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Abstract

Five rate constant expressions for combustion relevant bimolecular reactions of NCN, HNO and HCO

have been measured directly behind shock waves. NCN and HNO are known as short-lived flame

intermediates that are involved in the formation of nitrogen oxide (NOx) pollutants. HCO is a key

radical on the main oxidation pathway of hydrocarbons yielding CO. Accurate knowledge of the rate

constants of all involved reactions in the ensuing complex reaction mechanismsmakes it possible to

develop strategies to (at least) reduce the problem of pollutant formation in combustion processes.

Concentration-time profiles of NCN radicals have been detected via UV laserabsorption spectroscopy

to measure the rate constants of the reactions NCN + H, NCN + H2, and NCN + O2. The thermal

decomposition of cyanogen azide (NCN3) was used as quantitative NCN source behind shock waves.

The extremely toxic and highly explosive NCN3 had to be directly synthesized from the reaction of

NaN3 with BrCN since it could not be purified. The thermal decomposition of ethyl iodide (C2H5I)

has been used as high temperature H atom source. The rate constant of the reaction NCN + H, which

critically determines the formation of HCN along the prompt-NO formation pathway,has been directly

measured for the first time. From the measured rate constant data, conclusions could be drawn for the

product channel branching ratios and the disputed value of the enthalpyof formation of NCN. The

reaction NCN + H2, which has so far always been neglected for NCN modeling in flames, turned out

to be comparatively fast and hence gains some importance under H2 rich flame conditions. From the

consideration of possible reaction product sets, the abstraction reactionNCN + H2 → HNCN + H

turned out to be the most reasonable reaction channel.

Using the sensitive absorption based frequency modulation spectroscopy, HNO has been detected for

the first time behind shock waves. A reaction mechanism for the simulation of HNO formation from

the 193 nm photolysis of glyoxal/NO mixtures was compiled from available literature data and has

been validated experimentally. HNO detection was performed at three different absorption lines of the

(Ã1A′′ ← X̃1A′)(100← 000) transition. HNO and HCO concentration-time profiles have been mea-

sured at similar reaction conditions at room temperature and behind shock waves. From the consistent

modeling of the two species profiles, the HNO absorption cross section has been obtained for the tran-

sition at ν̃ =16173.86 cm−1. Based on these analyses high temperature rate constant values for the

reaction HNO + O2→ NO + HO2 were obtained for the first time. The resulting rate expression is up

to five orders of magnitude higher than frequently usedkHNO+O2 expressions in existing combustion

mechanisms.

HCO formation from the thermal decomposition of glyoxal has been observed by frequency modula-

tion spectroscopy. By adding oxygen to the reaction mixtures, the rate constant of the reaction HCO

+ O2→ HO2 + CO could be directly measured. These experiments significantly extend the range of

available rate constant data towards higher temperatures of 1285 - 1760 Kand were also used to test

the capability of an extensive glyoxal oxidation mechanism for intermediate and high temperatures.





Zusammenfassung

Die Geschwindigkeitskonstanten von fünf verbrennungsrelevanten bimolekularen Reaktionen von

NCN, HNO und HCO wurden hinter Stoßwellen direkt gemessen. Bei NCN und HNO handelt es

sich um kurzlebige Zwischenprodukte in Flammen, die an der Stickoxid- (NOx-) Bildung beteiligt

sind. Das HCO-Radikal ist ein zentrales Intermediat während der Oxidation von Kohlenwasserstoffen,

die zur CO-Bildung führt. Komplexe Reaktionsmechanismen sind nötig, um die Schadstoffbildung

in Verbrennungsprozessen zu beschreiben. Durch genaue Kenntnis der Geschwindigkeitskonstanten

aller beteiligten Reaktionen, können Strategien entwickelt werden, um dieseSchadstoffbildung zu

verringern.

Konzentrations-Zeit-Profile von NCN-Radikalen wurden mittels UV Laser-Absorptions-Spektroskopie

aufgenommen. Auf diese Weise gelang es, die Geschwindigkeitskonstantender Reaktionen NCN + H,

NCN + H2 und NCN + O2 erstmals bei hohen Temperaturen direkt zu messen. Als quantitative Quelle

für NCN-Radikal hinter Stoßwellen wurde der thermische Zerfall von Cyanazid (NCN3) verwendet.

Das sehr giftige und hochexplosive NCN3 wurde aus NaN3 und BrCN direkt synthetisiert, da es

nicht aufgereinigt werden konnte. Als Quelle für H-Atome diente der Zerfall von Ethyliodid (C2H5I).

Die Geschwindigkeitskonstante der Reaktion NCN + H, die entscheidend fürdie HCN-Bildung und

damit für die prompt-NO-Bildung ist, wurde zum ersten Mal direkt experimentell bestimmt. Aus

den gemessenen Geschwindigkeitskonstanten für NCN + H konnten Rückschlüsse auf die Produkt-

verteilung der Reaktion und die nach wie vor umstrittene Bildungsenthalpie desNCN-Radikals gezo-

gen werden. Zusätzlich wurde die Reaktion NCN + H2, die bisher für die Simulation von Flammen

vernachlässigt wurde, hinsichtlich ihrer Reaktionsprodukte betrachtet.Als wahrscheinlichster Reak-

tionskanal wurde der Abstraktionskanal NCN + H2→ HNCN + H ermittelt.

Mittels der sehr empfindlichen Frequenz-Modulations-Spektroskopie ist es erstmals gelungen HNO

hinter Stoßwellen nachzuweisen. Zunächst wurde ein Reaktionsmechanismus zur Simulation der

HNO Bildung aus der 193 nm Photolyse von Glyoxal/NO-Mischungen aus Literaturdaten zusam-

mengestellt und danach experimentell überprüft. Für die HNO-Detektion wurden drei verschiedene

Linien des (̃A1A′′← X̃1A′)(100← 000) Übergangs ausgewählt. Durch Kombination von HNO- und

HCO-Experimenten bei ähnlichen Reaktionsbedingungen hinter Stoßwellenund bei Zimmertemperatur

konnte der HNO Absorptionsquerschnitt beiν̃ =16173.86 cm−1 bestimmt werden. Basierend auf

diesen Ergebnissen wurden erstmals Geschwindigkeitskonstanten für dieReaktion HNO + O2→ NO

+ HO2 bei hohen Temperaturen gemessen. Die ermittelten Ergebnisse liegen bis zu fünf Größenord-

nungen über den bisher in Verbrennungsmechanismen enthaltenen Ausdrücken fürkHNO+O2.

Weiterhin wurde die HCO-Bildung aus dem thermischen Zerfall von Glyoxalmittels FM-Spektroskopie

beobachtet. Durch den Zusatz von Sauerstoff zu den Reaktionsmischungen wurde zusätzlich die

Geschwindigkeitskonstante der Reaktion HCO + O2→ HO2 + CO direkt gemessen. Diese Messun-

gen haben den zugänglichen Temperaturbereich der Geschwindigkeitskonstante auf 1285 bis 1760 K

erweitert. Außerdem wurde mit den Messungen ein umfangreicher Mechanismus zur Oxidation von

Glyoxal bei mittleren und hohen Temperaturen validiert.
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1. Introduction

1 Introduction

The global requirement for energy, heat, and electricity is continually growing since the industrial

revolution. Even though the effort of making regenerative energy sources accessible is considerable,

the combustion of fossil fuels like coal, oil, and gas is still required to cover the high energy demand

of all industrial nations. Fig. 1.1a summarizes the mix of primary energy supply. The graph shows

that about 82% of the worlds energy requirement is currently (status 2012) covered by fossil materials

and only 13% by renewable sources. In addition, parts of renewable sources, namely bio-fuels and

waste, are also based on combustion. As pointed out in Fig. 1.1b, Global Future scenarios assume that

combustion will still play the leading role in energy supply in the conceivable future.[1]

A(a) A(b)

Figure 1.1: a) Fuel share of the world total primary energy supply in 2012in mega tonnes of oil
equivalents (Mtoe). b) Outlook on world total primary energy supply based on New poli-
cies Scenario (NPS) and on a post-2012 climate-policy framework (450S). Adopted from
Ref. 1. *: geothermal, solar, wind, heat, etc.

Alternative energy sources to fossil fuels are required because there are several problems connected

with their use. Not only are they slowly running out and are expected to become more and more

expensive on the long run, also toxic substances are released into the environment by burning of

the fuels. The most prominent pollutant gas is carbon dioxide (CO2), which is known as a major

green house gas causing global warming. And in fact the traceable impactof anthropogenic CO2
on the environment is constantly growing.[2,3] Furthermore, sulfates (SO2, responsible for acid rain),

nitrogen oxides (NOx, see section 1.1), polycyclic aromatic hydrocarbons (PAH), and soot particles

are formed during combustion.[4]
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1. Introduction

Since combustion will remain crucial for our energy supply, extensive studies are required to promote

effective use of fossil fuels and to optimize the combustion processes in general. For a full characteriza-

tion of combustion processes, a combination of chemical and physical quantities need to be considered.

Within flames, mixing (fuel-fuel or fuel-air), transportation, and streaming processes take place that

affect the distribution of the reacting species. Also the heat transport and the heat distribution are

important factors. Furthermore, myriads of elementary chemical reactions proceed simultaneously in

flames and they are strongly coupled to these physical factors.[5] A proper reaction mechanism for

the combustion of only one combustible easily includes several hundreds ofelementary reactions and

their temperature and pressure dependencies have to be known. Especially the kinetics of very reactive,

mostly radical-like intermediates are important. Different reactive species are formed under different

conditions affecting the amount of harmful substances that are produced. A detailed knowledge of

the elementary reactions and their rate constants provides the backgroundfor the construction of more

effective combustors and thereby lower pollutant emissions.

1.1 Formation mechanisms and environmental impact of nitrogen oxides (NOx)

Subject to combustion conditions different amounts of environmentally harmful nitrogen oxides such

as NO, NO2, and N2O (NOx) are generated from the burning of fossil fuels. Released into the at-

mosphere all nitrogen oxides have diverse, dangerous impacts on the environment over a variety of

mostly radical reactions. Which kind of reactions take place is dependent on the particular conditions

like temperature, solar radiation, humidity and concentration as well as the nature of the surrounding

reactants.[6,7,8]

For example, through the photochemical process (1), NO2 provides atomic oxygen that contributes to

the (undesired) formation of the so called “urban ozone” in the troposphere (first layer of the atmo-

sphere, ~ 10 km height).[7]

NO2 + hν (λ < 400nm) → NO + O (1)

O + O2 → O3 (2)

In contrast, in the stratosphere (between 10 - 50 km above the ground) overall ozone concentrations

are higher and NOx is responsible for the destruction of the ozone layer over a catalytic cycle:

NO + O3 → NO2 + O2 (3)

NO2 + O → NO+ O2 (4)

net reaction O+ O3 → O2 + O2 (5)

At high humidity levels, NOx species will be washed out of the atmosphere and lead to generation of

nitric acid according to reaction (6). This elution of nitrogen oxides from theatmosphere contributes

2



1. Introduction

to the formation of acid rain.[8]

N2O5 + H2O → 2HNO3 → 2H++ 2NO−3 (6)

Depending on the combustion conditions, for example the fuel air ratioφ , and the type of fuel, four

main pathways of NOx formation can occur.[5,9,10]

Prompt NO

(HCN)

(HNCO)

+H, OH

+CH

+OH, O
2

+O, OH

+O

Fuel N

N
2

+H +O
2

+O

Thermal NO

CNNH

N NCN

NCO

NO

(NH
3
)

Figure 1.2: Reaction path diagram abstracting fuel-, thermal-, and prompt-NO formation pathways,
according to Glarborg.[11]

(i) Fossil fuels like coal naturally contain a certain amount of nitrogen that can be oxidized to NO over

several reaction steps (see Fig. 1.2). This so-called fuel-N-conversion especially takes place under

fuel-air equivalent ratios belowφ < 1.3.

(ii ) Even if the fuel itself does not contain any nitrogen, NOx formation takes place due to the oxidation

of atmospheric nitrogen, calledthermal-NO. For this pathway, the combustion temperature needs to

be very high such that O atoms from the atmospheric oxygen can oxidize the very stable N≡N triple

bond according to the following mechanism.

O + N2 → NO + N (7)

N + O2 → NO + O (8)

N + OH → NO + H (9)

This is the so-called Zeldovich mechanism.[12]

(iii ) Another way to form NO, especially under leaner combustion conditions and at lower tempera-

tures, proceeds through N2O. According to Wolfrum,[13] N2O can be formed by the recombination

reaction (10).

N2 + O + M → N2O+ M (10)

N2O + O → NO + NO (11)

Due to the need for a collision partner M, this mechanism is favored at high pressures.

3



1. Introduction

(iv) The fourth way of NOx formation, theprompt-NO, was supposed to proceed according to the Feni-

more mechanism for a long time. This mechanism describes the reaction of small hydrocarbon radicals

with nitrogen molecules stemming from the combustion air over the spin-forbiddenreaction:[14]

CH
(2Π

)
+N2

(1Σ+
)
→ N

(4S
)
+HCN

(1Σ+
)

(12a)

Although there has not been any experimental evidence of this elementary reaction step, it has been

widely accepted for a very long time. The required intersystem crossing (ISC) probability from the

doublet to the quartet potential energy surface is actually very low, causing a huge deviation between

experimental flame modeling work[15,16] and theoretically[17] determined rate constants. The mea-

sured rate constant data for the reaction CH + N2 are about two orders of magnitude higher than the

theoretical estimates for the rate constant of reaction channel (12a).[18,19] A solution for this dilemma

was found by Moskaleva and Lin in 2000.[20,21,22]They introduced a new prompt-NO initiation path-

way over the spin-allowed formation of NCN radicals:

CH
(2Π

)
+N2

(1Σ+
)
→ H

(2S
)
+NCN

(3Σ−
)
. (12b)

Based on quantum chemical methods, Lin and coworkers[20,23], Berman et al.[24], and Harding et

al.[25] calculated the potential energy surface (PES) diagram for the reaction CH + N2 shown in

Fig. 1.3. It can be seen that the formation of NCN + H is thermodynamically unfavorable compared

to HCN + H formation, but does not require an ISC process. As the overall energy thresholds for both

reaction pathways (12a) and (12b) are similar and, additionally, the first reaction step forming NCN is

a simple bond fission process compared to the activation-controlled HCN formation, the spin-allowed

reaction channel is dominating the overall reaction. However for the reverse reaction NCN + H, the

ISC point is energetically lower than the energy of the educts such that it is likely to produce HCN +

N. [23,26] The rate constant of the reaction NCN + H has been directly measured in this work for the first

time. The accessible reaction channels and the product branching ratios are discussed in chapter 4.

Figure 1.3: Potential energy surface for the reaction CH + N2, according to Lin and coworkers,[20,21,23]

Berman et al.,[24] and Harding et al.[25]
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1. Introduction

In the meantime, the formation of NCN and its correlation with CH and NO concentrations in flames

has been experimentally proven by several laser-induced fluorescence (LIF) studies.[27,28,29]Moreover,

a shock tube study by Vasudevan et al.[26] finally verified that NCN is the main product (> 70%) of the

reaction CH + N2. Consequently, NCN high-temperature kinetics has been implemented into prompt-

NO mechanism for flame simulations. Prominent examples are the detailed mechanisms by Konnov

(Konnov 0.6 mechanism)[30] and Lamoureux et al. (GDFkin3.0_NCN mechanism)[31,32]. Until now,

however, due to the lack of experimental data, NCN reaction rates are mostlytaken from theoretical

predictions and estimations provided by the M. C. Lin group. It was a main objective of this work to

make accurate high-temperature bimolecular rate constants available that should improve NCN flame

modeling mechanisms.

1.2 High temperature cyanonitrene (NCN) kinetics

After Moskaleva and Lin[20] proposed NCN to be the main product of the initial prompt-NO reaction

CH + N2, several studies have been performed to detect NCN formation in flames and to provide

first high-temperature NCN rate constant data. In 2006 El Bakali et al.[33] embedded the prompt-

NO pathway and NCN chemistry in the GDF-Kin 3.0 mechanism. Rate constant expressions were

adopted from the early estimates of Glarborg et al.[34] Already by using these roughly estimated rate

constant data they obtained much better agreements between simulated and measured CH and NO

concentration profiles for low-pressure methane, ethane, and propane flames than for the mechanism

without NCN chemistry, especially under fuel rich conditions. Gersen et al. [35] implemented the new

prompt-NO reaction (12b) into the combustion mechanism GRI-Mech 3.0[36] and could also show

significant improvements simulating HCN profiles under fuel rich conditions for a methane-air flame.

As expected, the rate constant for reaction (12b) turned out to be crucial and the value from the

calculations by Moskaleva and Lin had to be adjusted to improve the simulation results.

Vasudevan et al.[26] studied the reaction CH + N2 behind shock waves using NCN and CH laser

absorption. They determined the total rate constant for the overall reaction (12) and branching ratios

φ = k12b/(k12a+ k12b) at temperatures between 1943 and 3543 K. Their obtained rate constant for

the NCN formation is in very good agreement with the results of multi-referencequantum chemical

calculations performed by Harding et al. for temperatures between 1000 Kand 3000 K.[25] Their

ab initio calculations also revealed that an accurate value of the enthalpy of formation of NCN is

crucial for the resulting rate constant. A work by Goos et al.[37] highlighted this issue and reviewed

experimental and calculated values for∆fH◦298 K(NCN). Values in-between 445 and 501 kJ/mol have

been reported in the literature. Most recent studies favor a theoretical value of about 459 kJ/mol,[23,25]

whereas experiments differ between 452 kJ/mol[38] and 467 kJ/mol.[39]

A set of rate constants for NCN consumption reactions including NCN + H, NCN + N, NCN + C and

NCN + CN, calculated using ab initio data and Rice-Ramsperger-Kassel-Marcus (RRKM) theory, was

published by Lin and coworkers already in the year 2000.[20,21] Later, Lin and coworkers expanded

their NCN submechanism by NCN decomposition[40] and the reactions NCN + O2, [41] NCN + NO[42]

and NO2, [43] NCN + O,[44] and NCN + OH.[45]. Very recently, they updated their predictions for
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the reaction NCN + H.[23] In 2008 Sutton et al.[28,46] modeled NO and NCN profiles measured by

laser-induced fluorescence (LIF) in low-pressure rich, stoichiometric, and lean methane flames. Their

simulations of the experimental data could be improved using the NCN rate constant data published

by Lin et al. instead of the estimated data from Glarborg et al.[34] In a similar study, Konnov[30] also

adopted the NCN data from Lin and coworkers to work out a mechanism forNCN/NO modeling in

lean and rich flames of CH4, C2H4, C2H6 and C3H8.

H H

HH, OH

OH O2O2

O2

OH OH

OH H, OH, O

O

OOO

O

NCN

NOHNONHNCOCH NCN HCN
N2

O

Figure 1.4: Reaction scheme for prompt-NO formation in a rich CH4-O2-N2 flame, according to Lam-
oureux et al.[31]

Lamoureux et al.[31] combined LIF and cavity ring-down spectroscopy (CRDS) to measure absolute

concentration profiles of CH, NCN and NO in methane and ethylene flames. Bysimulating the mea-

sured profiles with the GDFkin 3.0 mechanism, again extended by NCN chemistrytaken from Lin

and coworkers, the new prompt-NO reaction mechanism was established. The reaction scheme is il-

lustrated in Fig. 1.4. It reveals that the reactions NCN + H, NCN + OH, NCN + Oand NCN + O2 are

the most important NCN reactions along the prompt-NO pathway. It also highlights the fact that the

reactions NCN + H and NCN + OH generate HCN, which is the product initially assumed for reac-

tion (12), CH + N2, in thetraditional Fenimore mechanism. HCN is further oxidized to NO. Overall,

complemented by the intermediate NCN formation, this reaction sequence resembles a straightfor-

ward extendedFenimore pathway. This finding explains why thetraditional Fenimore mechanism,

despite the wrongly assumed initial products, was actually quite suitable to modelexperimental find-

ings. However, due to the direct oxidation of NCN by O atoms and O2, CN and NCO are formed,

respectively. The most favored reaction process always depends on the combustion conditions and

hence the implementation of NCN chemistry is essential.

Other flame modeling groups came to the conclusion that even with the new NCN reaction pathway

NO concentrations in flames are still underestimated. Therefore, Konnov[30] and Williams and Flem-

ing[47] proposed another NCN forming reaction, C2O + N2→ NCN + CO, to account for the missing

NO. At this point, it remains unclear if the persisting discrepancies are realor only reflect uncertainties

in the used NCN submechanism. Direct measurements of NCN rate constants are therefore needed to

update and validate the proposed NCN mechanisms.

So far, experimental work on NCN high temperature kinetics is scarce and has been accomplished

mainly in the Kiel shock tube lab. Dammeier et al. developed the NCN3 decomposition behind

shock waves in combination with narrow-bandwidth UV laser absorption to generate and detect NCN

radicals.[48,49] Following a thorough characterization of NCN3 thermal decomposition as a source
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of NCN radicals,[48] in 2011 Dammeier and Friedrichs published direct shock tube studies for the

reactions NCN + NO and NCN + NO2, which are important for the combustion of nitrogen containing

fuels.[50] Moreover the unimolecular decomposition NCN + M, and the reactions NCN + NCN and

NCN + O have been investigated.[51] Besides our work, only two other shock tube studies on the

reaction NCN + H by Vasudevan et al.[26] and NCN + M by Busch et al.[52,53] have been performed.

In the Arrhenius plot in Fig. 1.5, previous rate constant determinations forNCN reactions (excluding

results of this work) are summarized.
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Figure 1.5: Summary of Arrhenius expressions for NCN reactions previously studied by Vasudevan et

al.,[26] Busch et al.,[53] and in our working group at the Kiel shock tube lab.[50,51]

1.3 High temperature nitrosyl hydride (HNO) kinetics

HNO (nitrosyl hydride also called azanone or nitroxyl) is a combustion intermediate that can directly

be oxidized to NO and is therefore closely linked to the total NOx concentration (see Fig. 1.4 as

well). Most important for combustion modeling are the bimolecular reactions with highly reactive

combustion intermediates like H, OH and O, the reaction with O2 stemming from the combustion air

and the unimolecular decomposition HNO (+ M)⇋ H + NO (+ M). NO is one of the main product

of all this reactions. Very early (1964 - 1972) experimental rate constant data from measurements in

flames are available for the two NO forming hydrogen abstraction reactions

HNO+H → H2+NO (13)

HNO+OH → H2O+NO (14)

at temperatures between 1600 K< T < 2100 K.[54,55,56]The results of these studies differ by a factor

of about 2.6 for reaction (13) and 8.3 for reaction (14). All three analyses show that the reaction

with OH radicals is faster than the reaction with H atoms. Rate constant ratiosk14/k13 are between 5

and 15, which is consistent with the general trend that OH radicals are morereactive than H atoms

for abstracting hydrogen from hydrocarbon molecules. In contrast, more recent theoretical studies
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by Soto et al.[57,58] and Nguyen et al.[59] predicted oppositek14/k13 ratios. The ab initio calculations

provide HNO + OH rate constant data close to the experimental data, but significantly higher reaction

rates for HNO + H. Clearly, further experimental investigations of this two fundamental NO forming

reactions at high temperatures are required.

In 2004, the first study for HNO + O reaction rates at combustion relevanttemperatures have been

published by Du et al.[60] They performed B3LYP density functional calculations for temperatures

between 500 and 2500 K and revealed three possible reaction channels with OH + NO being the most

favored reaction products. Since no experimental high temperature rate constant data for HNO + O

are available, combustion mechanisms often rely on the rate expression fromInomata and Washida

measured at temperatures below 473 K.[61] For the reaction

HNO+O2 → HO2+NO (15)

there is also only one experimental expression available in the literature, which has been measured

at temperatures between 296 K - 421 K.[62] Even though this reaction is a major NO source under

reducing combustion conditions, only estimated rate expressions are included in most flame modeling

mechanisms.[36,63,64] The equilibrium between HNO and NO is also an important factor for overall

NO concentrations in flames. Especially under oxy-fuel conditions (e.g., under O2/CO2 atmosphere)

the reaction HNO (+ M)⇋ H + NO (+ M) plays a key role for the removal of NO, which is exploited

in reburning processes.[65] Three recent experimental studies on this reaction, which are in reasonable

agreement, have been performed up to temperatures ofT = 1170 K.[66,67,68]For the combustion of ni-

trogen containing fuels, existing mechanisms were expanded by the reactions HNO + NO,[69] NO2, [70]

and NH2. [71] The used rate expressions have been estimated mostly. Overall the existing HNO high

temperature kinetic data are not very consistent. Moreover, there is only one study reporting on HNO

detection in flames, published by Lozovsky et al.[72,73] in 2000. They applied the sensitive intracavity

laser absorption spectroscopy (ICLAS) to monitor HNO spectra in low-pressure hydrocarbon flames.

So far, HNO has not been detected in shock tube experiments due to low absorption coefficients (see

section 2.3.2.). It was the aim of this work to establish a high temperature HNO source, an HNO

detection system as well as to directly measure HNO rate constants at high temperatures for the first

time.

1.4 High temperature kinetics of the formyl radical (HCO)

The formyl radical (HCO) is a key intermediate along the direct CH4 oxidation pathway of hydrocar-

bon (see Fig. 1.6). The bimolecular reactions of HCO with the most important oxygen species O, OH,

and O2, the HCO thermal decomposition, and the reaction HCO + H[74] result in the direct formation

of CO. Measured rate constant data for these reactions, crucial for accurate modeling of the overall

oxidation process in flames, are mostly stemming from low temperature studies. For example, the

reaction HCO + O→ CO + OH has only been measured up to temperatures ofT = 425 K.[75] For the

reaction HCO + OH→ CO + H2O only temperature independent, estimated rate constant values are
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available.[76] A few studies have been performed on the reaction

HCO+ O2 → CO + HO2 (16)

providing barely consistent results for the activation energy and overall rate constant.[36,77,78,79]A

recent direct measurement on the rate constant of reaction (16) was performed behind shock waves

by Colberg and Friedrichs.[80] Their study was carried out at temperatures between 769 K< T <

1108 K, so below average flame temperatures. A pronounced positive temperature dependence was

found indicating a dominating direct abstraction channel. This is in contrast totheoretical work of

Hsu et al.[79] who predicted an indirect abstraction channel, which is initiated by HCO-O2 complex

formation with a slightly negative temperature dependence, to dominate up to temperatures of 1000 K.

Rate constant measurements at temperatures above 1100 K are needed to finally clarify the role of

the indirect versus the direct abstraction channel for flame modeling. More direct measurements on

rate constants of bimolecular HCO reactions at combustion relevant temperatures would be highly

desirable.
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Figure 1.6: Reaction scheme of a methane oxidation pathway, according to Najm et al.[81]

1.5 Aim and structure of this work

To model the overall formation of atmospheric pollutants stemming from combustionprocesses, high

temperature kinetics of many species have to be considered. The experimental studies of this work

focus on bimolecular reactions of the two nitrogen containing species NCN and HNO and the key

reaction HCO + O2 of the flame intermediate HCO under combustion relevant conditions. These

compounds are important intermediates for nitrogen oxide formation and to properly model the overall

hydrocarbon oxidation process.

The shock tube method is well established for experimental studies on high temperature rate con-

stants. Combustion relevant experimental conditions are easily accessible behind shock waves and

in combination with sensitive absorption measurements, time-resolved concentration profiles of reac-

tive intermediates can be detected. Building on previous studies in our working group, especially of

the PhD thesis of J. Dammeier,[82] the reactions NCN + H, NCN + H2 and NCN + O2 should be
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measured for the first time. Preliminary measurements of the rate constants of NCN + H and NCN

+ H2, performed in the Diploma thesis of the author,[83] had to be considerably extended to allow

for a thorough analysis including product branching ratios and the unsettled value of the enthalpy of

formation of NCN. In addition to the experimental work, first flame modeling work was performed in

collaboration with N. Lamoureux and P. Desgroux (Université Lille 1, France).

First detection of HNO behind shock waves has been achieved by applying the sensitive frequency

modulation (FM) spectroscopy. The 193 nm photolysis of glyoxal/NO mixturesserved as HNO

source. Detecting the also formed HCO as a reference substance, quantitative HNO detection was

possible. Further the rate constants of the reaction HNO + O2 and HCO + O2 should be directly

measured. Updated rate constant data were implemented into a detailed glyoxaloxidation mechanism

in collaboration with P. Glarborg (Technical University of Denmark) and P. Marshall (University of

North Texas).

This thesis is structured as follows: The basic theoretical background and experimental details of the

performed shock tube measurements, applied spectroscopic methods and sample preparation are out-

lined in chapter 2 and 3. Five papers reporting on the experimental resultsand their implications follow

in separate chapters. For NCN, concentration-time profiles have been measured at̃ν = 30383.11 cm−1

(λ = 329.1302 nm) by difference laser absorption spectroscopy. Rate constantsfor the reactions NCN

+ H (chapter 4), NCN + H2 (chapter 5), and NCN + O2 (chapter 6) could be obtained for temperatures

of about 1000 K to 2500 K. HNO and HCO have been detected by FM spectroscopy at wavelengths of

aboutλ = 618.28 nm andλ = 614.76 nm, respectively. The formation of HNO from the photolysis of

glyoxal/NO mixtures as well as the HNO absorption cross section and the rate constant of the reaction

HNO + O2 are investigated in chapter 7. Finally, in chapter 8 the results of rate constant measurements

on the reaction HCO + O2 are presented.
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2 Theoretical background

2.1 The shock tube method

In 1808 Poisson[1] published first theoretical considerations on shock waves in ideal gases. The first

apparatus for shock wave generation was built in 1899 by Paul Vieille.[2] A schematic picture of a

shock tube is shown in Fig. 2.1. In principle the design of this first shock tube, consisting of a high

and a low pressure section divided by a membrane, is still common.[2,3] At the beginning, shock

tubes were applied to study shock wave propagation and reflection behavior. [4,5] Later they were also

used for experimental studies on high temperature chemical kinetics.[6] Today the generation of shock

waves is a very well established method to investigate fast gas phase reactions at combustion relevant

temperatures. Temperatures between 500 and 15000 K and pressures of 0.1 bar≤ p≤ 1000 bar are

accessible. The over-adiabatic compression and, therefore, the heating of the test gas takes place in less

than 1µs. The reaction conditions can be accurately predicted, provided that theshock wave velocity

and the initial conditions of the test gas are known. But they are only stable for a few milliseconds,

depending on the shock tube design. Due to spontaneous burst of the membrane and the non-ideal

flow behavior of the gas, two experiments will never result in exactly the samereaction conditions.

Hence, averaging of several single-shot experiments is not easily possible.[7]

2.1.1 Shock wave theory

Shock waves are generated in a closed tube shown schematically in Fig. 2.1.The tube consists of

a high pressure (driver) and a low pressure (driven) section divided by a diaphragm (aluminum foil).

The low pressure section is filled with the test gas. To generate a shock wave, the high pressure section

is filled with an inert driver gas (hydrogen or mixtures of hydrogen and nitrogen) until the diaphragm

bursts due to the pressure difference between both sections. Due to the spontaneous rupture of the

membrane compression waves are formed which propagate through the testgas section with sonic

speeda.

a=

√
γRT
M

(2.1)
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Whereγ = cp/cV is the adiabatic coefficient andM is the average molecular mass of the gas,T is the

absolute temperature andR the gas constant. Due to the adiabatic compression the test gas heats up by

a succession of compression waves. Therefore later compression waves travel with higher velocities

than the early waves. In addition, the gas starts to flow in the same direction as the compression wave

propagation. As a result, the compression waves form a single shock front propagating through the

test gas with supersonic speed (about three times the velocity of sound) withrespect to the resting,

pre-shock gas. The shock wave causes a sudden increase in temperature, pressure and density due to

over-adiabatic compression.

incident shock wave

 ti
m

erarefaction

contact
surface

shock front

reflected
shock wave ti

m
e

test gas

Laserdiaphragm

driven sectionH
2

driver section

 5

4

3

2

1

0 x

 

Pressure/ Temperature

Figure 2.1: Schematics of shock wave propagation.

Fig. 2.1 illustrates the wave propagation through a shock tube after the burst of the membrane in a

t-x-diagram. The initial conditions are labeled with the index 1 and the test gas conditions behind the

incident shock with index 2. For measurements behind incident shock waves it must be taken into

account that the test gas is in motion. When the shock front is reflected at the end plate of the shock

tube, the shock wave proceeds through the already compressed (and pre-heated) test gas, brings the

test gas to a rest and results in a second temperature and pressure jump. Typically, the temperatureT

and pressurep behind the reflected shock are about two times higher than behind the incident shock.

The reaction conditions after the reflected shock wave are labeled with the index 5. Fig. 2.1 also

shows thet-x-traces of the rarefaction waves spreading through the driver sectionand the contact

surface between the driver gas and the test gas following the shock front. If one of these waves reach

the measurement point, the measurement conditions are no longer constant and the experiment is over

(point 3 in Fig. 2.1).

The measurement point is located close to the end of the low pressure section. The typical pressure

(and temperature) profile at this point is shown in ap/T-t diagram in the right plot of Fig. 2.1. Constant

measurement conditions are only achieved for a certain time. Incident shock wave conditions (stable

for about 0.5 ms) are limited by the arrival of the reflected shock wave. Temperature and pressure
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behind the reflected wave are stable for about 2 ms (for this work).

The temperatures and pressures during shock tube experiments cannotbe easily measured directly

because they rise abruptly and are constant on short timescales only. Sothe conditions (temperature

T, pressurep, and densityρ) behind the incident and reflected shock waves have to be calculated. By

assuming an ideal flow behavior of the test gas (ideal shock wave), this can be readily accomplished

based on the conservation equations of mass, momentum and energy:

Mass flow:Φm = ρ1u1 = ρ2u2 (2.2)

Momentum flow:Φi = p1+ρ1u2
1 = p2+ρ2u2

2 (2.3)

Energy flow:
Φe

Φm
= H1+

1
2

u2
1 = H2+

1
2

u2
2. (2.4)

Here,H is the specific enthalpy of the gas andu is the flow velocity. To determine the shock wave

velocity, four fast piezoelectronic pressure transducers are mountedflush into the tube wall in the low

pressure section at defined distances. The pre-shock wave conditions (index 1) are also needed, but

can be easily measured before every experiment.

The so calledRankine-Hugoniot-equations 2.5 - 2.7 for calculation of incident shock wave conditions

can be derived from the conservation equations 2.2 - 2.4 by assuming ideal gas behavior. In the case

of argon for example the temperature dependence of the enthalpy can be characterized by the caloric

equation of states(H2−H1 = cp× (T2−T1)) and the state variables are connected by the ideal gas

law (p= ρRT).
p2

p1
=

2γM2
1− (γ−1)
γ +1

(2.5)

ρ2

ρ1
=

(γ +1)×M2
1

(γ−1)×M2
1 +2

(2.6)

T2

T1
=

(
γM2

1−
γ−1

2

)
×
(

γ−1
2 M2

1 +1
)

(
γ+1

2

)2
M2

1

(2.7)

Resulting temperatures, pressures, and densities behind the reflected shock waves can then be calcu-

lated based on the conditions behind the incident shock waves.[8,9]

p5

p2
=

γ+1
γ−1 +2− p1

2

1+ γ+1
γ−1×

p1
p2

(2.8)

T5

T2
=

p5

p2
×

( γ+1
γ−1 +

p5
p2

1+ γ+1
γ−1×

p5
p2

)
. (2.9)

When using polyatomic gases in shock tube experiments, real gas effects have to be taken into account.

The heat capacitycp can no longer be treated as temperature independent and the calculated experi-

mental conditions have to be determined by numerical procedures.[9] When rotational and vibrational
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motions of the molecules are excited, the heat capacity increases and in the end the temperature is

lower than for a monoatomic gas. Moreover, as the heating of the vibrational degrees of freedom is

slow, at first the temperature is higher than expected for a vibrationally equilibrated system. Then,

caused by vibrational relaxation, the temperature decreases exponentially and finally reaches the state

of the fully equilibrated system. The resulting temperature profile can be approximately calculated by

assuming that the pressure is nearly constant.[9] In order to minimize relaxation effects, the concentra-

tions of polyatomic reactants should always be kept as low as possible. An example for the need of a

significant temperature correction due to the addition of up to 17% O2 is further outlined in chapter 6.

2.2 UV difference laser absorption spectroscopy

To detect NCN radicals in very low concentrations behind shock waves a fairly sensitive spectroscopic

method had to be applied. For this work NCN was detected by difference amplification laser absorp-

tion spectroscopy at a wavelength ofλ = 329.1302 nm.

2.2.1 NCN spectroscopy

The pyrolysis of NCN3 manly leads to the generation of electronically excited1NCN radicals. Due to

fast collision induced intersystem crossing (CIISC) NCN is subsequentlyconverted into its electronic

triplet ground state. Under incident shock wave conditions stable plateau concentrations of3NCN

could be observed subsequently.

NCN3+M→ 1NCN+N2+M→ 3NCN+N2+M (1)

A detailed kinetic study on3NCN formation has been published by Dammeier et al.[10,11]

The first two electronic states of the linear NCN radical are theX̃3Σ−g (010) and thẽA3Πu(010) state. In

case of the (010) vibration level, the Born-Oppenheimer approximation breaks down and the3Πu state

splits due to coupling of electron and vibration motion (Renner-Teller effect). Additionally, spin-orbit

interactions are observed. The electronic ground stateX̃3Σ−g with quantum numbersΛ = 0 andl = 1

is converted into a vibronicΠ state according toK = |±Λ± l |. The formerΠ state withΛ = 1 and

l = 1 splits into three vibronic Renner-Teller components, the3Σ+
g and3Σ−g states withK = 0 and the

degenerated3∆g state (K = 2).[12,13,14]

NCN has been detected by narrow-bandwidth laser absorption at overlapping transitions belonging

to theQ1 branch of the3Σ+−3 Π subband and the vibrationally hotÃ3Πu(010)− X̃3Σ−g (010) system

at ν̃ = 30383.11 cm−1. The spectrum is illustrated in Fig. 2.2. The corresponding absorption cross

section

log

(
σ

cm2/mol

)
= 8.9−8.3×10−4×T/K (2.10)

has been adopted from Dammeier and Friedrichs.[10] The stated uncertainty was∆σ =±25%. Under

typical experimental conditions applied in this work (T = 1500 K, p = 500 mbar, electronic time-
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resolution∆t ≈ 1 µs), minimum detectable NCN concentrations were about 4×10−12 mol/cm3 (cor-

responding to mole fractions of a few ppm).
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Figure 2.2: High resolution spectra of3NCN. Upper graph: Measured room temperature spectrum.
Lower graph: Comparison between simulated spectra atT = 298 K andT = 1600 K,
adopted from Dammeier and Friedrichs.[10]

2.3 Frequency modulation (FM) spectroscopy

Frequency modulation (FM) spectroscopy is an absorption based spectroscopic method, which was

used for HNO and HCO detection in this work. Bjorklund[15] developed this measurement tech-

nique and demonstrated its capability of highly sensitive detection of absorption and dispersion of

narrow spectral features. Since then FM spectroscopy has been applied and described in many pub-

lications.[16,17,18,19,20,21,22]In comparison with conventional absorption methods, FM spectroscopy is

more sensitive and can therefore be used for time-resolved detection of small radicals and highly

reactive atoms behind shock waves as firstly demonstrated by Friedrichs.[23,24]

2.3.1 Theory of FM spectroscopy

To perform frequency modulation spectroscopy the light of a narrow bandwidth cw-laser beam has

to be phase modulated by an electrooptical modulator (EOM). The principle ofFM spectroscopy is

illustrated in Fig. 2.3, adopted from Friedrichs.[21] The phase modulation at frequencyωm induces first
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order (and higher order) sidebands, which are 1×ωm (n×ωm) apart from the center frequencyω0 of

the laser. The modulated signal is monitored by a scanning etalon, which is necessary to properly set

the modulation strength and to determine the modulation indexM = ∆ω/ωm, with ∆ω corresponding

to the maximum frequency shift induced by the modulation. By using stronger modulation fields

and therefore higher modulation indexes more energy is transferred to thesidebands leading to the

generation of higher order sidebands that are displaced by higher integer multiples ofωm from the

center frequencyω0. Meanwhile the intensity at center frequency gets lower and disappears at a

modulation index ofM ≈ 2.4.

