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Summary

Passive acoustic approaches for studying marine mammals have developed

substantially over the past decade. Advances in technology now allow data

collection  in  remote  areas  and  over  extended  timescales.  The  first  two

chapters of this thesis focused on the application of passive acoustics for

monitoring migratory baleen whales in the Northwest Atlantic Ocean. The

development  and application of new localization algorithms showed how

small-scale arrays can be used to obtain baseline data about the acoustic

behavior of individuals, which will help to improve interpretation of long-

term acoustic data sets. Acoustic monitoring in the Stellwagen Bank National

Marine Sanctuary (SBNMS) revealed seasonal peaks of acoustic abundance

for  right  (Eubalaena  glacialis)  and  sei  whales  (Balaenoptera  borealis)  in

spring and fall, respectively. Both species are primarily present during these

two seasons and to a lesser extent in winter and summer, indicating the

importance  of  this  area  as  part  of  their  migration  route.  Fin  whales

(Balaenoptera  physalus)  were  acoustically  present  year-round,  although

song production was reduced during summer. While recorded on only a few

days of  the entire period,  blue whale  (Balaenoptera musculus)  song was

detected near SBNMS in three separate years.

There is considerable uncertainty concerning migration routes, winter

calving  habitats  and  thus  population  structure  of  North  Atlantic  minke

whales (Balaenoptera acutorostrata).  Given that this species is still  being

hunted  across  its  summer  range,  this  uncertainty  has  important

conservation  and  management  implications.  In  chapters  III-V  I  used  3.5

years of acoustic array data from the Gulf of Maine to describe the species'

vocal repertoire, examine individual calling behavior and provide first source
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level estimates. Based on these data, an automatic detector was developed

and applied to year-round data from several sites along the US East coast

and beyond to track minke whale migration.  Minke whales produced three

call categories at a mean source level of 165 ± 4 dB rms re 1 µPa. Individual

whales combined calls in non-random order, leading to two distinct calling

patterns.  Unlike other  baleen whales,  animals sharing the same acoustic

space used different patterns simultaneously, without switching. Analysis of

seasonal  occurrence  patterns  revealed  peak  acoustic  presence  in  higher

latitudes  during  summer  and  fall  and  in  lower  latitudes  during  winter.

Migration appears to follow the general direction and location of the Gulf

stream in the spring and occurs in more open waters in the fall. A higher

abundance  of  calls  at  offshore  recording  sites,  suggests  that  there  is  a

winter habitat located in deeper waters off the Southeastern US. 

Antarctic minke whales (Balaenoptera bonaerensis)  have long been

suggested as the likely source for the mysterious 'bioduck' signal, which is

the  predominant  underwater  sound in  the  Souther  Ocean during  austral

winter.  I  analyzed  data  from  the  first  two  multi-sensor  acoustic  tags

attached to Antarctic minke whales and was able to confirm the production

of the bioduck by this species. This finding will allow the interpretation of a

wealth  of  existing  recordings,  and  thereby  substantially  improve  our

understanding  of  the  distribution,  abundance,  and behavior  of  Antarctic

minke whales. This is critical information for a species that lives in a rapidly

changing  polar  environment  and  is  subject  of  ongoing  lethal  sampling

efforts.

The  effects  of  widespread  anthropogenic  noise  in  the  marine

environment is of increasing concern.  Most discussions have centered on

highly visible and regulated activities,  such as seismic airguns and naval

sonar.  In this last  chapter  we showed,  that  humpback whale (Megaptera
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novaeangliae) song was reduced, concurrent with transmissions of an Ocean

Acoustic  Waveguide  Remote  Sensing  (OAWRS) experiment  approximately

200 km distant. This is the first  time that  active sonar used in fisheries

science has been shown to have this effect, highlighting the importance to

study and regulate the impact of all anthropogenic noise sources, including

research applications. 

In  conclusion,  this  thesis  highlighted  the  suitability  of  passive

acoustic monitoring for an increased understanding of the spatio-temporal

distribution patterns and behavior of highly mobile and little studied baleen

whales. In particular, it considerably improved current knowledge about the

acoustic ecology and spatio-temporal distribution of minke whales.
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Zusammenfassung

Die  Erforschung von Meeressäugern  mittels  passiv  akustischer  Methoden

hat  sich  im  letzten  Jahrzehnt  enorm  weiterentwickelt.  Technologische

Fortschritte erlauben nun die Datensammlung in entlegenen Gebieten und

über stark verlängerte Zeiträume. Die ersten zwei Kapitel dieser Studie sind

der  Anwendung  passiv  akustischer  Methoden  für  die  Beobachtung  von

Bartenwalen  im  Nordwestatlantik  gewidmet.  Die  Entwicklung  und

Anwendung  neuer  Lokalisationsalgorithmen  verdeutlicht  in  diesem

Zusammenhang, wie  kleinskalige Hydrophonanordnungen genutzt  werden

können,  um  fundamentale  Daten  über  das  akustische  Verhalten  von

Individuen zu erfassen. Diese Daten liefern grundlegende Informationen für

die weiterführende Interpretation akustischer Langzeitdaten. Das akustische

Monitoring im Stellwagen Bank National  Marine  Sanctuary (SBNMS)  ergab

zwei  deutliche  saisonale  Höhepunkte  in  der  akustischen  Präsenz  von

Glattwalen  (Eubalaena  glacialis)  im  Frühjahr  und  Seiwalen  (Balaenoptera

borealis) im Herbst in diesem Gebiet. Beide Arten sind besonders zu diesen

beiden Jahreszeiten, und weniger häufig im Sommer und Winter, akustisch

präsent.  Dieses  zeitliche  Verteilungsmuster  belegt  die  Bedeutung  des

Gebietes als  Teil  der  saisonalen Wanderungsroute beider Arten.  Finnwale

(Balaenoptera physalus) waren ganzjährig akustisch präsent, wenngleich die

Häufigkeit  ihrer  akustischen  Signale  im  Sommer  reduziert  war.

Blauwalgesang (Balaenoptera musculus) konnte zwar nur an wenigen Tagen,

jedoch in drei verschiedenen Jahren in den akustischen Aufzeichnungen aus

diesem Gebiet nachgewiesen werden. 

Bezüglich  der  Wanderungsrouten  und  den  Überwinterungs-,  und

Fortpflanzungsgebieten und demzufolge auch der Populationsstruktur des

Nordatlantischen Zwergwals (Balaenoptera acutorostrata), existieren grosse

Wissenslücken. Dieses fehlende Wissen hat besondere Bedeutung für den
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Schutz und das Management einer Art, die in ihren Nahrungsgründen im

Sommer  noch  immer  bejagt  wird.  Basierend  auf  3.5  Jahren  akustischer

Daten  aus  dem Gulf  of  Maine,  beschreibe  ich  in  den  Kapiteln  III-V  das

akustische Repertoire, untersuche individuelle Rufmuster und liefere erste

Messungen für  den  akustischen Sendepegel  diese  Art.  Auf  diesen  Daten

aufbauend  wurde  ein  automatischer  Detektor  entwickelt,  welcher  für  die

Analyse  ganzjähriger  Daten  von  verschiedenen  Orten  entlang  der  US-

amerikanischen  Ostküste  eingesetzt  wurde,  um die  jährliche  Wanderung

dieser Art zu untersuchen. Zwergwale produzieren 3 verschiedene Ruftypen

mit einem Sendepegel von 165 ± 4 dB rms re 1 µPa. Dabei werden die Rufe

nicht nach dem Zufallsprinzip kombiniert und es konnten zwei verschiedene

Rufsequenzen identfiziert werden. Im Gegensatz zu anderen Bartenwalen,

wurden beide Sequenzen simultan benutzt, wobei Individuen jedoch nicht

das jeweilige Rufmuster änderten. Im Sommer waren Zwergwale in höheren

Breitengraden und im Winter in eher tropischen und subtropischen Gebieten

akustisch  präsent.  Im  Frühjahr  scheint  die  Wanderung  der  generellen

Richtung und Position des Golfstroms zu folgen, während tiefere Gewässer

auf  der  Wanderung in  die  Wintergründe bevorzugt  werden.  Ein  erhöhtes

Vorkommen von Rufen in tieferen  Gewässern vor der Südostküste der USA

legen die Existenz von Wintergründen in diesen Gebieten nahe.

Antarktische Zwergwale (Balaenoptera bonaerensis) wurden lange als

die  mögliche  Quelle  des  'bioduck'  Signals,  welches  die  dominante

Schallquelle im Südpolarmeer im Winter darstellt, impliziert. Die Analyse der

ersten  Datevon  von  akustischen  Tags,  bestätigen  diese  Annahme.  Diese

Ergebnisse  erlauben  eine  neue  Interpretation  von  bereits  vorhandenen

akustischen Langzeitaufnahmen und werden das Wissen um die Verteilung,

den  Bestand  und  das  Verhalten  dieser  Art  enorm  erweitern.  Diese

Informationen  sind  besonders  kritisch  im  Hinblick  auf  dramatische

Veränderungen im polaren Lebensraum dieser Art, die ebenfalls weiterhin
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aktiv bejagt wird. 

Die Auswirkungen von weit verbreitetem Unterwasserlärm werden mit

immer grösserer Besorgnis betrachtet. Bisher beschränkten sich die meisten

Diskussionen auf bereits regulierte Aktivitäten, wie seismische- und Navy

Sonarsysteme. Im letzten Kapitel dieser Studie zeigen wir die Reduktion von

Buckelwalgesang  (Megaptera  novaeangliae)  in  der  Folge  eines  Ocean

Acoustic  Waveguide  Remote  Sensing  (OAWRS)  Experiments  in  200  km

Entfernung.  Dies  ist  das  erste  Mal,  dass  aktive  Sonarsysteme  der

Fischereiforschung  im  Hinblick  auf  mögliche  Auswirkungen  auf  das

Verhalten mariner Säuger untersucht wurden. Die Ergebnisse verdeutlichen

die  Wichtigkeit,  die  Auswirkungen  aller  anthropogenen  Lärmquellen,

inklusive  von  Sonarsystemen,  die  für  die  Forschung  genutzt  werden,  zu

untersuchen.

Zusammenfassend  unterstreicht  diese  Studie  die  Eignung  passiv

akustischer Methoden für ein verbessertes Monitoring und die Vermehrung

des Wissens über die raum-zeitlichen Verteilungsmuster und das Verhalten

von weit  wandernden, wenig erforschten Bartenwalarten.   Im besonderen

konnte die Studie grundlegende Fragen zur akustischen Ökologie und den

saisonalen Verteilungsmustern von Zwergwalen klären.
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General Introduction

Baleen whales: An Overview

Baleen whales comprise one of the two extant suborders of the order Cetacea.

The  Latin  name  of  this  suborder  –  Mysticeti  –  is  derived  from  the  Greek

mustoketos, and translated as the “mouse-whale” (Rice 1998). The name seems

ironic,  given the enormous size of most  members of this group,  which also

includes the blue whale – the largest animal ever to have lived on earth. The

main difference to the second suborder – Odontoceti (toothed whales) – is a lack

of functional teeth in this group. Baleen whales are filter feeders. Structurally

based on keratin, baleen plates are arranged in parallel rows and suspended

from the whales'  upper jaw  (Utrecht  1965).  This highly specialized structure

enables  baleen  whales  to  sieve  large  volumes  of  water  and  trap  extensive

quantities of small prey (zooplankton or fish). In addition, baleen whales differ

from toothed whales by the possession of a paired blowhole and symmetrical

skull. Their ribs are not articulated with the sternum (Bannister 2009).

1 Phylogeny & diversity

Cetaceans diverged about 56-53 million years ago (Mya) from aquatic, even-toed

ungulates (artiodactyls) and gradually adapted to a completely oceanic lifestyle

(Thewissen et  al.  2007).  Extant cetaceans (Neoceti)  first  appeared around 36

Mya,  dispersed  widely  in  oceans  and  some  large  rivers  and  estuaries  and

separated into mysticetes and odontocetes early in their evolutionary history

(Steeman et al. 2009, Slater et al. 2010). 

The diversification of modern cetaceans has been described as a rapid

adaptive  radiation,  facilitated by the evolution of  larger  brains,  echolocation

(odontocetes),  baleen  (mysticetes)  and  emerging  ecological  opportunities

following the extinction of archaic whales  (Slater et al. 2010). However, rapid

speciation during the early evolution of modern species has been questioned

based on missing evidence by time-calibrated molecular phylogeny (Steeman et
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al. 2009). An alternative hypothesis describes cetacean diversification as less

'rapid'  but  rather  initiated  by  re-structuring  of  the  oceans,  following  major

paleogeographic changes (Steeman et al. 2009).  Early records of baleen whale

fossils coincide with the break-off of the southern continent Gondwana about 35

Mya,  resulting  in  the  formation  of  the  Antarctic  circumpolar  current  (ACC)

(Jackson  2010).  Morover,  a  major  reorganization  of  the  Southern  Ocean

plankton ecosystem occurred at  the onset of Antarctic glacation in the early

Oligocene (about 33.6 Mya), driving the establishment of seasonally productive

environments and subsequent biotic evolution  (Houben et al. 2013). The ACC

and its interaction with strong winds force deep mixing of the Southern Ocean

and increase surface concentrations of nutrients such as silicate and iron, which

in  turn  are  driving  large,  diatom  dominated  phytoplankton  blooms  during

austral summer  (Berger 2007). This enormous primary productivity supports a

large number and diversity of top predators. Several authors have suggested the

formation of this ecological system and the subsequent first Antarctic glaciation

period as a trigger for early cetacean radiation and indicative of a high latitude,

austral origin of baleen whales (Berger 2007, Steeman et al. 2009, Marx & Uhen

2010, Houben et al. 2013). 

Although  there  is  still  discussion  about  the  driving  forces  behind

cetacean  evolution,  it  is  well  established,  that  baleen  whales  form  a

monophyletic group. However, phylogenetic relationships within this group are

still  obscure,  despite a surge in research,  investigating molecular  as well  as

fossil records, in recent years (Rychel et al. 2004, Sasaki et al. 2005, Hatch et al.

2006, Jackson et al. 2009, McGowen et al. 2009, Steeman et al. 2009, Marx &

Uhen  2010,  Dornburg  et  al.  2012,  Churchill  et  al.  2012).  Especially  the

placement  of  the  gray  whale  (Eschrichtiidae)  and  relationships  within  the

Balaeonpteridae –  the rorqual  whales  –  have  yet  to be  conclusively resolved

(Jackson 2010). It is unclear why the delineation of mysticetes phylogeny is so

variable, depending on the type of analysis. Probable hypotheses include the

accelerated  diversification  of  a  hypothesized  Balaeonpteridae  crown  group

7
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(Nikaido  2006,  Deméré  et  al.  2008,  Jackson  et  al.  2009),  or  continued

hybridization between species  (Spilliaert  et  al.  1991, Bérubé & Aguilar  1998,

Lefèvre  et  al.  1999).  The  former  would  have  resulted  in  incomplete  lineage

sorting of genes, while the latter could weaken existing phylogenetic signatures

(Jackson 2010).

Figure  1:  Phylogeny  of  baleen  whales,  following  McGowen  et  al.  2009.
1=Balaenopteridae & Eschrichtiidae; 2=Neobalaenidae; 3=Balaenidae. The focus species
of this thesis, the Common minke whale and its closest relative, the Antarctic minke
whale are highlighted. Figure adapted from (McGowen et al. 2009); Artwork credit: Carl
Buell & Uko Gorter.

Fourteen  species  of  baleen  whales,  belonging  to  four  families

(Balaenidae,  Neobalaenidae,  Eschrichtiidae,  Balaenopteridae)  are  currently

recognized (Figure 1). The right whales (Balaenidae) comprise four species: the

Arctic bowhead whale (Balaena mysticetus)  and three species of right whales

(Eubalaena spp.)  (Rosenbaum et al.  2000, Churchill  et  al.  2012).  The pygmy

right  whale  (Caperea  marginata; Family:  Neobalaenidae)  is  recognized  as  a

sister group to this family (Churchill et al. 2012). 

As  mentioned  above,  the  phylogenetic  placement  of  the  gray  whale
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(Eschrichtius  robustus;  Family:  Eschrichtiidae)  is  dubious.  While  most

morphological (and some molecular) studies describe this species as a sister

group to the rorqual whales (Deméré et al. 2008, Steeman et al. 2009), there is

also  molecular  evidence  to  place  it  within  this  group  (Rychel  et  al.  2004,

McGowen et al. 2009). 

The  largest  and least  phylogenetically  resolved  family  are  the  rorqual

whales (Balaenopteridae). The following eight species are currently recognized

by the Ad-Hoc Committe on Taxonomy of the Society of Marine Mammology:

Common  minke  whale  (Baleanoptera  acutorostrata),  Antarctic  minke  whale

(Balaenoptera  bonaerensis),  sei  whale  (Baleanoptera  borealis),  Bryde's  whale

(Baleanoptera  edeni)1,  Omura's  whale  (Baleanoptera  omurai),  blue  whale

(Baleanoptera  musculus),  fin  whale  (Baleanoptera  physalus)  and  humpback

whale (Megaptera novaengliae) (Committee on Taxonomy 2013).

2  Long migrations & fluid social systems                             

Marine environments are fundamentally different from terrestrial systems in that

they are more 'open'.  Currents,  winds and waves create physical  forces that

transport nutrients, materials and organisms over large spatial scales with few

barriers.  Adapted  to  variable  environments  many  marine  organisms  are

relatively sedentary in their adult stage, but produce eggs, larvae or juveniles

that disperse over large areas, extending their ability to survive when conditions

change (Steele 1985, Shanks et al. 2003). Given more dynamic habitats, greater

variability  in available  resources and their  large body size,  marine mammals

require  large home ranges and many species,  especially  the  large,  primarily

pelagic baleen whales are significantly more mobile than terrestrial mammals

(Whitehead 2001, Carr et al. 2003). 

In many species, migrations develop as an adaptation to take advantage

1 Some researchers suggest to use B. edeni only for the small-form, coastal Bryde's whale of the  
Pacific and Indian Ocean, while using B. brydei for the larger, globally distributed oceanic form 
(see Sasaki et al. 2006).
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of seasonal peaks in resource abundance, to avoid periods of resource shortage,

escape inter-,  and intraspecific  competition or avoid predators and parasites

(Alerstam et al. 2003).  In contrast to many terrestrial species, where migration

is  often  driven  by  food  availability  on  either  end  of  the  migration   path

(Gauthreaux, Jr. 1982, Fryxell & Sinclair 1988), most species of baleen whales

perform  semi-annual,  seasonal  to-and-fro  migrations (Dingle  &  Drake

2007) between productive high-latitude feeding and less productive low-latitude

breeding grounds (Kellogg 1929, Norris 1967, Corkeron & Connor 1999). 

Humpback whales (Megaptera novaeangliae) currently hold the record both for

the  greatest  absolute  distance  traveled  between  two  sightings  on  different

breeding  grounds  (9800  km;  Stevick  et  al.  2011,  Figure  2),  as  well  as  the

greatest 'round-trip' migration distance (18,840 km; Robbins et al. 2011). They

have also been shown to move with enormous directional  precision,  holding

constant course for more than 200 km (Horton et al. 2011). 

10

Figure 2. Annual worldwide humpback whale migrations. Figure adapted from Riccardo 
Pravettoni, UNEP/GRID-Arendal. (www.grida.no/graphicslib/detail/the-long-migration-of-
the-humpback-whale_9cd5)
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Next to those of humpback whales (Dawbin 1966, Clapham & Mead 1999,

Calambokidis  et  al.  2001),  migratory  routes  are  well  established  for  some

populations of species, such as North and South Atlantic right whales(Eubalaena

spp.) (Kraus et al. 1986, Mate et al. 2011) and gray whales (Pike 1962, Sumich &

Show 2011).  In  addition,  even  though routes  and destinations  are  less  well

understood, long longitudinal migrations have been suggested for blue whales

(Balaenoptera  musculus)  (Mate  et  al.  1999,  Reeves  et  al.  2004),  fin  whales

(Balaenoptera physalus)  (Širovi  et al.  2009, Mizroch et al.  2009)ć ,  sei whales

(Balaenoptera borealis) (Visser et al. 2011, Prieto et al. 2012)  and minke whales

(Balaenoptera  acutorostrata)  (Kasamatsu  et  al.  1995,  Skaug  et  al.  2004).  In

Chapter V, I show how the seasonal migration of western North Atlantic minke

whales  can  be  tracked  by  using  large-scale  networks  of  long-term  passive

acoustic recorders.  Such comprehensively collected data can also be used in

establishing  the  geographic  extent  of  species-specific  migration  routes,

providing  critical  information  for  marine  spatial  planning  and  informing

attempts to mitigate adverse impacts of anthropogenic activities  (Van Parijs et

al. 2009, Chapter V ). In addition, I used long-term passive acoustic monitoring

for baleen whales in Massachusetts Bay, a highly urbanized marine habitat in the

Northeast United States, to show the importance of this region as part of the

migration corridor and seasonal feeding ground for several large whale species

(Chapter II and III ).

Some baleen whale species do not follow seasonal migrations like those

described above. Among the rorqual whales, the Bryde's whale appears to have

a year-round tropical  distribution  (Best  1977,  Kato & Perrin  2009).  Similarly,

bowhead whales perform latitudinal seasonal migrations  (Heide-Jørgensen et al.

2006) but stay in Arctic waters year round (Víkingsson & Heide-Jørgensen 2013).

There are also many reports of individuals, parts of or whole populations of

traditionally  migratory  species,  that  do  not  migrate  every  year  (Corkeron  &

Connor 1999). Prominent examples are humpback whales in the Arabian Sea

(Mikhalev 1997) and fin whales in the Mediterranean Sea (Castellote et al. 2011).

11
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In addition, recent passive acoustic data show a peak in singing activity in North

Atlantic  fin  whales  recorded in  Davis  Strait  between Greenland and Canada,

Massachusetts Bay and the New York Bight during boreal winter  (Simon et al.

2010, Morano et al. 2012, Chapter II ). Song in fin whales has been linked with

mating behavior (Thompson et al. 1992, Croll et al. 2002). In the North Atlantic

conception time in fin whales peaks in January  (Lockyer 1984) and newborn

calves  have  been  observed  off  the  coast  of  northern  Norway  during  winter

(Ingebrigtsen  1929 cited  in Corkeron  &  Connor  1999).  Together,  these

observations are convincing evidence for some mating and calving to occur in

higher latitudes in fin whales  (Corkeron & Connor 1999, Simon et al.  2010).

Similar trends can be observed in other species. In  Chapter VI of this thesis I

provide  unequivocal  evidence  for  the  Antarctic  minke  (Balaenoptera

bonaerensis) whale to be the source of the mysterious 'bioduck' signal. One of

the most pervasive animal-produced sounds of the Southern Ocean, the regular

pulsed  'bioduck'  signal  has  been  recorded  in  Antarctic  waters  and

contemporaneously  in  lower  latitudes  off  the  Australian  west  coast.  This

discordant  seasonal  occurrence  pattern,  indicates  at  a  minimum  a  very

widespread distribution of the species, or, more likely, a seasonal migration by

one  part  of  the  population  and  year-round  presence  in  Antarctic  waters  by

another.

These  examples  give  rise  to  the  question  of how  well  the  current

paradigm of semi-annual  migrations between high-latitude 'feeding' and low-

latitude  'breeding'  grounds  describes  the  actual  movement,  behavior  and

ecology of  baleen  whales.  Baleen  whales  have  been characterized as  capital

breeders, referring to the fact that in general they acquire and store energetic

resources before reproduction  (Lockyer 1984, Huang et al. 2008, 2011). This

strategy appears beneficial especially in unpredictable systems with time-limited

and discontinuous resource distributions  (Houston et  al.  2007).  However,  as

described  above,  some  baleen  whale  populations  mate  in  higher  latitudes,

where they may be  feeding at  the same time.  The  degree and definition of
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capital  breeding in this group might  therefore be more variable and species

might  use  more than one life-history strategy,  depending on various factors

such as sex, age-class or variable ecological  parameters in different habitats

(Alerstam & Hedenström 1998, Stephens et al. 2009). And partial or differential

migration (Dingle & Drake 2007) might be more the norm than the exception in

baleen  whales.  For  example  in  right  whales  mainly  pregnant  females  are

migrating to warm waters in winter, while males and non-breeding females stay

on higher latitude mating grounds (Kraus et al. 1986, Cole et al. 2013).

Beyond the question who is migrating, the related question why baleen

whales migrate when they do is still  a subject  of debate. While it  is easy to

explain the presence of baleen whales on highly productive feeding grounds

during summer, the driving forces behind migrations to warm, resource-poor

breeding grounds are less clear. Theories that have been put forward include an

evolutionary left-over behavior from when breeding and feeding grounds were

spatially  closer  (Evans 1987),  the optimization of energy budgets in  warmer

waters  (Brodie  1975),  resource  tracking,  i.e.  following  prey  when  resources

decrease in higher latitudes during winter  (Payne 1995), better calf survival in

warm,  calm  waters  with  less  demands  towards  thermo-regulation  (Clapham

1996, 2001), as well as avoidance of killer whale predation (Corkeron & Connor

1999). There is insufficient data to fully support one or the other, but avoidance

of killer  whale predation and energy advantages for  calves in warm, tropical

waters seem to be the explanations favored by most authors  (Clapham 2001,

Connor & Corkeron 2001, Rasmussen et al. 2007, Mehta et al. 2007, Ford &

Reeves 2008). However, both explanations have also been questioned. Energetic

models  show that  neonates  of  most  large  whales  are  well  able  to  tolerate

temperatures in polar regions and that most species do not need to migrate to

stay thermo-neutral  (Watts et al. 1993). On the other hand, the importance of

baleen whales as killer whale prey has been contested, by multi-year humpback

whale sightings data, showing that most scars are acquired by young calves and

that only few whales acquire new scars after their first sighting (Clapham 2001,
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Mehta et al. 2007). 

Regardless of the underlying reasons for their movements, it is clear that

many  species  of  baleen  whales  range  over  very  large  distances.  Generally,

females disperse less than males. In a number of species, females in particular

show philopatry and site fidelity to feeding and/or breeding grounds (Baker et

al. 1990, Palsbøll et al. 1995, Rosenbaum et al. 2009, Valenzuela et al. 2009,

Frasier et al. 2011, Costa-Urrutia et al. 2013), which together with co-migration

of mother/offspring pairs during lactation, leads to a strong female influence on

population structure  (Hoelzel 1998, Tiedemann et al. 2000). Although baleen

whale social organization is generally less complex and stable as compared to

that  of  many  toothed whale  species  (Connor  et  al.  1998),  some  data  show

evidence for long-term associations in the fission-fusion societies of humpback

whales, particularly among females (Weinrich 1991, Ramp et al. 2010)

It  has  been argued  that  the  mobility  of  cetaceans  may  be  a  primary

reason  for  the  development  of  their  advanced  social  and  communication

systems, including the capacity for vocal learning (Connor et al. 1998, Rendell &

Whitehead  2001). Vocal  learning  in  turn  is  likely  a  prerequisite  for  more

sophisticated social learning and both are highly adaptive in a fast changing and

variable environment such as the open ocean. Among the baleen whales the

continually  evolving  and  horizontal  transmission  of  humpback  whale  song

across entire ocean basins provides a striking example for both: the capacity for

vocal learning, as well as the existence of cetacean culture  (Noad et al. 2000,

Rendell & Whitehead 2001, Garland et al. 2011). In addition, further evidence for

the evolution of culture in baleen whales was recently added by a long-term

study of humpback whale foraging behavior. Similar to song in this species, the

spread of a new and persistent feeding technique (lobtail  feeding) through a

population of humpback whales was shown to be driven by horizontal cultural

transmission (Allen et al. 2013). 

In conclusion, baleen whales live in large-scale, acoustically mediated (see

14



General Introduction

also next  paragraph),  fluid  social  systems and the combination of  advanced

vocal and social learning has given rise to some unique and remarkable social

behaviors, including the evolution of advanced cultures with multiple traditions.

3 Acoustic ecology & passive acoustic monitoring of baleen 

whales

Acoustic communication is highly adaptive in the marine environment, where

light penetrates only the upper water layers and sound travels five times faster

than in air. Given these favorable physical conditions, low frequencies and loud

source levels (Širovi  et al. 2007, Samaran et al. 2010a)ć , baleen whales probably

live in one of the largest communication networks worldwide  (Payne & Webb

1971). Like  other  cetaceans  they  rely  on  the  production  and  perception  of

sounds for almost all aspects of their lives. They use sound for navigation, prey

detection, maintaining social contact and cohesion, as well as advertising and

defending resources for example in a mating context (Tyack & Clark 2000, Clark

& Ellison 2004, Stimpert et al. 2007). 

It has been shown that baleen whales respond to signals of conspecifics

at a range of 10 km  (Tyack & Whitehead 1983). However, their signals may be

detected at scales of hundreds of kilometers (Clark 1995, Stafford et al. 1998).

For example, blue whale sounds in the Southern Ocean  have been detected at

ranges of 200-300 km (Širovi  et al. 2007, Samaran et al. 2010b)ć . Generally, low

frequencies can travel further than higher frequencies, since less energy is being

lost through absorption (Urick 1983). Apart from frequency, sound propagation

in the sea  is  primarily  dependent  on depth and temperature.  Sound speeds

generally increase with depth and warmer temperatures. In addition to bottom

and  surface  reflections  and  associated  energy  loss,  water  layers  of  diverse

characteristics  refract  sounds  in  a  variety  of  ways,  leading  to  unique

propagation paths at different depths, which animals may take advantage of. 
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Figure 3. Example spectrograms of baleen whale vocalizations.  (a) blue whale AB
song, (b) fin whale 20 Hz song, (c) sei whale downsweeps, (d) right whale upcalls, (e)
minke whale pulse train, (f) humpback whale song. Note different frequency  and
time scales  of  spectrograms.  Spectrogram parameters: (a)  Fast  Fourier  Transform
(FFT)  =  4096  pt,  overlap  (ovlp)  =  95%,  samplerate  (SR)  =  2000  Hz:  frequency
resolution (FR) = 0.5 Hz, time resolution (TR) = 100 ms; (b) FFT = 1024 pt, ovlp =
75%, SR = 2000 Hz: FR = 1.9 Hz, TR = 128 ms; (c) FFT = 4096 pt, ovlp = 75%, SR =
10,000 Hz: FR = 2.4 Hz, TR = 250 ms; (d) FFT = 512 pt, ovlp = 75%, SR = 2000 Hz: FR
= 3.9 Hz, TR = 64 ms; (e) & (f) FFT = 1024 pt, ovlp = 75%, SR = 2000 Hz: FR = 1.9 Hz,
TR = 128 ms.
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One of the best described features of marine sound transmission is the deep

sound or SOFAR (SOund Fixing and Ranging) channel. In this layer of minimum

sound speed, which, depending on the environment is typically at a depth of

between 600-1200 meters (shallower in Arctic waters), sound gets trapped and

can travel over very long distances with little transmission loss. Whether baleen

whales take advantage of these unique propagation characteristics at different

depths is unknown, but it has been hypothesized that they may do so (Payne &

Webb  1971).  Regardless  of  the  absolute  distance,  given  probable  signal

detection at  or  just  below background noise  levels  (Clark et  al.  2009),  low-

frequency  baleen  whale  vocalizations  have  a  much  larger  active  space  than

those of any other mammal. In Chapter VII of this thesis I show that humpback

whales behaviorally respond to low-frequency signals of a new type of remote

sensing technology (OAWRS) at a range of 200 km. The OAWRS source exhibits

frequency characteristics similar  to humpback whale  vocalizations,  indicating

that whales are indeed able to hear and respond to sounds over such large

ranges. This may be particularly true for signals that are novel or are similar to

other biologically relevant signals or both (Ellison et al. 2011, Risch et al. 2012).

Thus,  acoustic  communication  using  long-range  signals  plays  an

important role in the fluid social systems of baleen whales, where individuals

are often highly dispersed or out of sight. In such unstable, non-territorial social

systems,  acoustic  signals  may play a  vital  role  in  storing information  about

individual  or  group  identity,  behavioral  state,  as  well  as  cues  about  the

signaller's  quality  (Smith et  al.  2008,  Rehn et  al.  2010,  King & Janik  2013).

Furthermore,  the  larger  the  communication  range,  the  larger  will  be  the

potential  audience.  In  the  open  ocean  the  acoustic  space  of  groups  and

populations of the same or sympatric species will therefore often overlap, which

has important implications for signal evolution, especially if signals serve in a

reproductive  context.  In  such  large  acoustic  networks,  individuals  may  also

employ eavesdropping, which has been defined as 'extracting information from 
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an interaction between other individuals' (McGregor & Dabelsteen 1996). 

Although such behavior is generally difficult to demonstrate  (Mccomb & Reby

2005),  it  may occur  in  the  floating lek mating  system of  humpback whales

(Clapham  1996),  where  females  could  listen  to  vocal  interactions  between

competing males  (Cholewiak 2008). In addition to true eavesdropping, it has

been shown, that many mammals attend to vocalizations even if these are not

aimed  directly  at  them.  For  example  elephant  contact  calls  directed  at

immediate  family  members  are  often  attended  by  members  of  the  wider

population, who adjust their behavior based on this information (McComb et al.

2000).  Although  detailed  behavioral  observations  are  often  impossible  in

cetaceans, and in far roaming baleen whales in particular, it is conceivable that,

similar  to  the  large-scale  networks  of  elephant  societies,  in  baleen  whales

conspecifics and perhaps even heterospecifics sharing the same acoustic space

attend to each other's calls possibly over very large distances.

Baleen whales include the largest species ever to have lived on earth. In

general, body size (which is correlated to vocal tract size) is inversely related to

an animal's optimal vocalization frequency, due to physiological constraints on

signal  evolution  (Fletcher  2004).  In  cetaceans,  there is  strong evidence,  that

body size has constrained the evolution of  minimum but  not  the maximum

frequencies of tonal signals, which indicates that throughout cetacean evolution,

low-frequency sounds have been selected for (May-Collado et al. 2007). A likely

explanation  for  these  patterns  are  the  advantages  of  long-distance

communication, as observed in many baleen whales and discussed earlier. 

Baleen whales are generally very vocal and produce a range of different

signals (Figure 3). Due to their large body size, most species are  low-frequency

specialists. However, the song of several species may contain a broad range of

frequencies (Payne & Payne 1985, Tervo et al. 2012).  Humpback and bowhead
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whales in particular, produce complex, hierarchically structured songs, which

have been well studied  (Payne & McVay 1971, Cholewiak et al. 2013, Stafford et

al. 2008, Tervo et al. 2011). Blue and fin whales produce more stereotypic, high

intensity song units at very low frequencies (~15-30 Hz) (McDonald et al. 2001,

Croll et al. 2002). In humpback, fin and blue whales it has been shown, that only

males produce songs  (Glockner 1983, Croll et al. 2002, Oleson  et al. 2007a).

Thus,  songs  are  thought  to  serve  primarily  in  a  reproductive  context,

functioning  as  male  advertisement  or  to  mediate  interactions  between

competing males during the breeding season (Tyack 1981, Tyack & Whitehead

1983,  Oleson et  al.  2007a).  However,  increasing acoustic  recording effort  is

beginning  to  show the  occurrence  of  song  outside  the  traditional  breeding

season,  on  summer  feeding  grounds  and  migration  in  all  of  these  species

(Stafford et al. 2007, Simon et al. 2010, Vu et al. 2012) and alternative functions

of songs, such as navigation and prey detection have been suggested (Clark &

Ellison  2004).  In  Chapter  II of  this  thesis  I  show the  persistent  year-round

presence of fin whale song in Massachusetts Bay, corroborating data from other

studies in the Gulf of Maine and on Arctic feeding grounds, which have shown

the presence of fin whales in higher latitudes during boreal winter (Simon et al.

2010, Morano et al. 2012). 

In addition to song, most baleen whale species produce other call types

in  different  behavioral  contexts.  Several  species  produce  feeding-associated

vocalizations, which compared to the elaborate reproductive song displays, are

generally much simpler in structure  (Cerchio & Dahlheim 2001, Oleson et al.

2007b, Širovi  et al. 2013a)ć . Fin, blue and right whales use frequency modulated

call-counter calls as contact calls to coordinate movement and maintain group

cohesion (Clark 1982, Oleson et al. 2007b, Širovi  et al. 2013a)ć . Finally, a variety

of variable social calls have been been described for most species (Oleson et al.

2007a, Dunlop et al. 2008, Stafford et al. 2008, Stimpert et al. 2011, Parks et al.

2011a). Despite growing knowledge on the function of certain types of baleen

whale vocalizations, there are still large gaps in our understanding of  even the
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most  basic parameters of baleen whale calling behavior. In many species the

concentration on studying prevalent types of vocalizations in particular habitats

has led to the neglect of other types of  vocalizations and the appreciation of

the full vocal repertoire. For example, although humpback whale song has been

studied in detail on breeding grounds in many different ocean basins (Payne &

McVay  1971,  Noad  et  al.  2000,  Cerchio  et  al.  2001),  only  recently  have

researchers begun to understand its extended presence on feeding grounds and

on migration (Charif et al. 2001, Noad & Cato 2007, Stimpert et al. 2012, Vu et

al. 2012) shown that, next to song, humpback whales produce a range of social

and feeding related vocalizations, which need to be taken into account, when

using PAM to infer seasonal presence of the species (Murray et al. 2013). This is

true for vocalizations of all species of baleen whales, most of which are much

less studied than the humpback whale.

Of the baleen whale species occurring in the North Atlantic, vocalizations

of sei, Bryde's and minke whales are the least well described  (Mellinger et al.

2000, Baumgartner et al. 2008, Širovi  et al. 2013b)ć . This lack of knowledge on

a widely distributed and still commercially exploited species such as the minke

whale was the impetus for a large part of this thesis. In Chapters III-V  I explore

the suitability of using passive acoustic monitoring (PAM) to better describe the

vocal  repertoire  of  North Atlantic  minke  whales  on migration (Chapter III  ),

show differential call usage and non-random combinations of different call types

(Chapter IV ) and use these vocalizations to investigate minke whale large-scale

seasonal  and  spatial  distribution  patterns  in  the  western  North  Atlantic

(Chapters III & V ). 

Marine  mammal  distribution  and  abundance  have  traditionally  been

monitored through visual sighting surveys  (Jewell et al. 2012, Kaschner et al.

2012).  However,  visual  methods  are  limited  when  monitoring  animals  that

spend a large proportion of their lives submerged under water (Borchers et al.

2013,  Thomson  et  al.  2013).  Visual  surveys  are  also  restricted  to  daytime

20



General Introduction

monitoring  and  dependent  on  good  weather  conditions.  In  addition,  visual

surveys are often spatially restricted to relatively coastal areas and thus can only

provide a snapshot of the true distribution, particularly of far-ranging species

such as baleen whales (Kaschner et al. 2012). As a result, knowledge on baleen

whale distribution and abundance during boreal winter is generally sparse (Best

et al. 2012). In  Chapter V of this thesis I show how large-scale networks of

acoustic  recording  units  can  be  used  to  investigate  migratory  routes  and

unknown winter habitat of an understudied species such as the minke whale.

With current technological advances, especially the increased lifetime of

batteries  and  enlarged  storage  capacity,  PAM  is  increasingly  being  used  to

augment visual surveys  (Clark et  al.  2010, Gerrodette et  al.  2011). This new

technology   is especially useful in remote areas, during nighttime or adverse

weather conditions  (Moore et al. 2006, Mellinger et al. 2007, Van Parijs et al.

2009).  PAM  can  provide  long-term  records  of  seasonal  occurrence  and

distribution patterns, providing valuable insights into how species utilize their

habitat and when they are present in coastal areas and hence at higher risk of

deleterious anthropogenic impacts  (Gallus et al. 2012, Mussoline et al. 2012).

