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1. Introduction 

 

      Although removable partial dentures (RPDs) are favored options for the restoration 

of many situations that involve partial tooth loss, some patients are not satisfied with a 

removable partial denture (RPD), especially when it is not stable during mastication 

(Bezzon et al. 1997). As a result, sufficient retention of RPDs is considered one of the 

important factors that affect the clinical success of the RPDs. Two types of direct 

retainers (intracoronal and extracoronal) are most commonly used in dental practice. 

Using the extracoronal direct retainer has many advantages than intracoronal direct 

retainer. They are easily constructed, easily repaired, not expensive, do not require 

severe preparation (Phoenix et al. 2003), and its retentive arm can be covered by 

composite resin to enhance its esthetic (Ikebe et al. 1993). Retention of RPDs is 

accomplished by placing clasp parts into undercuts on abutment teeth. The integrity of 

the enamel surface upon which retainers are placed affects the service ability of the 

prosthesis.  

      The retention of RPD is defined as the ability of a fully seated RPD to resist 

dislodging forces (Johanson et al. 1983). Retention usually is achieved by using 

mechanical means such as clasps which engage undercuts on the tooth surface, 

harnessing the patient’s muscular control acting through the polished surface of the 

denture, and using the inherent physical forces which arise from coverage of the 

mucosa by the denture (Davenport et al. 2000). Phoenix et al. (2003) defined RPD 

retention as the quality of the clasp assembly that resists forces acting to dislodge 

components away from the supporting tissues. Boucher and Renner (1982) defined 

the clasp as the component of a RPD, which acts as direct retainer, and stabilizer, or 

both for the denture by partially encircling or contacting the abutment teeth. Also the 

direct retainer is defined as that component of a RPD that is used to retain and prevent 

RPD dislodgement (Academy of Prosthodontics 2005).  

 

      A successful RPD retainer must prevent displacement of the prosthesis in four 

directions. Vertical displacement must be counteracted when forces act from an 

occlusal to gingival direction and from a gingival to occlusal direction. Lateral 

displacement must be counteracted when forces act from right to left and from left to 
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right. To fulfill these requirements a retainer should provide means of primary retention, 

vertical force transmission, and occlusal force transmission (Blaterfein 1969). All clasp 

assemblies must be designed so that they satisfy the following six requirements: 1) 

Retention: Provides resistance to vertical dislodgement, 2) Stability: Provides 

resistance to horizontal forces, 3) Support: Provides resistance to vertical seating, 4) 

Reciprocation: Provides resistance to horizontal forces exerted on a tooth by an active 

retentive clasp, 5) Encirclement: Engages the tooth greater than 180° to prevent 

horizontal tooth movement from within the confines of a clasp assembly, 6) Passivity: 

Puts no active force on a tooth when a clasp is in place (Phoenix et al. 2003, Jones and 

García 2009). 

 

      There are many factors affecting the retention of the extracoronal direct retainers 

(clasps). Applegate (1965), Osborne and Lammie (1974), Korl (1976), and Henderson 

and Steffel (1981) listed four factors to be considered in determining the amount of 

clasp retention to be used, these factors are the angle of infrabulge convergence, the 

distance below the height of contour, the accuracy of adaptation to the contacting 

surface, and the flexibility of the clasp arms. The retention of RPD clasp depends upon 

the following features: (1) number and position of the saddles and the guiding planes, 

(2) mobility of the teeth, (3) mechanical properties of the alloy, (4) dimensions of the 

clasps; shape, length, and taper, and (5) design of clasps (Bates 1980). The dislodging 

force was dependent on the fit of the framework, the depth of the undercut, the number 

of the clasps, and its point of application (Ahmed et al. 1992). However, La Vere (1993) 

listed five factors that determine clasp retention, and summarized them in the following 

three categories (1) the fit of the clasp to the abutment, (2) the flexibility of the retentive 

arm, and (3) the condition of the abutment.  

 

      Others investigated the effect of clasp material on the retention force of the clasp. 

Bates (1965) studied the mechanical properties of cobalt chromium alloys (Co-Cr) and 

their relation to RPDs. The author reported that the minimum undercut to be tested for 

the Co-Cr alloys should be 0.25 mm and the clasps should be at least 15 mm long. 

Where undercuts greater than 0.25 mm are available on the teeth, a gold clasp is to be 

preferred, since it has adequate flexibility and a safety margin not available with Co-Cr 

alloys. The significant differences exist in the fatigue resistance of RPD clasps made 

from different commercial cast metals, which may cause loss of retention of the RPD 
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and clasp failures (Vallittu and Kokkonen 1995). While Bridgeman et al. (1997) 

compared titanium and cobalt-chromium RPD clasps, they mentioned that the 

long-term retentive resiliency of the pure titanium and titanium alloy clasps suggests 

that these materials are more suitable for RPDs than cobalt-chromium. Also Rodrigues 

et al. (2002) compared circumferential RPD clasps (E-clasps) made of commercially 

pure titanium and identical clasps made of two different cobalt-chromium alloys by 

testing insertion/removal and radiographically inspecting the casts for defects. The 

authors suggested that commercially pure titanium clasps maintained retention over a 

simulated 5-year period, with lower retention force than identical cobalt-chromium 

clasps. However Kim et al. (2004) investigated the retentive force of various types of 

clasps during repeated cycles of placement and removal to determine whether titanium 

alloy clasps maintain their initial retentive force under varied conditions, including 

different retentive undercut depths and clasp size. The authors concluded that 

although the end-point retention for all the clasps was similar, there was less change in 

the retentive force of the cast titanium alloy clasps after repeated cycling sequences of 

simulated placement and removal. On the other hand Cheng et al. (2010) showed that 

after a test simulating 5 years of service, cast Co-Cr alloy clasps exhibited a residual 

retentive force to satisfy the requirements for clinical use. While others reported that 

frameworks fabricated in commercially pure titanium tend to decrease in 

retentive strength over time and have a potential risk of fracture in less than 0.75 mm 

of undercut (Souza et al. 2011). 

 

      Jochen (1972) recommended the use of planned parallel guiding planes for RPDs. 

The most important consideration is that the guiding plane retention has less potential 

for causing supporting structure damage than does clasp retention (Holt 1981). Also 

the guide planes could be a mean of providing additional frictional resistance and 

therefore contribute to the retention of a RPD (Stewart et al. 1983). Moreover Stern 

(1975), Krikos (1975), and Holt (1981) studied the effect of guiding planes on 

reciprocation and retention. They stated that two factors that may improve retention 

and reciprocation in clasp design are the length of the guide plane, corono-gingivally to 

adequately reciprocate the action of the retentive arm and the relationship of the 

undercut to the guide plane as a means of increased retention. Sato and Hosokawa 

(2000) discussed the importance of guiding planes and proximal plates for 

conventional tooth-supported RPDs with circumferential clasps, they stated that the 
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guiding plane should be parallel to the path of insertion and must be of an adequate 

length for sufficient retention. 

 

      The flexibility of the retentive clasp arm plays an important role in determining the 

amount of retention of the retentive clasp arm. There are various factors affecting and 

controlling the flexibility of the retentive clasp arm, including composition, gauge, 

length, curvature, and cast or wrought structure (Bates 1963, Bates 1965, Clayton and 

Jaslow 1971, Frank and Nicholls 1981, Frank et al. 1983).) The flexibility of clasp arm 

is determined by its length, diameter, form, structure, torsion of the arms of the clasp, 

and by properties inherent in the alloy used (Applegate 1965). The cast 18-gauge wire 

clasp is 14% stiffer than a wrought wire clasp of the same gauge and alloy, and the 

flexibility is a function of composition, gauge, taper, and length of wire (Morris et al. 

1981a, 1981b, 1983). The acceptable amount of retention for a bilateral distal 

extension RPD ranges from 2.9 N to 7.3 N, 20-gauge wires are twice as flexible on the 

average as 18-gauge wires, and wires having different alloy compositions exhibit 

differences in flexibility (Frank and Nicholls 1981). The prime reason for using a 

wrought wire retentive clasp arm is to provide more flexibility than that afforded by a 

cast clasp arm. An increased flexibility permits deeper undercuts engagement, allows 

easier adjustment of the clasp arm, and reduces loading of an abutment tooth during 

insertion and removal of RPDs (Stade et al. 1985). The flexibility is a factor that can be 

regulated very easily for controlling the retention force of a clasp and the flexibility of 

the clasp is affected by the clasp dimensions and the mechanical properties of the 

constituent alloy (Yuasa et al. 1990). The length of the wrought wire appeared to be 

less important than the curvature of the clasp as a factor in flexibility (Clayton and 

Jaslow 1971). On the other hand, Snyder and Duncanson (1992) stated that the 

degree of permanent deformation of the clasp was not related to clasp form or 

width-thickness ratio.  

