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ABSTRACT 

Photochemistry and kinase inhibitor research have both independently been of major 

scientific interest in the last decades. The objective of this study was therefore to combine 

both research fields by the development of photoactivatable kinase inhibitors. Herein, the 

fascinating possibilities of photochemistry were applied on a unique group of 

pharmacological agents. 

This study reports on photoactivatable prodrugs of VEGFR inhibitors and the approved 

BRAF inhibitor vemurafenib. The latter shows impressive outcomes in the personalized 

treatment of malignant melanoma, but side effects and drug resistance limit therapeutic 

results. In order to conquer these limitations and to create powerful biological tools for kinase 

and cancer research, so-called caged prodrugs were developed. Photoremovable protecting 

groups (PPGs) were thus implemented at crucial pharmacophoric functionalities of the 

inhibitors in order to diminish their biological effects. This approach provides control over the 

activation of molecules triggered by ultraviolet light. First, the hinge binder moiety of 

vemurafenib, a 7-azaindole, was investigated concerning its properties as a leaving group in 

the photolysis reaction. Several PPGs were then examined with regard to chemical 

accessibility and release characteristics. Next, photoactivatable prodrugs of vemurafenib and 

VEGFR inhibitors, a diarylmaleimide and a carbazole, were designed and synthesized. Their 

photochemical features were subsequently investigated. In vitro evaluation proved the loss-of-

function of the prodrugs and the light-dependent recovery of efficacy in kinase and cellular 

assays. 

The approved VEGFR inhibitor axitinib was furthermore investigated as a photoswitchable 

kinase inhibitor. Based on molecular modeling, the (Z)-isomer should be significantly less 

active toward the targets of (E)-axitinib. It was therefore explored if the inhibitory effect of 

axitinib could be turned on and off triggered by irradiation. The switching properties of the 

photoinduced E-Z isomerization were thus examined. Interestingly, the formation of a 

(Z)-axitinib tautomer was observed. In vitro analyses demonstrated the decreased efficacy of 

the (Z)-isomer at an enzymatic level. These results, however, did not translate into cell 

proliferation assays leaving the paradoxically more active (Z)-isomer for future investigation. 

In conclusion, the first photoactivatable vemurafenib and VEGFR inhibitor prodrugs have 

been synthesized and characterized in the course of this study. A decreased potency of the 

(Z)-stereoisomer of axitinib has been demonstrated in enzymatic assays. The applicability of 

axitinib as a photoswitch remains to be confirmed in further biological assays.  



 

 

 

  



 

 

KURZZUSAMMENFASSUNG 

Photochemie und die Entwicklung von Kinaseinhibitoren stehen seit Jahrzehnten unabhängig 

voneinander im Fokus der Wissenschaft. Das Ziel dieser Arbeit war daher, beide 

Forschungsgebiete durch die Entwicklung photoaktivierbarer Kinaseinhibitoren miteinander 

zu verknüpfen. Die faszinierenden Möglichkeiten der Photochemie wurden dabei auf eine 

einzigartige Gruppe pharmakologischer Substanzen angewendet. 

Diese Arbeit berichtet über photoaktivierbare Prodrugs von VEGFR-Inhibitoren sowie des 

zugelassenen BRAF-Inhibitors Vemurafenib. Dieser zeigt beeindruckende Erfolge in der 

personalisierten Behandlung des malignen Melanoms, jedoch limitiert durch Nebenwirkungen 

und Resistenzen. Um diesen Limitierungen zu begegnen und um leistungsfähige Werkzeuge 

für die Kinase- und Krebsforschung bereitzustellen, wurden sogenannte caged prodrugs 

entwickelt. Dazu wurden photoabspaltbare Schutzgruppen (PPGs) an zentralen 

pharmakophoren Gruppen der Inhibitoren angebracht, um diese biologisch zu inaktivieren. 

Dies erlaubt die Kontrolle über die Aktivierung von Molekülen durch ultraviolettes Licht. 

Zunächst wurde der hinge-binder des Vemurafenibs, das 7-Azaindol, hinsichtlich seiner 

Eigenschaft als Abgangsgruppe in der Photolyse-Reaktion näher untersucht. Verschiedene 

PPGs wurden bezüglich chemischer Zugänglichkeit und Freisetzung gegenübergestellt. 

Anschließend wurden caged prodrugs des Vemurafenibs sowie Inhibitoren aus der Klasse der 

Diarylmaleimide bzw. Carbazole designt und synthetisiert. Ihre photochemischen 

Eigenschaften wurden untersucht. In vitro-Experimente bestätigten den Wirkungsverlust der 

Prodrugs sowie die lichtabhängige Wiederherstellung der Wirkung in Kinase- und Zellassays. 

Ferner wurde der zugelassene VEGFR-Inhibitor Axitinib als photoschaltbarer Kinaseinhibitor 

untersucht. Molecular modeling legte nahe, dass das (Z)-Stereoisomer schwächer wirksam sei 

als das (E)-Isomer. Daher wurde untersucht, ob die Wirkung von Axitinib durch Bestrahlung 

reversibel geschaltet werden kann. Interessanterweise konnte dabei die Bildung eines 

Tautomers des (Z)-Isomers beobachtet werden. In vitro-Studien zeigten eine Verringerung des 

hemmenden Effekts des (Z)-Isomers auf enzymatischer Ebene. Diese Ergebnisse übertrugen 

sich allerdings nicht auf Zell-Proliferations-Assays. Die hierin paradoxerweise gesteigerte 

Wirkung des (Z)-Isomers sollte daher noch eingehender untersucht werden. 

Im Rahmen dieser Arbeit wurden die ersten photoaktivierbaren Vemurafenib- und VEGFR-

Inhibitor-Prodrugs synthetisiert und charakterisiert. Die verringerte Wirkung des Axitinib-

(Z)-Stereoisomers wurde in enzymatischen Assays nachgewiesen. Die Anwendbarkeit als 

Photoschalter muss jedoch noch in weiteren biologischen Testsystemen bestätigt werden. 
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Introduction 

1. INTRODUCTION 

Photochemistry and the development of kinase inhibitors are both disciplines that have 

independently received much attention by the research community over the last decades. It is 

therefore rather surprising that the combination of both fields has been neglected so far. 

Activation by light provides precise spatial and temporal control of biological processes.
1–5

 

This offers unparalleled opportunities to understand and influence complex biochemical 

mechanisms, even in living cells.
2
 The introduction of kinase inhibitors was a milestone in 

modern drug discovery and revolutionized targeted cancer therapy.
6,7

 However, lack of 

efficacy, limited selectivity, the occurrence of therapy-limiting side effects, and the emergence 

of tumor resistances illustrate the urgent need for novel drug candidates as well as innovative 

therapeutic approaches.
6,8

 New concepts that are able to reduce adverse events and overcome 

tumor resistance would be of significant benefit.
6,8

  

The objective of this study, therefore, was to combine both research fields by the development 

of photoactivatable kinase inhibitors. The fascinating possibilities of photochemistry were 

herein applied on a unique group of pharmacological substances. 
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1.1 ACTIVATION BY LIGHT 

Spatial and temporal control of biological processes is a fascinating challenge.
5
 Light seems 

to be an ideal trigger for an external control of biochemical mechanisms due to its high 

spatiotemporal resolution as well as non-invasive and orthogonal character.
5
 Furthermore, it 

does not cause contamination of the sample; wavelength and intensity can be regulated with 

high precision, e.g. with lasers or microscopes.
5
 Rapid concentration jumps of the active form 

of a light-responsive molecule can be achieved providing precise control of area, time, and 

dosage.
2
  

The photocontrol of biologically active compounds offers outstanding experimental 

possibilities.
9
 Photoactivatable ligands have become important tools in drug discovery and 

drug development.
9
 They are used for a wide range of applications including target 

identification, determination of ligand affinity resp. selectivity, and detection of binding sites.
9
 

The selectivity of drugs can furthermore be increased by controlling their activity with light.
5
 

This might be beneficial with regard to the occurrence of side effects or the emergence of 

resistances.
5
 Not only small molecules have nowadays undergone this strategy, but also 

nucleic acids, peptides, and even large proteins.
4
 

In general, there are different strategies to control the activity of molecules by irradiation. 

They can either be irreversibly activated by light (so-called caged compounds) or reversibly 

switched between an active and an inactive form (photoswitches).
3,4,10
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1.1.1 Caging Concept 

Caged compounds can be activated by irradiation with light.
10,11

 The implementation of 

photoremovable protection groups (PPGs) provides control over the release of bioactive 

molecules triggered by ultraviolet (UV) light (Figure 1).
1,2

 Higher drug concentrations can 

therefore be reached in the area of interest, sparing other compartments.
2
 The photo prodrug 

concept is essentially based on the blockade of a pharmacophoric group. The PPG is thus 

attached to the drug molecule by a covalent bond.
2
 This bond has then to be cleaved by 

radiant energy, releasing the parent bioactive compound.
2
  

 

target  
caged 

inhibitor 
 

inhibited 
target 

 
cleaved 

protection group 

Figure 1. Schematic representation of the caging principle. An inhibitor is covalently linked to a PPG and 

thus biologically inactive (“caged”). Irradiation with UV light cleaves this bond and the bioactive compound is 

released. 

The first and most prominent example is certainly the photorelease of caged adenosine 

triphosphate (ATP) by Kaplan and co-workers in 1978.
12

 Intensive research has since then 

been carried out in the field of photochemistry concerning various classes of protecting 

groups and evaluation of their photocharacteristics.
4,9–11,13–15

. Klán et al.
10

 defined six main 

categories of PPGs with more than twenty subcategories (Figure 2). Hundreds of derivatives 

have been specified within these classes, attachable to a variety of leaving groups and offering 

a wide range of absorption maxima and release characteristics. 
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Figure 2. Chemical structures of diverse PPGs classes.
10

 LG = leaving group. 
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Nevertheless, none of these PPGs can be considered to provide perfect characteristics in all 

criteria.
10,13

 An individual selection has therefore to be made depending on the intended 

application. This choice is based on the following parameters and requirements: 

- low intrinsic activity of the caged compound and good stability under assay conditions 

prior to photolysis; good solubility and permeability; 

- high absorption coefficients at a nonhazardous wavelength > 300 nm, high quantum 

yield (efficiency for release), clean and quantitative photoreaction; 

- biocompatible photochemical by-products with low absorption at the irradiation 

wavelength; and 

- for time-resolved work, the release rate of the bioagent must exceed that of the 

response investigated.
10,13

 

o-Nitrobenzyl derivatives have by far been the most commonly used PPGs.
1
 A broad 

spectrum of derivatives has been established with different absorption wavelengths and the 

ability to be attached to a variety of leaving groups.
10,16–19

 Photolysis of these prodrugs forms 

potentially toxic by-products, though, containing a reactive nitroso function (e.g. 

o-nitrosobenzaldehyde) with strong innate absorption.
1
 To conquer these disadvantages a high 

number of alternative PPGs has been developed.  

While the caging concept has been successfully applied on various bioagents, there are only a 

few reports on photoactivatable kinase inhibitors. Morckel et al. for instance created a 

photoactivatable small-molecule Rho kinase inhibitor.
20

 This tool compound was used to 

uncover molecular mechanisms of embryonic development in Xenopus laevis by targeting 

specific regions of the living embryo.
20

 In addition, small molecular equivalents of Src kinase 

have been caged
21

 as well as peptidic PKA inhibitors
22

. Light-regulated protein kinase C 

peptide-based sensors
23

 and tyrosine kinase reporters
24

 have furthermore been described. In 

our group, Zindler et al. recently reported about the design, synthesis, and characterization of 

a photoactivatable caged prodrug of imatinib.
25

 

Activation of caged compounds remains irreversible though. But for many pharmacological 

applications a reversible activation and deactivation of kinase inhibitors would be of high 

value for an improved control over the effects of active molecules. 
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1.1.2 Photoswitches 

Important biological processes are regulated by light in a reversible manner e.g. vision
26

 and 

photosynthesis
3,27

. Photons are absorbed by a chromophore leading to a conformational 

transformation. The term photoswitch is therefore used for molecules which switch reversibly 

between two or more isomeric forms induced by light.
3
 

A broad range of synthetic photoswitches has been designed.
3
 These molecular switches 

undergo conformational changes in their structure depending on the wavelength of the 

irradiated light.
3
 They can be characterized by the absorption maxima of their isoforms and by 

their photostationary state (PPS). This term is defined as a steady state reached by a reacting 

chemical system when light has been absorbed.
28

 Szymański et al.
3
 list six categories of 

molecular photoswitches (Table 1). They differentiate between chromophores that switch 

between E and Z configuration (azobenzenes, stilbenes, and hemithioindigos) and 

chromophores that interconvert between closed and open forms (spiropyrans, diarylethenes, 

and fulgides). The change in the three-dimensional (3D) geometry then modifies the 

biological effect. The most studied synthetic photoswitches are azobenzenes.
29

 A 

photoswitchable RET kinase inhibitor bearing an azobenzene group has recently been 

described.
30

  

The approved kinase inhibitors axitinib (19) and sunitinib (20) exhibit photosensitivity.
31,32

 

Both inhibitors are diarylethenes (Figure 3), but do not convert to a closed form upon 

irradiation. Instead an E-Z isomerization can be observed. They might, therefore, also be 

described as stilbene-like. 

 

Figure 3. Chemical structures of the light-sensitive approved kinase inhibitors axitinib (19) and sunitinib 

(20). The diarylethene structural element is highlighted in grey. 

This light-dependent isomerization offers an interesting starting point for the development of 

innovative photoswitchable kinase inhibitors. 
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Table 1. Groups of molecular photoswitches.
3
  

Photoswitches Light-induced Isomerization 

Azobenzenes 

 

Stilbenes 

 

Hemithioindigos 

 

Spiropyrans 

 

Diarylethenes 

 

Thiophenefulgides 
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1.1.3 Ultraviolet Light 

Sunlight is composed of a continuous spectrum of electromagnetic radiation and can be 

divided into three sections: 

- ultraviolet  (UV, wavelength range 100-400 nm) 

- visible  (vis, 400-750 nm), and 

- infrared  (IR, 750 nm-500 µm) light.
33,34

 

UV radiation can further be subdivided into UVA, UVB, and UVC (Table 2).
34

 It interacts 

with chemical molecules, particularly organic compounds, and thus causes e.g. fluorescence 

excitation or initiates chemical reactions. UV light shows distinct biological effects and has 

been used for many scientific applications, for instance in the field of photochemistry.
14,33

 

Table 2. Classification of UV light wavelength ranges and corresponding biological effects.
33,34

 

Name Abbreviation Wavelength Biological Effects 

Ultraviolet A 

(near UV) 
UVA 315-400 nm 

Skin tanning  

Photoaging 

Carcinogenic effects 

Ultraviolet B UVB 280-315 nm 

Photosynthesis of vitamin D 

Erythema  

Carcinogenic effects 

DNA damage 

Photokeratitis  

Ultraviolet C UVC 100-280 nm 
Photokeratitis 

Microbiocidal effects 

 

UV light sources 

The spectrum of the sunlight contains only a small amount of UV radiation.
35

 Artificial light 

sources like mercury or xenon arcs, often in combination with optical filters, are mostly used 

in photochemistry.
2,35

 Lasers emit precisely focused monochromatic light with high power 

and have been used for multiple applications.
2,35
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In this work, light-emitting diodes (LEDs) have been used which have undergone a rapid 

development in the past years. They are semiconductors and emit light over a narrow 

wavelength range (±10 nm).
35

 A large type variety with emission between the near UV and the 

IR light range are commercially available.
1
 The development of models with an emission 

below 365 nm, however, is in early stages and intensities are still very low.
35

 LEDs are small 

devices with high intensity, do not need a warm-up period and can be flexibly assembled. 

They are therefore convenient for chemical and biochemical applications. 

Medicinal applications 

Besides the various damaging effects of UV irradiation on biological systems, it has also been 

utilized as a therapeutic agent for various dermatological diseases.
33

 Plant extracts that 

contain the natural photosensitizer psoralen (27, Figure 4), a coumarin derivative, have been 

topically applied followed by sunlight exposure in Egypt thousands of years ago.
33

 This 

remedy was used as a treatment for vitiligo (leucoderma), a chronic skin disease which is 

characterized by the loss of pigmentation.
33,34

 The first modern clinical studies with topical 

and oral psoralens were reported in 1948.
36,37

 Orally administration of 8-methoxypsoralen 

(8-MOP, 28, Figure 4) and subsequent irradiation with UVA light proved to be effective 

against psoriasis, mycosis, vitiligo, and atopic dermatitis.
38

 This type of photochemotherapy is 

also called PUVA (psoralen plus UVA) therapy.
33

 Psoralens herein act as DNA intercalators 

and form, upon UVA irradiation, monoadducts as well as covalent interstrand cross-links with 

thymine residues which induces apoptosis.
39

 UVB radiation has also been successfully 

applied for clearing psoriasis.
40

 However, these phototherapies are associated with acute and 

chronic side effects of UV light on human skin.
33,41

 

 

 

Figure 4. Chemical structures of the furocoumarins psoralen (27) and 8-methoxy-psoralen (8-MOP, 28). 
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1.2 KINASE INHIBITORS 

Protein kinases have become one of the most pursued targets in pharmacological research in 

the last decades.
42

 Due to their key role in cellular signaling, the misregulation of kinase 

activity is the cause for many diseases. Besides various forms of cancer, their regulation is 

e.g. critical for the development of inflammatory diseases, Alzheimer’s, and Parkinson’s 

disease.
43–45

 

Kinase inhibitors have been successfully established over the past 15 years, especially in 

cancer treatment. To date, there are 28 FDA (Food and Drug Administration) approved small-

molecule kinase inhibitors (smKI); half of which have been approved in the past three 

years.
42,46

 For an overview of these drugs, their targets, and indications as well as dates of 

approval, see Table 3. The corresponding chemical structures are shown in Figures 5, 6, and 7. 

The approval of imatinib (31, Figure 5) in 2001 was a milestone in modern drug discovery 

and revolutionized targeted cancer therapy.
47

 An unparalleled development of innovative 

drugs was set in motion. Further eight protein kinase inhibitors were introduced into therapy 

until 2009. Meanwhile, the knowledge about kinase signaling networks and associated 

pathology steadily grew.
42

 Since 2011 a tremendous number of 19 new inhibitors has been 

approved and numerous candidates are currently in the pipeline.
42

  

Even though these molecules are structurally very homogeneous and many chemical features 

have been recycled for the development of the successors, innovations are yet achieved. New 

targets have been addressed; accomplishments with regard to potency and selectivity have 

been made.
42

 The first lipid kinase inhibitor, namely idelalisib
48,49

 (51, Figure 7), was 

approved in 2014; all other compounds represent protein kinase inhibitors. With respect to 

afatinib
50

 and ibrutinib
51

 (52 and 53, Figure 7), the first two covalent binding, thus irreversible 

inhibitors were introduced in 2013.
52

 The first allosteric inhibitor, trametinib (54, Figure 7), 

was also launched in 2013.
53

  

However, despite the progress already being made in the field of kinase inhibitor research, the 

current treatments concentrate on a very limited number of target proteins. In addition, severe 

side effects and rapidly emerging resistances often limit the therapeutic prospects. But more 

than one million publications on kinases in the past years, over 5000 crystal structures, and 

current achievements in the development of kinase assays allow looking into the future 

optimistically.
42
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Table 3. Currently FDA approved small-molecule kinase inhibitors.
42,45,46,54–56

 INN, international 

nonproprietary name; ALL, acute lymphoblastic leukemia; CLL, chronic lymphocytic leukemia; CML, chronic 

myeloid leukemia; CRC, colorectal cancer; FL, follicular lymphoma; GIST, gastrointestinal stromal tumor; 

HCC, hepatocellular cancer; MCL, mantle cell lymphoma; NSCLC, non-small cell lung cancer; RCC, renal cell 

carcinoma; SLL, small lymphocytic leukemia. 

INN Trade Name 
Binding Mode, 

Type 
Main Target(s) Indication(s) 

First FDA 
Approval 

Afatinib Gilotrif I, covalent EGFR, HER2/4 NSCLC 2013 

Axitinib Inlyta I VEGFR, PDGFR, cKIT RCC 2012 

Bosutinib Bosulif I ABL, SRC CML 2012 

Cabozantinib Cometriq II VEGFR, PDGFR, KIT, MET thyroid cancer 2012 

Ceritinib Zykadia I ALK, IGF-1R, InsR, ROS1 NSCLC 2014 

Crizotinib Xalcori/Xalkori I ALK, MET NSCLC 2011 

Dabrafenib Tafinlar I BRAF melanoma 2013 

Dasatinib Sprycel I ABL, PDGFR, KIT, SRC CML, ALL 2006 

Erlotinib Tarceva I EGFR 
NSCLC, 

pancreatic cancer 
2004 

Gefitinib Iressa I EGFR NSCLC 2003 

Ibrutinib Imbruvica I, covalent BTK MCL, CLL 2013 

Idelalisib Zydelig I PI3K CLL, FL, SLL 2014 

Imatinib Gleevec/Glivec II ABL, PDGFR, KIT CML, GIST 2001 

Lapatinib Tykerb/Tyverb I
56

, II
57

 HER2, EGFR breast cancer 2007 

Lenvatinib Lenvima I
55

, II
42

 VEGFR, FGFR, PDGFR, KIT thyroid cancer 2015 

Nilotinib Tasigna II ABL, PDGFR, KIT CML 2007 

Nintedanib Ofev II FGFR, PDGFR, VEGFR 
idiopathic pulmonary 

fibrosis 
2014 

Palbociclib Ibrance I CDK4/6 breast cancer 2015 

Pazopanib Votrient I
56

, II
42

 VEGFR, PDGFR, KIT RCC 2009 

Ponatinib Iclusig II ABL, VEGFR, PDGFR, FGFR CML, ALL 2012 

Regorafenib Stivarga II 
VEGFR, ABL, BRAF, KIT, 

PDGFR 
CRC, GIST 2012 

Ruxolitinib Jakafi/Jakavi I JAK myelofibrosis 2011 

Sorafenib Nexavar II VEGFR, PDGFR, KIT, BRAF 
RCC, HCC, 

thyroid cancer 
2005 

Sunitinib Sutent I VEGFR, KIT, PDGFR, FLT3 RCC, GIST 2006 

Tofacitinib Xeljanz I JAK rheumatoid arthritis 2012 

Trametinib Mekinist III MEK melanoma 2013 

Vandetanib Caprelsa I EGFR, VEGFR, RET, FGFR thyroid cancer 2011 

Vemurafenib Zelboraf I BRAF melanoma 2011 

 



 

 

 

Fehler! Verwenden Sie die Registerkarte 'Start', um  dem Text zuzuweisen, der hier angezeigt 

werden soll. 

Kinase Inhibitors 12 

ABL inhibitors 

 

EGFR inhibitors 

 

 

Figure 5. Chemical structures of FDA approved small molecule ABL and EGFR inhibitors.
42

 Structural 

elements that bind in the adenine pocket are highlighted in grey. Dashed arrows indicate hydrogen bonds toward 

the backbone of the hinge region.  
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VEGFR inhibitors 

 

BRAF inhibitors 

 

Figure 6. Chemical structures of FDA approved small molecule VEGFR and BRAF inhibitors.
42

 Structural 

elements that bind in the adenine pocket are highlighted in grey. Dashed arrows indicate hydrogen bonds toward 

the backbone of the hinge region.  
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JAK inhibitors 

 

ALK inhibitors MET inhibitors 

 

CDK inhibitor PI3K inhibitor 

  

Irreversible inhibitors MEK inhibitor 

  

Figure 7. Chemical structures of further FDA approved small-molecule kinase inhibitors.
42

 Structural 

elements that bind in the adenine pocket are highlighted in grey. Dashed arrows indicate hydrogen bonds toward 

the backbone of the hinge region. Solid arrows show where reactive nucleophilic cysteine residues of the target 

protein attack Michael acceptor groups of the two irreversible inhibitors. 
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1.2.1 Protein Kinases 

Function and signal transduction 

Protein kinases are phosphotransferases; in other words, enzymes that catalyze the transfer of 

the γ-phosphate group of ATP onto a substrate.
58

 Signal proteins are thus phosphorylated at 

the hydroxyl group of specific amino acid residues, in the majority of cases serine/threonine 

or tyrosine residues. 
58

 Signal transduction cascades are mediated in this way regulating many 

cellular activities including proliferation, survival, apoptosis, metabolism, transcription, and 

differentiation.
59

 Because of their versatile role in cellular processes, misregulation of kinases 

like overexpression or hyperactivity due to mutations is the cause for many diseases. Kinases 

have therefore become important targets in drug discovery.
7,60

 

Kinase structure 

Although human kinases are quite diverse in their primary amino acid sequences, their 3D 

structures show a high degree of similarity.
42

 The structure of the kinase domain is highly 

conserved since most of them use ATP as a common cofactor.
61

 As Figure 8 illustrates, protein 

kinases consist of an N-terminal lobe (N-lobe) which is linked via a so-called hinge region to 

a C-terminal lobe (C-lobe).
7
 The otherwise β-sheet dominated N-lobe also contains an αC-

helix whose conformation plays a key role in the regulation of the kinase function. The 

C-lobe, on the other hand, contains mostly α-helices.
7
 The ATP binding pocket is located in 

the cleft between both lobes, where the backbone of the hinge region is addressed by the 

adenosine moiety of ATP by two hydrogen bonds.
7
 Most kinase inhibitors bind in the adenine 

pocket of the active site and also form hydrogen bonds toward the hinge-region (Figures 5, 6, 

and 7).
7,45
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Figure 8. General structure of protein kinases.
7
 The structure of kinases is exemplified on the serine/threonine 

protein kinase BRAF
V600E

 (pdb 3OG7
62

). The hinge region connects the N-terminal and the C-terminal lobe. The 

cofactor ATP and most kinase inhibitors bind in the cleft between both lobes, the ATP binding pocket, interacting 

with the hinge region. In this example, the A-loop is in the active conformation and the ATP pocket is occupied 

by vemurafenib (44, Figure 6). 

The access to the active site is controlled by a flexible activation loop (A-loop), which starts 

with the conserved amino acid sequence Asp-Phe-Gly (DFG motif).
42

 The aspartate residue of 

this motif further complexes a magnesium ion (Mg
2+

) which is crucial for the phosphate 

transfer from ATP to the substrate.
58

 The A-loop contains several activation sites itself whose 

phosphorylation induces conformational changes regulating the activity of the kinase.
63

 In the 

inactive conformation, the A-loop blocks the active site (DFGout conformation) and prevents 

ATP from binding.
8
 Upon phosphorylation of the A-loop, the DFG motif flaps deeper into the 

binding pocket (DFGin conformation) permitting ATP access to its binding pocket.
42,45
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According to the pharmacophore model of Traxler and Furet
64

, the ATP binding site itself 

consists of the highly conserved adenine-binding region, ribose pocket (sugar pocket), and 

phosphate-binding region (Figure 9).
61

 Adjacent to these, a hydrophobic pocket (hydrophobic 

pocket I, HP I), an allosteric hydrophobic back pocket (deep pocket) and a surface-exposed 

hydrophobic region (HP II) are located.
45,61

 The latter three are non-conserved pockets 

because they are not occupied by ATP. Addressing these regions therefore allows the design of 

selective ATP competitive kinase inhibitors (Figures 10 and 11).
45,60,61

 The access to the HP I 

is partially hindered by the gatekeeper, an amino acid residue that varies between individual 

kinases.
65

 Gatekeeper mutations are often the cause of acquired kinase inhibitor resistances.
66

 

 

 

Figure 9. Model of the ATP binding pocket.
45,58,61,64

 Interactions of ATP with important structural elements and 

pharmacophore regions are shown.  
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Figure 10. Pharmacophore model of a type I inhibitor in the ATP binding site (DFGin conformation).
45,64

 

Addressed binding pockets of a type I inhibitor are exemplified on vemurafenib (44, Figure 6) interacting with 

the ATP pocket of BRAF
V600E

 (pdb 3OG7
62

) in the active conformation. The entrance to the deep pocket is 

blocked by the phenylalanine residue of the DFG motif.  

 

 Figure 11. Pharmacophore model of a type II inhibitor in the ATP binding site (DFGout conformation).
45,64

 

Addressed binding pockets of a type II inhibitor are exemplified on sorafenib (42, Figure 6) interacting with the 

ATP pocket of VEGFR2 (pdb 4ASD
67

) in the inactive conformation. The phenylalanine residue of the DFG 

motif is flapped toward the ATP binding site so that the entrance to the deep pocket is unblocked and can thus be 

addressed by the inhibitor.  
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Binding modes of kinase inhibitors 

Kinase inhibitors can be categorized by binding modes (Table 4).
7,8,42,45,56

 Most compounds 

represent reversible inhibitors binding into the ATP site. Four types can be differentiated with 

regard to the addressed binding pockets and the adopted kinase conformation upon binding. 

Type I inhibitors bind to the active form of the kinase (DFGin inhibitors).
45

 The access to the 

deep pocket is thus blocked by the DFG motif.
8
 Hydrogen bonds are formed by heterocycles 

of the inhibitor toward the backbone of the protein’s hinge region.
45,56

 Addressing the 

neighboring hydrophobic pockets can improve selectivity, since the ATP pocket itself is 

highly conserved throughout all kinase families.
8
 

Type II inhibitors, on the other hand, bind to and thus stabilize the enzymatically inactive 

kinase configuration (DFGout inhibitors).
8
 The DFG motif is herein flapped outward from the 

ATP binding site permitting access to the deep pocket.
42

 The A-loop adopts the inactive 

conformation blocking the access of ATP to the adenine pocket.
8
 Besides the hinge region, the 

allosteric back pocket is addressed by type II inhibitors which are therefore also called deep 

pocket binders.
68

 This approach offers better chances for selectivity since this region is less 

conserved.
8
 Slow on/off binding kinetics and stabilization of the inactive kinase state explain 

why relatively weak type II inhibitors can show very potent cellular efficacy.
69

 

Type III inhibitors exclusively bind in allosteric regions adjacent to the active site without 

making any contact with the ATP pocket itself.
42

 In the type IV binding mode an allosteric site 

remote from the ATP pocket is addressed.
42

 In both cases, the DFGout conformation is 

stabilized hindering ATP to access to the active site and thus inhibiting the enzyme’s 

function.
8
 

Irreversible kinase inhibitors covalently bind to a reactive nucleophilic residue of the 

protein.
42

 The two approved representatives, afatinib and ibrutinib (52 resp. 53, Figure 7), 

bear a Michael acceptor functionality which is attacked by a nucleophilic cysteine residue 

proximal to the ATP binding site.
42

 Both drugs are initial type I binders before becoming 

actually covalently bond, but irreversible inhibitors of the other types are likewise feasible. 

The covalent approach aims to increase specificity and potency, although toxicity concerns 

have been raised.
42,52
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Table 4. Binding mode classification of kinase inhibitors.
7,42,45,56

 Small-molecule kinase inhibitors can be 

divided into reversible and irreversible inhibitors. Types I to IV additionally differentiate regarding the addressed 

binding pockets of the target protein and the stabilized kinase conformation. 

Type Binding Kinetics Addressed Pockets Kinase Conformation Examples 

I 
ATP competitive, 

reversible (fast) 

adenine pocket, 

HP I / HP II 
active (DFGin) gefitinib 

I 

(covalent) 

initially ATP 
competitive, 

irreversible 

adenine pocket, 

HP I / HP II 
active (DFGin) afatinib, ibrutinib 

II 

ATP competitive with 
allosteric component, 

reversible (slow) 

adenine pocket, 

deep pocket, 

HP I / HP II 

inactive (DFGout) imatinib, sorafenib 

III 

(allosteric) 

non-ATP competitive, 

reversible 

deep pocket, 

HP I / HP II 
inactive (DFGout) trametinib 

IV 

(allosteric) 

non-ATP competitive, 

reversible 

allosteric pocket 

(remote from ATP pocket, 

e.g. substrate binding domain
70

) 

inactive (DFGout) 

only experimental 
compounds 

(e.g. GNF-2)
56

 

 

Alternative and revised classifications have further been suggested. Irreversible inhibitors, for 

instance, have also been declared as the fifth class of inhibitors.
70

 Some inhibitors, e.g. 

dasatinib (30, Figure 5), have been observed to bind to conformations that are intermediate 

between DFGin and DFGout.
56

 A hybrid binding mode (classified by type I 
I
/II or type V) with 

mixed characteristics of types I and II has therefore been discussed.
56,58

 

McTigue et al. have intensively studied the binding modes of VEGFR inhibitors.
67

 They 

argued that declared type I inhibitors like axitinib and sunitinib (19 resp. 20, Figure 6) bind to 

the DFGout conformation without interaction with the deep pocket and categorize them as a 

new type IV. The difference to type II inhibitors like sorafenib (42, Figure 6) lies, according to 

them, in the conformation of the juxtamembrane domain.
67

 New pharmacophore models have 

been designed based on these results.
71
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According to Okamoto et al. sunitinib as a type I inhibitor shows fast binding kinetics and 

binds to the DFGin conformation, whereas sorafenib as a type II inhibitor shows slow binding 

kinetics and binds to DFGout.
55

 They demonstrated that lenvatinib (38, Figure 6) exhibits a 

prolonged residence time; it binds to the DFGin conformation but additionally addresses the 

neighboring allosteric pocket. They therefore suggest calling these types of inhibitors type V. 

