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ii. Abstract 

Bisphosphonates are a class of drugs that show high affinity for the bone and act to inhibit bone 

resorption mediated by osteoclasts. As a therapeutic, bisphosphonates are currently prescribed to 

patients with osteoporosis or with primary cancers, which have a high probability of metastasizing to 

the bone (eg. breast cancer). More recently, the bisphosphonate’s ability to target the bone with high 

efficiency has been exploited to develop novel targeted molecules. These drugs provide the possibility 

of increased drug delivery to the bone while minimizing systemic toxicity. Several new conjugate 

drugs, combining the anti-tumor effects of chemotherapeutics and bisphosphonates have been 

developed for the treatment of bone metastases. In this thesis, the initial in vivo characterization of the 

drug 5-FdU-ale, a new conjugated drug between the anti-metabolite 5-fluoro-2’-deoxyuridine (5-FdU) 

and the bisphosphonate alendronate is presented. Initial toxicity studies indicate no signs of necrosis or 

inflammation at the site of injection, no induced weight loss and no impaired renal function for doses 

up to 200 mg/kg. Next, 5-FdU-ale was assessed for its anti-tumor effects in a mouse model of breast 

cancer bone metastases. Mice treated with 5-FdU-ale showed a significant reduction in the number of 

tumors compared to untreated controls and showed a significant reduction in tumor size compared to 

untreated mice or mice treated with either 5-FdU or alendronate alone. Mice treated with 5-FdU also 

showed significantly greater bone volume and mineral content, and a significant inhibition in 

osteoclast number, without negatively impacting normal osteoblast function. 

 Along with their uses in novel targeted therapeutics, fluorescently-labeled bisphosphonates 

have been used to characterize bisphosphonate localization, distribution, cellular uptake and 

penetration into bone. Radiological assessments of the bone provide site-specific analyses of changes 

in bone morphology, but require significant changes over weeks or even months before they could be 

detected. In contrast, serum analyses provide an assessment of the current overall bone metabolic 

status, but fail to localize aberrant changes to a specific site. In this thesis, fluorescently-labeled 

bisphosphonate binding kinetics were used to characterize and monitor the site-specific changes in 

bone metabolism. Binding kinetics were applied to animal models of osteoporosis (ovariectomy) 

(OVX) and in mice treated with an anabolic bone agent (parathyroid hormone) (PTH). Binding 
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kinetics revealed significant decreases in both the rate constant and plateau binding values in response 

to OVX and a significant increase in rate constant values in response to PTH in the proximal tibia 

region. Co-registration of fluorescence and micro-computed tomography (micro-CT) scans of ex vivo 

bone sections revealed a preferential uptake of bisphosphonates shortly after injection to regions of 

less dense, newly deposited bone mineral. Additionally, the uptake of bisphosphonates at the spine 

was compared and was found that changes in binding kinetic parameters were consistent between sites 

and correlated with time-lapse micro-CT analyses which supported active, mineralizing surfaces as 

being high bisphosphonate uptake regions and also demonstrated an intermediate uptake by regions 

associated with newly exposed minerals resulting from bone resorption. An additional correction 

factor was then generated to monitor changes in unbound bisphosphonates in the blood pool allowing 

for multi-compartment kinetic analyses to be conducted. 

 Overall, bisphosphonates hold great promise, not just as anti-resorptive agents, but as targeting 

molecules for the delivery of therapeutics. Preclinical evaluations of the novel conjugate drug 5-FdU-

ale suggests significant improvements in the reduction of tumor size and metastatic frequency as well 

as a reduction in the lytic activity of the osteoclasts induced by the bone lesions without negatively 

impacting bone formation. As an imaging probe, binding kinetics of fluorescently-labeled 

bisphosphonates is a highly sensitive, site-specific assay for changes in bone metabolism and could 

have great implications for the monitoring of skeletal lesions in patients and potentially contribute to 

the development of new conjugate therapies. 
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iii. Zusammenfassung 

Bisphosphonate gehören einer Medikamentengruppe an, die eine hohe Affinität zur Anlagerung am 

Knochen besitzt und die dazu beiträgt, die Knochenresorption durch Osteoklasten zu verhindern. In 

der Behandlung werden Bisphosphonate Patienten mit Osteoporose oder mit Primärkrebsarten 

verschrieben, bei denen eine hohe Wahrscheinlichkeit zur Bildung von Metastasen im Knochen 

vorliegt (wie z.B. bei Brustkrebs). In jüngerer Zeit wurde die Eigenschaft der Bisphosphonate, sich am 

Knochen anzulagern, verstärkt genutzt, um zielgerichtete Moleküle zu entwickeln. Verschiedene neue 

konjugierte Wirkstoffe wurden zur Behandlung von Knochenmetastasen entwickelt, die Tumoren 

entgegenwirkende Effekte aus Chemotherapie und dem Einsatz von Bisphosphonaten vereinen. In der 

vorliegenden Arbeit wird die in vivo Charakterisierung des Medikaments 5-FdU-ale, eines neuen 

Präparats, das das Antimetabolit 5-fluoro-2’-deoxyuridine (5-FdU) und das Bisphosphonats 

Alendronat vereint, vorgenommen. Erste Studien zur Toxizität in Mäusen lassen keine Zeichen von 

Nekrosis oder Entzündungen an der Injektionsstelle erkennen, ebenso konnte kein Gewichtsverlust 

und keine gestörte Nierenfunktion bei Dosierungen von bis zu 200 mg/ kg beobachtet werden. Im 

nächsten Schritt wurde der tumorreduzierende Effekt von 5-FdU-ale in einem Mausmodell bei 

Knochenmetastasen Brustkrebs untersucht. Mäuse, die mit 5-FdU-ale behandelt wurden, zeigten eine 

signifikante Reduktion in der Anzahl der Tumoren mit Vergleich mit der unbehandelten 

Kontrollgruppe und zeigten außerdem einen signifikanten Rückgang der Größe der Tumoren im 

Vergleich mit unbehandelten Mäusen oder Mäusen, die nur mit entweder 5-FdU oder Alendronat 

allein behandelt wurden. Mäuse, die mit 5-FdU behandelt wurden, wiesen zudem eine signifikante 

Verbesserung der Knochenqualitätsparameter bei signifikanter Hemmung der Osteoklasten, jedoch 

ohne negative Wirkung auf die normale Funktion der Osteoblasten, auf. 

Parallel zu ihrer Anwendung in neuen zielgerichteten Therapien wurden fluoreszenzmarkierte 

Bisphosphonate eingesetzt, um ihren Verbleib zu lokalisieren und ihre Verteilung, sowie die 

Aufnahme in unterschiedliche Zellarten und die Eindringtiefe der Bisphosphonate in den Knochen zu 

untersuchen. In dieser Arbeit wird die Bindungskinetik fluoreszenzmarkierter Bisphosphonate genutzt, 

um orts-spezifische Veränderungen im Knochenstoffwechsel zu charakterisieren und im Verlauf zu 

beobachten. Die Bindungskinetik wurde in Tiermodellen aus der Osteoporoseforschung 

(Ovariektomie, OVX) und in Mäusen, die mit einem knochen-anabolischen Präparat (Parathormon, 
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PTH) behandelt wurden, untersucht. Bindungskinetische Studien im Bereich der proximalen Tibia 

zeigten signifikante Abnahmen, sowohl in den Bindungsratenkonstanten als auch in den Plateau-

Bindungswerten als Reaktion auf die OVX und eine signifikante Zunahme der 

Bindungsratenkonstanten als Reaktion auf PTH. Aufnahmen von Schnitten des ex vivo Knochens nach 

Co-Registrierung von Fluoreszenz und hochauflösender Mikrotomographie ließen eine bevorzugte 

Aufnahme der Bisphosphonate in Bereichen mit neu angelagertem und damit weniger dichten 

Knochenmaterial kurz nach Injektion erkennen. Zusätzlich wurde die Aufnahme der Bisphosphonate 

an unterschiedlichen Stellen des Skeletts verglichen. Veränderungen der bindungskinetischen 

Parameter an verschiedenen Messorten waren konsistent und korrelierten mit den Ergebnissen, die aus 

Zeitrafferserien von Mikrotomographieaufnahmen gewonnen wurden. Dies unterstützt die These, nach 

der aktive, neu mineralisierte Oberflächen als hochgradige Aufnahmeregionen für Bisphosphonate 

fungieren und gleichzeitig eine nur mäßige Aufnahme in Regionen, die mit freiliegenden, 

mineralischen Oberflächen in Verbindung gebracht werden, die beim Knochenabbau freigelegt 

werden. Anschließend wurde ein zusätzlicher Korrekturfaktor entwickelt, um die Veränderung der 

Konzentration ungebundener Bisphosphonate im Gefäßsystem zu beobachten, die somit eine Kinetik-

Analyse für multiple Kompartimente erlauben. 

 Insgesamt zeigen Bisphosphonate sehr vielversprechende Ergebnisse, nicht nur als 

antiresorptive Wirkstoffe, sondern auch als zielgerichtete Trägermoleküle für die Zuführung von 

Wirkstoffen. Präklinische Untersuchungen des neuen konjugierten Wirkstoffs 5-FdU-ale deuten auf 

signifikante Verbesserungen, sowohl in Bezug auf die Tumorgröße und die Anzahl der Metastasen, als 

auch auf eine Reduktion der lytischen Aktivität der Osteoklasten, ohne dass dabei die Knochenbildung 

negativ beeinflusst würde. Als bildgebendes Verfahren ist die Bindungskinetik fluoreszenzmarkierter 

Bisphosphonate ein hochsensitives, ortsspezifisches Analyseverfahren, um Veränderungen des 

Knochenstoffwechsels zu erfassen und sie besitzt ein enormes Anwendungspotenzial für die Kontrolle 

der Entwicklung von Skelett Läsionen bei Patienten und könnte möglicherweise zur Entwicklung 

neuer Therapien mit konjugierten Substanzen beitragen. 
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1. Introduction 

 1.1 Biology of the bone 

Formed primarily from the mineralization of cartilage through endochondral ossification, bone 

has the ability to absorb incredible loads without fracturing, while at the same time remaining light 

weight
43

. The skeleton provides structural support, protects sensitive internal organs, serves as a 

signaling reservoir of growth factors and minerals as well as forms the environment for 

hematopoiesis
139

. There are two major forms of bone, trabecular and cortical, comprising ~20% and 

~80% of the overall bone, respectively
35

. Trabecular bone, also known as cancellous or spongy bone, 

is usually of lower density with a higher surface area to volume ratio than cortical bone, giving it a 

more flexible characteristic
105

. It is present primarily within the ends of the long bones and makes up 

the majority of the vertebra where it functions to distribute and dissipate impact
16, 48

. Trabecular bone 

is also known to be highly porous and vascularized
23

. In contrast to trabecular bone, cortical bone is 

denser, more rigid and less porous and is found primarily in the long bones and forms the outer shell 

around the trabecular bone of the vertebra and near the joints
105

. Cortical bone provides the main 

support of the body, as well as serves as attachment sites for muscles, providing levers for movement. 

 Bone is primarily comprised of type I collagen
10

 which provides flexibility and serves as the 

scaffold for bone mineralization. Type I collagen is synthesized in the osteoblast, a bone-specific cell 

derived from mesenchymal stem cells (MSCs) which functions as the primary bone builders in the 

body
14

. Collagen fibers form as a braided triple helix and are then secreted outside the cells where they 

form fibrils
143

. These fibril networks, in coordination with osteoblast secretion of the enzyme alkaline 

phosphatase and small vesicles, are then mineralized by hydroxyapatite, an insoluble crystal 

comprised primarily of calcium and phosphorus
54, 65

. This mineralized collagen network forms the 

basis of both cortical and trabecular bone. During development, new bone formation is essential for 

normal growth and is under constant modulation to help the body adapt to changing mechanical loads 

and other physiological influences
29

. This process, termed bone modeling, is an uncoupled process 

involving, primarily, the function of osteobalsts. After maturity is reached, the skeleton is constantly 

being renewed to maintain the integrity of the bones and repair microfractures which occur during 
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normal life
20

. Termed bone remodeling, this process is tightly regulated and primarily involves the 

resorption of old bone by osteoclasts and the subsequent formation of new bone by the osteoblasts 

(Figure 1). Osteoclasts are large, multi-nucleated cells of hematopoietic stem cell (HSC) origin which 

secrete H
+
 ions, tartrate-resistant acid phosphatase (TRAP), cathespsin K, matrix metalloproteinases 

and gelatinases which digest bone, resulting in the formation of resorption pits
140

. The bone surfaces of 

these resorbing pits are next lined by osteoblasts which refill these cavities with newly mineralized 

bone equal to that resorbed
129, 159

, thereby maintaining the skeletal homeostasis. Bone remodeling is 

regulated by several factors including parathyroid hormone (PTH), the only currently prescribed 

anabolic therapy for bone
59, 103

. The primary role of circulating PTH is the regulation of plasma 

calcium levels
118

, modulated by its regulation of both osteoblasts and osteoclasts, to regulate the flow 

of calcium from the bone to the blood stream and back again. Although all the mechanisms are not 

fully understood, PTH has been shown to promote commitment of MSCs to the osteoblast lineage and 

inhibit osteoblast and osteocyte apoptosis resulting in increased osteoblast number, bone mineral 

deposition and overall bone mass
66

. However, because of the coupled nature of bone remodeling, 

continuous treatment with PTH can result in increased bone resorption as well
44, 100

, and as such, is 

administered intermittently to induce overall bone gain in patients
80

. 
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Figure 1 The bone remodeling process
128

. Bone is continuously being remodeled in a highly 

coordinated process to maintain the integrity of the tissue. During this process, old bone is removed by 

osteoclasts and replaced with newly deposited minerals secreted by active osteoblasts derived from 

osteoprogenitor cells. This process is regulated both by cross-talk between the osteoblasts and the 

osteoclasts, as well as other secreted and mechanical factors. 
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 1.2 Disease of the bone 

 A careful balance of osteoclast and osteoblast activity is required to ensure the homeostasis of 

the skeleton
84

. However, a common byproduct of aging is the disruption of this balance, tipping the 

scales in favor of excessive bone resorption leading to osteopenia or osteoporosis
129

. Osteoporosis 

affects more than 200 million people worldwide
90

 and is the result of excessive bone loss, often 

resulting in fractures
67

, the most common of which are fractures of the hip and femoral neck
69

. Due to 

our aging population, combined with sedentary lifestyles, the frequency of osteoporosis, and 

subsequently bone fractures, is expected to increase. Though many factors may contribute to the 

development of osteoporosis, the most common form of this disease is in postmenopausal women and 

is linked to a reduction in estrogen production
19

. Among its many roles in the body, estrogen has been 

shown to inhibit the formation of osteoclast precursors and activity of active osteoclasts by modulating 

the expression of interleukin 1 (IL-1) and tumor necrosis factor alpha (TNF-α), by inducing expression 

of osteoprotegrin (OPG), a decoy receptor for receptor activator of nuclear factor-kappaB ligand 

(RANKL), by osteoblasts and by inducing expression of transforming growth factor beta (TFG-β) 

which induces osteoclast apoptosis
60, 84, 95, 107, 137

. 

 While osteoporosis represents a systemic loss of bone, other conditions result in highly 

localized changes on bone metabolism. In the case of Paget’s disease, initial stages of excessive 

osteoclast-mediated bone loss are followed by induction of robust osteoblast activity and deposition of 

disorganized, hypervascularized lamellar bone
46, 117

. This results in weakened, misshapen bones 

associated with an increased occurrence of fractures
158

. Paget’s disease is typically confined to only a 

few skeletal regions, primarily in the pelvis, femur and lower vertebra. While the causative agent of 

Paget’s disease remains elusive, both viral and genetic components have suggested as contributors to 

disease formation. 

 Another form of localized bone defect is the result of various cancers metastasizing to the 

bone, forming osteolytic (excessive bone loss) or osteosclerotic (excessive bone gain) lesions. With its 

supply of stem cell niches, high level of vascularization and abundance of growth factors, the bone 

marrow makes an ideal location for clusters of tumor cells, which have been released into the blood 
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stream from the primary tumor, to take hold. These clusters of tumors home to the bone, typically in 

the spine or long bones, and colonize along the bone surfaces disrupting the established homeostasis 

between bone formation and bone resorption
149

. In the case of breast cancer, 60-80% of patients will 

develop secondary osteolytic bone lesions causing severe morbidity, an increased risk of fractures, 

compression of the spine and hypercalcemia
21, 22

. Tumor-derived osteolytic factors such as RANKL, 

interleukins and growth factors stimulate osteoclast activity and excessive bone resorption. This 

excessive bone resorption in turn releases growth factors and bone morphogenic proteins (BMPs) 

stored within the bone matrix which feedback to the tumor, inducing further metastatic growth
18, 52, 53, 

73
. This feedback loop between tumor cells and osteoclasts has been termed “the vicious cycle” and 

results in severe osteolytic lesions. 

 

 1.3 Bone assessments 

 To evaluate changes in bone resulting from altered formation and resorption, a variety of 

techniques have been developed to quantify changes in bone parameters. For structural assessment and 

mineral content analyses, several radiological approaches have been developed
9, 47, 68

. Radiographs, 

bone densitometry and computed tomography (CT) rely on the attenuation of electromagnetic 

radiation as it passes through a sample. Because of the high attenuation coefficient of bone mineral, 

radiological approaches are well suited at providing high resolution imaging of bone structure and 

mineral density. These methods have the benefit of having high tissue penetration properties, but 

provide only a static assessment of bone and rely on follow-up scans to monitor any changes in bone 

structure. As well, secondary consideration must be given to radiation dosing, limiting the number and 

frequency of follow-up scans, the size of region imaged and the scan time (and correspondingly, the 

resolution)
88

. 

 In contrast to radiological techniques, which provide site-specific assessment of bone structure 

and mineral content, analyses of serum markers can provide insight into overall levels of bone 

metabolism
130

. In preclinical mouse models, the most common serum markers are osteocalcin, a 

protein secreted solely by osteoblasts and indicative of osteoblast bone-forming activities, and TRAP. 
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Serum markers have the benefit of repeated, long-term measurements without negative side effects 

associated with repeated radiation doses and of providing a current quantitative measure of bone 

metabolic status without the requirements of structural changes. However, because sampling occurs 

from circulating blood, abnormalities observed in serum markers cannot be localized to a specific site 

and are relatively insensitive to conditions such as newly formed breast cancer bone metastases
131

, 

which result in highly localized increases in osteoclast activity, but do not show any major changes on 

the skeletal bone metabolism as a whole. For this reason, serum markers provide greater use in 

monitoring systemic changes in bone metabolism while radiological approaches are better suited for 

monitoring of diseases resulting in site-specific changes in bone microstructure. An in vivo tool which 

would allow the site-specific assessment of the bones current metabolic status could bridge the gap 

between these two existing methods and could prove useful in locating potential skeletal events, as 

well as monitoring in the context of disease spread and the evaluation of therapeutic interventions. 

