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1 Introduction 

1.1 The Adamalysine protease family 

Physiological processes in higher organisms need to be precisely orchestrated and tightly 

regulated. Proteolysis is one of the many biological processes that regulate and control 

physiological functions of the cell. Proteolysis is the breakdown of proteins into smaller 

polypeptides or amino acids. In addition to the pure breakdown and recycling of proteins, it plays 

a crucial role in the maturation of proteins, activation and deactivation of enzymes and proteins, 

and the release of signaling molecules, such as growth factors and cytokines. Proteases are the 

enzymes realizing this function. A specialized case of proteolysis is the proteolytic processing of 

transmembrane proteins followed by their ectodomain release. This process is known as shedding 

(Reiss and Saftig, 2009) and enzymes mediating this process are known as sheddases. Shedding 

serves diverse functions, such as releasing soluble factors from the cell surface, rapidly decreasing 

selective proteins on cells and inactivating cell surface receptors, and detaching cell adhesion 

proteins (Reiss and Saftig, 2009). The major proteinase family that mediates shedding is the A 

Disintegrin And Metalloproteases (ADAMs) family. The name is derived from two major functional 

domains of ADAMs: a disintegrin domain and a metalloprotease domain. ADAMs belong to the 

family of Adamalysines which are part of the Metzincin family of metalloproteases. The Snake 

venom metalloproteinase (SVMPs) and ADAMs with thrombospondin motifs (ADAMTSs) are also 

part of the Adamalysine family. ADAMs and ADAMTSs are both strongly related with similar 

domain structure, but distinct functions. While the ADAM family comprises mostly 

transmembrane proteases with very important functions as sheddases, the ADAMTSs are lacking 

the transmembrane domain and are therefore secreted proteases with major functions in 

remodeling the extracellular matrix (Apte, 2004). Both families are involved in inflammatory 

(Demircan et al., 2014) and cancerous diseases (Cal and López-Otín, 2015) and will be introduced 

in the following chapters. 
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1.1.1 The ADAMs 

ADAMs are zinc-dependent metalloproteases as they need zinc as co-factor for their proteolytic 

activity. Interestingly, about half of the 21 identified human members of the ADAM family do not 

express the typical metalloprotease zinc-binding active site (HExxHxxGxxH) and as a consequence 

are proteolytically inactive (Bode et al., 1993). These proteolytically inactive ADAM members are 

suggested to fulfill functions through mediating protein-protein interactions with their disintegrin 

and cysteine-rich domains (White, 2003). ADAMs are type-I-transmembrane proteins located in 

the plasma membrane of cells where they carry out their major function as sheddases. However, 

most ADAMs are found predominantly in the Golgi (Lammich et al., 1999; Schlöndorff et al., 2000) 

and to a lesser degree on the cell surface (Gutwein et al., 2003). ADAMs were identified in a broad 

range of species, such as C. elegans, Drosophila, Xenopus, as well as in vertebrates, but not in E. 

coli, S. cerevisiae or plants (Seals and Courtneidge, 2003). Interestingly, the mouse genome 

encodes nearly double the amount of ADAM genes compared to the human genome (Puente and 

Lo, 2004). All ADAMs follow a comparable modular design: The ADAM prototype consists of a 

prodomain, a metalloprotease domain, a disintegrin domain, a cysteine-rich domain, an epidermal 

growth factor (EGF)-like domain, a transmembrane domain and a cytoplasmic tail. The functions of 

these domains will be further discussed in chapter 1.1.1.1. The major importance of ADAMs is 

reflected by the phenotypes of ADAM knock-out mice. For instance, ADAM10 or ADAM17 

deficiency leads to prenatal and perinatal lethality, respectively (Hartmann et al., 2002; Peschon, 

1998). In contrast, deletion of some ADAM members does not result in any pathologies suggesting 

redundancy with other ADAM proteases (Seals and Courtneidge, 2003). Just recently, the second 

known case of ADAM17 loss in humans was published. This homozygous loss-of-function mutation 

was associated with severe multiorgan dysfunction, eventually leading to the death of this patient 

10 months after birth (Bandsma et al., 2015). The importance of the ADAMs is further reflected by 

the enormous substrate variety they shed. For the best studied member, ADAM17, more than 75 

substrates were identified, comprising diverse molecule classes, including cytokines, e.g. tumor 

necrosis factor alpha (TNF-α), cytokine receptors, e.g. TNF receptor I (TNFRI), as well as growth 

factors, e.g. transforming growth factor alpha (TGF-α) (Scheller et al., 2011). Additionally, cell 

adhesion molecules such as E-cadherin are important ADAM substrates. In the process of 

ectodomain shedding ADAMs are processing other transmembrane proteins or membrane-

associated proteins resulting in the release of their ectodomain. Shedding of these molecules not 

only provides the possibility for down-regulation, but also for initiating or inhibiting autocrine or 
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paracrine signaling via soluble proteins (Figure 1). Many ADAM members shed more than only one 

substrate and also commonly share some substrates. Interestingly, there is no consensus 

sequence in the cleavage site of different substrates shed by the same ADAM, although some 

ADAMs show preferences in their cleavage site specifity for some amino acids (Tucher et al., 

2014). Nevertheless, the common feature is that all proteins are shed in close proximity to the 

membrane. The ADAM-mediated ectodomain shedding gives rise to two major biological 

concepts: the fast and rapid remodeling of the cell surface changing the phenotype of the cell, and 

the release of soluble mediators from the cell surface. The physiological consequence is strongly 

dependent on the functions of the shed protein in the biological system. For instance, growth-

factors are often transported in an inactive state to the cell surface where they rest in the plasma 

membrane until they are shed. The released ectodomain then functions as a paracrine signaling 

molecule and can activate other cells through binding to their receptors. A typical example for this 

type of signaling is the release of proTGF-α by ADAM17. After activation, soluble TGF-α can bind to 

epidermal growth factor-receptors (EGFRs) of other cells and stimulate the cells to proliferate and 

migrate. Due to the broad variety of substrates, ADAMs control a wide spectrum of biological 

processes: cell migration and adhesion, cell proliferation, fertilization, central nervous system and 

cardiovascular system development, immunity, and wound healing. Moreover, these proteases 

are involved in pathophysiological processes such as inflammation and cancer as well. This thesis 

will focus on the regulation of ADAM17, one of the most important ADAMs. 
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Figure 1. Schematic view of ADAM-mediated substrate shedding. Shedding is the proteolytic processing of 
transmembrane proteins followed by their ectodomain release. Shedding serves diverse functions, such as 
releasing soluble factors from the cell surface, rapidly decreasing selective proteins on cells and inactivating 
cell surface receptors. The major proteinase family that mediates shedding is the A Disintegrin And 
Metalloproteases (ADAMs) family. Depicted is a generalized shedding event of a transmembrane substrate 
(e.g., TNF-α) by an ADAM (e.g., ADAM17). The substrate is cleaved in close proximity to the cell membrane 
releasing its ectodomain. The soluble ectodomain may then function as a signaling molecule and activate 
other cells in a paracrine manner. The modified picture is licensed under CC BY-SA 3.0 and based on work 
from Armin Kuebelbeck. 
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1.1.1.1 The metalloprotease ADAM17 

ADAM17 was initially identified as the ADAM member that releases the pro-inflammatory cytokine 

TNF-α from the cell surface. For this reason it was named tumor necrosis factor converting enzyme 

(TACE) (Black et al., 1997). Later on, many more substrates of ADAM17 were identified (Seals and 

Courtneidge, 2003).  

 

ADAM17 and its closest relative ADAM10 are two atypical ADAM members regarding their domain 

organization. The canonical modular design of ADAMs is: a prodomain, a metalloprotease domain, 

a disintegrin domain, a cysteine-rich domain, an EGF-like domain, a transmembrane domain and a 

cytoplasmic tail (Figure 2). While ADAM17 and ADAM10 in general follow this design, they differ in 

comprising a membrane-proximal domain (MPD) and a flexible stalk region, instead of the 

cysteine-rich and EGF-like domain (Düsterhöft et al., 2014; Takeda, 2009). The N-terminus of 

ADAMs contains a signal sequence that directs the protease into the secretory pathway. This 

sequence is later cleaved off. The following prodomain is involved in the maturation process and 

acts as a chaperone during the transit through the secretory pathway. Studies show that the 

prodomain is essential for proper folding of the metalloprotease domain. Mutants lacking the 

prodomain are proteolytically inactive, but can be rescued by coexpression of the prodomain 

(Anders et al., 2001). The metalloprotease domain gives rise to the proteolytic function of ADAMs, 

although not all ADAMs comprise the catalytic motif HExxHxGxxH, rendering them proteolytic 

inactive. Crystallization of the metalloprotease domain revealed the structure of the active site 

(Maskos et al., 1998). The disintegrin domain was first identified in snake venom metalloproteases, 

where it binds to integrin receptors inhibiting the association of platelets with the integrin 

receptors. This leads to abolished coagulation at the wound site after a snake bite. Integrins are 

transmembrane receptors mediating cell to cell-interactions and cell to matrix-interactions, thus 

providing cell adhesiveness. Several ADAM members bind to integrin receptors. ADAM17 

mediates cell-cell contacts by binding to α5β1-integrins (Bax et al., 2004). The MPD and the 

adjacent stalk region of ADAM17 were shown to be involved in substrate binding, ADAM17 

multimerization and ADAM17 activation/deactivation (Düsterhöft et al., 2013, 2014; Lorenzen et 

al., 2011, 2012). Since the studies were conducted in vitro, the in vivo relevance of these findings 

remains to be shown. The MPD and the stalk region will be discussed in more detail in chapter 

1.2.3.1. The transmembrane domain anchors the ADAMs in the plasma membrane. Interestingly, 

this domain does not only function as a pure membrane anchor, but is also important for the 
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shedding activity. ADAM17 lacking the transmembrane domain, but instead anchored through a 

glycosylphosphatidylinositol (GPI)-anchor, is not able to shed TGF-α, TNF-α and L-selectin anymore 

(Li et al., 2007). The transmembrane domain seems to be also important for substrate selectivity 

(Li et al., 2007). The importance and functions of the intracellular cytotail are introduced in 1.2.3.1.  

 

ADAM17 has a crucial role in inflammation because of its genuine function in releasing the pro-

inflammatory cytokine TNF-α. This type II-transmembrane protein acts as an important signaling 

molecule in the immune system. After shedding of the membrane-bound TNF-α, the released 

soluble TNF-α can bind to TNFR1 and TNFR2. Binding to the TNFRs leads to the activation of 

various intracellular pathways e.g., NF-κ-B activation which promotes an inflammatory response. 

In many inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease and 

multiple sclerosis, TNF-α promotes the inflammation. In line with this, ADAM17 dysregulation 

could be identified in these diseases (Edwards et al., 2008). 

Many ligands of the EGF receptor family are ADAM10 and ADAM17 substrates. TGF-α represents a 

prototype of such ligands released from the membrane by ADAM17. This cytokine belongs to the 

EGF family and is a ligand of the EGFR family. Similar to TNF-α, TGF-α is synthetized as a 

membrane bound precursor which is shed from the cell surface by ADAM17. Soluble TGF-α can 

then bind to EGFRs and induce signaling in the respective cell in an autocrine or paracrine manner. 

The downstream signaling network is amazingly complex, but in principle leads to activation of 

genes regulating cell proliferation, survival, cell migration and differentiation (Oda et al., 2005). 

The importance of ADAM17-mediated EGFR ligand shedding is also reflected in the phenotype of 

mice lacking functional ADAM17: Both, EGFR knock-out mice and ADAM17 knock-out mice show 

similar phenotypes, e.g. defects in epithelial maturation and differentiation (Peschon, 1998) and 

perinatal death (Miettinen et al., 1995).  
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Figure 2. Modular design of ADAMs and ADAMTSs. ADAMs and ADAMTSs follow a similar modular design. 
The major difference between both is that ADAMTSs comprise thrombospondin type 1 (TSP-1) repeats and 
lack the transmembrane domain (TMD). Therefore, ADAMTSs are secreted proteases with functions in the 
extracellular matrix, whereas ADAMs function as sheddases on the cell surface. Member-specific domain 
organization is shown for ADAM17 and ADAMTS-16/18. N=N-terminus; C=C-terminus; PLAC=protease and 
lacunin domain. According to (Apte, 2004; Cal et al., 2002; Takeda, 2009). 
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1.1.2 The ADAMTSs 

Another important Adamalysine subfamily is the ADAM with thrombospondin motifs (ADAMTS) 

family. The ADAMTSs and the ADAMs share many features. ADAMTSs have the characteristic 

ADAM-like metalloprotease domain, prodomain, disintegrin-like domain and cysteine-rich domain. 

However, ADAMTSs differ from ADAMs in two important features: They comprise thrombospondin 

type 1 (TSP-1) repeats and they lack the transmembrane domain (Tang, 2001) (see Figure 2). Thus, 

they are secreted into the extracellular space. The TSP-1 repeats adhere them to components of 

the extracellular matrix (ECM), a collection of extracellular molecules secreted by cells that 

provides structural and biochemical support to the surrounding cells. Therefore, ADAMTSs differ 

from the ADAMs in their localization and also in their substrates. Since most of the ADAMTSs 

substrates are components of the ECM, such as procollagen and aggrecan, ADAMTSs have major 

functions in the remodeling of the ECM (Apte, 2004).  

 

Nineteen members of this relative new protease family have been identified in humans so far. 

Interestingly, all are presumed to be proteolytically active, but many of them are still marked as 

orphan ADAMTSs, since there is no known function or substrate yet identified. More recently, a 

homologous subfamily, of ADAMTS-like proteases (ADAMTSLs) which lack the enzyme activity was 

identified (Le Goff and Cormier-Daire, 2011). The mammalian ADAMTS members can be classified 

regarding their major substrates into aggrecanases (ADAMTS-1, -4, -5, -8, -9, -15, -20), procollagen 

N-proteinases (ADAMTS-2, -3, -14), the Von Willebrand factor-cleaving protease (vWFCP/ADAMTS-

13) and the orphan ADAMTSs (-6, -7, -10, -12, -17-19) with no known substrate (Jones and Riley, 

2005). ADAMTS-16, which will be introduced in chapter 1.1.2.1 in detail, used to belong to the 

group of orphan ADAMTSs. Only recently, some of its functions have been identified. 

 

The prototypic design of ADAMTSs is: an N-terminal signal peptide, followed by a prodomain, a 

metalloprotease domain and an ancillary domain. The ancillary domain comprises a disintegrin-

like domain, a central TSP-1 repeat, a cysteine-rich domain and a spacer domain (SD). The C-

terminal part of the ADAMTSs is the most variable part and can include additional TSP-1 repeats 

and various other domains e.g., protease and lacunin (PLAC) domains (Apte, 2004). The 

disintegrin-like domain found in ADAMTSs differs from those found in the snake venom 

metalloproteases and has not been yet shown to bind integrins as the ADAM-disintegrin-like 

domain does (Brocker et al., 2009). It is suggested that the ADAMTS-disintegrin-like domain is 
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important for the enzyme activity and substrate specifity, as evidenced for ADAMTS-13 (De Groot 

et al., 2009). ADAMTSs lack the EGF-like domain, the transmembrane domain and the cytotail, that 

ADAMs are comprising. Instead, they have a central TSP-1 repeat, optional additional C-terminal 

TSP-1 repeats and a SD. The C-terminal TSP-1 repeats are involved in cell-cell interactions, 

angiogenesis and induction of apoptosis (Guo et al., 1997; Iruela-Arispe et al., 1999). Supported by 

studies of ADAMTS-1, the central TSP-1 repeat is thought to be a functional heparin-binding motif, 

anchoring ADAMTSs to the ECM. The C-terminal TSP-1 repeats support this function, but show a 

lower affinity to heparin then the central repeat (Kuno and Matsushima, 1998). The SD mediates 

substrate-binding (De Groot et al., 2009) and is also involved in heparin binding (Kuno and 

Matsushima, 1998). 

 

Since ADAMTSs process several important extracellular proteins, such as collagen and aggrecan, 

they are highly involved in connective tissue turnover, especially of the cartilage (Malfait et al., 

2002; Pratta et al., 2003). Many mutations in ADAMTS genes are linked to diseases caused by a 

dysfunctional ECM with altered features, such as different stabilizing properties and altered 

network formation (Hubmacher and Apte, 2015). Moreover, ADAMTSs are also involved in 

angiogenesis, blood coagulation and cell migration. Therefore, the involvement of one of the 

ADAMTSs, ADAMTS-1, in cancer progression has been intensively studied (Tan et al., 2013). 

ADAMTS-1 facilitates tumor progression through promoting several critical tumor features, such 

as cell migration by degrading surrounding ECM molecules (versican and brevican), and 

angiogenesis by sequestration of pro-angiogenic factors (Kumar et al., 2012). Interestingly, several 

other ADAMTSs are anti-angiogenic or tumor suppressors. ADAMTS-9, for example, acts directly as 

a tumor suppressor and is associated with poor survival in gastric cancer (Du et al., 2012). 

 

1.1.2.1 The metalloprotease ADAMTS-16 

ADAMTS-16 is one of the less studied ADAMTS members. Until recently, ADAMTS-16 belonged to 

the orphan members of the ADAMTSs, where no substrate and function was known. Today, the 

only known substrate of ADAMTS-16 is α2-macroglobulin (Gao et al., 2007), a general inhibitor of 

proteases. Additionally, it was shown that recombinant truncated forms of ADAMTS-16 show low 

aggrecanase activity, although it is not known if this truncation occurs naturally (Zeng et al., 2006). 

In the recent years, more functions of ADAMTS-16 were proposed. It was shown that ADAMTS-16 

is a regulator of blood pressure, probably by regulating the thickness of the arteries in Adamts16 
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knock-out rats. Homozygous Adamts16 knock-out rats develop hypertension and renal damages 

(Gopalakrishnan et al., 2012). In further studies it was revealed that these knock-out rats have 

impaired development of the male testis, resulting in infertile males (Abdul-Majeed et al., 2014). 

In line with these findings, two genetic variants of ADAMTS16 in humans could be linked to 

inherited hypertension supporting its role as a regulator of systolic blood pressure (Joe et al., 

2009). A physiological role of ADAMTS-16 is suggested in the human ovarian follicle maturation. 

α2-macroglobulin binds and thereby inactivates the pro-angiogenic vascular endothelial growth 

factor (VEGF) (Soker et al., 1993). This inactivation could restrict the development of small blood 

vessels until final maturation of the ovarian follicle (Gruemmer et al., 2005). The maturation of the 

ovarian follicles is regulated by increasing levels of follicle-stimulating hormone (FSH). Since FSH 

also induces ADAMTS-16 expression, it was suggested that ADAMTS-16 expression inactivates α2-

macroglobulin after increasing FSH levels. The consequence is that active α2-macroglobulin is 

released and promotes angiogenesis needed for proper maturation (Gao et al., 2007). The 

importance of ADAMTS-16 in ovarian maturation is also indicated by a gene variant associated 

with higher risk of premature ovarian failure (Pyun et al., 2014). ADAMTS16 was the most 

upregulated metalloprotease in the inflammatory disease, osteoarthritis (Kevorkian et al., 2004). 

In the perspective of cancer, ADAMTS-16 was shown to be upregulated in esophageal squamous-

cell carcinoma, where it was identified as an oncogene (Sakamoto et al., 2010). siRNA-mediated 

knock-down of ADAMTS16 in esophageal cancer cell lines reduced invasiveness of these cells in an 

in vitro invasion assay (Sakamoto et al., 2010). By contrast, ADAMTS-16 overexpression in human 

chondrosarcoma cells led to decreased cell proliferation and migration (Surridge et al., 2009), 

therefore suggesting a cell type dependent effect. Interestingly, the closest relative of ADAMTS16, 

ADAMTS18, is a tumor suppressor gene (Wei et al., 2010; Xu et al., 2015).  
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1.2 Mechanisms of regulation for ADAMs and ADAMTSs 

ADAMs and ADAMTSs have important functions in many physiological processes. These functions 

have to be tightly regulated and balanced. In general, a plethora of regulation mechanisms for 

proteins and their genes exist. In the following subchapter, three important mechanisms regarding 

ADAMs and ADAMTSs regulation, and in particular ADAM17 and ADAMTS-16, will be introduced. 