 

      The types of RPD clasps are either occlusally approaching clasps or gingivally 

approaching clasps or combination clasps. The roach type clasp (gingivally 

approaching clasp) has a long gingivally approaching retentive arm, so it has less 

bracing action and more retentive action than the shorter arm of three-arm clasp 

(Osborne and Lammie 1953). The gingival approaching clasps are probably easier to 

design and make more flexible as the length of the arm can be increased with very little 
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change in the design of the denture (Bates 1980). Only the terminal third of an 

occlusally approaching clasp should cross the survey line and enter the undercut area, 

while a gingivally approaching clasp contacts the tooth surface only at its tip, the 

reminder of the clasp arm is free of contact with the mucosa of the sulcus and the 

gingival margin. The length of the gingivally approaching clasp, unlike the occlusally 

approaching, is not restricted by the dimensions of the clasped tooth. The length of 

gingivally approaching clasp can therefore be increased to give greater flexibility which 

can be a positive advantage when it is necessary to clasp a premolar tooth. However, 

the occlusally approaching clasp is more rigid and most of it is in contact with the tooth 

surface above the survey line than gingival approaching clasp (Davenport et al. 2000). 

The gingivally approaching clasp is an appropriate choice under such circumstances 

as it can be made long enough to achieve adequate flexibility. Canine and premolar 

teeth obviously vary in their mesiodistal dimension but are generally of the order of 7 

mm. A cast cobalt-chromium occlusally approaching clasp may be a little longer than 

this. However, this may not be long enough to ensure that such a clasp has adequate 

flexibility and is working within its proportional limit. Therefore, on such teeth, more 

effective and reliable clasping can be obtained either by utilizing the longer gingivally 

approaching clasp or by using wrought wire retentive clasp arm (Davenport et al. 

2001).  

 

      Various clasp designs had been discussed and recomended by many authors 

(Pezzoli et al. 1993, Igarashi et al. 1999, Aoda et al. 2010). Clayton and Jaslow (1971) 

reported that the force exerted by wrought wire clasp during removal of the casting was 

6.9 N and that for bar clasp ranged from 5.1 N to 6.9 N. The most often used clasps are 

the wrought wire circumferential clasp which engages a mesiobuccal undercut, one 

half T-bar clasp which engages a distobuccal undercut, and I-bar cast clasp which 

engages an undercut just apical to the mesiobuccal height of contour (McCartney 

1981). However, the RPA clasp design (which consists of mesial rest R, proximal plate 

P, and retentive Aker arm A) has some advantages over the RPI clasp design (which 

consists of mesial rest R, proximal plate P, and retentive I-bar arm I). The 

circumferential-type retentive arm is easier to grasp for removal of the prosthesis, the 

RPA clasp is simple in design with few variations among patients, the circumferential 

retentive arm avoids the tissue problems around abutment teeth and allows the RPA 

clasp to be used in many situations where the RPI clasp is contraindicated, especially 
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in case of when a buccal undercut is absent, severe tissue undercut to avoid food or 

tissue trap, or in shallow vestibule (Eliason 1983).  Aviv et al. (1990) favored RLS 

clasps, which consist of a mesial occlusal rest, a distolingual L-bar direct retainer that 

is located on the abutment tooth adjacent to the residual ridge, and a distobuccal 

stabilizer distal extension RPD. Also others used the hinged clasp assembly RPD in 

case of severe undercuts and malpositioning of teeth, which can create problems with 

the path of placement of RPD (Campbell and Weener 1990, Cameron and Lyons 

1996). However, Sato et al. (2001) stated “the I-bar clasp is one of the most popular 

direct retainers for distal-extension RPDs”. I-bar clasp consists of I-bar clasp bar 

retentive clasp arm, occlusal rest, lingual circumferential clasp arm as bracing arm, 

and proximal minor connector. The bar type clasp is said to have a push type retention 

while the circumferential one is said to have a pull type retention. The retentive arm of 

an infrabulge clasp is significantly longer than the retentive arm of suprabulge clasp 

assembly. Consequently, the expected retentive force may be negated by the 

increased flexibility of the infrabulge arm (Phoenix et al. 2003). 

 

      The back action clasp and E-clasp are occlusal approaching clasps but they are 

different in their designs, from the retentive point of view it is wise in chrome-cobalt 

work to use direct retainers of the RPDs whose retentive section is placed at some 

distance from the point of attachment of the clasp to the framework of the denture, in 

order to allow a bigger moment to act. Such long-arm direct retainers are, of course, 

the roach, back action, reverse back action, modified ring and extended arm varieties 

(Osborne and Lammie 1953). Moreover, Firtell (1968) investigated the effect of clasp 

design upon retention of RPDs, the author measured the retention of varying clasp 

designs. The results reported for U–infrabulge was 28.5 N, that for Aker’s was 13.7 N, 

that for Aker’s (wrought gold wire retentive arm) was 12.5 N, that for I–bar (gold wire) 

was 7.6 N, and that for back action clasp was 1.6 N. Aker’s clasp (E-clasp) is most 

often used in dental practice; it is composed of an occlusal rest to give support, a 

horizontal reciprocal arm above the survey line and a retentive arm (Henderson and 

Steffel 1981). Also La Vere (1993) compared RPI, RPA, modified T and Akers clasp. 

Each clasp was tested using natural teeth and gold crowns, in dry and wet 

environments. The author examined the effectiveness of each of the four types of 

clasps in resisting displacing forces, in both vertical (occlusal) and mesio-occlusal 

directions. The author found that the RPA clasp was the most retentive of all on natural 
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abutments, against both directions of pull, but only slightly so over the RPI clasp with a 

vertical pull. However Soo and Leung (1996) studied the retention of hidden clasps, 

and compared it with that of Aker’s clasps and I bars when they function as part of a 

tooth-supported partial denture framework. The mean retention forces for the whole 

framework were 17.5, 7.6, and 13.1 N for the Aker’s clasp, I bar, and Hidden clasp, 

respectively. They reported that the hidden clasp had the greatest variability in 

retention among the three groups tested.  

 

      Retention of RPDs is accomplished by placing clasp parts into undercuts on 

abutment teeth, when a natural undercut cannot be located with a surveyor, it may be 

created by crowns, a class V restoration, cementation of a wire, recontouring of 

enamel (dimpling), and recontouring with resin (Holmes 1968, Jenkins and Berry 1976, 

Leupold and Faraone 1985, Hebel et al. 1984, Zarrati et al. 2010). The direct retention 

by clasps is possible only when the appropriate horizontal undercuts are present for 

specific path of insertion, the horizontal undercut can be modified by altering the height 

of contour, but it must be not infringe on the gingival tissue. The retentive clasp tip 

should be placed in the gingival third of the coronal surface to lower the fulcrum point 

and reduce the tipping forces on the abutment tooth (Seals and Schwartz 1985).  

 

      Krikos (1969) described a method for establishment of an artificial undercut for 

teeth, which have unfavorable shapes for clasping by using threaded wire, this 

threaded wire was cemented within artificial pinhole. While McCartney (1981) modified 

the labial surface of the enamel by preparing 1mm dimple in the center of the distal half 

of the labial surface, gingival to height of contour, in which the wrought wire I-bar 

retentive clasp arm ends. The prepared area should have the same general outline as 

the retentive tip of the clasp arm, which will fit into it. Therefore, the term should be 

recontouring not dimpling to establish a retentive area (Axinn 1975). However, 

Crowther et al. (1981) mentioned that a channeled groove is preferred rather than a 

dimple, therefore the tooth preparation conforms to the shape of the distal third of the 

clasp. When viewed in the labial-lingual section the preparation will appear as a half 

round contour, if left unmodified the clasp arm will travel over the enamel and make an 

accelerated snap into undercut. Also the distofacial ridge may be placed on the 

distofacial surface of the canine as part of a pin-modified metal inlay, built into the 

design of ceramometal restoration, or erected with composite after etching the 
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underlying enamel surface, ceramometal restoration is used when caries or large 

restorations are present on the canine (Hansen and Iverson 1986). An alternative 

technique had been described for recontouring cervical eroded and abraded area by 

using enamel fragments, in this technique the enamel fragments could be used in a 

manner similar to laminate veneers to provide additional clasp retention in instances 

where there is excessive cervical abrasion and erosion, these fragments provide 

esthetic restorations with excellent wear characteristics under metal RPD clasps 

(Carvalho et al. 1995). However Liebenberg (1995) introduced a new direct technique 

in which the light-curing glass-ionomer resin cement is utilized for the direct restoration 

of RPD abutments, for this technique the cavity preparation is completed in the 

customary manner and the cement is applied in masses and covered with a suitable 

translucent separating sheet. The denture is reinserted and the restoration is light 

cured, then the denture is removed, and, with the aid of a suitable disclosing medium, 

the restoration is trimmed carefully to avoid reducing the intimate adaptation between 

the restoration and RPD, this restoration would serve as an adequate interim 

restoration until the patient is able to afford a cast abutment restoration.  