Bivalent kinase inhibitors have additionally been reported and classified as type V 

inhibitors.
72

 They consist of an ATP competitive small molecule that is linked to a peptide 

ligand. The latter binds to a signaling interaction site of the targeted kinase in order to 

improve selectivity and potency.
73

  

Another model by Kornev et al. uses a nonlinear motif, the so-called regulatory or 

hydrophobic spine, for the explanation of the active and inactive conformation.
74

 According 

to the model, a spine comprised of four hydrophobic residues is dynamically formed upon 

activation. Inhibitors can bind in the ATP pocket depending on the conformation of this spine 

and can thus be classified. 

The traditional classification system cannot express all the subtleties and nuances of kinase 

inhibitor binding modes. The active and inactive conformation of the DFG motif are only two 

extremes between various possible kinase configurations due to the flexibility of the protein 

chain. New types of kinase inhibitors with novel binding modes are furthermore emerging. 

Zhao et al. therefore stated that classification should be made according to how inhibitors 

affect kinetic parameters of the kinase and whether they display competitive, non-competitive 

or mixed inhibition profiles.
56

 But they also discussed the practical difficulties of this 

approach: this kind of enzymological data is rarely available for new kinase inhibitors; and 

the intracellular state of a kinase can hardly be reproduced in a test system due to complex 

post-translational and regulatory interactions in the cell. Crystallographic structures therefore 

provide an invaluable guide at the molecular level for medicinal chemists.
56
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1.2.2 BRAF
V600E

 Inhibitor Vemurafenib 

The RAS/RAF/MEK/ERK signal transduction cascade is an essential signaling network that 

governs proliferation, differentiation and cell survival (Figure 12).
75

 Cellular responses to 

growth signals are mediated by this mitogen-activated protein kinase (MAPK) pathway, 

which is frequently deregulated in cancer.
76

 The three isoforms ARAF, BRAF and CRAF are 

cytoplasmic serine/threonine kinases that are regulated by binding RAS.
76

 Mutations in the 

BRAF gene occur in more than half of malignant melanomas and in a variety of other 

cancers.
62

 Whereat, a single substitution of glutamic acid for valine at position 600 (V600E, 

previously misnamed 599
77

) is accounting for the majority of cases.
62

 BRAF
V600E

 thus 

becomes constitutively activated independent from RAS regulation.
78

 When the oncogenic 

potential of the BRAF gene was recognized, multiple drug discovery approaches were 

launched.
75,79

 

 

Figure 12. RAS/RAF/MEK/ERK signal transduction cascade.
80

 On the left, the physiological pathway in 

melanocytes after binding of a growth factor (GF) is illustrated. The cascade leads to subsequent 

phosphorylation of RAS, BRAF, MEK, and ERK and therefore to a signal enhancement. Gene transcription is 

hence regulated resulting in physiological cell proliferation and cell survival. In certain melanoma cancer cells, 

as shown on the right, a gain-of-function mutation of BRAF leads to an up-regulation of this pathway and 

consequently to an uncontrolled cell proliferation. 
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Sorafenib (42, Figure 6) was initially developed as an anti-melanoma agent targeting RAF, 

but failed in clinical studies due to inefficacy.
78

 However, further investigations revealed its 

anti-angiogenetic effects by multi-target inhibition including VEGFR and PDGFR.
78

 

Sorafenib has thus been used since 2005 as an orphan drug (Nexavar, Bayer) for the treatment 

of renal cell and hepatocellular carcinoma.
81–83

 

A structure-guided approach subsequently led to the development of vemurafenib (44, Figure 

6) with improved BRAF selectivity and efficacy.
62,78

 Vemurafenib was the first approved drug 

for the personalized treatment of BRAF-mutant cancer.
62,78

 The kinase inhibitor was 

discovered in 2005 and further developed under the research code PLX4032 by Plexxikon and 

Roche.
62,78

 It received approval under the trade name Zelboraf for the treatment of metastatic 

melanoma with BRAF
V600

 mutation in the United States and Europe in 2011 and 2012, 

respectively.
62,78

  

The introduction of vemurafenib into melanoma therapy showed impressive results. 

Remarkable response rates of 81% (phase I clinical trial
80

) resp. over 50% (phase II and III 

clinical trials
84,85

) were reached. The advantage over the comparative treatment with 

dacarbazine, an alkylating agent, was so evident that the FDA recommended a revision of the 

analysis plan so that patients in the control arm were permitted to receive vemurafenib as 

well.
78

 But despite outstanding tumor regressions and distinctive improvements in survival, 

vemurafenib cannot cure metastatic melanoma. Moreover, a massive dosage of 960 mg twice 

daily is required for an optimal therapeutic effect.
78

 An unacceptable toxicity was already 

documented at 1,120 mg twice a day.
86

 This leads to a high incidence of severe adverse events 

such as arthralgia (joint pain), skin rash, and the development of squamous cell carcinoma in 

26% of patients.
84

 Most patients furthermore suffer from lethal relapse due to drug-resistance 

after only a few months of therapy. Investigations on mechanisms revealed that drug 

resistance is selected by continuous vemurafenib administration.
87

 It could be demonstrated 

that resistant melanomas become drug dependent for their continued proliferation.
87

 A 

discontinuous dosing strategy was therefore suggested.
87
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In May resp. August 2013 dabrafenib (43, Figure 6), another mutant BRAF selective anti-

melanoma agent, was approved by the FDA and the European Medicine Agency (EMA).
42

 

Several other small molecules targeting BRAF are currently evaluated in clinical trials.
88

  

In order to reduce side effects and delay the formation of resistances, a light-mediated spatial 

and temporal control of BRAF inhibitors would be of great benefit. The development of photo 

prodrugs by introduction of PPGs might create novel therapeutic options and could enhance 

basic research by innovative tool compounds. Caged vemurafenib prodrugs are one of the 

main topics in this work. Von Drathen focused in his bachelor thesis on approaches for 

photoactivatable dabrafenib prodrugs.
89
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1.2.3 VEGFR Inhibitors Diarylmaleimide and Carbazole 

The vascular endothelian growth factor (VEGF) is an important mitogen in the physiological 

regulation of angiogenesis.
90,91

 Formation and growth of new blood vessels is a key process 

during embryogenesis and skeletal growth.
92

 In adult individuals, however, angiogenesis 

activities are rare with the exception of reproductive functions and wound healing.
93

 

Pathophysiological angiogenesis is beyond that associated with tumor growth and intraocular 

neovascular diseases.
91

 The first anti-angiogenetic drug was bevacizumab (trade name 

Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy.
94

  

There are five different VEGF ligands which represent homodimeric glycoproteins.
95

 These 

growth factors bind to three receptor tyrosine kinase (RTK) isoforms, namely VEGFR1, 

VEGFR2, and VEGFR3.
95

 The related receptors consist of seven extracellular 

immunoglobulin-like domains, a single transmembrane region, and an intracellular split 

tyrosine-kinase domain.
91

 VEGFR1 is responsible for hematopoietic cell development, 

VEGFR2 is critical for vascular endothelial function, and VEGFR3 regulates lymphatic 

endothelial cell function.
95

 VEGF-A (also VEGF) is the most important stimulus for most 

physiological and pathological angiogenetic effects mediated by VEGFR2.
95

 These effects on 

endothelial cells include proliferation, migration, survival, and permeability.
95

 

Upon binding of a growth factor two receptor proteins dimerize.
96

 This induces 

autophosphorylation of the intracellular kinase domains triggering diverse signal transduction 

cascades.
97

 Important signaling pathways and their respective cellular responses are shown in 

Figure 13. 
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Figure 13. VEGF and VEGFR2 mediated signal transduction cascades.
97

 The growth factor VEGF binds to 

the extracellular domain of the receptor tyrosine kinase VEGFR2. This is followed by the dimerization of two 

receptor monomers and autophosphorylation of the intracellular domains. This leads to the activation of a 

cascade of downstream protein pathways and to the indicated biological effects. Only crucial proteins of each 

pathway are shown. 

Besides therapeutic antibodies, small molecule tyrosine kinase inhibitors (TKIs) targeting 

VEGFR have been developed.
67

 Seven small molecule VEGFR inhibitors have been approved 

until today (Table 3).
42

 One of them, axitinib, is discussed in more detail in the next chapter. 

These agents are usually not highly specific for VEGFR and thus also hit other related 

tyrosine kinases e.g. platelet-derived growth factor receptor (PDFGR).
97

 A high number of 

further VEGFR inhibitors are currently in the clinical development or have been developed as 

experimental substances.
88

 Peifer et al. reported in 2006 about a novel class of potent VEGFR 

inhibitors, namely 3,4-diarylmaleimides, as anti-angiogenesis agents.
98,99

 Within this series 

compound 55 (Figure 14) showed the highest potency with a VEGFR2 IC50 of 2.5 nM.
99

 

 

 



 

 

27  

Fehler! Verwenden Sie die Registerkarte 'Start', um  dem Text zuzuweisen, der hier angezeigt 

werden soll. 

Introduction 

 

 

Figure 14. Light-induced 1,6-π-electrocyclization of diarylmaleimide 55 and subsequent oxidation of the 

intermediate 56 to the carbazole 57.
98

  

Diarylmaleimide 55 seemed to be particularly interesting with regard to the photo project. Not 

only the high in vivo efficacy but also its light sensitivity made this compound an interesting 

candidate for a photoactivatable kinase inhibitor. Figure 14 shows that a cyclization reaction 

is taking place upon light exposure.
98

 A non-planar intermediate (56) is formed at first which 

could not be isolated.
98

 The latter is then oxidized to a planar carbazole structure in the next 

step. The carbazole represents a potent VEGFR inhibitor as well.
99

 It furthermore shows 

strong fluorescence which additionally seemed to be advantageous for microscopic 

investigations regarding e.g. its distribution in cellular compartments. 
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1.2.4 VEGFR Inhibitor Axitinib 

Targeted therapeutics addressing the VEGFR have revolutionized the treatment of metastatic 

renal cell carcinoma (RCC).
100

 90% of RCC patients show a mutation in the Von Hippel-

Lindau (VHL) gene with an overproduction of the angiogenic factor VEGF.
67

 The inhibition 

of VEGFR thus suppresses angiogenesis, cellular adhesion, and migration.
67

 

Since the introduction of the multi-kinase inhibitor sorafenib in 2005, the disease 

management of RCC has evolved rapidly.
101

 Second-generation VEGFR inhibitors such as 

axitinib (Inlyta, Pfizer) offer optimized potency and selectivity.
101

 Axitinib (19, Figure 6) is an 

indazole-derived, small molecule tyrosine kinase inhibitor.
92

 It has been approved for the 

therapy of advanced RCC in 2012.
101

 Its antiangiogenic effect is based on the inhibition of 

VEGFR1-3 at nanomolar concentrations.
101

 Other targets of axitinib are the highly related 

receptor tyrosine kinases PDGFR and cKIT.
101

 Their inhibition is, however, about eight-times 

weaker compared to VEGFR.
101

 

Beyond the indication for kidney cancer, angiogenesis plays an important role in the genesis 

of many tumors. An expansion of the indication is therefore conceivable and several clinical 

trials are currently performed e.g. for the treatment of melanoma, hepatic, or prostate cancer.
88

 

Furthermore, axitinib was recently discovered to effectively inhibit a mutant of BCR-ABL1 

that is often responsible for acquired drug resistance in the therapy of chronic myeloid 

leukemia (CML) with kinase inhibitors.
102

 In addition to its decisive role in cancer therapy, 

axitinib has been used in numerous in vitro and in vivo experiments.
67,103,104

 

 

Figure 15. Light-induced E-Z isomerization of axitinib. 
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The structure of axitinib offers an interesting E-Z photoswitching option based on the 

diarylethene resp. stilbene-like moiety (Figure 15).
3
 It was hypothesized that the 

stereoisomers would thus exhibit different biological activities. The possibility to control the 

efficacy of axitinib by switching it on and off through irradiation would be of great benefit in 

various experimental settings.  
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2. AIMS AND OBJECTIVES 

2.1 CAGED VEMURAFENIB 

The goal of this project was the development of novel photoactivatable prodrugs of 

vemurafenib. The occurrence of therapy-limiting side effects as well as only temporarily 

efficacy illustrates the urgent need for new therapeutic approaches with kinase inhibitors.
84–86

 

The caging approach might enable higher drug concentrations specifically generated by 

irradiation in cancer-afflicted tissues, resulting in a faster, more efficient regression with 

fewer side effects.
4,10,14,30

 Beyond novel therapeutic applications, these photo prodrugs could 

serve as experimental tools e.g. for kinetic or mechanistic studies.
105

 

 

Figure 16. Workflow of the caged vemurafenib project. The presented strategy involves (1) selection of an 

appropriate candidate for the caging concept, (2) determination of suitable pharmacophore moieties, (3) 

demonstration of adequate UV stability of the active inhibitor, (4) synthesis of caged photo prodrugs, (5) 

photochemical characterization and photoactivation, and (6) in vitro evaluation of photoactivation. The long-

term objective is (7) the proof of concept in animal studies. 
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The objective of this study was the design, synthesis, and biological evaluation of 

photoactivatable prodrugs of vemurafenib following the workflow illustrated in Figure 16. 

First, molecular modeling was to reveal promising pharmacophoric groups to be protected by 

PPGs (chapter 3.1.1). Afterwards an adequate UV stability at 365 nm of vemurafenib was to 

be verified in order to ensure that it is not degraded upon irradiation (chapter 3.1.2). 

Diverse classes of PPGs were to be assessed regarding their chemical accessibility (chapter 

3.1.3) and their photochemical characteristics (chapter 3.1.4), respectively. For the PPG 

assessment, a dummy compound was to be used in order to simplify the reactions conditions. 

The hinge binder scaffold of vemurafenib (44, Figure 17), represented by a 7-azaindole, was 

thus to be investigated concerning its intended role as a leaving group in a photoreaction. 

Despite the enormous amount of data about PPGs, information on the photoprotection of 

N-heterocycles is rarely available.
18–20

 This is presumably due to the fact that nitrogen 

compounds represent poor leaving groups in the photolysis reaction.
10,19

 Type I and II kinase 

inhibitors typically address the hinge region by nitrogen functions (Figures 5, 6, and 7).
7
 This 

interaction is essential for the binding mode and its blockade is therefore especially 

interesting regarding the caging concept.  

 

 

Figure 17. Chemical structure of vemurafenib (44). The hinge binder (7-azaindole) is highlighted in grey. 
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The question was if 7-azaindole could be released by the PPG at sufficient reaction rates or if 

further substituents would be necessary to stabilize transition states of the complex photolysis 

reaction (chapter 3.1.4). The objective was therefore to find the minimal structural 

requirement for the photoreaction. This identified fragment was consequently to be used as a 

dummy compound. Representatives from the following PPG classes were to be linked to this 

structure in order to compare their photochemical characteristics: o-nitrobenzyl, phenacyl, 

desyl, and coumarin moieties (Figure 18). 

o-Nitrobenzyl groups 

 

 

Phenacyl groups Desyl group Coumarin groups 

 

Figure 18. Selection of PPGs to be assessed in the vemurafenib project. LG = leaving group. 

Based on these findings, PPGs with optimized photolysis characteristics were to be selected 

for the synthesis of vemurafenib prodrugs (chapter 3.1.3). These were next to be 

photochemically characterized (chapter 3.1.4). This included assignment of an optimal 

wavelength for deprotection and investigation of photoinduced release of vemurafenib. 

Determination of BRAF
V600E

 Kd values and a broad kinase selectivity profile for these 

compounds had subsequently to be performed to prove the intended loss-of-function by 

photoprotection. Finally, recovery of vemurafenib’s efficacy by UV irradiation had to be 

demonstrated in enzymatic resp. cellular assays and the biological impact of the released 

protecting group biologically evaluated (chapter 3.1.5).   
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Aims and Objectives 

2.2 CAGED DIARYLMALEIMIDES AND CARBAZOLE 

Besides the approved kinase inhibitor vemurafenib, the caging project included two 

experimental compounds: the diarylmaleimide 55 and the carbazole 57.
98

 An interesting 

aspect about these compounds is the light-induced conversion from the diarylmaleimide to the 

planar carbazole (Figure 14).
98

 Both compounds represent potent VEGFR inhibitors. By this 

reaction, a 1,6-π-electrocyclization with subsequent oxidation, the non-planar intermediate 56 

is formed.
98

 This intermediate cannot be isolated. An in situ formation of 56 was therefore to 

be examined in photochemical and biological assays. 

Additionally, both inhibitors were selected to be caged according to the strategy presented in 

chapter 2.1 (Figure 16). The objective of this approach was to develop photoactivatable 

VEGFR inhibitors as powerful pharmacological tools. Further focus was set on the 

exploration of another N-heterocycle, namely the maleimide moiety, as a leaving group for 

photolysis reactions. 

The set-up of this project included the following steps: 

(1) determination of a suitable pharmacophore moiety by molecular modeling 

(chapter 3.2.1), 

(2) investigation of UV stability and light-induced conversion from 55 to 57 

(chapter 3.2.3), 

(3) synthesis of caged photo prodrugs (chapter 3.2.2), 

(4) their photochemical characterization (chapter 3.2.3), 

(5) in vitro evaluation of the in situ formed 56, and 

(6) in vitro evaluation of the photoactivated caged prodrugs (chapter 3.2.4).   
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2.3 PHOTOSWITCHABLE AXITINIB 

The goal of this project was to investigate if axitinib can be used as a photoswitchable kinase 

inhibitor. The approved VEGFR inhibitor has shown excellent therapeutic results and has 

been used in a variety of biochemical assays.
101

 Based on the light-induced E-Z isomerization 

(Figure 15), the stilbene-like structure of axitinib offers an interesting photoswitching option 

which had not been reported in the academic field so far. As a photoswitch the biological 

effects of axitinib could be precisely turned on and off with high spatial and temporal control. 

This would offer opportunities both from a therapeutic point but also in basic kinase research. 

The strategy involved the following steps: 

(1) molecular modeling and docking studies in order to predict the binding affinity of both 

stereoisomers 19 and 19a (chapter 3.3.1), 

(2) isolation of axitinib’s (Z)-stereoisomer (19a) (chapter 3.3.2), 

(3) photochemical characterization of the (E)- and the (Z)-stereoisomer (chapter 3.3.3), 

(4) exploration of the photoinduced E-Z isomerization depending on the irradiated 

wavelength (chapter 3.3.3), and 

(5) biological evaluation comparing the inhibitory efficiency of both stereoisomers, 

including enzymatic and cellular in vitro assays (chapter 3.3.4). 

 

 

  



 

 

35  

Fehler! Verwenden Sie die Registerkarte 'Start', um  dem Text zuzuweisen, der hier angezeigt 

werden soll. 

Results and Discussion 

3. RESULTS AND DISCUSSION 

3.1 CAGED VEMURAFENIB 

3.1.1 Molecular Modeling 

The ligand-protein interactions of vemurafenib (44, Figure 6) in the ATP pocket of BRAF
V600E 

(pdb 3OG7
62

) were examined by molecular modeling (chapter 5.1). In order to design 

effectless vemurafenib prodrugs, it was necessary to define key pharmacophoric moieties of 

this kinase inhibitor to be subsequently blocked by PPGs.  

In Figure 20 (A) and (B) the binding mode of vemurafenib in the ATP pocket of BRAF
V600E

 is 

shown (pdb 3OG7).
62

 Figure 19 shows the corresponding two-dimensional (2D) ligand-

interaction diagram for clarity. The type I inhibitor vemurafenib is addressing two key 

H-bonds by its 7-azaindole moiety toward the hinge region.
7
 The sulfonamide NH residue of 

vemurafenib furthermore interacts with backbone amides of the DFG motif. Both the 

7-azaindole and sulfonamide were hence considered to be suitable pharmacophoric moieties 

for photoprotection. 

 

Figure 19. 2D ligand-interaction diagram of vemurafenib in BRAF
V600E 

(pdb 3OG7
62

). H-bond interactions 

of the ligand toward the protein backbone are shown. 
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Figure 20. X-ray defined binding mode of vemurafenib in the ATP pocket of BRAF
V600E

 (pdb 3OG7
62

) and 

determination of photoprotection sites. Arrows indicate the perspective of the enlarged views in (B), (C), and 

(D). Hydrogen bonds between the ligand and the protein backbone are indicated by black dotted lines. Red 

dashed lines represent sterical clashes between the PPG and the target protein. 
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In line with this notion, superposition of modeled photoprotected vemurafenib derivatives 58 

and 60 (Figure 21) in the active site of BRAF
V600E

 resulted in significant sterical clashes 

(Figure 20 (C) and (D)), indicating nonplausible binding modes. It was however assumed that 

blocking the azaindole NH moiety of vemurafenib’s hinge binder would be more promising to 

demolish any affinity of the photoprotected prodrugs to other kinases since all type I and II 

inhibitors use this interaction.
106

 On the other hand, prodrugs with a PPG attached to the 

sulfonamide residue might still show some affinity to kinases featuring a larger or more 

flexible binding pocket in this peripheral area.
6,107  

  

 58   (R = H) 60 
  59   (R = CH3) 

Figure 21. Chemical structures of caged vemurafenib prodrugs. The PPGs are highlighted in grey. 

Motivated by the modeling data, both NH photoprotected vemurafenib analogs were 

synthesized as described in chapter 3.1.3. This allowed a comparison of their anticipated in 

vitro non-efficacy against the target enzyme BRAF
V600E

 and within a broad kinase panel to 

assess their specificity. 
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3.1.2 UV Stability 

Reactivation of photoprotected prodrugs requires the parent compound’s stability at the used 

wavelength of irradiated light. The drug molecule would otherwise be degraded immediately 

after its release or even before the covalent bond to the PPG is cleaved. The UV stability of 

vemurafenib was hence examined at 365 nm (chapter 5.2.2). As shown in chapter 3.1.4, this 

wavelength is suitable for the cleavage of the introduced PPGs. 10 mM (DMSO) and 0.01 mM 

(PBS buffer containing 10% DMSO) solutions of vemurafenib were irradiated for 20 min. 

HPLC analysis was used for content determination (chapter 5.3.4). Under these conditions, 

vemurafenib showed good stability over a period of 20 min (Figure 22). 

 

A 10 mM  

DMSO 
B 0.01 mM 

PBS buffer with 10% DMSO 
 

 

 

 

Figure 22. UV stability of vemurafenib. Stability of compound solutions in DMSO (A) resp. PBS buffer with 

10% DMSO (B) against irradiation at 365 nm (LED source, 5.4 W) analyzed by HPLC. 
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3.1.3 Synthesis 

DMNB protected azaindole derivatives 

The hinge binder scaffold of vemurafenib was investigated in more detail to identify the 

essential core structure required for the PPG photoreaction. Since nitrogen compounds and 

particularly N-heterocycles represent poor leaving groups in photocleavage reactions, it was 

assumed that stabilization of transition states of the photolysis reaction would be critical. The 

deprotection mechanism is shown for o-nitrobenzyl caged compounds in Figure 23. 

Mesomeric and inductive effects by substituents of the leaving group play a key role for its 

release.
19

 Starting with 7-azaindole as a dummy compound, this moiety was expanded based 

on the structure of vemurafenib. An acetyl and a benzoyl substituent were further introduced 

as described below. Three caged azaindole analogs were thus synthesized (chapter 5.3.10) and 

their photochemical characteristics subsequently analyzed (chapter 3.1.4). 

 

Figure 23. Release mechanism of o-nitrobenzyl caged compounds.
19,108

 A photoinduced H-atom transfer leads 

to the formation of a primary aci-nitro intermediate (62). The latter is consecutively cyclized to give a 

benzisoxazolol (63). After deprotonation, the leaving group is irreversibly cleaved and an o-nitrosobenzaldehyde 

(65) is formed. LG = leaving group. 

7-Azaindole (66) and 3-acetyl-7-azaindole were commercially available. 3-benzoyl-7-

azaindole (67) was prepared by a Friedel-Crafts acylation according to Zhang et al. (Figure 

24, chapter 5.3.10)
109

. The 7-azaindole was thus benzylated in 3-position using aluminium 

chloride as a Lewis acid catalyst. 
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Figure 24. Preparation of 3-benzoyl-7-azaindole (67). 

These three azaindoles were subsequently caged with the 4,5-dimethoxy-2-nitrobenzyl 

(DMNB) group
110

 as illustrated in Figure 25. This straightforward synthesis proceeds by a 

base catalyzed substitution reaction (SN1/2). After deprotonation, the nitrogen anion acts as a 

nucleophile replacing the halogen atom in 4,5-dimethoxy-2-nitrobenzyl bromide (DMNB-Br). 

 

 

Figure 25. Synthesis of photoprotected azaindole derivatives 69, 70, and 71. 
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Results and Discussion 

The three caged azaindole derivatives 69, 70, and 71 were then analyzed regarding their 

photocleavage characteristics; results and discussion are presented in chapter 3.1.4. 

3-Benzoyl-7-azaindole (67) was thus identified to be crucial for photocleavage of the 

protection group. It was consequently utilized as a dummy compound for the comparison of 

different classes of PPGs in terms of chemical accessibility and uncaging characteristics. 

Introduction of diverse PPG classes 

A broad range of PPGs with different characteristics regarding e.g. attachable leaving groups, 

absorption maxima, release rates, and photochemical by-products are available. The 

designated dummy compound, 3-benzoyl-7-azaindole, was to be linked to a variety of PPGs 

in order to make a selection for caging of the kinase inhibitors.  

First, three variations of the o-nitrobenzyl PPGs were to be introduced. The 1-(4,5-dimethoxy-

2-nitrophenyl)ethyl (DMNPE) group bears a methyl function at the benzylic position in 

comparison to the DMNB group. In consequence of this, a less toxic ketone is released 

instead of a nitrosoaldehyde (Figure 23) which was interesting for the biological evaluation. 

The 6-nitroveratryloxymethyl (NVOM) and 6-nitroveratryloxycarbonyl (NVOC) group 

promised faster release rates due to the hemiaminal ether resp. carbamate structure in the 

caged nitrogen compounds. 

The first two mentioned PPGs were prepared and linked to the dummy compound according 

to Figure 26 (chapter 5.3.10). Both synthetic strategies started with the nitration of 1-(3,4-

dimethoxyphenyl)ethanone (72).
111

 The obtained 1-(4,5-dimethoxy-2-nitrophenyl)-ethanone 

(73) was subsequently reduced to the corresponding alcohol 74 by reaction with sodium 

borohydride.
112
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Figure 26. Protection of 3-benzoyl-7-azaindole (67) with o-nitrobenzyl derivatives affording caged 

prodrugs 76 and 79.  
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Results and Discussion 

For the introduction of the DMNPE group into the 3-benzoyl-7-azaindole molecule, the 

hydroxyl moiety had first to be substituted by a bromine atom serving as an improved leaving 

group in compound 75. This synthesis was performed by addition of phosphorus 

tribromide.
113

 Caging of the azaindole derivative was again a base catalyzed SN reaction 

yielding the DMNPE caged 76.
110

 

For the preparation of the NVOM group, 1-(4,5-dimethoxy-2-nitrophenyl)ethanol (74) was 

treated with dimethyl sulfide and benzoyl peroxide as a radical initiator yielding 77. To 

replace the methyl sulfide moiety by a chloride atom, sulfuryl chloride was used to produce 

78.
18

 Caging of 3-benzoyl-7-azaindole was once more achieved by a nucleophilic substitution 

to obtain NVOM caged 79.
110

 

Caging of 3-benzoyl-7-azaindole with the NVOC group was not successful (Figure 27). 

Apparently, DMNB caged 71 was formed after decarboxylation of 6-nitroveratryloxycarbonyl 

chloride (NVOC-Cl). Variation of the base (K2CO3), temperature (0 °C) and reaction under 

CO2 atmosphere did not succeed either. The reagent might therefore be too instable due to 

ambient light exposure and a dark laboratory might be required. 

 

Figure 27. Failed protection of 3-benzoyl-7-azaindole (67) with NVOC-Cl. 

In Figure 28 several one-step caging reactions are shown (chapter 5.3.10). Via the established 

route
110

 following PPGs were linked to 3-benzoyl-7-azaindole: 4-hydroxy-phenacyl (pHP, 

82), 4-(dimethylamino)phenacyl (83), 4-methyl-7-methoxycoumarin (84), 4-methyl-6,7-

dimethoxycoumarin (85), and desyl (1,2-diphenylethanone, 86). 
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Figure 28. Protection of 3-benzoyl-7-azaindole (67) with diverse PPGs. 
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Results and Discussion 

Vemurafenib prodrugs 

Investigation of the binding mode revealed that both NH moieties within the vemurafenib 

structure should be appropriate for the caging concept (chapter 3.1.1). The azaindole and the 

sulfonamide function were therefore protected by PPGs as described in the following. This 

allowed a comparison of both protection sites regarding the kinetics of the photolysis reaction 

(chapter 3.1.4) and the influence on the biological activity (chapter 3.1.5). 

Two o-nitrobenzylic PPGs were selected to be introduced into the vemurafenib molecule, 

namely the DMNB and the DMNPE moiety. Both PPGs had proven to be chemical accessible 

(see above) and to show fast and clean photolysis reactions when attached to 3-benzoyl-7-

azaindole (chapter 3.1.4). The DMNB group produces a nitrosobenzaldehyde as a photo 

leaving group which is reported to be more toxic than the ketone formed by the DMNPE 

group.
10

 The biological effects of the released PPGs were thus to be investigated (chapter 

3.1.5). 

The use of DMNB-Br afforded the caged prodrugs 57, 59, and 87 (Figure 29). These 

compounds could be isolated by flash chromatography and were fully characterized. A 

comparable reaction was performed using DMNPE-Br (Figure 30). It is noteworthy that in 

this reaction, due to sterical hindrance at the sulfonamide, only the azaindole DMNPE 

protected derivative 59 was obtained and fully characterized. By-products were formed to 

small quantities and could not be isolated. LC-MS analysis indicated that the sulfonamide and 

the doubly protected derivatives 88 and 89 were formed analogously to the reaction above. In 

preliminary NMR analysis two sets of signals were identifiable for compound 88 which 

presumably belong to conformers as discussed in Figure 31. In case of the DMNPE doubly 

protected derivative 89, a diastereomer pair (89a/b) was presumably formed due to the 

presence of two chiral centers. This hypothesis was supported by preliminary NMR studies 

and different chromatographical behavior of the compounds (Figure 32). 
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44 
vemurafenib 

 58 
DMNB-azaindole 

11% 

 60 
DMNB-sulfonamide 

20% 

 87 
DMNB-doubly protected 

23% 

Figure 29. Synthesis of DMNB caged vemurafenib prodrugs 58 and 60. The doubly protected 87 was formed 

as a by-product. 

 
44 

vemurafenib 
 59 

DMNPE-azaindole 
23% 

 88 
DMNPE-sulfonamide 

not isolated 

 89 
DMNPE-doubly protected 

not isolated 

Figure 30. Synthesis of DMNPE caged vemurafenib prodrug 59. According to preliminary NMR and LC-MS 

studies the sulfonamide protected 88 and the doubly protected 89 were formed as by-products in small quantities 

but could not be isolated. 

A  B  C 

 

 

 

 

 

Figure 31. Modeled structures of proposed conformers of sulfonamide DMNPE protected vemurafenib 

(88). Due to sterical hindrance, DMNPE protection of vemurafenib’s sulfonamide supposedly resulted in the 

formation of two conformers with separate NMR signal sets, shown in (A) and (C). Sterical clashes in the 

theoretical transition structure were calculated (B), which would hinder the rotation of the aromatic ring of the 

PPG.  
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 PPG and 
side products 

44  88 59  89a/b  

Figure 32. Chromatographic separation of DMNPE protected vemurafenib derivatives. In the SN reaction 

of vemurafenib with DMNPE bromide a complex product mixture was formed. This figure shows the 

chromatographic separation of these products on a C18 reversed phase column. Non-reacted starting material can 

be assigned in the chromatogram. The DMNPE azaindole prodrug 59 was formed as the main product. Small 

quantities of the sulfonamide protected 88 and the doubly protected 89 were formed. The double peak (same m/z 

ratio) and preliminary NMR studies suggest that the latter represents a diastereomer pair (89a/b). 

