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1. INTRODUCTION

Congenital heart diseases (CHD) are characterized by abnormalities of the heart or great
vessel structures that occur before birth. The prevalence of CHD in live newborns varies
from 4/1000 to 50/1000 (Hoffman & Kaplan 2002). In patients after surgical correction of
CHD involving the coronary arteries, and in patients with CHD including coronary artery
anomalies (Angelini 2007; Hauser et al., 2001; Maiers & Hurwitz, 2008; Vogel et al., 1991),
or in acquired coronary artery disease, such as Kawasaki syndrome (Daniels et al., 2012),
myocardial ischemia, infarction, and sudden cardiac death can occur. Therefore, assessment
of myocardial perfusion and viability is important for the long-term follow-up in these

patients.

Diagnostic imaging tools play an important role in the detection of myocardial ischemia.
Noninvasive methods which can evaluate myocardial perfusion and viability are stress
electro- and echocardiography (Krahwinkel et al., 1997; Mulvagh 2004), single photon
emission computed tomography (SPECT) and positron emission tomography (PET). More
recently, cardiac magnetic resonance (CMR) imaging has emerged as a promising
diagnostic tool for the evaluation of myocardial ischemia (Berman et al., 2006; Salerno &
Beller, 2009).

CMR imaging has become a clinically useful modality for diagnosis and management of
congenital and acquired heart diseases in children. Advanced techniques in both, data
acquisition and image analysis, allow reducing scan time, to improve image quality, and to
evaluate cardiac morphology including the coronary arteries, cardiac function, myocardial
tissue characteristics, and myocardial perfusion. Therefore, CMR has been become a routine

method in the clinical practice of pediatric cardiology.

In this thesis, we evaluated myocardial perfusion, viability diffuse fibrosis using CMR in a

population of patients with congenital and acquired heart disease.

1.1 The Importance of Myocardial Perfusion in Congenital and Acquired

Heart Diseases

1.1.1 Transposition of the Great Arteries (TGA)

TGA is one of the most common cyanotic CHD’s occurring in approximately 3 per 10,000

births or in 5% to 7% of all congenital heart defects (Samanek et al., 1989). Males are more
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commonly affected than females, with a male-to-female ratio of 2 to 2.3:1 (Bianca et al.,
2001; Samanek, 1994). In TGA, the aorta arises from the right ventricle, and the pulmonary
artery originates from the left ventricle (Figure 1) and is commonly associated with other
defects such as ventricular septal defect, left ventricular outflow tract obstruction, abnormal
coronary artery patterns, aortic coarctation or interrupted aortic arch (Kimball 2010).
Various origins and distributions of the coronary circulation have been observed (Martins &
Castela., 2008; Sim et al., 1994). Unusual coronary artery origins and courses were
described and classified by Yacoub et al in 1978 (Figure 2).

Coarctation
of the aorta

Pulmonary
vascular
disease

Coronary artery
abnormalities

Mitral valve
abnormalities
Ventricular
septal defects

Subpulmonary
fibromuscular
ridge

Tricuspid valve
abnormalities

Figure 1. TGA with ventricular septal defect, coronary artery abnormalities, coarctation of

the aorta as well as tricuspid and mitral valve abnormalities (Kimball 2010).

Classification of the variations in coronary artery pattern is important for the arterial switch
operation (ASO), which has become a common surgical procedure for the anatomical repair
of TGA and some forms of double-outlet right ventricle (DORV) (Losay et al., 2001;
Pasquali et al., 2002). Transfer of the coronary arteries is one of the most difficult processes
during ASO, particularly in cases of various origins and distributions of the coronary artery
circulation (Kirklin et al., 1992; Lalezari et al., 2011). Data from several sources have
identified coronary events after ASO in TGA patients (Bonhoeffer et al., 1997; Pasquali et
al., 2002; Legendre et al., 2003; Raja et al., 2005). Therefore, assessment of myocardial
perfusion is important during the follow-up in patients after ASO.
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Figure 2. Classification of coronary arterial patterns in TGA by Yacoub & Radley-Smith,
1978. A: Left coronary artery (LCA) takes origin from the left sinus and right coronary
artery (RCA) from the right sinus. B: Single coronary artery, LCA and RCA arise from a
single ostium. C: Two para-commissural ostia with or without intramural course. D: RCA
and circumflex arise from the right ostium, left anterior descending (LAD) alone takes
origin from the left ostium. E: RCA and LAD originate from the left from the left posterior

sinus, circumflex alone takes origin from the right ostium (Yacoub & Radley-Smith., 1978).

In addition, the successful of the ASO in TGA depends on the elastic function of the
transposed aorta. However, several studies have shown evidence, that even after successful
anatomical repair, patients may be prone to long term problems. The fate of the aorta and
aortic valve has been assessed in previous studies (Losay et al., 2006; Kramer et al., 2003;
Langer et al., 2008). The majority of patients show non-progressive dilatation of the aortic
root, but only few cases suffer from aortic insufficiency (Gorler et al., 2011). In addition,
reduced proximal aortic elasticity, structural abnormalities of the arterial walls, and
increased carotid artery stiffness have been reported in TGA patients (Niwa et al., 2001,
Grotenhuis et al., 2008; Mersich et al., 2006; Murakami et al., 2000). However, data are
lacking about the functional status of the entire length of the thoracic aorta as well as its
potential change with age after surgical repair, and the impact on left ventricular (LV)

function.
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1.1.2 Congenital Anomalies of the Coronary Arteries

Normal coronary artery anatomy includes the left and right main coronaries (LCA and
RCA). The LCA originates from the left valsava sinus and branches into the LAD and the
circumflex artery (CFX). The LAD divides into three branches, such as the left conus, the
septal, and the diagonal artery (Figure 3). The RCA arises from the right sinus of valsava
and divides into many branches including the sinus node artery, the conal branch, an atrial
branch, the right ventricular muscular branches, the posterior descending artery, the

atrioventricular node artery, and septal branches (Figure 3) (Driscoll 2006).

Leit main SA node branch

Left anterior descending \/(

Muscular

Circumflex Acute marginal

i AV node branch
Posterior lateral
. Septal

Iy H if
N—_/ (S
. Posterior descending

Figure 3. Normal anatomy of the left and right coronary arteries. Based on an illustration in
(Driscoll, 2006).

A

The term congenital anomalies of the coronaries is defined as anomalies of the origin,
course, or structure of epicardial coronary arteries (Angelini 2002). They are rare CHD
diseases occurring in approximately 0.2-1.4% of the population (Davis et al., 2001). The
classification of coronary artery anomalies depends on anatomy and origin of the coronary
arteries and has been discussed extensively in the literature (Ogden 1970; Angelini 2002;
Fratz et al., 2006; Jacobs & Mavroudis., 2010). Anomalies of the coronary arteries are a
high risk factor for myocardial ischemia, the leading cause of myocardial infarction and
sudden cardiac death (Alexander & Griffith., 1956). In this thesis, we evaluated patients
with different coronary arteries anomalies, such as Bland-White-Garland syndrome,

congenital coronary artery fistula, and aberrant main left coronary artery.
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a) Bland-White-Garland-Syndrome

Anomalous origin of the LCA from the pulmonary artery (ALCAPA), also known as Bland-
White-Garland syndrome (BWG) was described in 1933 by Bland, White, and Garland
(Bland et al., 1933). It is a rare congenital coronary artery abnormality and is associated
with early infant mortality and also sudden death in adulthood. The incidence of ALCAPA
is approximately 1 in 300,000 live births (Davis et al., 2001) and 0.26% of CHD undergoing
cardiac catheterization (Askenazi & Nadas., 1975). Patients live into adulthood without
treatment in approximately 15% of the reported cases (Perloff 2003). These patients may
present with myocardial ischemia, left ventricular dysfunction, myocardial infarction, and as
well as sudden cardiac death. In ALCAPA patients, coronary blood flow is supplied mainly
by the RCA and coronary collateral vessels from the RCA to the LCA. Patients with a poor
collateral circulation may develop myocardial ischemia and infarction. In patients with a
well developed coronary collateral system, symptoms may appear later in life (Dodge-
Khatami et al., 2002; Wesselhoeft et al., 1968).

Most patients with ALCAPA will undergo surgical treatment early in life. The aim of
surgical therapy is to preserve as much myocardium as possible. There are several methods
for surgical correction depending on the coronary artery anatomy, such as direct re-
implantation, the Tackeuchi procedure, and coronary artery bypass grafting (Perloff 2003).
Direct surgical re-implantation of the LCA into the aorta is the most common surgical
procedure nowadays. However, there is a high risk of stenosis or occlusion of the LCA after
surgical treatment (Kazmierczak et al., 2013; Ramirez et al., 2011). Therefore, it is most
important to assess myocardial ischemia in ALCAPA patients before and after surgical

treatment.

b) Coronary Fistula

Coronary fistulas are also known as coronary arteriovenous fistula, and were first described
by Krause in 1865 (Krause 1865). They are rare anomalies and occur in 0.2 to 0.4% of all
CHD (Driscoll 2006) or in 0.3% to 0.87% of patients who undergo coronary angiography
(Angelini 2007). In this anatomical condition, the coronary arteries are abnormally
connected to the heart chambers or great vessels. In 90% the fistula drains into the cavum of
the right ventricle (Perloff 2003). The main therapeutic methods for correction of coronary
fistulas are surgical or interventional ligations, which are safe and have good long term

results (Urrutia-S et al., 1983). However, several reports showed that myocardial infarction
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and cardiac death can occur in the long-term follow up (Valente et al., 2010; Canga et al.,
2012).

c) Aberrant LCA

An aberrant LCA is a rare congenital coronary artery anomaly with a reported prevalence of
0.017% - 0.03% (Tuo et al., 2013; Yamanaka & Hobbs, 1990). In this anomaly, the LCA
and RCA arise from the same or different anterior sinus of Valsalva (Figure 4). The
anomalous LCA from the right sinus was classified into 4 types including the following: A:
origin at left main trunk from right sinus or right coronary artery; B: origin of LAD and
CFEX from the right coronary sinus; C: origin of LAD from right sinus of Valsalva or RCA,;
D: origin of CFX from right sinus or right coronary artery (Roberts et al., 1992). A high
incidence of sudden death typically occurs in these patients during or immediately following
physical exercise (Cheitlin et al., 2009; Yamanaka & Hobbs, 1990). Particularly in the
presence of an inter-arterial course of LCA between the aorta and pulmonary artery, the risk
of sudden death is higher. Most patients with such anomalies were treated by surgical
therapies, such as bypass, reimplantation, and unroofing. However, myocardial ischemia
and sudden death can occur due to development of stenosis or closure of LCA after surgical

treatment (Krasuski et al., 2011).

Aorto\\ L.Circ.

LAD

R. Cor. A

N
B
Figure 4. Aberrant main LCA. Main LCA and RCA arise from anterior sinus of Valsalva.
The LCA passes obliquely between the aorta and the pulmonary artery; R. Cor: right
coronary artery; L. Circ: left coronary artery; LAD: left anterior descending artery; P.A:

pulmonary artery. Based on an illustration in (Cheitlin et al., Circulation 1974).
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1.1.3 Ross Operation

The Ross procedure is a surgical method which uses the autologous pulmonary valve for
replacement of a diseased aortic valve and was first described by Donald Ross in the United
Kingdom in 1967 (Ross 1967). It has become a surgical treatment option also in CHD to
avoid the use of long-term anticoagulation (Svensson et al., 2003). Other possible
advantages of the Ross operation are the following: low risk of endocarditis and
thromboembolism, long-term durability, potential growth ability in children, and excellent

hemodynamic performance (Charitos et al., 2012).

Coronary artery reimplantation is a part of the operation and can lead to coronary artery
stenosis with the risk of myocardial infarction and sudden cardiac death (Somerville et al.,
1979). The assessment of myocardial perfusion and ischemia is therefore important during

postoperative care.

1.1.4 Heart Transplantation

Heart transplantation was first performed in 1967 by Christian Barnard in South Africa
(Barnard et al., 1967). Since then, this technique has been developed and become the
treatment of choice for the management of end-stage heart failure in children and adults
(Herrington & Tsirka., 2004). The number of cardiac transplantation has been increased, in
2011 more than 100,000 cardiac transplantations were performed worldwide according to
the registry of the International Society of Heart and Lung Transplantation (Stehlik et al.,
2011). However, there are many factors that have an effect on the results after cardiac
transplantation. Coronary allograft vasculopathy is the main factor, limiting the long-term
success of the operation and is a recognized cause of myocardial ischemia and sudden
cardiac death (Roussel et al., 2008; Nickel et al., 2011).

1.1.5 Kawasaki Syndrome

Kawasaki disease (KD), also known as Kawasaki syndrome or mucocutaneous lymph node
syndrome, is an acute systemic vasculitis of unknown etiology and the most important cause
of acquired heart disease in childhood in the developed countries. KD was first described in
Japan by Tomisaku Kawasaki in 1967 (Kawasaki 1967). Since then, many cases in different
countries have been reported. KD occurs most frequently in Japan with an incidence of
approximately 188.1 per 100,000 children younger than four years of age, and a male-to-

female ratio of 1.5:1 (Kato 2010). KD is associated with the development of coronary artery
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aneurysms and stenosis (Figure 5). Acute myocardial infarction can occur in KD patients
due to thrombosis of aneurysms or due to developing stenosis of the coronary artery (Dajani
et al., 1993). In 1996, Kato et al. reported a follow-up study of 594 KD patients and found
coronary artery aneurysms in 25%, myocardial ischemia in 4.7%, myocardial infarction in
1.9% and death due to myocardial infarction in 0.8% of all cases (Kato et al., 1996). Due to
this data, assessment of myocardial perfusion and ischemia is of importance in the long-

term follow-up of these patients.

Coronary artery
aneurysms

Figure 5. Schematic drawing shows coronary artery aneurysms of KD (Based on an
illustration in Sridharan et al., 2010).

1.2 Non-Invasive Diagnostic Imaging for Detection of Myocardial

Ischemia

1.2.1 Nuclear Medicine

Nuclear cardiac imaging is the branch of cardiovascular diagnostic imaging that uses
radioactive tracers to perform functional images of the heart. SPECT and PET are two types
of nuclear imaging which are commonly used in clinical practice. They allow to evaluate
cardiac morphology, function, myocardial blood flow and viability (Auerbach et al., 1999;
Ghosh et al., 2010; Weindling et al., 1994).
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SPECT myocardial perfusion scintigraphy (MPS) is a useful technique for evaluation of
ischemic heart disease. Diagnosis of CAD uses a scintillation camera and intravenously
injected radiopharmaceuticals, such as thallium-201 and technetium-99m sestamibi, and
technetium-99m tetrofosmin, whose distribution in the myocardium is dependent on, and
reflects the level of myocardial perfusion. SPECT MPS is normally performed during rest
and pharmacological stress. Besides other indications, SPECT MPS is a useful modality for
detection of CAD in children with congenital and acquired heart diseases (Sundaram et al.,
2009). However, there are some disadvantages: a normal SPECT MPS protocol usually
takes 3-4 hours, and uses ionising radiation. In addition, SPECT does not allow exact
quantification of myocardial perfusion and perfusion reserve (Bateman 2012; Jadvar et al.,
1999).

