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Introduction

Economic theory about the demand for renewable resources usually focuses

on one good and one goal: Biomass harvested from a resource stock and

its socially efficient production. The aim of the dissertation at hand is to

broaden this perspective on renewable resources in three respects.

The first paper entitled “Enjoying catch and fishing effort: The effort ef-

fect in recreational fisheries” argues that recreational fishermen derive utility

not only from their catch. While fishing effort is a costly input to harvest

production for both recreational and commercial fishermen, anglers value

fishing effort also by itself. If welfare is generated not only by harvest, but

also by harvesting effort, three key results follow. First, a density-dependent

“effort effect” emerges that holds under first-best management as well as un-

der open access: The higher the importance of fishing effort relative to catch

in an representative agent’s utility function, the lower are actual catches at

high stock sizes and the higher are actual catches at low stock sizes. Second,

the effort effect under first-best management lowers the bar for optimal ex-

tinction. In a standard commercial fisheries model without harvesting costs,

extinction becomes optimal if the discount rate exceeds the maximum growth

rate of the stock (Clark, 1991). With the direct benefits of harvesting effort

incorporated, extinction already becomes optimal if the discount rate ex-

ceeds the maximum growth rate of the stock times the relative importance

of catch for fisherman utility. Third, the effort effect under open access adds

an interesting insight to the discussion about the potential of recreational

fishing to cause stock depletion. In mixed commercial-recreational fisheries,

recreational fishing might in fact be a negligible source of fishing mortality

at high stock sizes. Once commercial fishing has reduced the stock, rising
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unit fishing costs limit commercial catches under open access. Recreational

fishing, being less dependent on catches due to the effort effect, might then

realize higher actual catches than commercial fishing at low stock sizes. If

the importance of catch is below a certain threshold, recreational fishing may

continue overexploitation until stock collapse. The article has been accepted

for publication in Environmental and Resource Economics (Stoeven, 2013).

The second paper “Public and private management of renewable re-

sources: Who gains, who loses?” is joint work with my supervisor Martin

F. Quaas. Our paper is motivated by the question why many renewable re-

sources on land or within Exclusive Economic Zones continue to be managed

inefficiently. This is an interesting question because the economic theory

of common property resources provides policy advice to resolve inefficiency

under various forms of management from pure open access to public manage-

ment with insufficient input or output controls. To understand why insights

from resource economics are not adopted, we start our paper with a thought

experiment and study how producers (the owners of fishing firms who re-

ceive resource rent from producing resource harvest), resource users (buyers

of resource harvest for processing or final consumption who receive consumer

surplus) and factors owners (owner of capital and labor who receive factor

surplus from employment in resource harvesting over the best remuneration

in alternative employment) would manage a renewable resource if they be-

came the sole owner of the resource use rights. We show that both resource

users and factor owners have an interest in inefficiency if the harvesting costs

are stock-dependent and that both interest groups prefer open access over

any other form of management for discount rates above certain finite thresh-

olds. It is a well-known result in the literature that price-taking resource

management maximizing resource rent can only align with open access for

an infinite discount rate (Clark, 1991). Our paper shows that price-taking

sole owners (maximizing consumer surplus or factor surplus) may want to

introduce open-access conditions already for finite discount rates. The intu-

ition for consumers is that their expenditures for harvest equals the sum of

harvesting costs and resource rent, such that they do not necessarily benefit

if resource management improves and the share of resource rent in consumer
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expenditures increases. The intuition for factor owners is that they under-

stand the resource stock as a rivaling input to harvest production if the

marginal productivity of effort is stock-dependent. If such interest groups

benefiting from inefficiently high harvest rates have sufficient political influ-

ence, public resource management may fail. If public resource management

suffers from stakeholders lobbying for inefficiency, privatizing use rights may

be seen as a way to weaken such influences. We show that privatization is

the likelier the lower the current stock size and the lower the discount rate.

This is because resource users and factor owners are the likelier to gain from

leaving the status quo the more depleted the resource stock and the lower

the discount rate is.

My contribution to the paper includes the initial model setup for analyz-

ing the consumer benefits of improving resource management in a dynamic

model. Prof. Dr. Martin F. Quaas enlarged the model setup to include fac-

tor owners and processors as well. To avoid mistakes, both Prof. Dr. Martin

F. Quaas and myself calculated the dynamic harvesting plans of the three

interest groups separately. The economic rationale for resource users and

factor owners to prefer inefficiency despite being sole owners was written by

me. Prof. Dr. Martin F. Quaas realized the critical role of the stock effect

and provided most of the proofs in the appendix.

The third paper “New trade in renewable resources and consumer prefer-

ences for diversity” is joint work with my supervisor Martin F. Quaas. It is an

extension of Quaas and Requate (2013) to trade with varying consumer ex-

penses. The literature about trade in renewable resources makes the implicit

assumption that the traded resources are perfect substitutes. If the harvest-

ing cost structure of open-access resources is comparable, trade liberalization

has the effect to relieve the more depleted resource stock by redirecting de-

mand towards the more abundant one. The literature on trade in renewable

resources thus uses a modeling framework that makes trade-induced stock

collapses improbable as it works towards balanced stock sizes. Our paper is

motivated by lifting this assumption. Using a CES utility function to model

the preferences for two types of harvest, we show that decreasing the elas-

ticity of substitution from the standard case of perfect substitutes towards
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the second limit case of Cobb-Douglas preferences decreases the equilibrium

stock size of the stock with the smaller intrinsic growth rate. In the limit

case of Cobb-Douglas preferences, trade liberalization may result in the col-

lapse of one or the sequential collapse of both resource stocks. The intuition

for this result is that increasing the consumers’ love of variety weakens the

link between resource scarcity and demand. Concerning the welfare effects of

trade liberalization, trade in perfect substitutes bar any general equilibrium

feedbacks has a winner and a loser as the resulting equilibrium price lies be-

tween the former autarky prices. We show that a love of variety effect may

compensate trade-induced increases or decreases in domestic consumption,

making the total welfare effect of trade more ambiguous.

My contribution to the paper includes the literature review, most of the

writing and the model setup in the two-species-two-country case. The basic

model setup builds on Quaas and Requate (2013). I developed the trade

model in x1 − x2 space to make it as comprehensible as possible. Prof. Dr.

Martin F. Quaas developed the model about trade between a species-rich

and a species-poor country.
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Enjoying catch and fishing effort:

The effort effect in recreational fisheriesI

May 26, 2013

Max T. Stövena
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Abstract

Recreational fishermen derive utility from catch and fishing effort. Building our

analysis on the Gordon-Clark model for renewable resources, we show that a lower

importance of catch may result in higher catches. While this effect also holds

under first-best management, it may destabilize open-access recreational fisheries

to the point of stock collapse. Technical progress in recreational fisheries may

mask such dynamics as it enables unaltered angler behavior and constant catches

during stock declines.

Keywords: recreational fishing, angling, importance of catch, collapse,

overfishing
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The effort effect in recreational fisheries - Paper 1

Recreational fishing is the most important source of fishing mortality

in many inland and coastal waters (Lewin et al., 2006; Ihde et al., 2011).

Prominent examples include four Canadian freshwater species whose collapse

is attributed to recreational fishing (Post et al., 2002) and several saltwater

species in the U.S. for which recreational exceed commercial landings (NMFS,

2011; Coleman et al., 2004). The mere number of recreational fishermen, e.g.

11 million anglers compared to 0.11 million commercial harvesters in U.S.

marine fisheries (NMFS, 2010) illustrates why contrasting a single angler

with rod and reel to a commercial trawler is an increasingly misleading image

(Cooke and Cowx, 2006).

Recreational fishing differs from commercial fishing by the perception of

fishing effort. While fishing effort is a costly production input for both types

of fisheries, recreational fishermen also value fishing effort by itself1. The

importance of catch relative to the importance of fishing effort (which repre-

sents non-catch benefits such as being outdoors) varies significantly between

angler subgroups (Fedler and Ditton, 1986; Arlinghaus, 2006). We show

that the intuitive result that a lower importance of catch results in anglers

catching fewer fish only holds for high stock sizes. At low stock sizes how-

ever, a lower importance of catch increases actual catches. While this effect

also holds under first-best management, it may destabilize open-access recre-

ational fisheries to the point of stock collapse. This result is especially rele-

vant for mixed commercial-recreational fisheries in which recreational fishing

becomes more important, e.g. for 71 fisheries in the U.S. (Ihde et al., 2011).

While recreational fishing may indeed be a negligible source of fishing mortal-

ity for abundant stocks, it may endanger smaller fish stocks including those

that experienced severe commercial overexploitation in the past.

As the large number of recreational fishermen prevents the enforcement

of quota schemes while attempts to limit total fishing effort often receive

bitter opposition (Walters and Cox, 1999), recreational fisheries usually have

restrictions for single fishing days only, leaving total seasonal fishing effort

and catch unregulated. It is the aim of this paper to analyze how angler

preferences for fishing effort and catch affect recreational fisheries under such

de-facto open access.
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The effort effect in recreational fisheries - Paper 1

This study builds on three strands of the multi-disciplinary literature on

recreational fisheries (Fenichel et al., 2012). A first strand of literature stud-

ies angler motivation (Fedler and Ditton, 1986, 1994; Arlinghaus, 2006) and

shows that the motives to go fishing and hence fishing effort vary significantly

between angler subpopulations. A second strand of literature are resource

economics models that inter alia address the commercial-recreational allo-

cation problem (McConnell and Sutinen, 1979; Bishop and Samples, 1980),

reaction to stock enhancement activities (Anderson, 1983) and endogenous

retention decisions (Anderson, 1993). A third strand of literature are stud-

ies mainly from fisheries science that apply parameterized effort response

functions to specific recreational fisheries. The functional form of the effort

response function is either chosen according to empirical model selection cri-

teria, simply postulated, or deduced from ecological predator-prey theory.

Most studies known to the author use linear (Scott R. Milliman et al., 1992;

Johnson and Carpenter, 1994; Beard et al., 2003; Cox et al., 2002; Post et al.,

2008) or sigmoidal effort responses (Schuhmann and Easley, 2000; Post et al.,

2003; Carpenter et al., 1994). In the third strand of literature, most effort

response functions lack a microeconomic foundation.

We are not aware of any work that modeled catch-fishing effort bundles

with a constant elasticity of substitution (CES) utility function. While the

existing literature (McConnell and Sutinen, 1979; Bishop and Samples, 1980;

Anderson, 1983, 1993) uses more general utility functions, having a distinct

parameter for catch orientation yields interesting results concerning its effect

on angler-fish dynamics. Extending the canonical Gordon-Clark model from

renewable resource economics (Gordon, 1954; Clark, 1990) by a CES utility

function for catch-fishing effort bundles, we derive a micro-founded effort

response function that could be used in applied fisheries science, while model

predictions align with results from the angler motivation literature.

The remainder of this paper is structured as follows. The first section

introduces the model on which we build our analysis. The second section

analyzes how the preferences for catch and fishing effort affect open-access

recreational fisheries. The third section studies the hypothetical case of so-

cially optimal fisheries management to give a reference case for discussions
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The effort effect in recreational fisheries - Paper 1

about overfishing and collapses in recreational fisheries. The fourth section

concludes.

1 The model

We consider a representative recreational fisherman with fishing effort f and

catch h. Besides fishing, the agent derives utility from other activities that are

summed up in the composite numeraire good z. The recreational fisherman’s

present value of utility at t = 0 is

∫ ∞

0

(u (h, f) + z) e−ρtdt. (1)

The integrand u (h, f)+z is instantaneous utility at time t ≥ 0, the parameter

ρ ≥ 0 is the discount rate for the numeraire and u (h, f) captures the bene-

fits derived from recreational fishing (McConnell and Sutinen, 1979; Bishop

and Samples, 1980; Anderson, 1983, 1993). In order to study how changing

the relative importance of catch affects recreational fisheries dynamics, we

assume that angler preferences for catch and effort can be represented by a

constant elasticity of substitution utility function,

u(h, f) =
1

β

(
αhθ + (1− α) f θ

)β
θ . (2)

Using catch h rather than landings in (2) has the advantage that the reason

why catch is important to the recreational fisherman need not be specified.

This keeps the utility function applicable to all consumptive orientations

(Fedler and Ditton, 1986) from catch-and-release fishing to retention of all

fish caught. The parameter β ∈ (0, 1) denotes the elasticity of instantaneous

utility with respect to fishing benefits. The parameter α ∈ [0, 1] is the

relative utility weight on catch within the fishing utility function. The limit

case α = 0 represents a recreational fisherman who only cares about the time

spent fishing, i.e. for whom catch is an incidental neutral good. The second

limit case α = 1 represents a recreational fisherman who sees effort solely as

a necessity to produce catch. In this case, the model aligns with the classical
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The effort effect in recreational fisheries - Paper 1

bio-economic model for commercial fishing in which fishing effort is a costly

production input only and u(h, f)
∣∣
α=1

= 1
β
hβ is consumer welfare from fish

consumption.

The elasticity of substitution between catch and effort is 1
1−θ . We assume

that catch and effort are imperfect complements (θ < 0) including the limit

case of Cobb-Douglas preferences (θ = 0).2 A high elasticity of substitution

(θ > 0) would allow recreational fishermen to substitute decreasing catches so

easily by effort that extinct open-access stocks would be still fished, lim
x→0

f > 0

for θ > 0. Compared to other recreationists such as canoeists, recreational

fishermen need a positive probability to catch a fish in order to enjoy the

effort of trying to do so, such that no fish should imply no fishing utility and

hence no fishing.

The harvesting function that gives catch h as a function of stock size x

and fishing effort f is a modified Schaefer equation

h = q xϕ f, (3)

where q ∈ (0, q̄] is the catchability coefficient and q̄ is the catchability coeffi-

cient of the most effective fishing technique. The artificially low catchability

q < q̄ in many recreational fisheries emerge from fishing ethics or ideas of

sportsmanship. For example, fly-fishing for trout is less effective than bait-

fishing with earthworms, but the latter is commonly regarded as not sports-

manlike. The parameter ϕ ≥ 0 can be interpreted as a concentration profile

parameter of the fish stock (Clark, 1990). Fish populations with varying

densities in their habitat will first be fished at the high density areas. If a

fish population does not show range contracting behavior towards these high

density areas, the catch-per-unit-effort (CPUE),

CPUE = q xϕ, (4)

will initially decline more rapidly than total abundance. This CPUE effect

is also known as “hyperdepletion” (Walters and Martell, 2004; Harley et al.,

2001) and can be modeled by ϕ > 1 (c.f. Figure 1). Some sedentary species
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The effort effect in recreational fisheries - Paper 1

might show this concentration profile. If a fish population does show range-

contracting or schooling behavior, CPUE may remain constant while stock

abundance declines (except for very low stock sizes). This case of “hyper-

stability” (Walters and Martell, 2004; Harley et al., 2001) is modeled by

ϕ < 1 (c.f. Figure 1). Hyperstability seems to be widespread in commercial

fisheries (Harley et al., 2001). Many fish species targeted by recreational

fishermen show range-contracting behavior around structure such as reefs,

weed beds or wrecks. As the CPUE of anglers targeting such “hot spots” of-

ten remains constant while stocks decline, hyperstability should be common

in recreational fisheries as well. The limiting case between hyperdepletion

and hyperstability is ϕ = 1, for which CPUE would react proportionally to

changes in total abundance (c.f. Figure 1). Diffusive fish species are thought

to fall into this category.

0
0

stock size

C
P

U
E

hyperstability (ϕ = 0.25)
proportional CPUE (ϕ = 1)
hyperdepletion (ϕ = 2)

Figure 1: CPUE q xϕ as a function of stock size x.