 

 1.4 The bisphosphonates 

 Bisphosphonates are a class of drug commonly prescribed to patients with excessive bone 

loss
119

. Bisphosphonates contain a backbone similar to pyrophosphates which show a very high 

affinity for the bone, stably binding to hydroxyapatite crystals on the bone surface for long periods of 

time. As bone is resorbed, bound bisphosphonates are taken up by the osteoclasts inducing apoptosis 

and thereby inhibiting further bone resorption
30

. Bisphosphonates can be divided into nitrogen-

containing and non-nitrogen-containing groups and act to inhibit osteoclasts in different ways. Non-

nitrogenous bisphosphonates, such as etidronate and clodronate, are converted in the cell to products 

which are incorporated into non-functional ATP molecules, disrupting cellular energy metabolism and 

inducing apoptosis
91, 114

. Nitrogen-containing bisphosphonates such as zolendronate and alendronate 

inhibit the activities of the enzyme farnesyl diphosphate synthase which is involved in the post-

translational prenylation of proteins such as small G-proteins including Ras, Rac and Rho
32, 70

. 

Bisphosphonate-mediated inhibition of this enzyme results in the accumulation of proteins with 

aberrant function leading to induction of apoptosis. Several nitrogen-containing bisphosphonates 
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currently exist which vary primarily in the R2 side chain. These side chain modifications have been 

shown to affect not only their affinity for bone mineral (Table 1), but also their efficacy in inhibiting 

osteoclast activity
77

. While both bisphosphonate groups preferentially inhibit osteoclast activity, the 

nitrogen-containing bisphosphonates have been shown to have increased antiresorptive potency, and 

as such, have become the bisphosphonates of choice for patient care
120

.  
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Table 1 Bisphosphonate structures and relative affinities
77
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 Because of their high affinity for bone, bisphosphonates are also under intensive research as 

targeting molecules for pharmaceuticals or as imaging agents. Recently, a drug conjugate was 

described in which the anti-tumor agent gemcitabine was conjugated with a bisphosphonate which 

showed a reduction in the number and size of bone metastases in a preclinical model for breast cancer 

bone metastases
34

. Additional complexes between bisphosphonates and platinum(II)
93

 or the anti-

metabolite 5-fluoro-2’-deoxyuridine (5-FdU)
124

 have also been described to have anti-tumor effects in 

vitro. In addition to targeting drugs to the bone, bisphosphonates have also been conjugated to 

fluorescent dyes to be used as in vivo imaging markers. This has led to new insights into 

bisphosphonate binding distribution, retention and penetration. Previous work has shown a preferential 

binding of low affinity bisphosphonates to resorbing pits while high affinity bisphosphonates tend to 

bind less discriminately
113

. It was also noted that lower affinity bisphosphonates were able to penetrate 

deeper into the bone surface compared to higher affinity bisphosphonates
113

. These studies 

additionally identified macrophages and monocytes as cell types which demonstrate bisphosphonate 

uptake, owing to their high endocytic nature
25, 112

. More recently, bisphosphonate binding has been 

used as an in vivo tool to monitor changes in bone characteristics. A model of bone gain stimulated by 

mechanical loading showed increased binding of fluorescently-labeled bisphosphonate, though large 

intra-group variations resulted in no correlation with bone formation rates assessed by micro-CT
76

. 

 The goal of this thesis was to explore the use of bisphosphonates as bone-targeting agents in 

the context of new pharmaceutical drug conjugates in the treatment of breast cancer bone metastases 

and as a site-specific, in vivo imaging marker for monitoring changes in bone metabolism using a 

binding kinetics approach. By developing new, targeted therapeutics using bisphosphonates, we can 

increase the local drug concentrations at sites of disease while minimizing off-target toxic effects 

associated with systemically administered treatments. As imaging agents, bisphosphonates have the 

ability to bridge the gap between systemic metabolic markers and site-specific, radiological 

assessments of changes in bone morphology. 
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Abstracts 

Bone metastases remain one of the most common sites for metastatic cancer and its limited therapeutic 

options aggravate cancer-related morbidity and mortality in multiple malignancies. The covalent 

conjugation of the amino-bisphosphonate alendronate (ale) with the antimetabolite 5-FdU results in 

the generation of 5-FdU-ale, an effective new bone-seeking duplex drug against osseous cancer 

manifestations.  

Method: In vitro, cytotoxicity was evaluated with the Alemar Blue and MUH cell viability assays in 

different, highly proliferative malignant melanoma or multiple myeloma cells, as well as in osteoblast 

and stromal cell lines. In vivo systemic toxicity was addressed with the chick embryo assay and 

nephrotoxicity in Balb/c nude mice.  

Results: A cell-specific, dose-related cell death was observed for 5-FdU-ale in all cancer cell lines, 

though significant less toxic than 5-FdU. Cell assays revealed a higher tumor cell-specific cytotoxicity 

in comparison to osteoblast or stromal cells. The embryotoxicity of 5-FdU-ale was significant less 

than that of the parental drugs ale or 5-FdU. The duplex drug did not reveal any signs of side effects 

such as inflammation at the site of injection, weight loss or nephrotoxicity in mice.  

Conclusion: The coupling of amino-BPs with antimetabolite via a N-alkyl-bonding is a new synthesis 

route for the preparation of amino-BPs with a high cytotoxic bone-seeking potential along with a 

reduced systemic toxicity. This innovative duplex drug warrants further in vivo investigation to 

determine its potential use as an anti-bone metastatic agent.  
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Introduction 

Bone metastases remain a frequent occurrence in patients with metastatic cancers, aggravating cancer-

related morbidity and mortality in multiple malignancies with limited therapeutic options. Breast 

cancer, for example, which remains the leading cancer among women worldwide, causes metastasis in 

over 20 % of patients with bone manifestation in 80 % in patients at late stages of systemic disease. 

Beside solid tumours with a known increased propensity for bone metastasis and bone marrow 

involvement, it often remains underestimated e.g. for malignant melanoma 
135, 138

. In addition, multiple 

myeloma is characterized as a systemic disease with osteolytic lesions up to 80 % among newly 

diagnosed patients 
141

. The osteolytic, bone destructive properties cause skeletal-related events through 

bone pain, pathological fractures, cord compression or hypercalcemia, that deteriorate quality of life 

and limit survival 
149

. Since Paget´s hypothesis of “seed and soil”, the occurrence of metastasis is now 

seen as part of the multi-stage carcinogenesis 
138

. The tumor microenvironment and interaction with 

bone marrow-derived cells, the pre-metastatic niche formation and dissemination of tumor cells gained 

predominant attention in this process and demand novel therapeutic approaches beyond the treatment 

of losses in bone mass in order to overcome the elusive metastatic disease 
2, 122

. For a successful 

therapy of bone metastasis, an effective therapeutic dose of systemically applied antitumor agents 

should be localized in the microenvironment of bone with minimal systemic adverse effects. An 

increased cytotoxicity with simultaneous boosted systemic toxicity by any drug does not gain 

therapeutic advance or superiority. 

 Bisphosphonates (BPs) are a class of anti-resorptive agents, approved to treat multiple skeletal 

disorders and are effective against malignancy-related bone diseases 
27, 51, 58

. The ability to prevent 

progression of bone metastasis with the available BPs is limited and therefore combinations that could 

enhance efficacy are highly sought after. Cytotoxic drugs linked with BP represent bone-seeking 

conjugates that could improve the cytotoxic potential of BPs and allow a bone targeting for 

chemotherapeutics due to the osseous-seeking properties of the BP-residue. The challenge for such 

bone-seeking conjugates is on the one hand, to provide high stability for the in vivo delivery process 

avoiding systemic toxicity, but on the other hand, it must inhibit bone destruction as well as metastatic 
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growths once it has targeted to sites of increased osteolysis. The chemical linkage of the compounds is 

the determining factor for the stability, pharmacokinetic and pharmacological properties of such bone-

seeking conjugates. Several previously synthesized BPs-conjugates linking antitumor agents to the 

terminal amino group of amino-BP showed modest activities in animal models 
36, 61, 136, 152

.   

 Recently, a new synthesis route was developed for the linking of amino-BPs with cytotoxic 

pyrimidine nucleoside analogues via their nucleobases 
124

. Using this concept of BPs-based anti-tumor 

agents, Figure 2 shows the structure of 5-FdU-alendronate (5-FdU-ale) in which the well-known 

antimetabolite 5´-fluoro-2´-deoxyuridine (5-FdU) is linked via an N-alkyl bonding with alendronate 

(ale). The unnatural N-alkyl linkage increased the enzymatic and hydrolytical stability of the whole 

conjugate in respect to previously used natural amide or anhydride bondings.  This new drug was then 

assessed for its chemosensitivity of several tumor cell lines as well as osteoblasts and stromal cell 

lines. In vivo studies about its systemic toxicity were performed. These investigations addresse if 5-

FdU-ale could improve the therapeutic potential of antitumor drugs against bone metastasis via bone-

targeting while reducing its systemic toxicity.  
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Figure 2 Structure formula of 5-FdU-ale 
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Material and methods 

Cells and cell culture  

Human metastatic melanoma cell lines BLM, MEWO, SKMel19, SKMel28, SKmel5, 1205LU, MDA-

MB-435, MALME-3M, LOXIMV, UACC62, SKMel2, UACC257, M14, 451LU were purchased from 

ATCC. Multiple myeloma (MM) green fluorescent protein (GFP)-positive MM1S and its parental cell 

line have been received from Dr. S. T. Rosen, Northwestern University, Chicago, IL, USA. The 

human bone marrow stromal cell lines (BMSC) HS27A was obtained from ATCC/LGC Standards 

GmbH, Wesel Germany, and the KM105 was kindly provided by Dr. Kenichi, Chiba University 

Graduate School of Medicine, Chiba, Japan 
56

. Osteoblasts (OB) were obtained by differentiating 

KM105 cells under osteogenic conditions. Mature cells were analysed for cell viability and function as 

previously described 
33, 147

. The cells were cultured in RPMI 1640 medium supplemented with 10 % 

fetal bovine serum (FBS), penicillin, and streptomycin and maintained at 37°C in a 95 % air / 5 % CO2 

atmosphere at 100 % humidity. All cell culture reagents were from PAA, Pasching, Austria. Media 

was changed at 48 h intervals and cells were passaged upon confluence for a maximum of four 

passages (short term culture) or 20 passages (long term culture). 

Drugs and treatment  

5-FdU and ale were commercially available from the local University hospital pharmacy. 5-FdU-ale was a gift 

from H. Schott. Drugs were dissolved in sterile PBS resulting in a stock solution and stored at -20°C. Dilutions 

of the stock solution were prepared shortly before administration. The drug concentrations for each 

cytotoxic agent were either determined as a set of test experiments or by our previous results 
125, 126

 . 

The agents were dissolved in PBS then added directly to the culture medium of cell lines in monolayer 

after 24 h and then incubated for 72 h. Control cells grew in PBS without drug. The intensity of 

fluorescence indicates the number of viable cells in the wells and their percentages were calculated by 

normalization between background of cultures without cells and the control. 
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Drugs cytotoxicity assay on melanoma cell lines  

Since plasma peak concentrations of 5-FdU-ale are not known for those test systems, the starting 

concentration was set at 0.5 μM for the first cell viability in malignant melanoma cell assay. For the 

determination of melanoma cell viability the MUH [4-methylumbelliferyl heptanoate] assay was used 

in triplicates for each cell line. Briefly, 5000 cells in 100 µl or 2500 cells in 50 µl (5 x 10
5
 cells per ml) 

were plated in flat-bottomed 96-well plates (Nunc, Wiesbaden, Germany)
125

. After 24 h, medium was 

replaced with medium containing PBS as control or with 5-FdU or 5-FdU-ale at concentrations of 0.5, 

1.0 or 2.0 µM and incubated for 72 h. Medium was discarded, each well was washed two times with 

PBS and 100 µl of a solution containing 100 mg MUH [4-methylumbelliferyl heptanoate] (Sigma-

Aldrich, Munich, Germany) per ml PBS was added. Plates were then incubated at 37°C for 1 h. The 

number of viable cells in the wells was measured in a Fluoroskan II (Labsystems, Helsinki, Finland), 

with a λex of 355 nm and a λem of 460 nm.  

Drugs cytotoxicity assay on stromal, multiple myeloma and osteoblast  

For the cytotoxicity assays, drug concentrations ranged from 6.25 to 100 μM. The cell viability was 

assessed for the multiple myeloma and stromal cells as well as the osteoblast under normoxic and 

hypoxic conditions (1% O2) as described previously 
146

. In brief, a short-term culture was analysed 

after 48 h whereas a long-term culture was analysed after 120 h following drug incubation with 0.125 

to 20 µM.  Cell number was quantified using the AlamarBlue assay (BioSource International, 

Camarillo, CA), pulsing the cells with AlamarBlue (10 μL) and incubating for 4 hours at 37°C. Cell 

viability was assessed measuring absorption at a wavelength of 570 nm (with correction at 600 nm) on 

a spectrophotometer (Infinite™ 200, Tecan). 

Embryotoxicity testing  

For embryotoxicity testing, 45 eggs were obtained and prepared as described previously
125

 
13

. After 50 

h of incubation, the eggs, approximately equal to stage 13 according to Hamburger and Hamilton 

(HH), which corresponds to approximately six human gestational weeks 
37

, received the cytostatic 

treatment. The drugs 5-FdU-ale (30 µM), ale (10 or 30 µM) or 5-FdU (30 µM) dissolved in 50 µl 
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sterile ddH20 were applied on top of the blastoderm (n=9 embryos per treatment group). The control 

group received 50 µl sterile ddH20. The eggs were sealed with adhesive tape (Super88, 3 M, St. Paul, 

MN) and replaced in the incubator. 8, 12, 24 and 32 h after application of the drugs, viability of the 

embryos was monitored by viewing the heart. No animal approval was required for the local animal 

care guidelines as chick embryos were used in very early stage. 

In vivo toxicity study  

Animal experiments and care were in accordance with the guidelines of institutional authorities and 

approved by the Ethics Committee for Animal Experiments at Christian-Albrechts-Universität zu Kiel 

(V312-72241.121-10). Four female, nude Balb/c mice, 5-6 week old were purchased from Charles 

River (Wilmington, MA, USA). All animals were kept in a temperature and humidity-controlled 

environment, with a 12 h light/dark cycle, and access to food and water ad libitum. Mice were injected 

intraperitoneally (ip) with 5-FdU-ale 4, 2, 1 or 0.5 mg, corresponding to a dose of 200, 100, 50 or 25 

mg/kg, dissolved in 100 μl sterile PBS. Mice were monitored daily for 5 days for signs of weight loss, 

inflammation at the sight of injection or general signs of suffering such as lethargy, lack of water and 

food intake and loss of righting reflex.  

Functional and histomorphological nephrotoxicity study  

To determine short and long-term drug effects, 9 mice were injected with 4 mg (corresponding to 191 

mg/kg) 5-FdU-ale dissolved in 100 μl sterile PBS. The short–term drug effects on glomerular filtration 

were evaluated in 5 mice treated with a single dose of 5-FdU-ale to check for impaired renal clearance 

of inulin. This was assessed using the fluorescent inulin conjugate GFR-Vivo 680 (PerkinElmer, MA, 

USA) on day 1 and day 4 post injection. Mice were analysed using a two-phase decay (Prism version 

5, GraphPad Software, CA, USA) with the equation: Y=plateau+SpanFast*exp
-KFastt

+SpanSlow*exp
-

KSlowt
, where SpanFast=(Y0-plateau)*%Fast*0.01 and SpanSlow=(Y0-plateau)*(100-%Fast)*0.01. Y0 

was constrained to 170 RFU (based on average predicted Y0 values for control mice of non-

constrained regression) and plateau was constrained to >0.   
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 For long-term kidney toxicity, 4 mice received weekly doses of 5-FdU-ale for 5 weeks. For 

histopathologic changes of kidney injury, such as focal cellular necrosis or increased tubular 

degeneration, the kidneys were excised at the end of the experiment. Kidneys were fixed in 4% 

buffered formalin overnight and embedded in paraffin. 5 μm sections were generated, stained with 

hematoxylin and eosin (H&E) and Periodic acid-Schiff reaction (PAS) assessed microscopically with 

NIKON Eclipse Ti and digitalized with NIS Element imaging Software (Version 3.2. NIKON) . 

Statistical analyses 

Statistics were calculated either using the GraphPad Prism software Version 5 (GraphPad Prism 

Software Inc, California, US), or using SPSS (Version 18). Results were analyzed using an unpaired t 

test with Welch’s correction to avoid the assumption of equal variance for in vivo studies and the 

Student´s two-tailed t test for in vitro evaluation (95% CI, p<0.05 was considered significant). Error 

bars represent standard deviation. In vivo embryotoxicity assays were depicted as Kaplan Meier plots 

and analysed using log rank test (95% CI, p<0.05 was considered significant).  
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Results  

Different chemosensitivity of melanoma cell against 5-FdU and 5-FdU-ale  

The cytotoxicity of 5-FdU and 5-FdU-ale expand with increasing drug concentrations (Table 2). The 

chemosensitivities of cell lines against 5-FdU and 5-FdU-ale differ clearly and are generally markedly 

higher for 5-FdU in comparison to 5-FdU-ale. The applied concentration of 5-FdU-ale in the range of 

0.5-2.0 μM did inhibit the growth of 8 cell lines only marginally. However, under corresponding 

conditions with 5-FdU, the growth of 6 cell lines was inhibited (21-52% cell death). The highest 

chemosensitivity measured as cell death among melanoma cells against 5-FdU-ale shows the 

LOXIMVI (52 %) and MDA-MB-435 (35%) whereby 5-FdU caused a cell death of 77% and 43% 

respectively.  
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Table 2 Evaluation of 5-FdU-ale toxicity in vitro 

% Cell Death Conc. (µM) 

Cell Type Drug 0.5 1 2 

BLM 5-FdU 65 72 80 

 

5-FdU-ale -2 10 27 

SKMel5 5-FdU 58 67 75 

 

5-FdU-ale 4 6 21 

1205LU 5-FdU 61 65 63 

 

5-FdU-ale 14 17 32 

MDA-MB435 5-FdU 22 31 43 

 

5-FdU-ale 5 18 35 

MALME-3M 5-FdU 20 22 33 

 

5-FdU-ale 7 9 22 

LOXIMVI 5-FdU 65 70 77 

 

5-FdU-ale 17 34 52 

Mewo 5-FdU 49 57 67 

 

5-FdU-ale 5 3 11 

UACC62 5-FdU 38 43 51 

 

5-FdU-ale 6 2 2 

SEKmel28 5-FdU 28 30 34 

 

5-FdU-ale -2 -5 -3 

SKMel2 5-FdU 22 30 30 

 

5-FdU-ale -3 1 -1 

UACC257 5-FdU 33 41 47 

 

5-FdU-ale 1 -4 3 

SKMel19 5-FdU 36 43 58 

 

5-FdU-ale 1 -1 9 

M14 5-FdU 46 56 63 

 

5-FdU-ale -11 -8 -4 

451LU 5-FdU 29 35 43 

 

5-FdU-ale -1 3 9 
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5-FdU- ale shows less stromal cell toxicity than ale or 5-FdU alone 

