
 
 

 

Sea Level Change and Sea Surface Temperature Reconstruction in the 

Southern Equatorial Pacific Ocean Relative to the Society Islands,  

French Polynesia 

 

 

 
 

 

Dissertation 

Zur Erlangung des Doktorgrades 

Dr. rer. nat 

Der Mathematisch-Naturwissenschaftlichen Fakultät 

der Christian-Albrechts-Universität 

zu Kiel 

 

 

 

vorgelegt von 

Rashid Juma Rashid 

 

 

 

 

Kiel, 2015 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Referent: Prof. Dr. Anton Eisenhauer 

Koreferent: Prof. Dr. Wolf-Christian Dullo 

Tag der Disputation: 17.03.2015 

Zum Druck genehmigt: Ja  

 

 

Der Dekan 



Erklärung 

 

Hiermit erkläre ich an Eides statt, dass die vorgelegte Dissertation von mir selbständig und ohne 

unzulässige fremde Hilfe angefertigt und verfasst wurde, dass ich alle verwendeten Hilfsmittel 

angegeben habe, und dass alle Stellen, die ich wörtlich oder dem Sinne nach aus anderen 

Veröffentlichungen entnommen habe, kenntlich gemacht worden sind. Diese Arbeit wurde nach 

den Regeln guter Wissenschaft erstellt. 

Ebenso erkläre ich, dass die Dissertation in der vorgelegten oder einer ähnlichen Fassung weder 

zu einem früheren Zeitpunkt an der Christian-Albrechts-Universität zu Kiel noch einer anderen 

in- oder ausländischen Hochschule als Dissertation eingereicht worden ist. 

 

 

 

         Kiel, den 2015   

Rashid Juma Rashid 



Table of Contents 

 

Zusammenfassung 

Abstract 

Acknowledgments 

 

 

1.     General Introduction……………………………………………………….......... 1 

1.1. Archives for past climate…………………………………………………………. 1 

1.1.1. Corals as environmental archives ………………….……...……………………… 1 

1.2.    Coral types and their nature………………………………………………………. 2 

1.3.  Anatomy of a hard coral…………….......………………………………………….              3 

1.3.1. Reef growth and development…………………………………………………….. 4 

1.3.2. Coral calcification…………………………………………………………………. 4 

1.4.   Coral reef distribution and habitat……...………………………………………….. 5 

1.5.    Coral reef as an archive of sea level variation……………………………………. 6 

1.5.1 Principle behind U/Th dating for coral age estimation…………………………… 10 

1.5.2. Corals as proxy for sea surface temperature (SST) reconstruction………………. 11 

1.6.    Oxygen Isotopes (δ18O) in corals………………………………………………….. 12 

1.7.    Sr/Ca ratios in corals………………………………………………………………. 13 

1.8.    U/Ca ratios in corals………………………………………………………………. 15 

1.9.    Challenges in SST reconstruction…………………………………………………. 15 

   

2.    Materials and Methods…………………………………………………………. 18 

2.1.  Study area and sampling location.…….………………………...………………… 18 

2.1.1.    Climate……………………………………………………………………………. 19 

2.2.      Sample collection....……………………………………………………………..... 19 

2.2.1.     Sample processing……………………………………………...………………...... 20 

2.2.2.     Ultrasonic cleaning of samples (Ultrasonification)…………………………...…… 20 

2.3. 3.    X-ray diffraction………………………………………………………………….. 21 

2.3.      U/Th geochronology……………………………………………………………… 21 



2.3.1.     Separation of uranium and thorium (ion exchange separation)………………..… 21 

2.3.2.     Uranium/Thorium age determinations…………………………………………… 22 

2.4.      Microscopic observations. ……………………………….……………………… 23 

2.4.1.     Micro-mill based sampling for diagenetic samples……………………………… 23 

2.4.2.     Electron microprobe (EMP) element mappings of early diagenetic corals and          

investigation of Sr/Ca intra-skeleta variability within the primary coral skeleton… 

 

23 

2.5.      Geochemical analysis…………………………………….……………………… 24 

2.5.1.     Sr/Ca analytical procedures………………………………………….……........… 24 

2.5.1.1. Measurements of Sr/Ca ratios of the bulk sample powders……………………… 24 

2.5.1.2. Measurements of Sr/Ca ratios from the micro-mill sampling…………………... 24 

2.5.2. Determination of stable isotope ratios…………………………………………… 25 

2.6.      Focus of this Thesis………………………………………………………………. 25 

2.7.      Thesis Structure……………………………………………………………………. 27 

   

3.     Constraining Mid to Late Holocene Relative Sea Level Change in the 

Southern Equatorial Pacific Ocean Relative to the Society Islands, French 

Polynesia…………………………………………………………………………. 

 

 

29 

Abstract ...…………………………………………………………………………………… 29 

3.1.     Introduction………………………………………………………………………. 30 

3.2.     Samples and Methods……………………………………………………………. 33 

3.2.1. Sample location…………………………………………………………………… 33 

3.2.2. Sample collection and preparation……………………………………..………… 35 

3.2.3. Uranium and thorium isotope measurements………………………….………… 38 

3.2.4. Correction for the subsidence of the islands……………………………………… 39 

3.3.     Results and Discussion…………………………………………………….……… 40 

3.3.1.      U/Th-Age Dating…………………………………………………………………. 40 

3.4.    Society Island Relative Sea level Curve, Subsidence Correction and Statistical 

Age Distribution…………………………………………………………………… 

 

45 

3.4.1. In situ Corals and Micro-atolls…………………………………………………… 45 

3.4.2.      Subsidence Correction……………………………………………………………. 45 

3.5.      Numerical Modeling of the Society Island Sea level Curve(s)…………………… 48 



3.5.1. Geophysical model…………………………………………………………….…... 48 

3.5.2. Predicted rsl Curves………………………………………………………………. 49 

3.5.2.1. Eustatic Sea level Change…………………………………………………….….. 49 

3.5.2.2. Predicted RSL at Society Islands………………………………………………… 51 

3.6. Comparison between theoretical data and empirical observations………………. 51 

3.6.1. Factors influencing sea level height observations……………………………..… 51 

3.6.2. Comparison of empirical to modeled data………………………………………… 52 

3.7. Conclusions………………………………………………………….………….. 54 

Acknowledgements………………………………………………………………………..…. 54 

  

4. 

 

Early Diagenetic imprint on temperature proxies in Holocene Corals: A case 

study from French Polynesia…………………………………………………… 

 

55 

Abstract………………………………………………………………………………………. 55 

4.1. Introduction……………………………………………………………………….. 56 

4.2. Methodology……………………………………………………………………… 59 

4.2.1. Study Area………………………………………………………………………… 59 

4.2.2. Coral sampling……………………………………………………………………. 60 

4.2.3. Investigation of early diagenetic alteration……………………………………….. 61 

4.2.3.1.  X-Ray diffraction (XRD) and microscopic observations.………………………… 61 

4.3. Bulk sample analysis………………………………………………………………. 61 

4.4. Analysis of Sr/Ca ratio in early diagenetic samples……………………………….. 62 

4.4.1. Micro-milling of diagenetic samples………………………………………………. 62 

4.4.1.2. Sr/Ca analysis of diagenetic samples……………………………………………… 62 

4.4.2. Electron microprobe mapping (EMP) …………………………………………… 63 

4.5. Intra-skeletal variability of Sr/Ca ratios in the primary aragonitic corals.………… 63 

4.6. Chronology……….……………………………………………………………….. 63 

4.7. Results and discussion…………………………………………………………….. 64 

4.7.1. Diagenetic alteration and coral skeletal system behavior……………………..…... 64 

4.7.2. Geochemical analysis of bulk samples…………………………………………….. 65 

4.7.3. Proxy Calibration………………………………….……………………………… 67 

4.7.4. Early secondary diagenesis and its implications on SST estimates………………. 68 



4.7.4.1. Micro-mill based analysis…………………………………………………………. 68 

4.7.4.2. Electron Micro Probe (EMP) analysis 69 

4.7.5. Intra-skeletal variability of Sr/Ca ratios in the primary aragonitic corals………… 72 

4.7.6. Sea surface temperature reconstructions (SSTSr/Ca, SSTU/Ca, SSTδ
18

O)…………… 74 

4.7.7. Origin of the SST-variations and wider implications for the Late Holocene 

climate change…………………………………………………………………….. 

 

78 

4.7.8. Implications for the sea level to temperature relationship in the Pacific…………. 83 

4.8. Conclusions………………………………………………………………………... 85 

Acknowledgements…………………………………………………………………………… 85 

  

5.  General Conclusions……………………………………………………………… 86 

5.1.  Sea level variation from Mid to Late Holocene…………………………………… 86 

5.2.  Temperature variability during Mid to late Holocene…………………………….. 87 

5.3.  Impact of diagenesis on the SST estimates……………………………………….. 87 

5.4.  Micro-scale Intra-skeletal variability within the sample………………………….. 88 

5.5.  Recommendation and future perspectives………………………………………… 88 

   

6.  References………………………………………………………………………… 90 

 

 

 



List of Figures 

Chapter One  

Figure 1. Anatomy of the coral polyp………………………………………………………… 3 

Figure 2. Figure 1: The global distribution of the coral reef…………………………………. 5 

Figure 3a. The downward pressure exerted into the Earth lithosphere forcing sub-

lithospheric flow of mantle away from the centers of load to form the fore-bulges on the 

periphery of the ice cover…………………………………………………………………….. 

 

 

8 

Figure 3b. The isostatic rebound of the Earth crust as a result of melting of the continental 

ice sheets and the collapsing of the fore-bulges……………………………………………… 

 

8 

Figure 4. Isostatic rebound (crustal rebound) of the Earth lithosphere to maintain isostatic 

equilibrium……………………………………………………………………………………. 

 

8 

Figure 5a. Exposed fossil reef platform in Moorea Island that was formed as a consequence 

of migration of water away from these areas as a result of ocean siphoning effect…………. 

 

9 

Figure 5b. Fossil Porites micro atoll in growth position……………………………………... 9 

Figure 5c. Fossil Porites micro atoll in growth position……………………………………… 9 

Figure 6. The δ18O-SST calibrations published from previous researches in Central and 

Southern Pacific Ocean using Porites sp…….......................................................................... 

 

13 

Figure 7. Sr/Ca-SST calibrations published from previous researches in Central and 

Southern Pacific Ocean using Porites sp……………………………………………………... 

 

14 

  

Chapter Two  

Figure 1a. Map showing the Location of French Polynesia in the Pacific Ocean where 

Society Islands are located……………………………………………………………………. 

 

18 

Figure 1b. The chain of the islands in the Society archipelago……………………………… 18 

  

Chapter Three  

Figure 1a. Location of the French Polynesia where Society Islands are located……………. 34 

Figure 1b. Society Islands distribution relative to the volcanic hotspot 

(Mehetia)…….………………………………………………………………………………. 

 

34 

Figure 1c. The sampling sites along the shore lines of Moorea, Huahine and Bora Bora….. 34 

Figure 2. The decay corrected uranium activity ratios, reported as δ234U (T) as a function of  



their corresponding ages……………………………………………………………………… 40 

Figure 3a. The heights above present mean sea level of the samples are plotted as a function 

of their corresponding ages…………………………………………………………………… 

 

46 

Figure 3b. The correction of the heights above present mean sea level relative to island’s 

specific subsidence rate………………………………………………………………………. 

 

47 

Figure 4a. Comparison of empirical data to theoretical predicted rsl-curves (RSL-RSES-

ANU+VKL and RSL-ICE-5G+VM2)………………………………………………………... 

 

50 

Figure 4b. Comparison of empirical data to ICE-3G ice-sheet chronology………………….. 53 

  

Chapter Four  

Figure 1a. The map of French Polynesia where the Society Islands are located, together with 

the SST contour lines showing temperature distribution……………………………………... 

 

59 

Figure 1b. The map of Society Islands where samples were collected………………………. 59 

Figure 2 (a-c). Microscopic images showing the presence of secondary aragonite needles on 

the porous parts of early diagenetic samples………………………………………………….. 

 

64 

Figure 3. The measured isotope ratios Sr/Ca, δ18O and U/Ca) plotted as a function of their 

corresponding ages……………………………………………………………………………. 

 

65 

Figure 4a. The Sr/Ca results from the micro-mill based sampling of massive and porous 

parts of H-Tai-2, HM4 and WL1 samples……………………………………………………. 

 

68 

Figure 4b (1-3). Electron Microprobe Maps (EMP) showing the shift of Ca and Sr 

concentrations on the aragonite needles and the rim of the porous parts of diagenetic 

samples……………….................................................................................................. 

 

 

70 

Figure 4c. Point analysis of the electron microprobe maps for samples H-Tai-2, HM4 and 

WL1 showing Sr/Ca ratios (mmol/mol) on the massive and porous parts of the samples…… 

 

71 

Figure 5 (a-c). The line analysis of Sr/Ca calculated from Ca and Sr concentration maps that 

indicate intra-skeletal variability of Sr/Ca within the primary coral skeleton of (a) H-Tai-2, 

(b) HM4 and (c) WLI ……………………………………………………………………....... 

 

 

72 

Figure 5d. Mean Sr/Ca values of line analysis of massive parts of H-Tai-2, HM4 and WL1... 73 

 

Figure 6. Proxy temperature records from Mid to Late Holocene period derived from 

different skeletal proxies of SST-Sr/Ca, SST-U/Ca and SST-δ18O………………………...... 

 

 

74 



Figure 7. Histogram plot showing frequency and distribution of the (a) SST-Sr/Ca, (b) SST-

U/Ca and (c) SST-δ18O ………………………………………………………………………. 

 

76 

Figure 8a. The ∆SST values of SST-Sr/Ca, SST-U/Ca and SST-δ18O plotted as a function of 

their age together with the mean weighted average of all ∆SST proxies…………………….. 

 

79 

Figure 8b. The ∆SST variations with Age for SST-Sr/Ca and SST-δ18O together with their 

mean weighted average……………………………………………………………………….. 

 

79 

Figure 9a. Comparison of mean weighted average of ∆SST estimates with solar activity 

reconstructed using 10Be from the Greenland (GRIP) ice core record……………………….. 

 

82 

Figure 9b. Comparison of our mean weighted average of ∆SST estimates with the CO2 

concentration from Mid to Late Holocene collected from the Antarctic ice core record…….. 

 

83 

Figure 10. The combined sea GIA level-temperature relationship for the Society Islands…... 84 

 

 

List of Tables 

Chapter Three  

Table 1. Information of sampling locations on Moorea (1A), Huahine (1B) and Bora Bora 

(1C) …………........................................................................................................................ 

 

35 

Table 2. Uranium/Thorium isotopic composition and ages of fossil corals from Moorea 

(2A), Huahine (2B) and Bora Bora (2C), Society Islands…………………………………... 

 

42 

  

Chapter Four  

Table 1. Sampling locations, age (ka), the ratio of Sr/Ca (mmol/mol), δ18O (‰), U/Ca 

(µmol/mol) with their reconstructed SSTs (°C)……………………………………………. 

 

66 

Table 2. Sample name, Age (ka), the ∆SST (SST–Mean SST), weighted mean from each 

∆SST proxy record and a three-point running mean ……………………………………… 

 

80 



Zusammenfassung 

Um zu verstehen wie sich das Klima in der Zukunft verändern wird, ist es essentiell zu 

untersuchen, in welchen zeitlichen Skalen das Klima in der Vergangenheit variierte und welche 

Konsequenzen diese Schwankungen mit sich brachten. Korallenskelette sind das wohl 

bekannteste Klimaarchiv aus tropischen und subtropischen Regionen. Als sogenannte 

Klimaproxies werden eine Vielzahl von stabilen Isotopen und Spurenelemente verwendet, die 

während des Korallenwachstums in das Skelett eingebaut werden. Diese Proxies erlauben es 

Aussagen zu treffen, wie die Umweltbedingungen des Meerwassers zu der Zeit des 

Skelettwachtums gewesen sind. 

 

Skelette fossiler, massiver Korallen der Art Porites werden vielfach für die Rekonstruktion von 

erdgeschichtlichen Veränderungen der Meerwassertemperatur und des Meeresspiegels 

verwendet, mittels einer Kombination von Elementverhältnissen wie Strontium/Kalzium (Sr/Ca), 

Uran/Kalzium (U/Ca), der Systematik von stabilen Sauerstoffisotopen (δ18O), sowie der 

Thorium-Uran-Datierung. Normale fossile Porites Kolonien und Porites Mikroatolle wurden auf 

verschiedenen Inseln in Französisch Polynesien gesammelt und decken eine erdgeschichtlich 

Zeitspanne vom Mittel- bis zum Spätholozän ab. Zwei verschiedene Wuchsformen von Porites 

wurden gewählt: Mikroatolle sind Kolonien die and der Oberseite abgeflacht sind. Dieses 

Wachstum deutet daraufhin, dass sie direkt unterhalb des Meeresspiegels gewachsen sind und 

können zur Rekonstruktion des einstigen Meeresspiegels herangezogen werden. Porites- 

Kolonien weisen diese Charakteristik nicht auf und man kann dahernur eingeschränkt abshätzen, 

in welcher Tiefe sie im Riff gewachsen sind. Über lange geologischen Zeiträume können sich 

Korallenskelette diagenetisch verändern und diese Veränderungen müssen bei der Datierung und 

Rekonstruktion der Meerwassertemperatur berücksichtig werden. Es wurde vorab untersucht, 

wie sich diagenetische Veränderungen in den Skeletten manifestierten und wie die Skelette 

dennoch zur Klimarekontruktion herangezogen werden können. 

 

Meeresspiegelschwankungen wurden mittels der fossilen Korallen bestimmt, die im Bereichdes 

heutigen Meeresspiegelniveaus gesammelt wurden (~1.5 m unterhalb bis 1.8 m oberhalb des 

mittleren Meerespiegelniveaus). Das Alter der Korallen und die Position in Relation zum 

heutigen Meeresspiegel geben Aufschluß darüber, wie sich der Meerespiegel im Lauf der Zeit 



verändert haben könnte. Hierzu musste noch berücksichtigt werden, dass die Inseln vulkanischen 

Ursprungs sind und jede mit einer spezifischen Rate absinkt. Vor etwa 5400 Jahren lag der 

Meeresspiegel mindestens um 1.5m höher als heute. Erst 3000 Jahre später kam es zu einem 

Abfall des Meeresspiegels auf das heutige Niveau. Das spätholozäne Abfall des Meeresspiegels 

in diesen Meeresbereichen in großer Entfernung von den glazialen Eisschilden ("far-field areas") 

ist wahrscheinlich die Folge des post-glazialen Zurückfederns der früher eisbedeckten Gebiete 

und des Kollaps der Randwülste der glazialen Eisregionen. Dies führte zum Abwandern von 

Wassermassen aus den polfernen Regionen ("far-field") in den durch das Absinken der Eis-

Randwülste geschaffenen Raum in der nahen Umgebung der Eisschilde ("near-field"). Zusätzlich 

dürfte die zusätzliche gravitative Wirkung der isostatischen Landhebung der vormaligen 

Eisgebiete diesen polwärtigen Wassertransport forciert haben ("ocean siphoning effect"). Unser 

theoretisches Meeresspiegelmodel, dass all diese Effekte berücksichtigt, stimmt mit den 

empirischen Daten überein, einzig die Dimensionen der Schwankungen sind nicht ganz 

kongruent und diese müssen noch gezielter untersucht und verifiziert werden. 

 

Eine Vielzahl von Proxies können herangezogen werden, um zeitgeschichtliche Schwankungen 

der Meerestemperatur zu rekonstruieren. Hier wurden folgende geochemische Proxies analysiert: 

Sr/Ca, δ
18

O and U/Ca. Aus den Daten wurde ersichtlich, dass die Meerestemperatur in 

Französisch Polynesien vom Mittel- bis zum Spätholozän periodischen Schwankungen unterlag. 

Es konnten verschiedene Intervalle identifiziert werden. Im Interval I und III vor 1800-2800 und 

3700-4000 Jahre waren die Meere in dieser Gegend um 1-2°C wärmer als heute. Im Gegensatz 

dazu waren sie in den Intervallen II und IV vor 2800-3700 und 4000-4900 Jahren um 1-2°C 

kühler. Diese Schwankungen stimmen mit Veränderungen der Sonnenaktivität überein und nur 

teilweise mit rekonstruierten Veränderungen des atmosphärischen Kohlendioxidgehalts. Dies 

führt zu der Schlussfolgerung, dass die Sonnenaktivität einen stärkeren Einfluss auf die 

Veränderung der Meerestemperatur hatte.  

 

Diagenetische Veränderungen können die Temperaturrekonstruktionen maßgeblich beeinflussen. 

Anhand von mikroskopischen Untersuchungen konnten diese Veränderungen lokalisiert und 

charakterisiert werden. Es wurde untersucht wie stark diese die Proxy-Werte beeinflussen. 

Proben bereiche in denen sich 2.5-3% sekundärer Aragonit in den Skelettporen angelagert haben, 



können zu deutlichen Veränderungen der Geochemie der Gesamtprobe führen. Rekonstruiert 

man die Temperatur aus so einer diagenetisch veränderten Gesamtprobe liegt diese um 0.5-1.6°C 

niedriger.  

 

Abgesehen von diagenetischen Veränderungen zeigen die Sr/Ca-Verhältnisse eine starke 

Variabilität, wenn man sie räumlich hochauflösend untersucht. Innerhalb von wenigen µm 

variieren die Sr/Ca Werte zwischen 5.4 und 9.9 mmol/mol. Solche Variationen sind keineswegs 

Indikatoren von starken Meerestemperaturschwankungen, sondern vielmehr repräsentieren sie 

einen physiologischen Einfluss der Koralle auf die Element-Verhältnisse – den sogenannten 

“Vitaleffekt”.  

 

Es wurde gezeigt, dass Porites Kolonien und Mikroatolle sowohl zur Rekonstruktion von 

erdgeschichtlichen Veränderungen der Meerestemperatur als auch des Meeresspiegels geeignet 

sind. Diagenetische Veränderungen fossiler Korallen müssen jedoch berücksichtigt werden, 

können aber mittels gezielter Beprobung der Skelette umgangen werden.  

 



Abstract 

Establishing Mid to Late Holocene climate history is the key to understand climate on both 

decadal and millennial time scales, which can help to anticipate future climate change and its 

oscillations. In tropical and sub-tropical regions, massive corals provide the ideal archive of 

climate information prior to satellite era because they incorporate a diverse suite of isotopic and 

trace elemental proxies into their aragonitic skeleton where behaviors of these elements during 

the incorporation are related to environmental processes of the ambient sea water. Using 

elemental ratios such as Strontium/Calcium (Sr/Ca), Uranium/Calcium (U/Ca) and isotope 

systematics such as Oxygen Isotopes (δ18O), Uranium (U) and Thorium (Th) from massive fossil 

corals (Porites and Porites micro atoll) from the Society Islands in French Polynesia which are 

currently exposed above the present mean sea level (apmsl), we have reconstructed Mid to Late 

Holocene sea level and sea surface temperature (SST) variability in this region. Furthermore, 

micro-scale intra-skeletal variability of Sr/Ca ratio within coral aragonite skeleton and post 

depositional early diagenetic alteration with its implications on SST estimates have also been 

investigated. 

 

Sea level change was constrained using fossil Porites and Porites micro atolls collected at their 

original growth position from emerged fossil coral platforms between ~1.5 m below the present 

mean sea level (bpmsl) to ~1.8 m above the present mean sea level (apmsl). Uranium/Thorium 

(U/Th) dating and sample elevation relationship was used to constrain the age of these corals and 

sea level variations in this area. Since these islands were volcanic in origin, the specific 

subsidence rate of each island was taken into consideration to correct for the sample elevations 

relative to the modern sea level. The results indicate that ~5.4 ka the sea level was at least 1.5 m 

above the present mean sea level. With minor fluctuations it has remained above the modern sea 

level for duration of ~3000 years before dropping to the modern sea level. The Late Holocene 

sea level fall in these areas which are far from former ice sheets (far-field areas) is probably a 

result of post-glacial rebound of the areas of former ice mass cover that has led into collapsing of 

fore bulges surrounding these areas. This caused migration of water from the far-field into the 

near-field regions (close to former ice sheets) vacated by the collapsing fore bulges. In addition, 

the extra gravitational force of the emerging landmasses pressed into Earth’s mantle during 

continental glaciation also force water to flow from southern ocean to the north (ocean siphoning 



effect). Our theoretical predicted model accounting for all these effects named “Glacial Isostatic 

Adjustment (GIA)” related sea level variations were also in agreement with our empirical data. 

However, discrepancies on the amplitudinal variation of the theoretical predicted relative sea 

level (rsl) are still pending to future re-calibration. 

 

Sea surface temperature (SST) was reconstructed using a multi-proxy approach through 

geochemical analysis of Sr/Ca, δ18O and U/Ca of the coral samples. The results revealed periodic 

temperature variation in four main intervals for Mid to Late Holocene in the Society Islands. 

Interval I (1.8-2.8 ka) and III (3.7-4 ka) show higher temperatures in the order of 1-2°C above 

the modern mean temperature of the study area. Colder temperatures in the order of ~1-2°C 

below the modern mean SST were also observed during interval II (2.8-3.7ka) and IV (4.0-4.9 

ka). These intervals are in good agreement with reconstructed solar activity and partly agree with 

reconstructed carbon dioxide concentration of the Mid to Late Holocene. This led to the 

conclusion that most likely solar activity is the main driver of SST and hence sea level variation 

on this region. 

 

Fossil corals may undergo diagenetic alteration that can fundamentally change the skeletal 

geochemical composition obscuring reliable SST estimates. In this study diagenetic alteration 

was investigated on skeletal sections using microscopic observation, micro-mill sampling and 

microprobe analysis that involve the massive and pore-edges of the coral skeletons. The results 

indicate that 2.5 to 3% of carbonate derives from secondary precipitated aragonite within the 

skeletal voids (the pore edges) of the coral skeleton. This secondary aragonite differs in Sr/Ca 

ratio to the primary coral skeleton values and shifted the reconstructed SSTSr/Ca towards colder 

temperatures of ~0.5 to 1.6°C compared to SSTSr/Ca solely derived from the primary part of 

aragonite skeleton.  

 

In addition, micro-scale intra-skeletal variability of Sr/Ca was investigated using line analysis of 

elemental distribution maps obtained from Electron Microprobe (EMP) analysis. The results 

show that Sr/Ca is not homogeneously distributed within a coral skeleton. At micro-scale level 

our samples Sr/Ca ratios vary between 5.4 and ~9.9 mmol/mol. This probably reflects the 



physiological control of the corals on its trace metal uptake and the rates of CaCO3 precipitation 

called “vital effect”.  