In a purely phase (or frequency) modulated beam, the upper and lower sidebands are exactly out-

of-phase (phase shift of 180◦). Detecting the light by a photodetector will result in a constant DC

signal (null signal), which is proportional to the square of the total light intensity. However, if the

two sidebands in Fig. 2.3 are attenuated to a different extent by an absorbing sample, the balance of

upper and lower sideband is broken. As a result an amplitude modulated beam with a modulation

frequency ofωm = 2πνm is observed, which can be detected with a fast photodetector. The amplitude

of the corresponding AC signal is proportional to the absorption and hence to the concentration of the

absorbing species.

Figure 2.3: Scheme of FM spectroscopy, according to Friedrichs.[21]

For quantitative detection of an absorbing species, the relation between theAC FM signal intensity and

the concentration of the species has to be known. Sinusoidal phase modulation with the modulation

frequencyωm , the center frequencyω0, and the modulation indexM = ∆ω/ωm yields an electric field

of the modulated laser beam, which can be expressed as:[18]

E (t) = E0exp[i (ω0t +M sinωmt)] (2.11)

= E0exp(iω0t)
+∞

∑
n=−∞

Jn(M)exp(inωmt) (2.12)
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If the FM light passes through a gas sample, the absorption and dispersionexperienced by the center

frequency and the side bands can be described by a transmission function T(ωn) resulting in the

transmission field:

ET (t) = E0exp(iω0t)
+∞

∑
n=−∞

T(ωn)Jn(M)exp(inωmt) (2.13)

The intensityIT(t), detectable by a photodetector, is proportional to| ET (t) |2. Considering only

the components with a frequency ofωm, and assuming a weak absorption, the measured FM signal

intensityIFM can be related to the concentration of the absorbing species by the equation:

IFM =
I0
2
×∆ f ×σcl×G (2.14)

with the total light intensityI0, the narrow-bandwidth absorption cross section at line centerσ , the

absorption path lengthl , the gain factorG and the FM factor∆ f . The factorG subsumes the total

electronic gain factor of the used FM spectrometer (see section 3.2.2.2). The FM factor∆ f accounts

for the summation over the contributions of all frequency components contained in the frequency

spectrum of the modulated light and can be calculated with the knowledge of theline shape data of

the probed absorption feature, the modulation frequencyωm and modulation indexM as well as the

demodulation phase angle.[21]

2.3.2 HNO spectroscopy

The 193 nm photolysis of glyoxal/NO mixtures has been used as a source for HNO molecules accord-

ing to the reaction sequence:[25]

(CHO)2 + hν (λ = 193nm) → HCO, H , H2 , CO, CH2O (2)

HCO+ NO → HNO + CO (3)

HNO is a bent molecule with a bond angle of about ~ 120◦. Its electronic ground state is a singlet

(closed shell configuration), which makes HNO a more stable flame species compared to radical-like

intermediates. The (̃A1A′′← X̃1A′)(100← 000) transition of HNO has been very well characterized

in previous absorption measurements.[26,27,28,29]The only detection of HNO at high temperatures has

been reported by Lozovsky et al.,[29] who measured HNO spectra by ICLAS in flames and compared

the absorption intensities of the (100← 000) transition, around 618 nm, and the (011← 000) transition,

around 643 nm. Although it turned out that the spectra in the (011← 000) transition range are more in-

tense than in the (100← 000) range, we used the (100← 000) transition because its wavelength region

is closer to the HCO (̃A2A′′← X̃2A′)(0900← 0010) transition at ~ 615 nm. HNO and corresponding

HCO measurements have been performed to determine the HNO absorption cross section. In order

to find the most suitable absorption line for HNO detection three selected lines ofthe (100← 000)

transition have been characterized (see chapter 7). The measurements of this work represent the first

detection of HNO behind shock waves. The minimum detectable HNO concentrations under typical
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experimental conditions ofT = 1000 K andp = 1000 mbar were about 1× 10−10 mol/cm3 (corre-

sponding to a mole fraction of 50 ppm).

2.3.3 HCO spectroscopy

HCO radicals were generated from the 193 nm glyoxal photolysis[30] or from the thermal decompo-

sition of glyoxal[31] and were detected by means of FM spectroscopy. HCO detection behind shock

waves has been thoroughly described by Colberg and Friedrichs.[30] In accordance with this work,

HCO detection was performed at the Q(6)P(1) absorption line of the (Ã2A′′ ← X̃2A′)(0900← 0010)

transition atν̃ = 16266.61 cm−1 (corresponding to the maximum of the FM signal).

For quantitative HCO detection the narrow-bandwidth absorption cross section

ln

(
σ

cm2/mol

)
= 6.57−1.39×10−3(T/K)+3.16×10−7(T/K)2−4.08×10−11(T/K)3 (2.15)

has been adopted from Friedrichs et al.[32] The stated uncertainty ofσ is about±30%. The adopted

absorption cross section has been determined for the Q(9)P(2) transition(see Fig. 2.4). With respect

to the slightly different absorption features of the actually used Q(6)P(1)line, the absorption cross

section from Friedrichs et al. was increased by a factor of ~ 1.18.[33] Under typical experimental

conditions of this work (T = 1500 K,p= 1300 mbar), minimum detectable HCO concentrations were

about 5×10−10 mol/cm3 (corresponding to a mole fraction of 50 ppm).
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Figure 2.4: a) Simulated absorption spectrum of the (Ã2A′′← X̃2A′)(0900← 0010) transition of HCO
at room temperature. b) Comparison of measured and simulated HCO FM spectra, adopted
from Ref. 33.
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3 Experimental

Several experimental methods have been applied to study the high temperature kinetics of NCN, HNO,

and HCO. The shock tube method was used to heat up the test gases int < 1 µs and to achieve stable

reaction conditions for about 1 ms. Pressure and temperature values dueto shock compression were

calculated reliably based on a 1-dimensional shock tube code. NCN, HNO,and HCO have been

generated in-situ from precursor molecules which had to be synthesized before the experiments. As

the concentrations of the precursors and of all molecules that have beenadded as reactants have to be

known for quantitative measurements, a mixing system with calibrated mass flow controllers was used

to prepare reaction gas mixtures. A difference laser absorption setup and an FM spectrometer were

used to detect time-resolved concentration profiles of different speciesin the gas phase. Rate constants

were obtained from the experiments by fitting numerical simulations to the measured concentration-

time profiles. Under the applied reaction conditions, the respective target reaction was always the most

important one for the simulations.

The different experimental setups and numerical methods for the investigation of NCN, HNO, and

HCO reactions in the gas phase are described in this chapter.

3.1 Shock tube setup

All high temperature measurements have been carried out in an overall 8.35m long stainless steel

shock tube with an inner diameter of 81 mm and a 10 mm thick wall. The 3.65 m long driver (high

pressure) section was slightly shorter than the 4.05 m long, electro-polished test (low pressure) section.

By a combination of an oil-free turbomolecular (Pfeiffer Vacuum, TMU261)and a membrane pump

(Pfeiffer Vacuum, MVP055-3) the test section could be evacuated downto a pressure ofp≈ 10−7 mbar.

A cold-cathode ionization gauge (Pfeiffer Vacuum, IKR 261) was used for pressure measurements in

the test section. The pressure of the test gas in the low pressure section before shock compression

could be measured by a second pressure gauge (MKS 622AX12MBE).The leak rate of the metal

sealed test section was 1.6×10−6 mbar L/s.

The high pressure section was mounted on wheels such that the aluminum foildividing the high

pressure section from the test section (low pressure section) could be easily exchanged. The driver

section was filled with a driver gas until the foil burst spontaneously. Either 30, 80 or 100µm thick

aluminum foils were used. In combination with the used driver gases hydrogen (Air Liquide,≥
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99,999%), helium (Air Liquide,≥ 99,999%), or different mixtures of hydrogen and nitrogen (Air

Liquide,≥ 99,99%) temperatures between 700 and 2500 K after incident shock waves were accessible.

Also a wide pressure range of 0.2 bar≤ p≤ 2.1 bar was within reach. The mixing of two different

driver gases was accomplished by two magnetic valves (Danfoss, BA024A), which could be separately

opened for particular times between 25 and 475µs by an electronic controller. After an experiment

the shock tube could be flushed with nitrogen to remove remaining pieces of aluminum foil. The test

gas was passed into the test section by a tubing system that connected the shock tube head with the

gas mixing system. Before an experiment the test gas mixture was flushed through the test section for

about 3 min to minimize possible effects due to adsorption effects on the shock tube wall.

To determine the shock wave velocities needed for the calculations of experimental pressures and

temperatures, four fast pressure transducers (PCB Piezotronics M 113A21) were embedded flush to

the shock tube walls of the test section at defined positions. They were connected to a fast count

unit. For spectroscopic measurements the laser beam was coupled into the shock tube head through

two quartz windows. The observation time behind the incident wave was determined by the distance

between the observation plane and the end plate of the shock tube head. This distance could be varied

between 19 mm and 60 mm by installing an additional tube part, resulting in observation times of

approximately 200µs≤ t ≤ 600µs behind the incident shock wave.

3.1.1 Flow cell

FM measurements of HNO and HCO at room temperature were carried out in a45 cm long glass flow

cell that could be integrated into the shock tube setup. The two quartz windowsat both ends of the

cell were mounted in Brewster angle. To avoid depositions of reaction products, the windows could

be flushed with nitrogen during the experiments. During the FM measurements the detection laser

beam and the photolysis beam, with a much larger diameter, were collinearly coupled into the cell

from opposite sides. The large diameter of the photolysis laser guaranteedthat diffusional processes

could be neglected. Two pressure gauges (5 mbar and 100 mbar) were attached to the cell to adjust

the test gas flow during the experiments.

3.1.2 Gas mixing system

For the preparation of well defined gas mixtures the gas mixing system shownschematically in Fig. 3.1

was used. The prepared gas mixtures were stored in different tanks and passed into the test section of

the shock tube through a valve in the shock tube head. Since the test sectionwas evacuated near the

membrane (end of test section) the test gas could be flushed through the whole section to compensate

for possible wall adsorption effects. Alternatively the test gas was led to the flow cell. The mixing

system mainly consisted of stainless steel tubing. For the storage and preparation of gas mixtures by

the partial pressure method, gas bottles, glass flasks and tanks of stainless steel could be connected to

the system. It was possible to purify gases like NO and NO2 by freeze-pump-thaw cycles performed

in a 5 L flask equipped with a cooling finger. The NCN3 was only diluted in argon and not further
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purified due to its tendency to explode in condensed phase. The prepared gas mixtures were passed

through four different mass flow controllers (Aera, FC-7700CU 10, 50, 100 and 1000 sccm) for further

mixing and dilution (mostly in argon) directly before entering the shock tube. A rotary vane pump

with a cooling trap was used for fast evacuation of the gas mixing system andthe test section of

the shock tube. To avoid condensation of NCN3 in the cooling trap it could be evacuated over a

bypass (see Fig. 3.1). For evacuation down to pressures of∼ 10−6 mbar, a turbomolecular pump

(Pfeiffer Vacuum, TMH071-P) together with a diaphragm pump (PfeifferVacuum, MVP 015-2) was

used. Three different pressure gauges (MKS 722AMCE2FA, MKS 622AX12MBE, Pfeiffer Vakuum

PKR 251) allowed to measure the pressure in the range of 5 bar≥ p≥ 10−7 mbar.
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Figure 3.1: Scheme of the gas mixing system, which could either be connected tothe shock tube head
or a flow cell.

3.2 Absorption spectrometer

UV/VIS spectroscopy was used for the detection of HNO, HCO, and NCN radicals. By absorption

based measurements of selected electronic transitions the different species could be directly observed.

Assuming that the particular absorption cross sections are known it was possible to determine the con-

centrations of the species in the reaction mixture. In the visible spectral region, frequency modulation

(FM) spectroscopy was used for highly sensitive detection of HNO and HCO ((αcl)min = 5×10−5).

Since FM spectroscopy cannot be used in the UV region, NCN was detected by narrow-bandwidth

difference laser absorption (DLA) spectroscopy ((αcl)min = 5×10−4) instead.

3.2.1 UV difference absorption spectrometer

Fig. 3.2 illustrates the schematic setup for the UV absorption experiment. The UVlight (λ ≈ 330 nm)

was generated by intra-cavity frequency doubling of a continuous-wave ring-dye laser (Coherent 899
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series), which was optically pumped by a solid state Nd:YVO4 laser (Coherent Verdi V10). A LiIO4
crystal, which was constantly flushed with boil-off nitrogen, was inserted inthe laser cavity to achieve

the frequency doubling. Typically, at 10 W pumping power, 1.5 mW UV light were generated. About

2 mW of the laser fundamental were coupled out of the cavity through a highlyreflective mirror for

wavelength measurements by an interferometric wavemeter (MetroLux WL200) referenced to a HeNe

laser. By this means, taking into account a small wavemeter offset of∆ν̃ = 0.02cm−1, the wavelength

could be determined with an accuracy of about 5×10−7 (∆ν̃ = 0.015 cm−1) . Using DCM-Spezial

(4-Dicyanomethylen-2-methyl-6-p-dimethyl-aminostyryl-4H-pyran, Radiant Dyes) as a laser dye the

wavelength of the fundamental could be set toν̃ = 15191.56 cm−1, hence the frequency-doubled laser

beam was centered atν̃ = 30383.11 cm−1 to observe the3Σ+(010)−3 Π(010) 3NCN transition.
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Figure 3.2: Scheme of the difference laser absorption spectroscopy setup.

The generated UV laser beam was deflected by a periscope to adjust the height of the laser beam to

the height of the shock tube and collimated to a diameter of about 2 mm by a telescope. A 50:50 beam

splitter plate was used to split the laser beam into a probe and a reference beam. The detection beam

was focused by a quartz lens (f = 200 mm) and passed through the shock tube windows. After passing

the shock tube the beam was band-pass filtered (Andover, 326FS25-12.5) and coupled into a quartz

optical fiber (Thorlabs BF H22-550) connected to a balanced photodetector and difference amplifier

(Thorlabs PDB 150A-EC). The reference beam was passed througha circular variable neutral density

filter to match the intensity of the reference beam with the intensity of the probe beam. The intensities

of the two separated beams (Monitor 1 and 2 in Fig. 3.2) were monitored on a digital oscilloscope

(Hameg, HM 507, 50 MHz, 8 Bit). As the monitor exhibit a low time response, in order to check the

stability of the laser beam, about 10% of the reference beam were split offthe main beam by a quartz

plate and were focused on a fast Si photodiode (Hamamatsu S5973-2). The finaly resulting amplified
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difference signal from the balanced photodetector was low-pass-filtered (1.4 MHz), further amplified

(Ortec Fast Preamp 9305, 18 dB) and stored by an analog input board (Measurement Computing,

PCI-DAS4020/12, 20 MHz, 12 bit).
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Figure 3.3: Block diagram of the used FM setup.

3.2.2 FM spectrometer

The basic FM setup for the HNO and HCO detection is schematically shown in Fig.3.3. The ring-dye

laser (Coherent 899 series) was operated with the dye Kiton Red (Sulforhodamine B, Radiant Dyes),

thereby wavelength between 600 and 650 nm were accessible. The narrow-bandwidth laser beam was

focused by a telescope, passed through a first polarizer (New FocusInc., 5524), was phase-modulated

by an external electro-optical modulator (EOM, New Focus Inc., 4421) and then passed a second

polarizer. The two polarizer setup was necessary to properly set the input polarization with respect to

the EOM crystal axis and to conveniently set the demodulation phase angle (see Section 1.2.2.1).

The EOM was driven by a part of the power of a local oscillator (Hewlett Packard, 8657B) providing

the modulation frequency of 1000 MHz. The initial output power of the oscillator was divided by a

bidirectional coupler (Mini Circuits ZFDC-10-5). The power for the EOMwas amplified by 39.4 dB

(Hughes 10 W Series) and could be varied by additional attenuators (between−1 dB and−3 dB) to

obtain different modulation indices up toM = 1.7. To monitor the exact modulation index, a small

part of the laser beam was split of and analyzed by a scanning etalon (Coherent, Typ SM 240-1).

The frequency modulated detection beam was focused (f = 300 mm) before passing the shock tube

head and was then coupled into an optical fiber right after the shock tube window. The fiber output was

strongly refocused (f = 25 mm) onto a fast Si photodiode (Hamamatsu, S5973) with a photo active
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diameter of 0.4 mm. The signal collected by the photodiode was divided into its AC and DC compo-

nent by a Bias Tee (Mini Circuits, ZFBT-4R2G). The DC component was directly monitored with a

digital oscilloscope (Lecroy, Wavesurfer 454) without further amplification. The AC component, on

the other hand, was filtered by a tunable bandpass filter (Trilithic) at 1 GHz,amplified by 41 dB (Mini

Circuits, ZHL 0812 HLN) and fed into the signal input of a double balancedfrequency mixer (Mini

Circuits, 5542-ZFM-2000) for demodulation. The reference signal input for the frequency mixer came

from the coupled line of the bidirectional coupler, which was connected to the local oscillator (Hewlett

Packard, 8657B). The phase and thereby the demodulation angle of the resulting demodulated signal

was adjusted by a variable phase shifter (Knick, J45). The demodulated signal was low pass filtered

(2.5 MHz, Mini Circuits, SLP-2.5), amplified by 14 dB (Stanford ResearchSystem, SR445A) and

stored in the digital oscilloscope (Lecroy, Wavesurfer 454).

3.2.2.1 Setting of the demodulation angle For a strong FM signal reflecting the pure absorption

of the sample, the demodulation phase angleθ had to be set to 0◦ or 180◦ degrees. This setting could

be accomplished by the two-polarizer setup as described by Friedrichs and Wagner.[1] For normal

operation the polarization of the two polarizers in front and behind the EOM was set vertically to the

axis of the modulation crystal. By rotating one of the polarizers by a few degrees a small amplitude

modulation was induced in addition to the phase or frequency modulation. This amplitude modulation

is out-of-phase with respect to an absorption signal and causes an offset of the FM baseline. Rotating

the second polarizer back and forth resulted in a strong positive and negative FM baseline shift if the

phase angle was far from pure absorption (0◦ or 180◦). Then, by changing the demodulation phase

angle, by the voltage controlled phase shifter (Knick, J45) until the observed baseline shifts virtually

disappeared, it was possible to set the demodulation electronics to a phase angle, which is close to the

pure absorption case (±2◦). Finally, the polarizers were rotated back to normal operation.

3.2.2.2 Gain factor determination For quantitative FM measurements the FM factor∆ f and the

gain factorG of the particular experimental setup had to be known. On the one hand, the gain factor as

a value for the overall electronic amplification of the used FM spectrometer needed to be determined

experimentally prior to the actual measurements.[1] On the other hand, the FM factor could be calcu-

lated based on the value of the modulation index and the line shape data for the absorbing species. In

this work the gain factorG has been determined according to the scanning etalon method resulting

in G = 184± 14. This value was in good agreement with the gain factor estimated from the used

electronic components and quantitative measurements of HCO radical concentrations.

Scanning etalon method: A scanning etalon in reflective mode was integrated into the beam path

of the usual FM setup.[2,3] In this mode, the etalon acted like a narrow-bandwidth absorber resulting in

a measurable FM spectrum. As an example, a typically measured FM spectrum and the corresponding

absorption spectrum (measured by monitoring the attenuation of the total light intensity using the DC

output of the Bias Tee) are depicted in Fig. 3.4. From these spectra theG factor could be directly
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calculated using the equation

G=
2× IFM

A× I0×∆ f
. (3.1)

Here,A is the absorption measured at the center of the peaks corresponding to thefirst upper and lower

sidebands, andI0 is the intensity of the DC output of the Bias Tee.
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Figure 3.4: a) Measured FM signal and b) corresponding absorption signal from the scanning etalon
used as narrow-bandwidth absorber.

FM electronic setup: In principle, it is possible to calculate the gain factor from the amplifications

(attenuations) of all the used electronic components and the characteristicsof the photodiode. Instead

of using the data specified by the manufactures, the actual amplification and attenuation values have

been determined experimentally. For it, a first frequency generator (Hewlett Packard, 8657B) was used

to provide a signal with a frequency ofν = 1.000 GHz and a defined amplitude. This signal and a

second signal with a frequency ofν = 1.001 GHz from a second frequency generator (Marconi Instru-

ments, 2023) were connected to the inputs of the frequency mixer and its output has been displayed

with an oscilloscope. From the amplitude of the resulting 1 MHz sinusoidal signal and the ampli-

tude of the 1.00 GHz signal the attenuation of the frequency mixer was determined. Next, the other

electronic devices were integrated in-between the first frequency generator and the frequency mixer.

The resulting signal amplitudes measured with the oscilloscope with and without theintegrated device

directly reflected the attenuation or amplification resulting from this specific device. Tab. 3.1 shows

the results for the electronic devices of the used FM setup. The only thing that could not be quantified

for the determination of the gain factor was the exact frequency-dependence of the responsivity of the

used photodiode. This value had to be estimated from technical data. The sum of all specific ampli-

fications, taking a small loss due to the cables and connections into account, resulted in a maximum

gain factor ofGmax= 238. Together withGDiode= 0.8 estimated for the used photodiode an overall

gain factor ofG= 190 could be determined. Taking into account the uncertainties, this estimate was

in very good agreement with the result from the scanning etalon method.
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Table 3.1: Measured amplification of FM electronic components.

Component Model Amplification / dB
Frequency mixer Mini Circuits 5542-ZFM-2000 −6.4
Amplifier Mini Circuits ZHL 0812 HLN +40.8

Hughes 10 W Series +39.4
Mini Circuits ZFL 2000 +22.4

Stanford Research System SR445A +14.3
Bias Tee Mini Circuits ZFBT-4R2G −0.5
Bidirectional-Coupler Mini Circuits ZFDC-10-5 Main line −1.4

Coupled line−10.5
Filter Trilithic est.−0.5
Cables and connections est.−0.5
Si photodiode Hamamatsu, S5973 est.−2.0

HCO absorption measurements: Concentration-time profiles of HCO, a species with a known

absorption cross section[4,5] which has been previously measured with an accuracy of±30%, have

been detected to test the determined gain factor. HCO was generated from the thermal decomposition

of glyoxal, which has been studied extensively in previous work.[6] Shock tube experiments with

well known mole fractions of glyoxal (about 1% in argon) were performed at temperatures between

1299 and 1757 K (see chapter 8). The measured HCO profiles and maximumintermediate HCO

concentrations could be very well reproduced by simulations using the adopted HCO cross section

and glyoxal mechanism from Friedrichs et al.[6] together with the determined gain factor ofG= 184.

In fact, the HCO concentration maxima could be reproduced with an accuracy of about 10%. This is

well within the uncertainty of the method and indicates an accurate gain factor.

3.3 Numerical Methods

3.3.1 Data analysis

Extensive reaction mechanisms containing a huge number of elementary reaction steps are necessary

to describe combustion processes. Although the number of reactants in shock tube experiments is

comparably small numerical procedures are required to simulate the measured concentration-time

profiles.

The fitting procedures for all the experimental data of this work have beenperformed by the Chemkin-

II program package.[7] The program performs the numerical integration of a high number of reactions

with rate constants given in terms of the extended Arrhenius expression:

ki = AiT
ni exp[−Ea, i/RT] . (3.2)

The core mechanism as well as a feasible set of rate constants were adopted from previous results of

the working group Friedrichs and recent literature data. An additional background mechanism was
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added to the core mechanism to take possibly important secondary chemistry into account. The core

reaction mechanisms for NCN, HNO and HCO simulations are presented in chapters 4 - 8, respectively.

Either the GRI-Mech 3.0[8] or the GDFkin3.0_NCN[9,10] have been used as background mechanisms.

For the simulation of HCO concentration-time profiles measured during the thermal decomposition

of glyoxal, a new glyoxal oxidation mechanism has been developed in collaboration with P. Glarborg,

Technical University of Denmark, and P. Marshall, University of NorthTexas, (see chapter 8). To

run the Chemkin-II program and to calculate the reverse rate constants thethermodynamic data for

all involved species had to be included in form of NASA-polynomials. Thermodynamic data have

been adopted from the databases of Goos et al.[11] and Konnov.[12] Additionally, the initial reaction

conditions had to be specified. For the determination of a rate constantkx, its value has been changed

during the fitting procedure until the simulated and the measured profile were ingood agreement.

By using the Senkin routine sensitivity analyses have been performed.[7] Sensitivity coefficientsσ
provide informations about how much the resulting simulation was influenced bythe rate constant

of a certain reaction. Sensitivity analyses allows one to design the experiments in a way that they

are most sensitive to the rate constant under study. In a sensitivity analysis the rate constants of all

reactions are individually varied by a factorai (starting withai = 1)

ki, varied= ai×AiT
ni exp[−Ea, i/RT] (3.3)

To get comparable values of sensitivity coefficientsσ(i, j, t), they were normalized as follows

σ (i, j, t) =
∂c(i, j, t)

∂ai
(3.4)

σ◦max(i, j, t) = σ (i, j, t)×
ai

cmax(j)
. (3.5)

Home-written Gnuplot[13] routines were used for further processing of the experimental and simulated

data. Fitting of analytical functions was performed with the program Origin.[14]

3.3.2 Quantum chemical calculations

Quantum chemical calculations on the reaction NCN + H2→ HNCN + H were carried out using the

Gaussian 09 suite of programs.[15] Formation enthalpies were calculated on the G4 level of theory

and the transition state of the reaction was located and verified by using a synchronous transit-guided

quasi-Newton method (QST3 option) and intrinsic reaction coordinate following.

3.4 Synthesis of precursor molecules

HNO, HCO, and NCN are short-lived species and had to be generated directly during the experiments

by photolysis and/or pyrolysis of precursor molecules. The used precursors are not stable, not com-

mercially available and therefore they were synthesized in the following manner.

33



3. Experimental

3.4.1 Cyanogen azide (NCN3) synthesis
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Figure 3.5: Schematic setup of the equipment for the NCN3 synthesis. DP: Diffusion pump, CT:
Cooling trap, OP: Oil pump, P: Pressure gauge, V: Valve.

The NCN radicals were generated from the 193 nm pyrolysis of NCN3 molecules behind shock waves

according to the reaction sequence:

NCN3+ M→ 1NCN + N2+ M (1)

1NCN + M→ 3NCN + M (2)

The initial thermal decomposition of NCN3 yields NCN in its first electronically excited singlet state,

it is converted into the triplet ground state by a collision induced inter system crossing (CIISC) pro-

cess.[16,17] According to studies of Bock and Dammel[18] as well as Benard et al,[19] cyanogen azide

(NCN3) pyrolysis quantitatively yields3NCN. Since cyanogen azide is known to be a toxic and, es-

pecially in condensed phase, a highly explosive substance, it was synthesized in the gas phase by a

variation of a method from Milligan et al.[20] For safety reasons, no attempt was made to purify NCN3

after synthesis. Instead, the reactants were applied in very high purity. In the glass apparatus illustrated

in Fig. 3.5, gaseous cyanogen bromide was passed into a 1000 mL flask containing a huge excess of

solid sodium azide.

NaN3 (s) + BrCN (g)→ NCN3(g) + NaBr (s) (3)

About 10 g (150 mmol) of very finely pestled sodium azide were degassedi. vac. at 2×10−4 mbar

overnight to remove impurities of H2O and CO2. Directly before the start of the reaction, 0.25 g

(2.4 mmol, mass before purification) BrCN were also degassedi. vac. (2×10−4 mbar) atT =−78◦ C

for about 10 min and were passed through a molecular sieve (3 Å) to removeH2O. This procedure

was repeated after BrCN was re-sublimated in a second flask. The purified BrCN was then evaporated

into the sodium azide containing flask and the flask was closed vacuum tight. The reaction mixture

was allowed to stand for 8 h and was carefully shaken every 30 min to guarantee a complete mixing of

the reactants, which is important for a high yield of NCN3. The amount of the initially applied BrCN
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was chosen in a way that the resulting partial pressure of NCN3 never exceeded 50 mbar (the reported

approximate vapor pressure of NCN3 at room temperature). Hence, care was taken that the highly

explosive compound would never condense in the reaction flask. Immediately after the end of the

reaction time, the gaseous reaction product was analyzed by FT-IR spectroscopy to control the purity.

The described synthesis procedure typically yields NCN3 in purities of > 97%. NCN3 decomposes

due to bimolecular reactions slowly forming dimers and polymers. It was directlydiluted with Argon

(x(NCN3) ≤ 0.1%) in a 10 L glass flask and was used within 3 days. The NCN3 loss in the mixture

was about 10% per day.

3.4.2 FT-IR spectra of NCN3

The yield of the synthesized NCN3 was always checked by FT-IR analysis to detect possible impurities

of H2O, CO2 and to determine the fraction of unreacted BrCN. The used spectrometer (Bruker, IFS

66V, resolution: 0.25 cm−1) has been calibrated using different BrCN concentrations beforehand.[21]

BrCN absorption at̃ν = 2530 cm−1 served as an indicator for the quantification of BrCN impurity

when the total pressure in the probe cell was known.
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Figure 3.6: IR spectrum of the reaction products of a typical NCN3 synthesis with a yield of
x(NCN3) ≈ 99% measured atp = 2.5 mbar andT = 298 K in a 10 cm long measuring
cell.

Fig. 3.6 shows a typical IR spectrum of a NCN3 sample. Three fundamental vibration bands of NCN3

occur in the observed wavelength region, assignment of the NCN3 transitions is listed in Tab. 3.2 and

was taken from Bak et al.[22] The spectrum also shows a very weak CO2 peak (mole fraction < 0.2%)

but almost no visible signs of H2O. The wavelength region around̃ν = 2530 cm−1 where a BrCN

signal would be expected to be visible in the spectrum is magnified in the inset. Almost no signal is

detectable corresponding to BrCN impurities well below 1%.
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Table 3.2: Band position for NCN3 and impurities of the reaction product obtained from synthesis.

NCN3 This work/ cm−1 Literature data/
cm−1

-N3 (sym. str.) 1232-1262 1246[22]

-N3 (asym str.) 2079-2155 2198[22]

-C≡N (str.) 2181-2261 2248[22]

Impurities

H2O (sym + asym. str.) 3564-3925 3570-3760[23]

H2O (bending) 1400-1770 1600-1630[23]

BrCN (combination band) 2520-2535 2495-2565[24]

CO2 (asym. str.) 2313-2367 2349[25]

For comparison, a second IR spectrum is shown in Fig. 3.7. Here, a largeamount of H2O and CO2 is

present most likely due to a leakage in the synthesis apparatus. Additionally the clearly visible BrCN

peak, corresponding to a mole fraction of∼ 50%, indicates that to much BrCN was used or that the

reaction time was too short. Such a poor result of the synthesis was an exception. For the kinetic

measurements only mixtures with an NCN3 yield of at least 97% have been used.
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Figure 3.7: IR spectrum of an NCN3 synthesis with significant amounts of impurities measured at
p= 2.3 mbar andT = 298 K in a 10 cm long measuring cell.

3.4.3 Glyoxal synthesis

The glyoxal monomer ((CHO)2) has been prepared by dehydration of the trimer dehydrate

((CHO)2)3×2H2O according to reaction (4).
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O

OO

O OH

OH

OH

OH

+ P2O53 2 9 + 4 H3PO4

O

O

(4)D

FT-IR analysis showed that this procedure yielded glyoxal monomers without the impurities of H2O

and CO2. [5] One eq. of the trimer was mixed with 3 eq. of phosphoric anhydride (P2O5) and some

silica sand. The mixture was slowly heated to a temperature ofT = 155◦C i. vac. (2×10−2 mbar).

A slight pressure rise indicated the formation of the gaseous reaction products, which were passed

through a first cooling trap (T = 0◦C) to remove impurities, for example water. The yellow (CHO)2

crystals were re-sublimated in a second cooling trap (T =−78◦C). The solid glyoxal crystals could be

stored in liquid nitrogen over a longer time period. When preparing the mixturesof ∼ 1−2% glyoxal

in argon, the first few mbar of sublimating (CHO)2 were always pumped off. The glyoxal/argon

mixtures were used within a few days because glyoxal tend to form polymeres that deposit on the

walls of the storage tank.
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4. Direct Measurements of the total rate constant of the reaction NCN + H

Abstract

The overall rate constant of the reaction (2), NCN + H, which plays a keyrole in prompt-NO formation

in flames, has been directly measured at temperatures 962 K< T < 2425 K behind shock waves. NCN

radicals and H atoms were generated by the thermal decomposition of NCN3 and C2H5I, respectively.

NCN concentration-time profiles were measured by sensitive narrow-line-width laser absorption at

a wavelength ofλ = 329.1302 nm. The obtained rate constants are best represented by the combi-

nation of two Arrhenius expressions,k2/(cm3mol−1s−1) = 3.49×1014 exp(−33.3 kJ mol−1/RT) +

1.07× 1013 exp(+10.0 kJ mol−1/RT), with a small uncertainty of± 20% atT =1600 K and± 30%

at the upper and lower experimental temperature limits.The two Arrhenius terms basically can be at-

tributed to the contributions of reaction channel (2a) yielding CH + N2 and channel (2b) yielding HCN

+ N as the products. A more refined analysis taking into account experimental and theoretical literature

data provided a consistent rate constant set fork2a, its reverse reactionk1a (CH + N2→ NCN + H),k2b

as well as a value for the controversial enthalpy of formation of NCN,∆fH◦298K = 450 kJ/mol. The

analysis verifies the expected strong temperature dependence of the branching fractionφ = k2b/k2

with reaction channel (2b) dominating at the experimental high-temperature limit.In contrast, reac-

tion (2a) dominates at the low-temperature limit with a possible minor contribution of the HNCN

forming recombination channel (2d) atT <1150 K.

4.1 Introduction

Nitrogen oxides, NO and NO2 (NOx), are major atmospheric pollutants formed by different reaction

mechanisms in combustion processes. Especially under fuel rich combustionconditions, the so-called

prompt-NO formation pathway becomes significant. According to Fenimore,[1] prompt-NO formation

is initiated by the reaction of small hydrocarbon radicals with molecular nitrogenfrom the combustion

air. Although it has been proven both theoretically[2,3,4] and experimentally[5,6] that the key initiation

reaction CH + N2 yields the spin-allowed products H + NCN,

CH(2Π) + N2(1Σ+)→ H(2S) + NCN(3Σ−g ), (1a)

instead of the previously assumed spin-forbidden products N + HCN,

CH(2Π) + N2(1Σ+)→ N(4S) + HCN(1Σ+), (1b)

so far NCN chemistry has only been implemented in two detailed kinetic mechanisms for combustion

modeling, namely konnov0-6 and GDFkin3.0_NCN.[7,8] Adopted NCN reaction rate constant parame-

ters are largely based on the theoretical work of the M. C. Lin group who reported rate constant values

for the most important bimolecular NCN consumption reactions NCN + H,[2,4] O,[9] OH,[10] and oth-

ers.[11,12,13]Experimental high-temperature data for NCN reactions are scarce. Nextto the early shock
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tube detection of NCN and indirect rate constant measurements of the reaction NCN + H performed

by Vasudevan et al.,[6] Busch and Olzmann investigated the thermal decomposition of NCN by means

of C-ARAS detection behind shock waves.[14,15] All other direct high-temperature measurements are

based on work performed in the Kiel shock tube laboratory operated by us. We use the thermal de-

composition of cyanogen azide (NCN3) as a quantitative source of NCN radicals.[16] So far, we were

able to report rate constant data for the bimolecular NCN reactions with O, NCN, NO, NO2, and its

unimolecular decomposition NCN + M→ C + N2+ M. [17,18] The purpose of this paper is to provide

the first direct high-temperature measurements of the total rate constant ofthe reaction NCN + H. At

combustion temperatures, the reaction exhibits two main reaction channels:

NCN + H→ CH + N2, (2a)

NCN + H→ HCN + N. (2b)

Depending on the reaction conditions, two additional minor reaction channelsforming HNC + N and

HNCN are accessible (see discussion section 4.4). The rate of reaction (2) and its exact branching

ratio turned out to be crucial factors for modeling the fate of NCN in hydrocarbon flames.[7,8,19] On

the one hand reaction (2a) constitutes the reverse of the prompt-NO initiation reaction (1a) and can be

calculated fromk1a via the thermochemical equilibrium constantK(CH + N2 ⇋ NCN + H) = k1a/k2a.

On the other hand the products of reaction (2b) are the same as the products of the formerly assumed

spin-forbidden reaction (1b), which brings the new NCN chemistry back tothe old Fenimore NOx
formation route.

Reported rate constant values for reaction NCN + H have been included inthe Arrhenius dia-

gram shown in Fig. 4.1. An early rate constant estimate of Glarborg et al.[20] assumed reaction

(2b) to proceeds with a temperature independent rate constant close to thecollisional rate,k2b =

1×1014 cm3mol−1s−1 (upper solid line). Shortly after, the reaction NCN + H has been theoreti-

cally analyzed by Moskaleva and Lin.[2] As a side note in their paper on the overall rate constant

of the reaction CH + N2 → NCN + H, but unfortunately without giving much details on the un-

derlying theoretical model, they reported a pressure independent rate constant expression ofk2b =

1.89×1014×exp(−35.3 kJ/mol/RT) cm3mol−1s−1 revealing that the reaction takes place over a siz-

able barrier (lower dash-dotted line). Hence, withk2b = 1.1×1013 cm3mol−1s−1 at T = 1500 K, the

reaction is one order of magnitude slower than the initial estimate. Experimentally,Vasudevan et al.[6]

indirectly determined the rate constant of reaction (2b) in the temperature range of 2378 K< T <

2492 K by measuring absorption-time profiles of NCN in ethane/N2 mixtures behind shock waves

(triangles with error bars). Following fast NCN generation by reaction (1a), the observed slow decays

of the NCN radical concentration profiles were found to be consistent withk2b values close to the ones

reported by Moskaleva and Lin.

