
Assessment of the One-Shot Strategy

for the Calibration of

Marine Ecosystem Models

Dissertation

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

(Dr. rer. nat.)

der Technischen Fakultät
der Christian-Albrechts-Universität zu Kiel

vorgelegt von
Dipl.-Math. Claudia Kratzenstein

Kiel 2015





Erstgutachter: . . . . . . . . . . . . . . . . . . . . . . . Prof. Dr. Thomas Slawig

Zweitgutachterin: . . . . . . . . . . . . . . . . . . . . Prof. Dr. Andrea Walther
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Zusammenfassung

Das Optimieren von Modellparametern ist eine äußerst wichtige und hochaktuelle Auf-
gabe in der Entwicklung von Klimamodellen oder Modellen, die Teile des Klimasys-
tems simulieren. Diese Modelle sollen verlässliche Aussagen über das zukünftige Klima
liefern. Dafür werden berechnete Modellvariablen an vorhandene Messdaten oder an
Ausgaben anderer Modelle ausgerichtet, indem Modellparameter geeignet korrigiert
werden. Dies entspricht einem mathematischen Minimierungsproblem mit Nebenbe-
dingungen in Form von partiellen oder gewöhnlichen Differentialgleichungen. Häufig
liegt der Lösung der Modellgleichungen ein iterativer Prozess zugrunde, da analytische
Lösungen oft nicht gegeben sind. Konventionelle Optimierungsalgorithmen führen für
jede Funktionsauswertung diesen iterativen Prozess (oder Fixpunktlöser) durch, der
allein schon erheblichen Rechenaufwand und Rechenzeit von Stunden bis zu Tagen
benötigen kann. Im gesamten Optimierungsprozess werden je nach Methode zahlreiche
Funktionsauswertungen und gegebenenfalls Ableitungsinformationen benötigt, um Pa-
rameter geeignet zu adjustieren.
In dieser Arbeit wird die One-shot Optimierungsmethode nach Hamdi und Griewank
erstmals für die Kalibrierung zweier illustrativer mariner Ökosystemmodelle untersucht.
Die One-shot Methode korrigiert Parameter bereits in jedem Schritt des Fixpunktlösers,
der für die Berechnung der Lösung der Modellgleichungen benutzt wird. Dabei wird
der Fixpunktlöser durch eine Aufdatierung des adjungierten Zustandes und der Pa-
rameterkorrektur erweitert und soll schließlich während einer Fixpunktiteration (mit
nur wenig Verzögerung) eine zulässige Lösung der Modellgleichungen als auch optimale
Parameter liefern.
In der vorliegenden Arbeit wird geprüft, ob die One-shot Methode für Modelle des mari-
nen Ökosystems anwendbar ist in Bezug auf theoretische Voraussetzungen der Konver-
genztheorie, Implementierbarkeit und ihrer Güte bezüglich der berechneten Lösungen
und der Effizienz des Algorithmus’. Großen Wert hat die Beschreibung der Anwen-
dung auf ein Modell mit instationärer (hier jährlich periodischer) Lösung. Es wird eine
Anleitung zur Implementierung erstellt und mögliche Vereinfachungen und geeignete
Einstellmöglichkeiten empfohlen.
Anhand der vorgestellten Ergebnisse können der Aufwand, die Vorteile und die Nachteile
der One-shot Methode in Zusammenhang mit marinen Ökosystemmodellen klar auf-
gezeigt werden.





Abstract

Parameter optimization is an important and highly topical task in all kinds of cli-
mate models or models that simulate parts of the climate system. These models are
to provide reliable projections on the future climate. Computed model variables are
fit to measurements or to output from other models by correcting model parameters.
This is a mathematical minimization problem with constraints in the form of nonlinear
ordinary or partial differential equations. Since analytical solutions often cannot be
provided, usually an iterative method is applied to solve the model equations. Clas-
sical optimization strategies perform this iterative method (or fixed point solver) for
each function evaluation. The fixed point solver may need extensive computing time
lasting hours or even days. Depending on the optimization approach, each optimization
run requires numerous function evaluations and if necessary derivative information to
adjust parameters.
In this work, for the first time the application of the One-shot optimization strategy
according to Hamdi and Griewank is investigated for the calibration of two illustrative
marine ecosystem models. The One-shot method corrects parameters in each step of
the iterative process applied for solving the model equations. The fixed point iteration
is augmented by an update of the adjoint state and the correction of the parameters.
It aims at computing a feasible state and optimal parameters with only bounded re-
tardation compared to the underlying fixed point iteration with fixed parameters.
This work examines the applicability of the One-shot strategy in the calibration of ma-
rine ecosystem models with respect to the theoretical assumptions of the convergence
theory, its implementation, the quality of computed results and the efficiency of the
algorithm. The application to a model with unsteady (here annually periodic) PDEs
is of great value. Instructions for the implementation, simplifications and suitable ad-
justments are presented.
The numerical results identify the costs, the advantages and the disadvantages of the
One-shot optimization technique in the calibration of marine ecosystem models.
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1 Introduction

Mathematical modeling has become indispensable in a growing number of scientific
fields. Mathematical models are employed to explain and simulate real life phenomena
or to predict the effects on these under certain changes of conditions.
Among those scientific fields is the wide topic of climate modeling. It deals with the
modeling of processes in the different components of the earth’s system, as for example
the atmosphere, the oceans and other water masses, land and sea ice, and terrestrial
and marine ecosystems to name only some of them (see for example McGuffy et al.
[24]). It considers processes on temporal and spacial scales which reach from small
(e.g. cloud building) to very large (e.g. ocean currents) scales.
The subject of climate modeling is closely related to the topic of global climate change
which has become one of the most pressing challenges our society is facing at the mo-
ment. It is a topic which conglomerates politicians, scientists, economists and of course
individuals and their lifestyles.
It is essential to estimate future changes in temperatures, the sea level, atmospheric
components, changes in nutrient supply and associated biological productivity as well
as changes in the oceanic carbon uptake and associated acidification to name only some
of the issues. There is the inevitable need for mathematical models on a high resolution
for regional predictions.

Still, some processes are not well-known, some are too small-scaled in time or space, and
others are just beyond the scope of the model. All these processes are parameterized,
i.e. simplified model functions (parameterizations) are used. These necessarily include
lots of – most of the time – only heuristically known parameters. A main task thus is
to calibrate the models by optimizing the parameter w.r.t. data from measurements or
other (more complex) models.

Similar to many applications in engineering applications of fluid mechanics, also in
geophysical flows (e.g. ocean models) an optimization is at first performed for steady
states of the equations before proceeding to transient problems. This means that only
the stationary solution is used in the cost or objective function to be minimized. More-
over (and this is the second point where engineering and geophysical flow problems are

11



12 CHAPTER 1. INTRODUCTION

similar), the computation of steady states is often performed by running a transient
model into the steady state. This strategy is called pseudo time stepping, since the
time variable may be regarded as a kind of iteration counter.

It is well known from optimal control of differential equations that the classical adjoint
technique (that allows the representation of the gradient of the cost) leads to a huge
amount of recomputations, storing or both. This problem looks even more frustrating
in the pseudo-time stepping context, since here only the final, numerically converged
state is important for the cost. Nevertheless a classical adjoint technique would need
all intermediate iterates.

If the number of parameters to be optimized is small, a sensitivity equation approach
is also reasonable. On the discrete level this is comparable to the application of the
forward mode of Automatic or Algorithmic Differentiation (AD). Here, the sensitivity
equation has the same temporal integration direction (namely forward) as the original
pseudo time stepping. But nevertheless it is worthwhile investigating how the two (for
a non-linear model) coupled iterations for state and sensitivity are performed.

Griewank and Walther describe in [14], chapter 15, the differences between two-phase
(where the iteration for the state is run to the steady state or fixed point first, and
then the sensitivity is computed) and piggy-back approaches (where both iterations
are combined to one). Christianson in [4] proposed to perform the sensitivity iteration
with the converged state instead of using its iterates. Giering, Kaminski and Vossbeck
in [18] used the so-called Full Jacobian approach, where they directly used the steady
state equation and differentiated it to obtain an equation for the gradient.

The approach used here is called (Jacobi) One-shot approach, which was in this form
developed by Griewank and Hamdi [10, 11], and can be seen as an extension of the
piggy-back strategy aiming for optimality and feasibility simultaneously with the so-
called bounded retardation. That means that the number of One-shot iteration steps
shall not too much exceed the number of fixed point iteration steps that are necessary
for the computation of a feasible state. Theoretical results were published in [10, 11]
and [7, 2], an engineering application was presented by Özkaya and Gauger in [26].
Among further developments of this original Jacobi One-shot approach is the Multi-
step (Seidel) One-shot method [2] where after one design update several repeated state
updates are followed by the same number of repeated adjoint updates.

The idea of simultaneous solution of state equations and parameter correction is not
new. In [38], Ta’asn uses a pseudo-time embedding for the state and adjoint state
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equations and the design equation is solved as an additional boundary condition. This
still results in a differential algebraic equation which requires some strategy to solve
the design equation alone.

In [16], the authors construct a system of only ODEs which is solved by a time stepping
method in the spirit of reduced SQP-methods. They develop a preconditioner working
on the whole system of equations with state, adjoint state and design equations.

In the One-shot approach used here, the idea is that for fixed parameters there is a
given (not necessarily (pseudo-) time stepping) strategy to solve the state equations.
This strategy is assumed to require no or disallow any changes. In each iteration step
the update of the state is augmented by an update of the adjoint state and a kind
of quasi-Newton step for the design correction with the distinctive feature that the
required preconditioner controls convergence of the whole system. Here, the precondi-
tioner is a squared matrix of only the size of the number of parameters.

Since the assumptions in the theoretical analysis of the One-shot method are very
strict and the computation of the preconditioner seems at first glance laborious and
expensive, the intention of this work is to investigate the applicability of the One-shot
strategy for marine ecosystem models and possibly propose simplifications. We analyze
the method applied to a low-complexity box model of the North Atlantic and a model
of medium complexity simulating the phosphorus cycle in the world’s oceans. For the
low-complexity model, we compare numerical results to the gradient based BFGS and
limited-memory BFGS (L-BFGS) methods ([25], pp. 136-143 and 176 - 181). We set
aside the comparison to genetic or so-called intelligent search algorithms, see e.g. [29],
because the aim of the One-shot approach according to the authors of [10, 11] is to of-
fer an alternative to local gradient-based optimization techniques. Genetic algorithms
usually require a high number of function evaluations which we want to avoid because
of the costly computation of feasible states needed for the function evaluation.
For the phosphorus cycle model (N-DOP model) we convert computing time into the
number of full computations of feasible states by the pseudo time stepping strategy as
an indicator of quality in the comparison to methods requiring a feasible state for each
function evaluation.

The problems considered here are different from the application in [26] in that the pa-
rameters enter in a nonlinear fashion resulting in so-called non-separable adjoints where
the adjoint is no longer only the sum of a term on the state and a term on design. Fur-
thermore, as the N-DOP model simulates the annual cycle of phosphate and dissolved
organic phosphorus, the search for the feasible unsteady state here is the search for a
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steady annual cycle considering the periodicity of the model. The approach presented
here differs from the one described in Günther et al. [15, 2] in that we do not augment
the contractive fixed-point iterator but augment the cost functional in an appropriate
way.

The outline of this thesis is the following. The subsequent chapter 2 summarizes the
derivation of the (original) One-shot strategy according to Griewank and Hamdi [10, 11].
In addition, we provide a very short introduction to Algorithmic or Automatic Differ-
entiation (AD) as our implementation of the One-shot strategy relies on the application
of AD.
In chapter 3, we embrace the results of the investigations concerning the calibration
of the box model of the North Atlantic. The integration scheme to compute a steady
state is a full step explicit Euler time stepping. One Euler step corresponds to one
model year.
In the main part of this work, chapter 4, we analyse the One-shot approach in the cal-
ibration of the spatially three-dimensional N-DOP model. Its time integration scheme
with 2,880 intermediate time steps per model year poses new challenges with respect
to the applicability and efficiency of the One-shot method.
The final chapter 5 summarizes results and we define open tasks for future investiga-
tions.



2 The One-shot Optimization Strategy

In this chapter, we recapitulate the One-shot optimization strategy according to Griewank
and Hamdi [10, 11], its quintessence and difference to conventional optimization meth-
ods, and we derive and explain the One-shot iteration step.

2.1 Problem Formulation

Parameters u ∈ U of a model describing physical, biological, chemical or other real life
phenomena are usually determined by fitting model output y = y(u) ∈ Y to observed
data denoted by ydata. This data can also be taken from other, more comprehensive
models.
The fitting procedure then is a mathematical optimization problem with a least-squares
cost functional with some regularization term

J(y, u) =
1
2
‖y − ydata‖2Y +

α

2
‖u− uest‖2U , α ∈ R+

0

under the constraint that model equations are fulfilled. We write:

min
y,u

J(y, u) s.t. c(y, u) = 0. (2.1)

In climate modeling, model equations are usually partial and/or ordinary differential
equations solved by an iterative process.
In this work, we will use the equivalent denominations objective or objective function
for the cost functional J , design or control vector for the the parameter set u and state
(vector) for the model output y.
The problem (2.1) will become more difficult with respect to uniqueness of minima
and computation of derivative information, if the quantity to be fit is computed from
a functional g : (Y, U)→ Y1 such that J then is

J(y, u) =
1
2
‖g(y, u)− gdata‖2Y1

+
α

2
‖u− uest‖2U

15



16 CHAPTER 2. THE ONE-SHOT OPTIMIZATION STRATEGY

or more general with a function F : (Y,U)→ Y2

J(y, u) =
1
2
‖F (y, u)‖2Y2

+
α

2
‖u− uest‖2U

With the help of the regularization term α
2 ‖u − uest‖2U parameters u are kept in an

acceptable or estimated range around parameter values uest, where elements uest,i can
for example be taken as mean values of some maximum and minimum values.
We assume J to be C2,1, i.e. twice continuously differentiable in y and once in u.

2.2 One-shot Iteration and its Properties

In practice, analytically finding a feasible state y∗ with c(y∗, u) = 0 often is impossible.
Therefore, usually an iterative method G : Y × U → Y is called upon with

G(yk, u) k→∞−→ y∗ = y∗(u). (2.2)

For the One-shot optimization approach, we assume that there is a given fixed point it-
eration, also called model spin-up, which has already been found reliable and successful
in the search for the feasible state y∗ for parameters u. Included step size or precon-
ditioner strategies can be carried over and do not have any influence on the One-shot
iteration. Thus, there is a given contraction, (pseudo-) time stepping strategy or fixed
point iteration G, for which y∗ satisfies y∗ = G(y∗, u) = limk→∞G(yk, u).
In [10, 11], the authors assume the iteration function G : Y × U → Y being C2,1 with
the contraction factor ρ < 1, i.e. for a suitable inner product norm ‖ · ‖ we have for
Gy, denoting the Jacobian of G with respect to y, that

‖Gy(y, u)‖ ≤ ρ < 1, ∀y ∈ Y. (2.3)

With the mean value theorem (see e.g. Nocedal and Wright [25], pp. 629–630) follows

‖G(y1, u)−G(y2, u)‖Y ≤ ρ‖y1 − y2‖Y , ∀y1, y2 ∈ Y. (2.4)

With this contraction property of G we can infer from the Banach fixed point theorem
(Papageorgiou et al. [27], p. 226), for fixed u, the sequence yk+1 = G(yk, u), k → ∞,
converges to a unique limit y∗ = y∗(u).
With the help of the fixed point reformulation, the optimization problem (2.1) can be
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written as

min
y,u

J(y, u) s.t. y = G(y, u). (2.5)

A conventional optimization strategy performs a complete model spin-up with parame-
ters uk in each iteration step k ≥ 0 obtaining the feasible state y∗(uk) = liml→∞G(yl, uk),
computes J(y∗(uk), uk) and adjusts model parameters obtaining uk+1.
Adjusting the parameters demands further full model spin-ups and/or expensive deriva-
tive information. Computing the gradient dJ

du (y∗(uk), uk) is challenging as it has to be
computed iteratively as well. For instance, the finite differences (FD) approach needs to
search for additional feasible states y∗(uk+hei), where ei, i = 1, ...,dim(u), are the unit
vectors and h is the step size determining the accuracy of the FD approach for dJ/du.
As y∗(uk + hei) are in turn approximations with respect to a certain accuracy of the
fixed point iteration and its termination condition, estimating the truncation error of
the gradient dJ

du (y∗(uk), uk) is difficult. Carrying forward exact derivatives in hand with
the model spin-up (so-called piggyback approach described in Griewank and Walther
[14], chapter 15) at least eliminates the inaccuracy of the FD approach. However, the
question remains if the gradient converges as fast as the state. In [14] a time-lag is
observed. Furthermore, these exact derivatives need to be provided.

In high-complexity long term simulation models, one spin-up can take up to weeks of
computational time depending on the computational platform. Therefore, the main
goal of the One-shot strategy is to adequately adjust model parameters already during
the fixed-point iteration process. Its update rules are deduced from the Lagrange mul-
tipliers approach.
In the following, we assume the considered space to have finite dimensions correspond-
ing to their discretization, s.t. Y ⊂ Rn and U ⊂ Rm. This allows us to write inner
products as scalar products in Euclidean space and adjoint states as transposed vectors.
The associated Lagrangian to problem (2.5) with the Lagrange multiplier or adjoint
state ȳ ∈ Ȳ ⊂ Rn is

L(y, ȳ, u) = J(y, u) + ȳ>(G(y, u)− y).
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A Karush-Kuhn-Tucker (KKT) point (y∗, ȳ∗, u∗) fulfilling the first order necessary op-
timality condition ([25] p. 321) must satisfy

0 = ∂L
∂y = Ly = Jy(y∗, u∗) + ȳ∗>Gy(y∗, u∗)− ȳ∗>,

0 = ∂L
∂ȳ = Lȳ = G(y∗, u∗)− y∗,

0 = ∂L
∂u = Lu = Ju(y∗, u∗) + ȳ∗>Gu(y∗, u∗).





(2.6)

Motivated by this system of equations, the following coupled full step iteration, called
One-shot strategy, to reach a KKT point is derived:

Initialize y0, ȳ0 and u0, k=0, define εtol

do until ‖L(y,ȳ,u)‖ < εtol (or an alternative termination condition is fulfilled):

yk+1 = G(yk, uk) // towards feasibility

ȳk+1 = Jy(yk, uk) + ȳ>k Gy(yk, uk) // towards adjoint feasibility

uk+1 = uk − B−1k (Ju(yk, uk) + ȳ>k Gu(yk, uk)) // towards optimality

k = k + 1





(2.7)

εtol is the tolerance at which a solution is accepted. Alternatively, other stopping cri-
teria can be set, for example by a fixed iteration counter or if there is numerically no
change in the updated variables anymore.
Note that here derivatives of J and G depend on the current iterates yk, uk only, and
yk and uk are considered independent variables of J and G. That means in the One-
shot context ∂yk

∂u (uk) = 0 whereas (in general) ∂yk+1

∂u (uk) 6= 0 as we equivalently denote
Gu(yk, uk) = ∂G

∂u (yk, uk) = ∂yk+1

∂u (uk). We carefully distinguish between Ju(y∗(uk), uk)
in the context of conventional optimization strategies and Ju(yk, uk) in the One-shot
context. We emphasize that in contrast to conventional optimization strategies, no
full model spin-ups with intermediate parameter sets uk are needed in the One-shot
method.

In the update of uk, the matrix Bk ∈ Rm×m is a design space preconditioner which
must be selected to be symmetric positive definite. As mentioned above, we do not
want to introduce an additional preconditioner for the update of the state y, because of
the assumption that the model spin-up G has already been found reliable and successful
in the search for feasible states. Possible preconditioners or step size corrections are
assumed to be included in the update function G.
The contractivity (2.4) ensures that the first equation in the coupled iteration step
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(2.7) converges ρ-linearly for fixed u. Although the second equation exhibits a certain
time-lag, it converges with the same asymptotic R-factor [13]. Therefore, we neither
introduce a preconditioner for the update of ȳ. As far as the convergence of the coupled
iteration (2.7) is concerned, the goal is to find Bk that ensures that the spectral radius
of the coupled iteration (2.7) stays below 1 and as close as possible to ρ. In subsection
2.3, we recall the formula of appropriate preconditioners Bk according to Griewank and
Hamdi [10, 11].
In the context of the One-shot optimization, we distinguish between problems with
so-called separable and and those with non-separable adjoints. The mixed derivative
Lyu = Jyu + ȳ>Gyu represents the sensitivity of the adjoint equation with respect to
design parameters. A problem where Lyu = 0 is separable and where Lyu 6= 0 is called
non-separable. In [10, 11] the authors concentrate on separable problems. In climate
modeling, the model equations usually include a non-linear coupling of the state and
design variables, such that generally Lyu 6= 0 holds. The problems we consider in chap-
ters 3 and 4.5 not only have non-linear couplings in the model equations but also in
the cost functionals.

2.3 Preconditioner B and the doubly augmented

Lagrangian

In this section, we explain the choice of the preconditioners Bk according to [10, 11].
For the sake of simplicity, we omit the iteration index k using the notations B, y, ȳ
and u only.
For the derivation of the preconditioner B, we introduce the doubly augmented La-
grangian La

La(y, ȳ, u) = L(y, ȳ, u) +
αL
2
‖G(y, u)− y‖2Y +

βL
2
‖Ly(y, ȳ, u)‖2Y ,

which is the Lagrangian of the original problem augmented by the errors in primal and
dual feasibility. αL > 0 and βL > 0 are weighting coefficients.
The authors of [10] prove that under certain conditions on αL and βL (see below (2.9)
and (2.11)), stationary points of problem (2.5) are also stationary points of La and that
La is an exact penalty function. This leads to the idea to choose B as an approximation
to the Hessian of La, i.e. B ≈ ∇uuLa.
In [10], it is proven that descent of the augmented Lagrangian is provided for any
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preconditioner B fulfilling

B � B0 for B0 :=
1
σ

(αLG>uGu + βLL
>
yuLyu) (2.8)

and where B � B0 denotes B −B0 being positive semidefinite. σ is defined as

σ := 1− ρ− (1 + ‖Lyy‖
2 βL)2

αLβL(1− ρ)
(2.9)

to ensure convergence of the coupled iteration and where αL and βL need to be selected
appropriately.
The authors of [10] propose to choose αL and βL such that B−1

0 is as large as possible
for large parameter corrections. Using (2.8) we get

‖B0‖2 ≤
1
σ

(αL‖Gu‖22 + βL‖Lyu‖22).

Minimizing the right most formula as a function of αL and βL and replacing σ with
(2.9) yields proposition 3.3 from [10] which concludes:
Under the assumption that

√
αLβL(1− ρ) > 1 +

βL
2
‖Lyy‖ (2.10)

holds and ‖Lyy‖ 6= 0, for B0 from (2.8) choose

βL=
3√

‖Lyy‖2 + 3‖Lyu‖2
‖Gu‖2 (1− ρ)2 + ‖Lyy‖

2

and αL=
‖Lyu‖2
‖Gu‖2

βL(1 + ‖Lyy‖
2 βL)

(1− ‖Lyy‖
2 βL)

. (2.11)

In the separable case where ‖Lyu‖ = 0, it is βL = 2/‖Lyy‖. Inserting the formula of
βL from (2.11) into αL from (2.11) and afterwards setting ‖Lyu‖2

‖Gu‖2 = 0 for the separable
case, yields

βL =
2

‖Lyy‖
, αL =

4‖Lyy‖
(1− ρ)2

and σ =
(1− ρ)

2
. (2.12)

Striving for approximating B as B ≈ ∇uuLa, we constitute that at a stationary point
of La, where primal and dual feasibility hold, the Hessian of La, namely ∇uuLa, is

∇uuLa = αLG
>
uGu + βLL

>
yuLyu + Luu.
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As La is an exact penalty function, we have ∇uuLa � 0 in a neighbourhood of the con-
strained optimization solution. Assuming that Luu � 0 implies that the preconditioner

B =
1
σ

(αLG>uGu + βLL
>
yuLyu + Luu) (2.13)

fulfills (2.8) and thus the step sk := uk+1 − uk = −B−1Lu(yk, ȳk, uk) of the coupled
iteration (2.7) yields descent on La.
In the more recent paper [11], the authors perform a different approach in the choice
of the weighting factors. They set σ to σ = 1, compute the weights as

αL =
2‖Lyy‖
(1− ρ)2

, βL =
2

‖Lyy‖
(2.14)

or in a third version as

αL =
6‖Lyy‖
(1− ρ)2

, βL =
6

‖Lyy‖
, (2.15)

but in this case need to perform a (standard backtracking) line search procedure to
enforce convergence.
To even more simplify the computations of the weights, the authors propose to fix
‖Lyy‖ to 1, since iterative strategies as the power iteration (compare Golub and Van
Loan [9], section 8.2) always converged to 1.
In our testings with climate model examples, we constitute that the choice of the
weights has a significant influence on the performance of the One-shot optimization.

We have emphasized the One-shot method not needing to perform full spin-ups for
intermediate parameters uk. Still a lot of first and second order derivatives of J and G
are needed. As we strive for exact derivatives, we apply automatic differentiation tools.

2.4 Automatic Differentiation

Automatic Differentiation (AD) is a software technology to compute the derivative of a
function at costs of only a small multiple of the costs for the evaluation of the function
itself. With the help of source code transformation or operator overloading an AD tool
provides the user with a computer programme containing the derivatives.
Automatic differentiation tools are for example TAF or ADiMat, which use the source
code transformation approach to generate Fortran or Matlab subroutines to calcu-
late function values and derivative information in one call, see [8, 17], or for example
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ADOL-C using the operator overloading concept in C/C++ codes, see [12].
Both concepts split up the function evaluation code into elementary functions and inter-
mediate values. They internally draw up an evaluation trace. For elementary functions
the (directional) derivative is known such that with the help of the chain rule, the
derivative of the implemented function can be calculated.

There are two modes of AD: the forward and the reverse mode. The forward mode
simultaneously evaluates and carries forward a directional derivative of each intermedi-
ate variable. Then for some direction z ∈ RN , a function f : RN → RM and the input
variable x ∈ RN the forward mode yields the vector

v = f ′(x)z ∈ RM

where f ′(x) is the Jacobian of f . Here, the costs for evaluating derivatives with the
forward mode increase linearly with the number of domain directions z along which the
user wants to differentiate. Hence, one benefits from a small number of independent
variables.

With the reverse mode of AD one can also benefit from a small number of dependent
variables.
The reverse mode stores all intermediate variables of the evaluation trace. Then, in a
reverse sweep partial derivatives of the function with respect to intermediate variables
are accumulated. For a vector v ∈ RM , the reverse mode computes the vector

zT = vT f ′(x) ∈ RN . (2.16)

In particular, the gradient of a scalar valued function f : RN → R can be obtained in
only one reverse sweep.
The concatenation of a reverse and a forward sweep yields second order derivatives.

For the One-shot optimization strategy generally applying AD is not recommended.
ȳ>Gy and ȳ>Gu seem to be suitable for the reverse mode of AD. Still, depending on the
considered model and its iterative solver, the application of automatic differentiation is
not as automatic as the name suggests. We are going to describe the utilization of AD
in the two considered models, the 4-box model of the North Atlantic and the N-DOP
model, in chapters 3 and 4 respectively.



3 Calibration of a 4-Box-Model of the

North Atlantic

To investigate the One-shot strategy with respect to the applicability on optimization
problems with models used in marine sciences we chose the Rahmstorf 4-box-model
of the thermohaline circulation of the North Atlantic [40] for first testings. Besides
fast computation of feasible and/or optimal states, the advantage of using this low-
complexity model is the possibility to easily apply standard optimization strategies
which are generally provided by optimization toolboxes for certain programming lan-
guages.

