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Z U S A M M E N F A S S U N G  
 

Die Fitness eines Tieres hängt nicht nur von seinen eigenen Merkmalen ab - praktisch jeder 

Aspekt der Biologie von Tieren wird tiefgreifend von mit ihnen assoziierten Mikroorganismen 

beeinflusst. Mikroorganismen spielen unter anderem eine wichtige Rolle für den 

Gesundheitszustand: sie schützen ihren Wirt vor Infektionen, sind gleichzeitig aber auch 

opportunistische Pathogene. Letzteres tritt vor allem dann auf, wenn die Immunabwehr des 

Wirtstiers durch biotischen oder abiotischen Stress geschwächt ist. Der globale Klimawandel 

kann solche Verschiebungen zu pathogenem Verhalten begünstigen, da steigende 

Temperaturen Stress für den Wirt bedeuten und gleichzeitig die Virulenz von 

Mikroorganismen erhöhen können. Ein Beispiel für solche umweltabhängigen, durch Bakterien 

hervorgerufenen Krankheitsausbrüche ist die Sommersterblichkeit einer Muschel, der 

Pazifischen Auster (Crassostrea gigas). Auch wenn der Klimawandel die Ausbreitung dieser Art 

in Küstenökosystemen weltweit unterstützt hat, breiten sich auf Grund steigender 

Temperaturen gleichzeitig die sommerlichen Austernsterben immer weiter nach Norden aus. 

Hervorgerufen wird das Austernsterben durch kommensalische, opportunistisch pathogene 

Bakterien der Gattung Vibrio, die einen starken Selektionsdruck ausüben und eine schnelle 

Anpassung der Austern an lokale Vibrio-Populationen bewirken. Als eine bedeutende Art in 

der Aquakultur und wird die Pazifische Auster aus kommerziellen Gründen häufig in neue 

Habitate eingeführt, wo sie neuen Mikroorganismen ausgesetzt ist. Wie mit den Austern 

assoziierte Mikroorganismen-Gemeinschaften auf solche neuen biotischen Umgebungen und 

auf Veränderungen der abiotischen Bedingungen reagieren, ist weitgehend unbekannt. Zu 

verstehen, wie Mikroorganismen in Austern durch (a)biotische Störungen beeinflusst werden, 

ist jedoch eine Voraussetzung für die Abschätzung ihrer Auswirkungen auf die Fitness von 

Austern. 

In dieser Arbeit habe ich die Reaktionen von Mikroorganismen der Pazifischen Auster auf 

Stress durch Translokationen (Kapitel I und II), durch starke Temperaturschwankungen und 

durch Infektionen mit externen Pathogenen (Kapitel III) untersucht. Kurzzeit-

Translokationsexperimente (Kapitel I) zeigten die besondere Bedeutung von Mikroorganismen 

in der Hämolymphe für die Fitness von Austern: Eine durch Interaktionen zwischen den 

etablierten und neuen Mikroorganismen hervorgerufene Destabilisierung der 

Bakteriengemeinschaften in der Hämolymphe führt zu potenziell tödlichen Vibrio-Infektionen 

bei umgesiedelten Austern. In ähnlicher Weise kann eine Destabilisierung durch höhere 

Temperaturen (22°C) zu erhöhter Austernsterblichkeit nach einer Infektion bei (Kapitel III) 

beitragen. Insbesondere die Kombination von Temperatur- und Infektionsstress ruft eine starke 
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Störung der Gemeinschaftsstruktur und die Vermehrung opportunistischer Pathogene hervor, 

während in anderen Fällen die Mikrofauna in der Hämolymphe eine hohe Resistenz gegenüber 

externen Vibrio-Infektionen bietet. Neben ihrer Rolle bei der Infektionsabwehr weisen 

kurzfristige Veränderungen der Zusammensetzung der Bakteriengemeinschaften als Reaktion 

auf abiotische Bedingungen (Kapitel II und III) auf die Bedeutung der Mikrofauna in der 

Hämolymphe bei der Akklimatisierung von Austern hin. Abgesehen von der schnellen 

Reaktion auf plötzlich veränderte Umweltbedingungen und dem starken Einfluss von Seewasser 

und nicht-stationären Mikroorganismen auf die Zusammensetzung der 

Bakteriengemeinschaften, werden die etablierten Mikroorganismen nach einer Translokation 

nur allmählich durch neue lokale Arten ersetzt. Auch wenn diese Beständigkeit der Mikrofauna 

Stress durch abrupt auftretende Umweltveränderungen verringern kann, führt sie nach 

unvorhersehbaren Störungen der Bakteriengemeinschaften zu langanhaltenden Effekten, die 

negative Auswirkungen auf die Fitness von Austern haben können. 

Durch die Untersuchung der mit der Pazifischen Auster assoziierten Mikrofauna unter 

kontrollierten und natürlichen Bedingungen über multiple zeitliche und räumliche Skalen 

konnte ich wichtige Faktoren identifizieren, die ihre Zusammensetzung und Stabilität 

bestimmen. Außerdem konnte ich die besondere Rolle in der Hämolymphe lebender 

Mikroorganismen bei Interaktionen mit biotischen und abiotischen Umweltbedingungen 

zeigen. Die Ergebnisse deuten darauf hin, dass, neben dem Nutzen der Hämolymphe-

Mikrofauna bei Akklimatisierungsprozessen und der Pathogenabwehr, durch den 

Klimawandel hervorgerufener Stress zu Veränderungen der Bakteriengemeinschaften mit 

nachteiligen Folgen für die Austern führen kann. 
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S U M M A R Y  

Animal's fitness does not depend only on its own traits, as almost every aspect of animal's 

biology is profoundly affected by its associated microbiota. Among other, the microbiota play 

an important role in health and disease: they protect their host against infections as well as act as 

opportunistic pathogens. The latter usually occurs if host's immune defense has been 

compromised due to abiotic or biotic stress. Global climate change can promote such shifts 

towards pathogenicity, as rising temperatures impose stress on the host and at the same time 

may cause increase in virulence of microbes. One example of such environmentally-dependent 

disease outbreaks involving opportunistic pathogens are the summer mortalities of Pacific 

oysters (Crassostrea gigas). Although the climate change supported the spread of this invasive 

intertidal bivalve to coastal habitats all over the world, it also caused the mortality events to 

ocurr always farther north. Involved in these mortalities are the oyster commensals and 

opportunistic pathogens of the genus Vibrio sp., which impose strong selection pressure and 

thus cause rapid adaptation of Pacific oysters to their local Vibrio populations. The Pacific 

oyster is also an important aquaculture species that is being routinely translocated for 

commercial purposes to new habitats, where it is exposed to foreign microbes. Response of the 

oyster-associated microbial communities to this new biotic environment or to changes in 

abiotic conditions is largely unknown. However, understanding how the oyster microbiota are 

shaped by (a)biotic disturbances is a prerequisite for predicting their impact on oyster fitness. 

In this thesis, I examined how Pacific oyster microbiota respond to the stress imposed by 

translocation (Chapter I, Chapter II), as well as by infection with external pathogens and drastic 

changes in temperature (Chapter III). Short-term translocation experiment (Chapter I) revealed 

the special role of the hemolymph microbiota for oyster fitness, since destabilization of the 

hemolymph communities, likely caused by interactions between the resident and new 

microbes, lead to potentially fatal systemic Vibrio infections in translocated oysters. Similarly, 

destabilization caused by high temperatures (22°C) probably contributed to oyster mortality 

following infection (Chapter III). However, the disruption of community structure and 

proliferation of opportunistic pathogens occurred mainly after the exposure to combined 

temperature and infection stress, while otherwise the hemolymph microbiota provided 

resistance against the external Vibrio pathogen. Apart from the role in oyster defense, rapid 

shifts in community composition in response to abiotic conditions (Chapter II, Chapter III) 

without the effect on community structure, indicate that hemolymph microbiota are important 

also for oyster acclimation. Despite this quick response to instant environmental conditions and 

strong influence of seawater and transient microbes on the community composition, the 
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resident microbiota are only gradually replaced by local bacteria after the translocation 

(Chapter II). Although such persistence can diminish stress caused by abrupt changes in 

environmental conditions, it also results in long-persisting effects after unpredictable 

community perturbations, which could negatively affect oyster fitness. 

In summary, by studying the Pacific oyster microbiota in controlled and natural conditions 

over multiple spatiotemporal scales, I identified some important determinants of its 

composition and stability and unveiled special role of the hemolymph microbiota in the 

interactions with abiotic and biotic environment. My results suggest that, despite the beneficial 

role of hemolymph microbiota in acclimation and defense against pathogens, the combined 

stress imposed by the climate change could lead to detrimental community shifts. 
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I N T R O D U C T I O N  

The holobiont 

Microbiota affects host 

Microbiota are nowadays recognized as an integral part of animal organisms. The holobiont 

concept, establishing a host together with its associated microbiota as a unit of evolution, has 

gained widespread acceptance (Rosenberg et al., 2007; Mcfall-Ngai et al., 2013). The 

microbiota affect developmental processes and growth of their hosts (Sison-Mangus et al., 2015; 

Thompson et al., 2015) and have been associated with aging processes (Rehman, 2012; Muller 

et al., 2013) and longevity (Erkosar and Leulier, 2014); they are essential for the nutrition and 

metabolism of both invertebrate and (Ridley et al., 2012; Wong et al., 2014) vertebrate animals 

(O'Connor, 2013; Ramakrishna, 2013) and influence the development of metabolic disorders 

such as adiposity (Ridaura et al., 2013; Dogra et al., 2015); they produce and secrete hormones 

and thus modulate the host endocrine system (Clarke et al., 2014; Neuman et al., 2015) and they 

can even influence their host behavior (Cryan and Dinan, 2012) or affect the specificity of host-

pathogen interactions (Koch and Schmid-Hempel, 2012).  

One of the vital beneficial services of microbiota is their contribution to the immune defense 

of the host (Gross et al., 2009; Hooper et al., 2012; Abt and Pamer, 2014; Belkaid and Hand, 

2014). Microbiota provide protection against pathogens through community traits such as 

resistance against colonization (Shade et al., 2012; Buffie and Pamer, 2013; Kamada et al., 2013) 

or production of antimicrobial compounds (Defer et al., 2013; Desriac et al., 2014), as well as 

through direct effects on the host (Chung et al., 2012; Broderick et al., 2014). Proper functioning 

of the immune system depends on the stimulation by microbiota (Olszak et al., 2012), and 

disturbed or insufficiently developed microbial communities have been linked to ever-

increasing incidence of allergies in humans (Bancroft et al., 2012; Inoue and Shimojo, 2015; 

West et al., 2015). 

Host affects microbiota 

Just as the microbiota affect their hosts, the hosts shape their associated microbiota. Species 

specificity of microbial communities in closely related, ecologically similar species reveals the 

active role of the host for the community assembly (Fraune and Bosch, 2007; Erwin et al., 2012b; 

Naim et al., 2014). At within-species level, the diversity, composition and function of microbial 
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communities are influenced by genotype (Rausch et al., 2011; Spor et al., 2011; Wegner et al., 

2013; Dobson et al., 2015) and sex (Zouache et al., 2011; Bolnick et al., 2014), as well as by 

variable traits, including life stage (Wang et al., 2011; Minard et al., 2013; Hammer et al., 2014; 

Thompson et al., 2015), reproductive state (Phillips et al., 2012), health condition (Green and 

Barnes, 2010; Salonen et al., 2012; Lozupone et al., 2013; Ransome et al., 2014), diet and lifestyle 

(Robinson et al., 2010; David et al., 2014; Wang et al., 2014; Xia et al., 2014).  
In addition, the microbiota are affected by the within-host habitat variability, since each 

body site offers a unique set of conditions to colonizing microbes (Spor et al., 2011). These 

tissue-specific communities can exhibit different levels of stability in the face of disturbances, 

for example following an infection (Belzer et al., 2014) or change in diet (Sudakaran et al., 

2012), and thus distinctly affect the host fitness. However, our limited knowledge of within-host 

biogeography is mostly descriptive and - with few exceptions (Antunes et al., 2010; King et al., 

2012a; Sudakaran et al., 2012; Givens et al., 2013) - restricted to humans and other enothermic 

animals (Costello et al., 2009; Dominguez-Bello et al., 2010; Faust et al., 2012; Huse et al., 2012; 

Zhou et al., 2013; Belzer et al., 2014; Jemielita et al., 2014; Lu et al., 2014).  

Holobiont and the environment 

While the microbiota inhabiting the outer surfaces of endothermic animals can be strongly 

influenced by external abiotic factors (Rosenthal et al., 2011), the communities associated with 

the inside-body habitats such as gut are more likely to be influenced by diet, health condition or 

life-style (Looft and Allen, 2012; Lozupone et al., 2012; David et al., 2014). For example, highly 

specialized and stable mammalian gut microbiome (Ley et al., 2008; David et al., 2014) reflects 

relatively stable abiotic conditions within the gut as well as its relative independence from the 

external abiotic environment. In contrast, all microbial communities within an ectothermic 

animal are likely to be strongly affected by changes in abiotic conditions. While ectothermic 

holobionts can be well adapted to the normal range of environmental fluctuations, they may not 

be prepared for the extreme challenges imposed by climate change. Although the climate 

change affects both endotherms and ectotherms (Buckley et al., 2012), the tight connection 

between the ectotherm-associated microbiota and the environment may contribute to the 

higher susceptibility of ectothermic holobionts. 
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Response to challenges of (a)biotic environment: the threats of climate change 

One of the basic features of the ongoing climate change is the increase in temperature (IPCC, 

2014). Temperature is a major determinant of physiological and metabolic processes and it 

subsequently affects all levels of biological organization i.e. (Ratkowsky et al., 1982; Willmer, 

1991; Angilletta et al., 2002; Angilletta et al., 2004; Cano and Nicieza, 2006; Bozinovic et al., 

2011; de Mendoza, 2014). In addition to direct physiological consequences of the abiotic stress 

imposed by the rising temperatures (Bernardo and Spotila, 2006; Huey et al., 2012), the 

ectothermic holobionts may also be challenged by altered biotic interactions, resulting in the 

increased risk of disease. Climate-change related disease outbreaks have already been recorded 

in both terrestrial and marine environment (Harvell et al., 2002; Harvell et al., 2009; Baker-

Austin et al., 2012; Elderd and Reilly, 2014). Understanding the mechanisms and processes 

involved in these evolutionary and ecologically important events is necessary to predict future 

dynamics in the affected ecosystems (Altizer et al., 2013). 

Diseases are usually a result of a complex interplay between the involved organisms and 

environmental factors (Casadevall, 2003; Altizer et al., 2013) (Li et al., 2010; Wedekind et al., 

2010; Engering et al., 2013; Wendling and Wegner, 2013; Méthot, 2014; Petton, 2015), rather 

than a fixed outcome determined by the identity of the host and the pathogen (Casadevall, 1999; 

Casadevall and Pirofski, 2000; Méthot, 2014). The temperature directly affects immunological 

competence of ectothermic hosts (Hégaret et al., 2004; Paillard et al., 2004; Gagnaire et al., 2006; 

Mydlarz et al., 2006; Kortet and Vainikka, 2008; Luna-Acosta et al., 2011; Dang et al., 2012; 

Matozzo et al., 2012) as well as the pathogen virulence (Mekalanos, 1992; Lemes-Marques and 

Yano, 2004; Kimes et al., 2012). Therefore, it also shapes the outcome of host-pathogen 

interactions, although not necessarily in a straightforward manner (Blanford et al., 2003; 

Thomas and Blanford, 2003). Severe shifts in environmental conditions can thus compromise 

host immune defenses and result in opportunistic infections (Burge et al., 2013). 

Despite their beneficial role in defense against external pathogens, the host-associated 

microbiota are also an important source of opportunistic pathogens. Diseases are often caused 

by common members of a healthy microbiome, which harm only the hosts weakened by abiotic 

or biotic stress (Bauer and Agerter, 1994; Garnier et al., 2007; Cogen et al., 2008; Higuchi et al., 

2013; Rivas et al., 2013; Musharrafieh et al., 2014; Wendling et al., 2014). In addition, many 

diseases are not caused by a single pathogen, but result from polymicrobial infections or from 

complex, environmentally-induced shifts in host-associated communities (Cooney et al., 2002; 

Cerf-Bensussan and Gaboriau-Routhiau, 2010; Mao-Jones et al., 2010; Hamdi et al., 2011; 

Altizer et al., 2013; Fan et al., 2013; Murray et al., 2014; Olson et al., 2014; van de Wijgert et al., 
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2014; Zaragoza et al., 2014; Carding et al., 2015). On the other hand, shifts in community 

composition may contribute to successful acclimation of a holobiont to new environmental 

conditions (Reshef et al., 2006). The microbiota can thus benefit, but also harm their hosts in 

the changing environment. Exploring the abiotic and biotic factors that affect the composition 

and dynamics of host-associated microbiota is therefore an important step towards 

understanding the impact of the climate change on ectothermic holobionts. 

Holobiont in a new environment 

Climate change and rising temperature also affect the species distribution (Perry et al., 2005; 

Pickles et al., 2013; VanDerWal et al., 2013; Gonzalez et al., 2014) and facilitate the spread of 

invasive species following the unintentional and intentional introductions by humans (Naylor 

et al., 2001; Monney, 2009; Sorte et al., 2010). The invaders may strongly affect invaded 

communities and ecosystems (Wallentinus and Nyberg, 2007; Vila et al., 2010), but they as well 

are challenged by the new abiotic and biotic environment (Shea and Chesson, 2002). Especially 

the initial period of colonization can represent a significant stress for a holobiont: even if abiotic 

conditions are similar to the habitat of origin, the holobiont will be exposed to a novel biotic 

environment, including foreign microbes (Jones and Gomulkiewicz, 2012). Due to the impact 

of biological invasions on the affected ecosystems, much research has been focused on the 

factors influencing success of the colonization, ranging from genetic to environmental and 

community characteristics (Lee, 2002; Shea and Chesson, 2002; Theoharides and Dukes, 2007; 

Keller and Taylor, 2008; Bates et al., 2013). However, virtually nothing is known about the 

stability and dynamics of microbiota during the establishment period and potential 

consequences for the holobiont.  

Community response to disturbances and spatiotemporal dynamics 

The ability of microbiota to benefit their host is linked to their stability (Shade et al., 2012) in 

response to disturbances. Holobionts are constantly exposed to abiotic and biotic disturbances 

of variable intensity, predictability, area and duration (Bender et al., 1984; Sousa, 1984). While 

controlled experiments are indispensable for quantifying the effects of individual disturbances, 

the results may not directly translate to microbial dynamics in natural conditions (Paine et al., 

1998). Studying the spatial and temporal dynamics in natural environment provides an 

opportunity to assess the relative effects of individual disturbances, but also to unveil other 
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potentially important determinants of community asssembly and stability (Borer et al., 2013; 

David et al., 2014; Stenuit and Agathos, 2015). 

The assessment of community stability inevitably depends on the sampling intensity and 

duration of the study (Shade et al., 2013) and it can be challenging to determine the temporal 

scale relevant for disturbance response. Exploring the community dynamics over multiple 

temporal scales can thus significantly improve our understanding of the community stability in 

the natural environment. However, studies concerning any aspect of dynamics of the host-

associated microbiota at all are still relatively rare and almost exclusively limited to a handfull of 

model organisms (Thompson et al., 2008; Grice et al., 2010; Peterfreund et al., 2012; Fink et al., 

2013; Franzenburg et al., 2013; Belzer et al., 2014; Giatsis et al., 2014; Jemielita et al., 2014; Liang 

et al., 2014; Marino et al., 2014; Koenigsknecht et al., 2015) and to humans - where high-

resolution and/or long-term longitudinal studies focusing on the microbial colonization and 

community assembly (Trosvik et al., 2010; Koenig et al., 2011; Morowitz et al., 2011; Costello et 

al., 2013; El Aidy et al., 2013; La Rosa et al., 2014), the recovery after disturbances (Jernberg et 

al., 2007; Dethlefsen and Relman, 2011; Perez-Cobas et al., 2013), as well as the natural temporal 

variability (Roger and McCartney, 2010; Caporaso et al., 2011; Gajer et al., 2012; David et al., 

2014) are available. Very little is known about the temporal dynamics in other animals (Erwin et 

al., 2012a; Björk et al., 2013; Pratte et al., 2015). Although the temporal component was 

included in a few other studies, these did not address dynamics, but focused mainly on 

qualitative questions: they assessed the differences between the developmental or life-stages 

(Trabal et al., 2012; Trabal Fernandez et al., 2013; Hammer et al., 2014; Kueneman et al., 2014; 

Hroncova et al., 2015), examined the seasonal patterns, often in order to identify core 

micriobiota (Wilson et al., 2008; Zurel et al., 2011; Carlos et al., 2013; La Riviere et al., 2013; 

Hardoim and Costa, 2014; Li et al., 2014; Ransome et al., 2014) or determined the effect of 

disturbances (Thurber et al., 2009; Robinson et al., 2010; Pita et al., 2013; Wegner et al., 2013; 

Xia et al., 2014) in a before-after-control-impact design (Smith et al., 1993). 

Studying the spatial variation also contributes to unveiling of environmental and host factors 

that shape microbial communities (Mihaljevic, 2012). Moreover, the ability of a community to 

recover after a disturbance depends, among other, on the available species pool and thus on the 

metacommunity structure, since re-colonization from the environment represents an important 

aspect of disturbance response (Leibold et al., 2004; Baho et al., 2012; Shade et al., 2012). 

Comparisons over large distances or at dissimilar sites can serve to identify core microbiota 

(King et al., 2012b; Trabal et al., 2012; Larsen et al., 2013; Wong et al., 2013; Dishaw et al., 2014) 

and assess their stability over a range of environmental conditions (Wilson et al., 2008; 

Ransome et al., 2014). However, to estimate relative contributions of the host, environmental 
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and distance related factors for community assembly by examining spatial variation (Green and 

Bohannan, 2006; Caruso et al., 2011; Martiny et al., 2011; Mihaljevic, 2012; Borer et al., 2013; 

Nemergut et al., 2013), it is necessary to apply spatially stratified design (U'ren et al., 2012; Borer 

et al., 2013). Most such studies focused on interspecific differences (Littman et al., 2009; 

Zouache et al., 2011; Lankau et al., 2012; Morrow et al., 2012; Phillips et al., 2012; Trabal et al., 

2012; Reveillaud et al., 2014) and few examined distance-dependent variation (Linnenbrink et 

al., 2013) or considered multiple spatial scales (Moro et al., 2011; Sudakaran et al., 2012; 

Hroncova et al., 2015; Karlinska-Batres and Worheide, 2015) in order to explore determinants 

of community composition within a species.   

Pacific oyster - a model organism for the changing environment 

Coastal habitats belong to the natural systems that are the most affected by biological 

invasions (Grosholz, 2002). One of the globally very successful invaders of coastal ecosystems is 

a hardy filter-feeding bivalve, the Pacific oyster (Crassostrea gigas). The Pacific oyster is a potent 

ecosystem engineer (Padilla, 2010; Troost, 2010): it changes the morphology of tidal flats 

through reef building (Walles et al., 2015), modifies water chemistry and microbial diversity in 

its surroundings (Green et al., 2012) and affects the structure and dynamics of invaded 

communities (Kochmann et al., 2008; Wagner et al., 2012; Wilkie et al., 2013; Hollander et al., 

2015), including host-parasite interactions (Krakau et al., 2006; Thieltges et al., 2009). 

Indigenous to Japan, the Pacific oyster had been introduced into aquaculture facilities all over 

the world, from where it invaded local coastal habitats. Supported by ever-rising seawater 

temperatures, it spread far beyond its original latitudinal range (Grizel and Heral, 1991; Nehls 

and Büttger, 2007; Dutertre et al., 2010; Fey et al., 2010; Troost, 2010). For example, the warming 

has allowed the oysters to reproduce and thus escape from the local aquaculture facility in my 

study area, the island of Sylt in the Wadden Sea, where they now dominate former mussel beds 

(Drinkwaard, 1998; Diederich et al., 2005; Witte et al., 2010; Moehler et al., 2011; Buschbaum et 

al., 2012; Schumacher et al., 2014).  

Pacific oysters as sessile animals can naturally move only during the larval stage, but they are 

routinely translocated, at all life stages, between cultivation sites for aquaculture purposes 

(Muehlbauer et al., 2014). As filter feeders, they are directly exposed to myriads of bacteria 

including the opportunistic pathogens of the genus Vibrio. Vibrio spp. impose a strong selection 

pressure on the oysters, which subsequently rapidly adapt to their local Vibrio populations 

(Wendling and Wegner, 2015). Translocation to a new environment could thus lead to 

increased risk of disease. 
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Vibrios (Vibrio spp. and related bacteria of the family Vibrionaceae) are efficient at evading 

bivalve immune defenses (Pruzzo et al., 2005), which allows them to colonize bivalve tissues 

where they act as commensals, pathogens (Olafsen et al., 1993; Garnier et al., 2007; Romalde et 

al., 2014; Wendling et al., 2014) and even as beneficial symbionts (Defer et al., 2013; Desriac et 

al., 2014). Since they thrive in warm environments and represent prominent agents of 

environmentally-dependent diseases in marine habitats (Paillard et al., 2004; Wendling and 

Wegner, 2013; Zaragoza et al., 2014), the incidence and severity of vibrioses are likely to further 

increase with rising temperatures (Baker-Austin et al., 2012; Vezzulli et al., 2013).  

Athough climate change has facilitated the spread of Pacific oysters over the globe, heat 

waves can have negative effect on the animals (Clark et al., 2013). Despite the fact that the 

oysters, as intertidal ectotherms, tolerate large fluctuations in abiotic conditions (Bougrier et al., 

1995; Strand et al., 2011), their populations often suffer mass mortalities; these are the 

consequence of a complex interaction of genetic, physiological, biotic and abiotic factors, 

which include high temperatures and proliferation of opportunistic pathogens such as Vibrio 

spp. (Garnier et al., 2007; Samain et al., 2007; Malham et al., 2009; Samain, 2011; Wendling and 

Wegner, 2013; Pernet et al., 2014). The mortality outbreaks are likely to occur farther north as 

the temperatures continue to rise. Indeed, Pacific oysters in France have been suffering from 

summer mortality syndrome since decades (Goulletquer, 1998), while the syndrome only 

recently affected the population in the Southern Wadden Sea (Watermann et al., 2008; Fey et 

al., 2010; Moehler et al., 2011), and the Northern Wadden Sea populations have been spared so 

far.  