Figure 4 (a) illustrates the increased temporal and spatial coverage of several 
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Figure 4. (a) Approximate temporal and spatial scales over which marine mammal 
survey data can be collected, comparing visual and acoustic techniques. (b) Location 
accuracy and number of individuals covered by different monitoring techniques. Figures 
courtesy D.K. Mellinger, reprinted from (Van Parijs et al. 2009).
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types of acoustic monitoring devices as compared to visual surveys. Figure 4 (b)

gives an overview of the number of individuals that can be monitored with the

various methods,  showing that  with their  higher spatial  resolution,  PAM can

generally  capture  more  individual  animals,  although  most  acoustic  methods

(with  the  exception  of  acoustic  recording  tags)  provide  a  lesser  amount  of

positional accuracy when compared to direct visual observation.

Despite the obvious advantages of PAM, there are limitations to this form of

monitoring also. Firstly, marine mammals need to be vocalizing in order to be

detected and therefore an absence of acoustic detections does not necessarily

equal an absence of the monitored species. Secondly, for most baleen whale

species  only  few  call  types  have  been  described  so  far  and  apart   from

vocalizations related to reproduction and a few exceptions (Oleson et al. 2007a,

Stimpert et al. 2007) behavioral context is largely missing. Related to behavioral

changes, calling rates are often variable and most vocalizations show distinct

seasonal and diel patterns of occurrence which vary with geographic location

(Chapter  V  ). Moreover, some call types are sex-specific and in those cases

PAM can catch only the part of the population, which produces the vocalization.

All of these  factors need to be taken into account when interpreting results

from PAM surveys. 

Overall,  the advantages of passive acoustic monitoring especially when

used in tandem with visual observations  (Barlow & Taylor 2005, Gerrodette et

al.  2011) are increasingly being recognized and efforts are made to address

data gaps concerning  the vocal  behavior of various species  (Van Parijs et  al.

2009). For example, it has been shown, that the monitoring of several call types

with variable functions at different times of year can improve accuracy of spatio-

temporal  distribution  patterns  obtained  by  means  of  passive  acoustic

monitoring  (PAM)  (Oleson  et  al.  2007b,  Širovi  et  al.  2013a)ć .  Another

convenience  of  PAM  is  that  data  can  be  collected  remotely  and  largely

independent of human observers. Also, data can be assembled opportunistically
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from a  variety of  different  platforms (Figure 4).  For  example,  widely  spaced

acoustic  monitoring  networks  such  as  the  array  data  from  the  IUSS  Sound

Surveillance System (SOSUS) deployed for military underwater surveillance have

been  used  to  investigate  seasonality  and  large-scale  distribution  of  baleen

whales in the North Pacific and Atlantic Oceans  (Stafford et al. 1998, Clark &

Gagnon 2004). 

Most data analyzed in this thesis (Chapters I-V, VII ) was collected as part of a

long-term ocean noise monitoring project (Clark et al. 2009, Hatch et al. 2012)
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Figure 5. Map of the Stellwagen Bank National Marine
Sanctuary (SBNMS) (grey shaded area). Symbols depict
locations  of  arrays  of  acoustic  recording  units
deployed from 2006-2010, which  have  been
analyzed for baleen whale presence  in  this  thesis.
Map projection: Mercator.
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in  the  Stellwagen  Bank  National  Marine  Sanctuary  (SBNMS),  located  in

Massachusetts  Bay,  USA (Figure  5).  For  3.5  years  passive  acoustic  data  was

collected almost continuously, using different configurations of acoustic arrays,

typically consisting of 10 individual recording units (Figures 5 & 6). In Chapter

II,  I  show  the  utility  of  such  long-term  data  for  obtaining  spatio-temporal

distribution patterns, including the assessment of migration timing for a range

of baleen whale species. 

Where detailed knowledge on the vocal behavior of species exists, PAM can be

used effectively in density estimations (Lewis et al. 2007, Marques et al. 2011).

These  data  can  be  essential  when  monitoring  population  status,  population

development or recovery, particularly of rare or endangered species  (Li et al.

2010, Gerrodette et al. 2011). However, several parameters need to be known in

order  to  convert  call  densities  to  estimates  of  animal  abundance,  the  most

important of which is a reliable estimate of cue rate (Marques et al. 2013).  The
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Figure 6. Yearly acoustic recording effort during 3.5 years of passive 
acoustic monitoring in the Stellwagen Bank National Marine Sanctuary 
(SBNMS).
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rate with which animals vocalize may vary with call type, depth, sex of calling

animal, behavioral state, season, location, group size and level of disturbance

(Croll et al. 2002, Oleson et al. 2007a, Parks et al. 2011a, Risch et al. 2012:

Chapter VII ). Thus, a better understanding of basic vocal behavior is necessary,

to use PAM beyond species detection. While some parameters such as absolute

calling rate can only be obtained through acoustic tag recordings or behavioral

focal follow studies  (Johnson et al.  2009, Parks et al. 2011a), some of these

parameters can be estimated by carefully analyzing small-scale acoustic array

data. In Chapters I & IV I show, how acoustic array recordings can be used to

localize and track individual animals, providing data on calling rates of vocally

active animals,  source levels (and following: estimates of minimum detection

distance) and call type usage. 

Apart from population monitoring, PAM data can be used for exploring

geographic  variability  in  vocalizations  (see  Chapter  V),  habitat  use  and

environmental  correlates  (Baumgartner  &  Fratantoni  2008,  Stafford  et  al.

2009) as well  as for  the study of behavior and the impact of anthropogenic

activities such as the introduction of underwater noise  (Di Iorio & Clark 2010,

Melcón et al. 2012). While monitoring the soundscape of  SBNMS in 2006, we

incidentally recorded an Ocean Acoustic  Waveguide Remote Sensing (OAWRS)

experiment,  which  was  carried  out  on  Georges  Bank,  in  the  Gulf  of  Maine,

roughly 200 km from our acoustic array location. Through careful analysis of

humpback whale song recordings, we were able to show a behavioral response

of  singing  humpback  whales  to  this  newly  introduced  low-frequency  sound

source (Chapter VII ). 

To date most passive acoustic monitoring of marine mammals has been

concentrated on a single species approach. However, animal vocalizations are

shaped by the biotic (including other vocal species) and abiotic environment that

surrounds  them.  This  concept  is  particularly  important  in  the  marine

environment, where species primarily live and interact in a world of sounds and
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the  visual  sense  plays  a  much  smaller  role  than  in  terrestrial  habitats.  The

acoustic ecology of a species, which describes the interactions of a species with

various environmental factors that shape its behavioral ecology through the use

and perception of sounds, is therefore important to consider (Clark et al. 2009,

Van Opzeeland & Miksis-Olds 2012). 

In terrestrial environments the idea of sound as an ecological property of

a landscape was first expressed by the Canadian composer R.M. Schafer (1977),

who in the early 1970ies established the World Soundscape Project  (WSP) to

record, characterize and preserve natural and urban soundscapes from around

the world. The terms  biophony to describe sounds made by living organisms

and  geophony  for  nonbiological  ambient  sounds,  which  together  create  all

natural  soundscapes,  where  first  introduced  by  (Krause  1987) and  can  be

extended by the term anthrophony for sounds made by humans (Pijanowski et

al.  2011a).  Since  these  early  works,  which  focused  on  the  study  of  natural

sounds  and  how  humans  relate  to  them,  soundscape  ecology  and  the

importance of protecting natural soundscapes has gotten  renewed attention in

recent  years  (see  special  issue  on  soundscape  ecology:  Pijanowski  &  Farina

2011). This new field of study is closely related to and has been proposed as a

branch of landscape ecology and sets out to describe and measure relationships

between biological,  geophysical  and anthropogenic  sounds  and their  spatio-

temporal variability (Pijanowski et al. 2011a). 

In the marine environment, recent concerns about the increasing impact

of  anthropogenic  noise,  particularly  of  far-reaching  and  ubiquitous  noise

sources such as global shipping traffic or seismic surveying (see the last part of

this  Introduction),  have  also  called  for  a  more  holistic  approach  to  monitor

marine  soundscapes,  and  away  from an  entirely  species-specific  monitoring

approach  (Clark  et  al.  2009,  Hatch  &  Fristrup  2009).  From  a  conservation

perspective  such  larger-scale  monitoring  is  fundamental  to  the  full

characterization of human noise sources and their spatio-temporal effects on
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the  marine  environment  including  marine  mammals  (Clark  et  al.  2009,

McWilliam & Hawkins 2013).  In addition,  the application of acoustic  indexes

(Farina et  al.  2011, Sueur et  al.  2012, Gasc et  al.  2013) for monitoring and

comparing species assemblages (rather than single species) at different sites

and their development over time, may help to manage and interpret the vast

amounts  of  acoustic  data  which  are  collected  during  long-term  acoustic

monitoring  projects  (Pijanowski  et  al.  2011b).  If  basic  properties  and
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Figure 7. Long-term spectrograms showing aggregated data for one week of low-
frequency sounds recorded in the Stellwagen Bank National Marine Sanctuary in 2009 
for (a) winter (December-February), (b) spring (March-May), (c) summer (June-August) 
and (c) fall (September-November). The red band at the bottom of panels (a),(b) and (d) 
represents acoustic energy of fin whale song, which is not present during summer (c). 
Spectrogram parameters: Fast Fourier Transform (FFT) size: 1024 pt, Sample rate (SR): 
2000 Hz, # of aggregated spectra: 200, Frequency resolution: 1.95 Hz, Time resolution: 
102.4 s.
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contributors  to  a  particular  habitat's  soundscape  are  understood,  long-term

spectrograms as shown in Figure 7 and acoustic  diversity indexes may thus

allow a quicker appreciation of possible changes in the overall health status of

marine  soundscapes.  In  Chapter  II of  this  thesis  I  employ  species-specific

detectors to describe seasonal changes in the low-frequency soundscape of the

Stellwagen Bank National Marine Sanctuary (SBNMS), driven by the presence of

different migratory marine mammals species. In the future, these data will be

compared to new approaches such as acoustic diversity indexes (Pieretti et al.

2011,  Sueur  et  al.  2012) in order  to explore their  feasibility  for  monitoring

multi-species presence and temporal changes in marine soundscapes.

28



General Introduction

One of the smallest: The minke whale 

          A group of Antarctic minke whales surfacing near the Antarctic peninsula                         

Photo: Ari M. Friedlaender

1 General Biology

Although minke whales are one of the most common and widely distributed

large  whale  species,  often  found  in  coastal  waters  during  summer,  most

populations  have  been  surprisingly  little  studied.  A  true  cosmopolitan,  the

species can be found in all oceans, inhabiting tropical as well as polar and even

ice-covered  habitats  (Scheidat  et  al.  2011).  The  common  minke  whale

(Balaenoptera acutorostrata)  is a sister species to the Antarctic minke whale

(Balaenoptera bonaerensis). For the common minke whale three subspecies have

been  suggested:   Balaenoptera  acutorostrata  acutorostrata  in  the  North

Atlantic, Balaenoptera acutorostrata scammoni   in the North Pacific  and the

dwarf minke whale, unnamed subspecies, in the Southern hemisphere (Reilly et
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al. 2008a). The exact placement of the dwarf minke whale is still unclear but

genetic evidence suggests the existence of at least two different populations in

the Southern Hemisphere,  one in the western South Atlantic  linking animals

from Brazil,  Chile and the Antarctic Peninsula, and one in the western South

Pacific. The same study also found, that North Atlantic minke whales were more

closely related to South Atlantic dwarf minke whales, than either are with dwarf

minke whales from the South Pacific, indicating that the Southern hemisphere

sub-species status of common minke whales needs to be revised (Pastene et al.

2010).

The  smallest  of  the  balaenopterid  whales,  minke  whales  are  typically

about 10 meters in size. A clearly defined white band on the pectoral flipper

distinguishes the North Atlantic from the North Pacific subspecies, where this

feature is less pronounced. In dwarf minke whales this patch extends into the

shoulder region, and it is mostly absent in Antarctic minke whales. While in the

Southern Hemisphere their diet consists primarily of krill (Euphausiids),  small

schooling  fish  such  as  capelin  (Mallotus  villosus),  herring  (Clupea  spp.)  and

sandeel (Ammodytes spp.) are the preferred prey in the Northern hemisphere,

although krill  is  taken,  when abundant  (Macleod et  al.  2004,  de Boer 2010,

Anderwald et  al.  2012a).  Minke whales also appear to adjust  to seasonal  or

regional differences in prey distribution  (Anderwald et al. 2012a).  During the

summer feeding period their occurrence is closely related to the distribution of

their  prey  (Macleod  et  al.  2004,  Robinson  et  al.  2009,  de  Boer  2010) and

individual animals may show highly specialized feeding strategies and strong

site fidelity (Dorsey 1983, Kuker et al. 2005).  Around the west coast of Scotland

minke whales are commonly observed in association with seabirds feeding on

the  same prey  (Anderwald et  al.  2012b).  Minke  whales  are  typically  sighted

alone or in small groups and though inconspicuous in most areas, dwarf minke

whales wintering at the Great Barrier Reef, Australia,  are very inquisitive and

regularly approach humans, leading to a vessel-based swim-with  industry in the

area with potentially adverse impacts to the animals (Mangott et al. 2011). With
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the exception of the population inhabiting the Sea of Japan, which breeds in the

fall, conception and birth seem to occur in winter (Reilly et al. 2008a)

2 Distribution & abundance

Minke whales occur widely throughout all ocean basins. In the North Atlantic

they range from Baffin Bay to the Caribbean in the Northwestern Atlantic and

from the Barents Sea to the West African continental shelf in the Northeastern

Atlantic  (van Waerebeek et al. 1999, Reilly al. 2008a). While there is evidence

that North Atlantic minke whales undergo seasonal  migrations between high

and low latitudes (Mitchell 1991, van Waerebeek et al. 1999, Skaug et al. 2004,

Víkingsson  &  Heide-Jørgensen  2013),  some  individuals  may  also  stay  in

temperate  waters  year-round  (Macleod et  al.  2004).  Migrations  in  the  North

Atlantic seem to be segregated by sex, with females arriving earlier on northern

feeding  grounds  and  preferring  higher  latitudes  (Laidre  et  al.  2009).  In  the

eastern  North  Pacific  acoustic  recordings  suggest  migratory  movements

between Hawaii and the Chukchi Sea  (Delarue et  al.  2013),  and a northward

migration in summer has also been suggested for  the western North Pacific

(Reilly et al. 2008a). Some degree of sex segreation can also be observed in the

western North Pacific, with females being found in more coastal areas, while

especially  immature males  are found further  offshore  (Wade et  al.  2010).  In

addition, similar to North Atlantic minke whales, a year-round population may

exist off California in the eastern North Pacific. Dwarf minke whales in the South

Atlantic seem to migrate between Brazil and the Antarctic Peninsula (Acevedo et

al.  2010).  In  general,  there  is  very  little  knowledge  on  minke  whale  winter

distributions in  any ocean basin,  which is  likely  due  to a  primarily  offshore

distribution of the species in tropical waters near the equator at this time of

year  (Mitchell 1991, Felix & Haase 2013, Víkingsson & Heide-Jørgensen 2013).

There is  also evidence that  parts of  Antarctic  as well  as dwarf  minke whale

populations may stay in polar waters year-round (Acevedo et al. 2010, Chapter
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VI  ).  In  Chapter V of  this  thesis I  confirm seasonal migratory movement  of

minke whales in the western North Atlantic and an offshore distribution of the

species during boreal winter. The identification of the Antarctic minke whale as

the  source  of  the  mysterious  bioduck  signal  in  Chapter  VI,  confirms  the

presence of Antarctic minke whales in tropical Australian, as well as Antarctic

waters  during austral  winter  (McCauley 2004,  Van Opzeeland 2010),  adding

further  support  to  the  idea,  that  not  all  individuals  of  a  given  population

undertake yearly migrations. 

Due  to  large-scale  exploitation  by  whaling,  several  baleen  whale

populations are among the most critically endangered marine mammals in the

world today (Baker & Clapham 2004). Due to its small size and fast movements,

minke whales became a target of industrial whaling operations only after the

demise of the larger whale species in the early 1970ies (Horwood 1990). Today,

commercial and scientific whaling for this species still continues in the North

Pacific, North Atlantic and in Antarctic waters.  In the North Atlantic, common

minke whales are currently listed as a species of least concern under the IUCN

Red List (Reilly et al. 2008a). Latest 'best' estimates by the International Whaling

Commission (IWC) for  the eastern North Atlantic  are 81,000; 40,000 for  the

Central  Atlantic and 17,000 for West Greenland (www.iwcoffice.org, accessed

October 1st, 2013).  Current estimates for the North American east coast  are

8,987  (CV=0.32)  individuals  (Waring  et  al.  2007).  Anderwald  et  al.

(2011) suggest  that  there may be  two separate breeding populations in the

North Atlantic. However to date, no breeding grounds have been identified. In

Chapter V of this thesis I show how acoustics may help to identify important

winter habitat for this species, where more directed genetic sampling may be

possible in the future to resolve this important question with respect to minke

whale population structure in the North Atlantic. 

While abundance of minke whales in the eastern North Pacific has only

been assessed for parts of the US coast  (Reilly et al.  2008a),  in the western
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North Pacific at least two sub-populations are currently distinguished. While the

sub-population, called 'J-stock' inhabits the Yellow Sea, East China Sea and the

Sea of Japan, 'O-stock' inhabits more offshore waters of the Northwest Pacific

and the Okhotsk Sea (Kato 1992). There has been concern and debate within the

IWC  about  the  status  of  'J-stock',  which  next  to  being  targeted  by  whaling

operations,  is  also  by-caught  in  fishing  gear  in  considerable  numbers

(>200/year;  Reilly  et  al.  2008a).  The  Convention  on  International  Trade  in

Endangered Species (CITES) currently lists all common minke whale populations

under Appendix I (threatened with extinction), with the exception of the West

Greenland stock, which is listed under Appendix II (not currently threatened but

trade needs to be strictly regulated). 

Antarctic minke whales are listed as data deficient under the IUCN Red

list and under Appendix I of CITES (Reilly et al. 2008b). There are currently no

agreed upon abundance estimates for this species. While it has been suggested,

that the species increased in population size after the decline of other large

whales species due to extensive whaling operations in the Southern Ocean (Mori

& Butterworth 2006), this claim has been discounted based on genetic analyses

showing  that  current  numbers  are  at  or  below  hypothesized  historical

population sizes  (Ruegg et al. 2010). In addition, the most recent circumpolar

population  surveys  suggested  a  dramatic  decline  of  the  species  (Branch  &

Butterworth 2001). However, the reasons for and the extent of this apparent

downward shift in abundance are a subject of considerable debate within the

IWC. The abundance  of the dwarf  form of the minke  whale  in the Southern

Ocean  has  not  been  assessed  to  date  since  most  sighting  surveys  do  not

distinguish it from the Antarctic minke whale at sea (Reilly et al. 2008a).

In addition to direct  hunts,  minke whales in all  oceans are subject  to

indirect takes in fisheries  (Benjamins et al. 2011) and exposed to a variety of

other  threats,  including ship-strike,  chemical  and noise  pollution,  as  well  as

degradation and loss of habitat (Halpern et al. 2008, Davidson et al. 2012).
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Figure 8. Spectrograms of known minke whale vocalizations from different ocean 
basins. (a) North Atlantic slow-down pulse trains, (b) North Pacific boing vocalization, 
(c) Australian dwarf minke whale 'star wars' vocalization, (d) Antactic bioduck, (e) 
Antarctic downsweeps.Note different time and frequency scales. Spectrogram 
parameters: (a) Fast Fourier Transform (FFT) = 1024 pt, overlap (ovlp) = 75%, 
samplerate (SR) = 2000 Hz: frequency resolution (FR) = 1.9 Hz, time resolution (TR) = 
128 ms; (b) FFT = 512 pt, ovlp = 75%, SR = 8000 Hz: FR = 15.6 Hz, TR = 16 ms; (c) 
FFT = 512 pt, ovlp = 75%, SR = 16,000 Hz: FR =  31.5 Hz, TR = 8 ms; (d) FFT = 1024 
pt, ovlp = 75%, SR = 4000 Hz: FR = 3.9 Hz, TR = 64 ms; (e) FFT = 4096 pt, ovlp = 75%,
SR = 25,811 Hz: FR = 6.3 Hz, TR = 39 ms.
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3 Acoustic behaviour of minke whales

Although  their  acoustic  behavior  has  little  been  studied,  minke  whales  are

known  to  produce  a  variety  of  sounds  across  their  geographic  range.  For

example, low-frequency downsweeps, higher frequency clicks and a variety of

other sounds have been reported from the Antarctic  (Schevill & Watkins 1972,

Leatherwood et al. 1981). More recently, Rankin & Barlow (2005) attributed the

North Pacific 'boing' sounds to this species and Gedamke et al. (2001) described

the distinct 'star wars' vocalization, produced by Australian dwarf minke whales

(Figure 8). In the North Atlantic, Beamish & Mitchell (1973) attributed series of

clicks in the 5-6 kHz range to this species and  Edds-Walton (2000) recorded

frequency-modulated  downsweeps  (118-80  Hz)  in  the  Gulf  of  St  Lawrence,

Canada. Finally, in the Caribbean,  Winn & Perkins (1976) and  Mellinger et al.

(2000) recorded low-frequency pulse trains with varying Inter-pulse interval (IPI)

structure.  The  distribution  of  these  different  types  of  signals  in  different

habitats and their functional significance in the minke whale acoustic ecology is

largely  unknown.  This  lack  of  knowledge of  basic  parameters  of  the  minke

whale vocal behavior inspired the idea to focus a large part of this thesis on the

investigation of minke whale vocalizations. For example, in Chapters III and V

of this thesis I explore seasonal and diel distribution patterns of North Atlantic

minke whale pulse trains (Figure 8 a) and suggest, that they may serve as a male

reproductive signal. This hypothesis is based on their increased occurrence at

winter breeding grounds and absence from some female dominated northern

feeding areas (Chapter V ). However, more research is needed to conclusively

confirm this hypothesis. In  Chapter IV  I show, that individual North Atlantic

minke whales combine different types of pulse trains in non-random ways, but

again the behavioral significance of these call sequences and whether they are

produced in different  habitat areas is unknown. Although some sounds of the

Antarctic minke whale have been described since the 1970ies, it has long been

hypothesized, that the mysterious 'bioduck signal', which has been recorded in
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the  Southern  Ocean for  decades,  may  be  produced  by  this  species  also.  In

Chapter VI I  analyzed the first acoustic tag recordings from Antarctic minke

whales and show the production of low-frequency downsweeps (Figure 8 e), as

well as the bioduck signal by this species (Figure 8 d). 

Increasing ocean noise: impacts on marine mammals

1 Sources of anthropogenic noise                                                    

Over  the  last  decade  anthropogenic  ocean noise  and its  impacts  on  marine

mammals have received increased awareness from scientists, conservationists

and the general public alike. As outlined at the beginning of this Introduction,

sound  is  the  main  modality  with  which  marine  mammals  communicate,

socialize, navigate, as well as find and handle prey. Sources of anthropogenic

noise or the anthrophony of the marine soundscape are numerous and include

underwater  explosion  (Finneran  et  al.  2000),  construction  and  pile  driving

(Madsen et  al.  2006),  acoustic  deterrent  devices  (Morton  & Symonds  2002),

scientific and military sonar systems (Frantzis 1998, Frankel & Clark 2000, Risch

et al. 2012: Chapter VII ), as well as seismic airguns used in probing for oil and

gas  (Di  Iorio  & Clark 2010) and shipping  (Hatch et  al.  2008).  Although the

effects of noise on marine mammals have been recognized for over 40 years,

concerns have been publicized more widely with the events of  several  mass

strandings  of  marine  mammals  in  relation  to  low-,  and mid-frequency  Navy

sonar operations over the past 20 years (Frantzis 1998, Cox et al. 2006). These

acute events with often lethal outcome have spurred a lot of research  on the

risks, extent and mechanisms behind anthropogenic noise pollution (Melcón et

al. 2012, DeRuiter et al. 2013, Goldbogen et al. 2013). 
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Impacts of other acute sources such as  seismic airgun surveys have also been

assessed  (DeRuiter et al.  2006, Castellote et al.  2012, Heide-Jørgensen et al.

2013).  In  some  areas  noise  from  seismic  surveys  has  become  so  prolific

however,  that  it  can  be  considered a  chronic  noise  source,  adding  to other

ubiquitous,  low-frequency  noise  sources  such  as  global  shipping.  With most

attention focused on  describing  and managing acute  sources  of  noise,  only

recently  have  chronic  sources  of  noise  and  their  large-scale  impact  on  the
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marine environment  started to be considered, but  to date these have hardly

been  incorporated  into  management  frameworks  (Ellison  et  al.  2011).  With

increasing numbers and size of commercial ships and tankers (Figure 9 a) and

associated radiated noise, measurements in the North Pacific have shown, that

low-frequency background noise has approximately doubled in each of the past

four  decades  (Andrew et  al.  2002,  2011,  McDonald  et  al.  2006).  In  highly

trafficked and developed coastal areas, that overlap with feeding areas and/or

migration routes of endangered marine mammals the problem of chronic noise

pollution  is  of  particular  concern.  The  Stellwagen  Bank  National  Marine

Sanctuary  (SBNMS)  is  located  just  outside  the  busy  port  of  Boston,

Massachusettes, USA. Figure 9 b illustrates, the intensity of commercial shipping

tracked  by  the  US  Coastguard's  Automatic  Identification  System (AIS),  criss-

crossing this urban sanctuary every month. Shipping noise in SBNMS has been

quantified to be at levels of high concern to marine mammals residing in these

waters  (Hatch  et  al.  2008).  This  concern  initiated  a  long-term ocean  noise

project  to determine the contribution of shipping traffic  to the overall  noise

budget of the sanctuary and estimate the effects of such chronic noise exposure

on marine mammals in terms of communication masking  (Clark et  al.  2009,

Hatch et al. 2012). Most of the data analyzed in this thesis has been collected as

part of this larger ocean noise project and the identification and characterization

of  seasonal  and  diel  distribution  patterns  of  marine  mammals  in  this  area

(Chapters II, III ) is an integral part towards the larger goals of this project. 

2 Overview of impacts of noise on marine mammals

Anthropogenic  noise  can  affect  marine  mammals  in  many  different  ways.

Possible effects include lethal injuries, short-, or long-term hearing damage, and

the  disruption  of  normal  behavior,  including  feeding,  mating  and

communication  (Southall  et  al.  2007,  Nowacek  et  al.  2007).  Disruption  of

communication behavior may include signal modifications, for example changes
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to signal duration, frequency or amplitude (Foote et al. 2004, Parks et al. 2007,

Parks  et  al.  2011b),  as  well  as  changes  in  signal  usage,  repetition,  or  the

cessation of signaling (Rendell & Gordon 1999, McCarthy et al. 2011). Changes

in  communication  behavior  have  been  demonstrated  across  several  baleen

whale species and in response to various noise sources  (Croll et al. 2001, Di

Iorio & Clark 2010). Traditionally, effects of noise have been assessed based on

the 'zones of impact' concept  (Richardson et al. 1995). This concept describes

the severity of noise exposure effects as concentric regions around a noise 
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Figure 10. (a) Disturbance can range from acute to chronic 
with a range of responses from startle response to masking.
(b) the severity of a noise impact is not just dependent on 
amplitude, but also depends on the temporal and frequency
features of the stimulus. Figure reprinted from (Francis & 
Barber 2013).
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source with effects diminishing with increasing spatial distance from the source.

While this concept may help to visualize impacts of acute noise exposure, it fails

to address questions of cumulative impact of ubiquitous chronic noise without a

single source. In addition, this rather simplistic model is focusing entirely on the

amplitude of a sound source, ignoring many other  important factors, such as

temporal predictability and persistence, behavioral context, novelty of a sound

or frequency overlap with biologically important signals (Figure 10, Ellison et al.

2011, Francis & Barber 2013). In Chapter VII of this thesis I show the reduction

of humpback whale song in response to a new kind of active fisheries sonar

roughly 200 km distant. Although received levels in our recording area were just

above background noise, whales changed their vocal behavior in response to

this new stimulus, which showed similar time and frequency characteristics to

their own signals. This study thus emphasizes the importance to consider other

factors than just absolute received levels when studying noise impacts, since

taking  these  into  account,  may  reveal  potentially  important  impacts  that

otherwise  would  be  missed.  New  frameworks  to  assess  and  manage

anthropogenic  noise  based on  these  more  holistic  approaches  have  recently

been suggested for  terrestrial  as well  as marine  environments  (Ellison et  al.

2011, Francis & Barber 2013). In addition, the importance of considering chronic

impacts of anthropogenic noise, such as the long-term effects of baleen whale

vocalization masking (Figure 11) for example by shipping noise, is increasingly

being recognized (Southall 2005, Hatch et al. 2008, Clark et al. 2009). Acoustic

masking  may  act  in  a  range  of  different  ways,  including  the  reduction  of

communication  space,  and  the  space  over  which  important  prey  can  be

detected, as well as increasing annoyance levels and inducing anxiety and stress

(Rolland et al. 2012). These responses to noise that are not always obvious or

direct and easily measurable, may nonetheless carry severe direct  or indirect

costs to an animal's fitness, with possible subsequent population level effects

(Wright et al. 2007, Francis & Barber 2013). 

In conclusion, there is a clear need to better characterize anthropogenic
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noise sources, both as single sources, as well as with respect to their cumulative

and spatio-temporal variability in the marine environment. This is underlined by

recent  efforts  led  by  the  National  Oceanographic  and  Atmospheric

Administration (NOAA) of  the US,  to quantify ocean noise budgets and map

large-scale  distributions  of  potentially  impacted  species  and  population

(www.cetsound.noaa.gov).  In  addition,  future  research  on  the  impact  of

anthropogenic noise on marine mammals needs to be placed in a more holistic

framework, considering not only acute and highly visible impacts such as injury

or habitat abandonment, but also lower level and longer-term effects, such as

vocalization  masking  and  health  effects  in  relation  to  stress  and  chronic

exposure.
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Figure 11. Acoustic footprints produced by (a) calling minke whales, (b) 
fishing, (c) whale watching vessels and (d) large tankers during one week 
in fall 2009 in the Stellwagen Bank National Marine Sanctuary. Panel (e) 
shows the combined footprint of minke whale calls, vessels and ambient 
noise, giving a snap shot illustration of the extent to which minke whale 
calls are masked by each of the contributing noise layers.

http://www.cetsound.noaa.gov/
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Thesis aims & outline

This thesis aims to achieve a better understanding of aspects of the acoustic

ecology of baleen whales, in order to improve the feasibility of using passive

acoustic  monitoring  to  obtain  data  on  their  seasonal  distribution  and

abundance. Such data is of major importance for conservation and management

of these far ranging species, that are difficult to survey with other means. In

addition, acoustic monitoring can also help to investigate impacts of increasing

anthropogenic noise pollution, a topic of vital importance for marine mammals,

which use sound as their main sensory modality.  As part  of a larger project

aimed at characterizing the marine acoustic environment and the health of an

urbanized,  yet  ecologically  important  marine  region,  the  Stellwagen  Bank

National Marine Sanctuary (SBNMS), this thesis uses passive acoustic array data

to investigate baleen whale acoustic ecology in this region and beyond, with a

particular focus on the acoustic behavior of minke whales. 

Chapter I 

In order to use passive  acoustic  monitoring for  marine mammals effectively,

several parameters about a species' vocal behavior need to be known. In this

first chapter we investigated new methodologies for using stationary and towed

passive acoustic array data to address questions of animal abundance, behavior

and occurrence. In particular, we show how passive acoustic arrays can be used

to localize animals in 2D and 3D and how this data can be used to improve

knowledge on call source levels, rates, depths and detectability as derived from

these parameters. 

Chapter II

In this chapter I used a multi-species detection approach to investigate the low-

frequency  component  of  the  seasonally  changing  biotic  component  of  the

Stellwagen Bank National Marine Sanctuary (SBNMS) noise budget. I investigated

the stability of seasonal patterns of blue, fin, sei and right whale vocalizations in
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SBNMS across 3.5 years to evaluate the importance of this area as a migratory

pathway  and/or  seasonal  feeding  ground  for  these  four  species.  This

manuscript is in an early phase of preparation and further analyses will involve

the evaluation of diel  patterns for  all  species.  In addition,  seasonal and diel

patterns  as  assessed  with  the  automated detector,  will  be  compared to  the

experimental application of acoustic diversity indexes, in order to evaluate the

usefulness of such new measures for  assessing temporal  changes in species

diversity of a marine soundscape. 

Chapter III-V

Little  is  known about  the vocal  behavior  of  North Atlantic  minke  whales.  In

chapters III & IV I used passive acoustic recordings from Massachusetts Bay to

identify and describe different types of minke whale pulse trains, evaluate their

relative occurrence and explore seasonal and diel patterns using an automated

detector.  In  addition,  minke  whales  were  acoustically  tracked,  in  order  to

estimate  movement  parameters,  source  levels  and  individual  calling  rates.

Acoustic tracking data was used further to investigate repertoire usage and call

type combinations on the level of the individual. In chapter V I use year-long

recordings from different sites from across the North Atlantic Ocean to explore

possible migration routes and winter  distribution of minke whales based on

their acoustic presence. In addition, I explored geographic differences in signal

structure and diel patterns for the Northwest Atlantic Ocean. 

Chapter VI

For decades, the regular pulsed 'bioduck' signal (Matthews et al. 2004) has been

recorded  in  the  Southern  Ocean,  but  the  animal  producing  this  mysterious

sound has remained unknown. In this chapter I  analyzed data from the first

multi-sensor  acoustic  tags attached to Antarctic  minke whales (Balaenoptera

bonaerensis),  to explore the possibility that this species is the source of the

bioduck signal, as has long been suggested.
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Chapter VII

In fall 2006 acoustic recorders deployed in the Stellwagen Bank National Marine

Sanctuary  (SBNMS)  low-frequency  pulses  produced  by  an  Ocean  Acoustic

Waveguide Remote Sensing (OAWRS) experiment,  roughly 200 km distant  on

Georges Bank during an experiment to image herring shoals over ecosystem

scales (Makris et al. 2006). In this chapter we investigated the effect of OAWRS

signals on the occurrence of humpback whale song recorded in  SBNMS at the

time of the Georges Bank experiment. In addition to the 2006 data, we collected

recordings from approximately the same place, and at the same time, in 2008

and 2009, two years when an OAWRS experiment  was not  conducted.  Thus,

despite having what was initially observational data, we configured a design that

allowed us to make planned comparisons from our data. 
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CHAPTER 6 

Methods for passive acoustic tracking of marine 

mammals: estimating calling rates, depths and 

detection probability for density estimation 

Danielle CHOLEWIAK, Denise RISCH, 
Robert VALTIERRA, and Sofie M. VAN PARIJS 

1. Introduction 

Anthropogenic activities and their impacts on marine ecosystems are 
steadily becoming an issue of global concern.  From fisheries interactions 
to pollution, shipping and habitat degradation, human activities are 
driving ecosystem changes and are increasingly threatening the existence 
of numerous marine species (Davidson et al., 2012; Halpern et al., 2007; 
Kappel, 2005; Read, 2008). For scientists working within a management 
framework, effective and efficient means for assessing species 
distribution, abundance and their risk of impact by anthropogenic threats 
is of critical importance. Government agencies, such as the National 
Oceanic and Atmospheric Administration (NOAA) in the U.S., include 
within their mission the conservation, protection and recovery of marine 
species. This incorporates the evaluation of marine mammal abundance 
and occurrence, assessing the effects of sound on acoustic 
communication, hearing and behavior, monitoring interactions with 
fisheries, and evaluating the risk of vessel interactions (i.e. ship strikes). 

Passive acoustic approaches for studying marine animal populations have 
expanded substantially in both depth and breadth over the past decade. 
Advances in hardware and software are now mature enough to allow data 
collection in remote areas as well as for species that are difficult to access 
using conventional approaches. More recently, new theoretical 
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methodologies applied to acoustic data provide insightful ways of 
approaching large-scale ecological questions.  These range from 
approaches that demonstrate the use of acoustic indices for monitoring 
biodiversity and species richness, to modeling (Clark et al., 2009) and 
measuring the effects of anthropogenic activities on marine animals. In 
this light, the use of passive acoustic methodologies to describe animal 
distribution, abundance and behavior are increasingly being recognized as 
a tool not only for basic research, but with clear applications for 
monitoring and mitigation to inform management and conservation 
strategies. 

For management and research focused on cetaceans, surveys have 
traditionally been conducted visually, from either vessel or aerial 
platforms. However, it is recognized that these methodologies are 
affected by limitations in sighting conditions, particularly daylight and 
weather, as well as the amount of time the animals spend at the surface 
(i.e. 'sighting bias') (Clark et al., 2010).  Recent passive acoustic studies 
have shown the extended occurrence and persistence of species beyond 
seasons and regions where they were previously documented through 
visual surveys (Morano et al., 2012; Mussoline et al., 2012; Vu et al., 
2012). Therefore, it is becoming evident that whenever passive acoustic 
monitoring is applied to a region, the results show greater occurrence and 
persistence of species compared with visual survey data. These studies 
clearly demonstrate the fact that we are currently not collecting data in a 
way that fully describes the actual distribution, occurrence and abundance 
of marine mammals.  

To enable managers and regulators to use passive acoustic monitoring 
effectively, either alone or in combination with visual surveys, several 
levels of acoustic information are needed.  Characterization of species-
specific call features in different contexts are necessary for baseline 
monitoring of seasonal and spatial species occurrence. Additionally, 
information on animal depth is important, as both the range over which 
vocalizations are detected, and the impacts to animals from 
anthropogenic activities may be heavily dependent on their location 
within the water column (Stafford et al., 2007; Thode, 2005; Vaage and 
Ursin, 1987). 

Although still a young field, developments in statistical methodologies 
are enabling the incorporation of acoustic data into models to calculate 
animal density and abundance (Dawson and Efford, 2009; Efford et al., 
2009). Marques et al. (2012) summarize the significant advances that are 
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currently being made in the field of density estimation from passive 
acoustics. Their review highlights the essential need for baseline data on 
vocalization rates and group sizes in different behavioral contexts, by sex 
and age class, as well as the importance of collecting these data on 
different seasonal and spatial scales. These data are extremely scarce for 
most species. While the increasing availability of technologies such as 
digital recording tags has allowed for expanded studies that can provide 
information on individual calling rates, depth and underwater behavior 
(Baird et al., 2006; Oleson, Calambokidis, Burgess, et al., 2007; Parks et 

al., 2011; Wiley et al., 2011), the use of this technology is often 
constrained by cost, feasibility and effort needed to obtain adequate 
sample sizes. However, with the proliferation of fixed and towed 
hydrophone data, and new techniques for two- and three-dimensional 
localization and acoustic tracking, we have the opportunity to collect 
information that addresses these existing data gaps. 

At NOAA's Northeast Fisheries Science Center, the Passive Acoustic 
Research Group is primarily working on collecting acoustic data in the 
western North Atlantic Ocean using a variety of fixed and mobile 
platforms. This work is focused on the acoustic ecology of marine 
mammals. We are part of a larger network of scientists conducting 
acoustic research throughout NOAA. Across the local, regional and 
federal government levels within the U.S., there is growing recognition 
that passive acoustic research is a vital component of future management 
strategies, however direct investment in research and infrastructure from 
NOAA is still lacking.  Our work ties together long-term monitoring of 
marine species and mitigation of anthropogenic threats. Ultimately, our 
aim for these data is to improve broader marine management and 
conservation strategies. 

In this chapter we present several pertinent approaches in analyses of 
passive acoustic data and discuss how they can improve our current 
modus operandi. We highlight two cases studies or 'applications', using 
data collected with both a towed array and bottom-mounted recorders. 
We demonstrate how these data can be used to address questions about 
animal abundance, behavior and occurrence. In turn, we discuss how this 
information can be applied to improving marine mammal management 
approaches for long-term occurrence, stock assessment and ship strike 
avoidance.  
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2. Application 1: Using acoustic arrays to create 2-D and 3-D 

tracks of North Atlantic right whales 

Photo credit: Peter Duley / NOAA / NEFSC 

Due to past exploitation and continuing pressure as a result of human-
caused mortality, such as vessel strikes and entanglements, the North 
Atlantic right whale (Eubalaena glacialis) is one of the most critically 
endangered baleen whale species worldwide (Kraus et al., 2005). 
Although for the past two decades monitoring and management of this 
species have relied primarily on visual survey methodologies (Fujiwara 
and Caswell, 2001; Kraus, 1990) in recent years advances in technology 
and analysis tools have resulted in a wider appreciation of the use of 
passive acoustic monitoring (PAM) to augment traditional visual surveys 
and management frameworks (Van Parijs et al., 2009). 

