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1 Introduction 

1.1 Longevity phenotype 

Longevity is often defined as a complex, polygenic multifactorial phenotype that involves 

survival to an exceptional age such as 90 years or older, or the potential to survive beyond the 

species-specific average age at death (Murabito et al. 2012). This definition involves not only the 

individual’s ability to achieve old age but also population-level mortality, measured in this case 

by mean age at death of a population (or life expectancy) (De Benedictis and Franceschi 2006). 

Life expectancy is the average number of years that a person at a specific age can expect to live, 

assuming that age-specific mortality levels remain constant (Oeppen and Vaupel 2002). Over the 

past two centuries, in developed countries improvements in standard of living and health care 

have resulted in a significant increase in life expectancy at a steady pace in both males and 

females. For example, this can be illustrated well in Germany’s recent history. During the 

separation of Germany, mortality in East Germany was comparatively higher than West 

Germany. However, post-reunification (1989-1990), mortality in East Germany declined among 

the oldest-old, largely due to improved medical, social, and economic improvements even for the 

elderly (Oeppen and Vaupel 2002). The average life expectancy in 75 to 85 years in developed 

countries (Oeppen and Vaupel 2002; Christensen et al. 2006). As there has been a linear 

acceleration in life expectancy since the 1900s, life expectancy trajectories do not appear to be 

approaching a maximum. Recent studies have shown that there is an increase in the number of 

elderly populations as the occurrence of age-related diseases is significantly declining with 

increase in lifespan (Oeppen and Vaupel 2002; Manton et al. 2006). 

 

The longevity phenotype, without the consideration of health and physical or cognitive function, 

reflects the overall lifespan. Therefore, it is a heterogeneous phenotype that is influenced by 

genetic factors as well as by non-genetic factors such as healthcare, nutrition and lifestyle 

(Murabito et al. 2012). It is commonly accepted that genetic variation explains around 30% of the 

variability in adult human lifespan and that environmental factors contribute to the remaining 

70% in the average-lived populations. However, in populations with more exceptional survivors, 

the genetic contribution to lifespan may be a lot higher (McGue et al. 1993; Herskind et al. 1996; 

Willcox et al. 2008).  
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Longevity studies focus on long-lived individuals (LLI), that is, people surviving to the 95th 

percentile (and beyond) of their respective birth cohort-specific age distributions (Gudmundsson 

et al. 2000). In Germany, it is 95 years for females and 92 years for males according to the 

Human Mortality Database (http://www.mortality.org/). In 1980, it was proposed that one has to 

markedly delay both morbidity and disability (compression of morbidity hypothesis) towards the 

end of life in order to survive to a 100 years (Fries 1980). Centenarians or individuals aged 100 

years or more, exceed the average human life expectancy by 20 to 25 years, live mostly in good 

health and show a rapid decline towards the end of their life (Hitt et al. 1999). They are 

considered as models for successful or healthy ageing as centenarians represent a unique 

population with a remarkable capability to escape or postpone major age-related diseases until 

their mid-nineties (Franceschi and Bonafè 2003; Engberg et al. 2009). Healthy ageing is defined 

as a combination of old age and health, that is, absence of diseases and disabilities along with 

high physical and cognitive functional capacity and in additional, being socially active (Rowe and 

Kahn 1997). Longevity studies mainly focus on lifespan, whereas healthy ageing concentrates on 

healthspan. However, both lifespan and healthspan are closely related as LLI, who live 

exceptionally long also tend live in good health for most of their lives (Brooks-Wilson 2013). The 

gradual increase in the number of centenarians in developed countries at a rate of 8% per year is 

largely attributed to environmental factors (such as improvements in lifestyle and health care) that 

led to a steady decline in early and late-life mortality (Vaupel 1995; Kirkwood 2008). The 

frequency of centenarians in the global population is approximately 1 in 10,000 persons. The 

number of centenarians in the world is expected to increase from 316,600 in 2011 to 3.2 million 

in 2050 (United Nations Population Fund, 2012).   

 

A new subpopulation of extraordinarily LLI has arisen within the centenarian population, called 

supercentenarians - people aged 110 years or more. Supercentenarians have emerged consistently 

from the 1970s and the numbers have been growing since  as shown in Figure 1-1 (Robine and 

Vaupel 2001). Until now Jeanne Louise Calment, a French supercentenarian has been confirmed 

and validated to have the longest human lifespan in history, living to the age of 122 years and 164 

days (Robine and Allard 1998). As of July 2014, there are 70 validated living supercentenarians, 

65 females and 5 males (Young and Coles 2014). Supercentenarians appear to be more 

phenotypically homogeneous with respect to morbidity and function than centenarians 

(Schoenhofen et al. 2006; Sebastiani and Perls 2012). Lethal diseases such as cardiovascular 

disease and stroke were found to be less common in supercentenarians than in centenarians 

(Schoenhofen et al. 2006).  
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Figure 1-1: Number of living supercentenarians: Number of validated living supercentenarians increasing over the 

years (Figure from http://www.grg.org). 

 

It was hypothesized that LLI have a low number of disease associated variants and/or an increase 

in the number of protective variants that may delay age-related diseases, thereby leading to a 

longer, healthier life (Perls and Terry 2003). Studies have shown that centenarians either delay or 

escape age-associated diseases such as heart disease, stroke, diabetes and Alzheimer's disease 

until very late in life, often past eighty years of age or later (Evert et al. 2003). It was also seen 

that most of the centenarians, in spite of the presence of diseases, delayed disability until the 

mean age of 93 years, which indicates that genetic influence enables the LLI to remain 

independent for a long time (Hitt et al. 1999). A  longevity genome-wide association study 

(GWAS) reported that LLI share the same number of risk alleles for age-related diseases such as 

coronary artery disease and type 2 diabetes compared with younger controls from the same 

population (Beekman et al. 2010). More recently, Sebastiani and co-workers published that LLI 

carried a similar number of disease variants, when compared to the Venter (Levy et al. 2007) and 

Watson (Wheeler et al. 2008) genomes, and yet survived to the most extreme ages (Sebastiani et 

al. 2011). It was then concluded that the number of disease-associated variants are not lower in 

LLI as proposed earlier, but there is an enrichment for longevity-associated variants that may 

resist the damaging effects of disease variants and offer protection from various age-related 
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diseases (Sebastiani and Perls 2012) (see Figure 1-2). These studies support the existence of 

buffering mechanisms, which indicates that the 'longevity-enabling' genes may act to buffer the 

deleterious effects of genes causing age-related diseases. Hence, the frequencies of deleterious 

genotypes might be even higher among LLI because their protective genotype allow the disease-

related genes to accumulate with extreme lifespan (Bergman et al. 2007). As they are exceptional 

survivors, studies on centenarians and supercentenarians can help discover common and rare 

genetic variants predisposing to extreme longevity, and thus gain a better insight into the genetic 

basis for human longevity. 

 

 

Figure 1-2: Disease and longevity variants: Prevalence of disease and longevity-associated variants with increasing 

age (Figure from Sebastiani and Perls 2012) . 
 

1.2 Genetic epidemiology of human longevity 

Studying centenarians, family-based cohorts or population-based cohorts, can help to identify 

variants that are enriched or deprived with age and, thereby have a higher or lower frequency in 

the population strata of increasing age (Tazearslan et al. 2012). As presented in Table 1-1 twin 

studies have shown that longevity can be inherited and the contribution of the genetic variation is 

about 25 to 30% (Herskind et al. 1996; vB Hjelmborg et al. 2006). Further, family studies on 

centenarians in different populations have suggested a significant genetic contribution to 

exceptional longevity (Abbott et al. 1974; Gudmundsson et al. 2000; Perls et al. 2002). The 

genetic influence on longevity from population-based studies is approximately 15 to 25% (Kerber 

et al. 2001; Mitchell et al. 2001; Murabito et al. 2012) and ranges from 20 to 30% in twin 

registers (McGue et al. 1993; Herskind et al. 1996). A study has been reported that African-

Americans have a lower heritability rate than Europeans or Caribbean-Hispanic populations, 

which shows that genetic influences on longevity can vary by ethnicity (Lee et al. 2004).  
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Many studies have shown that longevity clusters within families and that there is an increase in 

the genetic effect after the age of 60 (Gavrilova et al. 1998; Perls et al. 2000; vB Hjelmborg et al. 

2006; Sebastiani et al. 2013). A study was conducted with the U.S. 1900 birth cohort in the New 

England centenarian study (NECS) to analyse the survival rate of siblings of centenarians. It was 

observed that male and female siblings of centenarians have a greater probability of surviving to 

the age of 100: males 16.95-fold (95% CI, 10.84–23.07) and females 8.22-fold (95% CI, 6.55–

9.90), when compared to siblings of those with average life expectancy (Perls et al. 2002). A 

population-based study in Iceland showed that the first generation relatives of LLI are twice as 

likely to survive to the same age as compared to controls (Gudmundsson et al. 2000). The 

immediate generation of relatives of Jeanne Calment were shown to have a 10-fold or higher 

probability of living to 80 years or more compared with a control family of average age (Robine 

and Allard 1998). Furthermore, offsprings of centenarians are comparatively healthy, with a 

marked delay in lethal age-related diseases such as Alzheimer’s disease, cancer and 

cardiovascular disease (Atzmon et al. 2005; Schoenmaker et al. 2006; Sebastiani et al. 2013).  

 

Exceptional survival: centenarians Sibling survival probability 

 

New England Centenarian Study, likelihood of achieving age 100 

(Perls et al. 2002) Women 8-fold; men 17-fold 

Okinawa Centenarian Study likelihood of achieving age 90  

(Willcox et al. 2006a) Women 2.6-fold; men 5.4-fold 

  Twin registries and population based samples Heritability 

 

Twin registries (McGue et al. 1993; Herskind et al. 1996) 20% to 30% 

Old Order Amish (Mitchell et al. 2001) 25% 

Utah Population Database (Kerber et al. 2001) 15% 

Framingham Heart Study (Newman et al. 2012) 16% 

Medicare recipients, New York City (Lee et al. 2004) 

 European ancestry 26% 

African-American 4% 

Caribbean-Hispanic 29% 

 

Table 1-1: Genetic contribution to longevity: Genetic contribution to longevity from different studies (Murabito et 

al. 2012). 

 

In 1977, Kirkwood proposed the disposable soma theory, which states that longevity requires 

investments in somatic maintainance and therefore, the resources available for reproduction is 

reduced (Kirkwood 1977). The hypothesis indicates that women exhaust resources with repeated 

pregnancies that would otherwise be available for maintainance and repair of the body (Kirkwood 

and Rose 1991).  Evolutionary theories predict a trade-off between fertility and longevity, where 
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the chances of a higher survival comes at a cost of lower reproduction, which implies that 

individuals who bear fewer offsprings may live longer than those who have more number of 

offsprings (Westendorp and Kirkwood 1998; Kirkwood 2005; Mukhopadhyay and Tissenbaum 

2007; Mitteldorf 2010; Tabatabaie et al. 2011). It has also been observed that the population of 

centenarians is mostly dominated by females, constituting over 85% (Max Planck Institute for 

Demographic Research, 2003). The reasons for such dominance could involve a number of 

factors (social, cultural, environmental, biological and genetic), although at present, they are not 

completely understood.  Moreover, females are more resistant to age-related diseases as 

compared to men. Estrogen could have a protective role for cardiovascular diseases in females 

due to its effective serum lipids (Waldron 1995) and males are more exposed to infections, 

leading to the immunocompetence hypothesis, which suggests a significantly low effect of 

testosterone on immunity (Crimmins and Finch 2006). Behavioural factors such as smoking and 

alcohol consumption (‘risky behaviour’, formerly predominant in males) has also been proposed 

to explain the gender difference in mortality (Wallace 1996). Cigarette smoking increases the risk 

of several serious diseases such as lung cancer, which affect  men more than females, but this 

cannot be a primary factor, as it has been shown that the sex difference is consistent among non-

smokers as well (Waldron 1983; Waldron 1993). Although it is not clearly known what 

proportion of the gap reflects behavioural and biological factors and how much is due to genetic 

influences, we commonly observe a higher number of female centenarians in a population 

compared to males. However, the fewer men who reach the age of 100 are usually more healthy 

than a 100-year-old female (Franceschi et al. 2000).  

 

1.3 Genetic influences on longevity 

1.3.1 Findings in model organisms 

Studies in model organisms can be used to explore the genetic effect in longevity and have 

provided abundant evidence for molecular pathways such as metabolism, anti-oxidant activities, 

and maintenance and repair mechanisms that extend lifespan nearly tenfold (Ayyadevara et al. 

2008; Kuningas et al. 2008). The common genetic models used in longevity research are 

Saccharomyces cerevisiae (baker’s yeast), Canenorhabditis elegans (round worm), Drosophila 

melanogaster (fruit fly) and Mus musculus (common mouse) (Christensen et al. 2006). Selected 

model organisms and their genetic findings are listed in Supplementary Table 12-1. Model 

organisms are useful to study the genetic variants associated with longevity as they exhibit short 
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lifespan along with the ability to control their environment and manipulate the genotype. In 

addition, there is a considerable genetic homology between humans and model organisms.  

 
Model organism No. of longevity-associated genes  

Saccharomyces cerevisiae 825 

Canenorhabditis elegans 741 

Drosophila melanogaster 140 

Mus musculus 112 

 

Table 1-2: Number of longevity-associated genes: Number of longevity-associated genes in model organisms listed 

in GenAge database (Tacutu et al. 2013). 

 

Today, many databases and tools for the biology and genetics of ageing and longevity are freely 

available, such as the Human ageing genomic resources (HAGR) (Tacutu et al. 2013), which 

hosts a variety of curated databases of candidate genes associated with longevity in humans and 

in model organisms. The public database GenAge (de Magalhães and Toussaint 2004) provides a 

comprehensive overview of the genetics of human ageing and longevity by incorporating findings 

from model organisms to humans (see Table 1-2). A number of pathways and associated genes 

contributing to longevity that have been revealed by genetic manipulations in model organisms 

are also available in the NetAge database (Tacutu et al. 2010) (see Table 1-3). 

 

Pathway No. of longevity genes 

Insulin signaling 39 

mTOR signalling 19 

Focal adhesion 28 

Adherens junction 10 

Wnt signaling 17 

Notch signaling 5 

DNA repair 36 

 

Table 1-3: Number of longevity-genes reported in NetAge: Number of longevity genes associated with various 

pathways identified from model organisms and reported in the NetAge database (Tacutu et al. 2010) . 

 

With respect to longevity research, the most important study in C. elegans showed that the 

insulin-like signaling pathway regulates lifespan and metabolism in the round worm. The first 

evidence for genetic effect on lifespan reported in C. elegans referred to the gene age-1 

(Friedman and Johnson 1988; Kuningas et al. 2008). Here, it was shown that alteration in genes 
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such as daf-2 and age-1 were able to bypass the dauer formation, thereby increasing the lifespan. 

The same was later observed in D. melanogaster (Giannakou and Partridge 2007) as well as in 

female M. musculus, where mutations in the daf-2 homologue gene increase lifespan and also 

increase stress and starvation resistance. However, in the case of male knock-out mouse models, 

mutations in daf-2 led to a decrease in lifespan, insulin resistance and diabetes, while increase in 

lifespan was observed in fat-specific insulin receptor knockout mice (Holzenberger et al. 2003). 

The results clearly demonstrated that vertebrates are more complex to study but altogether, 

evidence shows that a reduced insulin signaling system increases life span in model systems.  

 

 

Figure 1-3: Lifespan regulation in C. elegans: daf-2, daf-16 have been identified as important genes in regulating 

lifespan in C. elegans. A high daf-16 expression promotes longevity in C.elegans (Gems and McElwee 2003). 

 

Lifespan extension caused by daf-2 mutations is dependent upon the presence of the dauer 

formation protein daf-16, an orthologue of mammalian forkhead box O (FOXO) transcription 

factors. Mutations in daf-16 suppress all phenotype of daf-2 and age-1 mutants, including 

lifespan extension, dauer arrest and reduced fertility (Lin et al. 1997). Overexpression of daf-16 

increases lifespan by approximately 20%, whereas a loss of function allele shortens it (Henderson 

and Johnson 2001) (see Figure 1-3). In D. melanogaster, overexpression of dFOXO (homologue 

for DAF-16) similarly extends lifespan (Hwangbo et al. 2004). It has also been observed that 

mice lacking the insulin receptor or the insulin-like growth factor receptor-1 live longer than 

wild-type mice, which implies that active FOXO transcription factors support mammalian 

longevity (Carter and Brunet 2007). The mammalian target of rapamycin (mTOR) is an 

evolutionarily conserved nutrient-sensing protein kinase that plays a crucial role in cell growth, 
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proliferation and metabolism (Kuningas et al. 2008). Various studies in model organisms such as 

yeast (Kaeberlein et al. 2005), roundworms (Vellai et al. 2003) and flies (Kapahi et al. 2004) have 

shown that inhibition of TOR has resulted in an increase in lifespan. Studies have also shown that 

caloric restriction inhibits mTOR activity, leading to longer lifespan, thus illustrates an 

association between nutrient intake and longevity (Christensen et al. 2006). 

 

Genetic studies from model organisms provide a framework for understanding the factors by 

which life span is determined. However, investigation of human homologues of these genes 

would certainly be more complicated because longevity and susceptibility to disease-associated 

ageing in human is influenced by multiple genes, as well as by the environment.  

1.3.2 Findings in humans 

The genetic contribution to the variation in adult human lifespan is approximately 25 to 30% 

(Herskind et al. 1996; vB Hjelmborg et al. 2006) and is likely to be driven by several genes, each 

of which has small effects (Kirkwood 2005). Because of its high complexity and strong 

environmental influences, so far the number of validated genes influencing human longevity is 

limited (Deelen et al. 2013). Longevity genes that have been previously explored in model 

organisms have eventually driven the search for longevity genes in humans.  

 

Based on previous findings in model organisms, genes involved in insulin-IGF1 signaling and the 

mTOR pathway (Lin et al. 1997; Lamming and Sabatini 2011) can be considered strong 

candidates for human longevity. However, very few validated findings have been reported 

(Bonafè et al. 2003; Suh et al. 2008; Albani et al. 2011; Passtoors et al. 2013) and most of the 

initial findings have not been replicated in different study populations. Other candidate genes that 

have been reported to influence human longevity are genes involved in antioxidant activity 

(superoxidase dismutases) (Soerensen et al. 2009), Cholesteryl ester transfer protein (CETP) 

(Barzilai et al. 2003),  and Sirtuin (SIRT3) (Rose et al. 2003; Bellizzi et al. 2005). However, they 

also proved to be difficult to replicate in independent longevity populations (Nebel et al. 2005; 

Lescai et al. 2009; Di Cianni et al. 2013; Gentschew et al. 2013). So far, only two genes listed 

below, where the genetic variation influences human longevity, have been consistently replicated 

in various populations (Deelen et al. 2013).  

 

i) APOE: apolipoprotein E gene is involved in the regulation of lipoproteins (Kervinen et al. 

1994; Schächter et al. 1994; Deelen et al. 2011; Nebel et al. 2011). The APOE ε4 allele, which is 
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found significantly less in centenarians, confers a higher risk of Alzheimer’s disease (AD) and 

cardiovascular disease, while ε2 is enriched in LLI and is associated with a beneficial lipid profile 

and may offer a protective effect for Alzheimer’s disease and cardiovascular disease (Schächter et 

al. 1994; Christensen et al. 2006; Bennet et al. 2007).  

 

ii) FOXO3A: forkhead box O3A gene acts as a transcription factor for multiple genes and is 

involved in processes such as cellular stability mechanisms and stress response. Variations in the 

FOXO3A gene revealed stronger effects in the centenarians compared to younger controls (Suh et 

al. 2008; Willcox et al. 2008; Anselmi et al. 2009; Flachsbart et al. 2009; Li et al. 2009c; 

Soerensen et al. 2010).   

 

The most common study designs applied to identify genetic variants involved in human longevity 

are linkage analysis, longitudinal cohort design or case-control association studies. In longevity 

research, linkage analysis with long-lived sib-pairs measures the frequency of shared alleles that 

occur more often than expected between two sibs with the same phenotype, which then indicates 

that a gene involved with longevity is located in a region nearby (Willcox et al. 2006b). Linkage 

analysis has the advantage of being robust to population stratification (differences in allele 

frequencies between subpopulations due to ancestry, ethnicity or geography differences). 

Contradictory results have been reported with small scale genome-wide linkage studies conducted 

with a small sample size (Puca et al. 2001; Reed et al. 2004; Boyden and Kunkel 2010). 

However, recently, the largest longevity linkage analysis to date was performed in the Genetics of 

Healthy Aging (GEHA) in Europe study with 2,118 nonagenarian European sib-pairs. As a result, 

four regions (14q11.2, 17q12-q22, 19p13.3-p13.11 and 19q13.11-q13.32) that showed linkage 

with longevity were reported. Fine mapping of these linkage regions identified a variant 

(rs4420638) near APOE at the 19q locus as significantly associated with longevity (Beekman et 

al. 2013). Overall, this method has been proved disadvantageous in the case of human longevity 

research, primarily due to the lack of availability of multi-generational DNA or long-lived sib-

pairs. Large sample size is required to achieve the statistical power needed to identify genetic 

regions involved in longevity (Risch and Merikangas 1996; Christensen et al. 2006).  

 

Longitudinal studies are based on a population of individuals enrolled and followed over time to 

collect periodically phenotype data that includes interviews, physical and cognitive tests and 

collection of biological samples. In Denmark, a longitudinal study of the Danish 1905 cohort 

(ages 92 to 93) was established, which was a unique opportunity to investigate the genetic 
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contribution to human longevity (Nybo et al. 2003). The Danish 1905 cohort is special as the 

selection from birth to the age of 92-93, and selection from age 92-93 to 100 is 1 in 20 individuals 

(Soerensen 2012). Though the study design is less susceptible to biases in the control group in 

comparison to case-control studies, it is expensive and time consuming to follow a large group of 

people over a very long period of time to collect the data concerning longevity studies 

(Christensen et al. 2006). On the other hand, a cross-sectional approach is dependent on the 

assumption that there is no secular change in the frequency of the observed gene variant. The 

assumption was explored in a study (Lewis and Brunner 2004), and it was concluded that this 

hypothesis can be debatable, as gene frequency differs in populations and gene-environment 

interactions exist. The limitation could be overcome by conducting long-term follow-up or 

longitudinal studies to ensure verifiable results. Therefore, in spite of the logistical challenge, it is 

reasonable to carry out follow-up studies on LLI given the high mortality rate at advanced ages. 

 

Alternatives to linkage analysis and longitudinal studies, where variants with small effects can be 

detected, include association studies or case-control studies. Association studies are designed to 

compare the allele or genotype frequencies of genetic variants in LLI (cases) with younger 

controls. In longevity research, case-control association studies are by far the most common 

approach implemented. Candidate gene studies have pointed to genes involved in lipid 

metabolism and insulin signaling as well-verified longevity influencing loci such as APOE 

(Schächter et al. 1994; Blanché et al. 2001; Bennet et al. 2007) and FOXO3A (Willcox et al. 

2008; Anselmi et al. 2009; Flachsbart et al. 2009; Li et al. 2009c) . It is very important to choose 

an appropriate control individuals in such a way that they differ from cases with regard to 

phenotype only and match them as much as possible to other variables, such as gender, ethnicity 

and ancestry, to avoid false-positive findings (Nebel and Schreiber 2005). Further, in order to 

confirm initial findings of case-control studies, replication in additional longevity populations is 

now a common practice followed in human longevity research (Soerensen 2012). The most 

widely tested genetic markers in association studies are bi-allelic single-nucleotide variants 

(SNVs). SNVs constitute a single base change in the DNA sequence but they can also occur at a 

very low-frequency (minor allele frequency (MAF<1%). Single nucleotide polymorphisms 

(SNPs) are SNVs that occur in the general population usually with a defined minor allele 

frequency (e.g. MAF>5%). They are mostly validated in different populations and are included in 

the single nucleotide polymorphism database (dbSNP). As SNVs are often observed in only one 

or few individuals, some of them are not well characterized and, thus not validated in dbSNP. 

Some of the SNVs located in the coding regions could alter the protein by an amino acid 
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substitution (nonsynonymous variants), and are thus more likely to affect the gene function 

(Kenny and Bustamante 2011; Pavlopoulos et al. 2013).  

 

Apart from candidate gene studies, hypothesis-free approaches such as genome-wide association 

studies (GWAS) have also been applied to study genetic variation in human longevity. GWAS 

involve rapidly scanning and prioritizing markers across the genome and eventually identify 

genetic variations associated with longevity. These studies should have been a favourable method 

to determine new genetic variants involved in longevity, as GWAS previously has shown to be 

successful for the discovery of novel genes involved in many common complex conditions such 

as Crohn’s disease and inflammatory bowel disease (Klein et al. 2005; Duerr et al. 2006; 

Wellcome Trust Case Control Consortium 2007; Manolio et al. 2008; Franke et al. 2010). 

However, six longevity GWAS studies have been conducted to date (Newman et al. 2010; Deelen 

et al. 2011; Malovini et al. 2011; Nebel et al. 2011; Walter et al. 2011; Sebastiani et al. 2012) 

(Supplementary Table 12-2) and only variants in or near APOE have achieved genome-wide 

significance (GWS: generally p ≤ 5x10-8) for human longevity (Deelen et al. 2011; Nebel et al. 

2011). The reason for such limited success is probably due to a combination of factors, including 

the heterogeneity of the phenotype, the influence of environmental factors that vary widely across 

populations, and mostly, the small sample size used for longevity GWAS. Many successful 

GWAS with replicated signals usually have a large sample size, sometimes more than 10,000 

(Murabito et al. 2012). Therefore, to increase study power to detect new association signals for 

the longevity phenotype, GWAS are increasing the sample size through meta-analysis (Deelen et 

al. 2013). Recently, a GWAS meta-analysis was performed with 7,729 LLI of European descent 

(85 years and above) and 16,121 younger controls (less than 65 years), followed by replication in 

an additional set of 13,060 LLI and 61,156 controls (Deelen et al. 2014). In this study, a novel 

locus on chromosome 5q33.3 that associates with survival beyond 90 years (OR=1.10, 

P=1.74×10−8) was identified and replicated. The minor allele of the lead SNV (rs2149954), 

located in an intergenic region, is thought to promote human longevity by lowering the risk of 

mortality owing to stroke and non-cardiovascular causes (Deelen et al. 2014). Many candidate 

genes have been reported to be involved in human longevity, but very few have been confirmed 

to influence exceptional survival to old age despite the wide range of study designs utilized 

(Schächter et al. 1994; Puca et al. 2001; Willcox et al. 2008; Anselmi et al. 2009; Flachsbart et al. 

2009; Pawlikowska et al. 2009; Deelen et al. 2011; Nebel et al. 2011; Bell et al. 2012; Passtoors 

et al. 2012; Passtoors et al. 2013). Given the complex phenotype, longevity is assumed to be 

determined by a combination of many genetic variants with rather small effects (Yashin et al. 
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2010). The inconsistency in findings from different studies can be a consequence of various 

factors such as sample size selection and poor replication approaches. Underpowered studies can 

result in false-positive findings that rightfully fail to replicate (Brooks-Wilson 2013). 

Furthermore, the association between variations in genes for longevity can be population-specific 

or can have a gene-environmental component or both, which is why meta-analysis studies, where 

different populations well matched for ethnicity with different genetic background are combined, 

may obscure true signals (Brooks-Wilson 2013). Today, with the use of recent technological 

advances, next-generation sequencing (NGS) can act as a powerful tool to identify associations 

between genetic variants and human longevity (de Magalhães et al. 2010).  

 

1.4 Next-generation sequencing to detect variants associated with human 

longevity 

Next-generation sequencing (NGS) or second-generation sequencing is considered the state-of-

the-art sequencing technology and was motivated by the first generation sequencing of genomes 

using Sanger sequencing, which is time-consuming and expensive. The principle behind next-

generation sequencing is to randomly fragment DNA into shorter pieces and then construct a 

DNA library, which is then sequenced at a high coverage followed by mapping to a reference 

genome of the species; on the other hand, reads can also be assembled de novo. The read length 

from NGS is lower when compared with Sanger sequencing, thus generating a large amount of 

data faster and more cost effectively (de Magalhães et al. 2010).  

 

In 2005, 454 Life Science introduced the first commercial machine (GS20, Roche) and since then 

many other sequencing technologies from Illumina and Applied Biosystems have become popular 

(Liu et al. 2012). Comparison between the two most popular technologies, SOLiD and Illumina 

have been listed in Table 1-4. The cost of sequencing has decreased from several million dollars 

to less than $5,000 for one genome and continues to decrease. In January 2013, Archon Genomics 

X Prize announced a $10 million grand prize competition for the team that reaches $1,000 per 

genome for sequencing 100 human genomes in a month to an efficiency of 1 error per 1,000,000 

bases, with 98% completeness along with identification of structural variations (Kedes and 

Campany 2011). However, the competition was eventually cancelled due to the immense price 

drop in NGS (GenomeWeb 2013). In January 2014, Illumina launched HiSeq X Ten Sequencer, 



Introduction  14 

 

which promises the first $1,000 genome at 30x coverage (Illumina 2014). This makes whole 

genome sequencing more feasible to study genetic variation in humans. 

 

  

Illumina 

 

SOLiD v4 (Sequencing by 

Oligonucleotide Ligation and Detection) 

 

Method 

 

Sequencing by synthesis 

 

Ligation and two-base coding 

 

Read length 

 

50 to 300 bp 

 

50 + 35 bp or 50 + 50 bp 

 

Accuracy 

 

98% 

 

99.9% 

 

Reads per 

run 

 

3 billion 

 

1.2 to 1.4 million 

 

Time per run 

 

3 to 10 days 

 

1 to 2 weeks 

 

Costs per 

million bases 

 

$0.05 to $0.15 

 

$0.13 

 

Advantage 

 

High throughput 

 

Accuracy 

 

Disadvantage 

 

Equipment can be very expensive. It 

requires high concentrations of DNA. 

 

It is slower than other methods.  

 

Table 1-4: Comparison of sequencing technologies: Comparison of SOLiD and Illumina sequencing technologies 

that have been implemented in this project (Liu et al. 2012) 

 

Next-generation sequencing represents new opportunities for the investigation of this complex 

phenotype as whole genome and exome sequencing of exceptionally old individuals provides a 

very high level of resolution of variant discovery to understand the genetic basis of human 

longevity. Detection of variants with a functional impact may help interpret why LLI delay or 

escape age-related diseases. Sequencing can also help to detect low-frequency (MAF≤10%) and 

rare (MAF<1%) variants, in comparison to GWAS that focuses on common variants (MAF>10%) 

(de Magalhães et al. 2010). However, to detect rare variants, large sample sizes are required to 

distinguish true genetic signals and to avoid false-positive results. Some studies have suggested 
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that low-frequency variants play an important role in the genetic architecture of the studied 

longevity phenotype and also contribute to the missing heritability (Vaupel 2004; Chan et al. 

2014). Also, low-frequency variants may go undetected in a GWAS study as the statistical power 

to such variants with MAF≤10% is much lower. 

 

Until now, whole genome sequencing data for one female and one male supercentenarian 

(Sebastiani et al. 2011) and whole genome sequencing of a centenarian twin pair and a middle 

aged monozygotic twin pair have been reported (Ye et al. 2013). In 2011, Sebastiani et al. 

showed that the number of known disease-associated variants in centenarians was similar to that 

of other control genomes sequenced to date, indicating that exceptional lifespan may not be due 

to the absence of known disease-associated variants. A recent study in 2013 by Ye et al. reported 

a small number (eight) of somatic variations detected in blood by whole genome sequencing of a 

centenarian twin pair and middle age monozygotic twin pair by two independent next-generation 

sequencing platforms (Illumina and Complete Genomics). The study concluded that, by using two 

independent NGS platforms, somatic single nucleotide substitutions can be detected (although 

stochastic somatic variation occurring in less than 20% of cells will go undetected), and that 

accumulation of mutations is not necessarily a result of a long-lived life. 

 

1.5 Research objectives 

There is growing interest among researchers in the complex trait of longevity; one of the primary 

reasons might be the gradual increase in life expectancy and the growing percentage of 

centenarians in the world (Vaupel 2010). It is now hypothesized that LLI carry a similar number 

of disease variants as the general population (Beekman et al. 2010; Sebastiani and Perls 2012) 

and that is a selection for longevity-associated variants, which may not only resist the damaging 

effects of disease variants but also offer protection (Bergman et al. 2007; Beekman et al. 2010; 

Sebastiani and Perls 2012). The state-of-the-art technology of next-generation sequencing 

provides a new tool to generate a large amount of data to unravel the genetic mechanisms of 

exceptional lifespan. 

 

In this project, we combine two innovative genetic platforms (next-generation sequencing plus 

high-throughput genotyping technologies) with contemporary study designs (case-control 

association studies) and statistical methods to identify new variants that may influence human 
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longevity. To reach this goal, we carried out whole genome and whole exome sequencing of six 

centenarians (108 to 114 years) of European origin (four Germans, one French and one Spanish) 

on a SOLiD and Illumina platform. As it would be very cost intensive to genotype all variants 

identified, SNVs were selected and prioritized for typing in large study populations, where 

frequencies of the selected variant were compared between LLI and younger controls to infer 

genetic influence of longevity. SNVs were selected based on two different approaches. 

 

Method 1: SNVs that may have a functional impact (MAF 1 to 50%) 

Method 1 was carried out in collaboration with the Centre de Regulació Genòmica (CRG) and the 

Centre Nacional d'Anàlisi Genòmica (CNAG), Spain. Here, we performed whole genome 

sequencing of four centenarians (two Germans, one French, one Spanish) using the SOLiD 

technology, and exome sequencing using the Illumina technology. Due to their potentially 

functional relevance based on amino-acid substitutions, exonic variants were selected for 

subsequent genotyping by combining SOLiD SNVs calls with Illumina exome SNV calls. Variant 

frequencies were annotated using the 1000 Genomes data (1000G) and the NHLBI Exome 

Sequencing Project (ESP) database. Variants that were present in at least two centenarians with 

significantly different frequencies compared with the 1000G and ESP databases (p<0.05), and 

that were found by PhyloP to be conserved, constituted a list of 116 potentially functional SNVs. 

These 116 variants were selected for further genotyping in our German study population followed 

by replication experiment of relevant association signals in additional French and Danish 

longevity samples. The detailed variant selection criteria have been explained in section 2.4.1.  

 

Method 2: Low-frequency variants with functional impact (MAF≤10%) 

Method 2 was carried out in collaboration with the Institute of Medical Informatics and Statistics 

(IMIS), Kiel. Here, we used the same sequencing data of the four centenarians (two Germans, one 

French and one Spanish). Furthermore, two more German centenarians were exome-sequenced 

using the Illumina technology. The approach focused on selecting exonic low-frequency variants 

that showed an intersection of exonic SOLiD and Illumina variant calls with a MAF≤10% in the 

1000G and ESP database. Variants with MAF≤10% were chosen mainly because they would 

have been missed out in the previous longevity GWAS study due to lack of power. Furthermore, 

low-frequency variants should be enriched for functional variants (Casals et al. 2013). The effect 

of SNVs was then determined by eight different prediction tools, where each variant was assigned 

a score of -1 or 1, whereby -1 indicates ‘no effect’ and 1 implies ‘effect’ for each tool. SNVs that 

showed a top score were selected for further analysis. Furthermore, known longevity genes and 
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pathways identified from various model organisms from the NetAge database (Tacutu et al. 2010) 

were used as filter masks for variant selection. Also, GWAS hit regions that were used as target 

regions for variant selection, were generated using our previous longevity GWAS data described 

elsewhere (Nebel et al. 2011). Each SNV of interest was visualized manually using the 

Integrative Genomics Viewer (IGV) in order to select good quality and true variants. This 

comprised a list of 51 potentially functional SNVs, which were chosen for further genotyping and 

replication experiment of relevant association signals in independent longevity samples. The 

detailed SNV selection criteria are explained in section 2.4.2.  

 

The high depth of sequencing achieved by combining SNV calls generated with the Illumina and 

SOLiD technology allowed us to mine the data confidently for variants of interest. To further 

substantiate our initial findings, selected SNVs were tested for association by means of direct 

genotyping in German LLI (n = 1,610, age range: 95 to 110 years including a centenarian subset  

n = 745) and younger controls (n = 1,104, age range: 60 to75 years) matched for ancestry, gender 

and geographical origin within Germany. The relevant association signals from the German 

population were followed up by replication in different independent longevity populations. The 

French longevity sample comprised 1,269 LLI (age range: 90 to115 years) and 1,834 younger 

controls (age range: 35 to 61 years). The Danish longevity population consisted of 910 LLI (age 

range: 94 to101 years) and 760 younger controls (age range: 60 to 72 years). The American 

population comprised 352 LLI (age range: 90 to 114 years) and 365 younger controls (age range: 

0 to 35 years) and the Italian population constituted 489 LLI (age range: 90 to 108 years) and 480 

younger controls (age range: 18 to 48 years). 
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2 Materials  

2.1 Enzymes, kits and instruments 

 

Enzymes, kits and instruments  

     

ABI TaqMan assays     Life Technologies Corporation, Foster City, CA 

Affymetrix 6.0 array    Affymetrix Inc., Santa Clara, CA  

Agilent Bioanalyzer 2100   Agilent Technologies, Germany  

Covaris™ system    Life Technologies Corporation, Foster City, CA 

End-Polishing Enzyme 1 and 2  Applied Biosystems Inc.; Foster City, CA, USA 

Illumina Genome Analyser    Illumina, Inc. San Diego, CA, USA 

Illumina Hi-Seq system   Illumina, Inc. San Diego, CA, USA 

Illumina OmniExpress BeadChip kit  Illumina Inc., San Diego, CA  

Illumina paired-end sequencing kit   Illumina, Inc. San Diego, CA, USA 

Invisorb Blood Giga Kit    Invitek; Berlin, Germany 

iPLEX™ Mass ARRAY kit    Sequenom, San Diego, CA 

Klenow enzyme    Illumina, Inc. San Diego, CA, USA 

NimbleGen Human Exome Array   Roche NimbleGen Systems GmbH, Germany 

Proteinase K      Molecular Research Center; Cincinnati, USA 

PureLink™ columns      Applied Biosystems Inc.; Foster City, CA, USA 

QIAquick PCR Purification Kit  Qiagen, Hamburg, Germany  

SOLiD™ Library Column Purification Kit Applied Biosystems Inc.; Foster City, CA, USA 

SOLiD™ Long Mate-Paired Library  Applied Biosystems Inc.; Foster City, CA, USA 

SOLiD™ Paired-End Library   Applied Biosystems Inc.; Foster City, CA, USA 

SOLiD™ 4 system    Applied Biosystems Inc.; Foster City, CA, USA 

SureSelect Human All Exon kit  Agilent Technologies, Germany  

T4 DNA polymerase    Illumina, Inc. San Diego, CA, USA 

TaqMan-Assays    Applied Biosystems; Weiterstadt, Germany 

TaqMan Universal PCR Master Mix  Applied Biosystems; Weiterstadt, Germany 
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2.2 Online databases and software 

 

Databases and software 

                 

1000 Genomes Project   http://www.1000genomes.org/ 

Affymetrix Genotyper Console  Affymetrix Inc., Santa Clara, CA 

Annovar  http://www.openbioinformatics.org/annovar/ 

BedTools  http://code.google.com/p/bedtools/ 

Bioscope     Applied Biosystems Inc.; Foster City, CA, USA 

BWA  http://bio-bwa.sourceforge.net/ 

FastQC  http://www.bioinformatics.babraham.ac.uk/ 

Genome Analysis Toolkit   http://www.broadinstitute.org/gatk/ 

Integrative Genomics Viewer   http://www.broadinstitute.org/igv/ 

Illumina GenomeStudio   Illumina, Inc. San Diego, CA, USA 

MutPred     http://mutpred.mutdb.org/ 

NCBI dbSNP     http://www.ncbi.nlm.nih.gov/SNP/ 

NetAge     http://netage-project.org/ 

NHLBI Exome Sequencing Project   http://evs.gs.washington.edu/EVS/ 

Picard  http://picard.sourceforge.net/ 

PMut      http://mmb2.pcb.ub.es:8080/PMut/ 

PLINK  http://pngu.mgh.harvard.edu/~purcell/plink/ 

PhyloP      http://compgen.bscb.cornell.edu/phyloP/ 

Polyphen-2     http://genetics.bwh.harvard.edu/pph2/ 

PS Power and Sample Size Program  http://biostat.mc.vanderbilt.edu/twiki/bin/view/ 

SAMtools  http://Samtools.sourceforge.net/ 

SIFT      http://sift.jcvi.org/ 

SNAP      https://www.rostlab.org/services/snap/ 

SnpActs     http://snpacts.ikmb.uni-kiel.de/ 

SNPs&GO     http://snps-and-go.biocomp.unibo.it/snps-and-go/ 

UCSC      http://genome.ucsc.edu/
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3 Methods 

3.1 Sequencing 

The different studies (Method 1 and Method 2) were performed in collaboration with the CRG 

and CNAG, Spain, scientists at the Institute of Clinical Molecular Biology, Kiel (ICMB - Prof. 