How microbiota other than Vibrio sp. affect the fitness of the Pacific oyster holobiont in the 

face of abiotic and biotic challenges is largely unknown. In contrast to culture-dependent 

methods that identified few genera, mainly Vibrio and Pseudomonas, as oyster symbionts 

(Prieur et al., 1990; Olafsen et al., 1993; Garnier et al., 2007), recent sequencing studies unveiled 

much higher diversity of the gill (Wegner et al., 2013) and gut microbial communities (Trabal et 

al., 2012; Trabal Fernandez et al., 2013). Can these communities provide protection against 

pathogens such as Vibrio spp.? Do they themselves cause opportunistic diseases? The failure of a 

significant heat stress to induce shift towards potential pathogens in the gill microbiota would 

suggest that they do not (Wegner et al., 2013). However, the question remains if such shift did 

occur in some other tissue. For example, the gill microbiota assemble according to genotype 

(Wegner et al., 2013), while gut communities are more affected by site (Trabal et al., 2012; 

Trabal Fernandez et al., 2013), illustrating the difference in their interaction with the 

environment. Therefore, to understand the contribution of microbiota to the fitness of the 

oyster holobiont in the changing environment, it is necessary to address the tissue-specific 
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variability as well as to examine the response of oyster-associated microbial communities to 

abiotic and biotic disturbances. 
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T H E S I S  O U T L I N E  

Aim 

In this thesis, I address the questions that improve our understanding of how microbiota 

contribute to the host fitness under challenging abiotic and biotic conditions. Specifically, I was 

interested in the short-term response of Pacific oyster microbiota to translocation, temperature 

stress and infection, and its consequences for oyster interactions with opportunistic pathogens 

of the genus Vibrio, as well as for the oysters themselves. In addition, I examined natural spatial 

and temporal variation of the oyster microbiome in order to assess its stability and identify 

factors affecting its assembly. All analyses of Pacific oyster microbiota presented here are based 

on hypervariable V1-V2 region of the 16s rRNA gene. 

 

The particular questions I aim to answer are: 
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n • How are diversity, structure and composition of microbial 

communities in different oyster tissues (hemolymph, gills, 

gut and mantle) affected by translocation and removal of 

resident microbiota? 
 

• How do these changes affect the abundance and activity of 

opportunstic pathogens and oyster survival? 
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• What are the medium-term (weeks to months) effects of 

translocation and removal of resident bacteria on the 

diversity and composition of oyster hemolymph 

micriobiome and on the activity of opportunistic 

pathogens? 
 

• How stable is hemolymph microbiome over medium 

temporal scales? 
 

• What does spatial variation reveal about factors and 

processes influencing the assembly of the hemolymph 

microbiome? 
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• How do temperature, temperature stress and infection 

affect diversity, structure, composition and stability of 

hemolymph microbiota? 

• How do changes in hemolymph microbiome relate to 

oyster survival? 

 

Chapter summaries 

Chapter I 

In the first chapter, I examined how translocation affects Pacific oyster microbiota at the 

scale of days, and how these changes influence the oysters and the activity of associated 

opportunistic pathogens from the family Vibrionaceae. I assumed that the microbiota inhabiting 

individual oyster tissues fulfilled different functions and that they varied in their response to 

disturbances as well as in how they affected the host fitness. In order to evaluate their role in the 

successful acclimation to a new environment and to estimate how interactions of resident and 

newly encountered microbiota influence the oyster survival, I performed a field experiment as 

described in Figure C1.  
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Figure C1. Experimental design and sampling, Chapter I. Pacific oysters from Texel were transported to 

Sylt. Prior to the field-deployment, resident microbiota in the half of both local and translocated oysters were 

removed by antibiotic treatment. The oyster hemolymph was sampled prior to deployment in order to 

analyze immune parameters and microbiota (V1-V2 16s rDNA, MiSeq). Each day for five days following 

deployment, a subset of 16 oysters was sacrifised for the analysis of mantle, gill, gut and hemolymph 

microbiota and Vibrionaceae activity. Seawater samples were collected for microbiota analysis on three 

occasions. The Note: Syringes denote sampling points. * Only hemolymph sampled. 

 

All oysters had very active Vibrionaceae population in the hemolymph, regardless of origin 

or treatment. However, Vibrionaceae were rare in in the mantle, gut and gill tissues of all oysters 

except the translocated non-antibiotic-treated ones, which were also the only ones with 

significant mortality. Apart from the active Vibrionaceae community, the hemolymph 

microbiota differed from those in the solid tissues in other aspects as well: they had higher 

diversity and connectivity and were clearly related to ambient water communities. While not 

being able to link the mortality to either immune or genetic factors, I found evidence for 

destabilization of the hemolymph microbiota in the mortality affected, translocated non-
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antibiotic treated group. I argue that the observed destabilization was caused by interactions of 

resident and foreign microbes and resulted in potentially fatal systemic vibriosis. 

 

In the light of the above results, I propose that the distinctness of the hemolymph 

microbiome reflects its relevance for the interactions with the abiotic and biotic environment 

and ultimately for oyster fitness. I therefore focus on microbial communities in the hemolymph 

in the remaining chapters. In order to comprehensively evaluate the role of microbiota for 

oyster fitness, it is necessary to examine their variability and dynamics under natural conditions 

and over longer temporal scales (Chapter II), as well as to understand how they respond to 

important (a)biotic disturbances such as temperature stress and infection (Chapter III). 

 

Chapter II 

In this chapter, I focused on the long-term dynamics (months) of Pacific oyster hemolymph 

microbiota in response to translocation and perturbation of the resident microbial community. 

In addition, I explored the natural spatial variation of the hemolymph microbiota over multiple 

scales to gain insight in the factors important for the hemolymph community assembly. By 

combining the reciprocal translocation of the oysters from two genetically differentiated 

populations and removal of resident bacteria, I aimed to assess the long-term stability of 

hemolymph microbiota and to disentangle influences of population genetic makeup, 

environmental conditions and site (Figure C2). 

I found high temporal (within-individual) and spatial (within-site) small-scale variability 

and low large-scale (between sites and sampling points) variability, probably reflecting similar 

mean abiotic conditions over the sampling period and high microenvironmental heterogeneity 

of the intertidal habitat respectively. However, bacteria within the hemolymph microbiome 

differed in their response to environmental conditions: while the transient, seawater-related 

bacteria were strongly influenced by immediate abiotic environment, shifts in the resident part 

of community were more gradual and the oyster origin signature and effects of perturbation by 

antibiotics were apparent for weeks. Still, the community composition eventually converged, 

indicating that local (a)biotic environment is more important than genetic differentiation 

between the oyster populations.  
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Figure C2. Experimental design and sampling, Chapter II. Translocation of Pacific oysters from Texel to Sylt 

and vice versa was performed at the beginning of June and the oyster hemolymph and seawater was sampled 

regularly during the next three months. Half of the oysters were treated with antibiotics prior to deployment, 

in order to remove resident microbiota (as described in Chapter I). The oysters were placed in mesh bags, 

four in each bag, and always two or three bags were placed together at randomly chosen spots on the oyster 

banks and their exact position was noted. In this way, it was possible to explore spatial variation over 

different scales. Syringes denote the sampling points, their color denotes the sampling site. 

 

Chapter III 

In this chapter, I examined how temperature, temperature stress and infection interact to 

influence the hemolymph microbiota and oyster survival over a short time scale in a controlled 

laboratory experiment (Figure C3). 
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Figure C3. Experimental design 

and sampling, Chapter III. 

Pacific oysters acclimated to 

either 8°C or 22°C were 

temperature stressed by transfer 

to opposite temperature and/or 

infected by a Vibrio sp. The 

hemolymph was sampled for 

microbiota analysis (16s rRNA 

V1-V2 region, pyrosequencing) 

and the oysters checked for 

survival at three occassions 

during a week-long period. 

 

 

 

 

Vibrio infection caused significant mortality, especially of the warm-stressed oysters. When I 

examined the hemolymph microbiota shortly before the host death, I found disrupted 

community structure and proliferation of opportunistic pathogens. However, the oysters that 

survived the infection harbored diverse microbiota undistinguishable from those of the 

uninfected animals. On the other hand, the community responded quickly to temperature 

change by shifts in OTU abundances while retaining similar higher-taxon composition. Still, 

warm stress decreased the temporal stability of the hemolymph microbiota. I therefore propose 

that the hemolymph microbiota play an imprtant role in the acclimation and in the protection 

against pathogens. However, indirect and/or direct effects of combined stress on the oysters and 

their microbiota can result in the loss of community structure and have fatal consequences for 

the holobiont. 
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C H A P T E R  I  

Clash of Colonization: Role of Tissue-specific Microbiota in 
Initial Establishment Success of Pacific oysters 

 

Abstract 

Translocation to a new environment imposes significant biotic and abiotic stress on animals 

and their associated microbiota. As microbiota positively and negatively affect host fitness, it is 

important to better understand the three-way environment-host-microbiota interactions. Due 

to differences in function, the effects of these interactions on the host will likely vary between the 

tissues. Here, we assess the relative importance of microbiomes associated with different tissues 

of Pacific oyster for its successful establishment under new environmental conditions. Pacific 

oysters (Crassostrea gigas) are routinely translocated for commercial purposes, thus providing a 

relevant background to investigate these interactions. In detail, we transplanted oysters from the 

Southern Wadden Sea (Texel, Netherlands) to the Northern Wadden Sea (Sylt, Germany) and 

compared their initial survival and microbial colonization to that of local oysters from the 

Northern Wadden Sea. Effects of the resident microbiome in both groups were controlled by 

administering antibiotics to half of the oysters and we followed survival and the composition of 

hemolymph, mantle, gill and gut microbiomes over five days. The only group with significant 

mortality were non-antibiotic-treated oysters from Texel, for which high titers of active Vibrio 

sp. in solid tissues indicated systemic infections. Network analyses revealed that the hemolymph 

microbiota had the highest within-tissue connectivity and were related to seawater 

communities. Since antibiotic treatment decreased modularity and increased connectivity in 

hemolymph microbiomes, we propose that their destabilization in non-antibiotic-treated 

oysters from Texel facilitated the passage of Vibrio sp. into solid tissues, thereby invoking 

systemic infections and disease. These interactions of the hemolymph microbiome with the 

external and internal environment may thus reflect an important role for oyster fitness.  
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Introduction 

Exposure to novel environmental conditions can impose biotic and abiotic stress on the 

affected organism (Shea and Chesson, 2002; Hedge and Johnston, 2014). However, such 

stressors will not only affect the organism directly, but also the microbiota associated with the 

organism. Decoupling the fine-tuned intimate interaction between host, microbiota and the 

environment may result in disturbed developmental or physiological processes (Sison-Mangus 

et al., 2015). On the one hand, stress-induced microbiome instability can shift bacterial 

communities towards opportunistic pathogens (Chapter III, Rosenberg et al., 2007; Pita et al., 

2013; Bauvais, 2014). On the other hand, resident bacteria can buffer the response of the host to 

environmental change by maintaining homeostasis, for example, by preventing the 

colonization and establishment of pathogens (Kamada et al., 2013b; Abt and Pamer, 2014; 

Desriac et al., 2014). Therefore, a stable microbiome can provide vital services to the host and 

environmental disturbance may bear multilayered consequences beyond direct effects on the 

host.  

One extreme form of environmental shift is translocation of organisms to new habitats 

beyond their normal range. This can happen either unintentionally (e.g. species invasions) or 

intentionally in cases such as species reintroductions or aquaculture where it is common 

practice (Galil et al., 2014). Such habitat shifts will likely be associated with drastic changes in 

environmental conditions and will not only lead to new interactions of the host with the new 

environment, but also of its associated microbiota. Further, both hosts and their microbiota will 

not only be affected by changes in abiotic conditions, but will also be exposed to new microbes. 

In humans, for example, travelling to exotic destinations is accompanied by shifts in 

microbiome composition that is often associated with health problems (David et al., 2014). 

While these new colonizers may not automatically cause harm to the organism, the interaction 

with the resident microbiome might lead to unforeseeable consequences that cannot be 

explained by examining the host in isolation. To conclusively determine the role of microbiota 

in colonization success, one therefore needs to investigate the three-way interactions between 

hosts, their microbiota and the environment. 

One species that combines several aspects of novel habitat colonization is the Pacific oyster 

(Crassostrea gigas). It is common practice to transfer oysters over large distances for aquaculture 

purposes (Muehlbauer et al., 2014), through which Pacific oysters successfully invaded coastal 

habitats worldwide and significantly impacted these ecosystems (Kochmann et al., 2008; 

Wagner et al., 2012). Both transfer and invasion introduce potential mismatches between hosts, 

their resident, co-adapted microbiota and the new environment including microbes. Despite 
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the applied and fundamental relevance, the consequences of mismatch are largely unknown 

both for the host-associated microbiota as a whole as well as for functionally relevant groups 

involved in such mismatches.  

One important lineage of symbionts and pathogens of marine animals are the bacteria of the 

genus Vibrio, e.g. (Hoffmann et al., 2010; Rowley et al., 2014). In oysters, several strains have 

been implicated in environmentally-dependent diseases (Garnier et al., 2007; Elston et al., 

2008), invoking rapid evolutionary responses in host populations (Wendling and Wegner, 

2015), making them an ideal focus group to investigate the effects of mismatch on the dynamics 

of opportunistic pathogens. Another interesting group of potential oyster symbionts belong to 

the genus Arcobacter (Chapter III, Romero et al., 2002). Although they have been identified as 

important opportunistic pathogens in laboratory studies, their prevalence in oysters might 

imply more beneficial effects of their presence that are interesting to explore (Chapter III). 

It is also likely that microbiome disturbance will have different effects in different tissues. In 

mammals, for example, gut microbiota are important for immunity and certain changes are 

related to potentially life-threatening conditions (Kamada et al., 2013a; Ferreira et al., 2014), 

while the belly-button communities are much less likely to have such an effect (Hulcr et al., 

2012). In oysters, hemolymph communities seem to mirror oyster condition, as moribund 

animals tend to have low diversity and are dominated by few strains (Chapter III, Garnier et al., 

2007). How much other tissues contribute to oyster condition is far less known, because most 

studies focus on whole body homogenates (Beleneva et al., 2007) or single tissues (Zurel et al., 

2011; Trabal et al., 2012; Trabal Fernandez et al., 2013; Wegner et al., 2013). The variation 

between the tissues is only rarely considered (Antunes et al., 2010; King et al., 2012), especially 

in the context of host fitness.  

In this study, we set out to experimentally explore how microbiota in different tissues of 

Pacific oysters are affected by translocation to new habitats and how the resulting microbiota 

mismatch affects oyster fitness in the new environment. To do so, we transplanted oysters from 

two invasive, genetically distinct invasive populations of the Wadden sea (Texel, Netherlands 

and Sylt, Germany, (Moehler et al., 2011)) and monitored the short term microbiota shifts and 

colonization in different tissues during the initial phases of establishment in the new habitat. To 

manipulate the microbiome mismatch, we treated half of the oysters with antibiotics in order to 

minimize the interactions between resident microbiota and new colonizers, while the other half 

was transplanted with their natural resident microbiome. We followed oyster survival and 

changes in diversity, composition and abundance of oyster-associated bacterial communities as 

a whole, and Vibrionaceae and Arcobacter in particular, over the first five days in the new habitat. 
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In this way, we could estimate how the composition and diversity of microbiota in different 

tissues contribute to the success of oyster establishment in a new environment. 

 

Material and Methods 

Biological material 

To test microbiome mismatch we transplanted oysters from the southern Wadden Sea to the 

Northern Wadden Sea and followed their success and changes in microbial communities over a 

five-day period. Southern Wadden Sea oysters were collected in de Cocksdorp, Texel, 

Netherlands (53° 0' N, 4° 54' E), cleaned of epibionts and transported to the AWI Wadden Sea 

station on Sylt. The same number of oysters was collected from the transplantation site 

(Oddewatt, Sylt, Germany, 55° 1' N, 8° 26' E). Initially, the oysters (N=80) were kept in pre-

filtered seawater from their original location at ambient temperature (~14°C). To remove parts 

of the resident microbiome we added an antibiotic cocktail (100 µg/l of each ampiciline, 

tetratcycline, gentamycine and kanamycine, SigmaAldrich, Hamburg, Germany) to half of the 

oysters from each location. These concentrations were chosen based on previous tests, where 

we treated the oysters with the antibiotics and plated out hemolymph on marine agar until no 

colonies had grown. After 3 days, we took hemolymph samples from the adductor muscle with 

23_1/4 gauge (0.6 dm, 30 mm) needles via notches drilled on the ventral side of the shell 

immediately after collection (to give the oysters time to recover). We froze  ~200 µl aliquots of 

hemolymph for microbiota analysis at -80°C, and immediately processed the remaining sample 

to measure of immune parameters (total hemocyte count (THC), phagocytosis rate, 

hemolymph plasma protein concentration). To estimate the number of cultivable Vibrionaceae, 

we plated 5 µl of hemolymph on TCBS agar. 

Experimental setup and sampling 

For the field transplant, four oysters (one from each treatment group) were put into single 

bags with a mesh size of 1 cm, resulting in 20 bags that were brought out to the original site of 

collection of the northern Wadden Sea oysters (Odewatt). For the following five days we 

randomly collected four bags every day. We checked the survival and dissected the surviving 

oysters, after taking a hemolymph sample through the predrilled hole. We cut around 25 mm3  

(~100 mg wet weight) of the mantle, gills and gut tissues with a sterile knife and flushed them 
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thoroughly with sterile PBS in order to remove transient, non-attached bacteria. We 

immediately froze half of the tissue for microbiota analysis at -80°C, while the other half was 

used to determine the number of cultivable Vibrionaceae. To do so, we homogenized the tissue 

pieces in 500 µl of sterile PBS in the Qiagen Tissue Lyzer using a single 5 mm stainless steal bead 

at 20 Hz for 3 min and plated 10 µl on TCBS agar. 

To determine the background composition of the seawater microbial communities, we took 

seawater samples (100 ml) on three occasions during the sampling period. The samples were 

filtered onto 0.2 µm 47 mm Nucleopore Track-Etch Membrane filters, which were then used for 

DNA extraction. 

Oyster immune parameters 

In order to measure the total hemocyte counts (THC), 50 µl of hemolymph was mixed with 

equal amounts of 6% formaldehyde in SSW and marine anticoagulant solution (Fedders and 

Leippe, 2008). The resulting solution was further diluted 3x in sterile PBS and the cell count was 

measured with an automated cell counter (Scepter, Millipore, Darmstadt, Germany). 

For phagocytosis, we followed established protocols (Wendling and Wegner, 2013). In 

short, 3x60 µl of hemolymph were allowed to adhere to the bottom of 96-well plates for 1 hour. 

The supernatant was carefully decanted, and the neutral-red-staind zymosan solution 

(SigmaAldrich, Hamburg, Germany) was added to hemocytes and incubated with shaking for 

one hour. The reaction was stopped by the addition of 6% formol in SSW. The wells were 

washed several times with PBS, the hemocytes with the phagocytozed particles were solubilized 

in acidified ethanol (1% acetic acid, 50% ethanol) and the absorbance was measured at 550 nm 

with Nanodrop ND-1000 spectrometer (peqlab, Erlangen, Germany). The standard curve was 

constructed from zymosan solution samples with known particle concentration and the results 

were expressed as the number of phagocytozed particles per hemocyte. 

To estimate the plasma protein content, 200 µl of hemolymph was centrifuged for 5 min at 

5000 g. The protein concentration in the supernatant was measured in triplicates with Quick-

Start Bradford protein Bio-Assay (BioRad, Hercules, CA USA) according to manufacturer's 

protocol. 

DNA extraction 

DNA was extracted from app. 200 µl of hemolymph, or approx. 50 mg of mantle, gill and gut 

tissue with Wizard SV 96 Genomic DNA Purification System (Promega, Manheim Germany). 
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The samples were placed in pre-cooled (-20°C) TissueLyser Adapters (Qiagen, Hilden, 

Germany) and homogenized in a mixer mill (Retsch, Haan, Germany), using a mixture of 0.5 

mm glass-zirconium beads and a single 5 mm tungsten bead (for mantle, gill and gut) or 1 mm 

glass beads (for hemolymph) at 30 Hz for 5 min in order to completely disrupt the tissues and 

bacterial cells. The standard protocol for DNA extraction from animal tissues was used for 

mantle, gill and tissue, while only proteinase K (20 µl of 20 mg/ml solution, SigmaAldrich, 

Hamburg, Germany) was added to the hemolymph for protein digestion. The samples were 

incubated at 55°C for at least 4 hours and extracted according to manufacturer's protocols. Blank 

extractions to check for bacterial contamination of reagents were also performed. 

For the seawater samples, the filters were cut with sterile scissors into smaller pieces and 

homogenized in 2 ml tubes with a mixture of beads from PowerWater® DNA Isolation Kit (MO 

BIO Laboratories, Inc, Carlsbad, CA, USA) and 0.5 mm glass-zirconium beads in RLT buffer  

(DNeasy Blood & Tissue Kit, Qiagen, Hilden, Germany) and further treated as described in 

(Thomsen et al., 2012). Shortly, a round of bead beating at 30 Hz for 5 minutes was followed by 

10 minutes at 56°C with continuous mixing. This was repeated twice and then the proteinase K 

was added and the digestion mix was incubated for 2 hours. The samples were then extracted 

following the manufacturer's protocol with the adjusted reagent volumes. 

PCR 

We amplified 16s rRNA V1-V2 regions with uniquely barcoded 27f and 338r PCR primers. 

PCR reactions (25 µl) were set up in 96-well plates as follows:  4 µl of each forward and reverse 

primer (final conc.: 0.28 µM), 0.5 µl dNTPs (final conc.:  200 µM each), 0.25 µl Phusion Hot 

Start II High-Fidelity DNA Polymerase (0.5 unit per reaction) and 5 µl of HF buffer (7.5 mM 

MgCl2, Thermo Fisher Scientific, Inc., Waltham, MA, USA). We used 1 µl of undiluted 

hemolymph DNA, 1 µl of 10x diluted seawater DNA and 2-4 µl of solid tissue DNA per reaction. 

For each 96 well plate, twenty control reactions (12.5 µl) were performed: one positive control 

and unique combinations of all used forward and reverse primers as negative control, with 

water as a template. 

The PCR cycling conditions were as follows: 30 sec inital denaturation at 98°C, then 30 

cycles: 9 sec denaturation at 98°C, 1 min annealing at 55°C, 90s extension at 72°C, 10 min final 

extension at 72°C. 

In order to check for the product and to estimate its amount, the reactions were analyzed 

immediately on a 1.5 % agarose gel. Briefly, 5 µl of loading buffer was mixed with 3 µl reaction 

and loaded into the gel prepared with SYBR Safe DNA Gel Stain (Life Technologies GmbH, 
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Darmstadt, Germany), including 3 µl of O`geneRulerTM 100 bp Plus DNA Ladder (Thermo 

Fisher Scientific, Inc., Waltham, MA, USA). The separation was conducted at 120 V/35 cm for 

80 minutes. The result was photographed with Gel Doc™ XR+ System and analyzed with Image 

Lab™ Software (BioRad, Hercules, CA USA) to estimate the absolute concentration of the PCR 

products using the ruler as internal standard. If there was no amplification in blank extractions, 

they were excluded from further analysis. Equal amounts of the products from a single gel were 

pooled together (25 - 100 ng per sample), run on 1.5% agarose gel and purified with MinElute 

Gel Extraction Kit (Qiagen, Hilden, Germany) according to the manufactuter´s protocol, 

including optional additional centrifugation and steps recommended for salt-sensitive 

applications. The concentration of DNA in the resulting subpools was measured 

fluorometrically with Qubit dsDNA br Assay Kit (Life Technologies GmbH, Darmstadt, 

Germany) in the Qubit fluorometer (Life technologies Invitrogen Gmbh, Karlsruhe, Germany). 

The equal amounts of subpools were then mixed together and frozen at -20°C until sequencing. 

The paired-end sequencing by synthesis was performed on a MiSeq platform at the Max Planck 

Institute for Evolutionary Biology in Plön, Germany. 

Sequence quality control and preprocessing 

All sequencing libraries were processed together. Quality control, OTU clustering and 

taxonomy assignment were performed in Mothur (Schloss et al., 2009), following the Mothur 

MiSeq SOP (Kozich et al., 2013). We retained only overlapping regions of the contigs and 

removed any sequences with ambiguous bases and/or homopolymers of 8bp or longer, in order 

to ensure good quality and reduce the number of spurious OTUs. The sequences were aligned 

to silva 119 reference alignment (Quast et al., 2013) cut to V1-V2 region, and the taxonomy was 

assigned with 80% confidence cutoff, using the Greengenes taxonomy 13_08 (DeSantis et al., 

2006) and the Naïve Bayesian Classifier (Wang et al., 2007) as implemented in Mothur. 

Unknown (i.e. sequences not assigned to any kingdom), chloroplast, Archaea and Eukaryotic 

sequences were removed from further analysis. We performed single-linkage pre-clustering 

with 2 differences allowed (Huse et al., 2010), removed the chimeras and created 97% OTUs 

using average-linkage clustering method. Consensus taxonomy for an OTU was assigned with a 

50% consensus confidence threshold. We calculated rarefaction curves of diverse α diversity 

metrics in Qiime (Caporaso et al., 2010), in order to estimate the effect of sampling effort and to 

determine sequencing depth for the final analysis. We subsampled the dataset to 8000 reads per 

sample for the final analysis. Because the abundant OTUs (>100 reads) in the single positive 

blank control were rare  (< 1%) in the remaining samples, we simply excluded them from 
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further analysis. In order to calculate a tree needed for phylogenetic measures of diversity, we 

picked a representative set of sequences using the distance method in Mothur and calculated the 

tree using fasttree (Price et al., 2010). The final dataset is comprised of 3 seawater, 141 

hemolymph, 68 gill, 61 gut and 62 mantle samples (335 in total). 

Statistical analysis 

All statistical analyses were performed in R (R Core Team, 2013). For α diversity, we used a 

complete rarified dataset (8000 reads per sample) to analyze the differences in evenness and 

species richness. We first tested for differences between the seawater and oysters using non-

parametric tests, subsequently for differences between the tissues using robust analysis of 

variance (Wilcox and F.D., 2014) and finally we analyzed hemolymph and solid tissues 

separately with linear mixed models (Alexandra Kuznetsova, 2014; Bartoń, 2014; Bates D, 2014). 

CFU counts were analyzed with negative-binomial generalized models (package MASS, 

(Ripley, 2002)). Because not only Vibrio sp., but also other Vibrionaceae grow on TCBS agar and, 

in addition, classification of short reads to low taxonomic levels can be unreliable, we decided 

to focus the analyses on the whole Vibrionaceae family, and not just the genus Vibrio. 

For beta diversity, we kept only the OTUs with relative abundance higher than 0.1% in at 

least 10 samples to reduce the dataset complexity. We calculated Bray-Curtis distances and 

weighted UniFrac distances (Hamady et al., 2010) using the phyloseq package (McMurdie and 

Holmes, 2013) and the results were further analyzed by nonmetric multidimensional scaling 

(NMDS) and Permanova (non-parametric permutational multivariate analyis of variance 

(Anderson, 2001)) as implemented in the Adonis function in the vegan package (Oksanen et al., 

2013). We first compared the tissues, and then analyzed the beta diversity in each tissue 

separately. 

We statistically examined the variation at the class-level taxonomical composition between 

the tissues and the changes in the abundances of OTUs and genera in hemolymph microbiota 

according to origin and treatment by multivariate generalized mixed models (mvabund package 

(Wang et al., 2012)). This method enabled us to identify taxa responsible for the observed 

differences without potential confounding of location and dispersion effects inherent to 

distance-based methods (Warton et al., 2012).  

We included time as an ordered factor in the models to check for temporal trends in the data. 