3.1 Model Description

The considered box-model simulates the flow rate or the meridional volume transport
of the Atlantic Ocean known as the conveyor belt, carrying heat northward and having
a significant impact on climate in northwestern Europe. Temperatures Ti = Ti(t)
and salinity differences Si = Si(t) in four different boxes i = 1, ..., 4, the southern,
northern, tropical and the deep Atlantic, are the characteristics inducing the flow rate
m. The surface boxes exchange heat and freshwater with the overlying atmosphere,
which causes a pressure-driven circulation. The time dependent ordinary differential
equation (ODE) system reads

dT1
dt = Ṫ1 = λ1(T ∗1 − T1) + m

V1
(T4 − T1) dS1

dt = Ṡ1 = S0f1

V1
+ m

V1
(S4 − S1)

dT2
dt = Ṫ2 = λ2(T ∗2 − T2) + m

V2
(T3 − T2) dS2

dt = Ṡ2 = −S0f2

V2
+ m

V2
(S3 − S2)

dT3
dt = Ṫ3 = λ3(T ∗3 − T3) + m

V3
(T1 − T3) dS3

dt = Ṡ3 = S0(f2−f1)
V3

+ m
V3

(S1 − S3)

dT4
dt = Ṫ4 = m

V4
(T2 − T4) dS4

dt = Ṡ4 = m
V4

(S2 − S4)





(3.1)

m = km(βm(S2 − S1)− αm(T2 − T1))

where m is the meridional volume transport or overturning.
The constants f1, f2 are freshwater fluxes containing atmospheric water vapor trans-

23
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Figure 3.1: Illustration of the Rahmstorf 4-box model described in Zickfeld et al. [40].
Shown is the flow direction with an upwelling in the south and downwelling in the north, i.e.
m > 0.

port and wind-driven oceanic transport. They are multiplied by a reference salinity S0

for conversion to a salt flux. Moreover, km is a coupling constant of flow, αm, βm are
expansion coefficients and T ∗i temperatures towards which the surface boxes i = 1, ..., 3
are relaxed. λi are thermal coupling constants and Vi volumes of boxes i = 1, ..., 4.
Figure 3.1 illustrates the flow.

An explicit full step Euler time stepping is chosen to calculate steady states for the
temperatures Ti and salinity differences Si from which the overturning m is computed.
If the state vector y = (T1, T2, T3, T4, S1, S2, S3, S4) gathers the temperatures and salin-
ities, the spin-up function G : Y × U → Y , Y ⊂ R8, U ⊂ Rdim(u) reads

G(y, u) = y + FBox(y, u),

where FBox : Y × U → Y denotes the right-hand side of the ODE system 3.1 and u is
the considered parameter vector, which contains tunable model parameters which will
be defined in the course of this section.

In this version from Zickfeld et al. [40] only positive m are admissible, because oth-
erwise the model equations are wrong. If the computed value of m is negative during
the Euler spin-up, the authors set m to zero. As the One-shot strategy assumes the
spin-up function G to be C2,1 this version of the box-model is not applicable.
In [39] a smooth coupling of the two possible flow directions is proposed. The formu-
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lation of the time dependent ODE system there is

Ṫ1= λ1(T ∗1 − T1) + m+

V1
(T4 − T1) + m−

V1
(T3 − T1)

Ṫ2= λ2(T ∗2 − T2) + m+

V2
(T3 − T2) + m−

V2
(T4 − T2)

Ṫ3= λ3(T ∗3 − T3) + m+

V3
(T1 − T3) + m−

V3
(T2 − T4)

Ṫ4= m+

V4
(T2 − T4) + m−

V4
(T1 − T4)

Ṡ1= S0f1

V1
+ m+

V1
(S4 − S1) + m−

V1
(S3 − S1)

Ṡ2= −S0f2

V2
+ m+

V2
(S3 − S2) + m−

V2
(S4 − S2)

Ṡ3= S0(f2−f1)
V3

+ m+

V3
(S1 − S3) + m−

V3
(S2 − S4)

Ṡ4= m+

V4
(S2 − S4) + m−

V4
(S1 − S4)





(3.2)

m = km(βm(S2 − S1)− αm(T2 − T1))

where for some positive a, m+ = m
1−e−am almost coincides with the meridional volume

transport or overturning m for positive m and is almost zero for negative m. The term
m− = −m

1−eam becomes almost zero for positive m and −m for negative m. That means
the summands including m+ and m− are activated or deactivated depending on the
flow direction. The deviation from the physically correct model becomes smaller the
larger a is.
With this modification, the system is smoothed but still we have to exclude pairs
(T1, T2, S1, S2) where m becomes zero. In our testings with the Euler spin-up, for
reasonable starting values, we never computed temperatures and salinities where T1 =
T2 and S1 = S2, or where 0 = βm(S2 − S1)− αm(T2 − T1).

Several model parameters are involved, the most important being the freshwater flux f1

containing atmospheric water vapor transport and wind-driven oceanic transport; it is
used to simulate global warming in the model and is chosen in the interval [−0.2, 0.15].
T ∗i , i = 1, 2, 3, are so-called restoring temperatures, which can be seen as counterparts
of the three surface temperatures. Further model parameters are physical, relaxation
and coupling constants among which there are well-known fixed parameters and those
which are tunable parameters. See [40] for an explanation of the occurring constants,
fixed parameters and tunable parameters.
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3.2 Fitting Data from the Climber2 Model

Given fresh water fluxes (f1,i)li=1, corresponding to different warming scenarios, the
aim is to fit the overturning values mi = m(y(f1,i), u) computed from stationary tem-
peratures and salinities (T1, T2, S1, S2)i obtained by the model spin-up for f1,i to data
md,i from the Climber2 model [34], an Earth-system model of intermediate complexity.
u = (T ∗1 , T

∗
2 , T

∗
3 ,Γ, km, a) are the control parameters to be optimized. Here, Γ is a

thermal coupling constant in the computation of the thermal relaxation constants λi,
i = 1, 2, 3.
With l different freshwater fluxes, the length of the state vector enlarges to dim(y) = 8l
where y = (yi)li=1 with yi = y(f1,i) = (T1,i, T2,i, T3,i, T4,i, S1,i, S2,i, S3,i, S4,i).
If F (y, u) denotes the right-hand side of the ODE system (3.2), the minimization prob-
lem reads

min
y,u

J(y, u), J(y, u) :=
1
2
‖m(y(f1), u)−md‖22 +

α

2
‖u− uest‖22, (3.3)

s.t. 0 = (F (y(f1,i), u))i=1,...,l . (3.4)

Applying the full step explicit Euler time stepping, the iteration function to solve
0 = (F (y(f1,i), u))i=1,...,l, is G(y, u) = y + F (y, u) with G : Y l × R6 → Y l.
The difficulty here is that m : Y l × R6 → Rl is not injective. There are several
combinations of steady/feasible T1, T2, S1, S2 and the parameter u5 = k to compute
the same overturning m. The smaller α the more likely the different optimization
strategies find completely different optimal parameters with almost the same function
values J(y∗, u∗).
Main results concerning the applicability of the One-shot strategy on this model are
published in Kratzenstein and Slawig 2013 [22]. The article is attached in the appendix
of this work.
Besides the analysis of the theoretical applicability of the One-shot method and a
description of the optimization setup, in [22] we investigate the One-shot strategy on
the one hand with computation of the preconditioner B as proposed in [10, 11] or
summarized in chapter 2.3, equation (2.13), of this work, and on the other hand with
the One-shot version using a BFGS approximation to B. For comparison we apply the
traditional BFGS quasi-Newton strategy, the limited memory BFGS strategy and the
limited memory BFGS strategy with box constraints on the parameters (for description
of the methods see for example Nocedal and Wright [25], pp. 136-143 and 176 - 181).
The implementation is in Fortran. For the computation of derivatives, we apply the
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Automatic Differentiation tool TAF [8], version 1.9.52.

3.2.1 Main Results

In the following, we summarize the main results.

• The One-shot strategy computed acceptable results for regularization factors
α > 0. Figure 3.2 exemplarily illustrates the reduction of the cost function
computed by the One-shot strategy and the quasi-Newton BFGS algorithm. We
observe the One-shot strategy typically tending to the solution faster than the
BFGS strategy comparing the number of Euler steps. For α = 0, the One-shot
method failed, whereas the BFGS strategy computed optimal parameter values
far away from estimated real world values. This gave rise to additionally testing
the quasi-Newton strategy with box constraints. We observe the number of Euler
iteration steps needed by the One-shot method being smaller than the number
of Euler steps needed by the quasi-Newton methods in most cases. However, it
was difficult to compare the obtained results as the computed optimal parame-
ters were completely different for the different strategies, especially for α ≤ 0.1.
Furthermore, for the One-shot strategy it is ‖L(y,ȳ,u)(y∗, ȳ∗, u∗)‖ characterizing
the quality of the obtained result (y∗, ȳ∗, u∗) whereas it is ‖Ju(y∗(u∗), u∗)‖ for the
quasi-Newton methods. An overview of the obtained results is given in tables 2
and 3 of the attached paper [22].

• Application of the full step explicit Euler iteration on the Rahmstorf 4-box model
does not guarantee contraction factors ρk = ‖G(yk+1, u)− yk+1‖/‖G(yk, u)− yk‖
with ρk < 1 for all k > 0. In our testings, the contraction rate exceeded 1 up
to 16% of the needed Euler steps until a steady state is found for certain pairs
of fresh water fluxes f1, starting values y0, and parameter sets u. However, the
full step explicit Euler time stepping converges and the One-shot method also
converges and computes good results. We find that the computed Explicit Euler
sequence in our testings fulfills the quasi-contraction property [5]

‖yk+1 − yk‖ ≤ qmax{‖yk − yk−1‖, ‖yk+1 − yk−1‖}, where 0 ≤ q < 1, k > 0.

We experience the assumption (2.3) on the spin-up function G, namely ‖Gy‖ ≤
ρ < 1 for all y ∈ Y , possibly being defined too strict. It excludes the Euler time
stepping applied on the 4-box model even though the spin-up has been found
reliable in numerical tests.
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Figure 3.2: Exemplary plot of the reduction of the cost function of problem 3.3 over the
number of Euler steps computed by the One-shot strategy and the quasi-Newton BFGS
method. Shown is the optimization run for u ∈ R6 and weighting factor α = 10.

• As the computed ρ exceeds 1 in several iteration steps and would therewith result
in incorrectly computed preconditioners B, we fix ρ to ρ = 0.9 in our One-shot
optimization setup.

• In this example, we observed ‖Lyy‖ computed via the power iteration converg-
ing to numbers close to but not equal to 1. However, a simplification in that
‖Lyy‖ and therewith the factors α, β and σ necessary for the computation of the
preconditioner B are approximated only every 1,000 One-shot iteration steps is
favorable due to an enormous saving of computational time.

• We introduce so-called pre-iteration steps in the beginning of the optimization
process. These are coupled iteration steps consisting of an update of the state y
and the adjoint state ȳ only without updating the parameters u. Pre-iterations
avoid badly computed parameter sets due to large and possibly immediately re-
versed corrections of the state y in the beginning of the optimization run. Without
pre-iterations we observe the One-shot strategy to occasionally fail depending on
chosen starting values. With pre-iterations the One-shot method always con-
verged.

• The One-shot method does not need any constraints on the parameters. The
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penalty term α
2 ‖u − uest‖2 of the cost functional fully replaces constraints. As

mentioned above, the quasi-Newton strategies require box constraints. For the
latter, they are indispensable for small regularization factors α.

• The One-shot method with computation of the preconditioner B formulated in
(2.13) does not need any line-search procedure. In the same way as the quasi-
Newton methods require line-searches, the One-shot-BFGS strategy also is in
need of a line-search. Otherwise it fails. We applied a simple strategy constantly
halving the step length until there is a reduction in the cost function.

• The One-shot-BFGS strategy is not as successful as the original version. In most
cases it finds a solution, but in our testings needed 1.6 up to 5 times the time the
original One-shot version needed until convergence.

• Concerning computational time, for the calibration of this low-complexity model,
in our implementation, we observe a saving of time only in cases, where the
number of needed One-shot iteration steps is less than half the number of Euler
steps needed by the quasi-Newton methods.

3.2.2 Further Results

Complementary results of earlier investigations not published in [22] will be presented
in the following. They are collected in preprints on the preprint server of the priority
program SPP1253 “Optimization with partial differential equations”, [20, 21].
In very first considerations of the smoothened model (3.2), we optimize parameters
(u1, u2, u3) = (T ∗1 , T

∗
2 , T

∗
3 ) only. Therewith, the optimization problem (3.3) is a separa-

ble problem where Lyu = 0.
For these numerical analyses, the implementation is in Matlab version 7.7.0.471
(R2008b). For comparison with standard optimization strategies, we apply the Matlab

optimization routine fminunc with two different settings. Using default optimoptions
only setting ’LargeScale’=’off’ corresponds to the quasi-Newton BFGS algorithm
[25], pp. 135 - 143. Additionally setting ’HessUpdate’ = ’SteepDesc’ corresponds
to the line search method with steepest descent [25], pp. 20-22.
For the computation of the derivatives ȳ>Gy(yk, uk) and ȳ>Gyy(yk, uk) for the One-
shot method and Ju(y∗(uk), uk) for the standard gradient methods, we apply ADiMat
version 0.4 [17]. ADiMat uses the source code transformation approach to augment
Matlab codes with routines computing the desired derivatives. In version 0.4 only the
forward mode of AD was available. In the current version 0.6, also the reverse mode is
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Figure 3.3: Comparison of cost function values over the number of Euler steps in the opti-
mization of 3.3 with three parameters only, u = (T ∗1 , T

∗
2 , T

∗
3 ). Here we use a Matlab imple-

mentation for the One-shot strategy and apply the Matlab routine fminunc with different
settings for the comparative optimization strategies, that is the quasi-Newton BFGS and the
method of steepest descent.

available.
In the testings with the smoothened version of the box model optimizing three parame-
ters, the required derivatives in the One-shot method with respect to u, i.e. Ju(yk, uk),
Gu(yk, uk) and Luu(yk, uk), and additionally Jyy(yk, uk) can be calculated analytically
and be provided by hand written code.
The three methods find optimal solutions. The One-shot strategy converges in only a
fraction of needed Euler steps (equal to the number of One-shot steps) compared to
the quasi-Newton-BFGS (≈ 2/5) and the gradient method (< 1/10). See figure 3.3 for
illustration.
However, we observe very long computational times which we in great part trace back

to the application of ADiMat. On the one hand, it only generates derivative code with
the forward mode such that for instance, 8l forward calls are necessary to generate
ȳ>Gy(yk, uk). On the other hand, the generated code defines and after usage clears in-
termediate variables in each Euler step such that a lot of time is spent on the allocation
and clearing of variables and memory instead of re-using allocated memory for specific
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Figure 3.4: Contraction factor ρk during an exemplary One-shot optimization run, α = 0.1.
It exceeds 1 in 4.2 % of all iteration steps. The mean value is ρ̄ = 0.999988.

variables. We reduced computational time to only a tenth of the originally provided
ADiMat code by adjusting the allocation of variables and exploiting the block matrix
structure of derivatives with respect to y.
However, the tests still performed very slowly. One coupled One-shot step required 400
times the time of the computation of a single Euler step.
In conclusion, we found that the One-shot strategy successfully operates, but still a
well-considered optimization set-up is necessary.
That is why the subsequent tests with the 4-box-model were implemented in Fortran

and the AD tool TAF [8] was applied to generate derivative code. Similar to ADiMat
TAF is a source code transformation tool. The final results are already itemized in the
previous subsection and collected in [22].

To complete this chapter, we present the observation concerning the contraction be-
haviour. As we have experienced the contraction factors ρk > 1 for some k > 0
for certain pairs of (f1, y0, u) and observe slow convergence, we do not expect the
One-shot strategy to converge fast. However, we are interested in the contraction
behaviour. Figure 3.4 illustrates the results. In an exemplary optimization run, we
observe maxk≥0(ρk) = 1.03 > 1, and ρk > 1 in 4.2% of all iteration steps distributed
over the entire optimization run. In conclusion, similar to the underlying model-spinup
which violates the contraction property (2.4) but still converges consistently in numer-
ical testings, also the One-shot strategy converges in most testings even though the
contraction property cannot be proven in general.
As the fitting of Climber2 data confirmed, the considered box model is suitable for pro-
jecting the reaction of the flow of the North Atlantic with respect to climate change.
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However, models to simulate parts of the marine ecosystem are becoming more and
more complex, see for example Kriest et al. [23] for a comparison of different models.
The augmented models take into account additional physical, chemical, biological or
biogeochemical details in finer spatial and temporal resolution. Therefore, we take a
great interest in the applicability of the One-shot method in the calibration of a high-
resolution annually periodic model. The next chapter analyses the One-shot strategy
applied to the N-DOP model, a spatially three-dimensional model simulating the phos-
phorous cycle in the world’s oceans.



4 Calibration of the N-DOP Model

After successful testings with the low-dimensional and low-complexity model of the
North Atlantic, we will now investigate the One-shot strategy in the parameter opti-
mization of the high-dimensional, annually periodic N-DOP model. Excerpts of the
results are published already in the collections [37] and the special volume [2], which
collects contributions of the working groups of the DFG priority program 1253 “Opti-
mization with Partial Differential Equations”. In this work, we go into detail describing
the model, the implementation, and of course results for different optimization set-ups.

4.1 Model Description

In this section, we briefly mention the characteristics of the N-DOP model. Here, we
concentrate on its inclusion within the One-shot optimization strategy. In the appendix
B, we present a detailed model description. We basically follow the notations of Prieß
et al. [32] and Roschat et al. [35, 36].
The N-DOP model describes the global phosphorus cycle in the ocean in an off-line
mode, meaning that the considered tracers do not affect the ocean physics. The model
investigates the two tracers phosphate yN and dissolved organic phosphorus yDOP . N
stands for nutrients which in this model is equivalent to the concentration of phos-
phate PO4. Thus, we equivalently write N or PO4 in the course of this work. The
tracers yN and yDOP are coupled by a coupling function q(yN , yDOP , u) (also called
the biological source-minus-sink term or sometimes also predator-prey-model with sink-
ing). The ocean circulation data enters the tracer transport equation as annually fixed
forcing terms varying during the period of one year. It is precomputed and stored in
so called Transport Matrices Aimp,j and Aexp,j for each intermediate time integration
step j = 0, ..., nt − 1, where nt denotes the number of time steps per year (in our case
nt = 2,880). The Transport Matrix Method was introduced by Khatiwala et al. [19].
With these fixed linear mappings, finding an annually periodic solution is equivalent
to finding a steady state y = (yN , yDOP ) at one (arbitrary) time point of the year. We
define the spin-up function G(y, u) for which we search a state y∗ with y∗ = G(y∗, u)

33
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Table 4.1: List of parameters of interest including the element in the parameter vector, vari-
able name, description, units for the N-DOP model parameters, optimal values in the opti-
mization with synthetic data and starting values in our twin-experiments.

Name Description Unit uopt u0

u1 λ remineralization rate of DOP 1/d 0.5 0.3
u2 α maximum community production rate 1/d 2.0 5.0
u3 σ fraction of DOP, σ̄ = (1− σ) - 0.67 0.40
u4 KN half saturation constant of N mmolP/m3 0.5 0.8
u5 Kl half saturation constant of light W/m2 30.0 25.0
u6 KH2O attenuation of water 1/m 0.02 0.04
u7 b sinking velocity exponent - 0.858 0.78

as a concatenation of nt intermediate time steps:

G(yk, u) = yk+1 = yk+1,0 := yk,nt where (4.1)

yk,j+1 = Aimp,j(Aexp,jyk,j + qj(yk,j , u)), for j = 0, ...., nt − 1. (4.2)

qj is the non-linear coupling function of source-minus-sink type which depends on the
parameter and state variables, but it also depends on the intensity of light I which
varies in latitude and season. Therefore, we write qj(y, u) in the evaluation of the
model spin-up function G to imply the seasonal dependency.
The parameters of interest and their units are listed in table 4.1. We follow Kriest et
al. [23] in the choice of estimated optimal values uopt and for better comparison, we
follow Prieß et. al. [32] in the choice of starting values u0.

In the discretized case, the space domain, denoted Ω ⊂ R3 in the appendix B,
consists of 52,749 points in the ocean which are on a 2.8× 2.8 grid in 15 vertical layers
of different thickness.

4.2 The Optimization Setup

As mentioned above, in this special example finding an annually periodic state is equiv-
alent to finding a steady state y∗ at one time point of the year. The length of the state
vector y is dim(y) = 2∗52,749 = 105,498. In tests with synthetic data, we include data
of this single time point only in the cost functional J and dim(ydata) = dim(y). The
cost functional reads

J(y, u) =
1
2
‖y − ydata‖22 +

α

2
‖u− uest‖22 . (4.3)
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The Euclidean norm is employed without any weighting as for the state y the discretiza-
tion with different thicknesses of vertical ocean layers introduces a certain weighting in
y. Weights in the parameters can easily be included if desired.
The inclusion of more than one time point in the optimization problem is described in
section 4.5.
The model spin-up G(yk, u) = yk+1(u) k→∞−→ y∗(u) is performed as described in section
4.1. One step yk+1 = G(yk, uk) consists of nt = 2,880 intermediate time steps per model
year. In [23], the authors regard a spin-up of 3,000 model years being converged. We
find that mathematically and in the optimization context a stricter condition is needed
as after 3,000 model years, the ‖ · ‖2 norm of the change in the state still is 1.6 ∗ 10−4.
We observe a spin-up being converged with a required accuracy of less than 10−5 after
approximately 10,000 model years.

For the computation of the needed derivatives ȳ>Gy, ȳ>Gu, ȳ>Gyu, ȳ>Guu it is es-
sential finding an efficient strategy. Even though the required derivatives depend on
the current iterates (yk, ȳk, uk) only, using finite differences would mean to perform
those 2,880 intermediate time steps n and m times for Gy and Gu respectively in each
iteration step, which leads to high computational costs. As described in chapter 2.4,
a cheaper, faster and most importantly exact strategy with no approximation errors is
to apply a tool for automatic (or algorithmic) differentiation (AD).

4.2.1 Automatic Differentiation for the N-DOP Model

For numerical tests with the N-DOP model, we apply the AD tool TAF but also com-
pute derivatives analytically (see table 4.2 for an overview). In particular, we compute
derivative code of the coupling term q (see the appendix (B.6),(B.7)) with TAF, and
concatenate it with the transport matrices Aimp,j and Aexp,j , j = 0, ..., nt − 1, result-
ing in AD based codes for the reverse and the forward mode. In Piwonski’s Metos3d
context [31], a software toolkit for optimization and simulation of marine ecosystem
models, this enables us to easily include a different coupling function q for a different
model.
Exemplarily, the pattern for the computation of ȳ>k Gy(yk, uk) is given in algorithm 1
of figure 4.1. The pattern for the computation of ȳ>k Gu(yk, uk) is analogous replacing
∂qj(yk,j ,uk)

∂yk,j
by ∂qj(yk,j ,uk)

∂uk
. In the implementation, ȳ>k Gu(yk, uk) and ȳ>k Gy(yk, uk) are

computed in one call.
In the reverse mode, applying AD on the entire spin-up with nt = 2,880 intermediate
time steps would include also storing the intermediate values of the computation of
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qj(yk,j , uk) demanding huge amount of storage. Instead, we apply so-called checkpoint-
ing: we store the intermediate values yk,j , j = 0, ..., nt − 1, and, in the reverse sweep,
recompute and only then store intermediate values of qj(yk,j , uk) for the computation
of z̄>i1

∂qj(yk,j ,uk)
∂y and z̄>i2

∂qj(yk,j ,uk)
∂u , where z̄i1 , z̄i2 are intermediate values in the compu-

tation of the desired vector-Jacobian products.
For the computation of Gu(yk, uk) the forward mode is favorable due to the small
dimension of u. The pattern of the forward mode of AD for the N-DOP model is pre-
sented in algorithm 2 of figure 4.1.
We observe high sensitivity of the spin-up function G with respect to the parameters
which results in considerable differences in the JacobianGu computed by the approaches
AD and Finite Differences. For the Finite Differences approach (FD) where for some
small scalar ε the i-th column of Gu is approximated by

∂G(y, u)
∂ui

=
G(y, u+ εei)−G(y, u)

ε
(4.4)

we already observe large differences for different choices of ε, especially in the 6-th
column which is the derivative of G with respect to u6 = KH2O. For ε1 = 10−8 and
ε2 =

√
ε1 ∗ (1 + ‖uk‖)/1 ≈ 5.56 · 10−8 (as proposed in [28]) the euclidean norm of the

difference of the two computed ∂G(y,u)
∂u6

was ≈ 20.54. The largest differences are detected
at the top layer for both tracers. The comparison of FD with ε2 and AD was even more
significant. The ‖ · ‖2-norm of the difference of the computed Jacobians in the 6th
column was 220.15. With values up to 6.6, the largest differences again are observable
in the uppermost ocean layer where ∂G(y,u)

∂u6
contains values in the lower 2-digit range.

In the other columns, the norm of the differences was between 8.3 and 23.5.
However, since we need the full Jacobian Gu in the approximation of the preconditioner
B only, which itself is an approximation of the doubly augmented Lagrangian, we do
not want to dogmatically insist on the application of AD in this special case of the
computation of Gu. The strategy performed almost equally in our testings for both
approaches in the computation of Gu.
The same holds for the second order derivatives ȳ>Gyu and ȳ>Guu, for which we applied
the FD approach after AD computation of ȳ>Gy and ȳ>Gu respectively.

4.2.2 Simplifications

For the computation of the weights σ, αL and βL of the preconditioner B defined in
(2.13), we choose the original version defined in (2.9) and (2.11) due to avoiding the
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Algorithm 1: AD Computation of ȳ>k Gy(yk, uk).
Input: uk ∈ Rm, yk ∈ Rn , ȳk ∈ Rn

yk,0 = yk
for j=0, ..., nt − 1 do // Forward loop

z0 = yk,j
z1 = qj(z0, uk)
z2 = Aexp,jz0
z3 = z1 + z2
z4 = Aimp,jz3
"Checkpointing": store yk,j+1 = z4

end

Output 1: G(yk, uk) = yk,nt

ȳk,nt = ȳk
for j = nt − 1, ..., 0 do // Reverse loop

z̄4 = ȳ>k,j+1

z̄3 = z̄4Aimp,j
z̄2 = z̄3
z̄1 = z̄3
z̄0 = z̄2Aexp,j

call TAF generated routine to provide z̄1
∂qj(yk,j,uk)

∂yk,j

z̄0 = z̄0 + z̄1
∂qj(yk,j,uk)

∂yk,j

ȳk,j = z̄>0
end

Output 2: ȳ>k Gy(yk, uk) = ȳk,0

Algorithm 2: AD Computation of Gu(yk, uk).
Input: uk ∈ Rm, yk ∈ Rn, Im = (ei)i=1,...,m

yk,0 = yk
for i=1,...,m do

ẏk,0,i = 0
end

for j=0, ..., nt − 1 do // Forward loop only
z0 = yk,j
for i=1,...,m do

ż0,i = ẏk,j,i

call TAF generated routine to provide z1 = qj(z0, uk) and ż1,i=
∂qj(z0,uk)

∂y
ż0,i+

∂qj(z0,uk)

∂u
ei

end

z2 = Aexp,jz0
for i=1,...,m do

ż2,i = Aexp,jż0,i
end

z3 = z1 + z2
for i=1,...,m do

ż3,i = ż1,i + ż2,i
end

z4 = Aimp,jz3
for i=1,...,m do

ż4,i = Aimp,jż3,i
end

yk,j+1 = z4
for i=1,...,m do

ẏk,j+1,i = ż4,i
end

end

Output: G(yk, uk) = yk,nt , Gu(yk, uk) = ( ẏk,nt,i )i=1,...,m

Figure 4.1: Reverse and forward mode of AD for the spin-up function G.
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Table 4.2: Computation of derivatives using the approaches of Automatic Differentiation
(AD) and Finite Differences (FD).
Derivative Mode of Computation

Jy, Ju analytically; in chapter 4.5 AD reverse mode

ȳ>Gy, ȳ>Gu one reverse sweep of AD + analytically for linear parts
Gu forward mode of AD + analytically for linear parts
Jyu, Juu analytically; in chapter 4.5 FD over AD reverse computation of Jy and Ju

ȳ>Gyu, ȳ>Guu FD over AD computation of ȳ>Gy, ȳ>Gu

introduction of a line search procedure. We fix ‖Lyy‖ = 1. Due to the lack of knowl-
edge of the contraction factor ρ and its occasional exceeding of 1 in our testing with
the model spin-up, we fix it to a number less than but close to 1. In contrast to the
Atlantic box model considered in chapter 3, we are going to experience that the choice
of ρ is crucial for the functioning of the One-shot strategy in the calibration of the
N-DOP model.
During the optimization process, we observe αL, βL and σ from (2.11) being almost
equal to αL, βL and σ from (2.12) even though we are considering a non-separable
problem. However, we state that ‖Gu‖ � ‖Lyu‖. such that ‖Lyu‖

‖Gu‖ is very small. That
is why in most testings we apply the cheaply computable version of αL, βL and σ from
(2.12). We keep the option open to adjust σ to compensate for a line search.