 

      Many authors studied in vivo and in vitro the contour modifications of teeth by acid 

etch retained resins to create undercuts. These techniques provide minimal tooth 

destruction (a few microns during etching) as well as the advantages of ease of 

preparation, repair, and alteration (Siirila 1975, Piirto et al. 1977, Quinn 1981). The 

introduction of the acid-etch technique for the bonding of composite resin to enamel 

has provided a conservative means of modifying tooth contour to create undercuts for 

the retention of the RPD clasps (Davenport et al. 1990).  

 

      Many methods have been suggested to obtain retention for prosthetic appliances 

in the absence of the natural undercuts. Full crowns, precision attachments, and 

various intra-coronal devices have been used effectively, but their use necessarily 

involves a considerable amount of time and expertise. The introduction of acid-etch 

retained resins has made possible rapid modification of tooth contour without hard 

tissue destruction, it is, therefore, possible to produce clinically useful degree of 

undercut (Jenkins and Berry,1976). Latta (1990) used the composite resin for 

contouring of abutment teeth, which have unfavorable contour for rotational path RPDs. 

The modification of the tooth contour with composite resin is a conservative, simple, 
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durable and effective way of creating undercut for clasping where no, or inadequate 

undercut exists (Davenport et al. 2001). While Pavarina et al. (2002) and Varjão et al.  

(2012) described a technique in which light polymerized composite material is used to 

obtain retention for RPD retainers when usable natural undercuts are unavailable.  

 

      The partial-coverage porcelain laminate restorations might successfully be used to 

create undercuts for RPD abutment teeth (Tietge et al.1992b). Leupold and Faraone 

(1985) investigated the feasibility of using electrochemically etched castings bonded to 

etched enamel as an adjunct to mouth preparation placement of RPDs. These castings 

have been in service and subject to loading by the RPDs for 26 to 42 months. They 

reported that the bond strengths have been sufficient to support function of both 

castings and RPDs clinically, and none of the castings has failed in its bond. Also 

Elledge et al. (1989), Dixon et al. (1990), and Dixon et al. (1992) described the use of a 

partial coverage porcelain laminate to enhance clasp retention, the conservative 

partial-coverage porcelain laminate offers an esthetically pleasing and minimally 

invasive alternative for creating an undercut for RPDs. An insufficient buccal undercut 

for RPD retainer necessitated the use of an invasive procedure to correct the problem. 

The authors reported that the partial coverage design reduces the possibility of 

debonding caused by occlusal stresses or trauma and can also reduce the wear 

associated with composite resin.  

 

      However, others described techniques for fabricating crowns beneath existing 

RPDs (Killebrew 1961, Ewing 1965, Barrett and Pilling 1965, Lee 1970, Warnick 1970, 

Thurgood et al. 1973, Welsh 1975, Ellegde and Schorr 1990, Helvey 2002, Carracho 

and Razzoog 2006). Also Lubovich and Peterson (1977) fabricated ceramic-metal 

crown to fit a RPD direct retainer. However, Teppo and Smith (1978) used cast gold 

crown to fit a RPD clasp. 

 

      Many studies were carried out to investigate the effect of RPD clasps on the 

abutment retention surfaces. Phillips and Leonard (1956) studied the abrasion of 

enamel as related to the direct retainer of RPD in an in-vitro study. The authors used a 

cast cobalt-chromium clasp and a representative gold clasp, and attempted to 

duplicate conditions prevailing in the mouth. The clasps were pushed on and pulled off 

natural teeth coated with saliva and they considered a vibratory type of wear, which 
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might arise when a denture is in function. The authors concluded that abrasive wear is 

not a significant problem in 25,000 cycles since less than 0.025 mm of material was 

removed. They added that no visual evidence of wear was noted on any wet 

specimens regardless of the clasp material. Also Bates (1968) investigated the 

abrasion of enamel as related to the direct retainer of RPD in a long-term in-vitro study. 

For this study, the extracted teeth were stored in ringers solution prior to embedding in 

a brass ring. The brass ring was mounted in the testing machine. Four straight clasps, 

30 mm. long, were cast in Croform 5C alloy. The deflection of the clasp tip was set at 

0.38 to 0.50 mm. The author measured the amount of tooth loss from the greatest 

curvature of the tooth before testing and after 25,000 tooth clasp contacts. The author 

found that the amount of wear of the teeth is slight and not likely to affect the retention. 

While Hebel et al. (1984) investigated enamel and composite resin wear by RPD 

clasps in simulated 3-years period (4,500 cycles). The wear was generally less than 20 

µm as mean site value for natural enamel and demineralized enamel. The amount of 

enamel wear was of such a low magnitude that it did not appear to be clinically relevant. 

The enamel surface can withstand the wearing effect of an RPD clasp or RPD alloy 

more than composite resin can (Swift 1987, Alarcon et al. 2009). However Tietge et al. 

(1992a) reported that the mean wear produced by a RPD clasp (I-bar) contacting tooth 

specimens was 31.97 µm. Moreover, Sato et al. (1997) studied the effect of friction 

coefficient of Aker’s clasp on four abutment materials (human enamel, porcelain, type 

IV gold and high palladium alloys). They used different clasp materials (type IV gold, 

cobalt chromium alloys, and high palladium alloys) of two surface treatments (polished 

and sandblasted). They concluded that the retentive force increased linearly with 

increasing friction coefficient between the abutment material and clasp material. They 

recommended that the clasp should be designed, considering the friction coefficient of 

material combinations. 

 

      Also the effect of RPD clasp on composite resin retention surface was investigated 

(Humirudin and Barsby 2007), Davenport et al. (1988) and (1990) studied the abrasion 

between composite resins and clasps. They indicated that there was only minimal 

abrasion of composite resins tested but that when conventional composite resins were 

employed marked abrasion of the clasps occurred, and the abrasion of any of the 

composites tested was unlikely to cause a noticeable loss of retention in the clinical 

situation. Tietge et al. (1992a) investigated the amount of wear of composite resin 
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materials (P-50 and Occlusin) and cast direct retainers (I-bars) during RPD placement 

and removal period of 2 years in vitro study. Results indicated that a statistical 

difference in the amount of mean wear between the two composite resins. The authors 

suggested that the selection of a resin composite resin for use as a RPD retentive 

undercut must be carefully undertaken to avoid excessive wear and loss of retention. 

In addition, Latta et al. (1997) investigated the in-vitro wear of visible light-cured 

restorative materials and RPD direct retainers. An aluminum test die was produced by 

replicating the facial contours of an extracted human molar (model), the replica's 

cervical contour was modified by placement of a restorable Class V cavity preparation. 

The restorative materials tested were Z100 (fine particle filled resin composite), Silux 

Plus (microfilled resin composite), and Photac-Fil (hybrid glass ionomer). The results 

of this study revealed that the retainers with round profiles caused less wear of the 

restorative materials than those featuring flat contact surfaces. Wear of the materials 

ranged from 14 ± 5.5 µm (Silux Plus by cast round) to 70 ± 10 µm (Photac-Fil by cast 

half round).  

 

      Maroso et al. (1981) studied the wear of porcelain when subjected to functional 

movements of retentive clasp arms, the porcelain-metal crowns simulating abutment 

retainers for RPD clasping were used to determine the effect of RPD clasp on 

porcelain surface. They found that little or no change was recorded in these surface 

profiles, indicating that little or no wear had occurred. 

 

      Many methods had been proposed to evaluate the amount of wear of different 

abutment materials. Bates (1968) used a micrometer for measuring the amount of 

enamel loss by the effect of direct retainer. However, Hebel et al. (1984) used a 

scanning electron microscope (SEM) for investigation of the wear of enamel, 

composite resins, and direct retainers. Seghi et al. (1991) studied the wear of enamel 

produced by dental ceramic by using a micrometer, while Dixon et al. (1992) and 

Tietge et al. (1992a) and (1992b) used scanning electron photomicrographs and 

computer imaging to quantify wear of the I-bar tips, enamel, composite, and the 

contacting laminate surfaces. In contrast, Matsumura and Leinfelder (1993) and (1994), 

Hudson et al. (1995), and Ramp et al. (1999) used profilometer for evaluating the 

amount of wear of enamel and different types of composite resin. Others used SEM for 
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evaluation of the amount of wear of the enamel which produced by different types of 

restorations (Suzuki and Leinfelder 1993, Magne et al. 1999).  