 

1.2.1 Transcriptional regulation 

Transcriptional regulation is the complex collection of diverse means that regulate the conversion 

of DNA to RNA. By controlling this vital process a cell orchestrates its gene activity by up and 

down-regulation of gene transcript levels and consequently protein levels.  

 

1.2.1.1 Transcriptional regulation of ADAMs and ADAM17 

The contribution of ADAM17 gene expression changes to ADAM17 functions is poorly 

characterized. Altered expression of ADAM17 is described for breast cancer (Santiago-Josefat et 

al., 2007) and also for inflammatory diseases, such as ulcerative colitis (Arribas and Esselens, 2009) 

and rheumatoid arthritis (Charbonneau et al., 2007). Despite obvious functional implications of 

ADAM17 in inflammation (TNF-α) and cancer (EGFR-ligands), the effect of higher expression needs 

further investigation. The importance of ADAM17 expression levels was challenged by a recent 

publication: Transgenic overexpression of ADAM17 in mice clearly showed neither an elevated 

TNF-α shedding nor an elevated inflammatory response, thus clearly questioning that regulation of 

ADAM17 functions depends mainly on transcriptional regulation (Yoda et al., 2013). Nevertheless, 

extreme down-regulation or absence of ADAM17 expression is pathological as shown by knock-

out mice. Additionally, a negative regulation of ADAM17 expression by microRNAs was identified 

(Doberstein et al., 2013). 

 

1.2.1.2 Transcriptional regulation of ADAMTSs and ADAMTS16 

Most ADAMTSs are expressed at low levels in mammals making it difficult to detect and study 

them (Tang, 2001). However, transcriptional regulation of expression seems to be an important 

regulatory step for the functions of ADAMTSs, since many studies show that diverse ADAMTS 

members are differentially expressed in various human cancers (Rocks et al., 2008). In many cases, 
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differential expression is correlated with methylation alterations in these ADAMTS genes (Kumar 

et al., 2012). Unfortunately, most studies lack functional analyses of this differential expression 

and their consequences remain uncertain. 

ADAMTS expression is distributed over a broad range of adult tissues, but more limited in the fetal 

tissue. In case of distinct members, the expression is generally limited to selected tissues and not 

ubiquitous (Porter et al., 2005). Expression profile studies show that differential expression of 

many ADAMTS members is associated with different pathological processes, such as inflammatory 

or cancerous diseases. The only known dysregulations of ADAMTS16 are reported for 

osteoarthritis (Kevorkian et al., 2004) and esophageal squamous-cell carcinoma (Sakamoto et al., 

2010). ADAMTS16 was originally identified to be expressed in the fetal lung and fetal kidney, and 

the adult brain and adult ovaries (Cal et al., 2002). More recently, it was reported that it is also 

expressed in the adult in the kidney, pancreas, spinal cord (Sakamoto et al., 2010) and colon 

muscle (Wilhelm et al., 2014). It should be noted that depending on the source, the reported 

tissue specific expression profiles differ in many cases which could possibly be attributed to 

different detection methods. 

Regulation of ADAMTS gene expression is still poorly characterized, but several reports indicate 

that they are regulated by growth factors, hormones and inflammatory cytokines (Surridge et al., 

2009). ADAMTS16 expression is induced by FSH in the ovaries (see chapter 1.1.2.1) and can be 

induced by TGF-β, at least in a chondrocyte cell line (Surridge et al., 2009). Additionally, there was 

an inverse correlation of the ADAMTS16 expression and matrix metalloprotease-13 (MMP13) 

expression in this cell line after ADAMTS16 transfection. 

Promoter studies of ADAMTS16 could experimentally determine the promoter region and some 

transcription factors of ADAMTS16 (Jacobi et al., 2013; Surridge et al., 2009). Several ADAMTS 

members are post-transcriptionally regulated by alternative splicing as several isoforms for 

ADAMTS proteins have been identified (Bevitt et al., 2005). Indeed, several transcript variants and 

isoforms of ADAMTS-16 were also reported. Unfortunately, so far there is no knowledge about the 

regulation and function of these isoforms. The present lack of knowledge about ADAMTS-16 is also 

reflected by the fact that there are only 23 publications about ADAMTS-16 available so far, urging 

for further research on this protease. 
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1.2.2 Epigenetic regulation 

In the recent decades other general and very important regulatory mechanisms of gene 

transcription were identified: epigenetic mechanisms.  

Epigenetic information is additional information encoded into the genome, by other means than 

the genetic code. In principle, all cells in the body share the same genetic code, but show 

divergent gene expression profiles and as a consequence can express different phenotypes. 

Epigenetic modifications are responsible for this diversity of gene expression by regulating the 

activity of genes. They decide which genes are actively transcribed and which are silent. Most of 

this epigenetic information is stored in structural modifications, such as histon modifications, DNA 

methylation and nucleosome positioning. It can also be mediated through non-coding regions in 

the DNA, which express e.g., microRNAs that silence mRNA transcripts.  

Histon modification and DNA methylation are two key components of structural modifications as 

they alter the compactness of the chromatin and therefore the accessibility of genes for 

transcription. DNA methylation is the addition of a methyl (CH3)-group to a cytosine at position 5. 

This methylation occurs in mammals nearly exclusively in the cytosine of CpG-dinucleotides 

(cytosine and guanine connected through a phosphate). CpG sites are in many cases enriched 

around the promoter region of genes. CpG-methylation in these regions has a tremendous effect 

on the activity of genes. Prototypically, actively transcribed genes show low methylation in CpG 

sites in the promoter region and the first exon, but high methylation in CpG sites in the gene body. 

Transcriptionally inactive genes show the inverse situation (Figure 3). This gene transcription 

modulation and gene silencing is important especially during development (Teif et al., 2014), as a 

host defense mechanism (Yoder et al., 1997) and in cancer (Esteller, 2007; Herman and Baylin, 

2003). In cancer cells a global hypomethylation occurs, but strikingly, the CpG-sites in the 

promoter regions are instead hypermethylated. Consequently, the affected genes are silenced. 

These genes are in many cases tumor suppressor genes and their silencing contributes to the 

malignant development.  
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Figure 3. Regulation of gene activity by DNA methylation. CpG-dinucleotides are often clustered in the 
promoter region and around the first exon. Addition of a methyl group to the cytosine of a CpG can have a 
tremendous effect on the activity of genes. Prototypically, actively transcribed genes show low methylation 
in CpG sites in the promoter region and the first exon, but high methylation in CpG sites in the gene body. 
Transcriptionally inactive genes show the inverse methylation profile. This epigenetic regulatory 
mechanism is especially common in cancers. Promoter hypermethylation of tumor suppressor genes leads 
to their transcriptional inactivation. This contributes to many of the hallmarks of cancer. According to 
(Esteller, 2002, 2007). 

 

1.2.2.1 Epigenetic regulation of ADAMs and ADAMTSs 

Methylation changes for the two most important ADAMs, ADAM10 and ADAM17, are not 

described so far, but methylation changes for some ADAM (Seniski et al., 2009) and several 

ADAMTS (Kumar et al., 2012) members, especially in cancer, have been reported. Therefore, one 

aim of this thesis was to investigate whether methylation changes in inflammatory and cancerous 

diseases play a role for the regulation of ADAM and ADAMTS (ADAM/TS) proteases, particularly 

ADAM10 and ADAM17. 
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1.2.3 Posttranslational regulation 

Posttranslational regulation refers to all means that regulate the levels of active proteins after 

their translation. These means include several known mechanisms, such as posttranslational 

modifications, proteolysis, protein folding and structural changes, which are either reversible or 

irreversible altering the properties and functions of these proteins. In the following, 

posttranslational regulation mechanisms for ADAMs and ADAMTSs will be introduced. 

1.2.3.1 Posttranslational regulation of ADAMs and ADAM17 

ADAMs are generally synthesized as zymogens, latent precursors which are later converted to the 

active form by removal of their prodomain. This is also the case for ADAM17. ADAM17 is 

translated at the outer face of the endoplasmic reticulum and the prodomain is cleaved by a furin-

type proprotein convertase in the Golgi during its way through the secretory pathway (Schlöndorff 

et al., 2000). This generates mature, active ADAM17, since the prodomain acts as an inhibitory 

domain by coordinating the Zn2+ ion in the active site by a cysteine residue, blocking the catalytical 

site. An additional major function of the prodomain is its function as a chaperone, supporting the 

proper folding of ADAM17 during the secretory pathway (Milla et al., 1999).  

A major question regarding the regulation of ADAM shedding activity is how the substrate 

selectivity is regulated. ADAM17 has a wide range of substrates, although there is no common 

consensus sequence for cleavage in its substrates. It is obvious that ADAM17 and its substrate 

need to be temporarily colocalized for the shedding event to take place, thus giving rise for a 

temporal and spatial regulation of the substrate accessibility to ADAM17. The majority of ADAM17 

is localized in an intracellular compartment near the nucleus, but mature ADAM17 can be found 

on the cell surface (Schlöndorff et al., 2000). It was shown that mature ADAM17 is sequestered in 

lipid rafts during its way through the secretory pathway. Its shedding activity of TNF-α, TNFR1 and 

TNFR2, on the cell surface is then rate-limited by the entry of these substrates into the lipid raft 

microdomains. Substrates outside of the lipid rafts are not accessible to mature ADAM17 (Tellier 

et al., 2006). The hypothesis that regulation of the shedding activity occurs by limiting the 

substrate accessibility is also supported by studies showing, that lipid raft destruction through 

cholesterol depletion enhances ADAM17-mediated shedding (Matthews et al., 2003). 

Interestingly, not all ADAM17 substrates are cleaved on the cell surface. Amyloid precursor 

protein and ADAM17 are colocalized in the trans-Golgi-network while cleavage takes place there 

(Skovronsky et al., 2000).  
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The ectodomain shedding process of ADAM17 itself is also regulated: The protease is 

constitutively active, but strikingly its shedding activity can be rapidly induced by several 

physiological and unphysiological stimuli. Unphysiological stimuli, such as phorbol 12-myristate 

13-acetate (PMA) and the ionophore ionomycin, can induce a rapid increase in ADAM17 shedding 

activity under experimental conditions (Horiuchi et al., 2007). Additionally, a broad variety of 

physiological stimuli, inter alia, thrombin, lysophosphatidic acid, lipopolysaccharides, 

acetylcholine, TNF-α, (Bz)ATP and EGF can induce the shedding of ADAM17 (Le Gall et al., 2010). 

These molecules are ligands of a broad range of different receptor types, such as G-protein 

coupled receptors, ligand gated ion channels, receptor tyrosine kinases and toll-like receptors. 

How all the different signaling pathways downstream of these receptors eventually lead to higher 

ADAM17 shedding activity is a central question in the research field and remains under intensive 

investigation. The involvement of the intracellular cytotail in the shedding activity is controversally 

discussed. Some studies show that ADAM17 shedding can be modulated through phosphorylation 

sites in the cytoplasmic tail (Schwarz et al., 2014; Xu and Derynck, 2010), but others show that 

ADAM17 lacking the cytoplasmic tail can still be activated (Le Gall et al., 2010). Recently, our 

research group (Sommer et al., 2015, in revision) proposed the distinctive step in the activation of 

stimulated ADAM17-mediated shedding: phosphatidylserine (PS)-exposure. It is proposed that a 

PS-binding motif in the MPD interacts with exposed PS after stimulation, and consecutively 

positions ADAM17 in the right orientation for proper shedding, thus enhancing its shedding 

activity. It is not yet clear, whether ADAM17 and ADAM10 share this mechanism, since some of 

the stimuli activate ADAM17 and ADAM10, e.g., ionomycin, but others only activate ADAM17 e.g., 

PMA (Le Gall et al., 2009). 

 

In the recent years, importance was also attributed to the membrane-proximal domain of 

ADAM17. ADAM17 can principally multimerize, whereas it is not clear how many monomers are 

forming the multimer. Multimerization could have an important regulatory impact on the 

shedding activity like it is known for the matrix metallopeptidase 14 (MT1-MMP) (Lorenzen et al., 

2011). In the case of ADAM17, the multimerization is most likely mediated by its MPD but the 

functional and biological relevance remains unclear. 

Interestingly, a putative molecular turn-off switch was identified for ADAM17. The membrane-

proximal domain (amino acids 581-642) comprises a thioredoxin motif (C600XXC603) which can be 

isomerized by a protein-disulfide isomerase (PDI). The PDI rearranges the two disulfide linkages in 
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this motif. These disulfide bond changes restructure the MPD from a flexible, open conformation 

to a more closed and inflexible conformation (Düsterhöft et al., 2013). PDIs are found on the cell 

surface as ADAM17 and can indeed negatively regulate the ADAM17 shedding activity (Bennett et 

al., 2000; Willems et al., 2010) potentially by restructuring the MPD. So far, no reversion of this 

proposed inactivation has been identified. 

Another feature of the MPD and the adjacent stalk region is the involvement in substrate binding. 

They recognize and bind the type-I transmembrane substrates interleukin-6 receptor (IL-6R) and 

interleukin-1 receptor 2 (IL-1RII), but not the type-II transmembrane protein TNF-α (Lorenzen et 

al., 2012). Later on, it was revealed that a sequence in the stalk region, but not the MPD, was 

actually responsible for this interaction and named Conserved ADAM seventeeN Dynamic 

Interaction Sequence (CANDIS, amino acids 644-660), due to its high conservation between species 

and its substrate binding ability (Düsterhöft et al., 2014). 

1.2.3.2 Posttranslational regulation of ADAMTSs and ADAMTS-16 

All ADAMTS members undergo pro-protein processing similar to that of ADAMs, where the 

prodomain is cleaved off along the secretory pathway (Porter et al., 2005). In general, the 

prodomain mediates latency of the protein, however there are known exceptions e.g., ADAMTS-

13 is active even with attached prodomain (Majerus et al., 2003). 

An additional C-terminal processing is reported for several ADAMTSs regulating their activity. At 

least ADAMTS-1 and ADAMTS-4 can undergo cleavage in the SD, which alters their activity: Both 

processed forms have less affinity for heparin. Processed ADAMTS-1 is less anti-angiogenic and the 

processing of ADAMTS-4 alters its proteolytic activity against aggrecan (Gao et al., 2002; 

Rodríguez-Manzaneque et al., 2000). These changes have been attributed to loss or truncation of 

the SD and the following TSP-1 repeats. Whether this type of regulation can be applied to 

ADAMTS-16, needs further investigation. In principle, at least truncated recombinant forms of 

ADAMTS-16 show an enhanced aggrecanase activity, but if they occur under physiological 

situations is not reported (Zeng et al., 2006). 
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1.3 Aims of this thesis 

ADAM17 is pivotal for a broad range of physiological and pathological processes, since it is a key 

regulator of substrates mediating these events. Although being intensively investigated, it still 

remains uncertain how this protease is regulated in detail, and how the shedding of such a broad 

substrate repertoire is tightly regulated and kept in balance not to result in pathological 

conditions. Modulating ADAM17 shedding activity is discussed as a potential target for therapeutic 

intervention in pathologies, in which ADAM17 substrates are involved. However, drugs directed 

against the active site of ADAM17 have not been a success to date. These inhibitors failed, since 

they were not substrate-specific and blocked the proteolysis of all ADAM17 substrates. As a 

consequence, treated patients suffered from severe side effects. Therefore, understanding the 

molecular mechanisms of ADAM17 regulation is essential and may aid to develop substrate-

specific therapeutics. The stalk region of ADAM17, recently named Conserved ADAM seventeeN 

Dynamic Interaction Sequence (CANDIS), has been shown to bind to a subset of ADAM17 

substrates. Interestingly, it is also able to interact with lipids, suggesting a putative membrane 

interaction between CANDIS and the plasma membrane. This interaction could be an important 

modulatory step in the molecular mechanism of ADAM17-mediated shedding of certain 

substrates. The ① aim of this thesis was to evaluate whether this lipid binding ability of the 

CANDIS region contributes to the ADAM17 shedding activity.  

Transcriptional regulatory mechanisms of ADAMs are even less characterized, although 

dysregulation of ADAMs was reported in inflammatory and cancerous diseases. Transcription 

levels are in general tightly regulated by epigenetic mechanisms such as DNA methylation. 

Consequently, the question arises whether DNA methylation contributes to the dysregulation of 

ADAMs in diseases. This is particularly interesting, since epigenetic modifications are reversible 

and can be potentially influenced by nutrition or drug intervention for therapeutic purposes. 

Epigenetic regulation of ADAM proteases in normal tissue has been poorly investigated and no 

reports exist describing the epigenetic patterns of these genes in diseases, except cancer. 

Surprisingly, despite being involved in shedding of inflammatory cytokines and cell adhesion 

molecules, epigenetic patterns of ADAM10 and ADAM17 in inflammatory and cancerous diseases 

have not been reported so far. The ② aim of this thesis was to investigate whether ADAMs, 

including ADAM17 and ADAM10, are epigenetically dysregulated in inflammatory diseases. Since 

methylation alterations in the related ADAMTS family have been previously reported, the study 

was expanded to ADAMTS genes as well. Furthermore, also cancerous tissues compared to normal 

tissues were investigated.  
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2 Material and Methods 

2.1 Equipment and Consumables 

Table 1. Consumables 

Description Manufacturer / Provider 

96-well plates, flat bottom Sarstedt AG & Co., GER 

Cell culture dishes, 10 cm Sarstedt AG & Co., GER 

Cell culture plates, 12-, 24-, 96-well Sarstedt AG & Co., GER 

Cell scraper, 16 cm, 25 cm Sarstedt AG & Co., GER 

Falcon centrifuge tubes Sarstedt AG & Co., GER 

Glass flasks, 1000 ml, 300 ml Schott AG, GER 

MicroAMP Fast 96-well Reaction Plate (0.1 ml) 
for qPCR systems 

Thermo Scientific, USA 

Microtubes with thread Sarstedt AG & Co., GER 

Neubauer chamber Brand GmbH & Co. KG, GER 

Parafilm American National Can Company, USA 

Pasteur pipettes Carl Roth GmbH & Co. KG, GER 

Petri dishes Sarstedt AG & Co., GER 

Plastic box, airtight EMSA GmbH, GER 

PVDF membrane, 0.45 µm Carl Roth GmbH & Co. KG 

Serological pipettes, 5 ml, 10 ml, 25 ml Sarstedt AG & Co., GER 

Syringe filter, 0.45 µm pore size Sarstedt AG & Co., GER 

Whatman paper, 1.5 mm Carl Roth GmbH & Co. KG 

 

Table 2. Standard equipment 

Description Manufacturer 

Analytical balance Kern & Sohn GmbH, GER 

Analytical balance Denver Instruments, USA 

Biophotometer Eppendorf, GER 

Centrifuge 5417R, fixed angle rotor F45-30-11 Eppendorf, GER 

Centrifuge 5424, fixed angle rotor FA45-24-11 Eppendorf, GER 

Centrifuge 5804R fixed angle rotor F34-6-38 Eppendorf, GER 

Centrifuge 5810R, swing-out rotor A-4-62 Eppendorf, GER 

Centrifuge Heraeus Multifuge X3R, fixed angle 
rotor F14-6x250LE 

Thermo Scientific, USA 

Chemiluminescence detector Fusion FX7 Peqlab, GER 

Exhaust pump, BVC professional Vacuubrand, GER 

Flow cytometer BD Fortessa BD, GER 
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Freezing container, Nalgene Mr. Frosty Thermo Fisher Scientific Inc., USA 

Heating block Eppendorf, GER 

Heating cabinet Memmert, GER 

Incubator Hera cell 150 Thermo Scientific, USA 

iScan methylation array scanner Illumina, NL 

Light microscope, inverse Hund, GER 

Magnetic stirrer CB162 Stuart, USA 

Microwave oven Samsung, GER 

NanoDrop 1000 spectrophotometer Peqlab, GER 

PH-meter pH211 HANNA Instruments GmbH, GER 

Plate reader EL800 Biotek Instruments GmbH, GER 

Plate reader FLx800 Biotek Instruments GmbH, GER 

Power Supply EV231 Peqlab, GER 

Power Supply PAC300 Bio-Rad Laboratories, Inc., GER 

Real-Time PCR System StepOnePlus™ Thermo Fisher Scientific Inc., USA 

Roller mixer, Stuart SRT6 Bibby Scientific Ltd., UK 

Shaking incubator Minitron Infors HT, GER 

Single channel pipettes Abimed GmbH, GER 

Sonificator Bandelin electronic GmbH, GER 

Sterile work bench Köttermann GmbH & Co. KG, GER 

Tank electroblotter Web S Peqlab, GER 

Thermocycler peqSTAR 96 universal Peqlab, GER 

Tilting shaker Unitwist-RT Uniequip, GER 

Tube rotator MACSmix™ Miltenyi Biotech, GER 

Vortexer Vortex Genie IKA, GER 

Water bath GFL1004 GFL, GER 

Water purification system, TKA GenPure TKA, GER 

 