Several studies have investigated the vocal behavior of North Atlantic 
right whales (Mellinger, 2004; Morano et al., 2012; Mussoline et al., 
2012; Vanderlaan et al., 2003). The two main call types produced by this 
species are 'up-calls', which are believed to serve as social contact calls 
and 'gunshot sounds', used in reproductive advertisement (Parks and 
Tyack, 2005; Parks et al., 2005). A few studies have started to investigate 
individual right whale vocal behavior to assess acoustic parameters such 
as calling rate, depth, temporal trends in vocalizations, as well as the 
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frequency of occurrence of different call types. These data have been 
collected in short-term behavioral studies using a combination of 
dedicated focal follow approaches and the use of new technologies such 
as short-term recording tags (Matthews et al., 2001; Parks et al., 2011b). 
However, these approaches are generally both costly as well as limited in 
terms of sample size. 

Since vocal behavior can be highly variable as a function of behavioral 
state, sex and age-class, and can vary by season and region (Van Parijs et 

al., 2009; Parks and Tyack, 2005; Parks et al., 2005), it is essential to 
collect data on right whale acoustic behavior on larger spatial and 
temporal scales, as well as across more individuals in order to better 
understand the detectability of right whales for passive acoustic 
monitoring applications. Longer term data sets collected with passive 
acoustic arrays and new analysis tools for detection and localization 
could help to start fill these gaps (Parks et al., 2012a). In addition, these 
data can provide valuable baseline information in relation to ship-strike 
management and mitigation of other anthropogenic impacts such as noise 
(Parks et al., 2011a, 2012b). 

In this case study, we use a one-hour time series of PAM data and apply 
the 2-D localization method used by Parks et al. (2012), to demonstrate 
its feasibility for analyzing tracks of vocalizing right whales, as well as 
determine calling rates and other parameters of right whale calling 
behavior. In addition, we also provide background demonstrating a new 
method for 3-D localization and apply this technique for depth estimation 
of calling right whales using a single recording unit. 

2.1 Methods 

2.1.1 Data collection 

Acoustic recordings of North Atlantic right whales were collected using 
an array of ten bottom-mounted archival recording units (MARUs) 
(Calupca et al., 2000). The array used for this application was placed in 
the southwest corner of the Stellwagen Bank National Marine Sanctuary 
(SBNMS) from March 28th to May 27th 2009 (fig. 1). This array forms 
part of a longer term near continuous data collection effort from 2006 to 
2011 throughout SBNMS. For this effort, ten MARUs were placed for 3 
month periods in areas with high baleen whale densities (see 
http://www.nefsc.noaa.gov/psb/acoustics/psbAcousticDeployments.html). 
SBNMS and Cape Cod Bay are well-known spring feeding habitats for 
North Atlantic right whales (Mussoline et al., 2012; Pendleton et al., 
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2012). Individual MARUs were spaced 3 nautical miles apart and placed 
in depths ranging from 28 to 82 m. The HTI-94-SSQ hydrophone of each 
MARU had a sensitivity of -168 dB re 1 V/�Pa and was connected to a 
23.5 dB preamplifier. The frequency response was flat (±1 dB) over the 
10-585 Hz frequency range. MARUs were programmed to record 
continuously at a sampling rate of 2000 Hz with 12-bit resolution. 

Figure 1: Map of the study region, north of Cape Cod, MA, USA. The white line 
indicates the Stellwagen Bank National Marine Sanctuary (SBNMS). Dots 

represent locations of marine autonomous recordings units (MARUs) and the 
yellow shaded area indicates the subarea plotted in Figure 6. 

2.1.2 Two-Dimensional Tracking 

For this study, the MARU recordings from the array mentioned above 
were time-synchronized and compiled into 10-channel data files. The 
Matlab-based (2010a, The MathWorks, Natick, MA, USA) sound 
analysis software XBAT (Figueroa and Robbins, 2008) was used for 
acoustic analysis and spectrogram generation (Hanning window, 1024 pt 
FFT). Right whale up-calls were detected by visual inspection of 
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spectrograms and listening to sound files. One hour of data was selected 
for detailed analysis. Selection was based on review of the signal arrival 
patterns indicating the presence of clear, locatable right whale up-calls 
(Parks and Tyack, 2005), as well as the close proximity of several vocally 
active individuals to at least one recording unit.  Three individual right 
whales were tracked for this analysis. 
A two-dimensional (x, y) position was computed for each selection using 
the correlation sum location estimation (CSE) tool developed for XBAT 
(Cortopassi and Fristrup, 2005). The CSE algorithm calculates the sum of 
waveform cross-correlation values across all selected channel pairs for a 
grid of spatial points. The candidate location at which these values are 
maximized is selected as the most likely location. This method appears to 
be more robust to background noise than traditional localization methods 
that are based on hyperbolic fixing and rely on correlation peak picking. 
Each location was reviewed to ensure that the correct call was selected on 
all channels and that the estimated location agreed with observed arrival 
patterns across channels. Incorrect selections or location estimates were 
eliminated from the localization dataset. 
A calibration experiment was conducted to empirically determine the 
localization error with this array configuration. 47 frequency-modulated 
tones were played at five known locations and depths within the array. 
Locations of these events were estimated using the CSE tool and location 
error in meters was calculated by subtracting the estimated position from 
the known location of the underwater speaker during transmission. Mean 
localization error was about 53.2 m (sd 30.8). To reduce the impact of 
localization error between calls, estimated tracks were smoothed using a 
moving average (MA) technique. The smoothed location at a specific 
point in time was calculated by averaging the surrounding five location 
estimates (Hen et al., 2004). 

2.1.3 Calling rates 

Calling rates were calculated for all three tracked right whales over the 
hour of analysis. Bouts of calling were separated using the bout criterion 
interval (BCI), as determined by plotting inter-call intervals (ICIs) on a 
logarithmic scale (Parks et al., 2011b; Slater and Lester, 1981). Mean and 
standard deviation for ICIs within bouts and inter-bout intervals (IBIs) 
were estimated based on the BCI. 

2.1.4 Three-dimensional tracking and calling depths

Right whale calling depths were estimated with the multipath localization 
technique Direct-Reflected Time Difference of Arrival (DRTD). This 
method uses the direct path of an acoustic signal along with a varying 



114 DCL 2003-2013 

combination of surface and/or bottom reflections (referred to multipath 
'orders') of the signal to localize an animal (fig. 2). This method can be 
applied to multiple MARUs to resolve a three-dimensional source 
location, or to a single unit to resolve a two-dimensional (depth and 
radius) solution. In the case where MARUs are widely spaced, full three-
dimensional localization with DRTD will not likely be possible due to 
radial limitations (see Results section below). However, three-
dimensional localization can still be resolved when using DRTD as a 
supplement to TDOA, by applying TDOA to resolve 'in-plane' (x, y) 
localization, and DRTD for depth estimation. Solutions for the two 
methods can also be verified through comparison of the two estimated 
radial distances (using TDOA and DRTD) from the MARU channel to 
verify agreement. 

Figure 2: A diagram illustrating the multipath sound propagation from a source 
to the receiver (a bottom-mounted MARU). 

2.1.4.1 Brief Background of the DRTD methodology 

DRTD is a ray-based localization method, meaning that all signal paths 
are assumed to be straight line paths with the direction only changing as a 
result of either ocean surface or bottom reflections. Any effects due to 
sound stratification have been assumed to be negligible due to the 
relatively short path lengths and shallow depths of the sound channel in 
which the MARUs were placed. With DTRD, the time difference of 
arrival between the initially received 'direct-arrival' and a reflection of the 
signal are used to calculate the difference in path length between the two 
signals (fig. 3). By knowing the depth of the MARU and the time 
difference of arrival between the direct and reflected signal, a series of 
possible solutions for the source depth and radial distance from the 
MARU may be calculated. 
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(a) 

(b) 

Figure 3: (a) A time series with a pulsed signal and it's multipath surface 
reflection with a direct-reflected time difference of approximately 1ms. (b) 

Application of Lloyd's mirror to determine path lengths. 
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2.1.4.2 Application of the Autocorrelation method 

Multipath time differences can vary from fractions of a millisecond to 
hundreds of milliseconds or more. Based on the depths of our study area 
(<100 m), measured time differences will be at most tens of milliseconds. 
Therefore, this creates a problem when attempting to apply standard 
multipath localization to a right whale: given signal periods of 
approximately one second for up-calls and the short time differences 
between multipath arrivals, overlap in the signals will make the task of 
distinguishing them very difficult. 

This problem may be addressed through the application of an 
autocorrelation method, which takes advantage of the assumption that 
reflected signals are images of the direct signal and that the frequency is 
changing with time (like a reflected up-call)(Valtierra et. al., 2013). 
Using this method, knowledge of amplitude and phase is arbitrary and 
only the time-series of the direct-reflected signal is necessary for analysis.  
When the target signal is cross-correlated with itself, the time delay 
between multipath arrivals will be indicated by a series of local 
correlation peaks. The process is as follows: initially, an up-call is 
selected and windowed for autocorrelation (fig. 4a). The window is 
selected to include the most 'linear' part of the signal while leaving 
'buffer' space beyond the signal. An autocorrelation is applied, and the 
time lag at which each correlation peak occurs corresponds to the time 
difference of arrival between the direct and reflected signal arrivals (fig. 
4b). 

2.1.4.3 Application of the forward method 

In the application of DRTD, there are two unknowns: depth and radius. 
For a single direct-reflected time difference, there are several depth and 
radius combinations for the source that will result in the same time 
difference of arrival.  This ambiguity can be overcome when there are 
several multipaths.  By resolving several time differences between the 
direct arrival and a number of multipaths, several solution sets for depth 
and radius may be calculated, and successful localization is achieved if 
the solution sets converge at one unique point. This method can be called 
the 'forward method' because it directly uses the time difference 
measurements to calculate a set of location solutions. However, this 
method can be computationally intensive especially when using more 
than two solution sets for localization. A simpler approach may be taken 
through application of the 'backward method' coupled with a probability 
surface. 
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(a) 

(b) 
Figure 4: (a) A spectrogram of a windowed right whale up-call for 
autocorrelation analysis. FFT: 512 pts, bandpass filter 100-250 Hz. 

(b) Autocorrelation  results of the up-call showing peaks corresponding to 
multipath arrivals. 

2.1.4.4 Application of the backward method and probability surfaces 

Unlike the forward method, where measured time differences are used to 
calculate a solution set of possible depth and radius pairs, the backward 
method considers every possible depth and radius within a defined space 
and resolution. This essentially works by the creation of a two-
dimensional grid containing discrete points that correspond to possible 
source depths and radial distances. The simplicity lies in the comparison 
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of the processed solution sets; where the forward method requires a 
multi-step algorithm capable of quickly sifting through multiple solution 
sets looking for a convergence point is computationally intensive, the 
backward method only requires the summation of probability surfaces 
and finding the point of highest probability of solution convergence.  

In defining a solution space, the maximum depth may be determined by 
the depth of the recorder, and the radial distance and grid point spacings 
are determined by the practical limits relative to the minimum resolvable 
TDOA (see results below). The direct and multipath distances of each 
order to the MARU for all grid points may be calculated allowing for the 
time difference of arrival to be resolved by taking the difference in path 
lengths divided by the speed of sound. These results in a specific time 
difference of arrival assigned to each grid point for each multipath order. 
Using the geometric method, equations for the path lengths may be 
derived. 

Figure 5: The sum of probability surfaces leads to a convergence at a unique 
point.  This example is taken from the 2-D localization of a synthetic signal 

transmitted during an empirical calibration experiment.  Radial distance refers to 
the distance from the MARU.  (Valtierra et al., in press) 

After calculating the corresponding multipath time difference for each 
grid point, a probability surface may then be created by applying the 
probability density function (PDF) to each grid point. The PDF is 
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assumed to have normal Gaussian distribution centered at the mean, or 
best estimate dten and standard deviation �n. The best estimate is the 
actual multipath TDOA measured through analysis of signal data 
recorded by the MARU. Using dten and �n, the PDF is then iterated over 
the entire grid using the time difference at each grid point to create a 
likelihood surface for each multipath order. The resulting likelihood 
surfaces contain areas of high probability corresponding to grid points 
where the calculated TDOA is close to the actual TDOA measured in the 
received acoustic signal (dten). The remaining outlying points had a low 
probability. The likelihood surfaces for every available multipath order 
are then summed together. Successful localization is achieved when the 
summed probabilities for all orders converge into a unique area of high 
likelihood (fig. 5). 

Figure 6: This figure represents a detailed map of the yellow shaded area in 
Figure 1. The figure shows the smoothed tracks of three North Atlantic right 

whales tracked using their up-calls during the one hour of analysis. Dots 
represent the MARUs used for localization and the lines represent tracks of 

calling animals, colored by Animal ID in the figure legend 



120 DCL 2003-2013 

2.2 Results and discussion 

2.2.1 Two-Dimensional Tracking and Calling Rates 

A total of 108 right whale up-calls made by three individual right whales 
were localized during the one hour time period (fig. 6). Over this period, 
calling rates averaged approximately one call per minute with inter-call 
intervals of 30 seconds (tab. 1). The bout criterion interval (BCI) 
determined from this analysis was 100 seconds and agreed with 
previously published values (Parks and Tyack, 2005; Parks et al., 2011b). 
Inter-bout intervals were approximately four minutes on average (tab 1). 

Table 1: Estimates of North Atlantic right whale up-calling rates for each of the 
acoustically tracked individual whales (A1,A1a,A2) observed during the one 

hour analysis. ICI: inter-call interval (time between start times of successive calls 
from one individual within a calling bout); IBI: inter-bout interval (time between 

bouts of calling, defined by a bout criterion interval (BCI) of 100 s based on 
inspection of the log-survivorship curve of ICIs. 

Animal 

ID N calls 

Track 

dur. 

(min) 

Call rate 

(calls/min) 

Mean ICI 

(s) 

±SD ICI 

(s) 

Mean 

IBI 

(min) 

±SD IBI 

(min) 

A1 62 60 1.0 18.7 20.8 4.3 2.5

A1a 19 20 1.4 22.9 27.4 4.0 1.9

A2 27 45 0.4 54.2 21.9 4.9 2.2

Mean 

±SD 

36 

±22.9 

41.7 

±20.2 

0.9 

±0.4 

31.9 

±19.4 

23.4 

±3.5 

4.4 

±0.5 

2.2 

±0.3

2.2.2 Three-Dimensional Tracking and Calling Depths

Calling depths were estimated using the DRTD method and data from 
one bottom-mounted MARU for one of the three tracked right whales of 
the presented case study. The radial distance between right whale A1a 
and the closest MARU ranged from 100 to 500 m (fig. 6). Using 10 of 19 
available calls, depth estimates for this individual whale ranged from 21 
to 40 meters (fig. 7). 
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Figure 7: Detailed map of tracked North Atlantic right whale A1a, showing 
calling depth for calls that could be located using the DRTD method. 

2.2.3 Limits to DRTD: Prediction of minimum time difference and 

maximum resolvable radial distance 

The ability to apply DRTD to baleen whale vocalizations is inherently 
limited by the ability to resolve multipath arrivals in the acoustic signal, 
which is dependent on both source and recorder depth.  As the sound 
source moves farther from the MARU or to very shallow depths, the 
direct reflected time difference of arrival decreases, and at a certain point 
the autocorrelation peaks overlap, making individual arrivals difficult to 
distinguish. This problem has the greatest effect on resolving the first 
order direct-reflected time difference and has the greatest impact on 
limiting the range over which this method may be applied. Predicting the 
minimum resolvable time difference between the direct and reflected 
signal arrivals can be used to estimate this limit.
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The prediction may be made using a model for the autocorrelation 
solution of a right whale up-call (Valtierra et al., in press). An equation 
was derived to predict the minimum time difference using call parameters 
(call length and sweep rate) typical for the animal of interest resulting in 
the following relationship of ( )�T�=dt min 2/  where � is the up-call 

sweep rate (Hz/sec) and T is the call length. Using this method and the 
mean values for a right whale up-call of T = 0.99s and � = 111Hz/s (Parks 
and Tyack, 2005), the minimum time difference that can be resolved 
between the direct and reflected call was found to be 14.3 ms.  

Based on the minimum resolvable time difference and the path length 
geometry, the maximum range under which DRTD may be applied to 
right whale up-calls may be calculated. Because the time difference of 
arrival is a function of both calling depth and radius, this maximum range 
will vary. 

The relationship between depth and radius for the current case study is 
plotted in fig. 8, based on a bottom-mounted MARU depth of 100 m, a 
sound speed of 1480 m/s, and a time difference of arrival of 14.3 ms. As 
can be seen from the plot, as the source increases in depth, the maximum 
radius quickly increases due to the specific geometric nature of the 
multipaths. 

Figure 8: The depth relation for a first order direct-reflected time difference of 
14.3 ms, assuming a bottom mounted MARU at a depth of 100 m with a sound 

speed of 1480 m/s. 
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Thus, in very shallow water, the application of the DRTD method is most 
likely impractical unless the source is very close to the MARU. For 
moderate source depths (greater than 100m) however, this method can 
localize animals at radial distances approaching one kilometer. Given the 
scale over which individual units in a fixed array may be placed, this 
method may be more practical as a supplement rather than a replacement 
to TDOA. However, when an animal is localized to within the range of 
DRTD, it is possible to obtain calling depth, using only one MARU. 
Given the large amounts of available PAM data sets, this method has the 
potential to significantly increase currently available data on calling 
depths for right whales and other baleen whale species. Moreover this 
information can be obtained without the need for improved equipment, 
and further the method is compatible with currently available and historic 
data sets. 

3. Application 2: Using towed hydrophone arrays for 2-D and 

3-D localization of beaked whales 

Photo credit: NOAA/NEFSC 

Beaked whales are notoriously difficult to detect via visual surveys, due 
to the fact that they spend long periods of time under water and tend to be 
relatively inconspicuous when at the surface. Visual detections of beaked 
whales during broad-scale cetacean surveys may decrease by an order of 
magnitude as sea state conditions change from Beaufort 1 to Beaufort 5 
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(Barlow et al., 2006), and less than 50% of individuals of some species 
are detected visually even under excellent sighting conditions (Barlow, 
1999).  Incorporating passive acoustic methodologies into visual surveys 
is therefore of critical importance for improving detections of these 
challenging species. 

Little was previously known about the life history and social dynamics of 
most beaked whale species. However, research over the last decade has 
started to provide information about the characteristics of the 
vocalizations for many species. Visual encounters using boat-based 
surveys,  short-term digital recording tags (DTAGs; (Johnson and Tyack, 
2003))  (Dawson and Ljungblad, 1998; Gillespie et al., 2009; Hooker and 
Whitehead, 2002; Johnson et al., 2004; Rankin and Barlow, 2007; Rankin 
et al., 2011; Zimmer et al., 2005), and bottom-mounted recorders 
(Baumann-Pickering et al., 2010, 2012; McDonald et al., 2009), have 
enabled the description of species-specific vocalizations for over ten 
species. In addition, vocalizations of several species have been recorded 
from live- stranded or captive animals (Caldwell and Caldwell, 1991; 
Lynn and Reiss, 1992; Marten, 2000).  Taken together, these data are 
beginning to form a solid foundation for incorporating passive acoustics 
into the methodologies used to detect and estimate the abundance of 
beaked whales. 
Recently, intensive efforts centered on the occurrence of Blainville’s 
beaked whales (Mesoplodon densirostris) in the Bahamas have helped to 
develop methodologies for density estimation using a combination of 
visual sightings, dense numbers of bottom-mounted hydrophones on a 
naval training range and DTAGs (Küsel et al., 2011; Marques et al., 
2009; Moretti et al., 2010). However, for most researchers these 
extensive data acquisition methods are neither available nor practicable. 
To facilitate the evaluation of density and abundance of beaked whales on 
a broad scale, methodological approaches need to be married with other 
more standard data collection mechanisms, including incorporating 
acoustic data into traditional line-transect surveys. 

Marques et al. (2012) describe a number of variables that need to be well-
defined in order to incorporate acoustic data into density estimation 
frameworks.  These include cue rate, the probability of detection, and 
detection distance. In the traditional line-transect framework, the 
observed distribution of sighting distances to animals or groups of 
animals is modeled to develop a detection function and determine the 
area for the survey (Buckland et al., 2001).  For deep-diving animals, 
however, this presents a complication as the two-dimensional localization 
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obtained through usual means (time difference of arrival or target-motion 
analysis) actually represents a slant distance to the vocalizing animal, not 
a perpendicular distance.  Errors in measuring the distance to animals will 
affect the shape and precision of the detection function, which may lead 
to biases in the resulting abundance estimates or  confidence intervals that 
are too narrow (Borchers et al., 2010). 
To date this issue has been addressed in only one study on sperm whales 
(Barlow and Taylor, 2005a).  In this case, the depth of the animals was 
found to have negligible impact on the overall density estimates, as the 
range of detection (on the order of several to many kilometers) was much 
greater than the modeled hypothetical depth of 500 m. For beaked 
whales, however, overall detection ranges are much shorter. For Cuvier's 
beaked whales, Zimmer et al. (2008) found that probably of detection 
was highest at distances of 700 m or less, with a maximum range of 4 km.  
For these species, the effect of the animal's depth may therefore have a 
relatively greater impact on error in 2-D range estimation. For example, 
consider an animal for which standard two-dimensional acoustic 
localization provides a (slant) distance of 300 m. If this animal is 
vocalizing at a depth of 200 m, the actual perpendicular distance to that 
individual would be 224 m, or 25% less than estimated by 2-D methods 
alone. Several species of beaked whales are thought to only produce 
sounds during deep (>200m) foraging dives (Tyack et al., 2006), and 
Yack et al. (2011) noted that most bearings obtained during a towed-
array survey likely represented slant distances for animals at depth.  
For most species we do not yet have the relevant data to assess the depths 
at which animals are vocally active, but increased application of three-
dimensional localization methodologies can be used to address this issue. 
Several techniques have been established in previous studies, ranging 
from using more well-known methods like TDOA (Giraudet and Glotin, 
2006) to methods which take advantage of multipath signal arrivals such 
as Direct Reflected Time Difference of Arrival (DRTD; (Nosal and 
Frazer, 2006; Thode, 2005)). Additionally, DRTD has also been applied 
to single hydrophone data to resolve depth and radius information even 
though latitude and longitude information may not be available (Aubauer 
et al., 2000; Mouy et al., 2012). In cases where multipath information is 
not available, modal or “group velocity” methods have been shown to 
provide a rough estimate for calling depths (Munger et al., 2011; Wiggins 
et al., 2004).  

Currently, most efforts to estimate the abundance of beaked whales have 
primarily taken place only during cetacean surveys that were focused on 
other species (Barlow et al., 2006).  Because individual species 
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identification is challenging, these abundance estimates often lump 
several beaked whale species together (Waring et al., 2009). However, 
dedicated surveys in areas of known occurrence such as the Southern 
California Bight have demonstrated that the incorporation of acoustic 
methodologies for specific species can significantly improve upon 
detection rates using conventional visual observations (Yack et al., 2011). 
These results highlight the importance of increasing coordinated visual 
and acoustic efforts on abundance surveys. 

In this application, we utilize data collected on a recent NOAA cetacean 
line-transect survey to demonstrate the application of analysis techniques 
for beaked whales. This survey enabled the characterization of the 
echolocation characteristics of Sowerby’s beaked whales (Mesoplodon 

bidens) and improved the application of automated detectors to facilitate 
two-dimensional tracking. Here, we add to the single species approach 
discussed above and demonstrate the application of three-dimensional 
localization techniques to quantify the depths at which several animals 
were vocalizing. 

3.1 Methods 

3.1.1 Data Collection 

In 2011, one half of the Atlantic Marine Assessment Program for 
Protected Species (AMAPPS) survey was conducted from the NOAA 
R/V Bigelow, throughout the western North Atlantic covering 
approximately 36°N to 42°N (fig. 9). Visual observations and acoustic 
recordings were collected simultaneously. Information on acoustic 
detections was not transmitted to visual observers in real-time. Visual 
sighting data were collected during daylight hours from approximately 
06:00-18:00 EDT when sea conditions were less than sea state 
Beaufort 6, by two teams of trained observers operating from two 
different decks of the ship.  In each team, two observers utilized high-
powered “big-eye” binoculars (Fujinon, 25x150) to scan from the bow of 
the ship to 90° port or starboard, while one observer scanned the track 
line using hand-held binoculars and naked eye. 

Acoustic recordings were collected using a three-element oil-filled 
hydrophone array (Benthos AQ-4 elements: -201dBV re: 1µPa), towed 
300 m behind the ship, at approximately 12 m depth.  Acoustic data were 
routed to a desktop computer via a Magrec HP/27ST monitor box 
(http://ecologicuk.co.uk, 80 Hz high-pass filter, 30 dB gain) and an 
external Fireface 400 sound card, with data recorded continuously at a 
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sampling rate of 192 kHz utilizing the software package Pamguard 
(http://www.pamguard.org).  Two-channel data were also routed to a 
second set of computers via an internal M-Audio soundcard, sampling at 
44 kHz, for real-time detection and tracking of vocal animals utilizing the 
software packages WhalTrak and Ishmael.  Survey speed averaged 10 
knots. 

Figure 9: Area surveyed during the Atlantic Marine Assessment Program for 
Protected Species during the summer of 2011. Gray lines represent the actual 

vessel tracklines. 

3.1.2 Acoustic analyses 

Acoustic data were post-processed using the software packages Raven 
(Charif et al., 2004) and Pamguard (Gillespie, 2008), as well as custom-
written Matlab scripts. Data analyses took place in three stages: 
1) identification and characterization of echolocation clicks, 
2) development and application of automated click detectors, 3) two-
dimensional and three-dimensional localization of individual click trains.  
The first stage of data analysis was previously described (Cholewiak et 

al., submitted). The second and third stages are described below. 
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3.1.3 Automated click detectors 

The Pamguard software allows for the application and customization of 
an algorithm for the detection of transient acoustic signals, such as 
echolocation clicks.  For the general detection of clicks, the user defines a 
set of parameters, including the signal threshold, the minimum number of 
samples between clicks, and the maximum length of clicks.  By defining 
an additional set of criteria specific to the target signal, an automated 
classifier can be defined and applied as well. These additional criteria 
may include the signal's primary energy band, the peak and mean 
frequency, and the number of zero crossing. 

3.1.4 Two-dimensional and three-dimensional localization 

Pamguard Beta v1.11.02 currently allows for the application of target-
motion analysis to compute two-dimensional locations of calling animals, 
using one of several algorithms (Gillespie et al., 2008). This method is 
capable of resolving the relative bearing and radial distance of a given 
sound source at a specific moment in time.  At any instant in time, the 
relative bearing of the source relative to the array can be calculated using 
a pair of hydrophones.  Over multiple vocalizations (e.g. echolocation 
clicks in a click train), changes in the bearing of the source relative to the 
array result in a set of intersecting bearing lines which correspond to the 
target location (Barlow and Taylor, 2005a; Gillespie, 1997). This 
methodology makes the assumption that the source is stationary relative 
to the vessel, which is reasonable in many cases given that survey speeds 
are often faster than the speed at which animals are traveling. However, 
given that the radial distance is independent of the source depth relative 
to the array, this method only provides a means for two-dimensional 
localization. 

(a)                                                          (b) 
Figure 10: (a) The direct and reflected signal path from the source to array 

(b) A multipath model using virtual receiver to estimate the bearing of a 
multipath signal 
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Full three-dimensional localization can be accomplished by combining 
two techniques, intersecting bearing estimates and multipath signal 
arrivals, in a manner similar to work previously conducted on sperm 
whale surveys (Barlow and Taylor, 2005a; Gillespie, 1997; Thode, 2005).  
In general, this is accomplished by finding the time difference between 
the direct signal arrival and surface reflections to the array (fig. 10a). By 
treating the surface reflection like a signal traveling to a 'virtual receiver', 
an additional bearing estimate may be made, resulting in a vertical 
bearing (fig. 10b). Knowing the additional vertical bearing along with the 
radial distance of the source, the depth of the source can then be resolved. 
Custom Matlab scripts were used to perform both time-series and 
autocorrelation analysis to measure the direct and surface reflected time 
difference of arrival. The time difference of arrival was then used to 
calculate the vertical bearing relative to the array, allowing for the source 
depth estimation using basic trigonometry. This can be accomplished 
through application of  bearing estimation in a manner similar to that of 
array applications, however in this application rather than estimating a 
bearing based on a time difference of arrival between two hydrophones, 
the time difference is between a single hydrophone and the “virtual 
receiver” illustrated in fig. 10b. In this application, the time difference dt 
is the direct reflected time difference of arrival, and the distance between 
hydrophones, is two times the array depth. Knowing the bearing angle the 
source depth may then be calculated with the target radius originally 
estimated using target motion analysis being treated as the hypotenuse of 
a triangle, and the remaining triangle sides being the horizontal distance 
and depth. 

3.2 Results and discussion 

On 4 July 2011, at approximately 07:40 EDT, the R/V Bigelow 
encountered several small groups of Sowerby’s beaked whales at 
40.78˚N, 60.6˚W, just off the continental shelf of the eastern United 
States, near Georges Bank. Over a period of approximately 25 minutes, at 
least three groups of animals were sighted, including a singleton, a pair, 
and a group of four individuals.  The groups were distributed over several 
kilometers.  As the ship passed through the area, several animals crossed 
the survey track line, and were approximately 300 m distant at their 
closest point of approach. Simultaneous with this encounter, multiple 
series of high-frequency echolocation clicks were detected by the 
acoustic team.  Thirty minutes of continuous acoustic data encompassing 
and following the period of the visual encounter were included in 
subsequent analyses. 
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Analyses of echolocation characteristics from over 4000 clicks revealed 
that the majority of clicks had a median peak frequency of 33 kHz, with a 
-3dB bandwidth of 6 kHz, and an inter-click interval of 96 ms 
(Cholewiak et al. submitted, fig. 11).  In Pamguard, an automated click 
detector was subsequently applied to the acoustic data. The classification 
algorithm with frequency sweep was customized to identify clicks 
containing greater energy in a test band (30 – 37 kHz), compared to two 
control bands (15 – 18 kHz and 85 – 95 kHz), and to identify clicks 
containing a peak frequency between 29 – 37 kHz. 

Figure 11: Example of waveform (top panel) and spectrogram (bottom panel) of 
a series of clicks from an individual Sowerby's beaked whale. 

(FFT: 512 pts, 50% overlap, Hann window) 

Detected clicks were manually assigned to series of click trains (fig. 12) 
based on simultaneous comparison of spectrograms of the acoustic data 
and the bearing patterns as determined by Pamguard.  Target-motion 
analysis was conducted for thirteen click trains, resulting in two-
dimensional localizations for animals ranging from 82 – 456 m from the 
trackline. Based on relative locations, these click trains appeared to be 
produced by 3 – 5 individuals. 
Click train series from three individuals were chosen for application of 3-
D analysis (tab. 2).  These individuals were estimated to be at radial 
distances of 192-250 m from the array. Click waveforms were visually 
evaluated to confirm the presence of multipath arrivals.  For each click 
train, the time difference of arrival for direct and surface-reflected signals 
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was compared for up to 5 different clicks and across three channels. The 
2-D localization results from Pamguard were used as range inputs.  
Three-dimensional localization for these three individuals revealed 
vocalization depths ranging from 6 – 36 m. 

Figure 12: Top: Bearing-time display in Pamguard. Detected clicks are indicated 
by triangles. Orange triangles indicate clicks that were manually assigned to one 

click train series; black triangles represent clicks that are unassigned to 
individuals. Bottom (from left to right): The waveform display of one selected 

click (indicated by the gray circle in the top panel), the frequency spectrum, and 
Wigner plot. 

Table 2: Data for three series of click trains representing three animals. Clicks 
were manually assigned to series based on simultaneous spectrogram and 

bearing-time review. Radial distances were approximations obtained from two-
dimensional localization in Pamguard. Source depths were averaged over a series 
of clicks from multiple channels. Array depth was 12 m, ocean bottom depth was 

approximately 1000 m in area of encounter. 

Individual 

# Clicks Assigned to 

Click Train 

Mean time difference (ms) 

between direct & reflected 

arrivals 

Radial 

Distance 

(m) 

Mean 

Depth (m) 

1 57 0.44 192 5.9 ±1.3 

2 88 0.9 247 13.7 ±9.7 

3 96 2.31 250 35.8 ±1.3

The depths of the three individuals that were localized in 3-D are 
substantially less than those obtained from tagged individuals of both 
Cuvier’s and Blainville’s beaked whales, suggesting that the vocal 
behavior of Sowerby’s beaked whales may differ from other ziphiids. The 
difference between the slant distance and the perpendicular distance 
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estimated by traditional methods is minor for these individuals, given the 
shallow depths at which they were vocalizing. However, broader 
application of this methodology across multiple encounters is needed to 
characterize the average depths at which this species is detected. Further 
investigations may reveal whether the differences in depths at which 
different species vocalize are context-driven or species-specific. 

Figure 13: An example of beam focusing taken from an echolocation click 
recorded during the encounter with Sowerby's beaked whales. Note that the 

second arrival is of higher amplitude than the direct path. 

Figure 14: An example of a direct signal followed by a double surface 
reflection, recorded during the encounter with Sowerby's beaked whales. 
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Application of three-dimensional localization methods to high-frequency 
signals such as these is complicated by the effects of sea surface 
conditions. Depending on the sea state, when the wavelength of the signal 
is short compared to that of waves on the sea surface, propagation effects 
such as beam focusing or multiple reflections may occur adding difficulty 
to resolving time difference of arrival. These effects were observed in our 
towed array data, as well in similar experiments focusing on signal 
processing (Preisig and Deane 2004). In the case of beam focusing, 
(fig. 13) the received reflection will appear to have a greater amplitude 
than the direct signal. This is caused by the concave shape of a surface 
wave creating an acoustic focal point for reflections near the array. 
Multiple surface reflections (fig. 14) result in two or more first order 
reflections and can cause confusion when attempting to resolve the 
correct time difference of arrival required for bearing estimation. 
Additionally, because the recordings are being made in a dynamic 
environment, these effects will change continuously over time adding 
additional complication. It is assumed that these effects will have a 
greater significance at shallow depths, however additional work must be 
done to verify this and to resolve what the true time difference of arrival 
should be in the case of a perfectly flat sea surface. 

4. Discussion 

Passive acoustic monitoring (PAM) is a rapidly growing field in marine 
ecological research.  For many species, these new PAM applications and 
the ensuing increase in temporal and spatial monitoring coverage have 
resulted in new knowledge on seasonal and regional distribution patterns 
(e.g., Lammers et al., 2011; McDonald et al., 2009; Mussoline et al., 
2012; Simon et al., 2010). In addition, analyses of acoustic data have 
allowed us to gain new insights into species-specific behaviors 
(Baumgartner and Fratantoni, 2008; Jensen et al., 2011), as well as to 
elucidate behavioral changes due to acoustic disturbance (Holt et al., 
2009; Melcon et al., 2012; Parks et al., 2011a; Risch et al., 2012). 

One main aspect of measuring the effects of disturbance is to asses 
changes in the distribution and density of species or populations 
inhabiting the impacted area. For species of high risk and low densities, 
such as the Baltic harbor porpoise or the  North Pacific right whale (Kyhn 
et al., 2012; Marques et al., 2011), this is especially important. Since 
visual density estimation is difficult in these cases, acoustics might be 
particularly useful to augment traditional methods of assessing changes in 
abundance. 
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For successful density estimation from acoustic data, it is essential to 
obtain cue rates in different behavioral contexts and as a function of time, 
season, region and life-history parameters such as age and sex (see 
Marques et al., 2012). PAM can be used to localize and track vocal 
animals. Thus, some of these parameters, such as minimum group sizes, 
calling rates, as well as source level and detectability under different 
background noise scenarios can be estimated using these data. 

The two case studies presented in the current chapter were selected to 
highlight the feasibility of using data from bottom-mounted recording 
units and towed hydrophone arrays to estimate some of these parameters. 
The 2-D localization of right whale up-calls and the tracking of several 
individuals in the first case study demonstrated the relative ease with 
which passive acoustic analyses can be used to estimate minimum group 
size and individual calling rates. Despite applying it to only one hour of 
data, call rates and bout lengths found in this analysis were similar to 
previously published data collected from archival recording tags (Parks et 

al., 2011b). This demonstrates that bottom-mounted recorder data, when 
synchronized into a time-aligned array, can be used to supplement other 
data collection methodologies on a broader scale. 

Species-specific automatic detectors (e.g., ISRAT (Urazghildiiev and 
Clark, 2006)) and semi-automated localization algorithms can be applied 
to quickly access large quantities of data, facilitating analyses of datasets 
covering spatial and temporal scales important for conservation and 
management.  The biggest advantage of large data sets, like those 
provided by long-term PAM is the ability to address questions of high 
variability in behavior as found in smaller, more controlled studies (Parks 
et al., 2011b). To date, few studies (e.g., Parks et al., 2012; Širovi� et al., 
2004) have used passive acoustic data and localization techniques to 
estimate calling rates and minimum group size of baleen whales on a 
larger scale. In addition, PAM data can provide source level estimates for 
individual animals (Munger et al., 2011; Samaran et al., 2010; Stafford et 

al., 2007; Širovi� et al., 2007). If coupled with acoustic propagation 
models, robust source level information can then be applied to estimate 
detection ranges of species-specific calls.  
Currently, more studies have used 2-D localization approaches as part of 
towed array surveys (Barlow and Taylor, 2005a; Lewis et al., 2007; Li et 

al., 2009). In our second case study, we utilized the freely available 
software package Pamguard (Gillespie et al., 2008) to detect and track 
beaked whale clicks from towed array data. In the context of towed array 
recordings, the estimation of distance to the survey trackline, species 
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identification and minimum number of animals by passive acoustic 
tracking can improve simultaneously collected visual data by providing 
context to the visual encounter, aiding in species identification, as well as 
augmenting traditional density estimates. In the current example, the 
simultaneous collection of visual and acoustic data allowed for the 
description of the previously unknown acoustic signature of an 
understudied species (Cholewiak et al., submitted). 
Estimating the depth ranges at which marine mammals are vocalizing can 
provide important behavioral information and help interpret PAM 
datasets. Although in theory the standard method of localization using 
'Time Difference of Arrival' (TDOA) is capable of localizing animals in 
three dimensions, in practicality, for fixed arrays, this method is generally 
suitable for only two-dimensional or planar applications. If recorders are 
separated by several kilometers or more, then the change in absolute path 
length (the length as a function of both depths an horizontal distance) is 
negligible with a change in calling depth unless the difference in depth 
between the vocalizing animal and recorder is very large. For applications 
where the animal's depth is small compared to path length, the resulting 
changes in time difference of arrival between recorders as a function of 
depth will likely be beyond the resolution achievable when considering 
limits such as sampling rate and synchronization error. Limitations to 
depth estimations and three dimensional localization with fixed arrays 
can be overcome through the application of the Direct-Reflected Time 
Difference of Arrival (DRTD), as demonstrated for localizing right 
whales in the first case study. Only a few studies have used PAM data for 
3-D localization of vocalizing animals (Newhall et al., 2012; Wiggins et 

al., 2004). However, with the application of methods such as the DRTD 
(Aubauer et al., 2000; Mouy et al., 2012; Nosal and Frazer, 2006; 
Valtierra et al., submitted), PAM data can be used to augment and 
significantly increase the availability of data on baleen whale calling 
depths, which have so far been collected mainly from tagged animals 
(Oleson et al., 2007b; Parks et al., 2011b). 
Three-dimensional localization techniques have more frequently been 
conducted using odontocete signals (e.g., Giraudet and Glotin, 2006; 
Thode, 2005). Incorporating these techniques into towed array surveys 
has been done with sperm whales (Barlow and Taylor, 2005), but has not 
been applied to other species. For some deep-diving species such as 
beaked whales, much of what we know of their underwater behavior 
comes from tagging studies of few species in limited contexts.  Case 
study 2 shows how the DRTD method of 3-D localization can be 
combined with 2-D localization of towed array data to obtain depth of 
vocalizing animals. This may have implications for improving distance 
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estimation, which will ultimately result in an improved detection function 
for density estimation.  
Obtaining depth estimates for calling individuals is important for 
improving our knowledge of basic calling behavior and the implications 
of such on density estimation, as well as in a context of management and 
mitigation. Under certain sound speed profile conditions, modeling the 
range over which calls propagate may be heavily dependent on the 
animal's location within the water column (Stafford et al., 2007; Thode, 
2005). Moreover animals might be actively choosing a certain calling 
depth in order to increase signal strength of their calls (Oleson et al., 
2007b). Thus, knowledge on preferred depths for vocalizing animals is 
crucial in order to estimate detection probability of species-specific calls 
from PAM data. In addition, the received levels of directional sound 
sources such as seismic arrays may be much greater for animals at depth 
than at the surface (Thode, 2005). In addition, animals that spend 
significant amounts of time in shallow depths will be more vulnerable to 
ship-strike (Parks et al., 2012b). In the case of vocalizing animals, PAM 
data can elucidate these behavioral patterns and supplement data which 
have traditionally been obtained with short-term recording tags (Jensen et 

al., 2011; Oleson et al., 2007b; Parks et al., 2011b). 
In recent years, there has been a surge in the development of offshore 
industries, including oil and gas, as well as emerging alternative energy 
projects such as tidal turbines, wave energy or windfarms (Simmonds and 
Brown, 2010). In this context, successful species management and 
conservation is dependent upon accurate knowledge of temporal and 
spatial distribution patterns and population densities of a given species. 
As a result we have seen an increased effort, both spatially and 
temporally, of using PAM for monitoring and mitigation. Examples are 
large-scale projects such as for monitoring ocean noise in the Stellwagen 
Bank National Marine Sanctuary (Hatch et al., 2012), extensive acoustic 
monitoring in the Arctic ocean for mitigating seismic exploration (Moore 
et al., 2012), or the SAMBAH project (http://www.sambah.org/) to assess 
harbor porpoise density in the Baltic Sea.  