In an indirect experimental and numerical study of the role of NCN formationin low pressure flames,

Lamoureux et al.[8] reported the valuek2b = 2.5×1013 cm3mol−1s−1 (dotted line), which was also

adopted for the GDFkin3.0_NCN mechanism. Essentially, this value had been chosen to match the ex-

perimentally measured NCN and NO concentration profiles in methane and acetylene flames with peak
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flame temperatures ofT = 1600 K - 1835 K. Therefore, this reported value is highly dependent onthe

value of the assumed absorption cross section for NCN, which is subject toongoing discussion.[21]

Furthermore, the assumed enthalpy of formation of NCN, here∆fH◦298K = 452 kJ/mol, is a critical

quantity ask2a is calculated fromk1a via thermochemical equilibrium in their simulations. The crucial

role of NCN thermochemistry for modeling prompt-NO formation in flames has beenrecently high-

lighted in a paper by Goos et al.[22] They nicely demonstrated that the modeled branching ratio of the

overall reaction (2) heavily depends on the assumed enthalpy of formationvalue for NCN. For exam-

ple, by switching the enthalpy of formation from the low value∆fH◦298K= 444.5 kJ/mol (representative

for theoretical estimates based on single-reference computations)[16,23] to the high value 466.5 kJ/mol

(experimental result based on photodissociation experiments)[24] both the simulated NCN peak mole

fraction and final NO yield varied by a factor of about 3 for a fuel rich low-pressure CH4-O2-N2 flame.

In view of this large variation it becomes clear that also the indirectk2b value of Lamoureux et al. is

uncertain.
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Figure 4.1: Experimental and theoretical literature rate constant data for the reaction NCN + H in
comparison with the results of this work. Estimate of Glarborg et al.[20], shock tube data
of Vasudevan et. al.[6] , flame data of Lamoureux et al.,[8] and theoretical predictions
of Teng et al.[4] and Moskaleva and Lin[2] are illustrated as outlined in the legend. The
squares depict the experimental data of this work; the shaded area and the thick solid curve
correspond to the range of uncertainty and a fit of the experimental data,respectively.

Very recently the M.C. Lin group[4] updated their theoretical prediction of the rate constants of the re-

actions CH + N2 and NCN + H based on (i) high-levelab initio calculation (CCSD(T) with complete

basis set limit) of the underlying quartet and doublet potential energy surfaces and (ii ) by correct-
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ing a previous coding error in a program used in their original paper[2] from the year 2000. Teng

et al.[4] clearly showed that reaction (2b) is a spin-allowed process predominantlytaking place on

a quartet surface, in contrast to reaction (2a) taking place only on a doublet surface. In compar-

ison with their previous work, they now recommend the rate expressionk2b = 4.96×1012×T0.41

×exp(−22.8 kJ/mol/RT) cm3mol−1s−1 yielding 20% to 40% higherk2b values at temperatures from

1500 K to 2000 K (upper dash-dotted line in Fig. 4.1). Another important finding was that an alterna-

tive reaction channel yielding HNC + N is minor and that the recombination reaction yielding HNCN,

which dominates at room temperature, contributes to less than 5% at combustionrelevant tempera-

tures ofT > 1000 K at 1 bar total pressure. Remarkably high total rate constant values with a shallow

minimum of k2 ≈ 1.3×1014 cm3mol−1s−1 at T = 3180 K have been reported in their work as well

(long-dashed curve), which we consider unfeasible. As it turns out inthis work, the recommendation

of Teng et al. for reaction channel (2a) alone is already up to 6 times higher (short-dashed curve) than

our experimentally determined total rate constantk2 (see also Discussion Section 4.4).

From this short overview of existing literature data we conclude that a reliable modeling of NCN

chemistry in flames is not possible so far. Clearly, experimental data on the rate constant of the reaction

NCN + H are needed to constrain the rate constant uncertainties and to advance current prompt-NO

formation models.

4.2 Experimental

4.2.1 Shock tube apparatus

All experiments were carried out in an electropolished stainless steel shock tube with inner diameter

of 81 mm. A more detailed description can be found elsewhere.[25] Briefly, hydrogen or mixtures

of hydrogen and nitrogen were used as driver gas; diaphragms weremade from 80 or 100µm thick

aluminum foil. The experimental conditions behind the incident and reflected shock waves were

calculated from pre-shock conditions and the shock wave velocity, whichwas measured by four fast

piezo-electric sensors (PCB Piezotronics M113A21). A frozen-chemistry code was applied taking

into account real gas effects and the measured shock wave damping, which was on the order of 1%

per meter. Storage gas mixtures of 500-750 ppm NCN3 and 1000 ppm C2H5I in argon were prepared

using the partial pressure method and were further diluted with argon usingcalibrated mass flow

controllers (Aera, FC-7700CU). The low pressure section of the shock tube was flushed for about 5

min at p≈ 30 mbar to reduce possible adsorption effects on the shock tube wall.

4.2.2 NCN precursor

The thermal decomposition of cyanogen azide (NCN3)

NCN3+ M→ 1NCN + N2+ M (3)
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has been used as a quantitative source of NCN radicals.[26,27] It was shown in previous publica-

tions[16,28] that the thermal decomposition initially yields NCN in its first electronically excited

singlet state. Under the experimental conditions applied in this work with total densities ρ >

2×10−6 mol/cm3 and temperaturesT > 962 K, the subsequent collision induced intersystem crossing

(CIISC) is rate limiting for triplet NCN formation according to

1NCN + M→ 3NCN + M (4)

The CIISC efficiency is strongly dependent on the nature of the collider,reveals a non-linear pressure

dependence due to a pressure saturation effect, and increases with increasing temperature.[18,28] In

order to accurately model the initial formation rate of3NCN (denoted NCN in the following), the

CIISC rate constant has been allowed to vary within the error limit reported by Dammeier et al.[28]

The highly toxic and explosive precursor molecule NCN3 has been directly synthesized using a pro-

cedure described previously.[29,30] Briefly, a small amount of gaseous cyanogen bromide (BrCN,

∼20 mbar) was passed into an evacuated 1 L glass flask containing a huge excess of solid sodium

azide (NaN3). After a 8 - 10 h reaction time, the gaseous products were analyzed by FTIR spec-

troscopy. Almost no water and carbon dioxide (∼ 0.01%), which serves as an indicator for a potential

gas leak, were present in the reaction samples and the impurities of remaining cyanogen bromide were

well below 4%, in some cases< 0.1%. A slow decomposition of about 10% NCN3 per day took

place in the storage flask, therefore mixtures were used up within 3 days. Accurate initial NCN3 mole

fraction in the actual reaction mixtures were determined by modeling the maximum NCN yield in

the experiments and were found to be consistent with the expected NCN3 content in the storage gas

mixtures in all cases.

4.2.3 H precursor

Hydrogen atoms were generated by the thermal unimolecular decomposition ofethyl iodide (C2H5I).

Under typical experimental conditions behind shock waves, the reaction can be assumed to take place

close to the high pressure limit[31] and exhibits two main reaction channels:

C2H5I→ C2H5+ I (5a)

C2H5I→ C2H4+ HI (5b)

H atom formation proceeds through the fast subsequent decomposition ofthe ethyl radical,

C2H5+ M→ C2H4+ H + M. (6)

Although ethyl iodide has been widely used as an H atom precursor, until recently the assumed ab-

solute values and temperature dependences of the H atom yield were uncertain and often represented

the most significant source of error in such studies. Selected values of reported branching ratiosφ =

k5a/(k5a+k5b) are collected in Fig. 4.2. The most frequently used value ofφ = 0.87± 0.11 is based
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on direct H and I atom resonance absorption spectroscopic (ARAS) measurements performed by Ku-

maran et al.[32] at temperatures of 946 K< T < 1303 K. Also based on ARAS experiments, Herzler

and Roth[33] reported a coinciding value, Yamamori et al.[34] used lower values ofφ < 0.78 at overall

higher temperatures, Miyoshi et al.[35] determined a higher value ofφ = (0.92± 0.06), and Giri et

al.[36] assumedφ = 1 by considering the hydrogen forming pathway only. Recently, Weber etal.,[37]

Yang and Tranter,[38] and Bentz et al.[39] revisited the ethyl iodide pyrolysis. Whereas Yang and Tran-

ter found excellent agreement with their laser-schlieren densitometry shock tube measurements by

assumingφ = 0.87, Weber et al. report a significantly lower value ofφ = (0.7±0.1) from a mass

spectrometric investigation of the flash pyrolysis of ethyl iodide. However,Bentz et al. could show by

a combination of H- and I-ARAS measurements and statistical rate calculations that the abstraction

reaction H + C2H5I→ C2H5+ HI, which had been neglected in former studies, needs to be taken into

account for an accurate analysis of the branching ratio. Their experimental data, together with other

available literature data, have been very recently reanalyzed by Varga et al.[31] in a follow-up publica-

tion using a new global optimization method developed by Turányi.[40] The simultaneous optimization

of the rate constant expressions of all relevant reactions yielded a considerably temperature dependent

branching ratio decreasing fromφ(T = 962 K) = 0.96 toφ(T = 2450 K) = 0.71 over the temperature

range of this study. A very low 3σ uncertainty level of±0.035 has been specified by Varga et al.

at a temperature ofT = 1200 K. As can be seen in Fig. 4.2 the recommended branching ratios are

consistent with most of the previous literature data. We consider these results to be most reliable and

therefore adopted the ethyl iodide decomposition mechanism as reported byVarga et al. It is included

in the list of reactions in Table 4.1.
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Figure 4.2: Selected literature values for the branching ratioφ of the thermal decomposition of ethyl
iodide yielding C2H5 + I (channel 5a) and C2H4 + HI (channel 5b), respectively. H
and/or I atom resonance absorption measurements: Kumaran et al.,[32] Yamamori et al.,[34]

Miyoshi et al.,[35] Herzler and Roth,[33] Giri et al.,[36] and Bentz et al.;[39] laser schlieren
technique: Yang and Tranter;[38] mass spectrometry: Weber et al.;[37] global optimization:
Varga et al.[31] The gray area represents the assumed uncertainty range of±7%.
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We have recommended the use of a different expression with opposite temperature dependence ofφ
in a previous paper dating back to the year 2002.[41] That recommendation was based on a theoretical

treatment of the unimolecular decomposition of ethyl iodide with barrier heights taken from the paper

of Kumaran et al. Then, the energy barrierE0 of the I atom forming C-I bond fission channel (5a)

was assumed to be about 15 kJ/mol higher than of the HI elimination channel (5b). However, the

recent accurate CCSD(T) ab initio data of Bentz et al.[39] showed that both barriers are more or less

energetically equal, which is more consistent with the reported decrease ofφ with increasing temper-

ature. For a more detailed treatment of the unimolecular decomposition reactionsof alkyl iodides in

the framework of statistical rate theories we refer to the work of Kumaran etal., Miyoshi et al., and

Bentz et al.[32,35,39]

Table 4.1: Rate constant parameters for important NCN reactions and the ethyl iodide submechanism.
Rate constants are given in terms ofk=ATn exp(−Ea/RT) in units of cm3, mol−1, s−1 and
kJ. The listed rate constants for NCN (representing3NCN) reactions have been duplicated
for 1NCN to approximately take into account1NCN secondary chemistry. In addition to the
reactions listed here, the GRI-Mech 3.0 has been used as base mechanism[42] supplemented
by iodine chemistry adopted from our previous work.[41]

No. Reaction A n Ea Ref.

3 NCN3 ⇋
1NCN + N2 4.9×109 71 [28]

4 1NCN→ NCN 2.0×106 31 [28]

2 NCN + H→ products see text

2a NCN + H⇋ CH + N2 4.2×1015 −0.69 2.0 this workb

2b NCN + H⇋ HCN + N 7.9×1012 0.41 22.8 this worka

7 NCN + M⇋ C + N2+ M 8.9×1014 260 [17]

8 NCN + NCN⇋ CN + CN + N2 3.7×1012 [17]

9 NCN + C⇋ CN + CN 1.0×1014 [17]

10 NCN + N⇋ N2 + CN 1.0×1013 [2]

11 NCN + CN⇋ C2N2 + N 1.3×1014 33.5 [2]

11 NCN + CH⇋ HCN + CN 3.2×1013 −3.6 [2]

13 NCN + CH2 ⇋ H2CN + CN 8.0×1013 26.9 [2]

5a C2H5I ⇋ C2H5 + I 3.4×1013 203 [31]

5b C2H5I ⇋ C2H4 + HI 4.7×1013 226 [31]

6 C2H5 + M ⇋ C2H4 + H + M 1.0×1018 140 [31]

14 C2H5I + H ⇋ C2H5 + HI 1.0×1015 21.6 [31]

15 C2H5I + I ⇋ C2H5 + I2 4.0×1013 69.9 [43]

16a C2H5 + H ⇋ CH3 + CH3 4.2×1013 [44]

16b C2H5 + H ⇋ C2H4 + H2 1.2×1012 [45]

17 H + HI⇋ H2 + I 6.6×1013 4.1 [31]

a Rate expression of Teng et al.[4] scaled by a factor of 1.6.
b Assuming ∆fH◦298 K(NCN) = 450 kJ/mol; this corresponds tok1a(CH + N2 → NCN + H) = 2.3×1010×T0.53×

exp(−71.2 kJ/mol/RT).

4.2.4 NCN detection

Triplet NCN radicals were detected by time-resolved difference amplificationlaser absorption spec-

troscopy at̃ν = 30383.11 cm−1 (λ = 329.1302 nm). The absorption feature at this wavelength mainly
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stems from a superposition of the3Π1 sub band of thẽA
3Πu(000)− X̃3Σg(000) and the Q1 band head

of the 3Σ+(010)− 3Π(010) transition.[21] About 1 mW UV laser radiation was generated by intra-

cavity frequency doubling of a continuous-wave ring-dye laser (Coherent, 899) with DCM-Special as

dye pumped with a solid state Nd:YVO4 laser using 8 W atλ = 532 nm (Coherent Verdi V10). The

wavelength of the laser fundamental was measured interferometrically by a wavemeter (MetroLux)

with an accuracy of∆υ̃ ≈ ±0.015 cm−1. The UV laser beam was split into a detection and a refer-

ence beam by a (50:50) beam splitter plate. The detection beam was passedthrough the shock tube

and coupled into an optical fiber (Thorlabs BF H22-550) connected to a balanced photodetector and

amplifier (Thorlabs PDB 150A-EC). The intensity of the reference laser beam was fine-tuned by a

variable neutral density filter to match the intensity of the detection beam. The resulting difference

signals were low-pass-filtered (1.4 MHz), amplified (Ortec Fast Preamp 9305, 18 dB), and stored

by an analog input board (Measurement Computing, PCI-DAS4020/12, 20 MHz, 12 bit). The NCN

concentration-time profiles were calculated from the detected absorption profiles based on NCN ab-

sorption cross sections log
(
σ(base e)/(cm2mol−1)

)
= 8.9−8.3×10−4×T/K previously measured

with an accuracy of± 25% using the same apparatus at similar temperatures and pressures.[16]

Table 4.2: Experimental conditions and results.

T/ ρ×106/ x(NCN3) x(C2H5I) k2×10−13/ T/ ρ×106/ x(NCN3) x(C2H5I) k2×10−13/

K mol cm−3 ppm ppm cm3mol−1s−1 K mol cm−3 ppm ppm cm3mol−1s−1

1186 3.78 7.4 75 3.3 962 3.52 3.8 185 4.5

1714 3.43 19.0 72 6.1 1000 3.57 4.0 185 4.4

1720 3.43 21.0 72 5.5 1192 3.77 4.6 185 3.5

1813 3.46 21.8 72 5.8 1230 3.80 5.2 185 3.8

1870 3.46 22.8 72 6.5 1552 4.03 9.5 185 5.0

1936 4.20 9.0 76 7.2 1747 3.44 27.5 184 6.0

1991 3.51 27.8 72 6.8

2070 3.54 23.5 72 7.2 1482 3.99 5.0 299 4.6

2227 3.57 25.0 72 7.2 1509 4.01 3.0 104 4.4

2242 3.55 26.0 72 7.9 1578 3.37 24.5 712 5.3

2425 2.89 28.0 72 8.5 1714 3.41 23.7 40 6.2

1774 3.31 31.0 363 6.2

996 3.56 7.0 138 4.5 1988 2.11 11.9 155 6.4

1013 3.59 4.6 137 3.8

1023 3.60 6.9 138 4.0 983 7.10 7.0 138 4.6

1101 3.69 3.2 137 3.8 993 7.13 6.5 138 4.5

1113 3.70 5.3 138 4.2 1059 7.25 5.8 138 4.0

1151 3.73 8.5 136 3.6 1119 7.41 6.4 138 3.9

1217 3.80 12.5 138 4.1 1153 7.48 6.5 138 4.8

1314 3.88 4.0 137 3.9 1646 7.19 4.0 185 5.5

1413 3.95 6.3 136 4.0 1760 7.43 7.4 138 5.7

1416 3.94 4.6 137 4.7 1805 7.50 3.9 137 5.9

1576 4.05 6.3 136 4.7

1688 3.41 16.4 131 5.2 1713 14.7 5.0 138 5.4

1735 14.8 5.0 138 5.5
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4.3 Results

The reaction of NCN radicals with hydrogen atoms has been investigated behind incident and reflected

shock waves in the temperature and pressure ranges 962 K< T < 2425 K and 290 mbar< p <

2130 mbar, respectively, at three different total densities ofρ ≈ 3.5× 10−6, 7.4× 10−6, and 1.5×

10−5 mol/cm3. Reaction gas mixtures contained 72-363 ppm ethyl iodide and 3-31 ppm NCN3 in

argon. In most cases, a large excess of ethyl iodide with [C2H5I]0/[NCN3]0 ratios up to 60 was

applied, hence the hydrogen atom was used as the excess species. Experimental conditions are listed

in Table 4.2.
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Figure 4.3: (a) Experimental NCN profile in comparison with numerical simulations. T = 1720 K,
ρ = 3.43×10−6 mol/cm3, p= 490 mbar,x(NCN3) = 21 ppm,x(C2H5I) = 72 ppm,k2 =
5.5×1013 cm3mol−1s−1. (b) Sensitivity analysis.

Fig. 4.3a illustrates a typical experiment behind the incident shock wave at atemperatureT = 1720 K

and a total densityρ = 3.43×10−6 mol/cm3 with initial mole fractions ofx(NCN3) = 21 ppm and

x(C2H5I) = 72 ppm. After the arrival of the incident shock wave, the NCN signal increases within

20 µs. Obviously, both the thermal decomposition of NCN3 and the singlet-triplet relaxation of NCN

are fast. The subsequent NCN decay is well resolved and is more or lesscomplete at the end of the

experimental time window set by the Schlieren signal of the reflected shock wave att =460µs.

In order to extract rate constants for reaction (2), NCN + H→ products, the NCN profiles were numer-

ically simulated using the CHEMKIN-II package.[46] The GRI-Mech 3.0 was used as a base mech-

anism[42] supplemented by an iodine submechanism adopted from our previous work[41] and the re-

actions outlined in Table 4.1. The mechanism for NCN secondary chemistry was assembled from
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literature data, in particular from our previous measurements that have been validated to reproduce

NCN concentration-time profiles of pure NCN3/argon mixtures over a wide range of experimental

conditions. The ethyl iodide decomposition has been modeled by including the recently optimized

submechanism reported by Varga et al.[31] (vide supra). In order to identify potential contributions of
1NCN secondary chemistry, all triplet NCN reactions have been duplicated for singlet NCN. Although

this treatment neglects the presumably different1NCN reactivity, it can be safely assumed that1NCN

secondary chemistry is dominated by its relaxation reaction forming triplet NCN within the first few

µs of the experiments. Thermodynamic data were taken from Burcat’s thermodynamic database[47]

with updated NASA polynomial parameters for NCN from Goos et al.[22] Note that the assumed value

for the enthalpy of formation of NCN, although of utmost importance for the discussion of the branch-

ing ratio of reaction (2) (vide infra), is not important for the determination ofthe total rate constant

from the experimental profiles.

The solid curve in Fig. 4.3a reflects the best fit of the data usingk2 as an adjustable parameter. Two

additional simulations usingk2 varied by a factor of two (dashed curves) are shown as well. They

deviate strongly from the experimental profile demonstrating the high sensitivity of reaction (2). As-

suming either the products of reaction channel (2a), CH + N2, or reaction channel (2b), HCN + N, did

not change the extractedk2 value within error limits. The high sensitivity of reaction (2) is further out-

lined in the sensitivity analysis shown in Fig. 4.3b. Here, the sensitivity coefficientσ(i, t) for reaction

i at timet was normalized with respect to the maximum concentration[NCN]max over the time history,

σ(i, t) = 1/[NCN]max× (∂ [NCN]/∂ lnki). For the analysis, a branching ratio ofφ = k2b/k2 = 0.5 has

been assumed. Following the initial increase of the signal, which is determined by the NCN relaxation

reaction (4), reaction (2) dominates the NCN decay. The relatively high sensitivity coefficients for

reactions (5a) and (5b) directly reflect the influence of the branching ratio of reaction (5) and hence

the assumed H atom yield from ethyl iodide pyrolysis. Presuming that this branching ratio is accurate,

the sensitivity analysis reveals that the rate constant of reaction (2) couldbe directly measured under

nearly pseudo first-order conditions.

Whereas the highest feasible experimental temperature was limited by the increasingly fast thermal de-

composition of NCN, towards lower temperatures non-NCN secondary chemistry becomes significant

as well. This is illustrated by theT = 1150 K experiment and sensitivity analysis shown in Fig. 4.4.

Both reaction (14), H + C2H5I, and the assumed products of reaction (2) become important. Assuming

the products of channel (2a), HCN + N, at longer reaction times the reaction N + NCN significantly

consumes NCN. Similarly, assuming the products of channel (2b), CH + N2, the reaction C + NCN

gains importance. Here, C atoms are efficiently generated by the reaction CH+ H→ C + H2. Con-

sistent with the expected diminishing role of the activation controlled channel (2b), somewhat better

agreement with the experiment is obtained by assuming channel (2a). However, as the remaining

differences between simulation and experiment could not be clearly attributed to a specific secondary

reaction, no attempt was made to further improve the simulation at longer reactiontimes. Instead, the

rate of reaction (2) was extracted from the NCN decay by fitting the transient at short reaction times

where secondary chemistry did not yet exert a significant influence.

All measured rate constantsk2 are listed in Table 4.2 and are shown in Arrhenius form in Fig. 4.5.
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Figure 4.5: Arrhenius plot fork2 measured at three different total densities. The solid curve corre-
sponds to a fit of the data using a sum of two Arrhenius expressions (dashed lines). The
gray area represents the uncertainty range based on a comprehensive error analysis.
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Overall, the rate constants follow the same trend independent of total density(varied by a factor of

4) and mixture composition (varied within 1.7 < [C2H5I]0/[NCN3]0 < 60). The data reveal a shal-

low minimum at temperatures around 1050-1200 K indicating that at least two reaction channels are

active, presumably channels (2a) and (2b) with (2b) becoming more important towards higher temper-

atures. Accordingly, in the temperature range 962 K< T < 2425 K the total rate constant can be best

represented by the sum of two Arrhenius expressions,

k2/(cm3mol−1s−1) =

3.49×1014exp(−33.3 kJ mol−1/RT)+

1.07×1013exp(+10.0 kJ mol−1/RT), (I)

depicted as the solid curve in Fig. 4.5. The two single Arrhenius terms are alsoshown as dashed lines

and can be roughly interpreted to represent the contributions of channel (2b) (first term) and channel

(2a) (second term). A more refined analysis of the overall rate constantwill be presented below.

An error analysis has to take into account uncertainties resulting from the scatter of the data (±6%), the

mixture composition (in particular the initial ethyl iodide mole fraction,±3%), the channel branching

ratio of the ethyl iodide decomposition (estimated from Fig. 4.2 to be±7%), the NCN absorption cross

section (±25%, resulting in a 3% uncertainty ink2), and the secondary chemistry. In the middle of

the investigated temperature range (T ≈ 1600 K), a direct pseudo first-order evaluation was possible

and hence errors from secondary chemistry are minor. Nevertheless,we allow for a 10% error due

to a possibly large uncertainty of the rate constant of the reaction (10), NCN + N, which has not

been directly measured so far. Increasing its rate constant from 1×1013 cm3mol−1 s−1 to 1×1014

cm3mol−1 s−1 would make this reaction sensitive because N atoms are formed in reaction (2b) and

hence slightly too highk2 values would have been determined by our analysis. Taking into account

partial error compensation, we estimate the overall uncertainty ofk2 to be± 20% atT = 1600 K,

increasing to± 30% due to higher uncertainties resulting from secondary chemistry and theemployed

ethyl iodide branching ratio at the high and low temperature limit of the experiments. A corresponding

uncertainty range is indicated by the gray shaded area in Fig. 4.5.

4.4 Discussion

The obtained total rate constant expression fork2 is compared with selected literature values and fur-

ther analyzed in order to derive a consistent set of rate constants for the two main high-temperature

reaction channels (2a) and (2b) as well as the NCN enthalpy of formation∆fH◦298 K (∆H in the follow-

ing) in Fig. 4.6. As it was shown by the high levelab initio calculations of Teng et al.,[4] from the four

feasible reaction channels
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Figure 4.6: Analysis of total rate constant data in terms of∆fH◦298 K(NCN) (∆H in the following). The
squares, the corresponding solid curves, and the shaded areas reflect the experimental data
for k2 of this work and their uncertainty limits.Upper plot a: Analysis with respect to
channel (2a). The upper dotted curve depicts the original expressionfor k2a adopted from
Teng et al.,[4] the lower dotted curve a re-evaluation of their data using∆H = 458 kJ/mol.
The dashed curves reflectk2a= k1a/K with k1a from Harding et al.[3] derived for different
∆H values using Eq. (II). For the lower solid curve, Eq. (II) was scaled by a factor of 0.65.
Lower plot b: Analysis with respect to channel (2b). Triangles with error bars and the
dotted line reflect the experimental and theoretical data reported by Vasudevan et al.[6] and
Teng et al.,[4] respectively. The dashed curves depictk2b = k2− k2a expressions obtained
from the k2 values of this work andk2a derived from Harding et al.; case 1:k2× 1.0,
k1a×1.0, ∆H = 440 kJ/mol; case 2:k2×1.0, k1a×0.65, ∆H = 450 kJ/mol. The lower
solid curve reflects the recommendedk2b expression, which is equal to the Teng et al.[4]

expression scaled by a factor of 1.6. The dash-dotted curve corresponds tok2 = k2a+k2b

using the two recommended rate expressions.
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3NCN + 2H→ 2CH + 1N2, (2a)
1HCN + 4N, (2b)
1HNC + 4N, (2c)
2HNCN, (2d)

reaction channel (2c) yielding HNC + N exhibits high activation barriers and does not play a role. The

recombination channel (2d), which dominates at room temperature and very high pressures, becomes

less important with increasing temperature and can be expected to be of minor importance at com-

bustion relevant temperaturesT > 1000 K as well. At a typical total pressure ofp= 0.5 bar used in

this work, the theoretical predictions of Teng et al.[4] range channel (2d) to contribute about 1.2% at

1000 K and 3.8% atT = 800 K to the overall reaction. Due to the inconsistencies in that paper (vide

infra) these number should be interpreted with caution, however, the order of magnitude reveals that

this channel starts to play a role at the lowest experimental temperatures of this study. Nevertheless,

as a good starting point, we limit our analysis of thek2 data to channels (2a) and (2b) in the follow-

ing. Regarding the potential energy surface for reaction (2) from Teng et al.,[4] channel (2a) proceeds

on the doublet surface over the formation of an HNCN complex and is supposed to have a slightly

negative temperature dependence. In contrast, channel (2b) exhibitsa small activation barrier and

predominantly proceeds on a quartet surface. The kinetic calculations also reveal that both reaction

channels are important at combustion temperatures.

Analysis method a: In Fig. 4.6a, the upper dotted curve depicts the calculated rate expressionfor k2a

from Teng et al.[4] The very high rate constant values fork2a as well as the very high total rate constants

k2 (dashed curve included in Fig. 4.1) are unreasonable. Compared to ourexperimentally determined

total rate constant values, the expression yields up to 6 times higher rate constants for channel (2a)

already. Moreover, there seems to be an inconsistency in the reported rate constants for the equilibrium

CH + N2 ⇋ NCN + H in the paper of Teng et al. Using their values for the rate constant of the

forward reaction (1a) and their preferred value for the enthalpy of formation,∆H = 458 kJ/mol, we

calculate reverse rate constantsk2b. Thermodynamic data for CH, N2, H, and NCN were taken from

Burcat’s database[47] with updated heat capacity data for NCN from Goos et al.,[22] where 7-term

NASA polynomial parametera6 has been scaled to adjust∆H(NCN). Obtainedk2b values are 2-3

times lower than reported by Teng et al. (lower dotted curve in Fig. 4.6a). Another indication that the

reported rate constants may be flawed comes from the reported total rate constant values; for example,

the recommended room temperature valuek2 ≈ 7× 1014 cm3mol−1s−1 is higher than the Lennard-

Jones collision limit ofkLJ ≈ (3.5 - 5.5)×1014 cm3mol−1s−1, which can be estimated based on the

Lennard-Jones parameters reported in the literature (parameters for H:[48,49,50]σ=(2.00 - 3.26) Å and

ε/kB = (2.7 - 145) K; parameters for NCN:[48]σ = 3.83 Å andε/kB = 232 K).

To the best of our knowledge, no other experimental or theoretical values for k2a have been reported

explicitly in the literature yet. Therefore, we continue our analysis by calculating k2a values form the
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reverse reactionk1a, which has been thoroughly studied both experimentally and theoretically. For

an overview of available literature data we refer to the work of Harding et al. [3] who performed high-

level ab initio and transition state theory calculations on the reaction CH + N2 using multi-reference

electronic structure methods. Using their recommended value of the enthalpy of formation, ∆H =

459 kJ/mol, the theoretical prediction was found to be in quantitative agreement with the most recent

shock tube data of Vasudevan et al.[6] over the temperature range 2100 K< T < 3350 K. At these

high temperatures, the predicted rate constant is less dependent on the assumed value of∆H. Towards

lower temperatures and in the practically important temperature range of 1000– 2000 K, however, an

accurate enthalpy of formation is crucial. In an Arrhenius plot, Harding etal.[3] present their results of

temperature dependent calculations of the rate constant of reaction (1a)assuming different values for

the enthalpy of formation of NCN (Fig. 13 in their paper). For example, it wasshown that changing

∆H by±8 kJ/mol yields a factor of 1.6 higher (−8 kJ/mol) or 1.9 lower (+8 kJ/mol)k1a value atT =

1000 K. In order to take this pronounced thermodynamic effect into account in our analysis and to

derive rate constant estimates fork2a= k1a/K as function of the assumed NCN enthalpy of formation,

we reparameterized the original data of Harding et al. and used the expression

k1a/(cm3mol−1s−1) = e(274.5−0.556x)× (T/K)(−31.24+0.0706x)×e(−71.2 kJ mol−1/RT) (II)

with x= ∆fH◦298 K(NCN) in kJ/mol. Eq. (II) provides a stable fit of the rate constant data of Harding

et al. and yields a reasonable extrapolation to somewhat higher and lower∆fH◦298 K(NCN) values.

Representative literature values of the enthalpy of formation span the range from 444.5 kJ/mol (single-

reference computations)[16,23] to 459 kJ/mol (high-level basis set extrapolation or multi-reference com-

putations)[3,4] for theoretical and from 451.8 kJ/mol (electron affinity of NCN)[51] to 466.5 kJ/mol

(NCN photodissociation)[24] for experimental literature data. The resultingk2a expressions are shown

as dashed curves in Fig. 4.6a. They reveal a weak and negative temperature dependence of the reaction

NCN + H→ CH + N2 with the absolute rate constant values basically offset by the assumed enthalpy

of formation of NCN. Clearly, the higher enthalpies of formation yield unfeasible k2a values that are

up to a factor of 2.4 higher than the total rate constant measured in this work.Assuming that(i) the

branching fractionk2a/k2 = 1 aroundT = 1000 K, (ii) k1a from Harding et al. is correct, and(iii)

k2 is at the upper limit of the uncertainty range of our experimental data (+30%), an upper limit of

∆H < 454 kJ/mol can be estimated from this analysis.

Analysis method b: A second analysis of our data focusing on the rate constant of channel(2b) is

shown in Fig. 4.6b. The indirect experimental data of Vasudevan et al.[6] (triangles with error bars)

and the most recent theoretical estimate of Teng et al.[4] (dotted curve) are shown as well. In the light

of the negative temperature dependence of channel (2a) it becomes clear that the experimentally deter-

mined positive temperature dependence ofk2 towards higher temperatures arises from the increasingly

dominant activation controlled channel (2b). Moreover, the high temperature activation energyEa =

33 kJ/mol estimated from the two channel fit of our experimental data (see Fig. 4.5 and Eq. (I)) is in
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very good agreement with the theoretically predicted activation energies of35 kJ/mol and 28 kJ/mol

reported by the M.C. Lin group[2,4] (see Figs. 4.1 and 4.6b). Hence, we consider the activation en-

ergy of reaction channel (2b) a well-constrained quantity with a preferred value ofEa≈ 28 kJ/mol

adopted from the most recentab initio study.[4] Having the temperature dependence ofk2b fixed, it is

possible to arrive at a consistent value for the enthalpy of formation. Here, ∆H has been choosen in

a way such that the rate constant expression fork2b = k2− k2a, with k2 values taken from Eq. (I) of

this work andk2a values calculated via thermodynamic equilibrium from thek1a expression Eq. (II),

yields a temperature dependence that is consistent with 28 kJ/mol. A matrix of appropriate enthalpy of

formations withk2 andk1a varied within their uncertainty limits is given in Table 4.3. Here, uncertain-

ties ofk2± 30% as obtained in this work andk1a± 35% as reported for the experimental shock tube

results of Vasudevan et al.[6] (which are in turn consistent with thek1a expression of Harding et al.)

have been assumed. Table 4.3 reveals a large range of possible enthalpyof formations, 423 kJ/mol

< ∆H < 456 kJ/mol. Nevertheless, two conclusions can be drawn from this analysis. First, increasing

k1a yields unfeasible enthalpy values that are even well below the results of thesingle-reference com-

putations (about 444.5 kJ/mol), which can be regarded a reasonable lower limit for ∆H. Even with

k1a unchanged, the highest value of 445 kJ/mol would be close to this limit. Secondly, the upper limit

of 456 kJ/mol, corresponding to a scenario withk2+ 30% andk1a− 35%, is in agreement with the

upper limit of 454 kJ/mol inferred from analysis method a. Therefore, the high experimental value

of Bise et al.[24] (466.5± 2.9 kJ/mol), the results of the high-level basis set extrapolation and multi-

reference computations (about 459 kJ/mol),[3,4] and the most recent recommendation of the Active

Thermochemical Tables as cited in Goos et al.[22] (457.8± 2) are hardly compatible with this work.

Resultingk2b expressions are illustrated in Fig. 4.6b for two selected cases. Case 1, assuming that

bothk2 andk1a exhibit values as given by Eqs. (I) and (II), yields∆H = 440 kJ/mol. Case 2, assuming

k2 from Eq. (I) andk1a from Eq. (II) scaled by a factor of 0.65, yields∆H = 450 kJ/mol. For all

other cases outlined in Table 4.3, similark2b curves have been obtained, of course somewhat offset

for different assumedk1a values (not shown). It is obvious from Fig. 4.6b that the calculatedk2b

expressions deviate from linearity at temperatures below 1250 K. With decreasing temperatures and

hence a decreasing contribution ofk2b the analysis procedure gets less reliable, hence, part of this

deviation may be attributed to inaccuracies of the analysis method itself. However, it may also indicate

the onset of the low temperature reaction channel (2d), which has been neglected in the analysis. In

this sense, the increase ofk2b at low temperatures would simply arise from the neglected contributions

of this channel.

Table 4.3: Feasible values of∆fH◦298 K(NCN) for different combinations ofk1a andk2 values. The
reported enthalpy values in kJ/mol yield activation energiesEa,2a≈ 28 kJ/mol for reaction
channel (2a) that are consistent with the corresponding theoretical estimate of Teng et al.[4]

∆fH◦298 K(NCN) k2+30% k2 k2−30%

k1a+35% 436 430 423

k1a 445 440 432

k1a−35% 456 450 443

Overall, relying on the directk2 determination of this work, an enthalpy value of 450 kJ/mol is most
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consistent with both the enthalpy limits set by the single-reference computations and our analysis,

444.5 kJ/mol< ∆fH◦298 K(NCN) < 454 kJ/mol, the experimental and theoretical values fork1a from

Vasudevan et al.[6] and Harding et al.,[3] the activation energy of reaction channel (2b) reported by

Teng et al.,[4] and the indirect shock tube measurements fork2b from Vasudevan et al.[6] This enthalpy

value is also in very good agreement with the experimental electron affinity measurements of Clif-

ford et al.[51] (451.8± 16.7 kJ/mol) that has been, for example, used in the GDFkin3.0_NCN flame

modeling mechanism as well.[8]

Using∆H = 450 kJ/mol, the recommended rate constant expressions fork1a, k2a, andk2b are as follows:

Compatible with the lower experimental uncertainty limit of Vasudevan et al.,k1a is set to 0.65 times

the values of Harding et al. (Eq. (II)):

k1a/(cm3mol−1s−1) = 2.3×1010×(T/K)0.53×exp(−71.2 kJ/mol/RT)

Using the updated NASA polynomial parameters for NCN from Goos et al.[22] (scaled to∆H =

450 kJ/mol), this corresponds to a reverse reaction rate constantk2a of

k2a/(cm3mol−1s−1) = 4.2×1015×(T/K)−0.69×exp(−2.0 kJ/mol/RT)

Adopting the temperature dependence of Teng et al., their rate expressionis recommended fork2b

adjusted by a factor of 1.6 to fit the case 2 data in Fig. 4.6b:

k2b/(cm3mol−1s−1) = 7.94×1012×(T/K)0.41×exp(−22.8 kJ/mol/RT)

This expression is also compatible with the upper limit of the indirect shock tube measurements of

Vasudevan et al.[6]

Finally, the sum ofk2a andk2b is shown in Fig. 4.6b as dash-dotted curve. It is in close agreement

with the k2 rate expression given by Eq. (I), except at the lowest temperatures where channelk2d

presumably starts to play a role. The recommended rate expression fork2b corresponds to a branching

ratioφ = k2b/k2 that increases fromφ = 0.21 atT = 1000 K toφ = 0.74 atT = 2500 K. Hence, in the

temperature range relevant for flame modeling, channel switching betweenchannel (2a) dominating

at low temperatures and channel (2b) dominating at high temperatures takesplace.