 

Therefore, it is concluded that that Porites and Porites micro atolls are suitable to reconstruct 

past sea level variations and the SST of the past. Diagenetic alternations need to be taken into 

consideration before SST reconstruction from fossil corals. Here it was shown that micro-scale 

sampling allows accurate SST reconstruction by careful skeletal sampling.
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Chapter One 

 

1. General introduction  

1.1. Archives for past climate  

Future climate predictions rely on understanding the climate in the past which proves to be a 

challenge for times that go beyond instrumental climate recordings (Gagan et al., 2000; Grottoli, 

2001). Since there are no means of a direct measure the climate in the past, proxy indicators are 

relied as indirect indicators of these processes. Prior to instrumental records, reconstruction of 

the Earth climate history is only possible using physical, chemical and biological proxies that 

respond to environmental conditions. The application of a particular proxy for the paleo-climate 

reconstruction relies into the fact that, the characteristic of the incorporation of materials, 

deposition or the rate of growth of some materials in the archives have been influenced by the 

climatic conditions during the time of its formation (Bradley, 1999).  

Paleo-climate records can be obtained from natural archives such as ice cores, tree rings, fossil 

pollen, corals, speleothems, lake and ocean sediments (Jones and Mann, 2004). Different proxies 

offer different time span of climatic history with different degrees of precision and record 

different aspects of climatic conditions. Together they provide many aspects of the history of the 

climate in the past. In order to apply these proxies for reconstruction careful calibrations and 

cross-validation procedures are necessary to establish a reliable relationship between a proxy 

indicator and the climatic variable or variables assumed to represent. This involves studies of 

modern climatic records of a proxy material to understand how and to what extent proxy is 

climate-dependent and this is transferred as a function through which the past climate can be 

estimated. Based on this knowledge, it is possible to have a good understanding of the extent and 

patterns of the climate variability that provides a better perspective for interpreting recent climate 

which could help to project the climate in the future. 

 

1.1.1. Corals as environmental archives  

Scleractinian corals are among others considered to be one or the most important archives in 

paleo-climate history (Corrège, 2006). This is because during calcification, they secrete CaCO3 

aragonitic skeleton and incorporate multiple of chemical signatures such as trace elements and 

isotopes reflecting the environmental conditions of the ambient sea water such as temperature, 
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salinity, upwelling or cloud cover and pH of water (Grottoli, 2001). This concept is used as basis 

for reconstructing different aspects of environmental history (Beck et al., 1992; de Villiers et al., 

1995; Grottoli and Eakin, 2007; McCulloch et al., 1996; Min et al., 1995; Mitsuguchi et al., 

1996; Schrag, 1999; Shen et al., 1996). Compared to other archives, corals offer continuous, 

undisturbed long chronological records reflecting climatic conditions during each stage of 

growth. However skeletal boring by organisms, grazing by fish or bleaching events can interrupt 

the growth or physiology of a particular coral and consequently affecting the reliability of a 

particular tracer (Corrège, 2006). Among the Scleractinia massive corals are considered to be 

most reliable climate proxy recorders because they are distributed throughout the tropical and 

subtropical waters. A massive skeleton form provides a wave-resistant structure that is more 

resilient to physical erosion. Furthermore, high growth rate (up to 1cm/year) and clear 

undisturbed annual skeletal banding offers excellent chronological control and sub-seasonal 

sampling (Felis et al., 2004). Reef building corals are usually found immediately below the sea 

surface to a depth of less than 50 meters in the ocean. For this reason they yield information on 

surface waters and on the upper thermocline (Corrège, 2006). Deep water corals live in the cold, 

dark waters of the oceans (more than 100 meters deep) and usually they record the information 

of deep oceans such as water temperature and ocean circulation of the deep sea environments 

(Goldstein et al. 2001; Gass & Roberts 2011). 

 

1.2. Coral types and their nature 

Corals comprise a large group of organisms belonging to the Phyllum Cnidaria and Class 

Anthozoa. They comprise more than 6000 species including sea anemones, sea fans and sea 

pansies (Barnes, 1987; Barnes and Hughes, 1999). Stony corals belong to the order Scleractinia 

which is primarily responsible for precipitating CaCO3 skeletons which support and protect their 

tissues (Allemand et al., 2011). They are divided into two main groups, hermatypic corals and 

ahermatypic corals. Hermatypic corals live in clear, oligotrophic, shallow tropical waters within 

the photic zone. They are considered as the word's primary reef-builders. The driving force 

behind reef growth is the symbiotic association (mutualism) between coral polyps and the 

unicellular algae (zooxanthellae) which live inside the tissue of polyps. In this relationship 

zooxanthellae benefit from the nutrients derived from coral excretion, instead they provide food 

and carbon dioxide to the corals as a results of their photosynthesis as long as they receive 
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enough light and nutrients. Ahermatypic corals are not reef building corals and usually live in 

cold deep waters. They do not have mutualism with zooxanthellae instead they mainly depend on 

preying on zooplanktons that drift past the coral framework with currents (Rogers, 2004). Due to 

this, they have comparatively lower growth rates because they form insufficient carbonate 

materials to build the reefs. These corals are found in all regions of the oceans (tropics, temperate 

and polar) below the photic zone more than 1000m deep. 

 

1.3. Anatomy of a hard coral  

Hard corals are formed through precipitation of CaCO3 skeletons by small invertebrate animals 

called polyps. Polyps are characterized by a limited degree of organ development. They have a 

ring of tentacles, a simple stomach (gastrovascular cavity) that opens only on one end with no 

central nervous system (Grottoli, 2001). Each polyp consists of three basic tissue layers: An 

outer layer (ectoderm), the inner layer (endoderm or gastroderm). Between ectoderm and 

endoderm there is a supporting structure less jelly-like layer of substance termed mesogloea 

which is secreted by the cell layers of the body wall (Barnes, 1987).  

 

Figure 1: Anatomy of the coral polyp (Source: http://coral.org/coral-reefs-101/coral-reef-ecology/coral-polyps/) 
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The polyp is usually firmly attached to the base of the cup like structure where it sits. The 

stomach opens to single central opening which is used both to ingest food and to expel waste. 

This opening is surrounded by tentacles which serve for the tactile sense and food capture and 

for defense. The tentacles contain stinging cells, called nematocysts or cnidae that are used to 

attack the preys such as copepods, fish larvae, planktons (Barnes, 1987). In a colony they are 

united by a common tissue called the coenosarc. In case of hermatypic corals (reef building 

corals) that have symbiotic association with unicellular algae (zooxanthellae), these algae live 

within the cells of the coral's gastrodermis (Pernice et al., 2012). 

 

1.3.1. Reef growth and development 

As reefs grow the polyps deposit calcium carbonate as a skeletal structure beneath and around 

themselves, pushing the coral’s head upwards and outwards. As new layers of the coral reef are 

built, the polyps leave the lower layers, therefore, only the top layer of a coral reef contains 

living polyps as shown in figure 1. Corals can exist as individual polyps, or colonial with 

hundreds to thousands of small polyps (Barnes, 1987). Scleractinian corals are colonial 

organisms composed of hundreds to hundreds of thousands of individual polyps (Barnes, 1987; 

Lalli and Parsons, 1995). In the colony each polyp is connected by living tissue to form a 

community. However, some corals, such as Fungia plate corals, are solitary and have single 

polyps that can grow as large as 25 cm in diameter (Kotpal, 2004). 

 

1.3.2. Coral calcification 

During calcification corals draws large amount of Ca2+ and inorganic carbon from the 

surrounding sea water to build up its skeleton (Allemand, 2004). At a very small scale (about a 

nanometer) the individual aragonite crystals (CaCO3) are continually precipitated and arranged at 

the lower portion of the polyp using the following proposed chemical reaction:  

Ca2+ + HCO3
‒   
↔ CaCO3

 + H+ 

However, the entire mechanism is more complex and not fully understood and is still under 

debate (Cohen and McConnaughey, 2003; Gaetani et al., 2011; Allemand et al., 2011). It is 

suggested that the extracellular precipitation of CaCO3 is facilitated by calicoblastic cells 

(Weiner and Dove, 2003; Tambutté et al., 2011). However the pathway of ions from the sea 
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water to the area of calcification is not fully constrained. Some studies suggest that the 

paracellular pathway (transport of ions between the seawater and the calcifying fluid via 

diffusion or advection through the intercellular space of the cells) as a dominant pathway for 

calcification (Tambutté et al., 1996; Tambutté et al., 2011; Allemand et al., 2011). However, the 

transcellular pathway using Ca2+ mediated-ATPase pumps is also known to exist (Tambutté et 

al., 2011; Clode and Marshall, 2002; Allemand et al., 2011). During calcification process, the 

trace metals are also incorporated into the coral skeletal structure, this is further discussed in 

section 1.9. Periodically polyps lift their bases and deposit a new floor to their calyx as the 

means of growth (Barnes, 1987; Sumich, 1996). 

 

1.4. Coral reefs distribution and habitat  

The majority of reef building corals are restricted in warm waters of tropical and subtropical 

conditions at latitude between 30°N and 30°S. This is because higher calcification and growth 

rate of reef building corals require specific environmental conditions. Under optimal conditions, 

formation of large reef platforms is possible in the areas where temperature does not fall below 

18°C for extended periods of time. However, in some areas coral species can tolerate 

temperature as low as 14°C (Veron, 2000) and as high as 40°C for limited period of time (Loya, 

2004). 

 

 

Figure 2: The global distribution of coral reef marked by red points (Source: http://oceanservice.noaa.gov/ 
education/kits/corals/media/ supp_coral05a.html) 
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Most of the coral reef can tolerate salinity range between 32-42‰. They require oligotrophic and 

clear water that permits high light penetration (Lalli and Parsons, 1995) that is why most of these 

corals are found in the photic zones of warm tropical oceans. The number of species and 

abundance decrease rapidly in deeper waters due to insufficient light that reduce the coral growth 

(Barnes, 1987). 

 

1.5. Coral reef as an archive of sea level variation 

Massive tropical corals like Porites are considered among others a paleo-sea level indicator due 

to their dense massive structure that is resistant to strong waves, mechanical breakage as well as 

erosion compared to branching species (Corrège, 2006). They grow between a few millimeters to 

3 cm per year, forming annual growth bands which can be used for chronology (Grottoli 2001). 

In general, they grow from very close to sea level to ~25 m below sea level (Carpenter et al., 

2008; Pratchett et al., 2013). Because of a large range of growth the normal massive Porites 

alone do not necessarily provide precise constraints on the position of local sea level. For this 

reason in Fossil Porites micro atolls are considered as a useful marker of the sea level 

(Woodroffe, C. D, 2005).  Porites micro atoll put a distinct constraint on the position of a past 

sea level because they grow only a few centimeters below the sea level, their vertical growth is 

limited by the longer period of exposure at low tide (Flora and Ely, 2003; Smithers and 

Woodroffe, 2001; Woodroffe, C. D, 2005). In case of low availability of fossil micro atoll, a 

combination of normal fossil Porites and micro atoll in the reconstruction can help to reduce the 

depth uncertainty in the sea level reconstruction. Under normal conditions growth direction of 

the corals in the tropical oceans follows the water level (Davies and Marshal., 1980). When the 

sea level increases, the dominant direction is vertical. The still-stand position or falling of the sea 

level imposes restrictions on the vertical growth of a reef resulting into reef exposure (Davies 

and Marshal., 1980; Eisenhauer et al., 1999). Most of the corals tend to with stand short period of 

exposure, while longer periods are generally fatal and cause mortality.  

 

Geological evidences from South Pacific and Indian Ocean islands (far-field areas) predicted that 

the sea level was ~1-3m above the present at ~6.5 ka (Mid Holocene) during the sea level high 

stand (Woodroffe and Horton, 2005). This was caused by the immense volumes of water from 
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the melting of ice sheets during the last interglacial resulting into raising sea level in regions 

which are far from the major glaciation centers (far-field locations).  For the Late Holocene these 

areas experienced the relative sea level (rsl) drop to the present level (Banerjee, 2000; 

Deschamps et al., 2012; Eisenhauer et al., 1993; Woodroffe and Horton, 2005).  

 

The concept of rising and falling of the sea level in the far-field areas is governed by the theory 

concerning the former ice sheets dynamics and Glacial Isostatic adjustments (Lambeck et al., 

2002; Milne et al., 2009; Mitrovica and Milne, 2002) that induce water migrations through the 

process. During the Last Glacial Maximum (~20,000yrs ago) the weight of continental ice sheets 

was exerting the downward pressure causing deformation of the crust that forced sub-

lithospheric flow of mantle away from the centers of load that has caused the low geoid in these 

areas. This in turn caused formation of the fore-bulge (flexural bulge) around the ice load (Fig. 

3a). The ice sheets exerted a gravitational pull of the ocean water causing a slight sea level 

increase in the around these areas (Mitrovica and Milne, 2002). During deglaciation the lack of 

gravitational pull which was previously exerted by ice mass on the ocean water resulted in a sea 

level drop nearby the formerly glaciated area and in a sea level rise higher than the eustatic value 

at the opposite end (Mitrovica and Milne, 2002; Woodward, 1888). Therefore, the ocean 

averaged sea level change exactly corresponds to the eustatic change (Suess and Waagen, 1888), 

but the local sea level change may be significantly different, or even opposite in sign depending 

on gravity and the distance from the former ice masses. Because the load of ice decreases as the 

ice melt, the formerly glaciated areas undergo isostatic rebound (rise of the land mass) which is 

caused by sub-lithospheric flow back of the mantle towards the unloaded former glaciated 

regions inducing the collapsing of the fore-bulges in order reach new isostatic equilibrium (Fig. 

3b). 
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Figure 3a: Illustrates the downward pressure exerted into the Earth lithosphere forcing sub-lithospheric flow of 
mantle away from the centers of load to form the fore-bulges on the periphery of the ice cover. Figure 3b: Isostatic 
rebound of the Earth crust as a result of melting of the continental ice sheets causing for-bulges to sink as a result of 
mantle flowing away from the bulges.(Source: http://xenon.colorado.edu/spotlight/index.php?product=spotlight& 
station=CHUR). 

 

This resulted into the so called “Ocean siphoning effect” migration of water from the far-field 

equatorial oceans towards the subsiding peripheral fore bulges (near-field areas) to fill the space 

vacated by these subsiding bulges (Fig. 4) causing sea level regression in the far-field areas 

(Mitrovica and Milne, 2002). Note, an increase in gravity of the rebound areas also add an effect 

(gravitational pull) on the migration of water towards the near-field areas. 

 

  

Figure 4: Isostatic rebound (crustal rebound) of the Earth lithosphere to maintain isostatic equilibrium (Source: 
Mitrovica and Milne, 2002). This causes the collapse of the fore-bulge that induces migration of water to the near 
field areas to fill the space vacated by collapsing fore-bulges. As a consequence, the sea level fall in the far-field 
equatorial regions that resulted into exposure of the coral platforms along the coastal areas of the far-field regions. 
These are the characteristic platforms that are found in the Pacific and Indian Ocean. 
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As a consequence of sea level regression, the coral reefs developed extended emerged fossil reef 

platforms (Fig. 5) which are currently 1-3 m above the modern sea level (Eisenhauer et al., 1999; 

Eisenhauer et al., 1993; Grossman et al., 1998; Montaggioni and Pirazzoli, 1984; Pirazzoli et al., 

1988; Rashid et al., 2014; Woodroffe and Horton, 2005). These platforms are characteristic of 

Chagos Islands, Cocos (Keeling), Maldives, Laccadives in Indian Ocean and most of islands in 

the Southern Pacific Ocean (Eisenhauer et al., 1999; Montaggioni and Pirazzoli, 1984; Pirazzoli 

et al., 1988). Barbados is described by Pirazzoli (1996) as being located in an intermediate field 

site which corresponds to the peripheral bulge around a former ice margin. This tends to subside 

in late and post-glacial times, to compensate the uplift in nearby formerly glaciated areas. 

 
  

         

  

Figure 5a: Exposed fossil reef platform in Moorea Island that was formed as a consequence of migration of water 

away from these areas as a result of ocean siphoning effect. Figure 5b: Fossil Porites in growth position (in situ). 

Figure 5c: Fossil Porites micro atoll in growth position. These images were taken during our field study. 

 

To reconstruct sea level variations for these platforms which are currently exposed above the 

present sea level the elevation of an exposed fossil coral relative to present mean sea level and its 

age estimate (either by 14C or U/Th dating) is used. For islands of volcanic origin (e.g. Society 

Islands), the island’s specific subsidence rate needs to be applied in order to constrain the actual 

height of a sample above the sea level (Rashid et al., 2014). 
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1.5.1. The principle applied for coral U/Th age dating  

Corals can be accurately dated using U-series disequilibrium method which is based on the 

radioactive decay of radionuclides within the naturally occurring decay chains. Dating of fossil 

corals is done by measuring concentrations of radioisotopes incorporated within the skeletal 

matrix at the time of accretion (skeletogenesis) and the concentration of the daughter nuclei that 

have grown with time since accretion (Bourdon et al., 2003). For U/Th dating of corals we 

consider 238U as the original parent taken from the sea water and ingrowth of the 230Th as the 

daughter nuclei (decayed from the parent nuclide) within the coral skeleton. In this case it is 

assumed that during skeletogenesis 230Th is not incorporated into the skeleton due to its 

insolubility in the sea water, and the system remains closed after deposition (U and Th are not 

remobilized). In nature uranium mainly exists in two oxidation states (U4+ and U6+). The U6+ is 

soluble and appears to be dominant in the form as uranyl ion and in various uranyl carbonate 

forms (Edwards et al., 2003). The U4+ is insoluble and thus far less mobile. In contrast to 

uranium Th is insoluble in natural waters. Because it is particle reactive, once transported into 

the sea water it is adsorbed to particles or minerals and settles mostly at the bottom waters in 

sediments. 

During skeletogenesis (formation of skeletal CaCO3) corals incorporate uranium from the 

seawater in the CaCO3 crystal matrix and almost free of 230Th. Fractionation between the 

different U isotopes (234U and 238U) does not occur during coral growth therefore distribution of 
234U/238U (δ234U) in the ocean is homogenous at an average of 149.6±3 ‰ (Delanghe et al., 

2002). 

As time passes 234U in the sample, with a half-life of 245,250±490 years, decays to 230Th (Cheng 

et al., 2000). The decay of excess 234U and the growth of 230Th can be expressed as a function of 

age (Kaufman and Broeker, 1965) under the following criteria:  

1. The sample should have primary aragonitic skeletal structure. 

2. The carbonate should remain a closed system with respect to uranium and its decay 

products. 

3. Uranium 238U concentration should reflect the modern analogues from the same region. 

4. The initial δ234U values should lie within the range of modern corals and sea water 

between 141‰-157‰.  
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5. The 232Th concentration should be <2 ppb 

6. Abundance of calcite from X-ray diffraction must be below detection limits (<1% calcite) 

Unfortunately the assumption that initial incorporation of uranium from the sea water is free 

from 230Th during skeletogenesis is not fulfilled (Edwards et al., 2003) therefore, correction of 

initial non radiogenic 230Th (detrital) is necessary. Since it is not possible to distinguish between 

the radiogenic and detrital 230Th, therefore, 232Th is used as an indicator of detrital contamination 

because it has the same chemical properties as 230Th. Note that, the formula applied for age 

calculations and the detrital corrections are shown in the methodology (section 2.3. 2). Only U-

series ages that fulfil all these requirements are considered to be reliable and can be used for 

paleo-climate reconstructions. 

 

1.5.2. Corals as archives for sea surface temperature (SST) reconstruction 

Massive scleractinian corals offer a reliable tool for estimating environmental and climatic 

parameters to the time period beyond instrumental records. This is because they incorporate 

chemical signatures (elements) from the ambient sea water during calcification process (Felis 

and Pätzold, 2004). The behaviors of many of these elements (isotopes to trace metals) are 

believed to be more or less controlled by external environmental conditions of ambient sea 

water, thus providing us with an ability to use them as a reliable tracer (Corrège, 2006). Several 

proxies such as Mg/Ca, Mg/Li, B/Ca have been proposed for SST estimates but their robustness 

have not yet completely proved (Gagan et al., 2000; Oomori et al., 1983; Min et al., 1995; 

Mitsuguchi et al., 1996; Quinn and Sampson, 2002; Shen and Dunbar, 1995; Watanabe et al., 

2001). Currently δ18O isotopes, Sr/Ca and U/Ca are commonly used for paleo-temperature 

studies where Sr/Ca is considered to be the most promising proxy in reconstructing the past 

climate history. However, U/Ca proxy is still not very well established (Min et al., 1995). Proxy 

evidence of paleo-climate reconstruction helps a better understanding the climate system that 

allows analysis of the current climate into a broader context which improves projections of future 

climate. The use of multi-proxy approach improves the strength of paleo-climate reconstruction 

because it combines the information from different proxies that uses advantage of the strengths 

of one proxy and minimizes the limitations of some other proxies. 
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1.6. Oxygen isotopes (δ
18

O) in corals  

Coral skeletal δ18O isotopes are considered to be the most commonly used proxy for SST 

reconstruction. This is because the composition of this isotope in the aragonitic skeleton depends 

on water temperature and also isotopic composition of the sea water. The δ18O isotopes of the 

aragonitic coral skeleton represent an inverse relationship with sea water temperature i.e. as the 

sea surface temperature increases the δ18O values of the precipitated oxygen in the coral skeleton 

decreases due to temperature-dependent kinetic fractionation effects (Kim and O'Neil, 1997). 

However, significant variations exist between corals of different species or between different 

locations (e.g.Weber and Woodhead, 1972;Weil et al., 1981; Carriquiry et al., 1994; Wellington 

et al., 1996; Cardinal et al., 2001). Studies have shown that 1°C increase in sea water 

temperature corresponds to ~0.18‰ - 0.22‰  (slope) decrease of δ18O precipitated in the Porites 

coral skeleton (Cahyarini et al., 2008; Cohen and Hart 2004; De Long et al., 2010; Evan et al., 

1999; Felis et al., 2012; Grottoli, 2001; Corrège, 2006; McCulloch et al., 1994; Quinn et al., 

1996; Wellington et al., 1996), some of these slopes are shown in the figure 6 below. In coral 

SST calibrations the slopes can vary depending on location, depth and coral species (Weber & 

Woodhead 1972; Wellington et al. 1996). Even if the calibration equations have the same slopes, 

the species difference or location difference might lead to erroneous SST estimation.  It is 

therefore essential to be aware of the uncertainties that may arise if one fails to consider these 

contributing factors when attempting to accurately reconstruct paleo-climatic conditions. 

It is also known that, the oxygen isotopic composition of sea water varies with local evaporation-

precipitation balance i.e. the seawater δ18O decreases as precipitation increases (Fairbanks et al., 

1997). Therefore, large and significant precipitation can decrease the surface salinity and 

seawater δ18O which is reflected in the coral skeleton. For example, study of Grottoli and Eakin, 

(2007) has indicated that, δ18O isotopic composition of sea water decreases by 0.27‰ for each 

1p.s.u. decrease in salinity depending on latitude, depth and ocean basin. 
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Figure 6: The δ18O-SST calibrations (slopes) published from previous researches in Central and Southern Pacific 

Ocean using Porites sp. 

 

Corals that live in regions where salinity is relatively constant throughout the year, coral δ18O 

records are primarily recording SST variability. However, in regions where salinity varies 

significantly might dominate the δ18O isotope signal of the sea water. In cases both SST and 

salinity are highly variable, the interpretation of this proxy might be challenging. Other factors 

such as skeletal extension rate, light intensity and feeding rate might also influence the skeletal 

δ
18O. However, there is still controversy concerning these factors (Corrège, 2006). In addition, 

the aragonite deposited by scleractinian corals is usually depleted in δ18O isotope relative to 

equilibrium with ambient seawater. This disequilibrium is a control of the coral physiology 

related to zooxanthellae photosynthesis and algal and coral respiration which is generally 

referred to as “vital effect” (Allemand et al., 2004; McConnaughey, 1989). 

 

1.7. Sr/Ca ratios in corals 

The Sr/Ca ratio of the coral skeleton is considered as a more reliable proxy of paleo-temperature 

due to its strong temperature dependent in its incorporation into the coral skeletons. An increase 

in SST causes the decrease in the Sr/Ca ratio in the coral skeleton and vice versa (Beck et al., 

1992; Gagan et al., 1998; McCulloch et al., 1994). Compared to δ18O isotope, this proxy is not 
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influenced by salinity changes of the sea water hence it is considered as a direct tracer of the sea 

water temperature (Weber, 1973; Beck et al., 1992). In fact, the Sr/Ca in the coral skeleton is 

influenced by the Sr/Ca ratios of the ambient sea water during skeletal precipitation (Felis and 

Pätzold, 2004). Because of the long residence times of Sr (5.1 x106 yr) and Ca (1.1 x106 yr) in 

the oceans (Guilderson et al., 1994), Sr/Ca ratio has been assumed to remain essentially constant 

in the ocean on glacial-interglacial time scales (de Villiers, 1999; Edmond, 1992; Marshall and 

McCulloch, 2002). It has been reported that the Sr/Ca values from the surface oceans range 

between 8.5-8.7 mmol/mol (de Villiers et al., 1994; de Villiers, 1999; Kinsman, 1969). However 

the average value of the shallow water from Pacific and Atlantic Ocean is 8.539±0.0045 

mmol/mol (de Villiers, 1999). This is considered to be the representative Sr/Ca ratio of the 

oceans. However, significantly high Sr/Ca ratios in the shallow waters are characteristic of 

upwelling zones of the oceans (de Villiers, 1999). Considering the SST estimates, the slopes of 

the calibration equations do not seem to vary markedly for individual corals inhabiting the same 

site. However, there are variations of slopes between the colonies from different locations (de 

Villiers et al., 1994). The slopes of Sr/Ca calibrations range between 0.0597 to 0.062 mmol/mol 

per 1°C (Gagan et al., 2000; Marshall and McCulloch, 2002; Felis and Pätzold, 2004).  

 

 

Figure 7: Sr/Ca-SST calibrations (slopes) published from previous researches in Central and Southern Pacific Ocean 

using Porites sp. 
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1.8. U/Ca ratios in corals  

Skeletal U/Ca has been proposed to be a proxy for temperature (Min et al., 1995; Shen and 

Dunbar, 1995). This is because the incorporation of this proxy depends on the temperature of the 

ambient sea water. Despite its sensitivity to temperature, this proxy is still not well established 

and it is bound to many uncertainties (Min et al., 1995; Quinn and Sampson, 2002). For example, 

Quinn and Sampson, (2002) have reported that the strength of its correlation to temperature 

varies as a function of time. Previous studies (Min et al., 1995; Shen and Dunbar, 1995; Cardinal 

et al., 2001) have demonstrated that incorporation of this proxy in the corals skeleton is also 

influenced by SST, salinity, pH and uranium speciation. These facts bring questions to the 

potentiality of this proxy that led to suggestion that variations of this proxy not entirely as a 

function of temperature, but other environmental parameters might also influence the 

incorporation of uranium in coral aragonite. This is mainly due to the complex chemical 

behavior of uranium in seawater and to its relatively unknown mode of incorporation in 

aragonite (Min et al., 1995; Pingitore et al., 2002, Lazar et al., 2004). In general combination of 

different proxies (multi-proxy approach) in SST reconstruction is vital to a reliable SST 

estimation. This is because the combined information from different proxy types takes the 

advantage of the strengths of some proxies and minimizes the limitations of individual proxies.  

 

1.9. Challenges in SST and sea level reconstruction in corals 

Nowadays most of the researches in paleo-climatology are focusing on massive scleractinian 

corals (e.g. Porites) in paleo-climate reconstruction. This is because they live in the shallow 

waters of tropical and subtropical areas. In addition, modes of some elements which are 

incorporated during skeletal growth are linked to variation of environmental conditions (e.g. 