We assume that the total mortality rate for caught fish is k ∈ (0, 1]. Un-

der pure catch-and-release fishing, k represents post-release mortality. The

remaining fraction 1 − k are those fish that are caught, survive the release

and recruit back into the stock. Net growth of the resource stock ẋ ≡ dx/dt

is

ẋ = g(x)− k h. (5)

The biological growth function g(x) is assumed to be strictly concave with
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The effort effect in recreational fisheries - Paper 1

g(0) = 0 and g(K) = 0 for some K > 0. This implies that there is a unique

stock size xMSY with 0 < xMSY < K that generates the maximum sustainable

yield (MSY). We further use xρ to denote the stock size at which the marginal

biological productivity equals the discount rate ρ, i.e. g′(xρ) = ρ. The stock

size that generates maximum sustainable fishing effort (MSE) is denoted

xMSE. Note that as the maximization of steady-state fishing effort requires

g′(xMSE) ≥ 0, it holds that xMSE ≤ xMSY.

To close the model, we introduce a monetary budget constraint

m = w f + c If>0 + z (6)

with exogenous income m and numeraire z. Recreational fishing induces

marginal costs of effort w, e.g. foregone wages or monetary benefits of other

leisure activities as opportunity costs, and effort-independent costs c. As

there seems to be no distinct relationship between the catchability and the

costs of a specific fishing technique in recreational fishing, we model the

choice of the catchability coefficient without costs.

Travel expenses, license costs and expenses for fishing and boating equip-

ment that are independent of the actual level of effort f (for example inde-

pendent of the hours fished for a given fishing trip) are summarized in the

costs c. In case these effort-independent costs c are not sunk, i.e. the angler

decides if he wants to pay c in order to go fishing, the decision problem of the

representative recreational fisherman becomes a two-step process. In a first

step, the agent has to decide whether or not to fish, that is whether or not

to pay c in order to go fishing (participation decision or decision about the

extensive margin (Fenichel et al., 2012)). Given that he decides to become

an active angler, a second step is to adjust fishing effort f to fishing quality

(activity level decision or decision about the intensive margin (Fenichel et al.,

2012)). The two-step decision problem is solved backwards in the following

section.
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The effort effect in recreational fisheries - Paper 1

2 Open-access recreational fishing

In a specific recreational fishery, the maximum number of participants that

would become active at high stock abundance is typically unknown. For

each active angler, gear restrictions, bag limits and minimum sizes usually

regulate a fishing trip, but not the number of trips per season. Against

this background, the term “open access” refers to a situation in which the

aggregate fishing effort f directed at stock size x can be freely chosen.

Under open access, unilateral investments in the fish stock - by means

of voluntary catch reductions - do not pay off. For this reason, recreational

fishermen choose maximum catchability (q = q̄) and ignore future stock dy-

namics (5) when choosing f . After inserting (2), the harvesting function (3)

as well as the rearranged budget constraint (6), z = m − c − w f , instanta-

neous utility can be expressed as 1
β

(
α (q xϕ f)θ + (1− α) f θ

)β
θ +m−w f − c.

The problem to maximize instantaneous utility under open access follows as

max
f

1

β

(
α (q̄ xϕ f)θ + (1− α) f θ

)β
θ +m− w f − c. (7)

From (7) follows the first-order condition that marginal utility of fishing effort

equals its marginal costs,

(
α (q̄ xϕ)θ + 1− α

)β
θ
fβ−1 = w. (8)

Solving (8) for f yields open-access fishing effort as

f o(x) = w
1

β−1
(
α (q̄ xϕ)θ + 1− α

) β
θ(1−β) . (9)

Understood as a function of the stock size x, we refer to f o(x) as the open-

access effort response function. There are many examples of other effort

response functions in the literature (Scott R. Milliman et al., 1992; Johnson

and Carpenter, 1994; Beard et al., 2003; Cox et al., 2002; Post et al., 2008;

Schuhmann and Easley, 2000; Post et al., 2003; Carpenter et al., 1994). Many

of these effort response functions are motivated by predator-prey theory, espe-

cially by their classification into linear Holling-Type I, concave Holling-Type
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The effort effect in recreational fisheries - Paper 1

II and sigmoidal Holling Type III responses (Holling, 1959b,a) . As their

function properties crucially affect fisheries dynamics, we briefly list the limit

behavior and curvature properties of (9) in the following two propositions:

Proposition 1. The elasticity of substitution between catch and effort within

the fishing utility function determines the limit behavior of the effort response

as follows:

lim
x→0

f o(x) = 0 for θ ≤ 0 lim
x→+∞

f o(x) =




w

1
β−1 (1− α)

β
θ(1−β) for θ < 0

+∞ for θ = 0

(10)

The limit behavior for x → +∞ shows that recreational fishing effort is

bounded above if catch and fishing effort are complements.

Proposition 2. 2a) For θ < 0, a concave effort response results for β ≤ 1
1+ϕ

and a sigmoidal effort response results for β > 1
1+ϕ

.

2b) For θ = 0, a concave effort response results for β < 1
1+αϕ

, a linear

effort response results for β = 1
1+αϕ

and a convex effort response results for

β > 1
1+αϕ

.

For θ < 0, the parameter β describing the marginal utility of the whole

fishing experience and the parameter ϕ describing the concentration profile of

the fish stock determine the curvature properties of the effort response. Both

concave Holling-Type II and sigmoidal Holling-Type III responses are possi-

ble. For the limit case of Cobb-Douglas preferences (θ = 0), the curvature

properties also depend on the utility weight on catch.3

For a given elasticity β of overall utility with respect to fishing utility,

a concave effort response function becomes the more likely the more the

targeted fish stock tends to form aggregations, as both thresholds in Propo-

sition 2a,b decrease in ϕ. In the Cobb-Douglas case, a concave effort response

function also becomes the more likely the lower the utility weight on catch

α. The parameter condition in Proposition 2b can also be interpreted as a

threshold for the utility weight on catch, ᾱ0 = 1−β
β

1
ϕ

. Weak preferences for
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The effort effect in recreational fisheries - Paper 1

catch (α < ᾱ0) lead to concave effort response functions. All other parame-

ters being equal, a low importance of catch for fishing utility (low α), a low

importance of recreational fishing for overall utility (low β) and a fish stock

that tends to form aggregations (low ϕ) increase the likeliness of concave

effort response functions. This result is important for the discussion of stock

collapses (cf. Proposition 4).

The utility weight on catch α does neither influence the limit behavior of

the effort response nor its curvature properties in the general CES case. It

does, however, have a twofold effect onto effort intensity and thus biomass

removal by recreational fishermen:

Proposition 3. The effect of increasing the utility weight on catch onto

open-access fishing effort is stock-dependent. Denote by x̌ the stock size at

which catch-per-unit-effort equals one, x̌ = 1
q̄

1
ϕ . Then,

∂f o(x)

∂α





> 0 if x > x̌

= 0 if x = x̌

< 0 if x < x̌

. (11)

Within the expression for the marginal utility of fishing effort (cf. the LHS

of (8)), the term α (q̄ xϕ)θ represents the indirect link from fishing effort via

catch to utility whereas 1−α represents the direct link from effort to utility.

Increasing the weight α of the indirect link (i.e. a higher importance of

catch) increases the marginal utility of fishing effort and hence open-access

fishing effort only if the increase in the indirect link overcompensates the

resulting decrease in the direct link, which is the case for a CPUE of q̄ xϕ >

1. Recreational fishermen becoming keener on catch thus only results in

increased fishing effort if the fishery provides sufficiently high CPUE levels.

The optimal response of recreational fishermen with a high weight on catch

to fisheries with CPUE levels that do not meet their requirements is to spend

more income on the numeraire. This interpretation is in line with the result

that an increase in catchability q̄ moves the threshold x̌ to the left, as then

recreational fishermen with a high weight on catch can meet their CPUE
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The effort effect in recreational fisheries - Paper 1

requirements at lower stock densities than before.

For low stocks, recreational fishermen becoming less keen on removing fish

from the stock thus has the adverse effect of increased catches. Recreational

fishermen who value the time spent fishing by itself so much that they keep

fishing even at low stock densities with only incidental catches cause a higher

fishing mortality for depleted stocks than more catch-orientated fishermen

(who would extract more fish from the same stock at high stock densities).

Given that most recreational fisheries are open access and tend to have low

stock sizes, these theoretical findings are in line with the empirical finding of

Fedler and Ditton (1986) that low-consumptive fishermen tend to fish more

actively than those with a high catch orientation.

With the adverse effect at low stock sizes that lower preferences for catch

lead to higher catches, one could ask if low utility weights on catch can cause

unstable open-access equilibria below which stocks would be fished to local

extinction. The emergence of such unstable open-access equilibria can most

easily be illustrated for the limit case of Cobb-Douglas preferences:

Proposition 4. Define ᾱ1 = 1−β
β

1−ϕ
ϕ

. For θ = 0, utility weights on catch

α < ᾱ1 enable unstable open-access equilibria. Stock sizes below such equilib-

ria are fished to local extinction.

Biomass removal by recreational fishing equals lo(x) = k q̄ xϕ f o(x) and

steady-state stocks are defined by g(x) = lo(x), cf. the stable equilibrium xs

in Figure 1. Strictly concave biomass removal functions lo(x) with α < ᾱ1 can

result in a second unstable equilibrium xu at low stock size, cf. Figure 1. If

the stock is exogenously reduced below such an equilibrium xu (via diseases,

shifts in the ecosystem or commercial fishing), recreational fishermen with

α < ᾱ1 value the time outdoors so much that they maintain a high fishing

pressure even for low incidental catches until the stock fully collapses. As the

strict concavity condition for the open-access effort response f o(x) is α < ᾱ0

with ᾱ0 > ᾱ1, a strictly concave effort response is a necessary condition for

an unstable open-access equilibrium.

Note that a positive range (0, ᾱ1) for α-values that yield strictly concave

biomass removal functions with their possibility of full stock collapses only

15



The effort effect in recreational fisheries - Paper 1

0
0 xu x̌ xs stock size

b
io

m
as

s
gr

ow
th

/l
an

d
in

gs

lo(x) : α < ᾱ1
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Figure 2: Fisheries dynamics with low (dashed) and high (solid) importance
of catch.

exists for ϕ < 1. This is intuitive as only range-contracting or school form-

ing species can be thought to be effectively fished down to stock collapse.

Range-contracting or schooling behavior of game fish can be understood as a

non-convexity in the ecosystem (Dasgupta and Mäler, 2003; Carpenter and

Cottingham, 1997). If a perturbation has decreased the stock below xu (c.f.

Figure 2), management interventions are needed to prevent the system to

flip from xs > 0 to x = 0. This yields an important insight for the discus-

sion about the impact of recreational fishing on marine fish stocks (Coleman

et al., 2004; Nussman, 2005; Ihde et al., 2011): While recreational fishing may

indeed be a negligible source of fishing mortality at high stock sizes, commer-

cial overexploitation can give recreational fishing the potential to continue

overexploitation up to stock collapse.

2.0.1 Participation decision

If the effort-independent costs c are sunk or zero, the effort response function

(9) predicts positive effort levels for all stock sizes. In some cases, a continu-

ous effort response can be a realistic model, in other cases it must be seen as

an approximation to an effort response with a certain turning-on stock size

xmin, as we shall argue in the following.

If c is quasi-fixed, becoming an active recreational fisherman must yield

16
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non-negative net benefits (as otherwise utility from not fishing would be

higher):

1

β

(
α(q̄ xϕ (f o(x))θ + (1− α) (f o(x))θ

)β
θ − w f o(x)− c ≥ 0 (12)

The participation condition (12) is fulfilled for open-access effort levels above

fmin =
β

1− β
c

w
. (13)

This lower bound on open-access recreational fishing effort ensures that there

is an open-access minimum stock or escapement

xmin =

(
1

α

(
β

1− β c
) θ(1−β)

β

wθ − 1− α
α

) 1
θ ϕ

x̄. (14)

Increasing the marginal costs of effort w or the quasi-fixed costs c (e.g.

the price of a season license) increases the open-access minimum stock,
∂xmin

∂w
> 0, ∂xmin

∂c
> 0, while the effects on fmin differ, ∂fmin

∂w
< 0, ∂fmin

∂c
> 0.

While varying c affects the point (xmin, fmin), varying w affects both the point

(xmin, fmin) and the effort response f o(x) itself.

As a result, it is possible to implement a certain xmin stock size with

different levels of fmin while the corresponding choice of w, c does not affect

angler welfare at the escapement stock size. This might be interesting if open-

access recreational fishing has more externalities than the stock externality,

for example because angling damages habitat or disturbs endangered species.

On the other hand, one might want to maximize fmin for given escapement

xmin if the local economy depends on recreational fishing.

Advances in gear technology or angling skill increase the maximum catch-

ability coefficient q̄. This decreases the open-access minimum stock while the

minimum effort level fmin remains unaffected, ∂xmin

∂q̄
< 0, ∂fmin

∂q̄
= 0. As CPUE

(and hence catch) at the open-access minimum stock is not affected as well,
∂q̄ xϕmin

∂q̄
= 0, technical progress in recreational fisheries may cause a decrease of

the open-access minimum stock that is masked by unaltered angler behavior
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and constant CPUE. Stock assessments in open-access recreational fisheries

might thus be seriously misled by constant effort and catch levels.

3 A note on socially optimal recreational fish-

ing

Whenever a fish stock is scarce, the opportunity costs of removing a fish from

the stock (the marginal user costs) drive a wedge between open-access and

socially optimal recreational fishing. As lack of information about stock sizes

and angler characteristics prevents the calculation of individually optimal

user costs, it seems unrealistic that first-best recreational fishing could be

defined, let alone be enforced, in real-world recreational fisheries with their

large number of participants. However, the notion of collapse and overfishing

in recreational fisheries (Post et al., 2002; Coleman et al., 2004) raises the

question about the socially optimal stock size that should function as the

reference value for such discussions.

To calculate such a reference case, we use a hypothetical sole owner sce-

nario, e.g. a private fishing club owning the exclusive and permanent right

to manage a specific fish stock. In contrast to the open-access situation, the

deliberate choice of q < q̄ may pay off under sole ownership as it allows to

enjoy increased effort levels in steady state. Social norms of sportsmanship

in such a group of use rights-holders, i.e. to fly fish for trout instead of laying

out earthworms, may secure the choice of q < q̄ in real-world fisheries. The

optimization problem of a private fishing club adopts a modified version of

the objective function (7). In contrast to open-access, a private owner may

choose q < q̄ to enjoy more effort for a given stock size. Taking into account

the stock dynamics (5) as well, the optimization problem follows as

max
f,q,x

∫ ∞

0

(
1

β

(
α (q xϕ f)θ + (1− α) f θ

)β
θ +m− c− w f

)
e−ρt

s.t. ẋ = g(x)− k q xϕ f,
(15)

where (6), (3) and (2) have been inserted into (1) to get the integrand in
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(15). Evaluating changes in the stock x at its the current-value shadow price

µ, the current-value Hamiltonian for this problem follows as

max
f,q,x

H =
1

β

(
α (q xϕ f)θ + (1− α) f θ

)β
θ +m− c− w f + µ (g(x)− k q xϕ f) .

(16)

The first-order conditions are

Hf =
(
α (q xϕ)θ + 1− α

)β
θ
fβ−1 − w − µk q xϕ = 0 (17a)

Hq =
1

q

(
α (q xϕ)θ + 1− α

)β
θ
−1

α (q xϕ)θ fβ − µk xϕ f = 0 (17b)

Hx =
ϕ

x

(
α (q xϕ)θ + 1− α

)β
θ
−1

α (q xϕ)θ fβ + µ
(
g′(x)− ϕ

x
k q xϕ f

)
= µρ− µ̇

(17c)

together with (5). Inserting (17b) into (17a) yields

(
α (q xϕ)θ + 1− α

)β
θ
fβ−1 − w − α

1− α w (q xϕ)θ = 0. (18)

A marginal increase in f increases catch by (q xϕ)θ. This marginal catch is

evaluated by its shadow price α
1−α w. The marginal user costs of the stock,

α
1−α w (q xϕ)θ, differentiate (18) from the first-order condition (8) under open

access. Because the cost difference depends positively on α, lowering the

importance of catch brings the socially optimal fishing effort closer to open-

access levels.