However, we could not disentangle individual variability from true time effects due to our 

experimental design. For this reason we do not further discuss the temporal trends, although we 

included them in results for completeness. 
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To explore both positive and negative associations of the OTUs within and between the 

tissues, we constructed an association network using the sparcc algorithm (Friedman and Alm, 

2012) implemented in Mothur. We performed 10000 permutations and kept only correlations 

>0.4 with p value < 10-4 to exclude as many spurious correlations as possible (Marino et al., 

2014). The input matrix was organized similar to (Faust et al., 2012): OTUs in tissues in the rows 

and individual oysters in columns. Only the oysters with available data for all four tissues and 

the OTUs that appeared in at least 1/3 of the samples were analyzed (Berry and Widder, 2014). 

We statistically determined the significance of observed connectivity within/between the tissues 

by comparison to connectivity between the random subsets of nodes of equal size as the tested 

group (Faust et al., 2012). Additionally, to asses the effect of treatment and origin on microbial 

associations in the hemolymph, we constructed a network for each experimental group of 

oysters including only hemolymph samples and calculated their descriptive statistics including 

clustering coefficient (Newman et al., 2002) and modularity. The networks were visualized 

using igraph package (Csardi G, 2006). Raw demultiplexed sequence data are available at 

European Nucleotide Archive under the study accession number PRJEB8492. 

 

Results 

Oyster survival and immune parameters 

Non-antibiotic treated control oysters from Texel showed the highest mortality (30% vs. 0-

5%, !2=12.222, df=3, p=0.007, Figure I-1). This mortality could not be linked to genetic 

differences between the populations nor to differences in immune system activity, as neither the 

total hemocyte count (Anova: F3,56=1.085, p=0.363) nor phagocytosis rate per hemocyte (Anova: 

F3,55=0.579, p=0.632) differed between the oyster groups. However, control oysters had higher 

plasma protein concentration, which could indicate reduced protein turnover in antibiotic-

treated animals (Anova: F3,63=4.565, p=0.006, adj. R2 = 0.140; treatment: F1 = 12.900, p=0.001, 

effect size = 0.159). 
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Figure I-1. Survival of local and 

translocated oysters after antibiotic 

treatment. Survival is shown for all 

oysters after a period of five days on the 

oyster reef. 

 

 

 

 

 

 

 

 

 

 

 

 

Differences between bacterial communities of seawater and oyster tissues 

Bacterial assemblages from seawater differed substantially from those found in oyster tissues. 

Although the microbial communities of seawater (sw) and oyster samples had similar diversity 

and distribution (evenness: median: sw = 0.549, all oyster samples = 0.641, Asymptotic 

Wilcoxon Mann-Whitney Rank Sum Test: p = 0.334, Figure I-2A), overall taxonomic diversity 

was much higher in seawater (median: sw = 873, all oyster samples = 310: p = 0.008, r = -0.142, 

Figure I-2B). In contrast, the relative OTU richness of Vibrionaceae was much higher in oyster 

tissues (median: sw = 0.006, oyster = 0.079, Asymptotic Wilcoxon Mann-Whitney Rank Sum 

Test: p = 0.003, r = 0.159), mainly owing to high Vibrio diversity in the hemolymph (Figure I-

2C). The activity of Vibrionaceae - estimated as CFU count on TCBS agar – confirmed this 

pattern with much higher numbers in hemolymph than in seawater (median: hemolymph = 

4062.5, sw = 500, p = 0.004, r = 0.166, Figure I-2D). Similarly, the relative OTU richness of 

Arcobacter was also significantly higher in the oyster tissues (median: sw = 0.006, oyster = 0.036, 

Asymptotic Wilcoxon Mann-Whitney Rank Sum Test: p = 0.010, r = 0.141). Seawater 

communities were rather homogenous over time and were dominated by a few "-

Proteobacteria and Flavobacteriaceae (Figure I-3A, Figure I-3B). A subsample of the 14 most 

frequent OTUs dominating seawater communities (mean relative abundance >= 0.01) were also 

found in the majority of oyster samples (85%) albeit in lower abundances, establishing seawater 
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as a source of bacteria for oyster microbiome, especially for the hemolymph (mean, median 

and range: hemolymph = 0.059, 0.009 (0, 0.433); solid tissues = 0.005, 0.002 (0, 0.083)). However, 

oyster microbiota displayed substantially higher within-tissue variability and were clearly 

differentiated from seawater communities in terms of community composition (Figure I-3A, 

Figure I-3B).  

 

 

Figure I-2. !-diversity within oyster tissues grouped according to oyster origin and treatment: A) Evenness 

and B) species richness including all OTUs; C) relative species richness of Vibrionaceae and Arcobacter. D) 

Cultivable Vibrionaceae in 1 ml of hemolymph or app. 100 mg of solid tissue. Seawater samples are shown 

in the hemolymph plot for reference. 
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Table I-1. Linear mixed model for for effects of oyster origin and treatment on overall evenness (clear) and 

species richness (shaded) in the hemolymph (Upper) and solid tissues (Lower). 

   DF F1 Significant contrasts Estimate SE 2.5% 
CI 

97.5% 
CI 

Origin 1, 98.237 0.002      
 1, 115.947 1.596      
Treatment 1, 99.089 6.343* Antibiotic vs control 0.032 0.013 0.007 0.057 
 1, 84.596 4.704* Antibiotic vs control 1.210 0.558 0.116 2.303 
Time 5, 91.95 1.277      
 5, 23.474 1.363      
Survival 1, 114.134 8.147** Died vs survived -0.066 0.023 -0.112 -0.021 

Main effects 

 1, 118.609 1.345      
Origin x Treatment 1, 66.48 0.012      
 1, 118.131 0.784      
Origin x Time 5, 92.221 1.012      
 5, 116.06 1.134      
Treatment x Time 5, 92.679 0.632      

Interaction 
terms 

 5, 17.966 1.623      
Oyster    0.061  0.025 0.085 
    0.000  0.000 1.889 
Cage    0.000  0.000 0.027 

Hemolymph 

Random 
variation 

    1.817  0.000 2.479 
          

Tissue 2, 154.823 11.274**** Mantle & gills vs gut 0.040 0.009 0.024 0.057 
 2, 110.027 29.572**** Mantle & gills vs gut 1.531 0.200 1.139 1.922 
Origin 1, 154.983 3.709      
 1, 48.221 1.278      
Treatment 1, 154.835 13.801**** Antibiotic vs control 0.044 0.012 0.021 0.067 
 1, 47.878 0.011      
Time 4, 52.298 0.424      

Main 
effects 

 4, 24.652 3.180      
Tissue x Origin 2, 154.658 2.852      
 2, 109.428 0.411      
Tissue x Treatment 2, 154.009 0.310      
 2, 109.434 1.299      
Origin x Treatment 1, 156.437 2.308      
 1, 48.967 3.475      
Origin x Time 4, 154.888 1.038      
 4, 48.415 1.647      

Treatment x Time 4, 155.397 2.714* (Antibiotic vs control) 
vs cubic trend -0.068 0.026 -0.120 -0.016 

 4, 47.871 0.830      
Tissue x Time 8, 154.434 1.235      
 8, 108.87 2.150      

Tissue x Treatment x 
Origin 2, 154.265 4.678* 

(Mantle & gills vs gut) 
vs (Sylt vs Texel) vs 
(Antibiotic vs control) 

0.023 0.008 0.007 0.040 

Interaction 
terms 

 2, 110.155 0.166      
Oyster    0.000  0.000 Inf 
    1.617  0.000 2.116 
Cage    0.039  0.000 0.083 

Solid tissues 

Random 
variation 

    0.721  0.000 1.811 
1significance levels: * ≤ 0.05, ** < 0.01, *** < 0.001 
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Table I-2. Linear mixed model for for effects of oyster origin and treatment on relative species richness of 

Vibrionaceae (clear) and Arcobacter (shaded) in the hemolymph (Upper) and solid tissues (Lower).  

 
 

  DF F1 Significant contrasts Estimate SE 2.5% 
CI 

97.5% 
CI 

Origin 1, 82.174 1.190      
 1, 97.694 12.081*** Sylt vs Texel -0.020 0.006 -0.031 -0.009 

Treatment 1, 86.039 5.951* Antibiotic vs 
control -0.042 0.017 -0.076 -0.008 

 1, 99.303 2.270      
Time 5, 70.55 2.783* Linear trend -0.091 0.033 -0.155 -0.027 
 5, 91.129 21.187*** Linear trend -0.078 0.012 -0.102 -0.054 
Survival 1, 99.267 2.869      

Main effects 

 1, 117.749 0.250      
Origin x 
Treatment 1, 56.625 0.294      

 1, 54.911 0.209      
Origin x Time 5, 74.851 1.988      
 5, 91.307 0.659      
Treatment x 
Time 5, 75.507 0.919      

Interaction 
terms 

 5, 92.208 2.527      
Oyster    0.099  0.063 0.133 
    0.019  0.000 0.034 
Cage    0.035  0.000 0.092 

Hemolymph 

Random 
variation 

    0.000  0.000 0.014 
          
          

Tissue 2, 110.837 5.927** Gills vs mantle 0.029 0.008 0.013 0.046 
 2, 116.343 6.421** Gills vs mantle 0.017 0.005 0.007 0.027 
Origin 1, 48.861 8.218** Sylt vs Texel -0.028 0.010 -0.048 -0.009 
 1, 56.786 25.600**** Sylt vs Texel -0.024 0.005 -0.034 -0.015 

Treatment 1, 48.344 1.521 Antibiotic vs 
control     

 1, 56.421 0.643      
Time 4, 18.617 1.138      

Main effects 

 4, 57.065 1.924      
Tissue x Origin 2, 110.327 2.460      
 2, 115.74 2.118      

Tissue x 
Treatment 2, 110.475 5.236** 

(Mantle and gills 
vs gut) vs 
(Antibiotic vs 
control) 

0.016 0.005 0.006 0.026 

 2, 115.609 0.874      

Origin x 
Treatment 1, 49.798 5.737* 

(Sylt vs Texel) vs 
(Antibiotic vs 
control) 

0.024 0.010 0.004 0.043 

 1, 56.94 0.125      
Origin x Time 4, 48.99 0.985      
 4, 57.022 0.962      
Treatment x 
Time 4, 48.698 0.872      

 4, 56.045 1.612      
Tissue x Time 8, 109.887 2.002      
 8, 115.156 0.762      
Tissue x 
Treatment x 
Origin 

2, 111.067 1.574      

Interactions 
terms 

 2, 116.34 0.055      
Oyster    0.058  0.026 0.069 
    0.020  0.000 0.026 
Cage    0.016  0.000 0.048 

Solid 
tissues 

Random 
variation 

    0.000  0.000 0.011 
1significance levels: * ≤ 0.05, ** < 0.01, *** < 0.001 
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Effects explaining bacterial community differences within oysters: Tissue and oyster identity  

Within oysters, "-diversity of the host associated microbial communities significantly 

differed between the studied tissues (Figure I-2A, Figure I-2B; Robust Wilcox bootstrapped 

ANOVA: evenness: F3,81.56 = 9.088, p < 0.001, effect size = 0.368; species richness: F3,98.493 = 68.052, 

p = <0.001, effect size = 0.747), with substantially lower diversity observed in the gut and the 

highest species richness in the hemolymph.  A similar pattern was observed for the proportion 

of species assigned to Arcobacter (F3,126.746 = 39.886, p < 0.001, effect size = 0.673) - and 

Vibrionaceae (F3,127.508 = 7.767, p < 0.001, effect size = 0.376, Figure I-2C). Species richness of 

Vibrionaceae was positively correlated with density of active bacteria cultured from solid tissues 

(Spearman's #: 0.280, p < 0.001, CI = (0.143, 0.427)), but not in the hemolymph (Spearman's #: 

0.126, p= 0.137), indicating that the increase in Vibrio diversity in solid tissues could be a sign of 

systemic infection. On the other hand, the evenness of the Vibrionaceae community was 

negatively correlated with cultivability in both hemolymph (Spearman's #: -0.196, p = 0.020, CI 

= (-0.239, -0.021)) and solid tissues (Spearman's #: -0.208, p = 0.004, CI = (-0.347, -0.080)), 

suggesting that high activity of Vibrionaceae was associated with loss of diversity, and probably 

due to the proliferation of a few, potentially pathogenic OTUs. 

Tissue also explained a significant portion of variance in the community structure, especially 

when phylogenetic relatedness was taken into account (Figure I-4A), indicating substantial 

ecological differences between the tissues. The hemolymph communities were clearly 

distinguished from solid tissues by smaller within-group variance (ANOVA testing the 

homogeneity of multivariate dispersions: F3,328 = 52.824, p = 0.001) and by higher relative 

abundance of $-Proteobacteria (Arcobacter), Flavobacteria, Fusobacteria (Psychriliobacter) and 

%-Proteobacteria (Oceanospirillaceae, Vibrionaceae) and fewer Spirochaetes (Brachyspirae) and 

&-Proteobacteria (Table I-S1). Among the solid tissues, the most conspicuous difference was 

the high abundance of Mollicutes (Mycoplasma) in the gut, while the mantle and gill 

microbiomes were in general quite similar to each other.  

In addition to the large effect of tissue, a considerable amount of variability was explained by 

community similarity between individual oysters (Figure I-4). In this case, however, the 

explained variability was higher when phylogenetic relatedness was disregarded. This suggests 

that the shared basic phylogenetic structure is further shaped by genotype, condition or simply 

spatial autocorrelation, resulting in the fine-scale individual variation between the oysters. 

 

 



C H A P T E R  I  

 41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I-3. "-diversity and composition of seawater and oyster microbiota. Above: NMDS plot of Bray-

Curtis distances between the samples showing differences between the tissues and seawater samples. Below: 

mean relative abundances of classes in the seawater and within tissues, grouped according to oyster origin 

and treatment. Shading lines show mean relative abundances of Vibrionaceae (within #-Proteobacteria) and 

Arcobacter ($-Proteobacteria).  
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Effects explaining bacterial community differences within oysters: experimental translocation and 

antibiotic treatment 

We examined the effects of population origin and antibiotic treatment on "-diversity 

separately for the hemolymph and solid tissues (Figure I-2A, 2B, Table I-1). In the hemolymph, 

both the species richness and evenness were higher in the treated animals, regardless of their 

origin (evenness model: dAIC = -110.293, marginal R2 = 0.211, conditional R2 = 0.438; sp. 

richness model: dAIC = 34.214, mar. R2 = 0.222, cond R2 = 0.308). Interestingly, low evenness of 

hemolymph microbiota before the transfer to the field correlated with oyster survival, 

indicating that disrupted community structure associated with few dominating OTUs may have 

played a role in the mortalities. Local and transplanted oysters differed significantly in their 

response to antibiotics: the treatment increased the evenness of the mantle and gill, but not of 

the gut microbiota in Sylt oysters, while the opposite was true for the Texel oysters (evenness: 

dAIC = -169.253, mar. R2  = 0.310, cond. R2 = 0.348; sp. richness: dAIC = 46.934, mar. R2 = 0.361, 

cond R2 = 0.479, Table I-2). Looking at the taxa of special interest (Table I-2, Figure I-2C, Figure 

I-2D), the proportion of species richness assigned to the genus Arcobacter was higher in all 

tissues of Texel oysters and was not influenced by the treatment (hemolymph: dAIC = -59.474, 

mar. R2 = 0.526, cond. R2 = 0.590; solid tissues: dAIC = -247.668, mar. R2 = 0.288, cond R2 = 

0.365). In contrast, relative species richness of Vibrionaceae showed a more complex pattern and 

was affected by the antibiotic treatment with different tissue specific responses among local and 

translocated oysters (hemolymph: dAIC = -95.295, mar. R2 = 0.211, cond. R2 = 0.577; solid 

tissues: dAIC = -206.342, mar. R2 = 0.278, cond R2 = 0.496). In detail, antibiotics reduced 

Vibrionaceae diversity in the hemolymph regardless of the origin, while the effect was small in 

solid tissues of Sylt oysters. In Texel oysters, on the other hand, antibiotics had a strong effect, 

especially in the gut. This pattern was partly reflected for active cultivable Vibrionaceae. Here, 

cultivable Vibrionaceae in hemolymph from both oyster sources were strongly reduced by 

antibiotic treatment (Anova of quasipoisson glm: treatment: F1,135  = 13.344, p < 0. 001, origin: 

F1,135 = 2.509, p = 0.116, treatment x origin: F1,135  = 0.110, 0.740). In the solid tissues, on the other 

hand, the cultivable Vibrionaceae were much more numerous in Texel oysters (origin, mantle: 

F1,57  = 6.327, p = 0. 015, gills: F1,60  = 18.754, p < 0. 001, gut: F1,62  = 10.333, p = 0. 002) with the 

strong response to the antibiotic treatment in the gills and the gut (treatment, mantle: F1,57  = 

0.119, p = 0. 732, gills: F1,60  = 9.669, p = 0. 003, gut = F1,62  = 9.105, p = 0. 004).  

In order to examine the effects of population origin and antibiotics on &-diversity, we 

analyzed each tissue separately (Figure I-3, Figure I-4). Despite high temporal/individual 

variability, the antibiotic effects and population signature were apparent throughout the 
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experiment. Although there were significant differences in abundance of some minor genera 

(mainly assigned to Flavobacteria, "- and %-Proteobacteria) in the hemolymph, neither 

Vibrionaceae nor Arcobacter showed significant variation (Table I-S2). Differences between 

oyster groups resulted mostly from shifts on the OTU-level within genera. For example, 

different Arcobacter OTUs characterized the hemolymph communities of Texel and Sylt oysters 

(Table I-S3). Higher-level taxonomical composition was very similar regardless of treatment or 

origin.   

 

 

 

 

 

 

 

 

 

Figure I-4. Effect sizes of experimental factors on bacterial community dissimilarities expressed as the 

percentage of explained variance in the underlying distance matrices by A) tissues and individuals and   B) 

oyster origin, antibiotic treatment, time and their interactions in single tissues. Since separate individuals 

were sampled every day, time is partially confounded with between individual variation.  

 

Association networks 

The vast majority (89.7%) of associations in the whole-oyster network occurred within 

tissues (Figure I-5). Only the hemolymph, however, had higher connectivity than expected by 

chance (compared to 1000 random node subsets, p < 0.05). We therefore focused on 

hemolymph for further analysis, and constructed a network for each treatment x origin 

combination to examine microbial associations in response to treatment (Figure I-6). All 

resulting networks shared a densely inter-connected area, whose core consisted of the same 

OTUs that were also abundant in the seawater samples and establish the connection between 

hemolymph and the environment. Other motifs, dominated by Vibrionaceae or Arcobacter and 

some anaerobes such as Fusobacteria and Clostridia, were recovered in each oyster group and 
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they tended to be negatively associated with the first environmental subcluster. The recurrence 

of these subclusters in all treatment groups indicates that the composition of hemolymph 

microbiota was similar in all groups and largely determined by factors not controlled for in our 

design. However, while antibiotic treatment did not affect the composition of hemolymph 

microbiomes, it significantly affected the co-occurrence among these OTUs, i.e. the network 

structure. Antibiotics strongly reduced modularity and increased the connectivity density, 

which may reflect more intense between-OTU interactions in antibiotic treated communities 

(Table I-3, Supplementary Table I-S5). Since these networks also showed a higher proportion 

of negative correlations, a shift to more competition-based interactions could be observed 

(Table I-3). On the other hand, the network based on the non-antibiotic-treated oysters from 

Texel had a pronounced modular structure accompanied by a lower clustering coefficient, 

reflecting more sparsely connected modules.  

 

 

Table I-3. Properties of the 

networks depicted in Figure I-6. 

Detailed comparison with random 

networks can be found in 

Supplementary Table I-S5. 

 

 

 

 

Discussion 

Intentional (transport, cultivation) and unintentional (invasion) translocation exposes 

plants and animals to a variety of novel abiotic and biotic conditions. One example is exposure 

to new microbiota colonizing hosts, where they interact not only with the host but also with the 

resident microbiome. The high mortality of translocated oysters in our study could suggest such 

interactions, since resetting the microbial communities by administering antibiotics prior to 

deployment in the field significantly reduced mortality in translocated hosts. Although this 

effect might have been due to mitigation of a transport-stress induced bacteriosis, we did not 

record any mortality in the initial lab based rearing and could not detect any signs of previous 

Sylt Texel  
Control Antibiotic Control Antibiotic 

# samples 35 36 32 38 
# nodes 149 211 129 190 
# edges 721 2348 362 2742 
% positive edges 82.1 61.1 85.4 56.7 
Average degree 9.678 22.256 5.612 28.863 
Max degree 49 94 24 93 
# clusters 12 5 7 2 
Connectance 0.065 0.106 0.044 0.153 
Average path length 3.331 2.693 3.604 2.417 
Average betweenness 
centrality 0.011 0.008 0.015 0.007 

Modularity 0.224 0.053 0.599 0.036 
Global clustering 
coefficient 0.625 0.540 0.459 0.565 
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disease or significant differences in immune response. Additionally we never observed 

systematic mortalities of transported oysters in previous lab experiments (Wendling and 

Wegner, 2015). Genotypes were randomly distributed between antibiotic treatments (Moehler 

et al., 2011), suggesting that it is not the direct interactions between hosts and new microbiota, 

but more likely the interactions between the resident bacteria and the new environment that 

might have played a role in mortalities.  

 

 

 

Figure I-5. Association network showing 

relationships within and across the tissues. 

Nodes are colored by taxonomy, as in Figure 

I-3B and the size is proportional to degree. 

Full line denotes co-occurrence, the dashed 

line denotes co-exclusion; edge weight is 

proportional to correlation strength. Color 

of edges connecting OTUs within the tissue 

correspond to color of that tissue, inter-

tissue edges are grey.  

 

 

 

The oysters that eventually died had less even hemolymph community structure prior to 

deployment, underlining the importance of evenness for a successful response to 

environmental challenges (Wittebolle et al., 2009). In conjunction with results from Chapter 

III, such distribution anomalies of hemolymph microbiota may help predict oyster disease 

prior to its visible signs (Ransome et al., 2014). Similarly, allowing oysters to partially recover 

their microbiota after antibiotic treatment prior to deployment resulted in higher bacterial 

diversity, which may have prevented potentially deleterious effects of depleted microbial 

communities. Moreover, the higher degree of connectivity in co-occurrence High loads of 

active Vibrionaceae in solid tissues of translocated non-antibiotic treated oysters from Texel 

contrasted the low baseline Vibrionaceae activity observed in the other groups of oysters and 

could represent signs of systemic infections and thus a proximate cause of mortality. Unlike the 

solid tissues, the Vibrionaceae community in the hemolymph was species rich and active in all 

Gills

Mantle

Gut

Hemolymph
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healthy oysters, underlining the importance of taking a tissue-specific analysis to understand the 

effects of microbiome structure and composition on the host. 

The hemolymph microbiome was different in many ways from the communities in solid 

tissues. In general, all hemolymph communities had similar higher-level taxonomical 

composition. Fine scale differences could be observed only on the lower taxonomic levels (e.g. 

Arcobacter OTUs), suggesting that hemolymph is characterized by a relatively stable 

microbiome that is fine-tuned depending on the environment or oyster condition (Chapter III). 

Microbiome stability became especially obvious by recurrent core OTU assemblages in all 

groups. These assemblages might represent alternative community states, possibly related to 

changes in oxygen concentration due to tidal-cycle associated valve closing (Sow et al., 2011; 

Faust et al., 2012), as the prevalence of aerobic, seawater-deduced bacteria in one subcluster 

and dominance of microaerobic or anaerobic species (Levican et al., 2014) in the other might 

suggest. Switching microbial activity between these two states could represent a healthy 

microbiome responding to predictable recurring environmental conditions such as tides 

(Relman, 2012). Alternatively, the dominance of an anaerobic subcluster - also containing 

Vibrio and Shewanella - could be associated with deteriorated health (McHenery and Birkbeck, 

1986). This may suggest a close connection to changes in the internal and external oyster 

environment important for acclimation and maintenance of homeostasis. 

networks likely reflects community stability, and with this the successful establishment of 

oysters in the new environment (Estrada, 2007; Scheffer et al., 2012). However, the 

interpretation of the co-occurrence network topology is not straightforward (Faust and Raes, 

2012), and its ecological implications vary widely depending on the sort of input data and 

network building criteria (Faust et al., 2012; Widder et al., 2014; Williams et al., 2014; Peura et 

al., 2015). In addition, the relationship between stability and structure can differ substantially 

between the network types (Thebault and Fontaine, 2010) and depending on kind of 

disturbance (Holme, 2011). High modularity and lower clustering coefficients in non-treated 

oysters from Texel could indicate decreased compensation capacity and thus lower ability to 

respond to disturbance (Yachi and Loreau, 1999). Although the exact processes behind the 

observed changes in community structure remain unclear, oysters as filter feeders are in 

constant contact with a multitude of bacteria, and intense interactions of the resident 

microbiota with the novel biotic environment could have affected community stability. Such 

destabilization of the hemolymph microbiome might explain the spillover of Vibrionaceae into 

solid tissues, resulting in systemic disease and higher mortality of translocated oysters. 
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Figure I-6. Association networks of hemolymph OTUs grouped by oyster origin and treatment. Black frame 

denotes OTUs found in all four networks. Nodes are colored by taxonomy, as in Figure I-3 and the size is 

proportional to degree. Full line denotes co-occurrence, the dashed line denotes co-exclusion; edge weight is 

proportional to correlation strength. Edges connecting OTUs within the same class are colored by taxonomy, 

else they are grey. !  Arcobacter; !Vibrionaceae. In the last network, "+" denotes OTUs that are abundant 

in the seawater.  

 

 

While the high diversity of hemolymph microbiota may reflect its dynamic role in the 

interaction with the environment, the lower diversity of gut or gill microbiota may be due to 
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Texel

Sylt

ControlAntibiotic

!

!

!

!

!
!!

!



C H A P T E R  I  

 48 

 

et al., 2010; Fernandez‐Piquer et al., 2012; Trabal Fernandez et al., 2013) or other important 

physiological processes. For example, increased abundance of Mycoplasma was previously 

found in the gills and the hemolymph of stressed and dead oysters (Chapter III, Wegner et al., 

2013). Mycoplasmas have been reported from the guts of crabs (Givens et al., 2013), as well as 

from the oyster stomachs (King et al., 2012) and the gut goblet cells (Harshbarger and Chang, 

1977). Sydney rock oysters actually lost Mycoplasma-like symbionts from digestive glands 

following infection (Green and Barnes, 2010). Tanaka et al. (Tanaka et al., 2004) proposed that 

Tenericutes might act as amino-acid producers, and they have been shown to increase survival 

of terrestrial isopods when they are starved or fed with low quality food (Fraune and Zimmer, 

2008). The high numbers of these bacteria in the gut in the current study could thus also indicate 

a role in oyster nutrition, highlighting the tissue specific context in which bacterial roles need to 

be considered. 

