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“And the woman which thou sawest is that great city, which reigneth over the kings of

the earth.”

Revelation 17:18
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Essays on Interlocking Directorates and Speculative Dynamics

by Ricardo Giglio

This thesis is composed by four chapters which can be classified in two broad topics. The

first and second chapters deal with the properties of the networks created by interlock-

ing directorates, while the third and fourth chapters with the so-called Efficient Market

Hypothesis. Connecting these two topics is the notion of a stylized fact (also called a

universal property) which is not accounted for by the currently stablished theory. The

first chapter shows that the existence of a very well connected dominant community

is not explained by the traditional preferential attachment models. In addition, it is

also shown that the patterns of accumulation of board positions by single individuals

observed in empirical data cannot be explained by a simple random binomial procedure.

An in depth analysis of a time framed interlocking directorates dataset from Spain

is presented in order to argue that board linkages might have generated some kind of

special conditions for lending that would not exist if based on economic criteria only.

In addition, the effects of a new gender equality regulation are investigate to conclude

that women are still under represented in the boards of directors, although an increase

in their absolute number could be observed.

Finally, surrogate linearity tests and microscopic (agent based) models are applied in

order to explain the stylized facts not account for by the Efficient Market Hypothe-

sis. More specifically, with respect to the class of microscopic models called Structural

Stochastic Volatility models, it is shown that the introduction of inactive traders in-

creases the model ability to explain the stylized facts. Additionally, taking advantage

of this model contest, it is argued that a simulation horizon one allows a model to run

in order to estimate its parameters higher than what was previously assumed in not

necessary in order to compare different models.
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Introduction

This thesis is composed by four chapters which can be divided into two broad topics.

The first two chapters deal with the properties of the networks created by interlock-

ing directorates, while the last two are concerned with the so-called Efficient Market

Hypothesis. Connecting these two topics is the notion of a stylized fact, also called a

universal property, which is not accounted for by the currently stablished theory. With

respect to the first topic, the existence of a very well connected dominant community

is not explained by the traditional preferential attachment models, while for the second

topic, the Efficient Market Hypothesis fails to explain several of the statistical properties

presented in financial data.

The first chapter, called The Topology of the Global Interlocking Directorates is or-

ganized as follows: first, it presents a literature review on interlocking directorates and

their sources and effects on the economy. Afterwards, it highlights the small-world phe-

nomenon, which consists of very large networks presenting both high average clustering

coefficients and small average shortest path lengths. This is related to informal notion

of six degrees of separation. The third section deals with communities by depicting why

one should carefully choose a random network benchmark in order to assess whether

some features observed in empirical networks are somehow unexpected or not. The

fourth section presents two of the most applied random benchmark models to stress

their resemblances and differences with respect to empirical interlocking networks.

Finally, the last section of the chapter introduces the rich club coefficient as a mea-

sure of intra-hub connectivity to show that the topology of the interlocking networks

cannot be completely described by the simple interaction of nodes in a preferential at-

tachment scenario. It is then argued that another explanation for the structure and

1



Introduction 2

the emergence of a dominant interconnected hierarchy may have to do with attaining

specific goals rather than with the rich-gets-richer effect.

The second chapter, called Interlocking Directorates in Spain: Evidence from a Compre-

hensive Data Set consists basically of two parts. The first part revisits the argumentation

of the first chapter, in the light of a richer dataset concerning Spanish board networks,

comprising seven years from 2004 to 2010. These findings add to the growing literature

stressing the fundamental similarities (or stylized facts) between interlocking networks

from a diverse set of countries. The second part provides an in depth analysis of this

data set by highlighting the most influential nodes, companies, and sectors of activity,

to stress the special role of financial institutions in the social network of board members.

In addition to that, a significant inverse relation between centrality and leverage of

non-financial institutions could be observed during the period, suggesting that board

linkages might have generated some kind of special conditions for lending that would

not exist if based on economic criteria only. On the other hand, no significant relation

between centrality and economic performance was found.

Moreover, the role of the highly capitalized Ibex companies in the network, gender

differences, and the participation of politicians in company boards are investigated in

the remaining section. It could be seen, for instance, (a) that more than half of the

directors holding two or more board positions serve in at least one Ibex board, (b) that

women’s participation is increasing, although they still have smaller average centrality

then men, and (c) that politicians are more likely to get a second positions than non

politicians.

The third chapter, called Investigation on the Simulation Horizon Requirement for Es-

timation of Agent Based Models is organized as follows. The first section presents some

selected stylized facts which will be used in the estimation of the models. The second

section of the investigation briefly overview Agent Based Model (ABM) methodology,

which is claimed to take into account the so-called stylized facts to a great extent, and,

thus, could be viewed as an alternative to the Efficient Market Hypothesis theoretical

background.
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In doing so, selected recent empirical findings are highlighted, and a brief taxonomy

for ABMs is presented. Then, in the following sections specific microscopic models are

discussed in more detail while focusing on their ability to explain some of the stylized

facts. Afterwards, the estimation of these models by the method of simulated moments

is introduced and an investigation on the simulation horizon requirements is carried out

by means of an example of model contest assessing the difference in goodness of fit of

allowing inactive traders in one of the Structural Stochastic Volatility (SSV) models

proposed by [5]. It is observed that (a) the augmented SSV model with inactive traders

outperforms its default version with respect to the quantitative reproduction of some

stylized facts, and (b) that a longer simulation horizon then the one assumed by [5]

seems to be unnecessary in order to run model contests.

The fourth and last chapter, called Testing for non-linear structures in artificial finan-

cial data: A Recurrence Quantification Approach, generally deals with the stylized facts

the Efficient Market Hypothesis fails to explain.More specifically, this chapter adds to

the work presented in [3], which uses tradicional non-linearity measures in order to check

for non-linearity or chaos in artificial financial data generated from the Lux-Marchesi

model [6].

In this sense, this chapter presents an alternative method proposed based on Recur-

rence Quantification Analysis (RQA). Recurrence quantification analysis is a nonlinear

method of analyzing dynamical systems. It is carried out by calculating some measures

on the so-called Recurrence Plot, which is a graphical representation of how often in

time a trajectory visits the neighbor regions of its phase space.

Afterwards, I present both the Recurrence Plots and the Recurrence Quantification

Analysis in detail, to finally introduce the surrogate test for linearity which is used to

assess the existence of non-linearities or chaos. The last section of the essay presents

the application of these surrogate linearity test based on RQA measures to a synthetic

data set generate from two agent based (microscopic) models. For instance, in the same

way as pointed out by [3] and [2], the hypothesis of chaos or linearity is rejected for the

majority of the subsamples, indicating that, if there is a deterministic process ruling the

data, it is more complicated than the dynamics from low dimensional chaotic systems.



Chapter 1

The Topology of the Global

Interlocking Directorates

Introduction

Random models based on network growth and preferential attachment have gained lots

of attention in the recent literature [7]. This class of models is particularly interesting

due to the generation of scale-free networks, that is, graphs in which the degree distri-

bution of the nodes follows at least roughly a power law process. Scale-free networks

are found in several and very diverse contexts, such as the internet, the World Wide

Web, protein networks, communication systems, and many social networks [8]. The

preferential attachment process, which is just about a preference of new nodes to attach

to already highly connected nodes, implies the existence of massive hubs (i.e., very well

connected nodes) forming an aristocratic network, in contrast to a more egalitarian one

where node degrees do not vary wildly. This feature guarantees the relatively short

average shortest path lengths observed in many natural and social networks, and make

it resistant to naive, undirected attacks or failures. However, aristocratic networks are

not necessarily safe against clever attacks in which the hubs are targeted. In some cases,

after the removal of some important hubs, the network collapses to a large number of

small and disconnected components. This fact highlights the important role the topol-

ogy plays in sustaining a network.

4
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Although corporate interlocks are supposed to be scale-free at least partially [9] (that

is, part of its degree range is believed to follow approximately a power-law), they can-

not be fully explained by a simple preferential attachment process due to an observed

high intra-hub connectivity. This is the so-called rich-club phenomenon [10, 11], some

nodes are rich (they are the hubs) and highly inter connected to each other at the same

time (they form a club). This feature is not found in many of the natural and social

scale-free networks [12], and makes it very robust to targeted attacks: given the high

inter connectivity of the hubs, the removal of several of them does not result in network

fragmentation.

The remaining of the chapter is organized as follows: the first section presents a lit-

erature review on interlocking directorates and their possible sources and effects on the

economy. The second highlights the small-world phenomenon, which consists of very

large networks presenting both high average clustering coefficients and small average

shortest path lengths, found in many real world social networks. The third section

deals with communities by depicting why one should carefully choose a random network

benchmark in order to assess whether some features observed in empirical networks are

somehow unexpected or not. The fourth section presents two of the most often applied

random benchmark models to stress their resemblances and differences to empirical in-

terlocking networks. Finally, the last section introduces the rich club coefficient as a

measure of intra-hub connectivity to show that the topology of interlocking networks

cannot be completely described by the simple interaction of nodes in a preferential at-

tachment scenario. It is then argued that another explanation for the structure and

the emergence of a dominant interconnected hierarchy may have to do with attaining

specific goals rather than with the rich-gets-richer effect [13].

1.1 Interlocking directorates

Whether or not interlocking directorates have economic importance has been topic of

long-term academic debate (for an overview, see [14]). Typically, the impact of these

linkages has been examined on organizational performance in terms of collusion, control,

information flows, profitability, financing, and reduction of uncertainty [15]. However,
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it seems that there is still no consensus about the relevance of interlocks for such mat-

ters, because mixed and contradictory results with respect to performance have been

found [16]. In fact, a large literature finds rather a negative (if any) effect from hav-

ing directors who serve on multiple boards on measures of firm performance [17]. As a

possible explanation for such unsolved debate, [18] suggests ambiguity in casual order-

ing: interlocks can be both cause and result of performance. In addition, there has been

an assumption that interlocks affect performance uniformly, while some interlocks might

be more influential than others, and some partners might be more influential than others.

In this sense, interlocks may have consequences for organizational behavior regardless of

whether they were established for primary organizational purposes. In a slightly differ-

ent perspective, [19] suggests that board interlocks are a low-cost channel of information

and communication across firms, meaning they are a way to deal with uncertainty, to

provide legitimacy, and to have information about business practices. In this sense, in-

terlocks would not exist primarily for direct control but rather as a tool for performing

business scans [20] of best managerial practices. It has been shown that the adoption of

a given practice by an organization depends on whether other companies are adopting

it [21], and interlocks are a good way of facilitating diffusion. The argument is that

potential adopters increase their evaluation of a new practice of uncertain value after

observing others adopt it, which leads to institutionalization of the new practice.

In a survey called What do interlocks do?, [18] points to an interesting result with

regard to the replaceability of corporate interlocks. The frequency with which acciden-

tally broken interlocks (e.g., by death or retirement) between firms were reconstituted

was considered as an indicator of the extent to which such interlocks represented signif-

icant links between the firms in question. Interestingly, it was noted that the majority

of accidentally broken interlocks were not reconstituted with the same firm, suggesting

that interlocks were not primarily organizational phenomena. It was then suggested they

could reflect intraclass social ties rather than inter-organizational resource dependence

or control ties. In this sense, another interesting result is the persistence of these tight

connections over long time horizons. As pointed out by [22], the network core of the

most capitalized companies in Germany persisted from 1993 to 2005 regardless of per-

sonal turnover. In the next chapter, a comprehensive and time-framed dataset on board

affiliation in Spain will be used to assess impacts both on performance and persistence
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of the core.

More recently, some researchers have also explored these interlocks in terms of the possi-

ble emergence of a global business community [23, 24]. This different perspective implies

there might be reasons for interlocks to happen, which may be not captured by perfor-

mance measures. The inner circle, because of their multiple and diverse affiliations,

would be likely to maximize overall profits, rather than to protect the welfare of partic-

ular companies. Nevertheless, one fact that does not seem to be a matter of debate is

the surprisingly small number of steps required to connect almost any two companies in

the networks [9]. If interlocks convey information, then the particular position of a firm

in the topology of the network is at least as important as its direct connections.

1.2 Graph theory

The purpose of this section is to present basic graph theory concepts. For doing so, it

considers the example graph S illustrated in figure 1.1. The graph S consists of a set of

7 nodes N(S) and a set of 6 edges M(S) as shown below.

N(S) = [0, 1, 2, 3, 4, 5, 6]

M(S) = [{0, 1}, {0, 2}, {1, 2}, {0, 3}, {3, 4}, {5, 6}]

Each edge presents the incidence relation between two end-point nodes. Two nodes are

called adjacent if they are the end-points of an edge (nodes 0 and 1, for example). An

edge is called incident with a node if it is an end-point of that edge (node 0 and edge

{0, 1}, for example). Two edges are called incident if they have a common end-point

(edges {0, 1} and {0, 2}, for example).

The degree of a node ni of S, denoted by deg(ni), is the number of edges incident with

that node. It can be seen, for example, that deg(n0) = 3, and deg(n1) = 2. Since each

edge has two end-points, the sum of node-degrees of S is twice the number of its edges,

given by the so-called handshaking lemma. The sum of node-degrees in the example

graph S is 12. The density of a graph is defined as the ratio between the number of

edges in that graph over the number of its possible edges, given by
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Figure 1.1: Example graph S, consisting of a set of 7 nodes N(S) = [0, 1, 2, 3, 4, 5, 6]
and a set of 6 edges M(S) = [{0, 1}, {0, 2}, {1, 2}, {0, 3}, {3, 4}, {5, 6}].
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density(S) =
2|M(S)|

|N(S)|(|N(S)| − 1)
(1.1)

where the operator |X| stands for the size ofX. The density of S is approximately 0.2857.

A walk w of S, is a finite sequence w = [n0,m1, n1, ...,mk, nk] whose terms are al-

ternately nodes ni and edges mi of S for 1 ≤ i ≤ k, and ni−1 and ni are the two ends

of mi. As an example, the sequence [0, {0, 1}, 1, {1, 2}, 2, {0, 2}, 0, {0, 1}, 1] is a walk

in S. A trail t in S, is a walk in which no edge of S appears more than once (ex:

[0, {0, 1}, 1, {1, 2}, 2, {0, 2}, 0, {0, 3}, 3]). A path P in S, is a trail in which no node ap-

pears more than once (ex: [0, {0, 1}, 1, {1, 2}, 2]).

Two nodes ni and nj are said to be connected in S if there exists a path between these

nodes. In the example graph S, nodes 1 and 2 are connected, but 1 and 6 are not. A

graph is called connected if all pairs of its nodes are connected (thus S is not connected).

A component is defined by a subgraph where all nodes are mutually reachable by some

path. It can be seen that S presents two components [0, 1, 2, 3, 4] and [5, 6]. The compo-

nent containing more nodes is called the largest connected component (LCC). For S, the

LCC consists of the nodes [0, 1, 2, 3, 4] and the edges [{0, 1}, {0, 2}, {1, 2}, {0, 3}, {3, 4}].

The length of a path Pi denoted by L(Pi) is taken as the number of its edges. The length

of the path [0, {0, 1}, 1, {1, 2}, 3] is 2. Pi is called the shortest path between the two nodes

n0 and nk, if for any other path Pj between these nodes L(Pi) ≤ L(Pj). As an illustra-

tion, consider the two paths in S from node 2 to node 4, [2, {0, 2}, 0, {0, 3}, 3, {3, 4}, 4]

and [3, {1, 2}, 1, {0, 1}, 0, {0, 3}, 3, {3, 4}, 4], being the first one the shortest of them.

The distance between two nodes of a graph is defined as the length of the shortest

path connecting them. In the example graph S the distance between nodes 2 and 4 is

3). This distance is also referred to as geodesic distance. The eccentricity of a node is

given by the length of the longest shortest path between this node and any other node,

to capture the idea of how far a node is from his furthest connection. In the LCC of S,

the eccentricity of nodes 0 and 2 are respectively 2 and 3.

Finally, the diameter of a connected graph is given by the maximal eccentricity among
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its nodes, and its radius by the minimal eccentricity. Diameter and radius for the LCC

of S are, respectively, 3 and 2. Eccentricity is not defined for disconnected graphs such

as S, thus it is conventionally assumed they have infinite diameter.

While observing that both radius and diameter might be very sensitive to extreme

cases, it is then common to think about the small-world phenomena considering average

shortest path lengths defined as follows:

a =
∑

ni,nj∈V

d(ni, nj)

N(N − 1)
(1.2)

where d(ni, nj) is the length of the shortest path connecting nodes ni and nj , N is the

number of nodes in the connected graph V . The average shortest path length in the

example graph S is 1.7.

The degree centrality of a node i is simply given by its degree, as follows:

degree centralityi =
∑
nj∈V

ani,nj (1.3)

where aij is the entry of the adjacency matrix A for the nodes i and j, being equal to 1

if the nodes are connected and 0 otherwise. For example, the degree centrality of node

0 is 3, and it is the node with the highest degree centrality of the graph

The closeness centrality applies the definition of distance based on the length of the

shortest path between two nodes. In detail, the farness of a node is given by the sum of

the distances between this node and all the other nodes. Then, the closeness centrality

is given by the inverse of the farness of a node. Closeness centrality concerns the amount

of steps needed in order for information to spread sequentially from a given node, and

is given by:

closeness centralityi =

∑
nj∈V
j 6=i

d(ni, nj)

N − 1


−1

(1.4)
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In order to calculate such measure, one must pre calculate the shortest distances between

all pairs of nodes. This can be efficiently accomplished by means of the Floyd-Warshall

algorithm [25], for example. Given the incomputability of distance between unconnected

nodes, this measure is only defined for connected graphs. As an example, the closeness

centrality of node 0 is 0.8 because it is connected to 4 other nodes, being 1 step away

from three of them and 2 steps away from two of them, yielding an average distance of

1.25 and, thus, a closeness centrality of 0.8.

Another related but fundamentally different definition of centrality is the betweenness

centrality. The betweenness centrality of a node is given by the number of times it

appears as a step of a shortest path between two given nodes. The intuition is that

nodes are more central if they are in the fastest route between many pairs of nodes. The

betweenness definition of centrality is calculated as follows:

betweenness centralityi =
∑

ni,nj ,nk∈V
i 6=j,i6=k,j 6=k

σnj ,nk
(ni)

d(nj , nk)
(1.5)

where the term σnj ,nk
(ni) is the number of shortest paths from j to k that pass through

node i. It can be seen that the betweenness centrality for node 0 is 4, and for node 1 is 0.

Finally, the eigenvector centrality of a node extends the idea of the degree centrality

(that is, nodes are more central the more connections they have) to indirect connec-

tions. The intuition is that the centrality of a node depends on the centrality of its

direct connections. In this sense, being connected to a very well connected node in-

creases more the centrality of a node than being connected to a poorly connected node.

Specifically, considering the adjacency matrix A, the eigenvector centrality of a given

node i is defined as the i-th entry in the normalized eigenvector belonging to the largest

eigenvalue of A. Formally, the eigenvector centrality of node i is given by:

eigenvector centralityi = µ
∑
nj∈V
j 6=i

ai,jxj (1.6)

where x = 1
λAx (solving Ax = λx) and µ = 1

λ (proportionality factor) so that eigen-

vector centrality of node i is proportional to the sum of similarity scores of all nodes
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connected to it. In the present context, it suffices to find the eigenvector belonging to

the largest eigenvalue, which can be calculated by means of the power iteration method

[26]. As an illustration, the eigenvector centrality of node 0 is approximately 0.604.

Apart from these measures of node importance, several other measures are related to

the mixing patterns in networks. More specifically, assortativity is a general tendency

of nodes to attach to other nodes which are considered similar, at least with regard to

some precise definition. As an example, one can think of degree assortativity as the

tendency of nodes having high degrees to be more connected to other nodes with high

degree than to nodes with low degrees. More formally, the degree assortativity can be

defined by the Person’s correlation coefficient for degrees of nodes at either end of an

edge. As an illustration, the degree assortativity of graph S is 1/3. A positive (negative)

degree assortativity means nodes with high degree are more (less) likely to connect to

other nodes with high degree than to nodes with low degree.

1.3 Data description

Data was collected from the Investing Business Week website in May 2012. More specif-

ically, at the bottom of the index page there is the possibility of browsing companies

by the starting letter of their names. Data from both public and private companies

presenting valid board membership information was collected from specific pages such as

http://investing.businessweek.com/research/ stocks/people/board.asp?ticker=DBK:GR

for Deutsche Bank, as an example.

It is worth to mention that such pages label each person into one of the three fol-

lowing labels: a board member, an executive, or an insider. This chapter treats all

of the three labels indistinctly. By doing this, it considers a broader definition of a

board member when compared to the consideration of the Advisory and/or Execu-

tive boards only, which allows the identification of personal relations that can go be-

yond the formal key representatives. However, no information on other committees

(such as the Audit, Compensation, Nominating, etc.) that are presented in pages such

as http://investing.businessweek.com/research/ stocks/people/committees.asp?ticker=

was considered in this chapter.

http://investing.businessweek.com/research/stocks/people/board.asp?ticker=DBK:GR
http://investing.businessweek.com/research/stocks/people/committees.asp?ticker=DBK:GR
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Board membership information was represented by means of incidence matrices, which

allow for the calculation of network measures. Two directors are said to be connected

if they occupy seats in a same company, and two companies are said to be connected if

they have a same director in their boards. In this sense, the evaluation of the network

can be done in two directions, namely considering directors as nodes or considering com-

panies as nodes. In both cases, the incidence matrix M is the same, but the respective

adjacency matrices can be accessed by the projections D = MMT and C = MTM .

A peculiar feature of the network of board affiliations D is the existence of nodes commu-

nities by construction (the boards), resulting in complete subgraphs in which all nodes

(the board members) are connected to each other. This feature has an impact on some

specific network properties: the existence of such communities produces trivially high

average clustering coefficients, for example. In addition, the degree of a node depends

on the size of the boards in which she/he has a position. Hence, two members in equally

connected but differently sized boards have different degree centralities. This issue will

be further addressed in the forthcoming sections.

In this sense, the subgraph formed by the network of board members holding at least

b = 2 positions (referred to as D2) keeps all important information with regard to

information flow in the entire network, but removes the noise from disproportionality

between board sizes. Thus, here only the network of members holding multiple (at

least two) positions is considered. It is worthwhile to note that this definition of b-core

(b for board positions) is different from that of k-core (k for degree). A k-core (or k-

degenerate graph) is the (unique) maximal induced subgraph with minimum degree at

least k. Alternatively, the k-core is the (unique) result of iteratively deleting nodes that

have degree less than k, in any order.

In total, there are 738, 571 board members holding 846, 659 board positions, yielding an

average number of board positions 1.146. If completely isolated directors are excluded

(that is, the only member of a disconnected board), 652, 570 directors with at least one

connection remain. If considering only those directors holding at least two board posi-

tions (these are responsible for the links between companies), 70, 230 directors remain.

In addition to these restrictions, when only the largest connected component (LCC) of
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D2 is considered, 55, 219 directors remain.

The total number of companies is 247, 632, being 40, 899 (16.5%) public and 206, 733

(83.5%) private. The number of not completely isolated companies falls to 76, 806 in

total, divided in 29, 183 (38%) public and 47, 623 (62%) private. While considering only

the LCC of C there are 50, 320 companies, being 23, 676 (47.1%) public and 26, 644

(52.9%) private. These raw numbers show that engaging in inter companies interlocks

is not an activity of public companies only, but rather that there is a strong interaction

between them and the private companies. There are records of companies from 200

countries, but presenting a high degree of concentration of companies among a small set

of them. For instance, more than 90% of the companies are from only 27 countries. The

five countries presenting more companies are (in order) United States, United Kingdom,

Canada, Germany, and France.

1.4 Random benchmark for the accumulation of board po-

sitions

With respect to German board membership data for several time periods, [27] points

out that the pattern of accumulation of board positions by single individuals cannot

be plausibly seen as a chance outcome of random draws from the pool of directors for

filling the excess of board positions over the number of directors, and, thus, there are

systemic tendencies at work favoring that a small number of individuals assembles a

comparatively high number of simultaneous board positions.

The idea is to check whether this degree of concentration of positions is statistically

significantly different from what one would get under random assignment of director

positions to the pool of individuals (which by construction would mean that with X

directors assigned to Y board positions and X < Y , a certain number of persons had

to end up with multiple positions). The random benchmark used, and reproduced here,

considers the binomial probability of observing multiple board membership in an in-

dependent sequence of k Bernoulli trials with probability p, being k and p given by,

respectively, the number of board positions minus the number of directors and one over

the number of directors, as shown in equation 1.7.



Chapter 1. The Topology of the Global Interlocking Directorates 15

P (X = k) =

(
k

b

)
pb(1− p)k−b (1.7)

Figures 1.2 and 1.3 show the relative frequency of empirical multiple board membership

(red circles) and the random binomial benchmark (blue x’s) for eight selected coun-

tries. The semi-log scale reveals deviations of increasing orders of magnitude for b > 3,

confirming that the characteristic presented in [27] for German data can also be seen

for other (both developed and developing) countries. Figure 1.4 shows that the same

relation also holds for different perspectives on the global network of board members.