From (17b) and (17c) it furthermore follows that µ̇ = (ρ− g′(x)) µ, such

that the optimal steady-state stock size is

x∗ = xρ. (19)

Because q is an input with zero marginal costs, increasing it enables the

recreational fisherman to decrease unit harvesting costs w
q xϕ

. Going fishing

with q < q̄ can thus be interpreted as the deliberate choice to pay w f ∗

while lower unit harvesting costs with q = q̄ are possible. If q is unbounded,
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costless fishing would be possible. This makes (19) intuitive, as x∗ = xρ is

the standard result in commercial fisheries models without harvesting costs

(Clark, 1990).

In steady state, an implicit equation for f ∗ deduced from from (17a) and

(17b) determines the share of f ∗ in f ∗ q∗,

f ∗ =

(
w

1− α

) 1
β−1

(
α

(
g(x∗)

k f ∗

)θ
+ 1− α

) β−θ
θ(1−β)

. (20)

The effect of the importance of catch α onto f ∗ depends on the CPUE in the

optimally managed fishery,

∂f ∗

∂α





> 0 if q∗ (x∗)ϕ >
(

(1−α)β
(1−α)β−θ

) 1
θ

= 0 if q∗ (x∗)ϕ =
(

(1−α)β
(1−α)β−θ

) 1
θ

< 0 if q∗ (x∗)ϕ <
(

(1−α)β
(1−α)β−θ

) 1
θ

(21)

Recreational fisherman becoming keener on catching fish thus prompts them

to increase f only if CPUE is sufficiently high. This is related to the result

from the open-access case in which the CPUE threshold is q xϕ = 1, cf.

Proposition 3.

Comparison of the first-order conditions under first-best management (18)

and open access (8) might lead to the conclusion that both align in the limit

case of pure effort orientation, α = 0. However, the stock can become scarce

in this case as well, in which the socially optimal steady-state stock size x∗

is implicitly given by

g′(x∗) = ρ+ ϕ
g(x∗)

x∗
. (22)
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If catches do not matter for the representative angler, scarcity of the stock

can still arise from the fact that stock decreases impair steady-state fishing

effort. Following this explanation, intuition might suggest that the utility of

an effort-enjoying recreational fisherman is maximized if he enjoys maximum

sustainable effort in steady state, such that x∗ = xMSE (the stock size that

generates maximum fishing effort in steady state). Comparing (22) with the

condition for xMSE,

g′(xMSE) = ϕ
g(xMSE)

xMSE

, (23)

shows that this only holds for ρ = 0. For ρ > 0, the recreational fisherman

deviates from xMSE as this allows him to increase his fishing effort during the

transition towards some lower x∗ < xMSE. Note that as x∗ ≤ xMSE < xMSY,

the social optimum in the limit case of pure effort orientation may imply

very low stock levels. For example, the Schaefer model with ϕ = 1 implies

xMSE = 0, such that fishing to local extinction would be socially optimal.

In case the catchability is fixed in a specific recreational fishery, the clas-

sical Schaefer model allows for a second interesting result on optimal local

extinction in recreational fisheries. With the Schaefer harvesting equation,

w = 0 and the logistic growth function g(x) = rx
(
1− x

K

)
, the socially opti-

mal stock size follows as

x∗ =
α r − ρ

(1 + α) r
K. (24)

In the standard commercial fisheries model without harvesting costs, ex-

tinction would only be optimal if the discount rate exceeds the maximum

growth rate of the stock, ρ > r (Clark, 1990). Here, with the direct benefits

of the harvesting process incorporated, extinction already becomes optimal

for ρ > α r. Fish stocks that are targeted by recreational fishermen thus

have to meet higher intrinsic growth rates to not face optimal extinction

than those targeted by commercial fishing.
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4 Conclusion

Recreational fishermen value fishing effort directly and many commercial

fishermen enjoy non-monetary benefits from fishing as well. If welfare is

generated not only by harvest but also by harvesting effort, this additional

“effort effect” implies that even local extinction may be socially optimal.

Notions of collapse in recreational fisheries might thus not involve overfish-

ing in economic terms. Fierce opposition to effort limitations programs by

recreational fishermen (Walters and Cox, 1999) may thus simply reflect that

anglers favor the “high effort - low catch” over the “low effort - high catch”

bundle in their recreational fishery.

Although socially optimal fisheries management might entail very low

stock sizes, it will usually differ from open access in most recreational fish-

eries. For angler-stock dynamics under open access, we have shown that a

lower importance of catch decreases fishing effort at high stock sizes while

it leads to more fishing intensity at low stock sizes. Although this effect

also holds under first-best management with endogenous catchability, it may

cause depleted recreational fisheries to collapse. In mixed commercial- recre-

ational fisheries, sequential overexploitation by the two types of fisheries

might threaten fish stocks: At high stock sizes, recreational fishing might

be a negligible source of fishing mortality, while profitable commercial fish-

ing reduces the stock. Once the stock is depleted, commercial fishing might

cease, but recreational fishing, being less dependent on catches due to the

effort effect, may continue overexploitation up to stock collapse. Techni-

cal progress may mask such collapses in recreational fisheries as it enables

unaltered effort levels and constant catches during stock declines.

Notes

1This may hold for some commercial fishermen as well (Anderson, 1980).
2Excluding the case θ > 0 shortens Propositions 1 and 2, but no result in this paper

depends on the assumption θ ≤ 0.
3The result that the curvature properties in the Cobb-Douglas case depend on an

additional parameter as compared to the general CES case are analogous to the case of a
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non-renewable resource being essential or inessential for constant consumption (Dasgupta

and Heal, 1979).
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Renewable resources provide society with resource rent and surpluses for resource

users (the processing industry, consumers) and owners of production factors (cap-

ital and labor employed in resource harvesting). We show that resource users and

factor owners may favor inefficiently high harvest rates up to open-access levels.

This may explain why public resource management is often very inefficient. We

further show that privatizing inefficiently managed resources would cause losses
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Wasteful overuse of natural resources, including fisheries, rangelands, and

forests, is a world-wide problem of serious concern (Stavins, 2011; Millen-

nium Ecosystem Assessment, 2005; TEEB, 2010). The persistence of this

problem is puzzling, as the economic theory of common property resources

has established a clear diagnosis long ago (Gordon, 1954). Since then, it be-

came a commonplace among economists that efficient resource use requires

the granting of private use rights (Scott, 1955; Grafton et al., 2005) or pub-

lic management. There is a large body of literature characterizing efficient

public management for various resources (Wilen, 2000). This paper is mo-

tivated by the question why these insights have failed to improve resource

management in so many cases.

Studying the political economy of renewable resource management, par-

ticularly the question who gains and who loses from better resource manage-

ment (Hilborn, 2007), may help explain why inefficiency persists. The first

aim of this paper is to determine conditions under which stakeholder inter-

ests in public resource management diverge. If public resource management

fails, privatization might be an option to implement efficiency. The second

aim of this paper is to determine the conditions under which privatization

of renewable resources increases or decreases (a) surplus of the resource pro-

cessing industry and consumers of resource products (user surplus) and (b)

surplus for capital owners and workers employed in resource harvesting (fac-

tor surplus).

The literature comes to mixed conclusions. Focusing on labor input,

Samuelson (1974) and Weitzman (1974) find that wages are higher under

open access to a natural resource compared to a situation in which the re-

source is privately owned. Later, Meza and Gould (1987), Brito et al. (1997),

and Baland and Bjorvatn (2013) show that workers may be better off in conse-

quence of privatization. Olson (2011) summarizes the empirical evidence for

ten fisheries that have been privatized and finds examples for both increases

and decreases in crew income and employment. Looking at consumption in

steady state, Copes (1972) finds that consumer surplus may increase or de-

crease under efficient management, but without identifying clear conditions

for either case. Turvey (1964) and Anderson (1980) state that whether a shift
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from open access to efficient management increases or decreases consumer

surplus and intramarginal rent to resource workers cannot be determined a

priori. Hannesson (2010) argues that increases in resource rent may over- or

understate the societal benefits of efficient resource management.

In contrast to most of the literature, we consider a dynamic setting, taking

into account the effects of transitional dynamics and discounting. Based on

the canonical model of renewable resource economics (Gordon, 1954; Clark,

1991), we study the harvesting decisions of three stakeholder groups (Turvey,

1964; Copes, 1972; Anderson, 1980): (i) Owners of fishing firms whose profit

from resource harvesting equals resource rent. We refer to this group as pro-

ducers. (ii) Commercial or private consumers who buy harvest for processing

or final consumption. We refer to this group as resource users and to the

aggregate of their profits and consumer surplus as user surplus. (iii) The

owners of factor inputs such as capital and labor whose renumeration may

be above opportunity costs. We refer to this group as factor owners and to

the aggregate surplus of capital and labor employment in resource harvesting

as factor surplus.

We analyze the distributional effects of resource management in two steps,

structured according to the two aims of the paper. First, we focus on public

resource management and conduct a thought experiment with three scenar-

ios. In each scenario, open access is stopped and one of the interest groups

gets the exclusive, non-transferable right to set harvest rates according to

their interests. The aim of this thought experiment is to study under which

conditions stakeholder interests in resource management diverge. Second, we

consider privatization (i.e., the scenario of resource management by produc-

ers) and study how the present values of user and factor surpluses increase

or decrease under privatization compared to the status quo.

We show that the mixed conclusions in the literature about who gains

and who loses from privatization can be traced back to different assump-

tions about the ‘stock effect’. The ‘stock effect’ captures how harvesting

productivity depends on the size of the resource stock (Clark and Munro,

1975). Typically harvesting becomes more productive the larger the stock

size is, for example because search costs for a dispersed resource decrease.

29



Public and private management of renewable resources - Paper 2

We show that producers would always choose the socially efficient harvesting

plan, whereas users and factor owners would do so only in absence of a stock

effect. If there is a stock effect, the preferred harvesting rates of the three

groups diverge: Users prefer higher harvest rates than producers, and fac-

tor owners prefer even higher harvest rates than users. Both resource users

and factor owners would implement open-access conditions already for finite

discount rates. These findings may explain why many renewable resources

continue to be managed inefficiently by public authorities. In such cases,

the persistence of rent dissipation and resource depletion may reflect that

the processing industry, capital owners, and workers have enough political

influence to implement their preferred harvest rates.

Privatizing renewable resources could be seen as a way to weaken the

political influence of stakeholders arguing for inefficiently high harvest rates.

We show however, that resource users and factor owners lose from privati-

zation, unless (a) the stock is severely depleted and (b) the discount rate

is low. These results highlight the central role of transition dynamics and

discounting that cannot be found in a static analysis.

In quantitative terms, the losses of resources users and factor owners

may be substantial, as the case study of the North East Artic cod fishery

demonstrates. Compared to a status quo at the stock size of 2008, an efficient

management of the North East Artic cod stock would have increased the

present value of resource rent by 6.2 billion USD since 2008 (at a discount

rate of 1%), while the present value of user surplus would have decreased by

2.2 billion USD.

The rest of the paper is organized as follows. Section 1 introduces the

model on which we build our analysis. In Section 2, we analyze the interests of

producers, resource users and factor owners in public resource management.

In Section 3, we study the distributive effects of privatization. Section 4

contains the quantitative application to the Northeast Arctic cod fishery.

Section 5 concludes.
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1 Dynamic model of renewable resource use

Our model builds on the canonical Gordon-Clark model of renewable resource

economics (Gordon, 1954; Clark, 1991). For the bio-economic part we use

the standard textbook model of a dynamic renewable natural resource. Only

with regard to input and output markets we generalize the textbook model

to some degree.

The resource stock x grows according to1

ẋ = g(x)− h, (1)

where ẋ ≡ dx/dt is the net growth of the resource stock and h ≥ 0 is the

harvest rate. The biological growth function g(x) is assumed to be strictly

concave with g(0) = 0, g(K) = 0 for some constant K > 0, and g(x) > 0

for x ∈ (0, K).2 This implies that there is a unique stock size xMSY with

0 < xMSY < K that generates the maximum sustainable yield (MSY), i.e.

the maximal harvest rate that could be taken from the stock in the long run.

The harvesting technology is described by a generalized Gordon-Schaefer

harvesting function (Gordon, 1954; Schaefer, 1957; Clark, 1991) with effort

e(l, k) being an intermediate input (Hannesson, 1983), which itself is pro-

duced by labor l and capital k under constant returns to scale, and stock size

x affecting harvesting productivity,3

h = q(x) e(l, k), (2)

with q′(x) ≥ 0 and q′′(x) ≤ 0, which means that harvest weakly increases

1We omit the time (t) argument for variables, unless needed for clarification.
2A minimum viable stock xmin > 0 below which extinction becomes inevitable could

be incorporated into the model without changing results if x0 > xmin and g(x) remains
strictly concave between g(xmin) = 0 and g(K) = 0.

3There are two classes of externalities in the use of common property resources (Munro
and Scott, 1985). Class I refers to rent dissipation through depletion of the resource, while
Class II refers to rent dissipation through crowding or congestion due to the excessive
use of production inputs. We exclude Class II externalities by assuming constant returns
to scale in effort production, and focus on Class I externalities in a dynamic analysis.
Adding a Class II static crowding externality would reduce the dynamic stock externality
by impairing harvesting efficiency at high effort levels.
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with stock size at any given level of labor input, and that q(x) is a concave

function of x. The function q(x) captures the ‘stock effect’ if q′(x) > 0 (Clark

and Munro, 1975). In steady state, we have h = g(x) and steady-state effort

equals g(x)/q(x). We assume that g(x)/q(x) is strictly quasi-concave in x on

[0, K]. Thus, there exists a unique stock size xMSE ≥ 0 that generates the

‘maximum sustainable effort’ (MSE), or ‘maximum sustainable employment’

(Hilborn, 2007). It is easy to verify that the resource stock that allows MSE

is smaller than the MSY resource stock, xMSE ≤ xMSY.

Assuming that resource harvesters minimize cost while taking factor prices

as given, the cost function for producing effort follows as C(e, w, r) = ĉ(w, r) e,

where w is the wage rate and r the rental rate of capital. Because of constant

returns to scale, the cost function is linear in effort.

We assume that a local labor market offers alternative income opportu-

nities to labor employed in resource harvesting, l.4 As harvesting skills may

be of little value in alternative employment, the availability and desirability

of such alternative employment will typically differ among potential resource

workers, such that the marginal opportunity costs of employment in resource

harvesting increase (Copes, 1972). We capture this by a monotonically in-

creasing inverse supply function for labor, w(l), with w(0) ≥ 0 and w′(·) > 0.

Also capital employed in resource harvesting is often not perfectly mal-

leable. A simple way to model this is to consider an imperfectly elastic

inverse supply function for capital, r(k) with r(0) ≥ 0 and r′(·) > 0. Using

the factor allocation for labor l̂(e) and capital k̂(e) in equilibrium on factor

markets for an effort level e, we obtain the inverse effort supply function

c(e) = ĉ(w(l̂(e)), r(k̂(e))). Because of the imperfectly elastic supply of pro-

duction factors in resource harvesting, this inverse effort supply function is

4The assumption of a local labor market is not critical for any results on optimal
producer and consumer decisions. Assuming an exogenous wage rate would only remove
worker interests in resource management from our model. One could also strengthen the
assumption of a local labor market by assuming a fixed total labor supply that is allocated
between harvesting and other production sectors, such as in the harvesting-manufacturing
model of Brander and Taylor (1997). Following this interpretation, the marginal costs
of increasing employment in resource harvesting would equal the value of the resulting
marginal decrease in alternative production.
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Figure 1: Instantaneous user surplus (US), resource rent (RR) and factor sur-
plus (FS). Stock dynamics would shift the marginal utility of effort function
p(q(x) e) q(x). With adjusted effort e, this would affect all rent categories.

increasing, c′(·) > 0. Thus, there is a factor surplus

FS(e) = c(e) e−
∫ e

0

c(ẽ) dẽ > 0, (3a)

which is the sum of worker and capital owner surplus in resource harvesting

(cf. area FS in Figure 1).