SST) of ambient sea water. However, modification in incorporation of these elements (by coral 

polyp) during skeletal formation known as  “vital effects” (Allemand et al., 2011) which have 

crucial impact on the application of these proxies are still not fully constrained (e.g. Adkins et 

al., 2003; Meibom et al., 2006; Juillet Leclerc et al., 2009). There are still ongoing researches in 

order to understand this process (Tambutté et al., 2011). In addition species-specific variation in 

skeletal composition poses a limitation making it challenging to use of some proxies especially 

those ones which are not well established (Maier et al., 2004).  
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For Sr/Ca ratio as a paleo-SST proxy, there is still ongoing subject about Sr/Ca heterogeneity in 

a micro-scale level within a coral skeletal structure (Allison et al., 2001). To resolve this issue, a 

better understanding of incorporation mechanism of Sr2+ and Ca2+ within the skeleton is essential 

to determine the robustness of this proxy as a paleo-thermometer (Corrège, 2006). Two theories 

have been proposed about uptake mechanisms of these elements from the sea water to the coral 

skeleton (Corrège, 2006). One theory has suggested that Sr2+ and Ca2+ are transported into the 

coral skeleton by a similar active transport pathway (Ferrier-Pagès et al., 2002) while another 

theory suggested the passive transport (diffusion) of Sr2+ and active transport (using Ca2+ATPase 

pump) for Ca2+ (Sinclair and Risk, 2006). Since Sr2+ is suggested to substitute for Ca2+ in its 

incorporation into the coral skeleton, Sr2+ ion incorporation might probably follow the same 

pathway as Ca2+. Al-Horani et al., (2003) explained the light activation of coral Ca2+ATPase 

pump during the day that favors Ca2+ over Sr2+ and therefore, in the day time the coral skeleton is 

Sr2+ depleted. During night time, the potential of Ca2+ transport by ATPase pump is reduced and 

therefore the passive pathway dominates which favors Sr2+ incorporation. Incorporation of 

uranium from the sea water into coral skeleton as either UO2
2+ (uranyl ion) as proposed by 

Broecker and Peng, (1982) or as UO2(CO3)
2- (uranyl carbonate) by Shen and Dunbar, (1995) is 

unclear and still under debate. 

 

There are also unresolved issues on variations of Sr/Ca ratio in different skeletal parts of the 

coral skeleton. Growth rate differences are also assumed to influence the uptake of Sr2+ in corals 

and subsequently affect the Sr/Ca SST proxy (de Villiers et al. 1995). Cohen and Hart (2004) 

found differences in Sr2+ uptake as a result of growth rate differences during winter and 

summertime within the same species of coral. However, some studies have documented that the 

amount of Sr/Ca is more representative of the ambient environmental conditions along the 

maximum growth axis of a skeleton (Alibert & McCulloch 1997; Gagan et al. 1998; Wei et al. 

2000; Corrège et al. 2004). There are also differences in Sr/Ca ratio within the corals of the same 

species living in the same locality under the same conditions (de Villiers et al. 1995; Alibert and 

McCulloch 1997; Reynaud et al. 2004). Resolving these issues might be useful to determine the 

robustness of Sr/Ca and its important role in paleo-thermometry.  
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Post depositional change of coral chemistry (diagenesis) is considered as a major source of error 

in paleo-reconstruction studies (Enmar et al., 2000; McGregor and Gagan, 2003; McGregor and 

Abram, 2008) because it is violating the “closed system behavior”. This is common in fossil 

corals which have been exposed to freshwater or sea water for a longer period of time but has 

also been documented in coral colonies that are less than 50 years old (Nothdurft and Webb, 

2009). The main challenge to SST reconstruction is caused by early diagenesis (submarine 

secondary aragonite precipitation or dissolution of primary aragonite skeleton), because common 

methods like X-ray Diffraction fail to distinguish between primary and secondary aragonite 

phases (earliest diagenetic phase) since they have the same mineralogy as the primary aragonite. 

Studies have reported that inclusion of less than ~10% secondary aragonite yields cooling 

artifacts of up to  -3°C and -2°C in the corresponding paleo-SST reconstructions for SST-Sr/Ca 

and SST-δ18O respectively (Nurhati et al., 2009). Therefore, petrographic analysis of the samples 

prior to analysis might help to identify the incorporation of the secondary phase within the 

skeletal chemistry; otherwise the results might include some bias in SST estimates (Allison et al., 

2007; McGregor and Gagan, 2003; Lazar et al., 2004). 

 

For the islands of volcanic origin there are still some concerns about the subsidence rates of these 

islands in reconstructing the sea level. Few studies have focused on the assessment of the 

subsidence rates of the Society Islands mostly on Tahiti Island using GPS, satellite data, tide 

gauge measurements, model predictions, and coral reef stratigraphy (e.g. Fadil et al., 2011), also 

coral chronology, δ18O and diagenetic overprint of the uranium–thorium system (Thomas et al., 

2012). For Moorea, Huahine and Bora Bora, Pirazzoli et al., (1985) and Pirazzoli and 

Montaggioni, (1985) conducted a study based on petrological analysis of emerged reef 

conglomerate available on the shorelines of the islands. The analysis was based on the close 

inspection of thin sections of exposed coral reef conglomerates. They estimated the subsidence 

rate of 0.14mm/year for Moorea and 0.05mm/year for Bora Bora. However they argued that 

Huahine to have similar subsidence rate as Moorea (without specific estimate) although they are 

located 148km apart from each other. Considering the effect of differential geoid distortion as a 

function of the local gravitational field (Woodroffe et al., 2012) the island’s specific subsidence 

rates should be available in order to have a precise reconstruction.  
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Chapter Two 

 

2. Materials and methods 

2.1. Study area and sample location 

Society Islands are one among the five archipelagos (Marquesas, Toamotus, Gambier, Austral 

and Society Islands) of French Polynesia (Fig. 1a). This archipelago comprises more than ten 

islands and atolls elongated in 17°52’S 149°50’W and 15°48’S 154°50’W direction which 

spread 720km across the Pacific Ocean (Duncan and McDougall, 1976; Montaggioni, 2011; 

Peltier, 2002; Pirazzoli and Montaggioni, 1988). 

 

 

Figure 1a: Geographic location of French Polynesia in the Pacific Ocean where Society Islands are located. Figure 

1b: Society Islands distribution relative to the volcanic hotspot (Mehetia). 

Society Islands are volcanic in origin formed from hotspot which is currently located around 

Mehetia Island ~110 km east of Tahiti (Gripp and Gordon, 1990; Devey et al., 1990). These 

islands extend parallel to the present absolute motion of the Pacific plate which moves at with 

the rate of ~110 mm yr−1 relative to the fixed hotspot plume (Blais et al., 2002; Neall and 

Trewick, 2008). Society Islands are subdivided into Windward and Leeward Islands based on the 

position of the islands relative to the dominant southeast trade winds. The Windward Islands 

comprise of Mehetia, Tahiti, Moorea, Maiao and Tetiaroa while the Leeward Islands are 

Huahine, Bora Bora, Raiatea, Tahaa, Maupiti, Tupai, Maupihaa, Motu One and Manuae (Fig. 

1b). This islands chain shows an age progression from east to west direction for example,  

Mehetia is less than 1 Ma, Tahiti (~0.25–1.67 Ma), Moorea (1.36–2.15 Ma), Huahine (2.06-3.08 

Ma), Raiatea (~2.29–2.75 Ma old), Tahaa (~1.10–3.39 Ma), Bora Bora (3.1–3.5 Ma) and  
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Maupiti is ~5 Ma (Blais et al., 2002; Duncan et al., 1994; Guillou et al., 2005; Uto et al., 2007; 

White and Duncan, 1996). Because of their volcanic origin, these islands tend to subside as they 

move away from the hotpots region (Fadil et al., 2011; Pirazzoli and Montaggioni, 1985; Scott 

and Rotondo, 1983).  This is because as the Earth plate (Pacific plate) moves away from the 

asthenospheric bump (hotspot) it is progressively cooling and subsiding as it moves down the 

slope of asthenospheric bump with increasing age and distance (Scott and Rotondo, 1983). This 

could also explain the presence of as Tahiti a high island near the original hotspot and almost 

atoll islands (such as Bora Bora at ~400km away) and atolls (Tupai, Maupihaa, Motu One) on 

further increasing distance from the original hotspot. However, the rate of subsidence decreases 

with time and distance from the original hotspot (Scott and Rotondo, 1983). 

 

2.1.1. Climate 

The climate of the Society Islands is tropical characterized by two main seasons, the austral 

summer and austral winter. The austral summer is the warm and rainy season that spans from 

November to April. During this period, the conditions are hot and humid with the average SST in 

the order of ~28°C and 29°C (Delesalle et al., 1985; Boiseau et al., 1998). Heavy rains are 

mostly experienced during December and January which are the most intense rains along the 

coastline. The average rainfall is ~2753 mm/year (Cabioch et al., 1999; Neall and Trewick, 

2008). The austral winter is normally from May to October. This period is marked by low sea 

surface temperature averages between 23°C and 25°C and rarely reaches below 19°C (Delesalle 

et al., 1985). The trade winds generally blow from East (South-East) and North-East direction. 

Westerly winds are infrequent and span for short duration. Tides are semi-diurnal and do not 

exceed 0.4 or 0.5m during spring tides (Delesalle et al., 1985; Seard et al., 2011). According to 

National Oceanic and Atmospheric Administration (NOAA) tide information, the average tidal 

amplitude for these islands is 0.5 m (NOAA, 2013). 

 

2.2. Sample collection 

Fossil coral samples were collected in 2009 during CHECKREFF expedition in the Southern 

Pacific. This area is characterized by emerged (exposed) coral platforms which are currently 

exposed above the modern sea level as a consequence of sea level fall (Late Holocene). Fossil 

samples of Porites and Porites micro atoll were taken (digged) from emerged coral platforms at 



20 
 

Moorea, Huahine and Bora Bora islands from their original growth position at the height 

between -1.5 m below the present mean sea level (bpmsl) to +1.5 m above the present mean sea 

level (apmsl) using hammer and chisel. The elevation of the collected coral samples was 

determined by triangulation of the coral´s position to the current position of the mean sea level. 

This was done by placing a laser on top of the sample with the beam pointing horizontally 

towards the water table. Using a meter rule, the measurement of the elevation was determined 

relative to the water level. The process was repeated up to 15 times where by each time the 

elevation and the local time are recorded. These elevations were also compared to our GPS 

measurement during each time. Using tide table and the local time, the elevation relative to the 

mean sea level was achieved.  

 

2.2.1. Sample Processing 

Using a wet disc saw the selected samples were cut into slabs along the growth direction. The 

slabs were washed with Milli-Q water and dried at room temperature in a clean lab fume hood. 

Then a hand held diamond saw was used for further cutting each sample into smaller blocks 

(1cm3) within the parallel growth bands. In order to have pristine samples for analysis, parts that 

are visually free from any algal or carbonate infill of the pore volume were carefully selected for 

sampling. The sample blocks obtained were cut into two parts (pieces) which are mirror image to 

one another. One part was further cut into small chips and transferred into 15ml Teflon beaker 

for ultrasonic cleaning and another part of the block was kept for petrographic analysis. 

 

2.2.2. Ultrasonic cleaning of samples (Ultra-sonification)  

Ultrasonic cleaning started with an ultrasonic bath available in GEOMAR, Kiel. To perform this, 

each Teflon beaker containing chips were filled with ~8mls of 18.2MΩ Milli-Q water. The 

closed beakers were transferred into ultrasonic bath for 15 minutes. Milli-Q water was then 

discarded and the beaker is rinsed with Milli-Q water. The process was repeated again with fresh 

Milli-Q water for another 15 minutes. The Milli-Q water was then discarded and the clean 

samples were then transferred into a hot plate and dried at ~35°C overnight. Each sample was 

then ground into a fine powder using mortar and pestle. In order to avoid cross contamination, 

the mortar and pestle were cleaned with Milli-Q water and then with ethanol between each 

sample. 
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2.2.3. X-ray diffraction 

For analysis of sample mineralogy ~100mg of homogenized powdered samples were analyzed 

using X-ray diffractometer (Philips X-ray diffractometer, goniometer with an automatic 

divergence slit and monochromator). The equipment uses a cobalt (Co) cube with 40kV and 

35mA for the measurements. The measurements were done in steps of 0.01sec-1 at an angel (2θ) 

between 20° to 50°. Identification of crystalline compounds was done using XPowder (Ver. 

2004. 04. 80 with PDF2 database provided by ICDD (International Center for Diffraction Data). 

Quantification of mineralogy (%) was done using the standard calibrations done at GEOMAR, 

Kiel. All the samples with detectable amounts of calcite were excluded from further analysis. For 

powdered samples with no detectable amounts of calcite ~50-100mg was taken for U/Th dating 

(age estimation), ~10-25mg for elemental analysis and a small part (~100µg) was taken for C 

and O isotopes measurements (described in section 2.5.2). 

 

2.3. U/Th geochronology 

The uranium and thorium isotopes of the powdered samples were used for age estimation. To 

achieve this 100µl of spike containing a mixture of 233U/236U/229Th (commonly known as double 

spike, mixed spike or combined spike) was added into each sample, then each sample was 

dissolved in 10mls of 4.5HNO3. The whole procedures involve the blanks (for tracing the whole 

procedure contamination) and HU1 standard (to calibrate for Th and U of the combined spike) 

which are added and treated as samples. 

 

2.3.1. Separation of uranium and thorium (ion exchange separation) 

Uranium and thorium separation from the sample matrix was done using vacuum columns and 

Eichrom-UTEVA resin filters at GEOMAR, Kiel. The whole procedure involves four main 

processes: Washing of the columns, conditioning of the columns, loading the sample solution 

into the columns and collection of thorium and uranium into the Teflon beakers.  Separation was 

done via vacuum columns and Eichrom-UTEVA resin filters. Initially the columns have to be 

washed with 10 ml 4.5N HNO3 followed by 10 ml 4.5N HCl and 10 ml 0.02N HCl, then the 

whole washing process was repeated. For conditioning, the columns were again flushed with 10 

ml 4.5N HNO3. Afterwards the 10 ml of the sample solutions were loaded into the columns and 

washed with another 10 ml 4.5N HNO3. Now the thorium can be extracted from the filters by 



22 
 

running 8 ml 4.5N HCl. The acid with the dissolved thorium was then collected in clean Teflon 

beakers. To extract the uranium 6 ml 0.02N HCl were loaded and allowed to run through the 

columns. 

  

2.3.2. Uranium/Thorium age determinations 

Uranium series measurements of coral ages were performed at GEOMAR, Kiel, Germany. 

Determination of uranium and thorium isotope ratios was done using multi-ion-counting 

inductively coupled plasma mass spectroscopy (MC-ICP-MS: Axiom) using the approach of 

Fietzke et al. (2005). For isotope dilution measurements a combined 233U/236U/229Th-spike was 

used, with stock solutions calibrated for concentration using NIST- SRM 3164 (U) and NIST-

SRM 3159 (Th) as combi-spike calibrated against CRM-145 uranium standard solution 

(formerly known as NBL-112A) for U-isotope composition, and against a secular equilibrium 

standard (HU-1, uranium ore solution) for the precise determination of 230Th/234U activity ratios. 

Whole-procedure blank values of this sample set were measured between 0.5 pg and 1 pg for 

thorium and between 10 pg to 20 pg for uranium. Both values are in the range typical of this 

method and the laboratory (Fietzke et al., 2005). The ages were calculated using the half-lives 

published by Cheng et al, (2000b) using the following equation:  

 

[230Th/238U]m ‒1= ‒e-λ
230

t  + (δ234Umeasured/1000) (λ230/
 λ

230 ‒ 
λ
234) (1 ‒ e-(λ

230
 - λ

234
) t)             (1) 

 

Where m represents modern, t represents the age. The λ represents decay constants which are 

9.1577 × 10−6 yr−1 for 230Th, 2.8263 × 10−6 yr−1 for 234U [Cheng et al., 2000], and 1.55125 × 

10−10 yr−1 for 238U (Jaffey et al., 1971). The δ234U represents (234U/238U) activity ratio of a 

coral. The initial uranium activity ratio (i) during the coral formation can be calculated from the 

measured uranium activity ratio (m) using the relationship of radioactive production and decay 

assuming that diagenesis involving uranium has not occurred since the coral formation:  

 

                                      δ234Um= (δ234Ui) e
-λ

230
t                                    (2) 

 

The initial 230Th was corrected for any non-zero detrital 230Th using the equation:  

                                                              [230Th/234U]excess = [232Th/234U] x 0.6±0.2                                  (3) 
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2.4. Microscopic observations  

All sample blocks which are mirror images of the processed powders were observed using epi-

fluorescence microscope (Type: Zeiss Axio Imager.M2, with the camera: Zeiss AxioCam MRm 

Rev.3 using a light source: HXP 120 V (D) and objective: EC Plan-Neofluar 10x/0.3 M27. For 

imaging the DAPI filter set with excitation 350/50 nm, emission 460/50 nm was used. This was 

aimed to observe the presence of infillings within the skeletal voids of the coral skeletons. 

 

2.4.1. Micro-mill based sampling for diagenetic samples 

The two samples (H-Tai-2 and HM4) detected with the presence of secondary aragonite needles 

(ingrowth) within the skeletal voids (from microscopic observation) were further taken for 

micro-mill based sampling to investigate the Sr/Ca ratios in the massive parts of the skeleton and 

the porous parts where the secondary ingrowths were found. To achieve these procedures 

following specifications were set: Depth per pass: 5 µm, number of passes 10 passes (that make 

the cut depth of 50 µm), Scan speed: 10 µm/sec with the plunge speed of 25 µm/sec. This was 

done by milling the powdered samples at the massive parts of the skeleton and also on the porous 

parts of the skeleton where the secondary aragonite needles were found. Samples with no 

secondary aragonite were also included and treated the same way as diagenetic samples for 

comparison. The powders obtained were taken for Sr/Ca geochemical analysis. 

 

2.4.2. Electron Microprobe (EMP) element mappings of early diagenetic corals and 

investigation of Sr/Ca intra-skeletal variability within the primary coral skeleton. 

The same samples (blocks) used for the micro-milling (H-Tai-2 and HM4) were polished and 

taken for the electron Microprobe mapping (EMP: JXA- 8200 JEOL) to investigate high-spatial 

resolution Sr/Ca variations within the primary coral skeleton and along the skeletal voids where 

the secondary aragonite needles have been detected. The EMP maps were obtained by 

wavelength dispersive spectrometry mode measuring simultaneously Sr (La, TAP) and Ca (Ka, 

PETJ). The electron beam was focused to a spot size of 2 µm, accelerating voltage set to 15 kV 

and beam current to 100 nA. A step size of 2 µm as well as an accumulation time of 10 ms was 

used and the map was repeated to gather 5 accumulations of the selected area. Standards 

(Calcite, Volcanic glass – VG-2 as well as KAN1 and Strontianite) were measured before and 

after mapping the sample to convert raw intensities into Sr/Ca ratios. In addition, the 
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investigation of intra-skeletal variability of Sr/Ca ratio was done using line analysis technique. 

This was achieved by using Sr/Ca maps from the EMP analysis and extracting values as a line 

where each point of a line is an average of 20 pixels in horizontal or vertical direction. In each 

map the values were taken as a line passing only the massive area of a skeleton, and a line 

starting from the massive area crossing the porous area where the secondary needles were 

observed. 

 

2.5. Geochemical analysis 

2.5.1. Sr/Ca analytical Procedures 

2.5.1.1. Measurements of Sr/Ca ratios of the bulk samples powders 

The Sr/Ca ratios of the bulk samples were measured using Varian 720-ES Inductively Coupled 

Plasma Optical Emission Spectrometry (ICP-OES) at the GEOMAR, Kiel. Prior to the analysis, 

the coral powder samples were weighed to approximately 20 to 30 mg in order to have total 

weight of the bulk sample. This weight is used to calculate the total calcium concentration of 

each sample. The sample solution was prepared by dissolving the coral powder in 10 ml of 2% 

ultrapure HNO3. Accordingly the respective sample solutions was prepared by serial dilutions of 

the sample solution with 2% HNO3 since all samples have to be measured in the same matrix 

with a Ca concentration level of 25 ppm. The internal standard (400µl Indium solution) was 

added in each sample in order to monitor the matrix effect and correcting for the machine drifts. 

The Sr and Ca lines used for this measurement were 407 and 370 nm, respectively. Respective 

element emission signals were simultaneously collected and subsequently drift corrected by 

sample-standard bracketing method done by measuring JCP-1 standard (Okai et al., 2002) after 

every two samples following the combination of previously published techniques (de Villiers et 

al., 2002; Schrag, 1999). The validity of this reference material has been proved by long term 

inter-laboratory comparisons of this standard (Hathorne et al., 2013b). Measurement results from 

this inter-laboratory standard were used for normalization of our Sr/Ca results. 

  

2.5.1.2. Measurements of Sr/Ca ratios from the micro-mill sampling 

Because the ICP-OES cannot precisely measure very small amounts of samples (<1 mg), Sr/Ca 

measurements from micro-mill samples were analyzed using the ICP MS-Quadrupole at 

GEOMAR, Kiel. Prior to analysis, the powdered samples were dissolved in 2% HNO3 and 
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concentrations were adjusted to the Ca level of 25ppm. Indium was used as an internal standard 

for each sample to monitor the matrix effect and also to correct machine drifts. All the measured 

Sr/Ca values were normalized to the JCP-1 standard (Hathorne et al., 2013b) similar to the Sr/Ca 

values from the bulk sampling. 

 

2.5.2. Determination of stable isotope ratios  

The δ18O ratios were measured following the standard procedure for carbonate samples at 

GEOMAR, Kiel. To achieve this ~100 µg of homogeneous carbonate powder was reacted with 

water-free Phosphoric acid in an automated carbonate device “Carbo Kiel” (Thermo Fischer 

Scientific Inc.) at 73°C to produce CO2. The isotopic ratios of stable δ18O were measured on a 

MAT 253 mass spectrometer (Thermo Fischer Scientific Inc.). The isotopic ratios of δ18O are 

expressed as deviations in per mill relative to the Vienna-PeeDee Belemnite (VPDB) standard. 

The values of δ18O isotopes are calculated as:  

 

δ
18O‰ = (δ18O/ δ16O) sample ‒ (δ

18O/ δ16O) standard x 1000 

 

The standard deviation of single samples reported are based on replicate analyses (n=30) of the 

laboratory standard 

 

2.6. Focus of this thesis 

Most of the climate studies in the past focused on the period after the Last Glacial Maximum 

about 18 ka where the temperature increase has resulted into massive deglaciation of the ice 

sheets that resulted into rise in sea levels. Information about Mid to Late Holocene sea level and 

temperature variability was rare because it was considered to be climatically stable with more or 

less stable temperatures and sea level variations. However, few recent studies indicate that the 

temperature and the sea level were rather fluctuating above and below the modern on different 

time scales (Flood and Frankel, 1989; Gagan et al., 1998; Pirazzoli et al., 1988; Montaggioni and 

Pirazzoli, 1984; Wanner et al., 2008; Woodroffe and Horton 2005). To evaluate these facts we 

used the fossil corals in growth position from the emerged platforms of the Society Islands 

(French Polynesia). Massive specimens of Porites were used for this study because this species 
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is considered to be the most reliable archive in reconstructing the past variability in climate 

(Corrège, 2006).  

 

For reconstructing sea level variations previous studies from Society Islands used fossil reef 

conglomerates which are mostly consisting reworked samples which are replaced from their 

original growth positions (Montaggioni and Pirazzoli, 1984; Pirazzoli and Montaggioni, 1988; 

Pirazzoli and Pluet, 1991). Dating of these conglomerate samples were mostly based on 14C 

which is associated with a number of uncertainties as a result of irregularity of the curves used to 

calibrate 14C dates as well as the lack of information about 14C residence time (Chappell and 

Polach, 1991; Eisenhauer et al., 1999; Grossman et al., 1998; Kench et al., 2009; Pirazzoli et al., 

1988; Pirazzoli and Montaggioni, 1986; Scoffin and Le Tissier, 1998; Woodroffe and McLean, 

1990). Elevations of samples relative to the mean local sea level were far less constrained due to 

lack of modern “Global Positioning System (GPS)”. For volcanic islands, the Island’s specific 

subsidence rates were not considered in reconstruction.  

 

In case of SST reconstruction the impact of early marine diagenesis that leads to errors in SST 

estimates was far less considered (e.g. Stephans et al., 2004; Boiseau et al., 1998; Min et al., 

1995; Kuhnert et al., 1999). This is because the sample screening method for mineralogy was 

entirely based only on the traditional X-ray Diffraction method which cannot distinguish 

between the primary aragonite and the aragonite which is secondary precipitated without the 

influence of coral itself. Errors of SST estimates from these studies were mostly considered to be 

originated from biological control (vital effect) of a coral (e.g. Stephans et al., 2004, Boiseau et 

al., 1998; Min et al., 1995). 

 

This study aims on precisely constraining the sea level variations using massive fossil Porites sp. 

which were taken on growth positions from emerged (exposed) platforms of Society Islands. 

Since normal Porites have a larger range of growth depth (0-25m), the Porites micro atoll 

samples (few centimeters growth range) were also included to reduce the range of estimation. 

For accurate and more precise age estimation, we employed U/Th dating method for our 

samples. To better constrain of the elevation of the samples relative to the mean local sea level, 

we have compared our elevations to the Global Positioning System (GPS) and tidal datum of the 
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area (to reduce the tidal uncertainties). Because the volcanic islands tend to subside as a result of 

time and the distance from the hotspot, the island’s specific subsidence rate was applied to 

correct for the current elevations of the samples for better constraint of the sample heights.  

 

In addition we have used a multi-proxy approach (Sr/Ca, U/Ca and δ18O) to reconstruct SST 

variability from Mid to Late Holocene period. The results were compared to global temperature 

variation from solar activity reconstructed using 10Be and 14C production (Vonmoos et al., 2006) 

and with carbon dioxide concentration on the time window of our samples. To reduce the 

uncertainties (errors) of our SST estimates the petrographic analysis were applied to the samples 

in order to investigate the presence of the secondary aragonite needles or any secondary phase 

resulting from early marine diagenesis.  

 

We have also used the Sr/Ca proxy to trace the shift of SST estimates on the areas where 

secondary aragonite needles are found. Micro-scale intra-skeletal variations of Sr/Ca within the 

samples were also assessed in order to investigate the distribution of Sr/Ca ratio within the 

massive area of the primary skeleton.  

 

2.7. Thesis Structure 

This thesis consists of three chapters. Chapter 1 describes basic theories applied for natural 

archives in paleo-climate reconstructions and the potential use of massive corals (Porites) in 

paleo-climate studies. In this section anatomy, nature of the corals, calcification, reef growth and 

development, habitat and their distribution have also been explained. In addition, the concept 

behind U/Th dating in corals and the potential use of corals as tracers of sea level change has 

been explained. Furthermore, the three important coral proxies used for paleo-thermometry 

(Sr/Ca, δ18O and U/Ca) have been discussed including challenges which are faced in application 

of these proxies in SST reconstruction.  