4.5 Concluding Remarks

The overall rate constant of the reaction NCN + H has been directly measured at temperatures between

962 K and 2425 K behind shock waves using the thermal decomposition of NCN3 and C2H5I as

suitable precursors for NCN radicals and H atoms, respectively. A conservative error analysis revealed

that comparatively narrow error limits of±20% atT = 1600 K, increasing to±30% at the upper

and lower temperature limits of the measurements, could be achieved. A main error arises from the

possibly large uncertainty of the potentially important secondary reaction (10), NCN + N, which has

not been measured yet. If the theoretical estimate of Moskaleva and Lin[2] turns out to be right,
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the influence of reaction (10) would be very small and the error estimate could be further reduced.

The second most important uncertainty is related to the assumed overall H atomyield from C2H5I

decomposition. However, relying on the very recently published global analysis data on the ethyl

iodide composition by Varga et al.,[31] this error contribution could be safely assumed to be not more

than 7% (an error estimate of 3.5% atT = 1200 K has been stated in the original paper).

The high reliability of the rate constant data enabled us to analyze thek2 data in terms of branching

ratio and the crucial value of the enthalpy of formation of NCN. Taking into account experimental

and theoretical literature data for the rate constant of reaction (1a) and the temperature dependence of

reaction channel (2b),∆fH◦298K = 450 kJ/mol was found to be most consistent. With a robust upper

limit of ∆fH◦298K < 456 kJ/mol derived from thek2 values of this work, significantly higher literature

values – about 459 kJ/mol from high-levelab initio calculations[3,4] and 466.5 kJ/mol from NCN

photodissociation experiments[24] – are at odds with our analysis. Clearly, more work is needed to

further constrain the uncertainty of the enthalpy of formation of NCN.

Modeling of NOx formation in flames critically depends on the branching ratio of the reaction NCN

+ H. Whereas channel (2a) constitutes the reverse reaction of the main prompt-NO formation reac-

tion (1a), CH + N2, it is in particular reaction channel (2b) with the products HCN + N that brings

the overall reaction forward on the prompt-NO pathway. The results of thisstudy with branching

fractionsφ = k2b/k2 increasing fromφ(T = 1000 K) = 0.21 toφ(T = 2500 K) = 0.74 verifies the

expected strong temperature dependence of this quantity. However, again the actual value of the de-

rived branching ratio strongly depends on the assumed value of the enthalpy of formation of NCN. In

fact, accurate measurements of the branching ratio would be very usefulto constrain the enthalpy of

formation of NCN. Moreover, in conjunction with the already compiled theoretical and experimental

rate constant data, accurate branching fractions would help to draw final conclusions on this reaction

system including the contributions of the recombination channel (2d), whichmay play a role even at

temperatures as high as 1000 K.
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– Quantum chemical calculations for NCN + H2→ HNCN + H.

– Collaboration with modeling group (N. Lamoureux, Université Lille 1) to implementthe reac-

tion NCN + H2 into the GDFkin3.0_NCN mechanism.

– Writing of paper draft.
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5. Rate constant of the reaction NCN + H2

Abstract

Bimolecular reactions of the NCN radical play a key role for modeling prompt-NO formation in

hydrocarbon flames. The rate constant of the so far neglected reactionNCN + H2 has been exper-

imentally determined behind shock waves under pseudo-first order conditions with H2 as the ex-

cess component. NCN3 thermal decomposition has been used as a quantitative high temperature

source of NCN radicals, which have been sensitively detected by difference UV laser absorption

spectroscopy at̃ν = 30383.11 cm−1. The experiments were performed at two different total densi-

ties of ρ ≈ 4.1× 10−6 mol/cm3 andρ ≈ 7.4× 10−6 mol/cm3 (corresponding to pressures between

p= 324 mbar andp= 1665 mbar) and revealed a pressure independent reaction. In the temperature

range 1057 K< T < 2475 K, the overall rate constant can be represented by the Arrheniusexpression

k /
(
cm3mol−1s−1

)
= 4.1×1013exp(−101 kJ/mol/RT) (∆ logk=±0.11). The pressure independent

reaction as well as the measured activation energy is consistent with a dominating H abstracting reac-

tion channel yielding the products HNCN + H. The reaction NCN + H2 has been implemented together

with a set of reactions for subsequent HNCN and HNC chemistry into the detailed GDFkin3.0_NCN

mechanism for NOx flame modeling. Two fuel-rich low-pressure CH4/O2/N2-flames served as exam-

ples to quantify the impact of the additional chemical pathways. Although the overall NCN consump-

tion by H2 remains small, significant differences have been observed for NO yieldswith the updated

mechanism. A detailed flux analysis revealed that HNC, mainly arising from HCN/HNC isomeriza-

tion, plays a decisive role and enhances NO formation through a new HNC→ HNCO→ NH2 →

NH→ NO pathway.

5.1 Introduction

Nitrogen oxides (NOx) are atmospheric pollutants formed as byproducts in combustion processes.

Especially under fuel rich conditions, NO is favorably formed over the socalled prompt-NO pathway,

which is initiated by the reaction of small hydrocarbon radicals with molecular nitrogen from the

combustion air. According to the traditional Fenimore mechanism,[1] it has been assumed for a long

time that prompt-NO formation is mainly initiated by the reaction

CH(2Π) + N2(1Σ+)→ N(4S) + HCN(1Σ+). (1a)

Even though the formation of the products N + HCN is spin-forbidden and despite of the fact that

theoretical estimates[2,3] for the rate constantk1a turned out to be inconsistent with the experimentally

determined high temperature rate constants for the overall CH + N2 reaction,[4,5] reaction (1a) is still

used in some flame modeling studies. Already in the year 2000, based on quantum-chemical and

RRKM calculations, Moskaleva et al.[6] suggested the alternative spin-conserved reaction channel
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CH(2Π) + N2(1Σ+)→ H(2S) + NCN(3Σ−g ) (1b)

and predicted NCN + H to be the main product of the reaction. In the meantime it has been ex-

perimentally proven that NCN radicals are in fact formed in flames[7,8,9] and that NCN is the main

product of the reaction CH + N2. [10] Consequently, flame mechanisms for NO modeling have been

updated with regard to NCN high temperature chemistry. Current versions of NCN submechanisms

are the Konnov0.6[11] and the GDFkin3.0_NCN[12,13] mechanism. The performance of the latter has

been extensively validated and improved over the last years by quantitative measurements and model-

ing of CH, NO and NCN concentration profiles in low-pressure CH4/O2/N2 and C2H2/O2/N2 flames

of various fuel/air equivalent ratios.[12,14] Recently, corresponding NCO, CN and HCN profiles have

been measured as well.[13] Whereas early versions of NCN submechanisms relied on rate constant

estimates of Glarborg et al.,[15] the more recent implementations are based on extensive rate constant

data from the theoretical work performed in the M.C. Lin group. They reported RRKM and TST

studies for the most important bimolecular NCN reactions NCN + O2, [16] O,[17] OH[18] and H[19] as

well as for the NCN forming reaction CH + N2. [6,19] From the experimental point of view, most direct

rate constant measurements of NCN reactions have been accomplished over the past few years in the

shock tube laboratory of the authors (N.F. and G.F.). Beside our studies on NCN + O, H, M, NCN,

NO, and NO2, [20,21,22] only two other shock tube studies have been performed. Vasudevan et al. [10]

measured NCN absorption profiles during the pyrolysis of ethane/N2 mixtures and Busch et al.[23,24]

investigated the unimolecular decomposition reaction NCN + M→ C + N2 + M by C atom resonance

absorption spectroscopy (ARAS). Ongoing work of one of the authors(N.L.) is concerned with the

implementation, testing, and validation of the expanding - even though not yet complete - experimen-

tal database on NCN chemistry for flame modeling. Here, in order to assess the potential influence of

the reaction NCN + H2 on NOx flame modeling, we rely on the GDFkin3.0_NCN submechanism as a

well-validated starting point.

Surprisingly, despite of rather high H2 concentrations in the flame front, the title reaction

NCN+H2→ products (2)

has not yet been implemented into flame mechanisms. Seemingly it was consideredto be rather slow

and therefore dispensable. However, neither experimental nor theoretical studies have been performed

so far to confirm or falsify this assumption. In contrast, the rather slow NCN+ O2 reaction is included

both in the Konnov0.6 and the GDFkin3.0_NCN mechanisms. Starting from earlyand too high rate

constant estimates,[15] this reaction was initially believed to be crucial for NCN modeling,[25] but later

theoretical calculations of Zhu and Lin[16] clearly showed that the reaction is activation controlled,

slow, and therefore plays a less important role for NOx formation in flames. As it turns out below,

the rate constant of the reaction NCN + H2 is about two orders of magnitude higher than for NCN +

O2. Therefore, an accurate rate constant determination and a thorough analysis of its impact for NOx

63



5. Rate constant of the reaction NCN + H2

modeling as reported in this work is overdue.

5.2 Experimental

The used shock tube apparatus has been described in more detail elsewhere.[26] Briefly, the exper-

iments have been performed in an overall 8.3 m long stainless steel shock tube with a 4.4 m long

electropolished test section that could be evacuated to pressures ofp≈ 10−7 mbar by a combination

of an oil-free turbo-molecular drag and a diaphragm pump. The test section and the driver section

were separated by aluminum membranes of 30, 80 or 100µm thickness. Hydrogen or hydrogen/ ni-

trogen gas mixtures have been used as driver gas. The experimental conditions behind the incident

and reflected shock waves were calculated from pre-shock conditionsand the shock wave velocity,

which was measured by four fast piezoelectronic sensors (PCB Piezotronics M113A21), by using a

frozen-chemistry code.

Storage gas mixtures of 500 ppm to 1000 ppm NCN3 in argon were prepared using the partial pres-

sure method. The reaction mixtures were prepared using calibrated mass flow controllers (Aera, FC-

7700CU; 10, 50, and 1000 sccm). Pure H2 (Air Liquide, ≥ 99.999%) and the NCN3 mixtures were

further diluted with argon (Air Liquide,≥ 99.999%) in a flow system and were passed into the test

section of the shock tube. The section was flushed with the test gas mixture for about 5 min to min-

imize possible gas adsorption effects on the shock tube walls. High H2 mole fractions up to 9.6%

were necessary in the reaction gas mixtures to achieve a fast NCN consumption due to reaction (2).

At such high mole fractions, vibrational relaxation effects may compromise a simple frozen-chemistry

calculation of the experimental conditions. Equilibration of the Boltzman population of H2 in its v= 0

and v= 1 vibrational states may cause a noticeable, gradual decrease of the temperature behind the

shock wave. However, on the one hand the vibrational relaxation time of H2 in argon is known to be

rather short, about 9µs atp= 700 bar andT = 1750 K,[27] and hence close to the time resolution of

the experiments. On the other hand, due to the high vibrational quanta of H2, the fraction of H2 in the

v = 1 state and with it the overall temperature effect remains small. At a typical experimental temper-

ature ofT = 1750 K, the ratio H2(v = 1)/H2(v = 0) = 0.03. Calculation of shock wave conditions

assuming fully and non-relaxed H2 showed that even at the highest experimental temperatures and H2

concentrations used in this work, the maximum expected temperature effect was∆T < 5 K. This is

within the 1% uncertainty of the temperature calculation from the shock wave velocity. Consequently,

due to the fast relaxation and the overall small temperature effect, it could be safely assumed that H2

relaxation did not interfere with the rate constant measurements.

5.2.1 NCN precursor

It has been shown by Dammeier et al.[28,29] that the thermal decomposition of cyanogen azide (NCN3)

serves as a quantitative source of NCN radicals. NCN3 thermal decomposition yields NCN in its first

electronically excited singlet state, which is rapidly converted to the triplet ground state by collision

induced intersystem crossing (CIISC).
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Table 5.1: Arrhenius parameters for the rate constants of all included NCNreactions as used for sim-
ulating the experimental NCN profiles behind shock waves.ki = ATnexp[−Ea/RT], given
in units of cm3, mol-1, s-1 and kJ. Except for reactions (3) and (4), all reactions have been
duplicated for1NCN to take1NCN chemistry approximately into account. In addition to
the listed reactions, the GDFkin3.0 mechanism[12] was used as a background mechanism.

No. Reaction A n Ea Ref.

2 NCN + H2→ products 4.1×1013 101 this work

3 NCN3→
1NCN + N2 4.9×109 71 ρ = 3×10−6 mol/cm3, 29

7.5×109 71 ρ = 6×10−6 mol/cm3, 29

4 1NCN→ NCN 2.0×106 31 ρ = 3.5×10−6 mol/cm3, 29

5a NCN + H→ HCN+N 7.94×1012 0.41 22.8 22

5b NCN + H→ CH+N2 4.2×1015 −0.69 2.0 22

6 NCN + M⇋ C + N2+ M 8.9×1014 260 21

7 NCN + NCN⇋ CN + CN + N2 3.7×1012 21

8 NCN + C⇋ CN + CN 1.0×1014 21

9 NCN + N⇋ N2 + CN 1.0×1013 6

10 NCN + CN⇋ C2N2 + N 1.25×1014 33.5 6

11 NCN + H⇋ HNCN 2.98×1018 −9.28 27 760 torr, 19

NCN3 + M→ 1NCN + N2 + M (3)

1NCN + M→ 3NCN + M (4)

Rate constants for reaction (3) and (4) have been adopted from previous work and are listed in Table

5.1. As it is known that the CIISC process (4) strongly depends on the collision partner and hence

reaction mixture composition, its rate constant was allowed to vary within the error limits reported in

Ref. 29.

The extremely explosive and toxic precursor NCN3 cannot be purified by freeze-pump cy-

cles. It has therefore been synthesized directly in high purity in the gas phase, according to

BrCN(g)+NaN3(s)→ NCN3(g)+NaBr(s), using a method described in detail in Ref. 22. After

an 8 h reaction time the remaining BrCN impurities were usually< 3% according to FTIR analysis.

The pure NCN3 was diluted in argon and was used within three days since NCN3 tends to slowly form

solid polymers. The actual initial NCN3 concentrations in the reaction gas mixtures were determined

from the NCN absorption signal plateaus behind the incident shock waves(for experiments behind the

reflected shock wave) or by fitting the maximum of the NCN concentration profile (for experiments

behind the incident shock wave). In all cases, the determined concentration was consistent with the

concentration calculated from the expected NCN3 mole fraction in the storage gas mixture.

5.2.2 NCN detection scheme

The narrow-bandwidth laser absorption setup for time-resolved radicaldetection behind shock waves

has been described in detail elsewhere.[22] Briefly, about 1 mW of UV radiation was generated by
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intra-cavity frequency doubling of a frequency-stabilized continuous-wave ring-dye laser (Coherent

899) operated with DCM-Special as dye and pumped using 8 W atλ = 532 nm from a Nd:YVO4

solid state laser (Coherent Verdi V10). The UV laser beam was split into adetection and a reference

beam by a 50:50 beam splitter plate. The detection beam was focused, passed the shock tube through

two quartz windows, and was coupled into an optical fiber connected to a balance photo-detector and

amplifier (Thorlabs PDB 150A-EC). The reference beam intensity could be precisely adjusted by a

variable neutral density filter to match the intensity of the detection beam. The resulting difference

signal (∆I ) and the monitor signal of the detection beam (I0) were stored by an analog input board

(Measurement Computing PCI-DAS4020/12, 12 bit, 20 MHz) for further data processing.

Triplet NCN has been detected atν̃ = 30381.11 cm−1 (λ = 329.1302 nm) on the maximum of

an absorption band stemming from the superposition of the3Π1 sub-band of theÃ3Πu(000)−

X̃3Σg(000) transition with theQ1 band head of the vibronic3Σ+(010)−3 Π(010) transition.[30] NCN

concentration-time profiles were calculated using the previously reported temperature-dependent ab-

sorption cross section, which has been measured with an accuracy of±25% using the same appa-

ratus at similar temperatures and pressures as used in this work.[28] As the (010) vibrational state

becomes significantly populated at combustion temperatures, the absorption cross sections were com-

paratively high (e.g.,σ(1500 K,base e) = 4.5× 107 cm2mol−1). Hence, with a detection limit of

4× 10−12 cm3/mol (corresponding to 1.5× 10−3 absorption atT = 1500 K, p = 500 mbar, and an

electronic time-resolution of∆t ≈ 1 µs), NCN could be detected with high signal-to-noise ratios even

at NCN mole fractions as low as a few ppm.

5.2.3 Numerical methods

Numerical simulations of NCN concentration-time profiles from the shock tube experiments were

performed using the Chemkin-II program package[31] in combination with the GDFkin3.0_NCN as

a detailed background mechanism. In order to be consistent with previous shock tube work, rate

constants for NCN reactions have been replaced or added according toour directly measured rate

constant data set.[20,21,22] The most important reactions for modeling the shock tube experiments are

listed in Tab. 5.1. For sensitivity analysis, the sensitivity coefficientσ(i, t) for reactioni at time t

was normalized with respect to the maximum concentration[NCN]max over the time history,σ(i, t) =

1/[NCN]max× (∂ [NCN]/∂ lnki).

Flame modeling was performed with the Chemkin/Premix code[31,32] and the detailed mechanism

GDFkin3.0_NCN.[12] As will be further outlined below, the mechanism has been modified to take into

account reaction (2) and subsequent chemistry of HNCN and HNC. Rate-of-production (ROP) and the

N-atom flux analyses have been accomplished at the NCN peak locations using a homemade post pro-

cessor that relies mostly on the Chemkin subroutines.[31] Atom flux analysis has been performed with

the program Kinalc, and the reaction fluxes were plotted with the included FluxViewer visualisation

tool.[33] Thermodynamic data were adopted from GDFkin3.0[12] with updated NCN thermochemistry

as described in Ref. 13. Hence, in agreement with recent experimental work,[22] the controversial

value of the enthalpy of formation of NCN[34] was set to∆fH◦298K = 450.2 kJ/mol. For HNCN and
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Figure 5.1: (a) Typical experimental NCN concentration-time profile in comparison with numeri-
cal simulations.T = 1582 K, p = 544 mbar,ρ = 4.13× 10−6 mol/cm3, [H2] = 4.0%,
[NCN3] = 8.2 ppm,k2e(NCN+H2→ HNCN+H) = 1.8× 1010 cm3mol−1s−1 (best fit,
solid curve). (b) Corresponding sensitivity analysis for NCN.

HNC, thermodynamic data were extracted from the Goos/Ruscic database.[35]

Quantum chemical calculations were carried out using the Gaussian 09 suiteof programs.[36] The tran-

sition state of the reaction NCN+H2→ HNCN+H was located and verified by using a synchronous

transit-guided quasi-Newton method (QST3 option) and intrinsic reaction coordinate following.

5.3 Results and discussion

5.3.1 Shock tube experiments

The rate constant of reaction (2), NCN + H2, has been measured behind incident and reflected shock

waves with reaction gas mixtures containing 3 - 27 ppm NCN3 and 0.8 - 9.6 % H2 in argon.k2 values

have been obtained in the temperature and pressure ranges 1057 K≤ T ≤ 2475 K and 324 mbar

≤ p≤ 1665 mbar, at two total densities ofρ ≈ 4.1× 10−6 and 7.4× 10−6 mol/cm3. Under these

experimental conditions the reaction NCN + H2 was always the most important reaction for NCN

consumption. Experimental temperature limits were set by the thermal decomposition of NCN, which

becomes the dominant reaction above 2500 K, and by the rate of reaction (2) itself, which becomes

too slow at temperaturesT < 1000 K to be measured with sufficient sensitivity.

Fig. 5.1a shows a typical NCN concentration-time profile behind the incident shock wave atT =
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1582 K and a total density ofρ = 4.13×10−6 mol/cm3. The NCN profile reveals a rather slow NCN

consumption with a half-life oft1/2 ≈ 200 µs. Since there are no studies on the possible reaction

channels of the reaction NCN + H2, numerical simulations of the experimental NCN profiles have

been performed assuming different sets of reaction products. Potentialreaction products of reaction

(2) include:

∆rH◦298 K/(kJmol−1)

(2a) 3NCN + 1H2 →
1H2NCN −317.2

(2b) → 1HNCNH −304.2

(2c) → 3CH2 + 1N2 −59.0

(2d) → 1HCN + 3NH 38.4

(2e) → 2HNCN + 2H 83.6

(2f) → 1HNC + 3NH 100.5

(2g) → 2NH2 + 2CN 174.7

The formation of the thermodynamically most favorable products H2NCN (2a) and HNCNH (2b) is

spin-forbidden and hence their formation constitutes a presumably unimportant pathway. All other,

increasingly endothermic channels are spin-allowed and may become accessible at combustion tem-

peratures. Except for reaction (2e), the assumed product sets require the formation of an unlikely

collision complex on the triplet surface followed by several rearrangement steps. This is in particular

the case for reaction (2c), where a feasible reaction pathway can hardly be imagined. Actually, reac-

tions (2a) and (2g) may become important for the corresponding1NCN reaction as singlet radicals

are known to prefer insertion reactions. For the triplet radical, however, reaction (2e) constitutes the

by far most probable reaction channel. Next to the decomposition of a3HNCNH intermediate, this

reaction can take place as a direct activation controlled H abstraction reaction as well. It is known that

H abstraction channels often become the dominating pathway at high temperatures even if complex-

forming pathways are accessible.[26,37] Therefore, the most reasonable reaction products HNCN + H

have been assumed for the target reaction NCN + H2 in a first round of data evaluation. The effect of

assuming different product sets will be further discussed below. The experimental NCN concentration-

time profiles have been simulated based on a detailed mechanism assembled fromour previous work

(Table 5.1). Except for reactions (3) and (4), all reactions have been duplicated for1NCN to take
1NCN chemistry approximately into account. Moreover, the reaction model wascomplemented by

the extensive GDFkin3.0 mechanism.[12,13] Subsequent HNCN chemistry is only partly accounted for.

Next to the reverse of reaction (2e), H + HNCN, only the thermal decomposition of HNCN has been

included in the mechanism by the reverse of reaction (11). For the latter, theused rate expression for

atmospheric pressure has been adopted from recent work of Teng etal.;[19] a formerly reported rate ex-

pression for the low pressure limit of the unimolecular decomposition reaction (-11) by Moskaleva and

Lin, [6] which is implemented into the Konnov0.6 mechanism, turned out to yield unrealistic high rate

constant values. Other rate constant data for bimolecular HNCN loss reactions such as HNCN + C/

CN/ N are not available in the literature, however, these reactions are notexpected to play significant
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roles for modeling the shock tube experiments.

In Fig. 5.1a, the solid curve represents the best numerical simulation of the NCN profile usingk2e=

1.8× 1010 cm3mol−1s−1. Variation of k2e by a factor of two yields the two dotted curves that fail

to reproduce the experiment. The sensitivity analysis in Fig. 5.1b reveals that reaction (2e) is by far

the most important reaction for NCN consumption. Only at reaction timest > 250 µs, the reaction

NCN + H gains some influence. Its high temperature rate constant and branching ratio, however, has

been directly measured recently.[22] The sole other sensitive reaction, which is important to model

the initial NCN formation at short reaction times, is the CIISC process (4). Ithas been studied in

some detail by Dammeier et al.[29] and its rate constant value is dependent on the composition of the

reaction gas mixture. Here,k4 has been used as an adjustable parameter and was varied within the

error limits reported in Ref. 29 in order to model the initial increase of the NCN signal. Finally, an

alternative rate constant determination by fitting the NCN decay assuming a simplepseudo-first order

exponential decay without applying any reaction mechanism has been performed as well. As expected

for negligible secondary chemistry, very similar rate constant values are obtained. For example, for

the experiment shown in Fig. 5.1 a rate constant ofk2 = 1.9×1010 cm3mol−1s−1 has been obtained

over the interval 25µs≤ t ≤ 250µs, which is very close to thek2e= 1.8×1010 cm3mol−1s−1 value

from the numerical simulation mentioned above.

In order to analyze a possible influence of the assumed products of reaction (2), the experimental NCN

concentration-time profiles have been simulated using different product sets. Fig. 5.2a illustrates an ex-

perimental NCN profile at a reflected shock wave temperature ofT = 2123 K. Assuming reaction chan-

nel (2e) with the radical products HNCN + H yields a rate constant ofk2e= 1.3×1011 cm3mol−1s−1

(red curve). The sensitivity analysis for the chosen high temperature experiment reveals that the in-

fluence of secondary chemistry is more pronounced than for the previously discussedT = 1582 K

experiment (Fig. 5.1). For example, the thermal decomposition of NCN, NCN+M→ C+N2+M,

starts to play a significant role. Its rate constant has been measured in two independent studies and

highly consistent values have been reported.[21,24] Hence, a sensitive determination ofk2 is still possi-

ble. Next, the same value for the rate constantk2 but the alternative recombination product HNCNH

of channel (2b) has been used instead of the products HNCN + H. The resulting simulated curve pre-

dicts a somewhat too slow NCN decay (black curve). As no additional HNCNH chemistry has been

included into the mechanism and hence HNCNH has been treated as a stable species, the difference

between the two simulations reflects the impact of the secondary reactions resulting from the radical

products formed in case of the channel (2e) products. Similar results areobtained when assuming re-

action channel (2a). In contrast, simulations with the other potential radicalforming reaction channels

(2c), (2d), (2f) or (2g) yielded more or less the samek2 values as for channel (2e). In Fig. 5.2a, the

blue curve represents the simulation using the products of channel (2f),HNC + NH, as an example.

Within error limits it is identical to the simulation using channel (2e).

Total rate constant values for reaction (2) have been extracted from 36 shock tube experiments. The

experimental conditions of all experiments are listed in Table 5.2, an Arrhenius plot of the obtained

k2 values is given in Fig. 5.3. The symbols correspond to the results assuming HNCN + H as the

reaction products. Within the scatter, the obtained data for the two differenttotal densities ofρ ≈
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Figure 5.2: (a) Comparison of numerical simulations assuming HNCN + H (2e),HNC + NH (2f),
or HNCNH (2b) as alternative products of the reaction NCN + H2. T = 2123 K,
p = 719 mbar,ρ = 4.08× 10−6 mol/cm3, [H2] = 1.5%, [NCN3] = 25 ppm. k2 =
1.3×1011 cm3mol−1s−1 has been used for all three simulations. (b) Corresponding sensi-
tivity analysis assuming the products HNCN + H.

4.1×10−6 mol/cm3 (open squares) and 7.4×10−6 mol/cm3 (star symbols) agree, showing that the

reaction is not significantly pressure dependent. The data points can be nicely represented by a two-

parameter Arrhenius expression.

k2/
(
cm3mol−1s−1)= 4.1×1013exp

(
−

101kJ/ mol
RT

)
, ∆ logk2 =±0.11.

The error bars in Fig. 5.3 exemplify the cumulative uncertainty ofk2 resulting from different error

sources. Simulations show that a pessimistic±25% error estimate for the initial NCN3 concentra-

tion, which arises from the 25% error of the used NCN absorption cross section,[28] result in a±6%

uncertainty ink2. Varying the most important background reactions within their error limits sum up

to ±8%. Finally, the uncertainty of the H2 concentration was±2% and the statistical error of the

Arrhenius fit of the scattered data amounts to±8% (2σ standard error of the mean). A reasonable

total error estimate in the middle of our temperature range atT ≈ 1750 K is therefore±24%, corre-

sponding to∆ logk2 = ±0.11. The dashed line in Fig. 5.3 corresponds to the Arrhenius expression

k2/(cm3mol−1s−1) = 6.5×1013×exp(−105kJ/ mol/RT) that has been obtained by assuming the un-

likely formation of a stable reaction product (i.e., channel (2a) or (2b)).Such an evaluation yields data

(not shown) that start to deviate from the evaluation assuming radical products (i.e., channels (2c)-(g))
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Table 5.2: Experimental conditions and results for shock tube experiments with NCN3/ H2/ Ar reaction
mixtures.

T/ p/ ρ/10−6 H2 NCN k2e/ T/ p/ ρ/10−6 H2 NCN k2e/

K mbar mol/cm3 % ppm cm3mol−1s−1 K mbar mol/cm3 % ppm cm3mol−1s−1

incident shock wave,ρ ≈ 4.06×10−6 mol cm−3 reflected shock wave,ρ ≈ 4.12×10−6 mol cm−3

1057 324 3.69 2.81 13 5.0×108 1866 588 3.86 1.48 27 5.1×1010

1171 371 3.81 2.81 10 1.3×109 1936 638 3.97 1.48 23 7.5×1010

1402 466 4.00 2.81 10 7.0×109 2076 704 4.08 1.48 24 1.0×1011

1433 489 4.10 6.34 4.5 8.5×109 2123 719 4.08 1.48 25 1.3×1011

1449 498 4.13 7.48 5.3 9.0×109 2161 748 4.16 1.48 23 1.3×1011

1503 510 4.08 9.63 3.2 1.2×1010 2264 794 4.22 1.48 25 2.7×1011

1520 518 4.10 3.38 6.8 1.2×1010 2365 835 4.25 0.83 24 3.3×1011

1525 520 4.10 3.64 7.6 1.3×1010 2475 891 4.33 0.83 21 2.6×1011

1533 526 4.13 5.06 6.0 1.7×1010 incident shock wave,ρ ≈ 6.48×10−6 mol cm−3

1534 523 4.10 3.15 5.6 1.3×1010 1244 669 6.47 2.81 7 2.8×109

1534 525 4.11 3.17 4.2 1.4×1010 1260 680. 6.49 2. 81 9 4.3×109

1535 527 4.13 4.31 8.6 1.8×1010 reflected shock wave,ρ ≈ 7.67×10−6 mol cm−3

1537 526 4.11 3.17 5.5 1.3×1010 1247 652 6.29 2.93 10 5.0×109

1560 537 4.14 3.19 2.7 1.6×1010 1543 916 7.14 2.93 12 2.0×1010

1578 537 4.10 2.10 5.8 1.6×1010 1705 1066 7.52 2. 93 13 2.2×1010

1579 539 4.11 2.36 8.3 1.8×1010 1824 1178 7.77 2. 93 10 4.9×1010

1582 544 4.13 3.95 8.2 1.8×1010 2044 1388 8.17 2. 93 9.3 9.0×1010

1623 558 4.13 2.81 10 1.9×1010 2062 1405 8.19 2.81 12 1.5×1011

1626 529 3.91 2.93 5 2.7×1010 2330 1665 8.59 2.81 9.0 3.0×1011

at temperaturesT > 1700 K with a maximum deviation of+30% atT = 2480 K.

A comparison with a similar reaction and quantum-chemical calculations show thatthe obtained ac-

tivation energy is roughly consistent with a reaction that is dominated by an H abstraction pathway

according to channel (2e). On the one hand, a comparable H abstractionreaction of the N-centered

triplet species3NH, NH + H2 → NH2 + H, exhibits an activation energy, which is 33 kJ/mol higher

than the corresponding reaction enthalpy of∆rH◦298K = 32 kJ/mol.[38] Accordingly, an activation en-

ergy ofEA ≈ 84 kJ/mol+33kJ/mol= 117 kJ/mol would be expected for reaction (2e). On the other

hand, an estimate of the activation enthalpy of channel (2e) based on quantum-chemical calculations

using G4 level of theory yields a similar result. This method provides a reactionenthalpy for chan-

nel (2e) of∆rH0
298 = 86 kJ/mol, which is close to the value of 84 kJ/mol from thermodynamic data

taken from literature. The calculated energy of the H2 · · ·NCN transition state (H2 is bonded to one

of the N atoms and is oriented essentially perpendicular to the slightly bended NCN moiety) yields

∆H‡(T = 1750 K) = 101 kJ/mol. Accordingly, taking into account the simple transition state theory

expressionEA ≈ ∆H‡+2RT, an activation energy of about 130 kJ/mol can be estimated for channel

(2e) atT = 1750 K. However, a more detailed comparison with theory should be based on more ad-

vanced multi-reference quantum-chemical and kinetic calculations including tunneling corrections as

well as a complete RRKM/master equation analysis of the possible role of additional complex-forming

reaction pathways. Given that accurate energy calculation of NCN related species turned out to be very

challenging,[34] such an analysis would have been beyond the scope of this paper.
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Figure 5.3: Arrhenius plot of the rate constant for the reaction NCN + H2 → products. Experi-
mental data at two different total densitiesρ ≈ 4.1× 10−6 mol/cm3 (open squares) and
ρ ≈ 7.4× 10−6 mol/cm3 (star symbols) and corresponding Arrhenius fit (solid line) for
an evaluation assuming radical products (channel (2c)-(g)) are shown. The dashed line
depicts an Arrhenius fit obtained for an alternative data evaluation (corresponding data
points are not shown) assuming stable reaction products (channels (2a)and (2b)).

5.3.2 Flame modeling

The reaction NCN + H2 turns out to be comparatively fast. With a rate constant ofk2 = 3.2×

1010 cm3mol−1s−1 at a typical flame temperature ofT = 1700 K, it is about a factor of 300 faster

than the reaction NCN + O2. Therefore, in order to assess the potential influence of reaction (2) for

NOx formation in flames, reaction (2) as well as other NCN reactions have been implemented into the

GDFkin3.0_NCN[12,13] flame mechanism. Arrhenius parameters of all reactions that have been added

to the original mechanism are listed in Table 5.3. Simulations have been performed with HNCN + H,

HCN + NH, and HNC + NH as the respective sole products of reaction (2).

Consideration of HNCN + H as main products implies an update of the mechanism with respect to

HNCN reactions as well. HNCN species may rapidly react with O atoms (reactions (12)) generating

HNC species. Consequently, two new blocks of reactions have been added to account for possible

HNCN and HNC chemistry. In order to be coherent with the experimental rateconstant determination,

some additional NCN consumption reactions, (6) to (11), have also been considered in the detailed

mechanism. In the following, this updated mechanism is named up-GDFkin3.0_NCN (up-GDF for

short) in contrast to the original mechanism GDFkin3.0_NCN (GDF for short). Calculations were

performed to simulate species profiles in selected low pressure premixed flames where the reaction

NCN + H2 may play an important role in the prompt-NO pathway. Two fuel rich flames of CH4/

O2/ N2 have been considered numerically. Both flames were simulated at low pressure (5.0 kPa) with

the same total volumetric flow rate (300 L/h, in the standard condition of temperature and pressure)
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Table 5.3: Arrhenius parameters for rate constants of NCN, HNCN and HNC reactions added to the
GDFkin3.0_NCN mechanism[13] for flame simulations. Rate constants are given aski =
ATnexp[−Ea/RT] in units of cm3, mol-1, s-1 and kJ.

No. Reaction A n Ea Ref.

2 NCN + H2→ (d) HCN + NH / (e) HNCN + H / (f) HNC + NH 4.1×1013 101 This work

6 NCN + M⇋ C + N2 + M 8.9×1014 260 21

7 NCN + NCN⇋ CN + CN + N2 3.7×1012 29

8 NCN + C⇋ CN + CN 1.0×1014 29

9 NCN + N⇋ N2 + CN 1.0×1013 6

10 NCN + CN⇋ C2N2 + N 1.25×1014 33.5 6

11 NCN + H⇋ HNCN 1.78×1041 −9.58 21.9 100 torr, 19

12a HNCN + O→ NO + HNC 1.22×1014 −0.05 0.3 39

12b HNCN + O→ NH + NCO 5.60×1013 −0.05 0.3 39

12c HNCN + O→ CN + HNO 9.36×1012 −0.05 0.3 39

13 HNCN + O2→ HO2 + NCN 1.26×108 1.28 101.3 39

14 HNCN + OH→ H2O + NCN 1.04×105 2.48 −7.9 40

15 HCN (+ M)→ HNC (+ M) 3.5×1013 197.5 k∞, 41

1.60×1026 −3.23 207.5 k0, 41

16 HNC + H→ HCN + H 7.8×1013 15 42

17 HNC + O→ NH + CO 4.6×1012 9.2 41

18 HNC + OH→ HNCO + H 2.8×1013 15.5 41

19 HNC + CN→ C2N2 + H 1.0×1013 43

and nitrogen dilution ratio (60%), but a different richness equal toφ = 1.3 andφ = 1.5, respectively.

Imposed temperature profiles were identical for each flame. The temperature in the burned gas was

limited to remain lower than 1850 K, hence thermal-NO contribution was reduced and prompt-NO

formation was promoted.

Considering the original GDF mechanism, simulated temperature and species profiles of NO, NCN

and H2 are reported in Fig. 5.4. In the burned gases, NO mole fractions are equal to 24.5 and 38.3 ppm

for φ = 1.3 andφ = 1.5, respectively. As shown in Fig. 5.4a, the NO mole fraction in the burned gases

is hardly affected atφ = 1.3, but is increased by 8% atφ = 1.5 when the calculations are performed

with the up-GDF mechanism instead. H2 and NCN profiles are reported in Fig. 5.4b using the up-GDF

mechanism. The profiles show that at the NCN peak location (height above burner, HAB (φ = 1.3)

= 5.3 mm and HAB (φ = 1.5) = 6.8 mm) the mole fractions of H2 with x(φ = 1.3) = 0.064 and

x(φ = 1.5) = 0.091 are high. NCN peak mole fractions are quite similar in the two flames with peak

values close to 145 ppb, but the shape of the NCN profile is much thinner atφ = 1.3.

N-atom flux analysis was performed after all the reactions have been declared in a non reversible

format. In this way the atom flux reveals the flux in both directions of reversible reactions (forward

and backward) separately. Some results at the NCN peak locations for both flames are presented in

Table 5.4. Only NCN losses in the direction of the prompt-NO formation pathway (forward flux) are

included. As expected, the reaction NCN + H→ HCN + N is the most important NCN loss reaction

that dominates the NCN forward flux, followed by the reaction with O atoms (yielding CN + NO).

Nevertheless, about 1.8% of the NCN radicals are consumed through reaction (2) atφ = 1.3 and 3.5%

at φ = 1.5. The so far neglected reaction with H2 ranks third place and its contribution is even three
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Figure 5.4: a) NO profiles simulated for the low pressure flames (see text) ata richness ofφ = 1.3 and
φ = 1.5. Results are shown for both the GDF and up-GDF mechanisms. b) Corresponding
H2 and NCN profiles simulated with the up-GDF mechanism.

orders of magnitude higher than for the reaction NCN + O2. Note that the N-flux analysis reveals that

next to reaction (2) also reaction (8), NCN + C, which was omitted in the original mechanism as well,

becomes more important than other, already implemented bimolecular reactions such as NCN + OH/

HO2/ NO/ M that are negligible under the assumed flame conditions.