Table 1.1 presents the number of directors and positions, and the values of k and p for

the same selected countries and the global network.

Table 1.1: Number of directors, positions, and values of k and p for eight selected
countries and the global network. In total, there are 738, 571 board members holding
846, 659 board positions (A), resulting in an average number of board positions of 1.146.
If completely isolated directors are excluded (that is, the only member of a disconnected
board), 652, 570 directors with at least one connection remain (B). If considering only
those directors holding at least two board positions (these are the responsible for the
links between companies), 70, 230 directors remain (C). In addition to these restrictions,

when only the LCC of D2 is considered, 55, 219 directors remain (D).

Network Directors Positions k p

Global (A) 738,571 846,670 108,099 1.35e-06
Global (B) 652,570 759,320 106,750 1.53e-06
Global (C) 70,230 176,980 106,750 1.42e-05
Global (D) 55,219 144,338 89,119 1.81e-05

Germany 25,844 28,422 2,578 3.86e-05
France 17,924 19,670 1,746 5.57e-05

United States 291,959 322,516 30,557 3.42e-06
United Kingdom 44,589 48,266 3,677 2.24e-05

Brazil 3,244 3,598 354 3.08e-04
Russia 10,332 11,191 859 9.67e-05
India 31,912 37,687 5,775 3.13e-05
China 24,056 25,528 1,472 4.15e-05

1.5 Small worldness

In the last section, it was shown that the empirical accumulation of board positions

could not be explained by a benchmark based on the uniform random assignment of di-

rectors to positions. This fact is also found to be true with respect to several countries,

both developed and developing, suggesting that this excess accumulation of positions

is a stylized fact of board membership networks. The present section introduces two
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Figure 1.2: Relative frequency of empirical multiple board membership (red circles)
and the random binomial benchmark (blue x’s) for four selected developed countries.

additional important stylized facts of interlocking networks, namely, the existence of

communities and the small diameter. These two features combined form what is called

small world networks.

The small-world experiment [28] comprised several experiments conducted by Stanley

Milgram and other researchers examining the average path length for social networks of

people in the United States. The research was groundbreaking in that it suggested that

human society is a small-world-type network characterized by short path-lengths. Many

other networks, both natural and social, were found to possess that same property [7].

Additionally to the smallworldness, another stylized fact found in interlocking networks

is the existence of a large connected component (referred to as LCC). This section

introduces the concepts of random and ordered graphs in order to explain how small

world networks can be created by simple models, and also for assessing how surprising

it is to find a LCC in graphs such as the interlocking networks. It is shown that both



Chapter 1. The Topology of the Global Interlocking Directorates 17

2 3 4 5 6 7 8 910-1510-1410-1310-1210-1110-1010-910-810-710-610-510-410-310-210-1

pr
ob

ab
ili

ty

Brazil

empirical
random

2 4 6 8 10 12 1410-24
10-22
10-20
10-18
10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2

Russia

2 4 6 8 10 12 14 16
number of board positions

10-24
10-22
10-20
10-18
10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2

pr
ob

ab
ili

ty

India

2 3 4 5 6 7 8 9
number of board positions

10-17
10-15
10-13
10-11
10-9
10-7
10-5
10-3
10-1 China

Figure 1.3: Relative frequency of empirical multiple board membership (red circles)
and the random binomial benchmark (blue x’s) for four selected developing countries.

the small average paths and the existence of a LCC can be described by simple random

benchmarks, but also that these features are still just part of the topology.

1.5.1 Communities

Despite the pattern of multiple board accumulation shown in the last section, all these

networks also present the most common symptoms of small-worldness: short diameters

and average shortest path lengths. Table 1.2 presents some basic statistics for the LCC

of the network of companies C, and also for selected countries.

It seems uncontroversial that both network types (D and C) derived from board mem-

bership connections are small-world networks, regardless whether analyzed at the global

or country level. However, is it really a surprising feature that all 760 directors serving

the boards of French companies are distant to each other on average by less than five

personal connections?
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Figure 1.4: Binomial benchmark and empirical frequencies of multiple board posi-
tions. (A) all directors, (B) directors with at least one connection, (C) directors holding

at least two board positions, and (D) only the LCC is considered.

Table 1.2: Number of nodes and edges, average degree and shortest path length,
diameter, radius, and density for the LCC of the network of companies C, and for the

networks of companies from selected countries.

Network nodes edges ¯deg L̄ Diam. Rad. Dens.

LCC(C) 50,320 132,857 5.28 7.60 0.0001

Germany 1,191 6,492 10.90 5.03 16 9 0.0091
France 760 4,090 10.76 4.19 14 7 0.0141

United States 15,162 67,835 8.95 6.09 20 11 0.0006
United Kingdom 1,516 3,930 5.18 7.68 25 13 0.0034

Brazil 187 650 6.95 4.05 11 6 0.0373
Russia 357 1,381 7.73 5.04 15 8 0.0217
India 2,778 13,156 9.47 4.66 17 9 0.0034
China 700 1,521 4.34 7.64 20 10 0.0062
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Many complex networks are single networks in the sense that their structure is unique

not one of several. In general, we do not have the equivalent of a physical law to verify

if the statistical measures obtained from a single network are expected or exceptional.

Network models serve as a foundation to understanding interactions within empirical

complex networks. Various random graph generation models produce network struc-

tures that may be used in comparison to real-world complex networks.

As it was shown in the last section, the accumulation of board positions is not ex-

plained by a binomial process. This section highlights another fundamental property of

the board membership networks (and also of many other social networks) - the forma-

tion of communities - and its impact on the choice of a random benchmark. In doing

so, the concept of random and ordered graphs will be presented. Then it will be shown

that the small average shortest path lengths and the large size of the LCC of C and D2

are not so surprising when compared to classic random graphs.

Before talking about communities, it is worth to give some definitions related to clus-

tering. For a given node ni, the ego network corresponds to a sub-graph where only its

adjacent neighbors and their mutual edges are included. A graph has as many egos as

it has nodes. The ego network of node 2 is given by the nodes [1, 2, 3] and the edges

[{1, 2}, {1, 3}, {2, 3}].

A subgraph of S is called a clique if all its nodes are connected to themselves (that is, a

clique is a complete subgraph). A clique of size 3 is also referred to as a triangle. The

clustering coefficient of a node is the ratio between its actual and possible triangles, as

shown in equation 1.8.

C(ni) =
2|Mi|

|Ni|(|Ni| − 1)
(1.8)

where C(ni) stands for the clustering coefficient of node ni, Mi and Ni together rep-

resent the ego network of ni, and the operator |X| stands for the size of X. In words,

the clustering coefficient of a node is given by the density of its ego network. It ranges

from 0 to 1 and may be also interpreted as follows: suppose board members A and B

are both connected to C, then the clustering coefficient is the probability that A and B

are also connected to each other.
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Communities are found among many other social networks, including one describing

US board membership [29] which presents results similar to the ones depicted here. Ta-

ble 1.3 presents the number of triangles and the average clustering coefficient for the

LCC of C and for the LCC of the networks of companies from selected countries, show-

ing that the existence of board communities is a widespread stylized fact of interlocking

networks.

Table 1.3: Number of triangles and average clustering coefficient for the LCC of the
network of companies C, and for the networks of companies from selected countries.

Network triangles Avg. Cluster. Coeff.

Global (LCC of C) 1,988,823 0.60

Germany 84,660 0.65
France 31,596 0.61

United States 464,712 0.58
United Kingdom 13,230 0.56

Brazil 3,891 0.70
Russia 8,394 0.67
India 77,892 0.61
China 3,999 0.56

1.5.2 Random Graphs

The most basic random benchmarks which can be used to verify whether the observed

properties of an empirical network are somehow unexpected are the classic Erdős-Rényi

random graphs [30, 31]. The original concern of the authors was to analyze several prop-

erties of a graph as its number of edges N grows with respect to a fixed large number of

nodes n. This situation can be considered in two following different though equivalent

ways.

First, one can think about choosing a graph at random among all possible graphs which

can be formed with N edges and n nodes. Considering N edges being randomly selected

from all the
(
n
2

)
possible edges that can be formed given n, so that all possible graphs

Cn,N =
((n2)
N

)
are equally likely to be chosen. The second and equivalent method is to

start with a set of n disconnected nodes, and sequentially attach two nodes by selecting

an edge among all possible and remaining edges
(
n
2

)
− k, being k the numbers of edges

created so far in the sequential process, until k = N .
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In this sense, the same authors [30, 31] say a given property holds for almost all graphs if

the probability of a randomly selected graph having such property tends to 1 as n→∞.

Among several properties they have analyzed, figure 1.5 presents as illustration simula-

tion results from the behavior of the number of components and the size of the largest

component. The solid vertical line indicates the threshold c = N
n ∼

1
2 highlighted by

the authors. For instance, with respect to the number of components, if c < 1
2 the

number of components reduces linearly with the increase in N , while for c > 1
2 this is

no longer the case. The empirical network D shows c = 738,571
2,815,319 ≈ 0.26, only a half of

the threshold, thus making the existence of a LCC of size 55, 219 (7.4% of all nodes)

not a huge surprise. That is, the existence of such a large connected component can be

explained by a network growth process based on the connection of two randomly and

independently chosen nodes at each time step.
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Figure 1.5: Illustrational simulation results for the behavior of the number of compo-
nents and the size of the largest component in an ER random graph. The solid vertical
line indicates the threshold c = N

n ∼
1
2 . For instance, with respect to the number of

components, if c < 1
2 the number of components reduces linearly with the increase in
N , while for c > 1

2 this is no longer the case.

There are two methods of generating random graphs. The E(n,m) version selects a

graph from all possible graphs which can be formed with given n nodes and m edges.
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This is done by assigning equal probability
((m2 )
n

)−1
to all graphs with exactly m edges

and n nodes. The E(n, p) version is constructed by connecting nodes randomly, with

probability p and independently from every other edge (i.e., following a binomial prob-

abilistic model). Every possible edge occurs independently with probability 0 < p < 1,

and the probability of a random graph with m edges being selected is pm(1 − p)n−m.

This version can be viewed as a snapshot at a particular time m of the random graph

growth process which starts with n vertices and no edges, and at each step adds one

new edge chosen uniformly from the set of missing edges. The former is used here for

assessing whether observed empirical properties are expected under a classic random

graph benchmark, specifically the size of the largest connected component and the av-

erage clustering coefficient.

Table 1.4 presents a comparison between an ER(n,m) random network with the same

number of nodes and edges of the LCC of C, showing that the empirical number of

triangles is of several orders of magnitude higher than one might expect if edges are

created randomly between existing nodes. It is clear from such results that classic ran-

dom graphs ignore communities, important feature present in many social networks.

Normally, most of our friends are friends themselves, thus random rewiring is not ap-

propriated as a benchmark for analyzing social networks. These random networks are

conceivable, but nor real. Both versions of the Erdős-Rényi random graph generator are

based on the assumptions that a) edges are independent, and b) each edge is equally

likely to exist. In practice this implies that they generate networks with Poisson degree

distributions.

Table 1.4: Comparison between an ER(n,m) random network with the same number
of nodes and edges of the LCC of C, showing that the empirical number of triangles
is of several orders of magnitude higher than one might expect if edges are created

randomly between existing nodes.

Global (LCC of C) ER(n,m)

Nodes 50,320 50,320
Edges 132,857 132,857

Average degree 5.28 5.28
Density 1.0494e-4 1.0494e-4

Triangles 1,988,823 93
Average clustering coefficient 0.60 1.4967e-4
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1.5.3 Ordered Graphs

On the other hand, ordered graphs as the one depicted in figure 1.6 exhibit large clus-

tering coefficients and communities, but they are not small world. In this sense, it can

be seen a clear dichotomy between randomness (making the graph smallworld-like) and

order (forming communities).

The power of an edge to reduce the diameter of a graph by several orders of magnitude

is inversely related by the neighborhood connection of the two connected nodes. This

is the so-called strength of weak ties [32]. The underlying idea is that if one removes an

edge forming a triangle, very little effect will be observed in the structural properties of

the graph, because an alternative linking route is directly available. Strong links form

triangles, while the weak links, the bridges connecting different and remote communities

together making the graph smaller. As an illustration, [33] asked high school juniors

for a rank with their eight best friends. Then he constructed two networks, one by

considering only the top two and another the bottom two best friends, to notice that

the second one connects the school much more tightly because top two best friends are

strong links, and very likely to form triangles.

These are examples of how topology is important, and that there is a dichotomy be-

tween order and randomness changing network length. The next section will address

this dichotomy explicitly, stressing why one should be careful when choosing random

benchmarks to analyze empirical networks.

1.5.4 Country level interlocks

According to [24], the literature presents vast support for the idea that within each

advanced capitalist country the directors of the largest corporations form close com-

munities. In this section, the international interlocks are considered, that is, the fact

that some directors serve on boards of different nationalities. To begin with, table 1.7

presents the number of positions, directors, and companies for the top 50 countries by

the number of directors. The last two columns show the average number of board posi-

tions per director and the average board size in number of positions.
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Figure 1.6: An example of ordered graph which exhibits large clustering coefficients
and communities, but it is not small world.
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In the remaining of this section a network is defined by having countries as nodes, and

weighted edges proportional to the number of directors holding simultaneous positions

in companies from both countries sharing that edge. In this sense, directors whose all

positions are in companies of the same country are discarded. Figure 1.7 illustrates this

network and its most important actors (nodes are sized and colored by their correspon-

dent eigenvector centralities). The network is composed of 167 nodes (countries), 1, 828

weighted edges summing up to 6, 140 connections. This very dense network shows that

the majority of the countries are to some degree engaged in international interlocks.

Table 1.5 presents a different perspective, not based on centrality, but rather on the

relation between national and international interlocks. The first column presents the

ratio between the number of foreigners and domestic interlocks, while the second presents

the normalized Shannon entropy of the distribution of connections as a measure of

how globalized a country is in contrast to strong local connections to one or few other

countries. The normalized Shannon entropy of a discrete random variable X with N

possible values x1, . . . , xn and probability mass function P (X) is given by

H(X) =
−
∑N

n=1 P (xi)log(P (xi))

log(N)
(1.9)

where H ranges from 0 (when all connections have the same country as an end-point)

to 1 (when the connections are equally distributed among all countries).

The Channel Islands, Luxembourg, Ireland, Bermuda, The Netherlands, Switzerland,

and Belgium presented more international interlocks than domestic ones. This fact,

along with a high entropy value (as a measure diversification of connections), indicates

these are the most open countries.

Another interesting point of view deals with the average profile of the firm who engages

in international interlocks. Assortativity is the preference of nodes to attach to others

that are similar with regard to some attribute [34]. The classic example is the degree

assortativity, given by the Person correlation coefficient between the degrees of nodes

at either end of the edges. As a correlation coefficient, it ranges from -1 (perfect dis-

sortativity) to 1 (perfect assortativity). In the specific case, the network of companies

C presents positive country assortativity, in the sense that on the average, companies
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Figure 1.7: Country level aggregation of international interlocks. The weighted con-
nection between two countries is defined by the number of directors holding simulta-
neous positions in companies from both countries. Directors whose all positions are in
companies of the same country are discarded. Nodes are sized and colored by eigenvec-

tor centrality.
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Table 1.5: Top and bottom ten countries ordered by the diversity of connections
with regard to nationality. The first column presents the ratio between the number of
foreigners and domestic interlocks, while the second presents the entropy of the distri-
bution of connections as a measure of how globalized a country is in contrast to strong
local connections to one of few other countries. The Channel Islands, Luxembourg,
Ireland, Bermuda, The Netherlands, Switzerland, and Belgium presented more inter-
national interlocks than domestic ones. This fact, along with a high entropy value (as
a measure diversification of connections), indicates these are the most open countries.

Country Ratio Entropy

Channel Islands 6.64 0.71
Luxembourg 6.03 0.77

Ireland 2.82 0.56
Bermuda 2.36 0.61

Netherlands 1.56 0.59
Switzerland 1.34 0.55

Belgium 1.15 0.54
United Arab Emirates 0.93 0.58

China 0.83 0.39
United Kingdom 0.82 0.45

... ... ...
Canada 0.20 0.17

United States 0.20 0.20
Japan 0.20 0.22

Malaysia 0.18 0.21
Philippines 0.13 0.19
Thailand 0.11 0.17
Pakistan 0.11 0.18

India 0.10 0.14
Bangladesh 0.10 0.18
Sri Lanka 0.07 0.11

are more likely to attach to other companies of the same country. Figure 1.8 presents

the country assortativity mixing of the network of companies for varying thresholds of

minimum degree, that is, for each degree k the country assortativity is calculated consid-

ering only those nodes with degree higher than k. It can be seen a consistent decrease in

assortativity for growing values of k meaning that the higher the number of connections,

the higher the chances of engaging in international interlocks.

1.5.5 Sector connectivity

To begin with, 1.8 presents the number of positions, directors, and companies by sectors

of economic activity. The last two columns show the average number of board positions

per director and the average board size in number of positions. It can be clearly seen
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Figure 1.8: Country assortativity mixing of the network of companies for varying
thresholds of minimum degree, that is, for each degree k the country assortativity is
calculated considering only those nodes with degree higher than k. It can be seen a
consistent decrease in assortativity for growing values of k meaning that the higher the
number of connections, the higher the chances of engaging in international interlocks.

that both the Banking and the Insurance industries present an average board size signi-

ficatively higher than the others. According to [35], financial institutions depend more

on the business scan than the other companies, so for them it is worthwhile to maintain

a large body of board directors.

There is vast literature supporting the prominent role of financial institutions in the

networks formed by interlocking directorates (see [9] for some examples). Table 1.9

presents the eigenvector centrality (first column) and the diversity of connections (sec-

ond column) by sector of economic activity. While the eigenvector centrality shows which

are the most central sectors of activity in the network, the diversity of its connections

indicate whether the sector influences just a few other related sectors or a large part

of the network. The diversity of the connections is defined as the normalized Shannon

Entropy of the weighted connections (as defined in equation 1.9). That means it will

be close to 0 when the sector basically connects to one or just a few other sectors (like
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Metals and Mining, for example), and it will be close to 1 if the sector connects more or

less equally to all other sectors (like Financial Services, for example).

Drawing on 100 large US industrial corporations between 1969 and 1979, [36] hypothesize

that interlocks with banks should be positively associated with corporate performance

and debt/equity ratios. However, their findings revealed a negative association between

bank interlocks and most measures of profitability. In this sense, [37] speaks about

financial hegemony: banks would play a central role in unifying the network of corpo-

rations linked through shared directors. The inner circle, because their multiple and

diverse affiliations, are likely to maximize overall profits, rather than protect the welfare

of particular companies. In a different perspective, [38] points out that no evidence of

performance gains by the Financial sector has been found. Thus, it is argued that the

Financial institutions are not necessarily central, but different: banks are special in the

sense they are holders and distributors of social capital.

1.6 Kinds of small

In the last section, it was shown that topology is important: the dichotomy between

order and randomness in the distribution of neighbor connections can drastically change

the network length. This section presents the model proposed by [39], which can be

used to generate graphs that are at the same time clustered (that is, they present

communities) and small world. The basic idea is that if one performs a few random

rewires in an ordered graph, its typical shortest path length is reduced by several orders

of magnitude. Afterwards, an investigation on the distribution of connections among

the nodes is performed to introduce another random model [7] based on network growth

and preferential attachment claimed to take into account the existence of massive hubs

(nodes with many connections) found in many natural and social networks.

1.6.1 Watts/Strogatz small world graphs

The algorithm takes the following inputs: number of nodes N , the average degree K,

and rewiring probability β. The output is a graph with N modes and NK
2 edges built in

the following way: a ring lattice is constructed, linking the nodes to its K neighbors, K
2
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on each side (k− 1 neighbors if k is odd). Then, for each edge of each node, rewire it to

another uniformly random node with probability β. In this sense, β can be understood

as a tuning parameter between order and randomness: if β = 0, no rewiring is performed

and the ordered ring lattice is maintained; if β = 1, all edges are uniformly shuffled and

the result is an ER(n, p) random graph with N nodes and probability p = NK
2(N2 )

. The

underlying lattice structure of the model produces a locally clustered network, and the

random links dramatically reduce the average path lengths.

For the ring lattice, the average shortest path length is l = N
2K and scales linearly

with system size, while for the ER(n, p) graph its value is given by l = logN
logK . For

the intermediate region 0 < β < 1, l converts very quickly to its limiting value. The

clustering coefficient of the ring lattice is given by C = 3(K−2)
4(K−1) and tends to 3

4 when

K grows. For the random graphs, the clustering coefficient is C = K
N . When ranging

β from 0 to 1, the clustering coefficient stays close to its original (ring lattice) value,

only being reduced for high values of β. The combination of these two features (reduced

average shortest path lengths and persistent clustering coefficient) is what makes the

Watts/Strogatz’s model able to produce small-world networks. No matter how many

points, a small number of random rewiring ties the network together and produces small

world and large connected components.

When a random graph is generated by such a procedure, and calibrated to present the

same number of nodes and (approximately) the same average degree of the empirical

networks C and D2 (recalling that C stands for the network of companies, and D2 for the

network of directors holding at least two board positions), the same short average short-

est path lengths and clustering coefficient emerge. This remarkable feature of reducing

average shortest path lengths with a few random rewiring operations is argued to allow

such networks to store information in a much better fashion, to stand up in the face of

faults, and to reduce by thousands the number of connections needed to synchronize [39].

Such theoretical random benchmark does explain a lot of what is observed in empir-

ical interlocking directorates networks. However, communities and smallworldness are

just part of the topology. For instance, highly clustered and small world networks can

possibly be of hierarchical or fishnet types. The next section presents another investi-

gation on the topological properties of interlocking directorates networks, namely, the
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distribution of the connections.

1.6.2 The distribution of connections

To begin with, figures 1.9 and 1.10 present, respectively, the degree distribution for

the ER(m,n) and for the WS networks. As it is expected, the ER(m,n) random

graph presents the degree distribution following a Poisson process (given the binomial

distribution of the connections). For the WS, if β = 0 (that is, the ring lattice), the

degree distribution follows as Dirac delta function centered in the number of nodes K.

If β = 1, the result is a pure ER(m,n) random graph, thus following a Poisson process.

For 0 < β < 1, the degree distribution is relatively homogeneous with all nodes having

approximately the same degree [1].
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Figure 1.9: Degree distribution for the ER(m,n) network. As it is expected, the
ER(m,n) random graphs presents degree distribution following a Poisson process (given

the binomial distribution of the connections).

However, figure 1.11 shows a dramatically different picture of the degree distribution of

the empirical network C. This fact makes it clear that the WS random model, although

reproducing observed empirical clusters and short diameters, is not able to account for
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Figure 1.10: Degree distribution for the WS network. If β = 0 (that is, the ring
lattice), the degree distribution follows as Dirac delta function centered in the number
of nodes K. If β = 1, the result is a pure ER(m,n) random graph, thus following
a Poisson process. For 0 < β < 1, the degree distribution is said to be relatively

homogeneous with all nodes have more or less the same degree [1].

an immense disproportionality with regard to the number of connections among the

nodes. This fact, a high level of concentration of connections between few nodes, is also

found in a large number of other natural and social networks [7]. For instance, for the

World Wide Web it has been shown that 80 − 90% of the links have one side in just

a small fraction of nodes, making the architecture dominated by a few well-connected

hubs.

The next section presents an alternative model based on preferential attachment and

growth proposed by [7], the Barabási-Albert (BA) model, which produces scale-free

networks. Scale-free networks are characterized by presenting a power-law process ruling

the degree distribution of their nodes. The last section presents a series of tests to check

whether the degree distribution of the empirical networks do follow a power-law, or if

there is another distribution presenting a better goodness of fit to empirical data.
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Figure 1.11: Degree distribution for the empirical network C. It is clear that the WS
random model, although reproducing observed empirical clusters and short diameters,
is not able to account for an immense disproportionality with regard to the number of

connections among the nodes.

1.6.3 Preferential attachment and growth

Many observed networks fall into the class of scale-free networks, meaning that they

have power-law (or scale-free) degree distributions, while random graph models such as

the Erdős-Rényi (ER) model and the Watts-Strogatz (WS) model do not exhibit power

laws. The Barabási-Albert model is one of several proposed models that generate scale-

free networks. It incorporates two important general concepts: growth and preferential

attachment. Both growth and preferential attachment exist widely in real networks.

Growth means that the number of nodes in the network increases over time. Preferential

attachment means that the more connected a node is, the more likely it is to receive new

links. Nodes with higher degree have stronger ability to grab links added to the network.

Intuitively, the preferential attachment can be understood if we think in terms of social

networks connecting people. Here a link from A to B means that person A knows or is

acquainted with person B. Heavily linked nodes represent well-known people with lots
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of relations. When a newcomer enters the community, she/he is more likely to become

acquainted with one of those more visible people rather than with a relative unknown.

Similarly, on the web, new pages link preferentially to hubs, i.e., very well known sites

such as Google or Wikipedia, rather than to pages that hardly anyone knows. If someone

selects a new page to link to by randomly choosing an existing link, the probability of

selecting a particular page would be proportional to its degree.