2.2 Chemicals 

Table 3. Chemicals 

Description Manufacturer 

1,10-Phenanthroline Roth, GER 

Accutase Innovative Cell Technologies, USA 

Acrylamide (Rotiphorese® Gel 30 (37,5:1)) Roth, GER 

ADAM peptide substrate (soluble) Enzo Life Sciences, USA 

Agar Agar Roth, GER 

Ammoniumperoxidisulfate (APS) Roth, GER 
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Ampicillin Roth, GER 

Bovine serum albumin (BSA) Sigma, GER 

Bradford Coomassie Plus Fermentas, USA 

Calciumchloride (CaCl2) Roth, GER 

Dimethylsulfoxid (DMSO) Roth, GER 

Dulbecco´s Modified Eagle Medium (DMEM), 
High Glucose (4.5 g/l) 

GE Healthcare, USA 

ECL Select and ECL Prime GE Healthcare, USA 

Ethanol 96% (EtOH) Roth, GER 

Ethanolamine Sigma, GER 

Ethylenediaminetetraacetic acid (EDTA) Roth, GER 

Fc-Block (Purified Rat Anti-Mouse CD16/CD32) BD, GER 

Fetal calf serum (FCS) GE Healthcare, USA 

Glucose Roth, GER 

Glycerin Roth, GER 

Glycine Roth, GER 

Hydrochloric acid (HCl) Roth, GER 

Isopropanol Roth, GER 

Magnesiumchloride (MgCl2) Merck, GER 

Magnesiumsulfate (MgSO4) Merck, GER 

Mercaptoethanol Roth, GER 

Methanol (MeOH) Roth, GER 

Milk powder Roth, GER 

Penicillin/Streptomycin (100x) GE Healthcare, USA 

p-Nitrophenyl phosphate (pNPP) tablets Sigma, GER 

Potassiumchloride (KCl) Merck, GER 

Potassiumdihydrogenphosphate (KH2PO4) Roth, GER 

Protease-inhibitor mix Complete Roche, GER 

Proteinmarker PageRuler™ Plus Thermo Scientific, USA 

RNAse free water (Ampuwa) Fresenius Kabi Deutschland GmbH, GER 

Saccharose Roth, GER 

Sodiumchloride (NaCl) Roth, GER 

Sodiumdodecylsulfate (SDS) Roth, GER 

Tetramethylethylendiamin (TEMED) Roth, GER 

Transfectionreagent Turbofect Thermo Scientific, USA 

Tris Roth, GER 

Triton X-100 Roth, GER 

Trypsin-EDTA GE Healthcare, USA 

Trypton/Pepton from Casein Roth, GER 

http://www.diagnosia.com/de/hersteller/fresenius-kabi-deutschland-gmbh
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Tween®20 Roth, GER 

Yeast extract Roth, GER 

 

2.3 Kits 

All Kits were handled according to manufacturer´s instructions. 

Table 4. Kits 

Description Manufacturer 

DNeasy Kit Qiagen, GER 

EZ DNA Methylation™ Kit Zymo Research, GER 

Infinium Human Methylation 450k BeadChip 
Kit 

Illumina, NL 

PrimeScript RT Master Mix Takara Bio Inc., USA 

PureYield™ MidiPrep Kit Promega, USA 

QuikChange® II Site-directed Mutagenesis Stratagene, USA 

RNeasy Kit Qiagen, GER 

SYBR Select Master Mix Thermo Scientific, USA 

 

2.4 Software 

Table 5. Software 

Description Company 

Adobe Photoshop CS4 Adobe Systems, USA 

Clone Manager 9 Scientific & Educational Software, USA 

FlowJo 8.7.3 FlowJo, LLC, USA 

FluoView FV10-ASW 4 Olympus corporation, JPN 

GenomeStudio (Version2011.1, Methylation 
Analysis Module Version 1.9.0) 

Illumina, NL 

GETPrime Gubelmann et al., 2011 

GraphPad Prism 5.04 GraphPad Software Inc., USA 

Mendeley Mendeley Ltd., UK 

Microsoft Office 2010 Microsoft Corp., USA 

Primerblast Ye et al., 2012 

QuikChange® Primer Design Tool 
(http://stratagene.com/qcprimerdesign) 

Stratagene, USA 

R 3.2.2 R foundation 

RStudio 0.98.501 RStudio, Inc, USA 

StepOne Software 2.3 (qPCR) Thermo Scientific, USA 

Venny 2.0 Oliveros, 2007 
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2.5 Stimulants and inhibitors 

Table 6. Stimulants and inhibitors 

Name Description Manufacturer 

Ionomycin (IO) Ca2+-ionophore Calbiochem, GER 

Marimastat (MM) 
Broad range metalloprotease-

inhibitor 
Tocris Bioscience, UK 

Phorbol 12-myristate 13-
acetate (PMA) 

PKC-activator Sigma, GER 

 

2.6 Antibodies 

Table 7. Primary antibodies 

Antigen/type Reactivity Provider Species 
Used 

dilution/concentration 

ADAM17 h, m, r Chemicon rabbit 1:3000 (western blot) 

GAPDH h, m Santa Cruz rabbit 1:500 (western blot) 

Hemagglutinin 
(HA)-Tag 

 Sigma-Aldrich rabbit 1:1000 (western blot) 

IgG1 (Isotype 
control for K133 

ADAM17) 
 Southern Biotechnology rabbit 

10 µg/mL (flow 
cytometry) 

K133 anti-ADAM17 h, m 

Department of 
Immunology, Group 

Koch-Nolte, UKE, 
Hamburg, Germany, 

rabbit 
10 µg/mL (flow 

cytometry) 

β-Actin h, m , r Santa Cruz rabbit 1:500 (western blot) 

 

Table 8. Secondary antibodies 

Type Coupling Provider 
Used dilution 

/concentration 

α-rabbit Alexa Fluor 
488 

Fluorescence dye Life Technologies, GER 
6.6 µg/mL (flow 

cytometry) 

Goat-α-mouse IgG 
Horseradish 

peroxidase (HRP) 
Jackson 

ImmunoResearch, USA 
1:10000 (western blot) 

Goat-α-rabbit IgG 
Horseradish 

peroxidase (HRP) 
Jackson 

ImmunoResearch, USA 
1:10000 (western blot) 
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2.7 Plasmids 

Table 9. Plasmids 

Name Encoded protein Vector Provider 

ADAM17 3Q ADAM17 3Q mutant pcDNA 3.1 (Invitrogen) self generated 

ADAM17 EA Inactive ADAM17 pcDNA 3.1 (Invitrogen) 
G. Murphy (University 

of Cambridge, UK) 

ADAM17 EE ADAM17 EE mutant pcDNA 3.1 (Invitrogen) self generated 

ADAM17 WT ADAM17 wildtype pcDNA 3.1 (Invitrogen) 
G. Murphy (University 

of Cambridge, UK) 

TGF-α AP TGF-α AP pAPtag5 (GenHunter) 
C. Blobel (Hospital for 
Special Surgery, USA) 

 

2.8 Buffers 

Table 10. Buffers 

Name Recipe 

6x SDS sample buffer 

0.75 M Tris 
12% SDS 

6.54 M Glycerin 
6 mM EDTA 
120 mM DTT 

0.15% Bromphenole blue 
pH 6.8 

Alkaline phosphatase (AP) buffer 

100 mM NaCl 
100 mM Tris 

20 mM MgCl2 
pH 9.5 

Cell lysis buffer for AP-assays 
1 mM EDTA 

10 mM 1,10-Phenanthroline* 
2.5% (v/v) Triton-X-100 in H2O 

Cell lysis buffer for western blotting 

5 mM Tris 
1 mM EGTA 

250 mM Saccharose 
1% (v/v) Triton-X-100 

10 mM 1,10-Phenanthroline* 
1 x Complete protease inhibitor mix (Roche)* 

Electrophoresis buffer 

25.1 mM Tris 
192 mM Glycin 

0.1% SDS 
pH 8.8 

FACS buffer 2 mM EDTA, 1% BSA in PBS 

Phosphate-buffered saline (PBS) 
137 mM NaCl 
2.7 mM KCl 

1.8 mM KH2PO4 
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10.1 mM Na2HPO4 

Resolving gel buffer 
1.5 M Tris 
0.4% SDS 

pH 8.8 

Stacking gel buffer 
0.5 M Tris 
0.4% SDS 

pH 6.8 

TBS 
20 mM Tris 
1.17 M NaCl 
10 mM EDTA 

TBST 

20 mM Tris 
1.17 M NaCl 
10 mM EDTA 

0.1% Tween-20 

Transfer buffer 

192 mM Glycin 
25 mM Tris 
10% MeOH 

pH 8.5 

* Freshly added prior to use 

 

2.9 Functional analysis of ADAM17 

2.9.1 Cell lines 

Table 11. Cell lines 

Name Cell type Growth medium 

COS-7 
SV40 transformed cell line 

from kidney of cercopithecus 
aethiops, fibroblast cells 

DMEM + 10% FCS + Pen/Strep 
(100 U/ml) 

ADAM10/17-double deficient 
knockout murine embryonic 

fibroblasts (MEFs) 

Murine fibroblasts generated 
from knock-out mice 
(Biochemistry Kiel) 

DMEM + 10% FCS + Pen/Strep 
(100 U/ml) 

 

2.9.2 Cultivation of eukaryotic cells 

Cells were cultered at 37°C in a humidified, 5% CO2 atmosphere. Standard culture medium was 

Dulbecco´s Modified Eagle Medium (DMEM) supplemented with 10% fetal calf serum (FCS) and 

Penicillin/Streptomycin (100 U/ml). Pure DMEM was used as indicated. Culture medium was 

preheated to 37°C prior to use. The adherent COS-7 cells and ADAM10/17-double deficient 

knockout murine embryonic fibroblasts (MEFs) were grown in cell culture dishes until 90% 

confluency was reached and then either seeded into a new culture dish for further propagation or 
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seeded into cell culture plates for experiments. Before seeding, the cells were washed once with 

phosphate-buffered saline (PBS) and incubated afterwards with trypsin-EDTA until detachment. 

The proteolytic activity of trypsin was then immediately inhibited by addition of serum-containing 

medium and the cells were split into new culture dishes or culture plates in the appropriate 

density. 

 

2.9.3 Plasmid 

The ADAM17 WT plasmid, which was used as a template for the mutagenesis reactions, consists of 

the pcDNA3.1 expression vector (Invitrogen) and a 2484 bp fragment which encodes for the 

murine ADAM17. The coding sequence contains the full-length ADAM17 with the prodomain as 

well as an additional hemagglutinin (HA)-tag. This tag was added to the cytoplasmic tail of 

ADAM17 and was used to detect ADAM17 expression by immunodetection with antibodies against 

HA. The ADAM17 WT plasmid was kindly provided by Prof. Gillian Murphy (University of 

Cambridge, Cambridge, UK) and was also used for the transfection of ADAM17 WT into eukaryotic 

cells. 

 

2.9.4 Mutagenesis of ADAM17 

For mutagenesis the QuikChange® II Site-directed Mutagenesis kit was used according to the 

manufacturer’s instructions. Briefly, a polymerase chain reaction was performed with the PfuUltra 

HF DNA-polymerase, the ADAM17 WT plasmid as template and the mutagenesis primer pair 

(2.9.5). The primer pair carried mismatching bases, in regard to the target sequence, that 

introduce the intended mutation. The generated plasmids are in contrast to the template plasmid 

not methylated and are therefore protected against the subsequent performed digestion with the 

methylsensitive DpnI endonuclease. The template DNA is digested and only newly synthetized 

DNA remains. Such DNA was then circulized and amplified in E. coli XL1 blue (2.9.7), isolated 

(2.9.9) and sequenced (2.9.10). The ADAM17 EE (F652E F655E substitutions) plasmids were 

generated in one mutation reaction with ADAM17 WT plasmid as template. The ADAM17 3Q 

(D647Q E650Q D654Q substitutions) mutant was generated in two consecutive mutagenesis 

reactions, with first the D647Q E650Q substitutions followed by the D654Q substitution. See Table 

13 for a list of the generated ADAM17 mutants and their mutated sequence. 
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2.9.5 Mutagenesis primers 

The mutagenesis primer oligonucleotides that were used to introduce mutations in the ADAM17 

WT plasmid were designed with the online tool QuikChange Primer Design 

(http://stratagene.com/qcprimerdesign). The primers were then ordered from Sigma-Aldrich. The 

sequences of the mutagenesis primer pair are depicted in Table 12. 

 

Table 12. Mutagenesis primers 

Name Sequence (5’3’) 

ADAM17 EE forward gaaacgagtacaggacgtaattgagcgagagtgggatgagattgaccagctgagcatcaacacttttg 

ADAM17 EE reverse caaaagtgttgatgctcagctggtcaatctcatcccactctcgctcaattacgtcctgtactcgtttc 

ADAM17 3Q forward  
(first mutagenesis) 

caaatgtgagaaacgagtacagcaggtaattcagcgattttgggatttcattga 

ADAM17 3Q reverse  
(first mutagenesis) 

tcaatgaaatcccaaaatcgctgaattacctgctgtactcgtttctcacatttg 

ADAM17 3Q forward  
(second mutagenesis) 

ggtaattcagcgattttggcagttcattgaccagctgagca 

ADAM17 3Q reverse  
(second mutagenesis) 

tgctcagctggtcaatgaactgccaaaatcgctgaattacc 

 

Table 13. List of ADAM17 variants 

Name CANDIS sequence Substitutions 

ADAM17 wildtype (A17 WT) RVQDVIERFWDFIDQLS none 

ADAM17 EE (A17 EE) RVQDVIEREWDEIDQLS F652E F655E 

ADAM17 3Q (A17 3Q) RVQQVIQRFWQFIDQLS D647Q E650Q D654Q 

 

2.9.6 Preparation of chemical competent cells 

To generate chemical competent E. coli bacteria, XL1 blue cells were treated with CaCl2 as follows. 

Bacteria from an overnight culture were diluted 1:100 with LB medium and grown at 37°C and 200 

rpm. When the optical density (OD600) reached a value between 0.4 and 0.6, the cells were cooled 

down for 20 min on ice. Thereafter, the cells were separated in 50 ml aliquots and pelleted for 5 

min at 5000 rcf. Each pellet was resuspended in 20 ml pre-chilled tris-buffer and centrifuged again 

for 10 min at 4°C at 5000 rcf. The pellets were then resuspended in 20 ml CaCl2 solution and 

incubated for 20 min on ice. Subsequently, the cells were pelleted again and resuspended in 2 ml 

CaCl2 solution. After another 1 h incubation 500 µl glycerol was added and the cell suspension 

immediately snap-frozen in liquid nitrogen and stored in aliquots of 50 µl at -80°C until further 

use. 
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Table 14. Buffer and solutions for the preparation of chemical competent cells 

Name Recipe 

CaCl2-solution 
0.1 mM CaCl2 

5 mM Tris 
5 mM MgCl2 

LB medium 
171 mM NaCl 

10% (w/v) Trypton/Pepton 
5% (w/v) Yeast extract 

Tris buffer 
0.1 mM NaCl 

5 mM Tris 
5 mM MgCl2 

 

2.9.7 Transformation of chemical competent bacteria 

To transform bacteria with plasmids, 50 µl of chemical competent E. coli XL1 blue were thawed on 

ice and mixed with 1 µl of the respective plasmid. The mixture was incubated for 45 min on ice. 

The cells were heat shocked by warming them rapidly to 42°C for exactly 40 s. The cells were then 

immediately cooled down on ice for 5 min and mixed with 300 µl SOC medium. An incubation for 1 

h at 37°C and shaking at 200 rpm followed. The bacteria suspension was plated onto LB-plates 

containing ampicillin as selection marker. The plates were incubated at 37°C overnight. Single 

colonies were picked with a sterile pipette tip and incubated in 5 ml LB-medium containing 

ampicillin for 6 h. Subsequently, the medium was used for preparation of glycerol stocks. 

 

Table 15. Medium and solutions for the transformation of bacteria 

Name Recipe 

LB-plates 

171 mM NaCl 
1% (w/v) Trypton/Pepton 

0.5% (w/v) Yeast extract 

1.5% (w/v) Agar Agar 

0.1 mg/ml Ampicillin 

SOC medium 

0.5% (w/v) Yeast extract 

2.0% (w/v) Trypton 

10 mM NaCl 
2.5 mM KCl 

10 mM MgCl2 

10 mM MgSO4 

20 mM Glucose 
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2.9.8 Preparation of bacterial glycerol stocks 

Glycerol stocks of all transformed bacteria were prepared for long storage and easy plasmid 

preparation. 850 µl of bacteria culture were mixed with 150 µl sterile glycerol, vortexed and snap-

frozen in liquid nitrogen. They were afterwards stored at -80°C. 

 

2.9.9 Isolation of plasmid DNA from E.coli 

To amplify and isolate plasmids from transformed bacteria, 200 ml LB medium containing 

ampicillin, as selection marker, was inoculated with bacteria from glycerol stocks. This bacteria 

culture was incubated overnight at 37°C and 200 rpm. The plasmids were isolated with the 

PureYield™ MidiPrep kit (Promega) according to the manufacturer´s instructions and analyzed with 

Nanodrop for purity and quantity.  

 

2.9.10 DNA sequencing 

The successful mutation of ADAM17 was verified by commercial DNA sequencing (Seqlab). 

Therefor, 650 ng plasmid-DNA was mixed with 20 pmol of the sequencing primer Se-

qpcDNA3.1BGHrev (5´-CTAGAAGGCACAGTCGAG-3´) in a volume of 7 µl and sent to Seqlab. The 

obtained results were then aligned with the wildtype sequence in CloneManager and verified for 

successful mutation.  

 

2.9.11 Transient transfection of eukaryotic cells 

Different variants of ADAM17 proteins were overexpressed in COS-7 cells and MEFs. This was 

achieved by transient transfection of plasmids encoding for these proteins. The plasmids were 

delivered through lipofection into the cells. In single transfections 0.5 µg plasmid and 1 µl 

Turbofect were added to 100 µl serum-free medium in a reaction tube. The tube was inverted a 

few times and incubated at room temperature for 20 min to form the DNA-lipid complexes. For 

double-transfections 0.5 µg of each plasmid was added to the serum-free media and 1.5 µl of 

Turbofect. The medium in the 12-well plate was replaced with 500 µl fresh serum-free medium. 

The transfection mix was then added dropwise to the wells. The cells were transfected at 60-80% 

confluency for 6 h. After the incubation, medium was exchanged with 1 ml of complete growth 

medium. 24 h after transfection, the cells were used for further experiments such as AP-assays.  
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2.9.12 Stimulation, cell lysis and collection of supernatants 

Cell culture experiments for analyzing the ADAM17-mediated shedding using alkaline phosphatase 

(2.9.17) were conducted as follows. 24 h after transfection (see 2.9.11), cells were incubated for 1 

h with fresh medium without serum. Thereafter, medium was renewed with serum-free medium 

and cells were treated or not treated with phorbol 12-myristate 13-acetate (PMA, 200 ng/mL) for 

2 h or ionomycin (Iono, 1 µM) for 30 min. Marimastat was added 15 min before the stimulation 

started as indicated. For all stimulants, corresponding carrier controls with the solvent of the 

stimulant were carried along to exclude effects of the solvent on the cells. The medium was 

removed after the indicated stimulation time and centrifuged at 12.000 rcf at 4°C for 5 min to 

remove cell debris. Thereafter, supernatant was immediately used for AP-assays. To lyse the cells, 

different lysis buffers were used for western blotting and AP-assays (see Table 10). Cell lysis was 

performed on ice or at 4°C. For western blotting, cells were lysed by adding 150 µl ice-cooled lysis 

buffer and freezing and thawing them three times. The lysis solution was transferred to Eppendorf 

reaction tubes and incubated on ice. Every 10 min the solution was vortexed. After 30 min of 

incubation the lysis solution was cleared from cell debris by centrifugation at 12.000 rcf at 4°C for 

5 min. The supernatants containing the proteins were immediately used for further analysis or 

stored at -20°C until use. For AP-assays the cells were lysed by adding 300 µl ice-cooled lysis buffer 

to each well and the plates were slowly rocked at 4°C for 30 min. The lysis solution was transferred 

to Eppendorf tubes and incubated for further 30 min on ice and vortexed every 10 min. Finally, the 

solution was cleared by centrifugation at 12.000 rcf at 4° C for 5 min. The solution was then 

directly used for the AP-assay. 