In this chapter, we highlighted how combining PAM data with two- and 
three-dimensional localization and tracking techniques can be used to 
expand baseline vocalization data, extracting critical information such as 
animal depth and calling rate.  Expanded application of these tools to 
fixed and towed array data will enable more detailed analyses of the 
inherent variability in species-specific calling behaviors. This knowledge 
in turn will facilitate the direct application of acoustic data to abundance 
estimation, ultimately improving marine mammal management. 
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Abstract 

Due to difficulties in gathering large-scale data especially in offshore marine 

habitats, little is known about seasonal distribution and long-distance migrations of 

most baleen whale species. With its ability to survey remote areas over extended 

timescales, it has been shown that passive acoustic monitoring (PAM) can elucidate 

some of these open questions. This study investigated the seasonal patterns in 

vocal activity and occurrence of four species of baleen whales; fin whales 

(Balaenoptera physalus), right whales (Eubalaena glacialis), sei whales 

(Balaenoptera borealis) and blue whales (Balaenoptera musculus) in 

Massachusetts Bay over three years and five months (2006, 2008-2010). One or 

two representative call types (fin whale 20 Hz note, right whale up-call, sei whale 

downsweep and blue whale AB song notes) were chosen per species and a low-

frequency automated detection and classification system (LFDCS) was trained and 

run for their detection and classification in the multi-year data set. Fin whale song 

was detected in all months of the year with persistent seasonal patterns across all 

years. Song detection was lowest during May and June and occurred on over 75% 

of all sampled days from August to April. From September to March fin whales were 

vocally present for over 16 hours per day. These data suggest year-round presence 
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of fin whales in this area and confirm winter song in higher latitudes. Right whale up-

calls and sei whale downsweeps showed a bimodal distribution of peak detection 

periods in spring and autumn, indicating that both species traverse this area during 

migration. However, right whale detections peaked in April and May, and were less 

common in the autumn, while sei whale detections showed a clear peak in 

occurrence in October in two of the recording years. Although the general patterns 

were similar, peak timing and extent varied between years. Blue whale song was 

detected on only 12 days of the entire recording period, occurring mostly in January 

and suggesting a general offshore distribution of this species with occasional visits 

to inshore waters during winter.  

 

Introduction 

Over the past decades, humans have altered the marine environment substantially. 

Increasing impacts of anthropogenic activities on cetaceans as part of the marine 

ecosystem include overfishing (Halpern et al. 2008), fisheries by-catch (Moore et al. 

2009), ship-strikes (Redfern et al. 2013), chemical and noise pollution (Fossi et al. 

2012, Moore et al. 2012), as well as the multitude of effects of global warming, such 

as ocean acidification and changes in sea ice distribution (Hoegh-Guldberg & Bruno 

2010). In addition, with fast expanding technology, construction of alternative energy 

projects (Madsen et al. 2006), as well as the continued exploration for and 

extraction of oil and gas (Heide-Jørgensen et al. 2013) is reaching further and 

further offshore. All these threats are cumulative, especially in highly populated and 

industrialized coastal areas, where the footprints of different projects often overlap. 

The latter makes it particularly important to monitor and describe the extent and 
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reach of these activities in order to better mitigate their effects (McKenna et al. 

2012). Similarly, since the best way to mitigate or reduce human impact on marine 

fauna, is the physical separation of the two (Vanderlaan et al. 2008, van der Hoop et 

al. 2014), knowledge of year-round spatio-temporal distribution patterns of marine 

mammals is of critical importance (Best et al. 2012). However, due to the difficulties 

of collecting data in open ocean regions, especially during winter, large data gaps 

exist in particular for long-distance migrants such as most baleen whale species.  

 Seasonal to-and-fro migrations between productive high-latitude feeding and 

less productive low-latitude breeding grounds have long been described for a range 

of baleen whale species (Kellogg 1929, Norris 1967), although it is also becoming 

more obvious that partial or differential migration (Dingle & Drake 2007) might be 

more the norm than the exception in this group. In addition, the driving factors for 

these migrations are still debated (Corkeron & Connor 1999). However, it is well 

understood that many species of baleen whales range over very large distances 

throughout the year, while their seasonal destinations or the migratory pathways are 

often unclear. In the North Atlantic Ocean migratory routes are best established for 

humpback whales (Clapham & Mead 1999), and North Atlantic right whales 

(Eubalaena glacialis) (Kraus et al. 1986), but large gaps with respect to migration 

routes, timing and winter distribution exist for most other species.  

 At different times of the year, blue (Balaenoptera musculus), fin 

(Balaenoptera physalus), sei (Balaenoptera borealis) and right whales are sympatric 

in the Gulf of Maine, located in the western North Atlantic. All of these species have 

been shown to produce low-frequency vocalizations in different behavioural 

contexts. While blue and fin whale song are typically produced in a  reproductive 
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context, right whale up-calls and sei whale downsweeps are likely  produced to 

maintain contact over large distances (Watkins et al. 1987, Mellinger & Clark 2003, 

Baumgartner et al. 2008, Parks et al. 2011). These vocalizations can be used to 

infer seasonal presence as well as large-scale movements using autonomous 

acoustic recorders (Clark & Gagnon 2004, Nieukirk et al. 2004, Simon et al. 2010, 

Morano, Salisbury, et al. 2012, Mussoline et al. 2012). Passive acoustic monitoring 

(PAM) allows data collection in remote areas, over extended timescales and largely 

independent of human observers (Mellinger et al. 2007, Van Parijs et al. 2009). For 

example, widely spaced acoustic monitoring networks such as the array data from 

the IUSS Sound Surveillance System (SOSUS), have been used to investigate 

seasonality and large-scale distribution patterns of baleen whales in the North 

Atlantic (Clark & Gagnon 2004). In addition, coupled with autonomous, mobile 

platforms their spatial reach can be enhanced even further (Baumgartner et al. 

2013, 2014) 

 So far, most PAM approaches have focused on individual species 

assessment. The accurate and manual analysis of large amounts of bio-acoustic 

data in such contexts can be costly both in terms of time and processing power 

(Baumgartner & Mussoline 2011). With the drawback of decreased accuracy, the 

development of automated detection methods can reduce this effort to some extent 

and substantial advances in the field of bio-acoustic signal processing have been 

made in recent years (Urazghildiiev & Clark 2007, Gillespie et al. 2009, 

Baumgartner & Mussoline 2011, Popescu et al. 2013). Where the goal of analysis is 

the long-term assessment of large-scale species occurrence, rather than the 

detection of every call, automated methods can usually provide sufficient detail for 
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conservation and management applications (Van Parijs et al. 2009).  

 In larger-scale management applications, where the need is to provide 

comprehensive data to assess the impact of a planned anthropogenic activity on the 

marine environment, the focus on single species is often too small and species by 

species analysis may prove prohibitive, both in terms of cost and effort. In these 

cases multi-species analysis approaches will greatly enhance efficiency. In addition, 

the analysis of multi-species vocal activity patterns might also reveal important 

ecological interactions between different species and their natural environment 

which may improve their use as sentinels of ecosystem change (Moore 2008). For 

example, with respect to the impacts of underwater noise, species with similar 

vocalization frequencies, may be impacted in similar ways by communication 

masking or distraction from vital life functions (Clark et al. 2009, Chan & Blumstein 

2011, Hatch et al. 2012). Assessments from a multi-species perspective can 

therefore not only save time but also unravel important dynamics and relationships 

between the acoustic ecology of sympatric species and the effects of human 

activities in their marine habitat. Further, the importance of describing and 

evaluating noise budgets, including both anthropogenic, as well as biological 

sources is increasingly being recognized as an important conservation tool (Hatch & 

Fristrup 2009, Gervaise et al. 2012, McKenna et al. 2012, Francis & Barber 2013).  

 In this study we aim to show the applicability of a generalized automated 

detection system (LFDCS) to analyze the seasonal occurrence patterns of four 

sympatric baleen whale species (right, sei, blue and fin whales)  by detecting their 

low-frequency vocalizations (Figure 2). We evaluate the stability of these patterns 

across multiple years and explore similarities and differences between occurrence 
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patterns of these different species in our study area.  

 

Materials and Methods 

Data collection 

Multi-year acoustic data were collected as part of two long-term monitoring projects 

carried out in 2006 and from December 2007 to May 2010 in the Stellwagen Bank 

National Marine Sanctuary (SBNMS) and surrounding waters, located in the Gulf of 

Maine (Figure 1;  Hatch et al. 2008, 2012). Recordings were made using arrays of 

9-10 Marine Autonomous Recording Units (MARUs) (Calupca et al. 2000), sampling 

continuously at a rate of 2000 Hz and 12 bit resolution. MARU frequency response 

was approximately -151.2 dB re: 1 µPa (± 1 dB) from 10-585 Hz. MARUs were 

typically deployed at 1-2 m above the sea floor in depths ranging from 20-100 m 

and for 3 consecutive months at a time.  

Detection approach 

Multi-year data were examined with a generalized low-frequency detection and 

classification system (LFDCS; Baumgartner & Mussoline 2011). In short, this 

detection system accounts for continuous narrowband and transient broadband 

noise, employs pitch-tracking to detect signals of interest and classifies detected 

calls using quadratic discriminant function analysis (QDFA). Detection and 

classification follow a multi-stage process consisting of spectrogram smoothing, 

noise reduction, pitch-tracking, attribute extraction and classification by comparing 

extracted features against an existing call library, using discriminant function 

analysis. The algorithms for each of these steps are described in detail in 

Baumgartner & Mussoline (2011) and will therefore only be described briefly here.  
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 At the start of analysis, spectrograms of all data were created using a fast 

Fourier transform (FFT). For the right and sei whale analysis audio data sampled at 

2000 Hz were processed with a sample frame size of 512, Hanning window and 

frame overlap of 128 samples (75%), resulting in a temporal resolution of 64 ms and 

a frequency resolution of 3.9 Hz. To analyze the lower frequency calls of blue and fin 

whales, the audio data was first re-sampled to 128 Hz, FFT frame size was set to 

512 samples and the overlap between frames to 64 samples (87.5%), resulting in a 

temporal resolution of 0.5 s and a frequency resolution of 0.3 Hz. The resulting 

spectrograms were smoothed with a 3 x 3 smoothing kernel and equalized to 

account for noise (see Baumgartner & Mussoline 2011 & Baumgartner et al. 2013 

for details).The LFDCS then characterizes the fundamental frequency of dominant 

sounds using a contour tracing algorithm. To classify resulting pitch tracks, several 

attributes (e.g., start frequency, end frequency, frequency range, duration and slope 

of frequency variation) are extracted from each contour. These features and known 

species-specific example calls of a prior established call library are used in a 

quadratic discriminant function analysis (QDFA) for final call classification. For this 

analysis we used two narrow-band call libraries, which were specific to the two sets 

of acoustic data with differing sample rates. The call library for classifying right and 

sei whale calls contained 5 variants of right whale up-calls with 254 individual call 

examplars (Clark 1983, Parks & Tyack 2005; Figure 2 d) and 3 of sei whale 

downsweeps (217 exemplars) (Baumgartner et al. 2008; Figure 2 c). A second call 

library was built for the lower sampled data set, containing 1 variant of the more 

stereotypic fin whale 20 Hz song notes (171 exemplars) (Watkins et al. 1987; Figure 

2 b) and 1 variant for A and B note examples of blue whale song (115 exemplars) 
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(Mellinger & Clark 2003; Figure 2 a). Exemplars for the call libraries were manually 

extracted from various data sets collected in the Northwest Atlantic Ocean.  

 QDFA assesses the quality of a classification using the Mahalanobis 

distance (MD). MD measures the distance between the attribute vector of the 

unknown call to the mean attribute vector of a given classification category. MD will 

be small for well classified calls and high for outliers. In this analysis we used a 

maximum MD threshold equal to 3 for fin, sei and right whale calls, which 

Baumgartner & Mussoline (2011) showed to be conservative. A maximum threshold 

of 5 was chosen for blue whale song, since initial data perusal had shown a very 

low occurrence of these signals in our data. Choosing a higher threshold therefore 

retained more lower quality calls and ensured that fewer calls were missed at the 

cost of a higher false detection rate. However, due to the low number of overall 

detections for this species, detections were manually verified, and all false 

detections were removed from the dataset. While such post-processing of data is 

feasible for small data sets or, like in our case, rare call types or species, it is 

prohibitive for long-term data of highly vocal and/or abundant species. The choice of 

the MD threshold is therefore dependent on the analysis goal and expendable effort.  

 In order to accurately present seasonal distribution patterns and reduce the 

missed call rate, we chose a more conservative MD threshold for fin, right and sei 

whales. To account for some of the resulting false classifications, without post-

processing the whole data set for these three species in the same manner as was 

done for blue whales, we instead followed a logistic regression approach as 

suggested by Baumgartner et al. (2013). This method determines the minimum 

number of detections (Nmin) that are necessary to accurately predict the presence of 
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a species within a given time period. For this long-term dataset and due to our 

interest in large-scale seasonal patterns, we chose hourly presence as a sufficient 

granularity for analysis. To estimate Nmin, we initially evaluated species occurrence 

(i.e. presence/absence) for every third hour in 3 days of every month in the 2006 

and 2009 detection data. However, due to relatively low calling rates of right and sei 

whales and in order to increase the true positive sample for these species, we 

extended this analysis by evaluating every third hour for 3 days in April and 

November 2008 and 2010 data for these two species. In a last step, additional 

hours were evaluated opportunistically, until a target of at least 60 positive hours 

were reached for each species and year. Subsequently, a logistic regression model 

was fitted to the data, in order to relate species occurrence to the number of 

species-specific calls detected in each hour of analysis. Using the intercept and 

slope of the fitted model, Nmin was then estimated for a range of probabilities (70-

95%) to accurately predict species presence. A range of Nmin values were calculated 

in order to compare the effect of choosing a particular prediction probability on the 

resulting seasonal detection patterns. Finally, the overall detector output was binned 

by hour and species, and only hours with N detected calls >= Nmin for 90% correct 

prediction probability (Table 3), were taken into account as true positive detections. 

All analyses were carried out in R v 3.1.1 (available at www.R-project.org). 

Detection range estimation 

Since variations in underwater ambient noise levels (NL) over time can have a 

profound impact on the detection probability of acoustic signals (Helble, D’Spain, 

Hildebrand, et al. 2013), an exploratory seasonal ambient noise analysis was 

conducted. LTSpec, a custom-written MATLAB script (LTSpec, Cortopassi 2007) 
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was used to extract absolute root-mean-square (RMS) received levels (RL) in dB re 

1 µPa/Hz. Seasonal week-long data (Table 1) were aggregated over a time period of 

ΔT = 600 s. Spectrograms were created using a sampling rate of 2000 Hz, a FFT 

size of 2048, and a Hanning window function, resulting in a frequency resolution of 

1 Hz. Results were averaged by hour and 1/3rd octave frequency bands centered 

around 25 and 200 Hz to represent fin and blue whale, and right and sei whale call 

frequencies, respectively. These calculated ambient noise levels (NL) were then 

used to estimate seasonal variation in maximum detection ranges of species-

specific vocalizations in the Stellwagen Bank area.  

 In order to model signal propagation an assumption of source and receiver 

depths of 20 and 50 m, respectively, was made and propagation was modeled for 

an omni-directional source over 8 horizontal radii and for all four seasons, using a 

BELLHOP acoustic simulation model implemented in ESME (Mountain et al. 2013), 

and environmental databases provided by the Oceanographic and Atmospheric 

Master Library (OAML) (available at http://esme.bu.edu/). For right whale up-calls 

we used an average source level of 172 dB (Hatch et al. 2012), a frequency of 200 

Hz and a signal length of 0.1 s as input variables. In the absence of empirical 

source level data for sei whale downsweeps we used the same parameters as for 

right whales. For fin whales, propagation was modeled for a 20 Hz signal of 0.1 s 

duration and an approximate source level of 189 dB (Weirathmueller et al. 2013), 

while for blue whales a signal of 15 Hz and 0.1 s duration was modeled at 189 dB 

(Širović et al. 2007). The maximum propagation radius was selected for each model 

run and compared to all measured ambient noise levels. The maximum detection 

range was then estimated as the point at which signal-to-noise ratio (SNR=RL-NL) 
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equaled 10 dB. Calculated ranges will thus give a rough estimate of maximum 

detection ranges for these species, as well as relative differences in detection range 

based on seasonal variation in ambient noise in the SBNMS study area.  

Seasonal vocalization patterns  

In order to avoid detection of the same call on multiple units, one channel of each 

multichannel data set was selected to explore seasonality using the described 

detection approach. Channels were selected with the aim to maximize recording 

time, while keeping a consistent recording location. However, due to varying study 

designs over the years and MARU loss due to trawling, the latter was not always 

possible. Overall the mean ± SE distance between 19 different recording locations 

was 26 ± 16 km (n=171) (Table 2). Hourly presence data for fin, right and sei whales 

were plotted as the sum of hours with detections per day. For blue whales, all 

detected calls were summed by day and plotted against day of occurrence.  

 

Results 

Detector evaluation 

A total of 73, 131, 136 days and 582, 1085, 1176 hours of data were evaluated for 

the logistic regression analysis for fin, right and sei whales, respectively. The relative 

probability of occurrence of calling whales was strongly related to the total number 

of detected calls for fin whale song, right whale up-calls and sei whale downsweeps 

(p < 0.0001) (Figure 3). For accurate detection probabilities from 70-95%, the 

minimum number of detected calls (Nmin) ranged from 18-34 calls per hour for fin 

whales, 15-25 for right whales and 2-4 for sei whales (Table 3). Since seasonality 

changed only in relative numbers of detected hours, while the overall pattern was 
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consistent between these different levels of confidence, we chose a probability of 

90% accuracy for all data presentation. Choosing this probability, the minimum 

number of detections for fin whales was Nmin= 28, 21 for right whales and 4 for sei 

whales (Table 3, Figure 3). Using a confidence value of 90%,  occurrence was 

falsely predicted in less than 5% of all hours and less than 3% of all days evaluated 

for all three species. In contrast, occurrence was missed in 30% of hours and 15% 

of days with manually detected fin whale song. Missed detection rate was especially 

high for right whale up-calls, with 94% of hours and 45% of days with manually 

verified detections missed when applying the logistic regression approach to the raw 

detector output. For sei whale downsweeps missed occurrence rate was 59% for all 

hours and 25% of all days with detections (Table 4).   

Detection ranges 

Average ambient noise levels in the selected 1/3rd octave bands (centered at 25 

and 200 Hz) were similar across seasons, ranging from 88-99 dB re 1µPa. 

However, for both frequency bands ambient noise levels measured during winter 

were 5-7 dB higher than during the rest of the year (Table 5). Calculated detection 

ranges also varied seasonally, as well as by species (Table 5). While blue and fin 

whale call detection distances were estimated at maximum ranges of over 80 km, 

maximum detection range estimates for right whale up-calls ranged from 8-21 km.  

Shortest detection ranges (57 km) for low-frequency blue and fin whale calls were 

estimated for summer propagation conditions. For right whale up-calls shortest 

detection ranges were estimated for the winter period analyzed (Table 5).  

Seasonality 

From January 2006 to May 2010 a total of 1165 recordings days and 26,448 hours 
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of single channel data recorded in the Stellwagen Bank National Marine Sanctuary 

(SBNMS) were analyzed for the occurrence of fin and blue whale song, right whale 

up-calls and sei whale downsweeps. Data was available for 317 days (86%) in 

2006, for 296 (81%) days in 2008 and all days in 2009. For 2010, 124 (34%) days 

were available, while in 2007 only 63 (17%) days had recording effort. Except for 

blue whale song, all data will be summarized for 2006 and from 2008-2010, omitting 

data from 2007 due to the low and discontinuous recording effort during that year. 

 (a) Fin whale 20 Hz song 

The most common signal in the data by far were 20 Hz fin whale song notes (Figure 

4). Fin whale song was detected in each month of the year for all four years. In 

addition, song was present on 929 (80%) of all available recording days. 

Occurrence was similar in all years, ranging from 70-83% of days with detections 

per year. The lowest number of days with detections were recorded in May and 

June (Figure 4). During these months fin whale song was detected on 26% and 

24% of available recording days, compared to over 80% of vocal presence in all 

other months, except July (68%) and December (75%). May and June also showed 

the lowest number of hours with song, with an average of 2-3 hours of song per day. 

In contrast, an average of 16-21 hours of song per day were detected from 

September to March (Figure 4).  

 (b) Right whale up-calls 

Right whale up-calls were detected on 132 (11%) of all available recording days and 

were detected in all months, except for August (Figure 5). However, there was 

considerable variability in detections between months and years. In general, most 

detections were made in April and May, with on average 2-5 hours with detections 
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per day. In these two months whales were detected on 43% and 28% of sampled 

days, respectively. A second peak in detections occurred from October to November 

with about 2 hours of detections per day (Figure 5). In November whales were 

vocally present on 16% of all sampled days. Although the general pattern of 

seasonality did not change between years, the relative amount and the timing of 

peaks in detections changed between years. Most days with detections were 

recorded in April 2009 and 2010, with 20 and 22 days with detections respectively. 

 (c) Sei whale downsweeps 

Sei whale downsweeps were detected on 209 (18%) of all available recording days 

(Figure 5). Sei whales were rarely detected during the winter months. There were no 

detections of sei whales in January in any of the recording years. In all years, sei 

whales were also largely vocally absent during summer, with no detections in June, 

and only one day with detections in August and two days in July. Sei whales were 

vocally most present in the autumn. October was the month with most detections, 

53 days (25%) of all days with detections occurred during this month. During this 

month 56% of all sampled days showed vocal presence. September and November 

showed vocal presence on 27% and 31% of sampled days, respectively. With on 

average 8 hours with detections per day, October was also the month with the 

highest calling activity for this species. A smaller secondary peak in detections 

occurred during spring,  with 39% and 26% of all sampled days showing vocal 

activity in April and May, respectively (Figure 5). There were significant differences 

in vocal presence between years. Most remarkably was the low number of days with 

detections in October 2009 (5 days) compared to a high of 24 days for both October 

2006 and 2008. A peak in days with detections occurred in April 2009 (26 days), 
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compared to 4-9 days of vocal presence for this month in all other years (Figure 5). 

 (d) Blue whale song 

Blue whale song was detected on 13 days (1%) over the entire data set, 8 days of 

which were consecutive days from 12-19 January 2009 (Figure 6). Based on the 

fact, that no overlapping song sequences were detected during any of these days, 

this occurrence may represent the detection of a single animal in the proximity of 

our array. Other days with blue whale song were recorded on 25 March 2006, 4 

September 2006, 17 January 2007 and 25 February 2009. No blue whale detections 

were made in 2008 or 2010.  

 

Discussion 

Detector performance and evaluation approach 

The application of the LFDC system for multi-species detection in a long-term data 

set proved efficient and effective to accurately detect large-scale patterns of vocal 

occurrence for all four baleen whale species analyzed in this study. Compared to 

verifying detection data manually, time for post-processing of original detection 

results was significantly reduced by using the logistic regression approach 

suggested by Baumgartner et al. (2013). Thus, this approach enabled the efficient 

analysis of more than three years and five months of continuous sound data.  

 Evaluation of this combined approach for species-specific detection showed 

that although a large number of hours with detections were missed, daily presence 

could be predicted relatively reliably for fin and sei whales, with less than 25% days 

with detections missed and less than 3% falsely predicted days with detections for 

both species (Table 4). These results show that the proposed detection and logistic 
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regression approach is applicable for fast data processing and detection of both 

species in long-term data sets. In contrast, right whale up-call detection results were 

relatively poor, with 94% of all hours and 45% of days with manually verified species 

presence within the evaluation data set missed by the combined automated 

detection and logistic regression approach. This result is likely related to low and 

irregular right whale calling rates (Parks et al. 2011), which hampers the successful 

application of the logistic regression approach as performed in this study, since it is 

reliant upon regular call production rates. Analysis of false detections for right whale 

up-calls, showed that, similar to results for the other species, only 3% of evaluated 

hours were falsely classified as containing right whale up-calls (Table 4). Therefore, 

due to this low misclassification rate, in the case of right whale up-calls, it may prove 

useful to manually post-process automated detection results rather than relying on 

the application of the logistic regression approach, in order to avoid high numbers of 

days with missed right whale presence.  

 In this study, the evaluation data set was pooled from different analysis 

years. However, it is important to note, that detector performance could change 

between analysis years. Detector performance and the calculation of Nmin using the 

logistic regression approach may thus be better evaluated on a year to year basis. 

In particular, humpback whale song is prolific in our study area in spring and autumn 

(Vu et al. 2012). Although not analyzed in detail in this study, humpback whale song 

overlaps in time and frequency with right whale up-calls, as well as sei whale 

downsweeps, rendering it sometimes difficult to distinguish between the different 

signals, especially when analyzing acoustic data without visual context. In addition, 

the continually evolving nature of humpback whale song (Noad et al. 2000), may 
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result in changing detector performance depending on the similarity of song phrases 

to species-specific signals of other species in a given year. In addition, although less 

likely, ambient noise conditions could change, for example in response to reduced 

shipping traffic after a recession (McKenna et al. 2012).  

 In future work detector performance should therefore always be analyzed 

per analysis year and the local call library and Nmin,  as estimated by logistic 

regression should be adjusted if necessary to increase accuracy and reduce missed 

call rates. Further, if data on calling behaviour suggests seasonal differences in call 

production rates, performance evaluation and logistic regression should be 

performed on even smaller time scales. The strength of the LFDCS detection 

approach is that such changes can easily be implemented, without having to 

change the underlying detection algorithm, making the system extremely flexible 

and adjustable for a range of different research questions (Baumgartner & 

Mussoline 2011, Baumgartner et al. 2013). 

Detection ranges 

The detectability of a species using passive acoustic monitoring (PAM) approaches 

is dependent on a variety of different parameters. Most importantly, call source 

levels, system sensitivity, as well as average background noise levels and 

propagation characteristics of a given area determine the detection radius for a 

specific call type. Results from the preliminary estimation of detection range based 

on local propagation, ambient noise conditions and species-specific call 

characteristics illustrate large differences in detection radii for the different species 

analyzed with the current multi-species detection approach. While low-frequency 

calls produced by fin and blue whales may be detected for over 80 km, detection 
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radii for right whale up-calls ranged from 8-21 km in our study area. These 

differences in detection radius are important to keep in mind when interpreting the 

seasonal presence data presented in this study, since the difference in range of 

detection between the four species is at least 4-fold and means that in this study 

blue and fin whale song is detected at an entirely different spatial scale than right 

and sei whale vocalizations.  

 In addition, estimated detection radii in this study varied seasonally. For 

example, reduced detection radius for right whale up-call and sei whale downsweep 

signals during winter (Table 5) may be related to higher ambient noise levels within 

the critical frequency band for these species, driven by weather patterns (i.e. 

increased surface wave action due to winter storms). In contrast, a reduced 

detection radius for low-frequency fin and blue whale calls during summer (Table 5), 

may be related to differences in propagation characteristics, as here differences in 

ambient noise levels between seasons were less pronounced.  

 The complexity of inter-related effects and a general lack of knowledge of 

basic  calling behaviour parameters often prohibits the correction of passive 

acoustic detection data (but see (Helble, D’Spain, Campbell, et al. 2013). However, 

the notion of seasonal variability in ambient noise levels or oceanographic 

parameters affecting propagation and detection radius of species-specific signals, 

warrants careful consideration when interpreting seasonal patterns in species 

occurrence based on PAM data alone. 

Seasonality 

 (a) Blue and fin whales 

The most common vocalization recorded throughout this study were 20 Hz song 
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notes produced by fin whales. Fin whale song occurred on 80% of all recording 

days and was present in all months of every recording year. In contrast, blue whale 

song was recorded on only 13 days throughout the whole study period. While this 

disparity likely reflects a more offshore distribution of blue whales, who are also 

rarely sighted over the continental shelf (Wenzel et al. 1988), it may to some extent 

also reflect differences in relative numbers. Blue whales in the North Atlantic have 

been heavily exploited by historical whaling and there is little indication that the 

population is recovering. Populations estimates for the North Atlantic range from a 

couple of hundred to 2000 animals, although reliable abundance estimates are 

sparse (Clapham et al. 1999, Ramp et al. 2006). In comparison, present estimates 

for fin whales in the North Atlantic indicate an abundance of about 35,000 

(www.iwc.int/status, accessed November 4, 2013). A relatively greater abundance of 

fin whale, as compared to blue whale song has also been found in recordings from 

the mid-Atlantic Ocean and has been associated with relative numbers of 

individuals (Nieukirk et al. 2004).  

 The year-round detection of fin whale song in our study area corroborates 

data from other recent passive acoustic studies in an adjacent area in 

Massachusetts Bay and off Long Island, New York showing similar results (Morano, 

Salisbury, et al. 2012). Similar to seasonal patterns found in the current study 

(Figure 4), Morano, Salisbury, et al. 2012 indicate a reduced abundance of fin whale 

20 Hz notes during summer. They show that the reduction in absolute note 

abundance is related to an increase in inter-note interval (INI) during that time of 

year. Yet, the significant reduction of hours with detections during summer months in 

the current study cannot be explained with changes in INI exclusively. Instead, a 



Chapter 2 

change in absolute singing activity at this time of year and/or the relative number of 

singing individuals in the area are more likely causes for the observed seasonality 

patterns. The peak of singing activity during winter, which has also been shown in 

passive acoustic data from Davis Strait, Greenland (Simon et al. 2010), overlaps 

with the reproductive season which is thought to last from November to March in 

this species (Lockyer 1984). Since fin whale song is produced exclusively by males 

in a reproductive context (Croll et al. 2002), an increase of singing activity during 

autumn and extension of singing into winter may be explained by a switch from 

primarily feeding behaviour in the summer to reproductive behaviour later in the 

year. However, without more knowledge on fin whale distribution at different times of 

the year, the underlying causes for the observed changes cannot be conclusively 

resolved from PAM data alone. Overall, the data from this study indicate, that fin 

whales have a year-round presence in the Gulf of Maine and that seasonal 

migrations might be more flexible in this species than in other baleen whales.  

 (b) Right and Sei whales  

Results for right and sei whales showed a bimodal peak in call detections during 

spring and autumn, which was repeated in several years (Figure 5) in both species. 

This seasonality likely reflects migratory movement and establishes Massachusetts 

Bay as an important area along spring and autumn migratory routes for both 

species. While similar results have been shown in other PAM studies from this area, 

targeting right whale up-calls (Morano, Rice, et al. 2012, Mussoline et al. 2012), this 

is the first long-term study representing sei whale migratory behaviour in this part of 

the western North Atlantic using passive acoustics. Sei whale downsweeps have 

only recently been described in detail (Baumgartner et al. 2008). While there is 
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some overlap with similar downsweeps produced by fin whales in the North Atlantic 

(Castellote et al. 2012), we tested the LFDCS sei whale call library against 183 

known fin whale downsweeps recorded in the Gulf of St Lawrence (Delarue, 

unpublished data) and determined a low misclassification rate of 6% (11 calls) 

(Risch, unpublished data). We are therefore confident, that most detected calls were 

correctly attributed to sei whales.  

 While both species showed peaks in detection in both spring and autumn 

and thus show some overlap in vocal and likely actual occurrence, it is interesting to 

note, that while right whale acoustic presence generally peaked in April, sei whale 

presence showed a distinct peak in October (Figure 5). The preferred prey of both 

species are euphasiids (Wishner et al. 1988, Schilling et al. 1992), and the different 

peaks of occurrence in the Stellwagen Bank Sanctuary might therefore be related to 

a separation of seasonal feeding habitats between these species. During spring, 

right whales spend considerable amounts of time feeding in Cape Cod Bay 

(Pendleton et al. 2012), and vocal occurrence in the Stellwagen Bank area during 

this time of year is likely related to movements in and out of Cape Cod Bay (Morano, 

Rice, et al. 2012). In contrast, sei whales do not seem to have a persistent presence 

in Cape Cod Bay during spring. However, both species seem to overlap in a nearby 

spring feeding ground, the Great South Channel, located between Cape Cod Bay 

and Georges Bank (Baumgartner & Fratantoni 2008). Differences in vocal peaks at 

different times of year, may thus indicate small-scale spatial niche separation in a 

common seasonal feeding habitat. 

 Although large-scale seasonal patterns were similar between years there 

were marked differences between years, most notably the absence of sei whale 
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downsweeps in autumn 2009 (Figure 5). The data analyzed in this study were 

collected on one representative passive acoustic recorder per time period and while 

this study indicates, that larger scale seasonal patterns are well captured using this 

method, it is possible, that smaller scale movement patterns may be responsible for 

observed differences in acoustic detections between years. This interpretation is 

corroborated by comparing the seasonal patterns for right whale up-calls from our 

study to results from acoustic recordings from a 19 element acoustic array just to 

the west of our study area (Morano, Rice, et al. 2012). While the large-scale 

seasonal patterns, showing a spring peak in detections and a smaller peak during 

autumn, was the same in both studies, the differences in yearly detections are less 

pronounced than in our study. This potential difference in large-scale versus small-

scale occurrence patterns highlights the importance of taking study design, location 

and number of available recorders into account, when interpreting results from PAM 

studies.  

In conclusion, this study shows the suitability of using PAM and a generalized multi-

species detection system for evaluating seasonal, multi-species occurrence patterns 

and elucidate large-scale patterns of overlap between different species. The 

concentration on one representative call type per species likely influenced the 

presented results with respect to species presence. Vocalization behaviour is likely 

dependent on general behaviour and using reproductive signals for some species 

(fin and blue whales) versus contact and/or feeding associated calls for another 

(right and sei whales) will therefore influence the results and need to be considered 

in the interpretation of the reported results. In future work more call types, such as 

gunshot calls or moans for right whales (Parks et al. 2012) or 40 Hz fin whale calls 
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(Širović et al. 2012), should be included in similar analyses to ensure a more 

comprehensive representation of each species' presence using PAM.  
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Tables 

Table 1. Summary of weeks analyzed for seasonal examples of ambient noise 

levels in the Stellwagen Bank National Marine Sanctuary (SBNMS) study area. 

Season Analysis Week MARU ID Latitude Longitude 
Winter 01/01/2009 - 01/07/2009 181 42.613 -70.239 
Spring 04/01/2009 - 04/07/2009 211 42.243 -70.271 

Summer 08/01/2009 - 08/07/2009 144 42.262 -70.232 
Autumn 11/01/2009 - 11/07/2009 209 42.448 -70.307 

 

 

Table 2. Summary of analysis start and end dates and locations of recorders for 

which data was analyzed in this study. See Figure 1 for a map of these locations. 

Start Date End Date MARU ID Channel # Latitude Longitude 
01/06/2006 03/29/2006 82 3 42.470 -70.240 
03/30/2006 05/24/2006 89 6 42.645 -70.374 
06/29/2006 09/21/2006 79 5 42.470 -70.238 
09/27/2006 10/15/2006 79 5 42.470 -70.236 
10/16/2006 11/27/2006 81 6 42.338 -70.193 
12/06/2006 02/21/2007 81 5 42.338 -70.193 
12/20/2007 02/17/2008 136 10 42.635 -70.196 
03/08/2008 05/30/2008 136 2 42.284 -70.267 
05/30/2008 06/12/2008 139 1 42.283 -70.334 
06/26/2008 07/14/2008 155 3 42.414 -70.314 
07/14/2008 08/25/2008 153 7 42.165 -70.437 
09/09/2008 11/24/2008 144 2 42.447 -70.308 
12/19/2008 03/13/2009 181 10 42.613 -70.239 
03/14/2009 03/28/2009 137 1 42.270 -70.443 
03/28/2009 05/28/2009 211 3 42.243 -70.271 
05/29/2009 07/16/2009 142 1 42.323 -70.439 
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07/16/2009 07/28/2009 207 6 42.413 -70.316 
07/28/2009 10/02/2009 144 1 42.262 -70.232 
10/03/2009 11/30/2009 209 3 42.448 -70.307 
11/30/2009 12/16/2009 137 1 42.780 -70.163 
12/16/2009 03/19/2010 214 10 42.613 -70.238 
04/08/2010 05/23/2010 136 6 42.179 -70.242 

 

 

Table 3. Summary of minimum number (Nmin) of detected calls needed for a given 

species prediction probability based on logistic regression analysis. (BP: 

Balaenoptera physalus (fin whale); EG: Eubalaena glacialis (right whale); BB: 

Balaenoptera borealis (sei whale).  

Pred. Accuracy Nmin BP Nmin EG NminBB 
0.7 18 15 2 
0.75 20 16 3 
0.8 22 17 3 
0.85 25 19 3 
0.9 28 21 4 
0.95 34 25 4 
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Table 4. Evaluation of LFDCS detection results after application of a 90% prediction 

accuracy threshold (NminBP=28; NminEG=21; NminBB=4). Number of hours and days 

evaluated (h/eval and d/eval) and with manually verified detections (h/det and d/det) 

vs. total number and percentage of hours and days missed (h/missed and d/missed) 

and falsely predicted (h/false and d/false). (BP: Balaenoptera physalus (fin whale); 

EG: Eubalaena glacialis (right whale); BB: Balaenoptera borealis (sei whale)).  

 
Species 

 
h/eval 

 
h/det 

 
h/missed 

 
h/false 

 
%missed h 

 
% false h 

BP 582 403 121 4 30.02 0.99 
EG 1085 178 169 6 94.94 3.37 
BB 1176 201 119 9 59.20 4.48 

  
d/eval 

 
d/det 

 
d/missed 

 
d/false 

 
%missed d 

 
% false d 

BP 73 73 11 0 15.01 0 
EG 131 131 59 2 45.04 1.53 
BB 136 136 34 4 25.00 2.94 
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Table 5. Summary of median, 25th and 75th percentile ambient noise levels (NL) 

measured in the Stellwagen Bank study area, and presented as RMS pressure over 

ΔT = 1 h and 1/3d octave bands centered at 25 and 200 Hz to represent blue and 

fin whale (BP: Balaenoptera physalus (fin whale); BM: Balaenoptera musculus (blue 

whale)), as well as right and sei whale (EG: Eubalaena glacialis (right whale); BB: 

Balaenoptera borealis (sei whale)) call frequency bands, respectively. Estimated 

maximum detection ranges for the two species groups are based on a BELLHOP 

propagation model as implemented in ESME (Mountain et al. 2013), using their 

species-specific vocalizations, seasonal ambient noise level measurements and a 

detection threshold of 10 dB. 