The resource consumption good y (e.g. processed fish, or a timber prod-

uct) is produced by using resource harvest h as input, according to a pro-

duction technology described by y = f(h), where f ′(h) > 0 and f ′′(h) ≤ 0.

Using π(y) to denote the inverse demand function for the resource consump-

tion good, and p to denote the market price for harvest h, profit maximization

in resource processing yields the inverse demand function for resource harvest

p(h) = π(f(h)) f ′(h), where p′(h) = π′(f(h)) (f ′(h))2 + π(f(h)) f ′′(h) < 0.
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User surplus,

US(h) =

∫ h

0

p(h̃) dh̃− p(h)h, (3b)

is the sum of rents in the resource processing industry and consumer surplus

from the resource consumption good. It is depicted as area US in Figure 1).

Resource rent is equal to the profits in resource harvesting, i.e. the dif-

ference between the revenue from selling resource harvest at market price p

and expenses for effort used at marginal cost c (cf. area RR in Figure 1).

RR(h, e) = p h− c e. (3c)

The sum of resource rent, user surplus, and factor surplus, is the social

surplus of utilizing the resource,

RR(h, e) + US(h) + FS(e) =

∫ h

0

p(h̃) dh̃−
∫ e

0

c(ẽ) dẽ, (3d)

which is equal to the utility derived from resource use net of the oppor-

tunity costs of the factors used in resource harvesting. The social surplus

corresponds to the union of areas US, RR and FS in Figure 1.

To summarize the model set up, the exogenous parts of the model are

the inverse supply functions for labor and capital, w(l) and r(k), which are

summarized in the inverse supply function for effort, c(e), the biomass growth

function of the resource g(x), the harvesting function h = q(x) e(k, l), the

production function of resource processing y = f(h), and the inverse demand

function for the resource consumption good, π(y). Endogenously determined

are the time paths of effort e, harvest h, the resource stock x and the time

paths of the market prices c (for inputs) and p (for harvest). Resource rent

reflects the real scarcity of a renewable resource (Gordon, 1954). To separate

resource rent from artificial scarcity rents (monopoly and monopsony rents),

we assume that all agents behave as price-takers.

For answering the question who gains and who loses from privatization of

the resource, we have to compare the privatization scenario to some baseline.
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Of all possible harvest and stock trajectories starting at the initial stock x0 >

0, conserving the ‘status quo’ at x0 seems to be the most natural choice for

the reference case. There is a tradition in the literature following Samuelson

(1974) and Weitzman (1974) to use the open-access steady state x0 = xOA

as the reference case for studying the distributive effects of implementing

efficiency. Here we generalize this type of analysis by allowing the initial

stock size x0 to differ from xOA. This means that the ‘status quo’ may result

from open-access harvesting (which is, of course, a particularly relevant case)

or harvesting under some form of inefficient public resource management.

Harvest in the status-quo steady state is g(x0) and effort is g(x0)/q(x0).

The change in the present value (at a discount rate ρ > 0) of resource

rent from privatizing the renewable resource compared to the steady state at

x0 is

∆RR(x0, {ht, et}) =

∞∫

0

RR(ht, et) e
−ρ t dt− 1

ρ
RR(g(x0), g(x0)/q(x0)), (4a)

and the change in the present value of resource user surplus is

∆US(x0, {ht}) =

∞∫

0

US(ht(x0)) e
−ρ t dt− 1

ρ
US(g(x0)), (4b)

and the change in the present value of factor surplus is

∆FS(x0, {et}) =

∞∫

0

FS(et(x0)) e
−ρ t dt− 1

ρ
FS(g(x0)/q(x0)). (4c)

In the following, we will consider three interest groups: Interest group P

(for producers) consists of those individuals who receive resource rent RR;

interest group U are all individuals deriving user surplus US from buying

resource harvest for processing and consumption; and interest group F are

the owners of production factors employed in resource harvesting, thus this

group’s surplus is FS. Considering these interest groups abstracts from real-
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world complexities in the following respects: First, the distinction is between

three different forms of rent, so there may be individuals who are employed

in resource harvesting (and thus members of F ), and receive resource rent at

the same time. Second, we disregard any coordination problems within the

interest groups and consider a representative agent who pursues the common

interest of the respective group. Finally, we assume that all agents in the

model apply the same discount rate.

To understand the distributive effects of efficient resource management,

we proceed in two steps. In the first step (Section 2), we consider three

scenarios where the groups P , U , and F choose their optimal harvesting

trajectories. This means that in each of these scenarios, one interest group

(P , U , or F ) is given the exclusive and permanent, but non-transferable right

to set harvest rates.

In the second step (Section 3), we study under which conditions the har-

vesting path hPt chosen by producers, together with the associated path

of harvesting effort ePt, increases or decreases the present value of resource

user surplus and factor surplus compared to the status quo, i.e. under which

conditions ∆US(x0, {hPt}) and ∆FS(x0, {ePt}) are positive or negative.

2 Stakeholder interests in public resource man-

agement

We begin by introducing the reference cases of socially efficient harvesting

and open access. The social planner maximizes social surplus (3d) subject

to the equation of motion (1). The current-value Hamiltonian for the social

planner follows as H =
∫ h
0
p(h̃)−

∫ h/q(x)
0

c(ẽ) dẽ+µ (g(x)− h). The necessary

and sufficient conditions for socially efficient harvesting can be written as

p(h) =
c(e)

q(x)
+ µ, (5a)

ρ =
µ̇

µ
+ g′(x) +

p(h)− µ
µ

q′(x) e, (5b)
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with h ≥ 0, µ ≥ 0, initial stock x0 given, and transversality condition

e−ρ T µ(T )x(T )
T→∞−−−→ 0. Condition (5a) states that along the optimal har-

vesting path, the resource price p(h) equals marginal costs, which are com-

prised of marginal harvesting costs c(e)/q(x) and the marginal opportunity

costs of reducing the stock, µ. Condition (5b) essentially states the familiar

condition that the own rate of interest when marginally increasing the stock

should equal the discount rate ρ (Clark and Munro, 1975). The term g′(x)

captures the value of a marginal increase in biological productivity, while the

term ((p− µ)/µ) q′(x) e captures the ‘stock effect’, i.e. the value of a marginal

increase in harvesting productivity.

Open access can be defined as the absence of any use rights for the re-

source. All resource rent is dissipated, such that price equals marginal har-

vesting costs, p(h) = c(e)/q(x). We use hOA(x) to denote the open-access

harvest rate at a given stock size x, and xOA ≥ 0 to denote the open-access

steady-state stock size.

The following propositions contain the main results of this section, which

we shall first state and then study in detail to prove the results. In these

propositions, we use hi(x) to denote the optimal harvest of interest group

i = P,H, F at a current stock size x, i.e. the optimal feedback policy for the

respective interest group. The socially efficient harvest rate at a given stock

size x is h∗(x).

The first proposition shows that the stock effect determines whether

stakeholder interests in resource management diverge. Appendix B contains

the proof, which makes use of the conditions for optimal management for the

three interest groups derived below.

Proposition 1. 1a) If there is no stock effect, q′(·) ≡ 0, all interest groups

choose efficient harvest rates,

q′(·) ≡ 0 ⇒ hF (x) = hU(x) = hP (x) = h∗(x) for all x > 0. (6)

1b) If there is a stock effect, q′(·) > 0, only group P chooses efficient

harvest rates. At any given stock size x > 0, interest group U prefers a

strictly higher harvest rate than socially efficient, and interest group F prefers
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a weakly higher harvest rate than group U :

q′(·) > 0 ⇒ hF (x) ≥ hU(x) > hP (x) = h∗(x) for all x > 0 (7)

Not surprisingly, we find that a competitive private owner maximizing

profits will choose the socially efficient harvesting path, irrespective of the

stock effect. This is the very reason why resource economists propose rights-

based management as the preferred way of regulating the use of common-pool

resources (Levhari et al., 1981). Proposition (1) highlights the importance of

the stock effect. Only in absence of a stock effect, resource users and factor

owners choose the efficient harvesting path. If there is a stock effect, these

two interest groups would choose strictly higher harvest rates than efficient.

The second proposition shows that the discount rate ρ has an important

influence on the optimal harvesting plans.

Proposition 2. Assume q′(·) > 0.

2a) If ρ ≥ ρU ≡ g′(xOA), the optimal management by interest group U is

the same as under open access,

ρ ≥ ρU ⇒ hU(x) = hOA(x) for all x > 0. (8)

2b) If ρ < ρU , hU(x) < hF (x) for all x > 0.

2c) If ρ ≥ ρF ≡ g′(xOA) − g(xOA) q′(xOA)/q(xOA) < ρU , the optimal

management by interest group F is the same as under open access,

ρ ≥ ρF ⇒ hF (x) = hOA(x) for all x > 0. (9)

Proof. See appendix C.

Assuming that there is a stock effect, q′(·) > 0, Proposition 2 provides

an explanation as to why there is over-harvesting in common-pool resources

that are publicly managed: Users and factor owners favor inefficiently high

harvest rates and may have sufficient influence over the political process. If

their discount rate is above a finite threshold ρU , open access is the preferred

harvesting strategy for the resource processing industry and consumers. The
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Figure 2: Phase diagram illustrating optimal harvest rates for the different
interest groups as functions of stock sizes (hF (x), hU(x), hP (x)); and open-
access harvest hOA(x), as well as steady-states, using the example of the
Northeast Arctic cod fishery (see Section 4).

corresponding threshold for interest group F is strictly lower, ρF < ρU . Finite

thresholds for ρ above which the sole owner of a renewable resource favors

open access are a new result. For producers, such finite thresholds do not

exist (Clark, 1991).

If the discount rate of group F is below ρU , the harvest rates for the three

interest groups can be unambiguously ordered, with factor owners preferring

the highest and producers preferring the lowest rate, hF (x) > hU(x) > hP (x).

This result is illustrated in Figure 2. The economic intuition for the different

harvest strategies is given in the following subsections.
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2.1 Resource management by producers

The representative producer maximizes the present value of profits from re-

source harvesting while taking the time paths of harvest price p and marginal

effort costs c as given. With current-value shadow price µP for constraint

(1) and using (2), the current-value Hamiltonian is HP = p h − c h/q(x) +

µP (g(x)− h). The necessary and sufficient conditions for interest group P ’s

optimal harvesting plan can be written as

p =
c

q(x)
+ µP , (10a)

ρ =
µ̇P
µP

+ g′(x) +
p− µP
µP

q′(x) e, (10b)

together with (1), a given initial stock size x0, the conditions h ≥ 0, µP ≥ 0,

and the transversality condition e−ρ T µP (T )x(T )
T→∞−−−→ 0.

As the conditions for the producers’ optimal harvesting and the conditions

for socially efficient harvesting (5) are identical, it is obvious that producers

would choose efficient harvesting rates, hP (x) = h∗(x) for all x > 0. An

implicit equation for the socially efficient steady-state stock size x∗ = xP is

given in Appendix A.

2.2 Resource management by resource users

When maximizing (4b), the representative user of resource products takes

the producer price pP of harvest as given. With current-value shadow price

µU for constraint (1), the current-value Hamiltonian is HU =
∫ h
0
p(h̃) dh̃ −

pP h + µc (g(x)− h). After inserting (2), the conditions for the optimal

harvesting plan can be written as

p(h) = pP + µU =
c(e)

q(x)
+ µU (11a)

ρ =
µ̇U
µU

+ g′(x), (11b)

together with (1), the initial stock x0, the conditions h ≥ 0, µU ≥ 0, and the

transversality condition e−ρ T µU(T )x(T )
T→∞−−−→ 0.
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Because they do not have the use rights in this scenario, resource har-

vesting firms do not face an intertemporal optimization problem, i.e. they

maximize static profit. For this reason, their marginal opportunity costs

of current stock reductions are zero and firms equate price with marginal

harvesting costs, pP = c/q(x). We have used this to obtain (11a).

Condition (11a) states that the marginal benefit of using the resource

equals marginal costs, which consist of the pecuniary unit costs paid to pro-

ducers and the marginal opportunity costs of current consumption µU . These

marginal opportunity costs µU capture the marginal decrease in present value

user surplus that results from the stock decrease for current consumption.

The non-negative difference between the harvest price p(h) and marginal har-

vesting costs is marginal resource rent µU . This rent is incidentally received

by resource users who take into account stock dynamics and hence may limit

harvest below the amount at which the harvest price equals marginal har-

vesting costs.

The formal structure of (11a) is identical to the corresponding condition

under socially efficient privatization (10a). At each point in time interest

group U equates their marginal utility of consuming the resource with the

sum of the marginal harvesting costs plus the marginal costs of reducing the

stock. The difference to the efficient harvesting plan originates from resource

users disregarding the effect of stock abundance on harvesting productivity

in their calculation of marginal stock value. Accordingly, the efficiency of

group U ’s harvesting plan depends on the presence of this link between stock

abundance and harvesting productivity. Condition (11b) again states that

the own rate of interest when marginally increasing the stock should equal

the discount rate. Interest group U , however, only takes into account the

marginal increase in biological productivity of the resource. Under price-

taking behavior, it is rational for resource users to disregard the effect of

stock abundance on harvesting productivity. User surplus solely depends on

the harvest quantity h whose equilibrium price equals total marginal costs of

harvest. The relative shares of harvesting costs c/q(x) and marginal oppor-

tunity costs µU in total marginal costs of harvest do not affect resource user

surplus.
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Intuition might suggest that xMSY is the preferred steady state for re-

source users, as it yields the maximum harvest level and hence maximizes

steady-state user surplus. However, resource users prefer a steady-state stock

size below xMSY, if this is feasible, i.e. xOA < xMSY:

xU = max(x̂U , xOA), (12)

with g′(x̂U) = ρ, cf. Appendix A. This is because increased short-run con-

sumption during the disinvestment phase from xMSY to xU plus a subse-

quent long-run consumption of g(xU) yields a higher user surplus in net

present value terms than a continued consumption of g(xMSY). Complete

rent dissipation equivalent to open-access conditions is the preferred out-

come for resource users if the discount rate is above the finite threshold level

ρU = g′(xOA). Thus, as opposed to socially efficient resource management,

maximization of consumer surplus fully aware of stock dynamics aligns with

myopic profit maximization under open access already for finite discount

rates (Proposition 2a)). This is illustrated for two different discount rates

in Figure 2: For ρ = 1%, the optimal steady state for resource users is only

slightly below the maximum-sustainable-yield stock xMSY. With increasing

discount rate, the optimal steady-state stock for resource users decreases. For

ρ = ρU , it is equal to the open-access steady state. For a still higher discount

rate, resource users would prefer an even lower xρ < xOA, but this is infeasible

with non-negative profits for the fishing industry, hence xU = max(xρ, xOA).

2.3 Resource management by factor owners

The representative factor owner maximizes (4c) while taking as given the

marginal costs of effort cP paid by resource harvesting firms. With the

current-value shadow price µF for constraint (1) and inserting (2), the current-

value Hamiltonian follows as HF = cP e−
∫ e
0
c(ẽ) dẽ+µF (g(x)− q(x) e). The
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conditions for the optimal harvesting plan can be written as

cP
q(x)

=
c(e)

q(x)
+ µF . (13a)

ρ =
µ̇F
µF

+ g′(x)− q′(x) e, (13b)

together with the equation of motion (1), given initial stock size x0, the con-

ditions e ≥ 0, µF ≥ 0, and transversality condition e−ρ T µF (T )x(T )
T→∞−−−→ 0.