Although it turned out that the implementation of reaction (2) is important, its ratherlow contribution

to the forward flux is in seemingly contrast to the mentioned significant changeof the overall NO yield.

Obviously, other reactions added to the updated mechanism must be responsible for this prominent

effect. A complete reaction pathway diagram for theφ = 1.5 flame using the up-GDF mechanism

is shown in Fig. 5.5. New reaction pathways that are absent in the corresponding diagram using

the original GDF mechanism (not shown) are highlighted in red color. These pathways include the

formation and loss reactions of the newly included species HNCN and HNC. Once formed, HNCN

reacts quickly with O-atoms through reaction (12). According to theoreticalcalculations, the products
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Table 5.4: N-atom flux analysis for the two CH4/O2/N2 model flames. The Table lists the forward
fluxes associated with several NCN + X reactions on the prompt-NO formationpathway.

Forward flux % Ha O H2 C H2O OH HO2 O2 NO M

φ = 1.3 69.21 25.68 1.76 1.36 1.33 0.44 0.21< 0.01 < 0.01 < 0.01

φ = 1.5 79.33 12.54 3.52 2.17 1.96 0.33 0.13< 0.01 < 0.01 0.03
a for NCN + H (yielding either CH + N2 or HCN + N, with a relative ratio of 77/23) only the HCN + N forming channel
contributes to the forward flux along the prompt-NO formation pathway

Figure 5.5: N-atom flux analysis at the NCN peak location in theφ = 1.5 CH4/O2/N2 flame using the
up-GDF mechanism. The pathways highlighted in red color are absent in a corresponding
flux analysis using the original GDF mechanism.[13]

of the reaction HNCN + O are mostly HNC + NO.[39] HNC then reacts with OH radicals yielding

HNCO + H, and HNCO reacts with H atoms yielding NH2 + CO. However, it becomes clear from the

flux diagram that HNC radicals are formed primarily from HCN and only secondly from HNCN. In

fact, the HCN/ HNC isomerization according to reactions (15), which is closeto its low-pressure limit,

and the H atom initiated isomerization reaction (-16), HNC + H→ HCN + H, represent 12% and 20%

of the HCN consumption atφ = 1.3 andφ = 1.5, respectively. This finding is also reflected in the

HCN profiles shown in Fig. 5.6 for theφ = 1.5 flame. HCN mole fraction peak values obtained with

the updated mechanism decrease by 20%. According to the ROP, HCN is mainlyconsumed through

the reaction HCN + O⇋ NCO + H and the reaction (-16), both being three times more important than

the reactions HCN + OH⇋ HOCN + H and HNC (+M)⇋ HCN (+M). The combined effect of HNC

formation from the reactions (-16) and (12a) results in a substantial increase of HNCO by a factor of

two (Fig. 5.6). This increase is followed by a comparable increase of the peak values of NH2 as well.

To sum up, although the implementation of the reaction (2) has indeed a significant impact on NO

formation through a new HNC→ HNCO→ NH2 → NH → NO pathway, it is in fact the HCN/

HNC isomerization and not the reaction NCN + H2 that is mainly responsible for the distinct changes

obtained with the up-GDF mechanism. Note that the rate constant of the H initiated isomerization

reaction (16), H + HNC→ HCN + H, is based on a theoretical QRRK estimate[42] and, to the best

of our knowledge, has not been experimentally confirmed yet. Therefore, our interesting preliminary

finding calls for a more detailed analysis to better constrain and verify the roleof the HNC initiated
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Figure 5.6: Comparison of HCN, HNCO, and NH2 profiles of theφ = 1.5 flame calculated with the
original GDF (dashed curves) and the up-GDF (solid curves) mechanisms.

pathway for NO formation in flames.

The possible influence of the assumed products of the reaction (2) for theNO formation in flames has

also been analyzed. Whatever channel (d, e, f) of reaction (2) was assumed, simulated NO profiles

are identical to each other. However, considering the channel (2d), implementation of the reactions

(12-19) could be removed since HCN and NH species are already declared in GDF.[13] In that case,

simulated NO profiles would be identical to those obtained with the original GDF mechanism. Again,

this clearly highlights the potential importance of the HCN/ HNC isomerization pathway through

reactions (15) and (-16).

5.4 Conclusion

The rate constant of the reaction (2), NCN + H2 → products, has been measured for the first time.

Shock wave experiments with time-resolved NCN radical detection by narrow-bandwidth laser UV

absorption were carried out under nearly pseudo-first order reaction conditions with H2 as the excess

component. The total rate constant has been measured at temperatures 1057 K≤ T ≤ 2475 K and can

be represented by the Arrhenius expression

k2/
(
cm3mol−1s−1)= 4.1×1013exp

(
−

101kJ/ mol
RT

)
, ∆ logk2 =±0.11.

No pressure dependence could be observed betweenp = 324 mbar andp = 1665 mbar. Quantum-

chemical calculations show that the activation energy is roughly consistentwith the formation of

the products HNCN + H, hence the most likely direct abstraction pathway. Still,detailed quantum-
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chemical calculations in combination with RRKM/TST/ME modeling are desirable to further assess

the role of complex-forming reaction pathways.

The detailed reaction mechanism GDFkin3.0_NCN has been updated to assess the potential influence

of the so far neglected reaction (2) on prompt-NO formation in flames. Next toreaction (2), HNC

and HNCN submechanisms have been implemented as well to describe the subsequent chemistry

of the reaction products. Two fuel-rich low-pressure methane flames served as a model case and it

was shown that the contribution of reaction (2) on the overall NCN loss in thedirection of prompt-

NO is on the order of a few percent. Of course, the reaction may become even more important

for other flame conditions and, therefore, needs to be included in detailed flame mechanisms. The

flame simulation also highlights the fact that the reaction NCN + C⇋ CN + CN, which was also

omitted in the original GDFkin3.0_NCN mechanism should be considered in the future as well. As

yet the rate constant for NCN + C has only been roughly determined experimentally, improved direct

measurements are required. Moreover, as a pronounced impact of HCN/ HNC isomerization on NO

formation has been found in this study, a critically assessment and experimental verification of the

role of this new HNC→ HNCO→ NH2→ NH→ NO prompt-NO formation pathway is important.

A thorough validation of the updated mechanism going along with the implementation of other new

experimental rate constant data that recently have become available for several bimolecular reactions

of NCN is currently underway.
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6. Rate constant of the reaction NCN + O2

Abstract

The rate constant of the comparably slow bimolecular NCN radical reaction NCN + O2 has been

measured for the first time under combustion relevant conditions using the shock tube method. The

thermal decomposition of cyanogen azide (NCN3) served as a clean high-temperature source of NCN

radicals. NCN concentration-time profiles have been detected by narrow-bandwidth laser absorption

at ν̃ = 30383.11 cm−1. The experiments behind incident shock waves have been performed with

up to 17% O2 in the reaction gas mixture. At such high O2 mole fractions it was necessary to take

O2 relaxation into account that caused a gradual decrease of the temperature during the experiment.

Moreover, following fast decomposition of NCN3 and collision-induced intersystem crossing of the

initially formed singlet NCN to its triplet ground state, an unexpected and slow additional formation

of triplet NCN has been observed on a 100µs timescale. This delayed NCN formation was attributed

to a fast recombination of1NCN with O2 forming a3NCNOO adduct acting as a reservoir species

for NCN. Rate constant data for the reaction NCN + O2 have been measured at temperatures between

1674 K and 2308 K. They are best represented by the Arrhenius expressionk2 /
(
cm3mol−1s−1

)
=

1.3×1012exp
(
−97 kJ/ mol

RT

)
,(±57%). No pressure dependence has been observed at pressures between

216 mbar and 706 mbar.

6.1 Introduction

Nitrogen oxides, such as NO and NO2 (NOx), are harmful atmospheric pollutants from fossil fuel com-

bustion. Under fuel rich combustion conditions NOx is mainly formed over the so-called prompt-NO

pathway, which is initiated by the reactions of small hydrocarbon radicals withmolecular nitrogen

stemming from the combustion air according to the Fenimore mechanism.[1] Based on quantum chem-

ical calculations[2] and verified by shock tube measurement[3] it has been shown that the initiation

reaction CH + N2 yields the spin-allowed products H + NCN.

CH
(2Π

)
+ N2

(1Σ+
)
→ H

(2S
)

+ NCN
(3Σ−

)
(1)

In recent years, using NCN3 thermal decomposition as a quantitative source of NCN radicals and sen-

sitive time-resolved UV absorption spectroscopy to detect NCN concentration-time profiles, we have

performed several direct shock tube measurements of bimolecular NCN rate constants at high temper-

atures. These studies include the reactions NCN + NO, NO2, [4] NCN + NCN, O, and M[5] as well

as NCN + H[6] and NCN + H2. [7] The only other direct study reported in the literature, which is in

excellent agreement with our work, was concerned with the unimolecular decomposition of NCN us-

ing the C-ARAS technique.[8,9] So far, no experimental high temperature rate constant measurements

have been performed for the reaction with molecular oxygen,

NCN + O2→ products. (2)

This reaction has been discussed to play an important role for NOx formation in flames.[11,12] Baren
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Figure 6.1: Simplified potential energy diagram (G2M(CC1) level of theory) for the reaction NCN +
O2, according to Zhu and Lin.[10]

and Hershberger performed kinetic measurements of NCN radical reactions at low temperatures and

pressures by detecting NCN concentration-time profiles following 193 nm photolysis of CH2N2/C2N2

mixtures using laser-induced fluorescence. They could not observe significant changes in the NCN

profiles by adding O2 to their reaction mixtures and therefore estimated an upper limit ofk2< 6.0×109

cm3mol−1s−1 for temperatures between 298 K and 573 K.[13] In a first attempt to compile a high

temperature NCN mechanism for NOx formation, Glarborg et al. estimated a value ofk2 = 1.0×

1013 cm3mol−1s−1. [14] Such a high value, which has been adopted by El Bakali et al.[11] in their NCN

submechanism for flame modeling, would make the reaction NCN + O2, together with NCN + H, one

of the most important reactions for modeling the fate of NCN in flames. According to ab initio and

transition state theory calculations by Zhu and Lin,[10] the following two main reaction channels are

accessible at high temperatures:

NCN + O2→ cis-NCNOO → NCO + NO (2a)

→ CNO + NO (2b).

In Fig. 6.1 these two energetically most favorable reaction pathways are illustrated in a potential

energy diagram. As discussed by Zhu and Lin, the possible formation of NCNO + O(3P) and

NCNO + O(1D) is not important under combustion conditions and, for the sake of clarity,is omit-

ted in Fig. 6.1. Thecis- and trans-NCNOO intermediates refer to the two possible NC-NO-O

isomers of the initially formed NCN-O2 adduct. Relying on the G2M (CC1) level of theory re-

sults,[10] both product sets are formed from thecis-isomer with high transition state barriers of

117 kJ/mol (86 kJ/mol) for channel (2a) and 120 kJ/mol (89 kJ/mol) for channel (2b) relative to

the energy of thecis-intermediate (of the educts).cis-transisomerisation, with a calculated barrier

height of 165 kJ/mol, does not take place. Reaction channel (2a), the formation of NCO and NO,

turned out to be the most important channel with a branching ratio of about 85% in the temperature

range 1000 K to 3000 K. The calculations for the total rate constant resulted in the rate expression
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k2 /
(
cm3mol−1s−1

)
= 4.4×109× (T/K)0.51exp

(
−103 kJ/ mol

RT

)
. [10] At T = 1500 K, this rate constant

is five orders of magnitude lower than the estimated rate constant value of Glarborg et al.[14] Of course,

such a low value implies a reduced influence of the reaction NCN + O2 on the modeled NCN concen-

trations in flames than initially anticipated. For sure, the outcome of the theoreticalstudy of Zhu and

Lin supports an overall slow reaction. However, taking into account the difficulties in calculating re-

liable NCN energies and transition state barrier heights,[15,16,17] and facing the lack of experimental

studies, the absolute value of the rate constant awaits experimental validation. This paper now reports

the first direct measurements of the rate constant of the reaction NCN + O2. Compared to our previous

NCN studies, the data analysis was less straightforward. Vibrational relaxation of O2 as well as the

apparent intermediate formation of an NCN reservoir species had to be properly taken into account.

Nevertheless, it was possible to extract reliable rate constant values, which turned out to be about a

factor of five higher than the transition state theory estimate.

6.2 Experimental

6.2.1 Shock tube setup

Similar to our previous NCN measurements the experiments have been performed in an about 8 m long

stainless steel shock tube with an electro-polished test section with an inner diameter of 81 mm. The

whole apparatus is described in more detail elsewhere.[18] Experimental temperatures and pressures

behind the shock waves were calculated from the shock wave velocity, taking into account shock wave

damping of∼ 1% per meter, and the pre-shock conditions using a one dimensional frozen-chemistry

code with real gas correction. Reported times behind the incident shock wave correspond to the actual

reaction times taking into account the gas flow,treaction= tlaboratory×ρ2/ρ1. Reaction gas mixtures of 14

- 56 ppm NCN3 in Ar were prepared in a stainless steel gas mixing system equipped with several glass

flasks and storage tanks. NCN3 synthesis as well as the procedures for gas mixture preparation have

been described elsewhere.[4,19] Very high O2 mole fractions of 5.5 to 17% had to be used to achieve a

measurable effect of the reaction NCN + O2 on the NCN profiles. At such high O2 concentrations, due

to the relatively slow vibrational relaxation of O2, the temperature (and density) behind shock waves

cannot be assumed as constant. While the translational and rotational degrees of freedom are heated

within 1 µs, the vibrational relaxation of oxygen is much slower, about 166µs atT = 1500 K and

p= 1 bar for 2.5% O2 in Ar. [20] Due to this slow equilibration, the actual temperatures decrease dur-

ing the experiments. In fact, the initial temperatures are higher than the calculated temperatures using

the standard shock tube code, which assumes instantaneous and complete relaxation of O2. Therefore,

starting temperatures have been calculated using a modified NASA polynomial for oxygen taking only

translational and rotational degrees of freedom into account. This oxygen species will be referred to as

O2(cold) in the following. In this way, the change of the temperature (and density) behind the incident

shock wave could be taken into account in a straightforward manner by implementing the relaxation

process O2(cold)→ O2 into the reaction mechanism and by performing numerical simulations assum-

ing isobaric reaction conditions. As outlined by Oertel,[21] assuming that the specific enthalpy of the

heated gas mixture as well as the vibrational relaxation timeτ is approximately constant over the
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whole relaxation process, the temperature change can be described by amono-exponential law:

T(t)−T∞

T2−T∞
= exp

(
−

cp

cp,2
×

t
τ

)

Here,T(t) is the actual temperature,T2 the initial temperature behind the incident shock wave, andT∞

the equilibrated temperature after relaxation.cp andcp,2 are the specific heat capacities of the reaction

mixture with and without vibrational excitation of O2, respectively. The ratiocp/cp,2 is very close

to one. Under these assumptions, the experimental pressure behind the incident shock wave remains

constant andT×ρ = const.holds as well.

6.2.2 NCN source

As shown by Dammeier et al.,[19,22] the thermal decomposition of NCN3

NCN3+ M → 1NCN + N2+ M (4)

1NCN + M → 3NCN + M, (5)

serves as a clean and quantitative source for NCN with a yield of unity. Thefast unimolecular decom-

position of NCN3 generates NCN in its singlet excited electronic state, which undergoes a collision

induced intersystem crossing (CIISC) process to the triplet ground state(3NCN stated in the follow-

ing as NCN). Our previous work showed that the CIISC process is the rate-limiting process for NCN

formation at temperatures above 700 K, but is still fast compared to the reaction NCN + O2 measured

here.[22]

6.2.3 NCN detection

NCN has been detected by time-resolved narrow-bandwidth laser absorption spectroscopy at a wave-

length ofλ = 329.1302 nm (̃ν = 30383.11 cm−1). Details on the employed difference UV absorp-

tion setup, which was operated with about 1 mW output power of a frequency-doubled continuous-

wave ring dye laser, have been described elsewhere.[19] The observed absorption band of the triplet

NCN ground state is a superposition of the3Π1 sub-band of theÃ3Πu(000)− X̃3Σg(000) transi-

tion and theQ1 band head of the vibrationally excited Renner-Teller split3Σ+ (010)-3Π(010) tran-

sition.[23] The corresponding strongly temperature dependent but nearly pressure independent absorp-

tion cross section, log
(
σ(base e)/(cm2mol−1)

)
= 8.9−8.3×10−4×T/K, has been adopted from

previous work.[19] Note that this value was recently put into question by Lamoureux et al.[24] who

reported a 2.6 higher value based on elaborated theoretical spectroscopic calculations referenced to

the electronic transition moment obtained from zero pressure fluorescence lifetime measurements by

Smith et al.[25] A possible explanation for this discrepancy could be that the1NCN yield from NCN3

thermal decomposition is well below unity. However, no indication was found inthis and in our pre-

vious studies that the assumption of a quantitative1NCN formation is invalid. Moreover, in a very

recent study of Busch et al.,[9] who also used NCN3 as a source of NCN radicals, a C atom yield
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from NCN thermal decomposition, NCN→ N2 + C, was reported that is consistent with a quantitative

NCN formation from NCN3 as well. We therefore rely on our previously reported absorption cross

section value, which has been measured with an accuracy of±25%[19] using the same apparatus at

similar temperatures and pressures as used in this work. Numerical simulationsof concentration-time

profiles were performed by the Chemkin-II program package, using theSenkin routine for sensitivity

analyses.[26] An NCN mechanism for the simulations was assembled from our previous work[4,5,19]

and available literature data. The most important reactions are listed in Tab. 6.1. Additionally, the

GRI-Mech 3.0[27] has been used as a background mechanism to make sure that potentially important

secondary reactions are considered in the simulations as well. Thermodynamic data were taken from

Goos’ and Burcat’s thermodynamic database[28] with updated NASA polynomial parameters for NCN

from Goos et al.[16] In agreement with previous work,[6] the enthalpy of formation of NCN was set to

450 kJ/mol.

6.3 Results

6.3.1 O2 relaxation and NCNOO formation

Experiments have been performed behind incident shock waves at temperatures between 918 K and

2308 K and pressures of 164 mbar< p < 706 mbar, corresponding to total densities of aboutρ =

2.2×10−6 mol/cm3 andρ = 3.6×10−6 mol/cm3. The reaction mixtures contained 14 - 56 ppm of

NCN3 and 5.5 - 17% of O2.

Fig. 6.2 shows a typical experiment at a temperature of 1573 K. The two large Schlieren signals at

t = 0 µs andt = 570µs indicate the arrival of the incident and reflected shock wave at the observation

point, respectively. Simulations using the compiled NCN mechanism revealed that, following a fast

formation of NCN within a fewµs, a slow decrease of the NCN concentration at longer reaction times

would be expected mainly due to the reaction NCN + NCN. Additional loss due to the reaction NCN

+ O2 should further enhance the decay rate. Surprisingly, the measured NCNprofile (red noisy curve)

did not show the expected shape (dotted curve) but a pronounced increase during the first 300µs.

Only at longer reaction times, the observed decay was similar to the one expected from the reaction

NCN + NCN alone. A first explanation for this increase could be the slow O2 relaxation resulting in a

temperature decrease during the experiment. With decreasing temperature,the NCN absorption cross

section strongly increases such that the observed (apparent) NCN increase would simply reflect the

temperature change due to the vibrational relaxation process. Therefore, the temperature (and density)

change during the experiment has been explicitly taken into account as described in Section 6.2. The

rate constants 1/τ for the relaxation process have been calculated for each reaction mixtureusing

the relaxation times measured for Ar and O2 by White and Millikan[29] and Rao and Skinner[20]

assuming a linear mixture rule. For the experiment shown in Fig. 6.2, the calculated temperature

profile (blue curve) and an accordingly corrected NCN profile (black noisy curve) have been included.

Two conclusions can be drawn: i) The black and red colored NCN profiles nearly overlap, hence the

overall temperature (and density) effect,∆T =−9 K and∆ρ =+1×10−8 mol/cm3, is way to low to be

responsible for the observed NCN increase. In fact an unfeasible temperature change of∆T =−90 K
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Table 6.1: Selected reaction rate constant data for the numerical simulations of the experiments. Rate
constants are given aski = A×exp[−Ea/RT] in units of cm3, mol-1, s-1 and kJ. The listed
rate constants for NCN reactions have been duplicated for triplet and singlet NCN to take
1NCN chemistry approximately into account. Similarly, all reactions containing O2 have
been duplicated to account for both O2 and O2(cold) reactivity. In addition to the reactions
shown in the Table, the GRI-Mech 3.0 was used as background mechanism.

No. Reaction A Ea Ref.

2 NCN + O2→ products 1.3×1012 97 this work

3 O2(cold)→ O2 see text this work

4 NCN3→
1NCN + N2 4.9×109 71 ρ = 3×10−6 mol/cm3 22

5 1NCN→ NCN > 1.5×106 see text

6 1NCN + O2→ NCNOO see text this work

7 NCNOO→ NCN + O2 6.9×103 2.6 this work

8 NCN + NCN⇋ CN + CN + N2 1.0×1012 0 5, see text

9 NCN + O⇋ CN + NO 9.6×1013 5.8 5

10 NCN + M⇋ C + N2+ M 8.9×1014 260 5

11 NCN + NO⇋ CN + N2O 1.9×1012 26 4

12 NCN + NO2 ⇋ NCNO + NO 4.7×1012 38 4

13 NCN + C⇋ CN + CN 1.0×1014 0 22

14 NCN + N⇋ N2 + CN 1.0×1013 0 2

15 NCN + CN⇋ C2N2 + N 1.3×1014 33.5 2

would have been needed to fully account for the experimentally observedNCN signal increase. ii) The

timescale of the vibrational relaxation process (which is not yet complete after 570 µs in Fig. 6.2) is

significantly longer than the observed characteristic timescale of the NCN increase, hence vibrational

relaxation of O2 cannot be responsible for the observed signal shape. To confirm thisconclusion,

additional experiments with He added to the reaction gas mixtures have been performed. Helium is

known to promote O2 relaxation, however, He addition did not have any effect on the initial slope of

the NCN signals.

Having shown that the effect of O2 relaxation is minor, the increase of the NCN profile must be

assigned to an actual concentration increase. As it is not conceivable that O2 triggers an additional

NCN formation reaction sequence that may account for the extra NCN at longer reaction times, we

rather assume that the slow NCN formation indicates the formation of an NCN reservoir species that

must have been formed right at the beginning of the reaction. In accordance with the initial NCN-OO

adduct found by Zhu and Lin on the singlet potential energy surface,[10] it is likely that a similar adduct

exists on the triplet surface as well. To serve as an explanation, the formation of this adduct must be

fast in order to be able to compete against the likewise fast CIISC process(5), 1NCN→ NCN. To test

the reasonability of the postulated formation of a reservoir species, the reactions

1NCN + O2→ NCNOO and (6)

NCNOO→ NCN + O2 (7)
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Figure 6.2: Shock tube experiment behind an incident shock wave. Red noisy curve: Experimental
NCN profile assuming constant temperature and density. Black noisy curve: Calculated
NCN profile allowing for temperature and density change caused by O2 vibrational re-
laxation. Dotted curve: Simulated NCN profile with constant temperature and without
the formation of an NCN reservoir species. Solid curve: Best fit obtainedwith k7 and
φ = k6/(k6 + k5) as adjustable parameters andk8 = 1.0× 1012 cm3mol−1s−1. Dashed
curve: Simulated NCN profile using the samek7 andφ value but withk8 set to a high
value of 3.7×1012 cm3mol−1s−1. Blue curve: Simulated temperature profile.

have been implemented into the reaction mechanism.

Actually, by adjusting the rate constantsk6 and k7, the experimental NCN profiles could be well

captured in all cases; the simulated solid thick curve in Fig. 6.2 serves as an example. Reaction (7)

determines the slope of the delayed NCN formation, whereas the ratioφ = k6/(k6+ k5) determines

the amount of1NCN captured by O2 and hence the overall NCN plateau. By fitting the measured

NCN profiles,k7 andφ could be reliably determined at temperatures between 918 K≤ T ≤ 1595 K.

At these temperatures, the reaction NCN + O2 was too slow to contribute significantly to the overall

NCN profiles and the gradual decrease of NCN at longer reaction times could be fully attributed to the

reaction NCN + NCN (8). Its rate constant was inferred from Ref. 5, however, instead of adopting the

recommended value of 3.7×1012 cm3mol−1s−1 that was obtained for higher total densities, we used

the reported lower limit fork8 with a value of 1.0×1012 cm3mol−1s−1. According to Fig. 2 in Ref. 5,

this value corresponds better to the densities used in this work. Note that the dashed curve in Fig. 6.2,

which represents a simulation withk8 set to 3.7×1012 cm3mol−1s−1, clearly shows that such a high

rate constant value overestimates the observed NCN loss at longer reaction times.

The rate constantk5 of the 1NCN CIISC process has been determined by Dammeier et al. for

NCN3/argon mixtures.[22] Compared to their work, our experiments showed a much faster rise time

of the3NCN profiles revealing that oxygen is a more efficient collision partner thanargon and that the

CIISC process is dominated by collisions with O2. Even for the experiment at the lowest temperature

of this work, the initial increase of the NCN profile was already close to the time resolution of the

experimental setup (about 3µs). Therefore, it was not possible to accurately determinek5 values and
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Figure 6.3: a) Determined rate constantsk7 for the NCNOO decomposition and b) semilogarithmic
plot of the branching ratioφ = k6/(k6+ k5). Red symbols: experiments with about 3%
He in the reaction mixture; black symbols: experiments without He; filled symbols:ρ ≈
2.0×10−6 mol/cm3; open symbols:ρ ≈ 3.8×10−6 mol/cm3.

hence,k5 was simply increased to a lower limit of 1.6×106 s−1 to make sure that the CIISC process

was modeled fast enough. Consequently, also the absolute value ofk6 could not be determined but

only its value relative tok5. Experimental conditions and fitting results fork7 andφ = k6/(k6+k5) are

listed in Tab. 6.2 and plotted in Fig. 6.3a and b.

φ increases from a value of 0.08 atT = 920 K to 0.29 atT = 1600 K. By attributing this temperature

dependence to reaction (6) alone, a lower limit of the activation energyEa > 32 kJ/mol for the forma-

tion of the NCNOO adduct can be inferred. In contrast to the branching ratio φ , the rate constantk7

of the NCNOO decomposition was found to be almost temperature independent.It can be represented

by the Arrhenius expression

k7/
(
cm3mol−1s−1)= 6.9×103exp

(
−

2.6kJ/ mol
RT

)

with Ea = (2.6±1.9) kJ/mol (2σ error). Within the scatter of the data, no dependence neither from

the used O2 mole fractions (different symbols in Fig. 6.3a and b) nor from the density (ρ ≈ 2.0×

10−6 mol/cm3 for the filled andρ ≈ 3.8×10−6 mol/cm3 for the open symbols in Fig. 6.3) was found.
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Table 6.2: Experimental conditions for the measurements of the rate constantof the NCNOO decom-
position (7) and thek6/(k6+k5) branching ratioφ .

T / K p /
mbar

NCN3/
ppm

O2 / % k7 / 103 s−1 φ

1046 164 28 9.9 4.8 0.17

1059 329 24 7.3 5.5 0.11

1149 186 28 10 5.8 0.22

1215 197 26 7.3 5.3 0.15

1216 394 26 7.3 5.0 0.16

1236 201 29 6.6 4.9 0.13

1320 218 27 10 5.8 0.21

1356 230 27 7.3 5.8 0.22

1427 245 32 10 6.0 0.32

1573 277 38 9.9 5.5 0.35

1584 276 33 7.3 5.4 0.37

experiments with about 3% He

918 140 14 13 5.0 0.08

1008 156 14 11 5.5 0.07

1176 196 21 17 5.5 0.15

1331 230 22 17 5.5 0.16

1483 263 24 17 5.5 0.29

1595 276 15 6.3 6.2 0.14

Also the addition of He (red symbols in Fig. 6.3) had no influence on the extracted data fork7 andφ .

6.3.2 NCN + O2

The rate constant of the reaction NCN + O2 has been determined at temperatures 1674 K≤T≤ 2308 K

and pressures between 216 and 634 mbar, corresponding to total densities of ρ = 1.48× 10−6 and

ρ = 3.76× 10−6 mol/cm3. The upper accessible temperature limit was determined by the onset of

NCN thermal decomposition, NCN + M; the lower temperature limit was set by the reaction NCN +

NCN, which becomes dominant at temperatures below 1700 K. For modeling purposes, NCO + NO

have been assumed as the sole products of reaction (2), hence small contributions from the minor CNO

+ NO channel are included ink7

An example for a typical NCN concentration-time profile at initial reaction conditions ofT = 2036 K

andp= 264 mbar (ρ = 1.62×10−6 mol/cm3) is presented in Fig. 6.4a. Again, the experimental NCN

profile calculated with constant reaction conditions (red noisy curve) is shown in comparison with the

NCN profile (black noisy curve) accounting for an O2 relaxation induced temperature (∆T =−38 K)

and density change (∆ρ =+6.6×10−8 mol/cm3). The correction is more distinct than for the profile

shown in Fig. 6.2 because with 17% O2 in the reaction mixture the overall effect was stronger and at

higher temperatures the O2 relaxation is faster. As can be seen from the resulting temperature profile

(blue curve) the timescale of the O2 relaxation was about 50µs. The solid black curve represents
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Figure 6.4: Determination of the rate constantk2 (NCN + O2). a) Experimental NCN concentration-
time profiles assuming constant temperature (red noisy curve) and changing tempera-
ture (black noisy curve) resulting from O2 relaxation. The blue curve corresponds to
the assumed temperature profile. The thick black curve represents the best fit using
k2 = 5.0×109cm3mol−1s−1, the other curves correspond to simulations using variedk2

values. b) Corresponding sensitivity analysis of the best fit simulation.

the best simulation usingk2 = 5.0×109 cm3mol−1s−1. The two dotted curves and the dashed curve,

which do not fit the measured signal, correspond to simulations using a two timeshigher or lower

k2 value and a simulation withk2 set to zero. The strong influence of the reaction NCN + O2 on

the observed NCN profile is further outlined by the sensitivity analysis shown in Fig. 6.4b. Att >

100µs the target reaction becomes the most sensitive reaction and hence dominates the experimentally

observed NCN decay. During the first 100µs, however, the assumed branching ratioφ as well as the

NCNOO decomposition are most important. In order to improve the quality of the fit,these values

have been allowed to vary within their error limits but were found to be essentially consistent with

the high-temperature extrapolations of the data in Fig. 6.3a and b. The used values ofφ andk7 were

important to reproduce the overall shape of the NCN profile at the beginning of the experiment but have

only a minor influence on the NCN consumption at longer reaction times and the extractedk2 values.

Interestingly, the reaction NCN + O (9) gains some importance towards the endof the observation

time because O atoms are formed through the secondary reactions CN + O2 and C + O2. The rate

constantk9 has been precisely measured in previous work.[5] Since the rate constantk2 is now much

faster, in contrast to the experiment in Fig. 6.2, the experiment atT = 2036 K in Fig. 6.4 does not

show a distinct influence of the reaction NCN + NCN.
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As becomes clear from the discussion above, despite the interfering O2 relaxation and NCN re-

formation, the rate constant of the reaction NCN + O2 could be reliably extracted. Experimental

conditions for 18 experiments are given in Tab. 6.3 and the extractedk2 values are plotted in Ar-

rhenius form in Fig. 6.5. Open symbols correspond to measurements at higher total densities of

ρ ≈ 3.52×10−6 mol/cm3, filled symbols to measurements atρ ≈ 1.75×10−6 mol/cm3. Furthermore,

the square symbols indicate experiments with 1% He added to the reaction mixture,circles are ex-

periments without He. Within the scatter of the data neither the total density nor theaddition of He

influenced the outcome fork2. Also experiments with varied O2 mole fractions yielded consistent

results. Overall, the data points reveal a strong temperature dependence, Ea = (97±11) kJ/mol, and

are best represented by the Arrhenius expression (solid line)

Table 6.3: Experimental conditions for the measurements of the rate constantk2 for NCN + O2.

T / K p /
mbar

NCN3/
ppm

O2 / % He / % k2 /
(cm3mol−1s−1)

1674 408 41 17 1.2 1.4×109

1756 216 35 17 1.2 2.6×109

1777 522 18 5.5 0 1.8×109

1841 343 49 17 1.2 2.0×109

1849 344 40 10 1.2 3.0×109

1856 336 36 9.9 0 1.6×109

1926 587 25 11 0 2.4×109

1984 249 51 17 1.2 4.5×109

2020 255 47 17 1.2 5.2×109

2036 264 47 17 1.2 5.0×109

2059 634 20 11 0 3.5×109

2086 264 55 17 1.2 5.3×109

2107 267 45 17 1.2 4.2×109

2117 269 56 17 1.2 4.2×109

2232 286 55 17 1.2 1.0×1010

2257 706 18 11 0 1.1×1010

2263 290 43 17 1.2 6.0×109

2308 445 54 17 1.2 9.0×109

k2/
(
cm3mol−1s−1)= 1.3×1012exp

(
−

97kJ/ mol
RT

)
,(±57%).

Allowing for partial error compensation, the error of the stated rate expression has been estimated

to be±57%. Corresponding error bars for selected data points are shown in Fig. 6.5. The error

arises from the statistical fit (±25%), the uncertainties of the absolute NCN3 and O2 concentrations

(±5%) and of the rate constants assumed for the background mechanism. Thetwo most important

reactions for NCN consumption are NCN + NCN (8) and NCN + O (9). Varying k8 in the range of

0≤ k8≤ 2×1012 cm3mol−1s−1 andk9 within error limits (k9±40%) add a±25% uncertainty. For the

less important secondary chemistry, the cumulated overall uncertainty fork2 was found to be±7%.

Note that the uncertainties arising from the formation (represented byφ ) and slow decomposition
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He added; circles: experiments without helium; solid line: Arrhenius fit.

(k7) of the NCNOO complex are comparably minor because these processes donot have a strong

influence on the NCN decay at longer reaction times. However, as alreadymentioned above,k7 and

φ are important to reproduce the overall shape of the NCN profile, hence we allow for an additional

uncertainty ofk2 on the order of±5%.

6.4 Discussion

Fig. 6.5 comparesk2 (NCN + O2) data of this work with the transition state theory prediction of Zhu

and Lin (dashed curve).[10] The outdated, several orders of magnitude higher rate constant estimate

from Glarborg et al.[14] is not shown. The reported upper limit by Baren and Hershberger (dotted

curve),[13] which was based on low temperature (298 K to 573 K) and low pressure (∼ 3 Torr) ex-

periments is not directly comparable with our data but does not contradict our results. The overall

agreement with the transition state calculations is rather satisfying. The measured Arrhenius acti-

vation energy ofEA = 97 kJ/mol is in very good agreement with the theoretical estimate, but the

absolute experimental values are about a factor of five higher. As the overall temperature dependence

is dominated by the transition state barrier connecting thecis-NCN-OO isomer with the products (see

Fig. 6.1), we tentatively assume that the remaining discrepancy stems from uncertainties of the rela-

tive heights of the entratnce barriers either forming thecis- or trans-isomer, respectively. Already Zhu

and Lin noted in their paper that, due to the lack of experimental data, it would be hard to quantita-

tively assess the reliability of their calculated energies, which were obtainedby the G2M(CC1) level

of theory.
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The alternative CNO forming channel of reaction (2) has been neglectedfor the simulations of the

NCN profiles. Not only that this channel has been published to be minor (< 15%, according to Ref.

10), also the assumed products of the reaction turned out to be unimportant.Subsequent chemistry of

NCO, which is included in the background mechanism (GRI-Mech 3.0), did not play any discernible

role. Hence, no information on the product branching ratio of reaction (2) could be inferred from the

experiments presented in this work.

Although the actual kinetic treatment of the NCN re-formation process turns out to be less important

for the rate constant determination ofk2, it deserves a closer look. In fact1NCN relaxation by CIISC,

which is dominated by collisions with O2, and the formation of the NCNOO adduct according to
1NCN + 3O2→

3NCNOO represent two directly competing processes. Therefore, in agreement with

the experimental findings (see Fig. 6.3b), the branching ratioφ = k6/(k6 + k5) is not expected to

change significantly with the amount of oxygen present in the reaction mixture. Interestingly, the

pronounced increase of the branching ratio with temperature reveals thatNCNOO formation is an

activation controlled process. As already mentioned above, a rough estimation of the corresponding

activation energy yields a lower limit ofEa = 32 kJ/mol. Here, the CIISC process (5) was assumed

to be temperature independent; allowing for a positive temperature dependence would yield an even

higher Ea value for k6. Apparently, the formation of the3NCNOO adduct exhibits a pronounced

entrance barrier, hence similar to the3NCN + 3O2 →
1NCNOO reaction. In contrast toφ , the rate

constantk7 for the assumed re-formation of NCN has been found to be nearly temperature independent.

It is therefore unfeasible that NCN is formed through the simple reverse ofreaction (6), which should

be temperature dependent as well. Hence, it can be speculated that NCN re-formation takes actually

place through a reaction sequence according to3NCNOO→ 1NCNOO→ 3NCN + O2 involving an

intersystem crossing (ISC) process. To confirm this hypothesis, ab initiocalculations of the triplet

potential energy surface including accurate ISC probabilities to the singletsurface are needed. Such

calculations would have been beyond the scope of this paper.

6.5 Conclusion

Using NCN3 pyrolysis behind shock waves as a quantitative NCN radical source, thetotal rate constant

of the reaction NCN + O2 has been directly measured for the first time. Between 1674 K≤T ≤ 2308 K,

the experimental data are best represented by the Arrhenius expression k2 /
(
cm3mol−1s−1

)
= 1.3×

1012exp
(
−97 kJ/ mol

RT

)
, no pressure dependence was observed. The high activation energy of 97 kJ/mol

is in very good agreement with the transition state theory prediction of Zhu andLin, [10] but the absolute

experimental rate constant values are about a factor of 5 above the theoretical estimate. Compared to

other bimolecular NCN reactions, such as NCN + H/O/OH/H2, the reaction is still slow. Hence the

results of this work confirm recent findings that the reaction NCN + O2 is less important for NCN

modeling in hydrocarbon flames.