 

2.9.13 Protein concentration determination using Bradford assay 

Bradford protein concentration assay was used to determine the protein concentration in lysed 

cell solutions (Bradford, 1976). Therefor, 1 µl of the cell lysate was added to 200 µl of a ready-to-

use Coomassie Plus solution. As blank control, 1 µl of lysis buffer without cells was used. The 

extinction was measured at 595 nm in a plate reader. Protein concentrations were calculated by 

interpolating with a bovine serum albumin (BSA) standard curve. 
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2.9.14 Protein separation by sodium dodecyl sulfate polyacrylamide gel electrophoresis 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to separate 

proteins according to their size. Therefor, 50 µg of proteins per sample were first denaturated and 

linearized by boiling them in 1x SDS sample buffer for 5 min at 95°C. Thereafter, the denatured 

proteins were loaded onto a gel together with an extra lane containing the size marker PageRuler 

Plus. The proteins were focused in the stacking gel (4.5% polyacrylamide) for 30 min at 75 V and 

then separated in the resolving gel (7.5% polyacrylamide) at 90 V until good separation was 

achieved (see Table 16).  

 

Table 16. Polyacrylamide gel recipe 

Name Recipe 

Stacking gel (4.5%) 

2.90 ml H2O 
1.25 ml stacking gel buffer 

0.835 ml acrylamide 
30 µl APS 

15 µl TEMED 

Resolving gel (7.5%) 

5.03 ml H2O 
2.50 ml resolving gel buffer 

2.33 ml acrylamide 
60 µl APS 

30 µl TEMED 

 

2.9.15 Western blotting 

After separation by SDS-PAGE, the proteins were transferred electrophoretically from the gel to a 

polyvenylidene fluoride (PVDF) membrane by tank blotting. The negatively charged proteins in the 

acrylamide gel were transferred to the MeOH-activated PVDF membrane in the Peqlab tankblotter 

at 80 mA for 12-16 h. 

 

2.9.16 Immunodetection of transferred proteins 

After protein transfer, the free protein binding sites on the membrane were saturated by 

incubating the membrane at room temperature for 1 h in tris-buffered saline with tween (TBST) 

and with 5% milk powder. Thereafter, the membrane was incubated with the primary antibody in 

TBST with 5% milk powder in the indicated dilution (see Table 7) at room temperature for 1 h in a 

tube rotator. Excess primary antibody was subsequently removed by washing the membrane 
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three times for 10 min with TBST. The secondary antibody was then incubated for 1 h in TBST in 

the indicated dilution (see Table 8). Unbound antibody was washed away three times for 10 min 

with TBST. The antibody-labeled proteins were detected with peroxidase substrate ECL Select or 

ECL Prime and the emitted light was detected with the Fusion FX7 detection system. 

 

2.9.17 Shedding experiments with alkaline phosphatase-coupled substrates (AP-assays) 

The shedding activity of ADAM17 variants was determined with an alkaline phosphatase (AP)-

tagged TGF-α substrate (TGF-α AP). The TGF-α AP carries an alkaline phosphatase at its 

extracellular domain which is released in the supernatant after ADAM17-mediated cleavage. This 

substrate was transfected into eukaryotic cells as described in 2.9.11 and supernatants and lysates 

were collected as described in 2.9.12. The activity of the AP was determined by the hydrolysis of 

the colorless AP substrate p-nitrophenylphosphat (p-NPP) to the yellow p-nitrophenol (p-NP). 

Therefor, 100 µl of the supernatant was mixed with 100 µl of AP-substrate solution (p-NPP, 

2mg/ml in AP buffer) in triplicates in a 96-well plate. 10 µl of the lysates were diluted 1:10 in AP 

buffer in triplicates and 100 µl of AP-substrate solution was added. The plates were incubated at 

37°C and the extinction was measured repeatedly at 405 nm in a plate reader until the highest 

value was close to 1. The ratio between the AP-activity in the supernatant to the AP-activity in the 

cell lysates is directly related to the relative quantity of shed ADAM17-substrates. To calculate the 

relative TGF-α AP activity of ADAM17, the ratio of the AP activity in the supernatant compared to 

the total TGF-α AP activity of supernatant and cell lysates was determined, base-line corrected 

with the ADAM17 E/A control and then normalized to the stimulated ADAM17 WT. 

 

2.9.18 Cleavage experiments with a soluble fluorogenic ADAM substrate 

To measure proteolytic activity of ADAM17 proteins, COS-7 cells were transfected in 24 well plates 

with 0.25 µg of the respective ADAM17 plasmid and 0.5 µl Turbofect (analog to 2.9.11). 24 h after 

transfection, medium was replaced with serum-free medium supplemented with 5 µM fluorogenic 

ADAM substrate (Enzo Life Sciences) and the cells were incubated for 6 h at 37°C and 5% CO2 in a 

humidified atmosphere. Fluorescence in the supernatant was determined at 485 nm excitation 

and 530 nm emission reflecting proteolysis of the fluorogenic ADAM substrate. 
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2.9.19 Flow cytometric analysis of ADAM17 surface expression 

For analyzing the surface expression of the ADAM17 proteins, MEFs were transfected with the 

respective plasmid and 24 h later harvested with Accutase. To block unspecific binding sites, the 

cells were first incubated with 3% BSA in PBS and afterwards in FACS buffer with Fc-Block (1 µg per 

1*106 cells). Thereafter, cells were either not stained, or stained with K133 anti-ADAM17 antibody 

or rabbit IgG1 antibodies as isotype control for 1 h at 4°C. The cells were washed and incubated for 

1 h with 6.6 µg/mL anti-rabbit Alexa Fluor 488 detection antibody, washed again and analyzed by 

flow cytometry in FACS buffer with the BD Fortessa flow cytometer. The flow cytometry data were 

analyzed by using the FlowJo software.  

 

2.9.20 Statistical analysis 

Statistics were generated using one-way analysis of variance (one-way ANOVA) and Bonferroni 

multiple comparison post-hoc test for the shedding assays. The methylation data were tested with 

Mann-Whitney-U test corrected for multiple testing with the Benjamini-Hochberg method. The 

RNA data were tested with paired t-test. All tests were carried out with either R or Graphpad 

Prism. P values < 0.05 were considered statistically significant. The different significance niveaus 

were defined as * P < 0.05, ** P < 0.01, *** P < 0.001 and **** P < 0.0001.  

2.10 Epigenetic investigations 

2.10.1 Colorectal cancer patient samples 

The patient samples used for the investigation of methylation alterations in colorectal cancer 

originated from the national genome research project integrated genomic investigation of 

colorectal carcinoma. Prof. Dr. med. Jochen Hampe (Klinik für Innere Medizin I, Christian-

Albrechts-Universität, Kiel, Germany) and Prof. Dr. med. Clemens Schafmayer (Klinik für 

Allgemeine Chirurgie, Viszeral-, Thorax-, Transplantations- und Kinderchirurgie, Christian-

Albrechts-Universität, Kiel, Germany) kindly provided the DNA samples. Julia Kolarova (Institute of 

Human Genetics, Christian-Albrechts University, Kiel, Germany) conducted the methylation assay. 

All patient samples originated from patients suffering from colorectal carcinoma (CRC). During 

surgery tumor tissue and adjacent peri-tumoral non-malignant tissue were resected. The peri-

tumoral non-malignant tissue was used as a control and was treated the same as the tumor tissue. 

All tissue samples originated from various colon locations. In total, samples from 119 patients 
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were derived (n=117 (ctrl), n=119 (cancer)). After resection, the tumor tissue and control tissue 

were investigated by a trained pathologist. Genomic DNA extraction was done using DNeasy kit 

(Qiagen, GER). All patients declared written consent. 

2.10.2 Lung cancer patient samples 

Matched tissue samples (tumor-free lung and tumor) were obtained from patients undergoing 

pneumectomy or lobectomy at the LungenClinic Grosshansdorf (n=40) in the course of surgical 

treatment of previously diagnosed lung cancer. Tissues for cryo-fixation were immediately frozen 

in liquid nitrogen and kept at -80°C until further use. DNA methylation analysis was performed 

using the Infinium Human Methylation 450k BeadChip Kit. The generated methylation data was 

kindly provided by Prof. Dr. rer. nat. Ole Ammerpohl and Prof. Dr. med. Reiner Siebert for further 

analysis (Institute of Human Genetics, Christian-Albrechts University, Kiel, Germany). 

 

2.10.3 Oral squamous-cell carcinoma and oral lichen planus samples 

Methylation data of ADAM/TS genes from patients suffering from oral lichen planus and/or oral 

squamous-cell carcinoma were kindly provided by Prof. Dr. rer. nat. Ole Ammerpohl and Prof. Dr. 

med. Reiner Siebert (Institute of Human Genetics, Christian-Albrechts University, Kiel, Germany) 

for further analysis. The sample collection was under supervision of Dr. Dr. Volker Gassling (Klinik 

für Mund-, Kiefer- und Gesichtschirurgie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany). 

As control samples non-inflamed tissue from the same patient was collected. DNA methylation 

analysis was performed using the Infinium Human Methylation 450k BeadChip Kit. 

 

2.10.4 Non-alcoholic Steatohepatitis (NASH) and Non-alcoholic fatty liver disease (NAFLD) 

patient samples 

Liver samples were collected from patients undergoing liverbiopsy for suspected NAFLD. Control 

samples were obtained from patients undergoing major oncological surgery for exclusion of liver 

malignancy. None of the normal control individuals underwent preoperative chemotherapy and 

liverhistology demonstrated absence of both cirrhosis and malignancy (nctrl=19, nNAFLD=18, 

nNASH=16). All patients provided written, informed consent. The study cohort was published in 

Ahrens et al., 2013. DNA methylation analysis was performed using the Infinium Human 

Methylation 450k BeadChip Kit. 
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2.10.5 Bisulfite conversion and methylation analysis 

The DNA samples were bisulfite converted with the EZ DNA Methylation™ and afterwards 

measured for DNA methylation with the Infinium Human Methylation 450k BeadChip Kit. This was 

conducted by Julia Kolarova (Institute of Human Genetics, Christian-Albrechts University, Kiel, 

Germany) according to the manufacturer’s protocol in case of the colorectal cancer samples. The 

measurement was done with the iScan methylation array scanner. The generated IDAT files were 

further processed with the Genomestudio Software to derive the β-values. Methylation levels in 

Illumina Methylation assays are quantified using the ratio of intensities between methylated and 

unmethylated alleles. The β-values are continuous and range from 0 (unmethylated) to 1 

(completely methylated) (Kuan et al., 2010).  

 

2.10.6 Acquisition and analysis of data from The Cancer Genome Atlas project 

The Cancer Genome Atlas (TCGA) project is an extensive, worldwide and multi-laboratory project 

to study and characterize genetics and epigenetics of various cancers. Methylation data of Colon 

adenocarcinoma & Rectum adenocarcinoma (COADREAD, n=44 (ctrl), n=384 (canc)) from the TCGA 

data portal were downloaded (https://tcga-data.nci.nih.gov) and further analyzed. Additionally, 

mRNA data for the same cohort was downloaded and further analyzed (n=22 (ctrl), n=224 (canc)). 

The gene expression profile was measured experimentally using Agilent 244K custom gene 

expression G4502A_07_3 microarrays by the University of North Carolina TCGA genomic 

characterization center. The data were gene-level normalized by independently subtracting the 

mean of the genomic location. 

 

2.10.7 Real-time RT-qPCR analysis 

RNA samples were kindly provided by Dr. rer. nat. Christian Röder and Prof. Dr. rer. nat. Holger 

Kalthoff (Institute for Experimental Cancer Research, University Hospital Kiel, Germany) and were 

derived from the same colorectal cancer patients as the DNA for methylation analysis. 0.5 µg RNA 

from tumor tissue and control tissue were reverse transcribed with PrimeScript RT Master Mix 

according to the manufacturer’s manual. Thereafter, the cDNA was diluted with RNAse-free water 

1:5 yielding cDNA with a theoretical concentration of 10 ng/µl. A control without RNA was treated 

the same and used as RNA-negative control in the qPCR. For the real-time RT-qPCR reaction, 5 µl 

5X SYBR Green/Rox Select Master Mix, 1 µl cDNA in H2O (10 ng), 1 µl primer pair (0.25 µM end 
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concentration of each) and 3 µl RNAse-free water were mixed in a MicroAMP Fast 96-well 

Reaction Plate. Additionally, a non template control was carried along to exclude primer dimers or 

unspecific amplifications. The qPCR was carried out in a StepOnePlus Real-Time PCR System. The 

qPCR protocol was performed as follows: Activation 2 min at 95°C, 40 cycles (denaturation 2 s at 

95°C, annealing 30 s at the primer-specific temperature, amplification 30 s at 72°C). After the 

amplification, melting curves were recorded to ensure that only one amplicon species was 

generated. On a random basis, the amplicons were as an additional control analyzed by agarose 

gel electrophoreses and compared with the expected size of the amplicon. During establishment 

of the assay, three different house-keeping genes were tested: hypoxanthine-guanine 

phosphoribosyltransferase (HPRT), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and β-2-

microglobulin (B2M). All house-keeping genes showed similar expression profiles. Following the 

guidelines in de Kok et al., 2005, HPRT was chosen as reference gene for all further qPCR analyses. 

All samples were measured in duplicates. In case that ct values differed between duplicates more 

than or equal to 0.5, the measurement was repeated minimum once and the average was used. 

The data was analyzed using the ∆∆ct-method (2-∆∆ct) or ∆ct-method (2-∆ct) according to Yuan et al., 

2006, with HPRT as reference gene. The intron-spanning primer for human ADAMTS16 were 

generated with GETPrime (Gubelmann et al., 2011) and validated with Primerblast (Ye et al., 

2012). Primer sequences are shown in Table 17. Moreover, in all samples the mRNA expression of 

the cancer marker SURVIVIN/BIRC5 was measured. In 86.49% of the samples a higher expression 

of BIRC5 was detected in the cancer sample. The intron-spanning primer from SURVIVIN were 

taken from Shen et al., 2008. 

 

Table 17. qPCR primers 

Name Sequence (5’3’) Amplicon size (bp) 
Annealing 

temperature 

ADAMTS16 forward TGTGTAACGGGAATAACTCAG 
81 60°C 

ADAMTS16 reverse TGTGATAATACTGGTTGGTGTG 

HPRT forward TTGCTGACCTGCTGGATTAC 
113 60°C 

HPRT reverse CCCTGTTGACTGGTCATTAC 

SURVIVIN forward AGAACTGGCCCTTCTTGGAGG 
170 60°C 

SURVIVIN reverse CTTTTTATGTTCCTCTATGGGGTC 
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2.10.8 Data analysis and statistics 

The generated β-values of the patient samples (methylation data) were further statistically 

analyzed with the script language R, Graphpad Prism and Excel. CpGs were defined as differentially 

methylated if the difference of the mean β-values (∆βmean) was larger than 0.2 (|∆βmean| ≥ 0.2) 

compared to the control and significant after Mann-Whitney-U testing with multiple testing 

correction (P < 0.05). CpGs which did not meet these criteria, but showed an methylation 

difference 0.1 ≤|∆βmean| < 0.2 (P < 0.05) were defined as intermediate methylated. For further 

details about the statistics see 2.9.20.  
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3 Results 

3.1 Mutations in the hydrophobic part, but not in the hydrophilic part of the 

alpha-helical CANDIS region abolish transmembrane sheddase activity of 

ADAM17  

3.1.1 A two amino acid substitution in the hydrophobic part of the alpha-helical CANDIS region 

of ADAM17 abolishes TGF-α shedding in vitro 

Recently, an evolutionary conserved sequence in the ADAM17 protease, located between the 

transmembrane domain and the membrane-proximal domain, was characterized and named 

Conserved ADAM seventeeN Dynamic Interaction Sequence (CANDIS). It was shown that this 

juxtamembrane segment can bind some ADAM17 substrates such as IL-6R, but not others such as 

TNF-α (Düsterhöft et al., 2014). The corresponding peptide shows an alpha helical-conformation 

(Düsterhöft et al., 2014) with an amphipathic character (Figure 4). The hydrophobic face of 

CANDIS is able to interact with lipid bilayers (Düsterhöft et al., 2015) implying that an interaction 

between the CANDIS region and the cell membrane could have physiological relevance for the 

shedding activity of ADAM17. Moreover, mutated CANDIS peptides with mutations in the 

hydrophobic face have shown impaired lipid binding e.g., CANDIS with F652E F655E substitutions 

(Düsterhöft et al., 2015). These findings led to the question whether disruption of the lipid binding 

ability in the full-length ADAM17 would affect ADAM17-mediated substrate release. Therefore, I 

generated an ADAM17 mutant carrying the same mutations as the isolated CANDIS peptide. Two 

highly hydrophobic phenylalanines in the CANDIS region were exchanged with two negatively 

charged glutamic acid residues. These mutations destroyed the hydrophobic face (FLVLFVII) of 

CANDIS (Figure 5) and the lipid binding ability of the CANDIS peptide, as evidenced by fluorescence 

and circular dichroism spectroscopy analyses (Düsterhöft et al., 2015). The effect of these 

mutations on ADAM17 shedding activity was investigated. Two phenylalanines were substituted 

with two glutamic acid residues (E) and the mutant was named ADAM17 EE. 
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Figure 4. The Conserved ADAM seventeeN Dynamic Interaction Sequence (CANDIS) in ADAM17 forms an 
amphipathic alpha helix. (left) ADAM17 consists of several functional domains: metalloprotease domain 
(MP), disintegrin domain (DIS), membrane-proximal domain (MPD), transmembrane domain (TMD) and the 
cytosolic tail (CYT). Additionally, an evolutionary conserved short region in ADAM17 between the MPD and 
TMD was defined: CANDIS. (right) CANDIS forms an amphipathic alpha helix, with the hydrophobic face 
consisting of the amino acids FVLFVII. The alpha-helical wheel prediction and depiction was done with 
HeliQuest (Gautier et al., 2008). Lysine (K) in the helix projection is not part of the defined CANDIS region 
but was included in the helix prediction since it contributes to the hydrophilic face of CANDIS. 

 

Figure 5. Two ADAM17 mutants with altered amino acid sequence in the CANDIS region were generated. 
Two phenylalanines were substituted with glutamic acids (F652E F655E) in the ADAM17 EE mutant. As 
depicted in the helix wheel projection, the hydrophobic face (FVLFVII) of the wildtype (left scheme) is 
destroyed in the EE mutant (middle scheme). Additionally, ADAM17 was altered in the hydrophilic face of 
the CANDIS region through substitution of three negatively charged amino acids with non-charged 
glutamines, thus retaining the hydrophobic face (right scheme). The helix wheel projection and calculation 
was done with HeliQuest (Gautier et al., 2008). Lysine (K) in the helix projection is not part of the defined 
CANDIS region but was included in the helix prediction since it contributes to the hydrophilic face of 
CANDIS.  
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The generated mutant ADAM17 EE (A17 EE), the ADAM17 wildtype (A17 WT) and the inactive 

ADAM17 E/A (A17 E/A) variant were retransfected in ADAM10/ADAM17-double-deficient murine 

embryonic fibroblasts (MEFs), together with an alkaline phosphatase (AP)-tagged TGF-α as 

substrate. The AP-tag permits the measurement of the ADAM17-mediated TGF-α substrate 

shedding (TGF-α shedding activity). The retransfected cells were stimulated for 2 h with PMA 

(Figure 6A) or 30 min with ionomycin (Figure 6B), and TGF-α shedding activity was measured 

subsequently. The shedding activity of the inactive A17 E/A mutant was subtracted from the 

measured activities as baseline correction. The A17 WT showed constitutive TGF-α shedding 

activity that was significantly increased by the ADAM17 stimuli PMA and ionomycin. In contrast, 

the A17 EE mutant shedding activity was completely abolished and did not increase after PMA or 

ionomycin treatment.  