This explains the preferential attachment probability rule. Preferential attachment is

an example of a positive feedback cycle where initially random variations (one node

initially having more links or having started accumulating links earlier than another)

are automatically reinforced, thus greatly magnifying differences. This is also sometimes

called the Matthew effect, the rich get richer, and, in chemistry, autocatalysis.

The network begins with an initial connected network of m0 nodes. New nodes are

added to the network one at a time. Each new node is connected to m ≤ m0 existing

nodes with a probability that is proportional to the number of links that the existing

nodes already have. Formally, the probability pi that the new node is connected to node

i is:

pi =
ki∑
j kj

(1.10)

where ki is the degree of node i and the sum is made over all pre-existing nodes j (i.e.,

the denominator results in the current number of edges in the network). Heavily linked

nodes (hubs) tend to quickly accumulate even more links, while nodes with only a few

links are unlikely to be chosen as the destination for a new link. The new nodes have a

preference to attach themselves to the already heavily linked nodes.

The average shortest path length if a BA network is given by l ∼ logN
log logN . While there

is no analytical result for the clustering coefficient of the BA model, the empirically

determined clustering coefficients are generally significantly higher for the BA model

than for random ER networks. The clustering coefficient also scales with network size

following approximately a power law in the form C ∼ N−0.75. However, the most in-

teresting fact about the BA model is that it produces scale-free networks, that is, with
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degree distribution following a power-law in the form P (k) ∼ k−3.

1.6.4 Power law fitting

The purpose of this section is to show that neither the power-law nor the binomial dis-

tributions present a satisfactory fit to empirical distribution of degrees. For validating

this hypothesis, pair wise comparisons between the power-law and selected alternative

distributions are carried out with respect to their relative goodness of fit.

Power laws are theoretical probability distributions in the form p(x) ∝ x−α. Empir-

ical power laws hold only approximately or over a limited range. According to [40], the

first step of fitting a power law is to determine what portion of the data to fit. If the

initial, small values of the data, do not follow a power law distribution one may opt

to disregard them. The methods of [41] find this optimal initial value by creating a

power law fit starting from each unique value in the dataset, then selecting the one that

results in the minimal Kolmogorov-Smirnov distance, D, between the data and the fit.

For the empirical network this was found to be 20, meaning that nodes holding more

than 20 connections were discarded in the fitting procedure. The fitted exponent for the

empirical network is 5.85.

It is frequently insufficient and unnecessary to answer the question of whether a dis-

tribution really follows a power law. Instead the question is whether a power law is the

best description available. In this sense, for deciding whether or not a power-law is the

best fit available for empirical data at hand, one has to compare it to other distributions

with regard to goodness of fit.

The exponential distribution is the absolute minimum alternative candidate for eval-

uating the heavy-tailedness of the distribution. The reason is definitional: the typical

quantitative definition of a heavy-tail is that it is not exponentially bounded [40]. Thus,

if a power law is not a better fit than an exponential distribution (as in the above ex-

ample) there is scarce ground for considering the distribution to be heavy-tailed at all,

let alone a power law.

However, the exponential distribution is, again, only the minimum alternative candidate
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distribution to consider when describing a probability distribution. However, sometimes

the rich cannot get richer forever. There could be a gradual upper bounding effect on

the scaling of the power law. An exponentially truncated power law could reflect this

bounding. To test this hypothesis, the empirical fit of the distribution is then compared

to a pure exponential, normal, and logistic references, as shown in table 1.6. It can be

seen that the hypothesis of a power law process governing the distribution of connec-

tions a company has can be ruled out, as shown by the poor fit with respect both to

exponential and logistic distributions.

Table 1.6: Anderson-Darling test statistic and its correspondent critical value at 1%
for data coming from selected distributions. It can be seen that normal, exponential,

and logistic distributions can be ruled out at 1% significance level.

Distribution Statistic Critical 1%

Exponential 2248.226 1.957
Normal 1163.326 1.092
Logistic 1041.240 0.906

1.7 Network core

So far, it has been shown that ER random models are able to explain the existence

of large connected components and the relatively short average shortest path lengths

observed in the board membership networks. However, this class of models do not pro-

duces another important feature found in most empirical social networks, namely, the

existence of communities. Then, the WS random models were introduced as a way to

mix randomness from the ER models with order from the ordered graphs to obtain

networks which are at the same time small and clustered. Notwithstanding, it has been

also shown that empirical board membership networks display the existence of hubs -

highly connected nodes - in contrast to the more balanced degree distribution presented

by both ER and WS random models. Finally, the scale-free BA model based on net-

work growth and preferential attachment was presented as a way to generate random

benchmarks with account for the existence of massive hubs as well.

As pointed out by [12], the degree distribution of the nodes (that is, the probability

P (k) of a given node in the network share an edge with k other nodes) received lots of

attention in the literature as a way to discriminate between different structural orders.

However, the degree distribution is only part of the topology: a deeper investigation of
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the connectivity patterns requires the study of the degree correlation functions.

The BA random model based on preferential attachment is argued to account quite

well for the topology of the World Wide Web [42], which was shown to be a network

of the aristocratic type, with the dominance of a few but extremely massive hubs. In

the WWW context, this picture is somewhat expected since there are many small and

unpopular websites pointing to a few, very large and popular hubs. However, the lack of

inter-hub connectivity is also expected in the WWW, and it is a result by construction

from the preferential attachment process. In this sense, the next two sections deal with

the so-called rich club phenomena (in the sense that the hubs - the rich nodes - form

a tightly connected community - the club), to show that a simple process of network

growth by preferential attachment is not able to explain this important part of the board

membership network topology.

1.7.1 The most important nodes

At the node level, there are basically four definitions of centrality which attempt to

capture different definitions for measuring the importance of a node in a network. The

degree centrality is given by the number of edges that a given node is an endpoint of,

hence capturing how connected is the node in absolute terms. The closeness centrality

is defined as the average (shortest) path from a given node to all others, measuring how

distant in terms of connections the node is from all the other nodes on average.

While degree centrality weights all edges equally, the eigenvector centrality considers

each connected node proportionally to its respective connections and thus it is a mea-

sure that depends on the entire pattern of the graph, and not only on the directly

connected nodes. Finally, the betweenness centrality captures the number of shortest

paths that go through the node, hence giving an idea of how often the node is used as

a step of a shortest path between two other nodes.

Table 1.10 shows the most important board members of the global network. The list

presents the 19 most important board members according to betweenness and eigenvec-

tor centrality (the top-10 members according to each definition, with an overlap of one

member).
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1.7.2 The rich club phenomena

The rich-club phenomenon refers to the tendency of the dominant elements of the sys-

tem to form tightly interconnected communities and it is one of the most important

properties with respect to the formation of dominant communities in both natural and

social sciences [12]. As pointed out by [34], the rich club phenomenon is not necessarily

associated with the degree assortative mixing. A positive (negative) degree assortative

mixing implies nodes with high degrees tend to be connected to other nodes of high

(low) degree. The fact these two properties (degree assortativity and rich club) are not

trivially related can be understood by considering a rich club formed by a clique of size

four, in which each of the rich nodes is connected to other ten different and small nodes,

as depicted in figure 1.12. This example network presents rich club phenomena and

negative degree assortativity at the same time. Large nodes are more likely to connect

to small nodes than to other large nodes (negative degree assortativity), while the inter-

connectivity among the large nodes is higher than the connectivity among small nodes

(rich club phenomena).

The presence or absence of the rich-club phenomenon might have deep impacts on several

aspects of a complex network [12]. For example, in a scientific collaboration network,

the presence of the rich club phenomena would imply that famous scientists in that

field are frequently coauthors with other influential scientists in the same field. With

respect to the network formed by protein interaction, the absence of the phenomena

can possibly mean that the hubs (the proteins with large connectivity) control different

aspects of network functioning. Considering power-grid networks, the presence of the

rich club phenomena reduces drastically the impact of a clever attack which aims part

of the hubs, since other neighboring hubs can replace the attacked ones quickly.

In scale-free networks the connectivity of the rich-club plays an important role in the

functionality of the network, for example, in the transmission of rumors in social net-

works or the efficient delivery of information on the Internet [43]. In a social context,

for example, a rich-club coefficient increasing with the degree k indicates the dominance

of an oligarchy of highly connected and mutually communicating individuals, as op-

posed to a structure consisting of many loosely connected and relatively independent
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Figure 1.12: This example network presents rich club phenomena and negative degree
assortativity at the same time. Large nodes are more likely to connect to small nodes
than to other large nodes (negative degree assortativity), while the interconnectivity
among the large nodes is higher than the connectivity among small nodes (rich club

phenomena).
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sub-communities [43]. Considering the effects of the rich club phenomena in Human

Connectome data, [44] found it to produce highly resilient and stable networks.

1.7.3 The rich club coefficient

The rich club coefficient in networks can be described as, for a given degree k, the ten-

dency of nodes with degree higher than k to be more densely connected to themselves

than to nodes with degree lower than k [10]. It is characterized when the hubs, nodes

with higher degrees are, on average, more intensely interconnected than the nodes with

smaller degrees. More precisely, it happens when the nodes with degree larger than k

tend to be more densely connected among themselves than the nodes with degree smaller

than k, for any significant range of degrees in the network.

Formally, it is described as follows: consider a graph G with N nodes and M edges

representing a complex network. Let Nk be the number of nodes with degree larger

than k, and Mk be the number of edges between such nodes. The so-called rich-club

coefficient φ(k) for a given degree k is given by

φ(k) =
2|M |>k

|N |>k(|N |>k − 1)
(1.11)

However, nodes with higher degrees are naturally more likely to be more interconnected

simply because they have more incident edges [12]. Indeed, even in the case of the ER

graph an increasing rich-club coefficient with k can be found. This implies that the

increase of k is a natural consequence of the fact that nodes with large degree have a

larger probability of sharing edges than low degree vertices. This feature is therefore

imposed by construction and does not represent a signature of any particular organizing

principle or structure, as is clear in the ER case. The simple inspection of the k trend

is therefore potentially misleading in the discrimination of the rich-club phenomenon [12].

Then, for the proper evaluation of this property, the rich club coefficient should be

normalized by its corresponding value in a random graph which follows the same (prob-

ably highly skewed) degree distribution. Such a random graph can be generated, for

example, by the following procedure described in [45]: take two edges of the empirical
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network and switch one of their endpoints randomly. If sufficient iterations of this pro-

cess are carried out, thus the procedure shuffles the edge structure of the network but

conserves its degree structure. Then the rich-club coefficient is computed for the result-

ing maximally random network, φran(k), and it is used to find the normalized rich-club

coefficient as follows

ρ(k) =
φ(k)

φran(k)
(1.12)

While φ(k) gives the rich-club coefficient with respect to an ideal uncorrelated graph,

ρ(k) is a realistic normalized measure that takes into account the structure and finiteness

of the network. Figure 1.13 presents the normalized version of the rich club coefficient

described in [10] for the LCC (largest connected component) of C and figure 1.14 for the

LCC of D2 (network formed by board members holding at least two board positions).

It can be seen a strong indication of the rich club phenomena over all range of k.
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Figure 1.13: Normalized Rich Club Coefficients for varying degrees for the LCC of
C. It can be seen a strong indication of the rich club phenomena over the full range of

k.
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Figure 1.14: Normalized Rich Club Coefficients for varying degrees for the LCC of
D2. It can be seen a strong indication of the rich club phenomena over the full range

of k.

1.7.4 Coreness

The coreness measure as defined in [46] was applied to this dataset. Ideally, one can

think of a core as a set of nodes that are tightly connected to themselves, and a pe-

riphery as a set of nodes which are not connected to themselves but connected to the

core. This ideal network would have an adjacency matrix full of ones in the intra-core

block, and full of zeros in the intra-periphery block. Then a statistic for the existence

of a core is a measure of distance between the empirical adjacency matrix and this ideal

perfect core-periphery structure. Finally, the problem reduces to finding the partition

of a matrix which yields the smallest distance to the ideal structure.

The present section is thus concerned with the existence of significant cores in the

national networks formed by board members. In the terms presented by [46], here the

discrete model of core periphery is investigated, that is, the problem of finding a single
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partition (thus dividing the nodes in two sub graphs) that maximizes the person corre-

lation coefficient between the partitioned empirical graph and the ideal core-periphery

structure.

According to [47], in order to find such non empty subgraph (the optimal partition)

it suffices to minimize the following statistic:

Z(S1) =
∑

(i≤j)∈S1

ΠAij=0 +
∑

(i≤j)/∈S1

ΠAij=1 (1.13)

where S is a graph S = 1, ..., n with n nodes, S1 is the subset of S (S1 ∈ S) presumed to

be the core of the graph, A is the binary adjacency matrix indicating whether two nodes

are connected or not, and Π is an indicator function ΠP , which is equal to 1 if P is true,

and equal to 0 otherwise. Note that the Z measures increases when it finds two nodes

at the core which are not connected (first term of right hand side), and also when it

finds two nodes of the periphery which are connected (second term of the left hand side).

This same author also shows that it is possible to minimize the Z statistic, and thus to

find the optimal partition, in O(n2) time without relying on heavy and non exact opti-

mization procedures, such as linear optimization and genetic algorithms. The algorithm

proposed by [47] is able to outperform its alternatives to such a great extent because it is

rooted in the finding that the members of the optimal core will necessarily be the nodes

with the highest degrees (for a proof, see [47]). When one considers this fact, finding

the core is just a matter of sorting nodes by degree, forming the possible cores by se-

quentially adding nodes with high degrees and computing the correspondent Z statistic.

The procedure halts when the addition of a new node to the core increases the Z statistic.

Table 1.11 presents the size of the core and the correspondent fitness measure to the

ideal core/periphery model for selected countries as described in [46], and using the

algorithm developed by [47]. More specifically, here the national networks of board

members (directors) are considered. No significant evidence of a core can be found for

the majority of the countries, arguably because the networks are not composed by sin-

gle one-dimensionally layered core-periphery structure as it might be the case for other

networks such as inter-banking networks [48].
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1.8 Conclusion

In this chapter, several features of the networks formed by interlocking directorates were

presented as stylized facts, meaning that the existence of such features is widespread

over a large and diverse set of economies. For instance, it could be seen that the accumu-

lation of board positions by single individuals cannot be described by a simple random

allocation of positions to directors, and thus that other forces might drive its dynamics.

It was also shown that interlocking networks present a large connected component,

although this is not totally unexpected if a random graph is used as a benchmark. Af-

terwards, the dichotomy between order and randomness presented in the WS small world

graphs was shown to account for the small world phenomena presented in empirical net-

works, and the preferential attachment process from the BA models able to account for

the highly skewed degree distributions.

In addition, it could also be seen that some countries engage in the global network

of board members differently from the others. For instance, it was observed that a great

deal of the absolute number of board directors, and the majority of the most central

actors, are based in North Atlantic countries. With respect to the profile of the firms

engaging in international interlocks, the lower country assortativity levels observed in

companies with high degrees indicate that very well connected firms are the responsible

for sustaining a connected global network, while smaller and less connected firms usually

engage in domestic interlocking. The special role of financial institutions could also be

observed, mainly by means of their higher average centrality. Financial institutions also

possess a much larger board on average (up to 40% larger), meaning that for them it

might be more worthwhile to engage in interlocks than for non financial institutions.

Finally, evidence was shown supporting that the rich club phenomena is also a styl-

ized fact of board membership networks, which is not accounted for by any of the

random models described here. As in the case of the accumulation of board positions

by individuals not being explained by a simple chance process, the higher level of intra-

hub connectivity (the rich club phenomena) cannot be explained by the traditional BA

models of preferential attachment, and thus, other factors might have influence on them.
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The rich-gets-richer effect was used as an explanation for the existence of a very well

connected core in the networks of interlocking directorates [49]. It was argued that it is

just a natural consequence of adding nodes at random and attaching them to already

well connected nodes. The main contribution of this investigation is to show that the

high levels of intra hub connectivity (the rich-club phenomena) presented in real world

interlocking networks cannot plausibly be seen as an outcome of chance (at least not from

the preferential attachment scheme), and thus proper explanation for the phenomena is

still required.
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Appendix A. The Topology of the Global Interlocking Di-

rectorates

Table 1.7: Number of positions, directors, and companies for the top 50 countries
by the number of directors. The last two columns show the average number of board

positions per director and the average board size in number of positions.

Country Positions (1) Directors (2) Companies (3) (1)/(2) (1)/(3)

United States 62090 51892 8864 1.20 7.00

Canada 21303 14590 3428 1.46 6.21

India 12351 9755 1443 1.27 8.56

United Kingdom 9410 7656 1412 1.23 6.66

Australia 7758 5966 1485 1.30 5.22

South Korea 6977 6734 1345 1.04 5.19

China 6764 6396 1119 1.06 6.04

Germany 5544 4850 774 1.14 7.16

Thailand 5311 4391 507 1.21 10.48

France 4574 3728 643 1.23 7.11

Italy 4064 3362 267 1.21 15.22

Singapore 3615 2751 489 1.31 7.39

South Africa 3099 2431 318 1.27 9.75

Poland 3063 2727 503 1.12 6.09

Pakistan 3025 2314 382 1.31 7.92

Sweden 2850 2270 405 1.26 7.04

Philippines 2302 1564 228 1.47 10.10

Russia 2178 1922 214 1.13 10.18

Israel 2138 1660 359 1.29 5.96

Switzerland 2120 1659 287 1.28 7.39

Sri Lanka 2074 1305 249 1.59 8.33

Norway 1994 1728 171 1.15 11.66

Jordan 1962 1810 218 1.08 9.00

Indonesia 1683 1449 337 1.16 4.99

Malaysia 1670 1523 242 1.10 6.90

Vietnam 1646 1600 473 1.03 3.48

Greece 1620 1473 203 1.10 7.98

Spain 1609 1373 150 1.17 10.73

Mexico 1581 1226 108 1.29 14.64

Bangladesh 1556 1368 143 1.14 10.88

Nigeria 1442 1277 161 1.13 8.96

Turkey 1264 1024 177 1.23 7.14

Brazil 1175 990 145 1.19 8.10

Continued on next page
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Country Positions (1) Directors (2) Companies (3) (1)/(2) (1)/(3)

Belgium 1161 948 130 1.22 8.93

Denmark 1111 972 147 1.14 7.56

Kuwait 1076 973 167 1.11 6.44

Netherlands 1034 777 148 1.33 6.99

Finland 1014 837 120 1.21 8.45

Oman 793 663 107 1.20 7.41

Austria 773 647 81 1.19 9.54

Hong Kong 772 656 130 1.18 5.94

New Zealand 754 627 127 1.20 5.94

Ireland 751 594 80 1.26 9.39

Cyprus 739 609 102 1.21 7.25

United Arab Emirates 734 649 100 1.13 7.34

Argentina 712 611 61 1.17 11.67

Bermuda 623 481 75 1.30 8.31

Portugal 573 502 48 1.14 11.94

Channel Islands 547 430 86 1.27 6.36

Egypt 498 462 88 1.08 5.66

Table 1.8: Number of positions, directors, and companies by sectors of economic
activity. The last two columns show the average number of board positions per director

and the average board size in number of positions.

Sector Positions (1) Directors (2) Companies (3) (1)/(2) (1)/(3)

Banks and Thrifts 20217 18662 1759 1.08 11.49

Metals and Mining 18407 12764 3178 1.44 5.79

Financial Services 13932 11200 2035 1.24 6.85

Energy 13327 10087 2129 1.32 6.26

Software and Technology 12623 10769 2208 1.17 5.72

Pharmaceuticals and Biotechnology 10874 8991 1289 1.21 8.44

Food and Beverages 9270 7713 1262 1.20 7.35

Computers and Electronic 8665 7437 1474 1.17 5.88

Real Estate 8226 6734 1237 1.22 6.65

Media 6219 5112 905 1.22 6.87

Heavy Machinery 5977 4997 880 1.20 6.79

Chemicals 5907 4889 851 1.21 6.94

Commercial Services and Supplies 5844 4916 965 1.19 6.06

Utilities 5833 4712 630 1.24 9.26

Restaurants and Leisure 5602 4512 818 1.24 6.85

Insurance 5536 4581 546 1.21 10.14

Retail 5345 4325 729 1.24 7.33

Building and Construction 4717 3901 659 1.21 7.16

Clothing Textiles 4601 3798 673 1.21 6.84

Continued on next page
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Sector Positions (1) Directors (2) Companies (3) (1)/(2) (1)/(3)

Construction Services 4405 3720 650 1.18 6.78

Healthcare Equipment/Supplies 3829 3243 522 1.18 7.34

Communication Services 3072 2388 404 1.29 7.60

Electrical Equipment 3020 2564 485 1.18 6.23

Healthcare Services 2925 2492 411 1.17 7.12

Wholesale and Distribution 2924 2431 456 1.20 6.41

Auto Parts 2913 2475 417 1.18 6.99

Semiconductors 2673 2278 413 1.17 6.47

Appliances and Furniture 1776 1525 260 1.16 6.83

Misc. Consumer Products 1769 1489 263 1.19 6.73

Conglomerates 1510 1098 167 1.38 9.04

Paper and Forest Products 1490 1210 201 1.23 7.41

Aerospace and Defense 1475 1178 191 1.25 7.72

Packaging and Containers 1406 1146 214 1.23 6.57

Transportation Infrastructure 1225 1049 138 1.17 8.88

Diversified Services 1208 1054 187 1.15 6.46

Railroads and Trucking Services 937 738 135 1.27 6.94

Sea Transportation 930 785 139 1.18 6.69

Airlines 823 664 82 1.24 10.04

Automobiles 818 603 93 1.36 8.80

Air Freight 704 584 106 1.21 6.64

Tobacco 319 250 46 1.28 6.93

Table 1.9: Eigenvector centrality (first column) and connections diversity (second
column) by sector of economic activity. While the eigenvector centrality shows which
are the most central sectors of activity in the network, the diversity of its connections
indicate whether the sector influences just a few other related sectors or a large part
of the network. The diversity of the connections is defined as the Shannon Entropy of
the weighted connections. That means it will be close to 0 when the sector basically
connects to one or just a few other sectors (like Metals and Mining, for example), and
it will be close to 1 if the sector connects more or less equally to all other sectors (like

Financial Services, for example).

Sector Eigenvector Entropy

Miscellaneous Financial Services 0.385 0.849

Software and Technology Services 0.376 0.666

Metals and Mining 0.299 0.484

Miscellaneous Commercial Services and Supplies 0.280 0.887

Energy 0.274 0.638

Computers and Electronic Equipment 0.248 0.811

Media 0.212 0.781

Real Estate 0.190 0.837

Banks and Thrifts 0.182 0.830

Food and Beverages 0.177 0.845

Continued on next page
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Sector Eigenvector Entropy

Restaurants and Leisure 0.167 0.833

Retail 0.161 0.854

Pharmaceuticals and Biotechnology 0.159 0.599

Heavy Machinery 0.156 0.880

Chemicals 0.138 0.885

Utilities 0.135 0.785

Engineering and Construction Services 0.115 0.877

Insurance 0.113 0.760

Communication Services 0.112 0.827

Wholesale and Distribution 0.108 0.889

Building Products and Construction Materials 0.099 0.891

Healthcare Equipment/Supplies 0.099 0.707

Healthcare Services 0.094 0.778

Clothing, Textiles and Accessories 0.091 0.854

Electrical Equipment 0.075 0.904

Semiconductors 0.073 0.731

Auto Parts 0.061 0.875

Conglomerates 0.054 0.910

Aerospace and Defense 0.046 0.856

Appliances and Furniture 0.043 0.915

Diversified Services 0.042 0.876

Misc. Consumer Products 0.040 0.894

Packaging and Containers 0.037 0.906

Paper and Forest Products 0.037 0.901

Railroads and Trucking Services 0.035 0.873

Transportation Infrastructure 0.033 0.888

Automobiles 0.028 0.908

Air Freight 0.026 0.913

Sea Transportation 0.024 0.859

Airlines 0.024 0.901

Tobacco 0.008 0.885

Table 1.10: Most important board members. The list presents the 19 most impor-
tant board members according to betweenness and eigenvector centrality (the top-10

members according to each definition, with an overlap of one member)

Name Positions Degree Companies

Dieter Zetsche 3 61 Daimler AG

Deutsche Bank AG

Continued on next page
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Name Positions Degree Companies

RWE AG

Henning Kagermann 6 72 Bayerische Motoren Werke AG

Deutsche Bank AG

Deutsche Post AG

Münchener Rückversicherungs-Gesellschaft AG

Nokia Corporation

Wipro

Clemens Borsig 5 73 Bayer AG

Daimler AG

Deutsche Bank AG

Fraport AG

The Linde Group

Deepak Parekh 12 85 DP World

Exide Industries

GlaxoSmithKline Pharmaceuticals

HDFC Bank

Housing Development Finance Corp.

Indian Hotels Co.

Infrastructure Development Finance Co.

Lafarge S.A.

Mahindra and Mahindra

Siemens

WNS (Holdings)

Zodiac Clothing Company

Peter Crossgrove 8 44 Barrick Gold Corporation

Detour Gold Corporation

Dundee REIT

Excellon Resources Inc.

Lake Shore Gold Corp.

Pelangio Exploration Inc.

QLT Inc.

Standard Gold Inc.