Species Season NL (dB re 1µPa)  Max. Det. Range (km) 

BM/BP Winter 98.5 [97.8-99.3] 79 
(25 Hz) Spring 88.3 [87.2-89.7] >80 

 Summer 93.8 [91.9-95.7] 57 
 Autumn 93.8 [91.9-94.6] >80 

EG/BB Winter 97.1 [96.4-97.6] 8 
(200 Hz) Spring 91.6 [90.3-93.1] 21 

 Summer 89.1 [88.0-90.9] 19 
 Autumn 90.1 [89.3-90.9] 20 
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Figures 

Figure 1. 

Map of the Stellwagen Bank National Marine Sanctuary (SBNMS) (grey shaded 

area). Symbols depict locations of single acoustic recording units deployed and 

analyzed for baleen whale presence in this study. Different colours represent 

different years (2006-2010). Map projection: Mercator. 

Figure 2. 

Example spectrograms of vocalizations of the four baleen whale species analyzed 

in this study. (a) blue whale AB song, (b) fin whale 20 Hz song, (c) sei whale 

downsweeps, (d) right whale up-calls. Note different frequency and time scales of  

the spectrograms. Spectrogram parameters: (a) Fast Fourier Transform (FFT) = 

4096 pt, overlap (ovlp) = 95%, samplerate (SR) = 2000 Hz: frequency resolution 

(FR) = 0.5 Hz, time resolution (TR) = 100 ms; (b) FFT = 1024 pt, ovlp = 75%, SR = 

2000 Hz: FR = 1.9 Hz, TR = 128 ms; (c) FFT = 4096 pt, ovlp = 75%, SR = 10,000 

Hz: FR = 2.4 Hz, TR = 250 ms; (d) FFT = 512 pt, ovlp = 75%, SR = 2000 Hz: FR = 

3.9 Hz, TR = 64 ms. 

Figure 3.  

Relationship between hourly call rate observed by the LFDCS detector and analyst 

observed presence for (a) fin whale song, (b) right whale up-calls and (c) sei whale 

downsweeps. Red line represent fitted logistic regression and Nmin, represents the 

minimum number of calls necessary to achieve 90% probability of accurately 

predicting species presence based on the fitted model.  
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Figure 4.  

Detections of fin whale 20 Hz song shown as hours per day with detections for data 

collected in 2006, and from 2008-2010. Red lines indicate periods with missing 

data. 

Figure 5. 

Detections of right whale up-calls and sei whale downsweeps, shown as hours per 

day with detections for data collected in 2006, and from 2008-2010. Red lines 

indicate periods with missing data. 

Figure 6. 

Detections of blue whale AB song, shown as number of detections per day for data 

collected in 2006, 2007 and 2009. No blue whales were detected in 2008 and 2010. 

Red lines indicate periods with missing data. 
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INTRODUCTION

Many mammals live in fluid social networks, where
individuals move over long distances and in relation
to one another. In such social systems most aspects
of behavior, such as maintaining social contact,
mate attraction, territorial defense or anti-predator
response, are often mediated by acoustic communi-

cation (see McComb & Reby 2005 for a review). Due
to natural limitations of light propagation in the
 marine environment, cetaceans in particular have
evolved to rely on sound for many aspects of their
lives. For example, most baleen whales use low -
frequency signals that can propagate over large dis-
tances for maintaining social contact during long
migrations and in social contexts such as mating (e.g.
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Tyack & Clark 2000). Sound production may also be
related to feeding and navigation (e.g. Clark & Elli-
son 2004, Stimpert et al. 2007).

In recent years, passive acoustic monitoring (PAM)
has become an important tool for monitoring ceta -
ceans. PAM is especially useful in remote areas, dur-
ing nighttime or adverse weather conditions and in
general for species that are difficult to study at sea
(e.g. Moore et al. 2006, Mellinger et al. 2007a, Van
Parijs et al. 2009). It can generate long-term records
of seasonal occurrence and distribution patterns,
providing valuable insights into the habitat utiliza-
tion of vocally active species, their presence in cer-
tain areas and when they may be at risk of deleteri-
ous anthropogenic impacts (e.g. Gallus et al. 2012,
Mussoline et al. 2012). Where detailed knowledge on
the vocal behavior of species exists, these new meth-
ods can be used effectively in density estimations
(e.g. Barlow & Taylor 2005, Lewis et al. 2007, Marques
et al. 2013).

Given the high mobility and wide range of most
baleen whale species, it is challenging to gather
even elementary data on their ecology. New meth-
ods, such as PAM, may therefore provide a great
opportunity to collect baseline ecological data,
which cannot be acquired through other methods
for some species. However, for many baleen whale
species, including minke whales Balaenoptera acu-
torostrata in the North Atlantic, fundamental knowl-
edge on their acoustic behavior is still missing,
often rendering it difficult to interpret PAM data
appropriately.

Minke whales occur widely throughout the North
Atlantic. They range from Baffin Bay to the Carib -
bean in the western North Atlantic and from the Bar-
ents Sea to the west African continental shelf in the
eastern North Atlantic (Van Waerebeek et al. 1999,
Reilly et al. 2008). In the central North Atlantic pro-
nounced sexual segregation exists on higher latitude
feeding grounds, with females occurring farther
north off western Greenland and males remaining
further south and along the eastern coast of Green-
land (Laidre et al. 2009). While there is evidence that
minke whales undertake seasonal migrations be -
tween feeding and breeding grounds (e.g. Mitchell
1991, Van Waerebeek et al. 1999, Skaug et al. 2004),
some individuals may also stay in temperate waters
year-round (Macleod et al. 2004). Anderwald et al.
(2011) suggest that there may be 2 separate breeding
populations in the North Atlantic. However, to date
no breeding grounds have been identified, and win-
ter distribution and occurrence of this species is still
barely understood.

North Atlantic minke whales are currently listed as
a species of least concern under the IUCN Red List
(Reilly et al. 2008). The current estimate for the North
American east coast is 8987 (CV = 0.32) individuals
(Waring et al. 2012). Nonetheless, the species is still
commercially hunted across its summer range (Ro-
bards & Reeves 2011, see also www.iwcoffice. org). In
addition, like most species of marine mammals, it is
subject to indirect takes in fisheries (Benjamins et
al. 2012) and is exposed to a variety of other threats,
including ship-strike, chemical and noise pollution,
and degradation and loss of habitat. Considering
 increasingly complex scenarios of human impacts
on the marine environment (e.g. Halpern et al. 2008,
Davidson et al. 2012) and the lack of distribution and
abundance data for North Atlantic minke whales be-
yond their summer range, there is a clear need for
 improved monitoring to ensure that healthy popula-
tions are maintained across their entire  habitat.

Current monitoring and abundance estimates for
minke whales are based on visual data (e.g. Skaug et
al. 2004, de Boer 2010, Bartha et al. 2011). However,
visual detection of this species at sea can be difficult
due to its small size and cryptic behavior (e.g. Rankin
et al. 2007). Alternative methods, such as PAM, offer
a great opportunity to significantly improve studies
of the ecology, behavior, distribution and abundance
of this species (Oswald et al. 2011).

Minke whales are known to produce a variety of
sounds across their range of occurrence. Low-fre-
quency downsweeps, higher frequency clicks and a
variety of other sounds have been reported from the
Antarctic (Schevill & Watkins 1972, Leatherwood et
al. 1981). More recently, Rankin & Barlow (2005)
attributed the North Pacific ‘boing’ sounds to this
species, and Gedamke et al. (2001) described the dis-
tinct ‘star wars’ vocalization, produced by Australian
dwarf minke whales Balaenoptera acutorostrata.

In the North Atlantic, Beamish & Mitchell (1973)
attributed series of clicks in the 5 to 6 kHz range to
minke whales, and Edds-Walton (2000) recorded fre-
quency-modulated downsweeps (118 to 80 Hz) in the
Gulf of St. Lawrence, Canada. Finally, in the Carib -
bean, Winn & Perkins (1976) and Mellinger et al.
(2000) recorded low-frequency pulse trains with
varying interpulse interval (IPI) structure.

Recent advances in statistical methodology en abled
estimates of cell density for North Pacific minke
‘boing’ vocalizations (Marques et al. 2010, Martin
et al. 2013). However, in order to convert these call
densities to estimates of animal abundance, it is cru-
cial to estimate cue rates reliably (Marques et al.
2010, 2013). The rate with which animals vocalize
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may vary with call type, sex of calling animal, behav-
ioral state, season, location, group size and level of
disturbance (e.g. Croll et al. 2002, Oleson et al.
2007a,b, Parks et al. 2011, Risch et al. 2012). Thus,
a better understanding of basic minke whale vocal
behavior is necessary to use PAM beyond species
presence/absence detection.

In this study, minke whale pulse trains were re -
corded across 3.5 yr in the Stellwagen Bank National
Marine Sanctuary (SBNMS), Massachusetts, USA.
Pulse train characteristics were first ex amined in
detail. Using multivariate statistical analyses, dif -
ferent types were then classified and their relative
frequency of occurrence analyzed. In addition, an
automated detection algorithm was developed to
describe seasonal, spatial and diel patterns of pulse
train occurrence.

MATERIALS AND METHODS

Data collection

Multi-year acoustic data were collected as part of 2
long-term monitoring projects carried out in 2006
and from December 2007 to May 2010 in the SBNMS
(Fig. 1) and surrounding waters (see also Hatch et
al. 2008, Hatch et al. 2012). Recordings were made
using arrays of 9 to 10 marine autonomous recording
units (MARUs) (Calupca et al. 2000). Each MARU
was equipped with an HTI-94-SSQ hydrophone (High
Tech Instruments; sensitivity: −168 dB re 1 V/ µPa),
connected to a pre-amplifier and A/D converter with
12 bit resolution, resulting in an effective system sen-
sitivity of −151.7 dB re 1 V/µPa. All units sampled
continuously at a rate of 2000 Hz, yielding an effec-
tive analysis bandwidth of 10 to 1000 Hz, with a flat
frequency response (±1 dB) between 55 and 585 Hz.
The units were moored 1 to 2 m above the sea floor in
depths ranging from 30 to 100 m. Units were typically
deployed for 3 mo at a time and were recovered and
redeployed throughout the study period.

Pulse train measurements

Preliminary seasonal data analyses showed a peak
of minke whale pulse train occurrence from late
 summer into autumn. Therefore, a subsample of the
entire dataset, encompassing a total of 44 d in
August, September and October in 2006 and 2008,
were reviewed visually and aurally (fast Fourier
transformation [FFT] size: 1024 points, 85% overlap,

Hanning window), using the sound analysis software
XBAT (Figueroa & Robbins 2008). Good quality
 (signal-to-noise ratio [SNR] > 10 dB), non-overlap-
ping pulse trains were selected for detailed acoustic
measurements. In an effort to reduce oversampling
of  single individuals, not more than 5 pulse trains per
hour and a maximum of 40 pulse trains per day were
selected for this analysis. Acoustic data were band-
pass filtered from 30 to 800 Hz to remove environ-
mental noise and sounds from other species.

Spectrograms (FFT size: 512 points, 96.9% overlap,
Hanning window, time resolution: 8 ms, frequency
resolution: 4 Hz) of this subset of data were gener-
ated and analyzed with Avisoft-SASLab Pro 5.1 (Avi-
soft Bioacoustics). The automatic parameter meas-
urement tool was used to measure pulse trains.
Individual pulses were detected using an amplitude
threshold of −30 to −55 dB sound pressure level (SPL)
relative to the maximum SPL in the sound file. The
threshold was manually adjusted to ensure the
detection of every pulse within a pulse train. For
each detected pulse, the following parameters were
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Fig. 1. Gulf of Maine with the Stellwagen Bank National
Marine Sanctuary (SBNMS) outlined and shaded in gray.
Inset map in upper right corner shows the position of the 

study area along the US eastern coast
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measured: start and end time (s), peak, and 1st, 2nd
and 3rd quartile frequencies (Hz). Frequency meas-
urements were taken at the start, end and center of
the pulse and over the mean spectrum of the pulse.
From these measurements, pulse duration (s), inter -
quartile range (IQR) and bandwidth (Hz) were
derived. In addition, the following parameters were
obtained to characterize the entire pulse train: dura-
tion (s; start of first pulse to end of last pulse), number
of pulses, mean IPI (s; time between starts of 2 con-
secutive pulses), start and end IPI (s; averaged over
the first and last 20% of pulses, respectively), change
in pulse rate (1/IPI (1/s); difference of averaged val-
ues for first and last 20%) and change in frequencies
over time (Hz; difference of averaged first and last
20% mean spectrum measures).

Classification of pulse trains and relative rate 
of occurrence

From recordings obtained in the Caribbean,
Mellinger et al. (2000) described 2 types of minke
whale pulse trains, which differ in IPI structure: the
slow-down and the speed-up type. Initial analysis of
our data found both of these types, as well as a third,
that showed no change in IPI over time. Based on
these initial observations, pulse trains were grouped
into 1 of 3 categories. Pulse trains were labeled as
‘speed-up’ if the change in pulse rate was <−0.5 and
‘slow-down’ if it was >0.5. If the change in pulse rate
was in between these values, pulse trains were
labeled as ‘constant’.

Subsequently, a supervised random forest model
was fitted to the data and the resulting matrix of data
dissimilarity was used as input for a fuzzy c-means
cluster analysis. This multivariate statistical ap -
proach was taken to produce a less subjective and
reproducible method of vocal repertoire classifica-
tion, while taking the obvious importance of IPI
structure and previous classification based on it into
account. Random forests combine predictions of
many classification trees, built on random subsets of
the data (Breiman et al. 1984, Strobl et al. 2009). The
strengths of random forests include high classifica-
tion accuracy, the availability of methods to assess
variable importance and measures of data similarity
that allow classification of the original data set (e.g.
Cutler et al. 2007). All statistical analyses were
 conducted using R v. 2.15 (available at  www.R-
project.org). The cforest function in the party pack-
age (Strobl et al. 2008) was used for random forest
analysis and the number of trees was set to 1000. A

total of 30 spectral and temporal predictor variables
(see ‘Pulse train measurements’ above) were in -
cluded in this analysis. Following suggestions in the
literature (e.g. Cutler et al. 2007, Strobl et al. 2009),
the number of randomly chosen predictor variables
at each split was set to the square root of all available
predictor variables (n = 6).

The fanny function of the cluster package (Maech-
ler et al. 2012) was used for fuzzy c-means clustering
and calculating silhouette plots. Fuzzy c-means clus-
tering differs from other clustering algorithms in that
each observation is assigned to various clusters and
the degree of membership is quantified by a coeffi-
cient ranging from 0 to 1, with the sum over all clus-
ters being equal to 1 (Kaufman & Rousseeuw 1990).
This method was chosen since it allows for more
ambiguity in the data than traditional ‘hard’ cluster-
ing methods and thus proves more realistic in most
ecological contexts (e.g. Jackson et al. 2010). The
average silhouette width index (Rousseeuw 1987)
was used to determine the optimal number of clus-
ters, k. The underlying technique determines the
association between object i and other members of
its cluster and the strength of this association as
 compared to i’s relation to members from other clus-
ters. The silhouette value si ranges from −1 to 1,
where 1 indicates that object i fits well within its clus-
ter and −1 that it is not well classified. The average
silhouette width of a cluster indicates how tightly
grouped the data in the cluster are and the overall
average silhouette width is a measure of how well
the data is structured. The optimal number of k
groups can be found by comparing the silhouette
width indices for a range of clustering solutions using
different ks and selecting the one yielding the high-
est average silhouette width, called the silhouette
coefficient (SC). It has been suggested that a reason-
able structure in the data is found when SC > 0.5 and
that a strong structure is indicated by SC > 0.7 (Struyf
et al. 1996).

In a next step, histograms of IPI for each cluster
were calculated and the function mclust of the mclust
package (Fraley & Raftery 2010) was applied to fit
Gaussian mixture models in order to describe means
and standard deviations of IPI distribution peaks for
each cluster.

Finally, the relative frequency of occurrence of
each cluster was examined by fully annotating 2 days
with peak minke whale pulse train occurrence in
2006 (1 September and 7 October) and 2008 (18 Sep-
tember and 19 September). Each identifiable pulse
train was placed in 1 of the clusters and results were
plotted as histograms.
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Automatic detection

Three and a half years (2006, 2007 to 2010) of data
were examined with an automatic detection algo-
rithm that was implemented in a high performance
computing (HPC) platform, using custom-built  Matlab
R2012b scripts (Dugan et al. 2011). The automatic
detection consisted of a multi-stage process based on
spectrogram intensity binarization, energy projec-
tion, feature extraction and classification (Popescu et
al. 2013). A set of 18 basic features was extracted
from each detected event and passed to a ripple-
down rule (RIDOR) learner (Gaines & Compton 1995)
for final classification. While the detection stage
was designed for general pulse train detection, the
RIDOR was trained to identify minke whale pulse
trains. However, the RIDOR did not distinguish be -
tween the different types of pulse trains as identified
in this study.

Performance of the detector was evaluated by cre-
ating a truth data set, consisting of minke whale
pulse trains mixed with segments of noise. Noise seg-
ments were selected to describe typical scenarios of
variable seasonal background noise in this region.
All pulse trains of the truth data set were scored on a
scale of 1 to 4 by their signal quality, with Category 1
calls being of low quality and Category 4 calls ap -
pearing clear and well above background noise on
the spectrogram. All detection data were post-pro-
cessed and false positive detections were removed
from the final dataset. Post-processing and assembly
of the truth data set were performed by an experi-
enced data analyst (D.R.).

Seasonality and diel patterns

To examine seasonal and diel patterns of pulse
train occurrence, 1 channel of each multi-channel
dataset was selected for analysis. Channels were
selected with the aim to maximize recording time,
while keeping a consistent recording location. Due to
varying study designs over the years and MARU loss
due to trawling, the latter was not always possible.
Overall the mean ± SE distance between 19 different
recording locations was 26 ± 16 km (n = 171). All data
were binned by hour and results plotted by day.

Diel patterns were assessed during the peak sea-
son of pulse train occurrence (15 July to 15 Novem-
ber 2006, 2008 and 2009) and only days with detec-
tions were used for this analysis. To account for
variation in calling rates from one day to the next,
mean-adjusted hourly calling rates were calculated

by subtracting the average number of detections per
day from the number of calls in each hour of the same
day (Stafford et al. 2005). Hourly calling rates were
then averaged for 3 different light regimes: ‘light’,
‘twilight’ and ‘dark’. The sun-methods function of the
maptools package (Lewin-Koh & Bivand 2012) was
used to determine sun altitude in each hour of
 analysis for Provincetown, Massachusetts (42.1° N,
70.2° W), the closest land point to the deployed
acoustic recorders. ‘Light’ periods were defined as
those hours with a sun altitude greater than 0°
(approx. 05:30 to 17:00 h Eastern Standard Time,
EST), ‘twilight’ was based on the definition of nauti-
cal twilight with sun altitude between 0° and −12°
(approx. 04:30 to 05:30 and 17:00 to 18:00 h EST) and
‘dark’ were those hours, when the altitude of the
sun was less than −12° (approx.18:00 to 04:30 h
EST). Since the data were not normally distributed
(Saphiro-Wilk test), a Kruskal-Wallis test was used
to test for differences between light regimes. Wil -
coxon rank-sum tests with Bonferroni corrections for
 multiple testing were used for post-hoc comparisons
between pairs of light regimes.

Spatial patterns

In 2006 MARUs were spaced equally across the
SBNMS and recording locations were kept constant
throughout the whole year. This dataset was used to
examine the spatial distribution of minke whale
pulse trains during the peak of their occurrence (15
July to 15 November 2006). For each of the 9 avail-
able recording sites the total number of pulse train
detections was determined and the data were nor-
malized by the total number of recording days for
each site.

RESULTS

Characterization, classification and relative
 occurrence

From the initial 44 d subsample of the dataset, 396
minke whale pulse trains were selected for detailed
analyses. Using the combined approach of super-
vised random forest and cluster analyses, the best
supported grouping of these data resulted in 6 main
clusters of pulse trains (Fig. 2). However, the average
silhouette width was relatively weak (0.42), suggest-
ing that not all clusters are strongly supported (Kauf-
man & Rousseeuw 1990). Thus, distinction between
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some groups may lie along a gradient of similarity.
Temporal features such as IPI at the beginning and
end of pulse trains, as well as total pulse train dura-
tion, number of pulses and mean IPI, were the most
important variables for splitting data into groups.

Based on changes in IPI structure, pulse trains
recorded in SBNMS can be split into 3 main cate-
gories. While the IPI of slow-down pulse trains
(Fig. 3a) increases towards the end of the call, con-
stant pulse trains show a constant IPI throughout the
entire duration of the call (Fig. 3b). Speed-up pulse
trains, as described by Mellinger et al. (2000), were
found in our dataset but in much smaller numbers
than the other 2 types. In our sample, they ac counted
for only 14 out of 396 measured pulse trains and thus
did not fall out as a separate cluster. Cluster analysis
divided the slow-down and constant pulse trains into
3 subgroups for each type. Table 1 summarizes the
basic spectral and temporal measurements for all
types of pulse trains that were classified in this study.

In general, slow-down pulse trains were character-
ized by differences in IPI structure and duration. All
calls in this category had a bimodal distribution in
IPI. While slow-down types 1 and 2 (sd1 and sd2)

showed mean peaks in IPI at about 0.30 and 0.47 s,
type 3 (sd3) differed, with mean peaks at 0.42 and
0.70 s. Median total call durations were 35.6 and
39.8 s for sd1 and sd3, respectively, while sd2 calls
were much shorter in duration, with a median of
17.5 s (Fig. 3a).

Constant pulse trains were subdivided, based pri-
marily on differences in IPI. While constant pulse
trains of type 1 (c1) had a mean IPI of 0.39 s, mean IPI
for type 2 (c2) and type 3 (c3) were 0.64 and 0.83 s,
 respectively (Fig. 3b). Median peak frequencies (PF)
for all types of slow-down and  constant pulse trains
were similar and ranged from 106 to 136 Hz, except
for c3, which exhibited a lower median PF of 58 Hz.
In addition, most types showed an increase in PF
throughout the duration of the call. Although highly
variable, the median change in PF ranged from 6 to
23 Hz. Type c3 was the only type with a slight de-
crease (−5 Hz) in median PF from start to end. With
the longest mean IPI and a silhouette width of 0.76,
type c3 was also the most distinct group.

Speed-up pulse trains had a median PF of 106 Hz
and showed a bimodal IPI distribution, decreasing
from 0.54 to 0.37 s throughout the call (Table 1).
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Fig. 2. Bivariate plot of fuzzy cluster analysis results. The 2 components explain 62.76% of the point variability. Data points
represent individual pulse trains and are colored and labeled by pulse train type (c: constant; sd: slow-down), as identified by 

random forest and cluster analyses
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Fig. 3. Spectrograms for (a) slow-down (sd) and (b) constant (c) pulse trains types 1 to 3 and histograms of interpulse interval
(IPI). Note the different x- and y-axis scales for spectrograms and histograms, respectively. Spectrogram parameters: fast
Fourier transform (FFT) size = 512 points, overlap = 75%, sample rate = 2000, resolution = 3.9 Hz and 64 ms. Black lines on
 histograms indicate fit of Gaussian kernel density functions with bin widths 0.005 for sd1 and c3 and 0.01 for all other plots
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Overall, for all types of pulse trains, most energy was
distributed between 50 and 300 Hz.

The pulse train occurrence analysis found all
types of identified pulse trains present on each of
the 4 selected days (Fig. 4b). The most commonly
recorded types were slow-down pulse trains, ac -
counting for 60% of all pulse trains in this sample
(n = 1068). While constant pulse trains represented
38% of the sample, only 2% were speed-up pulse

trains (Fig. 4a). It should be noted that c1 pulse
trains, occurred more frequently than the other 2
constant pulse train types. Structurally, this pulse
train category lies between slow-down and con-
stant pulse trains, with an overall mean IPI of
0.39 s (see above) but a few IPIs measured at
0.80 s. Additionally, this group showed some over-
lap with sd3 (Fig. 2) and had the lowest silhouette
width of only 0.3.
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Pulse         n No. of Pulse   Pulse Peak Change           1st IPI           2nd IPI
train           pulses train duration frequency in peak          peak (s)         peak (s)
type             (s) duration (s) (s)   (Hz) frequency (Hz)

Slow-down                                                                                                                                                                               
Type 1     109   102 (87, 122)   35.6 (30.6, 43.9)    0.1   (0.09, 0.11)   131  (126, 138)     6   (−1, 13)     0.29 ± 0.02   0.47 ± 0.03
Type 2       58     48   (30, 57)    17.5 (11.5, 20.9)    0.1   (0.08, 0.11)   129  (121, 138)    11  (−1, 22)     0.30 ± 0.03   0.47 ± 0.04
Type 3       68     86   (74, 93)    39.8 (35.0, 44.1)   0.08 (0.07, 0.09)   120  (116, 126)    23   (6, 33)     0.42 ± 0.08   0.70 ± 0.02

Constant                                                                                                                                                                                   
Type 1       73     46   (36, 58)    17.7 (12.5, 23.2)   0.07 (0.06, 0.08)   129  (114, 133)    15   (0, 22)     0.39 ± 0.08           –
Type 2       40     20   (15, 28)    12.6   (9.5, 17.0)    0.08 (0.07, 0.09)   136  (117, 162)    13  (−2, 47)     0.64 ± 0.08           –
Type 3       34     29   (24, 38)    23.3 (19.4, 30.8)   0.12 (0.10, 0.13)     58     (55, 61)      –5 (−10, −1)   0.83 ± 0.04           –

Speed-up 14     29   (26, 38)    12.4   (9.9, 18.0)    0.08 (0.07, 0.09)   106   (95, 137)     19 (−14, 31)   0.54 ± 0.12   0.37 ± 0.02

Table 1. Descriptive statistics of minke whale pulse trains recorded in the Stellwagen Bank National Marine Sanctuary
(SBNMS). Measurements are median values with 25th and 75th percentiles (in parentheses); interpulse interval (IPI) peaks are 

mean values ± SD

Fig. 4. Frequency distribution of different pulse train types (sd: slow-down; c: constant; sp: speed-up) for 4 randomly sampled 
days (a) frequency of occurrence over all and (b) split by days. Dates in (b) are given as yyyymmdd
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Detector performance

The truth data set consisted of 2428 manually
selected minke whale pulse trains, which had been
labeled from low signal quality (1) to high quality
calls (4). The automated detector used in this analysis
missed 0% (i.e. none) of the pulse trains labeled as
Category 4 (n = 54), 8% of Category 3 (n = 415), 21%
of Category 2 (n = 1275) and 51% of Category 1 (n =
684). The overall false negative rate for this version of
the detector was 27%. The approximately 120 h of
truthed data yielded 181 false positive detections.

Seasonality and diel patterns

A total of 8790 minke whale pulse trains were
detected across the 3.5 yr of 1-channel recordings
from the SBNMS. The detection of minke whale
pulse trains was highly seasonal. Detections peaked
during August and September, with 8639 (98%) of
events detected over the entire analysis period occur-

ring from mid-July to mid-November. Fig. 5 illus-
trates the seasonal and diel patterns of pulse train
occurrence. Detections generally increased over the
month of August and peaked in September and
October, with 7769 (88%) of all detections from all
years taking place during these 2 mo. No pulse trains
were recorded during January or February of any
year, and only a few detections were made from
March to June. This strong seasonal pattern was
repeated in all 3 full recording years (2006, 2008 and
2009; Fig. 5).

Pulse train occurrence during the peak season
(July to November) followed a very distinct diel pat-
tern, with most detections recorded during the ‘dark’
period, from about 18:00 to 00:00 h EST (Figs. 5 & 6).
The mean number of calls per hour increased around
twilight, and was highest around 19:00 EST and low-
est during daylight hours (Fig. 6a). Hourly mean ± SE
adjusted values were −1.47 ± 0.08, −0.42 ± 0.28,
1.95 ± 0.24 for ‘light’, ‘twilight’ and ‘dark’ periods,
respectively (Fig. 6b). Differences between means
were statistically significant (Kruskal-Wallis test, χ2 =
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Fig. 5. Seasonal and diel distribution of minke whale pulse trains in (a) 2006 and (b) from December 2007 to March 2010 in the
Stellwagen Bank National Marine Sanctuary (SBNMS). Distributions are based on analyses of automatic detection results of
1 channel of data. Y-axis shows date; left x-axis time of day (h) in US Eastern Standard Time (EST); right x-axis number of
calls d–1. Grey shading illustrates times between sunset and sunrise. Light blue shading indicates periods of missing data. 

Circles indicate the number of calls per hour
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240.67, df = 2, p < 0.0001), and post-hoc comparisons
be tween all pairs of means were significant at an
alpha level of 0.001.

Spatial patterns

From 15 July to 15 November 2006, 32 029 minke
whale pulse trains were recorded on 9 MARUs,
deployed throughout SBNMS. Fig. 7 illustrates the
spatial distribution of these detections by plots of cir-
cles with radii of approximately 15 km around the
MARU’s location. This representation incorporates a
conservative detection range estimate for these calls
based on preliminary source level data (D. Risch
unpubl. data) and illustrates almost full range cover-
age of SBNMS, with some overlap between units.
Since our main interest was in the relative spatial
occurrence patterns, no adjustment for detection
range overlap between units was performed in this
analysis. Therefore, some pulse trains may have
been detected on multiple units.

Although, pulse trains were detected across
SBNMS, the majority of detections occurred in the
eastern and southeastern parts of the sanctuary
(Fig. 7). Overall, there were 120 detections/recording
days on the most southeastern MARU, compared to a
low of 5 detections/recording days at the most north-
ern location.

DISCUSSION

Prior to this study, minke whale pulse trains in the
North Atlantic were described most comprehensively
from an area northeast of Puerto Rico by Mellinger et
al. (2000), while Clark & Gagnon (2004) described
the seasonal occurrence of minke whale pulse trains
in parts of the western North Atlantic. Although these
authors could not visually confirm species identity,
they concluded that the sounds they described were
produced by minke whales, based on structural
sound similarity to and geographic overlap of sample
regions with Winn & Perkins (1976). In their earlier
study, Winn & Perkins (1976) had been able to match
acoustic recordings with visual observations of minke
whales during several single spe cies encounters in
deeper waters of the Caribbean region. The present
study is the first to describe long-term occurrence
and distribution patterns of minke whale pulse trains
in the western Gulf of Maine.

Detector performance

Minke whale pulse trains are structurally variable
and their long signal durations frequently result in
overlap in frequency and timing of vocal activity. In
addition, they overlap with other baleen whale
 species, particularly humpback whales, communicat-
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Fig. 6. (a) Mean ± SE of minke whale pulse trains per hour over the course of a day. Dark gray shading indicates average dark
hours and light gray shading represents twilight hours. (b) Mean ± SE of minke whale pulse trains per light period, as deter-
mined by sun altitude. Light: >0° (~05:30 to 17:00 h EST); twilight (nautical twilight): ≤0° and ≥−12° (~04:30 to 05:30 and 17:00
to 18:00 h EST); dark: <−12° (~18:00 to 04:30 h EST). Diel analyses were based on data recorded from 15 July to 15 November 

2006, 2008 and 2009
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ing in a similar frequency range. These conditions,
along with year-round high underwater noise levels,
created a challenging acoustic scene for developing
species-specific detectors for our study area. How-
ever, with an overall false negative rate of 27%
(below 10% for strong signals), and a relatively low
false positive rate, the pulse train detector used in
this study served well for our broad-scale questions
of seasonal, diel and spatial occurrence patterns.

Classification and characterization

In order to compare our data to Mellinger et al.
(2000), we initially classified pulse trains according to
their IPI structure. We then described further vari-
ability in the dataset using a combination of super-
vised random forests and cluster analysis in an effort
to increase repeatability of our classification scheme.

The classification of the current dataset yielded
2 main categories: slow-down and constant pulse
trains, with 3 sub-types each (Fig. 3). While Mel -
linger et al. (2000) described the first category, they
did not describe the latter. Both types of signals have
also been found and associated with minke whales in
Onslow Bay, North Carolina, USA (Williams Hodge
2011). Additionally, in the Caribbean data analyzed
by Mellinger et al. (2000), 100 out of 110 pulse trains
were speed-up, while only 10 were slow-down pulse
trains. In contrast, in the SBNMS dataset, only 2% of
a 4 d sample (n = 1068) were of this category. Instead,
60% of all calls in SBNMS were slow-down pulse
trains.

These observed differences in minke whale vocal
repertoire may be due to several reasons. First, the
2 datasets differed markedly in size and temporal
scale. While Mellinger et al. analyzed 49 h of re -
cordings, we explored 4 d of continuous acoustic
data, collected over 2 different seasons. Since most
of our detections occurred at night, while Mellinger
et al. recorded mainly during the day, it is conceiv-
able that the observed difference in vocal reper-
toire is due to a change in vocal repertoire from
day- to nighttime. However, our data did not show
any indication that this may be the case in our
study area.

Second, since the majority of pulse trains recorded
by Mellinger et al. were of low SNR, it is possible that
the shorter constant pulse trains might have been
missed. In addition, Mellinger et al. high-pass fil-
tered their data at 100 to 200 Hz. However, some con-
stant pulse trains described in the current study have
PFs between 55 and 61 Hz (e.g. c3; Table 1), and
thus, differences in analysis bandwidth might also
explain some disparities in vocal repertoire between
studies. In this context it is noteworthy that Williams
Hodge (2011) described the occasional association of
constant pulse trains that match type c3, as described
here, with high frequency clicks (PF ~20 kHz). How-
ever, our recording bandwidth was too narrow to
detect such high frequencies in our data.

Lastly, geographic variation in repertoire size or
usage may be responsible for the observed differ-
ences. As a specific form of geographic variation,
dialects are commonly defined as vocal variation
between potentially interbreeding populations (Con-
ner 1982) and have been shown to exist in several
species of cetaceans (e.g. Ford 1991, Noad et al.
2000, Rendell & Whitehead 2003). Dialects can arise
due to genetic, environmental or social factors, in -
cluding vocal learning. More simply, if vocal signals
are associated with particular behaviors, vocal pro-
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Fig. 7. Spatial distribution of minke whale pulse trains
recorded throughout the Stellwagen Bank National Marine
Sanctuary (SBNMS) from 15 July to 15 November 2006. Cir-
cles extend approximately 15 km in radius from marine
autonomous recording unit (MARU) locations, and shadings
reflect total number of recorded pulse trains per day, nor-

malized by the number of recording days for each site
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duction may change with behavioral state, which in
turn can vary by season and habitat (e.g. Oleson et al.
2007a, Van Parijs et al. 2009).

The behavioral function of minke whale pulse
trains is currently unknown. However, it is conceiv-
able that the observed differences in call type distri-
bution might indicate a switch in activity from higher
latitude summer feeding to presumed breeding at
lower latitude winter grounds (Mitchell 1991, Van
Waerebeek et al. 1999). This idea is further sup-
ported by structural differences between pulse trains
recorded in SBNMS and those from the Caribbean,
with the latter lasting about 20 s longer and ex -
hibiting more than twice as many pulses per pulse
train (Table 1; Mellinger et al. 2000). A correlation
between call duration and arousal state has been
demonstrated in some mammal species (Rendall
2003, Charlton et al. 2011). In several baleen whales
only the males produce songs, which intensify during
the breeding season and seem to play an important
role in reproduction (e.g. Tyack 1981, Croll et al.
2002, Oleson et al. 2007b).

Dwarf minke whales wintering on the Great Barrier
Reef have been shown to produce repetitive se-
quences of stereotypic ‘star wars’ vocalizations, which
exhibit characteristics similar to reproductive displays
found in other baleen whale species (Gedamke et al.
2001). However, it is currently unknown whether the
‘star wars’ calls, minke whale ‘boings’ from the North
Pacific, or North Atlantic pulse trains are produced by
only one sex or age class and which function they
serve in the species’ ecology (Gedamke et al. 2001,
Oswald et al. 2011).

Thus, it is important to explore the behavioral
significance of minke whale vocalizations and
whether they may be gender or age specific. Such
knowledge is particularly important when analyz-
ing PAM data in the light of species distribution
and density. Only part of a population may be suc-
cessfully captured by monitoring sounds that are
exclusively produced by a certain demographic.
Minke whale migration in the North Atlantic
appears to be segregated by sex, and females pre-
fer higher latitudes during summer (e.g. Øien
1988, Laidre et al. 2009). If minke whale pulse
trains are only produced by males, as shown for
songs of other species, these sounds should be
almost absent from these higher latitudes of the
North Atlantic, where mainly females are present.
Thus, depending on recording location, PAM data
might produce very different results as a function
of vocal behavior and/or demographic differences
in distribution.

Seasonality and diel patterns

Our data show a strongly seasonal distribution of
minke whale pulse trains in SBNMS, and the same
general pattern was repeated in 3 separate years
(Fig. 5). Pulse trains increased in abundance in July,
peaked in September and October and decreased
again in December. No detections were made during
January and February, and only a few detections
were recorded from March to June. This seasonality
may either indicate the absence of minke whales
from the area at times of the year when they are not
recorded, a switch in sex ratio, if vocalizations are
gender specific, or a change in behavior. While the
first 2 explanations would indicate seasonal move-
ment, the latter would allow for year-round site
fidelity, both of which have been reported to exist in
minke whales from different areas of the North
Atlantic and are not mutually exclusive (Macleod et
al. 2004, Bartha et al. 2011).

Visual sightings data from this area support the
seasonal movement hypothesis. Year-round data
(Murphy 1995), collected over a period of 13 consec-
utive years in Massachusetts Bay, including SBNMS,
show a striking similarity to the pulse train occur-
rence patterns reported here. In over a decade of ob -
servations in this area, no minke whales were sighted
in the months of January and February, and a distinct
peak in occurrence was observed to start in July,
increasing through September and decreasing in
November. The combined visual and acoustic data
therefore suggest the absence of minke whales from
Massachusetts waters during winter, a limited oc -
currence during spring and summer and a directed
movement into this area in autumn.

Minke whales in the North Atlantic are widely dis-
tributed across summer feeding grounds north of
50° N, which range from Newfoundland-Labrador to
Greenland, Iceland and northern Norway, and
extend into the Barents and North Seas (e.g. Hor-
wood 1990, Andersen et al. 2003). SBNMS might
therefore be a transitory location for minke whales
migrating along the US and Canadian east coasts.
The relative strong peak in vocal abundance in
autumn compared to the spring would suggest a
more offshore occurrence of this species on their
northbound migration and a more coastal distribu-
tion later in the year, when the whales are headed
south.

A greater abundance of minke whales in coastal
waters in September and October might also be
related to the distribution of their prey. Humpback
and fin whales visit Massachusetts waters around
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Stellwagen Bank during summer to feed on sand-
lance Ammodytes spp. (e.g. Overholtz & Nicolas
1979, Friedlaender et al. 2009). Sandlance, as well as
herring and other small shoaling fish, are an impor-
tant prey for minke whales in the North Atlantic (e.g.
Haug et al. 1995, Lindstrøm et al. 2002, Anderwald et
al. 2012). Although she observed only little surface
feeding activity, Murphy (1995) suggested Massa-
chusetts Bay as a possible feeding ground also for
minke whales, citing the notable absence of minke
whales during a crash of the local sandlance popula-
tion in the mid-1980s (Payne et al. 1990, Murphy
1995).