Resource harvesting firms maximize static profit by setting harvest price

equal to marginal harvesting costs, p = cP/q(x), such that effort is paid the

value of its marginal product in resource harvesting. Using this, condition

(13a) has the same formal structure as (10a) and (11a), and hence a similar

interpretation. Condition (13b) determines marginal stock value, requiring

that the own rate of interest when marginally increasing the stock must

equal the discount rate. Note that the marginal stock effect, captured by

the term − q′(x) e, is taken into account by group F . However, interest

group F perceives harvesting productivity being sensitive to stock size as

competition by a rival production input. This is why the stock effect enters

with a negative sign in (13b). As long as it is economically feasible, i.e. as

long as profits for harvesting firms are non-negative, factor owners prefer a

lower steady-state stock size than resource users,

xF = max(x̂F , xOA) (14)

with x̂F < x̂U , cf. Appendix A. For discount rates above ρF ≡ g′(xOA) −
g(xOA) q′(xOA)/q(xOA), factor owners favor open access and complete rent

dissipation µF = 0 occurs for all t.

It follows as a corollary to Proposition 2 that the preferred steady-state

stock sizes can be ordered as xF ≤ xU < xP = x∗ if there is a stock effect,

q′(·) > 0.
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3 Who gains, who loses? – The distributional

effects of privatization

Proposition 1 shows that privatization, i.e. management by interest group

P , would lead to socially efficient management (given the assumptions of

the model considered here, in particular price-taking behavior and identical

discount rates for all agents). In this section, we analyze how socially effi-

cient harvesting would affect surpluses of resource users and factor owners

compared to the status quo steady state at the initial stock size x0. We focus

on initial stock sizes below the efficient steady-state stock level, x0 < x∗.5

The changes in the present values of user and factor surpluses under

privatization, ∆US(x0, {h∗t}) given by (4b) and ∆FS(x0, {e∗t}) given by(4c),

can thought of as consisting of two parts. The first part is the difference in

steady-state user and factor surplus at the initial stock size x0 and at the final

stock size x∗ under privatization. As harvest and effort levels might be lower

or higher in the efficient steady state than in the status quo, this long-run

effect is ambiguous. The second part is the transition phase during which

harvest and effort will initially be below the status-quo levels, as otherwise

the stock would not increase to x∗ > x0. Thus, the transition effect is always

negative.

The lower x0, the longer the transition phase, which tends to increase costs

of privatization to resource users and factor owners. On the other hand, the

lower x0, the higher may be the benefit for users and factor owners in the

long-run steady-state compared to the status quo. The following proposition

shows that the transition costs dominate the long-run benefits for high initial

stock sizes, i.e. initial stock sizes above some threshold values. Recall that

we use x̂U (x̂F ) to denote the optimal steady state stock size for management

by resource users (factor owners).

5For x0 > x∗, disinvestment in the stock causes a temporary increase in harvest and
effort while it also moves the steady-state stock closer to the steady-state levels preferred
by resource users and factor owners. Thus, ∆US(x0, {h∗t }) > 0 and ∆FS(x0, {e∗t }) > 0
for all x0 ∈ (x∗,K]. If the initial stock size equals the efficient stock size, there are no
transitional effects, hence ∆US(x∗, {h∗t }) = 0 and ∆FS(x∗, {e∗t }) = 0.
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Proposition 3. Assume q′(·) > 0.

3a) There exists a xU with 0 ≤ xU < x̂U such that

∆US(x0, {h∗t}) < 0 for all x0 ∈ (xU , x
∗). (15a)

3b) There exists a xF with 0 ≤ xF < x̂F such that

∆FS(x0, {e∗t}) < 0 for all x0 ∈ (xF , x
∗). (15b)

Proof. See appendix D.

With xF < x̂U (xF < x̂F ), resource users (factor owners) lose from socially

efficient harvesting for a large interval of initial stock sizes. However, for a

very small initial resource stock, and if the discount rate is sufficiently low,

resource users and even factor owners may benefit from privatization, as the

following result shows.

Proposition 4. Assume q′(·) > 0.

4a) There exists a discount rate ρU > 0 such that for all ρ ≤ ρU there

exists a stock size xU > 0 such that

∆US(x0, {h∗t}) > 0 ∀x0 ∈ (0, xU). (16a)

4b) If xMSE > 0, there exists a discount rate ρF > 0 such that for all

ρ ≤ ρF there exists a stock size xF > 0 such that

∆FS(x0, {e∗t}) > 0 ∀x0 ∈ (0, xF ). (16b)

Proof. See appendix E.

Focusing on the comparison of open access with socially efficient man-

agement starting at x0 = xOA, Proposition 4 shows that serious biological

overfishing under open access (xOA < xU resp. xOA < xF ), is a necessary con-

dition for resource users (factor owners) to gain from efficient management.

We have shown that the stock effect drives a wedge between the harvesting

plans preferred by producers, resource users and factor owners. A weak stock
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effect enables producers to fish down the stock to very low stock sizes under

open access. A weak stock effect also brings user and factor owner inter-

ests closer to the harvesting plan implemented by a socially efficient private

owner. Thus, these interest groups potentially gain a lot from privatization

– provided the discount is sufficiently small.

Because of it’s prominent role in the literature, we shall briefly study

the case of the classical Gordon-Schaefer model (Gordon, 1954; Schaefer,

1957), which specifies q(x) = q0 x and g(x) = r x
(
1− x

K

)
. In this case,

g(x)/q(x) = (r/q0)
(
1− x

K

)
is linear and factor owners prefer any inefficient

status quo over privatization, irrespective of their discount rate (xF = 0 for

all ρ ≥ 0). For this special case, our model becomes a variant of the static

models of Samuelson (1974) and Weitzman (1974). In line with them, we

obtain the unambiguous result that workers are always better off under open

access in this special case.

4 The Northeast Arctic cod fishery

To provide a quantitative example, we apply our analysis to the Northeast

Arctic cod (NEAC) fishery. This fishery is based on a Gadus morhua cod

stock in the Barents Sea and Svalbard waters north of Norway and Northeast

Russia. With an estimated carrying capacity of 5.73 million tons (Kugarajh

et al., 2006), the NEAC is potentially the largest stock of true cod in the world

(Nakken, 1994). Although stock dynamics show significant inter-annual vari-

ations due to environmental factors (recruitment positively linked to water

temperature) and stock interactions (cannibalism and abundance of main

prey species capelin), declines in stock biomass were mainly caused by fish-

ing (Nakken, 1994). Total stock biomass showed a negative trend from 4.2

million tons in 1946 to a low of 0.7 million tons in 1983 (cf. Figure 3). During

that period, annual landings exceeded a million tons five times (ICES, 2012).

After quotas were introduced for the trawler fleets in 1978 and for the coastal

fleets in 1989, a series of low annual fishing mortalities allowed the stock to

recover (ICES, 2012).

To study the distributive consequences of a continued stock rebuilding,
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Figure 3: The development of the Northeast Arctic cod stock in 1946–2011
according to ICES (2012) stock assessment.

we use specifications of the inverse demand, biomass growth and cost func-

tions from the literature. From the inverse demand function estimated by

Kugarajh et al. (2006), we obtain6

p(h) = 1.4− 0.79 h, (17)

where the price is measured in billions of USD in 1998 prices, and harvest

is measured in million tons. The biomass growth function adopted from

Kugarajh et al. (2006) is

g(x) = 0.46 x
(

1− x

5.73

)
, (18)

where stock sizes are measured in million tons. Accordingly, the MSY-stock

6Norwegian Krone in 1998 prices is converted to USD in 1998 prices using an exchange
rate of 7.5451 Norwegian Krone per USD (OECD, 2010).
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is xMSY = 2.87 million tons.

Cost functions for the Northeast Arctic cod fishery have been estimated

by Kugarajh et al. (2006), Sumaila and Armstrong (2006), and Richter et al.

(2011); also used by Eikeset et al. (2013). Kugarajh et al. (2006) and Sumaila

and Armstrong (2006) assume q(x) = q0 x, which implies that workers always

lose from privatization (cf. Section 3). Richter et al. (2011) assume q(x) =

q0 x
χ and estimate a stock elasticity of harvest of χ = 0.58. For the overall

fishing cost function, Richter et al. (2011) estimate c(e)/q(x) = 1.06x−0.58.

This cost function is independent of the effort level, because Richter et al.

(2011) impose the assumption that marginal costs of increasing the number of

vessels are independent of total effort in the fishery. This assumption implies

that there is no surplus for owners of factors employed in the fishery. Here we

follow Sumaila and Armstrong (2006) instead, who use an increasing marginal

effort cost function c(e) = c0 e
β with β = 0.01, such that c(e) ≈ c0 (1−β+β e).

In the following we use c0 = 1.06 from Richter et al. (2011) and β = 0.01

from Sumaila and Armstrong (2006). Thus, the cost function we use is7

c(e)

q(x)
=

1.05 + 0.01 e

x0.58
. (19)

The open-access harvest rate thus is hOA(x) = max
{

(a − c0 x
−χ)/(b +

c1 x
−2χ), 0

}
, as shown in the phase diagram in Figure 2. The resulting open-

access steady-state stock size is xOA = 0.89 million tons, which is about the

minimum of historically observed stock sizes (see Figure 3).

Proposition 2 states that there exist threshold values for the discount rates

of resource users and factor owners above which these interest groups would

prefer open-access harvesting over any other harvesting plan. For users of

Northeast Arctic cod, this threshold value is ρU = r (1− 2xOA/K) = 0.32.

This is a high figure, so it seems safe to conclude that users of Northeast

Arctic cod do not favor open access. For owners of capital and labor employed

in the fishery, the threshold value is much lower at ρF = r (1− 2xOA/K)−
χ r (1− xOA/K) = 0.09. Experimental evidence suggests that there may

7For effort levels e ∈ [0, 2], the difference between the cost function (19) and the estimate
by Richter et al. (2011) is less than 1%.
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Figure 1: Differences in present values of (a) user surplus, (b) factor surplus,
(c) resource rent, and (d) social surplus, between the options of maintaining a
steady state at x0 or efficient management of the Northeast Artic cod fishery.

1

Figure 4: Differences in present values of (a) user surplus, (b) factor surplus,
(c) resource rent, and (d) social surplus, between the options of maintaining a
steady state at x0 or efficient management of the Northeast Artic cod fishery.

well be individuals discounting at rates higher than 9% per year (Andersen

et al., 2008).

To determine the optimal harvesting plans, we use an annual discount rate

ρ = 0.01. The steady-state stock sizes resulting in the three scenarios are

xF = 1.61 million tons, xU = 2.81 million tons, and xP = x∗ = 3.58 million

tons. The optimal stock size exceeds xMSY = 2.87 million tons because of

the stock effect.

Figure 3 shows that the stock was close to xF between 2002 and 2006.

Starting from 2006 there was a period of stock rebuilding, passing xU in 2008,

and approaching levels close to xP in 2011.

Figure 4 shows the difference in the present values between a steady state

at an initial stock size x0 and the efficient harvesting path starting at x0
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for (a) user surplus, ∆US(x0, {h∗t}), (b) factor surplus, ∆FS(x0, {e∗t}), (c)

resource rent, ∆RR(x0, {h∗t , e∗t}), and (d) social surplus, which is the sum of

the first three surpluses.

As stated in Proposition 4, users may gain from rebuilding severely over-

fished stocks, ∆US(x0, {h∗t}) > 0 for x0 below xU . Such an interval of de-

pleted stock sizes x0, for which user would gain from privatization, exists

for all discount rates below ρU = 0.84. For the discount rate used here, we

find xU = 2.05 million tons. Since 2008, the NEAC stock has passed that

threshold.

The gain or loss ∆FS(x0, {e∗t}) of factor owners from privatization com-

pared to a status quo at x0 is shown in Figure 4 (b). Note that the y-axis

here is in millions rather than in billions of USD, which is due to the small

effect of fishing effort on the cost function (19). Factor owners are better

off in the status quo than under privatization for initial stock sizes above

xF = 0.28 million tons (and below xP ). This value is far below the open-

access steady-state stock size. There is no possible gain from privatization at

low stock sizes for factor owners if their discount rate exceeds the threshold

value ρF = 0.29.

The minimum of the aggregate social gain from privatization is at xP , as

shown in Figure 4 (d). This reflects the finding that privatization is socially

efficient, cf. Proposition 1, with considerable aggregate benefits. Figure 4 (c)

shows that producers would be even better off for somewhat larger stock sizes,

i.e. the minimum of ∆RR(x0, {h∗t , e∗t}) is obtained at a stock size x0 > xP .

This follows from the artificial scarcity rents a producer could earn in addition

to resource rent. A producer who also maximizes monopoly rent on the

product market and monopsony rent on the factor market along with resource

rent would increase the steady-state stock size and lower production output

and factor inputs relative to the social optimum. We have excluded artificial

scarcity rents from our analysis by assuming a price-taking producer.

But even with price-taking behavior, resource rent exceeds the social sur-

plus of harvesting for initial stock sizes above xU . For example, if we compare

an efficient management starting in 2008 to a steady-state at that year’s stock

size, the gain in the present value of resource rent is ∆RR(x2008, {h∗t , e∗t}) =
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6.208 billion USD, but this comes at a loss in surplus for factor owners of

∆FS(x2008, {e∗t}) = −0.025 billion USD and a loss in surplus of users of

Northeast Arctic cod of ∆US(x2008, {h∗t}) = −2.214 billion USD. The net

social gain is only 3.969 billion USD. About a third of the gain in resource

rent would come from a transfer of benefit from factor owners and resource

users. Recovering the sunken billions of resource rent (World Bank, 2008)

may require the sinking of other rent categories.

5 Discussion and Conclusions

While traditional bio-economics focuses on the maximization of resource rent,

we consider two additional interest groups that may have an impact on re-

source management: Resource users, who derive surplus from buying harvest

for processing and consumption, and owners of production factors employed

in resource harvesting, i.e. capital owners and workers. By identifying con-

ditions that determine whether resource users and factor owners gain or lose

from better resource management in a dynamic model, our results shed a new

light on the well-known efficiency results obtained in traditional renewable

resource economics.

We have shown that only in absence of a stock effect, all stakeholder

groups would unanimously prefer socially efficient resource management. If

there is a stock effect, only producers would favor socially efficient harvest-

ing rates. Because resource users care only about harvest quantities and

not about (stock-dependent) harvesting costs, they would choose inefficiently

high harvest rates. Factor factor owners prefer still higher harvesting rates,

because this increases demand for production factors and, hence, factor sur-

plus. We have further shown that resource users and factor owners prefer

open access over any other form of management if their discount rates exceed

certain finite thresholds.

These results may provide an explanation as to why common-pool re-

source stocks continue to be governed inefficiently even in countries and

regions that have the knowledge and capabilities to improve management.

If processors, consumers, capital owners and workers employed in resource
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harvesting have enough political influence to implement their preferred har-

vest rates, public resource management may fail to be efficient. Harvest rates

close to open-access conditions under public resource management have been

observed in the past, for example in European fisheries (Quaas et al., 2012).

Privatizing a renewable resource may be seen as a way to weaken the

influence of stakeholders arguing for inefficiency. In the second part of our

analysis, we studied the distributive consequences of privatization, assuming

that there is a stock effect of harvesting. We have found that resource users

and factor owners lose from privatization, unless (a) the stock is severely

depleted and (b) the discount rate is low.

Such distributive effects raise the question of compensation. Because

privatization is socially efficient, auctioning off harvesting rights or imple-

menting royalty schemes could raise funds that could fully compensate re-

source users and factor owners who lose from privatization. Such a com-

pensation seems difficult in practice. Obviously, any direct price instrument

would have distortive effects. Lump-sum transfers, by contrast, may eas-

ily be too small to fully compensate those individuals that lose most from

privatization. It might thus be impossible to implement privatizations as

pure Pareto-improvements. Resource users and factor owners are particu-

larly likely to lose from privatization if harvesting costs are large (due to a

high stock effect) and the discount rate is high. These are conditions that

typically hold in developing countries.

With technical progress, the stock effect of harvesting becomes less and

less important. Our analysis suggests that as a consequence, the objectives

of factor owners and resource users become more aligned with efficient man-

agement. Recent improvements in fisheries management in the United States

and other more developed regions of the world may indicate that such pro-

cesses already have a positive effect on the political economy of renewable

resource management.
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Appendix

A Steady-state stock sizes

In steady state, harvest equals biomass growth, h = g(x), effort equals e =

h/q(x) = g(x)/q(x), and the shadow price µ is constant.