To ensure admissible preconditioners B and wise parameter corrections especially in
the beginning of the optimization process, we perform pre-iterations before starting
One-shot iteration steps. Pre-iterations consist of an update of the state and the ad-
joint state with fixed (starting) parameter values. In our testings, in which we initialize
the tracer concentrations at all points of Ω equally ((yN,0)i = 2.17, (yDOP,0)i = 0.0001,
i = 1, ...,dim(yN )), 500 pre-iterations (compared to 10,000 steps for a full model spin-
up) proved to be more than adequate.

Due to only very small changes in the preconditioner B compared to high computa-
tional costs, we propose to update the preconditioner only every 5 iteration steps when
the change in the parameters and the state are small. In our testings, after 500 so-
called exact One-shot steps with full computation of B in each step, we use the same
pre-conditioner B in five successive steps. We call those inexact One-shot steps. They
demand less than a quarter of the computational time of exact One-shot steps (see
section 4.3.4 for details). The difference in the tracer outputs after 500 exact compared
to 500 inexact One-shot steps was insignificant. The same holds for the computed pa-
rameter sets.
Note that these inexact One-shot steps are not to be mistaken with Bosse’s Multi-step
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Algorithm 3: The One-shot Optimization Strategy for the N-DOP Model
Initialize: u0 ∈ Rm, y0 ∈ Rn , ȳ0 ∈ Rn, fix ρ to ρ = 0.9 // Initialization

for k=0 to 499 do // Pre-Iteration
yk+1 = G(yk, uk)
ȳk+1 = ȳTkGy(yk, uk) + Jy(yk, uk)
uk+1 = uk

end

for k=500 to 999 do // Exact One-shot steps
yk+1 = G(yk, uk)
ȳk+1 = ȳTkGy(yk, uk) + Jy(yk, uk)
Compute B

uk+1 = uk − B−1 (Lu(yk, ȳk, uk))
end

while convergence criteria are not fulfilled do // Inexact One-shot steps
yk+1 = G(yk, uk)
ȳk+1 = ȳTkGy(yk, uk) + Jy(yk, uk)
Compute B every 5 steps only

uk+1 = uk − B−1 (Lu(yk, ȳk, uk))
k = k + 1

end

Figure 4.2: The One-shot algorithm as we have implemented it for the N-DOP model.

One-shot steps [2], where after a parameter update multiple state followed by multiple
adjoint state updates are performed. The inexact One-shot steps still correct parame-
ters in each iteration step. The preconditioner B remains the same whereas Lu is newly
computed in each step such that the parameter correction is not the same during the
5 successive inexact steps.

An overview of our implementation of the One-shot strategy can be found in figure
4.2. The code was implemented by Jaroslaw Piwonski in the PetSC framework [1] for
parallel computing. It can easily be included in Piwonski’s Metos3d toolkit [31].

4.3 Reproducing Synthetic Data

First tests pursue the goal to reproduce model parameters and data in a twin experi-
ment framework. The data to be fit is obtained from the N-DOP model spin-up after
10,000 model years with the parameter set uopt from table 4.1. The benefit of such an
experiment is the knowledge of optimal parameters, the knowledge of all components of
the solution of the state y∗ and that those can be reached by the model. The change in
the state ‖yk+1− yk‖2 after 10,000 simulation years is about 0.9 ∗ 10−5. The change in
the state does not become smaller during the next 20,000 model years and we suspect
that minimal changes are only due to roundoff errors in machine precision.



40 CHAPTER 4. CALIBRATION OF THE N-DOP MODEL

We briefly mention that One-shot optimization tests with coarser time steps, which
Prieß et al. [33] apply, failed. We find that the change in the annual cycle of two
consecutive models years was not small enough (10−4 and even larger).

Before we get into detail, we concede that the optimization of all 7 considered param-
eters does not perform optimally with an uncautiously chosen optimization setup. In
contrast to that, the optimization of 6 parameters only, fixing the velocity exponent
parameter u7 = b to u7 = 0.858, performs very well with an optimization setup directly
taken over from experiments with the Atlantic box model from section 3.
That is why we summarize general results and characteristic behaviors of the strat-
egy obtained for the optimization of 6 parameters first (sections 4.3.1 and 4.3.2), and
provide an extra section 4.3.3 for the case of 7 considered parameters describing the
observations and possible proposals for the solution of the observed problems.

4.3.1 Results for different weighting factors

Numerical tests with 6 parameters, fixing u7 to u7 = 0.858 perform very well. We
set the contraction rate ρ to ρ = 0.9. The description of the results in this section
applies to data at January 1st, 0:00 a.m. We obtained almost identical results choosing
synthetic data at April 1st, July 1st and October 1st, each at 0:00 a.m.

First, we investigate the performance of the One-shot method for uest = uopt. Not
surprisingly, we find that the larger α the better the data is fit and the cost function is
significantly reduced already after 15,000 One-shot iteration steps and even more after
20,000 steps, see figure 4.3. However, we observe that there is no improvement of the
fit after 18,000 steps for α = 100 even though the parameter values are still corrected.
Figure 4.4 illustrates the reduction of the two parts of the cost functional ‖y − ydata‖2
and ‖u− uest‖2.
We present surface plots of the obtained results in the upper, euphotic zone in figure
4.5 and in the deeper, non-euphotic zone in figure 4.6. Note that shown plots are
representative meaning that the quality of the results in other depth layers of the
euphotic zone and non-euphotic zone and of the second tracer DOP are similar. We
clearly see differences to data for α = 1 and α = 0 in the upper layers of the ocean, the
euphotic zone, whereas there is no difference to be detected for α = 100 in the euphotic
and for all α in the non-euphotic zone already after 15,000 One-shot steps.
In figure 4.7 we illustrate parameter values during the optimization process. They all
almost hit optimal values.
An overview of the obtained cost function values, parameter sets and the euclidean
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Table 4.3: Analysis of optimality conditions. A KKT point fulfills ‖∇L‖ = ‖L(y,ȳ,u)‖ =
0. To further illustrate convergence behaviour, we list the change in the parameters
‖uk+1 − uk‖2. The listed factors are the quotients ‖Ly(y0, ȳ0, u0)‖/‖Ly(yk, ȳk, uk)‖ and
‖Lu(y0, ȳ0, u0)‖/‖Lu(yk, ȳk, uk)‖ respectively.

‖Lȳ(yk, ȳk, uk)‖2 ‖Ly(yk, ȳk, uk)‖2 factor ‖Lu(yk, ȳk, uk)‖2 factor ‖uk+1−uk‖2
k = 15,000:
α = 100 5.1 ∗ 10−5 8.4 ∗ 10−2 1,964 1.062∗102 690 2.5 ∗ 10−6

α = 1 1.6 ∗ 10−4 5.6 ∗ 10−2 2,946 2.919∗102 251 2.3 ∗ 10−5

α = 0 1.6 ∗ 10−4 5.7 ∗ 10−2 2,894 2.934∗102 250 1.2 ∗ 10−4

k = 20,000:
α = 100 1.3 ∗ 10−5 8.3 ∗ 10−2 1,987 2.699∗101 2,715 4.9 ∗ 10−7

α = 1 6.5 ∗ 10−5 5.6 ∗ 10−2 2,946 1.188∗102 617 9.5 ∗ 10−6

α = 0 6.8 ∗ 10−5 5.7 ∗ 10−2 2,894 1.222∗102 600 5.7 ∗ 10−5

norm of Lu, as one indicator of the quality of the results, is given in table 4.4.
For further examination of the quality of the obtained results, we consider the gradient
of the Lagrangian ∇L = Ly,ȳ,u = (Ly, Lȳ, Lu) in table 4.3, which must satisfy ∇L = 0
at a KKT point, and additionally the norm of the step in the parameters ‖uk+1 −
uk‖2. Note that ‖Lȳ‖2 corresponds to the change in the state variables, ‖Ly‖2 to the
change in the adjoint states. As ‖Ly‖ and ‖Lu‖ are not (numerically) zero after 20,000
iteration steps, we list factors representing the rates of the reduction of ‖Ly‖ and ‖Lu‖
computed from ‖Ly(y0, ȳ0, u0)‖/‖Ly(yk, ȳk, uk)‖ and ‖Lu(y0, ȳ0, u0)‖/‖Lu(yk, ȳk, uk)‖
respectively.
We can conclude that concerning the cost functional, good results are already obtained

after 15,000 One-shot iteration steps. However, concerning the optimality, even after
20,000 steps the computed vectors are far away from the optimality condition ∇L = 0.
Results obtained after 20,000 steps for α ∈ {1, 0} are as good as those obtained after
15,000 steps for α = 100. So, for all considered weights α, the optimization results
in the same optimal parameters and state variables but with slower convergence the
smaller α is chosen.

Surprisingly, good results are obtained even if α = 0 and therewith without any penalty
term in the cost functional.
A closer look at the preconditioner B and the gradient of the Lagrangian w.r.t. u, Lu,
reveals that in this special example of the N-DOP model considered with 6 parameters
and with one time point only at which data is given, the weighting factor α does not
significantly influence the performance of the One-shot strategy if it is chosen α ≤ 100.
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B was defined as

B =
1
σ

(αLG>uGu + βL(Jyu + ȳ>Gyu)>(Jyu + ȳ>Gyu) + Juu + ȳ>Guu),

which is in this case, where Jyu = 0,

B =
1
σ

(αLG>uGu + βL(ȳ>Gyu)>(ȳ>Gyu) + αI + ȳ>Guu).

The step sk = uk+1 − uk is computed from

Bksk = −Lu(yk, ȳk, uk)

⇔ Bksk = −(α(uk − uest) + ȳ>k Gu(yk, uk)).

Choosing ρ = 0.9, the weighting factors equal σ = 0.05, αL = 400, βL = 2. At the
beginning of the optimization, the row-sum norms ‖·‖1 of the symmetric matrices have
the orders of magnitude ‖G>uGu‖1 ≈ 104, ‖(ȳ>Gyu)>(ȳ>Gyu)‖1 ≈ 103 and ‖ȳ>Guu‖1 ≈
105. In the gradient Lu, there too, it is ȳ>Gu with entries at a dimension of 105 that
dominates the term. Whereas ‖(ȳ>Gyu)>(ȳ>Gyu)‖1 and ‖Lu‖2 tend to zero during
the optimization process, the dominating terms remain G>uGu and ȳ>Guu at the same
magnitude as in the beginning of the optimization process such that the weighting
factor α in front of the penalty term 1

2‖u− uest‖22 in the cost functional plays a minor
role during the optimization process in this special example if it is chosen comparatively
small as done in our testings with α ≤ 100.

4.3.2 Twin Experiment with non-optimal uest

In this section, our attention is drawn on the case which is closer to real world optimiza-
tion problems where optimal parameters are not known. Now, we consider uest 6= uopt

such that the cost functional cannot become zero. We chose α = 0.01 to only very
slightly keep parameters near uest.
As we have analyzed previously, in this example the penalty term is insignificant if α
is chosen small. Thus we expected the One-shot strategy to perform very well.
The reduction of the cost functional and the parameter values during the optimization
run are illustrated in figures 4.8, 4.9 and table 4.5. Figure 4.8 displays the cost function
and its parts not only over the number of One-shot iteration steps but also over the
equivalent number of model spin-ups for later comparison. See the section on compu-
tational time, section 4.3.4, for details.
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Figure 4.3: Reduction of the cost functional for different α, uest = uopt.
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Figure 4.4: Results of the optimization for different α, uest = uopt. Left ‖y − ydata‖, right
‖u− uest‖.

Table 4.4: Overview of initial and optimal parameter sets, the function values at initial pa-
rameter and state variables, computed function value, data fit and parameter values after
15,000 and 20,000 One-shot steps for the case where uopt = uest. Furthermore, we list the
euclidean norm of the gradient of the Lagrangian, Lu, at the respective iteration steps.

J(y0,u0) J(y∗,u∗) fit u1 u2 u3 u4 u5 u6 ‖Lu‖2
u0 0.3 5.0 0.4 0.8 25.0 0.04
uopt 0.5 2.0 0.67 0.5 30.0 0.02

15,000 One-shot steps:
α=100 3,372.7 0.018 0.17 0.4990 2.005 0.6697 0.4937 29.99 0.0202 1.062∗102

α=1 1,679.7 0.383 0.86 0.5203 2.125 0.6761 0.4902 29.99 0.0212 2.919∗102

α=0 1,662.6 0.423 0.92 0.5222 2.114 0.6766 0.4901 29.24 0.0214 2.934∗102

20,000 One-shot steps:
α=100 0.005 0.10 0.5000 2.001 0.6700 0.4983 30.00 0.0200 2.699∗101

α=1 0.063 0.35 0.5087 2.051 0.6726 0.4960 29.99 0.0205 1.188∗102

α=0 0.073 0.38 0.5096 2.047 0.6729 0.4958 29.66 0.0206 1.222∗102



44 CHAPTER 4. CALIBRATION OF THE N-DOP MODEL

Figure 4.5: Plots for the concentration of PO4 (equivalent to N) in the first/upper most
layer (0 - 50m b.s.l.). Top left: PO4 data, top right: difference to data for α = 0, bottom
left: difference to data for α = 1, bottom right: difference to data for α = 100, after 15,000
One-shot steps.

Figure 4.6: Left: Concentration of PO4 (equivalent to N) in the fifth depth layer (360 -
550m b.s.l.) , Right: Difference to data in this depth for α = 0, after 15,000 One-shot steps.
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Figure 4.7: Parameter values during the optimization for different α, uest = uopt.

Figure 4.9 shows parameter values during the optimization process. We find that in
this example 20,000 steps are necessary to obtain mathematically acceptable results.
The comparison of the results obtained after 15,000 and 20,000 iteration steps is listed
in table 4.5. Compared to tests from section 4.3.1, the calculated value of the fit after
20,000 iteration steps almost corresponds to the value obtained after 20,000 iteration
steps for α = 0 even though the half saturation constant of light Kl = u5 differs signif-
icantly from uopt,5 = 30 and stays closer to uest,5 = 27. In both tests, the worst fit is
obtained on the top layer, but due to the significantly different parameter u5 the regions
where the fit is bad differ. See figure 4.10 for illustration of the differences exemplarily
in the top ocean layer and in the fifth layer. However, compared to tests with real
world data in the subsequent section 4.4, the differences to data are detectable on a
very small scale only.

4.3.3 Optimization of 7 Model Parameters and the Influence of the

sinking velocity exponent u7

One-shot optimization runs with 7 model parameters do not perform as successfully as
those with 6 parameters only. Using the same test setting as in the tests with 6 param-
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model spin-ups (10.000 model years) converted from computational time for the case where
uest 6= uopt and α = 0.01.
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Figure 4.9: Parameter values during the optimization for uest 6= uopt, α = 0.01.

Table 4.5: Computed cost functional and parameter values after 15,000 and 20,000 One-shot
steps for the case where uest 6= uopt, α = 0.01.

J(y0, u0)J(y∗, u∗)fit u1 u2 u3 u4 u5 u6 ‖Lu‖
uopt 0.5 2.0 0.67 0.5 30.0 0.02
uest 0.45 3.0 0.6 0.8 27.0 0.22

15,000 steps 1,636.7 0.45 0.939 0.5230 2.06 0.6769 0.4854 27.55 0.02174 2.92 ∗ 102

20,000 steps 0.0899 0.406 0.5106 1.98 0.6732 0.4899 27.61 0.02100 1.20 ∗ 102
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Figure 4.10: Misfit of the concentrations of PO4 (equivalent to N) after 20,000 One-shot
iteration steps for α = 0 (left) and for α = 0.1 with non-optimal uest. Top: Uppermost layer
(0-50m b.s.l.), bottom: Fifth layer (360-550m b.s.l.).
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eters, the parameters and therewith the tracer concentrations result in an oscillating
movement and the cost functional is not reduced anymore after approximately 5,000
iteration steps. See figure 4.11 for illustration. Parameter values during the optimiza-
tion run are shown exemplarily for parameters u1, u6 and u7 in figure 4.12.

Choosing different starting values for parameters, state and adjoint state lead to
almost identical results. Tests with α = 1 and α = 0 result in the same oscillating
outputs. We observe similar results concerning the oscillation, i.e. oscillation between
similar extremes and with a similar period. Also tests with a different date, namely
July 1st, 0:00 a.m., perform identically.
Choosing the original factors σ, βL and αL defined in (2.9) and (2.11) instead of the
simplified versions from (2.12) does not improve the progress of the optimization.
We observe the values of Lu oscillating without any damping. Due to the permanent
change in the parameters during the optimization run, also the state y is far away from
convergence to a steady annual cycle. Comparing to results with only 6 parameters,
we state that the norm of the steps in the parameters is 2 to 3 orders of magnitude
larger than in the tests with six parameters. Instead of an order of 10−5, the norm of
the steps lies between the orders of magnitude 10−3 and 10−2.
We observe that the entries of the preconditioner B and its parts (ȳ>Gyu)>(ȳ>Gyu),
G>uGu and ȳ>Guu and the entries of the gradient Lu are not significantly larger or
smaller than in the case where dim(u) = 6. In B and Lu, the sixth row/column still
contributes the dominating values. Consequently, it is the additional dimension and
the influence of the sinking velocity exponent u7 on the system of model equations that
lead to changes in the length of the steps.
We observe the model being very sensitive with respect to parameter u7. A closer look
at parameter values during the optimization process indicates u7 strongly influencing
u6 which is at its maximum value when u7 is at its minimum value and vice versa.
Analyzing the model equations shows that u7 introduces a new composition and cor-
relation of entries of the Jacobian Gu ∈ Rn×7 compared to the Jacobian Gu ∈ Rn×6

in testings with fixed u7. The sinking velocity exponent u7 = b occurs in the coupling
equation qN in the non-euphotic zone. See the appendix B for an overview of the model
equations, the spin-up and their derivatives. An incautiously chosen step in u7 is car-
ried forward to the other parameters and therewith to the state vector.
The One-shot strategy was specified to work without any line search procedure. The
length of the steps shall only be influenced by the preconditioner B and its factors
defined in (2.9) and (2.11) or (2.12). Since we proposed a simplification in that the
contraction factor ρ is fixed to an estimated value (due to a lack of knowledge in most
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Figure 4.11: Cost functional J , ‖u − uest‖ and ‖y − ydata‖ during the Oneshot optimization
run with 7 parameters. α = 100, uest = uopt.
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Figure 4.12: Parameter values during the optimization run with 7 parameters, α = 100,
uest = uopt. We exemplarily show u1, u6 and u7 (from left to right).
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Table 4.6: Overview of optimization results for different choices of weighting factors of the
preconditioner B. For the latter we compare the behavior of the method with respect to the
occurrance of oscillation during the process, convergence of the strategy and quality of the fit.

ρ = 0.9 ρ̄ = 0.998 ρ = 0.97 ρ = 0.98 ρ = 0.99

αL 400 99,999 4,444 9,999 40,000 400 40,000 4,000
βL 2 2 2 2 2 2 2 2
σ 0.05 0.001 0.015 0.01 0.005 0.005 0.05 0.005

Oscillation yes no yes damped no yes damped damped
convergence no yes no yes yes no yes yes
fit acceptable - no - yes no - yes yes

cases), we suspect that a change in ρ can already solve the problem.
Analytically determining the contraction factor ρ is difficult in most applications. Fur-
thermore, as discussed in chapter 3, usually numerical tests show that even though
the contraction factor of the model spin-up exceeds 1 several times, the spin-up still
converges to a unique stationary state. For the N-DOP model, we computed the mean
value of the contraction factor of an example spin-up:

ρ̄ :=
1

10, 000

10,000∑

k=1

ρk ≈ 0.998 where ρk :=
‖yk+1 − yk‖2
‖yk − yk−1‖2

. (4.5)

Using ρ̄, computed steps in the parameters are too small such that the One-shot method
leads to almost the same results as a model spin-up with the starting values u0. Hence,
we tested other choices of ρ and combinations of αL, βL and σ. The corresponding
results of the optimization with 7 parameters are collected in table 4.6.
We find that the influential weight in the occurrence of oscillations is σ. In particular,
the rate αL/σ must not be too small. We state that in this example, optimizing seven
parameters of the N-DOP model and where the weight α of the cost functional is small
compared to the other components of B, αL and σ must be chosen such that αL

σ ‖Gu‖22,
and therewith also ‖B‖, is of the order of magnitude of 1010 such that the corrections
in u7 are very small, but not too small as in the cases where ρ ≥ 0.99 and therewith
αL
σ ‖Gu‖22 ≥ 1012 and no progress is detected.

A One-shot run with the optimization of u7 only also leads to an oscillation of the
parameter between approximately 0.6 and 1.4 and therefore again no convergence of
the strategy. We performed tests with varying α and varying ρ and illustrate the values
of u7 during the optimization in figure 4.13. We can execute a well-performing opti-
mization of u7 choosing α = 10, 000, ρ = 0.9. The One-shot strategy converges quickly
to the optimal u∗7 = 0.858 and the state y follows to the optimal state y∗ respectively.
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This confirms the analysis of section 4.3.1, where we conclude that in this optimization
problem with the N-DOP model α has to be chosen very large to gain any influence
on the preconditioner B and the gradient Lu and therewith on the course of the opti-
mization. In contrast to tests with α = 100, in this case, the dominant part of Lu is Ju
and not ȳ>Gu and we observe Lu converging to zero without oscillation. Furthermore,
in this case α adds the leading dimension to B. A test choosing α = 10, 000 certainly
is not meaningful concerning the applicability in problems where optimal parameters
are not known. Hence, tuning the parameters of the strategy via ρ is necessary and as
illustrated in figure 4.13 it is successful for ρ = 0.97 in the optimization of the param-
eter u7 only.

As summarized in table 4.6, tests with seven model parameters converge after adjust-
ment of ρ to 1 > ρ ≥ 0.98, but they are not as successful as the optimization of u7

only. The reduction of the cost function and parameter values are illustrated in figures
4.14 and 4.15. Note that far more iteration steps are necessary to converge and that
the obtained cost function value and parameters are not optimal at all. Restarts nei-
ther with parameters and state variables from results of the shown experiment using
a different adjoint state nor restarts with parameters from results changing state and
adjoint state do improve the results.

In contrast to the optimization approaches of Prieß et al. [32] and Piwonski [30], we
include data of one time point only in the cost functional. Using the equation error
approach, Piwonski [30] can reproduce a whole trajectory of synthetic data with 2,880
time points finding optimal parameters. Prieß et al. [32] are able to reduce the cost
functional significantly fitting synthetic data of 45 time points applying the surrogate
based optimization. The surrogate based optimization does not converge to optimal
parameters, but the algorithm has no difficulty finding the optimal parameter u∗7. In
section 4.5, we will investigate the performance of the One-shot strategy including four
time-points in the cost functional.

4.3.4 Bounded Retardation and Results on computational time

The main goal of the One-shot iteration is to find optimal parameters with bounded
retardation, i.e. after a number of iteration steps which is only a small multiple of
the number of iteration steps needed for the model spin-up. We considered a model
spin-up to be feasible when for the periodic solution the state of the tracers at one time
point changes imperceptibly, i.e. ‖y − ydata‖ < 10−5. For a spin-up initialized with
(yN )i = 2.17 and (yDOP )i = 0.0001 for i = 1, ...,dim(yN ), at all considered points in the
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Figure 4.14: Cost functional J, ‖u−uest‖ and ‖y−ydata‖ after the adjustment of ρ. ρ = 0.98,
α = 100, uest = uopt.

ocean a periodic state with a steady annual cycle is reached after 10,000 iteration steps.
Starting with the output concentrations of a spin-up with slightly different parameters
still demands approximately 5,000 to 7,000 model years.
Results of the twin experiment with 6 parameters showed that acceptable results are
obtained after 15,000 or 20,000 One-shot steps, which indeed is only a small multiple of
the number of spin-up steps. For 7 parameters, 45,000 steps were needed to converge
which still is a factor of only 4.5. Of course not only the number of iterations is relevant
but also the comparison of the computational times.
In the following, we compare the computational time for the model spin-up, the model
spin-up including the computation of the adjoint state and the One-shot iteration op-
timizing 6 parameters. We computed on 2 nodes of Intel Sandy-Bridge-processors with
16 cores. Table 4.7 summarizes the results.
For the whole optimization run of the optimization problem from section 4.3.2 with
20,000 One-shot iteration steps, we measured a computational time of 417:12:14 h
which is only 13.8 times the time needed for 10,000 spin-up years. This includes the
simplification in that the update of the preconditioner B is performed only every 5th
step (inexact One-shot steps) after 500 steps with full computation of B (exact One-
shot steps). This reduced the computational time to 9:26:06 h for 500 inexact One-shot
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Figure 4.15: Parameter values during the optimization run after the adjustment of ρ. ρ =
0.98, α = 100, uest = uopt.
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Table 4.7: Computational time for the spin-up, the spin-up augmented by the update of the
adjoint state and the One-shot method with 6 parameters to be optimized. The overall time
until acceptance of the One-shot strategy includes 500 Pre-Iterations, 500 exact One-shot
steps and inexact One-shot steps until acceptance (here: 20,000 iteration steps). Computa-
tion is performed on two Intel Sandy-Bridge processors with 16 cores.

elapsed time
of 1 step

factor elapsed time
of 500 steps

factor elapsed time un-
til acceptance

factor

Spin-up 10.9 s 1:27:31 h 30:13:07 h
Spin-up and adjoint
state

43.4 s 4.0 5:41:35 h 3.8 113:15:12 h 3.8

Exact One-shot 292.4 s 26.8 39:56:07 h 27.4 417:12:14 h 13.8
Inexact One-shot 9:26:06 h 6.5

iteration steps and therewith to a factor of 6.5 compared to the model spin-up and of
only 1.7 compared to the augmented model spin-up.
Table 4.7 lists results for the optimization of 6 model parameters. A factor of 1.2 has to
be multiplied for respective One-shot tests with 7 parameters. A One-shot optimization
with 7 parameters and 45,000 iteration steps demands approximately 1,061.3 h which
corresponds to the time needed for 35.1 spin-ups.