 

The detailed descriptions of the study area that include nature of the islands, location, climatic 

conditions and tidal amplitudes have been explained in chapter 2. This is followed by the 

methodology and approach used to accomplish this study.  
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Chapter 3 is designed in a paper format: This is a manuscript which was published as: Rashid, 

R., Eisenhauer A., Stocchi P., Liebetrau V., Fietzke J., Rüggeberg A., and Dullo, C. 2014. 

Constraining Mid to Late Holocene relative sea level change in the southern equatorial Pacific 

Ocean relative to the Society Islands, French Polynesia. Geochemistry, Geophysics, Geosystems, 

15, 2601–2615. This paper aimed to reconstruct Mid to Late Holocene Sea level change from the 

exposed fossil coral platforms  (Porites and Porites micro atoll from growth position) which are 

currently exposed above the mean sea level as a consequence of sea level regression on far-field 

areas (e.g. tropical Pacific) caused by ocean siphoning effect. The results were also compared to 

geophysical models from GIA induced ice sheet chronologies (ICE-5G+VM2 and the RSES-

ANU+VKL) to see whether the empirical data agree with model predictions of our area of study.  

 

Chapter 4 is also designed as a manuscript: This is a manuscript is in the process to be submitted 

as: Rashid R., Eisenhauer A., Liebetrau V., Fietzke J., Böhm F., Wall M., Krause S., Goos M., 

Rüggeberg A., and Dullo C. 2014. Early Diagenetic imprint on temperature proxies in Holocene 

Corals: A case study from French Polynesia. This article aims to reconstruct sea surface 

temperature variability in the Mid to Late Holocene period using Sr/Ca, δ18O and U/Ca together 

with analyzing diagenetic impact caused by the early marine diagenesis in SST estimates. 

Furthermore, it attempts to investigate the micro-scale intra-skeletal variation of Sr/Ca ratios that 

reflects the variability of incorporation of Sr/Ca ratios during skeletal formation.  

 

Chapter 5 provides the general conclusion together with recommendation and future perspectives 

suggested from this thesis. 
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Chapter Three 

 

3. Constraining Mid to Late Holocene Relative Sea Level Change in the Southern 

Equatorial Pacific Ocean Relative to the Society Islands, French Polynesia 

(Published as Rashid et al., 2014, G
3
, 15, 2601–2615) 

 

Rashid Rashid1, Eisenhauer Anton1, Stocchi Paolo2, Liebetrau Volker1, Fietzke Jan1, Rüggeberg 

Andres3, Dullo Christian1. 

1GEOMAR, Helmholtz Zentrum für Ozeanforschung Kiel, Kiel Germany. 2NIOZ Royal 

Netherlands Institute for Sea Research, Texel, Netherlands. 3Department of Geosciences, 

University of Fribourg, Fribourg, Switzerland. 

 

Abstract  

Precisely quantifying the current climate-related sea level change requires accurate knowledge of 

long-term geological processes known as Glacial Isostatic Adjustments (GIA). Although the 

major post-glacial melting phase is likely to have ended ~6-4 ka (before present), GIA is still 

significantly affecting the present-day vertical position of the mean sea surface and the sea 

bottom. Here we present empirical rsl (relative sea level) data based on U/Th dated fossil corals 

from reef platforms of the Society Islands, French Polynesia, together with the corresponding 

GIA-modelling. Fossil coral data constrains the timing and amplitude of rsl-variations after the 

Holocene sea level maximum (HSLM). Upon correction for isostatic island subsidence, we find 

that local rsl was at least ~1.5±0.4 m higher than present at ~5.4 ka. Later, minor amplitude 

variations occurred until ~2 ka, when the rsl started dropping to its present position with a rate of 

~0.4 mm/year. The data match with predicted rsl curves based on global ice-sheet chronologies 

confirming the role of GIA-induced ocean siphoning effect throughout the mid to late Holocene. 

A long lasting Late Holocene highstand superimposed with second order amplitudinal 

fluctuations as seen from our data suggest that the theoretical predicted timing of rsl change can 

still be refined pending future calibration.  

 

Key words: fossil coral record, U-Th geochronology, sea level highstand, micro atolls   
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3.1. Introduction 

The Intergovernmental Panel on Climate Change (IPCC) predicts a mean sea level rise in the 

order of ~3.5mm/year as a consequence of greenhouse warming (Richard Alley et al., 2007). 

This is likely to contribute to a sea level rise between 29 and 82 centimeters by the end of the 

century [IPCC report, 2013]. Since about 10% of human population inhabit low coastal regions 

and islands (McGranahan et al., 2007), it is fundamental to understand the frequency and 

amplitude of the several natural and anthropogenic mechanisms which contribute to sea level 

variations. In particular, the knowledge of present-day and future sea level changes strongly 

relies on our understanding of the past sea level variations (Houghton, 1996). Geological data 

show that during the Quaternary period, glacial and interglacial climate conditions have been 

characterized by a transfer of ~3% of the global ocean water volume between the continental ice 

sheets and the oceans (Bard et al., 2010; Blanchon et al., 2009; Eisenhauer et al., 1996; 

Montaggioni et al., 1996; Montaggioni, 2005; Woodroffe and Horton, 2005). During the Last 

Glacial Maximum (LGM; ~21 ka) 120-130 m of equivalent sea level were stored in form of large 

continental ice-sheets over North America, Eurasia, Greenland and Antarctica (Denton and 

Hughes). The post-LGM sea level change was punctuated by short-term periods of slower and 

faster rise, with higher rates of up to 10 to 15 m/ka (Bard et al., 1996; Deschamps et al., 2012; 

Woodroffe and Horton, 2005) during melt-water pulse 1A (14.6-14.3 ka). Before and after the 

Younger Dryas event (12.9-11.6 ka) [Carlson, 2010], the rate of sea level rise was at its 

maximum (Bard et al., 1996; Fairbanks, 1989) and caused coral reefs to drown (Camoin et al., 

2012; Dullo et al., 1998).  

 

Although the trend and rate of global mean sea level (msl) change (commonly known as eustatic 

sea level change) follows the rate of melting/growth of continental ice masses, several coeval 

mid to late Holocene sea level indicators based on fossil coral reefs found in different regions 

show that the timing and amplitude of post-glacial sea level variations are not uniform, but 

strongly depend on the geographical position and varies considerably as a function of the 

distance from the formerly glaciated areas (Lambeck et al., 2002; Milne et al., 2009; Mitrovica 

and Milne, 2002; Mitrovica and Peltier, 1991). Because the msl is an equipotential surface of 

gravity, it does not only vary in time as a function of addition/removal of ocean water, but also 

spatially according to the differential variations of the Earth’s gravity potential which are 
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triggered by the continental ice-sheet fluctuations (Mitrovica and Peltier, 1991; Peltier, 2002). 

Hence, as far as ice-sheets fluctuations are concerned, the oceans do not behave like a bathtub as 

the eustatic model would imply as it was described in the pioneering study of (Suess and 

Waagen, 1888). When an ice-sheet melts, in fact, the lack of gravitational pull which was 

previously exerted by ice mass on the ocean water results in a sea level drop nearby the formerly 

glaciated area and in a sea level rise higher than the eustatic value at the opposite end (Mitrovica 

and Milne, 2002; Woodward, 1888). Hence, the ocean averaged sea level change exactly 

corresponds to the eustatic change (Suess and Waagen, 1888), but the local sea level change may 

be significantly different, or even opposite in sign.  

 

Furthermore, a time-dependent contribution to the msl variation from the ice-sheets fluctuations 

exists because of the deformability of the solid Earth with respect to ice and ocean surface mass 

displacements. In fact, during and after the melting of an ice sheet, the formerly glaciated areas 

undergo isostatic rebound (rise of the land mass) in order reach new isostatic equilibrium. At the 

same manner, the uplifted area surrounding the formerly glaciated area subsides, as well as the 

ocean sea-floor because of the addition of melt water (Mitrovica and Milne, 2002). This implies 

that the solid Earth response is both immediate and delayed and can be approximated by a 

Maxwell viscoelastic body. The solid Earth deformations behave like density variations and 

directly affect the shape of the geoid and the msl, respectively. However, and more importantly, 

since both the msl and the solid Earth surface deform during and after the melting of an ice sheet, 

any land based marker (sea level indicator like coral reef corals) would record the msl change 

with respect to the sea bottom, i.e., the local rsl. The feedbacks described so far drive GIA 

processes and result in rsl changes which depart from eustasy as a function of the distance from 

the formerly glaciated areas, of the shape of the ocean basins and of the rheology of the solid 

Earth. 

 

Geological evidences from South Pacific and Indian Ocean islands show that the last 6.5 ka were 

characterized by a 1-3 m rsl drop (Banerjee, 2000; Deschamps et al., 2012; Eisenhauer et al., 

1993; Grossman et al., 1998; Woodroffe and Horton, 2005) which can be explained by the GIA-

induced ocean siphoning effect and the migration of ocean water towards the subsiding 

peripheral forebulges that surrounded the formerly glaciated areas in the Northern and Southern 
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Hemispheres (Milne and Mitrovica, 1998; Mitrovica and Milne, 2002; Mitrovica and Peltier, 

1991). As a morphological consequence to Mid and Late Holocene regression, the coral reefs 

from Indian and Pacific Ocean islands developed extended emerged fossil reef platforms which 

are currently 1-3 m above the msl (Eisenhauer et al., 1999; Eisenhauer et al., 1993; Grossman et 

al., 1998; Montaggioni and Pirazzoli, 1984; Pirazzoli et al., 1988; Woodroffe and Horton, 2005). 

Because of the geographical location, the late Holocene sea level regression observed at the 

Indo-Pacific islands is clearly in contrast with the almost eustatic rsl change recorded at the 

Caribbean islands (Fairbanks, 1989; Woodroffe and Horton, 2005). Furthermore, superimposed 

to the general rsl drop, the Indo-Pacific islands show second order rsl fluctuations in the range of 

0.1-1.0 m (Flood and Frankel, 1989; Pirazzoli et al., 1988; Scoffin and Le Tissier, 1998; 

Woodroffe et al., 1990; Young et al., 1993) which may be attributed to sea surface temperature 

(SST) variations in the order of 1 to 2 °C (Goelzer et al., 2012; Levermann et al., 2013).  

 

In general, tropical Pacific areas remain far less understood than their Atlantic counterparts 

(Camoin and Davies, 1998; Kennedy and Woodroffe, 2002; Montaggioni, 2005). Also, published 

rsl records from Indo-Pacific regions and, in particular, from the Society Islands (Montaggioni 

and Pirazzoli, 1984; Pirazzoli and Montaggioni, 1988; Pirazzoli and Pluet, 1991) are mostly 

based on radiocarbon dating and consequently carry higher uncertainty due to the lack of 

information about the 14C residence time (Chappell and Polach, 1991; Eisenhauer et al., 1999; 

Grossman et al., 1998; Kench et al., 2009; Pirazzoli et al., 1988; Pirazzoli and Montaggioni, 

1986; Scoffin and Le Tissier, 1998; Woodroffe and McLean, 1990). Furthermore, the 

geographical position provided in earlier studies as well as the corresponding elevation above 

mean sea level are less constrained due to the lack of modern “Global Positioning System 

(GPS)” and improved tidal and atmospheric pressure corrections. More robust estimates of mid 

to late Holocene rsl fluctuations in the Indo-Pacific region can be gained by the comparison of 

U/Th dated corals from different islands and atolls. In particular, the U/Th dating method is 

independent of any reservoir ages and provides high precision values ranging from ~2 year old 

sample up to ~600,000 year old sample (c.f., (Stirling et al., 2001). However, diagenetic changes 

related to the recrystallization of aragonite to calcite may obscure the actual age of the samples 

(Eisenhauer et al., 1993; Scholz and Mangini, 2007). 
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The present study aims at better constraining the amplitude and timing of mid to late Holocene 

rsl changes by means of U/Th dating of fossil corals sampled from emerged platforms of the 

Society Islands (French Polynesia, South Pacific Ocean). The rsl record presented here is 

compared to theoretical predictions of GIA-induced rsl changes computed for two available 

global ice-sheet chronologies (Lambeck et al., 1998; Peltier, 2004) by solving the gravitationally 

self-consistent Sea Level Equation formalism (SLE) (Farrell and Clark, 1976; Mitrovica and 

Peltier, 1991; Spada and Stocchi, 2007). Any difference between empirically determined sea 

level records and theoretical predictions will help to constrain the geophysical models and basic 

parameters as well as to determine the timing of the post-glacial melting of the three major ice 

reservoirs in North-America, Europe and Antarctica. 

 

3.2. Samples and Methods 

3.2.1. Sample location 

Samples for this study were collected from Society Islands, French Polynesia (Figure 1A and B) 

because these islands are characterized by extended Holocene emerged fossil reef platforms 

(Davies and Marshall, 1980; Montaggioni and Pirazzoli, 1984; Pirazzoli and Montaggioni, 1986) 

being a direct consequence of the decline of the Late Holocene sea level highstand after ~6.5 ka. 

According to the model for epicontinental reef growth (Davies and Marshall, 1980), the presence 

of these platforms provide suitable sampling localities for mid to late Holocene sea level 

variations studies (Eisenhauer et al., 1993; Montaggioni and Pirazzoli, 1984; Pirazzoli et al., 

1988; Pirazzoli and Montaggioni, 1986; Yu et al., 2010). The Society archipelago comprises 

more than ten islands and atolls elongated in 17°52’S 149°50’W and 15°48’S 154°50’W 

direction which spread across 720km of the Pacific Ocean (Duncan and McDougall, 1976; 

Montaggioni, 2011; Peltier, 2002; Pirazzoli and Montaggioni, 1988). The islands are elongated 

in the direction which is virtually parallel to the present absolute motion of the Pacific plate 

(Blais et al., 2002; Gripp and Gordon, 1990; Uto et al., 2007). These islands are thought to have 

originated from a volcanic hotspot presently located around the island of Mehetia about 110 km 

east of Tahiti (Binard et al., 1991; Binard et al., 1993; Blais et al., 2002; Devey et al., 1990; 

Nolasco et al., 1998). 
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According to published chronological studies, the ages of the islands increase with the distance 

from a hotspot ranging in age from Mehetia (less than 1 Ma old), to Tahiti (~1.67– 0.25 Ma old), 

to Moorea (~2.15-1.36 Ma old), to Huahine (~3.08– 2.06 Ma old), to Tahaa (~3.39–1.10 Ma 

old), to Raiatea (~ 2.75–2.29 Ma old) and to Maupiti ~5 Ma old (Duncan et al., 1994; Guillou et 

al., 2005; Uto et al., 2007; White and Duncan, 1996). 

                 

Fig. 1: Location of the French Polynesia where Society Islands are located (A) and the islands of Moorea, Huahine 

and Bora Bora in particular (B). Figure 1C shows the sample sites along the shore lines of Moorea, Huahine and 

Bora Bora. Arrows pointing towards numbers refer to Tab. 1 and 2. 

 

The studies have also shown that, as volcanic islands move away from the hotspot, the oceanic 

crust becomes progressively cooler and denser and gradually subsiding from the level of its 

formation. In this case these Society Islands slowly subside as they move further from its point 

of origin (Neall and Trewick, 2008). The Holocene subsidence rate of Society Islands has been 

determined to be ~0 to a maximum of ~0.5 mm/year (Bard et al., 1996; Fadil et al., 2011; 

Lepofsky et al., 1996; Pirazzoli et al., 1985; Pirazzoli and Montaggioni, 1988). The climate of 

the Society Islands is tropical with two main seasons. The warm and rainy season (austral 

summer) runs from November to April. During this period, the conditions are hot and rainy, with 
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the average SST in the order of ~28°C whereas the heavy rains are mostly experienced during 

December and January. These are the most intense rains along the coastline exposed to the trade 

winds that usually blow from East (South-East) and North-East direction. During May to 

October (austral winter), the climate is relatively less humid, with a SST in the order of ~25°C. 

The available information indicates the tidal range is between 0.3 and 0.4m [Bongers and Wyrtki, 

1987; Tylor, 1979; Yates et al., 2013]. This is in general accord with the NOAA tide book 

indicating an average of 0.5m for the Society Islands (Seard et al., 2011).  

 

3.2.2. Sample collection and preparation 

The samples were collected during April to May 2009 during the CHECKREEF expedition to 

the Holocene emerged reef platforms at Moorea, Huahine and Bora Bora (Tab. 1; Fig. 1 B and 

C).  

 

Table 1A: Information of sampling locations on Moorea 

 
 Map 

code 

Sampling  

Location 
Coordinates 

 

Height 

apsl 
(m) 

Island  Comments 

Lagunarium Island Moorea 

1 L1-2  17°33' 7.62"S 149°46'33.46"W 0.75±0.40 Moorea  in situ 

2 LI-4 17°33' 7.62"S 149°46'33.46"W 0.75±0.40 Moorea  in situ 

White Light House Moorea  

3 WL1 17°32' 31.00"S 149°45'54.69"W 0.75±0.40 Moorea  in situ 

   Reef Papetoaai     Moorea  

4 CB10 17°29' 27.4"S 149°55'15.4"W 1.80±0.40 Moorea  Conglomerate 

5 CB11 17°29' 18.8"S 149°54'52.6"W 1.80±0.40 Moorea  Conglomerate 

6 CB12 17°29' 29.07"S 149°54'32.9"W 1.80±0.40 Moorea  Conglomerate 

7 CB5 17°29' 08.9"S 149°54'07.6"W 1.80±0.40 Moorea  Displaced 

8 RP2 17°29' 12.59"S 149°53'7.57"W 0.00±0.40 Moorea  in situ 

9 RP4 17°29' 12.59"S 149°53'7.57"W -0.80±0.40 Moorea  in situ 

10 MCM1 17°29' 7.62"S 149°54'9.74"W 1.10±0.40 Moorea  in situ 

11 MCM2 17°29' 7.62"S 149°54'9.74"W 1.10±0.40 Moorea  in situ 

12 MCM5 17°29' 7.62"S 149°54'9.74"W 1.10±0.40 Moorea  in situ 

13 MCM10 17°29' 8.86"S 149°54'7.64"W 1.10±0.40 Moorea  in situ 

14 CM1 17°29' 34.89"S 149°55'19.98"W 0.75±0.40 Moorea  in situ 

15 CM2 17°29' 34.89"S 149°55'19.98"W 0.75±0.40 Moorea  in situ 

16 CM4 17°29' 26.29"S 149°55'14.83"W 0.75±0.40 Moorea  in situ 

17 CM7 17°29' 18.84"S 149°54'52.60"W 0.75±0.40 Moorea  in situ 

Note: the numbers shown in this table indicate the sampling points shown on the map. 
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Table 1B: Information of sampling locations on Huahine 

 
 Map 

code 

Sampling  

Location 
Coordinates 

 

Height 

apsl 
(m) 

Island  Comments 

Motu Taiahu Huahine 

18 H-Tai-1 16°47' 0.50"S 150°56'54.26"W 0.50±0.40 Huahine in situ 

19 H-Tai-2 16°47' 0.50"S 150°56'54.26"W 0.50±0.40 Huahine in situ 

20 H-Tai-3 16°47' 0.50"S 150°56'54.26"W -0.80±0.40 Huahine in situ 

21 H-Tai-5 16°47' 0.50"S 150°56'54.26"W 1.00±0.40 Huahine in situ 

22 H-Tai-7 16°46' 31.94"S 150°56'54.89"W -0.25±0.40 Huahine in situ 

23 H-Tai-8 16°46' 31.94"S 150°56'54.89"W 0.30±0.40 Huahine in situ 

24 H-Tai-9 16°46' 31.94"S 150°56'54.89"W 0.00±0.40 Huahine Micro atoll 

25 H-Tai-10 16°46' 31.94"S 150°56'54.89"W 0.00±0.40 Huahine Micro atoll 

26 H-Tai-11 16°45' 12.13"S 150°57'53.39"W 0.75±0.40 Huahine in situ 

27 H-Tai-12 16°45' 12.13"S 150°57'53.39"W -0.20±0.40 Huahine in situ 

28 H-Tai-13 16°45' 12.13"S 150°57'53.39"W -0.20±0.40 Huahine in situ 

Mooana Beach Huahine 

29 H-M-1 16°42' 1.51"S 151°2'18.68"W 0.50±0.40 Huahine in situ 

30 H-M-2 16°42' 1.51"S 151°2'18.68"W 0.30±0.40 Huahine in situ 

31 H-M-4 16°42' 1.51"S 151°2'18.68"W 0.10±0.40 Huahine in situ 

32 H-M-5 16°42' 1.51"S 151° 2'18.68"W 0.00±0.40 Huahine in situ 

Motu Vavaratea  Huahine 

33 H-MT-1 16°44' 29.66"S 150°58'16.10"W 1.10±0.40 Huahine in situ 

34 H-MT-2 16°44' 29.66"S 150°58'16.10"W 0.75±0.40 Huahine in situ 

35 H-V-1 16°44' 28.80"S 150°58'15.66"W 0.25±0.40 Huahine in situ 

Pass Tiare (Motu Mahare) Huahine 

36 H-PT-1-A 16°43' 14.08"S 150°58'37.37"W 0.00±0.40 Huahine in situ 

37 H-PT-1-2 16°43' 14.08"S 150°58'37.37"W 0.75±0.40 Huahine in situ 

Note: the numbers shown in this table indicate the sampling points shown on the map. 

 

Table 1C: Information of sampling locations on Bora Bora 
 

 Map 

code 

Sampling  
Location 

Coordinates 
Height 

apsl 

(m) 
Island Comments 

Motu Tapu Bora Bora 

38 BB-MP 3/2 16°29' 43.99"S 151°46'46.92"W 1.10±0.40 Bora Bora in situ 

Motu Mute Bora Bora 

39 BB-MP 4/2 16°26' 48.49"S 151°46'3.18"W 1.10±0.40 Bora Bora in situ 

40 BB-MP 2/2 16°27' 22.49"S 151°46'20.20"W 1.10±0.40 Bora Bora in situ 

41 BB-MP 5/3 16°26' 36.14"S 151°45'52.75"W -1.30±0.40 Bora Bora in situ 

Motu Tevairoa Bora Bora 

42 BB-MP 6/6 16°28' 30.24"S 151°46'55.51"W -1.30±0.40 Bora Bora in situ 
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Map 

code 

Sampling  

Location 
Coordinates 

Height 

apsl 
(m) 

Island Comments 

43 BB-MP 6/5 16°28' 17.90"S 151°47'4.26"W -1.30±0.40 Bora Bora in situ 

Motu Pitiaau Bora Bora 

44 BB-MX 1/2 16°33' 6.35"S 151°42'20.01"W 1.30±0.40 Bora Bora in situ 

  Motu Ome   Bora Bora 

45 BB-MX 3/2 16°27' 54.67"S 151°42'44.50"W 0.95±0.40 Bora Bora Micro atoll 

46 BB-MX 4/2 16°27' 54.67"S 151°42'44.50"W 1.40±0.40 Bora Bora in situ 

47 BB-MX 5/1 16°27' 50.86"S 151°42'49.35"W 0.95±0.40 Bora Bora in situ 

48 BB-MX 5/3 16°27' 49.99"S 151°42'50.70"W 0.95±0.40 Bora Bora in situ 

  Motu Pitiaau   Bora Bora 

49 BB-MX 6/3 16°33' 7.49"S 151°44'1.36"W 0.95±0.40 Bora Bora in situ 

50 BB-MX 7/2 16°30' 42.07"S 151°42'4.73"W 1.40±0.40 Bora Bora in situ 

  Motu Mute   Bora Bora 

51 BB-MM-13 16°26' 36.03"S 151°45'53.24"W 0.65±0.40 Bora Bora in situ 

Note: the numbers shown in this table indicate the sampling points shown on the map. 

 

The main targets for sampling have been in situ Porites in general and Porites micro atolls in 

specific. Criteria for in situ sampling have been that fossils corals were found upright in growth 

position and not showing any indications for later displacement. Samples considered being 

reworked and transported (conglomerates) in Tab. 1 and 2 are not considered for the rsl-curve. 

The position of the corals above the present mean sea level (apmsl) was determined by 

triangulation of the coral´s position to the current position of the mean sea level. To achieve this, 

the laser was placed on top of the sample with the beam pointing horizontally towards the water 

table. Using a meter rule, the measurement of the elevation was determined relative to the laser 

beam and the water level. This process was repeated up to 15 times where by the local time is 

recorded. Using tide table and the local time, the elevation relative to the mean sea level was 

achieved. These elevations were also compared to our GPS measurement during each time. 

Certainly, this method is burdened with uncertainties because the sea level position is not well 

defined due to wave action but careful positioning and repeated measurements allowed the 

determination of coral positions in the order of ±0.4 m. Note, concerning the reconstruction of a 

Late Holocene sea level curve not only the present day position apmsl rather its past position 

during corals life time is of certain importance. The past position has to be determined and 

reconstructed from the individual subsidence rate of the particular island. Local subsidence rates 

are known (see section 2.4 below) and assumed to be linear. However, the accuracy of the 
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subsidence rate is also burdened with some unknown uncertainty and may also not be linear 

rather than abrupt and discontinuously. Hence, the uncertainty of about ±40 cm attributed to our 

samples may account for the present day position but also for the uncertainty induced by the 

subsidence correction. In addition, the height of sea level may also be obscured by the 

uncertainty of corals position below sea surface. In order to circumvent at least this problem 

micro-atolls are of certain interest. 

 

In particular the elevation of micro atolls (sample no. 24, 25 and 45 in Tab. 1 and 2) above the 

sea level put distinct constraints on the position of a past sea level because normally the sea level 

is only a few centimeters above micro-atolls surface during their formation (Chappell, 1983; 

Flora and Ely, 2003; Larcombe et al., 1995; Scoffin et al., 1978; Smithers and Woodroffe, 2001; 

Woodroffe and McLean, 1990; Woodroffe, 2005). Selected fossil coral samples were taken out 

of the platforms using hammers and chisels. The elevation interval from which the samples were 

taken ranges from -1.5 m to less than ~2 m apmsl, respectively. The uncertainty of the sample’s 

elevation determination relative to the present msl was conservatively estimated to be in the 

order of ±0.4m. 

 

Selected samples were cut into slabs (~1 cm thick) along the growth direction. Afterwards, the 

slabs were washed with Milli-Q water and dried at room temperature in a clean lab fume hood. 

Using a diamond saw, samples were further cut into smaller blocks within the parallel growth 

bands by selecting the best parts visually free from any algal or carbonate infill of the pore 

volume. These blocks were then cut into small pieces (chips) and transferred into teflon beakers 

for further cleaning using ultra-sonification method (Cheng et al., 2000). Cleaned sample were 

then transferred into a hot plate and dried at ~35°C overnight. Each sample was then crushed into 

powder and the mineralogy of the samples in terms of aragonite or Mg-calcite was determined 

by X-Ray diffraction (XRD) method. 