The azaindole and the sulfonamide DMNB photoprotected prodrugs 58 and 60 enabled a 

comparison between these two protection sites concerning their photorelease characteristics 

and their biological activities, respectively. Through irradiation, the DMNB group produces a 

nitrosobenzaldehyde, whereas a less toxic ketone is released by the DMNPE moiety.
10

 

Compounds 58 and 59 hence allowed a comparison of these two PPGs regarding 

photokinetics and toxicity in cellular assays.  
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3.1.4 Photochemical Characterization 

DMNB protected azaindole derivatives 

In the first step, UV/vis absorption spectra of the caged compounds 69, 70, and 71 as well as 

their corresponding unprotected azaindole analogs were recorded to reveal an optimal 

wavelength for deprotection (chapter 5.2.1). Figure 33 demonstrates that there were only 

marginal differences between the spectra recorded in DMSO compared to those measured in 

an aqueous solvent. In all cases the unprotected azaindole derivatives did not absorb light 

with a wavelength above 350 nm; whereas the caged compounds showed an absorption peak 

between 350 and 360 nm. LEDs with emission wavelength of 365 nm were thus chosen for 

our irradiation experiments because of their high intensity and easy handling.  
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69 66 

 

 

 

 

 

 

70 90 

 

 

 

 

 

 

71 67 

 Wavelength (nm)   Wavelength (nm)    

Figure 33. UV/vis absorption spectra of azaindole derivatives. UV/vis absorption spectra of photoprotected 

azaindole derivatives (solid lines) in comparison to their corresponding unprotected analogs (dashed lines) in (A) 

DMSO resp. (B) PBS buffer with 10% DMSO are shown.  
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Results and Discussion 

Next, photocleavage upon UV irradiation of the caged azaindole derivatives 69, 70, and 71 

was examined (chapter 5.2.3). The prodrugs were therefore dissolved in DMSO (1 mM) resp. 

buffer solution (0.01 mM) and irradiated by LEDs (365 nm, 5.4 W) for up to ten minutes. The 

ratio between caged and uncaged probe was analyzed time dependently by HPLC illustrated 

as peak area in % (Figure 34, chapter 5.3.4). Besides retention time, LC-MS analysis of the 

DMSO probes was used for proof of identity (chapter 5.3.7). 
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 Irradiation time (min)   Irradiation time (min)   

Figure 34. Photoactivation of the DMNB protected azaindole derivatives 69, 70, and 71. (A) 1 mM (DMSO) 

resp. (B) 0.01 mM (PBS buffer with 10% DMSO) compound solutions were irradiated at 365 nm (5.4 W) for up 

to 10 min and analyzed time dependently by HPLC and LC-MS. The amount of caged probe (diamonds) is 

plotted against the released azaindole analog (triangles). 
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Caged 7-azaindole 69 was perfectly stable against UV irradiation under these conditions and 

did not show any conversion. Apparently, the transitions states of the release mechanism 

shown in chapter 3.1.3 (Figure 23) could not be stabilized by this leaving group. 

Photoprotected 3-acetyl-7-azaindole 70 could be uncaged but at a very slow reaction rate. 

However, the 3-benzoyl-7-azaindole prodrug 71 showed good photorelease characteristics. 

Concentration and solvent did not have a significant impact on the uncaging process. 

The 3-benzoyl-7-azaindole motif can therefore be considered to be the essential vemurafenib 

fragment for a suitable photorelease of the N-heterocycle. The transition states of the 

photolysis reaction seem to be stabilized by an extended mesomeric system. Further 

investigations e.g. molecular calculations of binding energies have to clarify the details of the 

mechanisms of these findings. 

Comparison of diverse PPG classes 

Since 3-benzoyl-7-azaindole (67) was easily cleaved from the DMNB protection group, it had 

proven to be applicable as an N-heterocycle photo leaving group. 67 was therefore used as a 

dummy compound for further photoexperiments to compare different PPGs. Diverse 

representatives were thus synthetically linked to this molecule as described in chapter 3.1.3. 

In this section, Figure 35 gives a compact overview over the photocharacteristics of these 

diversely caged 3-benzoyl-7-azaindole prodrugs (chapters 5.2.1 and 5.2.3).  

As expected, DMNPE protected 76 and NVOM caged 79 (both belonging to the o-nitrobenzyl 

PPG family) also showed a peak absorbance around 360 nm. Their photorelease upon 

irradiation at 365 nm was in fact very similar to that of DMNB protected 71. The introduction 

of a methyl group resp. an ether bridge, thus, did not result in an accelerated reaction rate 

which is in contrast to the results reported in the literature
10

. The cleaved protection group of 

these two compounds however contains a ketone function instead of an aldehyde, which 

might be less toxic in biological experiments.
10

 Hence, they are potentially interesting for the 

photoprotection of N-heterocycles and for the following caging projects. As seen before for 

the DMNB derivatives, concentration and solvent did not have a significant impact on the 

uncaging process. 
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A Photoactivation 

1 mM 
DMSO 

 

B Photoactivation 

0.01 mM 
PBS buffer with 

10% DMSO 

 

C 
UV/vis  

absorption spectra 

 

 

 R =  H  (67) 

 R = 

P
e
a
k
 a

re
a
 (

%
) 

 

 

P
e
a
k
 a

re
a
 (

%
) 

 

 

A
b
s
o
rp

ti
o

n
 (

n
o
rm

a
liz

e
d
) 

 

 
76 

 

 

 

 

 
 

79 

 

 

 

 

 

 
83 

 

 

 

 

 

 

84 

 

 

 

 

 

 

85 

 

 

 

 

 

 

  86 
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Figure 35. Photoactivation and UV/vis absorption spectra of differently caged 3-benzoyl-7-azaindole 

derivatives. (A) 1 mM (DMSO) resp. (B) 0.01 mM (PBS buffer with 10% DMSO) compound solutions were 

irradiated at 365 nm (5.4 W) for 10 min and analyzed time dependently by HPLC and LC-MS. The amount of 

caged probe (diamonds) is plotted against the released 3-benzoyl-7-azaindole (67, triangles). (C) UV/vis 

absorption spectra in DMSO resp. PBS buffer with 10% DMSO at pH 7.2. 
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A Photoactivation 

1 mM 
DMSO 

 B Photoactivation 

0.01 mM 
PBS buffer with 

10% DMSO 

 C UV/vis absorption spectra 
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Figure 36. pH-Dependent photoactivation and UV/vis absorption spectra of 4-hydroxy-phenacyl (pHP) 

caged 3-benzoyl-7-azaindole (82). (A) 1 mM (DMSO) resp. (B) 0.01 mM (PBS buffer with 10% DMSO, pH 

6.2, 7.2, and 8.2) compound solutions were irradiated at 365 nm (5.4 W) for 10 min and analyzed time 

dependently by HPLC and LC-MS. The amount of caged probe (diamonds) is plotted against the released 

3-benzoyl-7-azaindole (67, triangles). (C) UV/vis absorption spectra in DMSO resp. PBS buffer with 10% 

DMSO at pH 6.2, 7.2, and 8.2.  

The photocharacteristics of 4-hydroxy-phenacyl (pHP) caged 82 are presented separately in 

Figure 36. In DMSO 82 did not show absorption at 365 nm. It is therefore not surprising that 

only a small percentage of the prodrug was deprotected after ten minute irradiation. Notably, 

in an aqueous solvent the spectra showed a distinct pH dependency due to deprotonation of 

the acidic phenol group. The increase of the pH value (6.2, 7.2, and 8.2) caused a 

bathochromic shift leading to an ascending absorption at 365 nm. Nevertheless, this did not 

have an influence on the insufficient deprotection reaction. Lower wavelengths might 

improve the photolysis reaction but should be avoided for the irradiation of biological probes. 
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Results and Discussion 

The related 4-(dimethylamino)phenacyl caged 83 showed an adequate absorption value at 

365 nm in DMSO and even higher, pH-independent (in the range between pH 6.2 and 8.2) 

values in an aqueous solvent (Figure 35). Irradiation of 83 at 365 nm however led to rapid 

unspecific degradation (products not characterized). Only traces of deprotected 3-benzoyl-7-

azaindole could be detected. This PPG was thus considered to be unsuitable for the purpose of 

N-heterocycle photoprotection. 

4-Methyl-7-methoxycoumarin caged 84 did not absorb light at a wavelength of 365 nm. More 

than 10% 3-benzoyl-7-azaindole could surprisingly be released after ten minutes of 

irradiation. This slow conversion is not convenient for biological applications though. The 

absorption band of another coumarin derivative, the 4-methyl-6,7-dimethoxycoumarin caged 

85, was shifted bathochromically. Irradiation however led to unspecific degradation (products 

not characterized) and only traces of 3-benzoyl-7-azaindole (67) were cleaved after ten 

minutes time. 

The last investigated PPG was the desyl group. Both in DMSO and in buffer solution, caged 

compound 86 showed little absorption. After ten minutes only small quantities of 3-benzoyl-

7-azaindole (67) were released by irradiation which was not sufficient enough for the caging 

project. 

In conclusion, suitable PPGs for the dummy compound, 3-benzoyl-azaindole (67), could be 

defined by the presented systematic approach. The o-nitrobenzyl groups DMNB, DMNPE, 

and NVOM revealed clean photocleavage with comparable, rapid reaction rates. All other 

investigated PPGs did not provide satisfactory results. DMNB and DMNPE were thus 

selected as PPGs for the vemurafenib project in order to compare the impact of the different 

cleaved protection groups (aldehyde vs. ketone) in biological assays.  
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Vemurafenib prodrugs 

For the prodrug concept, it is essential that the parent compound is released rapidly and 

quantitatively upon irradiation. UV/vis absorption spectra were recorded in order to find the 

optimal irradiation wavelength for deprotection of the vemurafenib prodrugs (Figure 37, 

chapter 5.2.1). Shortwave UV irradiation underneath 300 nm (UVB and UVC) might damage 

tissues or proteins because of their high energy. Vemurafenib itself furthermore showed 

absorption up to 350 nm. Irradiation with light below that wavelength might hence lead to 

instability of the parent compound. The prodrugs showed an additional absorption peak 

around 365 nm due to the introduced PPG. LEDs are advantageously available for this 

wavelength, show a high intensity and were therefore chosen for the photochemical and 

subsequent biological evaluation. 

 

A Methanol resp. DMSO B PBS buffer with 10% DMSO 

 

 

 

 

Figure 37. UV/vis absorption spectra of vemurafenib prodrugs in MeOH/DMSO (A) resp. PBS buffer with 

10% DMSO (B).  

In the following step, photorelease kinetics of the different vemurafenib prodrugs were 

studied (chapter 5.2.3). An LED reactor with an emission at 365 nm (5.4 W) was utilized to 

irradiate 1 mM (DMSO) and 0.01 mM (PBS buffer containing 10% DMSO) solutions of the 

compounds (Figure 38).  
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Results and Discussion 

A 
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PBS buffer with 10% DMSO 

 
 

P
e
a
k
 a

re
a
 (

%
) 

  

 

P
e
a
k
 a

re
a
 (

%
) 

 

 

 
58 

 

 

 

 

 

59 

  

 

 

 

 

60 

 Irradiation time (min)   Irradiation time (min)   

Figure 38. Photoactivation of the vemurafenib prodrugs 58, 59, and 60 in DMSO (A) resp. PBS buffer with 

10% DMSO (B). The compound solutions were irradiated at 365 nm (5.4 W) for 10 min and analyzed by HPLC 

and LC-MS. The amount of caged probe (diamonds) is plotted against released vemurafenib (triangles). The 

formation of a cyclic benzisoxazolidine intermediate was observed (crosses); for further details, see Figure 39. 

Upon irradiation in aqueous media, the sulfonamide protected derivative 60 showed fastest 

cleavage of the PPG. After 30 s, more than 90% of vemurafenib was released. Azaindole 

protected 58 and 59 were comparable to each other in their photocharacteristics. More than 

90% of vemurafenib was released within 1 min. Similar results were obtained in pure DMSO; 

however, the slightly slower reaction rate is presumably based on higher compound 

concentration in this setting. In the literature, DMNPE is reported to have a higher quantum 

yield compared to that of DMNB.
10

 The assumption that 59 would show faster releasing 

characteristics than 58 could not be confirmed in our study. According to LC-MS and NMR 

studies, the formation of a cyclic benzisoxazolidine intermediate (93) could be observed; for a 

detailed discussion, see Figure 39. 
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Figure 39. Photorelease of vemurafenib and cyclic benzisoxazolidine intermediate formation. (A) A 1 mM 

solution of compound 59 in DMSO was irradiated at 365 nm (5.4 W) for 10 min and analyzed by HPLC (chapter 

5.2.3). The amount of caged probe (diamonds) and released vemurafenib (triangles) was analyzed time 

dependently. Additionally, the formation of an intermediate was observed (crosses). After 1 min its content 

reached up to 13% of the peak area as a maximum, before it was slowly degraded again. (B) The proposed 

cleavage mechanism of the DMNPE protecting group is presented.
114

 The cyclic benzisoxazolidine intermediate 

(93) was presumably detected by HPLC analysis of the irradiated solution (chapter 5.3.4). In the dark, the 

intermediate was stable in DMSO solution for several hours, which allowed further analysis. (C) In the mixed 

NMR spectrum of a 90 s irradiated probe the datasets of caged/uncaged vemurafenib and the cleaved PPG can be 

recognized (chapter 5.3.6). Besides, there are additional peaks (integral 0.1) that presumably belong to the 

intermediate (arrows). The sharp singlet of an exchangeable proton with a significant downfield shift of 

11.6 ppm supposedly belongs to the N-OH group. (D, left) In the chromatogram of the LC-MS analysis the 

caged prodrug 59, uncaged vemurafenib (44) and the cleaved PPG (95) can be identified (chapter 5.3.7). The 

intermediate shows a shorter retention time compared to 59 indicating a more polar molecule which supports the 

structure of 93. (D, right) The MS spectrum revealed a signal of m/z 681 for the intermediate. A hydroxide ion is 

presumably eliminated by the cyclic benzisoxazolidine 93 during electrospray ionization. The ring opening of 

the benzisoxazolidine is furthermore reported to be the rate-determining step of this reaction, which would 

explain an accumulation of this intermediate. 
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Results and Discussion 

In conclusion, both NH photoprotection sites proved to be suitable for rapid and quantitative 

photorelease of vemurafenib. The next question to be addressed was whether the protection of 

these moieties would actually diminish the effect on BRAF
V600E

 and also suppress the 

antiproliferative effect in cells. 
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3.1.5 Biological Evaluation 

The major part of this chapter has been drafted by Boris Pinchuk in course of preparing the 

manuscript Horbert and Pinchuk et al.
115

. Minor modifications e.g. embedding of 

complementary data have been implemented in order to improve readability. 

Kinase assays 

Binding affinities of vemurafenib and caged compounds toward BRAF
V600E

 were determined 

(Table 5, chapter 5.4.1). In line with the modeling data, the caged compounds exhibited a 

lower binding affinity toward BRAF
V600E

 in comparison to that of vemurafenib. 

Table 5. Kd values of vemurafenib (44) and the caged prodrugs 58, 59, and 60 toward BRAF
V600E

. 

Compound 44 58 59 60 

Kd values 10 nM 440 nM 77 nM 79 nM 

The lowest binding affinity was found for azaindole protected 58. This is strong evidence that 

protection of the azaindole moiety forestalls the inhibitor-enzyme interaction. Surprisingly, 59 

and 60 still show unexpected binding toward BRAF
V600E

 although their affinities are 

significantly less than that of vemurafenib (44). The determined affinities can be explained by 

minute quantities of unprotected active compound in the samples and/or instability of caged 

compounds resulting in the release of vemurafenib under the assay conditions. For 

investigations on the stability of the prodrugs in cellular growth medium (chapter 5.4.6), also 

see Figure 40. 
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Figure 40. Stability of the vemurafenib prodrugs 58, 59, and 60 in cellular growth medium. 0.01 mM 

compound solutions (DMEM medium with 2 mM L-glutamine, 1 mM sodium pyruvate and 10% DMSO) were 

incubated in a 5% CO2 humidified atmosphere at 37 °C for 48 h and analyzed by HPLC. The amount of caged 

probe (diamonds) is plotted against released vemurafenib (triangles). All three prodrugs showed a good stability 

under the described conditions. 
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Results and Discussion 

A selectivity profile over 140 kinases for vemurafenib (44), 58, and 60 at a concentration of 

10 µM was subsequently performed (chapter 5.4.3). The results are presented as a heat map in 

Figure 41. Apparently, vemurafenib potently inhibited several other kinases besides 

BRAF
V600E

. There are altogether 32 kinases whose activity was reduced to less than 30% 

under these test conditions. The most affected kinases were BRK, MAP4K5, and DDR2. This 

data indicates that vemurafenib is not highly selective at the tested concentration in 

biochemical assays. Sulfonamide caged compound 60 reduced the activity of 13 kinases to 

less than 30%. Its inhibitory potency against non-target kinases was diminished in comparison 

to that of vemurafenib. Some non-specific interactions were, however, still observable. 

Regarding this data, it can be assumed that protection of the sulfonamide residue prevents 

binding to BRAF
V600E

 but was still not sufficient enough to completely suppress inhibition of 

other kinases. In contrast, azaindole protected compound 58 inhibited only two kinases: 

MAP4K5 (7% residual activity) and RIPK2 (26% residual activity). These findings are in line 

with the initial assumption that blockade of the hinge binder, the azaindole moiety, would 

annihilate the affinity to kinases in general more effectively than the protection of the 

sulfonamide residue. 

 

44 

 

58 

60 

Figure 41. Kinase selectivity profiling of vemurafenib and caged prodrugs. The inhibitory effect of 

vemurafenib (44) and the caged derivatives 58 and 60, respectively, was tested in a panel of 140 kinases. The 

residual activity of kinases was measured after incubation with 10 µM of each compound. The data is portrayed 

as a heat map of the mean activity of assay duplicates. The color code refers to the residual kinase activity 

ranging from red (low residual activity) to blue (high residual activity). Apparently, 58 inhibited significantly 

less kinases than vemurafenib and 60. Details are shown in Supplementary Table 1 (Appendix). 
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Cellular assays 

On the basis of the enzymatic data, it was supposed that the caged derivatives would show 

considerably less activity in cellular assays compared to that of vemurafenib. To prove this 

hypothesis, the anti-proliferative activity was investigated in cellular growth assays using the 

melanoma cell line SKMel13 which carries the BRAF
V600E

 mutation (chapters 5.4.4 and 

5.4.5).
116

 Dose-response curves for the non-irradiated compounds were measured (Figure 42 

(A)). 

A   B   

 

 

 
44 
58 
59 
60 

 

 

 
44 + UV 
58 + UV 
59 + UV 
60 + UV 

w/o UV irradiation  with UV irradiation  

Figure 42. Activation of caged vemurafenib prodrugs in cell proliferation assays. The recovery of 

vemurafenib’s efficacy by UV irradiation was demonstrated using SKMel13 cells. (A) Dose-response curves of 

vemurafenib (44) and the caged prodrugs 58, 59, and 60 were determined without UV irradiation. Cell growth 

was measured 48 h after incubation with the compounds. Vemurafenib clearly showed cytotoxic effects at 

concentrations above 1 µM. The caged derivatives did not exhibit cytotoxic activity: the TGI-mark was not 

reached even at high concentrations. (B) Cells were incubated for 1 h with the compounds and then irradiated at 

365 nm (1.8 W) for 5 min. Cell growth was determined 48 h after incubation with the compounds. After 

irradiation the caged derivatives showed similar dose-response curves in comparison to active vemurafenib. 

GI50 = 50% growth inhibition; TGI = total growth inhibition; LC50 = 50% lethal concentration. (±SD, n=4) 

Vemurafenib showed potent cytotoxic activity (GI50 value 0.17 μM). This finding corresponds 

with previous studies that revealed a strong inhibition of V600E-positive melanoma cells by 

vemurafenib.
117–119

 In contrast, the caged compounds exhibited no cell toxicity toward the 

melanoma cells in the nanomolar range. Cytostatic effects occurred at considerably higher 

concentrations (GI50 values: 4.3 μM for 59 and 2.6 μM for 60). Compound 58 did not show 

significant cell growth inhibition at all. The marginal cytostatic effects of the caged probes at 

higher concentrations could again be caused by minute impurities of unprotected vemurafenib 

or by off-target effects of the compounds. 
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Results and Discussion 

It was next examined whether the inhibitory potency of the photoprotected compounds in 

cells could be restored upon UV irradiation. The cell growth assays described above were 

performed by irradiating the cells with UV light at 365 nm (1.8 W, 5 min) with and without 

compound incubation. The dose-response curves are presented in Figure 42 (B). In this assay, 

the UV irradiation at the applied dosage was well-tolerated by the cells. After UV irradiation, 

the prodrugs showed antiproliferative activity comparable to that of unprotected vemurafenib 

(GI50 values: 0.19 μM for vemurafenib, 1.5 μM for 58, 0.46 μM for 59, and 0.35 μM for 60). 

The slightly reduced activity in comparison to that of vemurafenib might be explained by 

incomplete photorelease under the described conditions. Summarizing the results of the 

proliferative cell assays, it can be postulated that the irradiation of the caged compounds 

restores the potent activity of vemurafenib. 

Having demonstrated the photoactivation of vemurafenib from its caged prodrugs, the effect 

of the cleaved PPG on cellular growth was investigated (chapters 5.4.4 and 5.4.5). The caged 

vemurafenib prodrugs were not suitable to answer this question because of the intrinsic 

toxicity of uncaged vemurafenib after irradiation. Two model compounds were therefore used 

(Figure 43): the presumably nontoxic tert-butyloxycarbonyl (BOC) protected L-alanine (68) 

and its DMNB photoprotected derivative (69). 

  
 

96 
 

97 

Figure 43. Chemical structures of BOC protected L-alanine (96) and its DMNB photoprotected derivative 

(97). 

The effect of both compounds on the proliferation of SKMel13 cells was measured at first 

(Figure 44). Both protected amino acid derivatives did not show any antiproliferative effects 

even at high concentrations. The same experiment was repeated with UV irradiation (365 nm, 

1.8 W). Irradiated 96 was still neither cytotoxic nor cytostatic. In contrast, 97 exhibited 

distinct antiproliferative activity after irradiation at concentrations above 10 μM (GI50 value 

34.4 μM). It can therefore be assumed that the measured cell toxicity was caused by the 

cleaved DMNB. The toxic concentration (10 μM) however was approximately 100-fold higher 

than the efficacious concentration of the released vemurafenib (0.17 μM). 
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A  B 
 

 

 

 
97 
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97 + UV 
 

96 + UV 

w/o UV irradiation  with UV irradiation 
 

Figure 44. Effect of the photo released PPG on cell proliferation. (A) Dose-response curves of L-alanine 

derivative 96 and its photoprotected analog 97 in cell viability assays (SKMel13 cells) without UV irradiation. 

Cell growth was determined after 48 h incubation with compound solutions. Both compounds did not show anti-

proliferative effects. (B) Dose-response curves of 96 and 97 in the same assay with UV irradiation. After 1 h 

incubation with compound solutions, cells were irradiated at 365 nm (1.8 W) for 5 min. Cell growth was again 

determined after 48 h. Herein, 97 showed anti-proliferative efficacy in concentrations above 10 μM providing 

evidence for the cytotoxicity of the cleaved PPG at higher concentrations. GI50 = 50% growth inhibition; TGI = 

total growth inhibition; LC50 = 50% lethal concentration. (±SD, n=2) 

 

Western blots 

In order to study the impact of vemurafenib and its caged derivatives on BRAF
V600E

 signaling, 

western blot analysis was performed on downstream Erk phosphorylation (Figure 45, chapter 

5.4.7). 

Erk phosphorylation in SKMel13 cells was investigated after incubation with compound 

solutions without irradiation. Total Erk was used as a loading control. As reported for a BRAF 

inhibitor, vemurafenib (44) displayed dose-dependent pErk inhibition at concentrations higher 

than 0.01 μM.
62,117–119

 The phosphorylation of Erk was completely blocked at concentrations 

above 0.1 μM. According to the biochemical data, the caged compounds 58 and 60 revealed 

significantly less inhibition of Erk phosphorylation. Even at a concentration of 10 μM, there 

were detectable signals of pErk. 
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Results and Discussion 

Erk phosphorylation in cells was consecutively surveyed after incubation with compound 

solutions and subsequent UV irradiation. No alteration in pErk inhibition by vemurafenib (44) 

could be determined with or without irradiation. This demonstrates that the amount of 

phosphorylated Erk is not dependent on UV irradiation under the described conditions. After 

UV irradiation, 58 and 60 exhibited the same inhibitory potency on pErk as that of 

vemurafenib. A complete suppression of Erk phosphorylation was demonstrated for 

concentrations above 0.1 μM. Dose dependency correlated with that of vemurafenib. This 

indicates that the inhibitory efficacy of vemurafenib on BRAF
V600E

 signaling can be 

completely reactivated upon irradiation of the caged derivatives with UV light. 

 

A  B  

44 

 

 

 

58  

60  

 
w/o UV irradiation  with UV irradiation 

Figure 45. Activation of inhibitory effect of the caged prodrugs 58 and 60 on BRAF
V600E

 signaling in vitro. 

SKMel13 cells were treated for 1 h at 37 °C with solutions of vemurafenib (44) and caged prodrugs 58 resp. 60. 

Subsequently, cells were lysed and immunoblotted. (A) Cells were not irradiated. (B) Cells were incubated for 

1 h, irradiated at 365 nm (1.8 W) for 5 min and after further 1 h incubation lysed and immunoblotted. The 

experiments were carried out in duplicates. t-Erk = total Erk; p-Erk = phosphorylated Erk. 
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3.2 CAGED DIARYLMALEIMIDES AND CARBAZOLE 

3.2.1 Molecular Modeling 

The ligand-protein interactions of diarylmaleimide 55 and carbazole 57 in the ATP pocket of 

VEGFR2 were examined by molecular modeling (chapter 5.1). In order to design 

pharmacologically inactive photo prodrugs, key pharmacophoric moieties were defined within 

these kinase inhibitor structures to be subsequently blocked by PPGs. 

  

Figure 46. Binding mode of diarylmaleimide 55. Modeled 3D binding mode (left) and 2D ligand-interaction 

diagram (right) of 55 in the ATP pocket of VEGFR2 (pdb 3CJF
120

). Black dotted lines resp. magenta arrows 

represent hydrogen bonds between the ligand and the backbone of the protein. 

  

Figure 47. Binding mode of carbazole 57. Modeled 3D binding mode (left) and 2D ligand-interaction diagram 

(right) of 57 in the ATP pocket of VEGFR2 (pdb 3CJF
120

). Black dotted lines resp. magenta arrows represent 

hydrogen bonds between the ligand and the backbone of the protein. 
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Results and Discussion 

In Figure 46 the calculated 3D binding mode of 55 in the ATP pocket of VEGFR2 

(pdb 3CJF
120

) and the corresponding 2D ligand-interaction diagram are shown. Analogously, 

the calculated 3D binding mode and the corresponding 2D ligand-interaction diagram of 57, 

docked in the same protein structure, are shown in Figure 47. The type I inhibitors form two 

key H-bonds with their imide moiety toward the hinge region. The indole NH moiety does not 

show a direct hydrogen bond toward the protein, but a water mediated interaction has been 

discussed by Peifer et al.
99

 

The imide function was however considered to be the most promising pharmacophoric moiety 

for photoprotection due to the central importance of the hinge region in the interaction with 

all type I and II inhibitors. In line with this notion, superposition of the modeled 

photoprotected derivatives 98, 99, and 100 (Figure 48) in the active site of VEGFR2 resulted 

in significant sterical clashes (exemplified with compound 100 in Figure 49). Likewise, 

docking of these caged compounds did not yield plausible binding modes (data not shown). 

 

 

 

 
  

98 99 100 

Figure 48. Chemical structures of NB/DMNB photoprotected diarylmaleimides 98 resp. 99 and 

photoprotected carbazole 100. The PPGs are highlighted in grey. 
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Figure 49. The DMNB caged carbazole 100 was positioned in the binding pocket of VEGFR2 (pdb 

3CJF
120

) imitating the core binding mode of its unprotected analog 57. Red dashed lines represent sterical 

clashes between the PPG and the hinge region of the protein. 
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Results and Discussion 

3.2.2 Synthesis 

The diarylmaleimide 55 was synthesized according to the procedure reported by Peifer et al.
98

 

(Figure 50, chapter 5.3.10). 3,4,5-Trimethoxyphenylacetamide (102) was synthesized by 

activation of the corresponding carboxylic acid (101) with thionyl chloride and subsequent 

treatment with aqueous ammonia solution. The indole-3-ethylglyoxylate (104) was 

subsequently obtained via Friedel-Crafts-type acylation of indole (66) with ethyl oxalyl 

chloride (103). A Knoevenagel condensation
121

 finally afforded the asymmetrically 

substituted 3,4-diarylmaleimide by ring closure. 

 

Figure 50. Synthesis of the diarylmaleimide 55. 
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Due to light and atmospheric oxygen exposure during the synthesis of 55 its carbazole 

derivative 57 was formed by a 1,6-π-electrocyclization reaction and subsequent oxidation as 

illustrated in Figure 14 and discussed by Peifer et al.
98

. Since 57 is a potent VEGFR inhibitor 

as well, this compound has also been incorporated in the caging project. 

The o-nitrobenzyl (NB) PPG was introduced into 55 by a base catalyzed SN reaction using 

1-(bromomethyl)-2-nitrobenzene (NB-Br) as a reactant. Apart from the protected maleimide 

98, the doubly protected derivative 105 was obtained as a by-product (Figure 51). 

 

 

Figure 51. Synthesis of the NB protected diarylmaleimide (98) and formation of the doubly protected 

by-product (105). 
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The DMNB protected maleimide 99 was synthesized in an analog manner using DMNB-Br as 

PPG. The doubly protected derivative 106 was again formed as a by-product (Figure 52). 

 

Figure 52. Synthesis of the DMNB protected diarylmaleimide (99) and formation of the doubly protected 

by-product (106). 

The corresponding synthesis of the DMNB protected carbazole 100 is shown in Figure 53. 

Due to sterical hindrance of the carbazole nitrogen atom 100 was formed as the single product 

of this reaction. 

 

 

Figure 53. Synthesis of the DMNB protected carbazole (100). 
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3.2.3 Photochemical Characterization 

UV/vis absorption spectra of the unprotected compounds were first recorded (chapter 5.2.1) 

and UV stability of compound solutions was examined (Figure 54, chapter 5.2.2). The 

diarylmaleimide 55 showed two absorption peaks around 350 and 440 nm. Irradiation at 

365 nm presumably initiated the cyclization reaction presented in Figure 14. Based on LC-MS 

analysis, only the intermediate 56 was quantitatively formed after 10 min of irradiation 

(chapter 5.3.7). Under these experimental conditions the subsequent oxidative reaction step to 

the carbazole 57 apparently did not take place. The carbazole itself, on the other hand, showed 

only marginal light absorbance at 365 nm and was stable against irradiation at this wavelength 

over a period of 10 min. 
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Figure 54. UV stability and UV/vis absorption spectra of the unprotected diarylmaleimide 55 and 

carbazole 57. (A) 1 mM (DMSO) compound solutions of 55 (triangles) and 57 (squares) were irradiated at 

365 nm (5.4 W) for up to 10 min and analyzed time dependently by HPLC. Based on LC-MS analysis, 

irradiation of 55 afforded the intermediate product 56 (dotted line) by an electrocyclization reaction (Figure 14). 