Recent work on humpback whale song provides
evidence for widespread occurrence of song on feed-
ing grounds and outside the traditional breeding sea-
son (e.g. Stimpert et al. 2012, Vu et al. 2012), as well
as on migration routes (e.g. Charif et al. 2001). Simi-
larly, fin whale song has been shown to persist on
feeding grounds much later in the year than previ-
ously thought (e.g. Simon et al. 2010, Morano et al.
2012). In both species it has been shown that only
males sing and that songs serve in a mating context
(Tyack 1981, Glockner 1983, Croll et al. 2002). Stud-
ies on changes in sex hormones in North Atlantic
minke whales have shown a rise in blood testos-
terone levels in adult males and progesterone levels
in females during the feeding season (Kjeld et al.
2004). Thus, if minke whale pulse trains were to
serve in a mating context, their occurrence on migra-
tion and on a potential feeding ground is consistent
with the behavioral flexibility observed in other ba -
leen whales, as well as observed hormonal changes
at the end of their summer feeding period. In addi-
tion, if minke whale pulse trains were to serve in a
mating context, their occurrence on a potential feed-
ing ground is consistent with observed hormonal
changes at the end of their summer feeding period.

Minke whale pulse trains exhibited diel periodic-
ity, with calling rates being lowest during light and
peaking during dark periods. Without more knowl-
edge on individual calling rates, the reason for the
observed diel pattern cannot be conclusively resolved.
It may be the result of higher individual calling rates,
an increase of the overall number of vocalizing indi-
viduals at night or a change of animal abundance
from day- to nighttime.

Diel variation in calling rates has been observed in
several other baleen whale species and may vary by
species and/or habitat. Sei whales in the Gulf of
Maine and right whales on Emerald Bank, Nova Sco-
tia, Canada, exhibited higher calling rates during the
day (Mellinger et al. 2007b, Baumgartner & Fratan-

toni 2008). In contrast, right whales in the Pacific and
the Gulf of Maine (Matthews et al. 2001,Wiggins et
al. 2005, Munger et al. 2008, Mussoline et al. 2012)
showed increased calling activity at nighttime and
both blue and humpback whales have been shown to
increase singing activity at night (Au et al. 2000,
Stafford et al. 2005). For signals that serve in a repro-
ductive context, such as humpback whale song, an
increase in nighttime vocal activity might be related
to the lack of visual cues for advertising and compet-
itive display behavior (Au et al. 2000). In addition,
calling could be directly or inversely related to feed-
ing activity. Vocalizations might be used to advertise
resources and thus be a proxy for feeding behavior
(Croll et al. 2002, Stafford et al. 2005). On the other
hand, if calls are generally serving in a social context,
higher vocalization rates would be expected when
whales are not actively feeding. Such a relationship
has been suggested for right and sei whales, which,
in some areas, show higher calling rates during the
day, when their primary prey, Calanus finmarchicus,
is aggregated at depth and thus less accessible
(Mellinger et al. 2007b, Baumgartner & Fratantoni
2008). The behavioral context of minke whale vocal-
izations in SBNMS is currently unknown, but if the
diel pattern observed here is related to feeding activ-
ity, an inverse relationship would suggest that minke
whales feed primarily during the day and either
advertise resources or spend more time socializing
at night.

In the North Pacific, minke whale ‘boing’ rates
recorded in Hawaii, USA, did not show a significant
diel pattern (Oswald et al. 2011). In contrast to
SBNMS, Hawaii is likely not a feeding area for minke
whales but serves more likely as a breeding ground
for the species (Oswald et al. 2011). Therefore,
although the behavioral contexts are not completely
understood for either area, the strong diel pattern
recorded here might indicate that the direct or indi-
rect relationship between vocalizations and pre-
sumed feeding behavior is stronger than the influ-
ence of light on visual-acoustic displays in a primarily
reproductive context.

Spatial patterns

The spatial distribution of minke whale pulse trains
in 2006 suggests that minke whales prefer the deeper
waters to the east of Stellwagen Bank. On their sum-
mer feeding grounds, minke whales in the North At-
lantic are commonly found close to shore (e.g.
Macleod et al. 2004, Bartha et al. 2011, Anderwald et
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al. 2012). However, despite fairly consistent visual
monitoring efforts for other species in the southeastern
United States (e.g. Keller et al. 2012), there are large
data gaps concerning the winter distribution and mi-
gratory routes of this species in the North Atlantic.
This lack of data, even including opportunistic obser-
vations, suggests a more offshore dis tribution during
winter and spring. In support of this hypothesis,
recent satellite tracking data show the southbound
migration of individuals summering around Iceland to
take place in the middle of the North Atlantic (Vík-
ingsson & Heide-Jørgensen 2012). In addition, in the
western North Atlantic, visual sightings data from
North Carolina and Florida, USA, found minke
whales offshore of the continental shelf in the winter
time (Nilsson et al. 2011). The spatio-temporal pattern
of sporadic vocalizations in spring and a peak in vocal
abundance to the east of SBNMS in autumn, is consis-
tent with the idea of Massachusetts Bay serving as
part of the migration corridor for minke whales. A po-
tentially more inshore distribution, and therefore
higher acoustic detection rate on the southbound mi-
gration, may be related to the distribution of their prey
at this time of year. However, more data on prey dis-
tribution, the feeding behavior and individual move-
ment patterns of minke whales in the Gulf of Maine
are needed to draw final con clusions.

CONCLUSION

Little is known about the abundance and distribu-
tion of North Atlantic minke whales outside their
known summer feeding habitats, where they are
still hunted commercially in soma areas. This study
documents their seasonal occurrence in Massachu-
setts waters and shows that PAM can be used suc-
cessfully to monitor and describe this species’ vocal-
izations. The lack of data on minke whale migration
patterns and winter habitats is likely due to an off-
shore distribution of the species during winter and
spring. Thus, because of its potential for monitoring
remote areas, independent of weather conditions,
PAM data will be crucial in our future understand-
ing of important minke whale habitat. However,
more concurrent visual and acoustic data sampling
is needed to interpret such data better, particularly
when trying to determine whether an absence of
acoustic detections can be interpreted as species
absence or not. In addition, future work is needed
on the behavioral context of known minke whale
vocalizations, including caller identity, source levels
and calling rates, as well as the description of the

full vocal repertoire for the species. Understanding
the basic acoustic ecology will provide a better
understanding of the year-round spatio-temporal
distribution of North Atlantic minke whales. In turn,
these data will help to predict important  species-
specific habitat and ultimately identify and mitigate
potential threats to the species, particularly in areas
where they have not been monitored traditionally.
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Abstract
Information on individual calling behaviour and source levels are important for understanding
acoustically mediated social interactions of marine mammals, for which visual observations are
difficult to obtain. Our study, conducted in the Stellwagen Bank National Marine Sanctuary (SB-
NMS), located in the Gulf of Maine, USA, used passive acoustic arrays to track North Atlantic
minke whales and assess the sound production behaviour of individuals. A total of 18 minke whales
were acoustically tracked in this study. Individual calling rates were variable, with a median inter-
call interval (ICI) of 60.3 s. Average source levels (SLrms) for minke whales pulse trains ranged
between 164 and 168 dB re 1 μPa, resulting in a minimum detection range of 0.4–10.2 km for
these calls in this urban, coastal environment. All tracked animals were actively swimming at a
speed of 5.0 ± 1.2 km/h, which matches swimming speeds of migrating minke whales from other
areas and confirms SBNMS as part of the migration route of this species in the Western North At-
lantic. Tracked minke whales produced 7 discrete call types belonging to 3 main categories, yet no
individual produced all call types. Instead, minke whales produced 2 multisyllabic call sequences
(A and B) by combining 3–4 different call types in a non-random order. While 7 of the tracked
individuals produced calling pattern A, 10 whales used calling pattern B, and only 1 animal com-
bined call types differently. Animals producing different call sequences were in acoustic range of
one another on several occasions, suggesting they may use these sequences for mediating social
interactions. The fact that the same calling patterns were shared by several individuals suggests
that these patterns may contain information related to sex, age or behavioural context.
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1. Introduction

Understanding the behavioural context of individual calling behaviour and
the temporal patterns of call production is an important aspect of studying
animal communication systems. Several taxa arrange different calls or sylla-
bles into larger units of sound. Such combinations allow for syntactical rule
building, and increase information transfer over monosyllable communica-
tion. Songbirds, in particular, recombine simple calls to form a variety of
higher-order songs that function primarily in a reproductive context (Now-
icki & Searcy, 2004; Catchpole & Slater, 2008). In addition, multi-syllable
phrases may convey information about group membership, as well as the size
and threat of predators (Templeton et al., 2005; Briefer et al., 2013). In mam-
mals, males of the Brazilian free-tailed bat produce songs that share several
structural and functional traits with bird song and vary based on social con-
text (Bohn et al., 2013). Several non-human primate species also produce
higher-order call combinations, which may carry meaning related to preda-
tor presence and type or food source (Clarke et al., 2006; Ouattara et al.,
2009; Clay & Zuberbühler, 2011).

In a marine context, many cetacean species exhibit highly advanced vocal
systems, some of which have been studied extensively. In an environment,
where light is attenuated quickly, behaviours such as the advertisement of
breeding condition, coordination of group movements or the maintenance of
social bonds are often mediated through sound (e.g., Tyack & Clark, 2000).
However, due to the fact that most marine mammals spend only little time
at the surface, and underwater observations are often infeasible, the visual
quantification of behaviour and identification of individuals at sea is severely
limited. Thus, there is a lack of knowledge on individual calling behaviour
and the behavioural context of vocalizations.

Call sequences and their behavioural correlates have mainly been studied
in odontocetes. For example, bottlenose dolphin signature whistles, which
encode individual identity, are often produced in sequence both by individual
animals, as well as groups (e.g., Quick & Janik, 2012; Janik & King, 2013).
Similarly, short-finned pilot whales and killer whales produce non-random
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sequences of stereotyped call types, which most likely function in individual
recognition and to maintain group cohesion (e.g., Ford et al., 1989; Sayigh
et al., 2013).

Several species of baleen whales combine individual sound units to form
songs that, similar to bird song, represent a series of notes arranged in
a recognizable temporal pattern (Payne & McVay, 1971). These patterned
sequences have been termed songs, based on the definition by Broughton
(1963) that song is: ‘. . . a series of notes, generally of more than one type,
uttered in succession and so related as to form a recognizable sequence
or pattern in time’. In particular, humpback whales (Megaptera novaean-
gliae) produce complex, hierarchically structured songs (Payne & McVay,
1971; Cholewiak et al., 2013). Similarly, bowhead whales (Balaena mystice-
tus) sing elaborate songs (Stafford et al., 2008; Tervo et al., 2011), while
blue (Balaenoptera musculus) and fin (Balaenoptera physalus) whales pro-
duce high intensity song units at very low frequencies (approx. 15–30 Hz)
(McDonald et al., 2001; Croll et al., 2002). In humpback, fin, and blue
whales it has been shown that only males produce songs (Glockner, 1983;
Croll et al., 2002; Oleson et al., 2007a). In these species, songs function as
male advertisement or to mediate interactions between competing males (Ty-
ack, 1981; Tyack & Whitehead, 1983; Oleson et al., 2007a). Recent acoustic
recording efforts of marine mammals are beginning to show that song occurs
not only during the traditional breeding season but also on feeding grounds
and during migration (Stafford et al., 2007; Simon et al., 2010; Vu et al.,
2012). And alternative functions of songs, such as navigation and prey de-
tection, have also been suggested (Clark & Ellison, 2004). In addition to
song production, in most species of baleen whales, both sexes produce a
range of different call types in various contexts. Several species produce
feeding-associated vocalizations that may be repeated in monosyllabic se-
quences (Cerchio & Dahlheim, 2001; Oleson et al., 2007b; Širović et al.,
2013). In addition, sequences of frequency modulated call-counter calls oc-
cur in fin, blue and right whales (Eubalaena spp.) and serve as contact calls
to maintain group cohesion (Clark, 1982; Oleson et al., 2007b; Širović et al.,
2013). A variety of variable social calls have been described for most species
(Oleson et al., 2007a; Dunlop et al., 2008; Stafford et al., 2008; Parks et al.,
2011; Stimpert et al., 2011); the function of these calls is largely unknown
but many of the calls are stable over several years suggesting an important
role in mediating social interactions (Rekdahl et al., 2013).
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Sounds produced by North Atlantic minke whales have only recently been
described in more detail. Mellinger et al. (2000) described low-frequency
pulse trains with a varying interpulse interval (IPI) structure; and a recent
study in the Gulf of Maine described 7 distinct pulse train types, which fall
into 3 main categories and occur with varying frequency (Risch et al., 2013).
However, the behavioural significance of these vocalizations and whether
they are specific to sex, age, recording site or season is unknown.

Given the identification of several stereotypic call types in the minke
whale vocal repertoire, the main objective of the current study was to inves-
tigate whether individual minke whales use the full vocal repertoire, whether
they combine pulse trains in predictable vocal sequences and how individ-
uals use these sounds when engaging in vocal exchanges with conspecifics.
Despite the reliance on primarily passive acoustic data and the lack of visu-
ally observed context, answers to these questions will allow the development
of testable theories with respect to the behavioural function of minke whale
pulse trains.

In addition, passive acoustic localization can also elucidate other, non-
vocal aspects of behaviour, such as swimming speeds and movement be-
haviour (e.g., Stanistreet et al., 2013). Thus, a secondary goal of this study
was to use acoustic data to quantify fine-scale movements of minke whales
in the Gulf of Maine study area, where little is known about the general be-
haviour of this species.

Lastly, basic data on individual vocal behaviour, source level and detection
range, as obtained by acoustic localization, is necessary for passive acous-
tic monitoring (PAM) applications. North Atlantic minke whales are still
exploited commercially. Thus, although the species is currently listed as ‘a
species of least concern’ in the IUCN Red List (Reilly et al., 2008), accurate
monitoring of population size and structure is essential for its conserva-
tion. Most current monitoring and abundance estimates for minke whales
are based on visual sightings data (Skaug et al., 2004; de Boer, 2010; Bartha
et al., 2011). However, new methods such as PAM, coupled with new analyt-
ical approaches (Marques et al., 2013), offer an opportunity to significantly
improve abundance estimates for this cryptic species (Oswald et al., 2011;
Martin et al., 2013). Since PAM depends on the detection of vocalizing ani-
mals, it is critical to understand how individual calling behaviours influence
calling rates, as well as any sex, season or site specificity of different call
types. Only a few studies have collected such vocalization data for baleen
whales using either acoustic recording tags or passive acoustic array config-



D. Risch et al. / Behaviour 151 (2014) 1335–1360 1339

urations (Matthews et al., 2001; Parks et al., 2011, 2012; Stanistreet et al.,
2013). For North Atlantic right whales, considerable variability in individual
calling rate patterns, related to behaviour, age, sex and season has been doc-
umented (Parks & Tyack, 2005; Parks et al., 2005, 2011; Van Parijs et al.,
2009). These results reinforce the importance of describing and considering
such variability when interpreting passive acoustic data.

2. Material and methods

2.1. Acoustic data collection

During 2 October–30 November 2009 and 17 August–11 October 2011,
acoustic data were continuously recorded in the Stellwagen Bank National
Marine Sanctuary (SBNMS) located in the Southern Gulf of Maine, North-
west Atlantic Ocean (Figure 1). Arrays of 10 and 11 (2009 and 2011, respec-

Figure 1. Map of Massachusetts Bay with the Stellwagen Bank National Marine Sanctuary
(SBNMS) outlined and shaded in gray. Inset map in upper right corner shows the position of
the study area along the US East coast. Filled dots represent acoustic recording units deployed
from 2 October–30 November 2009; triangles represent recorders deployed from 17 August
to 11 October 2011.
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tively) marine acoustic recording units (MARUs) (Calupca et al., 2000) were
deployed at depths ranging from 25 to 114 m, and anchored 1–2 m above the
sea floor. Units were spaced approx. 11 and 5 km apart in 2009 and 2011,
respectively (Figure 1). Each MARU was equipped with a HTI-94-SSQ hy-
drophone (sensitivity −168 dB re 1 V/μPa), connected to a pre-amplifier
and A/D converter, resulting in an effective system sensitivity of −151.7 dB
re 1 V/μPa. All units sampled at 2000 Hz and 12 bit resolution, yielding an
effective analysis bandwidth of 10–1000 Hz, with a flat frequency response
(±1 dB) between 55 and 585 Hz. Recordings from individual units were
time-aligned using calibration signals recorded at the beginning and end of
the deployments and compiled into multi-channel data files.

2.2. Individual calling behaviour

All acoustic data were examined manually for the presence of minke whale
pulse trains by generating multi-channel spectrograms using the sound anal-
ysis software XBAT (Figueroa & Robbins, 2008; FFT size 1024, 85% over-
lap, Hanning window). Pulse train types were assigned to one of seven cate-
gories within three main groups, based on interpulse interval (IPI) structure,
as described in (Risch et al., 2013). These main groups were slow-down (sd),
constant (c) and speed-up (sp) pulse trains (Figure 2). All pulse trains that
were not stereotypic, or of too low quality for categorization, were placed in
a variable (v) group. Calling rates for each animal were calculated as the total
number of calls/min, and intercall interval (ICI) was calculated as the differ-
ence between the start times of two consecutive pulse trains produced by
the same individual. All temporal measurements were carried out in XBAT
based on manually delineated event boxes.

To determine whether transitions between call types were random, transi-
tion frequencies were analysed as a first-order Markov chain, where a suc-
ceeding event is only dependent on the immediately preceding event. R pack-
age msm (Jackson, 2011) was used to arrange the continuous call data into
a 2-way contingency table of preceding and following pulse train types and
a transition probability matrix was estimated based on maximum likelihood.
Observed and expected transition matrices were compared using a goodness-
of-fit test and a 2-tailed Z-test for proportions (Fleiss, 1981) was used to
compare each observed transition to its corresponding expected transition.

The transition frequencies for each call type combination were used to
calculate an index of association (Ford, 1989). This index, based on Dice’s
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Figure 2. Spectrograms of North Atlantic minke whale pulse trains, as described in Risch
et al. (2013). Identified calling patterns are based on transition frequencies and association
patterns of individual pulse trains. (a–c) Calling pattern A, consisting of pulse train types: sd1,
sd2 and c3. (d–g) Calling pattern B, consisting of pulse train types: sd3, c1, c2 and sp. Note
the different time scales for spectrograms. Spectrogram parameters: FFT = 512, overlap =
75%, sample rate = 2000, resulting in a spectrogram resolution of 3.9 Hz and 64 ms.
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coefficient of association, normalizes the data to account for call type abun-
dance:

2(Nij + Nji)/(Si + Sj),

where i and j are consecutive pulse trains, N is the number of transitions
from one pulse train to the next, and S is the total number of transitions
of a particular type. Hierarchical clustering of this association matrix was
performed by applying the UPGMA method, using function hclust in the R
stats package (R Core Team, 2013). The cluster results were then plotted as
a dendrogram.

2.3. Localization and movement

Series of pulse trains recorded on three or more channels and occurring for
a period of at least 20 min, with gaps not exceeding 10 min, were chosen for
localization. Individual pulse trains were localized using a correlation sum
estimation algorithm (CSE), applied in XBAT (Cortopassi & Fristrup, 2005).
This localization method differs from techniques based on time differences
of arrival (TDOA) and hyperbolic fixing as it does not rely on the selection
of waveform cross-correlation peaks to estimate locations. Instead, it calcu-
lates accumulated cross-correlation sums for all channel pairs across a grid
of spatial points and chooses the point that maximizes the correlation sum
as the most likely location. Due to this process, the method is considered to
be more robust to background noise (Cortopassi & Fristrup, 2005). Each lo-
calized signal was verified visually in multi-channel spectrograms to ensure
that the same pulse train was picked on all channels and the candidate loca-
tion, as determined by the CSE algorithm, agreed with the observed TDOAs.
Pulse trains for which reliable and repeatable location estimates could not
be obtained using CSE, were removed from all further movement analy-
ses. However, if the visually observed TDOA estimates of these calls agreed
with the general pattern of the tracked animal, they were still included in
temporal calling pattern analyses (see next paragraph). After manual review
of each localization, animal tracks were defined as the time-ordered collec-
tion of locations from a single source connected by a straight line (Turchin,
1998). Tracks were smoothed with a 5-point moving average (MA) to reduce
the influence of localization error. Statistical simulation tests using the CSE
algorithm and comparable array geometry show, that localization accuracy
depends on the position of the source relative to the array and increases with
distance from the centre of the array (Urazghildiiev & Clark, 2013). Thus,
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movement characteristics were calculated only for tracks within 5 km of the
array boundaries to reduce the impact of increasing error outside of the array.
R package adehabitat (Calenge, 2006) was used to calculate track statistics,
including track duration (h), net displacement (km), total distance (km) and
average speed (km/h). A straightness index (SI), defined as the quotient of
net displacement and total distance (1 = straight line path, 0 = meandering
path), was calculated to assess directness of movement. All analyses using
R were performed using version 2.15.3 (R Core Team, 2013). Location error
for the arrays was determined by conducting calibration experiments on 22
October 2009 and on 9 October 2011 at two and five sites within the array, re-
spectively. A series of 5 to 10 frequency modulated sweep tones were played
at each site. The source location of each playback sweep was estimated using
the CSE algorithm. Location error in meters was then quantified by subtract-
ing the estimated position for each locatable sweep from the known speaker
location. Differences between known and estimated source locations were
averaged over all sweeps and transmission sites.

2.4. Source level estimation

To estimate pulse train source levels (SL), received levels (RL) were mea-
sured for a subset of the 2011 data, based on several detection criteria that
included (a) a high signal-to-noise ratio (SNR > 10 dB); (b) could be re-
liably located; and (c) did not overlap with other sounds. The signals were
bandpass filtered between 50 and 250 Hz. RL measurements were carried
out in Raven Pro version 1.5 (Bioacoustics Research Program, 2013) for
every fifth individual pulse and for the entire pulse train. Minimum and max-
imum frequencies of the measured signals were defined as the −10 dB end
points relative to the signal peak in the power spectrum. Measurements in-
cluded peak-to-peak (RLpp) and root-mean-square (RLrms) sound pressure
levels (dB re 1 μPa) for every pulse, and RLrms for the whole pulse train.
RLrms was measured over a time window encompassing 90% of the total sig-
nal energy in the selection window (Madsen & Wahlberg, 2007). Following
these measurements, SL was calculated from RL by compensating for trans-
mission loss (TL). Under the assumption of mainly spherical spreading, TL
equals 20 log(R), where R is the range of the whale from the receiver (Urick,
1983). In shallow water environments refraction and reflections from the sea
bottom or surface will considerably affect TL, making the cylindrical spread-
ing law (TL = 10 log(R)) more appropriate, while in many environments
an intermediate term is most appropriate. Due to empirical measurements
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Figure 3. Boxplot of source levels (SLrms) showing results for individual pulses measured
from pulse train types: c2 and sd3 for three individuals (animal ba1–ba3). Lower and upper
bounds of boxes represent lower and upper quartiles, respectively. Solid lines represent medi-
ans and non-filled circles represent means. Whiskers represent farthest data points within
1.5× interquartile range (IQR) of the lower and higher quartile, respectively. Histogram
shows frequency of occurrence of different source levels (binwidth = 2 dB) and a smoothed
Gaussian kernel density plot for all measured pulses/pulse trains (N = 993 (N = 57)).

showing that 17 log(R) is a reasonable approximation for TL in the study
area (unpublished data), we chose this term for all SL estimations. SL re-
sults were averaged by pulse train and reported in terms of peak-to-peak
(SLpp, dB re 1 μPa), root-mean-square (SLrms, dB re 1 μPa) and energy flux
density (SLefd, dB re 1 μPa2s).

Assuming source and receiver depths of 20 m and using averaged minke
whale SLs from our study, signal propagation in the SBNMS was then mod-
elled using the Acoustic Integration Model (Hatch et al., 2012). Hourly
ambient noise level (NL) values were calculated for the week of 4–10 Octo-
ber 2009. NLs were averaged over the frequency band containing the most
pulse train energy (56.2–355 Hz) and summarized as 5th, 25th, 50th 75th and
95th percentiles. In the absence of hearing and detection threshold data for
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minke whales, these NL values were compared with the signal propagation
curve, and the range at which SNR = 0 was determined.

3. Results

3.1. Individual calling behaviour

Since whales could only be successfully tracked to a certain range (< 8 km)
outside the array boundaries, the data analysed were effectively censored;
that is, start and end times of tracks did not necessarily mark the beginning
or end of a calling bout. In addition, in order to reliably track individual ani-
mals and minimize the possibility of switching individuals, we only analysed
tracks for which gaps in calling did not exceed 10 min (see Methods). Thus,
all calling rate parameters are based on the time period during which an ani-
mal could be reliably tracked, given the acoustic range of the hydrophone
arrays and limitations set by the analysis approach. Calling rates for in-
dividual whales ranged from a minimum of 8.7 to a high of 133.3 pulse
trains/h. Figure 4 illustrates the distribution of observed intercall intervals
(ICI). Tracked minke whales tended to call at a regular rate, with a median
ICI of about 60.3 s (Figure 4, Table 1). The average call rate was 48.6 ±
27.5 calls/h, and the maximum silence between tracked calls extended to an
average of 392.6 ± 292.1 s, with a maximum of about 6.5 min (Figure 4).

Figure 4. Histogram showing the frequency of occurrence of different Intercall Intervals (ICI)
(binwidth = 20 s). The dotted line represents the median (N = 1060).
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Table 1.
Summary statistics of movements and calling rate parameters for individual minke whales
recorded in the Stellwagen Bank National Marine Sanctuary (SBNMS) during autumn 2009
and 2011.

Parameter Unit Mean ± SD Median (25–75%)

Movement N pulse trains – 67 ± 34
(N = 13) Track duration h 1.2 ± 0.8 0.9 (0.7–2.0)

Total distance km 5.3 ± 4.2 3.5 (2.9–6.9)
Net displacement km 3.1 ± 2.4 2.0 (1.8–3.2)
Mean speed km/h 5.0 ± 1.2 4.8 (4.2–5.6)
± SD speed km/h 3.9 ± 0.6 3.9 (3.6–4.4)
Straightness index – 0.7 ± 0.2 0.6 (0.5–0.8)

Calling rate N pulse trains – 60 ± 37
(N = 18) Track duration h 1.4 ± 0.8 1.0 (0.8–1.5)

Call rate calls/h 48.6 ± 27.5 44.3 (35.2–52.2)
Min ICI s 19.1 ± 15.2 11.4 (9.5–20.7)
Max ICI s 392.6 ± 292.1 321.2 (221.8–459.6)
Mean ICI s 82.4 ± 87.9 60.3 (34.7–100.6)

N , number of tracked animals; ICI, intercall interval.

The 18 individual minke whales tracked in this study produced all major
pulse train categories defined in a larger scale study from the same area
(Risch et al., 2013): slow-down pulse trains (sd1–sd3), constant pulse trains
(c1–c3), and speed-up pulse trains (sp) (Figure 2). However, pulse train
type transitions were not random. The results of the Markov chain analysis
showed that some types were highly likely to occur before or after other pulse
train types (Goodness-of-fit test, χ2 = 733.25, df = 56, p < 0.001, Figure 5).
This pattern was not evenly distributed between pulse train type transitions.
While 15 out of 64 transitions were positively correlated, 17 were negatively
correlated (Figure 5). The calculated index of association between pulse train
types showed strong positive associations between types sd1–c3 (0.39), sd3–
c1 (0.29) and sd3–c2 (0.30) (Figures 5 and 6). Hierarchical cluster analysis
of the association matrix grouped pulse train types sd1, sd2 and c3 as calling
pattern A, while pulse train types sd3, c1, c2 and sp were grouped as calling
pattern B (Figures 2 and 6). When Markov chain analyses were run by
individual, the resulting probability matrices showed that pulse train type
association patterns reflected differential call type usage by individual minke
whales. While 39% (N = 7) of the tracked animals preferably used pattern
A, 56% (N = 10) used pattern B, and only one animal combined call types
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Figure 5. Matrix of transition probabilities between different pulse trains. Preceding pulse
trains are shown vertically and following pulse trains are plotted horizontally. (+/−) indicate
transitions that are significantly greater or smaller than expected (p < 0.05).

in a different pattern (pattern C, Figure 7). In our sample, tracked minke
whales used calling patterns A and B simultaneously during five occasions,
when vocalizing individuals were at an average distance of 4.6 ± 2.5 km,
and thus likely within acoustic range of one another.

3.2. Localization and movement

Average localization error as quantified during the calibration experiments
(mean ± SD) was 422.7 ± 5.0 m for the 2009 array (N = 9) and 105.1 ±
64.4 m for the smaller aperture array in 2011 (N = 20). A total of 18 indi-
vidual minke whales were tracked during the study: 3 in 2009 (4.3 h) and 15
(20.1 h) in 2011. Track duration ranged from 0.4 to 3.1 h and lasted on aver-
age 1.4 ± 0.8 h (mean ± SD). While all analysed tracks were within 8 km of
the array perimeter, only 13 of these, which were less than 5 km outside the
array, were further analysed to obtain movement parameters (see summary
data in Table 1). Vocalizing animals were generally moving and covered dis-
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Figure 6. Dendrogram of association index, based on transition frequencies of pulse trains
produced by individual North Atlantic minke whales, showing two distinct groups of associ-
ated pulse train types, resulting in calling patterns A and B.

tances between 0.9 and 9.2 km with a mean ± SD distance of 5.3 ± 4.2 km,
a net displacement of 3.1 ± 2.4 km, and an average speed of 5.0 ± 1.2 km/h.
Movement directionality, as expressed by the straightness index (SI), varied
between individuals but was closer to direct path travel (mean ± SD = 0.7 ±
0.2).

Figure 7. Bar graph showing frequency of occurrence of different pulse train types, grouped
by calling patterns A, B and C, which were identified based on transition frequencies and
association of stereotypic pulse train types produced by individual North Atlantic minke
whales.
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3.3. Source level estimation

A large enough sample of non-overlapping high quality calls could only
be obtained for pulse trains c2 and sd3 (Figure 2). These pulse trains were
measured from three individuals at an average radial distance of 2145.8 ±
845.1 m from the nearest MARU. A total of 57 pulse trains and 993 individ-
ual pulses were measured. The results are summarized in Table 2. Peak-to-
peak source levels (mean ± SD) were 181.6 ± 6.6 dB re 1 μPa and 176.7 dB
re 1 μPa for types c2 and sd3, respectively. Root-mean-square source levels
(SLrms) averaged over individual pulses were 168.9 ± 6.6 dB re 1 μPa and
164.0 ± 4.6 dB re 1 μPa for type c2 and sd3, and averaged over the whole
pulse train, SLrms were 166.3 ± 3.3 and 161.8 ± 2.5 dB re 1 μPa, respec-
tively (Table 2). Source levels varied by individual (Figure 3) and increased
throughout the duration of the pulse train. While the first measured pulses
had a mean calculated SLrms of 154.7 ± 4.1 dB re 1 μPa, pulses measured
towards the end of the pulse train (e.g., pulse No. 25) were about 12 dB
louder, with a mean SLrms of 166.5 ± 1.5 dB re 1 μPa.

During the week of 4–10 October 2009, the average hourly ambient noise
levels (NL) for the frequency band between 56.2–355 Hz was 101.7 ± 7.0 dB
re 1 μPa and ranged from 92.2–115.7 dB re 1 μPa (5th–95th percentile).
Given average SLrms values of 168.9 and 164.0 dB re 1 μPa for pulses in
pulse train types c2 and sd3, respectively and an assumed source and receiver
depth of 20 m, the range over which these signals propagate in the SBNMS

Table 2.
Summary statistics of measured source levels.

Parameter Unit Mean ± SD Median (25–75%)

c2 (N pulse trains = 16, SLpp dB re 1 μPa 181.6 ± 6.6 183.7 (178.2–186.5)
N pulses = 115) SLrms dB re 1 μPa 168.9 ± 6.6 171.1 (165.1–174.0)

SLefd dB re 1 μPa2s 162.4 ± 6.5 164.3 (158.5–167.9)
SLrms dB re 1 μPa 166.3 ± 3.3 167.2 (165.1–168.9)
(pulse train)

sd3 (N pulse trains = 41, SLpp dB re 1 μPa 176.7 ± 4.2 177.4 (174.0–180.1)
N pulses = 878) SLrms dB re 1 μPa 164.0 ± 4.6 165.4 (161.1–167.3)

SLefd dB re 1 μPa2s 157.5 ± 4.5 158.9 (154.7–160.9)
SLrms dB re 1 μPa 161.8 ± 2.5 162.0 (160.9–163.4)
(pulse train)

SLpp, peak-to-peak source level; SLrms, RMS source level; SLefd, energy flux density.
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environment before SNR equals 0 is 0.7–10.2 km for c2 and 0.4–7.3 km for
sd3.

4. Discussion

Little is known about vocalizations produced by North Atlantic minke
whales and how they use these sounds to mediate behaviour. Our study is
the first to use stationary passive acoustic array recordings to acoustically
track this species in order to investigate individual calling and movement be-
haviour. Although passive acoustic tracking is spatially restricted and lacks
the behavioural context and demographic information that can be obtained in
conjunction with visual observations and acoustic recording tags, it is more
feasible and less logistically costly than these other approaches. The suc-
cessful tracking of 18 individual minke whales in our study demonstrated
the feasibility of using long-term passive acoustic arrays for this purpose.

Tracked minke whales produced all major pulse train categories defined
by Risch et al. (2013). However, certain call types were more closely asso-
ciated than others (Figure 6). In particular, most individuals combined pulse
trains in either of two call sequences (A and B, Figure 6), and only 1 animal
combined call types in a different pattern (C, Figure 7). The structural orga-
nization of pulse trains in distinct sequences is an unexpected and interesting
finding. Males of several baleen whale species produce hierarchically orga-
nized songs associated with reproductive behaviour (Payne & McVay, 1971;
Croll et al., 2002; Oleson et al., 2007a). And it has been noted that the ‘star
wars’ vocalizations produced by dwarf minke whales wintering on the Great
Barrier Reef share characteristics, such as stereotypy and repetitiveness, with
these reproductive displays of other species (Gedamke et al., 2001). Since the
sex, as well as the context of vocalizing North Atlantic minke whales remain
unknown, it is impossible to attribute pulse trains to any particular behaviour.
However, based on structural differences between pulse trains recorded in the
Gulf of Maine, and those recorded in the Caribbean winter grounds (the latter
lasting considerably longer and exhibiting more than twice as many pulses),
a reproductive function of these calls has been suggested (Risch et al., 2013).
A common feature of baleen whale song is that males vocalizing in the same
region and time period typically share the same song (Cerchio et al., 2001;
Stafford et al., 2007; Simon et al., 2010). A notable exception to this pat-
tern occurs in bowhead whales where multiple distinct songs occur within a
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continuous space and time. However, whether these distinct songs are shared
between individuals is unknown (Stafford et al., 2008, 2012; Delarue et al.,
2009).

Our results show that individual minke whales share the same calling pat-
terns, which thus may reflect different behavioural functions, sex or age of
the caller, rather than individual identity. This interpretation is further sup-
ported by the fact that both main calling patterns were present in 2009 and
2011, indicating that calling patterns are stable across years. During our
study, there were five occasions where minke whales producing different
calling patterns were in acoustic range of one another. Independent of the
question whether minke whale call sequences serve in a reproductive con-
text, it is likely that the simultaneous production of two different types of
calling patterns by two individuals serves a specific function such as main-
taining spacing between individuals within a shared acoustic environment
(Gedamke, 2004).

Individual calling rates were variable, ranging from 8.7 to 133.3 calls/h
(mean ± SD: 48.6 ± 27.5). The median intercall interval (ICI) was about
1 min (mean ± SD: 82.4 ± 87.9 s) and the longest period of silence between
two calls was about 6.5 min (Table 1). One of the constraints of tracking in-
dividuals using passive acoustic techniques is that the tracked animal needs
to vocalize consistently in order to be reliably tracked. The concentration
on high quality, relatively long acoustic tracks may have biased our sample
to only vocally active animals (and possibly particular types of behaviour),
rather than being representative of the overall calling behaviour of North At-
lantic minke whales in our study area. Thus, while it is possible to estimate
calling rates for vocally active individuals using passive acoustics, it is not
possible to accurately assess the time animals spend vocalizing throughout
the day using this approach alone. For example, most of the tracks that we
analysed were recorded at night. A strong diel pattern has been described
for minke whale pulse trains in the SBNMS (Risch et al., 2013). Such diel
variation in the occurrence of vocalizations occurs in several other baleen
whale species and has often been attributed to a switch from less vocal be-
haviours such as feeding to more vocal behaviours such as social interactions
(Mellinger et al., 2007; Baumgartner & Fratantoni, 2008; Parks et al., 2011).
Thus, calling rates as measured in this study have to be evaluated based on
the context in which they have been recorded.
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Although track parameters varied by individual, all tracked animals were
actively moving while vocalizing. Minke whales in Monterey Bay, CA, USA
were estimated to have mean swimming speeds between 6.5 and 8.3 km/h
(Stern, 1992). Rankin & Barlow (2005) reported a swimming speed of
5.6 km/h during an encounter with a North Pacific minke whale. While
the behavioural context of these observations was unclear, feeding minke
whales tracked with satellite tags in northern Norway travelled at much
lower average daily speeds of 2.2–2.7 km/h (Heide-Jørgensen et al., 2001).
A recent study employing satellite tags on minke whales in Icelandic wa-
ters found average swimming speeds to be considerably lower in inshore
waters where whales are presumably feeding, as compared to offshore wa-
ters, where migratory behaviour was evident and where average swimming
speeds ranged from 4.6 to 7.3 km/h (Víkingsson & Heide-Jørgensen, 2013).
The average swimming speed of minke whales in the SBNMS was 5.0 ±
1.2 km/h (Table 1), similar to that reported for North Pacific minke whales
(Stern, 1992; Rankin & Barlow, 2005), and well within the range reported
for migrating minke whales around Iceland (Víkingsson & Heide-Jørgensen,
2013). All tracks analysed in our study were recorded during the peak season
(September–October) of minke whale pulse train occurrence in the Stell-
wagen Bank National Marine Sanctuary (SBNMS) (Figure 1) (Risch et al.,
2013). Peak minke whale abundance during these months is corroborated in
visual sighting records from this area (Murphy, 1995). The summer feeding
grounds of minke whales in the North Atlantic generally extend north of SB-
NMS, starting at around 50°N, and range from Labrador in the Northwest
Atlantic to the Barents Sea in the Northeast Atlantic (Horwood, 1990; An-
dersen et al., 2003). Noting that minke whale pulse trains and visual sightings
are mostly absent during the summer feeding season, it has been suggested
that SBNMS is part of the migration route of North Atlantic minke whales
(Risch et al., 2013), rather than a feeding ground destination. The swimming
speed estimates derived for minke whales in our study lend further support to
this theory. In addition, although individual tracks were generally too short
to explore movement direction in more detail, our observations of generally
straight-line, rather than meandering path movements and a net displacement
of 3.1 ± 2.4 km/h (Table 1) are also indicative of migratory behaviour.

Source levels for pulse trains produced by minke whales in our study var-
ied by individual, but averaged 161.8 ± 2.5 and 166.3 ± 3.3 dBrms re 1 μPa,
for pulse trains sd3 and c2, respectively (Table 2, Figure 3). Source levels
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for both measured call categories ranged between 160.9 and 168.9 dBrms re
1 μPa (25th–75th percentiles; Table 2). We found an average increase in
pulse source level of about 12 dB from the start to the end of the measured
pulse trains. Lacking information about the depth of a calling animal, it is
not possible to discern whether this apparent increase in source power is
produced by the calling animal or is a function of the animal’s position in the
water column. Signal propagation is dependent on depth of both sound pro-
duction and reception. Shallow sources, in particular, may be influenced by
the Lloyd mirror effect, in which sound reflected by the surface may cause
positive or negative interference on the propagating signal (Jensen et al.,
1994). Although transmission loss is generally less dependent on depth in
the deeper parts of the water column, it increases substantially closer to the
surface, ranging between 10–20 dB in the upper 10 m of the water column
(Jensen, 1981). The acoustic recorders in the present study were moored just
above the sea floor. Thus, an alternative explanation for the apparent increase
in source level over the duration of the pulse trains could be that the animals
were actively diving while vocalizing. Assuming a signal directivity of close
to 0 dB, if the calling animal was at or close to the surface at the start of
the pulse train and continued to dive throughout the production of the call, it
is conceivable that a reduction in received level (and thus estimated source
level, when depth is not considered) of about 10–15 dB would be observed.