 

A       B 

 

Figure 6. Two substitutions in the hydrophobic face of CANDIS completely abolish the ability of ADAM17 
to shed the transmembrane substrate TGF-α. ADAM10/17-double-deficient mouse embryonic fibroblasts 
(MEFs) were retransfected with inactive ADAM17 E/A variant as control, murine ADAM17 wildtype (A17 
WT) or the ADAM17 EE (A17 EE) mutant and plasmids containing alkaline phosphatase coupled TGF-α (TGF-
α AP). 24 h after transfection, MEFs were treated or not treated with phorbol 12-myristate 13-acetate 
(PMA, 200 ng/ml) for 2 h (A) or ionomycin (Iono, 1 µM) for 30 min (B). Afterwards the ADAM17-mediated 
TGF-α shedding activity was determined. Retransfection of A17 WT rescued constitutive and stimulated 
TGF-α release. In contrast, retransfection of A17 EE did not rescue constitutive and stimulated TGF-α 
shedding. Data represent the means +SEM (standard error of mean) of three independent experiments 
(n=3) and were tested by one-way analysis of variance (one-way ANOVA) with Bonferroni multiple 
comparison post hoc test (* P < 0.05).  
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3.1.1.1 The ADAM17 EE mutant is transported to the cell surface and similarly expressed as the 

wildtype ADAM17 

The protein expression of the ADAM17 variants was analyzed by western blotting in parallel to the 

TGF-α release assays. These analyses were conducted to exclude that differences in ADAM17 

protein expression caused the observed differences in ADAM17-mediated TGF-α shedding. The 

western blot analyses showed that ADAM17 protein expression of all ADAM17 variants was similar 

(Figure 7A). Mutations in ADAM17 could potentially also lead to an altered transport of the 

protease to the cell surface, thus influencing the shedding activity. Despite that possibility, 

transfected A17 WT and A17 EE are similarly expressed on the cell surface of MEFs as revealed by 

flow cytometric analysis (Figure 7B). 

 

A            B 

 

Figure 7. The ADAM17 EE mutant shows similar protein expression as the wildtype ADAM17 and is 
expressed on the cell surface. (A) Representative western blot analysis of ADAM10/17-deficient mouse 
embryonic fibroblasts (MEFs) lysates 24 h after transfection with ADAM17 wildtype (A17 WT) or ADAM17 
EE (A17 EE) and TGF-α AP plasmids. The blot was stained with anti-ADAM17 antibody (α-ADAM17) and, as 
loading control, with anti-GAPDH antibody (α-GAPDH). The A17 EE mutant showed similar ADAM17 
expression levels as the wildtype. (B) Flow cytometric analysis of MEFs transfected with A17 WT and A17 EE 
mutant showed similar expression levels on the cell surface. untr=untransfected.  
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3.1.1.2 The ADAM17 EE mutant is still able to cleave soluble ADAM17 substrate 

To investigate whether the EE mutations interfere with the proteolytic activity of the catalytic 

center of ADAM17, a fluorogenic peptide cleavage assay was performed. Overexpression of the EE 

mutant and the A17 WT in COS-7 cells lead to a comparable increase in fluorescence (Figure 8). 

 

 

Figure 8. The ADAM17 EE mutant is able to cleave a soluble fluorogenic ADAM peptide substrate despite 
its abrogated TGF-α shedding activity. COS-7 cells were transfected with murine ADAM17 wildtype (A17 
WT) or ADAM17 EE (A17 EE) mutant or proteolytically inactive ADAM17 E/A variant (mock) as control. 24 h 
after transfection, the cells were cultured in fresh medium with fluorogenic ADAM substrate peptide (5 
µM). After 6 hours fluorescence was measured in the supernatants. Overexpression of the EE mutant in 
COS-7 cells lead to comparable increase in fluorescence as the wildtype did. Shown are the light units (l.u.) 
measured. Data represent the means +SEM (standard error of mean) of three independent experiments 
(n=3) and were tested by one-way analysis of variance (one-way ANOVA) with Bonferroni multiple 
comparison post hoc test (** P < 0.01). ns=non-significant. 

 

3.1.2 Amino acid substitutions in the hydrophilic part of the alpha-helical CANDIS region of 

ADAM17 do not interfere with TGF-α shedding 

The EE mutation in the hydrophobic site completely abolished the ADAM17 shedding activity. To 

answer the question, if also alterations in the hydrophilic face of the CANDIS region would have an 

effect on the shedding activity, another mutant was generated. Three negatively charged amino 

acids in the hydrophilic face of the CANDIS region were substituted with non-charged, but still 

polar amino acids (Figure 5). The generated ADAM17 3Q mutant was tested for its TGF-α shedding 

activity analog to the A17 EE mutant (Figure 9A-B). 

There was no significant difference detected between the wildtype ADAM17 and the 3Q mutant 

regarding the TGF-α shedding activity and the response to PMA (Figure 9A) and ionomycin (Figure 

9B). The mutant was similarly expressed as the wildtype ADAM17 as confirmed by western blot 

analyses and flow cytometric analysis (Figure 10A-B).  
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A       B 

 

Figure 9. Substitutions in the hydrophilic face of CANDIS do not interfere with the ability of ADAM17 to 
shed the transmembrane substrate TGF-α. ADAM10/17-double-deficient mouse embryonic fibroblasts 
(MEFs) were retransfected with the inactive ADAM17 E/A variant as control, the murine ADAM17 wildtype 
(A17 WT) or the ADAM17 3Q mutant (A17 3Q) and plasmids containing alkaline phosphatase coupled TGF-α 
(TGF-α AP). 24 h after transfection, MEFs were treated or not treated with phorbol 12-myristate 13-acetate 
(PMA, 200 ng/ml) for 2 h (A) or ionomycin (Iono, 1 µM) for 30 min (B). Afterwards the ADAM17-mediated 
TGF-α shedding activity was determined. The TGF-α release was not significantly altered in the cells 
retransfected with A17 3Q compared to the cells retransfected with wildtype ADAM17. Data represent the 
means +SEM (standard error of mean) of three independent experiments (n=3) and were tested by one-
way analysis of variance (one-way ANOVA) with Bonferroni multiple comparison post hoc test (* P < 0.05). 
AP=alkaline phosphatase; ns=non-significant. 

 

A                B 

 

Figure 10. The ADAM17 3Q mutant shows similar protein expression as the wildtype A17.  
(A) Representative western blot analysis of ADAM10/17-double-deficient mouse embryonic fibroblasts 
(MEFs) lysates 24 h after transfection with ADAM17 wildtype (A17 WT) or ADAM17 3Q mutant (A17 3Q) 
and TGF-α AP plasmids. The blot was stained with anti-HA tag antibody (α-HA tag) and, as loading control, 
with anti-GAPDH antibody (α-GAPDH). The A17 3Q mutant showed similar expression levels of ADAM17 as 
the wildtype. (B) Flow cytometric analysis of MEFs transfected with A17 WT and A17 3Q mutant showed 
similar expression levels on the cell surface. untr=untransfected.  
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3.1.3 Exchange of the CANDIS region in ADAM17 with the corresponding segment of ADAM10 

reduces ADAM17-mediated TGF-α shedding 

ADAM10 comprises a corresponding region to the ADAM17 CANDIS segment which is highly 

conserved among diverse species. However, this region has no sequence similarity to the ADAM17 

CANDIS sequence. Furthermore, the corresponding peptide of that ADAM10 region shows less 

alpha-helical character (Düsterhöft et al., 2014). To investigate whether this region of ADAM10 

could functionally substitute the CANDIS region of ADAM17, an ADAM17 chimera was tested for 

its TGF-α shedding activity. This chimera consisted of ADAM17 with CANDIS substituted by the 

corresponding amino acids of ADAM10 and was named ADAM17p10. 

The chimera showed about 50% reduction of PMA-stimulated TGF-α shedding activity compared 

to the wildtype. The shedding was significantly increased compared to the background activity. 

The PMA-induction could be inhibited by the matrix metalloprotease inhibitor marimastat (MM) in 

both cases (Figure 11). The mutant was similarly expressed as the wildtype ADAM17 confirmed by 

western blotting and flow cytometric analyses (Figure 12A-B). 

 

Figure 11. Exchange of the CANDIS region in ADAM17 with the corresponding region of ADAM10 
(ADAM17p10) reduces ADAM17-mediated TGF-α shedding. ADAM10/17-double-deficient mouse 
embryonic fibroblasts (MEFs) were transfected with the inactive ADAM17 E/A variant (control), the murine 
ADAM17 WT (A17 WT), the ADAM17 chimera (A17p10) or the ADAM17 EE (A17 EE) mutant and plasmids 
containing alkaline phosphatase coupled TGF-α (TGF-α AP). 24 h after transfection, MEFs were treated with 
phorbol 12-myristate 13-acetate (PMA, 200 ng/ml) for 2 h. The metalloprotease inhibitor marimastat (MM) 
was used to block protease activity. Afterwards, the ADAM17-mediated TGF-α shedding activity was 
determined. The PMA-stimulated TGF-α shedding of the A17p10 chimera was significantly reduced 
compared to the A17 WT, but still significantly higher compared to the A17 EE mutant. Data represent the 
means +SEM (standard error of mean) of three independent experiments (n=3) and were tested by one-
way analysis of variance (one-way ANOVA) with Bonferroni multiple comparison post hoc test (**** P < 
0.0001).  
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A              B 

 

Figure 12. ADAM17p10 shows similar protein expression as the wildtype and the ADAM17 EE mutant.  
(A) Representative western blot analysis of ADAM10/17-double-deficient mouse embryonic fibroblasts 
(MEFs) lysates 24 h after transfection with ADAM17 wildtype (A17 WT), ADAM17 (A17 EE), ADAM17p10 
(A17p10) or the empty vector (pcDNA) and TGF-α AP plasmids. The blot was stained with anti-HA tag 
antibody (α-HA tag) and, as a loading control, with anti-Actin antibody (α-Actin). All three ADAM17 variants 
showed similar expression levels of ADAM17. (B) Flow cytometric analysis of MEFs transfected with A17 WT 
and A17p10 chimera showed similar expression levels on the cell surface. 
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3.2 Epigenetic regulation of ADAM and ADAMTS genes 

The posttranslational regulation of ADAM-related proteases, especially the ADAM family itself, is 

currently intensively investigated and was also under the scope of the first part of this thesis. 

Surprisingly, regulation mechanisms such as epigenetic modifications are poorly investigated. To 

delineate the role of epigenetic regulation mechanisms of ADAM and ADAMTS proteases in 

various inflammatory diseases and cancerous diseases, the methylation pattern of patients 

suffering from these diseases were investigated. In first analyses the methylation status of 1145 

CpGs in 51 ADAM and ADAMTS genes was measured with the HumanMethylation450 BeadChip 

Array in tissue samples from patients suffering from the inflammatory diseases Non-alcoholic fatty 

liver disease, Non-alcoholic Steatohepatitis and oral lichen planus. In further studies, the 

investigated diseases were expanded to cancerous diseases. In all conducted analyses, only the 

methylation of CpGs in genes which are related to ADAM and ADAMTS were included. CpGs were 

defined as differentially methylated if the difference of the mean β-values (∆βmean) was larger than 

0.2 (|∆βmean| ≥ 0.2) compared to the control and significant after Mann-Whitney-U testing with 

multiple testing correction (P < 0.05). 

 

3.2.1 ADAM/TS genes show no epigenetic methylation alterations in the preinflammatory 

disease Non-alcoholic fatty liver disease and the inflammatory disease Non-alcoholic 

Steatohepatitis 

Non-alcoholic fatty liver disease (NAFLD) is a form of fatty liver disease, in which abnormal lipid 

accumulation in the liver takes place due to causes other than excessive alcohol abuse. DNA of 

liver samples from control (ctrl) and NAFLD-patients was extracted and the CpG methylation was 

measured (nctrl=19, nNAFLD=18). The methylation data were filtered for ADAM and ADAMTS genes. 

All measured CpGs in these proteases showed no significant differences greater than 10% in the 

mean methylation status (mean β-values) of control and NAFLD-samples. 

Since no relevant changes in NAFLD were observed, DNA of patients suffering from the more 

severe inflammatory form, Non-alcoholic Steatohepatitis (NASH), was investigated for methylation 

changes (nctrl=19, nNASH=16). Similarly to NAFLD, differences in the mean methylation between 

control tissue and the tissue from NASH patients were, with one exception, smaller than 10%. The 

CpG cg04815959 in the ADAM19 gene showed a mean methylation difference higher than 0.1. The 

∆βmean of cg04815959 in ADAM19 was 0.12, reflecting 12% more methylation in the tissue from 

patients suffering from NASH than in the control tissue in this CpG. 
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3.2.2 ADAM/TS genes show moderate methylation alterations in the precancerous disease 

oral lichen planus 

The investigated inflammatory diseases showed no differentially methylated CpG-dinucleotides in 

ADAM/TS genes. Since inflammation is one of the two “enabling characteristics” of the 8 hallmarks 

of cancer pathogenesis (Hanahan and Weinberg, 2011), the analyses were extended from plain 

inflammatory diseases to the precancerous, inflammatory oral lichen planus and further to 

cancerous diseases. In oral lichen planus patients, a moderate number of differentially methylated 

CpGs was found compared to NASH and NAFLD. In total, 7 CpGs in ADAMTS1, ADAMTS2, ADAM12, 

ADAMTS18, ADAMTSL5 and ADAMTS17 were increased or decreased in their methylation by more 

than 20% (|∆βmean| ≥ 0.2) (Figure 13). All of these CpGs were hypermethylated (∆βmean ≥ 0.2, P < 

0.05) compared to the control, except cg04834770 which showed hypomethylation (∆βmean ≤ -0.2, 

P < 0.05).  

 

 

Figure 13. The precancerous, inflammatory disease oral lichen planus shows moderate genomic 
methylation alterations in ADAM/TS genes in the inflamed tissue. Biopsies of inflamed and non-inflamed 
(ctrl) tissue from the same patient suffering from oral lichen planus were immediately frozen with liquid 
nitrogen (n=18 (ctrl), n=9 (infl)). Afterwards, genomic DNA was analyzed with the HumanMethylation450 
BeadChip Array for the methylation of 450k CpG sites. From 1145 CpGs located in ADAM/TS genes, 6 CpGs 
were significantly hypermethylated and 1 hypomethylated compared to the control. The depicted β-value 
represents a quantitation of the methylation level of the respective CpG-locus. Data were statistically 
analyzed with Mann-Whitney-U test and corrected for multiple testing with the Benjamini-Hochberg 
method (* P < 0.05, ** P < 0.01). Hypermethylation was defined as ∆βmean ≥ 0.2 (P < 0.05) and 
hypomethylation as ∆βmean ≤ -0.2 (P < 0.05) compared to the control. Only hyper- or hypomethylated CpGs 
are presented. ctrl=control, non-inflamed tissue; infl=inflamed tissue. 
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3.2.3 ADAM/TS genes show major epigenetic alterations in cancerous diseases, especially in 

the ADAMTS16 gene 

3.2.3.1 Major genomic DNA methylation changes in ADAM and ADAMTS genes take place in 

the tumor of colorectal cancer patients  

While differentially methylated genes were observed in oral lichen planus, no differentially 

methylated genes were observed in NASH and NAFLD. Oral lichen planus is not only an 

inflammatory disease, but also regarded as a precancerous condition. This fact, together with our 

results therefore suggested to investigate cancerous diseases for methylation alterations. In first 

analyses, tissues from 119 colorectal cancer (CRC) patients were studied. Resected samples of the 

tumor tissue and, as control, peri-tumoral non-malignant tissue of the same patient were analysed 

for methylation differences. In contrast to samples from inflammatory diseases, many CpGs 

showed significant differences in the mean methylation between tumor and control tissue with 

more than 20% difference. The 72 CpGs are listed in Figure 14. Most of the CpGs affected by 

methylation alterations were located in the ADAMTS16 or ADAMTS2 genes. A visualization of the 

methylation changes in the colorectal cancer patiens is depicted in Figure 15 in form of a heatmap. 

The color code reflects the level of methylation by a color transition from blue (low methylation) 

to red (high methylation). Visible is the change of the uniform pattern in the peri-tumoral non-

malignant tissue (ctrl) to a more diffuse pattern in the tumor tissue (cancer), reflecting major 

methylation changes in the tumor tissue in colorectal cancer patients.  
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Figure 14. 72 CpGs are differentially methylated in tumor tissue compared to non-tumor tissue in 
patients suffering from colorectal cancer. Tumor resectats (canc) and peri-tumoral non-malignant 
resectats (ctrl) from the same patient were immediately frozen (n=117 (ctrl), n=119 (canc)). Afterwards, 
genomic DNA was analyzed with the HumanMethylation450 BeadChip Array for the methylation of 450k 
CpG sites. 72 of 1145 CpGs located in ADAM/TS genes were differentially methylated. The depicted β-value 
represents a quantitation of the methylation level of the respective CpG-locus. Data were statistically 
analyzed with Mann-Whitney-U test and corrected for multiple testing with Benjamini-Hochberg method 
(**** P < 0.0001). Hypermethylation was defined as ∆βmean ≥ 0.2 (P < 0.05) and hypomethylation as ∆βmean 
≤ -0.2 (P < 0.05) compared to the control. Only hyper- or hypomethylated CpGs are presented.  
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Figure 15. The heatmap of all differentially methylated CpGs in colorectal cancer patients visualizes that 
major genomic methylation changes take place in the tumor tissue. Each column of the matrix represents 
a patient and each row a differentially methylated CpG. The color represents the methylation level. Major 
changes in the methylation status of the cancer tissue compared to the control tissue are visible. 
ctrl=control, peri-tumoral non-malignant tissue; cancer=cancerous tissue. 

 

3.2.3.2 ADAMTS16 and ADAMTS2 are the most frequently differentially methylated ADAM/TS 

genes in colorectal cancer patients 

In total 72 CpGs in 18 genes were affected by hyper- or hypomethylation compared to the control. 

39% of these CpGs were CpG-dinucleotides in ADAMTS16 (14 CpGs) and ADAMTS2 (14 CpGs) 

(Figure 14). In case of ADAMTS16, the heatmap of all ADAMTS16 CpGs (Figure 16) which were 

significantly altered in their methylation by more than 20%, showed a bimodal distribution in the 

control. In the cancer tissue this bimodal distribution was resolved and tendentially inverted. 

 

Figure 16. The Heatmap of the 14 differentially methylated ADAMTS16 CpGs in colorectal cancer patients 
visualizes the methylation changes. Each column of the matrix represents a patient and each row a 
differentially methylated CpG. The color represents the methylation level. In the control tissue a bimodal-
distribution is visible which is absent in the cancerous tissue. ctrl=control, peri-tumoral non-malignant 
tissue; cancer=cancerous tissue.  

The methylation profile of the cancer tissue (red line) and the non-malignant tissue (blue line) for 

all 53 measured CpGs in the ADAMTS16 gene is presented in Figure 17. 14 CpGs were found to be 

differentially methylated (|∆βmean| ≥ 0.2, P < 0.05) and 11 CpGs (together 47,17% of all CpGs) 

showed an intermediate methylation difference of more than 0.1 (0.1 ≤|∆βmean| < 0.2, P < 0.05). 
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The methylation profile of the cancer tissue showed major differences compared to the control 

tissue. In the region between chromosome position 5139853 and 5140646, 6 CpGs were 

hypermethylated in the tumor tissue compared to the control tissue. This region lies within the 

promoter region of ADAMTS16. In contrast, in the gene body (between the chromosome position 

5146320 and 5313892) 8 CpGs were hypomethylated in the tumor tissue. The one CpG on 

chromosome position 5140646 which is located in the first exon, showed an intermediate 

methylation alteration with an enhancement in the methylation (∆βmean = 0.13). The measured 

CpGs in ADAMTS16 are outlined in Figure 18. 