The carbazole 57 was stable at the described conditions. (B) UV/vis absorption spectra of 0.1 mM (DMSO) 

compound solutions of 55 and 57 are shown. 
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In the next step, the photocharacteristics of the caged compounds were investigated (Figure 

55, chapters 5.2.1 and 5.2.3). In the area of interest the UV/vis absorption spectrum of the NB 

caged diarylmaleimide 98 was similar to that of its unprotected derivative. DMNB protected 

compounds 99 and 100, on the other hand, showed an increased absorption around 350 nm in 

comparison to their unprotected derivatives.  
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Figure 55. UV stability and UV/vis absorption spectra of caged 98, 99, and 100. Photoactivation of 

NB/DMNB caged diarylmaleimide 98 resp. 99 and DMNB caged carbazole 100. 1 mM (DMSO) compound 

solutions were irradiated at 365 nm (5.4 W) for up to 10 min and analyzed time dependently by HPLC. Symbols 

are used as follows: caged compounds (grey diamonds), released diarylmaleimide 55 (black triangles), 

electrocyclization intermediate 56 (dotted line), and released carbazole 57 (black squares). (B) UV/vis absorption 

spectra of 0.1 mM (DMSO) compound solutions are shown.  
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Although the NB protecting group itself shows very low quantum yields at the utilized 

wavelength of 365 nm
10

, irradiation of 98 led to the cleavage of this PPG and a comparably 

slow release of the parent compound 55. The reason for this might be the extended mesomeric 

system of the leaving group. The maximum detected concentration of 55 was 27% after 

5 min. The cyclization intermediate 56 was again formed to a large extend and increased with 

the duration of light exposure (more than 50% after 10 min). Irradiation of the related DMNB 

protected derivative 99 yielded comparable results. The cleavage proceeded more rapidly and 

a concentration of 43% of the parent compound could be achieved after 3 min of irradiation. 

Continuing light exposure led to a conversion from 55 to 56. Irradiation of the DMNB 

protected 100 led to a tolerably clean cleavage reaction and a nearly quantitative release of 57 

(more than 80%) within a few minutes. Small quantities of several not specified by-products 

were formed upon irradiation (not shown in the diagrams). 

In conclusion, irradiation of the protected diarylmaleimide prodrugs 98 and 99 did not provide 

clean cleavage reactions. A mixture of the parent compound and the cyclized 56 was formed. 

The influence of medium and concentration should be further studied to enable a final 

assessment. An in situ formation of 56 could however have an additional effect in biological 

assays and was therefore evaluated in the following chapter 3.2.4. Uncaging of 100 proceeded 

straightforwardly within several minutes of irradiation and the carbazole 57 was released to a 

high extend. 
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3.2.4 Biological Evaluation 

The next question to be addressed was whether caging of the imide function in the DMNB 

protected diarylmaleimide 99 resp. carbazole 100 would actually diminish the effect on 

VEGFR2 as well as the antiproliferative effect in cells. 99 was chosen disfavoring its NB 

caged derivative 98 because of the faster cleaving kinetics and higher release of the parent 

compound. It had furthermore to be investigated if irradiation could restore the inhibitory 

activity of both prodrugs 99 and 100, respectively. In kinase assays the inhibitory effect of the 

prodrugs were compared with their parent compounds on an enzymatic level. Cell 

proliferation assays were performed in order to assess the biological effects of the prodrugs 99 

and 100 before and after irradiation. 
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Kinase assays 

Inhibition curves and IC50 values were determined in a radiometric and a non-radiometric 

enzymatic VEGFR2 assay (see Table 6, chapter 5.4.2).
122

 

Table 6. Inhibitory effect of caged and uncaged inhibitors in VEGFR2 kinase assays.
122

 Inhibition curves 

and IC50 values of diarylmaleimide 55 resp. carbazole 57 and their DMNB caged prodrugs 99 resp. 100 in 

radiometric and non-radiometric enzymatic VEGFR2 assays are shown (ProQinase, Freiburg).  

Compound 
VEGFR2 IC50  

radiometric 

VEGFR2 IC50  

non-radiometric 

 

55 

 

0.005 µM 

 

0.068 µM 

 

99 

 

4.6 µM 

 

87 µM 

 

57 

 

0.15 µM 

 

15 µM 

 

100 

 

45 µM 

 

> 100 µM 
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Results and Discussion 

The diarylmaleimide 55 proved to be highly potent with an IC50 value of 0.005 µM in the 

radiometric and 0.068 µM in the non-radiometric VEGFR2 kinase assay. The less potent 

carbazole 57 showed IC50 values of 0.15 µM and 15 µM, respectively. The variation of the 

results between the two test systems is probably due to the different experimental settings. 

Besides the differences in the detection method, the complete VEGFR enzyme is utilized in 

the radiometric assay. In the non-radiometric assay, on the other hand, only the purified kinase 

domain is used. The differences of the IC50 values between 55 and its prodrug 99 were 

particularly profound, both in the radiometric and in the non-radiometric assay. The DMNB 

protected 99 showed a by a factor of 1000 diminished potency compared to the unprotected 

diarylmaleimide 55. The caged carbazole 100 was 300-fold less active than 57 in the 

radiometric assay and not active in the non-radiometric assay. 

Moreover, a selectivity profile over 79 kinases was recorded (chapter 5.4.3). The results are 

presented as a heatmap in Figure 56. The graphic shows that the diarylmaleimide 55 is more 

selective than its carbazole derivative 57. The most inhibited kinases of 55 were PIM3 (5% 

residual activity) resp. VEGFR (10%) and of 57 PIM3/1 (4% resp. 5%), GSK3b (5%), and 

HIPK2 (7%). VEGFR showed a residual activity of 37% when treated with 57. 

  
55 57 

Figure 56. Selectivity profile of diarylmaleimide 55 and carbazole 57 in a panel over 79 kinases. The 

inhibitory effect was tested at a concentration of 0.1 µM by determination of the residual kinase activity. In the 

presented heatmap the columns have been individually ranked from low (red) to high (blue) residual activity 

values. Details are shown in Supplementary Table 2 (Appendix). 
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Cellular assays 

The antiproliferative effects of the compounds were tested in cellular assays and it was 

explored if irradiation with UV light could restore the efficacy of the photo prodrugs (chapters 

5.4.4 and 5.4.5).
123

 

Due to the results of the enzymatic data, it was supposed that the caged prodrugs would be 

considerably less active in cellular assays compared to their parent compounds. To prove this 

hypothesis, the antiproliferative activities in cellular growth assays were examined using the 

VEGFR dependent PC3 cell line.
124,125

 Dose-response curves for the non-irradiated 

compounds are presented in Figure 57 (A). The diarylmaleimide 55 showed potent cytotoxic 

activity with a GI50 value of 6.4 μM. In contrast, its caged derivative 99 exhibited only low 

cell toxicity (GI50 not reached). The antiproliferative activity of the carbazole 57 was 

measured with a GI50 value of 0.24 μM, the considerably less active 100 with 35 μM. The 

marginal cytostatic effects of the caged probes at higher concentrations might again be caused 

by minor impurities of the unprotected derivatives in the samples or by off-target effects of 

the caged prodrugs. 

 

A   B   

 

 

 
  55 
  57 
  99 
100 

 

 
  55 + UV 
  57 + UV 
  99 + UV 
100 + UV 

w/o UV irradiation  with UV irradiation  

Figure 57. Activation of caged prodrugs in cell proliferation assays.
123

 (A) Dose-response curves of 

diarylmaleimide 55 resp. carbazole 57 and their corresponding DMNB caged prodrugs 99 resp. 100 were 

determined without UV irradiation. (B) Cells with the compounds were irradiated at 365 nm (1.8 W) for 5 min. 

After irradiation the caged derivatives showed similar dose-response curves or even increased effects in 

comparison to the parent compounds. GI50 = 50% growth inhibition; TGI = total growth inhibition; LC50 = 50% 

lethal concentration. (±SD, n=3) 
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Results and Discussion 

The next question addressed was whether the antiproliferative activity of the caged inhibitors 

could be recovered by UV irradiation. The cell growth assays were repeated with irradiation 

of the compound treated cells at 365 nm (1.8 W, 5 min). The dose-response curves are 

presented in Figure 57 (B). In control experiments was shown that the used dosage of UV 

irradiation was well-tolerated by the cells. After irradiation, the prodrugs showed comparable 

or even increased efficacy compared to that of the unprotected compounds. The GI50 value of 

the diarylmaleimide 55 (2.9 μM) was very similar to that without irradiation (6.4 μM). A 

strongly increased antiproliferative effect could be recognized for its prodrug 99 (GI50 value 

0.39 μM). Surprisingly, the prodrug was even 10-fold more active after irradiation than its 

parent drug. Synergistic effects of the released inhibitor, the irradiation and the cleaved 

protecting group can be discussed. The carbazole 57 and its prodrug 100 showed similar 

results after irradiation (GI50 values 0.13 μM resp. 0.22 μM). In conclusion, irradiation of the 

prodrugs 99 and 100 restored the activity of the corresponding diarylmaleimide (55) and 

carbazole (57), respectively. 
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3.3 PHOTOSWITCHABLE AXITINIB 

3.3.1 Molecular Modeling 

The impact of the E-Z isomerization of axitinib on its molecular binding mode was 

investigated by molecular modeling (chapter 5.1). In Figure 58 (left) the ligand-protein 

interactions of the crystallized complex of (E)-axitinib (19) in the ATP pocket of VEGFR2 

(pdb 4AG8)
67

 are presented. Figure 59 shows the corresponding 2D ligand-interaction 

diagram. Superposition of (Z)-axitinib (19a) on (E)-axitinib resulted in significant sterical 

clashes with the backbone of the protein (Figure 58, right). Similarly, when (Z)-axitinib was 

docked in the active site of VEGFR2 no plausible binding mode could be found (data not 

shown).
89

 

 

Figure 58. Molecular binding mode of (E)-axitinib (19) in the active site of VEGFR2 and superposition of 

(Z)-axitinib (19a). Left: Binding mode of (E)-axitinib in VEGFR2 determined by X-ray analysis (pdb 4AG8).
67

 

Black dotted lines represent H-bonds between the ligand and the backbone of the protein. Right: (Z)-Axitinib 

modeled in the binding pocket maintaining the core binding mode of (E)-axitinib. Red dotted lines indicate 

predicted sterical clashes between the pyridine moiety of the (Z)-isomer and the protein backbone of the hinge 

loop in the target kinase. 
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Results and Discussion 

 

Figure 59. Ligand-interaction diagram of (E)-axitinib (19) in the active site of VEGFR2 (pdb 4AG8
67

). Key 

ligand-protein interactions are shown. 

The interactions were additionally modeled between both axitinib stereoisomers and VEGFR1 

(pdb 3HNG)
126

, PDGFRβ (DFG in/out, homology model)
127

 resp. cKIT (pdb 3G0E, 

4HVS)
128,129

. No plausible docking modes could again be found for the (Z)-isomer in contrast 

to the (E)-isomer.
89

 It was thus postulated that (Z)-axitinib should not be able to inhibit these 

kinases. 
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3.3.2 Synthesis and Tautomerism 

Encouraged by the molecular modeling data, a DMSO solution of commercially available 

(E)-axitinib was irradiated at 365 nm (10 min, 5.4 W) to produce the (Z)-isomer (chapter 

5.3.10). The resulting mixture of both isomers could then be separated by flash 

chromatography (chapter 5.3.2). NMR analysis of the separated (Z)-isomer surprisingly 

revealed a mixed spectrum (see Figure 60 and 61, chapter 5.3.6), indicating the existence of 

two different (Z)-axitinib species (19a and 19b) at a ratio of 7:3. Both spectra sets showed the 

characteristic smaller H-C=C-H coupling constant (12.8 Hz) of a (Z)-isomer compared to the 

(E)-isomer (16.4 Hz). Since indazoles are known to show annular NH-tautomerism
130,131

, it 

was hypothesized that two (Z)-axitinib tautomers were formed, namely the indazole 1H- and 

the 2H-tautomer (Figure 62).
89
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Figure 60. 
1
H NMR spectrum (300 MHz, DMSO-d6, 294 K) and detailed view of the aromatic region of 

(Z)-axitinib (7:3 mixture of 1H- and 2H-tautomer).
89

 

~ 70% (Z)-axitinib (1H-tautomer)

 

~ 30% (Z)-axitinib (2H-tautomer)

 

Figure 61. Signals of aromatic hydrocarbons in a 
1
H-

1
H COSY spectrum and signal assignment to the 

1H-and 2H-tautomer of (Z)-axitinib.
89
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Figure 62. Photoinduced E-Z isomerization of axitinib and formation of 1H- and 2H-indazole annular 

tautomers.
89

 

 

X-ray crystallography (chapter 5.3.9) indeed proved the existence of the 2H-tautomer (Figure 

63) which is stabilized by an intramolecular hydrogen bond between the indazole 2N-H and 

the pyridine nitrogen.
89

 In solution, however, two tautomers were existent. The term (Z)-

axitinib describes in the following the mixture of both tautomers 19a and 19b. 

 

 

Figure 63. X-ray crystal structure of the 2H-tautomer of (Z)-axitinib (19b, CCDC 1419085).
89

 In the solid 

state only the 2H-tautomer was detected by X-ray analysis, which is stabilized by an intramolecular H-bond 

between the indazole 2N-H and the pyridine nitrogen. In DMSO solution, a 7:3 ratio of the 1H- to the 2H-

tautomer was contrarily observed (based on NMR analysis). 
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3.3.3 Photochemical Characterization 

With both the separated (E)- and the (Z)-isomer in hand, the light induced E-Z isomerization 

was further examined depending on the irradiated wavelength. According to the respective 

UV/vis spectra (Figure 64, chapter 5.2.1), (E)-axitinib possessed an absorption maximum at 

330 nm. In the range between 380 and 410 nm only (Z)-axitinib showed light absorbance.
89

 

 

 

Figure 64. UV/vis absorption spectra of (E)-axitinib (solid line) and (Z)-axitinib (dashed line) solutions 

(0.02 mM in methanol).
89

 Wavelengths of the used LED sources (365 resp. 385 nm) are illustrated as grey bars. 

 

LEDs with emission wavelengths of 365 resp. 385 nm were chosen for the irradiation 

experiments because of their high intensity and commercial availability. Figure 65 shows the 

photoisomerization of (E)-axitinib resp. (Z)-axitinib solutions after irradiation with these two 

wavelengths (chapter 5.2.4). The conversion was monitored by HPLC analysis (chapter 

5.3.4). LC-MS was used besides retention time for proof of identity (chapter 5.3.7). Within a 

few minutes, irradiation at 365 nm resulted in a photostationary state (PSS) of 35-45% 

(E)-axitinib and 55-65% (Z)-axitinib. On the other hand, irradiation at 385 nm afforded 85% 

(E)-axitinib and 15% (Z)-axitinib.
89
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Figure 65. Photoisomerization of (E)-axitinib and (Z)-axitinib.
89

 Irradiation of an (E)-axitinib solution (5 mM 

in DMSO) at (A) 365 nm resp. (B) 385 nm led to photoisomerization resulting in different photostationary states 

of (E)-axitinib (black squares) to its (Z)-isomer (grey diamonds) quantified time dependently by HPLC analysis. 

Irradiation of an equally concentrated (Z)-axitinib solution at (C) 365 nm resp. (D) 385 nm evolved similar 

ratios. 

 

Summing up, the PSS of both isomers could be shifted to either side depending on the 

irradiated wavelength, but a total conversion could not be achieved. In biological settings, 

however, there are typically much lower compound concentration levels compared to the 

analytical situation described above. After UV triggered activation of the (Z)-isomer, 

(E)-axitinib might thus be tightly bound by the target and therefore withdrawn from the 

chemical balance, enabling a more quantitative shift to the bioactive (E)-configuration. 
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3.3.4 Biological Evaluation 

To provide evidence for the hypothesis regarding different affinities of (E)-axitinib and 

(Z)-axitinib towards relevant kinases, the biological activities of both isomers were compared 

using in vitro assays. Inhibition curves were therefore determined in both a radiometric and a 

non-radiometric enzymatic VEGFR2 assay (Figure 66, chapter 5.4.2). The inhibitory effect of 

(E)-axitinib and (Z)-axitinib was additionally tested in a photometric PDGFRβ assay (Figure 

67).
132

 The IC50 values of both stereoisomers toward these target kinases are shown in Table 

7. In conclusion, (E)-axitinib was at least 30-fold more potent toward VEGFR2 than 

(Z)-axitinib in the radiometric 
33

PanQinase
®
 assay and 2 to 3-fold more active in the non-

radiometric ADP-Glo™ assay. Regarding PDGFRβ, (E)-axitinib was about 20-fold more 

potent than its (Z)-isomer. In line with the modeling data it could hence be demonstrated by 

these enzymatic test systems that (Z)-axitinib is biologically less active than (E)-axitinib. 
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Figure 66. Inhibition curves of (E)-axitinib and (Z)-axitinib for VEGFR2 kinase.
122

 (E)-Axitinib was at least 

30-fold more potent toward VEGFR2 than (Z)-axitinib in the radiometric 
33

PanQinase
®
 assay and 2 to 3-fold 

more active in the non-radiometric ADP-Glo™ assay (ProQinase, Freiburg). 
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Figure 67. Inhibition curves of (E)-axitinib, (Z)-axitinib and the reference inhibitor CP-673451 for 

PDGFRβ kinase.
132

 (E)-Axitinib was about 20-fold more potent (IC50 30 nM) than (Z)-axitinib (IC50 600 nM). 

The experimental compound CP-673451 was used as a control and showed an IC50 of 1 nM which is in good 

accordance with the literature.
133

 (±SD, n=3) 

 

Table 7. Inhibitory effect of (E)-axitinib and (Z)-axitinib in enzymatic assays.
122,132

 

Inhibitor 
VEGFR2 IC50  
(radiometric) 

VEGFR2 IC50 
 (non-radiometric) 

PDGFRβ IC50 
 

(E)-axitinib < 1 nM 25 nM 30 nM 

(Z)-axitinib 29 nM 65 nM 600 nM 

 

Since the biological activities were significantly different regarding PDGFRβ the compounds 

were furthermore tested on PDGFRβ dependent NIH/3T3 cells (chapters 5.4.4 and 

5.4.5).
124,125

 In non-irradiated cells all three compounds herein showed cytotoxic effects above 

concentrations of 10 µM. (E)-Axitinib appeared to be slightly more potent compared to 

(Z)-axitinib (Figure 68). The control data using only UV irradiation demonstrated, however, 

that the NIH/3T3 cells did not tolerate UV irradiation.
123

 In order to examine if (Z)-axitinib 

was converted to (E)-axitinib in the aqueous environment of the cellular assays, the stability 

of the (Z)-stereoisomer was tested under similar conditions (chapter 5.4.6). Herein, no 

significant conversion could be detected (Figure 69). 

0

20

40

60

80

100

120

-12 -11 -10 -9 -8 -7 -6

P
D

G
F

R
β

 a
c
ti

v
it

y
 (

%
 o

f 
c
o

n
tr

o
l)

 

log [compound] / M 



 

 

87  

Fehler! Verwenden Sie die Registerkarte 'Start', um  dem Text zuzuweisen, der hier angezeigt 

werden soll. 

Results and Discussion 

 

Figure 68. Anti-proliferative effect of (E)-axitinib, (Z)-axitinib and the reference inhibitor imatinib on 

PDGFR dependent NIH/3T3 cells.
123

 Dose-response curves of (E)-axitinib, (Z)-axitinib and imatinib in 

NIH/3T3 cell proliferative assays (without irradiation) measured via the resazurin assay. Imatinib was used as a 

control. NIH/3T3 cells did not tolerate UV irradiation (data not shown). (±SD, n=3) 

 

A  MEM  B MEM with 10% FBS  

  

Figure 69. Stability of (Z)-axitinib under assay conditions.
132

 Stability of (Z)-axitinib in minimum essential 

medium (MEM) at 37 °C without (A) and with (B) fetal bovine serum (FBS). Concentrations were monitored 

time dependently by HPLC analysis. 
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The impact of both isomers on PDGFRβ signaling in vitro was consequently studied in 

greater detail using NIH/3T3 cells without UV irradiation. Western blot analyses herein 

showed the inhibition of the phosphorylation of PDGFRβ and its downstream kinases AKT 

and ERK, respectively (Figure 70, chapter 5.4.7). The comparison between the impact of both 

axitinib stereoisomers illustrates that the phosphorylation of PDGFRβ was slightly less 

inhibited by (Z)-axitinib compared to (E)-axitinib at 0.01 µM. More clearly, AKT and ERK 

phosphorylation was effectively blocked by (E)-axitinib at 0.01 µM whereas these kinases 

were still phosphorylated at (Z)-axitinib concentrations of 0.01 µM (p-PDGFRβ) and 0.1 µM 

(p-AKT, p-ERK).
132

 These results were thus in line with the enzymatic data. 

  

Figure 70. Inhibitory effect of (E)-axitinib and (Z)-axitinib on PDGFRβ signaling in western blot 

analyses.
132

 Concentrations are indicated in µM. t = total; p = phosphorylated. 
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Results and Discussion 

It was next investigated if these findings could be transferred to cellular settings using 

VEGFR dependent PC3 cells
134

 (chapters 5.4.4 and 5.4.5). Dose-response curves were 

measured without and with UV irradiation (Figure 71). As expected, the reference inhibitor 

imatinib showed cytostatic effects above 10 µM and cytotoxic effects above 100 µM, 

respectively. At concentrations above 10 µM without irradiation, (Z)-axitinib appeared to be as 

cytostatic as (E)-axitinib. After irradiation of the cells at 365 nm (5 min, 1.8 W) both axitinib 

isomers appeared to have gained potency. Surprisingly, (Z)-axitinib was even more cytotoxic 

than its (E)-isomer. UV irradiation showed a smaller effect on the dose-response curve of 

imatinib.
123

 Although the PC3 cells seemed to tolerate the irradiation well, cell stress based on 

the UV application might have had an effect on their viability resp. the permeability of 

membranes and therefore modulating the bioavailability of the tested compounds. 

 

A
     

w/o irradiation B with irradiation 

 

 

Figure 71. Anti-proliferative effect of (E)-axitinib, (Z)-axitinib and the reference inhibitor imatinib on 

VEGFR dependent PC3 cells.
123

 The anti-proliferative effect of (E)-axitinib and (Z)-axitinib on VEGFR 

dependent PC3 cells was demonstrated via resazurin assay. Imatinib was used as a control. (A) Cells were not 

irradiated. (B) Cells were irradiated at 365 nm (1.8 W) for 5 min. (±SD, n=3) 
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It was thus hypothesized that, in these cells, (Z)-axitinib might hit a target different from the 

kinases that had been investigated so far. To address this question, a selectivity profile in a 

panel of 300 kinases was determined for both axitinib stereoisomers at a concentration of 

1 µM (chapter 5.4.3). The results are presented as a heat map in Figure 72. Both (E)-axitinib 

and (Z)-axitinib showed a quite similar profile and no additional kinase target(s) could be 

identified for (Z)-axitinib.  

 

Figure 72. Selectivity profiles of (E)- and (Z)-axitinib. The assay concentration was 1 µM in a panel of 300 

kinases. The inhibitory effect of (E)-axitinib and (Z)-axitinib was tested by determination of the residual kinase 

activity. In the presented heatmap the color code is ranging from grey (low residual activity) to white (high 

residual activity. Details are shown in Supplementary Table 3 (Appendix). 

Residual activity values of exemplary target receptor tyrosine kinases of (E)-axitinib are 

shown in Table 1. (E)-Axitinib seems again to block these kinases more effectively than (Z)-

axitinib even though the differences are not significant. 

Table 8. Inhibitory effect of (E)-axitinib and (Z)-axitinib toward selected receptor tyrosine kinases. The 

residual kinase activity was measured at a compound concentration of 1 µM. 

Residual activity (%) VEGFR1 VEGFR2 PDGFRα PDGFRβ cKIT 

(E)-axitinib 4 0 -4 1 6 

(Z)-axitinib 8 1 2 4 9 

 

Due to the high potency of axitinib, the lack of differentiation might be caused by a saturation 

of the system. With regard to the western blot analysis (Figure 70) a concentration of 0.01 µM 

might allow an enhanced distinction between the effects of both isomers und should therefore 

be considered for further testing. 
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4. CONCLUSION 

4.1 CAGED VEMURAFENIB 

This project included the successful design, synthesis, photochemical, and in vitro 

characterization of novel caged prodrugs of the kinase inhibitor vemurafenib (44). Molecular 

modeling studies predicted the loss of inhibitory potency by blocking a pharmacophore 

moiety with a PPG. UV stability of the kinase inhibitor was subsequently confirmed. The next 

goal of this study was to identify the minimal structural requirement for light-induced 

deprotection of vemurafenib’s hinge binder. In conclusion, DMNB protected 7-azaindole (69) 

could not be cleaved and DMNB protected 3-acetyl-7azaindole (70) only at slow reaction 

rates. 3-Benzoyl-7-azaindole (67) was therefore considered to be the crucial fragment for 

deprotection of azaindole derivatives and was consequently used as a dummy compound for 

the following experiments.  

The subsequent goal was to compare various classes of PPGs with regard to chemical 

accessibility and photochemical release rates. Among the tested classes only o-nitrobenzyl 

protection groups released the utilized N-heterocycle at applicable reaction rates and with few 

side products. The phenacyl, coumarin, and desyl group did in contrast not produce 

acceptable results. These groups were thus not further investigated. No significant differences 

regarding photocharacteristics could be detected between the different tested o-nitrobenzyl 

derivatives. DMNB and DMNPE were therefore chosen for photoprotection of vemurafenib 

and the corresponding prodrugs were synthesized. 

After photoactivation of the caged inhibitors had been confirmed, the compounds were tested 

in different in vitro assays. It was demonstrated that caging significantly diminishes the 

inhibitory efficacy and promiscuity of vemurafenib. In particular, azaindole protected 

compound 58 revealed hardly measurable activity even at high concentrations, both in 

biochemical and cellular assays. The nonspecific interactions toward off-target kinases could 

be drastically reduced by protecting the hinge binder, the azaindole moiety. It was finally 

demonstrated that UV irradiation at 365 nm restored the inhibitory potency in proliferative 

and signal transduction assays. Cellular growth assays verified that the applied UV dosage 

was well-tolerated by the melanoma cells. 
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The herein presented caged compounds are the first photoactivatable derivatives of an 

approved small-molecule kinase inhibitor providing an exciting option for novel therapeutic 

applications. Targeted irradiation might allow a controlled, high-concentrated release of active 

compound selectively in disease-afflicted tissues. With this approach, systemic side effects 

might be prevented and acquired resistances reduced.  

The implementation of light for the release of therapeutically active substances may be 

restricted due to low tissue penetration. Several solutions for this problem are conceivable: the 

required light could be transmitted via optical fibers or endoscopic probes. Tissues could 

moreover be irradiated during surgery. By variation of the PPG the required wavelength can 

be adjusted. The deepest permeation into biological tissue can be achieved by wavelengths 

around 800 nm (biological optical window). Hence, two-photon excitation might be an 

interesting approach.
10

 

For future therapeutic applications, biological effects of the cleaved PPG and the cyclic 

benzisoxazolidine intermediate should be thoroughly explored. UV irradiation of the herein 

utilized o-nitrobenzylic PPGs generates potentially toxic nitroso compounds. In the presented 

cellular proliferation assays, the released 4,5-dimethoxy-2-nitroso-benzaldehyde (the cleaved 

DMNB) showed intrinsic toxicity only at concentrations above 10 μM. This might not be 

critical because the caged compounds could be applied at much lower concentrations. The 

caged vemurafenib derivatives exhibit antiproliferative effects already at concentrations 

around 0.1 μM. Therefore, there might still be a wide therapeutic window for possible 

applications. Due to its short half-life, the biological effect of the cyclic intermediate 93 could 

not be explored in the described assays. Further investigations in cellular assays and animal 

studies could reveal the effects of cleaved PPGs on biological tissue more thoroughly. 

In conclusion, novel caged derivatives of the approved kinase inhibitor vemurafenib were 

created and it was demonstrated that these prodrugs can be photoactivated in vitro. The 

presented strategy involved (1) the determination of suitable pharmacophore moieties, (2) UV 

stability testing of the active inhibitor, (3) synthesis of caged prodrugs, (4) characterization of 

photoactivation, and (5) evaluation of the photoactivation in vitro. 
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This approach can also be transferred to other (kinase) inhibitors and PPGs. Caged kinase 

inhibitors represent a powerful biochemical tool for studying the kinetics and regulation of 

phosphorylation processes in signal transduction cascades. On the other hand, caged kinase 

inhibitors create new possibilities for therapeutic applications. Profound research regarding 

the stability, bioavailability, metabolism, and toxicity of the caged kinase inhibitors is required 

to promote their medical applicability. 
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4.2 CAGED DIARYLMALEIMIDES AND CARBAZOLE 

In this study, the design, synthesis, photochemical, and biochemical evaluation of caged 

prodrugs of two potent, experimental VEGFR kinase inhibitors was demonstrated. Molecular 

modeling studies revealed that the imide function of the presented diarylmaleimide resp. 

carbazole acts as the hinge binding moiety. Protection with a PPG was therefore a promising 

caging approach in order to diminish the inhibitors’ efficacies. 

Examination of the UV stability indicated that irradiation of the diarylmaleimide 55 triggered 

the formation of a photocyclized product, namely the intermediate 56 of the reaction from the 

diarylmaleimide to the carbazole (57). Since this compound could not be isolated, an in situ 

formation was an interesting approach. 

The compounds were tested in a VEGFR2 kinase assay. It could be demonstrated that DMNB 

caging significantly diminished the inhibitory efficacy of both inhibitors. In cell proliferation 

assays it was further proved that UV irradiation at 365 nm restored the inhibitory activity of 

both prodrugs 99 and 100, respectively. In the case of the caged diarylmaleimide (99), the 

antiproliferative effect of the irradiated prodrug was interestingly even increased by a factor 

of 10 compared to the parent compound. A synergistic effect of the released inhibitor, the 

cleaved protecting group, formation of the intermediate, and influence of the irradiation on the 

cells can therefore be discussed. 

Notably, irradiation of the unprotected diarylmaleimide did not have an impact on the dose-

response curve. Thus, the anticipated formation of the intermediate did not lead to an 

increased biological effect. 

In conclusion, the herein presented VEGFR inhibitor prodrugs can serve as novel 

pharmacological tools in a variety of experiments. Is has to be mentioned though that 

irradiation of the diarylmaleimide prodrugs does not provide a clean photoreaction. The 

formation of the cyclized 56 has to be considered. Its biological effect should therefore be 

investigated in further detail. 
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4.3 PHOTOSWITCHABLE AXITINIB 

The aim of this study was to examine axitinib’s applicability as a photoswitchable kinase 

inhibitor. 

According to the molecular modeling studies, the (Z)-stereoisomer should significantly less 

inhibit target kinases of (E)-axitinib because of sterical hindrance. The (Z)-isomer was then 

afforded by irradiation of a DMSO solution of the (E)-isomer and subsequent separation by 

flash chromatography. NMR studies and X-ray crystallography proved that due to annular 

NH-tautomerism of the indazole two tautomers were formed. Photochemical characterization 

revealed that both stereoisomers showed quite divergent UV/vis absorption spectra and that 

the PSS of both isomers could be shifted to either side depending on the irradiated 

wavelength. Photoswitching from one stereoisomer to the other by irradiation with UV light 

(365 and 385 nm) was thus possible in solution although no complete conversion could be 

achieved. 

Enzymatic in vitro VEGFR2 and PDGFRβ assays using the isolated stereoisomers actually 

proved that the potency of (Z)-axitinib could be diminished up to 30-fold compared to 

(E)-axitinib. These results also translated into cellular settings as demonstrated by western 

blot based signal transduction analysis using PDGFRβ dependent NIH/3T3 cells. Herein, the 

respective inhibitory effects of both axitinib stereoisomers were in a similar range as 

compared to the enzymatic level. 

Cell proliferation assays using VEGFR2 dependent PC3 cells, however, demonstrated similar 

inhibitory effects for both axitinib stereoisomers. Further investigations, therefore, have to be 

made to understand the biological activities of (E)- and (Z)-axitinib in more detail. 
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5. EXPERIMENTAL 

5.1 MOLECULAR MODELING 

Molecular modeling was performed on a DELL 8 core system. For visualization Maestro, 

version 9.7, Schrödinger, LLC, New York, NY, 2014 was used. Protein crystal structures were 

prepared prior to docking by the Protein Preparation Wizard
135

 utilizing the following 

programs: Epik
136

, version 2.7, 2013; Impact, version 6.2, 2014; Prime
137,138

, version 3.4, 

2014. Thus, the X-ray crystal structure refinement process included addition of hydrogen 

atoms, optimization of hydrogen bonds, and removal of atomic clashes. Default settings were 

used. Missing side chains and loops were filled in with Prime. Furthermore, 

selenomethionines were converted to methionines and water molecules were deleted. 