After 48 h of treatment with 5-FdU-ale up to 100 µM there was no significant toxicity for KM105 

stromal cells. The growth inhibitory effect of ale alone occurred dose-dependent from a concentration 

of 25 µM onwards (p < 0.05 compared to untreated cells). Whereas 5-FdU showed growth inhibition 

already at a concentration starting from 6.25 µM, which was significant (p < 0.05) compared to 

untreated cells. 120 h after drug incubation there was a concentration-dependent effect for all drugs 

(Fig. 3). 5-FdU showed the strongest and significant toxicity in respect to ale and 5-FdU-ale, starting 

at 6.25 µM onwards. 12.5 µM ale was significantly more toxic than the untreated control after 5 days 

of incubation and, compared to the results received after 2 days of incubation, revealed a significant 

higher toxicity.  
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Figure 3 Growth inhibition of the stromal cell line KM105 incubated with 5-FdU, ale or 5-

FdU-ale at concentrations from 6.25-100 µM after 120 h. 
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In HS27A stromal cells, 5-FdU killed all cells starting from 6.25 µM and remained significantly more 

toxic than 5-FdU-ale after 2 days and at all subsequent observation times (Fig. 4).  After 120 h of 

incubation, a similar effect was observed for the KM105 stromal cell. Ale, as well as 5-FdU, showed a 

higher cytotoxicity than 5-FdU-ale at 6.25µM (p < 0.05 compared to untreated control). A significant 

dose-dependent cytotoxic effect was observed with 5-FdU-ale at 50 and 100 µM after 120 h of 

incubation. 
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Figure 4 Growth inhibition of the stromal cell ine HS27A incubated with 5-FdU, ale or 5-

FdU-ale at concentrations from 6-25-100 µM 
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Dose-dependent and cell specific cytotoxicity of 5-FdU-ale in highly proliferative MM1S cell lines 

5-FdU-ale, along with its parent single drugs 5-FdU and ale, inhibited in a time and dose-dependent 

manner the growth of MM1S cell lines (Fig. 5a). The assay revealed an MM1S cytotoxicity of 5-FdU-

ale at concentrations starting from 1 µM, in comparison to ale and 5-FdU with cytotoxic effects at 0.5 

µM. Compared to osteoblasts (OB) and stroma cell lines (BMSC) the cytotoxic effect of 5-FdU was 

more pronounced in MM1S cells (Fig. 5b). Indeed, OB and BMSC cells were not affected at 

concentration up to 20 µM 5-FdU-ale (Fig. 5b). 
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Figure 5 Selected inhibition of malignant cells by 5-FdU-ale. a)MM1S cell growth inhibition 

after 120 h by 5-FdU, ale or 5-FdU-ale at concentrations from 0.5-2 µM. b)The MM1S, OB and 

BMSC cell growth inhibition by 5-FdU-ale at concentrations from 1.25-20 µM. 
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5-FdU-ale shows significant lower embryotoxicity than 5-FdU or ale  

The in vivo toxicity of 5-FdU-ale, in comparison to the single agents 5-FdU and ale and the solvent 

ddH20 as control, was evaluated in the embryotoxicity assay on stage 13 HH chick embryos. The 

survival of chick embryos were monitored over 32 h after treatment with different concentrations (Fig. 

6). Ale at 10 µM or 30 µM proved lethal for 8/9 or 5/9 embryos respectively after 8h and was 

significantly more toxic than 5-FdU-ale at 10 or 30 µM (p<0.000004; p= 0.01 respectively) which 

showed no embryo death. After 16 h, 1/9 embryos of 10 µM ale and 30 µM 5-FdU groups each 

survived whereas 6/9 of the 30 µM 5-FdU-ale were still alive. 5-FdU-ale being therefore significant 

less toxic than 5-FdU or ale (p= 0.013). 100% lethality occurred in all treatment groups after 24 h post 

treatment.  
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Figure 6 Embryotoxcicity. Survival rates of chick embryos exposed to 5-FdU, ale, 5-FdU-ale 

after 8, 16, 24 h are depicted in a Kaplan-Meier plot. 30 µM 5-FdU-ale is less embryotoxic than 10 or 

30 µM ale after 8 h and 30 µM 5-FdU after 16 h. 
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5-FdU-ale has no signs of short or long-term systemic toxicity in a mouse model  

4 Mice were injected with 25, 50, 100 or 200 mg/kg 5-FdU-ale and monitored for 5 days. Mice 

showed no signs of toxicity, inflammation at the site of injection or increased sensitivity to touch 

resulting from pain. Mice showed no deviation in weight gain (Fig. 7A), nor were any signs of 

inflammation or suffering detected. The long-term effects of repeated drug exposure were also 

assessed in 6 mice treated with 191 mg/kg 5-FdU-ale weekly for 5 weeks. No difference in weight 

gain was found in mice treated with 5-FdU, relative to untreated controls, over the observation period 

of 5 weeks (Fig. 7B). 
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Figure 7 Weight effects in a mouse model. a) 5-FdU-ale shows no weight reduction in Balb/c 

nude mice when administered i.p. at 25-200 mg/kg, monitored for 5 days. b) A weight gain of all mice 

was observed over the 5 day period. 
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5-FdU-ale shows no signs of functional or morphological nephrotoxicity 

Untreated control mice and mice treated with a single dose of 191mg/kg 5-FdU-ale were analysed for 

impaired renal clearance of inulin (Fig. 8). Treatment with 5-FdU-ale showed no significant changes 

after 4 days in KFast (p=0.7282), associated with redistribution of the tracer to extracellular fluid (Fig. 

8B), or KSlow (p=0.5113), associated with systemic clearance from the blood (Fig. 8C), relative to 

controls. To determine the long-term kidney toxicity of repeated 5-FdU-ale injections, kidneys were 

collected form mice treated weekly with 191 mg/kg 5-FdU-ale after 5 weeks. Histological assessment 

revealed no signs of toxicity (Fig. 9).   
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Figure 8 Treatment with 5-FdU-ale shows no impaired renal function. Mice were injected 

with a single dose of 5-FdU-ale and monitored for impaired inulin clearance 1 day and 4 days after 

drug treatment (A). Mice showed no significant changes in KFast (B) or KSlow (C) compared to 

untreated control mice. 
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Figure 9 Nephrotoxicity. Histological section of PAS stained mice kidneys after treatment with 

191 mg/kg 5-FdU-ale weekly over 5 weeks. Magnification 20 x and 40 x 

  

20 x 40 x 
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Discussion 

The various recently designed conjugates, linking bisphosphonates (BPs) with antimetabolites 
34, 104

 

can be considered as a successful proof of concept, that a BP-antimetabolite-conjugate achieves a 

targeting of antimetabolites to the pathogenic sites in the bone. The conjugation of etiodronate with 

cytotoxic 5´-nucleotide analogue via a phosphoanhydrid linkage resulted in nucleoside-5´-triphosphate 

analogues, in which the ß-and γ-phosphorous atoms are connected via a carbon instead of an oxygen 

atom
104

. The antimetabolite-conjugates evaluated in mouse models showed decreased tumour burden, 

maintained bone structure and may increase overall survival. Yet, the coupling of the more active 

amino-BPs such as ale or zolendronate remained impossible according to the described synthesis route 

using a phosphoanhydrid linkage. A described alternative coupling of methylene-BP with gemcitabine 

via an unnatural urethane linkage is also no opportunity for amino-BPs conjugation
34

. However, the 

chemical linkage between BP and the antimetabolite is the key structure element for the therapeutic 

efficiency of such bone-seeking drug. The linkage should not only be stable during circulation, 

allowing time to target to the bone after its oral or intravenous application, but also exerting its effect 

after uptake into the bone.  

 The new duplex drug 5-FdU-ale couples for the first time an amino-BP as the bone seeking 

residue with the standard antimetabolite 5-FdU via a N-alkyl-linkage. This linkage between ale and 5-

FdU should prevent the in vivo metabolism after its systemic administration. The stability of its 

unnatural linkage suggests that 5-FdU-ale can be orally applied without being markedly metabolised 

during its circulation. The bone-targeting delivery should result in a local enrichment of the duplex 

drug in the skeleton caused by the high affinity of the BP residue to the hydroxyapaptite of bone. On 

the one hand, the duplex drug 5-FdU-ale can act as a new amino-BP whose aminoalkyl chain is 

terminated with 5-FdU via its nucleobase. If the N-gylcosidic bond between the deoxyribose and 

nucleobase is enzymatically cleaved, a new amino-BP results terminating its alkyl chain with a 5-

fluoropyrimidinone. Both gained amino-BPs are bone specific agents that can inhibit the activity of 

osteoclasts differently. It is well known that the P-C-P function of BPs is the prerequisite for the bone 

targeting activity, whereby the intensity of the anti-osteoclastic activity and the cytotoxic potential 
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being exclusively dependent upon side chain 
40

.  On the other hand, 5-FdU-ale represents a new bone 

seeking prodrug of the highly cytotoxic 5-FdU as well as 5-FU. In contrast to the expected cytotoxic 

metabolites, the intact 5-FdU-ale itself as an N4-alkylated 5-fluoro-2´-deoxyctidine derivate, possesses 

only moderate cytotoxicity. The cleavage of various, differently stable linkages within 5-FdU-ale 

could result in a successive metabolism of the duplex. The resulting mixture of different therapeutic 

high active metabolites can act like a locally applied polychemotherapy initiating additive or 

synergistic effects, preventing or even overcoming drug resistance.  

 The dose-dependent growth inhibition in melanoma cell lines in vitro, in respect to an 

equimolare dose of 5-FdU, indicate that 5-FdU-ale itself has a low cytotoxicity. This may be due to 

the increased size, and subsequently its permeability, or that 5-FdU-ale is only partially metabolised to 

5-FdU under in vitro cell assay conditions. These results correspond to previously described in vitro 

effects. A preliminary ATP-tumor-chemosensitivity assay demonstrated different chemosensitivities 

of breast and ovarian cancer cell lines to 5-FdU-ale 
126

. Gastric adenocarincoma cell lines show a 

slightly higher sensitivity to 5-FdU-ale in comparison to intestinal non-malignant and fibroblast cell 

lines 
150

. The lower chemosensitivity on tested stromal cell lines against 5-FdU-ale in respect to the 

parental compounds ale and 5-FdU indicated also a slower metabolism and reduced cytotoxicity of the 

intact duplex drug. The higher growth inhibition of 5-FdU-ale towards myeloma in comparison to 

stromal cells and osteoblasts proved tumor cell-specific cytotoxicity of 5-FdU-ale.  

 A low toxicity of 5-FdU–ale was also observed in vivo with the embryotoxicity assay as well 

as in mouse models. Application of up to 200 mg/kg of 5-FdU-ale in mice did not cause weight loss or 

show any signs of systemic or kidney toxicity. The high in vivo tolerance of 5-FdU-ale in respect to 

clinical used BPs for example pamidronate or zolendronic acid is an important advantage. 

Zolendronate-related renal tubular lesions were observed in rats after one dose at 6 mg/kg. Application 

of 50 mg/kg in mice caused mortality and clinical signs. Mice exposed to > 10 mg/kg of pamidronate 

may exhibit histopathologic changes of kidney injury including focal cellular necrosis, increased 

cellular vesicles and loss of tubular cell brush order 
98

. The therapeutic administration of an even 

higher dose of the 5-FdU-ale in respect to the clinical used standard BP suggest that a locally high 
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efficient drug concentration of BP, together with the cytotoxic activity of 5-FdU in the bone 

microenvironment, could be achieved. 5-FdU-ale could contribute to more efficient polychemotherapy 

against bone metastases and merits further evaluation. 
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Abstract 

Patients diagnosed with breast cancer in advanced tumor stages show a high frequency of skeletal 

metastases. These bone lesions uncouple the balance between bone formation and resorption leading 

to severe osteolysis. This causes increased fracture risk, compression of the spine and hypercalcemia, 

decreasing the quality of life for the patient. Therefore, anti-cancer chemotherapeutics are often 

combined with bisphosphonates, a class of drugs with high affinity for bone mineral which inhibit 

bone-resorbing osteoclasts. Recently, conjugated drugs have been developed which combine the anti-

tumor effects of chemotherapeutic agents with the bone-targeting abilities of bisphosphonates. Here 

we present the novel drug 5-FdU-ale, a conjugate between the anti-metabolite 5-FdU and the 

bisphosphonate alendronate. Treatment of breast cancer cell lines with 5-FdU-ale in vitro shows cell 

cycle arrest similar to treatment with unconjugated 5-FdU, but no inhibition of protein prenylation 

observed in alendronate-treated cells. In vivo, mice with breast cancer bone lesions treated with 5-

FdU-ale showed reductions in both the number of metastases per mouse, as well as in tumor size. In 

addition, 5-FdU-ale treatment was also found to significantly reduce osteoclast number and activity 

without impairing osteoblast function. This finding is supported by micro-CT analyses which showed 

significant improvements in bone parameters, resulting in improved bone health. We also demonstrate 

that 5-FdU-ale is stable on the bone in mice for 2 weeks and present at significantly greater 

concentrations within the bone environment in as little as 1 day after injection compared to 5-FdU 

alone. Overall, 5-FdU-ale represents a novel cytostatic drug with high specificity for the bone and the 

potential to reduce tumor progression and improve bone health. 
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Introduction 

Breast cancer occurrence is on the rise, with an estimated 1 in 8 women developing breast cancer in 

their lives. Once detached from the primary tumor, breast cancer cells metastasize to the skeleton at a 

high frequency, uncoupling the bone remodeling process resulting in significant osteolysis. Bone 

metastases can cause severe morbidity as a result of intractable pain, increased risk of fractures, 

compression of the spine and hypercalcemia, reducing the quality of life for the patient. Treatments of 

breast cancer include both systemic (e.g. chemotherapy, bisphosphonates) and localized therapies (e.g. 

radiation, surgery).  

Anti-metabolites, such as 5-fluoro-2´-deoxyuridine (5-FdU), function by inhibiting the 

synthesis of thymidine within the cell, thereby arresting the cell cycle and inducing apoptosis
81

. 

Additionally, small amounts of 5-FdU may also be incorporated into the DNA in place of thymidine, 

halting DNA elongation
26

. Bisphosphonates are a class of drugs with high affinity for bone mineral 

that act to inhibit bone-resorbing osteoclasts, thereby preventing bone loss. They are now established 

as the main treatment for patients with skeletal metastases
49, 148

 and widely prescribed in the treatment 

of low bone mass diseases such as osteoporosis. While treatment with bisphosphonates significantly 

reduces bone resorption, increasing evidence also suggests that bisphosphonate treatments may also 

impair osteoblast function
39, 78, 121

. It remains unclear whether this effect is directly acting on the 

osteoblasts or whether it is the result of a disruption in the coupled activities of osteoblasts and 

osteoclasts. 

 Novel therapeutics are currently under development to combine the anti-tumor effects of 

chemotherapy agents with the high bone mineral affinity of bisphosphonates
124

. Because of the high 

longevity on the bone, these novel conjugate therapies have the potential to both increase the 

concentration of anti-metabolites on the bone surface, as well as minimize off-target toxic effects. 

Conjugation of the anti-cancer drug Gemcitabine to a bisphosphonate was recently shown to have high 

bone uptake and a reduction in frequency and severity of osteolytic lesions in a mouse model of bone 

metastases
34

. Recently, the anti-metabolite-bisphosphonate conjugate 5-FdU-ale was described in 

which 5-FdU was covalently conjugated to the bisphosphonate alendronate
124

. To determine its utility 
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as an anti-cancer agent for skeletal metastases, effects of 5-FdU, alendronate or 5-FdU-ale treatment 

were assessed in vitro and in vivo using a bone-homing variant of the breast cancer cell line MDA-

MB-231. 
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Materials and Methods 

In Vitro Drug Toxicity Assays 

MDA-MB-231-Luc2 bone homing breast cancer cells
151

 were left untreated or treated with 5-FdU, 

alendronate or 5-FdU-ale for 24 h. For protein and cell cycle analyses, cells were treated with 100 µM 

of each drug and either used to prepare whole cell lysates analyzed by western blot, or fixed and sorted 

by cell cycle phase using FACS. For drug sensitivity studies, an MTT test was conducted on cells 

treated for 24 h with a drug dilution series with concentrations from 1-1000 µM dissolved in PBS. 

Animals 

5-6 week old female, Balb/c nude mice were purchased from Charles River (Wilmington, MA, USA). 

All animals were kept in a temperature and humidity-controlled environment, with a 12 h light/dark 

cycle, with access to food and water ad libitum. Animal experiments and care were in accordance with 

the guidelines of institutional authorities and approved by the Ethics Committee for Animal 

Experiments at Christian-Albrechts-Universität-zu-Kiel (V312-72241.121-10). Mice were 

anesthetized with intraperitoneal (ip) injection of 80 mg/kg ketamine (Aveco Pharmaceutical, IA) and 

0.5 mg/kg dorbene (Pfizer, Berlin, Germany). 1.4x10
5
 MDA-MB-231 bone homing cells stably 

transfected with the Luc2 reporter gene were suspended in 100 µl 1x PBS and injected into the left 

ventricle in 12-16 mice per treatment group. Alendronate (100 µg/kg) and 5-FdU-ale (191 mg/kg) 

were injected ip while 5-FdU (100 mg/kg) was injected subcutaneously in ~100 µl PBS, and 

administered weekly starting 1 week after tumor cell injection at the described dose. 

In vivo Bioluminescence Imaging 

Anesthetized mice received 150 mg/kg D-luciferin substrate (Sigma-Aldrich, Munich, Germany) 

injected into the intra-peritoneal space. Dorsal and ventral views were imaged for all mice using the 

NightOwl planar imaging system (Berthold Technologies, Bad Wildbad, Germany). Tumor 

bioluminescence was quantified using the Indigo software (Berthold Technologies, Bad Wildbad, 

Germany) 
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Histological Analysis 

Limbs containing metastases detectable by bioluminescence were collected and fixed in 4% buffered 

formalin for 1 week. Limbs were embedded in paraffin and 5 µm sections were prepared. Serial 

sections were inspected for the tibial region with the greatest cross-sectional tumor area, assessed by H 

and E staining. Sections were stained with Goldner’s trichrome, imaged and tumor area quantified. A 

statistical outlier in the 5-FdU-ale group with a p<0.01 was excluded from calculations. Parallel 

sections were stained for tartrate-resistant acid phosphatase (TRAP) activity
123

. 150x300 pixel window 

was selected around the cortical bone-tumor interface with the greatest TRAP activity. Number of 

osteoclasts, as well as the bone-tumor interface length, was quantified using ImageJ (version 1.48a). 

Lab Analysis 

Blood was collected from the tail vein prior to injection. Levels of skeletal osteoblast and osteoclast 

activity were assessed using an osteocalcin (DRG Diagnostics, Germany) and TRAP ELISA assays 

(Immunodiagnostic Systems, Frankfurt, Germany) on blood serum. 

Micro-CT Analysis 

Changes in bone mineralization resulting from tumor formation were quantified by in vivo micro-CT. 