4.4 Data from the World Ocean Atlas

In this section, we consider data from the World Ocean Atlas 2005 [6] and the World
Ocean Database 2013 [3]. Here, only the concentrations of PO4 (or equivalently N) are
included in the cost function, because data for DOP is available only at a negligibly
small number of points in the ocean. The measuring of DOP is very expensive compared
to the measuring of phosphorus PO4.
However, the state y still includes the values for DOP concentrations such that the
model spin-up remains the same as in the previous tests. Only the cost functional J
and its derivatives have to be adjusted.
In first tests, we stay very close to previous testings in that we include data of one
time point only but linearized to all spatial points of the discretization in the cost
functional. We use data sets which correspond to monthly means of January, April,
July and October. The results are summarized in table 4.8, where we collect results
for the optimization with 6 parameters fixing u7 to u7 = 0.858 and 7 parameters
respectively.
We observe that tests perform very similarly for the different dates in that the cost
function is reduced by a factor of approximately 1.5 only. The fit is reduced by an
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even worse factor of 1.2 only. We chose the same strategy parameter ρ = 0.9 as in the
previous tests with 6 parameters and α = 1 to only slightly keep parameters near the
estimated values. In tests with 7 parameters we set ρ to ρ = 0.98. As tests with 7
parameters perform very similarly for January and July, we omit testings for April and
October.
The results after 10,000 One-shot iteration steps are collected in figures 4.16, 4.17 and
table 4.8. We terminate after 10,000 iteration steps as the fit does not improve anymore
even though parameters are not fully converged. However, a rough estimation of final
parameter values is assessable.
For the different data sets, the strategy tends to different parameter sets. Parameters
u1, u2, u3, u6 differ perceptibly in tests with 6 parameters only. The difference of the
obtained parameters is even greater compared to tests with 7 parameters. However, the
fit is not further improved in tests with 7 parameters. We detect that even though the
obtained parameters differ significantly in the testings, the largest differences to data
are measured in the same regions for all data sets, namely in the third and fourth ocean
layer at the coastal regions of the North Pacific. See figure 4.18 and 4.19 for illustration.
Note that compared to tests with synthetic data from section 4.3.2 illustrated in figure
4.10 the scale of the measured differences to given phosphorus concentrations is 103

times larger.

4.5 Optimization Problem with Multiple Time Points

Until now, we have analyzed the case where data of one time point, in most cases
January 1st, 0:00 a.m., given at all discrete points in the ocean is included in the cost
function. The state y is considered at one time point and is driven towards a stationary
state (and therewith an annually periodic trajectory) via the model spin-up. In this
chapter, we take periodicity and several time points of the trajectory into consideration.
Concerning periodic solutions, Günther et al. [15, 2] investigate the One-shot strategy in
the optimization of the flow around a cylinder with unsteady Reynolds-averaged Navier-
Stokes equations (URANS). In [15, 2], for URANS they have successfully performed the
piggy-back iteration for the state and adjoint state variable (for fixed parameters u). For
nd time points, they set up a new fixed point iteration function H with H : Y nd ×U →
Y nd in that for each time point i = 0, 1, ..., nd − 1 a steady state y∗i is searched for by
performing the model spin-up under the additional constraint that for the parameter
set u ∈ U the concatenation of the states y∗i to a trajectory fulfills the model equations.
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Figure 4.16: Reduction of the cost functional J for fitting WOA data, α = 1. In contrast to
previous plots, here the y-axis has a linear scale.

Table 4.8: Overview of initial parameter set u0, the estimated values uest, function values at
initial parameter and state variables, computed function value, data fit and parameter values
after 10,000 One-shot steps for WOA data, α = 1.

J(y0,u0) J(y∗,u∗) fit u1 u2 u3 u4 u5 u6 u7

u0 0.4 3.0 0.65 0.5 31.0 0.03 0.858
uest 0.5 2.0 0.67 0.5 30.0 0.02 0.858

January 4,295.4 2,779.4 74.55 0.9149 2.561 0.704 0.0560 30.66 0.02289
April 4,176.4 2,716.4 73.70 0.7260 2.195 0.658 0.0444 30.74 0.02327
July 4,017.7 2,579.5 71.82 0.8016 2.368 0.676 0.0431 30.73 0.02393
October 4,184.9 2,731.8 73.91 0.8163 2.443 0.679 0.0555 30.70 0.02389
January 4,295.4 2,755.6 74.23 0.3980 2.833 0.515 0.432 30.45 0.02532 0.9368
July 4,017.7 2,527.9 71.10 0.3858 2.753 0.504 0.415 30.51 0.02510 0.9521
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Figure 4.17: Parameter values during the optimization run fitting World Ocean Atlas Data,
α = 1.
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Figure 4.18: Misfit of the concentrations of PO4 (equivalent to N) compared to data (Jan-
uary) from the World Ocean Atlas 2005 after 10,000 One-shot iteration steps. Left: Results
of the optimization including 6 model parameters. Right: Results of the optimization includ-
ing 7 model parameters. Plots are shown exemplarily from top to bottom in the uppermost
layer (0-50 m b.s.l.), the fourth (220-360 m b.s.l.), the fifth (360-550 m b.s.l.) and ninth layer
(1420-1810 m b.s.l.).
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Figure 4.19: Misfit of the concentrations of PO4 (equivalent to N) compared to data (July)
from the World Ocean Atlas 2005 after 10,000 One-shot iteration steps. Left: Results of
the optimization including 6 model parameters. Right: Results of the optimization includ-
ing 7 model parameters. Plots are shown exemplarily from top to bottom in the uppermost
layer (0-50 m b.s.l.), the fourth (220-360 m b.s.l.), the fifth (360-550 m b.s.l.) and ninth layer
(1420-1810 m b.s.l.).
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They formulate the resulting One-shot procedure as the original One-shot strategy (2.7)
replacing G with the new fixed point iteration H. Furthermore, the authors investigate
an adaptive time scaling approach and, applying this, they successfully optimize an
inverse design problem subject to the Van der Pol oscillator applying the One-shot
strategy.

In our case of the N-DOP model, we chose a different approach and propose an idea with
which we can include data of arbitrary time points and spacial points. This approach
also presents an alternative to the equation error approach applied by Piwonski in
[30], where the author constitutes that for the equation error optimization for each
component of the state variable or vector y corresponding data has to be available. As
this is not the case for N and DOP, the approach is not applicable straight away with
real world data.

So far, the considered problem has been to minimize

J(y, u) =
1
2
‖y − ydata‖2 +

α

2
‖u− uest‖2 (4.6)

such that G(y, u) = y where G is a fixed point iteration function.
The dimension of y = (yN , yDOP ) is dim(y) = 105,498, which corresponds to data given
at one time point in the whole spacial domain. Optimization runs with synthetic data at
January 1st, April 1st, July 1st and October 1st, 0:00 a.m. each, were successful in that
parameter and state vectors were reproduced. Collecting nd time points in one state
vector ynd as done in [15, 2] would result in a huge dimension dim(ynd) = nd ∗ 105,498
and G : Rnd∗105,498 × Rdim(u) → Rnd∗105,498 which demands a huge amount of storage.
We avoid this by taking given points (at given time and given place) into account in the
cost function, but keeping the constraint as a function of y = yT0 meaning all points
in the ocean at time T0. This is a reasonable approach because we know about the
periodicity of the annual trajectory for a steady state at one time point. We reformulate
the problem as follows:
Let (ti)

nd
1 be the set of time points at which data is given and let the vectors xi =

(xi,1, . . . , xi,dim(xi)), i = 1, . . . , nd, be the collection of the spacial indices of the tracer
concentrations where at time point ti data is given. Let D = {y(d,x1,t1), . . . , y(d,xnd

,tnd
)}

be the set of given data, i.e. dim(y(d,xi,ti)) = dim(xi), corresponding to the number of
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data points given at time ti. The problem then is to minimize the function J(y, u)

J(y, u) =
1
2

∥∥∥∥∥∥∥∥∥∥




G(x1,t1)(y, u)− y(d,x1,t1)

G(x2,t2)(y, u)− y(d,x2,t2)
...

G(xnd
,tnd

)(y, u)− y(d,xnd
,tnd

)




∥∥∥∥∥∥∥∥∥∥

2

+
α

2
‖u− uest‖2, (4.7)

such that G(y, u) = y where G remains the spin-up function with nt = 2,880 in-
termediate time steps as we have described in detail in the appendix B with G :
R105,498 × Rdim(u) → R105,498. So on the one hand, in iteration step k the state vector
yk again collects the tracer concentrations of N and DOP at one arbitrary time point
T0 of the year at all 52,749 points in the world ocean. On the other hand, the functions
G(xi,ti)(yk, uk) compute the tracer concentration of N and DOP respectively at time ti
depending on the tracer concentrations at the chosen starting time point T0 and select
the spacial points xi:

G(xi,ti) : Rdim(y) × Rdim(u) → Rdim(xi) (4.8)

G(xi,ti)(yk, uk) = (yk,ti)xi where (4.9)

yk,j+1 = Aimp,j(Aexp,jyk,j + qj(yk,j , uk)), for j = 0, ...., ti − 1. (4.10)

In the One-shot optimization context, the algorithm is different only in the computation
of the cost functional and its derivatives.

J(y, u) =
1
2

nd∑

i=1

∥∥G(xi,ti)(y, u)− y(d,xi,ti)

∥∥2 +
α

2
‖u− uest‖2 (4.11)

Jy(y, u) =
nd∑

i=1

(
G(xi,ti)(y, u)− y(d,xi,ti)

)> ∂

∂y
G(xi,ti)(y, u) (4.12)

Ju(y, u) =
nd∑

i=1

(
G(xi,ti)(y, u)− y(d,xi,ti)

)> ∂

∂u
G(xi,ti)(y, u) + α(u− uest). (4.13)

At first glance, the vector-Jacobian products again seem to demand the reverse mode
of Automatic Differentiation. However, we cannot re-use the intermediate values of
ȳ>Gy(y, u) or ȳ>Gu(y, u) which we need for the One-shot update, because the reverse
computation starts from a different time point with a different input vector multi-
plied from the left to the Jacobian. That means for the computation of nd products
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(
G(xi,ti)(y, u)− y(d,xi,ti)

)> ∂
∂yG(xi,ti)(y, u) and

(
G(xi,ti)(y, u)− y(d,xi,ti)

)> ∂
∂uG(xi,ti)(y, u)

we can use the intermediate values of G(y, u) stored in the forward sweep, but we have
to execute nd reverse sweeps starting from the intermediate time steps ti, i = 1, ..., nd.

Another theoretical possibility is to carry forward the full Jacobian Gy in time as de-
scribed in the appendix B and, at time step ti, multiply the vector

(
G(xi,ti)(y, u)− y(d,xi,ti)

)

with the selected Jacobian ∂
∂yG(xi,ti)(y, u) and ∂

∂uG(xi,ti)(y, u) respectively. But setting
up the full Jacobian carrying forward in time is too expensive with respect to storage
amount.
If there is only a small number of time points for which a certain number of data points
is given, calling the reverse mode nd times proves to be the best solution.

In general, data is not given equally distributed in time. For N and DOP needed in
this model, there is significantly more data in July (57,995 phosphate values accord-
ing to the World Ocean Data Base 2013, [3]) than in January (40,469) and December
(29,352). Thus, in the context of the considered N-DOP model, it is advantageous to
first of all analyze given data and select a time point T0 from which the model spin-up
is started (with the corresponding transport matrices and coupling functions) requiring
the fewest time integration steps to reach the time points ti, i = 1, ..., nd where data is
available.
Still, there is the need for computing the second order derivatives Jyu and Juu for the
computation of the preconditioner B. As we perform the finite difference (FD) ap-
proach over ȳ>Gy and ȳ>Gu obtaining ȳ>Gyu and ȳ>Guu respectively, we augment the
FD call to a call over Jy + ȳ>Gy and Ju + ȳ>Gu to obtain the required second order
derivatives.

4.5.1 Numerical Results considering Four Time Points

In our testing scenario, we include data of phosphorus N at 4 time points, January 1st,
April 1st, July 1st, October 1st, each at 0:00 a.m, at all points of the world ocean.
Reproducing synthetic data computed with optimal values uopt from table 4.1 at the
four time points performs very well and converges even faster than in comparable tests
(choosing the same weight α = 100, and the same ρ = 0.9, optimizing 6 parameters)
with one time point only. After 10,000 One-shot iteration steps, results with multiple
time points are comparably good as those obtained after 16,000 One-shot steps with
data of one date only. This is not surprising as the given synthetic data (matching
the same optimal parameter set) provides more information on the system and the
annual cycle if more time points are included. Figure 4.20 illustrates the results. Due
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Figure 4.20: Cost functional J and its parts using synthetic data at four time points, α =
100, uest = uopt.

to choosing synthetic data, the fits at the four time points are almost equal.
Inclusion of the sinking velocity exponent u7 in the parameter vector to be optimized,

results in the same oscillating output as in section 4.3.3.
Considering computational time, we measure that the time needed for one exact One-
shot step enlarges the time by a factor of 2.3 in tests with 6 parameters and by a factor
of 2.4 in tests with 7 parameters. For five inexact One-shot steps, we measured com-
putational times enlarged by factors of 2.26 for 6 parameters and 2.6 for 7 parameters
comparing to previous tests with one time point only. However, as mentioned above,
in tests with four time points and synthetic data, we only need 0.625 times the number
of One-shot steps to obtain the same quality of the fit. Furthermore, we obtain the
results in only one optimization run.

In the following, we consider real world data given as monthly means of January, April,
July and October from the World Ocean Atlas 2005 [6]. We observe that compared to
tests with one time point and 6 parameters from section 4.4, the fits do not improve
(see figure 4.21, and table 4.9). The obtained parameter set again is different from
those obtained in tests with single time points at the respective dates. See figure 4.22
for illustration of the parameter values during the optimization run. Interestingly, in
this test, the parameter values pass through larger intervals of computed values during
the optimization process than in previous testings with one time point only. Espe-
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Figure 4.21: Top: Cost functional J and its parts using WOA data at four time points, Jan-
uary, April, July, October. Bottom: Norm of the differences to data at the four different time
points during the optimization process.

cially parameter u5 almost hits zero even though in all other testings with WOA data
and weighting factor α = 1, the value has never shown this behaviour. However, the
strategy returns to values near the estimated optimal value without changing any pa-
rameters of the optimization algorithm as for example the weight α or the contraction
factor ρ.
Just as in tests with synthetic data, in this case with WOA data the One-shot strategy
again computed the same fits as in four corresponding individual optimization runs
with one time point only. That means even though the computational time for one
One-shot step with four time points is more than 2.26 times longer than a One-shot
step with one time point, the user saves computational time as only one optimization
run is to be performed.
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Table 4.9: Overview of initial parameter set u0, the estimated values uest, function values at
initial parameter and state variables, computed function value, data fit and parameter values
after 10,000 One-shot steps for WOA data, α = 1.

J(y0,u0) J(y∗,u∗) fit (Jan/Apr/July/Oct) u1 u2 u3 u4 u5 u6

u0 0.4 3.0 0.65 0.5 31.0 0.03
uest 0.5 2.0 0.67 0.5 30.0 0.02

16,694.7 10,775.1 74.4/73.8/71.7/73.8 0.5885 2.578 0.662 0.0128 33.13 0.0269
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Figure 4.22: Parameter values during the optimization process for the optimization of 6
parameters and with four data sets given in January, April, July and October. Here α = 1,
ρ = 0.9.





5 Summary and Conclusions

In this chapter, we summarize and emphasize main results concerning the assessment
of the One-shot optimization strategy in the calibration of marine ecosystem models.
From our experiments with the One-shot strategy, we will not provide suggestions on
possible adjustments of parameters of the specific models. We neither consider ques-
tions arising in marine geosciences on projections of the future ocean the optimized
models may provide.
We rather deal with questions concerning the applicability of the One-shot strategy on
models used in marine sciences.

The major result is: The One-shot optimization strategy is applicable (though with
adjustments and simplifications) in the calibration of marine ecosystem models. For
models requiring an expensive and extensive spin-up, the One-shot method proves to be
an effective strategy in the optimization of model parameters as it corrects parameters
in hand with the model spin-up.

We emphasize that the One-shot strategy does not intervene in the iterative process
to solve the model equations. The fixed point iteration G : Y × U → Y to compute
a feasible state y∗ is assumed to be given and already found reliable for fixed model
parameters.
In this work, we have analyzed the performance of the One-shot strategy on the Rahm-
storf 4-box model as a representative of a low-complexity model with an explicit Euler
time stepping and the N-DOP model representing a model of intermediate complex-
ity. Here, on the one hand, complexity means the complexity in the parametrizations
in the different models. The complexity is increased by adding more state variables
and detailed parametrizations of additionally considered processes. On the other hand,
complexity means the discretization of the temporal and spatial scaling.

We find that even in the case of the low-complexity model, the One-shot method
requires simplifications to be applicable. The necessity of simplifications is due to un-
known, expensively computable or theoretically not suitable parameters of the One-shot
method. In particular, the contraction factor ρ, which is assumed ρ < 1, exceeds 1 for
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several time integration steps during the entire model spin-up. We proposed to fix it
to a number close to but less than 1. In the optimization of parameters of the box
model, setting ρ = 0.9 was adequate. However, for the N-DOP model, the contraction
factor ρ which there too exceeds 1 during the time integration, had to be chosen more
carefully as we fixed ‖Lyy‖ = 1 and the closely related weighting factors σ, αL and
βL in the computation of the preconditioner B aswell. These factors determine the
convergence of the strategy similar to a line search procedure and possibly need to be
adjusted during the optimization process. The weights can be corrected during the
optimization run without restarting the whole optimization run. Still, the introduction
of an appropriate line-search procedure would be advantageous for future testings in
cases, where the contraction factor is not known or exceeds 1 for several iteration steps.
For future convergence analysis of the One-shot strategy, we propose to consider weaker
assumption on the spin-up function G as in both test cases, the One-shot strategy con-
verges, even though the main assumption ‖Gy(y, u)‖ ≤ ρ < 1, for all y ∈ Y and fixed
u ∈ U , is not satisfied.

We introduced so-called pre-iterations to stabilize the performance of the optimization.
Since, in the beginning, the iterative solver G quite likely performs irregular updates
in the state y which possibly are corrected during the successive iteration steps, we
only update the state y and the adjoint state ȳ and leave the parameters fixed until
the iteration starts to exhibit a regular update pattern. This prevents the One-shot
strategy from inadequately adjusting parameters in the beginning.

In the considerations of the low-complexity box model, we did not only test the One-
shot version with full computation of the preconditioner B but also a version in which
B is approximated by a BFGS update applied on the augmented Lagrangian La. We
find that the One-shot-BFGS approach is not as reliable as the version with full com-
putation of B. It required more iteration steps and therewith more computing time.
Furthermore, it required a line-search, especially in the beginning of the iteration pro-
cess which additionally prolonged the optimization. Hence, we rather concentrated on
the original One-shot version in the optimization of the N-DOP model.
We state that the One-shot method does not require any box-constraints. The penalty
term α

2 ‖u− uest‖2U of the cost functional replaces additional constraints on the param-
eters. Depending on the order of magnitude of the components of Lu and B the weight
α influenced the optimization process more or less. In the optimization of the 4-box
model a weight α > 0 was essential whereas in the calibration of the N-DOP model a
factor α = 0 was permitted.
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The nonnecessity of constraints on the parameters to be optimized is ascribed to the
following major advantage of the One-shot strategy: It corrects parameter values very
cautiously during the optimization run. Improper adjustments often are corrected in
the course of the optimization. Contrary to the One-shot method, conventional opti-
mization strategies might compute intermediate parameter sets uk for which a model
spin-up fails and the optimization process terminates with error.

The Karush-Kuhn-Tucker (KKT) optimality condition∇L(y∗, ȳ∗, u∗) = 0 (or in numer-
ical testings ‖∇L(y∗, ȳ∗, u∗)‖ < εtol) was not fulfilled at high accuracy in our testings.
‖Lu(y∗, ȳ∗, u∗)‖ was comparatively large. However, it was reduced significantly. The
dominant part of Lu was ȳTGu and we observed ȳ not being converged at the same
accuracy as y. Since the adjoint ȳ may converge significantly delayed (up to almost
double the number of steps the primal state needs, see for example [2]), we terminate
the optimization process when there is no change in y and u detectable.

For both models considered in this work, it was not possible determining the optimal
parameter set with which data is fit best, except for the twin experiments with synthetic
data. On the one hand, the computed parameter sets heavily depended on the chosen
cost functional and the penalty term α

2 ‖u − uest‖2. On the other hand, in particular
in the optimization of parameters of the N-DOP model, different parameter sets were
computed for different data sets, for a different number of data sets or for a different
number of parameters considered in the optimization. However, we have collected a
large amount of results, from which possible adjustments of the parameters might be
considered. Exemplarily, in the optimization of six parameters of the N-DOP model,
we observe the half saturation constant of N, u4 = KN , moving far away from the
estimated value uest,4 = 0.5 tending to values u∗4 ≈ 0.05 and even smaller. In addition,
we have observed a strong dependency of the system on the sinking velocity exponent
u7. A weighting of the different parameter components could be considered in future
testings.

The implementation of the One-shot method requires a lot of first and second or-
der derivative information. These derivatives only depend on the current iterates
(yk, ȳk, uk) and not on the entire time integration. We proposed to apply an auto-
matic differentiation (AD) tool, especially for the needed vector-Jacobian products as
they can be computed in one call of the reverse mode and without any truncation error.
We provided instructions for the computation of derivatives, compared AD derivatives
with derivatives computed with the finite differences strategy. We made suggestions
for the implementation and for possible inclusion in existing code.
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We find that in the low-complexity model of the North Atlantic, the One-shot method
was not significantly faster than the conventional BFGS quasi-Newton strategy. It re-
duced the number of needed Euler steps, but the augmentation to a One-shot step with
the computation of the adjoint state ȳ and a new parameter set u extends the com-
putational time significantly such that the conventional optimization approach with
numerous full (but fast and cheap) Explicit Euler spin-ups could keep up with the
One-shot method concerning the computational time.

In the testings with the N-DOP model, we proposed additional simplifications in that
the preconditioner B is computed only every fifth iteration step when a certain regular
convergence behavior is to be noticed. As we have not compared our results for the
N-DOP model to a conventional optimization strategy, we converted the elapsed com-
puting time into the number of full model spin-ups with fixed parameters. We detect,
that the elapsed time of 20,000 One-shot iteration steps optimizing 6 model parameters
corresponds to only 13.8 full spin-ups with fixed parameters. We assume there is no
conventional optimization strategy performing a full model spin-up for each function
evaluation, which manages to converge within 13.8 model spin-ups only (using equal
initialization). We required very strict accuracy of the fixed point y∗ considering the
state being converged only after 10,000 model years when the norm of the change in
the state was less than 10−5. In Kriest et al. [23] only 3,000 years are considered being
sufficient. Using this specification with less model years, still only 46 full model spin-
ups are equivalent to 20,000 One-shot steps which then have computed steady states
at higher accuracy.

In this work, we presented an own approach to handle periodic systems of equations.
For the N-DOP model, the length of the period is known and due to the fixed linear
mapping of the model spin-up, finding an annually periodic solution is equivalent to
finding a steady state at one arbitrary time point of the period. For consideration of
data at intermediate time points we suggested to leave the spin-up function and the
corresponding derivatives of G untouched and to include the intermediate time points
in the cost functional. Therewith only the computation of the cost function and its
derivatives had to be adjusted.
The results were very good in that with one optimization run, we optimized the fit at
four different time points as good as four One-shot runs with data of one time-point
each. Consequently, the computing time of the One-shot steps was prolonged, but
compared to four separately executed optimization runs, it was reduced significantly.
The numerical tests were performed on different platforms of which the fastest avail-
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able computed on 128 Intel Xeon E5-4640 processors running at 2.4 GHz. Still an
optimization run of 10,000 One-shot steps needed seven days. Future investigations
on the One-shot strategy should analyze the performance in test cases which include
data at even more intermediate time points. It is almost impossible performing these
tests on conventional parallel computing platforms. The augmentation of computing
time related to the inclusion of more data at more time points and the quality of the
obtained results needs to be investigated.
As we have proposed an approach aiming to fit data at arbitrary temporal and spatial
points, future work should include numerical testings with arbitrary spatial points at
which data is given. Until now, we have used data linearized to all spatial points of the
discretization.

In conclusion, we cannot provide a “manual” for the application of the One-shot method
which is universally valid for marine ecosystem models. However, we can provide gen-
eral recommendations for the implementation and we can realize simplifications making
the One-shot method more efficient. Even though the strategy did not perform opti-
mally in all test cases, we have presented tuning possibilities by adjusting criteria of
the One-shot strategy itself to make it perform better. In the calibration of marine
ecosystem models, the One-shot strategy proves to be a helpful tool and a promising
alternative to conventional optimization strategies.





A Publications Related to the

Calibration of the 4-Box Model

In the following, we append the publications, which we refer to during the course of
this work, related to the application of the One-shot method on the Rahmstorf 4-box
model. These are

• the article “Simultaneous model spin-up and parameter identification with the
one-shot method in a climate model example” published in An International Jour-
nal of Optimization and Control: Theories & Applications (IJOCTA) 3, (2013),
[22]

• the preprint SPP1253-11-03 “One-shot Parameter Optimization in a Box Model of
the North Atlantic Thermohaline Circulation” published on the preprint server
of the DFG-priority program SPP1253 “Optimization with partial differential
equations”, (2008), [20]

• and the preprint SPP1253-082 “Oneshot Parameter Identification - Simultaneous
Model Spin-up and Parameter Optimization in a Box Model of the North Atlantic
Thermohaline Circulation”, (2009), [21]

We remark, that in [20] we claim that the explicit Euler scheme for the advanced box
model fulfills the contraction property. In the appendix of [20], we intend to show
‖Gy‖ < 1 choosing the ‖ · ‖∞-norm. We analyse the first line in detail, defining a
condition for which the row sum is less than one, and then we wrongly conclude that
similar conditions can be derived for the other lines. This is not true. We cannot find
appropriate conditions for the fourth and eighth line of Gy. However, the preprint
summarizes our first observations in the application of the One-shot method on the
Rahmstorf 4-box-model which are worth being attached in this work aswell.
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Abstract

We investigate the One-shot Optimization strategy introduced in this form by Hamdi and Griewank
for the applicability and efficiency to identify parameters in models of the earth’s climate system.
Parameters of a box model of the North Atlantic Thermohaline Circulation are optimized with re-
spect to the fit of model output to data given by another model of intermediate complexity. Since
the model is run into a steady state by a pseudo time-stepping, efficient techniques are necessary to
avoid extensive recomputations or storing when using gradient-based local optimization algorithms.
The One-shot approach simultaneously updates state, adjoint and parameter values. For the re-
quired partial derivatives, the algorithmic/automatic differentiation tool TAF was used. Numerical
results are compared to results obtained by the BFGS and L-BFGS quasi-Newton method.

Keywords: Algorithmic differentiation; bounded retardation; climate model; fixed point iteration;
parameter identification.
AMS Classification: 49M29; 90C30; 90C53; 92-08

1 Introduction

Parameter optimization is an important task in all kinds of climate models or models that simulate
parts of the climate system, as for example ocean or atmospheric models. Still, some processes are not
well-known, some are too small-scaled in time or space, and others are just beyond the scope of the
model. All these processes are parameterized, i.e. simplified model functions (parameterizations) are
used. These necessarily include lots of – most of the time – only heuristically known parameters. A
main task thus is to calibrate the models by optimizing the parameter w.r.t. data from measurements
or other (more complex) models.
Similar to many applications in engineering applications of fluid mechanics, also in geophysical flows
(e.g. ocean models) an optimization is at first performed for steady states of the equations before
proceeding to transient problems. This means that only the stationary solution is used in the cost
or objective function to be minimized. Moreover (and this is the second point where engineering and
geophysical flow problems are similar), the computation of steady states is often performed by running
a transient model into the steady state. This strategy is called pseudo time-stepping, since the time
variable may be regarded as a kind of iteration counter.
It is well known from optimal control of differential equations that the classical adjoint technique
(that allows the representation of the gradient of the cost) leads to a huge amount of recomputations,
storing or both. This problem looks even more frustrating in the pseudo-time stepping context, since
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here only the final, numerically converged state is important for the cost. Nevertheless a classical
adjoint technique would need all intermediate iterates.