The condition determining the socially efficient steady-state stock size x∗ = xP

is obtained by using these conditions in (5),

g′(x∗) = ρ− c (g(x∗)/q(x∗)) q′(x∗) g(x∗)/q(x∗)
p(g(x∗)) q(x∗)− c (g(x∗)/q(x∗))

. (20)

It is straightforward to show that x∗ is decreasing with the discount rate, dx∗/dρ <

0, with x∗
ρ→∞−−−→ xOA (the proof can be obtained from the authors upon request).

For interest group U , the optimal steady-state stock size x̂U for µ > 0 is

obtained by using ẋ = 0 and µ̇ = 0 in (11). This leads to the condition

g′(x̂U ) = ρ. (21)

As g′(·) is monotonically decreasing and the right-hand side of (21) is smaller than

the right-hand side of (20) for q′(·) > 0, it follows that x̂U < x∗ for q′(·) > 0 (Clark

and Munro, 1975).

For interest group F , the optimal steady-state stock size x̂F for µ > 0 is

obtained by using ẋ = 0 and µ̇ = 0 in (13). This leads to the condition

g′(x̂F ) = ρ+ g(x̂F )
q′(x̂F )

q(x̂F )
. (22)

As g′(·) is monotonically decreasing and as the right-hand side of (22) is smaller

than the right-hand side of (21) for q′(·) > 0, it follows that x̂F < x̂U for q′(·) > 0.

Thus, if q′(·) > 0, we have x̂F < x̂U < xP = x∗.

B Proof of Proposition 1

For all scenarios, it follows that (Acemoglu, 2008)

h′P (x) > 0, h′U (x) > 0 and h′F (x) > 0, (23)
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as p′(h) < 0, c′(e) > 0, and q(x) is concave. We thus have g(x) − hi(x) > 0 for

all x < xi and g(x) − hi(x) < 0 for all x > xi, where xi denotes the optimal

steady-state stock size for interest group i = P,U, F .

Proof of 1a) For the stock size x at which the harvest rates for interest groups

U and P are compared, we consider three cases, (i) xU ≤ x ≤ x∗, (ii) x < xU , and

(iii) x > x∗.

(i) xU ≤ x ≤ x∗. In this case, hU (x) ≥ g(x) ≥ hP (x) with g(x) > hP (x) for x = xU

and hU (x) > g(x) for x = x∗.

(ii) x < xU . Differentiating (10a) with respect to time, we obtain

µ̇P =

([
p′(hP (x))− c′ (hP (x)/q(x))

q(x)2

]
h′P (x)

+
c′ (hP (x)/q(x)) hP (x) + c (hP (x)/q(x)) q(x)

q(x)2
q′(x)

q(x)

)
(g(x)− hP (x)) (24)

Using this in (10b), we obtain

(
ρ− g′(x)

) (
p(hP (x))− c(hP (x)/q(x))

q(x)

)

− c′ (hP (x)/q(x)) hP (x) + c (hP (x)/q(x)) q(x)

q(x)2
q′(x)

q(x)
(g(x)− hP (x))

−
[
p′(hP (x))− c′ (hP (x)/q(x))

q(x)2

]
(g(x)− hP (x)) h′P (x)

= c(hP (x)/q(x))
q′(x)hP (x)

q(x)2
(25)

Similarly, differentiating (11a) with respect to time yields

µ̇U =

([
p′(hU (x))− c′ (hU (x)/q(x))

q(x)2

]
h′U (x)

+
c′ (hU (x)/q(x)) hU (x) + c (hU (x)/q(x)) q(x)

q(x)2
q′(x)

q(x)

)
(g(x)− hU (x)) (26)
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Using this in (11b), we obtain

(
ρ− g′(x)

) (
p(hU (x))− f(hU (x)/q(x))

q(x)

)

− c′ (hU (x)/q(x)) hU (x) + c (hU (x)/q(x)) q(x)

q(x)2
q′(x)

q(x)
(g(x)− hU (x))

−
[
p′(hU (x))− f ′ (hU (x)/q(x))

q(x)2

]
(g(x)− hU (x)) h′U (x) = 0 (27)

Now assume that there exists some stock size x̂ < xU such that hU (x̂) = hP (x̂).

Comparing (25) and (27), the first and second terms on the left hand sides are

the same. Also the factors in front of h′i(x̂) are the same. The terms in square

brackets are negative, as p′(·) < 0, f ′(·) > 0, and g(x̂)−hi(x̂) > 0 for x̂ < xU . The

right hand side of (25) is larger than the right hand side of (27). Thus, we must

have h′U (x̂) < h′P (x̂).

Since hU (xU ) = g(xU ) > hP (xU ), however, it must hold that h′U (x̃) > h′P (x̃)

for the largest x̃ where hU (x̃) = hP (x̃). This is a contradiction to the result derived

above that h′U (x̂) < h′P (x̂) for any x̂ where hU (x̂) = hP (x̂). Thus, we conclude

that such a value x̂ < xU does not exist. Hence, hU (x) > hP (x) for all x < xU .

(iii) x > x∗. Comparing (25) and (27) similar as in case (ii), but now with g(x̂)−
hi(x̂) < 0, we find that for any x̂ > x∗ where hU (x̂) = hP (x̂), we must have

h′U (x̂) > h′P (x̂). Since hU (x∗) > g(x∗) = hP (x∗), we again have a contradiction

and conclude that such a value x̂ > x∗ does not exist. Hence, hU (x) > hP (x) for

all x > x∗.

Proof of 1b) For the stock size x at which the harvest rates for interest groups

U and P are compared, we consider three cases, (i) xF ≤ x ≤ xU , (ii) x < xF , and

(iii) x > xU .

(i) xF ≤ x ≤ xU . In this case, hF (x) ≥ g(x) ≥ hU (x) with g(x) > hU (x) for x = xF

and hF (x) > g(x) for x = xU .

(ii) x < xF . Differentiating (13a) with respect to time yields

µ̇F =

([
p′(hF (x))− c′ (hF (x)/q(x))

q(x)2

]
h′F (x)

+
c′ (hF (x)/q(x)) hF (x) + f (hF (x)/q(x)) q(x)

q(x)2
q′(x)

q(x)

)
(g(x)− hF (x)) (28)
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Using this in (13b), we obtain

(
ρ− g′(x)

) (
[p(hF (x))− c(hF (x)/q(x))

q(x)

)

− c′ (hF (x)/q(x)) hF (x) + c (hF (x)/q(x)) q(x)

q(x)2
q′(x)

q(x)
(g(x)− hF (x))

−
(
p′(hF (x))− c′ (hF (x)/q(x))

q(x)2

)
(g(x)− hF (x)) h′F (x)

= −hF (x)
q′(x)

q(x)

(
p(hF (x))− c(hF (x)/q(x))

q(x)

)
(29)

Assume that there exists some stock size x̂ < xF such that hF (x̂) = hU (x̂). Com-

paring (27) and (29), the first and second terms on the left hand sides are the same.

Also the factors in front of h′i(x̂) are the same. The terms in square brackets are

negative, as p′(·) < 0, c′(·) > 0, and g(x̂)− hi(x̂) > 0 for x̂ < xF . The right hand

side of (27) is larger than the right hand side of (29) if µF > 0, i.e. if the optimal

steady-state stock size for group F exceeds the open-access steady-state stock size.

Thus, we must have h′F (x̂) < h′U (x̂) in this case and h′F (x̂) = h′U (x̂) if µF = 0.

Since hF (xF ) = g(xF ) > hU (xF ), if µU > 0, however, it must hold that

h′F (x̃) > h′U (x̃) for the largest x̃ where hF (x̃) = hU (x̃). This is a contradiction

to the result derived above that h′F (x̂) ≤ h′U (x̂) for any x̂ where hF (x̂) = hU (x̂).

Thus, we conclude that such a value x̂ < xF does not exist. Hence, hF (x) > hU (x)

for all x < xF . If, however, µU = 0, and, hence, µF = 0, we have hF (x) = hU (x)

for all x.

(iii) x > xU . Comparing (27) and (29) for µU > 0, similar as in case (ii), but

now with g(x̂) − hi(x̂) < 0, we find that for any x̂ > xU where hF (x̂) = hU (x̂),

we must have h′F (x̂) > h′U (x̂). Since hF (xU ) > g(xU ) = hU (xU ), we again have

a contradiction and conclude that such a value x̂ > xU does not exist. Hence,

hF (x) > hU (x) for all x > xU . Similarly, we have hF (x) = hU (x) if µU = 0.

C Proof of Proposition 2

2a). If xOA ≥ xMSY, it follows that xU = xOA for all ρ ≥ 0. If xOA < xMSY,

xU = xMSY for ρ = 0. Because ∂xρ/∂ρ < 0, xρ
ρ→∞−−−→ 0, and ∂xOA/∂ρ = 0, a

ρU > 0 must exist such that xU = xOA. In steady state with xU = xOA we have

µU = 0. Condition (11b) implies that µU = 0 also during the transition dynamics

to the steady state.
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2b). hU (x) = hF (x) holds only if hU (x) = hF (x) = hOA(x). If ρ < ρU , it

follows from the proof of Proposition (1) that hU (x) < hF (x) ≤ hOA.

2c). For the steady state, this follows from the proof of Proposition 3 and the

fact that x̂F < x̂U if q′(·) > 0. In steady state with xF = xOA we have µF = 0.

Condition (11b) implies that µF = 0 also during the transition dynamics to the

steady state.

D Proof of Proposition 3

Proof of 3a) We distinguish two cases. The first is that the discount rate

is small enough such that g(x̂U ) ≥ g(x∗). Hence, g(x0) ≥ g(x∗) and because of

transition effects

∆US(x0, {h∗t }) <
1

ρ
US(g(x∗))− 1

ρ
US(g(x0)) < 0

for all x0 ∈ [x̂U , x
∗).

In the second, more difficult case, the discount rate ρ is so high that g(x̂U ) <

g(x∗). If x∗ > xMSY there exists a stock size xu with g(xu) = g(x∗) and xu < x∗.

Let xu = min{xu, x∗}. If xu = xu, then ∆US(x0, {h∗t }) < 0 for all x0 ∈ [xu, x
∗).

With the same reasoning as in the first case we conclude that ∆US(x0, {h∗t }) < 0.

Now consider x0 ∈ (x̂U , xu), such that g(x0) < g(x∗). It exists a ρ′ such that

x̂U (ρ′) = x0. For that discount rate ρ′ with ρ′ < ρ, the steady state at x0 optimizes

the present value of user surplus. Thus,

∞∫

0

(US(h∗t (x0))−US(g(x0))) e
−ρ′ t dt < 0

The hypothetical constant instantaneous user surplus that would lead to the same

present value of user surplus (at some discount rate ρ′′) as the dynamic path under

the given optimal harvesting path h∗t (x0), is defined as

US∗ρ′′(x0) ≡ ρ′′
∞∫

0

US(h∗t (x0)) e
−ρ′′ t dt
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This value decreases with ρ′′, because

dUS∗ρ′′(x0)

dρ′′
=

∞∫

0

(1− ρ′′ t) US(h∗t (x0)) e
−ρ′′ t dt

=

1/ρ′′∫

0

(1− ρ′′ t)︸ ︷︷ ︸
>0

US(h∗t (x0))︸ ︷︷ ︸
<US(h∗

1/ρ′′ (x0)) for t<1/ρ′′

e−ρ
′′ t dt

+

∞∫

1/ρ′′

(1− ρ′′ t)︸ ︷︷ ︸
<0

US(h∗t (x0))︸ ︷︷ ︸
>US(h∗

1/ρ′′ (x0)) for t>1/ρ′′

e−ρ
′′ t dt

< US(h∗1/ρ′′(x0))

∞∫

0

(1− ρ′′ t) e−ρ′′ t dt = 0,

which holds because the user surplus under socially efficient harvesting monoton-

ically increases in the transition towards the steady state, as dh∗(x)/dx > 0 (23)

and hence, dh∗t (x0)/dt > 0.

We have shown before that US∗ρ′(x0) < US(g(x0)) for the discount rate ρ′ < ρ

where x̂U (ρ′) = x0. As US(g(x0)) is independent of ρ′′, and US∗ρ′′(x0) monotoni-

cally decreases with ρ′′, the inequality US∗ρ(x0) < US(g(x0)) must also hold for the

actual discount rate ρ, which concludes the proof for all x0 ∈ (x̂U , xu).

So far we have shown that ∆US(x0, {h∗t }) < 0 for all x0 ∈ (x̂U , x
∗). A

steady state at x0 = x̂U , however, is the optimum for resource users, such that

∆US(x̂U , {h∗t }) is negative (probably by a large amount). By continuity of ∆US(x̂U ,

{h∗t }), we conclude that it exists an xU with 0 ≤ xU < x̂U such that ∆US(x0,

{h∗t }) < 0 for all x0 ∈ (xU , x
∗).

Proof of 3b) We use ē(x) = g(x)
q(x) to denote steady-state effort at stock size x.

The term e∗t (x0) remains effort at t ≥ 0 under the efficient harvesting plan starting

at x0. Because of transition effects it follows

∆FS(x0, {e∗t }) <
1

ρ
FS(ē(x∗))− 1

ρ
FS(ē(x0)) (30)

for all x0 < x∗. We have that ∆FS(x0, {e∗t }) < 0 for all x0 < x∗ with ē(x0) ≥ ē(x∗).
Because of the strict quasi-concavity of ē(x), ē(x

′
0) ≥ ē(x∗) implies ē(x0) ≥ ē(x∗)

and hence ∆FS(x0, {e∗t }) < 0 for all x0 ∈ [x
′
0, x
∗].
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In case e(x̂F ) ≥ e(x∗), we directly conclude that ∆FS(x0, {e∗t }) < 0 for all

x0 ∈ [x̂F , x
∗]. Particularly if xMSE = 0, it follows ∆FS(x0, {e∗t }) < 0 for all

x0 ∈ (0, x∗).

In the more difficult case ē(x̂F ) < ē(x∗), there exists a stock size xf with

ē(xf ) = ē(x∗). Let xf = min{xf , x∗}. If xf = xf , then ∆FS(x0, {e∗t }) < 0 for all

x0 ∈ [xf , x
∗). It remains to show that ∆FS(x0, {e∗t }) < 0 for all x0 ∈ (x̂F , xf ). For

each x0 ∈ (x̂F , xf ), it exists a ρ
′

such that x̂F (ρ
′
) = x0. For this discount rate ρ

′

with ρ
′
< ρ, the steady state x0 optimizes present value of factor surplus. Thus,

∞∫

0

(FS(e∗t (x0))− FS(ē(x0))) e
−ρ′ t dt < 0

The hypothetical constant instantaneous factor surplus that would lead to the

same present value of factor surplus (at some discount rate ρ′′) as the effort path

under efficient resource management, is defined as

fs∗ρ′′(x0) ≡ ρ′′
∞∫

0

FS(e∗t (x0)) e
−ρ′′ t dt.

Using that e∗t (x0) = h∗t (x0)/q(x0) for t = 0, e∗t (x0) < h∗t (x0)/q(x0) for t > 0 and

d(h∗t (x0)/q(x0))/dt > 0, it follows that fs∗ρ′′(x0) decreases with ρ′′:

dfs∗ρ′′(x0)

dρ′′
=

∞∫

0

(1−ρ′′ t) FS(l∗t (x0)) e
−ρ′′ t dt <

∞∫

0

(1−ρ′′ t) FS(h∗t (x0)/q(x0)) e
−ρ′′ t dt
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∞∫

0

(1− ρ′′ t) FS(e∗t (x0)/q(x0)) e
−ρ′′ t dt

=

1/ρ′′∫

0

(1− ρ′′ t)︸ ︷︷ ︸
>0

FS(e∗t (x0)/q(x0))︸ ︷︷ ︸
<FS(e∗

1/ρ′′ (x0)/q(x0)) for t<1/ρ′′

e−ρ
′′ t dt

+

1/ρ′′∫

0

(1− ρ′′ t)︸ ︷︷ ︸
<0

FS(e∗t (x0)/q(x0))︸ ︷︷ ︸
>FS(e∗

1/ρ′′ (x0)/q(x0)) for t>1/ρ′′

e−ρ
′′ t dt

< FS(e∗1/ρ′′(x0)/q(x0))

∞∫

0

(1− ρ′′ t) e−ρ′′ t dt = 0.