Source level measurements obtained in this study are slightly higher than
reported source levels for ‘boing’ sounds recorded from North Pacific minke
whales (150 dB re 1 μPa; Thompson & Friedl, 1982) and the ‘star-wars’
vocalization produced by Australian dwarf minke whales (150–165 dB re
1 μPa; Gedamke et al., 2001). Peak-to-peak source levels were 13 dB greater
than rms source levels, similar to values reported by Munger et al. (2011) for
right whale upcalls. Compared to other baleen whale species, our measured
minke whale source levels are most similar to North Atlantic right whale
tonal calls (137–162 dBrms re 1 μPa; Parks & Tyack, 2005) and also to
individual humpback whale song units (144–169 dBrms re 1 μPa; Au et
al., 2006), but about 25–30 dB lower than the high-intensity low-frequency
calls produced by blue and fin whales (Thode et al., 2000; Charif et al.,
2002; Širović et al., 2007). Given these data, the potential detection radius of
minke whale pulse trains in SBNMS is between 0.4 km and 10.2 km. This
theoretical detection range will vary based on spatial and seasonal variability
in sound propagation and noise levels and is also dependent on the animal’s
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ability to recognize the signal in background noise (Clark et al., 2009). Yet,
our results suggest that the detection radius of these calls in an urbanized
coastal area, which is highly impacted by anthropogenic noise (Hatch et al.,
2012), is relatively small compared to calls recorded from other baleen whale
species and in different environments (e.g., Stafford et al., 2007; Samaran et
al., 2010; Širović et al., 2011).

In conclusion, this study showed that North Atlantic minke whales pro-
duce at least two distinct call sequences, consisting of 3–4 stereotyped call
types. These sequences were stable across years and are shared between indi-
viduals. Although their specific behavioural function is currently unknown,
these patterns may be important in mediating social interactions between
individuals or may reflect age or sex differences. In addition, this study pro-
vided data on calling rates and call source levels for North Atlantic minke
whale pulse trains, which are useful for developing models of detectability
as a basis for acoustic density estimation (Marques et al., 2013; Martin et al.,
2013). The documented variability in individual calling behaviour should be
considered when monitoring this species using passive acoustics.
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Abstract 

Background 

Little is known about migration patterns and seasonal distribution away from coastal 
summer feeding habitats of many pelagic baleen whales. Recently, large-scale 
passive acoustic monitoring networks have become available to explore migration 
patterns and identify critical habitats of these species. North Atlantic minke whales 
(Balaenoptera acutorostrata) perform seasonal migrations between high latitude 
summer feeding and low latitude winter breeding grounds. While the distribution and 
abundance of the species has been studied across their summer range, data on 
migration and winter habitat are virtually missing. Acoustic recordings, from 16 
different sites from across the North Atlantic, were analyzed to examine the seasonal 
and geographic variation in minke whale pulse train occurrence, infer information 
about migration routes and timing, and to identify possible winter habitats. 

Results 

Acoustic detections show that minke whales leave their winter grounds south of 30° 
N from March through early April. On their southward migration in autumn, minke 
whales leave waters north of 40° N from mid-October through early November. In 
the western North Atlantic spring migrants appear to track the warmer waters of the 
Gulf Stream along the continental shelf, while whales travel farther offshore in 
autumn. Abundant detections were found off the southeastern US and the Caribbean 
during winter. Minke whale pulse trains showed evidence of geographic variation, 
with longer pulse trains recorded south of 40° N. Very few pulse trains were 
recorded during summer in any of the datasets. 

Conclusion 

This study highlights the feasibility of using acoustic monitoring networks to explore 
migration patterns of pelagic marine mammals. Results confirm the presence of 
minke whales off the southeastern US and the Caribbean during winter months. The 
absence of pulse train detections during summer suggests either that minke whales 
switch their vocal behaviour at this time of year, are absent from available recording 
sites or that variation in signal structure influenced automated detection. 
Alternatively, if pulse trains are produced in a reproductive context by males, these 
data may indicate their absence from the selected recording sites. Evidence of 
geographic variation in pulse train duration suggests different behavioural functions 
or use of these calls at different latitudes. 
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Keywords 
Passive acoustic monitoring (PAM), Minke whales, Balaenoptera acutorostrata, 
Migration, Pulse trains, Seasonality, Geographic variation 

Background 
Animal migration is a common phenomenon and has evolved at multiple times and 
in a variety of species [1]. Typically, migration develops as an adaptation to take 
advantage of seasonal peaks in resource abundance, escape inter- and intra-specific 
competition, or avoid predators and parasites [2]. Most baleen whale species perform 
to-and-fro migrations [3] between productive high latitude summer feeding and low 
latitude winter breeding grounds [4,5] and have been shown to cover very large 
distances, including the longest documented migration distance by any mammal [6]. 
The driving forces for these long-range migrations to often unproductive breeding 
grounds are still debated and a number of explanations have been suggested, 
including increased calf survival and avoidance of killer whale (Orcinus orca) 
predation [7]. However, there is also increasing evidence that partial (a fraction of 
the population stays on the feeding grounds) or differential (differences in migratory 
behaviour between different age classes or sexes) migration [3,8] might be more the 
norm than the exception in baleen whales. For example, several long-term passive 
acoustic monitoring (PAM) studies show the extended year-round presence of baleen 
whales on higher-latitude feeding grounds [9-12]. Nonetheless, at least parts of most 
populations of baleen whales seasonally migrate between summer feeding and winter 
breeding grounds [13-17]. 

Due to the high mobility of individuals, short surface times and the dependence on 
daylight and favorable weather conditions, it is generally difficult to visually survey 
for marine mammals. These limitations are intensified during migration, when their 
locations and movements are generally less predictable. Thus, baleen whale 
migration routes in the North Atlantic Ocean are still poorly understood for most 
species. In addition, while summer and winter destinations are fairly well described 
for the more coastally distributed species such as humpback (Megaptera 
novaeangliae) and right whales (Eubalaena glacialis) [18,19], little is known about 
the winter distribution of most other baleen whale species in the North Atlantic. For 
blue (Balaenoptera musculus) and fin whales (Balaenoptera physalus) there are 
some passive acoustic data indicating low latitude winter distributions [20,21], while 
more recent recordings also suggest year-round presence in higher latitudes [9,11]. 
Apart from these observations most knowledge on migration routes still originates 
from historical whaling records [22,23]. 

Such lack of data is not limited to baleen whales, but extends to other long-distance 
migrants that spend much of their lives in open ocean regions, such as sea turtles and 



Chapter 5 
 

pelagic seabirds [24,25]. Given current ocean-scale impacts of climate change and an 
increase in offshore, anthropogenic activities [26-28], a better understanding of 
migration timing and the location and extent of migration corridors of highly mobile 
marine mammals and other top predators is crucial for effective marine conservation 
efforts, which are currently concentrated in coastal habitats [24,29,30]. New methods 
such as statistical modeling, electronic tracking, as well as PAM are emerging as 
promising tools to gather such fundamental information on marine mammal 
movement and seasonal habitats [30-33]. 

Although North Atlantic minke whales (Balaenoptera acutorostrata) are well 
studied on their summer foraging grounds [34-38], large knowledge gaps exist 
concerning their distribution and abundance for much of the rest of the year. As far 
as it is known, their range extends from Baffin Bay to the Caribbean in the western 
North Atlantic and from the Barents Sea to the African continental shelf in the 
eastern North Atlantic [39,40]. Similar to the life cycle of other baleen whales, there 
is evidence of large-scale seasonal migrations between summer feeding in higher 
latitudes and winter breeding grounds in lower latitudes [39,41], but winter habitats 
have not been identified for this species. North Atlantic minke whales are currently 
listed as a species of least concern under the IUCN Red List [40], but are still 
commercially hunted in significant numbers in the North Atlantic. Based on limited 
data from feeding grounds, the International Whaling Commission (IWC) partitions 
North Atlantic minke whales into four discrete management areas: the Canadian East 
coast stock, the West Greenland stock, the Central stock (Iceland) and the 
Northeastern stock (Norway) [42]. However, there is increasing evidence for the 
possible existence of two breeding populations in the North Atlantic, but lack of 
genetic structure suggests extensive movements across and mixed assemblages at 
summer feeding grounds [43-45]. To confirm these data, it is important to establish 
the location of and obtain genetic samples from minke whale winter breeding 
grounds. This could have important impacts for the conservation of the species, 
because potential differences in genetic variability between breeding populations, for 
which the proportional representation in summer feeding and hunting grounds is 
unknown, may lead to overexploitation of small populations [43]. 

A general lack of winter sightings in coastal waters of the North Atlantic, reports of a 
few scattered sightings [39,46] and recent aerial surveys [47] observing minke 
whales east of the North American continental shelf-break, suggest an offshore 
distribution at that time of year. Recent satellite tracking data from Iceland show that 
individuals that feed in Icelandic waters during summer migrate south in the middle 
of the North Atlantic [48], corroborating passive acoustic detections at the Mid-
Atlantic ridge [49] and offshore array data from the Integrated Undersea Sound 
Surveillance System (IUSS-SOSUS) that showed higher counts of individual singers 
in lower latitudes during winter [50]. Compared to the acoustic signals of other 
baleen whale species, until recently, minke whale sounds in the North Atlantic have 
not been studied extensively. While [51] described series of clicks in the 5–6 kHz 
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range and [52] attributed low-frequency downsweeps (118–80 Hz) to the species, the 
best described sounds associated with North Atlantic minke whales are low-
frequency pulse trains with variable interpulse interval (IPI) structure and peak 
frequencies from 55–150 Hz (Figure 1) [50,53-55]. A recent long-term study of these 
pulse trains at Stellwagen Bank, USA demonstrated the feasibility of PAM to 
explore seasonal, diel and spatial occurrence patterns of this species [55]. With its 
obvious advantages in sampling remote areas over extended time periods regardless 
of weather conditions [31,56,57], PAM provides an effective tool for identifying the 
location and expanse of migratory corridors, especially when acoustic recorders are 
deployed in large spatial networks. In addition, PAM data can provide valuable 
information about the timing of migration periods and thus complement visual 
observations or satellite tracking data. Furthermore, in remote offshore areas PAM 
may be useful in delineating seasonally important habitats that are difficult to survey 
using other methods [58]. The main aims of this study were to explore the 
geographic and seasonal variation in minke whale pulse train occurrence across 
multiple sites in the North Atlantic Ocean in order to better understand minke whale 
seasonal and spatial movement patterns. Data from locations ranging from Nova 
Scotia to the Caribbean in the western North Atlantic were analyzed in detail, in 
order to describe migration timing and a possible migration corridor along the North 
American continental shelf. Data from Florida and the Caribbean were used to 
explore the suggested winter distribution of this species in waters off the 
southeastern US. Finally, geographic variation in minke whale pulse train structure 
was examined in order to investigate possible variation in minke whale acoustic 
behavior across regions. 
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Figure 1 Spectrograms for slow-down pulse train (sd3) (a) from Stellwagen (site 
4) and (b) from Jacksonville 2 (site 8) (Figure 2 for overview map). Spectrogram 
parameters: fast Fourier transform (FFT): size =512 points, overlap =75%, sample 
rate =2000 Hz, resolution =3.9 Hz and 64 ms. Y-axis starts at 0.03 kHz to remove 
low-frequency noise. Spectrograms made with Seewave [59].  

 

Results 
a) Ambient noise analysis and estimated maximum detection ranges 

Ambient noise levels within the 89.1-355 Hz frequency bands varied spatially and 
temporally (Table 1). Overall, lowest median noise levels (93.09 dB re 1 μPa) were 
measured for Jacksonville (site 8, Figure 2) and differed from the highest median 
levels (105.08 dB re 1 μPa) measured at Stellwagen Bank (site 4, Figure 2) by 12 dB. 
Ambient noise levels for recording sites at Stellwagen Bank and New York (site 5, 
Figure 2) were similar in all seasons. For both sites noise levels were higher during 
winter and spring, as compared to data from summer and autumn months. Based on 
these ambient noise level measurements, estimated detection ranges for minke whale 
pulse trains were compared between sites and seasons. While median detection 
ranges for sources at Stellwagen Bank and New York are between 7.6 and 17.2 km, 
median detection ranges for the Jacksonville site are about 10 km greater, ranging 
between 20.4 and 29.4 km (Table 1, Figure 3). 
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Table 1 Median, 25th and 75th percentile ambient noise levels (NL) measured as 
RMS pressure over ΔT =600 s and over one-third octave bands 20–25 (89.1-355 
Hz) for locations at Stellwagen Bank (site 4; SBNMS), New York (site 5; NY) 
and Jacksonville 2 (site 8, JAX) (see Figure 2 for overview map), across four 
seasons; and estimated maximum communication ranges based on a BELLHOP 
propagation model and the ambient noise levels above 

 
 Location 

(site) 
Winter Spring Summer Autumn 

NL (RMS) SBNMS (4) 105.08 (103.08, 
107.31) 

102.96 (100.50, 
104.81) 

99.74 (97.80, 
103.42) 

99.38 (97.01, 101.53) 

(dB re 1 μPa [89.1-355 
Hz]) 

NY (5) 104.10 (102.99, 
106.08) 

103.19 (100.55, 
105.52) 

96.07 (94.13, 
98.83) 

100.10 (98.30, 102.04) 

 JAX (8) 93.12 (90.00, 95.28) – – 93.09 (90.58, 99.89) 
Range (km) SBNMS (4) 7.62 (5.26, 11.25) 9.74 (7.01, 12.56) 10.81 (7.68, 14.58) 11.40 (9.02, 14.12) 
 NY (5) 9.45 (6.69, 13.61) 12.49 (7.30, 20.55) 17.18 (12.86, 

20.95) 
12.95 (10.43, 16.42) 

 JAX (8) 20.40 (15.55, 25.55) -- -- 29.47 (11.18, 40.16) 
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Figure 2 Overview map of all North Atlantic recording sites available for this 
project. Circles indicate recording sites analyzed in this study. Triangles show 
recording sites at the Mid-Atlantic ridge analyzed by [49] for reference. Transparent 
symbols show sites without detections, while white filled symbols indicate the 
detection of minke whale pulse trains at this site. With the exception of site 9, 
numbered sites 1–10 had more than 5 detections and results are shown in Figure 4. 
Sites A and C-F, had no detections. Site A = Davis Strait, B = SW Iceland, C = 
Azores, D = Cape Espartel East, E = Strait of Gibraltar West, F = Savannah. Site 1 = 
Gulf of St. Lawrence, 2 = Roseway Basin, 3 = Emerald Basin, 4 = Stellwagen Bank, 
5 = New York, 6 = Onslow Bay, 7–9 = Jacksonville 1–3, 10 = Saba Bank. Site I-VI 
= NW, NE, CW, CE, SW, SE hydrophones deployed at the Mid-Atlantic ridge. Map 
made with data downloaded from Natural Earth. Free vector and raster map data @ 
naturalearthdata.com. Map projection: Mercator. 

 

Figure 3 Cumulative distribution of estimated detection ranges at sites 4, 5 and 
8 (Stellwagen Bank (SBNMS), New York (NY), Jacksonville 2 (JAX); see Figure 
2 for overview map). Estimates are derived from ambient noise analyses of a subset 
of data (see Additional file 2: Table S1) and propagation modeling using the 
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BELLHOP model, as implemented in ESME at the different locations and for all 
four seasons [60]. 

 
b) Seasonal and spatial variation of pulse train occurrence 

A total of 3858 days of recordings were analyzed and 9411 minke whale pulse trains 
were detected during this analysis. The number of detections varied by geographic 
location and season. No pulse trains were detected in datasets from Davis Strait, the 
Azores, the Strait of Gibraltar or Savannah (sites A, C-F; Figure 2). 

While most detections were made along the US east coast, where most the recording 
effort was located, one pulse train was detected on the recorder deployed off 
Southwest Iceland (site B; Figure 2) on October 21st 2007, and 48 detections were 
made at the Saba Island site in the Caribbean during winter and spring (February to 
April; site 10; Figure 2). The seasonal distributions of minke whale pulse trains for 
sites with at least five detections (sites 1–8 & 10; Figure 2) are summarized in Figure 
4. During the 2.5 months of summer (June to August) recordings in the Gulf of St. 
Lawrence (site 1; Figure 2) only five pulse trains were detected. Recording sites in 
Nova Scotia (sites 2 & 3; Figure 2) and Stellwagen Bank (site 4; Figure 2) all 
showed a peak in detections in autumn and early winter (early September to 
December). These sites had no detections in winter (late December to March), and 
only a few detections in spring and summer (April to August). In contrast, at the 
New York recording site (site 5; Figure 2) a peak of detections occurred in spring 
(mid-March to mid-May). While there was no summer data available for this site, 
only a few detections occurred here in autumn and none in winter. In Onslow Bay 
(site 6; Figure 2) most of the detections occurred during winter and spring 
(December to early April). No pulse trains were recorded from late April to early 
August and there was a gap in recording effort from late August to November. All 
recording sites in Jacksonville (sites 7–9; Figure 2) had detections during winter. 
While recordings for site 8 were only available from September to October and 
December to January, site 7 had gaps in recording in February and August (Figure 
4). 
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Figure 4 Minke whale pulse train detections per day for all sites with more than 
5 detections. Data are presented for one fictional, continuous year to show 
seasonality by site. True recording years are indicated in lower left corner on each 
panel. Missing data indicated by grey horizontal bars. Panel numbers correspond to 
numbered sites in overview map (see Figure 2). Note the different y-axes scales for 
each panel. 
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Exploring the spatial distribution of pulse train occurrence at the New York and 
Jacksonville recording sites (sites 5, 7–9; Figure 2) revealed that at both recording 
locations the overwhelming majority of pulse trains were detected on the 
easternmost recording sites, which were located farthest from the coast and closest to 
the edge of the shelf break (Figure 5). 

 

 

Figure 5 Maps illustrating the spatial distribution of all minke whale pulse 
trains detected at recorders located at sites (a) New York (site 5) and (b) 
Jacksonville (sites 7–9) (see Figure 2 for overview map). 
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c) Geographic variation 

Duration measurements were positively correlated with SNR for data from 
Jacksonville (R2 = 0.2094, p =0.006) but not for Onslow Bay (R2 = 0.1274, p 
=0.073) or Stellwagen Bank (R2 = 0.0164, p =0.298) (Additional file 1: Figure S1). 
The comparison of duration and number of pulses for pulse train type sd3 (Figure 1) 
revealed significant differences between pulse trains recorded at Stellwagen Bank as 
compared to both Onslow Bay and Jacksonville (sites 4, 6, 8; Figure 6). The null 
hypothesis that the duration and number of pulses is equal across the three different 
sites was rejected (Kruskal-Wallis test: (a) pulse duration: Χ2 = 93.3, df =2, p 
<0.001; (b) pulse number: Χ2 = 90.1, df =2, p <0.001). Comparisons between 
Stellwagen Bank and Onslow Bay, and Stellwagen Bank and Jacksonville, showed 
significant differences in both pulse duration, as well as the number of pulses per 
pulse train (p <0.001). No significant differences were found between pulse trains 
recorded in Onslow Bay compared to Jacksonville (p =1). In general, pulse trains 
recorded at Onslow Bay (mean ± sd: 75.9 ± 13.5 s; 186.9 ± 37.3) and Jacksonville 
(76.5 ± 10.1 s; 191.3 ± 34.5) were longer and had more pulses per pulse train as 
compared to pulse trains recorded at Stellwagen Bank (39.9 ± 6.5 s; 85.4 ± 13.6). 
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Figure 6 Box-and-Whisker plot of (a) pulse train duration (s) and (b) number of 
pulses per pulse train at three different geographic locations: Stellwagen Bank 
(site 4), Onslow Bay (site 6), Jacksonville 2 (site 8) (see Figure 2. for overview 
map). Lower and upper bounds of boxes represent lower and upper quartiles, 
respectively. Solid lines represent medians and non-filled circles are means. 
Whiskers represent furthest data points within 1.5 x interquartile range (IQR). Filled 
dots are outliers. 

 

Discussion 
a) Comparison of ambient noise levels and detection range estimation 

Ambient noise levels varied between sites and seasons, with the southernmost 
recording site experiencing lowest median noise levels during the selected analysis 
periods (Table 1) and with lower median noise levels in winter as compared to 
summer and autumn measurements. This spatial gradient of decreasing ambient 
noise levels from north to south along the US East coast matches a recent in-depth 
analysis of noise levels from ten different sites along the western North Atlantic 
coast [61]. Estimated detection ranges based on these measured background noise 
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levels differed accordingly. For example, detection ranges of about 20–30 km, 
estimated for Jacksonville (site 8, Figure 2), are about 10–20 km greater than 
estimates for Stellwagen Bank, and detection ranges between seasons differed by 5–
10 km (Figure 3). These spatio-temporal differences in ambient noise levels have 
important implications for behavioural and physiological responses to noise, as well 
as potential communication ranges for minke whales in their different seasonal 
habitats [62-65]. In addition, this preliminary analysis highlights that increased 
ambient noise levels will affect signal-to-noise ratio (SNR) and thus influence 
detection probability and range in different habitats. Such differences will likely not 
dramatically change large-scale patterns of seasonal occurrence, which were the 
focus of this study. However, together with site-specific propagation characteristics, 
they need to be taken into account when absolute number of detections are compared 
on smaller spatial and temporal scales or used to infer absolute or relative abundance 
of animals [66,67]. 

b) North Atlantic minke whale migration and winter habitats along the US 
continental shelf 

Minke whale pulse trains were recorded at 11 sites throughout the North Atlantic. It 
is currently unknown what proportion of the population produces pulse trains and 
whether there are differences between sexes and/or age-classes in pulse train 
production. Although it is unclear what proportion of the population is represented 
by this analysis, a recent study at Stellwagen Bank showed general agreement of 
visual sighting rates and frequency of acoustic detections [55]. Thus, the minimum 
assumption is that an increase in acoustic detections represents an increase in vocally 
active individuals rather than a change in behaviour of the population. However, as 
mentioned above, propagation characteristics and ambient noise levels need to be 
considered as well, especially in the absence of visual sightings. 

The results from this study show seasonal variability in minke whale pulse train 
occurrence along the North American continental shelf consistent with seasonal 
migratory movement between northern and southern latitudes in summer and winter, 
respectively. A gradual decrease of detections at sites north of 40° N in late autumn, 
and an increase in recorded pulse trains in waters between 20° and 30° N during 
winter and north of 35° N during spring, clearly indicate movement between high-
latitude summer feeding grounds and low-latitude winter habitats (Figures 2 & 4). 
The timing of these movements agree with recent satellite tagging data from Iceland 
demonstrating the departure of individual minke whales from Icelandic waters from 
late September to late October [48]. In addition, winter presence in tropical waters 
and arrival in and departure from these regions closely matched pulse train 
distribution recorded at the Mid-Atlantic ridge in an earlier study [49] (Figure 7), 
indicating that minke whales are spread out at low latitudes ranging from the US 
continental shelf to the Mid-Atlantic ridge during winter. Results from the current 
study also add further support for the suggested location of a minke whale winter 
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breeding ground offshore the Southeastern US and the Caribbean [41,54]. Recent 
winter sightings from aerial surveys in the South Atlantic Bight included sightings of 
mother-calf pairs off North Carolina and Florida. These sightings were corroborated 
by long-term sighting and stranding records of calves, which occurred primarily 
during winter and spring in this region [47]. Together, these data confirm the 
presence of minke whales offshore the Southeastern US shelf break and emphasize 
the importance of this region as a potential breeding and calving ground for this 
species. The general seasonal pattern of migration that was observed along the US 
North Atlantic shelf break can be observed at the Mid-Atlantic ridge as well, with 
highest detection rates on the southernmost locations (Figures 2 & 7) during winter. 
Interestingly, no pulse trains were recorded on the northeastern most hydrophone, 
located at Latitude 32° N. This suggests that minke whales in the western North 
Atlantic may pass this location further to the west and begin to spread out towards 
the Caribbean in the west and the Mid-Atlantic ridge to the east, once they have 
reached lower latitudes. 
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Figure 7 Minke whale pulse train detections expressed as proportion of hours 
with detections/month at the Mid-Atlantic ridge. Panels show different recording 
sites as labeled in Figure 2. Figure adapted from [49]. Reprinted and adapted with 
permission of the author. 
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Acoustic array data from New York (site 5; Figure 2) and Jacksonville (sites 7 & 8; 
Figure 2) demonstrate that minke whales preferentially migrate in the deeper waters 
to the east of the continental shelf break (Figure 5). A similar spatial distribution has 
been found at Stellwagen Bank [55]. Although better sound propagation 
characteristics in deeper waters could be partly responsible for these observed 
patterns in detections [68], the general scarcity of winter sightings and results from 
recent aerial surveys sighting minke whales exclusively offshore of the continental 
shelf break [47] indicate that differences in seasonal acoustic detections reflect actual 
animal distribution. 

One of the most surprising results of this study was the relative scarcity of detections 
in the New York (site 5; Figure 2) autumn data compared to a peak in detections 
during spring in this region. This seasonality is contrary to the one found at 
Stellwagen Bank (site 4; Figure 2), located about 200 miles further to the north 
(Figure 4). Yet, similar to seasonal patterns off New York, a peak in late winter and 
springtime detections compared to less detections during early winter months was 
observed in Onslow Bay, North Carolina (site 6; Figure 2) (Figure 4). Combined, 
these data suggest that minke whales are distributed closer to the shelf break edge 
during their northbound migration in spring than during their southbound migration 
in autumn. However, high numbers of detections in data from Jacksonville (sites 7 & 
8; Figure 2) and several detections at the inshore Saba Island site (site 10; Figure 2) 
indicate that whales are moving closer inshore again during winter months (Figure 
4). Similar observations of a clockwise movement, with minke whales entering 
southern winter grounds from the northeast and moving in a westerly direction 
towards the US shelf break, have also been described from IUSS-SOSUS acoustic 
array data [50]. A possible explanation for these clockwise movements in western 
North Atlantic wintering grounds is that during spring minke whales are following 
the northward currents of the Gulf stream, while during autumn, after leaving 
seasonal feeding habitats north of 40° N, they follow a more directed southerly route, 
thereby reaching warmer waters more quickly and avoiding swimming against the 
Gulf Stream that may have surface currents velocities of up to 2.6 m/s [69] (Figure 
8). A northward migration following the Gulf Stream and the shelf break could also 
explain the absence of minke whale pulse train detections and visual observations at 
Stellwagen Bank (site 4; Figure 2) [70] and at recording sites in Nova Scotia (sites 2 
& 3; Figure 2) (Figure 4) during spring, since minke whales may be moving along 
the shelf break and not spread out into coastal feeding habitats, such as the Gulf of 
St. Lawrence [71], until they reach higher latitudes. 

 

 

 



Chapter 5 
 

 

(a)                                                        (b)      

 

 

Figure 8 Maps of Sea Surface Temperature (SST) data for 2012, averaged by 
season (a) spring (March-May) and (b) autumn (September-November). Black 
dots represent recording sites 2–9 as analyzed in this study (see overview map in 
Figure 2) and dotted lines show hypothetical migration pathways based on 
frequencies of acoustic detections at different recording sites. For sea surface 
temperature (SST) raster generation, daily, 1 km resolution, level 4 GHRSST data 
were downloaded and aggregated into monthly climatological SST rasters using the 
Marine Geospatial Ecology Tools (MGET) [72]. Monthly SST rasters were then 
averaged to create seasonal climatological SST rasters. Data available at: 
http://podaac.jpl.nasa.gov/dataset/JPL_OUROCEAN-L4UHfnd-GLOB-G1SST 

 

It has been well documented that minke whale presence is related to prey distribution 
in their summer foraging ground, where they feed primarily on pelagic shoaling fish 
such as sand lance (Ammodytes sp.) and herring (Clupea harengus) [34,38,71,73]. 
However, it has also been shown that baleen whales may pause migration and feed 
on the way to or from their summer habitats [16,74]. Following the Gulf Stream 
(Figure 8) might also be related to prey availability on their migratory pathway and 
could have energetic advantages for western North Atlantic minke whales that 
exploit the main current direction. Similarly, acoustic presence of minke whales off 
Nova Scotia (sites 2 & 3; Figure 2) and at Stellwagen Bank (site 4; Figure 2) during 
autumn migration (Figure 4; Figure 2) may be related to prey availability. Although 
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low site fidelity [36] and swimming speeds [75] indicate that both of these areas are 
part of the migration route, whales might take advantage of herring spawning 
activity peaking from late August to mid-October in this region [76], while en route 
to lower latitudes. 

The potential relationship between minke whale migration and the Gulf Stream may 
have important implications in a changing climate. In 2011 warm waters originating 
in the Gulf Stream were observed much closer to the shelf break south of New 
England than in previous years [77]. Such shifts in temperature may affect primary 
productivity, can result in major shifts of fish populations [78,79], and ultimately 
impact the distribution and abundance of top predators. For example, changes in sea 
surface temperature (SST) during an El Niño event in the Southern Ocean have been 
related to reduced calving rates in Southern right whales (Eubalaena australis), 
likely due to reduced prey availability [80]. If minke whales are indeed following the 
warmer surface waters of the Gulf Stream, a change of its location may potentially 
shift their migration path and change their overlap with other species, including 
important prey, as well as anthropogenic activities. 

c) Absence of pulse trains from summer feeding grounds and the eastern North 
Atlantic 

Very few to no minke whale pulse train detections were recorded during summer in 
any of the datasets (Figure 4). In traditional summer feeding habitats, such as the 
Mingan Islands in the Gulf of St. Lawrence [71], only five acoustic detections were 
made during two months of recording (Figure 4) despite a regular presence of minke 
whales in the area (Risch D, pers. obs.). In Davis Strait, no detections were made and 
in Southwest Iceland only one pulse train was detected in the month of October 
(Figure 2). The absence of acoustic detections from these areas could be related to a 
switch in behaviour at this time of year and reduced or changed vocalization activity 
during summer when whales are primarily feeding. For example, in humpback 
whales, only males produce songs in a reproductive context [81], which, although 
more prolific on summer feeding grounds than previously thought, shows a strong 
seasonality, with reduced occurrence during summer when whales are actively 
feeding [82]. During summer, humpback whale vocal presence on higher latitude 
feeding grounds is better represented by ‘social sounds’, which are produced by 
males and females [83,84]. Similar seasonal patterns have been found for fin whale 
song on high latitude feeding grounds [9]. Therefore, more data on the behavioural 
function of the full vocal repertoire of minke whales, which in the North Atlantic 
may include low-frequency downsweeps and other sounds [51,52], is needed to 
evaluate whether a switch in behaviour may be responsible for the absence of pulse 
train detections in these areas. 

An alternative explanation for the absence of pulse trains in higher latitudes is that 
the proportion of the population producing pulse trains is not adequately captured in 
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those areas. In the Mingan Islands, Gulf of St. Lawrence (site 1; Figure 2) the sex 
ratio appears to be heavily skewed towards females [85]. In Davis Strait, to the west 
of Greenland (site A; Figure 2), sexual segregation results in a higher proportion of 
females as compared to regions east of Greenland and females are also found in 
higher latitudes than males [86]. In humpback whales and, both blue and fin whales, 
only males produce songs that are thought to serve in a reproductive context [87,88]. 
Although it is currently unknown whether minke whale pulse trains are sex-specific 
also, the absence of pulse train detections in two different areas with a high 
proportion of females suggests that they may be. 

An absence of minke whale pulse trains from recording sites in the Strait of Gibraltar 
in the Eastern North Atlantic (sites D + E; Figure 2) may represent an actual absence 
of minke whales at these sites. Although minke whales have been observed to enter 
the Mediterranean Sea [89], sightings are generally few, and it is unclear whether 
minke whales have a year-round presence or enter the Mediterranean Sea seasonally 
[39]. However, only three months of winter recordings were available for these sites 
(Table 2) and for final conclusions, recordings at other times of year need to be 
explored, since migrating whales might have been missed by the restricted sampling 
duration. 
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Table 2 Summary of recording sites, geographic locations, depth, available 
recording days, duty cycle (recording period/time period), sample rate and 
recorder type 

Site Location Depth 
(m) 

Recording period (n days) Duty cycle (min) Sample rate 
(kHz) 

Recorder type 

Davis Strait (A) 67.24/-58.8 350 10/23/06-10/05/07 (348) Cont. 2 HARU1 
SW Iceland (B) 58.0/-26.0 800 05/16/07-07/25/08 (437) Cont. 2 HARU1 
Gulf of St. Lawrence (1) 50.25/-64.22 25 06/23/10-09/13/10 (83) Cont. 2 MARU2 
Roseway Basin (2) 42.97/-65.06 145 07/02/04-08/17/05 (412) Cont. 2 HARU1 
Emerald Basin (3) 43.34/-63.16 153 07/02/04-10/13/05 (469) Cont. 2 HARU1 
Stellwagen Bank (4) 42.45/-70.31 71 12/18/08-03/19/10 (457) Cont. 2 MARU2 
New York (5) 40.05/-71.82 90 02/29-05/15/08; 08/29-03/05/09 (266) Cont. 2 MARU2 
Azores (C) 38.54/-29.04 190 04/10-09/17/10; 09/29/10-5/19/11(424) 1.5/30 50 EAR3 
Cape Espartel East (D) 35.87/-6.20 340 10/28/08-01/30/09 (95) 5/10 2 EAR3 
Strait of Gibraltar West 
(E) 

36.03/-5.42 100 10/28/08-01/30/09 (95) 5/10 2 EAR3 

Onslow Bay (6) 33.68/-76.48 335 04/24-08/09/09; 11/08/09-04/20/10 
(271) 

5/10 200 HARP4 

Savannah (F) 31.83/-80.70 17 11/18/09-03/16/10 (119) Cont. 2 MARU2 
Jacksonville 1 (7) 30.27/-80.06 91 02/22-07/30/10; 08/26/10-01/25/11 

(312) 
5/10 200 HARP4 

Jacksonville 2 (8) 30.28/-80.06 305 09/13-10/08/09; 12/03/09-01/07/10 (62) Cont. 2 MARU2 
Jacksonville 3 (9) 30.34/-81.21 17 11/19/09-06/04/10 (197) Cont. 2 MARU2 
Saba Bank (10) 17.51/-63.19 30 10/27/11-04/28/12 (185) 30/120 16 MARU2 

 
 
 
 
Sites at which no minke whale pulse train detections were made are in italics. See the 
following references for details about recorder electronics and sensitivities: (1) 
HARU phones: [90]; (2) Marine Autonomous Recording Unit (MARU): [91]; (3) 
Ecological Acoustic Recorder (EAR): [92]; (4) High-frequency Acoustic Recording 
Package (HARP) [93]. 

Very little is known about minke whale migration in the middle and eastern North 
Atlantic, but it has been suggested here too, that migration takes place in open, 
offshore waters [39,46] and recent satellite tracking data are in support of this idea 
[48]. The absence of minke whale pulse trains from recording sites located in the 
Azores, where minke whales are occasionally sighted during spring and early 
summer [16], is thus surprising. However, most minke whales may be passing the 
archipelago too far offshore to be acoustically detected. In contrast, from November 
to June, minke whale pulse trains were frequently recorded at recorders deployed to 
the east and west of the Mid-Atlantic ridge [49] (Figure 7), indicating that minke 
whale breeding grounds extend eastwards from the Caribbean to at least the Mid-
Atlantic ridge. 

Finally, the absence of minke whale pulse trains from recording sites in the eastern 
North Atlantic may be in part related to geographic differences in vocalizations that 
could not be resolved by the automated detector used in this study. For example, 
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while [53] found mainly speed-up pulse trains in data from the Caribbean, data from 
Stellwagen Bank showed a predominance of slow-down pulse trains [55]. Although 
the automated pulse train detector used here was built on data originating from 
Stellwagen Bank, North Carolina and Jacksonville, most pulse trains used for 
training were of the slow-down type. There are differences in the frequency 
distribution between these two types [53], thus a concentration on slow-down pulse 
trains from the western North Atlantic for detector development might have 
influenced detector performance at other sites, especially those that are 
geographically more distant. 

d) Geographic variation in signal structure 

Although a thorough comparison of the full vocal repertoire was beyond the scope of 
this study, preliminary data from Onslow Bay, North Carolina suggest that the main 
minke whale call categories found at Stellwagen Bank [55] are present in southern 
recording sites also [94]. A comparison of pulse train type sd3 recorded at 
Stellwagen Bank, North Carolina and Jacksonville (Figure 1) shows evidence for 
geographic variability in signal structure with pulse trains being about 30 seconds 
longer and containing about 100 more pulses on southern recording sites as 
compared to recording sites in higher latitudes (Figure 6). Although pulse train 
duration measurements for the Jacksonville site were correlated with SNR 
(Additional file 1: Figure S1), and are thus a minimum estimate, these results 
corroborate pulse train measurements from the Caribbean which were similar in 
length and number of pulses to pulse trains from North Carolina and Jacksonville 
[53]. As mentioned above, the majority of pulse trains found in the Caribbean were 
of the speed-up type as opposed to a majority of slow-down types in northern sites. 
The reasons for this difference are unclear but individual differences in call type 
production could be partly responsible [75]. A more in depth comparison of minke 
whale vocal repertoire and call type occurrence may help to elucidate more 
differences and similarities between sites and shed light on the behavioural function 
of these sounds. Although it is unclear whether the significant increase in signal 
duration is true for all types of pulse trains, none of the pulse trains from Stellwagen 
Bank measured during an earlier study [55] lasted as long as some of the pulse trains 
recorded on southern recording sites in this study. 

Testosterone mediated male singing behaviour, increased signal duration and 
complexity are well documented in a range of vertebrates [95-97]. The increased 
duration of minke whale pulse trains on potential winter breeding grounds, the 
general scarcity of these signals on feeding grounds and their increased occurrence 
during autumn migration, when testosterone levels in adult males are rising [98], are 
all strong indicators for a reproductive function of these sounds. As argued above, 
there is also some evidence indicating that females are not producing these sounds. 
However, more data from breeding grounds, higher latitude feeding grounds with an 
even distribution of sexes or acoustic tag recordings from individuals of known sex 
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are necessary to conclusively answer the question of sex-specificity and behavioural 
context of minke whale pulse trains. 

Conclusion 
This study confirms the seasonal migration of North Atlantic minke whales offshore 
the eastern US continental shelf in spring and autumn and their winter presence in 
southeastern US and Caribbean waters. The identification of a potential breeding 
ground offshore of the southeastern US may enable more directed genetic sampling 
of this species in order to help elucidate population structure [43], with potentially 
important implications for current management of this species in the North Atlantic 
Ocean. Another important result of this study is the scarcity of pulse train detections 
north of 50° N during summer, when minke whales are abundant in coastal feeding 
habitats. These results either indicate a switch of vocal behaviour at this time of year, 
or, if signals are sex-specific, illustrates the sexual segregation of North Atlanic 
minke whales on their feeding grounds as described in earlier studies [86]. 

These results emphasize the feasibility of using passive acoustic monitoring (PAM) 
networks for investigating the spatial and seasonal distribution of pelagic baleen 
whale species that are difficult to survey by visual methods alone. However, in order 
to interpret these detection results beyond presence/absence of species and in the 
context of animal population density, there is a clear need for extended baseline data 
collection. Currently missing data include vocalization rates based on group size, in 
different behavioural contexts, by sex and age class, as well as data collected at 
different seasonal and spatial scales [99]. These data are extremely scarce for most 
marine mammal species. Yet, recent developments in technologies such as digital 
recording tags [88,100-102], as well as analysis techniques for localization and 
tracking of individual animals using passive acoustic data [103-105] may help to 
close some of these current data gaps in the future. 