If the number of parameters to be optimized is small, a sensitivity equation approach is also reasonable.
On the discrete level this is comparable to the application of the forward mode of Automatic or
Algorithmic Differentiation (AD). Here, the sensitivity equation has the same temporal integration
direction (namely forward) as the original pseudo time-stepping. But nevertheless it is worthwhile
investigating how the two (for a non-linear model) coupled iterations for state and sensitivity are
performed.

Griewank described in [1] the differences between two-phase (where the iteration for the state is run to
the steady state or fixed point first, and then the sensitivity is computed) and piggy-back approaches
(where both iterations are combined to one). Christianson in [2] proposed to perform the sensitivity
iteration with the converged state instead of using its iterates. Giering, Kaminski and Vossbeck in
[3] used the so-called Full Jacobian approach, where they directly used the steady state equation and
differentiated it to obtain an equation for the gradient.

The approach used here is called One-shot approach, which was in this form developed by Hamdi
and Griewank, and can be seen as an extension of the piggy-back strategy aiming for optimality
and feasibility simultaneously with the so-called bounded retardation. That means that the number
of One-shot iterations shall not too much exceed the number of fixed point iteration steps that are
necessary for the computation of feasible states itself. Theoretical results were published in [4],[5], an
engineering application was presented by Özkaya and Gauger in [6].

The idea of simultaneous solution of state equations and parameter correction is not new. In [7], S.
Ta’asn uses a pseudo-time embedding for the state and adjoint state equations and the design equation
is solved as an additional boundary condition. This still results in a differential algebraic equation
which requires some strategy to solve the design equation alone.

In [8], the authors construct a system of only ODEs which is solved by a time-stepping method in
the spirit of reduced SQP-methods. They develop a preconditioner working on the whole system of
equations with state, costate and design equations.

In the One-shot approach used here, the idea is that for fixed parameters there is a given (not nec-
essarily (pseudo-) time-stepping) strategy to solve the state equations. This strategy is assumed to
demand no or disallow any changes. In each iteration step the update of the state is augmented by
an update of the adjoint state and a kind of quasi-Newton step for the design correction with the
distinctive feature that the required preconditioner controls convergence of the whole system. Here,
the preconditioner is a squared matrix of only the size of the number of parameters.

Since the assumptions in the theoretical analysis of the One-shot method are very strict and the
computation of the preconditioner seems at first glance laborious and expensive, the intention of this
paper is to check the applicability of the One-shot strategy for real world problems and possibly propose
simplifications. We compare numerical results to the gradient based BFGS and limited-memory BFGS
(L-BFGS) methods. We set aside the comparison to genetic or so-called intelligent search algorithms,
see e.g. [9], because the aim of the One-shot approach according to the authors of [4] and [5] is to offer
an alternative to local gradient-based optimization techniques. Genetic algorithms usually demand
a high number of function evaluations which we want to avoid because of the costly computation of
steady states needed for the function evaluation.

In this paper, we apply the One-shot approach to a box model of the North Atlantic. This problem
is different from the application in [6] in that the parameters enter in a nonlinear fashion resulting in
so-called non-separable adjoints where the adjoint is no longer only the sum of a term on the state
and a term on design.

The outline of this paper is the following. In section 2 we recall the One-shot optimization strategy
according to [4] and [5]. We apply the One-shot method to an example in earth system modeling
in section 3. There, we describe the Rahmstorf 4-box-model, the optimization problem and present
numerical results. Section 4 draws conclusions.
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2 One-shot Optimization Strategy

In this section, we recall the One-shot optimization strategy according to [4] and [5], its quintessence
and difference to conventional optimization methods, and we derive and explain the One-shot iteration
step. First of all, we describe the mathematical problem behind the parameter optimization problem.

2.1 Problem Formulation

Parameters u of a model describing physical, biological, chemical or other real life phenomena are
usually determined by fitting model output y = y(u) to observed data denoted by ydata. This data
can also be taken from other, more comprehensive models.
The fitting procedure then is a mathematical optimization problem with a least-squares cost functional
with some regularization term

J(y, u) =
1
2
‖y − ydata‖22 +

α

2
‖u− uguess‖22, α ∈ R+

0

under the constraint that model equations, namely c(y, u) = 0, are fulfilled.
In climate modeling, model equations are usually partial and/or ordinary differential equations solved
by an iterative process.
The problem will become more difficult with respect to uniqueness of minima and computation of
derivative information, if the quantity to be fit to data gdata is computed from a functional g(y, u)
such that J then is

J(y, u) =
1
2
‖g(y, u)− gdata‖22 +

α

2
‖u− uguess‖22.

In the finite dimensional case or the discretized version, where y ∈ Y ⊂ Rn, u ∈ U ⊂ Rm and
g : Y × U → Rl, the cost function is the sum of the squared differences

J(y, u) =
1
2

l∑

i=1

(gi(y, u)− gi,data)2 +
α

2

m∑

i=1

(ui − ui,guess)2.

Here, the objective function J is J : Y ×U → R, y ∈ Y is the state, u ∈ U is the design or parameter
vector to be optimized. With the help of the regularization term α

2 ‖u−uguess‖22 parameters u are kept
in an acceptable or presumed range around parameter values uguess, where elements ui,guess can for
example be taken as mean values of some maximum and minimum values. We assume J to be C2,1,
which means twice continuously differentiable in y and once in u. We further assume the Jacobian of
c with respect to y, denoted cy, to always be invertible, such that with the mean value theorem, there
exists only one y∗ with c(y∗, u) = 0 for a fixed u.

2.2 One-shot Iteration and its Properties

In practice, finding an analytical solution for a feasible state y∗ with c(y∗, u) = 0 is often impossible.
That is why usually an iterative method is called upon.
For the One-shot strategy, we assume that there is a given fixed point iteration, also called model
spin-up , which has already been found reliable and successful in the search for the feasible state
y∗ for parameters u. Included step size or preconditioner strategies can be carried over and do not
have influence on the One-shot iteration. Thus, there is a given contraction, (pseudo-) time-stepping
strategy or fixed point iteration G, where y∗ satisfies y∗ = G(y∗, u) = limk→∞G(yk, u).
The fundamental idea of the One-shot approach is to reformulate the condition c(y, u) = 0 into the
fixed point equation y = G(y, u). The iteration function G : Y × U → Y is assumed to be C2,1 with
the contraction factor ρ < 1, i.e. for a suitable inner product norm ‖ · ‖ we have for Gy, denoting the
Jacobian of G with respect to y, that

‖Gy(y, u)‖ ≤ ρ < 1, ∀y ∈ Y. (1)

from which follows

‖G(y1, u)−G(y2, u)‖≤ρ‖y1 − y2‖,∀y1, y2 ∈ Y. (2)
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With the contraction property of G we can infer from the Banach fixed point theorem, for fixed u,
the sequence yk+1 = G(yk, u) converges to a unique limit y∗ = y∗(u).
The assumptions on the model function c and the contraction G are very strict and rarely analytically
or even numerically provable. However, we will see in our numerical example, that the One-shot
strategy even converges under weaker assumptions on the contraction G. Here, in our example of the
4-box-ocean-model only the Ciric or quasi-contraction property, see [10], is fulfilled.
With the help of the fixed point reformulation, the optimization problem can be written as

min
y,u

J(y, u) s.t. y = G(y, u). (P)

A conventional optimization strategy performs the following steps:

In the outer loop do in the k-th iteration step:

• Perform a complete model spin-up (inner loop) with parameter values uk and obtain an admissible
state yk = y∗(uk) = liml→∞G(yl, uk).

• Compute the value of the cost function J(yk, uk).

• Adjust model parameters obtaining uk+1.

End the outer loop when a sufficient optimality condition is satisfied.

Of course, adjusting the parameters demands further full model spin-ups and/or expensive derivative
information for whose computation again full model spin-ups are necessary.
The main idea of the One-shot strategy is to adjust model parameters already during the model
spin-up.
Using the method of Lagrange Multipliers, in the finite dimensional case, the associated Lagrangian
to problem (P) with the Lagrange multiplier or adjoint state ȳ ∈ Ȳ is

L(y, ȳ, u) = J(y, u) + ȳ>(G(y, u)− y)
= N(y, ȳ, u)− ȳ>y,

where we introduce the shifted Lagrangian N as

N(y, ȳ, u) := J(y, u) + ȳ>G(y, u).

A Karush-Kuhn-Tucker (KKT) point (y∗, ȳ∗, u∗) fulfilling the first order necessary optimality condition
must satisfy

0 = ∂L
∂y =Ny(y∗, ȳ∗, u∗)− ȳ∗>

=Jy(y∗, u∗) + ȳ∗>Gy(y∗, u∗)− ȳ∗>,
0 = ∂L

∂ȳ =G(y∗, u∗)− y∗,
0 = ∂L

∂u =Nu(y∗, ȳ∗, u∗)

=Ju(y∗, u∗) + ȳ∗>Gu(y∗, u∗).





(3)

Motivated by this system of equations, the following coupled full step iteration, called One-shot strategy
according to the authors of [4], [5], to reach a KKT point is derived:

Do in the k-th iteration step:

yk+1 = G(yk, uk),
ȳk+1 = Ny(yk, ȳk, uk)>

uk+1 = uk −B−1
k Nu(yk, ȳk, uk)



 (4)

until there is (numerically) no change in (yk, ȳk, uk).
Here, Bk is a design space preconditioner which must be selected to be symmetric positive definite.
As mentioned above, we do not want to introduce additional preconditioners for the updates of y and
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ȳ, because of the assumption that the model spin-up has already been found reliable and successful
in the search for steady states.
The contractivity (2) ensures that the first equation in the coupled iteration step (4) converges ρ-
linearly for fixed u. Although the second equation exhibits a certain time-lag, it converges with the
same asymptotic R-factor (see [11]). As far as the convergence of the coupled iteration (4) is concerned,
the goal is to find Bk that ensures that the spectral radius of the coupled iteration (4) stays below 1
and as close as possible to ρ. In subsection 2.3, we recall the formula of appropriate preconditioners
Bk according to the authors of [4], [5].

Required Derivatives and Automatic Differentiation

For the One-shot update (4) and also later in the computation of the preconditioners Bk, a lot of deriva-
tive information is needed. The costs for its calculation are small compared to those of a conventional
approach, because they only depend on the previous iteration step value. The storing/recomputation
of intermediate partial derivatives, as for example ∂y

∂u for the computation of derivatives of J or N
with respect to u, is not necessary which is one of the main differences and advantages compared to
traditional optimization techniques.
Applying a tool for automatic/algorithmic differentiation (AD) can even more reduce costs and most
importantly, AD computes exact derivatives without any approximation errors.
AD is a software technology to compute the derivative of a function at costs of only a small multiple
of the costs for the evaluation of the function itself. With the help of source code transformation
or operator overloading an AD tool provides the user with a computer programme containing the
derivatives.
Those tools are for example TAF or ADiMat, which use the source code transformation approach to
generate Fortran or Matlab subroutines to calculate function values and derivative information in
one call, see [12] and [13], or for example ADOL-C using the operator overloading concept in C/C++
codes, see [14].
Regarding the One-shot optimization strategy, we need gradients (namely Jy, Ju) and vector-Jacobian-
products which can cheaply be obtained with the reverse mode of AD. For the calculation of the
preconditioner B also second derivatives and full Jacobians are needed which are calculated via the
application of the reverse mode first and the forward mode afterwards. In our testings, we apply the
(commercial) AD tool TAF for Fortran subroutines.

2.3 Preconditioner B and the Doubly Augmented Lagrangian

In this section, we explain the choice of the preconditioners Bk according to [4] and [5]. For the sake
of simplicity, we omit the iteration index k using the notation B.
For the derivation of the preconditioner B, we introduce the doubly augmented Lagrangian La

La(y, ȳ, u) =
αL
2
‖G(y, u)− y‖2 +

βL
2
‖Ny(y, ȳ, u)> − ȳ‖2 +N(y, ȳ, u)− ȳ>y,

which is the Lagrangian of the original problem augmented by the errors in primal and dual feasibility.
Here αL > 0 and βL > 0 are weighting coefficients.
The authors of [4] prove that under certain conditions on αL and βL (see below), stationary points of
problem (P) are also stationary points of La and that La is an exact penalty function. This leads to
the idea to choose B as an approximation to the Hessian of La, i.e. B ≈ ∇uuLa.
In [4], it is proven that descent of the augmented Lagrangian is provided for any preconditioner B
fulfilling

B � B0 :=
1
σ

(αLG>uGu + βLN
>
yuNyu) (5)

i.e. B −B0 is positive semidefinite, and where

σ := 1− ρ− (1 + ‖Nyy‖
2 βL)2

αLβL(1− ρ)
. (6)
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The authors of [4] propose to choose αL and βL such that B−1
0 is as large as possible. Using (5) we

get

‖B0‖2 =
1
σ
‖αLG>uGu + βLN

>
yuNyu‖2

≤ 1
σ

(αL‖Gu‖22 + βL‖Nyu‖22).

Minimizing the right most formula as a function of αL and βL and replacing σ with (6) yields:
Under the assumption that

√
αLβL(1− ρ) > 1 + βL

2 ‖Nyy‖ holds and ‖Nyy‖ 6= 0 we obtain

βL =
3√

‖Nyy‖2 + 3‖Nyu‖2
‖Gu‖2 (1− ρ)2 + ‖Nyy‖

2

and

αL =
‖Nyu‖2βL(1 + ‖Nyy‖

2 βL)

‖Gu‖2(1− ‖Nyy‖
2 βL)

.

As mentioned above, we pursue to B ≈ ∇uuLa. It turns out that at a stationary point of La, where
primal and dual feasibility hold, the Hessian of La, namely ∇uuLa, is

∇uuLa = αLG
>
uGu + βLN

>
yuNyu +Nuu.

As La is an exact penalty function, we have ∇uuLa � 0 in a neighbourhood of the constrained
optimization solution. Assuming that Nuu � 0 implies that the preconditioner

B =
1
σ

(αLG>uGu + βLN
>
yuNyu +Nuu) (7)

fulfills (5) and thus the step ∆uk = −B−1Nu(yk, ȳk, uk) of the coupled iteration (4) yields descent on
La.

2.3.1 BGFS Update to avoid Computation of Full Jacobians and 2nd Order Derivatives

In the calculation of the preconditioner B full Jacobians and second derivatives are needed. On the one
hand, those can also be calculated by algorithmic differentiation, but on the other hand, a possibility
to avoid this is the application of a Low-Rank BFGS update to update the inverse approximation Hk

of Bk. In view of the relation B ≈ ∇uuLa, we use the following secant equation in the update of Hk:
Hk+1Rk = ∆uk, where

Rk := ∇uLa(yk, ȳk, uk + ∆uk)−∇uLa(yk, ȳk, uk).

Imposing to the step multiplier η to satisfy the second Wolfe condition

∆uk>∇uLa(yk, ȳk, uk + η∆uk) ≥ c2∆uk>∇uLa(yk, ȳk, uk)

with c2 ∈ [0, 1], implies the necessary curvature condition

Rk
>∆uk > 0. (8)

A simpler procedure could skip the update whenever (8) does not hold by either setting Hk+1 to
identity or to the last iterate Hk. Provided (8) holds, we use

Hk+1 = (I − rk∆ukRk>)Hk(I − rkRk∆uk>) + rk∆uk∆uk>

with rk = 1
Rk
>∆uk

.

The weights αL, βL of La require norms of second order derivatives. In [5], the authors propose simpler
approximations according to two different approaches. In the first version then

αL =
2‖Nyy‖2
(1− ρ)2

and βL =
2

‖Nyy‖2
,
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Figure 1: Rahmstorf box model, flow direction shown for m > 0.

in the second approach

αL =
6‖Nyy‖2
(1− ρ)2

and βL =
6

‖Nyy‖2
.

‖Nyy‖2 can be computed via the power iteration.
For the BFGS update, the calculation of Rk requires a pure design step (step with fixed primal and
dual variables y and ȳ respectively), which might be computed at high costs. We will pay attention
to this fact in our numerical example.

3 Application in Earth System Modeling

To exemplify the benefit of the One-shot optimization strategy in the case of climate research, we
present the application to a 4-box-model of the Atlantic Thermohaline Circulation. The 4-box-model
described in [15] simulates the flow rate of the Atlantic Ocean known as the ’conveyor belt’, carrying
heat northward and having a significant impact on climate in northwestern Europe. Temperatures Ti
and salinity differences Si in four different boxes i = 1, ..., 4, namely the southern, northern, tropical
and the deep Atlantic, are the characteristics inducing the flow rate. The surface boxes exchange heat
and freshwater with the overlying atmosphere, which causes a pressure-driven circulation, compare
figure 1.

In [16] a smooth coupling of the two possible flow directions is proposed. The resulting time dependent
ODE system reads:

Ṫ1= λ1(T ∗1 − T1) + m+

V1
(T4 − T1) + m−

V1
(T3 − T1)

Ṫ2= λ2(T ∗2 − T2) + m+

V2
(T3 − T2) + m−

V2
(T4 − T2)

Ṫ3= λ3(T ∗3 − T3) + m+

V3
(T1 − T3) + m−

V3
(T2 − T4)

Ṫ4= m+

V4
(T2 − T4) + m−

V4
(T1 − T4)

Ṡ1= S0f1
V1

+ m+

V1
(S4 − S1) + m−

V1
(S3 − S1)

Ṡ2= −S0f2
V2

+ m+

V2
(S3 − S2) + m−

V2
(S4 − S2)

Ṡ3= S0(f2−f1)
V3

+ m+

V3
(S1 − S3) + m−

V3
(S2 − S4)

Ṡ4= m+

V4
(S2 − S4) + m−

V4
(S1 − S4)

where for some positive a, m+ = m
1−e−am almost coincides with the meridional volume transport or

overturning
m = k(βm(S2 − S1)− αm(T2 − T1))
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for positive m and is almost zero for negative m. The term m− = −m
1−eam becomes almost zero for

positive m and −m for negative m. That means the summands including m+ and m− are activated or
deactivated depending on the flow direction. The deviation from the physically correct model becomes
smaller the larger a is. Several model parameters are involved, the most important being the freshwater
flux f1 containing atmospheric water vapor transport and wind-driven oceanic transport; they are used
to simulate global warming in the model and are chosen in the interval [−0.2, 0.15]. T ∗i , i = 1, 2, 3 are
so-called restoring temperatures, which can be seen as counterparts of the three surface temperatures.
Further model parameters are physical, relaxation and coupling constants among which there are
well-known fixed parameters and those which are tunable parameters. See [15] for an explanation of
the occurring constants, fixed parameters and tunable parameters.

3.1 The Optimization Problem

As mentioned in the introduction, in climate modeling an optimization is at first performed for steady
states, which means in this example for temperatures and salinities which do not change in time
anymore. Given fresh water fluxes (f1,i)li=1, corresponding to different warming scenarios, the aim is
to fit the overturning values mi = m(y(f1,i), u) computed from stationary temperatures and salinities
(T1, T2, S1, S2)i obtained by the model spin-up for f1,i to data md,i from a more complex model
Climber2, see [17]. u = (T ∗1 , T

∗
2 , T

∗
3 ,Γ, k, a) are the control parameters. Here, Γ is a thermal coupling

constant in the computation of the thermal relaxation constants λi, i = 1, 2, 3. All other parameters
occur in the model description of the previous subsection. Using notations from section 2, the state
is y = (yi)li=1 with yi = y(f1,i) = (T1, T2, T3, T4, S1, S2, S3, S4)i.
If F (y, u) denotes the right-hand side of the ODE system of the model, we get

min
y,u

J(y, u) :=
1
2
‖m(y(f1), u)−md‖22 +

α

2
‖u− uguess‖22,

s.t. 0 = F (y(f1,i), u), i = 1, ..., l.

The regularization term incorporates a prior guess uguess for the parameters. The larger α the more
the parameters u are kept close to uguess.
The difficulty here is that m : R8l × R6 → Rl is not injective. There are several combinations
of steady/feasible T1, T2, S1, S2 and the parameter u(5) = k to compute the same overturning m.
The smaller α the more likely the different optimization strategies find completely different optimal
parameters with almost the same function values J(y∗, u∗).
In [15] the authors apply the Explicit Euler time stepping with a fixed step size of one year, i.e.
∆t = 1, to run the model into a steady state. Otherwise, known model constants scaled on a time
span of one year must be adjusted. Thus G defined in section 2 here represents one full Euler step
yk+1 = G(yk, u) = yk + F (yk, u) operating on all freshwater fluxes f1,i together, i.e. for fixed u we
have G(·, u) : R8l → R8l.
In this example, contractivity of G is not given in general, i.e. ρ in (1) exceeds 1 for several steps.
However, in average it is less than 1. Here, for the explicit Euler sequence yk+1 = G(yk) = yk+F (yk, u),
the quasi-contraction property [10]

‖yk+1 − yk‖≤qmax{‖yk − yk−1‖, ‖yk+1 − yk−1‖}

for 0 ≤ q < 1 holds. In our testings, G converges for fixed u but different starting values y0 to the
same stationary y∗.

3.2 Numerical Results and Discussion

In our numerical testing, we compare the two versions of the One-shot method, with full computation
of the preconditioner B on the one hand and BFGS update of B on the other hand, to a traditional
BFGS-quasi-Newton optimization approach. Furthermore, we compare results to values obtained by
the Limited-memory BFGS (L-BFGS) algorithm implemented by Zhu, Byrd, Nocedal and Morales,
see [18], version 3.0 from 2011, without and finally with box constraints on the control parameters (L-
BFGS-B) because we find that computed optimal parameter values of the BFGS and L-BFGS method
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are far away from actual real world values. In the three different BFGS approaches, for each parameter
value uk during the optimization process the box model has to be run into a steady state. In our
example, that takes between 4,000 and 15,000 Euler steps. Compared to more complex climate models,
here the Euler time step evaluation is not expensive. However, during the optimization process a large
number of Explicit Euler time steps will accumulate and for derivative calculation a huge amount of
recomputations, storing or both is necessary. That becomes obvious in the calculation of derivatives
using automatic differentiation. Whereas for the BFGS method in the reverse mode it is necessary to
store all Euler steps until a steady state is reached, in the One-shot method the required derivatives
depend on the current values only, i.e. on only one Euler step.
In our implementation we replaced ui = T ∗i , i = 1, ..., 3, with ũi = Wi such that ui = ũi + ufix
where (ufix)3

1 = (6.64, 2.68, 11.69), which are optimal values calculated in [15]. Wi, i = 1, ..., 3, can be
interpreted as warming trends. We chose uguess = (0., 0., 0., 23., 25., 500) as starting parameters. Since
only quasi-contraction is given, we expect the contraction factor ρ to exceed 1 for several iteration
steps possibly resulting in arithmetic exceptions. Therefore, we fix ρ close to 1, namely ρ = 0.9.
For better initialization especially of the adjoint, we propose an update of only the state and adjoint
state for the first 500 iteration steps.
The One-shot-BFGS strategy demands a linesearch procedure, otherwise the method fails. Here, we
applied a simple strategy constantly halfing the steplength until there is a reduction in the costfunction
with the resulting step.
We perform our numerical testings on a SUN-W-Ultra-SPARC-IIIi CPU 1.3GHz machine.

3.2.1 Influence of Rare Update of Weighting Coefficients of the Preconditioners Bk on
the Optimization

In the first version, we calculate preconditioners Bk defined in (7) in every iteration including all first
and second order derivatives. Also the weighting coefficients αL, βL and σ are adjusted. We find,
that the weights do not change significantly from iteration to iteration. As one can see in Table 1, an
update performed only after several time-steps does not significantly influence the optimization but
the computational time needed. Therefore, we prefer the version with a calculation of αL, βL and σ
every 1,000 iterations.

Table 1: Effect on the optimization of rare update of the weights αL, βL and σ for α = 0.1. We compare
the values of the cost functional, the weighted data fit, the number of iterations and the computational time in
minutes.

update of weights of B J(y∗, u∗) data fit # iterations comp.time
every 10,000 iterations 14.544 0.399 1,185,500 5.085
every 1,000 iterations 14.544 0.399 1,182,053 5.067
every iteration 14.544 0.399 1,181,701 10.045

3.2.2 Effect of the Weighting Factor α on the Numerical Results

In the following, our attention is drawn on the effect of the weighting factor α in front of the penalty
term ‖u−uguess‖. For the last parameter a we chose the additional factor 0.01, because a is of higher
dimension than the other parameters and can vary more. Here in the example of the 4-box-model,
without any regularization, i.e. α = 0, the One-shot method and the L-BFGS method without con-
straints do not converge or fail. The BFGS method and the L-BFGS with box constraints terminate
with parameter values u∗ where ‖Ju(y(u∗), u∗)‖ still is very large, but the algorithms cannot find
descent directions.

We recall from section 3.1 that the considered optimization problem has several local minima which
might be of the same quality regarding the data fit, even though the obtained model parameters are
completely different. The larger the weighting factor α the less the obtained parameters vary.
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In our testings with α > 0, we compare the optimal value of the cost function, the data fit weighted
to the number of observations, the number of iteration steps, the number of needed Euler steps, and
the computational time in minutes. Furthermore, we take a look at the quality of optimality, which
means for the Oneshot strategies the norm of L(y,ȳ,u)(y∗, ȳ∗, u∗) and for the BFGS methods the norm
of Ju(y(u∗), u∗). The numerical results are collected in tables 2 and 3 and illustrated in figures 2 and
3.

Figure 2: Results of the optimization comparing the One-shot strategies with the BFGS-quasi-Newton methods
for α = 0.1 (left) and the differences to the Climber data (right).