Karl-Ludwig Kley 4 71 Bayerische Motoren Werke AG

Deutsche Bank AG

HSBC Trinkaus and Burkhardt AG

Merck KGaA

Maurice Lévy 3 65 Deutsche Bank AG

Publicis Groupe SA

Continued on next page
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Name Positions Degree Companies

The Blackstone Group LP

Paul Achleitner 4 69 Bayer AG

Daimler AG

Deutsche Bank AG

RWE AG

Roland Berger 8 95 Deutsche Bank AG

Fiat S.p.A.

Fresenius SE and Co KGaA

Italy1 Investment S.A.

Prime Office REIT-AG

RCS MediaGroup S.p.A

The Blackstone Group LP

3W Power SA

Keki Dadiseth 8 70 Britannia Industries

Godrej Properties

Indian Hotels Co.

Marsh and McLennan Companies Inc.

Omnicom Group Inc.

Piramal Healthcare

Prudential plc

Siemens

Charles Powell 7 72 Barrick Gold Corporation

Caterpillar Inc.

Hongkong Land Holdings

Mandarin Oriental International

Rolls Royce Holdings plc

Schindler Holding AG

Textron Inc.

Josef Ackermann 4 75 Deutsche Bank AG

Royal Dutch Shell plc

Siemens AG

Zurich Insurance Group AG

Ratan Tata 12 97 Alcoa Inc.

Fiat S.p.A.

Indian Hotels Co.

Nelco

Rolls Royce Holdings plc

Tata Chemicals

Continued on next page
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Name Positions Degree Companies

Tata Consultancy Services

Tata Global Beverages

Tata Motors

Tata Power Co.

Tata Steel

Bombay Dyeing and Manufacturing

Subramaniam Ramadorai 9 85 Asian Paints

CMC

Deutsche Bank AG

Hindustan Unilever

Piramal Healthcare

Tata Communications

Tata Consultancy Services

Tata Elxsi

Tata Teleservices (Maharashtra)

Alexei Mordashov 3 71 Deutsche Bank AG

Joint Stock Company Severstal

Lafarge S.A.

Nasser Munjee 12 69 ABB

Ambuja Cements

Britannia Industries

Cummins India

Development Credit Bank

Housing Development Finance Corp.

Repro India

Shipping Corp. of India

Tata Chemicals

Tata Motors

Unichem Laboratories

Voltas

Ian Smith 6 29 Bolero Resources Corp.

Euro Ressources SA

Max Resource Corp.

Santa Fe Metals Corp.

Transurban Group

Yellowhead Mining Inc.

Wazir Khoja 8 35 Askari Bank

Bank Al Habib

Continued on next page
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Name Positions Degree Companies

Fauji Fertilizer Co.

KSB Pumps (Pakistan)

Packages

Pak Suzuki Motor Co.

Sui Northern Gas Pipelines

Thatta Cement Company

Kenichi Ayukawa 2 8 Maruti Suzuki India

Pak Suzuki Motor Co.

Table 1.11: Size of the core and the correspondent fitness measure (correlation) to the
ideal core/periphery model for selected countries. More specifically, here the national
networks of board members (directors) are considered. No significant detection of a
core can be observed for the majority of the countries, arguably because the networks
are not composed by single one-dimensionally layered core-periphery structure as it

might be the case for other networks such as interbanking networks.

Country Nodes Density Core size Correlation

All 50320 0.0001 45 0.0043

United States 14078 0.0003 27 0.0075

Canada 4235 0.0017 29 0.0176

India 2388 0.0029 32 0.0369

Australia 1660 0.0025 14 0.0182

United Kingdom 1632 0.0022 14 0.0174

Japan 1248 0.0025 14 0.0287

Germany 1056 0.0037 18 0.0628

Malaysia 1052 0.0053 19 0.0369

Hong Kong 950 0.0065 23 0.0544

Sweden 939 0.0049 16 0.0371

China 767 0.0041 12 0.0390

France 675 0.0070 19 0.0694

Singapore 640 0.0074 15 0.0488

Israel 583 0.0089 18 0.0608

Thailand 553 0.0101 17 0.0622

Italy 505 0.0105 18 0.0818

South Africa 448 0.0113 16 0.0718

Continued on next page
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Country Nodes Density Core size Correlation

Norway 425 0.0092 11 0.0589

Poland 351 0.0092 9 0.0468

Russia 329 0.0144 15 0.1035

Finland 317 0.0120 10 0.0566

Philippines 317 0.0259 21 0.1345

Switzerland 308 0.0110 10 0.0609

Sri Lanka 286 0.0358 22 0.1079

Denmark 286 0.0144 11 0.0619

New Zealand 275 0.0136 9 0.0623

Pakistan 275 0.0175 11 0.0716

Spain 245 0.0155 11 0.1045

Netherlands 197 0.0189 10 0.0903

Belgium 189 0.0183 9 0.1033

Brazil 186 0.0237 11 0.1138

Taiwan 143 0.0221 8 0.1066

Mexico 132 0.0630 19 0.2072

Austria 129 0.0359 11 0.1100

Bangladesh 126 0.0309 8 0.1027

Indonesia 109 0.0321 8 0.1136

United Arab Emirates 107 0.0319 7 0.1264

Nigeria 103 0.0333 7 0.0906

Oman 98 0.0347 7 0.1070

Saudi Arabia 94 0.0336 6 0.1106

Jordan 87 0.0369 6 0.0979

South Korea 72 0.0376 5 0.0966

Greece 63 0.0573 7 0.1581

Kuwait 61 0.0404 5 0.1312

Kenya 56 0.0838 10 0.1583

Zimbabwe 48 0.0718 5 0.1190

Ireland 47 0.0611 5 0.1494

Peru 46 0.0889 7 0.1119

Continued on next page
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Country Nodes Density Core size Correlation

Argentina 42 0.1022 7 0.2308

Bahrain 41 0.1110 7 0.1942

Portugal 40 0.0744 6 0.2144

Qatar 38 0.0711 4 0.1365

Turkey 33 0.2045 9 0.1453

Cyprus 32 0.0907 4 0.1532

Egypt 28 0.0873 4 0.1709

Mauritius 28 0.2196 7 0.2972

Chile 22 0.2121 6 0.2640

Hungary 22 0.1342 4 0.3634

Slovenia 22 0.1039 3 0.2189

Luxembourg 20 0.1737 5 0.2860



Chapter 2

Interlocking Directorates in

Spain: Evidence from a

Comprehensive Data Set

Introduction

In the previous chapter, it was shown that several properties appear consistently as

stylized facts among a diverse set of board membership networks. More specifically,

it could be seen that (a) binomial random benchmark models are not able to explain

the accumulation of board positions presented in real world data; (b) there is a large

connected component comprising the majority of the nodes in the networks, regardless

if one takes into account individual countries or aggregated data at the global level; (c)

all the networks are of the small-world type, that is, they present very short diameters

with respect to the total number of nodes together with high clustering coefficients; (d)

the empirical degree distribution of all networks is highly skewed, and can, thus, not

be explained by the WS random rewiring models; and (e) they present an excessive

rich club coefficient, indicating there is high level of intra-hub connectivity which is not

explained by the BA preferential attachment models.

The present chapter is organized as follows. The first section confirms the findings

56
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from the first chapter in the light of a richer dataset concerning Spanish board net-

works, comprising seven years from 2004 to 2010. These findings add to the growing

literature stressing the fundamental similarities between interlocking networks from a

diverse set of countries.

The second section highlights the most influential nodes, companies, and sectors of

activity, to stress the high participation of financial institutions in the social network of

board members, in agreement with extensive literature (see [37] in general, and [50] for

the specific case of Spain). Although the idea that banks in the twentieth century Spain

formed a cartel through interlocking directorates was ruled out by [51], it is clear that

financial institutions were very important actors in the networks.

The third section investigates the relation between network centrality and performance

measures. A significant inverse relation between centrality and leverage of non-financial

institutions could be observed during the period, suggesting that board linkages might

have generated some kind of special conditions for lending that would not exist if based

on economic criteria only. This finding adds evidence to the discussion presented by

[52]. In addition, no significant relation between centrality and economic performance

was found, differently from [17], but in agreement to [53].

Additionally, the role of the highly capitalized Ibex companies in the network, gen-

der differences, and the participation of politicians in company boards are investigated

in the fourth section. It could be seen, for instance, (a) that more than half of the

directors holding two or more board positions serve in at least one Ibex board, (b) that

women’s participation is increasing, although they still have smaller average centrality

then men, and (c) that politicians are more likely to get a second position than non

politicians.

In this chapter, data from three different sources are used: the first section presents

data collected from the CNMV (Comissión Nacional del Mercado de Valores) with re-

spect to board affiliation from which all centrality measures are calculated. The third

section introduces firm level data collected from the SABI (Iberian Balance Sheet Anal-

ysis System) dataset [54] which will be used to check whether network measures have



Chapter 2. Interlocking Directorates in Spain: Evidence from a Comprehensive Data
Set 58

an explicit impact on firms’ performance metrics. Finally, the fourth section uses politi-

cians’ lists from the Spanish national congress.

2.1 Network stylized facts

Following the approach described in the previous chapter, information from the database

was represented by incidence matrices, which allow the calculation of network measures

both in terms of connected companies and connected directors. This section explores the

stylized facts found in the previous chapter with respect to the richer data set composed

of Spanish companies over seven years, from 2004 to 2010.

2.1.1 Data description

The data were collected from the CNMV website http://www.cnmv.es (Comissión Na-

cional del Mercado de Valores) in October 2012. More specifically, in the index page

of the website there is a link to Entidades emisoras: Información regulada y otra under

the Consultas a registros oficiales section. Then, there is the link Información sobre

Gobierno Corporativo which leads to a document search environment. The names of

the board directors are presented in the type of document called Informe anual del go-

bierno corporativo, which is available in a standard and complete format from 2004 to

2010. There are three different kinds of reports which classify companies as: (a) Listed

Companies (Sociedades Anónimas Cotizadas); (b) Savings Banks (Cajas de Ahorro);

or (c) Other Issuers (Otras Entidades Emisoras). Tables 2.1-2.3 show some descriptive

statistics.

Table 2.1: Number of companies.

Year Listed Companies Other Issuers Savings Banks Total

2004 183 17 38 238
2005 177 20 39 236
2006 173 20 42 235
2007 169 21 42 232
2008 167 23 42 232
2009 158 22 39 219
2010 154 25 32 211

http://www.cnmv.es
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Table 2.2: Number of board positions.

Year Listed Companies Other Issuers Savings Banks Total

2004 1694 190 649 2533
2005 1678 223 670 2571
2006 1677 218 720 2615
2007 1646 236 733 2615
2008 1687 247 735 2669
2009 1611 245 679 2535
2010 1568 278 602 2448

Table 2.3: Number of board members.

Year Listed Companies Other Issuers Savings Banks All

2004 1407 179 649 2179
2005 1375 213 670 2190
2006 1394 208 720 2255
2007 1357 223 733 2245
2008 1420 237 735 2315
2009 1374 236 679 2224
2010 1356 267 602 2154

Table 2.4 depicts the accumulation of multiple board positions. It can be seen a consis-

tent reduction in the number of multiple board memberships from 2008 to 2010, a fact

that is most likely due to the financial crisis of 2008.

Table 2.4: Number of directors holding at least 2-6 positions.

Directors holding at
least N positions N=2 N=3 N=4 N=5 N=6

2004 179 51 15 4 2
2005 177 62 13 5 1
2006 184 49 15 5 1
2007 178 47 19 9 1
2008 174 39 20 8 2
2009 173 32 15 4 2
2010 171 32 11 5 1

Savings Banks boards are different from the others. Tables 2.5 and 2.6 show that their

average sizes are around 70% higher, and that there are no interlocks among themselves.

2.1.2 Binomial benchmark for the accumulation of board positions

Following the approach described in [27], figure 2.1 compares, for 2010, the relative fre-

quency of multiple board memberships to a random benchmark given by the probability

of observing multiple board membership in an independent sequence of k = 293 (number
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Table 2.5: Average number of members per board.

Year Listed Companies Other Issuers Savings Banks Total

2004 9.26 11.18 17.08 10.64
2005 9.48 11.15 17.18 10.89
2006 9.69 10.90 17.14 11.13
2007 9.74 11.24 17.45 11.27
2008 10.10 10.74 17.50 11.50
2009 10.20 11.14 17.41 11.58
2010 10.18 11.12 18.81 11.60

Table 2.6: Ratio number of board members/number of board positions.

Year Listed Companies Other Issuers Savings Banks Total

2004 83.1% 94.2% 100.0% 88.2%
2005 81.9% 95.5% 100.0% 87.8%
2006 83.1% 95.4% 100.0% 88.8%
2007 82.4% 94.5% 100.0% 88.5%
2008 84.2% 96.0% 100.0% 89.6%
2009 85.3% 96.3% 100.0% 90.3%
2010 86.5% 96.0% 100.0% 90.9%

of board positions - number of directors) Bernoulli trials with probability p = 1/2154

(1/number of directors) of success. It can be seen that the chances of accumulating

board positions at random are several orders of magnitude lower than what is observed

in the empirical data.

2.1.3 Existence of a Large Connected Component

A large connected component (LCC) could be observed during the entire time spam

(2004 to 2010), confirming that earlier findings for German data [22] are also valid for

the Spanish case. Table 2.7 depicts the size of the LCC, which encompasses around 70%

of the nodes and links in the network of directors, while table 2.8 shows that the LCC

consists of about 65% of the nodes and almost all the links in the companies’ network.

2.1.4 Persistence of the Large Connected Component

This Large Connected Component persists over the period, regardless of personal turnover.

Table 2.9 presents the rate of survival of directors and companies in the LCC, both with

respect to the previous year and to the first year (2004). It could be seen that nearly

70-80% of the directors remain in the largest connected component in the subsequent
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Figure 2.1: Relative frequency of empirical multiple board membership (red circles)
and the random binomial benchmark (blue x’s), for the year 2010.

Table 2.7: Nodes and edges of the networks of directors.

Year Directors Links In LCC Links Nodes Ratio Links Ratio

2004 2179 15173 1421 11017 65.2% 72.6%
2005 2190 15491 1450 11435 66.2% 73.8%
2006 2255 15964 1528 12005 67.8% 75.2%
2007 2245 16367 1520 12160 67.7% 74.3%
2008 2315 16940 1553 12522 67.1% 73.9%
2009 2224 15795 1486 11501 66.8% 72.8%
2010 2154 15683 1485 11732 68.9% 74.8%

Table 2.8: Nodes and edges of the networks of companies.

Year Companies Links In LCC Links Nodes Ratio Links Ratio

2004 238 381 152 377 63.9% 99.0%
2005 236 388 152 386 64.4% 99.5%
2006 235 393 156 392 66.4% 99.7%
2007 232 400 159 398 68.5% 99.5%
2008 232 392 155 391 66.8% 99.7%
2009 219 343 144 341 65.8% 99.4%
2010 211 325 143 322 67.8% 99.1%
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year, and that this figure is higher for companies, being around 85-90%. As pointed

out in [22], the LCC seems to be persistent independently of the individuals holding

the board positions. For instance, only 32% of the directors in 2010 were present in the

LCC in 2004, while 60% of the companies remained the same over the period.

Table 2.9: Rate of survival of nodes. The Large Connected Component persists over
the period, regardless of personal turnover.

Year Directors
(2004)

Companies
(2004)

Directors
(last)

Companies
(last)

2005 77% 91% 77% 91%
2006 63% 81% 74% 88%
2007 50% 75% 69% 88%
2008 43% 71% 77% 86%
2009 38% 67% 77% 85%
2010 32% 60% 79% 86%

2.1.5 Small world

A peculiar feature of the network of board members is the existence of node communities

by construction (the boards), forming complete subgraphs in which all the nodes (the

board members) are connected to each other. These communities can be seen in figure

2.2, illustrating the largest connected component of the network of directors in 2010.

This feature may impact some specific statistical measures. For example, the existence

of such communities produces trivially high average clustering coefficients. In addition,

the degree of a board member will depend on the total number of seats on the boards in

which he has a position. Hence, two directors in equally connected but differently sized

boards have different degree centralities. In this sense, figure 2.3 shows the network

composed only by the directors holding at least two positions. This resulting network

keeps all important information with regard to information flow in the entire network,

but removes the noise from disproportionality between board sizes.

From this point on, we refer only to the LCC of the network of companies, and to the

LCC of the network formed by directors holding at least two board positions. Tables

2.10 and 2.11 present the density, radius, diameter, and average clustering coefficient for

the network of companies and for the network of directors, respectively.

As it can be seen in tables 2.10 and 2.11, both networks present both relatively short

radius and high clustering coefficient, suggesting they are small world networks. In
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Figure 2.2: Network of all board members (2010). Nodes are colored and sized by
number of board positions.
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Figure 2.3: Network of board members holding at least two board positions (2010).
Nodes are colored and sized by number of board positions.
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Table 2.10: Network statistics for companies in the LCC.

Year Density Radius Diameter Avg. Clustering Avg. Shortest Path Length

2004 0.54% 6 11 0.70 4.39
2005 0.55% 5 9 0.65 4.39
2006 0.48% 5 9 0.64 4.51
2007 0.50% 6 10 0.63 4.41
2008 0.48% 6 11 0.66 4.58
2009 0.47% 6 11 0.67 4.66
2010 0.47% 6 11 0.69 4.65

Table 2.11: Network statistics for directors in the LCC and holding more than one
position.

Year Density Radius Diameter Avg. Clustering Avg. Shortest Path Length

2004 3.29% 5 10 0.34 3.82
2005 3.36% 5 8 0.33 3.62
2006 3.24% 5 8 0.31 3.66
2007 3.17% 5 9 0.31 3.61
2008 3.28% 5 10 0.32 3.72
2009 3.31% 5 10 0.27 3.80
2010 3.17% 6 10 0.29 3.82

practice, this kind of network presents hubs (nodes with degrees much higher than the

average) and communities (strongly interconnected sub graphs which are connected to

each other through the hubs), which combined form the so-called small world phenom-

ena.

2.1.6 Heavy-tailedness of the Degree Distribution

Although WS random rewiring models can reproduce the relative short average path

lengths present in the Spanish interlocking network data, it cannot account for the heavy

tails in the distribution of the degrees. Figure 2.4 shows the degree distribution for the

network of directors in 2010. Visual inspection by itself suggests non normality, which

is confirmed by the Anderson-Darling tests [55]. In addition, exponential and logistic

distributions could also be ruled out at the 1% significance level. Table 2.12 presents

the test statistics and its correspondent critical value at 1% for the exponential, normal,

and logistic distributions.
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Table 2.12: Anderson-Darling test statistic and its correspondent critical value at 1%
for data coming from selected distributions. It can be seen that normal, exponential,

and logistic distributions can be ruled out at 1% significance level

Distribution Test statistic Critical at 1%

Exponential 253.845 1.956
Normal 50.045 1.09
Logistic 23.232 0.906
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Figure 2.4: Degree distribution for the network formed by directors, 2010.

2.1.7 Network core

The coreness measure as defined in [46] was applied to this dataset. Ideally, one can

think of a core as a set of nodes that are tightly connected to themselves, and a periph-

ery as a set of nodes which are not connected to themselves, but connected to the core.

This ideal network would have an adjacency matrix full of ones in the intra-core block,

and full of zeros in the intra-periphery block. Then a statistic for the existence of a core

is a measure of distance between the empirical adjacency matrix and this ideal perfect

core-periphery structure.

The present section is thus concerned with the existence of significant cores in the
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national networks formed by board members. In the terms presented by [46], here the

discrete model of core periphery is investigated, that is, the problem of finding a single

partition (thus dividing the nodes in two sub graphs) that maximizes the Pearson corre-

lation coefficient between the partitioned empirical graph and the ideal core-periphery

structure.

According to [47], in order to find such non empty subgraph (the optimal partition)

it suffices to minimize the following statistic:

Z(S1) =
∑

(i≤j)∈S1

ΠAij=0 +
∑

(i≤j)/∈S1

ΠAij=1 (2.1)

where S is a graph S = 1, ..., n with n nodes, S1 is the subset of S (S1 ∈ S) presumed to

be the core of the graph, A is the binary adjacency matrix indicating whether two nodes

are connected or not, and Π is an indicator function ΠP , which is equal to 1 if P is true,

and equal to 0 otherwise. Note that the Z measures increases when it finds two nodes

at the core which are not connected (first term of right hand side), and also when it

finds two nodes of the periphery which are connected (second term of the left hand side).

This same author also shows that it is possible to minimize the Z statistic, and thus to

find the optimal partition, in O(n2) time without relying on heavy and non exact opti-

mization procedures, such as linear optimization and genetic algorithms. The algorithm

proposed by [47] is able to outperform its alternatives to such a great extent because it is

rooted in the finding that the members of the optimal core will necessarily be the nodes

with the highest degrees (for a proof, see [47]). When one considers this fact, finding

the core is just a matter of sorting nodes by degree, forming the possible cores by se-

quentially adding nodes with high degrees and computing the correspondent Z statistic.

The procedure halts when the addition of a new node to the core increases the Z statistic.

Table 2.13 presents the fitness measure (defined as the Pearson correlation coefficient

applied to matrices) to the ideal core/periphery model both for the networks of directors

and of companies, as described in [46], and using the algorithm developed by [47]. It

can be seen only small evidence of a core in both the networks (given by the close to
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0 correlation coefficients), arguably because the networks are not composed by a sin-

gle one-dimensionally layered core-periphery structure as it might be the case for other

networks such as inter-banking lending networks [48].

Table 2.13: Fitness measure (defined as the Pearson correlation coefficient applied to
matrices) to the ideal core/periphery model both for the networks of directors and of
companies. It can be seen only small evidence of a core of the network of companies,
arguably because the networks are not composed by a single one-dimensionally layered
core-periphery structure as it might be the case for other networks such as inter-banking

lending networks.

year companies directors

2004 0.1237 0.0357
2005 0.1196 0.0331
2006 0.1136 0.0318
2007 0.1144 0.0357
2008 0.1121 0.0361
2009 0.1015 0.0349
2010 0.0956 0.0349

2.1.8 Rich Club Phenomenon

The rich club phenomenon in networks can be described as, for a given degree k, the

tendency of nodes with degree higher than k to be more densely connected themselves

than to nodes with degree lower than k [10]. Table 2.14 presents the normalized version

of the rich club coefficient described in [56] for the network formed by listed companies.

The threshold 1 indicates that the probability of two nodes being connected does not

depend on their degrees, while values above 1 are evidence of the existence of the rich

club phenomenon.

Table 2.14 also shows an almost nonexistent (close to zero) degree assortativity [34],

which is defined by the Person’s correlation coefficient for degrees of nodes at either end

of an edge, thus ruling out the possibility that the nodes with high degree are strongly

connected to each other just because they have more connections. The close to 0 degree

assortativity shows that there is no preference of nodes to attach to nodes of similar

degree, while the above 1 normalized rich club coefficient shows nodes with high degrees

are more connected to themselves than to nodes of smaller degree. Table 2.15 presents

even higher values of the rich-club coefficient for the network of directors, and low val-

ues of degree assortativity, indicating the existence of a tightly inter-connected core of

directors.
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Table 2.14: Rich club coefficient for companies as a function of degree threshold.

Degree 2004 2005 2006 2007 2008 2009 2010

2 1.020 1.006 1.003 1.015 1.006 1.007 1.012
3 1.050 1.022 1.043 1.029 1.026 1.041 1.020
4 1.094 1.051 1.084 1.031 1.057 1.094 1.012
5 1.063 1.055 1.036 1.089 1.102 1.132 1.018
6 1.040 1.105 1.008 1.196 1.160 1.134 1.036
7 1.038 1.083 1.033 1.231 1.250 1.179 0.965
8 1.114 1.064 1.074 1.255 1.266 1.085 1.088
9 1.172 1.100 1.133 1.269 1.357 1.300 0.950
10 1.095 1.353 1.154 1.316 1.440 1.214 1.400
11 0.750 1.400 1.154 1.167 1.353 1.286 1.250
12 0.800 1.800 1.222 1.111 1.600 1.286 1.000

Assortativity 0.009 -0.030 0.023 0.015 0.014 -0.010 -0.001

Table 2.15: Rich club coefficient for directors as a function of degree threshold.