Dr. Andre Franke, Prof. Dr. Almut Nebel and PD Dr. Friederike Flachsbart) and scientists at 

IMIS, Kiel (Prof. Dr. Michael Krawczak and Dr. Amke Caliebe).  

 

3.1.1 Study participants 

Whole genome and exome sequencing of the six centenarians (two German males and females 

plus one French female and one Spanish female, Table 3-1) were performed with SOLiD 

(genome) and Illumina (genome and exome) technologies. All the samples belonged to the cohort 

born between 1880 and 1990; the blood samples were taken in the year 2004.When the blood 

sample were taken, the German female was 106 years old. She was raised in the city; her former 

job was that of a craftswoman and she had one daughter. The German male was 108 years old 

and was from the country side. His former job was that of a craftsman. He had a history of 

smoking for over 40 years: on average two cigarettes per day. The French female was over 114 

years old, who had a history of smoking most of her life: on average two cigarettes per day. The 

Spanish female was over 110 years old. The other two samples, sequenced at Beijing Genomics 

Institute (BGI) in China, were a German female, 108 years old, and a German male, 106 years 

old, neither of whom had any history of smoking. All participants and/or their legally authorized 

representatives took part in the written informed consent process, as required by the Institutional 

Review Boards/ local medical ethical committees of all participating countries before starting the 

study. 

 

Sample no. Country of origin Gender Age (years) 

(1) German Female 108 

(2) German Male 109 

(3) French Female >114 

(4) Spanish Female >110 

(5) German Female 108 

(6) German Male 106 

 

Table 3-1: Study participants used for whole genome and exome sequencing 
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DNA extraction 

Peripheral blood was obtained from all subjects and used for DNA extraction. For the French 

sample, DNA was obtained from a cell line. The DNA was extracted from frozen blood samples 

using the ‘Blood Giga kit’ from Invitek™ (Berlin, Germany) following the manufacturer’s 

protocol. Here, the whole blood sample was lysed in an optimized lysis buffer and proteins were 

degraded during the lysis with Proteinase K. The DNA was precipitated with the addition of 96% 

ethanol containing solution followed by washing and final elution and, lastly, resuspended in low 

salt buffer for subsequent downstream applications. For the French female sample, DNA was 

extracted from a lymphoblastoid cell line pellet using the classical phenol chloroform method, 

followed by an isopropanol DNA precipitation and an ethanol wash. DNA was resuspended in TE 

10:1.  

 

3.1.2 SOLiD technology 

Whole genome sequencing 

Whole genome sequencing was performed using the SOLiD™ 4 system (Applied Biosystems, 

Foster City, CA) at the sequencing facility in ICMB, Kiel. The SOLiD system implements 2-base 

encoding based on sequencing by ligation (Metzker 2010). Four different libraries were 

constructed per individual: one paired-end library [50 + 35 bp (SOLiD™ Paired-End Library 

Construction Kit)] and three genomic mate-pair libraries [50 + 50 bp (SOLiD™ Long Mate-

Paired Library Construction Kit)]. The library preparation (Applied Biosystems SOLiD™ 4 

System 2010) in principle consists of four steps: fragmentation of DNA using a Covaris™ 

system, end repair of fragmented DNA using specific enzymes (End Polishing Enzyme 1 and End 

Polishing Enzyme 2), ligation of specific adapter sequence to ends of the fragment and finally, 

library amplification. After amplification, the libraries were purified with the SOLiD™ Library 

Column Purification Kit and measured by quantitative PCR (Applied Biosystems SOLiD™ 4 

System 2010).  

 

Emulsion PCR (ePCR) was carried out to generate clonal bead populations for all the libraries 

before sequencing  as shown in Figure 3-1(Metzker 2010). Clonal amplification takes place in an 

emulsion that consists of droplets of an aqueous phase, which includes PCR components 

(template, primers, DNA polymerase, and DNA Beads). Once the ePCR is complete, the beads 

were bonded covalently to the glass slide followed by subsequent rounds of ligation with different 

labelled probes that are eight bases in length (Supplementary Figure 12-1).  
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Figure 3-1: Emulsion PCR for SOLiD™ sequencing: Emulsion PCR is performed to generate clonal bead 

populations in microreactors containing a reaction mixture of an oil–aqueous emulsion to capture bead–DNA 

complexes into single aqueous droplets. PCR amplification is performed within these droplets to create beads 

containing several thousand copies of the same template sequence. Each bead is then chemically attached to the 

surface of a glass slide (Figure from Metzker 2010). 

 

The sequences generated were determined in SOLiD specific ‘colour space’, representing the first 

two bases of the dinucleotide as shown in Figure 3-2. Due to colour space, each base was 

determined independently twice, which allows a high accuracy in sequencing, and distinction 

between true variants and sequencing errors (Metzker 2010).  

 

 

Figure 3-2: Colour-space reference for SOLiD™ sequencing: For decoding the data, each colour indicates two 

bases in which the second base of each dinucleotide unit constitutes the first base of the following dinucleotide. 

Because each base is interrogated twice it is possible to determine particular bases were at those positions, this can 

finally lead to interpret the whole sequence. The colour-space reads are aligned to a colour-space reference sequence 

to decode the DNA sequence (Figure from Metzker 2010). 

3.1.3 Illumina technology 

Whole genome sequencing 

Whole genome sequencing using the Illumina Genome Analyser or Hi-Seq machines was 

performed at the Centre for Genomic Regulation (CRG) and Centre Nacional d'Anàlisi Genòmica 

(CNAG), Spain.  
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Illumina sequencing is based on the principle of sequencing by synthesis (Metzker 2010).The 

library generation was prepared for paired-end sequencing using the ‘PE-102-1001-paired-end 

sequencing sample prep kit’. For the genomic DNA library preparation, the steps involved were 

fragmentation of the sample to generate desired size range of less than 800 bp, end repair using 

specific enzymes (T4 DNA polymerase and Klenow enzyme), adenylation of DNA ends, ligation 

of specific adaptors and PCR amplification to enrich the fragments that have adapter molecules 

on both ends (Illumina Inc. 2011). Finally, the library was purified and then quantitated to create 

optimum cluster densities across every lane prior to seeding clusters on a flow cell. Before the 

libraries are ready for sequencing, single molecules were amplified in a flow cell to generate 

clusters by bridge amplification as presented in Figure 3-3 (Metzker 2010).  

 

 

Figure 3-3: Bridge amplification for Illumina sequencing: Unlabeled nucleotides and enzymes are added to initiate 

solid-phase bridge amplification. It is composed of two primary steps: initial priming and extending of the single-

stranded template, and bridge amplification of the immobilized template with immediately adjacent primers to form 

clusters (Figure from Metzker 2010). 

 

The sequencing is then performed by the inclusion of four fluorescently-labelled nucleotides 

followed by high resolution imaging of the entire flow cell (Supplementary Figure 12-2). The 

clusters were stimulated by a laser to show a colour, to identify the newly added base after each 

round of synthesis. This approach results in high accuracy in sequencing by reducing sequence-

context specific errors and enabling robust base calling across the genome. 
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Whole exome sequencing 

The whole exome sequencing of four centenarians (German male and female, French female and 

Spanish female) was performed using the Illumina Genome Analyser II machines at the CRG, 

Spain. Two additional German samples were sequenced at BGI, China.  

 

Exome sequencing, also known as targeted exome capture, is to selectively sequence the protein 

coding regions of the genome. The sample input was created using an exome capturing array, in 

this case, Agilent SureSelect Human All Exon 50 Mb capture (for samples sequenced at the 

CRG) and NimbleGen 2.1M Human Exome Array (for samples sequenced at the BGI), and 

sequenced on Illumina GAII machines according to standard protocols.  

 

The SureSelect Human All Exon kit (SureSelect Target Enrichment Kit 2010) design covered 

more than 50 Mb of the human genome: 1.22% of human genomic regions corresponding to the 

NCBI’s Consensus CDS database (CCDS) and more than 300 additional human non-coding 

RNAs. The library preparation was similar to that of the Illumina paired-end sequencing sample 

prep kit (PE-102-1001) as described above. The resulting DNA library was purified using the 

QIAquick PCR Purification Kit, amplified by PCR and assessed for quality and quantity with 

Agilent 2100 Bioanalyzer (SureSelect Target Enrichment Kit 2010). The resuspended DNA was 

then hybridized with biotinylated RNA library ‘baits’ (Supplementary Figure 12-3) of SureSelect 

All Exon capture library, according to the standard Agilent SureSelect Target Enrichment 

protocol. SureSelect magnetic beads that were prepared for the isolation of the exonic DNA were 

washed thoroughly, eluted, purified, re-amplified and finally checked for fragment quality.  

 

The NimbleGen 2.1M Human Exome Array covered 34 Mb of the human genome and captured 

around 180,000 coding exons and 551 miRNA exons (Roche NimbleGen Inc 2009). Genomic 

DNA was randomly fragmented by nebulization to an average size of 500bp, and a pair of linkers 

was ligated to both ends of DNA fragments (Ellinghaus et al. 2013). Fragmented DNA of each 

individual was hybridized to NimbleGen 2.1M Human Exome Array. Exome-enriched DNA 

fragments were eluted from the array and were amplified by PCR, followed by random ligation of 

DNA fragments. The ligated long exon-enriched DNA was sheared to 200bp on average, and then 

the fragments were ligated with Illumina compatible adaptors and subjected to library preparation 

and sequencing (Roche NimbleGen Inc 2009). The exome libraries were then prepared for cluster 

generation and was sequenced on the Illumina Genome Analyzer II following the manufacturer's 

instructions.  
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3.2 Mapping and variant calling 

For the SOLiD™ sequencing data, primary analysis (image analysis and base calling) and 

secondary analysis (mapping, calling of single nucleotide variants) were performed with 

Bioscope™ software v1.2 using default parameters. Bioscope implements repetitive mapping 

with a seed length (i.e. number of bases used to find accurate matching positions in the reference) 

of 25 to get more uniquely matched reads and allowing two color space mismatches including a 

penalty score of -2 for extension (User Guide: Applied Biosystems 2010). All sequenced data 

were mapped against human genome hg19 reference. Depth and breadth of sequence coverage 

was calculated with BedTools package v2.12 (Quinlan and Hall 2010). Variant calling was 

performed with diBayes algorithm using medium stringency settings from Bioscope™ v1.2 

(Applied Biosystems), mpileup from sequence alignment/map tools (SAMtools) v.0.1.8 

(parameters: |-q 15|-Q 20| (Li et al. 2009b) and Genome Analysis Toolkit-GATK v1.2 

(parameters: |-baqGOP 30|-dcov 1000|-mbq 10|-mmq 10) (McKenna et al. 2010). The parameters 

in ‘q’ or ‘mmq’ is the minimum mapping quality and ‘Q’ or ‘mbq’ is the minimum base quality 

to be considered. Minimum mapping quality signifies minimal quality mapping filter, for 

example, mapping quality with zero signifies non-uniquely mapped reads and it is recommended 

to filter out the ambiguously mapped reads. The minimum base quality sets a threshold for a 

given base so that the user has the option to omit reads with low quality during variant calling. 

The recommended values from both the tools were applied (Li et al. 2009b; McKenna et al. 

2010). As suggested by GATK (http://www.broadinstitute.org/gatk/gatkdocs), the gap open 

penalty for base alignment quality (baqGOP) is usually 30 for whole genome call sets. The 

parameter ‘dcov’ or downsample to coverage helps to get rid of excessive coverage above a 

certain depth, because having such additional data is not that useful and imposes unreasonable 

computational costs (McKenna et al. 2010). Variant calls for each sample were subsequently 

merged for further analysis using GATK CombineVariants, where all calls from different files in 

.vcf format are combined into one file (Supplementary Figure 12-4a). 

 

For whole genome and exome sequences generated with Illumina technology, image analysis and 

base calling were performed by the Illumina Genome Analyzer’s pipeline v1.3 with default 

parameters. The quality of the raw sequence data was first checked with FastQC package v0.9 

(Andrews 2010) that provides an overview (for example, duplication levels, overrepresented 

sequences, GC content per base/sequence), summarizes the data in graphs and tables and exports 

the results to an HTML based report. Burrows-Wheeler Aligner (BWA v0.5.9) (Li and Durbin 

2009) was implemented to align sequences against the indexed hg19 human genome reference 
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(parameters: |-q 15| -l 5000|-t 8). BWA algorithm benefits from high alignment accuracy, 

supports gapped alignments for both paired-end and single-end reads and also unmapped reads 

are automatically assigned a mapping quality of zero (Hatem et al. 2013). The ‘-q’ parameter in 

BWA indicates that the reads are trimmed at a position when quality starts to decrease below the 

set threshold and ‘-l’ takes the first 5000 sub-sequence as seed length. The ‘-t’ parameter specifies 

the number of threads to use, which in this case is 8 (http://bio-bwa.sourceforge.net/bwa.shtml). 

Duplicates were removed that were present in the reads due to amplification biases in PCR and 

optical duplicates (Illumina software mistakenly identifies a single cluster as two or more 

clusters) using Picard’s ‘MarkDuplicates’ v1.55 (Picard 2009). To prevent false positive variants 

at the end of sequencing reads, and to obtain accurate scores on variant calls, local realignment 

around indels and quality score recalibration were performed using GATK v2.2. To improve the 

quality of the data, duplicates and non-uniquely mapped reads were removed by SAMtools 

v0.1.18 (Petersen 2014). PCR duplicates can be problematic for variant calling, since some alleles 

can be overrepresented as they share the same sequences and same alignment position. Sequence 

coverage and statistics were calculated with BedTools package v2.12. Variant calling was 

performed with SAMtools (parameters: |-q 15|-Q 20) and GATK (parameters: |-dcov 1000 |-mbq 

10|-mmq 10), where the results were consequently merged for subsequent analysis using GATK’s 

CombineVariants (Supplementary Figure 12-4b and (Petersen et al. 2014)). 

 

For functional annotation of the variants generated from SOLiD and Illumina technology, an 

internal single nucleotide variation (SNV) categorization package snpActs   

(http://snpacts.ikmb.uni-kiel.de/) and Annovar (Wang et al. 2010) were implemented. All known 

variant positions were matched to the National Center for Biotechnology Information database of 

SNPs (NCBI’s dbSNP) build 135 (Sherry et al. 2001; Bethesda 2010). snpActs, developed by 

Björn Stade from ICMB, is a database-driven toolset that scans different gene annotations to 

identify and annotate SNVs in functional elements (Petersen 2014). snpActs enables the user to 

filter the variant list using special rules (e.g.: coding SNVs), allele frequency (e.g.: 1000G/ESP 

database) or target regions of interest (e.g.: candidate genes list, GWAS hit regions). To 

differentiate between sequencing artefacts and true variants, variants were visualized using the 

Integrative Genomics Viewer (IGV v2.1.24) (Thorvaldsdóttir et al. 2013).  

 

For additional assessment of variant quality, the genotype concordance was computed for all 

samples. Three samples were genotyped using the Illumina OmniExpress 700k array (Illumina 

Inc., San Diego, CA) containing approximately 700,000 SNVs. Genotype calling was done with 

http://bio-bwa.sourceforge.net/bwa.shtml
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GenomeStudio software according to the protocol provided by Illumina. The other two samples 

sequenced at the BGI were genotyped using Affymetrix 6.0 (Affymetrix Inc., Santa Clara, CA), 

which contains more than 906,600 SNVs. The genotype calling was performed with the 

Affymetrix Genotyper Console v4.0, using the default quality control thresholds. The calling for 

all array data was initially performed using the genome build hg18 but later converted to hg19 

coordinates using the liftOver tool provided by the UCSC Genome Bioinformatics Group 

(http://genome.ucsc.edu/cgi-bin/hgLiftOver). The genotype concordance was then calculated with 

snpActs. 

3.3 Selection of variants 

3.3.1 Method 1: SNVs that may have functional impact  

SNVs (MAF: 1% to 50%) for Method 1 were selected by Daniel Trujillano, a Ph.D. student at the 

CRG in Spain. For this method, the variants were selected from the exonic SNVs detected in 

whole genome SOLiD and Illumina exome-sequencing data of the four centenarians, as shown in 

Figure 3-4.  

 

 

Next-generation sequencing of 4 centenarians 

 

 

Figure 3-4: Individuals sequenced on SOLiD and Illumina technologies for Method 1: Four individuals 

sequenced with SOLiD and Illumina technologies to select SNVs that may have a functional impact. 
 

The exome pipeline implemented by CRG has been presented in Supplementary Figure 12-5. The 

resulting alignments were used as input for three different variant prediction tools, namely GATK 

(McKenna et al. 2010), mpileup (Li et al. 2009b) and SHORE (Schneeberger et al. 2009). The 

three independent SNV predictions were subsequently quality filtered using GATK’s 

VariantFiltration and intersected with GATK’s CombineVariants. Functional annotation of all 

variants was performed using Annovar, providing a comparison of predicted variants with 

NCBI’s dbSNP 132, 1000G and NHLBI Exome Sequencing Project (ESP), as well as multiple 

http://genome.ucsc.edu/cgi-bin/hgLiftOver
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estimates of the impact of amino acid substitution on the structure and function of proteins. The 

1000G data constitutes 38 million variants constructed using a combination of low-coverage 

whole-genome and exome sequencing of 1,092 individuals from 14 populations spread across 

Europe, East Asia, sub-Saharan Africa and America (Abecasis et al. 2012). The ESP database 

comprises individuals from a number of large-scale National Heart, Lung, and Blood Institute 

(NHLBI) cohorts: 2,203 African-Americans and 4,300 European-Americans unrelated 

individuals, totalling 6,503 individuals. The database contains approximately 3 million variants.  

 

Due to the potentially functional impact of amino acid substitutions, exonic variants were selected 

for subsequent genotyping by combining exonic SNVs detected in the whole genome SOLiD data 

with the Illumina exome SNV calls. Variant frequencies were annotated using the 1000G and 

ESP database. Further, p-values were calculated with an in-house script at the CRG institute that 

compared allelic frequencies, taking into consideration the sample size. Variants that were present 

in (i) at least two samples with significantly different MAFs to the 1000G or ESP databases and 

(ii) found to be conserved by PhyloP were selected for further investigation.  

 

The above selection of variants constituted a list of 116 potentially functional SNVs that were 

chosen for further genotyping in our German population (n = 1,614 LLI including a centenarian 

subset n = 748; younger controls n = 1,104). Seven SNVs that showed a significant association 

signal in the German longevity sample were typed for replication in the French (n = 1,269 LLI 

and 1,834 younger controls) and Danish (n = 910 LLI and 760 younger controls) longevity 

samples.   

3.3.2 Method 2: Low-frequency variants with functional impact 

For Method 2, sequencing data generated from the SOLiD and Illumina platforms for the same 

four individuals in Method 1, plus an additional two centenarians exome-sequenced with the 

Illumina technology were used as presented in Figure 3-5.  

 

Low-frequency variants (MAF≤10%) that show an intersection between the two platforms 

(SOLiD and Illumina) were selected. The effect of change in amino acid substitution for all SNVs 

was evaluated with eight different prediction tools. Furthermore, known longevity genes and 

pathways identified in various model organisms listed in the NetAge database (Tacutu et al. 

2010) and longevity GWAS hit regions (Nebel et al. 2011) were used as filter masks for variant 
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selection. The scores for the prediction tools for all SNVs were computed by Carolin Knecht, a 

Ph.D. student at the IMIS, University of Kiel. 

 

The variant generated with the SOLiD and Illumina technology for all six samples were annotated 

using snpActs (http://snpacts.ikmb.uni-kiel.de/) and Annovar (Wang et al. 2010). All known 

variant positions were matched to the NCBI’s dbSNP 135. The variants that showed an 

intersection of both the technologies were chosen for further investigation. As SOLiD and 

Illumina employ different techniques, it is expected that the intersection would represent true-

positive variants among large proportions of putative false-positive calls and sequencing artefacts, 

that are randomly distributed over the genome (Ratan et al. 2013).  

 

 

        Next-generation sequencing of 6 centenarians 

 

 

Figure 3-5: Individuals sequenced on SOLiD and Illumina technologies for Method 2: Six individuals sequenced 

on SOLiD and Illumina sequencing platforms to select low-frequency variants that may have a functional impact. 

 

The variant list was filtered using rules enabled in snpActs (http://snpacts.ikmb.uni-kiel.de/), 

where only coding regions such as missense, nonsense, cancel-start, read-through and splice-sites 

were selected [cancel-start: changes a start codon of the mRNA inhibiting transcription; read-

through: changes the stop codon to a codon for an amino acid]. The list was further refined by 

retaining variants, which showed a MAF≤10% against the 1000G and ESP database. Low-

frequency variants with MAF≤10% were selected, mainly because these low-frequency variants 

might have been missed in the previous longevity GWAS studies (Nebel et al. 2011), since the 

statistical power to detect such variants with small effects in GWAS is very low (Chan et al. 

2014). Also, many studies suggest that variants that influence longevity are likely to be low-

frequency variants with large effects sizes (Vaupel 2010; Garagnani et al. 2014). The low-
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frequency variants with large effect sizes would definitely have a functional consequence as well, 

particularly for nucleotide changes that affect protein function (Casals et al. 2013) 

 

The functional impact of SNVs were predicted by eight different tools: Grantham (Grantham, 

1974); PMut (Ferrer-Costa, et al., 2005); Screening for Non-acceptable Polymorphisms (SNAP) 

(Bromberg and Rost, 2007); Sorting Intolerant From Tolerant (SIFT) (Kumar, et al., 2009); 

SNPs&GO (Calabrese, et al., 2009); MutPred (Li, et al., 2009); Polymorphism Phenotyping 

(Polyphen-2) (Adzhubei, et al., 2010); and PhyloP (Pollard, et al., 2010). All these different tools 

implement different algorithms to make predictions regarding the functionality of mutated 

proteins. The basic idea behind the implementation of all the different tools is to take advantage 

of their possible complementary performance at classifying functionally relevant variants, thereby 

help prioritizing target SNVs. The input information here was protein sequence, amino acid 

substitution or UniProt IDs. The tools were implemented using Perl routines or, when possible, 

by batch queries. For each variant, the binary decisions of each tool were aggregated by 

summation, whereby -1 indicates ‘no effect’ and 1 implies ‘effect’ for each tool. The ‘top-

scoring’ SNVs are variants that showed an effect for seven or eight out of all eight tools and these 

SNVs were selected for further analysis. 

 

Known longevity genes and pathways identified from various model organisms listed in the 

NetAge database (Tacutu et al. 2010) were used as filter masks to prioritize the variant list. 

Insulin pathway and mTOR pathway are the most interesting conserved pathways identified using 

animal models that influence longevity (Barzilai et al. 2012). Over 50 longevity genes that 

involved pathways such as insulin and the mTOR pathway were included. GWAS hit regions 

were also used as target regions for selection of SNVs. The longevity GWAS data used has been 

described in detail elsewhere (Nebel et al. 2011). It comprises 664,472 autosomal SNPs in 763 

LLI (mean age: 99.7 years) and 1,085 controls (mean age: 60.2 years) from Germany. Variants 

were ‘clumped together’ using the clumping algorithm (parameters: p1 < 0.001, p2 < 0.01, r2 > 

0.8, 200kb distance) of PLINK (Purcell et al. 2007), starting from the most significant SNV and 

moving to the less significant, to generate a list of LD-dependent associated genomic regions. 

These associated ‘clumped’ regions were used as target regions for variant selection. 

 

Different lists were then generated based on various selection criteria: variants identified based on 

target regions (longevity pathway list, GWAS associated hit regions) and top-scoring SNVs 

computed from the different prediction tools. Furthermore, variants present in four or more 
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individuals and that showed an ‘effect’ for at least five prediction tools, as well as SNVs present 

in five to six individuals, were selected for further analysis. These variants were of interest 

because they were found in four or more of the sequenced centenarians and had a MAF≤10% or 

no MAF in the 1000G or ESP database, which is not expected by chance.  

 

Each SNV of interest was then visualized manually using the Integrative Genomics Viewer (IGV) 

in order to select good quality and true variants, which resulted in a list of 51 potentially 

functional SNVs that were chosen for further genotyping in the German LLI population set and a 

subsequent replication experiment in the Danish, Italian and American longevity samples.  

 

3.4 Genotyping and replication 

The selected SNVs were genotyped at the genotyping facility in ICMB, Kiel by the iPLEX™ 

Mass ARRAY technology (Sequenom, San Diego, CA) and the ABI TaqMan® technology (Life 

Technologies Corporation, Foster City, CA) (see Table 3-1).  

 
 

Technology 

 

iPLEX™ (Jurinke et al. 2002) 

 

TaqMan® (Livak 2003) 

 

Company 

 

Sequenom 

http://www.sequenom.com/ 

 

Applied Biosystems 

http://www.appliedbiosystems.com/ 

 

Assay type 

 

Primer extension 

 

5’ exonuclease/PCR 

 

Pros 

 

High sample throughput 

 

Simplicity, very high reliability 

 

Cons 

 

Maintenance intensive equipment 

 

Single plex, custom assays expensive 

 

Table 3-2: Genotyping platforms: Summary of genotyping technologies used in this project (Ragoussis 2006). 

3.4.1 Sequenom technology 

Genotyping using Sequenom MassARRAY iPLEX™ platform was performed according to the 

manufacturer’s protocol. The Sequenom method is based on a label-free primer extension 

chemistry that produces allele-specific extension products (Jurinke et al. 2002). After PCR 

amplification of the allele-specific fragment, MALDI-TOF spectrometry was employed to 
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analyse the extended primer, permitting precise determination of the size of products generated, 

which can be converted into genotype information. Genotype calls were produced by automated 

allele calling with the help of software provided by Sequenom.  

3.4.2 TaqMan technology 

Genotyping was performed using TaqMan® Genotyping Assays (Applied Biosystems) according 

to the manufacturer’s protocol. TaqMan is based on the principle of using the 5’ exonuclease 

activity of Taq polymerase, which employs a combination of PCR and competitive hybridization 

(Livak 2003). At the end of the PCR reaction, normalised intensities of the fluorescent signals 

were plotted on a scatter plot using a clustering algorithm in the data analysis software provided 

by Applied Biosystems, thus determining the genotypes (Ragoussis 2006). 

3.4.3 Study population 

The samples used for genotyping were the German LLI matched for ancestry, gender and 

geographical origin within Germany. Significant association signals in the German samples were 

then typed for replication in independent longevity samples from the French, Danish, Italian and 

American study populations. Blood samples and DNA obtained from the study participants were 

isolated by using standard methods.  

 

German sample 

The German ‘case’ population consists of 1,610 unrelated subjects, (age range: 95 to 110 years). 

The samples cover about 27% males (n = 435) and 73% (n = 1,175) females. The subjects were 

selected and recruited from different regions of Germany, based on data available from local 

registry offices. The subjects were contacted by a letter with a questionnaire and a blood sampling 

kit. A complete summary of the socio-economic conditions, quality of life and health status of the 

subjects was recorded with the help of a questionnaire (Nebel et al. 2005). The younger control 

population comprised 1,104 unrelated individuals (age range: 60 to 75 years), covering 26% 

males (n = 283) and 74% females (n = 821). The participants were recruited from different 

geographic regions of Germany and were all of German ancestry. Although regional genetic 

differences in the population structure within Germany are classified as very low (Steffens et al. 

2006), care was taken to match controls to cases for ancestry, gender and geographical origin 

within Germany to avoid false-positive association signals due to biases such as population 

stratification (Flachsbart et al. 2009).  
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Independent longevity samples for the replication experiment 

Replication of the significant association signals obtained from the German longevity sample was 

carried out in independent longevity samples from France, Denmark and Italy. The French 

replication sample comprised 1,269 LLI from different regions throughout France (Île-de-France, 

Northeast, Northwest, Southeast and Southwest). These individuals were matched for gender and 

geographical origin with 1,834 healthy unrelated younger controls (age range: 35 to 61 years) 

(Blanché et al. 2001). Controls were selected from two sample sets: i) unrelated young European 

people born in France (Île-de-France, Northeast, Northwest, Southeast, Southwest) (Blanché et al. 

2001); and ii) unrelated French subjects who participated in the Supplementation in Vitamins and 

Mineral Antioxidants (SU.VI.MAX) study (Hercberg et al. 1998). The age range for cases was 

90-115 years, covering 18% (n = 232) males and 82 % (n = 1037) females. For the younger 

controls, the age range was 35 to 61 years, including 40% (n = 730) males and 60% (n = 1104) 

females.  

 

The Danish cohort consisted of 910 LLI selected from four nation-wide birth cohort studies: the 

1905 Birth Cohort Study (Nybo et al. 2001); the 1910 Birth Cohort Study (Christensen et al. 

2013); the 1911-12 Birth Cohort Study (Robine et al. 2010); and the 1915 Birth Cohort Study 

(Christensen et al. 2013). The 760 younger controls were randomly selected from the Study of 

Middle-Aged Danish Twins (MADT), which was initiated in 1998 and includes twins born from 

1931 to 1952. The control group includes only one twin from each twin pair (Soerensen et al. 

2010). The age range for cases was 94 to 101 years, covering 30% (n = 273) males and 70 % (n = 

637) females. For the controls, the age range was 60 to 72 years, covering 40% (n = 301) males 

and 60% (n = 459) females.  

 

The Italian longevity sample comprised 489 LLI (age range: 90 to 114 years) and 480 unrelated 

younger controls (age range: 18 to 48 years) geographically matched. The participants were 

obtained from the Southern Italian Centenarian Study (SICS), where they were recruited from 

regions of Southern Italy east of Naples. SICS LLIs were thoroughly investigated for 

demographic and clinical characteristics and they were enrolled by Associazione Longevita 

(Anselmi et al. 2009; Malovini et al. 2011).  

 

The American population comprised 352 Caucasian LLI (age range: 90 to 114 years) recruited 

through Elixir Pharmaceuticals, Beth Israel Deaconess Medical Center, Children's Hospital of 

Boston and Boston University Medical Center. Individuals were recruited by various methods 
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such as institutional websites and organizations involved with the ageing community. A set of 

365 young unrelated controls (age range: 0 to 35years), self-identified as ‘Caucasian’ and less 

than 35 years of age, were obtained from several anonymous sources in the U.S.A. To avoid 

genetic stratification, only those controls were selected who best matched the cases with respect 

to genetic background (Geesaman et al. 2003). 

All participants and/or their legally authorized representatives took part in the written informed 

consent process, as required by the Institutional Review Boards/ local medical ethical committees 

of all participating countries before starting the study. 

3.4.4 Statistical analysis 

Allele-based single marker case–control analyses (CCA) and odds ratio (OR) statistics were 

calculated with 2 statistics, using the open-source analysis toolset PLINK v.1.07 (Purcell et al. 

2007). P-values less than 0.05 were considered nominally significant. All SNVs were tested for 

Hardy–Weinberg equilibrium (HWE) in controls before inclusion in the analyses (PHWE > 0.001), 

using PLINK. Power and sample sizes were calculated with the PS Power and Sample Size 

Program (Dupont and Plummer 1990), applying a significance level of 0.05. 
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4 Results 

4.1 Mapping, coverage and variant calling 

4.1.1 SOLiD technology 

Whole genome sequencing 

The sequencing for the three centenarians ((1) German male, (2) German female and (3) French 

female) was performed on SOLiD™ 4 system (Applied Biosystems, Foster City, CA) using one 

paired-end library and three genomic mate-pair libraries. This produced 3,009,170,818 reads for 

the German female, 2,891,350,241 reads for the German male and 3,109,676,528 reads for the 

French female. Reads were mapped with Bioscope™ (Applied Biosystems) to the human genome 

reference hg19. More than 65% of reads were mapped for all three samples with over 90% of 

genome coverage. The mapping statistics are presented in Table 4-1.  

 

 (1) German female 

108 years  

(2) German male 

109 years  

(3) French female 

>114 years  

 

No. of reads 

 

3,007,757,220 

 

2,890,132,319 

 

3,109,676,528 

No. of reads aligned 

Covered base positions at 1x (%) 

Covered base positions at 8x (%) 

Covered base positions at 20x (%) 

Average coverage (mean) 

1,976,859,186 

93.34 

84.66 

59.64 

43.73 

2,023,852,602 

92.53 

89.77 

78.35 

41.51 

1,974,842,082 

93.24 

77.12 

47.19 

44.44 

 

Table 4-1: Mapping statistics for SOLiD sequencing data: Mapped sequences and coverage depth across the 

genome for data generated by SOLiD technology. 

 

SNVs were called using diBayes from Bioscope™ (Applied Biosystems), SAMtools (Li et al. 

2009a) and GATK (McKenna et al. 2010). The variants from all three callers were combined for 

each sample. This resulted in 3,264,816 SNVs for the German female, 3,923,324 for the German 

male and 2,695,673 for the French female as shown in Table 4-2. For functional annotation, 

snpActs (http://snpacts.ikmb.uni-kiel.de/) was implemented to determine the distribution of the 

all variants and to give an overview of coding and non-coding SNVs, cancel-start, read-through, 

and transition (Ti)/transversion (Tv) ratio (The Ti/Tv ratio is generally used to evaluate the 

quality of variant calls: reported to be between 2 to 2.2 for variants in whole genome and 2.8 to 

3.0 in the coding region respectively (DePristo et al. 2011)).  
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Table 4-2: SNV distribution for SOLiD genome sequences: Summary of SNV distribution for all three genomes 

generated by SOLiD technology. 

 

About 75 to 80% of the SNVs present in all three samples were already known and reported in 

the dbSNP (135) database and the remaining were novel. The ratio of heterozygous variants to 

homozygous variants is 1.09 to 1.66, which matches the published range of 1.2 to 1.7 for 

European ethnicity (Levy et al. 2007; Sebastiani et al. 2011).  The Ti/Tv ratio was found to be 

2.11 for both the German male and the German female and 1.98, for the French female (Table 4-

2), which is according to the expected Ti/Tv ratio for whole genome sequencing (DePristo et al. 

2011). The distribution of the variants was as follows: non-coding SNVs (introns and intergenic) 

comprised around 92%; approximately 7.3% of the variants were located in untranslated region 

(5' UTR, 3'UTR and UTR-Splice sites); and around 0.7% constituted coding SNVs (synonymous, 

missense and nonsense SNVs) for all three individuals (Supplementary Table 12-3). 

 

For additional assessment of SNV quality, genotype concordance was computed for all three 

subjects using the Illumina OmniExpress Chip 700k array, where more than 94% concordance 

was observed as presented in Figure 4-1. 

 

 

 (1) German female 

108 years  

(2) German male 

109 years  

(3) French female 

>114 years  

 

Total SNVs 

 

3,264,816 

 

3,923,324 

 

2,695,673 

 

known SNVs  

(dbSNP 135) 

 

2,539,458 

(74.46%) 

 

3,143,342 

(80.50%) 

 

2,225,357 

(81.72%) 

 

novel SNVs 

 

871,207 

(25.54%) 

 

761,059 

(19.50%) 

 

497,906 

(18.28%) 

 

heterozygous/homozygous ratio 

(het/hom) 

 

1.41 

 

1.66 

 

1.09 

 

transition/transversion ratio 

(Ti/Tv) 

 

2.11 

 

2.11 

 

1.98 



Results  37 

 No. of SNVs on Illumina 

OmniExpress Array 

Overlapping SNVs Genotype concordance 

(%) 

(1) German female 710,663 285,648 96.5 

(2) German male 710,746 328,816 98.3 

(3) French female 710,038 251,325 94.6 

 

 

Figure 4-1: Genotype concordance for SOLiD sequencing data: Genotype concordance of whole genome SOLiD 

sequencing data compared with the Illumina OmniExpress array; (1) German female (96.5%), (2) German male 

(98.3%) and (3) French female (94.6%). 

4.1.2 Illumina technology 

Whole genome sequencing 

The whole genome sequencing for the same three centenarians ((1) German female, (2) German 

male and (3) French female) plus one (4) Spanish female was performed on Illumina Genome 

Analyzer or Hi-Seq machines using the ‘PE-102-1001-paired-end sequencing sample prep kit’ at 

the CNAG, Spain. This produced: 1,027,097,060 reads for the German female, 1,143,873,254 

reads for the German male, 850,231,574 reads for the French female; and 1,053,944,714 for the 

Spanish female. Reads were mapped with BWA to the human genome reference hg19. More than 

90% of reads were mapped for all three samples as shown in Table 4-3.  
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 (1) German female 

108 years  

(2) German male 

109 years  

(3) French female 

>114 years  

(4) Spanish female 

>110 years  

 

No. of reads 

 

1,027,097,060 

 

1,143,873,254 

 

850,231,574 

 

1,053,944,714 

No. of reads aligned 

Covered base positions at 1x (%) 

Covered base positions at 8x (%) 

Covered base positions at 20x (%) 

Average coverage 

940,941,134 

92.81 

91.04 

79.55 

30.58 

1,039,187,976 

91.80 

90.18 

81.87 

33.07 

780,832,784 

92.77 

90.78 

73.27 

25.52 

967,729,186 

93.09 

91.05 

77.19 

28.27 

 

Table 4-3: Mapping statistics for Illumina sequencing data: Mapped sequences and coverage depth across the 

genome for data generated by Illumina whole genome sequencing. 

 

SNVs were called using SAMtools (Li et al. 2009a) and GATK (McKenna et al. 2010). The 

variants from both callers were combined for each sample to give 4,013,012 for the German 

female; 4,071,554 for the German male; 4,022,164 for the French female and 4,081,702 for the 

Spanish female. The SNV distribution for all four genomes is presented in Table 4-4. For 

functional annotation of the variants, snpActs (http://snpacts.ikmb.uni-kiel.de/) was implemented 

to determine the distribution of the SNVs.  

 

 

Table 4-4: SNV distribution for Illumina genome sequences: Summary of SNV distribution for all four genomes 

generated by Illumina whole genome sequencing. 

 (1) German female 

108 years  

(2) German male 

109 years  

(3) French female 

>114 years  

(4) Spanish female 

>110 years  

 

Total SNVs 

 

4,013,012 

 

4,071,554 

 

4,022,164 

 

4,081,702 

 

known SNVs 

(dbSNP 135) 

 

3,673,475 

(91.54%) 

 

3,698,341 

(90.9%) 

 

3,678,686 

(91.5%) 

 

3,733,683 

(91.5%) 

 

novel SNVs 

 

339,537 

(8.46%) 

 

373,213 

(9.1%) 

 

343,478 

(8.5%) 

 

348,019 

(8.5%) 

 

het/hom ratio 

 

1.77 

 

1.72 

 

1.75 

 

1.82 

 

ti/tv ratio 

 

2.08 

 

2.06 

 

2.01 

 

2.1 
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About 90% of the SNVs present in all four samples were known and reported in dbSNP and the 

remaining were novel. The ratio of heterozygous variants to homozygous variants is 1.72 to 1.82, 

which is slightly higher when compared to other genomes (Levy et al. 2007). As shown in Table 

4-4, the Ti/Tv ratio was found to be 2.01 to 2.21 for all four genomes, which meets the expected 

value according to published data (DePristo et al. 2011). Non-coding variants (introns and 

intergenic) comprised around 92%, approximately 7.3% of the variants were located in 

untranslated region (5' UTR, 3'UTR and UTR-Splice sites) and the remaining 0.7% constituted 

coding SNVs (synonymous, missense and nonsense SNVs) (Supplementary Table 12-4).  