Anesthetized mice were placed in full-body holders and the tibiae aligned by visual inspection. Scans 

were made using a vivaCT 40 micro-CT (ScancoMedical, Brüttisellen, Switzerland) at an isotropic 

voxel size of 19 µm (70 kVp, 114 µA, 250 ms integration time, 1000 projections on 180° 2048 CCD 

detector array, cone-beam reconstruction). A 140-slice (2.45 mm) volume of interest (VOI), beginning 

at the most proximal slice of the epiphysis and extending into the metaphyseal region was defined in 

the baseline scan of each animal using an automated contouring method
12

. Baseline VOIs were 

transferred to the follow-up scans using an image registration approach to insure analysis of consistent 

VOIs at each time point
15

. Bone mineral density (BMD) was calculated from the greyscale micro-CT 

images (Image Processing Language v5.15, ScancoMedical, Brüttisellen, Switzerland). Z-slab 

subtraction images were generated from week 1 and 5 scan overlays using 20 slices within the 

transition zone between the diaphysis and metaphysis. 
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Drug Binding Assay 

4 Mice for each time period and each drug were injected with 5-FdU or 5-FdU-ale at the dose 

described above and sacrificed 1 day, 1 week or 2 weeks after injection. Excised long bones (tibia and 

femur) with removed muscle and flushed bone marrow were placed in 20 µl decalcifying solution per 

mg bone. Absorbance of decalcifying fluid at 210 nm and 260 nm was determined 48 h after 

incubation with excised limbs and adjusted for control, non-drug-injected limbs. Absorbance readings 

at 210 and 260 nm were compared to standard curve generated for both 5-FdU and 5-FdU-ale to 

determine bone drug concentrations.  

Statistical Analysis 

MTT assay results were fitted with three parameter dose-response inhibition curves. Comparison 

between groups was made using two-sample t-tests using the Welch-Satterthwaite method to avoid the 

assumption of equal variances. Outliers were assessed using the Grubbs’ test with a significance level 

of 0.01. Micro-CT BMD (Table S1) and BV/TV (Table S2) results were analyzed using one-way 

ANOVAs and Bonferroni’s multiple comparison tests. P-values <0.05 were considered to be 

statistically significant. All graphical and statistical analyses were generated using Prism (version 5, 

GraphPad Software, CA). 
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Results 

5-FdU-ale inhibits cell cycle progression in vitro 

To determine the relative toxicity of 5-FdU-ale on breast cancer, tumor cells were incubated with 

varying concentrations of 5-FdU, alendronate or 5-FdU-ale for 24 h and assessed for cell survival 

(Figure 10A). Treatment with 5-FdU-ale shows an intermediate trend of toxicity between alendronate 

and 5-FdU, with comparable log IC50 values for 5-FdU and 5-FdU-ale and significantly lower values 

than for cells treated with alendronate alone (Figure 10B). Induced cell death was confirmed by 

western blot which showed cleavage of the caspase-3 substrate poly(ADP-ribose) polymerase (PARP) 

24 and 48 h after treatment with 5-FdU, intermediate levels of PARP cleavage in 5-FdU-ale-treated 

cells and no notable PARP cleavage in cells treated with alendronate compared to untreated controls 

(Figure 10C). In addition, treatment with 5-FdU-ale showed a dose-dependent increase in levels of 

Cyclin E and decreased levels of p21, consistent with cells treated with 5-FdU, but failed to show an 

accumulation of unprenylated proteins associated with bisphosphonate treatment, as seen in 

alendronate-treated cells (Figure 10D). To study the effects of 5-FdU-ale on cell cycle progression, 

FACS analysis was performed on adherent cells (Figure 10E). Treatment with 5-FdU-ale resulted in a 

trend towards increased percentage of dead cells (P=0.0717), significantly decreased numbers of cells 

in G1 phase and a trend towards increased cells in S phase (p=0.0634) (Figure 10F). Treatment with 5-

FdU similarly resulted in a trend of an increased percentage of dead cells (p=0.0880) and a trend 

towards a significant increase in the number of cells in S phase, but showed a significant decrease in 

the percentage of cells in G2/M phase. Treatment with alendronate showed no significant changes in 

cell cycle progression. 
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Figure 10 5-FdU-ale toxicity in breast cancer is mediated by cell cycle arrest in vitro. Cells 

were treated with varying concentrations of 5-FdU, alendronate or 5-FdU-ale for 24 h and assessed for 

cell death (A). Treatment with 5-FdU or 5-FdU-ale show comparable log IC50 values significantly 

lower than cells treated with alendronate (B). Analyses of PARP 24 and 48 h after treatment revealed 

increased cleavage in cells treated with either 5-FdU or 5-FdU-ale (C). Analysis of 24 h-treated whole 

cell lysates show a dose-dependent accumulation of Cyclin E and reduced levels of p21 in 5-FdU-ale-

treated cells, consistent with 5-FdU treatment, while treatment with alendronate results in increased 

accumulation of unprenylated Rap1 (D). FACS analyses were performed to assess cell cycle 

progression of treated cells (E). Untreated and alendronate-treated cells were found primarily in G1 

phase while treatment with 5-FdU and 5-FdU-ale show an accumulation of dead cells and cells in S 

phase (F). (*p<0.05, **p<0.01, ***p<0.001) 
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Treatment with 5-FdU-ale significantly reduces the number and size of bone metastases in vivo 

Mice were injected intracardially with tumor cells and the formation of bone metastases was 

monitored weekly by bioluminescent imaging (Figure 11A). Treatment with 5-FdU, alendronate or 5-

FdU-ale significantly reduced the average number of bioluminescent tumors per mouse (Figure 11B), 

as well as the bioluminescent tumor size compared to untreated controls (Figure 11C). Additionally, 

treatment with alendronate showed a further significant reduction in bioluminescent tumor size 

compared to mice treated with 5-FdU or 5-FdU-ale. Because drug treatments showed altered levels of 

tumor cell bioluminescence in vitro (Figure S1), tumor size was further quantified from histological 

sections (Figure 12A). Tibial sections containing the greatest cross-sectional tumor area were stained 

with Goldner’s trichrome and tumor area quantified (Figure 12B). Mice treated with 5-FdU showed 

significant increases in tumor area compared to untreated controls. Mice treated with 5-FdU-ale 

showed a significant reduction in tumor area compared to untreated mice or mice treated with either 5-

FdU or alendronate alone. 
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Figure 11 Treatment with 5-FdU-ale reduces the frequency and size of bone metastases in 

vivo. Mice were intracardially-injected with the breast cancer cell line MDA-MB-231 and imaged 

weekly for 5 weeks by bioluminescence (A). Mice treated with 5-FdU, alendronate or 5-FdU-ale show 

significant reductions in the number of bioluminescent tumors per mouse (B), as well as the average 

bioluminescent tumor area (C), relative to untreated control mice. (*p<0.05, **p<0.01, ***p<0.001) 

(n=12) 
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Figure 12 Mice treated with 5-FdU-ale show significant reductions in tumor burden. Limbs 

found to contain bioluminescent tumor signals were further analyzed by histology for tumor area. 

Sections containing the greatest tumor burden were stained with Goldner’s trichrome (A). Mice treated 

with 5-FdU showed significantly increased tumor areas compared to untreated mice while mice treated 

with 5-FdU-ale show significantly smaller tumor areas compared to mice treated with either 5-FdU or 

alendronate (B). (*p<0.05, **p<0.01) (n=10) 
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Treatment with 5-FdU-ale significantly attenuates disruption of normal bone morphology 

To determine the systemic effects of 5-FdU-ale on bone metabolism, serum levels of the osteoblast 

marker osteocalcin and the osteoclast marker TRAP were quantified (Figure 13). Osteocalcin levels 

were maintained in mice treated with 5-FdU-ale, comparable with untreated mice. In contrast, 

treatment with either 5-FdU or alendronate led to significant reductions in osteocalcin levels compared 

to both untreated and 5-FdU-ale-treated mice (Figure 13A). Serum TRAP levels were significantly 

reduced in mice treated with alendronate, and a trend towards decreased TRAP activity in mice treated 

with 5-FdU-ale (p=0.0736) was observed relative to mice treated with 5-FdU (Figure 13B). In 

addition, osteoclast numbers along cortical bone-tumor surface interfaces were determined in 

histological sections (Figure 14A). Mice treated with 5-FdU-ale showed significantly fewer osteoclasts 

compared to untreated mice, as well as mice treated with either 5-FdU or alendronate alone (Figure 

14B). To assess changes in bone mineralization, tumor-burdened tibia were imaged weekly by in vivo 

micro-CT. Mice treated with alendronate or 5-FdU-ale show significantly increased relative BMD 

values as compared to either untreated mice or mice treated with 5-FdU (Figure 15A). BV/TV analysis 

revealed mice treated with 5-FdU-ale exhibit significantly greater values compared to mice treated 

with alendronate alone, which in turn showed significantly greater BV/TV values from untreated and 

5-FdU-treated mice (Figure 15B). Treatment with 5-FdU-ale also significantly reduced loss of BMD 

values from week 4 to week 5 compared to untreated mice (Figure 15C) while corresponding losses in 

BV/TV values failed to show any significant differences in any of the treatment groups (Figure 15D). 

Consistent with bone mineral assessments and serum analyses, mice treated with 5-FdU-ale showed 

minimal regions of bone resorption along with regions of robust bone formation within the trabeculae 

(figure 15E), while treatment with alendronate resulted in reduced regions of bone resorption and mice 

treated with 5-FdU showed increased regions of osteolysis compared to control mice. 
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Figure 13 Mice treated with 5-FdU-ale results in significantly greater osteoblast activity 

than mice treated with 5-FdU or alendronate. Systemic effects of drug treatment were assessed in 

the serum of week 5 mice. Treatment with 5-FdU or alendronate significantly decreased the levels of 

the osteoblast marker osteocalcin compared to untreated mice while treatment with 5-FdU-ale resulted 

in significantly elevated levels of osteocalcin compared to other drug-treated groups (A). Analysis of 

the osteoclast activity marker TRAP shows significantly reduced levels in alendronate-treated mice, as 

well as a trend towards decreased levels in 5-FdU-ale-treated mice (p=0.0736), compared to mice 

treated with 5-FdU (B). (**p<0.01) (n=12) 
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Figure 14 Treatment with 5-FdU-ale significantly reduces the number of tumor-associated 

osteoclasts. Limb sections were stained for TRAP activity and the number of osteoclasts was 

quantified along tumor-cortical bone surfaces (A). Mice treated with 5-FdU-ale showed significantly 

fewer osteoclasts than untreated mice or mice treated with 5-FdU or alendronate (B). (*p<0.05, 

**p<0.01, ***p<0.001) (n=8) 
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Figure 15 Mice treated with 5-FdU-ale show increased bone quality. Changes in bone 

mineralization was assessed by weekly in vivo micro-CT. Mice treated with either alendronate or 5-

FdU-ale show significantly increased BMD values compared to untreated mice or mice treated with 5-

FdU (A). Treatment with 5-FdU-ale was also found to significantly increase BV/TV values compared 

to mice treated with alendronate, which in turn showed significantly increased BV/TV values 

compared to both untreated mice or mice treated with 5-FdU (B). Statistical analyses are found in 

Table S1 and S2. Measurements of bone loss from week 4 to week 5 found treatment with 5-FdU-ale 

resulted in significant reductions in BMD values compared to untreated mice (C), while analyses of 

changes in BV/TV values show no significant differences between any groups (D). Negative 

subtraction images were generated to assess localized bone turnover visualized in z-slabs of bone in 

the proximal tibia metaphysis (E). Treatment with alendronate reduces regions of bone resorption 

while treatment with 5-FdU-ale results in decreased bone resorption as well as increased bone 

formation. (*p<0.05) (n=10) 
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5-FdU-ale shows prolonged retention on the bone 

To assess the stability and affinity of 5-FdU-ale for the bone in vivo, mice were given a single standard 

dose injection of 5-FdU or 5-FdU-ale and assessed for drug retention over time (Figure 16). 5-FdU-ale 

was detected at significantly greater concentrations than 5-FdU 1 day after injection and continued to 

be detected at significantly greater values for up to 2 weeks after injection. 
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Figure 16 5-FdU-ale is detectable on the bone several weeks after injection at levels 

significantly greater than 5-FdU alone. Tumor-free mice were given a single injection of either 5-

FdU or 5-FdU-ale and assessed for bone drug retention of the hind limbs. 5-FdU-ale was detected at 

significantly greater levels in mice 1 day after injection and persisted at significantly elevated levels, 

relative to 5-FdU, for up to 2 weeks after injection. (**p<0.01, ***p<0.001) (n=4) 
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Discussion 

With thousands of patients diagnosed with breast cancer every year, new treatments are needed to 

combat, not just the primary tumor, but the secondary metastases which complicate treatment and 

severely depress the patient’s quality of life. Here, we present a novel drug conjugate between the anti-

metabolite 5-FdU and the bisphosphonate alendronate for the treatment of breast cancer bone 

metastases. In vitro, 5-FdU-ale functions mechanistically similar to 5-FdU, inhibiting cell cycle 

progression at similar IC50 concentrations. Further analyses revealed that 5-FdU-ale does not show 

bisphosphonate-mediated inhibition through inhibition of protein prenylation. Treatment of mice 

injected with a bone-homing breast cancer cell line variant with 5-FdU-ale showed significant 

reductions in both bioluminescent tumor number and area compared to untreated control. Since tumor 

bioluminescence can be affected by many variables, such as tumor perfusion and levels of skeletal 

destruction, tumor-burdened tibia were excised and analyzed histologically. Mice treated with 5-FdU-

ale showed significant reductions in tumor area compared to mice treated with either 5-FdU or 

alendronate alone. Mice treated with 5-FdU showed significantly increased tumor areas compared to 

untreated controls while bioluminescence assessment showed significant reductions in tumor area. Our 

data, along with previous reports, have shown that treatment with 5-FU or 5-FdU can upregulate 

expression of the ATP-binding cassette transporter member ABCG2/BCRP
155

. Since D-luciferin has 

been identified as a substrate of ABCG2, transport activity could reduce the cytoplasmic levels of the 

bioluminescent substrate, reducing bioluminescent signal
160

 and possibly explaining the differential 

results obtained between histology and bioluminescence. Alendronate has also been previously shown 

to have anti-angiogenic activity
57

 which could also result in reduced delivery of the luciferin 

throughout the tumor, diminishing bioluminescent signal. These aspects highlight the need for caution 

when using bioluminescent imaging in the context of therapeutic interventions and the need for 

confirmatory histology. 

 Analyses of serum biomarkers revealed that, while treatment with 5-FdU or alendronate 

significantly reduced the levels of the osteoblast marker osteocalcin, mice treated with 5-FdU-ale 

showed no impairment of osteoblast function, with serum osteocalcin levels comparable to untreated 
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mice. Analysis of the osteoclast activity marker TRAP showed significant reductions in mice treated 

with alendronate and a trend towards decreased TRAP activity (p=0.0736) in mice treated with 5-FdU-

ale. This highlights a significant draw back in current bisphosphonate treatments in that, while they 

preferentially target and inhibit bone resorption, bone formation is often inhibited as well
3
. Serum 

analyses suggest 5-FdU-ale inhibits bone-resorbing osteoclast without negatively impacting bone-

forming osteoblasts. As a result, treatment with 5-FdU-ale has the potential to reduce the fracture risk 

of patients even further, compared to classical bisphosphonate treatment
145

. With inhibition of 

osteoclast activity, a disruption of the vicious cycle between the bone microenvironment and tumor 

cells is expected to occur which may also be a contributing factor in the observed reduction in tumor 

size. Without the osteolytic activity of osteoclasts, tumor cells are no longer stimulated by growth 

factors released from the resorbed bone matrix and, with unperturbed osteoblast activity, may even be 

physically constrained by the bone, limiting size and possible preventing secondary metastases by 

hindering the “seed and soil” mechanism of tumor spread
79, 115, 116

. 

 Analyses of histological sections showed a significant reduction in the number of osteoclasts 

present along the bone-tumor interface in mice treated with 5-FdU-ale compared to untreated mice as 

well as mice treated with either 5-FdU or alendronate. Consistent with previous findings, treatment 

with alendronate alone failed to show a significant reduction in osteoclast numbers associated with 

bone lesions
64

. In vivo longitudinal micro-CT demonstrated that mice treated with 5-FdU-ale or 

alendronate resulted in significantly greater BMD values compared to 5-FdU or untreated controls as 

well as a significant reduction in loss of BMD values from week 4 to 5. Bone volume analyses also 

revealed significantly greater BV/TV values in 5-FdU-ale-treated mice compared to alendronate, 5-

FdU or untreated mice. Preferential increases in BV/TV relative to BMD values in mice treated with 

5-FdU-ale, as compared to mice treated with alendronate, suggest that even in the presence of a lytic 

bone tumor, new, lowly mineralized bone is present within the tibia, consistent with serum results 

which suggest 5-FdU-ale inhibits osteoclast activity without inhibiting osteoblasts. This conclusion is 

supported by negative subtraction images which show new bone formation in the trabeculae within 

tumor-burdened limbs. 
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 To determine stability and longevity in vivo, we next assayed the retention characteristics of 5-

FdU and 5-FdU-ale. 5-FdU-ale is present in the bone in greater concentrations than 5-FdU 1 day after 

injection and remains on the bone at significantly greater concentrations for as long as 2 weeks after a 

single injection. This highlights an important advantage of targeted drug therapy. 5-FdU has a 

relatively short half-life in the blood stream and can be taken up by a variety of different cell types 

causing off-target effects. Because of its conjugation with alendronate, 5-FdU-ale is specifically 

targeted to the bone and remains there for extended periods of time. This substantially increases both 

its concentration in the bone and the window of its activity compared to 5-FdU. The use of 

radioactively-labeled 5-FdU-ale should provide a more sensitive, quantitative assessment of long-term 

binding within the bone environment. Our results also demonstrate the high stability of 5-FdU-ale, as 

the conjugated drug remains linked within the bone environment for several weeks. This longevity, 

stability and high specificity towards bone greatly contributes to 5-FdU-ale’s ability to function as an 

anti-tumor drug within the bone environment. 

