P-Erk1/2 Phosphorylated extracellular-signal-regulated kinases

P-IKK Phosphorylated IκB kinase

PI-3-K Phosphatydil inositol – 3 kinase

PKC Protein kinase C

PMN Polumorphonuclear cell

PMSF Phenylmethanesulfonylfluoride

P-STAT3 Phosphorylated - signal transducer and activatorsof 

transcription 3

PVDF Polyvinylidenfluorid

RIP Receptor interacting protein

ROS Reactive oxygen s[ecies

rpm revolutions per minute

RT-PCR Reverse transcription – Polymerase chain reaction

SCFR Stem cell factor receptor

SDS Sodium dodecyl sulphate

SDS-PAGE Sodium dodecyl sulphate – polyacril amide gel 

electrophoresis

SDF-1 Stromal cell-derived factor 1 

sgp130 Soluble glycoprotein 130

sICAM-1 Soluble Intercellular Adhesion Molecule 1

sIL-6R Soluble Interleukin 6 Receptor

STAT1 Signal transducer and activator of transcription 1

STAT3 Signal transducer and activator of transcription 3

TACE TNF-α converting enzyme (ADAM17)

TAE Tris, Acetic acid, EDTA buffer
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TCR T-cell receptor

TEMED Tetramethylethylenediamine

TGF-α Transforming growth factor alpha 

TGF-β Transforming growth factor beta

Tie 1 Tyrosine  kinase  with  immunoglobulin-like  and  EGF-like 

domains 1

TLR Toll-like receptor

TRADD TNFR I associated death domain containing protein

TRAF 2 TNFR associated factor 2

TRAIL TNF-related apoptosis-inducing ligand 

TREM 1 Triggering receptor expressed on myeloid cells 1

Trk A Neurotrophic tyrosine kinase receptor type 1

TNF-α Tumor necrosis factor alpha 

TNFR I Tumor necrosis factor alpha receptor I

Tris-HCl tris-(hydroxymethyl)-aminomethane hydrochloric acid

Tyr tyrosine

V volt

VCAM-1 Vascular cell adhesion molecule 1 

VEGFα Vascular endothelial growth factor alpha 

VEGFR 1 Vascular endothelial growth factor receptor 1

VEGFR 2 Vascular endothelial growth factor receptor 2

VEGFR 3 Vascular endothelial growth factor receptor 3

WB Western Blot
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