 

 No. of SNVs on Illumina 

OmniExpress Array 

Overlapping SNVs Genotype concordance 

(%) 

(1) German female 710,663 341,373 99.7 

(2) German male 710,746 344,369 99.8 

(3) French female 710,038 342,427 99.8 

 

 

Figure 4-2: Genotype concordance for Illumina sequencing data: Genotype concordance of whole genome 

Illumina sequencing data compared with the Illumina OmniExpress array; (1) German female (99.7%), (2) German 

male (99.8%), and (3) French female (99.8%). 
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For additional assessment of SNV quality, the genotype concordance was computed using 

snpActs (http://snpacts.ikmb.uni-kiel.de/) for three subjects with the Illumina OmniExpress Chip 

700k array, where more than 99% concordance was observed  as presented in Figure 4-2.  

 

Whole exome sequencing 

The previous four centenarians ((1) German female, (2) German male, (3) French female and (4) 

Spanish female) and two additional German centenarians ((5) German male and (6)  female) were 

sequenced using Agilent SureSelect Human All Exon target enrichment kit at CRG, Spain and 

NimbleGen 2.1M Human Exome enrichment kit at BGI, China on Illumina GAII machines 

according to standard protocols. Reads were mapped with BWA to the human genome reference 

hg19. More than 90% of reads were mapped for all six samples. The exome sequencing coverage 

and mapping statistics are shown in Table 4-5.  

 

  

(1) German  

      female 

   108 years  

 

(2) German        

      male 

   109 years  

 

(3) French  

      female 

>114 years  

 

(4) Spanish  

      female 

>110 years  

 

(5) German  

      female 

108 years  

 

(6) German  

      male 

106 years  

 

No. of reads 

 

89,613,010 

 

90,724,560 

 

90,704,224 

 

86,744,490 

 

40,962,578 

 

43,761,129 

 

No. of reads aligned 

 

87,572,479 

 

88,671,162 

 

89,373,419 

 

85,610,982 

 

36,866,320 

 

39,270,973 

 

Covered base 

positions at 1x (%) 

 

90.95 

 

91.14 

 

91.43 

 

91.1 

 

97.77 

 

97.32 

 

Covered base 

positions at 8x (%) 

 

78.9 

 

79.07 

 

79.36 

 

79.76 

 

82.92 

 

83.55 

 

Covered base 

positions at 20x (%) 

 

67.86 

 

67.96 

 

68.35 

 

68.72 

 

54.66 

 

59.76 

 

Average coverage  

 

73.2 

 

75.1 

 

72.1 

 

70.1 

 

27.7 

 

29.7 

 

Table 4-5: Mapping statistics for exome sequencing data: Mapped sequences and coverage depth for Illumina 

exome sequencing data. 
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The variants were called using SAMtools (Li et al. 2009a) and GATK (McKenna et al. 2010) and 

variants enriched in targeted regions (i.e. coding regions of the genome) were selected. The SNVs 

from both callers were combined for each sample to give 18,456 to 27,178 SNVs for all six 

centenarians as shown in Table 4-6.  

 

  

(1) German  

      female 

   108 years  

 

(2) German        

      male 

   109 years  

 

(3) French  

      female 

>114 years  

 

(4) Spanish  

      female 

>110 years  

 

(5) German  

      female 

108 years  

 

(6) German  

      male 

106 years  

 

Total SNVs 

 

26,223 

 

26,790 

 

26,767 

 

27,178 

 

18,456 

 

18,481 

 

known SNVs  

 

25,112 

(95.76%) 

 

25,712 

(95.97%) 

 

25,647 

(95.81%) 

 

26,085 

(95.97%) 

 

17,531 

(94.98%) 

 

16,182 

(95.21%) 

 

novel SNVs 

 

1,111 

(4.24%) 

 

1,078 

(4.03%) 

 

1,120 

(4.19%) 

 

1,093 

(4.03%) 

 

925 

(5.02%) 

 

885 

(4.78%) 

 

het/hom ratio 

 

1.61 

 

1.63 

 

1.68 

 

1.68 

 

1.50 

 

1.50 

 

ti/tv ratio 

 

2.68 

 

2.64 

 

2.74 

 

2.71 

 

2.87 

 

2.85 

 

Table 4-6: SNV distribution for Illumina exome sequences: Summary of SNV distribution for all six exomes 

sequenced with the Illumina technology. 

 

About 95% of the SNVs present in all six samples were already reported in the dbSNP 135 

database and the remaining were novel. The ratio of heterozygous variants to homozygous 

variants is 1.5 to 1.68 and the Ti/Tv ratio was found to be 2.6 to 2.8 for all six exomes, which is 

the expected ratio (DePristo et al. 2011) (Table 4-4). Non-coding SNVs (introns and intergenic) 

comprised around 25 to 31%, approximately 3 to 4% of the variants were located in untranslated 

region (5' UTR, 3'UTR and UTR-Splice sites) and the remaining 65 to 70% constituted coding 

SNVs (synonymous, missense and nonsense SNVs) (Supplementary Table 12-5).  

 

For additional assessment of SNV quality, the genotype concordance was computed using 

snpActs (http://snpacts.ikmb.uni-kiel.de/) by comparing the sequencing data of the three 

centenarians ((1) German female, (2) German male, (3) French female) with the Illumina 

OmniExpress Chip 700k array. The genotype concordance for the Spanish exome sequencing 
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sample was calculated by CRG, Spain using the Illumina 2.5M array and was reported to be 85%. 

For the two additional samples ((5) German male and (6) female) sequenced at the BGI, the 

Affymetrix 6.0 array was used to calculate the genotype concordance with snpActs 

(http://snpacts.ikmb.uni-kiel.de/). The genotype concordance results are presented in Figure 4-3.  

 

 Array Overlapping 

SNVs 

Genotype concordance 

(%) 

(1) German female Illumina OmniExpress (700k) 9,084 99.5 

(2) German male Illumina OmniExpress (700k) 9,226 99.46 

(3) French female 

(5) German female  

(6) German male  

Illumina OmniExpress (700k) 

Affymetrix 6.0 (900k) 

Affymetrix 6.0 (900k) 

9,217 

4,553 

4,781 

99.48 

99.01 

99.19 

 

Figure 4-3: Genotype concordance for Illumina exome sequencing data: Genotype concordance of Illumina 

whole exome sequencing data compared with the array data; (1) German female (99.5%), (2) German male 

(99.46%), (3) French female (99.48%), (4) German female (99.01%) and (5) German male (99.19%). 

 

 

4.2 Method 1: SNVs that may have a functional impact 

4.2.1 Selection of variants 

The SNVs with MAF 1% to 50% for further genotyping were selected by Daniel Trujillano from 

CRG in Spain. For this method, variants generated from SOLiD whole genome sequencing and 

Illumina exome sequencing of four centenarians were used ((1) German male and (2) female, (3) 

French female and (4) Spanish female). Reads were aligned to hg19 human genome reference 

with BWA, where 93.41% of all targeted bases were covered by at least 20 reads, obtaining an 
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average coverage of 50x for all four subjects. The resulting alignments from the exome 

sequencing were used as input for three different variant calling tools, namely GATK (McKenna 

et al. 2010), mpileup (Li et al. 2009b) and SHORE (Schneeberger et al. 2009). A genotype 

concordance of 85% was observed by the CRG for the Spanish sample when compared with the 

Illumina Omni 2.5M array. For the other three individuals, over 95% genotype concordance was 

observed when compared with the Illumina OmniExpress Array using snpActs 

(http://snpacts.ikmb.uni-kiel.de/). Combining the target-enriched variants (which are coding 

regions of the genome), 65,826 variants were found to be common among all four individuals. As 

shown in Figure 4-4, 97.4% of the variants were already known and reported in dbSNP 132 and 

the remaining variants were novel. The Ti/Tv ratio was found to be 2.48 for known variants and 

2.25 for novel variants, which meets the expected value according to DePristo (DePristo et al. 

2011). 

 

 

Figure 4-4: Variant calling metrics for four exomes generated by CRG, Spain: Three different variant calling 

tools, namely GATK, mpileup and SHORE were implemented for the exome sequencing data ((1) German male and 

(2) female, (3) French female and (4) Spanish female) and the subsequent results from all three variant callers were 

combined to obtain 65,826 variants (Figure by CRG, Spain). 
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The selection criteria for variants chosen for this approach have been outlined in Figure 4-5. The 

exome Illumina variant calls were then combined with exonic SNVs (including splice-sites and 

untranslated exonic regions) detected in whole genome SOLiD SNV calls to give a total of 

66,658 SNVs. To filter the variant list further, SNVs that were present in at least two samples that 

had significantly different MAFs with respect to 1000G and ESP databases, and were found to be 

conserved by PhyloP were selected for further investigation. This constituted a list of 116 

potentially functional variants listed in Supplementary Table 12-6. These 116 SNVs were chosen 

for further genotyping in our German LLI (n = 1,610) and younger controls (n = 1,104). The 

significant SNVs were subsequently tested for replication in the French (n = 1,269 LLI and 1,834 

younger controls) and Danish (n = 910 LLI and 760 younger controls) longevity samples. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5: Selection of variants for Method 1: selection of variants from four sequenced centenarians ((1) German 

female and (2) male, (3) French female and (4) Spanish female) to detect SNVs that may have a functional impact. 

 

4.2.2 Analysis of selected SNVs 

After combining the exome Illumina SNV calls with exonic SNVs detected in whole genome 

SOLiD data, a total of 116 SNVs was selected for subsequent genotyping and association testing. 

German LLI [n = 1,610; age range: 95-110 years, including a centenarian subset (n = 745)] were 

compared to younger controls (n = 1,104; age range: 60-75 years) matched for ancestry, gender 

and geographical origin within Germany (Supplementary Table 12-7).  

 

Common potential functional SNVs (MAF 1% - 50%) 

 116 SNVs selected 

 

→ Amino acid change 

→ Conservation of position (PhyloP) 

→ Present in ≥ 2 samples 

→ p-value < 0.05  

    (using 1000 G and ESP database as controls) 

Sequenom genotyping (ICMB, Kiel) 

116 SNVs 

 1,610 German long-lived  

individuals (LLI) 

 1,104 German controls 

Replication experiment 

 Danish LLI  

(910 cases, 760 controls) (TaqMan) 

 French LLI  

(1,269 cases, 1,834 controls) (Sequenom) 

7 significant SNVs;  

p-value < 0.05 

Combination of exonic Illumina + 

SOLiD variant calls  66,658 SNVs 
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Out of 116 SNVs, 109 variants were genotyped with Sequenom technology and 1 variant failed 

the assay design. The remaining six SNVs were typed with TaqMan. Seven SNVs showed a 

significant association signal with a p-value of less than 0.05 in either the whole sample (see 

Table 4-6) or the centenarian subset (see Table 4-7). 

 
 

Chr. 

 

dbSNP ID 

 

Gene 

MAF  

cases 

 n = 1,610 

MAF 

controls 

n = 1,104 

 

PCCA 

 

OR 

 

95% CI 

1 rs10927851 FBLIM1 0.293 (C) 0.342 0.0002 0.80 0.7037-0.8961 

14 rs3093921 PARP2 0.036 (G) 0.021 0.0020 1.71 1.215-2.432 

5 rs61757629 NAIP 0.031 (T) 0.018 0.0050 1.68 1.166-2.432 

13 rs35719359 PCCA 0.064 (G) 0.050 0.0277 1.30 1.029-1.657 

6 rs17054318 PLEKHG1 0.035 (C) 0.047 0.0306 0.74 0.5628-0.9732 

11 rs34108746 PRG3 0.062 (G) 0.074 0.0909 0.83 0.6686-1.03 

11 rs78489201 TNKS1BP1 0.066 (G) 0.075 0.1883 0.87 0.7004-1.073 

 Chr.: chromosome id 

 MAF: minor allele frequency  

 PCCA: p-value obtained from an allele-based case–control comparison, using a χ2-test with 1 degree of freedom  

 OR: Odds ratio for attaining old age with the minor allele in controls as reference allele 

 95% CI: 95% confidence interval for OR 

 

Table 4-6: Longevity association statistics in German LLI for seven SNVs: Association statistics for seven SNVs 

with potential functional impact in German LLI (n=1,610) and younger controls (n=1,104). 

 

 

Chr. 

 

dbSNP ID 

 

Gene 

MAF  

cases 

 n = 745 

MAF 

controls 

n = 1,104 

 

PCCA 

 

OR 

 

95% CI 

1 rs10927851 FBLIM1 0.289 (C) 0.342 0.0009 0.78 0.6745-0.9046 

14 rs3093921 PARP2 0.028 (G) 0.021 0.1758 1.34 0.8756-2.054 

5 rs61757629 NAIP 0.032 (T) 0.019 0.0155 1.69 1.099-2.578 

13 rs35719359 PCCA 0.062 (G) 0.050 0.0963 1.27 0.9573-1.69 

6 rs17054318 PLEKHG1 0.036 (C) 0.047 0.1170 0.76 0.5408-1.072 

11 rs34108746 PRG3 0.053 (G) 0.074 0.0102 0.69 0.5226-0.9179 

11 rs78489201 TNKS1BP1 0.055 (G) 0.075 0.0202 0.72 0.5471-0.9513 

For abbreviations see legend to Table 4-6 

Table 4-7: Longevity association statistics in German centenarian subgroup for seven SNVs: Association 

statistics for seven SNVs in German centenarians subset (n=745) and younger controls (n=1,104). 

 

The seven SNVs that showed an association in either the whole German sample or centenarian 

subset were investigated for replication in two independent LLI populations. The French 
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replication samples comprised 1,269 LLI (age range: 90-115 years) and 1,834 younger controls 

(age range: 35-61 years). The Danish samples consisted of 910 LLI (age range: 94-100 years) and 

760 younger controls (age range: 60-72 years). No significant association was observed in the 

French replication sample for the seven selected SNVs as seen in Table 4-8.  

 

 

Chr. 

 

dbSNP ID 

 

Gene 

MAF 

cases 

 n = 1,269 

MAF 

controls 

n = 1,834 

 

PCCA 

 

OR 

 

95% CI 

1 rs10927851 FBLIM1 0.291 (C) 0.305 0.2271 0.93 0.8358-1.044 

14 rs3093921 PARP2 0.018 (G) 0.022 0.2899 0.82 0.5662-1.186 

5 rs61757629 NAIP 0.036 (T) 0.031 0.3100 1.16 0.8729-1.533 

13 rs35719359 PCCA 0.050 (G) 0.046 0.3708 1.11 0.88-1.409 

6 rs17054318 PLEKHG1 0.049 (C) 0.046 0.5780 1.07 0.8434-1.357 

11 rs34108746 PRG3 0.084 (G) 0.075 0.1553 1.15 0.9499-1.38 

11 rs78489201 TNKS1BP1 0.084 (G) 0.076 0.1865 1.13 0.9412-1.365 

 For abbreviations see legend to Table 4-6 

Table 4-8: Longevity association statistics for replication in French LLI for seven SNVs: Association statistics 

for seven SNVs in French LLI (n=1,269) and younger controls (n=1,834). 

 
 

 

Chr. 

 

dbSNP ID 

 

Gene 

MAF 

cases 

n = 910 

MAF 

controls 

n = 760 

 

PCCA 

 

OR 

 

95% CI 

1 rs10927851 FBLIM1 0.308 (C) 0.271 0.0298 1.20 1.018-1.381 

14 rs3093921 PARP2 0.027 (G) 0.035 0.1485 0.75 0.4993-1.112 

5 rs61757629 NAIP 0.022 (T) 0.024 0.6122 0.88 0.5612-1.406 

13 rs35719359 PCCA 0.070 (G) 0.078 0.3940 0.89 0.6841-1.161 

6 rs17054318 PLEKHG1 0.040 (C) 0.042 0.8471 0.97 0.6848-1.365 

11 rs34108746 PRG3 0.082 (G) 0.080 0.8151 1.03 0.7972-1.334 

11 rs78489201 TNKS1BP1 0.093 (G) 0.081 0.2489 1.15 0.9026-1.484 

  For abbreviations see legend to Table 4-6 

Table 4-9: Longevity association statistics for replication in Danish LLI for seven SNVs: Association statistics 

for seven SNVs in Danish LLI (n=910) and younger controls (n=760). 

 

For the Danish replication experiment (see Table 4-9), one SNV (rs10927851) showed a 

nominally significant PCCA of 0.0298, but this cannot be considered a positive replication as the 

frequency difference between cases and controls is opposite when compared with the German 

LLI sample as shown in Table 4-11.  
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Chr. 

 

dbSNP ID 

 

Gene 

MAF 

cases 

n = 2,179 

MAF 

controls 

n = 2,594 

 

PCCA 

 

OR 

 

95% CI 

1 rs10927851 FBLIM1 0.298 (C) 0.296 0.8916 1.01 0.92-1.101 

14 rs3093921 PARP2 0.021 (G) 0.026 0.1958 0.84 0.6396-1.096 

5 rs61757629 NAIP 0.029 (T) 0.029 0.8293 1.03 0.8083-1.304 

13 rs35719359 PCCA 0.059 (G) 0.055 0.4141 1.08 0.9031-1.281 

6 rs17054318 PLEKHG1 0.046 (C) 0.044 0.8623 1.02 0.8376-1.236 

11 rs34108746 PRG3 0.083 (G) 0.076 0.1779 1.11 0.9542-1.288 

11 rs78489201 TNKS1BP1 0.088 (G) 0.077 0.0503 1.16 0.9997-1.341 

  For abbreviations see legend to Table 4-6 

Table 4-10: Longevity association statistics for the combined analysis in French and Danish LLI: Association 

statistics for seven SNVs in combined French and Danish LLI (n=2,179) and younger controls (n=2,594). 

 

Both the French and Danish data were combined to increase power; after combining the data, one 

SNV (rs78489201) showed a marginally significant association (PCCA=0.05) (see Table 4-10). 

However, rs78489201 could not be considered a positive replication as again, the frequency 

difference between cases and controls is contrary to the frequency distribution in the German 

sample (see Table 4-11).  

 

 

Chr. 

 

dbSNP ID 

 

MAF 

cases 

 

MAF 

controls 

 

PCCA 

 

OR 

 

Population 

 rs10927851 0.293 0.342 0.0002 (C) 0.80 German LLI 

1 rs10927851 0.308 0.271 0.0298 (C) 1.20 Danish LLI 

 rs78489201 0.055 0.075 0.0202 (G) 0.72 German centenarian subset  

11 rs78489201 0.088 0.077 0.0503 (G) 1.16 combined French and Danish LLI 

  For abbreviations see legend to Table 4-6 

Table 4-11: Frequency distribution between cases and controls: Case-control frequency distribution in (1) 

German and Danish LLI and (2) German subgroup and combined French and Danish LLI for two SNVs that showed 

a significant association signal in the German longevity sample and nominal significance in the replication sample. 
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4.3 Method 2: Low-frequency variants with functional impact 

4.3.1 Selection of variants 

For this method, SNVs called from the SOLiD and Illumina sequencing data were combined and 

variants that showed an intersection between the two platforms (SOLiD and Illumina) were 

selected for further investigation. As SOLiD and Illumina employ different sequencing 

techniques, it is expected that the intersection would represent true positive variants among large 

proportions of putative false-positive calls and sequencing artefacts randomly distributed over the 

genome. 

 
  

(1) German  

      female 

   108 years  

 

(2) German        

      male 

   109 years  

 

(3) French  

      female 

>114 years  

 

(4) Spanish  

      female 

>110 years  

 

(5) German  

      female 

108 years  

 

(6) German  

      male 

106 years  

 

Total 

SOLiD 

(whole genome 

sequencing) 

 

3,264,818 

 

3,923,324 

 

2,695,673 

 

NA 

 

NA 

 

NA 

 

6,465,384 

 

Illumina 

(whole genome 

sequencing) 

 

4,013,012 

 

4,071,554 

 

4,022,164 

 

4,081,702 

 

NA 

 

NA 

 

7,130,986 

 

Illumina 

(exome 

sequencing) 

 

26,223 

 

26,790 

 

26,767 

 

27,178 

 

18,456 

 

18,481 

 

69,666 

 

Table 4-12: Total number of variants generated by SOLiD and Illumina technology in six centenarians. 

 

The SNVs generated by SOLiD and Illumina sequencing for all six centenarians (two German 

females, two German males, one French female and one Spanish female) were annotated using 

snpActs (http://snpacts.ikmb.uni-kiel.de/) and Annovar (Wang et al. 2010). In total, 6,465,384 

variants were called from the SOLiD sequenced data (genome) and 7,162,264 variants from the 

Illumina sequenced data (genome and exome) as presented in Table 4-12. The variants were 

filtered for exonic regions and SNVs that showed an intersection from both sequencing 

technologies were chosen for further analysis (see Figure 4-6). 
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The list was further refined by removing variants that showed a MAF>10%, when compared with 

the 1000G or the ESP database. This reduced the list to 2,959 variants, including variants with no 

listed MAF in either 1000G or ESP database. Out of the 2,959 exonic variants, 2,888 coding 

variants were evaluated with eight different prediction tools to select variants of high functional 

interest. 

 
 SOLiD 

sequencing 

Illumina 

sequencing 

Overlap Genotype 

concordance 

 

Exonic SNVs 

(missense, nonsense, 

cancel-start, read-through, 

splice-sites and unknown) 

 

 

25,321 

 

 

23,245 

 

 

12,528 

 

 

99.92% 

 

Figure 4-6: Intersection of exonic variants between SOLiD and Illumina technology: Variants that showed an 

intersection between both sequencing technologies (12,528 SNVs) were selected for further analysis. 
 

Prediction tools are advantageous to prioritize variants that may affect the structure or function of 

proteins. The scores for each variant from all tools were computed by Carolin Knecht from the 

IMIS, University of Kiel. The input information was protein sequences, amino acid substitution 

and/or UniProt IDs. Table 4-13 shows the total number of variants that were successfully 

evaluated for each tool. For each SNV, the binary decisions of each tool were aggregated by 

summation, whereby -1 implies ‘no effect’ or neutral, 1 indicates ‘effect’ or ‘damaging’ for each 

tool and ‘error’ suggests that no prediction could be made by the tools for some variants (most of 

the tools give errors for predicting the effect of a variant when the amino acid substitution does 

not match with the given protein sequence). SNPs&GO uses UniProt IDs instead of protein 
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sequences for input and as many of the IDs were not present in the embedded UniProt database 

and hence, this tool has given maximum errors. The term ‘damaging’ used in this context refers to 

a change in amino acid leading to either loss-of-function or gain-of-function, thereby likely to 

influence human longevity in either direction. Variants that were predicted to have an effect on 

the amino acid change in either seven or eight tools were selected for further investigation.  

 

 

 

Grantham 

score PhyloP MutPred SNAP Pmut SIFT Polyphen2 SNPs&GO 

Neutral  

(Effect: -1) 

 

2306 

(79.8%) 

1565 

(54.2%) 

2204 

(76.3%) 

1888 

(65.3%) 

1809 

(62.6%) 

1833 

(63.5%) 

1502 

(52%) 

1880 

(65.1%) 

Damaging 

(Effect: 1) 

 

582 

(20.2%) 

1322 

(45.78%) 

612 

(21.2%) 

913 

(31.6%) 

982 

(34%) 

742 

(25.7%) 

966 

(33.4%) 

213 

(7.4%) 

Error 

 

 

0 

1 

(0.02%) 

72 

(2.5%) 

87 

(3.01%) 

97 

(3.4%) 

313 

(10.8%) 

420 

(14.6%) 

795 

(27.5%) 
 

Table 4-13: Number of variants evaluated with each prediction tool: Eight different prediction tools were chosen 

to evaluate 2,959 exonic variants. 

 

In order to prioritize the SNVs of interest, different lists were generated based on various criteria, 

as shown in Figure 4-7. 

 

Variants selected based on longevity genes and pathways list 

Known longevity genes and pathways from various model organisms listed in the NetAge 

database (Tacutu et al. 2010) were used as a filter mask to overlay with the source list of variants 

(exonic variants with MAF≤10% in 1000G and ESP). Fifteen variants were located in genes 

involved in insulin and/or mTOR signaling (Supplementary Table 12-8). These 15 variants were 

then checked for their functional effect with eight different prediction tools. Out of 15 variants, 

only one variant (rs146426104) with an extremely low MAF (<1%) was predicted to be 

‘damaging’ by seven of the eight tested tools. The remaining 14 variants were predicted to be 

neutral in their effect by most of the tools. Two of the variants (rs3208856 and rs17313469) were 

selected even though they were predicted neutral, because they were found in two individuals, 

which is much more frequent than expected by chance compared to their MAF of 3 to 5% in the 

European population of the 1000G. 
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Figure 4-7: Selection of variants for Method 2: Selection of variants from six individuals sequenced with SOLiD 

and Illumina technology to select low-frequency variants based on various criteria. 

Exonic SNVs with MAF≤10% in 1000G and/or ESP database + no listed MAF: 2,959 SNVs 

 

 
SNV selection:  Filter mask generated in snpActs (a) from known longevity genes and pathways (NetAge) 
                                                    (b) from longevity GWAS hit regions 
   

 Prediction tools  (a) Top scores: variants that showed an ‘effect’ in seven or eight tools  
(b) Top scores: variants that showed an ‘effect’ in five or more tools and  
present in four or more centenarians 

 
 SNVs present in 5 or 6 individuals 

 
     

        

 15 SNVs involved in insulin and/or mTOR 
signaling 

     

   

 

TaqMan genotyping (ICMB, Kiel) 

3 SNVs 

 1,610 German long-lived individuals  

 1,104 German controls 

Generation of different lists based on 
 

 GWAS hit regions (8 SNVs) 
 

 Top scores: coding variants that showed an ‘effect’ 
in seven or eight tools (30 SNVs) 

 

 Top scores: coding variants that showed an ‘effect’ 
in five or more tools and present in four or more 
centenarians (14 SNVs) 

 

 SNVs present in 5 or 6 individuals (94 SNVs) 
 

        

 SNV selection for genotyping: 48 SNVs  
(after variant quality checked in IGV viewer) 
 

 GWAS hit regions (6/8 SNVs) 
 

 Top scores: coding variants that showed an ‘effect’ 
in seven or eight tools (17/30 SNVs) 

 

 Top scores: coding variants that showed an ‘effect’ 
in five or more tools and  present in four or more 
centenarians (2/14 SNVs) 

 

 SNVs present in 5 or 6 individuals (23/94 SNVs) 
 

Sequenom genotyping (ICMB, Kiel) of 

48 SNVs 

 1,610 German long lived individuals  

 1,104 German controls 

Replication experiment (TaqMan) for 

1 SNV with significant p-value 

 Danish LLI  

(910 cases, 760 controls) 

 

 

Replication experiment (TaqMan)  

For 2 SNVs of interest 

 Italian LLI  

(489 cases, 480 controls) 

 

 American LLI  

(352 cases, 365 controls) 

SNV selection for genotyping: 3 SNVs  
 
 1 SNV showed an ‘effect’ in seven tools 
 
 2 SNVs present in two individuals 

 

Longevity genes and pathways GWAS hit regions, plus prediction tools 
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These three variants as shown in Table 4-14 were then selected for genotyping using the TaqMan 

technology in the German longevity sample (LLI, n = 1,610 and younger controls, n = 1,104). 

 

 

 

 

 

Chr dbSNP ID source Pathway  Gene MAF*  

No. of 

tools 

predicted 

damaging 

effect [0;8] 

No. of tools 

predicted 

neutral effect 

[0;8] 

 

 

12 

 

 

rs146426104 (2) German male  

Insulin 

signaling ACACB 0.006098 7 1 

 

 

19 

 

 

rs3208856 

 (3) French female, 

(6) German male  

Insulin 

signaling CBLC 0.036585 3 5 

 

 

X 

 

 

rs17313469 

 (3) French female, 

(6) German male  

Insulin 

signaling PHKA2 0.057851 1 7 
*MAF: minor allele frequency observed in either 1000G or ESP database 

Table 4-14: Variants selected from genes involved in mTOR or insulin signaling: Three variants were present in 

genes involved in mTOR/insulin signaling and were selected because rs146426104 was predicted as “damaging” by 

seven different tools, rs3208856 and rs17313469 were present in two centenarians. 

 

Variants selected based on longevity GWAS associated hit regions 

Our previous longevity GWAS data used for this approach has been described in detail elsewhere 

(Nebel et al. 2011). It comprises 664,472 autosomal SNPs genotyped in 763 LLI (mean age: 99.7 

years) and 1,085 controls (mean age: 60.2 years) from Germany. Associated variants were 

‘clumped together’ using the PLINK clumping algorithm and these ‘clumped’ regions were used 

as targets for further SNV selection. There were 325 clumped regions formed with a p-value less 

than 0.001. The whole variant source list (2,959 SNVs) was then overlaid with the ‘clumped’ 

regions. Eight variants were present within the range of the associated hit regions as shown in 

Table 4-15.  

 

Variants selected based on top scores from prediction tools 

Out of the 2,888 variants, 30 SNVs (Supplementary Table 12-9) were chosen based on top scores 

determined by the binary decisions of each tool. These SNVs were predicted as ‘damaging’ by 

seven or eight out of eight tools and each variant was present either in one, two or three 

individuals. 

 

Variants selected based on prediction tools and their presence in four or more individuals 

Fourteen variants were selected (Supplementary Table 12-10) that were predicted as ‘damaging’ 

by five or more tools out of eight and were present in four or more individuals, which is much 
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more frequent than expected by chance, as these SNVs did not even have a MAF listed in the 

1000G or ESP databases. 

 

    

GWAS associated hit regions 

dbSNP ID Gene source MAF* p-valueǂ Location 

rs17123306 KANK4 (2) German male 0.018293 0.00045 

 

Chr1:62732420..62760411  

[KANK4] 

rs199619070  TTN (3) French female 0.000363 0.000197 

 

Chr2:179503210..179589768  

[TTN] 

rs17452588 TTN (2) German male 0.009214 0.000197 

 

Chr2:179503210..179589768  

[TTN] 

rs61764030 UGT1A3 (3) French female 0.002442 0.000194 

 

Chr2:234628575..234651799  

[UGT1A6,UGT1A8,UGT1A9, 

UGT1A7,UGT1A10,UGT1A4, 

UGT1A5,UGT1A3,DNAJB3] 

rs200305979 DPYSL5 (3) French female 0.000116 2.45e-05 

 

Chr2:27132821..27299597  

[TMEM214,MAPRE3, 

DPYSL5,AGBL5] 

rs3749971 OR12D3 

(2) German male, 

(5) German female  0.095089 0.000696 

 

Chr6:29342774..29461729  

[OR2H1,OR12D2,OR12D3, 

OR11A1,OR10C1,MAS1L] 

chr17_44128052 KANSL1 (3) German female NA 0.000307 

 

Chr17:43801694..44197602 

[STH,MAPT, KANSL1, 

IMP5,CRHR1] 

rs35653278 ZNF750 (2) German male 0.0609756 0.000796 

 

Chr17:80776042..80796235  

[ZNF750,TBCD] 
*MAF: minor allele frequency observed in either 1000G or ESP database 

 ǂpvalue: GWAS pvalue 

 

Table 4-15: Variants selected based on longevity GWAS hit regions: Eight variants were selected that were 

present within the range of longevity GWAS associated hit regions. 

 

Variants selected based on their presence in either five or six individuals 

Ninety-four SNVs out of 2,888 were found to be present in five or six individuals. The 94 SNVs 

were selected independent of the scores from the prediction tools, as their MAF was not even 

listed in the 1000G or ESP databases and hence they were present more frequently than expected 

by chance. Many variants with no listed MAF in either the 1000G or the ESP database were 

selected, because they occurred more frequently than expected by chance among all six 

individuals. If these variants are very rare, they might have no listed allele frequency in either of 

the databases. However, on the other hand, if those SNVs have not been called accurately, they 

could also be false positives. Therefore, to make sure that all selected SNVs are of good quality, 
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each variant was visualized manually using the Integrative Genomics Viewer (IGV). This 

comprised a list of 23 SNVs of interest, present in five or six individuals.  

 

Altogether, 48 SNVs were selected for further genotyping using Sequenom technology in our 

German LLI (listed in Supplementary Table 12-11).  

4.3.2 Analysis of selected SNVs 

Variants that showed an intersection between both the SOLiD and Illumina platforms were 

filtered, followed by prioritizing the SNV list based on various criteria (see Figure 4-8). A total of 

51 SNVs (see Figure 4-7) were selected for subsequent association testing using the TaqMan and 

Sequenom technology. German LLI (n = 1,610, age range: 95-110 years) were compared to 

younger controls (n = 1,104, age range: 60-75 years) matched for ancestry, gender and 

geographical origin within Germany.  

 

SNVs selected based on longevity genes and pathways list 

Three variants based on target regions (NetAge pathway list) and prediction tools were selected 

and genotyped using the TaqMan technology. No significant association was observed in the 

whole German sample (see Table 4-16), but one SNV (rs3208856) showed a significant 

association signal with an allelic p-value of 0.038 in the centenarian subset (see Table 4-17).  

 

 

Chr. dbSNP ID 

 

 

Gene 

MAF 

cases 

 n = 1,610 

MAF 

controls 

n = 1,104 
PCCA OR 95% C.I. 

 

19 rs3208856 

 

CBLC 0.04589 (T) 0.03676 0.1033 1.26 

 

0.9536 - 1.665 

 

X rs17313469 

 

PHKA2 0.02344 (G) 0.03062 0.1352 0.7597 0.5292-1.091 

 

12 rs146426104 

 

ACACB 0.001593 (T) 0.0009328 0.517 1.709 0.3313-8.818 
  For abbreviations see legend to Table 4-6 

Table 4-16: Longevity association statistics in German LLI for three low-frequency SNVs: Association statistics 

for three SNVs selected based on genes involved in mTOR/insulin signaling in German LLI (n=1,610) and younger 

controls (n=1,104). 
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Chr. dbSNP ID 

 

 

Gene 

MAF 

cases 

n = 910 

MAF 

controls 

n = 760 
PCCA OR 95% C.I. 

 

19 rs3208856 

 

CBLC 0.05081 (T) 0.03676 0.03878 1.403 1.016-1.936 

 

X rs17313469 

 

PHKA2 0.02023 (G) 0.03062 0.07308 0.6537 0.4094-1.044 

 

12 rs146426104 

 

ACACB 0.003406 (T) 0.0009328 0.09692 3.66 0.7092-18.89 
For abbreviations see legend to Table 4-6 

Table 4-17: Longevity association statistics in German centenarian subgroup for three low-frequency SNVs: 

Association statistics for three SNVs selected based on genes involved in mTOR/insulin signaling in German 

centenarians subset (n=745) and younger controls (n=1,104). 

 

Two SNVs (rs3208856 and rs146426104) were genotyped for replication in the Italian and 

American longevity samples. The SNV rs3208856 was selected due to the nominally significant 

PCCA in the centenarian subset and rs146426104 was selected due to its very high odds ratio in the 

centenarian subset.  

 

However, as we can see in Table 4-18, the genetic association signal observed in Germans could 

not be confirmed in the Italian LLI sample and in addition, one of the SNVs (rs146426104) 

turned out to be monomorphic in this longevity sample.  

 

 

Chr. dbSNP ID Gene 

MAF 

cases 

n = 489 

MAF 

controls 

n = 480 PCCA OR 95% CI 

 

19 rs3208856    CBLC 0.02206 (T)   0.029 0.4438 0.7444        0.3488-1.58 

 

12 rs146426104   ACACB 0 0 - - - 
For abbreviations see legend to Table 4-6 

Table 4-18: Longevity association statistics for replication in Italian LLI for two low-frequency SNVs: 

Association statistics for replication for two SNVs selected based on genes involved in mTOR/insulin signaling in 

Italian longevity sample. 

 

In the American longevity sample, one of the two SNVs, rs3208856, confirmed the association 

signal with an allelic p-value of 0.000189 (see Table 4-19). The allele frequency for case-control 

distribution in the American longevity sample was similar to the original findings in the Germans.  
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Chr. dbSNP ID 

 

 

Gene 

MAF 

cases 

n = 352 

MAF 

controls 

n = 365 
PCCA OR 95% C.I. 

 

19 rs3208856 CBLC 0.0696 (T)   0.0274     0.000189         2.656        1.562-4.51 

 

12 rs146426104 ACACB 0.007246 (T) 0.005495     0.6937         1.321        0.329-5.30 
For abbreviations see legend to Table 4-6 

Table 4-19: Longevity association statistics for replication in American LLI: Association statistics for replication 

for two SNVs selected based on genes involved in mTOR/insulin signaling in American longevity sample. 
 

SNVs selected based on GWAS hit regions and prediction tools 

Furthermore, lists were generated based on various criteria as shown in Figure 4-7, where 48 

SNVs that may have a potential influence on the longevity phenotype were chosen for further 

genotyping with the Sequenom technology.  

 

Out of 48 variants, 31 SNVs were successfully genotyped and the remaining SNVs either failed 

the assay design or turned out to be monomorphic in our German population (Supplementary 

Table 12-12). Three of the 31 tested SNVs showed a significant association signal with an allelic 

p-value of less than 0.05 in the whole sample (see Table 4-20) and the centenarian subset (see 

Table 4-21).  

 

 

Chr

. dbSNP ID 

 

 

Gene 

MAF 

cases 

 n = 1,614 

MAF 

controls 

n = 1,104 
PCCA OR 95% C.I. 

 

20 rs35761929 

 

JAG1 0.1246 (C) 0.07678 3.7e-08 1.712 

 

1.411-2.076 

 

17 rs35653278 

 

ZNF750 0.1259 (A) 0.1002 0.004491 1.294 1.083-1.546 

 

11 rs34898047 

 

MICALC

L 0.009036 (A) 0.0176 0.006923 0.5089 0.3089-0.8384 
For abbreviations see legend to Table 4-6 

Table 4-20: Longevity association statistics in German LLI for low-frequency variants: Association statistics for 

three significant SNVs selected based on GWAS hit regions and prediction tools in German LLI (n=1,614) and 

younger controls (n=1,104). 
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Chr

. dbSNP ID 

 

 

Gene 

MAF 

cases 

n = 910 

MAF 

controls 

n = 760 

PCCA OR 95% C.I. 

 

20 rs35761929 

 

JAG1 0.1096 (C) 0.07678 

0.000829

7 1.481 

 

1.175-1.866 

 

17 rs35653278 

 

ZNF750 0.1302 (A) 0.1002 0.005778 1.344 1.089-1.659 

 

11 rs34898047 

 

MICALC

L 0.007891 (A) 0.0176 0.01569 0.4439 0.2257-0.8732 
For abbreviations see legend to Table 4-6 

Table 4-21: Longevity association statistics in German centenarian subgroup for low-frequency variants: 

Association statistics for three significant SNVs selected based on GWAS hit regions and prediction tools in German 

centenarian subset (n=748) and younger controls (n=1,104). 

 

Based on the above analysis, it was decided to replicate only the top-ranking SNV (rs35761929) 

in a larger Danish sample that consisted of 910 LLI (age range: 94-100 years) and 760 younger 

controls (age range: 60-72 years). The SNV rs35761929 had 89% power to replicate the observed 

association with an OR of 1.7 as presented in Figure 4-8.  

 

 

Figure 4-8: Power and sample size calculation: (a) Power calculation diagram showing the expected power in 

relation to sample size, odds ratio and risk allele frequency for the Danish sample of 910 LLI and 760 controls with a 

significance level of 0.05. (b) Sample size calculation diagram showing the required number of cases (with a case-
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control ratio of 1) in relation to the expected power, given a significance level of 0.05, an OR of 1.5 and minor allele 

frequency similar to that of observed in German LLI.  
The other two SNVs (rs35653278 and rs34898047) had a power of less than 40% to replicate in 

the Danish LLI. Considering a case-control ratio of 1, a sample size of 1,000 (for rs35653278) to 

4,500 cases (for rs34898047) would be required to gain 80% power for the replication of SNVs 

rs35653278 and rs34898047, assuming an OR of 1.5. 