 In summary, 5-FdU-ale is a novel bone-targeted drug conjugate which combines the anti-

tumor effects of 5-FdU with the bone-homing qualities of alendronate. Mice treated with 5-FdU-ale 

showed significant reductions in tumor size and significant increases in bone health measures. Because 

treatment with 5-FdU or alendronate alone failed to show any significant reductions in tumor size by 

histological analyses, it is likely that both anti-tumor and pro-bone forming effects are responsible for 

the observed reduction in tumor burden. Further work is required to reveal optimal treatment regimens 

i.e. dosing and injections frequencies. With preferential targeting of osteoclasts, without inhibiting 

osteoblast function, it remains to be seen whether 5-FdU-ale has the potential to serve in the 

therapeutic application for other cancers and diseases associated with excessive bone turnover/loss. It 

also remains to be determined whether possible depot effects and interactions with the 

microenvironment of the metastatic niche could be used as a preventative treatment against the initial 

formation of bone metastases. Overall, 5-FdU-ale has great potential as a novel therapeutic in the 

treatment of breast cancer bone metastases and other bone-related illnesses. 
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Figure S1 Treatment with 5-FdU, alendronate or 5-FdU-ale results in altered 

bioluminescence in vitro. Bioluminescent signal of plated cells was measured prior to drug 

administration and following treatment for 36 hours with 100µM of the respective drug (A).  FACS 

analyses of ABCG2 expression in living cells was performed by gating on the live population of cells 

according to the forward scatter and side scatter profile and placing quadrant gates for determining 

populations of cells expressing 7-AAD and ABCG2 (B). Cells positive for 7-AAD expression were 

deemed to be early apoptotic cells. Expression of ABCG2 in health and early apoptotic cells 36 hours 

following drug treatment (C). Treatment with 5-FdU significantly increases the number of ABCG2-

expressing cells. 
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Table S1 Treatment with alendronate of 5-FdU-ale results in significantly greater BMD 

values than untreated mice or mice treated with 5-FdU. Statistical analyses of BMD values from 

untreated mice and mice treated with 5-FdU, alendronate or 5-FdU-alendronate. 
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Table S2 Treatment with 5-FdU-ale results in significantly greater BV/TV values than 

untreated mice or mice treated with 5-FdU or alendronate. Statistical analyses of BV/TV values 

from untreated mice and mice treated with 5-FdU, alendronate or 5-FdU-alendronate. 
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Abstract 

Bone mineral deposition during the modeling of new bone and remodeling of old bone can be 

perturbed by several pathological conditions, including osteoporosis and skeletal metastases. A site-

specific marker depicting the dynamics of bone mineral deposition would provide insight into skeletal 

disease location and severity, and prove useful in evaluating the efficacy of pharmacological 

interventions. Fluorescent labels may combine advantages of both radioisotope imaging and detailed 

microscopic analyses. The purpose of this study was to determine if the fluorescent bisphosphonate 

Osteosense could detect localized changes in bone mineral deposition in established mouse models of 

accelerated bone-loss (ovariectomy) (OVX) and anabolic bone-gain resulting from parathyroid 

hormone (PTH) treatment. We hypothesized that the early rate of binding, as well as the total amount 

of bisphosphonate which binds over long periods of time, could be useful in evaluating changes in 

bone metabolism. Evaluation of the kinetic uptake of bisphosphonates revealed a significant reduction 

in both the rate constant and plateau binding after OVX, while treatment with PTH resulted in a 36-

fold increase in the bisphosphonate binding rate constant compared to untreated OVX controls. 

Localization of bisphosphonate binding revealed initial binding at sites of ossification adjacent to the 

growth plate and, to a lesser extent, along more distal trabecular and cortical elements. Micro-CT was 

used to confirm that initial bisphosphonate binding is localized to sites of low tissue mineral density, 

associated with new bone mineral deposition. Our results suggest monitoring binding kinetics based 

on fluorescently-labeled bisphosphonates represent a highly sensitive, site-specific method for 

monitoring changes in bone mineral deposition with the potential for translation into human 

applications in osteoporosis and bone metastatic processes and their treatment. 

Keywords: Bisphosphonates, Molecular Imaging, Bone Turnover, Bone Mineralization, Osteoporosis 
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Introduction 

 Bone is in a continual state of remodeling, which facilitates mineral transport and provides 

structural integrity. This tightly regulated process is mediated through bone-resorbing osteoclasts and 

bone-forming osteoblasts. Maintaining the balance of these two dynamic processes is essential to 

ensure skeletal homeostasis. Many diseases upset this balance and result in either general or localized 

bone loss or gain. Therefore, the measurement of the rates of bone formation and resorption can be 

indicative of disease severity. Bone formation and resorption can be measured using immunoassays 

that measure the serum concentration or urinary excretion of bone turnover biomarkers
31

. However, 

these markers provide an assessment only of the overall skeletal dynamics and fail to localize aberrant 

cellular function to a specific location. Current standard radiological modalities such as radiographs, 

bone densitometry and computed tomography (CT) provide a static assessment of bone mineral and 

structure
89

, but do not describe the cellular dynamics of osteoblasts and osteoclasts
144

. Radioisotope 

labeling provides insights into bone turnover using scintigraphy (bone scan), or tomographic methods 

like Single Photon Emission Computed Tomography (SPECT) or Positron Emission Tomography 

(PET)
7, 132

. Optical molecular imaging, where photons are detected from enzymatic reactions 

(bioluminescence) or fluorescent proteins or dyes (fluorescence), offers the possibility to assess the 

complex and highly regulated site-specific processes associated with bone remodeling
134

 

longitudinally, thus circumventing the limitations associated with static assessment of bone mineral 

and structure. 

Because of their high affinity for bone and their ability to inactivate osteoclast activity, 

bisphosphonates have become a widely utilized treatment option for diseases with high bone turnover, 

such as osteoporosis, Paget’s disease and cancer-associated bone diseases
110

. Nitrogen-containing 

bisphosphonates function by inhibiting the intracellular enzyme farnesyl pyrophosphate synthase, 

depleting isoprenoid lipids used in the prenylation of protein
38, 70

. This results in the accumulation of 

unprenylated proteins with aberrant functions within the cell
31

.  With the conjugation of infrared and 

near-infrared fluorescent dyes, bisphosphonates are now being assessed for their utility as a tool for 

monitoring bone dynamics in preclinical models. Recent works have demonstrated the complexity of 
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bisphosphonate binding, showing not only binding to newly mineralized bone surfaces, but uptake by 

osteoclasts, bone marrow monocytes and osteocyte lacunae
111

. It has also been shown that while the 

potency of inhibition of farnesyl pyrophosphate synthase strongly correlates with anti-resorptive 

potency in vivo, bisphosphonate affinity also plays a critical role in skeletal uptake, distribution and 

retention
113

. 

 Along with determining their skeletal distribution, researchers have attempted to use 

fluorescently-conjugated bisphosphonates as a tool for monitoring changes in skeletal metabolism. 

With the use of molecular imaging, fluorescent bisphosphonates are now being assayed for their 

ability to label skeletal regions associated with increased bone formation, such as bone fracture healing 

and skeletal metastases
71, 72

. These studies demonstrate bisphosphonate binding to bone occurs not 

only to regions of robust osteoblast activity, but also to quiescent bone surfaces. Longitudinal studies 

have also used fluorescent bisphosphonates as a tool to monitor changes in bone metabolism resulting 

from mechanical loading using fluorescent molecular tomography (FMT)
76

. FMT sequentially obtains 

excitation and fluorescent emission measurements to allow the quantitative, 3-dimensional 

determinations of fluorescence probes in vivo
50, 85, 94

. Lambers et al. recently showed acceptable 

reproducibility of FMT imaging and reasonable correlations between loss of fluorescent intensity of 

Osteosense and the bone resorption rate determined from micro-computed tomography (micro-CT) 

(R
2
=0.81, p<0.01). However, no significant difference in fluorescent intensity loss was observed 

between treatment groups. Similarly, while significant increases in Osteosense binding were observed 

after loading compared to control mice (p<0.05), large intra-group variation resulted in a lack of 

significant correlation with dynamic bone formation determined by micro-CT. 

These previous studies
72, 76

 focused on bisphosphonate localization 24 h after injection and 

assayed for binding capacity assuming a correlation to bone formation. Their data document both the 

strengths and limitations of fluorescent measurements based on assessments of binding plateaus 

reached 24 h after injection. While they were able to detect changes in bisphosphonate uptake, these 

studies were not able to account for the dynamics of bisphosphonate binding at earlier time points 

affected by the affinity of the bisphosphonate used in relation to changes in the pattern of mineral 
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deposition and resorption. With the injection of sub-saturation concentrations of bisphosphonates in 

which not all potential binding sites will be occupied, the analysis of bisphosphonate binding levels 24 

h after injection does not necessarily reflect binding capacity. The specific measurement of both the 

rate of bisphosphonate uptake as well as the binding plateau may better reflect interaction of these 

compounds within the bone matrix. The aim of this study was to determine whether binding kinetics 

of bisphosphonates, assessed by repeated FMT measurements during the early phase of 

bisphosphonate binding, could temporally resolve localized changes in bisphosphonate uptake in 

bone-loss and bone-gain mouse models in vivo. 
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Materials and Methods 

Animals 

12 week old female, CD-1 nude mice were purchased from Charles River (Wilmington, MA). All 

animals were kept in a temperature and humidity-controlled environment, with a 12 h light/dark cycle, 

with access to food and water ad libitum. Animal experiments and care were in accordance with the 

guidelines of institutional authorities and approved by the Ethics Committee for Animal Experiments 

at Christian-Albrechts-Universität-zu-Kiel [V 312-72241.121-33]. Mice were anesthetized with 

intraperitoneal injections of 80 mg/kg ketamine (Aveco Pharmaceutical, IA) and 10 mg/kg xylazine 

(Rugby Laboratories, GA). For long term anesthetization, additional half-dose administrations of 

ketamine and xylazine was given upon initial signs of waking. Animals were separated into 3 groups. 

9 non-operated control animals, 9 ovariectomized (OVX) animals, imaged 3 days (short-term) and 14 

days (long-term) after OVX, and 9 PTH treated mice which were OVX for 11 days, then received 

daily PTH injections for 3 days for a total of 14 days OVX and 3 days PTH treatment (Figure 17). 

PTH-treated and long-term OVX mice were further divided into two groups with 7 mice being 

subjected to kinetics analysis and 2 mice used for non-decalcified sectioning as described later. 

Animals were ovariectomized via their dorsal side. Human parathyroid hormone fragment 1-34 

(Sigma-Aldrich, MO) was given subcutaneously at a dose of 100 µg/kg daily.  
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Figure 17 Study design overview. Sample groups are boxed, treatments are bolded and 

experimental measurements are italicized. 
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In Vivo Micro-CT Analysis 

Confirmation of expected bone loss or gain resulting from ovariectomy or PTH treatment was 

obtained from micro-CT assessment of skeletal changes in vivo. Anesthetized mice were placed in 

full-body holders and the tibiae aligned by visual inspection. Scans were made using a vivaCT 40 

micro-CT (ScancoMedical, Brüttisellen, Switzerland) at an isotropic voxel size of 19 µm (70 kVp, 114 

µA, 250 ms integration time, 1000 projections on 180° 2048 CCD detector array, cone-beam 

reconstruction). A 60-slice (1.05 mm) volume of interest (VOI), beginning at the most proximal point 

of the epiphyseal trabecular bone and extending into the metaphyseal region, and drawn along the 

periosteal surface, was defined in the baseline scan of each animal using an automated contouring 

method
12

. Baseline VOIs were transferred to the follow-up scans using an image registration approach 

to insure analysis of consistent VOIs at each time point
15

. Bone mineral density (BMD) was calculated 

from the greyscale micro-CT images as the mineral content divided by the total volume, encompassing 

both bone tissue and marrow (Image Processing Language v5.15, ScancoMedical, Brüttisellen, 

Switzerland).  

Bisphosphonate Binding Kinetics 

Anesthetized mice were injected intravenously with 100 µl PBS containing 2 nmol of dissolved 

Osteosense750EX (Perkin Elmer, MA), a fluorescently-conjugated pamidronate derivative
157

, and 

imaged 2, 4, 6, 8, 10, 15, 20 and 30 min after injection using the NightOwl planar imaging system 

(Berthold Technologies, Bad Wildbad, Germany) to qualitatively determine kinetic distribution. A 

phantom was placed over the mouse bladder to help position the limbs and prevent obscuring of the 

limb signal from the urinary pool of bisphosphonate. For all in vivo, quantitative assessments of 

bisphosphonate binding, anesthetized mice were imaged immediately following injection and every 

subsequent ~15 min interval for 210 min using the FMT 2500LX from Visen Medical (Perkin Elmer, 

MA). Images were reconstructed and VOIs around the proximal tibia region, as determined from the 

photographic image, were quantified using the TrueQuant software as previously described
72

. Kinetics 

curves were generated using the average fluorescent intensity of both proximal tibia regions over time 

using one-phase association curves, with Y0 values constrained to zero, generated from Prism (version 
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5, GraphPad Software, CA). Graphs show only the first 100 min of imaging to more clearly show 

changes in initial binding kinetics. Due to the low resolution of FMT, proximal tibia VOIs may also 

contain partial fluorescence of the distal femur. 

Lab Analysis 

Blood was collected from the tail vein of control, long-term OVX and PTH-treated mice prior to 

bisphosphonate injection. Levels of skeletal osteoblast and osteoclast activity were assessed using an 

osteocalcin (DRG Diagnostics, Germany) and tartrate-resistant acid phosphatase (TRAP) ELISA 

assays (Immunodiagnostic Systems, Frankfurt, Germany) on blood serum. 

Fluorescent and micro-CT imaging of bone sections 

PTH-treated and untreated OVX control mice were injected with Osteosense750 intravenously then 

killed 15 min or 100 min after injection. Non-decalcified femurs and tibia were fixed in 10% buffered 

formalin, embedded in methacrylate, then cut in ~50 µm sections. Bone sections were scanned on the 

LI-COR Odyssey infrared imaging system with a resolution of 21 µm and an offset of 1 mm, excited 

at 785 nm and collected at wavelengths greater than 810 nm. Several regions of interest of equal size 

were placed randomly over growth plate, trabecular and cortical bone regions of Odyssey bone section 

scans and subsequent fluorescence signal intensity was quantified using ImageJ. A Leica DM2500 

fluorescent microscope equipped with a DFC 360FX camera and Y7 filter cube (Leica Microsystems, 

Wetzlar, Germany) was used to visualize bisphosphonate binding at the growth plate and along 

trabecular and cortical bone surfaces. Lacunae and osteocyte labeling was visualized using a 

fluorescent microscope equipped with an Imager Intense CCD camera from LaVision (Bielefeld, 

Germany), epilumination source with LP590 filter and a LP640 emission filter. Micro-CT scans of the 

slides using the same settings as described above but with a voxel size of 10µm were made with the 

slide surface aligned with the axial scan direction. Following reconstruction, the images were re-

aligned such that the slide surface was perpendicular to the axial scan direction to allow viewing in 

2D. The central slice containing bone was used for analysis. Images from the Odyssey fluorescent 

scanner and micro-CT scans were overlaid using an affine registration with a normalized mutual 

information metric (Amira 5.4.3, Visualization Sciences Group, Berlin, Germany). The images were 

then processed in Matlab (R2010b; Mathworks, Natick, MA, USA), where a threshold (CT value 100, 
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fluorescence value 50) was applied to create binarized masks, which were combined to determine the 

pixels containing both micro-CT values within the bone tissue region and fluorescence signal. 

Histograms of the percentage of total fluorescence vs. CT value (i.e. tissue mineral density, or TMD) 

were created and fitted to Gaussian distributions. 

Statistical Analysis 

Fluorescent rate constants (K) and plateau values were calculated for curves from the line of best fit 

for each subject using the formula: Y=Y0+(Plateau-Y0)(1-exp
-Kx

). Plateau and rate constant were 

multiplied to generate a plateau-weighted rate constant for each mouse representing overall curve 

characteristics. Comparison between groups was made using two-sample t-tests using the Welch-

Satterthwaite method to avoid the assumption of equal variances. For micro-CT versus fluorescence 

comparison in co-registered images, Gaussian distributions were fitted to binned data and difference in 

mean CT values 15 min and 100 min after injection was assessed. P values of <0.05 were considered 

to be statistically significant. T-values and effect measures, i.e. a z-transform calculated as the 

difference in mean between groups divided by pooled standard deviations, were determined from 2 

sample t-tests in order to assess the ability of the plateau, rate constant and plateau-weighted rate 

constant to detect differences between control, short and long-term OVX mice. 
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Results 

Fluorescently-labeled bisphosphonate localize to the bone within minutes of injection 

To understand the kinetics and distribution of fluorescent bisphosphonates, control mice were 

subjected to NightOwl planar imaging following injection (Figure 18). Bisphosphonate fluorescence 

initially appears diffuse throughout the mouse following injection, but is lost in the soft tissue as it 

accumulates on the bones over 30 min. 
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Figure 18 Kinetic distribution of fluorescent bisphosphonate. Fluorescently-conjugated 

bisphosphonate was injected and imaged 2, 4, 6, 8, 10, 15, 20 and 30 min after injection using the 

NightOwl fluorescent planar imaging system documenting accumulation in the knee region and 

clearance from soft tissue. A non-transparent part of the animal holder was used to position the limbs 

and prevent the obscuring of limb fluorescence the urinary bisphosphonate pool. Signals on this 2D 

image are affected by attenuation of overlying soft tissue, precluding, e.g. visualization of the spine, in 

this ventral exposure. 
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Ovariectomized mice show decreased rate constant and binding plateau values compared to control 

mice 

Following ovariectomy, serum biomarker analysis of the osteoblast marker osteocalcin showed a 

significant reduction in osteoblast activity (p=0.047) in ovariectomized mice (1.70±0.51 ng/ml) as 

compared to control mice (4.18±0.85 ng/ml), while the osteoclast activity marker TRAP showed no 

significant changes (p=0.711). In vivo micro-CT analysis showed significant losses in bone mineral 

density after 14 days (long-term) ovariectomy (Figure 19A). Fluorescent bisphosphonate-injected 

mice were imaged and the fluorescent intensity of the proximal tibia regions (Figure 19B) quantified 

and subjected to nonlinear regression analysis (Figure 19C). Mice ovariectomized for 3 days (short-

term OVX) showed significantly reduced rate constants and binding plateaus compared to control 

mice (Figure 19D and E). Long-term ovariectomized mice showed a further significant reduction in 

rate constant values from short-term ovariectomized mice but no significant change in binding plateau 

values. To quantify overall changes in bone mineral deposition in a single parameter, plateau-weighted 

rate constants were calculated for each individual mouse (Figure 19F). Long-term ovariectomized 

mice showed significantly lower plateau-weighted rate constants compared to short-term 

ovariectomized mice, which in turn showed significantly lower values than control mice.  
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Figure 19 Ovariectomy results in decreased rate constant and binding plateau values of 

fluorescently-labeled bisphosphonate. Control, short-term (day 3) and long-term (day 14) OVX 

mice were imaged by micro-CT to confirm loss of bone mineral density (BMD) (A). Mice were 

injected with fluorescently-conjugated bisphosphonate and imaged by FMT. (B) Isosurface rendering 

of 3D FMT reconstruction. Expanded windows show representative, control tibia region fluorescence 

over time after injection. Tibiae regions were quantified and subjected to nonlinear regression analysis. 

(C) Overall best-fit nonlinear regression curves are shown for each group. Rate constants and plateau 

values were then calculated for each individual mouse. Ovariectomized mice showed significantly 

reduced rate constants (D) and binding plateau values (E) compared to control mice. Plateau values 

and rate constants were multiplied to generate a single numerical parameter for each mouse (F). Long-

term OVX mice show a significant reduction in plateau-weighted rate constants from short-term OVX 

mice, which in turn show a significant decrease from control mice, with no overlap between groups. 

Dotted lines represent 95% confidence interval of fitted curve. Graphs represent mean values ± SD. 