The determination ofk2 turned out to be difficult, which is reflected in the rather high stated uncertainty

for k2 of about±57%. High O2 mole fractions up to 17% had to be used for sensitive rate constant

extraction. At such high O2 concentrations, the O2 vibrational relaxation and the resulting temperature
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change during the experiments had to be included for the evaluation of the NCN concentration-time

profiles. Unexpectedly, the shape of the NCN profiles indicated the fast formation of an NCN reservoir

species, presumably NCNOO from the reaction of1NCN with O2. The slow decomposition of this

complex results in a re-formation of NCN at longer reaction times. While the formation of the NCNOO

complex seems to be an activation controlled process, the delayed NCN formation was found to be

temperature independent. This can be taken as an indication that a3NCNOO→ 1NCNOO intersystem

crossing process is involved.
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Abstract

Using the very sensitive absorption based frequency modulation (FM) spectroscopy, concentration-

time profiles of HNO have been measured behind shock waves for the firsttime. The UV photolysis

of glyoxal/NO mixtures atλ = 193 nm served as a HNO source via the fast initial formation of HCO

followed by the reaction HCO + NO→ CO + HNO. High temperature and room temperature FM

spectra of three selected lines of theÃ1A′′ - X̃1A′ transition of HNO have been recorded at wavelengths

around 618 and 625 nm. By analyzing HNO and HCO concentration-time profiles under similar

reaction conditions it was possible to determine the HNO absorption cross section. A temperature

dependent value of logσHNO

cm2mol−1 = 5.14−6.0×10−4× (T/K) was determined at temperatures between

700 K and 1150 K. Experiments with 0.4% - 1% O2 in the reaction gas mixture were performed to

measure the rate constant of the reaction HNO + O2 → NO + HO2. Between 750 K and 1275 K

the experimental data are best represented by the Arrhenius expression k1 /
(
cm3mol−1s−1

)
= 6.1×

1012exp
(
−21 kJ/ mol

RT

)
. The experiments have been performed at total densities of 7.3×10−6 mol/cm3

≤ ρ ≤ 16.6×10−6 mol/cm3. No pressure dependence was discernible. The determined rate constant

data are up to four orders of magnitude higher than frequently used literature data.

7.1 Introduction

Nitrogen oxides (NOx) are atmospheric pollutants formed during combustion processes. Nitroxyl

(HNO) is an important flame intermediate closely linked to NOx. Most HNO reactions with other

flame intermediates like H, OH, O and O2 and the HNO thermal decomposition directly form NO.

Depending on the combustion conditions, most of these reactions can also proceed in the opposite

direction and in this case decrease the amount of NO formed in flames. For example the Reaction H

+ NO + M ⇋ HNO + M contributes significantly to NO reduction using CO/H2 mixtures as reduc-

ing agents during combustion (NO reburning).[1,2] To model the most favorable reaction conditions

for overall NO reduction detailed mechanisms including accurate high temperature rate constant data

for HNO are necessary. Yet most HNO reactions are poorly investigatedexperimentally, because

intermediate concentrations of HNO in flames are low and the high temperature cross section is pre-

sumably small. HNO measurements at high temperatures are only reported by Lozovsky et al.[3,4].

They used the sensitive intracavity laser absorption spectroscopy (ICLAS) to monitor HNO spectra in

low-pressure CH4 flames. So far, rate expressions for most HNO reactions implemented into combus-

tion mechanisms rely on experiments at low temperatures or theoretical studies.

Also the title reaction

HNO+O2→ HO2+NO (1)

has only been measured between 296 K and 421 K by Bryokov et al.[5,6] In the only high temper-

ature study, Miller and Bowman indirectly determined thek value for this reaction by adjusting its

rate constant as part of a high temperature mechanism assembled for the reaction of isocyanic acid

with nitric oxide.[7] They recommended a fairly low rate constant expressionk1/(cm3mol−1s−1) =

1.0× 1013exp[−105 kJ/mol/(RT)]. In the widely used mechanism GRI-Mech 3.0[8] for methane

98



7. Shock tube measurements of the rate constant for the reaction HNO + O2

combustion the Arrhenius activation energy of this expression has been reduced to 54 kJ/mol by com-

parison with the analogous reaction RH + O2, which is not supposed to have a large barrier height. At

temperatures around 1500 K, this provides about three orders of magnitude higherk1 values than re-

ported by Miller and Bowman. An even higher overall rate expression hasbeen assumed by Klaus and

Warnatz as part of an NOx formation/reduction mechanism.[9,10] However, the basis of their expression

has not been explicated in these studies. The influence of the reaction HNO+ O2 on the NO formation

is strongly dependent on the reaction conditions. In a study by Wang et al.on the combustion of

pyridine, reaction (1) turned out to be the main source for NO under reducing atmosphere.[11] The

strong discrepancy of the few available literature data and their implementation indetailed combus-

tion mechanisms clearly points out the need for a reliable experimental high temperature rate constant

value for the reaction HNO + O2.

7.2 Experimental

7.2.1 Shock tube and slow flow cell

All high temperature measurements were carried out in an overall 8 m long electropolished, stainless

steel shock tube, which has been described in detail elsewhere.[12] Briefly, the 4.5 m long test section

with an inner diameter of 81 mm could be pumped down to pressures ofp= 10−7 mbar by a combina-

tion of turbomolecular and diaphragm pumps. The shock tube was operatedwith hydrogen or mixtures

of hydrogen and nitrogen as driver gas, 30µm thick aluminum foils have been used as diaphragms.

The experimental conditions were calculated from the pre-shock conditions together with the shock

wave velocity, measured by four fast piezo-electric sensors mounted flush in the shock tube wall. A

frozen-chemistry code taking into account real gas effects and shockwave damping has been applied.

In principle the slow O2 vibrational relaxation process may compromise a simple frozen-chemistry

calculation of the experimental conditions. However, the used O2 mole fractions were always below

1%, which results in a very small effect on the experimental conditions that turned out to be negligible

for our analyses.

Room temperature experiments were performed in a 45 cm long slow flow cell equipped with quartz

windows. The detection and the photolysis laser beams were overlapped in the cell and propagated in

opposite directions.

An ArF excimer laser (Radiant Dyes Exc 200) was used for the UV photolysis of glyoxal at

λ = 193 nm. Two dichroic mirrors in front and behind the shock tube or the flow cell were used

to collinearly overlap the detection and the UV laser beams. Additionally, a UV filter was placed in

front of the detector to block residual intensity of the photolysis laser. Forthe shock tube experiments,

the photolysis beam was slightly focused by a 1000 mm lens (effective diameter was about 4 mm

in the shock tube), for the room temperature measurements the area of the UVbeam was reduced

by a telescope to about 1 cm2. In both cases the excimer laser beam diameter was larger than the

diameter of the detection laser to minimize the effects of diffusional processeson the measured HNO

concentration-time profiles.
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7.2.2 Gas mixture preparation

Storage gas mixtures of about 2% glyoxal and 3% NO in Ar were preparedin a gas mixing system

using the partial pressure method. The mixing system could be evacuated to pressures ofp < 1×

10−5 mbar and was equipped with several 5 - 20 L glass flasks. A flask with a cooling finger was used

for purification of NO by several freeze-pump-thaw cycles. The storage gas mixtures were mixed

and further diluted by a flow system with mass flow controllers. The freshly prepared reaction gas

mixtures slowly flushed the test section for a few minutes prior to the actual shock tube experiments to

prevent possible effects from the adsorption of the reactants at the shock tube walls. Storage mixtures

were used within three to four days.

Glyoxal was prepared by dehydration of the trimer dehydrate ((CHO)2)3× 2H2O by 3 eq. of

phosphoric anhydrate (P2O5). The solid reaction mixture was slowly heated up to 155◦C i. vac.

(1×10−2 mbar). The gaseous product was passed through an ice water cooling trap to remove impuri-

ties. The purity of glyoxal was checked by FT-IR measurements and it wasstored in a liquid nitrogen

trap.

7.2.3 FM-spectroscopy

HNO and HCO were detected by means of frequency modulation (FM) spectroscopy which is a sen-

sitive, absorption based detection method.[13,14,15] The used setup was similar to the one described

by Friedrichs et al.[14,16] Briefly, wavelengths between 600 nm and 650 nm were generated by a cw

ring dye-laser (Coherent 899 series) operated with Kiton Red as laser dye and pumped by a solid

state Nd:YVO4 laser (Coherent Verdi V 10). The wavelength was measured interferometrically by a

wavemeter (MetroLux WL200). The laser beam was modulated at a frequency of 1 GHz by a resonant

electro-optic modulator (New Focus 4421), the resulting frequency modulated spectrum was analyzed

by a scanning etalon. The modulation depth was set to a modulation index ofM ≈ 1.4. The laser

beam was focused through the shock tube windows by a 300 mm lens, coupled into an optical fiber

and detected by a fast silicon photodiode (Hamamatsu, S5973). The signalwas split into the AC and

the DC part by a Bias Tee (Mini Circuits, ZFBT-4R2G). The DC componentcorresponds toI0 and was

directly monitored by a digital oscilloscope, the AC component represents theFM signal. It was band-

pass filtered at 1 GHz (Trilithic), demodulated by a frequency mixer (Mini Circuits, 5542-ZFM-2000),

amplified and low pass filtered at 2.5 MHz resulting in the signal intensityIFM. A two-polarizer setup

was used to adjust a voltage controlled phase shifter (Knick, J45) to set the phase angle of demodula-

tion to zero, resulting in pure absorption induced signal. The demodulated FM-signal is proportional

to the concentrationc of the absorbing species according to

IFM =
I0
2
×∆ f ×σ × [c]× leff×G.

σ is the narrow-bandwidth line center absorption cross section andl the absorption path length. The

electronic gain factorG= 184 of the used FM setup was determined experimentally and was in agree-

ment with previous determinations.[12] The FM factor∆ f was calculated from line shape data and
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7. Shock tube measurements of the rate constant for the reaction HNO + O2

was about∆ f = 0.8 for HNO and∆ f = 0.3 for HCO under the experimental conditions of this work.

If the absorption cross section and line shape data for one species are known, it is therefore possi-

ble to perform quantitative FM measurements. Whereas for HCO the data arewell known for the

Q(6)P(1) absorption line of thẽA2A′′− X̃2A′(0900← 0010) transition atλ = 614.752 nm[12], they

were determined for HNO for three selected absorption lines of theÃ1A′′(100)− X̃1A′(000) transi-

tion in this work. To determine the initial HCO concentrations generated by glyoxal UV photolysis,

HCO concentration-time profiles have been measured as a reference (see below) at similar reaction

conditions and comparable photolysis energies.

7.2.4 HNO source

HNO molecules were generated byλ = 193 nm photolysis of glyoxal/NO mixtures in argon. The

HNO formation proceeds according to the reaction sequence

(CHO)2+hv→ (H, HCO, CO, H2, CH2O) , (2)

H + (CHO)2→ HCO + CO + H2, (3)

HCO + NO→ HNO + CO. (4)

To model HNO formation, additional glyoxal and HCO reactions have been adopted from our previous

work[12,14,16,17,18]and the GRI-Mech 3.0[8] has been assumed as a background mechanism in order

to take possible secondary chemistry into account. The initial [H]0/[HCO]0 ratio from the glyoxal

photolysis has been adopted from a previous study of Colberg and Friedrichs.[12] They showed that H

atoms are formed in excess, typically ratios of about 3 at high temperatures and about 2 at room tem-

perature were used. Over the fast reaction HCO + NO (4), which has been investigated experimentally

behind shock waves by Dammeier et al.,[17] the HCO concentration is directly linked to HNO forma-

tion. Hence, both the assumed HCO mechanism as well as the overall HNO yieldcould be confirmed

by quantitative measurements of HCO concentration-time profiles resulting from the photolysis of

glyoxal and glyoxal/NO mixtures. It turned out that the HCO concentration profiles could be nicely

modeled without adjusting the mechanism.

Note that the reaction

H + NO + M ⇋ HNO + M (5)

was also included in the mechanism but was found to be too slow to contribute notably to the overall

HNO concentrations. Just as well, the reverse reaction HNO + M is slow andonly had a minor

influence on HNO removal at longer reaction times.

7.3 Results and Discussion

Shock tube and room temperature measurements of HNO and HCO concentration-time profiles at

similar reaction conditions (temperature, pressure, mixture composition, and photolysis energy) have
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Table 7.1: Important reactions for HNO formation and consumption from the photolysis of gly-
oxal/NO mixtures in shock tube experiments. Parameters for modified Arrheniusexpres-
sionk= ATnexp(−Ea/(RT)) are given in units of mol, cm, s and kJ.

no. reaction A n Ea ref. T-range

1 HNO + O2→ HO2 + NO 6.1×1012 21 this work 750-1275 K

3 (CHO)2 + H→ H2 + CO + HCO 5.4×1013 18 12 295-1107 K

4 HCO + NO→ HNO + CO 8.1×1012 17 295 K

7.1×1012 17 770-1300 K

6 HNO + H→ H2 + NO 9.7×1011 0.62 1.49 19 200-2500 K

8 HCO + H→ H2 + CO 1.1×1014 16 195-2100 K

9 HCO + M→ H + CO + M 4.0×1013 65 14 835-1230 K

11 NO2 + H→ NO + OH 9×1013 20 195-2000 K

12 (CHO)2 + OH→ H2O + CO + HCO 1.3×1013 12 700-1150 K

6.4×1012 21 298 K

13 HCO + O2→ HO2 + CO 6.9×106 1.9 −5.7 22 295-1705 K

14 HNO diffusion 1×103 this work 750-1275 K

3×103 this work 298 K

been performed. Different reaction mixtures with initial [NO]/[glyoxal] ratios from zero to 0.87 were

used. From repeated, iterative analysis aiming on the consistent modeling ofall measured HNO

and HCO profiles at different experimental conditions, the HNO formation mechanism, the HNO

absorption cross section, and the rate constant of the reaction HNO + O2 could be determined.

7.3.1 HNO detection

For quantitative HNO detection and to determine the position of the maximum of the FMsignal, the

Doppler and pressure broadened FM spectra of three selected absorption lines of theÃ1A′′(100)−

X̃1A′(000) band at wavenumbers of 16171.99, 16173.86 and 16002.36 cm−1 were investigated at

different experimental conditions summarized in Tab. 7.2. The HNO absorption spectra measured by

Bancroft et al.[23] and Pearson et al.[24] were used as a starting point to determine the exact positions

of the HNO FM-signals. Fig. 7.1 illustrates the measured (red symbols), normalized FM spectra of the

three absorption bands in comparison with the simulated absorption (dashed curves) and FM spectra

(red curve).

Table 7.2: Summary of the measured pressure broadening parameters forthree selected HNO absorp-
tion lines.

line center wavelength/
cm−1

max FM signal/
cm−1

averageT/ K averagep /
mbar

∆ν̃p/
(GHz/bar)

1 16173.86 16173.82 770 570 2.0

2 16171.99 16171.93 970 880 1.8

2 16171.99 16171.93 298 100 3.5

3 16002.36 16002.32 1250 1140 1.4

The HNO absorption spectrum has been simulated with the PGOPHER program[25] based on the

spectroscopic constants taken from Pearson et al. The simulated line positions and relative intensities
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7. Shock tube measurements of the rate constant for the reaction HNO + O2

have been adopted from the PGOPHER output to calculate the corresponding FM spectra with a

program developed in our working group. The simulations are in good agreement with the measured

data, only small line shifts on the order of 0.02 cm−1 were necessary. The three absorption bands

have been measured at different temperatures of about 298, 970, 770 and 1250 K, respectively, and

therefore yielded a set of pressure broadening parameters (see Tab. 7.2). From these data the pressure

broadening coefficient was determined to be∆νp ≈ 3.5(T/298 K)−0.6 GHz/bar. In agreement with

our experiments the PGOPHER simulations predict similar intensities for the twoR3(J′′) lines and a

two times higher intensity for theQ0(16) line at temperatures around 1000 K. Therefore, theQ0(16)

line provides better signal-to-noise ratios and was selected for all kinetic shock tube measurements of

this work.
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Figure 7.1: Normalized experimental FM-spectrum of HNO (red symbols) in comparison with simu-
lated FM (red curve) and absorption spectra (dashed curve) for three lines of the (100)-
(000) band of thẽA1A′′− X̃1A′ HNO transition. The experimental conditions are listed in
Tab. 7.2.

7.3.2 HNO formation mechanism and absorption cross section

For quantitative HNO measurements it is important to know the initial [HCO]0 concentrations from

glyoxal photolysis. Ideally, simultaneous measurements of HCO and HNO profiles would have to

be performed. However, as either HCO or HNO could be detected with our setup, all experiments

have been performed at least twice under very similar reaction conditions (T, p, mixture composition,

photolysis energy) either detecting HCO or HNO. In Fig. 7.2a and 7.2b experimental and numerically

modeled HNO and their corresponding HCO concentration-time profiles are displayed. As already

outlined above, the HCO profile could be well simulated without any adjustment of the mechanism

adopted from the literature. Only the initial [HCO]0 concentrations were varied to fit the maximum of

the measured HCO profile.

HNO reactions were initially taken from GRI-Mech 3.0[8] and were varied by a factor of up to 100
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7. Shock tube measurements of the rate constant for the reaction HNO + O2

to identify reactions with potentially strong impact on the simulated HNO profile. From the reactions

(HNO + H, HNO + H2, HNO + CO, HNO + NO, and HNO + M) only the reaction

HNO + H ⇋ H2 + NO (6)

turned out to be actually important for the overall HNO concentration. Available literature data for

k6 at high temperatures differ by two orders of magnitude.[19,26,27]Simulations of the measured HNO

concentration-time profiles both behind shock waves and at room temperature were most consistent

using the most recent theoretical expression by Nguyen et al. which is valid for the entire temperature

range of this work and is on the upper limit of the reported literature values.[19] Using lower rate

constant values for HNO + H would result in higher simulated overall HNO concentrations and to a

little to steep HNO increase at the beginning of the experiment.
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Figure 7.2: a) HCO concentration-time profile measured after the photolysis of 7720 ppm glyoxal in
argon in comparison with the simulation for HCO and H. b) Experimental and simulated
HNO concentration-time profile at similar reaction conditions. c) Corresponding HNO
sensitivity analysis.

A sensitivity analysis for an HNO profile measured behind the reflected shock wave is illustrated in

Fig 7.2c and reveals the six most important reactions for HNO formation and consumption. The rate

constants of the reactions (3), (4), (8) and (9) are important for HCO as well and have been validated
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by the HCO experiments. The reaction HNO + H is important because, next to HCO, H atoms are

formed in high yields from the glyoxal photolysis as well. As already outlined above, its rate constant

k6 is not accurately known, however its influence remains comparably small. Allsimulations (for

reaction mixtures without O2) predict stable HNO concentration plateaus towards longer reaction

times showing that HNO is a stable species under the reaction conditions appliedin this work. In

contrast, we observe a slow loss of HNO that can be attributed to diffusional loss of HNO out of the

photolysis volume. HCO reacts on a much faster timescale than HNO such that nodiffusion correction

is needed for HCO.

Table 7.3: Experimental conditions and results for HNO absorption cross section of theRR3(4) transi-
tion at room temperature (295 K) and behind shock waves.

p / mbar glyoxal/ ppm NO/ ppm O2 / ppm HCO0 / ppm σ ×10−5 / cm2mol−
1

room temperature
50 9990 4710 1500 20 1.8
95 10400 6560 6095 19 1.7
100 9850 8380 2000 19 1.9
101 10075 4180 640 12 2.0
101 10040 4180 1565 11 1.8
102 9970 4150 2790 13 2.0
104 15400 6675 3400 22 1.9

reflected shock wave

T / K p / mbar glyoxal/ ppm NO/ ppm HCO0 / ppm σ ×10−4 / cm2mol−
1

721 495 8915 7780 100 5.8
765 554 7995 4370 125 5.1
771 570 9990 8670 120 5.1
785 591 9990 8670 120 5.7
808 625 7735 4425 150 4.0
837 660 9990 8670 130 3.5
863 596 10645 6750 120 3.5
864 600 12150 6495 130 4.0
898 755 7880 4600 120 3.8
908 770 7735 4425 150 3.0
916 781 8080 1454 130 3.5
920 790 7710 5525 160 2.9
938 819 7690 6620 160 3.2
948 835 7975 5090 130 2.9
983 891 7880 4600 120 3.5
1042 1360 11505 7180 90 3.4
1046 1373 11640 7260 90 3.0
1049 1371 11505 7180 90 3.0
1055 1032 10810 5825 100 3.0
1065 1049 10270 8050 110 3.7
1117 942 9040 6990 150 3.0
1118 1542 11500 7175 90 2.5
1133 1170 10270 8050 110 3.3

The HNO absorption cross section for a single transition at the line center can be determined by the

equation:

σ =
2× IFM

I0×∆ f × [HNO]× leff×184

The maximum [HNO] concentrations were simulated based on the mechanism in Tab. 7.1 together

with the initial [HCO]0 concentrations, which were taken from the direct HCO measurements. The
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∆ f values were determined using the line shape data from the measured HNO FM spectra together

with the calculated experimental conditions and modulation indicesM. The experimental conditions

and the determined absorption cross section values for theRR3(4) line are listed in Tab. 7.3 and plotted

in Fig. 7.3. Between 720 K< T < 1133 K the logarithm of the cross section can be approximated by

the linearized expression:

log

(
σHNO

cm2mol−1

)
= 5.14−6.0×10−4×

(
T
K

)
.
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Figure 7.3: Temperature dependence of the experimentally determined HNO absorption cross section
of theRR3(4) transition between 298 and 1133 K.

7.3.3 Room temperature measurements

FM measurements of HNO at room temperature have been performed to verify the absolute value

and the temperature dependence of the HNO absorption cross section determined from the shock tube

experiments. The experimental conditions of seven room temperature experiments are summarized in

Tab. 7.3. Mixtures of about 1% glyoxal and 4180 to 8380 ppm NO were studied at pressures of 50 and

100 mbar. Additional O2 has been added to the reaction mixtures to capture the large amounts of H

atoms, formed from the glyoxal photolysis, that would cause a low HNO yield due to the fast reaction

HNO + H→ H2 + NO. Actually, over the equilibrium

2 NO + O2 ⇋ NO2 (7)

certain amounts of NO2 are formed during the mixing of the reactants that rapidly react with H

atoms as well. Sensitivity analyses reveal that the formed H atoms mainly react through this reac-

tion. In Fig. 7.4a and Fig. 7.4b, a typical HNO (blue curve) and the corresponding HCO (red curve)
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concentration-time profiles at room temperature andp= 50 mbar are shown together with the best nu-

merical fits. Also the simulated profiles without O2 in the reaction mixtures are shown (dashed black

curves). Both HNO yield and HCO concentrations at longer reaction times would be significantly

lower without the addition of O2 due to fast reaction with H atoms. This effect is more pronounced

for HNO and would result in about a factor of two lower HNO concentrations at 50µs reaction time.
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Figure 7.4: a) Experimental concentration-time profiles of HCO (red curve) and b) HNO (blue curve)
under the same reaction conditions at room temperature andp = 50 mbar together with
the respective simulated profiles (black curves) using 1% glyoxal, 4700 ppm NO and
1500 ppm O2. Dotted and dashed curves represent simulations using different assump-
tions (see text). c) Corresponding HNO sensitivity analysis.

It is known from theoretical work of Xu et al.[28] that at room temperature a second reaction channel

for the HNO forming reaction HCO + NO needs to be considered.

HCO + NO→ HNO + CO ∼ 70% (4a)

HCO + NO→ HC(O)NO(→ products) ∼ 30% (4b)
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For reaction channel (4b), the formation of a stable complex was assumed,which did not contribute

further to the overall HNO formation. The actually assumed branching ratio has been fine-tuned by

carefully fitting the HNO concentration rise at the beginning of the experiment.For comparison, an

HNO concentration-time profile simulation only considering the HNO forming channel (4a) is also

shown in Fig. 7.4b (dotted curve). This simulation does not fit the experimental profile. Also the

corresponding HNO sensitivity analysis in Fig. 7.4c illustrates that the branching ratio for the two

channels of reaction (4) is crucial for the overall HNO concentration Overall, the branching ratio for

the HNO forming channel (4a) was found to be about 0.70 in our experiments, which is consistent

with the theoretical value of about 0.75 estimated by Xu et al. Four other reactions also appear in the

HNO sensitivity analysis. The reactions H + HCO (8), H + NO2 (11), and glyoxal + OH (12) are again

validated by consistent modeling of HCO and HNO measurements. Also the HNO diffusion is in-

cluded but its contribution is only minor due to large beam diameter of the photolysis laser (compared

to the detection beam) in case of the room temperature experiments.

By analyzing experiments at different pressures and glyoxal/NO ratios an HNO absorption cross sec-

tion of

σ = (1.8±0.2)×105 cm2/mol

has been found which is in very good agreement with the shock tube data. In Fig. 7.3 all experimental

σ values (red dots) are shown together with the theoretically expected (blackcurve) temperature de-

pendence of the absorption cross section. The prediction is based on theline shape parameterφ(T, p),
the term value of the lower energy stateE as well as the vibrational (Qvib) and rotational (Qrot) par-

tition function of HNO. Overall, the experimental data points are well described by the prediction,

showing that the room temperature and high temperature experiments are consistent.

7.3.4 Rate constant of the reaction HNO + O2

The rate constant of the reaction

HNO+O2→ HO2+NO (1)

has been measured behind reflected shock waves by adding between 0.43% and 1% O2 to the gly-

oxal/NO reaction mixtures. The experimental conditions are summarized in Tab.7.4. The HNO

absorption cross section as well as the background mechanism for HNO have been adopted from the

experiments without O2.

A typical HNO concentration-time profile obtained atT = 945 K andp = 700 mbar can be seen in

Fig. 7.5a. 6900 ppm O2 were added to a typical reaction mixture of 1 % glyoxal and 7600 ppm NO in

argon. The two black curves in the Figure represent HNO simulations with and without oxygen present

in the reaction mixture. While the rapid HNO formation directly after the photolysis isnot affected

by the addition of O2, the HNO concentration decreases faster in the experiment with O2. The direct

comparison between the two simulations reveals that the rate constant for reaction (1) could be derived

from this experiments. The corresponding sensitivity analysis is shown in Fig. 7.5b. Only the five most

sensitive reactions are included in the diagram. The reaction HNO + O2 is the most important reaction
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to model the HNO decrease at longer reaction times, but the reactions of HCO, HNO and (CHO)2 with

H atoms do also contribute to the overall HNO concentration profile. However, as the mechanism has

been validated by the experiments without O2 added, the perturbation of the HNO concentration-time

profile can be attributed mostly to the reaction HNO + O2.
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Figure 7.5: a) Typical HNO concentration-time profile with O2 present in the reaction mixture. b) Cor-
responding HNO sensitivity analysis.

All experimental conditions and results for 21 experiments for the determination of k1 are summarized

in Tab. 7.4 and are plotted in the Arrhenius diagram in Fig. 7.6. The data are best represented by the

Arrhenius expression (solid line in Fig. 7.6):

k1/
(
cm3mol−1s−1)= 6.1×1012exp

(
−

21kJ/ mol
RT

)
, ∆(logk1) =±0.17

with a weak temperature dependence of 21±3 kJ/mol. At densities ofρ = 7.26×10−6 mol/cm3 to

ρ = 1.66×10−5 mol/cm3 (corresponding to pressures of 452 - 1542 mbar) no pressure dependence

was discernible. The error stated for the total rate constant expressionincludes several sources of

uncertainty. Main errors may result from the uncertainties of the initial HCO concentrations, the HNO

absorption cross section, and the secondary chemistry of HNO, HCO andglyoxal. However, both

the absorption cross section and the HNO formation mechanism have been adopted from experiments

without O2 and therefore it can be safely assumed that the uncertainties compensate.Overall, the

associating uncertainty is about 25%. The statistical error from the fitting procedure of the experiments

results in an additional±23% error (2σ standard error of the mean). An overall error of about±48%
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(∆ (log k1) =±0.17) is obtained.

Table 7.4: Experimental conditions and results for the experiments on the reaction HNO + O2 behind
reflected shock waves.

T / K p /
mbar

ρ / 10−6

mol/cm3
x (glyoxal)

/ %
x (NO)
/ppm

x (O2) / ppm x0
(HCO)
/ ppm

k1 / 1011 cm3/ (mol s)

749 452 7.26 1.10 5823 7485 160 2.1
822 546 7.99 1.16 7257 8290 85 3.0
863 596 8.30 1.06 6747 4884 165 3.0
882 619 8.44 0.93 9603 6309 150 3.7
945 707 9.01 1.02 7574 9640 140 4.5
971 750 9.29 1.15 7216 7475 110 5.2
1033 843 9.82 1.28 5887 4402 130 5.0
1041 844 9.74 0.97 7259 7991 70 5.0
1046 1372 15.8 1.16 7257 8290 90 4.8
1047 1375 15.8 1.14 7175 6732 90 6.7
1102 1505 16.4 1.16 7214 7754 90 6.5
1110 958 10.4 1.17 7325 8779 85 5.7
1118 1542 16.6 1.15 7174 6983 90 7.0
1145 997 10.5 1.06 6747 4884 160 7.0
1166 1035 10.7 1.06 6712 10016 130 8.0
1181 1055 10.8 1.02 7564 8223 140 6.5
1200 1090 11.0 1.06 6712 10016 130 7.3
1205 1090 10.9 1.00 6482 8737 120 7.4
1259 1178 11.3 1.06 6730 7457 130 8.5
1273 1191 11.2 1.01 6496 6502 120 9.0
1274 1190 11.2 1.01 6511 4257 120 8.0

7.3.5 Discussion

Selected literature data on the rate of the reaction HNO + O2 are shown in comparison with the

experimental data of this work in Fig. 7.6. A simple high temperature extrapolationof the low temper-

ature intracavity laser absorption spectroscopic (ICLAS) measurements by Bryukov et al.[6] , which

have been performed between 296 and 421 K, would yield about three order of magnitude lower rate

constants at a temperature of 1000 K. However, allowing for the often found positive curvature in

the Arrhenius plot, this discrepancy would be somewhat smaller. As no transition state calculations

have been performed yet, a reliable extrapolation of the low temperature datais not possible. Miller

and Bowman indirectly determined the rate constant of reaction (1) as part of an extensive mecha-

nism for the gas phase reaction of isocyanic acid with nitric oxide in the presence of O2, H2O and

CO.[7] They compared their calculated mole fractions of species like NO, HNCO, andO2 to mea-

sured mole fractions from different experimental investigations[29]. Their estimated rate expression

k1/(cm3mol−1s−1) = 1×1013×exp(−105 kJ/mol/RT) yields a four orders of magnitude lower rate

constant atT = 1000 K and suggests a very strong temperature dependence of reaction(1) that is not

consistent with our data. Already for the development of the combustion mechanism GRI Mech 3.0,[8]

this unfeasible rate constant expression has been adjusted. Without further justification, by compari-

son with the analogous RH + O2 reaction, in the GRI Mech 3.0 the pre-exponential factor has been

adopted from Miller and Bowman but the Arrhenius activation energy has been decreased to 54 kJ/mol.

This change increases the rate constant by a factor of 400 atT = 1000 K, hence still a factor of 30
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lower than the experimental data of this work. Finally, the expression from Klaus and Warnatz[9]

k1/(cm3mol−1s−1) = 3.2× 1012× exp(−12.5 (kJ/mol)/RT), provides the best agreement with our

data. This expression stems from a detailed mechanism for NOx formation/reduction. Unfortunately,

no information about the derivation of this comparably high value has been given.

Compared to the rather uncertain and inconsistent literature data, the measurements performed in this

work constitute by far the most reliable high temperature determination. Althoughthe overall effect

of O2 addition on the detected HNO profiles remained small, thanks to the perturbation approach (i.e.,

measurements with and without oxygen present), the rate constant could bedetermined with good

accuracy. Note that the low rate constant estimate according to the GRI Mech3.0 and the Miller

and Bowman expressions would not have resulted in any noticeable change in the HNO profiles for

experiments with and without O2. This is in obvious disagreement with the experiments reported here.
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Figure 7.6: Arrhenius plot of measured rate constants for the reaction HNO + O2 in comparison with
available literature data.[6,7,8,9]

7.4 Conclusion

HNO has been detected behind shock waves for the first time by means of thevery sensitive FM

spectroscopy approach. FM spectra of three selected transitions havebeen recorded to determine ac-

curate FM factors∆ f and pressure broadening coefficients. The photolysis of glyoxal/NO mixtures

was used as a source for HNO. Corresponding experiments with either HNO or HCO detection have

been performed behind reflected shock waves and at room temperatureto determine the HNO absorp-

tion cross section. Between 700 and 1150 K the absorption cross section of the RR3(4) transition at
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16173.86 cm−1 can be expressed by

log

(
σHNO

cm2mol−1

)
= 5.14−6.0×10−4×

(
T
K

)
.

An HNO mechanism including the HNO formation from the reaction HCO + NO following the glyoxal

photolysis as well as HNO secondary chemistry was developed and tested for various experimental

conditions. Based on the determined HNO absorption cross section and this submechanism for HNO

formation, which reliably describes the measured HNO profiles without O2 in the reaction mixture,

it was possible to measure rate constant data for the reaction HNO + O2 → NO + HO2. Up to 1%

O2 were added to the glyoxal/NO reaction mixtures. At temperatures of 749 K≤ T ≤ 1274 K the

experimental data can be summarized by the Arrhenius expression:

k1/
(
cm3mol−1s−1)= 6.1×1012exp

(
−

21kJ/ mol
RT

)
, ∆(logk1) =±0.17

The comparison with existing literature data reveals that the most frequently used rate constant expres-

sion of Miller and Bowman[7] and from the GRI Mech 3.0[8] yield at least one order of magnitude too

low rate constant data. Clearly, future work on a detailed theoretical treatment of the reaction based on

high-level quantum-chemical calculations is needed to confirm both the high temperature rate constant

expression as well as the reported temperature dependence obtained in this work. Furthermore, mod-

eling work is required to range the importance of the reaction HNO + O2 for NOx formation in flames.

Finally, with the experimental setup presented in this work measurements of further bimolecular HNO

reactions should be possible. Such data would hold the potential to contributeto a much better and

quantitative understanding of HNO for NOx modeling in flames.
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New measurements and a detailed analysis of the glyoxal oxidation mechanism revealed rate constant
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8. Glyoxal Oxidation Mechanism:Implications for the reactions HCO + O2

Abstract

A detailed mechanism for the thermal decomposition and oxidation of the flame intermediate gly-

oxal (OCHCHO) has been assembled from available theoretical and experimental literature data. The

modeling capabilities of this extensive mechanism have been tested by simulating experimental HCO

profiles measured at intermediate and high temperatures in previous glyoxalphotolysis and pyrolysis

studies. Additionally, new experiments on glyoxal pyrolysis and oxidation have been performed with

glyoxal and glyoxal/oxygen mixtures in Ar behind shock waves at temperatures of 1285 K−1760 K at

two different total density ranges. HCO concentration-time profiles have been detected by frequency

modulation spectroscopy at a wavelength ofλ = 614.752 nm. The temperature range of available

direct rate constant data of the high temperature key reaction HCO+O2→ CO+HO2 has been ex-

tended up to 1705 K and confirms a temperature dependence consistent witha dominating direct

abstraction channel. Taking into account available literature data obtained at lower temperatures, the

following rate constant expression is recommended over the temperature range 295 K< T < 1705 K:

k1/(cm3mol−1s−1) = 6.92×106×T1.90×exp(+5.73 kJ/mol/RT)

At intermediate temperatures, the reaction OCHCHO + HO2 becomes more important. A detailed

reanalysis of previous experimental data as well as more recent theoretical predictions favor the forma-

tion of a recombination product in contrast to the formerly assumed dominating and fast OH forming

channel. Modeling results of the present study support the formation of HOCH(OO)CHO and provide

a two orders of magnitude lower rate constant estimate for the OH channel. Hence, low-temperature

generation of chain carriers has to be attributed to secondary reactions of HOCH(OO)CHO.

8.1 Introduction

The oxidation chemistry of glyoxal (OCHCHO) is of interest, partly becauseit is recognized as an in-

termediate in combustion of hydrocarbons and partly because glyoxal hasbeen identified as a promis-

ing HCO high-temperature source for shock tube measurements.[1,2] Moreover, glyoxal is discussed

as an important component in tropospheric chemistry.[3,4] Glyoxal can be formed from oxidation of

C2H2 at low to medium temperatures,[5,6,7,8,9] as well as in the atmosphere,[10,11,12,13,14,15,16]mostly

through the chain-propagating sequence

C2H2
+OH
−→ C2H2OH

+O2−→OCHCHO+OH

Previous studies of OCHCHO chemistry include thermal decomposition in static reactors[17] and

shock tubes[18,19] as well as low-temperature oxidation[20,21,22]and determination of explosion limits

in static reactors.[23] Also data on the low temperature oxidation of glyoxal by H2O2
[24] and NO2

[25]

have been reported. More recently, Colberg and Friedrichs,[2] in a combined shock tube/photolysis

study of OCHCHO/O2 mixtures, obtained rate coefficients for the reaction HCO + O2 at 750-1110 K.

To our knowledge, no detailed chemical kinetic modeling studies of glyoxal oxidation have previously

been reported.

116



8. Glyoxal Oxidation Mechanism:Implications for the reactions HCO + O2

The objective of the present study is two-fold. We aim to develop a detailed chemical kinetic model

for oxidation of OCHCHO in the intermediate to high temperature range for use incombustion studies.

Furthermore, we wish to extend the measurement range for the rate constant of HCO + O2 to higher

temperatures. Novel shock tube experiments are conducted for OCHCHOand OCHCHO/O2 mixtures

in argon at temperatures from 1285 to 1760 K. The results from these experiments are combined with

the previous data from Colberg and Friedrichs and implications for our understanding of glyoxal

oxidation and for the overall rate constant of the reaction HCO + O2 are discussed.

8.2 Detailed Kinetic Model

A mechanism has been assembled from recent work on the chemistry of glyoxal,[2,19] formic acid,[26]

formaldehyde,[27] carbon monoxide[28] and hydrogen.[29] In the present work the OCHCHO oxi-

dation subset of the mechanism was updated. The thermodynamic propertiesfor OCHCHO and

OCHCO are shown in Table 8.1,[30,31] while Table 8.2 lists key reactions in the OCHCHO oxida-

tion scheme.[2,19,32,34,35]The full mechanism, including pressure dependent rate coefficients formany

decomposition and recombination reactions, is available as Supporting Information.

In addition to the OCHCHO subset discussed below, particular attention was paid to the reaction of

HCO with O2,

HCO+O2 ⇋ CO+HO2 (1)

High temperature oxidation of hydrocarbons as well as of glyoxal is verysensitive to this step. Start-

ing from the experimentally determined rate coefficients by Colberg and Friedrichs[2] and the new

experimental data presented below, we derived a rate constant expression valid over a wide range of

temperatures. Hsu et al.[36] reported a theoretical study of this reaction, based on RRKM calculations

for the indirect abstraction channel and VTST calculations for the directabstraction channel. Both

channels yield the products CO + HO2. According to these calculations, at low temperatures the more

or less temperature independent indirect channel dominates and the increase of the total rate constant,

which is due to the direct abstraction channel, takes place not before temperatures ofT > 1250 K.