 

Hence, the SNV rs35761929, which showed a significant association with a PCCA of 3.7e-08 in 

the German LLI, was further investigated for a replication experiment using independent Danish 

LLI data comprising 910 LLI and 760 younger controls. However, the genetic association 

observed in Germans could not be confirmed in the Danish population as seen below in Table 4-

22. 

 

 

Chr. dbSNP ID 

 

 

Gene 

MAF  

cases 

n = 910 

MAF 

controls 

n = 760 
PCCA OR 95% C.I. 

 

20 rs35761929 

 

JAG1 0.09116 (C) 0.08508 0.5383 1.079 

 

0.8474-1.373 
For abbreviations see legend to Table 4-6 

Table 4-22: Longevity association statistics for replication in Danish LLI for low-frequency variant: 

Association statistics for replication of one SNV selected based on prediction tools in Danish LLI (n=910) and 

younger controls (n=760).  

 

SNV list dbSNP ID Gene 

Effect 

allele 

Direction 

of effect  

cases≥85 

years 

Pvalue  

cases≥85 

years 

Direction 

of effect  

cases≥90 

years 

Pvalue  

cases≥90 

years 

Method 2:  

Pathway SNVs rs3208856 CBLC T + 0.026 + 0.34 

Method 1:  

SNVs with MAF 1 to 50% rs17054318 PLEKHG1 T - 0.24 - 0.37 

Method 1:  

SNVs with MAF 1 to 50% rs35719359 PCCA T - 0.34 + 0.52 

Method 1:  

SNVs with MAF 1 to 50% rs10927851 FBLIM1 T + 0.38 + 0.28 

Method 2:  

Prediction tools rs35761929 JAG1 T + 0.43 + 0.51 

Method 1:  

SNVs with MAF 1 to 50% rs3093921 PARP2 G + 0.83 - 0.69 

 

Table 4-23: Longevity association statistics for SNVs of interest in meta-analysis discovery sample: Association 

statistics for SNVs that showed a significant association signal in the German longevity sample and are present in the 

discovery-phase meta-analysis of 7,729 cases (≥85 years) and 16,121 controls (≥65 years). 
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For a further comprehensive investigation, all the SNVs (12 SNVs) that showed a significant 

association in our German longevity sample from both the approaches were checked for a 

replication signal in the discovery-phase of the meta-analysis comprising 7,729 LLI of European 

descent (≥85 years) and 16,121 younger controls, which was recently published (Deelen et al. 

2014). Out of 12 SNVs, six SNVs were found to be present in the discovery-phase meta-analysis 

(Table 4-23), where only one SNV rs3208856 showed a nominally significant signal of 0.026 in 

cases aged ≥85 years. 

 

All together, 167 SNVs were selected for genotyping based two different approaches. Out of 

these 167 SNVs, 12 that showed a significant association in our Germany longevity sample were 

further typed for a replication experiment in different longevity populations (Denmark, France, 

Italy, USA). Most of the variants failed to confirm the initial association signal apart from one 

SNV (rs3208856) in the American longevity sample. The SNV rs3208856 (C/T) was selected for 

genotyping because it was present in two centenarians and the variant was predicted by PhyloP to 

be conserved and ‘damaging’ by SIFT and SNAP. It is a missense variant located on the CBLC 

gene and is involved in the insulin pathway. The amino acid substitution is from histidine (His) to 

tyrosine (Tyr) at position 405 (p.His405Tyr). Replication in the American sample reached a 

pvalue of 0.000189 with a frequency distribution similar to that in our German sample, where the 

minor allele ‘T’ is overrepresented in centenarians as compared to controls. Hence, the CBLC 

variant can be regarded as a very promising candidate that influences longevity but needs further 

investigation and confirmation in additional larger longevity samples. 
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5 Discussion 

In this project, we combined innovative genetic platforms (next-generation sequencing plus high 

throughput genotyping) with a contemporary study design (case-control association studies) and 

statistical/bioinformatics methods (such as SNV evaluation by prediction tools) to identify new 

variants that contribute to exceptional longevity. To reach this goal, we performed whole genome 

and exome sequencing of six centenarians (108 to114 years) of European origin using SOLiD and 

Illumina technologies. Variants for further genotyping investigation have been selected based on 

two different approaches.  

 

The first approach focused on SNVs with MAF 1 to 50% that might have a functional impact, 

where seven SNVs showed a significant association signal with a p-value less than 0.05 in either 

the whole German longevity sample or centenarian subset, but none of the initial findings could 

be confirmed with a positive replication in independent French and Danish longevity samples.  

 

Our second approach focused on selecting low-frequency variants (MAF≤10%) that showed an 

intersection between SOLiD and Illumina technologies. Several criteria, as listed in figure 4-7 

were implemented to select SNVs for further genotyping. Known longevity genes and pathways 

from the NetAge database (Tacutu et al. 2010) were used as filter masks for the variant selection. 

Two SNVs (rs3208856 and rs146426104) that showed a significant association signal in the 

German centenarian subset were typed for a replication experiment in the Italian and American 

LLI populations. No significant association was observed in the Italian population but the 

analysis in the American longevity samples, one SNV (rs3208856), confirmed the signal with an 

allelic p-value of 0.000189.  

 

Furthermore, the longevity GWAS data (Nebel et al. 2011) was used to generate associated hit 

regions that were used as targets to overlay with the original SNV list. The functional impact of 

all low-frequency variants were calculated with eight different prediction tools and SNVs that 

were present in four or more individuals were also selected. This comprised 48 potential 

functional SNVs that were selected for genotyping, where three SNVs (rs35761929, rs35653278 

and rs34898047) showed a significant association signal in the whole German longevity sample. 

Based on power calculations, only one of the three SNVs (rs35761929) that had a power of 89% 

to replicate the observed association signal in the Danish LLI sample was selected further for a 

replication experiment. However, the genetic association observed in Germans for rs35761929 

could not be confirmed in the Danish longevity sample. 
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5.1 Coverage and variant calling performance for SOLiD and Illumina 

sequencing data 

The term coverage generally refers to the average number of reads that align to each base within 

the sequence. For example, a whole genome sequenced at 30-fold coverage (30x) means that, on 

average, each base in the genome is covered by 30 sequencing reads (Sims et al. 2014). Coverage 

is an essential aspect of next-generation sequencing, as a higher coverage allows for a higher 

confidence for detection of genetic variants. Usually, high coverage regions tend to have higher 

calling qualities and low coverage regions tend to have lower variant calling qualities. In general, 

20x is deemed necessary for reliable sequence variation calling in data from Illumina and SOLiD 

platforms (Rieber et al. 2013).  

 

 

Figure 5-1: Coverage plot for three samples sequenced with SOLiD technology. 

 

Three centenarians ((1) German female and (2) male, plus (3) French female) were sequenced 

with SOLiD technology using four different libraries per individual. One paired-end library [50 + 

35 bp (SOLiD™ Paired-End Library Construction Kit)] and three genomic mate-pair libraries [50 
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+ 50 bp (SOLiD™ Long Mate-Paired Library Construction Kit)] were generated per sample. The 

coverage for all three genomes sequenced on SOLiD technology is shown in Figure 5-1. More 

than 90% of the genome has been covered by at least one read. An average coverage of 43x was 

generated and 60% of reads were covered at 20x, which is comparable to the coverage attained by 

other whole genome sequencing studies (Venter et al. 2001; Ratan et al. 2013).  

 

 

Figure 5-2: Coverage plot for four samples sequenced with Illumina technology. 

 

In addition, four centenarians ((1) German female and (2) male, plus (3) one French female and 

(4) one Spanish female) were sequenced using the Illumina technology, where the library 

generation was prepared for paired-end sequencing using the ‘PE-102-1001-paired-end 

sequencing sample prep kit’. The coverage for all four genomes sequenced on Illumina 

technology is shown in Figure 5-2. More than 90% of the genome has been covered by at least 

one read. An average coverage of 30x was generated and 80% of reads are covered at 20x, which 

is again comparable to the coverage attained by other whole genome sequencing studies (Ratan et 

al. 2013; Rieber et al. 2013). 
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Figure 5-3: Coverage plot for six exomes sequenced with Illumina technology. 
 

Altogether, six centenarians ((2),(6) two German females; (1), (5) two German males; (3) one 

French female; (4) one Spanish female) were exome sequenced on the Illumina GA machine 

using Agilent SureSelect and NimbleGen 2.1M target enrichment kit. More than 90% of the 

genome has been covered by at least one read. An average coverage of 60x was generated and at 

least 68% of reads were covered at 20x with Agilent SureSelect. Exome sequencing using 

NimbleGen 2.1M target gave an average coverage of 30x with 60% of the reads covered at 20x, 

as shown in Figure 5-3. These results are also comparable to other published studies (O'Rawe et 

al. 2013; Wang et al. 2013). 

 

The coverage exhibited by Illumina technology (Figure 5-2 and 5-3) is observed to be more 

uniform and displays the least sample-to-sample variation among all individuals when compared 

to centenarians sequenced with the SOLiD technology (Figure 5-1). For the whole genome 

sequencing, the Illumina technology covered 80% of the bases at 20x, whereas for the SOLiD 

technology 60% of the bases were covered. This indicates the shortcomings of the SOLiD 
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technology in comparison to Illumina technology, by leaving considerable fraction of the genome 

uncovered. Earlier studies have indicated that less uniform coverage shows a necessity for a 

higher overall sequencing depth to cover a similar fraction of the genome (Lam et al. 2012; 

Rieber et al. 2013). Overall, the coverage obtained for both SOLiD and Illumina technologies is 

comparable to other published studies (Venter et al. 2001; Ratan et al. 2013; Sims et al. 2014). It 

has also been suggested that integrating sequencing data from different platforms offers the 

potential to combine the strengths of different technologies and reduce false-positive variants 

(Rieber et al. 2013).  

 

Identifying a reliable list of SNVs is important when analysing NGS data; hence, various articles 

have suggested sequencing the same samples, using at least two separate sequencing platforms 

(Lam et al. 2012; O'Rawe et al. 2013; Ratan et al. 2013). In our dataset, we have three individuals 

((1) German female and (2) male, and (3) French female) sequenced for the whole genome and 

exome with SOLiD and Illumina technology and one individual ((4) Spanish female) sequenced 

for whole genome and exome with the Illumina technology. False positive variants arising from a 

single sequencing technology lead to a poor quality of SNVs by the inclusion of non-existing 

genetic variants, mainly due to issues relating to coverage and SNV quality (Ratan et al. 2013). 

The best approach for comprehensive variant detection is to sequence genomes with both 

platforms. Alternatively, supplementing whole genome sequencing with exome sequencing can 

help in obtaining a more comprehensive set of exonic variants, as shown by O'Rawe (O'Rawe et 

al. 2013). Whole exome sequencing (WES) yields a higher depth of coverage in most exonic 

regions, whereas whole genome sequencing (WGS) offers a uniform and comprehensive 

coverage that may cover regions missed by exon capture in the detection of coding variants. As 

SOLiD and Illumina employ different techniques, it is expected that the overlap of our 

sequencing data would represent true-positive SNVs among large proportions of putative false-

positive calls and sequencing artefacts randomly distributed over the genome. The combination of 

exome sequencing and WGS on different platforms, together with multiple variant callers, can 

provide a powerful means to maximise sensitivity and specificity for any personal genome 

(O'Rawe et al. 2013; Ratan et al. 2013). Therefore, SNVs generated from both technologies were 

combined and those variants that show an intersection between SOLiD and Illumina (assuming 

they represent reliable variant calls) were selected for further investigation. 
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SOLiD  

(whole genome) 

Illumina  

(whole genome) 

Illumina  

(whole exome) 

Union 

Total number of SNVs 6,465,384 7,130,986 69,666 

 

9,041,484 

Total number of novel SNVs 

1,875,418  

(29%) 

983,854  

(14%) 

5,267  

(7.5%) 

2,675,839 

(29.59%) 

synonymous-coding SNVs 18,644 18,874 23,704 

 

34,762 

 missense SNVs        24,296 19,225 21,275 

 

41,100 

cancel-start SNVs 50 28 29 

 

71 

 read-through SNVs 63 49 24 

 

90 

nonsense SNVs 614 206 205 

 

805 

SNVs in acceptor 178 47 37 

 

219 

SNVs in donor  152 154 81 

 

333 

SNVs in 5'UTR 10,497 11,112 1,009 

 

15,278 

SNVs in 3'UTR 46,791 45,821 1,281 

 

62,270 

SNVs in UTR-splice sites 411,845 456,382 430 

 

579,861 

SNVs in introns 1,976,671 2,139,273 21,172 

 

2,731,104 

unknown/intergenic SNVs 3,975,578 4,439,810 415 

 

5,575,585 

SNVs overlapping with Venter 

genome 733,068 898,380 17,455 

 

910,591 

SNVs overlapping with 

Watson genome 1,019,716 1,124,813 12,849 

 

1,131,262 

SNVs overlapping with 

Yoruban genome 763,891 880,567 15,163 

 

898,407 
 

Table 5-1: Summary of SNV distribution in all six centenarians: Summary statistics of SNV detection and 

annotation for samples sequenced with SOLiD and Illumina technology. 

 

The variant calling was performed with at least two different SNV callers, SAMtools and GATK 

(plus diBayes for SOLiD sequenced data) and the results obtained were merged for further 

analysis. The overlap between DiBayes, SAMtools and GATK variant calling was over 85% for 

each sample sequenced on SOLiD technology. The overlap between SAMtools and GATK 

variant calling was over 95% for each sample sequenced on Illumina technology. Both tools use a 

Bayesian approach to call the variants (Yu and Sun 2013). On one hand, SAMtools is considered 

good for low coverage data as it uses all reads, while on the other hand, GATK drops reads with 

low mapping quality and produces variants of only high quality. Usually, it might be wise to 
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choose an overlap among two or more variant calling programs instead of using just one 

algorithm (Yu and Sun 2013). However, this could result in a high false negative rate, with many 

true variants being missed; therefore, the results of a combined SNV calling from both 

technologies were chosen for further analysis. Table 5-1 gives a detailed overview of the detected 

variants with both technologies. 

 

A total of 9,041,484 SNVs was detected for samples sequenced on SOLiD and Illumina 

technology, 29% of the detected SNVs were novel or were not reported on the dbSNP 135 

database. The heterozygous/homozygous ratio was 1.4 and the transition/transversion ratio 

calculated for the entire SNV data set is 1.8 which is according to the expected value published 

(Levy et al. 2007; DePristo et al. 2011). A comparison with other published genomes showed that 

10% of the variants were found to be present in Venter (Levy et al. 2007) and 12.5% of the 

variants were observed in Watson (Wheeler et al. 2008).  

 

5.2 Challenges of next-generation sequencing 

Six centenarians were sequenced using two different technologies (SOLiD and Illumina) of next-

generation sequencing to generate a large amount of data to identify new genetic variants that 

contribute to exceptional longevity. WGS offers the most comprehensive and unbiased approach 

to study sequence variation, ranging from SNVs and small indels to large structural variation and 

copy number variations (Snyder et al. 2010). Exome sequencing is a comparatively cost-effective 

approach that captures only the coding regions of DNA with a high depth of coverage. WES has 

fewer false positives than WGS, and a greater sensitivity due to the higher coverage achieved, but 

concerns have previously been raised that it misses important information such as non-coding and 

structural variations (Wang et al. 2013). WGS is advantageous for studying regulatory sequences 

and copy-number information, but exome sequencing can identify several thousand single 

nucleotide variants, both common and rare, associated with the studied phenotype (O'Rawe et al. 

2013). The cost differential between the two methods has reduced gradually and some researchers 

are using the combination of the two to get as much information out of their data as possible 

(O'Rawe et al. 2013; Ratan et al. 2013). However, although the price of sequencing is decreasing, 

re-sequencing of the variants/genes using conventional sequencing techniques and further follow-

ups, such as genotyping experiments increase the cost of the approach. This step is frequently 

needed for the proper validation of variants (Majewski et al. 2011). In our project, we have not 

only combined two technologies of SOLiD and Illumina but also the two methods of WGS and 
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WES. Furthermore, to substantiate our initial findings, we have added case-control association 

studies by genotyping LLI from five independent populations (Germany, France, Denmark, Italy 

and USA).  

 

NGS can help in understanding the genetic mechanisms in biological systems but, at the same 

time, it can also give rise to new challenges, especially with processing, analysing and 

interpreting the data. Although a number of software packages are constantly being developed for 

processing data, second-generation sequencing introduces errors at a fairly high rate compared 

with the traditional Sanger sequencing (de Magalhães et al. 2010). These errors can arise during 

the PCR amplification step prior to sequencing or during library preparation. Duplicate reads 

contribute to false positives derived from PCR-associated errors and are therefore routinely 

removed during analysis (Koboldt et al. 2010). For example, in our pipeline, Picard’s 

MarkDuplicates was implemented to remove PCR-duplicates from sequencing reads, thereby 

reducing the sequencing error. Analysis of NGS data can be troublesome particularly due to the 

given short-read length and the huge volume of data. Gaps present in the human reference 

genome can lead to ambiguity and misalignments in short read sequences, thereby reducing the 

possibility of identifying ‘true’ variants. One way to mitigate this issue is using paired-end reads 

(de Magalhães et al. 2010; Koboldt et al. 2010), which has been achieved in our project with 

sequences generated by the Illumina technology. Independent base calling algorithms and 

software tools have been developed to improve base calling accuracy and reduce systematic 

errors. Base quality tends to deteriorate towards the ends of reads and hence low quality ends may 

need to be trimmed to improve the overall data quality. This is automatically done when using the 

BWA aligner to map the sequenced data to the human genome reference.  

 

Data volume represents a major challenge for data transfer, storage, backup, and analysis. 

Currently, whole genome sequencing analysis, including read alignment to a reference genome, 

alignment clean-up and variant calling, with a coverage of 30 to 50x, yields more than 100 Gb of 

data, and 10 to 12 Gb of data space is required for exome sequencing to achieve at least 20x 

coverage for 80 to 90% of targeted bases (Meldrum et al. 2011; Puckelwartz et al. 2014). Larger 

sequencers require Linux servers with multiple cores and large amounts of RAM at a significant 

capital cost with dedicated human resources to maintain computing clusters. Sophisticated 

hardware has been set up at ICMB to conquer the computational task of analysing WGS and 

WES. A high-performance compute cluster with over 900 CPU cores, storage infrastructure 

encompassing over 1.8PB hard disk and 1.5PB tape archive, as well as a number of stand-alone 
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high-performance computers, are at our disposal. More recently, cloud-based computing has 

emerged as a solution for the above limitations pertaining to data volume, which has been 

described in more detail by Thakur et al. (Thakur et al. 2012).  

 

Identifying ‘true’ variants among thousands of variants detected by implementing efficient 

filtering strategies is another bioinformatics challenge. Filtering strategies can remove a large 

fraction of false variant calls that are due to sequencing and alignment errors, but they also tend to 

remove true rare variants that are important for genetic studies (Peng et al. 2013). Therefore, it is 

important to cross-check if the variants correspond to NCBI’s dbSNP. A high overlap with 

dbSNP would suggest the reported variants are real polymorphisms. This can be followed by 

narrowing down to regions of interest (for example, coding regions) and then evaluating the 

impact of amino acid change of the variants with prediction tools. This can help to filter and 

prioritize potential functional variants for further analysis. The development of streamlined, 

highly automated pipelines for data analysis is critical and one of the possible solutions to address 

some of these issues (D'Antonio et al. 2013). Therefore, in our project, state-of-the-art tools, 

including BWA, GATK and ANNOVAR, were integrated into a custom automated pipeline for 

generating, annotating and analysing sequence variants. In order to filter and prioritize variants, 

eight different prediction tools were implemented to narrow down the variant list for further 

follow-up with genotyping experiments. 

 

5.3 Methods implemented for selection of variants 

SNVs were selected for further genotyping investigation with two different approaches.  

 

Method 1: SNVs that may have a functional impact  

In the first approach four centenarians were sequenced for whole genome and exome analysis and 

it focused on SNVs that might have a functional impact. The SNV frequencies were compared 

with variants listed in the 1000G and ESP databases. Binomial testing and p-values were 

calculated based on allelic frequencies, taking into consideration the sample size. Variants that 

were present in at least two samples with significant pvalues (p<0.05) with respect to the 1000G 

and ESP databases and were found by PhyloP to be conserved were selected for further 

investigation. The selected variants constituted 116 exonic SNVs, which were genotyped in our 

German LLI sample and the seven detected significant association signals were typed for 

replication in independent French and Danish longevity samples.  
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Method 2: Low-frequency variants with functional impact 

The above approach did not yield new validated longevity associated SNVs, therefore we 

subsequently implemented a new strategy for a more intensive follow-up for the discovery of new 

longevity influencing variants by selecting low-frequency SNVs. We used the same four genome 

and exome sequenced centenarians along with two additional exome sequenced German 

centenarians. Here, variants were selected that showed an intersection between the two 

technologies (SOLiD and Illumina), as this should include fewer false-positive variants arising 

from either of the platforms. As explained in section 5.1 and 5.2, many studies recommend the 

best approach for an accurate variant detection is to combine two or more sequencing platforms 

(Ratan et al. 2013; Rieber et al. 2013; Sims et al. 2014). Each platform complement one another 

as SOLiD and Illumina employs different sequencing techniques, and thus increases the 

specificity and sensitivity of variant detection (Metzker 2010; O'Rawe et al. 2013).  

 

The list was further reduced by retaining low-frequency variants with MAF≤10% compared with 

the 1000G and ESP databases for European population. The 1000G and ESP databases as 

commonly used as a references for comparison with the sequencing data to differentiate between 

common (MAF>10%) and rare variants (MAF<1%). Most of the MAFs for common variants are 

similar across the diverse ethnic groups but there are many low-frequency variants that differ in 

MAFs significantly between various ethnic groups, especially between European and Asian 

ethnicities (Romualdi et al. 2002; Cross et al. 2010). Many researchers recommend to use 

ethnically appropriate databases to avoid false negative results for SNVs that may be of a lower 

frequency in one ethnic group but of higher frequency in other groups (Viennas et al. 2012). 

Therefore, since the sequenced centenarians are from European ancestry, the allele frequencies 

were compared to ‘CEU’ population from the 1000 genomes database and ‘European-American’ 

from the ESP database.  

 

Low-frequency variants with MAF≤10% were chosen because relevant variants with a higher 

frequency should have already been detected by the previous longevity GWAS studies (Newman 

et al. 2010; Malovini et al. 2011; Nebel et al. 2011; Sebastiani et al. 2012). Also, low-frequency 

variants may go undetected in a GWAS study as the statistical power to detect such variants with 

MAF≤10% is much lower. Many studies suggests that variants that influence longevity are likely 

to be low-frequency variants with large effects sizes and may also contribute to the missing 

heritability (Vaupel 2010; Newman and Murabito 2013; Garagnani et al. 2014; Zuk et al. 2014) 

as those low-frequency variants are predicted to have functional consequences (Marth et al. 2011; 
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Casals et al. 2013). Further, since evolutionary theories predict a trade-off between fertility and 

longevity, it has been suggested that functional rare variants with large effects under natural 

conditions may reduce reproduction and thus, increase longevity (Kirkwood and Rose 1991; 

Westendorp and Kirkwood 1998; Kirkwood 2005; Mitteldorf 2010; Vaupel 2010). So far, only 

two rare potentially functional missense SNVs, Ala37Thr and Arg407His, located in the IGF-1 

and IGF1R genes have been reported to be associated with longevity. The rare variants are 

overrepresented among centenarians compared to controls (Suh et al. 2008). But so far, the results 

have not been validated in independent populations.  

 

SNVs selected based on longevity genes and pathways list 

Known longevity genes and pathways listed in the NetAge database were used as filter masks for 

variant selection. The NetAge database contains gene sets and miRNA-regulated protein-protein 

interaction networks for longevity and aging-associated processes. The database consists of over 

450 longevity-associated genes, out of which 120 genes are involved in various pathways (Tacutu 

et al. 2010). Various studies have shown that insulin and mTOR signaling play a key role in 

lifespan extension in model organisms (Barzilai et al. 2012). Thus, to prioritize our list, we 

overlaid the variants with genes that were involved primarily in insulin/mTOR signaling. Three 

variants located in genes involved in the two pathways were selected for genotyping in our 

German population. A replication experiment was followed in independent Italian and American 

longevity samples to validate the two significant association signals observed. Here, the SNV 

rs3208856 replicated with a p-value of 0. 000189 in the American LLI sample, but no association 

was confirmed in the Italian LLI. 

 

SNVs selected based on GWAS hit regions and prediction tools 

Furthermore, the original variant list was overlaid with the GWAS hit regions and also SNVs that 

appeared more frequently than expected by chance in four or more individuals were selected. 

Also, the functional effect of selected SNVs was determined by evaluating the variants with eight 

prediction tools: Grantham (Grantham, 1974); PMut (Ferrer-Costa, et al., 2005); Screening for 

Non-acceptable Polymorphisms (SNAP) (Bromberg and Rost, 2007); Sorting Intolerant From 

Tolerant (SIFT) (Kumar, et al., 2009); SNPs&GO (Calabrese, et al., 2009); MutPred (Li, et al., 

2009); Polymorphism Phenotyping (Polyphen-2) (Adzhubei, et al., 2010); and PhyloP (Pollard, et 

al., 2010). With the use of exome and genome sequencing, prioritizing and interpreting candidate 

variants within a biological context to the studied phenotype remains a challenge. Longevity, 

being a complex phenotype, is presumably influenced by a combination of many small-effect 
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variants located in different genes, thus affecting broader functional networks (Yashin et al. 2010; 

Brooks-Wilson 2013; Deelen et al. 2013). With the help of different prediction tools that classify 

variants as functional or neutral, effective low-frequency variants could be selected and 

prioritized. The relevance of prediction tools to choose the SNVs of interest has been described 

precisely by Carolin Knecht from the IMIS (Knecht and Krawczak, 2013), who was actively 

involved in this project. SNVs located in the coding region are often non-synonymous, changing 

a single amino acid in the encoded protein sequence. For such SNVs, biochemical and physical 

properties as well as information about functional sites and structure of the protein can be used 

for the prediction of their potential impact. To study the possibility of a particular genetic variant 

having a functional consequence, many free online software tools have been developed. But, as 

described before (Thusberg, et al., 2011), the most favourable choice of a tool depends on the 

study and there is no ‘best’ tool available. Different tools implement different algorithms to make 

predictions regarding functionality of mutated proteins; therefore, the basic idea behind the 

implementation of all the eight different tools was to take advantage of their possible 

complementary performance at classifying functionally relevant SNVs.  

 

The tools that predicted an effect for almost all 2,888 coding SNVs were Grantham score and 

PhyloP. The Grantham matrix predicts the effect of the variant based on differences in physio-

chemical properties between amino acids, thus establishing a clear relationship between the 

severity of amino acid replacement and the likelihood of clinical observation (Grantham 1974). 

PhyloP scores measure the evolutionary nucleotide conservation at individual alignment sites. 

Scores for each coding variant were extracted from the ‘phyloP46wayAll’ table from the UCSC 

Table Browser (Pollard et al. 2010; Karolchik et al. 2014). Approximately, 96 to 97% of the 

selected variants could be predicted with MutPred, SNAP and PMut. MutPred is a Random 

Forest-based classification method that estimates effect of the amino acid substitution based on 

properties relating to protein structure, function and evolution. SNAP and PMut are based on a 

neural network that uses in-silico derived protein information (e.g. secondary structure, 

conservation) in order to make predictions for a missense variant (Ferrer-Costa et al. 2005; 

Bromberg and Rost 2007). The remaining tools, SIFT, PolyPhen2 and SNPs&GO predicted 70 to 

90% of the selected variants. SIFT follows the principle of predicting the potential effect of a 

non-synonymous variant based on sequence similarity using mathematical operations. Predictions 

rely on the assumption that mutations in evolutionary conserved regions are more likely to affect 

protein function (Kumar et al. 2009; Knecht and Krawczak 2013). PolyPhen2 implements the 

naive Bayesian classifier and uses a blend of sequence and structure based attributes to predict the 
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effect of mutation (Adzhubei et al. 2010). SNPs&GO is based on the Support Vector Machine 

(SVM) method that uses various types of structural and functional annotation, such as protein 

sequence, evolutionary information and functions encoded in gene ontology terms, to predict 

whether a given mutation can be classified as deleterious or neutral (Calabrese et al. 2009). The 

combination of all the eight different tools should allow the best possible identification of 

functionally relevant SNVs from an extensive whole genome data set. Apart from prediction 

tools, variants that appeared more frequently than expected by chance in all six centenarians were 

also selected. Applying these criteria, 48 SNVs were chosen for direct genotyping in our German 

longevity sample. Based on power calculations, the top-ranking SNV (rs35761929) that was 

significantly associated in the German LLI sample (PCCA=3.7e-08, OR=1.712) was further 

investigated in a replication experiment in an independent Danish longevity population, but could 

not confirm the previous observed association signal.  

 

5.4 Potential influencing factors for association studies 

The most common potential influencing factors for association studies in longevity research are 

population stratification, population-specificity, phenotype heterogeneity and sample size and 

statistical power, which might be the reason for lack of replication of significant associations in 

most longevity studies so far.  

 

5.4.1 Population stratification 

Population stratification, the most cited reason for non-replication of genetic association results, 

is the mixture of individuals from heterogeneous genetic backgrounds (Cardon and Palmer 2003). 

When cases and controls have different allele frequencies due to events attributable to gene flow 

between two different populations; or if their frequencies differ due to a demographic expansion 

into a scarcely populated environment, leading to a partial admixture with indigenous 

populations, genetic drift or differential selection, a study is said to have population stratification 

(Cavalli-Sforza and Piazza 1993). Unrecognized population stratification can lead to both false-

positive and false-negative findings and can obscure the true association signals if not 

appropriately corrected (Li et al. 2010). Concerns about population stratification can be addressed 

by matching the control individuals as close as possible to the LLI in terms of their age (born only 

one or two generations apart), ethnicity, geographic origin and environmental factors, to avoid 

false-positive findings (Bloss et al. 2011). In addition, a major problem in selecting the control 

individuals is that there is a possibility for some control individuals to become LLI themselves. It 
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is also recommended not to choose a very young control group, because instead of an effect on 

longevity, the frequency difference may reflect a change in population structure over time (Nebel 

and Schreiber 2005). Further,  inconsistent replication can partly be attributed to genetic 

stratification among LLI due to cohort differences in survival probability (Nygaard et al. 2014). A 

recently published report by Nygaard et al. compared the cohort specificity of variants in the 

APOE and FOXO3A gene at age 95+ and 100+ in 2,712 individuals from the genetically 

homogeneous Danish birth cohorts (1895–96, 1905, 1910–11, and 1915) and showed that there is 

a decrease in the allele frequencies of the investigated variants in more recent birth cohorts. The 

results of this study suggest that birth year and population-dependent differences in selection 

pressure may also be a part of the explanation for the general lack of replication. As the genetic 

variations related to longevity are currently expected to be rare and/or have small effects, even 

modest cohort effects could, when unaccounted for, confound results and leave true associations 

undiscovered. The possibility of population stratification in our German longevity sample is 

unlikely, as previous association findings for genetic longevity research have been identified and 

validated  (Nebel et al. 2005; Flachsbart et al. 2009; Nebel et al. 2009) in our German longevity 

sample. Further, in Germany, the genetic differentiation in population structure is considered to 

be very low (Steffens et al. 2006). The younger controls recruited were chosen to match the LLI 

as closely as possible in terms of ancestry, gender, and geographical origin within the country, 

thus minimizing any systematic genetic differences between the samples that might arise because 

of very low levels of undetected population structure (Nebel et al. 2005). According to the 

Human Mortality Database, the chances of a 60 year old female becoming a LLI is 1.5% and for a 

75 year old, it is 1.8%. Hence, we can estimate, out of the 1,104 unrelated younger controls; 

approximately 18 individuals may become LLI themselves, which is a statistically negligible 

proportion. The replication samples from France, Denmark, Italy and USA were also matched for 

gender and geographical origin with healthy unrelated younger controls and tested for population 

stratification (Blanché et al. 2001; Geesaman et al. 2003, Soerensen et al. 2010, Anselmi et al. 

2009, Boyden and Kunkel 2010).  

 

In the American longevity sample, one of the two pathway SNVs, rs3208856, confirmed the 

association signal with an allelic p-value of 0.000189 (OR=2.656). However, since the U.S. 

Caucasians comprise immigrants from various European countries, the American LLIs represent 

an admixed population. Hence, the positive replication might be a false-positive result caused by 

population stratification as it was shown previously for the MTTP gene (Puca et al. 2001; Nebel 

et al. 2005). However, it has been reported that the American longevity sample has been corrected 
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for population structure (Geesaman et al. 2003; Boyden and Kunkel 2010). Furthermore, the 

control group in this population is very young (0 to 35 years), which can often lead to false-

positive findings (i.e. instead of an effect on longevity, the frequency difference may reflect a 

change in population structure due to recent immigration) (Nebel et al. 2005). Therefore, even 

though our initial finding for one SNV, rs3208856, was confirmed with a positive replication in 

the American population, it maybe due to chance or other influencing variables. 

 

5.4.2 Population-specificity 

Another reason for the failed replication might be attributed to population-specific effects, as 

longevity in different populations is likely to be influenced by varying sets of interacting genetic 

and environmental factors (Caliebe et al. 2010). Gene variants found to be associated with human 

longevity in one population rarely replicate in other populations. For example, in 2010 a study 

investigated the polymorphism rs1333049 associated with coronary artery disease in Northern 

Italians and showed the frequency of the C allele of rs1333049 was significantly lower in 

centenarians compared to young controls (Emanuele et al. 2010). Similar results was observed in 

another Southern European (Mediterranean) cohort in Spain in 2014, however the findings were 

not replicated in the Japanese, a population of different ethnic and geographic origin (Pinós et al. 

2014).  

 

The difficulty in replicating the observed association signals with human longevity can be noticed 

in our study. Although the German and Danish populations are quite close in sample size, age 

range and ethnicity, no association was confirmed for variants selected from both approaches. 

The importance of potentially functional low-frequency variants has emerged recently (Cirulli 

and Goldstein 2010) and they are mostly population-specific. In another study, low-frequency 

variants between 14 populations from the 1000 Genomes Project Phase 1 data were compared 

using statistical methods. The results showed significant differences in low frequency variants 

across these 14 populations and additionally, populations that were closely related also showed 

evident differences (Moore et al. 2013). This indicates that it may be even more difficult to 

replicate low-frequency variant signals in different populations.  As our second approach focused 

on low-frequency variants, the lack of replication in the Danish and Italian longevity sample 

might be due to the low MAF of the variant (0.6% to 3%) and due to the environmental and 

geographical differences (Lescai et al. 2009).  
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5.4.3 Phenotype heterogeneity 

Further, the lack of consistent findings may also be explained by phenotype heterogeneity among 

LLI. As life expectancy has improved over the past two centuries, the probability to survive to 

extreme ages in developed countries has increased by 50-100% per decade (Oeppen and Vaupel 

2002; Vaupel 2010). Some centenarians might be considered 'phenocopies', i.e. individuals who 

display the same phenotype, but have attained extreme survival by taking advantage of different 

environment contributions thus, diluting the genetic component of survival to ages above 85 years 

(De Benedictis and Franceschi 2006; Deelen et al. 2014). 

 

A study by Perls and co-workers on three different groups of centenarians (100–104 years), 

semisupercentenarians (105–109 years) and supercentenaians (110–119 years) showed a 

progressive delay in the onset of age-related diseases (e.g. cancer, cardiovascular diseases, 

dementia and stroke) with increasing age. It was observed that the frequency of survivors (LLI 

diagnosed with age-associated disease before the age of 80) decreases and the frequency of 

escapers (LLI who celebrated their 100th birthday without the diagnosis of the age-associated 

diseases investigated) increases with age. So 8% of supercentenarians were survivors and 69% 

escapers, respectively, compared with 12% and 56% in semisupercentenarians, and 17% and 30% 

in centenarians (Andersen et al. 2012). The results show that the phenotype of centenarians can 

still be very heterogeneous in contrast to supercentenarians, who exhibit more compression of 

morbidity and disability. It was further reported that for all different groups investigated, males 

were observed to be healthier than females in terms of cognitive and physical functional status. 

Therefore, choosing centenarians and supercentenarians as old as possible with accurate geriatric 

assessment as ‘cases’ maybe more useful for discovering potential genetic variants that influence 

exceptional longevity. 

 

5.4.4 Sample sizes and statistical power 

Discrepancy among all the association results might be due to the different sample sizes used and 

an overall lack of power for the investigated phenotype. Small sample sizes and over-

interpretation of marginal results lead to failure to replicate the initial association signals. In the 

recently published longevity GWAS meta-analysis, the discovery-phase that consisted of 7,729 

cases (above 85 years) and 16,121 controls (below 65 years) showed a genome-wide significant 

association with human longevity only at the well-known TOMM40/APOE/APOC1 locus. 

However, an additional genome-wide significant locus (rs2149954 on chromosome 5q33.3) was 

observed subsequently in the joint analysis of the discovery and replication phase comprising 
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12,736 cases (above 90 years) and 76,268 controls (below 65 years) (Deelen et al. 2014). Hence, 

even the investment of approximately 90,000 samples did not yield many new insights in the 

genetic basis of human longevity.  

 

In our first approach, none of the seven SNVs that showed a significant association in the German 

longevity sample could be replicated in the French longevity sample even though the sample had 

a power of 80% to replicate the observed association of the top-ranking SNV, rs10927851 (LLI: 

PCCA=0.002, OR=0.80). According to power calculations, a sample size of 2,000 cases (with a 

case-control ratio of 1 and assuming OR=1.2) would have been required to replicate the observed 

association of the top-ranking SNV, rs10927851 (LLI: PCCA=0.002, OR=0.80) with a power of 

80%. Hence, to increase statistical efficiency, a meta-analysis was performed by combining the 

French and Danish longevity samples to give 2,179 cases and 2,594 younger controls. The 

statistical power of this meta-analysis to replicate the detected association signals was 85%, but 

yet the genetic association signals observed in Germans could not be confirmed. In the second 

approach as well, the top-ranking SNV rs35761929 (LLI: PCCA=3.7e-08, OR=1.7) that had a 

power of 89% to replicate the observed association in the Danish longevity sample of 910 cases 

and 760 controls did not yield a positive replication result. Furthermore, two SNVs (rs3208856 

and rs146426104) located in genes involved in insulin/mTOR signaling were followed-up by a 

replication experiment in the Italian and American longevity populations. The Italian longevity 

sample had a power of only 18% to replicate the observed findings with 489 cases and 480 

controls and hence, no significant association was observed in the Italian population. At least, a 

sample size of 3,500 individuals (with a case-control ratio of 1) would have been required to 

replicate the observed association of the top-ranking SNV, rs3208856 with a power of 80%. To 

further clarify the association signals observed for all 12 SNVs in our German longevity samples 

from both the approaches, the discovery-phase of the recent longevity GWAS meta-analysis data 

comprising over 20,000 individuals was used as a replication sample (Deelen et al. 2014). Here, 

only one SNV (rs3208856) showed a nominal significant p-value of 0.026 as shown in Table 4-

23. Though the allele frequency difference between cases and controls was negligible, the 

distribution followed the same direction as observed in the German and American longevity 

sample, with a small increase of the minor allele in the LLI compared with the younger controls. 

The discovery-phase comprises of data originating from seven European populations (Deelen et 

al. 2014). However, it has been reported that true association signals may be concealed when 

combining data from populations with different lifestyles and genetic backgrounds, even if well-

matched for ethnicity (Brooks-Wilson 2013). 
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Tan and co-workers used the Danish life tables and simulations to assess the power for different 

sample sizes of centenarians; their results show that small samples of centenarians or even 

supercentenarians (several hundred) provide power to detect only common alleles with large 

effects and, to detect variants with small effects, large samples of centenarians (more than 1,000) 

would be needed (Tan et al. 2008).  Therefore, selecting only centenarians instead of LLI for 

‘cases’ as shown by Tan et al., might be more likely to increase power for detection of genetic 

variants (Tan et al. 2008; Bloss et al. 2011). 