Degree 2004 2005 2006 2007 2008 2009 2010

2 1.001 1.002 1.000 1.001 1.001 1.001 1.001 1.001
3 1.009 1.004 1.007 1.005 1.003 1.005 1.007 1.005
4 1.017 1.006 1.011 1.013 1.010 1.018 1.016 1.029
5 1.034 1.027 1.029 1.030 1.033 1.029 1.039 1.060
6 1.057 1.059 1.061 1.048 1.061 1.052 1.064 1.122
7 1.086 1.088 1.092 1.070 1.097 1.098 1.122 1.160
8 1.101 1.120 1.148 1.100 1.136 1.167 1.234 1.188
9 1.192 1.169 1.218 1.126 1.208 1.209 1.300 1.254
10 1.217 1.221 1.287 1.170 1.252 1.318 1.378 1.290
11 1.292 1.236 1.414 1.238 1.308 1.443 1.467 1.378
12 1.355 1.372 1.433 1.288 1.420 1.458 1.364 1.546
13 1.418 1.484 1.575 1.366 1.524 1.549 1.400 1.681
14 1.428 1.629 1.669 1.476 1.541 1.524 1.292 1.592
15 1.486 1.576 1.906 1.611 1.613 1.667 1.204 1.486
16 1.496 1.701 1.899 1.658 1.523 1.794 1.769 1.483
17 1.333 1.857 1.988 1.826 1.556 1.448 1.769 1.538
18 1.379 2.014 2.110 1.885 1.621 1.048 1.455 1.333
19 1.269 2.172 2.270 1.950 1.885 1.333 1.833 1.222
20 1.340 2.236 2.200 2.000 1.859 1.071 1.833 1.500
21 1.341 2.356 2.259 2.076 1.767 1.071 2.000 2.000
22 1.171 2.600 1.951 2.068 2.000 0.778 1.000 1.000
23 1.174 2.343 1.714 2.135 1.667 0.200 1.000 1.000
24 1.235 2.226 1.917 2.414 1.690 0.200 1.000 1.000
25 1.444 1.944 1.833 2.529 1.947 0.333 1.000 1.000

Assortativity 0.069 0.070 0.049 0.051 0.054 0.060 0.050 0.043
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2.2 Most Important Players

2.2.1 Most Important Directors

Table 2.25 presents the list of the 30 most import directors (and the board they serve

in), ordered according to eigenvector centrality for the year 2010.

2.2.2 Most Important Companies

Table 2.26 presents the list of the 30 most import companies (and their respective

sectors), ordered according to eigenvector centrality for the year 2010.

2.2.3 Network of Sectors

This section considers sectors as the nodes of the network, instead of using companies or

directors. Hence, a weighted graph can be created, considering edge weight as the num-

ber of board members two sectors share. Table 2.27 presents the number of companies,

directors, and board positions by sector for the year of 2010. The last column, called

Intra connectivity, presents the ratio between the number of positions in that sector

and the number of unique directors. It can be seen a high level of interlocking among

companies of the ”APARCAMIENTO Y AUTOPISTAS” sector.

Assortativity is defined as the tendency of nodes to attach to other nodes with whom

they share a specific attribute. As an example, degree assortativity is the tendency of

nodes to attach to other nodes with similar levels of degree. In this way, sector assor-

tativity is the tendency of nodes to attach to other nodes of the same sector. If sector

assortativity is positive, it is more likely for a node to attach to another node from the

same sector than from another sector. Table 2.28 shows some basic network measures.

It is worthwhile to note the downward intra sector assortativity trend from 2004 to 2010,

from positive to negative values, indicating that the practice of serving simultaneously

on two boards of the same sector is being reduced over the period.

Figure 2.5 shows that financial institutions (comprised by the nodes labeled as FINAN-

CIACIÓN Y SEGUROS ) have a special place in the Spanish interlocking networks,
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followed by the construction (CONSTRUCIÓN ) and the real estate sectors (INMOBIL-

IARIAS ). The special role of financial institutions will be further addressed in forth-

coming sections.

2.2.4 The Banking System

The argument of financial hegemony presented by [37] is based on the observation that

banks play a central role in unifying the network of corporations linked through shared

directors. The idea is that banks can benefit more from the business scan than other

companies because they have money invested across the economy, and thus for them it

is worth to recruit top level directors from non financial institutions [35].

Considering the Spanish case during the time period from 2004 to 2010, it can be seen

not only that the boards of financial institutions are significantly larger when compared

to non financial institutions. For instance, table 2.16 shows that banks present on aver-

age board sizes 40% to 50% larger than non financial institutions. This is in agreement

with [35].

Table 2.16: Average board size for financial and non financial corporations

year financial non financial difference

2004 13.250 9.407 40.85%
2005 13.513 9.500 42.24%
2006 14.000 9.694 44.42%
2007 14.397 9.836 46.37%
2008 14.763 9.917 48.87%
2009 14.986 9.919 51.08%
2010 15.354 9.925 54.70%

Assortativity is the general preference of nodes to attach to others that are similar with

regard to some attribute [34]. The classic example is the degree assortativity, given

by the Person correlation coefficient between the degrees of nodes at either end of the

edges. As a correlation coefficient, it ranges from −1 (perfect dissortativity) to 1 (perfect

assortativity). In the specific case, the network of sectors presents degree assortativity

very close to zero, in the sense that on the average, companies are equally likely to

attach to a second company independently of the number of connection this company

has. Analogously, a positive (negative) sector assortativity means that it is more (less)

likely to a company of a given sector to attach to another company of the same sector.
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NUEVAS TECNOLOGAS

ENERGA Y AGUA/PETRLEO
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FINANCIACIN Y SEGUROS/SOCIEDAD...

FINANCIACIN Y SEGUROS/SEGUROS

MEDIOS DE COMUNICACIN

OTRAS INDUST. DE TRANSF./ALIME...

AGRICULTURA Y PESCA

TRANSPORTES Y COMUNICACIONES/A...

FINANCIACIN Y SEGUROS/CAJAS

TRANSPORTES Y COMUNICACIONES/C...

ENERGA Y AGUA/ENERGA ELCTRICA OTRAS INDUST. DE TRANSF./OTRAS...

FINANCIACIN Y SEGUROS/BANCOS

TRANSPORTES Y COMUNICACIONES/T...

METLICAS BSICAS

CEMENTO VIDRIO Y MAT. CONSTR./...

INDUSTRIA QUMICA

ENERGA Y AGUA/AGUA Y GAS

INMOBILIARIAS

ENERGA Y AGUA/MINERAS Y COMBUS...
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CONSTRUCCIN CEMENTO VIDRIO Y MATERIAL DE C...

COMERCIO Y OTROS SERVICIOS

OTRAS INDUST. DE TRANSF./PAPEL...

Figure 2.5: Weighted Network of Sectors, 2010. Nodes are colored by eigenvector
centrality, and sized by degree. Edges are sized by the number of directors serving in

both sectors.



Chapter 2. Interlocking Directorates in Spain: Evidence from a Comprehensive Data
Set 73

Figure 2.6 shows the special role of banks in the network of directors, 2010. Although the

banking system remains as the most important sector of the network, table 2.17 shows

that there was a significant reduction in the number of intra-banking interlocks during

the period. This can be seen by the significant change in the intra-sector assortativity

for banks from 0.194 in 2004 to −0.123 in 2010.

Table 2.17: Participation of the Banking System - Companies.

Year Other Banks Share Bank-to-Bank Assortativity Degree Assortativity

2004 218 20 9.17% 0.194 0.009
2005 215 21 9.77% 0.170 -0.030
2006 214 21 9.81% 0.198 0.023
2007 211 21 9.95% 0.132 0.015
2008 213 19 8.92% -0.071 0.014
2009 201 18 8.96% -0.108 -0.010
2010 192 19 9.90% -0.123 -0.001

This finding is in agreement with vast literature (see [37] in general). Although the idea

that banks in the twentieth century Spain formed a cartel through interlocking direc-

torates was ruled out by [51], it is clear that financial institutions were very important

actors in the networks. Particularly considering the case of Spain in 1993, [50] presents

two findings which could be confirmed using updated data. The first is concerned with

the special positions banks have on the network, and the second states that inter-sector

interlocks are found more often than intra-sector interlocks.

2.3 Network position impact on firm level data

The purpose of this section is to contrast firm level data to the network related measures

calculated from the dataset described in the previous subsection. It is inspired by the dis-

cussions in [53] presenting evidence of weak corporate governance associated with busy

boards, and in [35] by comparing the distinct effects that interlocks to banks might have

on different economies. Evidence presented here supports that (a) there seems to exist

no relationship between network centrality and profitability, and (b) an inverse relation-

ship between network centrality and leverage could be observed in Spain during the time

period. In addition, the social network of directors is also investigated in the light of

[17] to check whether the busyness level of the board of directors (and not the centrality
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Figure 2.6: Nodes are sized by eigenvector centrality. Blue nodes denote directors
holding at least one board position in a bank, 2010
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of the whole board in the network of companies) might have effects on firm performance.

Specifically, here the eigenvector centrality is used as a measure of node importance

in the network, both for directors and for companies. Traditionally, the degree and be-

tweenness definitions of centrality are used in the literature. The former ranks the nodes

according only to its number of direct connections, while the former does this according

only the length of its shortest paths to other nodes. Eigenvector centrality is based on

the idea that the rank of a node is also influenced by the rank of its connections, and

thus that two connections may increase a given node centrality differently, depending

on their own connection. With respect to the definition of the busyness level of a direc-

tor, here it is considered the traditional definition using the number of positions as it

also is the average centrality of the directors in a board as a measure of how busy it is [17].

In order to check for possible effects of network related measures on firm level data, here

the same approach in [17] is used. Specifically, firm fixed-effects models were estimated

using economic profitability or leverage as the dependent variable. Firm specific data

considered here was collected from the SABI (Iberian Balance sheet Analysis System)

database [54], and consists of a measure of economic profitability, defined as

economic profitability =
net income

total assets
(2.2)

and a measure of leverage, which is considered in order to check whether the specific

position of a firm in the network could possibly influence its financing profile, defined

as:

leverage =
equity

total assets
∗ 100 (2.3)

It is important to note that, since the interest is mainly focused on different financing

profiles depending on a firm’s network position, in the following only data from non

financial institutions is considered. This is important in order to being able to analyze

the relationship between interlocks and bank lending. Considering that the bank system

is composed by several of the most central actors in the network, it is of interest here

to check whether proximity to the most central actors (which is translated to centrality,
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given the transitive nature of the eigenvector definition of centrality) improves or not

some performance indicators.

Additionally to the original centrality variables, their rank-transformed versions were

also tested. Since any measure of centrality calculated from graph theory is by defini-

tion determined by the combination of all other nodes in the networks and their own

connections, their absolute values are of no practical meaning (a given level of centrality

is said to be high only in comparison to some other low level). Moreover, this procedure

corrects for the fat tail presented in the distribution of centrality scores. Figures 2.9 to

2.16 present scatter plots and histograms for selected pairs of variables.

As suggested by visual inspection, an inverse relation between leverage and network

centrality rank could be observed, in agreement to previous findings for [53], suggesting

that board linkages might have generated some kind of special conditions for lending

that would not exist if based on economic criteria only. No significant relation between

economic performance and centrality could be observed, regardless of being measured

according to [17] or not. The next two subsections provide more details on both topics.

2.3.1 Relationship between centrality and performance

There is an extense and open debate about the possible impact of network centrality

on firm level performance indicators (for a comprehensive survey, see [9]). In addition

to a measure of economic profitability, here the leverage conditions of the companies

were also target of investigation. Inspired by the finding presented in [36] of a negative

impact of bank connections on performance measures, here it is hypothesized that bank

interlocks could have guaranteed via personal connections special financial conditions

which would not occur under normal circumstances. Finally, this would have reflected

on the leverage conditions of the most central non financial companies.

Although a board linkage may provide the benefit of better information flows between

a borrower and lender, a person on the board of both a bank and a borrowing firm may

face a conflict of interest: the person has a fiduciary duty to both the bank and the firm

and these interests may diverge [35]. A practical concern is that such connections could

lead banks to treat connected firms specially, and, therefore, might expose depositors
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and eventually taxpayers to non justifiable losses. In this sense, [35] presents a trade-off

resulting from board linkages to financial institutions by investigating whether connec-

tions affect lending and borrowing behavior. From the positive side, board linkages may

reduce the costs of information both for lenders and borrowers. According to [57], firms

in Japan connected to their bank were insulated from cash flow shocks that could distort

investment choices. Such advantages of interlocking to banks are also presented in [35],

considering US companies in 1992.

Considering the negative side of the trade-off, bank interlocks may generate pressure

for special treatment of a borrower not normally justifiable on economic terms. In this

direction, other studies suggest that such kinds of conflicts of interests with respect to

lending are important reasons for the fragility of financial systems. For example, [58] ar-

gue that the Asian crisis of 1997 was in great extent due to lenders continuing to provide

credit to not well performing connected borrowers. Similar findings are also reported

in [35] for Russia and Mexico. These are examples of cases where the connections have

been misused.

In order to investigate whether centrality had impact on performance variables for the

specific case of Spain, here the approach presented in [17] was followed by estimat-

ing firm fixed-effects models using performance as the explained variable. Table 2.29

supports the use of year dummies, while 2.30 suggests a better fit is achieved using

rank-transformation of centrality. By considering the rank-transformed models (2) and

(4) of table 2.30, it can be seen that a significant inverse relation between centrality and

leverage can be found. A coefficient of −0.003 relating the rank-transformed centrality

and leverage is to be interpreted as: each step a company goes to the top of the most

central companies reduces its leverage by 0.3%. This finding adds evidence to the list

of situations where interlocks might have been misused presented by [35].

2.3.2 Investigation on the value of busy directors

In a related study, [59] use methods of social network analysis to investigate whether

directors’ social networks provide valuable resources to their firms, find them to be

rewarded for their connectedness, and their connectedness to be positively related to

future firm performance.
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In a slightly more specific context, [17] are interested in whether the presence of busy

directors is correlated with poor performance indicators, due to the lack of time and/or

focus from these directors in working for the boards they sit on. While a great deal of

the literature finds no relation between busyness and performance [53], [17] suggest that

a negative relation emerges when one uses a proper definition of busy. Traditionally,

the busyness of a director has been measured as the number of positions he/she holds.

This is arguably to misrepresent the true value of busyness of a director because the

time-consuming activities can vary wildly from one board to another. As an alternative

to the traditional busyness definition, they suggest that the busyness of a director should

be measured by the degree of embeddedness of this director in the network, and they

define embeddedness as the director’s eigenvector centrality in the network of directors.

Finally, the average level of director-busyness of a company can be assessed by the av-

erage eigenvector centrality of its directors.

The same methodology was applied here to find no evidence of impact of the number

of positions and measures of economic performance, as shown in the first two columns

of table 2.31. This finding indicates that the number of board appointments a director

holds does not seem to influence profitability in Spain, according to previous findings

for Germany [17]. However, an inverse relation between leverage of a company and the

average eigenvector centrality of its directors can be observed, exactly as described in the

last subsection when considering the eigenvector of the company itself. Results shown in

table 2.32. This is in agreement with [17], who argues that the raw number of positions

is not as powerful as social networks methods to find out patterns in interlocking boards

networks.

2.4 Ibex, gender differences, and politicians

This section collects some other findings related to the centrality level of individual di-

rectors. More specifically, it begins by presenting in the first subsection the reach of the

highly capitalized Ibex companies in the network. It can be seen that the number of

directors holding at least one position in an Ibex company represent more than half of

the total directors holding more than one position.
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Then, inspired by the Ley de Igualdad established in 2007, the second subsection deals

with gender equality by investigating both quantitatively and qualitatively women par-

ticipation in the boards of management. Although a reduction in inequality could be

seen since the new regulation, women keep being under represented both in absolute

terms and with respect to centrality measures.

Finally, the third subsection defines a politician as a director who is presented at any of

the previous years national congressmen. Then, it is argued that politicians are much

more engaged in multiple board positions than non politicians, but also that this effect

disappears when only directors holding at least two board positions are considered.

2.4.1 Ibex boards

Table 2.18 presents the share of directors serving on at least one Ibex company both

for the network of all directors and for the network composed only by those holding

two or more board positions (D2). It can be seen that 54.1% of the directors holding

two or more board positions serve on the board of an Ibex company. If this figure is

compared to the total share of positions in Ibex boards of only 16.3%, there is clear ev-

idence that the practice of multiple board memberships is largely centered on the most

highly capitalized companies of the Spanish economy forming the Ibex. Such results are

in agreement with the literature [60].

This observation highlighted above can also be demonstrated by means of a simple

Z-test of difference in proportions. In 2010, considering that there are 433 directors

serving in at least one Ibex company, and that 126 of them hold two or more board

positions, it is observed that around 30% of the directors serving in at least an Ibex

company hold two or more board positions. On the other hand, there are 1721 directors

who do not serve in any Ibex boards, and only 86 of them hold two or more board

positions, yielding a ratio of around 5%. The two-tailed Z-score for the test of difference

in proportions is around 15, which results in a statistically significant difference at 1%

significance level, with respect to the different patterns of board positions accumulations

by directors holding or not at least one position in an Ibex company.
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Figure 2.7 depicts this fact by coloring directors according to the participation in Ibex

boards. In addition, figure 2.8 presents the comparison of the probabilities associated

with the accumulation of a given number of board positions, both for directors serving

in at least one Ibex company (solid blue) and for directors not serving the board of any

Ibex company (dashed red).

Table 2.18: Share of directors serving on at least one Ibex company both for the
network of all directors and for the network composed only by those holding two or
more board positions (D2). It can be seen that 54.1% of the directors holding two or
more board positions serve on the board of an Ibex company. If this figure is compared
to the total share of positions in Ibex boards of only 16.3%, there is clear evidence
that the practice of multiple board memberships is largely centered on the most highly

capitalized companies of the Spanish economy forming the Ibex.

Year Other (all) Ibex (all) Share (all) Other (2 bp) Ibex (2 bp) Share (2 bp)

2004 1823 356 16.34% 112 132 54.10%
2005 1797 393 17.95% 109 147 57.42%
2006 1849 406 18.00% 105 149 58.66%
2007 1884 361 16.08% 104 147 58.57%
2008 1891 424 18.32% 104 138 57.02%
2009 1805 419 18.84% 93 126 57.53%
2010 1721 433 20.10% 86 126 59.43%

2.4.2 Gender Differences

This section investigates differences in gender participation on company boards, specially

in the light of the new regulation established in 2007 to promote gender equality. The

Article 75 of the Constitutional Act 3/2007 of 22 March for effective equality between

women and men (”Ley Orgánica 3/2007, de 22 de marzo, para la igualdad efectiva de

mujeres y hombres”) it is stated that companies were obliged to include in their boards

a number of women which allows for a balanced presence of men and women (”incluir

en su Consejo de Administración un número de mujeres que permita alcanzar una pres-

encia equilibrada de mujeres y hombres”).

It was found that, although there still nothing like a balanced presence, women par-

ticipation increased during the time period, with a special help from a step in 2008.

Moreover, it was also found that a great deal of this improvement in gender equality

was achieved by the highly capitalized Ibex companies. It could also be seen a signifi-

cant increase in average centrality when comparing the periods before and after the Act,

despite the absolute increase in the number of women in the boards. These findings
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Figure 2.7: Nodes are sized by eigenvector centrality. Blue nodes indicate directors
holding at least one board position in an Ibex company, 2010
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Figure 2.8: Comparison of the probabilities associated with the accumulation of a
given number of board positions in 2010, both for directors serving in at least one
Ibex company (solid blue) and for directors not serving the board of any Ibex company

(dashed red).

suggest a positive effect of the Act with regard to its purposes. On the other hand, it

is still clear that women are under represented in the networks (if one assumes a bal-

anced presence to mean equal proportions), and that they have average centralities still

significantly smaller than men.

Table 2.19: Consistent increasing participation of women in the network, from 8.7% of
the directors in 2004 to 12.3% in 2010. However, table shows that it is still more unlikely
to find women than men in the Ibex boards, fact shown by the negative (although
increasing) log odd likelihood ratio between women serving in Ibex companies and

serving in companies in general.

Year Men Women Women Share

2004 2312 221 8.7%
2005 2343 228 8.9%
2006 2347 268 10.2%
2007 2340 275 10.5%
2008 2366 303 11.4%
2009 2225 310 12.2%
2010 2147 301 12.3%
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Table 2.19 clearly shows a consistent increasing participation of women in the network,

from 8.7% of the directors in 2004 to 12.3% in 2010. However, table 2.20 shows that

it is still more unlikely to find women than men in the Ibex boards, fact shown by the

negative (although increasing) log odd likelihood ratio between women serving in Ibex

companies and serving in companies in general. Both tables support the idea that the

participation of women in company boards increased during the entire period. As shown

in table 2.20, there is a step in women participation in Ibex companies from 5.6% in

2007 (the last year before the Act) to 10.7% in 2010 (three years after the Act).

Table 2.20: Women participation increased during the time period, with a special help
from a step in 2008. Moreover, it was also found that a great deal of this improvement
in gender equality was achieved by the highly capitalized Ibex companies. It could also
be seen a significant increase in average centrality when comparing the periods before
and after the Act, despite the absolute increase in the number of women in the boards.

Year p(W | I) p(W) p(I | W) p(I) Log odd ratio

2004 3.94% 8.72% 7.24% 16.03% -0.345
2005 3.60% 8.87% 7.02% 17.27% -0.391
2006 5.18% 10.25% 8.96% 17.71% -0.296
2007 5.66% 10.52% 8.73% 16.21% -0.269
2008 8.40% 11.35% 13.53% 18.28% -0.131
2009 10.34% 12.23% 15.81% 18.70% -0.073
2010 10.70% 12.30% 17.28% 19.85% -0.060

In order to analyze structural changes brought by the Act, the sample was divided

in two periods, namely before the Act (from 2004 to 2007) and after the Act (from

2008 to 2010). Table 2.21 shows that the relative average centrality of women with

respect to men (that is, average centrality of women divided by average centrality of

men) has increased. To support the structural change effect, table 2.21 also presents the

test statistics and the p-value for the Mann-Whitney test comparing the distribution of

centrality values between men and women. It is worthwhile to note that in the period

before the Act, the null hypothesis that both samples came from the same distribution

(with same parameters) can be rejected with 5% of significance, while this is no longer

true for the period after the Act.

Table 2.21: In the period before the Act, the null hypothesis that both samples
came from the same distribution (with same parameters) can be rejected with 5% of

significance, while this is no longer true for the period after the Act.

year rel. avg. centrality M/W U p-value

before Act 0.445 18090 0.023
after Act 0.531 13706 0.158



Chapter 2. Interlocking Directorates in Spain: Evidence from a Comprehensive Data
Set 84

With respect to the patterns of accumulation of multiple board positions, gender inequal-

ities are also found. Considering the year of 2010, there are 221 out of 2154 directors

holding at least two board positions, yielding a ratio of 10.26%. If one looks only for

male directors, there are 204 out of 2154 directors holding at least two board positions,

yielding a ratio of 10.88%. For women, the ratio is significatively lower (Z-score of 1.8472

for a test of proportions, yielding a p-value of 0.032), only 6.09% because only 17 out of

279 female directors hold at least two board positions.

2.4.3 Political affiliation

It was possible to identify politicians among the directors by matching their names with

the list provided by the Spanish National Congress available at http://www.congresso.

es. More specifically, at the home page of the website there is a section called Diputados,

which provides a link (Listado completo de la composición de la Cámara) to the full list

of Congress members from 1977 to 2011. Directors are then considered Politicians if

they were listed at least once in this full list of congress members, regardless of the year

they served the Congress.

Table 2.22: Politician participation.

Year Not Politician Politician Politician Share

2004 2481 52 2.1%
2005 2516 55 2.1%
2006 2558 57 2.2%
2007 2555 60 2.3%
2008 2603 66 2.5%
2009 2482 53 2.1%
2010 2385 63 2.6%

Table 2.22 presents the number of politicians which could be identified among the di-

rectors, and their respective participation share in the network. Table 2.23 presents

decreasing (though positive) log likelihood ratios between the chances of finding a politi-

cian in he boards of Ibex companies and in all boards, indicating that the participation

of politicians is more concentrated in the most capitalized companies.

In the exact opposite way of the findings regarding women participation from the previ-

ous subsection, if all directors are considered (and not only those in D2 holding at least

two board positions), there is clear evidence that directors who had served at least once

in the national congress are characterized by a 50% higher centrality than directors who

http://www.congresso.es
http://www.congresso.es
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Table 2.23: Politicians participation in Ibex companies.

Year p(P | I) p(P) p(I | P) p(I) Log odd ratio

2004 3.45% 2.05% 26.92% 16.03% 0.225
2005 4.28% 2.14% 34.55% 17.27% 0.301
2006 3.89% 2.18% 31.58% 17.71% 0.251
2007 3.07% 2.29% 21.67% 16.21% 0.126
2008 3.48% 2.47% 25.76% 18.28% 0.149
2009 2.74% 2.09% 24.53% 18.70% 0.118
2010 3.50% 2.57% 26.98% 19.85% 0.133

had never. However, when only those directors in D2 are considered, the centralities of

politicians and non politicians can no longer be told apart. Relative average centralities

and the results of Mann-Whitney test comparing the distribution of centrality between

politicians and non politicians are presented in table 2.24. These results suggest that

being a current or former congressman definitely helps directors to move from one to

two positions only, but has no effects on the accumulation of further positions.

Table 2.24: Relative average centralities and the results of Mann-Whitney test com-
paring the distribution of centrality between politicians and non politicians. This re-
sults suggest that being a current or former congressman definitely help directors to
move from one to two positions only, but has no effects on the accumulation of further

positions.

rel. avg. centrality P/N U p-value

all directors 1.553 2367366 0.000
directors in D2 0.942 37480 0.796

With respect to the patterns of accumulation of multiple board positions, it can be seen

that being a politician increases the chances of assuming two or more board positions,

opposite to the results concerning gender differences. Considering the year of 2010, there

are 221 out of 2154 directors holding at least two board positions, yielding a ratio of

10.26%. If one looks only for directors who had been a politician at least once in the

past, there are 8 out of 53 directors holding at least two board positions, yielding a ratio

of 15.09%. This is substantially higher than for women (only 6.09%), indicating that

politicians are more likely to assume two or more board positions than women.