 

 

Figure 17. The methylation in the ADAMTS16 gene is extensively altered in cancer tissue resectats of 
colorectal cancer patients compared to peri-tumoral non-malignant tissue. Shown is the average 
methylation (mean β-value) of 53 different CpG sites of 119 patients. The red line indicates tumor tissue 
and the blue line indicates matched peri-tumoral non-malignant tissue (control). 6 CpGs were 
hypermethylated (red spots), 11 CpGs showed intermediate methylation (green spots) and 8 CpGs showed 
hypomethylation (blue spots). Hypermethylation was defined as ∆βmean ≥ 0.2 (P < 0.05), hypomethylation as 
∆βmean ≤ -0.2 (P < 0.05) and intermediate methylation as 0.1 ≤|∆βmean| < 0.2 compared to the control. 
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Figure 18. Methylation status of all ADAMTS16 CpGs in patients suffering from colorectal cancer. Tumor 
resectats and peri-tumoral non-malignant (ctrl) resectats from the same patient were immediately frozen 
with liquid nitrogen (n=117 (ctrl), n=119 (canc)). Afterwards, genomic DNA was analyzed with the 
HumanMethylation450 BeadChip Array for the methylation of 450k CpG sites. From 53 CpGs located in 
ADAMTS16, 14 CpGs were differentially methylated and 11 CpGs showed intermediate methylation 
alterations (0.1 ≤|∆βmean| < 0.2). The depicted β-value represents a quantitation of the methylation level of 
the respective CpG-locus. Data were statistically analyzed with Mann-Whitney-U test and corrected for 
multiple testing with Benjamini-Hochberg method (* P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001). 
Hypermethylation was defined as ∆βmean ≥ 0.2 (P < 0.05) and hypomethylation as ∆βmean ≤ -0.2 (P < 0.05) 
compared to the control. ctrl=control, peri-tumoral non-malignant tissue; canc=cancerous tissue. 
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3.2.3.3 8 CpGs in ADAMTS16 are commonly altered in their methylation in three different 

epithelial cancers  

To delineate whether the observed epigenetic alterations in the ADAMTS16 gene in colorectal 

cancer were cancer type specific, two other cancer entities were investigated. Resectats from 40 

lung cancer (LC) and 15 oral squamous-cell carcinoma (SCC) patients were analyzed for 

methylation changes. 78 differentially methylated CpGs were found in LC and 29 in SCC. In a first 

step, all differentially methylated CpGs in these cancers were filtered for commonly differentially 

methylated CpGs. Strikingly, 8 CpGs in all three cancer entities were commonly differentially 

methylated (Figure 19). All of them are located in the ADAMTS16 gene. The methylation profiles of 

the three cancer entities for ADAMTS16 are depicted in Figure 20. The overall methylation profiles 

and methylation changes were very similar in all three cancer entities. All three cancer tissues 

shared the hypermethylated region in the promoter (between chromosome position 5139853 and 

5140001), the increased methylation in the exon1 CpG (cg22784954) and the region in the gene 

body (between 5234710 and 5303564) where many CpGs were hypomethylated in the cancer 

tissue compared to the control. Furthermore, the overall course of the graphs was very similar 

reflecting a similar methylation profile in the three cancer entities.  

 

 

Figure 19. Venn diagram showing the overlap of differentially methylated CpGs between lung cancer (LC), 
colorectal cancer (CRC) and oral squamous-cell carcinoma (SCC). 8 CpGs are commonly differentially 
methylated in the three cancer entities. All are located in the ADAMTS16 gene. The venn diagram was 
generated with VENNY 2.0 (Oliveros, 2007). 
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Figure 20. Methylation profile of the ADAMTS16 gene in colorectal cancer (CRC), lung cancer (LC) and oral 
squamous-cell carcinoma (SCC) patients. Shown is the average methylation (mean β-value) of 53 different 
CpG sites in ADAMTS16. All three cancer entities show very similar methylations profiles. Hypermethylation 
was defined as ∆βmean ≥ 0.2 (P < 0.05), hypomethylation as ∆βmean ≤ -0.2 (P < 0.05) and intermediate 
methylation as 0.1 ≤|∆βmean| < 0.2 compared to the control (n=117 (ctrl)CRC, n=119 (canc)CRC, n=40 (ctrl)LC, 
n=40 (canc)LC, n=18 (ctrl)SCC, n=15 (canc)SCC). 
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More profound analyses of the 8 commonly differentially methylated CpGs (Figure 21 and Figure 

22) revealed that the change in direction of these CpGs was in all three cancer entities the same. 

The 6 CpGs in the promoter region were all hypermethylated, whereas the 2 CpGs in the gene 

body of ADAMTS16 were hypomethylated compared to the control. Regarding the mean 

methylation of these CpGs, the lung cancer and the oral squamous-cell carcinoma patients showed 

nearly the same mean values, in contrast to the colorectal cancer patients. Noticeable, the 

colorectal cancer tissues had in most cases a higher mean methylation than the LC and SCC in 

these CpGs. 
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Figure 21. 6 hypermethylated ADAMTS16 CpGs in colorectal cancer (CRC) patients were also 
hypermethylated in lung cancer (LC) and oral squamous-cell carcinoma (SCC) patients. Data represent the 
methylation (β-value) for individual patients (spots) with the mean ±SEM (red lines). Data were statistically 
analyzed with Mann-Whitney-U test and corrected for multiple testing with Benjamini-Hochberg method 
(**** P < 0.0001, n=117 (ctrl)CRC, n=119 (canc)CRC, n=40 (ctrl)LC, n=40 (canc)LC, n=18 (ctrl)SCC, n=15 (canc)SCC). 
ctrl=peri-tumoral non-malignant tissue; canc=cancer tissue; SEM=standard error of mean. 
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Figure 22. 2 hypomethylated ADAMTS16 CpGs in colorectal cancer (CRC) patients are also 
hypomethylated in lung cancer (LC) and oral squamous-cell carcinoma (SCC) patients. Data represent the 
methylation (β-value) for individual patients (spots) with the mean ±SEM (red lines). Data were statistically 
analyzed with Mann-Whitney-U test and corrected for multiple testing with Benjamini-Hochberg method 
(**** P < 0.0001, n=117 (ctrl)CRC, n=119 (canc)CRC, n=40 (ctrl)LC, n=40 (canc)LC, n=18 (ctrl)SCC, n=15 (canc)SCC). 
ctrl=peri-tumoral non-malignant tissue; canc=cancer tissue; SEM=standard error of mean.  

 

The 8 CpGs can be classified in two groups: Group I-CpGs (cg25973534, cg15409013, cg15048991, 

cg16508480, cg04136610, cg22954449,) were hypermethylated and located in the promoter 

region, while Group II-CpGs (cg06434454, cg17627328) were hypomethylated and located in the 

gene body (Figure 23). Additionally, many intermediate methylated CpGs showed an increase in 

the promoter and a decrease in methylation in the gene body. 
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Figure 23. Classification and location of the commonly differentially methylated CpGs between the 3 
cancer entities. The 6 CpGs commonly hypermethylated are located in the promoter region and classified 
as CpG-Group-I, whereas the 2 commonly hypomethylated CpGs are located in the gene body and classified 
as CpG-Group-II. 

 

3.2.3.4 The Colon adenocarcinoma & Rectum adenocarcinoma cohort of The Cancer Genome 

Atlas project shows the same methylation changes in ADAMTS16 

The Cancer Genome Atlas (TCGA) project is an extensive worldwide, multi-laboratory project to 

study and characterize genetics and epigenetics of various cancers. Most of the acquired data are 

freely available for download (https://tcga-data.nci.nih.gov). To validate our finding that 8 CpGs 

were differentially methylated in colorectal cancer patients, methylation data of Colon 

adenocarcinoma & Rectum adenocarcinoma (COADREAD, n=44 (ctrl), n=384 (canc)) from the TCGA 

data portal were downloaded and analyzed for the methylation status of these 8 CpGs (Figure 24 

and Figure 25). Indeed, all 8 CpGs showed the same hyper- or hypomethylation. However, the 

differences in the TCGA COADREAD cohort were generally higher than in our CRC cohort (> 0.2 

compared to 0.3).   
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Figure 24. Methylation data from The Cancer Genome Atlas (TCGA) Colon adenocarcinoma & Rectum 
adenocarcinoma cohort (COADREAD, n=44 (ctrl), n=384 (canc)) show the same methylation changes in 
the 8 commonly differentially methylated CpGs as colorectal cancer (CRC), lung cancer (LC) and oral 
squamous-cell carcinoma (SCC). Shown are the 6 in CRC, LC and SCC commonly hypermethylated CpGs for 
the COADREAD cohort. Data represent the methylation (β-value) for individual patients (spots) with the 
mean ±SEM (red lines). Data were statistically analyzed with Mann-Whitney-U test and corrected for 
multiple testing with Benjamini-Hochberg method (**** P < 0.0001). ctrl=peri-tumoral non-malignant 
tissue; canc=cancer tissue; SEM=standard error of mean. The results shown here are based upon data 
generated by the TCGA Research Network: http://cancergenome.nih.gov/. 
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Figure 25. Methylation data from The Cancer Genome Atlas (TCGA) Colon adenocarcinoma & Rectum 
adenocarcinoma cohort (COADREAD, n=44 (ctrl), n=384 (canc)) show the same methylation changes in 
the 8 commonly differentially methylated CpGs as colorectal cancer (CRC), lung cancer (LC) and oral 
squamous-cell carcinoma (SCC). Shown are the 2 in CRC, LC and SCC commonly hypomethylated CpGs for 
the COADREAD cohort. Data represent the methylation (β-value) for individual patients (spots) with the 
mean ±SEM (red lines). Data were statistically analyzed with Mann-Whitney-U test and corrected for 
multiple testing with Benjamini-Hochberg method (**** P < 0.0001). ctrl=peri-tumoral non-malignant 
tissue; canc=cancer tissue; SEM=standard error of mean. The results shown here are based upon data 
generated by the TCGA Research Network: http://cancergenome.nih.gov/. 

 

3.2.3.5 ADAMTS16 is silenced in the TCGA COADREAD cohort in cancer  

Methylation alterations are one of the major epigenetic modifications to alter and regulate gene 

expression. To delineate, whether the observed methylation changes could lead to an altered 

ADAMTS16 gene expression in the colorectal cancer patients, gene expression data for the same 

TCGA COADREAD cohort were downloaded from the TCGA data portal and analyzed (n=22 (ctrl), 

n=224 (canc)). The ADAMTS16 mRNA expression was significantly decreased from 0.29 in the 

control (ctrl) to 0.04 in the cancer tissue (canc). This decrease reflects a reduction of the 

ADAMTS16 mRNA expression of 86.3% and indicates therefore an ADAMTS16 gene silencing in 

colorectal cancer patients (Figure 26).  
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Figure 26. Methylation data of The Cancer Genome Atlas project show that ADAMTS16 gene expression 
is lower in Colon adenocarcinoma & Rectum adenocarcinoma compared to control tissue. Analysis of 
gene expression data from The Cancer Genome Atlas project (TCGA, Colon adenocarcinoma & Rectum 
adenocarcinoma (COADREAD)) showed a significant reduction of ADAMTS16 mRNA in cancer tissues. Data 
represent the relative ADAMTS16 mRNA expression for individual patients (spots) with the mean ±SEM (red 
lines). Data were statistically analyzed with Mann-Whitney-U test and corrected for multiple testing with 
Benjamini-Hochberg method (*** P < 0.001, n=22 (ctrl), n=224 (canc)). ctrl=control; canc=cancerous tissue; 
SEM=standard error of mean. The results shown here are based upon data generated by the TCGA 
Research Network: http://cancergenome.nih.gov/. 

 

3.2.3.6 The gene expression of matched pairs of tumor and non-tumoral tissue of the CRC 

patients shows no tendency towards up- or downregulation of ADAMTS16 in contrast 

to the TCGA COADREAD cohort  

Matched pairs of cancer and control tissue from 35 patients of our CRC cohort were analyzed for 

ADAMTS16 mRNA expression by real-time RT-qPCR. As depicted in Figure 27, no clear tendency 

regarding up or downregulation was found. 14 patients had lower ADAMTS16 expression in the 

cancer tissue compared to the control tissue, 8 patients had no change, and 9 patients had a 

higher ADAMTS16 expression in the cancer tissue. In contrast to the TCGA COADREAD cohort, 

relative mRNA expression analyses in our CRC cohort revealed no significant difference in the two 

tissues (Figure 28).  
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Figure 27. Matched pairs of the studied colorectal cancer cohort show a balanced up- and 
downregulation of ADAMTS16 throughout the patients. RNA of the previously analyzed patient samples 
was isolated and measured for ADAMTS16 and HPRT (house keeping gene) mRNA expression by real-time 
RT-qPCR. The data were analyzed by 2-∆∆CT-method for fold change up- or downregulation. ADAMTS16 
regulation showed no tendency towards up- or downregulation (n=35 patients). #=no ADAMTS16 detected 
in tumor; *=no ADAMTS16 detected in control tissue. 

 

Figure 28. There is no significant difference in gene expression of ADAMTS16 between the cancer tissue 
and the peri-tumoral non-malignant tissue in the studied CRC cohort in contrast to the TCGA COADREAD 
cohort. RNA of the previously analyzed patient samples was isolated and measured for ADAMTS16 and 
HPRT (housekeeping gene) mRNA expression by real-time RT-qPCR. The data were analyzed by 2-∆CT-
method for the relative expression of ADAMTS16 compared to HPRT. There was no significant difference in 
the relative gene expression of ADAMTS16 between the control (ctrl) and the tumor tissue in matched 
pairs. Data represent the relative ADAMTS16 mRNA expression for individual patients (spots) with the 
mean ±SEM (red lines). Data were statistically analyzed with paired t-test and Bonferroni multiple 
comparison post hoc test (* P < 0.05, n=35 (ctrl), n=35 (tumor)). ns=non-significant; SEM=standard error of 
mean. 
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4 Discussion 

4.1 The extracellular juxtamembrane segment CANDIS is able to interact with 

membranes and this interaction is essential for ADAM17-mediated shedding 

In the first part of this thesis, posttranslational regulation of ADAM17-mediated shedding was 

investigated. The metalloprotease ADAM17 plays a crucial role in various biological processes, 

since its shedding of a plethora of substrates can alter the responsiveness of cells to their 

environment and release potent soluble mediators from the cell surface. Interestingly, this process 

can be rapidly enhanced by various stimuli. Importantly, this fast regulation of the ADAM17 

shedding activity seems to be mostly dependent on other regulatory mechanisms than alteration 

of the biochemical proteolytic activity of ADAM17. Previous research has shown that, inter alia, 

substrate availability, localization and membrane fluidity have major impact on the ADAM17-

mediated shedding activity. However, our understanding of how these different factors are tightly 

regulated, is still very limited.  

Recently, we found evidence that the distinctive step in the activation of stimulated ADAM17-

mediated shedding might be phosphatidylserine (PS)-exposure. PS is located normally in the inner 

leaflet of the cell membrane supporting the membrane asymmetry. Strikingly, PS-exposure to the 

outer leaflet occurs after various physiological and unphysiological stimuli that activate ADAM17-

mediated shedding. We identified a polybasic PS-binding motif in the membrane-proximal domain 

that interacts with the exposed PS after stimulation, and might thereby position ADAM17 in the 

right orientation for enabling the shedding of its substrates (Sommer et al., 2015, in revision).  

Interestingly, another functional sequence in ADAM17, which might contribute to this mechanism, 

is CANDIS. Previous studies have revealed that the corresponding CANDIS peptide is alpha-helical 

(Düsterhöft et al., 2014) and that it can bind certain substrates of ADAM17 (Düsterhöft et al., 

2014; Lorenzen et al., 2012). We found recently another interesting feature of the CANDIS 

peptide: It can bind to lipid bilayers (Düsterhöft et al., 2015). We assumed that this lipid binding 

property might be an important feature of CANDIS and might be of functional relevance for the 

ADAM17-mediated shedding mechanism. Interestingly, some substitutions in the CANDIS peptide 

abolished the alpha-helical structure of the CANDIS peptide and destroyed its lipid binding ability 

as shown by our collaboration partners (AG Grötzinger, Biochemistry Department) by fluorescence 

and circular dichroism spectroscopy. However, whether these in vitro findings would have 

functional consequences for the ADAM17-mediated substrate release in cells, remained unclear. 
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Therefore, I generated similar mutations in the full-length ADAM17 and tested the shedding 

activity of these different mutants in a cell based system.  

 

4.1.1 An intact hydrophobic side of CANDIS is essential for ADAM17 shedding activity 

Modeling of the CANDIS sequence revealed that this alpha helix has amphipathic character and 

the hydrophobic face consists of the following residues: FLVLFVII. In experiments conducted in this 

thesis, this hydrophobic face was altered by the substitution of the two hydrophobic 

phenylalanine residues with two charged glutamic acid residues in the full-length ADAM17 (EE 

mutations). As a consequence, the introduced negatively charged amino acids destroyed the 

hydrophobic face. Remarkably, these mutations completely abolished the constitutive and the 

PMA- and ionomycin-stimulated TGF-α shedding activity of ADAM17. 

In principle, protein mutations in ADAM17 could lead to impaired protein trafficking and could 

hinder ADAM17 to reach the cell surface, where it sheds TGF-α. However, flow cytometric 

analyses supported that the EE mutations did not interfere with the transport of ADAM17 to the 

cell surface and the ADAM17 EE mutant is similarly expressed on the cell surface as the wildtype. 

However, it should be noted that the transfection efficiency in MEFs is very low. Moreover, only a 

small amount of transfected ADAM17 is expressed on the cell surface making flow cytometric 

analyses difficult with the currently available antibodies. Nonetheless, further evidence that 

ADAM17 EE mutant is expressed on the cell surface derives from the findings that ADAM17 EE was 

able to cleave soluble peptide substrate in similar amounts as the wildtype protease. Most 

importantly, these data show that the biochemical proteolytic activity of ADAM17 is not affected 

by these mutations in contrast to the shedding activity. 

Mutations of the hydrophilic side of CANDIS did not show any effect on the ADAM17-mediated 

TGF-α shedding activity. Based on these data, the intact hydrophobic face of ADAM17 is essential 

for the ADAM17-mediated TGF-α shedding activity. 

 

4.1.2 The ADAM17 EE mutations may abolish the ADAM17-mediated shedding by preventing 

interaction of CANDIS with the plasma membrane 

Membrane and protein interactions are often mediated by alpha-helical protein structures (Drin 

and Antonny, 2010; Elazar et al., 2004; Gerlach et al., 2010). CANDIS is an alpha-helical peptide 

and it was shown that it can interact with lipid bilayers. Therefore, it is logical to assume that 
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CANDIS can potentially also interact with cellular membranes. Mutations in the hydrophobic face 

of the CANDIS peptide, including the EE mutations, destroyed the alpha-helical structure and this 

was accompanied with the loss of the ability to interact with lipid bilayers (Düsterhöft et al., 2015). 

Remarkably, the same mutations in the full-length molecule abolished the ADAM17-mediated 

shedding activity completely. By contrast, mutations in the hydrophilic face of CANDIS had no 

effect on lipid binding nor on the shedding activity. Based on these data it is reasonable to assume 

that the loss of the lipid binding ability is responsible for the abolished ADAM17-mediated 

shedding activity. Accordingly, an interaction between CANDIS and the cell membrane may be an 

essential prerequisite in the shedding mechanism. This conclusion is further substantiated by 

reports that show an involvement of the cell membrane in ADAM17 regulation. The cholesterol 

content of the plasma membrane affects ADAM17-mediated shedding, since cholesterol depletion 

of cells leads to enhanced ADAM17 shedding activity of the IL-6R (Matthews et al., 2003). In line 

with this, the CANDIS interaction with lipid bilayers is inhibited by an increase in cholesterol 

content in lipid bilayers (Düsterhöft et al., 2015), indicating that the CANDIS membrane interaction 

could potentially contribute to this phenomenon. Additionally, it has also been reported that 

changes in the membrane fluidity modulate ADAM17 shedding activity (Reiss et al., 2011). It is 

reasonable to speculate, that different membrane fluidities would influence the CANDIS 

membrane interaction, since increase of cholesterol enhances membrane rigidity.  

 

4.1.3 Other potential effects of the mutations in the hydrophobic face of CANDIS 

Another important property of CANDIS, besides the lipid binding ability, needs to be considered 

when drawing conclusions from the experimental data in this thesis. CANDIS has been shown to 

bind certain ADAM17 substrates, such as IL-6R and IL-1RII, but not others such as TNF-α 

(Düsterhöft et al., 2014; Lorenzen et al., 2012). Whether CANDIS can actually bind TGF-α or not, 

has not been reported, although it might be the case. Therefore, the TGF-α shedding could be 

abolished due to an impairment of a potential binding of CANDIS to TGF-α and not due to 

impairment of its ability to interact with the membrane. However, this possibility is strongly 

challenged by the observation that the EE mutations also abolished the shedding of TNF-α, 

although TNF-α cannot bind to CANDIS (Düsterhöft et al., 2015).  