In contrast, PET provides the ability to quantify absolute myocardial perfusion blood flow
and is therefore considered a promising method for the examination of myocardial ischemia.
Typical radionuclides used for a PET study are Rubidium-82, Nitrogen-13 (in ammonia)
and Oxygen-15 (in water). Blood flow is quantified in units of ml/min/g. The sensitivity and
specificity for detection of myocardial ischemia are 87% to 97% and 78% to 100%,
respectively (Sampson et al., 2007; Bateman et al., 2006; Grover-McKay et al., 1992).
Furthermore, F18-FDG PET allows to differentiate between hibernating or stunned
myocardium and to assess myocardial viability in post myocardial infarction patients who
benefit significantly from revascularization. However, PET uses ionizing radiation and is

expensive (Bateman 2012).

Evaluation of myocardial perfusion and viability by PET offers several potential
advantages. Previous studies have demonstrated that PET is superior to SPECT for the
detection of myocardial ischemia, because it offers images with a higher resolution and
contrast, a better attenuation correction, less scatter, and has the ability to quantify absolute
myocardial perfusion (Bateman 2012; Ghosh et al., 2010). For the detection of myocardial
ischemia, PET perfusion imaging offers a higher sensitivity and specificity than SPECT
(Jaarsma et al., 2012). But there are only few studies using PET and SPECT for the
detection of ischemic heart disease in pediatric patients (Sundaram et al., 2009; Singh et al.,
2003; Hernandez-Pampaloni et al., 2002; Rickers et al., 2000). Other non-invasive methods

for assessing myocardial ischemia without ionizing radiation are often preferred.
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1.2.2 Other Cardiac Stress Test

Myocardial contrast echocardiography (MCE) is a diagnostic imaging tool for the
assessment of the myocardial microcirculation using microscopic gas-filled bubbles, which
can burst by insonation in a myocardial region of interest. Replenishment of this same
region with gas-filled bubbles (i.e. myocardial opacification) will provide a measure of
myocardial blood flow (Wei et al., 1998; Porter et al., 2001; Kutty et al., 2012) .1t can be
used to assess myocardial perfusion and viability for detection of myocardial ischemia
(Gaibazzi et al., 2012; Kaufmann et al., 2007; Mulvagh, 2004). MCE is non-invasive, does
not use ionizing radiation and is easy to perform. However, image quality depends on the

acoustic windows.

Exercise stress testing is the most commonly used method to evaluate patients with
suspected myocardial ischemia. Treadmill and bicycle ergometer protocols are the most
popular stress tests (Rhodes et al., 2010; Morrison et al., 2013). Electrocardiography (ECG)
exercise testing can be used for evaluation of cardiac perfusion and function with high yield
of diagnostic, prognostic, and functional information (Kashyap et al., 2011). However, in

small children ECG exercise testing is difficult to perform.

1.2.3 Cardiovascular Magnetic Resonance Imaging (CMR)
a) History of Magnetic Resonance Imaging and the Development of CMR

In 1946, Felix Bloch and Edward Purcell discovered the nuclear magnetic resonance
phenomenon that was a foundation for the development of magnetic resonance imaging
(MRI). In 1971, Raymond Damadian could show different tissue MR relaxation times in
rats, and the differences of the tissue relaxation times are the basis for good soft tissue
contrast in MRI. Peter Mansfield made another fundamental contribution to the
development of MRI in 1976 by developing the fast imaging technique known as echo-
planar imaging. In 1977, Damadian obtained the first magnetic resonance images of the
human (Geva 2006).

The first publication regarding CMR in CHD dates back to 1982 and reported the diagnosis
of a ventricular septal defect in lamb hearts (Heneghan et al., 1982). In pediatric cardiology,
MRI was applied in the late 1980’s by using ECG-triggered spin echo techniques for
assessment of cardiac function and blood flow in patients with CHD (Higgins et al., 1988;

Chung et al., 1988). Gadolinium-enhanced MRI was first applied in clinical studies in 1984.
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Myocardial viability imaging using late gadolinium enhancement was first mentioned in
1988 (Schaefer et al., 1988) and first-pass perfusion imaging is used since 1990 for the
detection of myocardial ischemia (Atkinson et al., 1990). Viability assessment by MRI has
since then evolved into a “gold-standard” based on the work of Kim et al. (Kim et al., 2000).
Since its beginnings data acquisition and image analysis have continuously improved (Earls
etal., 2002).

b) Advantages of CMR

CMR imaging has emerged as a promising diagnostic tool for the evaluation of CAD in
children. Advantages of cardiac MRI include absence of ionizing radiation, the high spatial
resolution, and the ability to assess in one exam morphology, global and regional function,
viability, myocardial perfusion, and coronary artery anatomy and patency. A number of
studies showed that first-pass perfusion CMR at rest and during pharmacologic stress allows
to assess myocardial ischemia, and that LGE can detect scar tissue (Klein et al., 2002;
Prakash et al., 2004). First pass perfusion MRI can be analyzed qualitatively, by semi-
quantitative analysis, and by absolute quantification of myocardial blood flow (MBF)
(Jerosch-Herold et al., 2002).

X-ray coronary angiography is known as the reference standard for detection of CAD
(White et al., 1984; Scanlon et al., 1999). However, especially in pediatric patients its
invasive nature, and the use of ionizing radiation are important limitations. It has been
shown that PET and cardiac MRI have the highest diagnostic accuracy for detection
myocardial perfusion abnormalities (Greenwood et al., 2012; Morton et al., 2012).
However, CMR has a higher resolution than PET (Jaarsma et al., 2012). The majority of
available CMR studies, were performed in adult patients and there are only few
examinations in children, in part due to the lack of expertise, access to CMR scanners in

pediatric cardiology departments, perhaps also due to need to sedate young patients.

c) CMR Imaging For Detection of Ischemia Heart Disease
» First-Pass Perfusion CMR Imaging

First-pass myocardial perfusion MRI is used to monitor the changes in myocardial signal
intensity after intravenous injection of a contrast agent by using T1-weighted imaging. In
CMR perfusion imaging, the myocardial wash-in of contrast during the first pass of a

contrast bolus forms the basis for assessing myocardial perfusion. The T1-weighted signal

Page | 11



intensity is directly related to the concentration of the contrast agent, and its temporal
variation in the myocardium can be used to assess regional myocardial perfusion. In
ischemic regions the supply of blood and thus contrast enhancement is decreased. As a
consequence the signal intensity change is lower in ischemic regions, relative to normally
perfused myocardium. First-pass perfusion imaging is generally performed at rest and
pharmacologic stress (Al-Saadi et al., 2000), to assess the myocardial perfusion reserve
(Wilke et al., 1999).

» CMR Adenosine Stress Perfusion

Adenosine is an endogenous nucleotide that promotes vasodilatation by activation of the o2
receptors in the vessels. In the field of CMR imaging, adenosine is most commonly used for
stress perfusion imaging for the detection of CAD with an iv dosage of 140 ug/kg/min body
weight per minute. The peak effect of adenosine occurs 2-3 min after start of the iv infusion,
with an increase of the heart rate. After stopping the iv. infusion of adenosine, the heart rate
returns to normal levels after 1-2 minutes (Pennell 2004). In CMR perfusion studies,
adenosine stress testing is used to increase the differentiation in the first-pass delivery of the
contrast agent between myocardial regions perfused by normal and abnormal coronary
arteries. Under resting conditions differences in perfusion can only be seen for 90% or
higher luminal narrowing of a coronary artery, and assuming there is no collateral supply.
CMR adenosine stress perfusion is safe, and the occurrence of AV-block is very rare,
occurring in < 1% of 9256 cases, and it has a very short half-life (< 10 seconds) (Al-Saadi
and Bogaert J, 2004; Pennell 2004; Cerqueira et al., 1994).

> Contrast Media

Gadolinium chelates (Gd) are commonly used as paramagnetic contrast agents for
myocardial perfusion and late gadolinium enhancement (LGE) CMR imaging. Gd is an
extracellular paramagnetic contrast agent of low molecular weight (e.g. molecular weight of
938 for gadopentetate dimeglumine). After intravenous injection, it is carried to the right
ventricular cavity, then to the left ventricular blood pool. Then it diffuses rapidly from the
intravascular space into the myocardial extracellular space (Al-Saadi and Bogaert J, 2004).

Gd cause shortening of the T1 relaxation times.

The Gd passage through the myocardium is usually monitored by T1-weighted imaging.
Depending on the concentration and the time of wash-in and washout of the contrast agent

in the extracellular space, the myocardial tissue appears bright with high Gd content and
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dark with low Gd content. Therefore, myocardial perfusion imaging shows dark areas with

low Sl and bright areas with high SI by using contrast agents (Al-Saadi and Bogaert, 2004).

> Late Gadolinium Enhancement

LGE imaging was developed by Kim and Judd in 1996 (Kim & Judd, 1996) and is an
excellent tool for assessment of tissue viability, e.g. in the diagnosis of CAD (Kim et al.,
2000; Bruder et al., 2009; West et al., 2010; Grover et al., 2011). Today, LGE-CMR is an
important imaging tool in both, congenital and acquired heart diseases, for detection of
necrosis and scar tissue (Harris et al., 2007; Desai et al., 2004; Babu-Narayan et al., 2010).
The basic principle of LGE rests on the differences in distribution volume between viable
and non-viable myocardial tissue. After intravenous administration of Gd, its distribution in
the myocardium is determined by cell-membrane integrity, and the loss of cell-membrane
integrity is a key step in the loss of myocardial viability. The use of Gd in conjunction with
T1 weighted inversion recovery imaging can be used to maximimize the contrast between
normal and injured myocardium. Using this technique, normal myocardium is made to

appear dark, and regions of myocardial infarction or scar appear bright (Kim et al., 2000).

» CMR for Assessment of Myocardial Fibrosis

Diffuse myocardial fibrosis (DMF) is an important marker in heart diseases. Increased DMF
has been demonstrated to correlate with diastolic and systolic dysfunction, arrhythmia, and
sudden cardiac death (Martin et al., 1980; Villari et al., 1993). Previous studies showed
evidence for DMF in congenital and acquired heart disease (Broberg et al., 2010). The gold
standard method in evaluations of DMF marker of heart diseases is endomyocardial biopsy,
which is an invasive method and has several disadvantages, including risk of the hazard,

sampling error, and high cost (Becker et al., 1991; Holzmann et al., 2008).

CMR T1 mapping is a non-invasive method that can differentiate between diffuse fibrosis
and normal myocardium by using a Gd extracellular contrast agents. For cardiac
applications, T1 mapping within a breathhold can be performed with an ECG-gated Look-
Locker type of technique, where image data are read-out continuously after an initial
inversion pulse, to reconstruct images for 10-20 times after inversion (TI’s). More recently,
an ECG-gated single-shot Modified Look and Locker Inversion-recovery (MOLLI)
sequence, was described by Messroghli et al., which provides a high resolution T1 map of
the myocardium (Messroghli et al., 2004). The MOLLI sequence acquires multiple single

shot steady-state free precession images in the same slice and during the same cardiac
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phase. The acquisition extends over ~10 heart beats, and the TI’s are varied by shifting the
time for application of the inversion pulse relative to the (diastolic) single-shot image
acquisition. A disadvantage of MOLLI compared to the Look-Locker technique is that in
general only a 5-9 images, corresponding to different TI’s are acquired, compared to ~20
TI’s that can be sampled with the Look-Locker technique. In addition, T1 mapping can be
used to quantify the changes of concentration of Gd in myocardium and in the blood pool
before and after Gd administration. This information can be used to differentiate between
normal and abnormal myocardium, and further allows absolute quantification of the
extracellular volume (ECV) (Sado et al., 2012; Messroghli et al., 2011). It has been shown
for multiple pathologies (e.g. aortic stenosis, hypertrophic cardiomyopathy, dilated
cardiomyopathy), that an expansion of the ECV is a marker of increased collagen and
connective tissue accumulation in the interstitial space (Jerosch-Herold et al., 2008).
Therefore, the T1 maping CMR technique is emerging as a method for quantitative

assessment of myocardial fibrosis in ischemic heart disease.

1.3 Previous Studies

In 2004, Prakash et al. performed a study using CMR to examine the feasibility and
potential clinical utility of CMR for the evaluation of ischemic heart disease in congenital
and acquired heart disease. They applied first-pass perfusion and LGE in 30 patients (age:
0.3 to 40 years) and could show that CMR can evaluate myocardial perfusion and viability.
However, absolute myocardial blood flow was not analyzed in this study (Prakash et al.,
2004).

Mavrogeni et al. used CMR to visualize the coronary arteries, to evaluate cardiac function
and to show scar tissue in 20 patients with KD, aged 7-12 years. They found aneurysms of
the coronary arteries in 7 patients, scar tissue in 4 patients, and left ventricular dysfunction

in 2 patients. First-pass perfusion imaging was not performed (Mavrogeni et al., 2006).

In 2009, Buechel et al. published a CMR perfusion study in pediatric patients. First-pass
perfusion with adenosine was performed in 47 patients (age: 1 month - 18 years). Perfusion
CMR showed a sensitivity of 87% and a specificity of 95% for the detection of myocardial
ischemia. This study demonstrated the feasibility of perfusion CMR in children (Buechel et
al., 2009).

A study using CMR during follow-up of 63 patients (median age: 14.6 years) with KD was
published in 2011. The CMR protocol included rest and stress perfusion imaging with
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adenosine, LGE imaging and magnetic resonance coronary angiography. CMR findings
were compared with echocardiographic data. Aneurysms of the coronary arteries were
identified in 15 patients. CMR imaging detected LGE in 5 patients, myocardial ischemia in
4 patients, and thrombus formation in 4 patients. In summary the authors concluded that
CMR is a promising diagnostic tool during the long-term follow-up in KD (Tacke et al.,
2011).

In another study rest and stress perfusion with adenosine, LGE and 3D whole-heart imaging
were performed for assessment of myocardial ischemia in ALCPA patients (Secinaro et al.,
2011). This study showed the role of CMR for the follow-up of ALCAPA patients after

surgical repair.