While it is highly likely that the initial microbiomes differed between locations, it is currently 

unresolved how persistent those differences are over time. We observed the strongest 

differences between gill microbiota of Texel and Sylt oysters throughout the initial phases of 

colonization. Gills show high bacterial activity in Pacific oysters (Hernández-Zárate and 

Olmos-Soto, 2006) and many bivalve bacterial symbionts are situated here (Duperron et al., 

2007; Dubilier et al., 2008; Rodrigues et al., 2010). While gill community differences could be 

attributed purely to carry over effects of the original site (Trabal Fernandez et al., 2013; Wegner 

et al., 2013) that could gradually disappear (Wendling et al., 2014), previous studies showed that 

gill microbiomes can exhibit long-term stability (Zurel et al., 2011) and correlate with their host 

genotype (Wegner et al., 2013). Long term stability of these differences could therefore also 

reflect differences in the genetic structure and history of both oyster populations (Moehler et 

al., 2011). 

In conclusion, we present a comprehensive, experimental study that manipulated the oyster 

microbiota and examined the between-tissue variation in the context of translocation. Our data 

highlight the importance to consider microbiota in a tissue–specific context to understand the 

interaction of the holobiont with a new environment. Specifically, the high abundance of active 

Vibrionaceae in the hemolymph of healthy oysters is in stark contrast to low Vibrionaceae loads in 

solid tissues where high loads can cause systemic disease. Although the microbiota in the solid 

tissues are likely important for oyster physiology and metabolism, the stability and quick 

response to environmental changes indicates the prominent role of the hemolymph 

microbiome for oyster homeostasis, which is rather relying on community structure than 

taxonomic composition. In order to elucidate the processes behind the observed changes in 

community diversity and structure and to better understand function of microbiota in different 
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tissues, more studies focusing on the metabolism and physiology of functionally important 

symbionts and of the whole community are needed.  
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C HA P T E R  I  S U P P L E M E N T S  

Table I-S1. Multivariate generalized linear model (negative binomial) showing significant differences at the 

class level between the oyster tissues, origin and treatment.  

Multivariate scores df Score p     
Tissue 3, 328 740.74 0.001     
Origin 1, 327 127.93 0.001     
Treatment 1, 326 130.94 0.001     
Time 5, 321 500.43 0.001     
Tissue x Origin 3, 318 159.80 0.001     
Tissue x Treatment 3, 315 128.85 0.001     
Origin x Treatment 1, 314 116.16 0.001     
Tissue x Origin x Treatment 3, 311 125.39 0.001     
Significant univariate scores Tissue Origin Treatment Time Tissue x Origin Tissue x Treatment Origin x 

Treatment 
Tissue x Origin x 

Treatment 
Acidimicrobiia 23.15 1.19 9.29 27.45 4.96 3.97 3.40 5.89 
Actinobacteria 48.81 0.93 17.95 80.52 3.41 6.49 0.00 0.10 
Nitriliruptoria 18.08 2.27 0.39 18.98 1.60 2.54 4.13 0.00 
Bacteroidia 32.25 0.01 0.23 9.41 0.65 2.66 0.38 2.33 
Flavobacteriia 81.12 9.30 4.42 29.48 2.68 10.41 27.29 9.98 
Sphingobacteriia 8.27 0.79 0.65 26.36 2.90 5.40 2.45 3.84 
Bacteriodetes other 7.77 0.04 3.12 46.52 2.20 9.85 0.28 6.91 
Synechococcophycideae 4.83 0.95 5.56 21.18 0.70 1.09 0.61 3.49 
Cyanobacteria other 17.22 0.25 6.66 20.32 8.90 3.89 0.85 4.48 
TG3 8.87 0.53 1.86 24.44 26.35 6.50 0.05 0.72 
Bacilli 72.43 2.21 3.82 18.20 3.11 6.42 0.16 5.75 
Clostridia 20.12 25.99 15.94 5.52 2.86 0.67 0.31 3.29 
Fusobacteria 66.50 0.62 18.62 4.14 0.19 10.60 0.16 6.45 
BD1-5 52.99 9.99 7.32 35.11 9.70 6.11 24.16 14.67 
!"Proteobacteria 74.81 20.62 0.74 64.20 5.81 13.06 11.80 3.47 
#"Proteobacteria 75.11 3.38 12.23 13.19 10.21 6.50 0.34 9.44 
$"Proteobacteria 62.22 1.73 25.45 35.98 2.89 3.35 0.12 4.21 
%"Proteobacteria 108.77 18.58 0.81 46.41 3.97 10.06 9.18 4.73 
&"Proteobacteria 42.53 20.55 3.59 4.80 24.21 5.67 23.05 13.21 
Proteobacteria other 86.79 5.53 1.05 23.06 12.31 8.93 0.09 14.60 
[Brachyspirae] 38.80 34.22 3.38 22.07 7.25 3.23 7.83 0.95 
Spirochaetes 12.51 1.91 1.16 3.85 1.04 1.78 0.58 1.83 
Mollicutes 207.27 0.05 5.18 78.37 6.69 2.02 3.47 0.66 
unclassified 21.12 4.56 15.38 22.54 10.74 1.10 11.80 5.70 

Coefficients Tissue Origin Treatment Tissue x Origin Origin x 
Treatment 

 (Mantle, gills, gut) - 
Hemolymph 

(Mantle, Gills) - 
Gut 

Gills-Mantle Sylt-Texel Treated-Control (Mantle, gills, gut) - 
Hemolymph : Sylt-

Texel 

(Mantle, Gills) - 
Gut : Sylt-Texel 

Texel-Sylt : 
Control-Treated 

Acidimicrobiia 0.14    0.32    
Actinobacteria 0.24 0.34   0.47    
Nitriliruptoria -4.00        
Bacteroidia -0.33        
Flavobacteriia -0.41 0.35  -0.18    0.29 
Sphingobacteriia         
Bacteriodetes other -0.19        
Synechococcophycideae         
Cyanobacteria other         
TG3       1.91  
Bacilli 0.54        
Clostridia  0.41 -0.47 -0.49 0.37    
Fusobacteria -0.55    -0.48    
BD1-5 -0.48 0.30 0.62 -0.53    0.61 
!"Proteobacteria -0.18 0.41 0.51 0.38    -0.19 
#"Proteobacteria 0.49    0.33    
$"Proteobacteria  0.35   0.44    
%"Proteobacteria -0.22  0.36 -0.25     
&"Proteobacteria -0.16   -0.31  -0.09  0.24 
Proteobacteria other  -0.83       
[Brachyspirae]   -0.62 0.99     
Spirochaetes         
Mollicutes 0.43 -1.16       
unclassified   0.62  -0.41   -0.33 
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Table I-S2. Multivariate generalized linear model (negative binomial) showing effects of oyster origin and 
treatment on the abundances of genera within the hemolymph. Only genera with significant differences are 
listed. 
Multivariate scores df Score p        
Origin 1, 139 179.376 0.001        
Treatment 1, 138 180.330 0.001        
Time 5, 133 722.795 0.001        
Survival 1, 132 67.462 0.774        
Origin x Treatment 1, 131 132.710 0.001        
Origin x Time 5, 126 364.293 0.843        
Treatment x Time 5, 121 348.940 0.976        
Significant univariate scores        Coefficients 

Class Order Family Genus Origin Treatment Time Origin x 
Treatment 

 Texel-
Sylt 

Control-
Treated 

Texel-
Sylt : 

Control-
Treated 

Acidimicrobiia Acidimicrobiales C111 NA 0.94 9.90 23.18 6.78     
Actinobacteria Actinomycetales NA NA 0.35 2.58 24.05 0.40     
Nitriliruptoria Nitriliruptorales Nitriliruptoraceae Nitriliruptor 1.69 0.87 21.74 3.48     
Flavobacteriia NA NA NA 1.09 2.70 40.25 0.46     
Flavobacteriia Flavobacteriales Flavobacteriaceae NA 8.71 10.32 2.66 16.06    0.32 
   Lutimonas 0.69 8.05 31.64 5.96     
   Olleya 26.22 1.01 21.86 21.97  0.76  0.58 
   Polaribacter 4.09 4.83 53.74 0.04     
   Sediminicola 1.09 1.87 42.68 3.98     
   Tenacibaculum 3.92 7.31 21.46 2.64     
   Winogradskyella 11.77 1.13 5.59 0.04  -0.34   
   unclassified 7.12 0.95 22.41 1.36     
  unclassified unclassified 3.47 0.10 22.43 0.43     
Sphingobacteriia Sphingobacteriales Balneolaceae NA 1.64 2.71 26.92 2.03     
  Ekhidnaceae NA 2.75 6.56 33.53 2.50     
Bacteroidetes unclassified unclassified unclassified 1.44 1.02 29.58 8.69     
Synechococcophycideae Synechococcales Synechococcaceae Prochlorococcus 1.15 1.82 32.47 3.49     
Cyanobacteria unclassified unclassified unclassified 1.03 5.27 65.41 0.22     
TG3 TG3-2 NA NA 1.50 2.53 55.62 0.15     
Clostridia Clostridiales Clostridiaceae NA 11.89 13.92 11.41 0.60  0.79 -0.14  
BD1-5 NA NA NA 5.69 1.98 38.65 10.72     
!-Proteobacteria Rhodospirillales NA  12.69 3.36 5.34 1.43  0.39   
 Rickettsiales Pelagibacteraceae NA 2.82 4.15 31.74 2.45     
 Rhodobacterales Rhodobacteraceae Octadecabacter 1.01 3.27 39.76 0.12     
   Phaeobacter 27.32 2.10 9.23 5.39  -0.64   
   Rhodobaca 0.03 0.01 20.76 3.91     
   Thalassobius 3.57 2.83 50.77 3.62     
   unclassified 11.22 1.82 11.52 6.88  -0.29   
 Rhodospirillales Rhodospirillaceae NA 1.37 4.13 34.48 0.04     
 Rhizobiales unclassified unclassified 6.27 18.60 8.57 2.36   -0.85  
$-Proteobacteria Syntrophobacterales Desulfobacteraceae Desulfococcus 0.29 2.77 33.28 1.99     
 Desulfobacterales Desulfobulbaceae NA 0.16 5.80 49.58 5.37     
 Desulfobacterales Desulfobulbaceae Desulfotalea 1.74 11.63 19.14 0.43   -1.31  
 Desulfuromonadales Desulfuromonadaceae NA 0.03 3.24 32.71 1.07     
%-Proteobacteria Campylobacterales Campylobacteraceae Arcobacter 4.45 4.06 39.48 1.39     
&-Proteobacteria Chromatiales NA NA 1.60 4.99 39.79 9.04     
 NA NA NA 2.95 5.34 43.99 6.10     
 Alteromonadales NA NA 4.37 15.78 36.00 0.09   -0.60  
 Alteromonadales Alteromonadaceae HTCC2207 0.90 2.77 35.31 4.00     
 Alteromonadales Colwelliaceae Thalassomonas 10.91 2.13 6.87 20.28  -0.63  -0.57 
 Alteromonadales Colwelliaceae unclassified 14.45 24.77 10.93 2.18  -0.23 0.42  
 Oceanospirillales Halomonadaceae CandidatusPortiera 0.84 3.53 31.27 1.63     
 Pseudomonadales Moraxellaceae Psychrobacter 3.76 0.02 26.37 1.01     
 Oceanospirillales Oceanospirillaceae Marinomonas 16.03 4.96 27.53 4.11  0.74   
  Oceanospirillaceae Neptunomonas 14.03 2.38 16.63 1.09  -0.51   
  Oceanospirillaceae Oceanospirillum 15.81 4.70 26.70 0.10  0.91   
  Oleiphilaceae NA 25.57 0.09 5.59 4.59  -0.45   
 Alteromonadales OM60 NA 0.00 4.70 35.57 6.59     
  Pseudoalteromonadaceae Pseudoalteromonas 4.13 10.45 28.42 0.47     
   unclassified 17.21 9.03 2.96 10.28  0.65   
  Psychromonadaceae Psychromonas 4.34 12.98 20.67 0.70   -0.49  
  Shewanellaceae Shewanella 7.11 3.16 32.00 3.80     
 Thiotrichales Thiotrichaceae Leucothrix 15.62 0.84 14.48 2.23  -0.42   
 unclassified unclassified unclassified 0.02 0.45 22.07 5.03     
Proteobacteria  unclassified unclassified unclassified 14.76 0.00 9.47 0.05  0.29   
[Brachyspirae] [Brachyspirales] Brachyspiraceae NA 15.41 12.85 8.17 1.32  -1.24 0.17  
Mollicutes Mycoplasmatales Mycoplasmataceae Mycoplasma 1.28 2.01 23.79 0.02     
Bacteria unclassified unclassified unclassified 7.02 15.45 21.49 16.02   0.42 -0.39 
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Table I-S4. Multivariate generalized linear model (negative binomial) showing effects of oyster origin and 

treatment on the genera abundances in solid tissues. Only genera with significant differences are listed. 

Gills  Gut Mantle 
Multivariate scores df Score p   df Score p  df Score p 

Origin 1, 66 153.105 0.001  Origin 1, 59 47.191 0.851 Origin 1, 60 124.
361 

0.00
1 

Treatment 1, 65 116.822 0.001  Treatment 1, 58 62.953 0.054 Treatment 1, 59 92.7
33 

0.00
1 

Time 4, 61 381.637 0.001  Time 4, 54 198.860 0.998 Time 4, 55 270.
413 

1.00
0 

Origin x Treatment 1, 60 79.873 0.999  Origin x Treatment 1, 53 42.034 1.000 Origin x 
Treatment 1, 54 54.7

25 
1.00

0 

Origin x Time 4, 56 267.637 1.000  Origin x Time 4, 49 138.046 1.000 Origin x 
Time 4, 50 197.

930 
1.00

0 

Treatment x Time 4, 52 231.915 1.000  Treatment x Time 4, 45 566.184 0.003 Treatment 
x Time 4, 46 202.

872 
1.00

0 
Significant univariate scores              

Class Genus Origin Treatment Time  Class Genus Treatment x 
Time       

!"Proteobacteria unclassified 11.91 1.56 1.35  Mollicutes Mycoplasma 361.25       

Clostridia uncl. 
Clostridiaceae 14.30 4.88 7.23           

#"Proteobacteria Arcobacter 11.59 0.74 22.01           

$"Proteobacteria uncl. 
Vibrionaceae 13.22 0.01 20.31           

$"Proteobacteria Pseudoalteromo
nas 12.59 6.74 13.18           

unclassified unclassified 12.04 7.40 13.82           
Coefficients              

  Texel-Sylt      
(Control - 

Treated):linear 
trend 

      

!"Proteobacteria unclassified -0.87    Mollicutes Mycoplasma 12.56       

Clostridia uncl. 
Clostridiaceae 0.90             

#"Proteobacteria Arcobacter 0.86             

$"Proteobacteria uncl. 
Vibrionaceae 0.67             

$"Proteobacteria Pseudoalteromo
nas 1.02             

unclassified unclassified -0.35             

 

Table I-S5. Properties of original hemolymph networks (clear) and average of 1000 random networks 

(shaded) with same number of nodes and edges. 

 

 

 

 

 

 

 

 

Sylt Texel  
Control Antibiotic Control Antibiotic 

# samples 35 NA 36 NA 32 NA 38 NA 
# nodes 149 149 211 211 129 129 190 190 
# edges 721 721 2348 2348 362 362 2742 2742 
% positive edges 82.1 NA 61.1 NA 85.4 NA 56.7 NA 
Average degree 9.678 9.68 22.256 22.26 5.612 5.61 28.863 28.86 
Max degree 49 18.39 94 35.32 24 12.35 93 43.03 
# clusters 12 1.01 5 1 7 1.41 2 1 
Connectance 0.065 0.07 0.106 0.11 0.044 0.04 0.153 0.15 
Average path length 3.331 2.44 2.693 1.98 3.604 2.98 2.417 1.86 
Average betweenness 
centrality 0.011 0.01 0.008 0 0.015 0.02 0.007 0 

Modularity 0.224 0.17 0.053 0.05 0.599 0.35 0.036 0.04 
Global clustering 
coefficient 0.625 0.07 0.540 0.11 0.459 0.04 0.565 0.15 
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C H A P T E R  I I  

Scale-dependent spatiotemporal variation and long-term 
disturbance response of Pacific oyster hemolymph microbiota 

 

Abstract 

The composition and dynamics of microbiota are important for defense against pathogens 

but also for acclimation to new environments. To secure resistance against pathogens, a stable, 

compact microbiome is advantageous, while acclimation requires prompt changes of 

microbiome composition in response to environmental conditions. These opposing forces are 

particularly relevant for marine bivalves including oysters, because these important aquaculture 

species are routinely translocated around the world and have repeatedly experienced disease 

associated mass mortality events.  Bivalves, and oysters in particular, harbor a diverse and 

functionally important microbial community within the hemolymph. However, the role of 

environmental and host genetic factors for the assembly of hemolymph microbiomes is largely 

unknown, and the few investigations of natural temporal and spatial variation of the 

hemolymph microbiome have been limited to few taxa (e.g. Vibrio spp.). In this study, we 

examined the seasonal dynamics of diversity and composition of the complete hemolymph 

microbiome of oysters that were reciprocally transplanted between two locations in the Wadden 

Sea (Sylt and Texel), characterized by two independent and genetically differentiated invasions. 

To control for the effect of previous bacterial colonization prior to field deployment, we 

additionally treated half of the oysters with antibiotics and investigated community similarity 

differentiating between the complete microbiome and its resident part respectively. With our 

spatially stratified experimental design we could identify important processes and factors 

affecting the composition of hemolymph microbiota at various scales. We found similar 

phylotype composition in all oysters and considerable large-scale spatiotemporal stability. 

Small-scale variability was probably associated to variation in microenvironmental conditions. 

Despite of this high variability we found persisting effects in the composition of resident 

microbiota in both of our treatments. The antibiotic treatment had a long persisting effect on 

within and between host diversity, whereas differences between oyster origins gradually 

disappeared in both locations, indicating that in the long run environmental factors outweighed 
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the genetic differences between the oyster populations. We can thus conclude that 

environmental influences on oyster hemolymph microbiota are dampened by its stable structure 

but that a profound disturbance can have long-term consequences. 
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Introduction 

!

Pacific oysters (Crassostrea gigas) are hardy intertidal animals that have invaded coastal 

habitats throughout the world, following the intentional translocations for aquaculture purposes 

(Ruesink et al., 2005). They can strongly impact invaded ecosystems (Kochmann et al., 2008; 

Thieltges et al., 2009; Padilla, 2010) and therefore the factors that affect the spread of Pacific 

oysters can have far-reaching consequences. One important aspect of animal biology in general 

are the effects of associated microbiota (McFall-Ngai et al., 2013) and understanding the factors 

and processes that shape the oyster microbiota are of considerable ecological relevance. 

Moreover, as translocations are an ongoing practice in aquaculture, studying response of the 

oyster holobiont to new environments over extended periods of time - including the changes in 

the microbiome itself - also addresses commercial interests (Muehlbauer et al., 2014). 

Hemolymph is the blood analogue of invertebrates with important immune functions. 

Unlike blood, however, hemolymph abounds with microbial life also in healthy animals, and 

parts of these hemolymph microbiota have recently been shown to fulfill immune function for 

the defense of the host by producing antimicrobial compounds (Defer et al., 2013; Desriac et al., 

2014). In addition, the hemolymph community structure is an indicator of host condition 

(Chapter III). While the hemolymph communities prevent establishment of external pathogens, 

their composition responds quickly to changes in abiotic environment, thus contributing to 

environmental acclimation (Chapter III). Despite the pivotal role of hemolymph microbiome 

for oyster fitness, the studies considering its natural variation have been limited to cultivable 

and potentially pathogenic bacteria, mostly of the genus Vibrio (Garnier et al., 2007; Wendling 

et al., 2014). Vibriosis imposes a strong selection pressure on oyster populations (Wendling and 

Wegner, 2015), but Vibrio sp. are also commonly isolated from healthy oysters (Prieur et al., 

1990; Garnier et al., 2007; Wendling et al., 2014). Moreover, unlike transient microbiota, oyster-

associated Vibrio spp. persist under depuration conditions (that is, in the absence of source 

population) and are thus considered to be a part of resident oyster microbiome. 

The prompt adjustments to environmental conditions, few barriers between the open oyster 

circulatory system and its surroundings, and high filtration rates (Troost, 2010) would suggest 

that the hemolymph microbiome is shaped mainly by immigration and that new colonizers 

quickly replace resident bacteria. However, transplant experiments demonstrated the 

persistence of indigenous Vibrio populations even months after translocation (Wendling et al., 

2014). As the resistance to colonization reflected by high community stability represents an 



C H A P T E R  I I  

 59 

 

important functional aspect of the host-associated microbiota (Shade et al., 2012), it is 

important to also examine how the microbiome as a whole responds to a new environment 

(Chapter I).  

Although marine animals can have species-specific microbiomes with core phylotypes 

shared over large distances, the strongest determinant of community composition is often 

geography (Wilson et al., 2008; Trabal et al., 2012; Burgsdorf et al., 2014; Dishaw et al., 2014). 

The distance-decay relationship is a universal biogeographical pattern that has been 

demonstrated for microbial communities in both marine and terrestrial habitats (Bell, 2010; 

Martiny et al., 2011; Zinger et al., 2014; Nguyen and Landfald, 2015). The drivers behind this 

relationship can differ over spatial scales (Martiny et al., 2011). Moreover, these drivers can 

differ for different taxa, especiallly in a host-associated community, where host genotype might 

affect resident, co-adapted, but not transient bacteria.  Thus, examining the distance-decay 

relationship at different spatial scales within an oyster reef can shed additional light on processes 

and conditions that affect the assembly of the oyster microbiome.  

To combine all these aspects of oyster hemolymph microbiome composition in one 

comprehensive study, we performed a reciprocal translocation experiment with two genetically 

differentiated oyster populations from two sites in the Wadden Sea (Texel and Sylt) (Moehler et 

al., 2011) and repeatedly sampled the same individuals to follow the changes in their microbiota 

over longer time periods (i.e. a summer season). To further disentangle host genotype from 

prior colonization effects, we removed large parts of resident microbiome by antibiotics before 

the deployment in half of the oysters. Moreover, our field deployment allowed us to assess 

spatial variation over small (< 1 m) and medium scales (101-102 meters, within site) for the 

microbiome as a whole and for resident microbiota respectively. With this spatially and 

temporally stratified sampling we can thus identify important processes and differentitate 

between host and environmental factors determining the assembly of oyster microbiome at 

various spatial and temporal scales. 

Material and Methods 

Biological material 

To examine the natural spatial and temporal variation of Pacific oyster hemolymph 

microbiota and effects of population origin, we reciprocially transplanted oysters from the 

southern Wadden Sea to the Northern Wadden Sea and repeatedly sampled hemolymph from 

the same individuals througout the summer of 2012. The Southern Wadden Sea oysters were 
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collected in de Cocksdorp, Texel, Netherlands (53° 0' N, 4° 54' E) and the Northern Wadden Sea 

oysters were collected at Oddewatt, Sylt, Germany (55° 1' N, 8° 26' E). The oysters were then 

cleaned of epibionts and transported to the AWI Wadden Sea station on Sylt, respectively to the 

NIOZ on Texel. A total of 96 oysters were used in experiment on Texel, and 120 oysters were 

used on Sylt. The animals were treated identically at both sites. Initially, the oysters were kept in 

pre-filtered seawater from their original location at the ambient temperature (~14°C). The 

oysters were pretreated as described in Chapter I. Briefly, half of the oysters were treated with a 

mix of four antibiotics (ampiciline, tetratcycline, gentamycine and kanamycine, SigmaAldrich, 

Hamburg, Germany) to remove resident microbiota and perturb the community structure. 

Three days later, prior to deployment, the hemolymph samples were take from the adductor 

muscle: 200 µl was stored at -80°C for microbiota analyis and 5 µl was plated on TCBS agar to 

determine the abundance of active Vibrionaceae. 

Experimental setup and sampling 

For the field transplant, always four oysters (one from each treatment group) were put in a 

single bag with mesh size of 1 cm, resulting in 20 (Sylt) or 16 (Texel) bags that were brought out 

to the original site of collection on Texel or Sylt. Two bags on Sylt or three bags on Texel were 

always put together on one sampling spot, with distances between the spots being in range of 

tens of meters. In this way, we could estimate how spatial scales affect similarity in microbiota 

composition. The hemolymph was sampled biweekly on Sylt and once a month on Texel. The 

samples were immediately placed on ice. On Sylt, 5 µl of hemolymph was plated on TCBS agar 

immediately upon return to the laboratory. The rest of the sample was frozen at -80°C for DNA 

extraction. We did not perform estimation of Vibrionaceae activity on Texel for logistic reasons. 

We also took 100 ml of seawater at each sampling occasion to determine the composition of 

environmental microbial communities. 

DNA extraction 

DNA extraction, PCR and the sequence quality control were performed as described in 

Chapter I and are therefore only briefly described here. DNA was extracted from app. 200 µl of 

hemolymph with Wizard SV 96 Genomic DNA Purification System (Promega, Manheim 

Germany). The samples were homogenized in a mixer mill (Retsch, Haan, Germany), lysed with 

proteinase K (20 µl of 20 mg/ml solution, SigmaAldrich, Hamburg, Germany) and extracted 
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according to manufacturer's protocols. To check for bacterial contamination of reagents, we 

included blank extractions as well.  

The seawater samples were filtered and the filters were extracted with DNeasy Blood & 

Tissue Kit, Qiagen, Hilden, Germany as described in (Thomsen et al., 2012). The samples were 

exposed to three rounds of bead beating and and cell lysis at 56°C, followed by protein lysis by 

proteinase K and subsequent DNA purification. 

PCR 

PCR (25 µl, 30 cycles, 1 min annealing at 55°C) of the 16s rRNA gene V1-V2 regions was 

performed with equal concentrations of uniquely barcoded 27f and 338r PCR primers, using 0.5 

unit of Phusion Hot Start II High-Fidelity DNA Polymerase per reaction. In addition to 

hemolymph (1 µl/reaction) and seawater (1 µl of 10x diluted/reaction) samples, we performed 

positive and negative control (water as template) reactions for each 96well plate. 

We estimated the amount of PCR product by the image analysis (Image Lab™ Software, 

BioRad, Hercules, CA USA) of agarose gel photographs.  We pooled equal amounts (25-100 

ng/sample) of the products run on a single gel and purified them with MinElute Gel Extraction 

Kit (Qiagen, Hilden, Germany). We measured the DNA concentration in the obtained subpools 

fluorometrically (Qubit dsDNA br Assay Kit, Life Technologies GmbH, Darmstadt, Germany) 

and pooled equal amounts together. The libraries were then sequenced on a MiSeq platform at 

the Max Planck Institute for Evolutionary Biology in Plön, Germany. 

Sequence quality control and preprocessing 

Sequencing libraries were processed together with the samples from Chapter I. We 

performed the quality control (removal of ambiguous bases, homopolymers, chimeras and 

sequencing errors (Huse et al., 2010)), OTU picking  (97% identity) and taxonomy assignment 

(Greengenes taxonomy 13_08 (DeSantis et al., 2006)) as described in Mothur MiSeq SOP!
(Schloss et al., 2009; Kozich et al., 2013). Based on rarefaction curves, we decided to subsample 

the dataset to 10000 reads per sample. The final dataset comprised of 712 samples in total: 8 

seawater, 704 hemolymph (167 laboratory and 537 field). An additional sample from Chapter I, 

representing the seawater community on Sylt at the beginning of June was included.!
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Statistical analysis 

Statistical analyses were performed in R (R Core Team, 2013). The α-diversity analysis was 

based on the Shannon's H index, calculated from the complete subsampled dataset. We first 

tested for differences between the seawater and oysters within a site, and then between the 

oysters from two different sites using non-parametric tests. We tested the differences between 

the pre-deployment communities separately from the field samples, due to specific environment 

(laboratory conditions) and to explicitly determine the initial differences between the groups. In 

order to assess the effects of oyster origin and antibiotic treatment on α-diversity, as well as its 

temporal variability in the field, we fitted a separate linear mixed model for each site (Alexandra 

Kuznetsova, 2014; Bartoń, 2014; Bates D, 2014). 