Not surprisingly, one generally detects that the smaller α the better the fit of data becomes.
We observe that for different α the qualities of the methods vary. Especially for large fresh water
fluxes f1,i the outputs of the different optimization strategies strongly differ. These are f1,i for which
the model switches the flow direction of m during the model spin-up.
Comparing the original One-shot and the One-shot-BFGS methods, the presumption that the One-
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Figure 3: Results of the optimization comparing the One-shot strategies with the BFGS-quasi-Newton method
for α = 0.001 (left) and the difference to the Climber data (right).

shot-BFGS strategy might be rather time consuming due to the additional pure design steps is con-
firmed. Here, in an example with a very small number of parameters to be optimized, the One-shot-
BFGS approach is not recommended. However, in problems with a large number of design variables,
the One-shot-BFGS approach might be an alternative. The computed data fit can be regarded as
equally good in this example.
For α = 10 the strategies show almost no difference in their results, neither in the fit of the data nor
in the computed optimal parameters. Concerning computational time and the number of Euler steps,
the original Oneshot strategy perform best.
For α = 1 and α = 0.1 the One-shot strategy shows difficulties in performance. We suspect that here
the balance between keeping parameters close to uguess and reducing the misfit has a disadvantageous
influence on the One-shot method. However, also the BFGS method does not perform well for α = 0.1.
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Table 2: Results of the optimization comparing values of the cost functional, the weighted data fit, the
number of iterations of the optimization procedure, the number of needed Euler steps, the quality of optimality
(‖L(y,ȳ,u)(y∗, ȳ∗, u∗)‖ for methods 1-2 and ‖Ju(y(u∗), u∗)‖ for methods 3-5 respectively) and the computational
time in minutes

Method J(y∗, u∗) data fit #iterations #Euler steps opt.cond. comp.time

α
=

10

1 25.810 0.539 254,859 254,859 2.0E-1 1,086
2 25.810 0.539 220,687 220,687 1.5E-1 1.864
3 25.809 0.539 41 761,661 2.5E-5 1.715
4 25.809 0.539 31 411,732 5.5E-4 1.351
5 25.809 0.539 39 540,946 2.2E-4 1.785

α
=

1

1 17.438 0.462 1,212,057 1,212,057 1.8E-1 5.155
2 17.434 0.462 1,101,992 1,101,992 1.3E-1 9.315
3 17.426 0.462 48 926,049 1.3E-4 2.084
4 17.426 0.462 46 653250 3.3E-4 2.142
5 17.426 0.462 53 1,194,483 3.2E00 3.938

α
=

0.
1

1 14.544 0.399 1,182,053 1,182,053 2.3E-1 5.067
2 14.469 0.398 3,122,016 3,122,016 1.3E-1 26.366
3 15.571 0.401 54 1,403,864 3.1E-1 2.878
4 14.417 0.393 71 1,250,796 2.6E-2 4.100
5 14.417 0.393 76 1,412,728 6.0E-4 4.657

α
=

0.
01

1 13.747 0.396 437,543 437,543 2.2E-1 1.917
2 13.786 0.396 344,463 344,463 7.0E-1 2.906
3 12.514 0.338 52 1,455,877 2.3E-1 3.137
4 fails
5 13.747 0.397 29 672,388 4.1E00 2.217

α
=

0.
00

1 1 12.232 0.352 150,410 150,410 1.4E-1 0.649
2 12.364 0.353 170,597 170,597 6.6E-1 1.442
3 11.411 0.331 64 2,134,827 5.9E-1 4.457
4 11.412 0.331 63 2,018,101 3.6E-1 6.233
5 12.257 0.352 77 2,928,986 4.2E00 9.078

Legend of Methods: 1 One-shot, 2 One-shot-BFGS, 3 BFGS, 4 L-BFGS, 5 L-BFGS-B

For smaller α, we observe significant differences. The unconstrained BFGS strategies find the best
fit, but parameter values (u∗1, u

∗
2, u
∗
3) which are not acceptable in this real world problem. L-BFGS-B

computes similar results as the One-shot method, but needs far more Euler steps and therewith a
much longer computational time.
We detect that the parameters computed by the One-shot method stay in acceptable ranges without
any box constraints. Computed parameters are to some extend similar to those of the L-BFGS-B
method.
One main goal of the One-shot strategy was to achieve so-called bounded retardation for the speed of
convergence compared to the number of time-steps needed to run the model into a steady state. Since
the Explicit Euler time-stepping does not show quick converge and ratios θk = ‖yk+1−yk‖

‖yk−yk−1‖ even exceed
1 for several steps k, one cannot expect the One-shot method to converge very fast in this special
example. The average value for θ in a pure model spin-up with parameters taken from [15] is 0.992
and for the One-shot strategy (α = 0.1) θ = 0.9999884.
Furthermore, the number of One-shot iteration steps was intended to exceed the number of Euler steps
of a single model spin-up not too much. Especially for parameter sets near the computed solution,
a model spin-up with fixed parameters needs 12,000 to 15,000 Euler steps. For α ∈ {10, 0.01, 0.001}
where the One-shot strategy shows good performance, the observed number of iterations is about 10
to 40 times larger than the number of Euler steps for one single spin-up. Considering that the BFGS
strategies need at least about 30 optimization steps requiring further function evaluations and model
spin-ups the factor is not very large. Even in those cases, where the One-shot strategies does not show

12 Kratzenstein, Slawig; IJOCTA Vol.3, No.2, 2013



Author’s Copy

Table 3: Optimal parameters computed by the different optimization strategies.

Method u1 u2 u3 u4 u5 u6

α
=

10

One-shot 0.482 0.457 -0.916 23.211 25.283 502.83
One-shot-BFGS 0.480 0.457 -0.918 23.211 25.283 502.83
BFGS 0.475 0.451 -0.927 23.209 25.280 502.83
L-BFGS 0.475 0.451 -0.927 23.209 25.280 502.83
L-BFGS-B 0.475 0.451 -0.927 23.209 25.280 502.83

α
=

1

One-shot 0.585 0.583 -0.957 23.492 24.902 512.44
One-shot-BFGS 0.569 0.568 -0.977 23.488 24.893 512.42
BFGS 0.521 0.522 -1.042 23.474 24.865 512.34
L-BFGS 0.521 0.521 -1.042 23.474 24.865 512.34
L-BFGS-B 0.520 0.520 -1.042 23.474 24.866 512.34

α
=

0.
1

One-shot 1.342 1.376 -0.519 24.850 23.063 528.70
One-shot-BFGS 1.189 1.238 -0.915 24.601 22.638 527.81
BFGS 1.244 1.497 -2.741 23.524 19.831 503.50
L-BFGS 0.752 0.816 -1.570 24.410 22.262 527.03
L-BFGS-B 0.752 0.816 -1.570 24.410 22.262 527.03

α
=

0.
01

One-shot 0.237 0.251 0.030 28.961 24.997 534.91
One-shot-BFGS 0.184 0.286 0.079 32.577 23.732 531.10
BFGS 2.277 2.899 -5.176 30.650 14.803 503.26
L-BFGS fails
L-BFGS-B 1.130 1.4351 -2.490 26.983 19.662 502.024

α
=

0.
00

1 One-shot 1.280 1.652 -0.606 43.710 18.728 520.64
One-shot-BFGS 0.423 0.764 -0.041 46.850 19.847 521.19
BFGS 3.027 3.805 -6.832 32.289 12.999 503.93
L-BFGS 3.023 3.800 -6.825 32.349 13.007 503.94
L-BFGS-B 1.042 1.559 -3.000 45.568 16.741 507.95

quick convergence, the number of iterations still is not too far away from the number of Euler steps
required by the BFGS strategies. In applications, where the fixed point iteration G is more expensive
than the Euler time-stepping applied in this example, the One-shot strategy then might catch up with
the needed computational time.

4 Conclusions

We have successfully applied the One-shot method according to Hamdi and Griewank, [4], [5], to
a parameter optimization problem in ocean modeling. We have analyzed its applicability and find
that the One-shot strategy presents a promising approach to optimize models consuming much time
and calculational costs for their spin-ups using (pseudo-)time stepping or a fixed point iteration.
Our numerical example was the parameter optimization of the Rahmstorf 4-box-model of the North
Atlantic with steady states achieved via an Explicit Euler spin-up. Optimization results of the original
One-shot strategy and the One-shot-BFGS method with an BFGS update of the preconditioner of the
parameter correction step are compared to a classical BFGS-quasi-Newton method and the L-BFGS-
method with and without box constraints on the parameters.
We observed that the One-shot-BFGS strategy does not show good performance in this example with
only 6 parameters. The original version with full computation of the preconditioner performs well
for large and very small weighting factors α in front of the penalty term. Further analysis on why
Oneshot has difficulties in finding optimal values for weights α ∈ {1, 0.1} can be valuable.
We have found out that the One-shot method can be applied even though contractivity is not given
in general and that fixing the contraction factor ρ to a number close to 1 is adequate. Furthermore,
computation of the weights of B is not mandatory in each iteration step.
Considering examples with more expensive model spin-ups, the One-shot method might on the one
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hand even gain (or at least catch up in those examples with slow convergence) concerning computa-
tional time and on the other hand be the only applicable alternative for derivative based optimization
methods, because derivatives depend on one spin-up step only instead of the whole spin-up, which
is the main difference and advantage compared to standard methods. The application to earth sys-
tem models involving nonlinear PDEs and/or a higher spatial resolution with computationally more
expensive model solvers and periodic solutions will be of great interest for future investigations to
demonstrate the efficiency of the One-shot approach.
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Abstract

Parameters of a box model of the north Atlantic thermohaline circulation are optimized to fit the
model results, i.e. the overturning, to data given by a more detailed climate model of intermediate
complexity. Since the model is run into a steady state by a pseudo time-stepping, efficient tech-
niques are necessary to avoid extensive recomputations and/or storing when using adjoint-based
gradient representations for local optimization algorithms. The preconditioned one shot approach
studied by Hamdi and Griewank that simultaneously updates state, adjoint and parameter values,
is applied to this nonlinear climate model. For the required partial derivatives, a software tool
of Algorithmic/Automatic Differentiation was used. Numerical results are compared to results
obtained by a Quasi-Newton and a gradient method.

Keywords: Parameter optimization, pseudo time-stepping, fix point solver, climate model, automatic
differentiation

1 Introduction

Parameter optimization is an important task in all kind of climate models or models that simulate
parts of the climate systems, as for example ocean or atmospheric models. Still, some processes are
not well-known, some are too small-scaled in time or space, and others are just beyond the scope of the
model. All these processes are parameterized, i.e. simplified model functions (parameterizations) are
used. These necessarily include lots of – most of the time – only heuristically known parameters. A
main task thus is to calibrate the models by optimizing the parameter w.r.t. to data from measurements
or other (more complex) models.
Similar to many applications in engineering applications of fluid mechanics, also in geophysical flows
(e.g. ocean models) an optimization is at first performed for steady states of the equations before
proceeding to transient problems. This means that only the stationary solution is used in the cost
or objective function to be minimized. Moreover (and this the second point where engineering and
geophysical flow problems are similar), the computation of steady states is often performed by running
a transient model into the steady state. This strategy is called pseudo time-stepping, since the time
variable may be regarded as a kind of iteration counter.
It is well known from optimal control of differential equations that the classical adjoint technique
(that allows the representation of the gradient of the cost) leads to a huge amount of recomputations,
storing or both. This problem looks even more annoying in the pseudo-time stepping context, since
here only the final, numerically converged state is important for the cost. Nevertheless a classical
adjoint technique would need all intermediate iterates.
If the number of parameters to be optimized is small, a sensitivity equation approach is also reasonable.
On the discrete level this is comparable to the application of the forward mode of Automatic or
Algorithmic Differentiation (AD). Here, the sensitivity equation has the same temporal integration
∗ctu@informatik.uni-kiel.de, Institut f. Informatik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany.

Research supported by DFG SPP 1253 and DFG Cluster of Excellence The Future Ocean.
†ts@informatik.uni-kiel.de, Institut f. Informatik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany.
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direction (namely forward) as the original pseudo time-stepping. But nevertheless it is worth while
investigating how the two (for a non-linear model) coupled iterations for state and sensitivity are
performed.
Griewank described in [3] the differences between two-phase (where the iteration for the state is run
to the steady state or fixpoint first, and then the sensitivity is computed) and piggy-back approaches
(where both iterations are combined to one). Christianson in [2] proposed to perform the sensitivity
iteration with the converged state instead of using its iterates. Giering, Kaminski and Vossbeck in
[6] used the so-called Full Jacobian approach, where they directly used the steady state equation and
differentiated it to obtain an equation for the gradient.
The approach used here is called One-shot approach, was developed by Griewank and Hamdi, and can
be seen as an extension of the piggy-back strategy. The theoretical results were published in [5],[4],
an engineering application was presented by Özkayan and Gauger in [7].
In this paper we apply the One-Shot approach to an box model of the North Atlantic. We want to
minimize the differences between the output of the steady state of the model compared to data given
by a more complex coupled climate model. The box model is a non-linear ODE system with eight
equations for temperature and salinity in four ocean compartments. As parameters to be optimized
we choose here the so-called restoring temperatures, which can be seen as counterparts of surface
temperatures.
The outline of this paper is the following. In the next section we describe the box model in its
original version and in a modified, differentiable version that we used here. In Section 3 we present
the formulation of the optimization problem and results obtained by standard optimization methods
taking from Matlab R©’s optimization toolbox, namely a gradient and a Quasi-Newton method. In the
fourth section we briefly review the One-shot method, which is then applied in the next section to the
particular case of the box model. In Section 6 we present numerical results of the One-shot method,
which are then compared to the results of the two standard optimization techniques in the last section.
Here we also give some concluding remarks and an outlook to future work. In the Appendix, we sketch
the proof of contractivity of the used time stepping scheme.

2 The box model of the thermohaline circulation

In this section we present the formulation of the used climate model, a so-called box model. We
start with the original version by Rahmstorf, and proceed with an advanced version which provides
a differentiable right-hand side of the ODE system. Moreover we describe the used time-stepping
scheme.

2.1 Introduction to the 4-box model

The basic 4-box model of the Atlantic Thermohaline Circulation described by S. Rahmstorf, K. Zickfeld
and T. Slawig [11] simulates the flow rate of the Atlantic Ocean known as the ’conveyor belt’, carrying
heat northward and having a significant impact on climate in northwestern Europe. Temperatures
Ti and salinity differences Si in four different boxes i = 1, ..., 4, the southern, northern, tropical
and the deep Atlantic, are the characteristics inducing the flow rate. The surface boxes exchange
heat and freshwater with the overlying atmosphere, which causes a pressure-driven circulation. The
following nonlinear system of ordinary differential equation describes the flow for the present circulation
direction.

Ṫ1 = λ1(T ∗1 − T1) + m
V1

(T4 − T1) Ṡ1 = S0f1
V1

+ m
V1

(S4 − S1)

Ṫ2 = λ2(T ∗2 − T2) + m
V2

(T3 − T2) Ṡ2 = −S0f2
V2

+ m
V2

(S3 − S2)

Ṫ3 = λ3(T ∗3 − T3) + m
V3

(T1 − T3) Ṡ3 = S0(f2−f1)
V3

+ m
V3

(S1 − S3)

Ṫ4 = m
V4

(T2 − T4) Ṡ4 = m
V4

(S2 − S4)

m = k(β(S2 − S1)− α(T2 − T1));
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where m is the meridional volume transport or overturning. The constants f1, f2 are freshwater fluxes
containing atmospheric water vapor transport and wind-driven oceanic transport. They are multiplied
by a reference salinity S0 for conversion to a salt flux. Moreover, k is a coupling constant of flow, α, β
are expansion coefficients and T ∗i temperatures towards which the surface boxes i = 1, ..., 3 are relaxed.
The λi are thermal coupling constants and Vi volumes of boxes i = 1, ..., 4. Figure 1 illustrates the
flow. In [11] the authors apply an explicit Euler time stepping to run the model into a steady state. m

Figure 1: The Rahmstorf 4-box model

is set to zero if a negative flow rate is calculated. That means this model simulates only the flow with
an upwelling in the south and downwelling in the north, which is the present circulation direction.
For the inverse direction the advective terms of the model must be reformulated.
The disadvantage of the model is that it is not differentiable for m = 0 (or T1 = T2 and S1 = S2), but
the theory of the One-shot approach used here requires a differentiable model.

2.2 The differentiable version of the box model

Titz, Kuhlbrodt, Rahmstorf and Feudel [10] propose a coupling of the two flow directions. The ODEs
of the resulting advanced box model look as follows:

Ṫ1 = λ1(T ∗1 − T1) + m+

V1
(T4 − T1) + m−

V1
(T3 − T1)

Ṫ2 = λ2(T ∗2 − T2) + m+

V2
(T3 − T2) + m−

V2
(T4 − T2)

Ṫ3 = λ3(T ∗3 − T3) + m+

V3
(T1 − T3) + m−

V3
(T2 − T4)

Ṫ4 = m+

V4
(T2 − T4) + m−

V4
(T1 − T4)

Ṡ1 = S0f1
V 1 + m+

V1
(S4 − S1) + m−

V1
(S3 − S1)

Ṡ2 = −S0f2
V2

+ m+

V2
(S3 − S2) + m−

V2
(S4 − S2)

Ṡ3 = S0(f2−F1)
V3

+ m+

V3
(S1 − S3) + m−

V3
(S2 − S4)

Ṡ4 = m+

V4
(S2 − S4) + m−

V4
(S1 − S4)

(Box)

where for some positive a,

m+ =
m

1− e−am , m− =
−m

1− eam , m = k(β(S2 − S1)− α(T2 − T1)).

The deviation from the physically correct model becomes smaller the larger a is. Using the factors
m+ and m− the last summand nearly vanishes for a clockwise flow, i.e. m > 0, and the middle term
nearly vanishes for the opposite direction, i.e. m < 0.
In the following, we denote y = (T1, T2, T3, T4, S1, S2, S3, S4), u = (T ∗1 , T

∗
2 , T

∗
3 ) and F (y, u) as the right

hand side of the system of ODEs of the advanced box model (Box).
We used the explicit Euler time-stepping to run the model into a steady state, that means for iteration
k the next state is yk+1 = yk + ∆tF (yk, u) for ∆t > 0.
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3 The optimization problem

In this section we formulate the optimization problem. Moreover, we give an optimization result using
two black-box algorithms, namely a Quasi-Newton method with BFGS update and a gradient method,
from Matlab’s optimization toolbox (routine fminunc).
Our goal was to optimize the advanced model with respect to the restoring temperatures T ∗i for
different fresh water fluxes f1 ∈ [−0.18595, 0.15] compared to data from the more complex model
Climber 2, compare e.g. [8]. This results in a least squares problem where we want to minimize the
sum of the squared differences of the flow rate calculated from the box model and the Climber model
for different values of the freshwater flux f1.

min
u
J(y, u) :=

1
2

N∑

i=1

(m(f1,i)−mClimber,i)2 s.t. ẏ = F (y(f1,i), u) = 0 ∀i. (1)

The dependence of J on the state vector y appears due to the modeling of the overturning m(f1,i) =
m(y, f1,i) in (Box).
One straightforward method to optimize the parameters in u is to apply standard optimization al-
gorithms supplied by numerical libraries. Here we used a Quasi-Newton implementation with BFGS
update of the Hessian and a simple gradient method. Both methods are supplied in Matlab’s opti-
mization toolbox in the function fminunc with the option setting ’LargeScale’=’off’ (for both) and
’HessUpdate’=’SteepDesc’ (additionally for the gradient method, the BFGS update is the default
when this option is not set).
For each fi, i = 1, ..., N and each parameter value u during the optimization process the box model
has to be run into a steady state which takes about 400 (for small f1) to 1400 (for larger f1) explicit
Euler time steps.
For starting values u0 = [0, 0, 0], and N = 68 the optimization took

• 12 iterations needing 14 pairs of function (which means a numerically converged Euler iteration)
plus derivative evaluations (which can be a finite difference or an AD-generated derivative) with
the Quasi-Newton method to reduce the scaled cost (i.e. J/N scaled with the number of data
points N) to a value of 0.206 and

• 29 iterations with 64 pairs of function plus derivative evaluations with the gradient method to
reduce J/N to the value of 0.208,

compare Figure 2. Curves of the fitted overturning m can be seen in Figure 3.
The used line search procedure in both algorithms is the same and only takes pairs of function and
derivative computations. Thus it makes sense to compare the total number of these pairs of function
and derivative computations times the minimum number of Euler steps (needed for the pseudo time-
stepping to converge) as a measure of the effort of the two methods, in order to compare them to
the One-shot approach later on. Using this measure, it makes no difference whether we use an AD-
generated derivative (in forward mode) or one numerically approximated by finite differences. In both
cases, one such pair of function and derivative computation will take n+ 1 pseudo time-steppings, if
n denotes the number of parameters to be optimized (n = 3 in our case). For a higher number n, the
reverse mode of AD would be preferable.
In our example we obtained as lower bound:

(#function + derivative
evaluations

in the optimization)
∗

(#Euler steps per
function evaluation)





≥
{

14 · 400 = 5600 (BFGS)
64 · 400 = 25600 (Gradient)

}
(2)

The total number of Euler steps has thus to be multiplied by (n + 1), if one is interested in this
quantity.
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Figure 2: Reduction of the objective during optimization with Matlab’s Quasi-Newton method with BFGS
update (top) and gradient method (bottom).

Our aim was to compare the so-called One-shot method by A. Griewank and A. Hamdi [5] to these
results. The main idea of the method is to reach optimality while reaching feasibility, which means in
our case while running the model into a steady state. Therefore one may hope for a reasonable saving
in the total number of Euler steps needed for the optimization.

4 One-shot optimization method

In this section we want to shortly describe the One-shot method introduced in [5]. To avoid confusion
with the freshwater flux f1 we denote the cost by J instead of f as in [5]. We consider the optimization
problem in general

(P ) min
y,u

J(y, u) s.t. c(y, u) = 0,

Kratzenstein, Slawig; SPP1253 Preprint-No. SPP1253-11-03 5
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Figure 3: Curves of the fitted overturningm = m(f1) in different iterations during optimization with Matlab’s
Quasi-Newton method with BFGS update.

where J : Y ×U → R is the objective function, u ∈ U the design or parameter vector to be optimized,
given in a finite dimensional Hilbert space with dim(U) = m. Moreover, y ∈ Y the state function
where Y is a Hilbert space and c : Y × U → Y is the state equation. We assume J to be C2,1.
The idea is to reformulate the condition c(y, u) = 0 into a fixed point equation y = G(y, u) where the
iteration function G : Y × U → Y is assumed to be C2,1 with the contraction factor ρ < 1, i.e.

‖Gy(y, u)‖ = ‖G>y (y, u)‖ ≤ ρ < 1 ⇒ ‖G(y1, u)−G(y2, u)‖ ≤ ρ‖y1 − y2‖.

Here and from now on the subscripts denote the partial derivatives w.r.t y and u, respectively. In the
finite dimensional case, the associated Lagrangian to problem (P) with the adjoint ȳ ∈ Y is

L(y, ȳ, u) = J(y, u) + ȳ>(G(y, u)− y).

(y∗, ȳ∗, u∗) fulfills the first order necessary optimality condition, if it holds

0 = ∂L
∂y = Jy(y∗, u∗) + ȳ∗>Gy(y∗, u∗)− ȳ∗>,

0 = ∂L
∂ȳ = G(y∗, u∗)− y∗,

0 = ∂L
∂u = Ju(y∗, u∗) + ȳ∗>Gu(y∗, u∗).

Herewith, the following iteration is reasonable:

yk+1 = G(yk, u) to reach primal feasibility,
ȳTk+1 = ȳ>k Gy(yk, uk) + Jy(yk, uk) to reach dual feasibility, and
uk+1 = uk −B−1

k

(
Ju(yk, uk) + ȳ>k Gu(yk, uk)

)
to obtain optimality.

The update in u resembles a Quasi-Newton step. However, the matrix B must not only provide descent
of the Lagrangian, but also convergence of the combination of the three updates. The authors of [5]
suggest to choose the preconditioner B as the approximation of the Hessian of an doubly augmented
Lagrangian La multiplied by a factor σ, where

La(y, ȳ, u) =
αL
2
‖G(y, u)− y‖2 +

βL
2
‖Ny(y, ȳ, u)> − ȳ‖2 +N(y, ȳ, u)− ȳ>y,
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where N(y, ȳ, u) = J(y, u) + ȳ>G(y, u), i.e. L(y, ȳ, u) = N(y, ȳ, u) − ȳ>y, and αL > 0 and βL > 0.
The Hessian of La is approximately

αLG
>
uGu + βLN

>
yuNyu +Nuu ≈ ∇2

uuL
a.

Hamdi and Griewank prove in [5] that stationary points of problem (P) are also stationary points of
La. Furthermore, for the latter descent is provided if

B =
1
σ

(αLG>uGu + βLN
>
yuNyu +Nuu)

where

σ := 1− ρ− (1 + ‖Nyy‖
2 β)2

αLβL(1− ρ)
.

Since the calculation of second derivatives is very expensive concerning calculation costs and time, in
practice, a Low-Rank update, e.g. BFGS update, is used. It is proposed to choose αL and βL as

(αL, βL) = min
α,β

α‖Gu‖22 + β‖Nyu‖22
σ

.

Under the assumption that
√
αLβL(1− ρ) > 1 + βL

2 ‖Nyy‖ holds and ‖Nyy‖ 6= 0 we obtain

βL =
3√

‖Nyy‖2 + 3‖Nyu‖22
‖Gu‖22

(1− ρ)2 + ‖Nyy‖
2

and αL =
‖Nyu‖22βL(1 + ‖Nyy‖

2 βL)

‖Gu‖22(1− ‖Nyy‖
2 βL)

.

Griewank and Hamdi make three major assumptions which are the basis of the convergence of the
One-shot method:

1. J is a C2,1 function,

2. ∂c/∂y is always invertible such that for given u there exists only one y with c(y, u) = 0 and of
course

3. the function G ∈ C2,1 is a fixed point iteration with the contraction factor ρ < 1.

5 One-shot method for the advanced version of the 4-box model

In this section, we present the realization of the One-shot method for the advanced box model (Box).
Moreover we show how the required derivative code was generated using the software tool ADiMat,
see [1], for Algorithmic (or Automatic) differentiation (AD). Finally we explicitly compute the used
preconditioner B.

5.1 Definitions

Usually, in least squares optimization problems in climate modeling it is assumed that the starting
value u0 is not too far away from the solution u∗ and a so called correction term αcorr

2 ‖u − u0‖2 is
added to the objective function. In the 4-box model we thus add the term

αcorr
2

3∑

i=1

(T ∗i − T ∗i,0)2

to the objective J in (1).
The iteration function G is in our testings the explicit Euler time stepping. It can be proven that
the explicit Euler time stepping is a fixed point iteration and converges for step size ∆t = 1 and
parameters of the box model chosen. For a sketch of the proof we refer to the Appendix.
We remark that here G is not a function from R8 to R8, but from R8N to R8N , because the update has
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to be done simultaneously for all freshwater fluxes f1,i, i = 1, ..., N . The Jacobian Gy then is a diagonal
block matrix with entries Gy(f1,i), i = 1, ...N . Analogously the cost is a function J : R8N × R3 → R.
In our case J as a least squares functional clearly satisfies the regularity assumptions. For the assumed
regularity of G it was crucial to use the advanced or smoothed version of the box model (Box) which
eliminates the kink at states where m = 0.

5.2 Calculation of derivatives using Automatic Differentiation

For the update of the adjoint ȳ we calculated the Jacobian Gy and the gradient Jy with the automatic
differentiation tool ADiMat which uses the source code transformation approach to augment Matlab
codes, see www.sc.rwth-aachen.de/vehreschild/adimat and e.g. [1]. With the help of a Matlab
script file driver.m we developed the derived code. In the file we had to call the function to be
differentiated and declare the independent and dependent variable and the top routine. In our case
driver.m contained:

ynew = G(y, u, F1)

% ADiMat AD IVARS = y

% ADiMat AD DVARS = ynew

% ADiMat AD TOP = G

Calling adimat driver.m in the shell produces the files g G.m and g boxmodel.m. g G.m contains

function [g eulerstep, eulerstep] = g G(g y, y, u, F1)

dt= 1.0;

[g tmp boxmodell 0000, tmp boxmodell 0000]= g boxmodell(g y, y, u, F1);

g tmp G 0000= dt* g tmp boxmodell 0000;

tmp G 0000= dt* tmp boxmodell 0000;

g eulerstep= g y+ g tmp G 0000;

eulerstep= y+ tmp G 0000;

%endclear tmp boxmodell 0000 tmp G 0000 g tmp boxmodell 0000 g tmp G 0000 ;

Here, eulerstep is the original output vector called ynew in driver.m and g eulerstep is the deriva-
tive of eulerstep with respect to y multiplied by the seed matrix g y which is the identity matrix
for the computation of the full Jacobian. ADiMat provides derivatives using the forward mode of
automatic differentiation. As described in [3] costs of the calculation of the Jacobian add up to a
relatively small multiple of n times the costs for the evaluation of the function itself where n is the
dimension of the variable with respect to which to be differentiated. In our case, we have n = 8 that
means costs for the calculation of the Jacobian remain acceptably small.
Below is just a small extract of file g boxmodel.m:

function [g F, F]= g boxmodell(g y, y, u, F1)
...

g mminus= ls mquot(-g m, -m, g nenner2, nenner2);

mminus= -m/ nenner2;

g tmp boxmodell 00008= lam1* ((-g y(1)));

tmp boxmodell 00008= lam1* (Tr1+ W1- y(1));

g tmp boxmodell 00009= g mplus/ V1;

tmp boxmodell 00009= mplus/ V1;

g tmp boxmodell 00010= g y(4)- g y(1);

tmp boxmodell 00010= y(4)- y(1);

g tmp boxmodell 00011= ls mprod(g tmp boxmodell 00009,tmp boxmodell 00009,

(g tmp boxmodell 00010), (tmp boxmodell 00010));

tmp boxmodell 00011= tmp boxmodell 00009*(tmp boxmodell 00010);

g tmp boxmodell 00012= g mminus/ V1;
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tmp boxmodell 00012= mminus/ V1;

g tmp boxmodell 00013= g y(3)- g y(1);

tmp boxmodell 00013= y(3)- y(1);

g tmp boxmodell 00014= ls mprod(g tmp boxmodell 00012,tmp boxmodell 00012,

(g tmp boxmodell 00013), (tmp boxmodell 00013));

tmp boxmodell 00014= tmp boxmodell 00012* (tmp boxmodell 00013);

g F(1)= g tmp boxmodell 00008+ g tmp boxmodell 00011+g tmp boxmodell 00014;

F(1)= tmp boxmodell 00008+ tmp boxmodell 00011+tmp boxmodell 00014;

clear tmp boxmodell 00008 tmp boxmodell 00009 tmp boxmodell 00010 . . .