 

      Although the retention force is affected by wear (Sato et al. 1997), it is not yet 

known whether the wear differs among retention surfaces and whether the wear 

affects the retention of the clasp of RPDs. in addition, the available scientific data do 

not provide an explanation regarding the gradual loss of retention of the E-clasp and 

back action clasps. Therefore, the effect of wear on the retention of clasps and on the 

retention surface, requires further investigation. Also the long-term retentiveness of 

these clasps is unclear and therefore a detailed analysis of the long-term retention of 

E-circlet and back action clasps seems important. The null hypothesis was that the 

retention and wear values of the circlet (E) clasp and back action clasp on the enamel, 

composite resin and ceramic abutments materials at different intervals would not be 

different. 

 

      The purpose of this study was as follows: 

1. to compare the retention of circlet (E) clasps and back action clasps against three 

different abutment surface materials (enamel, composite, CAD/CAM ceramic crown) 

during long-term simulation of attachment and detachment. 

2. to measure the loss of retention and wear of two clasp types (E-circlet, back action) 

against three abutment materials after 16,000 simulated cycles of 

attachment-detachment. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

15  

2. Material and Methods 

 

      Simulation of RPD detachment was mimicked by using the chewing simulator 

device to constant attach and detach RPD clasps from abutments involving different 

materials that created undercuts for 16,000 cycles of use.  Retention loads were 

measured before and after cycling. Wear was examined in the SEM using replicas of 

the abutment surfaces. Comparisons among combinations were statistically analyzed. 

      A pilot study had been carried out to determine the initial force of retention 

(Bates1963, Firtell 1968, Soo and Leung 1996). This pilot study was carried out with 

two types of clasp design (E-clasp, Back action clasp) on natural teeth having sound 

enamel surfaces to determine the initial retentive force to start this experiment. This 

experiment was conducted to simulate about 11 years period. If a RPD would be 

removed four times each day (Hebel et al. 1984, Tannous et al. 2012) for 11 years, 

there would be about 16,000 insertions and removals. However another study was 

carried out over 25,000 cycles (Phillips and Leonard 1956). 

      For this study thirty-three upper premolars were used, these teeth were collected 

and preserved in 0.1% thymol solution. The teeth were cleaned and examined to 

ensure that only intact noncarious nonmottled enamel was present. Each tooth was 

perforated mesiodistally at the middle of its root by using small round bur at high speed 

with a coolant. Also direct retainer holding device (DRHD) was constructed especially 

for this study. The DRHD consisted of (1) a vertical aluminum column, (2) a horizontal 

aluminum arm, (3) a specimen holder which constructed from acrylic to hold the model 

and (4) a testing column holder (to hold the direct retainer) connected with the vertical 

column (Fig. 1).  

      One laboratory metal model (32 mm in length, 17.5 mm in width, and 20 mm in 

height) was constructed, this model having hole (15 mm in depth, and 7 mm in diameter) 

at the end of one side of its superior surface to accommodate the root of the abutment 

(Cu zn 37, Messing, Richter, Germany), the hole of the metal model was filled by 

softened wax. Then the root of the abutment (natural tooth or metal die) was inserted 

into the hole however its long axis was at 90 degree to the base of the metal model and 

the excess wax was removed.  
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      The metal model was duplicated by using silicon impression material (Deguform, 

DeguDent, GmbH, Germany) and duplicating machine (DG1, Degussa, Germany) for 

construction of forty-eight testing models (MCP70 alloy, HEK, Germany) as following: 

The metal model was removed from the mold, and the abutment (natural tooth or metal 

die) was removed from the metal model. In case of natural tooth a small piece of steel 

wire 0.5 mm in cross section was placed in the perforation of the root of the tooth to 

provide means of retention while the tooth inside the testing model, then the abutment 

was returned and fixed again in its position at the mold. While the abutment was inside 

the mold, fused MCP70 alloy (HEK, Germany) was poured into the mold. After the alloy 

had set completely, testing model was removed from the mold, then it was trimmed and 

finished (Fig. 2). The testing models were constructed to create an apparatus to hold the 

abutment within the chewing simulator. These models were constructed from 

rectangular metal blocks with natural tooth or metal die embedded in each model 

vertically till the cementoenamel junction (CEJ).  
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Fig. 1. Schematic diagram for DRHD: a, lateral view, and b, frontal view. 

 
 
 
 
 

 
 

Fig. 2. a, Metal model; b, Testing model. 
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      According to the model's teeth, they were divided into three groups. The first group 

(GI) consisted of 16 extracted premolar with retentive areas on their buccal enamel 

surfaces.  

      The second group (GII) had 16 premolar teeth modified buccally by composite resin 

(Spectrum, Dentsply DeTrey, Constance, Germany) to achieve sufficient undercut as 

following: The buccal surface to be clasped was etched with etching gel containing 36 % 

o-phosphoric acid (Conditioner 36, Dentsply DeTrey, Germany) for 45 seconds, then it 

was washed with water and dried with air. The primer Optibond (Kerr Corp., Orange, CA, 

USA) was painted over the buccal surface to be clasped for 30 seconds. Then the 

adhesive agent (Kerr Corp.) was applied and exposed to the light of the light curing 

system (Translux Ec, Heareus Kulzer, Wehrheim, Germany) for 30 seconds. The buccal 

surface was contoured by composite resin, then the composite resin was exposed to the 

light of curing system for 40 seconds for curing. The contour was adjusted and the resin 

was finished and polished, all procedures for recontouring the buccal surfaces of the 

abutments of this group with composite resin were carried out according to the 

manufacturer’s instructions. 

      For the third group (GIII) one premolar tooth had been used for construction 16 

metal dies, then the dies were covered by ceramic crowns (Vita Mark II, Zahnfabrik, 

Germany) that constructed by using CAD/CAM (Sirona Dental system, Cerec Scan, 

Bensheim, Germany) as following: Mesial and distal rest seats had been prepared to the 

natural tooth and the palatal surface was recontoured by using stone with low speed 

hand piece, then tooth was powdered with titanium trioxide (Vita, Zahnfabrik, Bad 

Säckingen, Germany) to provide optical reflection media. Optical impression was taken 

for the crown of the tooth with the three dimensions Cerec 3 Camera. After that the 

preparation for the natural tooth was carried out to receive ceramic crown by using a 

medium diamond bur and then a fine one with a 4-degree taper (Komet, Gebr. Brasseler 

GmbH & Co., Lemgo, Germany) to achieve 2 mm axial reduction, 8-degree 

convergence angle, and 2 mm occlusal reduction. The  fine diamond bur with a diameter 

of 1 mm was used to modify the depth of the shoulder (Gu and Kern 2003). Then the 

optical impression was taken for the crown of the tooth by using the three dimensions 

Cerec 3 Camera. Cerec 3 CAD/CAM system with cerec 3 software (Sirona Dental 

system GmbH, Cerec Scan, Bensheim, Germany) was used for designing of 16 ceramic 

crowns. A ceramic block (Vita Mark II, Vita Zahnfabrik) was inserted into the milling unit, 

and then the milling operation was started. Ready-made glaze paste was applied in thin 
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even layer to the outer surface of the crown. The firing program recommended by the 

manufacturer was followed and the pre-drying temperature was 600°C. The 

temperature was increased 58°C/min with closing time 6 minutes. Final firing 

temperature was 950 °C with 1-minute holding time.  

      After the 16 CAD/CAM crowns had been prepared, a small metal pellet was 

attached to the root apex of the prepared tooth by softened wax. After that the prepared 

tooth with metal pellet were duplicated by using special silicon duplicating material 

(Speedy wax transpadupisil 101, Zahntechnik Wichnalek, Augsburg, Germany) for 

producing 16 metal dies. The duplicated mold was poured by melting speedy wax 

(Zahntechnik Wichnalek) through injector machine (Wasinjektor 1500 M, Serien-Nr. 

009801, Zahntechnik Wichnalek) (Fig. 3). After 20 minutes, the wax form was removed 

from the mold, sprued, invested, and cast into 16 metal dies, then the dies were 

sandblasted by 50 µm aluminum oxide under three bar air pressure. The metal pellet of 

metal die was acting as mean of retention while the metal die inside the testing model. 