Additionally, ligands were prepared in order to create energetically minimized 3D geometries 

and assign proper bond orders (MacroModel, version 10.3, 2014). Accessible tautomer and 

ionization states were calculated prior to screening (LigPrep, version 2.9, 2014). To generate 

bioactive conformers a conformational search method was used (ConfGen
139

, version 2.7, 

2014). Receptor grid generation was performed by Glide
140,141

, version 6.2, 2014. For ligand 

docking and screening the Glide SP workflow was used. Energetically minimized ligand 

conformations were docked into the active site of the protein; possible binding poses were 

determined and subsequently ranked based on their calculated binding affinities. 

Furthermore, caged ligands were investigated regarding their interactions within the ATP 

binding pocket. The structures were therefore superimposed with crystallized or modeled 

inhibitors by the flexible ligand alignment function. Afterwards, steric hindrance was 

determined by calculation of ligand-protein contacts. Ugly contacts with a contact cutoff ratio 

< 0.5 were indicated by red dashed lines. The cutoff ratio was calculated by Maestro based on 

the following formula: C = D1,2 / (R1+R2) where D1,2 is the distance between the two atomic 

centers and where R1 resp. R2 are the radii of the atomic centers. C increases monotonically 

for each contact type, that is C(ugly) < C(bad) < C(good). 
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5.2 PHOTOEXPERIMENTS 

5.2.1 UV/vis Absorption Spectra 

Spectra were recorded on UV/vis spectrophotometer Varian Cary® 50 Scan, Agilent 

Technologies. UV/vis absorbance was measured in methanol, DMSO or PBS buffer with 10% 

DMSO. Concentration is either indicated or compounds were solved and diluted until peak 

absorbance was in a range of 0.6 to 0.8. Subsequently, graphs were normalized on basis of 

area under the curve between 260 and 320 nm. 

5.2.2 UV Stability 

Vemurafenib 

Vemurafenib (44) was dissolved in DMSO (10 mM) resp. in PBS buffer with 10% DMSO at 

0.01 mM and irradiated at 365 nm (LED source: 12 x Nichia NCSU033B, Sahlmann 

Photochemical Solutions, 100%, 5.4 W) up to 20 min. Aliquots were diluted 1:10 resp. 1:1 

with methanol and analyzed by HPLC. Additional to HPLC analysis LC-MS was used to 

confirm compound identity. 

Diarylmaleimide and carbazole 

Compounds 55 and 57 were dissolved in DMSO (1 mM) and irradiated at 365 nm (LED 

source: 12 x Nichia NCSU033B, Sahlmann Photochemical Solutions, 100%, 5.4 W) up to 

10 min. Aliquots were diluted 1:10 with methanol and analyzed by HPLC. Additional to 

HPLC analysis LC-MS was used to confirm compound identity. 
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5.2.3 Photoactivation 

Caged vemurafenib 

Compounds 58, 59, and 60 were dissolved in DMSO (1 mM) resp. in PBS buffer with 10% 

DMSO (0.01 mM). The solutions were irradiated at 365 nm (LED source: 12 x Nichia 

NCSU033B, Sahlmann Photochemical Solutions, 100%, 5.4 W) up to 10 min. After 0.25, 0.5, 

0.75, 1, 2, 3, 5 and 10 min of irradiation samples were taken. Aliquots were diluted 1:5 resp. 

1:1 with methanol and subsequently analyzed by HPLC. Additional to retention time LC-MS 

was used to proof identity. 

Caged diarylmaleimides and carbazole 

Compounds 98, 99, and 100 were dissolved in DMSO (1 mM) and the solutions were 

irradiated at 365 nm (LED source: 12 x Nichia NCSU033B, Sahlmann Photochemical 

Solutions, 100%, 5.4 W) up to 10 min. After 0.25, 0.5, 0.75, 1, 2, 3, 5 and 10 min of 

irradiation samples were taken. Aliquots were diluted 1:5 resp. 1:1 with methanol and 

subsequently analyzed by HPLC. Additional to retention time LC-MS was used to proof 

identity. 

5.2.4 Photoswitching Experiments 

Photoswitchable axitinib 

Compounds 19 and 19a/b were dissolved in DMSO (5 mM) and irradiated either at 365 nm 

(LED source: 12 x Nichia NCSU033B, Sahlmann Photochemical Solutions, 100%, 5.4 W) or 

at 385 nm (LED source: 3 x Nichia NCSU034A, Sahlmann Photochemical Solutions, 1.2 W) 

up to 15 min. After 0, 1, 2, 3, 4, 5, 7.5, 10, 12.5 and 15 min aliquots were 1:5 diluted with 

methanol and subsequently analyzed by HPLC. Additional to retention time LC-MS was used 

to proof identity. 

Experiments have been carried out by Jantje Weber.
89
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5.3 CHEMICAL SYNTHESIS AND CHARACTERIZATION 

5.3.1 Reagents and Solvents 

All reagents and solvents were obtained from the following commercial sources: abcr GmbH, 

Fisher Scientific GmbH/Acros, Sigma-Aldrich Chemie or VWR International GmbH. 

5.3.2 Flash Chromatography 

Column chromatography was performed on a LaFlash system (VWR) using silica gel 

columns (PF-30SIHP, 30 µm, 40 g, puriFlash) or RP18 columns (PF-15C18HP, 15 µm, 55 g, 

puriFlash). The crude product was loaded on Merck silica gel 60 (15-40 µm). 

5.3.3 TLC 

The progress of reactions was monitored by thin-layer chromatography (TLC) utilizing silica 

gel polyester sheets (SIL G/UV254, 0.2 mm, Polygram®, Macherey-Nagel). 

5.3.4 HPLC 

High-performance liquid chromatography (HPLC) analyses were performed on a Hewlett 

Packard 1050 Series. As column either a Phenomenex Kinetex™ C8, 5 µm (4.6 mm × 

150 mm) or an Agilent ZORBAX® Eclipse XDB-C8, 5 μm (4.6 mm × 150 mm) was used. 

Injection volume of the compound solutions was 20 µL resp. 30 µL. As mobile phase (flow 

rate 1.5 mL/min) served a gradient of KH2PO4 buffer (10 mM, pH 2.3) and methanol over 

14 min resp. 16 min. The detection wavelength was adapted to the according UV/vis 

absorption spectra. All key compounds submitted to biological assays were proven by this 

method to show ≥ 98% purity. 
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5.3.5 Melting Point 

Melting points were determined on a Stuart Scientific SMP3 apparatus and are uncorrected. 

5.3.6 NMR 

1
H, 

13
C, 

15
N, and 

19
F NMR spectra were recorded on a Bruker Avance III 300 instrument at 

294 K resp. 300 K with a multinuclear probe head using the manufacturer’s pulse programs. 

Spectra were referenced to internal DMSO-d5/CHCl3 (
1
H NMR: δ 2.50/7.26 ppm), internal 

DMSO-d6/CDCl3 (
13

C NMR: δ 39.5/77.2 ppm), external CFCl3 (
19

F NMR: δ 0.0 ppm) resp. 

external nitromethane (
15

N NMR: δ 0.0 ppm) which was corrected to ammonia scale by 

addition of 381.6 ppm. The following NMR abbreviations are used: b (broad), s (singlet), d 

(doublet), t (triplet), m (unresolved multiplet). NMR assignments were determined by analysis 

of multidimensional spectra (H,H COSY, HSQC, HMBC). 

NMR spectroscopy was performed by Dr. Ulrich Girreser and his NMR team. 

5.3.7 LC-MS 

LC-MS samples were chromatographically separated utilizing an Agilent 1100 HPLC system 

consisting of a thermostated autosampler, diode array detection, and an Agilent ZORBAX® 

Eclipse XDB-C8, 5 μm (4.6 mm × 150 mm). Elution was achieved with a solvent gradient 

system of water and acetonitrile, with 0.1% of acetic acid and a flow rate of 1 mL/min. The 

eluent flow was splitted to the mass spectrometer. Mass spectrometry was carried out using a 

Bruker Esquire ~LC instrument with electrospray ionization (ESI) operating in the positive 

ion mode. Following parameters were used: drying gas nitrogen 8 L/min, nebulizer 35 psi, dry 

gas heating 350 °C, HV capillary 4000 V, HV EndPlate offset -500 V. 

LC-MS analyses were performed by Dr. Ulrich Girreser and Sven Wichmann. 
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5.3.8 HRMS 

High resolution mass spectra (HRMS) were recorded on a Finnigan MAT 8200 mass 

spectrometer with electron ionization (EI). 

HRMS analyses were performed at the Institute of Organic Chemistry, Christian Albrechts 

University (Kiel, Germany). 

5.3.9 X-ray Crystallography 

X-ray crystal structure analysis was performed on a Stoe IPDS 2T with Cu / Mo-X ray tubes 

and Oxford Cryostream. 

X-ray analyses were performed by Dr. Dieter Schollmeyer at the Institute of Organic 

Chemistry, Johannes Gutenberg University (Mainz, Germany). 
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5.3.10   Chemical Synthesis 

Caged vemurafenib 

Chemical synthesis and characterization of the following compounds has also been described 

in 
115

. 
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Phenyl-(1H-pyrrolo[2,3-b]pyridin-3-yl)methanone (67) 

RH_038 

C14H10N2O (Mr 222.24) 

Synthesis was performed by Martin Schütt. 

AlCl3 (42 mmol, 5.6 g) was suspended in DCM (150 mL) and 7-azaindole (8.4 mmol, 1.0 g) 

was added portionwise. Subsequently, the reaction mixture was stirred for 1 h at room 

temperature. Benzoyl chloride (42 mmol, 4.9 mL) was added dropwise and the solution was 

stirred for another 8 h at room temperature. Afterwards, methanol (20 mL) was used to 

quench the reaction. After evaporation of the solvent, the crude product was purified by flash 

silica gel chromatography with a gradient of petroleum ether and ethyl acetate to afford light 

pink crystals (6.7 mmol, 1.5 g, 80%). Purity (HPLC) 95%; m.p. 189 °C; 
1
H NMR (300 MHz, 

CDCl3): δ 7.30 (dd, 
3
J = 7.9 Hz, 

3
J = 4.7 Hz, 1H), 7.52-7.61 (m, 2H), 7.60-7.65 (m, 1H), 7.81-

7.84 (m, 2H), 8.09 (s, 1H), 8.34 (dd, 
3
J = 4.7 Hz, 

4
J = 1.7 Hz, 1H), 8.54 (dd, 

3
J = 7.9 Hz, 

4
J = 

1.7 Hz, 1H), 12.65 (bs, 1H); 
13

C NMR (75 MHz, CDCl3): δ 113.6, 118.2, 118.7, 128.5, 129.8, 

131.4, 135.8, 139.6, 144.6, 149.1, 189.8. 
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1-(4,5-Dimethoxy-2-nitrobenzyl)-1H-pyrrolo[2,3-b]pyridine (69) 

RH_035 

C16H15N3O4 (Mr 313.31) 

Synthesis was performed by Martin Schütt. 

7-Azaindole (0.5 mmol, 60 mg), 4,5-dimethoxy-2-nitrobenzyl bromide (0.75 mmol, 207 mg) 

and Li2CO3 (2.0 mmol, 150 mg) were dissolved in DMF (20 mL) and the reaction mixture 

stirred for 18 h at room temperature. After evaporation of the solvent, the syrup-like crude 

product was washed with ice water. This procedure was repeated twice. The residue was 

dissolved in ethyl acetate, dried over Na2SO4, filtered and concentrated to give a bright yellow 

solid (0.32 mmol, 100 mg, 64%). Purity (HPLC) > 98%; m.p. 121 °C; 
1
H NMR (300 MHz, 

CDCl3): δ 3.64 (s, 3H), 3.93 (s, 3H), 6.34 (s, 2H), 6.72 (d, 
3
J = 2.7 Hz, 1 H), 6.84 (bs, 1H), 

6.92 (t, 
3
J = 6.8 Hz, 1H), 7.71 (s, 1H), 7.80 (d, 

3
J = 6.3 Hz, 1H), 7.90 (d, 

3
J = 2.7 Hz, 1H), 

8.17 (d, 
3
J = 7.3 Hz, 1H); 

13
C NMR (75 MHz, CDCl3): δ 52.9, 56.5, 56.6, 102.0, 108.4, 109.9, 

112.5, 125.3, 129.6, 130.8, 131.5, 140.7, 144.9, 148.5, 148.9, 153.9; LC-MS (ESI): 

m/z 314 [MH]
+
. 
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1-(1-(4,5-Dimethoxy-2-nitrobenzyl)-1H-pyrrolo[2,3-b]pyridin-3-yl)ethanone (70) 

RH_036 

C18H17N3O5 (Mr 355.34) 

Synthesis was performed by Martin Schütt. 

3-Acetyl-7-azaindole (1.0 mmol, 160 mg), 4,5-dimethoxy-2-nitrobenzyl bromide (1.5 mmol, 

414 mg) and Li2CO3 (4.0 mmol, 300 mg) were dissolved in DMF (40 mL) and the reaction 

mixture was stirred for 18 h at room temperature. After evaporation of the solvent, the crude 

product was washed with ice water (20 mL). The residue was dissolved in DCM, dried over 

Na2SO4, filtered and concentrated to give a pale yellow solid (0.47 mmol, 167 mg, 47%). 

Purity (HPLC) > 98%; m.p. 202 °C; 
1
H NMR (300 MHz, CDCl3): δ 2.56 (s, 3H), 3.69 (s, 3H), 

3.94 (s, 3H), 6.35 (s, 2H), 6.84 (s, 1H), 7.18 (dd, 
3
J = 7.5 Hz, 

3
J = 6.3 Hz, 1H), 7.72 (s, 1H), 

7.96 (dd, 
3
J = 6.3 Hz, 

4
J = 1.1 Hz, 1H), 8.43 (s, 1H), 8.96 (dd, 

3
J = 7.5 Hz, 

4
J = 1.1 Hz, 1H); 

13
C NMR (75 MHz, CDCl3): δ 27.3, 53.1, 56.6, 56.6, 108.5, 112.6, 114.0, 118.7, 124.3, 128.4, 

131.5, 135.7, 140.8, 149.3, 150.8, 151.8, 153.9, 193.4; LC-MS (ESI): m/z 356 [MH]
+
. 
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 (1-(4,5-Dimethoxy-2-nitrobenzyl)-1H-pyrrolo[2,3-b]pyridin-3-yl)(phenyl)methanone 

(71)
 

RH_037 

C23H19N3O5 (Mr 417.41) 

Synthesis was performed by Martin Schütt. 

3-Benzoyl-7-azaindole (0.5 mmol, 111 mg), 4,5-dimethoxy-2-nitrobenzyl bromide 

(0.75 mmol, 207 mg) and Li2CO3 (2.0 mmol, 150 mg) were dissolved in DMF (15 mL) and 

stirred for 72 h at room temperature. After evaporation of the solvent, the crude product was 

washed with ice water (20 mL). The residue was dissolved in DCM, dried over Na2SO4, 

filtered and concentrated to give a pale yellow solid (0.21 mmol, 171 mg, 41%). Purity 

(HPLC) > 98%; m.p. 162 °C; 
1
H NMR (300 MHz, CDCl3): δ 3.67 (s, 3H), 3.92 (s, 3H), 5.93 

(s, 2H), 6.69 (s, 1H), 7.32 (dd, 
3
J = 7.9 Hz, 

3
J = 4.8 Hz, 1H), 7.46-7.52 (m, 2H), 7.53-7.60 (m, 

1H), 7.68 (s, 1H), 7.80-7.83 (m, 2H), 7.92 (s, 1H), 8.43 (dd, 
3
J = 4.7 Hz, 

4
J = 1.6 Hz, 1H), 

8.71 (dd, 
3
J = 7.9 Hz, 

4
J = 1.6 Hz, 1H); 

13
C NMR (75 MHz, CDCl3): δ 46.3, 56.4, 56.5, 108.4, 

112.1, 114.9, 119.2, 119.9, 127.0, 128.7, 128.8, 131.8, 131.9, 137.0, 139.8, 140.3, 144.9, 

148.3, 148.6, 153.8, 190.7; LC-MS (ESI): m/z 418 [MH]
+
. 
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Experimental 

1-(4,5-Dimethoxy-2-nitrophenyl)ethanone (73) 

RH_021 

C10H11NO5 (Mr 225.20) 

1-(3,4-Dimethoxyphenyl)ethanone (28 mmol, 5.0 g) was added portionwise to a cooled 

mixture of 65% nitric acid (230 mmol, 15.6 mL) and concentrated sulfuric acid (140 mmol, 

7.5 mL) at -5 °C. Afterwards, the reaction mixture was stirred for further 30 min at -5 °C. 

Next, the solution was poured onto ice, the precipitate was filtered off and washed with water. 

Recrystallization from methanol yielded yellow crystals (13 mmol, 3.0 g, 48%). Purity 

(HPLC) 86%; m.p. 137 °C; 
1
H NMR (300 MHz, DMSO-d6): δ 2.52 (s, 3H), 3.90 (s, 3H), 3.92 

(s, 3H), 7.21 (s, 1H), 7.63 (s, 1H); LC-MS (ESI): m/z 226 [MH]
+
. 
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1-(4,5-Dimethoxy-2-nitrophenyl)ethanol (74) 

RH_022 

C10H13NO5 (Mr 227.21) 

1-(4,5-Dimethoxy-2-nitrophenyl)ethanone (5.0 mmol, 1.13 g) was dissolved in boiling 

ethanol (15 mL) and NaBH4 (2.4 mmol, 0.09 g) was then added portionwise. After stirring 

under reflux for 1 h the reaction mixture was poured into ice water (50 mL) and acidified with 

hydrochloric acid (20%) to pH 6. The product was filtered off and dried in vacuo. 

Recrystallization from a mixture of cyclohexane and ethanol afforded red crystals (2.8 mmol, 

636 mg, 56%). Purity (HPLC) 94%; m.p. 124 °C; 
1
H NMR (300 MHz, CDCl3): δ 1.55 (d, 

3
J = 

6.3 Hz, 3H), 2.15 (bs, 1H), 3.93 (s, 3H), 3.99 (s, 3H), 5.56 (q, 
3
J = 6.3 Hz, 1H), 7.30 (s, 1H), 

7.56 (s, 1H); LC-MS (ESI): m/z 210 [M-OH]
+
. 
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1-(1-Bromoethyl)-4,5-dimethoxy-2-nitrobenzene (75) 

RH_029 

C10H12BrNO4 (Mr 290.11) 

1-(4,5-Dimethoxy-2-nitrophenyl)ethanol (0.5 mmol, 114 mg) was dissolved in DCM (3 mL). 

Subsequently, PBr3 (1.5 mmol, 0.14 mL) was diluted with DCM (1 mL) and added dropwise 

under stirring at room temperature. The organic phase was washed with brine, dried over 

Na2SO4 and concentrated. Flash silica gel chromatography with a gradient of petroleum ether 

and ethyl acetate quantitatively afforded a brown-yellowish oil which was directly used for 

further synthesis. Purity (HPLC) > 98%; 
1
H NMR (300 MHz, CDCl3): δ 2.27 (d, 

3
J = 6.8 Hz, 

3H), 3.94 (s, 3H), 4.01 (s, 3H), 6.81 (q, 
3
J = 6.8 Hz, 1H), 7.27 (s, 1H), 7.46 (s, 1H). 
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(1-(1-(4,5-Dimethoxy-2-nitrophenyl)ethyl)-1H-pyrrolo[2,3-b]pyridin-3-

yl)(phenyl)methanone (76) 

RH_044 

C24H21N3O5 (Mr 431.44) 

1-(4,5-Dimethoxy-2-nitrophenyl)ethanol (0.45 mmol, 102 mg) was dissolved in DCM (5 mL) 

and PBr3 (1.35 mmol, 0.13 mL), diluted with DCM (1 mL), was added dropwise at 0 °C. 

After stirring 15 min at room temperature the reaction mixture was washed with brine, dried 

over Na2SO4, filtered and used after evaporation of the solvent without further purification. 

The residue was dissolved in DMF (5 mL). 3-Benzoyl-7-azaindole (0.40 mmol, 89 mg) as 

well as K2CO3 (1.2 mmol, 166 mg) were added. The reaction mixture was stirred for 18 h at 

room temperature. After evaporation of the solvent, the yellowish oil was redissolved in ethyl 

acetate, washed with brine and dried over Na2SO4. The crude product was purified by flash 

silica gel chromatography with a gradient of petroleum ether and ethyl acetate to give a 

yellowish solid (0.07 mmol, 32 mg, 19%). Purity (HPLC) > 98%; m.p. 157 °C; 
1
H NMR 

(300 MHz, DMSO-d6): δ 2.07 (d, 
3
J = 7.1 Hz, 3H), 3.77 (s, 3H), 3.82 (s, 3H), 6.71 (q, 

3
J = 

7.1 Hz, 1H), 7.05 (s, 1H), 7.30 (dd, 
3
J = 7.9 Hz, 

3
J = 4.7 Hz, 1H), 7.54 (s, 1H), 7.55-7.61 (m, 

2H), 7.64-7.69 (m, 1H), 7.86-7.89 (m, 2H), 8.30 (dd, 
3
J = 4.7 Hz, 

4
J = 1.6 Hz, 1H), 8.48 (dd, 

3
J = 7.9 Hz, 

4
J = 1.6 Hz, 1H), 8.54 (s, 1H); 

13
C NMR (75 MHz, DMSO-d6): δ 19.6, 49.2, 56.1, 

56.2, 107.7, 109. 7, 113.1, 119.0, 119.3, 128.6, 128.8, 130.2, 130.5, 131.8, 135.3, 139.4, 

140.7, 144.6, 147.5, 147.8, 152.9, 189.6; LC-MS (ESI): m/z 432 [MH]
+
. 
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Experimental 

(1-(4,5-Dimethoxy-2-nitrophenyl)ethoxy)methyl)(methyl)sulfane (77) 

RH_023 

C12H17NO5S (Mr 287.33) 

1-(4,5-Dimethoxy-2-nitrophenyl)ethanol (2.2 mmol, 0.5 g) was dissolved in acetonitrile 

(15 mL). Dimethyl sulfide (19.3 mmol, 1.2 g) was added at 0 °C. Over a period of 20 min 

benzoyl peroxide (12.4 mmol, 6.0 g, stabilized with dicyclohexyl phthalate at a ratio of 1:1) 

was slowly added. Subsequently, the reaction mixture was stirred for 2 h. Purification by flash 

silica gel chromatography with a gradient of petroleum ether and ethyl acetate afforded a 

yellow solid (1.1 mmol, 330 mg, 52%). Purity (HPLC) 94%; m.p. 70 °C; 
1
H NMR (300 MHz, 

CDCl3): δ 1.55 (d, 
3
J = 6.3 Hz, 3H), 2.15 (s, 3H), 3.93 (s, 3H), 3.99 (s, 3H), 4.33 (d, 

2
J = 

11.3 Hz, 1H), 4.60 (d, 
2
J = 11.3 Hz, 1H), 5.56 (q, 

3
J = 6.3 Hz, 1H), 7.30 (s, 1H), 7.56 (s, 1H); 

13
C NMR (75 MHz, CDCl3): δ 14.36, 23.50, 56.49, 56.59, 70.48, 73.40, 107.76, 108.74, 

134.84, 140.67, 148.01, 153.98; LC-MS (ESI): m/z 210 [M-OCH2SCH3]
+
. 
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1-(1-(Chloromethoxy)ethyl)-4,5-dimethoxy-2-nitrobenzene (78) 

RH_024 

C11H14ClNO5 (Mr 275.69) 

(1-(4,5-Dimethoxy-2-nitrophenyl)ethoxy)methyl)(methyl)sulfane (0.3 mmol, 100 mg) was 

dissolved in DCM (5 mL). Subsequently, sulfuryl chloride (1.2 mmol, 0.1 mL) was diluted 

with DCM (1 mL) and added dropwise at 0 °C to the reaction mixture. After stirring for 4 h at 

room temperature the reaction was completed. The solvent was removed under reduced 

pressure to give a yellow oil. The product was used without further purification. 
1
H NMR 

(300 MHz, CDCl3): δ 1.51 (d, 
3
J = 6.3 Hz, 3H), 3.88 (s, 3H), 3.92 (s, 3H), 5.22 (d, 

2
J = 

5.9 Hz, 1H), 5.46 (d, 
2
J = 5.9 Hz, 1H), 5.59 (q, 

3
J = 6.3 Hz, 1H), 7.03 (s, 1H), 7.52 (s, 1H); 

13
C NMR (75 MHz, CDCl3): δ 23.17, 56.50, 56.60, 73.46, 80.59, 107.77, 108.80, 133.44, 

140.31, 148.26, 153.91. 
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Experimental 

(1-((1-(4,5-Dimethoxy-2-nitrophenyl)ethoxy)methyl)-1H-pyrrolo[2,3-b]pyridin-3-

yl)(phenyl)methanone (79)
 

RH_043 

C25H23N3O6 (Mr 461.47) 

(1-(4,5-Dimethoxy-2-nitrophenyl)ethoxy)methyl)(methyl)sulfane (0.44 mmol, 127 mg) was 

dissolved in DCM (5 mL). Subsequently, sulfuryl chloride (1.2 mmol, 0.1 mL) was diluted 

with DCM (1 mL) and added dropwise at 0 °C. After stirring at room temperature for 4 h, the 

reaction mixture was evacuated by using a water suction pump. The residue was redissolved 

in DMF (5 mL) and K2CO3 (1.23 mmol, 170 mg) was added. 3-Benzoyl-7-azaindole 

(0.41 mmol, 91 mg) was dissolved in DMF (5 mL), added dropwise and the solution was 

stirred for 1 h at room temperature. After evaporation of the solvent, the crude product was 

redissolved in ethyl acetate and washed with hydrochloric acid (0.1M) and brine. The organic 

layer was dried over Na2SO4, filtered and evacuated. Purification by flash silica gel 

chromatography with a gradient of petroleum ether and ethyl acetate afforded an orange solid 

(0.16 mmol, 73 mg, 39%). Purity (HPLC) 97%; m.p. 70 °C; 
1
H NMR (300 MHz, DMSO-d6): 

δ 1.43 (d, 
3
J = 6.1 Hz, 3H), 3.47 (s, 3H), 3.72 (s, 3H), 5.39 (q, 

3
J = 6.1 Hz, 1H), 5.74 (d, 

2
J = 

11.1 Hz, 1H), 5.80 (d, 
2
J = 11.1 Hz, 1H), 6.78 (s, 1H), 7.31 (dd, 

3
J = 7.9 Hz, 

3
J = 4.7 Hz, 1H), 

7.32 (s, 1H), 7.54-7.59 (m, 2H), 7.64-7.68 (m, 1H), 8.16 (s, 1H), 8.31 (dd, 
3
J = 4.7 Hz, 

4
J = 

1.4 Hz, 1H), 8.38 (dd, 
3
J = 7.9 Hz, 

4
J = 1.4 Hz, 1H); 

13
C NMR (75 MHz, DMSO-d6): δ 23.7, 

55.4, 56.0, 73.3, 107.0, 108.1, 113.3, 118.8, 118.9, 128.3, 128.5, 130.1, 131.6, 134.3, 138.0, 

139.0, 139.2, 144.6, 147.1, 147.7, 152.9, 189.42; LC-MS (ESI): m/z 462 [MH]
+
. 
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2-(3-Benzoyl-1H-pyrrolo[2,3-b]pyridin-1-yl)-1-(4-hydroxyphenyl)ethanone (82) 

RH_039 

C22H16N2O3 (Mr 356.37) 

3-Benzoyl-7-azaindole (0.45 mmol, 100 mg) and K2CO3 (1.35 mmol, 187 mg) were dissolved 

in DMF (10 mL) and stirred for 15 min at room temperature. 4-Hydroxyphenacylbromide 

(0.4 mmol, 97 mg) was dissolved in DMF (10 mL) and added dropwise at 0 °C. Afterwards, 

the reaction mixture was stirred for another 30 min at room temperature. After evaporation of 

the solvent, the remainder was redissolved in ethyl acetate, washed with hydrochloric acid 

(1M) and brine and subsequently dried over Na2SO4. The crude product was purified by flash 

silica gel chromatography with a gradient of petroleum ether and ethyl acetate to give grey 

needles (0.16 mmol, 58 mg, 36%). Purity (HPLC) 96%; m.p. 215 °C; 
1
H NMR (300 MHz, 

CDCl3): δ 5.93 (s, 2H), 6.94 (d, 
3
J = 8.8 Hz, 2H), 7.36 (dd, 

3
J = 7.9 Hz, 

3
J = 4.7 Hz, 1H), 

7.54-7.60 (m, 2H), 7.60-7.67 (m, 1H), 7.81-7.85 (m, 2H), 7.99 (d, 
3
J = 8.8 Hz, 2H), 8.29 (s, 

1H), 8.35 (dd, 
3
J = 4.7 Hz, 

4
J = 1.6 Hz, 1H), 8.59 (dd, 

3
J = 7.9 Hz, 

4
J = 1.6 Hz, 1H), 10.57 

(bs, 1H); 
13

C NMR (75 MHz, CDCl3): δ 50.6, 112.8, 115.6, 118.7, 118. 9, 125.8, 128.4, 128.6, 

130.2, 130.7, 131.5, 139.6, 140.1, 144.3, 148.2, 162.9, 189.6, 191.0; LC-MS (ESI): 

m/z 357 [MH]
+
. 
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Experimental 

2-(3-Benzoyl-1H-pyrrolo[2,3-b]pyridin-1-yl)-1-(4-(dimethylamino)phenyl)ethanone (83) 

RH_040 

C24H21N3O2 (Mr 383.44) 

3-Benzoyl-7-azaindole (0.45 mmol, 100 mg) and K2CO3 (1.35 mmol, 187 mg) were dissolved 

in DMF (10 mL) and stirred for 15 min at room temperature. 4-(Dimethylamino)phenacyl 

bromide (0.4 mmol, 109 mg) was dissolved in DMF (10 mL) and was added dropwise at 0 °C. 

Afterwards, the reaction mixture was stirred for 1 h at room temperature. After evaporation of 

the solvent, the crude product was redissolved in ethyl acetate, washed with hydrochloric acid 

(1M) and brine and dried over Na2SO4. Subsequently, the solvent was removed under reduced 

pressure and the residue washed with diethyl ether to afford a white powder (0.26 mmol, 

101 mg, 59%). Purity (HPLC) > 98%; m.p. 147 °C; 
1
H NMR (300 MHz, DMSO-d6): δ 3.05 

(s, 6H), 5.88 (s, 2H), 6.78 (d, 
3
J = 9.1 Hz, 2H), 7.35 (dd, 

3
J = 7.8 Hz, 

3
J = 4.7 Hz, 1H), 7.54-

7.62 (m, 2H), 7.62-7.66 (m, 1H), 7.81-7.84 (m, 2H), 7.93 (d, 
3
J = 9.1 Hz, 2H), 8.28 (s, 1H), 

8.35 (dd, 
3
J = 4.7 Hz, 

4
J = 1.6 Hz, 1H), 8.60 (dd, 

3
J = 7.8 Hz, 

4
J = 1.6 Hz, 1H); 

13
C NMR 

(75 MHz, DMSO-d6): δ 39.6, 50.3, 110.8, 112.7, 118.6, 118.9, 121.6, 128.4, 128.6, 130.1, 

130.1, 131.5, 139.7, 140.3, 144.3, 148.2, 153.8, 189.6, 189.97; LC-MS (ESI): m/z 384 [MH]
+
. 
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4-((3-Benzoyl-1H-pyrrolo[2,3-b]pyridin-1-yl)methyl)-7-methoxy-2H-chromen-2-one (84) 

RH_042 

C25H18N2O4 (Mr 410.42) 

Synthesis was performed by Dr. Melanie Zindler.
142

 

3-Benzoyl-7-azaindole (0.5 mmol, 111 mg) and Li2CO3 (2.0 mmol, 148 mg) were dissolved 

in DMF (5 mL) and stirred for 15 min at room temperature. 4-Bromomethyl-7-

methoxycoumarin (0.5 mmol, 134 mg) was dissolved in DMF (5 mL) and added dropwise. 