 

3.2.3. Uranium and thorium isotope measurements 

Uranium series measurements of coral ages were performed at GEOMAR, Helmholtz Centre for 

Ocean Research Kiel, Germany. In brief, separation of uranium and thorium from the sample 

matrix was done using Eichrom-UTEVA resin followed previously published methods 
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(Blanchon et al., 2009; Douville et al., 2010; Fietzke et al., 2005). Determination of uranium and 

thorium isotope ratios was done using the multi-ion-counting inductively coupled plasma mass 

spectroscopy (MC-ICP-MS ) approach using the method of (Fietzke et al., 2005). The ages were 

calculated using the half-lives published by Cheng et al, [2000b]. For isotope dilution 

measurements, a combined 233U/236U/229Th spike was used with stock solutions calibrated for 

concentration using NIST-SRM 3164 (U) and NIST-SRM 3159 (Th) as combi-spike, calibrated 

against CRM-145 uranium standard solution (formerly known as NBL-112A) for uranium 

isotope composition and against a secular equilibrium standard (HU-1, uranium ore solution) for 

the precise determination of 230Th/234U activity ratios. Whole-procedure blank values of this 

sample set were measured between 0.5 pg and 1 pg for thorium and between 10 pg to 20 pg for 

uranium. Both values are in the range typical of this method and the laboratory (Fietzke et al., 

2005). 

 

3.2.4. Correction for the subsidence of the islands 

Few studies have been focusing on the assessment of the subsidence rates of the Society Islands 

(e.g. [Fadil et al., 2011; Thomas et al., 2012]) mostly on Tahiti Island. For Moorea, Huahine and 

Bora Bora, Pirazzoli et al., [1985] and Pirazzoli and Montaggioni, [1985] conducted a study 

based on petrological analysis of emerged reef conglomerate available on the shorelines of the 

islands. The analysis was based on the close inspection of thin sections of exposed coral reef 

conglomerates. In their study they have found different layers of the conglomerates 

corresponding to different diagenetic sequences. The lower sequence exhibit earlier generations 

of diagenesis developed within marine phreatic zone corresponding to sub tidal environment 

(e.g. Magnesian Calcite, Pelleted micrite) within inter-particle pore spaces. The upper part 

exhibit the later generation of diagenesis developed in the marine vadose zone corresponding to 

mid littoral zone (e.g. irregular rims of truncated aragonite fibres and pendant microstalactites) or 

the splash zone. Using radiocarbon dating, the type of diagenetic imprint and the stratigraphic 

elevation of the conglomerates specimen, they have been able to calculate the subsidence rates of 

the Islands. Based on this study we have directly applied the subsidence rates of Moorea and 

Huahine (0.14mm/year) and Bora Bora (0.05mm/year) islands for correction of the elevations of 

our samples. 
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3.3. Results and Discussion 

3.3.1. U/Th-Age Dating 

Table 2 summarizes all measured uranium and thorium data and the calculated U/Th ages. For 

uranium and thorium isotope analysis only samples with no detectable traces of calcite were used 

for measurements. The data show that 238U concentrations vary between 2.055±0.001 ppm (No. 

50, BB-MX7/2) and 4.26±0.01 ppm (No. 26, H-Tai-11) with a mean 238U concentration of 

2.986±0.005 ppm. The concentrations of 232Th vary from 0.0045±0.0001 ppb (No. 18, HTai-1) to 

0.91±0.01 ppb (No. 11, MCM2) with an average value of 0.163±0.004 ppb. Both the measured 
232Th and 238U values are in typical range for young corals from oceanic islands (Chen et al., 

1991; Edwards et al., 1988; Yokoyama and Esat, 2004). The δ234U(T) values (Tab. 2, Fig. 2) 

show lowest values for sample No. 6 of 139±3‰ and highest value of 151±3‰ for sample No. 3 

and 33. The δ234U(0) values range from 138±3‰ (sample No. 6) to 150±3‰ for sample No. 3 

and 9. 

 

 

Fig. 2: The decay corrected uranium activity ratios, reported as δ234U(T) as a function of their corresponding ages. 

The dashed grey line marks the interval of reported modern sea water uranium isotopic composition 146.8±0.1‰ 

[Andersen et al., 2010]. Most of our data within uncertainties are plotting within this range. The values below or 

above this range suggest some marginal open system behavior of these samples [Andersen et al., 2010].  
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 Taking the δ234U isotope value of the sea water into account from Fig. 2 it is obvious that most 

of the δ234U(T) values fall within their statistical uncertainties in the range of the presently most 

precise δ234U seawater value of 146.8±0.1‰ [Andersen et al., 2010]. Twelve samples (marked 

with * in the tables 2A, B and C) are slightly but significantly lower and three samples (marked 

with **) are significantly higher than this expected value in average by about 3.7±0.6‰. This 

deviation from the expected value probably suggests a marginal open system behavior of these 

samples. A difference of 1‰ in the δ234U(T) value is expected to change a 4.5 ka old coral in the 

order of about 5 years.  
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Table 2: Uranium/Thorium isotopic composition and ages of fossil corals from Moorea (2A), Huahine (2B) and Bora Bora (2C), Society Islands.  

Table 2A: Uranium/Thorium isotopic composition and ages of fossil corals from Moorea 

Sample Island Sample 238 U �
234U(0) �

234U(T) 
 

232Th 
230Th/238U 

 

230Th/232Th 
Age Sampling 

Subsidence 
corrected 

elevation 

Number  Label (ppm) (‰) (‰) (ppb) (dpm/dpm) (dpm/dpm) (ka) 
elevation 

(m) 
(m) 

1 Moorea **LI-2 2.877±0.004 148±2 150±2 0.0161±0.0001 0.0304±0.0002 16800±160 2.94±0.03 0.75±0.40 1.16±0. 40 

2 Moorea LI-4 3.215±0.004 144±3 145±3 0.0094±0.0001 0.0316±0.0001 33200±400 3.07±0.02 0.75 ±0. 40 1.18±0. 40 

3 Moorea **WL1 2.230±0.003 150±3 151±3 0.0437±0.0003 0.0189±0.0001 3000±30 1.82±0.02 0.75±0. 40 1.01±0. 40 

4 Moorea CB 10 3.481±0.007 142±4 143±4 0.505±0.011 0.0214±0.0011 400±20 2.06±0.11 1.80±0. 40 2.09±0. 40 

5 Moorea CB11 2.994±0.005 143±3 144±3 0.0556±0.0002 0.0267±0.0001 4500±20 2.59±0.02 1.80±0. 40 2.16±0. 40 

6 Moorea *CB12 2.695±0.005 141±3 142±3 0.331±0.003 0.0229±0.0003 600±10 2.22±0.03 1.80±0. 40 2.11±0. 40 

6 Moorea *CB12 no.2 2.734±0.002 138±3 139±3 0.336±0.004 0.0229±0.0003 600±10 2.22±0.03 1.80±0. 40 2.11±0. 40 

7 Moorea CB 5 2.433±0.007 143±6 143±6 0.313±0.007 0.00025±0.00002 6±1 0.021±0.002 1.80±0. 40 1.80±0. 40 

8 Moorea RP2 2.265±0.003 148±3 148±3 0.0225±0.0002 0.00115±0.00003 400±10 0.109±0.003 0.00±0. 40 0.02±0. 40 

9 Moorea RP4 2.390±0.004 150±3 150±3 0.365±0.003 0.00078±0.00003 20±1 0.072±0.003 -0.80±0. 40 -0.79±0. 40 

10 Moorea MCM1 3.470±0.011 142±5 143± 5 0.093±0.006 0.0311±0.0002 4000±200 3.02±0.04 1.10±0. 40 1.52±0. 40 

11 Moorea MCM2 2.597±0.005 146±3 147±3 0.910±0.007 0.0271±0.0001 200±2 2.61±0.02 1.10±0. 40 1.47±0. 40 

12 Moorea MCM5 3.292±0.005 149±4 150±4 0.024±0.006 0.0260±0.0001 10900±3000 2.51±0.02 1.10±0. 40 1.45±0. 40 

13 Moorea MCM10 2.684±0.004 149±3 149±3 0.089±0.007 0.0227±0.0002 2100±200 2.19±0.02 1.10±0. 40 1.41±0. 40 

14 Moorea CM1 3.469±0.005 144±3 146±3 0.0099±0.0001 0.0451±0.0002 48900±700 4.39±0.04 0.75±0. 40 1.37±0. 40 

15 Moorea CM2 3.607±0.006 145±3 146±3 0.059±0.0003 0.0407±0.0002 7800±40 3.96±0.03 0.75±0. 40 1.31±0. 40 

16 Moorea CM4 2.934±0.005 146±3 147±3 0.1583±0.005 0.0378±0.0002 2200±70 3.66±0.03 0.75±0. 40 1.26±0. 40 

17 Moorea CM7 2.598±0.005 147±3 148±3 0.276±0.007 0.0388±0.0002 1100±20 3.76±0.04 0.75±0. 40 1.28±0. 40 
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Table 2B: Uranium/Thorium isotopic composition and ages of fossil corals from Huahine 

Sample  Island Sample 238 U �
234U(0) �

234U(T) 
232Th 230Th/238U 230Th/232Th Age Sampling 

Subsidence 
corrected 

elevation 

Number  Label (ppm) (‰) (‰) (ppb) (dpm/dpm) (dpm/dpm) (ka) 
elevation 

(m) 
(m) 

18 Huahine H-Tai-1 3.892±0.006 145±2 146±2 0.0045±0.0001 0.0351±0.0001 94900±1500 3.41±0.02 0.50±0. 40 0.98±0. 40 

18 Huahine *H-Tai-1 no 2 3.95±0.02 143±2 144±2 0.0045±0.0001 0.0352±0.0003 102900±78200 3.41±0.03 0.50±0. 40 0.98±0. 40 

19 Huahine H-Tai-2 3.367±0.004 144±2 145±2 0.116±0.002 0.0321±0.0003 2900±40 3.12±0.03 0.50±0. 40 0.94±0. 40 

20 Huahine H-Tai-3 3.532±0.009 142±5 144±5 0.628±0.006 0.0477±0.0002 800±10 4.66±0.05 -0.80±0. 40 -0.15±0. 40 

21 Huahine H-Tai-5 3.99±0.01 140±5 142±5 0.105±0.007 0.0499±0.0003 5800±400 4.90±0.06 1.00 ±0. 40 1.69±0. 40 

22 Huahine *H-Tai-7 3.579±0.008 139±5 141±5 0.098±0.007 0.0495±0.0003 5600±400 4.85±0.06 -0.25±0. 40 0.43±0. 40 

23 Huahine H-Tai-8 2.656±0.008 142±5 144±5 0.076±0.007 0.0404±0.0003 4400±400 3.94±0.05 0.30±0. 40 0.85±0. 40 

24 Huahine H-Tai-9 2.964±0.009 142±5 144±5 0.053±0.006 0.0419±0.0012 7200±900 4.08±0.14 0.00±0. 40 0.57±0. 40 

25 Huahine *H-Tai-10 2.966±0.007 140±5 141±5 0.113±0.008 0.0387±0.0015 3100±200 3.78±0.17 0.00±0. 40 0.53±0. 40 

26 Huahine H-Tai-11 4.26±0.01 142±4 144±5 0.039±0.006 0.0498±0.0003 16900±2700 4.88±0.06 0.75±0. 40 1.43±0. 40 

27 Huahine H-Tai-12 3.44±0.01 149±5 150±5 0.050±0.007 0.0430±0.0004 9100 ±1300 4.17±0.07 -0.20±0. 40 0.38±0. 40 

28 Huahine H-Tai-13 2.645±0.007 144±5 146± 5 0.020±0.005 0.0403±0.0003 16800±4500 3.92±0.05 -0.20±0. 40 0.35±0. 40 

29 Huahine H-M-1 2.596±0.006 144±4 147±2 0.055±0.001 0.0402±0.0002 5900±60 3.92±0.04 0.50±0. 40 1.05±0. 40 

30 Huahine H-M-2 2.293±0.002 146±2 147±2 0.0109±0.0001 0.0402±0.0001 26200±300 3.92±0.02 0.30±0. 40 0.85±0. 40 

31 Huahine HM-4 3.639±0.006 147±3 148±3 0.011±0.004 0.0161±0.0001 15900±6000 1.55±0.02 0.10±0. 40 0.32±0. 40 

32 Huahine HM-5 3.183±0.005 147±3 147±3 0.119±0.005 0.0113±0.0001 900±40 1.08±0.02 0.00±0. 40 0.15±0. 40 

33 Huahine H-MT-1 2.593±0.007 149±5 151±5 0.084±0.001 0.0520±0.0002 5000±30 5.07±0.05 1.10±0. 40 1.81±0. 40 

34 Huahine *H-MT-2 3.082±0.004 142±2 144±2 0.156±0.001 0.0547±0.0002 3300±20 5.38±0.03 0.75±0. 40 1.50±0. 40 

35 Huahine H-V-1 2.579±0.003 147±2 147±2 0.0679±0.0003 0.0184±0.0001 2200±10 1.78±0.01 0.25±0. 40 0.50±0. 40 

35 Huahine H-V-1 no 2 2.736±0.002 147±4 148±4 0.0713±0.0007 0.0187±0.0002 2400±200 1.79±0.02 0.25±0. 40 0.50±0. 40 

36 Huahine H-PT-1-A 2.807±0.004 144±3 145±3 0.490±0.002 0.0205±0.0002 400±3 1.98±0.02 0.00±0. 40 0.28±0. 40 

37 Huahine H-PT-1-2 3.937±0.005 142±3 144±3 0.215±0.001 0.0505±0.0002 2900±10 4.95±0.02 0.75±0. 40 1.44±0. 40 
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Table 2C: Uranium/Thorium isotopic composition and ages of fossil corals from Bora Bora 

Sample  Island's Sample 238 U 
�

234 U 
(0) 

�
234U(T) 

 

232Th 
230Th/238U 230Th/232Th Age Sampling 

Subsidence 
corrected 

elevation 

Number Name Name (ppm) (‰) (‰) (ppb) (dpm/dpm) (dpm/dpm) (ka) 
elevation 

(m) 
(m) 

38 Bora Bora BB-MP 3/2 2.047±0.001 146±1 147±1 0.055±0.005 0.0261±0.0003 3000±300 2.52±0.03 1.10±0. 40 1.23±0. 40 

39 Bora Bora *BB-MP 4/2 3.142±0.002 144±1 145±1 0.730±0.006 0.0301±0.0002 400±4 2.91±0.02 1.10±0. 40 1.25±0. 40 

40 Bora Bora BB-MP 2/2 3.021±0.001 144±1 146±1 0.201±0.006 0.0324±0.0002 1500±40 3.13±0.02 1.10±0. 40 1.26±0. 40 

41 Bora Bora BB-MP 5/3 3.326±0.002 145±1 147±1 0.177±0.005 0.0466±0.0002 2700±80 4.53±0.02 -1.30±0. 40 -1.07±0. 40 

42 Bora Bora BB-MP 6/6 3.090±0.002 144±1 146±1 0.714±0.005 0.0488±0.0002 700±5 4.75±0.02 -1.30±0. 40 -1.06±0. 40 

43 Bora Bora *BB-MP 6/5 3.094±0.002 142±1 144±1 0.147±0.007 0.0488±0.0002 3200±150 4.76±0.03 -1.30±0. 40 -1.06±0. 40 

44 Bora Bora *BB-MX 1/2 3.505±0.002 144±1 145±1 0.107±0.007 0.0313±0.0002 3200±200 3.03±0.02 1.30±0. 40 1.45±0. 40 

45 Bora Bora BB-MX 3/2 2.767±0.001 145±1 146±1 0.140±0.006 0.0287±0.0002 2000±70 2.77±0.02 0.95±0. 40 1.09±0. 40 

46 Bora Bora BB-MX 4/2 2.858±0.001 145±1 146±1 0.058±0.005 0.0341±0.0002 5200±400 3.29±0.02 1.40±0. 40 1.56±0. 40 

47 Bora Bora BB-MX 5/1 2.493±0.001 145±1 146±1 0.021±0.004 0.033±0.0002 12300±2600 3.18±0.02 0.95±0. 40 1.11±0. 40 

48 Bora Bora 
**BB-MX 

5/3 
2.160±0.001 148±1 149±1 0.055±0.006 0.0312±0.0003 3800±400 3.01±0.03 0.95±0. 40 1.10±0. 40 

49 Bora Bora *BB-MX 6/3 2.815±0.002 142±1 144±1 0.033±0.006 0.0328±0.0002 8600±1700 3.18±0.03 0.95±0. 40 1.11±0. 40 

50 Bora Bora *BB-MX 7/2 2.055±0.001 144±1 145±1 0.102±0.007 0.0186±0.0003 1200±70 1.79±0.03 1.40±0. 40 1.49±0. 40 

51 Bora Bora *BB-MM-13 2.661±0.005 142±3 143±3 0.0049±0.0001 0.0249±0.0001 41900±700 2.42±0.02 0.65±0. 40 0.77±0. 40 

Note for table 2: The δ234U(0) indicates the measured 234U/238U ratios from our samples and the δ234U(T) represents the decay corrected activity ratio calculated 

from the measured 234U(0). All statistical errors are two standard deviations of the mean (2σ mean). * indicates the samples with δ234U(T) slightly lower, and ** 

indicates the values slightly higher than δ234U seawater value of 146.8±0.1‰ [Andersen et al., 2010]. For the correction of subsidence of the Islands, we have 

used 0.14 mm/year for Moorea and Huahine according to Pirazzoli et al., [1985]. For Bora Bora Island we have used 0.05 mm/year [Pirazzoli and Montaggioni, 

1985]. All samples have been corrected for initial 230Th by using a 230Th/232Th activity ratio of 0.6±0.2 [Fietzke et al., 2005].
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Hence, the average absolute difference of those samples slightly off the accepted value results in 

an age uncertainty of about ±20 years. Latter value is within the age uncertainty of our samples 

being in the order of about 20 to 30 years and can therefore be considered to be negligible. 

 

3.4. Society Island Relative Sea level Curve, Subsidence Correction and Statistical Age 

Distribution 

3.4.1. In situ Corals and Micro-atolls 

For establishing an empirical relative sea level curve based on observation only those corals 

which can be considered to be in situ and being not displaced have to be taken into account. 

Following this approach we neglect sample Nos. 4, 5, 6 (Tab. 1 and 2; marked by dashed circles 

in Fig. 3A) originating from Moorea which were already considered to be conglomerate during 

the field expedition in 2009. Sample No. 7 (Tab. 1 and 2; marked with a dashed circle in Fig. 

3A) was originally considered to be in situ, however, this sample show an age of ~20 years and 

is actually supposed to be located at the modern msl rather than an elevation of ~1.8 m apmsl. 

Hence, we consider this exceptional sample to be not in situ rather displaced or being a sampling 

artifact. Therefore, these samples as well as the samples considered to be conglomerate are 

arbitrarily neglected for further discussion. For later reconstruction of the apparent past sea level, 

the age and the elevation apmsl of micro-atolls is of certain interest (marked by squares in Fig. 

3). Sample No. 24 (H-Tai-9) and No. 25 (H-Tai-10) from Huahine as well as sample 45 (BB-MX 

3/2) from Bora Bora represent such micro-atolls. 

 

3.4.2. Subsidence Correction 

These Society Islands are volcanic in origin and tend to subside as they move away from the 

asthenospheric bump and as a result of lithospheric cooling with age (McNutt and Menard, 

1978). Therefore, the islands near hotspot tend to subside more rapidly as they move down the 

slope of the asthenospheric bump compared to the islands which are further away from the 

hotspot region (McNutt and Menard, 1978; Scott and Rotondo, 1983a, b). In Fig. 3A it can be 

seen that the Moorea and Bora Bora corals tend to have the highest elevation whereas the 

Huahine corals tend to be at the most shallow positions apmsl.  
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Fig. 3A: The heights apmsl of the samples are plotted as a function of their corresponding ages. In Fig. 3A dashed 

circles mark the corals which are either conglomerate or being displaced from their original positions. Samples 

marked with squares represent micro-atolls.  

 

Latter observation may reflect differential subsidence rates of the three islands relative to each 

other as a function of the islands individual cooling which is assumed to be a function of the 

distance to the former volcanic hotspot. In order to approach the original sea level position 

during live time of the corals (“paleo-sea level”), the measured elevations of our samples have to 

be corrected by the subsidence of the studied islands. For Moorea island which is located ~130 

km from the hotspot region (Blais et al., 2002), we have applied a subsidence rate of 0.14 

mm/year according to Pirazzoli et al., [1985]. For Bora Bora island which is located ~390 km 

away from the hotspot region the height apmsl is corrected by 0.05 mm/year only which is the 

minimum subsidence rate of the Leeward islands in the Society Islands group (Pirazzoli et al., 

1985). Although Huahine is located ~140 km from Moorea, petrological analysis has claimed 

that Huahine have similar subsidence rate as Moorea island [Pirazzoli et al., 1985], therefore, the 

same correction for the subsidence rate was used for this island (Fig. 3B, 4A and B).  

 

However, after correction, although they overlap within the error, Huahine corals still tend to 

indicate slightly shallower sea level positions compared to the other two islands. This may 
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indicate that the Huahine subsidence rate is probably slightly higher than the applied rate of 0.14 

mm/year used here for corrections. 

 

Fig. 3B: All values (heights apmsl) have been corrected for their island specific subsidence rate. 

 

Note that, our correction and their related uncertainty involves only the uncertainty of our 

measured sample elevations, because the information about uncertainties concerning the 

subsidence rates was not available from the cited studies of Pirazzoli and Montaggioni, [1985] 

and Pirazzoli et al., [1985]. In Fig. 3B after subsidence correction the oldest sample data (No. 34, 

5.38±0.03 ka) has reached an elevation of ~1.50±0.40 m apmsl at Huahine island slightly below 

the highest coral at a position of 1.81 m apmsl of a coral from Huahine island (No. 33). The 

micro atoll samples No. 24, 25 from Huahine show a subsidence corrected paleo-elevations of 

0.57±0.40 m and 0.53±0.40 m apmsl (Fig. 3) which is compatible to the paleo-elevation of the 

micro-atoll sample 45 from Bora Bora of 1.09±0.40 m apmsl. In particular for the micro-atoll, 

the position of the sea level is expected to be within few centimeters of the micro-atoll position 

(Smithers and Woodroffe, 2000). 

 

To our knowledge there are only a few measurements by Pirazzoli and Montaggioni, [1988] 

from Bora Bora and Huahine which are directly pertinent to our study. We compare these older 
14C-based data with our data presented here after transformation of the 14C ages to U/Th calendar 
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year using the Calib radiocarbon calibration Program (Calib 6.11 program-Marine09) (Fairbanks 

et al., 2005). Note, that U/Th ages are calendar year ages (2014) whereas 14C ages are 

stratigraphic ages which have to be converted to calendar year ages by using a well-known 14C-

U/Th calibration curve by (Fairbanks et al., 2005). The converted U/Th ages (in ka) for Bora 

Bora are: (2BB1: 2.97±0.39 (+0.5 m), 2BB7: 3.26±0.36 (+0.4 m), 2BB5: 2.80±0.31 (+0.6 m)) 

and for Huahine (2HU1: 3.92±0.41 (+0.3 m), 2HU9: 3.55± 0.40 (+0.3 m)). For conversion to 

calendar years reservoir age corrections have been applied between 350 and 400 years according 

to the geographical locations (Fairbanks et al., 2005). All these earlier measurements are in 

general accord with our data presented here.  

 

3.5. Numerical Modeling of the Society Island Sea level Curve(s) 

3.5.1. Geophysical model  

To compute the mid to late Holocene GIA-induced rsl changes at the Society Islands we solve 

the gravitationally self-consistent Sea Level Equation (SLE; [Farrell and Clark, 1976; Mitrovica 

and Peltier, 1991]) by means of the program SELEN (Spada and Stocchi, 2007). Solving the 

SLE for a prescribed continental ice-sheet chronology and solid Earth rheology yields the space- 

and time-dependent rsl change on a global scale (Wu and Peltier, 1983). The solution of the SLE 

implies that the gravitational potential of the sea surface is always constant, i.e., that the sea 

surface corresponds to the equipotential surface of gravity named geoid (Farrell and Clark, 1976; 

Spada and Stocchi, 2007; Wu and Peltier, 1983). This implies that ice-sheet thickness variations 

are compensated by equivalent ocean-averaged sea level variations (eustatic solution), and that 

the gravity vector is everywhere perpendicular to the sea surface. The two main ingredients of 

the SLE are (i) the ice-sheet chronology, which describes the ice-sheets thickness variation 

through time, and (ii) the solid Earth rheological model, which describes the response of the 

solid Earth and of the geoid to ice-sheets thickness variation. We solve the SLE by means of the 

pseudo-spectral method, which allows a direct and fast spectral analysis (Milne and Mitrovica, 

1998; Mitrovica et al., 1994; Mitrovica and Peltier, 1991). For this purpose, the solid Earth and 

geoid deformations are implemented by means of the “Normal Modes Technique” as introduced 

by (Peltier, 1974). The latter assumes a spherically symmetric, self-gravitating, rotating and 

radially stratified solid Earth model (Spada et al., 2006; Spada et al., 2012). The latter is a 1-D 

linear model and does not include lateral heterogeneities. The outer shell is elastic and mimics 
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the lithosphere. Between the lithosphere and the inner inviscid core is the mantle. The latter can 

be discretized into n Maxwell viscoelastic layers. In this work we discretize the Earth´s mantle 

into two layers, namely the upper mantle, and the lower mantle. The lithosphere thickness and 

the viscosity of the mantle layers are the free parameters. 

 

We employ and compare ICE-5G (Peltier, 2004) and RSES-ANU in global ice-sheets 

chronologies for the post-LGM deglaciation. The ice-sheets models describe the Late Pleistocene 

ice-sheets thickness variations until present-day and have been constrained by means of 

geological and archaeological rsl data as well as present-day instrumental observations like GPS-

derived vertical and horizontal crustal velocities and Satellite Gravimetry (Peltier, 2004). Both 

ice-sheet models depend on the solid Earth rheological, in particular on the thickness of the 

elastic lithosphere as well as on the number and on the viscosity of Mantle viscoelastic layers 

which have been employed within the iterative process (Lambeck et al., 1998). Hence, each ice-

sheet model should be employed within the SLE with the accompanying Earth model (Lambeck 

et al., 1998; Peltier, 2004; Tushingham and Peltier, 1992). Consequently we combine ICE-5G 

chronology with VM2 viscosity profile. The latter is characterized by a 100 km-thick elastic 

lithosphere and by an upper mantle viscosity of 5.0×1020 Pa and a lower mantle viscosity of 

5.0×1021 Pa (Peltier, 2004). At the same manner we employ RSES-ANU ice-sheets model with a 

VKL mantle profile. The latter is characterized by a 65 km-thick elastic lithosphere and by an 

upper mantle viscosity of 3.0×1020 Pa and a lower mantle viscosity of 10.0×1021 Pa (Lambeck et 

al., 2004). Hereafter, we refer to the solutions for ICE-5G and VM2 as ICE-5G+VM2, and for 

RSES-ANU and VKL as RSES-ANU+VKL. We use ETOPO1 model for the initial topography 

and allow for the self-consistent variation of coastlines as well as for the near-field meltwater 

damping function (Milne and Mitrovica, 1996, 1998). Also, we include the rsl variations 

associated with fluctuations of the Earth’s rotation vector (Milne and Mitrovica, 1998). 