 

Based on the findings, it cannot be completely ruled out that the observed abrogation of ADAM17-

mediated shedding and the destruction of the alpha-helical structure of CANDIS is rather a 
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correlation than causation. Alternative explanations could be that the introduced mutations could 

affect the interaction of ADAM17 with other molecules, for instance inactive Rhomboids (iRhoms). 

IRhoms have recently been reported to interact with ADAM17 and to regulate its maturation and 

substrate selectivity (Christova et al., 2013; Issuree et al., 2013; Li et al., 2015; McIlwain et al., 

2012). However, specific interactions between CANDIS and proteins other than some ADAM17 

substrates have not been reported so far. Additionally, the region comprised of the MPD and 

CANDIS have been also suggested to mediate multimerization of ADAM17 (Lorenzen et al., 2011). 

Although the relevance of multimerization of ADAM17 has not been clarified, the introduced EE 

mutations may interfere with this process.  

 

4.1.4 The function of the CANDIS sequence can be partially substituted by the corresponding 

region of ADAM10 

An interesting conclusion can be drawn from the experiments using the ADAM17p10 chimera. In 

this chimera the CANDIS region of ADAM17 was exchanged with the corresponding segment of 

ADAM10. This segment is neither structurally nor sequentially similar to the CANDIS sequence of 

ADAM17. Notably, the TGF-α shedding was clearly impaired but not completely abolished. From 

this observation one could hypothesize that the ADAM10 sequence harbors a functional substitute 

for the absent alpha-helical CANDIS. The peptide of the ADAM10 segment shows slight alpha-

helical tendencies (Düsterhöft et al., 2015), but presumably not enough to explain the partial 

rescue. However, it contains a polybasic motif (RLKK), similar to the polybasic motif in the MPD 

(RKGK). In the MPD, the motif is responsible for interactions with PS. Therefore, it is plausible to 

state that the similar motif in the ADAM10 segment could substitute the normally alpha-helical 

interaction between the membrane and CANDIS, with an interaction between the polybasic motif 

and the PS.  
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4.1.5 ADAM17 requires distinct membrane interactions for its shedding activity: anchorage via 

its transmembrane domain, attraction via a polybasic motif in the MPD towards PS, and 

a hydrophobic interaction between the alpha-helical CANDIS and the membrane 

ADAM17-mediated shedding depends on the anchorage of ADAM17 to the cell membrane via a 

transmembrane domain. Importantly, this transmembrane domain cannot be substituted with a 

simple membrane anchor, since a GPI-anchored ADAM17 is not able to shed TGF-α, TNF-α and L-

selectin anymore (Li et al., 2007).  

The anchorage of ADAM17 is not the only essential membrane interaction. Just recently, we made 

important progress to decipher the enigmatic molecular mechanism how diverse stimuli enhance 

ADAM17-mediated shedding. Functional analyses of another interesting ADAM17 mutant 

(ADAM17 3x) helped proposing a new model of how these diverse stimuli could mechanistically 

lead to an enhancement of ADAM17-mediated shedding. In this mutant, a polybasic motif in the 

MPD, upstream from the CANDIS sequence, was mutated to a non-charged motif. Importantly, 

these mutations had the same consequences for the ADAM17 shedding activity as the EE 

mutations in the CANDIS region: The constitutive and PMA- and ionomycin stimulated shedding 

was completely abolished (Supplemental Figure 1). On the basis of this evidence, we showed in 

further experiments (Sommer et al., 2015, in revision) that the polybasic motif in the MPD is a 

phosphatidylserine interaction sequence that can bind to PS. Phosphatidylserine is under normal 

conditions not exposed to the extracellular side, but remains intracellular and supports the 

asymmetry of the membrane. Strikingly, several ADAM17 stimuli induce a phosphatidylserine flip 

from the inner to the outer membrane layer. These results have provided evidence that the 

exposed negative phosphatidylserine attracts the polybasic motif and orientates ADAM17 in the 

proper position inducing the shedding event.  

Notably, each of the mutations — the mutations in the hydrophobic face of CANDIS and the 

destruction of the polybasic motif in the MPD — are sufficient to completely abolish ADAM17 

substrate shedding. This observation implies that two membrane interactions, in two distinct 

regions — one in the CANDIS and one in the MPD — are involved and required for the shedding 

mechanism. A plausible mechanistic model could be a two-step process in the activation of 

ADAM17: The MPD is attracted electrostatically to the negatively charged exposed 

phosphatidylserine and thereby pulled towards the membrane. This could orientate the CANDIS 

sequence in an advantageous position that facilitates the interaction of the hydrophobic CANDIS 

face with the membrane, further stabilizing its helical content and intensifying the membrane 
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interaction. In a synergistic way, this could ultimately orient ADAM17 in the proper position 

enabling substrate shedding (Figure 29).  

Proteins which interact with membranes through amphipathic helices have been widely reported 

(Drin and Antonny, 2010; Elazar et al., 2004; Gerlach et al., 2010). Newer reports have additionally 

shown that in some proteins polybasic motifs interact with membranes and these interactions can 

have regulatory functions (Murray et al., 1997; Segrest et al., 1992; Xu et al., 2008). One of these 

studies is particularly interesting, since it has demonstrated that the Negative Regulatory Factor 

(Nef) uses both types of motifs, a polybasic and an alpha-helical motif, in a consecutive way to 

interact and associate to membranes (Gerlach et al., 2010). The proposed ADAM17-activation 

model has similarities with the kinetic binding model of Nef. In case of Nef, the cytosolic Nef is 

attracted to the membrane by electrostatic interactions between a polybasic motif and the acidic 

lipids in the membrane. Then hydrophobic residues and myristate insert into the lipid bilayer and 

the binding is concluded by the formation of an N-terminal amphipathic helix stabilizing the 

interaction. It should be noted that the purpose of the described mechanism in case of Nef differs 

from that in case of ADAM17. Nef is associated and then anchored to the membrane via this 

mechanism. ADAM17, by contrast, is already anchored via its transmembrane domain, but 

potentially positioned correctly for the shedding of substrates by this mechanism. Taken together, 

three membrane interactions in concert are needed for proper ADAM17 shedding activity: The 

transmembrane domain, the polybasic motif in the MPD and the alpha-helical CANDIS. 

 

The research carried out in this thesis helped to further delineate a novel model of ADAM17 

activation. Nevertheless, this model still provides a limited understanding of ADAM17-mediated 

shedding and its regulation. Many aspects are not understood yet and need to be further 

investigated. For instance, we cannot explain how the constitutive shedding activity of ADAM17 

might fit into this model. Furthermore, we are still missing a complete picture how all these 

different aspects of ADAM17-mediating shedding, such as membrane interactions, localization, 

substrate accessibility and substrate selectivity come together and provide a complex system of 

regulatory mechanisms. Additionally, the levels of regulation may vary for each substrate. For 

instance, it is not known, whether other substrates than TGF-α and TNF-α are also depending on 

the CANDIS membrane interaction. This could be further clarified by testing other substrates with 

the ADAM17 EE mutant. Whether the proposed model can be applied to the in vivo situation 

remains to be investigated. An important next step would be the generation of transgenic mice 
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that carry the above described mutations in the CANDIS region and the MPD. The resulting 

phenotypes might give further important insights into ADAM17-mediated shedding under 

physiological conditions. 

 

 

Figure 29. Refined model of ADAM17-mediated shedding. Activation of ADAM17-mediated shedding 
follows a two-step membrane interaction. Various stimuli lead to a transient exposure of 
phosphatidylserine (PS) to the extracellular side of the membrane. The polybasic motif in the membrane-
proximal domain (MPD) of ADAM17 interacts with the exposed, negatively charged PS, thereby pulling 
ADAM17 towards the membrane. Subsequently, the amphipathic alpha-helical CANDIS interacts with the 
membrane. Together, both interactions orientate ADAM17 in the proper position towards its substrate, 
thereby enabling shedding. Model according to (Sommer et al., 2015, in revision). 
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4.2 Epigenetic methylation changes of ADAM/TS genes in disease 

In the second part of this thesis, tissues from patients suffering from preinflammatory, 

inflammatory, precancerous and cancerous diseases were investigated for methylation alterations 

in ADAM/TS genes. Most strikingly, major epigenetic changes were identified in one of the 

ADAMTS members, ADAMTS16, in colorectal cancers and two other cancer entities. In these 

cancers, hypermethylation in the promoter region of ADAMTS16 and hypomethylation in the gene 

body compared to the peri-tumoral non-malignant tissue was observed, suggesting that the 

ADAMTS16 gene is silenced in these cancers. Surprisingly, no methylation alterations in ADAM10 

and ADAM17 were observed in inflammatory or cancerous diseases. 

 

4.2.1 Epigenetic methylation changes do not occur in ADAM/TS genes in the preinflammatory 

Non-alcoholic fatty liver disease (NAFLD) and the inflammatory Non-alcoholic 

Steatohepatitis (NASH) 

Neither in patients suffering from NAFLD, nor NASH, any differentially methylated CpGs in ADAM 

or ADAMTS genes were observed. The general term NAFLD comprises a range of liver conditions: 

the mildest, hepatic steatosis or fatty liver, the more severe form, NASH and the severest 

condition, liver cirrhosis. It should be noted that NAFLD is used in the literature as a collective 

name for all three conditions as well as only for the hepatic steatosis in distinction to the other 

two conditions. In this thesis, it will be used to refer to hepatic steatosis in distinction to NASH. 

Moreover, the distinction between these conditions was many times redefined over the years and 

is found inconsistently used in the literature (Okazaki et al., 2014). Since NAFLD is mostly 

characterized by pathological retention of lipids in hepatocytes without inflammation and fibrotic 

processes, major epigenetic changes in ADAMs and ADAMTS which are involved in these 

processes, were not expected. NAFLD is a preinflammatory condition, since it can evolve to the 

more severe form, NASH. The latter is characterized by inflammatory processes and remodeling of 

the extracellular matrix accompanied by fibrotic processes (Farrell et al., 2012). TNF-α plays a 

pivotal role in inflammation and matrix metalloproteases are the major players in remodeling the 

extracellular matrix, therefore they are intensively studied and discussed for the pathogenesis of 

NASH (Farrell et al., 2012; Okazaki et al., 2014). Surprisingly, also in NASH, ADAM and ADAMTS 

genes did not show any methylation alterations, although they are key regulators of these 

processes. This result indicates that epigenetic regulation of ADAM/TS genes by DNA methylation 
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does not play a major role in these diseases. Interestingly, diabetes mellitus is a major risk factor 

for the development of NAFLD and particularly for the progression from NAFLD to the severe 

form, NASH. Advanced glycation endproducts accumulate in patients with diabetes and are 

suggested as the link between diabetes and progression to NASH by activating ADAM17 

posttranslationally. ADAM17 is then thought to mediate the inflammatory processes in the 

progression to NASH (Jiang et al., 2013). This report of posttranslational ADAM17 regulation 

together with the lack of methylation changes indicates that posttranslational regulation rather 

than epigenetic regulation of ADAM17 may play a role in NASH.  

Moreover, it has been reported that overexpression of ADAM17 in mice is neither leading to 

increased TNF-α shedding nor an elevated inflammatory response (Yoda et al., 2013). Based on 

these data and the fact that no epigenetic changes for ADAM17 were found in all investigated 

diseases, it seems reasonable to assume that epigenetic regulation of ADAM17 is not of major 

importance for its functions in inflammatory diseases.  

 

4.2.2 Methylation changes in the ADAMTS16 gene are prominent in the investigated cancerous 

diseases 

In contrast to NASH and NAFLD, in the inflammatory disease oral lichen planus, a few genes 

showed differentially methylated CpGs. In theory, even one or two differentially methylated CpGs 

per gene could alter the transcription activity of these genes, but it is hard to make any 

assumption without gene expression profiling. Nevertheless, seeing more differentially 

methylated CpGs in an inflammatory disease which is regarded as a precancerous condition, 

suggests that more methylation changes in these genes could occur in cancerous diseases rather 

than solely inflammatory diseases. Indeed, 72 CpGs were differentially methylated in colorectal 

cancer tissues compared to the non-malignant adjacent tissue. The most numerous and 

interesting methylation alterations were observed in the ADAMTS16 gene.  

 

4.2.3 Characteristic methylation changes in the ADAMTS16 gene region were found in three 

different cancer entities 

The methylation profile of ADAMTS16 was extensively altered and showed hypermethylated CpGs 

in the promoter region and hypomethylated CpGs in the gene body. Additionally, many 

intermediate methylated CpGs were observed whose methylation changes were also directed 
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towards hypermethylation in the promoter and hypomethylation in the gene body. This 

methylation profile clearly implicates an epigenetic downregulation of this gene in tumor tissue. It 

is widely reported that promoter methylation and gene body demethylation correlates with 

reduction of transcription. A very profound demonstration of this correlation was reported 

recently. The mean methylation profile of all actively transcribed genes in a DAUDI cell line 

showed a reduced methylation status in the promoter region and exon 1 region, and an enhanced 

methylation status in the gene body compared to the not transcribed genes (Kreck et al., 2013). 

Similarly, the methylation profile of ADAMTS16 in the cancer tissue corresponds to the 

methylation profile of an inactive gene, and the profile in normal tissue of an active gene. 

Moreover, a genome-wide methylation study reported that the correlation between methylation 

in the first exon is even more tightly linked to transcriptional silencing than the methylation in the 

upstream promoter region (Brenet et al., 2011). In line with that, the CpG covered by the 

methylation chip shows intermediate methylation in the exon 1 towards hypermethylation in the 

investigated CRC, also supporting a silencing of ADAMTS16. Strikingly, two other epithelial cancers 

showed similar overall methylation profile changes and 8 CpGs commonly showed the exact same 

behavior in regard to hyper- or hypomethylation. This suggests a general epigenetic alteration in 

epithelial cancers for ADAMTS16, but comparative studies for other epithelial and non-epithelial 

cancers are needed to evaluate this theory. Methylation measurements in an independent 

colorectal cancer cohort which was conducted by another lab in the frame of the TCGA project 

further confirm that the methylation alteration in these 8 CpGs are a general event in colorectal 

cancers.  

 

4.2.4 ADAMTS16 is transcriptionally silenced in the TCGA COADREAD cohort, but not in the 

studied CRC cohort, potentially due to discrepancies in transcript variant detection 

Gene expression data generated by the TCGA consortium show that ADAMTS16 is indeed silenced 

in colorectal tumors. This further supports the hypothesis that the observed methylation changes 

could effectively lead to the silencing of ADAMTS16 in these tumors. Contradictory to the 

observed silencing of ADAMTS16 in the TCGA cohort, there was no reduction in the average 

ADAMTS16 gene expression in the investigated CRC cohort that was reported in this thesis and no 

trend in the gene regulation in matched pairs of this cohort. One possible explanation could be 

that the different methods used for detecting ADAMTS16 mRNA levels detect different transcript 

variants. Currently, there are 4 transcript variants listed in the ensemble genome browser 
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database encoding for 3 different ADAMTS-16 protein isoforms. This complicates the investigation 

of ADAMTS16 expression levels, especially that functional differences between the 3 isoforms 

have not been reported. The TCGA expression was measured with the Agilent 244K Custom Gene 

Expression G4502A-07-3 platform which detects 3 transcript variants (ENST00000388896, 

ENST00000388898, ENST00000274181) of ADAMTS16. Unfortunately, 2 of the 3 transcripts that 

this platform detects are now marked as retired, which means that they are obsolete due to a 

dramatic change in the used gene or transcript model in the ensemble database. Attempts to 

match them to transcript IDs, which are marked as current, were unsuccessful and could not 

clarify if they are the same as for the qPCR measurements. Clearly, both systems commonly detect 

the canonical transcript variant (ENST00000274181). Additionally, the qPCR system also detects a 

second transcript variant, but not all known variants due to limitation in primer design. In 

conclusion, it cannot be excluded that differences in both gene expression analyses differ due to 

detection of different transcript variants and that the qPCR system may have missed to detect a 

transcript variant of importance. 

Moreover, the epigenetic methylation changes could also affect the expression of these different 

transcript variants in different ways, influencing for instance only the expression of one 

transcription variant leaving the others unchanged. A similar effect was reported where site-

specific methylation changes regulated the expression of different transcripts in a different way 

(Salami et al., 2015). Additionally, exon methylation can effect alternative splicing (Maunakea et 

al., 2013). To delineate whether the methylation changes could have this effect on the ADAMTS16 

transcripts, transcript specific primers for each different transcript could be designed and used to 

detect transcript-specific expression changes in the colorectal cancer samples. Taken together, the 

TCGA gene expression data and the methylation profiling implicate a silencing of ADAMTS16 in 

colorectal cancer. However, no conclusive statement can be made whether ADAMTS16 is silenced 

or not, due to the lack of a silencing effect on gene expression in the studied CRC cohort. There is 

compelling reason to assume that the absent silencing effect in the studied CRC cohort in contrast 

to the TCGA cohort is based on the potential detection of different transcript variants and that 

therefore a silencing of ADAMTS16 in CRC takes place. Nevertheless, the discrepancy could also be 

due to fact that in the CRC cohort, control and cancer tissues are matched pairs from the same 

patient, whereas the COADREAD cohort contains non-matched control and cancer samples.  

To further clarify the impact of the observed ADAMTS16 methylation changes, most important are 

analyses of the resulting protein levels. Unfortunately, the limited time frame of this thesis did not 
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allow such analyses. However, further studies are planned to address this question. Particularly, 

western blot analyses and immunohistochemistry of cryosections of matched samples from the 

CRC cohort will provide deeper insights into the ADAMTS-16 regulation.  

 

4.2.5 ADAMTS-16 is a potential tumor suppressor 

Epigenetic silencing of genes is a common feature in human cancers (Jones and Baylin, 2007). 

Although epigenetic changes also affect genes which are probably not involved in promoting 

cancerous development, many genes affected are critical in cancer development (Esteller, 2007; 

Toyota and Issa, 2005). Epigenetic silencing of genes is involved in critical pathways of cancer 

development, such as DNA repair genes, apoptosis mediators, cell adhesion molecules and many 

other genes. Strikingly, often the epigenetic silencing of genes by promoter hypermethylation has 

the same effect as genetic mutations in these genes: Retinoblastoma protein, the first discovered 

tumor suppressor protein, can be inactivated either through genetic mutations or promoter 

methylation, thus causing cancer (Sakai et al., 1991). Based on the observed methylation changes 

in ADAMTS16, one could speculate that ADAMTS16 expression may also be unbeneficial for tumor 

development or could even be a tumor suppressor gene which is therefore silenced by promoter 

hypermethylation. Supporting this hypothesis, ADAMTS-18, the closest relative of ADAMTS-16 

(with overall identity of 57%, (Porter et al., 2005)) is discussed as an tumor suppressor gene, since 

it is generally silenced in various cancers by promoter hypermethylation (Xu et al., 2015). 

Furthermore, functional analysis revealed that overexpression of ADAMTS-18 has an inhibitory 

effect on anchorage-dependent and -independent cell growth, further supporting a function as 

tumor suppressor protein (Jin et al., 2007). Interestingly, the only reported involvement of 

ADAMTS-16 in cancer is the aberrant expression in esophageal squamous-cell carcinoma. 

ADAMTS-16 has been shown to be overexpressed in this cancer and siRNA-mediated knock-down 

of ADAMTS16 inhibited invasiveness and proliferation in esophageal cancer cell lines. 