In contrast, the Colberg and Friedrichs determination implies a distinct increase of the rate constant

already at temperatures aboveT > 700 K. For the temperature range of the present shock tube study

Table 8.1: Thermodynamic properties of selected species in the reaction mechanism. Units are kJ
mol−1 for ∆H, J mol−1 K−1 for Sandcp,T , and K for temperatureT.

Species ∆H◦298 S◦298 cp,300 cp,400 cp,500 cp,600 cp,800 cp,1000 cp,1500 Ref.
OCHCHO −212.07 272.45 60.60 71.38 81.42 89.93 101.43 108.64 117.36 30
OCHCO −63.80 281.28 57.81 65.15 71.39 76.64 84.65 90.17 98.25 this work,a

a: The C-H bond dissociation enthalpy at 298 K in OCHCHO was obtained via computed CBS-QB3 energies[31] and the
reaction OCHCHO→ OCHCO + H. There are isomers of OCHCO with bent C-C-O structures butthe most stable isomer
has an almost linear C-C-O group. The corresponding bond dissociation enthalpy is 366.2 kJ/mol, which corresponds to
∆fH

◦
298(OCHCO) =−63.8 kJ/mol. Entropies and heat capacities of OCHCO were derived using theharmonic oscillator/rigid

rotor model.
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Table 8.2: The OCHCHO subset of the reaction mechanism. Parameters for use in the modified Ar-
rhenius expressionk= ATnexp(−Ea/(RT)). Units are mol, cm, s, kJ. The full mechanism,
including pressure dependent expressions, are given in the Supporting Information.

No. A n Ea Ref.
[cm,mol,s] [kJ/mol]

1 HCO+O2 ⇋ CO+HO2 6.92E06 1.900 −5.73 this work,a
2a OCHCHO⇋ CH2O+CO 8.04E55 -12.600 321.00 19,b
2b OCHCHO⇋ CO+CO+H2 6.12E57 -13.100 335.34 19,b
2c OCHCHO⇋ HCOH+CO 2.62E57 -13.200 333.69 19,b,c
2d OCHCHO⇋ HCO+HCO 1.89E57 -12.800 352.80 19,b
3 OCHCHO+H ⇋ OCHCO+H2 5.4E13 0 18.00 2
4 OCHCHO+O⇋ OCHCO+OH 8.4E11 0.570 11.55 est., 2×kCH2O+O
5 OCHCHO+OH⇋ OCHCO+H2O 4.0E06 2.000 –6.82 32
6 OCHCHO+HO2→ HOCH(OO)CHO 1.3E31 -7.532 6.03 34,d

-6 HOCH(OO)CHO→OCHCHO+HO2 1.9E29 -5.781 66.07 34,d
7 OCHCHO+HO2 ⇋ HOCHO+CO+OH 3.3E-4 3.995 1.26 34,d
8 OCHCHO+HO2 ⇋ OCHCO+H2O2 8.2E04 2.500 42.70 est., 2×kCH2O+HO2
9 OCHCHO+O2 ⇋ OCHCO+HO2 4.8E05 2.500 152.55 est., 2×kCH2O+O2

10 OCHCO⇋ HCO+CO 4.1E14 0 36.67 35,d
11a OCHCO+O2 ⇋ CO+CO2+OH 3.3E14 0 8.68 35,d
12 HOCH(OO)CHO→ HOCHO+CO+OH 1.6E10 0.051 63.56 34
13 HOCH(OO)CHO+HO2→ HOCH(O)CHO+O2+OH 3.0E12 0 0 est.,e, f
14 HOCH(OO)CHO+HO2→ HOCH(OOH)CHO+O2 3.0E12 0 0 est.,f

a: 295 K< T < 1705 K,
b: 1.0 bar, 800 K< T < 2500 K,
c: Treated as a duplicate of reaction (2a), see text,
d: 1.0 atm,
e: HOCH(O)CHO immediately dissociates to HOCHO and HCO,
f : 298 K.

(1285 - 1705 K), the extrapolated Arrhenius expression of Colberg and Friedrichs yields 2.1 - 2.5

times higher values than the theoretical prediction of Hsu et al. Hence, the new glyoxal oxidation

experiments served as a critical test of both the absolute value of the rate constant and the overall

temperature dependence of the reaction HCO + O2.

Thermal dissociation of OCHCHO has been characterized experimentally behind shock waves[18,19]

and theoretically.[19,37] It is a highly temperature and pressure dependent multi-channel reaction that

may yield a range of products:

OCHCHO⇋ CH2O+CO (2a)

OCHCHO⇋ CO+CO+H2 (2b)

OCHCHO⇋ HCOH+CO (2c)

OCHCHO⇋ HCO+HCO (2d)

We have adopted the results by Friedrichs et al.[19] who detected species profiles of OCHCHO, HCO,

and H behind shock waves at temperatures of 1032–2320 K. In their work, the obtained branching

ratios of the thermal glyoxal decomposition were interpreted by means of RRKM/SACM/ME calcu-

lations and rate coefficients over a wide range of temperature (800 – 2500K) and pressure (1 mbar –

100 bar) have been reported. Original data have been represented interms of Chebyshev polynomial

coefficients. We reparametrized their data and report extended Arrhenius expressions atp= 1 bar in
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Table 8.2 and at other total pressures in the Supporting Information. A keyfinding of Friedrichs et al.

was that the previously neglected, energetically most unfavorable HCO channel (2d), due to its loose

transition state character, becomes the dominant product channel at hightemperatures and pressures.

For example, atT = 2300 K andp= 3 bar the branching fraction of channel (2d) accounts for 48% of

the total reaction rate. In contrast, the hydroxymethylene forming HCOH channel (2c), in agreement

with a photochemical study of Hepburn et al.,[38] with branching fractions< 7% at all temperatures

and pressures turned out to be minor. Arguments have been put forward in ref 19 that subsequent

chemistry of HCOH is not expected to serve as a significant source of additional atoms or radicals

such that the overall influence of this minor channel on glyoxal chemistry remains small. With re-

gard to a simplified description of the thermal decomposition of glyoxal, channel (2c) has therefore

not been treated as a separate channel but its reported rate constant expression has been merged with

reaction channel (2a), which is the main channel under the experimental conditions of this work.

Other reactions of OCHCHO include abstraction of H by radicals or O2. Only a few of these steps

have been characterized experimentally. The reaction with atomic hydrogen,

OCHCHO+H ⇋ OCHCO+H2 (3)

has been measured at elevated temperatures (769–1107 K) by Colberg and Friedrichs[2] and their value

is used in the reaction mechanism. The reaction with OH (5),

OCHCHO+OH⇋ OCHCO+H2O (5)

has been studied both experimentally[32,33,39] and theoretically,[40] though only at low temperatures.

The experimental results are in good agreement. We have adopted the rate constant measured by

Feierabend et al.[32] in the 210-390 K range.

For the reactions of OCHCHO with O (4) and O2 (9),

OCHCHO+O⇋ OCHCO+OH (4)

OCHCHO+O2 ⇋ OCHCO+HO2 (9)

we estimate the rate constants to be similar to the analogue reactions of CH2O.

The reaction of OCHCHO with HO2 is of particular importance, since HO2 is formed in significant

quantities compared to the other radicals in the O/H pool at low to medium temperature conditions.

The H-abstraction channel,

OCHCHO+HO2 ⇋ OCHCO+H2O2 (8)

has not been characterized experimentally, but we assume that it has a rate constant similar to that of

CH2O + HO2. The reaction would be expected to be too slow to compete at low temperatures,but may

become dominating at elevated temperatures. According to the recent theoretical study of da Silva,[34]
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the main product of OCHCHO + HO2 at low temperature is HOCH(OO)CHO,

OCHCHO+HO2 ⇋ HOCH(OO)CHO (6)

However, even at low temperatures the HOCH(OO)CHO radical predominantly dissociates to reform

the reactants.[34] In analogy with a corresponding formaldehyde reaction,

CH2O+HO2 ⇋ HOCHO+OH,

a secondary product channel yielding OH radicals has been proposed for glyoxal oxidation by Hay

and Norrish,[21]

OCHCHO+HO2 ⇋ OCHC(O)OH+OH.

OCHC(O)OH would be expected to decompose rapidly to formic acid (HOCHO)+ CO. Indeed, the

existence of the OH producing channel for glyoxal + HO2 seems to be supported by the detection

of formic acid[41] in glyoxal oxidation and appears to be required to explain the generation ofchain

carriers in glyoxal oxidation at 563-643 K.[21] From a photolysis study at 298 K, Niki et al.[41] derived

a room temperature value for the OH channel of 3×108 cm3 mol−1 s−1. Support for an OH-producing

channel of the OCHCHO + HO2 reaction is also provided theoretically. According to da Silva,[34] the

reaction forms a hydroxyperoxy radical, which decomposes to HOCHO + CO + OH,

OCHCHO+HO2→ HOCHO+CO+OH (7)

However, the rate constant calculated by da Silva is two orders of magnitudesmaller than the value

reported by Niki et al. In order to resolve this discrepancy, we have thoroughly re-interpreted the

experimental results of Niki et al. (see Appendix). Our analysis indicatesthat the data of Niki et al. are

compatible with the rate constant for (7) from da Silva,[34] provided that the association reaction (6)

and the subsequent reactions of HOCH(OO)CHO are taken into account.Consequently, we have

adopted the rate coefficients for (6) and (7) from da Silva.

Only a few studies of the chemistry of the OCHCO radical have been reported.[33,41,42] It is expected

to decompose thermally or react with O2. The thermal dissociation,

OCHCO⇋ HCO+CO (10)

was studied theoretically by da Silva,[35] who determined a high-pressure limit ofk10,∞ = 1.1×1014×

T0.133exp(−5102/T) between 200 and 2000 K. At the conditions of interest in the present study, this

reaction is in the fall-off regime, and consequently we used extrapolations of rate constants provided

by da Silva for the 150-400 K range for pressures of 0.01, 0.1, and 1 atm. The rate constant calculated

by da Silva is considerably lower than the experimental value reported by Orlando and Tyndall[42] for

0.92 atm and 224-370 K. However, the latter determination was affected by the use of a too large rate

constant value for OCHCO + O2, as pointed out by da Silva.[35]
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The reaction of OCHCO with O2 could involve a number of product channels, i.e.,

OCHCO+O2 ⇋ CO+CO2+OH (11a)

OCHCO+O2 ⇋ CO+CO+HO2 (11b)

OCHCO+O2(+M)⇋ OCHC(O)OO(+M) (11c)

Da Silva[35] predicts the CO + CO2 + OH channel (11a) to be dominating above room temperature.

In fact, in a recent kinetic study on OH formation in the Cl/OCHCHO/O2 reaction system, Lockhart

et al.[33] found strong evidence that the reaction (11) directly yields OH radicals witha rate constant

consistent with the Da Silva estimate. The OCHCO + O2 addition reaction is strongly exothermal

and isomerization/decomposition of the excited peroxy radical adduct is competitive with collisional

deactivation even at low temperature, leading directly to the dissociated products CO2 + CO + OH.

Similar to reaction (10), da Silva uses RRKM/ME theory to calculate values ofk11a for temperatures

between 150 and 400 K and pressures of 0.01–1 bar; we extrapolate these data to the conditions of the

present work. The work of da Silva indicates a small, positive activation energy (4–8 kJ mol−1). The

finding that (11a) is the main product channel for OCHCO + O2 is in agreement with experimental

observations by Orlando and Tyndall.[42] However, they assumed the reaction to be barrierless and

estimated a somewhat larger rate constant.

Addition of O2 (11c) yields a ketoperoxy radical, OCHC(O)OO. This radical isomerizeswith a com-

puted barrier of 63 kJ mol−1 to make OCC(O)OOH through a 1 - 4 hydrogen shift. With a low barrier

of 28 kJ mol−1, the OCC(O)OOH radical would dissociate fast to form CO + CO2 + OH; an overall

step equivalent to (11a). Alternatively, the ketoperoxy radical could pick up an H atom at the radical

oxygen resulting in OCHC(O)OOH. The new O-H bond with a bond energy of 407 kJ mol−1 is reason-

ably strong; thus H might be abstracted from other species present including glyoxal. OCHC(O)OOH

can decompose in a unimolecular step with a barrier of 87 kJ mol−1 to yield HCO + CO2 + OH or

it can be converted to OCC(O)OOH by abstraction of H from the C-H bond. With a bond energy of

379 kJ mol−1 this bond is weaker than the O-H bond. However, da Silva predicts the association rate

(11c) to decrease rapidly above 300 K, and these pathways are not expected to be important under the

conditions of the present study.

8.3 Experimental

The thermal decomposition of glyoxal has been investigated behind shock waves with and without

oxygen present in the reaction gas mixtures. All experiments were carriedout in an electro-polished

stainless steel shock tube that is described in detail elsewhere.[2] The shock tube has been operated

using hydrogen or hydrogen/nitrogen mixtures as driver gas and 30 or80 µm thick aluminium di-

aphragms. Concentration-time profiles of the glyoxal decomposition product HCO were measured

by means of frequency modulation (FM) spectroscopy at a detection wavelength ofλ = 614.752 nm.

The experimental setup was very similar to the one used in our previous paper on the reaction HCO +

O2. [2] Details on the HCO detection scheme and the implementation of FM spectroscopy for quanti-

tative measurements of radicals behind shock waves can be found elsewhere.[43,44] According to FM
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theory, the measured signalIFM is related to the absolute radical concentrationc by the equation

IFM =
I0
2

σc×c× l ×∆ f ×G.

Here,I0 is the probe light intensity,σc the absorption cross section at line center, andl the absorption

path length.∆ f , the so-called FM factor, depends on the applied modulation frequency aswell as the

modulation depth and is calculated from the absorption line shape profile at theactual experimental

temperature and pressure. Accurate line shape data and absorption cross sections have been adopted

from Friedrichs et al.[43] The room temperature value of the absorption cross section is in excellent

agreement (within 2%) with the accurate measurements of Flad et al.[45] Allowance was made for

a small pressure broadening effect according to an assumed pressure broadening coefficient∆ν =

2.0×(T/298 K)0.75 GHz bar−1, hence similar to the one experimentally observed for NH2. [46] G is the

device-specific electronic gain factor of the FM spectrometer, which has tobe determined separately.

Its value has been re-measured and was found to be consistent with our previous determinations. We

estimate the accuracy of the calculated HCO concentrations (including the error of the gain factor and

the high temperature extrapolation of the HCO cross section) to be±20%.

Table 8.3: Experimental conditions and results.

T/ ρ /10−6 x(glyoxal) T/ ρ /10−6 x(glyoxal) x(O2) k1/1012

K mol cm−3 % K mol cm−3 % ppm cm3mol−1s−1

without O2 with O2

incident shock wave incident shock wave
1299 3.87 1.01 1285 3.86 1.01 3185 7.3
1379 5.24 1.04 1294 3.86 1.01 6700 7.7
1398 3.94 1.01 1382 3.93 1.01 3185 11.3
1406 4.60 1.14 1432 3.96 1.01 6700 8.9
1466 3.98 1.01 1450 5.30 1.04 9415 13.6
1521 5.35 1.04 1481 4.66 1.14 7210 12.9
1757 3.95 1.01 1572 5.39 1.04 9415 19.6

1677 4.09 1.01 6700 11.8
1705 4.07 1.01 3185 13.2

reflected shock wave reflected shock wave
1382 9.80 1.05 1339 9.61 1.05 5045 9.3
1519 10.3 1.05 1340 10.0 1.05 7735 9.3
1539 10.4 1.05 1420 9.96 1.05 5045 13.7
1545 11.6 1.01 1431 10.0 1.04 7645 9.1
1618 10.7 1.05 1558 11.6 1.02 4880 15.5

1660 10.8 1.05 9060 14.4
1663 10.8 1.05 7735 11.7

Glyoxal was prepared by heating glyoxal trimeric dihydrate in the presence of P2O5 and was stored in

a liquid nitrogen trap. Reaction gas mixtures were prepared manometrically andcontained 1% glyoxal

in argon. Such high glyoxal mole fractions were necessary to ensure detectable HCO concentration

levels. In about half of the experiments, mole fractions of 3185 - 9415 ppmoxygen have been added

using a flow system with mass flow controllers. Experiments have been performed behind incident
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(corresponding to an average total densityρ ≈ 4.4×10−6 mol cm−3) and reflected (ρ ≈ 1.1×10−5

mol cm−3) shock waves in the temperature range 1299 K< T < 1757 K. The experimental conditions

of all 28 shock tube experiments, as calculated from the measured shock wave velocity and pre-shock

conditions using a standard shock tube code with real gas correction, are outlined in Table 8.3. It is

known that the vibrational relaxation/equilibration of oxygen is quite slow, about 100µs atT = 1500 K

andp= 1 bar in argon.[47] Therefore, in contrast to the translational and rotational degrees of freedom

that are heated within 1µs, the vibrational degrees of freedom are not in thermal equilibrium on

the typical experimental timescales of 7− 70 µs present in this study. This has two consequences:

On the one hand, the real initial temperatures behind the shock waves weresomewhat higher than

calculated by the standard shock tube code. Therefore, Table 8.3 lists a corrected, up to 10 K higher

initial temperature assuming that the O2 vibrational degree of freedom is not heated at all. On the

other hand, as the actual O2(v = 1)/O2(v = 0) ratio during the experiment is lower than at thermal

equilibrium (about 0.2 atT = 1400 K), the determined rate constant may be slightly biased by the

different reactivities of O2 in its v = 0 andv = 1 vibrational states. This non-equilibrium effect is

difficult to address quantitatively and is typically neglected in the analysis of shock tube data. Within

the scatter of the obtained rate constant data, and taking into account the very good agreement with our

previous shock tube measurements (which were not affected due to a sufficiently long delay behind

the shock wave arrival and glyoxal photolysis), we assume that the possible, presumably negative bias

is not significant.

8.4 Results and Discussion

8.4.1 Branching ratio of glyoxal decomposition

Table 8.4: Previously reported channel branching ratios and total rate constants of the multi-channel
thermal decomposition of glyoxal for typical experimental conditions behindthe incident
(ρ = 4.43×10−6 mol cm−3) and reflected (ρ = 1.05×10−5 mol cm−3) shock waves, ac-
cording to Friedrichs et al.[19].

OCHCHO→ products T = 1300 K T = 1700 K
ρ / (mol/cm3) 1.05×10−5 4.43×10−6 1.05×10−5 4.43×10−6

φ (CH2O + CO) % 48 56 38 47
φ (2 CO + H2) % 29 28 27 29
φ (HCOH + CO) % 7 7 6 7
φ (2 HCO) % 16 9 29 17
k2,total/s−1 1.3×104 8.3×103 7.1×105 3.8×105

Experiments with glyoxal/argon mixtures without oxygen were performed to test the overall thermal

glyoxal decomposition mechanism reported in the literature. According to Friedrichs et al.,[19] the

channel branching of the multi-channel unimolecular decomposition of glyoxal is strongly depen-

dent on the temperature and total density. The effect of total density and temperature on the channel

branching ratio is illustrated in Table 8.4. Note the pronounced fall-off of thetotal rate constantk2,total

(ρ reflected/ρ incident = 2.5, butkreflected
2,total /kincident

2,total ≈ 1.7) and the significantly different importance of the
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HCO channel (2d) at the two different temperatures (φ1700 K/φ1300 K≈ 1.8). Hence, the experiments

behind the incident and reflected shock waves at overall different total densities provide a critical test

of their rate constant data and RRKM/SACM/ME predictions.

Experimental HCO concentration-time profiles behind the reflected shock wave at three different tem-

peratures are shown in Fig. 8.1a together with simulated profiles (thick curves). Fig. 8.1b illustrates

the corresponding sensitivity analysis of theT = 1519 K experiment in order to identify the most

important reactions. The numerical simulations were performed using the CHEMKIN-II package[48]

and the SENKIN routine[49] based on the glyoxal oxidation mechanism outline above. Overall, the

observation times of the HCO profiles were rather short and the initial increase of the HCO profiles

were obscured by the strong Schlieren signal attributable to the passage of the shock wave through the

detection laser beam. For a better comparison of the experimental and numerically simulated profiles,

the experimental time resolution has been taken into account by convoluting thenumerical simulation

with an appropriate time response function (Gaussian, FWHM of 2-3µs). Excluding the first few

µs that are affected by the Schlieren signal (open symbols), both the absolute concentrations and the

overall shapes of the reported concentration-time profiles are very wellcaptured by the simulations.

Toward low temperatures, the experimentally accessible temperature range was limited by too low

intermediate concentrations, toward high temperatures by too short HCO lifetimes. The sensitivity

analysis in Fig. 8.1b highlights the influence of the five most important reactions. Both the branching

ratio of the OCHCHO decomposition as well as the rate constant of several secondary reactions have

to be known to accurately predict the HCO profile. In fact, we were able to reproduce all measured

HCO profiles without adjusting any rate constant data, initial glyoxal concentrations, or the tempera-

ture dependent HCO absorption cross section. From this high reproducibility we conclude that both

the thermal glyoxal decomposition mechanism as well as the HCO detection scheme is highly reliable.

8.4.2 Rate of Reaction HCO+O2

The rate constant of the reaction

HCO+O2→ CO+HO2 (1)

has been measured between 1285 K≤ T ≤ 1705 K at two different total densities ofρ ≈ 4.3×

10−6 mol/cm3 behind the incident andρ ≈ 1.0×10−5 mol/cm3 behind the reflected shock waves. The

experimental conditions and the results fork1 are summarized in Table 8.3. Next to 1% glyoxal, serv-

ing as a source of HCO radicals from reaction (2d), the reaction mixtures contained 3185–9415 ppm

O2. Fig. 8.2a illustrates two typical experimental HCO concentration-time profiles measured behind

reflected shock waves at a temperature of 1339 K and 1558 K, respectively. Both experiments were

carried out at similar densities (ρ = 1.16 and 0.96× 10−6 mol/cm3) and initial glyoxal (1.02% and

1.05%) and O2 mole fractions (4880 ppm and 5045 ppm). The observed peak HCO concentration is

about four times lower at the lower temperature. For the 1558 K experiment, the total HCO observa-

tion time is only about 40µs, whereas HCO could be observed for> 200µs at 1339 K. This behavior

is well captured by the two simulated profiles (thick curves) using our glyoxal oxidation mechanism.

Fig. 8.2b illustrates the results of the sensitivity analysis of theT = 1339K experiment. It reveals
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Figure 8.1: a: Three experimental HCO profiles at different temperatures behind reflected shock
waves in comparison with numerically simulated profiles. Open circles mark the in-
terfering Schlieren signals and do not contain information on HCO concentration. b:
Corresponding HCO sensitivity analysis forT = 1519 K. The sensitivity coefficients
are normalized with respect to the maximum HCO concentration over the time history,
σ(HCO) = 1/[HCO]max×∂ [HCO](t)/∂ lnk).

that the simulated absolute concentration levels are mainly determined by the branching ratio of the

thermal decomposition of glyoxal, in particular the rate constants of the reaction (2b), and by the as-

sumed rate constant for the target reaction (1). Other consecutive reactions of HCO and glyoxal are

also important, but their rates have been validated together with the branchingratio by the shock tube

measurements for mixtures without O2 as outlined above. Hence it was possible to obtain a best-fit

value for the rate constant of the reaction HCO+O2 by adjusting exclusivelyk1. The two dashed

curves in Fig. 8.2a, corresponding to numerical simulations withk1 set tok1×2 andk1÷2, demon-

strate the sensitivity of this procedure. Especially with respect to the HCO peak concentration, the

effect of changingk1 is very pronounced. Nevertheless, due to the moderate signal-to-noise ratio of

the experiments, we estimate that the uncertainty of each individualk1 value with±75% is rather

large.

The obtainedk1 values are depicted as red symbols in comparison with selected literature data inthe

Arrhenius plot shown in Fig. 8.3. The included red error bar corresponds to the±75% uncertainty

of a single data point; the 2σ standard deviation of the data with respect to the final Arrhenius fit

(red curve) is about±40%. For a more complete comparison of available literature data and a critical
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Figure 8.2: a: Two typical experimental HCO concentration-time profiles in comparison with simu-
lations (thick curves). The simulated profiles have been convoluted with an appropriate
response function in order to allow for a direct comparison of the experiment and simu-
lation at short reaction times. Open circles mark the interfering Schlieren signals, which
were excluded from the fit. b: Corresponding HCO sensitivity analysis for the experiment
atT = 1339 K. Only the five most sensitive reactions are shown.

assessment of available room temperature data we refer to our previous publication[2] and the paper

of De Sain et al.[50] Within the scatter of the data, the experiments behind the incident (open circles)

and reflected shock waves (star symbols) are consistent, hence no dependence of the rate constant on

the total density could be identified. In contrast, a weak positive temperaturedependence is evident.

Both the temperature dependence and the absolute rate constant values are in quantitative agreement

with the high temperature extrapolation (blue dashed line) of our previous determination:[2]

k1/(cm3mol−1s−1) = 3.7×1013×exp(−13 kJ/mol/RT)

The original data and error bars of the latter study are included as blue plus symbols. They had been

determined using the 193 nm photolysis of glyoxal as a source of HCO radicals and their uncertainty,

unlike the uncertainty of the experiments in this work, were mainly due to the assumed initial ratio

of [H]/[HCO] from glyoxal photolysis. The very good agreement of these two independent studies

points out the consistent modeling capabilities of our mechanism with regard to glyoxal photolysis

and pyrolysis.
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The recommended value from the GRI-Mech. 3.0[51] (line marked with black filled circles) is in agree-

ment with the new high temperature results, but the temperature dependence isquite underestimated.

The RRKM/VTST calculations of Hsu et al.[36] (curve marked with down triangle) underpredict the

onset of the high-temperature direct abstraction channel resulting in about two times lower absolute

k1 values at temperatures around 1500 K. Other experimental data for intermediate temperatures and

at room temperature[2,50,52,53]reveal a more or less temperature independent rate constant, which is

consistent with the expected capture controlled process of the indirect abstraction channel with an

initiating recombination step and a low-lying exit barrier to the products CO + HO2. As a reasonable

fit of the overall temperature dependence of the available data, an extended Arrhenius expression is

recommended over the temperature range 295 K< T < 1705 K (red curve):

k1/(cm3mol−1s−1) = 6.92×106×T1.90×exp(+5.73 kJ/mol/RT)

The overall rate constant is independent of pressure. Even at roomtemperature, the collisionally

deactivated recombination product HC(O)O2 does not play a role provided that the pressure does not

exceed several bar.[36]
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Figure 8.3: Arrhenius plot of the measured rate constantsk1 for the reaction HCO + O2 of this work (in-
cident wave◦, reflected wave✩) in comparison with selected experimental data from Col-
berg and Friedrichs (+, blue line),[2] Veyret and Lesclaux (▲), [52] Timonen et al. (◆), [53]

DeSain et al. (■), [50] the GRI-Mech 3.0 recommendation (●), [51] and the theoretical study
of Hsu et al. (▼). [36] The red curve depicts the final recommendedk1 rate expression.

8.4.3 Model validation against literature data

To test the capacity of our mechanism we used it for the modeling of other available experimental liter-

ature data. In particular, the batch reactor experiments of Hay and Norrish[21] were of interest. Their

study, which was based on manometric detection of the reaction progress and gas chromatographic
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product analysis, should provide a detailed characterization of glyoxaloxidation with varying equiva-

lence ratio at a nominal temperature of 603 K. At this intermediate temperature, HO2 related oxidation

reactions such as OCHCHO+HO2 become important. However, we were not able to reconcile the re-

sults of Hay and Norrish with our present understanding of the reaction system. Using our mechanism,

we were able to reproduce qualitatively the product yields and the overallshapes of the experimental

concentration-time profiles – but in fact on a more than two orders of magnitude slower time scale. As

a possible explanation, the hypotheses of a much higher yield of the OH radical forming channel (6),

OCHCHO+HO2→HOCHO+CO+OH, was tested. As already stated above and further outlined in

the Appendix, we actually recommend the lowk6 value calculated by da Silva[34] in our mechanism,

which is two orders of magnitude smaller than the value reported by Niki et al.[41] In fact, settingk6

to the much higher value of Niki et al. significantly reduces the mismatch of the overall reaction time

scales, but the agreement with the reported product yields is seriously deteriorated. In particular, the

high yield of H2O2 reported by Hay and Norrish is considerably underestimated. Further modeling at-

tempts led us to the conclusion that the Hay and Norrish experiments presumablywere not performed

under isothermal conditions and that the fast observed experimental glyoxal consumption is at least

partly due to an unidentified temperature increase of the reaction gas mixture.This uncertainty, along

with the issue of potential surface effects in the reactor, makes these data less suitable for kinetic

interpretation.

Another test for the glyoxal oxidation mechanism was the modeling of the photolysis experiments

of glyoxal/oxygen mixtures performed by Colberg and Friedrichs.[2] Fig. 8.4 shows a comparison of

an original experiment atT = 857 K taken from ref 2 with simulations of HCO concentration-time

profiles with (solid curve) and without oxygen (dash-dotted curve) present in the reaction mixture.

Oxygen addition significantly reduces the overall HCO yield and lifetime. The simulation is in perfect

agreement with the experimental data. To further investigate the possibility of asignificant OH form-

ing channel of the reaction OCHCHO+HO2, a simulation with the rate of reaction (6) increased to the

Niki et al. value,k6×200, is shown as well (dotted curve). Withk6×200, the influence of reaction (6)

on the HCO concentration profile is negligible at short reaction times, but a factor of four higher HCO

concentration is simulated att = 25 µs. In this case, the simulated residual HCO concentration at

long reaction times can be traced back to a steady regeneration of HCO radicals due to the combined

reaction sequence (5) and (10), OCHCHO+OH→ HCO+CO+H2O. However, none of the original

experiments of Colberg and Friedrichs showed this small but significant HCO concentration plateau at

longer reaction times, hence further supporting the low OH yield from the reaction OCHCHO+HO2

as predicted by da Silva and recommended by us.

8.5 Conclusions

A detailed glyoxal decomposition and oxidation mechanism has been compiled from literature

data merging previous reports on glyoxal/oxygen photolysis at room and high temperature,[19] the

branching ratios of glyoxal thermal decomposition,[2] and theoretical studies on the reaction of

glyoxal+HO2, [34] OCHCO + O2, [35] and formic acid oxidation.[26]
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shown: without O2 (dash-dotted curve) and with O2 assuming either the rate constant for
the reaction OCHCHO + HO2 as reported by Niki et al.[41] (dotted curve) or by da Silva[34]

(solid curve).

All HCO profiles from glyoxal decomposition behind shock waves could bevery well simulated, both

in terms of absolute HCO concentrations and signal shapes, using the glyoxal decomposition mecha-

nism adopted from Colberg and Friedrichs[2] with branching fractions taken from Friedrichs et al.[19]

The established glyoxal pyrolysis mechanism was able to predict the measured HCO concentration-

time profiles of this work without any modifications. Moreover, by adding oxygen to the reaction

mixtures, the rate constant for the reaction HCO + O2 could be measured at temperatures 1285 K

≤ T ≤ 1705 K, hence significantly extending the range of direct measurements toward higher temper-

atures. The results are in striking agreement with the previous shock tube/photolysis experiments of

Colberg and Friedrichs.[2] The absolute values as well as the overall temperature dependence, which

is stronger than predicted theoretically, could be confirmed.

A detailed reanalysis of previous experimental measurements on the reactionOCHCHO + HO2 per-

formed by Niki et al.[41] led us to the conclusion that the reported high OH yield can be traced back

to a previously unidentified formation of the recombination product HOCH(OO)CHO and its sec-

ondary reaction with HO2. The theoretically predicted, two orders of magnitude lower rate constant

value for OH formation reported by da Silva[34] is also supported by a reassessment of the previous

glyoxal/O2 photolysis data from Colberg and Friedrichs.[2] Using the original high rate constant value

of Niki et al., our glyoxal oxidation mechanism would predict HCO concentration plateau levels at

long reaction times that have not been observed in the experiment.

Unfortunately, a further critical test of the performance of our mechanism at intermediate temperatures

by comparing model predictions with the outcome of the glyoxal oxidation batch reactor experiments

of Hay and Norrish[21] turned out to be unfeasible. Most probably those experiments were biased by

an unidentified temperature increase in the reactor. Therefore, additional measurements of glyoxal
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oxidation at intermediate temperatures are desirable and would offer a possibility to critically check

the predicted important role of the reaction OCHCHO + HO2 for the overall reaction progress.
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8.6 Appendix: On the OCHCHO + HO2 Reaction

As discussed above, the reaction of OCHCHO with HO2 is believed to be of importance for the

generation of chain carriers in oxidation of glyoxal. Figure 8.5 compares the available rate constant

data for the rate of OCHCHO + HO2. According to the recent theoretical study by da Silva,[34]

glyoxal reacts with HO2 to form a hydroxyperoxy radical. At low temperatures the major reaction

product is predicted to be collisionally deactivated HOCH(OO)CHO (7), but a secondary product

channel yielding HOCHO and OH,

OCHCHO+HO2→ HOCHO+CO+OH, (7)

has been proposed in earlier studies of glyoxal oxidation. The only experimental determination of the

rate constant for the OH channel was reported by Niki et al.,[41] who derived a value more than two

orders of magnitude larger than the theoretical estimate fork7 by da Silva.[34] Figure 8.5 compares

their value (open square) with the theoretical prediction of the rate constants for the different channels

of the reaction OCHCHO + HO2.

Due to the importance of the reaction of glyoxal with HO2, it is worthwhile to take a closer look at the

experimental results from Niki et al. that form the basis of their estimation ofk7. They conducted

Cl-atom initiated oxidation studies of glyoxal oxidation, photolyzing a system ofCl2 (100 ppm),

OCHCHO (8-22 ppm), O2 (93.3 mbar), and H2 (840 mbar). The following sequence of reactions

was intended to provide data onk7: Cl2 + hν → Cl + Cl, Cl + H2 → HCl + H, H + O2 (+M) →

HO2 (+M), OCHCHO + HO2→ HOCHO + CO + OH (7), along with the side reaction HO2 + HO2→

H2O2 + O2. Niki et al. used continuous UV light for 60 or 120 seconds to obtain sufficient photolysis

of Cl2. The results of the experiments are shown in Table 8.5. Results obtained forlonger reaction

times are neglected here, as Niki et al. reported a considerable loss of species by surface reactions.
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Figure 8.5: Arrhenius plot for the reaction OCHCHO + HO2→ products. The curves denote the rate
constants predicted theoretically by da Silva[34] for the total reaction at the high-pressure
limit and for the recombination reaction (6) as well as the OH-producing channel (7) at
1.0 atm. The H-abstraction channel forming OCHCO + H2O2 (8) is an estimate by analogy
to the reaction CH2O + HO2. The square symbol denotes the experimental result for the
OH-producing channel (7) by Niki et al.[41]

Niki et al. estimated the HO2 radical concentration from the equation,

∆[H2O2] = 2kHO2+HO2[HO2]
2×∆t

using the measured H2O2 concentration. Then, they calculated the rate constant for (7) from

∆[OCHCHO] = k7[OCHCHO]average[HO2]×∆t

deriving a room temperature ofk7 = 3×108 cm3 mol−1 s−1 (Fig. 8.5).

An up-to-date kinetic analysis of the system supports most of the assumptionsmade by Niki et al.

Once formed by the sequence of reactions outlined by Niki et al., HO2 reacts with glyoxal,

OCHCHO+HO2→ products,

or with itself,

HO2+HO2→ H2O2+O2

The major shortcoming of their analysis is the disregard of the formation of HOCH(OO)CHO, which

according to da Silva is the dominating product of the glyoxal + HO2 reaction. Provided the

HOCH(OO)CHO adduct has a sufficiently long lifetime, this adduct may reactwith HO2 in a sec-

ondary reaction. There are no experimental or theoretical data availablefor HOCH(OO)CHO + HO2,

but from analogy with other hydrocarbon peroxide radicals, the reaction is likely to have two product
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channels,

HOCH(OO)CHO+HO2→ HOCH(O)CHO+O2+OH (13)

HOCH(OO)CHO+HO2→ HOCH(OOH)CHO+O2 (14)

Dissociation of HOCH(O)CHO to HOCHO and HCO is 59 kJ mol−1 exothermic. A DFT estimate

indicates a barrier to dissociation of merely+1.0 kJ mol−1, which drops to−5.0 kJ mol−1 at the

CBS-QB3 level of theory, so we believe that dissociation of HOCH(O)CHOis essentially instant,

even at 298 K. For similar reactions of HOCH2OO, CH3C(O)OO, and CH3C(O)CH2OO with HO2,

branching fractionskOH/ktotal of 40%(±25%) have been reported.[54,55,56] In the present work, we

have assumed a branching fraction for HOCH(OO)CHO + HO2 of 50%, together with an overall rate

constant ofk13+14 = 6.0·1012 cm3 mol−1 s−1, which is typical for this type of reaction.

Modeling of the experimental data from Niki et al. with the detailed reaction mechanism of the

present work have been performed. Appropriate reactions of chlorine species have been added and

the photolysis rate for Cl2 was fitted such that the calculated concentration of HCl after 60 or 120 s

matched reasonably the measured values. The results are shown (in parenthesis) in Table 8.5. Even

though we employ a rate constant fork7, which is about two orders of magnitude lower than derived

by Niki et al., the agreement between measured and predicted concentrations is acceptable. In support

of the present interpretation of the reaction system, Niki et al. reported thedetection of a transient

component, which they believed to be HOCH(OOH)CHO.

Table 8.5: Cl-atom initiated reaction in the OCHCHO/H2/O2 system. Photolysis of a mixture of Cl2

(100 ppm), OCHCHO (8-22 ppm), O2 (70 torr), and H2 (630 torr). Experimental data are
from Niki et al.[41] and modeling results (shown in parenthesis) from the present work.

[OCHCHO]0 (ppm) 8.5 9.0 22.4
Irradiation time (s) 60 60 120
−∆[OCHCHO] (ppm) 0.68 (0.83) 0.71 (0.88) 2.14 (3.5)
[HCl] (ppm) 13.4 (12.6) 12.3 (12.6) 22.6 (21.4)
[HOCHO] (ppm) 0.34 (0.29) 0.40 (0.31) 1.9 (1.2)
[CO] (ppm) 0.90 (0.70) 1.05 (0.74) 4.55 (3.0)
[CO2] (ppm) 0.22 (0.10) 0.17 (0.10) 0.53 (0.42)
[H2O2] (ppm) 4.9 (6.0) 5.4 (6.0) 10.5 (9.6)
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8.7 Supporting Information

CHEMKIN input file

This is the CHEMKIN input file used for modeling glyoxal thermal decomposition and oxidation at high and intermediate
temperatures.
Be aware of the limited pressure and temperature validity ranges of some of the listed rate expressions. For example, the
parametrization of thermal decomposition reactions of glyoxal is valid over the temperature range 800 K < T < 2500 K
only; for modeling attempts at significantly lower temperatures (and hencevery slow decomposition) this reactions should
be commented out.
Most pressure dependent reaction are reported in terms of the PLOG formalism (commented out). Newer CHEMKIN
versions automatically interpolate the appropriate rate constant values at the desired pressure, see X. Gou, J.A. Miller, W.
Sun and Y. Ju (2001)
http://engine.princeton.edu/download/PLOG-documents/PLOG-software_distribution.pdf
Activation energies are specified in cal/mol units, pressures in atm.