We employed negative-binomial generalized models (package MASS, (Ripley, 2002)) to 

analyze CFU counts. Because not only Vibrio sp., but also other Vibrionaceae grow on TCBS 

agar and classification of short reads to low taxonomic levels can be unreliable, we decided to 

focus the analyses on the whole Vibrionaceae family, and not just the genus Vibrio. 

In our previous network analysis of OTU associations within hemolymph (Chapter I), we 

identified two main OTU clusters: one consisting of OTUs that were abundant in the seawater 

and the other dominated by Vibrionaceae and Arcobacter. We performed the same anaylsis with 

the hemolymph samples here and again identified these clusters (Figure II-1). We then analyzed 

!-diversity and distance-decay relationship including all OTUs or excluding the "seawater" 

OTUs (based on the network). 

For !-diversity, we removed rare OTUs (<0.1 % relative abundance) in order to reduce the 

dataset complexity (Gobet et al., 2010). We calculated Bray-Curtis distances of hellinger-

transformed OTU tables and analyzed the resulting distance matrices by unconstrained and 

constrained analysis of principal coordinates (CAP, (Anderson and Willis, 2003)) using the 

capscale function and by Permanova (non-parametric permutational multivariate analyis of 

variance (Anderson, 2001)), using the adonis function, both implemented in the vegan package 

(Oksanen et al., 2013). In order to examine how oyster origin, antibiotic treatment and site 

affected the !-diversity throughout the summer, we analyzed the hemolymph communities at 

four time-points: before deployment, and once in June, July and August. Although the oysters at 

Sylt and Texel were not sampled simultaneously, the difference in the field was at most ten days 

and the samples were analyzed together. Two additional time-points were sampled and analyzed 
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on Sylt. In order to determine if communities from the same oyster are more similar to each 

other than to other oysters, we compared the within-and among-oyster Bray-Curtis distances. 

In addition, we calculated the bacterial turnover within oysters as a proportion of OTUs shared 

between the initial and subsequent sampling points (Gobet et al., 2012). We also calculated 

average Bray-Curtis distances of composite communities between the time points in order to 

assess the bacterial turnover at a large spatiotemporal scale. 

 
 

Figure II-1. Association network showing cluster with the "seawater" OTUs.  

 

We analyzed the distance-decay relationship as described in (Martiny et al., 2011). Briefly, 

we used 1- Bray-Curtis distance as a measure of similarity and calculated all pairwise distances 
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between the samples. We then calculated linear models for overall distance-decay relationship 

(between sites), as well as for within-spot (up to 1 m) and between spots (tens of meters) 

distance ranges separately. In order to estimate how this relationship was affected by transient 

OTUs, we performed the analysis excluding the seawater OTUs and compared the resulting 

slopes to the original ones. 

Temperature data were obtained from the Sylt time-series (courtesy of Tatyana Romanova, 

Wadden Sea Station Sylt, Germany) and from NIOZ Jetty, Texel, Netherlands (Aken 2008). 

Results 

α-diversity (Figure II-2) 

In general, both seawater and hemolymph communities on Texel were more diverse than 

their counterparts on Sylt (Asymptotic Wilcoxon Mann-Whitney Rank Sum Test for Shannon's 

H, seawater: median Sylt = 4.468, median Texel = 6.186, Z = -2.558, p = 0.011, effect size = -0.81; 

hemolymph: median Sylt = 3.859, median Texel = 4.435, Z = -7.195, p < 10-6, effect size = -

0.271). The difference between the sites could be partially due to higher temperatures on Texel 

(mean, min. and max. temp.: Texel = 17.61 (15.13, 20.35), Sylt = 16.96 (14.91, 19.24)), as "-

diversity positively correlated with temperature (Kendall's # =  0.167 ± 0.026). Interestingly, the 

hemolymph communities on Texel had lower diversity than the local seawater microbiota (Z = -

2.6293, p = 0.009, effect size = -0.153), while no significant trend could be detected for Sylt 

samples (Z = -1.219, p = 0.228).  

To explicitly determine the initial effects of the treatments in the laboratory conditions, we 

tested the pre-deployment diversity separately from the field diversity dynamics. 

Antibiotic treatment significantly affected the hemolymph communities prior to 

deployment, but it initially decreased diversity at the Texel site and increased diversity on Sylt 

(Anova, treatment x site: F1,158 = 15.775, p < 10-4, linear coefficient (antibiotic-control : Sylt-

Texel) = 0.206 ±0.052, t158 = 3.962, p < 10-4, effect size = 0.302). In addition, we observed higher 

diversity in the local oysters on Sylt, but no effect of origin on Texel (origin x location: F1,158 = 

1.165, p = 0.055; linear coefficient ((oSylt-oTexel):(sSylt-sTexel)): 0.097±0.052, t158 = 1.860, p = 

0.065, effect size = 0.146). Nevertheless,  oyster hemolymph microbiota responded consistently 

to antibiotic treatment irrespective of origin at both sites (treatment x origin: F1, 158 = 0.03, p = 

0.812; treatment x origin x site: F1, 158 = 0.00, p = 0.938). 
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Figure II-2. !-diversity of hemolymph and seawater (+) microbiota on Sylt and Texel throughout the 

experiment. Dotted line represents temperature. 

 

Analysis of α-diversity in the field after deployment (Table II-1) showed that the increased "-

diversity  after antibiotic treatment persisted for at least three weeks on Sylt with similar, 

although not significant, trends observed in antibiotic treated oysters on Texel. While oyster 

origin had no significant overall effect on α-diversity, the initial sorting by treatment was 

reversed towards the end of the sampling period when "-diversity grouped according to oyster 

origin with higher diversity found in translocated oysters from Texel (Figure II-2, Origin x 

Treatment x Time interaction in Table II-1). While communities of translocated treated and 

control Texel  oysters quickly converged after this 3 week period, the effect of antibiotics 

persisted much longer in local Sylt oysters where convergence could be observed only by 

August. Such sorting could only partly be observed or was incomplete at the Texel site where 

higher diversity towards the end oft he experiment was observed mainly in control oysters whith 

translocated oysters from Sylt showing higher diversity than oysters from Texel.  This could 

probably be explained by persistent parts of the microbial communities carried over from the 

original site that were over time complemented by newly aquired taxa at the new site adding up 

to higher overall diversities. Persistence of individual microbial communities could be observed 

by better fits of statistical models containing random effects (oyster, cage and spot) that 

explained substantially more variation in the data (marginal and conditional R2, Table II-1). 

This indicates that the structure of hemolymph microbiota might have been strongly affected by  
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the oyster genotype, but also by microenvironmental conditions at the individual sampling 

spots (such as oyster and algal density, imersion time etc.). 

Fixed effects Sum 
Sq 

Mean 
Sq df F p   Significant contrasts Estimate 2.5% CI 97.5%CI 

Origin 0.46 0.46 1, 58.5 0.32 0.57       

Treatment 3.94 3.94 1, 61.89 2.74 0.10  Antibiotic-Control 0.18 -0.03 0.40 

Time 10.14 5.07 2, 121.78 3.52 0.03  Linear trend 0.35 0.02 0.68 

Origin x Treatment 0.86 0.86 1, 61.85 0.60 0.44       

Origin x Time 1.56 0.78 2, 122.4 0.54 0.58       

Treatment x Time 0.44 0.22 2, 122.15 0.15 0.86       
Origin x Treatment x 

Time 1.41 0.70 2, 122.01 0.49 0.61       

            

Random effects                     

Oyster         0.60 0.00 0.94 

Cage         0.22 0.00 0.67 

Te
xe

l 

Spot               0.41 0.00 0.85 

Fixed effects                     
Origin 0.84 0.84 1, 66.16 0.60 0.44       
Treatment 5.69 5.69 1, 64.06 4.11 0.05  Antibiotic-Control 0.22 0.01 0.43 

Time 17.64 4.41 4, 236.23 3.18 0.01  Linear trend 0.40 0.06 0.73 

Origin x Treatment 0.52 0.52 1, 66.64 0.37 0.54       

Origin x Time 3.59 0.90 4, 237.35 0.65 0.63       

Treatment x Time 14.91 3.73 4, 237.27 2.69 0.03  (Antibiotic-Treatment) x 
Linear trend -0.54 -0.87 -0.21 

Origin x Treatment x 
Time 12.37 3.09 4, 237.62 2.23 0.07  (Sylt-Texel):(Antibiotic-

Control):Quadratic trend -0.39 -0.70 -0.07 

            

Random effects                     

Oyster         0.71 0.52 1.03 

Cage         0.35 0.00 0.70 

Sy
lt 

Spot               0.21 0.00 0.62 

 

Table II-1. Linear mixed models for Shannon's H of hemolymph microbiota on Texel (dAIC=-31.31, 

logLik=-358.40 (df = 16), R2 marginal=0.06, R2 conditional =0.32) and Sylt (dAIC=-36.55, logLik=-576.43 

(df = 24), R2 marginal=0.10, R2 conditional =0.39) during the summer 2012. 

 

β-diversity 

The seawater communities were comparatively homogenous and showed less spatiotemporal 

variation than the hemolymph communities (Analysis of multivariate homogeneity of group 

dispersions: F1, 708 = 123.85, p < 10-6; average Bray-Curtis distance within the groups with 

standard deviation: seawater = 0.567 ± 0.147, oysters = 0.857 ± 0.119). However, only 1% 

variability was explained by type of sample, indicating that the seawater represents an important 
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source of hemolymph microbiota and that the seawater and oyster hemolymph communities 

can be very similar in some cases (Permutational MANOVA seawater vs. hemolymph: F1,551 = 

5.356, R2 = 0.010, p = 0.001, Figure II-S1). Close relationship between the seawater and oyster 

microbiota is further reflected in the association network: one of the major clusters is composed 

primarily of seawater OTUs (Figure II-1). 

Pre-deployment communities were significantly affected by oyster origin and antibiotic 

treatment, as well as by their interaction (Figure II-S2, Table II-2). The community composition 

(Figure II-S3) was stable at the class level and  differed from the field samples by higher relative 

abundances of "- and $-Proteobacteria, mainly Arcobacter and Vibrionaceae and the absence of 

the seawater OTUs. The field communities had similarly uniform higher-taxon composition at 

both sites throughout the sampling period, but, unlike the laboratory samples, they were 

characteized by high relative abundances of Tenericutes and of an unclassified bacterium related 

to Spirochaetes. These abundant bacteria were previously reported from oysters from Australia 

and Japan indicating that they might represent ubiquitous oyster symbionts.  

Following the deployment, the influence of oyster origin was still apparent two weeks later in 

the field, but disappeared afterwards (Table II-2, Figure II-3). The effect of antibiotic treatment 

persisted for a longer period until the end of July. It is important to mention, however, that the 

variability explained by both factors was generally small, indicating that other factors like 

between individual variation determined the bulk of the observed community variation. 

Exclusion of OTUs representing the typical seawater cluster only slightly affected the variability 

explained by origin or antibiotic treatment, while it mostly reduced the variability explained by 

distance (Table II-2). 

The rate of bacterial turnover within oysters did not increase with time (Figure II-S4) and 

although the within-oyster temporal variability was high, it was smaller than the variation 

observed among the oysters (within Bray-Curtis: 0.818±0.140, among: 0.876±0.105, Wilcoxon 

Mann-Whitney Rank Sum Test: Z= -9.283, p < 10-6). On the other hand, the average distance 

between the composite communities representing the sampling points within sites was much 

lower (Sylt Bray-Curtis= 0.454±0.049, Texel Bray-Curtis = 0. 467±0.063,), probably reflecting 

the similarity in mean environmental conditions. 
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  All OTUs Without "seawater" OTUs 
Pre-deployment Df SS MS pseudo F R2 Df SS MS pseudo F R2 

Origin  1 1.76 1.76 10.74 0.05*** 1 1.74 1.74 10.63 0.04*** 
Treatment 1 1.37 1.37 8.35 0.04*** 1 1.35 1.35 8.25 0.03*** 
Site 1 4.81 4.81 29.30 0.12*** 1 4.83 4.83 29.57 0.12*** 
Origin x Treatment 1 0.86 0.86 5.22 0.02*** 1 0.85 0.85 5.21 0.02*** 
Origin x Site 1 1.73 1.73 10.57 0.04*** 1 1.72 1.72 10.55 0.04*** 
Treatment x Site 1 1.57 1.57 9.55 0.04*** 1 1.57 1.57 9.61 0.04*** 
Origin x Treatment x Site 1 0.59 0.59 3.60 0.02*** 1 0.58 0.58 3.54 0.01*** 
Residuals 160 26.26 0.16  0.67 160 26.14 0.16  0.67 
Total 167 38.95   1.00 167 38.77   1.00 

June                      
Origin  1 0.54 0.54 1.85 0.01* 1 0.64 0.64 1.96 0.01** 
Treatment 1 0.80 0.80 2.77 0.02*** 1 0.85 0.85 2.59 0.01** 
Distance 2 4.19 2.09 7.23 0.08*** 2 3.27 1.63 4.98 0.06*** 
Origin x Treatment 1 0.21 0.21 0.72 0.00 1 0.26 0.26 0.79 0.00 
Origin x Distance 2 0.48 0.24 0.83 0.01 2 0.59 0.29 0.89 0.01 
Treatment x Distance 2 0.62 0.31 1.07 0.01 2 0.61 0.31 0.94 0.01 
Origin x Treatment x Distance 2 0.73 0.37 1.27 0.01 2 0.72 0.36 1.09 0.01 
Residuals 156 45.16 0.29  0.86 156 51.24 0.33  0.88 
Total 167 52.73   1.00 167 58.18   1.00 

July                     
Origin  1 0.29 0.29 0.95 0.01 1 0.35 0.35 1.02 0.01 
Treatment 1 0.47 0.47 1.51 0.01' 1 0.47 0.47 1.35 0.01' 
Distance 2 4.19 2.09 6.80 0.09*** 2 3.67 1.84 5.31 0.07*** 
Origin x Treatment 1 0.28 0.28 0.90 0.01 1 0.34 0.34 0.98 0.01 
Origin x Distance 2 0.54 0.27 0.87 0.01 2 0.63 0.32 0.92 0.01 
Treatment x Distance 2 0.79 0.39 1.28 0.02 2 0.83 0.42 1.20 0.02 
Origin x Treatment x Distance 2 1.00 0.50 1.63 0.02* 2 1.08 0.54 1.57 0.02** 
Residuals 133 40.98 0.31  0.84 133 46.02 0.35  0.86  
Total 144 48.53   1.00 144 53.40   1.00  

August                     
Origin  1 0.31 0.31 0.97 0.01' 1 0.34 0.34 0.94 0.01 
Treatment 1 0.48 0.48 1.47 0.02 1 0.42 0.42 1.15 0.01 
Distance 2 2.09 1.04 3.22 0.07*** 2 2.44 1.22 3.36 0.08*** 
Origin x Treatment 1 0.43 0.43 1.32 0.01 1 0.42 0.42 1.15 0.01 
Origin x Distance 2 0.52 0.26 0.81 0.02 2 0.64 0.32 0.88 0.02 
Treatment x Distance 2 0.53 0.27 0.82 0.02 2 0.62 0.31 0.86 0.02 
Origin x Treatment x Distance 2 0.74 0.37 1.14 0.03 2 0.77 0.38 1.06 0.02 
Residuals 74 23.95 0.32  0.82 74 26.89 0.36  0.83 
Total 85 29.04   1.00 85 32.53   1.00 

Sylt July                     
Origin  1 0.43 0.43 1.27 0.01 1 0.47 0.47 1.36 0.02' 
Treatment 1 0.75 0.75 2.24 0.03** 1 0.78 0.78 2.24 0.03*** 
Distance 2 0.79 0.39 1.18 0.03 2 0.78 0.39 1.13 0.03 
Origin x Treatment 1 0.53 0.53 1.58 0.02' 1 0.50 0.50 1.44 0.02' 
Origin x Distance 2 0.41 0.20 0.61 0.01 2 0.46 0.23 0.66 0.02 
Treatment x Distance 2 0.65 0.32 0.97 0.02 2 0.60 0.30 0.86 0.02 
Origin x Treatment x Distance 2 0.90 0.45 1.35 0.03' 2 0.91 0.45 1.31 0.03' 
Residuals 72 24.04 0.33  0.84 72 25.05 0.35  0.85 
Total 83 28.49   1.00 83 29.55   1.00 

Sylt August                     
Origin  1 0.35 0.35 0.95 0.02 1 0.38 0.38 1.02 0.02 
Treatment 1 0.38 0.38 1.06 0.02 1 0.38 0.38 1.00 0.02 
Distance 2 0.84 0.42 1.16 0.04 2 0.86 0.43 1.14 0.04 
Origin x Treatment 1 0.36 0.36 0.99 0.02 1 0.39 0.39 1.05 0.02 
Origin x Distance 2 0.58 0.29 0.80 0.03 2 0.60 0.30 0.80 0.03 
Treatment x Distance 2 1.02 0.51 1.41 0.05** 2 1.04 0.52 1.38 0.05** 
Origin x Treatment x Distance 2 0.52 0.26 0.72 0.02 2 0.56 0.28 0.74 0.03 

Residuals 47 16.99 0.36  0.81 47 17.70 0.38  0.81 
  

Total 58 21.03     1.00 58 21.91     1.00 
  

1significance levels:  ' < 0.1, * ≤ 0.05, ** < 0.01, *** < 0.001 

Table II-2. Permanova (adonis) showing the effects of oyster origin, antibiotic treatment and distance on 

hemolymph communities at different time points during the experiment. Left: including all OTUs, right: 

excluding the seawater OTUs. Samples from Sylt and Texel on comparable sampling points in June, July and 

August are analyzed together. Two additional sampling points on Sylt, one in July and one in August are 

analyzed separately. 
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Figure II-3.  CAP of beta diversity of 

hemolymph communities on Sylt 

(orange) and Texel (blue) showing the 

effects of oyster origin and antibiotic 

treatment and accounting for 

distance throughout the summer. 

Hull indicates site, circle = control, 

triangle = antiobiotic treated. 
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Distance-decay  

Analysis of the distance-decay relationship (Figure II-4) revealed a small, but significant 

overall effect of distance (linear model: F1, 32696 = 457.8, p < 10-6, adj. R2 = 0.013, slope: -0.024). 

The slope was significantly higher  when small (up to 1 m, within the spots) and intermediate 

(between spots, up to 186 m) spatial scales were considered separately (within spot: F1, 1590= 

19.61, p < 10-5, adj. R2 = 0.012, slope = -0.102,  between spots: F1, 17264= 112.5, p < 10-6, adj. R2 = 

0.012 slope = -0.113). Exclusion of the seawater OTUs reduced the average community 

similarity at all scales (Figure II-S5), but it affected neither the overall (F1, 32696 = 606.7, p < 10-6, 

adj. R2 = 0.002, slope = -0.027) nor the small-scale slope (F1, 1590= 14, p < 10-4, adj. R2 = 0.001, 

slope = -0.082). However, it decreased the distance-decay slope between the spots within a site 

Figure II-5, indicating that microenvironmental site conditions predominantly influence 

transient parts of the hemolymph microbiome (F1, 17264= 11.39,  p < 10-5, adj. R2 = 0.001 slope: -

0.034). 

 

 
Figure II-4. Distance-decay relationship including A) all OTUs, B) resident (excluding seawater) OTUs. 

Lines are linear models fitted for the given spatial scale. 
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Figure II-5. Effect of transient OTUs on slope 

of distance-decay relationship on small, 

medium and overall spatial scale. 

 

 

 

 

 

 

 

 

 

 

 

 

Vibrio activity (Figure II-6, Table II-S1) 

Vibrio activity at the Sylt site was higher in translocated oysters from Texel, but this 

difference disappeared over time. Interestingly, although the pre-deployment antibiotic treated 

communities had very low vibrio counts, all Texel oysters at the end of June had vibrio counts 

comparable to each other and much higher than the local ones, suggesting that the increased 

vibrio activity may be at least partially due to direct interactions of local strains with non-

adapted oysters, rather than to interactions within the microbiome as a whole.  

!"
#$
%&
'(
)*+
',
-

!"" #$%&'$() !"" !""

*&)+&(,%-.)%

/0123

/0124

/0120

/0105

/0106

/0103

/0104

78.(9,%-.)% :;$#!""

#$%&'$() #$%&'$()



C H A P T E R  I I  

 72 

 

 

Figure II-6. Vibrio activity according to oyster origin and antibiotic treatment over the course of the 

experiment on Sylt. The dotted line shows temperature measurements. 

 

Discussion 

Unveiling the microbial community dynamics is essential for the assessment of community 

assembly and stability and thus for understanding how the microbiota contribute to the fitness 

of their host. Disturbances, and the determinants of the community composition in general, act 

over different spatial and temporal scales; taking these into consideration provides a tool to 

disentangle the relative contributions of multiple factors in the complex natural environment, 

especially because the direct assessment of environmental parameters in highly variable habitats 

such as the intertidal can be challenging for theoretical and practical reasons. By examining the 

short- and long -term dynamics of the hemolymph microbiota over multiple spatial scales, we 

observed a quick response to major perturbations. While the large changes in abiotic conditions 

(for example, transfer to the laboratory conditions) caused prompt adjustments in the 

!"#!$"%$"# !"#!$"%$!# !"#!$"&$"' !"#!$"&$#( !"#!$")$"* !"#!$")$#+

"

#

!

*

'

!"
#$
%&
'(
)

*+,-

,-./01.
.2-/01.
,-./341
.2-/341



C H A P T E R  I I  

 73 

 

composition of transient bacteria, the long-term persistence of the translocation and antibiotic 

treatment effects indicates stronger influence of biotic interactions - with the host and within 

the microbiome - on the resident part of the community. 

Environmental effects on resident and transient hemolymph microbiota 

The absence of typical seawater OTUs from laboratory communities implies that they 

represent a transient part of oyster microbiota, irrespective of how common they are in the field 

(Vasconcelos and Lee, 1972; Rong et al., 2014). Unlike the putative resident bacteria 

(Vasconcelos and Lee, 1972; Pruzzo et al., 2005), they are expected to strongly depend on the 

immediate environmental fluctuations, such as  the immersion in the intertidal habitat (Chapter 

I). No effect of the exclusion of transient microbiota on the variability explained by antibiotic  

treatment or oyster origin, and the strong effect of the transient microbiota on the distance-

decay slope over microenvironmentally variable scales indicate that this indeed could be the case 

here. The distance-decay relationship arises through spatially-correlated environmental 

conditions or through dispersal limitation (Martiny et al., 2011; Costello et al., 2012). Over 

small distances (< 1m), the abiotic conditions experienced by oysters are very similar and the 

transient part of the microbiome likely reflects this high environmental similarity. On the other 

hand, the microenvironmental variation at the distance of tens of meters is high in the intertidal, 

and the strong effect of transient microbiota on the distance-decay slope over these scales 

suggests, that this could be related to more similar immersion times or effects of tidal currents at 

smaller distances.  

Other transient bacteria belonged to the Tenericutes and an unindentified bacterium close to 

Spirochaetes that were abundant in the field and rare in the laboratory conditions. These 

bacteria have been previously found in Pacific oysters in Tasmania (Fernandez‐Piquer et al., 

2012) and could thus represent cosmopolitan oyster symbionts. Both Spirochaetes and 

Tenericutes have been found in various oyster tissues (Chapter I), (Prieur et al., 1990; Green and 

Barnes, 2010; Husmann et al., 2010; King et al., 2012; Trabal et al., 2012; Trabal Fernandez et al., 

2013; Wegner et al., 2013) and could provide some benefits to the host (Prieur et al., 1990; 

Tanaka et al., 2004; Fraune and Zimmer, 2008). However, Spirochaetes and Tenericutes are 

usually very rare in the hemolymph (Chapter I, Chapter III), and the high abundance of 

Tenericutes was mainly linked to stress or even mortality (Chapter III). It is therefore not clear if 

Tenericutes are common hemolymph inhabitants in the wild or their increased abundance was 

due to a secondary infection of the injection site on the adductor muscle caused by repeated 

hemolymph sampling (Ayling et al., 2011).  
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Although the dynamics of the bacteria such as Vibrio or Arcobacter (Chapter I, Chapter III) 

is also affected by the environment, and could be seasonally driven (compare this thesis, 

(Wegner et al., 2013 32; Wendling et al., 2014), their persistence in the hemolymph under 

variety of conditions suggests that they could be indeed considered as part of  the resident 

hemolymph microbiota. 

Spatiotemporal dynamics of oyster microbiota in the field 

High small scale variability and little differentiation over large spatiotemporal scales - 

between the sites or between the sampling points - corresponds with the finding that the 

measured variation in community composition diminishes as the observation period increases 

(Shade et al., 2013). Comparing the composite communities  and/or decreasing the taxonomic 

resolution would result in much lower estimates of bacterial turnover within individuals and 

higher perceived seasonal stability observed in subtidal sessile marine invertebrates (Erwin et al., 

2012; Björk et al., 2013; Pita et al., 2013; Hardoim and Costa, 2014). However, higher turnover 

could also be attributed to extreme small-scale environmental fluctuations in the intertidal, as 

the the hemolymph microbiota respond quickly to disturbances by shifts in relative abundances 

(Chapter I, Chapter III). This could result in a cycling dynamics and high temporal variability 

(Shade et al., 2014), not necessarily because the bacteria disappeared, but because rare taxa 

might fall below the detection limit (Caporaso et al., 2012). This hypothesis is supported by the 

constant turnover rate observed here, suggesting that the bacterial populations  disappear, but 

also reappear by different taxa dominating the community at different time points (Gobet et al., 

2012). On the other hand, while the high between-oyster variability at individual sampling 

points also likely reflects the microenvironmental variability, other factors, such as oyster 

condition (Chapter I) or genotype (Wegner et al., 2013) could have significantly contributed to 

the observed differences. 