5.5 Summary of findings 

5.5.1 Study findings 

In the presented study, whole genome and exome sequences of six centenarians by integrating 

two different technologies (SOLiD and Illumina) were generated and in total 167 SNVs were 

selected implementing two different approaches for further investigation. Relevant association 

signals were followed-up in independent longevity samples from France, Italy, USA and 

Denmark. No significant replication signal was observed for most of our initial results, but the 

analysis in the American longevity population supported one of our findings (rs3208856: 

PCCA=0.000189, OR=2.656). It was further supported for association in the discovery-phase meta-

analysis data of cases aged ≥85 years (Deelen et al. 2014) with a p-value of 0.026. The SNV 

rs3208856 (C/T) is a missense variant (p.His405Tyr) located on the CBLC gene (Casitas B-

lineage Lymphoma Proto-Oncogene, E3 Ubiquitin Protein Ligase C) that is involved in the 

insulin pathway. CBLC plays an important role in the regulation of growth, development, 

metabolism, and survival. Studies have reported that c-CBL may promote the ubiquitylation of 

both insulin and IGF1 receptors (Sehat et al. 2008). Molero et al. studied mice that lack the CBLC 

gene and observed that this led to reduced adiposity, presumably through increased energy 

expenditure, thus improving peripheral insulin sensitivity (Molero et al. 2004). Yu et al. showed 

that Drosophila Cbl (dCbl) regulates longevity and carbohydrate metabolism through down 

regulating the production of Drosophila insulin-like peptides (dILPs) in the brain (Yu et al. 2012). 

CBLC can be a promising candidate but needs further investigation and confirmation in additional 

larger longevity samples. 

 

Method 1: SNVs that may have a functional impact 

Out of 116 SNVs selected for genotyping, the seven SNVs that showed a significant association 

in our German longevity sample were located in seven different genes: Filamin Binding LIM 

Protein 1 (FBLIM1); Poly (ADP-Ribose) Polymerase 2 (PARP2); NLR Family, Apoptosis 
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Inhibitory Protein (NAIP); Propionyl CoA Carboxylase Alpha Polypeptide (PCCA); Pleckstrin 

Homology Domain Containing-Family G (PLEKHG1); Proteoglycan-3 (PRG3); and Tankyrase-1 

Binding Protein-1 (TNKS1BP1). FBLIM1 (rs10927851) is an important component of the cell–

matrix adhesions implicated in cell motility, growth and survival, and is a mortality risk gene 

involved in Alzheimer's disease and skin atrophy (Rebhan et al. 1997; Tacutu et al. 2010). PARP2 

(rs3093921) is an active player in base excision repair, and interacts with PARP1 and XRCC1 to 

synthesize ADP-ribose polymers. PARP-1 plays an important role in various aging-related 

processes such as DNA repair, apoptosis, and inflammation (Schreiber et al. 2002). It has been 

shown in a study that maximal oligonucleotide-stimulated poly-(ADP-ribosyl)-ation is 

significantly higher in permeabilized lymphoblastoid cell lines from centenarians compared with 

younger controls, but follow-up studies have failed to show any association of PARP and human 

longevity (De Benedictis et al. 1998; Cottet et al. 2000). NAIP (rs61757629) is involved in 

apoptosis signaling pathways and also plays a role in neurodegenerative diseases such as spinal 

muscular atrophy (SMA) (Rebhan et al. 1997; Tacutu et al. 2010). Studies have shown that 

absence of NAIP, as an apoptotic suppressor, may modulate cell death or survival (Akutsu et al. 

2002). PCCA (rs35719359) is primarily involved in metabolism of lipids and lipoproteins; 

mutations in this gene lead to propionic acidemia, an autosomal recessive disorder (Ugarte et al. 

1999). Genetic variations in the PLEKHG1 (rs17054318) protein signal transduction are 

associated with panic disorders (Rebhan et al. 1997). PRG3 (rs34108746) localizes in the 

cytoplasm and induces apoptosis; it is also associated with Crohn’s disease (Ohiro et al. 2002). 

TNKS1BP1 (rs78489201) is involved in nucleotide metabolism and is associated with prostate 

cancer and prostatitis (Rebhan et al. 1997).  

 

Method 2: Low-frequency variants with functional impact 

SNVs selected based on longevity genes and pathways 

Various studies have shown that the insulin/IGF‐1 pathway is highly conserved and regulates 

lifespan in organisms ranging from invertebrates to mammals (van Heemst et al. 2005; Barzilai et 

al. 2012). Two SNVs that showed a significant association signal in the German centenarian 

subgroup were located in the CBLC (rs3208856) and ACACB gene (rs146426104). The 

association signal observed for CBLC (rs3208856) was also confirmed in the American longevity 

sample. Acetyl Coenzyme A carboxylase β (ACACB) is involved in the regulation of metabolism 

and genetic variation in the ACACB gene is associated with obesity and diabetes (Riancho et al. 

2011). Other studies have also shown that continuous fatty acid oxidation in ACACB knock-out 
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mice increases insulin sensitivity, thereby concluding  that common variants within the ACACB  

locus appear to regulate adipose gene expression in humans (Ma et al. 2011).  

 

SNVs selected based on GWAS hit regions and prediction tools 

Here, out of 48 SNVs selected for genotyping, three SNVs showed a significant association in 

both the whole German sample and the centenarian subset. The three SNVs were located in JAG1 

(rs35761929), ZNF750 (rs35653278) and MICALCL (rs34898047). The Jagged-1 (JAG1) gene 

encodes a cell surface protein and belongs to the Delta/Serrate domain (DSL) family (Rebhan et 

al. 1997). Recent studies have reported the involvement of the JAG1 gene in bone formation and 

that activation of the JAG1 gene is associated with increased bone mineral deposition (Kung et al. 

2010). The Okinawa centenarian study has shown that the long-lived Okinawans have about 20% 

fewer hip fractures than the mainland Japanese population. The mainland Japanese begin to lose 

significantly more calcium from their bones than the Okinawans, suggesting that the Okinawans 

preserve their bone density at healthy levels for longer periods of time than other Japanese 

(Suzuki et al. 1995). Zinc Finger Protein-750 (ZNF750) encodes a protein with a nuclear 

localization site and a C2H2 zinc finger domain and is involved in cell differentiation. ZNF750 

has previously been reported to be associated with autosomal dominant forms of psoriasis or 

psoriasiform dermatitis and may serve an important function in keratinocyte differentiation or 

immune response in the skin. It has been shown that insufficient levels of ZNF750 could lead to a 

downstream effect that fails to repress a stimulated immune response in psoriasis (Birnbaum et al. 

2011). Molecule Interacting with CasL C-terminal like (MICALCL) is a protein-coding gene 

involved in the intracellular signal transduction pathway. It participates in the control of 

cytoskeleton dynamics and may establish a direct link between cell oxido-reduction metabolism 

and cytoskeleton rearrangements (Terman et al. 2002). 

 

Although, most of the variants, apart from rs3208856, could not be replicated in independent 

longevity samples (France, Denmark, Italy and USA), they may be interesting enough to warrant 

further investigation in large-scale meta-analysis for a more stringent phenotype (e.g. 100 years 

and older). 

 

5.5.2 Genetic profiles of centenarians 

Variants known to influence longevity 

In addition to the above analysis, the sequencing data of four centenarians were used to observe 

their genetic profiles by investigating those genes that have a significant impact on exceptional 
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survival. Most of the variants investigated below are intronic variants and therefore, only 

centenarians that have been genome-sequenced were used. Apart from APOE  (Schächter et al. 

1994; Blanché et al. 2001; Deelen et al. 2011; Nebel et al. 2011) and FOXO3A (Willcox et al. 

2008; Anselmi et al. 2009; Flachsbart et al. 2009; Li et al. 2009c; Pawlikowska et al. 2009; 

Soerensen et al. 2010) that have been validated repeatedly as longevity influencing genes, we also 

included the recent GWAS-identified longevity locus on chromosome 5q33.3 that may influence 

survival in the general European population (Deelen et al. 2014). Using the LongevityMap 

database (Budovsky et al. 2013), five intronic variants in APOE and FOXO3A that are associated 

significantly with human longevity were selected (Table 5-2).  

 

Chromosome/ 

Gene dbSNP ID 

 

 

 

 

Alleles 

 

 

 

 

Function 

×Minor 

allele 

 
 

 

¥MAF in 

1000G *1 *2 *3 *4 

 

chr 19  

TOMM40/APOE 

 

(Deelen et al. 

2011; Nebel et al. 

2011) rs2075650 A/G 

 

 

 

Intron G ↓ 0.16 - AG - - 

 

 

chr 6 

FOXO3A 

 

(Willcox et al. 

2008; Anselmi et 

al. 2009; 

Flachsbart et al. 

2009; Soerensen et 

al. 2010) 

 

rs2802288 

 

A/G 

 

Intron A ↑ 
0.33 - GG AG AG 

rs7762395 
A/G 

 

Intron A ↑ 
0.16 GA - - GA 

rs9400239 
C/T 

 

Intron T ↑ 
0.24 - CC CC CT 

rs3800231 
A/G 

 

Intron A ↑ 
0.24 - AG GG GG 

  

5q33.3  

(closest gene 

EBF1) 

 

(Deelen et al. 

2014) rs2149954 C/T 

 

 

 

 

Intron T ↑ 0.34 CT - - CT 
×Minor allele associated with longevity that is overrepresented (↑) or underrepresented (↓) in long-lived individuals  
¥Minor allele frequencies reported in the 1000 Genomes European population 
* (1) German female, (2) German male, (3) French female, (4) Spanish female 

- No variants detected in the sequencing data 

 

Table 5-2: List of variants from literature that were significantly linked to exceptional human longevity 
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Many studies have shown the APOE ε4 allele predisposes to both Alzheimer's and cardiovascular 

diseases and is associated with increased mortality (Corder et al. 1993; Schächter et al. 1994). 

Among LLI, the probability of carrying the APOE ε4 allele is lower and the probability of 

carrying APOE ε2 allele is higher (Schächter et al. 1994; Christensen et al. 2006; Bennet et al. 

2007). Further, since the variant, rs2075650, is in linkage disequilibrium with the APOE-defining 

alleles (rs429358 and rs7412),  studies have shown the likelihood of carrying the ‘G’ allele in 

rs2075650 of TOMM40 is lower in LLI (Deelen et al. 2011; Nebel et al. 2011). However, out of 

the four centenarians, it could be evaluated in only one, where the German male was 

heterozygous for rs2075650.  

 

FOXO3A is associated with insulin signaling pathway and is known to play an important role in 

apoptosis, stress resistance and metabolism (Carter and Brunet 2007). Many studies have not only 

shown that variations in FOXO3A are associated with longevity, but the association is 

significantly stronger in centenarians than nonagenarians (Willcox et al. 2008; Anselmi et al. 

2009; Flachsbart et al. 2009; Li et al. 2009c; Pawlikowska et al. 2009; Soerensen et al. 2010). All 

four centenarians carry a cluster of variants for FOXO3A, but we investigated only those variants 

that are reported in literature to be significantly associated with the longevity phenotype in more 

than one study. The variant rs2802288 is present in three centenarians and only two of them 

(French and Spanish females) carried the effective minor allele ‘A’. For rs7762395, both German 

and Spanish females carry the variant with the effective allele ‘A’. For the other two variants, 

rs9400239 and rs3800231, only one out of three centenarians carry the effective minor allele ‘T’ 

and ‘A’.  

 

The recently identified longevity GWAS locus (rs2149954) on chromosome 5q33.3 that may 

influence extreme survival was also investigated in our centenarians. The GWAS-study by 

Deelen et al. reported a higher frequency of the minor allele ‘T’ in LLI and that rs2149954 

influences longevity by a decrease in the risk of mortality due to stroke. From Table 5-2, it is 

observed that only the German and Spanish female carry the intronic variant with the effective 

allele. 

 

The above analysis, although limited, suggests that to achieve extreme survival all genetic 

variants associated with longevity reported to-date might not necessarily be present in all LLIs. A 

similar observation was reported by Sebastiani et al. (2012), where the female and male 

supercentenarian genome sequenced did not carry the effective minor alleles for most of the 
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variants that are reported in the literature and are suggested to influence longevity. Hence, rare 

variants or common variants with rather small effects that are yet to be discovered may play a 

vital role in the genetic variation of human longevity.   

 

Disease-associated variants in centenarians 

As mentioned earlier, various studies have shown that LLI carried a similar number of disease 

variants compared to the general population (Beekman et al. 2010; Sebastiani et al. 2011). 

Therefore, we wanted to assess the number of disease-associated variants present in our 

sequencing data of all six centenarians and if it was comparable to younger controls. For this 

analysis, we chose four random in-house control sequences (kindly provided by Prof. Dr. Andre 

Franke) that were exome-sequenced at ICMB or at the BGI Institute in China. The exonic 

variants of the four younger controls were compared with our exome-sequenced centenarians 

using snpActs (http://snpacts.ikmb.uni-kiel.de/). Since the sample size presented in this study is 

too small to implement statistical analysis, we followed an analysis similar to that performed by 

Sebastiani et al. (2012), where only the number of disease-associated variants present in the 

centenarians and controls were reported.  

 

snpActs is linked with the Human Gene Mutation Database (HGMD) and thus, it was possible to 

filter for known disease-associated variants. All variants that were annotated by a HGMD tag 

were considered. Further, we compared the number of disease-associated variants for five 

common age-associated diseases: Alzheimer's disease, cancer, cardiovascular diseases, diabetes 

and stroke. The keywords used for the search were 'alzheimer', ‘dementia’, 'cancer', 'diabetes', 

'cardiovascular diseases', 'heart failure', 'coronary heart disease' and 'stroke'.  

 

Our analysis presented in this section is not intended to be comprehensive and only an initial 

attempt to have a general view of the disease-associated variants in centenarians. The overall 

differences observed in Table 5-3 and 5-4 might also be influenced by different sequencing 

platforms, mapping algorithms and annotation methods implemented for variant calling, rather 

than changes linked to longevity (Sebastiani et al. 2011). To allow a proportionate comparison, 

the number of risk alleles detected was normalized to the total number of centenarians and 

controls used.  
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*1 *2 *3 *4 *5 *6 ×C-1 ×C-2 ×C-3 ×C-4 

Total risk 

allele count 

cases 

Total risk 

allele count 

controls 

Disease risk 

alleles per 

individual 

cases-controls 

Alzheimer's 7 9 9 9 7 10 8 9 7 7 
57 39 10-10 ¥het/hom 4/3 5/4 5/4 8/1 4/3 7/3 6/2 8/1 5/2 4/3 

 Cancer 65 69 73 74 59 62 57 72 69 58 
529 352 88-88 

het/hom 43/22 45/24 50/23 56/18 39/20 42/20 37/20 50/22 39/30 34/24 

 Cardiovascular 

diseases 13 15 9 20 11 13 12 12 11 11 
105 56 18-14 

het/hom 8/5 8/7 7/2 19/1 4/7 11/2 8/4 8/4 10/1 10/1 

 

   

Diabetes 17 20 23 19 11 21 18 27 20 20 
152 112 25-28 

het/hom 12/5 15/5 17/6 9/10 5/6 12/9 12/6 16/11 17/3 13/7 

 Stroke 2 1 1 2 1 2 2 1 1 2 
11 6 2-2 

het/hom 2/0 1/0 1/0 2/0 0/1 1/1 2/0 1/0 1/0 2/0 

           Number of 

exonic variants  26,223 26,790 26,767 27,178 18,456 18,481 28,274 47,033 26,819 23,668 

3,823 2,319 637-580 
×Number of 

disease 

variants  
488 

(1.9%) 

489 
(1.8%) 

498 
(1.9%) 

505 
(1.9%) 

424 
(2.3%) 

430 
(2.3%) 

421 
(1.5%) 

511 
(1.1%) 

427 
(1.6%) 

371 
(1.6%) 

het/hom 325/163 318/171 322/176 361/144 251/173 268/162 289/132 334/177 280/147 238/133 
* cases: (1) German female, (2) German male, (3) French female, (4) Spanish female, (5) German female, (6) German male 
× controls: (C-1) Control 1 male, BGI, (C-2) Control 2 male, ICMB, (C-3) Control 3 male, BGI, (C-4) Control 4 female, BGI 
¥ number of heterozygous variants to number of homozygous variants 
×other diseases including Alzheimer's disease, asthma, arthritis, bipolar disorder, cancer, cardiovascular diseases, cataract, diabetes, hypertension, muscular dystrophy, Parkinson’s, stroke, etc. 

 

Table 5-3: Number of disease-associated variants that are involved in major age-related diseases and total number of disease-associated variants that are present in centenarians and 

controls 
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*1 *2 *3 *4 *5 *6 ×C-1 ×C-2 ×C-3 ×C-4 

Total 

protective 

allele count 

cases 

Total 

protective 

allele count 

controls 

Protective 

alleles per 

individual 

cases-controls 

Alzheimer's 0 0 0 0 0 0 0 2 0 0 
0 2 0-2 ¥het/hom 0/0 0/0 0/0 0/0 0/0 0/0 0/0 2/0 0/0 0/0 

 Cancer 7 5 5 4 8 5 5 6 3 3 
44 26 7-7 

het/hom 6/1 4/1 3/2 4/0 3/5 4/1 2/3 3/3 2/1 1/2 

 Cardiovascular 

diseases 5 4 6 4 5 5 2 2 2 5 
38 13 6-3 

het/hom 2/3 3/1 5/1 3/1 4/1 3/2 2/0 1/1 1/1 5/0 

 

   

Diabetes 2 4 3 3 2 2 3 3 2 2 
26 12 4-3 

het/hom 1/1 2/2 1/2 1/2 1/1 0/2 3/0 2/1 2/0 1/1 

 Stroke 1 0 1 1 0 0 0 0 0 0 
5 0 1-0 

het/hom 1/0 0/0 0/1 1/0 0/0 0/0 0/0 0/0 0/0 0/0 

            Number of 

protective 

variants  34 41 36 34 31 26 24 38 23 25 
266 145 44-36 

het/hom 24/10 29/12 25/11 26/8 20/11 14/12 17/7 24/14 16/7 18/7 
* cases: (1) German female, (2) German male, (3) French female, (4) Spanish female, (5) German female, (6) German male 
× controls: (C-1) Control 1 male, BGI, (C-2) Control 2 male, ICMB, (C-3) Control 3 male, BGI, (C-4) Control 4 female, BGI 
¥ number of heterozygous variants to number of homozygous variants 

 

Table 5-4: Number of protective alleles that are involved in major age-related diseases and total number of protective variants that are present in centenarians and controls 
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Out of the total exonic variants detected, the six centenarians have 2% annotated for the disease-

associated variants in the coding region and the controls only 1.5%.  In both the groups, more 

than 60% of the variants were heterozygous (Table 5-3). The centenarians and controls carried a 

similar number of disease-risk alleles associated with Alzheimer's, cancer (such as leukemia, 

breast cancer, colon cancer, prostate cancer, lung cancer, etc), cardiovascular diseases, diabetes 

and stroke. However, when considering the total number of disease variants associated, the 

centenarians carry a higher number of disease risk alleles than controls. Interestingly, as shown in 

Table 5-4, centenarians carry slightly more protective variants than controls that may compensate 

for the damaging effects caused by the disease-associated variants.  

 

The 'longevity-enabling' variants may act to buffer the deleterious effects of genes that cause age-

related diseases, which may explain the higher frequency in disease-associated variants observed 

among centenarians in Table 5-3. The frequencies of the deleterious variants is higher among LLI 

because the protective variants may allow these disease-related genes to accumulate with extreme 

lifespan (Bergman et al. 2007). Our above analysis is also supported by other studies, where it 

was reported that the distribution of risk alleles is similar in LLI and younger controls (Beekman 

et al. 2010). Further, it was previously hypothesized that supercentenarians may have a lower 

number of disease-associated variants when compared to centenarians (Andersen et al. 2012) but, 

in our study, both the supercentenarians (French and Spanish females) carry a similar number of 

disease associated variants as compared to centenarians and controls. A similar observation was 

reported by Sebastiani et al. (2012), where the two supercentenarians investigated carried a 

similar number of disease-associated variants compared to younger subjects. The protective 

variants present in the centenarians are thought to delay the onset or reduce the severity of age-

related diseases (Sebastiani and Perls 2012) or as suggested above, rare variants (i.e. variants 

without a link to a specific disease) may play an important role in influencing extreme survival by 

targeting the longevity-assurance mechanism (Schächter et al. 1993).  

 

5.6 Conclusion and outlook 

Researchers have hypothesized that the LLI are enriched for longevity-associated variants, which 

not only compensate for the damaging effects of disease variants but also offer protection 

(Bergman et al. 2007; Sebastiani and Perls 2012). Detection of these longevity-associated variants 

may help explain why LLI delay or escape age-related diseases. To detect such small effective 

variants, extremely large sample sizes are required. It is also possible to perform meta-analyses 
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for identification of candidate genes with modest influence. Some researchers have argued that 

lifelong exposure to different environmental factors may be one of the main determinants of 

healthy longevity at older ages (Harris et al. 1992). So far, the number of genetic findings that 

influence human longevity is limited and the loci that could explain the familial clustering of 

longevity have not yet been identified (Deelen et al. 2013). Until now, candidate gene studies and 

GWAS have yielded APOE (Schächter et al. 1994; Deelen et al. 2011; Nebel et al. 2011) and 

FOXO3A (Willcox et al. 2008; Anselmi et al. 2009; Flachsbart et al. 2009; Li et al. 2009c; 

Soerensen et al. 2010) as the only two genes influencing human lifespan that have been 

confirmed and replicated in various populations. Recently, a GWAS meta-analysis was 

performed with 7,729 LLI of European descent and 16,121 younger controls, where besides 

TOMM40/APOE/APOC1, one additional locus, rs2149954 on chromosome 5q33.3 showed 

genome wide significance (Deelen et al. 2014). This is the first longevity GWAS, which had 

sufficient power to detect lifespan-regulating loci with relatively small effects (OR = 1.10, P = 

1.74 × 10-8). However, GWAS of complex late-onset diseases, such as Alzheimer’s disease, with 

sample sizes comparable to the described longevity meta-analysis, have identified 11 new 

susceptibility loci (Lambert et al. 2013). Hence, even larger GWAS (50,000 LLI) may be required 

to identify additional longevity loci, preferably in the most stringent phenotype, i.e. the oldest old 

(Deelen et al. 2014). On the other hand, as mentioned before, the association between genetic 

variants and human longevity can also be population-specific. Hence, meta-analysis studies, 

where different populations well matched for ethnicity but with different genetic backgrounds are 

combined, may still obscure true signals (Brooks-Wilson 2013). Also, GWAS lack the sensitivity 

to identify causal variants (MAF≤0.05) and can explain only a small proportion of the heritability 

(less than 10%) for complex traits (Schork et al. 2009). One of the new approaches to overcome 

the shortcomings of GWAS may be sequencing and therefore, today, with the use of recent 

technological advances, next-generation sequencing (NGS) should act as a powerful tool to 

identify associations between genetic variants and human longevity (de Magalhães, et al., 2010). 

Inadequate results pertaining to the discovery of new genetic variants was observed by Sebastiani 

et al. who reported the whole genome sequencing of a male and a female supercentenarian 

(Sebastiani et al. 2011). However, in our study, by implementing state-of-the-art technologies for 

sequencing, combined with conventional case-control association studies, sequencing of whole 

genome and exome of six centenarians, one potentially functional missense variant (rs3208856) 

was confirmed in a replication experiment in the American longevity sample (rs3208856: 

PCCA=0.000189, OR=2.656). The distribution of the allele frequency of the variant in both 

German and American longevity sample points in a similar direction, where the minor allele ‘T’ 
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is overrepresented in centenarians as compared to controls. It was further supported for 

association in the discovery-phase meta-analysis data of cases aged ≥85 years with a nominal p-

value of 0.026. The variant on the CBLC gene can be a promising candidate that could potentially 

provide important insights into the genetic and molecular basis of human longevity but needs 

further investigation and confirmation in additional larger longevity samples. A limitation of our 

study is the small sample size: six individuals might not be sufficient to identify new genetic 

variants associated with the complex longevity phenotype. To identify such low-frequency and 

rare variants that influence human longevity, analysis of the genomes on many more centenarians 

must be performed (Deelen et al. 2013). 

 

For future work, it may be interesting to identify rare variants by sequencing a large number of 

supercentenarians as they are more phenotypically homogeneous compared to centenarians, 

therefore have a higher genetic contribution to exceptional longevity (Hitt et al. 1999; Robine and 

Vaupel 2001) and hence, should also be associated with the increased ability to identify genetic 

variants that influence longevity (Schoenhofen et al. 2006; Andersen et al. 2012). This may be 

possible in the near future due to the continous rapid decrease in the sequencing costs (Sims et al. 

2014). It has been shown in our study (Table 5-3) and also previously that centenarians carry a 

similar number of disease-associated variants compared to younger controls (Beekman et al. 

2010; Sebastiani et al. 2011). Therefore, the ideal subjects for the investigation of genetic variants 

would be ‘escapers’ or individuals who attained their 100th year of life without the diagnosis of 

common age-associated illnesses such as heart disease, stroke, diabetes, cancer or Alzheimer's 

disease (Evert et al. 2003). Studies have shown clustering of longevity within families 

(Schoenmaker et al. 2006; Newman et al. 2011; Sebastiani et al. 2013), therefore, LLI from 

families with a history of longevity may prove to be the most informative subjects to sequence 

using NGS as they are considered to be more enriched for familial and genetic effects on 

longevity (Deelen et al. 2013). Another option may be to focus on male centenarians, as they are 

less heterogeneous, and tend to have significantly better cognition and physical function 

compared to their female counterparts (Franceschi et al. 2000; Franceschi and Bonafè 2003; 

Schoenhofen et al. 2006). Furthermore, the role of genes that may influence human lifespan 

requires thorough testing through functional studies before they are considered ‘longevity-

enabling’ genes. An integration of alternate approaches such as the investigation of structural 

variation (Kuningas et al. 2011), gene–gene interactions (Tan et al. 2002), transcriptome studies 

(Passtoors et al. 2012) or epigenetic mechanisms such as miRNA studies (ElSharawy et al. 2012) 

and methylation patterns (Bell et al. 2012) are likely to improve our understanding of the 
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interplay of the various genetic and environmental factors that influence human longevity 

(Christensen et al. 2006; de Magalhães et al. 2009; Sebastiani et al. 2011). This might be achieved 

in the future by using a systems biology approach that combines and quantifies genetics and 

omics-based fields and can handle the increasing amount of data generated by new high-

throughput technologies, thereby ideally able to provide insight into the complex mechanisms 

underlying the longevity phenotype (Cevenini et al. 2010). 
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6 Summary 

The genetic contribution to adult human lifespan is ~25-30% and is assumed to be determined by 

rare variants or common variants with rather small effects. The current hypothesis is that long-

lived individuals (LLI) are enriched with longevity-associated variants that may compensate for 

the damaging effects of disease-associated variants and are thought to be of rather low frequency. 

In this project, we combined next-generation sequencing with case-control association studies to 

identify new exonic longevity influencing variants as those are more likely to be functionally 

relevant due to amino acid substitution. To reach this goal, we performed whole genome and 

exome sequencing of six centenarians (108-114 years) of European origin using two different 

technologies (SOLiD and Illumina). A fraction of the detected single nucleotide variants (SNVs) 

were selected for a follow-up by genotyping based on two different approaches. The first 

approach focused on SNVs with minor allele frequencies (MAF) 1 to 50%, which resulted in 116 

SNVs that were genotyped in our German sample of 1,610 LLI and 1,104 controls. Seven 

significant association signals were obtained and further investigated for a replication experiment 

in independent French (1,269 LLI and 1,834 younger controls) and Danish populations (910 LLI 

and 760 controls), but none of the associations could be confirmed. The second approach was an 

intensive follow-up by focusing on low-frequency variants (MAF≤10%). Using eight different 

bioinformatic prediction tools to evaluate the functional impact of SNVs and overlaying the 

initial SNV list with locations associated with genome-wide association (GWAS) hit regions 

resulted in 48 variants that were selected for genotyping, where three SNVs showed a significant 

association signal in the German longevity sample. The top-ranking SNV (PCCA=3.7e-08, 

OR=1.7) was selected for a replication experiment in the Danish population but could not be 

confirmed. In addition, longevity genes and pathways from known model organisms were used as 

filter masks for the variant selection. Two SNVs showed a significant association signal in the 

German centenarian subset and were investigated in a subsequent replication experiment in an 

Italian (489 LLI and 480 controls) and an American (352 LLI and 365 controls) study population. 

No significant association was observed in the Italian population. However, the case-control 

analysis in the American longevity sample confirmed the association signal for one SNV 

(PCCA=0.000189, OR=2.65). The SNV is a missense variant located in the CBLC gene, which is 

involved in the insulin pathway and plays an important role in the regulation of growth, 

development, metabolism, and survival. Hence, this CBLC missense SNV can be regarded as 

another promising longevity candidate but needs further investigation and confirmation in 

additional larger samples. 
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7 Zusammenfassung 

Der genetische Einfluss auf die Lebensspanne liegt beim erwachsenen Menschen bei etwa 25- 

30%,  und es wird angenommen, dass dieser Beitrag durch seltene oder häufige Varianten mit 

eher geringen Effekten bestimmt wird. Die aktuelle Hypothese ist, dass bei langlebigen 

Individuen (LLI) eine Anreicherung langlebigkeitsassoziierter Varianten vorliegt, welche die 

schädlichen Effekte von krankheitsassoziierten Varianten kompensieren, und dass solche 

Varianten eine eher niedrige Frequenz aufweisen. In diesem Projekt kombinierten wir die next 

generation sequencing Methode mit Fall-Kontroll-Assoziationsstudien, um neue exonische 

Langlebigkeits-Varianten zu identifizieren, welche durch Änderungen der Aminosäuresequenz 

potentiell funktionell relevant sein könnten. Um dieses Ziel zu erreichen, führten wir mit zwei 

verschiedenen Technologien (SOLiD und Illumina) eine Gesamtgenom- und Exom-

Sequenzierung von sechs Hundertjährigen (108–114 Jahre) europäischen Ursprungs durch. Einige 

der detektierten Einzelbasenvarianten (single nucleotide variants = SNVs) wurden anhand von 

zwei verschiedenen Ansätzen für eine nachfolgende Genotypisierung ausgewählt. Im ersten 

Ansatz lag der Fokus auf exonischen SNVs mit einer Frequenz des seltenen Alles (minor allele 

frequency = MAF) von 1-50%. Daraus resultierten 116 SNVs, die in unserer deutschen 

Stichprobe von 1.610 LLI und 1.104 Kontrollen typisiert worden sind. Hier zeigten sich sieben 

signifikante Assoziationssignale, die in einem folgenden Replikationsexperiment in einer 

unabhängigen französischen (1.269 LLI und 1.834 jüngere Kontrollen) und dänischen Stichprobe 

(910 LLI und 760 Kontrollen) untersucht wurden. Allerdings konnte hierbei keine dieser 

Assoziationen bestätigt werden. Der zweite Ansatz war ein intensives Follow-up zur Entdeckung 

neuer Langlebigkeits-Varianten mit Fokussierung auf niederfrequenten Varianten (MAF≤10%). 

Die Verwendung von acht verschiedenen bioinformatischen Vorhersage-Tools zur Bewertung der 

funktionellen Bedeutung der exonischen SNVs sowie ein Abgleich der SNV-Ausgangsliste mit 

assoziierten GWAS-Hit-Regionen (Genomweite Assoziationsstudie) resultierte in 48 Varianten, 

wobei drei SNVs ein signifikantes Assoziationssignal in der deutschen Langlebigkeitsstichprobe 

zeigten. Der am stärksten assoziierte SNV (PCCA=3,7e-08; OR=1,7) wurde für ein 

Replikationsexperiment in der dänischen Sammlung ausgewählt, konnte dort aber nicht bestätigt 

werden. Des Weiteren wurden aus Modellorganismen bekannte Langlebigkeits-Gene und 

-Signalwege als Filtermaske für die Auswahl der Varianten verwendet. Zwei dieser SNVs zeigten 

ein signifikantes Assoziationssignal in der deutschen Hundertjährigen-Subpopulation und wurden 

im Folgenden in einem Replikationsexperiment in einer italienischen (489 LLI und 480 

Kontrollen) und einer amerikanischen (352 LLI und 365 Kontrollen) Analysepopulation 
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untersucht. In der italienischen Population wurde keine signifikante Assoziation beobachtet. 

Dafür bestätigte aber die Fall-Kontroll-Assoziationsanalyse in der amerikanischen 

Langlebigkeitsstichprobe das Assoziationssignal für einen SNV (PCCA=0,000189; OR=2,65). 

Dieser SNV ist eine nicht-synonyme Variante und liegt im CBLC-Gen, welches in den 

Insulin-Signalweg involviert ist und eine wichtige Rolle bei der Regulation von Wachstum, 

Entwicklung, Metabolismus und für Überlebensvorgänge spielt. Somit kann dieser 

nicht-synonyme SNV im CBLC-Gen als neue vielversprechende Langlebigkeits-Variante 

betrachtet werden, die jedoch noch eine weitere Untersuchung und Bestätigung in zusätzlichen, 

größeren Stichproben benötigt. 



References  92 

8 References 

 

Abbott MH, Murphy EA, Bolling DR, Abbey H. 1974. The familial component in longevity. A 

study of offspring of nonagenarians. II. Preliminary analysis of the completed study. 

Johns Hopkins Med J 134(1): 1-16. 

Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, 

Marth GT, McVean GA, Consortium GP. 2012. An integrated map of genetic variation 

from 1,092 human genomes. Nature 491(7422): 56-65. 

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, 

Sunyaev SR. 2010. A method and server for predicting damaging missense mutations. 

Nat Methods 7(4): 248-249. 

Akutsu T, Nishio H, Sumino K, Takeshima Y, Tsuneishi S, Wada H, Takada S, Matsuo M, 

Nakamura H. 2002. Molecular genetics of spinal muscular atrophy: contribution of the 

NAIP gene to clinical severity. Kobe J Med Sci 48(1-2): 25-31. 

Albani D, Mazzuco S, Polito L, Batelli S, Biella G, Ongaro F, Gustafson DR, Antuono P, Gajo 

G, Durante E et al. 2011. Insulin-like growth factor 1 receptor polymorphism 

rs2229765 and circulating interleukin-6 level affect male longevity in a population-

based prospective study (Treviso Longeva--TRELONG). Aging Male 14(4): 257-264. 

Andersen SL, Sebastiani P, Dworkis DA, Feldman L, Perls TT. 2012. Health span 

approximates life span among many supercentenarians: compression of morbidity at the 

approximate limit of life span. J Gerontol A Biol Sci Med Sci 67(4): 395-405. 

Andrews S. 2010. FastQC A Quality Control tool for High Throughput Sequence Data. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 

Anselmi CV, Malovini A, Roncarati R, Novelli V, Villa F, Condorelli G, Bellazzi R, Puca AA. 

2009. Association of the FOXO3A locus with extreme longevity in a southern Italian 

centenarian study. Rejuvenation research 12(2): 95-104. 

Applied Biosystems SOLiD™ 4 System. 2010. Library Preparation Guide. 

http://tools.lifetechnologies.com/content/sfs/manuals/SOLiD4_Library_Preparation_m

an.pdf 

Atzmon G, Rincon M, Rabizadeh P, Barzilai N. 2005. Biological evidence for inheritance of 

exceptional longevity. Mech Ageing Dev 126(2): 341-345. 

Ayyadevara S, Alla R, Thaden JJ, Shmookler Reis RJ. 2008. Remarkable longevity and stress 

resistance of nematode PI3K-null mutants. Aging Cell 7(1): 13-22. 

Bartke A. 2005. Minireview: role of the growth hormone/insulin-like growth factor system in 

mammalian aging. Endocrinology 146(9): 3718-3723. 

Barzilai N, Atzmon G, Schechter C, Schaefer EJ, Cupples AL, Lipton R, Cheng S, Shuldiner 

AR. 2003. Unique lipoprotein phenotype and genotype associated with exceptional 

longevity. JAMA 290(15): 2030-2040. 

Barzilai N, Huffman DM, Muzumdar RH, Bartke A. 2012. The critical role of metabolic 

pathways in aging. Diabetes 61(6): 1315-1322. 

Beekman M, Blanché H, Perola M, Hervonen A, Bezrukov V, Sikora E, Flachsbart F, 

Christiansen L, De Craen AJ, Kirkwood TB et al. 2013. Genome-wide linkage analysis 

for human longevity: Genetics of Healthy Aging Study. Aging Cell 12(2): 184-193. 

Beekman M, Nederstigt C, Suchiman HE, Kremer D, van der Breggen R, Lakenberg N, 



References  93 

Alemayehu WG, de Craen AJ, Westendorp RG, Boomsma DI et al. 2010. Genome-wide 

association study (GWAS)-identified disease risk alleles do not compromise human 

longevity. Proc Natl Acad Sci U S A 107(42): 18046-18049. 

Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J, Glass D, Mangino M, Zhai G, Zhang F, Valdes 

A et al. 2012. Epigenome-wide scans identify differentially methylated regions for age 

and age-related phenotypes in a healthy ageing population. PLoS Genet 8(4): 

e1002629. 

Bellizzi D, Rose G, Cavalcante P, Covello G, Dato S, De Rango F, Greco V, Maggiolini M, 

Feraco E, Mari V et al. 2005. A novel VNTR enhancer within the SIRT3 gene, a human 

homologue of SIR2, is associated with survival at oldest ages. Genomics 85(2): 258-

263. 

Bennet AM, Di Angelantonio E, Ye Z, Wensley F, Dahlin A, Ahlbom A, Keavney B, Collins R, 

Wiman B, de Faire U et al. 2007. Association of apolipoprotein E genotypes with lipid 

levels and coronary risk. JAMA 298(11): 1300-1311. 

Bergman A, Atzmon G, Ye K, MacCarthy T, Barzilai N. 2007. Buffering mechanisms in aging: 

a systems approach toward uncovering the genetic component of aging. PLoS Comput 
Biol 3(8): e170. 

Bethesda M. 2010. Database of Single Nucleotide Polymorphisms (dbSNP) : National Center 

for Biotechnology Information, National Library of Medicine. (dbSNP Build ID: 135). 

Birnbaum RY, Hayashi G, Cohen I, Poon A, Chen H, Lam ET, Kwok PY, Birk OS, Liao W. 

2011. Association analysis identifies ZNF750 regulatory variants in psoriasis. BMC 
Med Genet 12: 167. 

Blanché H, Cabanne L, Sahbatou M, Thomas G. 2001. A study of French centenarians: are 

ACE and APOE associated with longevity? C R Acad Sci III 324(2): 129-135. 

Bloss CS, Pawlikowska L, Schork NJ. 2011. Contemporary human genetic strategies in aging 

research. Ageing Res Rev 10(2): 191-200. 

Bonafè M, Barbieri M, Marchegiani F, Olivieri F, Ragno E, Giampieri C, Mugianesi E, 

Centurelli M, Franceschi C, Paolisso G. 2003. Polymorphic variants of insulin-like 

growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I 

plasma levels and human longevity: cues for an evolutionarily conserved mechanism of 

life span control. J Clin Endocrinol Metab 88(7): 3299-3304. 

Boyden SE, Kunkel LM. 2010. High-density genomewide linkage analysis of exceptional 

human longevity identifies multiple novel loci. PLoS One 5(8): e12432. 

Bromberg Y, Rost B. 2007. SNAP: predict effect of non-synonymous polymorphisms on 

function. Nucleic Acids Res 35(11): 3823-3835. 

Brooks-Wilson AR. 2013. Genetics of healthy aging and longevity. Hum Genet 132(12): 1323-

1338. 