Broberg et al. performed a study for detection and quantification of DMF in patients with
TGA, repaired tetralogy of Fallot, or Eisenmenger syndrome. They found the evidence of
increased diffuse fibrosis in this population, compared to normal controls, and a correlation
of the fibrosis index with end-diastolic function, and also with LV-EF (Broberg et al.,
2010).

There are only few CMR studies, which focus on ischemic heart disease in children. So far,
the published studies have demonstrated the promising role of MRI for the detection of
myocardial ischemia in children. But most CMR studies only used qualitative and/or semi-
quantitative analysis of myocardial perfusion in children, and the data on T1 mapping in

children with congenital heart disease is very sparse at the present time.

1.4 The Aim of This Study

Myocardial ischemia is a leading cause of myocardial infarction and sudden cardiac death.
In children, it may occur after surgery for CHD involving the coronary arteries, in
congenital coronary artery anomalies, and in patients with inflammatory disease of the
coronary arteries such as KD. Therefore, assessment of myocardial ischemia is important in
this population during the long-term follow up, but current diagnostic imaging methods,
such as electrocardiography, stress echocardiography, SPECT and PET, are often limited in

the pediatric population.

There are only few CMR studies which analyzed markers of myocardial ischemia in
children. In order to avoid ionizing radiation, an inherent burden of nuclear imaging (PET
and SPECT), this study used CMR imaging for the evaluation of ischemic heart disease in

children. We utilized advanced CMR methods to assess myocardial blood flow, viability,
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function and diffuse fibrosis, to guide further therapy, and in order to get a better
understanding of the myocardial microcirculation in congenital and acquired heart disease.

We further asked if CMR predicts the functional recovery after treatment therapy of these

patients.
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2. METHODS

2.1 Patients

Between 2005 and 2012, a total of 77 patients (50 male and 27 female; mean age 16 + 11.7
years; range 1.15 — 64.3 years) with known or suspected myocardial ischemia underwent a
CMR examination in the Department of Congenital Heart Disease and Pediatric Cardiology,
University Hospital Schleswig-Holstein, Campus Kiel. Medical records were reviewed to

collect the clinical characteristics of these patients.

The study population was further divided into 6 subgroups. The patient characteristics were

summarized in table 1.

e TGA —coronary problems: 13 TGA patients (age, 12.3 + 9.65 years; range, 1.15 to
30.7 years) after ASO who had known CAD such as occlusion, stenosis, hypoplasia
of the coronary artery, and post myocardial infarction. One patient with diagnosis of

LCA occlusion was treated by MIDCAB operation.

e TGA - open coronaries: 36 TGA patients (age, 14.9 £ 6.9 years; range, 1.3 to 25.6

years) after ASO without coronary problems.

e Ross patients: 12 patients (age, 24.4 = 11.4 years; range, 7.5 to 53.8 years) after

Ross procedure.

e BWG patients: 7 patients with ALCAPA (age, 11.9 + 7.5 years; range, 1.7 to 20.9
years) after surgical treatment, such as re-implantation of LCA (n=6) and Tackeuchi
procedure (n=1). Three of these patients had a CMR study before and after

operation.

e KD patients: 4 patients with a previous history of KD (age, 10.5 £ 8.5 years; range,
1.9 t0 19.2 years).

e Other patients: 5 patients (age, 20.5 £ 24.7 years; range, 4.5 to 64.3 years) with
other diseases involving the coronary arteries such as coronary artery fistula (n=1),
aberrant LCA (n=1), and post heart transplantation (n=3). The patient with the

aberrant LCA had two MRI scans, before and after bypass surgery.

The control subjects included 68 heart-healthy volunteers and patients (age, 1 to 38 years).
They were divided into 3 matched controls subgroups for perfusion study (n= 24), ECV
study (n= 10), aortic function study in TGA patients after ASO (n= 34) (Table 1-3). They
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were matched to the study subgroups for age and BSA. Control subjects were recruited
among outpatients, medical students, healthy children of hospital staff, or from the

department of pediatric neurology. In all controls, cardiac pathology had been excluded.
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Table 1. Patient characteristics vs. matched normal controls for myocardial perfusion study

Matched normal controls
Sex Age at scan
Subgroup N oy | BSA (years) N | Sex BSA Age at scan
(M/F) (years)
TGA-coronary problems | 13 | 8/5 12+57 | 125+9.0 17 11/6 12+56 p=08 |115+85 p=0.96
TGA-open coronaries 36 |22/14 | 1.4+05 | 14274 17 11/6 1.2+56 p=03 |[115+85 p=0.35
Ross patients 12 | 111 18+04 | 244+£117 15 15/3 1.8+04 p=09 [240+ 10.2 | p=0.93
BWG patients 7 4/3 14+06 | 11975 17 11/6 12+56 p=05 | 115+£85 p=0.52
KD patients 4 2/2 12+06 | 98+75 17 11/6 1.2+56 p=09 |[115+85 p=0.76
Other patients 5 3/2 1.3+£05 |192+223 17 11/6 1.2+56 p=09 |115+85 p=0.24
Values are mean £ SD. M/F= male/female.
Table 2. Patient characteristics vs. matched normal controls for ECV study
Matched normal controls
Sex Age at scan
Subgroup N (MIF) BSA (years) N Sex BSA Age at scan
(M/F) (years)
TGA-coronary problems | 13 | 8/5 12+57 | 125+9.0 10 6/4 15+£03 p=02 | 13837 p=0.6
TGA-open coronaries 25 | 24/14 | 14+05 | 14274 10 6/4 15+£03 p=02 | 13837 p=09
Ross patients 12 | 111 18+04 | 244+£11.7 7 4/3 16+12 p=07 | 159+11 p=0.09

Values are mean + SD. M/F= male/female.
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Table 3. Clinical characteristics of TGA patients and control subjects in aortic function

study
Variable Patients Controls o-Value
(N=44) (N=34)

Age (years) 11.8+6.8 141 +8.0 0.30
Male/Female (n) 28/16 12/22 -

Weight (kg) 47.1+31.0 434 +£220 0.90
Height (cm) 140.5 +35.6 146.7 +26.9 0.60
BSA 1.3+05 1.3+05 0.98
SBP (mmHg) 102.2 + 16.0 101.6 +£10.5 0.80
DBP (mmHg) 54.5+11.5 59.3+12.5 0.08

Data are presented as mean £ SD. P-Values are from the Mann-Whitney-U test. SBP,

systolic blood pressure; DBP, diastolic blood pressure; BSA, body surface area.

In this study, the coronary pattern in TGA patients is classified into 7 types depending on

the Leiden classification (Gittenberger-de Groot et al., 1983) (Figure 6).

- The normal coronary patterm in TGA is: 1LCx-2R.

- The most frequent anomalies encountered are: 1L-2CxR, 2LCxR, 1R-2LCx, 1RL-2Cx,

1RLCX, 2LCx2R.
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Figure 6. The Leiden classification for coronary pattern in TGA (Gittenberger-de Groot et
al., 1983).

All patients underwent a CMR imaging protocol including first-pass perfusion and LGE
imaging, T1-Mapping using the Look-Locker inversion recovery technique to evaluate
myocardial perfusion, viability as well as LV fibrosis. Furthermore, CINE-MRI imaging
was performed to assess ventricular function and coronary anatomy. The patient subgroups

were compared to the healthy controls.

2.2 Image Acquisition

All studies were performed with a 3.0 Tesla Philips scanner (Achieva 3.0T, Philips Medical
Systems, Best, Netherlands) using a phased-array coil for cardiac imaging (SENSE™
Cardiac coil, Philips Medical Systems, Netherlands). An intravenous line in an antecubital
vein was inserted in all patients for the application of contrast media, adenosine, and
sedation administration. Patients younger than 7 year olds were sedated with midazolam and
propofol. Sedation was started with a bolus of midazolam (0.1mg/kg) and of propofol
(Img/kg). During the MR scan, propofol was infused with a dose of 3-5mg/kg/h. Adenosine
and propofol were applied by using the MRI infusion system (MRidium™ 3850 Infusion
pump, IRadimed, Florida, U.S.A). Electrocardiogram, blood pressure, oxygen saturation and
breathing rate were monitored during the CMR scan by a MRI compatible monitor (In Vivo

Precess™ 3160, Invivo, Orlando, FL). Systolic and diastolic blood pressures were
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automatically measured every 10 minutes with an inflatable cuff placed over the left arm. A
respiratory sensor was used for all patients during the CMR scan to monitor respiratory

motion. Total scan time was approximately 60 to 90 minutes.

% CINECMR

First, a series of scouts in axial, coronal, and sagittal orientation were performed. Then
CINE-images were acquired using a gradient echo sequence to obtain axial, 2-chamber, 3-
chamber, 4-chamber views, and a short axis stack. The sequence parameters were: field of
view 280x224 mm, voxel size 1.88x1.94x6 mm, slice thickness 6-8 mm, TR/TE= 4.4/2.5ms,
25 cardiac phases. The short axis stack covered both ventricles from the base to the apex of
the heart.

« Perfusion Protocol

For perfusion imaging, a T1-weighted, ECG-gated, single-shot, multi-slice gradient-echo
sequence was used to visualize the first passage of Gd through the myocardium with the
following parameters: repetition time 2.8 ms, echo time 1.4 ms, flip angle 20°, slice
thickness 10 mm, gap 8 mm, field of view 300x200x28mm, voxel size 1.2x1.2x10 mm, 25
cardiac phases. For T1-weighting, a non-slice-selective saturation-recovery magnetization
preparation was applied for each slice, to achieve identical T1-weighting of the signal in all
slices, which was heart-rate independent. Perfusion imaging was planned from the 4 or 2-
chamber views. Two (basal, mid-cavity) to three (basal, mid-cavity, and apical) short-axis
slices were acquired during every heartbeat (Figure 7). First-pass perfusion imaging was
performed for approximately 5-8 seconds before, and during the first pass of an injected Gd
bolus (Magnevist, Bayer Schering Pharma AG, Germany) and recirculation of contrast (total
acquisition time ~ 60 seconds). The contrast bolus corresponded to a dose of 0.03 mmol/kg
and was followed by a normal saline flush of 20 ml. Blood pressure and heart rate were
recorded before and after Gd injection. In our protocol, rest perfusion imaging was

performed before the stress perfusion study.

The stress perfusion study followed approximately 15 minutes after rest perfusion imaging
to allow for clearance of contrast from the blood before injecting the contrast bolus for
stress perfusion imaging. CMR stress perfusion was started after 9 minutes of an infusion of
adenosine (Adenoscan®, Sanofi-Synthelabo Ltd, Berlin, Germany) with adenosine doses

increasing every 3 minutes (70ug/kg/min, 100ug/kg/min, 140ug/kg/min), or when the heart
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rate had increased >10% at each infusion level. ECG, heart rate, blood pressure, pulse

oximetry and breathing rate were monitored during and after performing stress adenosine.

ok

Figure 7. Perfusion imaging was planned from the 4 chamber views (A) and 4 chamber
views in end-systolic. Three slices were acquired every beat heart in at basal (b), mid-cavity

(m), and apical (a).

% CMR Angiography

Additionally, high resolution gadolinium-enhanced MR-angiography was performed in all
patients for detailed 3D visualization of the aorta (Figure 29), using a keyhole technique,
with the following imaging parameters: FOV 380x380 mm, 70 slices, keyhole percentage
20%, 20 dynamics, keyhole scan time 1.7 s, TR/TE=2.4/0.93 ms, scan duration 0:40 min.
Gadolinium (Magnevist, Bayer Schering Pharma AG, Germany) was injected intravenously
at a dose of 0.1 mmol/kg, with an injection rate of 2 ml/s, followed by a normal saline flush
at the same rate. Healthy controls did not receive any contrast injections due to concerns by

the ethics committee.

«+ Late Gadolinium Enhanced CMR

LGE studies using an ECG triggered 3D inversion recovery sequence were performed 10 —
15 minutes after stress perfusion study and contrast angiography (i.e. after a total of ~0.16
mmol/kg of contrast had been injected). The scan parameters were: repetition time 2.8 ms,
echo time 1.4 ms, flip angle 15°, slice thickness 6-8 mm, field of view 300x178x80 mm,
voxel size 1.17x1.27x10 mm, 25 cardiac phases, 20-24 slices, the trigger delay depended on

the heart rate. The images were planed from short axis CINE images.
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« Look-Locker

A Look-Locker sequence (temporal resolution, 40 ms; slice thickness, 8 mm; repetition
time>3 R-R intervals) for the measurement of T1 was used for the detecting of myocardial
fibrosis. The Look-Locker sequences were acquired before and after Gd infusion. All T1

measurements were performed in one and the same mid-ventricular plane.

++ Phase-Contrast CMR

A phase-contrast cine pulse sequence, with through-plane velocity encoding, was applied
for assessment of aortic pulse wave velocity (PWV) between the ascending aorta at the level
of the sinotubular level, and the proximal descending aorta, with a slice plane intersecting
the aorta at both locations at an approximately right angle. Phase-contrast flow velocity
measurements in the proximal ascending aorta were also used for assessment of aortic valve
competence. The phase-contrast sequence parameters were as follows: FOV 270x270 mm,

voxel size 1.64x1.4x7 mm, TR/TE= 4.4/2.7 ms, max. velocity encoding: 200 cm/s.

2.3 Image Analysis

All CMR images were analyzed using a commercial software package (ViewForum 6.1,

Philips Medical Systems, Best, Netherlands).

2.3.1 Segmentation of the Left Ventricle

Myocardial function and perfusion were analyzed according to the American Heart
Association (AHA) 17-segment model (Cerqueira 2002). The LV was divided into three
equal sections perpendicular to the long axis of the heart named basal, mid-cavity, and
apical. The basal and mid cavity sections were further divided into 6 segments, and the
apical section was divided into 4 segments. The first segment was defined in the anterior
septal insertion of the right ventricle and started in a clockwise direction. Each segment

corresponded to a coronary artery territory (Figure 8).
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Left Ventricular Segmentation

1. basal anterior 7. mid anterior 13. apical anterior
2. basal anteroseptal 8. mid anteroseptal 14. apical septal
3. basal inferoseptal 9. mid inferoseptal 15. apical inferior
4, basal inferior 10. mid inferior 16. apical lateral
5. basal inferolateral  11. mid inferolateral 17. apex

6. basal anterolateral 12. mid anterolateral

Figure 8. The left ventricle was divided into 17 segments (Cerqueira 2002).