Conversely, the large-scale spatiotemporal stability could be due to relatively stable mean 

abiotic conditions (for example, temperature, Figure II-S6) throughout the sampling period, 

which were unlikely to significantly alter the overall community composition (Nguyen and 

Landfald, 2015). Both coastal sediment and seawater communities (Campbell et al., 2011; 

Gilbert et al., 2012; Gobet et al., 2012) are seasonally stable and, in addition, both study sites 

belong to the same water mass. The hemolymph microbiota are thus likely to reflect this 

seasonal stability, as they are strongly affected  by abiotic environment (Chapter III) and 

environmental microbial communities (Chapter I, here). 
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Variation of oyster microbiota related to origin and antibiotic treatment 

The effects of antibiotic treatment  and oyster origin lasted for several weeks, indicating that 

the turnover of resident microbiota was gradual, as opposed to highly dynamic transient 

bacteria. Although antibiotics can have long-lasting negative effects on diversity in some cases 

(Stein et al., 2013), they can increase the diversity in others, probably because the disturbed 

communities  are more susceptible to invasions  (Shea et al., 2004; Robinson et al., 2010). The 

open circulatory systems of oysters with its tight connection to the environment probably 

prevented antibiotics to induce permanent changes and shifts towards alternative stable states 

(Stein et al., 2013). Interestingly, the micriobal diversity in non-treated translocated oysters 

initially did not differ from their local counterparts, but increased towards the end of the 

experiment at both sites (Figure II-2). Although the effect was only marginally significant, it is 

tempting to speculate that this trend might have been linked to colonization by novel 

microbiota from the environment complementing the resident microbiota while diversity of 

resident microbiota stayed constant in local oysters. The delay might suggest that the resident 

bacteria provided resistance against colonization in the beginning, before the better-adapted 

bacteria from the environment gained advantage to form a new resident microbiome. Marine 

microbial communities are characterized by periodically recurring bacterial populations 

(Gilbert et al., 2012; Gobet et al., 2012) and although such predictable environmental 

community shifts could affect local oyster and its microbiota to a lesser degree, they might 

represent a more significant disturbance for translocated communities.  

Genetic differentiation between oysters from Texel and Sylt (Moehler et al., 2011) could have 

contributed to the observed differences in β-diversity since oyster microbiota can assemble 

according to genotype (Wegner et al., 2013). However, the gradually decreasing difference 

between the translocated and local oysters in both sites showed that the divergence in 

community composition was in the long run mainly affected by site (Linnenbrink et al., 2013; 

Burgsdorf et al., 2014). Previous studies have shown that Vibrio spp. gradually colonized oysters 

throughout a season (Wendling et al., 2014) and such dynamics could also be observed for the 

large parts of the microbial community here. While antibiotics strongly affected Vibrio activity, 

they did not completely eradicate the indigenous populations (Chapter I). Therefore, the higher 

loads in all translocated oysters might represent the reaction of endogenous vibrios to their 

counterparts at the new site (Froelich and Oliver, 2013). However, resistance against vibrio 

pathogens is partially genetically determined (Rosa et al., 2012) and we could already show that 

Sylt oysters rapidly adapted to their local vibrio populations and were able to efficiently control 

vibrio population size in their hemolypmh  (Wendling and Wegner, 2015). While this suggests 
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that there are host genetic factors affecting parts of the microbial community, the open contact 

of hemolymph to the environment might dampen genetoype-specific community assembly for 

the whole community that could only be observed in other tissues that are more shielded from 

the environment (Wegner et al., 2013). Overall, the persistence of translocation and antibiotic 

treatment effects suggests that such unpredictable and strong disturbances could affect the 

oyster fitness (Wendling and Wegner, 2013).  

Conclusion 

Although 16s amplicon studies provide helpful insight and are important first step in 

understanding microbial communities, they lack resolution power. Taxonomic composition is 

only partially consistent with ecology (Koeppel and Wu, 2012) and allows only for distinction 

between broad habitat types (Schmidt et al., 2014). 16s rRNA defined OTUs may consist of 

variety of ecotypes, and, in case of host-associated bacteria, they can significantly differ in 

crucial traits such as virulence (Koeppel and Wu, 2013; Wendling and Wegner, 2015). 

Moreover, closely related bacteria exhibit adaptation at very small spatial scales (Belotte et al., 

2003). Therefore, although the communities at both sites and throughout the summer appear 

similar through the lense of 16s rDNA based taxonomy,  they can actually consist of ecologically 

different bacteria with important consequences for hemolymph microbiota dynamics and their 

oyster hosts. Despite the strong environmental influence, factors such as oyster genotype, 

physiology and health condition are also likely to affect the composition and structure of 

hemolymph microbiome (Chapter III), (Wegner et al., 2013), as suggested by a large portion of 

α-diversity variability attributed to individual differences.  

This is the first study of seasonal dynamics of the complete oyster hemolymph microbiome 

at various spatial scales. High small-scale spatiotemporal variability probably reflects the 

acclimation potential of the hemolymph microbiome, and the quick changes in transient 

microbiota following major shits in abiotic environment suggest that the microbiome is strongly 

shaped by immediate environmental conditions. However, the changes in the resident 

community show that strong pulse disturbances can have long-lasting effects even on a highly 

dynamic microbiome and thus potentially on the host fitness. 
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C H A P T E R  I I  S U P P L E M E N T S  

 

Figure II-S1. Non-metric multidimensional scaling including complete dataset and visualizing the 

difference between the seawater and hemolymph samples and between the pre-deployment and field 

communities, as well as similarity of hemolymph and seawater communities on Sylt and Texel. Color 

denotes site, hull lab and field communities. 
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Figure II-S2. CAP of pre-deployment hemolymph communities with marked significant axes and the 

amount of variability explained.  
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Figure II-S3. Class level composition of hemolymph microbiota on Sylt and Texel at different sampling 

points grouped according to oyster origin, antibiotic treatment and site. 
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Figure II-S4. Bacterial turnover calculated as percentage of OTUs shared with the initial community 

 

 

Figure II-S5. Average Bray-Curtis similarities at small, medium and large spatial scales based on all and 

only resident OTUs. 
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Figure II-S6. Coefficient of variation of all-year temperature measurements, as well as during the summer 

only for Texel and Sylt. Last five points are coefficients of variations of measurements that I took during 

sampling at various spots. I sampled usually early morning before it got really warm. 

 

 Estimate 2.5% CI 97.5% CI Z p 
Sylt-Texel -0.28 -0.48 -0.08 -2.78 0.01 
Antibiotic-Control -0.45 -0.65 -0.25 -4.42 0.00 
Linear trend 0.72 0.22 1.22 2.82 0.00 
Quadratic trend -1.17 -1.65 -0.68 -4.72 0.00 
Cubic trend -0.65 -1.14 -0.16 -2.61 0.01 
samdate^4 0.20 -0.28 0.69 0.81 0.42 
samdate^5 0.68 0.22 1.15 2.87 0.00 
Sylt-Texel : Antibiotic-Treated -0.08 -0.27 0.12 -0.75 0.45 
Sylt-Texel : Linear trend 0.94 0.44 1.44 3.69 0.00 
Sylt-Texel : Quadratic trend -0.26 -0.75 0.22 -1.07 0.29 
Sylt-Texel : Cubic trend 0.13 -0.37 0.62 0.50 0.62 
Sylt-Texel : Quartic trend 0.09 -0.40 0.57 0.36 0.72 
Sylt-Texel : Quintic trend 0.01 -0.46 0.47 0.03 0.98 
Antibiotic-Control : Linear trend 1.29 0.79 1.79 5.06 0.00 
Antibiotic-Control : Quadratic trend -1.05 -1.54 -0.56 -4.24 0.00 
Antibiotic-Control : Cubic trend 0.85 0.36 1.34 3.40 0.00 
Antibiotic-Control : Quartic trend -0.52 -1.01 -0.04 -2.11 0.03 
Antibiotic-Control : Quintic trend 0.13 -0.34 0.59 0.54 0.59 
Sylt-Texel : Antibiotic-Control : Linear trend 0.49 -0.01 0.99 1.93 0.05 
Sylt-Texel : Antibiotic-Control : Quadratic trend -0.36 -0.84 0.13 -1.45 0.15 
Sylt-Texel : Antibiotic-Control : Cubic trend 0.19 -0.30 0.68 0.77 0.44 
Sylt-Texel : Antibiotic-Control : Quartic trend -0.27 -0.75 0.22 -1.07 0.28 
Sylt-Texel : Antibiotic-Control : Quintic trend 0.05 -0.42 0.51 0.19 0.85 

 

Table II-S1. Negative binomial generalized model of Vibrionaceae CFU counts on Sylt (including pre-

deployment samples). Loglk = -3582.45. 
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C H A P T E R  I I I  

Hemolymph microbiome of Pacific oysters in response to 
temperature, temperature stress and infection 

 

Abstract 

Microbiota provide their hosts with a range of beneficial services, including defense from 

external pathogens. However, host-associated microbial communities themselves can act as a 

source of opportunistic pathogens depending on the environment. Marine poikilotherms and 

their microbiota are strongly influenced by temperature, but experimental studies exploring 

how temperature affects the interactions between both parties are rare. In order to assess the 

effects of temperature, temperature stress and infection on diversity, composition and dynamics 

of the hemolymph microbiota of Pacific oysters (Crassostrea gigas), we conducted an 

experiment in a fully-crossed, three-factorial design, in which the temperature acclimated 

oysters (8°C or 22°C) were exposed to temperature stress and to experimental challenge with a 

virulent Vibrio spp. strain. We monitored oyster survival and repeatedly collected hemolymph 

of dead and alive animals in order to determine the microbiome composition by 16s rRNA gene 

amplicon pyrosequencing. We found that the microbial dynamics and composition of 

communities in healthy animals (including infection survivors) were significantly affected by 

temperature and temperature stress, but not by infection. The response was mediated by 

changes in the incidence and abundance of OTUs and accompanied by little change at higher 

taxonomic levels, indicating dynamic stability of the hemolymph microbiome. Dead and 

moribund oysters, on the contrary, displayed signs of community structure disruption, 

characterized by very low diversity and proliferation of few OTUs. We can therefore link short-

term responses of host-associated microbial communities to abiotic and biotic factors and assess 

the potential feedback between microbiota dynamics and host survival during disease. 
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Introduction 

Over the last couple of decades, it has become clear that microbiota are of vital importance 

for survival, homeostasis and development of animals (McFall-Ngai et al., 2013). Tight 

relationships between hosts and their symbionts even inspired a hologenome theory of 

evolution (Rosenberg et al., 2007), proposing a holobiont - a host together with the associated 

microorganisms - as the unit of selection. One prominent service that microbiota provide for 

their hosts, is protection from pathogens (Kamada et al., 2013). However, in compromised hosts 

or under (un)favorable environmental conditions, the symbionts themselves can act as 

opportunistic pathogens (Olafsen et al., 1993b; Garnier et al., 2007; Cerf-Bensussan and 

Gaboriau-Routhiau, 2010) understand how the environmental factors and stress affect the 

composition and function of microbiota and the outcome of host-microbe interactions. 

Tissues of healthy marine invertebrates usually harbor species-rich microbial communities 

(Prieur et al., 1990; Gomez-Gil et al., 1998; Romero et al., 2002a; Gomez-Gil et al., 2010; King et 

al., 2012b; Trabal et al., 2012; Wegner et al., 2013). This also applies to the hemolymph (Olafsen 

et al., 1993b; Garnier et al., 2007; Wendling et al., 2014) - the functional analogue of blood in 

vertebrates (Bachere et al., 2004). The presence of viable bacteria in the hemolymph of healthy 

oysters can influence the outcome of pathogen infections by either stimulating immunity or by 

competitive exclusion (Schmitt et al., 2012). Isolation of antimicrobial compounds of bacterial 

origin from oyster hemolymph has provided support for the latter hypothesis (Defer et al., 

2013). Yet oyster hemolymph microbiota have rarely been studied and so far only by means of 

culture-dependent methods (Olafsen et al., 1993b; Garnier et al., 2007; Wendling et al., 2014). 

However, neither cultivation nor molecular fingerprinting methods provide realistic estimates 

of community diversity and composition (Pedrós-Alió, 2006; Bent and Forney, 2008). Next 

generation sequencing (NGS), although by no means free of biases (Fierer and Lennon, 2011; 

Sergeant et al., 2012; Cai et al., 2013) enables detailed characterization of microbial community 

composition and dynamics, including rare phylotypes (Huse et al., 2008) that can act as a seed 

bank and mediate community response to environmental change (Caporaso et al., 2012; Pedros-

Alio, 2012; Sjostedt et al., 2012). Recently, amplicon sequencing has been used to characterize 

oyster gut (King et al., 2012b; Trabal Fernandez et al., 2013) and gill microbiomes (Wegner et 

al., 2013) , resulting in higher estimates of !"diversity and challenging the long-held view that 

the oyster microbiota were dominated mainly by pseudomonads and vibrios (Prieur et al., 1990; 

Olafsen et al., 1993b; Garnier et al., 2007). 

Temperature is an important factor in shaping microbial communities in marine abiotic and 

biotic habitats (e.g. (Fuhrman et al., 2008)). Shifts from mutualist- to pathogen-dominated 
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communities due to global warming have already been reported (Ritchie, 2006), as well as an 

increase in occurrence of infectious diseases (Altizer et al., 2013). At lower latitudes, warming 

usually implies crossing the upper limits of thermal tolerance and is almost certain to have 

adverse effects on the affected organisms (Lafferty et al., 2004; Fan et al., 2013). The outcome in 

temperate regions can be much less predictable, depending on thermal optima and ranges of 

hosts and pathogens (Thomas and Blanford, 2003). For example, temperatures over 20°C are 

necessary for oyster summer mortalities to occur (Samain et al., 2007; Watermann et al., 2008), 

but it is low temperatures (< 14°C) that promote development of brown ring disease in clams 

(Paillard et al., 2004). 

Many temperature-dependent disease outbreaks have been linked to various Vibrio species 

(Lacoste et al., 2001; Lee et al., 2001; Garnier et al., 2007; Cervino et al., 2008; Elston et al., 2008) 

that are commonly isolated from healthy marine animals (Prieur et al., 1990; Olafsen et al., 

1993a; Gomez-Gil et al., 1998; Iida et al., 2000; Vega Thurber et al., 2009; Trabal et al., 2012; 

Zhao et al., 2012). The effects of temperature on Vibrio spp. virulence have also been 

demonstrated experimentally (Kushmaro et al., 1998; Wendling and Wegner, 2013), making 

this group a suitable candidate for experimentally exploring temperature-dependent host-

pathogen interactions in the marine environment. 

So far, most of the research on microbial dynamics in marine poikilotherms has been 

observational and focused on seasonal changes (Beleneva and Zhukova, 2009; Preheim et al., 

2011; Zurel et al., 2011; Erwin and López‐Legentil…, 2012; Carlos et al., 2013; Mahalaxmi et al., 

2013).  However, seasonality does not equal temperature (Farcy et al., 2007; Gilbert et al., 2012) 

and experimental studies addressing the temperature-dependent short-term microbial 

dynamics, which may be highly relevant to development of disease, are mostly confined to 

corals and sponges (Vega Thurber et al., 2009; Simister et al., 2012; Fan et al., 2013). 

Although higher temperatures usually promote microbial growth including pathogens, 

acclimated eurythermic hosts may be well prepared to deal with them. In vitro experiments on 

oyster hemocytes revealed little change in immunocompetence over wide range of 

environmentally relevant temperatures (Ashton-Alcox and Ford, 1998; Gagnaire et al., 2006). 

Temperature stress, on the other hand, severely compromised host defenses (Malham et al., 

2009) illustrating the need to examine temperature effects in broader context of animal 

condition and history. Mortalities observed in wild populations of marine poikilotherms are 

often due to complex interplay of multiple stressors, such as in the well documented case of 

oyster summer mortalities, e.g. (Samain, 2011; Wendling and Wegner, 2013) or Vibrio harveyi 



C H A P T E R  I I I  

 85 

 

infection in abalones (Travers et al., 2008). Controlled experiments are therefore the only way to 

assess the importance and relative contributions of individual factors.  

In order to examine how infection, temperature and temperature stress affect oyster survival 

and the composition and dynamics of hemolymph microbiota, we experimentally challenged 

Pacific oysters with a virulent Vibrio spp. strain and exposed them to different temperature 

treatments. We thus present experimental data describing the short-term microbial dynamics in 

response to abiotic and biotic stress in Pacific oysters. With the combination of the above 

experimental factors and a high temporal resolution of microbial community dynamics, we can 

now try to link changes in microbial communities to different stressors and host survival.  

Material and methods 

Biological Material 

All oysters were collected in a Wadden Sea tidal flat in Königshafen, Germany (55° 1' 44'' N, 

8° 26' 3'' E) and subsequently kept in flow-through aquaria in climate chambers set to either 

22°C (warm-acclimated) or 8°C (cold-acclimated). To avoid temperature shock during the 

transfer to the lab, the warm-acclimated oysters were collected in late august 2010, while the 

cold-acclimated oysters of matching size were collected ten days prior to the experiment 

(beginning of November 2010). Warm-acclimated oysters were fed three times a week using 

shellfish diet instant algae mix (Varicon Aqua, UK). 

For infection, we used the isolate Vibrio sp. D29w affiliated to Vibrio orientalis/tubiashii 

clade based on MLST sequencing (Thieltges et al., 2013), which was obtained from hemolymph 

of the local oyster population. This isolate was shown to induce intermediate levels of mortality 

upon injection in adults at ambient temperatures (Thieltges et al., 2013), but was highly virulent 

for larvae at elevated temperatures (Wendling et al., 2014). We cultured bacteria overnight in 8 

ml of soya-peptone medium at 25°C and shaking at 240 rpm. Bacterial cells were then collected 

by centrifugation for 10 min at 5000 rpm, resuspended in fresh soya-peptone medium and 

adjusted to the concentration of 2 x 108 cells/ml. 

Experimental design and hemolymph sampling 

The experiment was designed to examine the effects of temperature, temperature stress and 

infection in a fully crossed 3-factorial design for duration of 7 days. A total of 48 oysters (24 

animals from each acclimation group) were kept singly in aerated 2.5 l glass jars with no flow-
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through, after being randomly assigned to experimental treatments. The oysters were either left 

at their acclimation temperature or stressed by non-abrupt transfer (together with seawater, 

allowing for gradual temp. equalization) to the opposite temperature, resulting in four 

temperature treatments: cold-acclimated (CC), warm-acclimated (WW), cold-stressed (WC) 

and warm-stressed (CW). Half of the oysters in each of the four groups were injected either with 

Vibrio sp. D29w strain or with the pure soya-peptone medium. Injections of 500 µl (~108 

bacteria) were applied into the adductor muscle with 23x1/4 gauge (dm 0.60 x 30 mm) needle 

introduced via a notch drilled on a ventral shell side. During the experiment, the oysters were 

kept individually in fully-aerated 2.5 jars filled with the filtered seawater. 

In order to examine the composition and dynamics of hemolymph microbiota, 200 µl of 

hemolymph were drawn from the adductor muscle just before the experiment and on the third, 

fifth and seventh day of the experiment. Samples were immediately stored on ice and transferred 

to -80°C as soon as possible. The oysters were checked for survival during hemolymph 

collection. In order to have a proxy for the abundance of vibrios, four µl of hemolymph were 

streaked on vibrio-selective thiosulfate-citrate-bile-salts-sucrose (TCBS) agar immediately after 

sampling, the plates were grown at 25°C, and colony forming units (CFUs) were counted after 

24 h cultivation.  

DNA extraction and amplicon sequencing 

DNA was extracted from 174 whole hemolymph samples (Table III-1) with the Illustra 

TriplePrep kit (GE Healthcare Life Sciences, Hamburg, Germany) according to the 

manufacturer's protocol. DNA concentration and purity were checked with a Nanodrop ND-

1000 spectrometer (peqlab, Erlangen, Germany) and all samples were adjusted to equal DNA 

concentration (5 ng/µl). 

Ribosomal 16S rDNA V1-V2 region was amplified with a barcoded universal bacterial 27F 

(CTATGCGCCTTGCCAGCCCGCTCAG-MID-TCAGAGTTTGATCMTGGCTCAG)-338R 

(CGTATCGCCTCCCTCGCGCCATCAG-MID-TGCTGCCTCCCGTAGGAGT) primer pair. 

Forward primers were marked with barcodes MID02 and MID03 and the reverse primers with 

MID01-MID98 (excluding MID09 and MID12). Each individual PCR reaction including 

negative controls was coded by a unique combination of forward and reverse MIDs (Binladen et 

al, 2007; Wegner, 2009). Twenty µl PCR reactions contained 1.5 mM MgCl2, 0.2 mM of each 

nucleotide, 0.2 µm of each primer, 0.5 unit of Taq polymerase (GoTaq Flexi DNAp, Promega, 

Mannheim, Germany) and 20 ng of DNA template. DNA was amplified using the following 



C H A P T E R  I I I  

 87 

 

protocol: 1 min initial denaturation at 94°C, 30 cycles of 40 s at 94°C, 30 s at 55°C, 30 s at 72°C 

and final extension 2 min at 72°C. 

Table III-1. Number of 

oysters and hemolymph 

samples (analyzed/collected) 

per treatment and sampling 

point. 

 

 

 

 

 

 

Quality of PCR products was checked on the QIAxcel system using a QIAxcel DNA 

Screening kit (Qiagen, Hilden, Germany). Equal amounts (10 µl) of each product were then 

pooled together and cleaned by ethanol precipitation. Pooled samples were finally adjusted to 

150 ng/µl and sequenced at Roche GS-FLX 454 platform at the Institute of clinical molecular 

biology at the Christian-Albrechts-University Kiel, Germany. 

Processing of raw sequence data 

Raw reads were demultiplexed using modified Python scripts from the cogent package 

(Knight et al., 2007). In short, original binary file (sff) was split into multiple sff files 

corresponding to individual samples allowing for only perfect matches to both barcodes and 

primers and translated into sfftxt-files using Mothur (Schloss et al., 2009). Quality control 

included denoising and chimera removal and was performed using the AmpliconNoise V1.23 

pipeline (Quince et al., 2011). Only flowgrams with minimum length of 200 bp before the first 

noise signal were kept for further analysis.  Initial cutoff value for removing sequencing noise 

was 0.01 and cluster size 60. No ambiguities were allowed and maximum homopolymer length 

was set to 7. PCR noise removal cutoff value was 0.08 with the cluster size of 30. Chimeras were 

identified with Perseus and sequences with probability higher than 50% of being chimeras were 

excluded from further analysis. A custom perl script was then used in order to trim primer 

sequences and create an input fasta file for further analysis.  

Sampling point (day) 
 

Treatment1 

0 3 5 7 

Oysters per 
treatment 

Samples per 
treatment 

CC_0 6/6 6/6 6/6 6/6 6 24/24 
CC_I 6/6 6/62 6/62,3 4/43 6 22/222,3 
CW_0 6/6 6/6 6/6 6/6 6 24/24 
CW_I 6/6 6/63 1/1 1/1 6 14/143 
WC_0 6/6 5/6 5/6 6/6 6 22/24 
WC_I 6/6 6/6 5/62 6/63 6 23/242,3 
WW_0 6/6 6/63 3/5 4/5 6 19/223 
WW_I 6/6 6/6 4/42 4/43 6 20/202,3 
Total 48/48 47/482,3 36/402,3 37/383 48 168/1742,3 
11st letter denotes acclimation temp., 2nd experimental temp., followed by infection status 
2Moribund oysters included. Total moribund samples: 5/6   
3Dead oysters included. Total dead samples: 14/14   
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Raw demultiplexed sequence data are available at European Nucleotide Archive (ENA) 

under the study accession number PRJEB5702 (sample accession numbers ERR457899 - 

ERR458074). 

We used the QIIME pipeline (Caporaso et al., 2010) to create OTU (operational taxonomic 

unit) tables and perform rarefaction, taxonomical composition assessment and phylogenetic 

diversity analyses. OTUs were picked with uclust (Edgar, 2010) at a 97% similarity threshold. 

Taxonomy was assigned with RDP classifier (Wang et al., 2007) to the genus level, with 60% 

confidence using the 110 Greengenes taxonomy 12_10 (McDonald et al., 2012) as a reference 

database. The sequences assigned to the genus Vibrio were then compared to 16S rDNA 

sequences obtained from cultured strains isolated from hemolymph of local oysters (courtesy of 

C. Wendling) in order to identify OTU corresponding to the injected strain. We defined 

contaminants as OTUs with more than 5 reads in negative controls and removed them from 

further analysis. This threshold was chosen because negative control samples represented pools 

of several individual reactions and most sequences were represented with a single read. 

Sequences were aligned with mafft (Katoh et al., 2002) and a phylogenetic tree was built using 

fasttree (Price et al., 2010). We calculated rarefaction curves for Shannon, evenness, species 

richness and PD (phylogenetic diversity, (Faith, 1992)) in order to assess the effects of sample 

sizes on these !-diversity metrics.  

Statistical analyses 

All other statistical analyses were performed in R (R Core Team, 2013). Host survival 

analysis was conducted using the survival package (Therneau, 2013). For bacterial communities, 

we analyzed relative species abundance, ! and #-diversity with the Vegan package (Oksanen et 

al., 2013). Differences in !"diversity patterns between treatments were analyzed using non-

parametric tests and linear mixed models (nlme package, (Pinheiro et al., 2013)). In order to 

assess #-diversity, we calculated Bray-Curtis and weighted UniFrac distances (Hamady et al., 

2010) between the samples and analyzed them by non-metric multidimensional scaling 

(NMDS) and the Adonis implementation of Permanova (nonparametric permutational 

multivariate analysis of variance (Anderson, 2001)). Results are reported for Bray-Curtis 

distances if not explicitly stated otherwise. We also determined how abundant or dominant 

(≥1% of sample) community members contributed to explaining the variation between the 

treatments. In order to statistically examine taxonomical composition and identify phylotypes 
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associated with individual treatments and conditions, we applied indicator species approach 

implemented in indicspecies package (Cáceres and Legendre, 2009). !

Results!

Oyster survival upon infection 

Experimental challenge with Vibrio sp. D29w resulted in 54% mortality of infected oysters, as 

opposed to a single death event in the control treatment ($2(1) = 14.52, p<0.001, odds = 25.33 

(3.10, 1195.27)). Survival analysis of infected oysters revealed significant differences between 

warm-stressed animals and all the other groups (Peto & Peto modification of the Gehan-

Wilcoxon test, $2(3) = 9, p = 0.029). Not only did the warm-stressed oysters experience the 

highest mortality, but they also died earlier, within the first three days of the experiment (Figure 

III-1). 

Figure III-1. Survival curves for 

infected oysters. CC = cold 

acclimated, CW = warm stressed, 

WC = cold-stressed, WW = warm-

acclimated. 

 

 

 

 

 

 

 

 

 

 

 

Hemolymph microbiome: general characteristics 

Results of sequence data processing are shown in Table III-S1. Singletons (OTUs represented 
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further analyses. It is noteworthy that 4 out of 6 low-coverage libraries came from two 

uninfected oysters (Table III-1), suggesting that low number of reads in these cases may reflect 

true absence of bacteria. 

Phyla Proteobacteria and Bacteroidetes encompassed the bulk of OTU diversity and 

abundance (Figure III-2a, Figure III-2b, Figure III-S1). Relative OTU abundances fitted well to 

Fisher’s log-series distribution, both in the dataset as a whole and in the individual samples 

(Kolmogorov-Smirnoff test, D = 0.000 - 0.196, p>0.881, details not shown), indicating that few 

OTUs accounted for the majority of reads. The amount of variability in community 

composition explained by treatments was higher when only abundant OTUs (≥1%), and not the 

complete dataset, were considered (Figure III-S2, Figure III-S3b). 

 
Figure III-2. !-diversity, expressed as Shannon's H in response to: temperature treatments over time (a), 

oyster condition (b). Infection is not shown for clarity. Error bars represent standard error of mean. CC = 

cold acclimated, CW = warm stressed, WC = cold-stressed, WW = warm-acclimated, NI = non-infected, S = 

survivors, M = moribund, D = dead. 