! ********************* Glyoxal mechanism C/H/O/N *********** **********

! REFERENCES:
! [Anglada04] Anglada, J. Am. Chem. Soc. 126:9809 (2004).
! [BacMac05] Bacskay and Mackie, J. Phys. Chem. A 109:2019 (2005).
! [Baulch92] Baulch et al., J. Phys. Chem. Ref. Data 21:403 (1992).
! [Baulch05] Baulch et al., J. Phys. Chem. Ref. Data 34:757 (2005).
! [Burcat] Burcat, Ruscic, Third Millenium Ideal gas and Condensed Physe Thermochemical
! Database for Combustion with Updates from Active Thermochamical Tables,
! Report TAE960, 16. Sept. 2005
! [Burke12] Burke et al., Int. J. Chem. Kinet. 44:444 (2012).
! [Burke13] Burke et al., Proc. Combust. Inst. 34:547 (2013).
! [Chang07] Chang et al., J. Phys. Chem. A 111:6789 (2007).
! [ColFri06] Colberg and Friedrichs, J. Phys. Chem. A 110:160 (2006).
! [daSilva10] da Silva, Phys. Chem. Chem. Phys. 12:6698 (2010).
! [daSilva11] da Silva, J. Phys. Chem. A 115:191 (2011).
! [Eiteneer98] Eiteneer et al., J. Phys. Chem. A. 102:5196 (1998).
! [FabJan05] Fabian and Janoschek, J. Mol. Struct.: THEOCHEM 713:227 (2005).
! [Feierab08] Feierabend et al., J. Phys. Chem. A 112:73 (2008).
! [Fernandez08] Fernandes et al., Phys. Chem. Chem. Phys. 10:4313 (2008).
! [FerVar02] Fernandez-Ramos and Varandas, J. Phys. Chem. A106:4077 (2002).
! [Friedr02] Friedrichs et al., Int. J. Chem. Kinet. 34:374 (2002).
! [Friedr02b] Friedrichs et al., Phys. Chem. Chem. Phys. 4:5778 (2002).
! [Friedr04] Friedrichs et al., Int. J. Chem. Kinet. 36:157 (2004).
! [Friedr08] Friedrichs et al., Phys. Chem. Chem. Phys. 10:6520 (2008).
! [GlaMar09] Glarborg and Marshall, Chem. Phys. Lett. 475:40 (2009).
! [Golden98] Golden et al., J. Phys. Chem. A 102:8598 (1998).
! [Hong10] Hong et al., J. Phys. Chem. A 114:5718 (2010).
! [Hong11] Hong et al., Proc. Comb. Inst. 33:309 (2011).
! [Irdam93] Irdam et al., Int J Chem Kin 25:285 (1993).
! [Li04] Li et al., Int. J. Chem. Kinet. 36:566 (2004).
! [MarGla15] Marshall and Glarbog, Proc. Combust. Inst. 35:153 (2015).
! [Michael00] Michael et al., Proc. Comb. Inst. 28:1471 (2000).
! [Michael02] Michael et al., J. Phys. Chem. A 106:5297 (2002).
! [MicSut88] Michael and Sutherland, J. Phys. Chem. 92:3853 (1988).
! [Mueller99] Mueller et al., Int. J. Chem. Kinetic. 31:113 (1999).
! [RasGla08] Rasmussen and Glarborg, Ind. Eng. Chem. Res. 47:6579 (2008) (supp. info).
! [Ruscic06] Ruscic et al., J. Phys. Chem. A 110:6592 (2006).
! [SanKra12] Sangwan and Krasnoperov, J. Phys. Chem. A 116: 11817 (2012).
! [Senosiain05] Senosiain et al., Proc. Combust. Inst. 30:945 (2005).
! [SriMic06] Srinivasan and Michael, Int. J. Chem. Kinet. 38:211 (2006).
! [Troe00] Troe, Proc. Comb. Inst. 28:1463 (2000).
! [Troe11] Troe, Combust. Flame 158:594 (2011).
! [TsaHam86] Tsang and Hampson, J. Phys. Chem. Ref. Data, 15:1087 (1986).

136



8. Glyoxal Oxidation Mechanism:Implications for the reactions HCO + O2

! [Vasudevan05] Vasudevan et al., Int. J. Chem. Kinet. 37:98 (2005).
! [You07] You et al., J. Phys. Chem. A 111:4031 (2007).
! [Yu07] Yu et al., J. Chem. Phys. 127:094302 (2007).
! [Yu08] Yu et al., J. Chem. Phys. 129:244315 (2008).
! [YuFra08] Yu and Francisco, J. Chem. Phys. 128:244315 (2008).
! [YuMuc06] Yu and Muckerman, J. Phys. Chem. A 110:5312 (2006).
! [Zhou12] Zhou et al., J. Phys. Chem. A 116:2089 (2012).

ELEMENTS
O H C CL N AR
END
SPECIES
OCHCHO OCHCO HOCHO HOCO OCHO HOCH(OO)CHO
HOCH(OOH)CHO CH2O HCO
H O OH H2 O2 HO2 H2O H2O2
CO CO2 AR N2
END

THERMO ALL
300.00 1000.00 5000.00

OCHCO C 2O 2H 1 G 350.000 2900.000 1000.00 1 ! this work
0.49499388E+01 0.10163032E-01-0.55772010E-05 0.14572026E-08-0.14743475E-12 2

-0.96593808E+04 0.25798798E+01 0.33940561E+01 0.14362856E-01-0.88413766E-05 3
0.16096129E-08 0.32038938E-12-0.92479810E+04 0.10592041E+02 4

HOCH(OO)CHO dummy C 2H 3O 4 0G 300.000 5000.000 1394.000 1 ! dummy
0.15404761E+01 0.31924787E-01-0.29631306E-04 0.13499252E-07-0.23583024E-11 2
0.17876151E+05 0.17757938E+02 0.15404761E+01 0.31924787E-01-0.29631306E-04 3
0.13499252E-07-0.23583024E-11 0.17876151E+05 0.17757938E+02 4

HOCH(OOH)CHO dummy C 2H 3O 4 0G 300.000 5000.000 1394.000 1 ! dummy
0.15404761E+01 0.31924787E-01-0.29631306E-04 0.13499252E-07-0.23583024E-11 2
0.17876151E+05 0.17757938E+02 0.15404761E+01 0.31924787E-01-0.29631306E-04 3
0.13499252E-07-0.23583024E-11 0.17876151E+05 0.17757938E+02 4

HOCHO FORMIC ACID L 8/88H 2C 1O 2 0G 200.000 6000.000 1000. 1 ! [Burcat]
0.46138316E+01 0.64496364E-02-0.22908251E-05 0.36716047E-09-0.21873675E-13 2

-0.47514850E+05 0.84788383E+00 0.38983616E+01-0.35587795E-02 0.35520538E-04 3
-0.43849959E-07 0.17107769E-10-0.46770609E+05 0.73495397E+01-0.45531246E+05 4
OCHO 1104 C 1H 1N 0O 2G 298.150 3000.000 1000.00 1 ! [FabJan05]

4.41052368E+00 7.50888367E-03-4.25889679E-06 1.12761124E-09-1.14144138E-13 2
-1.70297531E+04 3.43148293E+00 3.62860375E+00 8.12496033E-03-1.41560718E-06 3
-3.27951824E-09 1.61553900E-12-1.67477889E+04 7.83169538E+00 4
AR BUR0302 L 6/88AR 1 0 0 0G 200.00 6000.00 1000. 1

0.25000000E+01 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2
-0.74537500E+03 0.43796749E+01 0.25000000E+01 0.00000000E+00 0.00000000E+00 3

0.00000000E+00 0.00000000E+00-0.74537500E+03 0.43796749E+01 0.00000000E+00 4
CH2O L 8/88H 2C 1O 1 0G 200.00 6000.00 1000. 1 ! [Burcat]

0.31694807E+01 0.61932742E-02-0.22505981E-05 0.36598245E-09-0.22015410E-13 2 ! H298 =-25.95 kcal/mol
-0.14478425E+05 0.60423533E+01 0.47937036E+01-0.99081518E-02 0.37321459E-04 3 ! S298 = 52.28 cal/mol/K
-0.37927902E-07 0.13177015E-10-0.14308955E+05 0.60288702E+00-0.13059098E+05 4
CO RUS 79C 1O 1 0 0G 200.00 6000.00 1000. 1 ! [Burcat]

0.30484859E+01 0.13517281E-02-0.48579405E-06 0.78853644E-10-0.46980746E-14 2 ! H298 =-26.41 kcal/mol
-0.14266117E+05 0.60170977E+01 0.35795335E+01-0.61035369E-03 0.10168143E-05 3 ! S298 = 47.24 cal/mol/K

0.90700586E-09-0.90442449E-12-0.14344086E+05 0.35084093E+01-0.13293628E+05 4
CO2 L 7/88C 1O 2 0 0G 200.00 6000.00 1000. 1 ! [Burcat]

0.46365111E+01 0.27414569E-02-0.99589759E-06 0.16038666E-09-0.91619857E-14 2 ! H298 =-94.04 kcal/mol
-0.49024904E+05-0.19348955E+01 0.23568130E+01 0.89841299E-02-0.71220632E-05 3 ! S298 = 51.09 cal/mol/K

0.24573008E-08-0.14288548E-12-0.48371971E+05 0.99009035E+01-0.47328105E+05 4
H L 6/94H 1 0 0 0G 200.00 6000.00 1000. 1 ! [Burcat]

0.25000000E+01 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2 ! H298 = 52.10 kcal/mol
0.25473660E+05-0.44668285E+00 0.25000000E+01 0.00000000E+00 0.00000000E+00 3 ! S298 = 27.42 cal/mol/K
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0.00000000E+00 0.00000000E+00 0.25473660E+05-0.44668285E+00 0.26219035E+05 4
HCO T 5/03C 1H 1O 1 0G 200.00 6000.00 1000. 1 ! [Burcat]

3.92001542E+00 2.52279324E-03-6.71004164E-07 1.05615948E-10-7.43798261E-15 2 ! H298 = 42.296 kJ/mol
3.65008461E+03 3.58077496E+00 4.23754610E+00-3.32075257E-03 1.40030264E-05 3 ! S298 = 53.60 cal/mol/K

-1.34239995E-08 4.37416208E-12 3.86906718E+03 3.30835309E+00 4
HOCO FAB/JAN05C 1O 2H 1 0G 200.00 3000.00 998.402 1 ! [FabJan05]

4.63988707E+00 5.66362726E-03-2.67855311E-06 6.17048884E-10-5.60953531E-14 2 ! H298 =-44.33 kcal/mol
-2.40527335E+04 1.90175132E+00 2.82191157E+00 9.66218175E-03-2.78560177E-06 3 ! S298 = 60.07 cal/mol/K, Cp
-4.12692493E-09 2.61472072E-12-2.35465218E+04 1.14284719E+01 4 ! (polyfit [RasGla08])
HO2 L 5/89H 1O 2 0 0G 200.00 6000.00 1000. 1 ! [ATcT(Ruscic06)]

4.17226590E+00 1.88120980E-03-3.46292970E-07 1.94685160E-11 1.76091530E-16 2 !H298 = 12.296 kJ/mol
3.02010736E+01 2.95697380E+00 4.30178800E+00-4.74902010E-03 2.11579530E-05 3 ! [Burcat]

-2.42759610E-08 9.29206700E-12 2.63190983E+02 3.71587740E+00 4 ! S298 = 54.75 cal/mol/K, Cp
H2 REF ELEMENT RUS 78H 2 0 0 0G 200.00 6000.00 1000. 1 ! [Burcat]

0.29328305E+01 0.82659802E-03-0.14640057E-06 0.15409851E-10-0.68879615E-15 2 ! H298 = 0
-0.81305582E+03-0.10243164E+01 0.23443029E+01 0.79804248E-02-0.19477917E-04 3 ! S298 = 31.23 cal/mol/K

0.20156967E-07-0.73760289E-11-0.91792413E+03 0.68300218E+00 0.00000000E+00 4
H2O L 5/89H 2O 1 0 0G 200.00 6000.00 1000. 1 ! [Burcat]

0.26770389E+01 0.29731816E-02-0.77376889E-06 0.94433514E-10-0.42689991E-14 2 ! H298 =-57.79 kcal/mol
-0.29885894E+05 0.68825500E+01 0.41986352E+01-0.20364017E-02 0.65203416E-05 3 ! S298 = 45.13 cal/mol/K
-0.54879269E-08 0.17719680E-11-0.30293726E+05-0.84900901E+00-0.29084817E+05 4
H2O2 T 8/03H 2O 2 0 0G 200.00 6000.00 1000. 1 ! [ATcT(RUS/PIN06)]

4.57977305E+00 4.05326003E-03-1.29844730E-06 1.98211400E-10-1.13968792E-14 2 ! H298 =-135.77 kJ/mol
-1.79847939E+04 6.64969660E-01 4.31515149E+00-8.47390622E-04 1.76404323E-05 3 ! [Burcat]
-2.26762944E-08 9.08950158E-12-1.76843601E+04 3.27373216E+00 4 ! S298 = 56.05 cal/mol/K, Cp
N2 BUR0302 G 8/02N 2. 0. 0. 0.G 200.00 6000.00 1000. 1

2.95257637E+00 1.39690040E-03-4.92631603E-07 7.86010195E-11-4.60755204E-15 2
-9.23948688E+02 5.87188762E+00 3.53100528E+00-1.23660988E-04-5.02999433E-07 3

2.43530612E-09-1.40881235E-12-1.04697628E+03 2.96747038E+00 0.00000000E+00 4
O L 1/90O 1 0 0 0G 200.00 6000.00 1000. 1 ! [Burcat]

2.54363697E+00-2.73162486E-05-4.19029520E-09 4.95481845E-12-4.79553694E-16 2 ! H298 = 59.55 kcal/mol
2.92260120E+04 4.92229457E+00 3.16826710E+00-3.27931884E-03 6.64306396E-06 3 ! S298 = 38.49 cal/mol/K

-6.12806624E-09 2.11265971E-12 2.91222592E+04 2.05193346E+00 2.99687009E+04 4
OCHCHO Glyoxal g 3/02C 2.H 2.O 2. 0.G 200.00 6000.00 1000. 1! [Burcat]

8.72506895E+00 6.33096819E-03-2.35574814E-06 3.89782853E-10-2.37486912E-14 2 ! drawn 6/2009
-2.91024131E+04-2.03903909E+01 4.68412461E+00 4.78012819E-04 4.26390768E-05 3
-5.79018239E-08 2.31669328E-11-2.71985007E+04 4.51187184E+00-2.55074562E+04 4
O2 REF ELEMENT RUS 89O 2 0 0 0G 200.00 6000.00 1000. 1 ! [Burcat]

3.66096083E+00 6.56365523E-04-1.41149485E-07 2.05797658E-11-1.29913248E-15 2 ! H298 = 0
-1.21597725E+03 3.41536184E+00 3.78245636E+00-2.99673415E-03 9.84730200E-06 3 ! S298 = 49.03 cal/mol/K
-9.68129508E-09 3.24372836E-12-1.06394356E+03 3.65767573E+00 0.00000000E+00 4
OH IU3/03O 1H 1 0 0G 200.00 6000.00 1000. 1 ! [ATcT(RUS/PIN06)]
2.83853033E+00 1.10741289E-03-2.94000209E-07 4.20698729E-11-2.42289890E-15 2 ! H298 = 37.344 kJ/mol
3.70056220E+03 5.84513094E+00 3.99198424E+00-2.40106655E-03 4.61664033E-06 3 ! [Burcat]
-3.87916306E-09 1.36319502E-12 3.37165248E+03-1.03814059E-01 4 ! S298 = 43.91 cal/mol/K, Cp
END

REACTIONS
! ************************************************** ***********************
! H2/O2 subset *
! ************************************************** ***********************
H+O2=O+OH 1.0E14 0.000 15286 ! [Hong11]
O+H2=OH+H 3.8E12 0.000 7948 ! [Baulch05]
DUPLICATE
O+H2=OH+H 8.8E14 0.000 19175 ! [Baulch05]
DUPLICATE
OH+H2=H+H2O 2.2E08 1.510 3430 ! [MicSut88]
OH+OH=O+H2O 1.4E07 1.689 -1167 ! [SanKra12]
DUPLICATE
OH+OH=O+H2O -2.7E10 0.567 0 ! [SanKra12]
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DUPLICATE
H2+M=H+H+M 4.6E19 -1.400 104380! [TsaHam86]
H2/2.5/ H2O/12/ CO/1.9/ CO2/3.8/ AR/0.0/
H2+AR=H+H+AR 5.8E18 -1.100 104380! [TsaHam86]
H+O+M=OH+M 4.7E18 -1.000 0
H2/2.5/ H2O/12/ AR/0.75/ CO/1.9/ CO2/3.8/ ! [TsaHam86]
O+O+M=O2+M 1.9E13 0.000 -1788 ! [TsaHam86]
H2/2.5/ H2O/12/ AR/0.0/ CO/1.9/ CO2/3.8/
H2O+M = H+OH+M 6.1E27 -3.322 120790! [SriMic06]
H2/3.0/ H2O/0.0/ N2/2.0/ O2/1.5/ CO/1.9/ CO2/3.8/ ! [Michael02][Li04]
H2O+H2O = H+OH+H2O 1.0E26 -2.440 120180! [SriMic06]
!============================================================
! MAIN BATH GAS IS N2 (comment this reaction otherwise)
!H+O2(+M)=HO2(+M) 4.7E12 0.440 0 !
! LOW/6.366E+20 -1.72 5.248E+02/
! TROE/0.5 1E-30 1E+30/
! H2/2.0/ H2O/14/ O2/0.78/ CO/1.9/ CO2/3.8/ AR/0.67/
!============================================================
! MAIN BATH GAS IS AR (comment this reaction otherwise)
H+O2(+M)=HO2(+M) 4.7E12 0.440 0 !
LOW/9.042E+19 -1.50 4.922E+02/
TROE/0.5 1E-30 1E+30/
H2/3.0/ H2O/21/ O2/1.1/ CO/2.7/ CO2/5.4/ N2/1.5/
!============================================================
! High-pressure limit from [Troe00]
! Low-pressure limit from [Michael02]
! Centering factors from [Fernandez08]
HO2+H=H2+O2 2.8E06 2.090 -1451 ! [Michael00], scaled by 0.75 [Burke12]
HO2+H=OH+OH 7.1E13 0.000 295 ! [Mueller99]
HO2+H=H2O+O 1.4E12 0.000 0 ! [Baulch05]
HO2+O=O2+OH 2.9E10 1.000 -724 ! [FerVar02], scaled by 0.60 [Burke12]
HO2+OH = H2O+O2 1.9E20 -2.490 584 ! [Burke13]
DUPLICATE
HO2+OH = H2O+O2 1.2E09 1.240 -1310 ! [Burke13]
DUPLICATE !
HO2+HO2=H2O2+O2 1.2E09 0.7712 -1825 ! [Zhou12]
DUPLICATE
HO2+HO2=H2O2+O2 1.3E12 0.2950 7397 ! [Zhou12]
DUPLICATE
H2O2(+M) = OH+OH(+M) 2.0E+12 0.9000 48749 ! [Troe11]
LOW/2.49E+24 -2.30 4.8749E+04/
TROE/0.43 1E-30 1E+30/
AR/1.0/ H2O/7.5/ CO2/1.6/ N2/1.5/ O2/1.2/ H2O2/7.7/ H2/3.7/ CO/2.8/
! Efficiencies for H2 and CO from [Li04]
H2O2+H=H2O+OH 2.4E13 0.000 3970 ! [TsaHam86]
H2O2+H=HO2+H2 4.8E13 0.000 7950 ! [TsaHam86]
H2O2+O=HO2+OH 9.6E06 2.000 3970 ! [TsaHam86]
H2O2+OH=HO2+H2O 1.7E12 0.000 318 ! [Hong10]
DUPLICATE
H2O2+OH=HO2+H2O 7.6E13 0.000 7270 ! [Hong10]
DUPLICATE
! ************************************************** ***************************
! CO/CO2 subset *
! ************************************************** ***************************
CO+O(+M)=CO2(+M) 1.8E10 0.000 2384 ! [Mueller 99]
LOW /1.35E24 -2.79 4191/
TROE /1.0 1E-30 1E30 1E30/
H2/2.5/ H2O/12/ CO/1.9/ CO2/3.8/
CO+OH=CO2+H 8.7E05 1.730 -685 ! 1000Torr [Senosiain05]
! PLOG/ 0.01315 2.1E05 1.900 -1064/
! PLOG/ 0.1315 2.5E05 1.880 -1043/
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! PLOG/ 1.315 8.7E05 1.730 -685/
! PLOG/ 13.158 6.8E06 1.480 48/
! PLOG/ 131.58 2.3E07 1.350 974/
CO+OH=HOCO 2.0E20 -3.500 1309 ! 1000Torr [Senosiain05]
! PLOG/ 0.013158 1.7E15 -2.680 859/
! PLOG/ 0.13158 5.9E18 -3.350 887/
! PLOG/ 1.3158 2.6E20 -3.500 1309/
! PLOG/ 13.158 7.1E20 -3.320 1763/
! PLOG/ 131.58 1.1E20 -2.780 2056/
CO+HO2=CO2+OH 1.6E05 2.180 17943 ! [You07]
CO+O2=CO2+O 4.7E12 0.000 60500 ! [BacMac05]
CO+H2O2=HOCO+OH 3.6E04 2.500 28660 ! [GlaMar09]
HOCO(+M)=CO2+H(+M) 8.2E11 0.413 35335 ! [Golden98]
LOW / 6.0E26 -3.148 37116 /
TROE / 0.39 1.0E-30 1.0E30 / ! Fc = 0.39
HOCO+H=CO2+H2 3.1E17 -1.3475555 ! [YuFra08][MarGla15], 300-1000K fit
HOCO+H=CO+H2O 6.0E15 -0.525 2125 ! [YuFra08][MarGla15], 300-1000K fit
HOCO+O=CO2+OH 9.0E12 0.000 0 ! [Yu07]
HOCO+OH=CO2+H2O 4.6E12 0.000 -89 ! [Yu07]
DUPLICATE
HOCO+OH=CO2+H2O 9.5E06 2.000 -89 ! [Yu07]
DUPLICATE
HOCO+HO2=CO2+H2O2 4.0E13 0.000 0 ! [Yu08]
HOCO+O2=CO2+HO2 4.0E09 1.000 0 ! [YuMuc06][MarGla15]
! ************************************************** ****************************
! CH2O subset *
! ************************************************** ****************************
CH2O=HCO+H 5.62E35 -6.87 97877 ! 1.0bar, 1400K - 3000K, [Friedr04] refitted
!PLOG/ 9.869E-4 1.78E41 -9.18 109510/
!PLOG/ 9.869E-3 4.39E38 -8.20 105298/
!PLOG/ 9.869E-2 2.44E35 -7.06 100144/
!PLOG/ 9.869E-1 5.62E35 -6.87 97877/
!PLOG/ 9.869E-0 1.12E38 -7.19 96816/
!PLOG/ 9.869E+1 1.33E40 -7.45 99278/
CH2O=H2+CO 2.28E42 -8.74 95817 ! 1.0bar, 1400K - 3000K, [Friedr04] refitted
!PLOG/ 9.869E-4 1 84E42 -9.58 96387/
!PLOG/ 9.869E-3 3.89E41 -9.10 94928/
!PLOG/ 9.869E-2 3.00E41 -8.78 94716/
!PLOG/ 9.869E-1 2.28E42 -8.74 95817/
!PLOG/ 9.869E-0 9.16E43 -8.99 97781/
!PLOG/ 9.869E+1 5.33E42 -8.50 98240/
CH2O+H=HCO+H2 5.7E07 1.900 2747 ! [Irdam93] [Friedr02]
CH2O+O=HCO+OH 4.2E11 0.570 2760 ! [Baulch05]
CH2O+O2=HCO+HO2 2.4E05 2.500 36461 ! [Baulch05]
CH2O+OH=HCO+H2O 7.8E07 1.630 -1055 ! [Vasudevan05]
CH2O+HO2=HCO+H2O2 4.1E04 2.500 10206 ! [Eiteneer98]
HCO+M=H+CO+M 4.8E17 -1.200 17720 ! [Friedr02b]
HCO+H=CO+H2 1.1E14 0.000 0 ! [Friedr02b]
HCO+O=CO+OH 3.0E13 0.000 0 ! [Baulch02]
HCO+O=CO2+H 3.0E13 0.000 0 ! [Baulch02]
HCO+OH=CO+H2O 1.1E14 0.000 0 ! [Baulch05]
HCO+O2=CO+HO2 6.92E06 1.900 -1370 ! this work, 295-1705K, <5bar
HCO+HO2=CO2+OH+H 3.0E13 0.000 0 ! [TsaHam86]
HCO+HCO=CO+CH2O 2.7E13 0.000 0 ! [Friedr02b]
! ************************************************** ***************************
! OCHCHO subset *
! ************************************************** ***************************
OCHCHO=CH2O+CO 8.04E55 -12.6 76713 ! 1.0bar, 800K-2500K, [Friedr08] refitted
DUPLICATE
!PLOG/ 0.009869 4.17E53 -12.5 70845/
!PLOG/ 0.04935 5.12E54 -12.6 73012/
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!PLOG/ 0.09869 1.03E55 -12.6 73877/
!PLOG/ 0.4935 4.50E55 -12.6 75869/
!PLOG/ 0.9869 8.04E55 -12.6 76713/
!PLOG/ 4.935 1.05E55 -12.2 77643/
!PLOG/ 9.869 5.48E56 -12.6 79964/
OCHCHO=CO+CO+H2 6.12E57 -13.1 80147 ! 1.0bar, 800K-2500K,[Friedr08] refitted
!PLOG/ 0.009869 6.02E51 -12.1 71854/
!PLOG/ 0.04935 1.43E54 -12.5 74751/
!PLOG/ 0.09869 1.78E55 -12.7 76137/
!PLOG/ 0.4935 1.31E57 -13.0 78972/
!PLOG/ 0.9869 6.12E57 -13.1 80147/
!PLOG/ 4.935 5.79E57 -12.9 81871/
!PLOG/ 9.869 3.42E59 -13.3 84294/
OCHCHO=CH2O+CO 2.62E57 -13.2 79754 ! 1.0bar, 800K-2500K, [Friedr08] refitted
DUPLICATE ! CH2O = HCOH, see text
!PLOG/ 0.009869 8.36E52 -12.6 72393/
!PLOG/ 0.04935 8.25E54 -12.9 75113/
!PLOG/ 0.09869 4.37E55 -13.0 76257/
!PLOG/ 0.4935 1.32E57 -13.2 78851/
!PLOG/ 0.9869 2.62E57 -13.2 79754/
!PLOG/ 4.935 1.00E57 -12.9 81161/
!PLOG/ 9.869 5.69E59 -13.3 83539/
OCHCHO=HCO+HCO 1.89E57 -12.8 84321 ! 1.0bar, 800K-2500K, [Friedr08] refitted
!PLOG/ 0.009869 1.03E42 -9.7 73534/
!PLOG/ 0.04935 6.02E48 -11.1 77462/
!PLOG/ 0.09869 1.65E51 -11.6 79111/
!PLOG/ 0.4935 5.33E55 -12.5 82774/
!PLOG/ 0.9869 1.89E57 -12.8 84321/
!PLOG/ 4.935 2.22E59 -13.1 87258/
!PLOG/ 9.869 2.99E60 -13.3 88993/
OCHCHO+H=OCHCO+H2 5.4E13 0.000 4302 ! [ColFri06]
OCHCHO+O=OCHCO+OH 4.2E11 0.570 2760 ! est., 2k(CH2O+O)
OCHCHO+OH=OCHCO+H2O 4.0E06 2.000 -1630 ! [Feierab08]
OCHCHO+HO2=>HOCH(OO)CHO 1.3E31 -7.532 1440 ! 1.0atm [daSilva11]
HOCH(OO)CHO => OCHCHO+HO2 1.9E29 -5.781 15790 ! 1.0 atm [daSilva11]
HOCH(OO)CHO => HOCHO+CO+OH 1.6E10 0.051 15190 ! 1.0 atm [daSilva11]
!HOCH(OO)CHO+HO2=>HOCHO+HCO+O2+OH 3.0E12 0.000 0 ! est., 298K, see text
!HOCH(OO)CHO+HO2=>HOCH(OOH)CHO+O2 3.0E12 0.000 0 ! est., 298K, see text
OCHCHO+HO2=OCHCO+H2O2 8.2E04 2.500 10206 ! est., 2k(CH2O+HO2)
OCHCHO+O2=OCHCO+HO2 4.8E05 2.500 36461 ! est., 2k(CH2O+O2)
OCHCHO+HO2=HOCHO+CO+OH 3.3E-4 3.995 300 ! 1.0 atm [daSilva11]
OCHCO=HCO+CO 4.1E14 0.000 8765 ! 1.0atm [daSilva10]
! PLOG/ 0.01 3.8E12 0.000 8610/
! PLOG/ 0.1 3.8E13 0.000 8665/
! PLOG/ 1.0 4.1E14 0.000 8765/
! kinf 1.1E14 0.133 10140 !
OCHCO+O2=CO+CO2+OH 3.3E14 0.000 2075 ! 1.0atm [daSilva10]
! PLOG/ 0.01 1.6E14 0.000 1540/
! PLOG/ 0.1 1.1E14 0.000 1300/
! PLOG/ 1.0 3.3E14 0.000 2075/
! kinf 3.4E04 1.929 344
HOCHO(+M)=CO+H2O(+M) 7.5E14 0.000 68710 ! [Chang07]
LOW /4.1E15 0 52980/
HOCHO(+M)=CO2+H2(+M) 4.5E13 0.000 68240 ! [Chang07]
LOW /1.7E15 0 51110/
HOCHO+H=HOCO+H2 2.3E02 3.272 4858 ! [MarGla15]
HOCHO+H=OCHO+H2 4.2E05 2.255 14091 ! [MarGla15]
HOCHO+O=HOCO+OH 5.1E01 3.422 4216 ! [MarGla15]
HOCHO+O=OCHO+OH 1.7E05 2.103 9880 ! [MarGla15]
HOCHO+OH=HOCO+H2O 7.8E-6 5.570 -2365 ! [Anglada04][MarGla15]
HOCHO+OH=OCHO+H2O 4.9E-5 4.910 -5067 ! [Anglada04][MarGla15]
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HOCHO+HO2=HOCO+H2O2 4.7E-1 3.975 16787 ! [MarGla15]
HOCHO+HO2=OCHO+H2O2 3.9E01 3.080 25206 ! [MarGla15]
HOCO+HO2=HOCHO+O2 4.0E11 0.000 0 ! [Yu08]
HOCHO+O2=OCHO+HO2 3.0E13 0.000 63000 ! [MarGla15]
OCHO=CO2+H 1.0E10 0.000 0 ! [MarGla15]
OCHO+O2=CO2+HO2 5.0E13 0.000 0 ! [MarGla15]
END
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9 Summary and outlook

High-temperature rate constants of five bimolecular reactions of NCN, HNO,and HCO have been

measured at high temperatures. These molecules are short-lived flame intermediates that play impor-

tant roles for NOx pollutant formation (NCN and HNO) and the overall oxidation rate (HCO) in flames.

Combustion-relevant experimental conditions have been generated by theshock wave method.

NCN reactions: Narrow-bandwidth UV laser difference absorption spectroscopy hasbeen applied

for the detection of NCN concentration-time profiles. The measurements havebeen performed at a

transition atν̃ = 30383.11 cm−1 (λ ≈ 329 nm) corresponding to a superposition of the3Π1 subband

of theÃ3Πu(000)− X̃3Σg(000) transition and the Q1 band head of the vibrationally hot Renner-Teller

split vibronic 3Σ+(010)−3 Π(010) transition. At high temperatures, the (010) vibrational state is

significantly populated resulting in a comparably high absorption cross section suitable for a sensitive

detection scheme.

For the first time, direct rate constant measurements have been performedfor the reactions NCN + H,

NCN + H2 and NCN + O2 over a wide temperature and pressure range (see Fig. 9.1). NCN radicals

were generated from the thermal decomposition of NCN3 in shock tube experiments. The highly

explosive and very toxic NCN3 has been synthesized in high purity and storage mixtures of NCN3

in argon were used within a few days since a slow decomposition/polymerizationtakes place. The

pyrolysis of ethyl iodide (C2H5I) was used as H atom source for the investigation of the reaction NCN

+ H. The rate constant of this reaction has been determined between temperatures 962 K<T < 2425 K.

The obtained rate constant can be best represented by the combination oftwo Arrhenius expressions,

corresponding to two reaction channels yielding either CH + N2 or HCN + N. By a detailed analysis of

the data in comparison with literature data, the temperature dependent branching ratio for the reaction

NCN + H as well as a consistent value for the NCN enthalpy of formation∆rH◦298K= 450 kJ/mol were

determined.

The rate constant of the reaction NCN + H2, which has so far been neglected in detailed reaction mech-

anisms for NOx formation, has been measured under accurately pseudo first-order reaction conditions.

From different possible product channels for this reaction, the obtained Arrhenius activation energy

as well as mechanistic considerations are most consistent with a direct abstraction channel yielding

the products HNCN + H. Further, in cooperation with N. Lamoureux and P. Desgroux (Université

Lille 1, France), the reaction NCN + H2 and additionally secondary reactions have been implemented

143



9. Summary and outlook

into the detailed GDFkin3.0_NCN mechanism for the simulation of low pressure CH4/O2/N2-flames.

Significant differences have been observed for the overall NO yieldswith the updated mechanism at

two different flame conditions.

For NCN + O2, high-temperature rate expressions used in flame modeling mechanisms differby five

orders of magnitude (atT = 1500 K). Depending on the assumed rate constant value, this reaction

was reported to be either very important or dispensable for flame modeling. To resolve the role of the

reaction NCN + O2→ NCO + NO for prompt-NO modeling in flames, the rate expression was deter-

mined experimentally at temperatures between 1577 K≤ T ≤ 2492 K. The measurements confirmed

that the reaction is rather slow and hence does play a minor role for NCN modeling in flames.

The measured rate constants for bimolecular NCN reactions of this work (red curves) are displayed

in the Arrhenius plot in Fig. 9.1 together with previously determined rate constant data (black curves)

from the Kiel shock tube group.

0.4 0.6 0.8 1.0 1.2 1.4
108

109

1010

1011

1012

1013

1014

3000 2000 1000

NCN + M ® C + N
2
 + M

NCN + O
2  ® NO + NCO

NCN+ H
2   ® HNCN + H

NCN + NO
2   ® NCNO + NO

NCN + NO  ® N
2O + CN

NCN + NCN ® 2 CN + N
2

NCN + H ® productsNCN + O  CN + NO

k 
/ c

m
3 m

ol
1 s

1  

1000 K / T

T / K

 

Figure 9.1: Arrhenius plot of bimolecular NCN rate constants measured with the Kiel shock tube setup.
Rate constants measured in this work are labled with red color.

HNO detection and the reaction HNO + O2: HNO has been measured for the first time behind

shock waves using the very sensitive absorption based FM spectroscopy. HNO concentrations of about

200 ppm were generated from the 193 nm UV photolysis of glyoxal/NO mixtures, initially yielding

HCO radicals followed by the reaction HCO + NO→ HNO + CO. HNO FM spectra of thẽA1A′′

- X̃1A′ transition and concentration-time profiles have been detected at three different wavelengths

around 618 and 625 nm. An HNO formation mechanism has been compiled fromavailable literature

data. Further, by monitoring HCO and HNO concentration time profiles at similar reaction conditions,

the temperature dependent HNO absorption cross section has been determined, allowing us to perform

quantitative HNO measurements at high temperatures. Based on this results and by adding specific

amounts of O2 to the reaction mixtures, the reaction HNO + O2 → NO + HO2 has been directly

measured. The obtained rate constant data are about two to three ordersof magnitude higher than
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frequently used literature data.

Glyoxal oxidation and HCO + O2: HCO concentration-time profiles have been measured by FM

spectroscopy. The pyrolysis of glyoxal was used as HCO source. The applied mechanism for the

thermal decomposition was developed from former experiments in our working group. By adding O2
to the glyoxal reaction mixtures, the rate constant of the reaction HCO + O2 → CO + HO2 could

be determined. Moreover, the capability of a detailed glyoxal oxidation mechanism assembled from

available literature data was tested. The outcome of the experiments of this workconcerning the

glyoxal decomposition and the temperature dependentkHCO+O2 values were in very good agreement

with former findings. Together with P. Glarborg (Technical University ofDenmark) and P. Marshall

(University of North Texas) an extensive glyoxal oxidation mechanism was assembled from available

literature data and validated by the shock tube measurements.

Outlook: The established experimental setups for time-resolved measurements of NCNand HNO

concentration profiles behind shock waves should be used to study otherimportant reactions of these

species. For example, experimental rate constant data for the reactions of NCN with the important

flame intermediates OH, CN, C and N atoms are still missing for a complete high temperature NCN

submechanism. Also detection schemes for the possible reaction products ofNCN reactions should be

considered. For example, in order to confirm the formation of HNCN + H from NCN + H2, H-ARAS

(at λ = 121.6 nm) could by applied. Also the reported temperature dependent productbranching

ratio for NCN + H needs to be experimentally verified, for example by the detection of CH (laser

absorption aroundλ = 430 nm) and N atoms (N-ARAS atλ = 119.9 nm). The reactions NCN +

O, NCN + N, NCN + C and NCN + NCN are supposed to form CN radicals; therefore ongoing CN

measurements (M.Sc. thesis of S. Hesse) by means of FM spectroscopy are important to verify these

assumed reaction products.

The overall aim of this work was to contribute to the implementation of a complete NCNsubmech-

anism into existing combustion mechanisms. Such a submechanism should be based on directly

measured rate constants including branching ratios as well as temperature and pressure dependences.

Continued cooperation with flame modeling groups is important to test and improvethe capability

and reliability of such mechanisms for NOx modeling.

In the case of HNO, a lot of experimental kinetic data at combustion relevanttemperatures are still

missing. Even the rate constants for reactions with common flame intermediates like OH, O and H

atoms are not accurately known. To observe these probably fast reactions, the HNO detection scheme,

established in this work, needs further optimization in order to improve the signal-to-noise ratio. One

possibility is to use an EOM capable of generating higher modulation indicesM, another is to search

for alternative, more direct HNO generation schemes.
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