Afterwards, the reaction mixture was stirred for 18 h at room temperature. After evaporation 

of the solvent, the remainder was redissolved in ethyl acetate, washed with hydrochloric acid 

(1M) and brine and dried over Na2SO4. The crude product was purified by flash silica gel 

chromatography with a gradient of petroleum ether and ethyl acetate to afford a white powder 

(0.23 mmol, 94 mg, 46%). Purity (HPLC) 96%; m.p. 214 °C; 
1
H NMR (300 MHz, 

DMSO-d6): δ 3.88 (s, 3H), 5.34 (s, 1H), 5.87 (s, 2H), 7.05 (s, 1H), 7.02-7.06 (m, 1H), 7.41 

(dd, 
3
J = 7.9 Hz, 

3
J = 4.7 Hz, 1H), 7.53-7.59 (m, 2H), 7.61-7.67 (m, 1H), 7.84-7.88 (m, 2H), 

7.93-7.97 (m, 1H), 8.42 (s, 1H), 8.43 (dd, 
3
J = 4.7 Hz, 

4
J = 1.6 Hz, 1H), 8.63 (dd, 

3
J = 7.9 Hz, 

4
J = 1.6 Hz, 1H); 

13
C NMR (75 MHz, DMSO-d6): δ 44.6, 56.1, 101.2, 108.5, 110.6, 112.5, 

113.5, 119.0, 119.1, 125.7, 128.6, 130.6, 131.7, 138.8, 139.4, 144.9, 147.7, 151.9, 154.9, 

159.8, 162.7, 189.6; LC-MS (ESI): m/z 411 [MH]
+
. 
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Experimental 

4-((3-Benzoyl-1H-pyrrolo[2,3-b]pyridin-1-yl)methyl)-6,7-dimethoxy-2H-chromen-2-one 

(85) 

RH_041 

C26H20N2O5 (Mr 440.45) 

3-Benzoyl-7-azaindole (0.45 mmol, 100 mg) and K2CO3 (1.35 mmol, 187 mg) were dissolved 

in DMF (10 mL) and stirred for 15 min at room temperature. 4-Bromomethyl-6,7-

dimethoxycoumarin (0.4 mmol, 135 mg) was dissolved in DMF (10 mL) and added dropwise. 

Afterwards, the reaction mixture was stirred for 1 h at room temperature. After evaporation of 

the solvent, the remainder was redissolved in ethyl acetate, washed with hydrochloric acid 

(1M) and brine and dried over Na2SO4. Purification of the crude product by flash silica gel 

chromatography with a gradient of petroleum ether and ethyl acetate gave a white powder 

(0.31 mmol, 135 mg, 68%). Purity (HPLC) > 98%; m.p. 226 °C; 
1
H NMR (300 MHz, 

DMSO-d6): δ 3.81 (s, 3H), 3.87 (s, 3H), 5.50 (s, 1H), 5.89 (s, 2H), 7.11 (s, 1H), 7.42 (dd, 
3
J = 

7.9 Hz, 
3
J = 4.7 Hz, 1H), 7.43 (s, 1H), 7.53-7.63 (m, 2H), 7.61-7.67 (m, 1H), 7.83-7.87 (m, 

2H), 8.42 (s, 1H), 8.45 (dd, 
3
J = 4.7 Hz, 

4
J = 1.6 Hz, 1H), 8.63 (dd, 

3
J = 7.9 Hz, 

4
J = 1.6 Hz, 

1H); 
13

C NMR (75 MHz, DMSO-d6): δ 44.7, 56.1, 56.2, 100.4, 105.4, 109.2, 109.5, 113.6, 

119.0, 119.1, 128.5, 130.7, 131.7, 138.6, 139.3, 144.9, 146.0, 147.7, 149.0, 151.7, 152.8, 

160.1, 189.6; LC-MS (ESI): m/z 441 [MH]
+
. 
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2-(3-Benzoyl-1H-pyrrolo[2,3-b]pyridin-1-yl)-1,2-diphenylethanone (86) 

RH_046 

C28H20N2O2 (Mr 416.47) 

3-Benzoyl-7-azaindole (0.45 mmol, 100 mg) and K2CO3 (1.35 mmol, 187 mg) were dissolved 

in DMF (10 mL) and stirred for 15 min at room temperature. Subsequently, desyl bromide 

(0.4 mmol, 124 mg) was dissolved in DMF (10 mL) and added dropwise at room temperature, 

where upon the color changed to orange. After stirring for 1 h at room temperature, the 

solvent was removed in vacuo. In the next step, the remainder was redissolved in ethyl acetate 

and washed with hydrochloric acid (0.1M) and brine. Afterwards, the organic layer was dried 

over Na2SO4, filtered and concentrated to afford a brown oil. The crude product was purified 

by flash silica gel chromatography with a gradient of petroleum ether and ethyl acetate to give 

an orange solid (0.22 mmol, 90 mg, 48%). Purity (HPLC) 97%; m.p. 152 °C; 
1
H NMR 

(300 MHz, DMSO-d6): δ 7.37-7.69 (m, 14H), 7.59 (s, 1H), 8.00 (s, 1H), 8.09-8.12 (m, 2H), 

8.42 (dd, 
3
J = 4.7 Hz, 

4
J = 1.6 Hz, 1H), 8.53 (dd, 

3
J = 7.9 Hz, 

4
J = 1.6 Hz, 1H); 

13
C NMR 

(75 MHz, DMSO-d6): δ 62.9, 113.2, 119.1, 119.3, 128.2, 128.6, 128.9, 129.1, 129.6, 129.6, 

129.7, 130.4, 131.7, 133.1, 134.2, 134.2, 136.2, 139.3, 144.6, 147.6, 189.4, 193.8; LC-MS 

(ESI): m/z 417 [MH]
+
. 
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N-(3-(5-(4-Chlorophenyl)-1H-pyrrolo[2,3-b]pyridine-3-carbonyl)-2,4-

difluorophenyl)propane-1-sulfonamide (44), INN: vemurafenib 

RH_007 

C23H18ClF2N3O3S (Mr 489.92) 

One tablet of Zelboraf (vemurafenib content 0.49 mmol, 240 mg) was pestle, absorbed onto 

silica gel and eluted with DCM and ethyl acetate to afford white needles (0.46 mmol, 228 mg, 

95%). Purity (HPLC) > 98%; m.p. 271 °C; 
1
H NMR (300 MHz, DMSO-d6): δ 0.97 (t, 

3
J = 

7.4 Hz, 3H), 1.75 (tq , 
3
J = 7.7 Hz, 

3
J = 7.4 Hz, 2H), 3.13 (t, 

3
J = 7.7 Hz, 2H), 7.28 (ddd, 

3
J = 

8.8 Hz, 
3
JHF = 8.8 Hz, 

5
JHF = 1.4 Hz, 1H), 7.56 (d, 

3
J = 8.6 Hz, 2H), 7.56-7.63 (m, 1H), 7.79 

(d, 
3
J = 8.6 Hz, 2H), 8.24 (s, 1H), 8.64 (d, 

4
J = 1.7 Hz, 1H), 8.71 (d, 

4
J = 2.3 Hz, 1H), 9.75 

(bs, 1H), 13.01 (bs, 1H); 
13

C NMR (75 MHz, DMSO-d6): δ 12.6, 16.8, 53.5, 112.3 (dd, 
2
JCF = 

22.5 Hz, 
4
JCF = 3.7 Hz), 115.7, 117.5, 118.2 (dd, 

2
JCF = 24.6 Hz, 

2
JCF = 22.4 Hz), 122.0 (dd, 

2
JCF = 13.6 Hz, 

4
JCF = 3.7 Hz), 127.1, 128.8 (dd, 

3
JCF = 10.0 Hz, 

3
JCF = 1.6 Hz), 128.9, 129.1, 

130.3, 132.5, 137.0, 138.9, 143.9, 149.0, 152.4 (dd, 
1
JCF = 249.5 Hz, 

3
JCF = 8.5 Hz), 156.0 

(dd, 
1
JCF = 246.5 Hz, 

3
JCF = 7.0 Hz), 180.6; 

19
F NMR (282 MHz, DMSO-d6): δ -122.0, -116.7; 

LC-MS (ESI): m/z 490, 492 [MH]
+
.  

   

 

Molecular structure determined by X-ray crystallography: CCDC 1044606 
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N-(3-(5-(4-Chlorophenyl)-1-(4,5-dimethoxy-2-nitrobenzyl)-1H-pyrrolo[2,3-b]pyridine-3-

carbonyl)-2,4-difluorophenyl)propane-1-sulfonamide (58)
 

RH_015 

C32H27ClF2N4O7S (Mr 685.09) 

Vemurafenib (0.25 mmol, 122 mg), 4,5-dimethoxy-2-nitrobenzyl bromide (0.25 mmol, 

69 mg) and K2CO3 (1.25 mmol, 173 mg) were dissolved in DMF (10 mL). The reaction 

mixture was stirred for 1 h at room temperature. After evaporation of the solvent, the 

yellowish oil was redissolved in ethyl acetate, washed with brine and dried over Na2SO4. The 

crude product was purified by flash silica gel chromatography with a gradient of petroleum 

ether and ethyl acetate to give a yellowish solid (0.026 mmol, 18 mg, 11%). Purity (HPLC) 

> 98%; m.p. 200 °C; 
1
H NMR (300 MHz, DMSO-d6): δ 0.90 (t, 

3
J = 7.4 Hz, 3H), 1.71 (tq, 

3
J = 7.5 Hz, 

3
J = 7.4 Hz, 2H), 3.08 (t, 

3
J = 7.5 Hz, 2H), 3.59 (s, 3H), 3.85 (s, 3H), 5.89 (s, 

2H), 6.45 (s, 1H), 7.31 (ddd, 
3
JHF = 9.0 Hz, 

3
J = 8.7 Hz, 

5
JHF = 1.6 Hz, 1H), 7.57 (d, 

3
J = 

8.5 Hz, 2H), 7.60 (dd, 
3
J = 8.7 Hz, 

4
JHF = 6.1 Hz, 1H), 7.70 (s, 1H), 7.81 (d, 

3
J = 8.5 Hz, 2H), 

8.45 (s, 1H), 8.69 (bs, 1H), 8.73 (d, 
4
J = 2.0 Hz, 1H), 9.78 (bs, 1H); 

13
C NMR (75 MHz, 

DMSO-d6): δ 12.5, 16.9, 45.6, 53.5, 55.8, 56.2, 108.4, 110.7, 112.3 (d, 
2
JCF = 22.7 Hz), 115.1, 

117.7, 117.8 (t, 
2
JCF = 23.5 Hz), 122.9 (d, 

2
JCF = 15.5 Hz), 126.4, 127.6, 128.7 (d, 

3
JCF = 

8.1 Hz), 129.0, 129.1, 131.0, 132.7, 136.6, 140.0, 141.3, 144.2, 147.8, 147.9, 152.2 (dd, 
1
JCF = 

252.6 Hz, 
3
JCF = 8.4 Hz), 153.1, 155.5 (dd, 

1
JCF = 251.1 Hz, 

3
JCF = 6.8 Hz), 180.6; 

19
F NMR 

(282 MHz, DMSO-d6): δ -122.2, -116.7; LC-MS (ESI): m/z 685, 687 [MH]
+
. 
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Molecular structure determined by X-ray crystallography: CCDC 1044607 
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Chemical Synthesis and Characterization 122 

N-(3-(5-(4-Chlorophenyl)-1-(1-(4,5-dimethoxy-2-nitrophenyl)ethyl)-1H-pyrrolo[2,3-

b]pyridine-3-carbonyl)-2,4-difluorophenyl)propane-1-sulfonamide (59) 

RH_032 

C33H29ClF2N4O7S (Mr 699.12) 

1-(4,5-Dimethoxy-2-nitrophenyl)ethanol (1.0 mmol, 230 mg) was dissolved in DCM (8 mL) 

and PBr3 (3.0 mmol, 0.28 mL), diluted with DCM (1 mL), was added dropwise at 0 °C. After 

stirring of the reaction mixture for 30 min at 0 °C and another 15 min at room temperature, 

the reaction mixture was washed with brine, dried over Na2SO4, filtered and concentrated. 

The residue was used in the next step without further purification. The formed 

1-(1-bromoethyl)-4,5-dimethoxy-2-nitrobenzene was dissolved in DMF (15 mL). 

Vemurafenib (0.6 mmol, 295 mg) and K2CO3 (2.4 mmol, 330 mg) were added and stirred for 

18 h at room temperature. After evaporation of the solvent, the yellowish oil was redissolved 

in ethyl acetate, washed with brine and dried over Na2SO4. Purification by flash silica gel 

chromatography with a gradient of petroleum ether and ethyl acetate afforded a yellowish 

solid (0.14 mmol, 98 mg, 23%). Purity (HPLC) > 98%; m.p. 218 °C; 
1
H NMR (300 MHz, 

DMSO-d6): δ 0.96 (t, 
3
J = 7.5 Hz, 3H), 1.71 (tq, 

3
J = 7.6 Hz,

 3
J = 7.5 Hz, 2H), 2.02 (d, 

3
J = 

7.1 Hz, 3H), 3.14 (t, 
3
J = 7.6 Hz, 2H), 3.71 (s, 3H), 3.82 (s, 3H), 6.77 (q, 

3
J = 7.1 Hz, 1H), 

6.81 (s, 1H), 7.32 (ddd, 
3
J = 8.9 Hz, 

3
JHF = 8.8 Hz, 

5
JHF = 1.5 Hz, 1H), 7.53 (d, 

3
J = 8.8 Hz, 

2H), 7.58 (s, 1H), 7.63 (ddd, 
3
J = 8.9 Hz, 

4
JHF = 5.9 Hz, 

4
JHF = 5.9 Hz, 1H), 7.75 (d, 

3
J = 

8.8 Hz, 2H), 8.61 (bs, 1H), 8.64 (d, 
6
J = 2.2 Hz, 1H), 8.74 (s, 1H), 9.80 (bs, 1H); 

13
C NMR 

(75 MHz, DMSO-d6): δ 12.6, 16.8, 19.7, 49.7, 53.5, 55.6, 56.1, 107.9, 108.8, 112.6 (dd, 
3
JCF = 

22.8 Hz, 
5
JCF = 2.8 Hz), 115.3, 118.0 (dd, 

2
JCF = 24.2 Hz, 

2
JCF = 21.9 Hz), 118.1, 122.0 (dd, 

2
JCF = 13.5 Hz, 

4
JCF = 3.4 Hz), 127.5, 129.0, 129.1, 129.2 (d, 

4
JCF = 0.2 Hz), 130.5, 131.1, 

132.7, 136.6, 138.2, 140.3, 144.0, 147.4, 147.8, 152.7 (dd, 
1
JCF = 250.2 Hz, 

3
JCF = 8.4 Hz), 

153.1, 156.3 (dd, 
1
JCF = 247.2 Hz, 

3
JCF = 6.6 Hz), 180.6; 

19
F NMR (282 MHz, DMSO-d6): 

δ -121.5, -116.5; LC-MS (ESI): m/z 699, 701 [MH]
+
. 
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Molecular structure determined by X-ray crystallography: CCDC 1044608 
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N-(3-(5-(4-Chlorophenyl)-1H-pyrrolo[2,3-b]pyridine-3-carbonyl)-2,4-difluorophenyl)-N-

(4,5-dimethoxy-2-nitrobenzyl)propane-1-sulfonamide (60) 

RH_015* 

C32H27ClF2N4O7S (Mr 685.09) 

Vemurafenib (0.5 mmol, 245 mg) and 4,5-dimethoxy-2-nitrobenzyl bromide (0.7 mmol, 

179 mg) were dissolved in DMF (15 mL). N,N-Diisopropylethylamine (2.0 mmol, 0.34 mL, 

Hunig’s base) was diluted with DMF (5 mL) and added dropwise over 30 min. The mixture 

was stirred for 18 h at room temperature. After evaporation of the solvent, the yellowish oil 

was redissolved in ethyl acetate, washed with brine and dried over Na2SO4. Purification by 

flash silica gel chromatography with a gradient of petroleum ether and ethyl acetate afforded a 

pale yellow solid (0.1 mmol, 67 mg, 20%). Purity (HPLC) > 98%; m.p. 237 °C; 
1
H NMR 

(300 MHz, DMSO-d6): δ 1.00 (t, 
3
J = 7.4 Hz, 3H), 1.77 (tq, 

3
J = 7.5 Hz, 

3
J = 7.4 Hz, 2H), 

3.35 (t, 
3
J = 7.5 Hz, 2H), 3.83 (s, 6H), 5.19 (s, 2H), 7.28 (dd, 

3
J = 8.4 Hz, 

3
JHF = 8.1 Hz, 1H), 

7.29 (s, 1H), 7.55 (d, 
3
J = 8.5 Hz, 2H), 7.56 (s, 1H), 7.73 (ddd, 

3
J = 8.4 Hz, 

4
JHF = 6.0 Hz, 

4
JHF = 6.0 Hz, 1H), 7.77 (d, 

3
J = 8.5 Hz, 2H), 8.05 (d, 

3
J = 2.7, 1H), 8.59 (bs, 1H), 8.72 (d, 

4
J = 2.3 Hz, 1H), 13.07 (d, 

3
J = 2.7, 1H); 

13
C NMR (75 MHz, DMSO-d6): δ 12.6, 16.6, 50.7, 

52.3, 56.0, 56.1, 108.1, 112.4, 112.8 (dd, 
2
JCF = 22.9 Hz, 

4
JCF = 2.6 Hz), 115.6, 117.4, 118.4 

(dd, 
2
JCF = 23.6 Hz, 

2
JCF = 22.8 Hz), 123.6 (dd, 

2
JCF = 12.9 Hz, 

4
JCF = 3.5 Hz), 125.7, 127.0, 

128.9, 129.0, 130.3, 132.5, 133.6 (d, 
3
JCF = 10.1 Hz), 136.9, 138.3, 140.6, 144.0, 147.9, 149.0, 

152.7, 156.0 (dd, 
1
JCF = 252.4 Hz, 

3
JCF = 8.8 Hz), 158.0 (dd, 

1
JCF = 250.3 Hz, 

3
JCF = 7.7 Hz), 

180.0; 
19

F NMR (282 MHz, DMSO-d6): δ -116.3, -112.2; LC-MS (ESI): m/z 685, 687 [MH]
+
; 

HRMS (EI): m/z calculated 684.1257, found 684.1264.
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N-(3-(5-(4-Chlorophenyl)-1-(4,5-dimethoxy-2-nitrobenzyl)-1H-pyrrolo[2,3-b]pyridine-3-

carbonyl)-2,4-difluorophenyl)-N-(4,5-dimethoxy-2-nitrobenzyl)propane-1-sulfonamide 

(87)
 

RH_016 

C41H36ClF2N5O11S (Mr 880.27) 

Vemurafenib (0.5 mmol, 245 mg) and 4,5-dimethoxy-2-nitrobenzyl bromide (0.7 mmol, 

179 mg) were dissolved in DMF (15 mL). N,N-Diisopropylethylamine (2.0 mmol, 0.34 mL, 

Hunig’s base) was diluted with DMF (5 mL) and added dropwise over 30 min. The mixture 

was stirred for 18 h at room temperature. After evaporation of the solvent, the yellow oil was 

redissolved in ethyl acetate, washed with brine and dried over Na2SO4. The crude product was 

purified by flash silica gel chromatography with a gradient of petroleum ether and ethyl 

acetate to give a yellow solid (0.1 mmol, 100 mg, 23%). Purity (HPLC) > 98%; m.p. 254 °C; 

1
H NMR (300 MHz, DMSO-d6): δ 0.95 (t, 

3
J = 7.4 Hz, 3H), 1.73 (tq, 

3
J = 7.5 Hz, 

3
J = 7.4 Hz, 

2H), 3.30 (t, 
3
J = 7.5 Hz, 2H), 3.63 (s, 3H), 3.81 (s, 6H), 3.84 (s, 3H), 5.15 (s, 2H), 5.87 (s, 

2H), 6.63 (s, 1H), 7.24 (s, 1H), 7.28 (dd, 
3
J = 8.4 Hz, 

3
JHF = 8.4 Hz, 1H), 7.51 (s, 1H), 7.56 (d, 

3
J = 8.5 Hz, 2H), 7.72-7.64 (m, 1H), 7.69 (s, 1H), 7.79 (d, 

3
J = 8.5 Hz, 2H), 8.21 (s, 1H), 8.62 

(bs, 1H), 8.75 (d, 
4
J = 2.2 Hz, 1H); 

13
C NMR (75 MHz, DMSO-d6): δ 12.6, 16.6, 45.8, 50.5, 

52.4, 55.8, 56.0, 56.0, 56.1, 108.1, 108.4, 111.6, 112.4, 112.8 (dd, 
2
JCF = 22.1 Hz, 

4
JCF = 

3.3 Hz), 114.9, 117.7, 118.1 (dd, 
2
JCF = 26.1 Hz, 

2
JCF = 23.2 Hz), 123.6 (dd, 

2
JCF = 11.9 Hz, 

4
JCF = 3.0 Hz), 125.5, 125.7, 127.5, 129.0, 129.1, 131.0, 132.7, 133.9 (d, 

3
JCF = 10.2 Hz), 

136.6, 140.2, 140.5, 140.6, 144.2, 147.7, 147.9, 148.1, 152.7, 153.1, 156.0 (dd, 
1
JCF = 

251.7 Hz, 
3
JCF = 7.3 Hz), 157.9 (dd, 

1
JCF = 250.7 Hz, 

3
JCF = 7.0 Hz), 179.8; 

19
F NMR 

(282 MHz, DMSO-d6): δ -112.0, -112.2; LC-MS (ESI): m/z 880, 882 [MH]
+
. 
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Caged diarylmaleimides and carbazole 
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3-(1H-Indol-3-yl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole-2,5-dione (55) 

RH_003 

C21H18N2O2 (Mr 378.38) 

2-(3,4,5-Trimethoxyphenyl)acetamide (10 mmol, 2.25 g) was dissolved in dry THF (30 mL) 

under nitrogen atmosphere and the reaction mixture was cooled to 0 °C. Ethyl 2-(1H-indol-3-

yl)-2-oxoacetate (13 mmol, 2.82 g) dissolved in dry THF (40 mL) was added dropwise. 

Afterwards, potassium tert-butoxide solution (1M in THF, 40 mmol, 40 mL) was added. 

Subsequently, the deep purple reaction mixture was stirred for 6 h at room temperature. 

Quenching of the reaction with saturated ammonium chloride solution (40 mL) changed the 

color to orange. After addition of ethyl acetate (50 mL), the solution was stirred for another 

15 min. After filtration, the organic layer was washed with brine, dried over Na2SO4 and 

evacuated. The crude product was purified by flash silica gel chromatography with a gradient 

of petroleum ether and ethyl acetate to give an orange solid (5.9 mmol, 2.25 g, 59%). Purity 

(HPLC) > 98%; m.p. 243 °C; 
1
H NMR (300 MHz, DMSO-d6): δ 3.38 (s, 6H), 3.67 (s, 3H), 

6.37 (d, 
3
J = 8.0 Hz, 1H), 6.74 (s, 2H), 6.76 (t, 

3
J = 7.9 Hz, 1H), 7.09 (t, 

3
J = 7.6 Hz, 1H), 7.45 

(d, 
3
J = 8.0 Hz, 1H), 7.98 (d, 

3
J = 1.7 Hz, 1H), 11.03 (s, 1H), 11.89 (bs, 1H); 

13
C NMR 

(75 MHz, DMSO-d6): δ 55.5, 60.1, 104.2, 107.6, 112.1, 119.6, 121.5, 122.0, 123.7, 125.5, 

128.2, 131.2, 131.8, 136.4, 138.1, 152.2, 172.2, 172.5; LC-MS (ESI): m/z 379 [MH]
+
. 
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Experimental 

5,6,7-Trimethoxybenzo[a]pyrrolo[3,4-c]carbazole-1,3(2H,8H)-dione (57) 

RH_004 

C21H16N2O5 (Mr 376.36) 

3-(1H-Indol-3-yl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole-2,5-dione (0.3 mmol, 114 mg) was 

dissolved in DMSO (20 mL) and irradiated with an LED reactor at 365 nm (5.4 W) for 

30 min. Ethyl acetate (100 mL) was added and washed thoroughly with water, dried over 

Na2SO4 and concentrated. Purification by flash silica gel chromatography with a gradient of 

petroleum ether and ethyl acetate afforded an orange solid (0.03 mmol, 12 mg, 11%). Purity 

(HPLC) > 98%; m.p. 275 °C; 
1
H NMR (300 MHz, DMSO-d6): δ 3.95 (s, 3H), 3.97 (s, 3H), 

4.19 (s, 3H), 7.32 (t, 
3
J = 7.6, 1H), 7.50 (t, 

3
J = 7.6, 1H), 7.88 (d, 

3
J = 8.1, 1H), 8.23 (s, 1H), 

8.89 (d, 
3
J = 7.8, 1H), 11.03 (s, 1H), 11.84 (s, 1H); 

13
C NMR (75 MHz, DMSO-d6): δ 55.8, 

60.9, 61.6, 100.0, 111.6, 112.5, 113.2, 116.9, 120.4, 120.4, 123.5, 123.9, 126.0, 127.7, 138.4, 

139.9, 141.3, 148.5, 154.5, 170.4, 171.6; LC-MS (ESI): m/z 377 [MH]
+
. 
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3-(1H-Indol-3-yl)-1-(2-nitrobenzyl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole-2,5-dione 

(98) 

RH_005 

C28H23N3O7 (Mr 513.15) 

3-(1H-Indol-3-yl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole-2,5-dione (0.5 mmol, 189 mg), 

K2CO3 (1 mmol, 138 mg) and 2-nitrobenzyl bromide (0.6 mmol, 130 mg) were dissolved in 

dry DMF (8 mL). The reaction mixture was stirred at 70 °C for 3 h. After evaporation of the 

solvent, the crude product was redissolved in ethyl acetate (10 mL), washed with brine, dried 

over Na2SO4 and concentrated. Purification by flash silica gel chromatography with a gradient 

of petroleum ether and ethyl acetate afforded an orange solid (0.26 mmol, 132 mg, 51%). 

Purity (HPLC) > 98%; m.p. 209 °C; 
1
H NMR (300 MHz, DMSO-d6): δ 3.39 (s, 6H), 3.68 (s, 

3H), 5.09 (s, 2H), 6.40 (d, 
3
J = 8.1 Hz, 1H), 6.79 (s, 2H), 6.80 (dd, 

3
J = 7.5 Hz, 

4
J = 0.8 Hz, 

1H), 7.10 (dd, 
3
J = 7.6 Hz, 

4
J = 0.9 Hz, 1H), 7.47 (d, 

3
J = 8.1 Hz, 1 H), 7.53 (dd, 

3
J = 7.8 Hz, 

4
J = 0.9 Hz, 1H), 7.58 (dd, 

3
J = 7.8 Hz, 

4
J = 1.3 Hz, 1H), 7.73 (dd, 

3
J = 7.6 Hz, 

4
J = 1.3 Hz, 

1H), 8.06 (d, 
3
J = 2.9 Hz, 1H), 8.11 (dd, 

3
J = 8.2 Hz, 

4
J = 1.2 Hz, 1H), 11.98 (d, 

3
J = 2.1 Hz, 

1H); 
13

C NMR (75 MHz, DMSO-d6): δ 38.2, 55.5, 60.1, 104.4, 107.7, 112.3, 119.8, 121.7, 

122.3, 123.6, 124.9, 125.3, 127.3, 128.8, 131.5, 131.6, 131.7, 134.2, 136.5, 138.2, 147.8, 

152.3, 170.7, 170.9; LC-MS (ESI): m/z 514 [MH]
+
. 
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1-(4,5-Dimethoxy-2-nitrobenzyl)-3-(1H-indol-3-yl)-4-(3,4,5-trimethoxyphenyl)-1H-

pyrrole-2,5-dione (99) 

RH_013 

C30H27N3O9 (Mr 573.55) 

3-(1H-Indol-3-yl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole-2,5-dione (0.5 mmol, 189 mg) and 

K2CO3 (1 mmol, 138 mg) were dissolved in dry DMF (15 mL). 4,5-dimethoxy-2-nitrobenzyl 

bromide (0.5 mmol, 138 mg) was dissolved in dry DMF (2 mL) and added dropwise to the 

reaction mixture. After stirring at room temperature for 2 h, the solvent was evaporated and 

the crude product was redissolved in ethyl acetate, washed with brine, dried over Na2SO4 and 

concentrated. Purification by flash silica gel chromatography with a gradient of petroleum 

ether and ethyl acetate afforded an orange solid (0.27 mmol, 155 mg, 54%). Purity (HPLC) 

> 98%; m.p. 205 °C; 
1
H NMR (300 MHz, DMSO-d6): δ 3.38 (s, 6H), 3.68 (s, 3H), 3.84 (s, 

3H), 3.87 (s, 3H), 5.08 (s, 2H), 6.38 (d, 
3
J = 8.1 Hz, 1H), 6.77 (s, 2H), 6.78 (t, 

3
J = 7.3 Hz, 

1H), 6.95 (s, 1H), 7.11 (t, 
3
J = 7.5 Hz, 1H), 7.46 (d, 

3
J = 8.0 Hz, 1H), 7.66 (s, 1H), 8.04 (d, 

3
J = 2.6 Hz, 1H), 11.96 (s, 1H); 

13
C NMR (75 MHz, DMSO-d6): δ 38.5, 55.5, 56.1, 56.2, 60.1, 

104.3, 107.6, 108.2, 111.3, 112.2, 119.8, 121.7, 122.2, 123.6, 125.3, 126.2, 127.3, 131.5, 

131.7, 136.5, 138.2, 140.5, 147.8, 152.2, 153.0, 170.8, 170.9; LC-MS (ESI): m/z 574 [MH]
+
. 
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2-(4,5-Dimethoxy-2-nitrobenzyl)-5,6,7-trimethoxybenzo[a]pyrrolo[3,4-c]carbazole-

1,3(2H,8H)-dione (100) 

RH_049 

C30H25N3O9 (Mr 571.53) 

5,6,7-Trimethoxybenzo[a]pyrrolo[3,4-c]carbazole-1,3(2H,8H)-dione (0.13 mmol, 28 mg) and 

K2CO3 (0.38 mmol, 52 mg) were dissolved in dry DMF (5 mL). 4,5-Dimethoxy-2-nitrobenzyl 

bromide (0.13 mmol, 33 mg) was dissolved in dry DMF (2 mL) and added dropwise to the 

reaction mixture. After stirring at room temperature for 2 h, the solvent was evaporated and 

the crude product redissolved in ethyl acetate, washed with brine, dried over Na2SO4 and 

concentrated. Recrystallization from ethyl acetate gave an orange solid (0.03 mmol, 19 mg, 

26%). Purity (HPLC) > 98%; m.p. 283 °C; 
1
H NMR (300 MHz, DMSO-d6): δ 3.71 (s, 3H), 

3.86 (s, 3H), 3.97 (s, 3H), 3.99 (s, 3H), 4.21 (s, 3H), 5.15 (s, 2H), 6.96 (s, 1H), 7.33 (t, 
3
J = 

7.4 Hz, 1H), 7.52 (t, 
3
J = 7.4 Hz, 1H), 7.68 (s, 1H), 7.90 (d, 

3
J = 7.6 Hz, 1H), 8.23 (s, 1H), 

8.87 (d, 
3
J = 7.6 Hz, 1H), 11.88 (s, 1H); 

13
C NMR (75 MHz, DMSO-d6): δ 38.0, 55.8, 56.1, 

60.9, 61.6, 100.0, 108.3, 111.0, 111.8, 112.6, 113.1, 115.9, 120.2, 120.6, 123.4, 123.9, 126.2, 

126.5, 126.7, 138.5, 139.9, 140.4, 141.5, 147.7, 148.5, 153.1, 154.8, 168.8, 169.8; LC-MS 

(ESI): m/z 571 [MH]
+
. 
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2-(3,4,5-Trimethoxyphenyl)acetamide (102) 

RH_001 

C11H15NO4
 
(Mr 225.24) 

2-(3,4,5-Trimethoxyphenyl)acetic acid (20 mmol, 4.6 g) was dissolved in anhydrous THF 

(30 mL). After addition of thionyl chloride (40 mmol, 3 mL) and a catalytic amount of DMF, 

the reaction mixture was heated to 40 °C until gas formation was completed (30 min). 

Subsequently, the solvent and excessive thionyl chloride were removed under reduced 

pressure. This step was repeated after addition of THF (10 mL). The remaining brown oil was 

dissolved in DCM (50 mL) and cooled to 0 °C. Next, ammonia solution (25%, 10 mL) was 

added to the mixture and stirred for 1 h at room temperature. After addition of hydrochloric 

acid (1M, 20 mL), the organic layer was washed with brine and dried over Na2SO4. 