Methods 

Acoustic data collection 

Long-term acoustic data for this project were collected across multiple years and at 
16 different sites throughout the North Atlantic Ocean using a variety of different 
recording packages (Figure 2, Table 2). Data availability and temporal consistency 
was limited by the goals of the various long-term monitoring projects, with differing 
analysis targets, which contributed data to this large-scale meta-analysis 
[11,55,58,106-109]. However, the main objective of this project was to explore 
large-scale migration and characterize the seasonal occurrence of minke whale pulse 
trains at different sites throughout the North Atlantic. Thus, recording periods were 
selected to maximize the overall spatial coverage and the seasonal coverage within 
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each site, rather than to keep annual consistency. Table 2 summarizes recording 
locations, available recording days, recording schedules, sample rates and equipment 
types used. Most recording effort was concentrated along the United States (US) east 
coast and used four types of bottom-mounted recorders deployed in depths ranging 
from 17 to 800 meters (Figure 2). While most recorders sampled continuously at 2 
kHz, some recordings were scheduled to record every 1.5 to 30 minutes and 
sampling rates ranged up to 200 kHz for some recorders (Table 2). All data were 
downsampled to 2 kHz before automatic detection and further data processing. 

Data analysis 

a) Automatic detection 

North Atlantic minke whales are known to produce up to seven types of low-
frequency pulse trains, which can be assigned to three major categories (slow-down, 
constant and speed-up pulse train), based on varying interpulse interval structure 
(IPI) [53,55]. An automated detector was developed to examine selected recordings 
for the presence of these pulse trains. The automatic detection consisted of a multi-
stage process based on spectrogram intensity binarization, energy projection, feature 
extraction and classification [110]. While the detection stage was designed for 
general pulse train detection, a Rippledown Rule (RIDOR) learner [111] was trained 
to identify minke whale pulse trains, taking into account, but not distinguishing 
among, the different types of pulse trains. A total of 18 basic features were extracted 
from each detected event and passed to the RIDOR for classification (see details in 
[110]). The overall false negative rate (FNR) of the detector was assessed in an 
earlier study and was found to be 27% (647 out of 2428 true positive (TP) 
detections), with 181 false positive (FP) detections in 120 hours (or 29,847 signal 
slices) of evaluated data [55]. Experienced data analysts (GD & DR) manually 
verified all detected pulse trains using the MATLAB (Mathworks, Natick, MA) 
based custom software program SEDNA [112]. All false positive detections were 
removed from each analyzed dataset. 

b) Ambient noise levels and estimated maximum detection ranges 

Since variations in ambient noise levels (NL) by site and season can have a profound 
impact on the detection probability of acoustic signals [67], an exploratory ambient 
noise analysis was conducted for three recording sites (sites 4, 5, 8: Stellwagen 
Bank, New York, Jacksonville 2; Figure 2), for which equipment calibration 
information was available. LTSpec, a custom-written MATLAB script [113], was 
used to aggregate and compute long-term spectrograms and extract absolute root-
mean-square (RMS) received levels over a frequency band encompassing six third-
octave bands (center frequencies at 100, 125, 160, 200, 250, and 315 Hz). This 
frequency band was chosen to include most energy content of minke whale pulse 
trains, which is concentrated between 50 and 300 Hz (Figure 1) [53,55]. Site-specific 



Chapter 5 
 

and seasonal week-long data (Additional file 2: Table S1) were aggregated over a 
time period of ΔT =600 s. Spectrograms were created using a sampling rate of 2000 
Hz, a FFT size of 2048, and a Hanning window function, resulting in a frequency 
resolution of 0.98 Hz. Ambient noise levels (NL) were used to estimate maximum 
detection ranges of minke whale pulse trains. Assuming source and receiver depths 
of 20 m, an average source level of 165.4 dB [75] and pulse length of 0.1 s, signal 
propagation was modeled for an omni-directional source of 120 Hz over 8 horizontal 
radii and for all four seasons, using a BELLHOP acoustic simulation model 
implemented in ESME [60], and environmental databases provided by the 
Oceanographic and Atmospheric Master Library (OAML) (available at 
http://esme.bu.edu/). The maximum propagation radius was selected and compared 
to all measured ambient noise levels. The maximum detection range was then 
estimated as the point at which SNR (RL-NL) equals zero and ranges for different 
sites and seasons were compared using empirical cumulative distribution functions, 
calculated with function ecdf of the R v. 3.1 stats package (available at www.R-
project.org). 

c) Geographic variation in acoustic features 

A subset of non-overlapping detections of high signal-to-noise ratio [SNR >10 dB] 
from three sites (n =68, 26, 35 for sites 4, 6, 8: Stellwagen Bank, Onslow Bay, 
Jacksonville 2; Figure 2) were selected to measure and compare slow-down pulse 
train type sd3 as defined by [55]. This type of pulse train is characterized by a 
bimodal distribution in IPI, peaking at 0.4 and 0.7 s (Figure 1) [55]. It was selected 
for this geographic comparison, since it was one of the most frequently occurring 
and easily distinguishable pulse train types in all datasets [55]. Acoustic data for this 
analysis were bandpass filtered from 30 to 800 Hz to remove environmental noise 
and signals from other species. Spectrograms (FFT size: 512 points, 96.9% overlap, 
Hanning window, time resolution: 8 ms, frequency resolution: 4 Hz) were created 
and analyzed using Avisoft-SASLab Pro 5.1 (Avisoft Bioacoustics). The automatic 
parameter measurement tool was used to measure pulse train duration and identify 
the total number of pulses per pulse train using an amplitude threshold of −30 to −55 
dB sound pressure level (SPL) relative to the maximum SPL in the sound file. The 
threshold was manually adjusted to ensure the detection of most pulses within a 
pulse train. Given that the data were not normally distributed (Saphiro-Wilk test), the 
hypothesis that mean pulse duration and number of pulses differed between sites was 
tested using a Kruskal-Wallis test. Wilcoxon rank-sum tests with Bonferroni 
corrections for multiple testing were used for post-hoc comparisons between pairs of 
sites. All statistical analyses were conducted using R v. 3.1. In order to select high 
quality signals for this analysis and test whether SNR affected the duration 
measurements, SNR of the whole signal was measured within a selection box 
including the signal and time periods just before and after a pulse train, using the 
MATLAB based sound analysis tool Osprey [114]. 
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d) Seasonal and spatial variation 

One recorder per site and deployment period was selected in order to examine 
seasonal patterns of minke whale pulse train occurrence. Since preliminary data from 
migration and winter habitats suggest an offshore distribution of minke whales 
[47,55], at sites where multiple recorders were available, preference was given to the 
recorders deployed farthest from shore. All data from sites with at least five 
detections were binned and plotted by day. In addition, the seasonal and geographic 
patterns of pulse train occurrence along the US east coast continental shelf, where 
most recording effort was concentrated, were compared to seasonal minke whale 
pulse train occurrence from the Mid-Atlantic ridge [49]. In order to simplify the 
description of seasonal patterns of pulse train occurrence the four seasons will be 
defined as follows for the remainder of the paper: winter = December to February, 
spring = March to May, summer = June to August and autumn = September to 
November. 

For the New York recording site (site 5; Figure 2), data from nine recorders, 
stretching from west to east across the continental shelf, were available for analysis. 
For Jacksonville, data from four recording units, deployed from west to east, were 
available (sites 7–9; Figure 2). For these two geographic sites, the total number of 
detections was evaluated for all available recording units in order to characterize the 
spatial distribution of minke whale pulse train detections as a function of distance 
from shore and shelf break. 
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Additional files 
 
Additional file 1 

 
Figure S1: 
Scatterplots and regression lines (CI=95%) of Signal-to-Noise Ratio (SNR) in dB 
against pulse train duration and number of pulses/pulse train, comparing data from 
Stellwagen Bank (SBNMS), Massachusetts (site 4); Onslow Bay, North Carolina 
(site 6); and Jacksonville, Florida (site 8). 
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Additional file 2:  

Table S1 Overview of weeks analyzed for ambient noise analysis. 

 
Location (Site) Winter Spring Summer Autumn 
SBNMS (4) 01/01/09-01/07/09 04/01/09-04/07/09 08/01/09-08/07/09 11/01/09-11/07/09 
NY (5) 01/01/09-01/07/09 04/01/08-04/07/08 08/30/08-09/05/08 11/01/08-11/07/08 
JAX (8) 12/18/09-12/24/09 -- -- 10/01/09-10/07/09 
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Antarctic minke whale (Balaenoptera bonaerensis) tagged with AcousondeTM 
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For decades, the bio-duck sound has been recorded in the Southern Ocean,

but the animal producing it has remained a mystery. Heard mainly during

austral winter in the Southern Ocean, this ubiquitous sound has been

recorded in Antarctic waters and contemporaneously off the Australian

west coast. Here, we present conclusive evidence that the bio-duck sound

is produced by Antarctic minke whales (Balaenoptera bonaerensis). We ana-

lysed data from multi-sensor acoustic recording tags that included intense

bio-duck sounds as well as singular downsweeps that have previously

been attributed to this species. This finding allows the interpretation of a

wealth of long-term acoustic recordings for this previously acoustically con-

cealed species, which will improve our understanding of the distribution,

abundance and behaviour of Antarctic minke whales. This is critical infor-

mation for a species that inhabits a difficult to access sea-ice environment

that is changing rapidly in some regions and has been the subject of

contentious lethal sampling efforts and ongoing international legal action.

1. Introduction
The bio-duck sound has been recorded ubiquitously in the Southern Ocean by

researchers for over five decades. First described and named by submarine per-

sonnel in the 1960s, the bio-duck has since been recorded at various locations in

the Southern Ocean, but its source remained a mystery [1–6]. The sound consists

of a regular series of downswept pulses, ranging from 50 to 300 Hz, with harmo-

nics of up to 1 kHz. The number of pulses within a series can differ within and

between recording locations, but the sound is highly repetitive with a typical

interval of 3.1 s between the start of two series [1]. The enigma surrounding

the sound has been further deepened by its discordant seasonal occurrence pat-

terns. During winter and spring, the bio-duck occurs simultaneously in the

eastern Weddell Sea and off Western Australia, indicating a very widespread dis-

tribution of the species, or potentially a seasonal migration by one segment of the

population and year-round presence in Antarctic waters by another [3,6].

& 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
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Here, we present conclusive evidence attributing the

bio-duck sound to Antarctic minke whales. We describe

acoustic recordings from multi-sensor acoustic recording tag

(Acousonde) deployments on two Antarctic minke whales

in Wilhelmina Bay, Antarctic Peninsula. These were the first

acoustic tags deployed on Antarctic minke whales, providing

a unique opportunity for detailed study of their vocalizations.

2. Material and methods
In the austral summer (13 and 15 February) 2013, two Antarctic

minke whales were tagged with multi-sensor suction-cup tags,

equipped with an HTI-96-MIN hydrophone (High Tech, Inc.,

Long Beach, MS, USA; sensitivity: 2187.2 dB re 1 V mPa21),

recording continuously at a sample rate (SR) of 25811 Hz. The

recording system had a flat frequency response (+3 dB) in the

22–9292 Hz frequency band. In addition to acoustic data, auxili-

ary sensors sampled temperature, pressure, 3-axis accelerometry

and magnetometry at 10 Hz. Tags were deployed in Wilhelmina

Bay, off the western Antarctic Peninsula (648410 S, 628130 W and

648380 S, 628160 W) using a hand-held carbon fibre pole from a

rigid-hulled inflatable boat (RHIB).

Spectrograms (fast Fourier transform (FFT) size: 4096 points,

95% overlap, Hanning window, time and frequency resolution:

8 ms and 6 Hz) were generated and analysed using RAVEN PRO

v. 1.5 [7]. Presence of vocalizations was evaluated manually

based on these spectrograms, and start and end time (s),

90%-energy duration (s), peak, centre and first and third quartile

frequencies (Hz) were measured for each identified sound. Voca-

lizations were filtered between 22 and 200 Hz using a 4-pole

Butterworth bandpass filter, and RMS received levels (RLs)

were calculated within the 90% duration time window using

MATLAB (2007a, The MathWorks Inc., Natick, MA, USA).

In addition, vocalizations were compared to example data

from PALAOA (22 July 2006; 708310 S, 88130 W) [8]; Dumont

D’Urville (3 June 2006; 658330 S, 1408320 E) [9] and Ross Island

(22 November 1964; 778300 S, 1688000 E) [10].

3. Results
The two tags recorded for 18 and 8 h, respectively. During both

deployments the tagged whales were in large single-species

groups of five to about 40 animals and fed almost con-

tinuously [11]. Vocalization rates were low; only 32 clear

calls, with a signal-to-noise ratio of more than 10 dB, were

recorded in this entire dataset. Most calls (n ¼ 26) were

recorded when the tagged animal was close to the surface

(mean+ s.d.: 2.6+ 0.7 m). The bio-duck sound (n ¼ 6) was

recorded on one of the tags, just before a feeding dive (figure

1). The vocalization consisted of series of 5–12 pulses, pro-

duced in regular sequences at an interval of 3.1 s (measured

from the start of one series to the start of the next). Most

energy was contained between 146+12 and 165+ 16 Hz

(mean+ s.d., first and third quartiles), and pulses exhibited

peak frequencies of 154+ 13 Hz. The 90% energy duration of

individual pulses was 0.1 s. The identification of these

sounds as the bio-duck was based on comparisons with the

published literature [1,3–6]. In addition, based on spectral

and temporal content, tag recordings were matched to bio-

duck sounds recorded on long-term, bottom-mounted

recorders at PALAOA [8] (708310 S; 88130 W) and at Dumont

D’Urville [9] (658330 S; 1408320 E) (figure 2a–c). Comparisons

with the PALAOA recordings in particular revealed similarity

in frequency range, number of pulses, and in the stereotypic

interval of 3.1 s between bio-duck series (figure 2a,b).

Apart from the bio-duck sound, low-frequency down-

sweeps (n ¼ 26) were the most frequently recorded sound on

both tags, with a mean peak frequency of 83.1+16.7 Hz,

and a duration of 0.2 s (figure 2d– f ). Low-frequency down-

sweeps (60–130 Hz) have previously been recorded in the

Ross Sea (778300 S 1688000 E) during a close encounter with

two Antarctic minke whales [10]. These sounds have very

similar characteristics to our data (figure 2d,e). In addition,

similar downsweeps were recorded in conjunction with the
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Figure 1. Complete dive profile of the Antarctic minke whale tagged in Wilhelmina Bay (648410 S, 628130 W) on 13/14 February 2013. Times at which vocalizations
occurred are marked with vertical bars (green, downsweep; turquoise, bio-duck sound). Inset shows detail of two lunge-feeding dives (lunges marked by red circles)
during which bio-duck sounds were recorded on the tag.

rsbl.royalsocietypublishing.org
Biol.Lett.10:20140175

2

 on April 23, 2014rsbl.royalsocietypublishing.orgDownloaded from 

http://rsbl.royalsocietypublishing.org/


bio-duck sound at PALAOA (figure 2f ) and in Western

Australia [1].

Bio-duck RLs at the tag averaged 140.2+ 3.6 dB re 1 mPa,

and downsweeps were received at a mean RL of 147.3+
5.3 dB re 1 mPa (table 1). One complication of acoustic tag

recordings is the difficulty in ascribing calls to the focal

animal [12]. However, during daylight, tagged whales were

visually tracked from a RHIB. During these focal follows,

no other marine mammal species were observed within

1 km of the focal minke whale groups. Previous calculations

of source levels for minke whale vocalizations were in the

range of 160–165 dB re 1 mPa [13,14]. Given the reported

RLs, assuming spherical spreading (20 � log(R)) [15] and

source levels for the bio-duck sound to be similar to those

reported for other minke whale sounds, the sound source

was within one to two body lengths of the recording tag.

Given the observation of large groups in which animals

were frequently associated, the absence of other species

during the time when calls were recorded and RLs that indi-

cate a source close to the tagged animals, we conclude that

recorded sounds were produced by either the focal animal

or other Antarctic minke whales in the immediate vicinity.
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Figure 2. Bio-duck and downsweep sounds compared between different recording locations. Bio-duck: (a) Wilhelmina Bay (14 February 2013; 648410 S, 628130 W;
acoustic recording tag; SR: 25 811 Hz; filtered and downsampled to 2000 Hz; FFT: 512; 95% overlap; Hanning window); (b) PALAOA station (22 July 2006; 708310 S,
88130 W; long-term recorder; SR: 48 000 Hz; filtered and downsampled to 2000 Hz; FFT: 512; 95% overlap; Hanning window); (c) Dumont D’Urville (3 June 2006;
658330 S, 1408320 E; long-term recorder; SR: 4000 Hz; filtered and downsampled to 2000 Hz; FFT: 512; 95% overlap; Hanning window). Downsweeps:
(d ) Wilhelmina Bay (13 February 2013; 648410 S, 628130 W; acoustic recording tag; SR: 25811 Hz; FFT: 4096; 95% overlap; Hanning window); (e) Ross Island
(22 November 1964; 778300 S, 1688000 E; opportunistic recording; SR: 2000 Hz; FFT: 512; 95% overlap; Hanning window); ( f ) PALAOA station (22 July 2006;
708310 S, 88130 W; long-term recorder; SR: 48 000 Hz; filtered and downsampled to 2000 Hz; FFT: 512; 95% overlap; Hanning window) (see the electronic
supplemental material for all sound files). (Online version in colour.)

Table 1. Acoustic parameters (mean+ s.d.) of bio-duck (N ¼ 6/n ¼ 41 pulses) and downsweep (N ¼ 26) sounds recorded on two acoustic recording tags.
n(P), number of individual pulses; PF, peak frequency; CF, centre frequency; Q25, first quartile frequency (25%); Q75, third quartile frequency (75%); DUR90(P),
90% energy duration of individual pulses/downsweeps; RMS RL, RMS received level.

n(P) PF (Hz) CF (Hz) Q25 (Hz) Q75 (Hz) DUR90 (P) (s) RMS RL (dB re 1 mPa)

bio-duck 7+ 3 154+ 13 155+ 13 146+ 12 165+ 16 0.1+ 0.0 140.2+ 3.6

downsweep — 83+ 17 84+ 17 75+ 15 94+ 15 0.2+ 0.1 147.3+ 5.3
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4. Discussion
This study is the first to analyse acoustic tag recordings from

Antarctic minke whales. Our results solve the mystery around

the source of the bio-duck sound, which is one of the most pre-

valent sounds in the Southern Ocean during austral winter and

can now be attributed unequivocally to the Antarctic minke

whale. These results have important implications for our under-

standing of this species, which is of particular priority to the

International Whaling Commission [16,17].

Antarctic minke whales live in remote open-water

environments and within sea ice habitats [18]. Traditional

ship-based study methods are extremely expensive, and

data from such studies are complex and difficult to interpret

[19–21]. The acoustic identification of Antarctic minke whales

offers the opportunity to retrospectively analyse several

years’ worth of existing long-term recordings to explore sea-

sonal occurrence and migration patterns of this species,

including the possibility of using acoustics to estimate abun-

dance [22]. Of particular interest in this respect is the

prevalence of the bio-duck in Antarctic waters during austral

winter [6], indicating that a large part of the population may

stay in ice-covered waters year-round. Similar results have

been suggested from visual sighting records [23,24]. How-

ever, recordings of the sound off Western Australia also

during winter indicate that while one population segment

remains in the ice, part of the population may undertake sea-

sonal migrations to lower latitudes [3]. A reduced occurrence

of the bio-duck sound in Antarctic summer recordings [6]

probably relates to a change in behaviour and reduced

vocal activity during times of intense foraging [11] as

suggested by the low call rates in our recordings, rather

than a change in the relative abundance of whales during

this time.

Acoustic recordings can provide insight into potential

population differentiation based on geographical differences

in vocal behaviour. For example, bio-duck sounds from

Dumont D’Urville, East Antarctica [9], as well as sounds

reported in archived recordings made in the Ross Sea [2],

exhibited three pulses per burst. In contrast, recordings of

bio-duck sounds from West Antarctica [8], including the

sounds described here, typically have five to six pulses.

In conclusion, the identification of the Antarctic minke

whale as the source of the bio-duck sound will allow a

more detailed understanding of the behavioural ecology of

this abundant, but poorly understood species. Furthermore,

the value of passive acoustic monitoring will be significantly

increased in remote areas of the Antarctic, especially during

austral winter, when visual surveys are essentially infeasible.
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Abstract

The effect of underwater anthropogenic sound on marine mammals is of increasing concern. Here we show that humpback
whale (Megaptera novaeangliae) song in the Stellwagen Bank National Marine Sanctuary (SBNMS) was reduced, concurrent
with transmissions of an Ocean Acoustic Waveguide Remote Sensing (OAWRS) experiment approximately 200 km away. We
detected the OAWRS experiment in SBNMS during an 11 day period in autumn 2006. We compared the occurrence of song for
11 days before, during and after the experiment with song over the same 33 calendar days in two later years. Using a quasi-
Poisson generalized linear model (GLM), we demonstrate a significant difference in the number of minutes with detected song
between periods and years. The lack of humpback whale song during the OAWRS experiment was the most substantial signal
in the data. Our findings demonstrate the greatest published distance over which anthropogenic sound has been shown to
affect vocalizing baleen whales, and the first time that active acoustic fisheries technology has been shown to have this effect.
The suitability of Ocean Acoustic Waveguide Remote Sensing technology for in-situ, long term monitoring of marine
ecosystems should be considered, bearing in mind its possible effects on non-target species, in particular protected species.
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Introduction

The last decade has seen an increased awareness of the impacts

of anthropogenic underwater noise on marine mammals. Impacts

have been described for several different sources, including seismic

airguns [1,2], underwater explosions [3], construction and pile

driving [4], acoustic deterrent devices [5], and scientific and

military sonar systems [6–9]. Possible effects include lethal injuries,

short- or long-term hearing damage, and the disruption of normal

behavior, including feeding, mating and communication [10–11].

Disruption of communication behavior may include signal

modifications, for example changes to signal duration, frequency

or amplitude [12–14], as well as changes in signal usage,

repetition, or the cessation of signaling [15,16,13,9]. Changes in

communication behavior have been demonstrated across several

baleen whale species and in response to various noise sources

[17,2,14].

This study investigates the effect of low-frequency pulses on the

occurrence of humpback whale song. The pulses were produced

by an Ocean Acoustic Waveguide Remote Sensing (OAWRS)

experiment, roughly 200 km from the whales. The mobile

OAWRS system was used to image fish shoals over a 100 km

diameter area [18–20].

Male humpback whales (Megaptera novaeangliae) sing long,

complex songs on their breeding grounds [21]. In addition,

humpback whales have been shown to sing on migration [22] and

feeding grounds [23]. On breeding grounds, humpback whales

may alter song production in response to boat noise, seismic

surveys and military sonar [24,8,25,26].

Most published examples of the effects of non-chronic

anthropogenic noise on marine mammals have dealt with sources

within kilometers or perhaps tens of kilometers of the study

animals [9]. Effects over hundreds of kilometers have seldom been

investigated or demonstrated [27].

Arrays of Marine Autonomous Recording Units (MARUs) [28]

gathered low-frequency acoustic data within the Stellwagen Bank

National Marine Sanctuary (SBNMS) in 2006 and from December

2007–May 2010 [29,30]. In autumn 2006, these recordings

happened to coincide with an OAWRS experiment in the Gulf of

Maine, approximately 200 km distant. Initial perusal of the 2006

data indicated that (a) a novel anthropogenic sound was detected in

SBNMS and (b) that humpback whale song in SBNMS occurred

less often, coincident with the sound. Despite having before-during-

after data for 2006, we could not make inference on the effect of the

OAWRS experiment without appropriate control data. Therefore,

we collected recordings from approximately the same place, and at

the same time, in 2008 and 2009, two years when an OAWRS

experiment was not conducted. Thus, despite having what was

initially observational data, we configured a design that allowed us

to make planned comparisons from our data.
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Materials and Methods

Data were collected on arrays of 5–10 MARUs, deployed in

SBNMS during September and October of 2006, 2008 and 2009

(Figure 1). Deployments were carried out in cooperation with

SBNMS staff and deployment sites were surveyed for archaeological

artifacts. Deployment depths ranged from 30–40 m and recorders

sampled continuously at a rate of 2000 Hz. Hydrophones were

connected to a 23.5 dB preamplifier and had a sensitivity of

-168.4 dB re 1 V/mPa. The frequency response was flat (61 dB)

over 55–585 Hz and approximately 63 dB for 585–1000 Hz.

From September 22 to October 6, 2006 we recorded 3 types of

frequency modulated (FM) pulses, centered at 415, 734 and

949 Hz, respectively (Figure 2). Based on frequency range and

duty cycle, these could be positively identified as FM pulses

transmitted as part of an Ocean Acoustic Waveguide Remote

Sensing (OAWRS) experiment, conducted in the Gulf of Maine

during the same time frame [18–20].

For 11 days (September 26 to October 6, 2006) of the 15 day

time series, the frequency of occurrence of these pulses exceeded 1

hour/day (Figure S1). We regarded these 11 days as the ‘‘OAWRS

treatment’’ period. We determined the number of minutes with

humpback whale song/day for a period of 33 days in 2006,

encompassing 11 days prior, during and after ‘‘OAWRS

treatment’’ (Figure S2). Additionally, presence of song was

determined for the same 33 calendar days in 2008 and 2009

(Figures S3, S4).

Spectrograms of sound files were viewed with the software

program XBAT [31]. Data from 1 representative MARU were

carefully examined (aurally and visually) by an experienced analyst

(D Risch). We used 1 MARU, since all simultaneously deployed

MARUs spatially overlapped in their detection range for

humpback whale song, which in our study area can be detected

up to about 30 km [23]. For the purpose of this study, we defined

song as consisting of at least 2 full themes, with gaps not exceeding

10 minutes. All instances of song were logged manually. An

automated template detector in XBAT was used to find instances

with OAWRS FM pulses in the 2006 data and characterize their

temporal occurrence. The detector assessed acoustic similarity

between a data template and possible events by spectrogram cross-

correlation and logged all events exceeding a correlation threshold

of 0.4. Automatically detected events were manually checked to

verify signal presence and signals that were missed by the detector

were logged manually.

Spectral, temporal and received level (RL) measurements of

OAWRS pulses were made in Seewave [32] and Raven Pro 1.4

Figure 1. Map of study area (Stellwagen Bank National Marine Sanctuary, shaded in grey) in relation to the location of the moored
OAWRS source, as deployed on October 1–3, 2006 (Gong et al. 2010). Star indicates approximate OAWRS source location (42.2089 N, 67.6892
W). Dots indicate locations of all MARUs that were used for analysis in 2006, 2008 and 2009. Map projection: Mercator.
doi:10.1371/journal.pone.0029741.g001
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(http://www.birds.cornell.edu/raven, accessed 7 June 2011) using

a Fast Fourier Transform (FFT) length of 512 samples, 75%

overlap and Hanning window, giving a time and frequency

resolution of 64 ms and 4 Hz, respectively. OAWRS signal RLs

(dB re 1 mPa) were calculated by measuring dB RMS over an

event box (approx. 380–440, 710–760, 930–980 Hz; 1 s). Using

the same time and frequency bounds, background noise levels (NL)

were measured 50 ms before or after each event for windows

without the signal. Subsequently, signal-to-noise ratio (SNR) was

calculated by subtracting NLs from signal RLs.

To assess changes in background noise other than the

occurrence of OAWRS pulses in 2006, and as compared to the

two control years, ambient sound levels in frequency bands

covering the frequency range of our recording system (10–

1000 Hz) as well as in the frequency band with most humpback

whale song energy (70–300 Hz, pers. obs.) were measured over the

entire analysis period using a customized Matlab script (LTSpec,

K. Cortopassi, unpublished).

Statistical analysis was conducted using R 2.13.2 [33]. We used

a quasi-Poisson generalized linear model (GLM) with log link to

test the effects of period (11 days: ‘before’, ‘during’, ‘after’) and

year (‘2006’, ‘2008’, ‘2009’) on the number of minutes with

humpback whale song. The OAWRS pulses were recorded only

during 2006. The other years serve as controls in the temporal

equivalent of a BACI design [34]. This was a planned comparison,

as we noted a possible effect in 2006, and collected control data in

2008 and 2009 in response to this possibility.

GLMs assume the independence of response variables. Since we

analyzed a time series of singing behavior of possibly the same

individuals, we checked for residual correlation and plotted

temporal autocorrelation of our data. No temporal correlation of

residuals was found (Figure S5). Tukey contrasts were calculated

from the fitted model to test for differences between periods across

and within years, using the function ‘glht’ in R package

‘multcomp’ [35].

Results

The FM pulses recorded in SBNMS from September 26 to

October 6, 2006 had a bandwidth of roughly 50 Hz, duration of

1 s, and mean center frequencies of 415, 734 and 949 Hz

(Figure 2, Table 1). FM pulses of each center frequency were

recorded every 150 s. FM pulses centered at 415 and 734 Hz were

recorded seconds apart, followed by the pulse centered at 949 Hz

after 75 s. The frequency range and duty cycle of these pulses

allowed their positive identification as pulses produced during the

OAWRS 2006 experiment in the Gulf of Maine [18–20]. A fourth

pulse centered at 1125 Hz was transmitted during this experiment

but was not recorded by our system, which was limited to an

effective recording bandwidth of 1000 Hz.

A total of 83 hours of recordings contained OAWRS pulses

(mean 6 SD: 863 hours/day, n = 11 days), with more than

7 hours of signal occurrence/day from September 27 to October

4, 2006 (see Figure S1). The OAWRS source array was deployed

at the northern flank of Georges Bank (42.2089 N, 67.6892 W),

Figure 2. Characteristics of OAWRS signals recorded on MARUs deployed in the Stellwagen Bank National Marine Sanctuary. (a)
Mean frequency spectrum, showing local peaks at center frequencies (approx. 415, 735, 950 Hz) of recorded OAWRS FM pulses. (b) Spectrogram (FFT:
512, Hanning window, 75% overlap) of the same pulses as shown in (a). Time interval between successive signals was changed for display purposes;
dB scale is relative.
doi:10.1371/journal.pone.0029741.g002

Whale Song in Response to Source 200 km Away

PLoS ONE | www.plosone.org 3 January 2012 | Volume 7 | Issue 1 | e29741



about 200 km from our bottom-mounted acoustic recorders at the

western edge of Stellwagen Bank (Figure 1) [19]. Signal RLs on

these days ranged from 88–110 dB re 1 mPa (Table 2). Over the

99 days for which data were collected, there were 219.9 hours of

humpback whale song recorded.

The amount of recorded humpback whale song differed

between periods and years. The occurrence of song in the control

years increased steadily across the three test periods; conversely

there was a marked decrease in the occurrence of song in 2006 in

the ‘during’ period, when the OAWRS transmission was recorded,

that was not evident in the control years (Figure 3). While the

‘before’ and ‘after’ periods differed significantly within the years

2008 and 2009 (Figure 3, Tukey contrasts, P,0.001), with more

song recorded in the later period in both years, this increase was

not significant in 2006 (P = 0.2147). In 2006, the ‘during’ period,

(i.e. during the OARWS experiment), was significantly different

from the period ‘after’ (P = 0.0093), with more song recorded later.

The 2006 ‘during period’ was not detectably different from the

period ‘before’ (P = 0.5226). When comparing the ‘during’ period

across years, 2006 differed significantly from 2009 (P = 0.0057).

The same time period did not differ significantly between 2006

and 2008 (P = 0.1842), or between 2008 and 2009 (P = 0.4819).

Yet, overall there was considerably less song recorded in the 11

‘during’ days in 2006 compared to both 2008 and 2009 (Figure 3).

Throughout the whole analysis period, ambient noise levels in the

70–300 Hz and 10–1000 Hz frequency band were within 4 dB of

each other [mean(70–300 Hz) 6 SD: 107.763.8 dB re 1 mPa;

mean(10–1000 Hz) 6 SD: 114.663.5 dB re 1 mPa; n = 99 days].

Discussion

In general, we detected humpback whale song less in our study

area concurrent with OAWRS signal transmissions than at other

times. The RLs of OAWRS pulses approximately 200 km from

the source array were 5–22 dB above ambient noise levels. Pulses

centered at 415 Hz had a mean SNR of 22.3 dB. For pulses at

734 Hz and 949 Hz mean SNR was 5.1 and 8.2 dB, respectively

(Table 2). Signal detection in background noise is usually not at

SNR = 0 dB, but is dependent on a receiver characteristic, the

detection threshold (DT). The difference between SNR and DT is

signal excess (SE). A nominal DT value of 10 dB is well supported

in the current literature [30]. In common practice, the value of

SE = 0 is established at the point of 50% detection probability. In

application to our data, SE for pulses at 415, 734 and 949 Hz was

12.3, 24.9 and 21.8 dB, respectively (Table 2). With SE values

slightly lower than 0 dB the detection of the two FM pulses with

higher center frequencies was probably right on the edge of

perception for humpback whales in our study area. For the pulse

at 415 Hz SE was still relatively low at 12 dB.

Thus, in response to OAWRS FM pulses, with relatively low

SE, male humpback whales either moved out of the study area or

sang less. Our data were collected using passive acoustic

monitoring, so we cannot differentiate between these two options.

However, although very limited, visual data collected in SBNMS

before, during and after the 2006 experiment give more weight to

the second alternative. Several known, sexually mature males (ages

6–28 years) were photographically identified in SBNMS during

the OAWRS experiment. While only two known males were

identified prior to the experiment, four individuals were present in

the area in the ‘‘during’’ period (J. Robbins, pers. comm.). This

suggests that individuals did not leave the area but instead ceased

singing. Multi-year data from SBNMS [36] show that humpback

whale song generally increases at the end of summer and into early

winter, when the whales start to migrate south.

Ambient noise levels over the whole analysis bandwidth (10–

1000 Hz) and in the frequency band with most humpback whale

song energy (70–300 Hz) did not vary dramatically within or

between years. However, the drop in humpback whale song,

recorded during the OAWRS experiment in October 2006, was

not repeated in the two control years (Figure 3). Therefore, our

data provide clear evidence for the reduction of humpback whale

song in response to the reception of OAWRS pulses. We interpret

this decrease as a change in singing behavior by individual whales.

Several large whale species have been shown to stop vocalizing

in response to anthropogenic noise. For example, sperm (Physeter

macrocephalus) and blue whales (Balaenoptera musculus) reacted to

seismic survey activities with silence [15,37]. Blainville’s beaked

whales have recently been shown to avoid ships using active mid-

frequency sonar and decrease the duration of vocal periods during

sonar exercises [9].

Current approaches to management of anthropogenic noise in

marine mammal habitats are predicated on a dose-response

model, based on maximum RLs proximate to the source [11].

However, the alteration of male humpback whale song in SBNMS

in response to sounds with low SE values, received roughly 200 km

from the source, suggests that factors other than absolute RLs must

also be considered when assessing the effects of anthropogenic

sound on marine mammals. Behavioral change in response to low

levels of noise is likely strongly dependent on the behavioral state

of the individual as well as the exposure context (i.e. proximity,

encroachment, novelty, including similarity to other biologically

relevant signals) [38]. Given the short duration of the OAWRS

experiment, the novelty of the FM pulses to humpback whales in

Table 1. Summary of OAWRS FM pulse characteristics
(mean6SD), as measured from spectrograms (FFT: 512
samples, Hanning window, 75% overlap) and waveforms of
MARU recordings on October 1–3, 2006 (sample rate:
2000 Hz, recording depth: 30–40 m).

FM 1 FM 2 FM 3

Signal duration (s) 1.060.1 1.060.1 1.060.1

Low Frequency (Hz) 388.362.0 709.162.7 923.562.8

High Frequency (Hz) 441.262.2 759.363.7 972.463.6

Bandwidth (Hz) 52.862.7 50.263.7 50.563.5

Center Frequency (Hz) 414.867.0 733.667.0 948.766.3

N = 60.
doi:10.1371/journal.pone.0029741.t001

Table 2. Received level (RL) measurements over full
bandwidth of OAWRS FM pulses, ambient noise (NL)
measurements over the same bandwidths, signal-to-noise
ratios (SNR) and signal excess (SE) (mean6SD).

FM 1 FM 2 FM 3

Center Frequency (Hz) 415 734 949

RL Signal (dB re 1 mPa) 110.363.3 88.063.2 89.863.3

NL Ambient (dB re 1 mPa) 88.063.3 82.962.6 81.662.5

SNR = RL-NL (dB) 22.364.8 5.164.0 8.263.9

SE = SNR-10 dB 12.364.8 24.964.0 21.863.9

N = 677.
doi:10.1371/journal.pone.0029741.t002
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SBNMS in particular provides a compelling contextual probability

for the observed effects. In addition, OAWRS pulses overlap with

humpback whale sounds in frequency band (400–900 Hz),

duration (1 second) and signal type (FM). This acoustic similarity

paired with a relatively low signal excess (SE) might have been

another factor driving the observed behavioral or distributional

changes. These findings stress the importance of adding contextual

information to behavioral assessments of noise impacts. They also

illustrate the requirement to both measure and assess background

noise [38].

We initially detected this behavioral effect serendipitously.

However, our ability to make inference on its existence is thanks to

our (within year) before-during-after and (between year) control-

impact design. To our knowledge, no-one has tested for behavioral

effects of sound on whales at distances of greater than tens of

kilometers. Our results suggest that this is an oversight.

In the absence of effective far field source level (SL) data, we

cannot make inference on the effects of the OAWRS signal on

those humpback whales that may have been closer to the sound

source than our study site. Yet, Gong et al. [39] recorded marine

mammal vocalizations, presumably humpback whales, on Georg-

e’s Bank much closer to the source (Figure 1), concurrent with the

2006 OAWRS experiment. However, as these authors present no

data on humpback whales’ use of George’s Bank at any time other

than during this experiment it is difficult to make inference on its

effect on humpback whale behavior at these closer spatial ranges.

The response of individuals can also be variable. In a playback

experiment using low-frequency active (LFA) sonar, Miller et al. [8]

showed that, on average, humpback whale songs were longer

during playback as compared to before or after control periods.

Yet, these authors also noted the cessation of singing by 5 of their

18 focal animals in response to the playback. Due to differences in

behavioral context, location and proximity to the sound source it is

difficult to directly compare our findings to either of the mentioned

studies. However, it is worth noting that plasticity in behavioral

responses is likely to exist on several different levels, including the

individual level.

The current paradigm for assessing effects of anthropogenic

noise is for short-term, short distance experiments, with a focus on

acute events and the absolute level of received sound. Our results

indicate that longer-term, larger scale monitoring of anthropo-

genic sound is also necessary.

Supporting Information

Figure S1 Time series of hourly detections of OAWRS signals

recorded on MARUs deployed in the Stellwagen Bank National

Marine Sanctuary in September/October 2006.

(TIF)

Figure S2 Time series of minutes with humpback whale song

detections in September/October 2006. Plot is split in three panels

representing (a) ‘Before’, (b) ‘During’ and (c) ‘After’ periods. Right

y-axis displays date.

(TIF)

Figure S3 Time series of minutes with humpback whale song

detections in September/October 2008. Plot is split in three panels

Figure 3. Box-and-Whisker plot of minutes/day containing humpback whale song for 33 days ‘before-during-after’ OAWRS FM
pulse transmissions in 2006, and for the same 33 calendar days in 2008 and 2009. Lower and upper bounds of boxes represent lower and
upper quartiles, respectively. Solid lines represent medians and non-filled circles are means. Whiskers represent furthest data points within 1.56
interquartile range (IQR) of the lower and higher quartile, respectively. Filled dots are outliers.
doi:10.1371/journal.pone.0029741.g003

Whale Song in Response to Source 200 km Away

PLoS ONE | www.plosone.org 5 January 2012 | Volume 7 | Issue 1 | e29741



representing time periods equal to (a) ‘Before’, (b) ‘During’ and (c)

‘After’ periods in 2006. Right y-axis displays date.

(TIF)

Figure S4 Time series of minutes with humpback whale song

detections in September/October 2009. Plot is split in three panels

representing time periods equal to (a) ‘Before’, (b) ‘During’ and (c)

‘After’ periods in 2006. Right y-axis displays date.

(TIF)

Figure S5 (a) Plot of residuals of quasi-poisson GLM model for

OAWRS data. (b) Temporal autocorrelation plot based on

residuals of quasi-poisson GLM model used in OAWRS analysis.

Blue dashed line indicates approximate 95% confidence interval.

(TIF)
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