2.3.2 Quantitative Analysis of Global LV

The left ventricular volumes were measured by defining the endocardial and epicardial
borders in the short axis stack of images at end-diastole and end-systole with a dedicated
software program (ViewForum 6.1, Philips Medical Systems, Best, Netherlands). Papillary
muscles were excluded for the quantification of ventricular volumes. When papillary
muscles were well definable they were included for the calculation of left ventricular
masses. Both left and right ventricular masses included the contribution from the cardiac
septum. The volumes were calculated in each slice at end-diastole and end-systole images
(Figure 9). Then the left ventricular volumes at end-diastole (EDV) and end-systole (ESV)
were calculated with the Simpson’s rule approach by summation of all the volumes in end-
diastole and end-systole as described in previous studies (Sarwar et al., 2008; Graney et al.,
1990).

Then ejection fraction (EF), stroke volume (SV), EDV index, ESV index, cardiac output

(CO), and cardiac index (CI) were calculated from these values (Sarwar et al., 2008):
. SV (ml) = EDV-ESV
. EF (%) = (EDV — ESV)/EDV
o CO (ml/min) = SV x HR
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. EDV index (ml/m?)= EDV/BSA

. ESV index (ml/m?)= ESV/BSA

. CI (I/min/m?) = (SV x HR)/BSA
(HR: heart rate; BSA: body surface area, according to the Mosteller formula: Height
(cm) x Weight (kg)/3600).

FFEM

Figure 9. Endo and epicardial borders were defined from the short axis view at end-

diastolic (d) and end-systolic (s) phases in the left ventricular.

2.3.3 Quantitative Analysis of LA Volume and Function

The left atrial (LA) volume was calculated on axial cine images at three phases during the
cardiac cycle as previous description (Muellerleile et al., 2012): maximal LA volume just
before mitral valve opening (LAVma), minimal LA volume after mitral valve closure
(LAVmin) and LA volume prior to atrial contraction (LAVps). LA endocardial contours
were drawn manually slice by slice on axial cine CMR images in three phases of LAV max,
LAV min, and LAV (Sarikouch et al., 2011); (Figure 10).
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(A) (B) (C)

Figure 10. LA contours were defined from the axial images in a patient after Ross
operation. A: LAV max; B: LAVpac; C: LAVnin
From the volumes we calculated other volumes and functional parameters:

e Total LA emptying volume is defined as the difference between LAV ax and

LAV min, and was calculated by the formula:
Total LA emptying volume = LAV nax-LAV min

e Total LA emptying volume was divided into LA passive emptying volume and LA

contractile volume, and calculated by formulars:

LA passive emptying volume = LAV max—LAVpac

LA contractile volume = LAVpac— LAV nin
o LAPEF = (LAVmax—LA passive emptying volume)*100/LAV nax
e LACEF = (LAVpa—LA contractile volume)*100/LAV pac

e LAREF = (LAVmax-Vmin) *100/LAV max

2.3.4 First-Pass Perfusion Analysis

First-pass perfusion imaging was assessed qualitatively and semi-quantitatively.
Furthermore, absolute quantification of myocardial perfusion was performed. Both, rest and
stress perfusion studies were analyzed.

» Qualitative Analysis

First-pass perfusion imaging was assessed qualitatively by visual analysis of the contrast

enhancement in different myocardial areas. For visual analysis the myocardial contrast
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enhancement was viewed in cine mode for each slice, and by examining contrast
enhancement in different myocardial segments in selected images during the wash-in phase
of contrast. Perfusion defects were defined as relatively darker areas (i.e. with reduced
signal intensity) in the LV wall after LV peak of contrast enhancement, and extending in
time over at least several heart beats. The region of the perfusion defect at rest was
compared with the same region at stress (Al-Saadi & Bogaert, 2004). The presence of a
perfusion defect was assigned to the respective coronary artery based on the 17 segments

AHA model (Cerqueira 2002), and coronary angiography data.

mid-level

Figure 11. An example of mid and basal ventricular perfusion imaging with a perfusion

defect in the anterior and anterolateral wall.

» Semi-quantitative Analysis

Semi-quantitative analysis allows measuring the changes in signal intensity during the
transit of contrast agent through the heart. All endocardial and epicardial LV contours were
drawn manually and the contours were first copied and then adjusted for images in a slice
location. In addition the LV wall was divided into 16 segments according to the
recommendation by the AHA for myocardial perfusion analysis (Cerqueira 2002) and the
blood pool of the LV was defined (Figure 12).
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Basal

Mid-Cavity Apical

Figure 12. The LV was divided into 16 segments according to the AHA model for
myocardial perfusion analysis (Cerqueira 2002). Six segments for the basal and mid-cavity

portions, four segment for the apical portion.

Contour correction was necessary in most cases because of the movement of the heart
during breathing. After contour correction, signal intensity curves for each myocardial
segment were created by the software program. Parameters obtained by semi-quantitative
analysis were the following (Keijer et al., 1995; Al-Saadi et al., 2000; Schwitter et al., 2001;
Nagel et al., 2003; Jerosch-Herold et al., 2004):

a) Up-slope parameter: The race of change of the Sl in LV cavity and myocardial

tissue during the first pass of contrast agent.

b) Time to peak: The time from the onset of contrast enhancement (the foot of the SlI

curve) to the peak of the Sl curve.

c) Peak Sl: The peak value of Sl time curve obtained from the myocardium during the

first- pass of contract agent.

d) Mean transit time: The average time required for a contrast agent to pass through
the ROI.

e) Area under the Sl curve: The area under the Sl curve from the foot of SI curve to a

user-defined point.

Semi-quantitative and qualitative analyses were compared to improve diagnostic accuracy
over visual analysis alone (Nagel E et al., 2003). The regions of perfusion defect were
compared with the degree of signal intensity changes for each segment. These parameters

were further used for absolute perfusion quantification.

Page | 29



» Absolute Perfusion Quantification

In contrast to qualitative and semi-quantitative myocardial perfusion analysis, the
quantitative approach allows to calculate the absolute MBF in milliliters/minute/gram for
each myocardial segment by a model-independent deconvolution (Jerosch-Herold et al.,
2002). MBF was calculated for each segment of the LV at rest and stress by deconvolution
of the myocardial signal intensity curves with an arterial input function measured in the left
ventricular blood pool. This was performed with a Fermi function model of the myocardial
impulse response. Then absolute MBF was estimated from the maximum amplitude of the
Fermi impulse response, based on Zierler’s central volume principle. Myocardial perfusion
reserve index (MPRI) was calculated by dividing the absolute MBF at stress by the absolute
MBF at rest.

2.3.5 LGE

LGE images were evaluated visually for areas of hyperenhancement indicating myocardial
fibrosis. Myocardial fibrosis appears as bright signal in contrast to the dark appearance of
the normal myocardium. We differentiated between subendocardial or transmural depending

on the location and extent of the hyperenhancement.

Endocardial and epicardial contours of the LV were drawn in all short axis views that were
divided into 6 segments based on the AHA model (Cerqueira 2002). The extent of

hyperenhancement was quantified (percentage or volume) for each myocardial segment.

2.3.6 T1 Mapping Analysis

For each Look-Locker T1 mapping sequence, the endocardial and epicardial contours for
the LV were drawn manually using QMass® MR software (Medis; Leiden, Netherlands).
The LV wall was divided into six standard segments (Figure 13). The anterior junction
between the LV and RV was used to define the first segment. The blood pool T1 was
determined in the left ventricular cavity. The signal intensity during inversion recovery for
each myocardial segment and the blood pool was calculated by the software. The resulting
inversion-recovery curves were used to determine a segmental myocardial T1 value through
exponential fitting. The reciprocal of T1, the relaxation rate constant R1, was then used for
further analysis, as R1 is in principle linearly proportional to contrast agent concentration.
The slope of the linear relationship between myocardial R1 and blood pool R1 before and

after Gd administration defined the partition coefficient for Gd, Acq. The myocardial volume
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of Gd distribution, or myocardial extra-cellular volume fraction (MECVF) was obtained by
multiplying each segmental partition coefficient for Gd by (1-hematocrit in percent/100)
(Coelho-filho et al., 2013; Broberg et al., 2010). This correction accounts for the fact that
the R1 in blood changes due to the addition of contrast in the partial volume which excludes
red blood cells. The hematocrit values around 4 weeks before or after the time of the CMR
were collected from the medical records. We used a hematocrit of 41% as a “default” value
in patients without hematocrit data at the time of the CMR exam. Then global MECVF was

calculated by averaging the values in 6 myocardial segments.
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Figure 13. Look-Locker imaging was analyzed by using QMass® MR software.

Endocardial and epicardial contours were defined in the LV. The LV wall was divided into

6 standard segments.
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2.3.7 Functional Analysis of the Aorta
All CMR images for functional analysis of the aorta were analyzed using a commercial
software package (ViewForum 6.1, Philips Medical Systems, Best, Netherlands).

< Aortic Area

The maximal and minimal areas of the aorta (Amax and Amin) Were determined at four

locations (Figure 14):
1) Aortic root at the level of the sinus of valsalva,
2) Ascending aorta,
3) Descending aorta at the level of the isthmus,
4) Descending aorta above the diaphragm.

Area measurements were also used for further calculations, specifically the aortic
distensibility calculation. The measurements were made at the time of the maximal

distension of the aorta.

¢ Aortic Distensibility

Aortic distensibility was assessed from two-dimensional axial cine images at the aortic root,
and the ascending aorta as well as in the descending aorta at the level of the aortic isthmus
and above the diaphragm in patients and controls. The systolic and diastolic blood pressures
(Pmax and Ppmin) were obtained non-invasively using a CMR-compatible monitor with
sphygmomanometer (Invivo Precess'™ 3160, Invivo, Orlando, USA), with the cuff placed

around the right arm.
Distensibility was calculated according to the following formula (Nollen et al., 2004):

DIStenSib“Ity: (Amax - Amin)/[Amin X (Pmax - Pmin)]
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Figure 14. Aortic area measurements. Aortic area was assessed from axial MR images
acquired with a gradient echo cine sequence at three different locations of the thoracic aorta:
aortic root (1), ascending aorta (2), descending aorta at the aortic isthmus (3), descending
aorta above the diaphragm (4). Aortic area measurements were used for distensibility

estimation.
< Aortic Flow

Aortic flow measurements were analyzed from phase-contrast cine sequences by using a
commercial software package (ViewForum 6.1, Philips Medical Systems, Best,
Netherlands) to obtain aortic regurgitation (AR) parameter. Endovascular contours were
drawn for the aorta to obtain AR parameters and flow curves data. AR was defined as the
following levels (Globits et al., 1992):

1) Mild: the regurgitant fraction was 5%-15%.
2) Moderate: the regurgitant fraction was 16%-30%.
3) Moderate to severe: the regurgitant fraction was 31-50%.

4) Severe: the regurgitant fraction was >50%.
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< Aortic Pulse Wave Velocity

Aortic pulse wave velocity (PWV) was determined from aortic flow versus time curves, as
the ratio of the aortic segment length, (Ax, meters; Figure 15.A) divided by the time delay of

the distal flow curve, relative to the proximal flow curve (At, seconds; Figure 15.B):

PWV= Ax/At.
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Figure 15. Pulse wave velocity. A) This sagittal image of the aorta was generated with a
gradient echo cine sequence and shows the sites where phase contrast cine images were
acquired. First, the distance along a midline through the aortic arch (Ax) between the
measurement locations in the ascending and descending aorta was measured. B) Next, the
transit delays (At) of the systolic flow curves in the descending (al) relative to the ascending

(a2) aorta were determined.

2.4 Statistical Analysis

Statistical testing and data analysis were performed using Microsoft Excel and IBM SPSS
Statistics for Windows version 21. The data were expressed as mean values and standard
deviations or median values and range. Two-tailed Mann-Whitney-U test for non-parametric
samples was used to compare data between subgroups and healthy controls. Correlation was

tested with Spearman’s rank correlation coefficients. Chi-square tests were used to compare

Page | 34



the frequency of presented perfusion defect cross the subgroups. A p-value <0.05 was

considered as statistically significant.
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3. RESULTS

3.5 Patient Findings

Seventy-seven patients and 68 healthy subjects participated in this study from 2005 to 2013.
There were no differences in age, height, weight, and body surface area between each
subgroup and age matched healthy controls, and between the two subgroups of TGA patients.
Forty-nine patients (89%) had an operation before the CMR examination. Most surgical
procedures were performed at the Universitatsklinikum Schleswig-Holstein, Campus Kiel
(85%). Medication was used during the follow up in each subgroup are summarized in table 4.
Medication in TGA patients was significantly different between TGA-coronary problems and
TGA-open coronaries (Table 4).

Table 4. Cardiac medications during the follow-up in each subgroup

Subgroups Aspirin  Warfarin Diuretics ACE B-blocker CA
TGA-coronary problems 6/13 0 0 2/13 3/13 1/13
TGA-open coronaries 0 0 0 1/36 0 1/36
Ross patients 0 0 0 2/12 1/12 0
BWG patients 317 1/7 1/7 317 1/7 0
KD patients 3/4 1/4 1/4 1/4 0 0
Other patients 2/5 0 1/5 1/5 3/5 0

ACE: Angiotensin-converting enzyme inhibitors; CA: Calcium channel blockers. The
frequencies for each medication across subgroups are significantly different (p<0.05, Chi-

square test).

TGA patients. Eleven patients (85%) in TGA-coronary problems, and 33 patients (91.7%) in
TGA-open coronaries underwent one-stage ASO. The mean age at ASO was 7.6 £ 3.3 days in
TGA-coronary problems, and 8.5 + 5.7 days in TGA-open coronaries. Two patients in TGA-
coronary problems, and three patients in TGA-open coronaries underwent two-stage ASO.
The age at operation in the latter patients ranged from 11.6 to 24.4 months. One patient with

LCA occlusion in TGA-coronary problems was treated by MIDCAB operation. The coronary
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artery patterns in TGA patients are described in figure 15. Table 5 describes in detail the

coronary status of patients in TGA-coronary problems.

TGA-coronary problems

TGA-open coronaries

2LCxR
1LCxR 9%

[»)

3%
1LR-2Cx
3%

Figure 15. Coronary pattern in 2 subgroups of TGA patients.
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Table 5. Coronary artery problems in 13 TGA patients in TGA-coronary problems

Patients | Coronary artery problems Course of the coronary arteries
1 CFX closure 1LCx-2R
2 Hypoplastic LCA 1LCx-2R
3 Anomalous LCA 1LCx-2R
4 Hypoplastic LCA 1LCx-2R
5 LCA closure 1L-2RCx
6 LCA closure 1LCx-2R
7 Ramus circumflex closure 1LCx-2R
8 LCA occlusion 2LCxR
9 LCA closure 1L-2RCx
10 RCA closure 1RLCx
11 LCA occlusion 1LCx-2R
12 LCA occlusion 1RLCx
13 Post myocardial infarction 1LCx-2R

CFX: circumflex artery, LCA: left coronary artery, RCA: right coronary artery

Ross patients. The patient characteristics in this subgroup are summarized in Table 1. Most
patients were asymptomatic post operation. Only one patient had an episode of syncope and

was treated by Beta-blocker and ACE.