Whiskers represent extreme maximum and minimum values. (*p<0.05, **p<0.01, ***p<0.001) (n=9) 
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Bisphosphonate binding kinetics as a tool to monitor pharmacological intervention 

In our assessment whether bisphosphonate binding kinetics could be used as a tool to monitor 

increases in new bone formation resulting from pharmacological intervention, binding curves were 

created for ovariectomized mice with or without PTH treatment (Figure 20A). Mice treated with PTH 

showed a significantly increased rate constant (Figure 20B) and plateau-weighted rate constant values 

(Figure 20D), as well as significantly increased osteocalcin (6.44±1.49 ng/ml) (p=0.017) and TRAP 

levels (6.58±0.28 U/L) (p=0.044) compared to untreated controls (1.70±0.51 ng/ml and 4.69±0.69 U/L 

respectively). No significant changes in binding plateau values were observed (Figure 20C). BMD, 

assessed by micro-CT, showed no significant increase 3 days after PTH treatment (p=0.233) (Figure 

20E), however, to confirm the expected bone anabolic effect, additional micro-CT assessment was 

carried out after 14 days of PTH treatment which showed a significant BMD increase of 32.7 mg 

HA/cm
3
 compared to untreated controls (p=0.007). 
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Figure 20 Ovariectomized mice treated with PTH showed increased rate constants and 

plateau-weighted rate constants. OVX mice were treated with PTH for 3 days, than assayed for 

bisphosphonate binding kinetics using FMT (A). Bisphosphonate binding curves were used to 

calculate rate constants (B), binding plateaus (C) and plateau-weighted rate constants (D) for each 

group. (E) Micro-CT showed a nonsignificant 2% increase in BMD (p=0.233). Dotted lines represent 

95% confidence interval. Graphs represent mean values ± SD. Whiskers represent extreme maximum 

and minimum values. (***p<0.001) (n=9) 
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Bisphosphonates bind preferentially to low TMD regions associated with bone ossification and 

modeling 

To determine the spatial distribution of bisphosphonate binding at early and late time-points, non-

decalcified limb sections of OVX and PTH-treated mice were imaged ex vivo 15 and 100 min after 

bisphosphonate injection using a near infrared imaging scanner (Figure 21A). Relative fluorescent 

intensity in the growth plate, trabecular and cortical bone regions were quantified (Figure 21B). Mice 

treated with PTH showed significantly increased bisphosphonate binding near the growth plate, as 

well as a trend towards increased binding in the trabecular region 15 min after injection (p=0.053), as 

compared to untreated controls. Bisphosphonate localization in OVX and PTH-treated mice was 

confirmed by fluorescent microscopy (Figure 21C). Analysis of these images shows bisphosphonates 

highly localize to regions adjacent to, but not within, the growth plate 15 min after injection, and to a 

lesser extent, along cortical and trabecular bone surfaces in OVX mice 100 min after injection. 

Treatment with PTH resulted in increased labeling of all bone surfaces, including osteocyte lacunae 

near the cortical bone surfaces 15 min after injection. 
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Figure 21 Bisphosphonates preferentially bind to bone regions associated with new bone 

formation. Ovariectomized, untreated mice and OVX mice treated with PTH were injected with 

fluorescent bisphosphonate and sacrificed 15 or 100 min after injection. Non-decalcified sections of 

the tibia and femur were prepared and imaged using the Odyssey near infrared fluorescent scanner 

(A). Regions of interest encompassing the growth plate, trabecular bone or cortical bone were 

quantified in relative fluorescent units (RFU) (B). Fluorescence localization was confirmed by 

fluorescent microscopy (C). Top panels show brightfield images to depict microstructures of bone 

sections and middle panels show overall fluorescent localization of bisphosphonates. Labeling initially 

occurs adjacent to the growth plate (OVX 15 min) and later along trabecular and cortical surfaces 

(OVX 100min). Treatment with PTH results in increased labeling of all bone surfaces 15 min after 

injection. Arrows indicate the growth plate region, arrow heads, the labelled trabecular bone surfaces. 

Bar 200 µm. Lower panels show high magnification fluorescent images of the cortical bone, showing 

labeling of bone surfaces, as well as osteocyte lacunae. Bar 50 µm. Graphs represent mean values ± 

SD. (*p<0.05, **p<0.01, ***p<0.001) 
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In order to spatially correlate bisphosphonate binding and local TMD, micro-CT and fluorescent 

Odyssey scans from PTH-treated mouse sections were co-registered and pixels containing both bone 

mineral and fluorescence was compared (Figure 22A). Analysis shows binding of fluorescent 

bisphosphonates occurs preferentially at regions of low TMD 15 min after injection, and later, to 

regions of significantly greater TMD (p=0.0175) 100 min after injection. 
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Figure 22 Bisphosphonates preferentially bind to regions of low bone density. Non-

decalcified sections from PTH-treated mice sacrificed 15 and 100 min after bisphosphonate injection 

were imaged using the Odyssey near infrared fluorescent scanner as well as by micro-CT (A). Micro-

CT image was binarized and bone tissue segmented from bone marrow signal. Images were registered 

and subjected to pixel-by-pixel analysis within the bone tissue compartment using grey scale micro-

CT images. (B) Gaussian distributions show bisphosphonates bind preferentially to significantly lower 

tissue mineral density regions 15 min after injection as compared to 100 min (P=0.0175). 
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Discussion 

In this study we demonstrate fluorescently-labeled bisphosphonates to be a valuable tool for 

quantifying localized changes in bone metabolism in vivo. While previous longitudinal studies have 

focused on plateau values of fluorescence days after injection, our results suggest expanded utility 

may be obtained by monitoring bisphosphonate binding immediately following injection. By 

analyzing the early binding kinetics of bisphosphonates, we were able to monitor dynamic properties 

of the bone environment. Furthermore, the ease and simplicity of this approach allows for expanded 

application in the field of preclinical drug testing and a greater understanding of the complex processes 

associated with bone remodeling. 

Mice ovariectomized for 3 days showed significant reductions in binding rate constants and 

plateau binding values with further reductions in both parameters after 14 days of ovariectomy. These 

results are consistent with serum data, which shows a significant reduction in osteoblast activity 

leading to a reduction in new mineral deposition. Although no significant changes in serum TRAP 

levels were observed in our model, we cannot discount the important role of osteoclasts, and resorbing 

bone surfaces, on bisphosphonate binding. Previous works have suggested extensive bisphosphonate 

binding in resorption pits, especially in the case of lower affinity bisphosphonates
113

. A lack of 

detectable change in osteoclast activity may be due in part to the absence of T-cells in nude mice, 

which have previously been implicated in stimulating osteoclastogenesis and shown to play a role in 

estrogen-deficient bone loss
17, 96, 153, 154

. However, the lack of significant serum TRAP changes 

suggests that the changes in binding kinetics observed in this study are primarily reflecting changes in 

osteoblast activity. With no detectable difference in serum osteoclast activity, and a significant 

decrease in osteoblast activity, a reduction in total bone can be expected, consistent with micro-CT 

data showing a significant reduction in bone mineral density as the result of ovariectomy. By 

combining the rate constant with the plateau binding values, we have generated a single numerical 

parameter for each subject
156

. This plateau-weighted rate constant summarizes changes in the rate 

constant and plateau values, thereby facilitating interpretation of the kinetic data. Furthermore, 

plateau-weighted rate constants showed greater average t-values and effect measures (t=5.0786, z-
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transform=2.625) compared to either plateau (t=4.385, z-transform=2.261) or rate constant values 

(t=4.446, z-transform=2.293), suggesting plateau-weighted rate constant values show the greatest 

ability to distinguish control, short-term and long-term OVX sample groups. This may suggest greater 

utility in using plateau-weighted rate constants, perhaps not only for fluorescent markers in animals 

but also in a clinical setting using radioactive tracers to easily distinguish healthy patients from those 

with altered bone metabolism.  

Next we sought to investigate whether binding kinetics could be used to assess 

pharmacological intervention leading to increased bone formation. After 3 days of intermittent PTH 

treatment, no significant differences were observed by micro-CT or plateau binding values. However, 

rate constants showed a highly significant increase after PTH treatment compared to the untreated 

control. Serum analysis showed significantly elevated osteoblast and osteoclast activity suggesting 

that, while micro-CT showed no significant net bone mineral gained within 3 days of PTH treatment, 

composition of the bone surface may have been altered. Other researchers have reported that 

administration of PTH for 3 days in rats failed to show significant changes in the uptake of 99mTc-

pyrophosphate 2 h or 6 h after radiotracer injection
55

. Using our binding kinetics approach, we were 

able to detect early changes in bone metabolism in mice after 3 days of PTH treatment, prior to 

conventional micro-CT or single time point FMT measurements 24 h after injection further supporting 

increased utility of monitoring binding kinetics. It would be of interest to investigate whether different 

types of bone-anabolic treatments may show dissimilar patterns of rate constants and plateau values 

potentially reflecting variable degrees of bone activation. 

Localization studies of bisphosphonate binding 15 and 100 min after injection show 

preferential binding of the bisphosphonate probe Osteosense to the region adjacent to the growth plate, 

associated with endochondral ossification
83

, and to a lesser extent, along trabecular and cortical 

regions associated with bone remodeling, or quiescent bone surfaces. Quantification of Odyssey bone 

scans showed increased bisphosphonate binding near the growth plate in PTH-treated mice 15 min 

after injection compared to the untreated controls. Further analysis of early binding shows 

bisphosphonates localize preferentially to low-TMD bone, associated with new bone in a state of 
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primary mineralization, shortly after injection and to a lesser extent, to highly-mineralized bone 

associated with fully mineralized, quiescent bone
8
. These data are consistent with increased binding of 

bisphosphonate at regions associated with high osteoblast activity and newly forming bone. 

From these observations, we propose that the dynamics of bisphosphonate binding observed in 

this study reflects the binding to two bone types, high uptake capacity and low uptake capacity, 

comprising the bone surface. High uptake capacity bone would be comprised of newly deposited 

mineral at the site of osteoblast activity and contains a high volume of exposed surface minerals. The 

amount of high uptake capacity bone reflects both the density of active osteoblasts along the bone 

surface, as well as the level of bone-forming activity of these osteoblasts
11

. Additionally, newly 

deposited bone may transition to fully mineralized, low uptake capacity bone when not undergoing 

bone remodeling. This transition may also affect the form of mineral present within the bone. Calcium 

phosphate in an amorphous state, present in newly forming bone, has previously been shown to have 

higher uptake of diphosphonates compared to calcium phosphate in its crystalline form, present in 

fully mineralized, quiescent bone, in vitro
42

. We propose changes in the amount of high and low 

uptake capacity bone, along with injected dose, would both be reflected in the rate constant and 

binding plateau of bisphosphonate binding kinetics. 

This ability to distinguish sites of high bone turnover from regions of low or no bone activity 

may also have important implications in tumor site identification and treatment. Osteosclerotic bone 

lesions, such as in the case of prostate cancer, result in marked increases in bone formation. According 

to the findings presented here, the expected increase in bone turnover at the tumor site would 

accumulate bisphosphonate probes more rapidly than in the surrounding tissue, enabling the detection 

and preferential targeting of the lesions. Binding kinetics may also prove useful for detecting 

metastases that result in mixed osteolytic/osteosclerotic lesions
1, 62

. These lesions may result in mild or 

no overall bone loss or gain making them difficult to detect by CT, but the marked increase in bone 

turnover within the tumor environment could still be detected from the corresponding kinetic uptake 

parameters. 



Bisphosphonate binding kinetics for monitoring bone metabolism 

 

88 

One aspect that requires consideration in future methodological refinements is the 

differentiation of localized changes (as induced by bone metastases) versus systemic changes (e.g. due 

to medications) and the effects of surrounding soft tissue on fluorescent measurements. In this study 

we present data on the proximal tibia region because of the relatively small soft tissue present to 

attenuate and scatter fluorescence, as well as its importance as a high frequency site of bone 

metastases in preclinical models. However, overall changes in skeletal bone uptake outside our region 

of interest will affect the blood pool levels, and correspondingly, the ability of the tibia to bind free 

bisphosphonate. In the instance of PTH treatment, mice showed rapid uptake of bisphosphonate at the 

proximal tibia region but failed to show any significant changes in binding plateau values. This may 

be due to rapid uptake of available bisphosphonate by other skeletal sites, reducing the blood pool of 

bisphosphonate available for binding, and thus, preventing further binding at the proximal tibia at later 

time points
45

. Clinical evaluation of bisphosphonate binding using radioactive labels supplement bone 

accumulation measurements with blood serum levels, urinary pool or soft tissue retention of unbound 

bisphosphonates
5, 41, 92, 97

. Body mass of the mouse will also play a role in bisphosphonate uptake, 

clearance and dosing. And, while body mass was not significantly altered in this study, consideration 

must be given for situations in which significant weight loss may be observed. A measure of blood 

pool bisphosphonate may reveal that tibia fluorescence was limited more by the rapid clearance of 

bisphosphonate from the blood and not by the uptake of bisphosphonate by the tibia itself. FMT is 

tomographic, but with limited spatial resolution and scan region obtained, we were unable to calculate 

arterial input functions, renal clearance or blood perfusion within the proximal tibia region for each 

mouse. As a result, we cannot discount either decreased delivery of bisphosphonate to the bone or 

increased renal clearance of unbound bisphosphonate in the case of ovariectomy. No significant 

changes in health or weight, common symptoms of impaired renal function, were detected; however, 

recent bone perfusion experiments using laser Doppler techniques suggests blood perfusion may be 

affected in ovariectomized mice depending on their genetic background
109

. These uncontrolled 

parameters limit the exact quantification of bone kinetic parameters as done in this study, but with 

improvements in imaging technology, and implementation of more complex imaging protocols, may 

become feasible in the future.  
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It is also of interest to note that binding curves in this study were obtained using a pamidronate 

derivative, reflecting the binding kinetics of a relatively high affinity bisphosphonates. Previous works 

have shown that different bisphosphonates vary in their affinity for bone surfaces and their level of 

bone penetration
77, 113

. The use of medium or low affinity bisphosphonates as the targeting molecule 

may better reflect changes in osteoclast activity because of their relatively greater uptake in regions of 

bone resorption compared to quiescent surfaces
113

. Additional histological analyses will be needed to 

more precisely define sub-regions within the bone with more rapid uptake of high versus low affinity 

bisphosphonates. In particular, methodological refinement should include histological analyses of 

bone surfaces revealing quiescent, resorbing and bone-forming regions and the corresponding levels of 

bisphosphonate binding. 

The use of fluorescent probes suggests this method has the possibility to be applied to 

monitoring multiple wavelengths and multiple probes detecting multiple aspects of bone dynamics in 

vivo at macroscopic resolution simultaneously, while also allowing the use of more high resolution 

modalities such as fluorescent confocal or two-photon microscopy for analysis at the microscopic 

level. The challenge remains to validate this method in patients using radioactive tracers conjugated to 

bisphosphonates and translate this simpler approach into wider clinical use. Since 
99m

Tc-MDP display 

relatively slow blood and soft-tissue clearance the measurement of bisphosphonate binding at early 

time points is confounded by the high percentage of tracer retained in the soft tissue in the moments 

immediately following injection of tracer. The application of new radioactive bisphosphonates with 

variable affinities for the bone matrix can have an impact in nuclear medicine in the refined 

assessment of metabolic bone disorders and warrants clinical investigation. 

In conclusion, we have developed and tested a new molecular imaging method for in vivo 

assessment of bone metabolism, specifically bone mineral deposition. Using Osteosense, a 

fluorescently labeled bisphosphonate, we were able to noninvasively visualize localized changes in 

bone turnover, including bone loss and bone anabolic treatment models, at very early time points. The 

analysis of three parameters, the rate constant, the binding plateau, and the plateau-weighted rate 

constant, provides non-invasive insights into the presence of high and low uptake capacity bone 
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mineral, important aspects in osteoporosis and for the detection and differentiation of lytic versus 

osteosclerotic bone metastases. Our method has potential for further refinement with the goal of better 

quantification and for translation to human application using radionuclide tracers instead of 

fluorescent markers. 
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Abstract 

The turnover of bone is a tightly regulated process between bone formation and resorption to ensure 

skeletal homeostasis. This process differs between bone types, with trabecular bone often associated 

with higher turnover than cortical bone. Analyses of bone by micro-computed tomography (micro-CT) 

reveals changes in structure and mineral content, but is limited in the study of metabolic activity at a 

single time point, while analyses of serum markers can reveal changes in bone metabolism, but cannot 

delineate the origin of any aberrant findings. To obtain a site-specific assessment of bone metabolic 

status, bisphosphonate binding kinetics were utilized. Using a fluorescently-labeled bisphosphonate, 

we show early binding kinetics monitored in vivo using fluorescent molecular tomography (FMT) can 

monitor changes in bone metabolism in response to bone loss, stimulated by ovariectomy (OVX), or 

bone gain, resulting from treatment with the anabolic bone agent parathyroid hormone (PTH), and is 

capable of distinguishing different, metabolically distinct skeletal sites. Using time-lapse micro-CT, 

longitudinal bone turnover was quantified. The spine showed a significantly greater percent resorbing 

volume and surface in response to OVX, while mice treated with PTH showed significantly greater 

resorbing volume per bone surface in the spine and significantly greater forming surfaces in the knee. 

Correlation studies between binding kinetics and micro-CT suggest that forming surfaces, as assessed 

by time-lapse micro-CT, are preferentially reflected in the rate constant values while forming and 

resorbing bone volumes primarily affect plateau values. Additionally, we developed a blood pool 

correction method which now allows for quantitative multi-compartment analyses to be conducted 

using FMT. These results further expand our understanding of bisphosphonate binding and the use of 

bisphosphonate binding kinetics as a tool to monitor site-specific changes in bone metabolism in vivo. 

Keywords: bone turnover, bone metabolism, bisphosphonates, molecular imaging, osteoporosis 
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Introduction 

Bone turnover is tightly regulated by osteoblasts and osteoclasts, and is essential for 

maintaining the integrity and adaptation of the skeleton. This process is both spatially and temporally 

regulated, ensuring equal bone resorption and new bone formation, in order to maintain bone mass
75, 

133
. Disruption of this coupled process can lead to abnormal bone loss or gain, both with severe 

ramifications. Remodeling is also essential for the turnover of aged bone, which removes 

microfractures and maintains the mechanical competence of the bone tissues throughout the body
99

. 

Long and vertebral bones differ in their composition of trabecular and cortical bone, and in their levels 

of metabolic activity. While both cortical and trabecular bone requires constant remodeling to 

maintain the integrity of the skeleton, trabecular bone resorption additionally contributes, to a greater 

extent, to blood calcium homeostasis, resulting in a higher level of metabolic activity
20, 105

.  