Each CAD/CAM crown was adhesively luted with Panavia F resin cement system 

(Kuraray, Osaka, Japan)  and cemented to the metal die as follows: The inner surface of 

the crown was etched with hydrofluoric acid (IPS Ceramic etching-gel,Ivoclar Vivadent, 

Schaan, Liechtenstein) for 60 seconds, rinsed thoroughly with water, and air-dried. The 

surface was silanized with Monobond-S (Ivoclar Vivadent). Sufficient amount of Panavia 

F, paste A and paste B were dispensed on the mixing plate and mixed for 20 seconds. 

Then a thin layer of the resin was applied to the inner surface of the crown. The crown 

was seated to the metal die with finger pressure and then kept under a pressure of 40 N 

in a loading apparatus. The excess of the paste at the margin was removed and the 

margin area was cleaned with sponges. The air blocking gel Oxyguard II (Kuraray, 

Osaka, Japan) was syringed along the crown margin to prevent an oxygen inhibited 

unpolymerized resin layer formation and to enhance the chemical curing of the Panavia 

F. The cement was left for 7 minutes to set, and then the Oxyguard II was removed with 

a sponge and rinsed with tap water. The cementation procedures of all ceramic crowns 

to the metal dies were made according to manufacturer’s instructions. 

      The abutment of the testing model was surveyed to ensure that there were 

adequate undercuts (0.25 mm) (Tannous et al. 2012). Minor tooth preparation was 

performed to provide rest seat (the rest seat for E-clasp was prepared distally, however 

the rest seat for back action clasp was prepared mesially according to Pezzoli et al. 

1993), this rest seat was triangular in shape, with the base of triangular was rested on 
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marginal ridge and the rounded apex was directed toward the center of the tooth. The 

width of rest seat was one-half of the distance between the buccal and lingual cusp tips. 

The floor of it was spoon shaped and directed towards the center (Phoenix et al. 2003, 

Rice et al. 2011, Pospiech et al. 2012). Rest seat preparation was designed so that the 

occlusal forces were directed along the along axis of the tooth (Seals and Schwartz 

1985). The palatal surface was re-contoured by using stone with low speed hand piece 

for lowering the height of contour to provide ideal balance (reciprocation) between two 

arms of the clasp; this balance was achieved when both arms contacted the tooth 

surfaces simultaneously so that stress exerted by the retentive arm was reciprocated 

by the bracing arm. A hand piece was attached directly to vertical spindle of dental 

surveying machine (F2, Degussa, Germany).  Then a small piece of wax (0.7 mm in 

thickness, 20 mm in length, and 5 mm in width) having a small perforation at the its 

distal end, was fixed at the superior surface of the testing model, and 2 mm from the 

proximal tooth surface to provide framework stopper. The unwanted proximal 

undercuts were blocked out by using softened wax to eliminate its effect on the 

retention force (Soo and Leung 1996) and then trimmed by means of the wax trimmer 

of dental surveyor (Unit, Degussa, Germany) (Fig. 4). 
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Fig. 3. Duplicated mold was poured by melting speedy wax. 

                  

 

 

Fig. 4. The unwanted undercut was blocked out, and small piece of wax having hole at 

its distal end was fixed at the superior surface of the testing model. 
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      The testing models were duplicated into investment models (Optivest, Degussa 

Dental, Hanau, Germany). Each group of the models was subdivided into two 

subgroups according to the framework design, subgroup E (SGE) for E-clasps and 

subgroup B (SGB) for back action clasps (8 specimens each). Each circlet (E) clasp 

consisted of a occlusal rest, two clasp arms (retentive clasp arm engaging a 

mesiobuccal undercut and a reciprocal lingual arm), and a minor connector that 

attached the clasp to the framework. In contrast, each back action clasp consisted of a 

occlusal rest, a single arm clasp which encircled nearly the entire circumference of the 

abutment, and a minor connector that attached the clasp to the framework. The 

bracing portion of the single clasp arm extended above the survey line on the lingual 

surface until the proximal surface, then it started its taper to become flexible and 

engage a mesiobuccal undercut (Krol et al. 1999, Phoenix et al. 2003, Carr et al. 

2005). 

On the investment models, the wax patterns of the frameworks were fabricated and 

finished, after that a small rectangular plastic piece (20 mm in length, 3 mm in height, 

and 5 mm in width) was fixed on the superior surface of the investment cast with 2 mm 

away from the distal surface of the abutment, by using softened wax. This rectangular 

plastic piece was placed parallel to superior surface of the investment cast. It was 

connected with the wax pattern of the clasp by wax. A small cylindrical plastic piece (20 

mm in length and 5 mm in diameter) was placed manually inside the holding part of the 

testing column holder of the DRHD. Then it was held by tightening the screw of the 

holding part of the testing column holder of the DRHD. Then the investment cast was 

placed inside the specimen holder of the DRHD. The cylindrical plastic piece was fixed 

at 90 degree to the rectangular plastic piece by fast setting resin (Cyanacrylate, 

Renfert, Germany) to produce a testing column of the framework (Figs. 5-7).  

 

 

 



 

 

23  

 

Fig. 5. Using DRHD for fixation of cylindrical plastic piece. 

 
Fig. 6. Wax pattern of circlet (E) clasp: a, lateral view, and b, frontal view. 

 

 
Fig. 7. Wax pattern of circlet back action clasp: a, lateral view, and b, frontal view. 
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      Cast cobalt chromium alloy (BEGO, Bremen, Germany) frameworks with E-circlet 

and back action clasps were constructed (Bates 1965). The frameworks were tried on 

the models and were considered to be suitable for testing when the occlusal rests fit 

well in their rest seats, and the retainers were in contact with the abutments however 

the framework stopper was resting on the testing model (Figs. 8 and 9). The contact 

surface of each retainer and the edges of the clasps were examined visually to assure 

that they were free from pits and other irregularities that would affect retainer or 

material wear (Latta et al. 1997). The inner surface of the clasp tip was polished slightly 

using a rubber wheel at low speed to remove roughness and small projections on the 

fitting surfaces (Soo and Leung 1996). 

      Two saucer depressions as reference points were made at suspected wear area of 

abutment retention surface by gentle grinding using small round bur (Hebel et al. 1984, 

Davenport et al. 1988). They were placed one gingival to the suspected wear area 

below the clasp and the other one was above the height of contour. 

      Each clasp and its model were mounted on a DRHD and the whole test set-up was 

placed in a universal testing machine (Zwick/101, GmbH & Co. Germany). Retention of 

each clasp at pre-test (0 cycle) was measured by applying withdrawal force to it by this 

machine (Fig. 10).  

      Each subgroup of models (8 models) within the DRHDs were mounted inside a 

chewing simulator device (Firma Willytec, Munich, Germany) (Fig. 11). Removal and 

insertion cycling of clasps was carried out for 250, 500, 1,000, 2,000, 4,000, 8,000, and 

16, 000 cycles. Specimens were cycled at room temperature in 200 ml artificial saliva 

(Hebel et al. 1984, Soo and Leung 1996) (Table 1). The machine was set  at 8 mm/sec 

with 3 kg for loading.  
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Table 1. Composition of artificial saliva 

 

       Whole resting saliva (mg/100ml)                         Supplied as    

        Na+                              15                            38.1 mg NaCl/100 ml                

        K+                                 80                           88.2 mg KCl/100 ml          

        (PO3)
4-                     51(16.8 p)                  5.4 ml 100 m  MKPO4 PH7                

        Ca++                            5.8                          16 mg CaCl2/100 ml 

        Mucin                           200                         Procine-mucine 200mg/100 ml 

 

 
 
 

 
Fig. 8. Framework of E-clasp within the testing model, (A) lateral view and (B) frontal 

view. 
 
 
 

 
Fig. 9. Framework of Back action clasp within the testing model, (A) lateral view and (B) 

frontal view. 



 

 

26  

 
Fig. 10. The specimen (clasp within DRHD) was mounted in the universal testing 

machine. 

 

 
Fig. 11. Clasps within DRHDs were mounted in the chewing simulator device. 
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      After each cycling interval (250, 500, 1,000, 2,000, 4,000, 8,000, and 16,000 cycles) 

each clasp within the DRHD was removed from the chewing simulator device, and 

mounted in the universal testing machine, then the retention force was measured and 

after 16,000 cycles the loss of retention was calculated. 