BWG. All BWG patients (n=7) were treated by surgery for anatomical correction of the
coronary artery. Patient characteristics were described in table 1 and in the chapter above.
Two patients had symptoms of chest pain and syncope before surgery. LCA was showed

slightly stenosis post-operation in a patient. All patients were asymptomatic post-surgery.

Kawasaki Syndrome. Patient characteristics were described in Table 1. None of those
patients had symptoms of myocardial ischemia before the CMR exam. Cardiac operations

were not performed in Kawasaki Syndrome.

Other patients. In this subgroup, 1 patient with aberrant of LCA was treated by MIDCAP

operation. CMR before surgery showed an anomalous origin of the LCA from the right sinus
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of Valsalva. After surgery CMR was repeated and showed that both RCA and LCA originated
from the aortic root, and MBF at stress and MPR were increased and the patient was
asymptomatic post-operation. The characteristics in the group of the other patients are
described in table 1.

3.2 Cardiac MRI

Sixteen children (25.61%) were sedated with midazolam and propofol during CMR scan.

Sedation-related complications did not occur.

3.2.1 Left Ventricular Volumes and Function

Volumetric and functional parameters of the LV for each subgroup are summarized in (Table
6 to 11). In 15 patients we found a reduced LVEF (<40%) including 4 patients in TGA-
coronary problems, one patient in TGA-open coronaries, 4 patient in subgroup of Ross
patients, 4 BWG patients, and 1 patient after heart transplantation and 1 patient with aberrant
LCA. Ross patients and BWG patients had a significantly reduced LVEF compared to the
control group (Ross patients: 54.84 + 8.73 vs. controls 65.03 + 3.06, p=0.03; BWG patients:
50.7 + 9.8 vs. controls 64.6 £ 3.9, p=0.05). LV EDV index in the 2 subgroups of TGA

patients was significant higher than in the controls (p<0.05).
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Table 6. Left ventricular volumes and function in TGA-coronary problems.

TGA-coronary
Parameters problems C(:No r:[rlc:);)s p-Value
(N =13)
LV —EDV (ml) 103.0 £67.5 78.8+45.0 0.45
LV — EDV index (ml/m?) 80.0+25.5 60.0 + 16.6 0.04
LV —ESV (ml) 49.0 £44.0 29.3+18.2 0.44
LV — ESV index (ml/m?) 36.0+£21.0 219+8.2 0.06
LV — EF (%) 57.0x134 64.7+4.0 0.26
LV — SV (ml) 54.0£30.2 61.0 £33.3 0.61
LV — SV index (ml/m?) 440+115 40.6 +9.7 0.36
LV -CO 44+22 48+22 0.68
LV — CO index 38+1.4 3.3+0.6 0.51
LV — mass (g) 69.0 £45.9 81.7+52.2 0.51
LV — mass index (g/m?) 56.0 + 20.8 53.0 + 19.0 0.54
Values are mean + SD. P-values are from the Mann-Whitney-U test.
Table 7. Left ventricular volumes and function in TGA-open coronaries.
Parameters TGA o(p|\|en:c3o 6r)onar|es fNOTT;I)S p-Value
LV - EDV (ml) 116.0 £59.4 78.8£45.0 0.07
LV — EDV index (ml/m?) 80.6 £22.0 60.0 £ 16.6 0.01
LV —ESV (ml) 46.5 +29.0 29.3+18.2 0.08
LV — ESV index (ml/m?) 32.0+12.6 219+8.2 0.02
LV — EF (%) 61.6+7.0 64.7+4.0 0.13
LV - SV (ml) 69.6 £ 33.0 61.0 £33.3 0.46
LV — SV index (ml/m?) 49.0 +11.0 40.6 9.7 0.02
LV -CO 50+2.0 48+22 0.74
LV — CO index 37+1.1 3.3+0.6 0.36
LV — mass (g) 84.0 +38.3 81.7 +52.2 0.82
LV — mass index (g/m?) 59.8 +18.0 53.0+£19.0 0.30

Values are mean + SD. P-values are from the Mann-Whitney-U test.
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Table 8. Left ventricular volumes and function in patients after Ross procedure.

Parameters RO(SEI [iailze)nts CNO n=tr105Is p-Value
LV — EDV (ml) 229.0 +83.0 - -
LV — EDV index (ml/m?) 123.3+42.1 - -
LV — ESV (ml) 112.0 £55.0 - -
LV — ESV index (ml/m?) 59.4 +30.5 - -
LV — EF (%) 55.0 +8.7 65.0+3.1 0.03
LV - SV (ml) 121.0+37.0 83.0+£25.0 0.04
LV — SV index (ml/m?) 65.6 + 15.7 448 +6.7 <0.001
LV -CO 8.0+23 51+1.7 0.025
LV — CO index 44+12 3.4+0.7 0.012
LV — mass (g) 143.0 £57.0 125 +49.3 0.516
LV — mass index (g/m?) 75.0+24.0 66.3 £ 15 0.277

Values are mean + SD. P-values are from the Mann-Whitney-U test.
Table 9. Left ventricular volumes and function in patients with BWG.

Parameters BW(CIB\I pza';i)e nts ((:NO r;trltgl)s p-Value
LV —EDV (ml) 116.0 £ 63.0 78.8£45.0 0.27
LV — EDV index (ml/m?) 84.0+30.3 60.0 + 16.6 0.16
LV —ESV (ml) 61.5+37.5 29.3+18.2 0.07
LV — ESV index (ml/m?) 41.9+18.3 21.9+8.2 0.02
LV — EF (%) 50.7£10.0 64.7+4.0 0.005
LV — SV (ml) 55.4 £ 26.0 61.0 £33.3 0.57
LV — SV index (ml/m?) 42.0+15.0 40.6 9.7 0.81
LV -CO 44+15 48+22 0.95
LV — CO index 35+15 3.3+0.6 0.13
LV — mass (g) 87.0+53.0 81.7+52.2 0.81
LV — mass index (g/m?) 61.4+22.0 53.0 + 19.0 0.48

Values are mean + SD. P-values are from the Mann-Whitney-U test.

Page | 41



Table 10. Left ventricular volumes and function in with a history of KD.

Parameters K[zl\FI) itf)nts ((:NO r;trltél;s p-Value
LV —EDV (ml) 106.4 £62.0 78.8+£45.0 0.45
LV — EDV index (ml/m?) 88.5+25.0 60.0 + 16.6 0.03
LV —ESV (ml) 42.0+25.4 29.3+18.2 0.63
LV — ESV index (ml/m?) 35.0+14.4 21.9+8.2 0.10
LV — EF (%) 61455 64.7 4.0 0.24
LV — SV (ml) 66.7 £42.0 61.0£33.3 0.87
LV — SV index (ml/m?) 55.0 +12.0 40.6 +9.7 0.10
LV -CO 49+26 48+22 0.95
LV — CO index 44+13 3.3+0.6 0.13
LV — mass (g) 69.5+43.0 81.7+52.2 0.87
LV — mass index (g/m?) 56.0 £ 13.0 53.0+19.0 0.87
Values are mean + SD. P-values are from the Mann-Whitney-U test.
Table 11. Left ventricular volumes and function in other patients.
Parameters Othz; Ea;i)ents %NO Trlt';l)s p-Value
LV —EDV (ml) 79.0 £32.0 78.8+45.0 1.00
LV — EDV index (ml/m?) 62.5+22.0 60.0 + 16.6 0.85
LV —ESV (ml) 38.3+£25.0 29.3+18.2 0.31
LV — ESV index (ml/m?) 28.5+15.0 21.9+8.2 0.51
LV — EF (%) 55.2145 64.7 £4.0 0.24
LV — SV (ml) 40.7+£11.0 61.0 £33.3 0.24
LV — SV index (ml/m?) 3401122 40.6 £9.7 0.38
LV -CO 3.6+0.9 48+22 0.33
LV — CO index 3.0+0.9 3.3+0.6 0.84
LV — mass (g) 70.0 £ 26.3 81.7+52.2 1.00
LV — mass index (g/m?) 54.0 +19.2 53.0 + 19.0 0.92

Values are mean * SD. P-values are from the Mann-Whitney-U test. Heart transplantation

(n=3), aberrant LCA (n=1), coronary fistula (n=1).
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3.2.2 Myocardial Perfusion

Rest perfusion was performed in 48 patients (87.3%) and stress perfusion with adenosine was
performed in 47 patients (85.5%). All of the 46 patients (83.6%) successfully completed both
rest and adenosine stress perfusion. They did not complain of chest pain, and AV block did

not occur during stress testing.

Hemodynamic data during perfusion CMR imaging are shown in table 12. During stress
perfusion, heart rate increased from 79.8 + 18.7 t0 104.8 + 19.9 (p <0.001).

Table 12. Hemodynamic parameters perfusion imaging

Parameters Rest Stress p-Value
Heart rate, per min 79.8£18.7 104.8 £19.9 <0.001
Systolic BP, mmHg | 99.2 +15.2 98.2+20.3 0.97
Diastolic BP, mmHg | 49.7 + 13.8 49.7+19.2 0.99
Mean BP, mmHg 68.9+144 69.0£19.9 0.98

Values are presented as mean + SD. BP= blood pressure.

P-values are from the Mann-Whitney-U test.

Visual analysis of myocardial perfusion imaging showed regions of perfusion defects at rest
and stress perfusion in subgroups (table 13). No region of perfusion defects were found in

TGA-open coronaries, Ross patients, and the healthy controls.
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Table 13. Presence of visual perfusion defect assessed by qualitative myocardial perfusion

analysis.
Group Rest perfusion Stress perfusion

TGA-coronary problems 5/13 (38.5%) 8/13 (61.5%)
TGA-open coronaries 0/36 0/36

Ross patients 0/12 0/12
BWG patients 1/7 (14.3%) 417 (57.1%)
KD patients 0/4 1/4 (25%)
Other patients 1/5 (10%) 2/5 (40%)

The presence of perfusion defects was not significantly higher during stress compared to rest
(p>0.05). However, the frequency of perfusion defects is significantly different between

subgroups at rest and stress (rest, p<0.001; stress, p = 0.003; Chi-square tests).

The results of absolute quantification of myocardial perfusion are presented in Table 14. At
rest, MBF was not different between each subgroup and healthy controls (Figure 18). However,
MBF at stress was significantly reduced in the 2 subgroups of TGA patients compared with the
controls (TGA-coronary problems: 1.94 + 058 vs. 3.71 £ 1.25, p<0.001; TGA-open
coronaries: 2.57 £ 0.71 vs. 3.71 + 1.25, p<0.001), (Figure 19-20). MPR was significantly
reduced in both subgroups of TGA patients in comparison to the healthy controls (TGA-
coronary problems: 2.2 + 0.8 vs. 4.1 + 1.3; p<0.001; TGA-open coronaries: 3.22 + 1.06 vs.
4.13 £ 1.27; p=0.02), (Figure 21-22). MBF at stress (1.94 + 0.58 vs. 2.57 £ 0.71, p=0.014) and
MPR (2.2 £ 0.8 vs. 3.2 + 1.1; p=0.023) were significantly reduced in TGA-coronary problems
compared to TGA-open coronaries.

In a TGA patient with coronary problem, we found an aberrant LCA in this patient by using
CMR. Myocardial perfusion CMR showed a region of perfusion defect in anteroseptal. The
patient was treated by MIDCAP operation. Post-operation, the patient was repeated CMR
exam and we did not found any region of perfusion defect in LV myocardial wall. In addition,
semiquantitative analysis showed that Sl in antero-septal segment increased post-operation as

compared to previous exam (Figure 16).
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Figure 16. Visual analysis and semiquantitative analysis of myocardial perfusion CMR in a
TGA patient with an aberrant of LCA. Pre-operation, visual analysis first-pass perfusion CMR
showed a region of myocardial perfusion defect in anteroseptal (1), semiquantitative showed
that SI was slightly increased after at peak of contrast agent in anteroseptal (2-3). Post-
MIDCAP operation, qualitative analysis showed no regional myocardial ischemia in this area

(4), and Sl was significantly increased in this area (5-6).

We found that in Kawasaki patients, MBF at stress was impaired (2.49 £+ 0.58 vs. controls 3.71
+ 1.25, p=0.013), but MPR was not significantly reduced (2.85 + 1.27 vs. controls 4.1 + 1.3,
p=0.05). MBF at stress and MPR in subgroup 6 were not significantly reduced as compared to

age matched controls (table 14).

In a patient with coronary fistula, CMR exams were performed pre-operation and 1.5 years
after the operation. Pre-operation, MBF at stress (3.05 ml/g/min) and MPR (3.08 ml/g/min)
reduced as compared to normal controls. Post-operation, quantitative analysis showed that
MBF (3.50 ml/g/min) at stress and MPR (4.86 ml/g/min) increased.

In a patient with aberrant LCA, quantitative MBF analysis showed that MBF at stress (2.71
ml/g/min) and MPR (2.56 ml/g/min) impaired. Post-operation, gquantitative analysis had
demonstrated that MBF at stress and MPR increased post-operation (MBF: 3.11 ml/g/min,
MPR: 4.00 ml/g/min) (Figure 17).
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Figure 17. MPR values in each myocardial segment in a patient with aberrant LCA pre- and
post - MIDCAP operation. MPR values increased post-operation in all myocardial segments.

Page | 46



[n]
2 ANOVA p=0.99
= - : :
Q
= =+ _| S
E - |
E I |
= 1
E o | : |
= 1 : : ! !
E 2 ! I :
r - ' ' !
':D. — T T
=] | | : :
: : —— : I I
© | ! — — | I
o 1 |
T | T T T T |
Controls BWG Kawasaki Others RossOP TGA +CAP TGA

Figure 18. Comparison of mean MBF at rest between patients and controls.
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Figure 19. Comparison of mean MBF at stress between TGA — coronary problems and

matched normal controls (p-value < 0.01; Mann-Whitney-U test).
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Figure 20. Comparison of mean MBF at stress between TGA — open coronaries and matched

normal controls (p-value < 0.01; Mann-Whitney-U test).
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Figure 21. Mean MPR in TGA patients after ASO with coronary problems versus mean MPR
in normal subjects (p-value = 0.0001; Mann-Whitney-U test).
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Figure 22. Mean MPR in TGA — open coronaries versus mean MPR in normal controls (p-
value = 0.02; Mann-Whitney-U test).
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Figure 23. Mean MPR in Ross patients versus mean MPR in matched normal controls (p-

value = 0.6; Mann-Whitney-U test).
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Table 14. Absolute quantification of myocardial perfusion.