 

3.5.2. Predicted rsl Curves 

3.5.2.1. Eustatic Sea level Change 

We compare the rsl curves as predicted for Bora Bora according to RSL-ICE-5G+VM2 (red 

solid line) and RSL-RSES-ANU+VKL (black solid line), respectively (Fig. 4A). The red and 

black dashed curves represent the eustatic solutions according to ICE-5G and RSES-ANU, 
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respectively. According to ICE-5G (red dashed line), the global mean sea level rises to almost 

the present position at ~4.5 ka although some minor fluctuations occur still later (Fig. 4A). 

 

 

Fig. 4: In Fig. 4A the theoretical predicted rsl-curves are compared with empirical observations. The solid black 

curve represents the predicted rsl according to RSL-RSES-ANU+VKL (ice sheet model and Mantle profile) and the 

red solid curve represents the predicted rsl according to RSL-ICE-5G+VM2 (ice sheet chronology and the viscosity 

profile). The dashed lines represent the eustatic sea levels. In general solid curves represent the full result of the sea 

level equations which incorporates all the solid Earth and gravitational as well as rotational feedback. The dashed 

curves represent the hypothetical eustatic sea level change for each ice sheet model. It can be seen that there is a 

general accord between theoretical predictions and observations. In particular the micro-atoll positions are in general 

accord with the predictions. 

 

A different trend is expected according to RSES-ANU deglaciation, which results in a 

monotonous sea level rise until present (black dashed line, Fig. 4A). For the period under 

consideration, the main difference between the two eustatic curves depends on the different 

deglaciation of the Antarctic ice-sheet component in the two global ice-sheets chronologies. 

While the melting of the Antarctic ice-sheet ends at 4.5 ka in ICE-5G, in RSES-ANU it 

continues until present-day. 
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3.5.2.2. Predicted RSL at Society Islands 

Both ice-sheets models result in a ~2.0 m rsl highstand which is then followed by a drop until 

present mainly driven by the ocean siphoning effect. In particular, RSL-RSES-ANU+VKL 

(black solid line in Fig. 4A) results in a more peaked highstand at ~6 ka, which is then followed 

by an almost linear rsl drop. The latter is almost specular to the eustatic curve, implying that the 

local GIA response is significantly stronger than the rate of meltwater release. The RSL- ICE-

5G+VM2 model (red solid line) instead, results in an almost stable highstand from about 7.5 ka 

until 5.0 ka, which is then followed by a short term rise peaking up at 4.5 ka, when most of the 

melting ceases. Despite the differences in ice-sheets models and mantle viscosity profiles, our 

modelled rsl curves show an almost undistinguishable rsl drop after 4.0 ka as a function of the 

ocean siphoning effect. While for RSL-ICE-5G+VM2 the rsl drop starts by the very end of the 

melting phase (4.5 ka), the regression predicted according to RSL-RSES-ANU+VKL starts 

earlier when ~1.8 m of equivalent sea level are still to be released to the oceans from Antarctica. 

Our GIA modeling results confirm the strength of the ocean siphoning effect, summed to the 

increase of ocean area due to ice-sheets waxing and flooding of coastal areas, is large enough to 

fully cloak the eustatic rise.  

 

3.6. Comparison between theoretical data and empirical observations 

3.6.1. Factors influencing sea level height observations 

In general, Porites corals grow from very close to sea level to ~25 m below sea level (Cabioch et 

al., 1999; Carpenter et al., 2008; Pratchett et al., 2013). Therefore, fossil coral reef cores do not 

necessarily provide precise constraints on the position of local sea level because of their 

considerable range of vertical growth. From these arguments it is clear that we cannot 

unambiguously establish the actual local sea level curve from sea level observations derived 

from corals alone. However, we can infer that the Late Holocene sea level curve must have 

reached a significant height above the present sea level position at this locality and that the true 

sea level must lie above the corals position. Micro-atolls are the exception because micro-atolls 

are formed at the actual sea level position and may even fall dry during low tides. Following this 

approach we infer that any theoretical predicted sea level curve as modeled in the frame of this 

project must lie at certain distance above the dated corals but with an almost zero distance for a 

micro-atoll. The comparison of our data with our numerical modeling predictions (Fig. 4A) 
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shows in general good agreement. In particular, the micro-atoll sample No. 45 from Bora Bora 

lies directly along both predicted rsl curves, while Huahine micro-atolls Nos. 24 and 25 are 

situated 0.3 m below the theoretical curve. 

 

The scatter in the sea level amplitude as seen from our data may therefore be a function of the 

differences in the coral´s position relative to the sea surface and the differences in the subsidence 

rate. Considering the micro atolls in our study, they seem to best serve as natural and precise 

recorders of the sea level. For example, in our data, we can clearly see that, after subsidence 

correction the micro atoll No. 45 from Bora Bora Island clearly marks the sea level around 

2.77±0.02 ka (Figure 3B, 4A and B). For Huahine Islands, although the micro atolls No. 24 and 

25 overlap within the uncertainty with the normal Porites (Sample No.s 15 (3.96±0.03 ka), 16 

(3.66±0.03 ka ) and 17 (3.76±0.04 ka) from Moorea but they are plotted slightly lower in 

elevation (Fig. 3B, 4A and B).  From the micro atoll study of Christmas island, Woodroffe et al., 

[2012] have observed that although micro atolls mark the sea level within few centimeters, they 

still may show significant differences in elevation as a function of their position in the island. 

This is probably caused by a differential geoid distortion as a function of the local gravitational 

field varying as a function between different parts of the island or attenuation of tidal amplitude 

of the samples collected in the lagoonal areas. Our data can neither support nor preclude the 

presence of tidal attenuation or geoidal gradient in French Polynesia. 

 

3.6.2. Comparison of empirical to modeled data 

The model-based amplitudes are in general accord with the empirical data concerning the 

maximum amplitude of ~2m and the timing of the rsl at least for the decline of the Holocene sea 

level from the highstand to the present day position. Note, from our rsl data we cannot 

distinguish which of the ice-models (RSL-ICE-5G+VM2 or RSL-RSES-ANU+VKL), fits best 

the observations. This is because there are no data available older than ~5.5 ka necessary for 

such a specific model verification. Although most of the samples lie below the predicted rsl 

curves, a few data mostly from Moorea and Bora Bora lie slightly above the predictions. We may 

argue the applied subsidence correction of 0.14 mm/year for the Moorea corals has been over 

estimated and the smaller rate is more suitable. We may also argue that the GIA model should be 

improved by changing the solid Earth model parameters taking into account the local distortions 
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of the geoid, i.e. mantle viscosity values, lithospheric thickness, or even the ice-sheets 

chronology, or that these corals are not in situ and rather have been displaced from their original 

positions. In contrast, the applied subsidence correction for Huahine which is also pending 

independent verification is in general agreement with the theoretical predictions and the other 

empirical data in general. 

 

In Fig. 4B we also compare the empirical data of this study with earlier model predictions of 

Mitrovica and Peltier, [1991] who employed ICE-3G ice-sheet chronology. According to ICE-

3G, the post-glacial rsl reached modern position approximately 2.5 ka later and resulted in a 

highstand which is ∼1m higher than suggested in this study. 

 

 

In Fig. 4B our empirical observations are compared with an earlier model of Mitrovica and Peltier, [1991]. 

However, there is a general disagreement between the empirical data and this earlier model prediction. 

 

It can be seen that most of the empirical data fall within the frame provided by the Mitrovica and 

Peltier, [1991] curve and are in general accord with our findings. However, none of the micro-

atoll positions (Nos. 24, 25, 45, marked by squares) are on or close to the Mitrovica and Peltier, 

[1991] model curve indicating that the rsl amplitude may be overestimated at these points. In 

addition all Huahine corals older than about ~4.5 ka (Nos. 21, 22, 26, 33, 34, 37) are also 
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plotting outside the predicted rsl-frame being in contrast to our expectations. Our results support 

the improvements occurred from the earlier ICE-3G [Tushingham and Peltier, 1992] to the more 

recent ICE-5G ice-sheet model [Peltier, 2004]. 

 

3.7. Conclusions 

Collected in situ fossil corals from the Society Islands, French Polynesia clearly indicate that the 

local Late Holocene sea level there was higher between at least 5.4 ka until the recent past. 

Reconstruction of sea level positions based on dated corals is hampered by the relative wide 

depth range for coral growth in the water, the subsidence rate of the islands where sample are 

collected and the gravitational geoid deformation of the local sea level height. Both the predicted 

rsl curves RSL-ICE-5G+VM2 and RSL-RSES-ANU+VKL (Fig. 4A) are in general accord with 

our empirical data concerning sea level amplitude and timing. In particular the available micro-

atoll age (No. 45) from Bora Bora is in full support of both model curves after the Holocene sea 

level highstand. 

The available empirical data cannot distinguish between ICE-5G+VM2 and the RSES-

ANU+VKL ice-sheet model because no age data are available for corals older than 5.5 ka due to 

island subsidence.  

Both empirical data and modeling indicate that Society Island sea level dropped by ∼2 m since 

the Holocene maximum at ~4.5 ka corresponding to a rate of about 0.4 mm/year. This value has 

to be considered when sea level rise due to modern global climate change is considered.  
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Abstract 

Coral based reconstructions of sea surface temperatures (SST) using Sr/Ca, U/Ca and δ18O ratios 

are important tools for quantitative analysis of past climate variability. However, post-

depositional alteration of coral aragonite due to early diagenesis is restricting the accuracy of 

calibrated proxies even on young corals. Here we present Mid to Late Holocene SST 

reconstructions using well dated (U/Th: ~70yr to 5.4ka) fossil Porites collected from the Society 

Islands, French Polynesia.  

 

For a few coral samples microscopic observations and electron microprobe mapping reveal the 

presence of aragonite needles inside coral pores. Coral sections with identified secondary 

aragonite show on average a 25-30% higher Sr/Ca ratio than corresponding massive parts. 

Sections with secondary aragonite are characterized by Sr/Ca values above 10 mm/mol. We 

interpret this value as the threshold between diagenetically altered and unaltered coral material. 

The observed intra-skeletal variability of 5.4 to 9.9 mmol/mol probably reflects the physiological 

control of the corals on its trace metal uptake and the individual variability controlled by the 

rates of CaCO3-precipitation. The Sr/Ca, U/Ca and δ18O values are well correlated. However, we 

observe a significant offset between Sr/Ca, U/Ca, and δ18O based SST reconstructions of up to 

±7°C and a trend towards cooler temperatures. Latter shifts mostly reflect trace element specific 

diagenetic alteration due to partial dissolution and re-precipitation of secondary aragonite. This 

process tends to amplify temperature extremes and hence increase the SST-U/Ca and SST-Sr/Ca 

gradients and consequently their apparent temperature sensitivity.  
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A relative SST reconstruction is still feasible by normalizing our records to their individual mean 

value defined as ∆SST. This approach shows that the ∆SST records derived from different 

proxies are in phase with an amplitudinal variability of up to ±2°C with respect to their Holocene 

mean value. The ∆SST-values which are higher than mean SSTs (Holocene warm periods) are 

observed between ~1.8ka to ~2.8ka (Interval I), between ~3.7 and 4.0ka (Interval III) as well as 

before ~5ka. Lower ∆SSTs (Holocene cold periods) are observed between ~2.8 to ~3.7ka 

(Interval II) and ~4.0 to ~4.9ka (Interval IV). The corresponding SST periodicity of ~1500yrs in 

the Society Island record is in phase with the solar activity reconstructed from 10Be and 14C 

production [Vonmoos et al., 2006] emphasizing the role of the solar activity for the climate 

variations in the Late Holocene. In particular, the observed Late Holocene SST variability 

reconciles empirically determined sea level variations [Rashid et al., 2014] linking higher Late 

Holocene sea levels than predicted from numerical modelling that considered only “Glacial 

Isostatic Adjustment” into account to time intervals of higher SST values.  

 

4.1. Introduction 

Paleoclimate reconstruction is a scientific challenge for times that go beyond historical archives 

and instrumental climate recordings [Gagan et al., 2000; Grottoli, 2001]. Among natural 

archives (e.g. tree rings, ice or sediment cores) used for climate reconstruction, scleractinian 

corals are one of the best recorder of environmental history of shallow water tropical oceans by 

providing windows to the climate in the past [Beck et al., 1992; de Villiers et al., 1995; 

McCulloch et al., 1996; Min et al., 1995; Mitsuguchi et al., 1996; Schrag, 1999; Shen et al., 

1996; Zinke et al 2004]. This is because the trace element and isotope (TEI) ratios incorporated 

during biomineralization of the coral skeleton are sensitive recorders of environmental changes 

(proxies) providing continuous and undisturbed records with annual and even seasonal 

chronology due to their relatively high growth rates of up to several cm/year [Corrège, 2006]. 

These characteristics guarantee high temporal resolution down to a week and even better as well 

as undisturbed records free of bioturbation [Corrège, 2006]. Following this approach TEI proxies 

preserved in coral skeleton are essential for determining the evolution of the chemical history of 

seawater and its temperatures [Beck et al., 1992; Cohen and Hart, 2004; Corrège, 2006; 

Hathorne et al., 2011; Marchitto et al., 2010]. In particular, the records of Sr/Ca, U/Ca and of 

δ
18O became most important proxies for the reconstruction of climatic history from sclerectinian 
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corals [de Villiers et al., 1995; Hathorne et al., 2011; McGregor and Gagan, 2003; Weber, 1973; 

Yu et al., 2004]. However, coral TEI records cannot simply be transferred into environmental and 

climatic information; they need a species specific calibration to the environmental parameter 

(e.g. temperature) which is done by both field experiments and by culturing studies under 

controlled laboratory conditions. Experiments have shown that biogenic and inorganic 

precipitated aragonite (CaCO3) is different. For example coral Sr/Ca ratios are about 10 to 15% 

lower when compared to inorganic Sr/Ca ratios precipitated at the same temperature [Dietzel et 

al., 2004]. This observation refers to the so called “vital effect” and the strong physiological 

control of the coral´s metabolism on the uptake of trace metals from seawater for CaCO3 

precipitation. These processes are subject to intensive biomineralization studies and have to be 

considered for paleo-reconstructions [Cohen and Gaetani, 2010; McConnaughey, 1989; Cohen 

and McConnaughey, 2003]. 

 

A more general precondition that corals reliably record environmental conditions is that they 

preserve the TEI primary ratios of the original skeletal aragonite (“closed system behavior”). 

This is not always the case because under natural conditions aragonite is thermodynamically 

unstable and hence susceptible to dissolution and recrystallization to calcite (diagenetic 

alteration). This process generates a reorganization of the chemical composition and may violate 

the closed system behavior superimposing and obscuring original TEI compositions. The latter 

process in particular affects Sr/Ca and U/Ca ratios because both proxies tend to show 

considerably lower ratios in calcite than in aragonite [Reeder et al., 2000]. In addition, exposure 

of fossil corals to meteoric water and groundwater cause dissolution of primary biological 

aragonite and re-precipitation of inorganic secondary calcite. Secondary inorganic aragonite 

precipitation is typical for marine diagenetic environment [Enmar et al., 2000]. Dolomitization 

and cementation are processes further violating closed system behavior [Enmar et al., 2000; 

Land, 1973; McGregor and Gagan, 2003; McGregor and Abram, 2008; Tucker and Wright, 

2009] challenging the use of TEI in fossil scleractinian coral as a reliable TEI archive [Allison et 

al., 2007; McGregor and Abram, 2008; Müller et al., 2001; Nothdurft and Webb, 2009]. 

 

The magnitude and the type of diagenesis does not necessarily correlate with the age of a coral, 

but generally the type of environmental exposure, corals species and coral porosity are supposed 
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to be the controlling factor for diagenesis [Dullo, 1986; Enmar et al., 2000; Hendy et al., 2007; 

McGregor and Gagan, 2003]. For example, diagenesis can occur in a coral immediately post 

mortem, whereas fossil corals as old as 125 ka being unaffected of diagenesis [Nothdurft and 

Webb, 2009]. Studies have shown that precipitation of secondary aragonite within the pores of a 

coral skeleton is related to marine environments where the pores are saturated by sea water 

[Longman, 1980; Tribble et al., 1990]. Calcite diagenesis is mainly associated with fossils being 

exposed to fresh water [Longman, 1980].  

 

Reconstructions may be associated with uncertainties that are difficult to detect. For example, 

different phases of early diagenesis such as submarine secondary aragonite precipitation or 

dissolution of primary aragonite skeleton could cause inaccuracy of the reconstruction [Hendy et 

al., 2007; McGregor and Abram, 2008]. This is because common methods like X-Ray 

Diffraction fail to distinguish between primary and secondary aragonite phases (earliest 

diagenetic phase) because it has the same mineralogy as the primary aragonite. It has been 

suggested that very small diagenetic changes might obscure any paleoclimate estimates 

[McGregor and Gagan, 2003]. For Sr/Ca proxy, which has been found to be strongly affected by 

diagenesis [Sayani et al., 2011], it has been shown that the presence of ~1% of calcite in the 

skeletal pores could result in about 1-2°C warmer SST estimates [McGregor and Gagan, 2003]. 

About 2% of early diagenetic secondary aragonite is able to shift the SST estimates into cooler 

temperatures by 0.4 and 0.9°C [Allison et al., 2007]. In contrast, the δ18O isotope ratio has been 

known to be at least less susceptible to diagenesis and also less impacted by calcite precipitation 

compared to the Sr/Ca proxy [McGregor and Gagan, 2003]. Despite the recent increase of coral 

studies few studies have focused on sampling strategies to avoid diagenetically altered skeletal 

parts in order to extract reliable proxy information.  

 

The present study attempts to show the impact of early diagenetic imprint on SST proxies in 

Holocene corals by analyzing areas within a single sample that are affected by diagenesis and 

compare them with areas where the original signature of primary aragonite is observed. The 

sampling methods used to achieve these results contribute into the understanding of achieving 

most precise paleoclimate reconstructions. Furthermore, this study is also focusing on 

constraining the Mid to Late Holocene climate history of the Society Islands, French Polynesia, 
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using Sr/Ca, U/Ca ratios and δ18O isotopes from fossil Porites corals that are exposed to 

subaerial conditions during Late Holocene sea level regression [Rashid et al., 2014].  

 

4.2. Methodology 

4.2.1. Study Area 

The Society archipelago lies in the tropical South Pacific Ocean of French Polynesia between 

17°52’S 149°50’W and 15°48’S 154°50’W (Fig. 1). The archipelago consists of more than ten 

islands lying along the distance of 720km from Southeast to Northwest of the area [Duncan and 

McDougall, 1976; Montaggioni, 2011]. The islands are volcanic in origin formed by a distinct 

hotspot (Teahiti'a-Mehetia) which is currently located around Mehetia region as the Pacific plate 

moves over the hotspot in North West direction [Gripp and Gordon, 1990]. 

 

Fig. 1: (a) The map of French Polynesia where the Society Islands are located, together with the SST contour lines 

showing temperature distribution, b) The map of Society Islands where samples were collected. 

 

They are characterized by extended emerged reef platforms currently exposed above the present 

sea level [Rashid et al., 2014]. The geochronology of these islands is described in several studies 

(e.g. [Blais et al., 1998; Blais et al., 2000; Duncan and McDougall, 1976; Duncan et al., 1994; 

Guillou et al., 2005; White and Duncan, 1996]. They have shown that the ages of these islands 

increase towards northwest as they move away from the hotspot. For example, Mehetia (<1 Ma), 
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Tahiti (1.67–0.25 Ma), Moorea (2.15–1.36 Ma), Huahine (3.08–2.06 Ma), Raiatea (2.75–2.29 

Ma), Tahaa (3.39–1.10 Ma), Bora Bora (3.83–3.10 Ma) and 5 Ma for Maupiti. The climate of the 

Society Islands is tropical with two main seasons. The austral summer is the warm and rainy 

season that spans from November to April. During this period, the conditions are hot with 

average SSTs between 28°C and 29°C [Delesalle et al., 1985; Boiseau et al., 1998]. Heavy rains 

are mostly experienced during December and January mainly affecting the coastline. Average 

rainfall is ~2753 mm/year [Cabioch et al., 1999]. The austral winter spans from May to October. 

This period is marked by low SST averaging between 23°C and 25°C and rarely dropping below 

19°C [Delesalle et al., 1985]. Trade winds blow from East (South-East) and North-East 

direction. Tides are semi-diurnal and their amplitude averages 0.5 m [Seard et al., 2011]. 

 

4.2.2. Coral sampling 

In situ fossil Porites corals were collected between -1.5m below present mean sea level (bpmsl) 

and ~1.8m above the present mean sea level (apmsl) using hammer and chisel from the exposed 

shores of Moorea, Huahine and Bora Bora Island (Fig. 1) French Polynesia in 2009 [Rashid et 

al., 2014]. The samples were cut into ~1cm thick slabs parallel to the growth axis visually 

selecting pristine areas for further processing. The selected samples were rinsed several times 

with deionized water and dried in the clean laminar floor hood under room temperature (~20°C) 

for about 24 to 36 hours. After drying a diamond saw was used to cut small cubes (~1cm3) out of 

a distinct growth layer. Greatest care was taken for each subsample to avoid sampling of material 

of different ages. Subsequently, each cube was equally divided into two parts. One part was cut 

into small chips and placed in Teflon beakers with deionized water for ultra-sonification. The 

chips were then dried on the hot plate (35°C) for about 12-24 hours. Using motor and pestle they 

were and gently ground into a homogeneous powder which was used for X-ray Diffraction 

(XRD) and geochemical analysis. The other half of the cube was prepared for microscopic 

analysis (for visible diagenetic alterations, e.g. infillings, secondary precipitates) and high-spatial 

resolution geochemical analyses by micro-milling and electron microprobe mapping.  
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4.2.3. Investigation of early diagenetic alteration 

4.2.3.1. X-Ray diffraction (XRD) and microscopic observations 

Detection and quantification of mineralogy of sample powders in terms of aragonite or Mg-

calcite was done using X-Ray diffraction (XRD) at the University of Kiel, Germany. 

Microscopic observations of all samples (the sample cubes which are the mirror images of 

crushed samples) were done using epi-fluorescence microscope (Type: Zeiss Axio Imager.M2, 

with the camera: Zeiss AxioCam MRm Rev.3 using a light source: HXP 120 V (D) and 

objective: EC Plan-Neofluar 10x/0.3 M27. For imaging we used the DAPI filterset with 

excitation 350/50 nm, emission 460/50 nm. This observation was aimed identify samples which 

are affected by secondary diagenetic alterations by having infills within or a distinct rim around 

the pores. 

 

4.3. Bulk sample analysis 

This was done for only samples with no detectable traces of calcite from XRD analysis. The bulk 

Sr/Ca analysis was performed using Varian 720-ES Inductively Coupled Plasma Optical 

Emission Spectrometry (ICP-OES) at GEOMAR, Kiel. Respective element emission signals 

were simultaneously collected and subsequently drift corrected by sample-standard bracketing 

method done by measuring JCP-1 after every two samples. The sample solution was prepared by 

dissolving 10 to 30 mg of coral powder in 10 ml of 2% ultrapure HNO3. The working solution 

was prepared by dilution of the sample solution with 2% HNO3 to a Ca concentration of 

∼25ppm. An internal Indium standard was added in each sample in order to monitor the matrix 

effect and also to correct for machine drifts. The Sr and Ca lines used for this measurement were 

407nm and 370 nm, respectively. Over the entire measurement period of 3 days, the JCP-1 

reference material gave an average Sr/Ca ratio of 8.7±0.1 mmol/mol (2σ, n=13). This is in 

agreement with certified Sr/Ca of Hathorne et al., [2013] and in reasonable agreement with 

average value of 8.9 ± 0.2 mmol/mol measured in this study using ICP-MS Quadrupole. U/Ca 

was analyzed using the ICP-MS (Quadrupole) at GEOMAR Kiel using the same solution and 

standards prepared for ICP-OES. All measured U/Ca ratios were also normalized to the inter-

laboratory JCP-1 standard results of Hathorne et al., [2013]. The average of the JCP-1 for the 

U/Ca is 1.18±0.09 µmol/mol (2σ, n=13). 



62 
 

The δ18O ratios were measured according to the standard procedure for carbonate samples at 

GEOMAR, Kiel. In this analysis ~100 µg of homogeneous powdered sample material was 

reacted in water-free phosphoric acid in the automated carbonate device “Carbo Kiel” (Thermo 

Fischer Scientific Inc.) at 73°C. The isotope ratios of δ18O were measured on a MAT 253 mass 

spectrometer (Thermo Fischer Scientific Inc.) and are expressed as deviations in per mill relative 

to the Vienna-PeeDee Belemnite (VPDB) standard. External precision (2σ) for δ18O throughout 

the analysis was ±0.09‰ (n=30). 

 

4.4. Analysis of Sr/Ca ratio in early diagenetic samples 

4.4.1. Micro-milling of diagenetic samples 

Micro-milling of the samples affected by early diagenetic alteration was done in Geomar, Kiel, 

Germany. To achieve this we set depth per pass: 5 µm, number of passes: 10, Scan speed: 10 

µm/sec with the plunge speed of 25 µm/sec). Using this method we carefully took the samples 

(powder) from primary skeletal parts and also along the porous parts where secondary diagenetic 

infillings were detected. Note that, the porous parts may partly include some traces of the 

massive part because the secondary aragonite needles were too small to be sampled alone. We 

also included the preserved sample for comparison. These samples were then polished and 

prepared for the electron Microprobe (EMP) analysis. 

 

4. 4.1.2. Sr/Ca analysis of diagenetic samples 

The Sr/Ca measurements of these samples were done using the ICP MS-Quadrupole at 

GEOMAR, Kiel (Germany). The powdered samples were dissolved in 2% nitric acid and 

adjusted to a Ca concentration of 25ppm. An internal Indium standard was added to each sample 

in order to monitor the matrix effect and also to correct machine drifts. The measured Sr/Ca 

ratios were normalized to the JCP-1 coral standard. This geochemical reference material has 

been prepared by the Geological Survey of Japan by homogenizing a massive Porites sample 

[Okai et al., 2002]. The Sr/Ca ratio of this standard is known from long term inter-laboratory 

comparisons [Hathorne et al., 2013] and was taken as fixed value for normalization. In our study 

the JCP-1 was measured after every two samples following the combination of previously 

published techniques [de Villiers et al., 2002; Schrag, 1999]. The average of the JCP-1 was 
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8.864±0.205 mmol/mol (2σ, n=12) which is in agreement with the certified value of 8.838±0.009 

mmol/mol [Hathorne et al., 2013].  

 

4.4.2. Electron Microprobe mapping (EMP) 

Electron Microprobe mapping (EMP: JXA- 8200 JEOL) was used to investigate micrometer 

scale resolution Sr/Ca variations within primary and secondary skeleton. The EMP maps were 

obtained by wavelength dispersive spectrometry mode measuring simultaneously Sr (La, TAP) 

and Ca (Ka, PETJ). The electron beam was focused to a spot size of 2 µm, accelerating voltage 

set to 15 kV and beam current to 100 nA. A step size of 2 µm as well as an accumulation time of 

10 ms was used and the map was repeated to gather 5 accumulations of the selected area. 