Conclusion

In the first section of this chapter it was shown that all stylized facts described in the

first chapter (such as small worldness, the existence of a large connected component, and
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rich club phenomena) still hold in the Spanish specific case, considering a wider time

spam from 2004 to 2010. It was also shown that the core persists in time regardless of

personal turnover, and that the accumulation patterns of board positions by individuals

observed in empirical data cannot be explained by a simple random binomial procedure.

By using firm specific data on profitability and leverage, the third section highlights

that no significant relation between network centrality and profitability could be ob-

served, and that a negative significant relation existed between centrality and leverage,

indicating that interlocks might have been misused to guarantee special lending con-

ditions not justifiable only by economic circumstances, and that a high lending ratio

required adjustment in the corporate governance structure.

The fourth section depicted the highly capitalized Ibex companies as prominent ac-

tors of the network, the effective but not sufficient impact of a new gender equality

regulation, and finally the advantage politicians have to jump from one to two board

positions.
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Appendix B. Interlocking Directorates in Spain: Evidence

from a Comprehensive Data Set

Table 2.25: Most important directors (according to 2010 figures)

Name Companies

DON ISIDRO FAIN CASAS CAIXABANK, S.A.

ABERTIS INFRAESTRUCTURAS, S.A.

TELEFONICA, S.A.

CAJA DE AHORROS Y PENSIONES DE

BARCELONA

REPSOL, S.A

DON JUAN MARA NIN GNOVA CAIXABANK, S.A.

GAS NATURAL SDG, S.A.

REPSOL, S.A

DON JAVIER ECHENIQUE LANDIRIBAR ENCE ENERGIA Y CELULOSA, S.A.

REPSOL, S.A

BANCO DE SABADELL, S.A.

ACS, ACTIVIDADES DE CONSTRUCCION Y SER-

VICIOS, S.A.

DON LUIS FERNANDO DEL RIVERO

ASENSIO

SACYR VALLEHERMOSO, S.A.

TESTA INMUEBLES EN RENTA, S.A.

REPSOL, S.A

DON JOSE MANUEL LOUREDA MANTIN SACYR VALLEHERMOSO, S.A.

TESTA INMUEBLES EN RENTA, S.A.

REPSOL, S.A

DON PABLO VALLBONA VADELL ABERTIS INFRAESTRUCTURAS, S.A.

ACS, ACTIVIDADES DE CONSTRUCCION Y SER-

VICIOS, S.A.

BANCA MARCH, S.A.

CORPORACION FINANCIERA ALBA, S.A.

JUAN ABELLO GALLO SACYR VALLEHERMOSO, S.A.

COMPANIA VINICOLA DEL NORTE DE ESPANA,

S.A.

REPSOL, S.A

Continued on next page
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Table 2.25 – Continued from previous page

Name Companies

DON JUAN ROSELL LASTORTRAS CAIXABANK, S.A.

GAS NATURAL SDG, S.A.

DON SALVADOR GABARR SERRA CAIXABANK, S.A.

CAJA DE AHORROS Y PENSIONES DE

BARCELONA

GAS NATURAL SDG, S.A.

DON LEOPOLDO RODS CASTA ABERTIS INFRAESTRUCTURAS, S.A.

CAJA DE AHORROS Y PENSIONES DE

BARCELONA

CAIXABANK, S.A.

DON LUIS SUAREZ DE LEZO MANTILLA GAS NATURAL SDG, S.A.

REPSOL, S.A

DON ANTONIO BRUFAU NIUBO GAS NATURAL SDG, S.A.

REPSOL, S.A

DON JUAN MARCH DE LA LASTRA ACS, ACTIVIDADES DE CONSTRUCCION Y SER-

VICIOS, S.A.

BANCA MARCH, S.A.

INDRA SISTEMAS, S.A.

CORPORACION FINANCIERA ALBA, S.A.

DON DEMETRIO CARCELLER ARCE COMPANIA LOGISTICA DE HIDROCARBUROS

CLH, S.A.

EBRO FOODS, S.A.

SOCIEDAD ANONIMA DAMM

SACYR VALLEHERMOSO, S.A.

GAS NATURAL SDG, S.A.

DON ALAIN MINC CAIXABANK, S.A.

PROMOTORA DE INFORMACIONES, S.A.

DON LUIS CARLOS CROISSIER BATISTA TESTA INMUEBLES EN RENTA, S.A.

ADOLFO DOMINGUEZ, S.A.

REPSOL, S.A

DON SANTOS MARTINEZ CONDE

GUTIERREZ BARQUIN

ACERINOX, S.A.

Continued on next page
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Table 2.25 – Continued from previous page

Name Companies

ACS, ACTIVIDADES DE CONSTRUCCION Y SER-

VICIOS, S.A.

BANCA MARCH, S.A.

CORPORACION FINANCIERA ALBA, S.A.

DON ANGEL DURANDEZ ADEVA MEDIASET ESPANA COMUNICACION, S.A.

REPSOL, S.A

DON GONZALO GORTZAR ROTAECHE CAIXABANK, S.A.

VIDACAIXA, S.A. DE SEGUROS Y REASEGUROS

DON DAVID K. P. LI CAIXABANK, S.A.

TELEFONICA, S.A.

DON FRANCISCO SERVANDO VERDU

PONS

ACS, ACTIVIDADES DE CONSTRUCCION Y SER-

VICIOS, S.A.

BANCA MARCH, S.A.

CORPORACION FINANCIERA ALBA, S.A.

DON JORGE MERCADER MIR CAIXABANK, S.A.

MIQUEL Y COSTAS & MIQUEL, S.A.

DON MIQUEL NOGUER PLANAS CAIXABANK, S.A.

CAJA DE AHORROS Y PENSIONES DE

BARCELONA

DOA MARIA DOLORS LLOBET MARIA CAIXABANK, S.A.

CAJA DE AHORROS Y PENSIONES DE

BARCELONA

DON JAVIER GOD MUNTAOLA CAIXABANK, S.A.

CAJA DE AHORROS Y PENSIONES DE

BARCELONA

DOA IMMACULADA JUAN FRANCH CAIXABANK, S.A.

CAJA DE AHORROS Y PENSIONES DE

BARCELONA

DON FLORENTINO PREZ RODRGUEZ ABERTIS INFRAESTRUCTURAS, S.A.

ACS, ACTIVIDADES DE CONSTRUCCION Y SER-

VICIOS, S.A.

DON CARMELO DE LAS MORENAS

LOPEZ

FAES FARMA, S.A.

REPSOL, S.A

Continued on next page
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Table 2.25 – Continued from previous page

Name Companies

DON JAVIER MONZON DE CACERES ACS, ACTIVIDADES DE CONSTRUCCION Y SER-

VICIOS, S.A.

INDRA SISTEMAS, S.A.

DON PEDRO JOSE LOPEZ JIMENEZ ENCE ENERGIA Y CELULOSA, S.A.

ACS, ACTIVIDADES DE CONSTRUCCION Y SER-

VICIOS, S.A.

Table 2.26: Most important companies (according to 2010 figures)

Company Sector

REPSOL, S.A ENERGA Y AGUA/PETRLEO

ACS, ACTIVIDADES DE CONSTRUC-

CION Y SERVICIOS, S.A.

CONSTRUCCIN

SACYR VALLEHERMOSO, S.A. CONSTRUCCIN

CORPORACION FINANCIERA ALBA,

S.A.

FINANCIACIN Y SEGUROS/SOCIEDADES DE

CARTERA

PROMOTORA DE INFORMACIONES,

S.A.

MEDIOS DE COMUNICACIN

EBRO FOODS, S.A. OTRAS INDUST. DE TRANSF./ALIMENT. BE-

BIDAS Y TABACO

ENCE ENERGIA Y CELULOSA, S.A. OTRAS INDUST. DE TRANSF./PAPEL Y ARTES

GRFICAS

ABERTIS INFRAESTRUCTURAS, S.A. TRANSPORTES Y COMUNICACIONES/A-

PARCAMIENTO Y AUTOP.

INDRA SISTEMAS, S.A. NUEVAS TECNOLOGAS

GAS NATURAL SDG, S.A. ENERGA Y AGUA/AGUA Y GAS

FERROVIAL, S.A. CONSTRUCCIN

COMPAIA LOGISTICA DE HIDROCAR-

BUROS CLH, S.A.

TRANSPORTES Y COMUNICACIONES/TRANS-

PORTES

CAIXABANK, S.A. FINANCIACIN Y SEGUROS/BANCOS

BANCA MARCH, S.A. FINANCIACIN Y SEGUROS/BANCOS

GAMESA CORPORACION TECNOLOG-

ICA, S.A.

OTRAS INDUST. DE TRANSF./OTRAS INDUST.

MANUFACTUR.

DINAMIA CAPITAL PRIVADO, S.A., SCR FINANCIACIN Y SEGUROS/SOCIEDADES DE

CARTERA

BANCO DE SABADELL, S.A. FINANCIACIN Y SEGUROS/BANCOS

Continued on next page
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Table 2.26 – Continued from previous page

Company Sector

CARTERA INDUSTRIAL REA, S.A. FINANCIACIN Y SEGUROS/SOCIEDADES DE

CARTERA

TESTA INMUEBLES EN RENTA, S.A. INMOBILIARIAS

ADOLFO DOMINGUEZ, S.A. OTRAS INDUST. DE TRANSF./OTRAS INDUST.

MANUFACTUR.

COMPAIA VINICOLA DEL NORTE DE

ESPAA, S.A.

OTRAS INDUST. DE TRANSF./ALIMENT. BE-

BIDAS Y TABACO

CAJA DE AHORROS Y PENSIONES DE

BARCELONA

FINANCIACIN Y SEGUROS/CAJAS

VOCENTO, S.A. MEDIOS DE COMUNICACIN

BANCO GALLEGO, S.A. FINANCIACIN Y SEGUROS/BANCOS

TELEFONICA, S.A. TRANSPORTES Y COMUNICACIONES/COMUNI-

CACIONES

BANCO DE VALENCIA, S.A. FINANCIACIN Y SEGUROS/BANCOS

MEDIASET ESPAA COMUNICACION,

S.A.

MEDIOS DE COMUNICACIN

SOCIEDAD ANONIMA DAMM OTRAS INDUST. DE TRANSF./ALIMENT. BE-

BIDAS Y TABACO

IBERIA LINEAS AEREAS DE ESPAA, S.A. TRANSPORTES Y COMUNICACIONES/TRANS-

PORTES

PESCANOVA, S.A. OTRAS INDUST. DE TRANSF./ALIMENT. BE-

BIDAS Y TABACO
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Figure 2.9: Scatter plot and histograms for profitability and centrality
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Figure 2.10: Scatter plot and histograms for profitability and rank-transformed cen-
trality
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Figure 2.11: Scatter plot and histograms for profitability and busyness
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Figure 2.12: Scatter plot and histograms for profitability and rank business
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Figure 2.13: Scatter plot and histograms for leverage and busyness
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Figure 2.14: Scatter plot and histograms for leverage and centrality
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Figure 2.15: Scatter plot and histograms for leverage and rank-busyness
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Figure 2.16: Scatter plot and histograms for leverage and rank-centrality



Chapter 3

Investigation on the Simulation

Horizon Requirement for

Estimation of Agent Based

Models

Introduction

Agent Based Modeling (ABM) is a modern methodology for modeling systems com-

posed of several agents who interact with each other independently. In complex systems

as modern economies, this interaction may generate aggregate behavior that cannot be

derived only by means of the study of the individual [61]. This characteristic is present

in complex systems and is called emergent properties, i.e., there are observed properties

resulting from the interaction between agents that cannot be studied simply by summing

up individual behavior or by means of a representative agent.

It can be said that ABM is the third scientific method after deduction and induction.

In this sense, several hypotheses are formulated on the behavior of agents and on their

forms of organization, precisely like deduction [62]. However, the main objective is not

to prove general theorems, but to generate artificial data for evaluation by means of

induction. Agent-based models have been widely applied in several scientific areas in

106



Chapter 3. Investigation on the Simulation Horizon Requirement for Estimation of
Agent Based Models 107

order to study problems such as supply chains, consumer markets, and the Insurance

industry in economics; transportation and electric power markets in engineering, popu-

lation dynamics, and ecological networks in biology.

Although some earlier uses can be found, according to [63] it was only in the late

nineties that these microscopic (agent-based) models became popular in both economics

and physics literature. Within economics, the ABM methodology is mostly applied in

the field of finance. [64] underscores several reasons that make financial markets rich en-

vironments for agent based modeling, such as the persisting debate on market efficiency

and the existence of some mysterious puzzles regarding financial time series.

Such puzzles are the so-called stylized facts: some statistical properties that appear

consistently in a large variety of financial time series, regardless if one looks at data

from different markets (e.g., shares, exchange) or different national economies. As an

illustration, [63] suggests that, recently, the majority of the researches in the field agree

that the cumulative distribution of the returns follows a power law with exponent around

3. This is not necessarily in agreement with the Efficient Market Hypothesis literature,

seen that it postulates that prices should fluctuate randomly, and hence not following

any kind of scaling rule. There is an extensive list of other stylized facts presented by

[65] which are also not accounted for by the Efficient Market Hypothesis. The next

section of this investigation details a selected group of them.

According to [63], the agent based model ability to reproduce the stylized facts is its

principal achievement, and also its source of scientific validation. In fact, these authors

argue that some of these models can reproduce several stylized facts at the same time

to an impressive quantitative extent. According to [4], normally these models have their

parameters calibrated manually in order to match at least in order of magnitude a se-

lected number summary of statistics, and thus being considered as validated. Although

such procedure can distinguish the bad from the good models, the same authors points

out the need of a less informal method for goodness-of-fit comparisons than manual

calibration when the aim is to distinguish between the good and the very good models.

In this sense, one is not concerned with the calibration of the parameters of a given

model, but with the precise estimation of them instead. There are different ways the
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optimal set of parameters of a model can be found, but here the Method of Simulated

Moments (MSM) is considered. The idea is that the distance between some empirical

reference and synthetic time series generated by a run of a model using a given set of pa-

rameters can be measured, at least with respect to a previously defined set of summary

statistics (or moments) of interest. Despite being a natural way of thinking about the

degree of goodness-of-fit of a model, the MSM is specially helpful when exact solutions

are too complicated to obtain analytically [4].

Considering this broad perspective, that is, the estimation of agent based models and

the comparison between different models in terms of goodness of fit, this investigation

is concerned with two problems. First, it is considered that the accurate estimation

of Agent Based Models (ABM) by the method of simulated moments is possibly af-

fected by the simulation horizon one allows the model to run due to sample variability.

Then, the first objective of this essay is to investigate the effects of this kind of vari-

ability on the distribution of the values of the objective function subject to optimization.

As a working hypothesis, the following statement is considered: if the simulation horizon

is not sufficiently large, the resulting distribution may present frequent extreme points,

which can lead to inaccurate results when one tries to compare different models. In

an attempt to answer to this question, a model contest is carried out using different

simulation horizons to assess the difference in goodness of fit when inactive traders are

introduced in one of the Structural Stochastic Volatility models proposed by [5].

Using this same experiment, a second question is considered in this investigation con-

cerning the improvements in goodness of fit brought by the inclusion of these inactive

traders in the Structural Stochastic Volatility (SSV) model. The idea is to assess which

model is better at reproducing some of the stylized facts. This answers the second ques-

tion. In addition, to answer the first question, it is checked if this difference is influenced

somehow by the simulation horizon one allows the models to run in order to compute

the moments of the generated time series.

The rest of this investigation is organized as follows. The first section presents some

selected stylized facts which will be used in the estimation of the models. The sec-

ond section of the investigation briefly provides an overview of the Agent Based Model
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(ABM) methodology, which is claimed to take into account the so-called stylized facts

to a great extent, and, thus, could be viewed as an alternative to the Efficient Market

Hypothesis theoretical background [66]. In doing so, selected recent empirical findings

are highlighted, and a brief taxonomy for ABMs is presented. Then, in the next section

specific ABMs are discussed in greater detail while focusing on their ability to explain

some of the stylized facts. The last two sections section deal explicitly with the esti-

mation of ABMs by the method of simulated moments and present an investigation on

the simulation horizon requirements by means of an example of model contest assessing

the difference in goodness of fit of allowing inactive traders in one of the Structural

Stochastic Volatility models proposed by [5].

3.1 Stylized Facts

Apart from the theoretical critiques developed by [67], the Efficient Market Hypothesis

(EMH) seems to be misaligned with some empirical features of financial markets. This

debate is presented by [66] by portraying how various lines of research refer to these

empirical findings, each in its own different way. On the EMH side, these findings were

referred to as anomalies, that is, there should be at least a few strange empirical results

in disagreement with the established theoretical foundation. On the other hand, recent

studies have referred to these empirical results as stylized facts, meaning that they can

be found quite regularly in financial markets and, thus, they deserve proper theoretical

explanation.

An extensive list of these stylized facts is presented by [65] concerning several data

formats (such as returns and trading volume) and frequencies (ranging from tick-by-tick

order book data to annual seasonality). Here, attention is only focused on some of those

data concerning daily price returns, namely the absence of autocorrelation in raw re-

turns, fat tails of absolute returns, and volatility clustering. According to [4] these are

the stylized facts that have received more attention in the literature.

The absence of autocorrelation in raw returns has never been referred to as an anomaly,

because it is an empirical finding in total agreement with the EMH theoretical back-

ground. It is related to the martingale property [68], which states that markets behave
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similar to a random walk. According to [66], this is the EMH’s most important empir-

ical finding, but the author also points out that a lot of attention was paid to it, thus

neglecting in consequence other relevant stylized facts.

With regard to the tails of returns distributions, it is expected by the EMH that they

would behave normally due to the arrival of purely random information. However, even

old empirical findings [68] suggested that the normal distribution is not well suited to

financial returns, because it has probability mass more concentrated on its mean and

extreme values than is expected in a normally distributed process.

Since it is seen that kurtosis is not well suited for evaluating such a statistical prop-

erty, it is then common to deal with the Hill estimator of tail index α, calculated as

follows: first, absolute daily returns are sorted in a descending order so that a thresh-

old value which defines a tail vp can be calculated as the correspondent first p (here

p = 5%) returns, and m is defined as the number of returns labeled as belonging to the

tail. Finally, the Hill estimator is given by the equation 3.1.

α =
m∑m

k=1[ln(vk)− ln(vp)]
(3.1)

Finally, volatility clustering deals with the fact that directions of returns are hard to

predict, but not their magnitude. There seem to exist alternate moments of financial

fury and relaxation, printing clusters of high and low volatility on empirical data that

are not at all accounted for by the EMH background. As pointed out by [66], even

though a great deal of research on econometrics is focused on modeling this fact (the

ARCH methodology), very little research has been done to explain it.

3.2 Taxonomy

According to an extensive survey conducted on the topic dealt with by [65], during the

1990s, the first attempts were made to explain some observed regularities in financial

data by means of ABM. The main concern of these early works was to artificially re-

produce some of the so-called stylized facts observed in real financial data. Hence, the

objective of the authors just mentioned was to simulate and calibrate parameters of an
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artificial financial market by ABM, and then to apply standard econometric techniques

to evaluate how much of the stylized facts (both quantitatively and qualitatively) could

be reproduced by their artificial generated data.

Even though these early works share the goal of matching stylized facts, their ABM

formulations may vary dramatically. For this reason, taxonomy was developed by [65]

in an attempt to classify recent work on ABM with regard to specific aspects, namely

agent heterogeneity, learning, and interactions.

With regard to heterogeneity, agents can basically be divided into two groups: N-types

and autonomous agents. In the former, all possible types of behavior are pre-defined in

some sense by the designer; whereas in the latter, new strategies (that is, agent types)

can emerge autonomously. We can consider the model by [6] as an example of N-type

design, in which agents can be fundamentalists (that is, their demands respond pro-

portionally to the current deviation from fundamental price) or chartists (who try to

extrapolate the last trend observed). Chartists’ strategy is also determined by a senti-

ment index (pessimism or optimism) that determines whether chartists believe that the

last trend observed will be maintained or reversed. On the other hand, we can consider

the Santa Fe Artificial Stock Market [69] as an example of autonomous agent design.

In this context, agents are allowed to autonomously search for profitable strategies that

were usually not pre-defined by the designer by means of genetic search algorithms.

With regard to learning, [66] points to a branch of literature called Adaptive Belief

Systems (ABS), which, unlike some of the other less flexible models, allows agents to

dynamically switch between different strategies. With regard to the N-type models, this

feature is most commonly introduced by means of two approaches, namely transition

probabilities and discrete choice. Following the transition probability approach, a ma-

jority index is defined as representing how much one group dominates (or is dominated

by) the other. Each agent switches from one group to the other according to time-

varying transition probabilities πfct and πcft , which are functions of the current state of

the system, which is generally defined here as at.

According to [5], it can be demonstrated under some assumptions, that at the macro-

scopic level, population shares are depicted by
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nft = nft−1 + nct−1π
cf
t−1(at−1)− nft−1π

fc
t−1(at−1) (3.2a)

nct = 1− nft (3.2b)

whereas the transition probabilities are given by

πcft−1(at−1) = min(1, veat−1) (3.3a)

πfct−1(at−1) = min(1, ve−at−1) (3.3b)

where v can be viewed as a flexibility parameter.

On the other hand, there is the discrete-choice approach proposed by [70], in which the

adjustment happens directly on the population shares (and not on its rate of change)

according to the following equation

nf,ct =
eβa

f,c
t−1

eβa
f
t−1 + eβa

c
t−1

(3.4)

where β is the intensity of choice, and the state of the system is allowed to be different for

each group. The way the state of the system influences agent choice significantly varies in

literature. As examples, one can consider the specification of a herding at = αn(nft −nct)

or a misalignment component at = αp(pt − p∗) where p∗ is the fundamental price. This

will be pursued in greater detail in the next section.

Finally, the way agents interact defines the structure of the artificial financial mar-

ket and its price determination. When considering N-type models, it is common to sum

up demand of both groups and to assume a market maker who holds a sufficiently large

inventory to supply any excess of demand and to absorb any excess of supply. Then,

this market maker adjusts the price in the next period to reflect this excess demand or

supply. However, as stated by [71], this is not a very realistic assumption in the way that

no actual market clearing is taking place. In addition, a true market clearing mechanism

would be easier to be implemented in an autonomous agent design by means of direct

numerical clearing.
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3.3 Agent Based Model Implementation

In the remaining part of the section, two specific agent-based models are described in

greater detail, namely the trading inactivity model proposed by [72] and the structural

stochastic volatility model proposed by [5]. The idea is to present some practical issues

concerning the development of an agent-based model, and also to introduce the task of

estimating its parameters that is the objective of the next section.

3.3.1 Trading Inactivity Model

In an attempt to use simple agent based models to illustrate the potential effects of

regulatory policies on financial markets, [72] introduces a modification on the chartists-

fundamentalists traditional scheme by allowing agents also to be absent from markets,

that is, they can be inactive. This innovation may imprint models with more reality and

also is important for using agent based models in the analyses of regulatory and taxing

policies. This section outlines this model by focusing on this new device of trading in-

activity and also on the model’s power to reproduce some of the stylized facts.

As it is common practice, the demands of chartists and fundamentalists are respectively

given by

DC
t = b(pt − pt−1) + βt (3.5a)

DF
t = c(Ft − pt) + γt (3.5b)

where D stands for demand, the superscripts C and F represents chartists and funda-

mentalists respectively, t is the time unit, p is the log of price, F is the log of fundamental

price, b and c are positive reaction parameters for chartists and fundamentalists respec-

tively, β and γ are IID random normal process with zero mean and σβ and σγ are

standard deviations that capture intra-group heterogeneity for chartists and fundamen-

talists, respectively.

In this context, price formation is given by the following price impact function
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pt+1 = pt + a(WC
t D

C
t +WF

t D
F
t ) + αt (3.6)

where W denote population shares, a is a positive price adjustment coefficient and α is

an IID random normal process with zero mean and standard deviation σα.

The determination of W , that is, the choice between the three available strategies,

depends on past performance and is given by the following equations in the spirit of the

discrete choice approach:

ACt = (ept − ept−1)DC
t−2 + dACt−1 − tax(ept − ept−1)DC

t−2 (3.7a)

AFt = (ept − ept−1)DF
t−2 + dAFt−1 − tax(ept − ept−1)DF

t−2 (3.7b)

AOt = 0 (3.7c)

where the superscript O stands for inactivity, A denotes each strategy attractiveness

and is composed by the sum of a short run capital gain term and an accumulated profits

term which is weighted by the memory parameter d. tax is a percentage tax applied

both when buying and selling the asset. Finally, defining β as the so called intensity of

choice, population shares are represented by

WC
t =

eβA
C
t

eβA
C
t + eβA

F
t + 1

(3.8a)

WF
t =

eβA
F
t

eβA
C
t + eβA

F
t + 1

(3.8b)

WC
t =

1

eβA
C
t + eβA

F
t + 1

(3.8c)

Even though the author does not carry on a systematic estimation procedure, a set of

benchmark input parameters are presented and thus the calibrated model is claimed to

reproduce some of the stylized facts (mainly volatility clustering and fat tails) when no

tax is applied. Figure 3.1 presents a single simulation of the model with the following

set of input parameters presented by the author (a = 1, b = 0.04, c = 0.04, d = 0.975,

β = 300, σα = 0.01, σβ = 0.05, and σγ = 0.01).
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Figure 3.1: Upper panel shows the log of price, middle panel its percentage returns,
and lower panel the shares of fundamentalists (gray), chartists (black) and inactive

(white) traders.