We have shown before that fs∗ρ′(x0) < FS(ē(x0)) for the discount rate ρ′ < ρ

where xF (ρ′) = x0. As FS(ē(x0)) is independent of ρ′′, and fs∗ρ′′(x0) monotonically

decreases with ρ′′, the inequality fs∗ρ(x0) < FS(ē(x0)) must also hold for the actual

discount rate ρ, which concludes the proof for all x0 ∈ (x̂F , x
∗).

So far we have shown that ∆FS(x0, {e∗t }) < 0 for all x0 ∈ (x̂F , x
∗). A

steady state at x0 = x̂F , however, is the optimum for factor owners, such that

∆FS(x̂F , {e∗t }) is negative (probably by a large amount). By continuity of ∆FS(x0,

{e∗t }), we conclude that it exists an xF with 0 ≤ xF < x̂F such that ∆US(x0,

{h∗t }) < 0 for all x0 ∈ (xF , x
∗).

E Proof of Proposition 4

Proof of 4a) For ρ = 0, there exists a stock size xU with g(xU ) = g(x∗) and

xU < x∗. Given ρ = 0, transitional costs do not outweigh steady-state benefits for

all x0 < xU , hence ∆US(x0, {h∗t }) > 0 ∀x0 ∈ (0, xU ). By continuity of (4b), this

also holds for some positive discount rates ρ ≤ ρU .

Proof of 4b) If xMSE > 0, there also exists a xF with g(xF )
q(xF )

= g(x∗)
q(x∗) and

g(x0)
q(x0)

> g(x∗)
q(x∗) ∀x0 < xF . Because of ρ = 0, transitional costs do not outweigh

steady-state benefits ∀x0 < xF , hence ∆FS(x0, {e∗t }) > 0 ∀x0 ∈ (0, xF ). By

continuity of (4c), this also holds for some positive discount rates ρ ≤ ρF .
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We show that the love-of-variety effect enables welfare gains from trade even if
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The question if trade liberalization threatens or benefits renewable re-

sources and their users is at the center of a lively scientific debate (Bulte

and Barbier, 2005; Fischer, 2010). Whilst country differences that stipulate

trade and feedbacks to other economic sectors are modeled in diverse ways,

all models for trade in renewable resources known to the authors implicitly

assume that the traded resources are perfect substitutes (Bulte and Barbier,

2005; Fischer, 2010).

At the core of these models, trade liberalization balances two former au-

tarky prices for resource harvests. If the countries have comparable manage-

ment regimes and harvesting costs, the prices for resource harvest reflect the

biological abundance and economic scarcity of the underlying resources. By

aligning prices, trade liberalization works in the direction of balanced stock

sizes. Modeling trade effects under the assumption that the resources are

perfect substitutes might thus underestimate the risk of severe overexploita-

tion and stock collapse. It is the aim of this paper to study the consequences

of departing from this assumption. The term ‘New trade’ is used in the sense

that we look at consumer preferences for diversity. Starting from the refer-

ence case of perfect substitutes, we show that increasing the love for diversity

under free trade might lead to increasingly skewed exploitation patterns up

to stock collapse under open access. At the same time, increasing the love

for variety increases the potential welfare gains from trade liberalization that

may offset the price-quantity welfare effects known from the literature.

The literature on trade in renewable resources1 can be classified according

to the country differences that stipulate trade:

In North-South models differences in resource management create trade

between two otherwise identical countries. Chichilnisky (1994) shows that

the country with weaker resource management appears to have an “appar-

ent comparative advantage” as it ignores the opportunity costs of current

harvesting. As a result, South exports to the country with better resource

management (the North). North increases its consumption by imports while

South loses. Brander and Taylor (1997b) show that South’s apparent ad-

vantage may become an apparent disadvantage if its harvesting sector has a

1See Bulte and Barbier (2005) for a comprehensive review of the literature.
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backward-bending supply curve that enables severe over-harvesting at high

autarky prices. In this case, South gains from trade as it becomes a resource

importer. Karp et al. (2001) differentiate North and South more smoothly

by varying the number of price-taking harvesters. Classified according to the

intrinsic growth rate of the stocks, Karp et al. (2001) describe scenarios in

which North drags down South (both lose) or North pulls up South (both

gain). Copeland and Taylor (2009) assume that management efficiency is

endogenously determined by resource prices.

A second class of models assumes that both countries have open-access

regimes but differ in factor proportions: The home country is labor abundant

while the foreign country is resource abundant. Brander and Taylor (1997a,

1998) show that a move from autarky to trade benefits the resource importing

home country as trade eases the local open-access problem and releases labor

for the manufactures sector. The foreign country can only gain from trade

if it is able to specialize in resource harvesting at very high resource prices.

Hannesson (2000) shows that a diversified resource exporter may also gain

from trade if the manufactures sector has decreasing returns to scale. In

this case, the benefits of importing manufactures may offset the resource

exporter’s deteriorating open-access problem. Emami and Johnston (2000)

show that if one of two Brander and Taylor (1997a) countries improves its

resource management from open access to price-taking sole ownership, both

countries gain if world price drops. If world price rises, the country with

improved management gains while the other loses. If demand for resources is

higher in the country that improves its resource management, that country

may lose as well if consumer welfare losses outweigh the newly collected

resource rent.

The welfare results in the trade literature are diverse, which is in part

due to differences in the general equilibrium framework of these models.2

For this reason, we concentrate on resource economics in a partial equilib-

rium setting and disregard spillovers to other economic sectors. In a related

work, Quaas and Requate (2013) study how consumer preferences for di-

2Cf. for example the contrasting results of Brander and Taylor (1998) and Hannesson
(2000).
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versity affect multi-species fishery management. The paper at hand can be

interpreted as an extension of Quaas and Requate (2013) that focuses on

trade-induced welfare effects in a two-country framework.

Trade liberalization can have two effects on renewable resources: First,

opening up for trade increases the potential demand from domestic con-

sumers to world demand. A second effect is that trade liberalization may

enable demand to shift from depleted and hence expensive resources to more

abundant and hence cheaper substitutes. The first effect is always present.

While the literature assumes that the second effect works perfectly as well,

we show that decreasing the elasticity of substitution weakens the demand

reduction in reaction to increasing resource scarcity. In the limit, this may

lead to a stock collapse or the sequential collapse of both stocks.

The rest of the paper is organized as follows. Section 1 presents the

model. In Section 2, we study the move from autarky to free trade in a

two country - two resources model. As trade liberalization always entails a

positive diversity effect if there is only one resource under autarky, a model

extension in Section 3 analyzes trade between a species-rich and a species-

poor country. Section 4 concludes.

1 The model

We consider two countries, each with a representative consumer and a renew-

able natural resource that is harvested under conditions of open access. We

will compare two scenarios: In the first scenario, each resource is consumed

only domestically. We refer to this situation as the ‘autarky’ case, although

there may be trade between the countries in goods other than the natural

resources. We use a superscript a to the variables to indicate this scenario.

In the other scenario, the countries freely trade harvests of the two resources

and all other goods without any costs. We refer this scenario as the ‘trade’

scenario, and indicate this scenario by a superscript t to the variables.

The two countries may differ from each other in two respects: (i) The

consumers may value resource consumption to a different degree, and (ii) the

biological productivity of the two resources may differ. To allow for a closed
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form solution, we assume symmetry between the two countries in all other

parts of the model.

The representative household in country i = 1, 2 has quasi-linear prefer-

ences over the consumption of a numeraire commodity (yi) and consumption

of natural resources (vi) that are described by the utility function (Quaas

and Requate, 2013)

u(vi, yi) = yi + γi ln vi. (1)

Due to unit elasticity of demand for resource products, the factor γi coin-

cides with the expenditures on resources in country i. The sub-utility from

resource consumption is described by a Dixit-Stiglitz utility function (Dixit

and Stiglitz, 1977)

vi =

(∑

j∈Si
q
σ−1
σ

ji

) σ
σ−1

, (2)

where qji is harvest produced in country j and consumed by the household

in country i, and Si is the set of species available for consumption in country

i. Under autarky, this is equal to the species richness available domestically;

under free trade, this is the number of all resource species harvested globally.

The parameter σ ≥ 1 measures the elasticity of substitution between different

resources. The lower the value of σ, the stronger are the representative

household’s preferences for diversity. The budget constraint is

mi = yi +
∑

j∈Si
pj qji (3)

with exogenous income mi. We assume that mi > γi to assure an interior

solution for the demand for natural resources.

In country i = 1, 2, the stock xi grows according to the logistic function

gi(xi) = ri xi (1− xi) (4)

with intrinsic growth rate ri and carrying capacity normalized to one.
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The representative resource harvester in country i has profits

Πi = pi hi −
c

xi
hi =

(
pi −

c

xi

)
hi. (5)

In (5) pi denotes the price of harvest produced in country i. Under autarky,

pi is defined only for the domestic species. We assume that harvesting costs

are the same for all resources, thus c carries no index. Everything that follows

will depend on ratios of γi to the cost parameter c. To simplify notation,

we normalize units of measurement for the numeraire commodity such that

c = 1.

As resources are harvested under conditions of open access, resource rents

are dissipated. Profits (5) are zero, and the price of species i is equal to

marginal harvesting costs,

pi =
1

xi
. (6)

Using the open-access condition (6), the price index for resource goods in

country i, Pi, can be expressed as a function of resource stocks,

Pi =

(∑

j∈Si
p1−σj

) 1
1−σ

=

(∑

j∈Si
xσ−1j

) 1
1−σ

. (7)

The Marshallian demand of consumer i for resource type j is obtained

from the first-order conditions of utility maximization, i.e. the maximization

of (1) with (2) subject to the budget constraint (3),

qji = γi
p−σj∑

j∈Si
p1−σj

= γi
p−σj
P 1−σ
i

. (8)

2 The two-species-two-country case

We first consider the case where each country has one resource stock each.

The two countries may differ in the biological productivity of their resource ri

and in the consumer expenses for resource harvests, γi. We start the analysis
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by considering the autarky scenario and then proceed to the scenario of free

trade.

2.1 Autarky

Without any trade in resources, only one type of resource harvest is avail-

able in each country. This reduces the model to the textbook case of an

open-access resource. In particular, the demand function (8) simplifies to

qii = γi/pi, and domestic demand must equal domestic supply, qii = hi. Con-

sumer expenses for resource harvest must equal revenues from harvesting the

domestically available species in country i,

γi = pi hi. (9)

Inserting (4) and (6) and solving yields the open-access steady-state stock of

resource i,

xai = 1− γi
ri
. (10)

The open-access stock decreases with the expenditures for resources. It in-

creases with the intrinsic growth rate ri and the harvesting cost parameter c.

To study the consequences of trade liberalization, we assume that domes-

tic demand cannot cause stock collapse:

Assumption 1 (Positive autarky stocks). Neither of the two stocks collapses

under autarky, γi < ri, for both countries i = 1, 2.

Without loss of generality, we furthermore assume that the autarky price

in country 1 is higher than in country 2:

Assumption 2 (Ordered autarky prices). The ratio of consumer expenses

to growth rate is higher in country 1 than in country 2,

γ1
r1
>
γ2
r2
. (11)
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This implies a higher autarky price and a lower autarky stock in country

1, pa1 > pa2 and xa1 < xa2.

For clarity of exposition, we treat the case γ1
r1

= γ2
r2

separately: The

condition implies pa1 = pa2 such that both countries are indifferent to free

trade in the case of perfect substitutes (σ → +∞). For finite σ > 1, both

countries gain from trade for any point on the isocost curve (16), cf. the

following section.

2.2 Free Trade

With free trade, the prices for harvest from a specific resource are the same

globally. Thus also the resource price indizes are the same in both countries,

P1 = P2 ≡ P =
(
xσ−11 + xσ−12

)− 1
σ−1 . (12)

The Equivalent/Compensating variation CVi for country i of a move from

autarky to free trade with price index P (cf. equation (7)) can be formulated

as

CVi = γi ln

(
pai
P

)
= γi ln



(
xσ−11 + xσ−12

) 1
σ−1

xai


 . (13)

Indifference to autarky can be depicted by the following indifference curves

in x1 − x2 space:

xindi2 (x1) = x1

[(
xai
x1

)σ−1
− 1

] 1
σ−1

, i = 1, 2 (14)

As the price index is strictly increasing in both stock sizes, all points above

the indifference curve are preferred to autarky.

In free-trade equilibrium, surplus production from stock xi must equal

aggregate demand from both countries,

gi(xi) =
p−σi
P 1−σ (γ1 + γ2) , i = 1, 2 (15)
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Multiplying by the price of resource i, summing over i and rearranging yields

the isocost line for an interior equilibrium as

xico2 (x1) =
r1 + r2 − γ1 − γ2

r2
− r1
r2
x1. (16)

Using (4) and (6) in (15), and rearranging, we obtain the following con-

ditions that implicitly determine the steady-state stock sizes (xt1, x
t
2):

x1 = 1− xσ−11

xσ−11 + xσ−12

γ1 + γ2
r1

, (17a)

x2 = 1− xσ−12

xσ−11 + xσ−12

γ1 + γ2
r2

. (17b)

These conditions can be interpreted as the isoclines in x1− x2 space. Condi-

tion (17a) for example depicts all combinations of x1, x2 for given σ, γ1, γ2,

r1, r2 for which demand for harvest from stock 1 equals stock growth such

that ẋ1 = 0. Rearranging the x1-isocline (17a) yields

xme1
2 (x1) = x1

(
γ1 + γ2

r1 (1− x1)
− 1

) 1
σ−1

. (18)

Inserting this condition in the isocost condition (16) gives the equilibrium

stock size xt1 as an implicit function of parameters only,

xt1

(
r1 + r2

(
γ1 + γ2

r1 (1− xt1)
− 1

) 1
σ−1

)
= r1 + r2 − (γ1 + γ2) . (19)

For general values of the elasticity of substitution σ, it is obviously not pos-

sible to solve for the steady-state stock sizes in closed form. It is however

possible to prove the existence of a unique free-trade equilibrium:

Proposition 1. 1a) For σ > 1, there exists a unique free-trade equilibrium

with positive stock sizes for both resources, xt1, x
t
2 > 0.

1b) Resource stocks under free trade and in autarky are ordered as follows

xt1 T xa1 and xt2 S xa2 for xa1

(
γ2
γ1

) 1
σ−1

S xa2. (20)

72



New trade in renewable resources - Paper 3

Proof. Prerequisite: The stock size xco1 = 1− γ1
r1
− r2

r1
is a corner solution after

the collapse of stock 2 such that all consumer expenses are directed at stock

1, cf. (28). For inner solutions, stock 1 receives less than the total consumer

expenses, such that it holds that xt1 > xco1 for all σ > 1. It also holds that

xa1 > xco1 as xco1 = xa1 − r2
r1

.

1a) The right-hand side (RHS) of (19) is independent of x1 and positive.

Define the left-hand side (LHS) of (19) as

Ω(x) ≡ x

(
r1 + r2

(
γ1 + γ2
r1 (1− x)

− 1

) 1
σ−1

)
. (21)

We further consider two cases. In case 1, γ1 + γ2 > r1, Ω(x) is defined and

positive for all x ∈ [0, 1). In case 2, γ1 +γ2 ≤ r1, Ω(x) is defined and positive

for all x ∈ (xco1 , 1).