Budovsky A, Craig T, Wang J, Tacutu R, Csordas A, Lourenço J, Fraifeld VE, de Magalhães 

JP. 2013. LongevityMap: a database of human genetic variants associated with 

longevity. Trends Genet 29(10): 559-560. 

Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R. 2009. Functional annotations 

improve the predictive score of human disease-related mutations in proteins. Hum 
Mutat 30(8): 1237-1244. 

Caliebe A, Kleindorp R, Blanché H, Christiansen L, Puca AA, Rea IM, Slagboom E, 

Flachsbart F, Christensen K, Rimbach G et al. 2010. No or only population-specific 



References  94 

effect of PON1 on human longevity: a comprehensive meta-analysis. Ageing Res Rev 

9(3): 238-244. 

Cardon LR, Palmer LJ. 2003. Population stratification and spurious allelic association. Lancet 
361(9357): 598-604. 

Carter ME, Brunet A. 2007. FOXO transcription factors. Curr Biol 17(4): R113-114. 

Casals F, Hodgkinson A, Hussin J, Idaghdour Y, Bruat V, de Maillard T, Grenier JC, Gbeha 

E, Hamdan FF, Girard S et al. 2013. Whole-exome sequencing reveals a rapid change 

in the frequency of rare functional variants in a founding population of humans. PLoS 
Genet 9(9): e1003815. 

Cavalli-Sforza LL, Piazza A. 1993. Human genomic diversity in Europe: a summary of recent 

research and prospects for the future. Eur J Hum Genet 1(1): 3-18. 

Cevenini E, Bellavista E, Tieri P, Castellani G, Lescai F, Francesconi M, Mishto M, Santoro 

A, Valensin S, Salvioli S et al. 2010. Systems biology and longevity: an emerging 

approach to identify innovative anti-aging targets and strategies. Curr Pharm Des 
16(7): 802-813. 

Chan Y, Lim ET, Sandholm N, Wang SR, McKnight AJ, Ripke S, Daly MJ, Neale BM, Salem 

RM, Hirschhorn JN et al. 2014. An excess of risk-increasing low-frequency variants 

can be a signal of polygenic inheritance in complex diseases. Am J Hum Genet 94(3): 

437-452. 

Christensen K, Johnson TE, Vaupel JW. 2006. The quest for genetic determinants of human 

longevity: challenges and insights. Nat Rev Genet 7(6): 436-448. 

Christensen K, Thinggaard M, Oksuzyan A, Steenstrup T, Andersen-Ranberg K, Jeune B, 

McGue M, Vaupel JW. 2013. Physical and cognitive functioning of people older than 90 

years: a comparison of two Danish cohorts born 10 years apart. Lancet 382(9903): 

1507-1513. 

Cirulli ET, Goldstein DB. 2010. Uncovering the roles of rare variants in common disease 

through whole-genome sequencing. Nat Rev Genet 11(6): 415-425. 

Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L. 

2001. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate 

protein. Science 292(5514): 104-106. 

Consortium WTCC. 2007. Genome-wide association study of 14,000 cases of seven common 

diseases and 3,000 shared controls. Nature 447(7145): 661-678. 

Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, 

Haines JL, Pericak-Vance MA. 1993. Gene dose of apolipoprotein E type 4 allele and 

the risk of Alzheimer's disease in late onset families. Science 261(5123): 921-923. 

Cottet F, Blanché H, Verasdonck P, Le Gall I, Schächter F, Bürkle A, Muiras ML. 2000. New 

polymorphisms in the human poly(ADP-ribose) polymerase-1 coding sequence: lack of 

association with longevity or with increased cellular poly(ADP-ribosyl)ation capacity. J 
Mol Med (Berl) 78(8): 431-440. 

Crimmins EM, Finch CE. 2006. Infection, inflammation, height, and longevity. Proc Natl Acad 
Sci U S A 103(2): 498-503. 

Cross DS, Ivacic LC, Stefanski EL, McCarty CA. 2010. Population based allele frequencies of 

disease associated polymorphisms in the Personalized Medicine Research Project. BMC 
Genet 11: 51. 

D'Antonio M, D'Onorio De Meo P, Paoletti D, Elmi B, Pallocca M, Sanna N, Picardi E, Pesole 



References  95 

G, Castrignanò T. 2013. WEP: a high-performance analysis pipeline for whole-exome 

data. BMC Bioinformatics 14 Suppl 7: S11. 

De Benedictis G, Carotenuto L, Carrieri G, De Luca M, Falcone E, Rose G, Cavalcanti S, 

Corsonello F, Feraco E, Baggio G et al. 1998. Gene/longevity association studies at 

four autosomal loci (REN, THO, PARP, SOD2). Eur J Hum Genet 6(6): 534-541. 

De Benedictis G, Franceschi C. 2006. The unusual genetics of human longevity. Sci Aging 
Knowledge Environ 2006(10): pe20. 

de Magalhães JP, Curado J, Church GM. 2009. Meta-analysis of age-related gene expression 

profiles identifies common signatures of aging. Bioinformatics 25(7): 875-881. 

de Magalhães JP, Finch CE, Janssens G. 2010. Next-generation sequencing in aging research: 

emerging applications, problems, pitfalls and possible solutions. Ageing Res Rev 9(3): 

315-323. 

de Magalhães JP, Toussaint O. 2004. GenAge: a genomic and proteomic network map of 

human ageing. FEBS Lett 571(1-3): 243-247. 

Deelen J, Beekman M, Capri M, Franceschi C, Slagboom PE. 2013. Identifying the genomic 

determinants of aging and longevity in human population studies: progress and 

challenges. BioEssays : news and reviews in molecular, cellular and developmental 
biology 35(4): 386-396. 

Deelen J, Beekman M, Uh HW, Broer L, Ayers KL, Tan Q, Kamatani Y, Bennet AM, Tamm 

R, Trompet S et al. 2014. Genome-wide association meta-analysis of human longevity 

identifies a novel locus conferring survival beyond 90 years of age. Hum Mol Genet.(in 
press) 

Deelen J, Beekman M, Uh HW, Helmer Q, Kuningas M, Christiansen L, Kremer D, van der 

Breggen R, Suchiman HE, Lakenberg N et al. 2011. Genome-wide association study 

identifies a single major locus contributing to survival into old age; the APOE locus 

revisited. Aging Cell 10(4): 686-698. 

DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del 

Angel G, Rivas MA, Hanna M et al. 2011. A framework for variation discovery and 

genotyping using next-generation DNA sequencing data. Nat Genet 43(5): 491-498. 

Di Cianni F, Campa D, Tallaro F, Rizzato C, De Rango F, Barale R, Passarino G, Canzian F, 

Gemignani F, Montesanto A et al. 2013. MAP3K7 and GSTZ1 are associated with 

human longevity: a two-stage case-control study using a multilocus genotyping. Age 
(Dordr) 35(4): 1357-1366. 

Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham 

C, Regueiro M, Griffiths A et al. 2006. A genome-wide association study identifies 

IL23R as an inflammatory bowel disease gene. Science 314(5804): 1461-1463. 

Dupont WD, Plummer WD. 1990. Power and sample size calculations. A review and computer 

program. Control Clin Trials 11(2): 116-128. 

Ellinghaus D, Zhang H, Zeissig S, Lipinski S, Till A, Jiang T, Stade B, Bromberg Y, Ellinghaus 

E, Keller A et al. 2013. Association between variants of PRDM1 and NDP52 and 

Crohn's disease, based on exome sequencing and functional studies. Gastroenterology 

145(2): 339-347. 

ElSharawy A, Keller A, Flachsbart F, Wendschlag A, Jacobs G, Kefer N, Brefort T, Leidinger 

P, Backes C, Meese E et al. 2012. Genome-wide miRNA signatures of human 

longevity. Aging Cell 11(4): 607-616. 



References  96 

Emanuele E, Fontana JM, Minoretti P, Geroldi D. 2010. Preliminary evidence of a genetic 

association between chromosome 9p21.3 and human longevity. Rejuvenation Res 13(1): 

23-26. 

Engberg H, Oksuzyan A, Jeune B, Vaupel JW, Christensen K. 2009. Centenarians--a useful 

model for healthy aging? A 29-year follow-up of hospitalizations among 40,000 Danes 

born in 1905. Aging Cell 8(3): 270-276. 

Evert J, Lawler E, Bogan H, Perls T. 2003. Morbidity profiles of centenarians: survivors, 

delayers, and escapers. J Gerontol A Biol Sci Med Sci 58(3): 232-237. 

Ferrer-Costa C, Gelpí JL, Zamakola L, Parraga I, de la Cruz X, Orozco M. 2005. PMUT: a 

web-based tool for the annotation of pathological mutations on proteins. Bioinformatics 
21(14): 3176-3178. 

Flachsbart F, Caliebe A, Kleindorp R, Blanche H, von Eller-Eberstein H, Nikolaus S, 

Schreiber S, Nebel A. 2009. Association of FOXO3A variation with human longevity 

confirmed in German centenarians. Proceedings of the National Academy of Sciences of 
the United States of America 106(8): 2700-2705. 

Franceschi C, Bonafè M. 2003. Centenarians as a model for healthy aging. Biochem Soc Trans 
31(2): 457-461. 

Franceschi C, Motta L, Valensin S, Rapisarda R, Franzone A, Berardelli M, Motta M, Monti 

D, Bonafè M, Ferrucci L et al. 2000. Do men and women follow different trajectories to 

reach extreme longevity? Italian Multicenter Study on Centenarians (IMUSCE). Aging 
(Milano) 12(2): 77-84. 

Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, Lees CW, 

Balschun T, Lee J, Roberts R et al. 2010. Genome-wide meta-analysis increases to 71 

the number of confirmed Crohn's disease susceptibility loci. Nat Genet 42(12): 1118-

1125. 

Friedman DB, Johnson TE. 1988. A mutation in the age-1 gene in Caenorhabditis elegans 

lengthens life and reduces hermaphrodite fertility. Genetics 118(1): 75-86. 

Fries JF. 1980. Aging, natural death, and the compression of morbidity. N Engl J Med 303(3): 

130-135. 

Garagnani P, Pirazzini C, Giuliani C, Candela M, Brigidi P, Sevini F, Luiselli D, Bacalini MG, 

Salvioli S, Capri M et al. 2014. The three genetics (nuclear DNA, mitochondrial DNA, 

and gut microbiome) of longevity in humans considered as metaorganisms. Biomed Res 
Int 2014: 560340. (in press) 

Gavrilova NS, Gavrilov LA, Evdokushkina GN, Semyonova VG, Gavrilova AL, Evdokushkina 

NN, Kushnareva YE, Kroutko VN, Andreyev AYu. 1998. Evolution, mutations, and 

human longevity: European royal and noble families. Hum Biol 70(4): 799-804. 

Geesaman BJ, Benson E, Brewster SJ, Kunkel LM, Blanché H, Thomas G, Perls TT, Daly MJ, 

Puca AA. 2003. Haplotype-based identification of a microsomal transfer protein marker 

associated with the human lifespan. Proc Natl Acad Sci U S A 100(24): 14115-14120. 

Gems D, McElwee JJ. 2003. Ageing: Microarraying mortality. Nature 424(6946): 259-261. 

GenomeWeb. 2013. X Prize Foundation Shuts Down Genomics Competition. 

http://www.genomeweb.com/sequencing/x-prize-foundation-shuts-down-genomics-

competition 

Gentschew L, Flachsbart F, Kleindorp R, Badarinarayan N, Schreiber S, Nebel A. 2013. 

Polymorphisms in the superoxidase dismutase genes reveal no association with human 



References  97 

longevity in Germans: a case-control association study. Biogerontology. (in press) 
Giannakou ME, Partridge L. 2007. Role of insulin-like signalling in Drosophila lifespan. Trends 

Biochem Sci 32(4): 180-188. 

Grantham R. 1974. Amino acid difference formula to help explain protein evolution. Science 

185(4154): 862-864. 

Gudmundsson H, Gudbjartsson DF, Frigge M, Gulcher JR, Stefánsson K. 2000. Inheritance of 

human longevity in Iceland. Eur J Hum Genet 8(10): 743-749. 

Harris JR, Pedersen NL, McClearn GE, Plomin R, Nesselroade JR. 1992. Age differences in 

genetic and environmental influences for health from the Swedish Adoption/Twin Study 

of Aging. J Gerontol 47(3): P213-220. 

Hatem A, Bozdağ D, Toland AE, Çatalyürek Ü. 2013. Benchmarking short sequence mapping 

tools. BMC Bioinformatics 14: 184. 

Henderson ST, Johnson TE. 2001. daf-16 integrates developmental and environmental inputs 

to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 11(24): 1975-

1980. 

Hercberg S, Galan P, Preziosi P, Roussel AM, Arnaud J, Richard MJ, Malvy D, Paul-Dauphin 

A, Briançon S, Favier A. 1998. Background and rationale behind the SU.VI.MAX 

Study, a prevention trial using nutritional doses of a combination of antioxidant 

vitamins and minerals to reduce cardiovascular diseases and cancers. SUpplementation 

en VItamines et Minéraux AntioXydants Study. Int J Vitam Nutr Res 68(1): 3-20. 

Herskind AM, McGue M, Holm NV, Sorensen TI, Harvald B, Vaupel JW. 1996. The 

heritability of human longevity: a population-based study of 2872 Danish twin pairs 

born 1870-1900. Human genetics 97(3): 319-323. 

Hitt R, Young-Xu Y, Silver M, Perls T. 1999. Centenarians: the older you get, the healthier 

you have been. Lancet 354(9179): 652. 

Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloën A, Even PC, Cervera P, Le Bouc Y. 

2003. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. 

Nature 421(6919): 182-187. 

Hwangbo DS, Gershman B, Gersham B, Tu MP, Palmer M, Tatar M. 2004. Drosophila 

dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 

429(6991): 562-566. 

Illumina Inc. 2011. Paired End Sample Preparation Guide. 

http://supportres.illumina.com/documents/myillumina/e5af4eb5-6742-40c8-bcb1-

d8b350bcb964/paired-end_sampleprep_guide_1005063_e.pdf 

Illumina PPIS. 2014. HiSeq X™ Ten: $1000 human genome and extreme throughput for 

population-scale sequencing. http://res.illumina.com/documents/datasheet-hiseq-x-

ten.pdf 

Jurinke C, van den Boom D, Cantor CR, Köster H. 2002. The use of MassARRAY technology 

for high throughput genotyping. Adv Biochem Eng Biotechnol 77: 57-74. 

Kaeberlein M, Powers RW, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, 

Fields S, Kennedy BK. 2005. Regulation of yeast replicative life span by TOR and Sch9 

in response to nutrients. Science 310(5751): 1193-1196. 

Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. 2004. Regulation of lifespan in 

Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14(10): 

885-890. 



References  98 

Karolchik D, Barber GP, Casper J, Clawson H, Cline MS, Diekhans M, Dreszer TR, Fujita 

PA, Guruvadoo L, Haeussler M et al. 2014. The UCSC Genome Browser database: 

2014 update. Nucleic Acids Res 42(1): D764-770. 

Kedes L, Campany G. 2011. The new date, new format, new goals and new sponsor of the 

Archon Genomics X PRIZE competition. Nat Genet 43(11): 1055-1058. 

Kenny EE, Bustamante CD. 2011. SnapShot: Human biomedical genomics. Cell 147(1): 248-

248.e241. 

Kerber RA, O'Brien E, Smith KR, Cawthon RM. 2001. Familial excess longevity in Utah 

genealogies. J Gerontol A Biol Sci Med Sci 56(3): B130-139. 

Kervinen K, Savolainen MJ, Salokannel J, Hynninen A, Heikkinen J, Ehnholm C, Koistinen 

MJ, Kesäniemi YA. 1994. Apolipoprotein E and B polymorphisms--longevity factors 

assessed in nonagenarians. Atherosclerosis 105(1): 89-95. 

Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. 1997. daf-2, an insulin receptor-like gene that 

regulates longevity and diapause in Caenorhabditis elegans. Science 277(5328): 942-

946. 

Kirkwood TB. 1977. Evolution of ageing. Nature 270(5635): 301-304. 

Kirkwood TB. 2005. Time of our lives. What controls the length of life? EMBO Rep 6 Spec 

No: S4-8. 

Kirkwood TB. 2008. A systematic look at an old problem. Nature 451(7179): 644-647. 

Kirkwood TB, Rose MR. 1991. Evolution of senescence: late survival sacrificed for 

reproduction. Philos Trans R Soc Lond B Biol Sci 332(1262): 15-24. 

Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, 

Mane SM, Mayne ST et al. 2005. Complement factor H polymorphism in age-related 

macular degeneration. Science 308(5720): 385-389. 

Knecht C, Krawczak M. 2013. Molecular genetic epidemiology of human diseases: from 

patterns to predictions. Hum Genet. (in press) 
Koboldt DC, Ding L, Mardis ER, Wilson RK. 2010. Challenges of sequencing human genomes. 

Brief Bioinform 11(5): 484-498. 

Kumar P, Henikoff S, Ng PC. 2009. Predicting the effects of coding non-synonymous variants 

on protein function using the SIFT algorithm. Nat Protoc 4(7): 1073-1081. 

Kung AW, Xiao SM, Cherny S, Li GH, Gao Y, Tso G, Lau KS, Luk KD, Liu JM, Cui B et al. 

2010. Association of JAG1 with bone mineral density and osteoporotic fractures: a 

genome-wide association study and follow-up replication studies. Am J Hum Genet 
86(2): 229-239. 

Kuningas M, Estrada K, Hsu YH, Nandakumar K, Uitterlinden AG, Lunetta KL, van Duijn 

CM, Karasik D, Hofman A, Murabito J et al. 2011. Large common deletions associate 

with mortality at old age. Hum Mol Genet 20(21): 4290-4296. 

Kuningas M, Mooijaart SP, van Heemst D, Zwaan BJ, Slagboom PE, Westendorp RG. 2008. 

Genes encoding longevity: from model organisms to humans. Aging Cell 7(2): 270-280. 

Lam HY, Clark MJ, Chen R, Natsoulis G, O'Huallachain M, Dewey FE, Habegger L, Ashley 

EA, Gerstein MB, Butte AJ et al. 2012. Performance comparison of whole-genome 

sequencing platforms. Nat Biotechnol 30(1): 78-82. 

Lambert JC Ibrahim-Verbaas CA Harold D Naj AC Sims R Bellenguez C DeStafano AL Bis JC 

Beecham GW Grenier-Boley B et al. 2013. Meta-analysis of 74,046 individuals 

identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet 45(12): 1452-



References  99 

1458. 

Lamming DW, Sabatini DM. 2011. A radical role for TOR in longevity. Cell Metab 13(6): 617-

618. 

Lee JH, Flaquer A, Costa R, Andrews H, Cross P, Lantigua R, Schupf N, Tang MX, Mayeux 

R. 2004. Genetic influences on life span and survival among elderly African-Americans, 

Caribbean Hispanics, and Caucasians. Am J Med Genet A 128A(2): 159-164. 

Lescai F, Blanché H, Nebel A, Beekman M, Sahbatou M, Flachsbart F, Slagboom E, Schreiber 

S, Sorbi S, Passarino G et al. 2009. Human longevity and 11p15.5: a study in 1321 

centenarians. Eur J Hum Genet 17(11): 1515-1519. 

Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang J, Kirkness 

EF, Denisov G et al. 2007. The diploid genome sequence of an individual human. PLoS 
Biol 5(10): e254. 

Lewis SJ, Brunner EJ. 2004. Methodological problems in genetic association studies of 

longevity--the apolipoprotein E gene as an example. Int J Epidemiol 33(5): 962-970. 

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler 

transform. Bioinformatics 25(14): 1754-1760. 

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin 

R, Genome Project Data Processing S. 2009a. The Sequence Alignment/Map format 

and SAMtools. Bioinformatics 25(16): 2078-2079. 

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin 

R, Subgroup GPDP. 2009b. The Sequence Alignment/Map format and SAMtools. 

Bioinformatics 25(16): 2078-2079. 

Li M, Reilly MP, Rader DJ, Wang LS. 2010. Correcting population stratification in genetic 

association studies using a phylogenetic approach. Bioinformatics 26(6): 798-806. 

Li Y, Wang WJ, Cao H, Lu J, Wu C, Hu FY, Guo J, Zhao L, Yang F, Zhang YX et al. 2009c. 

Genetic association of FOXO1A and FOXO3A with longevity trait in Han Chinese 

populations. Human molecular genetics 18(24): 4897-4904. 

Lin K, Dorman JB, Rodan A, Kenyon C. 1997. daf-16: An HNF-3/forkhead family member 

that can function to double the life-span of Caenorhabditis elegans. Science 278(5341): 

1319-1322. 

Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M. 2012. Comparison of next-

generation sequencing systems. J Biomed Biotechnol 2012: 251364. 

Livak KJ. 2003. SNP genotyping by the 5'-nuclease reaction. Methods Mol Biol 212: 129-

147. 

Ma L, Mondal AK, Murea M, Sharma NK, Tönjes A, Langberg KA, Das SK, Franks PW, 

Kovacs P, Antinozzi PA et al. 2011. The effect of ACACB cis-variants on gene 

expression and metabolic traits. PLoS One 6(8): e23860. 

Majewski J, Schwartzentruber J, Lalonde E, Montpetit A, Jabado N. 2011. What can exome 

sequencing do for you? J Med Genet 48(9): 580-589. 

Malovini A, Illario M, Iaccarino G, Villa F, Ferrario A, Roncarati R, Anselmi CV, Novelli V, 

Cipolletta E, Leggiero E et al. 2011. Association study on long-living individuals from 

Southern Italy identifies rs10491334 in the CAMKIV gene that regulates survival 

proteins. Rejuvenation Res 14(3): 283-291. 

Manolio TA, Brooks LD, Collins FS. 2008. A HapMap harvest of insights into the genetics of 

common disease. J Clin Invest 118(5): 1590-1605. 



References  100 

Manton KG, Gu X, Lamb VL. 2006. Change in chronic disability from 1982 to 2004/2005 as 

measured by long-term changes in function and health in the U.S. elderly population. 

Proc Natl Acad Sci U S A 103(48): 18374-18379. 

Marth GT, Yu F, Indap AR, Garimella K, Gravel S, Leong WF, Tyler-Smith C, Bainbridge M, 

Blackwell T, Zheng-Bradley X et al. 2011. The functional spectrum of low-frequency 

coding variation. Genome Biol 12(9): R84. 

McGue M, Vaupel JW, Holm N, Harvald B. 1993. Longevity is moderately heritable in a 

sample of Danish twins born 1870-1880. Journal of gerontology 48(6): B237-244. 

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, 

Altshuler D, Gabriel S, Daly M et al. 2010. The Genome Analysis Toolkit: a 

MapReduce framework for analyzing next-generation DNA sequencing data. Genome 
Res 20(9): 1297-1303. 

Meldrum C, Doyle MA, Tothill RW. 2011. Next-generation sequencing for cancer diagnostics: 

a practical perspective. Clin Biochem Rev 32(4): 177-195. 

Metzker ML. 2010. Sequencing technologies - the next generation. Nat Rev Genet 11(1): 31-

46. 

Mitchell BD, Hsueh WC, King TM, Pollin TI, Sorkin J, Agarwala R, Schäffer AA, Shuldiner 

AR. 2001. Heritability of life span in the Old Order Amish. Am J Med Genet 102(4): 

346-352. 

Mitteldorf J. 2010. Female fertility and longevity. Age (Dordr) 32(1): 79-84. 

Molero JC, Jensen TE, Withers PC, Couzens M, Herzog H, Thien CB, Langdon WY, Walder 

K, Murphy MA, Bowtell DD et al. 2004. c-Cbl-deficient mice have reduced adiposity, 

higher energy expenditure, and improved peripheral insulin action. J Clin Invest 114(9): 

1326-1333. 

Moore CB, Wallace JR, Wolfe DJ, Frase AT, Pendergrass SA, Weiss KM, Ritchie MD. 2013. 

Low frequency variants, collapsed based on biological knowledge, uncover complexity 

of population stratification in 1000 genomes project data. PLoS Genet 9(12): 

e1003959. 

Morris JZ, Tissenbaum HA, Ruvkun G. 1996. A phosphatidylinositol-3-OH kinase family 

member regulating longevity and diapause in Caenorhabditis elegans. Nature 

382(6591): 536-539. 

Mukhopadhyay A, Tissenbaum HA. 2007. Reproduction and longevity: secrets revealed by C. 

elegans. Trends Cell Biol 17(2): 65-71. 

Murabito JM, Yuan R, Lunetta KL. 2012. The search for longevity and healthy aging genes: 

insights from epidemiological studies and samples of long-lived individuals. J Gerontol 
A Biol Sci Med Sci 67(5): 470-479. 

Nebel A, Croucher PJ, Stiegeler R, Nikolaus S, Krawczak M, Schreiber S. 2005. No 

association between microsomal triglyceride transfer protein (MTP) haplotype and 

longevity in humans. Proc Natl Acad Sci U S A 102(22): 7906-7909. 

Nebel A, Flachsbart F, Till A, Caliebe A, Blanché H, Arlt A, Häsler R, Jacobs G, Kleindorp 

R, Franke A et al. 2009. A functional EXO1 promoter variant is associated with 

prolonged life expectancy in centenarians. Mech Ageing Dev 130(10): 691-699. 

Nebel A, Kleindorp R, Caliebe A, Nothnagel M, Blanche H, Junge O, Wittig M, Ellinghaus D, 

Flachsbart F, Wichmann HE et al. 2011. A genome-wide association study confirms 

APOE as the major gene influencing survival in long-lived individuals. Mechanisms of 



References  101 

ageing and development 132(6-7): 324-330. 

Nebel A, Schreiber S. 2005. Allelic variation and human longevity. Sci Aging Knowledge 
Environ 2005(29): pe23. 

Newman AB, Cauley JA, Murabito J, Lunetta K. 2012. Genetics of Human Longevity and 

Healthy Aging. In The Epidemiology of Aging, pp. 215-235. Springer Netherlands. 

Newman AB, Glynn NW, Taylor CA, Sebastiani P, Perls TT, Mayeux R, Christensen K, 

Zmuda JM, Barral S, Lee JH et al. 2011. Health and function of participants in the 

Long Life Family Study: A comparison with other cohorts. Aging (Albany NY) 3(1): 63-

76. 

Newman AB, Murabito JM. 2013. The Epidemiology of Longevity and Exceptional Survival. 

Epidemiol Rev. (in press) 
Newman AB, Walter S, Lunetta KL, Garcia ME, Slagboom PE, Christensen K, Arnold AM, 

Aspelund T, Aulchenko YS, Benjamin EJ et al. 2010. A meta-analysis of four genome-

wide association studies of survival to age 90 years or older: the Cohorts for Heart and 

Aging Research in Genomic Epidemiology Consortium. J Gerontol A Biol Sci Med Sci 
65(5): 478-487. 

Nybo H, Gaist D, Jeune B, Bathum L, McGue M, Vaupel JW, Christensen K. 2001. The 

Danish 1905 cohort: a genetic-epidemiological nationwide survey. J Aging Health 

13(1): 32-46. 

Nybo H, Petersen HC, Gaist D, Jeune B, Andersen K, McGue M, Vaupel JW, Christensen K. 

2003. Predictors of mortality in 2,249 nonagenarians--the Danish 1905-Cohort 

Survey. J Am Geriatr Soc 51(10): 1365-1373. 

Nygaard M, Lindahl-Jacobsen R, Soerensen M, Mengel-From J, Andersen-Ranberg K, Jeune 

B, Vaupel JW, Tan Q, Christiansen L, Christensen K. 2014. Birth cohort differences in 

the prevalence of longevity-associated variants in APOE and FOXO3A in Danish long-

lived individuals. Exp Gerontol. (in press) 
O'Rawe J, Jiang T, Sun G, Wu Y, Wang W, Hu J, Bodily P, Tian L, Hakonarson H, Johnson 

WE et al. 2013. Low concordance of multiple variant-calling pipelines: practical 

implications for exome and genome sequencing. Genome Med 5(3): 28. 

Oeppen J, Vaupel JW. 2002. Demography. Broken limits to life expectancy. Science 

296(5570): 1029-1031. 

Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G. 1997. The 

Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity 

signals in C. elegans. Nature 389(6654): 994-999. 

Ohiro Y, Garkavtsev I, Kobayashi S, Sreekumar KR, Nantz R, Higashikubo BT, Duffy SL, 

Higashikubo R, Usheva A, Gius D et al. 2002. A novel p53-inducible apoptogenic 

gene, PRG3, encodes a homologue of the apoptosis-inducing factor (AIF). FEBS Lett 
524(1-3): 163-171. 

Passtoors WM, Beekman M, Deelen J, van der Breggen R, Maier AB, Guigas B, 

Derhovanessian E, van Heemst D, de Craen AJ, Gunn DA et al. 2013. Gene 

expression analysis of mTOR pathway: association with human longevity. Aging Cell 
12(1): 24-31. 

Passtoors WM, Boer JM, Goeman JJ, Akker EB, Deelen J, Zwaan BJ, Scarborough A, Breggen 

R, Vossen RH, Houwing-Duistermaat JJ et al. 2012. Transcriptional profiling of human 

familial longevity indicates a role for ASF1A and IL7R. PLoS One 7(1): e27759. 



References  102 

Pavlopoulos GA, Oulas A, Iacucci E, Sifrim A, Moreau Y, Schneider R, Aerts J, Iliopoulos I. 

2013. Unraveling genomic variation from next generation sequencing data. BioData Min 

6(1): 13. 

Pawlikowska L, Hu D, Huntsman S, Sung A, Chu C, Chen J, Joyner AH, Schork NJ, Hsueh 

WC, Reiner AP et al. 2009. Association of common genetic variation in the 

insulin/IGF1 signaling pathway with human longevity. Aging Cell 8(4): 460-472. 

Peng G, Fan Y, Palculict TB, Shen P, Ruteshouser EC, Chi AK, Davis RW, Huff V, Scharfe C, 

Wang W. 2013. Rare variant detection using family-based sequencing analysis. Proc 
Natl Acad Sci U S A 110(10): 3985-3990. 

Perls T, Shea-Drinkwater M, Bowen-Flynn J, Ridge SB, Kang S, Joyce E, Daly M, Brewster 

SJ, Kunkel L, Puca AA. 2000. Exceptional familial clustering for extreme longevity in 

humans. J Am Geriatr Soc 48(11): 1483-1485. 

Perls T, Terry D. 2003. Genetics of exceptional longevity. Exp Gerontol 38(7): 725-730. 

Perls TT, Wilmoth J, Levenson R, Drinkwater M, Cohen M, Bogan H, Joyce E, Brewster S, 

Kunkel L, Puca A. 2002. Life-long sustained mortality advantage of siblings of 

centenarians. Proc Natl Acad Sci U S A 99(12): 8442-8447. 

Petersen B-S. 2014. Discovery of novel rare Crohn’s disease variants by next-generation 

sequencing In Mathematisch-Naturwissenschaftlichen Fakultät, Vol PhD. University of 

Kiel, Kiel. (PhD thesis) 
Petersen BS, Spehlmann ME, Raedler A, Stade B, Thomsen I, Rabionet R, Rosenstiel P, 

Schreiber S, Franke A. 2014. Whole genome and exome sequencing of monozygotic 

twins discordant for Crohn's disease. BMC Genomics 15(1): 564. (in press) 
Picard. 2009. http://picard.sourceforge.net. 

Pinós T, Fuku N, Cámara Y, Arai Y, Abe Y, Rodríguez-Romo G, Garatachea N, Santos-

Lozano A, Miro-Casas E, Ruiz-Meana M et al. 2014. The rs1333049 polymorphism on 

locus 9p21.3 and extreme longevity in Spanish and Japanese cohorts. Age (Dordr) 
36(2): 933-943. 

Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. 2010. Detection of nonneutral substitution 

rates on mammalian phylogenies. Genome Res 20(1): 110-121. 

Puca AA, Daly MJ, Brewster SJ, Matise TC, Barrett J, Shea-Drinkwater M, Kang S, Joyce E, 

Nicoli J, Benson E et al. 2001. A genome-wide scan for linkage to human exceptional 

longevity identifies a locus on chromosome 4. Proc Natl Acad Sci U S A 98(18): 

10505-10508. 

Puckelwartz MJ, Pesce LL, Nelakuditi V, Dellefave-Castillo L, Golbus JR, Day SM, Cappola 

TP, Dorn GW, Foster IT, McNally EM. 2014. Supercomputing for the parallelization of 

whole genome analysis. Bioinformatics. (in press) 
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de 

Bakker PI, Daly MJ et al. 2007. PLINK: a tool set for whole-genome association and 

population-based linkage analyses. Am J Hum Genet 81(3): 559-575. 

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic 

features. Bioinformatics 26(6): 841-842. 

Ragoussis J. 2006. Genotyping technologies for all. Drug Discovery Today: Technologies 3(2): 

115-122. 

Ratan A, Miller W, Guillory J, Stinson J, Seshagiri S, Schuster SC. 2013. Comparison of 

sequencing platforms for single nucleotide variant calls in a human sample. PLoS One 

http://picard.sourceforge.net/


References  103 

8(2): e55089. 

Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D. 1997. GeneCards: integrating information 

about genes, proteins and diseases. Trends Genet 13(4): 163. 

Reed T, Dick DM, Uniacke SK, Foroud T, Nichols WC. 2004. Genome-wide scan for a 

healthy aging phenotype provides support for a locus near D4S1564 promoting healthy 

aging. J Gerontol A Biol Sci Med Sci 59(3): 227-232. 

Riancho JA, Vázquez L, García-Pérez MA, Sainz J, Olmos JM, Hernández JL, Pérez-López J, 

Amado JA, Zarrabeitia MT, Cano A et al. 2011. Association of ACACB polymorphisms 

with obesity and diabetes. Mol Genet Metab 104(4): 670-676. 

Rieber N, Zapatka M, Lasitschka B, Jones D, Northcott P, Hutter B, Jäger N, Kool M, Taylor 

M, Lichter P et al. 2013. Coverage bias and sensitivity of variant calling for four 

whole-genome sequencing technologies. PLoS One 8(6): e66621. 

Risch N, Merikangas K. 1996. The future of genetic studies of complex human diseases. 

Science 273(5281): 1516-1517. 

Robine J, Vaupel JW. 2001. Supercentenarians: slower ageing individuals or senile elderly? 

Exp Gerontol 36(4-6): 915-930. 

Robine JM, Allard M. 1998. The oldest human. Science 279(5358): 1834-1835. 

Robine JM, Cheung SL, Saito Y, Jeune B, Parker MG, Herrmann FR. 2010. Centenarians 

Today: New Insights on Selection from the 5-COOP Study. Curr Gerontol Geriatr Res 
2010: 120354. 

Roche NimbleGen Inc. 2009. NimbleGen Sequence Capture 2.1M Human Exome Array. 

http://www.atlas-biolabs.de/nimblegen 

Romualdi C, Balding D, Nasidze IS, Risch G, Robichaux M, Sherry ST, Stoneking M, Batzer 

MA, Barbujani G. 2002. Patterns of human diversity, within and among continents, 

inferred from biallelic DNA polymorphisms. Genome Res 12(4): 602-612. 

Rose G, Dato S, Altomare K, Bellizzi D, Garasto S, Greco V, Passarino G, Feraco E, Mari V, 

Barbi C et al. 2003. Variability of the SIRT3 gene, human silent information regulator 

Sir2 homologue, and survivorship in the elderly. Exp Gerontol 38(10): 1065-1070. 

Rowe JW, Kahn RL. 1997. Successful aging. Gerontologist 37(4): 433-440. 

Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, Jørgensen JE, Weigel 

D, Andersen SU. 2009. SHOREmap: simultaneous mapping and mutation identification 

by deep sequencing. Nat Methods 6(8): 550-551. 

Schoenhofen EA, Wyszynski DF, Andersen S, Pennington J, Young R, Terry DF, Perls TT. 

2006. Characteristics of 32 supercentenarians. J Am Geriatr Soc 54(8): 1237-1240. 

Schoenmaker M, de Craen AJ, de Meijer PH, Beekman M, Blauw GJ, Slagboom PE, 

Westendorp RG. 2006. Evidence of genetic enrichment for exceptional survival using a 

family approach: the Leiden Longevity Study. Eur J Hum Genet 14(1): 79-84. 

Schork NJ, Murray SS, Frazer KA, Topol EJ. 2009. Common vs. rare allele hypotheses for 

complex diseases. Curr Opin Genet Dev 19(3): 212-219. 

Schreiber V, Amé JC, Dollé P, Schultz I, Rinaldi B, Fraulob V, Ménissier-de Murcia J, de 

Murcia G. 2002. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient 

base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem 

277(25): 23028-23036. 

Schächter F, Cohen D, Kirkwood T. 1993. Prospects for the genetics of human longevity. 

Hum Genet 91(6): 519-526. 



References  104 

Schächter F, Faure-Delanef L, Guénot F, Rouger H, Froguel P, Lesueur-Ginot L, Cohen D. 

1994. Genetic associations with human longevity at the APOE and ACE loci. Nat 
Genet 6(1): 29-32. 

Sebastiani P, Perls TT. 2012. The genetics of extreme longevity: lessons from the new 

England centenarian study. Front Genet 3: 277. 

Sebastiani P, Riva A, Montano M, Pham P, Torkamani A, Scherba E, Benson G, Milton JN, 

Baldwin CT, Andersen S et al. 2011. Whole genome sequences of a male and female 

supercentenarian, ages greater than 114 years. Frontiers in genetics 2: 90. 

Sebastiani P, Solovieff N, Dewan AT, Walsh KM, Puca A, Hartley SW, Melista E, Andersen S, 

Dworkis DA, Wilk JB et al. 2012. Genetic signatures of exceptional longevity in 

humans. PLoS One 7(1): e29848. 

Sebastiani P, Sun FX, Andersen SL, Lee JH, Wojczynski MK, Sanders JL, Yashin A, Newman 

AB, Perls TT. 2013. Families Enriched for Exceptional Longevity also have Increased 

Health-Span: Findings from the Long Life Family Study. Front Public Health 1: 38. 

Sehat B, Andersson S, Girnita L, Larsson O. 2008. Identification of c-Cbl as a new ligase for 

insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor 

ubiquitination and endocytosis. Cancer Res 68(14): 5669-5677. 

Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. 2001. dbSNP: 

the NCBI database of genetic variation. Nucleic Acids Res 29(1): 308-311. 

Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. 2014. Sequencing depth and coverage: key 

considerations in genomic analyses. Nat Rev Genet 15(2): 121-132. 

Snyder M, Du J, Gerstein M. 2010. Personal genome sequencing: current approaches and 

challenges. Genes Dev 24(5): 423-431. 

Soerensen M. 2012. Genetic variation and human longevity. Dan Med J 59(5): B4454. 

Soerensen M, Christensen K, Stevnsner T, Christiansen L. 2009. The Mn-superoxide 

dismutase single nucleotide polymorphism rs4880 and the glutathione peroxidase 1 

single nucleotide polymorphism rs1050450 are associated with aging and longevity in 

the oldest old. Mech Ageing Dev 130(5): 308-314. 

Soerensen M, Dato S, Christensen K, McGue M, Stevnsner T, Bohr VA, Christiansen L. 

2010. Replication of an association of variation in the FOXO3A gene with human 

longevity using both case-control and longitudinal data. Aging Cell 9(6): 1010-1017. 

Steffens M, Lamina C, Illig T, Bettecken T, Vogler R, Entz P, Suk EK, Toliat MR, Klopp N, 

Caliebe A et al. 2006. SNP-based analysis of genetic substructure in the German 

population. Hum Hered 62(1): 20-29. 

Suh Y, Atzmon G, Cho MO, Hwang D, Liu B, Leahy DJ, Barzilai N, Cohen P. 2008. 

Functionally significant insulin-like growth factor I receptor mutations in centenarians. 

Proc Natl Acad Sci U S A 105(9): 3438-3442. 