Patients Controls Mean MBF at rest Mean MBF at stress Mean MPR
Subgroups N N Patients Controls p Patients Controls p Patients Controls p
TGA-coronary problems | 13 17 093+£0.29 | 093£0.22 | 061 | 202+053 | 3.70£1.25 | <0.01 | 228+0.83 | 4.07£1.23 | <0.01
TGA-open coronaries 36 17 0.88+0.28 | 093£0.22 | 054 | 257+£0.71 | 3.70£1.25 | <0.01 | 3.04+1.06 | 4.07+£1.23 | 0.02
Ross patients 5 15 0.97+0.37 | 093+0.28 | 0.88 | 341+0.76 | 3.79+1.48 | 086 | 3.39+091 | 415+1.16 | 0.60
BWG patients 7 17 0.89+0.15 | 093+0.22 | 0.82 | 275+0.86 | 3.70+1.25 | 0.08 | 3.20+1.17 | 4.07+1.23 | 0.22
KD patients 4 17 0.93+0.16 | 0.93+0.22 | 096 | 249+058 | 3.70+1.25 | 0.01 | 2.85+1.27 | 4.07+1.23 | <0.05
Other patients 4 17 0.86+0.15 | 0.93+0.22 | 047 | 246+0.83 | 3.70+1.25 | 0.18 | 296+1.28 | 4.07+1.23 | 0.08

Values are mean + SD; p-values are from the Mann-Whitney-U test for patient group against controls. MPR: myocardial perfusion

reserve. Data were compared to matched normal control groups.
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3.2.3 Late Gadolinium Enhancement

LGE was performed in 24 cases (43.6% of all patients). LV scar was observed in 11 of 55
patients (20%) with a mean volume 5.1 + 4.7 cm®. We found LGE in 4 cases (30.8%) in
TGA-coronary problems; 1 case (9.1%) in Ross patients; 5 cases (71.4%) with BWG
(Figure 24); 1 case (20%) in subgroup of other patients. There was no scar in TGA-open

coronaries, KD patients, and normal subjects. RV scar was not found in all patients.

Figure 24. LGE was identified anterior, anterolateral, and anteroseptal in the LV in a BWG

patient. LV: left ventricle; RV: Right ventricle.

3.2.4 T1 Mapping

Look-Locker T1 imaging was performed in 37 of 77 patients (TGA — coronary problems,
n=4; TGA — open coronaries, n=29; Ross patients, n=4). The results were compared to
matched normal controls (n=10). T1 mapping showed increased extracellular matrix
expansion suggestive of diffuse fibrosis in TGA — coronary problems (0.3 £ 0.03 vs. 0.26 +
0.02, p=0.014), TGA — open coronaries (0.31 = 0.07 vs. 0.26 £+ 0.02, p=0.028), and Ross
patients (0.3 £ 0.002 vs. 0.26 + 0.02, p=0.017) as compared to matched normal subjects. We
did not find any correlation between mean ECV in each subgroups and LVEF, ESV index

and EDV index, respectively (Spearman’s rho).
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Figure 25. An example of T1 measurement in a patient after Ross operation. (A) Derivation

of the partition coefficient by calculating the slope of the linear relationship between R1 for

myocardium versus R1 for the blood pool from all R1 measurements. (B) Bull's eye maps

for the ECV results in each myocardial wall segment.
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Figure 26. Comparison of mean extracellular volume fraction (ECV) between TGA-

coronary problems and matched normal controls. Mean ECV increased in patients as

compared to controls (p=0.014); (Mann-Whitney-U test).
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Figure 27. Comparison of mean extracellular volume fraction (ECV) between TGA-open
coronaries and matched normal controls. Mean ECV increased in patients as compared to

controls (p=0.028); (Mann-Whitney-U test).
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Figure 28. Comparison of mean extracellular volume fraction (ECV) between Ross patients
and matched normal controls. Mean ECV increased in patients as compared to controls

(p=0.017); (Mann-Whitney-U test).
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3.2.5 Aortic Function in TGA Patients after One-Stage ASO

44 TGA patients with one-stage ASO and 34 healthy controls participated in this study to
evaluate aortic function. The patient characteristics were summarized in table 3. There were
not different in age, weight, height, BSA and blood pressure between patients and normal
controls. Phase-contrast cine imaging for assessment of PWV and aortic regurgitation (AR)
was applied in 44 patients and 30 controls. PWYV assessment was not possible in 11 patients,
and AR could not be measured in 7 patients because of susceptibility artefacts from surgical
implants or sedation problems. In all other patients image quality was considered good or

excellent.

< Aortic Distensibility

Distensibility of the aortic root, ascending aorta, and descending aorta at the isthmus were
significantly lower in TGA patients as compared to normal subjects (Table 16). However,
wall distensibility of the descending aorta at the level of the diaphragm was not significantly
different from the normal controls. We did not find a significant association of aortic

stiffness and myocardial perfusion reserve (Spearman’s rho test).

¢+ Aortic Pulse Wave Velocity

Aortic pulse wave velocity data of patients and normal subjects was summarized in table 16.
PWV in all TGA patients was not significant different from the normal controls (patients,
4.2 + 1.9 vs. controls, 3.3 £ 0.5; p = 0.08). In addition, PWV was not increased in children
after one-stage ASO (patients, 4.18 + 2.13; controls, 3.21 + 0.48; p= 0.43), but adult patients
who underwent one-stage ASO had a significantly higher PWYV than controls (patients, 4.51
+ 1.10; controls, 3.39 + 0.64; p = 0.03).

<+ LA Volume and LV Function

LA volume and LVEF, LVESD, LVEDV in TGA patients were not significantly different
from the normal controls. However, LV-mass was significantly increased in TGA patients

as compared to healthy subjects (p = 0.02) (table 15).

+«» Aortic Regurgitation (AR) values in patients and normal subjects were presented in
Table 15. Mean AR value in patients was significantly higher than normal controls
(p<0.01).
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Figure 29. Three-dimensional volume rendered gadolinium-enhanced MR-angiography in a
patient with TGA showing the bifurcation of the pulmonary arteries in front of the aorta

after ASO with Lecompte procedure. Note the steep course of the aortic arch.
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Table 15. Comparison of CMR measurements in TGA patients and controls

Variable Patients Controls o Value
(N=44) (N=34)

Maximal aortic area (mmz/m)

Aortic root 648.7 £261.5 356.8+1134 <0.01

Ascending aorta 331.0+£140.0 315.4+£89.3 0.99

Descending aorta at the isthmus 179.1+92.1 153.9 +36.7 0.35

Descending aorta at the level of the

diaphragm 142.1 £59.9 129.0+32.1 0.42
AR percentage (%, range) 6.0 (0.3-44.5) 0.6 (0-3.8) <0.01
LVEF (%) 61.5+8.7 60.1+5.6 0.21
LVSV (ml/m) 446 +19.1 40.6 +11.2 0.47
LVEDV (ml/m) 75.2+38.5 68.4 £20.8 0.95
LVESV (ml/m) 30.6 +21.5 29.5+11.6 0.41
LV mass (g/m) 53.9+222 42.7+14.4 <0.05
LA VOliax (9/m) 39.1+22.4 39.4+138 0.38
LA Volmin (g/m) 20.1+12.3 17.8+6.7 0.71
LA Vol,c (g/m) 275+ 16.7 23.4+9.0 0.76
Distensibility (10° mmHg™)

Aortic root 41 +2.3 9.1+47 <0.01

Ascending aorta 5129 10.8+55 <0.01

Descending aorta at the isthmus 7.1 £33 9.1+51 <0.02

Descending aorta at the level of the

diaphragm 9.1 £45 99+49 0.28
PWV (m/s) 42 £19 33+05 0.08

Data are presented as mean = SD or median and range. P-Values are from the Mann-
Whitney-U test. AR, aortic regurgitation; LVEF, left ventricular ejection fraction; LVSV,
left ventricular stroke volume; LVEDV, left ventricular end-diastolic volume; LVESV, left
ventricular end-systolic volume; LA Volmax, maximal left atrial volume; LA Vol i, minimal
left atrial volume; LA Voly, left atrial volume just before atrial contraction; PWV, pulse

wave velocity.
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4. DISCUSSION

In children, myocardial ischemia may occur during childhood in several conditions, such as
after surgery for CHD involving the coronary artery, in congenital coronary abnormalities
and after surgery for treatment, and in patients with inflammatory disease of the coronary
arteries such as Kawasaki disease (Angelini 2007; Hauser et al., 2001; Maiers & Hurwitz,
2008; Vogel et al., 1991; Daniels et al., 2012). Assessment of myocardial ischemia in these
populations is important because adverse cardiac events may occur (Pasquali et al., 2002;
Legendre et al., 2003; Raja et al., 2005; Hauser et al., 2001; Kazmierczak et al., 2013;
Ramirez et al., 2011). We used CMR imaging as a non-invasive and radiation-free method
for assessment of myocardial blood flow, viability, heart function, and diffuse myocardial

fibrosis in such patients to evaluate ischemic heart disease.

4.1 Myocardial Perfusion

4.1.1 Myocardial Perfusion after Coronary Reimplantation in Patient after
ASO and Ross Operation

Reimplantation of the coronary arteries is one of the most difficult procedures during ASO
and Ross operation (Jatene 1976; Ross 1967). The ASO is a common surgical procedure for
the anatomic repair of TGA, while the Ross procedure is a surgical method for replacement
of aortic valve disease to avoid the use of long-term anticoagulation and to achieve the
potential for autograft growth in children (Losay et al., 2001; Pasquali et al., 2002; Svensson
et al., 2003). However, reimplantation of the coronary arteries into the aortic root is used for
those operations. The major concern about mortality and long-term outcome after these
operations mainly depend on the myocardial perfusion provided by the transferred coronary
arteries. Reimplantation of the coronary arteries in ASO and Ross operation may have some
effects on coronary blood flow (Bengel et al., 1998; Hutter et al., 2000; Hauser et al., 2001).
We applied advanced CMR methods to assess myocardial perfusion in those patients. To
our knowledge, this is the first study reports the use of CMR imaging approach to quantify

of absolute myocardial perfusion in patients after ASO and Ross operation.

a) Myocardial Perfusion in TGA Patients after ASO

The successful of the ASO mainly depends on the coronary blood flow supplied by the
transferred coronary arteries may result myocardial ischemia and infarction (Jatene et al.,
1976). After the ASO, coronary artery obstruction in TGA patients was documented in the
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literatures (Bonhoeffer et al., 1997). In our study subgroup, in TGA patients (n=13) after
ASO had known or suspected coronary problems as occlusion, stenosis or hypoplasia (table
5), we found that regional ischemia presented in 8 patients (61.3%) by visual analysis. In
addition, using quantification of absolute myocardial perfusion, MBF at stress and MPR
were significantly impaired in TGA-coronary problems when compared to normal subjects.
However, mean MBF value at rest was normal and it is remain unclear in the present study.
Nevertheless, visual analysis and quantitative myocardial blood flow method by CMR
demonstrated that regional ischemia was detected and coronary blood flow was significantly
reduced in this group. The reasons of the reduction of coronary blood flow in TGA patients
with coronary problems are clear in the study because coronary artery problems (Table 5)
were presented in all patients. In addition, LGE was found in 30.1 % patients and coronary
angiography data showed that coronary stenosis in 23.1% and occlusion in 76.9% in TGA-
coronary problems. These findings may cause an impairment of coronary blood flow of
TGA patients after the ASO in this group.

In TGA patients (n=36) after ASO with patent epicardial coronaries (TGA — open
coronaries) were asymptomatic of myocardial ischemia. Visual analysis of myocardial
perfusion CMR showed no region of perfusion defect and LGE in all patients. In addition,
mean MBF value at rest is normal. However, mean MBF at stress and MPR values were
significantly reduced as compared to healthy controls. Although coronary problems were
not presented in this group, our data suggests that MBF is effected in these patients after
ASO, possibly due to endothelial or smooth muscle dysfunction, both of which can impair
vasodilation (Bartoloni et al., 2006). The face of the transferred coronary arteries after the
ASO is at risk of dysfunction and it has been assessed in previous studies (Vogel et al.,
1991; Tane et al., 1995; Manso et al., 2010). Our findings are similar to two previous studies
in TGA patients after ASO by PET (Bengel et al., 1998; Hauser et al., 2001). By
quantitative PET analysis, those studies showed that MBF was significantly reduced in TGA
patients after ASO with asymptomatic with myocardial ischemia. Therefore, by
quantification of MBF by CMR, our data proved that coronary blood flow was affected after
reimplantation of the coronary artery in TGA patients after ASO. In addition, the results of
the present study suggest that quantification of myocardial perfusion by CMR is important
for early diagnosis of impairment of coronary blood flow in the follow-up of TGA patients
after ASO, because all TGA patients in this subgroup showed no symptoms of myocar dial
ischemia, and visual analysis showed no evidence of myocardial ischemia, independent of

whether the TGA patients had coronary problems or not.
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Although all patients in TGA-coronary problems had known coronary artery problems,
mean MBF at rest was not different from the normal controls. The reason of normal mean
MBF values at rest in TGA-coronary problems remains unclear in this study because in this
group coronary problems were found in all patients, and 30.7 % patients were detected
LGE.

In TGA-open coronaries, our results show that mean MBF at rest was not significantly
lower normal subjects. That may be because myocardial ischemia was not severe in this
group. In addition, we found that these patients were asymptomatic with myocardial
ischemia. Furthermore, LGE was negative in all patients in TGA-open coronaries. However,
mean MBF at stress and MPR are reduced in both TGA groups. These results demonstrate
the important role of adenosine stress test, and the combination of both rest and stress
techniques is important for the detection of myocardial ischemia in TGA patients after ASO.
In addition, our finding shows that coronary blood flow is reduced not only in TGA patients
that have known or suspected coronary problems but also in patients after ASO with patent
epicardial coronaries. This study suggests that it is important to evaluate myocardial

ischemia in patients after the ASO.

b) Myocardial Pefusion in Patients after Ross Procedure

In patients after Ross operation, visual analysis myocardial perfusion CMR showed region
of perfusion defect in only 1 patient (8.3%). MBF at rest and stress, and MRP were not
reduced as compared to normal controls. These results show that MBF is not impaired in
patients after Ross operation. This finding is in accordance with quantitative myocardial
perfusion by PET in patients (n=9) after Ross operation (Hauser et al., 2001). The Ross
procedure is accepted as a surgical method for replacement of aortic valve disease to avoid
the use of long-term anticoagulation and to achieve the potential for autograft growth in
children and adult (Ross 1967). Reimplantation of the coronary arteries is used in this
procedure and the adequacy of coronary artery perfusion is one of the major concerns post-
operation (Ross 1967; Somerville et al., 1979). However, our findings show that coronary
blood flow may not be affected after the Ross procedure in this study. The small number of
patients (n=6) after Ross operation is the main limitation in the study. However, assessment
of coronary blood flow is important in patients after reimplantation of the coronary arteries
and this study represents the first application of this new approach of quantification of
absolute myocardial perfusion by CMR as a non-invasive method in the follow-up in this

population.
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c) The Difference in Myocardial Blood Flow after Coronary Reimplantation in

Patients after ASO and Ross Procedure.