Evacuation and recrystallization from ethanol afforded grey needles (16.8 mmol, 3.86 g, 

84%). Purity (HPLC) > 98%; m.p. 124 °C; 
1
H NMR (300 MHz, CDCl3): δ 3.50 (s, 2H), 3.82 

(s, 3H), 3.84 (s, 6H), 5.53 (bs, 1H), 5.79 (bs, 1H), 6.47 (s, 2H); 
13

C NMR (75 MHz, CDCl3): δ 

43.8, 56.3, 61.0, 106.5, 130.6, 137.4, 153.7, 173.6; LC-MS (ESI): m/z 226 [MH]
+
. 
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Ethyl 2-(1H-indol-3-yl)-2-oxoacetate (104) 

RH_002 

C12H11NO3 (Mr 217.22) 

Indole (40 mmol, 4.8 g) was dissolved in dry DCM (70 mL) under nitrogen atmosphere and 

stirred at 0 °C. After dropwise addition of diethylaluminium chloride solution (1M in hexane, 

60 mmol, 60 mL), the reaction mixture was stirred for 30 min at 0 °C. Subsequently, ethyl 

oxalyl chloride (60 mmol, 6.8 mL) was added dropwise followed by stirring for further 3 h. In 

the next step, ice was carefully added to the reaction mixture for hydrolysis. The organic layer 

was washed with saturated ammonium chloride solution and brine, dried over Na2SO4 and 

concentrated. Purification by flash silica gel chromatography with a gradient of petroleum 

ether and ethyl acetate afforded light-pink needles (21.9 mmol, 4.75 g, 55%). Purity (HPLC) 

> 98%; m.p. 186 °C; 
1
H NMR (300 MHz, CDCl3): δ 1.34 (t, 

3
J = 7.1 Hz, 3H), 4.36 (q, 

3
J = 

7.1, 2H), 7.24-7.33 (m, 2H), 7.53-7.58 (m, 1H), 8.14-8.19 (m, 1H), 8.42 (d, 
3
J = 3.3, 1H), 

12.38 (bs, 1H); 
13

C NMR (75 MHz, CDCl3): δ 13.9, 61.6, 112.4, 112.7, 121.1, 122.8, 123.8, 

125.5, 136.7, 138.2, 163.6, 179.1; LC-MS (ESI): m/z 218 [MH]
+
. 
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1-(2-Nitrobenzyl)-3-(1-(2-nitrobenzyl)-1H-indol-3-yl)-4-(3,4,5-trimethoxyphenyl)-1H-

pyrrole-2,5-dione (105) 

RH_006 

C35H28N4O9 (Mr 648.62) 

3-(1H-Indol-3-yl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole-2,5-dione (0.5 mmol, 189 mg), 

K2CO3 (1 mmol, 138 mg) and 2-nitrobenzyl bromide (0.6 mmol, 130 mg) were dissolved in 

dry DMF (8 mL). The reaction mixture was stirred at 70 °C for 3 h. After evaporation of the 

solvent, the crude product was redissolved in ethyl acetate (10 mL), washed with brine, dried 

over Na2SO4 and concentrated. Purification by flash silica gel chromatography with a gradient 

of petroleum ether and ethyl acetate afforded an orange solid (0.12 mmol, 94 mg, 24%). 

Purity (HPLC) > 98%; m.p. 127 °C; 
1
H NMR (300 MHz, DMSO-d6): δ 3.41 (s, 6H), 3.68 (s, 

3H), 5.09 (s, 2H), 5.99 (s, 2H), 6.50 (d, 
3
J = 8.0 Hz, 1H), 6.53-6.56 (m, 1H), 6.84 (s, 2H), 6.86 

(ddd, 
3
J = 7.9 Hz, 

3
J = 7.1 Hz, 

4
J = 0.8 Hz, 1H), 7.12 (ddd, 

3
J = 8.2 Hz, 

3
J = 7.2 Hz, 

4
J = 

1.0 Hz, 1H), 7.48 (d, 
3
J = 8.3 Hz, 1H), 7.52-7.61 (m, 4H), 7.73 (td, 

3
J = 7.6 Hz, 

4
J = 1.3 Hz, 

1H), 8.10 (dd, 
3
J = 8.1 Hz, 

4
J = 1.2 Hz, 1H), 8.16 (s, 1H), 8.15-8.19 (m, 1H); 

13
C NMR 

(75 MHz, DMSO-d6): δ 38.3, 47.1, 55.4, 60.1, 104.5, 107.5, 111.1, 120.4, 122.0, 122.7, 124.2, 

124.9, 125.0, 125.1, 127.5, 128.5, 128.8, 128.8, 128.9, 130.8, 131.5, 133.3, 134.1, 134.1, 

134.7, 136.6, 138.3, 147.3, 147.8, 152.3, 170.4, 170.7; LC-MS (ESI): m/z 649 [MH]
+
. 
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1-(4,5-Dimethoxy-2-nitrobenzyl)-3-(1-(4,5-dimethoxy-2-nitrobenzyl)-1H-indol-3-yl)-4-

(3,4,5-trimethoxyphenyl)-1H-pyrrole-2,5-dione (106) 

RH_014 

C39H36N4O13 (Mr 768.72) 

3-(1H-Indol-3-yl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole-2,5-dione (0.5 mmol, 189 mg) and 

K2CO3 (1 mmol, 138 mg) were dissolved in dry DMF (15 mL). 4,5-Dimethoxy-2-nitrobenzyl 

bromide (0.5 mmol, 138 mg) was dissolved in dry DMF (2 mL) and added dropwise to the 

reaction mixture. After stirring at room temperature for 2 h, the solvent was evaporated and 

the crude product redissolved in ethyl acetate, washed with brine, dried over Na2SO4 and 

evacuated. Purification by flash silica gel chromatography with a gradient of petroleum ether 

and ethyl acetate afforded an orange solid (0.10 mmol, 73 mg, 19%). Purity (HPLC) > 98%; 

m.p. 228 °C; 
1
H NMR (300 MHz, DMSO-d6): δ 3.39 (s, 6H), 3.55 (s, 3H), 3.68 (s, 3H), 3.82 

(s, 3H), 3.86 (s, 3H), 3.87 (s, 3H), 5.06 (s, 2H), 5.89 (s, 2H), 6.46 (d, 
3
J = 8.0 Hz, 1H), 6.51 (s, 

1H), 6.79 (s, 2H), 6.85 (t, 
3
J = 7.4 Hz, 1H), 6.96 (s, 1H), 7.14 (t, 

3
J = 7.7 Hz, 1H), 7.51 (d, 

3
J = 8.3 Hz, 1 H), 7.65 (s, 1H), 7.73 (s, 1H), 8.06 (s, 1H); 

13
C NMR (75 MHz, DMSO-d6): δ 

38.5, 47.4, 55.5, 55.9, 56.1, 56.2, 60.1, 104.3, 107.8, 108.2, 108.6, 111.0, 111.3, 111.5, 120.4, 

121.9, 122.7, 124.2, 125.2, 126.0, 126.9, 128.4, 130.8, 134.5, 136.7, 138.5, 140.0, 140.6, 

147.8, 147.9, 152.3, 153.0, 153.1, 170.6, 170.8; LC-MS (ESI): m/z 769 [MH]
+
. 
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Photoswitchable axitinib 
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(E)-axitinib, (E)-N-methyl-2-((3-(2-(pyridin-2-yl)vinyl)-1H-indazol-6-yl)thio)benzamide 

(19), INN: axitinib 

JW_01 

C22H18N4OS (Mr 386.47) 

Analytical characterization was partially performed by Jantje Weber.
89

 

The pale yellow compound was purchased from LC Laboratories, Woburn, MA, USA. Purity 

(HPLC) > 98%; m.p. 219 °C; 
1
H NMR (300 MHz, DMSO-d6): δ 2.78 (d, 

3
J = 4.5 Hz, 3H), 

7.06 (dd, 
3
J = 7.3 Hz, 

4
J = 1.7 Hz, 1H), 7.19 (dd, 

3
J = 8.5 Hz, 

4
J = 1.4 Hz, 1H), 7.25-7.29 (m, 

1H), 7.31 (dd, 
3
J = 7.3 Hz, 

4
J = 1.7 Hz, 1H), 7.33 (dd, 

3
J = 7.3 Hz, 

4
J = 1.9 Hz, 1H), 7.49 (dd, 

3
J = 7.3 Hz, 

4
J = 1.9 Hz, 1H), 7.58 (d, 

3
J = 16.4 Hz, 1H), 7.61 (s, 1H), 7.66 (d, 

3
J = 7.8 Hz, 

1H), 7.79 (ddd, 
3
J = 7.8 Hz, 

3
J = 7.6 Hz, 

4
J = 1.8 Hz, 1H), 7.96 (d, 

3
J = 16.4 Hz, 1H), 8.21 (d, 

3
J = 8.5 Hz, 1H), 8.39 (q, 

3
J = 4.5 Hz, 1H), 8.60 (ddd, 

3
J = 4.7 Hz, 

4
J = 1.8 Hz, 

5
J = 0.9 Hz, 

1H), 13.36 (s, 1H); 
13

C NMR (75 MHz, DMSO-d6): δ 26.1, 114.7, 120.3, 121.8, 122.5, 122.6, 

123.6, 125.5, 126.2, 127.8, 129.3, 130.0, 130.3, 132.6, 135.6, 136.9, 137.0, 141.9, 142.0, 

149.6, 154.9, 167.9; 
15

N NMR (30 MHz, DMSO-d6): δ -275.7, -275.2, -196.6, -65.7; LC-MS 

(ESI): m/z 387 [MH]
+
. 

 

   

 

Molecular structure determined by X-ray crystallography: CCDC 1419084 
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(Z)-axitinib (19a/b), (Z)-N-methyl-2-((3-(2-(pyridin-2-yl)vinyl)-1H-indazol-6-

yl)thio)benzamide (19a) and (Z)-N-methyl-2-((3-(2-(pyridin-2-yl)vinyl)-2H-indazol-6-

yl)thio)benzamide  

JW_02 

C22H18N4OS (Mr 386.47) 

Synthesis and analytical characterization was partially performed by Jantje Weber.
89

 

(E)-Axitinib (100 mg, 0.26 mmol) was dissolved in DMSO (10 mL) and the solution was 

stirred and irradiated (365 nm, 5.4 W) for 15 min. Subsequently, ethyl acetate (100 mL) was 

added. DMSO was removed by washing the organic phase thoroughly with water. Next, the 

organic layer was dried over Na2SO4, filtered and concentrated. Flash silica gel 

chromatography with a gradient of petroleum ether and ethyl acetate afforded a yellow solid 

(21 mg, 0.05 mmol, 21%). Purity (HPLC) 97%; m.p. 174 °C; LC-MS (ESI): m/z 387 [MH]
+
. 

1H-tautomer 

 

2H-tautomer 

 

 

Molecular structure determined by X-ray crystallography: CCDC 1419085   
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5.4 BIOLOGICAL EVALUATION 

5.4.1 Kinase Assays (Kd values) 

Caged vemurafenib: BRAF
V600E

 

Binding affinities of 44, 58, 59, and 60 toward BRAF
V600E

 were measured in the KdELECT
SM

 

assay.
143

 KINOMEscan
TM

 is a competition binding assay that quantitatively measures the 

ability of a compound to compete with an immobilized active-site directed ligand. Binding 

constants (Kd values) were calculated from duplicate 11-point dose-response curves. The 

highest tested compound concentration was 30 µM. The 3-fold serial dilution of each tested 

inhibitor was prepared in 100% DMSO. The final DMSO concentration in the assay was 1%. 

Analyses were performed by DiscoveRx (San Diego, CA, USA). 

5.4.2 Kinase Assays (IC50 values) 

Caged diarylmaleimides resp. carbazole and photoswitchable axitinib: VEGFR2 

The VEGFR2 IC50 profile for 55, 57, 99, 100, 19, and 19a/b was determined using VEGFR2 

protein kinase by a radiometric 
33

PanQinase
®
 assay

122
 and a luminescent ADP-Glo™ assay 

(Promega)
144

. IC50 values were measured by testing 10 semi-log concentrations of each 

compound in the range from 1 x 10
-04

 M to 3 x 10
-09

 M, in singlicate. Prior to testing, the 

compounds were dissolved to 1 x 10
-02

 M stock solutions in 100% DMSO. The final DMSO 

concentration in the reaction cocktails was 1% in all cases. 

Analyses were performed by ProQinase (Freiburg, Germany). 
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Photoswitchable axitinib: PDGFRβ 

PDGFRβ inhibition curves of 19 and 19a/b were determined by a luminescent PDGFRβ 

kinase assay using an ADP-Glo™ assay kit (Promega).
144

 The compounds were dissolved in 

100% DMSO and tested in a range of 1 x 10
-11

 M to 1 x 10
-06

 M, in duplicate. The reaction 

cocktails were incubated at 20 °C for 60 min. ATP concentration was 10 µM and the final 

DMSO concentration was 1%. 

Analyses were performed by Boris Pinchuk
123

 and Christian Renn
132

. 

5.4.3 Kinase Profiling 

Caged vemurafenib 

Compounds 44, 58, and 60 were screened against 140 kinases in the Premier Screen.
145

 The 

used method was a radioactive filter binding assay using 
33

P ATP, for details see references 

146,147
. The substances were dissolved in DMSO at a tested concentration of 10 µM. The mean 

percentage residual kinase activity and standard deviations of assay duplicates were 

determined. 

Analyses were performed by the International Center for Kinase Profiling at the University of 

Dundee, UK. 

Caged diarylmaleimides resp. carbazole 

Compounds 55 and 57 were screened against 79 kinases. The used method was a radioactive 

filter binding assay using 
33

P ATP, for details see references 
146,147

. The substances were 

dissolved in DMSO at tested concentrations of 0.1 µM and 1 µM. The mean percentage 

residual kinase activity and standard deviations of assay duplicates were determined. 

Analyses were performed by the International Center for Kinase Profiling at the University of 

Dundee, UK. 
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Photoswitchable axitinib 

Kinase inhibition profiles of 19 and 19a/b were determined by measuring residual activity 

values in duplicate in 300 wild-type protein kinase assays. A radiometric 
33

PanQinase
®
 assay 

was used for measuring the kinase activity.
122

 The substances were dissolved in 100% DMSO. 

The reaction cocktails were incubated at 30 °C for 60 min at a concentration of 1 µM. The 

final DMSO concentration was 1%. 

Analyses were performed by ProQinase (Freiburg, Germany). 

5.4.4 Cell Culture 

Caged vemurafenib: SKMel13 cells 

SKMel13 cells were kindly provided by Dr. Kumara Dissanayake from the MRC Protein 

Phosphorylation Unit, College of Life Sciences, Dundee, UK. Cells were grown in RPMI 

1640 Glutamax with 10% FCS. All cells were incubated in a 5% CO2 humidified atmosphere 

at 37 °C. 

Cell culture was performed by Boris Pinchuk.
115

 

Caged diarylmaleimides resp. carbazole and photoswitchable axitinib: NIH/3T3 and 

PC-3 cells 

NIH/3T3 cells were kindly provided by Dr. Athena Chalaris-Rissmann from the Biochemistry 

Institute, University of Kiel, Germany. PC-3 cells were purchased from CLS Cell Lines 

Service GmbH, Germany. NIH/3T3 cells were grown in DMEM medium with 2 mM 

L-Glutamine, 1 mM Sodium Pyruvate and 10% FCS. PC-3 cells were grown in DMEM:Hams 

F12 (1:1) medium with 5% FCS. Both cell lines were incubated in a 5% CO2 humidified 

atmosphere at 37 °C. 

Cell culture was performed by Boris Pinchuk
123

 and Christian Renn
132

. 
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5.4.5 Proliferative Assays 

Caged vemurafenib, caged diarylmaleimides and carbazole resp. photoswitchable 

axitinib 

The cells were grown in cell flasks until approximately 90% confluence and then seeded to 

give 7000 resp. 15000 cells in 100 μL per well into 96-well CulturePlates
TM

 (PerkinElmer, 

US). In addition to the test plates, one plate was prepared for reference measurement at day 

zero. All plates were incubated for 24 h at 37 °C in a humidified atmosphere with 5% CO2. 

Compounds 44, 58, 59, 60, 55, 57, 99, 100, 19, and 19a/b were dissolved in 100% DMSO 

(v/v) and added to the test plates. The final DMSO concentration in the assay was 0.5% (v/v). 

Viability of the cells in the day zero control plates were determined on the same day without 

adding any compounds. For viability measurement the resazurin assay was used. The shift in 

the fluorescence signal was measured at the LS55 Fluorescence spectrometer (PerkinElmer, 

Waltham, US). For the photoactivation experiments the test plates were irradiated at 365 nm 

for 5 min (LED source: 8x Nichia NCSU033B, Sahlmann Photochemical Solutions, 50%, 

1.8 W). Test plates were incubated for further 48 h and cell viability was defined as described 

above. Measured raw data was converted into percent of cell growth by using the high control 

(0.5% DMSO (v/v) without compound) and the day zero control. For dose-response studies, 

11 different concentrations of compounds were tested in duplicates. IC50 values were 

calculated using the 4-parameter logistic fit option of GraphPad Prism 5. 

Proliferation assays were performed by Boris Pinchuk
115,123

 and Christian Renn
132

. 

5.4.6 Stability in Cellular Medium 

Caged vemurafenib 

A vemurafenib (44) solution (0.01 mM) was prepared in Dulbecco’s Modified Eagle Medium 

(DMEM) with 2 mM L-glutamine, 1 mM sodium pyruvate and 10% DMSO. The probe was 

incubated in a 5% CO2 humidified atmosphere at 37 °C for 48 h. At different time points 

aliquots were taken, diluted with methanol (1:2), and analyzed by HPLC. Proteins were 

removed prior to HPLC analysis by centrifugation at 9500g for 5 min (Mikro 200, Hettich). 

Analyses were performed by Boris Pinchuk.
115
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Photoswitchable axitinib 

A (Z)-axitinib solution (19, 1 mM) was prepared in minimum essential medium (MEM) with 

and without fetal bovine serum (FBS). For that purpose (Z)-axitinib was dissolved in DMSO 

and diluted with MEM. The final DMSO concentration was 0.5%. The solutions were 

incubated at 37 °C for up to 180 h. At different time points aliquots were taken, diluted with 

methanol (1:2) and analyzed by HPLC. In the FBS samples, proteins were removed prior to 

HPLC analysis by centrifugation at 9500g for 5 min (Mikro 200, Hettich). 

Analyses were performed by Christian Renn.
132

 

5.4.7 Western Blot Analyses 

Caged vemurafenib 

Cells were treated with the indicated concentrations for 1 h at 37 °C. The same experiments 

were repeated with irradiation. 30 min after addition to the cells, the compound solutions of 

44, 58, and 60 were irradiated at 365 nm (1.8 W) for 5 min. Cells were lysed and lysates 

immunoblotted with the indicated antibodies. The lysis buffer contained both phosphatase and 

protease inhibitors. Similar results were obtained in duplicate experiments. 

Primary antibodies 

- p44/42 MAPK (Erk1/2) (137F5) rabbit m-ab (t-Erk) Ref: #4695S Cell signaling 

technology (CST) 

- P-p44/42 MAPK (T202/Y204) (197G2) rabbit m-ab (p-Erk) Ref: #4377S CST 

- P-Akt (T308) (244F9) rabbit mAb Ref: #4056S CST 

- Anti-PKB alpha S742B 1
st
 Bleed (t-Akt), 1 x 0,05 mg; 0,28 mg/mL (courtesy by the 

lab of Prof. Dario Alessi, MRC, Dundee, Scotland) 

Secondary antibodies 

- Anti-rabbit IgG, HRP-linked Antibody Ref: #7074P2 CST 

- Rabbit anti-sheep, HRP-linked Antibody (courtesy by the lab of Prof. Dario Alessi, 

MRC, Dundee, Scotland) 

Western blot analyses were performed by Boris Pinchuk.
115
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Photoswitchable axitinib 

Cells were treated with the indicated concentrations of test compounds 19 and 19a/b for 1 h at 

37 °C. Cells were lysed and lysates immunoblotted with the indicated antibodies. The lysis 

buffer contained both phosphatase and protease inhibitors. Similar results were obtained in 

duplicate experiments. 

Primary antibodies 

- p44/42 MAPK (Erk1/2) (137F5) rabbit mAb (t-Erk), Ref: #4695S, CST 

- P-p44/42 MAPK (T202/Y204) (197G2) rabbit mAb (p-Erk), Ref: #4370P, CST 

- P-Akt (Thr308) (D25E6) XP
®
 Rabbit mAb (p-Akt), Ref: #13038S, CST 

- Anti-PKB alpha S742B 1
st
 Bleed (t-Akt), 1 x 0,05 mg; 0,28 mg/mL (courtesy by the 

lab of Prof. Dario Alessi, MRC, Dundee, Scotland) 

- PDGF Receptor β (28E1) Rabbit mAb (t-PDGFR), Ref #3169P, CST 

- Phospho-PDGF Receptor β (Tyr751) (C63G6) Rabbit mAb (p-PDGFR), Ref #4549P, 

CST 

 

Secondary antibodies 

- Anti-rabbit IgG, HRP-linked Antibody, Ref: #7074P2, CST 

- Rabbit anti-sheep, HRP-linked Antibody, (courtesy by the lab of Prof. Dario Alessi, 

MRC, Dundee, Scotland)  

Western blot analyses were performed by Christian Renn.
132
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7. APPENDIX 

Supplementary Table 1. Kinase profiling of vemurafenib and caged prodrugs 58 and 60. The inhibitory 

effect was tested on a panel of 140 kinases. The residual activity (RA) of kinases was measured after incubation 

with 10 µM of each compound. The data is portrayed as mean percentage activity and standard deviation (SD) of 

assay duplicates. 

# Kinase Name 

vemurafenib 
DMNB-vemurafenib 

(sulfonamide) 
DMNB-vemurafenib 

(azaindole) 

44 60 58 

RA (%) SD RA (%) SD RA (%) SD 

1 MAP4K5 1 0 2 1 7 1 

2 RIPK2 11 9 9 1 26 13 

3 GCK 7 3 6 3 36 21 

4 DDR2 1 0 6 1 45 2 

5 BRK 1 0 2 1 46 4 

6 TrkA 21 7 7 3 51 8 

7 MST2 15 12 16 0 54 14 

8 MLK1 8 8 10 0 68 2 

9 MAP4K3 3 0 20 0 79 4 

10 BRSK2 67 17 73 2 79 5 

11 BTK 14 1 50 1 79 6 

12 DYRK2 57 8 58 12 80 4 

13 Aurora B 5 1 36 8 82 10 

14 CSK 20 15 22 1 82 1 

15 PLK1 74 6 77 10 85 0 

16 MKK2 26 8 67 2 86 5 

17 TTK 57 6 60 5 86 1 

18 MKK1 49 7 71 5 86 8 

19 EIF2AK3 9 1 48 0 87 4 

20 MKK6 74 5 98 16 88 17 

21 CAMK1 20 0 15 2 88 6 

22 MINK1 27 7 61 21 89 1 

23 TSSK1 63 14 53 4 89 4 

24 p38a MAPK 70 27 85 13 90 0 

25 PDGFRA 7 2 34 1 90 3 

26 ROCK 2 49 3 72 6 90 10 

27 AMPK (hum) 77 5 54 9 90 10 

28 DYRK3 53 1 77 2 91 5 

29 JNK3 68 7 83 13 91 1 

30 TESK1 8 1 51 2 91 17 

31 ERK5 70 2 81 16 92 5 

32 MST4 43 4 90 13 92 5 

33 PINK 80 10 96 6 92 3 

34 MARK4 74 10 66 10 93 1 

35 LKB1 82 1 88 17 93 7 

36 IKKe 32 1 57 2 93 3 

37 OSR1 50 0 90 4 94 2 

38 MAPKAP-K3 70 14 73 3 94 2 

39 PDK1 83 14 98 30 94 6 

40 SGK1 73 4 83 0 94 11 

41 JNK2 61 24 85 1 94 15 

42 MARK2 80 1 93 17 95 0 
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43 MAPKAP-K2 86 7 86 6 95 3 

44 PRK2 73 11 75 3 96 2 

45 VEG-FR 7 3 19 5 96 6 

46 HER4 25 2 78 3 96 2 

47 STK33 83 5 93 6 96 7 

48 BRSK1 84 0 78 12 97 8 

49 CK2 104 1 104 7 97 1 

50 MEKK1 73 11 84 1 97 2 

51 SmMLCK 69 15 70 1 97 4 

52 PKBa 96 7 84 5 97 9 

53 WNK1 78 13 85 8 98 7 

54 RSK1 88 0 70 5 98 6 

55 Aurora A 46 9 68 12 98 14 

56 MNK2 39 3 67 7 98 4 

57 PKA 102 1 106 9 98 12 

58 SIK3 30 1 90 8 98 22 

59 PIM3 75 2 55 4 99 4 

60 MARK1 74 5 84 5 99 20 

61 ERK8 15 1 53 4 99 2 

62 MNK1 48 7 50 11 99 7 

63 EPH-B4 72 5 115 18 99 6 

64 YES1 3 0 18 6 99 14 

65 PIM1 65 4 89 1 100 15 

66 PIM2 87 3 89 6 100 11 

67 ASK1 89 17 88 5 100 24 

68 MSK1 61 3 61 0 100 0 

69 IKKb 88 1 83 4 100 13 

70 ERK2 84 8 95 19 101 9 

71 DYRK1A 61 7 84 6 101 4 

72 HIPK3 95 9 100 1 101 1 

73 SIK2 20 2 66 15 101 21 

74 TTBK1 89 6 92 9 101 0 

75 ERK1 103 13 102 19 102 5 

76 NEK2a 22 5 67 2 102 2 

77 ULK2 56 3 87 6 102 15 

78 EPH-A4 93 19 98 13 102 1 

79 PRAK 90 14 80 7 102 10 

80 PAK4 53 16 97 7 103 5 

81 IGF-1R 16 1 68 5 103 6 

82 HIPK1 95 13 101 0 103 13 

83 TLK1 81 0 89 9 103 4 

84 DAPK1 95 11 95 11 104 6 

85 IR 22 5 36 2 104 4 

86 IRR 36 7 60 8 104 12 

87 MLK3 6 1 60 16 104 2 

88 CAMKKb 93 2 101 3 105 2 

89 SRPK1 81 3 91 0 105 5 

90 CK1δ 100 7 95 7 106 13 

91 Src 3 1 45 9 106 8 

92 CHK2 87 6 66 11 106 8 

93 IRAK1 63 2 90 7 107 2 

94 MST3 62 1 87 2 107 2 

95 TBK1 96 3 90 5 107 3 

96 MPSK1 48 9 76 8 107 5 

97 TAK1 25 0 74 4 107 1 

98 TGFBR1 45 2 96 28 107 8 

99 HIPK2 66 4 71 4 107 2 

100 TAO1 45 7 92 10 107 7 

101 ULK1 69 5 98 10 108 5 

102 GSK3b 32 4 41 8 108 3 
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103 p38g MAPK 121 3 104 12 108 6 

104 EF2K 90 10 108 14 108 1 

105 FGF-R1 29 5 72 9 108 4 

106 SYK 43 4 93 0 108 23 

107 MELK 103 1 80 28 108 11 

108 p38d MAPK 99 13 120 36 109 4 

109 PKCa 101 2 98 5 109 12 

110 PHK 90 7 101 3 110 5 

111 NUAK1 30 5 89 5 111 6 

112 CDK9-Cyclin T1 80 8 96 8 111 1 

113 PKBb 99 12 102 6 111 3 

114 S6K1 80 13 83 2 111 13 

115 CK1γ2 109 10 107 14 111 20 

116 JNK1 62 43 77 3 111 8 

117 RSK2 79 3 82 20 111 1 

118 EPH-A2 91 3 101 9 112 10 

119 MARK3 86 7 98 3 112 5 

120 TIE2 77 2 95 11 112 6 

121 EPH-B3 96 8 73 5 112 0 

122 CDK2-Cyclin A 63 3 57 4 113 6 

123 JAK2 32 11 36 2 113 2 

124 PAK2 32 6 101 15 114 11 

125 ABL 35 9 70 5 114 15 

126 NEK6 117 7 97 2 115 11 

127 PKCγ 104 15 94 16 115 6 

128 p38b MAPK 32 1 86 7 117 6 

129 ZAP70 84 6 98 0 118 5 

130 CLK2 22 1 65 13 118 7 

131 TTBK2 108 13 136 30 121 4 

132 Lck 6 0 41 4 123 1 

133 PKD1 70 8 84 5 124 8 

134 PAK6 87 2 117 21 124 5 

135 IRAK4 88 2 125 11 125 3 

136 PAK5 78 3 137 2 130 14 

137 EPH-B2 57 2 102 6 134 2 

138 PKCz 101 1 128 27 139 6 

139 CHK1 123 3 160 18 139 1 

140 EPH-B1 133 9 170 18 177 32 
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Supplementary Table 2. Kinase profiling of diarylmaleimide 55 and carbazole 57. The inhibitory effect of 

the compounds was tested on the panel of 79 kinases in duplicates. The residual activity (RA) of kinases was 

measured after incubation with 0.1 µm resp. 1 µm of each compound. The data is portrayed as mean percentage 

activity and standard deviation (SD) of assay duplicates. 

# Kinase Name 

diarylmaleimide 
55 

carbazole 
57 

0.1 µM 1 µM 0.1 µM 1 µM 

RA (%) SD RA (%) SD RA (%) SD RA (%) SD 

1 MKK1 54 27 44 5 67 5 9 0 

2 ERK1 100 5 88 8 91 25 40 12 

3 ERK2 94 5 86 10 93 0 81 4 

4 JNK1 96 13 92 3 96 5 69 0 

5 JNK2 78 14 46 2 93 16 62 3 

6 p38a MAPK 89 0 87 19 78 12 79 4 

7 P38b MAPK 86 8 85 4 89 17 79 5 

8 p38g MAPK 91 2 81 8 86 7 53 7 

9 p38s MAPK 108 0 103 6 90 17 88 3 

10 ERK8 46 5 10 2 11 1 4 0 

11 RSK1 96 7 50 3 51 6 20 0 

12 RSK2 91 1 54 5 62 6 20 3 

13 PDK1 68 4 38 3 39 1 18 1 

14 PKBa 66 4 81 12 81 16 83 2 

15 PKBb 98 2 91 8 91 9 86 6 

16 SGK1 75 5 51 13 52 15 36 3 

17 S6K1 65 4 22 0 28 1 6 2 

18 PKA 93 13 88 6 90 5 72 4 

19 ROCK 2 97 2 88 3 88 6 55 3 

20 PRK2 84 4 51 3 52 2 22 3 

21 PKCa 113 5 95 3 90 14 90 2 

22 PKC zeta 102 6 97 6 98 2 97 5 

23 PKD1 100 12 64 22 60 9 35 4 

24 MSK1 69 1 44 4 55 10 21 0 

25 MNK1 80 0 72 3 79 4 67 18 

26 MNK2 90 15 78 3 81 1 46 3 

27 MAPKAP-K2 94 2 90 3 95 4 83 0 

28 PRAK 91 7 90 2 85 2 71 1 

29 CAMKKb 81 3 44 5 49 3 15 0 

30 CAMK1 107 1 74 12 94 18 58 3 

31 SmMLCK 60 17 28 2 30 5 10 0 

32 PHK 73 8 41 3 41 6 7 0 

33 CHK1 72 0 36 2 34 3 10 2 

34 CHK2 64 9 54 5 63 2 20 1 

35 GSK3b 21 2 4 1 5 1 2 1 

36 CDK2-Cyclin A 59 5 28 8 28 4 6 1 

37 PLK1 79 9 58 2 49 5 31 4 

38 PLK1 (Okadaic Acid) 85 2 72 2 83 0 47 12 

39 Aurora B 84 12 40 3 47 14 26 6 

40 AMPK 78 8 69 13 75 13 38 4 

41 MARK3 90 5 71 19 73 3 33 6 

42 BRSK2 94 8 61 2 66 2 44 6 

43 MELK 74 13 45 3 55 7 15 0 

44 CK1 86 5 76 4 78 2 59 12 

45 CK2 94 9 101 2 91 10 73 15 

46 DYRK1A 73 2 29 2 26 0 13 3 

47 DYRK2 57 15 18 4 17 0 5 1 
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48 DYRK3 85 6 53 5 46 5 16 3 

49 NEK2a 87 1 97 4 91 6 67 4 

50 NEK6 96 2 97 20 104 9 92 2 

51 IKKb 102 7 104 2 113 25 94 2 

52 PIM1 14 1 3 0 5 1 1 0 

53 PIM2 115 5 102 1 115 12 100 7 

54 PIM3 5 1 2 1 4 2 2 1 

55 SRPK1 85 1 85 16 83 5 67 5 

56 MST2 53 0 19 4 24 2 10 4 

57 EFK2 104 3 102 10 109 15 91 5 

58 HIPK2 23 2 4 1 7 1 3 1 

59 PAK4 75 3 48 3 55 6 29 3 

60 PAK5 105 1 79 3 84 4 49 2 

61 PAK6 97 5 91 7 99 2 70 2 

62 Src 81 0 78 12 86 1 88 5 

63 Lck 91 2 67 16 91 4 60 13 

64 CSK 138 8 102 9 99 1 97 8 

65 FGF-R1 69 9 15 4 92 1 44 1 

66 IRR 58 1 35 2 41 0 19 3 

67 EPH A2 104 6 89 1 109 4 110 26 

68 MST4 94 7 59 1 69 3 42 6 

69 SYK 85 5 87 7 86 16 61 6 

70 YES1 84 14 68 10 88 5 43 9 

71 IKKe 80 3 58 5 63 8 31 1 

72 TBK1 87 1 72 4 85 7 79 3 

73 IGF1-R 90 24 54 1 65 4 23 9 

74 VEG-FR 10 0 3 0 37 2 10 1 

75 BTK 93 14 79 19 90 1 68 4 

76 IR-HIS 101 11 73 3 88 15 30 2 

77 EPH-B3 104 14 131 26 133 4 115 28 

78 TBK1 (DU12569) 88 5 69 1 73 2 39 3 

79 IKK epsilon (14231) 85 7 83 2 94 5 58 8 
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Supplementary Table 3. Kinase profiling of (E)- and (Z)-axitinib. The inhibitory effect of both axitinib 

isomers was tested on the panel of 300 kinases in duplicates. The residual activity of kinases was measured after 

incubation with 1 µM of each compound. 