      Acrylic replicas were made for each abutment retention surface before and after 

cycling as following:  Silicon duplicating material was mechanically mixed and applied 

inside a duplicating ring. The crown of the abutment tooth was immersed into the 

duplicating material and left for one hour then removed. An epoxy resin (Stycast 1266, 

Emerson & Cuming, Westerlo, Belgium Germany) was mixed according to the 

manufacturer's instructions and poured into the mold. The ring was placed in a vacuum 

machine (Degusint Vac, Degussa, Germany) for 20 minutes to remove any air bubbles 

in resin. The epoxy resin was left to polymerize at room temperature for at least 24 

hours (Marshall et al. 1978, Suzuki and Leinfelder 1993, Wood et al. 1996). 

      The replicas were attached to an aluminum stub for the scanning electron 

microscope (SEM) and sputtered coated with gold (Balzers Union, Balzers, 

Liechtenstein, Germany) (Fig. 12). The replicas were examined at the suspected wear 

areas by using the SEM (XL 30 CP, Philips, Eindhoven, Netherlands) at a magnification 

of X50 using a 10 kV acceleration voltage (Hebel et al. 1984, Dixon et al. 1990, Dixon et 

al. 1992, Tietge et al. 1992a, Tietge et al. 1992b, Suzuki and Leinfelder 1993). 

      The wear areas of the abutment surfaces were measured by using transparent 

paper scale in mm² as following; The SEM photograph was printed larger than normal at 

100X magnification to clarify the wear area. Then the transparent paper was placed over 

the SEM photograph to trace out the wear areas. 

      The results of the retention forces at different intervals, the reduction of retention 

forces after 16,000 cycles, and the wear areas of the retention surfaces of different 

subgroups were tabulated and subjected to statistical analysis using 1-way-ANOVA, 

2-way-ANOVA, and Mann-Whitney tests.  
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Fig. 12. The replica was attached to an aluminum SEM stub and sputter-coated with 

gold. 
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3. Results 

 

3.1. Retention forces 

 

      The means of retention forces of the circlet (E) clasp and back action clasp on 

different abutment materials (enamel, composite resin, and ceramic) before and after 

cycling intervals are shown in Fig. 13 and Table 2. 

      Statistically, 1-way-ANOVA showed no significant differences among the means of 

retention forces of different subgroups initially and after 250, 500, 4,000, 8,000, and 

16,000 cycles at 95 % confidence level (P0.05). However, there were significant 

differences among the means of retention force of different subgroups after 1,000 

cycles and 2,000 cycles at 95 % confidence level (P≤0.05). The circlet (E) clasp 

showed a significant decrease in retention compared to the back action clasp. 

      Also 2-way-ANOVA was used to study the effect of different clasp designs and 

abutment retention material on the retention force initially and after each interval. 

There was a significant effect of different clasp designs on the amount of retention 

force but the difference was only present after 4,000 cycles at 95 % confidence level 

(P≤0.05). There was no significant effect of using different abutment materials on the 

amount of retention force at different intervals at 95 % confidence level (P0.05). 

      Pair-wise comparison (Mann-Whitney test) between the six subgroups after 1,000 

cycles (Table 3) showed significant differences between SGBI and SGBII, SGEII and 

SGBII, and SGBII and SGBIII (P≤0.05). However, after 2,000 cycles there were 

significant differences between SGBI and SGBII, SGEII and SGBII, SGBII and SGBIII, 

and SGEIII and SGBIII (P≤0.05) (Table 4).  
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Table 2. Means and standard deviations of clasp retention (N) for subgroups at 

different cycle intervals 

 

SGBIII 
 

SGEIII SGBII SGEII SGBI SGEI       C 

10.7±3.9 
 

11.2±2.2 11.4±3.5 13.2±4.7 11.1±4.3 13.0±4 0 

7.5±3.2 
 

8.7±2 9.0±3.5 7.5±1.7 7.7 ±2 8.5±2.4 250 

7.7±1.8 
 

7.4± 2.7 8.8± 2.7 6.7± 1.5 5.8±1.3 7.4±2.2 500 

6.3±2.5 
 

5.5± 1.2 8.6±1.4 5.1±1.8 5.9±0.7 7.7±3.3 1,000 

6.0±1.2 
 

4.4±.8 8.3±2.5 5.1± 2.4 5.6±.9 6.9±2.3 2,000 

6.3±2.7 
 

4.3±1.1 7.3±3.1 4.5±2.1 5.3±.3 5.7±1.8 4,000 

5.0±3.2 
 

3.6± 1.3 6.3±2 4.6±1.6 4.6±1.8 5.3±1.7 8,000 

4.4±4 
 

3.9± 1.4 5.0± 1.1 4.2±1.6 4.6±2 3.34±1.7 16,000 

C  Number of Cycles, SD ±  Standard Deviation, SGEI  E-clasp on enamel, SGBI     Back action clasp on 

enamel, SGEII    E-clasp on composite resin, SGBII    Back action clasp on composite resin, SGEIII   

E-clasp on ceramic, SGBIII   Back action clasp on ceramic.  

 

 

 

 

Fig. 13. Clasp retention of subgroups at different cycle intervals of attachment-detachment. 
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Table 3. Pair-wise comparisons of clasp retention between groups after 1,000 cycles 

(Mann-Whitney Test) 

Codes of subgroup see Table 2 on page 30,*denotes a significant difference (p≤0.05) 

 

 

Table 4. Pair-wise comparisons of clasp retention between groups after 2,000 cycles 

(Mann-Whitney Test) 

Codes of subgroup see Table 2 on page 30, *denotes a significant difference (p≤0.05). 

 

 

 

 

       Groups compared                                  P  

SGEI       Vs      SGEII                               0.092 

SGEI       Vs      SGEIII                              0.092 

SGEII      Vs      SGEIII                              0.528 

SGBI      Vs      SGBII                                0.001* 

SGBI      Vs      SGBIII                               0.528 

SGBII      Vs      SGBIII                              0.040* 

SGEI       Vs      SGBI                                0.179 

SGEII      Vs     SGBII                                0.007* 

SGEIII     Vs      SGBIII                              0.291 

 Groups compared                                       P  

SGEI       Vs      SGEII                               0.20 

SGEI       Vs      SGEIII                              0.08 

SGEII      Vs      SGEIII                              0.49 

 SGBI      Vs      SGBII                               0.02* 

SGBI      Vs      SGBIII                               0.71 

SGBII      Vs      SGBIII                              0.03* 

SGEI       Vs      SGBI                                0.27 

SGEII      Vs     SGBII                                0.02* 

SGEIII     Vs      SGBIII                              0.01* 
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3.2. Loss of retention force 

 

      Table 5 shows the mean and standard deviation of the loss of retention (N) after 

16,000 cycles, and the percentages of retention loss of the E-circlet clasps and 

back-action clasps on different abutment materials (enamel, composite resin, and 

ceramic). Statistically, 1-wayANOVA showed no significant differences among the 

means of retention loss of different subgroups after 16,000 cycles at a 95% confidence 

level (P>0.05). Also, 2-way ANOVA was used to study the effect of different clasp 

designs or using different abutment retention surfaces on the amount of retention loss 

after 16,000 cycles. None of these factors had a statistically significant effect on loss of 

retention after 16,000 cycles at a 95% confidence level (P>0.05). 

 

 

Table 5. Mean, standard deviation, and the percentages of loss of retention (N)  after 

16,000 cycles for each subgroup 

 

            SG          (No.)     Retention loss      Percentage of loss 

SGEI           8            9.0  4                       69% 

SGBI           8            6.3  4.0                    57% 

SGEII          8            9.0  3.8                    68% 

SGBII          8            6.0  3.7                    52% 

SGEIII         8            7.0  2.2                    62% 

SGBIII         8            6.3  5.4                    59% 

 

Codes of subgroups see Table 2 on page 30, No. Number of specimens           
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3.3. Wear of abutment materials 

 

Two-way ANOVA was used to study the effect of different clasp designs or using 

different abutment materials on the amount of wear. Both of these factors had a 

statistically significant effect on amount of wear at a 95% confidence level (P≤0.05) 

(Figs. 14-19) (Table 6). A pair-wise Mann-Whitney test showed significant differences 

between SGEI and SGBI, SGEI and SGEIII, SGBI and SGBIII, SGEII and SGEIII, 

SGBII and SGBIII, and SGEIII and SGBIII (p ≤ 0.05); however, there were no 

significant differences between SGEI and SGEII, SGBI and SGBII, and SGEII and 

SGBII (P>0.05) (Table 7). 