While longitudinal analyses of bone by micro-computed tomography (micro-CT) provides 

detailed insights into structural adaptations, as well as changes in bone mineral content over time, such 

studies require weeks or months in mice before changes are observed and the assessment of the short-

term changes in metabolic status of these bones remains difficult. Recent method developments have 

allowed the assessment of bone formation and resorption rates in vivo
82, 127

, but fail to show the 

instantaneous state of bone metabolism. In contrast, analyses of serum markers can provide insight 

into the current metabolic status of the skeleton, but fail to differentiate the individual metabolic 

statuses of different skeletal regions
28

. In humans, (18) F-fluoride positron emission tomography 

(PET) has proven to be a feasible tool for metabolic monitoring
101

. However, in mice, only cases of 

extreme changes in bone activity (complete fracture or cancer-induced severe osteolysis) have been 

successfully documented
4
 and require the repeated injection of radioactive material. To this end, new 

methods are required for the site-specific monitoring of bone metabolic status. 

Because of their anti-resorptive properties, bisphosphonates are in widespread clinical use in 

patients with excessive bone loss (i.e. osteoporosis, tumor osteolysis)
87

. Recent research has also 

exploited the bisphosphonates’ ability to bind bone mineral with high affinity as a bone metabolic 

marker rather than as a therapeutic agent. Conjugation of bisphosphonates with fluorescent dyes is 
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currently under great scrutiny to help characterize bisphosphonate binding
72, 113

, as well as in the use as 

a bone-specific turnover marker
72, 76

. While early works focused on bisphosphonate binding days after 

injection, new data suggests monitoring the kinetics of early binding (as little as 5 minutes after 

injection) may provide additional information about the metabolic status of the bone
142

. One limitation 

in previous in vivo kinetic assessments has been the lack of indicators of blood pool bisphosphonates 

available for bone binding, which are used in more refined, quantitative, multi-compartment analyses 

commonly seen in the context of radiolabeled bisphosphonates
92

. Recent radionuclide studies in 

humans have also suggested that significant overall changes in skeletal activity, such as those seen in 

the case of treatment with parathyroid hormone (PTH), may alter the plasma time-activity curve
6
. This 

effect would alter both the rate and total binding values of a fluorescently-labeled bisphosphonate as 

discussed previously
142

. 

The purpose of this study was to assess whether the binding kinetic characteristics previously 

observed in the proximal tibia could be distinguished from other, metabolically distinct skeletal sites 

and to compare the relationship between observed binding kinetic parameters and longitudinal changes 

in bone structure, as assessed by time-lapse micro-CT
82

. Additionally, we have generated a blood pool 

correction factor allowing multi-compartment, quantitative kinetic analyses to be conducted using a 

modified Patlak’s method
92

, accounting for changes in the quantity of bisphosphonate probe available 

for binding. 
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Materials and Methods 

Animals 

12 week old female, CD-1 nude mice were purchased from Charles River (Wilmington, MA). All 

animals were kept in a temperature and humidity-controlled environment, with a 12 h light/dark cycle, 

and access to food and water ad libitum. Animal experiments and care were in accordance with the 

guidelines of institutional authorities and approved by the Ethics Committee for Animal Experiments 

at the Christian-Albrechts-Universität-zu-Kiel [V 312-72241.121-33]. Mice were anesthetized with 

intraperitoneal injections of 80 mg/kg ketamine (Aveco Pharmaceutical, IA) and 10 mg/kg xylazine 

(Rugby Laboratories, GA). For long-term anesthetization, additional administration of ketamine and 

xylazine at half dose was administered upon initial signs of mouse waking. Animals were separated 

into 3 groups (n=9/group): i) non-operated, control animals, ii) ovariectomized (OVX) animals, 

imaged 3 days (short-term) and 14 days (long-term) after OVX, and iii) PTH-treated mice, which were 

subjected to OVX, then received daily PTH injections for 3 days beginning 11 days post-surgery (total 

of 14 days OVX and 3 days PTH treatment) as previously described
142

. Animals were ovariectomized 

via their dorsal side. Human parathyroid hormone fragment 1-34 (Sigma-Aldrich, MO) was given 

subcutaneously at a dose of 100 µg/kg daily. 

Bisphosphonate Binding Kinetics 

Anesthetized mice were injected intravenously with 100 µl PBS containing 2 nmol of dissolved 

OsteoSense750, a fluorescently-conjugated pamidronate derivative
157

. For all in vivo, quantitative 

assessments of bisphosphonate binding, anesthetized mice were imaged immediately following 

injection and every subsequent ~15 min interval for 210 min by FMT using the 750 nm channel of the 

FMT2500LX (Perkin Elmer, MA, USA). Images were reconstructed and VOIs of equal dimensions 

were positioned using the photographic image around the proximal tibia region, as well as the L1 and 

L2 vertebrae, and quantified using the TrueQuant software. Kinetics curves were generated using the 

average fluorescent intensity of either the proximal tibiae or vertebral regions over time using one-

phase association curves, with Y0 values constrained to zero, generated from Prism (version 5, 

GraphPad Software, CA). Graphs show only the first 100 min of imaging to more clearly illustrate 
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changes in initial binding kinetics, though all time points were used to generate binding kinetic curves. 

Due to the low resolution of FMT, proximal tibia VOIs may also contain fluorescence of the distal 

femur. For this reason, this region is henceforth referred to as the knee region. 

Micro-CT Analysis 

All animals were scanned by micro-CT prior to treatment to establish baseline bone parameters. 

Changes in bone mineral and structure resulting from OVX or PTH treatment were characterized from 

micro-CT assessment of skeletal changes in vivo. Anesthetized mice were placed in full-body holders 

and the tibiae aligned by visual inspection. Scans were made using a Scanco vivaCT 40 micro-CT 

(Brüttisellen, Switzerland) at an isotropic voxel size of 19 µm (70 kVp, 114 µA, 250 ms integration 

time, 1000 projections on 180° 2048 CCD detector array, cone-beam reconstruction with a radiation 

dose of approximately 520 mGy (CTDIair)). PTH-treated mice were additionally scanned by micro-CT 

after 14 days of intermittent PTH treatment to capture long-term bone changes. Three volumes of 

interest (VOIs) were selected, one for the vertebra, as well as one each for the epiphyseal and 

metaphyseal region of the proximal tibia (to exclude the growth plate region). Contours along the 

periosteal surfaces were drawn encompassing either 60 slices (1.05 mm) of the L1 vertebra, starting at 

the beginning of trabecular bone within the spinal body, 50 slices (0.875 mm) beginning at the 

proximal tip of the tibial epiphyseal trabecular bone, or 50 slices (0.875 mm) beginning just distal to 

the tibial growth plate, all extending in the distal direction. Baseline VOIs were transferred to the 

follow-up scans using an image registration approach to ensure analysis of consistent VOIs at each 

time point
15

. Bone mineral density (BMD) was calculated from the greyscale micro-CT images (Image 

Processing Language (IPL) v5.15, ScancoMedical, Brüttisellen, Switzerland) as the total bone mineral 

content within the contour divided by the contour volume. Localized bone formation and resorption 

was determined from the time-lapsed micro-CT images after registration using programs written in 

IPL for the registration, and Matlab (R2010b; Mathworks, Natick, MA, USA) for the quantification of 

bone turnover, following similar procedures as previously described
127

. Briefly, a three-color image 

was produced from the overlaid follow-up and baseline images after a threshold (23% of maximal 

greyscale value) was applied. From this image, the volume of formed, resorbed and quiescent bone 
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could be determined. The contact surfaces between the colored regions were used to calculate the 

formed and resorbed surface area. 

Soft Tissue-Blood Pool Correlation 

VOIs were placed over soft tissue regions in the abdomen and the corresponding fluorescence 

quantified. Kinetic curves for the soft tissue analysis were generated in Prism using one-phase 

exponential decay curves, with the non-specific binding at infinite times (NS) values constrained to 

>0. A standard curve was generated by direct addition of known concentrations of OsteoSense750 to 

serum collected from non-injected mice and subsequently scanned by the Odyssey fluorescent scanner. 

For comparison of soft tissue fluorescence (assessed by FMT) and serum bisphosphonate levels, mice 

were imaged by FMT 1, 15, 30, 45 and 60 min after injection, followed by immediate blood collection 

from the tail vein. Whole blood was separated at 3000 g for 10 min and serum isolated. Serum was 

scanned on the Odyssey fluorescent scanner and compared to standard curve fluorescent readings to 

determine bisphosphonate concentrations. 

Statistical Analysis 

All statistical analyses were conducted using Prism. Binding rate constants (k) and plateau values were 

calculated for curves from the line of best fit for each mouse using the formula: Y=Y0+(Plateau-Y0)(1-

exp
-Kx

), where Y=fluorescence at time x, Y0=the fluorescence at time 0, and x=time in min. The 

plateau, reflecting the maximum binding fluorescence expected as time approaches infinity, and the 

rate constant, reflecting the rate at which the curve approaches its plateau value, were multiplied to 

generate a plateau-weighted (Pw) rate constant for each mouse representing overall curve 

characteristics. For soft tissue analysis, Y0 (fluorescent signal at time zero), NS (fluorescent signal as 

time approaches infinity) and K (clearance rate) values were calculated for curves from the line of best 

fit for each mouse using the formula: Y=(Y0-NS)
-kx

+NS. Comparison between groups was made using 

two-sample t-tests using the Welch-Satterthwaite method to avoid the assumption of equal variances. 

Comparison between knee and spine values within the same mouse was made using paired t-tests. 

Time-lapse micro-CT statistics were calculated using a two-way ANOVA. Interaction between 

binding kinetic and time-lapse micro-CT parameters were assessed by the probability of the slope of 
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the linear correlation being equal to zero using Prism. P values of <0.05 were considered to be 

statistically significant. KBone was determined using a modified Patlak’s method as previously 

described
92

. In short, average KBone values were determined by calculating changes in area-under-the-

plasma-clearance-curve (AUC) and whole-body retention (WBR) values generated for each mouse 

between each FMT imaging time point. Plasma concentrations and bone uptake (BU) values at each 

time point were determined by the formulas: 

[𝑝𝑙𝑎𝑠𝑚𝑎] =
𝑠𝑜𝑓𝑡 𝑡𝑖𝑠𝑠𝑢𝑒 𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 (𝑝𝑚𝑜𝑙)

𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 (𝑝𝑚𝑜𝑙) × 𝑉𝑂𝐼 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚𝑙)
 

𝐵𝑈 =
𝑏𝑜𝑛𝑒 𝑉𝑂𝐼 𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 (𝑝𝑚𝑜𝑙) × 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑚𝑜𝑢𝑠𝑒 (𝑘𝑔)

𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 (𝑝𝑚𝑜𝑙) × 𝑉𝑂𝐼 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚𝑙)
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Results 

Vertebrae bisphosphonate uptake kinetics are altered in ovariectomized and PTH-treated mice 

Average fluorescence of the L1 and L2 vertebrae was quantified from injected mice and subjected to 

nonlinear regression analysis (Figure 23A). Vertebral fluorescence showed significant reductions in 

binding plateaus, rate constants and Pw rate constants after short-term OVX when compared to control 

groups, with further significant reductions in long-term OVX mice (Figure 23B-D), while PTH-treated 

mice showed significant increases in binding plateau, rate constant and Pw rate constant values 

compared to untreated OVX controls. 
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Figure 23 Ovariectomy and treatment with PTH results in significantly altered binding 

kinetic parameters of fluorescently-conjugated bisphosphonate. Time resolved bone binding 

pattern of fluorescently-labeled bisphosphonate in L1 and L2 (A). Long-term ovariectomized mice 

showed significantly reduced binding plateaus (B), rate constants (C) and plateau-weighted (Pw) rate 

constants (D) compared to short-term OVX mice, which in turn showed significant reductions in all 

parameters compared to control mice, while treatment of mice with PTH for 3 days resulted in values 

comparable to control mice and binding kinetic parameters significantly greater than OVX mice. 

Dotted lines represent 95% confidence interval of fitted curve. Graphs represent average values ± SD. 

(**p<0.01, ***p<0.001) (n=9) 
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Fluorescent bisphosphonate binding kinetics reveal differential changes in uptake parameters in the 

knee and spine 

 To examine region-specific differences in uptake, changes in fluorescent bisphosphonate 

kinetic parameters obtained for the knee (as previously published
142

) and spine for each group were 

compared. Overall, changes in kinetic parameters were similar for both the knee and spine in response 

to OVX. No significant differences in percent change in plateau values were observed between short 

and long-term OVX, relative to control, for either the knee or the spine (Figure 24A). In contrast, 

while both the spine and the knee showed significant reductions in the rate constant, the changes 

observed in the knee were slightly but significantly greater than those observed in the spine after long-

term OVX (Figure 24B). Both the knee and the spine showed reductions in the Pw rate constant, with 

significantly greater reductions after long-term OVX as compared to short-term (Figure 24C), but no 

significant differences were observed between regions. In response to PTH treatment of OVX mice, 

clear differences were observed in the rate constant and plateau values between the knee and spine 

regions. The spine showed a significantly greater increase in the binding plateau, while the knee 

showed a significantly greater increase in rate constant values in OVX mice treated with PTH, relative 

to untreated OVX controls (Figure 24D and E). Overall, no significant changes in the Pw rate 

constants were observed between the knee and the spine in response to PTH treatment (figure 24F). 
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Figure 24 Spine and knee regions show differential changes in bisphosphonate binding 

kinetics in response to ovariectomy and PTH treatment. Analyzing changes in binding kinetic 

parameters in response to ovariectomy, both the knee and spine showed no significant differences in 

the change between short and long-term OVX (A), but did show a significant increase in rate constant 

values (B). Both regions showed significant changes in Pw rate constant values between short and 

long-term OVX mice (C). In response to PTH treatment in OVX mice, the spinal region showed 

significantly greater changes in plateau binding values (D), while the knee region showed significantly 

greater changes in rate constant values (E), relative to untreated OVX controls. Pw rate constant values 

showed no significant differences between the knee and spine region after PTH treatment (F). Dotted 

lines represent 95% confidence interval. Graphs represent average values ± SD. (*p<0.05, 
**

p<0.01, 

***p<0.001) (n=9) 
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 To delineate the biological significance of the observed changes in binding plateau and rate 

constant values, micro-CT analyses were conducted to monitor changes in BMD, bone microstructure 

and turnover in the knee and spine. Bone loss expected as a result of OVX was confirmed by BMD 

assessment which showed significantly reduced values in both the spine and knee after long-term 

OVX (data not shown) and serum marker analyses
142

. Baseline and follow-up scans were overlaid to 

ensure analyses of similar regions and to visualize regions of bone formation and resorption which 

occurred between imaging time points and pre-OVX baseline scan (Figure 25A). Images were used to 

quantify bone forming and resorbing surfaces (Figure 25B and D) and volumes (Figure 25C and E). 

Time-lapse micro-CT showed a trend towards increased resorbing surfaces (p=0.0683) and 

significantly greater resorbed bone volume in the tibia between short-term and long-term OVX. 

Relative to the tibia, the spine showed a trend towards an increased percent resorbing surface after 

short-term (p=0.0926) and long-term (p=0.0771) OVX, as well as significantly greater resorbed bone 

volume after short-term and long-term OVX. A two-way ANOVA was conducted to determine overall 

effects of skeletal site and length of OVX on time-lapse micro-CT parameters (Table S3). Neither the 

skeletal site (tibia vs spine), nor the duration of OVX (day 3 vs day 14) had a statistical impact on 

bone forming surfaces or volumes. In contrast, resorbing surfaces and volumes both showed a 

significant dependence on both the skeletal site assessed, as well as the duration of OVX. 
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Figure 25 Bone loss associated with ovariectomy preferentially affects the spine. (A) In vivo 

micro-CT was used to analyze changes in bone microstructure in the L1 vertebrae and the tibia. Color-

coded subtraction images show regions of bone formation (orange) and bone resorption (blue).  Time-

lapse micro-CT was used to quantify bone forming surfaces and volumes (B and C), as well as 

resorbing bone surfaces and volumes (D and E) at each time point relative to its baseline scan prior to 

OVX. The spine contained consistent levels of bone resorbing volumes after both short-term and long-

term OVX, significantly greater than resorbing volumes observed in the tibia, while the tibia showed a 

significant increase in resorbing bone volume from short-term to long-term OVX. Two-way ANOVA 

analyses (Table S1) revealed that, although neither skeletal site nor duration of OVX significantly 

affected bone forming surfaces or volume, both bone region and length of OVX significantly affected 

bone resorption surfaces and volume. Graphs represent average values ± SD. (*p<0.05) (n=9) 
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Table S3 Two-way ANOVA comparison of time-lapse micro-CT parameters from short-

term and long-term OVX mice. 
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 Micro-CT analyses were next conducted on mice treated with PTH. Because BMD values 

failed to show any significant changes after 3 days of PTH treatment, an additional follow-up scan was 

taken after 14 days of PTH treatment, which showed a significant increase in knee BMD (data not 

shown) and significantly increased bone metabolic serum markers
142

 and likely represents changes in 

bone structure which would result from the day 3 metabolic bone statuses. Baseline and follow-up 

scans were overlaid to ensure analyses of similar regions and to visualize regions of localized bone 

formation and resorption in the vertebral and tibial VOIs (Figure 26A) and to quantify bone forming 

and resorbing surfaces (Figure 26B and D) and volumes (Figure 26C and E) which occurred relative to 

pre-treatment baseline scan. Both the tibia and spine showed significantly greater bone forming 

surfaces and volumes between early and long-term PTH treatment, with the tibia containing 

significantly greater forming surfaces than the spine after long-term PTH treatment. In contrast, the 

spine contained significantly greater bone resorbing surfaces and volumes then the tibia after both 

early and long-term PTH treatment. Two-way ANOVA analyses of time-lapse micro-CT parameters 

revealed that both the skeletal site and the duration of PTH treatment (day 3 vs day 14) significantly 

affected the bone forming surfaces, while only the length of PTH treatment affected bone formation 

volumes (Table S4).  
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Figure 26 Treatment with PTH results in significant changes in bone microstructure. In 

vivo micro-CT of the L1 vertebra and the knee over 14 days of PTH treatment (A). Time-lapse micro-

CT was used to quantify bone forming surfaces and volumes (B and C), as well as resorbing bone 

surfaces and volumes (D and E) at each time point relative to its baseline scan before commencement 

of PTH treatment. Both the tibia and spine showed significant increases in bone forming surfaces and 

forming volumes after prolonged PTH treatment, with the tibia containing significantly greater bone 

forming surfaces than the spine after long-term PTH treatment. In contrast, the spine showed 

significantly greater levels of bone resorbing surfaces and volumes compared to the tibia. Two-way 

ANOVA analyses (Table S2) revealed that while only duration of PTH treatment affected bone 

formation volumes, both skeletal site and treatment length significantly affected bone forming 

surfaces. In regards to bone resorption, only skeletal site, and not duration of PTH treatment, was 

found to significantly affect resorbing volumes or surfaces. Graphs represent average values ± SD. 