Standards (Calcite, Volcanic glass – VG-2 as well as Kan1 and Strontianite) were measured 

before and after mapping the sample to convert raw intensities into Sr/Ca ratios.  

 

4.5. Intra-skeletal variability of Sr/Ca ratios in the primary aragonitic corals 

The microprobe Sr/Ca maps were used to investigate Sr/Ca variations by line analysis. The lines 

span over different skeletal regions with a step size of 2µm. However, each point reflects the 

average of 20 adjacent pixels in horizontal or vertical direction. In each map we consider values 

from lines passing only the massive part of a skeleton. This was then compared with a line 

starting from the massive part crossing the porous parts where the secondary needles were 

observed.  

 

4.6. Chronology 

Chronology of the coral samples were performed following the established methods reported in 

very detail in Rashid et al., [2014]. Briefly, measurements of U and Th isotope ratios was done 

using the multistatic and multi-ion-counting MC-ICP-MS following the method of Fietzke et al., 

[2005].The mixed spike (233U/236U/229Th) applied in the samples was calibrated for concentration 

using NIST-SRM 3164 (U) and NIST-SRM 3159 (Th), also against CRM-145 uranium standard 

solution (NBL-112A) for U isotope composition and against a secular equilibrium standard (HU-

1) for the precise determination of 230Th/234U activity ratios. The whole blank procedure values 

were ranging between 0.5-1 pg for Th and between 10-20 pg for U. These values are in the range 
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typical of this method and the laboratory [Fietzke et al., 2005]. In this study the sample ages are 

provided in Table 1 and 2.  

 

4.7. Results and discussion 

4.7.1. Diagenetic alteration and coral skeletal system behavior  

The primary part (aragonite) of Porites skeleton is considered to have elemental signatures which 

were incorporated during coral skeletogenesis which reflects elemental composition of ambient 

sea water, temperature controlled distribution coefficient and the vital effect. XRD results 

indicate that out of 55 samples, 4 samples contain detectable amounts of calcite (CM3: 3%, 

WL2: 3%, H-Tai-4: 7%, HV-3A: 12%) therefore, these samples were not included in the SST 

estimates because the observed recrystallization criteria is violating “closed system behavior”. 

All other samples show that aragonite is the dominant CaCO3-polymorph and that the amount of 

calcite is below the detection limit. However, the presence of pure aragonite is not necessarily an 

indication of negligible alteration rather the presence of “secondary aragonite” significantly 

interferes with any SST-Sr/Ca  calibration, because secondary inorganic aragonite tends to show 

between 10% to 15% higher Sr/Ca ratio than coral aragonite [Dietzel et al., 2004] resulting in 

apparently lower SST values. The presence of voids or any other pore space is important for the 

formation of secondary aragonite. Microscopic observations indicate the presence of secondary 

aragonite needles within the skeletal voids of H-Tai-2 (Fig. 2a: Age: 3.12±0.03ka) and HM4 

(Fig. 2b: Age: 1.55±0.02ka) samples.  

 

 

Fig. 2a-c: Microscopic images of samples (a): H-Tai-2, (b): HM4 and (c): WL1. The (a) and (b) samples show 

secondary aragonite needles within the skeletal voids as a sign of diagenetic alteration. The (a) sample shows larger 

pores and larger needles while (b) has very small needles with smaller pores. The (c) sample is considered as 

pristine and shows no secondary aragonite needles within the pores. 



65 
 

 

The H-Tai-2 shows few large pores with aragonite needles of a length of ~10-50µm. For sample 

HM4 small pores are more abundant with comparably short aragonite needles in the order of ~5-

10µm. Differences in needle size probably reflect gaining secondary aragonite with age or 

increasing the amount of pore water percolating in the skeleton characterized by larger pore 

volumes [Enmar et al., 2000]. For comparison, sample WL1 (1.82±0.02ka) exhibits that the 

original skeletal structure is still preserved (Fig. 2c). 

 

4.7.2. Geochemical analysis of the bulk samples 

The results of Sr/Ca, δ18O, and U/Ca analysis together with the paleo-SST reconstructions are 

summarized in Table 1 and shown in the Fig. 3. All values are presented with 2σ-standard 

deviation (SD).  

 

Fig. 3: The measured isotope ratios of Sr/Ca, δ18O and U/Ca plotted as a function of their corresponding ages. All 

three records show similar patterns from Mid to Late Holocene. The grey broken line shows the average value of 

each proxy and the dotted lines of the curves (connecting the data) indicate a data gap. 
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The Sr/Ca ratios range between 8.83±0.01 mmol/mol and 9.92±0.02 mmol/mol corresponding to 

the average ratio of 9.4±0.3 mmol/mol. The Sr/Ca ratios of two samples H-Tai-2 and HM4 are 

10.14±0.03 mmol/mol and 10.06±0.03 mmol/mol respectively. These are the samples which are 

detected with secondary diagenetic carbonate infill within the skeletal pores from the 

microscopic observations. Therefore, we exclude these samples from SST estimation. The δ18O 

isotopes ratios range between -4.13±0.03 ‰ and -2.35±0.05 ‰ with an average value of -

3.3±0.5 ‰. The U/Ca ratios range between 0.99±0.02 µmol/mol and 1.70±0.02 µmol/mol 

corresponding to an average ratio of 1.3±0.4 µmol/mol. Sr/Ca, δ18O and U/Ca are all 

significantly correlated (Sr/Ca and δ18O: R2 = 0.99, n = 43, p < 0.005; U/Ca and Sr/Ca: R2 = 0.98, 

n = 43, p < 0.005; U/Ca and δ18O: R2 = 0.98, n = 43, p <0.005). 

 

 
Table 1: Sampling locations, age (ka), the ratio of Sr/Ca (mmol/mol), δ18O (‰), U/Ca (µmol/mol) with their 

reconstructed SSTs (°C). 

Sample Sample Age Sr/Ca SSTSr/Ca δ
18O SST δ18O U/Ca SSTU/Ca 

Location Name (ky) (mmol/mol) (°C) (‰) (°C) (µmol/mol) (°C) 

Moorea RP4 0.072±0.003 8.95±0.01 26.87±0.04 -3.90±0.04 25.0±3.3 1.03±0.02 26.0±0.3 

Huahine HM5 1.08±0.02 9.31±0.02 25.57±0.06 -3.39±0.05 22.8±3.0 1.36±0.02 20.0±0.4 

Huahine H-V-1 1.78±0.01 9.06±0.02 26.48±0.08 -4.07±0.01 25.7±3.4 1.15±0.03 23.8±0.5 

Bora Bora BB-MX 7/2 1.79±0.03 8.98±0.01 26.77±0.03 -3.97±0.05 25.2±3.3 1.10±0.07 24.7±1.3 

Moorea WL1 1.82±0.02 8.83±0.01 27.29±0.04 -3.85±0.04 24.7±3.3 0.99±0.02 26.7±0.4 

Huahine H-PT-1-A 1.98±0.02 9.14±0.01 26.18±0.04 -3.63±0.04 23.8±3.1 1.34±0.01 20.3±0.2 

Moorea MCM10 2.19±0.02 9.10±0.02 26.32±0.06 -3.88±0.04 24.9±3.3 1.16±0.01 23.7±0.3 

Bora Bora BB-MM-13 2.42±0.02 9.03±0.01 26.58±0.02 -3.52±0.01 23.3±3.0 1.16±0.03 23.6±0.5 

Moorea MCM5 2.51±0.02 9.14±0.02 26.18±0.06 -3.72±0.02 24.2±3.2 1.42±0.02 18.9±0.4 

Bora Bora BB-MP-3/2 2.52±0.03 9.17±0.01 26.10±0.04 -4.08±0.04 25.7±3.4 1.00±0.01 26.6±0.2 

Moorea MCM2 2.61±0.02 9.24±0.01 25.82±0.05 -3.20±0.04 21.9±2.9 1.12±0.02 24.4±0.3 

Bora Bora BB-MX-3/2 2.77±0.02 9.75±0.04 23.99±0.13 -3.20±0.04 21.9±2.9 1.23±0.01 22.5±0.3 

Bora Bora BB-MP-4/2 2.91±0.02 9.73±0.01 24.08±0.05 -2.96±0.04 20.9±2.8 1.43±0.02 18.6±0.3 

Moorea LI-2 2.94±0.03 9.65±0.03 24.35±0.09 -2.74±0.03 19.9±2.7 1.51±0.03 17.3±0.5 

Bora Bora BB-MX-5/3 3.01±0.03 9.44±0.02 25.12±0.08 -3.25±0.04 22.1±3.0 1.37±0.03 19.7±0.5 

Moorea MCM1 3.02±0.04 9.89±0.01 23.52±0.03 -2.73±0.03 19.9±2.7 1.49±0.02 17.6±0.4 

Bora Bora BB-MX-1/2 3.03±0.02 9.83±0.02 23.73±0.07 -2.67±0.04 19.6±2.7 1.66±0.01 14.5±0.2 

Moorea LI-4 3.07±0.02 9.57±0.03 24.65±0.11 -2.95±0.03 20.8±2.8 1.47±0.01 17.9±0.3 

Bora Bora BB-MP-2/2 3.13±0.02 9.55±0.01 24.73±0.05 -3.12±0.04 21.6±2.9 1.40±0.04 19.2±0.8 

Bora Bora BB-MX-5/1 3.18±0.02 9.42±0.02 25.19±0.08 -3.57±0.04 23.5±3.1 1.20±0.02 22.8±0.4 

Bora Bora BB-MX-6/3 3.18±0.03 9.54±0.03 24.77±0.09 -3.22±0.04 22.0±2.9 1.39±0.03 19.3±0.5 

Bora Bora BB-MX-4/2 3.29±0.02 9.59±0.02 24.58±0.09 -3.11±0.04 21.5±2.9 1.38±0.02 19.6±0.3 

Huahine H-Tai-1 3.41±0.02 9.92±0.02 23.38±0.07 -2.42±0.03 18.5±2.6 1.70±0.02 13.7±0.3 
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Sample Sample Age Sr/Ca SSTSr/Ca δ
18O SST δ18O U/Ca SSTU/Ca 

Location Name (ky) (mmol/mol) (°C) (‰) (°C) (µmol/mol) (°C) 

Moorea CM4 3.66±0.03 9.67±0.02 24.28±0.07 -2.82±0.06 20.3±2.9 1.38±0.01 19.6±0.2 

Moorea CM7 3.76±0.04 9.09±0.03 26.36±0.09 -3.51±0.02 23.3±3.1 1.12±0.01 24.4±0.2 

Huahine H-Tai-10 3.78±0.17 9.08±0.03 26.39±0.09 -3.91±0.02 25.0±3.3 1.20±0.01 22.9±0.3 

Huahine H-M-2 3.92±0.02 8.95±0.01 26.86±0.04 -3.75±0.01 24.3±3.2 1.07±0.01 25.3±0.3 

Huahine H-M-1 3.92±0.04 9.05±0.01 26.51±0.04 -3.79±0.03 24.5±3.2 1.12±0.02 24.3±0.4 

Huahine H-Tai-13 3.92±0.05 9.02±0.02 26.63±0.07 -3.36±0.03 22.6±3.0 1.14±0.03 24.0±0.6 

Huahine H-Tai-8 3.94±0.05 8.971±0.005 26.79±0.02 -3.30±0.03 22.4±3.0 1.14±0.01 24.0±0.2 

Moorea CM2 3.96±0.03 9.79±0.02 23.85±0.07 -2.35±0.05 18.2±3.0 1.64±0.02 14.8±0.3 

Huahine H-Tai-9 4.08±0.14 9.20±0.02 25.96±0.08 -4.13±0.03 25.9±3.4 1.28±0.01 21.5±0.3 

Huahine H-Tai-12 4.17±0.07 9.36±0.02 25.40±0.07 -3.11±0.07 21.5±3.0 1.49±0.03 17.6±0.6 

Moorea CM1 4.39±0.04 9.84±0.02 23.66±0.05 -2.76±0.04 20.0±2.7 1.54±0.03 16.7±0.5 

Bora Bora BB-MP-5/3 4.53±0.02 9.39±0.01 25.28±0.04 -3.49±0.04 23.2±3.1 1.25±0.03 22.0±0.6 

Huahine H-Tai-3 4.66±0.05 9.48±0.06 24.97±0.21 -2.55±0.03 19.1±2.6 1.48±0.02 17.9±0.4 

Bora Bora BB-MP-6/6 4.75±0.02 9.85±0.02 23.64±0.06 -2.67±0.04 19.6±2.7 1.56±0.02 16.4±0.4 

Bora Bora BB-MP-6/5 4.76±0.03 9.84±0.01 23.69±0.04 -2.62±0.04 19.4±2.7 1.50±0.02 17.4±0.4 

Huahine H-Tai-11 4.88±0.06 9.71±0.01 24.13±0.05 -3.06±0.05 21.3±2.9 1.63±0.04 15.0±0.7 

Huahine H-Tai-5 4.90±0.06 9.91±0.03 23.42±0.10 -2.64±0.03 19.5±2.6 1.70±0.01 13.6±0.2 

Huahine H-PT-1-2 4.95±0.02 9.41±0.02 25.21±0.07 -3.87±0.08 24.8±3.4 1.14±0.03 23.9±0.5 

Huahine H-MT-1 5.07±0.05 9.16±0.02 26.10±0.06 -3.61±0.03 23.7±3.1 1.11±0.01 24.6±0.2 

Huahine H-MT-2 5.38±0.03 9.73±0.03 24.08±0.11 -2.58±0.03 19.2±2.6 1.36±0.01 19.9±0.2 

**Huahine **H-Tai-2 3.12±0.03 10.14±0.03 22.61 ± 0.11 -2.72±0.02 19.8±2.6 1.54±0.03 16.7±0.5 

**Huahine **HM4 1.55±0.02 10.06±0.03 22.88 ± 0.10 -2.91±0.02 20.6±2.7 1.56±0.05 16.4±0.9 

Note: **indicate samples affected by early diagenesis (samples having secondary aragonite), these samples were not 

used for SST estimates.  

 

4.7.3. Proxy Calibration 

The δ18O - SST estimates were performed using the calibration equation by Boiseau et al., [1998] 

of modern Porites from Moorea Island. The calibration equation is represented by a linear 

regression equation and rearranged for SST values: 

(1) SST (°C) = -4.35 x δ18
O (‰ VPDB) +8.00 

The Sr/Ca - SST estimates were carried out using the calibration equation for Porites from 

Moorea Island [Cohen and Hart, 2004]: 

(2) SST (°C) = -3.58 x Sr/Ca (mmol/mol) + 58.93 

For U/Ca - SST estimation, we have used the calibration equation of Min et al., [1995] for 

Porites from Tahiti Island: 

(3) SST (°C) = – 18.40 x U/Ca (µmol/mol) + 45.00 



68 
 

The SST values calculated from analyzed samples are also shown in Table 1. Note that, the 

uncertainties of the reported SST estimates here are based on the analytical uncertainties only.  

 

4.7.4. Early secondary diagenesis and its implications on SST estimates  

4.7.4.1. Micro-mill based analysis 

Micro-mill based sampling was applied on the early diagenetic samples to compare the Sr/Ca 

ratios of the massive and the porous parts where aragonite needles are found (Fig. 4a). For H-

Tai-2, the sample taken from the massive part of the primary skeleton has a Sr/Ca ratio of 

9.7±0.3 mmol/mol and two samples taken from porous parts have Sr/Ca ratios of 10.5±0.2 

mmol/mol and 10.7±0.05 mmol/mol. For HM4, the sample taken from the massive part has a 

Sr/Ca ratio of 9.9±0.1 mmol/mol and the two samples taken from the porous parts have Sr/Ca 

ratios of 10.1±0.1 mmol/mol and of 10.1±0.3 mmol/mol.  

 

 

Fig. 4a: The Sr/Ca results from the micro-mill sampling. This includes samples taken from massive and porous parts 

of diagenetic samples (H-Tai-2 and HM4). In general, the samples taken from the massive parts are lying in the area 

below the selected threshold value of 10mmol/mol (for our samples) and the samples taken from the porous parts are 

located in the area above 10mmol/mol. Note that, for WL1 (well preserved sample) the massive part has Sr/Ca ratio 

located below this threshold value. 

 

For HM4 the difference between porous and massive part of the skeleton overlap within the 

error, this is probably because, the secondary aragonite precipitation for this sample is in a very 
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early stage such that the secondary aragonite needles are small compared to H-Tai-2, therefore 

the Sr/Ca might be less in these needles with insignificant impact the SST estimates. Note that, 

although this method considers sampling either at porous or massive areas of the skeleton, the 

samples of the porous areas contain some traces of the massive (preserved) areas. In general we 

observe that all samples from massive parts tend to have Sr/Ca ratios below 10 mmol/mol, while 

those samples taken from porous areas where there is early diagenetic imprint lie above 10 

mmol/mol. This observation is similar to the bulk sampling results for the diagenetic samples. 

For this reason, we suggest the value of 10 mmol/mol as a threshold for diagenetic alteration in 

our samples.  

 

Obviously diagenesis in terms of secondary aragonite precipitation tends to shift the original 

Sr/Ca signature of the coral towards higher Sr/Ca ratios by introducing aragonite marked by 

increased Sr/Ca ratios which interferes with the primary material and distorts proxy 

reconstructions [Allison et al., 2007; McGregor and Gagan, 2003]. For example 2.5-3% of 

secondary aragonite precipitation within the skeletal voids found in our diagenetically influenced 

corals has shifted the SST estimates from the bulk sampling to cooler temperatures by 0.5 -

 1.6°C. This estimate was obtained by taking the difference between the Sr/Ca ratios of the bulk 

sample – the average Sr/Ca ratio of the sample from the micro-milling results. The results 

obtained were estimated for SST shift from SST-Sr/Ca calibration equation. The secondary 

aragonite precipitation is probably due to the fact that pores of the coral skeletons which are 

connected to the external environment act as an open system and allow the sea water to percolate 

through the skeleton thereby precipitating inorganic aragonite without any influence of the coral 

polyp. The biogenic carbonate precipitation (precipitation with the influence of a coral polyp) 

slightly modifies the Sr/Ca ratios incorporated into the coral skeleton and hence the Sr/Ca is less 

compared to aragonite precipitation (Cohen et al., 2002; Cohen and Gaetani, 2010). 

 

4.7.4.2. Electron microprobe (EMP) analysis  

Electron microprobe analysis of the H-Tai-2 (Fig. 4b.1) and HM4 (Fig. 4b.2) sample have 

revealed high concentration of Sr and Ca around the pore areas and along the aragonite needles 

compared to the massive parts of the coral skeleton. However, the preserved sample (WL1) 

shows no shift of Sr/Ca in its skeleton (Fig. 4b.3).   
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Fig. 4b: The Sr and Ca concentration distribution maps from EMP analysis. The figures (4b1) shows the Ca and Sr 

map of WL1 sample, (4b2) shows the Ca and Sr map of HM4 sample and (4b3) shows the Ca and Sr map of H-Tai-

2 sample. Diagenetic samples show a shift of elemental concentrations towards higher values at the rim and within 

the aragonite needles. For the pristine sample (4b1), the elemental maps show no shift of elemental concentration 

along the skeletal voids.  

 

Point analysis (spot analysis) of the primary massive skeletal aragonite of H-Tai-2 sample shows 

an average Sr/Ca ratio of 8.6±0.2 mmol/mol and considerably higher ratio of ~14.7±0.6 

mmol/mol for the aragonite needles and around the pore areas (Fig. 4c). On the other hand, HM4 

shows a ratio of 8.7±0.3 mmol/mol in the primary massive skeletal area and a higher ratio of 

~10.3±0.7 mmol/mol around the porous parts. The high Sr/Ca ratio of H-Tai-2 (14.7±0.6 
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mmol/mol) compared to HM4 (10.3±0.7 mmol/mol) on the area of the skeletal pores is probably 

due to larger pores and longer secondary aragonite needles. The preserved sample (WL1) has an 

average Sr/Ca ratio of 8.6±0.5 mmol/mol.  

 

 

Fig. 4c: The Sr/Ca (mmol/mol) results from point analysis of the electron microprobe maps for samples H-Tai-2, 

HM4 on the massive and porous parts of the samples. The H-tai-2 (8.6±0.2 massive and 14.7±0.6 porous). The HM4 

(8.6±0.3 massive and 10.3±0.7 porous). For WL1 we have sampled only the massive part which has Sr/Ca ratio of 

8.59±0.98mmol/mol. In general, the samples taken from the massive parts are lying in the area below the value of 

10mmol/mol and the samples taken from the porous parts are located in the area above 10mmol/mol. Therefore we 

take this value as a threshold of diagenetic alteration for our samples.  

 

This method shows even higher Sr/Ca (up to ~14.7±0.6 mmol/mol) for H-Tai-2 porous, 

compared to the micro-mill based results. This is because the point analysis method considers 

only the pixels with secondary aragonite (seen from the EMP map), while the micro-mill 
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samples on the porous areas might possibly contain some traces of primary phases. However, the 

general results show the higher Sr/Ca ratios in the porous areas as shown by the micro-mill 

results.  

 

4.7.5. Intra-skeletal variability of Sr/Ca ratios in the primary aragonitic corals 

In the EMP line analysis we have observed that on a micrometer fine scale the Sr/Ca is not 

homogeneously distributed within the preserved massive primary skeleton (Fig. 5a, b, c) varying 

between 5.4 mmol/mol and 9.9 mmol/mol.  

 

 

Fig. 5a-c: The line analysis of Sr/Ca from Ca and Sr concentration maps that indicate intra-skeletal variability of 

Sr/Ca within the coral skeleton. (5a) represents the Ca and Sr maps and the line analysis for H-Tai-2, (5b) is for 

HM4 and (5c) for WLI. The Sr/Ca ratios of the line analysis were obtained by taking the values (single line) from Sr 

map and divide by Ca values of exactly the same cells of a line after their respective calibrations. Red line in the 

map marks the trace of the transect line. Note, the values in the maps are in weight percent. These values have been 

converted to mmol/mol (Sr/Ca) in the line analysis diagram. In the line analysis the blue lines indicate the single 

values and the black lines indicate the three-point running mean. The diagrams show that the Sr/Ca ratios within the 

coral skeletons ranges between 5.4 and 9.9 mmol/mol for our samples. 
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Latter variation may reflect the physiological control of the corals on its trace metal uptake and 

the rates of CaCO3 precipitation. Taking the average Sr/Ca of all measured data points through 

line analyses (Fig. 5d) on the massive parts of H-Tai-2, HM4 and WL1, they result into 

7.98±0.04 mmol/mol, 8.10±0.08 mmol/mol, and 7.91±0.10 mmol/mol respectively. These ratios 

are close or overlapping within error with the values of point analysis performed at the massive 

parts shown in figure 4c. 

 

 

Fig. 5d: The mean Sr/Ca values of line analysis of massive parts of H-Tai-2, HM4 and WL1. Each mean value of a 

sample was obtained by averaging values of different lines (of more than one map) representing the whole sample. 

Note that, to obtain representative Sr/Ca estimates of a sample one has to consider lines that cover different areas 

within the massive part of the sample (map). 
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4.7.6. Sea surface temperature reconstructions (SST-Sr/Ca, SST-U/Ca, SST-δ
18

O) 

Our data provide the SST record from the Mid Holocene (5.4ka) to ~70 years (Table 1). The 

record shows a clear SST pattern of high and low temperatures recorded by coral skeleton (Fig. 

6). The paleo-SST-Sr/Ca estimates range between 23.38±0.07°C and 27.29±0.04°C (with the 

average of 25.2±0.2°C). The SST-δ
18O range is between 18.2±3.0°C to 25.9±3.4°C (with the 

mean value of 22.3±0.3°C). The SST-U/Ca estimates show the apparent temperature range 

between 13.6±0.2°C and 26.7±0.4°C (with the mean value of 20.6±0.6°C).  

 

 

Fig. 6: Proxy temperature records of SST-Sr/Ca, SST-δ18O and SST-U/Ca for the Mid to Late Holocene period. All 

three proxy records are significantly correlated (see text), they are in phase and show comparable amplitudinal 

pattern. The broken lines show the mean SST value for each proxy. However, the calculated mean values of all three 

proxies are significantly different and range from 20.6 to 25.2 °C.  
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There is an offset with an average of 3.0±0.2 °C for Sr/Ca and δ18O. Similarly between Sr/Ca 

and U/Ca the offset correspond to 4.5±0.5°C and to 1.5±0.4°C for δ18O and U/Ca. Although the 

absolute values are significantly different, the general trends are similar in the three records. The 

application of the student t-test shows that average SST-Sr/Ca, SST-δ
18O, and SST-U/Ca are all 

significantly different (p < 0.0001). This means that either proxy calibrations are not correct; the 

measured data also are influenced by other factors than temperature, or the offset is caused by 

uncertainties of the calibrations which were not indicated in the literatures of applied 

calibrations.  

 

Concerning the statistical distribution of the SST-Sr/Ca, SST-U/Ca and SST-δ
18O values we 

would expect to see a Gaussian like distribution around a certain mean value distinctively 

between the modern seasonal extreme values. However, from the histogram plot of Fig. 7a it can 

be seen that the SST-Sr/Ca shows a kind of bimodal data distribution where the low SST-Sr/Ca 

peak at about 23.5 °C closely corresponding to the long term austral winter SST at the study area 

(see above). Whereas the higher austral summer temperatures in between 28 to 29°C in the study 

area are not reflected in the SST-Sr/Ca data. Either such high SST values did not occur in the 

Late Holocene and average SSTs were shifted more toward lower values or Sr/Ca temperature 

calibration is not correct having a distinct offset towards lower values of about 1°C. 

Alternatively early diagenesis e.g. precipitation of secondary aragonite shifted the Sr/Ca ratios to 

higher values and hence systematically to lower temperatures. Concerning the latter statement a 

back envelope calculation assuming a seawater Sr/Ca value of 8.541 mmol/mol and assuming 

that secondary aragonite is precipitating with a partitioning coefficient 15% higher than for coral 

aragonite implies a contribution of about 20% of secondary aragonite to the original coral 

carbonate. Although we have detected secondary aragonite precipitation in the pores some of 

samples (see above) we have not observed a systematic distribution of secondary aragonite and 

in particular no secondary aragonite present in the massive part of the corals. Rather the massive 

parts have been assumed to follow closed system.  
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Fig. 7: This histogram plot shows the frequency of the proxy-SSTs in intervals of 0.5°C as a function of the 

corresponding absolute temperature. Fig. 7a: SST-Sr/Ca, Fig. 7b: SST-δ18O and 7c: SST-U/Ca. It can be seen that 

there is a general trend towards a tailing of the values towards lower temperatures. In particualr, the recorded 

temperatures are lower than the present day austral summer values and even tend to be lower than the modern 

austral winter values. The temperature interval recorded is smallest for the SST-Sr/Ca-values (28 to 23.5 °C) and 

largest for SST-U/Ca (27 to 13.5 °C). This observation is interpreted as to reflect the addition of extra Sr and U to 

the coral skeleton and or ion exchange due to percolation of seawater through a system of connected micro-pores 

and the precipitation of secondary aragonite.  
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In order to account for the postmortem increase in the Sr/Ca we may interfere that beside the 

precipitation of secondary aragonite a simple ion exchange process may take place in the 

massive part in a way that presumably lattice bound Ca2+
 ions are exchanged by Sr2+

 ions 

originating from seawater. Following this approach we may assume that seawater is percolating 

and diffusing through the coral while exchanging ions between solid and liquid phases is 

happening. In particular, such or a similar process may then even occur in the massive parts of 

the coral. 