We noticed that tests with codes provided by ADiMat needed a lot of computational time. In our
opinion, this is mainly caused by the introduction of a Matlab class for the seed matrix in ADiMat.
Since our code is not too complex, we transformed the ADiMat output into a Matlab code with a
simple matrix instead of an object for the seed matrix. We then obtained significant time savings.
Surely, for more complex models this transformation is not that easy to handle.

5.3 The preconditioner B

As proposed in [5] and to choose an approximation to the Hessian of the doubly augmented Lagrangian,
we have to consider its components Gu, Nyu and Nuu. Here the special structure of the cost and the
model equations can be exploited. We obtain

G>uGu = ∆t2
∂F

∂u

>∂F
∂u

= ∆t2




λ2
1 0 0

0 λ2
2 0

0 0 λ2
3




Nuu = Juu + ȳ>Guu = αcorrI3 + 0

where I3 is the identity in R3×3. Since Jyu and Gyu are both zero, also Nyu is zero. We obtain for
∆t = 1 that

Lauu =




αcorr + αLλ
2
1 0 0

0 αcorr + αLλ
2
2 0

0 0 αcorr + αLλ
2
3


 and

(Lauu)−1 =




α−1
L

α−1
L αcorr+λ2

1

0 0

0 α−1
L

α−1
L αcorr+λ2

2

0

0 0 α−1
L

α−1
L αcorr+λ2

3



.

Obviously, Luu is constant which means also the preconditionerB remains constant during the iteration
process, except that the factor σ changes, because of the change in ‖Nyy‖.
We do not use the exact values of σ but inexact estimations assuming that σ decreases during the
optimization process, and such enlarging the factor 1/σ every 50 iterations by the factor 5, where
those values result from different tests which showed that the performance was best with this choice.
The values αL and βL could not be computed the way Hamdi and Griewank propose in [5], because
‖Nyu‖ = 0 and therewith also αL = 0 which contradicts the condition

√
αLβL(1− ρ) > 1 + βL

2 ‖Nyy‖.
Using this condition one can estimate that αL and βL must be large because 1 − ρ is quite small for
the explicit Euler time stepping.
For the one shot update only αL is of importance. We chose a very large αL = 1000, because the
values ‖G(y, u) − y‖ are extremely small compared to the values of J(y, u). On the contrary, the
correction factor αcorr in the objective function is kept small, i.e. αcorr,0 = 10 and is even decreased
during the iteration, such that importance is put on the minimization of the differences of the flow
rates calculated by the box model and data from the Climber model.
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Figure 4: Model output optimized by the One-shot method fit to ideal data.

6 Numerical results

In this section we present numerical results of the optimization using the One-shot approach. We first
generated ideal data by the model itself that we used instead of mClimber in (1). Then we optimized
to fit the Climber data set.

6.1 Fitting model-generated, ideal data

The first test was to fit values of the box model to ideal data which were calculated by running the
box model (Box) with values T ∗i taken from [11] into a steady state applying the explicit Euler time
stepping. The advantage of this data set is that we have a relatively smooth curve without zig-zags
as we have in the Climber data. That implies that the minimum value which should be found by the
optimization procedure is J = 0.
Stopping criteria were firstly, that the norm of the gradient of the augmented Lagrangian was less than
ε = 10−5 or secondly, there was nearly no change in the norm of ynew−y, i.e. ‖G(y, u)−y‖ < ε/103 or
thirdly, there was nearly no change in the norm of unew−u, i.e. ‖unew−u‖ < ε/105 or fourthly, there
was no change in the augmented Lagrangian, i.e. ‖Lanew−La‖ < ε/103. The One-shot procedure found
the correct solution within 2750 iterations. The calculated data nearly completely fit the provided
data as can be seen in Figure 4. For larger f1 the values were not fitted exactly which might be caused
by the fact that for larger f1 the explicit Euler time stepping needs even without optimization many
iterations to reach a steady state. Weighted by the number of different f1, which was in our testing
N = 68, the difference between the data was reduced from approximately 54 to 0.00001, see Figure 5.
The optimization stopped because there was nearly no change in the augmented Lagrangian anymore.

6.2 Fitting the Climber data

In the second test, we fit calculated values of the flow rate m to data from the Climber model which
were also used in [9] and [11]. We did not expect to achieve a curve that totally fits the Climber data,
and thus not a minimum value of J = 0. Here too, the One-shot method found an acceptable solution,
see Figure 7. The scaled cost (J/N , again N denoting the number of data points) was reduced to a
value of 0.18 within 2175 iterations, see Figure 6. Again the optimization stopped because there was
nearly no change in the augmented Lagrangian anymore.
To investigate the numerical effort we compared the number of steps in the One-shot optimization
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Figure 5: Reduction in the objective function achieved by the One-shot method in the fit to ideal data.

Figure 6: Reduction in the objective function achieved by the One-shot method in the fit to data from Climber.

(each step can be seen as a single Euler step for the coupled system of state, adjoint, and parameter)
to the number of pairs of function + derivative computations times Euler steps for the Quasi-Newton
and gradient optimizers, respectively. Thus we have in this test case a relation of

Quasi-Newton method : One-shot approach = 5600 : 2175 ≈ 2.6 : 1
Gradient method : One-shot approach = 25600 : 2175 ≈ 11.8 : 1.

7 Preliminary Summary and Outlook

The One-shot method proved to be a useful tool to find a solution to least squares problems where the
goal was to optimize parameters of the advanced box model (Box). The obtained numerical optimum
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Figure 7: Model output optimized by the One-shot method fit to data from Climber.

for the One-shot method was slightly better, moreover the total number of needed time steps was
reduced significantly. The results are summarized in Table 1 and Figure 8.

Method final cost # optimi- # function # Euler
function value zation + derivative steps

(scaled by steps evaluations (∗lower
number of bound)

data points)
Quasi-Newton 0.206289 12 14 5600∗

Gradient 0.207861 29 64 25600∗

One-shot 0.182514 2175 1 2175
Table 1: Comparison of optimization results and effort for the three tested optimization methods. Important
numbers for the runtime are those in the last column. For the total numbers of Euler steps the values of the
last column have to be multiplied by (n+ 1) when using finite differences or forward mode AD.

Since in our tests those parameters u occur only linearly in the model description, derivatives with
respect to u become simple. However, as we have applied an AD tool for the calculation of derivatives
with respect to y, that tool could also be used to calculate derivatives with respect to u and therefore,
also for other parameters the One-shot method could be a good optimization tool. That will be
analyzed in future tests. Of course, improvements could be made by applying a line-search procedure
or by calculating better values for ‖Nyy‖ such that the factor 1/σ of the preconditioner B corresponds
to the theory done in [5].
One future goal then is to apply the One-shot method on different parameters of the box model, and
more complex equations in ocean or climate modeling.

Appendix: Contraction property of the explicit Euler scheme for the
box model

We want to prove that for the advanced box model (Box), the explicit Euler time stepping is a
contraction. Therefore, we show that ‖Gy‖ < 1. We have Gy(y, u) = I + ∆tFy(y, u). We choose the
‖ · ‖∞ norm. Here, we analyze in detail only the first line. We compute
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Figure 8: Comparison of cost function reduction w.r.t. to number of Euler steps for the three tested optimiza-
tion methods. W.r.t. the Euler steps, the optimization by the One-Shot method is nearly done when the other
two methods have finished their first optimization steps.

8∑

j=1

|Gy(y, u)1,j | =

= |1 + ∆t
(
−λ1 +

1
V1

(−(m+ +m−) +
αk(1− e−am)− αkame−am

(1− e−am)2
(T4 − T1)

+
−αk(1− eam)− αkameam

(1− eam)2
(T3 − T1))

)
|

+
∆t
V1
|−αk(1− e−am) + αkame−am

(1− e−am)2
(T4 − T1) +

αk(1− eam) + αkameam

(1− eam)2
(T3 − T1)|

+
∆t
V1

(|m−|+ |m+|)

+
∆t
V1
|−βk(1− e−am) + βkame−am

(1− e−am)2
(T4 − T1) +

βk(1− eam) + βkameam

(1− eam)2
(T3 − T1)|

+
∆t
V1
|βk(1− e−am)− βkame−am

(1− e−am)2
(T4 − T1) +

−βk(1− eam)− βkameam
(1− eam)2

(T3 − T1)|

= |1 +
∆t
V1

(
−V1λ1 +−(m+ +m−) +

αk(1− am+e−am)
1− e−am (T4 − T1)

−αk(1− am−eam)
1− eam (T3 − T1)

)
|+ ∆t

V1
(|m−|+ |m+|)

+
∆t
V1
| − βk(1− am+e−am)

1− e−am (T4 − T1) +
βk(1− am−eam)

1− eam (T3 − T1)|

+
∆t
V1
|βk(1− am+e−am)

1− e−am (T4 − T1)− βk(1− am−eam)
1− eam (T3 − T1)|
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Under the condition that
|1−∆t(−λ1 +

1
V1

(−(m+ +m−))| ≥ 0,

which is the case if
∆t ≤ 1/(λ1 + V −1

1 (m+ +m−)),

and since the fractions in front of T4−T1 and T3−T1, respectively, are positive, we obtain the inequality

8∑

j=1

|Gy(y, u)1,j | ≤ |1 +
∆t
V1

(−V1λ1 +−(m+ +m−))|+ ∆t
V1

(|m−|+ |m+|)

+
∆t
V1

2(α+ β)k(1− am+e−am)
1− e−am |T4 − T1|

+
∆t
V1

2(α+ β)k(1− am−eam)
1− eam |T3 − T1|.

Finally, it holds 1 >
∑8

j=1 |Gy(y, u)1,j | if

1 > 1−∆tλ1 +
∆t
V1

2(α+ β)k(1− am+e−am)
1− e−am |T4 − T1|

+
∆t
V1

2(α+ β)k(1− am−eam)
1− eam |T3 − T1|,

λ1 >
2(α+ β)k(1− am+e−am)

V1(1− e−am)
|T4 − T1|+

2(α+ β)k(1− am−eam)
(V1(1− eam)

|T3 − T1|

We remark that those limitations on ∆t and λ1 are easily to fulfill because the box volume V1 is very
large, i.e. V1 >> 1.
Similar restrictions can be made for all lines of Gy, such that one can choose parameters such that
for all i = 1, ..., 8 the sum

∑8
j=1 |Gy(y, u)i,j | is less than one and the explicit Euler time stepping is a

contraction.
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[7] Emre Özkaya and Nicolas Gauger. Single-step one-shot aerodynamic shape optimization. Preprint
SPP1253-10-04, 2008.

[8] S. Rahmstorf, V. Brovkin, M. Claussen, and C. Kubatzki. Climber-2: A climate system model
of intermediate complexity. part ii: Model sensitivity. Clim. Dyn., 17:735–751, 2001.

[9] Thomas Slawig and Kirsten Zickfeld. Parameter optimization using algorithmic differentiation in
a reduced-form model of the atlantic thermohaline circulation. Nonlinear Analysis: Real World
Applications, 5/3:501–518, 2004.

[10] Sven Titz, Till Kuhlbrodt, Stefan Rahmstorf, and Ulrike Feudel. On freshwater-dependent bi-
furcations in box models of the interhemispheric thermohaline circulation. Tellus A, 54:89 – 98,
2002.

[11] Kirsten Zickfeld, Thomas Slawig, and Stefan Rahmstorf. A low-order model for the response of
the atlantic thermohaline circulation to climate change. Ocean Dynamics, 54:8–26, 2004.

Kratzenstein, Slawig; SPP1253 Preprint-No. SPP1253-11-03 15



Author’s Copy

Oneshot Parameter Identification -

Simultaneous Model Spin-up and Parameter

Optimization in a Box Model of the North Atlantic

Thermohaline Circulation

Claudia Kratzenstein∗, Thomas Slawig†

(Published on the Preprint server of the DFG-SPP 1253 in September 2009; available at:
http://www.am.uni-erlangen.de/home/spp1253/wiki/images/7/7c/Preprint-SPP1253-082.pdf)

Abstract

Parameters of a box model of the north Atlantic thermohaline circulation are optimized to fit the
model results, i.e. the overturning, to data given by a more detailed climate model of intermediate
complexity. Since the model is run into a steady state by a pseudo time-stepping, efficient tech-
niques are necessary to avoid extensive recomputations and/or storing when using adjoint-based
gradient representations for local optimization algorithms. The preconditioned Oneshot approach
studied by Hamdi and Griewank that simultaneously updates state, adjoint and parameter values,
is applied to this nonlinear climate model. For the required partial derivatives, a software tool of
Algorithmic/Automatic Differentiation, namely TAF, was used. Numerical results are compared
to results obtained by the BFGS-Quasi-Newton method.

Keywords: Parameter optimization, pseudo time-stepping, fixed point solver, climate model, auto-
matic differentiation, bounded retardation

1 Introduction

Parameter optimization is an important task in all kind of climate models or models that simulate
parts of the climate systems, as for example ocean or atmospheric models. Still, some processes are
not well-known, some are too small-scaled in time or space, and others are just beyond the scope of the
model. All these processes are parameterized, i.e. simplified model functions (parameterizations) are
used. These necessarily include lots of – most of the time – only heuristically known parameters. A
main task thus is to calibrate the models by optimizing the parameter w.r.t. to data from measurements
or other (more complex) models.
Similar to many applications in engineering applications of fluid mechanics, also in geophysical flows
(e.g. ocean models) an optimization is at first performed for steady states of the equations before
proceeding to transient problems. This means that only the stationary solution is used in the cost
or objective function to be minimized. Moreover (and this the second point where engineering and
geophysical flow problems are similar), the computation of steady states is often performed by running
a transient model into the steady state. This strategy is called pseudo time-stepping, since the time
variable may be regarded as a kind of iteration counter.
It is well known from optimal control of differential equations that the classical adjoint technique
(that allows the representation of the gradient of the cost) leads to a huge amount of recomputations,
storing or both. This problem looks even more annoying in the pseudo-time stepping context, since
here only the final, numerically converged state is important for the cost. Nevertheless a classical
adjoint technique would need all intermediate iterates.
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If the number of parameters to be optimized is small, a sensitivity equation approach is also reasonable.
On the discrete level this is comparable to the application of the forward mode of Automatic or
Algorithmic Differentiation (AD). Here, the sensitivity equation has the same temporal integration
direction (namely forward) as the original pseudo time-stepping. But nevertheless it is worth while
investigating how the two (for a non-linear model) coupled iterations for state and sensitivity are
performed.
Griewank described in [4] the differences between two-phase (where the iteration for the state is run
to the steady state or fixpoint first, and then the sensitivity is computed) and piggy-back approaches
(where both iterations are combined to one). Christianson in [2] proposed to perform the sensitivity
iteration with the converged state instead of using its iterates. Giering, Kaminski and Vossbeck in
[7] used the so-called Full Jacobian approach, where they directly used the steady state equation and
differentiated it to obtain an equation for the gradient.
The approach used here is called Oneshot approach, was developed by Griewank and Hamdi, and can
be seen as an extension of the piggy-back strategy aiming for optimality and feasibility simultaneously
with so-called bounded retardation. That means that the number of Oneshot iterations shall not
too much exceed the number of fixed point iterations necessary for the model spin-up itself. The
theoretical results were published in [6],[5], an engineering application was presented by Özkaya and
Gauger in [9].
In this paper, we apply the Oneshot approach to a box model of the North Atlantic. The authors have
analysed the Oneshot approach for this ocean model already in [8], but with only three optimization
parameters and comparatively simple derivatives due to the linear appearance of the parameters in
the model. We want to minimize the differences between the output of the steady state of the model
compared to data given by a more complex coupled climate model. The box model is a non-linear
ODE system with eight equations for temperatures and salinities in four ocean compartments. As
parameters to be optimized we choose here altogether six model parameters which include the so-
called restoring temperatures, which can be seen as counterparts of the three surface temperatures,
two coupling constants, and a parameter influencing the deviation from the physically correct model.
Here, the parameters enter in an nonlinear fashion resulting in so-called non-separable adjoints where
the adjoint is no longer the sum of a term on the state and a term on design.
The outline of this paper is the following. In the next section we describe the box model in its original
version and in a modified, differentiable version that we used here. In Section 3 we present the
formulation of the optimization problem. In the fourth section we briefly review the Oneshot method,
and analyse its theoretical basis, namely the assumptions for convergence, in the next section in the
particular case of the box model. In Section 6 we present details of the implementation and numerical
results of the Oneshot method comparing the latter with results obtained by the BFGS-Quasi-Newton
approach. Finally, in Section 7, we give some concluding remarks and an outlook to future work.

2 The Box Model of the Thermohaline Circulation

In this section we present the formulation of the climate model, which we examine, a so-called box
model. We start with the original version by S. Rahmstorf et. al. [13] and proceed with an advanced
version which provides a differentiable right-hand side of the ODE system. Moreover, we describe the
applied time-stepping scheme.

2.1 Introduction to the 4-Box Model

The basic 4-box model of the Atlantic Thermohaline Circulation described by S. Rahmstorf, K. Zick-
feld and T. Slawig [13] simulates the flow rate of the Atlantic Ocean known as the ’conveyor belt’,
carrying heat northward and having a significant impact on climate in northwestern Europe. Temper-
atures Ti and salinity differences Si in four different boxes i = 1, ..., 4, the southern, northern, tropical
and the deep Atlantic, are the characteristics inducing the flow rate. The surface boxes exchange heat
and freshwater with the overlying atmosphere, which causes a pressure-driven circulation. The follow-
ing nonlinear system of ordinary differential equations describes the flow for the present circulation
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direction.

Ṫ1 = λ1(T ∗1 − T1) + m
V1

(T4 − T1) Ṡ1 = S0f1
V1

+ m
V1

(S4 − S1)

Ṫ2 = λ2(T ∗2 − T2) + m
V2

(T3 − T2) Ṡ2 = −S0f2
V2

+ m
V2

(S3 − S2)

Ṫ3 = λ3(T ∗3 − T3) + m
V3

(T1 − T3) Ṡ3 = S0(f2−f1)
V3

+ m
V3

(S1 − S3)

Ṫ4 = m
V4

(T2 − T4) Ṡ4 = m
V4

(S2 − S4)

m = k(β(S2 − S1)− α(T2 − T1));

where m is the meridional volume transport or overturning. The constants f1, f2 are freshwater fluxes
containing atmospheric water vapor transport and wind-driven oceanic transport. They are multiplied
by a reference salinity S0 for conversion to a salt flux. Moreover, k is a hydraulic constant linking
volume transport m to the density difference, α, β are expansion coefficients and T ∗i temperatures
towards which the surface boxes i = 1, ..., 3 are relaxed. λi are individual coupling constants computed
from the thermal coupling constant Γ and the respective box thickness. Vi are the volumes of boxes
i = 1, ..., 4. Figure 1 illustrates the flow.
In [13] the authors apply the Explicit Euler time stepping to run the model into a steady state. m is

Figure 1: The Rahmstorf 4-box model

set to zero if a negative flow rate is calculated. That means this model simulates only the flow with
an upwelling in the south and downwelling in the north, which is the present circulation direction.
For the inverse direction the advective terms of the model must be reformulated.
The disadvantage of the model is that it is not differentiable for m = 0, but the theory of the Oneshot
approach used here requires a differentiable model.

2.2 The Differentiable Version of the Box Model

Titz, Kuhlbrodt, Rahmstorf and Feudel [12] propose a coupling of the two flow directions to obtain a
smoothed version of the box model. The ODEs of the resulting advanced box model look as follows:

Ṫ1 = λ1(T ∗1 − T1) + m+

V1
(T4 − T1) + m−

V1
(T3 − T1)

Ṫ2 = λ2(T ∗2 − T2) + m+

V2
(T3 − T2) + m−

V2
(T4 − T2)

Ṫ3 = λ3(T ∗3 − T3) + m+

V3
(T1 − T3) + m−

V3
(T2 − T4)

Ṫ4 = m+

V4
(T2 − T4) + m−

V4
(T1 − T4)

Ṡ1 = S0f1
V 1 + m+

V1
(S4 − S1) + m−

V1
(S3 − S1)

Ṡ2 = −S0f2
V2

+ m+

V2
(S3 − S2) + m−

V2
(S4 − S2)

Ṡ3 = S0(f2−F1)
V3

+ m+

V3
(S1 − S3) + m−

V3
(S2 − S4)

Ṡ4 = m+

V4
(S2 − S4) + m−

V4
(S1 − S4)

(Box)

Kratzenstein, Slawig; SPP1253 Preprint-No. SPP1253-082 3
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where for some positive a,

m+ =
m

1− e−am , m− =
−m

1− eam , m = k(β(S2 − S1)− α(T2 − T1)).

The deviation from the physically correct model becomes smaller the larger a is, because using the
factors m+ and m− the last summand nearly vanishes for a clockwise flow, i.e. m > 0, and the middle
term almost vanishes for the opposite direction, i.e. m < 0, as shown in figure 2.

Figure 2: m+ and m− for a = 10 and a = 100 and m close to 0.

3 The Optimization Problem

In this section we formulate the optimization problem.
Our goal is to optimize the smoothed model with respect to the restoring temperatures T ∗i , i = 1, 2, 3,
the coupling constant k, the thermal coupling constant Γ which appears in the calculation of λi and
the parameter a. This is done by fitting the obtained overflow m for different fresh water fluxes
f1 ∈ [−0.18595, 0.15] to data mClimber from the more complex ocean model Climber 2, compare e.g.
[10]. m has to be multiplied by a factor δ = reference boxvolume

106∗seconds per year
≈ 3170.98 for conversion into the

overflow unit in the Climber model.
This results in a least squares problem where we minimize the sum of the squared differences of the
flow rate calculated from the box model and from the Climber model for N different values of the
freshwater flux f1. A penalty term αw

2 ‖u − u0‖22, αw > 0, is added to keep the model parameters
u = (T ∗1 , T

∗
2 , T

∗
3 ,Γ, k, a) near estimated values u0 which act as the starting value. Otherwise, model

parameters might get too far away from real world values.
In the following, we denote the state yi = y(f1,i) = (T1, T2, T3, T4, S1, S2, S3, S4)i, i = 1, ..., N , model
parameters u = (T ∗1 , T

∗
2 , T

∗
3 ,Γ, k, a) as above, and F (y, u) as the right hand side of the system of ODEs

of the advanced box model (Box). Hence, the minimization problem is

min
y,u

J(y, u) :=
1
2
‖δm−mClimber‖22 +

αw
2
‖u− u0‖22

s.t. ẏ(f1,i) = F (y(f1,i), u),∀i = 1, ..., N.

Here, m and mClimber are vectors of dimension N , where the ith component is the value of the over-
flow for f1,i. y(f1,i) is the set of temperatures and salinities for the ith value of f1, respectively. The
dependence of J on the state vector y appears due to the modeling of the overturning m = m(y) in
(Box).
The straightforward method to optimize the parameters u is to apply a standard optimization al-
gorithm. For comparison with the Oneshot approach, we use a Quasi-Newton implementation with
BFGS update of the Hessian. See chapter 6 for results.
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In this case, for each f1,i, i = 1, ..., N , and each parameter value u during the optimization process the
box model has to be run into a steady state,

Figure 3: A typical Explicit Euler run

i.e. in our testings ‖yk+1 − yk‖ < ε = 10−6 for itera-
tion index k. That takes about 400 (for small f1) up
to 11, 000 (for larger f1) Explicit Euler time steps. A
typical Explicit Euler run is illustrated in figure 3.
The required derivatives are AD-generated with the
reverse mode of TAF [3]. The reverse mode is chosen
to satisfy a bounded computational cost deterioration.
That means the cost of an optimization shall be inde-
pendent of the number of parameters to be optimized.
We remark that with only 6 parameters in our opti-
mization problem, the reverse mode is only slightly
cheaper than the forward mode, and therefor is not
mandatory.
Compared to more complex climate models, here the
Euler time step evaluation is not too expensive. How-
ever, during the optimization process a large number
of Explicit Euler time steps will accumulate and for derivative calculation a huge amount of recompu-
tations, storing or both is necessary. To avoid this, we apply the so-called One-Shot method which is
depicted in the following section.

4 The Oneshot Optimization Strategy

In this section we shortly describe the Oneshot method introduced by Griewank and Hamdi [6]. To
avoid confusion with the freshwater flux f1 we denote the cost by J instead of f as in [6]. We consider
the optimization problem in general

(P ) min
y,u

J(y, u) s.t. c(y, u) = 0,

where J : Y ×U → R is the objective function, u ∈ U the design or parameter vector to be optimized,
given in a finite dimensional Hilbert space with dim(U) = m. Moreover, y ∈ Y is the state where Y
is a Hilbert space and c : Y × U → Y is the state equation. We assume J to be C2,1.
The idea is to reformulate the condition c(y, u) = 0 into a fixed point equation y = G(y, u) where the
iteration function G : Y × U → Y is assumed to be C2,1 with the contraction factor ρ < 1, i.e.

‖G(y1, u)−G(y2, u)‖ ≤ ρ‖y1 − y2‖, ∀y1, y2 ∈ Y.

In practice, the function G is simply the numerical method originally applied to solve the system
c(y, u) = 0.
Here and from now on, the subscripts denote the partial derivatives w.r.t y and u, respectively. In the
finite dimensional case, the associated Lagrangian to problem (P) with the adjoint ȳ ∈ Y is

L(y, ȳ, u) = J(y, u) + ȳ>(G(y, u)− y).

(y∗, ȳ∗, u∗) fulfills the first order necessary optimality condition, if it holds

0 = ∂L
∂y = Jy(y∗, u∗) + ȳ∗>Gy(y∗, u∗)− ȳ∗>,

0 = ∂L
∂ȳ = G(y∗, u∗)− y∗,

0 = ∂L
∂u = Ju(y∗, u∗) + ȳ∗>Gu(y∗, u∗).