 

 

 

Table 6. Mean and standard deviation of the wear areas of different subgroups after 

16,000 cycles 

 

                  Subgroup         No.                     Mean  SD                              

                       SGEI            8                        1.83  0.36                                 

                       SGBI            8                        0.85  0.66                                  

                       SGEII           8                        2.37  1.88                                  

                       SGBII           8                        1.70  1.11                                  

                       SGEIII          8                         0.60  0.20                                  

                       SGBIII          8                         0.06  0.0                                    

 

Codes of subgroups see Table 2 on page 30, No. Number of specimens           
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Table 7. Pair-wise comparisons of wear area between test subgroups after 16,000 

cycles (Mann-Whitney test)  

 

     Groups compared                                                                  P  

SGEI           Vs          SGEII                                                       0.599 

SGEI           Vs          SGEIII                                                      0.0009* 

SGEII          Vs          SGEIII                                                      0.018* 

SGBI          Vs           SGBII                                                       0.172 

SGBI          Vs           SGBIII                                                      0.005* 

SGBII          Vs          SGBIII                                                      0.0005* 

SGEI           Vs          SGBI                                                        0.007* 

SGEII          Vs          SGBII                                                       0.372 

SGEIII         Vs          SGBIII                                                      0.0014* 

 

Codes of subgroups see Table 2 on page 30, * denotes there is significant difference (p≤0.05). 
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Fig. 14. Effect of E-circlet clasp on the enamel surface, (A) before cycling, (B) after cycling-  

 

 

 

  

 

Fig. 15. Effect of a back-action clasp on the enamel surface, (A) before cycling, (B) after cycling. 
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Fig. 16. Effect of an E-circlet clasp on the composite resin abutment material, (A) before cycling, (B) 

after cycling. 

 

 

 

 

 

Fig. 17. Effect of a back-action clasp on the composite resin abutment material, (A) before cycling, (B) 

after cycling. 
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Fig. 18. Effect of E-circlet clasp on the ceramic abutment material, (A) before cycling, (B)  after cycling.  

 

 

 

 

 

Fig. 19. Effect of back action clasp on the ceramic abutment material, (A) before cycling, (B) after 

cycling.  
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4. Discussion 

   

4.1. Retention forces 

 

      All subgroups showed some degree of retention loss at different intervals, but the 

back action clasp significantly maintained its retention force for a longer period than the 

circlet (E) clasp. Therefore, the null hypothesis that there would be no difference in 

retention of circlet E-clasp and back action at different intervals was rejected. 

      Initially, no significant differences among the six subgroups were found (p0.05). 

The mean retention in N was: 13 for SGEI, 11.1 for SGBI, 13.2 for SGEII, 11.4 for 

SGBII, 11.2 for SGEIII, and 10.7 for SGBIII.  These results are in agreement with Firtell 

(1968), who found that the retention force of the E-clasp was about 13.7 N and for the 

back action clasp 1.6 N, and Bates (1963), who obtained similar results in a similar 

experiment. However the results of the currents study differ from a study done by Soo 

and Leung (1996), who reported that the retention force of Aker’s clasp was 17.5 N. 

      The variation in retention force compared with the previous study may be due to 

the difference in the flexibility of the alloys used, or the amount of deflection, or the 

testing models.  

      The results of the current study shows that differences in clasp design have no 

effect on retention force initially and after 250, 500, 1,000, 2,000, 8,000, and 16,000 

cycles (P 0.05). An effect was only detected at 4,000 cycles (P≤0.05). 

      Also there was significantly greater reduction of the retention of the circlet (E) 

clasps than of the back action clasps at 1,000 and 2,000 cycles (P≤0.05), which might 

be caused by differences in flexibility between the two clasps. The back action clasp is 

more flexible than circlet (E) clasp because the back action clasp has a longer retentive 

arm (Osborne and Lammie 1953). Flexibility of the back action clasp allowed it to 

maintain its retention force up to 2,000 cycles, while the circlet (E) clasp deformed and 

lost its retention earlier (at 1,000 cycles). After 2,000 cycles, the back action clasps 

began to lose their elasticity and retention force. As a result there were no significant 

differences between the circlet (E) and back action clasps after 8,000 and 16,000 

cycles (P0.05), respectively. 

      In addition to the finding that the back action clasps maintained their retention force 

for a longer period than the circlet (E) clasps, the circlet (E) clasps exert lateral forces 
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on the abutment teeth which may be detrimental to the periodontium and often fails 

because of distortion (Ahmed et al. 1992). Therefore the back action clasp seems 

preferable over the circlet (E) in terms of retention, longevity, and preservation of the 

abutment tooth supporting structures. 

      In the present study, there was significantly lower reduction in retention of the back 

action clasps on composite resin than on enamel and ceramic at 1,000 and 2,000 

cycles (P≤0.05). However, at other cycle intervals there was no significant effect of the 

abutment materials on clasp retention (P0.05). 

      Early wear of the composite resin might have caused increase roughness on its 

surface and this might be responsible for an increase in the frictional force of the clasp 

arm with subsequent increase in retention. The retentive force of a clasp increases 

linearly with increasing friction coefficient between abutment material and clasp 

material (Sato 1997). These results are in accord with those of Jenkins and Berry 

(1976), Quinn (1981), Hebel et al. (1984), Davenport et al. (1990) and Davenport et al. 

(2001),  and at variance with that of Dixon et al. (1990), Dixon et al. (1992), Tietge et al. 

(1992a), Tietge et al. (1992b). These findings suggest that composite resin contouring 

of teeth is viable technique for creating retention for the RPD clasps. 

      The validity of composite contouring the buccal retention surface of zero undercut 

teeth was confirmed by the absence of significant differences among the retention 

force of the back action clasp on the three retention surfaces at 4,000, 8,000, and  

16,000 cycles. In addition, also there were no significant differences among the 

retention force of the circlet (E) clasp on the different abutment materials (P0.05).  

      The absence of significant differences between the retention of the back action 

clasp and circlet (E) clasp on the three retention surfaces at most of the intervals may 

be due to deformity of the two clasps at these cycling intervals. So the results of the 

present study suggest that the clasp may lose its retention force as a result of multiple 

deflections, which leads to gradual loss of elasticity.  

 

4.2. Loss of retention force 

 

      The loss of retention of each clasp was choosing for comparison because it gives 

the results in numbers which are considered better suitable for comparison of 

subgroups rather than the percentages of loss. However the percentages of retention 



 

 

40  

loss might be misleading reading but it can be used as indicator for the clinical 

acceptability.  

      There were no significant differences in the retention loss of all subgroups after 

16,000 cycles at 95 % confidence level (P>0.05). However there were significant 

differences among the wear areas of abutment surface of the six subgroups after 

cycling at 95 % confidence level (P≤0.05), which may reflect the effect of abutment 

retention surface on retention loss of RPD clasp after 16,000 cycles. 

 

4.3. Wear of abutment materials 

 

      The wear of enamel by action RPD clasp was considered as a reference for this 

study, as Phillips and Leonard (1956) found no or little wear of enamel by action of the 

direct retainer. Although wear was measured only two-dimensional it can be assumed 

that the measured 2-D wear facets correlate strongly with the three-dimensional wear 

(volume) as the tooth curvature approximates the shape of a cup (dome). Under this 

consideration the calculation of the volume loss would be as follows:    

Vcup= volume of the cup removed by wear (cup over the measured area), S = measured 

(worn) area, C= circumference of the tooth at the equatorial cross-section (i.e. 

circumference of the embrace). 

      As the tooth shape approximates only the shape of a cup (dome) volume loss could 

not be calculated but it is reasonable to assume that the measured 2-D wear correlates 

strongly with the 3-D wear on the curved tooth surface. 

      There were significant differences among the different retention surfaces by the 

action of the two clasps (P≤0.05). Therefore, the null hypothesis that there would be no 

difference in wear of retention surfaces by the effect of circlet E-clasp and back action 

clasp at different intervals was rejected. 

      The results of this in vitro experiment indicated that the RPD clasps had a wearing 

effect on the enamel surface of the abutment teeth. Over an 11 years period of 

simulated insertion and removal cycles, the wear area was 1.83 mm² for SGEI and was 

0.85 mm² for SGBI. These results are varying from that of Phillips and Leonard (1956) 

and Hebel et al. (1984). Differences in methodology, amount of undercut, clasp designs, 
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the dislodgement force, number of cycling, and increased sophistication of equipment 

used to measure wear, may be responsible for the differences in wear recorded by the 

different studies. 

      The composite resin contoured teeth showed significantly higher wear than the 

enamel by the action of E and back action clasps which may not clinically accepted . 

These finding were in agreement with Hebel et al. (1984), Davenport et al. (1988), and 

Tiegte et al. (1992) and at variance with Swift (1987). 