SureSelect Target Enrichment Kit. 2010. Agilent Technologies: SureSelect Target Enrichment 

for Illumina Paired-End Sequencing Library. 

http://dnatech.genomecenter.ucdavis.edu/uploads/SureSelect_IlluminaPaired.pdf 

Suzuki M, Akisaka M, Ashitomi I, Higa K, Nozaki H. 1995. [Chronological study concerning 

ADL among Okinawan centenarians]. Nihon Ronen Igakkai Zasshi 32(6): 416-423. 

Tabatabaie V, Atzmon G, Rajpathak SN, Freeman R, Barzilai N, Crandall J. 2011. Exceptional 

longevity is associated with decreased reproduction. Aging (Albany NY) 3(12): 1202-

1205. 



References  105 

Tacutu R, Budovsky A, Fraifeld VE. 2010. The NetAge database: a compendium of networks 

for longevity, age-related diseases and associated processes. Biogerontology 11(4): 

513-522. 

Tacutu R, Craig T, Budovsky A, Wuttke D, Lehmann G, Taranukha D, Costa J, Fraifeld VE, 

de Magalhães JP. 2013. Human Ageing Genomic Resources: integrated databases and 

tools for the biology and genetics of ageing. Nucleic Acids Res 41(Database issue): 

D1027-1033. 

Tan Q, De Benedictis G, Ukraintseva SV, Franceschi C, Vaupel JW, Yashin AI. 2002. A 

centenarian-only approach for assessing gene-gene interaction in human longevity. Eur 
J Hum Genet 10(2): 119-124. 

Tan Q, Zhao JH, Zhang D, Kruse TA, Christensen K. 2008. Power for genetic association 

study of human longevity using the case-control design. Am J Epidemiol 168(8): 890-

896. 

Tazearslan C, Cho M, Suh Y. 2012. Discovery of functional gene variants associated with 

human longevity: opportunities and challenges. J Gerontol A Biol Sci Med Sci 67(4): 

376-383. 

Terman JR, Mao T, Pasterkamp RJ, Yu HH, Kolodkin AL. 2002. MICALs, a family of 

conserved flavoprotein oxidoreductases, function in plexin-mediated axonal repulsion. 

Cell 109(7): 887-900. 

Thakur RS, Bandopadhyay R, Chaudhary B, Chatterjee S. 2012. Now and next-generation 

sequencing techniques: future of sequence analysis using cloud computing. Front 
Genet 3: 280. 

Thorvaldsdóttir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics Viewer (IGV): high-

performance genomics data visualization and exploration. Brief Bioinform 14(2): 178-

192. 

Ugarte M, Pérez-Cerdá C, Rodríguez-Pombo P, Desviat LR, Pérez B, Richard E, Muro S, 

Campeau E, Ohura T, Gravel RA. 1999. Overview of mutations in the PCCA and 

PCCB genes causing propionic acidemia. Hum Mutat 14(4): 275-282. 

User Guide: Applied Biosystems. 2010. Applied Biosystems SOLiD™ System 

BioScope™ Software for Scientists Guide 

https://tools.lifetechnologies.com/content/sfs/manuals/cms_082377.pdf 

van Heemst D, Beekman M, Mooijaart SP, Heijmans BT, Brandt BW, Zwaan BJ, Slagboom PE, 

Westendorp RG. 2005. Reduced insulin/IGF-1 signalling and human longevity. Aging 
Cell 4(2): 79-85. 

Vaupel JW. 1995. Exceptional longevity: from prehistory to the present. Springer, Berlin. 

Vaupel JW. 2004. The Biodemography of Aging. In: Waite, L. J. (Ed.), Aging, health and 
public policy. Demographic and economic perspectives. Population Council, New York. 

Vaupel JW. 2010. Biodemography of human ageing. Nature 464(7288): 536-542. 

vB Hjelmborg J, Iachine I, Skytthe A, Vaupel JW, McGue M, Koskenvuo M, Kaprio J, 

Pedersen NL, Christensen K. 2006. Genetic influence on human lifespan and longevity. 

Hum Genet 119(3): 312-321. 

Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Müller F. 2003. Genetics: influence 

of TOR kinase on lifespan in C. elegans. Nature 426(6967): 620. 

Venter JC Adams MD Myers EW Li PW Mural RJ Sutton GG Smith HO Yandell M Evans CA 

Holt RA et al. 2001. The sequence of the human genome. Science 291(5507): 1304-



References  106 

1351. 

Viennas E, Gkantouna V, Ioannou M, Georgitsi M, Rigou M, Poulas K, Patrinos GP, Tzimas 

G. 2012. Population-ethnic group specific genome variation allele frequency data: a 

querying and visualization journey. Genomics 100(2): 93-101. 

Waldron I. 1983. Sex differences in illness incidence, prognosis and mortality: issues and 

evidence. Soc Sci Med 17(16): 1107-1123. 

Waldron I. 1993. Recent trends in sex mortality ratios for adults in developed countries. Soc 
Sci Med 36(4): 451-462. 

Waldron I. 1995. Contributions of biological and behavioural factors to changing sex 

differences in ischaemic heart disease mortality. In In: Adult mortality in developed 
countries: from description to explanation,  (ed. GC Alan D. Lopez, Tapani Valkonen), 

pp. 161-178. Clarendon Press, Oxford, England. 

Wallace JE. 1996. Gender differences in beliefs of why women live longer than men. Psychol 
Rep 79(2): 587-591. 

Walter S, Atzmon G, Demerath EW, Garcia ME, Kaplan RC, Kumari M, Lunetta KL, 

Milaneschi Y, Tanaka T, Tranah GJ et al. 2011. A genome-wide association study of 

aging. Neurobiol Aging 32(11): 2109.e2115-2128. 

Wang K, Li M, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants 

from high-throughput sequencing data. Nucleic Acids Res 38(16): e164. 

Wang Z, Liu X, Yang BZ, Gelernter J. 2013. The role and challenges of exome sequencing in 

studies of human diseases. Front Genet 4: 160. 

Westendorp RG, Kirkwood TB. 1998. Human longevity at the cost of reproductive success. 

Nature 396(6713): 743-746. 

Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, 

Makhijani V, Roth GT et al. 2008. The complete genome of an individual by massively 

parallel DNA sequencing. Nature 452(7189): 872-876. 

Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K, Masaki KH, Willcox DC, 

Rodriguez B, Curb JD. 2008. FOXO3A genotype is strongly associated with human 

longevity. Proceedings of the National Academy of Sciences of the United States of 
America 105(37): 13987-13992. 

Willcox BJ, Willcox DC, He Q, Curb JD, Suzuki M. 2006a. Siblings of Okinawan centenarians 

share lifelong mortality advantages. J Gerontol A Biol Sci Med Sci 61(4): 345-354. 

Willcox DC, Willcox BJ, Hsueh WC, Suzuki M. 2006b. Genetic determinants of exceptional 

human longevity: insights from the Okinawa Centenarian Study. Age (Dordr) 28(4): 

313-332. 

Yashin AI, Wu D, Arbeev KG, Ukraintseva SV. 2010. Joint influence of small-effect genetic 

variants on human longevity. Aging (Albany NY) 2(9): 612-620. 

Ye K, Beekman M, Lameijer EW, Zhang Y, Moed MH, van den Akker EB, Deelen J, Houwing-

Duistermaat JJ, Kremer D, Anvar SY et al. 2013. Aging as accelerated accumulation of 

somatic variants: whole-genome sequencing of centenarian and middle-aged 

monozygotic twin pairs. Twin Res Hum Genet 16(6): 1026-1032. 

Young RD, Coles SL. 2014. Validated Worldwide Supercentenarians, Living and Recently 

Deceased. Rejuvenation Res. (in press) 
Yu X, Sun S. 2013. Comparing a few SNP calling algorithms using low-coverage sequencing 

data. BMC Bioinformatics 14: 274. 



References  107 

Yu Y, Sun Y, He S, Yan C, Rui L, Li W, Liu Y. 2012. Neuronal Cbl controls biosynthesis of 

insulin-like peptides in Drosophila melanogaster. Mol Cell Biol 32(18): 3610-3623. 

Zuk O, Schaffner SF, Samocha K, Do R, Hechter E, Kathiresan S, Daly MJ, Neale BM, 

Sunyaev SR, Lander ES. 2014. Searching for missing heritability: designing rare variant 

association studies. Proc Natl Acad Sci U S A 111(4): E455-464. 



Declaration  108 

9 Declaration 

Herewith, I confirm that the submitted thesis is completely the result of my own work. Apart 

from the advice of my supervisors, all sources and cooperation partners are listed within the 

thesis. This thesis has not been submitted elsewhere. It has been carried out in strict accordance 

with the rules of good scientific practice of the Deutsche Forschungsgesellschaft. 

 

 

____________________   _______________ 

Signature     Date 



Curriculum vitae  109 

10 Curriculum vitae 

First and Last Name: Nandini Badarinarayan 

 

Address:   Gurlittstrasse 3 

    24106 Kiel 

 

Date of birth:   1st September 1984 

 

Nationality:   Indian 

 

School education:      

06/1987 – 02/2000  St Mary’s High School, Pune, India 

    (Indian Certificate of Secondary Education) 

 

Higher education: 

06/2000 – 03/2002  Fergusson College, Pune, India 

    (Higher Secondary Certificate) 

    Major subjects: Biology, Chemistry, Physics, Maths 

 

09/2004 – 06/2008  Visvesvaraya Technological University, Bangalore, India 

    (Bachelor in Engineering: Biotechnology) 

 

01/2009 – 01/2010  University of Leicester, United Kingdom 

    (Master of Science: Bioinformatics) 

 

01/2011 – 07/2014  PhD student at Institute of Clinical Molecular Biology 

    Christian-Albrechts-University, Kiel 



Acknowledgements  110 

11 Acknowledgements 

I am fortunate to have received sound advice and motivating words of encouragement from all 

the people that I was associated with during this project. I take this opportunity to express my 

gratitude to the people who have been instrumental in the successful completion of this project:  

 

Prof. Dr. Stefan Schreiber, Prof. Dr. Philip Rosenstiel and Prof. Dr. Andre Franke for giving me 

the opportunity to accomplish my Ph.D. at the Institute of Clinical Molecular Biology and for 

providing excellent working conditions.  

 

Prof. Dr. Tal Dagan for kindly agreeing to review my thesis.  

 

Prof. Dr. Almut Nebel for her guidance, helpful advice and being a great supervisor. Her 

comments were always encouraging,  extremely perceptive  and appropriate, which helped me at 

all times during research and writing of my thesis. 

 

PD Dr. Friederike Flachsbart for being the most supportive and understanding supervisor. Not 

only was Friederike easily approachable when I had doubts, but she guided me out of the woods 

every time I felt I lost my way. She also helped in proof-reading my thesis and provided many 

considerable suggestions. Her patience and positive energy helped me overcome many criticial 

situations that emerged unexpectedly during the course of my Ph.D.  

 

Furthermore, I would also like to thank our collaborators at IMIS and CRG, specially Prof. Dr. 

Michael Krawczak, Dr. Amke Caliebe, Carolin Knecht and Daniel Trujillano for their inputs and 

friendly advice. I express my sincere gratitude to the whole institute of ICMB and all my 

colleagues for supporting me every way possible. My special thanks goes to Geetha Venkatesh, 

Liljana Gentschew, Britt Petersen, Michael Forster, Ingo Thomsen and Björn Stade, because 

without their generous support the completion of this work would have been difficult. I am also 

grateful to the Next-gen sequencing and genotyping platforms at ICMB for their continuous high-

quality work in terms of processing, sequencing and genotyping of samples and thereby making 

this work possible.  

 

It is a pleasure to thank my friends, Richa and Vasudev, who made my stay in Kiel more fun and 

a memorable experience. Most importantly, none of this would have been possible without the 

love and patience of my family- my parents, brother and sister-in-law. They have been a constant 

source of support and strength all these years.  



Supplementary material           111 

12 Supplementary material 

Table 12-1: Selected examples of genes identified influencing lifespan in model organisms (Kuningas et al. 2008) 

 
Organism Gene name/description Function Reference 

 

Canenorhabditis elegans 

 

 

  

age-1 Phosphatidylinositol kinase 

 

Insulin signaling (Morris et al. 1996) 

daf-2 Insulin receptor like gene 

 

Insulin signaling (Kimura et al. 1997) 

daf-16 Forkhead transcription factor Regulation of metabolic and development 

pathways 

(Ogg et al. 1997) 

 

Drosophila melanogaster 

   

Chico Insulin receptor substrate Insulin signaling (Clancy et al. 2001) 

 

Mus musculus 

   

Gh Growth hormone Insulin signaling, tissue proliferation (Bartke 2005) 
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Table 12-2: Genome-wide association studies with discovery and replication samples in humans (Murabito et al. 2012) 

 
Reference Discovery sample Replication sample Gene SNV P value Odds Ratio 

 

(Newman et 

al. 2010) || 

 

CHARGE cohorts   

(AGES, CHS, FHS, and RS) 

1,836 individuals age >90 y; 

1,955 individuals who died  between 

ages 55–80 y 

 

Leiden Longevity Study:  

940 long-lived (mean age 94); 744 partners of 

offspring (mean age 60); 

Danish 1905 cohort:  

1,644 long-lived (mean age 93); 2,007 younger 

Danish twins (mean age 57) 

 

MINPPI 

 

rs9664222 

 

6.8 x 10−7 

 

0.82 

 

(Walter et al. 

2011) || 

 

CHARGE cohorts (AGES, ARIC, 

BLSA, CHS, FHS, HABC, 

InCHIANTI, RS, and SHIP),  

25,007 participants age ≥55 y at 

baseline (55% women), European 

origin, 8,444 deaths (mean age 81.1); 

average follow-up 10.6 y 

 

Four independent samples of European origin;  

N = 10,411, deaths = 1,295 

 

OTOL1 

 

 

rs1425609 

 

1.6 x 10−6 

 

 

 

- 

 

(Malovini et 

al. 2011) 

 

410 long-lived individuals from  

Southern Italy (90–109 y);  

553 younger controls (18–48 y) 

 

116 long-lived individuals (90–109 y);  

160 younger controls (18–44 y) 

 

CAMKIV 

 

rs10491334 

 

 

 

1.7 x 10-6 

 

 

0.55 

 

 

 

(Deelen et 

al. 2011) 

 

 

Leiden Longevity Study:  

403 Long-lived (mean age 94); 1,760 

younger controls (mean age 58) 

 

Rotterdam Study:  

960 long-lived (mean age 94); 1,825 younger 

controls (mean age 62) 

Leiden 85+ Study:  

1,208 long-lived (mean age 92); 2,090 younger 

controls (mean age 35) 

Danish 1905 cohort:  

1,598 long-lived (mean age 93); 1,997 younger 

controls (mean age 57) 

 

 

TOMM40
† 

 

rs2075650 

 

 

 

3.4 x 10-17 

 

 

0.71 
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(Nebel et al. 

2011) 

 

 

763 long-lived German individuals 

(mean age 99.7) 

1,085 young German individuals 

(mean age 60.2 y) 

 

 

754 long-lived German individuals (mean age 

96.9) 

860 young German individuals (mean age 67.3 y) 

 

 

APOC1* 

 

 

 

rs4420638 

 

 

 

 

1.8 x 10-10 

 

 

 

 

0.53 

 

 

(Sebastiani 

et al. 2012) 

801 European ancestry long-living 

individuals (mean age 104)  

914 European ancestry controls (age 

range 0-75 years) 

292 European ancestry long-living individuals, 21 

long-living individuals, (mean age 108) 

867 controls (age range 0-75 years) 

- - - - 

 

Notes: AGES = Age, Gene/Environment Susceptibility-ReyKjavik Study; ARIC = Atherosclerosis Risk in Communities Study; BLSA = Baltimore Longitudinal Study of Ageing; CHARGE = Cohorts for Heart and Aging Research 

in Genomic Epidemiology; CHS = Cardiovascular Health Study; FHS = Framingham Heart Study; HAAS = Honolulu Asia Aging Study; HABC = Health, Aging and Body Composition Study; HHP = Honolulu Heart Program; 

InCHIANTI = Invescchiare nel Chianti; RS = Rotterdam Study; SHIP = Study of Health in Pomerania; SNV = single nucleotide variant. 

* Explained by linkage equilibrium with the ApoE E4 allele (r2 = .72). 

† Explained by moderate linkage disequilibrium with ApoE E4 (r2 = .55, rs429358). 

§ Homozygous minor (GG) versus homozygous major (TT) alleles between cases and controls. 

|| None of the associations achieved genome-wide significance; only the most significant association in the discovery plus replication stage is provided in the table. 
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Figure 12-1: SOLiD™ technology sequencing schema: (1) Complementary dinucleotide hybridizes to the already 

primer-bound template sequence and is ligated. (2) After the fluorescence is measured, (3) unextended strands are 

capped (4) and the dye is cleaved off leaving a free 5' phosphate group. (5) This process is repeated for several cycles 

until the required length is achieved. (6) The synthesized strand is removed, a new primer with a one-base offset is 

hybridized and (7) the ligation cycles are repeated. (8) This primer reset process is repeated for five rounds providing 

dual measurement of each base (Figure from http://www.appliedbiosystems.com). 

 

 

http://www.appliedbiosystems.com/


Supplementary material   115 

Figure 12-2: Illumina technology sequencing schema: Fluorescently labeled nucleotides are incorporated into the 

complementary strand  after the sequencing primer is hybridized. The remaining nucleotides are washed away and 

the fluorescence signal identifying the base is recorded. The fluorescent label and terminator group are removed and 

a new cycle of sequencing is started (Figure from Metzker 2010). 
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Figure 12-3: Exome sequencing schema: Exome sequencing for six individuals were performed using (b) SureSelect and (c) NimbleGen target enrichment kit (Figure from Roche 

NimbleGen Inc 2009 and SureSelect Target Enrichment Kit 2010)  
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Figure 12-4: Workflow for whole genome and exome variant calling: for (a) SOLiD and (b) Illumina sequencing data 
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Figure 12-5: Exome pipeline for SNV calling implemented by CRG, Spain: The samples were mapped with BWA using hg19 human genome reference. This was followed by local 

realignment around indels and quality score recalibration done using GATK. The resulting SNV calling was performed with three different variant tools, namely GATK, SAMtools 

mpileup and SHORE. The three independent SNV predictions were subsequently quality filtered using GATK VariantFiltration and intersected using GATK CombineVariants.  

Functional annotation was performed using Annovar. (Figure from CRG,Spain) 
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 Table 12-3: Functional annotation of variants generated with SOLiD technology using snpActs  

 

 

(1) German female (2) German male (3) French female 

Total number of SNVs 3,264,816 3923,324 2,695,673 

Total number of novel SNVs 688,484 770,546 454,305 

all synonymous-coding SNVs 9,372 11,192 7,324 

all missense SNVs        11,523 12,950 8,393 

all cancel-start SNVs 22 27 15 

all read-through SNVs 35 40 24 

all nonsense SNVs 260 247 164 

Novel missense SNVs 4,743 4,625 2,761 

Novel cancel-start SNVs 13 14 4 

Novel read-through SNVs 12 14 5 

Novel nonsense SNVs 206 181 116 

SNVs in acceptor 77 70 52 

SNVs in donor  62 63 39 

SNVs in 5'UTR 5,053 6,237 3,728 

SNVS in 3'UTR 22,977 27,281 18,788 

SNVs in UTR-Splice sites 206,931 248,370 171,185 

SNVs in introns 997,987 1,191,940 824,278 

unknown/intergenic SNVs 2,010,513 2,424,907 1,661,682 

SNVs overlapping with Venter genome 431,220 1,138,396 82,528 

SNVs overlapping with Watson genome 710,950 626,227 42,124 

SNVs overlapping with Yh1 genome 480,999 1,115,681 73,537 

SNVs overlapping with Yoruban3 genome 479,328 963,730 61,009 
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Table 12-4: Functional annotation of variants generated with Illumina technology using snpActs 

 

 

(1) German female (2) German male (3) French female (4) Spanish female 

Total number of SNVs 4,013,012 4,071,554 4,022,164 4,081,702 

Total number of novel SNVs 339,537 373,213 343,478 348,019 

all synonymous-coding SNVs 9,866 10,268 10,225 11,037 

all missense SNVs        9,590 10,276 9,871 10,390 

all cancel-start SNVs 10 12 15 16 

all read-through SNVs 30 33 29 40 

all nonsense SNVs 92 108 87 86 

Novel missense SNVs 832 1,056 868 715 

Novel cancel-start SNVs 1 0 1 2 

Novel read-through SNVs 2 3 2 5 

Novel nonsense SNVs 22 28 20 6 

SNVs in acceptor 24 30 24 21 

SNVs in donor  64 82 66 44 

SNVs in 5'UTR 5,617 5,831 5,775 6,334 

SNVS in 3'UTR 24,880 25,431 25,270 26,322 

SNVs in UTR-Splice sites 253,876 257,817 255,583 262,471 

SNVs in introns 1,206,955 1,221,284 1,209,656 1,216,178 

unknown/intergenic SNVs 2,502,004 2,540,381 2,505,562 2,548,761 

SNVs overlapping with Venter 

genome 586,254 589,452 584,387 591,360 

SNVs overlapping with Watson 

genome 859,265 860,536 859,697 864,114 

SNVs overlapping with Yh1 

genome 618,180 620,578 623,079 625,436 

SNVs overlapping with 

Yoruban3 genome 589,687 591,384 589,130 599,648 
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Table 12-5: Functional annotation of variants generated with exome sequencing using snpActs 

 

 

(1) German female (2) German male (3) French female (4) Spanish female (5) German female  (6) German male 

Total number of SNVs 26,223 26,790 26,767 27,178 18,456 18,481 

Total number of novel SNVs 1,111 1,078 1,120 1,093 925 885 

all synonymous-coding SNVs 9,014 9,145 9,094 9,245 7,107 7,099 

all missense SNVs        7,725 7,911 7,916 8,040 5,859 5,915 

all cancel-start SNVs 8 9 12 11 10 4 

all read-through SNVs 8 11 10 10 8 5 

all nonsense SNVs 65 65 59 53 51 59 

Novel missense SNVs 455 434 452 417 451 430 

Novel cancel-start SNVs 2 0 1 1 1 0 

Novel read-through SNVs 0 1 1 0 1 0 

Novel nonsense SNVs 17 12 12 4 19 24 

SNVs in acceptor 14 14 13 12 5 4 

SNVs in donor  12 17 16 20 28 26 

SNVs in 5'UTR 348 371 382 397 205 231 

SNVS in 3'UTR 480 502 489 532 304 285 

SNVs in UTR-Splice sites 166 179 157 190 76 67 

SNVs in introns 8,225 8,407 8,440 8,482 4,739 4,718 

unknown/intergenic SNVs 153 159 178 185 65 66 

SNVs overlapping with Venter 

genome 9,022 9,300 9,362 9,392 6,562 6,722 

SNVs overlapping with Watson 

genome 5,581 5,907 5,897 5,933 4,130 4,184 

SNVs overlapping with Yh1 

genome 9,252 9,359 9,309 9,466 6,749 6,814 

SNVs overlapping with Yoruban3 

genome 7,743 7,658 7,646 7,855 5,666 5,720 
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Table 12-6: Exonic SNVs with functional impact selected for genotyping for Method 1 

 

Chr-Start-Obs dbSNP132 Gene MAF_1000G* p 1000Gǂ MAF ESP* p ESPǂ 

No. of 

Samples 
PhyloP_pred¤ 

No of tools 

predicted 

„damaging“ 

[0;4]± 

1-9305445-C rs34603401 H6PD 0.05 0.005788218 0.109593 0.048267295 3 
C 

2 

1-11884555-G rs198400 CLCN6 1 0 0.000744 0.005936524 4 
C 

0 

1-16096934-T rs10927851 FBLIM1 0.59 0.024673938 0.389292 0.026496846 4 
C 

1 

1-38329999-G rs41311191 INPP5B 0.08 0.021100486 0.109838 0.048544407 2 
C 

4 

1-161132777-A rs17356051 USP21 0.03 0.022340758 0.042387 0.042425092 2 
C 

1 

1-169519049-C rs6025 F5 0.99 0.002690078 0.021937 0.012339645 4 
C 

0 

1-186275564-T rs12128607 PRG4 0.03 0.022340758 0.036903 0.032877126 2 
N 

1 

1-196928188-G rs41310132 CFHR2 0.009 3.95E-005 0.01284 0.000112953 2 
C 

2 

1-201754444-C rs16849342 NAV1 0.03 0.001349863 0.04973 0.005700882 3 
C 

0 

1-210412843-T rs61740848 SERTAD4 0.003 0.000248993 0.006507 0.001155066 2 
C 

2 

1-220161969-C rs116081500 EPRS 0.002 0.000111107 0.009853 0.002613111 2 
N 

2 

1-220197625-T rs2230301 EPRS 0.89 0.007106765 0.140732 0.017098252 4 
C 

0 

1-220331205-G rs2289189 RAB3GAP2 0.04 0.003079679 0.068693 0.013961462 3 
N 

2 

1-222801661-T rs142088763 MIA3 0.002 0.000111107 0.009724 0.002546451 2 
N 

1 

2-17963123-G rs77424145 GEN1 0.01 0.002690078 0.018315 0.008727391 2 
N 

0 

2-26667130-G rs3795958 CCDC164 0.13 0.012929701 0.12335 0.010727311 3 
C 

0 

2-98928494-A rs7587534 VWA3B 0.98 0.010336892 0.031516 0.024505585 3 
N 

0 

2-118732831-A rs17512204 CCDC93 0.03 0.001349863 0.058282 0.008878647 3 
C 

0 

2-120129841-G rs8192506 DBI 0.01 0.002690078 0.02454 0.015280953 2 
C 

2 
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2-171400449-C rs56181206 MYO3B 0.009 0.002187717 0.02232 0.012754626 2 
NA 

NA 

2-172650165-T rs35565687 SLC25A12 0.02 0.010336892 0.032627 0.026146451 2 
C 

1 

2-211456637-G rs1047883 CPS1 0.57 0.012311736 0.403049 0.025073282 4 
N 

1 

2-234627536-A rs6755571 UGT1A4 0.02 0.010336892 0.043688 0.044833189 2 
N 

0 

2-239155053-T rs934945 PER2 0.17 0.032786296 0.139617 0.016628267 4 
C 

0 

2-239237388-A rs61742338 TRAF3IP1 0.02 0.010336892 0.029838 0.022114555 2 
N 

0 

3-3887508-G rs35362954 LRRN1 0.01 0.002690078 0.031047 0.023826643 2 
N 

2 

3-4354697-A rs6801634 SETMAR 0.12 0.009721613 0.127812 0.012174089 3 
N 

0 

3-45869972-T rs1129183 LZTFL1 0.04 0.003079679 0.066369 0.01270619 3 
C 

1 

3-48628014-A rs2228561 COL7A1 0.07 0.01469865 0.101506 0.039602028 2 
N 

0 

3-49138810-C rs11539148 QARS 0.02 0.010336892 0.042015 0.041746359 2 
C 

2 

3-75714337-G rs73840323 FRG2C 0.85 0.02135247 0.136364 0.01530678 4 
N 

0 

3-129281980-T rs2713625 PLXND1 1 0 0.000186 3.60E-010 2 
N 

0 

4-42003671-G rs1047626 SLC30A9 0.61 0.026402805 0.426287 0.012827489 4 
N 

0 

4-57797467-T rs114282228 REST 0.007 0.001334084 0.014501 0.005555439 2 
N 

0 

4-71390616-A rs151041998 AMTN 0.001 2.79E-005 0.008459 0.001936805 2 
C 

1 

4-87770252-A rs17694522 SLC10A6 0.02 0.010336892 0.040063 0.038257756 2 
C 

0 

4-96106322-G rs2289043 UNC5C 0.49 0.003323293 0.475181 0.008354808 4 
C 

2 

4-119219909-A rs28661939 PRSS12 0.12 0.009721613 0.139617 0.016628267 3 
N 

0 

4-178256913-G rs7689099 NEIL3 0.06 0.009622942 0.098847 0.036957511 2 
C 

2 

5-53815560-C rs13162502 SNX18 0.11 0.007106765 0.146496 0.019669938 2 
N 

1 

5-70308262-T rs61757629 NAIP 0.008 0.001735509 0.019814 0.010153107 2 
N 

2 

5-177422876-C rs7445271 PROP1 1 0 0.000372 0.002972128 4 
N 

0 
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6-13470113-T rs766773 C6orf114 0.9 0.03809179 0.085319 0.02506696 3 
N 

0 

6-30672353-G rs9262151 MDC1 0.006 1.18E-005 0.017568 0.000284188 2 
C 

0 

6-31556928-A rs3179003 NCR3 0.03 0.022340758 0.040156 0.038421155 2 
N 

1 

6-31778272-A rs2227956 HSPA1L 0.89 0.007106765 0.12744 0.012048679 3 
N 

0 

6-46135884-G rs34109856 ENPP5 0.02 0.010336892 0.037746 0.03427957 2 
C 

4 

6-119327632-T rs17827619 FAM184A 0.07 0.01469865 0.103971 0.042144098 2 
C 

1 

6-151161086-C rs17080410 PLEKHG1 0.03 0.022340758 0.035323 0.030314701 2 
N 

0 

6-151161116-A rs61742396 PLEKHG1 0.03 0.022340758 0.035137 0.030018793 2 
C 

0 

6-151161836-C rs17054318 PLEKHG1 0.03 0.022340758 0.03523 0.030166594 2 
C 

0 

6-167343141-A rs11159 RNASET2 0.08 0.021100486 0.088585 0.027699408 2 
N 

1 

7-88965021-A rs10487075 ZNF804B 0.06 0.009622942 0.079476 0.020731059 3 
C 

0 

7-99032517-A rs34943973 

ATP5J2-

PTCD1 0.03 0.022340758 0.044618 0.046586898 2 
C 

1 

7-107427322-C rs34407351 SLC26A3 0.02 0.010336892 0.032906 0.02656564 2 
C 

2 

7-140301731-T rs269243 DENND2A 0.96 0.038147228 0.045996 0.049234036 4 
N 

0 

8-17396380-A rs13259948 SLC7A2 0.05 0.000371751 0.143511 0.01830814 3 
N 

0 

8-17419539-A rs62622371 SLC7A2 0.03 0.001349863 0.087842 0.027087291 2 
C 

0 

8-124206324-A rs7813708 FAM83A 0.17 0.032786296 0.155512 0.024187415 4 
N 

0 

9-111678508-T rs1140064 IKBKAP 0.02 0.010336892 0.021658 0.012041265 2 
C 

1 

9-131483749-A rs2900268 ZDHHC12 1 0 0.00439 2.56E-008 2 
N 

0 

10-16979714-C rs41289305 CUBN 0.07 0.001335867 0.14473 0.018856408 3 
N 

0 

10-69934258-G rs3814182 MYPN 0.47 0.002381129 0.477505 0.008257514 4 
N 

2 

10-71018660-C rs1111335 HKDC1 0.99 0.002690078 0.006972 0.001323582 3 
N 

0 
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11-4673788-A rs17224476 OR51E1 0.05 0.005788218 0.087842 0.027087291 2 
C 

0 

11-11906050-C rs34511735 USP47 0.003 0.000248993 0.013219 0.004640387 2 
C 

3 

11-18319180-T rs7128017 HPS5 0.14 0.016788716 0.130879 0.013242003 4 
N 

3 

11-27720937-T rs66866077 BDNF 0.01 0.002690078 0.03526 0.030214337 2 
N 

0 

11-45245778-T rs35090414 PRDM11 0.03 0.001349863 0.064081 0.011538992 2 
N 

1 

11-56000403-G rs10791893 OR5T2 0.9 0.00502435 0.153374 0.023060091 3 
N 

0 

11-57076820-G rs78489201 TNKS1BP1 0.04 0.003079679 0.055215 0.007639522 3 
N 

1 

11-57146225-G rs34108746 PRG3 0.03 0.001349863 0.055308 0.00767543 3 
N 

0 

11-60785263-G rs61755080 CD6 0.03 0.022340758 0.044618 0.046586898 2 
N 

0 

11-67430762-C rs1551886 ALDH3B2 0.86 0.016788716 0.149563 0.02113762 3 
N 

0 

11-120187971-A rs2282537 POU2F3 0.09 0.028886792 0.110801 0.049641922 2 
C 

0 

11-134226244-A rs61740182 GLB1L2 0.01 0.002690078 0.023239 0.013775555 2 
C 

3 

12-999638-T rs17755373 WNK1 0.01 0.002690078 0.010225 0.002809957 2 
C 

1 

12-10571091-G rs2682494 KLRC3 0.99 6.78E-007 0.015123 3.49E-006 2 
N 

0 

12-48144925-C rs2016123 RAPGEF3 1 0 0.000188 3.72E-010 2 
N 

0 

12-96312686-A rs12368787 CCDC38 0.06 0.009622942 0.100874 0.038964291 2 
C 

0 

12-108102757-G rs74918182 PWP1 0.02 0.010336892 0.017382 0.007890379 2 
N 

0 

13-24436475-T rs11551114 MIPEP 0.07 0.01469865 0.107403 0.04582832 2 
N 

0 

13-39263714-C rs2496423 FREM2 1 0 0.000186 9.68E-007 3 
N 

0 

13-100962156-G rs35719359 PCCA 0.01 0.002690078 0.037739 0.034267824 2 
C 

1 

13-113530199-A rs11616795 ATP11A 0.06 0.009622942 0.077988 0.019702693 2 
N 

1 

14-20822308-G rs3093921 PARP2 0.009 0.002187717 0.016005 0.006726845 2 
C 

2 

14-33291583-A rs34711402 AKAP6 0.01 0.002690078 0.026957 0.018260814 2 
C 

1 
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14-64447776-C rs9944035 SYNE2 0.1 0.03809179 0.081213 0.021970285 2 
C 

1 

14-73717720-A rs741842 PAPLN 0.06 0.009622942 0.100112 0.038202986 2 
C 

0 

14-75574087-T rs10146482 NEK9 0.53 0.008607098 0.429448 0.012386407 4 
N 

0 

15-42439444-T rs111633028 PLA2G4F 0.02 0.010336892 0.046384 0.049989717 2 
N 

1 

15-42602621-T rs35285091 GANC 0.003 0.000248993 0.010039 0.002710677 2 
C 

4 

15-48443699-C rs2470103 MYEF2 1 0 0.000558 0.004455292 4 
C 

0 

15-86123019-T rs2061824 AKAP13 0.59 0.024673938 0.374884 0.028911657 4 
N 

1 

15-86123833-C rs4075256 AKAP13 0.6 0.02531584 0.375627 0.028763442 4 
N 

1 

15-86123988-A rs4075254 AKAP13 0.6 0.02531584 0.374977 0.028892962 4 
C 

1 

15-86124483-G rs4843074 AKAP13 0.59 0.024673938 0.375534 0.028781851 4 
N 

1 

15-86124555-A rs4843075 AKAP13 0.59 0.024673938 0.374977 0.028892962 4 
N 

1 

15-86124946-C rs7162168 AKAP13 0.59 0.024673938 0.374326 0.029024688 4 
N 

0 

16-2821573-T rs8017 TCEB2 0.4 0.00065536 0.448782 0.01016834 4 
N 

1 

16-29708350-G rs9932770 QPRT 1 0 0.001209 9.85E-008 2 
N 

0 

16-58314433-C rs2241414 PRSS54 0.07 0.01469865 0.095464 0.033739314 3 
N 

0 

16-58314598-T rs1052276 PRSS54 0.08 0.021100486 0.095464 0.033739314 3 
N 

0 

16-81058354-G rs11641523 CENPN 0.007 0.001334084 0.017917 0.008365571 2 
N 

1 

17-63683-A rs117190076 RPH3AL 0.03 0.001349863 0.050009 0.005791143 2 
N 

1 

17-33689926-C rs4796077 SLFN11 0.97 0.022340758 0.039413 0.037123676 4 
N 

0 

17-48265495-C rs1800215 COL1A1 0.96 0.000157383 0.029467 4.80E-005 2 
C 

0 

18-30846895-T rs9965081 C18orf34 0.92 0.021100486 0.095562 0.033830237 3 
N 

0 

19-4442999-G rs243383 CHAF1A 0.97 5.15E-005 0.017781 6.61E-006 2 
N 

0 

19-11891003-A rs799193 ZNF441 0.9 0.00502435 0.15514 0.023988719 3 
N 

0 
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19-52000624-G rs3752135 SIGLEC12 0.83 0.032786296 0.112103 0.007610379 4 
N 

0 

20-31383238-A rs150682895 DNMT3B 0.008 0.001735509 0.009667 0.00251726 2 
C 

0 

22-18901004-T rs450046 PRODH 0.9 0.03809179 0.095961 0.03420184 3 
C 

0 

22-41574383-C rs1046088 EP300 0.02 0.010336892 0.026678 0.017904874 2 
C 

1 

22-46931077-C rs4823850 CELSR1 0.89 0.007106765 0.135922 0.015132866 3 
C 

2 

22-50599466-A rs2272843 MOV10L1 0.12 0.009721613 0.115449 0.008461633 4 
C 

0 
 

*MAF_1000G,MAF_ESP: minor allele frequency based on 1000Genomes or NHLBI Exome Sequencing Project database 

ǂp_1000G,p_ESP: p-value calculated by binomial testing  comparing allelic frequencies of four sample with 1000Genomes or NHLBI Exome Sequencing Project database 

¤PhyloP_pred: Predictions based on Phylop; C-conserved, N- Neutral 

± No of tools predicted „damaging“: impact of amino acid substitution leading to either loss-of-function or gain-of-function based on Annovar (SIFT,Polyphen-2,LRT and MutationTaster) 
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Table 12-7: Association statistics for 116 common SNVs genotyped using the Sequenom and TaqMan technology 

in German LLI (n=1,610), centenarian subset (n=748) and younger controls (n=1,104) 

 

Association analysis: German population LLI 

Chr dbSNP ID Gene 

MAF 

cases 

n=1,610 

MAF 

controls 

n=1,104 PCCA OR 95% CI 

1 rs10927851 FBLIM1 0.293 0.3429 0.0001824 0.7941 
0.8923-1.412 

14 rs3093921 PARP2 0.03635 0.02148 0.001965 1.719 
0.5816-1.77 

5 rs61757629 NAIP 0.03153 0.01896 0.004989 1.684 
0.837-1.041 

6 rs17080410 PLEKHG1 0.03544 0.04762 0.02736 0.7349 
0.7232-1.328 

13 rs35719359 PCCA 0.06429 0.05 0.02779 1.306 
0.7506-1.027 

6 rs17054318 PLEKHG1 0.03555 0.04745 0.03067 0.7401 
0.6262-1.425 

22 rs2272843 MOV10L1 0.1447 0.1651 0.04137 0.8549 
0.7686-1.101 

6 rs61742396 PLEKHG1 0.03583 0.04678 0.04415 0.7572 
0.9165-1.226 

15 rs4843075 AKAP13 0.3661 0.3419 0.0714 1.112 
0.2299-3.196 

13 rs11551114 MIPEP 0.1292 0.1464 0.07176 0.8654 
0.8044-1.052 

14 rs9944035 SYNE2 0.06596 0.07832 0.0843 0.831 
0.6625-1.45 

11 rs34108746 PRG3 0.06286 0.07477 0.09097 0.8301 
0.04289-1.098 

15 rs4075254 AKAP13 0.365 0.3426 0.09102 1.103 
0.7037-0.8961 

1 rs61740848 SERTAD4 0.005618 0.009554 0.09321 0.5857 
0.8404-1.12 

15 rs2061824 AKAP13 0.3651 0.343 0.0965 1.101 
0.8874-1.159 

3 rs6801634 SETMAR 0.1331 0.1489 0.1029 0.8779 
0.8072-1.101 

15 rs7162168 AKAP13 0.3662 0.3444 0.1036 1.01 
0.6945-1.297 

3 rs2228561 COL7A1 0.1193 0.1339 0.1107 0.8756 
0.9112-1.291 

1 rs16849342 NAV1 0.04934 0.0592 0.1135 0.8249 
0.7422-1.141 

4 rs17694522 SLC10A6 0.05836 0.06824 0.1402 0.8463 
1.215-2.432 

2 rs6755571 UGT1A4 0.04054 0.04876 0.1493 0.8243 
0.7394-1.013 

11 rs35090414 PRDM11 0.1 0.1122 0.1525 0.8794 
0.8245-1.09 

14 rs741842 PAPLN 0.1462 0.1601 0.1623 0.8984 
0.7195-2.21 

4 rs28661939 PRSS12 0.1436 0.1302 0.1631 1.12 
0.7476-1.171 

15 rs4843074 AKAP13 0.3604 0.3428 0.1877 1.08 
0.6223-1.689 

14 rs34711402 AKAP6 0.03513 0.04212 0.1878 0.828 
0.675-1.353 

11 rs78489201 TNKS1BP1 0.06628 0.0757 0.1883 0.8668 
0.9096-1.224 

1 rs2289189 RAB3GAP2 0.09551 0.1064 0.191 0.8871 
0.6249-1.097 

3 rs11539148 QARS 0.05395 0.06221 0.2006 0.8596 
0.6896-1.274 

10 rs3814182 MYPN 0.4264 0.4439 0.2026 0.9313 
0.8367-1.161 
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1 rs142088763 MIA3 0.01505 0.01099 0.2038 1.375 
0.893-1.155 