3.3.2 Structural Stochastic Volatility Model

With regard to agent design, this is a two-group model where agents can be fundamen-

talists or chartists. The main difference is that fundamentalists respond to deviations

from fundamental price, and chartists extrapolate the returns they just observed in the

previous period. Thus, their demand functions df,ct are given by

dft = φ(p∗ − pt) + εft εft ∼ N(0, σ2
f ), φ > 0 (3.9a)

dct = χ(pt − pt−1) + εct εct ∼ N(0, σ2
c ), χ ≥ 0 (3.9b)

where the superscripts f and c denote agent affiliation (fundamentalists and chartists,

respectively); the subscript t represents time unit; p is the log of the price; p∗ is the

log of the (fixed) fundamental price; εf,c are group-specific random terms (with zero

mean and σf,c standard deviations) that account for intra-group heterogeneity; φ corre-

sponds to the responsiveness of the fundamentalists to the deviation from fundamental



Chapter 3. Investigation on the Simulation Horizon Requirement for Estimation of
Agent Based Models 116

price; and χ corresponds to the responsiveness of the chartists to the last trend observed.

However, this model also accounts for learning, in the sense that agents can dynamically

change their minds and move to the other group. Therefore, the shares of each group

in the total population are allowed to vary over time. Considering that nf,ct denotes

their respective population shares, total excess demand can be written as nft d
f
t + nctd

c
t .

Seen that this equation may not balance, a market maker is assumed to hold a suffi-

ciently large inventory for supplying any excess of demand and for absorbing any excess

of supply. This is done by adjusting the price in the next period by a fixed coeffi-

cient that is inversely related to market liquidity. Considering these specifications, price

determination at each time unit is given by

Pt+1 = Pt + µ[nft φ(p∗ − pt) + nctχ(pt − pt−1) + εt] (3.10)

where

εt ∼ N(0, σ2
t ), σ2

t = (nft )2σ2
c + (nct)

2σ2
c (3.11)

summarizes what the authors coined as Stochastic Structural Volatility (SSV), and can

be viewed as a structural modeling approach to time-varying variance.

What remains to be explained is the learning mechanism that yields the dynamics of

the population shares. Even though the authors presented two different technical ap-

proaches for this, namely transition probabilities and discrete choice, only the latter will

be considered here, given its best performance in a comparative study conducted by

the same authors [4]. It is worth beginning with the definition of a switching index st,

which attempts to measure the relative attractiveness of the fundamentalist’s strategy

in comparison to that of the chartist, given by

st = α0 + αxxt + αd(pt − p∗)2 (3.12)

where α0 is a predisposition parameter to switch to fundamentalism; αxxt captures the

idea of herding behavior; xt is equal to nft −nct in order to capture the relative presence
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of the two groups; and αd can be understood as a measure of the influence of price

misalignment (that is, the larger the gap, the higher the attractiveness of switching to

fundamentalism). Thus, in the spirit of the discrete-choice approach, the shares of the

total population in each group can be written as nft = 1/[1 + e−βst−1 ] and nct = 1− nft ,

where β is the intensity of choice. Figure 3.2 compares outputs from a single run of the

model with returns of S&P500 as a benchmark.

Figure 3.2: T = 6750 observations of (A) log of price, (B) share of fundamentalists,
and (C) returns from a simple run of the model and (D) daily returns from S&P500
from January 1980 to March 2007. Inputs to the model are as follows: φ = 0.0728,
χ = 0.0896, µ = 0.01, α0 = −0.327, αx = 1.815, αd = 9.6511, σf = 1.0557, σc = 2.9526,

p∗ = 0, and β = 1.

3.3.3 Introducing Inactivity to SSV Models

This section described the exact same model from last section, but augmented to allow

agents to be absent (inactive) from the market. Hence, it is now a three-group model

(fundamentalists, chartists, and inactive), with demand functions df,c,it given by

dft = φ(p∗ − pt) + εft εft ∼ N(0, σ2
f ), φ > 0 (3.13a)
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dct = χ(pt − pt−1) + εct εct ∼ N(0, σ2
c ), χ ≥ 0 (3.13b)

dit = 0 (3.13c)

where the subscript i denotes the inactive group, and all the other variables remain

the same from equation 3.9. Another modification required from the two-group model

described in the last section concerns the shares of the total population in each of the

three groups, which is now described as

nft =
(1− ω) exp(βaft−1)

(1− ω)[exp(βaft−1) + exp(βact−1)] + ω
(3.14a)

nct =
(1− ω) exp(βact−1)

(1− ω)[exp(βaft−1) + exp(βact−1)] + ω
(3.14b)

nit = 1− nft − nct (3.14c)

where the parameter ω represents the share of the population which is inactive from the

market.

3.4 Estimation

In this section, the Method of Simulated Moments is applied to the model (SSV aug-

mented with inactive traders) just described. In order to follow this method of estima-

tion, one has to first select the moments of interest. Following the approach developed

by the authors just mentioned [4], only four stylized facts that have received more atten-

tion in the literature are considered here, namely the absence of autocorrelation in raw

returns, fat tails of returns distribution, volatility clustering, and long memory. There-

fore, it is argued that the following set of nine moments is enough to account for these

four stylized facts, namely the Hill estimator of tail index of absolute returns H(v),

mean of the absolute returns v̄, first-order autocorrelation of the raw returns ac1(r),

and six different lags from the autocorrelation function of the absolute returns ac1(v),

ac5(v), ac10(v), ac25(v), ac50(v), and ac100(v). Each single run of the model will then

be compared with a specific empirical data set with regard to this vector of selected

moments.
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The distance between the moments vector m generated by a single run of the model

(with set of inputs θ, sample size S, and random seed c) and the vector of empirical

moments memp is defined by a weighted quadratic loss function in the following form

J = J [m(θ, S, c)] = (m(θ, S, c)−memp)′W (m(θ, S, c)−memp) (3.15)

where W is a weighting matrix that intends to capture both correlation between indi-

vidual moments and sampling variability.

Among several options for choosing a proper weighting matrix W , here the inverse of

the estimated variance-covariance matrix of the moments Σ̂ is used. In order to estimate

such a matrix, the following bootstrapping method was applied. For the first and second

moments (H(v) and v̄), B = 106 random resamples with replacement were constructed

from the original series, and the respective moments were calculated. However, since the

other moments deal with autocorrelations, such a procedure would be inadequate due

to the destruction of long-term dependencies by the sampling procedure. Therefore, for

these moments, an index-bootstrapping method was used by randomly selecting (with

replacement) B set of time indexes Ib = tb1, t
b
2, . . . , t

T
1 from indexes and then calculating

the correlation coefficient regarding time lag h as γb(h) = (1/T )
∑

teIb(vt− v̄)(vt−h− v̄),

where v̄ is the mean value of vt over T , T is the length of the original time series, and

vt−h = v̄ if t− h ≤ 0.

Considering mb as the vector of moments of each of these bootstrapped resamples and m̄

as the vector of their moment specific means, the variance-covariance matrix was, thus,

estimated as Σ̂ := (1/B)
∑B

b=1(mb − m̄)(mb − m̄)′, and finally W = Σ̂−1. Finally, the

minimization problem J [m(θ, S, c)] = min!
θ

was performed by the Nelder-Mead simplex

algorithm to estimate the set of parameters θ that minimizes the loss function J . Here,

only seven parameters (as defined in subsections 3.3.2 and 3.3.3) were allowed to vary,

namely φ, χ, αx, αd, σf , σc, and ω where the remaining were fixed at p∗ = 0, µ = 0.01,

α0 = −0.327, and β = 1. µ and β are just a matter of scale, and the starting value

for α0 (the predisposition parameter to switch to fundamentalism) results from manual

calibration.
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Starting from an initial set of parameters θi, the algorithm returns an estimated set

of parameters θ and a value for the objective function J . To reduce the chances of

getting trapped in a local minima, this obtained set of estimated parameters θ was re-

introduced in the algorithm here as the initial set of parameters (that is, θi = θ), and

this procedure was carried out as many times it was necessary until no improvement

higher than 0.001 was achieved in the objective function.

3.5 Experiment on Simulation Horizon Requirements

In order to reduce sample variability, [4] points that a model simulation horizon S ten

times bigger than the empirical size T (that is, S = 10T ) was considered sufficient for

their model comparison purposes. The main objective of this study is to assess how

such results change when one increases simulation horizon beyond this value. For doing

so, first it will be described in more detail how a model specific p-value is calculated

by means of Monte Carlos runs, and then the comparison of these p-values calculated

using both S = 10T and S = 100T will be presented. The same empirical reference time

series presented in figure 3.2 will be used in this section.

3.5.1 Definition of a model specific p-value

Apart from providing the variance-covariance matrix, the bootstrap procedure of empir-

ical data described in the previous section can also be used to assess the fit of different

model simulations to real data. This idea, presented in [4], consists of calculating the

value of the objective function J for each of the vector of moments me obtained by

bootstrapping empirical data E = 5000 times, and then finding a critical value Jcritic

which represents the 95% quantile of the distribution of the objective function values.

This critical value was found to be J0.95 = 17.228. In this sense, if a simulation run

from a given model presents a value of the objective function higher than J0.95, this run

cannot be said to have a good fit to empirical data. Finally, the p-value of a model is

given by the proportion of Monte Carlo runs which lies below this critical value. Fig-

ure 3.3 presents the distribution of objective function values obtained by bootstrapping

empirical data, and its correspondent critical value.
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Figure 3.3: Distribution of objective function values obtained by bootstrapping em-
pirical data, and its correspondent critical value.

3.5.2 Model fit for different simulation horizons

To begin with, table 3.1 shows, for a given random seed, and considering the simulation

horizon of S = 10T , the set of optimal parameters obtained by a single run of the model,

and their correspondent value of J . Table 3.2 shows the moments obtained with this

optimized set of parameters in this specific run of the model, and compares them with

the empirical moments for S&P500 and their bootstrapped statistics. It can be seen

that, at least with regard to this specific random seed, the moments obtained with the

optimal set of inputs is found inside the bands provided by bootstrapping empirical

data.

Table 3.1: Estimated parameters for a given random seed, considering a simulation
horizon of S = 10T .

J φ χ αx αd σf σc ω

11.744 0.914 2.077 0.992 0.890 1.359 2.049 0.548

In order to check whether these results depend on the given pseudo-random number

sequence, a similar estimation procedure to the one just described was carried on while
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Table 3.2: Moments obtained with optimized parameters for S = 10T , the empirical
moments for S&P500 and their bootstrapped quantiles.

H(v) v̄ ac1(r) ac1(v) ac5(v) ac10(v) ac25(v) ac50(v) ac100(v)

run 3.448 0.706 0.006 0.154 0.184 0.166 0.142 0.126 0.089

2.5 3.155 0.690 -0.018 0.128 0.163 0.148 0.125 0.107 0.075
mean 3.484 0.706 0.006 0.154 0.184 0.166 0.143 0.126 0.090
9.75 3.891 0.723 0.030 0.182 0.205 0.185 0.161 0.147 0.106

considering 1,000 different random seeds. Table 3.3 summarizes this Monte Carlo exper-

iment by presenting the average and 5% bounds for the obtained optimized parameters

and values of the objective function J . The p-value for this model (with inactive traders)

and simulation horizon (S = 10T ), calculated as described previously, is 0.290.

Table 3.3: Mean and bound values for parameters estimated for 1,000 different random
seeds, considering a simulation horizon of S = 10T .

J φ χ αx αd σf σc ω

2.5 6.210 0.750 1.795 0.988 0.711 1.212 1.885 0.491
mean 18.833 0.948 1.962 0.993 0.964 1.328 2.075 0.538
97.5 62.944 1.160 2.184 0.998 1.098 1.538 2.178 0.597

Similarly, table 3.4 presents the same statistics as table 3.3, but now considering a

longer simulation horizon of S = 100T . It can be seen that, although there is a larger

variability for some of the estimated parameters, the resulting distribution of the values

of the objective function presents much less extreme values. Figure 3.4 depicts this

result, by showing the distribution of J both for a simulation horizon of S = 10T (solid)

and of S = 100T (dashed). The obtained p-value for the longer case is 0.021, which is

significantly smaller than for the shorter.

Table 3.4: Mean and bound values for parameters estimated for 1,000 different random
seeds, considering a simulation horizon of S = 100T .

J φ χ αx αd σf σc ω

2.5 7.595 0.597 1.559 0.990 0.669 1.166 1.871 0.474
mean 10.702 0.961 1.952 0.991 0.928 1.379 2.030 0.546
97.5 16.268 1.301 2.217 0.992 1.184 1.642 2.218 0.609

The smaller values of the objective function J suggest that longer simulation horizons

increase the ability of the model in reproducing the stylized facts. Table 3.5 presents

two versions of a model contest, one for each simulation horizon S = 10T and S = 100T .

Figure 3.5 depicts this result, by showing the distribution of J for each pair of model-

horizon. Although a significant reduction of sample variability is obtained by using larger

simulation horizons, it can be seen that the central tendencies of each distribution of
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Figure 3.4: Comparison of the distributions of objective function values for simulation
horizons of S = 10T and S = 100T .

J do not change wildly with respect to S. In addition to that, there seems to be

no improvements in parameter specification (facts shown by the larger width of the

confidence intervals of parameters estimated with S = 100T ). Hence, it is argued that,

according to what was assumed in [4], S = 10T is sufficient for these specific cases

presented here.

3.5.3 Assessing the incorporation of inactive traders

The second objective of this investigation is to check for differences in goodness of fit of

allowing inactive traders in one of the Structural Stochastic Volatility models proposed

by [5]. It can be seen that the introduction of inactive traders improves the goodness

of fit in both versions. It could be argued that the introduction of this more realistic

feature indeed produces time series which are closer to the empirical reference from

actual markets with respect to some selected stylized facts, regardless of the simulation

horizon the model was allowed to run.
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Table 3.5: Model contest to asses the improvement in goodness of fit when allowing
inactive traders in SSV models using different simulation horizons. Although a signifi-
cant reduction of sample variability is obtained by using larger simulation horizons, it
can be seen that the central tendencies of each distribution of J do not change wildly
with respect to S. In addition to that, there seems to be no improvements in parameter
specification (facts shown by the larger width of the confidence intervals of parameters
estimated with S = 100T ). Hence, it is argued that, according to what was assumed

in [4], S = 10T is sufficient for these specific cases presented here.

J φ χ αx αd σf σc ω

DCA (S = 10T ) pvalue 0.349

2.5 10.175 0.952 1.067 0.988 1.487 0.555 1.567 –
mean 16.451 1.063 1.222 0.991 1.613 0.607 1.643 –
97.5 27.151 1.191 1.338 0.993 1.725 0.655 1.732 –

DCA (S = 100T ) pvalue 0.051

2.5 13.362 0.939 1.085 0.990 1.448 0.584 1.602 –
mean 15.518 1.072 1.227 0.991 1.607 0.607 1.632 –
97.5 17.530 1.218 1.339 0.992 1.750 0.624 1.666 –

DCA-I (S = 10T ) pvalue 0.290

2.5 6.210 0.750 1.795 0.988 0.711 1.212 1.885 0.491
mean 18.833 0.948 1.962 0.993 0.964 1.328 2.075 0.538
97.5 62.944 1.160 2.184 0.998 1.098 1.538 2.178 0.597

DCA-I (S = 100T ) pvalue 0.021

2.5 7.595 0.597 1.559 0.990 0.669 1.166 1.871 0.474
mean 10.702 0.961 1.952 0.991 0.928 1.379 2.030 0.546
97.5 16.268 1.301 2.217 0.992 1.184 1.642 2.218 0.609

Conclusion

In this chapter, the possible effects of the simulation horizon one allows the model to run

was subject of investigation. The main objective was to check the following statement:

if the simulation horizon is not sufficiently large, the resulting distribution may present

frequent extreme points, which can lead to inaccurate results when one tries to compare

different models. In order to answer to this question, a model contest was carried out us-

ing different simulation horizons to assess the difference in goodness of fit when inactive

traders are introduced in one of the Structural Stochastic Volatility models proposed by

[5].

It can be seen in figure 3.5 and in table 3.5 that the smaller values of the objective

function J suggest that longer simulation horizons increase the ability of the model in

reproducing the stylized facts. However, such results also show that the centroids of

the distributions do not change (that is, the mean locations remain the same) when

the model is simulated for a longer time horizon. While observing that there is no bias
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Figure 3.5: Comparison of the distributions of objective function values for simulation
horizons of S = 10T and S = 100T , and for inclusion/exclusion of inactive traders.
The smaller values of the objective function J suggest that longer simulation horizons

increase the ability of the model in reproducing the stylized facts.

introduced by reducing the simulation horizon from 100 to 10 times the empirical time

horizon, it is then argued that, according to what is assumed in [5], simulating the model

10 times longer than the empirical time horizon is sufficient for the proposed model con-

test purposes.

The second objective of the investigation dealt with the improvements in goodness of fit

brought by the inclusion of inactive traders in one of the Structural Stochastic Volatility

(SSV) models proposed by [5]. By allowing agents also to hold their positions instead of

going to the market every day, the model yields better goodness of fit when compared to

the standard two agent types model, as can be seen by the smaller values of the objective

function shown. By allowing agents to be inactive for some periods of time, the model

gains a more realistic feature, and, hence, is able to better reproduce the stylized facts

represented by the selected moments of interest.
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With respect to the first objective, it is concluded that there is no bias in using smaller

simulation horizons, although a smaller sample variability is achieved when the model is

let to simulate for longer time horizons. Such results confirm the assumption made by

[5], namely, to let the model run ten times longer then the reference empirical time series

used in the process of estimation. Considering the second objective of this investigation,

it can clearly be seen a significant improvement in terms of goodness-of-fit in allowing

traders to be inactive for some periods of time. It seems that the incorporation of this

realistic feature in the SSV models make them produce synthetic price time series which

resemble more closely those observed in actual markets.



Chapter 4

Testing for non-linear structures

in artificial financial data: A

Recurrence Quantification

Approach

Introduction

According to [3], early applications of empirical methods from chaos theory suggested

the existence of low dimensional chaotic motion in empirical financial data. However,

such results were questioned, and it is then believed that the search for low dimensional

chaos in financial data was not successful. On the other hand, the independent and

identically distributed (IID) hypotheses is often rejected, at the same time that raw

returns present quite small degree of autocorrelation. These facts suggest that prices in

financial markets do not behave completely at random, although their hidden structures

seem more complex than those observed in low dimensional chaotic systems.

By considering artificial data generated from the Lux-Marchesi microscopic model [6],

the aforementioned authors state that the resulting price dynamics appear less random

than the pseudo-random numbers used as shocks to the fundamental price of the model.

This is the case for the Lux-Marchesi model, and also for the Structural Stochastic

127
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Volatility (SSV ) model [4] discussed in the previous chapter. Such results are sup-

ported by the empirical chaos literature, where randomly reshuffled series usually lead

to higher estimates of the so called correlation dimension.

Both models mentioned above are able to reproduce several of the stylized facts of-

ten observed in empirical financial data. For instance, the presence of a unit root in the

price dynamics, the existence of heteroscedasticity (the so called volatility clustering)

and the heavy tails in the distributions of returns, and the long term dependency of

absolute returns. Along with all these structures usually found in empirical data is the

very low autocorrelation of returns which makes the financial markets appear efficient,

at least by considering the weak form of information efficiency from the Efficient Market

Hypothesis.

Hence, the key result presented in [3] is that both simulated and empirical time se-

ries show traces of hidden structure, but apparently a more complicated one than that

generated by low-dimensional deterministic dynamics. In order to check the significance

of this behavior formally surrogate data tests are often applied [3]. The same path is

followed in this chapter, but considering a different kind of non-linearity test based on

the so called Recurrence Plot (RP ) [73]. More specifically, the methodology described

in [2] is applied to the time series generated by the Lux-Marchesi model as tested in [3]

using BDS and Kaplan tests, and also to data generated by the Structural Stochastic

Volatility (SSV ) model proposed by [4] described in the previous chapter.

In the two next sections, simple chaotic systems (the logistic map and the Lorenz’s

attractor) are introduced in order to highlight the properties of the Recurrence Quan-

tification Analysis (RQA) for detecting non-linearity or chaos in time series. RQA is

a method of analyzing dynamical systems originally proposed by [74], and it is carried

out by calculating some complexity measures on the Recurrence Plot (RP ), which is a

graphical representation of how often in time a trajectory visits the neighbor regions of

its phase space. The last section of the essay presents the application of the surrogate

tests for non-linearity or chaos based on the RQA complexity measures to synthetic data

set generated from the two models mentioned above. The interest is comparing these

results to those based on other tests for non-linearity or chaos presented by [3].
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For instance, in the same way as pointed out by [3] and [2], the results presented here

are unstable because both acceptance and rejection of linearity can be found in differ-

ent realizations of the same model. However, different complexity measures generally

agree within each subperiod of data, suggesting both that the two models are able to

reproduce the empirically observed alternating periods of high and low volatility, and

that the RQA measures are able to discriminate between these periods. In addition, it

is also stressed that the hypothesis of chaos or linearity is rejected for the majority of

the subsamples, indicating that, if there is a deterministic process ruling the data, it is

more complicated than the dynamics from low dimensional chaotic systems.

4.1 Recurrence Quantification Analysis

Recurrence Quantification Analysis (RQA) is a nonlinear method of analyzing dynami-

cal systems originally proposed by [74]. It is carried out by calculating some measures

on the so-called Recurrence Plot (RP ), which is a graphical representation of how often

in time a trajectory visits the neighbor regions of its phase space.

This section is divided as follows: first, the Lorenz’s attractor is used as an example

for outlining the required procedures in the creation of a RP . Then, selected RQA

measures are calculated to different parameters of the logistic map in order to illustrate

their properties. The last part concludes by carrying out an RQA-based non-linearity

test on artificial financial data generated by two different agent-based models.

4.1.1 Recurrence Plots

Recurrence plots (RP ) were proposed by [73] as a tool for visualizing recurrences of

dynamical systems. In order to build an RP for a given time series, one has to first re-

construct its phase-space trajectory. As stated by Takens’ theorem [75], a topologically

equivalent representation of the original high-dimension system can be reconstructed

from a time sequence of observations of its states by means of the method of time de-

lay. This procedure consists of generating, from the original time series Xt, the set of

embedded vectors Xm
t = Xt, Xt+τ , Xt+2τ , · · · , Xt+(m−1)τ , where m is the underlying

embedding dimension of the system, and τ is the time delay used in the reconstruction
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of the phase space from a time series.

Among several methods for choosing an appropriate value for the embedding dimen-

sion m, [76] point that a heuristic approach is well suited when the final objective is to

generate an RP . This approach consists of choosing a very high value for m (m > 20),

and of sequentially decreasing its value until significant differences in the RP appear.

Let m∗ denote the value of m at this point. They state that this difference is due to

the existence of false nearest neighbors, and, thus, a value of m a few dimensions higher

than m∗ should be enough for embedding.

Having reconstructed the phase space, the objective of an RP is to check for recur-

rence patterns, that is, to verify whether the system roughly returns to neighborhoods

already visited in the past. To do so, how close two trajectories should be in order to be

considered a recurrence has also to be defined. This is done by setting a critical value

ε. Obviously, if ε is set to zero, then there would not be any recurrence at all and, on

the other hand, if ε is sufficiently large, then every trajectory would be considered a

recurrence.

Hence, an RP is a graphical representation of the square matrix of the distances be-

tween all paired time coordinates of the reconstructed phase space, where a point in the

distance matrix is darkened if the distance is smaller than ε and not otherwise. In other

words, a Heaviside function is applied to the distances of each pair of time coordinates

obtained by the reconstructed phase space. By construction, the main diagonal of the

distances matrix is always darkened (and it is called line of identity - LOI), and the

idea of the RP is that if there is a significant amount of determinism in the system, then

its phase-space trajectory will visit previous regions and, thus, the RP will show lines

parallel to the main diagonal (LOI).