 

Similar to that the SST-δ18O values also show a bimodal distribution (Fig. 7b) like the SST-

Sr/Ca values. However, values are shifted to even cooler temperatures than observed from the 

Sr/Ca record. In the δ18O record even cooler temperatures are recorded than observed for the 

austral winter in this region. Whereas, the warmest SST-δ18O values are about 3°C cooler than 

expected for the austral summer temperature. In order to account for this observation either the 

δ
18O-temperature calibration is not correct resulting in an apparent offset toward cooler 

temperatures. Alternatively but similar to the inferences made for the SST-Sr/Ca values a 

postmortem ion exchange process may exchange the coral´s isotopically light oxygen with the 

relative isotopically heavy oxygen of the seawater percolating through the massive parts of the 

coral. As a consequence apparent SST-δ18O values are shifted towards relatively low 

temperatures. 

 

Similar to the Sr/Ca and δ18O values the SST-U/Ca values also show temperatures (average SST-

U/Ca values: 20.6±0.6°C) much below those expected from the modern temperature. Following 

the approach applied above it may also be assumed that either the U/Ca-temperature calibration 

shows a distinct offset shifting the SST-U/Ca values to lower temperatures. Similar to SST-δ18O 

and SST-Sr/Ca we may also assume that postmortem U is taken up from the seawater percolating 

through the coral aragonite thereby shifting the SST-U/Ca to even much cooler values than 

expected from the modern seasonality. The shift of all proxies records towards lower SST values 

corresponds to the observation that the standard deviations of the SST-Sr/Ca, (25.2±0.2°C), SST-

δ
18O (22.3±0.3°C) and SST-U/Ca (20.6±0.6°C) mean values increases as a function of the 

deviation from the modern mean value. This observation may indicate that the origin of the shift 
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toward cooler temperature is the ion exchange with seawater rather than a wrong proxy-

temperature calibration. 

 

In our samples we have detected secondary aragonite in the pores of diagenetic samples and no 

secondary aragonite in the massive part of the corals which have been assumed to follow closed 

system. However, Cuif and Dauphin [2005] have shown that there are microstructural patterns of 

organic layers in nanometer scale that are formed in the massive part of the skeleton that is 

related with the growth of the skeleton. After the death of a coral these organic layers might be 

exposed to microbial decomposition and therefore create some micro spaces and pathways in the 

massive part of the coral skeleton. Following this process we may assume that seawater is 

diffusing in the massive part of the coral while precipitating inorganic aragonite into these micro-

spaces and probably also exchanging ions with the coral´s skeleton.  The amount of extra 

strontium and uranium added to the coral appears to be constant rather than erratic in space and 

time. Otherwise the significant positive correlation between the three proxies cannot be 

explained. Latter approach offers the possibility to normalize the measured proxy values to their 

corresponding mean in order to further verify second order variations rather than absolute values. 

 

4.7.7. Origin of the SST-variations and wider implications for the Late Holocene climate 

change 

Following the above approach to circumvent the problem of comparing absolute values we 

subtracted the mean SST values from the single values (Table 2) to get ∆SST values in order to 

compare the individual deviations of the single SST reconstructions from their respective mean 

value (Fig. 8a). The three ∆SST records are in general agreement concerning the timing and 

phase whereas amplitudes are in part significantly different showing amplitudes of up to +6° and 

-7°C for ∆SST-U/Ca. The ∆SST-δ18O data indicate smaller variations restricted to amplitudinal 

variations in between ±4°C. For latter application and comparison we calculated a weighted 

average mean from the three temperature records and performed a three-point running mean in 

order to eliminate single excursions of high and low deviations from the mean value (blue curve 

of Fig. 8a). The amplitudinal variation of the weighted mean curve (SST-all Proxies) shows a 

reduced temperature variation in the order of ±2.4°C. Excluding the U/Ca record showing the 
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larges amplitudinal variations, the weighted mean decreased the amplitudinal temperature 

variation down to the order of ~2°C (Fig. 8b).  

 

 

Fig. 8: (a) The ∆SST values (SST-Sr/Ca: green line, SST-δ18O: red line and SST-U/Ca: black line) are plotted as a 

function of their age together with the mean weighted average of all ∆SST proxies (blue curve). Four intervals of 

alternating SSTs can be identified. Two warm periods (where the SST is above the mean, interval I and III) and cold 

intervals where the SST is below than the mean (interval II and IV). Fig. 8 (b) shows the ∆SST variations with age 

that include only SST-Sr/Ca (green line) and SST-δ18O (red line). The blue curve shows the mean weighted average 

of the ∆SST from these two proxies indicating a maximum amplitude of ∼2°C. 
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The regional increase in temperature from Mid Holocene to the modern periods has been 

indicated in the order of ~1.5°C in the North Pacific [Marchitto et al., 2010] and ~2°C for the 

Eastern Pacific [Koutavas and Sachs, 2008] which agree with our estimates. However, our data 

show four main time SST intervals, interval I (~1.8ka to ~2.8ka), interval II (~2.8 to ~3.7ka), 

interval III (~3.7 and 4.0ka) and interval IV (~4.0 to ~4.9ka). Interval II and IV show relatively 

low temperatures of up to ∼-2.0°C below the average and interval I and interval III show higher 

temperatures of ∼2°C higher  than the long-term average (Fig. 8b). 

 

Table 2: Sample name, Age (ka), the ∆SST (SST–Mean SST), weighted mean from each ∆SST proxy record and a 

three-point running mean. 

Sample Age SSTSr/Ca-MV SSTδ18O-MV SSTU/Ca-MV normal Weighted 3 Point Running  

 Name (ky) (°C) (°C) (°C) mean Mean mean  

*RP4 0.072±0.003 1.65±0.20 2.77±0.32 5.25±0.62 3.22 2.60±0.64 --- 

*HM5 1.08±0.02 0.35±0.20 0.56±0.34 -0.67±0.63 0.08 0.25±0.22 --- 

H-V-1 1.78±0.01 1.26±0.20 3.52±0.30 3.10±0.65 2.63 2.31±0.40   

BB-MX 7/2 1.80±0.03 1.55±0.20 3.06±0.34 4.01±0.88 2.87 2.35±0.46 2.51 

WL1 1.82±0.02 2.07±0.20 2.55±0.32 5.98±0.63 3.54 2.87±0.73 2.05 

H-PT-1-A 1.98±0.02 0.96±0.20 1.58±0.32 -0.42±0.61 0.71 0.93±0.34 1.90 

MCM10 2.19±0.02 1.10±0.20 2.68±0.32 2.99±0.61 2.26 1.92±0.35 1.45 

BB-MM-13 2.42±0.02 1.36±0.20 1.11±0.30 2.88±0.66 1.78 1.51±0.32 1.43 

MCM5 2.51±0.02 0.96±0.20 1.98±0.31 -1.78±0.64 0.39 0.86±0.65 1.65 

BB-MP-3/2 2.52±0.03 0.88±0.20 3.53±0.32 5.89±0.61 3.43 2.57±0.87 1.42 

MCM2 2.61±0.02 0.60±0.20 -0.28±0.33 3.66±0.62 1.33 0.84±0.69 1.00 

BB-MX-3/2 2.77±0.02 -1.23±0.21 -0.26±0.33 1.75±0.61 0.08 -0.40±0.53 -0.31 

BB-MP-4/2 2.91±0.02 -1.14±0.20 -1.33±0.33 -2.11±0.62 -1.53 -1.36±0.18 -1.17 

LI-2 2.94±0.03 -0.87±0.21 -2.27±0.32 -3.42±0.66 -2.19 -1.75±0.45 -1.11 

BB-MX-5/3 3.01±0.03 -0.10±0.20 -0.06±0.33 -1.01±0.65 -0.39 -0.23±0.18 -1.37 

MCM1 3.02±0.04 -1.70±0.20 -2.34±0.32 -3.07±0.63 -2.37 -2.13±0.24 -1.67 

BB-MX-1/2 3.03±0.02 -1.49±0.20 -2.59±0.33 -6.24±0.61 -3.44 -2.64±0.86 -1.99 

LI-4 3.07±0.02 -0.57±0.21 -1.35±0.32 -2.82±0.61 -1.58 -1.22±0.40 -1.51 

BB-MP-2/2 3.13±0.02 -0.49±0.20 -0.63±0.33 -1.51±0.72 -0.88 -0.69±0.19 -0.38 

BB-MX-5/1 3.18±0.02 -0.03±0.20 1.35±0.32 2.13±0.63 1.15 0.77±0.38 -0.15 

BB-MX-6/3 3.18±0.03 -0.45±0.21 -0.19±0.32 -1.37±0.64 -0.67 -0.52±0.21 -0.16 

BB-MX-4/2 3.30±0.02 -0.64±0.20 -0.67±0.33 -1.13±0.62 -0.81 -0.73±0.10 -1.51 

H-Tai-1 3.41±0.02 -1.84±0.20 -3.67±0.32 -7.02±0.62 -4.18 -3.28±0.91 -1.76 

CM4 3.66±0.03 -0.94±0.20 -1.92±0.36 -1.15±0.61 -1.33 -1.26±0.17 -0.99 

CM7 3.76±0.04 1.14±0.21 1.08±0.31 3.74±0.61 1.99 1.56±0.52 0.73 

H-Tai-10 3.78±0.17 1.17±0.21 2.82±0.31 2.17±0.61 2.05 1.89±0.28 1.91 

H-M-2 3.92±0.02 1.64±0.20 2.13±0.30 4.61±0.62 2.80 2.29±0.54 2.06 
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Sample Age SSTSr/Ca-MV SSTδ18O-MV SSTU/Ca-MV normal Weighted 3 Point Running  

 Name (ky) (°C) (°C) (°C) mean Mean mean  

H-M-1 3.92±0.04 1.29±0.20 2.29±0.32 3.61±0.64 2.39 1.98±0.41 1.88 

H-Tai-13 3.92±0.05 1.41±0.20 0.42±0.31 3.24±0.66 1.69 1.37±0.48 1.59 

H-Tai-8 3.94±0.05 1.57±0.20 0.17±0.32 3.32±0.61 1.69 1.42±0.52 -0.05 

CM2 3.97±0.03 -1.37±0.20 -3.96±0.36 -5.94±0.62 -3.76 -2.92±0.82 0.07 

H-Tai-9 4.08±0.14 0.74±0.20 3.74±0.32 0.78±0.62 1.75 1.71±0.55 -0.60 

H-Tai-12 4.17±0.07 0.18±0.20 -0.69±0.38 -3.08±0.67 -1.19 -0.60±0.61 -0.35 

CM1 4.40±0.04 -1.56±0.20 -2.20±0.33 -4.03±0.65 -2.60 -2.16±0.45 -0.74 

BB-MP-5/3 4.53±0.02 0.06±0.20 0.96±0.32 1.33±0.67 0.78 0.55±0.23 -1.10 

H-Tai-3 4.66±0.05 -0.25±0.23 -3.09±0.32 -2.85±0.63 -2.06 -1.68±0.55 -1.16 

BB-MP-6/6 4.75±0.02 -1.58±0.20 -2.58±0.33 -4.32±0.63 -2.83 -2.35±0.49 -2.08 

BB-MP-6/5 4.76±0.03 -1.53±0.20 -2.80±0.33 -3.30±0.64 -2.54 -2.22±0.32 -2.06 

H-Tai-11 4.88±0.06 -1.09±0.20 -0.89±0.34 -5.73±0.68 -2.57 -1.75±0.95 -2.12 

H-Tai-5 4.90±0.06 -1.80±0.21 -2.70±0.32 -7.07±0.61 -3.86 -3.00±0.97 -1.16 

H-PT-1-2 4.95±0.04 -0.01±0.20 2.65±0.39 3.23±0.66 1.95 1.28±0.64 -0.05 

H-MT-1 5.07±0.05 0.88±0.20 1.50±0.32 3.86±0.61 2.08 1.58±0.54 0.39 

H-MT-2 5.38±0.03 -1.14±0.21 -3.00±0.32 -0.77±0.61 -1.64 -1.69±0.39   

Note: The data indicated by * are plotted as separate points because they is a gap of missing data in between these 

points. Note that, they are no three-point running mean from these points because they are only two points. 

 

Variations of the solar activity have contributed to climate change especially on longer time 

scales [Wanner et al., 2008] and together with the atmospheric CO2 concentration it is probably 

the most important factor controlling Earth´s temperature on non-astronomical and millennial 

time scales [Elsig et al., 2009; Hansen et al., 2013]. Past solar variability can be reconstructed 

from cosmogenic 10Be and 14C records measured in the continental ice since they are produced in 

the upper part of the atmosphere as a direct function of solar activity (Fig. 9a). These isotopes 

can be considered as proxies for the intensity of solar radiation [Bard and Frank, 2006; Wanner 

et al., 2008] and their variation are in good agreement with our mean SST record (Fig. 9a). In 

particular, we observe that the four intervals of lower and higher temperatures correspond to 

intervals of low and high solar activity and that general patterns of the solar activity are linked to 

our SST pattern concerning phase and amplitude. Solar activity variations are a global rather 

than a regional phenomenon hence solar activity also correlates with the ice dynamics of the 

important glaciated regions of the globe. For example, at ~2.8 to 3.7ka (interval II) and at ~4.4 to 

4.9ka (interval IV) low temperature patterns correspond to times of glacial advances in several 

parts of the world, including the Alps, Scandinavia, Himalayas, Alaska, New Zealand and 

Patagonia [Grove, 2004; Thompson et al., 2006]. In a more regional context this is also in accord 
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with SST records from the Eastern Pacific reporting colder temperatures between ~2.8 and 3.8ka 

and ~4.1 and 4.9ka [Koutavas et al., 2002]. High SSTs were also reported ~4ka and 1.8 to 2.9ka 

[Abram et al., 2009; Koutavas et al., 2002] in the Southern Pacific which are also in accord with 

our data.  

 

Fig. 9: (a) Comparison of mean weighted average of ∆SST estimates (blue line, 3-point running mean from δ18O 

and Sr/Ca) with solar activity reconstructed using 10Be from the Greenland (GRIP) ice core record ([Vonmoos et al., 

2006]; dashed red line) and 14C ([Müller et al., 2006]; dashed black line) from Wanner et al., [2008]. Our results are 

consistent with the reconstructed solar activity [Wanner et al., 2008]. 

 

This indicates that (i) the reported SST variabilities in the order of up to ±2°C reflect global 

temperature oscillations throughout the Mid to Late Holocene, and (ii) that solar activity seems 

to be the major driver of centennial to millennial scale SST changes throughout the Mid to Late 

Holocene at least in the Southern Pacific. 

 

The Holocene CO2 concentration curve reconstructed from Antarctic ice cores [Indermühle et 

al., 1999] also shows a distinct relationship with our proxy data (Fig. 9b). The CO2 record of the 

last 6 ka indicates a distinct increase in CO2 concentrations of about 16 ppm from about 264 ppm 

to about 280 ppm superimposed by 2nd order variation in the range of a few ppm. This increase 

in CO2 may also be reflected in our SST. However,  the increase of about 2°C related to an 

increase of 16 ppm CO2 is too small compared to the amount of CO2 (~100ppm)  assumed to 
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change the temperature from pre-industrial to modern by 0.8°C [IPCC, 2013]. Probably, cyclic 

variations of the solar activity controlled the atmospheric temperature and SST variations in the 

Southern Pacific to a much larger extent. 

 

 

Fig. 9: (b) is the comparison of our mean weighted average of ∆SST estimates with the CO2 concentration from Mid 

to Late Holocene collected from the Antarctic ice core record ([Monnin et al., 2001], grey symbols) obtained from 

Elsig et al., (2009). The general trend in CO2 evolution is additionally in agreement with our proxy data. 

 

4.7.8. Implications for the sea level to temperature relationship in the Pacific 

Our observation of periodic SST variations in the Pacific in the order of about 2°C may have 

direct consequences for the height of the sea level. This is because variation of temperature in 

this area is also reflected in the global scale (e.g. solar activity and glacial variations) that 

indicates that SST variations in the Pacific Ocean have significant impact on global SST. 

Alternating cool and warm SST cause water to expand or contract and relative sea level to rise 

and fall which has recently been quantified to be 0.2 to 0.7 m/°C [Levermann et al., 2013]. In a 

recent study empirical sea level estimates are compared to Holocene sea level variations of 

numerical models taking only Glacial Isostatic Adjustments (GIA) related sea level variations 

into account. However, any SST related variations have been neglected [Rashid et al., 2014]. 

Although there is general accord between GIA modeled sea level variations and the empirical 

data there are time intervals where empirical data indicate higher sea levels and intervals of 

lower sea level than predicted from GIA modelling. This probably indicates that GIA is not the 



84 
 

only factor controlling sea level rather cyclic SST variations may superimpose GIA controlled 

sea level height. In Fig. 10 the GIA related sea level fluctuations are combined with SST caused 

amplitudinal variations taking a SST-sea level relationship of about 0.2 m/°C into account. From 

Fig. 10 (blue curve) it can be seen that the sea level corresponding to interval I (1.8 – 2.8 ka) and 

III (3.7 to 4 ka) is in average about 0.4 m higher than the GIA controlled sea level alone. In 

contrast, for time intervals II (2.8 to 3.7 ka) and IV (4 to 4.9 ka) sea level reconstructed is lower 

than predicted from GIA modeling alone. For interval I the SST-GIA combined sea level curve 

fit the empirical data better than the theoretical GIA related curve alone. Apart from interval III 

the intervals II and IV the combined SST-GIA sea level curve is in general accord with each 

other and indistinguishable within statistical uncertainty. However, this should be considered as 

first order interpretation and it is open to future improvements. 

 

 

Fig. 10: Sea level-temperature relationship in the Pacific. The sea level estimations were previously published by 

Rashid et al., [2014] using empirical data and GIA model. The red curve represents the GIA model prediction of 

mean sea level curve for the Society Islands from Mid to Late Holocene. The data points are the sea level data 

obtained from coral samples from Moorea (blue), Huahine (red) and Bora Bora (green). In this study we combined 

the sea level estimation with the temperature in estimation obtained from this study (as blue curve). The combined 

GIA-temperature relationship reveals the amplitudinal sea level variations and reconciles the discrepancy between 

the GIA estimation and the empirical observations between 2 to 2.6ka 
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4.8. Conclusions 

1. Secondary inorganic aragonite precipitation in a coral sample could results in a shift of Sr/Ca, 

U/Ca, δ18O ratios towards higher values corresponding cooler SST temperatures. Even 

massive parts of corals are affected due the percolation of seawater along connected micro-

pores. 

2. Elemental contribution is not erratic rather seems to offset original values conserving original 

correlations among proxies. This may still allow gathering climatic information by 

normalizing the measured values relative to their mean values. 

3. Although affected by early diagenesis and violation of the “closed system behavior” relative 

SST variations (∆SST) indicate centennial to millennial SST variations (intervals I to IV) in 

the order of ±2°C. 

4. Identified SST intervals I to IV are in phase with variations of the solar activity as indicated 

by 14C and 10Be variations measured in continental ice cores. 

5. Variations of the solar activity in the Late Holocene are probably the major driver for climate 

oscillations and sea level change throughout the Holocene in the Southern Pacific. 
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Chapter Five 

 

5. General conclusions  

The general aim of this study is to reconstruct paleo-climate variability mainly focusing on the 

sea level variation (derived from age (U/Th) and elevation of sample collection) and sea surface 

temperature reconstruction (using Sr/Ca, δ18O and U/Ca proxies) during Mid to Late Holocene in 

the Society Islands in French Polynesia. In addition, the impact of early marine diagenesis on 

SST estimates and intra-skeletal micro-scale Sr/Ca variation has been assessed. To achieve this 

study, the fossil corals from the reef platforms which are currently exposed above the modern sea 

level as a result of sea level fall were used for reconstruction. Massive Porites and Porites micro 

atoll corals in situ were considered for reconstructions of the climate history of the area. In this 

study the following conclusions have been achieved.  

 

5.1. Sea level variation from Mid to Late Holocene 

In terms of sea level, the empirical data from this study indicate that Mid to Late Holocene sea 

level in the Society Islands was not stable but rather oscillated in the order of 1 to 2 meters above 

the present sea level from 5.4 ka to 1.8 ka. After this period the sea level dropped to the modern 

level. The sea level amplitudes indicated here are in the same range as predicted for the near 

future as a consequence of global warming and may serve as a natural analogue. The Glacial 

Isostatic Adjustment (GIA) modelling predicted a sea level increase to 4.5 ka and a gentle 

(smooth) fall to the modern levels without oscillation, because GIA modelling predictions 

considers only the melting of ice sheets and isostatic adjustments (response of land masses that 

were depressed by the huge weight of ice sheets during the last glacial period), inclusion of 

temperature variability might improve the modelling results. Therefore, the GIA modelling is 

pending to future improvements.  

 

The age range of our samples confirm that the emerged fossil platforms were formed after the 

sea level high stand (~6.5 ka) subsequent to complete disintegration of ice sheets in Northern 

Hemisphere that caused the reef to grow up to a water level above the elevation to which corals 

presently grow. According to the model of epicontinental reef growth (Davies and Marshal, 

1980), the coral reefs accreted vertically following the sea level rise which was above the 
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modern sea level during sea level high stand. The continuous sea level fall during Late Holocene 

in the far-field regions restricted the vertical growth, subsequently exposed these platforms 

above modern sea level that caused a complete cessation of their growth. Theoretical explanation 

of Mitrovica and Milne, (2002) indicates that exposure of Late Holocene platforms above the sea 

level was due to migration of water from far-field to the near- field regions (Ocean Siphoning 

Effect). They assumed that post-glacial rebound (that causes collapsing of fore bulges) and extra 

gravitational force of the upwarping landmasses pressed into Earth’s mantle during continental 

glaciation (gravitational pull) are the cause of migration of water from the far-field into the near-

field regions. Since the age range of our data (~5.4 ka to ~0.07 ka) is around Mid Holocene to 

modern therefore, we conclude that our platforms reflect a consequence of migration of water 

away from these areas as a result of Ocean Siphoning Effect. 

 

5.2. Temperature variability during Mid to late Holocene 

Using a multi-proxy approach combining Sr/Ca, U/Ca and δ18O we deduce that the sea surface 

temperature during Mid to Late Holocene was not stable but rather fluctuated on different time 

periods in the order of 1-2°C warmer than average from the modern mean temperature. The 

warm temperatures (~1-2°C) were observed between 1.8-2.8 ka, 3.7-4 ka as well as around 5 ka. 

The periods between ~2.8-3.7 ka and ~4.0 to ~4.9 ka are characterized by SSTs about 1-2°C 

lower than average. These temperature fluctuations are in good agreement with the solar activity 

variations reconstructed by Wanner et al., (2008). Carbon dioxide concentration (variability) 

from Mid to Late Holocene (Elsig et al., 2009), is in general agreement with our proxy data, but 

the variation is too little (16 ppmv) to increase the temperature from Mid to Late Holocene in the 

order of 2°C. Therefore, we conclude that solar activity was a major driver of the changes in the 

sea surface temperature during this time interval in our study area. The temperature variations 

during Mid to Late Holocene period partly influenced the sea level variation in this area. 

 

5.3. Impact of diagenesis on the SST estimates 

Inorganic CaCO3 precipitated in the corals as marine secondary precipitates (early marine 

diagenesis) results in errors in the SST estimates. This is because inorganic precipitates 

incorporate elements in the proportions available from the ambient sea water without the 

influence of a living coral polyp (biogenic influence). Our study has found that the bulk samples 
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Sr/Ca ratios from our two diagenetic samples have higher Sr/Ca ratios (above 10mmol/mol) 

while the non diagenetic samples have ratios below 10mmol/mol. Our estimates indicate that 

about 2-3% secondary aragonite needles observed in the skeletons of these two diagenetic 

samples have led to a shift of SST estimates to colder temperatures in the order of 0.5-1.6°C.  

 

5.4. Micro-scale intra-skeletal variability within the sample 

Our results show that the Sr/Ca ratios precipitated within the coral skeleton are not 

homogeneous; there is a micro-scale variation with observed values between 5.4 mmol/mol and 

9.9 mmol/mol for our samples. The reason of this variability is still unknown but part of it might 

presumably reflect diurnal fluctuations of calcifying fluid which is influenced by activation of 

Ca2+ATPase pump by light during the day favoring active transport of Ca2+ (resulting into low 

Sr/Ca ratio) and low activity of Ca2+ATPase during night time favors more Sr2+ over Ca2+ as 

explained by Al-Horani et al. (2003). However, this is not enough to explain our observed 

variation. 

 

5.5. Recommendation and future perspectives 

Several studies have focused on the sea level change of the exposed platforms in the far-field 

areas of the world oceans. However, using conglomerate platforms the sea level amplitude of the 

estimation could be exaggerated and resulting into higher or lower sea level estimates. This is 

because sea level estimates based on conglomerates are bound with a lot of uncertainties because 

some corals are reworked and not in their original growth positions (in situ). Therefore, to 

effectively reconstruct the sea level variation having massive corals taken from their original 

growth position is necessary. Porites micro atolls grow few centimeters on the lower intertidal 

areas. Their vertical growth is restricted by the exposure above the water surface. For this reason 

they are considered as good markers that allow paleo-sea level reconstruction into centimeter 

level. Therefore, to have precise estimates of paleo-sea level estimates the use of more micro 

atolls samples is essential. 

 

Islands of volcanic origin tend to subside with age and a distance from the original hotspot. 

Without consideration of island’s specific subsidence history, reconstructions of the sea level 

might be bound with a lot of uncertainties and hence the estimates might be incorrect. Currently 
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there are no studies about subsidence rates of some of the Society Islands such as Maupiti, 

Manuae, Tupai, Miao, Tahaa, Raiatea and the sea level estimations on these areas are still 

underway. For island’s specific subsidence rates the researchers are obliged to use subsidence 

rates of nearby islands. Therefore, to correctly constrain paleo-elevation of the islands, having 

the correct island’s specific subsidence rate is necessary.  

 

Geoid distortion as a function of changes in gravitational field along the area of study must be 

considered. Ignoring it, might add an uncertainty to the sea level estimates especially when the 

sea level is reconstructed on a centimeter level. Therefore, having the Real Time Kinematic 

(RTK) GPS system that would be able to correct for the geoid distortion is recommended.  

 

For paleo-climate studies using corals, the petrographic analysis involving pre-investigation of 

pore volume for secondary growth phase e.g. microscopic analysis (e.g. polarized microscope, 

scanning electron microscope) and thin sections, together with X-ray Diffraction (XRD) prior to 

geochemical analysis is necessary. This is because the inclusion of secondary aragonite cannot 

be detected using X-Ray Diffraction method. Relying onto XRD alone might lead into unreliable 

results. In addition micro analytical tools like micro-mills and/or Laser ablation technique based 

strategies that involves sampling on the massive part of a skeleton should be used for precise 

temperature estimation instead of bulk sampling strategy only. 
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