Reimplantation of the coronary arteries was performed in both ASO and Ross operation in
our study. However, our results show that stress MBF was reduced in TGA patients (TGA-
open coronaries) after ASO but normal in the Ross subgroup. This finding is consistent with
a previous study using quantification of MBF by PET in patients after ASO and Ross
operation (Hauser et al., 2001). With quantitative MBF by PET, Hauser and colleagues
measured absolute myocardial blood flow in patients after reimpalntation after ASO and
Ross procedure. That study also found that MBF was impaired in TGA patients after ASO
but not in patients after Ross operation. However, there are some factors that may effect to
coronary blood flow in TGA patients after ASO. Because TGA is commonly associated
with unusual coronary artery origins and courses (Martins & Castela, 2008; Sim et al.,
1994). The ASO is the treatment of choice in neonates for anatomical correction in TGA
(Jatene 1976). After coronary reimplantation in ASO, the growth of coronary artery
anastomoses and their patency are the major concerns in this population. In our study, TGA
patients were performed one stage ASO: 8.5 + 5.7 days, two stages ASO: 1.3 £ 0.1 years. In
addition, some authors showed that coronary artery obstructions were observed in TGA
patients after ASO by using selective coronary angiography. Otherwise, the Ross operation

was performed later (12.7 + 5.5 years).

412 BWG

ALCAPA is a rare congenital coronary artery abnormality and is associated with early
infant mortality and adult sudden death (Wesselhoeft et al., 1968). After surgical correction,
BWG patients may at high risk of myocardial ischemia (Davis et al., 2001; Dodge-Khatami
et al., 2002; Wesselhoeft et al., 1968). In this study, we describe the use of CMR for
evaluation of myocardial perfusion in ALCAPA patients after anatomical surgery correction

with suspected myocardial ischemia.

This is also the first study that describes the method of quantification of absolute myocardial
perfusion in BWG patients using CMR imaging. Two previous studies reported the use of
myocardial perfusion CMR at rest and stress with adenosine for detection of myocardial
ischemia in ALCAPA patients (Secinaro et al., 2011; Buechel et al., 2009), and found the
areas of perfusion defects in BWG patients by qualitative analysis. However, these studies

did not carry out semi-quantitative and quantitative myocardial perfusion analysis, and did
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not study controls, and they were the main limitations in the studies. In the present study, we
further applied qualitative, semi-quantitative, and quantitative analysis of myocardial

perfusion for evaluation of myocardial ischemia in BWG patients.

Figure 30. Pre- and post-operative coronary angiography, patient with ALCAPA. A: Pre-op
injection into the dilated RCA and retrograde staining of the LCA and MPA. B: Post-Op

injection into the LCA from the left coronary sinus.

In BWG patients (n=7), our results showed that areas with perfusion defect were present in
4 patients (57.1%). LGE presented in 5 of 7 patients (71.4) and in a patient LCA was noted
slightly stenosis by coronary angiography. These finding may suggest a severe myocardial
ischemia in this group. However, our data showed that mean MBF at rest and stress, and
mean MPR were not significantly lower normal controls. This remains unclear in the study.
However, the number of BWG patients in this study was small, because it is rare congenital
coronary abnormally (Bland et al., 1933). Coronary blood flow was not significantly
reduced in this group as compared to normal controls may be due to the development of
coronary collateral circulation (Figure 30) before operation and therefore in some BWG
patients who were diagnosed in adulthood without any myocardial ischemia symptoms as
previous descriptions (Dodge-Khatami et al., 2002; Wesselhoeft et al., 1968). This may also
explain that some patients are asymptomatic. In short, we described the application of CMR
in evaluation of myocardial perfusion in BWG patients. Importantly, we first applied the
method of quantification of myocardial blood flow by CMR imaging and found that it is a

useful method to detect myocardial ischemia in this population.
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4.1.3 Kawasaki Disease

KD is one of the most common acquired heart diseases in children in the developed
countries. Coronary artery aneurysms and stenosis may develop long-term during childhood
in KD (Tanaka et al., 1986). They are major complications that may lead to myocardial
ischemia and adverse cardiac events in KD (Dajani et al., 1993). Myocardial perfusion
CMR has demonstrated to be a useful method for detection of myocardial ischemia in KD
(Tacke et al., 2011). However, previous studies showed regions of myocardial perfusion
defects by visual analysis, and have limitation in quantification of absolute myocardial
perfusion by CMR (Prakash et al., 2004; Mavrogeni et al., 2006; Tacke et al., 2011). In the
present study, we first applied the method to assess absolute myocardial perfusion by CMR

and detect myocardial ischemia during follow-up in children with a history of KD.

A previous study of patients with KD (n=10) showed that mean MBF at rest was normal and
however, mean MBF at stress and flow reserve were significantly lower than normal
controls by using PET (Muzik et al., 1996). Because patients who have KD during
childhood may develop long-term coronary aneurysm and subsequent coronary artery
stenosis, and may lead to chronic myocardial ischemia or infarction (Neuburger et al., 2005;
Tanaka., 1986). In the present study, similar to the findings by Muzik and colleagues
(Muzik et al., 1996), we also found a normal mean MBF value at rest, and reduced mean
MBF at stress and MPR by using CMR technique. Our data show that only 1 patient
presented region of perfusion defect in antero- and inferoseptal at rest by visual analysis,
while visual analysis at rest was normal in all patients. In addition, X-ray coronary
angiography data reported that coronary artery stenosis was not present in all KD patients,

and a small area of coronary aneurysm was shown in a patient.

These findings suggest that CMR can be used to detected myocardial ischemia in the
follow-up KD patients. However, the limitation of our study is a small sample size (n=4) of
patients with Kawasaki disease. Nevertheless, we could show that CMR is a useful method

to quantify absolute myocardial perfusion in patients with a history of KD.

4.1.4 Other Patients

First-pass perfusion CMR was also used to detect myocardial perfusion in patients with
suspected myocardial ischemia, such as patients after heart transplantation, one patient with

a coronary artery fistula, and one patient with an aberrant LCA.
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Coronary fistula is rare congenital coronary abnormalities (Krause 1865). Assessment of
myocardial ischemia is important in this population because adverse cardiac events can
occur before and after surgical treatment (Valente et al., 2010; Canga et al., 2012). In this
study, we first described an application of CMR to quantify myocardial blood flow in a
patient with coronary fistula pre- and post-operation. This patient was asymptomatic with
myocardial ischemia. CMR exam pre-operation, visual analysis showed region of
myocardial perfusion defect in lateral wall of the LV. CMR exam was repeated after 1.5
years post-operation and showed no regional ischemia by visual analysis. In addition,
quantitative analysis showed that MBF at stress and MPR increased post operation. We
found that CMR can be used as a good method to evaluate the result of the surgical
treatment in patient with coronary fistula. Although the small sample size of coronary fistula
patient is the limitation in this study. However, our data shows the advantage of CMR for

evaluation of myocardial ischemia in patients with coronary fistula.

Cardiac allograft vasculopathy is the major cause of death in patients after heart
transplantation and remains to limit the long-term success of this operation (Kaye et al.,
1993). A previous study used CMR for quantitative myocardial perfusion in patients after
heart transplantation and showed that MPR reduced in patients after heart transplantation
(Muehling et al., 2003). In our study, two other patients in this subgroup after heart
transplantation had no clinical symptoms of myocardial ischemia. Visual analysis showed
no regional myocardial ischemia. However, MBF at stress and MPR were reduced in these
patients as compared to normal controls. These results are conformity with previous
findings by Muehling and colleagues (Muehling et al., 2003). This is the second study that
described quantification method of myocardial perfusion by using CMR. The number of
patients after heart transplantation is small in this study as compared to the previous study.
However, our findings provide data about using CMR to quantify myocardial perfusion in

combination with evaluation of LV function, and LGE in patients after heart transplantation.

An aberrant LCA is a rare congenital coronary artery anomaly that may lead to myocardial
ischemia (Tuo et al., 2012; Yamanaka & Hobbs, 1990). After surgical treatment myocardial
ischemia and sudden death can occur due to development of stenosis or closure of LCA
(Krasuski et al., 2011). In this study, we first describe the use of CMR for detection of
myocardial ischemia in a patient with diagnosis of aberrant LCA. This patient had symptom
of chest pain with suspected myocardial ischemia. We found an abnormal coronary artery

anatomy in this patient (aberrant LCA) and the patient was indicated to use beta-blocker and
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ASS. CMR exam showed that region of perfusion defect presented in antero-septal.
Quantitative MBF analysis showed that MBF at stress (2.71 ml/g/min) and MPR (2.56
ml/g/min) impaired. The patient was performed MIDCAP operation for anatomical
correction of the coronary artery. Post-operation, visual analysis showed no region of
perfusion defect. Quantitative analysis had demonstrated that MBF at stress and MPR
increased post-operation (Figure 17). In addition, this result corresponds with clinical status
after the surgery, the patient was asymptomatic with myocardial ischemia and therefore,
Beta-blocker was excluded from the medication. In short, our study shows the advantage of
using CMR for detection of myocardial ischemia in patients with aberrant LCA and in the
long-term follow-up these patients after surgical treatment. We report the first experience of

quantitative myocardial perfusion analysis in a patient with aberrant LCA.

The small sample size of patients in this group is a limitation of our study. However, most
of them are rare congenital coronary abnormalities. Nevertheless, we could show that CMR
is a useful method to quantify absolute myocardial perfusion in patients with abnormal

coronary artery and in patients after heart transplantation.

4.1.5 The Importance of Absolute Quantification of Myocardial Perfusion by
CMR

The assessment of myocardial perfusion by CMR is widely applied for the evaluation of
myocardial ischemia in clinical practice as a non-invasive method (Coelho-Filho et al.,
2013). Visual analysis of myocardial perfusion can show perfusion defects in patients with
myocardial ischemia. This method is routinely used in clinical practice for detection of
myocardial ischemia (Schwitter et al., 2011; Ntsinjana et al., 2011). But, visual analysis can
not exclude myocardial ischemia (Nandalur et al., 2007). Therefore, a method to quantify
absolute myocardial perfusion is important for a more precise diagnosis of myocardial
ischemia. Previous studies showed the role of absolute quantification of MBF by CMR,
SPECT, and PET in cardiac disease (Morton et al., 2012; Hauser et al., 2001; Muzik et al.,
1996). However, PET and SPECT are limited in pediatric patients due to the use of ionizing
radiation. Therefore, quantification of MBF by CMR is a promising approach for the
evaluation of ischemic heart disease in children (Morton et al., 2012; Gupta et al., 2011;
Jerosch-Herold 2010), but is not applied as a routine method in clinical practice so far. To
our knowledge, this is the first study which used quantification of absolute myocardial

perfusion in congenital and acquired heart disease in pediatric patients by CMR. Our data
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shows that quantification of myocardial perfusion can detect reduced myocardial perfusion
in patients with no visual perfusion defects and can improve diagnostic accuracy in patients

with presented perfusion defects.

4.2 Late Gadolinium Enhancement

LGE imaging by CMR was developed by Kim and Judd in 1996 (Kim & Judd., 1996). Since
then LGE has been applied for detection of myocardial fibrosis or scar tissue in heart
diseases. However, LGE technique has been widely applied in adult cardiology (Beek et al.,
2003; Bruder et al., 2009) and there were not many studies in children (Babu-Narayan
2010). Previous studies demonstrated the feasibility of the combination of CMR perfusion
imaging and LGE for detection MF with the role of Gd in congenital and acquired heart
disease (Prakash et al., 2004; Valsangiacomo Buechel et al., 2009; Tacke et al., 2011,
Secinaro et al., 2011). In the present study, we applied LGE technique to detect MF in
patients with congenital and acquired heart disease.

In patients after ASO with coronary problems, LV scar was detected in 30.8 % patients.
Therefore, we also found that MBF at stress and MPR were impaired in this group.
Coronary problems may be the reason of presented LGE after ASO. However, in TGA-open
coronaries LGE was not presented in all patients. A previous study has described the use of
LGE CMR to detect MF in patients after ASO (Buechel et al., 2009). However, there was

no area of MF that was detected in that study.

Previous study showed that LGE CMR can be used to observe myocardial fibrosis in BWG
patients (Buechel et al., 2009). In the present study, we found that LV scar presented in 5
BWG patients (71.4%). This result is similar to a previous finding by Secinaro and
colleagues (Secinaro et al., 2011). However, in our study, we further quantified the extent of

hyperenhancement in percentage or volume for each myocardial segment.

4.3 CMR for Assessment Myocardial Fibrosis

Myocardial fibrosis (MF) is characterized by an increase of collagen composition and is one
of the most common histological features of cardiac failure (Schaper et al., 1992). It leads to
impaired diastolic and systolic functions and is related to major adverse cardiac events
(Bello et al., 2003; Kwong et al., 2008). Endomyocardial biopsy is the gold standard to
evaluate MF in different cardiac diseases. However, it is an invasive procedure with higher

and prone to sampling error (Holzmann et al., 2008; Becker et al., 1991). A non-invasive
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approach, such as LGE imaging with CMR has become the method of choice to detect MF
in children (Mavrogeni et al., 2006; Prakash et al., 2004; Buechel et al., 2009). The
visualization of focal MF, due to myocardial infarction, can be accurately identified in
clinical practice by LGE CMR imaging (Kim et al., 1999; Wagner et al., 2003). However,
LGE imaging has limitations to detect diffuse and generalized MF (Mewton et al., 2011).
Therefore, Messroghli and colleagues firstly described Modified Look and Locker
Inversion-recovery (MOLLI) sequence in 2004 (Messroghli et al., 2004). Since then, studies
demonstrated that T1 mapping CMR can be used to assess DMF by quantification of
myocardial ECV as a non-invasive and radiation-free method in animal and human
(Broberg et al., 2010; Messroghli et al., 2011; Sado et al., 2012). However, this method has
been not widely applied in clinical practice. In this study we used a Look-Locker sequence
for T1 mapping, in addition to LGE imaging, to measure also DMF in patients after ASO
and Ross operations, and in normal subjects.