4.1.2 Lorenz System Example

The Lorenz system is a system of ordinary differential equations known for its chaotic

behaviour. More specifically, it is both highly sensitive to initial conditions and able

to generate complex orbits, although relatively simple and deterministic. The Lorenz

equations are defined as
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ẋ = σ(y − x) (4.1a)

ẏ = x(ρ− z)− y (4.1b)

ż = xy − βz (4.1c)

where the notation ȧ stands for da
dt , t represents the time unit, x, y, and z are the

three-dimensional coordinates, and σ, ρ, and β are the system parameters. Following

[77], figure 4.1 shows three two-dimensional perspectives of 100 simulation steps of the

Lorenz system using σ = 10, ρ = 28, and β = 8
3 . The system exhibit chaotic solutions

for these parameter values.
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Figure 4.1: Three two-dimensional perspectives of 100 simulation steps of the Lorenz
system using σ = 10, ρ = 28, and β = 8

3 . The system exhibit chaotic solutions for these
parameter values

As an example, let us consider 1200 observations generated by the Lorenz system, which

are presented together with its RP on the right panel of figure 4.2. On the left panel,

the same experiment was reproduced, but the time series was randomly shuffled in order

to break all existing structures. In the same way as in [78], here we have considered an

embedding dimension m = 5, time delay τ = 5, and critical distance value ε = 5.

[78] summarizes three different structures that can be found in an RP , namely isolated

dots, vertical lines, and diagonal lines. Single dots appear when states are rare or do

not last enough time. A diagonal line occurs when a trajectory visits the same region
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Figure 4.2: On the right panel, 1200 observations generated from the Lorenz’s At-
tractor (upper panel) and its respective recurrence plot (lower panel), with embedding
dimension m = 5, time delay τ = 5, and critical distance value ε = 5. On the left panel,

the same experiment was performed, but with shuffled time series.

of phase space that it was in the past. Finally, a vertical line appears when the state of

the system does not move, or moves too slowly, for a period of time.

4.2 Complexity Measures Based on the Recurrence Plot

Having seen that the recurrence plot is a powerful tool for analyzing dynamic systems,

the RQA deals with measures which attempt to quantify the insights provided by the

RP s. For instance, it is clear from figure 4.2 that the cyclical component of the Lorenz

attractor is captured by the long diagonal lines shown in the lower left panel. [74]

developed some measures based on the density and the diagonal structures of the RP ,

and [78] extended some of these measures considering vertical structures. In a RP ,

diagonal lines suggest that the system orbits two regions of the phase space in parallel

for some time, while vertical lines indicate that only one region of the phase space is

being visited during that period.
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REC - Recurrence Rate

It consists of summing all darkened dots in the RP and dividing them by the total

number of dots. Mathematically,

REC(m, τ, ε) =
1

N2

N∑
i,j=1

Rm,εi,j (4.2)

where N is the length of the RP , and R is the binary distance matrix.

As it can be seen in the equation above, REC measures the density of the RP. It is

worth stressing that the REC measure can be adjusted by the radius ε defined in the

previous section. Obviously, if one sets ε = 0, then the RP will have no darkened points

at all. On the other hand, if ε is set sufficiently large, then all points in the RP will be

darkened. Apart from other options for choosing ε as just described, it is also a common

approach to fix ε so that the REC measure of the RP equals a predetermined level.

This approach will be developed in the surrogate non-linearity test of the next section.

DET - Determinism

This measure is calculated by dividing the sum of all darkened points that belong to

a diagonal structure by the total number of darkened points. For deciding whether a

recurrence point belongs or not to a diagonal structure, one has to additionally define

a minimal line length lmin. The idea is that a deterministic system produces longer

diagonal lines than stochastic ones. Thus, we have

DET (m, τ, ε, lmin) =

∑N
l=lmin

lpε(l)∑N
i,j=1R

m,ε
i,j

(4.3)

where pε(l) is the frequency distribution of diagonal line lengths. It should be stressed

that if lmin = 1 (that is, every isolated recurrence point belongs to a line of length 1),

then DET = 1.
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RATIO - Ratio between DET and REC

The RATIO measure is simply the ratio of DET and REC, as shown below

RATIO(m, τ, ε, lmin) =
DET (m, τ, ε, lmin)

REC(m, τ, ε)
(4.4)

In the extreme case where lmin = 1 (and, thus, DET = 1), RATIO is equal to the

reciprocal of REC. According to [79], in certain circumstances, this measure can be

used to study phase transitions, because REC can decrease without a correspondent

change in DET .

L - Average Diagonal Length

This measure gives an impression about how much time two trajectories remain close to

each other, and is simply calculated by obtaining the average value of the line lengths

defined by lmin. Therefore, we have

L(m, τ, ε, lmin) =

∑N
l=lmin

lpε(l)∑N
l=lmin

pε(l)
(4.5)

In this sense, the more often the system shows longer periods of recurrent orbits, the

longer the average length of the diagonal lines.

Lmax - Maximal Diagonal Length

This measure is simply given by the maximal diagonal line length in the RP. According

to [79], it is related to the largest positive Lyapunov exponent.

Lmax(m, τ, ε, lmin) =
N

max
l=lmin

lpε(l) (4.6)

DIV - Divergence

Divergence is the reciprocal of Lmax. The smallest the divergence, the longer is the

maximal recurrent orbit in the system.
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DIV (m, τ, ε, lmin) =
1

Lmax
(4.7)

ENT - Entropy

This measure consists of calculating Shannon entropy to the frequency distributions

of diagonal line lengths and interpreting this as the complexity of the deterministic

structure of the system. Thus, we have

ENT (m, τ, ε, lmin) = −
N∑

l=lmin

P (l) lnP (l) (4.8)

where

P (l) =
pε(l)∑N

l=lmin
pε(l)

(4.9)

In this sense, ENT indicates the diversity of visited regions of the phase space. For

instance, if the system visits very often a few specific regions of the phase space, and only

occasionally lots of others regions, ENT will be low. In the extreme case of all regions

being equally visited, ENT reaches its maximum value given by N log(N). However,

as stated by [78], ENT depends heavily on lmin (that is, the bin size for creating the

frequency distribution of line lengths).

LAM - Laminarity

This measure is analogous to DET , but with regard to vertical lines. Vertical structures

in a Recurrence Plot indicate stationarity in a specific region of the phase space. It is

calculated by dividing the sum of all darkened points that belong to a vertical structure

by the total number of darkened points. Thus, we have

LAM(m, τ, ε, vmin) =

∑N
v=vmin

vpε(v)∑N
i,j=1R

m,ε
i,j

(4.10)

where vmin is the minimal length to define a vertical line.
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Vmax - Maximal Vertical Length

This measure is simply given by the maximal vertical line length in the Recurrence Plot.

Vmax(m, τ, ε, vmin) =
N

max
v=vmin

vpε(v) (4.11)

4.2.1 Logistic Map Example

The logistic map is an early example of an apparently simple mathematical model pre-

senting very complicated dynamics [80]. It consists of a polynomial mapping of degree

2 in the following form:

xn+1 = rxn(1− xn) (4.12)

where xn is defined in [0, 1] and can be interpreted as the ratio between some current

population at time n and the environment total capacity, which is assumed to be fixed.

The initial population ratio x0 has also to be assumed. The growth parameter r can be

any positive number, although the population ratio interpretation only holds for r ≤ 4.

For higher values of r, x does not respect the [0, 1] range.

Figure 4.3 shows different realizations of two hundred observations of the logistic map

for varying values of r. It can be seen that for values of r below 3 there is always a fixed

point as long term value, while for values higher than 3 periodic orbits of increasing or-

der start to appear. Finally, for values higher than about 3.57 the logistic map exhibits

chaotic behavior. This value is the onset of chaos; most values beyond this threshold

(except from some islands of stability such as for r = 3.83) present extreme sensitivity

to initial conditions and the orbit periods are no longer finite.

These facts are also illustrated by the bifurcation diagram depicted in figure 4.4. Note

that the bifurcation diagram shows the possible long term outcomes of xn in the vertical

axis with respect to different values of the bifurcation parameter (which here is r) in the

horizontal axis. It can be seen period-doubling bifurcations for values of r higher than

3, while for values higher than about 3.57 the orbit periods are no longer finite.
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Figure 4.3: Different realizations of two hundred observations of the logistic map for
varying values of r. It can be seen that for values of r below 3 there is always a fixed
point as long term value, while for values higher than 3 periodic orbits of increasing

order start to appear.

As an illustration, figure 4.5 shows the time series generated by the logistic map with

four different values of the growth parameter, their respective RP , and selected RQA

measures. The respective calculated values are shown in table 4.1. It can be seen that

for the stable value r = 3.83 the majority of the RQA measures are different from the

other three chaotic values.
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Figure 4.4: Bifurcation diagram showing the possible long term outcomes of xn in the
vertical axis with respect to different values of the bifurcation parameter (which here
is r) in the horizontal axis. It can be seen period-doubling bifurcations for values of r
higher than 3, while for values higher than about 3.57 the orbit periods are no longer

finite.

Table 4.1: Selected RQA complexity measures for four time series generated by dif-
ferent growth parameters of the logistic map. It can be seen that for the stable value
r = 3.83 the majority of the RQA measures are different from the other three chaotic

values.

r = 3.679 r = 3.72 r = 3.83 r = 4

REC 0.072 0.051 0.333 0.039

DET 0.817 0.751 1.000 0.552

Lmax 19 13 195 7

DIV 0.053 0.077 0.005 0.143

RATIO 11.281 14.807 2.999 14.285

LAM 0.536 0.092 0.000 0.005

Vmax 8 9 1 3

ENT 2.783 2.762 6.000 1.786

4.3 Surrogate Linearity Test Based on Recurrence Quan-

tification

This section presents details of the application of surrogated non-linearity tests on the

data generated by two different artificial market models (proposed by [4] and [6]). Ac-

cording to [78], a satisfying theoretical study on the properties of the measures described

in the previous section is yet to be developed. However, with regard to stationary time
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Figure 4.5: Time series generated by four different growth parameters of the logistic
map and their respective recurrence plots.
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series, significance levels of RQA measures can be assessed by means of surrogate tests.

Here, the method described by [81] called Iterative Amplitude Adjusted Fourier Trans-

form is applied to generate the surrogate copies.

Following [2] when testing for linearity on artificial financial data generated by Lux-

Marcehsi model [6], a total sample size of 40, 000 observations was created and divided

into 20 subsamples of 2, 000 each. For each of these subsamples, 20 surrogate copies were

produced, and their RQA measures were then compared with the original subsamples.

Here, again as in [2], focus was given to four of the RQA measures, namely REC, DET ,

ENT and Lmax. The parameters for all tests are m = 15, τ = 1, ε is endogenously

determined aiming a fixed 5% REC in the original series [78], and lmin = 3. The null

hypothesis of linearity is rejected with regard to one of these measures if all surrogated

copies from a specific subsample present values smaller than the value from their respec-

tive subsample. Results are summarized in tables 4.2 and 4.3.

It can be seen that the null hypothesis of linearity is rejected 19 times out of 20 subsam-

ples when considering the REC and DET measures, 17 times when considering ENT ,

and 15 times for Lmax. According to the conclusions provided by [2], the RQA approach

seems to be a very promising test for complexity in the financial time series. These results

add evidence to support the rejection of linearity or low dimensional chaotic motion in

the artificial financial time series generated from both microscopic models analysed here.

As can be seen from tables 4.2 and 4.3, results from both tests are similar within subpe-

riods, but are are not within subsamples. Interestingly, comparing test results with the

visual appearance of the relevant parts of the time series, there seems to be a general

tendency towards rejection in periods with larger fluctuations, while in periods with

moderate volatility linearity is not rejected in both models.

For instance, in the same way as pointed out by [3] and [2], both acceptance and

rejection of linearity are found in different realizations of the same model. However,

different complexity measures usually agree within subperiods, suggesting both that the

two models are able to reproduce the empirically observed alternating periods of high

and low volatility and that the RQA measures are able to discriminate between these

periods, as shown in figure 4.6. It can be seen that, for both models, the null hypothesis
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of linearity is accepted if subsample volatility is low, and rejected otherwise.

Figures 4.7, 4.8, 4.9, and 4.10 show Recurrence Plots of four subsamples from the time

series depicted in figure 4.6. For instance, considering the Lux-Marchesi model, the null

hypothesis of linearity is rejected by all measures in the subsample 8, and not rejected by

all measures in subsample 19. Their Recurrence Plots are shown respectively in figures

4.9 and 4.10. In the SSV model, this same difference is higlighted by the Recurrence

Plots of the subsamples 5 (null rejected by all measures) and 20 (null not rejected by all

measures) (shown respectively in figures 4.7 and 4.8). It can be seen that, as also found

by [2] and [3], the null hypothesis of linearity is often rejected in periods presenting

high volatility dominated by speculative trading. During periods of low volatility, lower

complexity os captured by the RQA measures and, thus, it is easier to accept the null

hypothesis of linearity.

In addition, it is also stressed that the hypothesis of chaos or linearity is rejected for the

majority of the subsamples, indicating that, if there is a deterministic process ruling the

data, it is more complicated than the dynamics from low dimensional chaotic systems.

When considering the RQA results for the Lux-Marchesi model presented here, it can

be seen a great deal of aligment with tose results presented by [2]. For instance, the

null hypothesis of linearity is rejected here 15 out of 20 with respect to the complexity

measure REC (recurrence), while in the results presented by the aforementioned au-

thors this number is 18. The same number of rejections (15) is found here and in their

article when considering the DET (determinism)) measure. When considering the ENT

(entropy) measure the results presented here show 2 rejections less than the authors (15

against 17), and when considering the Lmax (maximum diagonal length) measure this

difference is of 3 rejections (10 and 13).

Conclusion

The main interest in this chapter was to contrast the results presented by [3] with those

computed here based on the Recurrence Quantification Analysis (RQA). More specif-

ically, [3] tested for non-linearity or the presence of low dimensional chaos in artificial
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Table 4.2: Results of non-linearity tests based on RQA complexity measures for the
SSV model. It can be seen that results from different tests are similar within most
subperiods. Comparing test results with the visual appearance of the relevant parts of
the time series 4.6, there seems to be a general tendency towards rejection in periods

with larger fluctuations.

Subsample REC DET ENT Lmax
1 Reject Reject Reject Reject

2 Reject Accept Reject Accept

3 Reject Reject Reject Reject

4 Reject Reject Reject Reject

5 Reject Reject Reject Reject

6 Reject Reject Reject Reject

7 Reject Reject Reject Reject

8 Reject Reject Reject Accept

9 Reject Reject Reject Reject

10 Reject Reject Reject Reject

11 Reject Reject Reject Reject

12 Reject Reject Reject Reject

13 Reject Reject Reject Reject

14 Reject Reject Reject Reject

15 Reject Reject Reject Reject

16 Reject Accept Reject Accept

17 Reject Reject Reject Reject

18 Reject Reject Reject Reject

19 Reject Reject Reject Accept

20 Accept Accept Accept Accept
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Figure 4.6: Artificial returns for the Lux-Marchesi and the SSV models. It can
be seen in tables 4.2 and 4.3 that results from different tests are similar within most
subperiods. Comparing test results with the visual appearance of the relevant parts of
the time series, there seems to be a general tendency towards rejection in periods with

larger fluctuations.
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Table 4.3: Results of non-linearity tests based on RQA complexity measures for the
Lux-Marchesi model. It can be seen that results from different tests are similar within
most subperiods. Comparing test results with the visual appearance of the relevant
parts of the time series 4.6, there seems to be a general tendency towards rejection in

periods with larger fluctuations.

Subsample REC DET ENT Lmax
1 Reject Reject Reject Reject

2 Reject Reject Reject Reject

3 Reject Reject Reject Reject

4 Reject Reject Reject Accept

5 Accept Accept Accept Accept

6 Reject Reject Reject Reject

7 Reject Reject Reject Reject

8 Reject Reject Reject Reject

9 Reject Reject Reject Accept

10 Reject Reject Reject Reject

11 Accept Accept Accept Accept

12 Reject Reject Reject Accept

13 Reject Reject Reject Reject

14 Accept Accept Accept Accept

15 Reject Reject Reject Accept

16 Reject Reject Reject Reject

17 Accept Accept Accept Accept

18 Reject Accept Reject Accept

19 Accept Accept Accept Accept

20 Reject Reject Reject Reject

financial data generated from the Lux-Marchesi model by means of the BDS and Ka-

plan tests. Here, the same methodology described in [2] is applied to artificial data

from the Lux-Marchesi model, and also for the Structural Stochastic Volatility (SSV )

model detailed in the previous chapter. In the first two sections the RQA approach

was shown to be powerful by presenting how it allows one to discriminate between the

different periods of periodic orbits and chaotic motion of the logistic map. Finally, it

was shown that the RQA approach is able to discriminate between periods of high and

low volatility in artificial financial data, in the same way as pointed out by [3] using

tradicional non-linearity tests.

Again in agreement with [3], it could be seen that the hypothesis of linearity is rejected

for the majority of the subsamples of data generated from the Lux-Marchesi model. In

this sense, this chapter extends and supports the results presented by [3] using a differ-

ent non linearity test based on the RQA, and by checking if such results are confirmed

in a different artificial market model (SSV ). Finally, the final section of this chapter
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brings evidence in agreement with [3] and [2] to support the rejection of linearity or low

dimensional chaotic motion in the artificial financial time series generated from the two

different microscopic models considered here.
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Appendix D. Testing for non-linear structures in artificial

financial data: A Recurrence Quantification Approach

6
4
2
0
2
4
6

Subsample number 5 from SSV model

0 500 1000 1500 2000
0

500

1000

1500

2000

Figure 4.7: Subsample number 5 and its Recurrence Plot from the SSV model time
series depicted in figure 4.6. The difference between this subsample and subsample
number 20 is higlighted in their Recurrence Plots and in table 4.2. In subsample
number 5, the null hypothesis of linearity is rejected by all four measures, while in
the subsample number 20 the null is not rejected by any of the measures. It can be
seen that, as also found by [2] and [3], the null hypothesis of linearity is more often
rejected in periods presenting high volatility dominated by speculative trading. During
periods of low volatility, the lower complexity of the time series is captured by the RQA
measures, thus, making it is easier to the null hypothesis of linearity for being accepted.
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Figure 4.8: Subsample number 20 and its Recurrence Plot from the SSV model time
series depicted in figure 4.6. The difference between this subsample and subsample
number 5 is higlighted in their Recurrence Plots and in table 4.2. In subsample number
20, the null hypothesis of linearity is not rejected by any of the four measures, while in
the subsample number 5 the null is rejected by all the measures. It can be seen that,
as also found by [2] and [3], the null hypothesis of linearity is more often rejected in
periods presenting high volatility dominated by speculative trading. During periods of
low volatility, the lower complexity of the time series is captured by the RQA measures,

thus, making it is easier to the null hypothesis of linearity for being accepted.
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Figure 4.9: Subsample number 8 and its Recurrence Plot from the Lux-Marchesi
model time series depicted in figure 4.6. The difference between this subsample and
subsample number 19 is higlighted in their Recurrence Plots and in table 4.3. In
subsample number 8, the null hypothesis of linearity is rejected by all four measures,
while in the subsample number 19 the null is not rejected by any of the measures. It
can be seen that, as also found by [2] and [3], the null hypothesis of linearity is more
often rejected in periods presenting high volatility dominated by speculative trading.
During periods of low volatility, the lower complexity of the time series is captured by
the RQA measures, thus, making it is easier to the null hypothesis of linearity for being

accepted.
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Figure 4.10: Subsample number 19 and its Recurrence Plot from the Lux-Marchesi
model time series depicted in figure 4.6. The difference between this subsample and
subsample number 8 is higlighted in their Recurrence Plots and in table 4.3. In sub-
sample number 19, the null hypothesis of linearity is not rejected by any of the four
measures, while in the subsample number 8 the null is rejected by all the measures. It
can be seen that, as also found by [2] and [3], the null hypothesis of linearity is more
often rejected in periods presenting high volatility dominated by speculative trading.
During periods of low volatility, the lower complexity of the time series is captured by
the RQA measures, thus, making it is easier to the null hypothesis of linearity for being

accepted.



Conclusion

In the first chapter of this thesis several features of the networks formed by interlocking

directorates were presented as stylized facts, meaning that their existence is widespread

over a large and diverse set of economies. For instance, it could be seen that the accumu-

lation of board positions by single individuals cannot be described by the simple random

assignment of positions to directors, and, thus, other forces might drive its dynamics.

It was also shown that interlocking networks present a large connected component, al-

though this is not totally unexpected when a random graph is used as a benchmark.

Afterwards, the dichotomy between order and randomness presented in the Watts-

Strogatz small world graphs was shown to account for the small world phenomena pre-

sented in empirical networks, and the preferential attachment process from the Barabási-

Albert models able to account for the highly skewed degree distributions. In addition,

it could also be seen that some countries engage in the global network of board mem-

bers differently from the others. For instance, it was observed that a great deal of the

absolute number of board directors, and the majority of the most central actors, are

based in North Atlantic countries. With respect to the profile of the firms engaging

in international interlocks, the lower country assortativity levels observed in companies

with high degrees indicate that very well connected firms are responsible for sustaining

a connected global network, while smaller and less connected firms usually engage only

in domestic interlocking.

The special role of financial institutions could also be observed, mainly by means of

their higher average centrality. Financial institutions also present a much larger board

on average (up to 40% larger), meaning that for them it might be more worthwhile to

engage in interlocks than for non financial institutions. Finally, evidence was shown

149
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supporting that the rich club phenomenon is also a stylized fact of board membership

networks, which is not accounted for by any of the random models described here. As

in the case of the accumulation of board positions by individuals not being explained

by a simple chance process, the higher level of intra-hub connectivity (the rich club

phenomena) cannot be explained by the traditional models of preferential attachment,

and thus, other factors might have influence on them.

The rich-gets-richer effect was used as an explanation for the existence of a very well

connected core in the networks of interlocking directorates, a natural consequence of

adding nodes at random and attaching them to already well connected nodes [49]. The

main contribution of this essay is to show that the high levels of intra hub connectivity

presented in real world interlocking networks cannot plausibly be seen as an outcome of

chance (at least not from the preferential attachment scheme), and thus proper expla-

nation for the phenomena is still required.

In the second chapter it was shown that all stylized facts described in the first chapter

(such as smallworldness, the existence of a large connected component, and rich club

phenomena) still hold in the Spanish specific case, considering a wider time span from

2004 to 2010. It was also shown that the network core persists over time regardless of

personal turnover, and that the accumulation patterns of board positions by individuals

observed in empirical data cannot be explained by a simple random binomial procedure.

By using firm specific data on profitability and leverage, no significant relation between

network centrality and profitability could be observed. However, a negative significant

relation between centrality and leverage was observed, indicating that interlocks might

have been misused to guarantee special lending conditions not justifiable only by eco-

nomic means. In addition, the chapter dealt with the highly capitalized Ibex companies

as prominent actors of the network, the effective but not sufficient impact of a new gen-

der equality regulation, and finally the advantage politicians have to jump from having

one to two board positions.

In the third chapter of this thesis the possible effects of the simulation horizon one

allows an agent based model to run was subject of investigation. More specifically, the

main objective was to validate the following hypothesis: if the simulation horizon is not
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sufficiently large, the resulting distribution may present frequent extreme points, which

can lead to inaccurate results when one tries to compare different models. In order

to answer to this question, a model contest was carried out using different simulation

horizons to assess the difference in goodness of fit when inactive traders are introduced

in one of the Structural Stochastic Volatility models proposed by [5].

It could be observed that the smaller values of the objective function being minimized

suggest that longer simulation horizons increase the ability of the model in reproducing

the stylized facts. However, such results also show that the center of the distributions

does not change (that is, the mean locations remain the same) when the model is sim-

ulated for a longer time horizon. While observing that there is no bias introduced by

reducing the simulation horizon, it is then argued that simulating the model 10 times

longer than the empirical time horizon (as assumed in [5]) is sufficient for the proposed

model contest purposes.

The second objective of the investigation was to check for possible improvements in

goodness of fit brought by the inclusion of inactive traders in one of the Structural

Stochastic Volatility (SSV) models. By allowing agents also to hold their positions in-

stead of going to the market every day, the model yields better goodness of fit when

compared to the standard two agent types model, as pointed by the smaller values of

the objective function shown. By allowing agents to be inactive for some periods of

time, the model gains a more realistic feature, and, hence, is able to better reproduce

the stylized facts represented by the selected moments of interest.

Finally, in the last chapter, the attention was turned to the existence of non-linearity or

chaos in artificial financial data generated from the Lux-Marchesi model, and from the

Structural Stochastic Volatility (SSV ) model detailed in the third chapter. According

to [3], early applications of empirical methods from chaos theory arguably pointed to

the existence of low-dimensional chaotic motion in empirical financial data. However,

it is now believed that the search for low dimensional chaos in empirical financial data

was not successful. This suggests that prices in financial markets do not behave in a

perfectly random manner, although their hidden structures seem more complex than

those produced by low dimensional chaotic systems.
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The main objective of this chapter is to contrast the results presented by [3] with those

using the Recurrence Quantification Analysis (RQA) approach. For doing so, two simple

chaotic systems (the logistic map and the Lorenz’s attractor) are introduced in order to

highlight the properties of the Recurrence Quantification Analysis (RQA) for detecting

non-linearity or chaos in time series. It could be seen, for instance, that the hypothesis

of chaos or linearity is rejected for the majority of the subsamples, indicating that, if

there is a deterministic process ruling the data, it is more complicated than the dynamics

from low dimensional chaotic systems.
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