 

Rarefaction curves of !-diversity metrics show that Shannon's H and evenness - the indices 

we based our conclusions upon - were relatively stable even at the sampling depths of <100 

reads. Furthermore, the relative differences between the treatments were fairly constant over a 

large range of sampling depths (Figure III-S4). To assure negligible effects of sampling effort on 

!- and #-diversity analyses, we generated 10 random subsets of 100 reads per sample and 

calculated correlations between the !-diversity metrics (Spearman) and NMDS ordinations 
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our results were not influenced by differences in sampling depths of individual libraries (Table 

III-S2, Table III-S3). The main analysis was thus based on the complete dataset (excluding 

singletons) in order to keep the estimates of !-diversity realistic and to avoid information loss. 

The transfer from the flow-through system to the experimental conditions was followed by 

significant drop in OTU diversity of alive oysters (39% OTUs were found only on day 0, Figure 

III-3a) contributing to a clear distinction between pre-experimental and experimental 

communities (Figure III-S3a). Loss of rare OTUs (mean relative abundance of OTUs present 

only on day 0 was 0.29%, quartiles: 0.14%, 0.36%) and increase in dominance were reflected in 

substantially lower Shannon’s H (median: day 0 = 4.545, days 3-7 = 3.059, W = 4931, p < 0.001, 

r= -0.718) and evenness (median: day 0 = 0.899, days 3-7 = 0.675, W = 4836, p < 0.001, r = -

0.720), regardless of treatment (Figure III-3a, Figure III-S5). Since pre-experimental 

communities could not be meaningfully assigned to the tested groups, they were omitted from 

the analyses concerning the effects of experimental treatments and oyster condition. 

Hemolymph microbiome: effects of infection  

In order to describe effects of infection on hemolymph microbiota, we grouped the infected 

oysters into three categories: surviving (S, alive at the next sampling point), moribund (M, dead 

at the following sampling point) and dead (D). We refer to control and surviving oysters 

together as healthy (H). 

Experimental challenge barely affected !" (Table III-2) and #-diversity (Table III-3). 

Microbiomes from healthy oysters (H) formed largely overlapping clusters (Figure III-4b), 

reflecting a comparatively small but significant effect of infection on #-diversity (Table III-3). In 

contrast, moribund (M) and dead (D) oysters formed separate groups from healthy oysters in 

the NMDS plot (Figure III-4a). M and D communities were characterized by proliferation of 

one or very few OTUs and therefore displayed very low !-diversity (Figure III-3b). At 8°C, the 

microbiomes of dead oysters (D) closely resembled those of moribund animals (M, Figure III-

2c), whereas we observed more variation in community composition and an increase in 

anaerobic bacteria soon after death at 22°C.  

In contrast to our expectation, the microbiomes of moribund oysters were dominated by the 

genus Arcobacter and not, as expected, by Vibrio spp. (Figure III-2c, Supp III-Ind). Overall, the 

infected oysters harbored more strains from other genera with described pathogenic species, 

such as Photobacterium and Shewanella (Supp III-Ind). 
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  Factors DF F1 Significant contrasts Estimate SE 2.5% CI 97.5% CI 

Main effects Acclimation temp. 1, 43 1.776      

  Experimental temp. 1, 43 2.547      

  Time 2, 62 0.735      

  Health status 2, 62 13.569*** Moribund & dead VS healthy 0.298 0.06 0.177 0.418 

  Infection 1, 43 0.735      

Interaction terms A. temp. x E. temp. 1, 43 14.280*** Stressed VS acclimated -0.421 0.111 -0.646 -0.196 

  A. temp. x Time 2, 62 1.407      

  E. temp. x Time 2, 62 4.954* E. temp. on (day 3 VS days 5-7) 0.148 0.053 0.042 0.253 

  A. temp. x E. temp. x Time 2, 62 3.361* (Stress. VS acc.) on day 3 VS on days 5-7 -0.178 0.071 -0.321 -0.035 

Random intercept Oyster    0.113  0.005 2.671 

1significance levels: * ≤ 0.05, ** < 0.01, *** < 0.001 

Table III-2. Linear mixed model for treatment and condition effects on Shannon's H, day 0 samples 

excluded (AIC = 275.599, BIC = 320.717, logLik (df = 17) = -120.800). 

 

The indicator species analysis revealed that higher Vibrio sp. D29w abundances were 

associated with infection (IndVal = 0.769, p = 0.017), but not directly with mortality or disease 

(Supp III-Ind). Overall, the OTUs assigned to Vibrionaceae resp. genus Vibrio (including the 

injected strain) were common (present in 98.85%, resp. 92.26% of the samples), but not very 

abundant (5.1%, resp. 1.6% mean relative abundance).  Presence of vibrios (other Vibrionales 

occasionally grow on TCBS agar, hence the taxonomically non-specific term) was lower 

(87.36%) when calculated from CFU counts. The discrepancy was most likely due to the low 

abundance coupled with the low volume of hemolymph plated. Unlike relative read abundances, 

higher CFU counts were related to disease and death (GLMM: Z =-2.61, p = 0.009, (moribund & 

dead) vs. healthy parameter estimate: -0.249 ± 0.095, CI = (-0.436, -0.062), Table III-S4).  
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Figure III-3. NMDS plots of Bray-Curtis distances between the microbial communities (day 0 excluded): 

according to oyster condition (a), showing temporal stability and effects of treatments (b). Triangle vertices 

represent samples, each triangle represents an oyster. CC = cold acclimated, CW = warm stressed, WC = 

cold-stressed, WW = warm-acclimated, NI = non-infected, I = infected, S = survivors, M = moribund, D = 

dead. 

 

  df SS MS pseudoF R21,2 

Main effects Acclimation temp. 1 3.308 3.308 12.152 0.076*** 
 Experimental temp. 1 4.062 4.062 14.923 0.093*** 
 Time 2 1.435 0.717 2.636 0.033*** 
 Infection 1 0.853 0.853 3.133 0.020*** 
 Health status 2 1.769 0.885 3.25 0.041*** 
Interaction terms A. temp. x E. temp. 1 1.154 1.154 4.239 0.026*** 
 A. temp. x Time 2 0.729 0.365 1.34 0.017** 
 E. temp. x Time 2 1.034 0.517 1.899 0.024*** 
 A. temp. x E. temp. x Time 2 0.672 0.336 1.235 0.015** 
 Residuals 105 28.579 0.272  0.656 
 Total 119 43.594   1 
1Significance values based on 999 permutations      
2significance levels: * ≤ 0.05, ** < 0.01, *** < 0.001      

 

Table III-3. Adonis (Permanova) results for experimental communities (day 0 excluded) based on Bray-

Curtis distances. 

Hemolymph microbiome: effects of temperature and temperature stress 

Prior to the experiment, Shannon’s H (median: 8°C = 4.228, 22°C = 4.711, W = 117, p<0.001, 

r = -0.525) and PD indices (median: 8°C = 19.697, 22°C = 28.216, W = 81, p<0.001, r = -0.652) 

were higher in warm-acclimated communities, with no difference in evenness between the 

groups (median: 8°C = 0.653, 22°C = 0.717, W = 214, p<0.128). During the experiment, only the 
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phylogenetic component (PD) of !-diversity remained positively correlated with higher 

ambient temperature (Figure III-S5, Table III-S, Table III-S6), indicating the presence of more 

rare, divergent phylotypes in warmer environment.  

Both directions of temperature stress prevented a steady decrease of diversity and evenness 

that we observed in the acclimated communities (Figure III-3a, Table III-2, Figure III-S5).  The 

effect became more pronounced towards the end of the experiment, indicating its persistence 

and reflecting the gradual and lagged microbiome response to stress. We expected that the 

OTUs present or dominating the acclimated communities were already established in 

hemolymph prior to the experiment, thus getting a head start; and that, in contrast, the 

temperature stress would facilitate colonization by new species and promote growth of rare or 

dormant OTUs.  However, we found little support for this hypothesis, as the proportion of the 

OTUs that were dominant in experimental communities and already present at the beginning 

did not significantly differ between the warm-acclimated and stressed oysters, although it was 

higher for cold-acclimated microbiomes (Table III-S7).  

Acclimation and experimental temperature, as well as their interaction, considerably affected 

the composition of hemolymph microbiota throughout the experiment (Table III-3). 

Ordination by NMDS clearly separated the communities by temperature treatments (Figure III-

4b). Ordination and Permanova based on weighted UniFrac showed that little of phylogenetic 

#-diversity was attributable to the treatments (Figure III-S2, Figure III-S3), reflecting similarity 

of the microbiome composition at above-OTU taxonomic levels. However, we found some 

indication for increase in potentially pathogenic genera in stressed oysters and at 22°C in 

general (Supp III-Ind). 

In order to estimate how experimental treatments affected microbial dynamics, we used the 

area of polygons connecting all samples from a single oyster in the NMDS plot as a proxy for 

temporal stability: the smaller the area, the more stable the community. ANOVA confirmed the 

visual impression (Figure III-4b) that microbiomes in the cold environment were more stable 

compared to microbiomes from the warm environment (F1,26 = 17.86, p<0.001). Stress and 

infection, on the other hand had no significant effect on temporal microbiome dynamics (F1,26 = 

0.157, p = 0.695, F1,26 = 0.89, p = 0.367).  
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Figure III-4. Relative abundances (a, c) and taxonomical composition (b) of hemolymph microbiota in 

response to oyster condition and temperature treatments at the class level (a,b) and in individual moribund 

and dead oysters at the genus level (c). Dashed line denotes moribund, full line the dead oysters. Blue 

denotes experimental temperature of 8°C, red 22°C. 
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Discussion 

Host-pathogen interactions play an important role in population dynamics and evolution of 

organisms. Although microbes inherently differ in their pathogenic potential, a disease usually 

arises from a complex interplay of multiple factors. Here, we show that temperature represents a 

notable determinant of microbial dynamics in oyster hemolymph, and propose that the lower 

temporal stability of microbiomes at higher temperatures may have contributed to the higher 

mortality of the heat-stressed hosts upon infection. We also show that a decrease in diversity 

and proliferation of opportunistic pathogens precede death, thus representing a good indicator 

of declining health. 

Infection, microbiota and oyster health  

Higher mortality at 22°C can be partially attributed to faster growth of the injected strain 

(Figure III-S6) and/or to temperature-dependent increase in expression of virulence factors 

(Kimes et al., 2012). The effect of absolute temperature, however, cannot account for the 

difference in mortality between stressed and acclimated oysters. (Wang et al., 2012) reported 

synergic effects of heat stress and infection on scallop survival and attributed it to energetic 

stress. A similar mechanism may have played a role for the oyster mortality, because only heat-, 

but not cold stress has been shown to increase energy consumption in Pacific oysters (Bougrier 

et al., 1995; Malham et al., 2009). 

Injection of the virulent Vibrio sp. strain clearly caused mortality, but was also associated 

with an increased number of cultivable vibrios in the oyster hemolymph. In contrast, we could 

not directly link incidence or abundance of the injected strain in the sequenced libraries to 

disease (Supp III-Ind). For once, we cannot discriminate between sequences from active and 

inactive cells that would not cause disease (Williams et al., 2009). Moreover, Vibrio spp. can 

have significant influence on the host health, despite the low relative abundance (Vega Thurber 

et al., 2009). Still, low abundance of the injected strain suggests that other vibrios could have 

contributed to the mortalities, as the exogenous bacteria can be cleared quickly from the 

hemolymph (Parisi et al., 2008), while stimulating growth of inactive residents (Froelich and 

Oliver, 2013).  

The abundance of Arcobacter spp. in moribund oysters also suggests a pronounced role of 

the indirect effects for the mortalities (Hauton et al., 1997). Arcobacter spp. is often found in 

association with marine organisms - ranging from bottle-nosed dolphins (Lima et al., 2012), 

marine seaweeds (Hollants et al., 2011), crabs (Givens et al., 2013), mussels (Collado et al., 
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2009), abalones (Tanaka et al., 2004) and oysters (Romero et al., 2002b). The %-Proteobacteria 

are usually rare in coastal seawater and sediments (Campbell et al., 2011; Gobet et al., 2012), and 

they were rare in recent studies of oyster stomach (King et al., 2012a), gut (Trabal Fernandez et 

al., 2013) and gill microbiota (Wegner et al., 2013).  Thus the high abundance of Arcobacter spp. 

here could mean that these strains represent hemolymph-specific symbionts, which were not 

investigated in previous studies of oyster microbiota. Arcobacter spp. are often microaerophilic 

(Vandamme and Deley, 1991) and growth in the oysters could be facilitated by periodical valve 

closing (Sow et al., 2011) or high variation in respiratory time activity (Bougrier et al., 1998) - 

both of which may promote microaerophilic conditions. Dominance of Arcobacter spp. in 

moribund oysters, on the other hand, might have been a consequence of increased hypoxia due 

to disease-induced reduction of filtration activity (Mchenery and Birkbeck, 1986). Nevertheless, 

the high abundance of Arcobacter spp. strains in moribund oysters, starved abalones (Tanaka et 

al., 2004) and necrotic sponges (Fan et al., 2013) may suggest their potential as opportunistic 

pathogens when occurring in high enough densities (Olson et al., 2014). Dominance of 

Arcobacter spp. in unhealthy animals resulted in low microbial diversity, in contrast to the 

diverse microbiomes of infection survivors, which were barely distinguishable from controls  

(Figure III-3b, Figure III-4b). This might reflect the crossing of a resilience threshold that a 

healthy community has against disturbance (Lozupone et al., 2012). We cannot directly relate 

microbiome stability to disease resistance, but low diversity has repeatedly been found to 

coincide with impaired health in various animals (Garnier et al., 2007; Chang et al., 2008; Green 

and Barnes, 2010). 

Microbial community dynamics in relation to infection and temperature stress 

Warm temperatures can lead to higher heterogeneity in microbiome composition (Erwin et 

al., 2012; Boutin et al., 2013) and stress can favor shift towards more pathogen-dominated 

communities (Boutin et al., 2013). Thus the lower community stability at 22°C (Figure III-4b) 

and temperature- or stress-related increase in potentially pathogenic bacteria (Supp III-Ind) 

could have contributed to the observed mortality pattern. However, microbiomes often remain 

stable and pathogen-free even in stressful conditions (Erwin et al., 2012; Pita et al., 2013; 

Wegner et al., 2013), indicating their potential role in host acclimation (Rosenberg et al., 2007). 

Phylogenetic similarity of the microbiomes suggests a common origin from the local seawater 

microbiota (Lozupone et al., 2007). The drop in diversity following the transfer to the non-flow-

through conditions was associated with a loss of rare and probably transient OTUs, underlining 

the importance of immigration for the assembly of the hemolymph microbiome. However, the 
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persistence of relatively rare, presumably resident bacteria - such as Vibrio spp. (Pruzzo et al., 

2005) - contrasts the loss of transient OTUs (Romero et al., 2002b) and indicates that the 

hemolymph microbiome is not a simple result of filter-feeding lifestyle. While the individual 

stability indicates the importance of host genotype for the community assembly (Wegner et al., 

2013), the fine-scale differences between the treatments also illustrate acclimation potential of 

the hemolmyph microbiome. Multiple competing ecotypes usually coexist in bacterial 

populations (Cohan and Koeppel, 2008) and even the isolates with virtually identical 16s rRNA 

sequences are sometimes adapted to very different conditions (Cohan and Koeppel, 2008; Hall 

et al., 2010), We cannot determine bacterial activity (Campbell et al., 2011) nor function (Salles 

et al., 2012) based on 16s rDNA sequences; moreover, our coverage is insufficient to capture 

very rare bacteria and thus estimate the full potential for community acclimation (Sjostedt et al., 

2012). Nevertheless, relatively high persistence of bacterial residents and the adjustments in 

fine-scale community composition following the environmental change could represent the 

microbiome’s way to buffer the impact of environmental stress. Shifts in composition of the 

endogenous OTUs can thus prevent growth of external pathogens (Sjostedt et al., 2012) 

(Froelich and Oliver, 2013) and contribute to the maintenance of homeostasis. 

The microbiome of warm-acclimated oysters might have been influenced by their extended 

time to acclimate to laboratory conditions. This bias would mainly influence day 0 samples, 

where we cannot discriminate between effects of temperature or acclimation. Since we can 

assume that cold acclimated oysters recovered from handling stress at the start of the 

experiment (Thompson et al., 2012), we mainly focus on those results where oysters could 

uneqivocally be assigned to experimental treatments (day 3 -7) for our interpretation to avoid 

any such bias. During those stages of the experiment, the quick shift of communities in response 

to experimental conditions, the strong effect fo experimental temperature (Suplementary Figure 

III-2 and 3) and the similarity of microbiomes from surviving oysters in response to infection 

indicate that oyster history did not largely affect our results throughout the experiment. 

Our detailed insight into short-term microbial dynamics of Pacific oyster hemolymph 

microbiota in response to environmental conditions and infection shows that temperature is 

indeed a master switch determining community structure and dynamics of oyster associated 

microbiota. Microbial communities responded quickly to environmental change, but remained 

relatively stable within individuals for the duration of the experiment. Community disturbance 

by heat stress, coupled with host stress and faster bacterial growth at 22°C may have acted in 

concert to cause high mortality rates. Stress can also amplify the direct immediate effects by 

giving rise to secondary opportunistic pathogens (e.g. Arcobacter). Heat stress alone was not 
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sufficient to cause mortality, showing that direct or indirect effects of pathogenic bacteria are 

necessary to induce mortality. To disentangle direct from indirect effects mediated by resident 

microbial communities further studies are needed increasing the temporal resolution during the 

early phases of an infection to cover more bacterial communities associated to moribund 

oysters. The robustness of microbial communities against infection and plasticity in response to 

temperature suggest that the hemolymph microbiome can indeed play a vital role for host 

defense in changing environments. 
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 Raw 
After denoising 
and chimera 
removal 

w/o 
contaminants w/o singletons 

w/o low coverage 
samples (<100 
reads) 

No. sequences 256 748 165441 136607 133617 133285 

No. bp 90 975 641     

No. libraries  176 174 174 168 

No. 97% OTUs  5634 5616 2623 2622 

      

Sequences/library      

min  29 26 24 100 

max  2832 2164 2156 2156 

median ± abs. dev  901.50 ±448 758.50±379 732.50±380.0 766.5±353.5 

mean ± st.dev.  878.67±534.48 785.09±475.59 767.91±474.79 793.36±463.34 

Table III-S1. Results of raw sequence data processing. 

 

 

 

Table III-S2. Spearman correlation coefficients between alpha-

diversity metrics of the complete and rarified (size = 100) datasets. 

Mean coefficient values and their standard deviation are shown. 

 

 

 

 

 

Table III-S3. Procrustes correlations between NMDS ordinations 

based on the complete dataset and: datasets including only 

abundant (≥1%) or rare (<1%) OTUs and the average of 10 

rarified datasets. 

 

 

 

 

 

 

 

 

Rarefied Complete 

Shannon`s H 0.979 ± 0.0025*** 

Evenness 0.956 ± 0.0030*** 

PD 0.842 ± 0.0093*** 

 Complete1 

Abundant 0.79*** 

Rare 0.825*** 

Rarefied 0.85*** 

1significance levels: * ≤ 0.05, ** < 0.01, *** < 0.001 
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  Contrasts Z-value1 Estimate SE 2.5% CI 97.5% CI 

Main effects Acclimation 
temp. Cold VS warm -0.67     

 Experimental 
temp. Cold VS warm -7.31*** -0.766 0.1047 -0.971 -0.560 

 Time Day 3 VS days 5-7 -4.39*** -0.245 0.0557 -0.354 -0.136 

  Day 5 VS 7 0.03     

 Health status Moribund & dead VS 
healthy -2.61** -0.249 0.0954 -0.436 -0.062 

  Dead VS moribund -0.63     

 Infection Control VS infected 3.53*** 0.402 0.1138 0.179 0.625 

 Day 0 CFUs  0.74     

Interaction terms A. temp. x E. 
temp.  0.28 0.029 0.1033   

 E. temp. x Time E. temp. on (day 3 VS 
days 5-7) -3.32*** -0.192 0.0579 0.-305 -0.079 

  E. temp. on (day 5 VS day 
7) 0.48     

Random intercept Oyster   0.174 0.4169   

1significance levels: * ≤ 0.05, ** < 0.01, *** < 0.001       

 

Table III-S4. Generalized linear mixed model (negative binomial family) for treatment and condition 

effects on CFU count data (day 0 as covariate). AIC = 1246.6, BIC = 1286.29, logLik (df = 14) = -609.291. 

Negative binomial dispersion parameter: 1.537±0.2498. 

 

 

  df F1 Significant contrasts Estimate SE 2.5% CI 97.5% 
CI 

Main effects Acclimation temp. 1, 43 6.720* Cold VS warm 3.178 1.226 0.706 5.65 

 Experimental temp. 1, 43 9.735** Cold VS warm 2.732 0.876 0.966 4.498 

 Time 2, 62 4.545* Day 3 VS days 5-7 1.463 0.497 0.469 2.457 

 Health status 2, 62 9.608*** Moribund & dead VS 
healthy 2.542 2.542 1.288 3.796 

 Infection 1, 43 0.828      

Interaction terms A. temp. x E. temp. 1, 43 2.225      

 A. temp. x Time 2, 62 6.181** A. temp. on (day 3 VS 
days 5-7) -2.397 0.702 -3.8 -0.993 

 E. temp. x Time 2, 62 5.109** E. temp. on (day 3 VS 
days 5-7) 1.273 0.512 0.249 2.297 

    E. temp. on (day 5 VS 
day 7) 1.918 0.93 0.058 3.778 

 A. temp. x E. temp. x 
Time 2, 62 0.676      

Random intercept Oyster    2.128  0.803 5.643 
1significance levels: * ≤ 0.05, ** < 0.01, *** < 0.001        
 

Table III-S5. Linear mixed model for treatment and condition effects on PD (phylogenetic diversity). AIC = 

761.903, BIC = 807.020, logLik (df = 17) = -363.951. 
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  df F1 Significant 
contrasts Estimate SE 2.5% 

CI 97.5% CI 

Main effects Acclimation temp. 1, 43 0.016      

 Experimental temp. 1, 43 1.275      

 Time 2, 62 0.597      

 Health status 2, 62 9.221***  Moribund & dead 
VS healthy 0.049 0.012 0.027 0.072 

 Infection 1, 43 1.411      

Interaction terms A. temp. x E. temp. 1, 43 13.016*** Stressed VS 
acclimated -0.077 0.021 -0.117 -0.037 

 A. temp. x Time 2, 62 0.173      

 E. temp. x Time 2, 62 3.501* E. temp. on (day 3 
VS days 5-7) 0.027 0.011 0.007 0.047 

 A. temp. x E. temp. x 
Time 2, 62 2.245      

Random intercept Oyster    0  0 7.00E+66 
1significance levels: * ≤ 0.05, ** < 0.01, *** < 0.001        

 

Table III-S6. Linear mixed model for treatment and condition effects on evenness. AIC = -165.083, BIC = -

117.696, logLik (df = 17) = 99.542. 

 

 

 

 

Table III-S7. Proportion of abundant (≥1%) OTUs in days 3-7 communities 

that were present on day 0, listed by temperature treatments. Cold-acclimated 

communities (CC) had significantly higher percentageof persistent OTUs than 

the rest (F3,36 = 6.003, p = 0.002). CC = cold acclimated, CW = warm stressed, 

WC = cold-stressed, WW = warm-acclimated. 

 

 

 

 

 

 

Figure III-S1. OTU composition (number of OTUs per taxon) and relative abundances at the class level in 

individual samples.  Horizontal bars between the upper and the lower barplot describe oyster condition and 

experimental treatments (for additional information on oysters and treatments see Supplementary File 1). 

Only acclimation temperature is given for the pre-experimental communities (left of the vertical bar). 

Experimental communities are first grouped according to condition, then to  reatments. Within a treatment, 

healthy oysters are grouped by their ID in the chronological order (the label is placed at the beginning of a 

sample group). H = healthy, M = moribund, D = dead, NI = non-infected, I = infected. 

 

 % 

CC** 78.66 

CW 58.64 

WC 62.79 

WW 64.61 
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Figure III-S2. Graphical representation of Adonis (Permanova) results for abundance-weighted (left) and 

incidence data (right). Analyses are based on complete (Bray-Curtis & weighted Unifrac distances) and 

abundant (≥1%)  portions (Bray-Curtis only) of experimental communities (day 0 excluded). 

 

 

!""

#"

$"

%"

&"

!"

8??C/-0<2C

D12C/-0<2C
E*<0

F3>0?-*;3

@0(,-A/B-(-9B

8??C/-0<2C/1/D12C/-0<2C

8??C/-0<2C/1/E*<0

D12C/-0<2C/1/E*<0

8??C/-0<2C/1/D12C/-0<2C/1/E*<0

J0B*49(,/K()*(+*,*-.
3;-/B*I3*>*?(3-'

()
*(
+*
,*-
./
01
2,
(*
30
4/
56
7

8+
93
4(
3-

:;
<
2,0
-0

8+
93
4(
3-

:;
<
2,0
-0

=3
*>)
(?

8+934(3?0GH0*IA-04 F3?*403?0



C H A P T E R  I I I  S U P P L E M E N T S  

 105 

 

 
 

Figure III-S3. Mean rarefaction curves of α-diversity indices of experimental  communities  (day 0 

excluded) according to treatments: (A) Shannon’s H, (B) evenness, (C) phylogenetic diversity, (D) number of 

species, CC = cold acclimated, CW = warm stressed, WC = cold-stressed, WW = warm-acclimated, NI = 

non-infected, I = infected. 
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Figure III-S4. NMDS plots showing: (a) 

the difference between pre-experimental 

and  experimental communities (only alive 

oysters); (b, c) the temporal stability and 

response to the treatments based on the (b) 

Bray-Curtis distances between the 

abundance-truncated (>1%) dataset, and 

on the (c) weighted UniFrac in the full 

dataset (day 0 excluded). CC = cold 

acclimated, CW = warm-stressed, WC = 

cold-stressed, WW = warm- acclimated, I 

= infected, NI = non-infected, D = Day. 
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Figure III-S5. α-diversity indices - (a) 

Shannon's H, (b) evenness and (c) PD - 

in response to treatments. In (c), means 

of PD at the beginning and the end of 

the experiment are shown for 

communities at ambient (current) 

temperature (C = 8°C, W = 22°C). CC = 

cold-acclimated, CW = warm stressed, 

WC = cold-stressed, WW = warm-

acclimated, NI = non-infected, I = 

infected. 
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Figure III-S6. Effect of temperature on 

doubling time of Vibrio sp. D29w (3-5 

replicates at each temperature, OD550 

measured in 15 min intervals). 

 

 

 

 

 

 

 

 

Sup III-Ind 

Indicator species analysis    

      
We used indicator species approach implemented in the R package indicspecies to quantify association of OTUs and genera with 
conditions and treatments of interest. 
Taxon names are written as in output of RDP classifier using Greengenes taxonomy 12_10. 

A separate analysis has been performed at OTU and genus level for abundance and presence/absence data. 

P-values were adjusted for multiple comparisons with Benjamini & Hochberg correction. 