Case 1. Ω(0) = 0 < r1 + r2 − (γ1 + γ2); lim
x→1

Ω(x) → +∞. For all

x ∈ (0, 1), Ω′(x) > 0. Hence, there exists a unique x > 0 such that (19) holds

with equality.

Case 2. Ω(xco1 ) = r1 − (γ1 + γ2) < r1 + r2 − (γ1 + γ2); lim
x→1

Ω(x) → +∞.

For all x ∈ (xco1 , 1), Ω′(x) > 0. Hence, there exists a unique x > xco1 such

that (19) holds with equality.

1b) The intersection of the x1-isocline (18) and the isocost line (16) de-

termine the market equilibrium with equilibrium stock size xt1: x
me1
2 (xt1) =

xico2 (xt1). It is straightforward to verify that xico2
′
(x1) < 0 and that xme1

2
′
(x1) >

0 for x1 > xco1 . Thus, xt1 T xa1 if xme1
2 (xa1) T xico2 (xa1). Evaluating both ex-

pressions at xa1, we obtain

xme1
2 (xa1) = xa1

(
γ2
γ1

) 1
σ−1

xico2 (xa1) = xa2.

Condition (20) is always fulfilled if γ2 < γ1. If γ2 > γ1 there is some

threshold value σ′ > 1 such that for all σ < σ′ xt1 < xa1 and for all σ > σ′
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xt1 > xa1.

If the countries differ in their expenses for resource products or in the

biological productivity of their stocks, explicit expressions for the free-trade

equilibrium can be calculated for the two limit cases of the CES utility func-

tion, the case of perfect substitutes (σ → +∞) and Cobb-Douglas preferences

(σ → 1).

As the literature on trade in renewable resources implicitly assumes that

the traded harvests are perfect substitutes, we start with this case. If con-

sumers do not differentiate between the two types of harvest, prices must be

equal in equilibrium. As prices depend on stock sizes only (cf. equation 6),

stock sizes must be the same. From (18) we thus obtain

xps = 1− γ1 + γ2
r1 + r2

. (22)

The intuition is that the global expenditures for resources, γ1 + γ2 are

spent over the two resources according to their productivities, as measured

by the intrinsic growth rates, such that in equilibrium both stocks are of

equal size. As it holds that limσ→∞ P = 1
max(x1,x2)

, the indifference curves

(14) simplify to rectangles in the limit case of perfect substitutes,

xai = max(x1, x2). (23)

As

xps =
r1

r1 + r2
xa1 +

r2
r1 + r2

xa2,

and xa1 > xa2 it follows that xa2 > xps and xa1 < xps, such that country 1 wins

and country 2 loses from trade.

Figure 1 depicts this standard case: The intersection point of the isocost

line (16) and the x1-isocline (18) determines the trade equilibrium, here also

given in closed form by (22). Country 1 has a higher autarky price than

country 2, such that trade liberalization leads to a price decrease in country

1 and a price increase in country 2. It follows that the country with the

smaller autarky stock gains from the trade while the one with the larger
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autarky stock loses.

0 0.75
0

0.75

xco xa1

xa2

x1

x
2

σ →∞

(xt1, x
t
2)

(xps1 , x
ps
2 )

xico2 (x1)

xme1
2 (x1)

xind12 (x1)

xind22 (x1)

Figure 1: Trade in perfect substitutes: Country 1 with its lower autarky
stock and higher autarky price gains while country 2 loses. Equilibrium at
xt1 = xt2 = xps = 0.25 (r1 = 0.5, r2 = 0.1, γ1 = 0.4, γ2 = 0.05).

If both stocks have the same biological productivity, the trade equilibrium

in case of perfect substitutes holds for all elasticities of substitution:

Proposition 2. If r1 = r2, the unique free-trade equilibrium for all σ ≥ 1 is

xti = xps, i = 1, 2. (24)

Proof. A unique trade equilibrium exists for σ > 1 (cf. Proposition 1). For

r1 = r2, (22) solves (19) for all σ > 1. In the limit case σ = 1, (27) equals

(22).

For r1 = r2, the stock sizes and hence total biomass are independent of

the preferences for diversity and equal to aggregate autarky levels, xt1 +xt2 =

xa1 + xa2. In this case, trade liberalization leads to balanced stock sizes for all

σ ≥ 1.

For r1 6= r2, the effect of decreasing the elasticity of substitution from

the limit case of perfect substitutes towards the second limit case of Cobb-

Douglas preferences is depicted in Figure 2:

75



New trade in renewable resources - Paper 3
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σ = 4

0 0.75
0
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xa2

x1

σ = 2

(xt1, x
t
2) (xps1 , x

ps
2 ) xico2 (x1) xme1

2 (x1) xind12 (x1) xind22 (x1)

0 0.75
0

xcoxa1

xa2

x1

σ = 1.5

Figure 2: Trade equilibria at intersection of the isocost line (16) and the
x1-isocline (18). Decreasing σ moves the equilibrium on the isocost line
(16) towards the biologically more productive stock (r1 = 0.5,r2 = 0.1,γ1 =
0.4,γ2 = 0.05). In the Cobb-Douglas limit case, stock 2 collapses.

The indifference curves become strictly concave for σ > 2, linear for σ =

2 and strictly convex for σ < 2 while keeping their symmetric intercepts

at xai on both axes. The indifference curves bending towards the origin

with decreasing σ reflects the increasing importance of the love of variety to

consumer welfare. The lower the elasticity of substitution, the larger the area

of x1 − x2 combinations above the indifference curves that are preferred to

autarky. At the same time, decreasing the elasticity of substitution weakens

the reaction of consumer demand towards resource scarcity such that the

equilibrium size of the biologically less productive stock decreases while the

other one faces reduced demand and increases. This can be seen in Figure

2 by the movement of the intersection point of the x1-isocline (18) on the

isocost line (16). The equilibrium moves southeastwards, implying a decrease

in stock 2 and an increase in stock 1. Decreasing σ hence has two effects: It

moves the symmetric indifference curves towards the axes while it also moves

the equilibrium on the isocost line (16) towards the axis of the biologically

more productive stock, cf. Figure 2. For country 2 to gain from trade

for σ > 1, the trade equilibrium has to approach the axis slower than the

country’s indifference curve. The following proposition shows that this is

always the case.
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Proposition 3. There exists a σ∗ > 1 such that both countries gain from

trade for σ ∈ (1, σ∗].

Proof. It is a sufficient condition for country 1 to gain from trade that country

2 does, cf. (14). The indifference-to-autarky curve of country 2 (14) can be

written as

xind22 (x1) = x1

[(
xA2
x1

)σ−1
− 1

] 1
σ−1

, (25)

and the x1-isocline (18) as

xme1
2 (x1) = x1

[
γ1 + γ2

r1 (1− x1)
− 1

] 1
σ−1

. (26)

A unique trade equilibrium with positive stock sizes exists for σ > 1 (cf.

Proposition 1). The equilibrium stock sizes fulfill (26). Country 2 gains from

trade if the term in brackets on the right-hand side of (25) is smaller than

the term in bracket on the right-hand side of (26).

Now consider the two cases γ2 > γ1 and γ2 < γ1. For the case γ2 > γ1,

the proof of the proposition is simple: Let σ∗ = σ′, where σ′ > 1 is the

threshold value characterized in Proposition 1b). For σ < σ′ it follows that

xt2 > xa2. This implies that the trade equilibrium (xt1, x
t
2) lies to the northwest

of xind22 (x1) (convex for sufficiently small σ < 2), such that country 2 gains

from trade, which proves the proposition for the case γ2 > γ1.

For the case γ2 < γ1 it follows from Proposition 1b) that xt1 > xa1. Thus,

(
xa2
xt1

)σ−1
− 1 <

(
xa2
xa1

)σ−1
− 1 and

γ1 + γ2
r1 (1− xt1)

− 1 >
γ1 + γ2

r1 (1− xa1)
− 1

Now fixing x1 at xa1 it holds that limσ→1
γ1+γ2

r1 (1−xa1)
−1 > 0 while limσ→1

(
xa2
xa1

)σ−1
−

1 = 0. Thus, there must be some threshold value σ∗ > 1 such that γ1+γ2
r1 (1−xa1)

−
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1 >
(
xa2
xa1

)σ−1
− 1 for all σ < σ∗. It follows that

γ1 + γ2
r1 (1− xt1)

− 1 >
γ1 + γ2

r1 (1− xa1)
− 1 >

(
xa2
xa1

)σ−1
− 1 >

(
xa2
xt1

)σ−1
− 1

for all σ < σ∗.

Without loss of generality, we defined country 2 to be the country with

the lower autarky price (cf. 2). For the standard case of perfect substitutes,

trade liberalization leads to a welfare decrease in country 2 as the country

experiences a price increase relative to autarky. The love-of-variety effect

outweighs the negative price-quantity effect for all σ ∈ (1, σ∗]. In the example

of Figure 2, country 2 gains from trade for all σ ∈ (1, 1.46].

In the limit case of Cobb-Douglas preferences, the link that increasing

resource scarcity leads to a price increase and hence a demand reduction is

disabled. Because of their intense love of variety, both consumers spend half

their expenses on each type of harvest, irrespective of the individual prices

and hence stock sizes. As there is no longer a substitution mechanism that

works in the direction of balanced stock sizes, a stock collapse or a sequential

collapse of both stocks may occur:

Proposition 4. Let ra (rb) denote the stock with the higher (lower) intrinsic

growth rate.

If σ = 1 and γ1 + γ2 < 2 rb, no stock collapses and the trade equilibrium

follows as

xti = xcdi = 1− γ1 + γ2
2 ri

, i = 1, 2. (27)

If σ = 1 and γ1 + γ2 ≥ 2 rb and γ1 + γ2 < ra, the less productive stock

collapses and the trade equilibrium follows as

xta = xcoa = 1− γ1 + γ2
ra

, xtb = xcdb = 0. (28)

If σ = 1 and γ1 + γ2 ≥ 2 rb and γ1 + γ2 ≥ ra, a sequential collapse of both

stocks occurs,

xti = xcosi = 0, i = 1, 2. (29)
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The limit case of free trade with Cobb-Douglas preferences can be under-

stood as an autarky case with consumer expenses per stock adjusted to half

the total expenses of both consumers, xcdi = 1− γ1+γ2
ri

. If the less productive

stock cannot sustain these expenses and collapses, the remaining stock has

to sustain the total consumer expenses, hence xcda = 1− γ1+γ2
ra

in this case.

In the example of Figure 2, we have that γ1 + γ2 = 0.45 > 2 r2 = 0.2 and

γ1 + γ2 = 0.45 < r1 = 0.5 such that stock 2 collapses for σ = 1. The trade

equilibrium follows as xt1 = xco1 = 0.1, xt2 = xco2 = 0.

As corner solutions cannot be compared to inner solutions in the case of

Cobb-Douglas prefences, a welfare comparison of autarky and free trade is

limited to σ > 1.

3 Trade between a species-rich and a species-

poor country

In the previous section, trade liberalization resulted in a price increase for

country 2. Trading harvest from its formerly larger autarky stock always

entailed a reduced total consumption of resource harvests in country 2. This

negative quantity effect on consumer welfare was counterbalanced by a pos-

itive love-of-variety effect.

As the positive diversity effect was a result of modeling only one resource

per country, we modify our model in this section by making country 1 a

species-rich country with n ≥ 2 species. Country 1 with its small autarky

stock was the unambiguous beneficiary of trade in the previous section be-

cause trade led to an increase in domestic resource consumption. By a short

model extension that introduces species-richness in country 1, we want to

show that the diversity effect of trade may also be negative, bringing a coun-

try an increase in consumption and a decrease in welfare.

To keep the analysis tractable, we assume that country 1 has j = 1, . . . , n

domestic stocks whose growth functions

g1j(x1j) = r1 x1j (1− x1j) (30)
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have identical intrinsic growth rates r1j = r1. Country 2 continues to have

only one stock x2 that grows according to (4). Due to the assumption that

the stocks in country 1 are equally productive, the utility function (1) of the

consumers in country i can be represented as

ui = yi + γi ln

[(
nh

ρ−1
ρ

i1 + h
ρ−1
ρ

i2

) ρ
ρ−1

]
. (31)

The term in square brackets in (31) can be rearranged as the quantity con-

sumed in country i, Hi,

Hi = nhi1 + hi2 (32)

times a diversity factor Di,

Di =

(
n

(
hi1
Hi

) ρ−1
ρ

+

(
hi2
Hi

) ρ−1
ρ

) ρ
ρ−1

. (33)

Under autarky, consumption in country 1 comprises its n domestic stocks.

The diversity factor of country 1 under autarky follows as

Da
1 = n

1
ρ−1 . (34)

After trade liberalization, harvest from x2 becomes available in country 1.

The consumption bundle in country 1 increases to n + 1 species and the

diversity factor of country 1 under free trade follows as

Dft
1 =

(
n
(
hft11/H

ft
1

) ρ−1
ρ

+
(

1− nhft11/Hft
1

) ρ−1
ρ

) ρ
ρ−1

. (35)

The species-rich country 1 gains (loses) from free trade if Ua
1 = nha11D

a
1 is

larger (smaller) than U ft
1 =

(
nhft11 + hft12

)
Dft

1 . Even if trading n+ 1 species

with country 2 increases the quantity consumed in country 1, the country

might be worse off due to a negative diversity effect:
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Proposition 5. For all hft11/H
ft
1 < h? with 0 < h? < 1/(n+1) it follows that

Dft
1 < Da

1 . (36)

Proof.

Da
1 = Dft

1 (37)

⇔ n
1
σ = n

(
hft11

Hft
1

) ρ−1
ρ

+

(
1− n hft11

Hft
1

) ρ−1
ρ

(38)

has a unique solution h? = hft11/H
ft
1 with 0 < h? < 1/(n + 1), as for

hft11/H
ft
1 = 0, the left-hand-side (LHS) is larger than the right-hand-side

(RHS), the RHS is monotone and strictly convex in hft11/H
ft
1 , and assumes a

unique maximum (1 +n)1/σ at hft11/H
ft
1 = 1/(n+ 1), which is larger than the

LHS.

For σ = 2, the solution is

h? =
1

n

(
n− 1

n+ 1

)2

. (39)

If the share of domestic species in domestic consumption drops below nh? =(
n−1
n+1

)2
, diversity in country 1 decreases. This might happen if the n species of

country 1 are not resilient to the additional demand from country 2 following

trade liberalization. In the new steady-state with trade, the species-pour

country 2 might dominate consumption in country 1.

This scenario is even easier to model in a North-South model such as

Chichilnisky (1994): Country 1 might be a species-rich Southern country

that begins trading with a Northern country 2, for example Norway with its

well-managed cod or herring fisheries. In such a modeling framework, the

open-access stocks of the Southern country would be overused and imports

from the well-managed Northern stock would dominate consumption in the

South. Even if total consumption in the South increases, South might be

worse off due to decreased diversity.
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4 Conclusion

Departing from the assumption that traded resources are perfect substitutes

yields two important insights: First, the welfare effect of trade liberalization

becomes more ambiguous as the price/quantity effect is expanded by a diver-

sity effect that may outweigh increases or decreases in domestic consumption.

Second, increasing the consumers’ love of variety weakens the link be-

tween resource scarcity and demand. Harvesting overexploited resources is

expensive. If consumers are willing to pay the rising prices for harvests from

increasingly depleted stocks, trade liberalization may enable higher levels

of overexploitation than under autarky. In the limit case of Cobb-Douglas

preferences, free trade may result in stock collapses. This consequence of

the love of variety contrasts results from models which implicitly assume

that the traded resources are perfect substitutes. In the limit case of perfect

substitutes, trade liberalization decreases the demand for the most depleted

resources such that it works in the direction of balanced stock sizes. Model-

ing trade in renewable resources as trade in perfect substitutes thus assumes

the best-case scenario concerning the risk of trade-induced overexploitation

and stock collapse. Integrating a love-of-variety effect in a trade model shows

that trade liberalization may enable the love of variety to threaten variety.
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