      No significant changes were found in the ceramic abutment retention surface by the 

action of E and back action clasps. None of the specimens failed due to ceramic fracture, 

which indicates that well fabricated glazed ceramic surface can withstand the wear 

forces of RPD retentive clasp arms. These results are in agreement with that of  Marso 

et al. (1981) and Tiegte et al. (1992b). 

      Statistically there were significant differences in the wear of enamel and ceramic 

abutment retention surface by the action of E and back action clasps (P≤0.05). These 

significant differences may be due to the rigidity of the E-clasp which is higher than that 

of back action clasp.  

      There were significant differences among the different retention surfaces by the 

action of the two clasps. Ceramic showed the least amount of wear followed by enamel 

and then by composite which showed the largest amount of wear. This is probably due 

to the differences in wearing resistance of these materials.  

       

      All specimens exhibited some retention at the end of this study (after 16,000 cycles) 

and there were no significant differences in the retention loss of all subgroups at 95 % 

confidence level (P>0.05) after 16,000 cycles. However, no resin additions were lost 

during the course of the experiment and none of the specimens failed due to composite 

fracture. In spite of the fact that direct retainers cause wear of composite resins, these 

materials have been recommended for creation of abutment tooth undercuts, this also 

suggests that resin contouring of teeth is viable technique for creating retention for the 

RPDs clasps. This finding was in agreement with Hebel et al. (1984), Davenport et al. 

(1988), and Pavarina et al. (2002). In addition it should be mentioned, that worn 

composite resin could be easily replaced by newly added composite resin while worn 

ceramic cannot be replaced easily. 



 

 

42  

5.1. Summary 

 

      The purpose of this in-vitro study was to compare the retention of circlet (E) clasps 

and back action clasps against three different abutment surface materials (enamel, 

composite, CAD/CAM ceramic crown) during long-term simulation of attachment and 

detachment, and to measure the loss of retention and wear after 16,000 simulated 

cycles of attachment-detachment. Forty-eight models were constructed by placing 

either an upper first premolar or a metal die inside a metal rectangular block. Models 

were divided according to the abutment teeth into three groups. Group GI consisted of 

16 unrestored human premolars with sound enamel. Group GII had 16 premolars 

re-contoured buccally using composite resin. Group GIII had 16 metal dies (duplicated 

from a human premolar) covered by CAD/CAM all-ceramic crowns. On the models, 

E-circlet (E) and back-action (B) clasps were constructed to engage the model's teeth. 

Removal and insertion cycling of clasps was carried out for 250, 500, 1,000, 2,000, 

4,000, 8,000, and 16, 000 cycles by using a chewing simulator. The retention force of 

each clasp was measured before cycling and at different intervals by using universal 

testing machine. An acrylic replica was made for each abutment retention surface 

before and after cycling. Each replica was examined by SEM, and the wear areas were 

measured. The data was analyzed statistically using 1-way ANOVA, 2-way ANOVA, and 

Mann-Whitney tests.  

 

      No significant differences in retention of either clasp were found between the three 

abutment material surfaces. However, there was a significant decrease in retention 

force of the circlet (E) clasp between 1,000 and 2,000 cycles but not the back action 

clasp. There were no significant differences in retention loss after 16,000 cycles (P≥0.05) 

of both clasps (E, B) on the three abutment materials (enamel, composite resin, 

CAD/CAM ceramic crown). There were significant differences among the wear areas of 

the abutment surface of the six subgroups (P≤0.05). Within the limitations of this study, 

the following conclusions were drawn: 1) The back action clasp maintains its retention 

force for a longer period than the circlet (E) clasp. 2) Composite resin contouring of teeth 

seems to be a viable technique for creating retention for the RPD clasps because there 

was no significant difference between the 3 abutment materials regarding their retention 

forces at different intervals (P0.05). 3) The difference in design between circlet 

E-clasps and back action clasps had no significant effect on the loss of retention force 
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after 16,000 cycles. 4) Using different abutment surfaces for clasp retention had no 

significant effect on the amount of retention loss after 16,000 cycles. 5) The composite 

resin contoured teeth showed more wear than the enamel and ceramic by the action of 

E and back action clasps. However, E-clasps caused more wear on the abutment 

materials than back action clasps.  
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5.2. Zusammenfassung 

 

      Das Ziel dieser In-vitro-Studie war es, die Retention von E-Klammern und 

Back-Aktion-Klammern auf auf drei Materialien zu vergleichen (Schmelz, Komposit, 

CAD/CAM-Keramik-Krone) und messen den Verlust der Retention und die Abnutzung 

der Retentionsflächen bei langfristiger Simulation von Fügen und Lösen der Klammern 

nach bis zu 16.000 Zyklen zu evaluieren. 48 Modelle wurden hergestellt, indem 

entweder ein natürlicher oberer erster Prämolar oder ein Metallpfeilerzahn  in einem 

rechteckigen Metallblock eingebettet wurden. Die Modelle wurden entsprechend Ihrer 

Pfeilerzähne in drei Gruppen eingeteilt. Gruppe GI bestand aus 16 nicht restaurierten 

menschlichen Prämolaren mit gesundem Zahnschmelz. Gruppe GII beinhaltete 16 

Prämolaren, die bukkal mit Komposit rekonturiert worden waren. Gruppe GIII wies 16 

Metallstümpfe auf (dupliziert von einem präparierten menschlichen Prämolaren) die mit 

CAD/CAM-Vollkeramik-Kronen versorgt wurdent. Auf den Modellen, wurden die beiden 

Klammern (E) und  (B=Back-Aktion) so konstruiert, das sie die Zähne zirkulär umfassten. 

Das Fügen und Lösen der Klammern wurde für 250, 500, 1.000, 2.000, 4.000, 8.000, 

und 16.000 Zyklen unter Verwendung eines Kausimulator durchgeführt. Die Retention 

der einzelnen Klammer wurde vor Beginn der Füge- und Lösezyklen und dann in 

unterschiedlichen Abständen mit Hilfe einer Universal-Prüfmaschine gemessen. Ein 

Acryl-Replika wurde für jede Material-Oberfläche vor und nach dem den Füge- und 

Lösezyklen hergestellt. Jedes Replika wurde im Rasterelektronenmikroskop untersucht 

und der Verschleiß an der Anlagefläche der Klammern gemessen. Die Daten wurden 

unter Verwendung von ein- oder zweifaktorieller Varianzanalyses und 

Mann-Whitney-Tests statistisch ausgewertet. 

 

      Es wurden keine signifikanten Unterschiede in der Retention der Klammertypen 

oder in Abhängigkeit von den Materialoberflächen gefunden. Allerdings gab es eine 

signifikante Abnahme der Klammerretention zwischen 1.000 und 2.000 Zyklen bei den 

der E-Klammern, nicht aber bei den Back-Aktion-Klammern. Es gab keine signifikanten 

Unterschiede im Retentionsverlust der beiden Klammertypen nach 16.000 Zyklen (P ≥ 

0,05) welcher auch nicht vom verwendeten Material (Schmelz, Komposit, CAD/CAM- 

Keramik-Krone) beeinflusst wurde. Es wurden aber signifikante Unterschiede bezüglich 

des Verschleißes der Retentionsflächen der sechs Untergruppen festgestellt (P ≤ 0,05). 

Unter Berücksichtigung der Studienlimitationen können folgende Schlussfolgerungen 
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gezogen werden: 1) Die Back-Action-Klammer behält ihre Retentionskraft für einen 

längeren Zeitraum als die E-Klammer. 2) Die Konturierung der Zähne mit 

Kompositkunststoff scheint eine praktikable Technik zur Schaffung von 

Retentionflächen für Gussklammern dazustellen, da es keine signifikanten 

Unterschiede zwischen den 3 Materialien in der Klammerretention in den 

unterschiedlichen Intervallen gab (P0,05). 3) Der Unterschied im Design zwischen 

E-Klammern und Back-Aktion-Klammern hatte keinen signifikanten Einfluss auf den 

Verlust der Haltekraft nach 16.000 Zyklen. 4) Die verschiedenen Anlageflächen der 

Klammern hatte keinen signifikanten Einfluss auf die Höhe der Retention Verlust nach 

16.000 Zyklen. 5) Die mit Kompositkunststoff rekonturierten Zähne wiesen einen 

höheren Verschleiß auf als die Zähne mit nicht restaurierten Schmelz und die 

Keramikkronen. Allerdings verursachten die E-Klammern mehr Verschleiß an den 

Materialien als die Back-Aktion-Klammern. 
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