Unfortunately, methylation changes were not investigated in this study. The reported 

overexpression and tumor promoting functions of ADAMTS-16 in esophageal squamous-cell 

carcinoma seem to be in conflict to the proposed role of ADAMTS16 as a tumor suppressor gene in 

epithelial cancers. But this does not necessary need to be a contradiction: ADAMTS16 has been 

reported to show genetic mutations in 90% of esophageal squamous-cell carcinoma patients 

(International Cancer Genome Consortium data portal, https://dcc.icgc.org/). This is very high. In 

comparison only 15% of the patients suffering from lung cancer and 10% of the patients suffering 
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from colorectal cancers have mutations in ADAMTS16. The mutations in esophageal squamous-cell 

carcinoma, in contrast to the other cancers, could alter the functions of ADAMTS-16 to be tumor 

promoting instead of their normal anti-tumorigenic function. While not being investigated, the 

probability that the esophageal carcinoma cell lines have these mutated ADAMTS16 too, is high 

and could thus explain the inhibited cell proliferation after siRNA knock-down. This theory is 

further supported by a report that have shown that overexpression of wildtype ADAMTS-16 is 

anti-proliferative in a chondrosarcoma cell line (Surridge et al., 2009). Nevertheless, despite these 

major epigenetic changes found in ADAMTS16 gene, only further functional studies, such as siRNA 

and overexpression experiments in colorectal cancer cell lines, will clarify and narrow down the 

biological importance and the functions of ADAMTS-16 in malignancy. 

 

4.2.6 ADAMTS16 as a potential epigenetic biomarker 

Strikingly, the observed methylation changes in the ADAMTS16 gene were found in three different 

cancer entities, namely colorectal cancer, oral squamous-cell carcinoma and lung cancer, and were 

additionally validated in an independent colorectal cancer TCGA cohort. Besides the potential 

functional relevance of these methylation alterations, they pose a possible diagnostic biomarker. 

Additionally, if functionally relevant for the pathology or the treatment strategy, it could be also a 

possible predictive biomarker (treatment) or prognostic biomarker (disease course). Epigenetic 

biomarker such as promoter hypermethylation promise great benefits in early prediction, 

diagnosis of disease and prediction of therapeutic success towards personalized medicine. The 

obstacles until a potential biomarker becomes a proven clinical biomarker are similarly high and 

complex as for any other clinical trial (Mikeska et al., 2012). Major requirements are high 

reproducibility, validation with a different methodology, high specificity and sensitivity, and better 

or different clinical value then the current gold standard. So far, considerable progress was made 

in the advance of DNA methylation as epigenetic biomarkers, but most potential biomarkers have 

not yet made it to the clinical bedside. The first proposed biomarker O6-methylguanine-DNA 

methyltransferase (MGMT) which predicts response to chemotherapeutic treatment (Mineura et 

al., 1996) took a long way with many challenges until finally validated and accepted (Wick et al., 

2014), and feasible diagnostic methods reached the clinics. Many other candidate biomarkers are 

still in one of the many development stages before becoming a proven clinical biomarker. In case 

of ADAMTS16, the three investigated cohorts showed strong methylation alterations in specific 

CpG sites in the averaged methylation levels of cancerous tissue in the whole cohort. In contrast, 
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single patient analyses showed that some patients did not show these changes in the same 

amplitude as the overall cohort or not even at all (data not shown). Therefore, the potential of 

ADAMTS16 as a novel biomarker needs to be further investigated for the overall specificity and 

sensitivity, also in different populations, and needs additionally to be validated by an alternative 

method such as pyrosequencing. 

 

4.2.7 Limitations of methylation analyses in tissue samples due to cell heterogeneity 

One limitation of conducting comparative DNA methylation analyses between the tissue of 

interest and the control tissue is that they typically differ in cell composition. Therefore, 

measurement of all the cell types in those tissue samples can lead to discovery of methylation 

differences that reflect differences in cell type composition rather than differences in methylation 

changes in the cell type of interest. This is in principle also true for the methylation analyses 

conducted in this thesis. For instance, tumor tissue is often infiltrated by immune cells which can 

have a different methylation pattern than the tissue-specific cells. The observed methylation 

changes could be therefore biased by the differences in heterogeneity of the compared tissues. 

Solutions to this problem such as accurately obtaining the cell composition of each sample and 

correcting the observed methylation pattern for heterogeneity are complex and often not feasible 

for every single sample. To circumvent this bottleneck, more alternatives such as high-throughput 

singe-cell DNA methylation analyses (Kantlehner et al., 2011) or statistical approaches without 

knowledge of cell composition (Zou et al., 2014) are developed. Nevertheless, the bias introduced 

in the methylation analyses conducted in this thesis, should not be overestimated. Prior to the 

methylation analyses, the lung cancer samples were further enriched in their tumor cell content 

by micro-dissection, and showed just the same methylation alterations as the other cancer 

entities. 

 

Taken together, the profound methylation changes in the ADAMTS16 gene in three different 

cancer entities demand the functional investigation of ADAMTS-16 in the context of cancerous 

diseases, hopefully also narrowing down its functions in normal cellular processes. 
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5 Summary 

Zinc-dependent metalloproteases are important in many physiological processes such as releasing 

signaling molecules, inactivating receptors and degrading adhesion molecules. Two major families 

of these metalloproteases are the (A) Disintegrin And Metalloproteases (ADAMs) and the ADAMs 

with Thrombospondin motif (ADAMTSs). Both families are strongly related with a similar domain 

structure, but distinct functions. While the ADAM family comprises mostly transmembrane 

proteases with very important functions as sheddases, the ADAMTSs lack the transmembrane 

domain and are therefore secreted proteases with major functions in the remodeling of the 

extracellular matrix.  

ADAM17 is the best characterized member of the ADAM family. However, how the ADAM17-

mediated substrate release is regulated is not understood so far. Recently, we found evidence that 

phosphatidylserine (PS)-exposure might be the distinctive step in the stimulated ADAM17-

mediated shedding. While PS is normally located in the inner membrane leaflet, it is transiently 

exposed upon stimulation with diverse stimuli. A PS-binding motif in the membrane-proximal 

domain of ADAM17 has been identified that binds to the exposed PS, enabling substrate shedding. 

Interestingly, another potential extracellular membrane interaction motif has been described and 

named Conserved ADAM seventeeN Dynamic Interaction Sequence (CANDIS). This sequence 

resembles an amphipathic alpha helix which has been shown to bind to lipid bilayers. This lipid 

binding property suggests a second putative membrane interaction between ADAM17 and the 

plasma membrane. One aim of this thesis was to evaluate whether the lipid binding ability of the 

CANDIS region contributes to the ADAM17 shedding activity. Strikingly, mutations in the 

hydrophobic site, that destroyed the hydrophobic face of the helix, completely abolished 

ADAM17-mediated shedding of transforming growth factor alpha (TGF-α). By contrast, mutations 

in the hydrophilic site of CANDIS had no impact on TGF-α shedding. The abolishment of TGF-α 

shedding correlated with the loss of the lipid binding ability. Therefore, the hydrophobic site of the 

CANDIS region is essential for ADAM17-mediated shedding and may modulate the shedding 

mechanism by interacting with the plasma membrane.  

 

In the second part of this thesis, epigenetic regulation mechanisms of ADAM/TS proteases were 

investigated. Interestingly, epigenetic methylation patterns of neither ADAM10 nor ADAM17 were 

altered in patients suffering from inflammatory or cancerous diseases, although both proteases 

play a critical role in shedding of inflammatory cytokines and cell adhesion molecules. By contrast, 
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a member of the related ADAMTS family, ADAMTS16, showed major epigenetic changes in 

cancers. Several CpGs in the ADAMTS16 gene locus of colorectal cancer (CRC) patients showed 

altered methylation compared to the control. Furthermore, the same methylation changes were 

observed in two other cancer entities, namely oral squamous-cell carcinoma and lung cancer. 

Many CpGs in the promoter region were hypermethylated in the cancer tissue compared to the 

peri-tumoral non-malignant tissue and hypomethylated in the gene body. These methylation 

alterations implicate an epigenetic downregulation of ADAMTS-16 in epithelial cancers. Indeed, 

analysis of gene expression data of ADAMTS16 in patients suffering from Colon adenocarcinomas 

& Rectum adenocarcinomas (COADREAD) measured by the TCGA consortium, showed a silencing 

of ADAMTS16 in these patients. Moreover, analyses of available methylation data of these 

patients further validated the observed methylation changes in CRC also for the COADREAD 

cohort. However, qPCR analyses of the expression of ADAMTS16 in matched pairs in the CRC 

cohort did not show a clear tendency towards up- or downregulation of ADAMTS16 and no 

reduction in the average ADAMTS16 gene expression. Unfortunately, ADAMTS-16 is one of the 

least studied ADAMTSs and its functions remain widely enigmatic, since the only known substrate 

is α2-macroglobulin, a general protease inhibitor. The observed major methylation changes in 

ADAMTS16 in cancers indicate an important function of ADAMTS-16 e.g., as a tumor suppressor – 

yet this function remains to be found. Therefore, functional studies are needed to delineate the 

role of ADAMTS-16 in cancerous diseases. Besides a potential functional relevance, the epigenetic 

alterations found here, might represent a novel epigenetic biomarker in epithelial cancers. 
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6 Zusammenfassung 

Zink-abhängige Metalloproteasen spielen in vielen physiologischen Prozessen eine wichtige Rolle, 

unter anderem durch die Freisetzung von Signalmolekülen, der Inaktivierung von Rezeptoren und 

der Degradierung von Adhäsionsmolekülen. Zwei Hauptfamilien dieser Metalloproteasen sind die 

Disintegrin und Metalloproteasen (ADAMs) und die ADAMs mit Thrombospondin-Motiv 

(ADAMTSs). Beide Familien ähneln sich in ihrer Domänenstruktur, haben aber unterschiedliche 

biologische Funktionen. Während die ADAM-Familie hauptsächlich aus transmembranen 

Proteasen besteht, welche sehr wichtige Funktionen als sogenannte Sheddasen ausüben, fehlt den 

ADAMTSs die Transmembrandomäne. Sie sind daher sekretierte Proteasen, die eine 

Hauptfunktion bei dem Umbau der extrazellulären Matrix einnehmen. Wie die ADAM17-

vermittelte Substratfreisetzung reguliert wird, ist bisher kaum verstanden. Vor Kurzem haben wir 

Hinweise gefunden, dass Phosphatidylserin (PS)-Exposition der entscheidende Schritt in der 

Aktivierung der stimulierten ADAM17-vermittelten Substratfreisetzung sein könnte. PS ist 

normalerweise in der inneren Lipiddoppelschicht der Membran lokalisiert, wird aber durch 

verschiedene Stimuli transient nach außen exponiert. Ein potenzielles PS-Bindungsmotiv in der 

membranproximalen Domäne von ADAM17 wurde identifiziert, welches das extrazellulär 

exponierte PS bindet und dadurch Substrat-Shedding ermöglicht.  

Interessanterweise wurde ein weiteres potenzielles, extrazelluläres Membraninteraktionsmotiv 

beschrieben und Conserved ADAM seventeeN Dynamic Interaction Sequence (CANDIS) genannt. Es 

wurde gezeigt, dass diese Sequenz eine amphipathische Alpha-Helix Struktur besitzt und 

Lipiddoppelschichten binden kann. Diese Lipidbindungseigenschaft weist darauf hin, dass 

möglicherweise eine zweite Membraninteraktion zwischen ADAM17 und der Plasmamembran von 

entscheidender Bedeutung für das ADAM17-vermittelte Shedding sein könnte. Ein Ziel dieser 

Arbeit war es zu untersuchen, ob die Lipidbindungsfähigkeit der CANDIS Region zum ADAM17-

vermittelten Substrat-Shedding beiträgt. Interessanterweise führten Mutationen in der 

hydrophoben Seite der amphipathischen Helix zum vollständigen Erliegen des ADAM17-

vermittelten Transformierender Wachstumsfaktor Alpha (TGF-α) Sheddings. Mutationen in der 

hydrophilen Seite hingegen hatten keine Auswirkungen auf das TGF-α Shedding. Der Verlust der 

Fähigkeit von ADAM17 TGF-α zu prozessieren, korrelierte dabei mit dem Verlust der Fähigkeit von 

CANDIS, Lipide zu binden. Die hydrophobe Seite der CANDIS Region ist daher wichtig für das 

ADAM17-vermittelte Shedding und könnte den Sheddingmechanismus durch eine Interaktion mit 

der Plasmamembran modulieren. 
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Im zweiten Teil dieser Arbeit wurden epigenetische Regulationsmechanismen von ADAM/TS 

Proteasen untersucht. Erstaunlicherweise wurden weder in ADAM10 noch in ADAM17 veränderte 

epigenetische Methylierungsmuster bei Patienten mit entzündlichen Erkrankungen oder Krebs 

gefunden, obwohl beide Proteasen eine kritische Rolle bei der Freisetzung von 

proinflammatorischen Zytokinen und dem Abbau von Zelladhäsionsmolekülen spielen. Ein 

Mitglied der verwandten ADAMTS-Familie, ADAMTS16, zeigte hingegen weitreichende 

epigenetische Veränderungen bei Krebserkrankungen. Mehrere CpGs im ADAMTS16 Genlocus von 

Patienten mit kolorektalem Karzinom (CRC) zeigten im Vergleich zur Kontrolle eine veränderte 

Methylierung. Erstaunlicherweise wurden die gleichen Methylierungveränderungen in zwei 

anderen Tumorarten beobachtet, nämlich im Plattenepithelkarzinom und im Lungenkrebs. Viele 

CpGs im Promotorbereich von ADAMTS16 waren im Tumor, im Vergleich zum peri-tumoralem 

nicht-malignem Gewebe, hypermethyliert und im gene body hypomethyliert. Diese 

Methylierungsveränderungen implizieren eine epigenetische Herunterregulation von ADAMTS16 

in epithelialen Tumoren. Tatsächlich zeigte eine Analyse von Genexpressionsdaten von Patienten 

mit Kolonadenokarzinomen & Rektumadenokarzinomen (COADREAD), deren Daten vom TCGA 

Konsortium erhoben wurden, dass ADAMTS16 bei diesen Patienten stark herunterreguliert war. 

Darüber hinaus bestätigte eine weitere Analyse der verfügbaren Methylierungsdaten zu diesen 

Patienten, dass sie die gleichen Methylierungsänderungen zeigten wie die CRC Kohorte. Allerdings 

zeigten Genexpressionsanalysen mittels qPCR von ADAMTS16 in den gepaarten Proben der CRC-

Kohorte keine klare Tendenz in Richtung Herauf- oder Herunterregulation von ADAMTS16 und 

auch keine Verringerung der durchschnittlichen ADAMTS16 Genexpression bei diesen Patienten. 

ADAMTS-16 ist eines der am wenigsten untersuchten ADAMTSs und seine Funktionen bleiben 

weitgehend rätselhaft, da das einzige bekannte Substrat der allgemeine Proteaseinhibitor α2-

Makroglobulin ist. Die beobachteten starken Methylierungsänderungen in ADAMTS16 in den 

verschiedenen Krebsarten weisen auf eine wichtige Funktion von ADAMTS-16 hin, beispielsweise 

als Tumorsuppressor. Dennoch bleibt diese Funktion von ADAMTS-16 vorerst ungeklärt. Daher 

sind funktionelle Studien im Hinblick auf die Rolle von ADAMTS-16 in Krebserkrankungen dringend 

nötig. Zusätzlich zu einer potenziellen funktionellen Bedeutung könnten die gefunden 

epigenetischen Veränderungen einen neuen epigenetischen Biomarker für epitheliale Tumore 

darstellen. 
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7 Abbreviations 

°C   degree Celsius 

A17   ADAM17 

ADAM/TS  ADAM and ADAMTS 

ADAMs  A Disintegrin And Metalloproteases 

ADAMTS16  ADAMTS16 (human gene or transcript) 

ADAMTS-16  ADAMTS-16 (protein) 

ADAMTSLs  ADAMTS-like proteases 

ADAMTSs  ADAMs with thrombospondin motifs 

ANOVA  analysis of variance 

AP   alkaline phosphatase 

ATP   adenosine triphosphate 

B2M   β-2-microglobulin 

BSA   bovine serum albumin 

CANDIS  Conserved ADAM seventeeN Dynamic Interaction Sequence 

COADREAD  Colon adenocarcinomas & Rectum adenocarcinomas 

CpG   cytosine and guanine connected through a phosphate 

ctrl   control 

DMEM   Dulbecco´s Modified Eagle Medium 

ECM   extracellular matrix 

EGF   epidermal growth factor 

EGFR   epidermal growth factor-receptor 

FACS   Fluorescence-activated cell sorting  

FCS   fetal calf serum 

FSH   follicle-stimulating hormone 

GAPDH  glyceraldehyde 3-phosphate dehydrogenase 

GER   Germany 

GPI   glycosylphosphatidylinositol 

h   hour(s) 

HA   hemagglutinin 

HPRT   hypoxanthine-guanine phosphoribosyltransferase 

HRP   horseradish peroxidase 



Abbreviations 

 

 
82 

IL-1RII   interleukin-1 receptor type 2 

IL-6R   interleukin-6 receptor 

infl   inflamed tissue 

Iono or IO  ionomycin 

iRhoms   inactive Rhomboids 

JPN   Japan 

l   liters 

LB   Luria-Bertani 

LC   lung cancer 

m   meter(s) 

M   molar 

MEFs   ADAM10/17-double deficient knockout murine embryonic fibroblasts 

MGMT   O6-methylguanine-DNA methyltransferase 

min   minute(s) 

MM   marimastat 

MMP13  matrix metalloprotease-13 

MPD   membrane-proximal domain 

MT1-MMP  matrix metallopeptidase 14 

NAFLD   Non-alcoholic fatty liver disease 

NASH   Non-alcoholic Steatohepatitis 

Nef   Negative Regulatory Factor 

NF-κ-B   nuclear factor kappa-light-chain-enhancer of activated B cells 

NL   Netherlands 

ns   non-significant 

PBS   phosphate-buffered saline 

PDI   protein-disulfide isomerase 

Pen/Strep  Penicillin / Streptomycin 

PLAC   protease and lacunin 

PMA   phorbol 12-myristate 13-acetate 

p-NP   p-nitrophenol  

p-NPP   p-nitrophenylphosphat 

PS   phosphatidylserine 
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PVDF    polyvenylidene fluoride 

rcf    relative centrifugal force 

real-time RT-qPCR real-time reverse-transcriptase quantitative polymerase chain 

reaction 

rpm    rounds per minute 

s    second(s) 

SCC    oral squamous-cell carcinoma 

SD    spacer domain 

SDS-PAGE   sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SVMPs    Snake venom metalloproteinases 

TACE    tumor necrosis factor converting enzyme 

TBS    tris-buffered saline 

TBST    tris-buffered saline with tween 

TCGA    The Cancer Genome Atlas 

TGF-α AP alkaline phosphatase-tagged transforming growth factor alpha 

TGF-α shedding activity ADAM17-mediated TGF-α substrate shedding 

TGF-α    transforming growth factor alpha 

TGF-β    transforming growth factor beta 

TNFR    tumor necrosis factor receptor  

TNF-α    tumor necrosis factor alpha 

TSP-1    thrombospondin type 1 

UK    United Kingdom 

USA    United States of America 

v/v    volume/volume 

VEGF    vascular endothelial growth factor 

vWFCP    Von Willebrand factor-cleaving protease 

w/v    weight/volume 

WB    western blot 

WT    wildtype 
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10 Supplements 

A            B 

 

Supplemental Figure 1. Mutations in a polybasic RKK-motif in the membrane-proximal domain of 
ADAM17 have the same effect as the EE mutations in CANDIS. Substitutions in a polybasic motif of 
ADAM17 in the MPD (R625G K626G K628G) completely abolished the ability of ADAM17 to shed the 
transmembrane substrate TGF-α. This motif is proposed to be a phosphatidylserine (PS)-binding motif that 
is needed for the interaction with exposed PS, to enable shedding. ADAM10/17-double-deficient mouse 
embryonic fibroblasts (MEFs) were retransfected with inactive ADAM17 E/A variant as control, murine 
ADAM17 wildtype (A17 WT) or the ADAM17 3x (A17 3x) mutant and plasmids containing alkaline 
phosphatase coupled TGF-α (TGF-α AP). 24 h after transfection, MEFs were treated or not treated with 
phorbol 12-myristate 13-acetate (PMA, 200 ng/ml) for 2 h (A) or ionomycin (Iono, 1 µM) and melittin (Mel, 
1 µM) for 30 min (B). Thereafter, the ADAM17-mediated TGF-α shedding activity was determined. 
Retransfection of A17 WT rescued constitutive and stimulated TGF-α release. In contrast, retransfection of 
A17 3x did not rescue constitutive and stimulated TGF-α shedding. Data represent the means +SEM 
(standard error of mean) of at least three independent experiments (n≥3).  
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