In TGA patients after ASO, our results showed that mean myocardial ECV values are
increased in TGA patients with coronary problems (table 5) and in patients after ASO with
patent epicardial coronaries, compared to normal controls. Only one previous CMR study
had described DMF in TGA patients and found that an abnormal fibrosis index was present
in 10 of 11 TGA patients (Broberg et al., 2010). However, all TGA patients in this study
were patients with a systemic RV. In addition, there was a correlation between EDV index
and fibrosis index. This study demonstrates that CMR imaging method can be used to
quantify DMF in different forms of CHD. Our data indicate that DMF increases in patients
after ASO in TGA-coronary problems and TGA-open coronaries. However, there was no
relationship between DMF, and LVEF, EDV index, and ESV index, respectively.

In patients after Ross operation, mean myocardial ECV increased compared to normal
subjects. To the best of our knowledge, this is the first study that used CMR technique to
detect myocardial diffuse fibrosis in this population. A previous study demonstrated that
DMF is related to LV function and commonly related to diastolic and systolic function
(Conrad et al., 1995). However, our data can not demonstrate correlations between
myocardial fibrosis index and LV function in patients after Ross operation. The main
limitation of our study was a small number of Ross patients (4 of 12 patients) and it is
difficult to detect correlations. However, our study shows that CMR imaging can be used to

detect DMF in patients after Ross procedure as a non-invasive diagnostic imaging tool.
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4.4 Left Ventricular Function

CMR imaging is considered as the most accurate diagnostic imaging approach for the
assessment of ventricular volumes and function in heart diseases (Lorenz et al., 1999;
Sechtem et al., 1987). In the present study, using CMR imaging method we found that mean
LV-EF values were normal in TGA-coronary problems, TGA-open coronaries, in KD

patients, and were significantly reduced in patients after Ross procedure and BWG patients.

Pulmonary autograft replacement of the aortic valve is used in the Ross operation with
potential for annulus growth, and it is therefore the technique of choice to treat aortic valve
disease for children and young adults (Turrentine et al., 2001; Ross 1967). The function of
the aortic root replacement is a major concern after the operation and it has been assessed in
previous studies (Grotenhuis et al., 2006; Puranik et al., 2009; Goda et al., 2012). Dilatation
of the pulmonary autograft and aortic valve insufficiency are main complications after the
Ross procedure and they have been demonstrated their effect on the LV function
(Grotenhuis et al. 2006). By using CMR, Grotenhuis and colleagues showed that dilation
and decreased distensibility of the aortic root, and aortic insufficiency lead to impair systolic
function. Decreased LV-EF was correlated with dilation and impaired distensibility of the
aortic root, and aortic regurgitation (AR) fraction, and the AR fraction was significantly
correlated with increased LV-EDV index (Grotenhuis et al., 2006). In our patients after
Ross operation, mean LV-EF is significantly reduced compared to healthy controls. LV-EF
values are lower 50% in 4 patients. In addition, aortic insufficiency presents in 7 of 12
patients (AR fraction, 20.4 £11.7 %). Our findings are in accordance with the previous
study by Grotenhuis et al. (Grotenhuis et al., 2006). The impairment of LV-EF may be
caused by dilation and decreased distensibility of the aortic root, and AR. However, lack of
the data to evaluate the function of the aortic root and LV- EDV volume in this group is the

main limitation in this study.

In BWG patients, mean LV-EF was significantly impaired compared to normal controls,
and LV-EF values were lower than 50% in 5 patients (71.4%). Our results are different from
a previous study by Secinaro et al. They also used CMR, and showed that the mean LV
function was normal in six ALCAPA patients (Secinaro et al., 2011). Our results might be
explained by the presence of LGE in 5 patients (71.4 %). An increase in MF has been
demonstrated that may lead to LV systolic and diastolic dysfunction (Villari et al., 1993; St
John Sutton et al., 1980).
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In TGA patients after ASO, our findings show that mean EV-EF is normal in both
subgroups of TGA after ASO. However, in TGA-coronary problems we found that LV-EF
was reduced below 50% in 4/13 (30.8 %) patients in this group. In addition, our data
showed that 3/4 of these patients presented with LGE in the LV and this may be a cause of
impaired LV-EF in these patients (Villari et al., 1993; St John Sutton et al., 1980).

4.5 Comparison of CMR with Other Diagnostic Imaging Techniques

CMR imaging has emerged as a non-invasive and radiation-free diagnostic imaging
modality for evaluation of ischemic heart disease in children (Buechel et al., 2009).
Although ECG can be used for diagnose of myocardial ischemia, but a normal ECG result
does not exclude ischemic heart disease. In addition, exercise ECG has some limitations for
the evaluation myocardial ischemia in pediatric patients (Rhodes et al., 2000). X-ray
coronary angiography is known as a gold standard for detection of ischemic heart disease

(Scanlon et al., 1999). However, it is an invasive method and imposes a radiation burden.

Most of the noninvasive imaging methods can be used to evaluate myocardial ischemia,
such as SPECT, PET, and CMR. Previous studies demonstrated the abilities of SPECT,
PET, and CMR in the detection of ischemic heart disease (Rickers et al., 2000; Hernandez-
Pampaloni et al., 2003; Puranik et al., 2010; Jaarsma et al., 2012). However, compared to
SPECT and PET, the main advantages of CMR are the use of non-ionizing radiation and
high spatial resolution (Jaarsma et al., 2012). In addition, the present study shows that CMR
is feasible for the evaluation of myocardial ischemia in children with congenital and
acquired heart diseases, and provides the ability to quantify absolute myocardial perfusion,
scar tissue, extracellular matrix expansion suggestive of diffuse myocardial fibrosis, and LV
function. To the best of our knowledge, CMR T1 mapping was the first non-invasive
diagnostic imaging tool that has ability to quantify DMF. More recently, a similar method

has been proposed, using CT, but the accuracy of ECV evaluation may be lower.

4.6 Aortic Function in TGA Patients after the ASO

«  Aortic Dimensions and Aortic Insufficiency

Significant enlargement of the aortic root was found in our TGA patients, whereas cross-
sectional areas of the ascending and descending aorta were not significantly different from
the control group. Aortic root enlargement after ASO has previously been reported from our

group (Kramer et al., 2003) and by other echocardiographic studies (McMahon et al., 2004;
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Hourihan et al., 1993). A CMR study by Grotenhuis et al. in 15 TGA patients also revealed
significantly increased aortic root diameters (Grotenhuis et al., 2008). Furthermore, they
showed that patients with AR had even larger aortic root diameters. This is in agreement
with our findings in that TGA patients with a higher degree of AR had a larger cross-
sectional area of the aortic root. However, only a small number of patients (n= 4) had more

than mild AR and higher degree AR was infrequent (n=1).

% Aortic Distensibility

In agreement with data from echocardiographic and CMR studies, we found reduced
distensibility of the aortic root in TGA patients after ASO (Grotenhuis et al., 2008;
Murakami et al., 2000). This finding was explained among other factors by the increased
aortic wall stress of the dilated aortic root (Grotenhuis et al., 2008; Murakami et al., 2000).
However, our results did not show any significant relation between the normalized aortic
cross-sectional area and its distensibility. Probably, other factors contribute to reduced
distensibility. Niwa et al. observed abnormalities of elastic fibres, smooth muscle, collagen,
and ground substance of the medial layer already in the native aortic wall of neonates with
TGA, which may affect distensibility (Niwa et al., 2001). Alternatively in surgical patients,
fibrous tissue around the transposed arteries after ASO or the pulmonary artery branches
embracing the aorta after Lecompte maneuver may impede aortic root distensibility.
Stefanadis et al. detected in animals after experimental aortic dissection severe structural
changes of the aortic wall and a decrease of distensibility and argued that this may be

caused by damaging of the vasa vasorum (Stefanadis et al., 1995; Stefanadis et al., 1993).

The impairment of arterial distensibility is a known risk factor for cardiovascular morbidity
and mortality (Laurent et al., 2006; Eren et al., 2004) because of the development of systolic
arterial hypertension (Stefanadis et al., 1993), premature atherosclerosis (Farrar et al., 1991)
and aneurysm formation (Wilson et al., 2003). It may also adversely affect ventriculo-
arterial coupling due to the increased ventricular afterload, with the consequence of LV
hypertrophy and dysfunction in the long-term (Eren 2004; Mottram et al., 2005; Lartaud-
Idjouadiene et al., 1999). In addition, we found that the decreased aortic distensibility is
accompanied by increased LA volumes. LA size has been reported to be a marker of LV
diastolic dysfunction (Pritchett et al., 2005; Kaminski et al., 2011). Therefore, our data
suggest that impaired aortic distensibility is likely to contribute to LV diastolic dysfunction
in TGA patients.
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< Aortic Pulse Wave Velocity

Another surrogate marker for an impaired aortic elasticity is the increase of PWV. PWV
was not increased in children after one-stage ASO, but adult patients who underwent one-
stage ASO had a significantly higher PWV than controls. Previous studies which analyzed
aortic PWV after ASO revealed conflicting results. While Grotenhuis et al. observed an
increased aortic PWYV investigating a small cohort of 15 patients by CMR with an age range
from 12-21 years (Grotenhuis et al., 2008), Agnoletti et al. found normal data by using
applanation tonometry in children aged 5-7 years (Agnoletti et al., 2008). Considering that
we evaluated both, children and adults, we are in agreement with these studies, as we found
a normal PWV in small children and increased values in adolescents and young adults.
However, an increased PWV can be expected within an aortic root with reduced

distensibility, which was demonstrated in this and previous studies (Grotenhuis et al., 2007).

4.7 Study Limitations

There are some limitations to the present study. Because some congenital heart diseases are
relatively rare, the sample size of patients in each subgroup is relatively small, and that
made it difficult to detect correlations within subgroups. The range of age in our patients
was high (between 1 and 64 years). However, the mean of age, height, weight, and BSA
were not significantly different as compared to matched normal controls. In addition,
patients younger than 7 years old (25.61%) had to be sedated with midazolam and propofol,
which had a slight influence on blood pressure. The change of blood pressure may have an
effect on myocardial perfusion. However, there were no patients or normal controls with
severely reduced blood pressure in this study. Moreover, the ECV and LGE are not affected

by reduced blood pressure.

In addition, the heart rate in children is usually higher than in adults and this may affect the
quality of the images. All CMR exams were performed in all patients due to clinical
indication. However, a comparison CMR with conventional coronary angiography is limited
because they were not indicated in all patients. In some TGA patients, PWV and AR
assessment were not possible because of metal artefacts from surgical implants.
Nevertheless, we have reported the application of CMR in the assessment of myocardial
blood flow, viability, and diffuse fibrosis in congenital and acquired heart disease and aortic
function in TGA patients after ASO. The CMR protocol was not completed in some

patients, because they woke up early from sedation.
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5. SUMMARY

Myocardial ischemia may occur after surgical correction of congenital heart defects
involving the coronary arteries, in patients with congenital coronary artery anomalies, or in
acquired heart disease. To assess myocardial ischemia disease in children, we used cardiac
MRI as a non-invasive and radiation-free method to evaluate myocardial perfusion,
viability, diffuse myocardial fibrosis, and heart function, to guide further therapy and for a

better understanding of the pathophysiology of the microcirculation.

In this study, a total of 77 patients and 68 healthy controls were enrolled. In 13 TGA
patients (26.5%) with known or suspected coronary problems, such as occlusion, stenosis or
hypoplasia. We found that 7/13 (53.8%) had regional ischemia, scar tissue in 4/13 (30.8%)
and regional or global impairment of LV function in 4/13 (30.8%). In addition, absolute
quantification of myocardial perfusion showed that coronary blood flow was impaired, and
T1 mapping showed extracellular matrix expansion suggestive of diffuse myocardial
fibrosis. As a consequence of our findings, one patient received MIDCAB surgery, and 4

patients (30.8%) were treated medically.

In another TGA group (n=36) with patent epicardial coronaries, we also found that global
coronary blood flow is impaired after the ASO. In addition, T1 mapping showed an increase

of ECV. However, no focal regions of hypoperfusion or LGE were found in this group.

In addition, in TGA patients with single-stage ASO, aortic root dilatation and impaired
bioelastic properties of the thoracic aorta were present and were related to LV diastolic
dysfunction but we did not find a significant association of aortic stiffness and myocardial

perfusion reserve.

In patients after Ross operation (n=12), coronary blood flow was not significantly reduced
as compared to matched normal controls, and only 1 patient showed a perfusion defect.
However, we found that mean ECV was increased, and mean LVEF was significantly

reduced in this group.

In BWG patients (n=7), we found regions of perfusion defects in 4/7 (57.1%) of patients.
Scar tissue was detected in 5 cases (71.4%), and LVEF was significantly impaired in BWG

patients.

In patients with a history of Kawasaki Syndrome (n=4), a region of impaired myocardial

perfusion was present in one patient. Global MBF at stress, and MPR were impaired in this
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group. LGE was not present. Additionally, in other patients with coronary problems,
including an aberrant LCA (n=1), coronary fistula (n=1) and status post heart
transplantation (n=2) our study showed that CMR imaging can be used to detect regional
myocardial ischemia by visual qualitative, semi-quantitative, and quantitative myocardial
perfusion analysis. In addition, LGE CMR also was used to uncover regions of focal

myocardial fibrosis in this population.

The present study shows that CMR imaging can provide a comprehensive assessment of
myocardial perfusion, viability and function, and myocardial tissue characteristic in children
with congenital and acquired heart disease. We used CMR as a non-invasive method for
evaluation myocardial perfusion in children with a spectrum of cardiac diseases.
Importantly, this is the first study that used quantification of myocardial perfusion to
measure absolute MBF in such diseases. We found that it is a useful method for the early
diagnosis of myocardial ischemia in children, even in the absence of ischemic symptoms.
The combination of first-pass perfusion imaging and LGE can increase the diagnostic
accuracy for the detection of ischemic heart diseases. Contrast enhanced CMR provides an
accurate quantification of areas of scar and viable tissue in children. T1 mapping as used in
our study can additionally detect diffuse myocardial fibrosis. It provides information about
myocardial tissue pathology and seems to be a useful method for assessment of interstitial

fibrosis in children with congenital and acquired heart disease.

In conclusion, the present study provides new evidence with CMR techniques of increased
diffuse myocardial fibrosis in TGA patients after ASO, and in patients after Ross. In
addition, assessment of aortic function in TGA patients after ASO showed that the aortic
wall is stiffer than in controls, which may be an important cardiovascular risk factor.
Therefore, we suggest that these patients have regular follow-ups after ASO even in

adulthood to detect early onset of degenerative cardiovascular disease.
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