# 
Kinase 
Name 

Kinase 
Family* 

(E)-axitinib 
19 

Mean 
(Z)-axitinib 

19a/b 
Mean 

1 ABL1 TK 5 5 5 20 19 20 

2 ABL2 TK 6 7 6 12 16 14 

3 ACK1 TK 63 62 63 89 77 83 

4 ACV-R1 TKL 90 94 92 98 90 94 

5 ACV-R1B TKL 71 63 67 73 69 71 

6 ACV-R2A TKL 86 100 93 95 99 97 

7 ACV-R2B TKL 75 76 76 83 72 78 

8 ACV-RL1 TKL 84 77 80 85 91 88 

9 AKT1 AGC 106 102 104 103 104 104 

10 AKT2 AGC 102 89 96 113 106 109 

11 AKT3 AGC 99 97 98 103 94 99 

12 ALK (GST-HIS-tag) TK 84 80 82 95 94 94 

13 AMPK-alpha1 aa1-550 CAMK 71 68 70 83 86 85 

14 ARK5 CAMK 52 48 50 72 65 69 

15 ASK1 STE 81 88 84 98 97 98 

16 Aurora-A OTHER 8 11 10 24 22 23 

17 Aurora-B OTHER 7 8 8 13 11 12 

18 Aurora-C OTHER 7 6 6 9 12 11 

19 AXL TK 54 58 56 63 59 61 

20 BLK TK 65 71 68 90 81 86 

21 BMPR1A TKL 91 81 86 104 89 97 

22 BMX TK 97 100 99 100 101 100 

23 B-RAF TKL 95 101 98 94 108 101 

24 BRK TK 93 97 95 110 116 113 

25 BRSK1 CAMK 87 84 85 95 100 98 

26 BTK TK 89 95 92 103 104 104 

27 CAMK1D CAMK 97 99 98 96 91 93 

28 CAMK2A CAMK 89 86 87 88 81 85 

29 CAMK2B CAMK 91 90 90 79 88 83 

30 CAMK2D CAMK 94 94 94 99 97 98 

31 CAMK4 CAMK 99 126 112 120 106 113 

32 CAMKK1 OTHER 95 93 94 101 102 101 

33 CAMKK2 OTHER 68 73 70 91 89 90 

34 CDC42BPA AGC 90 86 88 92 95 94 

35 CDC42BPB AGC 97 108 102 112 106 109 

36 CDK1/CycA2 CMGC 99 95 97 98 100 99 

37 CDK1/CycB1 CMGC 94 89 91 102 102 102 

38 CDK1/CycE1 CMGC 73 82 78 86 87 87 

39 CDK2/CycA2 CMGC 97 101 99 107 105 106 

40 CDK2/CycE1 CMGC 95 94 95 107 105 106 

41 CDK3/CycE1 CMGC 96 99 98 99 106 103 

42 CDK4/CycD1 CMGC 99 91 95 95 93 94 

43 CDK4/CycD3 CMGC 102 103 103 116 115 116 

44 CDK5/p25NCK CMGC 100 99 99 102 101 102 

45 CDK5/p35NCK CMGC 93 94 94 99 99 99 

46 CDK6/CycD1 CMGC 87 91 89 99 95 97 

47 CDK7/CycH/MAT1 CMGC 107 106 107 104 97 100 

48 CDK8/CycC CMGC 98 101 100 113 107 110 

49 CDK9/CycK CMGC 106 96 101 117 97 107 

50 CDK9/CycT1 CMGC 100 96 98 105 112 109 

51 CHK1 CAMK 94 94 94 110 108 109 
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52 CHK2 CAMK 92 96 94 99 93 96 

53 CK1-alpha1 CK1 99 99 99 104 97 100 

54 CK1-delta CK1 98 95 97 108 104 106 

55 CK1-epsilon CK1 83 85 84 86 80 83 

56 CK1-gamma1 CK1 91 97 94 87 93 90 

57 CK1-gamma2 CK1 92 89 91 98 96 97 

58 CK1-gamma3 CK1 93 91 92 99 93 96 

59 CK2-alpha1 OTHER 99 103 101 102 100 101 

60 CK2-alpha2 OTHER 102 114 108 96 103 100 

61 CLK1 CMGC 91 84 88 100 94 97 

62 CLK2 CMGC 104 92 98 102 100 101 

63 CLK3 CMGC 87 97 92 93 93 93 

64 CLK4 CMGC 96 81 88 96 86 91 

65 COT STE 104 102 103 101 133 117 

66 CSF1-R TK 51 46 49 60 59 60 

67 CSK TK 92 88 90 104 101 103 

68 DAPK1 CAMK 90 85 87 85 81 83 

69 DAPK2 CAMK 94 92 93 103 87 95 

70 DAPK3 CAMK 96 91 94 94 95 94 

71 DCAMKL2 CAMK 90 90 90 91 93 92 

72 DDR2 TK 67 64 66 85 79 82 

73 DMPK AGC 88 94 91 103 97 100 

74 DANN-PK ATYP 99 97 98 99 95 97 

75 DYRK1A CMGC 105 96 101 100 97 98 

76 DYRK1B CMGC 100 112 106 103 113 108 

77 DYRK2 CMGC 90 93 91 98 95 97 

78 DYRK3 CMGC 82 81 81 86 80 83 

79 DYRK4 CMGC 102 101 102 98 100 99 

80 EEF2K ATYPICAL 104 104 104 111 111 111 

81 EGF-R TK 101 96 98 109 99 104 

82 EIF2AK2 OTHER 113 106 110 109 107 108 

83 EIF2AK3 OTHER 87 99 93 99 98 99 

84 EPHA1 TK 88 103 95 104 110 107 

85 EPHA2 TK 103 104 104 107 107 107 

86 EPHA3 TK 96 93 95 92 100 96 

87 EPHA4 TK 93 91 92 101 104 102 

88 EPHA5 TK 87 91 89 116 94 105 

89 EPHA7 TK 101 86 94 105 106 105 

90 EPHA8 TK 94 100 97 111 104 107 

91 EPHB1 TK 94 93 94 107 103 105 

92 EPHB2 TK 50 48 49 70 67 69 

93 EPHB3 TK 100 95 98 107 105 106 

94 EPHB4 TK 104 111 108 113 112 112 

95 ERBB2 TK 93 95 94 116 112 114 

96 ERBB4 TK 109 103 106 104 98 101 

97 ERK1 CMGC 103 103 103 105 97 101 

98 ERK2 CMGC 102 97 99 103 94 98 

99 ERK7 CMGC 90 84 87 87 81 84 

100 FAK aa2-1052 TK 111 97 104 111 97 104 

101 FER TK 93 88 90 104 100 102 

102 FES TK 84 88 86 98 95 97 

103 FGF-R1 TK 3 3 3 6 4 5 

104 FGF-R2 TK 6 5 6 9 10 9 

105 FGF-R3 TK 45 34 39 65 49 57 

106 FGF-R4 TK 85 89 87 96 96 96 

107 FGR TK 16 17 16 25 27 26 

108 FLT3 TK 93 96 94 93 98 95 

109 FRK TK 95 91 93 106 91 99 

110 FYN TK 58 55 56 102 85 94 

111 GRK2 AGC 95 88 92 92 91 91 
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112 GRK3 AGC 90 86 88 89 77 83 

113 GRK4 AGC 84 76 80 83 74 78 

114 GRK5 AGC 91 87 89 85 92 88 

115 GRK6 AGC 80 80 80 83 87 85 

116 GRK7 AGC 89 91 90 95 93 94 

117 GSG2 OTHER 95 95 95 106 102 104 

118 GSK3-alpha CMGC 96 89 92 92 89 90 

119 GSK3-beta CMGC 93 94 93 101 107 104 

120 HCK TK 91 94 92 98 107 103 

121 HIPK1 CMGC 103 105 104 101 103 102 

122 HIPK2 CMGC 102 98 100 111 102 106 

123 HIPK3 CMGC 109 97 103 103 105 104 

124 HIPK4 CMGC 90 91 90 90 90 90 

125 HRI OTHER 93 104 98 86 104 95 

126 IGF1-R TK 113 101 107 109 97 103 

127 IKK-alpha OTHER 84 93 88 92 93 93 

128 IKK-beta OTHER 101 106 104 110 105 107 

129 IKK-epsilon OTHER 87 85 86 100 95 97 

130 INS-R TK 100 89 94 96 109 102 

131 INSR-R TK 98 98 98 100 105 103 

132 IRAK1 TKL 77 77 77 86 83 84 

133 IRAK4 (untagged) TKL 86 95 91 89 102 95 

134 ITK TK 85 79 82 93 97 95 

135 JAK1 TK 96 92 94 89 96 93 

136 JAK2 TK 70 73 71 90 92 91 

137 JAK3 TK 79 81 80 85 97 91 

138 JNK1 CMGC 91 84 88 84 95 89 

139 JNK2 CMGC 90 97 94 102 105 104 

140 JNK3 CMGC 85 91 88 105 112 108 

141 KIT TK 6 6 6 9 8 9 

142 LCK TK 68 67 67 70 69 70 

143 LIMK1 TKL 95 92 94 104 104 104 

144 LIMK2 TKL 114 87 100 101 90 96 

145 LRRK2 TKL 26 28 27 32 34 33 

146 LTK TK 97 96 97 99 101 100 

147 LYN TK 62 54 58 80 78 79 

148 MAP3K1 STE 106 106 106 110 109 109 

149 MAP3K10 STE 80 82 81 92 92 92 

150 MAP3K11 STE 33 35 34 53 59 56 

151 MAP3K7/MAP3K7IP1 STE 81 84 82 94 87 90 

152 MAP3K9 STE 69 62 65 85 77 81 

153 MAP4K2 STE 21 21 21 62 57 59 

154 MAP4K4 STE 7 6 6 9 12 10 

155 MAP4K5 STE 18 18 18 35 32 34 

156 MAPKAPK2 CAMK 79 72 76 69 74 71 

157 MAPKAPK3 CAMK 98 101 100 101 100 100 

158 MAPKAPK5 CAMK 89 82 85 83 81 82 

159 MARK1 CAMK 87 95 91 98 91 94 

160 MARK2 CAMK 94 76 85 94 90 92 

161 MARK3 CAMK 90 88 89 96 89 93 

162 MARK4 CAMK 103 99 101 108 106 107 

163 MATK TK 107 118 113 116 122 119 

164 MEK1 STE 66 65 66 77 74 76 

165 MEK2 STE 104 94 99 98 98 98 

166 MEKK2 STE 85 82 83 86 89 87 

167 MEKK3 STE 87 77 82 89 81 85 

168 MELK CAMK 91 89 90 94 102 98 

169 MERTK TK 48 48 48 78 66 72 

170 MET TK 77 76 76 85 90 87 

171 MINK1 STE 7 7 7 13 13 13 
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172 MKK6 S207D/T211D** STE 97 106 102 99 115 107 

173 MKNK1 CAMK 98 90 94 100 107 103 

174 MKNK2 CAMK 91 90 90 93 90 91 

175 MST1 STE 61 59 60 68 73 71 

176 MST2 STE 53 57 55 93 73 83 

177 MST3 STE 100 102 101 102 101 102 

178 MST4 STE 89 92 91 90 103 96 

179 mTOR ATYPICAL 92 92 92 97 103 100 

180 MUSK TK 24 13 18 60 49 55 

181 MYLK CAMK 93 86 89 92 88 90 

182 MYLK2 CAMK 92 102 97 105 103 104 

183 MYLK3 CAMK 87 85 86 90 102 96 

184 NEK1 OTHER 100 103 101 105 107 106 

185 NEK11 OTHER 89 90 89 101 98 100 

186 NEK2 OTHER 100 90 95 98 110 104 

187 NEK3 OTHER 99 95 97 87 96 92 

188 NEK4 OTHER 100 93 96 103 100 102 

189 NEK6 OTHER 107 97 102 111 111 111 

190 NEK7 OTHER 90 83 86 88 85 86 

191 NEK9 OTHER 89 94 91 97 95 96 

192 NIK STE 112 90 101 110 103 106 

193 NLK CMGC 95 109 102 102 118 110 

194 p38-alpha CMGC 98 92 95 99 100 99 

195 p38-beta CMGC 98 97 98 95 106 100 

196 p38-delta CMGC 91 99 95 84 86 85 

197 p38-gamma CMGC 99 94 97 96 97 96 

198 PAK1 STE 92 92 92 90 90 90 

199 PAK2 STE 93 87 90 94 88 91 

200 PAK3 STE 95 100 97 100 95 98 

201 PAK4 STE 73 82 77 85 84 84 

202 PAK6 STE 74 70 72 88 88 88 

203 PAK7 STE 81 76 78 82 83 82 

204 PASK CAMK 101 101 101 106 99 102 

205 PBK OTHER 115 110 112 126 103 115 

206 PCTAIRE1/CycY CMGC 94 98 96 101 102 101 

207 PDGFR-alpha TK -5 -3 -4 3 0 2 

208 PDGFR-beta TK 1 1 1 4 5 4 

209 PDK1 AGC 75 74 74 83 74 79 

210 PHKG1 CAMK 113 104 109 113 118 116 

211 PHKG2 CAMK 95 100 97 102 103 102 

212 PIM1 CAMK 101 93 97 99 104 101 

213 PIM2 CAMK 91 90 90 77 75 76 

214 PIM3 CAMK 98 93 95 101 103 102 

215 PKA AGC 89 103 96 105 103 104 

216 PKC-alpha AGC 102 101 101 96 90 93 

217 PKC-beta1 AGC 94 88 91 100 95 98 

218 PKC-beta2 AGC 99 98 99 102 97 100 

219 PKC-delta AGC 104 113 109 108 109 108 

220 PKC-epsilon AGC 96 94 95 105 107 106 

221 PKC-eta AGC 95 94 95 95 106 101 

222 PKC-gamma AGC 102 105 103 105 93 99 

223 PKC-iota AGC 87 98 93 101 101 101 

224 PKC-mu AGC 92 95 93 95 96 96 

225 PKC-nu AGC 94 93 93 91 92 91 

226 PKC-theta AGC 99 94 97 86 92 89 

227 PKC-zeta AGC 100 104 102 105 99 102 

228 PLK1 OTHER 94 95 94 92 88 90 

229 PLK3 OTHER 115 113 114 114 110 112 

230 PRK1 AGC 99 92 96 103 105 104 

231 PRK2 AGC 77 78 77 86 86 86 
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232 PRKD2 CAMK 94 96 95 89 104 97 

233 PRKG1 AGC 101 107 104 104 105 105 

234 PRKG2 AGC 99 85 92 95 85 90 

235 PRKX AGC 77 74 75 68 71 69 

236 PYK2 TK 82 83 83 91 98 94 

237 
RAF1 Y340D/Y341D 

(untagged)** 
TKL 103 104 104 105 109 107 

238 RET TK 16 17 17 49 44 47 

239 RIPK2 TKL 75 68 71 76 79 78 

240 RIPK5 TKL 102 102 102 108 110 109 

241 ROCK1 AGC 83 93 88 88 91 89 

242 ROCK2 AGC 83 80 82 92 90 91 

243 RON TK 89 94 91 95 97 96 

244 ROS TK 32 32 32 45 45 45 

245 RPS6KA1 AGC 94 84 89 104 82 93 

246 RPS6KA2 AGC 80 79 79 84 90 87 

247 RPS6KA3 AGC 68 70 69 90 87 88 

248 RPS6KA4 AGC 98 94 96 103 109 106 

249 RPS6KA5 AGC 91 101 96 97 104 100 

250 RPS6KA6 AGC 74 68 71 85 89 87 

251 S6K AGC 87 108 97 99 91 95 

252 S6K-beta AGC 95 100 98 99 106 103 

253 SAK OTHER 3 6 4 7 4 5 

254 SGK1 AGC 83 79 81 93 85 89 

255 SGK2 AGC 96 93 95 99 103 101 

256 SGK3 AGC 96 99 98 100 97 99 

257 SLK STE 36 32 34 65 61 63 

258 SNARK CAMK 23 23 23 36 33 35 

259 SNF1LK2 CAMK 98 93 96 107 102 105 

260 SNK OTHER 98 93 96 99 100 99 

261 SRC (GST-HIS-tag) TK 90 91 91 94 94 94 

262 SRMS TK 99 89 94 97 99 98 

263 SRPK1 CMGC 103 94 98 100 107 103 

264 SRPK2 CMGC 109 94 102 107 102 104 

265 STK17A CAMK 22 26 24 36 35 35 

266 STK23 CAMK 90 82 86 91 88 89 

267 STK25 STE 99 94 97 91 92 91 

268 STK33 CAMK 91 86 89 93 94 93 

269 STK39 STE 90 93 91 88 99 93 

270 SYK aa1-635 TK 98 91 95 104 96 100 

271 TAOK2 STE 77 72 74 86 84 85 

272 TAOK3 STE 91 92 92 106 98 102 

273 TBK1 OTHER 74 77 75 82 71 76 

274 TEC TK 109 106 108 109 104 106 

275 TGFB-R1 TKL 93 100 96 110 101 105 

276 TGFB-R2 TKL 78 80 79 87 83 85 

277 TIE2 TK 39 38 39 60 55 57 

278 TLK1 AGC 93 99 96 90 87 89 

279 TLK2 AGC 98 92 95 99 99 99 

280 TRK-A TK 22 20 21 34 32 33 

281 TRK-B TK 49 45 47 51 51 51 

282 TRK-C TK 32 30 31 44 42 43 

283 TSF1 OTHER 50 50 50 63 65 64 

284 TSK2 CAMK 95 99 97 108 100 104 

285 TSSK1 CAMK 81 74 78 86 93 90 

286 TTK OTHER 98 100 99 101 98 100 

287 TXK TK 94 87 90 93 101 97 

288 TYK2 TK 64 69 66 76 91 84 

289 TYRO3 TK 96 93 95 88 107 97 

290 VEGF-R1 TK 3 4 4 8 7 8 
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291 VEGF-R2 TK 0 1 0 1 1 1 

292 VEGF-R3 TK 13 16 14 19 17 18 

293 VRK1 CK1 103 103 103 114 105 110 

294 WEE1 OTHER 88 97 93 102 106 104 

295 WNK1 OTHER 94 102 98 91 98 94 

296 WNK2 OTHER 95 93 94 95 91 93 

297 WNK3 OTHER 96 109 102 105 96 100 

298 YES TK 59 61 60 78 72 75 

299 ZAK TKL 61 56 58 69 72 71 

300 ZAP70 TK 104 101 102 109 104 106 

Selectivity Score (< 50 % residual activity):   0.117   0.083 

 

 
*Classification of protein kinase families

148
: 

AGC: containing PKA, PKG and PKC families 

CAMK: Calcium/Calmoduline-dependent protein kinases 

CK1: Casein kinase 1 –like 

CMGC: containing CDK, MAPK ,GSK3 and CLK families 

TK: Tyrosine Kinase 

TKL: Tyrosine Kinase-like 

STE: Homologs of Yeast Sterile 7, Sterile 11, Sterile 20 Kinases 

** Constitutively active kinase 
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TABLE OF ABBREVIATIONS 

°C degrees Celsius 

µ micro 

2D / 3D two-dimensional / three-dimensional 

8-MOP 8-methoxypsoralen 

ALL acute lymphoblastic leukemia 

A-loop activation loop 

ATP adenosine triphosphate 

b (NMR) broad 

BOC tert-butyloxycarbonyl 

Bu butyl 

C, Cys cysteine (amino acid one-letter code) 

cat. catalytic 

CCDC Cambridge Crystallographic Data Centre 

CLL chronic lymphocytic leukemia 

C-lobe C-terminal lobe 

CML chronic myeloid leukemia 

CO2 carbon dioxide 

COSY (NMR) correlation spectroscopy 

CRC colorectal cancer 

CST Cell signaling technology 

d (NMR) doublet 

DCM dichloromethane 

DDR2 discoidin domain-containing receptor 2 

DFG, Asp-Phe-Gly aspartic acid, phenylalanine, glycine (amino acid one-letter code) 

DMEM Dulbecco’s modified Eagle’s medium 

DMF dimethylformamide 

DMNB 4,5-dimethoxy-2-nitrobenzyl 

DMNPE 1-(4,5-dimethoxy-2-nitrophenyl)ethyl 

DMSO dimethyl sulfoxide 

E, Glu glutamic acid (amino acid one-letter code) 

e.g. exemplī grātiā (lat. for example) 

EMA European Medicine Agency 

Erk extracellular signal-regulated kinase 

ESI electrospray ionization 

Et ethyl 

FBS fetal bovine serum 

FDA Food and Drug Administration 

FL follicular lymphoma 

g gram 
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g gravitational force 

GF growth factor 

GI50 50% growth inhibition 

GIST gastrointestinal stromal tumor 

h hour(s) 

HCC hepatocellular cancer 

HMBC (NMR) heteronuclear multiple-bond correlation spectroscopy 

HP I/II hydrophobic pocket I/II 

HPLC high-performance liquid chromatography 

HRMS high-resolution mass spectrometry 

HSQC (NMR) heteronuclear single-quantum correlation spectroscopy 

Hz hertz 

IC50 half maximal inhibitory concentration 

INN international nonproprietary name 

J (NMR) coupling constant 

K Kelvin 

L liter 

LC50 50% lethal concentration 

LC-MS liquid chromatography–mass spectrometry 

LED light-emitting diode 

LG leaving group 

m meter 

m milli 

M molar 

m (NMR) unresolved multiplet 

m.p. melting point 

m/z mass-to-charge ratio 

MAP4K5 mitogen-activated protein kinase kinase kinase kinase 5 

MAPK mitogen-activated protein kinase 

MCL mantle cell lymphoma 

MEK mitogen-activated protein kinase kinase 

MEM minimum essential medium 

MeOH methanol 

MHz megahertz 

min minute(s) 

mol mole 

Mr relative molecular mass 

MS mass spectrometry 

n nano 

n/a not applicable 

NB o-nitrobenzyl 

N-lobe N-terminal lobe 
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nm nanometer 

NMR nuclear magnetic resonance spectroscopy 

NSCLC non-small cell lung cancer 

NVOC 6-nitroveratryloxycarbonyl 

NVOM 6-nitroveratryloxymethyl  

PBS phosphate-buffered saline 

pdb protein data bank (RCSB) 

PDGFR platelet-derived growth factor receptor 

p-Erk phosphorylated Erk 

pHP 4-hydroxy-phenacyl 

PPG photoremovable protection group 

ppm parts per million 

prep. preparation 

psi pounds per square inch 

PUVA psoralen plus UV-A 

RA residual activity 

RCC renal cell carcinoma 

RCT receptor tyrosine kinase 

resp. respectively 

RIPK2 receptor-interacting serine/threonine-protein kinase 2 

RP reversed phase 

rt room temperature 

s second(s) 

s (NMR) singlet 

SD standard deviation 

SLL small lymphocytic leukemia 

smKI small-molecule kinase inhibitor 

SN nucleophilic substitution 

t (NMR) triplet 

t-Erk total Erk 

TGI  total growth inhibition 

THF tetrahydrofuran 

TKI tyrosine kinase inhibitor 

TLC thin-layer chromatography 

UV ultraviolet 

V volt 

v/v volume fraction 

VEGFR vascular endothelian growth factor receptor 

VHL Von Hippel-Lindau 

vis visible 

vs. versus 

W watt 
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TABLE OF COMPOUNDS 

# Code Formula Nomenclature Pages Prep. 

19 JW_01 

 

(E)-axitinib, 
 

 (E)-N-methyl-2-((3-(2-(pyridin-2-
yl)vinyl)-1H-indazol-6-yl)thio)-

benzamide, 
 

INN: axitinib 

6, 13, 
28, 82 

138 

19a/b JW_02 

 

(Z)-axitinib, mixture of 
 

1H-tautomer (a), 
(Z)-N-methyl-2-((3-(2-(pyridin-2-
yl)vinyl)-1H-indazol-6-yl)thio)-

benzamide 
 

and 
 

2H-tautomer (b), 
(Z)-N-Methyl-2-((3-(2-(pyridin-2-
yl)vinyl)-2H-indazol-6-yl)thio)-

benzamide 

82 139 

44 RH_007 

 

N-(3-(5-(4-chlorophenyl)-1H-
pyrrolo[2,3-b]pyridine-3-carbonyl)-

2,4-difluorophenyl)propane-1-
sulfonamide,  

 
INN: vemurafenib 

13, 31, 
46 

119 

55 RH_003 

 

3-(1H-indol-3-yl)-4-(3,4,5-
trimethoxyphenyl)-1H-pyrrole-2,5-

dione 

27, 67, 
68, 69, 

74 
128 

56 n/a 

 

(7aR,7bR)-5,6,7-trimethoxy-7b,8-
dihydrobenzo[a]pyrrolo[3,4-

c]carbazole-1,3(2H,7aH)-dione 
27, 69 n/a 

57 RH_004 

 

5,6,7-
trimethoxybenzo[a]pyrrolo[3,4-
c]carbazole-1,3(2H,8H)-dione 

27, 74 129 
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58 RH_015 

 

N-(3-(5-(4-chlorophenyl)-1-(4,5-
dimethoxy-2-nitrobenzyl)-1H-

pyrrolo[2,3-b]pyridine-3-carbonyl)-
2,4-difluorophenyl)propane-1-

sulfonamide
 

37, 46, 
55 

120 

59 RH_032 

 

N-(3-(5-(4-chlorophenyl)-1-(1-(4,5-
dimethoxy-2-nitrophenyl)ethyl)-1H-
pyrrolo[2,3-b]pyridine-3-carbonyl)-

2,4-difluorophenyl)propane-1-
sulfonamide 

37, 46, 
55 

122 

60 RH_015* 

 

N-(3-(5-(4-chlorophenyl)-1H-
pyrrolo[2,3-b]pyridine-3-carbonyl)-

2,4-difluorophenyl)-N-(4,5-
dimethoxy-2-nitrobenzyl)propane-

1-sulfonamide 

37, 46, 
55 

124 

67 RH_038 

 

phenyl-(1H-pyrrolo[2,3-b]pyridin-3-
yl)-methanone 

40, 48, 
49 

103 

69 RH_035 

 

1-(4,5-dimethoxy-2-nitrobenzyl)-
1H-pyrrolo[2,3-b]pyridine 

40, 48, 
49 

104 

70 RH_036 

 

1-(1-(4,5-dimethoxy-2-nitrobenzyl)-
1H-pyrrolo[2,3-b]pyridin-3-yl)-

ethanone 

40, 48, 
49 

105 

71 RH_037 

 

(1-(4,5-dimethoxy-2-nitrobenzyl)-
1H-pyrrolo[2,3-b]pyridin-3-

yl)(phenyl)-methanone
 

40, 48, 
49 

106 
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73 RH_021 

 

1-(4,5-dimethoxy-2-nitrophenyl)-
ethanone 42 107 

74 RH_022 

 

1-(4,5-dimethoxy-2-nitrophenyl)-
ethanol 

42 108 

75 RH_029 

 

1-(1-bromoethyl)-4,5-dimethoxy-2-
nitrobenzene 

42 109 

76 RH_044 

 

(1-(1-(4,5-dimethoxy-2-
nitrophenyl)-ethyl)-1H-pyrrolo[2,3-
b]pyridin-3-yl)-(phenyl)methanone 

42, 51 110 

77 RH_023 

 

(1-(4,5-dimethoxy-2-nitrophenyl)-
ethoxy)methyl)(methyl)-sulfane 

42 111 

78 RH_024 

 

1-(1-(chloromethoxy)ethyl)-4,5-
dimethoxy-2-nitrobenzene 42 112 

79 RH_043 

 

(1-((1-(4,5-dimethoxy-2-
nitrophenyl)-ethoxy)methyl)-1H-

pyrrolo[2,3-b]pyridin-3-
yl)(phenyl)methanone

 

42, 51 113 

82 RH_039 

 

2-(3-benzoyl-1H-pyrrolo[2,3-
b]pyridin-1-yl)-1-(4-

hydroxyphenyl)ethanone 
44, 52 114 

83 RH_040 

 

2-(3-benzoyl-1H-pyrrolo[2,3-
b]pyridin-1-yl)-1-(4-

(dimethylamino)phenyl)-ethanone 
44, 51 115 
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84 RH_042 

 

4-((3-benzoyl-1H-pyrrolo[2,3-
b]pyridin-1-yl)methyl)-7-methoxy-

2H-chromen-2-one 
44, 51 116 

85 RH_041 

 

4-((3-benzoyl-1H-pyrrolo[2,3-
b]pyridin-1-yl)methyl)-6,7-

dimethoxy-2H-chromen-2-one 
44, 51 117 

86 RH_046 

 

2-(3-benzoyl-1H-pyrrolo[2,3-
b]pyridin-1-yl)-1,2-
diphenylethanone 

44, 51 118 

87 RH_016 

 

N-(3-(5-(4-chlorophenyl)-1-(4,5-
dimethoxy-2-nitrobenzyl)-1H-

pyrrolo[2,3-b]pyridine-3-carbonyl)-
2,4-difluorophenyl)-N-(4,5-

dimethoxy-2-nitrobenzyl)propane-
1-sulfonamide 

46 125 

93 n/a 

 

n/a 
 

LG = leaving group 
56 n/a 

95 n/a 

 

1-(4,5-dimethoxy-2-
nitrosophenyl)ethanone 

56 n/a 

96 n/a 

 

(S)-2-((tert-butoxycarbonyl)-
amino)propanoic acid 

61 n/a 

97 n/a 

 

(S)-4,5-dimethoxy-2-nitrobenzyl 2-
((tert-butoxycarbonyl)amino)-

propanoate 
61 n/a 
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98 RH_005 

 

3-(1H-indol-3-yl)-1-(2-nitrobenzyl)-
4-(3,4,5-trimethoxyphenyl)-1H-

pyrrole-2,5-dione 

65, 68, 
71 

130 

99 RH_013 

 

1-(4,5-dimethoxy-2-nitrobenzyl)-3-
(1H-indol-3-yl)-4-(3,4,5-

trimethoxyphenyl)-1H-pyrrole-2,5-
dione 

65, 69, 
71, 74 

131 

100 RH_049 

 

2-(4,5-dimethoxy-2-nitrobenzyl)-
5,6,7-

trimethoxybenzo[a]pyrrolo[3,4-c]-
carbazole-1,3(2H,8H)-dione 

65, 69, 
71, 74 

132 

102 RH_001 

 

2-(3,4,5-
trimethoxyphenyl)acetamide 

67 133 

104 RH_002 

 

ethyl 2-(1H-indol-3-yl)-2-
oxoacetate 

67 134 

105 RH_006 

 

1-(2-nitrobenzyl)-3-(1-(2-
nitrobenzyl)-1H-indol-3-yl)-4-(3,4,5-
trimethoxyphenyl)-1H-pyrrole-2,5-

dione 

68 135 

106 RH_014 

 

1-(4,5-dimethoxy-2-nitrobenzyl)-3-
(1-(4,5-dimethoxy-2-nitrobenzyl)-

1H-indol-3-yl)-4-(3,4,5-
trimethoxyphenyl)-1H-pyrrole-2,5-

dione 

69 136 
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