Indicator value index is a product of two indices: 

- specificity (A) is the probability that A site (oyster) belongs to the tested group given that 
the taxon was found 

 

- sensitivity (B) is the probability of finding the taxon in sites (oysters) belonging to the 
tested group 

We excluded indicators with low specificity (A < 0.6) and sensitivity (B < 0.5) from the main list of indicators ("Indicators" sheet) 
in order to remove taxons that were abundant in a single oyster or only few samples in a tested group. 
 
Legend is on the next page (109) and list of indicators starts on page 110. 
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Tested groups   Significant indicators found:   

Day 0 communities     

T0 Time 0  +   

C Cold-acclimated    

W Warm- acclimated +   

      

Experimental communities    

A Alive  +   

CC Cold-acclimated +   

CC_0 Non-infected     

CC_I Infected     

CW Warm-stressed +   

CW_0 Non-infected  +   

CW_I Infected  + *only 1 oyster in the group 

WC Cold-stressed +   

WC_0 Non-infected  +   

WC_I Infected  +   

WW Warm-acclimated +   

WW_0 Non-infected     

WW_I Infected     

      

Cx Cold acclimation temperature +   

Wx Warm acclimation temperature +   

xC Cold experimental temperature +   

xW Warm experimental temperature +   

      

I Infected  +   

A_I Alive infected +   

H Healthy  +   

S Surviving     

M Moribund     

DM Dead and moribund +   

D Dead  +   

      

      

Abbreviations     
uc match to unclassified sequence   
na not assigned to the given taxonomical level   

ab abundance-weighted    

pa non-weighted (presence/absence)   

gen genus     

 



C H A P T E R  I I I  S U P P L E M E N T S  

 110 

 

Level Phylum Class Order Family Genus OTU  
ID Group IndVal A B P adj. Data 

Genus Bacteroidetes Bacteroidia Bacteroidales uc uc  CW_I 0.643 0.620 0.667 0.041 ab 
OTU  Flavobacteriia Flavobacteriales Flavobacteriaceae Aquimarina 5385 CW_I 0.775 0.901 0.667 0.010 ab 
OTU      5385 CW_I 0.740 0.901 0.667 0.008 pa 

OTU     Flavobacteriumgelidilacu
s 3029 A 0.776 0.952 0.632 0.013 ab 

Genus       A 0.755 0.902 0.632 0.016 ab 
OTU     Mesonia 746 WC 0.655 0.803 0.533 0.019 ab 
OTU      746 WC 0.512 0.803 0.533 0.027 pa 
Genus       WC 0.624 0.730 0.533 0.012 ab 
OTU     Polaribacter 129 A 0.708 0.966 0.519 0.010 ab 
OTU      129 A 0.681 0.966 0.519 0.008 pa 
OTU      275 xC 0.856 0.885 0.828 0.010 ab 
OTU      275 A 0.756 0.982 0.689 0.008 pa 
OTU      4144 xW 0.701 0.918 0.535 0.017 ab 
Genus       A 0.937 0.931 0.943 0.005 ab 
Genus       A 0.860 0.784 0.943 0.013 pa 
OTU     Polaribacterirgensii 1067 xC 0.854 0.920 0.793 0.010 ab 
OTU      1067 A 0.719 0.978 0.642 0.034 pa 
Genus       xC 0.834 0.876 0.793 0.005 ab 
Genus       A 0.725 0.808 0.651 0.033 pa 
OTU     Sediminicola 1120 Wx 0.899 0.875 0.923 0.010 ab 
Genus       Wx 0.885 0.849 0.923 0.005 ab 
Genus     Tenacibaculum  H 0.680 0.865 0.535 0.007 ab 
Genus       A 0.664 0.849 0.519 0.015 pa 
OTU     uc 506 WW 0.640 0.750 0.545 0.019 ab 
OTU      1066 A 0.892 0.937 0.849 0.010 ab 
OTU       A 0.814 0.937 0.849 0.035 pa 
OTU      1193 xW 0.692 0.763 0.628 0.010 ab 
OTU       xW 0.655 0.763 0.628 0.008 pa 
OTU      1551 WC_I 0.763 0.740 0.786 0.010 ab 
OTU       WC_I 0.585 0.740 0.786 0.021 pa 
OTU      1797 CC 0.725 0.775 0.679 0.025 ab 
OTU      2360 Wx 0.753 0.921 0.615 0.010 ab 
OTU       Wx 0.641 0.921 0.615 0.008 pa 
OTU      2486 Wx 0.836 0.909 0.769 0.010 ab 
OTU       Wx 0.705 0.909 0.769 0.008 pa 
OTU      2487 WC 0.698 0.913 0.533 0.017 ab 
OTU     na 1468 xW 0.934 0.938 0.930 0.010 ab 
OTU       H 0.724 0.981 0.663 0.030 pa 
OTU    uc uc 3114 WC 0.715 0.903 0.567 0.019 ab 
OTU       WC 0.527 0.903 0.567 0.021 pa 
OTU      4365 A 0.804 0.926 0.698 0.010 ab 
OTU       A 0.746 0.926 0.698 0.033 pa 
OTU    na na 3607 A 0.731 0.978 0.547 0.025 ab 
OTU       A 0.681 0.978 0.547 0.020 pa 
OTU  Sphingobacteriia Sphingobacteriales Chitinophagaceae uc 1488 CW_I 0.648 0.630 0.667 0.010 ab 
OTU       CW_I 0.606 0.630 0.667 0.016 pa 
Genus    Saprospiraceae uc  T0 0.611 0.689 0.542 0.007 ab 
OTU  na na na na 4384 WC_I 0.710 0.706 0.714 0.010 ab 
Genus Cyanobacteria Chloroplast Stramenopiles uc uc  T0 0.893 0.869 0.917 0.005 ab 
OTU Firmicutes Clostridia Clostridiales Clostridiaceae uc 4789 D 0.778 0.940 0.643 0.013 ab 
OTU       D 0.541 0.940 0.643 0.023 pa 
OTU  na na na na 454 W 0.726 0.843 0.625 0.021 ab 
OTU Firmicutes na na na na  W 0.542 0.843 0.625 0.008 pa 
OTU GN02 BD1.5 uc uc uc 2576 WC 0.516 0.919 0.567 0.030 pa 
OTU       WC_0 0.798 0.849 0.750 0.013 ab 
OTU      2814 Wx 0.676 0.626 0.731 0.013 ab 
OTU       Wx 0.668 0.626 0.731 0.008 pa 
Genus       Wx 0.740 0.663 0.827 0.038 ab 
OTU  IIB17 uc uc uc 3900 W 0.803 0.910 0.708 0.010 ab 
OTU       W 0.696 0.910 0.708 0.008 pa 
Genus Nitrospirae Nitrospira Nitrospirales Nitrospiraceae uc  W 0.721 0.781 0.667 0.005 ab 
Genus       W 0.690 0.713 0.667 0.009 pa 
Genus Proteobacteria !-Proteobacteria Rhizobiales Hyphomicrobiaceae uc  T0 0.718 0.727 0.708 0.005 ab 
OTU   Rhodobacterales Rhodobacteraceae Loktanella 260 A 0.780 0.908 0.670 0.032 ab 
OTU      2073 T0 0.657 0.769 0.563 0.010 ab 
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Level Phylum Class Order Family Genus OTU  
ID Group IndVal A B P adj. Data 

OTU       T0 0.605 0.769 0.563 0.008 pa 
OTU     Octadecabacter 1986 Cx 0.875 0.914 0.837 0.010 ab 
OTU       A 0.731 0.968 0.670 0.042 pa 
Genus       Cx 0.845 0.853 0.837 0.005 ab 
OTU     Phaeobacter 3642 Cx 0.744 0.798 0.694 0.010 ab 
OTU       Cx 0.684 0.798 0.694 0.008 pa 
OTU      3918 CW_I 0.769 0.888 0.667 0.010 ab 
OTU       CW_I 0.712 0.888 0.667 0.020 pa 
OTU      4004 H 0.867 0.863 0.871 0.013 ab 
OTU       A 0.816 0.875 0.849 0.031 pa 
OTU      4118 A_I 0.726 0.851 0.619 0.028 ab 
Genus       A 0.892 0.836 0.953 0.007 ab 
Genus       A 0.862 0.780 0.953 0.021 pa 
OTU     uc 527 CW 0.752 0.913 0.619 0.013 ab 
OTU       CW 0.558 0.913 0.619 0.027 pa 
Genus       CW 0.677 0.740 0.619 0.026 ab 
OTU Proteobacteria !-Proteobacteria Rhodobacterales Rhodobacteraceae na 355 CW_I 0.816 1.000 0.667 0.010 ab 
OTU       CW_I 0.816 1.000 0.667 0.008 pa 
OTU      807 H 0.882 0.904 0.861 0.013 ab 
OTU      3205 WC 0.609 0.618 0.600 0.027 ab 
Genus   Rhodospirillales Rhodospirillaceae uc  T0 0.738 0.688 0.792 0.005 ab 
Genus   Rickettsiales Rickettsiaceae uc  xW 0.779 0.931 0.651 0.009 ab 
Genus       xW 0.631 0.611 0.651 0.009 pa 
OTU    uc uc 484 xW 0.752 0.935 0.605 0.010 ab 
OTU       xW 0.689 0.935 0.605 0.008 pa 
Genus       xW 0.843 0.899 0.791 0.005 ab 
Genus       xW 0.696 0.612 0.791 0.009 pa 
OTU   na na na 4044 xW 0.794 0.905 0.698 0.017 ab 
OTU       xW 0.730 0.905 0.698 0.008 pa 
OTU  "-Proteobacteria Methylophilales Methylophilaceae uc 14 xW 0.681 0.738 0.628 0.017 ab 

OTU      1701 CW_0 0.692 0.616 0.778 0.010 ab 
OTU       xW 0.614 0.857 0.558 0.008 pa 
Genus       A 0.679 0.814 0.566 0.038 pa 
Genus       xW 0.729 0.692 0.767 0.005 ab 
Genus   Nitrosomonadales Nitrosomonadaceae uc  T0 0.632 0.768 0.521 0.009 ab 
Genus       T0 0.561 0.605 0.521 0.016 pa 
OTU  ∂-Proteobacteria Bdellovibrionales Bacteriovoracaceae Bacteriovorax 5344 WC_0 0.660 0.697 0.625 0.029 ab 
Genus     uc  T0 0.615 0.606 0.625 0.018 ab 
Genus   Desulfobacterales Desulfobulbaceae uc  T0 0.721 0.960 0.542 0.009 ab 
Genus       T0 0.653 0.787 0.542 0.009 pa 
Genus    Nitrospinaceae Nitrospina  W 0.578 0.618 0.542 0.018 pa 
OTU   Myxococcales Nannocystaceae uc 592 W 0.713 0.762 0.667 0.013 ab 
OTU       W 0.619 0.762 0.667 0.016 pa 
Genus       W 0.707 0.750 0.667 0.005 ab 
Genus    uc uc  T0 0.687 0.780 0.604 0.007 ab 
Genus       T0 0.606 0.607 0.604 0.009 pa 
Genus   Sva0853 JTB36 uc  W 0.687 0.809 0.583 0.007 ab 
Genus       W 0.613 0.645 0.583 0.015 pa 
OTU    uc uc 658 W 0.755 0.978 0.583 0.010 ab 
OTU       W 0.738 0.978 0.583 0.008 pa 
Genus       W 0.756 0.981 0.583 0.005 ab 
Genus       W 0.699 0.838 0.583 0.015 pa 
OTU   na na na 148 CW 0.656 0.646 0.667 0.021 ab 
OTU       CW 0.516 0.646 0.667 0.047 pa 
OTU  #-Proteobacteria Campylobacterales Campylobacteraceae Arcobacter 692 D 0.794 0.981 0.643 0.010 ab 
OTU       D 0.664 0.981 0.643 0.016 pa 
OTU      1330 A 0.890 0.943 0.840 0.019 ab 
OTU      4156 DM 0.810 0.734 0.895 0.013 ab 
OTU      4435 A 0.893 0.949 0.840 0.043 ab 
OTU      4917 CW_I 0.715 0.767 0.667 0.013 ab 
OTU       CW_I 0.676 0.767 0.667 0.016 pa 
Genus       A 0.919 0.852 0.991 0.005 ab 
OTU    na na 4369 W 0.758 0.656 0.875 0.010 ab 
OTU  $-Proteobacteria Alteromonadales Alteromonadaceae Glaciecola 236 H 0.811 0.948 0.693 0.010 ab 

OTU       H 0.758 0.948 0.693 0.008 pa 
Genus       xC 0.783 0.671 0.914 0.007 ab 
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Level Phylum Class Order Family Genus OTU  
ID Group IndVal A B P adj. Data 

Genus       H 0.753 0.774 0.733 0.028 pa 
Genus    Colwelliaceae Thalassomonas  A_I 0.588 0.604 0.571 0.041 ab 
OTU     uc 1702 xC 0.789 0.737 0.845 0.010 ab 
OTU       A 0.716 0.939 0.623 0.008 pa 
OTU      4116 xC 0.861 0.796 0.931 0.010 ab 
OTU       A 0.765 0.942 0.708 0.008 pa 
Genus       A 0.861 0.883 0.840 0.007 ab 
Genus    Shewanellaceae Shewanella  I 0.632 0.699 0.571 0.038 ab 
OTU     Shewanellahanedai 3720 I 0.626 0.685 0.571 0.042 ab 
OTU       I 0.617 0.685 0.571 0.030 pa 
Genus       I 0.617 0.666 0.571 0.034 pa 
OTU    na na 3855 W 0.671 0.832 0.542 0.021 ab 
OTU       W 0.548 0.832 0.542 0.016 pa 
Genus   Chromatiales uc uc  T0 0.836 0.839 0.833 0.005 ab 
OTU   Legionellales Francisellaceae Francisella 2747 CW_I 0.851 0.724 1.000 0.010 ab 
OTU       CW_I 0.871 0.724 1.000 0.008 pa 
Genus     uc  CW 0.671 0.726 0.619 0.005 ab 
Genus    Legionellaceae uc  CW_I 0.854 0.730 1.000 0.007 ab 
OTU     uc 133 CW 0.793 0.943 0.667 0.010 ab 
OTU     uc  CW 0.633 0.943 0.667 0.013 pa 
OTU     uc 2148 CW_I 0.710 0.756 0.667 0.013 ab 
OTU     uc  CW_I 0.621 0.756 0.667 0.013 pa 
Genus   Oceanospirillales Halomonadaceae Chromohalobacter  W 0.758 0.861 0.667 0.007 ab 
OTU     Chromohalobacter 4581 W 0.785 0.925 0.667 0.013 ab 
Genus    Oceanospirillaceae Amphritea  H 0.730 0.869 0.614 0.005 ab 
Genus       A 0.717 0.865 0.594 0.009 pa 
OTU     Marinomonas 1444 WC 0.667 0.702 0.633 0.022 ab 
OTU      4052 Wx 0.727 0.834 0.635 0.010 ab 
OTU       Wx 0.634 0.834 0.635 0.008 pa 
Genus       A 0.752 0.869 0.651 0.012 ab 
Genus       A 0.719 0.794 0.651 0.028 pa 
OTU Proteobacteria !-Proteobacteria Oceanospirillales Oceanospirillaceae Oleispira 1855 A 0.744 0.930 0.594 0.010 ab 
OTU       A 0.703 0.930 0.594 0.013 pa 
Genus       A 0.728 0.878 0.604 0.005 ab 
Genus       A 0.707 0.829 0.604 0.015 pa 
OTU     uc 595 A 0.736 0.973 0.557 0.013 ab 
OTU       A 0.683 0.973 0.557 0.022 pa 
OTU      1190 H 0.899 0.938 0.861 0.010 ab 
OTU      1549 xW 0.777 0.865 0.698 0.019 ab 
OTU       xW 0.630 0.865 0.698 0.008 pa 
Genus       A 0.935 0.909 0.962 0.005 ab 
OTU     na 3370 Wx 0.698 0.791 0.615 0.013 ab 
OTU      4781 CW_0 0.665 0.663 0.667 0.017 ab 
Genus   Salinisphaerales Salinisphaeraceae Salinisphaera  W 0.739 0.873 0.625 0.005 ab 
OTU      226 W 0.709 0.929 0.542 0.010 ab 
OTU       W 0.539 0.929 0.542 0.021 pa 
OTU   Vibrionales Vibrionaceae Photobacterium 753 I 0.653 0.769 0.554 0.028 ab 
OTU       I 0.608 0.769 0.554 0.026 pa 
OTU     Vibrio 4770 I 0.769 0.849 0.696 0.017 ab 
Genus   Xanthomonadales uc uc  T0 0.895 0.916 0.875 0.005 ab 
Genus       T0 0.745 0.634 0.875 0.009 pa 
Genus   uc uc uc  T0 0.831 0.737 0.938 0.005 ab 
OTU      1638 W 0.576 0.613 0.542 0.021 ab 
OTU       W 0.585 0.613 0.542 0.016 pa 
OTU   na na na 5079 CW_I 0.816 1.000 0.667 0.010 ab 
OTU       CW_I 0.816 1.000 0.667 0.008 pa 
OTU      5191 W 0.730 0.799 0.667 0.013 ab 
OTU       W 0.574 0.799 0.667 0.022 pa 
OTU      5578 T0 0.688 0.811 0.583 0.010 ab 
OTU       T0 0.575 0.811 0.583 0.008 pa 
OTU  na na na na 356 CW_I 0.786 0.617 1.000 0.010 ab 
OTU       CW_I 0.844 0.617 1.000 0.008 pa 
OTU      4758 CW_I 0.830 0.690 1.000 0.010 ab 
OTU       CW_I 0.720 0.690 1.000 0.013 pa 
OTU      5098 W 0.729 0.910 0.583 0.013 ab 
OTU       W 0.657 0.910 0.583 0.008 pa 
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Level Phylum Class Order Family Genus OTU  
ID Group IndVal A B P adj. Data 

OTU Verrucomicrob
ia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiacea

e Persicirhabdus 1019 CW_I 0.816 1.000 0.667 0.013 ab 

OTU       CW_I 0.816 1.000 0.667 0.013 pa 
Genus       CW_I 0.790 0.937 0.667 0.009 ab 
Genus       CW_I 0.724 0.787 0.667 0.013 pa 
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C O N C L U S I O N   

 

The evolution is driven by the pressure that abiotic and biotic environment exert on 

individual organisms. However, they do not face these challenges alone, as each individual is 

actually an ecosystem hosting numerous and distinct microbial communities. Both host and its 

associated microbiota are affected by the environment, and the fitness of an organism also 

depends upon the outcome of these complex interactions. Deciphering host-microbiota-

environment interactions has thus important theoretical and practical implications for 

understanding the evolutionary and ecological consequences of the climate change. 

Pacific oysters have experienced positive as well as negative consequences of the global 

warming: they invaded coastal habitats worldwide due to the rising temperatures, which at the 

same time increased the risk of oyster mass mortalities. The mortalities are result of a complex 

interplay of numerous factors, including abiotic stress and opportunistic pathogens. The oyster-

associated microbial communities might be important for the outcome of such disease 

outbreaks, both because of their putative ability to protect the host and because they themselves 

may act as opportunistic pathogens. Translocations of Pacific oysters for commercial purposes 

represent yet another interesting aspect of microbiota-environment interactions, namely the 

interactions of co-adapted microbiota with the unknown biotic environment. 

In this thesis, I set out to explore how abiotic and biotic conditions affect the Pacific oyster 

microbiota and how these changes might reflect upon the oyster fitness. I combined field and 

laboratory experiments over short (Chapter I, Chapter III) and long (Chapter II) timescales in 

order to get a comprehensive picture of oyster microbiota variability in response to the 

environment. I addressed the consequences of complex biotic and abiotic stress imposed by 

translocation (Chapter I, Chapter II) as well as of the controlled stress imposed by experimental 

infection and abrupt temperature change (Chapter III). 

I found that the hemolymph, unlike the gut, gill and mantle tissues, hosted highly diverse 

microbiota including active potentially pathogenic bacteria, and that stable hemolymph 

communities prevented passage of these pathogens to solid tissues (Chapter I). Destabilization 

of hemolymph microbiota, likely through interactions with a new biotic environment, caused 

systemic potentially fatal infections in translocated oysters. In contrast, hemolymph microbiota 

were robust against infection with a sympatric Vibrio sp. (Chapter III), although the community 

destabilization through temperature stress increased the risk of disease development. While the 

composition of the structurally stable communities stayed the same after infection, it shifted 

rapidly in response to temperature change (Chapter III). However, the community structure 
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was still preserved, indicating that the hemolymph microbiota also take part in oyster 

acclimation. Such rapid shifts in composition in response to abiotic could also partially explain 

high community variability observed in the field, since the intertidal represents spatiotemporally 

extremely heterogeneous environment (Chapter II). Interestingly, despite the strong influence 

of external environment, the resident microbiota were replaced only gradually after the 

translocation, which may reflect a beneficial stability, but also cause unpredictable 

consequences, since the microbiota are not adapted to respond to local biotic challenges 

(Chapter I, Chapter II). 

Differing role of microbiota in a new environment and under local disturbances 

Investigating various disturbance scenarios revealed that the response of resident 

hemolymph microbiota varies accordingly: they exhibit resistance against colonization by 

external pathogens (Buffie and Pamer, 2013), while quickly responding to abiotic conditions by 

shifts in composition (Reshef et al., 2006). This demonstrates that the two ways in which 

microbial communities can benefit their host are not mutually exclusive (Erwin et al., 2012). 

While the above examples (Chapter III) mimic conditions that can occur in nature, the abrupt 

encounter with a completely foreign microbial environment (Chapter I) is basically impossible 

for sessile animals in nature and thus represents conditions to which the community would not 

be able to predictably respond. It is possible that the community's resistance to colonization, 

which is beneficial against intruders in the generally familiar microbial environment, prevents 

the integration of similar, but locally adapted bacteria into the community (Koeppel and Wu, 

2013). Considering that the hemolymph microbiota are largely influenced by immigration 

(Chapter II), subsequent loss of diversity could result in the loss of function (Shade et al., 2012). 

However, the proposed mechanism is highly speculative, as the response of stable microbial 

communities to entirely new microbial context is terra incognita. 

Will the climate change affect the Pacific oyster holobiont? 

 

High small-scale variability, be it temporal or spatial, and low large-scale variability of the 

hemolymph community composition at least partially reflect the similar pattern in 

environmental variation (Chapter II): the intertidal is a highly heterogeneous habitat and daily 

oscillations in abiotic conditions by far exceed long-term mean fluctuations. Prompt response of 

hemolymph microbiota to temperature change (Chapter III) and possibly to tidal cycle (Chapter 
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I, Chapter II) indicates the ability of the oyster holobiont to acclimate quickly to large shifts in 

abiotic environment (Reshef et al., 2006). Oysters should thus be well prepared for future 

challenges imposed by global warming. However, warmer temperatures do decrease community 

stability (Chapter III), which can subsequently affect the resistance to colonization by external 

pathogens. This, in combination with the temperature-dependent increase in virulence (Kimes 

et al., 2012), can result in more severe and more often occurring disease outbreaks. Moreover, 

other factors, such as ocean acidification, can further lower community stability and affect the 

oyster physiology (Clark et al., 2013). For example, lower pH and hypoxia (Levican et al., 2014) 

could promote the growth of oyster symbionts and opportunistic pathogens of the genus 

Arcobacter and thus add to the selection pressure imposed by temperature-driven vibriosis. 

Limitations and perspectives 

 

Here I would like to address some limitations of my thesis and recommendations for future 

research. Firstly, 16s rDNA sequencing reveals nothing about the bacterial activity and viability 

(Campbell et al., 2011). Including 16s rRNA could partially solve the problem; however, even 

some less active and abundant bacteria can have disproportional effects on the host (Thurber et 

al., 2009). Another problem is that 16s rRNA is a housekeeping gene and cannot distinguish 

between closely related but ecologically distinct bacteria (Preheim et al., 2011; Koeppel and Wu, 

2013). Meta-omic studies in controlled and natural conditions could help identify ecologically 

relevant genes and elucidate the mechanisms behind the community response to internal and 

external host environment (Fritz et al., 2013). Nevertheless, the health condition seems to be 

well correlated with general community properties such as diversity and structure, which are 

well detected by DNA sequencing (Chapter I, Chapter III). Secondly, survival is a rough, all-or-

nothing measure of host response. However, choosing the right set of parameters to measure is a 

challenging task when it comes to oysters: it is hard to judge their condition from the outside 

and any kind of sampling is invasive. In fact, with the exception of hemolymph, it requires 

sacrificing the animals. Although immune parameters would directly address the oyster defense, 

the interpretation is not always straightforward and their measurement requires relatively high 

sample amounts. Quantifying physiologically important parameters such as oxygen 

consumption or filtration rate may be a non-invasive solution in controlled experiments, and 

should become more feasible in highly replicated studies due to technological developments. 

Analyzing the differences in gene expression is another, more or less invasive, but promising 

option. However, identifying the relevant genes is not straightforward and will require 
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comprehensive transcriptomic studies. Thirdly, although a constant experimental setting is 

necessary to quantify the effects of particular factors, it does not reflect the conditions in the 

natural habitat of Pacific oysters - the harsh, extreme intertidal, and it is the variation that may 

significantly increase the risk of disease (Ben-Horin et al., 2013; Paaijmans et al., 2013). 

Simulating tides and temperature fluctuations in a controlled way would bridge the gap between 

the natural and experimental conditions. Despite the above limitations, this thesis represents, 

the most comprehensive account of diversity and dynamics of bivalve microbiota in response to 

different disturbances, and it shows that Pacific oyster microbiota can profoundly affect various 

aspects of the interactions of the oyster holobiont with the environment. 

 

Predicting the impact of disturbances including those linked to global climate change 

requires thorough understanding of the role of microbiota in a holobiont's interactions with the 

environment. By combining laboratory and field experiments, and manipulation and 

observation across spatial and temporal scales, this thesis sets solid ground for the future studies 

of the Pacific oyster holobiont in the changing abiotic and biotic environment. It reveals a 

special role of hemolymph microbiota and identifies potentially interesting groups of symbionts 

to study environmentally-dependent host-microbe interactions such as Arcobacter. 

Furthermore, it offers an overview of oyster-associated microbial diversity and composition in 

time and space, estimates the effects of different factors and disturbances on community 

stability and dynamics and therefore provides a baseline for assessing the relative impact of 

other, so far uninvestigated factors such as acidification. Finally, it illustrates the need to study 

the consequences of multiple stressors acting in concert - this is a vitally important matter for 

the future research, as disturbances, especially in time of the global climate change, rarely come 

alone. 

I propose that the hemolymph microbiota represent an important "organ" of the Pacific 

oyster holobiont for the interactions with abiotic and biotic environment. Although their 

composition is determined by the bacterial populations from the external environment, the 

hemolymph communities posses internal dynamics and stable structure that is a prerequisite for 

their proposed beneficial functions: protection against pathogens and acclimation. While the 

hemolymph microbiota maintain their structure over a wide range of conditions (Chapter II), 

unpredictable disturbances (Chapter I) or combined stress (Chapter III) can negatively affect 

the community stability and result in shifts towards pathogenic states.  
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