(*p<0.05, **p<0.01, ***p<0.0001) (n=9) 
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Table S4 Two-way ANOVA comparison of time-lapse micro-CT parameters from 

OVX+PTH and OVX+long-term PTH-treated mice. 
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Binding kinetic parameters correlate with changes in bone formation and resorption 

In order to determine which aspects of bone formation and resorption are reflected in each 

bisphosphonate binding kinetic parameter, correlation studies were conducted between rate constant, 

plateau and Pw rate constant values determined by FMT and time-lapse micro-CT-derived bone 

forming and resorbing surfaces (Figure 27A and C) and volumes (Figure 27B and D), and their 

interaction assessed (Table 3). Percent forming surfaces, assessed by time-lapse micro-CT, showed 

significant correlations with rate constant and Pw rate constant values, assessed by FMT binding 

kinetics, while percent forming and resorbing bone volumes significantly correlated with plateau 

values. 
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Figure 27 Linear correlations between binding kinetic and time-lapse micro-CT 

parameters. Binding kinetic parameters, assessed by in vivo FMT, for both the spine and knee 

regions, was subjected to linear regression analyses with % forming (A) and resorbing (C) surfaces 

and % forming (B) and resorbing (D) volumes as assessed by time-lapse micro-CT. 
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Table 3  Rate constant values reflect changes in forming surfaces while plateau values 

reflect changes in bone formation and resorption volumes. Linear correlations between binding 

kinetic and time-lapse micro-CT parameters shown in Figure 27 were assessed for their interaction. 

Values represent: Significance of the linear correlation/Probability that slopes are equal to zero. ns = 

not significant. 
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Soft tissue fluorescence of the abdominal region correlates with serum levels of bisphosphonate 

To assess the blood pool levels of bisphosphonate available for binding over time, abdominal soft 

tissue fluorescence was measured (Figure 28A) and subjected to nonlinear regression analysis (Figure 

28B). Both short and long-term OVX mice showed significantly greater maximum tissue fluorescence 

than control mice, while treatment with PTH significantly reduced maximum fluorescence back to 

levels comparable with control mice (Figure 28C). Ovariectomy also resulted in increased minimum 

fluorescence values with long-term OVX mice having significantly greater values than that of control 

mice. Treatment with PTH resulted in a significant decrease in minimum fluorescence values to levels 

consistent with control mice (Figure 28D). Both short and long-term ovariectomy resulted in 

significantly decreased soft tissue clearance from control mice, while PTH treatment resulted in a 

significant increase in the clearance rate compared to untreated long-term OVX (Figure 28E). A 

standard curve (Figure 28F) was used to calculate serum level bisphosphonates in imaged mice and 

compared to soft tissue fluorescence detected by FMT. A strong correlation (R
2
=0.8621) was found 

between bisphosphonate concentrations, determined by FMT soft tissue fluorescence, and ex vivo 

serum analysis (figure 28G). Using a modified Patlak's method, ovariectomized mice showed 

significantly reduced KBone values as compared to control mice in both the knee and spine regions, 

while PTH-treated mice showed significantly increased KBone values from untreated OVX controls 

(Figure 28H). Analyses also show significantly greater KBone values in the spine for each test group 

relative to the corresponding knee values. 
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Figure 28 Abdominal soft tissue fluorescence correlates with serum bisphosphonate levels 

and shows altered clearance in OVX and PTH-treated mice. Soft tissue fluorescence of 

reconstructed FMT images was quantified in regions devoid of bone (A) and subjected to nonlinear 

regression analysis (B). OVX resulted in significantly increased maximum (C) and minimum (D) soft 

tissue fluorescence compared to control mice, while treatment with PTH significantly reduced 

maximum and minimum fluorescence compared to untreated OVX controls. OVX also resulted in 

significantly decreased clearance rates of soft tissue fluorescence while treatment with PTH 

significantly increased the clearance rate of soft tissue fluorescence relative to untreated OVX 

controls. (F) A standard concentration curve of fluorescent bisphosphonates in serum was generated 

and used to quantify serum levels of bisphosphonate in intravenously injected mice. Fluorescence in 

the soft tissue region, determined by FMT imaging, and serum levels of fluorescent bisphosphonate 

show a strong correlation between soft tissue fluorescence and actual serum levels of bisphosphonate 

(G). Using a modified Patlak’s method (H) analysis shows significant reductions in KBone values in 

response to OVX and significant increases in response to PTH treatment for both the knee and spine 

regions (*). Analyses also show significantly greater KBone values for the spine relative to knee values 

for each group (#). Dotted lines represent 95% confidence interval. Graphs represent average values ± 

SD. (*,#p<0.05, **,##p<0.01, ***p<0.001) (n=9) 
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Discussion 

In this study, we demonstrate that fluorescent bisphosphonates show consistent patterns of binding at 

both the vertebra and long bones in response to OVX or PTH treatment. Furthermore, we show that 

changes in binding kinetic parameters were found to mirror later changes observed by micro-CT 

methods. These binding kinetic parameters reflect the site-specific, variations observed in response to 

changes in metabolic status.  We have additionally shown that soft tissue fluorescence, as assessed by 

in vivo FMT, correlates with serum levels of free bisphosphonate and can be used as a tool to monitor 

the changes in blood pool levels of bisphosphonates over time. Combining our uptake parameters of 

both the knee and spine regions with our soft tissue blood pool measure, we have generated KBone 

values for each mouse using a modified Patlak’s method. Values obtained from this method show 

significant reductions in bisphosphonate uptake by the bone in response to ovariectomy and significant 

increases in bone uptake after PTH treatment.  

As has been previously described for the knee region, short-term ovariectomized mice showed 

significantly reduced plateau, rate constant and Pw rate constant values compared to control mice, 

with further significant reductions observed in all parameters after long-term OVX in the spine. 

Conversely, treatment with PTH was found to significantly increase all binding parameters compared 

to untreated controls. Based on micro-CT morphometry, combined with the observed changes in 

binding kinetics of the spine and knee region in response to OVX and PTH treatment, bone surface 

and metabolic status plays an important role in both plateau and rate constant binding parameters. In 

response to treatment with PTH, we observed a preferential increase in rate constant within the knee 

and binding plateau within the spine. This corresponded to preferential increases in bone forming 

surfaces in the knee and elevated levels of bone resorption surfaces and volumes in the spine. This 

data suggests a relationship between rate constant and plateau values and changes in metabolic activity 

which ultimately gives rise to bone loss/apposition. Though rate constant and plateau values are 

interdependent, correlation studies with time-lapse micro-CT, which assesses localized changes in 

bone microstructure
74, 82

, support a preferential interaction between bone apposition surfaces and rate 

constant values, as well as bone loss and apposition volumes and plateau values. The fact that binding 

kinetics in the knee and spine differ in response to PTH treatment suggest that this kinetic monitoring 
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has the ability to distinguish between these metabolically distinct sites with a high degree of 

sensitivity. It is important to note that, because micro-CT provides only a snap shot of bone structure, 

time-lapse micro-CT analyses may underestimate the amount of bone forming volumes and surfaces in 

regions where new bone formation occurs over top of resorbed areas, but has not deposited sufficient 

mineral to overcome the mineral lost by previous resorption. Histological confirmation will be 

required to correlate metabolically actively forming and resorbing surfaces with bisphosphonate 

uptake. Nevertheless, micro-CT has previously been shown to correlate with dynamic 

histomorphometry in mice
127

. 

Previous works have demonstrated a preferential uptake of bisphosphonates by newly 

mineralized bone, and by active remodeling surfaces compared to quiescent bone surfaces
113, 142

. 

Taken together, we propose a hierarchical model of bone bisphosphonate uptake from high uptake, 

newly mineralized bone, to medium uptake, newly exposed/resorbing bone, to low uptake, quiescent 

bone surfaces. Using these criteria, treatment with PTH results in increased high uptake bone surface 

within the knee region, resulting in rapid uptake shortly after injection while the spine shows increased 

accumulation of both high and medium uptake bone, resulting in increased uptake rates and plateau 

values. While the amount of high uptake, newly mineralized bone is dependent on the osteoblast 

activity, the amount of newly exposed mineral will be dependent on the osteoclasts and will be 

affected both by the number of osteoclasts as well as the depth of the resorbing pits. Though the 

preferential uptake of bisphosphonates by newly deposited minerals has previous been suggested to 

reflect the presence of amorphous, higher affinity calcium phosphate present in newly forming bone as 

compared to the lower affinity crystalline minerals present in fully mineralized bone
42, 142

, both 

quiescent and resorbed surfaces are comprised of fully mineralized bone. Reduced exposure and/or 

binding of the bone mineral, potentially limited by bone lining cells or secreted extracellular matrix 

components present on quiescent bone surfaces but not on resorbing surfaces, may explain their 

differential uptake of bisphosphonates from the blood.  

Finally, we have demonstrated that time-related reductions in bisphosphonate fluorescence 

from within the abdominal soft tissue shows significant reductions in both the extent and rate of 
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clearance in response to OVX and significantly greater clearance kinetics in PTH-treated mice 

compared to untreated controls. These results are consistent with the observed changes in 

bisphosphonate bone uptake in that decreased bone uptake, in the case of OVX, would result in 

delayed blood clearance while increased bone uptake, observed in PTH-treated mice, would result in 

increased blood pool clearance. We also show a strong correlation between soft tissue fluorescence 

assessed by in vivo FMT and serum levels of free bisphosphonate. Using soft tissue fluorescence as a 

blood pool correction, modified compartment model Patlak’s calculations were conducted to assign 

quantitative values of bisphosphonate bone uptake. Results show that ovariectomy gives rise to 

significant reductions in KBone values while treatment with PTH shows significant increases in this 

parameter. Additionally, Patlak’s calculations also showed significantly greater KBone values for the 

spine in each test group relative to corresponding values observed in the knee, similar to results 

observed in humans using 18F-fluoride PET comparing the vertebra to the humerus
24

. This has 

previously been explained by greater tracer delivery to the spine, accounted for by greater regional 

blood flow
101

. Because these values are derived from both blood and bone values, KBone values reflect 

the accumulation of bisphosphonates on the bone adjusted for the clearance of available unbound 

probe from the blood and thus, KBone values should better approximate changes in bone metabolism. In 

our models of relatively short term OVX or treatment with PTH, minimal changes in body weight, 

renal function or blood flow are expected to occur, minimizing the overall benefit received with this 

modified multi-compartment analysis. However, while the resolution of FMT does not permit the 

evaluation of site-specific blood flow, this general blood pool correction factor should prove useful in 

mouse models in which significant changes in body mass or renal function occur, such as the case in 

tumor models and some therapeutic treatments, and help overcome some bias in bone binding kinetics 

resulting from the uptake of bisphosphonates by other skeletal sites as has previously been observed in 

treated patients
6
. 

Previous works have suggested competing perspectives on the effects of PTH treatment on 

spine and tibia bone mineral changes
63, 161

. It is possible that because of the site of injection and the 

dosing administered in this study, bone changes in the spine reflect more a continuous PTH-dosing 

model in which the anabolic effects are replaced with significant up regulation in bone remodeling 
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with no net bone mineral increase
86

. Other works have also suggested that different skeletal sites may 

be comprised of functionally distinct cell populations which respond at different rates and to different 

extents to anabolic therapy
102

. This idea is supported by the fact that, while both the knee and spine 

regions show relatively similar increases in bone forming surfaces and volumes, relative to OVX 

controls, the knee shows substantially greater reductions in bone resorbing volumes and surfaces than 

were observed in the spine. As a result, the overall bone metabolic activity (bone formation and 

resorption) is greater in the spine than the knee. This is consistent with micro-CT and KBone values in 

which the spine shows significantly greater bone turnover (forming and resorbing bone volume) and 

greater uptake of bisphosphonate relative to the knee region. It has also been noted that PTH treatment 

tends to enhance bone formation at sites of stress
108

 and this effect may be mediated through 

sclerostin
100

. Nude mice used in this study are also T cell-deficient, which have previously been shown 

to play a role in stimulating both osteoclastogenesis and osteoblast differentiation
17, 96, 106, 153

. It would 

be of great interest to determine which, if any, of these factors contribute to the differential responses 

observed to PTH treatment between the knee and the spine in this study and other studies published in 

mice, rats and humans. It is also possible that, because kinetic analyses were done after a relatively 

short time period after the beginning of PTH treatment, the knee region, and predominantly the 

actively-modeling trabecular regions distal to the growth plate, are more rapidly responsive and thus, 

show more significant changes in BMD values relative to the spine. 

Overall, these methods show great utility in as in vivo tools for assessing metabolic activity in 

a range of potential models. We were able to show bone metabolism, as assessed by binding kinetics, 

varies between skeletal sites. We also provide evidence that these differences may be due to changes 

in bone surface properties, as illustrated by correlation with time-lapse micro-CT analyses. Both 

methods were also able to distinguish differential responses to bone anabolic treatment suggesting 

utility in monitoring site-specific responses to novel therapeutic interventions. With the addition of a 

blood pool correction and multi-compartment analyses, the binding kinetics assay now accounts for 

biases introduced by off-site uptake (both soft tissue and other, non-measured skeletal sites) as well as 

conditions which may result in delay clearance of free bisphosphonates from the blood pool (i.e. renal 

impairment).  
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3. Discussion and future directions 

 In the above works, the utility of bisphosphonates as targeting molecules for use in the 

development of novel therapeutics and imaging biomarkers was evaluated. In the case of drug 

targeting, we demonstrate the utility of the drug conjugate 5-FdU-alendronate as an effective 

therapeutic in the treatment of osteolytic bone metastases resulting in decreased frequency and size of 

metastatic lesions and increased inhibition of osteoclast activity without effecting new bone formation. 

We have also shown that 5-FdU-ale can be administered at high doses relative to alendronate alone 

without any toxic effects. This data supports both the further development of 5-FdU-ale as a potential 

anti-bone lesion therapeutic, possibly replacing the standard bisphosphonate adjuvant therapy given to 

breast cancer patients, as well as the development of other drug conjugates between bisphosphonates 

and anti-tumor or anti-metabolite drugs. It would also be of great interest to explore the use of these 

new therapeutics in the context of other bone diseases such as osteoporosis, where current long-term 

treatments depress new bone formation as well as resorption, and in prostate cancer and Paget’s 

disease, where initial osteoclast activity plays a critical role but later stage disease can be primarily 

osteosclerotic in nature. 

 Using in vivo binding kinetics, we have now demonstrated that high affinity bisphosphonates 

show varying degrees of bone uptake depending on the metabolic activity of the bone, with newly 

deposited minerals showing greater uptake than regions of newly exposed minerals associated with 

bone resorption, which in turn shows greater uptake than quiescent bone surfaces.  As a result, 

monitoring binding kinetics provides a site-specific, instantaneous marker of the bones current 

metabolic status. These correlations between binding kinetic parameters and bone status were also 

confirmed by time-lapse micro-CT where skeletal regions with increased actively mineralizing bone 

surfaces showed primarily increased binding rate constants, while skeletal regions showing 

upregulated bone resorption responded primarily with increased binding plateau values. This ability to 

identify regions of high bone metabolic activity was additionally applied in the context of osteolytic 

breast cancer bone lesions. Mice containing MDA-MB-231 were identified by bioluminescent 

detection as described above in chapter 2.2. Mice were injected with a fluorescently-labeled 

bisphosphonate and kinetic analyses were performed as described in chapter 2.3. Binding kinetic 
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parameters were determined for individual limbs containing bioluminescent tumor signal. Rate 

constants and binding plateau values were determined and correlated with tumor size, determined by 

bioluminescent signal area (Figure 29). Both the rate constant and plateau values showed good 

correlation with estimated tumor size (R
2
=0.7938 and 0.7309 respectively). These results suggest that, 

as the tumor size increases, rate constant values also increase. This is consistent with previous results 

which suggested that metabolically active bone shows a more rapid uptake of bisphosphonates. In 

contrast to rate constant values, binding plateau values appear to decrease as tumor size increases. This 

result is not surprising considering the amount of bone resorbed and most likely reflects the significant 

decrease in bone available for binding resulting from these large osteolytic lesions. This data suggests 

that binding kinetics may serve as a useful imaging biomarker for the detection of bone lesions and 

possibly serve as a means to distinguish metastatic from benign lesions. Further work is required to 

characterize the binding of bisphosphonates to bone in a highly osteolytic tumor environment. 

Specifically, regions of rapid bisphosphonate uptake will be compared to micro-CT analyses to 

identify regions of bone formation and resorption from baseline scans, along with corresponding 

histological analyses which will verify regions identified as resorbing or forming my micro-CT are 

associated with increased levels of osteoclasts or osteoblasts, respectively. This will allow us the 

quantify bisphosphonate binding in regions of formation, resorption and quiescence. 
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Figure 29 Binding kinetic parameters correlate with tumor progression. Mice were injected 

with the breast cancer cell line MDA-MB231 and imaged weekly for bioluminescent detection of bone 

metastases formation (A). Mice were injected with a fluorescently-labeled bisphosphonate and binding 

kinetic assessments for individual tumor-burdened limbs were assessed. Tumor area, assessed by 

bioluminescence, showed good correlations with both the rate constant (R
2
=0.7938) and plateau 

(R
2
=0.7309) values, assessed by FMT. 
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One additional topic which warrants further investigation is the differences in bisphosphonate binding 

characteristics associated with their varying bone affinities. Previous work has illustrated preferential 

binding of high affinity bisphosphonates to regions of newly mineralized bone
142

 while low affinity 

bisphosphonates appear primarily in resorbing pits
113

. Due to a lack of histological confirmation, it still 

remains unclear whether this preferential binding of low affinity bisphosphonates to resorbing pits is 

due to newly exposed minerals as the result of osteoclast activity, or whether these resorbing pits are 

actually the sites of osteoblast activity depositing fresh, high uptake minerals to replace previously 

resorbed bone
68

. In any case, this differential binding pattern could prove useful in the preferential 

assessment and targeting of resorbing and forming bone. This may have great implications in the 

choice of bisphosphonate used to develop new conjugate drugs which will preferentially target 

osteolytic or osteosclerotic bone lesions and may also have utility in identifying mixed bone lesions in 

which both excessive bone loss and gain occurs, but fails to show any significant change in overall 

bone volume making identification of these lesions by traditional radiographic approaches difficult. 
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4. Conclusions 

Bisphosphonates show a very high affinity for the bone and, as such, serve as a useful tool in the 

targeting of conjugated therapeutics. Here, data is presented on the novel conjugate drug 5-FdU-ale 

which shows no significant signs of toxicity and increased efficacy in the treatment of breast cancer 

bone metastases in vivo. Additionally, mice treated with 5-FdU-ale showed significant inhibition of 

osteoclasts while maintaining normal osteoblast function. This resulted in significantly greater bone 

volume and mineral assessments than mice treated with either alendronate or 5-FdU. With the addition 

of fluorescent dyes, bisphosphonates can also be used to provide a site-specific marker for the current 

metabolic state of the bone. Here, we provide evidence supporting the use of bisphosphonate binding 

kinetics in the monitoring of systemic or localized bone loss and the monitoring of the bone response 

to anabolic stimuli. These binding kinetic assays have great utility in assessing changes in bone 

metabolism at a very early stage before any structural changes are observed and thus, may prove 

useful in the early evaluation of novel therapeutics in the context of either excessive bone loss or gain. 

With further work incorporating the use of both high and low affinity bisphosphonates, the utility and 

sensitivity of binding kinetics is likely to prove a useful tool for both the bone monitoring of 

osteolytic, osteosclerotic and mixed bone lesions and may also guide the development of novel 

bisphosphonate conjugate therapeutics. 
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