Herewith, the following iteration is reasonable:

yk+1 = G(yk, uk) to reach primal feasibility,

ȳTk+1 = ȳ>k Gy(yk, uk) + Jy(yk, uk) for dual feasibility, and

uk+1 = uk −B−1
k

(
Ju(yk, uk) + ȳ>k Gu(yk, uk)

)
to obtain optimality.
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The update in u resembles a Quasi-Newton step. However, the matrix B must not only provide descent
of the Lagrangian, but also convergence of the combination of the three updates. Furthermore, the
goal is to achieve bounded retardation which means that convergence of the coupled system shall not
be much slower than the convergence of the fixed point iteration G characterized by the contraction
factor ρ.
The authors of [6] suggest to choose the preconditioner B as the approximation of the Hessian of the
doubly augmented Lagrangian La multiplied by a factor σ, where

La(y, ȳ, u) =
αL
2
‖G(y, u)− y‖2 +

βL
2
‖Ny(y, ȳ, u)> − ȳ‖2 +N(y, ȳ, u)− ȳ>y,

where αL > 0 and βL > 0 are weighting coefficients, and N is the shifted Lagrangian N(y, ȳ, u) =
J(y, u) + ȳ>G(y, u), i.e. L(y, ȳ, u) = N(y, ȳ, u)− ȳ>y. The Hessian of La is approximately

αLG
>
uGu + βLN

>
yuNyu +Nuu ≈ ∇2

uuL
a.

Hamdi and Griewank prove in [6] that stationary points of problem (P) are also stationary points of
La. Furthermore, for the latter descent is provided if

B =
1
σ

(αLG>uGu + βLN
>
yuNyu +Nuu) (1)

where

σ := 1− ρ− (1 + ‖Nyy‖
2 βL)2

αLβL(1− ρ)
.

Since the calculation of second derivatives is very expensive concerning calculation costs and time, in
practice, a Low-Rank update, e.g. BFGS update, can be used. It is proposed to choose αL and βL as

(αL, βL) = min
α,β

α‖Gu‖2 + β‖Nyu‖2
σ

.

Under the assumption that
√
αLβL(1− ρ) > 1 + βL

2 ‖Nyy‖ holds and ‖Nyy‖ 6= 0 we obtain

βL =
3√

‖Nyy‖2 + 3‖Nyu‖2
‖Gu‖2 (1− ρ)2 + ‖Nyy‖

2

and αL =
‖Nyu‖2βL(1 + ‖Nyy‖

2 βL)

‖Gu‖2(1− ‖Nyy‖
2 βL)

.

Griewank and Hamdi make three major assumptions which are the basis of the convergence of the
Oneshot method:

1. J is a C2,1 function,

2. ∂c/∂y is always invertible such that for given u there exists only one y with c(y, u) = 0 and of
course

3. the function G ∈ C2,1 is a fixed point iteration with the contraction factor ρ < 1.

5 Oneshot Method for the Advanced Version of the Box Model

Now, we present the realization of the Oneshot method for the advanced box model (Box).
In our investigations, we test the Oneshot method staying very close to the theoretical approach
described by Griewank and Hamdi in [6]. That means, we calculate the preconditioner B defined in
(1) in every iteration including all first and second order derivatives. It is also possible to use a BFGS
update with respect to the doubly augmented Lagrangian La to save computational time and costs.
As already pointed out in section 3 the minimization problem to be solved is

min
y,u

J(y, u) :=
1
2
‖δm−mClimber‖22 +

αw
2
‖u− u0‖22

s.t. ẏ(f1,i) = F (y(f1,i), u),∀i = 1, ...N.
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From now on we consider y as the “long” vector y> = (y(f1,1)>, ..., y(f1,N )>) ∈ R8N , such that the
fixed point function G replacing the constraint by y = G(y, u) is from R8N to R8N . The Jacobian Gy
then is a diagonal block matrix with entries Gy(f1,i), i = 1, ..., N . Analogously, the cost function is of
dimension J : R8N × R6 → R.

5.1 Verification of Oneshot Strategy Convergence for the Box Model

In chapter 4, we state that there are three major assumptions for the convergence of the Oneshot
method. We check their validity in this section.
In our case J as a least squares functional satisfies the regularity assumptions J ∈ C2,1. For the
assumed regularity of G it is crucial to use the advanced or smoothed version of the box model (Box)
which eliminates the kink at states where m = 0. Then, we also have that the Explicit Euler time
stepping G(y, u) = y + F (y, u) is a C2,1 function.
The sufficient and necessary conditions for the function G, to be a contraction are

‖Gy(y, u)‖ ≤ ρ < 1, ∀y ∈ Y and
‖G(y1, u)−G(y2, u)‖ ≤ ρ‖y1 − y2‖, ∀y1, y2 ∈ Y, ρ < 1

respectively.
It was not possible to show that these two conditions hold for all y ∈ Y . In fact, they are not valid
for all iterates yk, see figure 5.
However, the Explicit Euler time stepping works for the advanced version of the box model in all
our testings. Figure 4 shows Explicit Euler runs for different starting values y0 and different model
parameters u. Even for bad starting values, the Explicit Euler method converges to the same stationary
value as with good starting values. Also for bad model parameters the procedure converges.
Considering the ratio

‖G(yk, u)−G(yk−1, u)‖
‖yk − yk−1‖

=
‖yk+1 − yk‖
‖yk − yk−1‖

in our testings, it is close to 1 for all freshwaterfluxes f1 and in average less than 1, cp. figure 4. The
largest amount of values greater than 1 appears for f1 = −0.0259, which is about 16% of overall 411
iterations. For f1 = 0.1341, the smallest percentage of ratios greater than 1,namely 0.2% of 10, 880
iterations, occurs as shown in figure 5. We notice that even thought the contraction property cannot
be proven and the ratio even exceeds 1 for several steps in a row in our example, we still find acceptable
solutions in all our testings.
As the Explicit Euler time stepping shows slow convergence, one cannot expect the Oneshot method
to converge fast in this special example.
The assumption ∂c/∂y being always invertible is equivalent to G converging to a unique limit y∗ =
y∗(u) for fixed u. As above this assumption could not be proven and even numerical tests show that
there are cases, where the ∂c/∂y is singular. Nevertheless, here too, as shown in figure 4 in practice
G converges for fixed u but different starting values y0 to the same stationary state y∗ = y∗(u).
We remark that it is absolutely not unusual in climate modeling that theoretical analysis cannot be
provided because of the complexness of real world models. In case of the optimization strategy, its
quality and usefulness is even more convincing if good results are achieved even though convergence
assumptions are not fulfilled.

5.2 Calculation of Derivatives Using Automatic Differentiation

For the update of the adjoint ȳ and model parameters u which requires the determination of the
preconditioner B we calculate the necessary first and second order derivatives with the automatic
differentiation tool TAF which uses the source code transformation approach to generate Fortran
subroutines to calculate function values and derivative information in one call, see [3].
In contrast to derivative calculation in the BFGS method, where in the reverse mode it is necessary
to store all Euler steps until a steady state is reached, here the required derivatives only depend on
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Figure 4: Convergence behaviour of the Explicit Euler time stepping

the current values.
The forward mode of TAF is used for Gu, the reverse mode for ȳ>Gy and for the second order
derivatives ȳ>Gyu and ȳ>Gyy first the reverse and then the forward mode is applied. Derivatives Ju,
Jy, Jyu and Jyy can easily be provided by hand, as done in the appendix.
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Figure 5: Ratio ‖yk+1 − yk‖/‖yk − yk−1‖ for different f1

6 Numerical Results

In this section, we present numerical results comparing the Oneshot strategy with the popular Quasi-
Newton-BFGS method. Before that, we describe some details of the implementation.
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6.1 Details of the Implementation

In our test cases we have N = 68 different values for freshwater fluxes f1 in the interval [−0.18595, 0.15]
with a spacing of 0.005 between the f1,i, i = 1, ...N . The overturning mClimber in the Climber model
then is between 4.965∗10−8 and 29.301 as shown in figure 6. One can see that there are some kinks in
the data points, for example between f1 ∈ [0.05, 0.07] and f1 ∈ [0.14, 0.15]. Since the overturning m
computed with the boxmodel continuously depend on f1, an exact fit to those data points will most
likely not be achievable.
As proposed in [13], we choose the starting vector y>0 = (y0(f1,1)>, ..., y0(f1,N )>) as the corresponding
equilibrium temperatures and salinities derived from the present day overturning meq = 22.6 Sverdrup
for all f1,i.
We take u0 = (6.6, 2.7, 11.7, 23, 25, 500)> as starting values of the model parameters to be opti-
mized where components 1 to 5 are values close to optimal values of the original box model in [13]
and u(6) = a is chosen from tests with the advanced box model which possess good performance.

Figure 6: Data from the Climber model

As stopping criterion, we set that the change in the
state y ∈ R8N is less than ε = 10−6 or the gradient of
J is almost 0, i.e. ‖∇J‖ < ε.
For the update of the weighting coefficients αL, βL and
σ, the contraction factor ρ of the Explicit Euler time
stepping is necessary, which we set to a value close to
1, namely ρ = 0.9, due to the inability to calculate an
exact value (compare subsection 5.1).
Now, we describe, how ‖Nyy‖ is determined for the
evaluation of σ, αL and βL. We choose the spectral
norm ‖ · ‖2 for all matrix norms in our investigations.
On the one hand, we determine ‖Gu‖2 and ‖Nyu‖2
with the help of the Sun Performance Library for For-
tran [1] computing the Eigenvalues of G>uGu ∈ R6×6

and N>yuNyu ∈ R6×6.
On the other hand, we apply the power iteration algo-
rithm, see [11], to determine the dominant Eigenvalue of the matrix N>yyNyy. Starting with a random
vector b0, we define

µk =
b>k N

>
yyNyybk

b>k bk
and bk+1 =

N>yyNyybk

‖N>yyNyybk‖
.

If an eigenvalue strictly greater than the other eigenvalues exists and b0 has a nonzero component
in the direction of an eigenvector associated with the dominant eigenvalue, a subsequence of (bk)
converges to that eigenvector associated to µ. Then, it is ‖Nyy‖2 =

√
µ.

In our case, it is N(y, u) = J(y, u) + ȳ>G(y, u) and therefore

Nyy(y, u) = Jyy(y, u) + ȳ>Gyy(y, u).

For the calculation of Nyybk we determine ȳ>Gyybk with a TAF generated subroutine and Jyybk by
hand. Afterwards, a second call of the TAF generated subroutine for the evaluation of ȳ>Gyy(Nyybk)
is necessary to determine N>yyNyybk = (Jyy + ȳ>Gyy)>Nyybk. Again, J>yyNyybk can be analyzed by
hand.
However, we take a look at the effect of computing ‖Nyy‖2 in every iteration in our case of the 4-box
model: In our testings, the dominant part of N>yyNyy is the constant matrix J>yyJyy which in our
implementation contains entries of range 105 (compare appendix), whereas ȳ>Gyy which is a factor
in all other summands is of range 10−1. For this reason, ‖Nyy‖2 does not change significantly from
iteration to iteration and we test how the Oneshot strategy reacts if the power iteration is applied
only every 1000 and every 10000 steps. Therefore, an inaccuracy in the computation of σ, αL and βl
is the result. In our case, as one can see in table 1, this simplification does not significantly influence
the optimization, but saves calculation time.
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#iterations time in minutes J(y∗, u∗) fit
every 10000 iterations 1,037,804 6.174 14.879 14.053
every 1000 iterations 1,010,011 6.148 14.879 14.053
every iteration 1,015,563 10.394 14.879 14.053

Table 1: Application of the power iteration not in every iteration and its effect on the Oneshot optimization
for αw = 0.1

In our calculations the weighting coefficient βL becomes very small in the range of 10−5 whereas αL
then is large, i.e. in the range of 105. Since N>yuNyu contains quite large values and G>uGu only small
ones, we can assume that the weighting coefficients are well chosen for the update of B.
Therewith, we can now investigate the behaviour of the Oneshot optimization strategy applied to the
4-box-model.

6.2 Comparison Between the BFGS and Oneshot Strategies for Different αw

In this section, we describe our observations concerning the optimization behaviour with respect to
the choice of the factor αw in front of the penalty term ‖u − u0‖. It is of crucial importance for the
convergence and the result of the optimization.
First of all, we find that αw must not be 0, because otherwise the Oneshot method does not converge.
The BFGS method finds optimal values u∗ with ∂J

∂u (u∗) = 0, but those are too far away from reality.
Not surprisingly, one detects that the smaller αw the better the fit of the data becomes. In figure 7

Figure 7: Results computed by the Oneshot method for different αw

we can see that especially for large f1 the fit becomes better and also for values in front of the kink
at f1 ≈ 0.06.
Figure 8 illustrates a comparison between the fit provided by the Oneshot method and BFGS. The
results differ only slightly. Whereas for αw = 0.001 the BFGS method fits data better for small f1, the
Oneshot strategy reaches better results for large f1. In the case αw = 10 there is only one data point
where the fit differs between the two optimization strategies, namely the Oneshot method achieving
a better value.
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Figure 8: Results of the optimization comparing the Oneshot strategy with the BFGS method. At the top for
αw = 0.001, at the bottom for αw = 10.
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Figure 9: The cost function J(y, u) w.r.t. the number of Euler steps.

Table 2 lists our observations concerning the function value (including the penalty term) at optimal
values found by the two optimization strategies, the fit averaged over the number of data points, the
number of iterations, and the overall number of Euler steps. We obtain better results for αw = 10
and αw = 0.1 with the Oneshot strategy, whereas BFGS finds a better result for αw = 0.001. That
confirms again, that the weighting coefficient in front of the penalty term must not be too small
otherwise the Oneshot method has difficulties in finding acceptable model parameters.

αw = 10 αw = 0.1 αw = 0.001

Oneshot BFGS Oneshot BFGS Oneshot BFGS

J(y∗, u∗) 25.854 26.221 14.879 15.926 12.748 11.411
data fit 0.269 0.277 0.206 0.213 0.183 0.166
# iterations 1,269,019 20 1,010,011 28 10,678,000 65
# Euler steps 1,269,019 1,285,203 1,010,011 1,808,823 10,678,000 4,236,481

Table 2: Results of the optimization

Concerning computational time, the BFGS method is a little bit faster and only in the case where
αw = 0.001 even significantly with 8 minutes compared to 45 minutes. We remark, that the Oneshot
stopping criterion, namely that the change in the “long” vector y ∈ R544 is less than ε = 10−6, is
stricter than the Euler stopping criterion within the BFGS method where for each fi, i = 1, ..., 68,
the change in the “short” vectors yi ∈ R8 is less than ε = 10−6. That means, the BFGS method saves
Euler steps and therewith computational time, but all in all it still needs more Euler steps than the
Oneshot method. Furthermore, the Oneshot strategy is much faster close to the solution than BFGS,
as illustrated in figure 9, and one could save iterations mitigating the stopping criterion.

6.3 Bounded Retardation

The goal was to achieve so-called bounded retardation for the speed of convergence. Since the Explicit
Euler time stepping does not show quick convergence and ratios ‖yk+1−yk‖/‖yk−yk−1‖ even exceed 1
for several steps, one cannot expect the Oneshot method to converge very fast in this special example.
In our testing, the Oneshot method shows a similar behaviour as the Explicit Euler time stepping.

Kratzenstein, Slawig; SPP1253 Preprint-No. SPP1253-082 13
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Figure 10: Ratio ‖yk+1 − yk‖/‖yk − yk−1‖ during the Oneshot optimization for αw ≈ 0.1

The ratio ‖yk+1 − yk‖/‖yk − yk−1‖ is close to 1 as can be seen in figure 10.
In this figure, it seems that the ratio is larger than or equal to 1 in about 50% of all iterations, but

that is the case in only 4.1%. However, the ratio is smaller than 0.9999 in only 2.2% respectively. In
most cases it is between 0.9999 and 1, 0.9999884 in average, which cannot be visualized in the plot.

7 Summary and Outlook

In this paper, we numerically solved a parameter identification problem of a box model of the north
Atlantic Thermohaline Circulation. The applied Oneshot methodology proved to be a favourable tool
even though the assumptions for convergence cannot be verified analytically, which is not unusual in
climate modeling. In comparison to the BFGS method, the obtained optimum was slightly better and
the total number of needed time steps was reduced in the case where the penalty term αw

2 ‖u − u0‖
was not too small.
Furthermore, we achieved a speed of convergence of the Oneshot method which is not much slowed
down compared to the speed of the model spin up only.
Here in this optimization problem, parameters entered in a non-linear fashion resulting in non-
separable adjoints. Derivatives were computed with the automatic differentiation tool TAF, which
fast and effectively computed function values and derivative information in one call.
Improvements could be made by applying a linesearch procedure which then might also improve the
behaviour in tests where the penalty term is very small or good starting values are unknown.
We conclude that the Oneshot approach was successful and represents a useful tool which we can
apply to more more complex climate models in our future test.
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A Derivatives of J(y, u)

The cost function J : R8N×6 → R is defined by

J(y, u) :=
1
2
‖δm−mClimber‖22 +

αw
2
‖u− u0‖22

where m = (m(y(f1,i)))i=1,...,N ∈ RN , u = (T ∗1 , T
∗
2 , T

∗
3 ,Γ, k, a). For simplicity, we abbreviate mi :=

m(y(f1,i)) and ∆i := δmi −mClimber,i

∂J

∂y
=

(
∆i

δ∂mi

∂y(f1,i)

)

i=1,...,N

=




∆iδ




αk
−αk

0
0
−βk
βk
0
0







i=1,...,N

∈ R8N .

∂J

∂u
=




0
0
0
0∑N

i=1 ∆i
δmi
k

0




+ αw




u(1)− u0(1)
u(2)− u0(2)
u(3)− u0(3)
u(4)− u0(4)
u(5)− u0(5)
u(6)− u0(6)



∈ R6.

∂2J
∂y∂u ∈ R8N×6 consists of N matrices Ai ∈ R8×6 with

Ai =




0 0 0 0 δα∆i + δ2αmi 0
0 0 0 0 −δα∆i − δ2αmi 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −δβ∆i − δ2βmi 0
0 0 0 0 δβ∆i + δ2βmi 0
0 0 0 0 0 0
0 0 0 0 0 0




.

∂2J
∂2y
∈ R8N×8N is a diagonal block matrix with entries Bi ∈ R8×8 where

Bi = δ2




k2α2 −k2α2 0 0 −k2αβ k2αβ 0 0
−k2α2 k2α2 0 0 k2αβ −k2αβ 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−k2αβ k2αβ 0 0 k2β2 −k2β2 0 0
k2αβ −k2αβ 0 0 −k2β2 k2β2 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




.
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B Model Spin-up function and its

derivatives for the N-DOP model

with fixed Transport Matrices

In this section we provide a very short overview of the N-DOP model, a model of the
global phosphorus cycle, using notations from Prieß et. al. [32] who refers to Kriest et.
al. [23] for details. A mathematical analysis of the model concerning the existence of
solutions is provided by Roschat et al. in [35] and [36].
As in the main part of this work, u ∈ U denotes the model parameters to be optimized
and y ∈ Y the state variables for which we intend to find a steady annual cycle.
The N-DOP model investigates two tracers phosphorus yN and dissolved organic phos-
phorus yDOP . We define

u = (λ, α, σ,KN ,KI ,KH2O, b) ∈ R7; (B.1)

y = (yN , yDOP ) ∈ Y ⊂ Rn where n = dim(yN ) + dim(yDOP ). (B.2)

A general biogeochemical ocean model describes the tracer concentrations y = y(x, t)
on a space-time cylinder, (x, t) ∈ Ω × [0, T ] with Ω ∈ R3 being the spacial domain,
Γ = ∂Ω its boundary, and [0, T ], T > 0 the time interval. The model equations consist
of an advection, diffusion and tracer coupling term for each tracer yi

∂yi
∂t

= ∇ · (κ∇yi)︸ ︷︷ ︸
diffusion

−∇ · (vyi)︸ ︷︷ ︸
advection

+ qi(y, u)︸ ︷︷ ︸
non-linear,

non-separable coupling

where v = v(x, t) is the advection velocity vector field mixing coefficient κ = κ(x, t),
temperature and salinity. Usually, homogeneous Neumann boundary conditions on Γ
are imposed for the tracers yi, i ∈ {N,DOP}.
The model we work with is an off-line model which simplifies the structure of the
simulation of tracers in that the tracers are regarded as passive meaning that they do
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not affect the ocean physics. Here, the ocean circulation data enters the tracer transport
equation as annually fixed forcing terms varying during the period of one year. It is
precomputed and stored in so called Transport Matrices Aimp,j and Aexp,j for each
intermediate time integration step j = 0, ..., nt − 1, where nt denotes the number of
time steps per year. The Transport Matrix Method was introduced by Khatiwala et
al. [19].
Taking these fixed linear mappings simplifies the problem in that searching for an
annually periodic solution is equivalent to seeking for steady tracers at one (arbitrary)
time point of the year.
The resulting time integration scheme or model spin-up function, which we denote as
G in the main part, yk+1 = G(yk, u), k ≥ 0, consists of nt = 2, 880 intermediate time
steps per model year and is defined as

yk+1 = yk+1,0 := yk,nt where (B.3)

yk,j+1 = Aimp,j(Aexp,jyk,j + qj(yk,j , u)), for j = 0, ...., nt − 1. (B.4)

qj is the coupling function of source-minus-sink type which depends on the parameter
and state variables, but it also depends on the intensity of light I which varies in
latitude and season and therefore we write qj(y, u) in the evaluation of the model spin-
up function G to imply the seasonal dependency.
In the following description of the model we omit the subscripts j and k for better
readability.
For the two tracers we consider two parts of q

q(y, u) = (qN (y, u), qDOP (y, u)) = (qN (yN , yDOP , u), qDOP (yN , yDOP , u)) (B.5)

Different equations for the different parts of the ocean hold. Therefore, the spacial
domain Ω ∈ R3 is divided into an euphotic (sun lit) zone Ω1 and the deeper ocean,
aphotic (or non-euphotic) zone Ω2.
The biological source-minus-sink terms then read

qN (yN , yDOP , u) =

{
−f(yN , I) + λ yDOP in Ω1

(1− σ) ∂
∂z F (yN , I) + λ yDOP in Ω2

(B.6)

qDOP (yN , yDOP , u) =

{
σ f(yN , I)− λ yDOP in Ω1

−λ yDOP in Ω2

(B.7)
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where

F (yN , I) =
( z
z′

)−b ∫ z′

0
f(yN , I) dz .

the biological production is

f(yN , I) = α
yN

yN +KN

I

I +KI
.

and the light I

I = ISWR σPAR (1− σice) exp(−z KH2O) ,

where z denotes the vertical coordinate. z′ is the depth of Ω1. ISWR, σPAR and σice

are known and vary seasonally.
Inserting ∂

∂z F (yN , I) =
(
z
z′
)−b−1 (−b

z′
) ∫ z′

0 f(yN , I) dz yields

qN (yN , yDOP , u) =

{
−f(yN , I) + λ yDOP in Ω1

(1− σ)
(
z
z′
)−b−1 (−b

z′
) ∫ z′

0 f(yN , I) dz + λ yDOP in Ω2.

We do not go into detail about the meaning of the parameters. We provide an overview
over the model equations, the computation of derivatives and we intend to complement
the statements on the importance and influence of parameter u7 = b on the system of
equations and on the functioning of the One-shot strategy.

In the following we provide the partial derivatives of q needed for the computation of
the derivatives of the model spin-up function G.

∂

∂u
qN =




yDOP

− yN
yN +KN

I
I+KI

0
α yN

(yN +KN )2
I

I+KI

α yN
yN +KN

I
(I+KI)2

0




, for y ∈ Ω1,
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∂

∂u
qN =




yDOP

(1− σ)
(
z
z′
)−b−1 (−b

z′
) ∫ z′

0
yN

yN +KN

I
I+KI

dz

−
(
z
z′
)−b−1 (−b

z′
) ∫ z′

0
αyN

yN +KN

I
I+KI

dz

−(1− σ)
(
z
z′
)−b−1 (−b

z′
) ∫ z′

0
αyN

(yN +KN )2
I

I+KI
dz

−(1− σ)
(
z
z′
)−b−1 (−b

z′
) ∫ z′

0
αyN

yN +KN

I
(I+KI)2 dz

−(1− σ)
(
z
z′
)−b−1 (−b

z′
) ∫ z′

0
αyN

yN +KN

KIzI
(I+KI)2 dz

− (1−σ)
z′

(
z
z′
)−b−1 (1− b ln

(
z
z′
)
)
∫ z′

0
αyN

yN +KN

I
I+KI

dz




, for y ∈ Ω2,

∂

∂u
qDOP =




−yDOP
σ yN
yN +KN

I
I+KI

αyN
yN +KN

I
I+KI

−σ αyN

(yN +KN )2
I

I+KI

−σ αyN
yN +KN

I
(I+KI)2

−σ αyN
yN +KN

IKIz
(I+KI)2

0




, for y ∈ Ω1 and

∂

∂u
qDOP =




−yDOP
0
0
0
0
0
0




, for y ∈ Ω2.

The necessary derivatives with respect to y are as follows:

∂qN
∂y

=

(
∂qN
∂yN
∂qN

∂yDOP

)
=

(
−∂f(yN ,I)

∂yN

λ

)
for y ∈ Ω1 and

∂qN
∂y

=

(
(1− σ)

(
z
z′
)−b−1 −b

z′
∫ z′

0
∂f(yN ,I)
∂yN

dz

λ

)
for y ∈ Ω2

with

∂f(yN , I)
∂yN

= α
I

I +KI

KN

(yN +KN )2
,
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and

∂qDOP
∂y

=

(
∂qDOP
∂yN
∂qDOP
∂yDOP

)
=

(
σ ∂f(yN ,I)

∂yN

−λ

)
for y ∈ Ω1 and

∂qDOP
∂y

=

(
0
−λ

)
for y ∈ Ω2.

In chapter 4.3.3 of the main part of this work, we mentioned parameter u7 = b re-
sponsible for a completely different working flow of the One-shot strategy in that the
inclusion of b into the optimization problem introduces a new structure of derivatives.
Without u7 to be optimized it was u6 = KH2O having the main influence. Obviously,
u7 has a large impact on the other parameter corrections as it has a major impact on
the size of the entries of ∂

∂uqN in Ω2 and even the signs of the entries of ∂
∂u7

qN in Ω2

which may change with varying b. A too big correction in u7 due to an inexactly chosen
preconditioner B inevitably implicates a too large correction in the other components.

For completeness, we list the algorithms to compute the full Jacobian of G carried
forward over the length of the period of one year with nt intermediate time steps.
Applying the model evaluation function G defined in (B.3) the computation of Gy(yk, u)
and Gu(yk, u) in the One-shot iteration step k, where yk,0 is regarded independent from
uk, then is of the following structure

∂

∂u
G(yk, u) :=

∂

∂u
yk,nt , where

∂

∂u
yk,0 = 0 and

∂

∂u
yk,j+1 = Aimp,j(Aexp,j

∂

∂u
yk,j +

∂

∂y
qj(yk,j , u)

∂

∂u
yk,j +

∂

∂u
qj(yk,j , u)),

for j = 0, ...., nt − 1.

∂

∂y
G(yk, u) :=

∂

∂y
yk,nt where

∂

∂y
yk,0 = 1 and

∂

∂y
yk,j+1 = Aimp,j(Aexp,j

∂

∂y
yk,j +

∂

∂y
qj(yk,j , u)

∂

∂y
yk,j), for j = 0, ...., nt − 1.

Here, we use the subscript j of qj again implying the seasonal dependency of q(y, u) on
light I.
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and Slawig, T. Automated Extension of Fixed Point PDE Solvers for Optimal
Design with Bounded Retardation. In Constrained Optimization and Optimal

127



128 BIBLIOGRAPHY

Control for Partial Differential Equations, G. Leugering, S. Engel, A. Griewank,
M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, and S. Ulbrich, Eds., vol. 160 of
International Series of Numerical Mathematics. Birkhäuser Basel, 2011.
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