11 rs1551886 ALDH3B2 0.08349 0.09344 0.2042 0.8838 
0.7829-1.221 

16 rs8017 TCEB2 0.4604 0.4776 0.2164 0.9335 
0.797-1.93 

19 rs799193 ZNF441 0.2001 0.2138 0.2223 0.9199 
0.7373-1.049 

16 rs1052276 PRSS54 0.1002 0.1106 0.2238 0.8964 
0.7588-1.134 

1 rs17356051 USP21 0.06219 0.05454 0.2431 1.15 
0.8092-1.32 

16 rs11641523 CENPN 0.02884 0.02381 0.262 1.218 
0.7426-1.167 

16 rs2241414 PRSS54 0.1016 0.1109 0.2827 0.9071 
0.6405-1.646 

11 rs10791893 OR5T2 0.1191 0.129 0.2837 0.913 
0.7437-1.031 

17 rs117190076 RPH3AL 0.06452 0.05789 0.3235 1.122 
0.6818-1.084 

15 rs35285091 GANC 0.01754 0.01419 0.3391 1.24 
0.7353-0.994 

11 rs7128017 HPS5 0.1155 0.1075 0.3608 1.085 
0.8323-1.126 

11 rs17224476 OR51E1 0.09846 0.1061 0.364 0.9201 
0.7731-1.078 

1 rs6025 F5 0.03059 0.02639 0.3653 1.164 
0.7004-1.073 

2 rs17512204 CCDC93 0.07497 0.08151 0.3805 0.9132 
0.6686-1.03 

11 rs2282537 POU2F3 0.1376 0.1296 0.396 1.072 
0.6159-1.271 

6 rs9262151 MDC1 0.01101 0.008748 0.4169 1.261 
0.7592-1.084 

1 rs34603401 H6PD 0.1754 0.1671 0.4331 1.06 
0.7515-1.069 

6 rs17827619 FAM184A 0.01161 0.009407 0.4459 1.236 
0.7548-1.186 

22 rs450046 PRODH 0.06527 0.07052 0.4499 0.9204 
0.6733-1.026 

2 rs934945 PER2 0.2017 0.1934 0.4507 1.054 
0.7304-1.07 

2 rs3795958 CCDC164 0.1814 0.1895 0.4512 0.9478 
0.8347-1.039 

8 rs62622371 SLC7A2 0.1392 0.1464 0.4576 0.9429 
1.166-2.432 

3 rs1129183 LZTFL1 0.07822 0.0838 0.4651 0.9278 
0.7468-1.712 

6 rs2227956 HSPA1L 0.1695 0.1621 0.478 1.055 
0.773-1.044 

1 rs2230301 EPRS 0.1948 0.1874 0.4995 1.049 
0.9138-1.139 

13 rs11616795 ATP11A 0.09929 0.1049 0.5038 0.9404 
0.8627-1.718 

4 rs114282228 REST 0.02197 0.02477 0.5074 0.8847 
0.9829-1.234 

2 rs7587534 VWA3B 0.03701 0.03364 0.5171 1.104 
0.9844-1.236 

6 rs11159 RNASET2 0.06426 0.06862 0.5276 0.9322 
0.963-1.212 

22 rs4823850 CELSR1 0.06039 0.06459 0.5342 0.9308 
0.9908-1.248 

18 rs9965081 C18orf34 0.06054 0.06444 0.5603 0.9355 
0.9807-1.234 

4 rs151041998 AMTN 0.01901 0.01685 0.5615 1.131 
0.6778-1.057 

4 rs7689099 NEIL3 0.1193 0.1142 0.5666 1.051 
0.848-1.207 

11 rs61755080 CD6 0.06122 0.06449 0.631 0.9461 
0.8789-1.115 

7 rs34407351 SLC26A3 0.04483 0.04758 0.6364 0.9395 
0.8603-1.227 
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8 rs7813708 FAM83A 0.1986 0.2037 0.647 0.9685 
0.8184-1.489 

1 rs41310132 CFHR2 0.01311 0.01457 0.6496 0.8982 
0.7607-1.296 

2 rs8192506 DBI 0.04185 0.03955 0.6745 1.061 
1.029-1.657 

19 rs3752135 SIGLEC12 0.1504 0.1546 0.6752 0.9682 
0.7254-1.217 

17 rs4796077 SLFN11 0.03151 0.03355 0.6783 0.9372 
0.7084-1.403 

10 rs41289305 CUBN 0.1715 0.1758 0.6789 0.9701 
0.6981-1.319 

14 rs10146482 NEK9 0.4853 0.4804 0.7231 1.02 
0.7852-1.126 

2 rs77424145 GEN1 0.03113 0.03274 0.7436 0.9492 
0.7455-1.119 

12 rs12368787 CCDC38 0.1093 0.1066 0.7646 1.028 
0.9552-1.312 

19 rs243383 CHAF1A 0.01767 0.01869 0.7856 0.9446 
0.7157-2.136 

6 rs766773 C6orf114 0.000311 9 0.0004545 0.7888 0.6861 
0.8054-1.397 

6 rs34109856 ENPP5 0.05442 0.05275 0.7926 1.033 
0.913-1.258 

6 rs3179003 NCR3 0.02467 0.02578 0.7983 0.9557 
0.8445-1.111 

9 rs1140064 IKBKAP 0.02945 0.03065 0.7996 0.9596 
0.7335-1.345 

4 rs1047626 SLC30A9 0.2412 0.2383 0.8118 1.016 
0.7973-1.235 

1 rs198400 CLCN6 0.001567 0.001828 0.8182 0.8571 
0.5584-0.9671 

2 rs61742338 TRAF3IP1 0.03258 0.03156 0.8355 1.033 
0.5771-0.9935 

8 rs13259948 SLC7A2 0.2173 0.215 0.8365 1.014 
0.5628-0.9732 

15 rs111633028 PLA2G4F 0.06305 0.06438 0.8433 0.9778 
0.9096-1.453 

1 rs41311191 INPP5B 0.1288 0.1305 0.8611 0.9855 
0.7496-1.159 

4 rs2289043 UNC5C 0.3066 0.3087 0.8703 0.9901 
0.8375-1.618 

2 rs56181206 MYO3B 0.03027 0.03091 0.8941 0.9788 
0.7144-1.341 

3 rs35362954 LRRN1 0.03348 0.03414 0.896 0.9799 
0.7952-1.279 

7 rs10487075 ZNF804B 0.1081 0.107 0.8968 1.012 
0.887-1.245 

17 rs1800215 COL1A1 0.01387 0.01351 0.9124 1.027 
0.7665-1.304 

11 rs34511735 USP47 0.01963 0.02002 0.9197 0.9801 
0.5653-1.427 

20 rs150682895 DNMT3B 0.01245 0.01215 0.9221 1.025 
0.6497-1.047 

2 rs35565687 SLC25A12 0.0558 0.05535 0.944 1.009 
0.3113-1.102 

7 rs269243 DENND2A 0.06728 0.06776 0.9463 0.9925 
0.6316-1.63 

1 rs116081500 EPRS 0.01347 0.01328 0.9518 1.015 
0.9133-1.204 

7 rs34943973 

ATP5J2-

PTCD1 0.04387 0.04417 0.9581 0.9929 
0.7413-1.062 

12 rs17755373 WNK1 0.009694 0.009554 0.9589 1.015 
0.8398-2.251 

11 rs61740182 GLB1L2 0.03321 0.03342 0.9653 0.9933 
0.6337-1.072 

12 rs74918182 PWP1 0.02602 0.0261 0.9856 0.9968 
0.9189-1.21 

1 rs12128607 PRG4 0.0444 0.04441 0.9983 0.9997 
0.7584-1.408 
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Association analysis: German population centenarian subset 

Chr dbSNP ID Gene 

MAF 

cases 

n=745 

MAF 

controls 

n=1,104 PCCA OR 95% CI 

1 rs10927851 FBLIM1 0.2896 0.3429 0.0009571 0.7811 0.6745-0.9046 

11 rs34108746 PRG3 0.053 0.07477 0.01022 0.6926 0.5226-0.9179 

5 rs61757629 NAIP 0.03151 0.01896 0.01559 1.683 1.099-2.578 

11 rs78489201 TNKS1BP1 0.05579 0.0757 0.02021 0.7214 0.5471-0.9513 

11 rs7128017 HPS5 0.1288 0.1075 0.05181 1.227 0.9981-1.509 

4 rs17694522 SLC10A6 0.05331 0.06824 0.06581 0.7688 0.5806-1.018 

14 rs9944035 SYNE2 0.06286 0.07832 0.08077 0.7893 0.6049-1.03 

15 rs4843075 AKAP13 0.3703 0.3419 0.08191 1.132 0.9844-1.301 

15 rs4075254 AKAP13 0.3696 0.3426 0.09289 1.125 0.9806-1.291 

14 rs34711402 AKAP6 0.03134 0.04212 0.09363 0.7356 0.5131-1.055 

15 rs2061824 AKAP13 0.3698 0.343 0.09625 1.124 0.9794-1.289 

13 rs35719359 PCCA 0.06275 0.05 0.09637 1.272 0.9573-1.69 

22 rs4823850 CELSR1 0.05139 0.06459 0.1006 0.7845 0.5869-1.049 

15 rs7162168 AKAP13 0.3701 0.3444 0.1147 1.119 0.9731-1.286 

6 rs17054318 PLEKHG1 0.03653 0.04745 0.117 0.7613 0.5408-1.072 

1 rs142088763 MIA3 0.01701 0.01099 0.1209 1.557 0.8858-2.737 

6 rs17080410 PLEKHG1 0.03696 0.04762 0.125 0.7676 0.547-1.077 

15 rs4843074 AKAP13 0.3672 0.3428 0.1312 1.112 0.9686-1.278 

16 rs11641523 CENPN 0.03197 0.02381 0.1361 1.354 0.9076-2.02 

6 rs61742396 PLEKHG1 0.03711 0.04678 0.1557 0.7854 0.5623-1.097 

6 rs9262151 MDC1 0.01355 0.008748 0.1663 1.557 0.8278-2.927 

14 rs3093921 PARP2 0.02859 0.02148 0.1758 1.341 0.8756-2.054 

10 rs41289305 CUBN 0.1599 0.1758 0.2072 0.892 0.7467-1.065 

1 rs17356051 USP21 0.06421 0.05454 0.2223 1.189 0.8999-1.572 

3 rs1129183 LZTFL1 0.07263 0.0838 0.2259 0.8562 0.6658-1.101 

1 rs61740848 SERTAD4 0.006073 0.009554 0.2494 0.6334 0.2893-1.387 

1 rs34603401 H6PD 0.1819 0.1671 0.252 1.108 0.9294-1.322 

3 rs6801634 SETMAR 0.1354 0.1489 0.2601 0.895 0.7378-1.086 

17 rs4796077 SLFN11 0.02721 0.03355 0.2788 0.8058 0.5448-1.192 

14 rs10146482 NEK9 0.4623 0.4804 0.2893 0.9301 0.8133-1.064 

1 rs12128607 PRG4 0.03736 0.04441 0.3031 0.8349 0.592-1.177 

11 rs35090414 PRDM11 0.102 0.1122 0.3331 0.8994 0.7254-1.115 

18 rs9965081 C18orf34 0.05669 0.06444 0.3389 0.8725 0.6597-1.154 

1 rs6025 F5 0.03171 0.02639 0.3412 1.208 0.8178-1.786 

1 rs2289189 RAB3GAP2 0.09717 0.1064 0.3672 0.9042 0.7265-1.125 

4 rs28661939 PRSS12 0.1404 0.1302 0.3776 1.09 0.8997-1.321 

1 rs41310132 CFHR2 0.01822 0.01457 0.3879 1.255 0.7487-2.103 

2 rs8192506 DBI 0.04521 0.03955 0.3999 1.15 0.8304-1.593 

22 rs2272843 MOV10L1 0.1547 0.1651 0.4079 0.9254 0.7701-1.112 
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2 rs6755571 UGT1A4 0.04292 0.04876 0.411 0.8748 0.6358-1.204 

1 rs2230301 EPRS 0.1982 0.1874 0.4149 1.072 0.9072-1.266 

16 rs8017 TCEB2 0.4638 0.4776 0.4158 0.9464 0.8289-1.081 

19 rs243383 CHAF1A 0.02235 0.01869 0.4462 1.02 0.7502-1.919 

1 rs41311191 INPP5B 0.122 0.1305 0.4568 0.9262 0.7567-1.134 

2 rs61742338 TRAF3IP1 0.03605 0.03156 0.4586 1.148 0.7972-1.652 

14 rs741842 PAPLN 0.1511 0.1601 0.4612 0.9338 0.7783-01. Dez 

4 rs7689099 NEIL3 0.1221 0.1142 0.4632 1.079 0.8804-1.323 

6 rs34109856 ENPP5 0.04749 0.05275 0.4815 0.8952 0.6575-1.219 

12 rs74918182 PWP1 0.02245 0.0261 0.4852 0.8569 0.5553-1.323 

16 rs1052276 PRSS54 0.1034 0.1106 0.4911 0.9276 0.7489-1.149 

3 rs2228561 COL7A1 0.1267 0.1339 0.525 0.9381 0.7703-1.142 

6 rs2227956 HSPA1L 0.1701 0.1621 0.527 1.06 0.8857-1.268 

11 rs61755080 CD6 0.05927 0.06449 0.5278 0.9141 0.6916-1.208 

8 rs13259948 SLC7A2 0.2238 0.215 0.5282 1.053 0.8963-1.238 

13 rs11616795 ATP11A 0.1116 0.1049 0.5299 1.071 0.8639-1.329 

2 rs17512204 CCDC93 0.07582 0.08151 0.5383 0.9245 0.7199-1.187 

4 rs114282228 REST 0.02162 0.02477 0.5425 0.8701 0.5557-1.362 

2 rs56181206 MYO3B 0.03441 0.03091 0.5555 1.117 0.7725-1.616 

11 rs34511735 USP47 0.02289 0.02002 0.5595 1.147 0.7237-1.817 

3 rs11539148 QARS 0.0579 0.06221 0.5919 0.9264 0.7006-1.225 

10 rs3814182 MYPN 0.4352 0.4439 0.6038 0.9654 0.8453-1.103 

12 rs12368787 CCDC38 0.1119 0.1066 0.6218 1.055 0.8519-1.308 

2 rs7587534 VWA3B 0.03068 0.03364 0.6244 0.9092 0.621-1.331 

20 rs150682895 DNMT3B 0.01399 0.01215 0.6335 1.153 0.6413-2.074 

7 rs10487075 ZNF804B 0.102 0.107 0.634 0.948 0.7607-1.181 

8 rs62622371 SLC7A2 0.1408 0.1464 0.6383 0.9557 0.7913-1.154 

6 rs17827619 FAM184A 0.01093 0.009407 0.6529 1.164 0.6009-2.253 

19 rs3752135 SIGLEC12 0.1492 0.1546 0.6539 0.9587 0.7971-1.153 

15 rs111633028 PLA2G4F 0.06073 0.06438 0.6545 0.9396 0.7151-1.235 

16 rs2241414 PRSS54 0.1061 0.1109 0.6583 0.9525 0.7677-1.182 

11 rs1551886 ALDH3B2 0.08919 0.09344 0.6618 0.9501 0.7553-1.195 

11 rs61740182 GLB1L2 0.03605 0.03342 0.6693 1.082 0.7546-1.55 

13 rs11551114 MIPEP 0.1415 0.1464 0.6801 0.9611 0.7959-1.161 

1 rs16849342 NAV1 0.05601 0.0592 0.6843 0.9429 0.71-1.252 

4 rs151041998 AMTN 0.01865 0.01685 0.6885 1.109 0.6685-1.84 

17 rs117190076 RPH3AL 0.06098 0.05789 0.702 1.057 0.7962-1.403 

12 rs17755373 WNK1 0.01083 0.009554 0.705 1.135 0.59-2.181 

7 rs34943973 

ATP5J2-

PTCD1 0.04155 0.04417 0.706 0.938 0.6727-1.308 

22 rs450046 PRODH 0.07355 0.07052 0.7268 1.046 0.8114-1.349 

1 rs198400 CLCN6 0.001361 0.001828 0.7319 0.7439 0.1361-4.066 

6 rs3179003 NCR3 0.02751 0.02578 0.7508 1.069 0.7085-1.613 
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11 rs10791893 OR5T2 0.1255 0.129 0.762 0.9694 0.7929-1.185 

8 rs7813708 FAM83A 0.1997 0.2037 0.7695 0.9754 0.8254-1.152 

6 rs766773 C6orf114 0.0006748 0.0004545 0.7785 1.485 0.0928-23.76 

1 rs116081500 EPRS 0.01429 0.01328 0.7972 1.077 0.6118-1.896 

6 rs11159 RNASET2 0.06667 0.06862 0.818 0.9695 0.7449-1.262 

2 rs77424145 GEN1 0.03138 0.03274 0.8214 0.9571 0.6541-1.04 

4 rs2289043 UNC5C 0.3052 0.3087 0.8226 0.9835 0.8506-1.137 

2 rs35565687 SLC25A12 0.05374 0.05535 0.8337 0.9692 0.7241-1.297 

2 rs3795958 CCDC164 0.1872 0.1895 0.8562 0.9845 0.8318-1.165 

17 rs1800215 COL1A1 0.01298 0.01351 0.8903 0.9599 0.5362-1.718 

4 rs1047626 SLC30A9 0.2402 0.2383 0.8986 1.01 0.8636-1.182 

3 rs35362954 LRRN1 0.03487 0.03414 0.9075 1.022 0.7086-1.474 

11 rs17224476 OR51E1 0.1073 0.1061 0.9099 1.013 0.815-1.258 

2 rs934945 PER2 0.1946 0.1934 0.9289 1.008 0.8506-1.194 

11 rs2282537 POU2F3 0.1286 0.1296 0.9291 0.9911 0.8136-1.207 

15 rs35285091 GANC 0.01429 0.01419 0.9817 1.007 0.5761-1.758 

7 rs269243 DENND2A 0.06764 0.06776 0.9894 0.9982 0.7649-1.303 

9 rs1140064 IKBKAP 0.03061 0.03065 0.9949 0.9987 0.6805-1.466 

7 rs34407351 SLC26A3 0.04762 0.04758 0.9952 1.001 0.7338-1.365 

19 rs799193 ZNF441 0.2139 0.2138 0.996 1 0.8514-1.176 
Min AF: minor allele frequency;  

 PCCA, p-value obtained from an allele-based case–control comparison, using a χ2-test with 1 degree of freedom (df);  

 OR: Odds ratio for attaining old age with the minor allele in controls as reference allele; 

95% CI, 95% confidence interval for OR 
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Table 12-8: Variants overlaid with genes involved in insulin pathway/mTOR pathway 

 

Individual  Pathway Chr Start dbSNP135 Gene MAF* 

(3) French female 

Insulin / 

mTOR  1 9777599 rs61755420 PIK3CD 0.03 

(2) German female Insulin  5 176308303 rs145827614 HK3 0.0158 

(1) German female Insulin  9 134501369 

 

RAPGEF1 0.000363 

(3) French female Insulin  10 70987024 rs145939161 HKDC1 0.0225 

(2) German male Insulin  10 71008316 

 

HKDC1 0.000349 

(2) German male Insulin  10 97154424 rs147078270 SORBS1 0.0026 

(2) German male Insulin  11 67200812 rs55987642 RPS6KB2 0.04 

(2) German male Insulin  12 109604776 rs146426104 ACACB 0.0013 

(1) German female Insulin  12 21695439 rs61733199 GYS2 0.02 

(1) German female mTOR  12 132399687 rs12827141 ULK1 0.01 

(1) German female Insulin  14 55510166 

 

SOCS4 - 

(1) German female Insulin  16 47684830 rs34667348 PHKB 0.01 

(3) French female mTOR  17 19741877 rs34670978 ULK2 0.03 

(3) French female,  

(6)German male  Insulin  19 45296806 rs3208856 CBLC 0.02 

(3) French female, 

(6) German male Insulin  X 18972497 rs17313469 PHKA2 0.03 
*MAF: minor allele frequency based on 1000Genomes or NHLBI Exome Sequencing Project database 
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Table 12-9: Top scores of coding variants “effective” in seven or eight prediction tools 

 

Chr-Start dbSNP135 Gene Substitution MAF* 

No. of 

samples 

No. of 

Tools 

worked 

[0;8] 

No of 

tools 

predicted 

damagin

g effect 

[0;8] 

Tool that 

did not 

work 

1_172411189 

 

PIGC R192C - 1 8 8 - 

1_207867854 rs41303261 CR1L C207Y 0.054878 1 8 8 - 

1_42628591 rs142157365 GUCA2A C112S 0.001395 1 8 8 - 

3_183960695 

 

ALG3 R354C - 1 8 8 - 

3_186338564 rs35457250 AHSG R317C 0.00609756 1 8 8 - 

3_75786243 rs139633377 ZNF717 C844Y - 2 7 7 SNPs&GO 

3_75787240 rs138742243 ZNF717 C512R - 2 7 7 SNPs&GO 

3_75787405 rs141106119 ZNF717 G457R - 3 7 7 SNPs&GO 

3_75787416 rs10442977 ZNF717 C453Y - 2 7 7 SNPs&GO 

3_75787996 rs142456725 ZNF717 G260R - 3 7 7 SNPs&GO 

4_190878563 rs137858630 FRG1 A148D - 3 8 8 - 

5_149360630 rs78676079 SLC26A2 R492W 0.0426829 1 8 8 - 

6_129571272 rs36044314 LAMA2 G600R 0.0121951 1 8 8 - 

6_132206079 rs28933977 ENPP1 R774C 0.0487805 1 8 8 - 

6_49663567 rs36069724 CRISP2 C196R 0.00609756 1 8 8 - 

7_142460339 

 

PRSS1 C171Y - 2 8 8 - 

8_17166805 

 

MTMR7 G378R - 1 8 8 - 

9_117165068 

 

DFNB31 D897A - 1 8 8 - 

10_118351309 

 

PNLIPRP1 G26R - 1 8 8 - 

10_50943387 

 

OGDHL R974W - 1 8 8 - 

11_12379949 rs34898047 MICALCL R671C 0.00609756 1 7 7 SNPs&GO 

11_55563336 rs76383258 OR5D14 Q102L 0.103659 1 8 8 - 

12_123345509 rs34149579 HIP1R C938F 0.0426829 2 8 8 - 

12_53217726 rs116963732 KRT79 E364V 0.00609756 1 8 8 - 

15_80191338 rs139874813 ST20 C59R 0.00609756 1 7 7 SNPs&GO 

17_15522455 rs188826833 CDRT1 W124C 0.000582 1 7 7 SNPs&GO 

19_18502861 rs34666550 LRRC25 C285Y 0.0243902 1 8 8 - 

19_43430060 

 

PSG7 G370R 0.001744 1 7 7 SIFT 

19_48519241 rs3745751 ELSPBP1 C100W 0.0487805 1 8 8 - 

20_10622501 rs35761929 JAG1 P871R 0.0731707 2 8 8 - 
*MAF: minor allele frequency based on 1000Genomes or NHLBI Exome Sequencing Project database 
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Table 12-10: Top scores of variants effective in five or more tools and present in four or more individuals 

 

dbSNP135 Substitution Gene MAF* 

No. of 

samples 

No. of 

Tools 

worked 

[0;8] 

No. of 

tools 

predicted 

damaging 

effect 

[0;8] 

No. of 

tools 

predicted 

neutral 

effect 

[0;8] 

Tool that did 

not work 

 

rs76417519 R671W IGSF3 - 6 6 5 1 

SNPs&GO, 

Polyphen-2 

 

rs61955126 C302R SETD8 - 6 6 5 1 

SNPs&GO, 

Polyphen-2 

 

rs61786577 R476C IGSF3 - 6 6 6 - 

SNPs&GO, 

Polyphen-2 

rs73979896 A185V 

KCNJ12,

KCNJ18 - 5 8 6 2 - 

rs1782241 Y120C OR2T27 - 4 8 6 2 - 

rs76780359 E191K NCOR1 - 4 8 6 2 - 

rs75029097 G145S 

KCNJ12,

KCNJ18 - 4 8 6 2 - 

rs74496366 M475R CDC27 - 4 6 5 1 

SNPs&GO, 

Polyphen-2 

rs143791478 C565S ZNF717 - 4 7 6 1 SNPs&GO 

rs74776730 F348V ZNF717 - 4 7 6 1 SNPs&GO 

rs9885916 Y345C PRIM2 - 4 7 6 1 SIFT 

rs9885751 R350C PRIM2 - 4 7 6 1 SIFT 

rs76265595 E139K 

KCNJ12,

KCNJ18 - 4 8 7 1 - 

rs2310687 P592A OTOP1 - 4 8 7 1 - 
*MAF: minor allele frequency based on 1000Genomes or NHLBI Exome Sequencing Project database 

 

 

Table 12-11: Low-frequency variants selected on various criteria for genotyping 

 

Chr Start dbSNP135 Gene MAF* Selection criteria 

1 888659 rs3748597 NOC2L 0.0731707 variants present in 6 or 5 individuals 

1 3807593 rs4274008 C1orf174 0.0121951 variants present in 6 or 5 individuals 

1 15812432 rs6429745 CELA2B 0.000233 variants present in 6 or 5 individuals 

1 33065947 rs704886 ZBTB8A 0.000116 variants present in 6 or 5 individuals 

1 33160878 rs360042 SYNC 0.0304878 variants present in 6 or 5 individuals 

1 42628591 rs142157365 GUCA2A 0.001395 Top hit of SNVs from whole list 

1 48697733 rs212991 SLC5A9 0.001395 variants present in 6 or 5 individuals 

1 62734089 rs17123306 KANK4 0.0182927 GWAS associated hit region 

1 117142641 rs76417519 IGSF3 - 

Top scores of SNVs found in 4/5/6/ 

individuals 

1 172411189 

 

PIGC - Top hit of SNVs from whole list 

1 207867854 rs41303261 CR1L 0.054878 Top hit of SNVs from whole list 

2 27167536 rs200305979 DPYSL5 0.000116 GWAS associated hit region 
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2 179581897 

 

TTN 0.000363 GWAS associated hit region 

2 234638245 rs61764030 UGT1A3 0.00609756 GWAS associated hit region 

3 11643465 rs2276749 VGLL4 0.0304878 variants present in 6 or 5 individuals 

3 33055721 rs4302331 GLB1 0.001806 variants present in 6 or 5 individuals 

3 183960695 

 

ALG3 - Top hit of SNVs from whole list 

3 186338564 rs35457250 AHSG 0.00609756 Top hit of SNVs from whole list 

4 95578588 rs13107595 PDLIM5 0.006279 variants present in 6 or 5 individuals 

5 36269551 rs1035480 RANBP3L 0.0182927 variants present in 6 or 5 individuals 

5 43509348 rs6872851 C5orf34 - variants present in 6 or 5 individuals 

5 149360630 rs78676079 SLC26A2 0.0426829 Top hit of SNVs from whole list 

6 49663567 rs36069724 CRISP2 0.00609756 Top hit of SNVs from whole list 

6 79708000 rs7747479 PHIP 0.0426829 variants present in 6 or 5 individuals 

6 129571272 rs36044314 LAMA2 0.0121951 Top hit of SNVs from whole list 

6 132206079 rs28933977 ENPP1 0.0487805 Top hit of SNVs from whole list 

7 25267963 rs886354 NPVF 0.0731707 variants present in 6 or 5 individuals 

7 50611735 rs6264 DDC - variants present in 6 or 5 individuals 

7 56136260 rs4245575 SUMF2 0.00609756 variants present in 6 or 5 individuals 

7 64291991 rs4236203 ZNF138 0.000233 variants present in 6 or 5 individuals 

8 22886020 rs13265018 TNFRSF10B 0.0853659 variants present in 6 or 5 individuals 

10 99240758 rs2275586 MMS19 0.0182927 variants present in 6 or 5 individuals 

11 7059960 rs12801277 NLRP14 0.000466 variants present in 6 or 5 individuals 

11 12379949 rs34898047 MICALCL 0.00609756 Top hit of SNVs from whole list 

11 20529886 rs6483700 PRMT3 - variants present in 6 or 5 individuals 

11 34152939 rs2957516 NAT10 - variants present in 6 or 5 individuals 

12 53217726 rs116963732 KRT79 0.00609756 Top hit of SNVs from whole list 

12 123345509 rs34149579 HIP1R 0.0426829 Top hit of SNVs from whole list 

12 123892095 rs61955126 SETD8 - 

Top scores of SNVs found in 4/5/6/ 

individuals 

12 129299446 rs33990080 SLC15A4 0.103659 variants present in 6 or 5 individuals 

15 80191338 rs139874813 ST20 0.00609756 Top hit of SNVs from whole list 

16 11002927 rs7197779 CIITA 0,09 variants present in 6 or 5 individuals 

17 15522455 rs188826833 CDRT1 0.000582 Top hit of SNVs from whole list 

17 44128052 

 

KANSL1 NA GWAS associated hit region 

17 80789468 rs35653278 ZNF750 0.0609756 GWAS associated hit region 

19 18502861 rs34666550 LRRC25 0.0243902 Top hit of SNVs from whole list 

19 48519241 rs3745751 ELSPBP1 0.0487805 Top hit of SNVs from whole list 

20 10622501 rs35761929 JAG1 0.0731707 Top hit of SNVs from whole list 
*MAF: minor allele frequency based on 1000Genomes or NHLBI Exome Sequencing Project database 
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Table 12-12: Association statistics for 48 SNVs selected based on GWAS hit regions and prediction tools 

genotyped using the Sequenom technology in German LLI (n=1,610), centenarian subset (n=748) and younger 

controls (n=1,104) 

 

Association analysis: German population LLI  

Chr dbSNP ID Gene 

MAF 

cases 

n=1,610 

MAF 

controls 

n=1,104 PCCA OR 95% CI 

20 rs35761929 
JAG1 

0.1246 0.07678 3.7e-08 1.712 1.411-2.076 

17 rs35653278 
ZNF750 

0.1259 0.1002 0.004491 1.294 1.083-1.546 

11 rs34898047 
MICALCL 

0.009036 0.0176 0.006923 0.5089 0.3089-0.8384 

6 rs36069724 
CRISP2 

0.01839 0.02652 0.05019 0.688 0.4722-1.002 

7 rs886354 
NPVF 

0.08481 0.09963 0.06713 0.8375 0.6926-1.013 

1 rs3748597 
NOC2L 

0.06546 0.05417 0.09298 1.223 0.9667-1.548 

5 rs78676079 
SLC26A2 

0.026 0.03343 0.1169 0.772 0.5582-1.068 

3 rs2276749 
VGLL4 

0.05064 0.06008 0.1438 0.8345 0.6546-1.064 

2 rs179581897 
TTN 

0.001638 0.0004625 0.2173 3.546 0.414-30.37 

3 rs183960695 
ALG3 

0.0006614 0 

 

0.2326 - 

7 rs6264 
DDC 

0 0.0004625 0.2347 0 0 

6 rs7747479 
PHIP 

0.05182 0.05735 0.3845 0.8981 0.7049-1.144 

7 rs4245575 
SUMF2 

0.0009785 0.00185 0.396 0.5284 0.1181-2.363 

2 rs200305979 
DPYSL5 

0.0003347 0 0.4 - - 

12 rs61955126 
SETD8 

0.0003218 0 0.4084 - - 

19 rs34666550 
LRRC25 

0.01152 0.009174 0.4333 1.259 0.7068-2.242 

2 rs61764030 
UGT1A3 

0.4894 0.4995 0.4914 0.9601 0.8551-1.078 

5 rs1035480 
RANBP3L 

0.02146 0.0189 0.5243 1.138 0.7638-1.697 

19 rs3745751 
ELSPBP1 

0.05892 0.06238 0.6114 0.9411 0.7446-1.189 

10 rs2275586 
MMS19 

0.02106 0.02309 0.623 0.9103 0.6256-1.324 

12 rs34149579 
HIP1R 

0.06054 0.06333 0.6829 0.9531 0.7568-1.2 

1 rs360042 
SYNC 

0.0388 0.0408 0.7192 0.949 0.7136-1.262 

1 rs142157365 
GUCA2A 

0.003896 0.003305 0.7286 Jan 18 0.4636-3.001 

6 rs28933977 
ENPP1 

0.03268 0.03104 0.7446 1.055 0.7653-1.454 

8 rs13265018 
TNFRSF10B 

0.09302 0.09074 0.7817 1.028 0.8472-1.247 

3 rs4302331 
GLB1 

0.001641 0.001388 0.8177 1.183 0.2825-4.957 

12 rs33990080 
SLC15A4 

0.09045 0.09198 0.8534 0.9817 0.8072-1.194 

1 rs41303261 
CR1L 

0.05431 0.05324 0.8662 1.021 0.8004-1.303 

4 rs13107595 
PDLIM5 

0.003032 0.002838 0.8999 1.069 0.3798-3.007 

3 rs35457250 
AHSG 

0.008731 0.008988 0.9231 0.9712 0.5361-1.759 
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6 rs36044314 
LAMA2 

0.01437 0.01464 0.9378 0.9816 0.6165-1.563 

15 rs139874813 
ST20 

0.002262 0.002367 0.9382 0.9556 0.3029-3.015 

1 rs4274008 
C1orf174 

- - - - failed 

1 rs6429745 
CELA2B 

0 0 - - monomorphic 

1 rs704886 
ZBTB8A 

0 0 - - monomorphic 

1 rs212991 
SLC5A9 

0 0 - - monomorphic 

1 rs17123306 
KANK4 

- - - - failed 

1 rs76417519 
IGSF3 

- - - - failed 

1 1_172411189 
PIGC 

0 0 - - monomorphic 

5 rs6872851 
C5orf34 

0 0 - - monomorphic 

7 rs4236203 
ZNF138 

- - - - failed 

11 rs12801277 
NLRP14 

0 0 - - monomorphic 

11 rs6483700 
PRMT3 

0 0 - - monomorphic 

11 rs2957516 
NAT10 

0 0 - - monomorphic 

12 rs116963732 
KRT79 

0 0 - - monomorphic 

16 rs7197779 
CIITA 

0 0 - - monomorphic 

17 rs115420242 
CDRT1 

0 0 - - monomorphic 

17 17_44128052 
KANSL1 

0 0 - - monomorphic 

Association analysis: German population centenarian subset 

Chr dbSNP ID Gene 

MAF 

cases 

n=745 

MAF 

controls 

n=1,104 PCCA OR 95% CI 

20 rs35761929 
JAG1 

0.1096 0.07678 0.0008297 1.481 1.175-1.866 

17 rs35653278 
ZNF750 

0.1302 0.1002 0.005778 1.344 1.089-1.659 

11 rs34898047 
MICALCL 

0.007891 0.0176 0.01569 0.4439 0.2257-0.8732 

3 rs183960695 
ALG3 

0.001435 0 0.07867 - - 

7 rs886354 
NPVF 

0.08285 0.09963 0.09329 0.8164 0.644-1.035 

6 rs36069724 
CRISP2 

0.0194 0.02652 0.1751 0.7262 0.4565-1.155 

1 rs3748597 
NOC2L 

0.06456 0.05417 0.1964 1.205 0.9077-1.6 

5 rs78676079 
SLC26A2 

0.02586 0.03343 0.2006 0.7677 0.5116-1.152 

10 rs2275586 
MMS19 

0.01697 0.02309 0.2101 0.7305 0.4462-1.196 

2 rs200305979 
DPYSL5 

0.0007163 0 0.2182 - - 

12 rs61955126 
SETD8 

0.0007112 0 0.219 - - 

12 rs34149579 
HIP1R 

0.05429 0.06333 0.2681 0.849 0.6354-1.135 

3 rs2276749 
VGLL4 

0.05165 0.06008 0.2911 0.8521 0.6329-1.147 

7 rs4245575 
SUMF2 

0.0007123   0.00185 0.375 0.3845 0.04294-3.444 

7 rs6264 
DDC 

0 0.0004625 0.4203 0 - 
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19 rs34666550 
LRRC25 

0.01194 0.009174 0.4394 1.305 0.6632-2.569 

19 rs3745751 
ELSPBP1 

0.05692 0.06238 0.5073 0.9071 0.68-1.21 

8 rs13265018 
TNFRSF10B 

0.09726 0.09074 0.5161 1.08 0.8567-1.361 

12 rs33990080 
SLC15A4 

0.08613 0.09198 0.5579 0.9305 0.7311-1.184 

6 rs7747479 
PHIP 

0.06178 0.05735 0.5848 1.082 0.815-1.437 

2 rs61764030 
UGT1A3 

0.4908 0.4995 0.6107 0.9658 0.8446-1.104 

6 rs36044314 
LAMA2 

0.01648 0.01464 0.6645 1.128 0.6548-1.942 

4 rs13107595 
PDLIM5 

0.003608 0.002838 0.6909 1.272 0.3875-4.176 

1 rs41303261 
CR1L 

0.05587 0.05324 0.7344 1.052 0.7838-1.413 

2 rs179581897 
TTN 

0.0007143 0.0004625 0.7567 1.545 0.09654-24.72 

1 rs360042 
SYNC 

0.04239 0.0408 0.8175 1.041 0.7418-1.46 

5 rs1035480 
RANBP3L 

0.01793 0.0189 0.8348 0.9478 0.5724-1.569 

15 rs139874813 
ST20 

0.002122 0.002367 0.8805 0.896 0.2138-3.755 

1 rs142157365 
GUCA2A 

0.003556 0.003305 0.9003 1.076 0.3409-3.398 

3 rs35457250 
AHSG 

0.008596 0.008988 0.9034 0.956 0.4626-1.976 

6 rs28933977 
ENPP1 

0.03175 0.03104 0.9068 1.024 0.693-1.512 

3 rs4302331 
GLB1 

0.001433 0.001388 0.9721 1.033 0.1723-6.187 

1 rs4274008 
C1orf174 

- - - - failed 

1 rs6429745 
CELA2B 

0 0 - - monomorphic 

1 rs704886 
ZBTB8A 

0 0 - - monomorphic 

1 rs212991 
SLC5A9 

0 0 - - monomorphic 

1 rs17123306 
KANK4 

- - - - failed 

1 rs76417519 
IGSF3 

- - - - failed 

1 1_172411189 
PIGC 

0 0 - - monomorphic 

5 rs6872851 
C5orf34 

0 0 - - monomorphic 

7 rs4236203 
ZNF138 

- - - - failed 

11 rs12801277 
NLRP14 

0 0 - - monomorphic 

11 rs6483700 
PRMT3 

0 0 - - monomorphic 

11 rs2957516 
NAT10 

0 0 - - monomorphic 

12 rs116963732 
KRT79 

0 0 - - monomorphic 

16 rs7197779 
CIITA 

0 0 - - monomorphic 

17 rs115420242 
CDRT1 

0 0 - - monomorphic 

17 17_44128052 
KANSL1 

0 0 - - monomorphic 
For abbreviations refer to Supplementary Table 11-7 

  


